
This is a special edition of an established
title widely used by colleges and universities
throughout the world. Pearson published this
exclusive edition for the benefi t of students
outside the United States and Canada. If you
purchased this book within the United States
or Canada you should be aware that it has
been imported without the approval of the
Publisher or Author.

Pearson International Edition

Java Softw
are Structures

 Lew
is

C
hase

FO
U

RT
H

ED
IT

IO
N

INTERNATIONAL
EDITION

ISBN-13:
ISBN-10:

978-0-273-79332-8
0-273-79332-2

9 7 8 0 2 7 3 7 9 3 3 2 8

9 0 0 0 0

The editorial team at Pearson has worked closely with
educators around the globe to inform students of the
ever-changing world in a broad variety of disciplines.
Pearson Education offers this product to the international
market, which may or may not include alterations from the
United States version.

INTERNATIONAL
EDITIONIN

T
ER

N
AT

IO
N

A
L

ED
IT

IO
N

Java Software Structures
Designing and Using Data Structures
FOURTH EDITION

 John Lewis • Joseph Chase

D E S I G N I N G A N D U S I N G
D ATA S T R U C T U R E S

4 T H E D I T I O N

A01_LEWI3322_FM_p1-26.indd 1 21/02/13 3:45 PM

A01_LEWI3322_FM_p1-26.indd 2 21/02/13 3:45 PM

 This page is intentionally left blank.

Boston Columbus Indianapolis New York San Francisco
Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan

Munich Paris Montreal Toronto Delhi Mexico City Sao Paulo Sydney
Hong Kong Seoul Singapore Taipei Tokyo

john L ewis
V i r g i n i a Te ch

joseph chase
Rad f o r d Un i v e r s i t y

D E S I G N I N G A N D U S I N G
D ATA S T R U C T U R E S

4 T H E D I T I O N

 A N D

i n t e r na t i o na l ed i t i o n c on t r i b u t i o n s b y

p i ya L i s engUpTa

A01_LEWI3322_FM_p1-26.indd 3 01/03/13 2:07 PM

Acquisitions Editor, US Edition: Matt Goldstein
Editorial Assistant: Jenah Blitz-Stoehr
Senior Managing Editor: Scott Disanno
Senior Production Supervisor: Marilyn Lloyd
Marketing Manager: Yes Alayan
Marketing Coordinator: Kathryn Ferranti
Publisher, International Edition: Angshuman Chakraborty
Publishing Administrator and Business Analyst, International

Edition: Shokhi Shah Khandelwal
Associate Print & Media Editor, International Edition:

Anuprova Dey Chowdhuri
Acquisitions Editor, International Edition: Sandhya Ghoshal

Publishing Administrator, International Edition: Hema Mehta
Project Editor, International Edition: Karthik Subramanian
Senior Manufacturing Controller, Production, International

Edition: Trudy Kimber
Marketing Coordinator: Kathryn Ferranti
Manufacturing Buyer: Lisa McDowell
Cover Design: Jodi Notowitz
Project Management and Illustrations: Cenveo® Publisher Services
Project Manager, Cenveo® Publisher Services, Inc.: Rose Kernan
Text Design, Cenveo® Publisher Services, Inc.: Jerilyn

Bockorick, Alisha Webber
Cover Image: Viachaslau Kraskouski/Shutterstock

Pearson Education Limited
Edinburgh Gate
Harlow
Essex CM20 2JE
England

and Associated Companies throughout the world

Visit us on the World Wide Web at:
www.pearsoninternationaleditions.com

© Pearson Education Limited 2014

The rights of John Lewis and Joseph Chase to be identified as authors of this work have been asserted by them in accordance
with the Copyright, Designs and Patents Act 1988.

Authorized adaptation from the United States edition, entitled Java Software Structures, 4th edition, ISBN 978-0-13-325012-1,
by John Lewis and Joseph Chase, published by Pearson Education © 2014.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording or otherwise, without either the prior written permission of
the publisher or a license permitting restricted copying in the United Kingdom issued by the Copyright Licensing Agency Ltd,
Saffron House, 6–10 Kirby Street, London EC1N 8TS.

All trademarks used herein are the property of their respective owners. The use of any trademark in this text does not vest in
the author or publisher any trademark ownership rights in such trademarks, nor does the use of such trademarks imply any
affiliation with or endorsement of this book by such owners.

Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the
documents and related graphics published as part of the services for any purpose. All such documents and related graphics
are provided “as is” without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties
and conditions with regard to this information, including all warranties and conditions of merchantability, whether express,
implied or statutory, fitness for a particular purpose, title and non-infringement. In no event shall Microsoft and/or its respective
suppliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss of use,
data or profits, whether in an action of contract, negligence or other tortious action, arising out of or in connection with the
use or performance of information available from the services.

The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes
are periodically added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or
changes in the product(s) and/or the program(s) described herein at any time. Partial screen shots may be viewed in full within
the software version specified.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. This
book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

ISBN 10: 0-273-79332-2
ISBN 13: 978-0-273-79332-8

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

10 9 8 7 6 5 4 3 2 1
14 13 12 11 10
Typeset in Sabon LT Std Roman by Cenveo® Publisher Services

Printed and bound by Courier Westford in The United States of America
The publisher’s policy is to use paper manufactured from sustainable forests.

A01_LEWI3322_FM_p1-26.indd 4 01/03/13 2:07 PM

ISBN 13: 978-0-273-79368-7
 (Print)
 (PDF)

To my wife Sharon and my kids:

Justin, Kayla, Nathan, and Samantha

–J. L.

To my loving wife Melissa for her support and encouragement
and to our families, friends, colleagues, and students who have provided

so much support and inspiration through the years.

–J. C.

A01_LEWI3322_FM_p1-26.indd 5 21/02/13 3:45 PM

A01_LEWI3322_FM_p1-26.indd 6 21/02/13 3:45 PM

 This page is intentionally left blank.

7

This book is designed to serve as a text for a course on data structures and algo-
rithms. This course is typically referred to as the CS2 course because it is often
taken as the second course in a computing curriculum.

Pedagogically, this book follows the style and approach of the leading CS1
book Java Software Solutions: Foundations of Program Design, by John Lewis
and William Loftus. Our book uses many of the highly regarded features of that
book, such as the Key Concept boxes and complete code examples. Together,
these two books support a solid and consistent approach to either a two-course or
three-course introductory sequence for computing students. That said, this book
does not assume that students have used Java Software Solutions in a previous
course.

Material that might be presented in either course (such as recursion or sort-
ing) is presented in this book as well. We also include strong reference material
providing an overview of object-oriented concepts and how they are realized in
Java.

We understand the crucial role that the data structures and algorithms course
plays in a curriculum and we think this book serves the needs of that course
well.

New in the Fourth Edition
We have made some key modifications in this fourth edition to enhance its peda-
gogy. They can be summarized as follows:

n	 Revised the collection chapters to provide a more complete explanation of
how the Java API supports the collection.

n	 Added a summary of terms and definitions at the end of each chapter.

n	 Separated the coverage of Iterators into it’s own chapter and expanded the
discussion.

n	 Added a new Code Annotation feature, used to explore key statements
with graphic annotations.

n	 Added a new Common Error callout feature.

n	 Added new Design Focus callouts.

Preface

A01_LEWI3322_FM_p1-26.indd 7 21/02/13 3:45 PM

8 PrEFacE

n	 Added a new appendices covering graphical drawing, graphical user inter-
face development, and regular expressions.

n	 Reviewed and updated the text throughout to improve discussions and ad-
dress issues.

In particular, we’ve reworked the discussion of individual collections to match
the following flow:

Explore the collection conceptually.

Discuss the support in the
Java API for the collection.

Explore implementation options
and efficiency issues.

Use the collection to solve problems.

This approach clarifies the distinction between the way the Java API supports a
particular collection and the way it might be implemented from scratch. It makes
it easier for instructors to point out limitations of the API implementations in a
compare-and-contrast fashion. This approach also allows an instructor, on a case-
by-case basis, to simply introduce a collection without exploring implementation
details if desired.

The other modifications for this edition flesh out the presentation to a higher
degree than previous editions did. The addition of a term list (with succinct defi-
nitions) at the end of each chapter provides a summary of core issues in ways
that the other features don’t. New Code Annotation and Common Error features
highlight specific issues that might otherwise get lost in the body of the text, but
without interrupting the flow of the topic.

We think these modifications build upon the strong pedagogy established by
previous editions and give instructors more opportunity and flexibility to cover
topics as they choose.

Our approach
Books of this type vary greatly in their overall approach. Our approach is founded
on a few important principles that we fervently embraced. First, we present the
various collections explored in the book in a consistent manner. Second, we

A01_LEWI3322_FM_p1-26.indd 8 21/02/13 3:45 PM

 PrEFacE 9

emphasize the importance of sound software design techniques. Third, we orga-
nized the book to support and reinforce the big picture: the study of data struc-
tures and algorithms.

Throughout the book, we keep sound software engineering practices a high
priority. Our design of collection implementations and the programs that use them
follow consistent and appropriate standards.

Of primary importance is the separation of a collection’s interface from its
underlying implementation. The services that a collection provides are always
formally defined in a Java interface. The interface name is used as the type des-
ignation of the collection whenever appropriate to reinforce the collection as an
abstraction.

chapter Breakdown
Chapter 1 (Introduction) discusses various aspects of software quality and

provides an overview of software development issues. It is designed to establish
the appropriate mindset before embarking on the details of data structure and
algorithm design.

Chapter 2 (Analysis of Algorithms) lays the foundation for determining the
efficiency of an algorithm and explains the important criteria that allow a devel-
oper to compare one algorithm to another in proper ways. Our emphasis in this
chapter is understanding the important concepts more than getting mired in heavy
math or formality.

Chapter 3 (Introduction to Collections—Stacks) establishes the concept of a
collection, stressing the need to separate the interface from the implementation.
It also conceptually introduces a stack, then explores an array-based implementa-
tion of a stack.

Chapter 4 (Linked Structures—Stacks) discusses the use of references to create
linked data structures. It explores the basic issues regarding the management of
linked lists, and then defines an alternative implementation of a stack (introduced
in Chapter 3) using an underlying linked data structure.

Chapter 5 (Queues) explores the concept and implementation of a first-in, first-
out queue. Radix sort is discussed as an example of using queues effectively. The
implementation options covered include an underlying linked list as well as both
fixed and circular arrays.

Chapter 6 (Lists) covers three types of lists: ordered, unordered, and indexed.
These three types of lists are compared and contrasted, with discussion of the
operations that they share and those that are unique to each type. Inheritance
is used appropriately in the design of the various types of lists, which are imple-
mented using both array-based and linked representations.

A01_LEWI3322_FM_p1-26.indd 9 21/02/13 3:45 PM

10 PrEFacE

Chapter 7 (Iterators) is a new chapter that isolates the concepts and implemen-
tation of iterators, which are so important to collections. The expanded discussion
drives home the need to separate the iterator functionality from the details of any
particular collection.

Chapter 8 (Recursion) is a general introduction to the concept of recursion and
how recursive solutions can be elegant. It explores the implementation details of
recursion and discusses the basic idea of analyzing recursive algorithms.

Chapter 9 (Searching and Sorting) discusses the linear and binary search algo-
rithms, as well as the algorithms for several sorts: selection sort, insertion sort,
bubble sort, quick sort, and merge sort. Programming issues related to searching
and sorting, such as using the Comparable interface as the basis of comparing
objects, are stressed in this chapter. Searching and sorting that are based in par-
ticular data structures (such as heap sort) are covered in the appropriate chapter
later in the book.

Chapter 10 (Trees) provides an overview of trees, establishing key terminology
and concepts. It discusses various implementation approaches and uses a binary
tree to represent and evaluate an arithmetic expression.

Chapter 11 (Binary Search Trees) builds off of the basic concepts established
in Chapter 10 to define a classic binary search tree. A linked implementation of a
binary search tree is examined, followed by a discussion of how the balance in the
tree nodes is key to its performance. That leads to exploring AVL and red/black
implementations of binary search trees.

Chapter 12 (Heaps and Priority Queues) explores the concept, use, and imple-
mentations of heaps and specifically their relationship to priority queues. A heap
sort is used as an example of its usefulness as well. Both linked and array-based
implementations are explored.

Chapter 13 (Sets and Maps) explores these two types of collections and their
importance to the Java Collections API.

Chapter 14 (Multi-way Search Trees)is a natural extension of the discussion of
the previous chapters. The concepts of 2-3 trees, 2-4 trees, and general B-trees are
examined and implementation options are discussed.

Chapter 15 (Graphs) explores the concept of undirected and directed graphs
and establishes important terminology. It examines several common graph algo-
rithms and discusses implementation options, including adjacency matrices.

Appendix A (UML) provides an introduction to the Unified Modeling
Language as a reference. UML is the de facto standard notation for representing
object-oriented systems.

Appendix B (Object-Oriented Concepts) is a reference for anyone needing a
review of fundamental object-oriented concepts and how they are accomplished

A01_LEWI3322_FM_p1-26.indd 10 21/02/13 3:45 PM

 PrEFacE 11

in Java. Included are the concepts of abstraction, classes, encapsulation, inheri-
tance, and polymorphism, as well as many related Java language constructs such
as interfaces.

Appendix C (Graphics) covers the basics of drawing shapes using the Java API.

Appendix D (Graphical User Interfaces) provides a detailed overview of the
elements needed to develop a Swing-based GUI. It includes many examples using
a variety of interface components.

Appendix E (Hashing) covers the concept of hashing and related issues, such
as hash functions and collisions. Various Java Collections API options for hashing
are discussed.

Appendix F (Regular Expressions) provides an introduction to the use of regu-
lar expressions, which come into play in various Java API elements, such as the
Scanner class.

Supplements
The following student resources are available for this book:

n	 Source code for all programs presented in the book

n	 VideoNotes that explore select topics from the book

Resources can be accessed at www.pearsoninternationaleditions.com/lewis

The following instructor resources can be found at Pearson Education’s
Instructor Resource Center:

n	 Solutions for select exercises and programming projects in the book

n	 Powerpoint slides for the presentation of the book content

n	 Test bank

To obtain access, please visit www.pearsoninternationaleditions.com/lewis
or contact your local Pearson Education sales representative.

Pearson would also like to thank Mohit P. Tahiliani of NITK Surathkal for
reviewing the content of the International Edition.

A01_LEWI3322_FM_p1-26.indd 11 21/02/13 3:45 PM

A01_LEWI3322_FM_p1-26.indd 12 21/02/13 3:45 PM

 This page is intentionally left blank.

13

Preface 7

credits 25

chapter 1 Introduction 27
1.1 Software Quality 28

 Correctness 29
 Reliability 29
 Robustness 30
 Usability 30
 Maintainability 31
 Reusability 31
 Portability 32
 Efficiency 32
 Quality Issues 32

1.2 Data Structures 33
 A Physical Example 33
 Containers as Objects 36

chapter 2 analysis of algorithms 41
2.1 algorithm Efficiency 42

2.2 Growth Functions and Big-Oh Notation 43

2.3 comparing Growth Functions 45

2.4 Determining Time complexity 48
 Analyzing Loop Execution 48
 Nested Loops 48
 Method Calls 49

Contents

A01_LEWI3322_FM_p1-26.indd 13 21/02/13 3:45 PM

chapter 3 Introduction to collections – Stacks 55
3.1 collections 56

Abstract Data Types 57
The Java Collections API 59

3.2 a Stack collection 59

3.3 crucial OO concepts 61
Inheritance and Polymorphism 62
Generics 63

3.4 Using Stacks: Evaluating Postfix Expressions 64
Javadoc 71

3.5 Exceptions 72

3.6 a Stack aDT 74

3.7 Implementing a Stack: With arrays 77
Managing Capacity 78

3.8 The arrayStack class 79
The Constructors 80
The push Operation 82
The pop Operation 83
The peek Operation 85
Other Operations 85
The EmptyCollectionException Class 85
Other Implementations 86

chapter 4 Linked Structures – Stacks 93
4.1 references as Links 94

4.2 Managing Linked Lists 96
Accessing Elements 96
Inserting Nodes 97
Deleting Nodes 98

4.3 Elements without Links 99
Doubly Linked Lists 99

4.4 Stacks in the Java aPI 100

14 cONTENTS

A01_LEWI3322_FM_p1-26.indd 14 21/02/13 3:45 PM

4.5 Using Stacks: Traversing a Maze 101

4.6 Implementing a Stack: With Links 110
The LinkedStack Class 110
The push Operation 114
The pop Operation 116
Other Operations 117

chapter 5 Queues 123
5.1 a conceptual Queue 124

5.2 Queues in the Java aPI 125

5.3 Using Queues: code Keys 126

5.4 Using Queues: Ticket counter Simulation 130

5.5 a Queue aDT 135

5.6 a Linked Implementation of a Queue 137
The enqueue Operation 139
The dequeue Operation 141
Other Operations 142

5.7 Implementing Queues: With arrays 143
The enqueue Operation 147
The dequeue Operation 149
Other Operations 150

5.8 Double-Ended Queues (Deque) 150

chapter 6 Lists 155
6.1 a List collection 156

6.2 Lists in the Java collections aPI 158

6.3 Using Unordered Lists: Program of Study 159

6.4 Using Indexed Lists: Josephus 170

6.5 a List aDT 172
Adding Elements to a List 173

 cONTENTS 15

A01_LEWI3322_FM_p1-26.indd 15 21/02/13 3:45 PM

6.6 Implementing Lists with arrays 178
The remove Operation 180
The contains Operation 182
The add Operation for an Ordered List 183
Operations Particular to Unordered Lists 185
The addAfter Operation for an Unordered List 185

6.7 Implementing Lists with Links 186
The remove Operation 187

chapter 7 Iterators 195
7.1 What’s an Iterator? 196

Other Iterator Issues 198

7.2 Using Iterators: Program of Study revisited 198
Printing Certain Courses 202
Removing Courses 203

7.3 Implementing Iterators: With arrays 205

7.4 Implementing Iterators: With Links 207

chapter 8 recursion 213
8.1 recursive Thinking 214

Infinite Recursion 214
Recursion in Math 215

8.2 recursive Programming 216
Recursion versus Iteration 219
Direct versus Indirect Recursion 219

8.3 Using recursion 220
Traversing a Maze 220
The Towers of Hanoi 228

8.4 analyzing recursive algorithms 233

chapter 9 Searching and Sorting 241
9.1 Searching 242

Static Methods 243
Generic Methods 243

16 cONTENTS

A01_LEWI3322_FM_p1-26.indd 16 21/02/13 3:45 PM

Linear Search 244
Binary Search 246
Comparing Search Algorithms 248

9.2 Sorting 249
Selection Sort 252
Insertion Sort 254
Bubble Sort 256
Quick Sort 258
Merge Sort 262

9.3 radix Sort 265

chapter 10 Trees 275
10.1 Trees 276

Tree Classifications 277

10.2 Strategies for Implementing Trees 279
Computational Strategy for Array

Implementation of Trees 279
Simulated Link Strategy for Array

Implementation of Trees 279
Analysis of Trees 281

10.3 Tree Traversals 282
Preorder Traversal 282
Inorder Traversal 283
Postorder Traversal 283
Level-Order Traversal 284

10.4 a Binary Tree aDT 285

10.5 Using Binary Trees: Expression Trees 289

10.6 a Back Pain analyzer 301

10.7 Implementing Binary Trees with Links 305
The find Method 310
The iteratorInOrder Method 312

chapter 11 Binary Search Trees 319
 11.1 a Binary Search Tree 320

 cONTENTS 17

A01_LEWI3322_FM_p1-26.indd 17 21/02/13 3:45 PM

11.2 Implementing Binary Search Trees: With Links 322
The addElement Operation 323
The removeElement Operation 326
The removeAllOccurrences Operation 329
The removeMin Operation 330
Implementing Binary Search Trees: With Arrays 332

11.3 Using Binary Search Trees: Implementing
Ordered Lists 332
Analysis of the BinarySearchTreeList

Implementation 335

11.4 Balanced Binary Search Trees 336
Right Rotation 337
Left Rotation 338
Rightleft Rotation 339
Leftright Rotation 339

11.5 Implementing BSTs: aVL Trees 340
Right Rotation in an AVL Tree 341
Left Rotation in an AVL Tree 341
Rightleft Rotation in an AVL Tree 341
Leftright Rotation in an AVL Tree 343

11.6 Implementing BSTs: red/Black Trees 343
Insertion into a Red/Black Tree 344
Element Removal from a Red/Black Tree 347

chapter 12 Heaps and Priority Queues 357
12.1 a Heap 358

The addElement Operation 360
The removeMin Operation 361
The findMin Operation 362

12.2 Using Heaps: Priority Queues 362

12.3 Implementing Heaps: With Links 366
The addElement Operation 368
The removeMin Operation 370
The findMin Operation 373

18 cONTENTS

A01_LEWI3322_FM_p1-26.indd 18 21/02/13 3:45 PM

12.4 Implementing Heaps: With arrays 373
The addElement Operation 375
The removeMin Operation 376
The findMin Operation 378

 12.5 Using Heaps: Heap Sort 378

chapter 13 Sets and Maps 385
13.1 Set and Map collections 386

13.2 Sets and Maps in the Java aPI 386

13.3 Using Sets: Domain Blocker 389

13.4 Using Maps: Product Sales 392

13.5 Using Maps: User Management 396

13.6 Implementing Sets and Maps Using Trees 401

13.7 Implementing Sets and Maps Using Hashing 401

chapter 14 Multi-Way Search Trees 409
14.1 combining Tree concepts 410

14.2 2-3 Trees 410
Inserting Elements into a 2-3 Tree 411
Removing Elements from a 2-3 Tree 413

14.3 2-4 Trees 416

14.4 B-Trees 418
B*-Trees 419
B+-Trees 419
Analysis of B-Trees 420

14.5 Implementation Strategies for B-Trees 420

chapter 15 Graphs 427
15.1 Undirected Graphs 428

15.2 Directed Graphs 429

 cONTENTS 19

A01_LEWI3322_FM_p1-26.indd 19 21/02/13 3:45 PM

15.3 Networks 431

15.4 common Graph algorithms 432
Traversals 432
Testing for Connectivity 436
Minimum Spanning Trees 438
Determining the Shortest Path 441

15.5 Strategies for Implementing Graphs 441
Adjacency Lists 442
Adjacency Matrices 442

15.6 Implementing Undirected Graphs with
an adjacency Matrix 443
The addEdge Method 448
The addVertex Method 448
The expandCapacity Method 449
Other Methods 450

appendix a UML 455
The Unified Modeling Language (UML) 456

UML class Diagrams 456

UML relationships 458

appendix B Object-Oriented Design 463
B.1 Overview of Object-Orientation 464

B.2 Using Objects 464
Abstraction 465
Creating Objects 466

B.3 class Libraries and Packages 468
The import Declaration 468

B.4 State and Behavior 469

B.5 classes 470
Instance Data 473

20 cONTENTS

A01_LEWI3322_FM_p1-26.indd 20 21/02/13 3:45 PM

B.6 Encapsulation 474
Visibility Modifiers 474
Local Data 476

B.7 constructors 476

B.8 Method Overloading 477

B.9 references revisited 478
The Null Reference 478
The this Reference 479
Aliases 481
Garbage Collection 482
Passing Objects as Parameters 483

B.10 The static Modifier 483
Static Variables 484
Static Methods 484

B.11 Wrapper classes 485

B.12 Interfaces 486
The Comparable Interface 487

B.13 Inheritance 488
Derived Classes 488
The protected Modifier 490
The super Reference 491
Overriding Methods 491

B.14 class Hierarchies 492
The Object Class 493
Abstract Classes 494
Interface Hierarchies 496

B.15 Polymorphism 496
References and Class Hierarchies 497
Polymorphism via Inheritance 498
Polymorphism via Interfaces 498

B.16 Exceptions 501
Exception Messages 502
The try Statement 502
Exception Propagation 503
The Exception Class Hierarchy 504

 cONTENTS 21

A01_LEWI3322_FM_p1-26.indd 21 21/02/13 3:45 PM

appendix c Java Graphics 515
c.1 Pixels and coordinates 516

c.2 representing color 517

c.3 Drawing Shapes 518

c.4 Polygons and Polylines 527
The Polygon Class 530

appendix D Graphical User Interfaces 537
D.1 GUI Elements 538

Frames and Panels 539
Buttons and Action Events 543
Determining Event Sources 545

D.2 More components 548
Text Fields 548
Check Boxes 551
Radio Buttons 555
Sliders 559
Combo Boxes 564
Timers 569

D.3 Layout Managers 574
Flow Layout 576
Border Layout 579
Grid Layout 583
Box Layout 586
Containment Hierarchies 589

D.4 Mouse and Key Events 589
Mouse Events 589
Key Events 598
Extending Adapter Classes 604

D.5 Dialog Boxes 605
File Choosers 608
Color Choosers 611

22 cONTENTS

A01_LEWI3322_FM_p1-26.indd 22 21/02/13 3:45 PM

D.6 Some Important Details 612
Borders 612
Tool Tips and Mnemonics 616

D.7 GUI Design 623

appendix E Hashing 633
E.1 Hashing 634

E.2 Hashing Functions 636
The Division Method 636
The Folding Method 637
The Mid-Square Method 637
The Radix Transformation Method 638
The Digit Analysis Method 638
The Length-Dependent Method 638
Hashing Functions in the Java Language 639

E.3 resolving collisions 639
Chaining 639
Open Addressing 642

E.4 Deleting Elements from a Hash Table 646
Deleting from a Chained Implementation 646
Deleting from an Open Addressing

Implementation 647

E.5 Hash Tables in the Java collections aPI 648
The Hashtable Class 648
The HashSet Class 650
The HashMap Class 650
The IdentityHashMap Class 651
The WeakHashMap Class 652
LinkedHashSet and LinkedHashMap 653

appendix F regular Expressions 661

Index 665

 cONTENTS 23

A01_LEWI3322_FM_p1-26.indd 23 21/02/13 3:45 PM

LOCATION OF VIDEONOTES IN THE TEXT

Chapter 3 An overview of the ArrayStack implementation, page 80

Chapter 4 Using a stack to solve a maze, page 103

Chapter 5 An array-based queue implementation, page 143

Chapter 6 List categories, page 156

Chapter 8 Analyzing recursive algorithms, page 234

Chapter 9 Demonstration of a binary search, page 247

Chapter 10 Demonstration of the four basic tree traversals, page 285

Chapter 11 Demonstration of the four basic tree rotations, page 340

Chapter 12 Demonstration of a heap sort on an array, page 379

Chapter 14 Inserting elements into, and removing elements from, a 2-3 tree, page 414

Chapter 15 Illustration of depth-first and breadth-first traversals of a graph, page 433

VideoNote

A01_LEWI3322_FM_p1-26.indd 24 21/02/13 3:45 PM

25

Cover: Viachaslau Kraskouski/Shutterstock

Chapter 1: Quote: “If I have seen further, it is by standing on the shoulders of
giants” Newton, Issac. Letter to Robert Hooke. 1676.

Chapter 2: Paraphrase of another way of looking at the effect of algorithm com-
plexity Aho, A. A., J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of
Computer Algorithms. Reading, Mass.: 2nd Edition Addison-Wesley, 1974.

Chapter 11: Adel’son-Vel’skii and Landis developed a method called AVL trees
that is a variation on this theme. For each node in the tree, we will keep track of
the height of the left and right subtrees. Georgii M. Adelson-Velskii and Evgenii M.
Landis, “An Algorithm for the Organization of Information.” Doklady Akademii
Nauk SSSR, 146:263–266, 1962 (Russian). English translation by Myron J. Ricci
in Soviet Math. Doklady, 3:1259-1263, 1962.

Quote: “Another alternative to the implementation of binary search trees is the con-
cept of a red/black tree, developed by Bayer and extended by Guibas and Sedgewick.”
Guibas, L. and R. Sedgewick. “A Diochromatic Framework for Balanced Trees.”
Proceedings of the 19th Annual IEEE Symposium on Foundations of Computer
Science (1978): 8–21.

Chapter 15: The second possibility for determining the shortest path is to look for
the cheapest path in a weighted graph. Dijkstra developed an algorithm for this
possibility that is similar to our previous algorithm. Dijkstra, E. W. “A Note on
Two Problems in Connection with Graphs.” Numerische Mathematik 1 (1959):
269–271.

Reference: The algorithm for developing a minimum spanning tree was developed
by Prim (1957) and is quite elegant. Prim, R. C. “Shortest Connection Networks
and Some Generalizations.” Bell System Technical Journal 36 (1957): 1389–1401.

Credits

25

A01_LEWI3322_FM_p1-26.indd 25 01/03/13 2:07 PM

26 crEDITS

MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAKE NO
REPRESENTATIONS ABOUT THE SUITABILITY OF THE INFORMATION
CONTAINED IN THE DOCUMENTS AND RELATED GRAPHICS
PUBLISHED AS PART OF THE SERVICES FOR ANY PURPOSE. ALL
SUCH DOCUMENTS AND RELATED GRAPHICS ARE PROVIDED “AS
IS” WITHOUT WARRANTY OF ANY KIND. MICROSOFT AND/OR ITS
RESPECTIVE SUPPLIERS HEREBY DISCLAIM ALL WARRANTIES AND
CONDITIONS WITH REGARD TO THIS INFORMATION, INCLUDING ALL
WARRANTIES AND CONDITIONS OF MERCHANTABILITY, WHETHER
EXPRESS, IMPLIED OR STATUTORY, FITNESS FOR A PARTICULAR
PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT SHALL
MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE
USE OR PERFORMANCE OF INFORMATION AVAILABLE FROM THE
SERVICES.

THE DOCUMENTS AND RELATED GRAPHICS CONTAINED HEREIN
COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION
HEREIN. MICROSOFT AND/OR ITS RESPECTIVE SUPPLIERS MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE
PROGRAM(S) DESCRIBED HEREIN AT ANY TIME. PARTIAL SCREEN
SHOTS MAY BE VIEWED IN FULL WITHIN THE SOFTWARE VERSION
SPECIFIED.

MICROSOFT® AND WINDOWS® ARE REGISTERED TRADEMARKS OF THE
MICROSOFT CORPORATION IN THE U.S.A. AND OTHER COUNTRIES.
THIS BOOK IS NOT SPONSORED OR ENDORSED BY OR AFFILIATED
WITH THE MICROSOFT CORPORATION.

A01_LEWI3322_FM_p1-26.indd 26 21/02/13 3:45 PM

11

27

C h a p t e r
O b j e C t i v e s
■ Identify various aspects of

software quality.

■ Motivate the need for data
structures based upon quality
issues.

■ Introduce the basic concept of a
data structure.

■ Introduce several elementary
data structures.

Introduction

Our exploration of data structures begins with an over-

view of the underlying issues surrounding the quality of

software systems. It is important for us to understand that it

is necessary for systems to work as specified, but simply

working is not sufficient. We must also develop quality

systems. This chapter discusses a variety of issues related to

software quality and data structures, and it establishes some

terminology that is crucial to our exploration of data struc-

tures and software design.

M01_LEWI3322_CH01_pp027-040.indd 27 19/02/13 10:39 AM

28 Chapter 1 Introduction

1.1 software Quality

Imagine a scenario where you are approaching a bridge that has recently been
built over a large river. As you approach, you see a sign informing you that the
bridge was designed and built by local construction workers and that engineers
were not involved in the project. Would you continue across the bridge? Would it
make a difference if the sign informed you that the bridge was designed by engi-
neers and built by construction workers?

The word engineer in this context refers to an individual who has been edu-
cated in the history, theory, method, and practice of the engineering discipline.
This definition includes fields of study such as electrical engineering, mechanical
engineering, and chemical engineering. Software engineering is the study of the
techniques and theory that underlie the development of high-quality software.

When the term software engineering was first coined in the 1970s, it was an aspi-
ration—a goal set out by leaders in the industry who realized that much of the soft-
ware being created was of poor quality. They wanted developers to move away from
the simplistic idea of writing programs and toward the disciplined idea of engineering
software. To engineer software we must first realize that this term is more than just a
title and that, in fact, it represents a completely different attitude.

Many arguments have been started over the question of whether software engi-
neering has reached the state of a true engineering discipline. We will leave that
argument for software engineering courses. For our purposes, it is sufficient to
understand that as software developers we share a common history, we are con-
strained by common theory, and we must understand current methods and prac-
tices in order to work together.

Ultimately, we want to satisfy the client, the person or organization who pays
for the software to be developed, as well as the final users of the system, who may
include the client, depending on the situation.

The goals of software engineering are much the same as those for other engi-
neering disciplines:

■ Solve the right problem.

■ Deliver a solution on time and within budget.

■ Deliver a high-quality solution.

■ Accomplish these things in an ethical manner (see www.acm.org/about/
code-of-ethics).

Sir Isaac Newton is credited with having declared, “If I have seen further, it is by
standing on the shoulders of giants.” As modern software developers, we stand upon
the shoulders of the giants who founded and developed our field. To truly stand upon
their shoulders, we must understand, among other things, the fundamentals of quality

M01_LEWI3322_CH01_pp027-040.indd 28 19/02/13 10:39 AM

 1.1 Software Quality 29

software systems and the organization, storage, and retrieval of data. These are the
building blocks upon which modern software development is based.

To maximize the quality of our software, we must first realize that quality
means different things to different people. And there are a variety of quality char-
acteristics to consider. Figure 1.1 lists several aspects of high-quality software.

Correctness
The concept of correctness goes back to our original goal of developing the ap-
propriate solution. At each step along the way in developing a program, we want
to make sure that we are addressing the problem as defined by the requirements
specification and that we are providing an accurate solution to that problem.
Almost all other aspects of quality are meaningless if the software doesn’t solve
the right problem.

reliability
If you have ever attempted to access your bank account electronically and been
unable to do so, or if you have ever lost all of your work because of a failure of
the software or hardware you were using, you are already familiar with the concept

art01.1

Quality Characteristic Description

The degree to which software adheres to its specific
requirements.

The frequency and criticality of software failure.

The degree to which erroneous situations are handled
gracefully.

The ease with which users can learn and execute tasks
within the software.

The ease with which changes can be made to the
software.

The ease with which software components can be
reused in the development of other software systems.

The ease with which software components can be
used in multiple computer environments.

The degree to which the software fulfills its purpose
without wasting resources.

Correctness

Reliability

Robustness

Usability

Maintainability

Reusability

Portability

Efficiency

Figure 1.1 Aspects of software quality

M01_LEWI3322_CH01_pp027-040.indd 29 19/02/13 10:39 AM

30 Chapter 1 Introduction

of reliability. A software failure can be defined as any unacceptable
behavior that occurs within permissible operating conditions. We
can compute measures of reliability, such as the mean time between
failures or the mean number of operations or tasks between failures.

In some situations, reliability is an issue of life and death. In the
early 1980s, a piece of medical equipment called the Therac-25 was

designed to deliver a dose of radiation according to the settings made by a techni-
cian on a special keyboard. An error existed in the software that controlled the
device, and when the technician made a very specific adjustment to the values on
the keyboard, the internal settings of the device were changed drastically and a
lethal dose of radiation was issued. The error occurred so infrequently that several
people died before the source of the problem was determined.

In other cases, reliability repercussions are financial. On a particular day in
November 1998, the entire AT&T network infrastructure in the eastern United
States failed, causing a major interruption in communications capabilities. The
problem was eventually traced back to a specific software error. That one failure
cost the companies affected millions of dollars in lost revenue.

robustness
Reliability is related to how robust a system is. A robust system handles problems
gracefully. For example, if a particular input field is designed to handle numeric
data, what happens when alphabetic information is entered? The program could
be allowed to terminate abnormally because of the resulting error. However, a
more robust solution would be to design the system to acknowledge and handle
the situation transparently or with an appropriate error message.

Developing a thoroughly robust system may or may not be worth the development
cost. In some cases, it may be perfectly acceptable for a program to terminate abnor-
mally if very unusual conditions occur. On the other hand, if adding such protections
is not excessively costly, it is simply good development practice. Furthermore, well-
defined system requirements should carefully spell out the situations in which robust
error handling is required.

usability
To be effective, a software system must be truly usable. If a system is too difficult
to use, it doesn’t matter if it provides wonderful functionality. Within the disci-
pline of computer science, there is a field of study called Human-Computer
Interaction (HCI) that focuses on the analysis and design of user interfaces of
software systems. The interaction between user and system must be well designed,

Key COnCept
Reliable software seldom fails, and
when it does, it minimizes the effects
of that failure.

M01_LEWI3322_CH01_pp027-040.indd 30 19/02/13 10:39 AM

including such things as help options, meaningful messages, consistent layout,
appropriate use of color, error prevention, and error recovery.

Maintainability
Software developers must maintain their software. That is, they must make changes
to software in order to fix errors, to enhance the functionality of the system, or simply
to keep up with evolving requirements. A useful software system may
need to be maintained for many years after its original development.
The software engineers who perform maintenance tasks are often not
the same ones as those who originally developed the software. Thus, it is
important that a software system be well structured, well written, and
well documented in order to maximize its maintainability.

Large software systems are rarely written by a single individual or even a small
group of developers. Instead, large teams, often working from widely distributed
locations, work together to develop systems. For this reason, communication
among developers is critical. Therefore, creating maintainable software is benefi-
cial for the long term as well as for the initial development effort.

reusability
Suppose that you are a contractor involved in the construction of an office building. It
is possible that you might design and build each door in the building from scratch.
That would require a great deal of engineering and construction effort, not to men-
tion money. Another option is to use pre-engineered, prefabricated doors for the
doorways in the building. This approach represents a great savings of time and money
because you can rely on a proven design that has been used many times before. You
can be confident that it has been thoroughly tested and that you know its capabilities.
However, this does not exclude the possibility that a few doors in the building will be
custom engineered and custom built to fit a specific need.

When developing a software system, it often makes sense to use pre-existing soft-
ware components if they fit the needs of the developer and the client. Why reinvent
the wheel? Pre-existing components can range in scope from the entire system, to en-
tire subsystems, to individual classes and methods. They may come from part of an-
other system developed earlier or from libraries of components that are created to
support the development of future systems. Some pre-existing components are re-
ferred to as Commercial Off-The-Shelf (COTS) products. Pre-existing components
are often reliable because they have been tested in other systems.

Using pre-existing components can reduce the development effort. However,
reuse comes at a price. The developer must take the time to investigate potential
components to find the right one. Often the component must be modified or

Key COnCept
Software systems must be carefully
designed, written, and documented
to support the work of developers,
maintainers, and users.

 1.1 Software Quality 31

M01_LEWI3322_CH01_pp027-040.indd 31 19/02/13 10:39 AM

32 Chapter 1 Introduction

extended to fit the criteria of the new system. Thus, it is helpful if the component
is truly reusable. That is, software should be written and documented so that it
can be easily incorporated into new systems and easily modified or extended to
accommodate new requirements.

portability
Software that is easily portable can be moved from one computing environment
to another with little or no effort. Software developed using a particular operating
system and underlying central processing unit (CPU) may not run well—or may
not run at all—in another environment. One obvious problem is a program that
has been compiled into a particular CPU’s machine language. Because each type
of CPU has its own machine language, porting it to another machine would re-
quire another, translated version. Differences among the various translations may
cause the “same” program on two types of machines to behave differently.

Using the Java programming language addresses this issue because Java source-
code is compiled into bytecode, which is a low-level language that is not the ma-
chine language for any particular CPU. Bytecode runs on a Java Virtual Machine
(JVM), which is software that interprets the bytecode and executes it. Therefore,
at least theoretically, any system that has a JVM can execute any Java program.

efficiency
The last software quality characteristic listed in Figure 1.1 is efficiency. Software
systems should make efficient use of the resources allocated to them. Two key re-
sources are CPU time and memory. User demands on computers and their soft-

ware have risen steadily ever since computers were first created.
Software must always make the best use of its resources in order to
meet those demands. The efficiency of individual algorithms is an
important part of this issue and is discussed in more detail in the
next chapter and throughout the book.

Quality issues
To a certain extent, quality is in the eye of the beholder. That is, some quality
characteristics are more important to certain people than to others. We must con-
sider the needs of the various stakeholders, the people affected one way or an-
other by the project. For example, the end user certainly wants to maximize reli-
ability, usability, and efficiency but doesn’t necessarily care about the software’s
maintainability or reusability. The client wants to make sure the user is satisfied

Key COnCept
Software must make efficient use of
resources such as CPU time and
memory.

M01_LEWI3322_CH01_pp027-040.indd 32 19/02/13 10:39 AM

but is also worried about the overall cost. The developers and main-
tainers want the internal system quality to be high.

Note also that some quality characteristics are in competition
with each other. For example, to make a program more efficient, we
may choose to use a complex algorithm that is difficult to under-
stand and therefore hard to maintain. These types of trade-offs require us to care-
fully prioritize the issues related to a particular project and, within those bound-
aries, maximize all quality characteristics as much as possible. If we decide that
we must use the more complex algorithm for efficiency, we can also document the
code especially well to assist with future maintenance tasks.

All of these quality characteristics are important, but for our exploration of
data structures in this book, we will focus on reliability, robustness, reusability,
and efficiency. In the creation of data structures, we are not creating applications
or end-user systems; rather, we are creating reusable components that may be
used in a variety of systems. Thus, usability is not an issue, because there will not
be a user-interface component of our data structures. By implementing in Java
and adhering to Javadoc standards, we also address the issues of portability and
maintainability.

1.2 Data structures

Why spend so much time talking about software engineering and software quality
in a text that focuses on data structures and their algorithms? Well, as you begin
to develop more complex programs, it’s important to develop a more mature out-
look on the process. As we discussed at the beginning of this chapter, the goal
should be to engineer software, not just write code. The data structures we exam-
ine in this book lay the foundation for complex software that must be carefully
designed. Let’s consider an example that will illustrate the need for and the various
approaches to data structures.

a physical example
Imagine that you must design the process for handling shipping containers being
unloaded from cargo ships at a dock. In a perfect scenario, the trains and trucks
that will haul these containers to their destinations would be waiting as the ship is
unloaded and thus there would not be a need to store the containers at all.
However, such timing is unlikely, and it would not necessarily provide the most
efficient result for the trucks and the trains, because they would have to sit and
wait while each ship was unloaded. Instead, as each shipping container is unloaded

Key COnCept
Quality characteristics must first be
prioritized and then be maximized to
the greatest extent possible.

 1.2 Data Structures 33

M01_LEWI3322_CH01_pp027-040.indd 33 19/02/13 10:39 AM

34 Chapter 1 Introduction

from a ship, it is moved to a storage location where it will be held until it is
loaded on either a truck or a train. Our goal should be to make both the unload-
ing of containers and the retrieval of containers for transportation as efficient as
possible. This will mean minimizing the amount of searching required in either
process and minimizing the number of times a container is moved.

Before we go any further, let’s examine the initial assumptions underlying this
problem. First, our shipping containers are generic. By this we mean that they are all
the same shape, are all the same size, and can hold the same volume and types of ma-
terials. Second, each shipping container has a unique identification number. This num-
ber is the key that determines the final destination of each container and whether it is
to be shipped by truck or train. Third, the dock workers handling the containers do
not need to know—nor can they know—what is inside each container.

Given these assumptions as a starting point, how might we design our storage
process for these containers? One possibility might be to simply lay out a very
large array indexed by the identification number of the container. Keep in mind,
however, that the identification number is unique, not just for a single ship but for
all ships and all shipping containers. Thus, we would need to lay out an array of
storage at each dock large enough to handle all of the shipping containers in the
world. This would also mean that at any given point in time, the vast majority of
the units in these physical arrays would be empty. This would appear to be a ter-
rible waste of space and very inefficient. We will explore issues surrounding the
efficiency of algorithms in the next chapter.

We could try this same solution but allow the array to collapse and expand like
an ArrayList as containers are removed or added. However, given the physical
nature of this array, such a solution may involve having to move containers mul-
tiple times as other containers with lower ID numbers are added or removed.
Again, such a solution would be very inefficient.

What if we could estimate the maximum number of shipping containers that
we would be storing on our dock at any given point in time? This would enable us
to create an array of that maximum size and then simply to place each container
into the next available position in the array as it is unloaded from the ship. This
would be relatively efficient for unloading purposes since the dock workers would
simply keep track of which locations in the array were empty and place each new
container in an empty location. However, using this approach, what would hap-
pen when a truck driver arrived looking for a particular container? Since the ar-
ray is not ordered by container ID, the driver would have to search for the con-
tainer in the array. In the worst-case scenario, the container the driver was seeking
would be the last one in the array, necessitating a search of the entire array. Of
course, the average case would be that each driver would have to search half of
the array. But that still seems less efficient than it could be.

M01_LEWI3322_CH01_pp027-040.indd 34 19/02/13 10:39 AM

Before we try a new design, let’s reconsider what we know about each container.
Of course, we have the container ID. But from that, we also have the destination of
each container. What if, instead of an arbitrary ordering of containers in a one-dimensional
array, we create a two-dimensional array where the first dimension is the destination?
Thus we can implement our previous solution as the second dimension within each
destination. Unloading a container is still quite simple. The dock workers would sim-
ply take the container to the array for its destination and place it in the first available
empty slot. Then our truck drivers would not have to search the entire dock for their
shipping container, but only that portion, the array within the array, that is bound for
their destination. This solution, which is beginning to behave like a data structure
called a hash table (discussed in Chapter 13), is an improvement, yet it still requires
searching at least a portion of the storage.

The first part of this solution, organizing the first dimension by destination, seems
like a good idea. However, using a simple unordered array for the second dimension
still does not accomplish our goal. There is one additional piece of information that
we have for each container but have not yet examined—the order in which it was
unloaded from the ship. Let’s consider, as an example, the components of an oilrig be-
ing shipped in multiple containers. Does the order of those containers matter? Yes.
The crew constructing the oilrig must receive and install the foundation and base
components before they can construct the top of the rig. Now, the order in which the
containers are removed from the ship and the order in which they are placed in stor-
age is important. To this point, we have been considering only the problem of unload-
ing, storing, and shipping storage containers. Now we begin to see that this problem
exists within a larger context, which includes how the ship was loaded at its point of
origin. Three possibilities exist for how the ship was loaded: Containers that are order
dependent were loaded in the same order in which they are needed, containers that
are order dependent were loaded in the reverse order of the order in which they are
needed, or containers that are order dependent were loaded without regard to order
but with order included as part of the information associated with the container ID.
Let’s consider each of these cases separately.

Keep in mind that the process of unloading the ship will reverse the order of the
loading process onto the ship. This behavior is very much like that of a stack, data
structure, which we discuss further in Chapters 3 and 4. If the ship was loaded in the
order in which the components are needed, then the unloading process will reverse
the order. Thus our storage and retrieval process must reverse the order again to get
the containers back into the correct order. This would be accomplished
by taking the containers to the array for their destination and storing
them in the order in which they were unloaded. Then the trucker re-
trieving these containers would simply start with the last one stored.
Finally, with this solution we have a storage and retrieval process that
involves no searching at all and no extra handling of containers.

Key COnCept
A stack can be used to reverse the
order of a set of data.

 1.2 Data Structures 35

M01_LEWI3322_CH01_pp027-040.indd 35 19/02/13 10:39 AM

36 Chapter 1 Introduction

What if the containers were loaded onto the ship in the reverse order of the
order in which they are needed? In that case, unloading the ship will bring the
containers off in the order in which they will be needed, and our storage and re-
trieval process must preserve that order. This would be accomplished by taking
the containers to the array for their destination, storing them in the order in

which they were unloaded, and then having the truckers start with
the first container stored rather than with the last. Again, this solu-
tion does not involve any searching or extra handling of containers.
This behavior is that of a queue data structure, which we will discuss in
detail in Chapter 5.

Both of our previous solutions, though very efficient, have been dependent on
the order in which the containers were placed aboard ship. What do we do if the
containers were not placed aboard in any particular order? In that case, we will
need to order the destination array by the priority order of the containers. Rather
than trying to exhaust this example, let’s just say that there are several collections
that might accomplish this purpose, including ordered lists (Chapter 6), priority
queues (Chapter 12), and maps (Chapter 13). We also have the additional issue of
how best to organize the file that relates container ID to the other information
about each container. Solutions to this problem might include binary search trees
(Chapter 11) and multi-way search trees (Chapter 14).

Containers as Objects
Our shipping container example illustrates another issue related to data struc-
tures beyond our discussion of how to store the containers. It also illustrates the
issue of what the containers store. Early in our discussion, we made the assump-
tion that all shipping containers have the same shape and size and that they can
all hold the same volume and type of material. Although the first two assump-
tions must remain true in order for containers to be stored and shipped inter-
changeably, the latter assumptions may not be true.

For example, consider the shipment of materials that must remain refrigerated. It
may be useful to develop refrigerated shipping containers for this purpose. Similarly,
some products require very strict humidity control and might need a container with
additional environmental controls. Other containers may be designed for hazardous
material and might be lined and/or double-walled for protection. Once we develop
multiple types of containers, our containers are no longer generic. We can then think
of shipping containers as a hierarchy much like a class hierarchy in object-oriented
programming. Thus, assigning material to a shipping container becomes analogous to
assigning an object to a reference. With both shipping containers and objects, not all
assignments are valid. Appendix B discusses issues related to type compatibility, in-
heritance, polymorphism, and creating generic data structures.

Key COnCept
A queue preserves the order of its
data.

M01_LEWI3322_CH01_pp027-040.indd 36 19/02/13 10:39 AM

 2.1 H1 Head 37 Summary of Key Concepts 37

Summary of Key Concepts
■ Reliable software seldom fails, and when it does, it minimizes the effects of

that failure.

■ Software systems must be carefully designed, written, and documented to
support the work of developers, maintainers, and users.

■ Software must make efficient use of resources such as CPU time and memory.

■ Quality characteristics must first be prioritized and then be maximized to the
greatest extent possible.

■ A stack can be used to reverse the order of a set of data.

■ A queue preserves the order of its data.

summary of terms
bytecode A low-level representation of software that is executed on the
Java Virtual Machine (JVM).

correctness A software quality characteristic that indicates the degree to
which the software adheres to its specific requirements.

efficiency A software quality characteristic that indicates the degree to
which the software fulfills its purpose without wasting resources.

maintainability A software quality characteristic that indicates the ease with
which changes can be made to the software.

portability A software quality characteristic that indicates the ease with
which software components can be used in multiple computer environments.

reliability A software quality characteristic that indicates the frequency and
criticality of failures in the software.

reusability A software quality characteristic that indicates the ease with
which software components can be reused in the development of other
software systems.

robustness A software quality characteristic that indicates the degree to
which erroneous situations are handled gracefully.

software failure Any unacceptable behavior that occurs in a software sys-
tem within permissible operating conditions.

stakeholder A person with a vested interest in a project, who is therefore
concerned with specific issues related to it.

usability A software quality characteristic that indicates the ease with
which users can learn and execute tasks within the software.

M01_LEWI3322_CH01_pp027-040.indd 37 19/02/13 10:39 AM

Self-Review Questions
SR 1.1 Define Software Engineering.

SR 1.2 What are the basic goals of software engineering?

SR 1.3 What is the difference between the terms Correctness and
Robustness in relation with software designing?

SR 1.4 What do you understand by usability and reusability of software?

SR 1.5 How do you ensure that a software system is maintainable?

SR 1.6 What do you understand by data structures?

SR 1.7 What do you understand by the efficiency of software?

Exercises
EX 1.1 You have developed a software program that can be used in different

computer environments. Which particular quality aspect does this
software adhere to? What would happen if it did not have this
 quality?

EX 1.2 What are the various quality aspects to be followed while designing
and developing a software program?

EX 1.3 Provide examples and describe the implications of code reuse, and
reuse of algorithms and data structures, in terms of development
of a software system.

Answers to Self-Review Questions
SRA 1.1 Software engineering is the study of the techniques and theory

that underlie the development of high-quality software.

SRA 1.2 Software engineering has the following basic goals: solving the
right problem, delivering a solution on time and within budget,
delivering a high-quality solution, and accomplishing all these
goals in an ethical manner.

SRA 1.3 Correctness of software specifies the degree to which software
 adheres to its specific requirements. Robustness defines the degree
to which the software handles erroneous situations gracefully.

38 ChAptER 1 Introduction

M01_LEWI3322_CH01_pp027-040.indd 38 19/02/13 3:58 PM

SRA 1.4 Usability of software refers to the ease with which users can learn
and execute tasks within the software. Reusability of software
 refers to the ease with which software components can be reused
in the development of other software systems.

SRA 1.5 To ensure maintainability, the software system should be well
structured, well written, and well documented.

SRA 1.6 A data structure is a specific way of storing and organizing data
in a computer.

SRA 1.7 Software must make efficient use of resources such as CPU time
and memory.

 Answers to Self-Review Questions 39

M01_LEWI3322_CH01_pp027-040.indd 39 19/02/13 3:58 PM

M01_LEWI3322_CH01_pp027-040.indd 40 19/02/13 3:58 PM

 This page is intentionally left blank.

22

41

C h a p t e r
O b j e C t i v e s
■ Discuss the goals of software

development with respect to
efficiency.

■ Introduce the concept of algo-
rithm analysis.

■ Explore the concept of asymp-
totic complexity.

■ Compare various growth
functions.

Analysis of
Algorithms

It is important that we understand the concepts surround-

ing the efficiency of algorithms before we begin building

data structures. A data structure built correctly and with an

eye toward efficient use of both the CPU and memory is one

that can be reused effectively in many different applications.

However, using a data structure that is not built efficiently

is similar to using a damaged original as the master from

which to make copies.

M02_LEWI3322_CH02_pp041-054.indd 41 19/02/13 12:10 PM

42 Chapter 2 Analysis of Algorithms

2.1 algorithm efficiency

One of the characteristics that determines the quality of software is the efficient
use of resources. One of the most important resources is CPU time. The efficiency

of an algorithm we use to accomplish a particular task is a major
factor that determines how fast a program executes. Although the
techniques that we will discuss here may also be used to analyze an
algorithm in terms of the amount of memory it uses, we will focus
our discussion on the efficient use of processing time.

The analysis of algorithms is a fundamental computer science topic and in-
volves a variety of techniques and concepts. It is a primary theme that we return
to throughout this text. This chapter introduces the issues related to algorithm
analysis and lays the groundwork for using analysis techniques.

Let’s start with an everyday example: washing dishes by hand. If we assume
that washing a dish takes 30 seconds and drying a dish takes an additional 30
seconds, then we can see quite easily that it would take n minutes to wash and dry
n dishes. This computation could be expressed as follows:

Time (n dishes) = n * (30 seconds wash time + 30 seconds dry time)
 = 60n seconds

or, written more formally,

f(x) = 30x + 30x
 f(x) = 60x

On the other hand, suppose we were careless while washing the dishes and
splashed too much water around. Suppose that each time we washed a dish, we
had to dry not only that dish but also all of the dishes we had washed before that
one. It would still take 30 seconds to wash each dish, but now it would take 30
seconds to dry the last dish (once), 2 * 30 or 60 seconds to dry the second-to-last
dish (twice), 3 * 30 or 90 seconds to dry the third-to-last dish (three times), and so
on. This computation could be expressed as follows:

Time (n dishes) = n * (30 seconds wash time) + a
n

i=1
(i * 30)

When we use the formula for an arithmetic series, a n
1i = n(n + 1)>2, the

function becomes

Time (n dishes) = 30n + 30n(n + 1)/2
 = 15n2 + 45n seconds

If there were 30 dishes to wash, the first approach would take 30 minutes,
whereas the second (careless) approach would take 247.5 minutes. The more

Key COnCept
Algorithm analysis is a fundamental
computer science topic.

M02_LEWI3322_CH02_pp041-054.indd 42 19/02/13 12:10 PM

 2.2 Growth Functions and Big-Oh Notation 43

dishes we wash, the worse that discrepancy becomes. For example, if there were
300 dishes to wash, the first approach would take 300 minutes or 5 hours, whereas
the second approach would take 908,315 minutes or roughly 15,000 hours!

2.2 Growth Functions and big-Oh notation

For every algorithm we want to analyze, we need to define the size of the prob-
lem. For our dishwashing example, the size of the problem is the number of dishes
to be washed and dried. We also must determine the value that represents efficient
use of time or space. For time considerations, we often pick an appropriate pro-
cessing step that we’d like to minimize, such as our goal of minimizing the num-
ber of times a dish has to be washed and dried. The overall amount of time spent
on the task is directly related to how many times we have to perform that task.
The algorithm’s efficiency can be defined in terms of the problem size and the pro-
cessing step.

Consider an algorithm that sorts a list of numbers into increasing order. One
natural way to express the size of the problem would be in terms of
the number of values to be sorted. The processing step we are trying
to optimize could be expressed as the number of comparisons we
have to make for the algorithm to put the values in order. The more
comparisons we make, the more CPU time is used.

A growth function shows the relationship between the size of the
problem (n) and the value we hope to optimize. This function represents the time
complexity or space complexity of the algorithm.

The growth function for our second dishwashing algorithm is

t(n) = 15n2 + 45n

However, it is not typically necessary to know the exact growth function for an al-
gorithm. Instead, we are mainly interested in the asymptotic complexity of an algo-
rithm. That is, we want to focus on the general nature of the function as n increases.
This characteristic is based on the dominant term of the expression—the term that
increases most quickly as n increases. As n gets very large, the value of the dishwash-
ing growth function is dominated by the n2 term because the n2 term grows much
faster than the n term. The constants, in this case 15 and 45, and the secondary term,
in this case 45n, quickly become irrelevant as n increases. That is to say, the value of
n2 dominates the growth in the value of the expression.

The table in Figure 2.1 shows how the two terms and the value of the expres-
sion grow. As you can see from the table, as n gets larger, the 15n2 term dominates
the value of the expression. It is important to note that the 45n term is larger for
very small values of n. Saying that a term is the dominant term as n gets large
does not mean that it is larger than the other terms for all values of n.

Key COnCept
A growth function shows time or
space utilization relative to the
problem size.

M02_LEWI3322_CH02_pp041-054.indd 43 19/02/13 12:10 PM

44 Chapter 2 Analysis of Algorithms

The asymptotic complexity is called the order of the algorithm. Thus our sec-
ond dishwashing algorithm is said to have order n2 time complexity, which is
written O(n2). Our first, more efficient dishwashing example, with growth func-
tion t(n) = 60(n), would have order n time complexity, written O(n). Thus the
reason for the difference between our O(n) original algorithm and our O(n2)
sloppy algorithm is the fact that each dish will have to be dried multiple times.

This notation is referred to as O() or Big-Oh notation. A growth function that
executes in constant time regardless of the size of the problem is said
to have O(1). In general, we are concerned only with executable
statements in a program or algorithm in determining its growth
function and efficiency. Keep in mind, however, that some declara-
tions may include initializations, and some of these may be complex
enough to factor into the efficiency of an algorithm.

As an example, assignment statements and if statements that are executed only
once regardless of the size of the problem are O(1). Therefore, it does not matter
how many of those you string together; it is still O(1). Loops and method calls

may result in higher-order growth functions, because they may re-
sult in a statement or series of statements being executed more than
once based on the size of the problem. We will discuss these sepa-
rately in later sections of this chapter. Figure 2.2 shows several
growth functions and their asymptotic complexity.

More formally, saying that the growth function t(n) = 15n2 + 45n is O(n2)
means that there exists a constant m and some value of n (n0), such that t(n) ≤ m

* n2 for all n > n0. Another way of stating this is to say that the order of an
algorithm provides an upper bound to its growth function. It is also important to

Number of dishes (n)

1
2
5
10
100
1,000
10,000
100,000
1,000,000
10,000,000

15
60
375
1,500
150,000
15,000,000
1,500,000,000
150,000,000,000
15,000,000,000,000
1,500,000,000,000,000

15n2

45
90
225
450
4,500
45,000
450,000
4,500,000
45,000,000
450,000,000

45n

60
150
600
1,950
154,500
15,045,000
1,500,450,000
150,004,500,000
15,000,045,000,000
1,500,000,450,000,000

15n2 � 45n

FiGure 2.1 Comparison of terms in growth function

Key COnCept
The order of an algorithm is found by
eliminating constants and all but the
dominant term in the algorithm’s
growth function.

Key COnCept
The order of an algorithm provides
an upper bound to the algorithm’s
growth function.

M02_LEWI3322_CH02_pp041-054.indd 44 19/02/13 12:10 PM

note that there are other, related notations—such as omega (æ), which refers to a
function that provides a lower bound, and theta (∏), which refers to a function
that provides both an upper bound and a lower bound. We will focus our discus-
sion on order.

Because the order of the function is the key factor, the other terms and con-
stants are often not even mentioned. All algorithms within a given order are
considered generally equivalent in terms of efficiency. For example, two algo-
rithms to accomplish the same task may have different growth functions, but
if they are both O(n2), then they are considered roughly equivalent with respect
to efficiency.

2.3 Comparing Growth Functions

One might assume that, with the advances in the speed of processors and the
availability of large amounts of inexpensive memory, algorithm analysis would no
longer be necessary. However, nothing could be further from the truth. Processor
speed and memory cannot make up for the differences in efficiency of algorithms.
Keep in mind that we have been eliminating constants as irrelevant when discuss-
ing the order of an algorithm. Increasing processor speed simply adds a constant
to the growth function. When possible, finding a more efficient algorithm is a better
solution than finding a faster processor.

Another way of looking at the effect of algorithm complexity was proposed by
Aho, Hopcroft, and Ullman (1974). If a system can currently handle a problem of
size n in a given time period, what happens to the allowable size of the problem if
we increase the speed of the processor tenfold? As shown in Figure 2.3, the linear

Growth Function

t(n) = 17

t(n) = 3 log n

t(n) = 20n – 4

t(n) = 12n log n + 100n

t(n) = 3n2 + 5n – 2

t(n) = 8n3 + 3n2

t(n) = 2n + 18n2 + 3n

O(1)

O(log n)

O(n)

O(n log n)

O(n2)

O(n3)

O(2n)

Order

constant
logarithmic
linear
n log n
quadratic
cubic
exponential

Label

FiGure 2.2 Some growth functions and their asymptotic complexity

 2.3 Comparing Growth Functions 45

M02_LEWI3322_CH02_pp041-054.indd 45 19/02/13 12:10 PM

46 Chapter 2 Analysis of Algorithms

case is relatively simple. Algorithm A, with a linear time complexity of n, is indeed
improved by a factor of 10, meaning that this algorithm can process 10 times the
data in the same amount of time, given a tenfold speedup of the processor.
However, algorithm B, with a time complexity of n2, is improved only by a factor
of 3.16. Why do we not get the full tenfold increase in problem size? Because the

Algorithm

A

B

C

D

Time Complexity

n

n2

n3

2n

Max Problem Size
Before Speedup

s1
s2
s3
s4

Max Problem Size
After Speedup

10s1
3.16s2
2.15s3
s4 + 3.3

FiGure 2.3 Increase in problem size with a tenfold increase in processor speed

500

200

100

0

T
im

e

1 5 10 15 2520

300

400

Input Size (n)

log n

n

n log n

n2

n3

2n

FiGure 2.4 Comparison of typical growth functions for small values of n

M02_LEWI3322_CH02_pp041-054.indd 46 19/02/13 12:10 PM

complexity of algorithm B is n2, our effective speedup is only the square root of
10, or 3.16.

Similarly, algorithm C, with complexity n3, is improved only by a factor of 2.15, or
the cube root of 10. For algorithms with exponential complexity like
algorithm D, in which the size variable is in the exponent of the com-
plexity term, the situation is far worse. In such a case the speedup is
log2n, or in this case, 3.3. Note this is not a factor of 3, but the original
problem size plus 3. In the grand scheme of things, if an algorithm is
inefficient, speeding up the processor will not help.

Figure 2.4 illustrates various growth functions graphically for relatively small val-
ues of n. Note that when n is small, there is little difference between the algorithms.
That is, if you can guarantee a very small problem size (5 or less), it doesn’t really
matter which algorithm is used. However, notice that in Figure 2.5, as n gets very
large, the differences between the growth functions become obvious.

200,000

100,000

50,000

0

T
im

e

150,000

1001 200 300 500400

log n

n

n log n

n2

n3

2n

Input Size (n)

FiGure 2.5 Comparison of typical growth functions for large values of n

Key COnCept
If the algorithm is inefficient, a faster
processor will not help in the long
run.

 2.3 Comparing Growth Functions 47

M02_LEWI3322_CH02_pp041-054.indd 47 19/02/13 12:10 PM

48 Chapter 2 Analysis of Algorithms

2.4 Determining time Complexity

analyzing Loop execution
To determine the order of an algorithm, we have to determine how of-
ten a particular statement or set of statements is executed. Therefore, we
often have to determine how many times the body of a loop is executed.
To analyze loop execution, first determine the order of the body of the
loop, and then multiply that by the number of times the loop will exe-
cute relative to n. Keep in mind that n represents the problem size.

Assuming that the body of a loop is O(1), then a loop such as

for (int count = 0; count < n; count++)
{
 /* some sequence of O(1) steps */
}

will have O(n) time complexity. This is because the body of the loop has O(1)
complexity but is executed n times by the loop structure. In general, if a loop
structure steps through n items in a linear fashion and the body of the loop is
O(1), then the loop is O(n). Even in a case where the loop is designed to skip some
number of elements, as long as the progression of elements to skip is linear, the
loop is still O(n). For example, if the preceding loop skipped every other number
(for example, count += 2), the growth function of the loop would be n/2, but
since constants don’t affect the asymptotic complexity, the order is still O(n).

Let’s look at another example. If the progression of the loop is logarithmic,
such as the following:

count = 1
while (count < n)
{
 count *= 2;
 /* some sequence of O(1) steps */
}

then the loop is said to be O(log n). Note that when we use a loga-
rithm in an algorithm complexity, we almost always mean log base
2. This can be explicitly written as O(log2n). Each time through the
loop, the value of count is multiplied by 2, so the number of times
the loop is executed is log2n.

nested Loops
A slightly more interesting scenario arises when loops are nested. In this case, we
must multiply the complexity of the outer loop by the complexity of the inner
loop to find the resulting complexity. For example, the nested loops

Key COnCept
The time complexity of a loop is
found by multiplying the complexity
of the body of the loop by how many
times the loop will execute.

Key COnCept
Analyzing algorithm complexity of-
ten requires analyzing the execution
of loops.

M02_LEWI3322_CH02_pp041-054.indd 48 19/02/13 12:10 PM

for (int count = 0; count < n; count++)
{
 for (int count2 = 0; count2 < n; count2++)
 {
 /* some sequence of O(1) steps */
 }
}

have complexity O(n2). The body of the inner loop is O(1), and the
inner loop will execute n times. This means the inner loop is O(n).
Multiplying this result by the number of times the outer loop will
execute (n) results in O(n2).

What is the complexity of the following nested loop?

for (int count = 0; count < n; count++)
{
 for (int count2 = count; count2 < n; count2++)
 {
 /* some sequence of O(1) steps */
 }
}

In this case, the inner loop index is initialized to the current value of the index for
the outer loop. The outer loop executes n times. The inner loop executes n times the
first time, n–1 times the second time, and so on. However, remember that we are in-
terested only in the dominant term, not in constants or any lesser terms. If the pro-
gression is linear, then regardless of whether some elements are skipped, the order is
still O(n). Thus the resulting complexity for this code is O(n2).

Method Calls
Let’s suppose that we have the following segment of code:

for (int count = 0; count < n; count++)
{
 printsum(count);
}

We know from our previous discussion that we find the order of the loop by multiply-
ing the order of the body of the loop by the number of times the loop will execute. In this
case, however, the body of the loop is a method call. Therefore, we must determine the
order of the method before we can determine the order of the code segment. Let’s suppose
that the purpose of the method is to print the sum of the integers from 1 to n each time it
is called. We might be tempted to create a brute force method such as

public void printsum(int count)
{
 int sum = 0;

 2.4 Determining Time Complexity 49

Key COnCept
The analysis of nested loops must
take into account both the inner and
the outer loops.

M02_LEWI3322_CH02_pp041-054.indd 49 19/02/13 12:10 PM

50 Chapter 2 Analysis of Algorithms

 for (int i = 1; i < count; i++)
 sum += i;
 System.out.println(sum);
}

What is the time complexity of this printsum method? Keep in mind that only
executable statements contribute to the time complexity, so in this case, all of the
executable statements are O(1) except for the loop. The loop, on the other hand,
is O(n), and thus the method itself is O(n). Now, to compute the time complexity
of the original loop that called the method, we simply multiply the complexity of
the method, which is the body of the loop, by the number of times the loop will
execute. Our result, then, is O(n2) using this implementation of the printsum
method.

However, we know from our earlier discussion that we do not have to use a
loop to calculate the sum of the numbers from 1 to n. In fact, we know that

a n
1i = n(n + 1)>2. Now let’s rewrite our printsum method and see what

happens to our time complexity:

public void printsum(int count)
{
 sum = count*(count+1)/2;
 System.out.println (sum);
}

Now the time complexity of the printsum method is made up of an assign-
ment statement that is O(1) and a print statement that is also O(1). The result of
this change is that the time complexity of the printsum method is now O(1),
which means that the loop that calls this method now goes from being O(n2) to
being O(n). We know from our earlier discussion and from Figure 2.5 that this is
a very significant improvement. Once again, we see that there is a difference be-
tween merely delivering correct results and doing so efficiently.

What if the body of a method is made up of multiple method calls and loops?
Consider the following code using our printsum method above:

public void sample(int n)
{
 printsum(n); /* this method call is O(1)*/
 for (int count = 0; count < n; count++) /* this loop is O(n) */
 printsum (count);
 for (int count = 0; count < n; count++) /* this loop is O(n2) */
 for (int count2 = 0; count2 < n; count2++)
 System.out.println (count, count2);
}

M02_LEWI3322_CH02_pp041-054.indd 50 19/02/13 12:10 PM

The initial call to the printsum method with the parameter temp is O(1) since
the method is O(1). The for loop containing the call to the printsum method
with the parameter count is O(n) since the method is O(1) and the loop executes
n times. The nested loops are O(n2) since the inner loop will execute n times each
time the outer loop executes and the outer loop will also execute n times. The en-
tire method is then O(n2) since only the dominant term matters.

More formally, the growth function for the method sample is given by

f(x) = 1 + n + n2

Then, given that we eliminate constants and all but the dominant term, the
time complexity is O(n2).

There is one additional issue to deal with when analyzing the time complexity
of method calls, and that is recursion—the situation when a method calls itself.
We will save that discussion for Chapter 8.

 2.4 Determining Time Complexity 51

M02_LEWI3322_CH02_pp041-054.indd 51 19/02/13 12:10 PM

52 Chapter 2 Analysis of Algorithms52 Chapter 2 Analysis of Algorithms

Summary of Key Concepts
■	 Software must make efficient use of resources such as CPU time and memory.

■	 Algorithm analysis is a fundamental computer science topic.

■	 A growth function shows time or space utilization relative to the problem
size.

■	 The order of an algorithm is found by eliminating constants and all but the
dominant term in the algorithm’s growth function.

■	 The order of an algorithm provides an upper bound to the algorithm’s
growth function.

■	 If the algorithm is inefficient, a faster processor will not help in the long run.

■	 Analyzing algorithm complexity often requires analyzing the execution of
loops.

■	 The time complexity of a loop is found by multiplying the complexity of the
body of the loop by how many times the loop will execute.

■	 The analysis of nested loops must take into account both the inner and the
outer loops.

summary of terms
analysis of algorithms The computer science topic that focuses on the efficiency
of software algorithms.

big-Oh notation The notation used to represent the order, or asymptotic
complexity, of a function.

growth function A function that describes time or space utilization relative
to the problem size.

asymptotic complexity A limit on a growth function, defined by the growth
function’s dominant term; functions similar in asymptotic complexity are
grouped into the same general category.

self-review Questions
SR 2.1 What is a growth function? What is the purpose of a growth

function?

SR 2.2 What is the asymptotic complexity of an algorithm?

M02_LEWI3322_CH02_pp041-054.indd 52 19/02/13 12:10 PM

SR 2.3 How do you define the order of an algorithm? How do you find
the order of an algorithm?

SR 2.4 What would be the time complexity of a loop with a logarithmic
progression?

SR 2.5 What would be the time complexity of a loop with a loop body
that calls a method with a quadratic time complexity?

Exercises
EX 2.1 Determine the order of each of the following growth functions.

 a. 30n3 + 200n2 + 1000n + 1

 b. 4n4 – 4

 c. 2n + n3 + n5

 d. n3 log n

EX 2.2 Arrange the growth functions of the previous exercise in ascend-
ing order of efficiency for n = 10 and again for n = 1,000,000.

EX 2.3 Write the code necessary to find the smallest element in an
 unsorted array of integers. What is the time complexity of this
 algorithm?

EX 2.4 Determine the growth function and order of the following code
fragment:

 for (int count=n; count > 0; count--)
 {
 for (int count2=n; count2 > 0; count2-= 2)
 {
 System.out.println(count + ", " + count2);
 }
 }

EX 2.5 Determine the growth function and order of the following code
fragment:

 for (int count=0; count < n; count=count*10)
 {
 for (int count2=1; count2 < n; count2++)
 {
 System.out.println(count + ", " + count2);
 }

 }

 Exercises 53

M02_LEWI3322_CH02_pp041-054.indd 53 19/02/13 4:10 PM

54 ChaptEr 2 Analysis of Algorithms54 ChaptEr 2 Analysis of Algorithms

EX 2.6 You are using an algorithm with a quadratic time complexity of
n2. How much improvement would you expect in efficiency of the
algorithm if there is a processor speed up of 25 times?

answers to Self-review Questions
SRA 2.1 A growth function shows time or space utilization relative to the

problem size. The growth function of an algorithm represents the
time complexity or space complexity of the algorithm.

SRA 2.2 Asymptotic complexity gives the changes in the general nature of
the function as n or the problem size increases. This characteristic
is based on the dominant term of the expression—the term that
increases most quickly as n increases.

SRA 2.3 The order of an algorithm is nothing but the asymptotic complex-
ity of the algorithm. It gives the upper bound to the algorithm’s
growth function. The order of an algorithm is found by eliminat-
ing constants and all but the dominant term in the algorithm’s
growth function.

SRA 2.4 If the progression of the loop is logarithmic, then its time com-
plexity would be O(log n).

SRA 2.5 Here the loop structure steps through n items in a linear fashion
and the body of the loop is O(n2). Therefore, the time complexity
of the entire loop is O(n3).

reference
Aho, A. V., J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of

Computer Algorithms. Reading, Mass.: Addison-Wesley, 1974.

M02_LEWI3322_CH02_pp041-054.indd 54 19/02/13 4:10 PM

33

55

C h a p t e r
O b j e C t i v e s
■ Define the concepts and termi-

nology related to collections.

■ Explore the basic structure of the
Java Collections API.

■ Discuss the abstract design of
collections.

■ Define a stack collection.

■ Use a stack collection to solve a
problem.

■ Examine an array implementation
of a stack.

Introduction to
Collections – Stacks

This chapter begins our exploration of collections and the

underlying data structures used to implement them. It lays

the groundwork for the study of collections by carefully de-

fining the issues and goals related to their design. This chap-

ter also introduces a collection called a stack and uses it to

exemplify the issues related to the design, implementation,

and use of collections.

M03_LEWI3322_CH03_pp055-092.indd 55 19/02/13 12:40 PM

56 Chapter 3 Introduction to Collections — Stacks

3.1 Collections

A collection is an object that gathers and organizes other objects. It
defines the specific ways in which those objects, which are called ele-
ments of the collection, can be accessed and managed. The user of a
collection, which is generally another class or object in the software
system, must interact with the collection only in the prescribed ways.

Over time, several specific types of collections have been defined by software
developers and researchers. Each type of collection lends itself to solving particu-
lar kinds of problems. A large portion of this text is devoted to exploring these

classic collections.

Collections can be separated into two broad categories: linear and
nonlinear. As the name implies, a linear collection is one in which the
elements of the collection are organized in a straight line. A nonlinear
collection is one in which the elements are organized in something other
than a straight line, such as a hierarchy or a network. For that matter, a
nonlinear collection may not have any organization at all.

Figure 3.1 shows a linear and a nonlinear collection. It usually doesn’t matter
whether the elements in a linear collection are depicted horizontally or vertically.

The organization of the elements in a collection, relative to each other, is usu-
ally determined by one of two things:

■ The order in which they were added to the collection

■ Some inherent relationship among the elements themselves

art02.1

Figure 3.1 A linear collection and a nonlinear collection

Key COnCept
A collection is an object that gathers
and organizes other objects.

Key COnCept
Elements in a collection are typically
organized in terms of the order of
their addition to the collection or in
terms of some inherent relationship
among the elements.

M03_LEWI3322_CH03_pp055-092.indd 56 19/02/13 12:40 PM

 3.1 Collections 57

For example, one linear collection may always add new elements to one end of
the line, so the order of the elements is determined by the order in which they are
added. Another linear collection may be kept in sorted order based on some char-
acteristic of the elements. For example, a list of people may be kept in alphabetic
order based on the characters that make up their name. The specific organization
of the elements in a nonlinear collection can be determined in either of these two
ways as well.

abstract Data types
An abstraction hides certain details at certain times. Dealing with an abstraction
is easier than dealing with too many details at one time. In fact, we couldn’t get
through a day without relying on abstractions. For example, we couldn’t possibly
drive a car if we had to worry about all the details that make the car work: the
spark plugs, the pistons, the transmission, and so on. Instead, we can focus on the
interface to the car: the steering wheel, the pedals, and a few other controls. These
controls are an abstraction, hiding the underlying details and enabling us to con-
trol an otherwise very complicated machine.

A collection, like any well-designed object, is an abstraction. A collection defines
the interface operations through which the user can manage the objects in the collec-
tion, such as adding and removing elements. The user interacts with the collection
through this interface, as depicted in Figure 3.2. However, the details of
how a collection is implemented to fulfill that definition are another is-
sue altogether. A class that implements the collection’s interface must
fulfill the conceptual definition of the collection, but it can do so in
many ways.

Key COnCept
A collection is an abstraction wherein
the details of the implementation are
hidden.

Class that
implements

the collection

Class that
uses

the collection

Interface

art02.2

Figure 3.2 A well-defined interface masks the implementation of the collection

M03_LEWI3322_CH03_pp055-092.indd 57 19/02/13 12:40 PM

58 Chapter 3 Introduction to Collections — Stacks

Abstraction is another important software engineering concept. In large soft-
ware systems, it is virtually impossible for any one person to grasp all the details
of the system at once. Instead, the system is divided into abstract subsystems such
that the purpose of and the interactions among those subsystems can be specified.
Subsystems may then be assigned to different developers or groups of developers
that will develop the subsystem to meet its specification.

An object is the perfect mechanism for creating a collection because, if it is de-
signed correctly, the internal workings of an object are encapsulated from the rest
of the system. In most cases, the instance variables defined in a class should be
declared with private visibility. Therefore, only the methods of that class can ac-
cess and modify them. The only interaction a user has with an object should be
through its public methods, which represent the services that the object provides.

As we progress through our exploration of collections, we will always stress
the idea of separating the interface from the implementation. Therefore, for every
collection that we examine, we should consider the following issues:

■ How does the collection operate, conceptually?

■ How do we formally define the interface to the collection?

■ What kinds of problems does the collection help us solve?

■ What support is already available to us for this type of collection?

■ In which various ways might we implement the collection?

■ What are the benefits and costs of each implementation?

Before we continue, let’s carefully define some other terms related to the explo-
ration of collections. A data type is a group of values and the operations defined
on those values. The primitive data types defined in Java are the primary exam-
ples. For example, the integer data type defines a set of numeric values and the
operations (addition, subtraction, etc.) that can be used on them.

An abstract data type (ADT) is a data type whose values and operations are
not inherently defined within a programming language. It is abstract only in that
the details of its implementation must be defined and should be hidden from the
user. A collection, therefore, is an abstract data type.

A data structure is the collection of programming constructs used to implement a
collection. For example, a collection might be implemented using a fixed-size struc-

ture such as an array. One interesting artifact of these definitions and
our design decision to separate the interface from the implementation
(i.e., the collection from the data structure that implements it) is that we
may, and often do, end up with a linear data structure, such as an array,
being used to implement a nonlinear collection, such as a tree.

Historically, the terms ADT and data structure have been used in
various ways. We carefully define them here to avoid any confusion, and will use

Key COnCept
A data structure is the underlying
programming construct used to im-
plement a collection.

M03_LEWI3322_CH03_pp055-092.indd 58 19/02/13 12:40 PM

them consistently. Throughout this text, we will examine various data structures
and how they can be used to implement various collections.

the java Collections api
The Java programming language is accompanied by a very large library of classes
that can be used to support the development of software. Parts of the library are
organized into application programming interfaces (APIs). The Java Collections
API is a set of classes that represent a few specific types of collections, imple-
mented in various ways.

You might ask why we should learn how to design and implement collections if
a set of collections has already been provided for us. There are several reasons.
First, the Java Collections API provides only a subset of the collections you may
want to use. Second, the classes that are provided may not implement the collec-
tions in the ways you desire. Third, and perhaps most important, the study of
software development requires a deep understanding of the issues involved in the
design of collections and the data structures used to implement them.

As we explore various types of collections, we will also examine the appropri-
ate classes of the Java Collections API. In each case, we will analyze the various
implementations that we develop and compare them to the approach used by the
classes in the standard library.

3.2 a stack Collection

Let’s look at an example of a collection. A stack is a linear collection
whose elements are added and removed from the same end. We say that
a stack is processed in a last in, first out (LIFO) manner. That is, the last
element to be put on a stack will be the first one that gets removed. Said
another way, the elements of a stack are removed in the reverse order of
their placement on it. In fact, one of the principal uses of a stack in com-
puting is to reverse the order of something (e.g., an undo operation).

The processing of a stack is shown in Figure 3.3. Usually a stack is depicted
vertically, and we refer to the end to which elements are added and from which
they are removed as the top of the stack.

Recall from our earlier discussions that we define an abstract data type (ADT)
by identifying a specific set of operations that establishes the valid ways in which
we can manage the elements stored in the data structure. We always want to use
this concept to formally define the operations for a collection and work within
the functionality it provides. That way, we can cleanly separate the interface to
the collection from any particular implementation technique used to create it.

Key COnCept
Stack elements are processed in a
LIFO manner—the last element in is
the first element out.

 3.2 A Stack Collection 59

M03_LEWI3322_CH03_pp055-092.indd 59 19/02/13 12:40 PM

60 Chapter 3 Introduction to Collections — Stacks

The operations for a stack ADT are listed in Figure 3.4. In stack terminology,
we push an element onto a stack and we pop an element off a stack. We can also
peek at the top element of a stack, examining it or using it as needed, without ac-
tually removing it from the collection. And there are general operations that en-
able us to determine whether the stack is empty and, if it is not empty, how many
elements it contains.

Sometimes there are variations on the naming conventions for the
operations on a collection. For a stack, the use of the terms push and
pop is relatively standard. The peek operation is sometimes referred
to as top.

Adding an
element

Removing an
element

top of
stack

art06.1

Figure 3.3 A conceptual view of a stack

art06.2

Operation

push

pop

peek

isEmpty

size

Description

Adds an element to the top of the stack.

Removes an element from the top of the stack.

Examines the element at the top of the stack.

Determines if the stack is empty.

Determines the number of elements on the stack.

Figure 3.4 The operations on a stack

Key COnCept
A programmer should choose the
structure that is appropriate for the
type of data management needed.

M03_LEWI3322_CH03_pp055-092.indd 60 19/02/13 12:40 PM

Keep in mind that the definition of a collection is not universal. You will find
variations in the operations defined for specific data structures from one text to
another. We’ve been very careful in this text to define the operations on each col-
lection so that they are consistent with its purpose.

For example, note that none of the stack operations in Figure 3.4 enables us to
reach down into the stack to modify, remove, or reorganize the elements in the
stack. That is the very nature of a stack—all activity occurs at one end. If we dis-
cover that, to solve a particular problem, we need to access the elements in the
middle or at the bottom of the collection, then a stack is not the appropriate col-
lection to use.

We do provide a toString operation for the collection. This is not a classic
operation defined for a stack, and it could be argued that this operation violates
the prescribed behavior of a stack. However, it provides a convenient means to
traverse and display the stack’s contents without allowing modification of the
stack, and this is quite useful for debugging purposes.

3.3 Crucial OO Concepts

Now let’s consider what we will store in our stack. One possibility would be to
simply re-create our stack data structure each time we need it and create it to store the
specific object type for that application. For example, if we needed a stack of
strings, we would simply copy and paste our stack code and change the object
type to String. Even though copy, paste, and modify is technically a form of re-
use, this brute force type of reuse is not our goal. Reuse, in its purest form, should
mean that we create a collection that is written once, is compiled into bytecode
once, and will then handle any objects we choose to store in it safely, efficiently,
and effectively. To accomplish these goals, we must take type compatibility and

D e s i g n F O C u s

In the design of the stack ADT, we see the separation between the role of the
stack and the role of the application that is using the stack. Notice that any im-
plementation of this stack ADT is expected to throw an exception if a pop or
peek operation is requested on an empty stack. The role of the collection is not
to determine how such an exception is handled but merely to report it to the
application using the stack. Similarly, the concept of a full stack does not exist
in the stack ADT. Thus, it is the role of the stack collection to manage its own
storage to eliminate the possibility of being full.

 3.3 Crucial OO Concepts 61

M03_LEWI3322_CH03_pp055-092.indd 61 19/02/13 12:40 PM

62 Chapter 3 Introduction to Collections — Stacks

type checking into account. Type compatibility indicates whether a particular as-
signment of an object to a reference is legal. For example, the following assign-
ment is not legal because you cannot assign a reference declared to be of type
String to point to an object of type Integer.

String x = new Integer(10);

Java provides compile-time type checking that will flag this invalid assignment.
A second possibility is to take advantage of the concepts of inheritance and poly-
morphism to create a collection that can store objects of any class.

inheritance and polymorphism
A complete discussion of the concepts of inheritance and polymorphism is pro-
vided in Appendix B. To review, a polymorphic reference is a reference variable
that can refer to different types of objects at different points in time. Inheritance
can be used to create a class hierarchy where a reference variable can be used to
point to any object related to it by inheritance.

Carrying this to the extreme, an Object reference can be used to refer to any
object, because ultimately all classes are descendants of the Object class. An
ArrayList, for example, uses polymorphism in that it is designed to hold Object
references. That’s why an ArrayList can be used to store any kind of object. A
particular ArrayList can hold several different types of objects at one time, be-
cause all objects are compatible with type Object.

The result of this discussion would seem to be that we could simply store
Object references in our stack and take advantage of polymorphism via inheri-
tance to create a collection that can store any type of objects. However, this pos-
sible solution creates some unexpected consequences. Because in this chapter we
focus on implementing a stack with an array, let’s examine what can happen
when we are dealing with polymorphic references and arrays. Consider the classes
represented in Figure 3.5. Since Animal is a superclass of all of the other classes in
this diagram, an assignment such as the following is allowable:

Animal creature = new Bird();

However, this also means that the following assignments will compile as well:

Animal[] creatures = new Mammal[];
creatures[1] = new Reptile();

Note that by definition, creatures[1] should be both a Mammal and an Animal,
but not a Reptile. This code will compile but will generate a java.lang.
ArrayStoreException at run-time. Thus, because using the Object class will not
provide us with compile-time type checking, we should look for a better solution.

M03_LEWI3322_CH03_pp055-092.indd 62 19/02/13 12:40 PM

generics
Beginning with Java 5.0, Java enables us to define a class based on a generic type.
That is, we can define a class so that it stores, operates on, and manages objects
whose type is not specified until the class is instantiated. Generics are an integral
part of our discussions of collections and their underlying implementations
throughout the rest of this text.

Let’s assume we need to define a class called Box that stores and manages other
objects. As we discussed, using polymorphism, we could simply define Box so that
internally it stores references to the Object class. Then, any type of object could
be stored inside a box. In fact, multiple types of unrelated objects could be stored
in Box. We lose a lot of control with that level of flexibility in our code.

A better approach is to define the Box class to store a generic type T. (We can
use any identifier we want for the generic type, but using T has become a conven-
tion.) The header of the class contains a reference to the type in angle brackets.
For example:

class Box<T>
{
 // declarations and code that manage objects of type T
}

Then, when a Box is needed, it is instantiated with a specific class used in place
of T. For example, if we wanted a Box of Widget objects, we could use the follow-
ing declaration:

Box<Widget> box1 = new Box<Widget>();

A.4

Animal

Bird

Parrot

Mammal

Horse Bat

Reptile

LizardSnake

Figure 3.5 A UML class diagram showing a class hierarchy

 3.3 Crucial OO Concepts 63

M03_LEWI3322_CH03_pp055-092.indd 63 19/02/13 12:40 PM

64 Chapter 3 Introduction to Collections — Stacks

The type of the box1 variable is Box<Widget>. In essence, for the box1 object,
the Box class replaces T with Widget. Now suppose we wanted a Box in which to
store Gadget objects; we could make the following declaration:

Box<Gadget> box2 = new Box<Gadget>();

For box2, the Box class essentially replaces T with Gadget. So, although the
box1 and box2 objects are both boxes, they have different types because the ge-
neric type is taken into account. This is a safer implementation, because at this
point we cannot use box1 to store gadgets (or anything else for that matter), nor
could we use box2 to store widgets. A generic type such as T cannot be instanti-
ated. It is merely a placeholder to enable us to define the class that will manage a
specific type of object that is established when the class is instantiated.

Given that we now have a mechanism using generic types for creating a collec-
tion that can be used to store any type of object safely and effectively, let’s con-
tinue our discussion of the stack collection.

The following section explores in detail an example of using a stack to solve a
problem.

3.4 using stacks: evaluating postfix expressions

Traditionally, arithmetic expressions are written in infix notation, meaning that
the operator is placed between its operands in the form

<operand> <operator> <operand>

such as in the expression

4 + 5

When evaluating an infix expression, we rely on precedence rules to determine
the order of operator evaluation. For example, the expression

4 + 5 * 2

evaluates to 14 rather than 18 because of the precedence rule that in the absence
of parentheses, multiplication evaluates before addition.

In a postfix expression, the operator comes after its two operands. Therefore, a
postfix expression takes the form

<operand> < operand> <operator>

M03_LEWI3322_CH03_pp055-092.indd 64 19/02/13 12:40 PM

For example, the postfix expression

6 9 -

is equivalent to the infix expression

6 - 9

A postfix expression is generally easier to evaluate than an infix expression
because precedence rules and parentheses do not have to be taken into account.
The order of the values and operators in the expression is sufficient to determine
the result. For this reason, programming language compilers and run-time envi-
ronments often use postfix expressions in their internal calculations.

The process of evaluating a postfix expression can be stated in one simple rule:
Scanning from left to right, apply each operation to the two operands immedi-
ately preceding it, and replace the operator with the result. At the end we are left
with the final value of the expression.

Consider the infix expression we looked at earlier:

4 + 5 * 2

In postfix notation, this expression would be written

4 5 2 * +

Let’s use our evaluation rule to determine the final value of this expression. We
scan from the left until we encounter the multiplication (*) operator. We apply
this operator to the two operands immediately preceding it (5 and 2) and replace
it with the result (10), which leaves us with

4 10 +

Continuing our scan from left to right, we immediately encounter the plus (+)
operator. Applying this operator to the two operands immediately preceding it (4
and 10) yields 14, which is the final value of the expression.

Let’s look at a slightly more complicated example. Consider the following infix
expression:

(3 * 4 - (2 + 5)) * 4 / 2

The equivalent postfix expression is

3 4 * 2 5 + - 4 * 2 /

 3.4 Using Stacks: Evaluating Postfix Expressions 65

M03_LEWI3322_CH03_pp055-092.indd 65 19/02/13 12:40 PM

66 Chapter 3 Introduction to Collections — Stacks

Applying our evaluation rule results in

 12 2 5 + - 4 * 2 /
then 12 7 - 4 * 2 /
then 5 4 * 2 /
then 20 2 /
then 10

Now let’s consider the design of a program that will evaluate a postfix expres-
sion. The evaluation rule relies on being able to retrieve the previous two oper-

ands whenever we encounter an operator. Furthermore, a large post-
fix expression will have many operators and operands to manage. It
turns out that a stack is the perfect collection to use in this case. The
operations provided by a stack coincide nicely with the process of
evaluating a postfix expression.

The algorithm for evaluating a postfix expression using a stack
can be expressed as follows: Scan the expression from left to right, identifying
each token (operator or operand) in turn. If it is an operand, push it onto the
stack. If it is an operator, pop the top two elements off the stack, apply the opera-
tion to them, and push the result onto the stack. When we reach the end of the
expression, the element remaining on the stack is the result of the expression. If at any
point we attempt to pop two elements off the stack but there are not two elements on
the stack, then our postfix expression was not properly formed. Similarly, if we
reach the end of the expression and more than one element remains on the stack,
then our expression was not well formed. Figure 3.6 depicts the use of a stack to
evaluate a postfix expression.

The PostfixTester program in Listing 3.1 evaluates multiple postfix expressions
entered by the user. It uses the PostfixEvaluator class shown in Listing 3.2.

7

–3

4

top

top

top

top

top

top

7 4 -3 * 1 5 + / *

7

–12

7

5

1

–12

7

6

–12

7

–2

–14

art06.4

Figure 3.6 Using a stack to evaluate a postfix expression

Key COnCept
A stack is the ideal data structure
to use when evaluating a postfix
expression.

M03_LEWI3322_CH03_pp055-092.indd 66 19/02/13 12:40 PM

To keep things simple, this program assumes that the operands to the expression
are integers and are literal values (not variables). When executed, the program repeat-
edly accepts and evaluates postfix expressions until the user chooses not to.

import java.util.Scanner;

/**
 * Demonstrates the use of a stack to evaluate postfix expressions.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class PostfixTester
{
 /**
 * Reads and evaluates multiple postfix expressions.
 */
 public static void main(String[] args)
 {
 String expression, again;
 int result;

 Scanner in = new Scanner(System.in);

 do
 {
 PostfixEvaluator evaluator = new PostfixEvaluator();
 System.out.println("Enter a valid post-fix expression one token " +
 "at a time with a space between each token " +
 "(e.g. 5 4 + 3 2 1 - + *)");

 System.out.println("Each token must be an integer or an " +
 "operator (+,-,*,/)");
 expression = in.nextLine();
 result = evaluator.evaluate(expression);
 System.out.println();
 System.out.println("That expression equals " + result);
 System.out.print("Evaluate another expression [Y/N]? ");
 again = in.nextLine();
 System.out.println();
 }
 while (again.equalsIgnoreCase("y"));
 }
}

L i s t i n g 3 . 1

 3.4 Using Stacks: Evaluating Postfix Expressions 67

M03_LEWI3322_CH03_pp055-092.indd 67 19/02/13 12:40 PM

68 Chapter 3 Introduction to Collections — Stacks

import java.util.Stack;
import java.util.Scanner;

/**
 * Represents an integer evaluator of postfix expressions. Assumes
 * the operands are constants.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class PostfixEvaluator
{
 private final static char ADD = '+';
 private final static char SUBTRACT = '-';
 private final static char MULTIPLY = '*';
 private final static char DIVIDE = '/';
 private Stack<Integer> stack;

 /**
 * Sets up this evaluator by creating a new stack.
 */
 public PostfixEvaluator()
 {
 stack = new Stack<Integer>();
 }

 /**
 * Evaluates the specified postfix expression. If an operand is
 * encountered, it is pushed onto the stack. If an operator is
 * encountered, two operands are popped, the operation is
 * evaluated, and the result is pushed onto the stack.
 * @param expr string representation of a postfix expression
 * @return value of the given expression
 */
 public int evaluate(String expr)
 {
 int op1, op2, result = 0;
 String token;
 Scanner parser = new Scanner(expr);
 while (parser.hasNext())
 {
 token = parser.next();
 if (isOperator(token))

L I S t I N G 3 . 2

M03_LEWI3322_CH03_pp055-092.indd 68 01/03/13 12:37 PM

 {
 op2 = (stack.pop()).intValue();
 op1 = (stack.pop()).intValue();
 result = evaluateSingleOperator(token.charAt(0), op1, op2);
 stack.push(new Integer(result));
 }
 else
 stack.push(new Integer(Integer.parseInt(token)));
 }
 return result;
 }

 /**
 * Determines if the specified token is an operator.
 * @param token the token to be evaluated
 * @return true if token is operator
 */
 private boolean isOperator(String token)
 {
 return (token.equals("+") || token.equals("-") ||
 token.equals("*") || token.equals("/"));
 }

 /**
 * Peforms integer evaluation on a single expression consisting of
 * the specified operator and operands.
 * @param operation operation to be performed
 * @param op1 the first operand
 * @param op2 the second operand
 * @return value of the expression
 */
 private int evaluateSingleOperator(char operation, int op1, int op2)
 {
 int result = 0;
 switch (operation)
 {
 case ADD:
 result = op1 + op2;
 break;
 case SUBTRACT:
 result = op1 - op2;
 break;
 case MULTIPLY:

L i s t i n g 3 . 2 continued

 3.4 Using Stacks: Evaluating Postfix Expressions 69

M03_LEWI3322_CH03_pp055-092.indd 69 19/02/13 12:40 PM

70 Chapter 3 Introduction to Collections — Stacks

The PostfixEvaluator class uses the java.util.Stack class to create the
stack attribute. The java.util.Stack class is one of two stack implementations
provided by the Java Collections API. We revisit the other implementation, the
Deque interface, in Chapter 4.

The evaluate method performs the evaluation algorithm described earlier,
supported by the isOperator and evalSingleOp methods. Note that in the
evaluate method, only operands are pushed onto the stack. Operators are used
as they are encountered and are never put on the stack. This is consistent with the
evaluation algorithm we discussed. An operand is put on the stack as an Integer
object, instead of as an int primitive value, because the stack data structure is
designed to store objects.

When an operator is encountered, the two most recent operands are popped
off the stack. Note that the first operand popped is actually the second operand in
the expression and that the second operand popped is the first operand in the ex-
pression. This order doesn’t matter in the cases of addition and multiplication, but
it certainly matters for subtraction and division.

Note also that the postfix expression program assumes that the postfix expres-
sion entered is valid, meaning that it contains a properly organized set of opera-
tors and operands. A postfix expression is invalid if either (1) two operands are
not available on the stack when an operator is encountered or (2) there is more
than one value on the stack when the tokens in the expression are exhausted.
Either situation indicates that there was something wrong with the format of the
expression, and both can be caught by examining the state of the stack at the ap-
propriate point in the program. We will discuss how we might deal with these sit-
uations and other exceptional cases in the next section.

Perhaps the most important aspect of this program is the use of the class that de-
fined the stack collection. At this point, we don’t know how the stack was imple-
mented. We simply trusted the class to do its job. In this example, we used the class

 result = op1 * op2;
 break;
 case DIVIDE:
 result = op1 / op2;
 }
 return result;
 }
}

L i s t i n g 3 . 2 continued

M03_LEWI3322_CH03_pp055-092.indd 70 19/02/13 12:40 PM

java.util.Stack, but we could have used any class that implemented a stack, as
long as it performed the stack operations as expected. From the point of view of
evaluating postfix expressions, the manner in which the stack is implemented is
largely irrelevant. Figure 3.7 shows a UML class diagram for the postfix expression
evaluation program. The diagram illustrates that the PostfixEvaluator class uses
an Integer instance of the java.util.Stack class and represents the binding of the
Integer to the generic type T. We will not always include this level of detail in our
UML diagrams.

javadoc
Before moving on, let’s mention the documentation style used for comments in
Listings 3.1 and 3.2. These are Javadoc comments, which are written in a format
that allows the javadoc tool (part of the JDK tool set) to parse the comments and
extract information about the classes and methods. Javadoc comments begin with
a /** and end with a */.

java.util.Stack

T

java.util.Stack<Integer>

<<bind>>
T :: Integer

evaluate(String expr) : int

PostfixEvaluator

stack : Stack<Integer>

main(String[] args)

PostfixTester

Figure 3.7 UML class diagram for the postfix expression evaluation program

 3.4 Using Stacks: Evaluating Postfix Expressions 71

M03_LEWI3322_CH03_pp055-092.indd 71 19/02/13 12:40 PM

72 Chapter 3 Introduction to Collections — Stacks

Javadoc is used to create online documentation in HTML about a set of classes.
You’ve already seen the results; the online Java API documentation is created using
this technique. When changes are made to the API classes (and their comments),
the javadoc tool is run again to generate the documentation. It’s a clever way to
ensure that the documentation does not lag behind the evolution of the code.

There’s nothing special about the Java API classes in this regard. Documentation
for any program or set of classes can be generated using Javadoc. And even if it’s
not used to generate online documentation, the Javadoc commenting style is the
official standard for adding comments to Java code.

Javadoc tags are used to identify particular types of information. For example,
the @author tag is used to identify the programmer who wrote the code. The
@version tag is used to specify the version number of the code. In the header of a
method, the @return tag is used to indicate what value is returned by the method,
and the @param tag is used to identify each parameter that’s passed to the method.

We won’t discuss Javadoc further at this point, but we use the Javadoc com-
menting style throughout this text.

3.5 exceptions

One concept that we will explore with each of the collections we discuss is that of
exceptional behavior. What action should the collection take in the exceptional
case? There are some such cases that are inherent in the collection itself. For ex-
ample, in the case of a stack, what should happen if an attempt is made to pop an
element from an empty stack? In this case, it does not matter what data structure
is being used to implement the collection; the exception will still apply. Some such

/**

public int getCount(Category cat)
{ … }

* Retrieves the count of …

* @param cat the category to match

* @return the number of …

*/

Javadoc for a Method

method
description

begins a Javadoc comment

tags

M03_LEWI3322_CH03_pp055-092.indd 72 19/02/13 12:40 PM

cases are artifacts of the data structure being used to implement the collection.
For example, if we are using an array to implement a stack, what should happen
if an attempt is made to push an element onto the stack but the array is full? Let’s
take a moment to explore this concept further.

Problems that arise in a Java program may generate exceptions or errors. An
exception is an object that defines an unusual or erroneous situation. An excep-
tion is thrown by a program or the run-time environment, and it can be caught
and handled appropriately if desired. An error is similar to an exception, except
that an error generally represents an unrecoverable situation, and it should not be
caught. Java has a predefined set of exceptions and errors that may occur during
the execution of a program.

In our postfix evaluation example, there were several potential exceptional sit-
uations. For instance:

■ If the stack were full on a push

■ If the stack were empty on a pop

■ If the stack held more than one value at the completion of the evaluation

Let’s consider each of these separately. The possibility that the stack might be
full on a push is an issue for the underlying data structure, not the collection.
Conceptually speaking, there is no such thing as a full stack. Now we know that
this is not reality and that all data structures will eventually reach a limit.
However, even when this physical limit is reached, the stack is not full; only the
data structure that implements the stack is full. We will discuss strategies for han-
dling this situation as we implement our stack in the next section.

What if the stack is empty on a pop? This is an exceptional case that has to do
with the problem, not the underlying data structure. In our postfix evaluation ex-
ample, if we attempt to pop two operands and there are not two operands avail-
able on the stack, our postfix expression was not properly formed. This is a case
where the collection needs to report the exception, and the application then must
interpret that exception in context.

The third case is equally interesting. What if the stack holds more
than one value at the completion of the evaluation? From the per-
spective of the stack collection, this is not an exception. However,
from the perspective of the application, this is a problem that means,
once again, that the postfix expression was not well formed. Because
it will not generate an exception from the collection, this is a condi-
tion for which the application must test.

Appendix B includes a complete discussion of exceptions and exception handling,
including exception propagation and the try/catch statement. As we explore particular
implementation techniques for a collection, we will also discuss the appropriate use of
exceptions.

Key COnCept
Errors and exceptions represent
unusual or invalid processing.

 3.5 Exceptions 73

M03_LEWI3322_CH03_pp055-092.indd 73 19/02/13 12:40 PM

74 Chapter 3 Introduction to Collections — Stacks

package jsjf;

/**
 * Defines the interface to a stack collection.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public interface StackADT<T>
{
 /**
 * Adds the specified element to the top of this stack.
 * @param element element to be pushed onto the stack
 */
 public void push(T element);

 /**
 * Removes and returns the top element from this stack.

3.6 a stack aDt

To facilitate separation of the interface operations from the methods
that implement them, we can define a Java interface structure for a collec-
tion. A Java interface provides a formal mechanism for defining the set of
operations for any collection.

Recall that a Java interface defines a set of abstract methods,
specifying each method’s signature but not its body. A class that im-

plements an interface provides definitions for the methods defined in the inter-
face. The interface name can be used as the type of a reference, which can be as-
signed any object of any class that implements the interface.

Listing 3.3 defines a Java interface for a stack collection. We name a collection
interface using the collection name followed by the abbreviation ADT (for ab-
stract data type). Thus, StackADT.java contains the interface for a stack collec-
tion. It is defined as part of the jsjf package, which contains all of the collection
classes and interfaces presented in this text.

Note that the stack interface is defined as StackADT<T>, operat-
ing on a generic type T. In the methods of the interface, the type of
various parameters and return values is often expressed using the
generic type T. When this interface is implemented, it will be based
on a type that is substituted for T.

Key COnCept
By using the interface name as a re-
turn type, we ensure that the inter-
face doesn’t commit the method to
the use of any particular class that
implements a stack.

L i s t i n g 3 . 3

Key COnCept
A Java interface defines a set of
abstract methods and is useful in
separating the concept of an abstract
data type from its implementation.

M03_LEWI3322_CH03_pp055-092.indd 74 19/02/13 12:40 PM

 * @return the element removed from the stack
 */
 public T pop();

 /**
 * Returns without removing the top element of this stack.
 * @return the element on top of the stack
 */
 public T peek();

 /**
 * Returns true if this stack contains no elements.
 * @return true if the stack is empty
 */
 public boolean isEmpty();

 /**
 * Returns the number of elements in this stack.
 * @return the number of elements in the stack
 */
 public int size();

 /**
 * Returns a string representation of this stack.
 * @return a string representation of the stack
 */
 public String toString();
}

L i s t i n g 3 . 3 continued

 3.6 A Stack ADT 75

list of method signatures

Stack Interface

public interface StackADT <T>
{
 ...
}

reserved word interface name

generic type

parameter

M03_LEWI3322_CH03_pp055-092.indd 75 19/02/13 12:40 PM

76 Chapter 3 Introduction to Collections — Stacks

Each time we introduce an interface, a class, or a system in this text, we will
accompany that description with the UML description of that interface, class, or
system. This should help you become accustomed to reading UML descriptions
and to creating them for other classes and systems. Figure 3.8 illustrates the UML
description of the StackADT interface.

Stacks are used quite frequently in the computing world. For example, the
undo operation in a word processor is usually implemented using a stack. As we
make changes to a document (add data, delete data, make format changes, etc.),
the word processor keeps track of each operation by pushing some representation
of it onto a stack. If we choose to undo an operation, the word processing soft-
ware pops the most recently performed operation off the stack and reverses it. If
we choose to undo again (undoing the second-to-last operation we performed),
another element is popped from the stack. In most word processors, many opera-
tions can be reversed in this manner.

<<interface>>

StackADT

push(T element) : void
pop() : T
peek() : T
isEmpty() : boolean
size() : int
toString() : String

T

Figure 3.8 The StackADT interface in UML

D e s i g n F O C u s

Undo operations are often implemented using a special type of stack called a
drop-out stack. The basic operations on a drop-out stack are the same as those
for a stack (push, pop, and peek). The only difference is that a drop-out stack
has a limit to the number of elements it will hold, and once that limit is reached,
the element on the bottom of the stack drops off the stack when a new element
is pushed on. The development of a drop-out stack is left as an exercise.

M03_LEWI3322_CH03_pp055-092.indd 76 19/02/13 12:40 PM

3.7 implementing a stack: With arrays

So far in our discussion of a stack collection, we have described its basic conceptual
nature and the operations that enable the user to interact with it. In software engi-
neering terms, we would say that we have done the analysis for a stack collection. We
have also used a stack, without knowing the details of how it was implemented, to
solve a particular problem. Now let’s turn our attention to the implementation details.
There are various ways to implement a class that represents a stack. As mentioned
earlier, the Java Collections API provides multiple implementations, including the
Stack class and the Deque interface. In this section, we examine an implementation
strategy that uses an array to store the objects contained in the stack. In the next
chapter, we examine a second technique for implementing a stack.

To explore this implementation, we must recall several key character-
istics of Java arrays. The elements stored in an array are indexed from 0
to n–1, where n is the total number of cells in the array. An array is an
object, which is instantiated separately from the objects it holds. And
when we talk about an array of objects, we are actually talking about
an array of references to objects, as illustrated in Figure 3.9.

Keep in mind the separation between the collection and the underlying data struc-
ture used to implement it. Our goal is to design an efficient implementation that pro-
vides the functionality of every operation defined in the stack abstract data type. The
array is just a convenient data structure in which to store the objects.

Key COnCept
The implementation of the collection
operations should not affect the way
users interact with the collection.

0

1

2

3

4

5

6

art02.8

Figure 3.9 An array of object references

 3.7 Implementing a Stack: With Arrays 77

M03_LEWI3322_CH03_pp055-092.indd 77 19/02/13 12:40 PM

78 Chapter 3 Introduction to Collections — Stacks

Managing Capacity
When an array object is created, it is allocated a specific number of cells into
which elements can be stored. For example, the following instantiation creates an
array that can store 500 elements, indexed from 0 to 499:

Object[] collection = Object[500];

The number of cells in an array is called its capacity. This value is stored in the
length constant of the array. The capacity of an array cannot be changed once
the array has been created.

When using an array to implement a collection, we have to deal with the situa-
tion in which all cells of the array are being used to store elements. That is, be-
cause we are using a fixed-size data structure, at some point the data structure
may become “full.” However, just because the data structure is full, should that
mean that the collection is full?

A crucial question in the design of a collection is what to do in the case in
which a new element is added to a full data structure. Three basic options exist:

■ We could implement operations that add an element to the collection such
that they throw an exception if the data structure is full.

■ We could implement the add operations to return a status indicator that
can be checked by the user to see whether the add operation was successful.

■ We could automatically expand the capacity of the underlying data struc-
ture whenever necessary so that, essentially, it would never become full.

In the first two cases, the user of the collection must be aware that
the collection could get full and must take steps to deal with it when
needed. For these solutions, we would also provide extra operations
that enable the user to check whether the collection is full and to
expand the capacity of the data structure as desired. The advantage
of these approaches is that they give the user more control over the
capacity.

However, given that our goal is to separate the interface from the implementation,
the third option is attractive. The capacity of the underlying data structure is an im-
plementation detail that, in general, should be hidden from the user. Furthermore,
the capacity issue is particular to this implementation. Other techniques used to im-
plement the collection, such as the one we explore in the next chapter, are not re-
stricted by a fixed capacity and therefore never have to deal with this issue.

In the solutions presented in this text, we opt to implement fixed data structure
solutions by automatically expanding the capacity of the underlying data struc-
ture. Occasionally, other options are explored as programming projects.

Key COnCept
How we handle exceptional condi-
tions determines whether the collec-
tion or the user of the collection
controls the particular behavior.

M03_LEWI3322_CH03_pp055-092.indd 78 19/02/13 12:40 PM

3.8 the ArrayStack Class

In the Java Collections API framework, class names indicate both the underlying
data structure and the collection. We follow that naming convention in this text.
Thus, we define a class called ArrayStack to represent a stack with an underlying
array-based implementation.

To be more precise, we define a class called ArrayStack<T> that represents an
array-based implementation of a stack collection that stores objects of generic
type T. When we instantiate an ArrayStack object, we specify what the generic
type T represents.

An array implementation of a stack can be designed by making the following
four assumptions: The array is an array of object references (type determined
when the stack is instantiated), the bottom of the stack is always at index 0 of the
array, the elements of the stack are stored in order and contiguously in the array,
and there is an integer variable top that stores the index of the array immediately
following the top element in the stack.

Figure 3.10 illustrates this configuration for a stack that currently contains the
elements A, B, C, and D, assuming that they have been pushed on in that order. To
simplify the figure, the elements are shown in the array itself rather
than as objects referenced from the array. Note that the variable top
represents both the next cell into which a pushed element should be
stored and the count of the number of elements currently in the
stack.

In this implementation, the bottom of the stack is always held at index 0 of the
array, and the stack grows and shrinks at the higher indexes. This is considerably
more efficient than if the stack were reversed within the array. Consider the pro-
cessing that would be necessary if the top of the stack were kept at index 0.

From these assumptions, we can determine that our class will need a constant
to store the default capacity, a variable to keep track of the top of the stack, and a
variable for the array to store the stack. This results in the class header shown on

Key COnCept
For efficiency, an array-based stack
implementation keeps the bottom of
the stack at index 0.

0 1 2 3 4 5 6 7 ...

A B C D

art06.9

top 4

Figure 3.10 An array implementation of a stack

 3.8 The ArrayStack Class 79

An overview of the
ArrayStack
implementation

VideoNote

M03_LEWI3322_CH03_pp055-092.indd 79 19/02/13 12:40 PM

80 Chapter 3 Introduction to Collections — Stacks

the following page. Note that our ArrayStack class will be part of the jsjf
package and will make use of a package called jsjf.exceptions.

 /**
 * Creates an empty stack using the default capacity.
 */
 public ArrayStack()
 {
 this(DEFAULT_CAPACITY);
 }

 /**
 * Creates an empty stack using the specified capacity.
 * @param initialCapacity the initial size of the array
 */
 public ArrayStack(int initialCapacity)
 {
 top = 0;
 stack = (T[])(new Object[initialCapacity]);
 }

package jsjf;

import jsjf.exceptions.*;
import java.util.Arrays;

/**
 * An array implementation of a stack in which the bottom of the
 * stack is fixed at index 0.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class ArrayStack<T> implements StackADT<T>
{
 private final static int DEFAULT_CAPACITY = 100;

 private int top;
 private T[] stack;

the Constructors
Our class will have two constructors, one to use the default capacity and the other
to use a specified capacity.

M03_LEWI3322_CH03_pp055-092.indd 80 19/02/13 12:40 PM

Just to refresh our memory, this is an excellent example of method overloading
(that is, two methods with the same name that differ only in the parameter list). It
is also interesting to note that the constructor for the default capacity makes use
of the other constructor by passing it the DEFAULT_CAPACITY constant.

From our previous discussion of generics, we recall that you cannot instantiate
a generic type. This also means that you cannot instantiate an array of a generic
type. This results in an interesting line of code in our constructor:

stack = (T[])(new Object[initialCapacity]);

Note that in this line, we are instantiating an array of Objects and then casting
it as an array of our generic type. This will create a compile-time warning for an
unchecked type conversion, because the Java compiler cannot guarantee the type
safety of this cast. As we have seen, it is worth dealing with this warning to gain
the flexibility and type safety of generics. This warning can be suppressed using
the following Java annotation placed before the offending statement:

 @SuppressWarnings("unchecked")

COMMOn errOr

A common error made by programmers new to generics is to attempt to
create an array of a generic type:

stack = new T[initialCapacity];

Generic types cannot be instantiated, and that includes arrays of a generic
type. That’s why we have to create an array that holds Object references
and then cast it into an array of the generic type.

 3.8 The ArrayStack Class 81

stack = (T[]) (new Object[initialCapacity]);

Creating an Array of Generic Elements

create an array of Object

cast as an array of generic type T

M03_LEWI3322_CH03_pp055-092.indd 81 19/02/13 12:40 PM

82 Chapter 3 Introduction to Collections — Stacks

the push Operation
To push an element onto the stack, we simply insert it in the next available posi-
tion in the array as specified by the variable top. Before doing so, however, we
must determine whether the array has reached its capacity and expand it if neces-
sary. After storing the value, we must update the value of top so that it continues
to represent the number of elements in the stack.

Implementing these steps results in the following code:

 /**
 * Adds the specified element to the top of this stack, expanding
 * the capacity of the array if necessary.
 * @param element generic element to be pushed onto stack
 */
 public void push(T element)
 {
 if (size() == stack.length)
 expandCapacity();

 stack[top] = element;
 top++;
 }

The expandCapacity method is implemented to double the size of the array as
needed. Of course, since an array cannot be resized once it is instantiated, this
method simply creates a new, larger array and copies the contents of the old array
into the new one. It serves as a support method of the class and can therefore be
implemented with private visibility.

 /**
 * Creates a new array to store the contents of this stack with
 * twice the capacity of the old one.
 */
 private void expandCapacity()
 {
 stack = Arrays.copyOf(stack, stack.length * 2);
 }

M03_LEWI3322_CH03_pp055-092.indd 82 19/02/13 12:40 PM

Figure 3.11 illustrates the result of pushing an element E onto the stack that
was depicted in Figure 3.10.

The push operation for the array implementation of a stack consists of the fol-
lowing steps:

■ Make sure that the array is not full.

■ Set the reference in position top of the array to the object being added to
the stack.

■ Increment the values of top.

Each of these steps is O(1). Thus the operation is O(1). We might wonder
about the time complexity of the expandCapacity method and about the impact
it might have on the analysis of the push method. This method does contain a
linear for loop, and intuitively, we would call that O(n). However, given how sel-
dom the expandCapacity method is called relative to the number of times push
may be called, we can amortize that complexity across all instances of push.

the pop Operation
The pop operation removes and returns the element at the top of the stack. For an
array implementation, that means returning the element at index top-1. Before
attempting to return an element, however, we must ensure that there is at least
one element in the stack to return.

The array-based version of the pop operation can be implemented as follows:

0 1 2 3 4 5 6 7 ...

A B C D

art06.10

E

top 5

Figure 3.11 The stack after pushing element E

 3.8 The ArrayStack Class 83

 /**
 * Removes the element at the top of this stack and returns a
 * reference to it.
 * @return element removed from top of stack

M03_LEWI3322_CH03_pp055-092.indd 83 19/02/13 12:40 PM

84 Chapter 3 Introduction to Collections — Stacks

 * @throws EmptyCollectionException if stack is empty
 */
 public T pop() throws EmptyCollectionException
 {
 if (isEmpty())
 throw new EmptyCollectionException("stack");

 top--;
 T result = stack[top];
 stack[top] = null;

 return result;
 }

If the stack is empty when the pop method is called, an EmptyCollection
Exception is thrown. Otherwise, the value of top is decremented, and the ele-
ment stored at that location is stored into a temporary variable so that it can be
returned. That cell in the array is then set to null. Note that top ends up with the
appropriate value relative to the now smaller stack. Figure 3.12 illustrates the re-
sults of a pop operation on the stack from Figure 3.11, which brings it back to its
earlier state (identical to Figure 3.10).

The pop operation for the array implementation consists of the following
steps:

■ Make sure the stack is not empty.

■ Decrement the top counter.

■ Set a temporary reference equal to the element in stack[top].

■ Set stack[top] equal to null.

■ Return the temporary reference.

0 1 2 3 4 5 6 7 ...

A B C D

art06.11

top 4

Figure 3.12 The stack after popping the top element

M03_LEWI3322_CH03_pp055-092.indd 84 19/02/13 12:40 PM

All of these steps are also O(1). Thus, the pop operation for the array imple-
mentation has time complexity O(1).

the peek Operation
The peek operation returns a reference to the element at the top of the stack with-
out removing it from the array. For an array implementation, that means return-
ing a reference to the element at position top-1. This one step is O(1), and thus the
peek operation is O(1) as well.

 /**
 * Returns a reference to the element at the top of this stack.
 * The element is not removed from the stack.
 * @return element on top of stack
 * @throws EmptyCollectionException if stack is empty
 */
 public T peek() throws EmptyCollectionException
 {
 if (isEmpty())
 throw new EmptyCollectionException("stack");

 return stack[top-1];
 }

Other Operations
The isEmpty, size, and toString operations and their analysis are left as pro-
gramming projects and exercises.

the EmptyCollectionException Class
Now that we have examined the implementation of our ArrayStack class, let’s
revisit our choices with respect to exception handling. We chose to have our col-
lection handle the case where the underlying data structure becomes full, because that
is an issue that is internal to the collection. On the other hand, we chose to throw
an exception if an attempt is made to access an element in the collection through
either a pop or a peek operation when the collection is empty. This situation reveals a
problem with the use of the collection, not with the collection itself.

Exceptions are classes in Java, so we have the choice of using existing excep-
tions provided in the Java API or creating our own. In this case, we could have

 3.8 The ArrayStack Class 85

M03_LEWI3322_CH03_pp055-092.indd 85 19/02/13 12:40 PM

86 Chapter 3 Introduction to Collections — Stacks

chosen to create a specific empty stack exception. However, creating a parameter-
ized exception enables us to reuse this exception with any of our collections
classes. Listing 3.4 shows the EmptyCollectionException class. Notice that our
exception class extends the RuntimeException class and then makes use of the
parent’s constructor by using a super reference.

package jsjf.exceptions;

/**
 * Represents the situation in which a collection is empty.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class EmptyCollectionException extends RuntimeException
{
 /**
 * Sets up this exception with an appropriate message.
 * @param collection the name of the collection
 */
 public EmptyCollectionException(String collection)
 {
 super("The " + collection + " is empty.");
 }
}

L i s t i n g 3 . 4

Other implementations
In this chapter we examined the concept of a stack, used the Stack class available
in Java API to solve a postfix evaluation problem, and then implemented our own
ArrayStack class that used an array to store the underlying elements on a stack.

We’re not finished with stacks yet, though. In Chapter 4, we’ll examine another
technique for implementing collections using linked structures instead of arrays,
and implement a LinkedStack class.

Armed with both of these two broad implementation techniques—array-based
and linked-based—we’ll be set to explore many other collections.

M03_LEWI3322_CH03_pp055-092.indd 86 19/02/13 12:40 PM

 Summary of Key Concepts 87

Summary of Key Concepts
■ A collection is an object that gathers and organizes other objects.

■ Elements in a collection are typically organized in terms of the order of their
addition to the collection or in terms of some inherent relationship among
the elements.

■ A collection is an abstraction wherein the details of the implementation are
hidden.

■ A data structure is the underlying programming construct used to implement
a collection.

■ Stack elements are processed in a LIFO manner—the last element in is the
first element out.

■ A programmer should choose the structure that is appropriate for the type of
data management needed.

■ A stack is the ideal data structure to use when evaluating a postfix
expression.

■ Errors and exceptions represent unusual or invalid processing.

■ A Java interface defines a set of abstract methods and is useful in separating
the concept of an abstract data type from its implementation.

■ By using the interface name as a return type, we ensure that the interface
doesn’t commit the method to the use of any particular class that implements
a stack.

■ A programmer must carefully consider how exceptions should be handled, if
at all, and at what level.

■ The implementation of the collection operations should not affect the way
users interact with the collection.

■ How we handle exceptional conditions determines whether the collection or
the user of the collection controls the particular behavior.

■ For efficiency, an array-based stack implementation keeps the bottom of the
stack at index 0.

summary of terms
abstraction A point of view that hides or ignores certain details, usually to
make concepts easier to manage.

abstract data type A data type whose values and operations are not inher-
ently defined within a programming language.

M03_LEWI3322_CH03_pp055-092.indd 87 19/02/13 12:40 PM

88 ChApTer 3 Introduction to Collections — Stacks

class hierarchy The relationship among classes created by inheritance in
which the child of one parent can itself be the parent of other classes.

collection An object that gathers and organizes other objects.

data structure (1) An organization of objects that allows certain operations
to be performed efficiently; (2) The programming constructs used to imple-
ment a collection.

exception An object that defines an unusual or erroneous situation.

generic type A placeholder for an object type that is not made concrete
until the class that refers to it is instantiated.

inheritance The object-oriented principle of deriving one class from an
existing class.

interface (1) The manner in which one thing interacts with another; (2) A
set of public methods that enables one object to interact with another.

Java Collections ApI The subset of the Java application programming inter-
faces (APIs) that represent or deal with collections.

LIFO (1) Last in, first out; (2) A description of a collection in which the last
element added will be the first element removed.

polymorphism The object-oriented principle that enables a reference vari-
able to point to related but distinct types of objects over time, and in which
method invocations are bound to code at run-time.

pop A stack operation in which an element is removed from the top of a
stack.

push A stack operation in which an element is added to the top of a stack.

stack A linear collection whose elements are added and removed from the
same end in a LIFO manner.

Self-review Questions
SR 3.1 How are elements organized in a collection?

SR 3.2 Give two real world examples of nonlinear collection.

SR 3.3 What is the difference between data type and abstract data type?

SR 3.4 Point out the data type, collection, and the data structure you
would use in implementing an array-based stack of integers.

SR 3.5 What do you understand by the statement: ‘Stack elements are
processed in a LIFO manner’?

SR 3.6 Which data structure would be ideal to implement recursion of
methods?

88 ChApTer 3 Introduction to Collections — Stacks

M03_LEWI3322_CH03_pp055-092.indd 88 19/02/13 5:50 PM

 2.1 H1 Head 89 Exercises 89

SR 3.7 Name the methods used to add an element to and remove an
 element from a stack.

SR 3.8 What is a Java Interface?

SR 3.9 Can an interface be called a class?

SR 3.10 What do you understand by a generic type?

SR 3.11 What is polymorphic reference?

SR 3.12 Given the example in Figure 3.5, list the subclasses of Reptile.

SR 3.13 Given the example in Figure 3.5, will the following code compile?

 Animal creature = new Bat();

SR 3.14 Given the example in Figure 3.5, will the following code compile?

 Parrot creature = new Bird();

SR 3.15 What is the difference between infix and postfix expressions?

SR 3.16 How do you evaluate a postfix notation?

Exercises
EX 3.1 Object-oriented programming allows you to define and compile a

general form of a class. Later you can define a specialized version
of this class, starting with the original class. Which particular
OOPs technique does this depict?

EX 3.2 Why is an object used as the perfect mechanism for creating a
 collection?

EX 3.3 What type of collection is a stack? Give one natural example of
the usage of stacks in computer science.

EX 3.4 Hand trace an initially empty stack X through the following
 operations:

 X.push(new Integer(20));
 X.push(new Integer(15));
 Integer Y = X.pop();
 X.push(new Integer(35));
 X.push(new Integer(10));
 X.push(new Integer(25));
 X.push(new Integer(45));
 Integer Y = X.pop();
 X.push(new Integer(15));
 X.push(new Integer(45));

M03_LEWI3322_CH03_pp055-092.indd 89 01/03/13 4:52 PM

EX 3.5 Given the resulting stack X from the previous exercise, what
would be the result of each of the following?

 a. Y = X.peek();
 b. Y = X.pop();
 Z = X.peek();
 c. Y = X.push(30);
 Z = X.peek();

EX 3.6 Write Java statements to define a Bag class to store a generic type
T. The class should have two generic methods for setting and
 retrieving data.

EX 3.7 Write Java statements to instantiate the Bag class created in the
above example, for storing String type data items. Store a value
Money as a data item.

EX 3.8 When you type a line of text on a keyboard, you use the back-
space key to remove the previous character if you have made a
mistake. Consecutive application of the backspace key thus erases
several characters. Show how the use of backspace key can be
supported by the use of a stack. Give specific examples and draw
the contents of the stack after various actions are taken.

EX 3.9 Draw an example using the five integers (21, 32, 11, 54, 90)
showing how a stack could be used to reverse the order (90, 54,
11, 32, 21) of these elements.

EX 3.10 Convert the following infix expressions to postfix form by using
the algorithm discussed in this chapter.

 a. (a * (b / c)) – d + e / f
 b. a - (b * c / d) + e

Programming Projects
PP 3.1 Complete the implementation of the ArrayStack class presented

in this chapter. Specifically, complete the implementations of the
isEmpty, size, and toString methods.

PP 3.2 Design and implement an application that reads a sentence from
the user and prints the sentence with the characters of each word
backward. Use a stack to reverse the characters of each word.

PP 3.3 Modify the solution to the postfix expression evaluation problem
so that it checks for the validity of the expression that is entered
by the user. Issue an appropriate error message when an errone-
ous situation is encountered.

90 ChaPtEr 3 Introduction to Collections — Stacks

M03_LEWI3322_CH03_pp055-092.indd 90 01/03/13 12:38 PM

PP 3.4 The array implementation in this chapter keeps the top variable
pointing to the next array position above the actual top of the
stack. Rewrite the array implementation such that stack[top] is
the actual top of the stack.

PP 3.5 There is a data structure called a drop-out stack that behaves like a
stack in every respect except that if the stack size is n, when the n + 1
element is pushed, the first element is lost. Implement a drop-out
stack using an array. (Hint: A circular array implementation would
make sense.)

PP 3.6 Implement an integer adder using three stacks.

PP 3.7 Implement an infix-to-postfix translator using stacks.

PP 3.8 Implement a class called reverse that uses a stack to output a set
of elements input by the user in reverse order.

PP 3.9 Create a graphical application that provides a button for push and
pop from a stack, a text field to accept a string as input for push, and
a text area to display the contents of the stack after each operation.

Answers to Self-Review Questions
SRA 3.1 Elements in a collection are typically organized in terms of the

 order of their addition to the collection, or in terms of some
 inherent relationship among the elements.

SRA 3.2 The organizational hierarchy of a company, and the flight map of
an airline.

SRA 3.3 A data type is a group of values and the operations defined on
those values. An abstract data type (ADT) is a data type whose
values and operations are not inherently defined within a pro-
gramming language. The details of its implementation must be
 defined and should be hidden from the user.

SRA 3.4 The data type is int (primitive data type for storing integers), the
collection is stack, and data structure is array type.

SRA 3.5 The last element to be put on a stack will be the first one that gets
removed. In other words, the elements of a stack are removed in
the reverse order of their placement on it.

SRA 3.6 A Stack data structure, as it would be used to store the activation
records of the method.

SRA 3.7 As per stack terminology, the push method adds an element to the
top of the stack. And the pop method removes an element from
the top of the stack.

 Answers to Self-Review Questions 91

M03_LEWI3322_CH03_pp055-092.indd 91 01/03/13 4:40 PM

92 Chapter 3 Introduction to Collections — Stacks

SRA 3.8 A Java interface defines a set of abstract methods and is useful in
separating the concept of an abstract data type from its imple-
mentation.

SRA 3.9 No an interface is not a class. However, it is like an extreme case of
an abstract class. An interface is basically a type, which allows a pro-
grammer to define methods with parameters of an interface type.
This code applies to all the classes that implement the interface.

SRA 3.10 A generic type is a placeholder for an object type that is not made
concrete until the class that refers to it is instantiated.

SRA 3.11 A polymorphic reference is a reference variable that can refer to
different types of objects at different points in time. Inheritance
can be used to create a class hierarchy where a reference variable
can be used to point to any object related to it by inheritance.

SRA 3.12 The subclasses of Reptile are Snake and Lizard.

SRA 3.13 Yes, a reference variable of a parent class or any superclass may
hold a reference to one of its descendants.

SRA 3.14 No, a reference variable for a child or subclass may not hold a
reference to a parent or superclass. To make this assignment, you
would have to explicitly cast the parent class into the child class
(Parrot creature = (Parrot)(new Bird());

SRA 3.15 In an infix expression, the operator is placed between its oper-
ands in the form: <operand> <operator> <operand>; such as in
the expression 4 + 5. Whereas, in a postfix expression, the opera-
tor comes after its two operands in the form: <operand> < oper-
and> <operator>. The above example in postfix notation would
be 4 5 +.

SRA 3.16 The process of evaluating a postfix expression can be stated as:
Scanning from left to right, apply each operation to the two oper-
ands immediately preceding it, and replace the operator with the
result. At the end we are left with the final value of the expres-
sion. A stack is the ideal data structure to use when evaluating a
postfix expression.

92 Chapter 3 Introduction to Collections — Stacks

M03_LEWI3322_CH03_pp055-092.indd 92 01/03/13 4:42 PM

44

93

C h a p t e r
O b j e C t i v e s
■ Describe the use of references to

create linked structures.

■ Compare linked structures to
array-based structures.

■ Explore the techniques for
managing a linked list.

■ Discuss the need for a separate
node object to form linked
structures.

■ Implement a stack collection
using a linked list.

Linked Structures –
Stacks

This chapter explores a technique for creating data

structures using references to create links between objects.

Linked structures are fundamental to the development of

software, especially the design and implementation of

collections. This approach has both advantages and

disadvantages when compared to a solution using arrays.

M04_LEWI3322_CH04_pp093-122.indd 93 19/02/13 1:53 PM

94 Chapter 4 Linked Structures – Stacks

4.1 references as Links

In Chapter 3, we discussed the concept of collections and explored one collection
in particular: a stack. We defined the operations on a stack collection and
designed an implementation using an underlying array-based data structure. In this
chapter, we explore an entirely different approach to designing a data structure
and use it to create another stack implementation.

A linked structure is a data structure that uses object reference variables to create
links between objects. Linked structures are the primary alternative to an array-

based implementation of a collection. After discussing various issues
involved in linked structures, we will define a new implementation
of a stack collection that uses an underlying linked data structure.

Recall that an object reference variable holds the address of an
object, indicating where the object is stored in memory. The follow-

ing declaration creates a variable called obj that is only large enough to hold the
numeric address of an object:

Object obj;

Usually the specific address that an object reference variable holds is irrelevant.
That is, even though it is important to be able to use the reference variable to ac-
cess an object, the specific location in memory where it is stored is unimportant.
Therefore, instead of showing addresses, we usually depict a reference variable as
a name that “points to” an object, as shown in Figure 4.1. A reference variable,
used in this context, is sometimes called a pointer.

Consider the situation in which a class defines as instance data a reference to
another object of the same class. For example, suppose we have a class named
Person that contains a person’s name, address, and other relevant information.
Now suppose that in addition to these data, the Person class contains a reference
variable to another Person object:

public class Person
{
 private String name;
 private String address;

 private Person next; // a link to another Person object

 // whatever else
}

Using only this one class, we can create a linked structure. One Person object
contains a link to a second Person object. This second object also contains a

Key COnCept
Object reference variables can be
used to create linked structures.

M04_LEWI3322_CH04_pp093-122.indd 94 19/02/13 1:53 PM

 4.1 References as Links 95

This kind of relationship forms the basis of a linked list, which is
a linked structure in which one object refers to the next, creating a
linear ordering of the objects in the list. A linked list is depicted in
Figure 4.2. Often the objects stored in a linked list are referred to
generically as the nodes of the list.

Note that a separate reference variable is needed to indicate the first node in
the list. The list is terminated in a node whose next reference is null.

A linked list is only one kind of linked structure. If a class is set up to have mul-
tiple references to objects, a more complex structure can be created, such as the
one depicted in Figure 4.3. The way in which the links are managed dictates the
specific organization of the structure.

obj

art03.1

Figure 4.1 An object reference variable pointing to an object

reference to a Person, which contains another, and so on. This type of object is
sometimes called self-referential.

Key COnCept
A linked list is composed of objects
that each point to the next object in
the list.

front

art03.2

Figure 4.2 A linked list

entry

art03.3

Figure 4.3 A complex linked structure

M04_LEWI3322_CH04_pp093-122.indd 95 19/02/13 1:53 PM

96 Chapter 4 Linked Structures – Stacks

For now, we will focus on the details of a linked list. Many of
these techniques apply to more complicated linked structures as well.

Unlike an array, which has a fixed size, a linked list has no upper
bound on its capacity other than the limitations of memory in the
computer. A linked list is considered to be a dynamic structure be-
cause its size grows and shrinks as needed to accommodate the num-

ber of elements stored. In Java, all objects are created dynamically from an area of
memory called the system heap or free store.

The next section explores some of the primary ways in which a linked list is
managed.

4.2 Managing Linked Lists

Keep in mind that our goal is to use linked lists and other linked structures to create
collections—specifically, in this chapter, to create a stack. Because the principal purpose
of a collection is to be able to add, remove, and access elements, we must first examine
how to accomplish these fundamental operations using links. We will focus our discus-
sion in this chapter on adding and removing from the end of a linked list, as we will
need to do for our stack. We will revisit this discussion as the situation warrants.

No matter what a linked list is used to store, there are a few basic techniques
involved in managing the nodes in the list. Specifically, elements in the list are
accessed, elements are inserted into the list, and elements are removed from the list.

accessing elements
Special care must be taken when dealing with the first node in the list so that the
reference to the entire list is maintained appropriately. When using linked lists, we
maintain a pointer to the first element in the list. To access other elements, we
must access the first one and then follow the next pointer from that one to the
next one, and so on. Consider our previous example of a person class containing
the attributes name, address, and next. If we wanted to find the fourth person in
the list, and assuming that we had a variable first of type Person that pointed
to the first person in the list and that the list contained at least four nodes, we
might use the following code:

Person current = first;
for (int i = 0; i < 3; i++)
 current = current.next;

After executing this code, current will point to the fourth person in the list.
Notice that it is very important to create a new reference variable, in this case

Key COnCept
A linked list dynamically grows as
needed and essentially has no
capacity limitations.

M04_LEWI3322_CH04_pp093-122.indd 96 19/02/13 1:53 PM

 4.2 Managing Linked Lists 97

current, and then start by setting that reference variable to point to the first
element in the list. Consider what would happen if we used the first pointer in the
loop instead of current. Once we moved the first pointer to point to the second
element in the list, we would no longer have a pointer to the first element and would
not be able to access it. Keep in mind that with a linked list, the only way to access
the elements in the list is to start with the first element and progress through the list.

Of course, a more likely scenario is that we would need to search our list for a
particular person. Assuming that the Person class overrides the equals method
such that it returns true if the given String matches the name stored for that per-
son, the following code will search the list for Tom Jones:

String searchstring = "Tom Jones";
Person current = first;
while ((not(current.equals(searchstring)) && (current.next != null))
 current = current.next;

Note that this loop will terminate when the string is found or when the end of
the list is encountered. Now that we have seen how to access elements in a linked
list, let’s consider how to insert elements into a list.

inserting nodes
A node may be inserted into a linked list at any location: at the front
of the list, among the interior nodes in the middle of the list, or at
the end of the list. Adding a node to the front of the list requires re-
setting the reference to the entire list, as shown in Figure 4.4. First,
the next reference of the added node is set to point to the current
first node in the list. Second, the reference to the front of the list is
reset to point to the newly added node.

Key COnCept
The order in which references are
changed is crucial to maintaining a
linked list.

art03.4

front 1

2

node

Figure 4.4 Inserting a node at the front of a linked list

M04_LEWI3322_CH04_pp093-122.indd 97 19/02/13 1:53 PM

98 Chapter 4 Linked Structures – Stacks

Note that difficulties would arise if these steps were reversed. If we were to
reset the front reference first, we would lose the only reference to the existing
list, and it could not be retrieved.

Inserting a node into the middle of a list requires some additional processing
but is not needed for our stack collection. We will come back to this topic in
Chapter 6.

Deleting nodes
Any node in the list can be deleted. We must maintain the integrity of the list no
matter which node is deleted. As with the process of inserting a node, dealing with
the first node in the list represents a special case.

To delete the first node in a linked list, we reset the reference to the front of the
list so that it points to the current second node in the list. This process is shown in

Figure 4.5. If the deleted node is needed elsewhere, we must set up a
separate reference to it before resetting the front reference. The
general case of deleting a node from the interior of the list is left for
Chapter 6.

Key COnCept
Dealing with the first node in a linked
list often requires special handling.

front

art03.6

Figure 4.5 Deleting the first node in a linked list

D e s i g n F O C u s

We’ve described insertion into and deletion from a list as having two cases: the
case when dealing with the first node and the case when dealing with any
other node. It is possible to eliminate the special case involving the first node
by introducing a sentinel node or dummy node at the front of the list. A sentinel
node serves as a false first node and doesn’t actually represent an element in
the list. When a sentinel node is used, all insertions and deletions will fall under
the second case, and the implementations will not have as many special situa-
tions to consider.

M04_LEWI3322_CH04_pp093-122.indd 98 19/02/13 1:53 PM

 4.3 Elements without Links 99

4.3 elements without Links

Now that we have explored some of the techniques needed to manage the nodes
of a linked list, we can turn our attention to using a linked list as an alternative
implementation approach for a collection. To do so, however, we need to carefully
examine one other key aspect of linked lists. We must separate the details of the
linked-list structure from the elements that the list stores.

Earlier in this chapter we discussed the idea of a Person class that
contains, among its other data, a link to another Person object. The
flaw in this approach is that the self-referential Person class must be
designed so that it “knows” it may become a node in a linked list of
Person objects. This assumption is impractical, and it violates our
goal of separating the implementation details from the parts of the
system that use the collection.

The solution to this problem is to define a separate node class that serves to
link the elements together. A node class is fairly simple, containing only two
important references: one to the next node in the linked list and another to the
element that is being stored in the list. This approach is depicted in Figure 4.6.

Key COnCept
Objects that are stored in a collection
should not contain any implementa-
tion details of the underlying data
structure.

art03.8

front

Figure 4.6 Using separate node objects to store and link elements

The linked list of nodes can still be managed using the techniques discussed in
the previous section. The only additional aspect is that the actual elements stored
in the list are accessed using separate references in the node objects.

Doubly Linked Lists
An alternative implementation for linked structures is the concept of a doubly
linked list, as illustrated in Figure 4.7. In a doubly linked list, two references are
maintained: one to point to the first node in the list and another to point to the
last node in the list. Each node in the list stores both a reference to the next

M04_LEWI3322_CH04_pp093-122.indd 99 19/02/13 1:53 PM

100 Chapter 4 Linked Structures – Stacks

4.4 stacks in the java api

In Chapter 3, we used the java.util.Stack class from the Java Collections API
to solve the postfix expression problem. The Stack class is an array-based imple-
mentation of a stack provided in the Java Collections API framework. This im-
plementation provides the same basic operations we have been discussing:

■ The push operation accepts a parameter item that is a reference to an
object to be placed on the stack.

■ The pop operation removes the object on top of the stack and returns a ref-
erence to it.

■ The peek operation returns a reference to the object on top of the stack.

The Stack class is derived from the Vector class and uses its inherited capa-
bilities to store the elements in the stack. Because this implementation is built on a
vector, it exhibits the characteristics of both a vector and a stack and thus allows
operations that violate the basic premise of a stack.

The Deque interface implemented by the LinkedList class pro-
vides a linked implementation of a stack and provides the same basic
stack operations. A deque (pronounced like “deck”) is a double-
ended queue, and we discuss that concept further in Chapter 5.
Unfortunately, since a deque operates on both ends of the collection,

element and a reference to the previous one. If we were to use sentinel nodes with
a doubly linked list, we would place sentinel nodes on both ends of the list. We
discuss doubly linked lists further in Chapter 6.

art03.9

fr
on

t o
f l

is
t

re
ar

 o
f l

is
t

Figure 4.7 A doubly linked list

Key COnCept
The java.util.Stack class is
derived from Vector, which gives
a stack inappropriate operations.

M04_LEWI3322_CH04_pp093-122.indd 100 19/02/13 1:53 PM

 4.5 Using Stacks: Traversing a Maze 101

there are a variety of operations available that violate the premise of a stack. It is
up to developers to limit themselves to the use of stack operations. Let’s see how
we use a Deque as a stack.

4.5 using stacks: traversing a Maze

Another classic use of a stack data structure is to keep track of alternatives in
maze traversal or other, similar algorithms that involve trial and error. Suppose
that we build a grid as a two-dimensional array of integer values where each
number represents either a path (1) or a wall (0) in a maze. We store our grid in a
file where the first line of the file describes the number of rows and columns in
the grid.

9 13
1 1 1 0 1 1 0 0 0 1 1 1 1
1 0 0 1 1 0 1 1 1 1 0 0 1
1 1 1 1 1 0 1 0 1 0 1 0 0
0 0 0 0 1 1 1 0 1 0 1 1 1
1 1 1 0 1 1 1 0 1 0 1 1 1
1 0 1 0 0 0 0 1 1 1 0 0 1
1 0 1 1 1 1 1 1 0 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1

The goal is to start in the top-left corner of this grid and traverse to the bottom-
right corner of this grid, traversing only positions that are marked as a path. Valid
moves will be those that are within the bounds of the grid and are to cells in the
grid marked with a 1. We will mark our path as we go by changing the 1’s to 2’s,
and we will push only valid moves onto the stack.

Starting in the top-left corner, we have two valid moves: down and right. We
push these moves onto the stack, pop the top move off the stack (right), and then
move to that location. This means that we moved right one position:

2 2 1 0 1 1 0 0 0 1 1 1 1
1 0 0 1 1 0 1 1 1 1 0 0 1
1 1 1 1 1 0 1 0 1 0 1 0 0
0 0 0 0 1 1 1 0 1 0 1 1 1
1 1 1 0 1 1 1 0 1 0 1 1 1
1 0 1 0 0 0 0 1 1 1 0 0 1
1 0 1 1 1 1 1 1 0 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1

M04_LEWI3322_CH04_pp093-122.indd 101 19/02/13 1:53 PM

102 Chapter 4 Linked Structures – Stacks

We now have only one valid move. We push that move onto the stack, pop the
top element off the stack (right), and then move to that location. Again we moved
right one position:

2 2 2 0 1 1 0 0 0 1 1 1 1
1 0 0 1 1 0 1 1 1 1 0 0 1
1 1 1 1 1 0 1 0 1 0 1 0 0
0 0 0 0 1 1 1 0 1 0 1 1 1
1 1 1 0 1 1 1 0 1 0 1 1 1
1 0 1 0 0 0 0 1 1 1 0 0 1
1 0 1 1 1 1 1 1 0 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1

From this position, we do not have any valid moves. At this point, however,
our stack is not empty. Keep in mind that we still have a valid move on the stack
left from the first position. We pop the next (and currently last) element off the
stack (down from the first position). We move to that position, push the valid
move(s) from that position onto the stack, and continue processing.

2 2 2 0 1 1 0 0 0 1 1 1 1
2 0 0 1 1 0 1 1 1 1 0 0 1
1 1 1 1 1 0 1 0 1 0 1 0 0
0 0 0 0 1 1 1 0 1 0 1 1 1
1 1 1 0 1 1 1 0 1 0 1 1 1
1 0 1 0 0 0 0 1 1 1 0 0 1
1 0 1 1 1 1 1 1 0 1 1 1 1
1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 1

Using a stack in this way is actually simulating recursion, a process whereby a
method calls itself either directly or indirectly. Recursion, which we discuss in de-
tail in Chapter 8, uses the concept of a program stack. A program stack (or run-
time stack) is used to keep track of methods that are invoked. Every time a
method is called, an activation record that represents the invocation is created
and pushed onto the program stack. Therefore, the elements on the stack repre-
sent the series of method invocations that occurred to reach a particular point in
an executing program.

For example, when the main method of a program is called, an activation re-
cord for it is created and pushed onto the program stack. When main calls an-
other method (say m2), an activation record for m2 is created and pushed onto the
stack. If m2 calls method m3, then an activation record for m3 is created and
pushed onto the stack. When method m3 terminates, its activation record is
popped off the stack, and control returns to the calling method (m2), which is now
on the top of the stack.

M04_LEWI3322_CH04_pp093-122.indd 102 19/02/13 1:53 PM

 4.5 Using Stacks: Traversing a Maze 103

If an exception occurs during the execution of a Java program, the
programmer can examine the call stack trace to see what method the
problem occurred within and what method calls were made to arrive
at that point.

An activation record contains various administrative data to
help manage the execution of the program. It also contains a copy
of the method’s data (local variables and parameters) for that invocation of the
method.

Because of the relationship between stacks and recursion, we can always rewrite
a recursive program into a nonrecursive program that uses a stack. Instead of using
recursion to keep track of the data, we can create our own stack to do so.

Listings 4.1, 4.2, and 4.3 illustrate the Maze, MazeSolver, and MazeTester
classes that implement our stack-based solution to traversing a maze. We will revisit
this same example in our discussion of recursion in Chapter 8.

Note that the constructor of the Maze class reads the initial maze data from a
file specified by the user. This solution assumes that all issues regarding the file
I/O will proceed without a problem, which, of course, is not a safe assumption.
The file might not be present, the data might not be in the correct format, and so
on. Several different exceptions could occur during the execution of the construc-
tor, which doesn’t catch or handle them. If any occur, the program will terminate.
In a more robust program, these exceptions would be handled more elegantly.

This solution uses a class called Position to encapsulate the coordinates of a
position within the maze. The traverse method loops, popping the top position
off the stack, marking it as tried, and then testing to see whether we are done. If
we are not done, then all of the valid moves from this position are pushed onto
the stack, and the loop continues. A private method called push_new_pos has been
created to handle the task of putting the valid moves from the current position
onto the stack:

Key COnCept
Recursive processing can be simu-
lated using a stack to keep track of
the appropriate data.

Using a stack to solve a
maze.

VideoNote

private StackADT<Position> push_new_pos(int x, int y,
 StackADT<Position> stack)
{
 Position npos = new Position();
 npos.setx(x);
 npos.sety(y);
 if (valid(npos.getx(),npos.gety()))
 stack.push(npos);
 return stack;
}

M04_LEWI3322_CH04_pp093-122.indd 103 19/02/13 1:53 PM

104 Chapter 4 Linked Structures – Stacks

import java.util.*;
import java.io.*;

/**
 * Maze represents a maze of characters. The goal is to get from the
 * top left corner to the bottom right, following a path of 1's. Arbitrary
 * constants are used to represent locations in the maze that have been TRIED
 * and that are part of the solution PATH.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class Maze
{
 private static final int TRIED = 2;
 private static final int PATH = 3;
 private int numberRows, numberColumns;
 private int[][] grid;

 /**
 * Constructor for the Maze class. Loads a maze from the given file.
 * Throws a FileNotFoundException if the given file is not found.
 *
 * @param filename the name of the file to load
 * @throws FileNotFoundException if the given file is not found
 */
 public Maze(String filename) throws FileNotFoundException
 {
 Scanner scan = new Scanner(new File(filename));
 numberRows = scan.nextInt();
 numberColumns = scan.nextInt();

 grid = new int[numberRows][numberColumns];
 for (int i = 0; i < numberRows; i++)
 for (int j = 0; j < numberColumns; j++)
 grid[i][j] = scan.nextInt();
 }

 /**
 * Marks the specified position in the maze as TRIED
 *
 * @param row the index of the row to try
 * @param col the index of the column to try

 */

L i s t i n g 4 . 1

M04_LEWI3322_CH04_pp093-122.indd 104 19/02/13 1:53 PM

 4.5 Using Stacks: Traversing a Maze 105

 public void tryPosition(int row, int col)
 {
 grid[row][col] = TRIED;
 }

 /**
 * Return the number of rows in this maze
 *
 * @return the number of rows in this maze
 */
 public int getRows()
 {
 return grid.length;
 }

 /**
 * Return the number of columns in this maze
 *
 * @return the number of columns in this maze
 */
 public int getColumns()
 {
 return grid[0].length;
 }

 /**
 * Marks a given position in the maze as part of the PATH
 *
 * @param row the index of the row to mark as part of the PATH
 * @param col the index of the column to mark as part of the PATH
 */
 public void markPath(int row, int col)
 {
 grid[row][col] = PATH;
 }

 /**
 * Determines if a specific location is valid. A valid location
 * is one that is on the grid, is not blocked, and has not been TRIED.
 *
 * @param row the row to be checked
 * @param column the column to be checked
 * @return true if the location is valid
 */

L i s t i n g 4 . 1 continued

M04_LEWI3322_CH04_pp093-122.indd 105 19/02/13 1:53 PM

106 Chapter 4 Linked Structures – Stacks

 public boolean validPosition(int row, int column)
 {
 boolean result = false;

 // check if cell is in the bounds of the matrix
 if (row >= 0 && row < grid.length &&

 column >= 0 && column < grid[row].length)

 // check if cell is not blocked and not previously tried
 if (grid[row][column] == 1)
 result = true;
 return result;

 }

 /**
 * Returns the maze as a string.
 *
 * @return a string representation of the maze
 */
 public String toString()
 {
 String result = "\n";
 for (int row=0; row < grid.length; row++)
 {
 for (int column=0; column < grid[row].length; column++)
 result += grid[row][column] + "";
 result += "\n";
 }
 return result;
 }
}

L i s t i n g 4 . 1 continued

M04_LEWI3322_CH04_pp093-122.indd 106 19/02/13 1:53 PM

 4.5 Using Stacks: Traversing a Maze 107

import java.util.*;

/**
 * MazeSolver attempts to recursively traverse a Maze. The goal is to get from the
 * given starting position to the bottom right, following a path of 1's. Arbitrary
 * constants are used to represent locations in the maze that have been TRIED
 * and that are part of the solution PATH.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class MazeSolver
{
 private Maze maze;

 /**
 * Constructor for the MazeSolver class.
 */
 public MazeSolver(Maze maze)
 {
 this.maze = maze;
 }

 /**
 * Attempts to recursively traverse the maze. Inserts special
 * characters indicating locations that have been TRIED and that
 * eventually become part of the solution PATH.
 *
 * @param row row index of current location
 * @param column column index of current location
 * @return true if the maze has been solved
 */
 public boolean traverse()
 {
 boolean done = false;
 int row, column;
 Position pos = new Position();
 Deque<Position> stack = new LinkedList<Position>();
 stack.push(pos);

L i s t i n g 4 . 2

M04_LEWI3322_CH04_pp093-122.indd 107 19/02/13 1:53 PM

108 Chapter 4 Linked Structures – Stacks

 while (!(done) && !stack.isEmpty())
 {
 pos = stack.pop();
 maze.tryPosition(pos.getx(),pos.gety()); // this cell has been tried
 if (pos.getx() == maze.getRows()-1 && pos.gety() == maze.getColumns()-1)
 done = true; // the maze is solved
 else
 {
 push_new_pos(pos.getx() - 1,pos.gety(), stack);
 push_new_pos(pos.getx() + 1,pos.gety(), stack);
 push_new_pos(pos.getx(),pos.gety() - 1, stack);
 push_new_pos(pos.getx(),pos.gety() + 1, stack);
 }
 }

 return done;
 }

 /**
 * Push a new attempted move onto the stack
 * @param x represents x coordinate
 * @param y represents y coordinate
 * @param stack the working stack of moves within the grid
 * @return stack of moves within the grid
 */
 private void push_new_pos(int x, int y,
 Deque<Position> stack)
 {
 Position npos = new Position();
 npos.setx(x);
 npos.sety(y);
 if (maze.validPosition(x,y))
 stack.push(npos);
 }

}

L i s t i n g 4 . 2 continued

M04_LEWI3322_CH04_pp093-122.indd 108 19/02/13 1:53 PM

 4.5 Using Stacks: Traversing a Maze 109

import java.util.*;

import java.io.*;

/**
 * MazeTester uses recursion to determine if a maze can be traversed.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class MazeTester

{
 /**
 * Creates a new maze, prints its original form, attempts to
 * solve it, and prints out its final form.
 */
 public static void main(String[] args) throws FileNotFoundException
 {
 Scanner scan = new Scanner(System.in);
 System.out.print("Enter the name of the file containing the maze: ");
 String filename = scan.nextLine();

 Maze labyrinth = new Maze(filename);

 System.out.println(labyrinth);

 MazeSolver solver = new MazeSolver(labyrinth);
 if (solver.traverse())
 System.out.println("The maze was successfully traversed!");
 else
 System.out.println("There is no possible path.");
 System.out.println(labyrinth);
 }
}

L i s t i n g 4 . 3

M04_LEWI3322_CH04_pp093-122.indd 109 19/02/13 1:53 PM

110 Chapter 4 Linked Structures – Stacks

The UML description for the maze problem is left as an exercise.

4.6 implementing a stack: With Links

Let’s use a linked list to implement a stack collection, which was defined in
Chapter 3. Note that we are not changing the way in which a stack works. Its
conceptual nature remains the same, as does the set of operations defined for it.
We are merely changing the underlying data structure used to implement it.

The purpose of the stack, and the solutions it helps us to create, also remain
the same. The postfix expression evaluation example from Chapter 3 used the

java.util.Stack<T> class, but any valid implementation of a
stack could be used instead. Once we create the LinkedStack<T>
class to define an alternative implementation, we could substitute it
into the postfix expression solution without having to change any-
thing but the class name. That is the beauty of abstraction.

In the following discussion, we show and discuss the methods
that are important to understanding the linked-list implementation

 of a stack. Some of the stack operations are left as programming projects.

the LinkedStack Class
The LinkedStack<T> class implements the StackADT<T> interface, just as the
ArrayStack<T> class from Chapter 3 does. Both provide the operations defined
for a stack collection.

Because we are using a linked-list approach, there is no array in which we store
the elements of the collection. Instead, we need only a single reference to the first
node in the list. We will also maintain a count of the number of elements in the
list. The header and class-level data of the LinkedStack<T> class are therefore:

Key COnCept
Any implementation of a collection
can be used to solve a problem, as
long as it validly implements the
appropriate operations.

package jsjf;
import jsjf.exceptions.*;
import java.util.Iterator;

/**
 * Represents a linked implementation of a stack.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class LinkedStack<T> implements StackADT<T>
{
 private int count;
 private LinearNode<T> top;

M04_LEWI3322_CH04_pp093-122.indd 110 19/02/13 1:53 PM

 4.6 Implementing a Stack: With Links 111

The LinearNode<T> class serves as the node class, containing a reference to
the next LinearNode<T> in the list and a reference to the element stored in that
node. Each node stores a generic type that is determined when the node is
instantiated. In our LinkedStack<T> implementation, we simply use the same
type for the node as used to define the stack. The LinearNode<T> class also
contains methods to set and get the element values. The LinearNode<T> class is
shown in Listing 4.4.

Note that the LinearNode<T> class is not tied to the implementa-
tion of a stack collection. It can be used in any linear linked-list im-
plementation of a collection. We will use it for other collections as
needed.

Using the LinearNode<T> class and maintaining a count of ele-
ments in the collection creates the implementation strategy depicted
in Figure 4.8.

The constructor of the LinkedStack<T> class sets the count of elements to
zero and sets the front of the list, represented by the variable top, to null. Note
that because a linked-list implementation does not have to worry about capacity
limitations, there is no need to create a second constructor as we did in the
ArrayStack<T> class of Chapter 3.

Key COnCept
A linked implementation of a stack
adds and removes elements from one
end of the linked list.

/**
 * Creates an empty stack.
 */
public LinkedStack()
{
 count = 0;
 top = null;
}

package jsjf;

/**
 * Represents a node in a linked list.
 *
 * @author Lewis and Chase
 * @version 4.0
 */

L i s t i n g 4 . 4

M04_LEWI3322_CH04_pp093-122.indd 111 19/02/13 1:53 PM

112 Chapter 4 Linked Structures – Stacks

public class LinearNode<T>
{
 private LinearNode<T> next;
 private T element;

 /**
 * Creates an empty node.
 */
 public LinearNode()
 {
 next = null;
 element = null;
 }

 /**
 * Creates a node storing the specified element.
 * @param elem element to be stored
 */
 public LinearNode(T elem)
 {
 next = null;
 element = elem;
 }

 /**
 * Returns the node that follows this one.
 * @return reference to next node
 */
 public LinearNode<T> getNext()
 {
 return next;
 }

 /**
 * Sets the node that follows this one.
 * @param node node to follow this one
 */
 public void setNext(LinearNode<T> node)
 {
 next = node;
 }

 /**
 * Returns the element stored in this node.
 * @return element stored at the node
 */

L i s t i n g 4 . 4 continued

M04_LEWI3322_CH04_pp093-122.indd 112 19/02/13 1:53 PM

 4.6 Implementing a Stack: With Links 113

Because the nature of a stack is to allow elements to be added to, or removed
from, only one end, we will only need to operate on one end of our linked list.
We could choose to push the first element into the first position in the linked list,
the second element into the second position, and so on. This would mean that
the top of the stack would always be at the tail end of the list. However, if we
consider the efficiency of this strategy, we realize that it would mean we would
have to traverse the entire list on every push and every pop operation. Instead,
we can choose to operate on the front of the list, making the front of the list the
top of the stack. In this way, we do not have to traverse the list for either the
push or the pop operation. Figure 4.9 illustrates this configuration for a stack
containing four elements, A, B, C, and D, that have been pushed onto the stack in
that order.

top
count: 6

Figure 4.8 A linked implementation of a stack collection

 public T getElement()
 {
 return element;
 }

 /**
 * Sets the element stored in this node.
 * @param elem element to be stored at this node
 */
 public void setElement(T elem)
 {
 element = elem;
 }
}

L i s t i n g 4 . 4 continued

M04_LEWI3322_CH04_pp093-122.indd 113 19/02/13 1:53 PM

114 Chapter 4 Linked Structures – Stacks

Let’s explore the implementation of the stack operations for the LinkedStack
class.

the push Operation
Every time a new element is pushed onto the stack, a new LinearNode object must be
created to store it in the linked list. To position the newly created node at the top of
the stack, we must set its next reference to the current top of the stack and reset the
top reference to point to the new node. We must also increment the count variable.

Implementing these steps results in the following code:

top

CD B A

art06.6

count 4

Figure 4.9 A linked implementation of a stack

/**
 * Adds the specified element to the top of this stack.
 * @param element element to be pushed on stack
 */
public void push(T element)
{
 LinearNode<T> temp = new LinearNode<T>(element);

 temp.setNext(top);
 top = temp;
 count++;
}

M04_LEWI3322_CH04_pp093-122.indd 114 19/02/13 1:53 PM

 4.6 Implementing a Stack: With Links 115

The push operation for the linked implementation of a stack consists of the
following steps:

■ Create a new node containing a reference to the object to be placed on the
stack.

■ Set the next reference of the new node to point to the current top of the
stack (which will be null if the stack is empty).

■ Set the top reference to point to the new node.

■ Increment the count of elements in the stack.

Figure 4.10 shows the result of pushing the element E onto the stack depicted
in Figure 4.9.

art06.7

top

DE C B A

count 5

Figure 4.10 The stack after pushing element E

temp.setNext(top);

top = temp;

Adding a Node to the Front of a Linked List

set the new node‛s reference to the front of the listnext

reset the front of the list

M04_LEWI3322_CH04_pp093-122.indd 115 19/02/13 1:53 PM

116 Chapter 4 Linked Structures – Stacks

If the stack is empty, as determined by the isEmpty method, an
EmptyCollectionException is thrown. If there is at least one element to pop, it
is stored in a temporary variable so that it can be returned. Then the reference to
the top of the stack is set to the next element in the list, which is now the new top
of the stack. The count of elements is decremented as well.

Figure 4.11 illustrates the result of a pop operation on the stack from Figure 4.10.
Notice that this figure is identical to our original configuration in Figure 4.9. This
illustrates the fact that the pop operation is the inverse of the push operation.

All of these steps have time complexity O(1) because they require only one
processing step regardless of the number of elements already in the stack. Each of
these steps would have to be accomplished once for each of the elements to be
pushed. Thus, using this method, the push operation would be O(1).

the pop Operation
The pop operation is implemented by returning a reference to the element cur-
rently stored at the top of the stack and adjusting the top reference to the new top
of the stack. Before attempting to return any element, however, we must first en-
sure that there is at least one element to return. This operation can be imple-
mented as follows:

/**
 * Removes the element at the top of this stack and returns a
 * reference to it.
 * @return element from top of stack
 * @throws EmptyCollectionException if the stack is empty
 */
public T pop() throws EmptyCollectionException
{
 if (isEmpty())
 throw new EmptyCollectionException("stack");

 T result = top.getElement();
 top = top.getNext();
 count--;

 return result;
}

M04_LEWI3322_CH04_pp093-122.indd 116 19/02/13 1:53 PM

 4.6 Implementing a Stack: With Links 117

As with our previous examples, each of these operations consists of a single
comparison or a simple assignment and is therefore O(1). Thus, the pop operation
for the linked implementation is O(1).

Other Operations
Using a linked implementation, the peek operation is implemented by returning a
reference to the element pointed to by the node pointed to by the top pointer. The
isEmpty operation returns true if the count of elements is 0, and false otherwise.
The size operation returns the count of elements in the stack. The toString op-
eration can be implemented by simply traversing the linked list. These operations
are left as programming projects.

The pop operation for the linked implementation consists of the following
steps:

■ Make sure the stack is not empty.

■ Set a temporary reference equal to the element on top of the stack.

■ Set the top reference equal to the next reference of the node at the top of
the stack.

■ Decrement the count of elements in the stack.

■ Return the element pointed to by the temporary reference.

top

CD B A

art06.8

count 4

Figure 4.11 The stack after a pop operation

M04_LEWI3322_CH04_pp093-122.indd 117 19/02/13 1:53 PM

118 Chapter 4 Linked Structures – Stacks

Summary of Key Concepts
■ Object reference variables can be used to create linked structures.

■ A linked list is composed of objects that each point to the next object in the
list.

■ A linked list dynamically grows as needed and essentially has no capacity
limitations.

■ The order in which references are changed is crucial to maintaining a linked
list.

■ Dealing with the first node in a linked list often requires special handling.

■ Objects that are stored in a collection should not contain any implementa-
tion details of the underlying data structure.

■ The java.util.Stack class is derived from Vector, which gives a stack
inappropriate operations.

■ Any implementation of a collection can be used to solve a problem, as long
as it validly implements the appropriate operations.

■ A linked implementation of a stack adds elements to, and removes elements
from, one end of the linked list.

■ Recursive processing can be simulated using a stack to keep track of the
appropriate data.

summary of terms
activation record An object that represents a method invocation.

doubly linked list A linked list in which each node has references to both the
next node and the previous node in the list.

linked list A linked structure in which one object refers to the next, creating
a linear ordering.

linked structure A data structure that uses object reference variables to
create links between objects.

node A class that represents a single element in a linked structure.

program stack A stack of activation records used to keep track of method
invocations during program execution.

sentinel node A node at the front or end of a linked list that serves as a
marker and does not represent an element in the list.

M04_LEWI3322_CH04_pp093-122.indd 118 19/02/13 1:53 PM

 Exercises 119

Self-Review Questions
SR 4.1 What do you understand by a linked structure?

SR 4.2 What do you understand by a self-referential object?

SR 4.3 How are the beginning and termination of a linked list indicated?

SR 4.4 Describe in brief how the elements in a linked list are accessed.

SR 4.5 What are the steps to be taken to insert a node at the beginning of
a linked list?

SR 4.6 What is the difference between deleting the first node in a linked
list and deleting any of the other nodes in the middle of the list?

SR 4.7 Describe the following data structure: doubly linked list.

SR 4.8 What impact would the use of sentinel nodes or dummy nodes
have on a doubly linked list implementation?

SR 4.9 What are the advantages of using a linked implementation as
opposed to an array implementation?

SR 4.10 What are the advantages of using an array implementation as
opposed to a linked implementation?

SR 4.11 What are the advantages of using the java.util.Stack
implementation of a stack?

SR 4.12 What is the potential problem with the java.util.Stack
implementation?

Exercises
EX 4.1 Write Java statements to define a Student class that would have

three private members: name, code, and a reference to another
Student object.

EX 4.2 What should be the basic operations required for a linked list of
objects?

EX 4.3 Write minimal Java statements to define a StudentList class
that would store a list of students, as defined in Exercise 4.1.

EX 4.4 Write Java statements to access the fifth student in the list
 described in Exercise 4.3.

EX 4.5 Write an algorithm for the traverse method that will traverse a
list. What is the time complexity of this algorithm?

M04_LEWI3322_CH04_pp093-122.indd 119 19/02/13 5:08 PM

120 ChaptER 4 Linked Structures – Stacks

EX 4.6 Consider the list created in Exercise 4.3. Write Java statements for
defining a method that would be traversing a list and displaying
the content of the list.

EX 4.7 Write Java statements for a method search that would be search-
ing for a given string in the list created in Exercise 4.3.

EX 4.8 What is the design flaw in the Student class described in Exercise
4.1? How should you rectify this flaw?

programming projects
PP 4.1 Complete the implementation of the LinkedStack<T> class by

providing definitions for the peek, size, isEmpty, and toString
methods.

PP 4.2 Modify the postfix program from Chapter 3 so that it uses the
LinkedStack<T> class instead of the ArrayStack<T> class.

PP 4.3 Create a new version of the LinkedStack<T> class that makes
use of a dummy record at the head of the list.

PP 4.4 Create a simple graphical application that will enable a user to
perform push, pop, and peek operations on a stack, and display
the resulting stack (using toString) in a text area.

PP 4.5 Design and implement an application that reads a sentence from
the user and prints the sentence with the characters of each
word backward. Use a stack to reverse the characters of each
word.

PP 4.6 Complete the solution to the iterative maze solver so that your
solution marks the successful path.

PP 4.7 The linked implementation in this chapter uses a count variable
to keep track of the number of elements in the stack. Rewrite the
linked implementation without a count variable.

PP 4.8 There is a data structure called a drop-out stack that behaves like
a stack in every respect except that if the stack size is n, then
when the n+1 element is pushed, the first element is lost.
Implement a drop-out stack using links.

PP 4.9 Modify the maze problem in this chapter so that it can start from
a user-defined starting position (other than 0, 0) and search for a
user-defined ending point (other than row-1, column-1).

M04_LEWI3322_CH04_pp093-122.indd 120 19/02/13 5:08 PM

 Answers to Self-Review Questions 121

Answers to Self-Review Questions
SRA 4.1 A linked structure is a data structure that uses object reference

variables to create links between objects. Linked structures are
the primary alternative to an array-based implementation of a
collection.

SRA 4.2 When the instance of a class defines as instance data a reference
to another instance of the same class, it is called a self-referential
object. Using only this one class, we can create a linked structure.
One object instance contains a link to a second object instance.
This second object also contains a link to a third object instance
and so on.

SRA 4.3 A separate reference variable is used to indicate the first node in
the list. If this node is deleted, or if a new element is added in
front of it, the front reference is carefully maintained. The list is
terminated in a node whose next reference is null.

SRA 4.4 When using linked lists, we maintain a pointer to the first element
in the list. To access other elements, we access the first one and
then follow the next pointer from that one to the next one, and so
on. Special care is taken for dealing with the first node in the list
so that the reference to the entire list is maintained appropriately.

SRA 4.5 Adding a node at the beginning of the list requires resetting the
reference to the entire list. So, two steps are taken to insert at the
front: first, the next reference of the added node is set to point to
the current first node in the list and second, the reference to the
front of the list is reset to point to the newly added node.

SRA 4.6 To delete the first node in a linked list, the reference to the front
of the list need to be reset so that it points to the current second
node in the list. If any other node is needed to be deleted, a sepa-
rate reference to it should be set up before resetting the front
 reference.

SRA 4.7 In a doubly linked list, two references are maintained: one to
point to the first node in the list and another to point to the last
node in the list. Each node in the list stores both a reference to the
next element and a reference to the previous one. If we were to
use sentinel nodes with a doubly linked list, we would place senti-
nel nodes on both ends of the list.

M04_LEWI3322_CH04_pp093-122.indd 121 19/02/13 5:17 PM

SRA 4.8 It would take two dummy records in a doubly linked list, one at
the front and one at the rear, to eliminate the special cases when
dealing with the first and last nodes.

SRA 4.9 A linked implementation allocates space only as it is needed and
has a theoretical limit on the size of the hardware.

SRA 4.10 An array implementation uses less space per object since it only
has to store the object and not an extra pointer. However, the ar-
ray implementation will allocate much more space than it needs
initially.

SRA 4.11 Because the java.util.Stack implementation is an extension of
the Vector class, it can keep track of the positions of elements in
the stack using an index and thus does not require each node to
store an additional pointer. This implementation also allocates
space only as it is needed, like the linked implementation.

SRA 4.12 The java.util.Stack implementation is an extension of the
Vector class and thus inherits a large number of operations that
violate the basic assumptions of a stack.

122 ChaptER 4 Linked Structures – Stacks

M04_LEWI3322_CH04_pp093-122.indd 122 19/02/13 5:08 PM

55

123

C h a p t e r
O b j e C t i v e s

■	 Examine queue processing.

■	 Demonstrate how a queue can be
used to solve problems.

■	 Define a queue abstract data
type.

■	 Examine various queue
implementations.

■	 Compare queue
implementations.

Queues

Aqueue is another collection with which we are inherently

familiar. A queue is a waiting line, such as a line of customers

waiting in a bank for their opportunity to talk to a teller.

In fact, in many countries the word queue is used habitually

in this way. In such countries, a person might say, “join the

queue” rather than “get in line.” Other examples of queues

include a checkout line at the grocery store and cars waiting

at a stoplight. In any queue, an item enters on one end and

leaves from the other. Queues have a variety of uses in

computer algorithms.

M05_LEWI3322_CH05_pp123-154.indd 123 19/02/13 2:38 PM

124 Chapter 5 Queues

5.1 a Conceptual Queue

A queue is a linear collection whose elements are added on one end and removed
from the other. Therefore, we say that queue elements are processed in a first in,
first out (FIFO) manner. Elements are removed from a queue in the same order in
which they are placed on the queue.

This is consistent with the general concept of a waiting line. When a customer
arrives at a bank, he or she begins waiting at the end of the line. When a teller

becomes available, the customer at the beginning of the line leaves
the line to receive service. Eventually every customer who started
out at the end of the line moves to the front of the line and exits. For
any given set of people, the first person to get in line is the first person
to leave it.

The processing of a queue is pictured in Figure 5.1. Usually a queue is depicted
horizontally. One end is established as the front of the queue and the other as the
rear of the queue. Elements go onto the rear of the queue and come off he front.
Sometimes the front of the queue is called the head and the rear of the queue is
called the tail.

Key COnCept
Queue elements are processed in a
FIFO manner—the first element in is
the first element out.

Adding an
element

Removing an
element

re
ar

 o
f q

ue
ue

fr
on

t o
f q

ue
ue

Figure 5.1 A conceptual view of a queue

Compare and contrast the processing of a queue to the LIFO (last in, first out)
processing of a stack, which was discussed in Chapters 3 and 4. In a stack, the
processing occurs at only one end of the collection. In a queue, processing occurs
at both ends.

The operations defined for a queue ADT are listed in Figure 5.2. The term en-
queue is used to refer to the process of adding a new element to the end of a
queue. Likewise, dequeue is the process of removing the element at the front of a
queue. The first operation enables the user to examine the element at the front of
the queue without removing it from the collection.

M05_LEWI3322_CH05_pp123-154.indd 124 19/02/13 2:38 PM

 5.2 Queues in the Java API 125

Remember that naming conventions are not universal for collection opera-
tions. Sometimes enqueue is simply called add, insert, or offer. The dequeue
operation is sometimes called remove, poll, or serve. The first operation is
sometimes called front or peek.

Note that there is a general similarity between the operations on a queue and
those on a stack. The enqueue, dequeue, and first operations correspond to
the stack operations push, pop, and peek. As is true of a stack, there are no op-
erations that allow the user to “reach into” the middle of a queue and reorganize
or remove elements. If that type of processing is required, perhaps the appropri-
ate collection to use is a list of some kind, such as those discussed in the next
chapter.

5.2 Queues in the java api

Unfortunately, the Java Collections API is not consistent in its implementations of
collections. There are a couple of important differences between the way the stack
and queue collections are implemented:

■	 The Java Collections API provides the java.util.Stack class that imple-
ments a stack collection. Instead of a queue class, a Queue interface is provided
and is implemented by several classes, including the LinkedList class.

■	 The java.util.Stack class provides the traditional push, pop, and peek
operations. The Queue interface does not implement the traditional enqueue,
dequeue, and first operations. Instead, the Queue interface defines two
alternatives for adding elements to, and removing elements from, a queue.
These alternatives behave differently in terms of how the exceptional cases

Operation

enqueue

dequeue

first

isEmpty

size

toString

Description

Adds an element to the rear of the queue.

Removes an element from the front of the queue.

Examines the element at the front of the queue.

Determines if the queue is empty.

Determines the number of elements on the queue.

Returns a string representation of the queue.

Figure 5.2 The operations on a queue

M05_LEWI3322_CH05_pp123-154.indd 125 19/02/13 2:38 PM

126 Chapter 5 Queues

are handled. One set provides a boolean return value, whereas the other
throws an exception.

The Queue interface defines an element method that is the equivalent of our
conceptual first, front, or peek. This method retrieves the element at the head
of the queue but does not remove it.

The Queue interface provides two methods for adding an element to the queue:
add and offer. The add operation ensures that the queue contains the given ele-
ment. This operation will throw an exception if the given element cannot be
added to the queue. The offer operation inserts the given element into this
queue, returning true if the insertion is successful and false otherwise.

The Queue interface also provides two methods of removing an element from
the queue: poll and remove. Just like the difference between the add and
offer methods, the difference between poll and remove is in how the excep-
tional case is handled. In this instance, the exceptional case occurs when an
attempt is made to remove an element from an empty queue. The poll method
will return null if the queue is empty, whereas the remove method will throw
an exception.

Queues have a wide variety of applications within computing. Whereas the
principal purpose of a stack is to reverse order, the principal purpose of a queue
is to preserve order. Before exploring various ways to implement a queue, let’s
examine some ways in which a queue can be used to solve problems.

5.3 using Queues: Code Keys

A Caesar cipher is a simple approach to encoding messages by shifting each letter
in a message along the alphabet by a constant amount k. For example, if k equals 3,
then in an encoded message, each letter is shifted three characters forward: a is
replaced with d, b with e, c with f, and so on. The end of the alphabet wraps back
around to the beginning. Thus w is replaced with z, x with a, y with b, and z with c.

To decode the message, each letter is shifted the same number of characters
backward. Therefore, if k equals 3, then the encoded message

vlpsolflwb iroorzv frpsohalwb

would be decoded into

simplicity follows complexity

Julius Caesar actually used this type of cipher in some of his secret government
correspondence (hence the name). Unfortunately, the Caesar cipher is fairly easy

M05_LEWI3322_CH05_pp123-154.indd 126 19/02/13 2:38 PM

 5.3 Using Queues: Code Keys 127

to break. There are only 26 possibilities for shifting the characters, and the code
can be broken by trying various key values until one works.

This encoding technique can be improved by using a repeating key. Instead of
shifting each character by a constant amount, we can shift each character by a dif-
ferent amount using a list of key values. If the message is longer than the list of key
values, we just start using the key over again from the beginning. For example, if
the key values are

3 1 7 4 2 5

then the first character is shifted by three, the second character by one, the third
character by seven, and so on. After shifting the sixth character by five, we start
using the key over again. The seventh character is shifted by three, the eighth by
one, and so on.

Figure 5.3 shows the message “knowledge is power” encoded using this repeat-
ing key. Note that this encryption approach encodes the same letter into different
characters, depending on where it occurs in the message (and thus on which key
value is used to encode it). Conversely, the same character in the encoded message
is decoded into different characters.

nEncoded Message:

n

1

o

k

3Key:

Decoded Message:

v

w

4

a

o

7

n

e

5

j

l

2

g

g

1

h

d

3

l

e

7

m

s

2

u

i

4

p

5

u r

w

1

x

o

3

l

r

4

v

e

7

Figure 5.3 An encoded message using a repeating key

The program in Listing 5.1 uses a repeating key to encode and decode a
message. The key of integer values is stored in a queue. After a key value is
used, it is put back on the end of the queue so that the key continually repeats
as needed for long messages. The key in this example uses both positive and
negative values. Figure 5.4 illustrates the UML description of the
Codes class. As we saw in Figure 3.7 in Chapter 3, the UML dia-
gram illustrates the binding of the generic type T to an Integer.
Unlike the earlier example, in this case we have two different
bindings illustrated: one for the LinkedList class and one for the
Queue interface.

Key COnCept
A queue is a convenient collection for
storing a repeating code key.

M05_LEWI3322_CH05_pp123-154.indd 127 19/02/13 2:38 PM

128 Chapter 5 Queues

import java.util.*;

/**
 * Codes demonstrates the use of queues to encrypt and decrypt messages.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class Codes

{
 /**
 * Encode and decode a message using a key of values stored in
 * a queue.
 */
 public static void main(String[] args)
 {
 int[] key = {5, 12, -3, 8, -9, 4, 10};
 Integer keyValue;
 String encoded = "", decoded = "";
 String message = "All programmers are playwrights and all " +
 "computers are lousy actors.";
 Queue<Integer> encodingQueue = new LinkedList<Integer>();
 Queue<Integer> decodingQueue = new LinkedList<Integer>();

 // load key queues

 for (int scan = 0; scan < key.length; scan++)
 {
 encodingQueue.add(key[scan]);
 decodingQueue.add(key[scan]);
 }

 // encode message

 for (int scan = 0; scan < message.length(); scan++)
 {
 keyValue = encodingQueue.remove();
 encoded += (char) (message.charAt(scan) + keyValue);
 encodingQueue.add(keyValue);
 }

 System.out.println ("Encoded Message:\n" + encoded + "\n");

 // decode message

L i s t i n g 5 . 1

M05_LEWI3322_CH05_pp123-154.indd 128 19/02/13 2:38 PM

 5.3 Using Queues: Code Keys 129

<<interface>>

Queue

element () : T
add(T o) : void
offer(T o) : boolean
peek() : T
poll() : T
remove() : T

T

LinkedList

T

<<bind>>
T :: Integer

LinkedList<Integer>

<<bind>>
T :: Integer

main(String[] args)

Codes

<<interface>>

Queue<Integer>

element() : Integer
add(Integer o) : void
offer(Integer o) : boolean
peek() : Integer
poll() : Integer
remove() : Integer

Figure 5.4 UML description of the Codes program

 for (int scan = 0; scan < encoded.length(); scan++)
 {
 keyValue = decodingQueue.remove();
 decoded += (char) (encoded.charAt(scan) - keyValue);
 decodingQueue.add(keyValue);
 }

 System.out.println ("Decoded Message:\n" + decoded);
 }
}

L i s t i n g 5 . 1 continued

M05_LEWI3322_CH05_pp123-154.indd 129 19/02/13 2:38 PM

130 Chapter 5 Queues

This program actually uses two copies of the key stored in two separate
queues. The idea is that the person encoding the message has one copy of the key,
and the person decoding the message has another. Two copies of the key are help-
ful in this program, because the decoding process needs to match up the first char-
acter of the message with the first value in the key.

Also, note that this program doesn’t bother to wrap around the end of the
alphabet. It encodes any character in the Unicode character set by shifting it to
some other position in the character set. Therefore, we can encode any character,
including uppercase letters, lowercase letters, and punctuation. Even spaces get
encoded.

Using a queue to store the key makes it easy to repeat the key by putting each
key value back onto the queue as soon as it is used. The nature of a queue keeps
the key values in the proper order, and we don’t have to worry about reaching the
end of the key and starting over.

5.4 using Queues: ticket Counter simulation

Let’s look at another example using queues. Consider the situation in which you are
waiting in line to purchase tickets at a movie theatre. In general, the more cashiers
there are, the faster the line moves. The theatre manager wants to keep his custom-
ers happy, but he doesn’t want to employ any more cashiers than necessary. Suppose
the manager wants to keep the total time needed by a customer to less than seven
minutes. Being able to simulate the effect of adding more cashiers during peak busi-
ness hours enables the manager to plan more effectively. And, as we’ve discussed, a
queue is the perfect collection for representing a waiting line.

Our simulated ticket counter will use the following assumptions:

■ 	 There is only one line and it is first come, first served (a queue).

■ 	 Customers arrive on average every 15 seconds.

■ 	 If there is a cashier available, processing begins immediately upon arrival.

■ 	 Processing a customer request takes on average two minutes (120 seconds)
from the time the customer reaches a cashier.

First we can create a Customer class, as shown in Listing 5.2. A Customer
object keeps track of the time the customer arrives and the time the customer

departs after purchasing a ticket. The total time spent by the customer
is therefore the departure time minus the arrival time. To keep things
simple, our simulation will measure time in elapsed seconds, so a
time value can be stored as a single integer. Our simulation will begin
at time 0.

Key COnCept
Simulations are often implemented
using queues to represent waiting
lines.

M05_LEWI3322_CH05_pp123-154.indd 130 19/02/13 2:38 PM

 5.4 Using Queues: Ticket Counter Simulation 131

/**
 * Customer represents a waiting customer.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class Customer
{

 private int arrivalTime, departureTime;

 /**
 * Creates a new customer with the specified arrival time.
 * @param arrives the arrival time
 */
 public Customer(int arrives)
 {
 arrivalTime = arrives;
 departureTime = 0;

 }

 /**
 * Returns the arrival time of this customer.
 * @return the arrival time
 */
 public int getArrivalTime()
 {
 return arrivalTime;

 }

 /**
 * Sets the departure time for this customer.
 * @param departs the departure time
 */
 public void setDepartureTime(int departs)
 {
 departureTime = departs;

 }

 /**
 * Returns the departure time of this customer.
 * @return the departure time
 */

L i s t i n g 5 . 2

M05_LEWI3322_CH05_pp123-154.indd 131 19/02/13 2:38 PM

132 Chapter 5 Queues

 public int getDepartureTime()
 {
 return departureTime;

 }

 /**
 * Computes and returns the total time spent by this customer.
 * @return the total customer time
 */
 public int totalTime()
 {
 return departureTime - arrivalTime;
 }

}

L i s t i n g 5 . 2 continued

Our simulation will create a queue of customers and then see how long it takes
to process those customers if there is only one cashier. Then we will process the
same queue of customers with two cashiers. Then we will do it again with three
cashiers. We continue this process for up to ten cashiers. At the end we compare
the average times that it takes to process a customer.

Because of our assumption that customers arrive every 15 seconds (on average),
we can preload a queue with customers. We will process 100 customers in this
simulation.

The program shown in Listing 5.3 conducts our simulation. The outer loop
determines how many cashiers are used in each pass of the simulation. For each
pass, the customers are taken from the queue in turn and processed by a cashier.
The total elapsed time is tracked, and at the end of each pass the average time is
computed. Figure 5.5 shows the UML description of the TicketCounter and
Customer classes.

M05_LEWI3322_CH05_pp123-154.indd 132 19/02/13 2:38 PM

 5.4 Using Queues: Ticket Counter Simulation 133

<<interface>>

Queue<Integer>

LinkedList<Integer>

main(String[] args)

TicketCounter

Customer

element() : Integer
add(Integer o) : void
offer(Integer o) : boolean
peek() : Integer
poll() : Integer
remove() : Integer

arrivalTime : int
departureTime : int

getArrivalTime() : int
setDepartureTime(int departs) : void
getDepartureTime() : int
totalTime() : int

Figure 5.5 UML description of the TicketCounter program

import java.util.*;

/**
 * TicketCounter demonstrates the use of a queue for simulating a line of customers.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class TicketCounter

L i s t i n g 5 . 3

M05_LEWI3322_CH05_pp123-154.indd 133 19/02/13 2:38 PM

134 Chapter 5 Queues

{
 private final static int PROCESS = 120;
 private final static int MAX_CASHIERS = 10;
 private final static int NUM_CUSTOMERS = 100;

 public static void main(String[] args)
 {
 Customer customer;
 Queue<Customer> customerQueue = new LinkedList<Customer>();
 int[] cashierTime = new int[MAX_CASHIERS];
 int totalTime, averageTime, departs, start;

 // run the simulation for various number of cashiers

 for (int cashiers = 0; cashiers < MAX_CASHIERS; cashiers++)
 {

 // set each cashiers time to zero initially

 for (int count = 0; count < cashiers; count++)
 cashierTime[count] = 0;

 // load customer queue

 for (int count = 1; count <= NUM_CUSTOMERS; count++)
 customerQueue.add(new Customer(count * 15));
 totalTime = 0;

 // process all customers in the queue

 while (!(customerQueue.isEmpty()))
 {
 for (int count = 0; count <= cashiers; count++)
 {
 if (!(customerQueue.isEmpty()))
 {
 customer = customerQueue.remove();
 if (customer.getArrivalTime() > cashierTime[count])
 start = customer.getArrivalTime();
 else
 start = cashierTime[count];
 departs = start + PROCESS;
 customer.setDepartureTime(departs);
 cashierTime[count] = departs;
 totalTime += customer.totalTime();
 }

L i s t i n g 5 . 3 continued

M05_LEWI3322_CH05_pp123-154.indd 134 19/02/13 2:38 PM

 5.5 A Queue ADT 135

 }
 }

 // output results for this simulation

 averageTime = totalTime / NUM_CUSTOMERS;
 System.out.println("Number of cashiers: " + (cashiers + 1));
 System.out.println("Average time: " + averageTime + "\n");
 }
 }
}

L i s t i n g 5 . 3 continued

The results of the simulation are shown in Figure 5.6. Note that with eight
cashiers, the customers do not wait at all. The time of 120 seconds reflects only
the time it takes to walk up and purchase the ticket. Increasing the number of
cashiers to nine or ten or more will not improve the situation. Since the manager
wants to keep the total average time to less than seven minutes (420 seconds), the
simulation tells him that he should have six cashiers.

Number of Cashiers:

5317 2325 1332 840 547 355 219 120 120 120Average Time (sec):

1 2 3 4 5 6 7 8 9 10

Figure 5.6 The results of the ticket counter simulation

5.5 a Queue aDt

As we did with stacks, we define a generic QueueADT interface that represents
the queue operations, separating the general purpose of the operations from
the variety of ways in which they could be implemented. A Java version of the
QueueADT interface is shown in Listing 5.4, and its UML description is shown in
Figure 5.7.

Note that in addition to the standard queue operations, we have included a
toString method, just as we did with our stack collection. It is included for con-
venience and is not generally considered a classic operation on a queue.

M05_LEWI3322_CH05_pp123-154.indd 135 19/02/13 2:38 PM

136 Chapter 5 Queues

package jsjf;

/**
 * QueueADT defines the interface to a queue collection.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public interface QueueADT<T>
{

 /**
 * Adds one element to the rear of this queue.
 * @param element the element to be added to the rear of the queue
 */
 public void enqueue(T element);

 /**
 * Removes and returns the element at the front of this queue.
 * @return the element at the front of the queue
 */
 public T dequeue();

 /**
 * Returns without removing the element at the front of this queue.
 * @return the first element in the queue
 */
 public T first();

 /**
 * Returns true if this queue contains no elements.
 * @return true if this queue is empty
 */
 public boolean isEmpty();

 /**
 * Returns the number of elements in this queue.
 * @return the integer representation of the size of the queue
 */
 public int size();

 /**
 * Returns a string representation of this queue.
 * @return the string representation of the queue
 */
 public String toString();
}

L i s t i n g 5 . 4

M05_LEWI3322_CH05_pp123-154.indd 136 19/02/13 2:38 PM

 5.6 A Linked Implementation of a Queue 137

<<interface>>

QueueADT

enqueue(T element) : void
dequeue() : T
first() : T
isEmpty() : boolean
size() : int
toString() : String

T

Figure 5.7 The QueueADT interface in UML

5.6 a Linked implementation of a Queue

Because a queue is a linear collection, we can implement a queue as a linked list of
LinearNode objects, as we did with stacks. The primary difference is that we will
have to operate on both ends of the list. Therefore, in addition to a reference
(called head) pointing to the first element in the list, we will keep track of a sec-
ond reference (called tail) that points to the last element in the list. We will also
use an integer variable called count to keep track of the number of elements in
the queue.

Does it make a difference to which end of the list we add, or enqueue, elements
and from which end of the list we remove, or dequeue, elements? If our linked list
is singly linked, meaning that each node has only a pointer to the node behind it
in the list, then yes, it does make a difference. In the case of the enqueue opera-
tion, it will not matter whether we add new elements to the head or the tail of the
list. The processing steps will be very similar. If we add to the head of the list, then
we will set the next pointer of the new node to point to the head of the list and
will set the head variable to point to the new node. If we add to the
tail of the list, then we will set the next pointer of the node at the
tail of the list to point to the new node and will set the tail of the
list to point to the new node. In both cases, all of these processing
steps are O(1), so the time complexity of the enqueue operation will
be O(1).

Key COnCept
A linked implementation of a queue
is facilitated by references to the first
and last elements of the linked list.

M05_LEWI3322_CH05_pp123-154.indd 137 19/02/13 2:38 PM

138 Chapter 5 Queues

The difference between our two choices, adding to the head or the tail of the
list, occurs with the dequeue operation. If we enqueue at the tail of the list and
dequeue from the head of the list, then to dequeue we simply set a temporary
variable to point to the element at the head of the list and then set the head vari-
able to the value of the next pointer of the first node. Both processing steps are
O(1), so the operation will be O(1). However, if we enqueue at the head of the
list and dequeue at the tail of the list, our processing steps become more inter-
esting. In order to dequeue from the tail of the list, we must set a temporary
variable to point to the element at the tail of the list and then set the tail
pointer to point to the node before the current tail. Unfortunately, in a singly
linked list, we cannot get to this node without traversing the list. Therefore, if we
chose to enqueue at the head and dequeue at the tail, the dequeue operation
will be O(n) instead of O(1) as it is with our other choice. Thus, we choose to
enqueue at the tail and dequeue at the head of our singly linked list. Keep in
mind that a doubly linked list would solve the problem of having to traverse the
list, and thus it would not matter which end was which in a doubly linked imple-
mentation.

Figure 5.8 depicts this strategy for implementing a queue. It shows a queue
that has had the elements A, B, C, and D added to the queue, or enqueued, in that
order.

Remember that Figure 5.8 depicts the general case. We always have to be careful
to maintain our references accurately in special cases. For an empty queue, the
head and tail references are both null, and the count is zero. If there is exactly

rear

count 4

front

BA C D

Figure 5.8 A linked implementation of a queue

M05_LEWI3322_CH05_pp123-154.indd 138 19/02/13 2:38 PM

 5.6 A Linked Implementation of a Queue 139

one element in the queue, both the head and tail references point to the same
object.

Let’s explore the implementation of the queue operations using this linked-list
approach. The header, class-level data, and constructors for our linked implemen-
tation of a queue are provided for context.

package jsjf;

import jsjf.exceptions.*;

/**
 * LinkedQueue represents a linked implementation of a queue.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class LinkedQueue<T> implements QueueADT<T>
{
 private int count;
 private LinearNode<T> head, tail;

 /**
 * Creates an empty queue.
 */
 public LinkedQueue()
 {
 count = 0;
 head = tail = null;
 }

the enqueue Operation
The enqueue operation requires that we put the new element on the tail of the
queue. In the general case, that means setting the next reference of the current
last element to the new one, and resetting the tail reference to the new last
element. However, if the queue is currently empty, the head reference must
also be set to the new (and only) element. This operation can be implemented
as follows:

M05_LEWI3322_CH05_pp123-154.indd 139 19/02/13 2:38 PM

140 Chapter 5 Queues

Note that the next reference of the new node need not be explicitly set in this
method because it has already been set to null in the constructor for the
LinearNode class. The tail reference is set to the new node in either case and the
count is incremented. Implementing the queue operations with sentinel nodes is
left as an exercise. As we discussed earlier, this operation is O(1).

Figure 5.9 shows the queue from Figure 5.8 after element E has been added.

 /**
 * Adds the specified element to the tail of this queue.
 * @param element the element to be added to the tail of the queue
 */
 public void enqueue(T element)
 {
 LinearNode<T> node = new LinearNode<T>(element);

 if (isEmpty())
 head = node;
 else
 tail.setNext(node);

 tail = node;
 count++;
 }

count 5

front

BA C D

rear

E

Figure 5.9 The queue after adding element E

M05_LEWI3322_CH05_pp123-154.indd 140 19/02/13 2:38 PM

 5.6 A Linked Implementation of a Queue 141

the dequeue Operation
The first thing to do when implementing the dequeue operation is to ensure that
there is at least one element to return. If not, an EmptyCollectionException is
thrown. As we did with our stack collection in Chapters 3 and 4, it makes sense
to employ a generic EmptyCollectionException to which we can pass a
parameter specifying which collection we are dealing with. If there is at least one
element in the queue, the first one in the list is returned, and the head reference is
updated:

 /**
 * Removes the element at the head of this queue and returns a
 * reference to it.
 * @return the element at the head of this queue
 * @throws EmptyCollectionException if the queue is empty
 */
 public T dequeue() throws EmptyCollectionException
 {
 if (isEmpty())
 throw new EmptyCollectionException("queue");

 T result = head.getElement();
 head = head.getNext();
 count--;

 if (isEmpty())
 tail = null;

 return result;
 }

For the dequeue operation, we must consider the situation in
which we are returning the only element in the queue. If, after
removal of the head element, the queue is now empty, then the tail
reference is set to null. Note that in this case, the head will be null
because it was set equal to the next reference of the last element in
the list. Again, as we discussed earlier, the dequeue operation for
our implementation is O(1).

Key COnCept
The enqueue and dequeue
operations work on opposite ends of
the collection.

M05_LEWI3322_CH05_pp123-154.indd 141 19/02/13 2:38 PM

142 Chapter 5 Queues

Figure 5.10 shows the result of a dequeue operation on the queue from Figure 5.9.
The element A at the head of the queue is removed and returned to the user.

Note that, unlike the push and pop operations on a stack, the dequeue opera-
tion is not the inverse of enqueue. That is, Figure 5.10 is not identical to our
original configuration shown in Figure 5.8, because the enqueue and dequeue
operations are working on opposite ends of the collection.

D e s i g n F O C u s

The same goals of reuse that apply to other classes apply to exceptions as well.
The EmptyCollectionException class is a good example of this. It is an
exceptional case that will be the same for any collection that we create (such as
attempting to perform an operation on the collection that cannot be performed
if the collection is empty). Thus, creating a single exception with a parameter
that enables us to designate which collection has thrown the exception is an
excellent example of designing for reuse.

rear

count 4

front

CB D E

Figure 5.10 The queue after a dequeue operation

Other Operations
The remaining operations in the linked queue implementation are fairly straight-
forward and are similar to those in the stack collection. The first operation is
implemented by returning a reference to the element at the head of the queue. The
isEmpty operation returns true if the count of elements is 0, and false otherwise.
The size operation simply returns the count of elements in the queue. Finally, the
toString operation returns a string made up of the toString results of each
individual element. These operations are left as programming projects.

M05_LEWI3322_CH05_pp123-154.indd 142 19/02/13 2:38 PM

 5.7 Implementing Queues: With Arrays 143

5.7 implementing Queues: With arrays

One array-based strategy for implementing a queue is to fix one end of the queue
(say, the front) at index 0 of the array. The elements are stored contiguously in the
array. Figure 5.11 depicts a queue stored in this manner, assuming elements A, B,
C, and D have been added to the queue in that order.

An array-based queue
implementation.

VideoNote

0

A

1 2 3 4 5 6 7 ...

rear

B C D

4

Figure 5.11 An array implementation of a queue

In a manner similar to the top variable in the ArrayStack imple-
mentation, the integer variable rear is used to indicate the next open
cell in the array. Note that it also represents the number of elements
in the queue.

This strategy assumes that the first element in the queue is always
stored at index 0 of the array. Because queue processing affects both
ends of the collection, this strategy will require that we shift the elements when-
ever an element is removed from the queue. This required shifting of elements
would make the dequeue operation O(n). Just as in our discussion of the com-
plexity of our singly linked list implementation above, making a poor choice in
our array implementation could lead to less than optimal efficiency.

Would it make a difference if we fixed the rear of the queue,
instead of the front, at index 0 of the array? Keep in mind that when
we enqueue an element onto the queue, we do so at the rear of the
queue. This would mean that each enqueue operation would result
in shifting all of the elements in the queue up one position in the
array, making the enqueue operation O(n).

Key COnCept
Because queue operations modify
both ends of the collection, fixing
one end at index 0 requires that
elements be shifted.

Key COnCept
The shifting of elements in a noncir-
cular array implementation creates
an O(n) complexity.

M05_LEWI3322_CH05_pp123-154.indd 143 19/02/13 2:38 PM

144 Chapter 5 Queues

The key is to not fix either end. As elements are dequeued, the front of the
queue will move further into the array. As elements are enqueued, the rear of the
queue will also move further into the array. The challenge comes when the rear of
the queue reaches the end of the array. Enlarging the array at this point is not a
practical solution, and it does not make use of the now-empty space in the lower
indexes of the array.

To make this solution work, we will use a circular array to imple-
ment the queue, defined in a class called CircularArrayQueue. A
circular array is not a new construct—it is just a way to think about
the array used to store the collection. Conceptually, the array is used
as a circle, whose last index is followed by the first index. A circular
array storing a queue is shown in Figure 5.12.

Two integer values are used to represent the front and rear of the queue. These
values change as elements are added and removed. Note that the value of front
represents the location where the first element in the queue is stored, and the
value of rear represents the next available slot in the array (not where the last
element is stored). Using rear in this manner is consistent with our other array
implementation. Note, however, that the value of rear no longer represents the
number of elements in the queue. We will use a separate integer value to keep a
count of the elements.

When the rear of the queue reaches the end of the array, it “wraps around” to
the front of the array. The elements of the queue can therefore straddle the end of
the array, as shown in Figure 5.13, which assumes the array can store 100 ele-
ments.

Using this strategy, once an element has been added to the queue, it stays in one
location in the array until it is removed with a dequeue operation. No elements
need to be shifted as elements are added or removed. This approach requires,
however, that we carefully manage the values of front and rear.

D e s i g n F O C u s

It is important to note that this fixed array implementation strategy, which was
very effective in our implementation of a stack, is not nearly as efficient for a
queue. This is an important example of matching the data structure used to
implement a collection with the collection itself. The fixed array strategy was
efficient for a stack because all of the activity (adding and removing elements)
was on one end of the collection and thus on one end of the array. With a queue,
now that we are operating on both ends of the collection and order does matter,
the fixed array implementation is much less efficient.

Key COnCept
Treating arrays as circular eliminates
the need to shift elements in an array
queue implementation.

M05_LEWI3322_CH05_pp123-154.indd 144 19/02/13 2:38 PM

..
.

0

1

2

N

3

4

5

6
78

9

N-1

rear 7front 3 count 4

Figure 5.12 A circular array implementation of a queue

..
.

0

1
99

98

97 2

3

4

5

6
78

9

rear 2front 98 count 4

Figure 5.13 A queue straddling the end of a circular array

145

M05_LEWI3322_CH05_pp123-154.indd 145 19/02/13 2:38 PM

146 Chapter 5 Queues

Let’s look at another example. Figure 5.14 shows a circular array (drawn lin-
early) with a capacity of ten elements. Initially it is shown after elements A
through H have been enqueued. It is then shown after the first four elements (A
through D) have been dequeued. Finally, it is shown after elements I, J, K, and L
have been enqueued, which causes the queue to wrap around the end of the array.

front 0 rear 8 count 8

0 1 2 3 4 5 6 7 8 9

E FDCBA G H

front 4 rear 8 count 4

0 1 2 3 4 5 6 7 8 9

E F G H

front 4 rear 2 count 8

0 1 2 3 4 5 6 7 8 9

E FLK G I JH

Figure 5.14 Changes in a circular array implementation of a queue

The header, class-level data, and constructors for our circular array implemen-
tation of a queue are provided for context:

M05_LEWI3322_CH05_pp123-154.indd 146 19/02/13 2:38 PM

 5.7 Implementing Queues: With Arrays 147

package jsjf;

package jsjf.exceptions.*;

/**
 * CircularArrayQueue represents an array implementation of a queue in
 * which the indexes for the front and rear of the queue circle back to 0
 * when they reach the end of the array.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class CircularArrayQueue<T> implements QueueADT<T>
{
 private final static int DEFAULT_CAPACITY = 100;
 private int front, rear, count;
 private T[] queue;

 /**
 * Creates an empty queue using the specified capacity.
 * @param initialCapacity the initial size of the circular array queue
 */
 public CircularArrayQueue (int initialCapacity)
 {
 front = rear = count = 0;
 queue = (T[]) (new Object[initialCapacity]);
 }

 /**
 * Creates an empty queue using the default capacity.
 */
 public CircularArrayQueue()
 {
 this(DEFAULT_CAPACITY);
 }

the enqueue Operation
In general, after an element is enqueued, the value of rear is incremented. But
when an enqueue operation fills the last cell of the array (at the largest index), the
value of rear must be set to 0, indicating that the next element should be stored
at index 0. The appropriate update to the value of rear can be accomplished in

M05_LEWI3322_CH05_pp123-154.indd 147 19/02/13 2:38 PM

148 Chapter 5 Queues

one calculation by using the remainder operator (%). Recall that the remainder
operator returns the remainder after dividing the first operand by the second.
Therefore, if queue is the name of the array storing the queue, the following line
of code will update the value of rear appropriately:

rear = (rear+1) % queue.length;

Let’s try this calculation, assuming we have an array of size 10. If rear is cur-
rently 5, it will be set to 6%10, or 6. If rear is currently 9, it will be set to 10%10,
or 0. Try this calculation using various situations to see that it works no matter
how big the array is.

Given this strategy, the enqueue operation can be implemented as follows:

 /**
 * Adds the specified element to the rear of this queue, expanding
 * the capacity of the queue array if necessary.
 * @param element the element to add to the rear of the queue
 */
 public void enqueue(T element)
 {
 if (size() == queue.length)
 expandCapacity();

 queue[rear] = element;
 rear = (rear+1) % queue.length;

 count++;
 }

Circular Increment

rear = (rear + 1) % queue.length;

increment regularly

wrap back to if appropriate

M05_LEWI3322_CH05_pp123-154.indd 148 19/02/13 2:38 PM

 5.7 Implementing Queues: With Arrays 149

Note that this implementation strategy will still allow the array to reach capacity.
As with any array-based implementation, all cells in the array may become filled.
This implies that the rear of the queue has “caught up” to the front of the queue.
To add another element, the array would have to be enlarged. Keep in mind, how-
ever, that the elements of the existing array must be copied into the new array in
their proper order in the queue, which is not necessarily the order in which they
appear in the current array. This makes the private expandCapacity method
slightly more complex than the one we used for stacks:

 /**
 * Creates a new array to store the contents of this queue with
 * twice the capacity of the old one.
 */
 private void expandCapacity()
 {
 T[] larger = (T[]) (new Object[queue.length *2]);

 for (int scan = 0; scan < count; scan++)
 {
 larger[scan] = queue[front];
 front = (front + 1) % queue.length;
 }

 front = 0;
 rear = count;
 queue = larger;
 }

the dequeue Operation
Likewise, after an element is dequeued, the value of front is incremented. After
enough dequeue operations, the value of front will reach the last index of the
array. After removal of the element at the largest index, the value of front must
be set to 0 instead of being incremented. The same calculation we used to set the
value of rear in the enqueue operation can be used to set the value of front in
the dequeue operation:

 /**
 * Removes the element at the front of this queue and returns a
 * reference to it.
 * @return the element removed from the front of the queue
 * @throws EmptyCollectionException if the queue is empty

 */

M05_LEWI3322_CH05_pp123-154.indd 149 19/02/13 2:38 PM

150 Chapter 5 Queues

Other Operations
Operations such as toString become a bit more complicated using this ap-
proach, because the elements are not stored starting at index 0 and may wrap
around the end of the array. These methods have to take the current situation into
account. All of the other operations for a circular array queue are left as program-
ming projects.

5.8 Double-ended Queues (Deque)

A deque, or double-ended queue, is an extension of the concept of a queue that
allows adding, removing, and viewing elements from both ends of the queue. As
mentioned in Chapter 3, the Java API provides the Deque interface, which, like
the Queue interface, is implemented by the LinkedList class. Just like the Queue
interface, the Deque interface provides two versions of each operation: one that
will throw an exception and one that will return a boolean.

Interestingly, the Deque interface also provides implementations of the basic
stack operations push, pop, and peek. In fact, Oracle now recommends that the
Deque interface be used in place of the java.util.stack class.

 public T dequeue() throws EmptyCollectionException
 {
 if (isEmpty())
 throw new EmptyCollectionException("queue");

 T result = queue[front];
 queue[front] = null;
 front = (front+1) % queue.length;

 count--;

 return result;

 }

M05_LEWI3322_CH05_pp123-154.indd 150 19/02/13 2:38 PM

 Self-Review Questions 151

Summary of Key Concepts
■	 Queue elements are processed in a FIFO manner—the first element in is the

first element out.

■	 A queue is a convenient collection for storing a repeating code key.

■	 Simulations are often implemented using queues to represent waiting lines.

■	 A linked implementation of a queue is facilitated by references to the first
and last elements of the linked list.

■	 The enqueue and dequeue operations work on opposite ends of the collection.

■	 Because queue operations modify both ends of the collection, fixing one end
at index 0 requires that elements be shifted.

■	 The shifting of elements in a noncircular array implementation creates an
O(n) complexity.

■	 Treating arrays as circular eliminates the need to shift elements in an array
queue implementation.

Summary of Terms
Caesar cipher A simple message encoding technique in which letters are
shifted along the alphabet by a constant amount.

circular array An array that is treated as circular, meaning that increment-
ing the last index value in the array wraps around back to the first element.

dequeue A queue operation in which an element is removed from the front
of the queue.

enqueue A queue operation in which an element is added to the rear of the
queue.

FIFO (1) First in, first out; (2) A description of a collection in which the first
element added will be the first element removed.

queue A linear collection whose elements are added on one end and
removed from the other.

repeating key A list of integer values used to shift letters by varying
amounts in an improved version of a Caesar cipher.

Self-Review Questions
SR 5.1 Describe the queue data structure and processing of elements in it.

SR 5.2 What are the purposes of the enqueue and dequeue operations in
a queue?

M05_LEWI3322_CH05_pp123-154.indd 151 19/02/13 6:07 PM

152 Chapter 5 Queues

SR 5.3 What are the queue operations provided in the Queue interface of
the Java Collections API?

SR 5.4 What are the advantages of using a linked implementation of a
queue as opposed to an array implementation?

SR 5.5 Why is shifting of elements required in a linear array-based imple-
mentation of a queue?

SR 5.6 Why is a fixed array implementation strategy for a queue inefficient?

SR 5.7 How is the problem of shifting elements solved?

exercises
EX 5.1 Hand trace a queue X through the following operations:

 X.enqueue(new Integer(14));
 X.enqueue(new Integer(11));
 Object Y = X.dequeue();
 X.enqueue(new Integer(18));
 X.enqueue(new Integer(12));
 X.enqueue(new Integer(15));
 X.enqueue(new Integer(13));
 Object Y = X.dequeue();
 X.enqueue(new Integer(14));
 X.enqueue(new Integer(19));

EX 5.2 Given the queue X that results from Exercise 5.1, what would be
the result of each of the following?

 a. Y = X.dequeue();
 Z = X.dequeue();

 b. X.first();
 c. X.enqueue(25);
 d. X.first();

EX 5.3 What would be the time complexity of the size operation for
each of the implementations if there were not a count variable?

EX 5.4 Under what circumstances could the head and tail references
for the linked implementation or the front and rear references
of the array implementation be equal?

EX 5.5 Hand trace the ticket counter problem for 22 customers and
4 cashiers. Graph the total process time for each person. What
can you surmise from these results?

M05_LEWI3322_CH05_pp123-154.indd 152 01/03/13 4:35 PM

 Programming Projects 153

EX 5.6 Compare and contrast the enqueue method of the LinkedQueue
class and the push method of the LinkedStack class from
Chapter 4.

EX 5.7 Describe two different ways in which the isEmpty method of the
LinkedQueue class could be implemented.

EX 5.8 Name five everyday examples of a queue other than those discussed
in this chapter.

EX 5.9 Explain why the array implementation of a stack does not require
elements to be shifted, but the noncircular array implementation
of a queue does.

EX 5.10 Suppose the count variable was not used in the CircularArray
Queue class. Explain how you could use the values of front and
rear to compute the number of elements in the list.

programming projects
PP 5.1 Complete the implementation of the LinkedQueue class presented

in this chapter. Specifically, complete the implementations of the
first, isEmpty, size, and toString methods.

PP 5.2 Complete the implementation of the CircularArrayQueue class
described in this chapter, including all methods.

PP 5.3 Write a version of the CircularArrayQueue class that grows the
list in the direction opposite to the direction in which the version
described in this chapter grows the list.

PP 5.4 All of the implementations in this chapter use a count variable to
keep track of the number of elements in the queue. Rewrite the
linked implementation without a count variable.

PP 5.5 All of the implementations in this chapter use a count variable to
keep track of the number of elements in the queue. Rewrite the
circular array implementation without a count variable.

PP 5.6 A data structure called a deque is closely related to a queue. The
name deque stands for “double-ended queue.” The difference
between the two is that with a deque, you can insert, remove, or
view from either end of the queue. Implement a deque using
arrays.

PP 5.7 Implement the deque from Programming Project 5.6 using links.
(Hint: Each node will need a next reference and a previous
reference.)

M05_LEWI3322_CH05_pp123-154.indd 153 19/02/13 6:07 PM

154 Chapter 5 Queues

PP 5.8 Create a graphical application that provides buttons to enqueue
and dequeue elements from a queue, a text field to accept a string
as input for enqueue, and a text area to display the contents of
the queue after each operation.

PP 5.9 Create a system using a stack and a queue to test whether a given
string is a palindrome (that is, whether the characters read the
same both forward and backward).

PP 5.10 Create a system to simulate vehicles at an intersection. Assume
that there is one lane going in each of four directions, with stop-
lights facing each direction. Vary the arrival average of vehicles in
each direction and the frequency of the light changes to view the
“behavior” of the intersection.

answers to Self-review Questions
SRA 5.1 A queue is a linear collection whose elements are added on one

end and removed from the other. The queue elements are pro-
cessed in a first in, first out (FIFO) manner. Elements are removed
from a queue in the same order in which they are placed on the
queue.

SRA 5.2 The enqueue operation adds an element to the end of the queue
and the dequeue operation removes an element from the front of
the queue.

SRA 5.3 The Queue interface has the element method that returns the first
 element. It has add and offer methods for inserting elements and
the poll and remove methods for removing an element from the
queue.

SRA 5.4 A linked implementation of queue allocates space only as it is
needed whereas, the array implementation will allocate much
more space than it needs initially.

SRA 5.5 Since queue operations modify both ends of the collection, fixing
one end at index 0 requires that elements be shifted.

SRA 5.6 A fixed array implementation is inefficient because shifting of
 elements in a noncircular array implementation creates an O(n)
complexity.

SRA 5.7 Treating arrays as circular eliminates the need to shift elements in
an array queue implementation.

M05_LEWI3322_CH05_pp123-154.indd 154 01/03/13 10:37 AM

66

155

c h a p t e r
o b j e c t i v e s

■	 Examine various types of list
collections.

■	 Demonstrate how lists can be
used to solve problems.

■	 Define a list abstract data type.

■	 Examine and compare list
implementations.

Lists
c h a p t e r o b j e c t i v e s

The concept of a list is familiar to all of us. You may

make to-do lists, lists of items to buy at the grocery store,

and lists of friends to invite to a party. You might number

the items in a list or keep them in alphabetical order. In

other situations you may simply keep the items in a

particular order that makes the most sense to you. This

chapter explores the concept of a list collection and some

ways in which such collections can be managed.

M06_LEWI3322_CH06_pp155-194.indd 155 19/02/13 3:02 PM

156 chapter 6 Lists

6.1 a List collection

Let’s begin by differentiating between a linked list and the concept of a list collection.
As we’ve seen in previous chapters, a linked list is an implementation strategy that
uses references to create links between objects. We used linked lists in Chapters 4 and
5 to help us implement stack and queue collections, respectively.

A list collection, on the other hand, is a conceptual notion—the idea of keeping
things organized in a linear list. Just like stacks and queues, a list can be imple-
mented using linked lists or arrays. A list collection has no inherent capacity; it
can grow as large as needed.

Both stacks and queues are linear structures and might be thought of as lists, but ele-
ments can be added and removed only on the ends. List collections are more general;
elements can be added and removed in the interior of the list as well as on the ends.

Furthermore, there are three types of list collections:

■	 Ordered lists,whose elements are ordered by some inherent characteristic of
the elements

■	 Unordered lists,whose elements have no inherent order but are ordered by
their placement in the list

■	 Indexed lists,whose elements can be referenced using a numeric index

An ordered list is based on some particular characteristic of the
elements in the list. For example, you may keep a list of people or-
dered alphabetically by name, or you may keep an inventory list or-
dered by part number. The list is sorted on the basis of some key
value. Any element added to an ordered list has a proper location in
the list, given its key value and the key values of the elements already
in the list. Figure 6.1 shows a conceptual view of an ordered list, in
which the elements are ordered by an integer key value. Adding a
value to the list involves finding the new element’s proper, sorted po-
sition among the existing elements.

54

Adding an
element

fr
on

t o
f l

is
t

re
ar

 o
f l

is
t

12 25 33 42 49 57 73 81

Figure 6.1 A conceptual view of an ordered list

List categories.

VideoNote

Key concept
List collections can be categorized as
ordered, unordered, or indexed.

Key concept
The elements of an ordered list have
an inherent relationship defining
their order.

M06_LEWI3322_CH06_pp155-194.indd 156 19/02/13 3:02 PM

 6.1 A List Collection 157

The placement of elements in an unordered list is not based on any inherent
characteristic of the elements. Don’t let the name mislead you. The elements in an
unordered list are kept in a particular order, but that order is not
based on the elements themselves. The client using the list determines
the order of the elements. Figure 6.2 shows a conceptual view of an
unordered list. A new element can be put at the front or rear of the
list, or it can be inserted after a particular element already in the list.

Key concept
The elements of an unordered list are
kept in whatever order the client
chooses.

Adding an
element

Adding an
element

Adding an
element

fr
on

t o
f l

is
t

re
ar

 o
f l

is
t

Figure 6.2 A conceptual view of an unordered list

0 1 2 3 4 5 6 7

Adding an
element

Adding an
element

Adding an
element

fr
on

t o
f l

is
t

re
ar

 o
f l

is
t

Figure 6.3 A conceptual view of an indexed list

An indexed list is similar to an unordered list in that there is no
inherent relationship among the elements that determines their order
in the list. The client using the list determines the order of the ele-
ments. However, in addition, each element can be referenced by a
numeric index that begins at 0 at the front of the list and continues
contiguously until the end of the list. Figure 6.3 shows a conceptual
view of an indexed list. A new element can be inserted into the list at any position,
including at the front or rear of the list. Every time a change occurs in the list, the
indexes are adjusted to stay in order and contiguous.

Key concept
An indexed list maintains a
contiguous numeric index range for
its elements.

M06_LEWI3322_CH06_pp155-194.indd 157 19/02/13 3:02 PM

158 chapter 6 Lists

Note the primary difference between an indexed list and an array: An indexed
list keeps its indexes contiguous. If an element is removed, the positions of other
elements “collapse” to eliminate the gap. When an element is inserted, the indexes
of other elements are shifted to make room.

D e s i g n F o c u s

Is it possible that a list could be both an ordered list and an indexed list?
Possible perhaps, but not very meaningful. If a list were both ordered and indexed,
what would happen if a client application attempted to add an element at a particular
index or to change an element at a particular index such that it is not in the
proper order? Which rule would have precedence, index position or order?

6.2 Lists in the java collections api

The list classes provided in the Java API primarily support the concept of an
indexed list. To some extent, they overlap with the concept of an unordered list.
Note, though, that the Java API does not have any classes that directly implement
an ordered list as described above.

You’re probably already familiar with the ArrayList class from
the Java API. It is a favorite among Java programmers, because it
provides a quick way to manage a set of objects. Its counterpart, the
LinkedList class, provides the same basic functionality with, as the
name implies, an underlying linked implementation. Both store ele-

ments defined by a generic parameter E.

Both ArrayList and LinkedList implement the java.util.List interface.
Some of the methods in the List interface are shown in Figure 6.4.

Key concept
The Java API does not provide a class
that implements an ordered list.

Method
add(E element)
add(int index, E element)
get(int index)
remove(int index)
remove(E object)
set(int index, E element)
size()

Description
Adds an element to the end of the list.
Inserts an element at the specified index.
Returns the element at the specified index.
Removes the element at the specified index.
Removes the first occurrence of the specified object.
Replaces the element at the specified index.
Returns the number of elements in the list.

Figure 6.4 Some methods in the java.util.List interface

M06_LEWI3322_CH06_pp155-194.indd 158 19/02/13 3:02 PM

 6.3 Using Unordered Lists: Program of Study 159

Before looking at our own implementation of lists, let’s look at a couple of ex-
amples that use lists provided by the Java API.

6.3 using unordered Lists: program of study

The list of courses a student takes in order to fulfill degree requirements is some-
times called a program of study. Let’s look at an example that manages a simpli-
fied program of study. We’ll use the LinkedList class from the Java API, adding
some unordered list operations, to manage the list of courses.

Listing 6.1 contains a main method that creates a ProgramOfStudy object and
uses it to manage a few specific courses. It first adds a few initial courses, one af-
ter the other, to the end of the list. Then a second CS course is inserted into the list
after the existing CS course. Then a specific THE course is found, and its grade is
updated. Finally, a GER course is replaced by a FRE course.

After manipulating the list of courses in these specific ways, the main method
prints the entire ProgramOfStudy object and then saves it to disk so that it can be
retrieved and modified further at a later time.

import java.io.IOException;

/**
 * Demonstrates the use of a list to manage a set of objects.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class POSTester
{
 /**
 * Creates and populates a Program of Study. Then saves it using
 * serialization.
 */
 public static void main(String[] args) throws IOException
 {
 ProgramOfStudy pos = new ProgramOfStudy();

L i s t i n g 6 . 1

M06_LEWI3322_CH06_pp155-194.indd 159 19/02/13 3:02 PM

160 chapter 6 Lists

 pos.addCourse(new Course("CS", 101, "Introduction to Programming", "A-"));
 pos.addCourse(new Course("ARCH", 305, "Building Analysis", "A"));
 pos.addCourse(new Course("GER", 210, "Intermediate German"));
 pos.addCourse(new Course("CS", 320, "Computer Architecture"));
 pos.addCourse(new Course("THE", 201, "The Theatre Experience"));

 Course arch = pos.find("CS", 320);
 pos.addCourseAfter(arch, new Course("CS", 321, "Operating Systems"));

 Course theatre = pos.find("THE", 201);
 theatre.setGrade("A-");

 Course german = pos.find("GER", 210);
 pos.replace(german, new Course("FRE", 110, "Beginning French", "B+"));

 System.out.println(pos);

 pos.save("ProgramOfStudy");
 }
}

L i s t i n g 6 . 1 continued

The ProgramOfStudy class is shown in Listing 6.2 and the Course class is
shown in Listing 6.3. First note that the instance variable called list is declared
to be of type List<Course>, which refers to the interface. In the constructor, a
new LinkedList<Course> object is instantiated. If desired, this could be
changed to an ArrayList<Course> object without any other changes to the
class.

The methods addCourse, find, addCourseAfter, and replace perform the
various core operations needed to update the program of study. They essentially
add unordered list operations to the basic list operations provided by the
LinkedList class.

The iterator method returns an Iterator object. This method was not used
in the ProgramOfStudyTester program, but it is a key operation. Iterators are
discussed in detail in Chapter 7.

M06_LEWI3322_CH06_pp155-194.indd 160 19/02/13 3:02 PM

 6.3 Using Unordered Lists: Program of Study 161

Finally, the save and load methods are used to write the ProgramOfStudy
object to a file and to read it back in, respectively. Unlike text-based I/O
operations we’ve seen in previous examples, this one uses a process called serial-
ization to read and write the object as a binary stream. So with just a few lines of
code, an object can be stored with its current state completely intact. In this case,
that means all courses currently stored in the Program of Study list are stored as
part of the object.

Note that the ProgramOfStudy and Course classes implement the
Serializable interface. In order for an object to be saved using serialization, its
class must implement Serializable. There are no methods in the Serializable
interface—it is used simply to indicate that the object may be converted to a seri-
alized representation. The ArrayList and LinkedList classes implement
Serializable.

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;

L I S T I N G 6 . 2

Serializable

public class Course implements Serializable

indicates that this class can be serialized

The Serializable interface contains no methods.

M06_LEWI3322_CH06_pp155-194.indd 161 01/03/13 10:54 AM

162 chapter 6 Lists

/**
 * Represents a Program of Study, a list of courses taken and planned, for an
 * individual student.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class ProgramOfStudy implements Iterable<Course>, Serializable
{
 private List<Course> list;

 /**
 * Constructs an initially empty Program of Study.
 */
 public ProgramOfStudy()
 {
 list = new LinkedList<Course>();
 }

 /**
 * Adds the specified course to the end of the course list.
 *
 * @param course the course to add
 */
 public void addCourse(Course course)
 {
 if (course != null)
 list.add(course);
 }

 /**
 * Finds and returns the course matching the specified prefix and number.
 *
 * @param prefix the prefix of the target course
 * @param number the number of the target course
 * @return the course, or null if not found
 */
 public Course find(String prefix, int number)
 {
 for (Course course : list)
 if (prefix.equals(course.getPrefix()) &&
 number == course.getNumber())
 return course;
 return null;
 }

L i s t i n g 6 . 2 continued

M06_LEWI3322_CH06_pp155-194.indd 162 19/02/13 3:02 PM

 6.3 Using Unordered Lists: Program of Study 163

 /**
 * Adds the specified course after the target course. Does nothing if
 * either course is null or if the target is not found.
 *
 * @param target the course after which the new course will be added
 * @param newCourse the course to add
 */
 public void addCourseAfter(Course target, Course newCourse)
 {
 if (target == null || newCourse == null)
 return;

 int targetIndex = list.indexOf(target);
 if (targetIndex != -1)
 list.add(targetIndex + 1, newCourse);
 }

 /**
 * Replaces the specified target course with the new course. Does nothing if
 * either course is null or if the target is not found.
 *
 * @param target the course to be replaced
 * @param newCourse the new course to add
 */
 public void replace(Course target, Course newCourse)
 {
 if (target == null || newCourse == null)
 return;

 int targetIndex = list.indexOf(target);
 if (targetIndex != -1)
 list.set(targetIndex, newCourse);
 }

 /**
 * Creates and returns a string representation of this Program of Study.
 *
 * @return a string representation of the Program of Study
 */

 public String toString()
 {
 String result = "";
 for (Course course : list)

L i s t i n g 6 . 2 continued

M06_LEWI3322_CH06_pp155-194.indd 163 19/02/13 3:02 PM

164 chapter 6 Lists

 result += course + "\n";
 return result;
 }

 /**
 * Returns an iterator for this Program of Study.
 *
 * @return an iterator for the Program of Study
 */
 public Iterator<Course> iterator()
 {
 return list.iterator();
 }

 /**
 * Saves a serialized version of this Program of Study to the specified
 * file name.
 *
 * @param fileName the file name under which the POS will be stored
 * @throws IOException
 */
 public void save(String fileName) throws IOException
 {
 FileOutputStream fos = new FileOutputStream(fileName);
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(this);
 oos.flush();
 oos.close();
 }

 /**
 * Loads a serialized Program of Study from the specified file.
 *
 * @param fileName the file from which the POS is read
 * @return the loaded Program of Study
 * @throws IOException
 * @throws ClassNotFoundException
 */
 public static ProgramOfStudy load(String fileName)
 throws IOException, ClassNotFoundException
 {

L i s t i n g 6 . 2 continued

M06_LEWI3322_CH06_pp155-194.indd 164 19/02/13 3:02 PM

 6.3 Using Unordered Lists: Program of Study 165

 FileInputStream fis = new FileInputStream(fileName);
 ObjectInputStream ois = new ObjectInputStream(fis);
 ProgramOfStudy pos = (ProgramOfStudy) ois.readObject();
 ois.close();

 return pos;
 }
}

L i s t i n g 6 . 2 continued

import java.io.Serializable;

/**
 * Represents a course that might be taken by a student.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class Course implements Serializable
{
 private String prefix;
 private int number;
 private String title;
 private String grade;

 /**
 * Constructs the course with the specified information.
 *
 * @param prefix the prefix of the course designation
 * @param number the number of the course designation
 * @param title the title of the course
 * @param grade the grade received for the course
 */
 public Course(String prefix, int number, String title, String grade)
 {
 this.prefix = prefix;

L i s t i n g 6 . 3

M06_LEWI3322_CH06_pp155-194.indd 165 19/02/13 3:02 PM

166 chapter 6 Lists

 this.number = number;
 this.title = title;
 if (grade == null)
 this.grade = "";
 else
 this.grade = grade;
 }

 /**
 * Constructs the course with the specified information, with no grade
 * established.
 *
 * @param prefix the prefix of the course designation
 * @param number the number of the course designation
 * @param title the title of the course
 */
 public Course(String prefix, int number, String title)
 {
 this(prefix, number, title, "");
 }

 /**
 * Returns the prefix of the course designation.
 *
 * @return the prefix of the course designation
 */
 public String getPrefix()
 {
 return prefix;
 }

 /**
 * Returns the number of the course designation.
 *
 * @return the number of the course designation
 */
 public int getNumber()
 {
 return number;
 }

L i s t i n g 6 . 3 continued

M06_LEWI3322_CH06_pp155-194.indd 166 19/02/13 3:02 PM

 6.3 Using Unordered Lists: Program of Study 167

 /**
 * Returns the title of this course.
 *
 * @return the prefix of the course
 */
 public String getTitle()
 {
 return title;
 }

 /**
 * Returns the grade for this course.
 *
 * @return the grade for this course
 */
 public String getGrade()
 {
 return grade;
 }

 /**
 * Sets the grade for this course to the one specified.
 *
 * @param grade the new grade for the course
 */
 public void setGrade(String grade)
 {
 this.grade = grade;
 }

 /**
 * Returns true if this course has been taken if a grade has been
 * received.
 *
 * @return true if this course has been taken and false otherwise
 */
 public boolean taken()
 {
 return !grade.equals("");
 }

L i s t i n g 6 . 3 continued

M06_LEWI3322_CH06_pp155-194.indd 167 19/02/13 3:02 PM

168 chapter 6 Lists

 /**
 * Determines if this course is equal to the one specified, based on the
 * course designation (prefix and number).
 *
 * @return true if this course is equal to the parameter
 */
 public boolean equals(Object other)
 {
 boolean result = false;
 if (other instanceof Course)
 {
 Course otherCourse = (Course) other;
 if (prefix.equals(otherCourse.getPrefix()) &&
 number == otherCourse.getNumber())
 result = true;
 }
 return result;
 }

 /**
 * Creates and returns a string representation of this course.
 *
 * @return a string representation of the course
 */
 public String toString()
 {
 String result = prefix + " " + number + ": " + title;
 if (!grade.equals(""))
 result += " [" + grade + "]";
 return result;
 }
}

L i s t i n g 6 . 3 continued

A UML class diagram that describes the relationships among the classes in the
ProgramOfStudy example is shown in Figure 6.5.

M06_LEWI3322_CH06_pp155-194.indd 168 19/02/13 3:02 PM

 6.3 Using Unordered Lists: Program of Study 169

Course

prefix : String
number : int
title : String
grade : String

get(Prefix) : String
getNumber() : int
getTitle() : String
getGrade() : String
setGrade(String grade) : void
taken() : boolean
equals(Object other) : boolean
toString() : String

List

T

LinkedList<Course>

main(String[] args)

POSTester

ProgramOfStudy

list : List<course>

addCourse(Course course) : void
find(String prefix : int number) : Course
addCourseAfter(Course target : Course newCourse) : void
replaced(Course target : Course newCourse) : void
toString() : String
iterator() : iterator<Course>
save(String fileName) : void
load(String fileName) : ProgramOfStudy

Figure 6.5 UML description of the ProgramOfStudy program

M06_LEWI3322_CH06_pp155-194.indd 169 19/02/13 3:02 PM

170 chapter 6 Lists

6.4 using indexed Lists: josephus

Flavius Josephus was a Jewish historian of the first century. Legend has it that he
was one of a group of 41 Jewish rebels who decided to kill themselves rather than
surrender to the Romans, who had them trapped. They decided to form a circle
and to kill every third person until no one was left. Josephus, not wanting to die,

calculated where he needed to stand so that he would be the last one
alive. Thus was born a class of problems referred to as the Josephus
problem. These problems involve finding the order of events when
events in a list are not taken in order but, rather, are taken every ith
element in a cycle until none remains.

For example, suppose that we have a list of seven elements numbered from 1 to 7:

1 2 3 4 5 6 7

If we were to remove every third element from the list, the first element to be
removed would be number 3, leaving the list

1 2 4 5 6 7

The next element to be removed would be number 6, leaving the list

1 2 4 5 7

The elements are thought of as being in a continuous cycle, so when we reach
the end of the list, we continue counting at the beginning. Therefore, the next
element to be removed would be number 2, leaving the list

1 4 5 7

The next element to be removed would be number 7, leaving the list

1 4 5

The next element to be removed would be number 5, leaving the list

1 4

The next-to-last element to be removed would be number 1, leaving the num-
ber 4 as the last element on the list.

Listing 6.4 illustrates a generic implementation of the Josephus problem, allowing
the user to input the number of items in the list and the gap between elements. Initially,
a list is filled with integers representing the soldiers. Each element is then removed from
the list, one at a time, by computing the next index position in the list to be removed.

The one complication in this process is computation of the next index position
to be removed. This is particularly interesting because the list collapses on itself

Key concept
The Josephus problem is a classic
computing problem that is appropri-
ately solved with indexed lists.

M06_LEWI3322_CH06_pp155-194.indd 170 19/02/13 3:02 PM

 6.4 Using Indexed Lists: Josephus 171

as elements are removed. For example, the element number 6 from our previous
example should be the second element removed from the list. However, once element
3 has been removed from the list, element 6 is no longer in its original position.
Instead of being at index position 5 in the list, it is now at index position 4.

import java.util.*;

/**
 * Demonstrates the use of an indexed list to solve the Josephus problem.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class Josephus

{

 /**
 * Continue around the circle eliminating every nth soldier
 * until all of the soldiers have been eliminated.
 */
 public static void main(String[] args)
 {
 int numPeople, skip, targetIndex;
 List<String> list = new ArrayList<String>();
 Scanner in = new Scanner(System.in);

 // get the initial number of soldiers
 System.out.print("Enter the number of soldiers: ");
 numPeople = in.nextInt();
 in.nextLine();

 // get the number of soldiers to skip
 System.out.print("Enter the number of soldiers to skip: ");
 skip = in.nextInt();

 // load the initial list of soldiers
 for (int count = 1; count <= numPeople; count++)
 {
 list.add("Soldier " + count);
 }
 targetIndex = skip;
 System.out.println("The order is: ");

L i s t i n g 6 . 4

M06_LEWI3322_CH06_pp155-194.indd 171 19/02/13 3:02 PM

172 chapter 6 Lists

6.5 a List aDt

Now let’s explore our own implementation of a list collection. We’ll go beyond
what the Java API provides and include full implementations of unordered and
ordered lists.

There is a set of operations that is common to both ordered and
unordered lists. These common operations are shown in Figure 6.6.
They include operations to remove and examine elements, as well as
classic operations such as isEmpty and size. The contains opera-
tion is also supported by both list types, which enables the user to
determine whether a list contains a particular element.

 // Treating the list as circular, remove every nth element
 // until the list is empty
 while (!list.isEmpty())
 {
 System.out.println(list.remove(targetIndex));
 if (list.size() > 0)
 targetIndex = (targetIndex + skip) % list.size();
 }
 }
}

L i s t i n g 6 . 4 continued

Key concept
Many common operations can be
defined for all list types. The
differences between them stem from
how elements are added.

Operation

removeFirst

removeLast

remove

first

last

contains

isEmpty

size

Description

Removes the first element from the list.

Removes the last element from the list.

Removes a particular element from the list.

Examines the element at the front of the list.

Examines the element at the rear of the list.

Determines if the list contains a particular element.

Determines if the list is empty.

Determines the number of elements on the list.

Figure 6.6 The common operations on a list

M06_LEWI3322_CH06_pp155-194.indd 172 19/02/13 3:02 PM

 6.5 A List ADT 173

Conceptually, the operations particular to an indexed list make use of its ability
to reference elements by their index. A new element can be inserted into the list at
a particular index, or it can be added to the rear of the list without specifying an
index at all. Note that if an element is inserted or removed, the elements at higher
indexes are either shifted up to make room or shifted down to close the gap.
Alternatively, the element at a particular index can be set, which overwrites the ele-
ment currently at that index and therefore does not cause other elements to shift.

We can capitalize on the fact that both ordered lists and unordered lists share a
common set of operations. These operations need to be defined only once.
Therefore, we will define three list interfaces: one with the common operations
and two with the operations particular to each list type. Inheritance can be used
with interfaces, just as it can with classes. The interfaces of the particular list types
extend the common list definition. This relationship among the interfaces is
shown in Figure 6.9.

Listings 6.5 through 6.7 show the Java interfaces corresponding to the UML
diagram in Figure 6.9.

Operation

add

Description

Adds an element to the list.

Figure 6.7 The operation particular to an ordered list

adding elements to a List
The differences between ordered and unordered lists generally center on how
elements are added to the list. In an ordered list, we need only specify the new
element to add. Its position in the list is based on its key value. This operation is
shown in Figure 6.7.

An unordered list supports three variations of the add operation. Elements can
be added to the front of the list, to the rear of the list, or after a particular element
that is already in the list. These operations are shown in Figure 6.8.

Operation

addToFront

addToRear

addAfter

Description

Adds an element to the front of the list.

Adds an element to the rear of the list.

Adds an element after a particular element already in the list.

Figure 6.8 The operations particular to an unordered list

M06_LEWI3322_CH06_pp155-194.indd 173 19/02/13 3:02 PM

174 chapter 6 Lists

<<interface>>

ListADT

isEmpty() : boolean
size() : int
iterator() : Iterator
toString() : String

removeFirst() : T
removeLast() : T
remove(T element) : T
first() : T
last() : T

T

<<interface>>

OrderedListADT

add(T element) : void

T

<<interface>>

UnorderedListADT

addToFront(T element) : void
addToRear(T element) : void
addAfter(T element, T target) : void

T

Figure 6.9 Using inheritance to define list interfaces

package jsjf;
import java.util.Iterator;

/**
 * ListADT defines the interface to a general list collection. Specific
 * types of lists will extend this interface to complete the
 * set of necessary operations.
 *

L i s t i n g 6 . 5

M06_LEWI3322_CH06_pp155-194.indd 174 19/02/13 3:02 PM

 6.5 A List ADT 175

 * @author Lewis and Chase
 * @version 4.0
 */
public interface ListADT<T> extends Iterable<T>
{
 /**
 * Removes and returns the first element from this list.
 *
 * @return the first element from this list
 */
 public T removeFirst();

 /**
 * Removes and returns the last element from this list.
 *
 * @return the last element from this list
 */
 public T removeLast();

 /**
 * Removes and returns the specified element from this list.
 *
 * @param element the element to be removed from the list
 */
 public T remove(T element);

 /**
 * Returns a reference to the first element in this list.
 *
 * @return a reference to the first element in this list
 */
 public T first();

 /**
 * Returns a reference to the last element in this list.
 *
 * @return a reference to the last element in this list
 */
 public T last();

L i s t i n g 6 . 5 continued

M06_LEWI3322_CH06_pp155-194.indd 175 19/02/13 3:02 PM

176 chapter 6 Lists

 /**
 * Returns true if this list contains the specified target element.
 *
 * @param target the target that is being sought in the list
 * @return true if the list contains this element
 */
 public boolean contains(T target);

 /**
 * Returns true if this list contains no elements.
 *
 * @return true if this list contains no elements
 */
 public boolean isEmpty();

 /**
 * Returns the number of elements in this list.
 *
 * @return the integer representation of number of elements in this list
 */
 public int size();

 /**
 * Returns an iterator for the elements in this list.
 *
 * @return an iterator over the elements in this list
 */
 public Iterator<T> iterator();

 /**
 * Returns a string representation of this list.
 *
 * @return a string representation of this list
 */
 public String toString();
}

L i s t i n g 6 . 5 continued

M06_LEWI3322_CH06_pp155-194.indd 176 19/02/13 3:02 PM

 6.5 A List ADT 177

package jsjf;

/**
 * OrderedListADT defines the interface to an ordered list collection. Only
 * Comparable elements are stored, kept in the order determined by
 * the inherent relationship among the elements.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public interface OrderedListADT<T> extends ListADT<T>
{
 /**
 * Adds the specified element to this list at the proper location
 *
 * @param element the element to be added to this list
 */
 public void add(T element);
}

L i s t i n g 6 . 6

package jsjf;

/**
 * UnorderedListADT defines the interface to an unordered list collection.
 * Elements are stored in any order the user desires.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public interface UnorderedListADT<T> extends ListADT<T>
{
 /**
 * Adds the specified element to the front of this list.
 *
 * @param element the element to be added to the front of this list
 */
 public void addToFront(T element);

L i s t i n g 6 . 7

M06_LEWI3322_CH06_pp155-194.indd 177 19/02/13 3:02 PM

178 chapter 6 Lists

 /**
 * Adds the specified element to the rear of this list.
 *
 * @param element the element to be added to the rear of this list
 */
 public void addToRear(T element);

 /**
 * Adds the specified element after the specified target.
 *
 * @param element the element to be added after the target
 * @param target the target is the item that the element will be added
 * after
 */
 public void addAfter(T element, T target);
}

L i s t i n g 6 . 7 continued

6.6 implementing Lists with arrays

As we’ve seen in previous chapters, an array-based implementation of a collection
can fix one end of the list at index 0 and shift elements as needed. This is similar
to our array-based implementation of a stack from Chapter 3. We dismissed that
approach for queue in Chapter 5 because its operations add and remove elements
from both ends. General lists also add and remove from either end, but they insert
and remove in the middle of the list, as well. So shifting of elements cannot be
avoided. A circular array approach could be used, but that will not eliminate the
need to shift elements when adding or removing elements from the middle of the list.

Figure 6.10 depicts an array implementation of a list with the front of the list
fixed at index 0. The integer variable rear represents the number of elements in
the list and the next available slot for adding an element to the rear of the list.

Note that Figure 6.10 applies to both ordered and unordered lists. First we will
explore the common operations. After Figure 6.10 we show the header and class-
level data of the ArrayList class.

M06_LEWI3322_CH06_pp155-194.indd 178 19/02/13 3:02 PM

 6.6 Implementing Lists with Arrays 179

A

0

B

1

C

2

D

3 4 5 6 7 ...

rear 4

Figure 6.10 An array implementation of a list

/**
 * ArrayList represents an array implementation of a list. The front of
 * the list is kept at array index 0. This class will be extended
 * to create a specific kind of list.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public abstract class ArrayList<T> implements ListADT<T>, Iterable<T>
{
 private final static int DEFAULT_CAPACITY = 100;
 private final static int NOT_FOUND = -1;
 protected int rear;
 protected T[] list;
 protected int modCount;

 /**
 * Creates an empty list using the default capacity.
 */
 public ArrayList()
 {
 this(DEFAULT_CAPACITY);
 }

 /**
 * Creates an empty list using the specified capacity.
 *
 * @param initialCapacity the size of the array list

 */

M06_LEWI3322_CH06_pp155-194.indd 179 19/02/13 3:02 PM

180 chapter 6 Lists

The ArrayList class implements the ListADT interface defined earlier. It also
implements the Iterable interface. That interface, and the modCount variable,
are discussed in Chapter 7.

the remove operation
This variation of the remove operation requires that we search for the element
passed in as a parameter and remove it from the list if it is found. Then, elements
at higher indexes in the array are shifted down in the list to fill in the gap.
Consider what happens if the element to be removed is the first element in the list.
In this case, there is a single comparison to find the element, followed by n–1
shifts to shift the elements down to fill the gap. On the opposite extreme, what
happens if the element to be removed is the last element in the list? In this case, we
would require n comparisons to find the element, and none of the remaining ele-
ments would need to be shifted. As it turns out, this implementation of the
remove operation will always require exactly n comparisons and shifts, and thus
the operation is O(n). Note that if we were to use a circular array implementation,
it would only improve the performance of the special case when the element to be
removed is the first element. This operation can be implemented as follows:

 public ArrayList(int initialCapacity)
 {
 rear = 0;
 list = (T[])(new Object[initialCapacity]);
 modCount = 0;

 }

/**
 * Removes and returns the specified element.
 *
 * @param element the element to be removed and returned from the list
 * @return the removed element
 * @throws ElementNotFoundException if the element is not in the list
 */
public T remove(T element)
{
 T result;
 int index = find(element);

M06_LEWI3322_CH06_pp155-194.indd 180 19/02/13 3:02 PM

 6.6 Implementing Lists with Arrays 181

The remove method makes use of a method called find, which finds the element
in question, if it exists in the list, and returns its index. The find method returns a
constant called NOT_FOUND if the element is not in the list. The NOT_FOUND constant
is equal to –1 and is defined in the ArrayList class. If the element is not found,
a NoSuchElementException is generated. If it is found, the elements at higher
indexes are shifted down, the rear value is updated, and the element is returned.

The find method supports the implementation of a public operation on the
list, rather than defining a new operation. Therefore, the find method is declared
with private visibility. The find method can be implemented as follows:

 if (index == NOT_FOUND)
 throw new ElementNotFoundException("ArrayList");
 result = list[index];
 rear--;

 // shift the appropriate elements
 for (int scan=index; scan < rear; scan++)
 list[scan] = list[scan+1];
 list[rear] = null;
 modCount++;
 return result;
}

/**
 * Returns the array index of the specified element, or the
 * constant NOT_FOUND if it is not found.
 *
 * @param target the target element
 * @return the index of the target element, or the
 * NOT_FOUND constant
 */
private int find(T target)
{
 int scan = 0;
 int result = NOT_FOUND;
 if (!isEmpty())
 while (result == NOT_FOUND && scan < rear)
 if (target.equals(list[scan]))
 result = scan;
 else
 scan++;
 return result;

}

M06_LEWI3322_CH06_pp155-194.indd 181 19/02/13 3:02 PM

182 chapter 6 Lists

Note that the find method relies on the equals method to determine whether
the target has been found. It’s possible that the object passed into the method is an
exact copy of the element being sought. In fact, it may be an alias of the element
in the list. However, if the parameter is a separate object, it may not contain all
aspects of the element being sought. Only the key characteristics on which the
equals method is based are important.

The logic of the find method could have been incorporated into the remove
method, though it would have made the remove method somewhat complicated.
When appropriate, such support methods should be defined to keep each method
readable. Furthermore, in this case, the find support method is useful in imple-
menting the contains operation, as we will now explore.

D e s i g n F o c u s

The overriding of the equals method and the implementation of the Comparable
interface are excellent examples of the power of object-oriented design. We can
create implementations of collections that can handle classes of objects that
have not yet been designed as long as those objects provide a definition of
equality and/or a method of comparison between objects of the class.

D e s i g n F o c u s

Separating out private methods such as the find method in the ArrayList
class provides multiple benefits. First, it simplifies the definition of the already
complex remove method. Second, it allows us to use the find method to imple-
ment the contains operation as well as the addAfter method for an
ArrayUnorderedList. Notice that the find method does not throw an
ElementNotFound exception. It simply returns a value (–1), signifying that the
element was not found. In this way, the calling routine can decide how to handle
the fact that the element was not found. In the remove method, that means
throwing an exception. In the contains method, that means returning false.

the contains operation
The purpose of the contains operation is to determine whether a particular ele-
ment is currently contained in the list. As we discussed, we can use the find sup-
port method to create a fairly straightforward implementation:

M06_LEWI3322_CH06_pp155-194.indd 182 19/02/13 3:02 PM

 6.6 Implementing Lists with Arrays 183

If the target element is not found, the contains method returns false. If it is
found, it returns true. A carefully constructed return statement ensures the
proper return value. Because this method is performing a linear search of our list,
our worst case will be that the element we are searching for is not in the list. This
case would require n comparisons. We would expect this method to require, on
average, n/2 comparisons, which results in the operation being O(n).

the add operation for an ordered List
The add operation is the only way an element can be added to an ordered list. No
location is specified in the call because the elements themselves determine their
order. Very much like the remove operation, the add operation requires a combi-
nation of comparisons and shifts: comparisons to find the correct location in the
list and then shifts to open a position for the new element. Looking at the two
extremes, if the element to be added to the list belongs at the front of the list, that
will require one comparison, and then the other n–1 elements in the list will need
to be shifted. If the element to be added belongs at the rear of the list, this will re-
quire n comparisons, and none of the other elements in the list will need to be
shifted. Like the remove operation, the add operation requires n comparisons and
shifts each time it is executed, and thus the operation is O(n). The add operation
can be implemented as follows:

/**
 * Returns true if this list contains the specified element.
 *
 * @param target the target element
 * @return true if the target is in the list, false otherwise
 */
public boolean contains(T target)
{
 return (find(target) != NOT_FOUND);
}

/**
 * Adds the specified Comparable element to this list, keeping
 * the elements in sorted order.
 *
 * @param element the element to be added to the list

 */

M06_LEWI3322_CH06_pp155-194.indd 183 19/02/13 3:02 PM

184 chapter 6 Lists

public void add(T element)
{
 if (!(element instanceof Comparable))
 throw new NonComparableElementException("OrderedList");

 Comparable<T> comparableElement = (Comparable<T>)element;

 if (size() == list.length)
 expandCapacity();

 int scan = 0;

 // find the insertion location

 while (scan < rear && comparableElement.compareTo(list[scan]) > 0)

 scan++;

 // shift existing elements up one

 for (int shift=rear; shift > scan; shift--)

 list[shift] = list[shift-1];

 // insert element

 list[scan] = element;
 rear++;
 modCount++;

}

Note that only Comparable objects can be stored in an ordered list.
If the element isn’t Comparable, an exception is thrown. If it is
Comparable but cannot be validly compared to the elements in the
list, a ClassCastException will result, when the compareTo
method is invoked.

Recall that the Comparable interface defines the compareTo method that returns
a negative integer, zero, or positive integer value if the executing object is less than,
equal to, or greater than the parameter, respectively.

The unordered and indexed versions of a list do not require that the elements
they store be Comparable. It is a testament to the utility of object-oriented pro-
gramming that the various classes that implement these list variations can exist in
harmony despite these differences.

Key concept
Only Comparable objects can
be stored in an ordered list.

M06_LEWI3322_CH06_pp155-194.indd 184 19/02/13 3:02 PM

 6.6 Implementing Lists with Arrays 185

operations particular to unordered Lists
The addToFront and addToRear operations are similar to operations from other
collections and are therefore left as programming projects. Keep in mind that the
addToFront operation must shift the current elements in the list first, to make room
at index 0 for the new element. Thus we know that the addToFront operation will
be O(n) because it requires n–1 elements to be shifted. Like the push operation on
a stack, the addToRear operation will be O(1).

the addAfter operation for an unordered List
The addAfter operation accepts two parameters: one that represents the element
to be added and one that represents the target element that determines the place-
ment of the new element. The addAfter method must first find the target ele-
ment, shift the elements at higher indexes to make room, and then insert the new
element after it. Very much like the remove operation and the add operation for
ordered lists, the addAfter method requires a combination of n comparisons and
shifts and will be O(n).

/**
 * Adds the specified element after the specified target element.
 * Throws an ElementNotFoundException if the target is not found.
 *
 * @param element the element to be added after the target element
 * @param target the target that the element is to be added after
 */
public void addAfter(T element, T target)
{
 if (size() == list.length)
 expandCapacity();

 int scan = 0;

 // find the insertion point
 while (scan < rear && !target.equals(list[scan]))
 scan++;

 if (scan == rear)
 throw new ElementNotFoundException("UnorderedList");

 scan++;

 // shift elements up one

M06_LEWI3322_CH06_pp155-194.indd 185 19/02/13 3:02 PM

186 chapter 6 Lists

6.7 implementing Lists with Links

As we have seen with other collections, the use of a linked list is often another
convenient way to implement a linear collection. The common operations that
apply for ordered and unordered lists, as well as the particular operations for
each type, can be implemented with techniques similar to the ones we have used
before. We will examine a couple of the more interesting operations but will
leave most of them as programming projects.

First, the class header, class-level data, and constructor for our LinkedList
class are provided for context:

 for (int shift=rear; shift > scan; shift--)
 list[shift] = list[shift-1];

 // insert element

 list[scan] = element;
 rear++;
 modCount++;
}

/**
 * LinkedList represents a linked implementation of a list.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public abstract class LinkedList<T> implements ListADT<T>, Iterable<T>
{
 protected int count;
 protected LinearNode<T> head, tail;
 protected int modCount;

 /**
 * Creates an empty list.
 */
 public LinkedList()
 {
 count = 0;
 head = tail = null;
 modCount = 0;
 }

M06_LEWI3322_CH06_pp155-194.indd 186 19/02/13 3:02 PM

 6.7 Implementing Lists with Links 187

the remove operation
The remove operation is part of the LinkedList class shared by both implementa-
tions: unordered and ordered lists. The remove operation consists of making sure
that the list is not empty, finding the element to be removed, and then handling one
of four cases: the element to be removed is the only element in the list, the element
to be removed is the first element in the list, the element to be removed is the last
element in the list, or the element to be removed is in the middle of the list. In all
cases, the count is decremented by one. Unlike the remove operation for the array
version, the linked version does not require elements to be shifted to close the gap.
However, given that the worst case still requires n comparisons to determine that
the target element is not in the list, the remove operation is still O(n). An imple-
mentation of the remove operation follows.

/**
 * Removes the first instance of the specified element from this
 * list and returns it. Throws an EmptyCollectionException
 * if the list is empty. Throws a ElementNotFoundException if the
 * specified element is not found in the list.
 *
 * @param targetElement the element to be removed from the list
 * @return a reference to the removed element
 * @throws EmptyCollectionException if the list is empty
 * @throws ElementNotFoundException if the target element is not found
 */
public T remove(T targetElement) throws EmptyCollectionException,
 ElementNotFoundException
{
 if (isEmpty())
 throw new EmptyCollectionException("LinkedList");

 boolean found = false;
 LinearNode<T> previous = null;
 LinearNode<T> current = head;

 while (current != null && !found)
 if (targetElement.equals(current.getElement()))
 found = true;
 else
 {
 previous = current;
 current = current.getNext();
 }

M06_LEWI3322_CH06_pp155-194.indd 187 19/02/13 3:02 PM

188 chapter 6 Lists

 if (!found)
 throw new ElementNotFoundException("LinkedList");

 if (size() == 1) // only one element in the list
 head = tail = null;
 else if (current.equals(head)) // target is at the head
 head = current.getNext();
 else if (current.equals(tail)) // target is at the tail
 {
 tail = previous;
 tail.setNext(null);
 }
 else // target is in the middle
 previous.setNext(current.getNext());

 count--;
 modCount++;

 return current.getElement();
}

M06_LEWI3322_CH06_pp155-194.indd 188 19/02/13 3:02 PM

 Summary of Terms 189

Summary of Key Concepts
■	 List collections can be categorized as ordered, unordered, or indexed.

■	 The elements of an ordered list have an inherent relationship defining their
order.

■	 The elements of an unordered list are kept in whatever order the client chooses.

■	 An indexed list maintains a contiguous numeric index range for its elements.

■	 The Java API does not provide a class that implements an ordered list.

■	 Many common operations can be defined for all list types. The differences
between them stem from how elements are added.

■	 Interfaces can be used to derive other interfaces. The child interface contains
all abstract methods of the parent.

■	 An interface name can be used to declare an object reference variable. An inter-
face reference can refer to any object of any class that implements the interface.

■	 Interfaces enable us to make polymorphic references in which the method
that is invoked is based on the particular object being referenced at the time.

■	 The Josephus problem is a classic computing problem that is appropriately
solved with indexed lists.

■	 Only Comparable objects can be stored in an ordered list.

summary of terms
indexed list A list whose elements can be referenced using a numeric index.

josephus problem A classic computing problem whose goal is to find the
order in which elements are selected from a list by taking every ith element
cyclically until none remains.

natural ordering An expression of the ordering criteria used to determine
whether one object comes before another, often implemented using the
compareTo method.

ordered list A list whose elements are ordered in terms of some inherent
characteristic of the elements.

serialization A technique for representing an object as a stream of binary
digits, which allows objects to be read and written from files with their state
maintained.

unordered list A list whose elements have no inherent order but are ordered
by their placement in the list.

M06_LEWI3322_CH06_pp155-194.indd 189 19/02/13 3:02 PM

190 ChapTer 6 Lists

Self-review Questions
SR 6.1 Define: an ordered list, an unordered list, and an indexed list.

SR 6.2 What is the primary difference between an indexed list and an array?

SR 6.3 What is the purpose of the set and size methods that are part of
the Java Collections API framework?

SR 6.4 Why do the ArrayList and LinkedList classes implement the
Serializable interface?

SR 6.5 Why does an ordered list require that the elements they store be
Comparable?

SR 6.6 An array-based list of integers has 16 elements stored in it. What
would be the value of the variables front and rear?

SR 6.7 Why is the time to increase the capacity of the array on an add
operation considered negligible for the ArrayList implementation?

SR 6.8 Why is a circular array implementation not as attractive as an
implementation for a list as it was for a queue?

exercises
EX 6.1 Hand trace an ordered list X through the following operations.

 X.add(new Integer(20));
 X.add(new Integer(35));
 Object Y = X.first();
 X.add(new Integer(15));
 X.add(new Integer(10));
 X.add(new Integer(25));
 Object Y = X.removeLast();
 Object Y = X.remove(new Integer(35));
 X.add(new Integer(45));

EX 6.2 Given the resulting list X from Exercise 6.1, what would be the
result of each of the following?

 a. X.first();
 b. z = X.contains(new Integer(15));
 X.first();

 c. Y = X.remove(new Integer(10));
 X.first();

EX 6.3 Consider the class ProgramOfStudy discussed in the chapter
(Listing 6.2). Write a method addCourseBefore that would add
the specified course before the target course.

M06_LEWI3322_CH06_pp155-194.indd 190 01/03/13 10:54 AM

 Programming Projects 191

EX 6.4 What would happen if a programmer erroneously changes the
code snippet "list.add(targetIndex + 1, newCourse);" to
"list.set(targetIndex + 1, newCourse);"?

EX 6.5 Compare and contrast ordered, unordered and indexed lists in
terms of adding elements in them.

EX 6.6 Hand trace an unordered list through the following operations.

 X.addToFront(new Integer(20));
 X.addToRear(new Integer(35));
 Object Y = X.first();
 X.addAfter(new Integer(15), new Integer(20));
 X.addToFront(new Integer(10));
 X.addToRear(new Integer(25));
 Object Y = X.removeLast();
 Object Y = X.remove(new Integer(35));
 X.addAfter(new Integer(45), new Integer(15));

EX 6.7 Discuss the benefits provided by the private method find in the
ArrayList class. What is the logic behind keeping this method as
private?

programming projects
PP 6.1 Implement a stack using a LinkedList object to store the stack

elements.

PP 6.2 Implement a stack using an ArrayList object to store the stack
elements.

PP 6.3 Implement a queue using a LinkedList object to store the queue
elements.

PP 6.4 Implement a queue using an ArrayList object to store the queue
elements.

PP 6.5 Implement the Josephus problem using a queue, and compare the
performance of that algorithm to the ArrayList implementation
from this chapter.

PP 6.6 Implement an OrderedList using a LinkedList object to store
the list elements.

PP 6.7 Implement an OrderedList using an ArrayList object to store
the list elements.

PP 6.8 Complete the implementation of the ArrayList class.

PP 6.9 Complete the implementation of the ArrayOrderedList class.

M06_LEWI3322_CH06_pp155-194.indd 191 19/02/13 3:02 PM

192 ChapTer 6 Lists

PP 6.10 Complete the implementation of the ArrayUnorderedList class.

PP 6.11 Write an implementation of the LinkedList class.

PP 6.12 Write an implementation of the LinkedOrderedList class.

PP 6.13 Write an implementation of the LinkedUnorderedList class.

PP 6.14 Create an implementation of a doubly linked DoubleOrderedList
class. You will need to create a DoubleNode class, a DoubleList
class, and a DoubleIterator class.

PP 6.15 Create a graphical application that provides a button for add and
remove from an ordered list, a text field to accept a string as
input for add, and a text area to display the contents of the list
after each operation.

PP 6.16 Create a graphical application that provides a button for
addToFront, addToRear, addAfter, and remove from an unor-
dered list. Your application must provide a text field to accept a
string as input for any of the add operations. The user should be
able to select the element to be added after, and to select the
element to be removed.

PP 6.17 Modify the Course class from this chapter so that it implements
the Comparable interface. Order the courses first by department
and then by course number. Then write a program that uses an
ordered list to maintain a list of courses.

answers to Self-review Questions
SRA 6.1 An ordered list is a collection of objects ordered by value. An

unordered list is a collection of objects with no inherent order.
An indexed list is a collection of objects with no inherent order
that are ordered by index value.

SRA 6.2 An indexed list keeps its indexes contiguous. If an element is re-
moved, the positions of other elements “collapse” to eliminate the
gap. When an element is inserted, the indexes of other elements
are shifted to make room. The complexity of the algorithm re-
mains O(1). In an array, the shifting of elements is required,
which increases the complexity of the algorithm to O(n).

SRA 6.3 The set method replaces the element at the specified index and
the size method returns the number of elements in the list.

SRA 6.4 In order for an object to be saved using serialization, its class
must implement Serializable. There are no methods in the

M06_LEWI3322_CH06_pp155-194.indd 192 01/03/13 10:54 AM

 Answers to Self-Review Questions 193

Serializable interface—it is used simply to indicate that the
object may be converted to a serialized representation.
Serialization is a technique for representing an object as a stream
of binary digits, which allows objects to be read and written from
files with their state maintained. Therefore, the ArrayList and
LinkedList classes implement the Serializable interface to
 enable its objects to be saved in a file and retrieved later, as a
stream of binary digits.

SRA 6.5 An ordered list is a list whose elements are ordered in terms of
some inherent characteristic of the elements. The Comparable
 interface has a CompareTo method, implementing which imparts
the ability of natural ordering of the objects. In other words, it
sets an ordering criterion that is used to determine whether one
object comes before another.

SRA 6.6 The variable front would store the value 0 and the variable rear
would store the value 16.

SRA 6.7 Averaged over the total number of insertions into the list, the time
to enlarge the array has little effect on the total time.

SRA 6.8 The circular array implementation of a queue improved the
efficiency of the dequeue operation from O(n) to O(1) because it
eliminated the need to shift elements in the array. That is not the
case for a list, because we can add or remove elements anywhere
in the list, not just at the front or the rear.

M06_LEWI3322_CH06_pp155-194.indd 193 01/03/13 10:54 AM

M06_LEWI3322_CH06_pp155-194.indd 194 19/02/13 3:02 PM

 This page is intentionally left blank.

77

195

C H A P T E R
O B J E C T I V E S
■ Define an iterator and explore

its use.

■ Discuss the Iterator and
Iterable interfaces.

■ Explore the concept of fail-fast
collections.

■ Use iterators in various
situations.

■ Explore implementation options
related to iterators.

Iterators

We mentioned iterators in Chapter 6 in our discussion

of lists, but didn’t explore them in any detail. They are im-

portant enough to deserve their own chapter. Conceptually,

they provide a standard way to access each element of a col-

lection in turn, which is a common operation. And their

implementation in the Java API has some interesting nu-

ances that are worth exploring carefully.

M07_LEWI3322_CH07_pp195-212.indd 195 20/02/13 10:09 AM

196 CHAPTER 7 Iterators

7.1 What’s an Iterator?

An iterator is an object that allows the user to acquire and use each
element in a collection one at a time. It works in conjunction with a
collection but is a separate object. An iterator is a mechanism for
helping implement a collection.

Embracing the concept of an iterator consistently over the imple-
mentation of multiple collections makes it much easier to process

and manage those collections and the elements they contain. The Java API has a
consistent approach to iterators that are implemented by nearly all collections in
the class library. We will follow this approach in our own implementations.

Iterators are implemented in the Java API using two primary interfaces:

■ Iterator – used to define an object that can be used as an iterator.

■ Iterable – used to define a collection from which an iterator can be extracted.

A collection is Iterable, which commits it to providing an
Iterator when requested. For example, a LinkedList is Iterable,
which means it provides a method called iterator that can be
called to get an iterator over of the elements in the list. The names of
the interfaces make it fairly easy to keep them straight.

The abstract methods defined in these two interfaces are shown in
Figures 7.1 and 7.2. Both interfaces operate on a generic type, which is denoted by E
in these figures.

The Iterable interface has only one method, called iterator, that returns an
Iterator object. When you create the collection, you commit to the element
type, which is used to define the elements in the iterator.

KEY CONCEPT
An iterator is an object that provides
a way to access each element in a
collection in turn.

KEY CONCEPT
A collection is often defined as
Iterable, which means it provides
an Iterator when needed.

Method Description
boolean hasNext() Returns true if the iteration has more elements.

E next() Returns the next element in the iteration.

void remove() Removes the last element returned by the iteration from the
underlying collection.

FIguRE 7.1 The methods in the Iterator interface

Method Description
Iterator<E>iterator() Returns an iterator over a set of elements of type E.

FIguRE 7.2 The methods in the Iterable interface

M07_LEWI3322_CH07_pp195-212.indd 196 20/02/13 10:09 AM

 7.1 What’s an Iterator? 197

The Iterator interface contains three methods. The first two, hasNext and
next, can be used in concert to access the elements in turn. For example, if myList
is an ArrayList of Book objects, you could use the following code to print all
books in the list.

Iterator<Book> itr = myList.iterator();
while (itr.hasNext())
 System.out.println(itr.next());

In this example, the first line calls the iterator method of the collection to
obtain the Iterator<Book> object. Then a call to the hasNext method of the it-
erator is used as the condition of the while loop. Inside the loop, the next method
of the iterator is called to get the next book. When the iteration is exhausted, the
loop terminates.

The remove operation of the Iterator interface is provided as a convenience to
allow you to remove an element from a collection while iterating over it. The remove
method is considered an optional operation, and not all iterators implement it.

Now, you’ve probably realized that you could access the elements of a collec-
tion using a for-each loop as we’ve done in the past. The following code does the
same thing that the previous while loop accomplishes.

for (Book book : myList)
 System.out.println(book);

The for-each code is cleaner and shorter than the while loop code, and it will
often be the technique you’ll want to use. But you should be aware that both of
these examples are using iterators. Java provides the for-each construct specifi-
cally to simplify the processing of iterators. Behind the scenes, the for-each code is
translated into code that explicitly calls the iterator methods.

In fact, you can use a for-each loop only on an Iterable collection. Most of
the collections in the Java API are Iterable, and you can define your own collec-
tion objects to be Iterable as well.

So why would you ever use an explicit iterator with a while loop instead of the
cleaner for-each loop? Well, there are two basic reasons. First, you may not want to
process all elements in the iteration. If you’re looking for a particular element, for
example, and do not wish to process them all, you may choose to use an explicit it-
erator. (You could break out of the loop, but that may not be as clean.)

You may also choose to use an explicit iterator if you want to call
the iterator’s remove method. The for-each loop does not provide
explicit access to the iterator, so the only way you could do it would
be to call the remove method of the collection, and that would cause
a completely separate traversal of the collection data structure in or-
der to reach the element (again) to remove it.

KEY CONCEPT
The optional remove method of an
iterator makes it possible to remove
an element without having to
traverse the collection again.

M07_LEWI3322_CH07_pp195-212.indd 197 20/02/13 10:09 AM

198 CHAPTER 7 Iterators

Other Iterator Issues
We should note a couple of other issues related to iterators before we continue.
First, there is no assumption about the order in which an Iterator object deliv-

ers the elements from the collection. In the case of a list, there is a
linear order to the elements, so the iterator would probably follow
that order. In other cases, an iterator may follow a different order
that makes sense for that collection and its underlying data struc-
tures. Read the API documentation carefully before making any as-
sumptions about how an iterator delivers its elements.

Second, you should be aware that there is an intimate relationship between an itera-
tor and its collection. An iterator references elements that are still stored in the collec-
tion. Therefore, while an iterator is in use, there are at least two objects with references
to the element objects. Because of this relationship, the structure of the underlying col-
lection must not be modified while an iterator on that collection is actively being used.

Embracing this assumption, most of the iterators provided by collections in the
Java API are implemented to be fail-fast, which means that they will throw a

ConcurrentModificationException if the collection is modified
while an iterator is active. The idea is that the iterator will fail quickly
and cleanly, rather than permitting a problem to be introduced that
won’t be discovered until some unknown point in the future.

7.2 using Iterators: Program of Study Revisited

In Chapter 6 we examined a program that created a program of study for a student,
consisting of a list of the courses the student has taken and is planning to take.
Recall that a Course object stores course information such as the number and title,
as well as the grade the student received if she or he has already taken the course.

The ProgramOfStudy class maintains an unordered list of Course objects. In
Chapter 6 we examined various aspects of this class. Now we will focus on as-
pects of it that pertain to iterators. The ProgramOfStudy class is reprinted in
Listing 7.1 for convenience.

Note first that the ProgramOfStudy class implements the Iterable interface
using the Course class as the generic type. As discussed in the previous section,
that commits this class to implementing the iterator method, which returns an
Iterator object for the program of study. In this implementation, the iterator
method simply returns the Iterator object obtained from the LinkedList object
that stores the courses.

Thus a ProgramOfStudy object is Iterable, and the LinkedList it uses to
store the Course objects is Iterable as well. We’ll see both in use.

KEY CONCEPT
You should make no assumptions
about the order in which an iterator
delivers elements unless it is explic-
itly stated.

KEY CONCEPT
Most iterators are fail-fast and will
throw an exception if the collection
is modified while an iterator is active.

M07_LEWI3322_CH07_pp195-212.indd 198 20/02/13 10:09 AM

 7.2 Using Iterators: Program of Study Revisited 199

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Serializable;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;

/**
 * Represents a Program of Study, a list of courses taken and planned, for an
 * individual student.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class ProgramOfStudy implements Iterable<Course>, Serializable
{
 private List<Course> list;

 /**
 * Constructs an initially empty Program of Study.
 */
 public ProgramOfStudy()
 {
 list = new LinkedList<Course>();
 }

 /**
 * Adds the specified course to the end of the course list.
 *
 * @param course the course to add
 */
 public void addCourse(Course course)
 {
 if (course != null)
 list.add(course);
 }

 /**
 * Finds and returns the course matching the specified prefix and number.
 *
 * @param prefix the prefix of the target course

L I S T I N g 7 . 1

M07_LEWI3322_CH07_pp195-212.indd 199 20/02/13 10:09 AM

200 CHAPTER 7 Iterators

 * @param number the number of the target course
 * @return the course, or null if not found
 */
 public Course find(String prefix, int number)
 {
 for (Course course : list)
 if (prefix.equals(course.getPrefix()) &&
 number == course.getNumber())
 return course;

 return null;
 }

 /**
 * Adds the specified course after the target course. Does nothing if
 * either course is null or if the target is not found.
 *
 * @param target the course after which the new course will be added
 * @param newCourse the course to add
 */
 public void addCourseAfter(Course target, Course newCourse)
 {
 if (target == null || newCourse == null)
 return;

 int targetIndex = list.indexOf(target);
 if (targetIndex != -1)
 list.add(targetIndex + 1, newCourse);
 }

 /**
 * Replaces the specified target course with the new course. Does nothing if
 * either course is null or if the target is not found.
 *
 * @param target the course to be replaced
 * @param newCourse the new course to add
 */
 public void replace(Course target, Course newCourse)
 {
 if (target == null || newCourse == null)
 return;

 int targetIndex = list.indexOf(target);
 if (targetIndex != -1)
 list.set(targetIndex, newCourse);
 }

L I S T I N g 7 . 1 continued

M07_LEWI3322_CH07_pp195-212.indd 200 20/02/13 10:09 AM

 7.2 Using Iterators: Program of Study Revisited 201

 /**
 * Creates and returns a string representation of this Program of Study.
 *
 * @return a string representation of the Program of Study
 */
 public String toString()
 {
 String result = "";
 for (Course course : list)
 result += course + "\n";
 return result;
 }

 /**
 * Returns an iterator for this Program of Study.
 *
 * @return an iterator for the Program of Study
 */
 public Iterator<Course> iterator()
 {
 return list.iterator();
 }

 /**
 * Saves a serialized version of this Program of Study to the specified
 * file name.
 *
 * @param fileName the file name under which the POS will be stored
 * @throws IOException
 */
 public void save(String fileName) throws IOException
 {
 FileOutputStream fos = new FileOutputStream(fileName);
 ObjectOutputStream oos = new ObjectOutputStream(fos);
 oos.writeObject(this);
 oos.flush();
 oos.close();
 }

 /**
 * Loads a serialized Program of Study from the specified file.
 *
 * @param fileName the file from which the POS is read
 * @return the loaded Program of Study
 * @throws IOException
 * @throws ClassNotFoundException
 */

L I S T I N g 7 . 1 continued

M07_LEWI3322_CH07_pp195-212.indd 201 20/02/13 10:09 AM

202 CHAPTER 7 Iterators

Consider the toString method in the ProgramOfStudy class. It uses a for-
each loop on the linked list to scan through the list and append the description of
each course to the overall description. It can do this only because the LinkedList
class is Iterable.

The find method of ProgramOfStudy is similar in that it uses a for-each loop
to scan through the list of Course objects. In this case, however, the return state-
ment jumps out of the loop (and the method) as soon as the target course is found.

Printing Certain Courses
Now let’s examine a driver program that exercises our program of study in a new
way. Listing 7.2 contains a main method that first reads a previously created
ProgramOfStudy object stored in a file. (Recall that the ProgramOfStudy class
uses serialization to store the list of courses.) Then, after printing the entire list, it
prints only those courses that have been taken and in which the student received a
grade of A or A–.

Note that a for-each loop is used to examine each course and print only those
with high grades. That loop iterates over the ProgramOfStudy object called pos.
This is possible only because the ProgramOfStudy class is Iterable.

 public static ProgramOfStudy load(String fileName) throws IOException,
 ClassNotFoundException
 {
 FileInputStream fis = new FileInputStream(fileName);
 ObjectInputStream ois = new ObjectInputStream(fis);
 ProgramOfStudy pos = (ProgramOfStudy) ois.readObject();
 ois.close();

 return pos;
 }
}

L I S T I N g 7 . 1 continued

import java.io.FileInputStream;
import java.io.IOException;
import java.io.ObjectInputStream;

L I S T I N g 7 . 2

M07_LEWI3322_CH07_pp195-212.indd 202 20/02/13 10:09 AM

 7.2 Using Iterators: Program of Study Revisited 203

Removing Courses
Listing 7.3 contains yet another driver program. This example removes, from a
program of study, any course that doesn’t already have a grade. After an existing
ProgramOfStudy object is read from a file and printed, each course is examined
in turn, and if it has no grade, it is removed from the list.

This time, however, a for-each loop is not used to iterate over the Course ob-
jects. Instead, the iterator method of the ProgramOfStudy object is called ex-
plicitly, which returns an Iterator object. Then, using the hasNext and next
methods of the iterator, a while loop is used to iterate over the courses. An explicit
iterator is used in this case because of the remove operation. To remove a Course
object, we call the remove method of the iterator. If we had done this in a for-
each loop, we would have triggered a ConcurrentModificationException, as
discussed in the first section of this chapter.

/**
 * Demonstrates the use of an Iterable object (and the technique for reading
 * a serialized object from a file).
 *
 * @author Lewis and Chase
 */
public class POSGrades
{
 /**
 * Reads a serialized Program of Study, then prints all courses in which
 * a grade of A or A- was earned.
 */
 public static void main(String[] args) throws Exception
 {
 ProgramOfStudy pos = ProgramOfStudy.load("ProgramOfStudy");

 System.out.println(pos);

 System.out.println("Classes with Grades of A or A-\n");

 for (Course course : pos)
 {
 if (course.getGrade().equals("A") || course.getGrade().equals("A-"))
 System.out.println(course);
 }
 }
}

L I S T I N G 7 . 2 continued

M07_LEWI3322_CH07_pp195-212.indd 203 01/03/13 10:59 AM

204 CHAPTER 7 Iterators

import java.io.FileInputStream;
import java.io.ObjectInputStream;
import java.util.Iterator;

/**
 * Demonstrates the use of an explicit iterator.
 *
 * @author Lewis and Chase
 */
public class POSClear
{
 /**
 * Reads a serialized Program of Study, then removes all courses that
 * don't have a grade.
 */
 public static void main(String[] args) throws Exception
 {
 ProgramOfStudy pos = ProgramOfStudy.load("ProgramOfStudy");

 System.out.println(pos);

 System.out.println("Removing courses with no grades.\n");

 Iterator<Course> itr = pos.iterator();
 while (itr.hasNext())
 {
 Course course = itr.next();
 if (!course.taken())
 itr.remove();
 }

 System.out.println(pos);

 pos.save("ProgramOfStudy");
 }
}

L I S T I N g 7 . 3

M07_LEWI3322_CH07_pp195-212.indd 204 20/02/13 10:09 AM

 7.3 Implementing Iterators: With Arrays 205

7.3 Implementing Iterators: With Arrays

In Chapter 6 we explored the implementation of an array-based list. One thing
we didn’t show then was the implementation of the iterator for our own
ArrayList class. Let’s explore it now.

Listing 7.4 contains the ArrayListIterator class. It’s defined as
a private class, and therefore would actually be an inner class, part
of the ArrayList class from Chapter 6. This is an appropriate use
for an inner class, which has an intimate relationship with its outer
class.

The ArrayListIterator class maintains two integers: one for
the index of the current element in the iteration, and one to keep track of the
number of modifications made through the iterator. The constructor sets current
to 0 (the first element in the array) and sets the iteratorModCount to be equal to
the modCount of the collection itself.

The modCount variable is an integer defined in the outer ArrayList class. If
you go back to Chapter 6, you’ll see that anytime the collection was modified
(such as something being added to the collection), the modCount was incremented.
So when a new iterator is created, its modification count is set equal to the count
of the collection itself. If those two values get out of synch (because the collection
was updated), then the iterator will throw a ConcurrentModificationException.

The hasNext method checks the modification count and then re-
turns true if there are still elements to process, which in this case is
true if the current iterator index is less than the rear counter. Recall
that the rear counter is maintained by the outer collection class.

KEY CONCEPT
An iterator checks the modification
count to ensure that it stays consis-
tent with the modification count from
the collection when it was created.

KEY CONCEPT
An iterator class is often imple-
mented as an inner class of the col-
lection to which it belongs.

/**
 * ArrayListIterator iterator over the elements of an ArrayList.
 */
private class ArrayListIterator implements Iterator
{
 int iteratorModCount;
 int current;

 /**
 * Sets up this iterator using the specified modCount.
 *

L I S T I N g 7 . 4

M07_LEWI3322_CH07_pp195-212.indd 205 20/02/13 10:09 AM

206 CHAPTER 7 Iterators

 * @param modCount the current modification count for the ArrayList
 */
 public ArrayListIterator()
 {
 iteratorModCount = modCount;
 current = 0;
 }

 /**
 * Returns true if this iterator has at least one more element
 * to deliver in the iteration.
 *
 * @return true if this iterator has at least one more element to deliver
 * in the iteration
 * @throws ConcurrentModificationException if the collection has changed
 * while the iterator is in use
 */
 public boolean hasNext() throws ConcurrentModificationException
 {
 if (iteratorModCount != modCount)
 throw new ConcurrentModificationException();

 return (current < rear);
 }

 /**
 * Returns the next element in the iteration. If there are no
 * more elements in this iteration, a NoSuchElementException is
 * thrown.
 *
 * @return the next element in the iteration
 * @throws NoSuchElementException if an element not found exception occurs
 * @throws ConcurrentModificationException if the collection has changed
 */
 public T next() throws ConcurrentModificationException
 {
 if (!hasNext())
 throw new NoSuchElementException();

 current++;

 return list[current - 1];
 }

L I S T I N g 7 . 4 continued

M07_LEWI3322_CH07_pp195-212.indd 206 20/02/13 10:09 AM

/**
 * LinkedListIterator represents an iterator for a linked list of linear nodes.
 */
private class LinkedListIterator implements Iterator<T>
{

 7.4 Implementing Iterators: With Links 207

 /**
 * The remove operation is not supported in this collection.
 *
 * @throws UnsupportedOperationException if the remove method is called
 */
 public void remove() throws UnsupportedOperationException
 {
 throw new UnsupportedOperationException();
 }
}

L I S T I N g 7 . 4 continued

The next method returns the next element in the iteration and increments the
current index value. If the next method is invoked and there are no elements
left to process, then a NoSuchElementException is thrown.

In this implementation of the iterator, the remove operation is not supported
(remember, it’s considered optional). If this method is called, then an
UnsupportedOperationException is thrown.

7.4 Implementing Iterators: With Links

Similarly, an iterator for a collection using links can also be defined. Like the
ArrayListIterator class, the LinkedListIterator class (see Listing 7.5) is
implemented as a private inner class. The LinkedList outer class maintains its
own modCount that must stay in synch with the iterator’s stored value.

In this iterator, though, the value of current is a pointer to a LinearNode in-
stead of an integer index value. The hasNext method, therefore, simply confirms
that current is pointing to a valid node. The next method returns the element at
the current node and moves the current reference to the next node. As with our
ArrayListIterator, the remove method is not supported.

L I S T I N g 7 . 5

M07_LEWI3322_CH07_pp195-212.indd 207 20/02/13 10:09 AM

208 CHAPTER 7 Iterators

 private int iteratorModCount; // the number of elements in the collection
 private LinearNode<T> current; // the current position

 /**
 * Sets up this iterator using the specified items.
 *
 * @param collection the collection the iterator will move over
 * @param size the integer size of the collection
 */
 public LinkedListIterator()
 {
 current = head;
 iteratorModCount = modCount;
 }

 /**
 * Returns true if this iterator has at least one more element
 * to deliver in the iteration.
 *
 * @return true if this iterator has at least one more element to deliver
 * in the iteration
 * @throws ConcurrentModificationException if the collection has changed
 * while the iterator is in use
 */
 public boolean hasNext() throws ConcurrentModificationException
 {
 if (iteratorModCount != modCount)
 throw new ConcurrentModificationException();

 return (current != null);
 }

 /**
 * Returns the next element in the iteration. If there are no
 * more elements in this iteration, a NoSuchElementException is
 * thrown.
 *
 * @return the next element in the iteration
 * @throws NoSuchElementException if the iterator is empty
 */
 public T next() throws ConcurrentModificationException
 {
 if (!hasNext())
 throw new NoSuchElementException();

L I S T I N g 7 . 5 continued

M07_LEWI3322_CH07_pp195-212.indd 208 20/02/13 10:09 AM

 7.4 Implementing Iterators: With Links 209

 T result = current.getElement();
 current = current.getNext();
 return result;
 }

 /**
 * The remove operation is not supported.
 *
 * @throws UnsupportedOperationException if the remove operation is called
 */
 public void remove() throws UnsupportedOperationException
 {
 throw new UnsupportedOperationException();
 }
}

L I S T I N g 7 . 5 continued

M07_LEWI3322_CH07_pp195-212.indd 209 20/02/13 10:09 AM

Summary of Key Concepts
■ An iterator is an object that provides a way to access each element in a col-

lection in turn.

■ A collection is often defined as Iterable, which means it provides an
Iterator when needed.

■ The optional remove method of an iterator makes it possible to remove an
element without having to traverse the collection again.

■ Most iterators are fail-fast and will throw an exception if the collection is
modified while an iterator is active.

■ You should make no assumptions about the order in which an iterator deliv-
ers elements unless it is explicitly stated.

■ An iterator class is often implemented as an inner class of the collection to
which it belongs.

■ An iterator checks the modification count to ensure that it stays consistent
with the modification count from the collection when it was created.

Summary of Terms
iterator An object that allows the user to acquire and use each element in
the collection one at a time.

fail-fast An iterator that throws an exception if its collection is modified in
any way except through the iterator itself.

Self-Review Questions
SR 7.1 What is an iterator?

SR 7.2 What does the Iterable interface represent?

SR 7.3 What does the Iterator interface represent?

SR 7.4 What is the relationship between a for-each loop and iterators?

SR 7.5 Why might you need to use an explicit iterator instead of a for-
each loop?

SR 7.6 What does it mean for an iterator to be fail-fast?

SR 7.7 How is the fail-fast characteristic implemented?

210 CHAPTER 7 Iterators

M07_LEWI3322_CH07_pp195-212.indd 210 20/02/13 10:09 AM

 Answers to Self-Review Questions 211

Exercises
EX 7.1 Write a for-each loop that prints all elements in a collection of

Item objects called inventory. What is required for that loop to
work?

EX 7.2 Write a while loop that uses an explicit iterator to accomplish the
same thing as Exercise 7.1.

EX 7.3 Write a for-each loop that calls the addBonus method on each
SalaryAccount object in a collection called payroll. What is
 required for that loop to work?

EX 7.4 Write a while loop that uses an explicit iterator to accomplish the
same thing as Exercise 7.3.

Answers to Self-Review Questions
SRA 7.1 An iterator is an object that is used to process each element in a

collection one at a time.

SRA 7.2 The Iterable interface is implemented by a collection to formally
commit to providing an iterator when it is needed.

SRA 7.3 The Iterator interface is implemented by an interface and provides
methods for checking for, accessing, and removing elements.

SRA 7.4 A for-each loop can be used only with collections that implement
the Iterable interface. It is a syntactic simplification that can
also be accomplished using an iterator explicitly.

SRA 7.5 You may need to use an explicit iterator rather than a for-each
loop if you don’t plan on processing all elements in a collection or
if you may use the iterator’s remove method.

SRA 7.6 A fail-fast iterator will fail quickly and cleanly if the underlying
collection has been modified by something other than the iterator
itself.

SRA 7.7 An iterator notes the modification count of the collection when it
is created and, on subsequent operations, makes sure that that
value hasn’t changed. If it has, the iterator throws a
ConcurrentModificationException.

M07_LEWI3322_CH07_pp195-212.indd 211 20/02/13 2:55 PM

M07_LEWI3322_CH07_pp195-212.indd 212 20/02/13 10:09 AM

 This page is intentionally left blank.

88

213

C h a p t e r
O b j e C t i v e s

■	 Explain the underlying concepts
of recursion.

■	 Examine recursive methods and
unravel their processing steps.

■	 Define infinite recursion and
discuss ways to avoid it.

■	 Explain when recursion should
and should not be used.

■	 Demonstrate the use of recursion
to solve problems.

Recursion

Recursion is a powerful programming technique that

provides elegant solutions to certain problems. It is

particularly helpful in the implementation of various data

structures and in the process of searching and sorting data.

This chapter provides an introduction to recursive processing.

It contains an explanation of the basic concepts underlying

recursion and then explores the use of recursion in

programming.

M08_LEWI3322_CH08_pp213-240.indd 213 20/02/13 10:23 AM

214 Chapter 8 Recursion

8.1 recursive thinking

We know that one method can call another method to help it accomplish its goal.
Similarly, a method can also call itself to help accomplish its goal. Recursion is a
programming technique in which a method calls itself to fulfill its overall purpose.

Before we get into the details of how we use recursion in a pro-
gram, we need to explore the general concept of recursion. The ability
to think recursively is essential to being able to use recursion as a pro-
gramming technique.

In general, recursion is the process of defining something in terms
of itself. For example, consider the following definition of the word
decoration:

decoration: n. any ornament or adornment used to decorate something

The word decorate is used to define the word decoration. You may recall your
grade-school teacher telling you to avoid such recursive definitions when explain-
ing the meaning of a word. However, in many situations, recursion is an appropri-
ate way to express an idea or definition. For example, suppose we want to for-
mally define a list of one or more numbers, separated by commas. Such a list can
be defined recursively either as a number or as a number followed by a comma
followed by a list. This definition can be expressed as follows:

A list is a: number

or a: number comma list

This recursive definition of a list defines each of the following lists of numbers:

24, 88, 40, 37
96, 43
14, 64, 21, 69, 32, 93, 47, 81, 28, 45, 81, 52, 69

70

No matter how long a list is, the recursive definition describes it. A list of one
element, such as in the last example, is defined completely by the first (nonrecur-
sive) part of the definition. For any list longer than one element, the recursive part
of the definition (the part that refers to itself) is used as many times as necessary,
until the last element is reached. The last element in the list is always defined by
the nonrecursive part of this definition. Figure 8.1 shows how one particular list
of numbers corresponds to the recursive definition of list.

infinite recursion
Note that this definition of a list contains one option that is recursive and one
option that is not. The part of the definition that is not recursive is called the base

Key COnCept
Recursion is a programming
technique in which a method calls
itself. A key to being able to program
recursively is to be able to think
recursively.

M08_LEWI3322_CH08_pp213-240.indd 214 20/02/13 10:23 AM

 8.1 Recursive Thinking 215

As in the infinite loop problem, a programmer must be careful to
design algorithms so that they avoid infinite recursion. Any recursive
definition must have a base case that does not result in a recursive
option. The base case of the list definition is a single number that is
not followed by anything. In other words, when the last number in
the list is reached, the base case option terminates the recursive path.

recursion in Math
Let’s look at an example of recursion in mathematics. The value referred to as N!
(which is pronounced N factorial) is defined for any positive integer N as the
product of all integers between 1 and N, inclusive. Therefore,

3! = 3*2*1 = 6

and

5! = 5*4*3*2*1 = 120

Mathematical formulas are often expressed recursively. The definition of N!
can be expressed recursively as

1! = 1
N! = N * (N-1)! for N > 1

LIST: number

24

comma

,

LIST

 88, 40, 37

number

88

comma

,

LIST

 40, 37

number

40

number

37

comma

,

LIST

37

Figure 8.1 Tracing the recursive definition of a list

Key COnCept
Any recursive definition must have a
nonrecursive part, called the base
case, that permits the recursion to
eventually end.

case. If all options had a recursive component, then the recursion would never
end. For example, if the definition of a list were simply “a number followed by a
comma followed by a list,” then no list could ever end. This problem is called infinite
recursion. It is similar to an infinite loop, except that the “loop” occurs in the
definition itself.

M08_LEWI3322_CH08_pp213-240.indd 215 20/02/13 10:23 AM

216 Chapter 8 Recursion

The base case of this definition is 1!, which is defined to be 1. All
other values of N! (for N > 1) are defined recursively as N times the
value (N–1)!. The recursion is that the factorial function is defined
in terms of the factorial function.

Key COnCept
Mathematical problems and formulas
are often expressed recursively.

COMMOn errOr

A common error made by programmers new to recursion is to provide an
incomplete base case. The reason why the base case for the factorial prob-
lem (N = 1) works is that factorial is defined only for positive integers. A
common error would be to set a base case of N = 1 when there is some
possibility that N could be less than 1. It is important to account for all of
the possibilities: N > 1, N = 1, and N < 1.

N

i=1
= =N + iΣ

N–1

i=1
i

N–2

i=1
N + N–1 +Σi Σ

= N + N–1

= N + N–1

i
N–3

i=1
+ N–2 +

N–2 + . . . + 2 + 1

Σ

+

Figure 8.2 The sum of the numbers 1 through N, defined recursively

Using this definition, 50! is equal to 50 * 49!. And 49! is equal to 49 * 48!. And
48! is equal to 48 * 47!. This process continues until we get to the base case of 1.
Because N! is defined only for positive integers, this definition is complete and
will always conclude with the base case.

The next section describes how recursion is accomplished in programs.

8.2 recursive programming

Let’s use a simple mathematical operation to demonstrate the concepts of recur-
sive programming. Consider the process of summing the values between 1 and N,
inclusive, where N is any positive integer. The sum of the values from 1 to N can
be expressed as N plus the sum of the values from 1 to N–1. That sum can be ex-
pressed similarly, as shown in Figure 8.2.

Key COnCept
Each recursive call to a method
creates new local variables and
parameters.

M08_LEWI3322_CH08_pp213-240.indd 216 20/02/13 10:23 AM

 8.2 Recursive Programming 217

For example, the sum of the values between 1 and 20 is equal to 20 plus the
sum of the values between 1 and 19. Continuing this approach, the sum of the values
between 1 and 19 is equal to 19 plus the sum of the values between 1 and 18. This
may sound like a strange way to think about this problem, but it is a straightfor-
ward example that can be used to demonstrate how recursion is programmed.

In Java, as in many other programming languages, a method can call itself. Each
call to the method creates a new environment in which to work. That is, all local
variables and parameters are newly defined with their own unique data space
every time the method is called. Each parameter is given an initial value based on
the new call. Each time a method terminates, processing returns to the method that
called it (which may be an earlier invocation of the same method). These rules are
no different from those governing any “regular” method invocation.

A recursive solution to the summation problem is defined by the following
recursive method called sum:

// This method returns the sum of 1 to num

public int sum(int num)
{
 int result;
 if (num == 1)
 result = 1;
 else
 result = num + sum(num-1);
 return result;
}

Note that this method essentially embodies our recursive definition that the
sum of the numbers between 1 and N is equal to N plus the sum of the numbers
between 1 and N–1. The sum method is recursive because sum calls itself. The
parameter passed to sum is decremented each time sum is called, until it reaches
the base case of 1. Recursive methods usually contain an if-else statement, with
one of the branches representing the base case.

Recursive Call

public int sum(int num)
{
 …
 result = num = sum(num-1);
 …
}

calling a method within itself
with a different parameter value

M08_LEWI3322_CH08_pp213-240.indd 217 20/02/13 10:23 AM

218 Chapter 8 Recursion

Suppose the main method calls sum, passing it an initial value
of 1, which is stored in the parameter num. Because num is equal to 1,
the result of 1 is returned to main, and no recursion occurs.

Now let’s trace the execution of the sum method when it is passed
an initial value of 2. Because num does not equal 1, sum is called
again with an argument of num-1, or 1. This is a new call to the

method sum, with a new parameter num and a new local variable result. Because
this num is equal to 1 in this invocation, the result of 1 is returned without further
recursive calls. Control returns to the first version of sum that was invoked. The
return value of 1 is added to the initial value of num in that call to sum, which is 2.
Therefore, result is assigned the value 3, which is returned to the main method.
The method called from main correctly calculates the sum of the integers from 1
to 2 and returns the result of 3.

The base case in the summation example is when num equals 1, at which point
no further recursive calls are made. The recursion begins to fold back into the
earlier versions of the sum method, returning the appropriate value each time.
Each return value contributes to the computation of the sum at the higher level.
Without the base case, infinite recursion would result. Because each call to a
method requires additional memory space, infinite recursion often results in a
run-time error, indicating that memory has been exhausted.

Trace the sum function with different initial values of num until this processing
becomes familiar. Figure 8.3 illustrates the recursive calls when main invokes sum
to determine the sum of the integers from 1 to 4. Each box represents a copy of

Key COnCept
A careful trace of recursive processing
can provide insight into the way it is
used to solve a problem.

main

sum
sum(4)

result = 4 + sum(3)

sum
sum(3)

result = 3 + sum(2)

sum
sum(2)

result = 2 + sum(1)

sum
sum(1)

result = 1

Figure 8.3 Recursive calls to the sum method

M08_LEWI3322_CH08_pp213-240.indd 218 20/02/13 10:23 AM

 8.2 Recursive Programming 219

the method as it is invoked, indicating the allocation of space to store the formal
parameters and any local variables. Invocations are shown as solid lines, and
returns are shown as dotted lines. The return value result is shown at each step.
The recursive path is followed completely until the base case is reached; then the
calls begin to return their result up through the chain.

recursion versus iteration
Of course, there is an iterative solution to the summation problem we just explored:

sum = 0;
for (int number = 1; number <= num; number++)
 sum += number;

This solution is certainly more straightforward than the recursive version. If
you recall our discussion from Chapter 2, we also learned that the sum of the
numbers from 1 to N can be computed in a single step:

sum = num * (num+1)/2;

It is important to know when recursion provides an appropriate
solution to a problem. We used the summation problem to demon-
strate recursion because it is a simple problem to understand, not
because one would use recursion to solve it under normal condi-
tions. Recursion has the overhead of multiple method invocations
and, in this case, presents a more complicated solution than its itera-
tive or computational counterparts.

A programmer must learn when to use recursion and when not to use it.
Determining which approach is best is another important software engineering
decision that depends on the problem being solved. All problems can be solved in
an iterative manner, but in some cases the iterative version is much more compli-
cated. For some problems, recursion enables us to create relatively short, elegant
programs.

Direct versus indirect recursion
Direct recursion occurs when a method invokes itself, such as when sum calls sum.
Indirect recursion occurs when a method invokes another method, eventually
resulting in the original method being invoked again. For example, if method m1
invokes method m2, and m2 invokes method m1, we can say that m1 is indirectly
recursive. The amount of indirection could be several levels deep, as when m1

Key COnCept
Recursion is the most elegant and
appropriate way to solve some
problems, but for others it is less
intuitive than an iterative solution.

M08_LEWI3322_CH08_pp213-240.indd 219 20/02/13 10:23 AM

220 Chapter 8 Recursion

8.3 using recursion

The following sections describe problems that we solve using a recursive technique.
For each one, we examine exactly how recursion plays a role in the solution and
how a base case is used to terminate the recursion. As you explore these examples,
consider how complicated a nonrecursive solution for each problem would be.

traversing a Maze
As we discussed in Chapter 4, solving a maze involves a great deal of trial and error:
following a path, backtracking when you cannot go farther, and trying other, un-
tried options. Such activities often are handled nicely using recursion. In Chapter 4,

invokes m2, which invokes m3, which invokes m4, which invokes m1. Figure 8.4
depicts a situation that involves indirect recursion. Method invocations are shown
with solid lines, and returns are shown with dotted lines. The entire invocation
path is followed, and then the recursion unravels following the return path.

Indirect recursion requires paying just as much attention to base cases as direct
recursion does. Furthermore, indirect recursion can be more difficult to trace be-
cause of the intervening method calls. Therefore, extra care is warranted when
designing or evaluating indirectly recursive methods. Ensure that the indirection is
truly necessary and that it is clearly explained in documentation.

m1 m2

m1 m2 m3

m3

m1 m2 m3

Figure 8.4 Indirect recursion

M08_LEWI3322_CH08_pp213-240.indd 220 20/02/13 10:23 AM

 8.3 Using Recursion 221

we solved this problem iteratively, using a stack to keep track of our potential
moves. However, we can also solve this problem recursively by using the run-time
stack to keep track of our progress. The MazeTester program shown in Listing 8.1
creates a Maze object and attempts to traverse it.

import java.util.*;
import java.io.*;

/**
 * MazeTester uses recursion to determine if a maze can be traversed.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class MazeTester
{
 /**
 * Creates a new maze, prints its original form, attempts to
 * solve it, and prints out its final form.
 */
 public static void main(String[] args) throws FileNotFoundException
 {
 Scanner scan = new Scanner(System.in);
 System.out.print("Enter the name of the file containing the maze: ");
 String filename = scan.nextLine();

 Maze labyrinth = new Maze(filename);

 System.out.println(labyrinth);

 MazeSolver solver = new MazeSolver(labyrinth);
 if (solver.traverse(0, 0))
 System.out.println("The maze was successfully traversed!");
 else
 System.out.println("There is no possible path.");
 System.out.println(labyrinth);
 }
}

L i s t i n g 8 . 1

M08_LEWI3322_CH08_pp213-240.indd 221 20/02/13 10:23 AM

222 Chapter 8 Recursion

The Maze class, shown in Listing 8.2, uses a two-dimensional array of integers
to represent the maze. The maze is loaded from a file. The goal is to move from
the top-left corner (the entry point) to the bottom-right corner (the exit point).
Initially, a 1 indicates a clear path, and a 0 indicates a blocked path. As the maze
is solved, these array elements are changed to other values to indicate attempted
paths and, ultimately, a successful path through the maze if one exists. Figure 8.5
shows the UML illustration of this solution.

import java.util.*;
import java.io.*;

/**
 * Maze represents a maze of characters. The goal is to get from the
 * top left corner to the bottom right, following a path of 1’s. Arbitrary
 * constants are used to represent locations in the maze that have been TRIED
 * and that are part of the solution PATH.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class Maze
{
 private static final int TRIED = 2;
 private static final int PATH = 3;
 private int numberRows, numberColumns;
 private int[][] grid;

 /**
 * Constructor for the Maze class. Loads a maze from the given file.
 * Throws a FileNotFoundException if the given file is not found.
 *
 * @param filename the name of the file to load
 * @throws FileNotFoundException if the given file is not found
 */
 public Maze(String filename) throws FileNotFoundException
 {
 Scanner scan = new Scanner(new File(filename));
 numberRows = scan.nextInt();
 numberColumns = scan.nextInt();

 grid = new int[numberRows][numberColumns];
 for (int i = 0; i < numberRows; i++)
 for (int j = 0; j < numberColumns; j++)

L i s t i n g 8 . 2

M08_LEWI3322_CH08_pp213-240.indd 222 20/02/13 10:23 AM

 8.3 Using Recursion 223

 grid[i][j] = scan.nextInt();
 }

 /**
 * Marks the specified position in the maze as TRIED
 *
 * @param row the index of the row to try
 * @param col the index of the column to try
 */
 public void tryPosition(int row, int col)
 {
 grid[row][col] = TRIED;
 }

 /**
 * Return the number of rows in this maze
 *
 * @return the number of rows in this maze
 */
 public int getRows()
 {
 return grid.length;
 }

 /**
 * Return the number of columns in this maze
 *
 * @return the number of columns in this maze
 */
 public int getColumns()
 {
 return grid[0].length;
 }

 /**
 * Marks a given position in the maze as part of the PATH
 *
 * @param row the index of the row to mark as part of the PATH
 * @param col the index of the column to mark as part of the PATH
 */

 public void markPath(int row, int col)
 {

L i s t i n g 8 . 2 continued

M08_LEWI3322_CH08_pp213-240.indd 223 20/02/13 10:23 AM

224 Chapter 8 Recursion

 grid[row][col] = PATH;
 }

 /**
 * Determines if a specific location is valid. A valid location
 * is one that is on the grid, is not blocked, and has not been TRIED.
 *
 * @param row the row to be checked
 * @param column the column to be checked
 * @return true if the location is valid
 */
 public boolean validPosition(int row, int column)
 {
 boolean result = false;

 // check if cell is in the bounds of the matrix
 if (row >= 0 && row < grid.length &&
 column >= 0 && column < grid[row].length)

 // check if cell is not blocked and not previously tried
 if (grid[row][column] == 1)
 result = true;
 return result;
 }

 /**
 * Returns the maze as a string.
 *
 * @return a string representation of the maze
 */
 public String toString()
 {
 String result = "\n";
 for (int row=0; row < grid.length; row++)
 {
 for (int column=0; column < grid[row].length; column++)
 result += grid[row][column] + "";
 result += "\n";
 }
 return result;
 }
}

L i s t i n g 8 . 2 continued

M08_LEWI3322_CH08_pp213-240.indd 224 20/02/13 10:23 AM

 8.3 Using Recursion 225

Maze

numberRows : int
numberColumns : int
grid : int [][]

tryPosition(int row : int col) : void
getRows() : int
getColumns() : int
markPath(int row : int col) : void
validPosition(int row : int col) : boolean
toString() : String

MazeSolver

maze : Maze

traverse(int row : int column) : boolean

MazeTester

main(String[] args)

Figure 8.5 UML description of the maze-solving program

The only valid moves through the maze are in the four primary directions:
down, right, up, and left. No diagonal moves are allowed. Listing 8.3 shows the
MazeSolver class.

/**
 * MazeSolver attempts to recursively traverse a Maze. The goal is to get from the
 * given starting position to the bottom right, following a path of 1's. Arbitrary
 * constants are used to represent locations in the maze that have been TRIED
 * and that are part of the solution PATH.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class MazeSolver
{
 private Maze maze;

 /**
 * Constructor for the MazeSolver class.
 */

L i s t i n g 8 . 3

M08_LEWI3322_CH08_pp213-240.indd 225 20/02/13 10:23 AM

226 Chapter 8 Recursion

 public MazeSolver(Maze maze)
 {
 this.maze = maze;

 }

 /**
 * Attempts to recursively traverse the maze. Inserts special
 * characters indicating locations that have been TRIED and that
 * eventually become part of the solution PATH.
 *
 * @param row row index of current location
 * @param column column index of current location
 * @return true if the maze has been solved
 */
 public boolean traverse(int row, int column)
 {
 boolean done = false;

 if (maze.validPosition(row, column))
 {
 maze.tryPosition(row, column); // mark this cell as tried
 if (row == maze.getRows()-1 && column == maze.getColumns()-1)
 done = true; // the maze is solved
 else
 {
 done = traverse(row+1, column); // down
 if (!done)
 done = traverse(row, column+1); // right
 if (!done)
 done = traverse(row-1, column); // up
 if (!done)
 done = traverse(row, column-1); // left
 }
 if (done) // this location is part of the final path
 maze.markPath(row, column);
 }

 return done;
 }

}

L i s t i n g 8 . 3 continued

M08_LEWI3322_CH08_pp213-240.indd 226 20/02/13 10:23 AM

 8.3 Using Recursion 227

Let’s think this through recursively. The maze can be traversed successfully if it
can be traversed successfully from position (0, 0). Therefore, the maze can be tra-
versed successfully if it can be traversed successfully from any position adjacent to
(0, 0)—namely, position (1, 0), position (0, 1), position (–1, 0), or position (0, –1).
Picking a potential next step, say (1, 0), we find ourselves in the same type of situ-
ation as before. To traverse the maze successfully from the new current position,
we must successfully traverse it from an adjacent position. At any point, some of
the adjacent positions may be invalid, may be blocked, or may represent a possi-
ble successful path. We continue this process recursively. If the base case position
is reached, the maze has been traversed successfully.

The recursive method in the MazeSolver class is called traverse. It returns
a boolean value that indicates whether a solution was found. First the method
determines whether a move to the specified row and column is valid. A move is
considered valid if it stays within the grid boundaries and if the grid contains a 1
in that location, indicating that a move in that direction is not blocked. The initial
call to traverse passes in the upper-left location (0, 0).

If the move is valid, the grid entry is changed from a 1 to a 2, marking this loca-
tion as visited so that we don’t retrace our steps later. Then the traverse method
determines whether the maze has been completed by having reached the bottom-
right location. Therefore, there are actually three possibilities of the base case for
this problem that will terminate any particular recursive path:

■		 An invalid move because the move is out of bounds or blocked

■		 An invalid move because the move has been tried before

■		 A move that arrives at the final location

If the current location is not the bottom-right corner, we search for a solution
in each of the primary directions. First, we look down by recursively calling the
traverse method and passing in the new location. The logic of the traverse
method starts all over again using this new position. Either a solution is ulti-
mately found by first attempting to move down from the current location, or it
is not found. If it’s not found, we try moving right. If that fails, we try moving
up. Finally, if no other direction has yielded a correct path, we try moving left. If
no direction from the current location yields a correct solution, then there is no
path from this location, and traverse returns false. If the very first invocation
of the traverse method returns false, then there is no possible path through
this maze.

If a solution is found from the current location, then the grid entry is changed
to a 3. The first 3 is placed in the bottom-right corner. The next 3 is placed in the
location that led to the bottom-right corner, and so on until the final 3 is placed in
the upper-left corner. Therefore, when the final maze is printed, 0 still indicates a
blocked path, 1 indicates an open path that was never tried, 2 indicates a path

M08_LEWI3322_CH08_pp213-240.indd 227 20/02/13 10:23 AM

228 Chapter 8 Recursion

that was tried but failed to yield a correct solution, and 3 indicates a part of the
final solution of the maze.

Here are a sample maze input file and its corresponding output:

5 5
1 0 0 0 0
1 1 1 1 0
0 1 0 0 0
1 1 1 1 0
0 1 0 1 1

3 0 0 0 0
3 3 1 1 0
0 3 0 0 0
1 3 3 3 0
0 2 0 3 3

Note that there are several opportunities for recursion in each call to the tra-
verse method. Any or all of them might be followed, depending on the maze
configuration. Although there may be many paths through the maze, the recur-
sion terminates when a path is found. Carefully trace the execution of this code,
while following the maze array to see how the recursion solves the problem. Then
consider the difficulty of producing a nonrecursive solution.

the towers of hanoi
The Towers of Hanoi puzzle was invented in the 1880s by Edouard Lucas, a
French mathematician. It has become a favorite among computer scientists be-
cause its solution is an excellent demonstration of recursive elegance.

The puzzle consists of three upright pegs (towers) and a set of disks with holes
in the middle so that they slide onto the pegs. Each disk has a different diameter.
Initially, all of the disks are stacked on one peg in order of size such that the larg-
est disk is on the bottom, as shown in Figure 8.6.

Figure 8.6 The Towers of Hanoi puzzle

M08_LEWI3322_CH08_pp213-240.indd 228 20/02/13 10:23 AM

 8.3 Using Recursion 229

The first three moves shown in Figure 8.7 can be thought of as “moving the
smaller disks out of the way.” The fourth move puts the largest disk in its final
place. The last three moves put the smaller disks in their final place on top of the
largest one.

The goal of the puzzle is to move all of the disks from their original (first) peg
to the destination (third) peg. We can use the “extra” peg as a temporary place to
put disks, but we must obey the following three rules:

■		 We can move only one disk at a time.

■		 We cannot place a larger disk on top of a smaller disk.

■		 All disks must be on some peg except for the disk that is in transit between
pegs.

These rules imply that we must move smaller disks “out of the way” in order
to move a larger disk from one peg to another. Figure 8.7 shows the step-by-step
solution for the Towers of Hanoi puzzle using three disks. To move all three disks
from the first peg to the third peg, we first have to get to the point where the
smaller two disks are out of the way on the second peg so that the largest disk can
be moved from the first peg to the third peg.

Original Configuration Fourth Move

First Move Fifth Move

Second Move Sixth Move

Third Move Seventh and Last Move

Figure 8.7 A solution to the three-disk Towers of Hanoi puzzle

M08_LEWI3322_CH08_pp213-240.indd 229 20/02/13 10:23 AM

230 Chapter 8 Recursion

Let’s use this idea to form a general strategy. To move a stack of N disks from
the original peg to the destination peg:

■		 Move the topmost N–1 disks from the original peg to the extra peg.

■		 Move the largest disk from the original peg to the destination peg.

■		 Move the N–1 disks from the extra peg to the destination peg.

This strategy lends itself nicely to a recursive solution. The step to move the
N–1 disks out of the way is the same problem all over again: moving a stack of
disks. For this subtask, though, there is one less disk, and our destination peg is
what we were originally calling the extra peg. An analogous situation occurs after
we have moved the largest disk, and we have to move the original N–1 disks
again.

The base case for this problem occurs when we want to move a “stack” that con-
sists of only one disk. That step can be accomplished directly and without recursion.

The program in Listing 8.4 creates a TowersOfHanoi object and invokes its
solve method. The output is a step-by-step list of instructions that describes how
the disks should be moved to solve the puzzle. This example uses four disks,
which is specified by a parameter to the TowersOfHanoi constructor.

/**
 * SolveTowers uses recursion to solve the Towers of Hanoi puzzle.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class SolveTowers
{
 /**
 * Creates a TowersOfHanoi puzzle and solves it.
 */
 public static void main(String[] args)
 {
 TowersOfHanoi towers = new TowersOfHanoi(4);
 towers.solve();
 }
}

L i s t i n g 8 . 4

M08_LEWI3322_CH08_pp213-240.indd 230 20/02/13 10:23 AM

 8.3 Using Recursion 231

The TowersOfHanoi class, shown in Listing 8.5, uses the solve method to
make an initial call to moveTower, the recursive method. The initial call indicates
that all of the disks should be moved from peg 1 to peg 3, using peg 2 as the extra
position.

The moveTower method first considers the base case (a “stack” of one disk).
When that occurs, it calls the moveOneDisk method, which prints a single line
describing that particular move. If the stack contains more than one disk, we call
moveTower again to get the N–1 disks out of the way, then move the largest disk,
then move the N–1 disks to their final destination with yet another call to
moveTower.

/**
 * TowersOfHanoi represents the classic Towers of Hanoi puzzle.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class TowersOfHanoi
{
 private int totalDisks;

 /**
 * Sets up the puzzle with the specified number of disks.
 *
 * @param disks the number of disks
 */
 public TowersOfHanoi(int disks)
 {
 totalDisks = disks;
 }

 /**
 * Performs the initial call to moveTower to solve the puzzle.
 * Moves the disks from tower 1 to tower 3 using tower 2.
 */
 public void solve()
 {
 moveTower(totalDisks, 1, 3, 2);
 }

L i s t i n g 8 . 5

M08_LEWI3322_CH08_pp213-240.indd 231 20/02/13 10:23 AM

232 Chapter 8 Recursion

 /**
 * Moves the specified number of disks from one tower to another
 * by moving a subtower of n-1 disks out of the way, moving one
 * disk, then moving the subtower back. Base case of 1 disk.
 *
 * @param numDisks the number of disks to move
 * @param start the starting tower
 * @param end the ending tower
 * @param temp the temporary tower
 */
 private void moveTower(int numDisks, int start, int end, int temp)
 {
 if (numDisks == 1)
 moveOneDisk(start, end);
 else
 {
 moveTower(numDisks-1, start, temp, end);
 moveOneDisk(start, end);
 moveTower(numDisks-1, temp, end, start);
 }
 }

 /**
 * Prints instructions to move one disk from the specified start
 * tower to the specified end tower.
 *
 * @param start the starting tower
 * @param end the ending tower
 */
 private void moveOneDisk(int start, int end)
 {
 System.out.println("Move one disk from " + start + " to " + end);
 }
}

L i s t i n g 8 . 5 continued

Note that the parameters to moveTower describing the pegs are switched
around as needed to move the partial stacks. This code follows our general strat-
egy and uses the moveTower method to move all partial stacks. Trace the code
carefully for a stack of three disks to understand the processing. Figure 8.8 shows
the UML diagram for this problem.

M08_LEWI3322_CH08_pp213-240.indd 232 20/02/13 10:23 AM

 8.4 Analyzing Recursive Algorithms 233

8.4 analyzing recursive algorithms

In Chapter 2, we explored the concept of analyzing an algorithm to determine its
complexity (usually its time complexity) and expressed it in terms of a growth
function. The growth function gave us the order of the algorithm, which can be
used to compare it to other algorithms that accomplish the same task.

When analyzing a loop, we determined the order of the body of
the loop and multiplied it by the number of times the loop was exe-
cuted. Analyzing a recursive algorithm uses similar thinking.
Determining the order of a recursive algorithm is a matter of deter-
mining the order of the recursion (the number of times the recursive
definition is followed) and multiplying that by the order of the body
of the recursive method.

Consider the recursive method presented in Section 8.2 that computes the sum
of the integers from 1 to some positive value. We reprint it here for convenience:

// This method returns the sum of 1 to num

public int sum (int num)
{
 int result;
 if (num == 1)
 result = 1;
 else
 result = num + sum (num-1);
 return result;

}

TowersOfHanoi

totalDisks : int

solve() : void
moveTower(int numDisks : int start :
int end : int temp) : void
moveOneDisk(int start : int end) : void

SolveTowers

main(String[] args)

Figure 8.8 UML description of Towers of Hanoi puzzle solution

Key COnCept
The order of a recursive algorithm
can be determined using techniques
similar to those used in analyzing
iterative processing.

M08_LEWI3322_CH08_pp213-240.indd 233 20/02/13 10:23 AM

234 Chapter 8 Recursion

The size of this problem is naturally expressed as the number of values to be
summed. Because we are summing the integers from 1 to num, the number of val-
ues to be summed is num. The operation of interest is the act of adding two values
together. The body of the recursive method performs one addition operation and
therefore is O(1). Each time the recursive method is invoked, the value of num is
decreased by 1. Therefore, the recursive method is called num times, so the order
of the recursion is O(n). Thus, because the body is O(1) and the recursion is O(n),
the order of the entire algorithm is O(n).

We will see that in some algorithms the recursive step operates on half as much
data as the previous call, thus creating an order of recursion of O(log n). If the
body of the method is O(1), then the whole algorithm is O(log n). If the body of
the method is O(n), then the whole algorithm is O(n log n).

Now consider the Towers of Hanoi puzzle. The size of the puzzle is naturally the
number of disks, and the processing operation of interest is the step of moving one
disk from one peg to another. Each call to the recursive method moveTower results in
one disk being moved. Unfortunately, except for the base case, each recursive call re-
sults in calling itself twice more, and each call operates on a stack of disks that is only
one less than the stack that is passed in as the parameter. Thus, calling moveTower

with 1 disk results in 1 disk being moved, calling moveTower with 2
disks results in 3 disks being moved, calling moveTower with 3 disks
results in 7 disks being moved, calling moveTower with 4 disks results
in 15 disks being moved, and so on. Looking at it another way, if f(n)
is the growth function for this problem, then

 f(n) = 1 when n is equal to 1
for n 7 1,
 f(n) = 2*(f(n - 1) + 1)
 = 2n - 1

Contrary to its short and elegant implementation, the solution to the Towers of
Hanoi puzzle is terribly inefficient. To solve the puzzle with a stack of n disks, we
have to make 2n – 1 individual disk moves. Therefore, the Towers of Hanoi algo-
rithm is O(2n). This order is an example of exponential complexity. As the num-
ber of disks increases, the number of required moves increases exponentially.

Legend has it that priests of Brahma are working on this puzzle in a temple at
the center of the world. They are using 64 gold disks, moving them between pegs
of pure diamond. The downside is that when the priests finish the puzzle, the
world will end. The upside is that even if they move one disk every second of ev-
ery day, it will take them over 584 billion years to complete it. That’s with a puz-
zle of only 64 disks! It is certainly an indication of just how intractable exponen-
tial algorithm complexity is.

Key COnCept
The Towers of Hanoi solution has
exponential complexity, which is very
inefficient, yet the code is remarkably
short and elegant.

Analyzing recursive
algorithms

VideoNote

M08_LEWI3322_CH08_pp213-240.indd 234 20/02/13 10:23 AM

 Self-Review Questions 235

Summary of Key Concepts

■	 Recursion is a programming technique in which a method calls itself. A
key to being able to program recursively is to be able to think recursively.

■	 Any recursive definition must have a nonrecursive part, called the base
case, that permits the recursion to eventually end.

■	 Mathematical problems and formulas are often expressed recursively.

■	 Each recursive call to a method creates new local variables and parameters.

■	 A careful trace of recursive processing can provide insight into the way it is
used to solve a problem.

■	 Recursion is the most elegant and appropriate way to solve some
problems, but for others it is less intuitive than an iterative solution.

■	 The order of a recursive algorithm can be determined using techniques
similar to those used in analyzing iterative processing.

■	 The Towers of Hanoi solution has exponential complexity, which is very
inefficient, yet the code is incredibly short and elegant.

summary of terms
base case The part of an operation’s definition that is not recursive.

direct recursion The type of recursion in which a method invokes itself
directly (as opposed to indirect recursion).

indirect recursion The type of recursion in which a method calls another
method, which may call yet another, and so on until the original method is
called (as opposed to direct recursion).

infinite recursion The problem that occurs when a base case is never
reached or not defined for an operation.

recursion A programming technique in which a method calls itself to
fulfill its overall purpose.

towers of hanoi A classic computing puzzle in which the goal is to move
disks from one tower to another under specific rules.

self-review Questions
SR 8.1 What is recursion?

SR 8.2 What is infinite recursion?

M08_LEWI3322_CH08_pp213-240.indd 235 20/02/13 10:23 AM

236 Chapter 8 Recursion

SR 8.3 When is a base case needed for recursive processing?

SR 8.4 Is recursion necessary?

SR 8.5 When should recursion be avoided?

SR 8.6 What is indirect recursion?

SR 8.7 Explain the general approach to solving the Towers of Hanoi
puzzle. How is it related to recursion?

exercises
EX 8.1 Write a recursive definition for the greatest common divisor (gcd)

of two numbers.

EX 8.2 Write a recursive method that determines if its parameter is a
prime number.

EX 8.3 Write a recursive method SumOfArray that calculates the sum of
integers stored in an array within a given range. The method takes
three parameters: the array, the lower index of the range, and the
upper index of the range.

EX 8.4 You have provided a recursive definition for the greatest common
divisor of two numbers in Exercise 8.1. The greatest common
 divisor (gcd), of two or more non-zero integers is the largest
 positive integer that divides the numbers without a remainder.
Write a recursive method gcd that would return greatest common
divisor of two numbers.

EX 8.5 Modify and extend the method that calculates the sum of the
 integers between 1 and N shown in this chapter. Write a method
sumOfSquares that would return the sum of squares of N
 integers, from 1 through N.

EX 8.6 Write a recursive method that returns the value of N! (N factorial)
using the definition given in this chapter. Explain why you would
not normally use recursion to solve this problem.

EX 8.7 Write a recursive method to reverse a string. Explain why you
would not normally use recursion to solve this problem.

EX 8.8 A palindrome is a word, phrase, number, or other sequence of units
that can be read the same way in either direction. For example, the
words civic, madam, deed, etc. are palindromes. Write a recursive
method that determines if its String argument is a palindrome.

EX 8.9 Annotate the lines of output of the SolveTowers program in this
chapter to show the recursive steps.

EX 8.10 Write a recursive method combination that returns the combina-
tion of n things taken r at a time where n and r both are nonnega-
tive integers.

M08_LEWI3322_CH08_pp213-240.indd 236 01/03/13 2:13 PM

 Programming Projects 237

EX 8.11 Write a recursive method that writes the sum of digits of a positive
decimal integer.

EX 8.12 Determine and explain the order of your solution to Exercise 8.5.

EX 8.13 Determine and explain the order of your solution to Exercise 8.6.

EX 8.14 Determine the order of the recursive maze solution presented in
this chapter.

programming projects
PP 8.1 Design and implement a program that implements Euclid’s

algorithm for finding the greatest common divisor of two positive
integers. The greatest common divisor is the largest integer that
divides both values without producing a remainder. In a class
called DivisorCalc, define a static method called gcd that
accepts two integers, num1 and num2. Create a driver to test your
implementation. The recursive algorithm is defined as follows:

 gcd (num1, num2) is num2 if num2 <= num1 and num2
divides num1

 gcd (num1, num2) is gcd (num2, num1) if num1 < num2
 gcd (num1, num2) is gcd (num2, num1%num2) otherwise

PP 8.2 Modify the Maze class so that it prints out the path of the final
solution as it is discovered, without storing it.

PP 8.3 Design and implement a program that traverses a 3D maze.

PP 8.4 Design and implement a recursive program that solves the
Nonattacking Queens problem. That is, write a program to deter-
mine how eight queens can be positioned on an eight-by-eight
chessboard so that none of them is in the same row, column, or
diagonal as any other queen. There are no other chess pieces on
the board.

PP 8.5 In the language of an alien race, all words take the form of
Blurbs. A Blurb is a Whoozit followed by one or more Whatzits.
A Whoozit is the character ‘x’ followed by zero or more ‘y’s.
A Whatzit is a ‘q’ followed by either a ‘z’ or a ‘d’ followed by
a Whoozit. Design and implement a recursive program that
generates random Blurbs in this alien language.

PP 8.6 Design and implement a recursive program to determine whether a
string is a valid Blurb as defined in the previous project description.

M08_LEWI3322_CH08_pp213-240.indd 237 20/02/13 10:23 AM

238 Chapter 8 Recursion

PP 8.7 Design and implement a recursive program to determine and print
the Nth line of Pascal’s Triangle, as shown below. Each interior
value is the sum of the two values above it. (Hint: Use an array to
store the values on each line.)

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

PP 8.8 Design and implement a graphical version of the Towers of Hanoi
puzzle. Allow the user to set the number of disks used in the
puzzle. The user should be able to interact with the puzzle in two
main ways. The user can move the disks from one peg to another
using the mouse, in which case the program should ensure that
each move is legal. The user can also watch a solution take place
as an animation, with pause/resume buttons. Permit the user to
control the speed of the animation.

answers to self-review Questions
SRA 8.1 Recursion is a programming technique in which a method calls

itself, solving a smaller version of the problem each time, until the
terminating condition is reached.

SRA 8.2 Infinite recursion occurs when there is no base case that serves as
a terminating condition, or when the base case is improperly
specified. The recursive path is followed forever. In a recursive
program, infinite recursion often results in an error that indicates
that available memory has been exhausted.

SRA 8.3 A base case is always needed to terminate recursion and begin the
process of returning through the calling hierarchy. Without the
base case, infinite recursion results.

SRA 8.4 Recursion is not necessary. Every recursive algorithm can be
written in an iterative manner. However, some problem solutions
are much more elegant and straightforward when they are written
recursively.

M08_LEWI3322_CH08_pp213-240.indd 238 20/02/13 10:23 AM

 Answers to Self-Review Questions 239

SRA 8.5 Avoid recursion when the iterative solution is simpler and more
easily understood and programmed. Recursion has the overhead
of multiple method calls and is not always intuitive.

SRA 8.6 Indirect recursion occurs when a method calls another method,
which calls another method, and so on until one of the called
methods invokes the original method. Indirect recursion is usually
more difficult to trace than direct recursion, in which a method
calls itself.

SRA 8.7 The Towers of Hanoi puzzle of N disks is solved by moving N–1
disks out of the way onto an extra peg, moving the largest disk to
its destination, then moving the N–1 disks from the extra peg to
the destination. This solution is inherently recursive because we
can use the same process to move the whole substack of N–1
disks.

M08_LEWI3322_CH08_pp213-240.indd 239 20/02/13 10:23 AM

M08_LEWI3322_CH08_pp213-240.indd 240 20/02/13 10:23 AM

 This page is intentionally left blank.

99

241

C h a p t e r
O b j e C t i v e s

■	 Examine the linear search and
binary search algorithms.

■	 Examine several sort algorithms.

■	 Discuss the complexity of these
algorithms.

Searching and
Sorting

Two common tasks in the world of software development

are searching for a particular element within a group and

sorting a group of elements into a particular order. There

are a variety of algorithms that can be used to accomplish

these tasks, and the differences among them are worth

exploring carefully. These topics go hand in hand with the

study of collections and data structures.

M09_LEWI3322_CH09_pp241-274.indd 241 20/02/13 11:01 AM

242 Chapter 9 Searching and Sorting

9.1 searching

Searching is the process of finding a designated target element within a group of
items, or determining that the target does not exist within the group. The group of
items to be searched is sometimes called the search pool.

This section examines two common approaches to searching: a
linear search and a binary search. Later in this book, other search
techniques are presented that use the characteristics of particular
data structures to facilitate the search process.

Our goal is to perform the search as efficiently as possible. In
terms of algorithm analysis, we want to minimize the number of

comparisons we have to make to find the target. In general, the more items
there are in the search pool, the more comparisons it will take to find the target.
Thus, the size of the problem is defined by the number of items in the search
pool.

To be able to search for an object, we must be able to compare one
object to another. Our implementations of these algorithms search an
array of Comparable objects. Therefore, the elements involved must
implement the Comparable interface and be comparable to each
other. We might attempt to accomplish this restriction in the header

for the Searching class in which all of our searching methods are located by doing
something like

public class Searching<T extends Comparable<T>>

The net effect of this generic declaration is that we can instantiate the
Searching class with any class that implements the Comparable interface.
Recall that the Comparable interface contains one method, compareTo, which
is designed to return an integer that is less than zero, equal to zero, or greater
than zero (respectively) if the object is less than, equal to, or greater than the
object to which it is being compared. Therefore, any class that implements the
Comparable interface defines the relative order of any two objects of that
class.

Declaring the Searching class in this manner, however, will cause us to have to
instantiate the class anytime we want to use one of the search methods. This is
awkward at best for a class that contains nothing but service methods. A better
solution would be to declare all of the methods as static and generic. Let’s first
remind ourselves about the concept of static methods, and then we will explore
generic static methods.

Key COnCept
Searching is the process of finding a
designated target within a group of
items or determining that the target
doesn’t exist.

Key COnCept
An efficient search minimizes the
number of comparisons made.

M09_LEWI3322_CH09_pp241-274.indd 242 20/02/13 11:01 AM

 9.1 Searching 243

static Methods
A static method (also called a class method) can be invoked through the class
name (all the methods of the Math class are static methods, for example). You
don’t have to instantiate an object of the class to invoke a static method. For
example, the sqrt method is called through the Math class as follows:

System.out.println("Square root of 27: " + Math.sqrt(27));

A method is made static by using the static modifier in the method declara-
tion. As we have seen, the main method of a Java program must be declared with
the static modifier; this is so that main can be executed by the interpreter with-
out instantiating an object from the class that contains main.

Because static methods do not operate in the context of a particu-
lar object, they cannot reference instance variables, which exist only
in an instance of a class. The compiler will issue an error if a static
method attempts to use a nonstatic variable. A static method can,
however, reference static variables, because static variables exist
independent of specific objects. Therefore, the main method can access
only static and local variables.

The methods in the Math class perform basic computations based on values
passed as parameters. There is no object state to maintain in these situations;
therefore, there is no good reason to force us to create an object in order to request
these services.

Generic Methods
In a manner similar to what we have done in creating generic classes, we can also
create generic methods. That is, instead of creating a class that refers to a generic
type parameter, we can create an individual method that does so. A generic
parameter applies only to that method.

To create a generic method, we insert a generic declaration in the header of the
method immediately preceding the return type.

public static <T extends Comparable<T>> boolean

 linearSearch(T[] data, int min, int max, T target)

Now that method, including the return type and the types of the parameters,
can make use of the generic type parameter. It makes sense that the generic decla-
ration has to come before the return type so that, although this example doesn’t
do so, the generic type can be used in the return type.

Key COnCept
A method is made static by using the
static modifier in the method
declaration.

M09_LEWI3322_CH09_pp241-274.indd 243 20/02/13 11:01 AM

244 Chapter 9 Searching and Sorting

Now that we can create a generic static method, we do not need to instantiate
the Searching class each time we need one of the methods. Instead, we can simply
invoke the static method using the class name and including our type to replace
the generic type. For example, an invocation of the linearSearch method to
search an array of Strings might look like this:

Searching.linearSearch(targetarray, min, max, target);

Note that it is not necessary to specify the type to replace the generic type. The
compiler will infer the type from the arguments provided. Thus, for this line of
code, the compiler will replace the generic type T with whatever the element type
is for targetarray and the type of target.

Linear search
If the search pool is organized into a list of some kind, one straightforward way
to perform the search is to start at the beginning of the list and compare each
value in turn to the target element. Eventually, we will either find the target or
come to the end of the list and conclude that the target doesn’t exist in the group.
This approach is called a linear search because it begins at one end and scans the
search pool in a linear manner. This process is depicted in Figure 9.1.

public static <T extends Comparable<T>> boolean
 linearSearch(T[] data, int min, int max, T target)

Generic Method

generic type parameter applies to this method

generic type can be used in
method parameters and return type

start

FiGure 9.1 A linear search

M09_LEWI3322_CH09_pp241-274.indd 244 20/02/13 11:01 AM

 9.1 Searching 245

 /**
 * Searches the specified array of objects using a linear search
 * algorithm.
 *
 * @param data the array to be searched
 * @param min the integer representation of the minimum value
 * @param max the integer representation of the maximum value
 * @param target the element being searched for
 * @return true if the desired element is found
 */
 public static <T>
 boolean linearSearch(T[] data, int min, int max, T target)
 {
 int index = min;
 boolean found = false;

 while (!found && index <= max)
 {
 found = data[index].equals(target);
 index++;
 }

 return found;
 }

The following method implements a linear search. It accepts the array of elements
to be searched, the beginning and ending index for the search, and the target value
sought. The method returns a boolean value that indicates whether or not the target
element was found.

The while loop steps through the elements of the array, terminating either
when the element is found or when the end of the array is reached. The boolean
variable found is initialized to false and is changed to true only if the target ele-
ment is located.

Variations on this implementation could return the element found in the array
if it is found and return a null reference if it is not found. Alternatively, an excep-
tion could be thrown if the target element is not found.

The linearSearch method could be incorporated into any class. Our version
of this method is defined as part of a class containing methods that provide vari-
ous searching capabilities.

The linear search algorithm is fairly easy to understand, although it is not par-
ticularly efficient. Note that a linear search does not require the elements in the

M09_LEWI3322_CH09_pp241-274.indd 245 20/02/13 11:01 AM

246 Chapter 9 Searching and Sorting

search pool to be in any particular order within the array. The only criterion is
that we must be able to examine them one at a time in turn. The binary search
algorithm, described next, improves on the efficiency of the search process, but it
works only if the search pool is ordered.

binary search
If the group of items in the search pool is sorted, then our approach to searching
can be much more efficient than that of a linear search. A binary search algorithm
eliminates large parts of the search pool with each comparison by capitalizing on
the fact that the search pool is in sorted order.

art05.2

start

FiGure 9.2 A binary search

Instead of starting the search at one end or the other, a binary
search begins in the middle of the sorted list. If the target element is
not found at that middle element, then the search continues. And
because the list is sorted, we know that if the target is in the list, it
will be on one side of the array or the other, depending on whether

the target is less than or greater than the middle element. Thus, because the list is
sorted, we eliminate half of the search pool with one carefully chosen comparison.
The remaining half of the search pool represents the viable candidates in which
the target element may yet be found.

The search continues in this same manner, examining the middle element of the
viable candidates, eliminating half of them. Each comparison reduces the viable
candidates by half until eventually the target element is found or there are no
more viable candidates, which means the target element is not in the search pool.
The process of a binary search is depicted in Figure 9.2.

Let’s look at an example. Consider the following sorted list of integers:

10 12 18 22 31 34 40 46 59 67 69 72 80 84 98

Suppose we were trying to determine whether the number 67 is in the list.
Initially, the target could be anywhere in the list (all items in the search pool are
viable candidates).

Key COnCept
A binary search capitalizes on the
fact that the search pool is sorted.

M09_LEWI3322_CH09_pp241-274.indd 246 20/02/13 11:01 AM

 9.1 Searching 247

The binary search approach begins by examining the middle element, in this
case 46. That element is not our target, so we must continue searching. But since
we know that the list is sorted, we know that if 67 is in the list, it must be in the
second half of the data, because all data items to the left of the middle have values
of 46 or less. This leaves the following viable candidates to search (shown in bold):

10 12 18 22 31 34 40 46 59 67 69 72 80 84 98

Continuing the same approach, we examine the middle value of the viable can-
didates (72). Again, this is not our target value, so we must continue the search.
This time we can eliminate all values higher than 72, which leaves (again in bold)

10 12 18 22 31 34 40 46 59 67 69 72 80 84 98

Note that in only two comparisons, we have reduced the viable
candidates from 15 items to 3 items. Employing the same approach
again, we select the middle element, 67, and find the element we are
seeking. If 67 had not been our target, we would have continued with
this process until we had either found the target value or eliminated
all possible data.

With each comparison, a binary search eliminates approximately half of the
data remaining to be searched (it also eliminates the middle element). That is, a
binary search eliminates half of the data with the first comparison, another quar-
ter of the data with the second comparison, another eighth of the data with the
third comparison, and so on.

The following method implements a binary search. Like the linearSearch
method, it accepts an array of Comparable objects to be searched as well as the target
value. It also takes integer values representing the minimum index and maximum
index that define the portion of the array to search (the viable candidates).

Key COnCept
A binary search eliminates half of
the viable candidates with each
comparison.

Demonstration of a
binary search

VideoNote

 /**
 * Searches the specified array of objects using a binary search
 * algorithm.
 *
 * @param data the array to be searched
 * @param min the integer representation of the minimum value
 * @param max the integer representation of the maximum value
 * @param target the element being searched for
 * @return true if the desired element is found
 */
 public static <T extends Comparable<T>>
 boolean binarySearch(T[] data, int min, int max, T target)
 {

M09_LEWI3322_CH09_pp241-274.indd 247 20/02/13 11:01 AM

248 Chapter 9 Searching and Sorting

Note that the binarySearch method is implemented recursively. If the target
element is not found, and there are more data to search, the method calls itself,
passing parameters that shrink the size of viable candidates within the array. The
min and max indexes are used to determine whether there are still more data to
search. That is, if the reduced search area does not contain at least one element,
the method does not call itself, and a value of false is returned.

At any point in this process, we may have an even number of values to
search—and therefore two “middle” values. As far as the algorithm is concerned,
the midpoint used can be either of the two middle values, as long as the same
choice is made consistently. In this implementation of the binary search, the calcu-
lation that determines the midpoint index discards any fractional part and there-
fore picks the first of the two middle values.

Comparing search algorithms
For a linear search, the best case occurs when the target element happens to be the
first item we examine in the group. The worst case occurs when the target is not in the
group, and we have to examine every element before we determine that it isn’t pres-
ent. The expected case is that we will have to search half of the list before we find the
element. That is, if there are n elements in the search pool, then on average we will
have to examine n/2 elements before finding the one for which we were searching.

Therefore, the linear search algorithm has a linear time complexity of O(n).
Because the elements are searched one at a time in turn, the complexity is linear—
in direct proportion to the number of elements to be searched.

 boolean found = false;
 int midpoint = (min + max) / 2; // determine the midpoint

 if (data[midpoint].compareTo(target) == 0)
 found = true;

 else if (data[midpoint].compareTo(target) > 0)
 {
 if (min <= midpoint - 1)
 found = binarySearch(data, min, midpoint - 1, target);
 }

 else if (midpoint + 1 <= max)
 found = binarySearch(data, midpoint + 1, max, target);

 return found;
 }

M09_LEWI3322_CH09_pp241-274.indd 248 20/02/13 11:01 AM

 9.2 Sorting 249

A binary search, on the other hand, is generally much faster. Because we can
eliminate half of the remaining data with each comparison, we can find the ele-
ment much more quickly. The best case is that we find the target in one compari-
son—that is, the target element happens to be at the midpoint of the array. The
worst case occurs when the element is not present in the list, in which case we
have to make approximately log2n comparisons before we eliminate all of the
data. Thus, the expected case for finding an element that is in the search pool is
approximately (log2n)/2 comparisons.

Therefore, binary search is a logarithmic algorithm and has a time complexity
of O(log2n). Compared to a linear search, a binary search is much faster for large
values of n.

A question might be asked here: If a binary search is more efficient
than a linear search, why would we ever use a linear search? First, a
linear search is generally simpler than a binary search, and it is there-
fore easier to program and debug. Second, a linear search does not
require the additional overhead of sorting the search list. Thus con-
ducting a binary search involves a trade-off: Achieving maximum
efficiency requires investing the effort to keep the search pool sorted.

For small problems, there is little practical difference between the two types of
algorithms. However, as n gets larger, the binary search becomes increasingly
attractive. Suppose a given set of data contains a million elements. In a linear
search, we would have to examine each of the one million elements to determine
that a particular target element is not in the group. In a binary search, we could
make that conclusion in roughly 20 comparisons.

9.2 sorting

Sorting is the process of arranging a group of items into a defined order, either
ascending or descending, based on some criterion. For example, you may want to
alphabetize a list of names or put a list of survey results into descending numeric
order.

Many sort algorithms have been developed and critiqued over
the years. In fact, sorting is considered a classic area of study in
computer science. Like search algorithms, sort algorithms generally
are divided into two categories based on efficiency: Sequential sorts
typically use a pair of nested loops and require roughly n2 comparisons
to sort n elements, and logarithmic sorts typically require roughly
nlog2n comparisons to sort n elements. As with the search algorithms, when n is
small, there is little practical difference between the two categories of algorithms.

Key COnCept
A binary search has logarithmic
complexity, which makes it a very
efficient way to examine a large
search pool.

Key COnCept
Sorting is the process of arranging a
list of items into a defined order
based on some criterion.

M09_LEWI3322_CH09_pp241-274.indd 249 20/02/13 11:01 AM

250 Chapter 9 Searching and Sorting

In this chapter, we examine three sequential sorts—selection sort, insertion
sort, and bubble sort—and two logarithmic sorts—quick sort and merge sort. We
also take a look at one additional sort algorithm—radix sort—that sorts without
comparing elements.

Before we dive into particular sort algorithms, let’s look at a general sorting
problem to solve. The SortPhoneList program, shown in Listing 9.1, creates an
array of Contact objects, sorts those objects, and then prints the sorted list. In this
implementation, the Contact objects are sorted using a call to the selectionSort
method, which we examine later in this chapter. However, any other sorting
method described in this chapter could be used to achieve the same results.

/**
 * SortPhoneList driver for testing an object selection sort.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class SortPhoneList
{
 /**
 * Creates an array of Contact objects, sorts them, then prints
 * them.
 */
 public static void main(String[] args)
 {
 Contact[] friends = new Contact[7];
 friends[0] = new Contact("John", "Smith", "610-555-7384");
 friends[1] = new Contact("Sarah", "Barnes", "215-555-3827");
 friends[2] = new Contact("Mark", "Riley", "733-555-2969");
 friends[3] = new Contact("Laura", "Getz", "663-555-3984");
 friends[4] = new Contact("Larry", "Smith", "464-555-3489");
 friends[5] = new Contact("Frank", "Phelps", "322-555-2284");
 friends[6] = new Contact("Marsha", "Grant", "243-555-2837");

 Sorting.insertionSort(friends);
 for (Contact friend : friends)
 System.out.println(friend);

 }

}

L i s t i n G 9 . 1

M09_LEWI3322_CH09_pp241-274.indd 250 20/02/13 11:01 AM

 9.2 Sorting 251

Each Contact object represents a person with a last name, a first name, and a
phone number. The Contact class is shown in Listing 9.2. The UML description
of these classes is left as an exercise.

The Contact class implements the Comparable interface and therefore pro-
vides a definition of the compareTo method. In this case, the contacts are sorted
by last name; if two contacts have the same last name, their first names are used.

/**
 * Contact represents a phone contact.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class Contact implements Comparable<Contact>
{
 private String firstName, lastName, phone;

 /**
 * Sets up this contact with the specified information.
 *
 * @param first a string representation of a first name
 * @param last a string representation of a last name
 * @param telephone a string representation of a phone number
 */
 public Contact(String first, String last, String telephone)
 {
 firstName = first;
 lastName = last;
 phone = telephone;
 }

 /**
 * Returns a description of this contact as a string.
 *
 * @return a string representation of this contact
 */
 public String toString()
 {
 return lastName + ", " + firstName + "\t" + phone;
 }

L i s t i n G 9 . 2

M09_LEWI3322_CH09_pp241-274.indd 251 20/02/13 11:01 AM

252 Chapter 9 Searching and Sorting

Now let’s examine several sort algorithms and their implementa-
tions. Any of these could be used to put the Contact objects into
sorted order.

selection sort
The selection sort algorithm sorts a list of values by repetitively putting a particu-
lar value into its final, sorted position. In other words, for each position in the list,
the algorithm selects the value that should go in that position and puts it there.

The general strategy of the selection sort algorithm is as follows: Scan the entire
list to find the smallest value. Exchange that value with the value in the first posi-
tion of the list. Scan the rest of the list (all but the first value) to find the smallest
value, and then exchange it with the value in the second position of the list. Scan
the rest of the list (all but the first two values) to find the smallest value, and then
exchange it with the value in the third position of the list. Continue this process
for each position in the list. When complete, the list is sorted. The selection sort
process is illustrated in Figure 9.3.

The following method defines an implementation of the selection sort algo-
rithm. It accepts an array of objects as a parameter. When it returns to the calling
method, the elements within the array are sorted.

 /**
 * Uses both last and first names to determine lexical ordering.
 *
 * @param other the contact to be compared to this contact
 * @return the integer result of the comparison
 */
 public int compareTo(Contact other)
 {
 int result;
 if (lastName.equals(other.lastName))
 result = firstName.compareTo(other.firstName);
 else
 result = lastName.compareTo(other.lastName);
 return result;
 }
}

L i s t i n G 9 . 2 continued

Key COnCept
The selection sort algorithm sorts a
list of values by repetitively putting a
particular value into its final, sorted
position.

M09_LEWI3322_CH09_pp241-274.indd 252 20/02/13 11:01 AM

 9.2 Sorting 253

3 9 6 1 2
Scan right starting with 3.
1 is the smallest. Exchange 1 and 3.

Scan right starting with 9.
2 is the smallest. Exchange 9 and 2.

Scan right starting with 6.
3 is the smallest. Exchange 6 and 3.

Scan right starting with 6.
6 is the smallest. Exchange 6 and 6.

art05.3

1 9 6 3 2

1 2 6 3 9

1 2 3 6 9

1 2 3 6 9

FiGure 9.3 Example of selection sort processing

 /**
 * Sorts the specified array of integers using the selection
 * sort algorithm.
 *
 * @param data the array to be sorted
 */
 public static <T extends Comparable<T>>
 void selectionSort(T[] data)
 {
 int min;
 T temp;

 for (int index = 0; index < data.length-1; index++)
 {
 min = index;
 for (int scan = index+1; scan < data.length; scan++)
 if (data[scan].compareTo(data[min])<0)
 min = scan;

 swap(data, min, index);
 }
 }

M09_LEWI3322_CH09_pp241-274.indd 253 20/02/13 11:01 AM

254 Chapter 9 Searching and Sorting

The implementation of the selectionSort method uses two loops to sort an
array. The outer loop controls the position in the array where the next smallest
value will be stored. The inner loop finds the smallest value in the rest of the list
by scanning all positions greater than or equal to the index specified by the outer
loop. When the smallest value is determined, it is exchanged with the value stored
at index. This exchange is accomplished by three assignment statements using an
extra variable called temp. This type of exchange is called swapping and makes
use of a private swap method. This method is also used by several of our other
sorting algorithms.

 /**
 * Swaps to elements in an array. Used by various sorting algorithms.
 *
 * @param data the array in which the elements are swapped
 * @param index1 the index of the first element to be swapped
 * @param index2 the index of the second element to be swapped
 */
 private static <T extends Comparable<T>>
 void swap(T[] data, int index1, int index2)
 {
 T temp = data[index1];
 data[index1] = data[index2];

 data[index2] = temp;
 }

Note that because this algorithm finds the smallest value during each iteration,
the result is an array sorted in ascending order (that is, from smallest to largest).
The algorithm can easily be changed to put values in descending order by finding
the largest value each time.

insertion sort
The insertion sort algorithm sorts a list of values by repetitively inserting a par-
ticular value into a subset of the list that has already been sorted. One at a time,

each unsorted element is inserted at the appropriate position in that
sorted subset until the entire list is in order.

The general strategy of the insertion sort algorithm is as follows:
Sort the first two values in the list relative to each other by exchang-
ing them if necessary. Insert the list’s third value into the appropriate

Key COnCept
The insertion sort algorithm sorts a
list of values by repetitively inserting
a particular value into a subset of the
list that has already been sorted.

M09_LEWI3322_CH09_pp241-274.indd 254 20/02/13 11:01 AM

 9.2 Sorting 255

The following method implements an insertion sort.

position relative to the first two (sorted) values. Then insert the fourth value into
its proper position relative to the first three values in the list. Each time an inser-
tion is made, the number of values in the sorted subset increases by one. Continue
this process until all values in the list are completely sorted. The insertion process
requires that the other values in the array shift to make room for the inserted ele-
ment. Figure 9.4 illustrates the insertion sort process.

3 9 6 1 2

3 9 6 1 2

3 6 9 1 2

1 3 6 9 2

3 is sorted.
Shift nothing. Insert 9.

3 and 9 are sorted.
Shift 9 to the right. Insert 6.

3, 6, and 9 are sorted.
Shift 9, 6, and 3 to the right. Insert 1.

1, 3, 6, and 9 are sorted.
Shift 9, 6, and 3 to the right. Insert 2.

FiGure 9.4 Example of insertion sort processing

 /**
 * Sorts the specified array of objects using an insertion
 * sort algorithm.
 *
 * @param data the array to be sorted
 */
 public static <T extends Comparable<T>>
 void insertionSort(T[] data)
 {
 for (int index = 1; index < data.length; index++)
 {
 T key = data[index];

M09_LEWI3322_CH09_pp241-274.indd 255 20/02/13 11:01 AM

256 Chapter 9 Searching and Sorting

Like the selection sort implementation, the insertionSort method uses two
loops to sort an array of objects. In the insertion sort, however, the outer loop
controls the index in the array of the next value to be inserted. The inner loop
compares the current insert value with values stored at lower indexes (which
make up a sorted subset of the entire list). If the current insert value is less than
the value at position, then that value is shifted to the right. Shifting continues
until the proper position is opened to accept the insert value. Each iteration of the
outer loop adds one more value to the sorted subset of the list, until the entire list
is sorted.

bubble sort
A bubble sort is another sequential sort algorithm that uses two nested loops. It
sorts values by repeatedly comparing neighboring elements in the list and swap-
ping their positions if they are not in order relative to each other.

The general strategy of the bubble sort algorithm is as follows:
Scan through the list comparing adjacent elements, and exchange
them if they are not in relative order. This has the effect of “bub-
bling” the largest value to the last position in the list, which is its
appropriate position in the final, sorted list. Then scan through the
list again, bubbling up the second-to-last value. This process contin-
ues until all elements have been bubbled into their correct positions.

Each pass through the bubble sort algorithm moves the largest value to its final
position. A pass may also reposition other elements as well. For example, if we
started with the list

Key COnCept
The bubble sort algorithm sorts a list
by repeatedly comparing neighboring
elements and swapping them if
necessary.

 int position = index;

 // shift larger values to the right
 while (position > 0 && data[position-1].compareTo(key) > 0)
 {
 data[position] = data[position-1];
 position--;
 }

 data[position] = key;
 }
 }

M09_LEWI3322_CH09_pp241-274.indd 256 20/02/13 11:01 AM

 9.2 Sorting 257

9 6 8 12 3 1 7

we would first compare 9 and 6 and, finding them not in the correct order, swap
them, which yields

6 9 8 12 3 1 7

Then we would compare 9 to 8 and, again, finding them not in the correct
order, swap them, which yields

6 8 9 12 3 1 7

Then we would compare 9 to 12. Since they are in the correct order, we don’t
swap them. Instead, we move to the next pair of values to compare. That is, we
then compare 12 to 3. Because they are not in order, we swap them, which yields

6 8 9 3 12 1 7

We then compare 12 to 1 and swap them, which yields

6 8 9 3 1 12 7

We then compare 12 to 7 and swap them, which yields

6 8 9 3 1 7 12

This completes one pass through the data to be sorted. After this first pass, the
largest value in the list (12) is in its correct position, but we cannot be sure about
any of the other numbers. Each subsequent pass through the data guarantees that
one more element is put into the correct position. Thus we make n–1 passes
through the data, because if n–1 elements are in the correct, sorted positions, then
the nth item must also be in the correct location.

An implementation of the bubble sort algorithm is shown in the following method:

 /**
 * Sorts the specified array of objects using a bubble sort
 * algorithm.
 *
 * @param data the array to be sorted
 */
 public static <T extends Comparable<T>>
 void bubbleSort(T[] data)
 {
 int position, scan;
 T temp;

M09_LEWI3322_CH09_pp241-274.indd 257 20/02/13 11:01 AM

258 Chapter 9 Searching and Sorting

The outer for loop in the bubbleSort method represents the n–1 passes
through the data. The inner for loop scans through the data, performs the pair-
wise comparisons of the neighboring data, and swaps them if necessary.

Note that the outer loop also has the effect of decreasing the position that rep-
resents the maximum index to examine in the inner loop. That is, after the first
pass, which puts the last value in its correct position, there is no need to consider
that value in future passes through the data. After the second pass, we can forget
about the last two, and so on. Thus the inner loop examines one less value on
each pass.

Quick sort
The sort algorithms we have discussed thus far in this chapter (selection sort,
insertion sort, and bubble sort) are relatively simple, but they are inefficient
sequential sorts that use a pair of nested loops and require roughly n2 comparisons
to sort a list of n elements. Now we can turn our attention to more efficient sorts
that lend themselves to a recursive implementation.

The quick sort algorithm sorts a list by partitioning the list using an arbitrarily
chosen partition element and then recursively sorting the sublists on either side of
the partition element. The general strategy of the quick sort algorithm is as fol-
lows: First, choose one element of the list to act as a partition element. Next, par-
tition the list so that all elements less than the partition element are to the left of

that element and all elements greater than the partition element are
to the right. Finally, apply this quick sort strategy (recursively) to
both partitions.

If the order of the data is truly random, the choice of the parti-
tion element is arbitrary. We will use the element in the middle of

Key COnCept
The quick sort algorithm sorts a list
by partitioning the list and then
recursively sorting the two partitions.

 for (position = data.length - 1; position >= 0; position--)
 {
 for (scan = 0; scan <= position - 1; scan++)
 {
 if (data[scan].compareTo(data[scan+1]) > 0)
 swap(data, scan, scan + 1);
 }
 }
 }

M09_LEWI3322_CH09_pp241-274.indd 258 20/02/13 11:01 AM

 9.2 Sorting 259

the section we want to partition. For efficiency reasons, it is nice if the partition
element happens to divide the list roughly in half, but the algorithm works no
matter what element is chosen as the partition.

Let’s look at an example of creating a partition. If we started with the list

305 65 7 90 120 110 8

we would choose 90 as our partition element. We would then rearrange the list,
swapping the elements that are less than 90 to the left side and those that are
greater than 90 to the right side, which would yield

8 65 7 90 120 110 305

We would then apply the quick sort algorithm separately to both partitions.
This process continues until a partition contains only one element, which is inher-
ently sorted. Thus, after the algorithm is applied recursively to either side, the
entire list is sorted. Once the initial partition element is determined and placed, it
is never considered or moved again.

The following method implements the quick sort algorithm. It accepts an array
of objects to sort and the minimum and maximum index values used for a partic-
ular call to the method. Notice that the public method takes the array to be sorted
and then calls the private method providing the array, the min, and the max.

 /**
 * Sorts the specified array of objects using the quick sort algorithm.
 *
 * @param data the array to be sorted
 */
 public static <T extends Comparable<T>>
 void quickSort(T[] data)
 {
 quickSort(data, 0, data.length - 1);
 }

 /**
 * Recursively sorts a range of objects in the specified array using the
 * quick sort algorithm.
 *
 * @param data the array to be sorted
 * @param min the minimum index in the range to be sorted
 * @param max the maximum index in the range to be sorted
 */

M09_LEWI3322_CH09_pp241-274.indd 259 20/02/13 11:01 AM

260 Chapter 9 Searching and Sorting

The quickSort method relies heavily on the partition method, which it calls
initially to divide the sort area into two partitions. The partition method
returns the index of the partition value. Then the quickSort method is called
twice (recursively) to sort the two partitions. The base case of the recursion, repre-
sented by the if statement in the quickSort method, is a list of one element or
less, which is already inherently sorted. An example of the partition method
follows.

 /**
 * Used by the quick sort algorithm to find the partition.
 *
 * @param data the array to be sorted
 * @param min the minimum index in the range to be sorted
 * @param max the maximum index in the range to be sorted
 */
 private static <T extends Comparable<T>>
 int partition(T[] data, int min, int max)
 {
 T partitionelement;
 int left, right;
 int middle = (min + max)/2;

 // use the middle data value as the partition element
 partitionelement = data[middle];
 // move it out of the way for now

 private static <T extends Comparable<T>>
 void quickSort(T[] data, int min, int max)
 {
 if (min < max)
 {
 // create partitions
 int indexofpartition = partition(data, min, max);
 // sort the left partition (lower values)
 quickSort(data, min, indexofpartition - 1);
 // sort the right partition (higher values)
 quickSort(data, indexofpartition + 1, max);
 }
 }

M09_LEWI3322_CH09_pp241-274.indd 260 20/02/13 11:01 AM

 9.2 Sorting 261

 swap(data, middle, min);
 left = min;
 right = max;

 while (left < right)

 {
 // search for an element that is > the partition element
 while (left < right && data[left].compareTo(partitionelement) <= 0)

 left++;

 // search for an element that is < the partition element
 while (data[right].compareTo(partitionelement) > 0)

 right--;

 // swap the elements
 if (left < right)
 swap(data, left, right);
 }

 // move the partition element into place
 swap(data, min, right);
 return right;

 }

The two inner while loops of the partition method are used to find elements
to swap that are in the wrong partitions. The first loop scans from left to right,
looking for an element that is greater than the partition element. The second loop
scans from right to left, looking for an element that is less than the partition ele-
ment. When these two elements are found, they are swapped. This process contin-
ues until the right and left indexes meet in the “middle” of the list. The location
where they meet also indicates where the partition element (which isn’t moved
from its initial location until the end) will ultimately reside.

What happens if we get a poor partition element? If the partition element is
near the smallest or the largest element in the list, then we effectively waste a
pass through the data. One way to ensure a better partition element is to
choose the middle of three elements. For example, the algorithm could check
the first, middle, and last elements in the list and choose the middle value as

M09_LEWI3322_CH09_pp241-274.indd 261 20/02/13 11:01 AM

262 Chapter 9 Searching and Sorting

the partition element. This middle-of-three approach is left as a programming
project.

Merge sort
The merge sort algorithm, another recursive sort algorithm, sorts a list by recursively
dividing the list in half until each sublist has one element and then recombining these
sublists in order.

The general strategy of the merge sort algorithm is as follows:
Begin by dividing the list into two roughly equal parts and then
recursively calling itself with each of those lists. Continue the recursive
decomposition of the list until the base case of the recursion is
reached, where the list is divided into lists of length one, which are
by definition sorted. Then, as control passes back up the recursive
calling structure, the algorithm merges the two sorted sublists result-
ing from the two recursive calls into one sorted list.

For example, if we started with the initial list from our example in the previous
section, the recursive decomposition portion of the algorithm would yield the
results shown in Figure 9.5.

Key COnCept
The merge sort algorithm sorts a list
by recursively dividing the list in half
until each sublist has one element
and then merging these sublists into
the sorted order.

305 65 7 90 120 110 8

305 65 7 90 120 110 8

305 65 7 90 120 110 8

305 65 7 90 120 110 8

FiGure 9.5 The decomposition of merge sort

The merge portion of the algorithm would then recombine the list as shown in
Figure 9.6.

M09_LEWI3322_CH09_pp241-274.indd 262 20/02/13 11:01 AM

 9.2 Sorting 263

An implementation of the merge sort algorithm is shown below. Note that, just
as for the quick sort algorithm, we make use of a public method that accepts the
array to be sorted, and then a private method accepts the array as well as the min
and max indexes of the section of the array to be sorted. This algorithm also
make use of a private merge method to recombine the sorted sections of the array.

7 8 65 90 110 120 305

7 65 305 8 90 110 120

305 7 65 90 120 8 110

305 65 7 90 120 110 8

FiGure 9.6 The merge portion of the merge sort algorithm

 /**
 * Sorts the specified array of objects using the merge sort
 * algorithm.
 *
 * @param data the array to be sorted
 */
 public static <T extends Comparable<T>>
 void mergeSort(T[] data)
 {
 mergeSort(data, 0, data.length - 1);
 }

 /**
 * Recursively sorts a range of objects in the specified array using the
 * merge sort algorithm.
 *
 * @param data the array to be sorted
 * @param min the index of the first element
 * @param max the index of the last element
 */

M09_LEWI3322_CH09_pp241-274.indd 263 20/02/13 11:01 AM

264 Chapter 9 Searching and Sorting

 private static <T extends Comparable<T>>
 void mergeSort(T[] data, int min, int max)
 {
 if (min < max)
 {
 int mid = (min + max) / 2;
 mergeSort(data, min, mid);
 mergeSort(data, mid+1, max);
 merge(data, min, mid, max);
 }
 }

 /**
 * Merges two sorted subarrays of the specified array.
 *
 * @param data the array to be sorted
 * @param first the beginning index of the first subarray
 * @param mid the ending index of the first subarray
 * @param last the ending index of the second subarray
 */
 @SuppressWarnings("unchecked")
 private static <T extends Comparable<T>>
 void merge(T[] data, int first, int mid, int last)
 {
 T[] temp = (T[])(new Comparable[data.length]);

 int first1 = first, last1 = mid; // endpoints of first subarray
 int first2 = mid+1, last2 = last; // endpoints of second subarray
 int index = first1; // next index open in temp array

 // Copy smaller item from each subarray into temp until one
 // of the subarrays is exhausted
 while (first1 <= last1 && first2 <= last2)
 {
 if (data[first1].compareTo(data[first2]) < 0)
 {
 temp[index] = data[first1];
 first1++;
 }
 else
 {
 temp[index] = data[first2];
 first2++;
 }

M09_LEWI3322_CH09_pp241-274.indd 264 20/02/13 11:01 AM

 9.3 Radix Sort 265

9.3 radix sort

To this point, all of the sorting techniques we have discussed have involved com-
paring elements within the list to each other. As we have seen, the best of these
comparison-based sorts is O(nlogn). What if there were a way to sort elements
without comparing them directly to each other? It might then be possible to build
a more efficient sorting algorithm. We can find such a technique by revisiting our
discussion of queues from Chapter 5.

A sort is based on some particular value,
called the sort key. For example, a set of people
might be sorted by their last name. A radix sort,
rather than comparing items by sort key, is
based on the structure of the sort key. Separate
queues are created for each possible value of each digit or character of the sort key. The
number of queues, or the number of possible values, is called the radix. For example, if
we were sorting strings made up of lowercase alphabetic characters, the radix would
be 26. We would use 26 separate queues, one for each possible character. If we were
sorting decimal numbers, then the radix would be 10, one for each digit 0 through 9.

 index++;
 }
 // Copy remaining elements from first subarray, if any
 while (first1 <= last1)
 {
 temp[index] = data[first1];
 first1++;
 index++;
 }

 // Copy remaining elements from second subarray, if any
 while (first2 <= last2)
 {
 temp[index] = data[first2];
 first2++;
 index++;
 }

 // Copy merged data into original array
 for (index = first; index <= last; index++)
 data[index] = temp[index];
 }

Key COnCept
A radix sort is inherently based on
queue processing.

M09_LEWI3322_CH09_pp241-274.indd 265 20/02/13 11:01 AM

266 Chapter 9 Searching and Sorting

Let’s look at an example that uses a radix sort to put ten three-digit numbers in
order. To keep things manageable, we will restrict the digits of these numbers to 0
through 5, which means we will need only six queues.

Each three-digit number to be sorted has a 1s position (right digit), a 10s posi-
tion (middle digit), and a 100s position (left digit). The radix sort will make three
passes through the values, one for each digit position. On the first pass, each num-
ber is put on the queue corresponding to its 1s digit. On the second pass, each
number is put on the queue corresponding to its 10s digit. And finally, on the
third pass, each number is put on the queue corresponding to its 100s digit.

Originally, the numbers are loaded into the queues from the original list. On the
second pass, the numbers are taken from the queues in a particular order. They are
retrieved from the digit 0 queue first, and then from the digit 1 queue, and so on. For
each queue, the numbers are processed in the order in which they come off the queue.
This processing order is crucial to the operation of a radix sort. Likewise, on the third
pass, the numbers are again taken from the queues in the same way. When the num-
bers are pulled off the queues after the third pass, they will be completely sorted.

Figure 9.7 shows the processing of a radix sort for ten three-digit numbers. The
number 442 is taken from the original list and put onto the queue corresponding
to digit 2. Then 503 is put onto the queue corresponding to digit 3. Then 312 is
put onto the queue corresponding to digit 2 (following 442). This continues for
all values, resulting in the set of queues for the 1s position.

145

341 325

102143

503

312

420442

250

100s Position

503

143145

312

102

250

325

341442

420

10s Position

420

102

325

341

250

145

312

503143

442

1s PositionDigit

0

1

2

3

4

5

420102325341250145312503 143442Original List:

front front front

FiGure 9.7 A radix sort of ten three-digit numbers

M09_LEWI3322_CH09_pp241-274.indd 266 20/02/13 11:01 AM

 9.3 Radix Sort 267

Assume, as we begin the second pass, that we have a fresh set of six empty digit
queues. In actuality, the queues can be used over again if processed carefully. To
begin the second pass, the numbers are taken from the 0 digit queue first. The
number 250 is put onto the queue for digit 5, and then 420 is put onto the queue
for digit 2. Then we can move to the next queue, taking 341 and putting it onto
the queue for digit 4. This continues until all numbers have been taken off the 1s
position queues, resulting in the set of queues for the 10s position.

For the third pass, the process is repeated. First, 102 is put onto the queue for
digit 1, then 503 is put onto the queue for digit 5, and then 312 is put onto the
queue for digit 3. This continues until we have the final set of digit queues for the
100s position. These numbers are now in sorted order if taken off each queue in
turn.

Let’s now look at a program that implements the radix sort. For this example,
we will sort four-digit numbers, and we won’t restrict the digits used in those
numbers. Listing 9.3 shows the RadixSort class, which contains a single main
method. Using an array of ten queue objects (one for each digit 0 through 9), this
method carries out the processing steps of a radix sort. Figure 9.8 shows the UML
description of the RadixSort class.

import java.util.*;

/**
 * RadixSort driver demonstrates the use of queues in the execution of a radix sort.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class RadixSort
{
 /**
 * Performs a radix sort on a set of numeric values.
 */
 public static void main(String[] args)
 {
 int[] list = {7843, 4568, 8765, 6543, 7865, 4532, 9987, 3241,
 6589, 6622, 1211};

 String temp;

L i s t i n G 9 . 3

M09_LEWI3322_CH09_pp241-274.indd 267 20/02/13 11:01 AM

268 Chapter 9 Searching and Sorting

 Integer numObj;
 int digit, num;

 Queue<Integer>[] digitQueues = (LinkedList<Integer>[])(new
LinkedList[10]);

 for (int digitVal = 0; digitVal <= 9; digitVal++)
 digitQueues[digitVal] = (Queue<Integer>)(new LinkedList<Integer>());

 // sort the list
 for (int position=0; position <= 3; position++)
 {
 for (int scan=0; scan < list.length; scan++)
 {
 temp = String.valueOf(list[scan]);
 digit = Character.digit(temp.charAt(3-position), 10);
 digitQueues[digit].add(new Integer(list[scan]));
 }

 // gather numbers back into list
 num = 0;
 for (int digitVal = 0; digitVal <= 9; digitVal++)
 {
 while (!(digitQueues[digitVal].isEmpty()))
 {
 numObj = digitQueues[digitVal].remove();
 list[num] = numObj.intValue();
 num++;
 }
 }
 }

 // output the sorted list
 for (int scan=0; scan < list.length; scan++)
 System.out.println(list[scan]);
 }
}

L i s t i n G 9 . 3 continued

In the RadixSort program, the numbers are originally stored in an array called
list. After each pass, the numbers are pulled off the queues and stored back into
the list array in the proper order. This allows the program to reuse the original
array of ten queues for each pass of the sort.

M09_LEWI3322_CH09_pp241-274.indd 268 20/02/13 11:01 AM

 9.3 Radix Sort 269

The concept of a radix sort can be applied to any type of data as long as the sort
key can be dissected into well-defined positions. Note that, unlike the sorts we dis-
cussed earlier in this chapter, it’s not reasonable to create a generic radix sort for
any object, because dissecting the key values is an integral part of the process.

So what is the time complexity of a radix sort? In this case, there is not any
comparison or swapping of elements. Elements are simply removed from a queue
and placed in another one on each pass. For any given radix, the number of passes
through the data is a constant based on the number of characters in the key; let’s
call it c. Then the time complexity of the algorithm is simply c*n. Keep in mind,
from our discussion in Chapter 2, that we ignore constants when computing the
time complexity of an algorithm. Thus the radix sort algorithm is O(n). So why not
use radix sort for all of our sorting? First, each radix sort algorithm has to be
designed specifically for the key of a given problem. Second, for keys where the
number of digits in the key (c) and the number of elements in the list (n) are very
close together, the actual time complexity of the radix sort algorithm mimics n2
instead of n. In addition, we also need to keep in mind that there is another con-
stant that affects space complexity; it is the radix, or the number of possible values
for each position or character in the key. Imagine, for example, trying to imple-
ment a radix sort for a key that allows any character from the Unicode character
set. Because this set has more than 100,000 characters, we would need that many
queues!

<<interface>>

Queue<Integer>

Sorting

LinkedList<Integer>

main(String[] args)

RadixSort element() : Integer
add(Integer o) : void
offer(Integer o) : boolean
peek() : Integer
poll() : Integer
remove() : Integer

FiGure 9.8 UML description of the RadixSort program

M09_LEWI3322_CH09_pp241-274.indd 269 20/02/13 11:01 AM

270 Chapter 9 Searching and Sorting

Summary of Key Concepts
■	 Searching is the process of finding a designated target within a group of

items or determining that the target doesn’t exist.

■	 An efficient search minimizes the number of comparisons made.

■	 A method is made static by using the static modifier in the method declaration.

■	 A binary search capitalizes on the fact that the search pool is sorted.

■	 A binary search eliminates half of the viable candidates with each comparison.

■	 A binary search has logarithmic complexity, which makes it very efficient for
a large search pool.

■	 Sorting is the process of arranging a list of items into a defined order based
on some criterion.

■	 The selection sort algorithm sorts a list of values by repetitively putting a
particular value into its final, sorted position.

■	 The insertion sort algorithm sorts a list of values by repetitively inserting a
particular value into a subset of the list that has already been sorted.

N	 The bubble sort algorithm sorts a list by repeatedly comparing neighboring
elements and swapping them if necessary.

■	 The quick sort algorithm sorts a list by partitioning the list and then recursively
sorting the two partitions.

■	 The merge sort algorithm sorts a list by recursively dividing the list in half
until each sublist has one element and then merging these sublists into the
sorted order.

■	 A radix sort is inherently based on queue processing.

summary of terms
binary search A search that occurs on a sorted list and in which each
comparison eliminates approximately half of the remaining viable candidates.

bubble sort A sorting algorithm that sorts elements by repeatedly comparing
adjacent values and swapping them.

class method See static method.

generic method A method that includes the definition of a type parameter
in the header of the method.

insertion sort A sorting algorithm that sorts elements by repetitively inserting
a particular element into a previously sorted sublist.

M09_LEWI3322_CH09_pp241-274.indd 270 20/02/13 11:01 AM

 Self-Review Questions 271

linear search A search that begins at one end of a list of items and continues
linearly until the element is found or the end of the list is reached.

logarithmic algorithm An algorithm that has a time complexity of O(log2n),
such as a binary search.

logarithmic sort A sorting algorithm that requires approximately nlog2n
comparisons to sort n elements.

merge sort A sorting algorithm that sorts elements by recursively dividing the
list in half until each sublist has one element and then merging the sublists.

partition A set of unsorted elements, used by the quick sort algorithm, that
are all either less than or greater than a chosen partition element.

partition element An element used by the quick sort algorithm to separate
unsorted elements into two distinct partitions.

quick sort A sorting algorithm that sorts elements by partitioning the unsorted
elements into two partitions and then recursively sorting each partition.

radix sort A sorting algorithm that sorts elements using a sort key instead
of directly comparing elements.

searching The process of finding a designated target element within a group
of elements, or determining that the target is not in the group.

search pool A group of items to be searched.

selection sort A sorting algorithm that sorts elements by repetitively finding
a particular element and putting it in its final position.

sequential sort A sorting algorithm that typically uses nested loops and
requires approximately n2 comparisons to sort n elements.

sorting The process of arranging a group of items into a particular order
based on some criterion.

static method A method that is invoked through the class name and that
cannot refer to instance data. Also called a class method.

target element The element that is being sought during a search operation.

viable candidates The elements in a search pool among which the target
element may still be found.

self-review Questions
SR 9.1 When would a linear search be preferable to a logarithmic search?

SR 9.2 Which searching method requires that the list be sorted?

SR 9.3 When would a sequential sort be preferable to a recursive sort?

M09_LEWI3322_CH09_pp241-274.indd 271 20/02/13 11:01 AM

SR 9.4 The insertion sort algorithm sorts using what technique?

SR 9.5 The bubble sort algorithm sorts using what technique?

SR 9.6 The selection sort algorithm sorts using what technique?

SR 9.7 The quick sort algorithm sorts using what technique?

SR 9.8 The merge sort algorithm sorts using what technique?

SR 9.9 How many queues would it take to use a radix sort to sort names
stored as all lowercase?

exercises
EX 9.1 Compare and contrast the linearSearch and binarySearch

algorithms by searching for the numbers 45 and 54 in the list
3, 8, 12, 34, 54, 84, 91, 110.

EX 9.2 Using the list from Exercise 9.1, construct a table showing the
number of comparisons required to sort that list for each of the
sort algorithms (selection sort, insertion sort, bubble sort, quick
sort, and merge sort).

EX 9.3 Consider the same list from Exercise 9.1. What happens to the
number of comparisons for each of the sort algorithms if the list
is already sorted?

EX 9.4 Consider the following list:

 90 8 7 56 123 235 9 1 653

 Show a trace of execution for:

 a. selection sort
 b. insertion sort
 c. bubble sort
 d. quick sort
 e. merge sort

EX 9.5 Given the resulting sorted list from Exercise 9.4, show a trace of
execution for a binary search, searching for the number 235.

EX 9.6 Draw the UML description of the SortPhoneList example.

EX 9.7 Hand trace a radix sort for the following list of five-digit student
ID numbers:

 13224

 32131

 54355

272 Chapter 9 Searching and Sorting

M09_LEWI3322_CH09_pp241-274.indd 272 20/02/13 11:01 AM

 Programming Projects 273

 12123

 22331

 21212

 33333

 54312

EX 9.8 What is the time complexity of a radix sort?

programming projects
PP 9.1 The bubble sort algorithm shown in this chapter is less efficient

than it could be. If a pass is made through the list without
exchanging any elements, this means that the list is sorted and
there is no reason to continue. Modify this algorithm so that it
will stop as soon as it recognizes that the list is sorted. Do not use
a break statement!

PP 9.2 There is a variation of the bubble sort algorithm called a gap sort
that, rather than comparing neighboring elements each time
through the list, compares elements that are i positions apart,
where i is an integer less than n. For example, the first element
would be compared to the (i+1) element, the second element
would be compared to the (i+2) element, the nth element would
be compared to the (n–i) element, and so on. A single iteration is
completed when all of the elements that can be compared have
been compared. On the next iteration, i is reduced by some number
greater than 1, and the process continues until i is less than 1.
Implement a gap sort.

PP 9.3 Modify the sorts listed in the chapter (selection sort, insertion
sort, bubble sort, quick sort, and merge sort) by adding code to
each to tally the total number of comparisons and total execution
time of each algorithm. Execute the sort algorithms against the
same list, recording information for the total number of comparisons
and total execution time for each algorithm. Try several
different lists, including at least one that is already in sorted order.

PP 9.4 Modify the quick sort method to choose the partition element
using the middle-of-three technique described in the chapter. Run
this new version against the old version for several sets of data,
and compare the total execution times.

M09_LEWI3322_CH09_pp241-274.indd 273 20/02/13 11:01 AM

274 Chapter 9 Searching and Sorting

answers to self-review Questions
SRA 9.1 A linear search would be preferable for relatively small, unsorted

lists and in languages where recursion is not supported.

SRA 9.2 Binary search.

SRA 9.3 A sequential sort would be preferable for relatively small data sets
and in languages where recursion is not supported.

SRA 9.4 The insertion sort algorithm sorts a list of values by repetitively
inserting a particular value into a subset of the list that has
already been sorted.

SRA 9.5 The bubble sort algorithm sorts a list by repeatedly comparing
neighboring elements in the list and swapping their positions if
they are not already in order.

SRA 9.6 The selection sort algorithm, which is an O(n2) sort algorithm,
sorts a list of values by repetitively putting a particular value into
its final, sorted position.

SRA 9.7 The quick sort algorithm sorts a list by partitioning the list using
an arbitrarily chosen partition element and then recursively
sorting the sublists on either side of the partition element.

SRA 9.8 The merge sort algorithm sorts a list by recursively dividing the list
in half until each sublist has one element and then recombining
these sublists in order.

SRA 9.9 It would require 27 queues, one for each of the 26 letters in the
alphabet and one to store the whole list before, during, and after
sorting.

M09_LEWI3322_CH09_pp241-274.indd 274 20/02/13 11:01 AM

1010

275

c h a p t e r
o b j e c t i v e s

■	 Define trees as data structures.

■	 Define the terms associated with
trees.

■	 Discuss the possible
implementations of trees.

■	 Analyze tree implementations of
collections.

■	 Discuss methods for traversing
trees.

■	 Examine a binary tree example.

Trees
c h a p t e r o b j e c t i v e s

This chapter begins our exploration of nonlinear collections

and data structures. We discuss the use and implementation of

trees, define the terms associated with trees, analyze possible

tree implementations, and look at examples of implementing

and using trees.

M10_LEWI3322_CH10_pp275-318.indd 275 20/02/13 11:02 AM

276 chapter 10 Trees

10.1 trees

The collections we have examined up to this point (stacks, queues,
and lists) are all linear data structures, which means that their ele-
ments are arranged in order, one after another. A tree is a nonlinear
structure in which elements are organized into a hierarchy. This
section describes trees in general and establishes some important
terminology.

Conceptually, a tree is composed of a set of nodes in which elements are stored
and edges that connect one node to another. Each node is at a particular level in
the tree hierarchy. The root of the tree is the only node at the top level of the tree.
There is only one root node in a tree. Figure 10.1 shows a tree that helps to illus-
trate these terms.

The nodes at lower levels of the tree are the children of nodes at the previous
level. In Figure 10.1, the nodes labeled B, C, D, and E are the chil-
dren of A. Nodes F and G are the children of B. A node can have
only one parent, but a node may have multiple children. Nodes that
have the same parent are called siblings. Thus, nodes H, I, and J are
siblings because they are all children of node D.

The root node is the only node in a tree that does not have a parent. A node
that does not have any children is called a leaf. A node that is not the root and has
at least one child is called an internal node. Note that the tree analogy is upside-
down. Our trees “grow” from the root at the top of the tree to the leaves toward
the bottom of the tree.

The root is the entry point into a tree structure. We can follow a path through
the tree from parent to child. For example, the path from node A to node N in
Figure 10.1 is A, D, I, N. A node is the ancestor of another node if it is above it on

A

CB

GF IH J K

ML

D E

root

internal
node

leaf
ON P

Figure 10.1 Tree terminology

KeY coNcept
A tree is a nonlinear structure
whose elements are organized
into a hierarchy.

KeY coNcept
Trees are described by a large set of
related terms.

M10_LEWI3322_CH10_pp275-318.indd 276 20/02/13 11:02 AM

 10.1 Trees 277

the path from the root. Thus the root is the ultimate ancestor of all nodes in a
tree. Nodes that can be reached by following a path from a particular node are
the descendants of that node.

The level of a node is also the length of the path from the root to the node. This
path length is determined by counting the number of edges that must be followed
to get from the root to the node. The root is considered to be level 0, the children
of the root are at level 1, the grandchildren of the root are at level 2, and so on.
Path length and level are depicted in Figure 10.2.

The height of a tree is the length of the longest path from the root to a leaf.
Thus the height of the tree in Figure 10.2 is 3, because the path length from the
root to leaves F and G is 3. The path length from the root to leaf C is 1.

tree classifications
Trees can be classified in many ways. The most important criterion is the maxi-
mum number of children any node in the tree may have. This value is sometimes
referred to as the order of the tree. A tree that has no limit to the number of chil-
dren a node may have is called a general tree. A tree that limits each node to no
more than n children is referred to as an n-ary tree.

One n-ary tree is of particular importance. A tree in which nodes may have at
most two children is called a binary tree. This type of tree is helpful in many situ-
ations. Much of our exploration of trees will focus on binary trees.

Another way to classify a tree is in terms of whether or not it is balanced.
There are many definitions of balance, depending on the algorithms being used.
We will explore some of these algorithms in the next chapter. Roughly speaking, a
tree is considered balanced if all the leaves of the tree are on the same level or at
least within one level of each other. Thus, the tree shown on the left in Figure 10.3
is balanced, and the one on the right is not. A balanced n-ary tree with m elements

A 0

1

2

3

Level

CB

ED

F G

Figure 10.2 Path length and level

M10_LEWI3322_CH10_pp275-318.indd 277 20/02/13 11:02 AM

278 chapter 10 Trees

has a height of lognm. Thus a balanced binary tree with n nodes has a height of
log2n.

The concept of a complete tree is related to the balance of a tree. A tree is con-
sidered complete if it is balanced and all of the leaves at the bottom level are on
the left side of the tree. Although it seems arbitrary, this definition has implica-
tions for how the tree is stored in certain implementations. Another way to ex-
press this concept is to say that a complete binary tree has 2k nodes at every level
k except the last, where the nodes must be leftmost.

A related concept is the notion of a full tree. An n-ary tree is considered full if
all the leaves of the tree are at the same level and every node either is a leaf or has
exactly n children. The balanced tree in Figure 10.3 is not considered complete.
Among the 3-ary (or tertiary) trees shown in Figure 10.4, the trees in parts (a) and
(c) are complete, but only the tree in part (c) is full.

balanced unbalanced

Figure 10.3 A balanced tree and an unbalanced tree

a b c

Figure 10.4 Some complete trees

M10_LEWI3322_CH10_pp275-318.indd 278 20/02/13 11:02 AM

 10.2 Strategies for Implementing Trees 279

10.2 strategies for implementing trees

Let’s examine some general strategies for implementing trees. The most obvious
implementation of a tree is a linked structure. Each node could be defined as a
TreeNode class, similar to what we did with the LinearNode class for linked lists.
Each node would contain a pointer to the element to be stored in that node, as well
as pointers for each of the possible children of the node. Depending on the imple-
mentation, it may also be useful for each node to store a pointer to its parent. This
use of pointers is similar to the concept of a doubly linked list, where each node
points not only to the next node in the list but to the previous node as well.

Another possibility would be to implement a tree recursively using links. This
strategy would involve defining each node as a tree with attributes for each of its
children. Thus each node, and all of its descendants, represents a tree unto itself.
The implementation of this strategy is left as a programming project.

Because a tree is a nonlinear structure, it may not seem reasonable to try to
implement it using an underlying linear structure such as an array. However,
sometimes that approach is useful. The strategies for array implementation of a
tree may be less obvious. There are two principal approaches: a computational
strategy and a simulated link strategy.

computational strategy for array implementation
of trees
For certain types of trees, specifically binary trees, a computational strategy can
be used for storing a tree using an array. One possible strategy is as follows: For
any element stored in position n of the array, that element’s left child will be
stored in position (2 * n + 1) and that element’s right child will be stored in posi-
tion (2 * (n + 1)). This strategy is very effective and can be managed in terms of
capacity in much the same way as managing capacity for the array implementa-
tions of lists, queues, and stacks. However, despite the conceptual
elegance of this solution, it is not without drawbacks. For example, if
the tree that we are storing is not complete or is only relatively com-
plete, we may be wasting large amounts of memory allocated in the
array for positions of the tree that do not contain data. The compu-
tational strategy is illustrated in Figure 10.5.

simulated Link strategy for array implementation
of trees
A second possible array implementation of trees is modeled after the way operat-
ing systems manage memory. Instead of assigning elements of the tree to array

KeY coNcept
One possible computational strategy
places the left child of element n at
position (2 * n + 1) and the right
child at position (2 * (n + 1)).

M10_LEWI3322_CH10_pp275-318.indd 279 20/02/13 11:02 AM

280 chapter 10 Trees

positions by location in the tree, array positions are allocated contiguously on a
first-come, first-served basis. Each element of the array will be a node class similar
to the TreeNode class that we discussed earlier. However, instead of storing object
reference variables as pointers to its children (and perhaps its parent), each node
would store the array index of each child (and perhaps its parent). This approach
allows elements to be stored contiguously in the array so that space is not wasted.

However, this approach increases the overhead for deleting elements
in the tree, because it requires either that remaining elements be
shifted to maintain contiguity or that a freelist be maintained. This
strategy is illustrated in Figure 10.6. The order of the elements in the
array is determined simply by their entry order into the tree. In this
case, the entry order is assumed to have been A, C, B, E, D, F.

This same strategy may also be used when tree structures need to be stored
directly on disk using a direct I/O approach. In this case, rather than using an array
index as a pointer, each node will store the relative position in the file of its children
so that an offset can be calculated given the base address of the file.

A

A B C D E Felement

position

CB

ED

F
0 1 2 3 4 5 6 7

Figure 10.5 Computational strategy for array implementation of trees

A

A C B E D F

CB

ED

F
2 1 4 3 5

Figure 10.6 Simulated link strategy for array implementation of trees

KeY coNcept
The simulated link strategy allows
array positions to be allocated
contiguously, regardless of the
completeness of the tree.

M10_LEWI3322_CH10_pp275-318.indd 280 20/02/13 11:02 AM

 10.2 Strategies for Implementing Trees 281

analysis of trees
As we noted earlier, trees are a useful and efficient way to implement other collec-
tions. Let’s consider an ordered list as an example. In our analysis of list imple-
mentations in Chapter 6, we described the find operation as having efficiency n/2
or O(n). However, if we were to implement an ordered list using a
balanced binary search tree—a binary tree with the added property
that the left child is always less than the parent, which is always less
than or equal to the right child—then we could improve the effi-
ciency of the find operation to O(log n). We will discuss binary
search trees in much greater detail in Chapter 11.

This increased efficiency is due to the fact that the height of such a tree will
always be log2n, where n is the number of elements in the tree. This is very similar
to our discussion of the binary search in Chapter 9. In fact, for any balanced n-ary
tree with m elements, the tree’s height will be lognm. With the added ordering
property of a binary search tree, you are guaranteed to search, at worst, one path
from the root to a leaf, and that path can be no longer than lognm.

D e s i g N F o c u s

When does it begin to make sense to define an ADT for a collection? At this
point, we have defined many of the terms for a tree, and we have a general un-
derstanding of how a tree might be used, but are we ready to define an ADT?
Not really. Trees, in the general sense, are more of an abstract data structure
than a collection, so trying to define an ADT for a general tree is not likely to be
very useful. Instead, we will wait until we have specified more details about the
type of the tree and its use before we attempt to define an interface.

D e s i g N F o c u s

If trees provide more efficient implementations than linear structures, why
would we ever use linear structures? There is an overhead associated with trees
in terms of maintaining the structure and order of the tree that may not be pres-
ent in other structures; thus there is a trade-off between this overhead and the
size of the problem. With a relatively small n, the difference between the analy-
sis of tree implementations and that of linear structures is not particularly sig-
nificant relative to the overhead involved in the tree. However, as n increases,
the efficiency of a tree becomes more attractive.

KeY coNcept
In general, a balanced n-ary tree with
m elements will have height lognm.

M10_LEWI3322_CH10_pp275-318.indd 281 20/02/13 11:02 AM

282 chapter 10 Trees

10.3 tree traversals

Because a tree is a nonlinear structure, the concept of traversing a tree is generally
more interesting than the concept of traversing a linear structure. There are four
basic methods for traversing a tree:

■		 Preorder traversal, which is accomplished by visiting each node, followed
by its children, starting with the root

■		 Inorder traversal, which is accomplished by visiting the left child of the
node, then the node, and then any remaining nodes, starting with
the root

■		 Postorder traversal, which is accomplished by visiting the chil-
dren and then the node, starting with the root

■		 Level-order traversal, which is accomplished by visiting all of
the nodes at each level, one level at a time, starting with the root

Each of these definitions applies to all trees. However, as an example, let us
examine how each of these definitions would apply to a binary tree (that is, a tree
in which each node has at most two children).

preorder traversal
Given the tree shown in Figure 10.7, a preorder traversal would produce the se-
quence A, B, D, E, C. The definition stated previously says that preorder traversal
is accomplished by visiting each node, followed by its children, starting with the
root. So, starting with the root, we visit the root, giving us A. Next we traverse to
the first child of the root, which is the node containing B. We then use the same
algorithm by first visiting the current node, which yields B, and then visiting its
children. Next we traverse to the first child of B, which is the node containing D.
We then use the same algorithm again by first visiting the current node, which
yields D, and then visiting its children. Only this time, there are no children. We

then traverse to any other children of B. This yields E, and because E
has no children, we then traverse to any other children of A. This
brings us to the node containing C, where we again use the same
algorithm, first visiting the node, which yields C, and then visiting
any children. Because there are no children of C and no more chil-
dren of A, the traversal is complete.

Stated in pseudocode for a binary tree, the algorithm for a preorder traversal is

Visit node
Traverse(left child)
Traverse(right child)

KeY coNcept
There are four basic methods for tra-
versing a tree: preorder, inorder,
postorder, and level-order traversals.

KeY coNcept
Preorder traversal means visit the
node, then the left child, and then
the right child.

M10_LEWI3322_CH10_pp275-318.indd 282 20/02/13 11:02 AM

 10.3 Tree Traversals 283

inorder traversal
Given the tree shown in Figure 10.7, an inorder traversal would produce the se-
quence D, B, E, A, C. As defined earlier, inorder traversal is accomplished by visit-
ing the left child of the node, then the node, and then any remaining nodes, starting
with the root. So, starting with the root, we traverse to the left child of the root, the
node containing B. We then use the same algorithm again and traverse to the left
child of B, the node containing D. Note that we have not yet visited any nodes.
Using the same algorithm again, we attempt to traverse to the left child of D.
Because there is no such left child, we then visit the current node, which yields D.
Continuing the same algorithm, we attempt to traverse to any remaining children
of D. Because there are no children, we then visit the previous node, which yields B.
We then attempt to traverse to any remaining children of B. This brings us to the
node containing E. Because E does not have a left child, we visit the node, which
yields E. Because E has no right child, we then visit the previous node, which yields
A. We then traverse to any remaining children of A, which takes us to the node
containing C. Using the same algorithm, we then attempt to traverse to
the left child of C. Because there is no such left child, we then visit
the current node, which yields C. We then attempt to traverse to any
remaining children of C. Because there are no such children, we
return to the previous node, which happens to be the root. Because
there are no more children of the root, the traversal is complete.

Stated in pseudocode for a binary tree, the algorithm for an inorder traversal is

Traverse(left child)
Visit node
Traverse(right child)

postorder traversal
Given the tree shown in Figure 10.7, a postorder traversal would produce the
sequence D, E, B, C, A. As previously defined, postorder traversal is accomplished

A

CB

ED

Figure 10.7 A complete tree

KeY coNcept
Inorder traversal means visit the left
child, then the node, and then the
right child.

M10_LEWI3322_CH10_pp275-318.indd 283 20/02/13 11:02 AM

284 chapter 10 Trees

by visiting the children and then the node, starting with the root. So,
starting from the root, we traverse to the left child, the node con-
taining B. Repeating that process, we traverse to the left child again,
the node containing D. Because that node does not have any chil-
dren, we then visit that node, which yields D. Returning to the previ-
ous node, we visit the right child, the node containing E. Because

this node does not have any children, we visit the node, which yields E, and then
return to the previous node and visit it, which yields B. Returning to the previous
node, in this case the root, we find that it has a right child, so we traverse to the
right child, the node containing C. Because this node does not have any children,
we visit it, which yields C. Returning to the previous node (the root), we find that
it has no remaining children, so we visit it, which yields A, and the traversal is
complete.

Stated in pseudocode for a binary tree, the algorithm for a postorder traversal is

Traverse(left child)
Traverse(right child)
Visit node

Level-order traversal
Given the tree shown in Figure 10.7, a level-order traversal would produce the
sequence A, B, C, D, E. As defined earlier, a level-order traversal is accomplished
by visiting all of the nodes at each level, one level at a time, starting with the root.
Using this definition, we first visit the root, which yields A. Next we visit the left
child of the root, which yields B, then the right child of the root, which yields C,
and then the children of B, which yields D and E.

Stated in pseudocode for a binary tree, an algorithm for a level-order traversal is

Create a queue called nodes
Create an unordered list called results
Enqueue the root onto the nodes queue
While the nodes queue is not empty
{
 Dequeue the first element from the queue
 If that element is not null
 Add that element to the rear of the results list
 Enqueue the children of the element on the nodes queue
 Else
 Add null on the result list
}
Return an iterator for the result list

This algorithm for a level-order traversal is only one of many possible solu-
tions. However, it does have some interesting properties. First, note that we are

KeY coNcept
Postorder traversal means visit the
left child, then the right child, and
then the node.

M10_LEWI3322_CH10_pp275-318.indd 284 20/02/13 11:02 AM

 10.4 A Binary Tree ADT 285

using collections—namely a queue and a list—to solve a problem
within another collection—namely a binary tree. Second, recall that
in our earlier discussions of iterators, we talked about their behavior
with respect to the collection if the collection is modified while the
iterator is in use. In this case, using a list to store the elements in the
proper order and then returning an iterator over the list, this iterator
behaves like a snapshot of the binary tree and is not affected by any concurrent
modifications. This can be either a positive or a negative attribute, depending on
how the iterator is used.

10.4 a binary tree aDt

Let’s take a look at a simple binary tree implementation using links. In Sections
10.5 and 10.6, we will consider examples using this implementation. As we dis-
cussed earlier in this chapter, it is difficult to abstract an interface for all trees.
However, once we have narrowed our focus to binary trees, the task becomes
more reasonable. One possible set of operations for a binary tree ADT is listed in
Figure 10.8. Keep in mind that the definition of a collection is not universal. You
will find variations in the operations defined for specific collections from one text
to another. We have been very careful in this text to define the operations on each
collection so that they are consistent with its purpose.

Notice that in all of the operations listed, there are no operations to add ele-
ments to the tree or remove elements from it. This is because until we specify the
purpose and organization of the binary tree, there is no way to know how or—

Operation Description
getRoot Returns a reference to the root of the binary tree

isEmpty Determines whether the tree is empty

size Returns the number of elements in the tree

contains Determines whether the specified target is in the tree

find Returns a reference to the specified target element if it is found

toString Returns a string representation of the tree

iteratorInOrder Returns an iterator for an inorder traversal of the tree

iteratorPreOrder Returns an iterator for a preorder traversal of the tree

iteratorPostOrder Returns an iterator for a postorder traversal of the tree

iteratorLevelOrder Returns an iterator for a level-order traversal of the tree

Figure 10.8 The operations on a binary tree

Demonstration of the
four basic tree traversals

VideoNote

KeY coNcept
Level-order traversal means visit the
nodes at each level, one level at a
time, starting with the root.

M10_LEWI3322_CH10_pp275-318.indd 285 20/02/13 11:02 AM

286 chapter 10 Trees

more specifically—where to add an element to the tree. Similarly, any operation to
remove one or more elements from the tree may violate the purpose or structure of
the tree as well. As with adding an element, we do not yet have enough informa-
tion to know how to remove an element. When we were dealing with stacks in
Chapters 3 and 4, we could think about the concept of removing an element from
a stack, and it was easy to conceptualize the state of the stack after removal of the
element. The same can be said of queues, because we could remove an element
from only one end of the linear structures. Even with lists, where we could remove
an element from the middle of the linear structure, it was easy to conceptualize the
state of the resulting list.

With a tree, however, upon removing an element, we have many issues to han-
dle that will affect the state of the tree. What happens to the children and other
descendants of the element that is removed? Where does the child pointer of the
element’s parent now point? What if the element we are removing is the root? As
we will see in our example using expression trees later in this chapter, there will
be applications of trees where there is no concept of the removal of an element
from the tree. Once we have specified more detail about the use of the tree, we
may then decide that a removeElement method is appropriate. An excellent ex-
ample of this is binary search trees, as we will see in Chapter 11.

Listing 10.1 shows the BinaryTreeADT interface. Figure 10.9 shows the UML
description for the BinaryTreeADT interface.

<<interface>>

BinaryTreeADT

toString() : String
iterator() : Iterator<T>
iteratorInOrder() : Iterator<T>
iteratorPreOrder() : Iterator<T>
iteratorPostOrder() : Iterator<T>
iteratorLevelOrder() : Iterator<T>

getRootElement () : T
isEmpty() : boolean
size() : int
contains(T targetElement) : boolean
find(T targetElement) : T

T

Figure 10.9 UML description of the BinaryTreeADT interface

M10_LEWI3322_CH10_pp275-318.indd 286 20/02/13 11:02 AM

 10.4 A Binary Tree ADT 287

package jsjf;

import java.util.Iterator;

/**
 * BinaryTreeADT defines the interface to a binary tree data structure.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public interface BinaryTreeADT<T>
{
 /**
 * Returns a reference to the root element
 *
 * @return a reference to the root
 */
 public T getRootElement();

 /**
 * Returns true if this binary tree is empty and false otherwise.
 *
 * @return true if this binary tree is empty, false otherwise
 */
 public boolean isEmpty();

 /**
 * Returns the number of elements in this binary tree.
 *
 * @return the number of elements in the tree
 */
 public int size();

 /**
 * Returns true if the binary tree contains an element that matches
 * the specified element and false otherwise.
 *
 * @param targetElement the element being sought in the tree
 * @return true if the tree contains the target element
 */
 public boolean contains(T targetElement);

 /**
 * Returns a reference to the specified element if it is found in

L i s t i N g 1 0 . 1

M10_LEWI3322_CH10_pp275-318.indd 287 20/02/13 11:02 AM

288 chapter 10 Trees

 * this binary tree. Throws an exception if the specified element
 * is not found.
 *
 * @param targetElement the element being sought in the tree
 * @return a reference to the specified element
 */
 public T find(T targetElement);

 /**
 * Returns the string representa tion of this binary tree.
 *
 * @return a string representation of the binary tree
 */
 public String toString();

 /**
 * Returns an iterator over the elements of this tree.
 *
 * @return an iterator over the elements of this binary tree
 */
 public Iterator<T> iterator();

 /**
 * Returns an iterator that represents an inorder traversal on this
 * binary tree.
 * @return an iterator over the elements of this binary tree
 */
 public Iterator<T> iteratorInOrder();

 /**
 * Returns an iterator that represents a preorder traversal on this
 * binary tree.
 * @return an iterator over the elements of this binary tree
 */
 public Iterator<T> iteratorPreOrder();

 /**
 * Returns an iterator that represents a postorder traversal on this
 * binary tree.
 * @return an iterator over the elements of this binary tree
 */

L i s t i N g 1 0 . 1 continued

M10_LEWI3322_CH10_pp275-318.indd 288 20/02/13 11:02 AM

 10.5 Using Binary Trees: Expression Trees 289

10.5 using binary trees: expression trees

In Chapter 3, we used a stack algorithm to evaluate postfix expressions. In this
section, we modify that algorithm to construct an expression tree using an
ExpressionTree class that extends our definition of a binary tree. Figure 10.10
illustrates the concept of an expression tree. Notice that the root and all of the in-
ternal nodes of an expression tree contain operations and that all of the leaves
contain operands. An expression tree is evaluated from the bottom up. In this case,
the (5 – 3) term is evaluated first, which yields 2. That result is then multiplied by
4, which yields 8. Finally, the result of that term is added to 9, which yields 17.

Listing 10.2 illustrates our ExpressionTree class. The Java Collections API
does not provide an implementation of a tree collection. Instead, the use of trees
in the API is limited to their use as an implementation strategy for sets and maps.

35

+

(5 – 3) * 4 + 9

9*

4–

Figure 10.10 An example of an expression tree

 public Iterator<T> iteratorPostOrder();

 /**
 * Returns an iterator that represents a levelorder traversal on this
 * binary tree.
 * @return an iterator over the elements of this binary tree
 */
 public Iterator<T> iteratorLevelOrder();
}

L i s t i N g 1 0 . 1 continued

M10_LEWI3322_CH10_pp275-318.indd 289 20/02/13 11:02 AM

290 chapter 10 Trees

Thus we will use our own implementation of a linked binary tree for this example.
The LinkedBinaryTree class is presented in Section 10.7.

The ExpressionTree class extends the LinkedBinaryTree class, providing a
new constructor that will combine expression trees to make a new tree and pro-
viding an evaluate method to recursively evaluate an expression tree once it has
been constructed.

import jsjf.*;

/**
 * ExpressionTree represents an expression tree of operators and operands.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class ExpressionTree extends LinkedBinaryTree<ExpressionTreeOp>
{
 /**
 * Creates an empty expression tree.
 */
 public ExpressionTree()
 {
 super();
 }

 /**
 * Constructs a expression tree from the two specified expression
 * trees.
 *
 * @param element the expression tree for the center
 * @param leftSubtree the expression tree for the left subtree
 * @param rightSubtree the expression tree for the right subtree
 */
 public ExpressionTree(ExpressionTreeOp element,
 ExpressionTree leftSubtree, ExpressionTree rightSubtree)
 {
 root = new BinaryTreeNode<ExpressionTreeOp>(element, leftSubtree,
 rightSubtree);
 }

 /**
 * Evaluates the expression tree by calling the recursive
 * evaluateNode method.

L i s t i N g 1 0 . 2

M10_LEWI3322_CH10_pp275-318.indd 290 20/02/13 11:02 AM

 10.5 Using Binary Trees: Expression Trees 291

 *
 * @return the integer evaluation of the tree
 */
 public int evaluateTree()
 {
 return evaluateNode(root);
 }

 /**
 * Recursively evaluates each node of the tree.
 *
 * @param root the root of the tree to be evaluated
 * @return the integer evaluation of the tree
 */
 public int evaluateNode(BinaryTreeNode root)
 {
 int result, operand1, operand2;
 ExpressionTreeOp temp;

 if (root==null)
 result = 0;
 else
 {
 temp = (ExpressionTreeOp)root.getElement();

 if (temp.isOperator())
 {
 operand1 = evaluateNode(root.getLeft());
 operand2 = evaluateNode(root.getRight());
 result = computeTerm(temp.getOperator(), operand1, operand2);
 }
 else
 result = temp.getValue();
 }

 return result;
 }

 /**
 * Evaluates a term consisting of an operator and two operands.
 *
 * @param operator the operator for the expression
 * @param operand1 the first operand for the expression
 * @param operand2 the second operand for the expression
 */

L i s t i N g 1 0 . 2 continued

M10_LEWI3322_CH10_pp275-318.indd 291 20/02/13 11:02 AM

292 chapter 10 Trees

 private int computeTerm(char operator, int operand1, int operand2)
 {
 int result=0;

 if (operator == '+')
 result = operand1 + operand2;
 else if (operator == '-')
 result = operand1 - operand2;
 else if (operator == '*')
 result = operand1 * operand2;
 else
 result = operand1 / operand2;

 return result;
 }

 /**
 * Generates a structured string version of the tree by performing
 * a levelorder traversal.
 *
 * @return a string representation of this binary tree
 */
 public String printTree()
 {
 UnorderedListADT<BinaryTreeNode<ExpressionTreeOp>> nodes =
 new ArrayUnorderedList<BinaryTreeNode<ExpressionTreeOp>>();
 UnorderedListADT<Integer> levelList =
 new ArrayUnorderedList<Integer>();
 BinaryTreeNode<ExpressionTreeOp> current;
 String result = "";
 int printDepth = this.getHeight();
 int possibleNodes = (int)Math.pow(2, printDepth + 1);
 int countNodes = 0;

 nodes.addToRear(root);
 Integer currentLevel = 0;
 Integer previousLevel = -1;
 levelList.addToRear(currentLevel);

 while (countNodes < possibleNodes)
 {
 countNodes = countNodes + 1;
 current = nodes.removeFirst();
 currentLevel = levelList.removeFirst();

L i s t i N g 1 0 . 2 continued

M10_LEWI3322_CH10_pp275-318.indd 292 20/02/13 11:02 AM

 10.5 Using Binary Trees: Expression Trees 293

 if (currentLevel > previousLevel)
 {
 result = result + "\n\n";
 previousLevel = currentLevel;
 for (int j = 0;
 j < ((Math.pow(2, (printDepth - currentLevel))) - 1);
 j++)
 result = result + " ";
 }
 else
 {
 for (int i = 0;
 i < ((Math.pow(2, (printDepth - currentLevel + 1)) - 1));
 i++)
 {
 result = result + " ";
 }
 }
 if (current != null)
 {
 result = result + (current.getElement()).toString();
 nodes.addToRear(current.getLeft());
 levelList.addToRear(currentLevel + 1);
 nodes.addToRear(current.getRight());
 levelList.addToRear(currentLevel + 1);
 }
 else
 {
 nodes.addToRear(null);
 levelList.addToRear(currentLevel + 1);
 nodes.addToRear(null);
 levelList.addToRear(currentLevel + 1);
 result = result + " ";
 }

 }

 return result;
 }
}

L i s t i N g 1 0 . 2 continued

M10_LEWI3322_CH10_pp275-318.indd 293 20/02/13 11:02 AM

294 chapter 10 Trees

The evaluateTree method calls the recursive evaluateNode method. The
evaluateNode method returns the value if the node contains a number, or, if the
node contains an operation, it returns the result of the operation using the value of
the left and right subtrees. The ExpressionTree class uses the ExpressionTreeOp
class as the element to store at each node of the tree. The ExpressionTreeOp class
enables us to keep track of whether the element is a number or an operator and of
which operator or what value is stored there. The ExpressionTreeOp class is illus-
trated in Listing 10.3.

import jsjf.*;

/**
 * ExpressionTreeOp represents an element in an expression tree.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class ExpressionTreeOp
{
 private int termType;
 private char operator;
 private int value;

 /**
 * Creates a new expression tree object with the specified data.
 *
 * @param type the integer type of the expression
 * @param op the operand for the expression
 * @param val the value for the expression
 */
 public ExpressionTreeOp(int type, char op, int val)
 {
 termType = type;
 operator = op;
 value = val;
 }

 /**
 * Returns true if this object is an operator and false otherwise.
 *
 * @return true if this object is an operator, false otherwise
 */

L i s t i N g 1 0 . 3

M10_LEWI3322_CH10_pp275-318.indd 294 20/02/13 11:02 AM

 10.5 Using Binary Trees: Expression Trees 295

 public boolean isOperator()
 {
 return (termType == 1);
 }

 /**
 * Returns the operator of this expression tree object.
 *
 * @return the character representation of the operator
 */
 public char getOperator()
 {
 return operator;
 }

 /**
 * Returns the value of this expression tree object.
 *
 * @return the value of this expression tree object
 */
 public int getValue()
 {
 return value;
 }

 public String toString()
 {
 if (termType == 1)
 return operator + "";
 else
 return value + "";
 }
}

L i s t i N g 1 0 . 3 continued

The PostfixTester and PostfixEvaluator classes are a modification of our
solution from Chapter 3. This solution employs the ExpressionTree class to
build, print, and evaluate an expression tree. Figure 10.11 illustrates this process
for the expression tree from Figure 10.10. Note that the top of the expression tree
stack is on the right.

M10_LEWI3322_CH10_pp275-318.indd 295 20/02/13 11:02 AM

35

+op2 = pop
op1 = pop
push(new ExpressionTree(+, op1, op2)

+

9*

4–

op2 = pop
op1 = pop
push(new ExpressionTree(*, op1, op2)

4 push(new ExpressionTree(4, null, null)

*

9 push(new ExpressionTree(9, null, null)

35

* 9

4–

35

*

4–

35

– 4

– op2 = pop
op1 = pop
push(new ExpressionTree(–, op1, op2)

35

–

Input in Postfix: 5 3 – 4 * 9 +

Expression Tree StackToken Processing Steps
(top at right)

5 push(new ExpressionTree(5, null, null)

3 push(new ExpressionTree(3, null, null) 35

5

Figure 10.11 Building an expression tree from a postfix expression

296

M10_LEWI3322_CH10_pp275-318.indd 296 20/02/13 11:02 AM

 10.5 Using Binary Trees: Expression Trees 297

import java.util.Scanner;
/**
 * Demonstrates the use of a stack to evaluate postfix expressions.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class PostfixTester
{
 /**
 * Reads and evaluates multiple postfix expressions.
 */
 public static void main(String[] args)
 {
 String expression, again;
 int result;

 Scanner in = new Scanner(System.in);

 do
 {
 PostfixEvaluator evaluator = new PostfixEvaluator();
 System.out.println("Enter a valid post-fix expression one token " +
 "at a time with a space between each token (e.g. 5 4 + 3 2 1 - +

*)");
 System.out.println("Each token must be an integer or an operator (+,-

,*,/)");
 expression = in.nextLine();

 result = evaluator.evaluate(expression);
 System.out.println();
 System.out.println("That expression equals " + result);

 System.out.println("The Expression Tree for that expression is: ");
 System.out.println(evaluator.getTree());

 System.out.print("Evaluate another expression [Y/N]? ");
 again = in.nextLine();
 System.out.println();
 }
 while (again.equalsIgnoreCase("y"));
 }
}

L i s t i N g 1 0 . 4

M10_LEWI3322_CH10_pp275-318.indd 297 20/02/13 11:02 AM

298 Chapter 10 Trees

The PostfixTester class is shown in Listing 10.4, and the PostfixEvaluator
class is shown in Listing 10.5. The UML description of the Postfix class is
shown in Figure 10.12.

import jsjf.*;
import jsfj.exceptions.*;
import java.util.*;
import java.io.*;

/**
 * PostfixEvaluator this modification of our stack example uses a
 * stack to create an expression tree from a VALID integer postfix expression
 * and then uses a recursive method from the ExpressionTree class to
 * evaluate the tree.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class PostfixEvaluator
{
 private String expression;
 private Stack<ExpressionTree> treeStack;

 /**
 * Sets up this evaluator by creating a new stack.
 */
 public PostfixEvaluator()
 {
 treeStack = new Stack<ExpressionTree>();
 }

 /**
 * Retrieves and returns the next operand off of this tree stack.
 *
 * @param treeStack the tree stack from which the operand will be returned
 * @return the next operand off of this tree stack
 */
 private ExpressionTree getOperand(Stack<ExpressionTree> treeStack)
 {
 ExpressionTree temp;
 temp = treeStack.pop();

 return temp;
 }

 /**
 * Evaluates the specified postfix expression by building and evaluating

L i s t i n g 1 0 . 5

M10_LEWI3322_CH10_pp275-318.indd 298 01/03/13 11:08 AM

 10.5 Using Binary Trees: Expression Trees 299

 * an expression tree.
 *
 * @param expression string representation of a postfix expression
 * @return value of the given expression
 */
 public int evaluate(String expression)
 {
 ExpressionTree operand1, operand2;
 char operator;
 String tempToken;

 Scanner parser = new Scanner(expression);

 while (parser.hasNext())
 {
 tempToken = parser.next();
 operator = tempToken.charAt(0);

 if ((operator == '+') || (operator == '-') || (operator == '*') ||
 (operator == '/'))
 {
 operand1 = getOperand(treeStack);
 operand2 = getOperand(treeStack);
 treeStack.push(new ExpressionTree
 (new ExpressionTreeOp(1,operator,0), operand2, operand1));
 }
 else
 {
 treeStack.push(new ExpressionTree(new ExpressionTreeOp
 (2,' ',Integer.parseInt(tempToken)), null, null));
 }

 }
 return (treeStack.peek()).evaluateTree();
 }

 /**
 * Returns the expression tree associated with this postfix evaluator.
 *
 * @return string representing the expression tree
 */
 public String getTree()
 {
 return (treeStack.peek()).printTree();
 }
}

L i s t i N g 1 0 . 5 continued

M10_LEWI3322_CH10_pp275-318.indd 299 20/02/13 11:02 AM

300 chapter 10 Trees

BinaryTreeNode

element : T
left : BinaryTreeNode<T>
right:BinaryTreeNode<T>

numChildren() : int
getElement() : T
getRight() : BinaryTreeNode<T>
setRight() : BinaryTreeNode<T>

setLeft(BinaryTreeNode<T> node) :
void

node) : void
getLeft() : BinaryTreeNode<T>

<<interface>>

BinaryTreeADT

toString() : String
iterator() : Iterator<T>
iteratorInOrder() : Iterator<T>
iteratorPreOrder() : Iterator<T>
iteratorPostOrder() : Iterator<T>
iteratorLevelOrder() : Iterator<T>

getRootElement () : T
isEmpty() : boolean
size() : int
contains(T targetElement) : boolean
find(T targetElement) : T

T

T

LinkedBinaryTree

ExpressionTree

evaluateTree() : int
evaluateNode(BinaryTreeNode root) : int

printTree() : String

computeTerm(char operator : int operator1 :
int operand2) : int

ExpressionTreeOp

termType : int
operator : char
value : int

isOperator() : boolean
getOperator() : char
getValue() : int
toString() : string

0 . . * 1

java.util.Stack<Integer>

main(String[] args)

Postfixator
expression : String

main(String[] args)

PostfixEvaluator

treeStack : Stack

1

1

Figure 10.12 UML description of the Postfix example

M10_LEWI3322_CH10_pp275-318.indd 300 20/02/13 11:02 AM

 10.6 A Back Pain Analyzer 301

10.6 a back pain analyzer

Notice that the ExpressionTree class extended the LinkedBinaryTree class.
Keep in mind that when one class is derived from another, it creates an is-a rela-
tionship. This extension to create the ExpressionTree class is natural, given that
an expression tree is a binary tree.

Let’s look at another example where our solution uses the LinkedBinaryTree
class but does not extend it. A decision tree is a tree whose nodes represent deci-
sion points and whose children represent the options available at that point. The
leaves of a decision tree represent the possible conclusions that might be drawn
based on the answers.

A simple decision tree, with yes/no questions, can be modeled by a binary tree.
Figure 10.13 shows a decision tree that helps to diagnose the cause of back pain.
For each question, the left child represents the answer No, and the right child rep-
resents the answer Yes. To perform a diagnosis, begin with the question at the root
and follow the appropriate path, based on the answers, until a leaf is reached.

Decision trees are sometimes used as a basis for an expert system,
which is software that attempts to represent the knowledge of an
expert in a particular field. For instance, a particular expert system
might be used to model the expertise of a doctor, a car mechanic, or
an accountant. Obviously, the greatly simplified decision tree in
Figure 10.13 is not fleshed out enough to do a good job diagnosing the real cause
of back pain, but it should give you a feel for how such systems might work.

KeY coNcept
A decision tree can be used as the
basis for an expert system.

Did the pain occur
after a blow or jolt?

Do you have
a fever?

Do you have
persistent

morning stiffness?

See doctor
if pain persists.

You may have
an inflammation

of the joints.

See doctor
to address
symptoms.

You may have
a respiratory

infection.

You may
have a sprain

or strain.

You may have
a muscle or
nerve injury.

Do you have a
sore throat or
runny nose?

Do you have pain
or numbness in
one arm or leg?

Emergency! You
may have damaged

your spinal cord.

Do you have
difficulty controlling
your arms or legs?

N

N Y N Y

YN YN YN

Y

Figure 10.13 A decision tree for diagnosing back pain

M10_LEWI3322_CH10_pp275-318.indd 301 20/02/13 11:02 AM

302 chapter 10 Trees

Let’s look at an example that uses the LinkedBinaryTree implementation
discussed in the previous section to represent a decision tree. The program in
Listing 10.6 uses the tree pictured in Figure 10.13 to hold a dialog with the user
and draw a conclusion. The UML description of our solution to the back pain
analyzer problem is presented in Figure 10.14.

import java.io.*;

/**
 * BackPainAnalyzer demonstrates the use of a binary decision tree to
 * diagnose back pain.
 */
public class BackPainAnalyzer
{
 /**
 * Asks questions of the user to diagnose a medical problem.
 */
 public static void main (String[] args) throws FileNotFoundException
 {
 System.out.println ("So, you're having back pain.");

 DecisionTree expert = new DecisionTree("input.txt");
 expert.evaluate();
 }

}

L i s t i N g 1 0 . 6

o u t p u t

So, you're having back pain.
Did the pain occur after a blow or jolt?
Y
Do you have difficulty controlling your arms or legs?
N
Do you have pain or numbness in one arm or leg?
Y
You may have a muscle or nerve injury.

The tree is constructed and used in the DecisionTree class, shown in Listing
10.7. The only instance data is the variable tree that represents the entire deci-
sion tree, which is defined to store String objects as elements. Note that this

M10_LEWI3322_CH10_pp275-318.indd 302 20/02/13 11:02 AM

 10.6 A Back Pain Analyzer 303

version of the DecisionTree class is not specific to the back pain analyzer. It
could be used for any binary decision tree.

The constructor of DecisionTree reads the various string elements to be
stored in the tree nodes from the given file. Then the nodes themselves are created,
with no children for the leaves and with previously defined nodes (or subtrees) as
children for internal nodes. The tree is basically created from the bottom up.

BinaryTreeNode

element : T
left : BinaryTreeNode<T>
right:BinaryTreeNode<T>

numChildren() : int
getElement() : T
getRight() : BinaryTreeNode<T>
setRight() : BinaryTreeNode<T>

setLeft(BinaryTreeNode<T> node) :
void

node) : void
getLeft() : BinaryTreeNode<T>

<<interface>>

BinaryTreeADT

toString() : String
iterator() : Iterator<T>
iteratorInOrder() : Iterator<T>
iteratorPreOrder() : Iterator<T>
iteratorPostOrder() : Iterator<T>
iteratorLevelOrder() : Iterator<T>

getRootElement () : T
isEmpty() : boolean
size() : int
contains(T targetElement) : boolean
find(T targetElement) : T

T

T

LinkedList<Integer>

main(String[] args)

BackPainAnalyzer

tree : LinkedBinaryTree<String>

evaluate() : void

DecisionTree

Figure 10.14 UML description of the back pain analyzer

M10_LEWI3322_CH10_pp275-318.indd 303 20/02/13 11:02 AM

304 chapter 10 Trees

The evaluate method uses the variable current to indicate the current node
in the tree being processed, beginning at the root. The while loop continues until
a leaf is found. The current question is printed, and the answer is read from the
user. If the answer is No, current is updated to point to the left child. Otherwise,
it is updated to point to the right child. After falling out of the loop, the element
stored in the leaf (the conclusion) is printed.

import jsjf.*;
import java.util.*;
import java.io.*;

/**
 * The DecisionTree class uses the LinkedBinaryTree class to implement
 * a binary decision tree. Tree elements are read from a given file and
 * then the decision tree can be evaluated based on user input using the
 * evaluate method.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class DecisionTree
{
 private LinkedBinaryTree<String> tree;

 /**
 * Builds the decision tree based on the contents of the given file
 *
 * @param filename the name of the input file
 * @throws FileNotFoundException if the input file is not found
 */
 public DecisionTree(String filename) throws FileNotFoundException
 {
 File inputFile = new File(filename);
 Scanner scan = new Scanner(inputFile);
 int numberNodes = scan.nextInt();
 scan.nextLine();
 int root = 0, left, right;

 List<LinkedBinaryTree<String>> nodes =
 new java.util.ArrayList<LinedBinaryTree<String>>();
 for (int i = 0; i < numberNodes; i++)
 nodes.add(i,new LinkedBinaryTree<String>(scan.nextLine()));

 while (scan.hasNext())
 {

L i s t i N g 1 0 . 7

M10_LEWI3322_CH10_pp275-318.indd 304 20/02/13 11:02 AM

 10.7 Implementing Binary Trees with Links 305

10.7 implementing binary trees with Links

We will examine how some of these methods might be implemented using a
linked implementation; others will be left as exercises. The LinkedBinaryTree
class implementing the BinaryTreeADT interface will need to keep track of the
node that is at the root of the tree and the number of elements on the tree. The
LinkedBinaryTree header and instance data could be declared as

 root = scan.nextInt();
 left = scan.nextInt();
 right = scan.nextInt();
 scan.nextLine();

 nodes.set(root,
 new LinkedBinaryTree<String>((nodes.get(root)).getRootElement(),
 nodes.get(left), nodes.get(right)));
 }
 tree = nodes.get(root);
 }

 /**
 * Follows the decision tree based on user responses.
 */
 public void evaluate()
 {
 LinkedBinaryTree<String> current = tree;
 Scanner scan = new Scanner(System.in);

 while (current.size() > 1)
 {
 System.out.println (current.getRootElement());
 if (scan.nextLine().equalsIgnoreCase("N"))
 current = current.getLeft();
 else
 current = current.getRight();
 }

 System.out.println (current.getRootElement());
 }
}

L i s t i N g 1 0 . 7 continued

M10_LEWI3322_CH10_pp275-318.indd 305 20/02/13 11:02 AM

306 chapter 10 Trees

The constructors for the LinkedBinaryTree class should handle three cases:
We want to create a binary tree with nothing in it, we want to create a binary
tree with a single element but no children, and we want to create a binary tree
with a particular element at the root and two given trees as children. With these
goals in mind, the LinkedBinaryTree class might have the following construc-
tors. Note that each of the constructors must account for both the root and
count attributes.

package jsjf;

import java.util.*;
import jsjf.exceptions.*;

/**
 * LinkedBinaryTree implements the BinaryTreeADT interface
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class LinkedBinaryTree<T> implements BinaryTreeADT<T>, Iterable<T>
{
 protected BinaryTreeNode<T> root;
 protected int modCount;

 /**
 * Creates an empty binary tree.
 */
 public LinkedBinaryTree()
 {
 root = null;
 }

 /**
 * Creates a binary tree with the specified element as its root.
 *
 * @param element the element that will become the root of the binary tree
 */
 public LinkedBinaryTree(T element)
 {
 root = new BinaryTreeNode<T>(element);
 }

 /**
 * Creates a binary tree with the specified element as its root and the

M10_LEWI3322_CH10_pp275-318.indd 306 20/02/13 11:02 AM

 10.7 Implementing Binary Trees with Links 307

Note that both the instance data and the constructors use an additional class
called BinaryTreeNode. As discussed earlier, this class keeps track of the element
stored at each location, as well as pointers to the left and right subtree or children
of each node. In this particular implementation, we chose not to include a pointer
back to the parent of each node. Listing 10.8 shows the BinaryTreeNode class.
The BinaryTreeNode class also includes a recursive method to return the number
of children of the given node.

 * given trees as its left child and right child
 *
 * @param element the element that will become the root of the binary tree
 * @param left the left subtree of this tree
 * @param right the right subtree of this tree
 */
 public LinkedBinaryTree(T element, LinkedBinaryTree<T> left,
 LinkedBinaryTree<T> right)
 {
 root = new BinaryTreeNode<T>(element);
 root.setLeft(left.root);
 root.setRight(right.root);
 }

package jsjf;

/**
 * BinaryTreeNode represents a node in a binary tree with a left and
 * right child.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class BinaryTreeNode<T>
{
 protected T element;
 protected BinaryTreeNode<T> left, right;

 /**
 * Creates a new tree node with the specified data.
 *
 * @param obj the element that will become a part of the new tree node
 */

L i s t i N g 1 0 . 8

M10_LEWI3322_CH10_pp275-318.indd 307 20/02/13 11:02 AM

308 chapter 10 Trees

 public BinaryTreeNode(T obj)
 {
 element = obj;
 left = null;
 right = null;
 }

 /**
 * Creates a new tree node with the specified data.
 *
 * @param obj the element that will become a part of the new tree node
 * @param left the tree that will be the left subtree of this node
 * @param right the tree that will be the right subtree of this node
 */
 public BinaryTreeNode(T obj, LinkedBinaryTree<T> left,
 LinkedBinaryTree<T> right)
 {
 element = obj;
 if (left == null)
 this.left = null;
 else
 this.left = left.getRootNode();

 if (right == null)
 this.right = null;
 else
 this.right = right.getRootNode();
 }

 /**
 * Returns the number of non-null children of this node.
 *
 * @return the integer number of non-null children of this node
 */
 public int numChildren()
 {
 int children = 0;

 if (left != null)
 children = 1 + left.numChildren();

 if (right != null)
 children = children + 1 + right.numChildren();

L i s t i N g 1 0 . 8 continued

M10_LEWI3322_CH10_pp275-318.indd 308 20/02/13 11:02 AM

 10.7 Implementing Binary Trees with Links 309

 return children;
 }

 /**
 * Return the element at this node.
 *
 * @return the element stored at this node
 */
 public T getElement()
 {
 return element;
 }

 /**
 * Return the right child of this node.
 *
 * @return the right child of this node
 */
 public BinaryTreeNode<T> getRight()
 {
 return right;
 }

 /**
 * Sets the right child of this node.
 *
 * @param node the right child of this node
 */
 public void setRight(BinaryTreeNode<T> node)
 {
 right = node;
 }

 /**
 * Return the left child of this node.
 *
 * @return the left child of the node
 */
 public BinaryTreeNode<T> getLeft()
 {
 return left;
 }

 /**
 * Sets the left child of this node.

L i s t i N g 1 0 . 8 continued

M10_LEWI3322_CH10_pp275-318.indd 309 20/02/13 11:02 AM

310 chapter 10 Trees

There are a variety of other possibilities for implementation of a tree node or
binary tree node class. For example, methods could be included to test whether
the node is a leaf (does not have any children), to test whether the node is an in-
ternal node (has at least one child), to test the depth of the node from the root, or
to calculate the height of the left and right subtrees.

Another alternative would be to use polymorphism such that, rather than test-
ing a node to see whether it has data or has children, we would create various
implementations, such as an emptyTreeNode, an innerTreeNode, and a leaf-
TreeNode, that would distinguish the various possibilities.

the find Method
As with our earlier collections, our find method traverses the tree using the
equals method of the class stored in the tree to determine equality. This puts the
definition of equality under the control of the class being stored in the tree. The
find method throws an exception if the target element is not found.

Many methods associated with trees may be written either recursively or itera-
tively. Often, when written recursively, these methods require the use of a private
support method, because the signature and/or the behavior of the first call and
each successive call may not be the same. The find method in our simple imple-
mentation is an excellent example of this strategy.

We have chosen to use a recursive findAgain method. We know that the first
call to find will start at the root of the tree, and if that instance of the find
method completes without finding the target, we need to throw an exception. The
private findAgain method enables us to distinguish between this first instance of
the find method and each successive call.

 *
 * @param node the left child of this node
 */
 public void setLeft(BinaryTreeNode<T> node)
 {
 left = node;
 }
}

L i s t i N g 1 0 . 8 continued

M10_LEWI3322_CH10_pp275-318.indd 310 20/02/13 11:02 AM

 10.7 Implementing Binary Trees with Links 311

 /**
 * Returns a reference to the specified target element if it is
 * found in this binary tree. Throws a ElementNotFoundException if
 * the specified target element is not found in the binary tree.
 *
 * @param targetElement the element being sought in this tree
 * @return a reference to the specified target
 * @throws ElementNotFoundException if the element is not in the tree
 */
 public T find(T targetElement) throws ElementNotFoundException
 {
 BinaryTreeNode<T> current = findNode(targetElement, root);

 if (current == null)
 throw new ElementNotFoundException("LinkedBinaryTree");

 return (current.getElement());
 }

 /**
 * Returns a reference to the specified target element if it is
 * found in this binary tree.
 *
 * @param targetElement the element being sought in this tree
 * @param next the element to begin searching from
 */
 private BinaryTreeNode<T> findNode(T targetElement,
 BinaryTreeNode<T> next)
 {
 if (next == null)
 return null;

 if (next.getElement().equals(targetElement))
 return next;

 BinaryTreeNode<T> temp = findNode(targetElement, next.getLeft());

 if (temp == null)
 temp = findNode(targetElement, next.getRight());

 return temp;
 }

M10_LEWI3322_CH10_pp275-318.indd 311 20/02/13 11:02 AM

312 chapter 10 Trees

As seen in earlier examples, the contains method can make use of the find
method. Our implementation of this is left as a programming project.

the iteratorInOrder Method
Another interesting operation is the iteratorInOrder method. The task is to
create an Iterator object that will allow a user class to step through the ele-
ments of the tree in an inorder traversal. The solution to this problem provides
another example of using one collection to build another. We simply traverse the
tree using a definition of “visit” from earlier pseudocode that adds the contents of
the node onto an unordered list. We then use the list iterator to create an new
TreeIterator. This approach is possible because of the linear nature of an unor-
dered list and the way that we implemented the iterator method for a list. The it-
erator method for a list returns an Iterator that starts with the element at the
front of the list and steps through the list in a linear fashion. It is important to
understand that this behavior is not a requirement for an iterator associated with
a list. It is simply an artifact of the way we chose to implement the iterator
method for a list. What would happen if we simply returned the Iterator for our
list without creating a TreeIterator? The problem with that solution would be
that our Iterator would no longer be fail-fast (that is, it would no longer throw
a concurrent modification exception if the underlying tree were modified while
the iterator was in use).

As in the find operation, we use a private helper method in our recursion.

 /**
 * Performs an inorder traversal on this binary tree by calling an
 * overloaded, recursive inorder method that starts with
 * the root.
 *
 * @return an in order iterator over this binary tree
 */
 public Iterator<T> iteratorInOrder()
 {
 ArrayUnorderedList<T> tempList = new ArrayUnorderedList<T>();
 inOrder(root, tempList);

 return new TreeIterator(tempList.iterator());
 }

 /**
 * Performs a recursive inorder traversal.
 *

M10_LEWI3322_CH10_pp275-318.indd 312 20/02/13 11:02 AM

 10.7 Implementing Binary Trees with Links 313

 * @param node the node to be used as the root for this traversal
 * @param tempList the temporary list for use in this traversal
 */
 protected void inOrder(BinaryTreeNode<T> node,
 ArrayUnorderedList<T> tempList)
 {
 if (node != null)
 {
 inOrder(node.getLeft(), tempList);
 tempList.addToRear(node.getElement());
 inOrder(node.getRight(), tempList);
 }
 }

The other iterator operations are similar and are left as exercises. Likewise, the
array implementation of a binary tree is left as an exercise and will be revisited in
Chapter 12.

M10_LEWI3322_CH10_pp275-318.indd 313 20/02/13 11:02 AM

314 chapter 10 Trees

Summary of Key Concepts
■	 A tree is a nonlinear structure whose elements are organized into a hierarchy.

■	 Trees are described by a large set of related terms.

■	 The simulated link strategy allows array positions to be allocated contiguously,
regardless of the completeness of the tree.

■	 In general, a balanced n-ary tree with m elements will have height lognm.

■	 There are four basic methods for traversing a tree: preorder, inorder, postorder,
and level-order traversals.

■	 Preorder traversal means visit the node, then the left child, then the right child.

■	 Inorder traversal means visit the left child, then the node, then the right child.

■	 Postorder traversal means visit the left child, then the right child, then the node.

■	 Level-order traversal means visit the nodes at each level, one level at a time,
starting with the root.

■	 A decision tree can be used as the basis for an expert system.

summary of terms
tree A tree is a nonlinear structure whose elements are organized into a
hierarchy.

node A location within a tree.

edge A connection between two nodes of a tree.

root The node at the top level of a tree and the one node in the tree that
does not have a parent.

level The position of a node relative to the root of the tree.

child A node that is below the current node in tree and directly connected
to it by an edge.

siblings Nodes that are children of the same node.

leaf A node in a tree that does not have any children.

internal node A node in a tree that is not the root and has at least one child.

path The collection of edges that directly connects a node to another node
of the tree.

ancestor A node that is above the current node on the path from the root.

descendant A node that is below the current node in the tree and is on a
path from the current node to a leaf (including the leaf).

M10_LEWI3322_CH10_pp275-318.indd 314 20/02/13 11:02 AM

 Self-Review Questions 315

path length The number of edges that must be followed to connect one
node to another.

tree height The length of the longest path from the root to a leaf.

tree order The maximum number of children that any node in the tree may
have.

general tree A tree that has no limit on the number of children a node may
have.

n-ary tree A tree that limits each node to no more than n children.

binary tree A tree in which nodes may have at most two children.

balanced Roughly speaking, a tree is considered balanced if all the leaves of
the tree are on the same level or at least within one level of each other.

complete A tree is considered complete if it is balanced and all of the leaves
at the bottom level are on the left side of the tree.

full An n-ary tree is considered full if all the leaves of the tree are at the
same level and every node either is a leaf or has exactly n children.

freelist A list of available positions in an array implementation of a tree.

binary search tree A binary tree with the added property that the left child
is always less than the parent, which is always less than or equal to the right
child.

preorder traversal A tree traversal accomplished by visiting each node,
followed by its children, starting with the root.

inorder traversal A tree traversal accomplished by visiting the left child of
the node, then the node, and then any remaining nodes, starting with the
root.

postorder traversal A tree traversal accomplished by visiting the children
and then the node, starting with the root.

level-order traversal A tree traversal accomplished by visiting all of the
nodes at each level, one level at a time, starting with the root.

self-review Questions
SR 10.1 What is a tree?

SR 10.2 What is a node?

SR 10.3 What is the root of a tree?

SR 10.4 What is a leaf?

SR 10.5 What is an internal node?

M10_LEWI3322_CH10_pp275-318.indd 315 20/02/13 11:02 AM

316 chapter 10 Trees

SR 10.6 Define the height of a tree.

SR 10.7 Define the level of a node.

SR 10.8 What are the advantages and disadvantages of the computational
strategy?

SR 10.9 What are the advantages and disadvantages of the simulated link
strategy?

SR 10.10 What attributes should be stored in the TreeNode class?

SR 10.11 Which method of traversing a tree would result in a sorted list for
a binary search tree?

SR 10.12 We used a list to implement the iterator methods for a binary tree.
What must be true for this strategy to be successful?

exercises
EX 10.1 Develop a pseudocode algorithm for a level-order traversal of a

binary tree.

EX 10.2 Draw either a matrilineage (following your mother's lineage) or a
patrilineage (following your father's lineage) diagram for a couple
of generations. Develop a pseudocode algorithm for inserting a
person into the proper place in the tree.

EX 10.3 Develop a pseudocode algorithm to build an expression tree from
a prefix expression.

EX 10.4 Develop a pseudocode algorithm to build an expression tree from
an infix expression.

EX 10.5 Calculate the time complexity of the find method.

EX 10.6 Calculate the time complexity of the iteratorInOrder method.

EX 10.7 Develop a pseudocode algorithm for the size method, assuming
that there is not a count variable.

EX 10.8 Develop a pseudocode algorithm for the isEmpty operation,
assuming that there is not a count variable.

EX 10.9 Draw an expression tree for the expression (9 + 4) * 5 + (4 – (6 – 3)).

programming projects
PP 10.1 Complete the implementation of the getRoot and toString op-

erations of a binary tree.

M10_LEWI3322_CH10_pp275-318.indd 316 20/02/13 11:02 AM

 Answers to Self-Review Questions 317

PP 10.2 Complete the implementation of the size and isEmpty opera-
tions of a binary tree, assuming that there is not a count variable.

PP 10.3 Create boolean methods for our BinaryTreeNode class to deter-
mine whether the node is a leaf or an internal node.

PP 10.4 Create a method called depth that will return an int represent-
ing the level or depth of the given node from the root.

PP 10.5 Complete the implementation of the contains method for a bi-
nary tree.

PP 10.6 Implement the contains method for a binary tree without using
the find operation.

PP 10.7 Complete the implementation of the iterator methods for a binary
tree.

PP 10.8 Implement the iterator methods for a binary tree without using a
list.

PP 10.9 Modify the ExpressionTree class to create a method called draw
that will graphically depict the expression tree.

PP 10.10 We use postfix notation in the example in this chapter because it
eliminates the need to parse an infix expression by precedence
rules and parentheses. Some infix expressions do not need paren-
theses to modify precedence. Implement a method for the
ExpressionTree class that will determine whether an integer
expression would require parentheses if it were written in infix
notation.

PP 10.11 Create an array-based implementation of a binary tree using the
computational strategy.

PP 10.12 Create an array-based implementation of a binary tree using the
simulated link strategy.

PP 10.13 Create an implementation of a binary tree using the recursive
approach introduced in the chapter. In this approach, each node is
a binary tree. Thus a binary tree contains a reference to the element
stored at its root, as well as references to its left and right subtrees.
You may also want to include a reference to its parent.

answers to self-review Questions
SRA 10.1 A tree is a nonlinear structure defined by the concept that each

node in the tree, other than the first node or root node, has
exactly one parent.

M10_LEWI3322_CH10_pp275-318.indd 317 20/02/13 11:02 AM

318 chapter 10 Trees

SRA 10.2 A node is a location in a tree where an element is stored.

SRA 10.3 The root of a tree is the node at the base of the tree, or the one
node in the tree that does not have a parent.

SRA 10.4 A leaf is a node that does not have any children.

SRA 10.5 An internal node is any non-root node that has at least one
child.

SRA 10.6 The height of the tree is the length of the longest path from the
root to a leaf.

SRA 10.7 The level of a node is measured by the number of links that
must be followed to reach that node from the root.

SRA 10.8 The computational strategy does not have to store links from
parent to child because that relationship is fixed by position.
However, this strategy may lead to substantial wasted space for
trees that are not balanced and/or not complete.

SRA 10.9 The simulated link strategy stores array index values as pointers
between parent and child and allows the data to be stored
contiguously no matter how balanced and/or complete the tree.
However, this strategy increases the overhead in terms of
maintaining a freelist or shifting elements in the array.

SRA 10.10 The TreeNode class must store a pointer to the element stored
in that position, as well as pointers to each of the children of
that node. The class may also contain a pointer to the parent of
the node.

SRA 10.11 Inorder traversal of a binary search tree would result in a sorted
list in ascending order.

SRA 10.12 For this strategy to be successful, the iterator for a list must
return the elements in the order in which they were added. For
this particular implementation of a list, we know this is indeed
the case.

M10_LEWI3322_CH10_pp275-318.indd 318 20/02/13 11:02 AM

1111

319

C h a p t e r
O b j e C t i v e s

■	 Define a binary search tree
abstract data structure.

■	 Demonstrate how a binary search
tree can be used to solve
problems.

■	 Examine a binary search tree
implementation.

■	 Discuss strategies for balancing a
binary search tree.

Binary Search Trees

In this chapter, we will explore the concept of binary

search trees and options for their implementation. We will

examine algorithms for adding and removing elements from

binary search trees and for maintaining balanced binary

search trees. We will discuss the analysis of these implemen-

tations and also explore various uses of binary search trees.

M11_LEWI3322_CH11_pp319-356.indd 319 20/02/13 11:03 AM

320 Chapter 11 Binary Search Trees

11.1 a binary search tree

A binary search tree is a binary tree with the added property that, for each node,
the left child is less than the parent, which is less than or equal to the right child.
As we discussed in Chapter 10, it is very difficult to abstract a set of operations
for a tree without knowing what type of tree it is and its intended purpose. With
the added ordering property that must be maintained, we can now extend our defini-
tion to include the operations on a binary search tree that are listed in Figure 11.1.

Operation

addElement

removeElement

removeAllOccurrences

removeMin

removeMax

findMin

findMax

Description

Adds an element to the tree.

Removes an element from the tree.

Removes all occurrences of element from the tree.

Removes the minimum element in the tree.

Removes the maximum element in the tree.

Returns a reference to the minimum element in the tree.

Returns a reference to the maximum element in the tree.

Figure 11.1 The operations on a binary search tree

As we discussed in Chapter 10, the Java Collections API does not
provide an implementation of a general tree. Instead, trees are used
as an implementation strategy for Sets and Maps. We will discuss the
API treatment of trees in Chapter 13. In the meantime, we will build
upon our own linked implementation of trees from Chapter 10.

We must keep in mind that the definition of a binary search tree
is an extension of the definition of a binary tree discussed in the last
chapter. Thus, these operations are in addition to the ones defined
for a binary tree. At this point we are simply discussing binary
search trees, but as we will see shortly, the interface for a balanced
binary search tree will be the same. Listing 11.1 and Figure 11.2
describe a BinarySearchTreeADT.

KeY CONCept
The definition of a binary search tree
is an extension of the definition of a
binary tree.

KeY CONCept
A binary search tree is a binary tree
with the added property that the left
child is less than the parent, which is
less than or equal to the right child.

package jsjf;

/**
 * BinarySearchTreeADT defines the interface to a binary search tree.
 *
 * @author Lewis and Chase

L i s t i N g 1 1 . 1

M11_LEWI3322_CH11_pp319-356.indd 320 20/02/13 11:03 AM

 11.1 A Binary Search Tree 321

 * @version 4.0
 */
public interface BinarySearchTreeADT<T> extends BinaryTreeADT<T>
{
 /**
 * Adds the specified element to the proper location in this tree.
 *
 * @param element the element to be added to this tree
 */
 public void addElement(T element);

 /**
 * Removes and returns the specified element from this tree.
 *
 * @param targetElement the element to be removed from the tree
 * @return the element to be removed from the tree
 */
 public T removeElement(T targetElement);

 /**
 * Removes all occurrences of the specified element from this tree.
 *
 * @param targetElement the element to be removed from the tree
 */
 public void removeAllOccurrences(T targetElement);

 /**
 * Removes and returns the smallest element from this tree.
 *
 * @return the smallest element from the tree.
 */
 public T removeMin();

 /**
 * Removes and returns the largest element from this tree.
 *
 * @return the largest element from the tree
 */
 public T removeMax();

 /**
 * Returns the smallest element in this tree without removing it.
 *
 * @return the smallest element in the tree
 */

L I S T I N G 1 1 . 1 continued

M11_LEWI3322_CH11_pp319-356.indd 321 01/03/13 11:12 AM

322 Chapter 11 Binary Search Trees

 public T findMin();

 /**
 * Returns the largest element in this tree without removing it.
 *
 * @return the largest element in the tree
 */
 public T findMax();
}

L i s t i N g 1 1 . 1 continued

<<interface>>

BinarySearchTreeADT

findMin() : T
findMax() : T

addelement(T element) : void
iremoveElement(T targetElement) : T
removeAllOccurances(T targetElement) : void
removeMin() : T
removeMax() : T

T

<<interface>>

BinaryTreeADT

toString() : String
iterator() : Iterator<T>
iteratorInOrder() : Iterator<T>
iteratorPreOrder() : Iterator<T>
iteratorPostOrder() : Iterator<T>
iteratorLevelOrder() : Iterator<T>

getRootElement () : T
isEmpty() : boolean
size() : int
contains(T targetElement) : boolean
find(T targetElement) : T

T

Figure 11.2 UML description of the BinarySearchTreeADT

11.2 implementing binary search trees: With Links

In Chapter 10, we introduced a simple implementation of a LinkedBinaryTree class
using a BinaryTreeNode class to represent each node of the tree. Each

BinaryTreeNode object maintains a reference to the element stored at
that node, as well as references to each of the node’s children. We can
simply extend that definition with a LinkedBinarySearchTree class
that implements the BinarySearchTreeADT interface. Because we are
extending the LinkedBinaryTree class from Chapter 10, all of the
methods we discussed are still supported, including the various traversals.

KeY CONCept
Each BinaryTreeNode object
maintains a reference to the element
stored at that node, as well as refer-
ences to each of the node’s children.

M11_LEWI3322_CH11_pp319-356.indd 322 20/02/13 11:03 AM

 11.2 Implementing Binary Search Trees: With Links 323

the addElement Operation
The addElement(element) method adds a given element to the appropriate location
in the tree using the private, recursive addElement(element, tree) method. If the
element is not Comparable, the method throws a NonComparableElementException.
If the tree is empty, the new element becomes the root. If the tree is not empty, the new
element is compared to the element at the root. If it is less than the element stored at
the root and the left child of the root is null, then the new element becomes the left
child of the root. If the new element is less than the element stored at the root and the
left child of the root is not null, then we recursively add the element to the left subtree
of the root. If the new element is greater than or equal to the element stored at the
root and the right child of the root is null, then the new element becomes the right
child of the root. If the new element is greater than or equal to the element stored at
the root and the right child of the root is not null, then we recursively add the element

Our LinkedBinarySearchTree class offers two constructors: one to create an
empty LinkedBinarySearchTree and the other to create a LinkedBinarySearch
Tree with a particular element at the root. Both of these constructors simply refer
to the equivalent constructors of the super class (that is, the LinkedBinaryTree
class).

 /**
 * Creates an empty binary search tree.
 */
 public LinkedBinarySearchTree()
 {
 super();
 }

 /**
 * Creates a binary search with the specified element as its root.
 *
 * @param element the element that will be the root of the new binary
 * search tree
 */
 public LinkedBinarySearchTree(T element)
 {
 super(element);

 if (!(element instanceof Comparable))
 throw new NonComparableElementException("LinkedBinarySearchTree");
 }

M11_LEWI3322_CH11_pp319-356.indd 323 20/02/13 11:03 AM

324 Chapter 11 Binary Search Trees

Add 5 Add 7 Add 3 Add 4

7

555

3 7

5

3 7

4

Figure 11.3 Adding elements to a binary search tree

to the right subtree of the root. Figure 11.3 illustrates this process of adding elements
to a binary search tree. As in any recursive algorithm, we could have chosen to imple-
ment the add operation iteratively. The iterative version of the add operation is left as
a programming project.

D e s i g N F O C u s

Once we have a definition of the type of tree that we wish to construct and how
it is to be used, we have the ability to define an interface and implementations.
In Chapter 10, we defined a binary tree that enabled us to define a very basic
set of operations. Now that we have limited our scope to a binary search tree,
we can fill in more details of the interface and the implementation. Determining
the level at which to build interface descriptions and determining the boundaries
between parent and child classes are design choices . . . and they are not always
easy design choices.

 /**
 * Adds the specified object to the binary search tree in the
 * appropriate position according to its natural order. Note that
 * equal elements are added to the right.
 *
 * @param element the element to be added to the binary search tree
 */
 public void addElement(T element)
 {
 if (!(element instanceof Comparable))
 throw new NonComparableElementException("LinkedBinarySearchTree");

 Comparable<T> comparableElement = (Comparable<T>)element;

M11_LEWI3322_CH11_pp319-356.indd 324 20/02/13 11:03 AM

 11.2 Implementing Binary Search Trees: With Links 325

 if (isEmpty())
 root = new BinaryTreeNode<T>(element);
 else
 {
 if (comparableElement.compareTo(root.getElement()) < 0)
 {
 if (root.getLeft() == null)
 this.getRootNode().setLeft(new BinaryTreeNode<T>(element));
 else
 addElement(element, root.getLeft());
 }
 else
 {
 if (root.getRight() == null)
 this.getRootNode().setRight(new BinaryTreeNode<T>(element));
 else
 addElement(element, root.getRight());
 }
 }
 modCount++;
 }

 /**
 * Adds the specified object to the binary search tree in the
 * appropriate position according to its natural order. Note that
 * equal elements are added to the right.
 *
 * @param element the element to be added to the binary search tree
 */
 private void addElement(T element, BinaryTreeNode<T> node)
 {
 Comparable<T> comparableElement = (Comparable<T>)element;

 if (comparableElement.compareTo(node.getElement()) < 0)
 {
 if (node.getLeft() == null)
 node.setLeft(new BinaryTreeNode<T>(element));
 else
 addElement(element, node.getLeft());
 }
 else
 {
 if (node.getRight() == null)
 node.setRight(new BinaryTreeNode<T>(element));
 else
 addElement(element, node.getRight());
 }
 }

M11_LEWI3322_CH11_pp319-356.indd 325 20/02/13 11:03 AM

326 Chapter 11 Binary Search Trees

the removeElement Operation
The removeElement method removes a given Comparable element from a binary
search tree or throws an ElementNotFoundException if the given target is not
found in the tree. Unlike our earlier study of linear structures, we cannot simply
remove the node by making the reference point around the node to be removed.
Instead, another node will have to be promoted to replace the one being removed.
The protected method replacement returns a reference to a node that will
replace the one specified for removal. There are three cases for selecting the replace-
ment node:

■	 If the node has no children, replacement returns null.

■	 If the node has only one child, replacement returns that child.

■	 If the node to be removed has two children, replacement returns the
inorder successor of the node to be removed (because equal elements are
placed to the right).

Like our recursive addElement method, the removeElement
(targetElement) method is recursive and makes use of the private
removeElement(targetElement, node, parent) method. In this
way, the special case of removing the root element can be handled
separately.

KeY CONCept
In removing an element from a
binary search tree, another node
must be promoted to replace the
node being removed.

 /**
 * Removes the first element that matches the specified target
 * element from the binary search tree and returns a reference to
 * it. Throws a ElementNotFoundException if the specified target
 * element is not found in the binary search tree.
 *
 * @param targetElement the element being sought in the binary search tree
 * @throws ElementNotFoundException if the target element is not found
 */
 public T removeElement(T targetElement)
 throws ElementNotFoundException
 {
 T result = null;

 if (isEmpty())
 throw new ElementNotFoundException("LinkedBinarySearchTree");
 else
 {
 BinaryTreeNode<T> parent = null;
 if (((Comparable<T>)targetElement).equals(root.element))
 {

M11_LEWI3322_CH11_pp319-356.indd 326 20/02/13 11:03 AM

 11.2 Implementing Binary Search Trees: With Links 327

 result = root.element;
 BinaryTreeNode<T> temp = replacement(root);
 if (temp == null)
 root = null;
 else
 {
 root.element = temp.element;
 root.setRight(temp.right);
 root.setLeft(temp.left);
 }

 modCount--;
 }
 else
 {
 parent = root;
 if (((Comparable)targetElement).compareTo(root.element) < 0)
 result = removeElement(targetElement, root.getLeft(), parent);
 else
 result = removeElement(targetElement, root.getRight(), parent);
 }
 }

 return result;
 }

 /**
 * Removes the first element that matches the specified target
 * element from the binary search tree and returns a reference to
 * it. Throws a ElementNotFoundException if the specified target
 * element is not found in the binary search tree.
 *
 * @param targetElement the element being sought in the binary search tree
 * @param node the node from which to search
 * @param parent the parent of the node from which to search
 * @throws ElementNotFoundException if the target element is not found
 */

 private T removeElement(T targetElement, BinaryTreeNode<T> node,
 BinaryTreeNode<T> parent) throws ElementNotFoundException
 {

 T result = null;

 if (node == null)
 throw new ElementNotFoundException("LinkedBinarySearchTree");
 else
 {
 if (((Comparable<T>)targetElement).equals(node.element))

M11_LEWI3322_CH11_pp319-356.indd 327 20/02/13 11:03 AM

328 Chapter 11 Binary Search Trees

 {
 result = node.element;
 BinaryTreeNode<T> temp = replacement(node);
 if (parent.right == node)
 parent.right = temp;
 else
 parent.left = temp;

 modCount--;
 }
 else
 {
 parent = node;
 if (((Comparable)targetElement).compareTo(node.element) < 0)
 result = removeElement(targetElement, node.getLeft(), parent);
 else
 result = removeElement(targetElement, node.getRight(), parent);
 }
 }

 return result;
 }

The following code illustrates the replacement method. Figure 11.4 further
illustrates the process of removing elements from a binary search tree.

 /**
 * Returns a reference to a node that will replace the one
 * specified for removal. In the case where the removed node has
 * two children, the inorder successor is used as its replacement.
 *
 * @param node the node to be removed
 * @return a reference to the replacing node
 */
 private BinaryTreeNode<T> replacement(BinaryTreeNode<T> node)
 {
 BinaryTreeNode<T> result = null;

 if ((node.left == null) && (node.right == null))
 result = null;

 else if ((node.left != null) && (node.right == null))
 result = node.left;

 else if ((node.left == null) && (node.right != null))
 result = node.right;

M11_LEWI3322_CH11_pp319-356.indd 328 20/02/13 11:03 AM

 11.2 Implementing Binary Search Trees: With Links 329

10

5 15

7

Initial tree Remove 3 Remove 10

133

10

5 15

7 13 13

7 15

Remove 5

10

7 15

13

Figure 11.4 Removing elements from a binary tree

 else
 {
 BinaryTreeNode<T> current = node.right;
 BinaryTreeNode<T> parent = node;

 while (current.left != null)
 {
 parent = current;
 current = current.left;
 }

 current.left = node.left;
 if (node.right != current)
 {
 parent.left = current.right;
 current.right = node.right;
 }

 result = current;
 }

 return result;
 }

the removeAllOccurrences Operation
The removeAllOccurrences method removes all occurrences of a given element
from a binary search tree and throws an ElementNotFoundException if the
given element is not found in the tree. This method also throws a
ClassCastException if the element given is not Comparable. This method
makes use of the removeElement method by calling it once, which guarantees
that the exception will be thrown if there is not at least one occurrence of the

M11_LEWI3322_CH11_pp319-356.indd 329 20/02/13 11:03 AM

330 ChapTer 11 Binary Search Trees

element in the tree. The removeElement method is then called again as long as
the tree contains the target element. Note that the removeAllOccurrences
method makes use of the contains method of the LinkedBinaryTree class.
Note that the find method has been overridden in the LinkedBinarySearchTree
class to take advantage of the ordering property of a binary search tree.

 /**
 * Removes elements that match the specified target element from
 * the binary search tree. Throws a ElementNotFoundException if
 * the specified target element is not found in this tree.
 *
 * @param targetElement the element being sought in the binary search tree
 * @throws ElementNotFoundException if the target element is not found
 */
 public void removeAllOccurrences(T targetElement)
 throws ElementNotFoundException
 {
 removeElement(targetElement);

 try
 {
 while (contains((T)targetElement))
 removeElement(targetElement);
 }
 catch (Exception ElementNotFoundException)
 {
 }
 }

The removeMin Operation
There are three possible cases for the location of the minimum element in a binary
search tree:

■	 If the root has no left child, then the root is the minimum element, and the
right child of the root becomes the new root.

■	 If the leftmost node of the tree is a leaf, then it is the minimum
element, and we simply set its parent’s left child reference to null.

■	 If the leftmost node of the tree is an internal node, then we set
its parent’s left child reference to point to the right child of the node
to be removed.

KeY CONCepT
The leftmost node in a binary search
tree will contain the minimum element,
whereas the rightmost node will
contain the maximum element.

M11_LEWI3322_CH11_pp319-356.indd 330 01/03/13 11:12 AM

 11.2 Implementing Binary Search Trees: With Links 331

Figure 11.5 illustrates these possibilities. Given these possibilities, the code for
the removeMin operation is relatively straightforward.

 /**
 * Removes the node with the least value from the binary search
 * tree and returns a reference to its element. Throws an
 * EmptyCollectionException if this tree is empty.
 *
 * @return a reference to the node with the least value
 * @throws EmptyCollectionException if the tree is empty
 */
 public T removeMin() throws EmptyCollectionException
 {
 T result = null;

 if (isEmpty())
 throw new EmptyCollectionException("LinkedBinarySearchTree");
 else
 {
 if (root.left == null)
 {
 result = root.element;
 root = root.right;
 }
 else
 {
 BinaryTreeNode<T> parent = root;
 BinaryTreeNode<T> current = root.left;
 while (current.left != null)
 {
 parent = current;
 current = current.left;
 }
 result = current.element;
 parent.left = current.right;
 }

 modCount--;
 }

 return result;

 }

M11_LEWI3322_CH11_pp319-356.indd 331 20/02/13 11:03 AM

332 Chapter 11 Binary Search Trees

The removeMax, findMin, and findMax operations are left as exercises.

10

5 15

7

Initial tree RemoveMin RemoveMin

133

10

5 15

7 13

10

7 15

13

Figure 11.5 Removing the minimum element from a binary search tree

implementing binary search trees: With arrays
In Chapter 10, we discussed two array implementation strategies for trees: the
computational strategy and the simulated link strategy. For now, both implemen-
tations are left as programming projects. We will revisit these array-based tree
implementations in Chapter 12.

11.3 using binary search trees: implementing
Ordered Lists

As we discussed in Chapter 10, one of the uses of trees is to provide efficient
implementations of other collections. The OrderedList collection from Chapter 6
provides an excellent example. Figure 11.6 reminds us of the common operations
for lists, and Figure 11.7 reminds us of the operation particular to an ordered list.

Operation

removeFirst

removeLast

remove

first

last

contains

isEmpty

size

Description

Removes the first element from the list.

Removes the last element from the list.

Removes a particular element from the list.

Examines the element at the front of the list.

Examines the element at the rear of the list.

Determines if the list contains a particular element.

Determines if the list is empty.

Determines the number of elements on the list.

Figure 11.6 The common operations on a list

M11_LEWI3322_CH11_pp319-356.indd 332 20/02/13 11:03 AM

 11.3 Using Binary Search Trees: Implementing Ordered Lists 333

Using a binary search tree, we can create an implementation called
BinarySearchTreeList that is a more efficient implementation than
those we discussed in Chapter 6.

For simplicity, we have implemented both the ListADT and the
OrderedListADT interfaces with the BinarySearchTreeList class,
as shown in Listing 11.2. For some of the methods, the same method
from either the LinkedBinaryTree or the LinkedBinarySearchTree class will
suffice. This is the case for the contains, isEmpty, and size operations. For the
rest of the operations, there is a one-to-one correspondence between methods of
the LinkedBinaryTree or LinkedBinarySearchTree classes and the required
methods for an ordered list. Thus, each of these methods is implemented by sim-
ply calling the associated method for a LinkedBinarySearchTree. This is the
case for the add, removeFirst, removeLast, remove, first, last, and itera-
tor methods.

Operation

add

Description

Adds an element to the list.

Figure 11.7 The operation particular to an ordered list

KeY CONCept
One of the uses of trees is to provide
efficient implementations of other
collections.

package jsjf;

import jsjf.exceptions.*;
import java.util.Iterator;

/**
 * BinarySearchTreeList represents an ordered list implemented using a binary
 * search tree.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class BinarySearchTreeList<T> extends LinkedBinarySearchTree<T>
 implements ListADT<T>, OrderedListADT<T>, Iterable<T>
{
 /**
 * Creates an empty BinarySearchTreeList.
 */
 public BinarySearchTreeList()

L i s t i N g 1 1 . 2

M11_LEWI3322_CH11_pp319-356.indd 333 20/02/13 11:03 AM

334 Chapter 11 Binary Search Trees

 {
 super();
 }

 /**
 * Adds the given element to this list.
 *
 * @param element the element to be added to the list
 */
 public void add(T element)
 {
 addElement(element);
 }

 /**
 * Removes and returns the first element from this list.
 *
 * @return the first element in the list
 */
 public T removeFirst()
 {
 return removeMin();
 }

 /**
 * Removes and returns the last element from this list.
 *
 * @return the last element from the list
 */
 public T removeLast()
 {
 return removeMax();
 }

 /**
 * Removes and returns the specified element from this list.
 *
 * @param element the element being sought in the list
 * @return the element from the list that matches the target
 */
 public T remove(T element)
 {
 return removeElement(element);
 }

L i s t i N g 1 1 . 2 continued

M11_LEWI3322_CH11_pp319-356.indd 334 20/02/13 11:03 AM

 11.3 Using Binary Search Trees: Implementing Ordered Lists 335

analysis of the BinarySearchTreeList implementation
For the sake of our analysis, we will assume that the LinkedBinarySearchTree
implementation used in the BinarySearchTreeList implementation is a balanced
binary search tree with the added property that the maximum depth of any node is
log2(n), where n is the number of elements stored in the tree. This is a tremendously
important assumption, as we will see over the next several sections. With that as-
sumption, Figure 11.8 shows a comparison of the order of each operation for a
singly linked implementation of an ordered list and our BinarySearchTreeList
implementation.

 /**
 * Returns a reference to the first element on this list.
 *
 * @return a reference to the first element in the list
 */
 public T first()
 {
 return findMin();
 }

 /**
 * Returns a reference to the last element on this list.
 *
 * @return a reference to the last element in the list
 */
 public T last()
 {
 return findMax();
 }

 /**
 * Returns an iterator for the list.
 *
 * @return an iterator over the elements in the list
 */
 public Iterator<T> iterator()
 {
 return iteratorInOrder();
 }
}

L i s t i N g 1 1 . 2 continued

M11_LEWI3322_CH11_pp319-356.indd 335 20/02/13 11:03 AM

336 Chapter 11 Binary Search Trees

Note that given our assumption of a balanced binary search tree, both the add
operation and the remove operation could cause the tree to need to be rebal-
anced, which, depending on the algorithm used, could affect the analysis. It is also
important to note that although some operations, such as removeLast, last, and
contains, are more efficient in the tree implementation, others, such as remove-
First and first, are less efficient when implemented using a tree.

11.4 balanced binary search trees

Why is our balance assumption important? What would happen to our analysis if
the tree were not balanced? As an example, let’s assume that we have read the fol-
lowing list of integers from a file and added them to a binary search tree:

3 5 9 12 18 20

Figure 11.9 shows the resulting binary search tree. This resulting binary tree,
which is referred to as a degenerate tree, looks more like a linked list, and in fact
it is less efficient than a linked list because of the additional overhead associated
with each node.

If this is the tree we are manipulating, then our analysis from the previous
section will look far worse. For example, without our balance assumption, the
addElement operation would have worst-case time complexity of O(n) in-
stead of O(log n) because of the possibility that the root is the smallest element
in the tree and the element we are inserting might be the largest element.

Operation

removeFirst

removeLast

remove

first

last

contains

isEmpty

size

add

LinkedList

O(1)

O(n)

O(n)

O(1)

O(n)

O(n)

O(1)

O(1)

O(n)

*Both the add and remove operations may cause the tree to become unbalanced.

BinarySearchTreeList

O(log n)

O(log n)

O(log n)*

O(log n)

O(log n)

O(log n)

O(1)

O(1)

O(log n)*

Figure 11.8 Analysis of linked list and binary search tree implementations of
an ordered list

KeY CONCept
If a binary search tree is not bal-
anced, it may be less efficient than a
linear structure.

M11_LEWI3322_CH11_pp319-356.indd 336 20/02/13 11:03 AM

 11.4 Balanced Binary Search Trees 337

Our goal instead is to keep the maximum path length in the tree at or near
log2n. There are a variety of algorithms available for balancing or maintaining
balance in a tree. There are brute force methods, which are not elegant or effi-
cient, but get the job done. For example, we could write an inorder traversal of
the tree to an array and then use a recursive method (much like binary search) to
insert the middle element of the array as the root, and then build balanced left
and right subtrees. Although such an approach would work, there are more ele-
gant solutions, such as AVL trees and red/black trees, which we examine later in
this chapter.

However, before we move on to these techniques, we need to understand some
additional terminology that is common to many balancing techniques. The meth-
ods described here will work for any subtree of a binary search tree as well. For
those subtrees, we simply replace the reference to root with the reference to the
root of the subtree.

right rotation
Figure 11.10 shows a binary search tree that is not balanced and the processing
steps necessary to rebalance it. The maximum path length in this tree is 3, and the
minimum path length is 1. With only 6 elements in the tree, the maximum path
length should be log26, or 2. To get this tree into balance, we need to

■	 Make the left child element of the root the new root element.

■	 Make the former root element the right child element of the new root.

■	 Make the right child of what was the left child of the former root the new
left child of the former root.

3

5

18

9

12

20

Figure 11.9 A degenerate binary tree

M11_LEWI3322_CH11_pp319-356.indd 337 20/02/13 11:03 AM

338 Chapter 11 Binary Search Trees

This right rotation is often referred to as a right rotation of the left child
around the parent. The last image in Figure 11.10 shows the same tree after a
right rotation. The same kind of rotation can be done at any level of the tree. This
single rotation to the right will solve the imbalance if the imbalance is caused by a
long path length in the left subtree of the left child of the root.

Left rotation
Figure 11.11 shows another binary search tree that is not balanced. Again, the
maximum path length in this tree is 3 and the minimum path length is 1. However,

15 13

10

10

Initial tree

3

35

5

Step A Step B

7

15

13

10

3

5

7

15

13

3

5

7

1510

Step C

7

13

Figure 11.10 An unbalanced tree and the balanced tree that results from a
right rotation

10 13

13

15 7 7

Initial tree

37

5

Step A Step B

10

15

13

3

5

10

15

13

3

5

10

157

Step C

3

5

Figure 11.11 An unbalanced tree and the balanced tree that results from a
left rotation

M11_LEWI3322_CH11_pp319-356.indd 338 20/02/13 11:03 AM

 11.4 Balanced Binary Search Trees 339

this time the larger path length is in the right subtree of the right child of the root.
To get this tree into balance, we need to

■	 Make the right child element of the root the new root element.

■	 Make the former root element the left child element of the new root.

■	 Make the left child of what was the right child of the former root the new
right child of the former root.

This left rotation is often referred to as a left rotation of the right child around
the parent. Figure 11.11 follows the same tree through the processing steps of a
left rotation. The same kind of rotation can be done at any level of the tree. This
single rotation to the left will solve the imbalance if the imbalance is caused by a
long path length in the right subtree of the right child of the root.

rightleft rotation
Unfortunately, not all imbalances can be solved by single rotations. If the imbal-
ance is caused by a long path length in the left subtree of the right child of the root,
we must first perform a right rotation of the left child of the right child of the root
around the right child of the root, and then perform a left rotation of the resulting
right child of the root around the root. Figure 11.12 illustrates this process.

5

3 10

10

15

13 37 7

Right Rotation Left RotationInitial tree

5

513 133

15 1510

7

Figure 11.12 A rightleft rotation

Leftright rotation
Similarly, if the imbalance is caused by a long path length in the right subtree of
the left child of the root, we must first perform a left rotation of the right child of
the left child of the root around the left child of the root, and then perform a right
rotation of the resulting left child of the root around the root. Figure 11.13 illus-
trates this process.

M11_LEWI3322_CH11_pp319-356.indd 339 20/02/13 11:03 AM

340 Chapter 11 Binary Search Trees

11.5 implementing bsts: avL trees

We have been discussing a generic method for balancing a tree, where the maxi-
mum path length from the root must be no more than log2n and the minimum
path length from the root must be no less than log2n–1. Adel’son-Vel’skii and
Landis developed a method called AVL trees that is a variation on this theme. For
each node in the tree, we will keep track of the height of the left and right sub-
trees. For any node in the tree, if the balance factor, or the difference in the
heights of its subtrees (height of the right subtree minus height of the left subtree),
is greater than 1 or less than –1, then the subtree with that node as the root needs
to be rebalanced.

There are only two ways in which a tree, or any subtree of a tree,
can become unbalanced: through the insertion of a node or through
the deletion of a node. Thus, each time one of these operations is
performed, the balance factors must be updated, and the balance of
the tree must be checked starting at the point of insertion or re-
moval of a node and working up toward the root of the tree.
Because of this need to work back up the tree, AVL trees are often
best implemented by including a parent reference in each node. In
the diagrams that follow, all edges are represented as a single bidi-
rectional line.

The cases for rotation that we discussed in the last section apply
here as well, and by using this method, we can easily identify when
to use each.

5

Initial tree Right Rotation

7

13

Left Rotation

13 13

5

5

15 15

157

7

10

10 103

3

3

Figure 11.13 A leftright rotation

KeY CONCept
The height of the right subtree minus
the height of the left subtree is called
the balance factor of a node.

KeY CONCept
There are only two ways in which a
tree, or any subtree of a tree, can be-
come unbalanced: through the inser-
tion of a node or through the dele-
tion of a node.

Demonstration of the
four basic tree rotations

VideoNote

M11_LEWI3322_CH11_pp319-356.indd 340 20/02/13 11:03 AM

 11.5 Implementing BSTs: AVL Trees 341

right rotation in an avL tree
If the balance factor of a node is –2, this means that the node’s left subtree has a
path that is too long. We then check the balance factor of the left child of the
original node. If the balance factor of the left child is –1, this means that the long
path is in the left subtree of the left child, and therefore a simple right rotation of
the left child around the original node will rebalance the tree. Figure 11.14 shows
how an insertion of a node could cause an imbalance and how a right rotation
would resolve it. Note that we are representing both the values stored at each
node and the balance factors, with the balance factors shown in parentheses.

Initial tree Right RotationAfter insertion

New node

7 (–1)

5 (0) 9 (0)

3 (0) 6 (0)

7 (–2)

5 (–1) 9 (0)

3 (–1) 6 (0)

1 (0)

7 (0)

5 (0)

9 (0)

3 (–1)

6 (0)1 (0)

Figure 11.14 A right rotation in an AVL tree

Left rotation in an avL tree
If the balance factor of a node is +2, this means that the node’s right subtree has a
path that is too long. We then check the balance factor of the right child of the
original node. If the balance factor of the right child is +1, this means that the
long path is in the right subtree of the right child, and therefore a simple left rota-
tion of the right child around the original node will rebalance the tree.

rightleft rotation in an avL tree
If the balance factor of a node is +2, this means that the node’s right subtree has a
path that is too long. We then check the balance factor of the right child of the
original node. If the balance factor of the right child is –1, this means that the
long path is in the left subtree of the right child, and therefore a rightleft double

M11_LEWI3322_CH11_pp319-356.indd 341 20/02/13 11:03 AM

342 Chapter 11 Binary Search Trees

rotation will rebalance the tree. This is accomplished by first performing a right
rotation of the left child of the right child of the original node around the right
child of the original node, and then performing a left rotation of the right child of
the original node around the original node. Figure 11.15 shows how the removal

Initial tree

Right Rotation

After removal

Node to be
removed

Left Rotation

10 (1)

5 (–1)

3 (0)

15 (–1)

13 (–1) 17 (0)

11 (0)

10 (2)

5 (0) 15 (–1)

13 (–1) 17 (0)

11 (0)

10 (2)

5 (0) 13 (1)

11 (0) 15 (1)

17 (0)

10 (0)

5 (0)

13 (0)

11 (0)

15 (1)

17 (0)

Figure 11.15 A rightleft rotation in an AVL tree

M11_LEWI3322_CH11_pp319-356.indd 342 20/02/13 11:03 AM

 11.6 Implementing BSTs: Red/Black Trees 343

of an element from the tree could cause an imbalance and how a rightleft rotation
would resolve it. Again, note that we are representing both the values stored at
each node and the balance factors, with the balance factors shown in parentheses.

Leftright rotation in an avL tree
If the balance factor of a node is –2, this means that the node’s left subtree has a
path that is too long. We then check the balance factor of the left child of the
original node. If the balance factor of the left child is +1, this means that the long
path is in the right subtree of the left child, and therefore a leftright double rota-
tion will rebalance the tree. This is accomplished by first performing a left rota-
tion of the right child of the left child of the original node around the left child of
the original node, and then performing a right rotation of the left child of the
original node around the original node.

11.6 implementing bsts: red/black trees

Another alternative to the implementation of binary search trees is the concept of
a red/black tree, which was developed by Bayer and extended by Guibas and
Sedgewick. A red/black tree is a balanced binary search tree in which we will store
a color with each node (either red or black, usually implemented as a boolean
value with false being equivalent to red). The following rules govern the color of a
node:

■	 The root is black.

■	 All children of a red node are black.

■	 Every path from the root to a leaf contains the same number of black
nodes.

Figure 11.16 shows three valid red/black trees (the lighter-shade nodes are
“red”). Notice that the balance restriction on a red/black tree is somewhat less
strict than that for AVL trees or for our earlier theoretical discussion. However,
finding an element in both implementations is still an O(log n) operation. Because
no red node can have a red child, at most half
of the nodes in a path could be red nodes and
at least half of the nodes in a path are black.
From this we can argue that the maximum
height of a red/black tree is roughly 2*log n,
and thus the traversal of the longest path is
still order log n.

KeY CONCept
The balance restriction on a red/
black tree is somewhat less strict
than that for AVL trees.

M11_LEWI3322_CH11_pp319-356.indd 343 20/02/13 11:03 AM

344 Chapter 11 Binary Search Trees

As with AVL trees, the only time we need to be concerned about balance is
after an insertion or removal of an element in the tree. But unlike the case with
AVL trees, insertion and removal are handled quite separately.

insertion into a red/black tree
Insertion into a red/black tree will progress much as it did in our earlier addEle-
ment method. However, we will always begin by setting the color of the new ele-
ment to red. Once the new element has been inserted, we then rebalance the tree
as needed and change the color of elements as needed to maintain the properties
of a red/black tree. As a last step, we always set the color of the root of the tree to
black. For purposes of our discussion, we will simply refer to the color of a node
as node.color. However, it may be more elegant in an actual implementation to
create a method to return the color of a node.

The rebalancing (and recoloring) process after insertion is an iterative (or re-
cursive) one starting at the point of insertion and working up the tree toward the
root. Therefore, like AVL trees, red/black trees are best implemented by including
a parent reference in each node. The termination conditions for this process are
(current == root), where current is the node we are currently processing, or
(current.parent.color == black) (that is, the color of the parent of the cur-
rent node is black). The first condition terminates the process because we will al-
ways set the root color to black, and the root is included in all paths and therefore
cannot violate the rule that each path have the same number of black elements.
The second condition terminates the process, because the node pointed to by
current will always be a red node. This means that if the parent of the current
node is black, then all of the rules are met as well since a red node does not affect

13

157

7

7

10 10 10 15155

5

3

3 13 135

3

Figure 11.16 Valid red/black trees

M11_LEWI3322_CH11_pp319-356.indd 344 20/02/13 11:03 AM

 11.6 Implementing BSTs: Red/Black Trees 345

the number of black nodes in a path, and because we are working from the point
of insertion up, we will already have balanced the subtree under the current node.

In each iteration of the rebalancing process, we will focus on the color of the
sibling of the parent of the current node. Keep in mind that there are two possi-
bilities for the parent of the current node: current.parent could be a left child
or a right child. Assuming that the parent of current is a right child, we can get
the color information by using current.parent.parent.left.color, but for
purposes of our discussion, we will use the terms parentsleftsibling.color
and parentsrightsibling.color. It is also important to keep in mind that the
color of a null element is considered to be black.

In the case where the parent of current is a right child, there are two cases:
(parentsleftsibling.color == red) or (parentsleftsibling.color ==

black). Keep in mind that in either case, we are describing processing steps that
are occurring inside of a loop with the termination conditions described earlier.
Figure 11.17 shows a red/black tree after insertion with this first case (parent-
sleftsibling.color==red). The processing steps in this case are

■	 Set the color of current’s parent to black.

■	 Set the color of parentsleftsibling to black.

■	 Set the color of current’s grandparent to red.

■	 Set current to point to the grandparent of current.

In Figure 11.17, we inserted 8 into our tree. Keep in mind that current points
to our new node and that current.color is set to red. Following the processing
steps, we set the parent of current to black, we set the left sibling of the parent of
current to black, and we set the grandparent of current to red. We then set
current to point to the grandparent. Because the grandparent is the root, the
loop terminates. Finally, we set the root of the tree to black.

7

4 10

Initial tree
After

insertion

current

After rebalancing and
recoloring the tree

current

7

4 10

7

4 10

88

Figure 11.17 Red/black tree after insertion

M11_LEWI3322_CH11_pp319-356.indd 345 20/02/13 11:03 AM

346 Chapter 11 Binary Search Trees

However, if (parentsleftsibling.color == black), then we first need to
check to see whether current is a left or a right child. If current is a left child,
then we must set current equal to its parent and then rotate current.left to
the right (around current) before continuing. Once this is accomplished, the pro-
cessing steps are the same as they would be if current had been a right child to
begin with:

■	 Set the color of current’s parent to black.

■	 Set the color of current’s grandparent to red.

■	 If current’s grandparent does not equal null, then rotate current’s parent
to the left around current’s grandparent.

In the case where the parent of current is a left child, there are two cases:
(parentsrightsibling.color == red) or (parentsrightsibling. color ==
black). Keep in mind that in either case, we are describing processing steps that
are occurring inside of a loop with the termination conditions described earlier.
Figure 11.18 shows a red/black tree after insertion in this case (parentsrightsib-
ling.color==red). The processing steps in this case are

■	 Set the color of current’s parent to black.

■	 Set the color of parentsrightsibling to black.

■	 Set the color of current’s grandparent to red.

■	 Set current to point to the grandparent of current.

In Figure 11.18 we inserted 5 into our tree, setting current to point to the new
node and setting current.color to red. Again, following our processing steps,

Initial tree
After

insertion

current

After rebalancing and
recoloring the tree

current
15

207

4 10

15

207

4

5

10

15

207

4

5

10

Figure 11.18 Red/black tree after insertion

M11_LEWI3322_CH11_pp319-356.indd 346 20/02/13 11:03 AM

 11.6 Implementing BSTs: Red/Black Trees 347

we set the parent of current to black, we set the right sibling of the parent of
current to black, and we set the grandparent of current to red. We then set
current to point to its grandparent. Because the parent of the new current is
black, our loop terminates. Last, we set the color of the root to black.

If (parentsrightsibling.color == black), then we first need to check to
see whether current is a left or a right child. If current is a right child, then we
must set current equal to current.parent and then rotate current.right to
the left (around current) before continuing. Once this is accomplished, the pro-
cessing steps are the same as they would be if current had been a left child to
begin with:

■	 Set the color of current’s parent to black.

■	 Set the color of current’s grandparent to red.

■	 If current’s grandparent does not equal null, then rotate current’s parent
to the right around current’s grandparent.

As you can see, the cases, depending on whether current’s parent is a left or a
right child, are symmetrical.

element removal from a red/black tree
As with insertion, the removeElement operation behaves much as it did before,
only with the additional step of rebalancing (and recoloring) the tree. This rebal-
ancing (and recoloring) process after removal of an element is an iterative one
starting at the point of removal and working up the tree toward the root.
Therefore, as stated earlier, red/black trees are often best implemented by includ-
ing a parent reference in each node. The termination conditions for this process
are (current == root), where current is the node we are currently processing,
or (current.color == red).

As with the cases for insertion, the cases for removal are symmetrical depend-
ing on whether current is a left or a right child. We will examine only the case
where current is a right child. The other cases are easily derived by simply sub-
stituting left for right and right for left in the following cases.

In insertion, we were most concerned with the color of the sibling of the parent
of the current node. For removal, we will focus on the color of the sibling of cur-
rent. We could reference this color using current.parent.left.color, but we
will simply refer to it as sibling.color. We will also look at the color of the
children of the sibling. It is important to note that the default for color is black.
Therefore, if at any time we are attempting to get the color of a null object, the
result will be black. Figure 11.19 shows a red/black tree after the removal of an
element.

M11_LEWI3322_CH11_pp319-356.indd 347 20/02/13 11:03 AM

348 Chapter 11 Binary Search Trees

If the sibling’s color is red, then before we do anything else, we must complete
the following processing steps:

■	 Set the color of the sibling to black.

■	 Set the color of current’s parent to red.

■	 Rotate the sibling right around current’s parent.

■	 Set the sibling equal to the left child of current’s parent.

Next, our processing continues regardless of whether the original sibling was
red or black. Now our processing is divided into one of two cases based on the
color of the children of the sibling. If both children of the sibling are black (or
null), then we do the following:

■	 Set the color of the sibling to red.

■	 Set current equal to current’s parent.

Initial tree
Intermediate

step

Intermediate
step

Element to be
removed

sibling

15

sibling current

current

Final tree

15

207

7

5 12

15

207

5 12

4

5 10 20

12

7

4

5 10 15

12

4 4 1010

Figure 11.19 Red/black tree after removal

M11_LEWI3322_CH11_pp319-356.indd 348 20/02/13 11:03 AM

 11.6 Implementing BSTs: Red/Black Trees 349

If the children of the sibling are not both black, then we check to see whether
the left child of the sibling is black. If it is, we must complete the following steps
before continuing:

■	 Set the color of the sibling’s right child to black.

■	 Set the color of the sibling to red.

■	 Rotate the sibling’s right child left around the sibling.

■	 Set the sibling equal to the left child of current’s parent.

Then to complete the process when both of the sibling’s children are not black,
we must

■	 Set the color of the sibling to the color of current’s parent.

■	 Set the color of current’s parent to black.

■	 Set the color of the sibling’s left child to black.

■	 Rotate the sibling right around current’s parent.

■	 Set current equal to the root.

Once the loop terminates, we must always then remove the node and set its
parent’s child reference to null.

M11_LEWI3322_CH11_pp319-356.indd 349 20/02/13 11:03 AM

350 Chapter 11 Binary Search Trees

Summary of Key Concepts
■	 A binary search tree is a binary tree with the added property that the left

child is less than the parent, which is less than or equal to the right child.

■	 The definition of a binary search tree is an extension of the definition of a
binary tree.

■	 Each BinaryTreeNode object maintains a reference to the element stored at
that node, as well as references to each of the node’s children.

■	 In removing an element from a binary search tree, another node must be
promoted to replace the node being removed.

■	 The leftmost node in a binary search tree will contain the minimum element,
whereas the rightmost node will contain the maximum element.

■	 One of the uses of trees is to provide efficient implementations of other
collections.

■	 If a binary search tree is not balanced, it may be less efficient than a linear
structure.

■	 The height of the right subtree minus the height of the left subtree is called
the balance factor of a node.

■	 There are only two ways in which a tree, or any subtree of a tree, can
become unbalanced: through the insertion of a node and through the
deletion of a node.

■	 The balance restriction on a red/black tree is somewhat less strict than that
for AVL trees. However, in both cases, the find operation is order log n.

summary of terms
binary search tree A binary tree with the added property that, for each
node, the left child is less than the parent, which is less than or equal to the
right child.

promoted A term used to describe the concept of a node in a tree being
moved up to replace a parent node or other ancestor node that is being
removed from the tree.

degenerate tree A tree that does not branch.

right rotation A single rotation strategy for rebalancing a tree when the long
path is in the left subtree of the left child of the root.

left rotation A single rotation strategy for rebalancing a tree when the long
path is in the right subtree of the right child of the root.

M11_LEWI3322_CH11_pp319-356.indd 350 20/02/13 11:03 AM

 Self-Review Questions 351

rightleft rotation A double rotation strategy for rebalancing a tree when the
long path is in the left subtree of the right child of the root.

leftright rotation A double rotation strategy for rebalancing a tree when the
long path is in the right subtree of the left child of the root.

avL trees A strategy for keeping a binary search tree balanced that makes
use of the balance factor of each node.

balance factor A property of a node that is computed by subtracting the
height of the left subtree from the height of the right subtree. If the result is
either greater than 1 or less than –1, then the tree is unbalanced.

red/black trees A strategy for keeping a binary search tree balanced that
makes use of a color (either red or black) associated with each node.

self-review Questions
SR 11.1 What is the difference between a binary tree and a binary search

tree?

SR 11.2 Why are we able to specify addElement and removeElement
operations for a binary search tree but unable to do so for a
binary tree?

SR 11.3 Assuming that the tree is balanced, what is the time complexity
(order) of the addElement operation?

SR 11.4 Without the balance assumption, what is the time complexity
(order) of the addElement operation?

SR 11.5 As stated in this chapter, a degenerate tree might actually be less
efficient than a linked list. Why?

SR 11.6 Our removeElement operation uses the inorder successor as the
replacement for a node with two children. What would be an-
other reasonable choice for the replacement?

SR 11.7 The removeAllOccurrences operation uses both the contains
operation and the removeElement operation. What is the result-
ing time complexity (order) for this operation?

SR 11.8 RemoveFirst and first were O(1) operations for our earlier
implementation of an ordered list. Why are they less efficient for
our BinarySearchTreeOrderedList?

SR 11.9 Why does the BinarySearchTreeOrderedList class have to
define the iterator method? Why can’t it just rely on the iterator
method of its parent class, as it does for size and isEmpty?

M11_LEWI3322_CH11_pp319-356.indd 351 20/02/13 11:03 AM

352 Chapter 11 Binary Search Trees

SR 11.10 What is the time complexity of the addElement operation after
modifying to implement an AVL tree?

SR 11.11 What imbalance is fixed by a single right rotation?

SR 11.12 What imbalance is fixed by a leftright rotation?

SR 11.13 What is the balance factor of an AVL tree node?

SR 11.14 In our discussion of the process for rebalancing an AVL tree, we
never discussed the possibility of the balance factor of a node
being either +2 or –2 and the balance factor of one of its children
being either +2 or –2. Why not?

SR 11.15 We noted that the balance restriction for a red/black tree is less
strict than that of an AVL tree, and yet we still claim that traversing
the longest path in a red/black tree is still O(log n). Why?

exercises
EX 11.1 Draw the binary search tree that results from adding the integers

(34 45 3 87 65 32 1 12 17). Assume our simple implementation
with no balancing mechanism.

EX 11.2 Starting with the tree resulting from Exercise 11.1, draw the tree
that results from removing (45 12 1), again using our simple
implementation with no balancing mechanism.

EX 11.3 Repeat Exercise 11.1, this time assuming an AVL tree. Include the
balance factors in your drawing.

EX 11.4 Repeat Exercise 11.2, this time assuming an AVL tree and using
the result of Exercise 11.3 as a starting point. Include the balance
factors in your drawing.

EX 11.5 Repeat Exercise 11.1, this time assuming a red/black tree. Label
each node with its color.

EX 11.6 Repeat Exercise 11.2, this time assuming a red/black tree and
using the result of Exercise 11.5 as a starting point. Label each
node with its color.

EX 11.7 Starting with an empty red/black tree, draw the tree after insertion
and before rebalancing, and after rebalancing (if necessary) for
the following series of inserts and removals:

 addElement(40);
 addElement(25):
 addElement(10);
 addElement(5);

M11_LEWI3322_CH11_pp319-356.indd 352 20/02/13 11:03 AM

 Programming Projects 353

 addElement(1);
 addElement(45);
 addElement(50);
 removeElement(40);
 removeElement(25);

EX 11.8 Repeat Exercise 11.7, this time with an AVL tree.

programming projects
PP 11.1 Develop an array implementation of a binary search tree using

the computational strategy described in Chapter 10.

PP 11.2 The LinkedBinarySearchTree class is currently using the find
and contains methods of the LinkedBinaryTree class.
Implement these methods for the LinkedBinarySearchTree
class so that they will be more efficient by making use of the
ordering property of a binary search tree.

PP 11.3 Implement the removeMax, findMin, and findMax operations for
our linked binary search tree implementation.

PP 11.4 Modify the linked implementation of a binary tree so that it will
no longer allow duplicates.

PP 11.5 Implement a balance tree method for the linked implementation
using the brute force method described in Section 11.4.

PP 11.6 Implement a balance tree method for the array implementation
from Project 11.1 using the brute force method described in
Section 11.4.

PP 11.7 Develop an array implementation of a binary search tree built
upon an array implementation of a binary tree by using the simu-
lated link strategy. Each element of the array will need to maintain
both a reference to the data element stored there and the array
positions of the left child and the right child. You also need to
maintain a list of available array positions where elements have
been removed, in order to reuse those positions.

PP 11.8 Modify the linked binary search tree implementation to make it
an AVL tree.

PP 11.9 Modify the linked binary search tree implementation to make it a
red/black tree.

PP 11.10 Modify the add operation for the linked implementation of a
binary search tree to use an iterative algorithm.

M11_LEWI3322_CH11_pp319-356.indd 353 20/02/13 11:03 AM

354 Chapter 11 Binary Search Trees

answers to self-review Questions
SRA 11.1 A binary search tree has the added ordering property that the left

child of any node is less than the node, and the node is less than
or equal to its right child.

SRA 11.2 With the added ordering property of a binary search tree, we are
now able to define what the state of the tree should be after an
add or remove. We were unable to define that state for a binary
tree.

SRA 11.3 If the tree is balanced, finding the insertion point for the new
element will take at worst log n steps, and since inserting the
element is simply a matter of setting the value of one reference,
the operation is O(log n).

SRA 11.4 Without the balance assumption, the worst case would be a
degenerate tree, which is effectively a linked list. Therefore, the
addElement operation would be O(n).

SRA 11.5 A degenerate tree will waste space with unused references, and
many of the algorithms will check for null references before
following the degenerate path, thus adding steps that the linked
list implementation does not have.

SRA 11.6 The best choice is the inorder successor because we are placing
equal values to the right.

SRA 11.7 With our balance assumption, the contains operation uses the
find operation, which will be rewritten in the BinarySearchTree
class to take advantage of the ordering property and will be O(log
n). The removeElement operation is O(log n). The while loop will
iterate some constant (k) number of times, depending on how
many times the given element occurs within the tree. The worst
case would be that all n elements of the tree were the element to
be removed, which would make the tree degenerate, and in which
case the complexity would be n*2*n or O(n2). However, the
expected case would be some small constant (0 <= k < n) occurrences
of the element in a balanced tree, which would result in a complexity
of k*2*log n or O(log n).

SRA 11.8 In our earlier linked implementation of an ordered list, we had a
reference that kept track of the first element in the list, which
made it quite simple to remove it or return it. With a binary
search tree, we have to traverse to get to the leftmost element
before knowing that we have the first element in the ordered
list.

M11_LEWI3322_CH11_pp319-356.indd 354 20/02/13 11:03 AM

 References 355

SRA 11.9 Remember that the iterators for a binary tree are all followed
by which traversal order to use. That is why the iterator
method for the BinarySearchTreeOrderedList class calls
the iteratorInOrder method of the BinaryTree class.

SRA 11.10 Keep in mind that an addElement method affects only one
path of the tree, which in a balanced AVL tree has a maximum
length of log n. As we have discussed previously, finding the
position to insert and setting the reference is O(log n). We then
have to progress back up the same path, updating the balance
factors of each node (if necessary) and rotating if necessary.
Updating the balance factors is an O(1) step, and rotation is
also an O(1) step. Each of these will have to be done at most
log n times. Therefore, addElement has time complexity 2*log
n or O(log n).

SRA 11.11 A single right rotation will fix the imbalance if the long path is
in the left subtree of the left child of the root.

SRA 11.12 A leftright rotation will fix the imbalance if the long path is in
the right subtree of the left child of the root.

SRA 11.13 The balance factor of an AVL tree node is the height of the
right subtree minus the height of the left subtree.

SRA 11.14 Rebalancing an AVL tree is done after either an insertion or a
deletion, and it is done starting at the affected node and work-
ing up along a single path to the root. As we progress upward,
we update the balance factors and rotate if necessary. We will
never encounter a situation where both a child and a parent
have balance factors of +/–2 because we would have already
fixed the child before we ever reached the parent.

SRA 11.15 Because no red node can have a red child, at most half of the
nodes in a path could be red nodes, and at least half of the
nodes in a path are black. From this we can argue that the
maximum height of a red/black tree is roughly 2*log n, and
thus the traversal of the longest path is O(log n).

references
Adel’son-Vel’skii, G. M., and E. M. Landis. “An Algorithm for the

Organization of Information.” Soviet Mathematics 3 (1962): 1259–1263.

Bayer, R. “Symmetric Binary B-trees: Data Structure and Maintenance
Algorithms.” Acta Informatica (1972): 290–306.

M11_LEWI3322_CH11_pp319-356.indd 355 20/02/13 11:03 AM

356 Chapter 11 Binary Search Trees

Collins, W. J. Data Structures and the Java Collections Framework. New
York: McGraw-Hill, 2002.

Cormen, T., C. Leierson, and R. Rivest. Introduction to Algorithms. New
York: McGraw-Hill, 1992.

Guibas, L., and R. Sedgewick. “A Diochromatic Framework for Balanced
Trees.” Proceedings of the 19th Annual IEEE Symposium on Foundations
of Computer Science (1978): 8–21.

M11_LEWI3322_CH11_pp319-356.indd 356 20/02/13 11:03 AM

1212

357

C h a p t e r
O b j e C t i v e s

■	 Define a heap abstract data
structure.

■ Demonstrate how a heap can be
used to solve problems.

■ Examine various heap
implementations.

■ Compare heap implementations.

Heaps and Priority
Queues

In this chapter, we will look at another ordered extension

of binary trees. We will examine heaps, including both

linked and array implementations, and the algorithms for

adding and removing elements from a heap. We will also

examine some uses for heaps, including the implementation

of priority queues.

M12_LEWI3322_CH12_pp357-384.indd 357 20/02/13 11:23 AM

358 Chapter 12 Heaps and Priority Queues

12.1 a heap

A heap is a binary tree with two added properties:

■	 It is a complete tree, as described in Chapter 10.

■	 For each node, the node is less than or equal to both the left child and the
right child.

This definition describes a minheap. A heap can also be a max-
heap, in which the node is greater than or equal to its children. We
will focus our discussion in this chapter on minheaps. All of the
same processes work for maxheaps by reversing the comparisons.

Figure 12.1 describes the operations on a heap. The heap is
defined as an extension of a binary tree and thus inherits all of those
operations as well. Note that because the implementation of a binary
tree does not have any operations to add or remove elements from
the tree, there are not any operations that would violate the proper-
ties of a heap. Listing 12.1 shows the interface definition for a heap.
Figure 12.2 shows the UML description of the HeapADT.

Key COnCept
A minheap is a complete binary tree
in which each node is less than or
equal to both of its children.

Key COnCept
A minheap stores its smallest
element at the root of the binary
tree, and both children of the root
of a minheap are also minheaps.

Operation

addElement

removeMin

findMin

Description

Adds the given element to the heap.

Removes the minimum element in the heap.

Returns a reference to the minimum element in the heap.

Figure 12.1 The operations on a heap

package jsjf;

/**
 * HeapADT defines the interface to a Heap.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public interface HeapADT<T> extends BinaryTreeADT<T>
{
 /**
 * Adds the specified object to this heap.
 *

L i s t i n g 1 2 . 1

M12_LEWI3322_CH12_pp357-384.indd 358 20/02/13 11:23 AM

 12.1 A Heap 359

 * @param obj the element to be added to the heap
 */
 public void addElement(T obj);

 /**
 * Removes element with the lowest value from this heap.
 *
 * @return the element with the lowest value from the heap
 */
 public T removeMin();

 /**
 * Returns a reference to the element with the lowest value in
 * this heap.
 *
 * @return a reference to the element with the lowest value in the heap
 */
 public T findMin();
}

L i s t i n g 1 2 . 1 continued

<<interface>>

HeapADT

addElement (T obj) : void
removeMin() : T
findMin() : T

<<interface>>

BinaryTreeADT

toString() : String
iterator() : Iterator<T>
iteratorInOrder() : Iterator<T>
iteratorPreOrder() : Iterator<T>
iteratorPostOrder() : Iterator<T>
iteratorLevelOrder() : Iterator<T>

getRootElement () : T
isEmpty() : boolean
size() : int
contains(T targetElement) : boolean
find(T targetElement) : T

T

T

Figure 12.2 UML description of the HeapADT

M12_LEWI3322_CH12_pp357-384.indd 359 20/02/13 11:23 AM

360 Chapter 12 Heaps and Priority Queues

Simply put, a minheap will always store its smallest element at the root of the
binary tree, and both children of the root of a minheap are also minheaps. Figure 12.3
illustrates two valid minheaps with the same data. Let’s look at the basic operations
on a heap and examine generic algorithms for each.

the addElement Operation
The addElement method adds a given element to the appropriate location in the heap,
maintaining both the completeness property and the ordering property of the heap.
This method throws a ClassCastException if the given element is not Comparable.

A binary tree is considered complete if it is balanced, meaning that all of
the leaves are at level h or h – 1, where h is log2n and n is the number of
elements in the tree, and all of the leaves at level h are on the left side of
the tree. Because a heap is a complete tree, there is only one correct loca-
tion for the insertion of a new node, and that is either the next open
position from the left at level h or, if level h is full, the first position on
the left at level h + 1. Figure 12.4 illustrates these two possibilities.

3

5 4

7 98

3

7 4

9 58

Figure 12.3 Two minheaps containing the same data

Next insertion point

3

5 4

7 98

3

7 4

9 58 6

Figure 12.4 Insertion points for a heap

Key COnCept
The addElement method adds a
given Comparable element to the
appropriate location in the heap,
maintaining both the completeness
property and the ordering property
of the heap.

M12_LEWI3322_CH12_pp357-384.indd 360 20/02/13 11:23 AM

 12.1 A Heap 361

Once we have located the new node in the proper position, we
must account for the ordering property. To do this, we simply com-
pare the new value to its parent value and swap the values if the
new node is less than its parent. We continue this process up the tree
until the new value either is greater than its parent or is in the root
of the heap. Figure 12.5 illustrates this process for inserting a new
element into a heap. Typically, in heap implementations, we keep
track of the position of the last node or, more precisely, the last leaf
in the tree. After an addElement operation, the last node is set to
the node that was inserted.

the removeMin Operation
The removeMin method removes the minimum element from the
minheap and returns it. Because the minimum element is stored in
the root of a minheap, we need to return the element stored at the
root and replace it with another element in the heap. As with the
addElement operation, to maintain the completeness of the tree,
there is only one valid element to replace the root, and that is the ele-
ment stored in the last leaf in the tree. This last leaf will be the right-
most leaf at level h of the tree. Figure 12.6 illustrates this concept of
the last leaf under a variety of circumstances.

Once the element stored in the last leaf has been moved to the
root, the heap will then have to be reordered to maintain the heap’s
ordering property. This is accomplished by comparing the new root

3

5 4

7 98 2

insert

3

5 4

7 98 4

3

5 2

7 98 4

2

5 3

7 98

2

Figure 12.5 Insertion and reordering in a heap

Key COnCept
Because a heap is a complete tree,
there is only one correct location for
the insertion of a new node, and that
is either the next open position from
the left at level h or, if level h is
full, the first position on the left at
level h + 1.

Key COnCept
Typically, in heap implementations,
we keep track of the position of the
last node or, more precisely, the last
leaf in the tree.

Key COnCept
To maintain the completeness of the
tree, there is only one valid element
to replace the root, and that is the
element stored in the last leaf in
the tree.

M12_LEWI3322_CH12_pp357-384.indd 361 20/02/13 11:23 AM

362 Chapter 12 Heaps and Priority Queues

element to the smaller of its children and then swapping them if the child is
smaller. This process is repeated on down the tree until the element either is in a
leaf or is less than both of its children. Figure 12.7 illustrates the process of
removing the minimum element and then reordering the tree.

3

5 4

7 98

2

5 3

4978

2

5 3

8

Figure 12.6 Examples of the last leaf in a heap

Element to be
removed

Replacement

Before
reordering

After
reorderingInitial heap

3

5 4

7 98

9

5 4

7 78

4

5 9

8

Figure 12.7 Removal and reordering in a heap

the findMin Operation
The findMin method returns a reference to the smallest element in the minheap.
Because that element is always stored in the root of the tree, this method is simply
implemented by returning the element stored in the root.

12.2 using heaps: priority Queues

A priority queue is a collection that follows two ordering rules. First, items with
higher priority go first. Second, items with the same priority are ordered in
accordance with the first in, first out principle. Priority queues have a variety of

M12_LEWI3322_CH12_pp357-384.indd 362 20/02/13 11:23 AM

 12.2 Using Heaps: Priority Queues 363

applications (such as task scheduling in an operating system, traffic scheduling
on a network, and even job scheduling at your local auto mechanic).

A priority queue could be implemented using a list of queues where each
queue represents items of a given priority. Another solution to this problem is to
use a minheap. Sorting the heap by priority accomplishes the first ordering
(higher-priority items go first). However, the first in, first out ordering of items
with the same priority is something we will have to manipulate. The solution is
to create a PrioritizedObject object that stores the element to be placed on
the queue, the priority of the element, and the order in which elements are placed
on the queue. Then, we simply define the compareTo method for the
PrioritizedObject class to compare priorities first and then com-
pare order if there is a tie. Listing 12.2 shows the PrioritizedObject
class, and Listing 12.3 shows the PriorityQueue class. The UML
description of the PriorityQueue class is left as an exercise.

Key COnCept
Even though it is not a queue at all, a
minheap provides an efficient imple-
mentation of a priority queue.

/**
 * PrioritizedObject represents a node in a priority queue containing a
 * comparable object, arrival order, and a priority value.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class PrioritizedObject<T> implements Comparable<PrioritizedObject>
{
 private static int nextOrder = 0;
 private int priority;
 private int arrivalOrder;
 private T element;

 /**
 * Creates a new PrioritizedObject with the specified data.
 *
 * @param element the element of the new priority queue node
 * @param priority the priority of the new queue node
 */
 public PrioritizedObject(T element, int priority)
 {
 this.element = element;
 this.priority = priority;
 arrivalOrder = nextOrder;
 nextOrder++;
 }

L i s t i n g 1 2 . 2

M12_LEWI3322_CH12_pp357-384.indd 363 20/02/13 11:23 AM

364 Chapter 12 Heaps and Priority Queues

 /**
 * Returns the element in this node.
 *
 * @return the element contained within the node
 */
 public T getElement()
 {
 return element;
 }

 /**
 * Returns the priority value for this node.
 *
 * @return the integer priority for this node
 */
 public int getPriority()
 {
 return priority;
 }

 /**
 * Returns the arrival order for this node.
 *
 * @return the integer arrival order for this node
 */
 public int getArrivalOrder()
 {
 return arrivalOrder;
 }

 /**
 * Returns a string representation for this node.
 *
 */
 public String toString()
 {
 return (element + " " + priority + " " + arrivalOrder);
 }

 /**
 * Returns 1 if the this object has higher priority than
 * the given object and -1 otherwise.
 *
 * @param obj the object to compare to this node
 * @return the result of the comparison of the given object and
 * this one
 */

L i s t i n g 1 2 . 2 continued

M12_LEWI3322_CH12_pp357-384.indd 364 20/02/13 11:23 AM

 12.2 Using Heaps: Priority Queues 365

 public int compareTo(PrioritizedObject obj)
 {
 int result;

 if (priority > obj.getPriority())
 result = 1;
 else if (priority < obj.getPriority())
 result = -1;
 else if (arrivalOrder > obj.getArrivalOrder())
 result = 1;
 else
 result = -1;
 return result;
 }
}

L i s t i n g 1 2 . 2 continued

import jsjf.*;

/**
 * PriorityQueue implements a priority queue using a heap.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class PriorityQueue<T> extends ArrayHeap<PrioritizedObject<T>>
{
 /**
 * Creates an empty priority queue.
 */
 public PriorityQueue()
 {
 super();
 }

 /**
 * Adds the given element to this PriorityQueue.
 *
 * @param object the element to be added to the priority queue
 * @param priority the integer priority of the element to be added
 */

L i s t i n g 1 2 . 3

M12_LEWI3322_CH12_pp357-384.indd 365 20/02/13 11:23 AM

366 Chapter 12 Heaps and Priority Queues

 public void addElement(T object, int priority)
 {
 PrioritizedObject<T> obj = new PrioritizedObject<T>(object, priority);
 super.addElement(obj);
 }

 /**
 * Removes the next highest priority element from this priority
 * queue and returns a reference to it.
 *
 * @return a reference to the next highest priority element in this queue
 */
 public T removeNext()
 {
 PrioritizedObject<T> obj = (PrioritizedObject<T>)super.removeMin();
 return obj.getElement();
 }
}

L i s t i n g 1 2 . 3 continued

12.3 implementing heaps: With Links

All of our implementations of trees thus far have been illustrated using links. Thus
it is natural to extend that discussion to a linked implementation of a heap.

Because of the requirement that we be able to traverse up the tree
after an insertion, it is necessary for the nodes in a heap to store a
pointer to their parent. Because our BinaryTreeNode class did not
have a parent pointer, we start our linked implementation by creat-
ing a HeapNode class that extends our BinaryTreeNode class and
adds a parent pointer. Listing 12.4 shows the HeapNode class.

Key COnCept
Because of the requirement that we
be able to traverse up the tree after
an insertion, it is necessary for the
nodes in a heap to store a pointer to
their parent.

package jsjf;

/**
 * HeapNode represents a binary tree node with a parent pointer for use
 * in heaps.
 *
 * @author Lewis and Chase

L i s t i n g 1 2 . 4

M12_LEWI3322_CH12_pp357-384.indd 366 20/02/13 11:23 AM

 12.3 Implementing Heaps: With Links 367

 * @version 4.0
 */
public class HeapNode<T> extends BinaryTreeNode<T>
{
 protected HeapNode<T> parent;

 /**
 * Creates a new heap node with the specified data.
 *
 * @param obj the data to be contained within the new heap node
 */
 public HeapNode(T obj)
 {
 super(obj);
 parent = null;
 }

 /**
 * Return the parent of this node.
 *
 * @return the parent of the node
 */
 public HeapNode<T> getParent()
 {
 return parent;
 }

 /**
 * Sets the element stored at this node.
 *
 * @param the element to be stored
 */
 public void setElement(T obj)
 {
 element = obj;
 }

 /**
 * Sets the parent of this node.
 *
 * @param node the parent of the node
 */
 public void setParent(HeapNode<T> node)
 {
 parent = node;
 }
}

L i s t i n g 1 2 . 4 continued

M12_LEWI3322_CH12_pp357-384.indd 367 20/02/13 11:23 AM

368 Chapter 12 Heaps and Priority Queues

The additional instance data for a linked implementation will consist of a single
reference to a HeapNode called lastNode so that we can keep track of the last leaf
in the heap.

the addElement Operation
The addElement method must accomplish three tasks: add the new node at the
appropriate location, reorder the heap to maintain the ordering property, and
then reset the lastNode pointer to point to the new last node.

This method also uses two private methods: getNextParentAdd, which re-
turns a reference to the node that will be the parent of the node to be inserted,
and heapifyAdd, which accomplishes any necessary reordering of the heap, start-
ing with the new leaf and working up toward the root.

 /**
 * Adds the specified element to this heap in the appropriate
 * position according to its key value.
 *
 * @param obj the element to be added to the heap
 */
 public void addElement(T obj)
 {
 HeapNode<T> node = new HeapNode<T>(obj);
 if (root == null)
 root=node;
 else
 {
 HeapNode<T> nextParent = getNextParentAdd();
 if (nextParent.getLeft() == null)
 nextParent.setLeft(node);
 else
 nextParent.setRight(node);

 node.setParent(nextParent);
 }
 lastNode = node;
 modCount++;
 if (size() > 1)
 heapifyAdd();
 }

M12_LEWI3322_CH12_pp357-384.indd 368 20/02/13 11:23 AM

 12.3 Implementing Heaps: With Links 369

 /**
 * Returns the node that will be the parent of the new node
 *
 * @return the node that will be the parent of the new node
 */
 private HeapNode<T> getNextParentAdd()
 {
 HeapNode<T> result = lastNode;

 while ((result != root) && (result.getParent().getLeft() != result))
 result = result.getParent();

 if (result != root)
 if (result.getParent().getRight() == null)
 result = result.getParent();
 else
 {
 result = (HeapNode<T>)result.getParent().getRight();
 while (result.getLeft() != null)
 result = (HeapNode<T>)result.getLeft();
 }
 else
 while (result.getLeft() != null)
 result = (HeapNode<T>)result.getLeft();

 return result;
 }

 /**
 * Reorders this heap after adding a node.
 */
 private void heapifyAdd()
 {
 T temp;
 HeapNode<T> next = lastNode;

 temp = next.getElement();

 while ((next != root) &&
 (((Comparable)temp).compareTo(next.getParent().getElement()) < 0))
 {
 next.setElement(next.getParent().getElement());
 next = next.parent;
 }
 next.setElement(temp);
 }

M12_LEWI3322_CH12_pp357-384.indd 369 20/02/13 11:23 AM

370 Chapter 12 Heaps and Priority Queues

In this linked implementation, the first step in the process of adding an element
is to determine the parent of the node to be inserted. Because, in the worst case,
this involves traversing from the bottom-right node of the heap up to the root and
then down to the bottom-left node of the heap, this step has time complexity
2 × log n. The next step is to insert the new node. Because it involves only simple
assignment statements, this step has constant time complexity (O(1)). The last
step is to reorder the path from the inserted leaf to the root, if necessary. This pro-
cess involves at most log n comparisons, because that is the length of the path.
Thus the addElement operation for the linked implementation has time complexity
2 × log n + 1 + log n or O(log n).

Note that the heapifyAdd method does not perform a full swap of parent and
child as it moves up the heap. Instead, it simply shifts parent elements down until
a proper insertion point is found and then assigns the new value into that loca-
tion. This does not actually improve the O() of the algorithm, because it would be
O(log n) even if we were performing full swaps. However, it does improve the
efficiency, because it reduces the number of assignments performed at each level
of the heap.

the removeMin Operation
The removeMin method must accomplish three tasks: replace the element stored in
the root with the element stored in the last node, reorder the heap if necessary, and
return the original root element. Like the addElement method, the removeMin
method uses two additional methods: getNewLastNode, which returns a reference
to the node that will be the new last node, and heapifyRemove, which accom-
plishes any necessary reordering of the tree starting from the root down. All three
of these methods are shown below.

 /**
 * Remove the element with the lowest value in this heap and
 * returns a reference to it. Throws an EmptyCollectionException
 * if the heap is empty.
 *
 * @return the element with the lowest value in this heap
 * @throws EmptyCollectionException if the heap is empty
 */
 public T removeMin() throws EmptyCollectionException
 {
 if (isEmpty())
 throw new EmptyCollectionException("LinkedHeap");

 T minElement = root.getElement();

M12_LEWI3322_CH12_pp357-384.indd 370 20/02/13 11:23 AM

 12.3 Implementing Heaps: With Links 371

 if (size() == 1)
 {
 root = null;
 lastNode = null;
 }
 else
 {
 HeapNode<T> nextLast = getNewLastNode();
 if (lastNode.getParent().getLeft() == lastNode)
 lastNode.getParent().setLeft(null);
 else
 lastNode.getParent().setRight(null);

 ((HeapNode<T>)root).setElement(lastNode.getElement());
 lastNode = nextLast;
 heapifyRemove();
 }

 modCount++;

 return minElement;
 }

 /**
 * Returns the node that will be the new last node after a remove.
 *
 * @return the node that will be the new last node after a remove
 */
 private HeapNode<T> getNewLastNode()
 {
 HeapNode<T> result = lastNode;

 while ((result != root) && (result.getParent().getLeft() == result))
 result = result.getParent();

 if (result != root)
 result = (HeapNode<T>)result.getParent().getLeft();

 while (result.getRight() != null)
 result = (HeapNode<T>)result.getRight();

 return result;
 }

M12_LEWI3322_CH12_pp357-384.indd 371 01/03/13 11:39 AM

372 Chapter 12 Heaps and Priority Queues

 /**
 * Reorders this heap after removing the root element.
 */
 private void heapifyRemove()
 {
 T temp;
 HeapNode<T> node = (HeapNode<T>)root;
 HeapNode<T> left = (HeapNode<T>)node.getLeft();
 HeapNode<T> right = (HeapNode<T>)node.getRight();
 HeapNode<T> next;

 if ((left == null) && (right == null))
 next = null;
 else if (right == null)
 next = left;
 else if (((Comparable)left.getElement()).compareTo(right.

getElement()) < 0)
 next = left;
 else
 next = right;

 temp = node.getElement();
 while ((next != null) &&
 (((Comparable)next.getElement()).compareTo(temp) < 0))
 {
 node.setElement(next.getElement());
 node = next;
 left = (HeapNode<T>)node.getLeft();
 right = (HeapNode<T>)node.getRight();

 if ((left == null) && (right == null))
 next = null;
 else if (right == null)
 next = left;
 else if (((Comparable)left.getElement()).compareTo(right.

getElement()) < 0)
 next = left;
 else
 next = right;
 }
 node.setElement(temp);
 }

M12_LEWI3322_CH12_pp357-384.indd 372 20/02/13 11:23 AM

 12.4 Implementing Heaps: With Arrays 373

The removeMin method for the linked implementation must remove the root
element and replace it with the element from the last node. Because this process is
accomplished with simple assignment statements, this step has time complexity 1.
Next, this method must reorder the heap, if necessary, from the root down to a
leaf. Because the maximum path length from the root to a leaf is log n, this step has
time complexity log n. Finally, we must determine the new last node. Like the pro-
cess for determining the next parent node for the addElement method, the worst
case is that we must traverse from a leaf through the root and down to another
leaf. Thus the time complexity of this step is 2*log n. The resulting time complex-
ity of the removeMin operation is 2*log n + log n + 1 or O(log n).

the findMin Operation
The findMin method simply returns a reference to the element stored at the root
of the heap and therefore is O(1).

12.4 implementing heaps: With arrays

To this point, we have focused our discussion of the implementation of trees around
linked structures. If you recall, however, in Chapter 10 we discussed a couple of dif-
ferent array implementation strategies for trees: the computational strategy and the
simulated link strategy. An array implementation of a heap may provide a simpler
alternative than our linked implementation. Many of the intricacies of
the linked implementation are related to the need to traverse up and
down the tree to determine the last leaf of the tree or to determine the
parent of the next node to insert. Many of those difficulties do not ex-
ist in the array implementation, because we are able to determine the
last node in the tree by looking at the last element stored in the array.

As we discussed in Chapter 10, a simple array implementation of a
binary tree can be created using the notion that the root of the tree is in position 0,
and that for each node n, n’s left child will be in position 2n + 1 of the array and
n’s right child will be in position 2(n + 1) of the array. Of course, the inverse is also
true. For any node n other than the root, n’s parent is in position (n – 1)/2. Because
of our ability to calculate the location of both parent and child, the array imple-
mentation (unlike the linked implementation) does not require the creation of a
HeapNode class. The UML description of the array implementation of a heap is left
as an exercise.

Just as the LinkedHeap class extends the LinkedBinaryTree class, the
ArrayHeap class extends the ArrayBinaryTree class. The class header, attributes,
and constructors for both classes are provided for context.

Key COnCept
In an array implementation of a
binary tree, the root of the tree is in
position 0, and for each node n, n’s
left child is in position 2n + 1, and n’s
right child is in position 2(n + 1).

M12_LEWI3322_CH12_pp357-384.indd 373 20/02/13 11:23 AM

374 Chapter 12 Heaps and Priority Queues

package jsjf;

import java.util.*;
import jsjf.exceptions.*;

/**
 * ArrayBinaryTree implements the BinaryTreeADT interface using an array
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class ArrayBinaryTree<T> implements BinaryTreeADT<T>, Iterable<T>
{
 private static final int DEFAULT_CAPACITY = 50;

 protected int count;
 protected T[] tree;
 protected int modCount;

 /**
 * Creates an empty binary tree.
 */
 public ArrayBinaryTree()
 {
 count = 0;
 tree = (T[]) new Object[DEFAULT_CAPACITY];
 }

 /**
 * Creates a binary tree with the specified element as its root.
 *
 * @param element the element which will become the root of the new tree
 */
 public ArrayBinaryTree(T element)
 {
 count = 1;
 tree = (T[]) new Object[DEFAULT_CAPACITY];
 tree[0] = element;
 }

package jsjf;

import jsjf.exceptions.*;

/**
 * ArrayHeap provides an array implementation of a minheap.

M12_LEWI3322_CH12_pp357-384.indd 374 20/02/13 11:23 AM

 12.4 Implementing Heaps: With Arrays 375

the addElement Operation
The addElement method for the array implementation must accomplish three
tasks: add the new node at the appropriate location, reorder the heap to maintain
the ordering property, and increment the count by one. Of course, as with all of
our array implementations, the method must first check for available space and
expand the capacity of the array if necessary. Like the linked implementation, the
addElement operation of the array implementation uses a private method called
heapifyAdd to reorder the heap if necessary.

 /**
 * Adds the specified element to this heap in the appropriate
 * position according to its key value.
 *
 * @param obj the element to be added to the heap
 */
 public void addElement(T obj)
 {

 if (count == tree.length)
 expandCapacity();

 tree[count] = obj;
 count++;
 modCount++;

 if (count > 1)
 heapifyAdd();
 }

 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class ArrayHeap<T> extends ArrayBinaryTree<T> implements HeapADT<T>
{
 /**
 * Creates an empty heap.
 */
 public ArrayHeap()
 {
 super();
 }

M12_LEWI3322_CH12_pp357-384.indd 375 20/02/13 11:23 AM

376 Chapter 12 Heaps and Priority Queues

 /**
 * Reorders this heap to maintain the ordering property after
 * adding a node.
 * /
 private void heapifyAdd()
 {
 T temp;
 int next = count - 1;

 temp = tree[next];

 while ((next != 0) &&
 (((Comparable)temp).compareTo(tree[(next-1)/2]) < 0))
 {

 tree[next] = tree[(next-1)/2];
 next = (next-1)/2;
 }

 tree[next] = temp;
 }

Unlike the linked implementation, the array implementation does not require
the first step of determining the parent of the new node. However, both of the

other steps are the same as those for the linked implementation.
Thus the time complexity for the addElement operation for the
array implementation is 1 + log n or O(log n). Granted, the two
implementations have the same Order(), but the array implementation
is more efficient and more elegant.

the removeMin Operation
The removeMin method must accomplish three tasks: replace the element stored
in the root with the element stored in the last element, reorder the heap if neces-
sary, and return the original root element. In the case of the array implementa-
tion, we know the last element of the heap is stored in position count1 of the
array. We then use a private method heapifyRemove to reorder the heap as
necessary.

Key COnCept
The addElement operation for
both the linked implementation and
the array implementation is O(log n).

M12_LEWI3322_CH12_pp357-384.indd 376 20/02/13 11:23 AM

 12.4 Implementing Heaps: With Arrays 377

 /**
 * Remove the element with the lowest value in this heap and
 * returns a reference to it. Throws an EmptyCollectionException if
 * the heap is empty.
 *
 * @return a reference to the element with the lowest value in this heap
 * @throws EmptyCollectionException if the heap is empty
 */
 public T removeMin() throws EmptyCollectionException
 {
 if (isEmpty())
 throw new EmptyCollectionException("ArrayHeap");

 T minElement = tree[0];
 tree[0] = tree[count-1];
 heapifyRemove();
 count–;
 modCount–;

 return minElement;
 }

 /**
 * Reorders this heap to maintain the ordering property
 * after the minimum element has been removed.
 */
 private void heapifyRemove()
 {
 T temp;
 int node = 0;
 int left = 1;
 int right = 2;
 int next;

 if ((tree[left] == null) && (tree[right] == null))
 next = count;
 else if (tree[right] == null)
 next = left;
 else if (((Comparable)tree[left]).compareTo(tree[right]) < 0)
 next = left;
 else
 next = right;
 temp = tree[node];

M12_LEWI3322_CH12_pp357-384.indd 377 20/02/13 11:23 AM

378 Chapter 12 Heaps and Priority Queues

Like the addElement method, the array implementation of the
removeMin operation looks just like the linked implementation,
except that it does not have to determine the new last node. Thus the
resulting time complexity is log n + 1 or O(log n).

the findMin Operation
Like the linked implementation, the findMin method simply returns a reference
to the element stored at the root of the heap or position 0 of the array and there-
fore is O(1).

12.5 using heaps: heap sort

Now that we have examined an array implementation of a heap, let’s consider
another way we might use it. In Chapter 9, we introduced a variety of sorting
techniques, some of which were sequential sorts (bubble sort, selection sort, and
insertion sort) and some of which were logarithmic sorts (merge sort and quick
sort). In that chapter, we also introduced a queue-based sort called a radix sort.
Given the ordering property of a heap, it is natural to think of using a heap to sort
a list of numbers. A brute force approach to a heap sort would be to add each of

 while ((next < count) &&
 (((Comparable)tree[next]).compareTo(temp) < 0))
 {
 tree[node] = tree[next];
 node = next;
 left = 2 * node + 1;
 right = 2 * (node + 1);
 if ((tree[left] == null) && (tree[right] == null))
 next = count;
 else if (tree[right] == null)
 next = left;
 else if (((Comparable)tree[left]).compareTo(tree[right]) < 0)
 next = left;
 else
 next = right;
 }
 tree[node] = temp;
 }

Key COnCept
The removeMin operation for both
the linked implementation and the
array implementation is O(log n).

M12_LEWI3322_CH12_pp357-384.indd 378 20/02/13 11:23 AM

 12.5 Using Heaps: Heap Sort 379

the elements of the list to a heap and then remove them one at a time
from the root. In the case of a minheap, the result will be the list in
ascending order. In the case of a maxheap, the result will be the list
in descending order. Because both the add operation and the remove
operation are O(log n), it might be tempting to conclude that a heap
sort is also O(log n). However, keep in mind that those operations
are O(log n) to add or remove a single element in a list of n elements. Insertion
into a heap is O(log n) for any given node and thus would be O(n log n) for n
nodes. Removal is also O(log n) for a single node and thus O(n log n) for n nodes.
With the heap sort algorithm, we are performing both operations, addElement
and removeMin, n times, once for each of the elements in the list. Therefore, the
resulting time complexity is 2 × n log n × or O(n log n).

It is also possible to “build” a heap in place using the array to be
sorted. Because we know the relative position of each parent and
child in the heap, we can simply start with the first non-leaf node in
the array, compare it to its children, and swap if necessary. We then
work backward in the array until we reach the root. Because, at most, this will
require us to make two comparisons for each non-leaf node, this approach is O(n)
to build the heap. However, with this approach, removing each element from the
heap and maintaining the properties of the heap would still be O(n log n). Thus,
even though this approach is slightly more efficient, roughly 2 × n + n log n, it is
still O(n log n). The implementation of this approach is left as an exercise. The
heapSort method could be added to our class of sort methods described in
Chapter 9. Listing 12.5 illustrates how it might be created as a standalone class.

Key COnCept
The heapSort method consists of
adding each of the elements of the
list to a heap and then removing
them one at a time.

Key COnCept
Heap sort is O(n log n).

Demonstration of a
heap sort on an array

VideoNote

package jsjf;

/**
 * HeapSort sorts a given array of Comparable objects using a heap.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class HeapSort<T>
{
 /**
 * Sorts the specified array using a Heap
 *

L i s t i n g 1 2 . 5

M12_LEWI3322_CH12_pp357-384.indd 379 20/02/13 11:23 AM

380 Chapter 12 Heaps and Priority Queues

 * @param data the data to be added to the heapsort
 */
 public void HeapSort(T[] data)
 {
 ArrayHeap<T> temp = new ArrayHeap<T>();

 // copy the array into a heap
 for (int i = 0; i < data.length; i++)
 temp.addElement(data[i]);

 // place the sorted elements back into the array
 int count = 0;
 while (!(temp.isEmpty()))
 {
 data[count] = temp.removeMin();
 count++;
 }
 }
}

L i s t i n g 1 2 . 5 continued

M12_LEWI3322_CH12_pp357-384.indd 380 20/02/13 11:23 AM

 Summary of Terms 381

Summary of Key Concepts
■	 A minheap is a complete binary tree in which each node is less than or equal

to both the left child and the right child.

■	 A minheap stores its smallest element at the root of the binary tree, and both
children of the root of a minheap are also minheaps.

■	 The addElement method adds a given Comparable element to the appropriate
location in the heap, maintaining both the completeness property and the
ordering property of the heap.

■	 Because a heap is a complete tree, there is only one correct location for the
insertion of a new node, and that is either the next open position from the
left at level h or, if level h is full, the first position on the left at level h + 1.

■	 Typically, in heap implementations, we keep track of the position of the last
node or, more precisely, the last leaf, in the tree.

■	 To maintain the completeness of the tree, there is only one valid element to
replace the root, and that is the element stored in the last leaf in the tree.

■	 Even though it is not a queue at all, a minheap provides an efficient
implementation of a priority queue.

■	 Because of the requirement that we be able to traverse up the tree after an
insertion, it is necessary for the nodes in a heap to store a pointer to their
parent.

■	 In an array implementation of a binary tree, the root of the tree is in position
0, and for each node n, n’s left child is in position 2n + 1, and n’s right child
is in position 2(n + 1).

■	 The addElement operation for both the linked implementation and the array
implementation is O(log n).

■	 The removeMin operation for both the linked implementation and the array
implementation is O(log n).

■	 The heapSort method consists of adding each of the elements of the list to a
heap and then removing them one at a time.

■	 Heap sort is O(n log n).

summary of terms
heap A binary tree that is complete and is either a minheap or a maxheap.

minheap A binary tree with two added properties: It is a complete tree, and for
each node, the node is less than or equal to both the left child and the right child.

M12_LEWI3322_CH12_pp357-384.indd 381 20/02/13 11:23 AM

382 Chapter 12 Heaps and Priority Queues

maxheap A binary tree with two added properties: It is a complete tree,
and for each node, the node is greater than or equal to both the left child and
the right child.

complete binary tree A balanced binary tree in which all of the leaves at
level h (the lowest level of the tree) are on the left side of the tree.

priority queue A collection that follows two ordering rules: Items with
higher priority go first, and items with the same priority are ordered in
accordance with the first in, first out principle.

self-review Questions
SR 12.1 What is the difference between a heap (a minheap) and a binary

search tree?

SR 12.2 What is the difference between a minheap and a maxheap?

SR 12.3 What does it mean for a binary tree to be complete?

SR 12.4 Does a heap ever have to be rebalanced?

SR 12.5 The addElement operation for the linked implementation must
determine the parent of the next node to be inserted. Why?

SR 12.6 Why does the addElement operation for the array implementation
not have to determine the parent of the next node to be inserted?

SR 12.7 The removeMin operation for both implementations replaces the
element at the root with the element in the last leaf of the heap.
Why is this the proper replacement?

SR 12.8 What is the time complexity of the addElement operation?

SR 12.9 What is the time complexity of the removeMin operation?

SR 12.10 What is the time complexity of heap sort?

exercises
EX 12.1 Draw the heap that results from adding the following integers.

34 45 3 87 65 32 1 12 17

EX 12.2 Starting with the tree resulting from Exercise 12.1, draw the heap
that results from performing a removeMin operation.

EX 12.3 Starting with an empty minheap, draw the heap after each of the
following operations.

 addElement(40);
 addElement(25):

M12_LEWI3322_CH12_pp357-384.indd 382 20/02/13 11:23 AM

 Programming Projects 383

 removeMin();
 addElement(10);
 removeMin();
 addElement(5);
 addElement(1);
 removeMin();
 addElement(45);
 addElement(50);

EX 12.4 Repeat Exercise 12.3, this time with a maxheap.

EX 12.5 Draw the UML description for the PriorityQueue class
described in this chapter.

EX 12.6 Draw the UML description for the array implementation of heap
described in this chapter.

programming projects
PP 12.1 Implement a queue using a heap. Keep in mind that a queue is a

first in, first out structure. Thus the comparison in the heap will
have to be according to order entry into the queue.

PP 12.2 Implement a stack using a heap. Keep in mind that a stack is a
last in, first out structure. Thus the comparison in the heap will
have to be according to order entry into the queue.

PP 12.3 Implement a maxheap using an array implementation.

PP 12.4 Implement a maxheap using a linked implementation.

PP 12.5 As described in Section 12.5, it is possible to make the heap sort
algorithm more efficient by writing a method that will build a
heap in place, using the array to be sorted. Implement such a
method, and rewrite the heap sort algorithm to make use of it.

PP 12.6 Use a heap to implement a simulator for a process scheduling system.
In this system, jobs will be read from a file consisting of the job id (a
six-character string), the length of the job (an int representing sec-
onds), and the priority of the job (an int where the higher the num-
ber, the higher the priority). Each job will also be assigned an arrival
number (an int representing the order of its arrival). The simulation
should output the job id, the priority, the length of the job, and the
completion time (relative to a simulation start time of 0).

PP 12.7 Create a birthday reminder system using a minheap such that the
ordering on the heap is done each day according to days remaining
until the individual’s birthday. Keep in mind that when a birthday
passes, the heap must be reordered.

M12_LEWI3322_CH12_pp357-384.indd 383 20/02/13 11:23 AM

384 Chapter 12 Heaps and Priority Queues

PP 12.8 Complete the implementation of an ArrayHeap including the
ArrayBinaryTree class that the ArrayHeap extends.

PP 12.9 Complete the implementation of the LinkedHeap class.

answers to self-review Questions
SRA 12.1 A binary search tree has the ordering property that the left

child of any node is less than the node, and the node is less than
or equal to its right child. A minheap is complete and has the
ordering property that the node is less than both of its children.

SRA 12.2 A minheap has the ordering property that the node is less than
both of its children. A maxheap has the ordering property that
the node is greater than both of its children.

SRA 12.3 A binary tree is considered complete if it is balanced, which
means that all of the leaves are at level h or h – 1, where h is
log2n and n is the number of elements in the tree, and all of the
leaves at level h are on the left side of the tree.

SRA 12.4 No. By definition, a complete heap is balanced and the algorithms
for add and remove maintain that balance.

SRA 12.5 The addElement operation must determine the parent of the
node to be inserted so that a child pointer of that node can be
set to the new node.

SRA 12.6 The addElement operation for the array implementation does
not have to determine the parent of the new node, because the
new element is inserted in position count of the array, and its
parent is determined by position in the array.

SRA 12.7 To maintain the completeness of the tree, the only valid
replacement for the element at the root is the element at the
last leaf. Then the heap must be reordered as necessary to
maintain the ordering property.

SRA 12.8 For both implementations, the addElement operation is
O(log n). However, despite having the same order, the array
implementation is somewhat more efficient because it does not
have to determine the parent of the node to be inserted.

SRA 12.9 For both implementations, the removeMin operation is
O(log n). However, despite having the same order, the array
implementation is somewhat more efficient because it does not
have to determine the new last leaf.

SRA 12.10 The heap sort algorithm is O(n log n).

M12_LEWI3322_CH12_pp357-384.indd 384 20/02/13 11:23 AM

1313

385

C h a p t e r
O b j e C t i v e s

■	 Introduce the Java set and map
collections.

■	 Explore the use of sets and maps
to solve problems.

■	 Introduce the concept of hashing.

■	 Discuss how the Java API
implements sets and maps.

Sets and Maps

This chapter introduces the Java concepts of sets and

maps. We will explore these collections and compare and

contrast them with our previous implementations. We will

also introduce the concept of hashing.

M13_LEWI3322_CH13_pp385-408.indd 385 20/02/13 11:34 AM

386 Chapter 13 Sets and Maps

13.1 set and Map Collections

A set can be defined as a collection of elements with no duplicates. You should
not assume that there is any particular positional relationship among the elements
of a set.

For the most part, set collections in Java can be thought of in the mathematical
sense of a set. They represent a collection of unique elements that can be used to
determine the relationship of an element to the set. That is, the primary purpose of a

set is to determine whether a particular element is a member of the set.

Of course, other collections (such as a list) have the ability to
test for containment. However, if such tests are an important part
of a program, you should consider using sets. The implementation
of a set is explicitly designed to be efficient when searching for an
element.

A map is a collection that establishes a relationship between keys and values,
providing an efficient way to retrieve a value given its key. The keys of a map
must be unique, and each key can map to only one value. For example, you could
use a unique membership id (a String) to retrieve the information about that
member of a club (a Member object).

It doesn’t have to be a one-to-one mapping, however. Multiple keys could
map to the same object. For example, in a situation where information about a

topic is being looked up, multiple keywords can map to the same
topic entry. The key “gardening” and the key “mulch beds” and the
key “flowers” could all map to the Topic object describing garden-
ing, for instance.

The keys of a map don’t have to be character strings, although they often are.
Both the keys and the values of a map can be any type of object.

Like that of a set, a map’s implementation is specifically designed to provide
efficient lookup. In fact, as we’ll see in more detail later in this chapter, the set and
map classes defined in the Java API are implemented using similar underlying
techniques.

13.2 sets and Maps in the java api

The Java API defines interfaces called Set and Map to define the public interaction
available for these types of collections. In the remainder of this chapter, we’ll
explore the interfaces for these classes, use them to solve some problems, and then
discuss the underlying implementation strategies.

Key COnCept
A set is a unique collection of objects
generally used to determine whether
a particular element is a member of
the set.

Key COnCept
A map is a collection of objects that
can be retrieved using a unique key.

A comparison of sets
and maps

VideoNote

M13_LEWI3322_CH13_pp385-408.indd 386 20/02/13 11:34 AM

 13.2 Sets and Maps in the Java API 387

The operations of the Set interface are listed in Figure 13.1. Like other collec-
tions, a set has operations that allow the user to add elements, remove elements,
and check whether a particular element is in the collection. Some operations, such
as isEmpty and size, are common to nearly all collections as well. The contains
and containsAll methods perform the key operations of determining whether
the set contains particular elements.

 Method summary

boolean add(E e)
 Adds the specified element to this set if it is not already present
(optional operation).

boolean addAll(Collection<? extends > c)
 Adds all of the elements in the specified collection to this set if
they are not already present (optional operation).

void clear()
 Removes all of the elements from this set (optional operation).

boolean contains(Object o)
 Returns true if this set contains the specified element.

boolean containsAll(Collection<?> c)
 Returns true if this set contains all of the elements of the specified
collection.

boolean equals(Object o)

 Compares the specified object with this set for equality.

int hashCode()

 Returns the hash code value for this set.

boolean isEmpty()

 Returns true if this set contains no elements.

Iterator iterator()
 Returns an iterator over the elements in this set.

boolean remove(Object o)

 Removes the specified element from this set if it is present
(optional operation).

boolean removeAll(Collection<?> c)

 Removes from this set all of its elements that are contained in the
specified collection (optional operation).

boolean retainAll(Collection<?> c)

 Retains only the elements in this set that are contained in the
specified collection (optional operation).

int size()

 Returns the number of elements in this set (its cardinality).

M13_LEWI3322_CH13_pp385-408.indd 387 20/02/13 11:34 AM

388 Chapter 13 Sets and Maps

Like most collections, the elements of a set are defined using a generic type param-
eter (E in this case). The only objects that can be added to a set are those that are type
compatible with the generic type established when a set object is instantiated.

Figure 13.2 illustrates the operations in the Map interface. Elements are added
to a map using the put operation, which accepts both the key object and its cor-
responding value as parameters. A particular element is retrieved from the map
using the get operation, which accepts the key object as a parameter.

Method summary (continued)

Object[] toArray()

 Returns an array containing all of the elements in this set.

<T> T[] toArray(T[] a)

 Returns an array containing all of the elements in this set; the
run-time type of the returned array is that of the specified array.

Figure 13.1 The operations in the Set interface

 Method summary

void clear()

 Removes all of the mappings from this map (optional operation).

boolean containsKey(Object key)
 Returns true if this map contains a mapping for the specified
key.

boolean containsValue(Object value)

 Returns true if this map maps one or more keys to the specified
value.

Set<Map.
Entry<K,V>>

entrySet()
 Returns a Set view of the mappings contained in this map.

boolean equals(Object o)

 Compares the specified object with this map for equality.

V get(Object key)

 Returns the value to which the specified key is mapped, or
null if this map contains no mapping for the key.

int hashCode()

 Returns the hash code value for this map.

boolean isEmpty()

 Returns true if this map contains no key-value mappings.

Set<K> keySet()

 Returns a Set view of the keys contained in this map.

M13_LEWI3322_CH13_pp385-408.indd 388 20/02/13 11:34 AM

 13.3 Using Sets: Domain Blocker 389

The Map interface has two generic type parameters, one for the key (K) and one
for the value (V). When a class implementing a Map is instantiated, both types are
established for that particular map, and all subsequent operations work in terms
of those types.

The Java API provides two implementation classes for each interface: TreeSet
and HashSet are two implementations of the Set interface; TreeMap and HashMap
are two implementations of the Map interface. As the names imply, the classes use
two different underlying implementation techniques: trees and hashing.

Next we’ll explore some examples that use these classes to solve some prob-
lems, and then we will discuss each implementation strategy in more detail.

13.3 using sets: Domain blocker

One of the primary purposes of a set is to test for membership in the set. Let’s con-
sider an example that tests web site domains against a list of blocked domains. We
could use a simple list of blocked domains, but when we use a TreeSet instead, each
check for a particular domain is accomplished in log n steps instead of in n steps.

Suppose that the following list of blocked domains is held in a text input file
called blockedDomains.txt:

dontgothere.com
ohno.org
badstuff.com
badstuff.org

Figure 13.2 The operations in the Map interface

V put(K key, V value)

 Associates the specified value with the specified key in this
map (optional operation).

void putAll(Map<? extends K,? extends V> m)

 Copies all of the mappings from the specified map to this
map (optional operation).

V remove(Object key)

 Removes the mapping for a key from this map if it is present
(optional operation).

int size()
Returns the number of key-value mappings in this map.

Collection<V> values()
Returns a Collection view of the values contained in this map.

M13_LEWI3322_CH13_pp385-408.indd 389 20/02/13 11:34 AM

390 Chapter 13 Sets and Maps

badstuff.net
whatintheworld.com
notinthislifetime.org
letsnot.com
eeewwwwww.com

Listing 13.1 illustrates the DomainBlocker class, which keeps track of the blocked
domains and checks candidates against them as needed. The constructor for this
class reads the file and sets up a TreeSet containing all of the blocked domains. The
isBlocked method that determines whether a given domain is in the set.

In this example, the set of blocked domains is represented by a TreeSet object.
The domains themselves are simply character strings.

import java.io.File;
import java.io.FileNotFoundException;
import java.util.Scanner;
import java.util.TreeSet;

/**
 * A URL domain blocker.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class DomainBlocker
{
 private TreeSet<String> blockedSet;

 /**
 * Sets up the domain blocker by reading in the blocked domain names from
 * a file and storing them in a TreeSet.
 * @throws FileNotFoundException
 */
 public DomainBlocker() throws FileNotFoundException
 {
 blockedSet = new TreeSet<String>();

 File inputFile = new File("blockedDomains.txt");
 Scanner scan = new Scanner(inputFile);

 while (scan.hasNextLine())
 {
 blockedSet.add(scan.nextLine());
 }
 }

L i s t i n g 1 3 . 1

M13_LEWI3322_CH13_pp385-408.indd 390 20/02/13 11:34 AM

 13.3 Using Sets: Domain Blocker 391

In Listing 13.2 we see the DomainChecker class. As the driver for this example,
this class creates an instance of the DomainBlocker class and then allows the user
to enter domains interactively to check to see whether they are blocked.

 /**
 * Checks to see if the specified domain has been blocked.
 *
 * @param domain the domain to be checked
 * @return true if the domain is blocked and false otherwise
 */
 public boolean domainIsBlocked(String domain)
 {
 return blockedSet.contains(domain);
 }
}

L i s t i n g 1 3 . 1 continued

import java.io.FileNotFoundException;
import java.util.Scanner;

/**
 * Domain checking driver.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class DomainChecker
{
 /**
 * Repeatedly reads a domain interactively from the user and checks to
 * see if that domain has been blocked.
 */
 public static void main(String[] args) throws FileNotFoundException
 {
 DomainBlocker blocker = new DomainBlocker();
 Scanner scan = new Scanner(System.in);

L i s t i n g 1 3 . 2

M13_LEWI3322_CH13_pp385-408.indd 391 20/02/13 11:34 AM

392 Chapter 13 Sets and Maps

13.4 using Maps: product sales

Let’s look at an example using the TreeMap class. What if we were trying to keep
track of product sales? Suppose that each time a product is sold, its product code
is entered into a sales file. Here’s a sample of how that information might appear
in a file. Note that there are duplicates in the list.

HR588
DX555
EW231
TT232
TJ991
HR588
TT232
GB637
BV693
CB329
NP466
CB329
EW231
BV693
DX555
GB637
VA838

 String domain;

 do
 {
 System.out.print("Enter a domain (DONE to quit): ");
 domain = scan.nextLine();

 if (!domain.equalsIgnoreCase("DONE"))
 {
 if (blocker.domainIsBlocked(domain))
 System.out.println("That domain is blocked.");
 else
 System.out.println("That domain is fine.");
 }
 } while (!domain.equalsIgnoreCase("DONE"));
 }
}

L i s t i n g 1 3 . 2 continued

M13_LEWI3322_CH13_pp385-408.indd 392 20/02/13 11:34 AM

 13.4 Using Maps: Product Sales 393

Our system would need to read the sales file and update the product information
for each entry. We could organize our collection by product code but then keep
that separate from the actual product information. Listing 13.3 shows the
Product class, and Listing 13.4 shows the ProductSales class.

In our previous collections, when we wanted to retrieve or find an object in the
collection, we would have had to instantiate an object of the same type and with
the same critical information in order to look for it. One of the advantages of
using a Map is that we no longer have to do that. In this example, our key is a
String. Therefore, we were able to search the Map using a String rather than
having to create a dummy Product object.

/**
 * Represents a product for sale.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class Product implements Comparable<Product>
{
 private String productCode;
 private int sales;

 /**
 * Creates the product with the specified code.
 *
 * @param productCode a unique code for this product
 */
 public Product(String productCode)
 {
 this.productCode = productCode;
 this.sales = 0;
 }

 /**
 * Returns the product code for this product.
 *
 * @return the product code
 */
 public String getProductCode()
 {
 return productCode;
 }

L i s t i n g 1 3 . 3

M13_LEWI3322_CH13_pp385-408.indd 393 20/02/13 11:34 AM

394 Chapter 13 Sets and Maps

 /**
 * Increments the sales of this product.
 */
 public void incrementSales()
 {
 sales++;
 }

 /**
 * Compares this product to the specified product based on the product
 * code.
 *
 * @param other the other product
 * @return an integer code result
 */
 public int compareTo(Product obj)
 {
 return productCode.compareTo(obj.getProductCode());
 }

 /**
 * Returns a string representation of this product.
 *
 * @return a string representation of the product
 */
 public String toString()
 {
 return productCode + "\t(" + sales + ")";
 }
}

L i s t i n g 1 3 . 3 continued

import java.io.File;
import java.io.IOException;
import java.util.Scanner;
import java.util.TreeMap;

L i s t i n g 1 3 . 4

M13_LEWI3322_CH13_pp385-408.indd 394 20/02/13 11:34 AM

 13.4 Using Maps: Product Sales 395

/**
 * Demonstrates the use of a TreeMap to store a sorted group of Product
 * objects.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class ProductSales
{
 /**
 * Processes product sales data and prints a summary sorted by
 * product code.
 */
 public static void main(String[] args) throws IOException
 {
 TreeMap<String, Product> sales = new TreeMap<String, Product>();

 Scanner scan = new Scanner(new File("salesData.txt"));

 String code;
 Product product;
 while (scan.hasNext())
 {
 code = scan.nextLine();
 product = sales.get(code);
 if (product == null)
 sales.put(code, new Product(code));
 else
 product.incrementSales();
 }

 System.out.println("Products sold this period:");
 for (Product prod : sales.values())
 System.out.println(prod);
 }
}

L i s t i n g 1 3 . 4 continued

O u t p u t

Products sold this period:
BR742 (67)
BV693 (69)

M13_LEWI3322_CH13_pp385-408.indd 395 20/02/13 11:34 AM

396 Chapter 13 Sets and Maps

CB329 (67)
DX555 (67)
DX699 (72)
EW231 (66)
GB637 (56)
HR588 (66)
LF845 (69)
LH933 (59)
NP466 (67)
OB311 (50)
TJ991 (79)
TT232 (74)
UI294 (75)
VA838 (60)
WL023 (76)
WL310 (81)
WL812 (65)
YG904 (78)

L i s t i n g 1 3 . 4 continued

In the main method, a while loop is used to read all values from the input file. For
each product code, we attempt to get the corresponding Product object from the map
using the product code as the key. If the result is null, then no sales of that product
have been recorded yet, and a new Product object is created and added to the map. If
it was successfully retrieved from the map, the incrementSales method is called.

The output of the program lists only unique product codes found in the input file,
followed by the number of sales in parentheses. Note that the output shown in Listing
13.4 is based on a much larger input file than the sample shown earlier in the chapter.

The output is accomplished by a for-each loop in the main method, which
retrieves a list of all Product objects stored in the map using a call to the values
method. The values are returned in order by product code, because that’s how
Product objects rank themselves using the compareTo method of Product.

13.5 using Maps: user Management

Suppose we wanted to create a system to manage users. Our system could main-
tain a map of users and allow searches for particular users based on a user id.
Listing 13.5 illustrates our User class, representing an individual user, and Listing
13.6 represents the Users class, representing the collection of users.

M13_LEWI3322_CH13_pp385-408.indd 396 20/02/13 11:34 AM

 13.5 Using Maps: User Management 397

/**
 * Represents a user with a userid.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class User
{
 private String userId;
 private String firstName;
 private String lastName;

 /**
 * Sets up this user with the specified information.
 *
 * @param userId a user identification string
 * @param firstName the user's first name
 * @param lastName the user's last name
 */
 public User(String userId, String firstName, String lastName)
 {
 this.userId = userId;
 this.firstName = firstName;
 this.lastName = lastName;
 }

 /**
 * Returns the user id of this user.
 *
 * @return the user id of the user
 */
 public String getUserId()
 {
 return userId;
 }

 /**
 * Returns a string representation of this user.
 *
 * @return a string representation of the user
 */
 public String toString()
 {
 return userId + ":\t" + lastName + ", " + firstName;
 }
}

L i s t i n g 1 3 . 5

M13_LEWI3322_CH13_pp385-408.indd 397 20/02/13 11:34 AM

398 Chapter 13 Sets and Maps

import java.util.HashMap;
import java.util.Set;

/**
 * Stores and manages a map of users.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class Users
{
 private HashMap<String, User> userMap;

 /**
 * Creates a user map to track users.

 */
 public Users()
 {
 userMap = new HashMap<String, User>();

 }

 /**
 * Adds a new user to the user map.
 *
 * @param user the user to add
 */
 public void addUser(User user)
 {
 userMap.put(user.getUserId(), user);

 }

 /**
 * Retrieves and returns the specified user.
 *
 * @param userId the user id of the target user
 * @return the target user, or null if not found
 */
 public User getUser(String userId)
 {
 return userMap.get(userId);

 }

 /**
 * Returns a set of all user ids.

L i s t i n g 1 3 . 6

M13_LEWI3322_CH13_pp385-408.indd 398 20/02/13 11:34 AM

 13.5 Using Maps: User Management 399

In the Users class, individual User objects are stored in a HashMap object,
using a user id (string) as a key. The addUser and getUser methods simply store
and retrieve the User objects as needed. The getUserIds method returns a Set of
user ids using a call to the keySet method of the map.

Listing 13.7 shows the UserManagement class that contains the main method
of our program. The method creates and adds several users, allows the user to
search for them interactively, and then prints all of the users in the collection.

 *
 * @return a set of all user ids in the map
 */
 public Set<String> getUserIds()
 {
 return userMap.keySet();
 }
}

L i s t i n g 1 3 . 6 continued

import java.io.IOException;
import java.util.Scanner;

/**
 * Demonstrates the use of a map to manage a set of objects.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class UserManagement
{
 /**
 * Creates and populates a group of users. Then prompts for interactive
 * searches, and finally prints all users.
 */
 public static void main(String[] args) throws IOException
 {

L i s t i n g 1 3 . 7

M13_LEWI3322_CH13_pp385-408.indd 399 20/02/13 11:34 AM

400 Chapter 13 Sets and Maps

 Users users = new Users();
 users.addUser(new User("fziffle", "Fred", "Ziffle"));
 users.addUser(new User("geoman57", "Marco", "Kane"));
 users.addUser(new User("rover322", "Kathy", "Shear"));
 users.addUser(new User("appleseed", "Sam", "Geary"));
 users.addUser(new User("mon2016", "Monica", "Blankenship"));

 Scanner scan = new Scanner(System.in);
 String uid;
 User user;

 do
 {
 System.out.print("Enter User Id (DONE to quit): ");
 uid = scan.nextLine();
 if (!uid.equalsIgnoreCase("DONE"))
 {
 user = users.getUser(uid);
 if (user == null)
 System.out.println("User not found.");
 else
 System.out.println(user);
 }
 } while (!uid.equalsIgnoreCase("DONE"));

 // print all users
 System.out.println("\nAll Users:\n");
 for (String userId : users.getUserIds())
 System.out.println(users.getUser(userId));
 }
}

L i s t i n g 1 3 . 7 continued

O u t p u t

Enter User Id (DONE to quit): DONE

All Users:
geoman57: Kane, Marco
appleseed: Geary, Sam
rover322: Shear, Kathy
fziffle: Ziffle, Fred
mon2016: Blankenship, Monica

M13_LEWI3322_CH13_pp385-408.indd 400 20/02/13 11:34 AM

 13.7 Implementing Sets and Maps Using Hashing 401

13.6 implementing sets and Maps using trees

As the names imply, the TreeSet and TreeMap classes use an under-
lying tree structure to hold the elements in the set or map. In previous
chapters, we explored trees as collections in their own right, first as
general trees in Chapter 10, then as binary search trees in Chapter 11.
As we discussed in those chapters, the Java API does not treat trees as
collections, but only as a means to implement other collections.

The tree used to implement TreeSet and TreeMap is a red-black
implementation of a balanced binary search tree.

Recall the discussion of red-black trees in Chapter 11. They guar-
antee that the search tree remains balanced as elements are added
and removed, which in turn results in nearly all of the basic opera-
tions being executed with O(log n) efficiency. These trees use the so-called natural
ordering of elements, based on the Comparable interface, unless an explicit
Comparator object is provided.

Furthermore, it turns out that the TreeSet and TreeMap classes
in the API don’t have their own unique implementations of the un-
derlying tree. The TreeSet class is built upon a backing instance of a
TreeMap.

13.7 implementing sets and Maps using hashing

The HashSet and HashMap classes are implemented using an underlying technique
called hashing as the means by which elements are stored and retrieved. First we
will discuss hashing in general; then we will consider how it is used to implement
sets and maps.

In all of our discussions of the implementations of collections, we have pro-
ceeded with one of two assumptions about the order of elements in a collection:

■	 Order is determined by the order in which elements are added to and/or
removed from our collection, as in the case of stacks, queues, unordered
lists, and indexed lists.

■	 Order is determined by comparing the values of the elements (or some key
component of the elements) to be stored in the collection, as in the case of
ordered lists and binary search trees.

With hashing, however, the order—and, more specifically, the location of an
item within the collection—is determined by some function of the value of the

Key COnCept
The Java API treats trees as
implementing data structures
rather than as collections.

Key COnCept
Both TreeSet and TreeMap
use a red-black balanced binary
search tree.

Key COnCept
In the Java API, TreeSet is built
using an underlying TreeMap.

M13_LEWI3322_CH13_pp385-408.indd 401 20/02/13 11:34 AM

402 Chapter 13 Sets and Maps

element to be stored, or some function of a key value of the element to be stored.
In hashing, elements are stored in a hash table, with their location in the table
determined by a hashing function. Each location in the table may be referred to
as a cell or a bucket. A complete discussion of hashing functions is included in
Appendix E, but we’ll discuss the basics here.

Consider a simple example where we create an array that will hold 26 ele-
ments. Wishing to store names in our array, we create a hashing function that
equates each name to the position in the array associated with the first letter of
the name (for example, a first letter of A would be mapped to position 0 of the
array, a first letter of D would be mapped to position 3 of the array, and so on).
Figure 13.3 illustrates this scenario after several names have been added.

Note that, unlike our earlier implementations of collections, us-
ing a hashing approach results in the access time to a particular ele-
ment being independent of the number of elements in the table. This
means that all of the operations on an element of a hash table
should be O(1). This is the result of no longer having to do compari-
sons to find a particular element or to locate the appropriate posi-

tion for a given element. Using hashing, we simply calculate where a particular
element should be.

However, this efficiency is fully realized only if each element
maps to a unique position in the table. Consider our example from
Figure 13.3. What will happen if we attempt to store the name
“Ann” and the name “Andrew”? This situation, where two ele-
ments or keys map to the same location in a hash table, is called a
collision.

A hashing function that maps each element to a unique position in the hash
table is said to be a perfect hashing function. Although it is possible in some situ-

ations to develop a perfect hashing function, a hashing function that
does a good job of distributing the elements among the table posi-
tions will still result in constant time (O(1)) access to elements in the
table and an improvement over our earlier algorithms that were ei-
ther O(n) in the case of our linear approaches or O(log n) in the case
of search trees.

A complete discussion of hashing is included in Appendix E. Now, let’s con-
sider how the Java API uses hashing to create a set implementation.

Just as the TreeSet class was built upon a backing TreeMap instance, the
HashSet class is built upon a backing instance of the HashMap class. The HashSet
class provides constant time (O(1)) access for the basic operations as long as the
hash function does a reasonable job of distributing elements in the hash table. The
two parameters to the constructor that affect the efficiency of the hash function
are the initial capacity and load factor.

Key COnCept
In hashing, elements are stored in a
hash table, and their location in the
table is determined by a hashing
function.

Key COnCept
The situation in which two elements
or keys map to the same location in a
hash table is called a collision.

Key COnCept
A hashing function that maps each
element to a unique position in the
hash table is said to be a perfect
hashing function.

M13_LEWI3322_CH13_pp385-408.indd 402 20/02/13 11:34 AM

 13.7 Implementing Sets and Maps Using Hashing 403

Figure 13.3 A simple
hashing example

Ann

Doug
Elizabeth

Hal

Mary

Tim

Walter

Young

The initial capacity determines the initial size of the hash table. The load factor
determines how full the table is allowed to be before its size is increased. The de-
fault for the initial capacity is 16, and the default for the load factor is 0.75. With
these defaults, the table size would be doubled once 12 elements had been added.

When an element is added to a HashSet, the object’s hashCode method is
called to produce an integer hash code for the object. If the hashCode method has
not been overridden, then the hashCode method of the java.lang.Object class
is used. Whether it uses this method or an overridden version, the requirements of
the hashCode method as stated in the Java API are the same:

■	 Whenever it is invoked on the same object more than once during an exe-
cution of a Java application, the hashCode method must consistently return
the same integer, provided that no information used in equals comparisons
on the object is modified. This integer need not remain consistent from one
execution of an application to another execution of the same application.

■	 If two objects are equal according to the equals(Object) method, then
calling the hashCode method on each of the two objects must produce the
same integer result.

■	 It is not required that if two objects are unequal according to the
equals(Object) method, then calling the hashCode method on each of
the two objects must produce distinct integer results. However, the
programmer should be aware that producing distinct integer results for
unequal objects may improve the performance of hash tables.

M13_LEWI3322_CH13_pp385-408.indd 403 20/02/13 11:34 AM

404 Chapter 13 Sets and Maps

Summary of Key Concepts
■	 A set is a unique collection of objects generally used to determine whether a

particular element is a member of the set.

■	 A map is a collection of objects that can be retrieved using a unique key.

■	 The Java API treats trees as implementing data structures rather than as
collections.

■	 In the Java API, TreeSet is built using a backing TreeMap.

■	 Both TreeSet and TreeMap use a red-black balanced binary search tree.

■	 In hashing, elements are stored in a hash table, and their location in the table
is determined by a hashing function.

■	 The situation in which two elements or keys map to the same location in the
table is called a collision.

■	 A hashing function that maps each element to a unique position in the table
is said to be a perfect hashing function.

summary of terms
set A unique set of objects generally used to determine whether a particular
element is a member of the set.

map A collection of objects that can be retrieved using a unique key.

collision The situation in which two elements or keys map to the same
location in a hash table.

hashing A technique by which elements are stored in, and retrieved from, a
hash table, and their location in the table is determined by a hashing
function.

hash table A table where elements are stored in the hashing technique.

hashing function In the hashing technique, the function that determines
where elements are stored in a hash table.

cell A location in a hash table.

bucket A location in a hash table.

perfect hashing function A hashing function that maps each element to a
unique position in a hash table.

initial capacity The parameter that determines the initial size of a hash table.

load factor The parameter that determines how full a hash table is allowed
to be before its size is increased.

M13_LEWI3322_CH13_pp385-408.indd 404 20/02/13 11:34 AM

 Exercises 405

self-review Questions
SR 13.1 What is a set?

SR 13.2 What is a map?

SR 13.3 How are sets and maps implemented in the Java API?

SR 13.4 What is the relationship between a TreeSet and a TreeMap?

SR 13.5 What is the relationship between a HashSet and a HashMap?

SR 13.6 How does a hash table differ from the other implementation
strategies we have discussed?

SR 13.7 What is the potential advantage of a hash table over other
implementation strategies?

SR 13.8 Define the terms collision and perfect hashing function.

exercises
EX 13.1 Define the concept of a set. List additional operations that might

be considered for a set.

EX 13.2 The TreeSet class is built upon a backing instance of the
TreeMap class. Discuss the advantages and disadvantages of this
strategy for reuse.

EX 13.3 Given the nature of a set, one could implement the Set interface
using any one of a variety of other collections or data structures.
Describe how you might implement the Set interface using a
LinkedList. Discuss the advantages and disadvantages of this
approach.

EX 13.4 A bag is a very similar construct to a set except that duplicates
are allowed in a bag. What changes would have to be made to
extend a TreeSet to create an implementation of a bag?

EX 13.5 Draw a UML diagram showing the relationships among the
classes involved in the Product Sales example from this chapter.

EX 13.6 Draw a UML diagram showing the relationships among the
classes in the User Management example from this chapter.

EX 13.7 Describe two hashing functions that might be appropriate for a
data set organized by name (e.g. last name, first name, middle
initial).

EX 13.8 Explain when it might be preferable to use a map instead of a set.

M13_LEWI3322_CH13_pp385-408.indd 405 20/02/13 11:34 AM

406 Chapter 13 Sets and Maps

programming projects
PP 13.1 Create an array based implementation of a set called

ArraySet<T> that implements the Set interface.

PP 13.2 Create a linked implementation of a set call LinkedSet<T> that
implements the Set interface.

PP 13.3 Create a tree-based implementation of a TreeBag<T> class.
Remember, the difference is that a bag allows duplicates.

PP 13.4 Create a hash table based implementation of a HashBag<T> class.
Remember, the difference is that a bag allows duplicates.

PP 13.5 Extend the TreeSet class to create a class called
AlgebraicTreeSet. In addition to the methods of the Set interface,
this class will provide the basic algebraic set operations of union, in-
tersection, and difference.

PP 13.6 Create the AlgebraicTreeSet class of PP13.5 by extending the
HashSet class.

PP 13.7 Building upon PP 13.1, create an array implementation of a map.

PP 13.8 Building upon PP 13.2, create a linked implementation of a map.

PP 13.9 Using a TreeMap develop a rolodex application to keep track of
Contact objects as described in Chapter 9.

PP 13.10 Using a HashMap develop a new implementation of the
ProgramofStudy application from Chapter 6.

answers to self-review Questions
SRA 13.1 A set is a unique set of objects generally used to determine

whether a particular element is a member of the set.

SRA 13.2 A map is a collection of objects that can be retrieved using a
unique key.

SRA 13.3 Sets and maps are implemented in the Java API both with Red/
Black Binary Trees (TreeSet and TreeMap) and with hash-tables
(HashSet and HashMap).

SRA 13.4 A TreeSet is implemented using a backing instance of a
TreeMap.

SRA 13.5 A HashSet is implemented using a backing instance of a
HashMap.

M13_LEWI3322_CH13_pp385-408.indd 406 20/02/13 11:34 AM

 Answers to Self-Review Questions 407

SRA 13.6 Using a hash table, the location of an element in the table is deter-
mined using a hashing function. In this way, each element in the
hash table can be accessed in equal, O(1), time.

SRA 13.7 Given the O(1) access time to each element in a hash table, assum-
ing a good hashing function, then a hash table has the potential to
be more efficient than some of our other strategies. For example, a
binary search tree might require O(log n) time to access a given
element as opposed to the O(1) access time of a hash table.

SRA 13.8 A collision occurs in a hash-table when two or more different
elements are hashed to the same location in the table. A perfect
hashing function is one that does not produce any collisions.

M13_LEWI3322_CH13_pp385-408.indd 407 20/02/13 11:34 AM

M13_LEWI3322_CH13_pp385-408.indd 408 20/02/13 11:34 AM

 This page is intentionally left blank.

1414

409

C h a p t e r
O b j e C t i v e s

■	 Examine 2-3 and 2-4 trees.

■ Introduce the generic concept of
a B-tree.

■ Examine some specialized
implementations of B-trees.

Multi-Way Search
Trees

When we first introduced the concept of efficiency of

algorithms, we said that we were interested in issues such as

processing time and memory. In this chapter, we explore

multi-way trees that were specifically designed with a

concern for the use of space and the effect that a particular

use of space could have on the total processing time for an

algorithm.

M14_LEWI3322_CH14_pp409-426.indd 409 20/02/13 11:36 AM

410 Chapter 14 Multi-Way Search Trees

14.1 Combining tree Concepts

In Chapter 10, we established the difference between a general tree, which has a
varying number of children per node, and a binary tree, which has at most two
children per node. Then, in Chapter 11, we discussed the concept of a search tree,

which has a specific ordering relationship among the elements in the
nodes to allow efficient searching for a target value. In particular, we
focused on binary search trees. Now we can combine these concepts
and extend them further.

In a multi-way search tree, each node might have more than two
child nodes, and, because it is a search tree, there is a specific order-

ing relationship among the elements. Furthermore, a single node in a multi-way
search tree may store more than one element.

This chapter examines three specific forms of a multi-way search tree:

■	 2-3 trees

■	 2-4 trees

■	 B-trees

14.2 2-3 trees

A 2-3 tree is a multi-way search tree in which each node has two children
(referred to as a 2-node) or three children (referred to as a 3-node). A 2-node con-
tains one element, and, as in a binary search tree, the left subtree contains
elements that are less than that element, and the right subtree contains elements
that are greater than or equal to that element. However, unlike the case in a binary
search tree, a 2-node can have either no children or two children—it cannot have
just one child.

A 3-node contains two elements, one designated as the smaller element and
one designated as the larger element. A 3-node has either no children or three chil-
dren. If a 3-node has children, then the left subtree contains elements that are less

than the smaller element, and the right subtree contains elements
that are greater than or equal to the larger element. The middle sub-
tree contains elements that are greater than or equal to the smaller
element and less than the larger element.

All of the leaves of a 2-3 tree are on the same level. Figure 14.1
illustrates a valid 2-3 tree.

KeY CONCept
A multi-way search tree can have
more than two children per node and
can store more than one element in
each node.

KeY CONCept
A 2-3 tree contains nodes that con-
tain either one or two elements and
have zero, two, or three children.

M14_LEWI3322_CH14_pp409-426.indd 410 20/02/13 11:36 AM

 14.2 2-3 Trees 411

inserting elements into a 2-3 tree
Similar to a binary search tree, all insertions into a 2-3 tree occur at the leaves of
the tree. That is, the tree is searched to determine where the new element will go;
then it is inserted. Unlike a binary tree, however, the process of inserting an ele-
ment into a 2-3 tree can have a ripple effect on the structure of the rest of the tree.

Inserting an element into a 2-3 tree has three cases. The first, and simplest, case
is that the tree is empty. In this case, a new node is created containing the new ele-
ment, and this node is designated as the root of the tree.

The second case occurs when we want to insert a new element at a leaf that is a
2-node. That is, we traverse the tree to the appropriate leaf (which may also be
the root) and find that the leaf is a 2-node (containing only one element). In this
case, the new element is added to the 2-node, making it a 3-node. Note that the
new element may be less than or greater than the existing element. Figure 14.2
illustrates this case by inserting the value 27 into the tree shown in Figure 14.1.
The leaf node containing 22 is a 2-node, so 27 is inserted into that node, making
it a 3-node. Note that neither the number of nodes in the tree nor the height of the
tree changed because of this insertion.

The third insertion situation occurs when we want to insert a new element at a
leaf that is a 3-node (containing two elements). In this case, because the 3-node

45

22 75 8751 55

30

35 40

60 82

Figure 14.1 A 2-3 tree

initial tree

22

30

35 40

result

45 45

75 8751 55

30

35 4022 27

60 82

75 8751 55

60 82

Figure 14.2 Inserting 27

M14_LEWI3322_CH14_pp409-426.indd 411 20/02/13 11:36 AM

412 Chapter 14 Multi-Way Search Trees

cannot hold any more elements, it is split, and the middle element is moved up a
level in the tree. The middle element that moves up a level can be either of the two
elements that already existed in the 3-node, or it can be the new element being
inserted. It depends on the relationship among those three elements.

Figure 14.3 shows the result of inserting the element 32 into the tree shown in
Figure 14.2. Searching the tree, we reach the 3-node that contains the elements 35
and 40. That node is split, and the middle element (35) is moved up to join its par-
ent node. Thus the internal node that contains 30 becomes a 3-node that contains
both 30 and 35. Note that the act of splitting a 3-node results in two 2-nodes at
the leaf level. In this example, we are left with one 2-node that contains 32 and
another 2-node that contains 40.

Now consider the situation in which we must split a 3-node whose parent is
already a 3-node. The middle element that is promoted causes the parent to split,
moving an element up yet another level in the tree. Figure 14.4 shows the effect of
inserting the element 57 into the tree shown in Figure 14.3. Searching the tree, we
reach the 3-node leaf that contains 51 and 55. This node is split, causing the mid-
dle element 55 to move up a level. But that node is already a 3-node, containing
the values 60 and 82, so we split that node as well, promoting the element 60,

initial tree result

45

75 8732 40 51 55

30 35

22 27

60 82

45

75 8751 55

30

35 4022 27

60 82

Figure 14.3 Inserting 32

initial tree result

51

55

32 40

30 35

45 60

22 27

45

75 8751 5532 40

30 35

22 27

60 82

57 75

82

87

Figure 14.4 Inserting 57

M14_LEWI3322_CH14_pp409-426.indd 412 20/02/13 11:36 AM

 14.2 2-3 Trees 413

60

45

initial tree result

51

55

32 40

30 35

22 27 57 75

82

8722

25

27 32

35

30

4051

55

45 60

57 75

82

87

Figure 14.5 Inserting 25

initial tree result

45

7522 8751 55

30

35 40

60 82

45

7522 8755

30

35 40

60 82

Figure 14.6 Removal from a 2-3 tree (case 1)

which joins the 2-node containing 45 at the root. Therefore, inserting an element
into a 2-3 tree can cause a ripple effect that changes several nodes in the tree.

If this effect propagates all the way to the root of the entire tree, a
new 2-node root is created. For example, inserting the element 25
into the tree shown in Figure 14.4 results in the tree depicted in
Figure 14.5. The 3-node containing 22 and 27 is split, promoting 25.
This causes the 3-node containing 30 and 35 to split, promoting 30.
This causes the 3-node containing 45 and 60 (which happens to be
the root of the entire tree) to split, creating a new 2-node root that contains 45.

Note that when the root of the tree splits, the height of the tree increases by
one. The insertion strategy for a 2-3 tree keeps all of the leaves at the same level.

removing elements from a 2-3 tree
Removal of elements from a 2-3 tree also has three cases. The first case is that the
element to be removed is in a leaf that is a 3-node. In this case, removal is simply
a matter of removing the element from the node. Figure 14.6 illustrates this pro-
cess by removing the element 51 from the tree we began with in Figure 14.1. Note
that the properties of a 2-3 tree are maintained.

KeY CONCept
If the propagation effect of a 2-3 tree
insertion causes the root to split, the
tree increases in height.

M14_LEWI3322_CH14_pp409-426.indd 413 20/02/13 11:36 AM

414 Chapter 14 Multi-Way Search Trees

The second case is that the element to be removed is in a leaf that is a 2-node.
This condition is called underflow and creates a situation in which we must rotate
the tree and/or reduce the tree’s height in order to maintain the properties of the
2-3 tree. This situation can be broken down into four subordinate cases that we
will refer to as cases 2.1, 2.2, 2.3, and 2.4. Figure 14.7 illustrates case 2.1 and
shows what happens if we remove the element 22 from our initial tree shown in
Figure 14.1. In this case, because the parent node has a right child that is a
3-node, we can maintain the properties of a 2-3 tree by rotating the smaller ele-
ment of the 3-node around the parent. The same process will work if the element
being removed from a 2-node leaf is the right child and the left child is a 3-node.

What happens if we now remove the element 30 from the resulting tree in
Figure 14.7? We can no longer maintain the properties of a 2-3 tree through a lo-
cal rotation. Keep in mind that a node in a 2-3 tree cannot have just one child.
Because the leftmost child of the right child of the root is a 3-node, we can rotate
the smaller element of that node around the root to maintain the properties of a
2-3 tree. This process is illustrated in Figure 14.8 and represents case 2.2. Notice
that the element 51 moves to the root, the element 45 becomes the larger element
in a 3-node leaf, and then the smaller element of that leaf is rotated around its
parent. Once element 51 was moved to the root and element 45 was moved to a
3-node leaf, we were back in the same situation as case 2.1.

Given the resulting 2-3 tree in Figure 14.8, what happens if we now remove
element 55? None of the leaves of this tree is a 3-node. Thus, rotation from a leaf,
even from a distance, is no longer an option. However, because the parent node is
a 3-node, all that is required to maintain the properties of a 2-3 node is to change
this 3-node to a 2-node by rotating the smaller element (60) into what will now
be the left child of the node. Figure 14.9 illustrates case 2.3.

If we then remove element 60 (using case 1), the resulting tree contains nothing
but 2-nodes. Now, if we remove another element, perhaps element 45, rotation is
no longer an option. We must instead reduce the height of the tree in order to
maintain the properties of a 2-3 tree. This is case 2.4. To accomplish this, we simply

initial tree result

45

7522 8751 55

30

35 40

60 82

45

30 40

35

75 8751 55

60 82

Figure 14.7 Removal from a 2-3 tree (case 2.1)

Inserting elements into,
and removing elements
from, a 2-3 tree

VideoNote

M14_LEWI3322_CH14_pp409-426.indd 414 20/02/13 11:36 AM

 14.2 2-3 Trees 415

combine each of the leaves with its parent and siblings in order. If any of these
combinations contains more than two elements, we split it into two 2-nodes and
promote or propagate the middle element. Figure 14.10 illustrates this process for
reducing the height of the tree.

initial tree

45

7530 40 8751 55

35 60 82

intermediate step

51

7530 875540 45

35 60 82

result

51

7535 45 8755

40 60 82

Figure 14.8 Removal from a 2-3 tree (case 2.2)

initial tree

51

30 45

40 60 82

result

51

35 45 8775 8755

40 82

60 75

Figure 14.9 Removal from a 2-3 tree (case 2.3)

The third case is that the element to be removed is in an internal node. Just as
we did with binary search trees, we can simply replace the element to be removed
with its inorder successor. In a 2-3 tree, the inorder successor of an internal ele-
ment will always be a leaf, which, if it is a 2-node, will bring us back to our first
case, and if it is a 3-node, requires no further action. Figure 14.11 illustrates these
possibilities by removing the element 30 from our original tree from Figure 14.1
and then by removing the element 60 from the resulting tree.

M14_LEWI3322_CH14_pp409-426.indd 415 20/02/13 11:36 AM

416 Chapter 14 Multi-Way Search Trees

initial tree

51

35 45

40

75 87

82

result

75 8735 40

51 82

Figure 14.10 Removal from a 2-3 tree (case 2.4)

45

22 75 8751 55

30

35 40

60 82

initial tree

45

22 75 8751 55

35 60 82

after removing 30

45

22 40 ? 8751 55

35 75 82

after removing 60

45

22 7551 87

35 55 82

after rotation

 40

40

Figure 14.11 Removal from a 2-3 tree (case 3)

14.3 2-4 trees

A 2-4 tree is similar to a 2-3 tree, adding the characteristic that a node can contain
three elements. Expanding on the same principles as a 2-3 tree, a 4-node contains
three elements and has either no children or four children. The same ordering
property applies: The left child will be less than the leftmost element of a node,
which will be less than or equal to the second child of the node, which will be less
than the second element of the node, which will be less than or equal to the third

M14_LEWI3322_CH14_pp409-426.indd 416 20/02/13 11:36 AM

 14.3 2-4 Trees 417

child of the node, which will be less than the third element of the
node, which will be less than or equal to the fourth child of the node.

The same cases for insertion and removal of elements apply, with
2-nodes and 3-nodes behaving similarly on insertion and 3-nodes
and 4-nodes behaving similarly on removal. Figure 14.12 illustrates
a series of insertions into a 2-4 tree. Figure 14.13 illustrates a series
of removals from a 2-4 tree.

KeY CONCept
A 2-4 tree expands on the concept of
a 2-3 tree to include the use of
4-nodes.

9940 553 14 22

25 60

insert 60

9922 40 553 14

insert 17

3 14 22 40 55 99

insert 22, 99

17 25 60

55

25

25

3 14

25

40 553 14

insert 25 insert 40

3 14 55

insert 3, 55, 14

Figure 14.12 Insertions into a 2-4 tree

9914 22 55

remove 3, 40

995514 22

remove 17

9922 40 553 14

initial tree

17 25 60

99

60

14 55 55 60

remove 25

995514

25 60

remove 22 remove 14, 99

17 25 60 25 60

Figure 14.13 Removals from a 2-4 tree

M14_LEWI3322_CH14_pp409-426.indd 417 20/02/13 11:36 AM

418 Chapter 14 Multi-Way Search Trees

14.4 b-trees

Both 2-3 and 2-4 trees are examples of a larger class of multi-way search trees
called B-trees. We refer to the maximum number of children of each node as the

order of the B-tree. Thus 2-3 trees are B-trees of order 3, and 2-4
trees are B-trees of order 4.

B-trees of order m have the following properties:

■	 The root has at least two subtrees unless it is a leaf.

■	 Each non-root internal node n holds k–1 elements and k children,
where 3m>24 … k … m.

■	 Each leaf n holds k–1 elements, where 3m>24 … k … m.

■	 All leaves are on the same level.

Figure 14.14 illustrates a B-tree of order 6.

KeY CONCept
A B-tree extends the concept of 2-3
and 2-4 trees so that nodes can have
an arbitrary maximum number of
elements.

5 12 22 35 55

1 3 4 7 8 11 13 16 17 21 25 28 31 32 33 40 43 60 75 80

Figure 14.14 A B-tree of order 6

The reasoning behind the creation and use of B-trees is an interesting study in
the effects of algorithm and data structure design. To understand this reasoning,
we must understand the context of most all of the collections we have discussed
thus far. Our assumption has always been that we were dealing with a collection
in primary memory. However, what if the data set that we are manipulating is too
large for primary memory? In that case, our data structure would be paged in and
out of memory from a disk or some other secondary storage device. An interesting

thing happens to time complexity once a secondary storage device is
involved. No longer is the time to access an element of the collection
simply a function of how many comparisons are needed to find the
element. Now we must also consider the access time of the second-
ary storage device and how many separate accesses we will make to
that device.

In the case of a disk, this access time consists of seek time (the time it takes to
position the read-write head over the appropriate track on the disk), rotational
delay (the time it takes to spin the disk to the correct sector), and the transfer time
(the time it takes to transfer a block of memory from the disk into primary memory).

KeY CONCept
Access to secondary storage is very
slow relative to access to primary
storage, which is motivation to use
structures such as B-trees.

M14_LEWI3322_CH14_pp409-426.indd 418 20/02/13 11:36 AM

 14.4 B-Trees 419

Adding this “physical” complexity to the access time for a collection can be very
costly. Access to secondary storage devices is very slow relative to access to primary
storage.

Given this added time complexity, it makes sense to develop a structure that
minimizes the number of times the secondary storage device must be accessed. A
B-tree can be just such a structure. B-trees are typically tuned so that the size of a
node is the same as the size of a block on secondary storage. In this way, we get
the maximum amount of data for each disk access. Because B-trees can have
many more elements per node than a binary tree, they are much flatter structures
than binary trees. This reduces the number of nodes and/or blocks that must be
accessed, thus improving performance.

We have already demonstrated the processes of insertion and removal of
elements for 2-3 and 2-4 trees, both of which are B-trees. The process for any
B-tree of order m is similar. Let’s now briefly examine some interesting variations
of B-trees that were designed to solve specific problems.

b*-trees
One of the potential problems with a B-tree is that even though we are attempting
to minimize access to secondary storage, we have actually created a data structure
that may be half empty. To minimize this problem, B*-trees were developed.
B*-trees have all of the same properties as B-trees except that, instead of each
node having k children where 3m>24 … k … m, in a B*-tree each node has k
children where 3 12m-12 >34 … k … m. This means that each non-root node is
at least two-thirds full.

This is accomplished by delaying splitting of nodes by rebalancing across sib-
lings. Once siblings are full, instead of splitting one node into two, creating two
half-full nodes, we split two nodes into three, creating three nodes that are two-
thirds full.

b+-trees
Another potential problem with B-trees is sequential access. As with any tree, we
can use an inorder traversal to look at the elements of the tree sequentially.
However, this means that we are no longer taking advantage of the blocking
structure of secondary storage. In fact, we have made it much worse, because now
we will access each block containing an internal node many separate times as we
pass through it during the traversal.

B+-trees provide a solution to this problem. In a B-tree, each element appears
only once in the tree, regardless of whether it appears in an internal node or in a

M14_LEWI3322_CH14_pp409-426.indd 419 20/02/13 11:36 AM

420 Chapter 14 Multi-Way Search Trees

leaf. In a B+-tree, each element appears in a leaf, regardless of whether or not it
appears in an internal node. Elements appearing in an internal node will be listed
again as the inorder successor (which is a leaf) of their position in the internal node.
Additionally, each leaf node will maintain a pointer to the following leaf node. In
this way, a B+-tree provides indexed access through the B-tree structure and sequen-
tial access through a linked list of leaves. Figure 14.15 illustrates this strategy.

analysis of b-trees
With balanced binary search trees, we were able to say that searching for an element
in the tree was O(log2n). This is because, at worst, we had to search a single path
from the root to a leaf in the tree and, at worst, the length of that path would be
log2n. Analysis of B-trees is similar. At worst, searching a B-tree, we will have to
search a single path from the root to a leaf and, at worst, that path length will be
logmn, where m is the order of the B-tree and n is the number of elements in the
tree. However, finding the appropriate node is only part of the search. The other
part of the search is finding the appropriate path from each node and then finding
the target element in a given node. Because there are up to m–1 elements per
node, it may take up to m–1 comparisons per node to find the appropriate path
and/or to find the appropriate element. Thus, the analysis of a search of a B-tree
yields O((m–1)logmn). Because m is a constant for any given implementation, we
can say that searching a B-tree is O(log n).

The analysis of insertion into and deletion from a B-tree is similar and is left as
an exercise.

14.5 implementation strategies for b-trees

We have already discussed insertion of elements into B-trees, removal of elements
from B-trees, and the balancing mechanisms necessary to maintain the properties
of a B-tree. What remains is to discuss strategies for storing B-trees. Keep in mind

5 12 22 35 55

1 3 4 5 7 8 12 16 17 21 22 28 31 32 35 40 55 60 8043

Figure 14.15 A B+-tree of order 6

M14_LEWI3322_CH14_pp409-426.indd 420 20/02/13 11:36 AM

 14.5 Implementation Strategies for B-Trees 421

that the B-tree structure was developed specifically to address the issue
of a collection that must move in and out of primary memory from
secondary storage. If we attempt to use object reference variables to
create a linked implementation, we are actually storing a primary
memory address for an object. Once that object is moved back to
secondary storage, that address is no longer valid. Therefore, if in-
teraction with secondary memory is part of your motivation to use a
B-tree, then an array implementation may be a better solution.

A solution is to think of each node as a pair of arrays. The first array would be
an array of m–1 elements, and the second array would be an array of m children.
Next, if we think of the tree itself as one large array of nodes, then the elements
stored in the array of children in each node would simply be integer indexes into
this array of nodes.

In primary memory, this strategy works because when we use an array, as long
as we know the index position of the element within the array, it does not matter
to us where the array is loaded in primary memory. For secondary memory, this
same strategy works because, given that each node is of fixed length, the address
in memory of any given node is given by:

The base address of the file + (index of the node -1) * length of a node

The array implementations of 2-3, 2-4, and larger B-trees are left as a program-
ming project.

KeY CONCept
Arrays may provide a better solution
both within a B-tree node and for
collecting B-tree nodes, because they
are effective in both primary memory
and secondary storage.

M14_LEWI3322_CH14_pp409-426.indd 421 20/02/13 11:36 AM

422 Chapter 14 Multi-Way Search Trees

Summary of Key Concepts
■	 A multi-way search tree can have more than two children per node and can

store more than one element in each node.

■	 A 2-3 tree contains nodes that contain either one or two elements and have
zero, two, or three children.

■	 Inserting an element into a 2-3 tree can have a ripple effect up the tree.

■	 If the propagation effect of a 2-3 tree insertion causes the root to split, the
tree increases in height.

■	 A 2-4 tree expands on the concept of a 2-3 tree to include the use of
4-nodes.

■	 A B-tree extends the concept of 2-3 and 2-4 trees so that nodes can have an
arbitrary maximum number of elements.

■	 Access to secondary storage is very slow relative to access to primary
storage, which is motivation to use structures such as B-trees.

■	 Arrays may provide a better solution both within a B-tree node and for
collecting B-tree nodes, because they are effective in both primary memory
and secondary storage.

summary of terms
multi-way search tree A search tree where each node might have more
than two child nodes and there is a specific ordering relationship among the
elements.

2-3 tree A multi-way search tree in which each node has two children
(referred to as a 2-node) or three children (referred to as a 3-node).

2-node A 2-node contains one element and, as in a binary search tree,
the left subtree contains elements that are less than that element, and the
right subtree contains elements that are greater than or equal to that
element.

3-node A 3-node contains two elements, one designated as the smaller
element and one designated as the larger element. A 3-node has either no
children or three children. If a 3-node has children, the left subtree contains
elements that are less than the smaller element and the right subtree contains
elements that are greater than or equal to the larger element. The middle
subtree contains elements that are greater than or equal to the smaller
element and less than the larger element.

M14_LEWI3322_CH14_pp409-426.indd 422 20/02/13 11:36 AM

 Exercises 423

underflow A situation in which we must rotate the tree and/or reduce the
tree’s height in order to maintain the properties of the 2-3 tree.

2-4 tree A 2-4 tree is similar to a 2-3 tree, adding the characteristic that a
node can contain three elements.

4-node A 4-node contains three elements and has either no children or four
children.

b-tree A B-tree extends the concept of 2-3 and 2-4 trees so that nodes can
have an arbitrary maximum number of elements.

b*-trees B*-trees have all of the same properties as B-trees except that,
instead of each node having k children where 3m>24 … k … m, in a B*-tree
each node has k children where 3 12m-12 >34 … k … m.

b+-trees In a B+-tree, each element appears in a leaf, regardless of whether
or not it appears in an internal node. Elements appearing in an internal node
will be listed again as the inorder successor (which is a leaf) of their position
in the internal node. Additionally, each leaf node will maintain a pointer to
the following leaf node. In this way, a B+-tree provides indexed access
through the B-tree structure and sequential access through a linked list of
leaves.

self-review Questions
SR 14.1 Describe the nodes in a 2-3 tree.

SR 14.2 When does a node in a 2-3 tree split?

SR 14.3 How can splitting a node in a 2-3 tree affect the rest of the tree?

SR 14.4 Describe the process of deleting an element from a 2-3 tree.

SR 14.5 Describe the nodes in a 2-4 tree.

SR 14.6 How do insertions and deletions in a 2-4 tree compare to insertions
and deletions in a 2-3 tree?

SR 14.7 When is rotation no longer an option for rebalancing a 2-3 tree
after a deletion?

exercises
EX 14.1 Draw the 2-3 tree that results from adding the following elements

into an initially empty tree:

34 45 3 87 65 32 1 12 17

M14_LEWI3322_CH14_pp409-426.indd 423 20/02/13 11:36 AM

424 Chapter 14 Multi-Way Search Trees

EX 14.2 Using the resulting tree from Exercise 14.1, draw the resulting
tree after removing each of the following elements:

3 87 12 17 45

EX 14.3 Repeat Exercise 14.1 using a 2-4 tree.

EX 14.4 Repeat Exercise 14.2 using the resulting 2-4 tree from Exercise 14.3.

EX 14.5 Draw the B-tree of order 8 that results from adding the following
elements into an initially empty tree:

 34 45 3 87 65 32 1 12 17 33 55 23 67 15 39 11 19 47

EX 14.6 Draw the B-tree that results from removing the following from
the resulting tree from Exercise 14.5:

1 12 17 33 55 23 19 47

EX 14.7 Describe the complexity (order) of insertion into a B-tree.

EX 14.8 Describe the complexity (order) of deletion from a B-tree.

programming projects
PP 14.1 Create an implementation of a 2-3 tree using the array strategy

discussed in Section 14.5.

PP 14.2 Create an implementation of a 2-3 tree using a linked strategy.

PP 14.3 Create an implementation of a 2-4 tree using the array strategy
discussed in Section 14.5.

PP 14.4 Create an implementation of a 2-4 tree using a linked strategy.

PP 14.5 Create an implementation of a B-tree of order 7 using the array
strategy discussed in Section 14.5.

PP 14.6 Create an implementation of a B+-tree of order 9 using the array
strategy discussed in Section 14.5.

PP 14.7 Create an implementation of a B*-tree of order 11 using the array
strategy discussed in Section 14.5.

PP 14.8 Implement a graphical system to manage employees using an
employee id, employee name, and years of service. The system
should use a B-tree of order 7 to store employees, and it must
provide the ability to add and remove employees. After each
operation, your system must update a sorted list of employees
sorted by name on the screen.

M14_LEWI3322_CH14_pp409-426.indd 424 20/02/13 11:36 AM

 Answers to Self-Review Questions 425

answers to self-review Questions
SRA 14.1 A 2-3 tree node can have either one element or two and can have

no children, two children, or three children. If it has one element,
then it is a 2-node and has either no children or two children. If it
has two elements, then it is a 3-node and has either no children or
three children.

SRA 14.2 A 2-3 tree node splits when it has three elements. The smallest
element becomes a 2-node, the largest element becomes a 2-node,
and the middle element is promoted or propagated to the parent
node.

SRA 14.3 If the split and resulting propagation force the root node to split,
then splitting the node will increase the height of the tree.

SRA 14.4 Deletion from a 2-3 tree falls into one of three cases. Case 1,
deletion of an element from a 3-node leaf, means simply removing
the element and has no impact on the rest of the tree. Case 2,
deletion of an element from a 2-node leaf, results in one of four
cases. Case 2.1, deletion of an element from a 2-node that has a
3-node sibling, is resolved by rotating either the inorder predecessor
or the inorder successor of the parent, depending upon whether
the 3-node is a left child or a right child, around the parent. Case
2.2, deletion of an element from a 2-node when there is a 3-node
leaf elsewhere in the tree, is resolved by rotating an element out
of that 3-node and propagating that rotation until a sibling of the
node being deleted becomes a 3-node; then this case becomes case
2.1. Case 2.3, deletion of a 2-node where there is a 3-node internal
node, can be resolved through rotation as well. Case 2.4, deletion
of a 2-node when there are no 3-nodes in the tree, is resolved by
reducing the height of the tree.

SRA 14.5 Nodes in a 2-4 tree are exactly like those in a 2-3 tree, except that
2-4 trees also allow 4-nodes, or nodes containing three elements
and having four children.

SRA 14.6 Insertions and deletions in a 2-4 tree are exactly like those in a
2-3 tree, except that splits occur when there are four elements,
instead of three as in a 2-3 tree.

SRA 14.7 If all of the nodes in a 2-3 tree are 2-nodes, then rotation is not
an option for rebalancing.

M14_LEWI3322_CH14_pp409-426.indd 425 20/02/13 11:36 AM

426 Chapter 14 Multi-Way Search Trees

references
Bayer, R. “Symmetric Binary B-trees: Data Structure and Maintenance

Algorithms.” Acta Informatica (1972): 290–306.

Comer, D. “The Ubiquitous B-Tree.” Computing Surveys 11(1979): 121–137.

Wedeking, H. “On the Selection of Access Paths in a Data Base System.” In
Data Base Management, edited by J. W. Klimbie and K. L. Koffeman,
pp. 385–397. Amsterdam: North-Holland, 1974.

M14_LEWI3322_CH14_pp409-426.indd 426 20/02/13 11:36 AM

1515

427

C h a p t e r
O b j e C t i v e s
■ Define undirected graphs.

■ Define directed graphs.

■ Define weighted graphs or
networks.

■ Explore common graph
algorithms.

Graphs

In Chapter 10, we introduced the concept of a tree, a non-

linear structure defined by the concept that each node in the

tree, other than the root node, has exactly one parent. If we

were to violate that premise and allow each node in the tree

to be connected to a variety of other nodes with no notion

of parent or child, the result would be the concept of a

graph, which we explore in this chapter. Graphs and graph

theory make up entire subdisciplines of both mathematics

and computer science. In this chapter, we introduce the ba-

sic concepts of graphs and their implementation.

M15_LEWI3322_CH15_pp427-454.indd 427 20/02/13 11:37 AM

428 Chapter 15 Graphs

15.1 Undirected Graphs

Like trees, a graph is made up of nodes and the connections between those nodes.
In graph terminology, we refer to the nodes as vertices and to the connections
among them as edges. Vertices are typically identified by a name or a label. For
example, we might label vertices A, B, C, and D. Edges are referred to by pairing
the vertices that they connect. For example, we might have an edge (A, B), which
means there is an edge from vertex A to vertex B.

An undirected graph is a graph where the pairings that represent the edges are
unordered. Thus, listing an edge as (A, B) means that there is a connection be-

tween A and B that can be traversed in either direction. In an undi-
rected graph, listing an edge as (A, B) means exactly the same thing
as listing the edge as (B, A). Figure 15.1 illustrates the following un-
directed graph:

Vertices: A, B, C, D

Edges: (A, B), (A, C), (B, C), (B, D), (C, D)

Two vertices in a graph are adjacent if there is an edge connecting
them. For example, in the graph of Figure 15.1, vertices A and B are
adjacent, and vertices A and D are not. Adjacent vertices are some-
times referred to as neighbors. An edge of a graph that connects a
vertex to itself is called a self-loop or a sling and is represented by
listing the vertex twice. For example, listing an edge (A, A) would
mean that there is a sling connecting A to itself.

An undirected graph is considered complete if it has the maxi-
mum number of edges connecting vertices. For the first vertex, it
 requires (n–1) edges to connect it to the other vertices. For the sec-

ond vertex, it requires only (n–2) edges because it is already connected to the first
vertex. For the third vertex, it requires (n–3) edges. This sequence continues until
the final vertex requires no additional edges because all the other vertices have
already been connected to it. Remember from Chapter 2 that the summation from
1 to n is

a
n

1
i = n(n + 1)/2

Thus, in this case, because we are summing only from 1 to (n–1), the resulting
summation is

a
n- 1

1
i = n(n - 1)/2

A B

D C

FiGUre 15.1 An
example of an

undirected graph

KeY CONCept
An undirected graph is a graph where
the pairings that represent the edges
are unordered.

KeY CONCept
Two vertices in a graph are adjacent
if there is an edge connecting them.

KeY CONCept
An undirected graph is considered
complete if it has the maximum num-
ber of edges connecting vertices.

M15_LEWI3322_CH15_pp427-454.indd 428 20/02/13 11:37 AM

 15.2 Directed Graphs 429

This means that for any undirected graph with n vertices, it would require
n(n–1)/2 edges to make the graph complete. This, of course, assumes that none of
those edges is a sling.

A path is a sequence of edges that connects two vertices in a graph.
For example, in our graph from Figure 15.1, A, B, D is a path from A
to D. Notice that each sequential pair, (A, B) and then (B, D), is an
edge. A path in an undirected graph is bi-directional. For example, A,
B, D is the path from A to D, but because the edges are undirected, the
inverse, D, B, A, is also the path from D to A. The length of a path is
the number of edges in the path (or the number of vertices – 1). So for
our previous example, the path length is 2. Notice that this definition
of path length is identical to the definition that we used in discussing
trees. In fact, trees are a special case of graphs.

An undirected graph is considered connected if for any two verti-
ces in the graph, there is a path between them. Our graph from Figure 15.1 is con-
nected. The same graph with a minor modification is not connected, as illustrated
in Figure 15.2.

Vertices: A, B, C, D

Edges: (A, B), (A, C), (B, C)

A cycle is a path in which the first and last vertices are the same,
and none of the edges is repeated. In Figure 15.2, we would say that
the path A, B, C, A is a cycle. A graph that has no cycles is called acyclic. Earlier
we mentioned the relationship between graphs and trees. Now that we have intro-
duced these definitions, we can formalize that relationship. An undirected tree is a
connected, acyclic, undirected graph with one element designated as the root.

15.2 Directed Graphs

A directed graph, sometimes referred to as a digraph, is a graph where the edges
are ordered pairs of vertices. This means that the edges (A, B) and (B, A) are sepa-
rate, directional edges in a directed graph. In our previous example, we had the
following description for an undirected graph:

Vertices: A, B, C, D

Edges: (A, B), (A, C), (B, C), (B, D), (C, D)

Figure 15.3 shows what happens if we interpret this earlier
 description as a directed graph. We represent each of the edges now
with the direction of traversal specified by the ordering of the vertices.

A B

D C

FiGUre 15.2 An
example of an

undirected graph
that is not
connected

KeY CONCept
A path is a sequence of edges that
connects two vertices in a graph.

KeY CONCept
A cycle is a path in which the first
and last vertices are the same, and
none of the edges is repeated.

KeY CONCept
An undirected tree is a connected,
acyclic, undirected graph with one el-
ement designated as the root.

KeY CONCept
A directed graph, sometimes referred
as a digraph, is a graph where the
edges are ordered pairs of vertices.

M15_LEWI3322_CH15_pp427-454.indd 429 20/02/13 11:37 AM

430 Chapter 15 Graphs

For example, the edge (A, B) allows traversal from A to B but not traversal in the
other direction.

Our previous definitions change slightly for directed graphs. For
example, a path in a directed graph is a sequence of directed edges
that connects two vertices in a graph. In our undirected graph, we
listed the path A, B, D as the path from A to D, and that is still true
in our directed interpretation of the graph description. However,

paths in a directed graph are not bi-directional, so the inverse is no longer true:
D, B, A is not a valid path from D to A, unless we add directional edges (D, B)
and (B, A).

Our definition for a connected directed graph sounds the same as it did for
undirected graphs. A directed graph is connected if, for any two vertices in the
graph, there is a path between them. However, keep in mind that our definition of
a path is different. Look at the two graphs shown in Figure 15.4. The first one is
connected. The second one is not connected, because there is no path from any
other vertex to vertex 1.

If a directed graph has no cycles, it is possible to arrange the vertices such that
vertex A precedes vertex B if an edge exists from A to B. The order of vertices re-
sulting from this arrangement is called topological order and is very useful for
examples such as course prerequisites.

As we discussed earlier, trees are graphs. In fact, most of our previous much
work with trees actually focused on directed trees. A directed tree is a directed
graph that has an element designated as the root and has the following properties:

■ There are no connections from other vertices to the root.

■ Every non-root element has exactly one connection to it.

■ There is a path from the root to every other vertex.

A B

C D

FiGUre 15.3 An
example of a

directed graph

KeY CONCept
A path in a directed graph is a se-
quence of directed edges that con-
nects two vertices in the graph.

3

4

2

5

connected

1

6

3

4

2

5

unconnected

1

6

FiGUre 15.4 Examples of a connected directed graph and an unconnected
directed graph

M15_LEWI3322_CH15_pp427-454.indd 430 20/02/13 11:37 AM

 15.3 Networks 431

15.3 Networks

A network, or weighted graph, is a graph with weights or costs associated with each
edge. Figure 15.5 shows an undirected network of the connections and the airfares
between cities. This weighted graph, or network, could then be used to determine
the cheapest path from one city to another. The weight of a path in a
weighted graph is the sum of the weights of the edges in the path.

Networks may be either undirected or directed, depending on
the need. Take our airfare example from Figure 15.5. What if the
airfare to fly from New York to Boston is one price, but the airfare
to fly from Boston to New York is a different price? This would be
an excellent application of a directed network, as illustrated in Figure 15.6.

For networks, we represent each edge with a triple that includes the starting
vertex, the ending vertex, and the weight. Keep in mind that for undirected networks,

Boston

New York

Roanoke

Philadelphia

120

225

320

219

FiGUre 15.5 An undirected network

Boston

New York

Roanoke

Philadelphia

120140

225

205

199
219

320240

FiGUre 15.6 A directed network

KeY CONCept
A network, or weighted graph, is a
graph with weights or costs associ-
ated with each edge.

M15_LEWI3322_CH15_pp427-454.indd 431 20/02/13 11:37 AM

432 Chapter 15 Graphs

the starting and ending vertices could be swapped with no impact. However, for
directed networks, a triple must be included for every directional connection. For
example, the network of Figure 15.6 would be represented as follows:

Vertices: Boston, New York, Philadelphia, Roanoke

Edges: (Boston, New York, 120), (Boston, Philadelphia, 199),

 (New York, Boston, 140), (New York, Philadelphia, 225),

 (New York, Roanoke, 320), (Philadelphia, Boston, 219),

 (Philadelphia, New York, 205), (Roanoke, New York, 240)

15.4 Common Graph algorithms

There are a number of common graph algorithms that may apply to undirected
graphs, directed graphs, and/or networks. These include various traversal algo-
rithms similar to what we explored with trees, as well as algorithms for finding
the shortest path, algorithms for finding the least costly path in a network, and
algorithms to answer simple questions about the graph, such as whether the
graph is connected and what the shortest path is between two vertices.

traversals
In our discussion of trees in Chapter 10, we defined four types of traversals and
then implemented them as iterators: preorder traversal, inorder traversal, post-
order traversal, and level-order traversal. Because we know that a tree is a graph,
we know that for certain types of graphs, these traversals would still apply.
Generally, however, we divide graph traversal into two categories: a breadth-first
traversal, which behaves very much like the level-order traversal of a tree, and a
depth-first traversal, which behaves very much like the preorder traversal of a
tree. One difference here is that there is not a root node. Thus our traversal may
start at any vertex in the graph.

We can construct a breadth-first traversal for a graph using a queue and an
unordered list. We will use the queue (traversal-queue) to manage the traversal
and the unordered list (result-list) to build our result. The first step is to enqueue
the starting vertex into the traversal-queue and mark the starting vertex as visited.
We then begin a loop that will continue until the traversal-queue is empty. Within
this loop, we will take the first vertex off the traversal-queue and add that vertex
to the rear of the result-list. Next, we will enqueue each of the vertices that are
adjacent to the current one, and have not already been marked as visited, into the
traversal-queue, mark each of them as visited, and then repeat the loop. We simply

M15_LEWI3322_CH15_pp427-454.indd 432 20/02/13 11:37 AM

 15.4 Common Graph Algorithms 433

repeat this process for each of the visited vertices until the traversal-queue is
empty, meaning we can no longer reach any new vertices. The result-list now con-
tains the vertices in breadth-first order from the given starting point. Very similar
logic can be used to construct a breadth-first iterator. The iteratorBFS shows an
iterative algorithm for this traversal for an array implementation of a graph. The
determination of vertices that are adjacent to the current one depends on the im-
plementation we choose to represent edges in a graph. This particular method as-
sumes an implementation using an adjacency matrix. We will discuss this further
in Section 15.5.

A depth-first traversal for a graph can be constructed using virtu-
ally the same logic by simply replacing the traversal-queue with a
traversal-stack. One other difference in the algorithm, however, is
that we do not want to mark a vertex as visited until it has been
added to the result-list. The iteratorDFS method illustrates this al-
gorithm for an array implementation of a graph.

KeY CONCept
The only difference between a
 depth-first traversal of a graph and a
breadth-first traversal is that the
depth-first traversal uses a stack
 instead of a queue to manage the
 traversal.

Illustration of depth-first
and breadth-first
traversals of a graph

VideoNote

 /**
 * Returns an iterator that performs a breadth first
 * traversal starting at the given index.
 *
 * @param startIndex the index from which to begin the traversal
 * @return an iterator that performs a breadth first traversal
 */
 public Iterator<T> iteratorBFS(int startIndex)
 {
 Integer x;
 QueueADT<Integer> traversalQueue = new LinkedQueue<Integer>();
 UnorderedListADT<T> resultList = new ArrayUnorderedList<T>();

 if (!indexIsValid(startIndex))
 return resultList.iterator();

 boolean[] visited = new boolean[numVertices];
 for (int i = 0; i < numVertices; i++)
 visited[i] = false;

 traversalQueue.enqueue(new Integer(startIndex));
 visited[startIndex] = true;

 while (!traversalQueue.isEmpty())
 {
 x = traversalQueue.dequeue();
 resultList.addToRear(vertices[x.intValue()]);

M15_LEWI3322_CH15_pp427-454.indd 433 20/02/13 11:37 AM

434 Chapter 15 Graphs

 // Find all vertices adjacent to x that have not been visited
 // and queue them up
 for (int i = 0; i < numVertices; i++)
 {
 if (adjMatrix[x.intValue()][i] && !visited[i])
 {
 traversalQueue.enqueue(new Integer(i));
 visited[i] = true;
 }
 }
 }
 return new GraphIterator(resultList.iterator());
 }

 /**
 * Returns an iterator that performs a depth first traversal
 * starting at the given index.
 *
 * @param startIndex the index from which to begin the traversal
 * @return an iterator that performs a depth first traversal
 */
 public Iterator<T> iteratorDFS(int startIndex)
 {
 Integer x;
 boolean found;
 StackADT<Integer> traversalStack = new LinkedStack<Integer>();
 UnorderedListADT<T> resultList = new ArrayUnorderedList<T>();
 boolean[] visited = new boolean[numVertices];

 if (!indexIsValid(startIndex))
 return resultList.iterator();

 for (int i = 0; i < numVertices; i++)
 visited[i] = false;

 traversalStack.push(new Integer(startIndex));
 resultList.addToRear(vertices[startIndex]);
 visited[startIndex] = true;

 while (!traversalStack.isEmpty())
 {
 x = traversalStack.peek();
 found = false;

 // Find a vertex adjacent to x that has not been visited
 // and push it on the stack

M15_LEWI3322_CH15_pp427-454.indd 434 20/02/13 11:37 AM

 15.4 Common Graph Algorithms 435

 for (int i = 0; (i < numVertices) && !found; i++)
 {
 if (adjMatrix[x.intValue()][i] && !visited[i])
 {
 traversalStack.push(new Integer(i));
 resultList.addToRear(vertices[i]);
 visited[i] = true;
 found = true;
 }
 }
 if (!found && !traversalStack.isEmpty())
 traversalStack.pop();
 }
 return new GraphIterator(resultList.iterator());

 }

Let’s look at an example. Figure 15.7 shows a sample undirected graph where
each vertex is labeled with an integer. For a breadth-first traversal starting from
vertex 9, we do the following:

 1. Add 9 to the traversal-queue and mark it as visited.
 2. Dequeue 9 from the traversal-queue.
 3. Add 9 to the result-list.
 4. Add 6, 7, and 8 to the traversal-queue, marking each of them as visited.
 5. Dequeue 6 from the traversal-queue.
 6. Add 6 to the result-list.

4

1

3

6

2

5

7

9

8

FiGUre 15.7 A traversal example

M15_LEWI3322_CH15_pp427-454.indd 435 20/02/13 11:37 AM

436 Chapter 15 Graphs

 7. Add 3 and 4 to the traversal-queue, marking them both as visited.
 8. Dequeue 7 from the traversal-queue and add it to the result-list.
 9. Add 5 to the traversal-queue, marking it as visited.
10. Dequeue 8 from the traversal-queue and add it to the result-list. (We do

not add any new vertices to the traversal-queue because there are no
neighbors of 8 that have not already been visited.)

11. Dequeue 3 from the traversal-queue and add it to the result-list.
12. Add 1 to the traversal-queue, marking it as visited.
13. Dequeue 4 from the traversal-queue and add it to the result-list.
14. Add 2 to the traversal-queue, marking it as visited.
15. Dequeue 5 from the traversal-queue and add it to the result-list. (Because

there are no unvisited neighbors, we continue without adding anything to
the traversal-queue.)

16. Dequeue 1 from the traversal-queue and add it to the result-list. (Because
there are no unvisited neighbors, we continue without adding anything to
the traversal-queue.)

17. Dequeue 2 from the traversal-queue and add it to the result-list.

The result-list now contains the breadth-first order starting at vertex 9: 9, 6, 7,
8, 3, 4, 5, 1, and 2. Try tracing a depth-first search on the same graph from Figure
15.7.

Of course, both of these algorithms could be expressed recursively. For exam-
ple, the following algorithm recursively defines a depth-first search:

DepthFirstSearch(node x)
{
 visit(x)
 result-list.addToRear(x)
 for each node y adjacent to x
 if y not visited
 DepthFirstSearch(y)
}

testing for Connectivity
In our earlier discussion, we defined a graph as connected if, for any
two vertices in the graph, there is a path between them. This defini-
tion holds true for both undirected and directed graphs. Given the
algorithm we just discussed, there is a simple solution to the question
of whether a graph is connected: The graph is connected if and only
if, for each vertex v in a graph containing n vertices, the size of the
result of a breadth-first traversal starting at v is n.

Let’s look at the examples of undirected graphs in Figure 15.8. We stated ear-
lier that the graph on the left is connected and the graph on the right is not. Let’s

KeY CONCept
A graph is connected if and only if
the number of vertices in the
breadth-first traversal is the same as
the number of vertices in the graph,
regardless of the starting vertex.

M15_LEWI3322_CH15_pp427-454.indd 436 20/02/13 11:37 AM

 15.4 Common Graph Algorithms 437

confirm that by following our algorithm. Figure 15.9 shows the breadth-first tra-
versals for the graph on the left using each of the vertices as a starting point. As
you can see, all of the traversals yield n = 4 vertices, so the graph is connected.
Figure 15.10 shows the breadth-first traversals for the graph on the right using
each of the vertices as a starting point. Not only does none of the traversals con-
tain n = 4 vertices, but the one starting at vertex D has only the one vertex. Thus
the graph is not connected.

A B

D C

A B

D C

FiGUre 15.8 Connectivity in an undirected graph

Breadth-First
Traversal

A A, B, C, D

B B, A, D, C

C C, B, A, D

D D, B, A, C

Starting
Vertex

FiGUre 15.9 Breadth-first traversal for a connected undirected graph

Breadth-First
Traversal

A A, B, C

B B, A, C

C C, B, A

D D

Starting
Vertex

FiGUre 15.10 Breadth-first traversal for an unconnected undirected graph

M15_LEWI3322_CH15_pp427-454.indd 437 20/02/13 11:37 AM

438 Chapter 15 Graphs

Minimum spanning trees
A spanning tree is a tree that includes all of the vertices of a graph
and some, but possibly not all, of the edges. Because trees are also
graphs, for some graphs the graph itself will be a spanning tree, and
thus the only spanning tree for that graph will include all of the
edges. Figure 15.11 shows a spanning tree for our graph from
Figure 15.7.

One interesting application of spanning trees is to find a mini-
mum spanning tree for a weighted graph. A minimum spanning tree
is a spanning tree where the sum of the weights of the edges is less
than or equal to the sum of the weights for any other spanning tree
for the same graph.

The algorithm for developing a minimum spanning tree was de-
veloped by Prim (1957) and is quite elegant. As we discussed earlier, each edge is
represented by a triple that includes the starting vertex, the ending vertex, and the
weight. We then pick an arbitrary starting vertex (it does not matter which one)
and add it to our minimum spanning tree (MST). Next we add all of the edges
that include our starting vertex to a minheap ordered by weight. Keep in mind
that if we are dealing with a directed network, we will add only edges that start at
the given vertex.

Next we remove the minimum edge from the minheap and add the edge and
the new vertex to our MST. Next we add to our minheap all of the edges that in-
clude this new vertex and whose other vertex is not already in our MST. We con-
tinue this process until either our MST includes all of the vertices in our original
graph or the minheap is empty. Figure 15.12 shows a weighted network and its
associated minimum spanning tree. The getMST method illustrates this algorithm.

KeY CONCept
A spanning tree is a tree that
includes all of the vertices of a
graph and some, but possibly not
all, of the edges.

4

1

3

6

2

5

7

9

8

FiGUre 15.11 A spanning tree

KeY CONCept
A minimum spanning tree is a span-
ning tree where the sum of the
weights of the edges is less than or
equal to the sum of the weights for
any other spanning tree for the same
graph.

M15_LEWI3322_CH15_pp427-454.indd 438 20/02/13 11:37 AM

 15.4 Common Graph Algorithms 439

4

1

3

2

3

12

8
6

11

1

5

4

1

3

2

3 8
6

1

Network Minimum Spanning Tree

5

FiGUre 15.12 A network and its minimum spanning tree

 /**
 * Returns a minimum spanning tree of the network.
 *
 * @return a minimum spanning tree of the network
 */
 public Network mstNetwork()
 {
 int x, y;
 int index;
 double weight;
 int[] edge = new int[2];
 HeapADT<Double> minHeap = new LinkedHeap<Double>();
 Network<T> resultGraph = new Network<T>();

 if (isEmpty() || !isConnected())
 return resultGraph;

 resultGraph.adjMatrix = new double[numVertices][numVertices];
 for (int i = 0; i < numVertices; i++)
 for (int j = 0; j < numVertices; j++)
 resultGraph.adjMatrix[i][j] = Double.POSITIVE_INFINITY;
 resultGraph.vertices = (T[])(new Object[numVertices]);

 boolean[] visited = new boolean[numVertices];
 for (int i = 0; i < numVertices; i++)
 visited[i] = false;

 edge[0] = 0;
 resultGraph.vertices[0] = this.vertices[0];

M15_LEWI3322_CH15_pp427-454.indd 439 20/02/13 11:37 AM

440 Chapter 15 Graphs

 resultGraph.numVertices++;
 visited[0] = true;

 // Add all edges, which are adjacent to the starting vertex,
 // to the heap
 for (int i = 0; i < numVertices; i++)
 minHeap.addElement(new Double(adjMatrix[0][i]));

 while ((resultGraph.size() < this.size()) && !minHeap.isEmpty())
 {
 // Get the edge with the smallest weight that has exactly
 // one vertex already in the resultGraph
 do
 {
 weight = (minHeap.removeMin()).doubleValue();
 edge = getEdgeWithWeightOf(weight, visited);
 } while (!indexIsValid(edge[0]) || !indexIsValid(edge[1]));

 x = edge[0];
 y = edge[1];
 if (!visited[x])
 index = x;
 else
 index = y;

 // Add the new edge and vertex to the resultGraph
 resultGraph.vertices[index] = this.vertices[index];
 visited[index] = true;
 resultGraph.numVertices++;

 resultGraph.adjMatrix[x][y] = this.adjMatrix[x][y];
 resultGraph.adjMatrix[y][x] = this.adjMatrix[y][x];

 // Add all edges, that are adjacent to the newly added vertex,
 // to the heap
 for (int i = 0; i < numVertices; i++)
 {
 if (!visited[i] && (this.adjMatrix[i][index] <
 Double.POSITIVE_INFINITY))
 {
 edge[0] = index;
 edge[1] = i;
 minHeap.addElement(new Double(adjMatrix[index][i]));
 }
 }
 }
 return resultGraph;
 }

M15_LEWI3322_CH15_pp427-454.indd 440 20/02/13 11:37 AM

 15.5 Strategies for Implementing Graphs 441

Determining the shortest path
There are two possibilities for determining the “shortest” path in a graph. The
first, and perhaps simplest, possibility is to determine the literal shortest path be-
tween a starting vertex and a target vertex–-that is, the least number of edges be-
tween the two vertices. This turns out to be a simple variation of our earlier
breadth-first traversal algorithm.

To convert this algorithm to find the shortest path, we simply store two addi-
tional pieces of information for each vertex during our traversal: the path length
from the starting vertex to this vertex, and the vertex that is the predecessor of
this vertex in that path. Then we modify our loop to terminate when we reach our
target vertex. The path length for the shortest path is simply the path length to the
predecessor of the target + 1, and if we wish to output the vertices along the
shortest path, we can simply backtrack along the chain of predecessors.

The second possibility for determining the shortest path is to look for the cheap-
est path in a weighted graph. Dijkstra (1959) developed an algorithm for this pos-
sibility that is similar to our previous algorithm. However, instead of using a queue
of vertices that causes us to progress through the graph in the order in which we
encounter vertices, we use a minheap or a priority queue storing vertex and weight
pairs based on total weight (the sum of the weights from the starting vertex to this
vertex) so that we always traverse through the graph following the cheapest path
first. For each vertex, we must store the label of the vertex, the weight of the cheap-
est path (thus far) to that vertex from our starting point, and the predecessor of that
vertex along that path. On the minheap, we will store vertex and weight pairs for
each possible path that we have encountered but not yet traversed. As we remove a
(vertex, weight) pair from the minheap, if we encounter a vertex with a weight less
than the one already stored with the vertex, we update the cost.

15.5 strategies for implementing Graphs

Let us begin our discussion of implementation strategies by examining what op-
erations will need to be available for a graph. Of course, we will need to be able
to add vertices and edges to the graph and to remove them from it. There will
need to be traversals (perhaps breadth-first and depth-first) beginning with a par-
ticular vertex, and these might be implemented as iterators, as we did for binary
trees. Other operations like size, isEmpty, toString, and find will be useful as
well. In addition to these, operations to determine the shortest path from a par-
ticular vertex to a particular target vertex, to determine the adjacency of two ver-
tices, to construct a minimum spanning tree, and to test for connectivity will all
probably need to be implemented.

M15_LEWI3322_CH15_pp427-454.indd 441 20/02/13 11:37 AM

442 Chapter 15 Graphs

Whatever storage mechanism we use for vertices must allow us to mark verti-
ces as visited during traversals and other algorithms. This can be accomplished by
simply adding a Boolean variable to the class representing the vertices.

adjacency Lists
Because trees are graphs, perhaps the best introduction to how we might imple-
ment graphs is to consider the discussions and examples that we have already
seen concerning the implementation of trees. One might immediately think of us-
ing a set of nodes where each node contains an element and n–1 links to other
nodes. When we use this strategy with trees, the number of connections from any
given node is limited by the order of the tree (e.g., a maximum of two directed
edges starting at any particular node in a binary tree). Because of this limitation,
we can specify, for example, that a binary node has a left and a right child pointer.
Even if the binary node is a leaf, the pointer still exists. It is simply set to null.

In the case of a graph node, because each node could have up to n–1 edges con-
necting it to other nodes, it would be better to use a dynamic structure such as a
linked list to store the edges within each node. This list is called an adjacency list.
In the case of a network or a weighted graph, each edge would be stored as a tri-
ple including the weight. In the case of an undirected graph, an edge (A, B) would
appear in the adjacency list of both vertex A and vertex B.

adjacency Matrices
Keep in mind that we must somehow efficiently (in terms of both space and ac-
cess time) store both vertices and edges. Because vertices are just elements, we can
use any of our collections to store the vertices. In fact, we often talk about a “set
of vertices,” the term set implying an implementation strategy. However, another
solution for storing edges is motivated by our use of array implementations of
trees, but instead of using a one-dimensional array, we will use a two-dimensional
array that we call an adjacency matrix. In an adjacency matrix, each position of
the two-dimensional array represents an intersection between two vertices in the
graph. Each of these intersections is represented by a Boolean value indicating
whether or not the two vertices are connected. Figure 15.13 shows the undirected
graph that we began with at the beginning of this chapter. Figure 15.14 shows the
adjacency matrix for this graph.

For any position (row, column) in the matrix, that position is true if and only if
the edge (vrow, vcolumn) is in the graph. Because edges in an undirected graph are
bidirectional, if (A, B) is an edge in the graph, then (B, A) is also in the graph.

Notice that this matrix is symmetrical–-that is, each side of the diagonal is a
mirror image of the other. This is because we are representing an undirected
graph. For undirected graphs, it may not be necessary to represent the entire matrix;
one side or the other of the diagonal may be enough.

M15_LEWI3322_CH15_pp427-454.indd 442 20/02/13 11:37 AM

 15.6 Implementing Undirected Graphs with an Adjacency Matrix 443

However, for directed graphs, because all of the edges are directional, the result
can be quite different. Figure 15.15 shows a directed graph, and Figure 15.16
shows the adjacency matrix for this graph.

Adjacency matrices may also be used with networks or weighted graphs by sim-
ply storing an object at each position of the matrix to represent the weight of the
edge. Positions in the matrix where edges do not exist would simply be set to null.

15.6 implementing Undirected Graphs with
an adjacency Matrix

Like the other collections we have discussed, the first step in implementing a
graph is to determine its interface. Listing 15.1 illustrates the GraphADT interface.
Listing 15.2 illustrates the NetworkADT interface that extends the GraphADT inter-
face. Note that our interfaces include methods to add and remove vertices, methods
to add and remove edges, iterators for both breadth-first and depth-first traversals,
methods to determine the shortest path between two vertices and to determine
whether the graph is connected, and our usual collection of methods to determine
the size of the collection, to determine whether it is empty, and to return a string
representation of it.

A B

D C

FiGUre 15.13 An
undirected graph

A B C D

A F T T F

B T F T T

C T T F F

D F T F F

FiGUre 15.14 An adjacency matrix for an undirected graph

A B

D C

FiGUre 15.15 A
directed graph

A B C D

A F T T F

B F F T T

C F F F F

D F F F F

FiGUre 15.16 The adjacency matrix for the directed graph shown in
Figure 15.15

M15_LEWI3322_CH15_pp427-454.indd 443 20/02/13 11:37 AM

444 Chapter 15 Graphs

package jsjf;

import java.util.Iterator;

/**
 * GraphADT defines the interface to a graph data structure.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public interface GraphADT<T>
{
 /**
 * Adds a vertex to this graph, associating object with vertex.
 *
 * @param vertex the vertex to be added to this graph
 */
 public void addVertex(T vertex);

 /**
 * Removes a single vertex with the given value from this graph.
 *
 * @param vertex the vertex to be removed from this graph
 */
 public void removeVertex(T vertex);

 /**
 * Inserts an edge between two vertices of this graph.
 *
 * @param vertex1 the first vertex
 * @param vertex2 the second vertex
 */
 public void addEdge(T vertex1, T vertex2);

 /**
 * Removes an edge between two vertices of this graph.
 *
 * @param vertex1 the first vertex
 * @param vertex2 the second vertex
 */
 public void removeEdge(T vertex1, T vertex2);

L i s t i N G 1 5 . 1

M15_LEWI3322_CH15_pp427-454.indd 444 20/02/13 11:37 AM

 15.6 Implementing Undirected Graphs with an Adjacency Matrix 445

 /**
 * Returns a breadth first iterator starting with the given vertex.
 *
 * @param startVertex the starting vertex
 * @return a breadth first iterator beginning at the given vertex
 */
 public Iterator iteratorBFS(T startVertex);

 /**
 * Returns a depth first iterator starting with the given vertex.
 *
 * @param startVertex the starting vertex
 * @return a depth first iterator starting at the given vertex
 */
 public Iterator iteratorDFS(T startVertex);

 /**
 * Returns an iterator that contains the shortest path between
 * the two vertices.
 *
 * @param startVertex the starting vertex
 * @param targetVertex the ending vertex
 * @return an iterator that contains the shortest path
 * between the two vertices
 */
 public Iterator iteratorShortestPath(T startVertex, T targetVertex);

 /**
 * Returns true if this graph is empty, false otherwise.
 *
 * @return true if this graph is empty
 */
 public boolean isEmpty();

 /**
 * Returns true if this graph is connected, false otherwise.
 *
 * @return true if this graph is connected
 */
 public boolean isConnected();

 /**
 * Returns the number of vertices in this graph.
 *
 * @return the integer number of vertices in this graph
 */
 public int size();

L i s t i N G 1 5 . 1 continued

M15_LEWI3322_CH15_pp427-454.indd 445 20/02/13 11:37 AM

446 Chapter 15 Graphs

 /**
 * Returns a string representation of the adjacency matrix.
 *
 * @return a string representation of the adjacency matrix
 */
 public String toString();
}

L i s t i N G 1 5 . 1 continued

package jsjf;

import java.util.Iterator;

/**
 * NetworkADT defines the interface to a network.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public interface NetworkADT<T> extends GraphADT<T>
{

 /**
 * Inserts an edge between two vertices of this graph.
 *
 * @param vertex1 the first vertex
 * @param vertex2 the second vertex
 * @param weight the weight
 */
 public void addEdge(T vertex1, T vertex2, double weight);

 /**
 * Returns the weight of the shortest path in this network.
 *
 * @param vertex1 the first vertex
 * @param vertex2 the second vertex
 * @return the weight of the shortest path in this network
 */
 public double shortestPathWeight(T vertex1, T vertex2);
}

L i s t i N G 1 5 . 2

M15_LEWI3322_CH15_pp427-454.indd 446 20/02/13 11:37 AM

 15.6 Implementing Undirected Graphs with an Adjacency Matrix 447

package jsjf;

import jsjf.exceptions.*;
import java.util.*;

/**
 * Graph represents an adjacency matrix implementation of a graph.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class Graph<T> implements GraphADT<T>
{
 protected final int DEFAULT_CAPACITY = 5;
 protected int numVertices; // number of vertices in the graph
 protected boolean[][] adjMatrix; // adjacency matrix
 protected T[] vertices; // values of vertices
 protected int modCount;

Of course, this interface could be implemented a variety of ways, but we will
focus our discussion on an adjacency matrix implementation. The other imple-
mentations of undirected graphs and networks, as well as the implementations of
directed graphs and networks, are left as programming projects. The header and
instance data for our implementation are presented to provide context. Note that
the adjacency matrix is represented by a two-dimensional Boolean array.

Our constructor simply initializes the number of vertices to zero, constructs the
adjacency matrix, and sets up an array of generic objects (T[]) to represent the
vertices.

 /**
 * Creates an empty graph.
 */
 public Graph()
 {
 numVertices = 0;
 this.adjMatrix = new boolean[DEFAULT_CAPACITY][DEFAULT_CAPACITY];
 this.vertices = (T[])(new Object[DEFAULT_CAPACITY]);
 }

M15_LEWI3322_CH15_pp427-454.indd 447 20/02/13 11:37 AM

448 Chapter 15 Graphs

the addEdge Method
Once we have established our list of vertices and our adjacency matrix, adding an
edge is simply a matter of setting the appropriate locations in the adjacency ma-
trix to true. Our addEdge method uses the getIndex method to locate the proper
indices and calls a different version of the addEdge method to make the assign-
ments if the indices are valid.

 /**
 * Inserts an edge between two vertices of the graph.
 *
 * @param vertex1 the first vertex
 * @param vertex2 the second vertex
 */
 public void addEdge(T vertex1, T vertex2)
 {
 addEdge(getIndex(vertex1), getIndex(vertex2));
 }

 /**
 * Inserts an edge between two vertices of the graph.
 *
 * @param index1 the first index
 * @param index2 the second index
 */
 public void addEdge(int index1, int index2)
 {
 if (indexIsValid(index1) && indexIsValid(index2))
 {
 adjMatrix[index1][index2] = true;
 adjMatrix[index2][index1] = true;
 modCount++;
 }
 }

the addVertex Method
Adding a vertex to the graph involves adding the vertex in the next available posi-
tion in the array and setting all of the appropriate locations in the adjacency ma-
trix to false.

M15_LEWI3322_CH15_pp427-454.indd 448 20/02/13 11:37 AM

 15.6 Implementing Undirected Graphs with an Adjacency Matrix 449

the expandCapacity Method
The expandCapacity method for our adjacency matrix implementation of a
graph is more interesting than the similar method in other array implementations.
It is no longer just a case of expanding one array and copying the contents. Keep
in mind that for our graph, we must not only expand the array of vertices and
copy the existing vertices into the new array; we must also expand the capacity of
the adjacency list and copy the old contents into the new list.

 /**
 * Adds a vertex to the graph, expanding the capacity of the graph
 * if necessary. It also associates an object with the vertex.
 *
 * @param vertex the vertex to add to the graph
 */
 public void addVertex(T vertex)
 {
 if ((numVertices + 1) == adjMatrix.length)
 expandCapacity();

 vertices[numVertices] = vertex;
 for (int i = 0; i < numVertices; i++)
 {
 adjMatrix[numVertices][i] = false;
 adjMatrix[i][numVertices] = false;
 }
 numVertices++;
 modCount++;
 }

 /**
 * Creates new arrays to store the contents of the graph with
 * twice the capacity.
 */
 protected void expandCapacity()
 {
 T[] largerVertices = (T[])(new Object[vertices.length*2]);
 boolean[][] largerAdjMatrix =
 new boolean[vertices.length*2][vertices.length*2];

 for (int i = 0; i < numVertices; i++)
 {
 for (int j = 0; j < numVertices; j++)
 {

M15_LEWI3322_CH15_pp427-454.indd 449 20/02/13 11:37 AM

450 Chapter 15 Graphs

Other Methods
The remaining methods for our graph implementation are left as programming
projects, as is the implementation of a network.

 largerAdjMatrix[i][j] = adjMatrix[i][j];
 }
 largerVertices[i] = vertices[i];
 }

 vertices = largerVertices;
 adjMatrix = largerAdjMatrix;
 }

■ An undirected graph is a graph where the pairings that represent the edges
are unordered.

■ Two vertices in a graph are adjacent if there is an edge connecting them.

■ An undirected graph is considered complete if it has the maximum number
of edges connecting vertices.

■ A path is a sequence of edges that connects two vertices in a graph.

■ A cycle is a path in which the first and last vertices are the same and none of
the edges is repeated.

■ An undirected tree is a connected, acyclic, undirected graph with one element
designated as the root.

■ A directed graph, sometimes referred as a digraph, is a graph where the edges
are ordered pairs of vertices.

■ A path in a directed graph is a sequence of directed edges that connects two
vertices in the graph.

■ A network, or a weighted graph, is a graph with weights or costs associated
with each edge.

■ The only difference between a depth-first traversal of a graph and a breadth-
first traversal is that the depth-first traversal uses a stack instead of a queue
to manage the traversal.

Summary of Key Concepts

M15_LEWI3322_CH15_pp427-454.indd 450 20/02/13 11:37 AM

 Summary of Terms 451

■ A graph is connected if and only if the number of vertices in the breadth-first
traversal is the same as the number of vertices in the graph, regardless of the
starting vertex.

■ A spanning tree is a tree that includes all of the vertices of a graph and some,
but possibly not all, of the edges.

■ A minimum spanning tree is a spanning tree where the sum of the weights of
the edges is less than or equal to the sum of the weights for any other span-
ning tree for the same graph.

summary of terms
graph A graph is made up of nodes and the connections between those
nodes.

vertices Nodes within a graph.

edges Connections between nodes in a graph.

undirected graph A graph where the pairings that represent the edges are
unordered.

adjacent Two vertices are adjacent if there is an edge connecting them.

self-loop An edge of a graph that connects a vertex to itself.

complete An undirected graph is considered complete if it has the maxi-
mum number of edges connecting vertices.

path A sequence of edges that connects two vertices in a graph.

path length The number of edges in the path (or the number of vertices – 1).

connected An undirected graph is considered connected if, for any two
vertices in the graph, there is a path between them.

cycle A path in which the first and last vertices are the same and none of
the edges is repeated.

acyclic A graph that has no cycles.

directed graph (digraph) A graph where the edges are ordered pairs of
vertices.

topological order The order of vertices for an acyclic directed graph where
A precedes B if an edge exists from A to B.

network (weighted graph) A graph with weights or costs associated with
each edge.

breadth-first traversal A traversal of a graph that behaves like a level-order
traversal of a tree.

M15_LEWI3322_CH15_pp427-454.indd 451 20/02/13 11:37 AM

452 Chapter 15 Graphs

depth-first traversal A traversal of a graph that behaves like a preorder tra-
versal of a tree.

spanning tree A tree that includes all of the vertices of a graph and some,
but possibly not all, of the edges.

minimum spanning tree A spanning tree for a network where the sum of the
weights of the edges is less than or equal to the sum of the weights for any
other spanning tree.

adjacency list For any given node in a graph, the list of edges connecting it
to other nodes. In the case of a network, each entry in the list also includes
the weight or cost of the edge.

adjacency matrix A two-dimensional array where each location in the array
represents the intersection between two vertices in the graph. In the case of
an undirected graph, each position in the array is simply a Boolean. In the
case of a weighted graph, the weight of the edge is stored in the array.

self-review Questions
SR 15.1 What is the difference between a graph and a tree?

SR 15.2 What is an undirected graph?

SR 15.3 What is a directed graph?

SR 15.4 What does it mean to say that a graph is complete?

SR 15.5 What is the maximum number of edges for an undirected graph?
What is the maximum number of edges for a directed graph?

SR 15.6 Give the definition of a path and the definition of a cycle.

SR 15.7 What is the difference between a network and a graph?

SR 15.8 What is a spanning tree? What is a minimum spanning tree?

exercises
EX 15.1 Draw the undirected graph that is represented as follows:

Vertices: 1, 2, 3, 4, 5, 6, 7
Edges: (1, 2), (1, 4), (2, 3), (2, 4), (3, 7), (4, 7),
 (4, 6), (5, 6), (5, 7), (6, 7)

EX 15.2 Is the graph from Exercise 15.1 connected? Is it complete?

EX 15.3 List all of the cycles in the graph from Exercise 15.1.

EX 15.4 Draw a spanning tree for the graph from Exercise 15.1.

M15_LEWI3322_CH15_pp427-454.indd 452 20/02/13 11:37 AM

 Programming Projects 453

EX 15.5 Using the data in Exercise 15.1, draw the resulting directed graph.

EX 15.6 Is the directed graph of Exercise 15.5 connected? Is it complete?

EX 15.7 List all of the cycles in the graph of Exercise 15.5.

EX 15.8 Draw a spanning tree for the graph of Exercise 15.5.

EX 15.9 Consider the weighted graph shown in Figure 15.10. List all of
the possible paths from vertex 2 to vertex 3, along with the total
weight of each path.

programming projects
PP 15.1 Implement an undirected graph using an adjacency list. Keep in

mind that you must store both vertices and edges. Your imple-
mentation must implement the GraphADT interface.

PP 15.2 Repeat Programming Project 15.1 for a directed graph.

PP 15.3 Complete the implementation of a graph using an adjacency
 matrix that was presented in this chapter.

PP 15.4 Extend the adjacency matrix implementation presented in this
chapter to create an implementation of a weighted graph, or
 network.

PP 15.5 Extend the adjacency matrix implementation presented in this
chapter to create a directed graph.

PP 15.6 Extend your implementation from Programming Project 15.1 to
create a weighted, undirected graph.

PP 15.7 Create a limited airline scheduling system that will allow a user to
enter city-to-city connections and their prices. Your system should
then allow a user to enter two cities and should return the shortest
path and the cheapest path between the two cities. Your system
should report if there is no connection between two cities.
Assume an undirected network.

PP 15.8 Repeat Programming Project 15.7 assuming a directed network.

PP 15.9 Create a simple graphical application that will produce a textual
representation of the shortest path and the cheapest path between
two vertices in a network.

PP 15.10 Create a network routing system that, given the point-to-point
connections in the network and the costs of utilizing each, will
produce cheapest-path connections from each point to each point
in the network and will report any disconnected locations.

M15_LEWI3322_CH15_pp427-454.indd 453 20/02/13 11:37 AM

454 Chapter 15 Graphs

answers to self-review Questions
SRA 15.1 A graph is the more general concept, without the restriction that

each node have one and only one parent except for the root,
which does not have a parent. In the case of a graph, there is no
root, and each vertex can be connected to up to n–1 other vertices.

SRA 15.2 An undirected graph is a graph where the pairings that represents
the edges are unordered.

SRA 15.3 A directed graph, sometimes referred as a digraph, is a graph
where the edges are ordered pairs of vertices.

SRA 15.4 A graph is considered complete if it has the maximum number of
edges connecting vertices.

SRA 15.5 The maximum number of edges for an undirected graph is n(n–1)/2.
For a directed graph, it is n(n–1).

SRA 15.6 A path is a sequence of edges that connects two vertices in a
graph. A cycle is a path in which the first and last vertices are the
same and none of the edges is repeated.

SRA 15.7 A network is a graph, either directed or undirected, with weights
or costs associated with each edge.

SRA 15.8 A spanning tree is a tree that includes all of the vertices of a graph
and some, but possibly not all, of the edges. A minimum spanning
tree is a spanning tree where the sum of the weights of the edges
is less than or equal to the sum of the weights for any other span-
ning tree for the same graph.

references
Collins, W. J. Data Structures: An Object-Oriented Approach. Reading,

Mass.: Addison-Wesley, 1992.

Dijkstra, E. W. “A Note on Two Problems in Connection with Graphs.”
Numerische Mathematik 1 (1959): 269–271.

Drosdek, A. Data Structures and Algorithms in Java. Pacific Grove, Cal.:
Brooks/Cole, 2001.

Prim, R. C. “Shortest Connection Networks and Some Generalizations.” Bell
System Technical Journal 36 (1957): 1389–1401.

M15_LEWI3322_CH15_pp427-454.indd 454 20/02/13 11:37 AM

UML AA

455

Appendix

Z01_LEWI3322_AppA_pp455-462.indd 455 20/02/13 11:38 AM

456 Appendix A UML

The Unified Modeling Language (UML)
Software engineering deals with the analysis, synthesis, and communication of
ideas in the development of software systems. In order to facilitate the methods
and practices necessary to accomplish these goals, software engineers have devel-
oped a wide variety of notations to capture and communicate information.
Although numerous notations are available, only a few have become popular, and

one in particular has become a de facto standard in the industry.

The Unified Modeling Language (UML) was developed in the mid-
1990s, but it is actually a synthesis of three separate and time-honored
design notations, each popular in its own right. We use UML notation
throughout this text to illustrate program designs, and this section de-
scribes the key aspects of UML diagrams. Keep in mind that UML is
language-independent. It uses generic terms and contains some features

that are not relevant to the Java programming language. We focus on aspects of UML
that are particularly appropriate for its use in this text.

UML is an object-oriented modeling language. It provides a convenient way to
represent the relationships among classes and objects in a software system. We
provide an overview of UML here, and use it throughout the text. The details of
the underlying object-oriented concepts are discussed in Appendix B.

UML Class diagrams
A UML class diagram describes the classes in the system, the static relationships
among them, the attributes and operations associated with a class, and the con-
straints on the connections among objects. The terms attribute and operation are
generic object-oriented terms. An attribute is any class-level data, including vari-
ables and constants. An operation is essentially equivalent to a method.

A class is represented in UML by a rectangle, which is usually divided into three
sections containing the class name, its attributes, and its operations. Figure A.1

FigUre A.1 LibraryItem class diagram

title
callNumber

LibraryItem

checkout()
return()

Key ConCepT
The Unified Modeling Language
(UML) provides a notation with
which we can capture and illustrate
program designs.

Z01_LEWI3322_AppA_pp455-462.indd 456 20/02/13 11:38 AM

 Appendix A UML 457

illustrates a class named LibraryItem. There are two attributes associated with the
class, title and callNumber, and there are two operations associated with the class,
checkout and return.

In the notation for a class, the attributes and operations are optional. Therefore, a class
may be represented by a single rectangle containing only the class name, if
desired. We can include the attributes and/or operations whenever they help convey
important information in the diagram. If attributes or operations are included, then both
sections are shown (though not necessarily filled) to make it clear which is which.

There are many additional pieces of information that can be included in the
UML class notation. An annotation bracketed using < and > is called a stereotype
in UML terminology. The <abstract> stereotype or the <interface> stereotype
could be added above the name to indicate that it is representing an abstract class
or an interface. The visibility of a class is assumed to be public by default, al-
though nonpublic classes can be identified by using a property string in curly
braces, such as {private}.

UML diagrams may be extraordinarily abstract, containing only the name
of each class, or extremely detailed, including detailed information about each
attribute and operation, or anywhere in between. For example, we may choose
to provide only the attribute names, as we did in Figure A.1, or we may pro-
vide several pieces of additional information. The full syntax for showing an
attribute is

visibility name:type = default-value

The visibility may be spelled out as public, protected, or private, or
you may use the symbols + to represent public visibility, # for protected visi-
bility, or - for private visibility. For example, we might have listed the title of
a LibraryItem as

- title : String

indicating that the attribute title is a private variable of type String. A default
value is not provided in this case. Also, the stereotype <final> may be added to
an attribute to indicate that it is a constant.

Similarly, we may choose to provide only the name of each method, or we may
choose to provide the full syntax for an operation:

visibility name (parameter-list): return-type {property-string}

As with the syntax for attributes, all of the items other than the
name are optional. The visibility modifiers are the same as they are
for attributes. The parameter-list can include the name and type of
each parameter, separated by a colon. The return-type is the type of
the value returned from the operation.

Key ConCepT
Various kinds of relationships can
be represented in a UML class
diagram.

Z01_LEWI3322_AppA_pp455-462.indd 457 20/02/13 11:38 AM

458 Appendix A UML

The scope and detail of a UML class diagram is a choice. For example, we know that
in Java, all classes are derived from the class java.lang.Object. Thus, we could in-
clude java.lang.Object in every UML class diagram for systems created in Java. In
general, we include classes from the Java API in our class diagrams only when they are
important to us. For example, if we derived a new kind of list from the java.util.
ArrayList class, we would probably include the ArrayList class in our diagram, but
not all of the other Java API classes with relationships to the ArrayList class.

UML relationships
There are several kinds of relationships among classes that UML diagrams can
represent. Usually they are shown as lines or arrows connecting one class to an-
other. Specific types of lines and arrowheads have specific meaning in UML.

One type of relationship that can be shown between two classes in a UML dia-
gram is inheritance. Figure A.2 shows two classes that are derived
from the LibraryItem class. Inheritance is shown using an arrow
with an open arrowhead pointing from the child class to the parent
class. This example shows that both the Book class and the Video
class inherit all the attributes and operations of LibraryItem, but
they also extend that definition with attributes of their own. Note

Key ConCepT
The inheritance relationship is indica-
tive of one class being derived from,
or being a child of, another class.

title
callNumber

LibraryItem

checkout()
return()

producer
studio

Video

author
publisher

Book

FigUre A.2 A UML class diagram showing inheritance relationships

Z01_LEWI3322_AppA_pp455-462.indd 458 20/02/13 11:38 AM

 Appendix A UML 459

that in this example, neither subclass has any operations other than
those provided in the parent class.

Another relationship shown in a UML diagram is association, which
represents relationships between instances (objects) of the classes.
Association is indicated by a solid line between the two classes involved
and can be annotated with the cardinality of the relationship on either
side. For example, Figure A.3 shows an association between a
LibraryCustomer and a LibraryItem. The cardinality of 0..* means
“zero or more,” in this case indicating that any given library customer
may check out 0 or more items, and that any given library item may be
checked out by multiple customers. The cardinality of an association
may indicate other relationships, such as an exact number or a specific
range. For example, if a customer were allowed to check out no more
than five items, the cardinality could have been indicated by 0..5.

A third type of relationship between classes is aggregation. This is the
situation in which one class is essentially made up, at least in part, of other classes. For
example, we can extend our library example to include a CourseMaterials class that
is made up of books, course notes, and videos, as shown in Figure A.4. Aggregation is
shown by using an open diamond on the aggregate end of the relationship.

A fourth type of relationship that we may wish to represent is implementation.
This relationship occurs between an interface and any class that implements that
interface. Figure A.5 shows an interface called Copyrighted that contains two
abstract methods. The dotted arrow with the open arrowhead indicates that the
Book class implements the Copyrighted interface.

A fifth type of relationship between classes is one class using another.
Examples of this concept include an instructor using a chalkboard, a
driver using a car, and a library customer using a computer. Figure A.6
illustrates this relationship, showing that a LibraryCustomer might
use a Computer. The “uses” relationship is indicated by a dotted line
with an open arrowhead that is generally annotated with the nature of
the relationship.

Key ConCepT
The association relationship
represents relationships between
instances of classes.

title
callNumber

LibraryItem

checkout()
return()

name
address

LibraryCustomer

register()
deregister()

0..* 0..*

FigUre A.3 A UML class diagram showing an association

Key ConCepT
The aggregation relationship
represents one class being made up
of other classes.

Key ConCepT
The implementation relationship
represents a class implementing an
interface.

Key ConCepT
The “uses” relationship represents
one class using another.

Z01_LEWI3322_AppA_pp455-462.indd 459 20/02/13 11:38 AM

460 Appendix A UML

courseTitle
courseNumber

CourseMaterials

producer
studio

Video

author
publisher

Book

author
format

CourseNotes

FigUre A.4 One class shown as an aggregate of other classes

author
publisher

Book

<<interface>>
Copyrighted

setCopyright()
getCopyright()

FigUre A.5 A UML diagram showing a class implementing an interface

location
ipAddress

Computer

logon()
logoff()

name
address

catalog

LibraryCustomer

register()
deregister()

searches online

FigUre A.6 A UML diagram showing the use of one class by another

Z01_LEWI3322_AppA_pp455-462.indd 460 20/02/13 11:38 AM

 Answers to Self-Review Questions 461

Summary of Key Concepts
■	 The Unified Modeling Language (UML) provides a notation with which we

can capture and illustrate program designs.

■	 Various kinds of relationships can be represented in a UML class diagram.

■	 The inheritance relationship is indicative of one class being derived from, or
being a child of, another class.

■	 The association relationship represents relationships between instances of
classes.

■	 The aggregation relationship represents one class being made up of other classes.

■	 The implementation relationship represents a class implementing an interface.

■	 The “uses” relationship represents one class using another.

Self-review Questions
SR A.1 What does a UML class diagram represent?

SR A.2 What are the different types of relationships represented in a class
diagram?

exercises
EX A.1 Create a UML class diagram for the organization of a university,

where the university is made up of colleges, which are made up of
departments, which contain faculty and students.

EX A.2 Complete the UML class description for a library system outlined
in this appendix.

EX A.3 List and illustrate an example of each of the relationships dis-
cussed in this appendix.

Answers to Self-review Questions
SRA A.1 A class diagram describes the types of objects or classes in the system,

the static relationships among them, the attributes and operations of a
class, and the constraints on the connections among objects.

SRA A.2 Relationships shown in a UML class diagram include inheritance,
association, aggregation, the implementation of interfaces, and
the use of one class by another.

Z01_LEWI3322_AppA_pp455-462.indd 461 20/02/13 11:38 AM

Z01_LEWI3322_AppA_pp455-462.indd 462 20/02/13 11:38 AM

 This page is intentionally left blank.

463

Object-Oriented
Design

Appendix
BB

Z02_LEWI3322_AppB_pp463-514.indd 463 20/02/13 11:41 AM

464 Appendix B Object-Oriented Design

B.1 Overview of Object Orientation

Java is an object-oriented language. As the name implies, an object is a fundamen-
tal entity in a Java program. In addition to objects, a Java program also manages
primitive data. Primitive data include common, fundamental values such as num-
bers and characters. An object usually represents something more specialized or
complex, such as a bank account. An object often contains primitive values and is
in part defined by them. For example, an object that represents a bank account
might contain the account balance, which is stored as a primitive numeric value.

An object is defined by a class, which can be thought of as the data type of the
object. The operations that can be performed on the object are defined by the
methods in the class.

Once a class has been defined, multiple objects can be created from that class. For
example, once we define a class to represent the concept of a bank account, we can
create multiple objects that represent specific, individual bank accounts. Each bank
account object would keep track of its own balance. This is an example of encapsula-
tion, meaning that each object protects and manages its own information. The meth-
ods defined in the bank account class would allow us to perform operations on indi-
vidual bank account objects. For instance, we might withdraw money from a
particular account. We can think of these operations as services that the object per-
forms. The act of invoking a method on an object is sometimes referred to as sending
a message to the object, requesting that the service be performed.

Classes can be created from other classes using inheritance. That is, the definition
of one class can be based on another class that already exists. Inheritance is a form of
software reuse, capitalizing on the similarities among various kinds of classes that we
may want to create. One class can be used to derive several new classes. Derived
classes can then be used to derive even more classes. This creates a hierarchy of
classes, where characteristics defined in one class are inherited by its children, which
in turn pass them on to their children, and so on. For example, we might create a hier-
archy of classes that represent various types of accounts. Common characteristics are
defined in high-level classes, and specific differences are defined in derived classes.

Classes, objects, encapsulation, and inheritance are the primary ideas that
make up the world of object-oriented software. They are depicted in Figure B.1
and are explored in more detail throughout this appendix.

B.2 Using Objects

The following println statement illustrates the process of using an object for the
services it provides:

System.out.println("Whatever you are, be a good one.");

Z02_LEWI3322_AppB_pp463-514.indd 464 20/02/13 11:41 AM

 B.2 Using Objects 465

The System.out object represents an output device or file, which by default is
the monitor screen. To be more precise, the object’s name is out, and it is stored in
the System class.

The println method represents a service that the System.out object performs
for us. Whenever we request it, the object will print a string of characters to the
screen. We can say that we send the println message to the System.out object
to request that some text be printed.

Abstraction
An object is an abstraction, which means that the precise details of how it works
are irrelevant from the point of view of the user of the object. We don’t really need
to know how the println method prints characters to the screen, as long as we
can count on it to do its job. Of course, there are times when it is helpful to under-
stand such information, but it is not necessary in order to use the object.

Sometimes it is important to hide or ignore certain details. A human being is capa-
ble of mentally managing around seven (plus or minus two) pieces of information in
short-term memory. Beyond that, we start to lose track of some of the pieces.

Classes can be organized
into inheritance hierarchies

Account

A class defines
a concept

Bank Account

Multiple encapsulated objects
can be created from one class

John’s Bank Account
Balance: $5,257

Bill’s Bank Account
Balance: $1,245,069

Mary’s Bank Account
Balance: $16,833

Charge Account Bank Account

Savings Account Checking Account

FigUre B.1 Various aspects of object-oriented software

Z02_LEWI3322_AppB_pp463-514.indd 465 20/02/13 11:41 AM

466 Appendix B Object-Oriented Design

However, if we group pieces of information together, then those pieces can be man-
aged as one “chunk” in our minds. We don’t actively deal with all of the details in the
chunk, but we can still manage it as a single entity. Therefore, we can deal with large
quantities of information by organizing it into chunks. An object is a construct that
organizes information and allows us to hide the details inside. An object is therefore a
wonderful abstraction.

We use abstractions every day. Think about a car for a moment. You don’t nec-
essarily need to know how a four-cycle combustion engine works in order to drive
a car. You just need to know some basic operations: how to turn it on, how to put
it in gear, how to make it move with the pedals and steering wheel, and how to
stop it. These operations define the way a person interacts with the car. They
mask the details of what is happening inside the car that enable it to function.
When you are driving a car, you are not usually thinking about the spark plugs
igniting the gasoline that drives the piston that turns the crankshaft that turns the
axle that turns the wheels. If we had to worry about all of these underlying de-
tails, we would never be able to operate something as complicated as a car.

Initially, all cars had manual transmissions. The driver had to understand and
deal with the details of changing gears with the stick shift. Eventually, automatic
transmissions were developed, and the driver who bought a car so equipped no
longer had to worry about shifting gears. Those details were hidden by raising the
level of abstraction.

Of course, someone has to deal with the details. The car manufacturer has to
know the details in order to design and build the car in the first place. A car me-
chanic relies on the fact that most people don’t have the expertise or tools neces-
sary to fix a car when it breaks.

The level of abstraction must be appropriate for each situation.
Some people prefer to drive a car with a manual transmission. A
race car driver, for instance, needs to control the shifting manually
for optimum performance.

Likewise, someone has to create the code for the objects we use.
Later in this appendix, we explore how to define objects by creating
classes. For now, we can create and use objects from classes that
have been defined for us already. Abstraction makes that possible.

Creating Objects
A Java variable can hold either a primitive value or a reference to an object. Like
variables that hold primitive types, a variable that serves as an object reference
must be declared. A class is used to define an object, and the class name can be
thought of as the type of an object. The declarations of object references are simi-
lar in structure to the declarations of primitive variables.

Key COnCept
An abstraction hides details. A good
abstraction hides the right details at
the right time so that we can manage
complexity.

Z02_LEWI3322_AppB_pp463-514.indd 466 20/02/13 11:41 AM

 B.2 Using Objects 467

The following declaration creates a reference to a String object:

String name;

That declaration is like the declaration of an integer, in that the type is followed
by the variable name we want to use. However, no String object actually exists
yet. To create an object, we use the new operator:

name = new String("James Gosling");

The act of creating an object by using the new operator is called instantiation.
An object is said to be an instance of a particular class. After the new operator cre-
ates the object, a constructor is invoked to help set it up initially. A constructor
has the same name as the class and is similar to a method. In this example, the
parameter to the constructor is a string literal that specifies the characters that the
String object will hold.

The acts of declaring the object reference variable and creating the
object itself can be combined into one step by initializing the variable
in the declaration, just as we do with primitive types:

String name = new String("James Gosling");

After an object has been instantiated, we use the dot operator to access its
methods. The dot operator is appended directly after the object reference,
followed by the method being invoked. For example, to invoke the length
method defined in the String class, we use the dot operator on the name refer-
ence variable:

count = name.length();

An object reference variable (such as name) actually stores the address where
the object is stored in memory. However, we don’t usually care about the actual
address value. We just want to access the object, wherever it is.

Even though they are not primitive types, strings are so fundamental and so
frequently used that Java defines string literals delimited by double quotation
marks, as we have seen in various examples. This is a shortcut notation. Whenever
a string literal appears, a String object is created. Therefore, the following decla-
ration is valid:

String name = "James Gosling";

That is, for String objects, the explicit use of the new operator, as well as the
call to the constructor, can be eliminated. In most cases, this simplified syntax for
strings is used.

Key COnCept
The new operator returns a reference
to a newly created object.

Z02_LEWI3322_AppB_pp463-514.indd 467 20/02/13 11:41 AM

468 Appendix B Object-Oriented Design

B.3 Class Libraries and packages

A class library is a set of classes that supports the development of programs. A
compiler often comes with a class library. Class libraries can also be obtained
separately through third-party vendors. The classes in a class library contain
methods that are often valuable to a programmer because of the special function-
ality they offer. In fact, programmers often become dependent on the methods in a
class library and begin to think of them as part of the language. But technically,
they are not in the language definition.

The String class, for instance, is not an inherent part of the Java language. It is
part of the Java standard class library that can be found in any Java development
environment. The classes that make up the library were created by employees at
Sun Microsystems, the company that created the Java language.

The class library is made up of several clusters of related classes,
which are sometimes called Java APIs. API stands for application pro-
grammer interface. For example, we may refer to the Java Database API
when we are talking about the set of classes that helps us to write pro-
grams that interact with a database. Another example of an API is the
Java Swing API, which consists of a set of classes that defines special
graphical components used in a graphical user interface. Sometimes the
entire standard library is referred to generically as the Java API.

The classes of the Java standard class library are also grouped
into packages, which, like the APIs, enable us to group related
classes under one name. Each class is part of a particular package.
The String class and the System class, for example, are both part
of the java.lang package.

The package organization is more fundamental and language-based than the
API names. Although there is a general correspondence between package and API
names, the groups of classes that make up a given API might cross packages. In
this text, we refer to classes primarily in terms of their package organization.

the import declaration
The classes of the package java.lang are automatically available for use when
writing a program. To use classes from any other package, however, we must
either fully qualify the reference or use an import declaration.

When you want to use a class from a class library in a program, you could use its
fully qualified name, including the package name, every time it was referenced. For
example, every time you wanted to refer to the Random class that is defined in the
java.util package, you could write java.util.Random. However, completely

Key COnCept
A package is a Java language element
used to group related classes under a
common name.

Key COnCept
The Java standard class library is a
useful set of classes that anyone can
use when writing Java programs.

Z02_LEWI3322_AppB_pp463-514.indd 468 20/02/13 11:41 AM

 B.4 State and Behavior 469

specifying the package and class name every time it is needed quickly becomes tiring.
Java provides the import declaration to simplify these references.

The import declaration identifies the packages and classes that will be used in
a program, so that the fully qualified name is not necessary with each reference.
The following is an example of an import declaration:

import java.util.Random;

This declaration asserts that the Random class of the java.util package may
be used in the program. Once this import declaration is made, it is sufficient to
use the simple name Random when referring to that class in the program.

Another form of the import declaration uses an asterisk (*) to indicate that any
class inside the package might be used in the program. Therefore, the declaration

import java.util.*;

allows all classes in the java.util package to be referenced in the program with-
out the explicit package name. If only one class of a particular package will be
used in a program, it is usually better to name the class specifically in the import
declaration. However, if two or more classes will be used, the * notation is fine.
Once a class is imported, it is just as if its code had been brought into the pro-
gram. The code is not actually moved, but that is the effect.

The classes of the java.lang package are automatically imported because
they are fundamental and can be thought of as basic extensions to the language.
Therefore, any class in the java.lang package, such as String, can be used with-
out an explicit import declaration. It is as if all programs automatically contained
the following declaration:

import java.lang.*;

B.4 State and Behavior

Think about objects in the world around you. How would you describe them?
Let’s use a ball as an example. A ball has particular characteristics, such as its
diameter, color, and elasticity. Formally, we say the properties that describe an
object, which are called attributes, define the object’s state of being. We also
describe a ball by what it does, such as the fact that it can be thrown, bounced, or
rolled. These activities define the object’s behavior.

All objects have a state and a set of behaviors. We can represent these charac-
teristics in software objects as well. The values of an object’s variables describe
the object’s state, and the methods that can be invoked using the object define the
object’s behaviors.

Z02_LEWI3322_AppB_pp463-514.indd 469 20/02/13 11:41 AM

470 Appendix B Object-Oriented Design

Consider a computer game that uses a ball. The ball could be rep-
resented as an object. It could have variables to store its size and lo-
cation, and methods that draw it on the screen and calculate how it
moves when thrown, bounced, or rolled. The variables and methods
defined in the ball object establish the state and behavior that are
relevant to the ball’s use in the computerized ball game.

Each object has its own state. Each ball object has a particular lo-
cation, for instance, which typically is different from the location of all other
balls. Behaviors, though, tend to apply to all objects of a particular type. For in-
stance, in general, any ball can be thrown, bounced, or rolled. The act of rolling a
ball is generally the same for all balls.

The state of an object and that object’s behaviors work together. How high a
ball bounces depends on its elasticity. The action is the same, but the specific re-
sult depends on that particular object’s state. An object’s behavior often modifies
its state. For example, when a ball is rolled, its location changes.

Any object can be described in terms of its state and behavior. Let’s consider
another example. In software that is used to manage a university, a student could
be represented as an object. The collection of all such objects represents the entire
student body at the university. Each student has a state. That is, each student ob-
ject contains the variables that store information about a particular student, such
as name, address, major, courses taken, grades, and grade point average. A student
object also has behaviors. For example, the class of the student object may con-
tain a method to add a new course.

Although software objects often represent tangible items, they don’t have to.
For example, an error message can be an object, with its state being the text of the
message, and behaviors, including the process of issuing (perhaps printing) the er-
ror. A mistake that programmers new to the world of object-orientation often
make is to limit the possibilities to tangible entities.

B.5 Classes

An object is defined by a class. A class is the model, pattern, or blueprint from
which an object is created. Consider the blueprint that an architect creates when
designing a house. The blueprint defines the important characteristics of the
house: walls, windows, doors, electrical outlets, and so forth. Once the blueprint
is created, several houses can be built using it.

In one sense, the houses built from the blueprint are different. They are in dif-
ferent locations, have different addresses, they contain different furniture, and
different people live in them. Yet in many ways they are the “same” house. The
layout of the rooms and other crucial characteristics are the same in each. To cre-
ate a different house, we would need a different blueprint.

Key COnCept
Each object has a state and a set of
behaviors. The values of an object’s
variables define its state. The
methods to which an object responds
define its behaviors.

Z02_LEWI3322_AppB_pp463-514.indd 470 20/02/13 11:41 AM

 B.5 Classes 471

A class is a blueprint of an object. But a class is not an object any more than a
blueprint is a house. In general, no space to store data values is reserved in a class.
To allocate space to store data values, we have to instantiate one or more objects
from the class (static data are the exception to this rule and are dis-
cussed later in this appendix). Each object is an instance of a class.
Each object has space for its own data, which is why each object can
have its own state.

A class contains the declarations of the data that will be stored in
each instantiated object, and the declarations of the methods that
can be invoked using an object. Collectively these are called the
members of the class. See Figure B.2.

Consider the class shown in Listing B.1, called Coin, which represents a coin that
can be flipped and that, at any point in time, shows a face of either heads or tails.

In the Coin class, we have two integer constants, HEADS and TAILS, and one
integer variable, face. The rest of the Coin class is composed of the Coin con-
structor and three regular methods: flip, isHeads, and toString.

Constructors are special methods that have the same name as the class. The
Coin constructor gets called when the new operator is used to create a new in-
stance of the Coin class. The rest of the methods in the Coin class define the vari-
ous services provided by Coin objects.

A class we define can be used in multiple programs. This is no different from
using the String class in whatever program we need it in. When designing a class,
it is always good to look to the future to try to give the class behaviors that may
be beneficial in other programs, not just behaviors that fit the specific purpose for
which you are creating it at the moment.

Key COnCept
A class is a blueprint for an object; it
reserves no memory space for data.
Each object has its own data space
and thus its own state.

int x, y, diameter;
character type;
double elasticity;

Data
declarations

Method
declarations

FigUre B.2 The members of a class: data declarations and method declarations

Z02_LEWI3322_AppB_pp463-514.indd 471 20/02/13 11:41 AM

472 Appendix B Object-Oriented Design

/**
 * Coin represents a coin with two sides that can be flipped.
 *
 * @author Lewis and Chase
 * @version 4.0
 */
public class Coin
{
 private final int HEADS = 0;
 private final int TAILS = 1;

 private int face;

 /**
 * Sets up the coin by flipping it initially.
 */
 public Coin()
 {
 flip();

 }

 /**
 * Flips the coin by randomly choosing a face value.
 */
 public void flip()
 {
 face = (int)(Math.random() * 2);

 }

 /**
 * Returns true if the current face of the coin is heads.
 *
 * @return true if the face is heads
 */
 public boolean isHeads()
 {
 return (face == HEADS);

 }

L i S t i n g B . 1

Z02_LEWI3322_AppB_pp463-514.indd 472 20/02/13 11:41 AM

 B.5 Classes 473

instance data
Note that in the Coin class, the constants HEADS and TAILS and the
variable face are declared inside the class, but not inside any method.
The location at which a variable is declared defines its scope, which is
the area within a program in which that variable can be referenced. By
being declared at the class level (not within a method), these variables
and constants can be referenced in any method of the class.

Attributes declared at the class level are also called instance data,
because memory space for the data is reserved for each instance of the class that is
created. Each Coin object, for example, has its own face variable with its own
data space. Therefore, at any point in time, two Coin objects can have their own
states: one can be showing heads and the other can be showing tails, perhaps.

Java automatically initializes any variables declared at the class level. For ex-
ample, all variables of numeric types such as int and double are initialized to
zero. However, despite the fact that the language performs this automatic initial-
ization, it is good practice to initialize variables explicitly (usually in a construc-
tor) so that anyone reading the code will clearly understand the intent.

 /**
 * Returns the current face of the coin as a string.
 *
 * @return the string representation of the current face value of this coin
 */

 public String toString()
 {
 String faceName;

 if (face == HEADS)
 faceName = "Heads";
 else
 faceName = "Tails";

 return faceName;
 }

}

L i S t i n g B . 1 continued

Key COnCept
The scope of a variable, which deter-
mines where it can be referenced,
depends on where it is declared.

Z02_LEWI3322_AppB_pp463-514.indd 473 20/02/13 11:41 AM

474 Appendix B Object-Oriented Design

B.6 encapsulation

We can think about an object in one of two ways. The view we take depends on
what we are trying to accomplish at the moment. First, when we are designing
and implementing an object, we need to think about the details of how an object
works. That is, we have to design the class; we have to define the variables that
will be held in the object and define the methods that make the object useful.

However, when we are designing a solution to a larger problem, we have to think
in terms of how the objects in the program interact. At that level, we have to think
only about the services that an object provides, not about the details of how those
services are provided. As we discussed earlier in this appendix, an object provides a
level of abstraction that enables us to focus on the larger picture when we need to.

This abstraction works only if we are careful to respect its bound-
aries. An object should be self-governing, which means that the vari-
ables contained in an object should be modified only within the ob-
ject. Only the methods within an object should have access to the
variables in that object. We should make it difficult, if not impossi-
ble, for code outside of a class to “reach in” and change the value of
a variable that is declared inside the class.

The object-oriented term for this characteristic is encapsulation. An object
should be encapsulated from the rest of the system. It should interact with other
parts of a program only through the specific set of methods that defines the ser-
vices provided by that object. These methods define the interface between that
object and the program that uses it.

The code that uses an object, which is sometimes called the client of an object,
should not be allowed to access variables directly. The client should interact with
the object’s methods, which in turn interact on behalf of the client with the data
encapsulated within the object.

Visibility Modifiers
In Java, we accomplish object encapsulation using modifiers. A modifier is a Java
reserved word that is used to specify particular characteristics of a programming
language construct. For example, the final modifier is used to declare a constant.
Java has several modifiers that can be used in various ways. Some modifiers can
be used together, but some combinations are invalid.

Some Java modifiers are called visibility modifiers because they control access
to the members of a class. The reserved words public and private are visibility
modifiers that can be applied to the variables and methods of a class. If a member
of a class has public visibility, then it can be directly referenced from outside of
the object. If a member of a class has private visibility, it can be used anywhere

Key COnCept
Objects should be encapsulated. The
rest of a program should interact
with an object only through a
well-defined interface.

Z02_LEWI3322_AppB_pp463-514.indd 474 20/02/13 11:41 AM

 B.6 Encapsulation 475

inside the class definition but cannot be referenced externally. A third visibility
modifier, protected, is relevant only in the context of inheritance, which is dis-
cussed later in this appendix.

Public variables violate encapsulation. They allow code external to the class in
which the data are defined to reach in and access or modify the value of the data.
Therefore, instance data should be defined with private visibility. Data that are
declared as private can be accessed only by the methods of the class, which makes
the objects created from that class self-governing.

Which visibility we apply to a method depends on the purpose of that method.
Methods that provide services to the client of the class must be declared with public
visibility so that they can be invoked by the client. These methods are
sometimes referred to as service methods. A private method cannot be
invoked from outside the class. The only purpose of a private method is
to help the other methods of the class do their job. Therefore, private
methods are sometimes referred to as support methods.

The table in Figure B.3 summarizes the effects of public and pri-
vate visibility on both variables and methods.

Note that a client can still access or modify private data by invoking service
methods that change the data. A class must provide service methods for valid cli-
ent operations. The code of those methods must be carefully designed to permit
only appropriate access and valid changes.

Giving constants public visibility is generally considered acceptable. Although their
values can be accessed directly, they cannot be changed because they were declared
using the final modifier. Keep in mind that encapsulation means that data values
should not be able to be changed directly by another part of the code. Because con-
stants, by definition, cannot be changed, the encapsulation issue is largely moot.

Key ConCept
Instance variables should be declared
with private visibility to promote
encapsulation.

Figure B.3 The effects of public and private visibility

public private

Violate
encapsulationVariables

Methods

Enforce
encapsulation

Provide services
to clients

Support other
methods in the class

Z02_LEWI3322_AppB_pp463-514.indd 475 01/03/13 11:45 AM

476 Appendix B Object-Oriented Design

UML diagrams reflect the visibility of a class member with special notations. A
member with public visibility is preceded by a plus sign (+), and a member with
private visibility is preceded by a minus sign (−).

Local data
As we noted earlier, the scope of a variable or constant is the part of a program in
which a valid reference to that variable can be made. A variable can be declared

inside a method, making it local data as opposed to instance data.
Recall that instance data are declared in a class but not inside any
particular method. The scope of local data is limited to the method
in which they are declared. Any reference to local data of one
method in any other method wo1uld cause the compiler to issue an
error message. A local variable simply does not exist outside of the

method in which it is declared. Instance data, declared at the class level, have a
scope of the entire class. Any method of the class can refer to such data.

Because local data and instance data operate at different levels of scope, it is
possible to declare a local variable inside a method by using the same name as an
instance variable declared at the class level. Referring to that name in the method
will reference the local version of the variable. This naming practice obviously has
the potential to confuse anyone reading the code, so it should be avoided.

The formal parameter names in a method header serve as local data for that
method. They don’t exist until the method is called, and they cease to exist when
the method is exited.

B.7 Constructors

A constructor is similar to a method that is invoked when an object is instanti-
ated. When we define a class, we usually define a constructor to help us set up the
class. In particular, we often use a constructor to initialize the variables associated
with each object.

A constructor differs from a regular method in two ways. First, the name of a
constructor is the same as the name of the class. Therefore, the name of the con-
structor in the Coin class is Coin, and the name of the constructor in the Account

class is Account. Second, a constructor cannot return a value and
does not have a return type specified in the method header.

A mistake that programmers often make is to put a void re-
turn type on a constructor. As far as the compiler is concerned,
putting any return type on a constructor, even void, turns it into
a regular method that happens to have the same name as the

class. As such, it cannot be invoked as a constructor. This leads to error mes-
sages that are sometimes difficult to decipher.

Key COnCept
A variable declared in a method is
local to that method and cannot be
used outside of it.

Key COnCept
A constructor cannot have any return
type, not even void.

Z02_LEWI3322_AppB_pp463-514.indd 476 20/02/13 11:41 AM

 B.8 Method Overloading 477

A constructor is generally used to initialize the newly instantiated object.
We don’t have to define a constructor for every class. Each class has a default
constructor that takes no parameters and is used if we don’t provide our own.
This default constructor generally has no effect on the newly created object.

B.8 Method Overloading

When a method is invoked, the flow of control transfers to the code that defines
the method. After the method has been executed, control returns to the location
of the call, and processing continues.

Often the method name is sufficient to indicate which method is being called
by a specific invocation. But in Java, as in other object-oriented languages, you
can use the same method name with different parameter lists for multiple meth-
ods. This technique is called method overloading. It is useful when you need to
perform similar methods on different types of data.

The compiler must still be able to associate each invocation with a specific method
declaration. If the method name for two or more methods is the same, then additional
information is used to uniquely identify the version that is being in-
voked. In Java, a method name can be used for multiple methods as
long as the number of parameters, the types of those parameters, or the
order of the types of parameters is distinct. A method’s name, along
with the number, type, and order of its parameters, is called the meth-
od’s signature. The compiler uses the complete method signature to bind
a method invocation to the appropriate definition.

The compiler must be able to examine a method invocation, in-
cluding the parameter list, to determine which specific method is being invoked. If
you attempt to specify two method names with the same signature, the compiler
will issue an appropriate error message and will not create an executable pro-
gram. There can be no ambiguity.

Note that the return type of a method is not part of the method signature. That
is, two overloaded methods cannot differ only by their return type. The reason is
that the value returned by a method can be ignored by the invocation. The com-
piler would not be able to distinguish which version of an overloaded method is
being referenced in such situations.

The println method is an example of a method that is overloaded several
times, each accepting a single type. Here is a partial list of its various signatures:

println(String s)
println(int i)
println(double d)
println(char c)
println(boolean b)

Key COnCept
The versions of an overloaded
method are distinguished by their
signatures. The number, type, or
order of their parameters must be
distinct.

Z02_LEWI3322_AppB_pp463-514.indd 477 20/02/13 11:41 AM

478 Appendix B Object-Oriented Design

The following two lines of code actually invoke different methods that have
the same name.

System.out.println ("The total is: ");
System.out.println (count);

The first line invokes the println that accepts a string, and the second line, assuming
count is an integer variable, invokes the version of println that accepts an integer.
We often use a println statement that prints several distinct types, such as

System.out.println("The total is: " + count);

In this case, the plus sign is the string concatenation operator. First, the value in
the variable count is converted into a string representation. Then the two strings
are concatenated into one longer string, and the definition of println that ac-
cepts a single string is invoked.

Constructors are primary candidates for overloading. By providing multiple
versions of a constructor, we provide several ways to set up an object.

B.9 references revisited

In previous examples, we have declared object reference variables through which
we access particular objects. Let’s examine this relationship in more detail.

An object reference variable and an object are two separate things.
Remember that the declaration of the reference variable and the cre-
ation of the object that it refers to are separate steps. We often de-
clare the reference variable and create an object for it to refer to on
the same line, but keep in mind that we don’t have to do so. In fact,
in many cases, we won’t want to.

The reference variable holds the address of an object even though the address
never is disclosed to us. When we use the dot operator to invoke an object’s
method, we are actually using the address in the reference variable to locate the
representation of the object in memory, look up the appropriate method, and in-
voke it.

the null reference
A reference variable that does not currently point to an object is called a null ref-
erence. When a reference variable is initially declared as an instance variable, it is
a null reference. If we try to follow a null reference, a NullPointerException is
thrown, indicating that there is no object to reference. For example, consider the
following situation:

Key COnCept
An object reference variable stores
the address of an object.

Z02_LEWI3322_AppB_pp463-514.indd 478 20/02/13 11:41 AM

 B.9 References Revisited 479

class NameIsNull
{

 String name; // not initialized, therefore null

 void printName()
 {

 System.out.println(name.length()); // causes an exception
 }
}

The declaration of the instance variable name asserts it to be a reference to a
String object but does not create any String object for it to refer to. The vari-
able name, therefore, contains a null reference. When the method attempts to in-
voke the length method of the object to which name refers, an exception is
thrown because no object exists to execute the method.

Note that this situation can arise only in the case of instance variables. Suppose,
for instance, that the following two lines of code were in a method:

String name;

System.out.println(name.length());

In this case, the variable name is local to whatever method it is declared in. The
compiler would complain that we were using the name variable before it had been
initialized. In the case of instance variables, however, the compiler can’t determine
whether a variable had been initialized or not. Therefore, the danger of attempt-
ing to follow a null reference is a problem.

The identifier null is a reserved word in Java and represents a
null reference. We can explicitly set a reference to null to ensure
that it doesn’t point to any object. We can also use it to check
whether a particular reference currently points to an object. For ex-
ample, we could have used the following code in the printName
method to keep us from following a null reference:

if (name == null)
 System.out.println("Invalid Name");
else
 System.out.println(name.length());

the this reference
Another special reference for Java objects is called the this reference. The word this
is a reserved word in Java. It allows an object to refer to itself. As we have discussed, a
method is always invoked through a particular object or class. Inside that method, the
this reference can be used to refer to the currently executing object.

Key COnCept
The reserved word null represents a
reference that does not point to a
valid object.

Z02_LEWI3322_AppB_pp463-514.indd 479 20/02/13 11:41 AM

480 Appendix B Object-Oriented Design

For example, in the ChessPiece class, there could be a method
called move, which could contain the line

if (this.position == piece2.position)
 result = false;

In this situation, the this reference is being used to clarify which position is
being referenced. The this reference refers to the object through which the
method was invoked. Therefore, when the following line is used to invoke the
method, the this reference refers to bishop1:

bishop1.move();

But when another object is used to invoke the method, the this reference re-
fers to it. Therefore, when the following invocation is used, the this reference in
the move method refers to bishop2:

bishop2.move();

The this reference can also be used to distinguish the parameters of a con-
structor from their corresponding instance variables with the same names. For
example, the constructor of a class called Account could be defined as follows:

public Account(String owner, long account, double initial)
{
 name = owner;
 acctNumber = account;
 balance = initial;
}

In this constructor, we deliberately came up with different names for the pa-
rameters to distinguish them from the instance variables name, acctNumber, and
balance. This distinction is arbitrary. The constructor could have been written as
follows using the this reference:

public Account(String name, long acctNumber, double balance)
{
 this.name = name;
 this.acctNumber = acctNumber;
 this.balance = balance;

}

In this version of the constructor, the this reference specifically refers to the
instance variables of the object. The variables on the right-hand side of the assign-
ment statements refer to the formal parameters. This approach eliminates the
need to come up with different yet equivalent names. This situation sometimes
occurs in other methods, but it comes up often in constructors.

Key COnCept
The this reference always refers to
the currently executing object.

Z02_LEWI3322_AppB_pp463-514.indd 480 20/02/13 11:41 AM

 B.9 References Revisited 481

Aliases
Because an object reference variable stores an address, programmers must be careful
when managing objects. In particular, the semantics of an assignment statement for
objects must be carefully understood. First, let’s review the concept of assignment for
primitive types. Consider the following declarations of primitive data:

int num1 = 5;

int num2 = 12;

In the following assignment statement, a copy of the value that is stored in
num1 is stored in num2:

num2 = num1;

The original value of 12 in num2 is overwritten by the value 5. The variables
num1 and num2 still refer to different locations in memory, and both of those loca-
tions now contain the value 5.

Now consider the following object declarations:

ChessPiece bishop1 = new ChessPiece();

ChessPiece bishop2 = new ChessPiece();

Initially, the references bishop1 and bishop2 refer to two different ChessPiece
objects. The following assignment statement copies the value in bishop1 into
bishop2:

bishop2 = bishop1;

The key issue is that when an assignment like this is made, the address stored
in bishop1 is copied into bishop2. Originally the two references referred to dif-
ferent objects. After the assignment, both bishop1 and bishop2 contain the same
address and therefore refer to the same object.

The bishop1 and bishop2 references are now aliases of each
other, because they are two names that refer to the same object. All
references to the object that was originally referenced by bishop2
are now gone; that object cannot be used again in the program.

One important implication of aliases is that when we use one ref-
erence to change the state of the object, it is also changed for the
other, because there is really only one object. If you change the state of bishop1,
for instance, you change the state of bishop2, because they both refer to the same
object. Aliases can produce undesirable effects unless they are managed carefully.

Another important aspect of references is the way they affect how we
determine whether two objects are equal. The == operator that we use for primi-
tive data can be used with object references, but it returns true only if the two

Key COnCept
Several references can refer to the
same object. These references are
aliases of each other.

Z02_LEWI3322_AppB_pp463-514.indd 481 20/02/13 11:41 AM

482 Appendix B Object-Oriented Design

references being compared are aliases of each other. It does not “look
inside” the objects to see whether they contain the same data.

That is, the following expression is true only if bishop1 and
bishop2 currently refer to the same object:

 bishop1 == bishop2

A method called equals is defined for all objects, but unless we replace it with
a specific definition when we write a class, it has the same semantics as the ==
operator. That is, the equals method returns a boolean value that, by default,
will be true if the two objects being compared are aliases of each other. The
equals method is invoked through one object and takes the other one as a pa-
rameter. Therefore, the expression

bishop1.equals(bishop2)

returns true if both references refer to the same object. However, we
can define the equals method in the ChessPiece class to define
equality for ChessPiece objects in any way we like. That is, we can
define the equals method to return true under whatever conditions
we think are appropriate to mean that one ChessPiece is equal to
another.

The equals method has been given an appropriate definition in
the String class. When comparing two String objects, the equals method re-
turns true only if both strings contain the same characters. A common mistake is
to use the == operator to compare strings, which compares the references for
equality, when most of the time we want to compare the characters in the strings
for equality. The equals method is discussed in more detail later in this appendix.

garbage Collection
All interaction with an object occurs through a reference variable, so we can use
an object only if we have a reference to it. When all references to an object are lost
(perhaps by reassignment), that object can no longer participate in the program.
The program can no longer invoke its methods or use its variables. At this point
the object is called garbage, because it serves no useful purpose.

Java performs automatic garbage collection. When the last refer-
ence to an object is lost, the object becomes a candidate for garbage
collection. Occasionally, the Java run-time executes a method that
“collects” all of the objects marked for garbage collection and re-
turns their allocated memory to the system for future use. The pro-
grammer does not have to worry about explicitly returning memory
that has become garbage.

Key COnCept
The equals method can be
defined to determine equality
between objects in any way we
consider appropriate.

Key COnCept
If an object has no references to it, a
program cannot use it. Java performs
automatic garbage collection by peri-
odically reclaiming the memory
space occupied by these objects.

Key COnCept
The == operator compares object ref-
erences for equality, returning true if
the references are aliases of each
other.

Z02_LEWI3322_AppB_pp463-514.indd 482 20/02/13 11:41 AM

 B.10 The static Modifier 483

If there is an activity that a programmer wants to accomplish in conjunction with
the object being destroyed, the programmer can define a method called finalize in
the object’s class. The finalize method takes no parameters and has a void return
type. It will be executed by the Java run time after the object is marked for garbage
collection and before it is actually destroyed. The finalize method is not often used,
because the garbage collector performs most normal cleanup operations. However, it
is useful for performing activities that the garbage collector does not address, such as
closing files.

passing Objects as parameters
Another important issue related to object references comes up when we want to
pass an object to a method. Java passes all parameters to a method by value. That
is, the current value of the actual parameter (in the invocation) is copied into the
formal parameter in the method header. Essentially, parameter passing is like an
assignment statement, assigning to the formal parameter a copy of the value
stored in the actual parameter.

This issue must be considered when making changes to a formal parameter in-
side a method. The formal parameter is a separate copy of the value that is passed
in, so any changes made to it have no effect on the actual parameter. After control
returns to the calling method, the actual parameter will have the same value it had
before the method was called.

However, when we pass an object to a method, we are actually passing a refer-
ence to that object. The value that gets copied is the address of the object.
Therefore, the formal parameter and the actual parameter become aliases of each
other. If we change the state of the object through the formal param-
eter reference inside the method, we are changing the object refer-
enced by the actual parameter, because they refer to the same object.
On the other hand, if we change the formal parameter reference it-
self (to make it point to a new object, for instance), we have not
changed the fact that the actual parameter still refers to the original
object.

B.10 the static Modifier

We have seen how visibility modifiers enable us to specify the encapsulation char-
acteristics of variables and methods in a class. Java has several other modifiers
that determine other characteristics. For example, the static modifier associates
a variable or method with its class rather than with an object of the class.

Key COnCept
When an object is passed to a
method, the actual and formal
parameters become aliases of each
other.

Z02_LEWI3322_AppB_pp463-514.indd 483 20/02/13 11:41 AM

484 Appendix B Object-Oriented Design

Static Variables
So far, we have seen two categories of variables: local variables, which are de-
clared inside a method, and instance variables, which are declared in a class but
not inside a method. The term instance variable is used because an instance vari-
able is accessed through a particular instance (an object) of a class. In general,
each object has distinct memory space for each variable, so that each object can
have a distinct value for that variable.

Another kind of variable, called a static variable or class variable, is shared
among all instances of a class. There is only one copy of a static variable for all
objects of a class. Therefore, changing the value of a static variable in one object
changes it for all of the others. The reserved word static is used as a modifier to
declare a static variable:

private static int count = 0;

Memory space for a static variable is established when the class
that contains it is referenced for the first time in a program. A local
variable declared within a method cannot be static.

Constants, which are declared using the final modifier, are also of-
ten declared using the static modifier as well. Because the value of

constants cannot be changed, there might as well be only one copy of the value across
all objects of the class.

Static Methods
A static method (also called a class method) can be invoked through the class
name (all the methods of the Math class are static methods, for example). You
don’t have to instantiate an object of the class to invoke a static method. For ex-
ample, the sqrt method is called through the Math class as follows:

System.out.println("Square root of 27: " + Math.sqrt(27));

A method is made static by using the static modifier in the
method declaration. As we have seen, the main method of a Java
program must be declared with the static modifier; this is so that
main can be executed by the interpreter without instantiating an ob-
ject from the class that contains main.

Because static methods do not operate in the context of a particu-
lar object, they cannot reference instance variables, which exist only in an in-
stance of a class. The compiler will issue an error if a static method attempts to
use a nonstatic variable. A static method can, however, reference static variables,
because static variables exist independent of specific objects. Therefore, the main
method can access only static or local variables.

Key COnCept
A static variable is shared among all
instances of a class.

Key COnCept
A method is made static by using
the static modifier in the method
declaration.

Z02_LEWI3322_AppB_pp463-514.indd 484 20/02/13 11:41 AM

 B.11 Wrapper Classes 485

The methods in the Math class perform basic computations based on values
passed as parameters. There is no object state to maintain in these situations;
therefore, there is no good reason to force us to create an object in order to re-
quest these services.

B.11 Wrapper Classes

In some object-oriented programming languages, everything is represented using
classes and the objects that are instantiated from them. In Java there are primitive
types (such as int, double, char, and boolean) in addition to classes and objects.

Having two categories of data to manage (primitive values and object references)
can present a challenge in some circumstances. For example, we might create an ob-
ject that serves as a collection to hold various types of other objects. But in a specific
situation, we want the collection to hold simple integer values. In these cases we need
to “wrap” a primitive type into a class so that it can be treated as an object.

A wrapper class represents a particular primitive type. For instance, the
Integer class represents a simple integer value. An object created from the
Integer class stores a single int value. The constructors of the wrapper classes
accept the primitive value to store—for example,

Integer ageObj = new Integer(45);

Once this declaration and instantiation are performed, the ageObj object ef-
fectively represents the integer 45 as an object. It can be used wherever an object
is called for in a program instead of a primitive type.

For each primitive type in Java there exists a corresponding wrapper
class in the Java class library. All wrapper classes are defined in the java
.lang package. There is even a wrapper class that represents the type
void. However, unlike the other wrapper classes, the Void class cannot
be instantiated. It simply represents the concept of a void reference.

The wrapper classes also provide various methods related to the
management of the associated primitive type. For example, the Integer class
contains methods that return the int value stored in the object, and that convert
the stored value into other primitive types.

Wrapper classes also contain static methods that can be invoked independent of
any instantiated object. For example, the Integer class contains a static method
called parseInt to convert an integer that is stored in a String into its correspond-
ing int value. If the String object str holds the string “987”, then the following line
of code converts and stores the integer value 987 into the int variable num:

num = Integer.parseInt(str);

Key COnCept
A wrapper class represents a primi-
tive value so that it can be treated as
an object.

Z02_LEWI3322_AppB_pp463-514.indd 485 20/02/13 11:41 AM

486 Appendix B Object-Oriented Design

The Java wrapper classes often contain static constants that are helpful as well.
For example, the Integer class contains two constants, MIN_VALUE and MAX_
VALUE, which hold the smallest and largest int values, respectively. The other
wrapper classes contain similar constants for their types.

B.12 interfaces

We have used the term interface to mean the public methods through which we
can interact with an object. That definition is consistent with our use of it in this
section, but now we are going to formalize this concept using a particular lan-
guage construct in Java.

A Java interface is a collection of constants and abstract methods.
An abstract method is a method that does not have an implementa-
tion. That is, there is no body of code defined for an abstract
method. The header of the method, including its parameter list, is
simply followed by a semicolon. An interface cannot be instantiated.

The following interface, which is called Complexity, contains
two abstract methods, setComplexity and getComplexity:

interface Complexity
{
 void setComplexity(int complexity);
 int getComplexity();
}

An abstract method can be preceded by the reserved word abstract, although in
interfaces it usually is not. Methods in interfaces have public visibility by default.

A class implements an interface by providing method implementations
for each of the abstract methods defined in the interface. A class that im-
plements an interface uses the reserved word implements followed by
the interface name in the class header. If a class asserts that it implements
a particular interface, it must provide a definition for all methods in the
interface. The compiler will produce errors if any of the methods in the
interface is not given a definition in the class.

For example, a class called Question could be defined to represent a question
that a teacher may ask on a test. If the Question class implements the Complexity
interface, it must explicitly say so in the header and must define both methods
from the Complexity interface:

class Questions implements Complexity
{
 int difficulty;
 // whatever else

Key COnCept
A class implements an interface,
which formally defines a set of
methods used to interact with
objects of that class.

Key COnCept
An interface is a collection of abstract
methods. It cannot be instantiated.

Z02_LEWI3322_AppB_pp463-514.indd 486 20/02/13 11:41 AM

 B.12 Interfaces 487

 void setComplexity(int complexity)
 {
 difficulty = complexity;
 }

 int getComplexity()
 {
 return difficulty;
 }

}

Multiple classes can implement the same interface, providing alternative defini-
tions for the methods. For example, we could implement a class called Task that
also implemented the Complexity interface. In it we could choose to manage the
complexity of a task in a different way (though it would still have to implement
all the methods of the interface).

A class can implement more than one interface. In these cases, the class must
provide an implementation for all methods in all interfaces listed. To show that a
class implements multiple interfaces, they are listed in the implements clause,
separated by commas. Here is an example:

class ManyThings implements Interface1, Interface2, Interface3
{
 // all methods of all interfaces
}

In addition to, or instead of, abstract methods, an interface can also contain
constants, defined using the final modifier. When a class implements an inter-
face, it gains access to all of the constants defined in it. This mechanism allows
multiple classes to share a set of constants that are defined in a single location.

the Comparable interface
The Java standard class library contains interfaces as well as classes. The Comparable
interface, for example, is defined in the java.lang package. It contains only one
method, compareTo, which takes an object as a parameter and returns an integer.

The intention of this interface is to provide a common mechanism for comparing
one object to another. One object calls the method and passes another as a parameter:

if (obj1.compareTo(obj2) < 0)

 System.out.println("obj1 is less than obj2");

As specified by the documentation for the interface, the integer that is returned
from the compareTo method should be negative if obj1 is less than obj2, 0 if they
are equal, and positive if obj1 is greater than obj2. It is up to the designer of each
class to decide what it means for one object of that class to be less than, equal to,
or greater than another.

Z02_LEWI3322_AppB_pp463-514.indd 487 20/02/13 11:41 AM

488 Appendix B Object-Oriented Design

The String class contains a compareTo method that operates in this man-
ner. Now we can clarify that the String class has this method because it im-
plements the Comparable interface. The String class implementation of this
method bases the comparison on the lexicographic ordering defined by the
Unicode character set.

B.13 inheritance

A class establishes the characteristics and behaviors of an object, but it reserves
no memory space for variables (unless those variables are declared as static).
Classes are the plan, and objects are the embodiment of that plan.

Many houses can be created from the same blueprint. They are essentially the
same house in different locations with different people living in them. But suppose
you want a house that is similar to another but has some different or additional
features. You want to start with the same basic blueprint and then modify it to
suit your needs and desires. Many housing developments are created this way. The
houses in the development have the same core layout, but each house can be “cus-
tomized” to include some unique features. For instance, they may all be split-level
homes with the same bedroom, kitchen, and living room configuration, but some
have a fireplace or full basement whereas others do not, and some have an at-
tached garage instead of a carport.

It’s likely that the housing developer commissioned a master architect to
create a single blueprint to establish the basic design of all houses in the devel-
opment and then add a series of new blueprints that include variations de-
signed to appeal to different buyers. The act of creating the series of blueprints
was simplified because they all begin with the same underlying structure,
while the variations give them unique characteristics that may be very impor-
tant to the prospective owners.

Creating a new blueprint that is based on an existing blueprint is analogous to
the object-oriented concept of inheritance, which allows a software designer to
define a new class in terms of an existing one. It is a powerful software develop-
ment technique and a defining characteristic of object-oriented programming.

derived Classes
Inheritance is the process in which a new class is derived from an
existing one. The new class automatically contains some or all of the
variables and methods in the original class. Then, to tailor the class
as needed, the programmer can add new variables and methods to
the derived class, or modify the inherited ones.

Key COnCept
Inheritance is the process of deriving
a new class from an existing one.

Z02_LEWI3322_AppB_pp463-514.indd 488 20/02/13 11:41 AM

 B.13 Inheritance 489

In general, creating new classes via inheritance is faster, easier,
and cheaper than writing them from scratch. At the heart of in-
heritance is the idea of software reuse. By using existing software
components to create new ones, we capitalize on all of the effort
that went into the design, implementation, and testing of the ex-
isting software.

Keep in mind that the word class comes from the idea of classify-
ing groups of objects with similar characteristics. Classification
schemes often use levels of classes that are related to one another.
For example, all mammals share certain characteristics; they are
warm-blooded, have hair, and bear live offspring. Now consider a
subset of mammals, such as horses. All horses are mammals and
have all the characteristics of mammals. But they also have unique features that
make them different from other mammals.

If we map this idea into software terms, an existing class called Mammal will
have certain variables and methods that describe the state and behavior of mam-
mals. A Horse class can be derived from the existing Mammal class, automatically
inheriting the variables and methods contained in Mammal. The Horse class can
refer to the inherited variables and methods as if they had been declared locally in
that class. New variables and methods can then be added to the derived class, to
distinguish a horse from other mammals. Inheritance nicely models many situa-
tions found in the natural world.

The original class that is used to derive a new one is called the
parent class, superclass, or base class. The derived class is called a
child class or subclass. Java uses the reserved word extends to
indicate that a new class is being derived from an existing class.

The derivation process should establish a specific kind of relation-
ship between two classes: an is-a relationship. This type of relationship means
that the derived class should be a more specific version of the original. For
example, a horse is a mammal. Not all mammals are horses, but all horses are
mammals.

Let’s look at an example. The following class can be used to define a book:

class Book
{
 protected int numPages;

 protected void pages()
 {
 System.out.println("Number of pages: " + numPages);
 }

}

Key COnCept
One purpose of inheritance is to
reuse existing software.

Key COnCept
Inheritance creates an is-a relation-
ship between all parent and child
classes.

Key COnCept
Inherited variables and methods can
be used in the derived class as if they
had been declared locally.

Z02_LEWI3322_AppB_pp463-514.indd 489 20/02/13 11:41 AM

490 Appendix B Object-Oriented Design

To derive a child class that is based on the Book class, we use the reserved word
extends in the header of the child class. For example, a Dictionary class can be
derived from Book as follows:

class Dictionary extends Book
{
 private int numDefs;

 public void info()
 {
 System.out.println("Number of definitions: " + numDefs);
 System.out.println("Definitions per page: "
 + numDefs/numPages);
 }

}

Saying that the Dictionary class extends the Book class means that the
Dictionary class automatically inherits the numPages variable and the pages
method. Note that the info method uses the numPages variable explicitly.

Inheritance is a one-way street. The Book class cannot use variables or methods
that are declared explicitly in the Dictionary class. For instance, if we created an
object from the Book class, it could not be used to invoke the info method. This
restriction makes sense, because a child class is a more specific version of the par-
ent. A dictionary has pages, because all books have pages, but even though a dic-
tionary has definitions, not all books do.

Inheritance relationships are represented in UML class diagrams using an ar-
row with an open arrowhead pointing from the child class to the parent class.

the protected Modifier
Not all variables and methods are inherited in a derivation. The visibility modifi-
ers used to declare the members of a class determine which ones are inherited and
which are not. Specifically, the child class inherits variables and methods that are
declared public, and it does not inherit those that are declared private.

However, if we declare a variable with public visibility so that a derived
class can inherit it, we violate the principle of encapsulation. Therefore, Java
provides a third visibility modifier: protected. When a variable or method is
declared with protected visibility, a derived class will inherit it, retaining some
of its encapsulation properties. The encapsulation with protected visibility is
not as tight as it would be if the variable or method were declared private, but
it is better than if it were declared public. Specifically, a variable or method
declared with protected visibility may be accessed by any class in the same
package.

Z02_LEWI3322_AppB_pp463-514.indd 490 20/02/13 11:41 AM

 B.13 Inheritance 491

Each inherited variable or method retains the effect of its original
visibility modifier. For example, if a method is public in the parent, it
is public in the child.

Constructors are not inherited in a derived class, even though
they have public visibility. This is an exception to the rule about pub-
lic members being inherited. Constructors are special methods that
are used to set up a particular type of object, so it wouldn’t make
sense for a class called Dictionary to have a constructor called Book.

the super reference
The reserved word super can be used in a class to refer to its parent class. Using
the super reference, we can access a parent’s members, even if they aren’t inher-
ited. Like the this reference, what the word super refers to depends on the class
in which it is used. However, unlike the this reference, which refers to a particu-
lar instance of a class, super is a general reference to the members of the parent
class.

One use of the super reference is to invoke a parent’s constructor. If the fol-
lowing invocation is performed at the beginning of a constructor, the parent’s
constructor is invoked, passing any appropriate parameters:

super(x, y, z);

A child’s constructor is responsible for calling its parent’s constructor.
Generally, the first line of a constructor should use the super reference call to a
constructor of the parent class. If no such call exists, Java will automatically make
a call to super() at the beginning of the constructor. This rule ensures that a par-
ent class initializes its variables before the child class constructor begins to exe-
cute. Using the super reference to invoke a parent’s constructor can be done only
in the child’s constructor and, if included, must be the first line of the constructor.

The super reference can also be used to reference other variables
and methods defined in the parent’s class.

Overriding Methods
When a child class defines a method with the same name and signature as a
method in the parent, we say that the child’s version overrides the
parent’s version in favor of its own. The need for overriding occurs
often in inheritance situations.

The object that is used to invoke a method determines which ver-
sion of the method is actually executed. If it is an object of the parent

Key COnCept
Visibility modifiers determine which
variables and methods are inherited.
Protected visibility provides the best
possible encapsulation that permits
inheritance.

Key COnCept
A parent’s constructor can be invoked
using the super reference.

Key COnCept
A child class can override (redefine)
the parent’s definition of an inherited
method.

Z02_LEWI3322_AppB_pp463-514.indd 491 20/02/13 11:41 AM

492 Appendix B Object-Oriented Design

type, the parent’s version of the method is invoked. If it is an object of the child
type, the child’s version is invoked. This flexibility allows two objects that are re-
lated by inheritance to use the same naming conventions for methods that accom-
plish the same general task in different ways.

A method can be defined with the final modifier. A child class cannot over-
ride a final method. This technique is used to ensure that a derived class uses a
particular definition for a method.

The concept of method overriding is important to several issues related to in-
heritance. These issues are explored in later sections of this appendix.

B.14 Class Hierarchies

A child class derived from one parent can be the parent of its own child class.
Furthermore, multiple classes can be derived from a single parent. Therefore, in-
heritance relationships often develop into class hierarchies. The UML class dia-
gram in Figure B.4 shows a class hierarchy that incorporates the inheritance rela-
tionship between the classes Mammal and Horse.

There is no limit to the number of children a class can have, or to the number
of levels to which a class hierarchy can extend. Two children of the same parent
are called siblings. Although siblings share the characteristics passed on by their
common parent, they are not related by inheritance, because one is not used to
derive the other.

In class hierarchies, common features should be kept as high in
the hierarchy as reasonably possible. That way, the only characteris-
tics explicitly established in a child class are those that make the
class distinct from its parent and from its siblings. This approach
maximizes the ability to reuse classes. It also facilitates maintenance
activities, because when changes are made to the parent, they are
automatically reflected in the descendants. Always remember to
maintain the is-a relationship when building class hierarchies.

The inheritance mechanism is transitive. That is, a parent passes
along a trait to a child class, that child class passes the trait along to
its children, and so on. An inherited feature might have originated in
the immediate parent, or possibly from several levels higher in a
more distant ancestor class.

There is no single best hierarchy organization for all situations.
The decisions made when designing a class hierarchy restrict and guide more
detailed design decisions and implementation options, and they must be made
carefully.

Key COnCept
The child of one class can be the par-
ent of one or more other classes, cre-
ating a class hierarchy.

Key COnCept
Common features should be located
as high in a class hierarchy as is rea-
sonable, in order to minimize mainte-
nance efforts.

Z02_LEWI3322_AppB_pp463-514.indd 492 20/02/13 11:41 AM

 B.14 Class Hierarchies 493

the Object Class
In Java, all classes are derived ultimately from the Object class. If a class defini-
tion doesn’t use the extends clause to derive itself explicitly from another class,
then that class is automatically derived from the Object class by default.
Therefore, the following two class definitions are equivalent:

 class Thing
 {
 // whatever
 }

and

 class Thing extends Object
 {
 // whatever

 }

Because all classes are derived from Object, any public method of Object can
be invoked through any object created in any Java program. The Object class is
defined in the java.lang package of the standard class library.

The toString method, for instance, is defined in the Object class, so the
toString method can be called on any object. When a println method is called
with an object parameter, toString is called to determine what to print.

Animal

Bird

Parrot

Mammal

Horse Bat

Reptile

LizardSnake

FigUre B.4 A UML class diagram showing a class hierarchy

Z02_LEWI3322_AppB_pp463-514.indd 493 20/02/13 11:41 AM

494 Appendix B Object-Oriented Design

The definition for toString that is provided by the Object class
returns a string containing the object’s class name followed by a nu-
meric value that is unique for that object. Usually, we override the
Object version of toString to fit our own needs. The String class
has overridden the toString method so that it returns its stored
string value.

The equals method of the Object class is also useful. Its purpose
is to determine whether two objects are equal. The definition of the
equals method provided by the Object class returns true if the two
object references actually refer to the same object (that is, if they are
aliases). Classes often override the inherited definition of the equals
method in favor of a more appropriate definition. For instance, the

String class overrides equals so that it returns true only if both strings contain
the same characters in the same order.

Abstract Classes
An abstract class represents a generic concept in a class hierarchy. An abstract
class cannot be instantiated and usually contains one or more abstract methods,
which have no definition. In this sense, an abstract class is similar to an interface.
Unlike interfaces, however, an abstract class can contain methods that are not ab-
stract and can contain data declarations other than constants.

A class is declared as abstract by including the abstract modifier in the class
header. Any class that contains one or more abstract methods must be declared as
abstract. In abstract classes (unlike interfaces), the abstract modifier must be
applied to each abstract method. A class declared as abstract does not have to
contain abstract methods.

Abstract classes serve as placeholders in a class hierarchy. As the name implies,
an abstract class represents an abstract entity that is usually not sufficiently de-
fined to be useful by itself. Instead, an abstract class may contain a partial descrip-
tion that is inherited by all of its descendants in the class hierarchy. Its children,
which are more specific, fill in the gaps.

Consider the class hierarchy shown in Figure B.5. The Vehicle
class at the top of the hierarchy may be too generic for a particular
application. Therefore, we may choose to implement it as an abstract
class. Concepts that apply to all vehicles can be represented in the
Vehicle class and are inherited by its descendants. That way, each
of its descendants doesn’t have to define the same concept redun-
dantly, and perhaps inconsistently.

For example, we may say that all vehicles have a particular speed. Therefore,
we declare a speed variable in the Vehicle class, and all specific vehicles below it

Key COnCept
All Java classes are derived, directly
or indirectly, from the Object class.

Key COnCept
The toString and equals methods
are defined in the Object class and
therefore are inherited by every class
in every Java program.

Key COnCept
An abstract class cannot be instanti-
ated. It represents a concept on
which other classes can build their
definitions.

Z02_LEWI3322_AppB_pp463-514.indd 494 20/02/13 11:41 AM

 B.14 Class Hierarchies 495

in the hierarchy automatically have that variable via inheritance. Any change we
make to the representation of the speed of a vehicle is automatically reflected
in all descendant classes. Similarly, we may declare an abstract method called
fuelConsumption, whose purpose is to calculate how quickly fuel is being con-
sumed by a particular vehicle. The details of the fuelConsumption method must
be defined by each type of vehicle, but the Vehicle class establishes that all vehi-
cles consume fuel and provides a consistent way to compute that value.

Some concepts don’t apply to all vehicles, so we wouldn’t represent those con-
cepts at the Vehicle level. For instance, we wouldn’t include a variable called
numberOfWheels in the Vehicle class, because not all vehicles have wheels. The
child classes for which wheels are appropriate can add that concept at the appro-
priate level in the hierarchy.

There are no restrictions on where in a class hierarchy an abstract class can be
defined. Abstract classes are usually located at the upper levels of a class hierar-
chy. However, it is possible to derive an abstract class from a nonabstract parent.

Usually, a child of an abstract class will provide a specific definition for an abstract
method inherited from its parent. Note that this is just a specific case of overriding a
method, giving a different definition from the one the parent provides. If a child of an
abstract class does not give a definition for every abstract method that it inherits from
its parent, then the child class is also considered to be abstract.

Note that it would be a contradiction for an abstract method to be
modified as final or static. Because a final method cannot be
overridden in subclasses, an abstract final method would have no
way of being given a definition in subclasses. A static method can be
invoked using the class name without declaring an object of the class.
Because abstract methods have no implementation, an abstract static
method would make no sense.

Choosing which classes and methods to make abstract is an important part of the
design process. Such choices should be made only after careful consideration. By us-
ing abstract classes wisely, we can create flexible, extensible software designs.

FigUre B.5 A Vehicle class hierarchy

Vehicle

Boat PlaneCar

Key COnCept
A class derived from an abstract par-
ent must override all of its parent’s
abstract methods, or the derived
class will also be considered abstract.

Z02_LEWI3322_AppB_pp463-514.indd 495 20/02/13 11:41 AM

496 Appendix B Object-Oriented Design

interface Hierarchies
The concept of inheritance can be applied to interfaces as well as to classes. That
is, one interface can be derived from another interface. These relationships can
form an interface hierarchy, which is similar to a class hierarchy. Inheritance rela-
tionships between interfaces are shown in UML using the same connection (an
arrow with an open arrowhead) that is used with classes.

When a parent interface is used to derive a child interface, the
child inherits all abstract methods and constants of the parent. Any
class that implements the child interface must implement all of the
methods. There are no restrictions on the inheritance between inter-
faces, as there are with protected and private members of a class,
because all members of an interface are public.

Class hierarchies and interface hierarchies do not overlap. That is, an interface
cannot be used to derive a class, and a class cannot be used to derive an interface.
A class and an interface interact only when a class is designed to implement a par-
ticular interface.

B.15 polymorphism

Usually, the type of a reference variable exactly matches the class of the object it
refers to. That is, if we declare a reference as follows:

ChessPiece bishop;

the bishop reference is used to refer to an object created by instantiating the
ChessPiece class. However, the relationship between a reference variable and the
object it refers to is more flexible than that.

The term polymorphism can be defined as “having many forms.” A polymor-
phic reference is a reference variable that can refer to different types of objects at
different points in time. The specific method invoked through a polymorphic ref-
erence can change from one invocation to the next.

Consider the following line of code:

obj.doIt();

If the reference obj is polymorphic, it can refer to different types of objects at
different times. If that line of code is in a loop or in a method that is called more

than once, that line of code might call a different version of the doIt
method each time it is invoked.

At some point, the commitment is made to execute certain
code to carry out a method invocation. This commitment is

Key COnCept
Inheritance can be applied to inter-
faces, so that one interface can be
derived from another interface.

Key COnCept
A polymorphic reference can refer to
different types of objects over time.

Z02_LEWI3322_AppB_pp463-514.indd 496 20/02/13 11:41 AM

 B.15 Polymorphism 497

referred to as binding a method invocation to a method definition. In most
situations, the binding of a method invocation to a method definition can oc-
cur at compile time. For polymorphic references, however, the decision cannot
be made until run-time. The method definition that is used is based on the
object that is being referred to by the reference variable at that moment. This
deferred commitment is called late binding or dynamic binding. It is less effi-
cient than binding at compile time, because the decision has to be made during
the execution of the program. This overhead is generally acceptable in light of
the flexibility that a polymorphic reference provides.

There are two ways to create a polymorphic reference in Java: using inheri-
tance and using interfaces. The following sections describe these approaches.

references and Class Hierarchies
In Java, a reference that is declared to refer to an object of a particular class also
can be used to refer to an object of any class related to it by inheritance. For ex-
ample, if the class Mammal is used to derive the class Horse, then a Mammal refer-
ence can be used to refer to an object of class Horse. This ability is shown in the
code segment

Mammal pet;
Horse secretariat = new Horse();
pet = secretariat; // a valid assignment

The reverse operation, assigning the Mammal object to a Horse reference, is also
valid, but it requires an explicit cast. Assigning a reference in this direction is gen-
erally less useful and more likely to cause problems, because although a horse has
all the functionality of a mammal (because a horse is-a mammal), the reverse is
not necessarily true.

This relationship works throughout a class hierarchy. If the Mammal class were
derived from a class called Animal, then the following assignment would also be
valid:

Animal creature = new Horse();

Carrying this to the extreme, an Object reference can be used to refer to any
object, because ultimately all classes are descendants of the Object class. An
ArrayList, for example, uses polymorphism in that it is designed to
hold Object references. That’s why an ArrayList can be used to
store any kind of object. In fact, a particular ArrayList can be used
to hold several different types of objects at one time, because, in es-
sence, they are all Object objects.

Key COnCept
A reference variable can refer to any
object created from any class related
to it by inheritance.

Z02_LEWI3322_AppB_pp463-514.indd 497 20/02/13 11:41 AM

498 Appendix B Object-Oriented Design

polymorphism via inheritance
The reference variable creature, as defined in the previous section, can be poly-
morphic, because at any point in time it could refer to an Animal object, a Mammal
object, or a Horse object. Suppose that all three of these classes have a method
called move and that it is implemented in a different way in each class (because
the child class overrode the definition it inherited). The invocation

creature.move();

calls the move method, but the particular version of the method it calls is deter-
mined at run-time.

At the point when this line is executed, if creature currently refers to an
Animal object, the move method of the Animal class is invoked. Likewise, if
creature currently refers to a Mammal or Horse object, the Mammal or Horse ver-
sion of move is invoked, respectively.

Of course, because Animal and Mammal represent general con-
cepts, they may be defined as abstract classes. This situation does not
eliminate the ability to have polymorphic references. Suppose the
move method in the Mammal class is abstract and is given unique defi-
nitions in the Horse, Dog, and Whale classes (all derived from
Mammal). A Mammal reference variable can be used to refer to any

objects created from any of the Horse, Dog, and Whale classes, and it can be used
to execute the move method on any of them.

Let’s consider another situation. The class hierarchy shown in Figure B.6 con-
tains classes that represent various types of employees that might work at a par-
ticular company.

Polymorphism could be used in this situation to pay various employees in dif-
ferent ways. One list of employees (of whatever type) could be paid using a single
loop that invokes each employee’s pay method. But the pay method that is in-
voked each time will depend on the specific type of employee that is executing the
pay method during that iteration of the loop.

This is a classic example of polymorphism—allowing different types of objects
to handle a similar operation in different ways.

polymorphism via interfaces
As we have seen, a class name is used to declare the type of an object reference
variable. Similarly, an interface name can be used as the type of a reference vari-
able as well. An interface reference variable can be used to refer to any object of
any class that implements that interface.

Key COnCept
A polymorphic reference uses the
type of the object, not the type of the
reference, to determine which ver-
sion of a method to invoke.

Z02_LEWI3322_AppB_pp463-514.indd 498 20/02/13 11:41 AM

 B.15 Polymorphism 499

main (args : String[]) : void

Firm

name : String
address : String
phone : String

toString() : String
pay() : double

StaffMember

socialSecurityNumber : String
payRate : double

toString() : String
pay() : double

Employee

hoursWorked : int

addHours (moreHours : int) : void
pay() : double
toString() : String

Hourly

bonus : double

awardBonus (execBonus : double) : void
pay() : double

Executive

payday() : void

staffList : StaffMember[]

Staff

pay() : double

Volunteer

FigUre B.6 A class hierarchy of employees

Z02_LEWI3322_AppB_pp463-514.indd 499 20/02/13 11:41 AM

500 Appendix B Object-Oriented Design

Suppose we declare an interface called Speaker as follows:

public interface Speaker
{
 public void speak();
 public void announce(String str);

}

The interface name, Speaker, can now be used to declare an ob-
ject reference variable:

Speaker current;

The reference variable current can be used to refer to any object
of any class that implements the Speaker interface. For example, if
we define a class called Philosopher such that it implements the
Speaker interface, we can then assign a Philosopher object to a
Speaker reference:

current = new Philosopher();

This assignment is valid because a Philosopher is, in fact, a
Speaker.

The flexibility of an interface reference enables us to create poly-
morphic references. As we saw earlier in this appendix, by using in-
heritance, we can create a polymorphic reference that can refer to
any one of a set of objects related by inheritance. Using interfaces,
we can create similar polymorphic references, except that the objects

being referenced are related by implementing the same interface instead of being
related by inheritance.

For example, if we create a class called Dog that also implements the Speaker
interface, it too can be assigned to a Speaker reference variable. The same refer-
ence, in fact, could at one point refer to a Philosopher object and then later refer
to a Dog object. The following lines of code illustrate this:

Speaker guest;
guest = new Philosopher();
guest.speak();
guest = new Dog();
guest.speak();

In this code, the first time the speak method is called, it invokes the speak
method defined in the Philosopher class. The second time it is called, it invokes
the speak method of the Dog class. As with polymorphic references via inheri-
tance, it is not the type of the reference that determines which method gets in-
voked, but rather it is the type of the object that the reference points to at the
moment of invocation.

Key COnCept
Interfaces enable us to make poly-
morphic references, in which the
method that is invoked is based on
the particular object being referenced
at the time.

Key COnCept
An interface name can be used to de-
clare an object reference variable. An
interface reference can refer to any
object of any class that implements
the interface.

Z02_LEWI3322_AppB_pp463-514.indd 500 20/02/13 11:41 AM

 B.16 Exceptions 501

Note that when we are using an interface reference variable, we can invoke
only the methods defined in the interface, even if the object it refers to has other
methods to which it can respond. For example, suppose the Philosopher class
also defined a public method called pontificate. The second line of the follow-
ing code would generate a compiler error, even though the object can in fact re-
spond to the pontificate method.

Speaker special = new Philosopher();
special.pontificate(); // generates a compiler error

The problem is that the compiler can determine only that the object is a
Speaker and therefore can guarantee only that the object can respond to the
speak and announce methods. Because the reference variable special could re-
fer to a Dog object (which cannot pontificate), it does not allow the reference. If
we know in a particular situation that such an invocation is valid, we can cast the
object into the appropriate reference so that the compiler will accept it:

((Philosopher)special).pontificate();

Similar to polymorphic references based on inheritance, an interface name can be
used as the type of a method parameter. In such situations, any object of any class that
implements the interface can be passed into the method. For example, the following
method takes a Speaker object as a parameter. Therefore, both a Dog object and a
Philosopher object can be passed into it in separate invocations.

public void sayIt(Speaker current)
{
 current.speak();

}

B.16 exceptions

Problems that arise in a Java program may generate exceptions or errors. An ex-
ception is an object that defines an unusual or erroneous situation. An exception
is thrown by a program or the run-time environment, and it can be caught and
handled appropriately if desired. An error is similar to an exception, except that
an error generally represents an unrecoverable situation, and it should not be
caught. Java has a predefined set of exceptions and errors that may occur during
the execution of a program.

A program can be designed to process an exception in one of three ways:

■ Not handle the exception at all.

■ Handle the exception where it occurs.

■ Handle the exception at another point in the program.

Z02_LEWI3322_AppB_pp463-514.indd 501 20/02/13 11:41 AM

502 Appendix B Object-Oriented Design

We explore each of these approaches in the following sections.

exception Messages
If an exception is not handled at all by the program, the program will terminate
(abnormally) and produce a message that describes what exception occurred and
where in the program it was produced. The information associated with an excep-
tion is often helpful in tracking down the cause of a problem.

Let’s look at the output of an exception. An ArithmeticException
is thrown when an invalid arithmetic operation, such as dividing by
zero, is attempted. When that exception is thrown, if there is no code
in the program to handle the exception explicitly, the program termi-
nates and prints a message similar to the following:

Exception in thread “main” java.lang.ArithmeticException: / by
zero at Zero.main (Zero.java:17)

The first line of the exception output indicates which exception was thrown
and provides some information about why it was thrown. The remaining line or
lines are the call stack trace, which indicates where the exception occurred. In this
case, there is only one line in the call stack trace, but in other cases there may be
several, depending on where the exception originated in the program.

The first line of the trace indicates the method, file, and line num-
ber where the exception occurred. The other lines in the trace, if
present, indicate the methods that were called to get to the method
that produced the exception. In this program, there is only one
method, and it produced the exception; therefore, there is only one
line in the trace.

The call stack trace information can also be found by calling methods of the
exception object that is being thrown. The method getMessage returns a string
explaining why the exception was thrown. The method printStackTrace prints
the call stack trace.

the try Statement
Let’s now examine how we catch and handle an exception when it is thrown. A
try statement consists of a try block followed by one or more catch clauses. The
try block is a group of statements that may throw an exception. A catch clause
defines how a particular kind of exception is handled. A try block can have sev-
eral catch clauses associated with it, each dealing with a particular kind of excep-
tion. A catch clause is sometimes called an exception handler.

Key COnCept
Errors and exceptions represent un-
usual or invalid processing.

Key COnCept
The messages printed by a thrown
exception indicate the nature of the
problem and provide a method call
stack trace.

Z02_LEWI3322_AppB_pp463-514.indd 502 20/02/13 11:41 AM

 B.16 Exceptions 503

Here is the general format of a try statement:

try
{
 // statements in the try block
}
catch(IOException exception)
{
 // statements that handle the I/O problem
}
catch(NumberFormatException exception)
{
 // statements that handle the number format problem
}

When a try statement is executed, the statements in the try block are exe-
cuted. If no exception is thrown during execution of the try block, processing
continues with the statement following the try statement (after all of the catch
clauses). This situation is the normal execution flow and should occur most of the
time.

If an exception is thrown at any point during execution of the try block, con-
trol is immediately transferred to the appropriate exception handler if it is pres-
ent. That is, control transfers to the first catch clause whose specified exception
corresponds to the class of the exception that was thrown. After the statements in
the catch clause are executed, control transfers to the statement after the entire
try statement.

exception propagation
If an exception is not caught and handled where it occurs, control is
immediately returned to the method that invoked the method that
produced the exception. We can design our software so that the ex-
ception is caught and handled at this outer level. If it isn’t caught
there, control returns to the method that called it. This process is
called propagating the exception.

Exception propagation continues until the exception is caught
and handled, or until it is propagated out of the main method, which
terminates the program and produces an exception message. To catch
an exception at an outer level, the method that produces the excep-
tion must be invoked inside a try block that has an appropriate
catch clause to handle it.

Key COnCept
Each catch clause on a try state-
ment handles a particular kind of
exception that may be thrown within
the try block.

Key COnCept
If an exception is not caught and
handled where it occurs, it is
propagated to the calling method.

Z02_LEWI3322_AppB_pp463-514.indd 503 20/02/13 11:41 AM

504 Appendix B Object-Oriented Design

A programmer must pick the most appropriate level at which to
catch and handle an exception. There is no single best answer. It de-
pends on the situation and the design of the system. Sometimes the
right approach will be not to catch an exception at all and let the
program terminate.

the Exception Class Hierarchy
The classes that define various exceptions are related by inheritance, creating a
class hierarchy that is shown in part in Figure B.7.

The Throwable class is the parent of both the Error class and the
Exception class. Many types of exceptions are derived from the
Exception class, and these classes also have many children.
Although these high-level classes are defined in the java.lang pack-
age, many child classes that define specific exceptions are part of
several other packages. Inheritance relationships can span package
boundaries.

We can define our own exceptions by deriving a new class from Exception or
one of its descendants. The class we choose as the parent depends on what situa-
tion or condition the new exception represents.

After creating the class that defines the exception, we can create an object of
that type as needed. The throw statement is used to throw the exception. For
example:

throw new MyException();

Key COnCept
A programmer must carefully con-
sider how exceptions should be han-
dled, if at all, and at what level.

Key COnCept
A new exception is defined by deriv-
ing a new class from the Exception
class or one of its descendants.

Object

Throwable

ExceptionError

Linkage Error

ThreadDeath

VirtualMachineError

AWTError

RunTimeException

ArithmeticException

IndexOutOfBoundsException

NullPointerException

IllegalAccessException

NoSuchMethodException

ClassNotFoundException

Z02_LEWI3322_AppB_pp463-514.indd 504 20/02/13 11:41 AM

 B.16 Exceptions 505

Object

Throwable

ExceptionError

Linkage Error

ThreadDeath

VirtualMachineError

AWTError

RunTimeException

ArithmeticException

IndexOutOfBoundsException

NullPointerException

IllegalAccessException

NoSuchMethodException

ClassNotFoundException

FigUre B.7 Part of the Error and Exception class hierarchy

Z02_LEWI3322_AppB_pp463-514.indd 505 20/02/13 11:41 AM

506 Appendix B Object-Oriented Design

Summary of Key Concepts
■ An abstraction hides details. A good abstraction hides the right details at the

right time so that we can manage complexity.

■ The new operator returns a reference to a newly created object.

■ The Java standard class library is a useful set of classes that anyone can use
when writing Java programs.

■ A package is a Java language element used to group related classes under a
common name.

■ Each object has a state and a set of behaviors. The values of an object’s vari-
ables define its state. The methods to which an object responds define its be-
haviors.

■ A class is a blueprint for an object; it reserves no memory space for data.
Each object has its own data space and thus its own state.

■ The scope of a variable, which determines where it can be referenced, de-
pends on where it is declared.

■ Objects should be encapsulated. The rest of a program should interact with
an object only through a well-defined interface.

■ Instance variables should be declared with private visibility to promote en-
capsulation.

■ A variable declared in a method is local to that method and cannot be used
outside of it.

■ A constructor cannot have any return type, even void.

■ The versions of an overloaded method are distinguished by their signatures.
The number, type, or order of their parameters must be distinct.

■ An object reference variable stores the address of an object.

■ The reserved word null represents a reference that does not point to a valid
object.

■ The this reference always refers to the currently executing object.

■ Several references can refer to the same object. These references are aliases of
each other.

■ The == operator compares object references for equality, returning true if the
references are aliases of each other.

■ The equals method can be defined to determine equality between objects in
any way we consider appropriate.

Z02_LEWI3322_AppB_pp463-514.indd 506 20/02/13 11:41 AM

 Summary of Key Concepts 507

■ If an object has no references to it, a program cannot use it. Java performs
automatic garbage collection by periodically reclaiming the memory space
occupied by these objects.

■ When an object is passed to a method, the actual and formal parameters
become aliases of each other.

■ A static variable is shared among all instances of a class.

■ A method is made static by using the static modifier in the method decla-
ration.

■ A wrapper class represents a primitive value so that it can be treated as an
object.

■ An interface is a collection of abstract methods. It cannot be instantiated.

■ A class implements an interface, which formally defines a set of methods
used to interact with objects of that class.

■ Inheritance is the process of deriving a new class from an existing one.

■ One purpose of inheritance is to reuse existing software.

■ Inherited variables and methods can be used in the derived class as if they
had been declared locally.

■ Inheritance creates an is-a relationship between all parent and child classes.

■ Visibility modifiers determine which variables and methods are inherited.
Protected visibility provides the best possible encapsulation that permits
inheritance.

■ A parent’s constructor can be invoked using the super reference.

■ A child class can override (redefine) the parent’s definition of an inherited
method.

■ The child of one class can be the parent of one or more other classes, creat-
ing a class hierarchy.

■ Common features should be located as high in a class hierarchy as is reason-
able, in order to minimize maintenance efforts.

■ All Java classes are derived, directly or indirectly, from the Object class.

■ The toString and equals methods are defined in the Object class and
therefore are inherited by every class in every Java program.

■ An abstract class cannot be instantiated. It represents a concept on which
other classes can build their definitions.

■ A class derived from an abstract parent must override all of its parent’s ab-
stract methods, or the derived class will also be considered abstract.

Z02_LEWI3322_AppB_pp463-514.indd 507 20/02/13 11:41 AM

508 Appendix B Object-Oriented Design

■ Inheritance can be applied to interfaces, so that one interface can be derived
from another interface.

■ A polymorphic reference can refer to different types of objects over time.

■ A reference variable can refer to any object created from any class related to
it by inheritance.

■ A polymorphic reference uses the type of the object, not the type of the refer-
ence, to determine which version of a method to invoke.

■ An interface name can be used to declare an object reference variable. An
interface reference can refer to any object of any class that implements the
interface.

■ Interfaces enable us to make polymorphic references, in which the method
that is invoked is based on the particular object being referenced at the time.

■ Errors and exceptions represent unusual or invalid processing.

■ The messages printed by a thrown exception indicate the nature of the prob-
lem and provide a method call stack trace.

■ Each catch clause on a try statement handles a particular kind of exception
that may be thrown within the try block.

■ If an exception is not caught and handled where it occurs, it is propagated to
the calling method.

■ A programmer must carefully consider how exceptions should be handled, if
at all, and at what level.

■ A new exception is defined by deriving a new class from the Exception class
or one of its descendants.

Self-review Questions
SR B.1 What is the difference between an object and a class?

SR B.2 Objects should be self-governing. Explain.

SR B.3 Describe each of the following:

a. public method

b. private method

c. public variable

d. private variable

SR B.4 What are constructors used for? How are they defined?

SR B.5 How are overloaded methods distinguished from each other?

Z02_LEWI3322_AppB_pp463-514.indd 508 20/02/13 11:41 AM

SR B.6 What is an aggregate object?

SR B.7 What is the difference between a static variable and an instance
variable?

SR B.8 What is the difference between a class and an interface?

SR B.9 Describe the relationship between a parent class and a child class.

SR B.10 What relationship should every class derivation represent?

SR B.11 What is the significance of the Object class?

SR B.12 What is polymorphism?

SR B.13 How is overriding related to polymorphism?

SR B.14 How can polymorphism be accomplished using interfaces?

exercises
EX B.1 Identify each of the following as a class, an object, or a method.

 > superman
 > breakChain
 > SuperHero
 > saveLife

EX B.2 Identify each of the following as a class, an object, or a method.

 > Beverage
 > pepsi
 > drink
 > refill
 > coke

EX B.3 Explain why a static method cannot refer to an instance variable.

EX B.4 Can a class implement two interfaces that both contain the same
method signature? Explain.

EX B.5 Describe the relationship between a parent class and a child class.

EX B.6 Draw and annotate a class hierarchy that represents various types
of faculty at a university. Show what characteristics would be rep-
resented in the various classes of the hierarchy. Explain how poly-
morphism could play a role in the process of assigning courses to
each faculty member.

programming projects
PP B.1 Design and implement a class called Sphere that contains

instance data that represent the sphere’s diameter. Define the
Sphere constructor to accept and initialize the diameter, and

 Programming Projects 509

Z02_LEWI3322_AppB_pp463-514.indd 509 20/02/13 11:41 AM

510 Appendix B Object-Oriented Design

include getter and setter methods for the diameter. Include
methods that calculate and return the volume and surface area of
the sphere (see Programming Project 3.2 for the formulas).
Include a toString method that returns a one-line description of
the sphere. Create a driver class called MultiSphere, whose main
method instantiates and updates several Sphere objects.

PP B.2 Design and implement a class called Dog that contains instance
data that represent the dog’s name and age. Define the Dog
constructor to accept and initialize instance data. Include getter
and setter methods for the name and age. Include a method to
compute and return the age of the dog in “person years” (seven
times the dog’s age). Include a toString method that returns a
one-line description of the dog. Create a driver class called
Kennel, whose main method instantiates and updates several Dog
objects.

PP B.3 Design and implement a class called Box that contains instance
data that represent the height, width, and depth of the box. Also
include a boolean variable called full as instance data that
represent whether the box is full or not. Define the Box
constructor to accept and initialize the height, width, and depth
of the box. Each newly created Box is empty (the constructor
should initialize full to false). Include getter and setter
methods for all instance data. Include a toString method that
returns a one-line description of the box. Create a driver class
called BoxTest, whose main method instantiates and updates
several Box objects.

PP B.4 Design and implement a class called Book that contains instance
data for the title, author, publisher, and copyright date. Define the
Book constructor to accept and initialize these data. Include
getter and setter methods for all instance data. Include a
toString method that returns a nicely formatted, multi-line
description of the book. Create a driver class called Bookshelf,
whose main method instantiates and updates several Book
objects.

PP B.5 Design and implement a class called Flight that represents an
airline flight. It should contain instance data that represent the
airline name, the flight number, and the flight’s origin and
destination cities. Define the Flight constructor to accept and
initialize all instance data. Include getter and setter methods
for all instance data. Include a toString method that returns a
one-line description of the flight. Create a driver class called

Z02_LEWI3322_AppB_pp463-514.indd 510 20/02/13 11:41 AM

 Programming Projects 511

FlightTest, whose main method instantiates and updates
several Flight objects.

PP B.6 Design a Java interface called Priority that includes two meth-
ods: setPriority and getPriority. The interface should define
a way to establish numeric priority among a set of objects. Design
and implement a class called Task that represents a task (such as
on a to-do list) that implements the Priority interface. Create a
driver class to exercise some Task objects.

PP B.7 Design a Java interface called Lockable that includes the follow-
ing methods: setKey, lock, unlock, and locked. The setKey,
lock, and unlock methods take an integer parameter that repre-
sents the key. The setKey method establishes the key. The lock
and unlock methods lock and unlock the object, but only if the
key passed in is correct. The locked method returns a boolean
that indicates whether or not the object is locked. A Lockable
object represents an object whose regular methods are protected:
If the object is locked, the methods cannot be invoked; if it is un-
locked, they can be invoked. Redesign and implement a version of
the Coin class from Chapter 5 so that it is Lockable.

PP B.8 Design and implement a set of classes that define the employees
of a hospital: doctor, janitor, nurse, administrator, surgeon, recep-
tionist, and so on. Include methods in each class that are named
according to the services provided by that person and that print
an appropriate message. Create a main driver class to instantiate
and exercise several of the classes.

PP B.9 Design and implement a set of classes that define various types of
reading material: books, novels, magazines, technical journals,
textbooks, and so on. Include data values that describe various at-
tributes of the material, such as the number of pages and the
names of the primary characters. Include methods that are named
appropriately for each class and that print an appropriate mes-
sage. Create a main driver class to instantiate and exercise several
of the classes.

PP B.10 Design and implement a set of classes that keeps track of demo-
graphic information about a set of people, such as age, national-
ity, occupation, income, and so on. Design each class to focus on
a particular aspect of data collection. Create a main driver class
to instantiate and exercise several of the classes.

PP B.11 Design and implement a program that creates an exception class
called StringTooLongException, designed to be thrown when a

Z02_LEWI3322_AppB_pp463-514.indd 511 20/02/13 11:41 AM

512 Appendix B Object-Oriented Design

string is discovered that has too many characters in it. In the main
driver of the program, read strings from the user until the user
enters “DONE”. If a string is entered that has too many
characters (say 20), throw the exception. Allow the thrown
exception to terminate the program.

PP B.12 Modify the solution to Programming Project 10.1 such that it
catches and handles the exception if it is thrown. Handle the
exception by printing an appropriate message, and then continue
processing more strings.

Answers to Self-review Questions
SRA B.1 A class is the implementation of the blueprint for an object. An

object is a specific instance of a class.

SRA B.2 To say that objects should be self-governing means that only the
methods of a particular object should be able to access or modify
the object’s variables.

SRA B.3 a. A public method is a method (within a class) that has public
visibility and may be called by a method of any other class that
has declared a variable of the first class.

 b. A private method is a method (within a class) that has private
visibility and may be accessed only by methods within the
class.

 c. A public variable is a variable (within a class) that has public
visibility and may be accessed by any method of any class that
has declared a variable of the first class.

 d. A private variable is a variable (within a class) that has private
visibility and may be accessed only by methods within the
class.

SRA B.4 A constructor is the method that is called in the creation of an
instance of a class. The constructor will typically initialize object
attributes. Multiple constructors may be provided for various
initialization strategies (e.g., no parameters for a default initializa-
tion or one or more parameters for more specific initializations).

SRA B.5 Overloaded methods are distinguished from each other by their
signatures, including the number and type of the parameters.

SRA B.6 An aggregate object is an object that is made up of other objects.

Z02_LEWI3322_AppB_pp463-514.indd 512 20/02/13 11:41 AM

 Answers to Self-Review Questions 513

SRA B.7 A static variable is shared among all instances of a class,
whereas an instance variable is unique to a particular instance.

SRA B.8 A class provides implementations for all of its methods (unless
it is an abstract class), whereas an interface simply provides the
headings for each method.

SRA B.9 The relationship between a child class and its parent class is
called an is-a relationship. For example, if class B is derived
from class A, then B is an instance of A with whatever addi-
tional information and methods are provided in class B.

SRA B.10 Is-a.

SRA B.11 The java.lang.Object class is the root of the class hierarchy
for the Java language. This means that all classes in Java are
ultimately derived from the Object class.

SRA B.12 Polymorphism means “having many forms.” In object-oriented
programming, we refer to an object reference as polymorphic if
it can refer to objects of multiple classes.

SRA B.13 Overriding is related to polymorphism because a parent class
reference can point to objects of any of its descendant classes.
One or more of these classes may have overriden methods
from the parent class, causing the behavior of such a method
to be dependent on the type of the object referenced by the
call.

SRA B.14 Polymorphism can be accomplished using interfaces because
reference variables can be created using the interface type.
Then those references can point to objects of any class that im-
plements the interface.

Z02_LEWI3322_AppB_pp463-514.indd 513 20/02/13 11:41 AM

Z02_LEWI3322_AppB_pp463-514.indd 514 20/02/13 11:41 AM

 This page is intentionally left blank.

CC

515

Java Graphics

In Appendix D, we will cover the issues related to develop-

ing a graphical user interface (GUI) for a Java program.

This appendix is provided to introduce the concepts and

techniques used to manage Java graphics, draw shapes, and

manage color.

Appendix

Z03_LEWI3322_AppC_pp515-536.indd 515 20/02/13 2:14 PM

516 Appendix C Java Graphics

C.1 pixels and Coordinates

A picture is represented on a computer by breaking it down into pixels, a term that is
short for “picture elements.” A complete picture is stored by storing the color of each
individual pixel. The more pixels used to represent a picture, the more realistic it
looks when it is reproduced. The number of pixels used to represent a picture is called
the picture resolution. The number of pixels that can be displayed by a monitor is
called the monitor resolution.

When drawn, each pixel is mapped to a pixel on the monitor screen. Each com-
puter system and programming language defines a coordinate system so that we
can refer to particular pixels.

A traditional two-dimensional Cartesian coordinate system has two axes that
meet at the origin. Values on either axis can be negative or positive. The Java pro-
gramming language has a relatively simple coordinate system in which all of the
visible coordinates are positive. Figure C.1 compares a traditional coordinate sys-
tem to the Java coordinate system.

Each point in the Java coordinate system is represented using an (x, y) pair of
values. Each graphical component in a Java program, such as a panel, has its own
coordinate system, with the origin in the top-left corner at coordinates (0, 0). The
x-axis coordinates get larger as you move to the right, and the y-axis coordinates
get larger as you move down.

Y Axis

X Axis

Y Axis

(0,0)

(0,0)

x

y

X Axis

(x,y)

Figure C.1 A traditional coordinate system and the Java coordinate system

Z03_LEWI3322_AppC_pp515-536.indd 516 20/02/13 2:14 PM

 C.2 Representing Color 517

C.2 representing Color

There are various ways to represent the color of a pixel. In the Java program-
ming language, every color is represented as a mix of what the Java language
refers to as the three primary colors: red, green, and blue. A color is specified
using three numbers that are collectively referred to as an RGB value. RGB
stands for Red-Green-Blue. Each number represents the relative contribution
of a primary color.

Using 1 byte (8 bits) to store each of the three components of an RGB value,
the numbers can range from 0 to 255. The level of each primary color determines
the overall color. For example, high values of red and green combined with a low
level of blue result in a shade of yellow.

In Java, a programmer uses the Color class, which is part of the java.awt
package, to define and manage colors. Each object of the Color class represents a
single color. The class contains several instances of itself to provide a basic set of
predefined colors. Figure C.2 lists the predefined colors of the Color class. It also
contains methods to define and manage many other colors.

black

blue

cyan

gray

dark gray

light gray

green

magenta

orange

pink

red

white

yellow

Color.black

Color.blue

Color.cyan

Color.gray

Color.darkGray

Color.lightGray

Color.green

Color.magenta

Color.orange

Color.pink

Color.red

Color.white

Color.yellow

0, 0, 0

0, 0, 255

0, 255, 255

128, 128, 128

64, 64, 64

192, 192, 192

0, 255, 0

255, 0, 255

255, 200, 0

255, 175, 175

255, 0, 0

255, 255, 255

255, 255, 0

Color Object RGB Value

Figure C.2 Predefined colors in the Color class

Z03_LEWI3322_AppC_pp515-536.indd 517 20/02/13 2:14 PM

518 Appendix C Java Graphics

C.3 drawing Shapes

The Java standard class library provides many classes that enable us to present
and manipulate graphical information. The Graphics class, which is defined in
the java.awt package, is fundamental to all such processing.

The Graphics class contains various methods that enable us to draw
shapes, including lines, rectangles, and ovals. Figure C.3 lists some of the

Figure C.3 Some methods of the Graphics class

void drawLine (int x1, int y1, int x2, int y2)
Paints a line from point (x1, y1) to point (x2, y2).

void drawRect (int x, int y, int width, int height)
Paints a rectangle with upper left corner (x, y) and dimensions width and
height.

void drawOval (int x, int y, int width, int height)
Paints an oval bounded by the rectangle with an upper left corner of (x, y) and
dimensions width and height.

void drawString (String str, int x, int y)
Paints the character string str at point (x, y), extending to the right.

void drawArc (int x, int y, int width, int height, int
startAngle, int arcAngle)

Paints an arc along the oval bounded by the rectangle defined by x, y, width,
and height. The arc starts at startAngle and extends for a distance defined by
arcAngle.

void fillRect (int x, int y, int width, int height)
Same as their draw counterparts, but filled with the current foreground color.

void fillOval (int x, int y, int width, int height)

void fillArc (int x, int y, int width, int height,
int startAngle, int arcAngle)

Color getColor ()
Returns this graphics context's foreground color.

void setColor (Color color)
Sets this graphics context's foreground color to the specified color.

Z03_LEWI3322_AppC_pp515-536.indd 518 20/02/13 2:14 PM

 C.3 Drawing Shapes 519

fundamental drawing methods of the Graphics class. These methods also let
us draw circles and squares, which are just specific types of ovals and rectan-
gles, respectively.

The methods of the Graphics class allow us to specify whether we want a
shape filled or unfilled. An unfilled shape shows only the outline of the shape and
is otherwise transparent (you can see any underlying graphics). A filled shape is
solid between its boundaries and covers any underlying graphics.

Many of these methods accept parameters that specify the coordinates at
which the shape should be drawn. Shapes drawn at coordinates that are outside
the visible area will not be seen.

Many of the Graphics drawing methods are self-explanatory, but some require
a little more discussion. Note, for instance, that an oval drawn by the drawOval
method is defined by the coordinate of the upper-left corner and dimensions
that specify the width and height of a bounding rectangle. Shapes with curves,
such as ovals, are often defined by a rectangle that encompasses their perimeters.
Figure C.4 depicts a bounding rectangle for an oval.

An arc can be thought of as a segment of an oval. To draw an arc, we specify the
oval of which the arc is a part and the portion of the oval in which we’re interested.
The starting point of the arc is defined by the start angle, and the ending point of the
arc is defined by the arc angle. The arc angle does not indicate where the arc ends, but
rather its range. The start angle and the arc angle are measured in degrees. The origin
for the start angle is an imaginary horizontal line passing through the center of the
oval and can be referred to as 0°, as shown in Figure C.5.

Every graphics context has a current foreground color that is used whenever
shapes or strings are drawn. Every surface that can be drawn on has a back-
ground color. The foreground color is set using the setColor method of the
Graphics class, and the background color is set using the setBackground
method of the component on which we are drawing, such as the panel.

Listing C.1 shows a program that uses various drawing and color methods to
draw a winter scene featuring a snowman. The drawing is done on a JPanel, de-
fined by the SnowmanPanel class, which is shown in Listing C.2.

Figure C.4 An oval and its bounding rectangle

height

width

Z03_LEWI3322_AppC_pp515-536.indd 519 20/02/13 2:14 PM

520 Appendix C Java Graphics

Figure C.5 An arc defined by an oval, a start angle, and an arc angle

drawArc (10, 10, 60, 30, 20, 90)

height
30

width 60

90�

90�

20�
0�

20�

110�

<10, 10>

The paintComponent method of a graphical component is called automatically
when the component is rendered on the screen. Note that the paintComponent
method accepts a Graphics object as a parameter. A Graphics object defines a
particular graphics context with which we can interact. The graphics context
passed into a panel’s paintComponent method represents the graphics context in
which the panel is drawn.

import javax.swing.JFrame;

/**
 * Snowman.java
 *
 * Demonstrates the use of basic drawing methods.
 */
public class Snowman
{
 /**
 * Displays a winter scene featuring a snowman.
 */

L i S T i n g C . 1

Z03_LEWI3322_AppC_pp515-536.indd 520 20/02/13 2:14 PM

 C.3 Drawing Shapes 521

 public static void main(String[] args)
 {
 JFrame frame = new JFrame(“Snowman”);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.getContentPane().add(new SnowmanPanel());

 frame.pack();
 frame.setVisible(true);
 }

}

L i S T i n g C . 1 continued

d i S p L A y

Z03_LEWI3322_AppC_pp515-536.indd 521 20/02/13 2:14 PM

522 Appendix C Java Graphics

import java.awt.*;

import javax.swing.*;

/**
 * SnowmanPanel.java
 *
 * Represents the primary drawing panel for the Snowman application.

 */
public class SnowmanPanel extends JPanel
{
 private final int MID = 150;

 private final int TOP = 50;

 /**
 * Sets up the snowman panel.

 */
 public SnowmanPanel()
 {
 setPreferredSize(new Dimension(300, 225));
 setBackground(Color.cyan);

 }

 /**
 * Draws a snowman.

 */
 public void paintComponent(Graphics page)
 {
 super.paintComponent (page);
 page.setColor(Color.blue);
 page.fillRect(0, 175, 300, 50); // ground

 page.setColor(Color.yellow);
 page.fillOval(-40, -40, 80, 80); // sun

 page.setColor(Color.white);
 page.fillOval(MID-20, TOP, 40, 40); // head
 page.fillOval(MID-35, TOP+35, 70, 50); // upper torso
 page.fillOval(MID-50, TOP+80, 100, 60); // lower torso

L i S T i n g C . 2

Z03_LEWI3322_AppC_pp515-536.indd 522 20/02/13 2:14 PM

 C.3 Drawing Shapes 523

 page.setColor(Color.black);
 page.fillOval(MID-10, TOP+10, 5, 5); // left eye
 page.fillOval(MID+5, TOP+10, 5, 5); // right eye

 page.drawArc(MID-10, TOP+20, 20, 10, 190, 160); // smile

 page.drawLine(MID-25, TOP+60, MID-50, TOP+40); // left arm
 page.drawLine(MID+25, TOP+60, MID+55, TOP+60); // right arm

 page.drawLine(MID-20, TOP+5, MID+20, TOP+5); // brim of hat
 page.fillRect(MID-15, TOP-20, 30, 25); // top of hat
 }

}

L i S T i n g C . 2 continued

The drawing of the snowman figure is based on two constant values called MID
and TOP, which define the midpoint of the snowman (left to right) and the top of
the snowman’s head. The entire snowman figure is drawn relative to these values.
Using constants like these makes it easier to create the snowman and to make
modifications later. For example, to shift the snowman to the right or left in our
picture, we need change only one constant declaration.

The call to the super. paintComponent method as the first line in the paintCom-
ponent method ensures that the background color will be painted. The version of
paintComponent defined in the JPanel class handles the display of the panel’s back-
ground. The examples in Appendix D, which add graphical components (such as but-
tons) to a panel, do not need this call. If a panel contains graphical components, the
parent’s paintComponent method is automatically called. This is a key distinction
between drawing on a component and adding a component to a container.

import javax.swing.JFrame;

/**
 * Splat.java
 *
 * Demonstrates the use of graphical objects.
 */

L i S T i n g C . 3

Z03_LEWI3322_AppC_pp515-536.indd 523 20/02/13 2:14 PM

524 Appendix C Java Graphics

public class Splat

{
 /**
 * Presents a set of circles.
 */
 public static void main(String[] args)
 {
 JFrame frame = new JFrame(“Splat”);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.getContentPane().add(new SplatPanel());

 frame.pack();
 frame.setVisible(true);
 }
}

d i S p L A y

L i S T i n g C . 3 continued

Z03_LEWI3322_AppC_pp515-536.indd 524 20/02/13 2:14 PM

 C.3 Drawing Shapes 525

Let’s look at another example. The Splat class shown in Listing C.3 simply
draws a few filled circles. The interesting thing about this program is not what it
does but how it does it—each circle drawn in this program is represented by its
own object.

The main method instantiates a SplatPanel object and adds it to the frame.
The SplatPanel class is shown in Listing C.4. It is derived from JPanel, and it
holds as instance data five Circle objects, which are instantiated in the panel’s
constructor. The paintComponent method in the SplatPanel class draws the
panel by calling the draw method of each circle.

The Circle class is shown in Listing C.5. It defines instance data to store
the size of the circle, its (x, y) location, and its color. The draw method of
the Circle class simply draws the circle based on the values of its instance
data.

The design of the Splat program embodies fundamental object-oriented think-
ing. Each circle manages itself and will draw itself in whatever graphics context
you pass it. The Circle class is defined in a way that can be used in other situa-
tions and programs. There is a clean separation between the object being drawn
and the component on which it is drawn.

import javax.swing.*;

import java.awt.*;

/**
 * SplatPanel.java
 *
 * Demonstrates the use of graphical objects.
 */
public class SplatPanel extends JPanel
{

 private Circle circle1, circle2, circle3, circle4, circle5;

 /**
 * Creates five Circle objects.
 */

L i S T i n g C . 4

Z03_LEWI3322_AppC_pp515-536.indd 525 20/02/13 2:14 PM

526 Appendix C Java Graphics

 public SplatPanel()
 {
 circle1 = new Circle(30, Color.red, 70, 35);
 circle2 = new Circle(50, Color.green, 30, 20);
 circle3 = new Circle(100, Color.cyan, 60, 85);
 circle4 = new Circle(45, Color.yellow, 170, 30);
 circle5 = new Circle(60, Color.blue, 200, 60);

 setPreferredSize(new Dimension(300, 200));
 setBackground(Color.black);

 }

 /**
 * Draws this panel by requesting that each circle draw itselC.
 */
 public void paintComponent(Graphics page)
 {
 super.paintComponent(page);

 circle1.draw(page);
 circle2.draw(page);
 circle3.draw(page);
 circle4.draw(page);
 circle5.draw(page);
 }

}

L i S T i n g C . 4 continued

import java.awt.*;

/**
 * Circle.java
 *
 * Represents a circle with a particular position, size, and color.
 */

L i S T i n g C . 5

Z03_LEWI3322_AppC_pp515-536.indd 526 20/02/13 2:14 PM

 C.4 Polygons and Polylines 527

public class Circle
{
 private int diameter, x, y;

 private Color color;

 /**
 * Sets up this circle with the specified values.
 */
 public Circle(int size, Color shade, int upperX, int upperY)
 {
 diameter = size;
 color = shade;
 x = upperX;
 y = upperY;

 }

 /**
 * Draws this circle in the specified graphics context.
 */
 public void draw(Graphics page)
 {
 page.setColor(color);
 page.fillOval(x, y, diameter, diameter);
 }

}

L i S T i n g C . 5 continued

C.4 polygons and polylines

A polygon is a multi-sided shape that is defined in Java using a series of (x, y)
points that indicate the vertices of the polygon. Arrays are often used to store the
list of coordinates.

Polygons are drawn using methods of the Graphics class, in a manner similar to
the way we draw rectangles and ovals. Like these other shapes, a polygon can be
drawn filled or unfilled. The methods used to draw a polygon are called drawPoly-
gon and fillPolygon. Both of these methods are overloaded. One version uses

Z03_LEWI3322_AppC_pp515-536.indd 527 20/02/13 2:14 PM

528 Appendix C Java Graphics

arrays of integers to define the polygon, and the other uses an object of the Polygon
class to define the polygon. We discuss the Polygon class later in this appendix.

In the version that uses arrays, the drawPolygon and fillPolygon methods take
three parameters. The first is an array of integers representing the x coordinates of the
points in the polygon, the second is an array of integers representing the correspond-
ing y coordinates of those points, and the third is an integer that indicates how many
points are used from each of the two arrays. Taken together, the first two parameters
represent the (x, y) coordinates of the vertices of the polygons.

A polygon is always closed. A line segment is always drawn from the last point
in the list to the first point in the list.

Much like a polygon, a polyline contains a series of points connected by line
segments. Polylines differ from polygons in that the first and last coordinates are
not automatically connected when they are drawn. Because a polyline is not
closed, it cannot be filled. Therefore, there is only one method, called drawPoly-
line, used to draw a polyline. The parameters of the drawPolyline method are
similar to those of the drawPolygon method.

The program shown in Listing C.6 uses polygons to draw a rocket. In the
RocketPanel class, shown in Listing C.7 on page 531, the arrays called xRocket
and yRocket define the points of the polygon that make up the main body of the
rocket. The first point in the arrays is the upper tip of the rocket, and the points
progress clockwise from there. The xWindow and yWindow arrays specify the
points for the polygon that form the window in the rocket. Both the rocket and
the window are drawn as filled polygons.

import javax.swing.JFrame;

/**
 * Rocket.java
 *
 * Demonstrates the use of polygons and polylines.
 */
public class Rocket

{
 /**
 * Displays a rocket in flight.
 */

L i S T i n g C . 6

Z03_LEWI3322_AppC_pp515-536.indd 528 20/02/13 2:14 PM

 C.4 Polygons and Polylines 529

 public static void main(String[] args)
 {
 JFrame frame = new JFrame(“Rocket”);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.getContentPane().add(new RocketPanel());

 frame.pack();
 frame.setVisible(true);
 }

}

d i S p L A y

L i S T i n g C . 6 continued

Z03_LEWI3322_AppC_pp515-536.indd 529 20/02/13 2:14 PM

530 Appendix C Java Graphics

Polygon ()
Constructor: Creates an empty polygon.

Polygon (int[] xpoints, int[] ypoints, int npoints)

Constructor: Creates a polygon using the (x, y) coordinate pairs
in corresponding entries of xpoints and ypoints.

void addPoint (int x, int y)
Appends the specified point to this polygon.

boolean contains (int x, int y)
Returns true if the specified point is contained in this polygon.

boolean contains (Point p)
Returns true if the specified point is contained in this polygon.

Rectangle getBounds ()
Gets the bounding rectangle for this polygon.

void translate (int deltaX, int deltaY)
Translates the vertices of this polygon by deltaX along the x axis
and deltaY along the y axis.

Figure C.6 Some methods of the Polygon class

The xFlame and yFlame arrays define the points of a polyline that are used to
create the image of flame shooting out of the tail of the rocket. Because it is
drawn as a polyline, not as a polygon, the flame is not closed or filled.

The Polygon Class
A polygon can also be defined explicitly using an object of the Polygon class,
which is defined in the java.awt package of the Java standard class library. Two
versions of the overloaded drawPolygon and fillPolygon methods take a single
Polygon object as a parameter.

A Polygon object encapsulates the coordinates of the polygon sides. The construc-
tors of the Polygon class allow the creation of an initially empty polygon, or one de-
fined by arrays of integers representing the point coordinates. The Polygon class
contains methods to add points to the polygon and to determine whether a given
point is contained within the polygon shape. It also contains methods to get a repre-
sentation of a bounding rectangle for the polygon, as well as a method to translate all
of the points in the polygon to another position. Figure C.6 lists these methods.

Z03_LEWI3322_AppC_pp515-536.indd 530 20/02/13 2:14 PM

import javax.swing.JPanel;

import java.awt.*;

/**
 * RocketPanel.java
 *
 * Demonstrates the use of polygons and polylines.
 */
public class RocketPanel extends JPanel
{
 private int[] xRocket = {100, 120, 120, 130, 130, 70, 70, 80, 80};
 private int[] yRocket = {15, 40, 115, 125, 150, 150, 125, 115, 40};

 private int[] xWindow = {95, 105, 110, 90};
 private int[] yWindow = {45, 45, 70, 70};

 private int[] xFlame = {70, 70, 75, 80, 90, 100, 110, 115, 120,
 130, 130};
 private int[] yFlame = {155, 170, 165, 190, 170, 175, 160, 185,

 160, 175, 155};

 /**
 * Sets up the basic characteristics of this panel.
 */
 public RocketPanel()
 {
 setBackground(Color.black);
 setPreferredSize(new Dimension(200, 200));

 }

 /**
 * Draws a rocket using polygons and polylines.
 */
 public void paintComponent(Graphics page)
 {
 super.paintComponent(page);
 page.setColor(Color.cyan);
 page.fillPolygon(xRocket, yRocket, xRocket.length);

L i S T i n g C . 7

 C.4 Polygons and Polylines 531

Z03_LEWI3322_AppC_pp515-536.indd 531 20/02/13 2:14 PM

532 Appendix C Java Graphics

 page.setColor(Color.gray);
 page.fillPolygon(xWindow, yWindow, xWindow.length);
 page.setColor(Color.red);
 page.drawPolyline(xFlame, yFlame, xFlame.length);
 }

}

L i S T i n g C . 7 continued

Z03_LEWI3322_AppC_pp515-536.indd 532 20/02/13 2:14 PM

 Programming Projects 533

exercises
EX C.1 Compare and contrast a traditional coordinate system and the co-

ordinate system used by Java graphical components.

EX C.2 How many bits are needed to store a color picture that is 400
pixels wide and 250 pixels high? Assume that color is represented
using the RGB technique described in this appendix and that no
special compression is done.

EX C.3 Assuming you have a Graphics object called page, write a state-
ment that will draw a line from point (20, 30) to point (50, 60).

EX C.4 Assuming you have a Graphics object called page, write a state-
ment that will draw a rectangle with height 70 and width 35,
such that its upper-left corner is at point (10, 15).

EX C.5 Assuming you have a Graphics object called page, write a state-
ment that will draw a circle centered on point (50, 50) with a ra-
dius of 20 pixels.

EX C.6 The following lines of code draw the eyes of the snowman in the
Snowman program. The eyes seem centered on the face when
drawn, but the first parameters of each call are not equally offset
from the midpoint. Explain.

 page.fillOval(MID-10, TOP+10, 5, 5);
 page.fillOval(MID+5, TOP+10, 5, 5);

EX C.7 Write a method called randomColor that creates and returns a
Color object that represents a random color.

EX C.8 Write a method called drawCircle that draws a circle based on the
method’s parameters: a Graphics object through which to draw
the circle, two integer values representing the (x, y) coordinates of
the center of the circle, another integer that represents the circle’s
radius, and a Color object that defines the circle’s color. The
method does not return anything.

programming projects
PP C.1 Create a revised version of the Snowman program with the follow-

ing modifications:

■	 Add two red buttons to the upper torso.

■	 Make the snowman frown instead of smile.

■	 Move the sun to the upper-right corner of the picture.

Z03_LEWI3322_AppC_pp515-536.indd 533 20/02/13 2:14 PM

534 Appendix C Java Graphics

■	 Display your name in the upper-left corner of the picture.

■	 Shift the entire snowman 20 pixels to the right.

PP C.2 Write a program that writes your name using the drawString
method.

PP C.3 Write a program that draws the Big Dipper. Add some extra stars
in the night sky.

PP C.4 Write a program that draws some balloons tied to strings. Make
the balloons various colors.

PP C.5 Write a program that draws the Olympic logo. The circles in the
logo should be colored (from left to right) blue, yellow, black,
green, and red.

PP C.6 Write a program that displays a business card of your own de-
sign. Include both graphics and text.

PP C.7 Write a program that shows a pie chart with eight equal slices, all
colored differently.

PP C.8 Write a program that draws a house with a door (and doorknob),
windows, and a chimney. Add some smoke coming out of the
chimney and some clouds in the sky.

PP C.9 Modify the program from Programming Project C.8 to include a
simple fence with vertical, equally spaced slats backed by two
horizontal support boards. Make sure the house is visible between
the slats in the fence.

PP C.10 Write a program that draws 20 horizontal, evenly spaced parallel
lines of random length.

PP C.11 Write a program that draws the side view of stair steps from the
lower left to the upper right.

PP C.12 Write a program that draws 100 circles of random color and ran-
dom diameter in random locations. Ensure that, in each case, the
entire circle appears in the visible area of the applet.

PP C.13 Write a program that draws 10 concentric circles of random radius.

PP C.14 Write a program that draws a brick wall pattern in which each
row of bricks is offset from the row above and the row below it.

PP C.15 Design and implement a program that draws a rainbow. Use
tightly spaced concentric arcs to draw each part of the rainbow in
a particular color.

PP C.16 Design and implement a program that draws 20,000 points in
random locations within the visible area. Make the points on the

Z03_LEWI3322_AppC_pp515-536.indd 534 20/02/13 2:14 PM

 Programming Projects 535

 left half of the panel appear in red and the points on the right
half of the panel appear in green. Draw each point by drawing a
line with a length of only one pixel.

PP C.17 Design and implement a program that draws 10 circles of random
radius in random locations. Fill in the largest circle in red.

PP C.18 Write a program that draws a quilt in which a simple pattern is
repeated in a grid of squares.

PP C.19 Modify the program from Programming Project C.18 such that it
draws a quilt using a separate class called Pattern that repre-
sents a particular pattern. Allow the constructor of the Pattern
class to vary some characteristics of the pattern, such as its color
scheme. Instantiate two separate Pattern objects and incorporate
them in a checkerboard layout in the quilt.

PP C.20 Design and implement a class called Building that represents a
graphical depiction of a building. Allow the parameters to the
constructor to specify the building’s width and height. Each
 building should be colored black and should contain a few ran-
dom windows of yellow. Create a program that draws a random
skyline of buildings.

PP C.21 Write a program that displays a graphical seating chart for a din-
ner party. Create a class called Diner (as in one who dines) that
stores the person’s name, gender, and location at the dinner table.
A diner is graphically represented as a circle, color-coded by gen-
der, with the person’s name printed in the circle.

PP C.22 Create a class called Crayon that represents one crayon of a par-
ticular color and length (height). Design and implement a pro-
gram that draws a box of crayons.

PP C.23 Create a class called Star that represents a graphical depiction of
a star. Let the constructor of the star accept the number of points
in the star (4, 5, or 6), the radius of the star, and the center point
location. Write a program that draws a sky containing various
types of stars.

PP C.24 Design and implement an application that displays an animation of a
horizontal line segment moving across the screen, eventually passing
across a vertical line. As the vertical line is passed, the horizontal line
should change color. The change of color should occur while the hor-
izontal line crosses the vertical line; therefore, while it is crossing, the
horizontal line will be two different colors.

Z03_LEWI3322_AppC_pp515-536.indd 535 20/02/13 2:14 PM

536 Appendix C Java Graphics

PP C.25 Create a class that represents a spaceship, which can be drawn
(side view) in any particular location. Use it to create a program
that displays the spaceship so that it follows the movement of the
mouse. When the mouse button in pressed down, have a laser
beam shoot out of the front of the spaceship (one continuous
beam, not a moving projectile) until the mouse button is released.

Z03_LEWI3322_AppC_pp515-536.indd 536 20/02/13 2:14 PM

537

Graphical User
Interfaces

Many programs provide a graphical user interface

(GUI) through which a user interacts with the program. As

the name implies, a GUI makes use of graphical screen com-

ponents such as windows, buttons, check boxes, menus, and

text fields. GUIs often provide a more natural and rich

experience for the user, compared to a simple text-based,

command-line environment. This appendix explores the

various issues related to developing a GUI in Java.

DD
Appendix

Z04_LEWI3322_AppD_pp537-632.indd 537 20/02/13 11:43 AM

538 Appendix d Graphical User Interfaces

d.1 GUi elements

The text-based programs we’ve seen in previous examples are command-line applica-
tions, which interact with the user through simple prompts and feedback. This type of
interface is straightforward to understand, but it lacks the rich user experience possible
when a true graphical user interface (GUI) is used. With a GUI, the user is not limited
to responding to prompts in a particular order and receiving feedback in one place.
Instead, the user can interact as needed with various components such as buttons and
text fields. This chapter explores the many issues involved in developing a GUI in Java.

Let’s start with an overview of the concepts that underlie every GUI-based pro-
gram. At least three kinds of objects are needed to create a GUI in Java:

■	 components

■	 events

■	 listeners

A GUI component is an object that defines a screen element used to display informa-
tion or allow the user to interact with a program in a certain way. Examples of GUI
components include push buttons, text fields, labels, scroll bars, and menus. A container
is a special type of component that is used to hold and organize other components.

An event is an object that represents some occurrence in which we may be inter-
ested. Often, events correspond to user actions, such as pressing a mouse button or
typing a key on the keyboard. Most GUI components generate events to indicate a
user action related to that component. For example, a button component will gen-
erate an event to indicate that the button has been pushed. A program that is ori-
ented around a GUI, responding to events from the user, is called event-driven.

A listener is an object that “waits” for an event to occur and responds in some
way when it does. A big part of designing a GUI-based program is establishing the
relationships among the listener, the event it listens for, and the component that

will generate the event.

For the most part, we will use components and events that are
predefined by classes in the Java class library. We will tailor the be-
havior of the components, but their basic roles have been established
already. We will, however, write our own listener classes to perform
whatever actions we desire when events occur.

To create a Java program that uses a GUI, then, we must

■	 instantiate and set up the necessary components,

■	 implement listener classes that define what happens when particular events
occur, and

■	 establish the relationship between the listeners and the components that
generate the events of interest.

Key ConCept
A GUI is made up of components,
events that represent user actions,
and listeners that respond to those
events.

Z04_LEWI3322_AppD_pp537-632.indd 538 20/02/13 11:43 AM

 d.1 GUI Elements 539

Java components and other GUI-related classes are defined primarily in two
packages: java.awt and javax.swing. (Note the x in javax.swing.) The
Abstract Windowing Toolkit (AWT) was the original Java GUI package. It still
contains many important classes that we will use. The Swing package was added
later and provides components that are more versatile than those of the AWT
package. Both packages are needed for GUI development, but we will use Swing
components whenever there is an option.

In some respects, once you have a basic understanding of event-driven pro-
gramming, the rest is just detail. There are many types of components you can use
that produce many types of events that you may want to acknowledge. But they
all work in the same basic way. They all have the same core relationships to one
another.

Let’s look at a simple example that contains all of the basic GUI elements. The
PushCounter class shown in Listing D.1 contains the driver of a program that
presents the user with a single push button (labeled “Push Me!”). Each time the
button is pushed, a counter is updated and displayed.

The components used in this program include a button, a label to display the
count, a panel to hold the button and label, and a frame to display the panel. The
panel is defined by the PushCounterPanel class, which is shown in Listing D.2.
Let’s look at each of these pieces in more detail.

Frames and panels
A frame is a container that is used to display GUI-based Java applications.
A frame is displayed as a separate window with its own title bar. It can
be repositioned on the screen and resized as needed by dragging it with
the mouse. It contains small buttons in the corner of the frame that allow
the frame to be minimized, maximized, and closed. A frame is defined by the
JFrame class.

A panel is also a container. However, unlike a frame, it cannot
be displayed on its own. A panel must be added to another con-
tainer for it to be displayed. Generally, a panel doesn’t move un-
less you move the container that it’s in. Its primary role is to help
organize the other components in a GUI. A panel is defined by the
JPanel class.

We can classify containers as either heavyweight or lightweight. A heavyweight
container is one that is managed by the underlying operating system on which the
program is run, whereas a lightweight container is managed by the Java program
itself. A frame is a heavyweight component, and a panel is a lightweight compo-
nent. Another heavyweight container is an applet, which is used to display and
execute a Java program through a web browser.

Key ConCept
A frame is displayed as a separate
window, but a panel can be displayed
only as part of another container.

Z04_LEWI3322_AppD_pp537-632.indd 539 20/02/13 11:43 AM

540 Appendix d Graphical User Interfaces

import javax.swing.JFrame;

/**
 * PushCounter.java
 *
 * Demonstrates a graphical user interface and an event listener.
 */
public class PushCounter

{
 /**
 * Creates and displays the main program frame.
 */

 public static void main(String[] args)
 {
 JFrame frame = new JFrame("Push Counter");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 PushCounterPanel panel = new PushCounterPanel();
 frame.getContentPane().add(panel);

 frame.pack();
 frame.setVisible(true);
 }
}

d i s p l A y

l i s t i n G d . 1

Z04_LEWI3322_AppD_pp537-632.indd 540 20/02/13 11:43 AM

 d.1 GUI Elements 541

Heavyweight components are more complex than lightweight components in
general. A frame, for example, has multiple panes, which are responsible for vari-
ous characteristics of the frame window. All visible elements of a Java interface
are displayed in a frame’s content pane.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/**
 * PushCounterPanel.java
 *
 * Demonstrates a graphical user interface and an event listener.
 */
public class PushCounterPanel extends JPanel
{
 private int count;
 private JButton push;
 private JLabel label;

 /**
 * Constructor: Sets up the GUI.
 */
 public PushCounterPanel()
 {
 count = 0;

 push = new JButton("Push Me!");
 push.addActionListener(new ButtonListener());

 label = new JLabel("Pushes: " + count);

 add(push);
 add(label);

 setBackground(Color.cyan);
 setPreferredSize(new Dimension(300, 40));

 }

l i s t i n G d . 2

Z04_LEWI3322_AppD_pp537-632.indd 541 20/02/13 11:43 AM

542 Appendix d Graphical User Interfaces

Generally, we can create a Java GUI-based application by creating a frame in
which the program interface is displayed. The interface is often organized onto a
primary panel, which is added to the frame’s content pane. The components in the
primary panel are sometimes organized using other panels as needed.

In the main method of the PushCounter class, the frame for the program is
constructed, set up, and displayed. The JFrame constructor takes a string as
a parameter, which it displays in the title bar of the frame. The call to the
 setDefaultCloseOperation method determines what will happen when
the close button in the corner of the frame is clicked. In most cases we’ll simply
let that button terminate the program, as indicated by the EXIT_ON_CLOSE
constant.

The content pane of the frame is obtained using the getContentPane
method, immediately after which the add method of the content pane is called
to add the panel. The pack method of the frame sets its size appropriately based
on its contents—in this case the frame is sized to accommodate the size of the
panel it contains. This is a better approach than trying to set the size of the
frame explicitly, which should change as the components within the frame
change. The call to the setVisible method causes the frame to be displayed on
the monitor screen.

 /**
 * Represents a listener for button push (action) events.
 */
 private class ButtonListener implements ActionListener

 {
 /**
 * Updates the counter and label when the button is pushed.
 */
 public void actionPerformed(ActionEvent event)
 {
 count++;
 label.setText("Pushes: " + count);
 }
 }

}

l i s t i n G d . 2 continued

Z04_LEWI3322_AppD_pp537-632.indd 542 20/02/13 11:43 AM

 d.1 GUI Elements 543

You can interact with the frame itself in various ways. You can move the entire
frame to another point on the desktop by grabbing the title bar of the frame and
dragging it with the mouse. You can also resize the frame by dragging the bottom-
right corner of the frame.

A panel is created by instantiating the JPanel class. In the case of the
PushCounter program, the panel is represented by the PushCounterPanel class,
which is derived from JPanel. Thus a PushCounterPanel is a JPanel, inheriting
all of its methods and attributes. This is a common technique for creating panels.

The constructor of the PushCounterPanel class makes calls to several meth-
ods inherited from JPanel. For example, the background color of the panel is set
using the setBackground method (the Color class is described in Appendix C).
The setPreferredSize method accepts a Dimension object as a parameter,
which is used to indicate the width and height of the component in pixels. The
size of many components can be set this way, and most also have methods called
setMinimumSize and setMaximumSize to help control the look of the interface.

A panel’s add method allows a component to be added to the panel. In the
PushCounterPanel constructor, a newly created button and label are added to
the panel and are, from that point on, considered part of that panel. The order in
which components are added to a container often matters. In this case, it deter-
mines that the button appears before the label.

A container is governed by a layout manager, which determines exactly how
the components added to the panel will be displayed. The default layout manager
for a panel simply displays components in the order in which they are added, with
as many components on one line as possible. Layout managers are discussed in
detail later in this appendix.

Buttons and Action events
The PushCounter program displays a button and a label. A label, created from
the JLabel class, is a component that displays a line of text in a GUI. A label can
also be used to display an image, as shown in later examples. In the PushCounter
program, the label displays the number of times the button has been pushed.

Labels can be found in most GUI-based programs. They are very useful for dis-
playing information or for labeling other components in the GUI. However, labels
are not interactive. That is, the user does not interact with a label directly. The
component that makes the PushCounter program interactive is the button that
the user pushes with the mouse.

A push button is a component that allows the user to initiate an action with a
press of the mouse. A push button is defined by the JButton class. A call to the
JButton constructor takes a String parameter that specifies the text shown on
the button.

Z04_LEWI3322_AppD_pp537-632.indd 543 20/02/13 11:43 AM

544 Appendix d Graphical User Interfaces

A JButton generates an action event when it is pushed. There are several types
of events defined in the Java standard class library, and we explore many of them
throughout this appendix. Different components generate different types of events.

The only event of interest in this program occurs when the button is pushed. To
respond to the event, we must create a listener object for that event, so we must write
a class that represents the listener. In this case, we need an action event listener.

In the PushButton program, the ButtonListener class represents the action
listener. We could write the ButtonListener class in its own file, or even in the
same file but outside of the PushCounterPanel class. However, then we would
have to set up a way to communicate between the listener and the components of
the GUI that the listener updates. Instead, we define the ButtonListener class
as an inner class, which is a class defined within another class. As such, it auto-

matically has access to the members of the class that contains it.
You should create inner classes only in situations in which there is
an intimate relationship between the two classes, and the inner
class is not accessed by any other class. The relationship between a
listener and its GUI is one of the few situations in which an inner
class is appropriate.

Listener classes are written by implementing an interface, which is a list of
methods that the implementing class must define. The Java standard class library
contains interfaces for many types of events. An action listener is created by im-
plementing the ActionListener interface; therefore, we include the implements
clause in the ButtonListener class. Interfaces are discussed in more detail in
Appendix B.

The only method listed in the ActionListener interface is the actionPer-
formed method, so that’s the only method that the ButtonListener class must im-
plement. The component that generates the action event (in this case the button) will
call the actionPerformed method when the event occurs, passing in an
ActionEvent object that represents the event. Sometimes we will use this event ob-
ject, and other times it is sufficient just to know that the event occurred. In this case,
we have no need to interact with the event object. When the event occurs, the listener
increments the count and resets the text of the label by using the setText method.

Remember, we not only have to create a listener for an event, we must also set
up the relationship between the listener and the component that will generate the
event. To do so, we add the listener to the component by calling the appropriate
method. In the PushCounterPanel constructor, we call the addActionListener
method, passing in a newly instantiated ButtonListener object.

Review this example carefully, noting how it accomplishes the three key steps
to creating an interactive GUI-based program. It creates and sets up the GUI
components, creates the appropriate listener for the event of interest, and sets
up the relationship between the listener and the component that will generate
the event.

Key ConCept
Listeners are often defined as inner
classes because of the intimate rela-
tionship between the listener and the
GUI components.

Z04_LEWI3322_AppD_pp537-632.indd 544 20/02/13 11:43 AM

 d.1 GUI Elements 545

determining event sources
Let’s look at an example in which one listener object is used to listen to two dif-
ferent components. The program represented by the LeftRight class, shown in
Listing D.3, displays a label and two buttons. When the Left button is pressed, the
label displays the word Left, and when the Right button is pressed, the label dis-
plays the word Right.

import javax.swing.JFrame;

/**
 * LeftRight.java
 *
 * Demonstrates the use of one listener for multiple buttons.
 */
public class LeftRight

{
 /**
 * Creates and displays the main program frame.
 */
 public static void main(String[] args)
 {
 JFrame frame = new JFrame("Left Right");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.getContentPane().add(new LeftRightPanel());

 frame.pack();
 frame.setVisible(true);
 }
}

d i s p l A y

l i s t i n G d . 3

Z04_LEWI3322_AppD_pp537-632.indd 545 20/02/13 11:43 AM

546 Appendix d Graphical User Interfaces

The LeftRightPanel class, shown in Listing D.4, creates one instance of the
ButtonListener class and then adds that listener to both buttons. Therefore, when
either button is pressed, the actionPerformed method of the ButtonListener
class is invoked.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/**
 * LeftRightPanel.java
 *
 * Demonstrates the use of one listener for multiple buttons.
 */
public class LeftRightPanel extends JPanel
{
 private JButton left, right;
 private JLabel label;
 private JPanel buttonPanel;

 /**
 * Constructor: Sets up the GUI.
 */
 public LeftRightPanel()
 {
 left = new JButton("Left");
 right = new JButton("Right");

 ButtonListener listener = new ButtonListener();
 left.addActionListener(listener);
 right.addActionListener(listener);

 label = new JLabel("Push a button");

 buttonPanel = new JPanel();
 buttonPanel.setPreferredSize(new Dimension(200, 40));
 buttonPanel.setBackground(Color.blue);
 buttonPanel.add(left);
 buttonPanel.add(right);

l i s t i n G d . 4

Z04_LEWI3322_AppD_pp537-632.indd 546 20/02/13 11:43 AM

 d.1 GUI Elements 547

On each invocation, the actionPerformed method uses an if-else statement
to determine which button generated the event. The getSource method is called
on the ActionEvent object that the button passes into the actionPerformed
method. The getSource method returns a reference to the component that gener-
ated the event. The condition of the if statement compares the event source to
the reference to the left button. If they don’t match, then the event must have been
generated by the right button.

We could have created two separate listener classes, one to listen to the left but-
ton and another to listen to the right button. In that case, the actionPerformed
method would not have to determine the source of the event. Whether to have

 setPreferredSize(new Dimension(200, 80));
 setBackground(Color.cyan);
 add(label);
 add(buttonPanel);
 }

 /**
 * Represents a listener for both buttons.
 */
 private class ButtonListener implements ActionListener

 {

 /**
 * Determines which button was pressed and sets the label
 * text accordingly.
 */
 public void actionPerformed(ActionEvent event)
 {
 if (event.getSource() == left)
 label.setText("Left");
 else
 label.setText("Right");
 }
 }

}

l i s t i n G d . 4 continued

Z04_LEWI3322_AppD_pp537-632.indd 547 20/02/13 11:43 AM

548 Appendix d Graphical User Interfaces

multiple listeners or to determine the event source when it occurs is a design deci-
sion that should be made depending on the situation.

Note that the two buttons are put on the same panel called buttonPanel,
which is separate from the panel represented by the LeftRightPanel class. By
putting both buttons on one panel, we can guarantee their visual relationship to
each other even when the frame is resized in various ways. For buttons labeled
Left and Right, that is certainly important.

d.2 More Components

In addition to push buttons, there are a variety of other interactive components that
can be used in a GUI, each with a particular role to play. Let’s examine a few more.

text Fields
A text field allows the user to enter typed input from the keyboard. The
Fahrenheit program shown in Listing D.5 presents a GUI that includes a text
field into which the user can type a Fahrenheit temperature. When the user presses
the Enter (or Return) key, the equivalent Celsius temperature is displayed.

The interface for the Fahrenheit program is set up in the FahrenheitPanel
class, shown in Listing D.6. The text field is an object of the JTextField class.
The JTextField constructor takes an integer parameter that specifies the size of
the field in number of characters based on the current default font.

The text field and various labels are added to the panel to be displayed.
Remember that the default layout manager for a panel puts as many components
on a line as it can fit, so if you resize the frame, the orientation of the labels and
text field may change.

import javax.swing.JFrame;

/**
 * Fahrenheit.java
 *
 * Demonstrates the use of text fields.
 */
public class Fahrenheit

l i s t i n G d . 5

Z04_LEWI3322_AppD_pp537-632.indd 548 20/02/13 11:43 AM

 d.2 More Components 549

{
 /**
 * Creates and displays the temperature converter GUI.
 */
 public static void main(String[] args)
 {
 JFrame frame = new JFrame("Fahrenheit");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 FahrenheitPanel panel = new FahrenheitPanel();
 frame.getContentPane().add(panel);

 frame.pack();
 frame.setVisible(true);
 }
}

d i s p l A y

l i s t i n G d . 5 continued

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/**
 * FahrenheitPanel.java
 *
 * Demonstrates the use of text fields.
 */
public class FahrenheitPanel extends JPanel
{
 private JLabel inputLabel, outputLabel, resultLabel;
 private JTextField fahrenheit;

l i s t i n G d . 6

Z04_LEWI3322_AppD_pp537-632.indd 549 20/02/13 11:43 AM

550 Appendix d Graphical User Interfaces

 /**
 * Constructor: Sets up the main GUI components.
 */
 public FahrenheitPanel()
 {
 inputLabel = new JLabel("Enter Fahrenheit temperature:");
 outputLabel = new JLabel("Temperature in Celsius: ");
 resultLabel = new JLabel("---");

 fahrenheit = new JTextField(5);
 fahrenheit.addActionListener(new TempListener());

 add(inputLabel);
 add(fahrenheit);
 add(outputLabel);
 add(resultLabel);

 setPreferredSize(new Dimension(300, 75));
 setBackground(Color.yellow);
 }
 /**
 * Represents an action listener for the temperature input field.
 */
 private class TempListener implements ActionListener
 {
 /**
 * Performs the conversion when the enter key is pressed in
 * the text field.
 */
 public void actionPerformed(ActionEvent event)
 {
 int fahrenheitTemp, celsiusTemp;

 String text = fahrenheit.getText();

 fahrenheitTemp = Integer.parseInt(text);
 celsiusTemp = (fahrenheitTemp-32) * 5/9;

 resultLabel.setText(Integer.toString(celsiusTemp));
 }
 }

}

l i s t i n G d . 6 continued

Z04_LEWI3322_AppD_pp537-632.indd 550 20/02/13 11:43 AM

 d.2 More Components 551

A text field generates an action event when the Enter or Return key is pressed
(and the cursor is in the text field). Therefore, we need to set up a listener object
to respond to action events, much as in previous examples.

The text field component calls the actionPerformed method when the user
presses the Enter key. The method first retrieves the text from the text field by
calling its getText method, which returns a character string. The text is con-
verted into an integer using the parseInt method of the Integer wrapper class.
Then the method performs the calculation to determine the equivalent Celsius
temperature and sets the text of the appropriate label with the result.

Note that a push button and a text field generate the same kind of event: an
action event. Thus an alternative to the Fahrenheit program design is to add to the
GUI a JButton object that causes the conversion to occur when the user uses the
mouse to press the button. For that matter, the same listener object can be used to
listen to multiple components at the same time, so the listener could be added to
both the text field and the button, giving the user the option. Pressing either the
button or the Enter key will cause the conversion to be performed. These varia-
tions are left as programming projects.

Check Boxes
A check box is a button that can be toggled on or off using the mouse, indicating
that a particular boolean condition is set or unset. Although you might have a
group of check boxes indicating a set of options, each check box operates inde-
pendently. That is, each can be set to on or off, and the status of one does not in-
fluence the others.

The program in Listing D.7 displays two check boxes and a label. The check
boxes determine whether the text of the label is displayed in bold, italic, both, or
neither. Any combination of bold and italic is valid. For example, both check
boxes could be checked (on), in which case the text is displayed in both bold and
italic. If neither is checked, the text of the label is displayed in a plain style.

The GUI for the StyleOptions program is embodied in the StyleOptionsPanel
class shown in Listing D.8. A check box is represented by the JCheckBox class.
When a check box changes state from selected (checked) to deselected (un-
checked), or vice versa, it generates an item event. The ItemListener interface
contains a single method called itemStateChanged. In this example, we use the
same listener object to handle both check boxes.

This program also uses the Font class, which represents a particular character
font. A Font object is defined by the font name, the font style, and the font size.
The font name establishes the general visual characteristics of the characters. We
are using the Helvetica font in this program. The style of a Java font can be plain,

Z04_LEWI3322_AppD_pp537-632.indd 551 20/02/13 11:43 AM

552 Appendix d Graphical User Interfaces

bold, italic, or bold and italic combined. The listener is set up to change the char-
acteristics of our font style.

The style of a font is represented as an integer, and integer constants defined in
the Font class are used to represent the various aspects of the style. The constant
PLAIN is used to represent a plain style. The constants BOLD and ITALIC are used
to represent bold and italic, respectively. The sum of the BOLD and ITALIC con-
stants indicates a style that is both bold and italic.

import javax.swing.JFrame;

/**
 * StyleOptions.java
 *
 * Demonstrates the use of check boxes.
 */
public class StyleOptions
{
 /**
 * Creates and displays the style options frame.
 */
 public static void main(String[] args)
 {
 JFrame frame = new JFrame(“Style Options”);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.getContentPane().add(new StyleOptionsPanel());

 frame.pack();
 frame.setVisible(true);
 }
}

d i s p l A y

l i s t i n G d . 7

Z04_LEWI3322_AppD_pp537-632.indd 552 20/02/13 11:43 AM

 d.2 More Components 553

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

/**
 * StyleOptionsPanel.java
 *
 * Demonstrates the use of check boxes.
 */
public class StyleOptionsPanel extends JPanel
{
 private JLabel saying;

 private JCheckBox bold, italic;

 /**
 * Sets up a panel with a label and some check boxes that
 * control the style of the label’s font.
 */
 public StyleOptionsPanel()
 {
 saying = new JLabel("Say it with style!");
 saying.setFont(new Font("Helvetica", Font.PLAIN, 36));

 bold = new JCheckBox("Bold");
 bold.setBackground(Color.cyan);
 italic = new JCheckBox("Italic");
 italic.setBackground(Color.cyan);

 StyleListener listener = new StyleListener();
 bold.addItemListener(listener);
 italic.addItemListener(listener);

 add(saying);
 add(bold);
 add(italic);

 setBackground(Color.cyan);
 setPreferredSize(new Dimension(300, 100));

 }

l i s t i n G d . 8

Z04_LEWI3322_AppD_pp537-632.indd 553 20/02/13 11:43 AM

554 Appendix d Graphical User Interfaces

The itemStateChanged method of the listener determines what the revised
style should be now that one of the check boxes has changed state. It initially sets
the style to be plain. Then each check box is consulted in turn using the isSe-
lected method, which returns a boolean value. First, if the Bold check box is
selected (checked), then the style is set to bold. Then, if the Italic check box is
selected, the ITALIC constant is added to the style variable. Finally, the font of the
label is set to a new font with its revised style.

Note that, given the way the listener is written in this program, it doesn’t mat-
ter which check box was clicked to generate the event. The same listener processes
both check boxes. It also doesn’t matter whether the changed check box was tog-
gled from selected to unselected or vice versa. The state of both check boxes is
examined if either is changed.

 /**
 * Represents the listener for both check boxes.
 */
 private class StyleListener implements ItemListener

 {

 /**
 * Updates the style of the label font style.
 */
 public void itemStateChanged(ItemEvent event)
 {
 int style = Font.PLAIN;

 if (bold.isSelected())
 style = Font.BOLD;

 if (italic.isSelected())
 style += Font.ITALIC;

 saying.setFont(new Font("Helvetica", style, 36));
 }
 }
}

l i s t i n G d . 8 continued

Z04_LEWI3322_AppD_pp537-632.indd 554 20/02/13 11:43 AM

 d.2 More Components 555

Radio Buttons
A radio button is used with other radio buttons to provide a set of mutually exclu-
sive options. Unlike a check box, a radio button is not particularly useful by itself.
It has meaning only when it is used with one or more other radio but-
tons. Only one option out of the group is valid. At any point in time,
one and only one button of the group of radio buttons is selected
(on). When a radio button from the group is pushed, the other button
in the group that is currently on is automatically toggled off.

The term radio buttons comes from the way the buttons worked
on an old-fashioned car radio. At any point, one button was pushed to specify the
current choice of station; when another was pushed, the button that was in auto-
matically popped out.

The QuoteOptions program, shown in Listing D.9, displays a label and a
group of radio buttons. The radio buttons determine which quote is displayed in
the label.

Key ConCept
Radio buttons operate as a group,
providing a set of mutually exclusive
options.

import javax.swing.JFrame;

/**
 * QuoteOptions.java
 *
 * Demonstrates the use of radio buttons.
 */
public class QuoteOptions

{
 /**
 * Creates and presents the program frame.
 */
 public static void main(String[] args)
 {
 JFrame frame = new JFrame("Quote Options");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.getContentPane().add(new QuoteOptionsPanel());

 frame.pack();
 frame.setVisible(true);
 }
}

l i s t i n G d . 9

Z04_LEWI3322_AppD_pp537-632.indd 555 20/02/13 11:43 AM

556 Appendix d Graphical User Interfaces

Because only one of the quotes can be displayed at a time, the use of radio but-
tons is appropriate. For example, if the Comedy radio button is selected, the com-
edy quote is displayed in the label. If the Philosophy button is then pressed, the
Comedy radio button is automatically toggled off, and the comedy quote is re-
placed by a philosophical one.

The QuoteOptionsPanel class, shown in Listing D.10, sets up and displays the
GUI components. A radio button is represented by the JRadioButton class.
Because the radio buttons in a set work together, the ButtonGroup class is used to
define a set of related radio buttons.

d i s p l A y

l i s t i n G d . 9 continued

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

/**
 * QuoteOptionsPanel.java
 *
 * Demonstrates the use of radio buttons.
 */
public class QuoteOptionsPanel extends JPanel
{
 private JLabel quote;
 private JRadioButton comedy, philosophy, carpentry;
 private String comedyQuote, philosophyQuote, carpentryQuote;

l i s t i n G d . 1 0

Z04_LEWI3322_AppD_pp537-632.indd 556 20/02/13 11:43 AM

 d.2 More Components 557

 /**
 * Sets up a panel with a label and a set of radio buttons
 * that control its text.

 */
 public QuoteOptionsPanel()
 {
 comedyQuote = "Take my wife, please.";
 philosophyQuote = "I think, therefore I am.";
 carpentryQuote = "Measure twice. Cut once.";

 quote = new JLabel(comedyQuote);
 quote.setFont(new Font("Helvetica", Font.BOLD, 24));

 comedy = new JRadioButton("Comedy", true);
 comedy.setBackground(Color.green);
 philosophy = new JRadioButton("Philosophy");
 philosophy.setBackground(Color.green);
 carpentry = new JRadioButton("Carpentry");
 carpentry.setBackground(Color.green);

 ButtonGroup group = new ButtonGroup();
 group.add(comedy);
 group.add(philosophy);
 group.add(carpentry);

 QuoteListener listener = new QuoteListener();
 comedy.addActionListener(listener);
 philosophy.addActionListener(listener);
 carpentry.addActionListener(listener);

 add(quote);
 add(comedy);
 add(philosophy);
 add(carpentry);

 setBackground(Color.green);
 setPreferredSize(new Dimension(300, 100));

 }

 /**
 * Represents the listener for all radio buttons
 */

l i s t i n G d . 1 0 continued

Z04_LEWI3322_AppD_pp537-632.indd 557 20/02/13 11:43 AM

558 Appendix d Graphical User Interfaces

Note that each button is added to the button group, and also that each button
is added individually to the panel. A ButtonGroup object is not a container to
organize and display components; it is simply a way to define the group of radio
buttons that work together to form a set of dependent options. The ButtonGroup
object ensures that the currently selected radio button is turned off when another
in the group is selected.

A radio button produces an action event when it is selected. The actionPer-
formed method of the listener first retrieves the source of the event using the get-
Source method and then compares it to each of the three radio buttons in turn.
Depending on which button was selected, the text of the label is set to the appro-
priate quote.

Note that unlike push buttons, both check boxes and radio buttons are toggle
buttons, which means that at any time, they are either on or off. Independent
options (choose any combination) are controlled with check boxes. Dependent op-
tions (choose one of a set) are controlled with radio buttons. If there is only one

 private class QuoteListener implements ActionListener
 {
 /**
 * Sets the text of the label depending on which radio
 * button was pressed.
 */
 public void actionPerformed(ActionEvent event)
 {
 Object source = event.getSource();

 if (source == comedy)
 quote.setText(comedyQuote);
 else
 if (source == philosophy)
 quote.setText(philosophyQuote);
 else
 quote.setText(carpentryQuote);
 }
 }

}

l i s t i n G d . 1 0 continued

Z04_LEWI3322_AppD_pp537-632.indd 558 20/02/13 11:43 AM

 d.2 More Components 559

option to be managed, a check box can be used by itself. As we mentioned earlier,
a radio button makes sense only in conjunction with one or more other radio buttons.

Also note that check boxes and radio buttons produce different types of events.
A check box produces an item event, and a radio button produces an action event.
The use of different event types is related to the differences in button functional-
ity. A check box produces an event when it is selected or deselected, and the lis-
tener could make the distinction if desired. A radio button, on the other hand,
produces an event only when it is selected (the currently selected button from the
group is deselected automatically).

sliders
A slider is a GUI component that allows the user to specify a nu-
meric value within a bounded range. A slider can be presented either
vertically or horizontally and can have optional tick marks and labels
indicating the range of values.

A program called SlideColor is shown in Listing D.11. This program presents
three sliders that control the RGB components of a color. The color specified by
the values of the sliders is shown in a square that is displayed to the right of the
sliders. Using RGB values to represent color is discussed in Appendix C.

Key ConCept
A slider lets the user specify a numeric
value within a bounded range.

import java.awt.*;
import javax.swing.*;

/**
 * SlideColor.java
 *
 * Demonstrates the use slider components.

 */
public class SlideColor

{
 /**
 * Presents a frame with a control panel and a panel that
 * changes color as the sliders are adjusted.
 */

l i s t i n G d . 1 1

Z04_LEWI3322_AppD_pp537-632.indd 559 20/02/13 11:43 AM

560 Appendix d Graphical User Interfaces

The SlideColorPanel class shown in Listing D.12 is a panel used to display
the three sliders and the color panel. Each slider is created from the JSlider
class, which accepts four parameters. The first determines the orientation of the
slider using one of two JSlider constants (HORIZONTAL or VERTICAL). The sec-
ond and third parameters specify the maximum and minimum values of the slider,

 public static void main(String[] args)
 {
 JFrame frame = new JFrame("Slide Colors");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.getContentPane().add(new SlideColorPanel());

 frame.pack();
 frame.setVisible(true);
 }

}

d i s p l A y

l i s t i n G d . 1 1 continued

Z04_LEWI3322_AppD_pp537-632.indd 560 20/02/13 11:43 AM

 d.2 More Components 561

which are set to 0 and 255, respectively, for each of the sliders in the example. The
last parameter of the JSlider constructor specifies the slider’s initial value. In our
example, the initial value of each slider is 0, which puts the slider knob to the far
left when the program initially executes.

The JSlider class has several methods that allow the programmer to tailor the
look of a slider. Major tick marks can be set at specific intervals using the setMa-
jorTickSpacing method. Intermediate minor tick marks can be set using the
setMinorTickSpacing method. Neither is displayed, however, unless the set-
PaintTicks method, with a parameter of true, is invoked as well.

import java.awt.*;
import javax.swing.*;
import javax.swing.event.*;

/**
 * SlideColorPanel.java
 *
 * Represents the slider control panel for the SlideColor program.
 */
public class SlideColorPanel extends JPanel
{
 private JPanel controls, colorPanel;
 private JSlider rSlider, gSlider, bSlider;
 private JLabel rLabel, gLabel, bLabel;

 /**
 * Sets up the sliders and their labels, aligning them along
 * their left edge using a box layout.
 */
 public SlideColorPanel()

 {
 rSlider = new JSlider(JSlider.HORIZONTAL, 0, 255, 0);
 rSlider.setMajorTickSpacing(50);
 rSlider.setMinorTickSpacing(10);
 rSlider.setPaintTicks(true);
 rSlider.setPaintLabels(true);
 rSlider.setAlignmentX(Component.LEFT_ALIGNMENT);

l i s t i n G d . 1 2

Z04_LEWI3322_AppD_pp537-632.indd 561 20/02/13 11:43 AM

562 Appendix d Graphical User Interfaces

 gSlider = new JSlider(JSlider.HORIZONTAL, 0, 255, 0);
 gSlider.setMajorTickSpacing(50);
 gSlider.setMinorTickSpacing(10);
 gSlider.setPaintTicks(true);
 gSlider.setPaintLabels(true);
 gSlider.setAlignmentX(Component.LEFT_ALIGNMENT);

 bSlider = new JSlider(JSlider.HORIZONTAL, 0, 255, 0);
 bSlider.setMajorTickSpacing(50);
 bSlider.setMinorTickSpacing(10);
 bSlider.setPaintTicks(true);
 bSlider.setPaintLabels(true);
 bSlider.setAlignmentX(Component.LEFT_ALIGNMENT);

 SliderListener listener = new SliderListener();
 rSlider.addChangeListener(listener);
 gSlider.addChangeListener(listener);
 bSlider.addChangeListener(listener);

 rLabel = new JLabel("Red: 0");
 rLabel.setAlignmentX(Component.LEFT_ALIGNMENT);
 gLabel = new JLabel("Green: 0");
 gLabel.setAlignmentX(Component.LEFT_ALIGNMENT);
 bLabel = new JLabel("Blue: 0");
 bLabel.setAlignmentX(Component.LEFT_ALIGNMENT);

 controls = new JPanel();
 BoxLayout layout = new BoxLayout(controls, BoxLayout.Y_AXIS);
 controls.setLayout(layout);
 controls.add(rLabel);
 controls.add(rSlider);
 controls.add(Box.createRigidArea(new Dimension(0, 20)));
 controls.add(gLabel);
 controls.add(gSlider);
 controls.add(Box.createRigidArea(new Dimension(0, 20)));
 controls.add(bLabel);
 controls.add(bSlider);

 colorPanel = new JPanel();
 colorPanel.setPreferredSize(new Dimension(100, 100));
 colorPanel.setBackground(new Color(0, 0, 0));

 add(controls);
 add(colorPanel);

 }

l i s t i n G d . 1 2 continued

Z04_LEWI3322_AppD_pp537-632.indd 562 20/02/13 11:43 AM

 d.2 More Components 563

Labels indicating the value of the major tick marks are displayed if indicated
by a call to the setPaintLabels method.

Note that in this example, the major tick spacing is set to 50. Starting at 0, each
increment of 50 is labeled. The last label is therefore 250, even though the slider
value can reach 255.

A slider produces a change event, indicating that the position of the slider and
the value it represents have changed. The ChangeListener interface contains a
single method called stateChanged. In the SlideColor program, the same listener
object is used for all three sliders. In the stateChanged method, which is called
whenever any of the sliders is adjusted, the value of each slider is obtained, the

 /**
 * Represents the listener for all three sliders.
 */
 private class SliderListener implements ChangeListener
 {
 private int red, green, blue;

 /**
 * Gets the value of each slider, then updates the labels and
 * the color panel.
 */
 public void stateChanged(ChangeEvent event)
 {
 red = rSlider.getValue();
 green = gSlider.getValue();
 blue = bSlider.getValue();

 rLabel.setText("Red: " + red);
 gLabel.setText("Green: " + green);
 bLabel.setText("Blue: " + blue);

 colorPanel.setBackground(new Color(red, green, blue));
 }
 }

}

l i s t i n G d . 1 2 continued

Z04_LEWI3322_AppD_pp537-632.indd 563 20/02/13 11:43 AM

564 Appendix d Graphical User Interfaces

labels of all three are updated, and the background color of the color panel is re-
vised. It is actually only necessary to update one of the labels (the one whose cor-
responding slider changed). However, the effort to determine which slider was
adjusted is not warranted. It’s easier—and probably more efficient—to update all
three labels each time. Another alternative is to have a unique listener for each
slider, although that extra coding effort is not needed, either.

A slider is often a good choice when a large range of values is possible but
strictly bounded on both ends. Compared to alternatives such as a text field, slid-
ers convey more information to the user and eliminate input errors.

Combo Boxes
A combo box allows the user to select one of several options from a “drop-down”
menu. When the user presses a combo box using the mouse, a list of options is
displayed from which the user can choose. The current choice is displayed in the
combo box. A combo box is defined by the JComboBox class.

A combo box can be either editable or uneditable. By default, a
combo box is uneditable. Changing the value of an uneditable
combo box can be accomplished only by selecting an item from the
list. If the combo box is editable, however, the user can change the
value by either selecting an item from the list or typing a particular
value into the combo box area.

The options in a combo box list can be established in one of two ways. We can
create an array of strings and pass it into the constructor of the JComboBox class.
Alternatively, we can use the addItem method to add an item to the combo box
after it has been created. An item in a JComboBox can also display an ImageIcon
object, in addition to text or appearing by itself.

The JukeBox program shown in Listing D.13 demonstrates the use of a combo
box. The user chooses a song to play, using the combo box, and then presses the Play
button to begin playing the song. The Stop button can be pressed at any time to stop
the song. Selecting a new song while one is playing also stops the current song.

import javax.swing.*;

/**
 * JukeBox.java
 *
 * Demonstrates the use of a combo box.

 */

l i s t i n G d . 1 3

Key ConCept
A combo box provides a drop-down
menu of options.

Z04_LEWI3322_AppD_pp537-632.indd 564 20/02/13 11:43 AM

 d.2 More Components 565

public class JukeBox

{
 /**
 * Creates and displays the controls for a juke box.
 */
 public static void main(String[] args)
 {
 JFrame frame = new JFrame("Java Juke Box");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.getContentPane().add(new JukeBoxControls());

 frame.pack();
 frame.setVisible(true);
 }
}

d i s p l A y

l i s t i n G d . 1 3 continued

The JukeBoxControls class shown in Listing D.14 is a panel that contains the
components that make up the jukebox GUI. The constructor of the class also
loads the audio clips that will be played. An audio clip is obtained first by creating
a URL object that corresponds to the wav or au file that defines the clip. The first
two parameters to the URL constructor should be “file” and “localhost”, re-
spectively, if the audio clip is stored on the same machine on which the program is

Z04_LEWI3322_AppD_pp537-632.indd 565 20/02/13 11:43 AM

566 Appendix d Graphical User Interfaces

executing. Creating URL objects can potentially throw a checked exception; therefore,
they are created in a try block. However, this program assumes that the audio
clips will be loaded successfully and therefore does nothing if an exception is thrown.

Once created, the URL objects are used to create AudioClip objects using the
static newAudioClip method of the JApplet class. The audio clips are stored in
an array. The first entry in the array, at index 0, is set to null. This entry corre-
sponds to the initial combo box option, which simply encourages the user to
make a selection.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import java.applet.AudioClip;
import java.net.URL;

/**
 * JukeBoxControls.java
 *
 * Represents the control panel for the juke box.
 */
public class JukeBoxControls extends JPanel
{
 private JComboBox musicCombo;
 private JButton stopButton, playButton;
 private AudioClip[] music;
 private AudioClip current;

 /**
 * Sets up the GUI for the juke box.
 */
 public JukeBoxControls()
 {
 URL url1, url2, url3, url4, url5, url6;
 url1 = url2 = url3 = url4 = url5 = url6 = null;

 // Obtain and store the audio clips to play

l i s t i n G d . 1 4

Z04_LEWI3322_AppD_pp537-632.indd 566 20/02/13 11:43 AM

 D.2 More Components 567

 try
 {
 url1 = new URL("file", "localhost", "westernBeat.wav");
 url2 = new URL("file", "localhost", "classical.wav");
 url3 = new URL("file", "localhost", "jeopardy.au");
 url4 = new URL("file", "localhost", "newAgeRhythm.wav");
 url5 = new URL("file", "localhost", "eightiesJam.wav");
 url6 = new URL("file", "localhost", "hitchcock.wav");
 }
 catch(Exception exception) {}

 music = new AudioClip[7];
 music[0] = null; // Corresponds to "Make a Selection..."
 music[1] = JApplet.newAudioClip(url1);
 music[2] = JApplet.newAudioClip(url2);
 music[3] = JApplet.newAudioClip(url3);
 music[4] = JApplet.newAudioClip(url4);
 music[5] = JApplet.newAudioClip(url5);
 music[6] = JApplet.newAudioClip(url6);

 // Create the list of strings for the combo box options
 String[] musicNames = {"Make A Selection...", "Western Beat",
 "Classical Melody", "Jeopardy Theme", "New Age Rhythm",
 "Eighties Jam", "Alfred Hitchcock's Theme"};

 musicCombo = new JComboBox(musicNames);
 musicCombo.setBackground(Color.cyan);

 // Set up the buttons
 playButton = new JButton("Play", new ImageIcon("play.gif"));
 playButton.setBackground(Color.cyan);
 stopButton = new JButton("Stop", new ImageIcon("stop.gif"));
 stopButton.setBackground(Color.cyan);

 // Set up this panel
 setPreferredSize(new Dimension(250, 100));
 setBackground(Color.cyan);
 add(musicCombo);
 add(playButton);
 add(stopButton);
 musicCombo.addActionListener(new ComboListener());
 stopButton.addActionListener(new ButtonListener());
 playButton.addActionListener(new ButtonListener());
 current = null;

 }

l i s t i n g D . 1 4 continued

Z04_LEWI3322_AppD_pp537-632.indd 567 01/03/13 12:02 PM

568 Appendix d Graphical User Interfaces

 /**
 * Represents the action listener for the combo box.
 */
 private class ComboListener implements ActionListener

 {

 /**
 * Stops playing the current selection (if any) and resets
 * the current selection to the one chosen.
 */
 public void actionPerformed(ActionEvent event)
 {
 if (current != null)
 current.stop();

 current = music[musicCombo.getSelectedIndex()];
 }

 }

 /**
 * Represents the action listener for both control buttons.
 */
 private class ButtonListener implements ActionListener

 {

 /**
 * Stops the current selection (if any) in either case. If
 * the play button was pressed, start playing it again.
 */
 public void actionPerformed(ActionEvent event)
 {
 if (current != null)
 current.stop();

 if (event.getSource() == playButton)
 if (current != null)
 current.play();
 }
 }
}

l i s t i n G d . 1 4 continued

Z04_LEWI3322_AppD_pp537-632.indd 568 20/02/13 11:43 AM

 d.2 More Components 569

The list of songs that is displayed in the combo box is defined in an array of
strings. The first entry of the array will appear in the combo box by default and is
often used to direct the user. We must take care that the rest of the program does
not try to use that option as a valid song.

This program also shows the ability of a push button to display an image. In
this example, the Play and Stop buttons are displayed with both a text label and
an image icon.

A combo box generates an action event whenever the user makes a selection
from it. The JukeBox program uses one action listener class for the combo box
and another for both of the push buttons. They could have been combined, using
code to distinguish which component fired the event.

The actionPerformed method of the ComboListener class is executed when
a selection is made from the combo box. The current audio selection that is
playing, if any, is stopped. The current clip is then updated to reflect the new
selection. Note that the audio clip is not immediately played at that point. The
way this program is designed, the user must press the Play button to hear the
new selection.

The actionPerformed method of the ButtonListener class is executed
when either of the buttons is pushed. The current audio selection that is playing,
if any, is stopped. If the Stop button was pressed, the task is complete. If the
Play button was pressed, the current audio selection is played again from the
beginning.

timers
A timer, created from the Timer class of the javax.swing package,
can be thought of as a GUI component. However, unlike other com-
ponents, it does not have a visual representation that appears on the
screen. Instead, as the name implies, it helps us manage an activity
over time.

A timer object generates an action event at regular intervals. To
perform an animation, we can set up a timer to generate an action event periodi-
cally, and then update the animation graphics in the action listener. The methods of
the Timer class are shown in Figure D.1.

Key ConCept
A timer generates action events at
regular intervals and can be used to
control an animation.

Z04_LEWI3322_AppD_pp537-632.indd 569 20/02/13 11:43 AM

570 Appendix d Graphical User Interfaces

Timer (int delay, ActionListener listener)

Constructor: Creates a timer that generates an action event at
regular intervals, specified by the delay. The event will be handled
by the specified listener.

void addActionListener (ActionListener listener)

Adds an action listener to the timer.

boolean isRunning ()

Returns true if the timer is running.

void setDelay (int delay)

Sets the delay of the timer.

void start ()

Starts the timer, causing it to generate action events.

void stop ()

Stops the timer, causing it to stop generating action events.

FiGURe d.1 Some methods of the Timer class

The program shown in Listing D.15 displays the image of a smiling face that
seems to glide across the program window at an angle, bouncing off the window
edges (even though that’s hard to appreciate from a screen shot).

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/**
 * Rebound.java
 *
 * Demonstrates an animation and the use of the Timer class.
 */

l i s t i n G d . 1 5

Z04_LEWI3322_AppD_pp537-632.indd 570 20/02/13 11:43 AM

 d.2 More Components 571

The constructor of the ReboundPanel class, shown in Listing D.16, creates a
Timer object. The first parameter to the Timer constructor is the delay in millisec-
onds. The second parameter to the constructor is the listener that handles the action
events of the timer. The ReboundPanel constructor also sets up the initial position
for the image and the number of pixels it will move, in both the vertical and hori-
zontal directions, each time the image is redrawn.

public class Rebound

{
 /**
 * Displays the main frame of the program.
 */
 public static void main(String[] args)
 {
 JFrame frame = new JFrame("Rebound");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.getContentPane().add(new ReboundPanel());

 frame.pack();
 frame.setVisible(true);
 }

}

d i s p l A y

l i s t i n G d . 1 5 continued

Z04_LEWI3322_AppD_pp537-632.indd 571 20/02/13 11:43 AM

572 Appendix d Graphical User Interfaces

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

/**
 * ReboundPanel.java
 *
 * Represents the primary panel for the Rebound program.
 */
public class ReboundPanel extends JPanel
{
 private final int WIDTH = 300, HEIGHT = 100;
 private final int DELAY = 20, IMAGE_SIZE = 35;

 private ImageIcon image;
 private Timer timer;
 private int x, y, moveX, moveY;

 /**
 * Sets up the panel, including the timer for the animation.
 */
 public ReboundPanel()
 {
 timer = new Timer(DELAY, new ReboundListener());

 image = new ImageIcon("happyFace.gif");

 x = 0;
 y = 40;
 moveX = moveY = 3;

 setPreferredSize(new Dimension(WIDTH, HEIGHT));
 setBackground(Color.black);
 timer.start();
 }

 /**
 * Draws the image in the current location.
 */
 public void paintComponent(Graphics page)

l i s t i n G d . 1 6

Z04_LEWI3322_AppD_pp537-632.indd 572 20/02/13 11:43 AM

 d.2 More Components 573

The actionPerformed method of the listener updates the current x and y co-
ordinate values and then checks to see whether those values cause the image to
“run into” the edge of the panel. If so, the movement is adjusted so that the image
will make future moves in the opposite direction horizontally, vertically, or both.
Note that this calculation takes the image size into account.

 {
 super.paintComponent(page);
 image.paintIcon(this, page, x, y);

 }

 /**
 * Represents the action listener for the timer.

 */
 private class ReboundListener implements ActionListener

 {

 /**
 * Updates the position of the image and possibly the direction
 * of movement whenever the timer fires an action event.
 */
 public void actionPerformed(ActionEvent event)
 {
 x += moveX;
 y += moveY;

 if (x = WIDTH-IMAGE_SIZE)
 moveX = moveX * -1;

 if (y = HEIGHT-IMAGE_SIZE)
 moveY = moveY * -1;

 repaint();
 }
 }

}

l i s t i n G d . 1 6 continued

Z04_LEWI3322_AppD_pp537-632.indd 573 20/02/13 11:43 AM

574 Appendix d Graphical User Interfaces

After updating the coordinate values, the actionPerformed method calls re-
paint to force the component (in this case, the panel) to repaint itself. The call to
repaint eventually causes the paintComponent method to be called, which re-
paints the image in the new location.

The speed of the animation in this program is a function of two factors: the
pause between the action events, and the distance the image is shifted each time.
In this example, the timer is set to generate an action event every 20 milliseconds,
and the image is shifted 3 pixels each time it is updated. You can experiment with
these values to change the speed of the animation. The goal should be to create
the illusion of movement that is pleasing to the eye.

d.3 layout Managers

As we mentioned earlier in this chapter, every container is managed
by an object called a layout manager that determines how the com-
ponents in the container are arranged visually. The layout manager
is consulted when needed, such as when the container is resized or
when a component is added to the container.

A layout manager determines the size and position of each com-
ponent and may take many factors into account to do so. Every
container has a default layout manager, although we can replace it if
we prefer another one.

The table in Figure D.2 describes several of the predefined layout
managers provided by the Java standard class library.

Border Layout Organizes components into five areas (North, South, East,
West, and Center).

Organizes components into one area such that only one is
visible at any time.

Organizes components into a single row or column.

Organizes components from left to right, starting new rows
as necessary.

Organizes components into a grid of rows and columns.

Organizes components into a grid of cells, allowing
components to span more than one cell.

Box Layout

Card Layout

Flow Layout

Grid Layout

GridBag Layout

Layout Manager Description

FiGURe d.2 Some predefined Java layout managers

Key ConCept
Every container is managed by a lay-
out manager, which determines how
components are visually presented.

Key ConCept
When changes occur, the components
in a container reorganize themselves
according to the layout manager’s
policy.

Z04_LEWI3322_AppD_pp537-632.indd 574 20/02/13 11:43 AM

 d.3 Layout Managers 575

Every layout manager has its own particular properties and rules governing
the layout of components. For some layout managers, the order in which you
add the components affects their positioning, whereas others provide more spe-
cific control. Some layout managers take a component’s preferred size or align-
ment into account, whereas others don’t. To develop good GUIs in Java, it is
important to become familiar with features and characteristics of various layout
managers.

We can use the setLayout method of a container to change its
layout manager. For example, the following code sets the layout
manager of a JPanel, which has a flow layout by default, so that it
uses a border layout instead.

JPanel panel = new JPanel();
panel.setLayout(new BorderLayout());

Let’s explore some of these layout managers in more detail. We’ll focus on the
most popular layout managers at this point: flow, border, box, and grid. The class
presented in Listing D.17 contains the main method of an application that dem-
onstrates the use and effects of these layout managers.

Key ConCept
The layout manager for each con-
tainer can be explicitly set.

import javax.swing.*;

/**
 * LayoutDemo.java
 *
 * Demonstrates the use of flow, border, grid, and box layouts.
 */
public class LayoutDemo

{
 /**
 * Sets up a frame containing a tabbed pane. The panel on each
 * tab demonstrates a different layout manager.
 */
 public static void main(String[] args)
 {
 JFrame frame = new JFrame("Layout Manager Demo");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

l i s t i n G d . 1 7

Z04_LEWI3322_AppD_pp537-632.indd 575 20/02/13 11:43 AM

576 Appendix d Graphical User Interfaces

The LayoutDemo program introduces the use of a tabbed pane, a container
that allows the user to select (by clicking on a tab) which of several panes is cur-
rently visible. A tabbed pane is defined by the JTabbedPane class. The addTab
method creates a tab, specifying the name that appears on the tab and the compo-
nent to be displayed on that pane when it achieves focus by being “brought to the
front” and made visible to the user.

Interestingly, there is an overlap in the functionality provided by tabbed panes
and the card layout manager. Similar to the tabbed pane, a card layout allows
several layers to be defined, and only one of those layers is displayed at any given
point. However, a container managed by a card layout can be adjusted only under
program control, whereas tabbed panes allow the user to indicate directly which
tab should be displayed.

In this example, each tab of the tabbed pane contains a panel that is controlled
by a different layout manager. The first tab simply contains a panel with an intro-
ductory message, as shown in Listing D.18. As we explore each layout manager in
more detail, we examine the class that defines the corresponding panel of this
program and discuss its visual effect.

Flow layout
Flow layout is one of the easiest layout managers to use. As we’ve mentioned, the
JPanel class uses flow layout by default. Flow layout puts as many components
as possible on a row, at their preferred size. When a component cannot fit on a

 JTabbedPane tp = new JTabbedPane();
 tp.addTab("Intro", new IntroPanel());
 tp.addTab("Flow", new FlowPanel());
 tp.addTab("Border", new BorderPanel());
 tp.addTab("Grid", new GridPanel());
 tp.addTab("Box", new BoxPanel());

 frame.getContentPane().add(tp);

 frame.pack();
 frame.setVisible(true);
 }

}

l i s t i n G d . 1 7 continued

Z04_LEWI3322_AppD_pp537-632.indd 576 20/02/13 11:43 AM

 d.3 Layout Managers 577

row, it is put on the next row. As many rows as needed are added to fit all compo-
nents that have been added to the container. Figure D.3 depicts a container gov-
erned by a flow layout manager.

Component
1

Component
2

Component
4

Component
3

FiGURe d.3 Flow layout puts as many components as possible on a row

import java.awt.*;
import javax.swing.*;

/**
 * IntroPanel.java
 *
 * Represents the introduction panel for the LayoutDemo program.
 */
public class IntroPanel extends JPanel

{
 /**
 * Sets up this panel with two labels.
 */
 public IntroPanel()
 {
 setBackground(Color.green);

l i s t i n G d . 1 8

Z04_LEWI3322_AppD_pp537-632.indd 577 20/02/13 11:43 AM

578 Appendix d Graphical User Interfaces

The class in Listing D.19 represents the panel that demonstrates a flow layout
in the LayoutDemo program. It explicitly sets the layout to be a flow layout (al-
though in this case that is unnecessary, because JPanel defaults to flow layout).
The buttons are then created and added to the panel.

The size of each button is made large enough to accommodate the size of the
label that is put on it. Flow layout puts as many of these buttons as possible on
one row within the panel and then starts putting components on another row.
When the size of the frame is widened (by dragging the lower-right corner with
the mouse, for example), the panel grows as well, and more buttons can fit on a
row. When the frame is resized, the layout manager is consulted and the compo-
nents are reorganized automatically. The display in Listing D.19 shows two screen
shots of the window with different sizes.

The constructor of the FlowLayout class is overloaded to allow the program-
mer to tailor the characteristics of the layout manager. Within each row, compo-
nents are either centered, left aligned, or right aligned. The alignment defaults to

 JLabel l1 = new JLabel("Layout Manager Demonstration");
 JLabel l2 = new JLabel("Choose a tab to see an example of " +
 "a layout manager.");
 add(l1);
 add(l2);
 }

}

d i s p l A y

l i s t i n G d . 1 8 continued

Z04_LEWI3322_AppD_pp537-632.indd 578 20/02/13 11:43 AM

 d.3 Layout Managers 579

centered. The horizontal and vertical gap size between components can be speci-
fied when the layout manager is created. The FlowLayout class also has methods
to set the alignment and gap sizes after the layout manager is created.

Border layout
A border layout has five areas to which components can be added: North, South,
East, West, and Center. The areas have a particular positional relationship to each
other, as shown in Figure D.4.

North

Center EastWest

South

FiGURe d.4 Border layout organizes components in five areas

import java.awt.*;
import javax.swing.*;

/**
 * FlowPanel.java
 *
 * Represents the panel in the LayoutDemo program that demonstrates
 * the flow layout manager.
 */
public class FlowPanel extends JPanel

{
 /**
 * Sets up this panel with some buttons to show how flow layout
 * affects their position.
 */

l i s t i n G d . 1 9

Z04_LEWI3322_AppD_pp537-632.indd 579 20/02/13 11:43 AM

580 Appendix d Graphical User Interfaces

 public FlowPanel()
 {
 setLayout(new FlowLayout());

 setBackground(Color.green);

 JButton b1 = new JButton("BUTTON 1");
 JButton b2 = new JButton("BUTTON 2");
 JButton b3 = new JButton("BUTTON 3");
 JButton b4 = new JButton("BUTTON 4");
 JButton b5 = new JButton("BUTTON 5");

 add(b1);
 add(b2);
 add(b3);
 add(b4);
 add(b5);
 }

}

d i s p l A y

l i s t i n G d . 1 9 continued

Z04_LEWI3322_AppD_pp537-632.indd 580 20/02/13 11:43 AM

 d.3 Layout Managers 581

The four outer areas become as big as needed in order to accommodate the
component they contain. If no components are added to the North, South, East,
or West areas, these areas do not take up any room in the overall layout. The
Center area expands to fill any available space.

A particular container might use only a few areas, depending on the function-
ality of the system. For example, a program might use only the Center, South, and
West areas. This versatility makes border layout a very useful layout manager.

The add method for a container governed by a border layout takes as its first
parameter the component to be added. The second parameter indicates the area to
which it is added. The area is specified using constants defined in the
BorderLayout class. Listing D.20 shows the panel used by the LayoutDemo pro-
gram to demonstrate the border layout.

import java.awt.*;

import javax.swing.*;

/**
 * BorderPanel.java
 *
 * Represents the panel in the LayoutDemo program that demonstrates
 * the border layout manager.
 */
public class BorderPanel extends JPanel

{
 /**
 * Sets up this panel with a button in each area of a border
 * layout to show how it affects their position, shape, and size.
 */
 public BorderPanel()
 {
 setLayout(new BorderLayout());

 setBackground(Color.green);

 JButton b1 = new JButton("BUTTON 1");
 JButton b2 = new JButton("BUTTON 2");
 JButton b3 = new JButton("BUTTON 3");

l i s t i n G d . 2 0

Z04_LEWI3322_AppD_pp537-632.indd 581 20/02/13 11:43 AM

582 Appendix d Graphical User Interfaces

 JButton b4 = new JButton("BUTTON 4");
 JButton b5 = new JButton("BUTTON 5");

 add(b1, BorderLayout.CENTER);
 add(b2, BorderLayout.NORTH);
 add(b3, BorderLayout.SOUTH);
 add(b4, BorderLayout.EAST);
 add(b5, BorderLayout.WEST);
 }

}

d i s p l A y

l i s t i n G d . 2 0 continued

Z04_LEWI3322_AppD_pp537-632.indd 582 20/02/13 11:43 AM

 d.3 Layout Managers 583

In the BorderPanel class constructor, the layout manager of the panel is ex-
plicitly set to be border layout. The buttons are then created and added to specific
panel areas. By default, each button is made wide enough to accommodate its la-
bel and tall enough to fill the area to which it has been assigned. As the frame
(and the panel) is resized, the size of each button adjusts as needed, with the but-
ton in the Center area filling any unused space.

Each area in a border layout displays only one component. That is, only one
component is added to each area of a given border layout. A common error is to
add two components to a particular area of a border layout, in which case the
first component added is replaced by the second, and only the second is seen
when the container is displayed. To add multiple components to an area within a
border layout, you must first add the components to another container, such as a
JPanel, and then add the panel to the area.

Note that although the panel used to display the buttons has a green back-
ground, no green is visible in the display for Listing D.20. By default there are no
horizontal or vertical gaps between the areas of a border layout. These gaps can be
set with an overloaded constructor or with explicit methods of the BorderLayout
class. If the gaps are increased, the underlying panel will show through.

Grid layout
A grid layout presents a container’s components in a rectangular grid of rows and
columns. One component is placed in each grid cell, and all cells are the same size.
Figure D.5 shows the general organization of a grid layout.

The number of rows and columns in a grid layout is established using parame-
ters to the constructor when the layout manager is created. The class in Listing
D.21 shows the panel used by the LayoutDemo program to demonstrate a grid

Component
1

Component
2

Component
3

Component
4

Component
5

Component
6

Component
7

Component
8

Component
9

Component
10

Component
11

Component
12

FiGURe d.5 Grid layout creates a rectangular grid of equal-size cells

Z04_LEWI3322_AppD_pp537-632.indd 583 20/02/13 11:43 AM

584 Appendix d Graphical User Interfaces

layout. It specifies that the panel should be managed using a grid of two rows and
three columns.

As buttons are added to the container, they fill the grid (by default) from left to
right and from top to bottom. There is no way to explicitly assign a component to
a particular location in the grid, other than the order in which they are added to
the container.

The size of each cell is determined by the container’s overall size. When the
container is resized, all of the cells change size proportionally to fill the container.

import java.awt.*;

import javax.swing.*;

/**
 * GridPanel.java
 *
 * Represents the panel in the LayoutDemo program that demonstrates
 * the grid layout manager.
 */
public class GridPanel extends JPanel

{
 /**
 * Sets up this panel with some buttons to show how grid
 * layout affects their position, shape, and size.
 */
 public GridPanel()
 {
 setLayout(new GridLayout(2, 3));

 setBackground(Color.green);

 JButton b1 = new JButton("BUTTON 1");
 JButton b2 = new JButton("BUTTON 2");
 JButton b3 = new JButton("BUTTON 3");
 JButton b4 = new JButton("BUTTON 4");
 JButton b5 = new JButton("BUTTON 5");

l i s t i n G d . 2 1

Z04_LEWI3322_AppD_pp537-632.indd 584 20/02/13 11:43 AM

 d.3 Layout Managers 585

If the value used to specify either the number of rows or the number of col-
umns is zero, the grid expands as needed in that dimension to accommodate the
number of components added to the container. The values for the number of rows
and the number of columns cannot both be zero.

By default, there are no horizontal and vertical gaps between the grid cells. The
gap sizes can be specified using an overloaded constructor or with the appropriate
GridLayout methods.

 add(b1);
 add(b2);
 add(b3);
 add(b4);
 add(b5);
 }

}

d i s p l A y

l i s t i n G d . 2 1 continued

Z04_LEWI3322_AppD_pp537-632.indd 585 20/02/13 11:43 AM

586 Appendix d Graphical User Interfaces

Box layout
A box layout organizes components either vertically or horizontally, in one row or
one column, as shown in Figure D.6. It is easy to use, yet when combined with other
box layouts, it can produce complex GUI designs similar to those that can be ac-
complished with a grid bag layout, which in general is far more difficult to master.

Component
1

Comp
2

Comp 3

Component
1

Comp
2 Comp 3

FiGURe d.6 Box layout organizes components either vertically or horizontally

When a BoxLayout object is created, we specify that it will follow either the x
axis (horizontal) or the y axis (vertical), using constants defined in the BoxLayout
class. Unlike other layout managers, the constructor of the BoxLayout class takes
as its first parameter the component that it will govern. Therefore, a new
BoxLayout object must be created for each component. Listing D.22 shows the
panel used by the LayoutDemo program to demonstrate the box layout.

Components in containers governed by a box layout are organized (top to bot-
tom or left to right) in the order in which they are added to the container.

There are no gaps between the components in a box layout. Unlike previous
layout managers we’ve explored, a box layout does not have a specific vertical or
horizontal gap that can be specified for the entire container. Instead, we can add
invisible components to the container that take up space between other compo-
nents. The Box class, which is also part of the Java standard class library, contains
static methods that can be used to create these invisible components.

The two types of invisible components used in the BoxPanel class are rigid ar-
eas, which have a fixed size, and glue, which specifies where excess space in a
container should go. A rigid area is created using the createRigidArea method
of the Box class and takes a Dimension object as a parameter to define the size of
the invisible area. Glue is created using the createHorizontalGlue method or
the createVerticalGlue method, as appropriate.

Z04_LEWI3322_AppD_pp537-632.indd 586 20/02/13 11:43 AM

 d.3 Layout Managers 587

Note that in our example, the space between buttons separated by a rigid area
remains constant even when the container is resized. Glue, on the other hand, ex-
pands or contracts as needed to fill the space.

import java.awt.*;

import javax.swing.*;

/**
 * BoxPanel.java
 *
 * Represents the panel in the LayoutDemo program that demonstrates
 * the box layout manager.
 */
public class BoxPanel extends JPanel

{
 /**
 * Sets up this panel with some buttons to show how a vertical
 * box layout (and invisible components) affects their position.
 */
 public BoxPanel()
 {
 setLayout(new BoxLayout(this, BoxLayout.Y_AXIS));

 setBackground(Color.green);

 JButton b1 = new JButton("BUTTON 1");
 JButton b2 = new JButton("BUTTON 2");
 JButton b3 = new JButton("BUTTON 3");
 JButton b4 = new JButton("BUTTON 4");
 JButton b5 = new JButton("BUTTON 5");

 add(b1);
 add(Box.createRigidArea(new Dimension(0, 10)));
 add(b2);
 add(Box.createVerticalGlue());
 add(b3);
 add(b4);
 add(Box.createRigidArea(new Dimension(0, 20)));
 add(b5);
 }

}

l i s t i n G d . 2 2

Z04_LEWI3322_AppD_pp537-632.indd 587 20/02/13 11:43 AM

588 Appendix d Graphical User Interfaces

d i s p l A y

l i s t i n G d . 2 2 continued

Z04_LEWI3322_AppD_pp537-632.indd 588 20/02/13 11:43 AM

 d.4 Mouse and Key Events 589

A box layout—more than most of the other layout managers—respects the
alignments and the minimum, maximum, and preferred sizes of the components it
governs. Therefore, setting the characteristics of the components that go into the
container is another way to tailor the visual effect.

Containment Hierarchies
The way components are grouped into containers, and the way those containers
are nested within each other, establishes the containment hierarchy for a GUI. The
interplay between the containment hierarchy and the layout managers of the con-
tainers involved dictates the overall visual effect of the GUI.

For any Java program, there is generally one primary container,
called a top-level container, such as a frame or applet. The top-level
container of a program often contains one or more other containers,
such as panels. These panels may contain other panels to organize
the other components as desired.

Keep in mind that each container can have its own tailored layout manager.
The final appearance of a GUI is a function of the layout managers chosen for
each of the containers and the design of the containment hierarchy. Many combi-
nations are possible, and there is rarely a single best option. We should be guided
by the desired system goals and general GUI design guidelines.

When changes are made that might affect the visual layout of the components
in a program, the layout managers of each container are consulted in turn. The
changes in one may affect another. These changes ripple through the containment
hierarchy as needed.

d.4 Mouse and Key events

In addition to events that are generated when the user interacts with a component,
there are events that are fired when the user interacts with the computer’s mouse
and keyboard. We can design a program to capture and respond to these as well.

Mouse events
Java divides the events generated by the user interacting with the mouse into two
categories: mouse events and mouse motion events. The tables in Figure D.7 de-
fine these events.

Key ConCept
A GUI’s appearance is a function of
the containment hierarchy and the
layout managers of each container.

Z04_LEWI3322_AppD_pp537-632.indd 589 20/02/13 11:43 AM

590 Appendix d Graphical User Interfaces

When you click the mouse button over a Java GUI component, three events are
generated: one when the mouse button is pushed down (mouse pressed) and two
when it is let up (mouse released and mouse clicked). A mouse click is defined as
pressing and releasing the mouse button in the same location. If you press the
mouse button down, move the mouse, and then release the mouse button, a
mouse clicked event is not generated.

A component will generate a mouse entered event when the mouse pointer
passes into its graphical space. Likewise, it generates a mouse exited event when
the mouse pointer leaves.

Mouse motion events, as the name implies, occur while the mouse
is in motion. The mouse moved event indicates simply that the
mouse is in motion. The mouse dragged event is generated when the
user has pressed the mouse button down and moved the mouse
without releasing the button. Mouse motion events are generated
many times, very quickly, while the mouse is in motion.

In a specific situation, we may care about only one or two mouse events. What
we listen for depends on what we are trying to accomplish.

The Coordinates program shown in Listing D.23 responds to one mouse
event. Specifically, it draws a green dot at the location of the mouse pointer when-
ever the mouse button is pressed, and displays those coordinates. Keep in mind

mouse pressed The mouse button is pressed down.

The mouse button is released.

The mouse pointer is moved onto (over) a component.

The mouse pointer is moved off of a component.

The mouse button is pressed down and released without moving
the mouse in between.

mouse released

mouse clicked

mouse entered

mouse exited

Mouse Event Description

mouse moved The mouse is moved.

The mouse is moved while the mouse button is pressed down.mouse dragged

Mouse Motion Event Description

FiGURe d.7 Mouse events and mouse motion events

Key ConCept
Moving the mouse and clicking the
mouse button generate events to
which a program can respond.

Z04_LEWI3322_AppD_pp537-632.indd 590 20/02/13 11:43 AM

 d.4 Mouse and Key Events 591

that (as discussed in Appendix C) the coordinate system in Java has the origin in
the upper-left corner of a component (such as a panel), with x coordinates in-
creasing to the right and y coordinates increasing downward.

The CoordinatesPanel class, shown in Listing D.24, keeps track of the (x, y)
coordinates at which the user has pressed the mouse button most recently. The
getX and getY methods of the MouseEvent object return the x and y coordinates
of the location where the mouse event occurred.

import javax.swing.JFrame;

/**
 * Coordinates.java
 *
 * Demonstrates mouse events.
 */
public class Coordinates

{
 /**
 * Creates and displays the application frame.
 */
 public static void main(String[] args)
 {
 JFrame frame = new JFrame("Coordinates");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.getContentPane().add(new CoordinatesPanel());

 frame.pack();
 frame.setVisible(true);
 }

}

l i s t i n G d . 2 3

Z04_LEWI3322_AppD_pp537-632.indd 591 20/02/13 11:43 AM

592 Appendix d Graphical User Interfaces

d i s p l A y

l i s t i n G d . 2 3 continued

import javax.swing.JPanel;
import java.awt.*;
import java.awt.event.*;

/**
 * CoordinatesPanel.java
 *
 * Represents the primary panel for the Coordinates program.
 */
public class CoordinatesPanel extends JPanel
{
 private final int SIZE = 6; // diameter of dot

l i s t i n G d . 2 4

Z04_LEWI3322_AppD_pp537-632.indd 592 20/02/13 11:43 AM

 d.4 Mouse and Key Events 593

 private int x = 50, y = 50; // coordinates of mouse press

 /**
 * Constructor: Sets up this panel to listen for mouse events.
 */
 public CoordinatesPanel()
 {
 addMouseListener(new CoordinatesListener());

 setBackground(Color.black);
 setPreferredSize(new Dimension(300, 200));

 }

 /**
 * Draws all of the dots stored in the list.
 */
 public void paintComponent(Graphics page)
 {
 super.paintComponent(page);

 page.setColor(Color.green);

 page.fillOval(x, y, SIZE, SIZE);

 page.drawString(“Coordinates:(" + x + ", " + y + ")", 5, 15);

 }

 /**
 * Represents the listener for mouse events.
 */
 private class CoordinatesListener implements MouseListener

 {

 /**
 * Adds the current point to the list of points and redraws
 * the panel whenever the mouse button is pressed.
 */
 public void mousePressed(MouseEvent event)

l i s t i n G d . 2 4 continued

Z04_LEWI3322_AppD_pp537-632.indd 593 20/02/13 11:43 AM

594 Appendix d Graphical User Interfaces

The listener for the mouse pressed event implements the MouseListener inter-
face. The panel invokes the mousePressed method each time the user presses
down on the mouse button while it is over the panel.

Note that, unlike the listener interfaces that we’ve used in previous examples
that contain one method each, the MouseListener interface contains five meth-
ods. For this program, the only event in which we are interested is the mouse
pressed event. Therefore, the only method in which we have any interest is the
mousePressed method. However, implementing an interface means we must pro-
vide definitions for all methods in the interface. Therefore, we provide empty
methods corresponding to the other events. When those events are generated, the
empty methods are called, but no code is executed. At the end of this section, we

discuss a technique for creating listeners that enables us to avoid
creating such empty methods.

Let’s look at an example that responds to two mouse-oriented
events. The RubberLines program shown in Listing D.25 draws a
line between two points.

 {
 x = event.getX();
 y = event.getY();
 repaint();

 }

 /**
 * Provide empty definitions for unused event methods.

 */
 public void mouseClicked(MouseEvent event) {}
 public void mouseReleased(MouseEvent event) {}
 public void mouseEntered(MouseEvent event) {}
 public void mouseExited(MouseEvent event) {}
 }

}

l i s t i n G d . 2 4 continued

Key ConCept
A listener may have to provide empty
method definitions for unheeded
events to satisfy the interface.

Z04_LEWI3322_AppD_pp537-632.indd 594 20/02/13 11:43 AM

 d.4 Mouse and Key Events 595

import javax.swing.JFrame;

/**
 * RubberLines.java
 *
 * Demonstrates mouse events and rubberbanding.
 */
public class RubberLines

{
 /**
 * Creates and displays the application frame.
 */
 public static void main(String[] args)
 {
 JFrame frame = new JFrame("Rubber Lines");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.getContentPane().add(new RubberLinesPanel());

 frame.pack();
 frame.setVisible(true);
 }

}

d i s p l A y

l i s t i n G d . 2 5

Z04_LEWI3322_AppD_pp537-632.indd 595 20/02/13 11:44 AM

596 AppenDix D Graphical User Interfaces

The first point is determined by the location at which the mouse is first pressed
down. The second point changes as the mouse is dragged while the mouse button
is held down. When the button is released, the line remains fixed between the first
and second points. When the mouse button is pressed again, a new line is started.

The RubberLinesPanel class is shown in Listing D.26. Because we need to
listen for both a mouse pressed event and a mouse dragged event, we need a lis-
tener that responds both to mouse events and to mouse motion events.

import javax.swing.JPanel;
import java.awt.*;
import java.awt.event.*;

/**
 * RubberLinesPanel.java
 *
 * Represents the primary drawing panel for the RubberLines program.
 */
public class RubberLinesPanel extends JPanel
{

 private Point point1 = null, point2 = null;

 /**
 * Constructor: Sets up this panel to listen for mouse events.
 */
 public RubberLinesPanel()
 {
 LineListener listener = new LineListener();
 addMouseListener(listener);
 addMouseMotionListener(listener);

 setBackground(Color.black);
 setPreferredSize(new Dimension(400, 200));

 }

 /**
 * Draws the current line from the initial mouse-pressed point to
 * the current position of the mouse.
 */

l i s t i n g D . 2 6

Z04_LEWI3322_AppD_pp537-632.indd 596 01/03/13 12:02 PM

 d.4 Mouse and Key Events 597

 public void paintComponent(Graphics page)
 {
 super.paintComponent(page);

 page.setColor(Color.yellow);
 if (point1 != null && point2 != null)
 page.drawLine(point1.x, point1.y, point2.x, point2.y);

 }

 /**
 * Represents the listener for all mouse events.
 */
 private class LineListener implements MouseListener,
 MouseMotionListener

 {

 /**
 * Captures the initial position at which the mouse button is
 * pressed.
 */
 public void mousePressed(MouseEvent event)
 {
 point1 = event.getPoint();

 }

 /**
 * Gets the current position of the mouse as it is dragged and
 * redraws the line to create the rubberband effect.
 */
 public void mouseDragged(MouseEvent event)
 {
 point2 = event.getPoint();
 repaint();

 }

 /**
 * Provide empty definitions for unused event methods.
 */

l i s t i n G d . 2 6 continued

Z04_LEWI3322_AppD_pp537-632.indd 597 20/02/13 11:44 AM

598 Appendix d Graphical User Interfaces

Note that the listener class in this example implements both the
MouseListener interface and the MouseMotionListener interface.
It must therefore implement all methods of both interfaces. The two
methods of interest, mousePressed and mouseDragged, are imple-
mented to accomplish our goals, and the other methods are given
empty definitions to satisfy the interface contract.

When the mousePressed method is called, the variable point1 is set. Then, as the
mouse is dragged, the variable point2 is continually reset and the panel repainted.
Therefore, the line is constantly being redrawn as the mouse is dragged, giving the
appearance that one line is being stretched between a fixed point and a moving
point. This effect is called rubberbanding and is common in graphical programs.

The starting and ending points of the line are stored as Point objects. The
Point class is defined in the java.awt package and encapsulates the x and y val-
ues of a two-dimensional coordinate.

Note that in the RubberLinesPanel constructor, the listener object is added to
the panel twice: once as a mouse listener and once as a mouse motion listener. The
method called to add the listener must correspond to the object passed as the pa-
rameter. In this case, we had one object that served as a listener for both catego-
ries of events. We could have had two listener classes if desired: one listening for
mouse events and one listening for mouse motion events. A component can have
multiple listeners for various event categories.

Key events
A key event is generated when a keyboard key is pressed. Key events allow a pro-
gram to respond immediately to the user while he or she is typing or pressing other
keyboard keys, such as the arrow keys. If key events are being processed, the program
can respond as soon as the key is pressed; there is no need to wait for the Enter key
to be pressed or for some other component (such as a button) to be activated.

 public void mouseClicked(MouseEvent event) {}
 public void mouseReleased(MouseEvent event) {}
 public void mouseEntered(MouseEvent event) {}
 public void mouseExited(MouseEvent event) {}
 public void mouseMoved(MouseEvent event) {}
 }

}

l i s t i n G d . 2 6 continued

Key ConCept
Rubberbanding is the graphical effect
caused when a shape seems to ex-
pand as the mouse is dragged.

Z04_LEWI3322_AppD_pp537-632.indd 598 20/02/13 11:44 AM

 d.4 Mouse and Key Events 599

The Direction program shown in Listing D.27 responds to key
events. An image of an arrow is displayed, and the image moves
across the screen as the arrow keys are pressed. Actually, four differ-
ent images are used, one for the arrow pointing in each of the pri-
mary directions (up, down, right, and left).

The DirectionPanel class, shown in Listing D.28, represents the
panel on which the arrow image is displayed. The constructor loads the four ar-
row images, one of which is always considered to be the current image (the one
displayed). The current image is set based on the arrow key that was most re-
cently pressed. For example, if the up arrow is pressed, the image with the arrow
pointing up is displayed. If an arrow key is continually pressed, the appropriate
image “moves” in the appropriate direction.

Key ConCept
Key events allow a program to re-
spond immediately to the user press-
ing keyboard keys.

import javax.swing.JFrame;

/**
 * Direction.java
 *
 * Demonstrates key events.
 */
public class Direction

{

 /**
 * Creates and displays the application frame.
 */
 public static void main(String[] args)
 {
 JFrame frame = new JFrame("Direction");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.getContentPane().add(new DirectionPanel());

 frame.pack();
 frame.setVisible(true);
 }
}

l i s t i n G d . 2 7

Z04_LEWI3322_AppD_pp537-632.indd 599 20/02/13 11:44 AM

600 Appendix d Graphical User Interfaces

d i s p l A y

l i s t i n G d . 2 7 continued

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

/**
 * DirectionPanel.java
 *
 * Represents the primary display panel for the Direction program.
 */
public class DirectionPanel extends JPanel

l i s t i n G d . 2 8

Z04_LEWI3322_AppD_pp537-632.indd 600 20/02/13 11:44 AM

 d.4 Mouse and Key Events 601

{
 private final int WIDTH = 300, HEIGHT = 200;
 private final int JUMP = 10; // increment for image movement

 private final int IMAGE_SIZE = 31;

 private ImageIcon up, down, right, left, currentImage;

 private int x, y;

 /**
 * Constructor: Sets up this panel and loads the images.
 */
 public DirectionPanel()
 {
 addKeyListener(new DirectionListener());

 x = WIDTH / 2;
 y = HEIGHT / 2;

 up = new ImageIcon("arrowUp.gif");
 down = new ImageIcon("arrowDown.gif");
 left = new ImageIcon("arrowLeft.gif");
 right = new ImageIcon("arrowRight.gif");

 currentImage = right;

 setBackground(Color.black);
 setPreferredSize(new Dimension(WIDTH, HEIGHT));
 setFocusable(true);

 }

 /**
 * Draws the image in the current location.
 */
 public void paintComponent(Graphics page)
 {
 super.paintComponent(page);
 currentImage.paintIcon(this, page, x, y);

 }

l i s t i n G d . 2 8 continued

Z04_LEWI3322_AppD_pp537-632.indd 601 20/02/13 11:44 AM

602 Appendix d Graphical User Interfaces

 /**
 * Represents the listener for keyboard activity.
 */
 private class DirectionListener implements KeyListener

 {
 /**
 * Responds to the user pressing arrow keys by adjusting the
 * image and image location accordingly.
 */
 public void keyPressed(KeyEvent event)
 {
 switch(event.getKeyCode())
 {
 case KeyEvent.VK_UP:
 currentImage = up;
 y -= JUMP;
 break;
 case KeyEvent.VK_DOWN:
 currentImage = down;
 y += JUMP;
 break;
 case KeyEvent.VK_LEFT:
 currentImage = left;
 x -= JUMP;
 break;
 case KeyEvent.VK_RIGHT:
 currentImage = right;
 x += JUMP;
 break;
 }

 repaint();
 }

 /**
 * Provide empty definitions for unused event methods.
 */
 public void keyTyped(KeyEvent event) {}
 public void keyReleased(KeyEvent event) {}
 }

}

l i s t i n G d . 2 8 continued

Z04_LEWI3322_AppD_pp537-632.indd 602 20/02/13 11:44 AM

 d.4 Mouse and Key Events 603

The arrow images are managed as ImageIcon objects. In this example, the
image is drawn using the paintIcon method each time the panel is repainted.
The paintIcon method takes four parameters: a component to serve as an im-
age observer, the graphics context on which the image will be drawn, and the (x,
y) coordinates where the image is drawn. An image observer is a component
that serves to manage image loading; in this case we use the panel as the image
observer.

The private inner class called DirectionListener is set up to respond to key
events. It implements the KeyListener interface, which defines three methods
that we can use to respond to keyboard activity. Figure D.8 lists these methods.

void keyPressed (KeyEvent event)

Called when a key is pressed.

void keyReleased (KeyEvent event)

Called when a key is released.

void keyTyped (KeyEvent event)

Called when a pressed key or key combination produces
a key character.

FiGURe d.8 The methods of the KeyListener interface

Specifically, the Direction program responds to key pressed events. Because
the listener class must implement all methods defined in the interface, we provide
empty methods for the other events.

The KeyEvent object passed to the keyPressed method of the listener can be
used to determine which key was pressed. In the example, we call the getKeyCode
method of the event object to get a numeric code that represents the key that was
pressed. We use a switch statement to determine which key was pressed and to
respond accordingly. The KeyEvent class contains constants that correspond to
the numeric code that is returned from the getKeyCode method. If any key other
than an arrow key is pressed, it is ignored.

Key events fire whenever a key is pressed, but most systems enable the concept
of key repetition. That is, when a key is pressed and held down, it’s as if that key
is being pressed repeatedly and quickly. Key events are generated in the same way.
In the Direction program, the user can hold down an arrow key and watch the
image move across the screen quickly.

Z04_LEWI3322_AppD_pp537-632.indd 603 20/02/13 11:44 AM

604 AppenDix D Graphical User Interfaces

The component that generates key events is the one that currently has the key-
board focus. Usually the keyboard focus is held by the primary “active” compo-
nent. A component usually gets the keyboard focus when the user clicks on it with
the mouse. The call to the setFocusable method in the panel constructor sets the
keyboard focus to the panel.

The Direction program sets no boundaries for the arrow image, so it can be
moved out of the visible window and then moved back in if desired. You could
add code to the listener to stop the image when it reaches one of the window
boundaries. This modification is left as a programming project.

extending Adapter Classes
In previous event-based examples, we’ve created the listener classes by imple-
menting a particular listener interface. For instance, to create a class that lis-
tens for mouse events, we created a listener class that implements the
MouseListener interface. As we saw in the previous examples in this section, a
listener interface often contains event methods that are not important to a par-
ticular program, in which case we provided empty definitions to satisfy the in-
terface requirement.

An alternative technique for creating a listener class is to use inheritance and
extend an event adapter class. Each listener interface that contains more than one
method has a corresponding adapter class that already contains empty definitions

for all of the methods in the interface. To create a listener, we can
derive a new listener class from the appropriate adapter class and
override any event methods in which we are interested. Using this
technique, we no longer need to provide empty definitions for un-
used methods.

The MouseAdapter class, for instance, implements the MouseListener interface
and provides empty method definitions for the five mouse event methods (mouse-
Pressed, mouseClicked, and so on). Therefore, you can create a mouse listener class
by extending the MouseAdapter class instead of implementing the MouseListener
interface directly. The new listener class inherits the empty definitions and therefore
doesn’t need to define them.

Because of inheritance, we now have a choice when it comes to creating event
listeners. We can implement an event listener interface, or we can extend an event
adapter class. This is a design decision that should be considered carefully. The
best technique depends on the situation. Inheritance is discussed further in
Appendix B.

Key ConCept
A listener class can be created by de-
riving it from an event adapter class.

Z04_LEWI3322_AppD_pp537-632.indd 604 01/03/13 12:02 PM

 d.5 Dialog Boxes 605

static String showInputDialog (Object msg)
 Displays a dialog box containing the specified message and an input text field.
 The contents of the text field are returned.

static int showConfirmDialog (Component parent, Object msg)
 Displays a dialog box containing the specified message and Yes/No button
 options. If the parent component is null, the box is centered on the screen.

static void showMessageDialog (Component parent, Object msg)
 Displays a dialog box containing the specified message. If the parent
 component is null, the box is centered on the screen.

FiGURe d.9 Some methods of the JOptionPane class

d.5 dialog Boxes

A component called a dialog box can be helpful to assist in GUI processing. A dia-
log box is a graphical window that pops up on top of any currently active window
so that the user can interact with it. A dialog box can serve a variety of purposes,
such as conveying some information, confirming an action, or allowing the user
to enter some information. Usually a dialog box has a solitary purpose, and the
user’s interaction with it is brief.

The Swing package of the Java class library contains a class called JOptionPane
that simplifies the creation and use of basic dialog boxes. Figure D.9 lists some of
the methods of JOptionPane.

The basic formats for a JOptionPane dialog box fall into three categories. A
message dialog box simply displays an output string. An input dialog box pres-
ents a prompt and a single input text field into which the user can enter one string
of data. A confirm dialog box presents the user with a simple yes-or-no question.

Let’s look at a program that uses each of these types of dialog boxes. Listing
D.29 shows a program that first presents the user with an input dialog box that
requests the user to enter an integer. After the user presses the OK button on the
input dialog box, a second dialog box (this time a message dialog box) appears,
informing the user whether the number entered was even or odd. After the user
dismisses that box, a third dialog box appears, to determine whether the user
would like to test another number. If the user presses the button labeled Yes, the
series of dialog boxes repeats. Otherwise, the program terminates.

Z04_LEWI3322_AppD_pp537-632.indd 605 20/02/13 11:44 AM

606 Appendix d Graphical User Interfaces

import javax.swing.JOptionPane;

/**
 * EvenOdd.java
 *
 * Demonstrates the use of the JOptionPane class.
 */
public class EvenOdd

{
 /**
 * Determines if the value input by the user is even or odd.
 * Uses multiple dialog boxes for user interaction.
 */
 public static void main(String[] args)
 {
 String numStr, result;
 int num, again;

 do
 {
 numStr = JOptionPane.showInputDialog("Enter an integer: ");

 num = Integer.parseInt(numStr);

 result = "That number is " + ((num%2 == 0) ? "even" : "odd");

 JOptionPane.showMessageDialog(null, result);

 again = JOptionPane.showConfirmDialog(null, "Do Another?");
 }
 while (again == JOptionPane.YES_OPTION);
 }

}

l i s t i n G d . 2 9

Z04_LEWI3322_AppD_pp537-632.indd 606 20/02/13 11:44 AM

 d.5 Dialog Boxes 607

d i s p l A y

l i s t i n G d . 2 9 continued

Z04_LEWI3322_AppD_pp537-632.indd 607 20/02/13 11:44 AM

608 Appendix d Graphical User Interfaces

The first parameter to the showMessageDialog and the showConfirmDialog
methods specifies the governing parent component for the dialog box. Using a
null reference as this parameter causes the dialog box to appear centered on the
screen.

Many of the JOptionPane methods allow the programmer to tailor the con-
tents of the dialog box. Furthermore, the showOptionDialog method can be used
to create dialog boxes that combine characteristics of the three basic formats for
more elaborate interactions.

Dialog boxes should be used only when the immediate attention of the user is
necessary. A program that constantly has new windows popping up for different
interactions is annoying to the user.

File Choosers
A file chooser is a specialized dialog box that allows the user to select a file from
a disk or other storage medium. You have probably run many programs that al-
low you to open a file, such as when you are specifying which file to open in a
word processing program. The need to specify a file occurs so often that the
JFileChooser class was made part of the Java standard class library for just that
purpose.

The program shown in Listing D.30 uses a JFileChooser dialog
box to select a file. This program also demonstrates the use of an-
other GUI component, a text area, which is similar to a text field but
can display multiple lines of text at one time. In this example, after
the user selects a file using the file chooser dialog box, the text con-
tained in that file is displayed in a text area.

The file chooser dialog box is displayed when the showOpenDialog method
is invoked. It automatically presents the list of files contained in a particular
directory. The user can use the controls on the dialog box to navigate to other
directories, change the way the files are viewed, and specify which types of files
are displayed.

The showOpenDialog method returns an integer representing the status of the
operation, which can be checked against constants defined in the JFileChooser
class. In this program, if a file was not selected (perhaps by pressing the Cancel
button), a default message is displayed in the text area. If the user chose a file, it is
opened and its contents are read using the Scanner class. Note that this program
assumes that the selected file contains text. It does not catch any exceptions, so if
the user selects an inappropriate file, the program will terminate when the excep-
tion is thrown.

Key ConCept
A file chooser allows the user to
browse a disk and select a file to be
processed.

Z04_LEWI3322_AppD_pp537-632.indd 608 20/02/13 11:44 AM

 d.5 Dialog Boxes 609

import java.util.Scanner;
import java.io.*;
import javax.swing.*;

/**
 * DisplayFile.java
 *
 * Demonstrates the use of a file chooser and a text area.
 */
public class DisplayFile

{
 /**
 * Opens a file chooser dialog, reads the selected file and
 * loads it into a text area.
 */
 public static void main(String[] args) throws IOException
 {
 JFrame frame = new JFrame("Display File");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JTextArea ta = new JTextArea(20, 30);
 JFileChooser chooser = new JFileChooser();

 int status = chooser.showOpenDialog(null);

 if (status != JFileChooser.APPROVE_OPTION)
 ta.setText("No File Chosen");
 else
 {
 File file = chooser.getSelectedFile();
 Scanner scan = new Scanner(file);

 String info = "";
 while (scan.hasNext())
 info += scan.nextLine() + "\n";

 ta.setText(info);
 }

l i s t i n G d . 3 0

Z04_LEWI3322_AppD_pp537-632.indd 609 20/02/13 11:44 AM

610 Appendix d Graphical User Interfaces

A text area component is defined by the JTextArea class. In this program, we
pass two parameters to its constructor, specifying the size of the text area in terms
of the number of characters (rows and columns) it should display. The text to dis-
play is set using the setText method.

A text area component, like a text field, can be set so that it is either editable or
noneditable. The user can change the contents of an editable text area by clicking
on the text area and typing with the mouse. If the text area is noneditable, it is
used to display text only. By default, a JTextArea component is editable.

 frame.getContentPane().add(ta);
 frame.pack();
 frame.setVisible(true);
 }

}

d i s p l A y

l i s t i n G d . 3 0 continued

Z04_LEWI3322_AppD_pp537-632.indd 610 20/02/13 11:44 AM

 d.5 Dialog Boxes 611

A JFileChooser component makes it easy to allow users to specify a specific
file to use. Another specialized dialog box—one that allows the user to choose a
color—is discussed in the next section.

Color Choosers
In many situations we may want to give the user of a program the
ability to choose a color. We could accomplish this in various ways.
For instance, we could provide a list of colors using a set of radio
buttons. However, with the wide variety of colors available, it’s nice
to have an easier and more flexible technique to accomplish this
common task. A specialized dialog box, often referred to as a color
chooser, is a graphical component that serves this purpose.

The JColorChooser class represents a color chooser. It can be used to display
a dialog box that lets the user click on a color of choice from a palette presented
for that purpose. The user can also specify a color by using RGB values or other
color representation techniques. Invoking the static showDialog method of the
JColorChooser class causes the color chooser dialog box to appear. The param-
eters to that method specify the parent component for the dialog box, the title
that appears in the dialog box frame, and the initial color showing in the color
chooser.

Figure D.10 shows a color chooser dialog box.

Key ConCept
A color chooser allows the user to se-
lect a color from a palette or by using
RGB values.

FiGURe d.10 A color chooser dialog box

Z04_LEWI3322_AppD_pp537-632.indd 611 20/02/13 11:44 AM

612 Appendix d Graphical User Interfaces

d.6 Some important details

There are a variety of small but important details that can add considerable value
to the interface of a program. Some enhance the visual effect, and others provide
shortcuts to make the user more productive. Let’s examine some of them now.

Borders
Java provides the ability to put a border around any Swing component. A border
is not itself a component; rather, it defines how the edge of any component should
be drawn and has an important effect on the design of a GUI. A border provides
visual cues to how GUI components are organized and can be used to give titles to

components. Figure D.11 lists the predefined borders in the Java
standard class library.

The BorderFactory class is useful for creating borders for com-
ponents. It has many methods for creating specific types of borders.
A border is applied to a component by using the component’s set-
Border method.

The program in Listing D.31 demonstrates several types of borders. It simply
creates several panels, sets a different border for each, and then displays them in a
larger panel using a grid layout.

Empty Border Puts buffering space around the edge of a component, but otherwise
has no visual effect.

Creates the effect of an etched groove around a component.

A simple line surrounding the component.

Creates the effect of a component raised above the surface or
sunken below it.

Includes a text title on or around the border.

Allows the size of each edge to be specified. Uses either a solid color
or an image.

A combination of two borders.

Line Border

Etched Border

Bevel Border

Titled Border

Matte Border

Compound Border

Border Description

Figure d.11 Component borders

Key ConCept
Borders can be applied to compo-
nents to group objects and focus
attention.

Z04_LEWI3322_AppD_pp537-632.indd 612 01/03/13 4:55 PM

 d.6 Some Important Details 613

import java.awt.*;
import javax.swing.*;
import javax.swing.border.*;

/**
 * BorderDemo.java
 *
 * Demonstrates the use of various types of borders.
 */
public class BorderDemo

{
 /**
 * Creates several bordered panels and displays them.
 */
 public static void main(String[] args)
 {
 JFrame frame = new JFrame("Border Demo");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 JPanel panel = new JPanel();
 panel.setLayout(new GridLayout(0, 2, 5, 10));
 panel.setBorder(BorderFactory.createEmptyBorder(8, 8, 8, 8));

 JPanel p1 = new JPanel();
 p1.setBorder(BorderFactory.createLineBorder(Color.red, 3));
 p1.add(new JLabel("Line Border"));
 panel.add(p1);

 JPanel p2 = new JPanel();
 p2.setBorder(BorderFactory.createEtchedBorder());
 p2.add(new JLabel("Etched Border"));
 panel.add(p2);

 JPanel p3 = new JPanel();
 p3.setBorder(BorderFactory.createRaisedBevelBorder());
 p3.add(new JLabel("Raised Bevel Border"));
 panel.add(p3);

l i s t i n G d . 3 1

Z04_LEWI3322_AppD_pp537-632.indd 613 20/02/13 11:44 AM

614 Appendix d Graphical User Interfaces

 JPanel p4 = new JPanel();
 p4.setBorder(BorderFactory.createLoweredBevelBorder());
 p4.add(new JLabel("Lowered Bevel Border"));
 panel.add(p4);

 JPanel p5 = new JPanel();
 p5.setBorder(BorderFactory.createTitledBorder("Title"));
 p5.add(new JLabel("Titled Border"));
 panel.add(p5);

 JPanel p6 = new JPanel();
 TitledBorder tb = BorderFactory.createTitledBorder("Title");
 tb.setTitleJustification(TitledBorder.RIGHT);
 p6.setBorder(tb);
 p6.add(new JLabel("Titled Border(right)"));
 panel.add(p6);

 JPanel p7 = new JPanel();
 Border b1 = BorderFactory.createLineBorder(Color.blue, 2);
 Border b2 = BorderFactory.createEtchedBorder();
 p7.setBorder(BorderFactory.createCompoundBorder(b1, b2));
 p7.add(new JLabel("Compound Border"));
 panel.add(p7);

 JPanel p8 = new JPanel();
 Border mb = BorderFactory.createMatteBorder(1, 5, 1, 1,Color.red);
 p8.setBorder(mb);
 p8.add(new JLabel("Matte Border"));
 panel.add(p8);

 frame.getContentPane().add(panel);
 frame.pack();
 frame.setVisible(true);
 }

}

l i s t i n G d . 3 1 continued

Z04_LEWI3322_AppD_pp537-632.indd 614 20/02/13 11:44 AM

 d.6 Some Important Details 615

Let’s look at each type of border created in this program. An empty border is
applied to the larger panel that holds all the others, to create a buffer of space
around the outer edge of the frame. The sizes of the top, left, bottom, and right
edges of the empty border are specified in pixels. The line border is created using
a particular color and specifies the line thickness in pixels (3 in this case). The line
thickness defaults to 1 pixel if left unspecified. The etched border created in this
program uses default colors for the highlight and shadow of the etching, but both
could be explicitly set if desired.

A bevel border can be either raised or lowered. The default coloring is used in
this program, although the coloring of each aspect of the bevel can be tailored as

d i s p l A y

l i s t i n G d . 3 1 continued

Z04_LEWI3322_AppD_pp537-632.indd 615 20/02/13 11:44 AM

616 Appendix d Graphical User Interfaces

desired, including the outer highlight, inner highlight, outer shadow, and inner
shadow. Each of these aspects could be a different color if desired.

A titled border places a title on or around the border. The default position for
the title is on the border at the top-left edge. Using the setTitleJustification
method of the TitledBorder class, one can set this position to many other places
above, below, on, or to the left, right, or center of the border.

A compound border is a combination of two or more borders. The example in
this program creates a compound border using a line border and an etched bor-
der. The createCompoundBorder method accepts two borders as parameters and
makes the first parameter the outer border and the second parameter the inner
border. Combinations of three or more borders are created by first creating a
compound border using two borders and then making another compound border
using that compound border and yet another border.

A matte border specifies the sizes, in pixels, of the top, left, bottom, and right
edges of the border. Those edges can be composed of a single color, as they are in
this example, or an image icon can be used.

Borders should be used carefully. They can be helpful in drawing attention to
appropriate parts of your GUI and can conceptually group related items together.
If used inappropriately, however, they can also detract from the elegance of the
presentation. Borders should enhance the interface, not complicate or compete
with it.

tool tips and Mnemonics
Any Swing component can be assigned a tool tip, which is a short line of text that
will appear when the cursor is rested momentarily on top of the component. Tool
tips are generally used to give the user some information about the component,
such as the purpose of a button.

A tool tip can be assigned using the setToolTipText method of a component.
Here in an example:

 JButton button = new JButton("Compute");
 button.setToolTipText("Calculates the area under the curve.");

When the button is added to a container and displayed, it appears normally.
When the user rolls the mouse pointer over the button, hovering there momen-
tarily, the tool tip text pops up. When the user moves the mouse pointer off the
button, the tool tip text disappears.

A mnemonic is a character that allows the user to push a button or make a
menu choice using the keyboard in addition to the mouse. For example, when a
mnemonic has been defined for a button, the user can hold down the Alt key and
press the mnemonic character to activate the button. Using a mnemonic to activate

Z04_LEWI3322_AppD_pp537-632.indd 616 20/02/13 11:44 AM

 d.6 Some Important Details 617

the button causes the system to behave just as it would if the user had used the
mouse to press the button.

A mnemonic character should be chosen from the label on a button or menu
item. Once the mnemonic has been established using the setMnemonic method,
the character in the label will be underlined to indicate that it can be used as a
shortcut. If a letter is chosen that is not in the label, nothing will be underlined, and
the user won’t know how to use the shortcut. You can set a mnemonic as follows:

 JButton button = new JButton("Calculate");
 button.setMnemonic('C');

When the button is displayed, the letter C in Calculate is underlined on the
button label. When the user presses Alt-C, the button is activated just as if the
user had pressed it with the mouse.

Some components can be disabled if they should not be used. A disabled com-
ponent will appear “grayed out,” and nothing will happen if the user attempts to
interact with it. To disable and enable components, we invoke the setEnabled
method of the component, passing it a boolean value to indicate whether the
component should be disabled (false) or enabled (true). For example:

 JButton button = new JButton("Do It");
 button.setEnabled(false);

Disabling components is a good idea when users should not be al-
lowed to use the functionality of a component. The grayed appearance
of the disabled component is an indication that using the component
is inappropriate (and, in fact, impossible) at the current time. Disabled
components not only convey to the user which actions are appropriate
and which aren’t but also prevent erroneous situations from occurring.

Let’s look at an example that uses tool tips, mnemonics, and disabled compo-
nents. The program in Listing D.32 presents the image of a light bulb and pro-
vides a button to turn the light bulb on and a button to turn the light bulb off.

There are actually two images of the light bulb: one showing it turned on and
one showing it turned off. These images are brought in as ImageIcon objects. The
setIcon method of the label that displays the image is used to set the appropriate
image, depending on the current status. This processing is controlled in the
LightBulbPanel class shown in Listing D.33.

The LightBulbControls class shown in Listing D.34 is a panel that contains
the On and Off buttons. Both of these buttons have tool tips assigned to them,
and both use mnemonics. Also, when one of the buttons is enabled, the other is
disabled, and vice versa. When the light bulb is on, there is no reason for the On
button to be enabled. Likewise, when the light bulb is off, there is no reason for
the Off button to be enabled.

Key ConCept
Components should be disabled
when their use is inappropriate.

Z04_LEWI3322_AppD_pp537-632.indd 617 20/02/13 11:44 AM

618 Appendix d Graphical User Interfaces

import javax.swing.*;
import java.awt.*;

/**
 * LightBulb.java
 *
 * Demonstrates mnemonics and tool tips.
 */
public class LightBulb

{
 /**
 * Sets up a frame that displays a light bulb image that can be
 * turned on and off.
 */
 public static void main(String[] args)
 {
 JFrame frame = new JFrame("Light Bulb");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 LightBulbPanel bulb = new LightBulbPanel();
 LightBulbControls controls = new LightBulbControls(bulb);

 JPanel panel = new JPanel();
 panel.setBackground(Color.black);
 panel.setLayout(new BoxLayout(panel, BoxLayout.Y_AXIS));
 panel.add(Box.createRigidArea(new Dimension(0, 20)));
 panel.add(bulb);
 panel.add(Box.createRigidArea(new Dimension(0, 10)));
 panel.add(controls);
 panel.add(Box.createRigidArea(new Dimension(0, 10)));

 frame.getContentPane().add(panel);

 frame.pack();
 frame.setVisible(true);
 }

}

l i s t i n G d . 3 2

Z04_LEWI3322_AppD_pp537-632.indd 618 20/02/13 11:44 AM

 d.6 Some Important Details 619

d i s p l A y

l i s t i n G d . 3 2 continued

import javax.swing.*;
import java.awt.*;

/**
 * LightBulbPanel.java
 *
 * Represents the image for the LightBulb program.
 */
public class LightBulbPanel extends JPanel

l i s t i n G d . 3 3

Z04_LEWI3322_AppD_pp537-632.indd 619 20/02/13 11:44 AM

620 Appendix d Graphical User Interfaces

{
 private boolean on;
 private ImageIcon lightOn, lightOff;
 private JLabel imageLabel;

 /**
 * Constructor: Sets up the images and the initial state.
 */
 public LightBulbPanel()
 {
 lightOn = new ImageIcon("lightBulbOn.gif");
 lightOff = new ImageIcon("lightBulbOff.gif");

 setBackground(Color.black);

 on = true;
 imageLabel = new JLabel(lightOff);
 add(imageLabel);

 }

 /**
 * Paints the panel using the appropriate image.
 */
 public void paintComponent(Graphics page)
 {
 super.paintComponent(page);

 if (on)
 imageLabel.setIcon(lightOn);
 else
 imageLabel.setIcon(lightOff);

 }

 /**
 * Sets the status of the light bulb.
 */
 public void setOn(boolean lightBulbOn)
 {
 on = lightBulbOn;
 }

}

l i s t i n G d . 3 3 continued

Z04_LEWI3322_AppD_pp537-632.indd 620 20/02/13 11:44 AM

 d.6 Some Important Details 621

Each button has its own listener class. The actionPerformed method of each
sets the bulb’s status, toggles the enabled state of both buttons, and causes the
panel with the image to repaint itself.

import javax.swing.*;
import java.awt.*;
import java.awt.event.*;

/**
 * LightBulbControls.java
 *
 * Represents the control panel for the LightBulb program.
 */
public class LightBulbControls extends JPanel
{
 private LightBulbPanel bulb;
 private JButton onButton, offButton;

 /**
 * Sets up the lightbulb control panel.
 */
 public LightBulbControls(LightBulbPanel bulbPanel)
 {
 bulb = bulbPanel;

 onButton = new JButton("On");
 onButton.setEnabled(false);
 onButton.setMnemonic('n');
 onButton.setToolTipText("Turn it on!");
 onButton.addActionListener(new OnListener());

 offButton = new JButton("Off");
 offButton.setEnabled(true);
 offButton.setMnemonic('f');
 offButton.setToolTipText("Turn it off!");
 offButton.addActionListener(new OffListener());

 setBackground(Color.black);
 add(onButton);
 add(offButton);

 }

l i s t i n G d . 3 4

Z04_LEWI3322_AppD_pp537-632.indd 621 20/02/13 11:44 AM

622 Appendix d Graphical User Interfaces

 /**
 * Represents the listener for the On button.
 */
 private class OnListener implements ActionListener

 {
 /**
 * Turns the bulb on and repaints the bulb panel.
 */
 public void actionPerformed(ActionEvent event)
 {
 bulb.setOn(true);
 onButton.setEnabled(false);
 offButton.setEnabled(true);
 bulb.repaint();
 }

 }

 /**
 * Represents the listener for the Off button.
 */
 private class OffListener implements ActionListener

 {
 /**
 * Turns the bulb off and repaints the bulb panel.
 */
 public void actionPerformed(ActionEvent event)
 {
 bulb.setOn(false);
 onButton.setEnabled(true);
 offButton.setEnabled(false);
 bulb.repaint();
 }
 }

}

l i s t i n G d . 3 3 continued

Z04_LEWI3322_AppD_pp537-632.indd 622 20/02/13 11:44 AM

 d.7 GUI Design 623

Note that the mnemonic characters used for each button are underlined in the
display. When you run the program, you’ll see that the tool tips automatically in-
clude an indication of the mnemonic that can be used for the button.

d.7 GUi design

As we focus on the details that allow us to create GUIs, we may sometimes lose sight of
the big picture. We should always keep in mind that our goal is to solve a problem—to
create software that is truly useful. Knowing the details of components, events, and
other language elements gives us the tools we need to put GUIs together, but we must
guide that knowledge with the following fundamental ideas of good GUI design:

■	 Know the user.

■	 Prevent user errors.

■	 Optimize user abilities.

■	 Be consistent.

The software designer must understand the user’s needs and po-
tential activities in order to develop an interface that will serve that
user well. Keep in mind that to the user, the interface is the software.
It is the only way the user interacts with the system. As such, the in-
terface must satisfy the user’s needs.

Whenever possible, we should design interfaces so that the user can make as few
mistakes as possible. In many situations, we have the flexibility to choose one of
several components to accomplish a specific task. We should always try to choose
components that will prevent inappropriate actions and avoid invalid input. For
example, if an input value must be one of a set of particular values, we should use
components that allow the user to make only a valid choice. That is, constraining
the user to a few valid choices with, for instance, a set of radio buttons is better than
allowing the user to type arbitrary and possibly invalid data into a text field. We
covered additional components appropriate for specific situations in this chapter.

Not all users are alike. Some are more adept than others at using a particular
GUI or GUI components in general. We shouldn’t design with only the lowest com-
mon denominator in mind. For example, we should provide shortcuts whenever
reasonable. That is, in addition to a normal series of actions that will allow a user to
accomplish a task, we should provide redundant ways to accomplish the same task.
Using keyboard shortcuts (mnemonics) is a good example. Sometimes these addi-
tional mechanisms are less intuitive, but they may be faster for the experienced user.

Finally, consistency is important when dealing with large systems or multiple
systems in a common environment. Users become familiar with a particular orga-
nization or color scheme; these should not be changed arbitrarily.

Key ConCept
The design of any GUI should adhere
to basic guidelines on consistency
and usability.

Z04_LEWI3322_AppD_pp537-632.indd 623 20/02/13 11:44 AM

624 Appendix d Graphical User Interfaces

Summary of Key Concepts

■	 A GUI is made up of components, events that represent user actions, and lis-
teners that respond to those events.

■	 A frame is displayed as a separate window, but a panel can be displayed only
as part of another container.

■	 Listeners are often defined as inner classes because of the intimate relation-
ship between the listener and the GUI components.

■	 Radio buttons operate as a group, providing a set of mutually exclusive options.

■	 A slider lets the user specify a numeric value within a bounded range.

■	 A combo box provides a drop-down menu of options.

■	 A timer generates action events at regular intervals and can be used to control
an animation.

■	 Every container is managed by a layout manager, which determines how
components are visually presented.

■	 When changes occur, the components in a container reorganize themselves
according to the layout manager’s policy.

■	 The layout manager for each container can be explicitly set.

■	 A GUI’s appearance is a function of the containment hierarchy and the layout
managers of each container.

■	 Moving the mouse and clicking the mouse button generate events to which a
program can respond.

■	 A listener may have to provide empty method definitions for unheeded
events to satisfy the interface.

■	 Rubberbanding is the graphical effect caused when a shape seems to expand
as the mouse is dragged.

■	 Key events allow a program to respond immediately to the user pressing key-
board keys.

■	 A listener class can be created by deriving it from an event adapter class.

■	 A file chooser allows the user to browse a disk and select a file to be processed.

■	 A color chooser allows the user to select a color from a palette or by using
RGB values.

■	 Borders can be applied to components to group objects and focus attention.

■	 Components should be disabled when their use is inappropriate.

■	 The design of any GUI should adhere to basic guidelines on consistency and
usability.

Z04_LEWI3322_AppD_pp537-632.indd 624 20/02/13 11:44 AM

self-Review Questions
SR D.1 What three elements are needed in any Java GUI?

SR D.2 What is the difference between a frame and a panel?

SR D.3 What is the relationship between an event and a listener?

SR D.4 Can we add any kind of listener to any component? Explain.

SR D.5 What type of event does a push button generate? A text field? A
check box?

SR D.6 Compare and contrast check boxes and radio buttons.

SR D.7 When would you use a slider?

SR D.8 What does a Timer object do?

SR D.9 When is a layout manager consulted?

SR D.10 How does the flow layout manager behave?

SR D.11 Describe the areas of a border layout.

SR D.12 What effect does a glue component in a box layout have?

SR D.13 What is the containment hierarchy for a GUI?

SR D.14 What is a mouse event?

SR D.15 What is a key event?

SR D.16 What is an event adapter class?

SR D.17 What is a dialog box?

SR D.18 What is a file chooser? A color chooser?

SR D.19 What is the role of the BorderFactory class?

SR D.20 What is a tool tip?

SR D.21 When should a component be disabled?

exercises
EX D.1 Explain how two components can be set up to share the same lis-

tener. How can the listener tell which component generated the
event?

EX D.2 Explain how one component can use two separate listeners at the
same time. Give an example.

EX D.3 Explain what would happen if the radio buttons used in the
QuoteOptions program were not organized into a ButtonGroup
object. Modify the program to test your answer.

 Exercises 625

Z04_LEWI3322_AppD_pp537-632.indd 625 20/02/13 11:44 AM

EX D.4 Why, in the SlideColor program, is the value of a slider able to
reach 255 but the largest labeled tick mark is 250?

EX D.5 What are the two main factors that affect how smooth the anima-
tion is in the Rebound program? Explain how changing either
would affect it.

EX D.6 What visual effect would result from changing the horizontal and
vertical gaps on the border layout used in the LayoutDemo pro-
gram? Make the change to test your answer.

EX D.7 What would happen if, in the Coordinates program, we did not pro-
vide empty definitions for one or more of the unused mouse events?

EX D.8 The Coordinates program listens for a mouse pressed event to
draw a dot. How would the program behave differently if it lis-
tened for a mouse released event instead? A mouse clicked event?

EX D.9 What would happen if the call to super.paintComponent were
removed from the paintComponent method of the
CoordinatesPanel class? Remove it and run the program to test
your answer.

EX D.10 What would happen if the call to super.paintComponent were
removed from the paintComponent method of the
RubberLinesPanel class? Remove it and run the program to test
your answer. In what ways is the answer different from the
answer to Exercise D.9.

EX D.11 Write the lines of code that will define a compound border using
three borders. Use a line border on the inner edge, an etched bor-
der on the outer edge, and a raised bevel border in between.

EX D.12 Draw a UML class diagram that shows the relationships among
the classes used in the PushCounter program.

EX D.13 Draw a UML class diagram that shows the relationships among
the classes used in the Fahrenheit program.

EX D.14 Draw a UML class diagram that shows the relationships among
the classes used in the LayoutDemo program.

EX D.15 Create a UML class diagram for the Direction program.

programming projects
PP D.1 Design and implement an application that displays a button and a

label. Every time the button is pushed, the label should display a
random number between 1 and 100, inclusive.

626 Appendix d Graphical User Interfaces

Z04_LEWI3322_AppD_pp537-632.indd 626 20/02/13 11:44 AM

 Programming Projects 627

PP D.2 Design and implement an application that presents two buttons
and a label to the user. Label the buttons Increment and
Decrement, respectively. Display a numeric value (initially 50)
using the label. Each time the Increment button is pushed, incre-
ment the value displayed. Likewise, each time the Decrement but-
ton is pressed, decrement the value displayed. Create two separate
listener classes for the two buttons.

PP D.3 Modify your solution to Programming Project D.2 so that it uses
only one listener for both buttons.

PP D.4 Modify the Fahrenheit program so that it displays a button
that, when pressed, causes the conversion calculation to take
place. That is, your modification will give the user the option of
pressing Enter in the text field or pressing the button. Have the
listener that is already defined for the text field also listen for the
button push.

PP D.5 Modify the Direction program so that the image is not allowed
to move out of the visible area of the panel. Ignore any key event
that would cause that to happen.

PP D.6 Modify the Direction program so that, in addition to respond-
ing to the arrow keys, it also responds to four other keys that
cause the image to move in diagonal directions. When the T key is
pressed, move the image up and to the left. Likewise, use U to
move up and right, G to move down and left, and J to move
down and right. Do not move the image if it has reached a win-
dow boundary.

PP D.7 Design and implement an application that draws a traffic light
and uses a push button to change the state of the light. Derive the
drawing surface from the JPanel class, and use another panel to
organize the drawing surface and the button.

PP D.8 Develop an application that implements a prototype user inter-
face for composing an email message. The application should
have text fields for the To, CC, and Bcc address lists and subject
line, and one for the message body. Include a button labeled Send.
When the Send button is pushed, the program should print the
contents of all fields to standard output using println state-
ments.

PP D.9 Design and implement an application that uses dialog boxes to
obtain two integer values (one dialog box for each value) and dis-
play the sum and product of the values. Use another dialog box
to see whether the user wants to process another pair of values.

Z04_LEWI3322_AppD_pp537-632.indd 627 20/02/13 11:44 AM

628 Appendix d Graphical User Interfaces

PP D.10 Design and implement a program whose background changes
color depending on where the mouse pointer is located. If the
mouse pointer is on the left half of the program window, display
red; if it is on the right half, display green.

PP D.11 Design and implement an application that serves as a mouse
odometer, continually displaying how far, in pixels, the mouse has
moved (while over the program window). Display the current
odometer value using a label. Hint: Compare the current position
of the mouse to the last position, and use the distance formula to
determine how far the mouse has traveled.

PP D.12 Design and implement an application that draws a circle using a
rubberbanding technique. The circle size is determined by a
mouse drag. Use the original mouse click location as a fixed cen-
ter point. Hint: Compute the distance between the mouse pointer
and the center point to determine the current radius of the circle.

PP D.13 Modify the StyleOptions program to allow the user to specify
the size of the font. Use a text field to obtain the size.

PP D.14 Modify your solution to Programming Project D.13 such that it
uses a slider to obtain the font size.

PP D.15 Develop a simple tool for calculating basic statistics for a segment
of text. The application should have a single window with a scroll-
ing text box (a JTextArea) and a stats box. The stats box should
be a panel with a titled border, containing labeled fields that dis-
play the number of words in the text box and the average word
length, as well as any other statistics that you would like to add.
The stats box should also contain a button that, when pressed,
recomputes the statistics for the current contents of the text field.

PP D.16 Modify the Rebound program from this chapter such that when
the mouse button is clicked on the program window, the anima-
tion stops, and when it is clicked again, the animation resumes.

PP D.17 Design and implement a program that uses a JColorChooser ob-
ject to obtain a color from the user and display that color as the
background of the primary program window. Use a dialog box to
determine whether the user wants to display another color and, if
so, to redisplay the color chooser.

PP D.18 Modify the JukeBox program such that the Play and Stop button
functionality can also be controlled using keyboard mnemonics.

PP D.19 Modify the Coordinates program such that it creates its listener by
extending an adapter class instead of implementing an interface.

Z04_LEWI3322_AppD_pp537-632.indd 628 20/02/13 11:44 AM

 Answers to Self-Review Questions 629

PP D.20 Design and implement an application that displays an animation
of a car (side view) moving across the screen from left to right.
Create a Car class that represents the car.

PP D.21 Design and implement an application that plays a game called
Catch-the-Creature. Use an image to represent the creature. Have
the creature appear at a random location for a random duration
and then disappear and reappear somewhere else. The goal is to
“catch” the creature by pressing the mouse button while the
mouse pointer is on the creature image. Create a separate class to
represent the creature, and include in it a method that determines
whether the location of the mouse click corresponds to the cur-
rent location of the creature. Display a count of the number of
times the creature is caught.

PP D.22 Design and implement an application that works as a stopwatch.
Include a display that shows the time (in seconds) as it incre-
ments. Include buttons that allow the user to start and stop the
time and to reset the display to zero. Arrange the components to
present a nice interface.

Answers to self-Review Questions
SR D.1 A GUI in a Java program is made up of on-screen components,

events that those components generate, and listeners that respond
to events when they occur.

SR D.2 Both a frame and a panel are containers that can hold GUI ele-
ments. However, a frame is displayed as a separate window with
a title bar, whereas a panel cannot be displayed on its own. A
panel is often displayed inside a frame.

SR D.3 Events usually represent user actions. A listener object is set up to
listen for a certain event to be generated from a particular compo-
nent. The relationship between a particular component that gen-
erates an event and the listener that responds to that event is set
up explicitly.

SR D.4 No, we cannot add any listener to any component. Each compo-
nent generates a certain set of events, and only listeners of those
types can be added to the component.

SR D.5 Both push buttons and text fields generate action events. A check
box generates an item state changed event.

Z04_LEWI3322_AppD_pp537-632.indd 629 20/02/13 11:44 AM

630 Appendix d Graphical User Interfaces

SR D.6 Both check boxes and radio buttons show a toggled state: either on
or off. However, radio buttons work as a group in which only one
can be toggled on at any point in time. Check boxes, on the other
hand, represent independent options. They can be used alone or in
a set in which any combination of toggled states is valid.

SR D.7 A slider is useful when the user needs to specify a numeric value
within specific bounds. Using a slider to get this input, rather than
a text field or some other component, minimizes user error.

SR D.8 An object created from the Timer class produces an action event
at regular intervals. It can be used to control the speed of an
animation.

SR D.9 A layout manager is consulted whenever the visual appearance of
its components might be affected, such as when the container is
resized or when a new component is added to the container.

SR D.10 Flow layout attempts to put as many components on a row as
possible. Multiple rows are created as needed.

SR D.11 Border layout is divided into five areas: North, South, East, West,
and Center. The North and South areas are at the top and bottom
of the container, respectively, and span the entire width of the
container. Sandwiched between them, from left to right, are the
West, Center, and East areas. Any unused area takes up no space,
and the others fill in as needed.

SR D.12 A glue component in a box layout dictates where any extra space
in the layout should go. It expands as necessary but takes up no
space if there is no extra space to distribute.

SR D.13 The containment hierarchy of a GUI is created by nested contain-
ers. The way the containers are nested, and the layout managers
that those containers employ, dictate the details of the visual pre-
sentation of the GUI.

SR D.14 A mouse event is an event generated when the user manipulates
the mouse in various ways. There are several types of mouse
events that may be of interest in a particular situation, including
the mouse being moved, a mouse button being pressed, the mouse
entering a particular component, and the mouse being dragged.

SR D.15 A key event is generated when a keyboard key is pressed, which
allows a listening program to respond immediately to the user in-
put. The object representing the event holds a code that specifies
which key was pressed.

Z04_LEWI3322_AppD_pp537-632.indd 630 20/02/13 11:44 AM

 Answers to Self-Review Questions 631

SR D.16 An event adapter class is a class that implements a listener inter-
face, providing empty definitions for all of its methods. A listener
class can be created by extending the appropriate adapter class
and defining only the methods of interest.

SR D.17 A dialog box is a small window that appears for the purpose of
conveying information, confirming an action, or accepting input.
Generally, dialog boxes are used in specific situations for brief
user interactions.

SR D.18 A file chooser and a color chooser are specialized dialog
boxes that allow the user to select a file from disk and a color,
respectively.

SR D.19 The BorderFactory class contains several methods used to
create borders that can be applied to components.

SR D.20 A tool tip is a small amount of text that appears when the mouse
cursor is allowed to rest over a specific component. Tool tips are
used to explain, briefly, the purpose of a component.

SR D.21 GUI components should be disabled when their use is inappropri-
ate. This helps guide the user to proper actions and minimizes
error handling and special cases.

Z04_LEWI3322_AppD_pp537-632.indd 631 20/02/13 11:44 AM

Z04_LEWI3322_AppD_pp537-632.indd 632 20/02/13 11:44 AM

 This page is intentionally left blank.

Hashing EE
In Chapter 11, we discussed the idea that a binary search

tree is, in effect, an efficient implementation of a set or a

map. In this appendix, we examine hashing, an approach to

implementing a set or map collection that can be even more

efficient than binary search trees.

633

Appendix

Z05_LEWI3322_AppE_pp633-660.indd 633 20/02/13 11:45 AM

634 Appendix e Hashing

e.1 Hashing

In all of our discussions of the implementations of collections, we have proceeded
with one of two assumptions about the order of elements in a collection:

■	 Order is determined by the order in which elements are added to and/or
removed from our collection, as in the case of stacks, queues, unordered
lists, and indexed lists.

■	 Order is determined by comparing the values of the elements (or some key
component of the elements) to be stored in the collection, as in the case of
ordered lists and binary search trees.

In this appendix, we will explore the concept of hashing, which means that the
order—and, more specifically, the location of an item within the collection—is
determined by some function of the value of the element to be stored, or some
function of a key value of the element to be stored. In hashing, elements are stored

in a hash table, and the location of each element in the table is deter-
mined by a hashing function. Each location in the table may be
referred to as a cell or a bucket. We will discuss hashing functions
further in Section E.2. We will discuss implementation strategies and
algorithms, and we will leave the implementations as programming
projects.

Consider a simple example where we create an array that will hold 26 ele-
ments. Wishing to store names in our array, we create a hashing function that
equates each name to the position in the array associated with the first letter of
the name. (For example, a first letter of A would be mapped to position 0 of the
array, a first letter of D would be mapped to position 3 of the array, and so on.)
Figure E.1 illustrates this scenario after several names have been added.

Notice that, unlike our earlier implementations of collections, using a hashing
approach results in the access time to a particular element being independent of

the number of elements in the table. This means that all of the oper-
ations on an element of a hash table should be O(1). This is the
result of no longer having to do comparisons to find a particular ele-
ment or to locate the appropriate position for a given element. Using
hashing, we simply calculate where a particular element should be.

However, this efficiency is fully realized only if each element
maps to a unique position in the table. Consider our example from
Figure E.1. What will happen if we attempt to store the name “Ann”
and the name “Andrew”? This situation, where two elements or
keys map to the same location in the table, is called a collision. We
will discuss how to resolve collisions in Section E.3.

Key ConCept
In hashing, elements are stored in a
hash table, and the location of each
element in the table is determined by
a hashing function.

Key ConCept
The situation where two elements or
keys map to the same location in the
table is called a collision.

Key ConCept
A hashing function that maps each
element to a unique position in the
table is called a perfect hashing
function.

Z05_LEWI3322_AppE_pp633-660.indd 634 20/02/13 11:45 AM

 e.1 Hashing 635

A hashing function that maps each element to a unique position in the table is
said to be a perfect hashing function. Although it is possible in some situations to
develop a perfect hashing function, a hashing function that does a good job of
distributing the elements among the table positions will still result in constant
time (O(1)) access to elements in the table and an improvement over our earlier
algorithms that were either O(n), in the case of our linear approaches, or O(log
n), in the case of search trees.

Another issue surrounding hashing is the question of how large the table
should be. If the data set is of known size and a perfect hashing function can be
used, then we simply make the table the same size as the data set. If a perfect
hashing function is not available or practical but the size of the data set is known,
a good rule of thumb is to make the table 150 percent of the size of the data set.

Ann

Doug
Elizabeth

Hal

Mary

Tim

Walter

Young

Figure e.1 A simple hashing example

Z05_LEWI3322_AppE_pp633-660.indd 635 20/02/13 11:45 AM

636 Appendix e Hashing

The third case is very common and far more interesting. What if we do not
know the size of the data set? In this case, we depend on dynamic resizing.
Dynamic resizing of a hash table involves creating a new hash table that is larger
than—perhaps even twice as large as—the original, inserting all of the elements of
the original table into the new table, and then discarding the original table. When
to resize is also an interesting question. One possibility is to use the same method
we used with our earlier array implementations and simply expand the table
when it is full. However, it is the nature of hash tables that their performance seri-
ously degrades as they become full. A better approach is to use a load factor. The
load factor of a hash table is the percentage occupancy of the table at which the
table will be resized. For example, if the load factor were set to 0.50, then the
table would be resized each time it reached 50 percent capacity.

e.2 Hashing Functions

Although perfect hashing functions are possible if the data set is known, we do
not need the hashing function to be perfect to get good performance from the

hash table. Our goal is simply to develop a function that does a rea-
sonably good job of distributing our elements in the table such that
we avoid collisions. A reasonably good hashing function will still
result in constant time access (O(1)) to our data set.

There are a variety of approaches to developing a hashing func-
tion for a particular data set. The method that we used in our

example in the previous section is called extraction. Extraction involves using
only a part of the element’s value or key to compute the location at which to store
the element. In our previous example, we simply extracted the first letter of a
string and computed its value relative to the letter A.

Other examples of extraction include storing phone numbers according to the
last four digits and storing information about cars according to the first three
characters of the license plate.

the division Method
Creating a hashing function by division simply means using the remainder of the
key divided by some positive integer p as the index for the given element. This
function could be defined as follows:

Hashcode(key) = Math.abs(key)%p

Key ConCept
Extraction involves using only a part
of the element’s value or key to com-
pute the location at which to store
the element.

Z05_LEWI3322_AppE_pp633-660.indd 636 20/02/13 11:45 AM

 e.2 Hashing Functions 637

This function will yield a result in the range of 0 to p–1. If we use our table size as
p, we then have an index that maps directly to a location in the table.

Using a prime number p as the table size and the divisor helps provide a better
distribution of keys to locations in the table.

For example, if our key value is 79 and our table size is 43, then the division
method will result in an index value of 36. The division method is very effective
when one is dealing with an unknown set of key values.

the Folding Method
In the folding method, the key is divided into parts that are then com-
bined or folded together to create an index into the table. This is done
by first dividing the key into parts, where each of the parts of the key
will be the same length as the desired index, except possibly the last
one. In the shift folding method, these parts are then added together
to create the index. For example, if our key were the Social Security
number 987-65-4321, we might divide this into three parts: 987, 654, and 321.
Adding these together would yield 1962. Assuming that we are looking for a three-
digit key, at this point we could use either division or extraction to get our index.

A second possibility is boundary folding. There are a number of variations on
this approach. However, generally, they involve reversing some of the parts of the
key before adding. One variation on this approach is to imagine that the parts of
the key are written side by side on a piece of paper and that the piece of paper is
folded along the boundaries of the parts of the key. In this way, if we begin with
the same key (987-65-4321), we first divide it into parts: 987, 654, and 321. We
then reverse every other part of the key, which yields 987, 456, and 321. Adding
these together yields 1764, and once again we can proceed with either extraction
or division to get our index. Other variations on folding use different algorithms
to determine which parts of the key to reverse.

Folding may also be a useful method for building a hashing function for a key
that is a string. One approach to this is to divide the string into substrings the
same length (in bytes) as the desired index and then combine these strings using
an exclusive-or function. This is also a useful way to convert a string into a num-
ber so that other methods, such as division, may be applied to strings.

the Mid-Square Method
In the mid-square method, the key is multiplied by itself, and then the extraction
method is used to extract the appropriate number of digits from the middle of the
squared result to serve as an index. The same “middle” digits must be chosen each
time, to provide consistency. For example, if our key were 4321, we would multiply

Key ConCept
In the shift folding method, the parts
of the key are added together to
create the index.

Z05_LEWI3322_AppE_pp633-660.indd 637 20/02/13 11:45 AM

638 Appendix e Hashing

the key by itself, which would yield 18671041. Assuming that we need a three-digit
key, we might extract 671 or 710, depending on how we construct our algorithm. It
is also possible to extract bits instead of digits and then construct the index from
the extracted bits.

The mid-square method may also be effectively used with strings by manipu-
lating the binary representations of the characters in the string.

the radix transformation Method
In the radix transformation method, the key is transformed into another numeric
base. For example, if our key were 23 in base 10, we might convert it into 32 in
base 7. We would then use the division method and divide the converted key by
the table size and use the remainder as our index. Continuing our previous example,
if our table size were 17, we would compute the function

 Hashcode(23) = Math.abs(32)%17
 = 15

the digit Analysis Method
In the digit analysis method, the index is formed by extracting, and then manipulat-
ing, specific digits from the key. For example, if our key were 1234567, we might
select the digits in positions 2 through 4, obtaining 234, and then manipulate them
to form our index. This manipulation can take many forms, including simply
reversing the digits (which yields 432), performing a circular shift to the right
(which yields 423), performing a circular shift to the left (which yields 342), swap-
ping each pair of digits (which yields 324), or any number of other possibilities,
including the methods we have already discussed. The goal is simply to provide a
function that does a reasonable job of distributing keys to locations in the table.

the Length-dependent Method
In the length-dependent method, the key and the length of the key are combined in
some way to form either the index itself or an intermediate value that is then used
with one of our other methods to form the index. For example, if our key were 8765,

we might multiply the first two digits by the length and then divide by
the last digit, which would yield 69. If our table size were 43, we would
then use the division method, which would result in an index of 26.

The length-dependent method may also be effectively used with
strings by manipulating the binary representations of the characters
in the string.

Key ConCept
The length-dependent method and
the mid-square method may also be
effectively used with strings by
manipulating the binary representa-
tions of the characters in the string.

Z05_LEWI3322_AppE_pp633-660.indd 638 20/02/13 11:45 AM

 e.3 Resolving Collisions 639

Hashing Functions in the Java Language
The java.lang.Object class defines a method called hashcode that returns an
integer based on the memory location of the object. This is generally not very use-
ful. Classes that are derived from Object often override the inherited definition of
hashcode to provide their own version. For example, the String
and Integer classes define their own hashcode methods. These
more specific hashcode functions can be very effective for hashing.
Having the hashcode method defined in the Object class means
that all Java objects can be hashed. However, it is also possible—and
often preferable—to define your own hashcode method for any
class that you intend to store in a hash table.

e.3 resolving Collisions

If we are able to develop a perfect hashing function for a particular data set, then
we do not need to concern ourselves with collisions, the situation where more than
one element or key map to the same location in the table. However, when a perfect
hashing function is not possible or practical, there are a number of ways to handle
collisions. Similarly, if we are able to develop a perfect hashing function for a par-
ticular data set, then we do not need to concern ourselves with the size of the table.
In this case, we will simply make the table the exact size of the data set. Otherwise,
if the size of the data set is known, it is generally a good idea to set the initial size
of the table to about 150 percent of the expected element count. If the size of the
data set is not known, then dynamic resizing of the table becomes an issue.

Chaining
The chaining method for handling collisions simply treats the hash
table conceptually as a table of collections, rather than as a table of
individual cells. Thus each cell is a pointer to the collection associ-
ated with that location in the table. Usually this internal collection is
either an unordered list or an ordered list. Figure E.2 illustrates this
conceptual approach.

Chaining can be implemented in a variety of ways. One approach
is to make the array holding the table larger than the number of cells in the table
and use the extra space as an overflow area to store the linked lists associated
with each table location. In this method, each position in the array can store both
an element (or a key) and the array index of the next element in its list. The first
element mapped to a particular location in the table would actually be stored in

Key ConCept
Although Java provides a hash-
code method for all objects, it is
often preferable to define a specific
hashing function for any particular
class.

Key ConCept
The chaining method for handling
collisions simply treats the hash table
conceptually as a table of collections,
rather than as a table of individual
cells.

Z05_LEWI3322_AppE_pp633-660.indd 639 20/02/13 11:45 AM

640 Appendix e Hashing

that location. The next element mapped to that location would be stored in a free
location in this overflow area, and the array index of this second element would
be stored with the first element in the table. If a third element were mapped to the
same location, the third element would also be stored in this overflow area, and
the index of the third element would be stored with the second element. Figure
E.3 illustrates this strategy.

Note that when this method is used, the table itself can never be full. However,
if the table is implemented as an array, the array can become full, requiring a deci-
sion on whether to throw an exception or simply expand capacity. In our earlier
collections, we chose to expand the capacity of the array. In this case, expanding
the capacity of the array but leaving the embedded table the original size would
have disastrous effects on efficiency. A more satisfactory solution is to expand the
array and expand the embedded table within the array. This will, however, require
that all of the elements in the table be rehashed using the new table size. We will
discuss the dynamic resizing of hash tables further in Section E.5.

With this method, the worst case is that our hashing function will not do a
good job of distributing elements to locations in the table, and consequently we
end up with one linked list of n elements, or a small number of linked lists with
roughly n/k elements each, where k is some relatively small constant. In this case,
hash tables become O(n) for both insertions and searches. Thus you can see how
important it is to develop a good hashing function.

Figure e.2 The chaining method of handling a collision

Z05_LEWI3322_AppE_pp633-660.indd 640 20/02/13 11:45 AM

 e.3 Resolving Collisions 641

A second method for implementing chaining is using links. In this method,
each cell or bucket in the hash table would be something like the LinearNode
class used earlier in this text to construct linked lists. In this way, as a second ele-
ment is mapped to a particular bucket, we simply create a new LinearNode, set
the next reference of the existing node to point to the new node, set the element
reference of the new node to the element being inserted, and set the next refer-
ence of the new node to null. The result is an implementation model that looks
exactly like the conceptual model shown in Figure E.2.

A third method for implementing chaining is to literally make each position in
the table a pointer to a collection. In this way, we could represent each position in
the table with a list or perhaps even a more efficient collection (such as a balanced
binary search tree), and this would improve our worst case. Keep in mind, how-
ever, that if our hashing function is doing a good job of distributing elements to

Overflow
area

Figure e.3 Chaining using an overflow area

Z05_LEWI3322_AppE_pp633-660.indd 641 20/02/13 11:45 AM

642 Appendix e Hashing

locations in the table, this approach may incur a great deal of overhead while
achieving very little improvement.

open Addressing
The open addressing method for handling collisions looks for an open position in
the table other than the one to which the element is originally hashed. There are a
variety of methods for finding another available location in the table. We will
examine three of these methods: linear probing, quadratic probing, and double
hashing.

The simplest of these methods is linear probing. In linear probing, if an element
hashes to position p, and position p is already occupied, we simply try position
(p+1)%s, where s is the size of the table. If position (p+1)%s is already occupied,

we try position (p+2)%s, and so on until either we find an open
position or we find ourselves back at the original position. If we find
an open position, we insert the new element. What to do if we do
not find an open position is a design decision made when creating a
hash table. As we have discussed before, one possibility is to throw
an exception if the table is full. Another possibility is to expand the
capacity of the table and rehash the existing entries.

The problem with linear probing is that it tends to create clusters of filled posi-
tions within the table, and these clusters then affect the performance of insertions
and searches. Figure E.4 illustrates the linear probing method and the creation of
a cluster using our earlier hashing function of extracting the first character of the
string.

In this example, Ann was entered, followed by Andrew. Because Ann already
occupied position 0 of the array, Andrew was placed in position 1. Later, Bob was
entered. Because Andrew already occupied position 1, Bob was placed in the next
open position, which was position 2. Doug and Elizabeth were already in the
table by the time Betty arrived, so Betty could not be placed in position 1, 2, 3, or
4 and was placed in the next open position, position 5. After Barbara, Hal, and
Bill were added, we find that there is now a nine-location cluster at the front of
the table, which will continue to grow as more names are added. Thus we see that
linear probing may not be the best approach.

A second form of the open addressing method is quadratic probing. If we use
quadratic probing, instead of a linear approach, then once we have a collision, we
follow a formula such as

newhashcode(x) = hashcode (x) + (-1)i-1 ((i + 1)/2)2

for i in the range of 1 to s–1, where s is the table size.

Key ConCept
The open addressing method for
handling collisions looks for an open
position in the table other than the
one to which the element is originally
hashed.

Z05_LEWI3322_AppE_pp633-660.indd 642 20/02/13 11:45 AM

 e.3 Resolving Collisions 643

The result of this formula is the search sequence p, p+1, p−1, p+4, p−4, p+9,
p−9, Of course, this new hash code is then put through the division method
to keep it within the table range. As with linear probing, the same possibility
exists that we will eventually get back to the original hash code without having
found an open position in which to insert. This “full” condition can be handled in
all of the same ways that we described for chaining and linear probing. The bene-
fit of the quadratic probing method is that it does not have as strong a tendency
toward clustering as linear probing. Figure E.5 illustrates quadratic probing for
the same key set and hashing function that we used in Figure E.4. Notice that
after the same data have been entered, we still have a cluster at the front of the
table. However, this cluster occupies only six buckets instead of the nine-bucket
cluster created by linear probing.

Ann

Doug
Elizabeth

Hal

Mary

Tim

Walter

Young

Andrew

Bob

Betty

Barbara

Bill

Primary
Cluster

Figure e.4 Open addressing using linear probing

Z05_LEWI3322_AppE_pp633-660.indd 643 20/02/13 11:45 AM

644 Appendix e Hashing

A third form of the open addressing method is double hashing. Using the double
hashing method, we resolve collisions by providing a secondary hashing function to
be used when the primary hashing function results in a collision. For example, if a
key x hashes to a position p that is already occupied, then the next position p¿ that
we try is

p¿ = p + secondaryhashcode(x)

If this new position is also occupied, then we look to position

p” = p + 2 * secondaryhashcode(x)

Ann

Doug
Elizabeth

Hal

Mary

Tim

Walter

Young

Andrew

Bob

Barbara

Bill

Betty

Figure e.5 Open addressing using quadratic probing

Z05_LEWI3322_AppE_pp633-660.indd 644 20/02/13 11:45 AM

 e.3 Resolving Collisions 645

We continue searching in this way, of course using the division method to main-
tain our index within the bounds of the table, until an open position is found. This
method, although it is somewhat more costly because of the introduction of an addi-
tional function, tends to further reduce clustering beyond the improvement gained
by quadratic probing. Figure E.6 illustrates this approach, again using the same
key set and hashing function as our previous examples. For this example, the sec-
ondary hashing function is the length of the string. Notice that with the same data,
we no longer have a cluster at the front of the table. However, we have developed a
six-bucket cluster from Doug through Barbara. The advantage of double hashing
is that even after a cluster has been created, it will tend to grow more slowly than it
would if we were using linear probing or even quadratic probing.

Ann

Doug
Elizabeth

Hal

Mary

Tim

Walter

Young

Bob

Bill

Andrew

Betty

Barbara

Figure e.6 Open addressing using double hashing

Z05_LEWI3322_AppE_pp633-660.indd 645 20/02/13 11:45 AM

646 Appendix e Hashing

e.4 deleting elements from a Hash table

Thus far, our discussion has centered on the efficiency of insertion of and search-
ing for elements in a hash table. What happens if we remove an element from a
hash table? The answer to this question depends on which implementation we
have chosen.

deleting from a Chained implementation
If we have chosen to implement our hash table using a chained implementation
and an array with an overflow area, then removing an element falls into one of
five cases:

Case 1 The element we are attempting to remove is the only one mapped to the
particular location in the table. In this case, we simply remove the element by
setting the table position to null.

Case 2 The element we are attempting to remove is stored in the table (not in the
overflow area) but has an index into the overflow area for the next element at
the same position. In this case, we replace the element and the next index value
in the table with the element and the next index value of the array position
pointed to by the element to be removed. We then also must set the position in
the overflow area to null and add it back to whatever mechanism we are using to
maintain a list of free positions.

Case 3 The element we are attempting to remove is at the end of the list of ele-
ments stored at that location in the table. In this case, we set its position in the
overflow area to null, and we set the next index value of the previous element in
the list to null as well. We then also must set the position in the overflow area to
null and add it back to whatever mechanism we are using to maintain a list of free
positions.

Case 4 The element we are attempting to remove is in the middle of the list of
elements stored at that location in the table. In this case, we set its position in the
overflow area to null, and we set the next index value of the previous element in the
list to the next index value of the element being removed. We then also must add it
back to whatever mechanism we are using to maintain a list of free positions.

Case 5 The element we are attempting to remove is not in the list. In this case, we
throw an ElementNotFoundException.

If we have chosen to implement our hash table using a chained implementation
where each element in the table is a collection, then we simply remove the target
element from the collection.

Z05_LEWI3322_AppE_pp633-660.indd 646 20/02/13 11:45 AM

 e.4 Deleting Elements from a Hash Table 647

deleting from an open Addressing implementation
If we have chosen to implement our hash table using an open addressing imple-
mentation, then deletion creates more of a challenge. Consider the example in
Figure E.7. Note that the elements “Ann,” “Andrew,” and “Amy” all mapped to
the same location in the table, and the collision was resolved using linear probing.
What happens if we now remove “Andrew”? If we then search for “Amy” we will
not find that element because the search will find “Ann” and then follow the lin-
ear probing rule to look in the next position, find it null, and return an exception.

The solution to this problem is to mark items as deleted but not actually
remove them from the table until some future point when the deleted element is
overwritten by a new inserted element or the entire table is rehashed, either
because it is being expanded or because we have reached some predetermined
threshold for the percentage of deleted records in the table. This means that we

Ann

Doug
Elizabeth

Hal

Mary

Tim

Walter

Young

Bob

Andrew

Bill

Amy

Barbara

Betty

Figure e.7 Open addressing and deletion

Z05_LEWI3322_AppE_pp633-660.indd 647 20/02/13 11:45 AM

648 Appendix e Hashing

will need to add a boolean flag to each node in the table and modify all of our
algorithms to test and/or manipulate that flag.

e.5 Hash tables in the Java Collections Api

The Java Collections API provides seven implementations of hashing: Hashtable,
HashMap, HashSet, IdentityHashMap, LinkedHashSet, LinkedHashMap, and

WeakHashMap. To understand these different solutions, we must first
remind ourselves of the distinction between a set and a map in
the Java Collections API, as well as some of our other pertinent
definitions.

A set is a collection of objects where, in order to find an object,
we must have an exact copy of the object we are looking for. A map,

on the other hand, is a collection that stores key-value pairs so that, given the key,
we can find the associated value.

Another definition that will be useful to us as we explore the Java Collections
API implementations of hashing is that of a load factor. The load factor, as stated
earlier, is the maximum percentage occupancy allowed in the hash table before it
is resized. For the implementations that we are going to discuss here, the default is
0.75. Thus, when one of these implementations becomes 75 percent full, a new
hash table is created that is twice the size of the current one, and then all of the
elements from the current table are inserted into the new table. The load factor of
these implementations can be altered when the table is created.

All of these implementations rely on the hashcode method of the object being
stored to return an integer. This integer is then processed using the division
method (using the table size) to produce an index within the bounds of the table.
As stated earlier, the best practice is to define your own hashcode method for any
class that you intend to store in a hash table.

Let’s look at each of these implementations.

the Hashtable Class
The Hashtable implementation of hashing is the oldest of the implementations in
the Java Collections API. In fact, it predates the Collections API and was modified
in version 1.2 to implement the Map interface so that it would become a part of the
Collections API. Unlike the newer Java Collections implementations, Hashtable is
synchronized. Figure E.8 shows the operations for the Hashtable class.

Key ConCept
The load factor is the maximum
percentage occupancy allowed in the
hash table before it is resized.

Z05_LEWI3322_AppE_pp633-660.indd 648 20/02/13 11:45 AM

Return
Value

Method

void

Object

boolean

boolean

boolean

Enumeration

Set

boolean

Object

int

boolean

Enumeration

Set

Object

void

protected
void

Object

int

String

Collection

Hashtable()

Hashtable(int
initialCapacity)

Hashtable(int
initialCapacity,
float loadFactor)

Hashtable (Map t)

clear()

clone()

contains(Object value)

containsKey(Object key)

containsValue

elements()

entrySet()

equals(Object o)

get(Object key)

hashCode()

isEmpty()

keys()

keysSet()

put(Object key
Object value)

putAll(Map t)

rehash()

remove(Object key)

size()

toString()

values()

Description

Constructs a new, empty hash table with a default initial
capacity (11) and load factor, which is 0.75.

Constructs a new, empty hash table with the specified
initial capacity and default load factor, which is 0.75.

Constructs a new, empty hash table with the specified
initial capacity and the specified load factor.

Constructs a new hash table with the same mappings
as the given Map.

Clears this hash table so that it contains no keys.

Creates a shallow copy of this hash table.

Tests if some key maps into the specified value
in this hash table.

Tests if the specified object is a key in this hash table.

Returns true if this hash table maps one or more
keys to this value.

Returns an enumeration of the values in this hash table.

Returns a Set view of the entries contained in
this hash table.

Compares the specified Object with this Map for equality,
as per the definition in the Map interface.

Returns the value to which the specified key is mapped
in this hash table.

Returns the hash code value for this Map as per the
definition in the Map interface.

Tests if this hash table maps no keys to values.

Returns an enumeration of the keys in this hash table.

Returns a Set view of the keys contained in this hash table.

Maps the specified key to the specified value in
this hash table.

Copies all of the mappings from the specified Map to
this hash table. These mappings will replace any
mappings that this hash table had for any of the keys
currently in the specified Map.

Increases the capacity of and internally reorganizes this
hash table, in order to accommodate and access
its entries more efficiently.

Removes the key (and its corresponding value) from
this hash table.

Returns the number of keys in this hash table.

Returns a string representation of this hash table object
in the form of a set of entries, enclosed in braces and
separated by the ASCII characters comma and space.

Returns a Collection view of the values contained in
this hash table.

(Object value)

Figure e.8 Operations on the Hashtable class 649

Z05_LEWI3322_AppE_pp633-660.indd 649 20/02/13 11:45 AM

650 Appendix e Hashing

Creation of a Hashtable requires two parameters: initial capacity (with a
default of 11) and load factor (with a default of 0.75). The capacity is the number
of cells or locations in the initial table. As we noted earlier, the load factor is the
maximum percentage occupancy allowed in the hash table before it is resized.
Hashtable uses the chaining method for resolving collisions.

The Hashtable class is a legacy class that will be most useful if you are con-
necting to legacy code or require synchronization. Otherwise, it is preferable to
use the HashMap class.

the HashSet Class
The HashSet class implements the Set interface using a hash table. The
HashSet class, like most of the Java Collections API implementations of hash-
ing, uses chaining to resolve collisions (each table position effectively being a
linked list). The HashSet implementation does not guarantee the order of the
set on iteration and does not guarantee that the order will remain constant
over time. This is because the iterator simply steps through the table in order.
Because the hashing function will somewhat randomly distribute the elements
to table positions, order cannot be guaranteed. Further, if the table is expanded,
all of the elements are rehashed relative to the new table size, and the order
may change.

Like the Hashtable class, the HashSet class requires two parameters: initial
capacity and load factor. The default for the load factor is the same as it is for
Hashtable (0.75). The default for initial capacity is currently unspecified (origi-
nally it was 101). Figure E.9 shows the operations for the HashSet class. The
HashSet class is not synchronized and permits null values.

the HashMap Class
The HashMap class implements the Map interface using a hash table. The
HashMap class also uses a chaining method to resolve collisions. Like the
HashSet class, the HashMap class is not synchronized and allows null values.
Also like the previous implementations, the default load factor is 0.75. Like the
HashSet class, the current default initial capacity is unspecified, although it
was also originally 101.

Z05_LEWI3322_AppE_pp633-660.indd 650 20/02/13 11:45 AM

 e.5 Hash Tables in the Java Collections API 651

Return
Value

Method

boolean

void

Object

boolean

boolean

iterator()

boolean

int

HashSet() Constructs a new, empty set; the backing HashMap
instance has the default capacity and load
factor, which is 0.75.

Constructs a new set containing the elements in
the specified collection.

Constructs a new, empty set; the backing HashMap
instance has the specified initial capacity and default
load factor, which is 0.75.

Constructs a new, empty set; the backing HashMap
instance has the specified initial capacity and the
specified load factor.

Adds the specified element to this set if it is not
already present.

Removes all of the elements from this set.

Returns a shallow copy of this HashSet instance:
the elements themselves are not cloned.

Returns true if this set contains the specified element.

Returns true if this set contains no elements.

Returns an iterator over the elements in this set.

Removes the given element from this set if it is present.

Returns the number of elements in
this set (its cardinality).

Description

HashSet(Collection c)

HashSet(int
initialCapacity)

HashSet(int initial
Capacity, float
loadFactor)

add(Object o)

clear()

clone()

contains(Object o)

isEmpty()

iterator()

remove(Object o)

size()

Figure e.9 Operations on the HashSet class

Figure E.10 shows the operations on the HashMap class.

the IdentityHashMap Class
The IdentityHashMap class implements the Map interface using a hash table. The
difference between this and the HashMap class is that the IdentityHashMap class
uses reference-equality instead of object-equality when comparing both keys and
values. This is the difference between using key1==key2 and using key1
.equals(key2).

This class has one parameter: expected maximum size. This is the maximum
number of key-value pairs that the table is expected to hold. If the table exceeds
this maximum, then the table size will be increased and the table entries rehashed.

Z05_LEWI3322_AppE_pp633-660.indd 651 20/02/13 11:45 AM

652 Appendix e Hashing

Figure E.11 shows the operations on the IdentityHashMap class.

the WeakHashMap Class
The WeakHashMap class implements the Map interface using a hash table. This
class is specifically designed with weak keys so that an entry in a WeakHashMap
will automatically be removed when its key is no longer in use. In other words, if
the use of the key in a mapping in the WeakHashMap is the only remaining use of
the key, the garbage collector will collect it anyway.

Return
Value

Method

void

Object

boolean

boolean

set

Object

boolean

Set

Object

void

Object

int

Collection

Description

Constructs a new, empty map with a default capacity and
load factor, which is 0.75.

Constructs a new, empty map with the specified initial
capacity and default load factor, which is 0.75.

Constructs a new, empty map with the specified initial
capacity and the specified load factor.

Constructs a new map with the same mappings as
the given map.

Removes all mappings from this map.

Returns a shallow copy of this HashMap instance:
the keys and values themselves are not cloned.

Returns true if this map contains a mapping for the
specified key.

Returns true if this map maps one or more keys to the
specified value.

Returns a collection view of the mappings contained
in this map.

Returns the value to which this map maps the
specified key.

Returns true if this map contains no key-value mappings.

Returns a set view of the keys contained in this map.
Associates the specified value with the specified key
in this map.

Copies all of the mappings from the specified map
to this one.

Removes the mapping for this key from this map if present.

Returns the number of key-value mappings in this map.

Returns a collection view of the values contained
in this map.

HashMap()

HashMap(int initial
Capacity)

HashMap(int initial
Capacity, float
loadFactor)

HashMap(Map t)

clear()

clone()

containsKey(Object key)

containsValue

entrySet()

get(Object key)

isEmpty()

keySet()

put(Object key,
Object value)

putAll(Map t)

remove(Object key)

size()

values()

(Object value)

Figure e.10 Operations on the HashMap class

Z05_LEWI3322_AppE_pp633-660.indd 652 20/02/13 11:45 AM

 e.5 Hash Tables in the Java Collections API 653

Return
Value

Method Description

IdentityHashMap()

IdentityHashMap(int
expectedMaxSize)

IdentityHashMap(Map m)

clear()

clone()

containsKey(Object key)

containsValue

entrySet()

equals(Object o)

get(Object key)

hashCode()

isEmpty()

keySet()

put(Object key,
Object value)

putAll(Map t)

remove(Object key)

size()

values()

Constructs a new, empty identity hash map with a default
expected maximum size (21).

Constructs a new, empty map with the specified expected
maximum size.

Constructs a new identity hash map containing the
key-value mappings in the specified map.

Removes all mappings from this map.

Returns a shallow copy of this identity hash map:
the keys and values themselves are not cloned.

Tests whether the specified object reference is a key
in this identity hash map.

Tests whether the specified object reference is a value
in this identity hash map.

Returns a set view of the mappings contained in this map.

Compares the specified object with this map for equality.

Returns the value to which the specified key is mapped in
this identity hash map, or null if the map contains no
mapping for this key.

Returns the hash code value for this map.

Returns true if this identity hash map contains no
key-value mappings.

Returns an identity-based set view of the keys
contained in this map.

Associates the specified value with the specified key in
this identity hash map.

Copies all of the mappings from the specified map to
this map. These mappings will replace any mappings
that this map had for any of the keys currently in
the specified map.

Removes the mapping for this key from this map if present.

Returns the number of key-value mappings in this
identity hash map.

Returns a collection view of the values contained
in this map.

void

Object

boolean

boolean

Set

boolean

Object

int

boolean

Set

Object

void

Object

int

Collection

(Object value)

Figure e.11 Operations on the IdentityHashMap class

Z05_LEWI3322_AppE_pp633-660.indd 653 20/02/13 11:45 AM

654 Appendix e Hashing

Return
Value

Method Description

WeakHashMap()

WeakHashMap(int
initialCapacity)

WeakHashMap(int
initial Capacity, float
loadFactor)

WeakHashMap(Map t)

clear()

containsKey(Object key)

entrySet()

get(Object key)

isEmpty()

keySet()

put(Object key,
Object value)

putAll(Map t)

remove(Object key)

size()

values()

void

boolean

Set

Object

boolean

Set

Object

void

Object

int

Collection

Constructs a new, empty WeakHashMap with the default
initial capacity and the default load factor, which is 0.75.

Constructs a new, empty WeakHashMap with the given
initial capacity and the default load factor, which is 0.75.

Constructs a new, empty WeakHashMap with the given
initial capacity and the given load factor.

Constructs a new WeakHashMap with the same mappings
as the specified map.

Removes all mappings from this map.

Returns true if this map contains a mapping for the
specified key.

Returns a set view of the mappings in this map.

Returns the value to which this map maps the
specified key.

Returns true if this map contains no key-value mappings.

Returns a set view of the keys contained in this map.

Associates the specified value with the specified key
in this map.

Copies all of the mappings from the specified map
to this map. These mappings will replace any mappings
that this map had for any of the keys currently in
the specified map.

Removes the mapping for the given key from this map,
if present.

Returns the number of key-value mappings in this map.

Returns a collection view of the values contained in this map.

Figure e.12 Operations on the WeakHashMap class

The WeakHashMap class allows both null values and null keys, and it has the
same tuning parameters as the HashMap class: initial capacity and load factor.

Figure E.12 shows the operations on the WeakHashMap class.

LinkedHashSet and LinkedHashMap
The two remaining hashing implementations are extensions of previous classes. The
LinkedHashSet class extends the HashSet class, and the LinkedHashMap class
extends the HashMap class. Both of them are designed to solve the problem of itera-
tor order. These implementations maintain a doubly linked list running through the

Z05_LEWI3322_AppE_pp633-660.indd 654 20/02/13 11:45 AM

 e.5 Hash Tables in the Java Collections API 655

entries to maintain the insertion order of the elements. Thus the iterator order for
these implementations is the order in which the elements were inserted.

Figure E.13 shows the additional operations on the LinkedHashSet class.
Figure E.14 shows the additional operations on the LinkedHashMap class.

Return
Value

Method Description

Constructs a new, empty linked hash set with the default
initial capacity (16) and load factor (0.75).

Constructs a new linked hash set with the same elements
as the specified collection.

Constructs a new, empty linked hash set with the
specified initial capacity and the default load factor (0.75).

Constructs a new, empty linked hash set with the
specified initial capacity and load factor.

LinkedHashSet()

LinkedHashSet

LinkedHashSet

LinkedHashSet(int
initialCapacity,
float loadFactor)

(Collection c)

(int initialCapacity)

Figure e.13 Additional operations on the LinkedHashSet class

Return
Value

Method Description

void

boolean

Object

protected
boolean

Constructs an empty insertion-ordered LinkedHashMap
instance with a default capacity (16) and load factor (0.75).

Constructs an empty insertion-ordered LinkedHashMap
instance with the specified initial capacity and a
default load factor (0.75).

Constructs an empty insertion-ordered LinkedHashMap
instance with the specified initial capacity and load factor.

Constructs an empty LinkedHashMap instance with the
specified initial capacity, load factor, and ordering mode.

Constructs an insertion-ordered LinkedHashMap
instance with the same mappings as the specified map.

Removes all mappings from this map.

Returns true if this map maps one or more keys to
the specified value.

Returns the value to which this map maps the specified key.

Returns true if this map should remove its eldest entry.

LinkedHashMap()

LinkedHashMap

LinkedHashMap

float loadFactor)

LinkedHashMap

float loadFactor,
boolean accessOrder)

LinkedHashMap(Map m)

clear()

containsValue

get(Object key)

removeEldestEntry

(int initialCapacity)

(int initialCapacity,

(int initialCapacity,

(Object value)

(Map.Entry eldest)

Figure e.14 Additional operations on the LinkedHashMap class

Z05_LEWI3322_AppE_pp633-660.indd 655 20/02/13 11:45 AM

Summary of Key Concepts

■	 In hashing, elements are stored in a hash table, and their location in the table
is determined by a hashing function.

■	 The situation where two elements or keys map to the same location in the
table is called a collision.

■	 A hashing function that maps each element to a unique position in the table
is said to be a perfect hashing function.

■	 Extraction involves using only a part of the element’s value or key to
compute the location at which to store the element.

■	 The division method is very effective when one is dealing with an unknown
set of key values.

■	 In the shift folding method, the parts of the key are added together to create
the index.

■	 The length-dependent method and the mid-square method may be effectively
used with strings by manipulating the binary representations of the charac-
ters in the string.

■	 Although Java provides a hashcode method for all objects, it is often prefer-
able to define a specific hashing function for any particular class.

■	 The chaining method for handling collisions simply treats the hash table con-
ceptually as a table of collections, rather than as a table of individual cells.

■	 The open addressing method for handling collisions looks for an open posi-
tion in the table other than the one to which the element is originally hashed.

■	 The load factor is the maximum percentage occupancy allowed in the hash
table before it is resized.

Self-review Questions
SR E.1 What is the difference between a hash table and the other

collections we have discussed?

SR E.2 What is a collision in a hash table?

SR E.3 What is a perfect hashing function?

SR E.4 What is our goal for a hashing function?

SR E.5 What is the consequence of not having a good hashing function?

SR E.6 What is the extraction method?

SR E.7 What is the division method?

656 Appendix e Hashing

Z05_LEWI3322_AppE_pp633-660.indd 656 20/02/13 11:45 AM

SR E.8 What is the shift folding method?

SR E.9 What is the boundary folding method?

SR E.10 What is the mid-square method?

SR E.11 What is the radix transformation method?

SR E.12 What is the digit analysis method?

SR E.13 What is the length-dependent method?

SR E.14 What is chaining?

SR E.15 What is open addressing?

SR E.16 What are linear probing, quadratic probing, and double hashing?

SR E.17 Why is deletion from an open addressing implementation a
problem?

SR E.18 What is the load factor, and how does it affect table size?

exercises
EX E.1 Draw the hash table that results from adding the following inte-

gers (34 45 3 87 65 32 1 12 17) to a hash table of size 11 using
the division method and linked chaining.

EX E.2 Draw the hash table from Exercise E.1 using a hash table of size
11 and array chaining with a total array size of 20.

EX E.3 Draw the hash table from Exercise E.1 using a table size of 17
and open addressing with linear probing.

EX E.4 Draw the hash table from Exercise E.1 using a table size of 17
and open addressing with quadratic probing.

EX E.5 Draw the hash table from Exercise E.1 using a table size of 17
and double hashing using extraction of the first digit as the
secondary hashing function.

EX E.6 Draw the hash table that results from adding the following inte-
gers (1983, 2312, 6543, 2134, 3498, 7654, 1234, 5678, 6789) to
a hash table using shift folding of the first two digits with the last
two digits. Use a table size of 13.

EX E.7 Draw the hash table from Exercise E.6 using boundary folding.

EX E.8 Draw a UML diagram that shows how all of the various
implementations of hashing within the Java Collections API are
constructed.

 Exercises 657

Z05_LEWI3322_AppE_pp633-660.indd 657 20/02/13 11:45 AM

programming projects
PP E.1 Implement the hash table illustrated in Figure E.1 using the array

version of chaining.

PP E.2 Implement the hash table illustrated in Figure E.1 using the linked
version of chaining.

PP E.3 Implement the hash table illustrated in Figure E.1 using open
addressing with linear probing.

PP E.4 Implement a dynamically resizable hash table to store people’s
names and Social Security numbers. Use the extraction method
with division using the last four digits of the Social Security number.
Use an initial table size of 31 and a load factor of 0.80. Use open
addressing with double hashing using an extraction method on
the first three digits of the Social Security number.

PP E.5 Implement the problem from Programming Project E.4 using
linked chaining.

PP E.6 Implement the problem from Programming Project E.4 using the
HashMap class of the Java Collections API.

PP E.7 Create a new implementation of the bag collection called
HashtableBag using a hash table.

PP E.8 Implement the problem from Programming Project E.4 using shift
folding with the Social Security number divided into three equal
three-digit parts.

PP E.9 Create a graphical system that will allow a user to add and remove
employees where each employee has an employee id (a six-digit
number), an employee name, and years of service. Use the
hashcode method of the Integer class as your hashing function,
and use one of the Java Collections API implementations of hashing.

PP E.10 Complete Programming Project E.9 using your own hashcode
function. Use extraction of the first three digits of the employee id
as the hashing function, and use one of the Java Collections API
implementations of hashing.

PP E.11 Complete Programming Project E.9 using your own hashcode
function and your own implementation of a hash table.

PP E.12 Create a system that will allow a user to add and remove vehicles
from an inventory system. Vehicles will be represented by license
number (an eight-character string), make, model, and color. Use
your own array-based implementation of a hash table using
chaining.

658 Appendix e Hashing

Z05_LEWI3322_AppE_pp633-660.indd 658 20/02/13 11:45 AM

PP E.13 Complete Programming Project E.12 using a linked implementation
with open addressing and double hashing.

Answers to Self-review Questions
SRA E.1 Elements are placed into a hash table at an index produced by a

function of the value of the element or a key of the element. This
is different from other collections, where the position/location of
an element in the collection is determined either by comparison
with the other values in the collection or by the order in which
the elements were added or removed from the collection.

SRA E.2 The situation where two elements or keys map to the same location
in the table is called a collision.

SRA E.3 A hashing function that maps each element to a unique position
in the table is said to be a perfect hashing function.

SRA E.4 We need a hashing function that will do a good job of distributing
elements into positions in the table.

SRA E.5 If we do not have a good hashing function, the result will be too
many elements mapped to the same location in the table. This will
result in poor performance.

SRA E.6 Extraction involves using only a part of the element’s value or key
to compute the location at which to store the element.

SRA E.7 The division method involves dividing the key by some positive
integer p (usually the table size and usually prime) and then using
the remainder as the index.

SRA E.8 Shift folding involves dividing the key into parts (usually the same
length as the desired index) and then adding the parts. Extraction or
division is then used to get an index within the bounds of the table.

SRA E.9 Like shift folding, boundary folding involves dividing the key into
parts (usually the same length as the desired index). However,
some of the parts are then reversed before adding. One example is
to imagine that the parts are written side by side on a piece of
paper, which is then folded on the boundaries between parts. In
this way, every other part is reversed.

SRA E.10 The mid-square method involves multiplying the key by itself
and then extracting some number of digits or bytes from the
middle of the result. Division can then be used to guarantee an
index within the bounds of the table.

 Answers to Self-Review Questions 659

Z05_LEWI3322_AppE_pp633-660.indd 659 20/02/13 11:45 AM

660 Appendix e Hashing

SRA E.11 The radix transformation method is a variation on the division
method where the key is first converted to another numeric base
and then divided by the table size with the remainder used as the
index.

SRA E.12 In the digit analysis method, the index is formed by extracting,
and then manipulating, specific digits from the key.

SRA E.13 In the length-dependent method, the key and the length of the key
are combined in some way to form either the index itself or an
intermediate value that is then used with one of our other methods
to form the index.

SRA E.14 The chaining method for handling collisions simply treats the
hash table conceptually as a table of collections, rather than as a
table of individual cells. Thus each cell is a pointer to the collec-
tion associated with that location in the table. This internal
collection usually is either an unordered list or an ordered list.

SRA E.15 The open addressing method for handling collisions looks for an
open position in the table other than the one to which the element
is originally hashed.

SRA E.16 Linear probing, quadratic probing, and double hashing are
methods for determining the next table position to try if the
original hash causes a collision.

SRA E.17 Because of the way a path is formed in open addressing, deleting
an element from the middle of that path can cause elements
beyond that point on the path to be unreachable.

SRA E.18 The load factor is the maximum percentage occupancy allowed in
the hash table before it is resized. Once the load factor has been
reached, a new table is created that is twice the size of the current
table, and then all of the elements in the current table are inserted
into the new table.

Z05_LEWI3322_AppE_pp633-660.indd 660 20/02/13 11:45 AM

Appendix

661

Regular
Expressions FF

Z06_LEWI3322_AppF_pp661-664.indd 661 20/02/13 11:45 AM

662 Appendix F Regular Expressions

Throughout this text, we’ve used the Scanner class to read interactive input from
the user and parse strings into individual tokens such as words. Usually we used
the default whitespace delimiters for tokens in the scanner input.

The Scanner class can also be used to parse its input according to a regular
expression, which is a character string that represents a pattern. A regular expres-
sion can be used to set the delimiters used when extracting tokens, or it can be
used in methods such as findInLine to match a particular string.

Here are some of the general rules for constructing regular expressions:

■	 The dot (.) character matches any single character.

■	 The asterisk (*) character, which is called the Kleene star, matches zero or
more characters.

■	 A string of characters in brackets ([]) matches any single character in the string.

■	 The \ character followed by a special character (such as one of those in this
list) matches the character itself.

■	 The \ character followed by a character matches the pattern specified by
that character (see Figure F.1).

x

.

[abc]

[^abc]

[a-z][A-Z]

[a-o[m-p]]

[a-z&&[def]]

[a-z&&[^bc]]

[a-z&&[^m-p]]

\d

\D

\s

\S

^

$

The character x

Any character

a, b, or c

Any character except a, b, or c (negation)

a through z or A through Z, inclusive (range)

a through d or m through p (union)

d, e, or f (intersection)

a through z, except for b and c (subtraction)

a through z but not m through p (subtraction)

A digit: [0–9]

A non-digit: [^0–9]

A whitespace character

A non-whitespace character

The beginning of a line

The end of a line

Regular Expression Matches

Figure F.1 Some patterns that can be specified in a Java regular expression

Z06_LEWI3322_AppF_pp661-664.indd 662 20/02/13 11:45 AM

 Appendix F Regular Expressions 663

For example, the regular expression B.b* matches Bob, Bubba, and Baby. The
regular expression T[aei]*ing matches Taking, Tickling, and Telling.

Figure F.1 shows some of the patterns that can be matched in a Java regular
expression. This list is not complete—see the online documentation for the
Pattern class for a complete list.

Z06_LEWI3322_AppF_pp661-664.indd 663 20/02/13 11:45 AM

Z06_LEWI3322_AppF_pp661-664.indd 664 20/02/13 11:45 AM

 This page is intentionally left blank.

Index

665

Symbols
#, protected class visibility, 457
$, end of a line expression, 662
*, Kleene star expression, 662
*, multiplication operator, 65
*/, close comment indicator, 71–72
–, private class visibility, 457
., dot expression matching any

character, 662
., dot operator, 467
/**, open comment indicator, 71–72
@, Javadoc tags, 72
\d, digit (0-9) expression, 662
\D, non-digit (0-9) expression, 662
\S, non-whitespace character

expression, 662
\s, whitespace character expression,

662
^, beginning of a line expression,

662
{ }, nonpublic class visibility, 457
+, addition operator, 65
+, public class visibility, 457
< >, stereotypes, 457
==, object comparison operator,

481–482

A
Abstract class, 494–495
Abstract data types (ADT), 57–61,

74–76, 87, 135–137, 172–178,
285–289, 320–322, 358–362

binary search trees, 320–322
binary trees, 285–289
collections, 57–61
data structures compared

to, 58–59
heaps, 358–362
lists, 172–178
operations, 59–60
queues, 135–137
stacks, 59–61, 74–76

Abstract Windowing Toolkit
(AWT), 539

Abstraction, 57–58, 87,
465–466

Action events, 543–548
Activation record, 102–103, 118
Acyclic graph, 429, 451
Adapter classes, events, 604–605
add() operations, 126, 158, 173,

183–184, 333, 336, 387
array-based implementation,

183–184
balance and, 336
binary search trees, 333, 336
linked structure implementation,

333, 336
lists, 158, 173, 183–184, 333, 336
sets, 387

addAfter operation, 173, 185
addAll operation, 387
addEdge method, 448
addEdge method, 448–449

Z07_LEWI3322_INDEX_pp665-704.indd 665 01/03/13 12:18 PM

666 INDEX

Aliases, 481–482
Ancestors, 276–277, 314
Application programming interface

(API), 59
Arc angle, 519
ArrayList class, 158, 178–186,

205–207
Arrays, 77–86, 143–150, 178–186,

205–207, 279–281, 373–378
add() operation, 183–184
addAfter operation, 185
addElement operation, 375–376
addToFront operation, 185
addToRear operation, 185
assumptions for implementation, 79
capacity, 78
circular implementation strategy,

144–150
computational strategy for, 279–280
constructors, 80–81
contains() operation, 182–183
dequeue operation, 143, 149–150
enqueue operation, 143, 147–149
exceptions for, 84–86, 205–207
expandCapacity method, 82–83, 149
find() method, 181–182
fixed implementation strategy, 77–86,

143–144
freelist, 280, 315
generic types, errors from, 81
heap implementation using, 373–378
iterator implementation using,

205–207
linked strategy for, 279–281
list implementation using, 178–186
modification count for, 205
object references, 77
peek operation, 85
pop operation, 83–85
push operation, 82–83

addElement operation, 320, 323–325,
358, 360–361, 368–370, 375–376

array-based implementation using,
375–376

binary search trees, 320, 323–325
heaps, 358, 360–361, 368–370,

375–376
linked implementation using, 323–325,

368–370
Addition (+) operator, 65
addToFront operation, 173, 185
addToRear operation, 173, 185
addVertex method, 448–449
Adjacency lists, 442
Adjacency matrices, 442–450
Adjacent vertices, 428, 451
Aggregation, UML relationship of,

459–460
Algorithms, 41–54, 233–234, 248–249,

432–441
analysis of, 41–54, 233–234
asymptotic complexity of, 43–45, 52
Big-Oh notation, 43–45
complexity of, 43–45, 48–52
connectivity, testing for, 436–437
efficiency of, 42–43
exponential complexity, 47
graphs, 432–441
growth functions, 43–47
logarithmic, 249
loops, 48–49
method calls, 49–51
minimum spanning trees, 438–440
processor speed and, 45–47
recursive, 233–234
search, comparison of, 248–249
shortest path determination, 441
speed increase and, 45–47
time complexity of, 48–51
traversals, 432–436

Z07_LEWI3322_INDEX_pp665-704.indd 666 01/03/13 12:18 PM

 INDEX 667

FindMin operation, 320
implementation of, 322–332, 340–349
linked implementation, 322–332
ordered lists implemented using,

332–336
promoted nodes, 326–329
red/black trees, 343–349, 351
removeAllOccurances operation, 320,

329–330
removeElement operation, 320,

326–329
removeMax operation, 320
removeMin operation, 320, 330–332
replacement method, 326–329
rotation techniques for, 337–343
unbalanced, 340–343

Binary trees, 277, 285–313, 315.
See also, Binary search trees; Heaps

abstract data types (ADT), 285–289
classification as, 277, 315
contains operation, 285
decision trees from, 301–305
evaluate methods, 290–294, 304
expression trees from, 289–300
find operation, 285, 310–312
getRoot operation, 285
implementation of, 305–313
isEmpty operation, 285
iterator operations, 285, 312–313
linked structures and, 285–313
LinkedBinaryTree class, 290–313
postfix expressions and, 295–300
size() operation, 285
toString operation, 285

BinaryTreeNode class, 307–310
boolean hasNext() method, 196
Border layout, 574, 579–583
Borders, 612–616
Bounding rectangle, 519
Box layout, 574, 586–589

queue implementation using, 143–150
remove() operations, 180–182
removeMin operation, 376–378
stack implementation using, 77–86
tree implementation using, 279–281,

305–313
ArrayStack class, 79–85
Association, UML relationship of,

459–460
Asymptotic complexity, 43–45, 52.

See also Algorithms
Attributes, 456, 469
AVL tree, 340–343, 350

B
B-trees, 418–421, 422
Background colors, 519
Balance factor, 340–343, 350
Base case, recursion, 215–216, 235
Base class, 489
Behavior of objects, 469–470
Bevel border, 615–616
Big-Oh notation, 43–45, 48–49, 52,

143
asymptotic complexity and, 43–45
growth functions and, 43–45
loops, 48–49
queue operation complexity, 143

Binary search, 246–248, 249, 270
Binary search trees, 36, 281, 319–356

abstract data types (ADT), 320–322
addElement operation, 320, 323–325
AVL trees, 340–343, 350
balance factor for, 340–343, 350
balanced, 336–340
data structure use of, 36
degenerate, 336–337, 350
efficiency of implementation of, 281
exceptions, 323, 326, 329,
FindMax operation, 320

Z07_LEWI3322_INDEX_pp665-704.indd 667 01/03/13 12:18 PM

668 INDEX

inheritance, 464, 488–492
instance data, 473
is-a relationship, 489–490
Java application programmer interface

(API), 468
libraries, 468
members, 471
method declarations, 471
Object class and, 493–494
object-oriented design and,

464, 468–469, 470–473
overriding methods and, 491–492
packages, 468–469
parent (superclass), 489, 492
polymorphism, 496–501
protected visibility, 490–491
super reference and, 491
UML relationship of, 459–460
using each other, 459–460
visibility modifiers, 457,

490–491
wrapper, 485–486

Clear() operation, 387, 388
Client, 28, 474
Code keys, 126–130

Caesar cipher, 126–127
queues and, 126–130
repeating key, 127

Collections, 55–92, 196–198, 210,
385–408

abstract data types (ADT), 57–61,
74–76, 87

abstraction as, 57–58
application programming interface

(API), 59
data structure, 58–59, 88
data types, 57–64, 74–76, 87
elements of, 56
encapsulation of, 58, 88
exceptions, 72–74

Breadth-first traversal, 432–433,
436–437, 451

Bucket, hash tables, 402, 404, 634
Buttons, 543–548, 555–559

action events from, 543–548
labels for, 543
listener interface for, 544
push, 543–548
radio, 555–559

Bytecode, 32, 37

C
Caesar cipher, 126–127, 151
Call stack trace, 103, 502
Capacity of arrays, 78
catch clause, 502–503
Cell, hash tables, 402, 404, 634
Chaining method, hashing, 639–642,

646
Check boxes, 551–554
Child class (subclass), 489, 492
Children, 276, 314, 492
Circular array implementation strategy,

144–151
Class diagrams, UML, 456–458
ClassCastException class, 329–330,

360
Classes, 459–460, 464, 468–469,

470–473, 485–486, 488–505
abstract class and, 494–495
base, 489
child (subclass), 489, 492
data declarations, 471
declaration, 468–469
definition of objects, 464
derived, 488–490
exceptions, 501–505
hierarchies, 62–63, 88, 492–495,

497, 504–505
import declaration, 468–469

Z07_LEWI3322_INDEX_pp665-704.indd 668 01/03/13 12:18 PM

 INDEX 669

combo boxes, 564–569
dialog boxes, 605–611
disabled, 617
drawing on, 523–527
graphical user interfaces (GUI),

539–574, 605–623
labels, 543
mnemonics, 616–623
radio buttons, 555–559
sliders, 559–564
Swing package, 539,

605–623
text area, 608–610
text fields, 548–551
timers, 569–574
tool tips, 616–623

Compound border, 615–616
Computational strategy for array

implementation of trees, 279–280
ConcurrentModificationException

class, 198, 203, 205–206
Confirm dialog boxes, 605, 608
Connected graph, 429–430, 451
Connectivity, testing for in graphs,

436–437
Constructors, 80–81, 111, 476–477

array-based implementation, 80–81
default, 477
object-oriented design and,

476–477
linked-list implementation, 111
stacks, 80–81, 111

Containers, 539–543, 574–589
applets, 539
frames, 539–543
heavyweight, 539, 541
layout managers, 543, 574–589
lightweight, 539
panels, 539–543

Containment hierarchies, 589

fail-fast iterator implementation, 198,
210

interface operations and, 57–58,
74–76, 88

iterable interface for, 196–197, 210
iterators and, 196–198, 210
Java API, 59, 88, 386–389
linear, 56–57, 276
maps, 385–408
nonlinear, 56–57, 276
objects, 56–58, 61–64
postfix expressions, 64–72
sets, 385–408
stacks, 59–87

Collisions, 402, 404, 634, 639–645
avoidance of, 639–645
chaining method, 639–642
hash tables, 402, 404, 634
open addressing methods, 642–645

Color chooser dialog boxes, 611
Color representation, 517
Combo boxes, 564–569
Command-line applications, 538
Commercial Off-The-Shelf (COTS)

products, 31–32
Comparable interface, 182–183, 242,

251, 487–488
collection implementation and, 182
object-oriented design and, 182,

487–488
objects, 183–184
searching, 242
sorting, 251

Complete graph, 428, 451
Complete tree, 278, 315,

360–361, 381
Components, 523–527, 538–574,

605–623
borders, 612–616
check boxes, 551–554

Z07_LEWI3322_INDEX_pp665-704.indd 669 01/03/13 12:18 PM

670 INDEX

array-based implementation, 143,
149–150

Big-Oh complexity of, 143
queue process, 124–125, 151
linked-list implementation, 141–142

Derived classes, 488–490
Descendants, 277, 314
Dialog boxes, 605–611

color choosers, 611
confirm, 605, 608
file choosers, 608–611
input, 605–606
message, 605, 607
text area, 608–610

Digit analysis method, hash
functions, 638

Direct recursion, 219–220, 235
Directed graph (digraph), 429–430
Division method, hash functions,

636–637
Domains blocked using sets, 389–392
Dot operator ., 467
Double-ended queues (deque), 150
Double hashing, 644–645
Doubly-linked lists, 99–100, 118
Drawing shapes, 518–532

arc angle, 519
background and foreground

colors, 519
bounding rectangle, 519
component methods, 523–527
graphics content interaction, 520
methods for, 518–519
MID value, 523
polygons, 527–532
polylines, 527–532
start angle, 519
TOP value, 523

Drop-out stack, 76
Dummy nodes, 98

contains() operation, 172, 182–183,
285, 387

array-based implementation, 182–183
binary trees, 285
lists, 172, 182–183
sets, 387

containsAll operation, 387
containsKey operation, 388
containsValue operation, 388
Coordinates, 516
Correctness, 29, 37
count method, 48–49
Cycle, 429, 451

D
Data declarations, 471
Data structures, 33–36, 57–59, 88

collections, 57–59, 88
hash tables, 35
lists, 36
maps, 36
objects, 36
queues, 36
search trees, 36
shipping container scenario, 33–36
stacks, 35

Data types, 57–64, 74–76, 87
abstract (ADT), 57–61, 74–76, 87
generic, 63–64, 81, 88
object-oriented, 61–64
primitive, 58
type checking, 62
type compatibility, 61–62

Decision trees, 301–305
Default constructor, 477
Degenerate tree, 336–337, 350
Depth-first traversal, 432–436, 451
Deque interface, 100–101, 150
dequeue operation, 124–125, 141–143,

149–151

Z07_LEWI3322_INDEX_pp665-704.indd 670 01/03/13 12:18 PM

 INDEX 671

Engineering goals, 28
enqueue operation, 124–125, 139–140,

143, 147–149, 151
array-based implementation, 143,

147–149
Big-Oh complexity of, 143
queue process, 124–125, 151
linked–list implementation, 139–140

entrySet() operation, 388
equals() method, 181–182, 387, 388,

 482
Errors, 73, 81, 216, 501–502

base case in recursion, 216
exception messages and, 502
exceptions compared to, 73, 501
generic types in arrays, 81

Etched border, 615
evaluate method, 70, 290–294, 304
Events, 538, 543–548, 589–605

action, 543–548
adapter classes for, 604–605
buttons, 543–548
item, 551
key, 598–604
listener interface for, 544–548, 594–598
motion (mouse), 589–598
mouse, 589–598
sources, 545–548

Exception handler, 502
Exceptions, 72–74, 84–86, 88, 182,

185, 198, 203, 205–207, 323, 326,
329–330, 501–505

array-based implementation and,
84–86, 182, 185, 205–207

call stack trace, 502
class hierarchy, 504–505
ClassCastException class, 329–330
classes of, 85–86
ConcurrentModificationException

class, 198, 203, 205–206

Dynamic (late) binding, 497
Dynamic structure, 96

E
E Next() method, 196
Edges (connections), 428–430, 451
Edges, 276, 314
Efficiency, 32, 37, 281

software quality and, 32, 37
tree implementation and, 281

ElementNotFoundException class, 326,
329

Elements, 56–57, 96–97, 99–100,
137–142, 198, 344–347.
See also Nodes; Objects

accessing, 96–97
adding to lists, 173–178
characteristics of, 156
collections of, 56–57, 96–97, 99–100
head/tail references, 137–142
insertion into trees, 344–347
iterator order of, 198
lists, 156–158, 173–178
numerical reference for, 156–158
organization of, 56–57
queues, 137–142
red/black trees, 344–349
removal from trees, 347–349
separation of stored and linked, 99–100
unordered list placement, 156–157

Empty border, 615
EmptyCollectionException class,

84–86, 141–142
array-based implementation, 84–86
linked-list implementation, 141–142

Encapsulation, 58, 88, 464, 474–476
collections and, 58, 88
local data for, 476
object reference variables and, 464, 474
visibility modifiers, 474–476

Z07_LEWI3322_INDEX_pp665-704.indd 671 01/03/13 12:18 PM

672 INDEX

binary trees, 285, 310–312
lists, 181–182

findAgain method, 310
FindMax operation, 320
FindMin operation, 320, 358, 362,

373, 378
First in, first out (FIFO) process,

124, 151
first operation, 124–125, 142, 172

lists, 172
queues, 124–125, 142

Fixed array implementation strategy,
77–86, 143–144

Flow layout, 574, 576–579
Folding method, hash functions, 637
for loop, 258
for-each loops, 197, 202–203
Foreground colors, 519
Frames, 539–543
Free store, 96
Freelist, 280, 315
Full tree, 278, 315

G
Garbage collection, 482–483
General (n–ary) trees, 277, 315
Generic search method, 243–244, 270
Generic type, 63–64, 81, 88
get() method, 388
getNewLastNode method, 370–373
getNextParentAdd method, 368–370
getRoot operation, 285
Graphical user interfaces (GUI),

537–631
Abstract Windowing Toolkit

(AWT), 539
action events, 543–548
borders, 612–616
buttons, 543–548, 555–559
check boxes, 551–554

Exceptions (Continued)
ElementNotFoundException class,

326, 329
EmptyCollectionException class,

 84–86, 141–142
errors compared to, 73, 501
iterators and, 198, 203, 205–207
lists, 182, 185
messages, 502
NonComparableElementException

class, 323
NoSuchElementException class, 206–207
object-oriented design and, 501–505
objects as, 72–74, 88, 501
propagation, 503–504
RuntimeException class, 86
stacks, 72–74, 84–86
try statement, 502–503
UnsupportredOperationException

class, 207
expandCapacity method, 82–83, 149,

449–450
graph adjacency matrix

implementation, 449–450
queue implementation, 149
stack implementation, 82–83

Expert system, 301
Exponential complexity, 47
Expression trees, 289–300
Expressions, 661–663

F
Factorial (N!), 215–216
Fail-fast implementation, 198, 210
Failure of software, 30
File chooser dialog boxes,

608–611
find() operation, 181–182, 285,

310–312
arrays, 181–182

Z07_LEWI3322_INDEX_pp665-704.indd 672 01/03/13 12:18 PM

 INDEX 673

networks (weighted graphs), 431–432,
451

path, 429–430, 452
shortest path determination, 441
traversals, 432–436
undirected, 428–429, 443–450
vertices (nodes), 428–430, 442–443,

452
Grid layout, 574, 583–585
Growth functions, 43–47

asymptotic complexity and, 43–45
Big-Oh notation and, 43–45
exponential complexity and, 47
speed increase (tenfold) using, 45–47
time complexity and, 45–47

H
Hash functions, 402–403, 404, 634–639

digit analysis method, 638
division method, 636–637
folding method, 637
initial capacity, 402, 404
Java language and, 639
length-dependent method, 638
load factor, 402, 404, 636
mapping elements using, 402–403
mid-square method, 637–638
perfect, 402, 634–635
radix transformation method, 638

Hash tables, 35, 402, 404, 634–636,
646–655

bucket, 402, 404, 634
cell, 402, 404, 634
collision, 402, 404, 634, 639–645
deleting elements from, 646–648
chain implementation, 639–642, 646
dynamic resizing, 636
Java API classes, 648–655
open address implementation,

642–645, 647–648

combo boxes, 564–569
command-line applications compared

to, 538
components, 538–574, 605–623
containers, 539–543
design, 538–539, 623
dialog boxes, 605–611
event adapter class, 604–605
event-driven programs, 538
events, 538, 543–548, 551, 589–604
frames, 539–543
key events, 598–604
layout managers, 543, 574–589
listeners, 538, 544–548, 594–598
mnemonics, 616–623
mouse events, 589–598
panels, 539–543
sliders, 559–564
Swing package components, 539,

605–623
text area, 608–610
text fields, 548–551
timers, 569–574
tool tips, 616–623

Graphics, see Java graphics
Graphics class, 518–523
Graphs, 427–454
addEdge method, 448
addVertex method, 448–449
adjacency lists, 442
adjacency matrices, 442–450
algorithms, 432–441
connectivity, testing for, 436–437
directed (digraph), 429–430
edges (connections), 428–430, 451
expandCapacity method,

448–449
implementation strategies, 441–450
minimum spanning trees (MST),

438–440

Z07_LEWI3322_INDEX_pp665-704.indd 673 01/03/13 12:18 PM

674 INDEX

Hierarchy, 276–278, 492–496,
497, 504–505, 589.
See also Nodes

abstract class and, 494–495
ancestors, 276–277, 314
children, 276, 314, 492
classes, 492–495, 497
containment, 589
Exception class, 504–505
inheritance and, 492–496
interfaces, 496
Object class and, 493–494
polymorphism and, 497
siblings, 276, 314, 492
trees, 276–278

Human-Computer Interaction (HCI),
30–31

I
IdentityHashmap class, 651, 653
if–else statements, 217–219
Image observer, 603
Implementation, 77–86, 110–117,

137–150, 178–188, 279–281,
305–313, 322–349, 363, 366–378,
420–421, 441–450, 459–460

add() operation, 183–184
addAfter operation, 173, 185
addEdge method, 448
addElement operation, 320, 323–325,

368–370, 375–376
addVertex method, 448–449
adjacency lists, 442
adjacency matrices, 442–450
array capacity, 78
array-based, 77–86, 143–150,

178–186, 279–281, 373–378
ArrayList class, 178–186
ArrayStack class, 79–86
AVL trees, 340–343, 350

hashCode() method, 387, 388
Hashing, 401–403, 404, 633–660.

See also Hash functions; Hash tables
chaining method, 639–642, 646
collision, 402, 404, 634, 639–645
double hashing, 644–645
functions, 402–403, 404, 634–639
linear probing, 642–643
map implementation using, 401–403
open addressing methods, 642–645,

647–648
quadratic probing, 642–644
set implementation using, 401–403
tables, 35, 402, 404, 634–636,

646–655
Hashmap class, 650, 652
Hashset class, 650, 651
Hashtable class, 648–650
hasNext method, 205, 207
Head/tail element references, 137–142
heapifyAdd method, 368–370, 375–376
heapifyRemovemethod, 370–372, 376–378
Heaps, 357–384

abstract data types (ADT), 358–362
addElement operation, 358, 360–361,

368–370, 375–376
array-based implementation, 373–378
findMin operation, 358, 362,

373, 378
implementation of, 366–378
linked implementation of,

366–375
maxheap, 358, 379, 382
minheap, 358, 360, 379, 382
priority queues using, 362–366
removeMin operation, 358,

361–362, 370–373, 376–378
sorting with, 378–380

heapSort method, 379–380
Height of trees, 277, 315

Z07_LEWI3322_INDEX_pp665-704.indd 674 01/03/13 12:18 PM

 INDEX 675

size() operation, 117, 142
StackADT interface, 74–76, 80, 110
stacks, 77–86, 110–117
trees, 279–281, 305–313,

322–349
UML relationship of, 459–460

import declaration, 468–469
Indexed lists, 156–158,

170–172, 189
element numerical reference for,

156–158
Josephus class example, 170–172

Indirect recursion, 219–220, 235
Infinite recursion, 214–215, 235
Infix notation, 64
Inheritance, 62–63, 88, 458–459, 464,

488–492, 498–499
classes and, 464, 488–492
collections and, 62–63, 88
derived classes, 488–490
object-oriented design and, 464,

488–492
overriding methods and, 491–492
polymorphism from, 498–499
protected visibility and,

490–491
super reference and, 491
UML relationship of, 458–459

Initial capacity, hash functions,
402, 404

Inner class, 544
Inorder traversal,

282–283, 315
Input dialog boxes, 605–606
Insertion points, 360–361
Insertion sort, 250,

254–256, 270
Instance data, 473
Instance variable, 484
Instantiation, 467

B-trees, 420–421
balanced trees, 336–340
binary search trees used for, 332–336
binary search trees, 322–332, 340–349
computational strategy for, 279–280
constructors, 80–81, 111
contains() operation, 172, 182–183
dequeue operation, 141–143, 149–150
efficiency of, 281
enqueue operation, 139–140, 143,

147–149
exceptions for, 84–86
expandCapacity method, 448–449
findMin operation, 373, 378
freelist, 280, 315
graphs, 441–450
heaps, 366–378
linked structure strategies, 279–281,

305–313, 322–332, 366–375
LinkedList class, 186–188
linked-list, 110–117, 137–142, 186–188
LinkedStack class, 110–117
lists, 178–188, 332–336
node reference, 110–111
object references, 77
peek operation, 85, 117
pop operation, 83–85, 116–117
priority queues, 363
push operation, 82–83, 114–116
queues, 137–150
red/black trees, 343–349, 351
remove() operations, 180–182,

187–188
removeAllOccurances operation,

320, 329–330
removeElement operation, 320,

326–329
removeMin operation, 320, 330–332,

370–373, 376–378
rotation techniques for, 336–340

Z07_LEWI3322_INDEX_pp665-704.indd 675 01/03/13 12:18 PM

676 INDEX

iterator methods, 161, 196–197, 285,
 387

iterator operations, 285, 312–313
Iterator<E>iterator() method, 196
iteratorInOrder method, 285, 312
Iterators, 195–211, 219, 285

array-based implementation, 205–207
binary tree ATD traversal operations, 285
boolean hasNext() method, 196
collection definition and, 196–198
E Next() method, 196
element order and, 198
exceptions for, 198, 203, 205–207
fail-fast implementation, 198, 210
hasNext method, 205, 207
Iterable interface, 196–198, 202
Iterator<E>iterator() method, 196
linked-list implementation, 207–209
lists and, 198–204
loops for, 197, 202–203
modification count for, 205
object definition and, 196, 210
ProgramOfStudy class management,

198–204
recursion compared to, 219
remove() method, 197, 202–203
void remove() method, 196

J
Java Applications Programming

Interface (API), 59, 74–76, 88,
100–101, 125–126, 158–159,
386–389, 468, 648–655

ArrayList class, 158
collections use of, 59, 88, 386–389
Deque interface, 100–101
hash tables, 648–655
Hashmap class, 650, 652
Hashset class, 650, 651
Hashtable class, 648–650

Interfaces, 57–58, 70, 74–76, 88,
100–101, 125–126, 150, 158–159,
161, 196–198, 242, 251, 486–488,
496, 498, 500–501

abstract method, 486–487
abstraction and, 57–58
collections, 57–58, 74–76, 88
Comparable, 242, 251, 487–488
constants for, 487
class implementation of, 486–487
Deque, 100–101, 150
hierarchies, 496
Iterable, 196–198
java.util.List, 158
java.util.Stack, 70
Java standard class library for,

487–488
lists, 158–159
polymorphism, 498, 500–501
object-oriented design and, 486–488,

496
queues, 125–126
searching, 242
Serializable, 161
sorting, 251
stacks, 74–76, 88, 100–101
undo operations, 76

Internal nodes, 276, 314
Is-a relationship, 489–490
isempty operation, 60, 76, 117, 125, 142,

172, 285, 387, 388
binary trees, 285
lists, 172
maps, 388
queues, 125, 142
sets, 387
stacks, 60, 76, 117

Item events, 551
Iterable interface,

196–198, 202

Z07_LEWI3322_INDEX_pp665-704.indd 676 01/03/13 12:18 PM

 INDEX 677

java.util package, 468–469
java.util.List interface, 158
java.util.Stack interface, 70
Javadoc comments (/** and */), 71–72
Javadoc tags (@), 72
Josephus problem, 170–172, 189

K
Key events, 598–604
Key repetition, 603
Keys, maps and, 386
keySet() operation, 388

L
Labels, 543
Last in, first out (LIFO) processing,

59–60, 88
Late (dynamic) binding, 497
Layout managers, 543, 574–589

border layout, 574, 579–583
box layout, 574, 586–589
container government by, 543,

574–589
containment hierarchies, 589
flow layout, 574, 576–579
grid layout, 574, 583–585
Java predefined, 574
tabbed panes for, 576

Leaf, 276, 314
Length-dependent method, hash func-

tions, 638
Length of a path, 429, 451
Level-order traversal, 282, 284–285, 315
Line border, 615
Linear collections, 55–193, 276

lists, 155–193
nonlinear collections compared to,

56–57, 276
queues, 123–154
stacks, 55–122

IdentityHashmap class, 651, 653
interface use of, 74–76, 158
LinkedHashmap class, 654–655
LinkedHashset class, 654–655
LinkedList class, 100–101, 158–159
lists, 158–159
maps, 386, 388–389
object–oriented design and, 468
queues, 125–126
sets, 386–388
Stack class, 74–76, 100
stacks, 74–76, 88, 100–101
WeakHashmap class, 652, 654

Java graphics, 515–536, 538–631
borders, 612–616
color representation, 517
command-line applications, 538
components for, 523–527, 539–574,

605–623
coordinates, 516
dialogue boxes, 605–611
drawing shapes, 518–532
event adapter class, 604–605
events, 538, 543–548, 589–604
graphical user interfaces (GUI),

537–631
key events, 598–604
layout managers, 543, 574–589
mnemonics, 616–623
monitor resolution, 516
mouse events, 589–598
picture resolution, 516
pixels, 516
polygons, 527–532
polylines, 527–532
tool tips, 616–623

Java language, hash functions in, 639
Java standard class library, 468
Java Virtual Machine (JVM), 32
java.lang package, 469

Z07_LEWI3322_INDEX_pp665-704.indd 677 01/03/13 12:18 PM

678 INDEX

dynamic, 96
expression trees from, 289–300
heap implementation using, 366–378
implementation and, 110–117,

285–313
linked lists, 95–118
nodes, 95, 97–100, 110–111, 118
object references as, 94–96
pointers, 94–95
postfix expressions and, 295–300
removeMin operation, 330–332,

370–373
replacement method, 326–329
self-referential objects, 95
stacks and, 93–122
trees and, 281, 285–313

LinkedBinaryTree class, 290–313, 322–332
LinkedHashmap class, 654–655
LinkedHashset class, 654–655
LinkedList class, 100–101, 158, 198–204,

207–209
LinkedStack class, 110–117
Listeners, 538, 544–548, 594–598

GUI-based program design and, 538
mouse event interface, 594–598
push button interface, 544–548

Lists, 36, 155–193, 198–204, 442
abstract data types (ADT), 172–178
add() operation, 158, 173, 183–184
addAfter operation, 173, 185
adding elements to, 173–178
adjacency, 442
addToFront operation, 173, 185
addToRear operation, 173, 185
array-based implementation, 178–186
contains operation, 172, 182–183
data structure use of, 36
exceptions in, 182, 185
graph implementation using, 442
indexed, 156–158, 170–172

Linear probing, 642–643
Linear search, 244–246, 248, 271
Linked lists, 95–118, 137–142,

156–158, 186–188, 207–209
accessing elements, 96–97
deleting nodes, 98
dequeue operation, 124–125, 141–142
doubly-linked, 99–100, 118
elements without links, 99–100
enqueue operation, 139–140
head/tail element references, 137–142
implementation using, 110–117, 137–142
inserting nodes, 97–98
iterator implementation using,

207–209
Java Collections API and, 100–101
list implementation using, 186–188
lists compared to, 156–158
managing,96–98
nodes, 95, 97–100, 118, 137–138
peek operation, 117
pop operation, 116–117
push operation, 114–116
queues and, 137–142
recursion and, 102–103
remove() operations, 187–188
stacks and, 100–117
traversing a maze using, 101–109

Linked structures, 93–122, 279–281,
285–313, 322–332, 366–378

addElement operation, 323–325,
368–370

ADT operations for, 285–289
array implementation using, 279–281,

305–313
binary search tree implementation

using, 322–332
binary tree implementation using,

305–313
decision trees from, 301–305

Z07_LEWI3322_INDEX_pp665-704.indd 678 01/03/13 12:18 PM

 INDEX 679

Maps, 36, 385–408
collections as, 386, 404
data structure use of, 36
hashing for implementation of, 401–403
implementation, 401–403
Java API, 386, 388–389
keys, 386
loops used for reading input files, 396
sets and, 385–408
tracking product sales using, 392–396
trees for implementation of, 401
user management system development,

396–400
Mathematical use of recursion, 215–216
Matrices, graph implementation using,

442–450
Matte border, 615–616
Maxheap, 358, 379, 382
Members of a class, 471
Merge sort, 250, 262–265
Message dialog boxes, 605, 607
Message encoding and decoding, 126–130
Messages, exceptions and, 502
Method calls, 49–51
Method declarations, 471
Methods, 243, 271, 464, 475–476,

477–478, 484–485, 491–492
class inheritance and, 491–492
compiler and declaration of, 477–478
encapsulation and, 475–476
local data, 476
object-oriented design and, 464, 476,

477–478, 484–485, 491–492
overloading, 477–478
overriding, 491–492
static (class), 243, 271, 484–485
searching use of, 243, 271
signature, 477
support, 475

MID value, 523

iterators and, 198–204
Java API implementation, 158–159
java.util.List interface, 158
linked-list implementation, 186–188
linked lists compared to, 156–158
ordered, 156, 158, 172–178, 183–184
ProgramOfStudy class management,

 159–169, 198–204
remove() operations, 158, 172,

180–182, 187–188
set() operation, 158
size() operation, 158, 172
unordered, 156–157, 159–169,

172–178, 185–186
Load factor, 402, 404, 636
Local data, 476
Logarithmic algorithm, 249
Logarithmic sort, 249–250

loops for, 261
merge sort, 250, 262–265
partition element, 258–262, 271
quick sort, 250, 258–262, 271

Loops, 48–49, 197, 202–203, 245, 254,
256, 258, 261, 396

execution of, 48
for–each loops, 197, 202–203
for loop, 258
input files read using, 396
iterators and, 197, 202–203
maps and, 396
nested, 48–49
remove() method and, 197, 202–203
searching and, 245
sorting and, 254, 256, 258, 261
swapping and, 254, 261
while loop, 197, 245, 261, 396

M
main method, 102, 159, 396
Maintainability, 31, 37

Z07_LEWI3322_INDEX_pp665-704.indd 679 01/03/13 12:18 PM

680 INDEX

balance factor for, 340–343, 350
binary search tree implementation,

326–329, 340–349
children, 276, 314
color of, 343–349
deleting, 98
descendants, 277, 314
doubly linked lists, 99–100
dummy, 98
graphs, 428–430, 442–443
heap implementation, 360–362
implementation reference, 110–111
inserting, 97–98, 360–361, 411–413
internal, 276, 314
leaf, 276, 314
link lists and, 95, 97–98, 110–111, 118
multi-way search trees, 410–420
order and classification of trees from,

277–278
path length, 277
promoted, 326–329
red/black trees, 343–349
removing, 361–362, 413–416
root, 277, 314
sentinel, 98, 118
separation of stored and linked

elements, 99–100
siblings, 276, 314
tree hierarchy, 276–278, 314
28-4 trees, 416–417
28-3 trees, 410–416
vertices as, 428–430, 442–443

NonComparableElementException
class, 323

Nonlinear collections, 56–57, 276–356
linear collections compared to,

56–57, 276
trees, 276–356

NoSuchElementException class, 206–207
null reference, 478–479

Mid-square method, hash functions,
637–638

Minheap, 358, 360, 379, 382
Minimum spanning trees (MST),

438–440
Mnemonics, 616–623
Modification count, 205
Modifiers, 474–476, 483–485, 490–491
private, 474–476
protected, 475, 490–491
public, 474–476
static, 483–485
visibility, 474–476

Monitor resolution, 516
Motion, mouse events, 589–598
Mouse events, 589–598
Multiplication (*) operator, 65
Multi–way search trees, 36, 409–426

B-, 418–421, 422
data structure use of, 36
implementation strategies for B-trees,

420–421
node characteristics in, 410–420
28-4, 416–417, 423
28-3, 410–416, 423

N
n-ary (general) trees, 277, 315
Natural ordering, 189
Neighbors, 428
Nested loops, 48–49
Networks (weighted graphs), 431–432, 451
new operator, 467
Nodes, 95, 97–100, 110–111, 118,

276–278, 314, 326–329, 340–349,
350, 360–362, 410–420, 428–430,
442–443

ancestors, 276–277, 314
AVL trees, 340–343
B-trees, 418–420

Z07_LEWI3322_INDEX_pp665-704.indd 680 01/03/13 12:18 PM

 INDEX 681

elements as, 57
encapsulation of, 58, 464,

474–476
garbage collection,

482–483
generic type, 63–64, 88
inheritance, 62–63
instantiation, 467
iterator interface for,

196–198, 210
linked structure references,

94–96
nodes, 95
object-oriented design use of,

464–467, 469–470, 474–476,
478–483

passing as parameters, 483
pointers, 94–95
polymorphism, 62–63
reference variables, 94–96, 466–467,

478–483
self-governing, 474–475
self-referential, 95
stacks, 61–64, 77
state of, 470
type checking, 62
type compatibility, 61–62
visibility modifiers, 474–476,

490–491
offer method, 126
Open addressing methods, 642–645,

647–648
deleting elements from,

647–648
double hashing, 644–645
hashing collisions avoided using,

642–645
linear probing, 642–643
quadratic probing, 642–644

Operation, 456

O
Object class, 493–494
Object-oriented design, 463–513

classes, 464, 467–469, 470–473,
485–486, 488–505

constructors, 476–477
encapsulation, 464, 474–476
exceptions, 501–505
hierarchies, 492–497
inheritance, 464, 488–492, 498–499
interfaces, 486–488, 496, 498,

500–501
methods, 464, 476, 477–478
objects, 464–467, 474–476,

478–483
polymorphism, 496–501
primitive data and, 464
reference variables, 466–467,

474–476, 478–483
static modifier, 483–485
visibility modifiers, 474–476
wrapper classes, 485–486

Objects, 36, 56–58, 61–64, 77, 94–96,
196–198, 210, 464–467, 469–470,
474–476, 478–483, 520–527

abstraction of, 57–58, 87, 465–466
aliases, 481–482
garbage collection, 482–483
graphics context interaction, 520–527
array of references, 77
attributes, 469
behavior, 469–470
class definition of, 464
class hierarchy, 62–63
clients, 474
collections of, 56–57, 61–64
creation of, 466–467
data structure use of, 36
dot operator ., 467
dynamic structures, 96

Z07_LEWI3322_INDEX_pp665-704.indd 681 01/03/13 12:18 PM

682 INDEX

Polylines, 527–532
Polymorphism, 62–63, 88, 496–501

class hierarchies and, 497
collections and, 62–63, 88
inheritance for, 498–499
interfaces for, 498, 500–501
late (dynamic) binding, 497
object-oriented design and, 496–501
polymorphic reference, 496–497

pop operation, 60–61, 76, 83–85, 88,
116–117

array-based implementation using,
83–85

exceptions for, 61
linked-list implementation using,

116–117
stack operations, 60–61, 76

Portability, 32, 37
Postfix expressions, 64–72, 295–300
Postorder traversal, 282–284, 315
Preorder traversal, 282–283, 315
printsum method, 49–51
Priority queues, 36, 362–366, 382

data structure use of, 36
heaps used for, 362–366
implementation, 363

private visibility modifier, 474–476
Processor speed, algorithms and,

45–47
Program of study management,

159–169, 198–204
iterators for, 198–204
lists for, 159–169
printing courses, 202
removing courses, 202–204

Program stack, 102, 118
Programming, recursive, 216–220
ProgramOfStudy class management,

159–169, 198–204
Promoted nodes, 326–329, 351

Ordered lists, 36, 156, 158, 172–178,
183–184, 189, 332–336

add() operation, 158, 173, 183–184,
333, 336

ADT operations, 172–178, 332–333,
336

array-based implementation, 183–184
binary search tree implementation of,

332–336
data structure use of, 36
element characteristics and, 156

Overriding methods, 491–492

P
Packages, classes and, 468–469
Panels, 539–543
Parameter list, 457
Parent class (superclass), 489
Partition element, 258–262, 271
Passing objects as parameters, 483
Paths, 276–277, 315, 429–430,

441, 451
connected graphs, 429–430
cycle, 429, 451
graphs, 429–430, 441, 451
length, 277, 315
shortest, determination of, 441
tree height and, 277
trees, 276–277, 315

peek operation, 60–61, 76, 85, 117
array-based implementation using, 85
exceptions for, 61
linked-list implementation using, 117
stack operations, 60–61, 76

Perfect hash function, 402, 634–635
Picture resolution, 516
Pixels, 516
Pointers, 94–95
poll method, 126
Polygons, 527–532

Z07_LEWI3322_INDEX_pp665-704.indd 682 01/03/13 12:18 PM

 INDEX 683

linked implementation of, 137–142
message encoding and decoding with,

126–130
priority, 362–366
operations on, 124–125
radix sort, 265–269
size operation, 125, 142
toString operation, 125, 142, 150
waiting line simulation,

130–135
Quick sort, 250, 258–262, 271

R
Radio buttons, 555–559
Radix sort, 265–269, 271
Radix transformation method, hash

functions, 638
Recursion, 102–103, 213–239

algorithms, analysis of, 233–234
base case, 215–216, 235
concept of, 214–216, 235
direct, 219–220, 235
error in, 216
factorial (N!), 215–216
indirect, 219–220, 235
infinite, 214–215, 235
iteration compared to, 219
mathematical use of, 215–216
programming, 216–220
stacks used for, 102–103
Towers of Hanoi puzzle, 228–233,

235
tracing, 214–215, 218–219
traversing a maze, 220–228

Red/black tree, 343–349, 351
binary tree implementation of,

343–349
element removal from, 347–349
insertion into, 344–347
node color, 343–349

Propagating the exception, 503–504
protected visibility modifier, 475,

490–491
public visibility modifier, 474–476
push operation, 60, 76, 82–83, 88,

114–116
array-based implementation using,

82–83
linked-list implementation using,

114–116
stack interfaces, 60, 76, 88

put() operation, 389
putAll operation, 389

Q
Quadratic probing, 642–644
QueueADT interface, 135–137
Queues, 36, 123–154, 265–269, 362–366

abstract data types (ADT), 135–137
array-based implementation of,

143–150
circular array implementation strategy,

144–150
code keys for, 126–130
concepts of, 124–125
data structure use of, 36
deque interface, 150
dequeue operation, 124–125, 141–143,

149–150
double-ended (deque), 150
enqueue operation, 124–125, 139–140,

143, 147–149
first in, first out (FIFO) process, 124
first operation, 124–125, 142
fixed array implementation strategy,

143–144
head/tail element references, 137–142
interfaces, 135–137
isEmpty operation, 125, 142
Java API implementation, 125–126

Z07_LEWI3322_INDEX_pp665-704.indd 683 01/03/13 12:18 PM

684 INDEX

binary search trees, 320, 330–332
heaps, 358, 361–362, 370–373,

376–378
linked implementation using, 330–332,

370–373
Repeating key, 127, 151
replacement method, 326–329
retainAll() operation, 387
Return-type value, 457
Reusability, 31–32, 37
RGB value, 517
Robustness, 30, 37
Root, 277, 314
Rotation techniques, 337–343

AVL tree, 340–343
balance factor for, 340–343, 350
binary search tree balance, 336–340
degenerate tree, 336–337, 350
left rotation, 338–339, 341, 351
leftright rotation, 339–340, 343, 351
right rotation, 337–338, 341, 351
rightleft rotation, 339, 341–343, 351

Rubberbanding, 598
Runtime stack, 102
RuntimeException class, 86

S
Search trees, 36, 281, 319–356, 409–426

B-, 418–421, 422
binary, 36, 281, 319–356
multi-way, 36, 409–426
28-4, 416–357, 423
28-3, 410–416, 423

Searching, 241–249, 270–274
algorithm comparisons, 248–249
binary search, 246–248, 249, 270
Comparable interface, 242
generic method, 243–244, 270
linear search, 244–246, 248, 271
search pool, 242, 271

Reference variables, 94–96, 464,
466–467, 474–476, 478–483,
496–497

aliases, 481–482
encapsulation and, 474–476
garbage collection, 482–483
linked structures, 94–96
local data, 476
null reference, 478–479
object-oriented design and, 464,

466–467, 474–476, 478–483,
496–497

passing objects as parameters, 483
polymorphic, 496–497
this reference, 479–480
visibility modifiers, 474–476

Regular expressions, 661–663
Reliability, 29–30, 37
remove() operations, 126, 158, 172,

180–182, 187–188, 197, 202–203,
320, 326–332, 387, 389

array-based list implementation, 180–182
binary search tree implementation,

320, 326–332
iterators and, 197, 202–203
linked-list implementation, 187–188
loops and, 197, 202–203
list interfaces, 158, 172
maps, 389
queue interfaces, 126
sets, 387

removeAll() operation, 387
removeAllOccurances operation, 320,

329–330
removeElement operation, 320, 326–329
removeMax operation, 320
removeMin operation, 320, 330–332, 358,

361–362, 370–373, 376–378
array-based implementation using,

376–378

Z07_LEWI3322_INDEX_pp665-704.indd 684 01/03/13 4:24 PM

 INDEX 685

correctness, 29
data structures, 33–36
efficiency, 32
engineering goals, 28
failure, 30
maintainability, 31
portability, 32
stakeholder issues, 32–33
reliability, 29–30
reusability, 31–32
robustness, 30
software engineering and, 28
usability, 30–31
user, 28

Software reuse, 464. See also
Inheritance

Sort key, 265
Sorting, 249–274, 378–380

bubble sort, 250, 256–258, 270
Comparable interface, 251
heap sort, 378–380
insertion sort, 250, 254–256, 270
logarithmic, 249–250
loops for, 254, 256, 258, 261
partition element, 258–262, 271
merge sort, 250, 262–265
process, 249–252
quick sort, 250, 258–262, 271
radix sort, 265–269, 271
selection sort, 250, 252–254, 271
sequential, 249–250
sort key, 265
swapping, 254, 257–258

Spanning tree, 438, 452
StackADT interface, 74–76, 80, 110
Stacks, 35, 55–92, 93–122

abstract data type (ADT), 59–61,
74–76

activation record, 102–103
array-based implementation, 77–86

static (class) methods, 243, 271
target element, 242, 271
viable candidates, 246–248, 271
while loop for, 245

Selection sort, 250, 252–254, 271
Self-governing objects, 474–475
Self-loop, 428, 453
Self-referential objects, 95
Sentinel nodes, 98, 118
Sequential sort, 249–250

bubble sort, 250, 256–258, 270
insertion sort, 250, 254–256, 270
loops for, 254, 256, 258
selection sort, 250, 252–254, 271
swapping, 254, 257–258

Serialization, 161, 189
set() operation, 158
Sets, 385–408

blocked domains using, 389–392
collections as, 386, 404
hashing for implementation of,

401–403
Java API, 386–388
maps and, 385–408
trees for implementation of, 401

Siblings, 276, 314, 492
Signature, 477
size() operation, 60, 76, 117, 125, 142,

158, 172, 285, 387, 389
binary trees, 285
lists, 158, 172
maps, 389
queues, 125, 142
sets, 387
stacks, 60, 76, 117

Sliders, 559–564
Sling, 428
Software quality, 27–39

aspects of, 29
client, 28

Z07_LEWI3322_INDEX_pp665-704.indd 685 01/03/13 12:18 PM

686 INDEX

Swing package components, 539,
605–623

borders, 612–616
dialog boxes, 605–611
mnemonics, 616–623
tool tips, 616–623

System development for user
management using maps, 396–400

System heap, 96

T
Tabbed panes, 576
Target element, 242, 271
Text area, 608–610
Text fields, 548–551
this reference, 479–480
Time complexity, 43, 48–51. See also

Complexity of algorithms
Timers, 569–574
Titled border, 615–616
toArray() operations, 388
Tool tips, 616–623
TOP value, 523
Topological order, 430, 452
toString() operation, 60, 76, 117, 125,

142, 150, 285
binary trees, 285
queues, 125, 142, 150
stacks, 60, 76, 117

Towers of Hanoi puzzle, 228–233, 235
Tracing recursion process, 214–215,

218–219
Tracking product sales using maps,

392–396
Traversals, 101–109, 220–228,

282–285, 432–436
binary tree ATD operations for, 285
breadth-first, 432–433, 436–437, 451
depth-first, 432–436, 451
graph algorithms, 432–436

Stacks (Continued)
collections as, 55–92
constructors, 80–81, 111
data structure use of, 35
drop-out, 76
exceptions, 72–74, 84
implementation, 77–86, 110–117
isempty operation, 60, 76, 117
Java API implementation, 74–76
last in, first out (LIFO) processing of,

59–60, 88
linked-list implementation, 110–117
linked structures for, 93–122
object-oriented concepts, 61–64
peek operation, 60–61, 76, 85, 117
pop operation, 60–61, 76, 83–85, 88,

116–117
postfix expressions, 64–72
program, 102
push operation, 60, 76, 82–83, 88,

114–116
recursion and, 102–103
runtime, 102
size() operation, 60, 76, 117
toString() operation, 60, 76, 117
traversing a maze using, 101–109
undo operations, 76

Stakeholder, 32–33, 37
Start angle, 519
State of an object, 470
Static (class) methods, 243,

271, 484–485
Static (class) variables,

 484
static modifier, 483–485
Stereotypes < >, 457
sum method, 217–219
super reference, 491
Support methods, 475
Swapping, 254, 257–258

Z07_LEWI3322_INDEX_pp665-704.indd 686 01/03/13 12:18 PM

 INDEX 687

rotation of, 337–343
search, 36
set implementation using, 401
spanning, 438, 452
traversals, 282–285
unbalanced, 278, 315, 340–343

try statement, 502–503
28-4 trees, 416–417, 423
28-3 trees, 410–416, 423

inserting elements in, 411–413
removing elements from, 413–416
29-node characteristics, 410, 423
28-node characteristics, 410, 423
underflow, 414, 423

Type checking, 62
Type compatibility, 61–62

U
Unbalanced tree, 278, 315, 340–343
and() and remove() operations and,

336
AVL tree, 340–343
binary search tree implementation and,

336–343
classification as, 277–278, 315
degenerate tree, 336–337, 350
left rotation, 338–339, 341, 351
leftright rotation, 339–340, 343, 351
right rotation, 337–338, 341, 351
rightleft rotation, 339, 341–343, 351

Underflow, 414, 423
Undirected graphs, 428–429, 443–450

adjacency matrices for, 443–450
complete, 428
connected, 429, 451
cycle, 429, 451
edges, 428–429
implementation of, 443–450
path, 429, 452
vertices, 428

inorder, 282–283, 315
level-order, 282, 284–285, 315
maze, 101–109, 220–228
postorder, 282–284, 315
preorder, 282–283, 315
recursion for, 220–228
stacks for, 101–109
trees, 282–285

traverse method, 103, 227–228
Trees, 36, 275–318, 319–356, 357–380,

401, 409–426, 438–440
abstract data types (ADT), 285–289,

320–322
array-based implementation, 279–281
AVL, 340–343, 350
balanced, 277–278, 315, 336–340
binary search, 36, 281, 319–356
binary, 277, 285–313
classification of, 277–278
complete, 278, 315, 360–361, 381
data structure use of, 36
decision, 301–305
degenerate, 336–337, 350
expression, 289–300
full, 278, 315
graph algorithms for, 438–440
heaps, 357–380
height of, 277
hierarchy, 276–278
implementation strategies, 279–281,

305–313
linked implementation, 285–313,

322–332
map implementation using, 401
minimum spanning (MST), 438–440
multi–way search, 36, 409–426
n-ary (general), 277, 315
nodes, 276–278, 326–329
nonlinear structure of, 276–277, 314
red/black, 343–349, 351

Z07_LEWI3322_INDEX_pp665-704.indd 687 01/03/13 12:18 PM

688 INDEX

Usability, 30–31, 37
User, 28

V
values() operation, 389
Variables, 58, 94–96, 466–467. See also

Reference variables
object references, 94–96, 466–467
primitive data types, 58

Vertices (nodes), 428–430, 452
Viable candidates, 246–248, 271
Visibility modifiers, 457, 474–476,

490–491
class inheritance and, 490–491
encapsulation and, 474–476
private, 474–476
protected, 475, 490–491
public, 474–476

void remove() method, 196

W
Waiting line simulation, 130–135
WeakHashmap class, 652, 654
Weighted graphs, 431–432
while loop, 197, 245, 261, 396
Wrapper classes, 485–486

Undo operations, 76
Unified modeling language (UML),

455–461, 476
aggregation, 459–460
association, 459–460
class diagrams, 456–458, 476
class visibility, 457
classes using each other, 459–460
implementation, 459–460
inheritance, 458–459
parameter list, 457
relationships, 458–460
return–type value, 457
stereotypes < >, 457

Unordered lists, 156–157, 159–169,
172–178, 185–186, 189

addAfter operation, 173, 185
addToFront operation, 173, 185
addToRear operation, 173, 185
ADT operations, 172–178
array-based implementation, 185
element placement and, 156–157
iterator method, 161
ProgramOfStudy class example,

159–169
Serializable interface, 161

UnsupportedOperationException
class, 207

Z07_LEWI3322_INDEX_pp665-704.indd 688 01/03/13 12:18 PM

	Cover
	Preface
	Contents
	Credits
	Chapter 1: Introduction
	1.1 Software Quality
	Correctness
	Reliability
	Robustness
	Usability
	Maintainability
	Reusability
	Portability
	Efficiency
	Quality Issues

	1.2 Data Structures
	A Physical Example
	Containers as Objects

	Summary of Key Concepts

	Chapter 2: Analysis of Algorithms
	2.1 Algorithm Efficiency
	2.2 Growth Functions and Big-Oh Notation
	2.3 Comparing Growth Functions
	2.4 Determining Time Complexity
	Analyzing Loop Execution
	Nested Loops
	Method Calls

	Summary of Key Concepts

	Chapter 3: Introduction to Collections – Stacks
	3.1 Collections
	Abstract Data Types
	The Java Collections API

	3.2 A Stack Collection
	3.3 Crucial OO Concepts
	Inheritance and Polymorphism
	Generics

	3.4 Using Stacks: Evaluating Postfix Expressions
	Javadoc

	3.5 Exceptions
	3.6 A Stack ADT
	3.7 Implementing a Stack: With Arrays
	Managing Capacity

	3.8 The ArrayStack Class
	The Constructors
	The push Operation
	The pop Operation
	The peek Operation
	Other Operations
	The EmptyCollectionException Class
	Other Implementations

	Summary of Key Concepts

	Chapter 4: Linked Structures – Stacks
	4.1 References as Links
	4.2 Managing Linked Lists
	Accessing Elements
	Inserting Nodes
	Deleting Nodes

	4.3 Elements without Links
	Doubly Linked Lists

	4.4 Stacks in the Java API
	4.5 Using Stacks: Traversing a Maze
	4.6 Implementing a Stack: With Links
	The LinkedStack Class
	The push Operation
	The pop Operation
	Other Operations

	Summary of Key Concepts

	Chapter 5: Queues
	5.1 A Conceptual Queue
	5.2 Queues in the Java API
	5.3 Using Queues: Code Keys
	5.4 Using Queues: Ticket Counter Simulation
	5.5 A Queue ADT
	5.6 A Linked Implementation of a Queue
	The enqueue Operation
	The dequeue Operation
	Other Operations

	5.7 Implementing Queues: With Arrays
	The enqueue Operation
	The dequeue Operation
	Other Operations

	5.8 Double-Ended Queues (Deque)
	Summary of Key Concepts

	Chapter 6: Lists
	6.1 A List Collection
	6.2 Lists in the Java Collections API
	6.3 Using Unordered Lists: Program of Study
	6.4 Using Indexed Lists: Josephus
	6.5 A List ADT
	Adding Elements to a List

	6.6 Implementing Lists with Arrays
	The remove Operation
	The contains Operation
	The add Operation for an Ordered List
	Operations Particular to Unordered Lists
	The addAfter Operation for an Unordered List

	6.7 Implementing Lists with Links
	The remove Operation

	Summary of Key Concepts

	Chapter 7: Iterators
	7.1 What's an Iterator?
	Other Iterator Issues

	7.2 Using Iterators: Program of Study Revisited
	Printing Certain Courses
	Removing Courses

	7.3 Implementing Iterators: With Arrays
	7.4 Implementing Iterators: With Links
	Summary of Key Concepts

	Chapter 8: Recursion
	8.1 Recursive Thinking
	Infinite Recursion
	Recursion in Math

	8.2 Recursive Programming
	Recursion versus Iteration
	Direct versus Indirect Recursion

	8.3 Using Recursion
	Traversing a Maze
	The Towers of Hanoi

	8.4 Analyzing Recursive Algorithms
	Summary of Key Concepts

	Chapter 9: Searching and Sorting
	9.1 Searching
	Static Methods
	Generic Methods
	Linear Search
	Binary Search
	Comparing Search Algorithms

	9.2 Sorting
	Selection Sort
	Insertion Sort
	Bubble Sort
	Quick Sort
	Merge Sort

	9.3 Radix Sort
	Summary of Key Concepts

	Chapter 10:Trees
	10.1 Trees
	Tree Classifications

	10.2 Strategies for Implementing Trees
	Computational Strategy for Array Implementation of Trees
	Simulated Link Strategy for Array Implementation of Trees
	Analysis of Trees

	10.3 Tree Traversals
	Preorder Traversal
	Inorder Traversal
	Postorder Traversal
	Level-Order Traversal

	10.4 A Binary Tree ADT
	10.5 Using Binary Trees: Expression Trees
	10.6 A Back Pain Analyzer
	10.7 Implementing Binary Trees with Links
	The find Method
	The iteratorInOrder Method

	Summary of Key Concepts

	Chapter 11: Binary Search Trees
	11.1 A Binary Search Tree
	11.2 Implementing Binary Search Trees: With Links
	The addElement Operation
	The removeElement Operation
	The removeAllOccurrences Operation
	The removeMin Operation
	Implementing Binary Search Trees: With Arrays

	11.3 Using Binary Search Trees: Implementing Ordered Lists
	Analysis of the BinarySearchTreeList Implementation

	11.4 Balanced Binary Search Trees
	Right Rotation
	Left Rotation
	Rightleft Rotation
	Leftright Rotation

	11.5 Implementing BSTs: AVLTrees
	Right Rotation in an AVLTree
	Left Rotation in an AVLTree
	Rightleft Rotation in an AVLTree
	Leftright Rotation in an AVLTree

	11.6 Implementing BSTs: Red/Black Trees
	Insertion into a Red/Black Tree
	Element Removal from a Red/Black Tree

	Summary of Key Concepts

	Chapter 12: Heaps and Priority Queues
	12.1 A Heap
	The addElement Operation
	The removeMin Operation
	The findMin Operation

	12.2 Using Heaps: Priority Queues
	12.3 Implementing Heaps: With Links
	The addElement Operation
	The removeMin Operation
	The findMin Operation

	12.4 Implementing Heaps: With Arrays
	The addElement Operation
	The removeMin Operation
	The findMin Operation

	12.5 Using Heaps: Heap Sort
	Summary of Key Concepts

	Chapter 13: Sets and Maps
	13.1 Set and Map Collections
	13.2 Sets and Maps in the Java API
	13.3 Using Sets: Domain Blocker
	13.4 Using Maps: Product Sales
	13.5 Using Maps: User Management
	13.6 Implementing Sets and Maps Using Trees
	13.7 Implementing Sets and Maps Using Hashing
	Summary of Key Concepts

	Chapter 14: Multi-Way Search Trees
	14.1 Combining Tree Concepts
	14.2 2-3 Trees
	Inserting Elements into a 2-3 Tree
	Removing Elements from a 2-3 Tree

	14.3 2-4 Trees
	14.4 B-Trees
	B*-Trees
	B+-Trees
	Analysis of B-Trees

	14.5 Implementation Strategies for B-Trees
	Summary of Key Concepts

	Chapter 15: Graphs
	15.1 Undirected Graphs
	15.2 Directed Graphs
	15.3 Networks
	15.4 Common Graph Algorithms
	Traversals
	Testing for Connectivity
	Minimum Spanning Trees
	Determining the Shortest Path

	15.5 Strategies for Implementing Graphs
	Adjacency Lists
	Adjacency Matrices

	15.6 Implementing Undirected Graphs with an Adjacency Matrix
	The addEdge Method
	The addVertex Method
	The expandCapacity Method
	Other Methods

	Summary of Key Concepts

	Appendix A: UML
	The Unified Modeling Language (UML)
	UML Class Diagrams
	UML Relationships
	Summary of Key Concepts

	Appendix B: Object-Oriented Design
	B.1 Overview of Object Orientation
	B.2 Using Objects
	Abstraction
	Creating Objects

	B.3 Class Libraries and Packages
	The import Declaration

	B.4 State and Behavior
	B.5 Classes
	Instance Data

	B.6 Encapsulation
	Visibility Modifiers
	Local Data

	B.7 Constructors
	B.8 Method Overloading
	B.9 References Revisited
	The Null Reference
	The this Reference
	Aliases
	Garbage Collection
	Passing Objects as Parameters

	B.10 The static Modifier
	Static Variables
	Static Methods

	B.11 Wrapper Classes
	B.12 Interfaces
	The Comparable Interface

	B.13 Inheritance
	Derived Classes
	The protected Modifier
	The super Reference
	Overriding Methods

	B.14 Class Hierarchies
	The Object Class
	Abstract Classes
	Interface Hierarchies

	B.15 Polymorphism
	References and Class Hierarchies
	Polymorphism via Inheritance
	Polymorphism via Interfaces

	B.16 Exceptions
	Exception Messages
	The try Statement
	Exception Propagation
	The Exception Class Hierarchy

	Summary of Key Concepts

	Appendix C: Java Graphics
	C.1 Pixels and Coordinates
	C.2 Representing Color
	C.3 Drawing Shapes
	C.4 Polygons and Polylines
	The Polygon Class

	Appendix D: Graphical User Interfaces
	D.1 GUI Elements
	Frames and Panels
	Buttons and Action Events
	Determining Event Sources

	D.2 More Components
	Text Fields
	Check Boxes
	Radio Buttons
	Sliders
	Combo Boxes
	Timers

	D.3 Layout Managers
	Flow Layout
	Border Layout
	Grid Layout
	Box Layout
	Containment Hierarchies

	D.4 Mouse and Key Events
	Mouse Events
	Key Events
	Extending Adapter Classes

	D.5 Dialog Boxes
	File Choosers
	Color Choosers

	D.6 Some Important Details
	Borders
	Tool Tips and Mnemonics

	D.7 GUI Design
	Summary of Key Concepts

	Appendix E: Hashing
	E.1 Hashing
	E.2 Hashing Functions
	The Division Method
	The Folding Method
	The Mid-Square Method
	The Radix Transformation Method
	The Digit Analysis Method
	The Length-Dependent Method
	Hashing Functions in the Java Language

	E.3 Resolving Collisions
	Chaining
	Open Addressing

	E.4 Deleting Elements from a Hash Table
	Deleting from a Chained Implementation
	Deleting from an Open Addressing Implementation

	E.5 Hash Tables in the Java Collections API
	The Hashtable Class
	The HashSet Class
	The HashMap Class
	The IdentityHashMap Class
	The WeakHashMap Class
	LinkedHashSet and LinkedHashMap

	Summary of Key Concepts

	Appendix F: Regular Expressions
	Index

