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Foreword

Structural design is most efficient and usually most economical if the full strength of the mate-
rial of the member or frame can be achieved under the factored design load. For example, a steel
tension strut should have a strength equal to its area times the yield stress, and a beam should
be able to achieve the plastic moment at the critical cross-section. This desirable state cannot
always be attained: the material may fracture, or the member, the frame, the plate, or the shell
may buckle, that is, the structure may become unstable. Most buckling phenomena are sudden,
they may not announce their imminent occurrence, and they can result in catastrophic failure.
Design codes have extensive clauses that the structural designer must consider in order to safe-
guard against this undesirable situation. These design specifications provide many formulas
and rules that are then routinely applied during the design of a structure. The formulas often
are based on approximations and they frequently include shortcuts and numerical coefficients
devised by the advisory committees of the code authority. Furthermore, the design codes are
not able to account for all possible design situations, especially those occurring during fabri-
cation and erection. It is thus vitally important that the structural engineer be educated in the
theory of structural stability and be able to apply this knowledge when using the code formulas
or when dealing with stability issues outside the purview of the codes.

The subject of this book is the analysis of the stability of structures and structural elements.
Its contents are directed to students and to the practicing structural engineering community.
After an introductory chapter that introduces the basic theoretical phenomena and methods of
analysis of the structural mechanics of stability design, the following seven chapters lead the
student to an understanding of the major practical subdivisions of the structural elements that
comprise a designed built system: Columns, beams, frames, plates, and shells. The treatment of
each topic follows classical mathematics, emphasizing rigorous analysis in ample detail so the
student will have no problem following the derivation and can understand the practical signif-
icance of the method and the outcome. Following the derived problems, there is a discussion of
advanced methods of analysis, such as finite element analysis or other numerical procedures,
and a presentation of the code rules for the topical element of the given chapter. Design rules
from the USA, Canada, Europe, and Australia are introduced, and the chapters conclude with
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several detailed examples of design problems. Several chapters in this book are suitable for a text
in an advanced senior course in structural engineering, and it is recommended in its entirety
for a course in the first year of a graduate course.

T.V. Galambos

February, 2020
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Preface

The material in this book covers the failure of structures due to buckling and structural insta-
bility. The book represents an effort to comprehensively describe the principles and theory
of structural stability of different types of structures. The failures due to structural instability
depend on the structural geometry, size, and the stiffness. It is important to understand struc-
tural instability failures because using higher strength materials will not prevent these failures.
More structures are failing due to instability because of the increased use of high strength mate-
rials and larger structures, such as long bridges, tall buildings, vast sports and public arenas,
large storage tanks, bigger airplanes, larger engines, turbines, motors, etc. The enlarged size
increases the slenderness of the members of a structure, such that these members reach their
stability limit before their material strength. If one looks at the design procedures of different
codes, it becomes clear that in many situations the maximum forces members can support is
governed by structural instability.

The author felt there is a need for a book on the subject that should be comprehensive, cov-
ering theory and practice, and at the same time should be relatively easy to read. To this end,
theoretical derivations are given in the most detailed form possible and practical problems are
solved to illustrate the use of theory. An attempt is made to tie the theory and the codes of
practice.

The author has taught the subject for about 20 years to senior level undergraduate and grad-
uate students, and advised research projects of graduate students in this area. The book should
be a valuable text for upper-level undergraduate and graduate students who wish to study the
stability of structures courses in aerospace, civil engineering, mechanics, and mechanical engi-
neering departments. It can also be used by practicing engineers as a reference for their designs.
It will be a very useful book for engineering libraries. The book uses both FPS and SI units
to solve the problems so that the book can be used by students and engineering profession-
als worldwide. In many cases the nondimensional quantities are used in the formulation of
equations.

Chapter 1 presents general concepts of structural stability problem. This chapter introduces
the subject by covering the stability of rigid bars using both the equilibrium and energy
methods. In this, subject equilibrium of the displaced structure is considered, whereas in the
ordinary structural analysis equilibrium equations are formed for the original undeformed
geometry. The energy method uses the principle of stationary potential energy. The governing



Trim Size: 187mm x 235mm Single Column Jerath fpref.tex V1 - 11/04/2020 3:02pm Page xx�

� �

�

xx Preface

equations for rigid bars are algebraic equations because these bars have infinite stiffness
and are easier to solve and formulate. After gaining some fundamental understanding of the
subject, Chapter 2 deals with the buckling of columns. Columns with different boundary
conditions and supports are covered and critical loads are found by using the classical column
theory and energy method. The governing differential equations for different cases and
general differential equations applicable to all boundary conditions are derived and solved.
Eccentrically loaded columns and imperfect columns are dealt with, in order to know the
practical range of failure loads. Large deflection theory is used to know the post-buckling
behavior of columns. When the stresses at buckling failure are greater than the elastic limit,
the failure is called inelastic buckling. Inelastic behavior is studied in Chapter 3 for metal
columns made of aluminum and steel. Different codes of practice used around the world are
discussed to solve practical problems in column design.

When structural members are acted on by transverse loads in addition to axial forces, these
are called beam columns. In Chapter 4, the concept for solving the instability problems of beam
columns is discussed. Basic differential equations of beam columns for different support condi-
tions acted on by different loads are derived and solved. The beam column instability problems
are also solved by the slope deflection method of structural analysis except that the equations
are derived for the displaced shape of the structure. The continuous and inelastic beam columns
are also studied. The design procedures given in different codes are discussed. The critical loads
in single-story, multistory, and multibay frames are found in Chapter 5. Frames with and with-
out sidesway and different types of loads and support conditions are studied. Critical loads
in frames are found by the equilibrium, slope deflection, matrix and finite element methods.
Inelastic buckling of frames is also considered. Design problems for two-story and two-bay
frames are solved under the action of gravity and wind loads.

The torsional and lateral buckling of beams is discussed in Chapter 6. The chapter starts with
pure and non-uniform torsion in thin-walled open cross-sections. After dealing with general
thin-walled open sections, the commonly used I and channel sections are studied. The con-
cepts of St. Venant’s and warping torsion are elaborated. Torsional flexural buckling loads of
different cross-sections with different boundary conditions are found. The problems are solved
by the equilibrium and energy methods. In the second half of Chapter 6, lateral buckling of
beams is studied. The lateral buckling phenomenon is studied for beams that are supported dif-
ferently. The design equations for torsional and lateral buckling are given in order to know the
capacity of members under such forces. The concepts of lateral torsional buckling and lateral
buckling of beams derived in the book are shown to be related to the equations used by codes.

The buckling of thin rectangular plates with and without stiffeners under different kinds of
loading and support conditions is discussed in Chapter 7. Post-buckling behavior and inelastic
buckling of plates are also studied. The buckling of circular plates is introduced with solved
problems. Linear and nonlinear theories of cylindrical shells are derived, and some problems
are solved using linear stability equations. The failure and the post-buckling behavior of
cylindrical shells are discussed. Nonlinear and linear equations of stability are derived using
curvilinear coordinates for general shells. In Chapter 8, linear equations of general shells are
converted to solve problems of the shells of revolution, shallow spherical caps, conical shells,
and toroidal shells.
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Preface xxi

The book was written by keeping in mind those who wish to learn the concepts of buckling
and instability of structures. Theoretical derivations are given in detail and are made as simple
as possible. The book is also written for those who are in practice and are designing structures
so they do not fail due to instability. The author has covered the subject in detail as well as
keeping it simple and practical. It is hoped the readers will like and enjoy the book, and find it
useful.

Sukhvarsh Jerath
Grand Forks, ND
USA
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1

Structural Stability

1.1 Introduction

Structures fail mainly either due to material failure or because of buckling or structural
instability. Material failures are governed by the material strength that may be the ultimate
strength or the yield point strength of the material. The failure due to structural instabil-
ity depends on the structural geometry, size, and its stiffness. It does not depend on the
strength of the material. It is important to understand the failure due to structural instability,
because using a higher strength material will not prevent this type of failure. More and more
structures are failing because of stability problems because of the present trend to use high
strength materials and large structures. The increase in size increases the slenderness ratio
of the members of a structure, and these members reach their stability limit before their
material strength. A look at different design codes makes it clear that in many situations
the maximum force a system can support is governed by structural instability than by
material strength.

An interesting question to ask is, if the material strength is not exceeded, then why does the
member fail?. The answer may be that all systems take the path of least resistance when they
deform, a basic law of nature. For slender members, it is easier to bend than to shorten under
a compressive force resulting in the buckling of the member before it fails by exceeding its
material strength. For short members it is easier to shorten than to bend under a compressive
force. In practice, there is always a tendency of a slender member to bend sideways even if
the intended force is an axial compression. This tendency is due to small accidental eccentric-
ity, unintended lateral disturbing force, imperfections, or other irregularities in the member.
For small compressive forces the internal resistance of a member to bending exceeds external
action forcing it to bend. As the external forces increase, a limiting load is reached where their
overturning effect to bend exceeds the internal resistance to bending of the member. As a result,
more and more bending of the system called buckling occurs. The maximum compressive force
at which the member can remain in equilibrium in the straight configuration without bending
is called the buckling load. A system is called stable if small disturbances cause small defor-
mations of the system configuration. Displaced shape equilibrium and the energy methods are
the two most commonly used procedures to solve the buckling loads problem and to study the
stability of equilibrium.

Structural Stability Theory and Practice, First Edition. Sukhvarsh Jerath.
© 2021 Sukhvarsh Jerath. Published 2021 by John Wiley & Sons, Inc.
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(a) (b) (c)

Figure 1.1 Types of equilibrium: (a) stable; (b) unstable; (c) neutral.

1.2 General Concepts

Concepts of stability can be explained by considering the equilibrium of a ball resting on three
different surfaces [1] shown in Figure 1.1. The ball on the concave surface in Figure 1.1a is
in stable equilibrium because any small displacement will increase the potential energy of the
ball. The component of the self-weight parallel to the sliding surface will bring the ball back
to its original equilibrium position. In Figure 1.1b, the ball rests on a convex surface, a small
displacement from its equilibrium position will decrease the potential energy of the ball. The
parallel component of the self-weight will slide the ball further from its initial configuration,
and the equilibrium is unstable. If the ball is displaced on the flat surface, the potential energy
of the ball remains the same, and the ball assumes a new equilibrium position. Thus, poten-
tial energy, Π, is a minimum for stable equilibrium, whereas it is a maximum for the unstable
equilibrium position, and the potential energy remains the same for the position of neutral
equilibrium. Energy methods are based on these concepts for solving the structural stability
problems. If ΔΠ> 0, the displaced configuration is stable, whereas for ΔΠ< 0, the displaced
shape is in unstable equilibrium, the transition ΔΠ = 0, which is the position of neutral equi-
librium gives critical load at which the system becomes unstable by energy method.

Also, since we are studying the state of equilibrium in the slightly displaced position of the
body, the equilibrium equations are written based on the displaced shape of the body in the
displaced shape equilibrium method. Both methods can be used to formulate the equilibrium
equations and calculate the critical loads. However, the displaced equilibrium approach does
not give the nature of equilibrium when the critical load is reached. To answer that question,
the second variation of potential energy 𝛿2Π is to be considered. The potential energy may be
expanded into a Taylor series about the equilibrium state and written as

ΔΠ = 𝛿Π + 𝛿2Π + 𝛿3Π + ----- (1.1a)
where

𝛿Π =
n∑

i=1

𝜕
∏
𝜕qi

𝛿qi (1.1b)

𝛿2Π = 1
2!

n∑
i=1

n∑
j=1

𝜕2 ∏
𝜕qi𝜕qj

𝛿qi𝛿qj (1.1c)

𝛿3Π = 1
3!

n∑
i=1

n∑
j=1

n∑
k=1

𝜕3 ∏
𝜕qi𝜕qj𝜕qk

𝛿qi𝛿qj𝛿qk (1.1d)

𝛿Π, 𝛿2Π, and 𝛿3Π are called the first, second and third derivatives respectively of the potential
energy Π. The critical load Pcr is obtained from the conditions of equilibrium given by 𝛿Π = 0



Trim Size: 187mm x 235mm Single Column Jerath c01.tex V1 - 11/06/2020 6:52pm Page 3�

� �

�

1.2 General Concepts 3

for any 𝛿qi, or
𝜕
∏
𝜕qi

= 0 for each i [2]. The equilibrium state is stable if ΔΠ> 0. Therefore, the

equilibrium state is stable for 𝛿2Π> 0, and is unstable for 𝛿2Π< 0.
Because energy is quadratic, it can also be written as

2
∏
=

n∑
i=1

n∑
j=1

Kijqiqj = qTKq (1.1e)

where
q = column vector of the generalized displacements

qT = transpose of the column vector
K = square matrix (n × n)with elements Kij

For elastic structures, matrix K represents the stiffness matrix of the structure with regard to its
generalized displacements, and Π is the potential energy. The stiffness elements are given by

Kij =
𝜕2 ∏
𝜕qi𝜕qj

=
𝜕2 ∏
𝜕qj𝜕qi

= Kji (1.1f)

That shows the stiffness matrix is symmetric. The second variation of the potential energy from
Eq. (1.1c) is

2𝛿2∏ =
n∑

i=1

n∑
j=1

Kij𝛿qi𝛿qj (1.1g)

For 𝛿2Π> 0, the matrix with elements Kij will be positive definite. A real symmetric matrix is
positive definite if and only if all its principal minors are positive, that is,

D1 = K11 > 0, D2 =
[

K11 K12
K21 K22

]
> 0, ------------Dn =

⎡⎢⎢⎢⎣
K11 − − K1n
− − − −
− − − −

Kn1 − − Knn

⎤⎥⎥⎥⎦ > 0 (1.1h)

or

D1 = K11 > 0, |D2| = ||||K11 K12
K21 K22

|||| > 0, -----------Dn =

||||||||
K11 − − K1n
− − − −
− − − −

Kn1 − − Knn

|||||||| > 0 (1.1i)

When systems are subjected to compressive forces three types of instabilities can occur:
(i) bifurcation of equilibrium; (ii) maximum or limit load instabilities; and (iii) Finite distur-
bance instability.

1.2.1 Bifurcation of Equilibrium

Equilibrium paths are shown as load displacement plots in Figure 1.2. The equilibrium path
starting from the unloaded configuration is called the fundamental or primary path. At a certain
load the equilibrium path can continue to be the fundamental path or it could change to an
alternate configuration if there is a small lateral perturbation. This alternate path is called



Trim Size: 187mm x 235mm Single Column Jerath c01.tex V1 - 11/06/2020 6:52pm Page 4�

� �

�

4 1 Structural Stability

(a)

Deflection

Pcr

Load

Secondary
Path

Primary
Path 

(b)

Deflection

Load

Secondary
Path 

Primary
Path 

Pcr

(c)

Deflection

Primary
Path 

Load

Secondary
Path 

Pcr

Figure 1.2 Bifurcation equilibrium paths: (a) Symmetric stable bifurcation; (b) Symmetric unstable bifurcation;
(c) Asymmetric bifurcation.

the secondary or post-buckling path [3]. The point of intersection between the primary and
secondary paths is called the point of bifurcation, and the load corresponding to this point is
called the critical load. In Figures 1.2a and 1.2b, the secondary paths are symmetrical. In the
symmetric bifurcation the post-buckling load deflection behavior remains the same irrespective
of the direction in which the structure bends. It is a stable bifurcation in Figure 1.2a because the
load increases with deflection after buckling, axially loaded columns and thin plates subjected
to in-plane forces exhibit this behavior. The load decreases below the critical as the deflection
increases in the post-buckling stage in Figure 1.2b, and the structure has an unstable bifurcation
at the critical load. Guyed towers exhibit this behavior because some of the cables come under
compression and are unable to sustain the external forces. If the post-buckling load deflection
diagram is affected by the direction of buckling, then the bifurcation is asymmetric as shown
in Figure 1.2c. Some framed structures show this kind of behavior.

1.2.2 Limit Load Instability

This type of instability is also called snap-through buckling. In this type of buckling, the primary
path is nonlinear and once the load reaches a maximum, the point P in Figure 1.3a jumps to Q
on another branch of the curve. The load at point P is the critical load in this type of instability.
The structure snaps through to a nonadjacent equilibrium position represented by point Q.
Spherical caps and shallow arches exhibit this behavior.

1.2.3 Finite Disturbance Instability

This type of instability occurs in cylindrical shells under the action of axial forces shown in
Figure 1.3b. The load capacity of the structure drops suddenly at the critical load in Figure 1.3c.
The structure takes a non-cylindrical shape after the critical load. The structure continues to
take more axial compression in Figure 1.3c after taking another equilibrium configuration. In
this type of instability, a finite disturbance of the cylinder or imperfection in the cylinder will
lower the critical load considerably and the structure will change equilibrium configuration
upon reaching the ideal critical load.
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(b) (c)

Deflection 

Load

Deflection

(a)

P Q
Load

Figure 1.3 Post-buckling equilibrium paths: (a) Limit load instability; (b) Cylindrical shell under axial compression;
(c) Finite difference instability.

1.3 Rigid Bar Columns

Columns consisting of rigid bars supported by springs and acted on by axial compression are
studied by the displaced shape equilibrium, or by energy methods. At first, the small deflection
analysis is considered. The study of rigid bar columns provides a good background on the nature
of stability problems and the different methods used to solve them because these systems have
limited degrees of freedom.

1.3.1 Rigid Bar Supported by a Translational Spring

1.3.1.1 The Displaced Shape Equilibrium Method
Consider a perfect rigid vertical column supported by a hinge at the bottom and a linear spring
of stiffness “k” at the top. The bar is acted on by an axial load shown in Figure 1.4. If there
is an accidental lateral disturbance, the spring force, kL sin 𝜃, will bring it back to the vertical
position for small axial loads. In this case the restoring moment due to spring force is larger
than the overturning moment due to the force P as shown in Eq. (1.2a):

k L2 sin 𝜃 cos 𝜃 > PL sin 𝜃 (1.2a)

(b)(a)

P 

B 
B´

L 
θ 

P 

kL sin θ 

L sin θ

A kL sin θ 

P 

A

B 
C 

Figure 1.4 Rigid bar under axial force: (a) Rigid bar with axial load; (b) Free-body diagram of displaced shape.
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and the vertical position of the bar is stable. The spring force will not be able to bring back the
rigid bar to its vertical position for large axial force, because the overturning moment will be
larger than the restoring moment shown below

k L2 sin 𝜃 cos 𝜃 < PL sin 𝜃 (1.2b)

and the vertical position of the bar is unstable. The minimum axial force at which the bar
becomes unstable is called the critical load. It is the force at which the equilibrium changes
from stable to unstable, and

k L2 sin 𝜃 cos 𝜃 = PL sin 𝜃

or P = kL cos 𝜃 (1.2c)

The critical load, Pcr, can be found by considering the equilibrium of the slightly displaced
position of the bar by taking moments of all forces about A in Figure 1.4b as follows:∑

MA = 0

PL sin 𝜃 − kL2 sin 𝜃 cos 𝜃 = 0
or P = kL cos 𝜃 (1.2d)

The same result is obtained from Eqs. (1.2c and 1.2d), hence the critical load can be found by
considering the equilibrium of the slightly displaced shape. For small deflections, cos𝜃 ≈ 1,
therefore,

Pcr = kL (1.2e)

1.3.1.2 The Energy Method
The first law of thermodynamics can be used to derive equations used in the energy method.
This law, which is a statement of the law of conservation of energy, can be stated as “The work
that is performed on a mechanical system by external forces plus the heat that flows into the sys-
tem from the outside equals the increase of kinetic energy plus the increase of internal energy.”

We + Q = ΔT + ΔU (1.3a)

Here, W e, is the work performed on the system by the external forces, Q is the heat that flows
into the system, ΔT is the increase of kinetic energy, and ΔU is the increase of internal energy
[4]. For an adiabatic change, Q = 0, and for a body in equilibrium, ΔT = 0. This reduces
Eq. (1.3a) to

We = ΔU (1.3b)

The change in internal energy of an elastic body is determined by the strains, and is called the
strain energy. If the system is subjected to conservative forces, W e is independent of the path the
system takes from the configuration X0 to another configuration X . In this case, the W e depends
only on the two terminal configurations, and is denoted by −V(X0, X). The function V(X0, X)
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is called the potential energy of the external forces, and it is always measured as the change in
the potential energy, ΔV, from one configuration to another configuration of the system.

We = −ΔV (1.3c)

Equations (1.3b and 1.3c) can be combined to write

ΔV + ΔU = 0 (1.3d)

or

Δ(V + U) = 0 (1.3e)

V is the potential energy due to external forces, and U is considered the potential energy of the
internal forces. Total potential energy of the system is

Π = V + U (1.3f)

The total potential energy of a system is a minimum in the position of stable equilibrium,
whereas it is a maximum for unstable equilibrium. The critical load can be obtained by equating
the first derivative of the total potential energy equal to zero. In Figure 1.4

U = 1/2k(L sin 𝜃)2 (1.3g)
V = −P L(1 − cos 𝜃) (1.3h)
Π = −P L(1 − cos 𝜃) + 1∕2k(L sin 𝜃)2 (1.3i)
dΠ
d𝜃

= −PL sin 𝜃 + k L2 sin 𝜃 cos 𝜃 (1.3j)

Substituting dΠ
d𝜃

= 0, we get

P = kL cos 𝜃 (1.3k)

cos 𝜃 ≈ 1 for small values of 𝜃

or

Pcr = kL (1.3l)

giving the same critical load as in Eq. (1.2e). From Eq. (1.3j)
d2 ∏
d𝜃2 = −PL cos 𝜃 + kL2 cos 2𝜃 (1.3m)

For the initial position,

𝜃 = 0,
d2 ∏
d𝜃2 = −PL + kL2 (1.3n)

For P < Pcr,
d2 ∏
d𝜃2 > 0, and for P > Pcr,

d2 ∏
d𝜃2 < 0 in Eq. (1.3n). So the system is in stable equi-

librium if P<Pcr, and is in unstable equilibrium for P>Pcr, in the initial position.
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1.3.2 Two Rigid Bars Connected by Rotational Springs

1.3.2.1 The Displaced Shape Equilibrium Method
Consider two rigid bars as shown in Figure 1.5. The lower bar is connected to a pin support and
a linear rotational spring of stiffness c1 at the bottom. At the top the lower bar is connected to
another bar by a linear rotational spring of stiffness c2. The upper bar is free at the top, and the
bars are subjected to an axial force of P.

Taking the equilibrium of the lower bar in Figure 1.5c, the sum of the moments of all forces
about A is equal to zero,

c1𝜃1 − c2 (𝜃2–𝜃1)–PL1 sin 𝜃1 = 0 (1.4a)

From Figure 1.5d, sum the moments of all the forces about B and equate it to zero,

c2(𝜃2–𝜃1)–PL2 sin 𝜃2 = 0 (1.4b)

sin𝜃 ≈ 𝜃 in radians for small values of 𝜃, and Eqs. (1.4a and 1.4b) can be written in the matrix
form as[

c1 + c2 − PL −c2
−c2 c2 − PL2

] {
𝜃1
𝜃2

}
=
{

0
0

}
(1.4c)

or
{[

c1 + c2 −c2
−c2 c2

]
− P

[
L1 0
0 L2

]}{
𝜃1
𝜃2

}
=
{

0
0

}
(1.4d)

L2

P

C´

L2 sinθ2

θ2 

B´ c2 (θ2–θ1) 

P 
(d)

(a)

A

B

C

c1

c2

L1

L2

P
P 

B´

c1θ1 

θ1 
L1

P 
A 

L1 sinθ1

c2 (θ2–θ1) 

(c)

(f)

(b)

B´

A

L1

L2

c1θ1

θ1

θ2–θ1

P 

P 

θ2

C´

(e)

Figure 1.5 Two rigid bars under axial load: (a) Two rigid bars with axial force; (b) Displaced shape; (c) Free body
diagram of lower bar; (d) Free body diagram of upper bar; (e) First buckling mode; (f) Second buckling mode.
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Equation (1.4d) is an eigenvalue problem. The critical loads P are the eigenvalues, and the angu-
lar displacements, 𝜃1 and 𝜃2 are given as eigenvectors. For a nontrivial solution the determinant
of the coefficient matrix is zero [5],||||c1 + c2–PL1 −c2

c2 c2 − PL2

|||| = 0 (1.4e)

or
(c1 + c2 − PL1)(c2 − PL2) − (c2)2 = 0

or

P2–P
(

c1

L1
+

c2

L2
+

c2

L1

)
+

c1c2

L1L2
= 0 (1.4f)

The solution of the quadratic Eq. (1.4f) is given by

P =

c1
L1
+ c2

L2
+ c2

L1
±
√(

c1
L1
+ c2

L2
+ c2

L1

)2
− 4

(
c1c2
L1L2

)
2

(1.4g)

If c1 = c2 = c, and L1 = L2 = L

P =
3c
L
±
√

5 c
L

2
P = 0.382 c

L
, or 2.618 c

L
(1.4h)

The corresponding eigenvectors are:{
𝜃1
𝜃2

}
=
{

1
1.618

}
and{

𝜃1
𝜃2

}
=
{

1
−0.618

}
(1.4i)

1.3.2.2 The Energy Method
The critical load for the two rigid bars shown in Figure 1.5a subjected to an axial force P can be
found by using the principle of stationery potential energy. The strain energy of the system in
the displaced shape is given by

U = 1∕2c1(𝜃1)2 + 1∕2c2(𝜃2 − 𝜃1)2 (1.5a)
The potential energy of the external force P is

V = −P
[
L1(1 − cos 𝜃1) + L2(1 − cos 𝜃2)

]
(1.5b)

Total potential energy of the system is
Π = 1/2c1(𝜃1)2 + 1/2c2(𝜃2–𝜃1)2 − P

[
L1(1 − cos 𝜃1) + L2(1 − cos 𝜃2)

]
(1.5c)

The potential energy of the system must be stationary for equilibrium. The first derivatives of
the potential energy function, Π, with respect to 𝜃1 and 𝜃2 are:

𝜕Π
𝜕𝜃1

= c1𝜃1 + c2(𝜃2 − 𝜃1)(−1) − PL1 sin 𝜃1 = 0 (1.5d)
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𝜕Π
𝜕𝜃2

= c2(𝜃2 − 𝜃1) − PL2 sin 𝜃2 = 0 (1.5e)

For small values of 𝜃, sin 𝜃 ≈ 𝜃 in radians, and Eqs. (1.5d and 1.5e) can be written in matrix
form as:[

c1 + c2 − PL1 −c2
−c2 c2 − PL2

] {
𝜃1
𝜃2

}
=
{

0
0

}
(1.5f)

Equations (1.4c and 1.5f) are the same, giving the same solution for the critical load, Pcr, by the
energy method as given before by the displaced shape equilibrium method. For c1 = c2 = c, and
L1 = L2 = L, from Eqs. (1.5d and 1.5e)

𝜕2 ∏
𝜕𝜃1

2 = c + c + −PL cos 𝜃1 (1.5g)

𝜕2 ∏
𝜕𝜃2

2 = c − PL cos 𝜃2 (1.5h)

𝜕2 ∏
𝜕𝜃1𝜕𝜃2

= −c (1.5i)

For the two degrees of freedom systems from Eq. (1.1g),

2𝛿2Π = K11𝛿q1
2 + 2K12𝛿q1𝛿q2 + K22𝛿q2

2 (1.5j)

For the initial position, 𝜃1 = 𝜃2 = 0, from Eqs. (1.1f, 1.5g, 1.5h, and 1.5i),

K11 =
𝜕2 ∏
𝜕𝜃1

2 = 2c − PL,K22 =
𝜕2 ∏
𝜕𝜃2

2 = c − PL,K12 = K21 =
𝜕2 ∏
𝜕𝜃1𝜕𝜃2

= −c (1.5k)

The two degrees of freedom system in Figure 1.5 is in stable equilibrium if 𝛿2Π> 0, or from
Eq.(1.1i) we have

D1 = K11 > 0, or 2c–PL > 0, or P <
2c
L

(1.5l)

and |D2| = ||||K11 K12
K21 K22

|||| = ||||2c − PL −c
−c c − PL

|||| > 0

or P2 − 3Pc
L
+ c2

L2 > 0

and
(

P − 0.382c
L

)(
P − 2.618c

L

)
> 0 (1.5m)

Therefore, the two degrees of freedom system is in stable equilibrium if P < Pcr =
0.382c

L
, because

the inequalities (1.5l and 1.5m) are satisfied in the initial position. It is unstable if

P > Pcr =
0.382c

L
.
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1.3.3 Three-Member Truss

1.3.3.1 The Energy Method
Consider a three-member truss where the bars AB and AC are rigid. These bars are
pin-connected at A, and the truss is simply supported at B and C as shown in Figure 1.6a.
Points B and C are connected by a linear spring of stiffness k. The bars make an initial angle
of 𝜃0 with the horizontal initially. When a vertical force of P is applied at A, the truss deforms,
and the bars make an angle of 𝜃 with the horizontal in Figure 1.6b.

The strain energy of the system after deformation is given by
U = 1/2k[ 2L(cos 𝜃– cos 𝜃0)]2 = 2kL2(cos 𝜃– cos 𝜃0)2 (1.6a)

Potential energy of the external force P is
V = −PL(sin 𝜃0– sin 𝜃) (1.6b)

Total potential energy of the system is
Π = −PL(sin 𝜃– sin 𝜃0) + 2kL2(cos 𝜃– cos 𝜃0)2

dΠ
d𝜃

= PL cos 𝜃–4kL2(cos 𝜃– cos 𝜃0) sin 𝜃 (1.6c)

By making dΠ/d𝜃 = 0, the equilibrium equation is
P

4kL
= sin 𝜃– cos 𝜃0 tan 𝜃 (1.6d)

d2Π
d𝜃2 = −PL sin 𝜃 − 4kL2[cos 2𝜃– cos 𝜃0 cos 𝜃] (1.6e)

Substitute (1.6d) into (1.6e)
d2Π
d𝜃2 = −4kL[sin 𝜃– cos 𝜃0 tan 𝜃]L sin 𝜃 − 4kL2[ cos 2𝜃– cos 𝜃0 cos 𝜃]

Simplifying the above expression gives
d2Π
d𝜃2 =

4kL2

cos 𝜃
(cos 𝜃0–cos3𝜃) (1.6f)

For stable equilibrium, d2Π
d𝜃2 > 0, or cos𝜃0 > cos3𝜃 is the desired condition.

(a)
2 L cos θ0

A

P

B C

θ0
θ0

k

(b)
2 L cos θ

θ θ

P

B C´

A´

k
L L LL

Figure 1.6 Three-member truss with rigid bars: (a) Three member truss; (b) Displaced shape.
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Therefore, at 𝜃c <𝜃 < - 𝜃c, the truss is in stable equilibrium. Where cos𝜃0 = cos3𝜃c at the crit-
ical equilibrium, and 𝜃c is the angle the rigid bars make at the critical equilibrium with the
horizontal.

For unstable equilibrium, d2Π
d𝜃2 < 0, or cos𝜃0 < cos3𝜃 is the desired condition. Therefore, when

-𝜃c <𝜃 <𝜃c, the truss is in unstable equilibrium. We can also look at the stability of the truss
with respect to the load P. At the critical equilibrium, 𝜃 = 𝜃c, now substituting ṅ in Eq. (1.6d)
gives

P
4kL

= sin 𝜃c − cos3𝜃c tan 𝜃c = sin3
𝜃c

Therefore, at P
kL

< 4 sin3
𝜃c, the equilibrium is stable and at P

kL
> 4sin3

𝜃c, the equilibrium is
unstable. From Eq. (1.6d)

P
4kL

= sin 𝜃 − cos 𝜃0 tan 𝜃

or P
kL

= 4 sin 𝜃

(
1 −

cos 𝜃0

cos 𝜃

)
or P

kL
= 0 for 𝜃 = 0, and 𝜃 = ± 𝜃0. (1.6g)

Assume the initial inclination of the truss members is 𝜃c = 200, then for critical equilibrium
cos 200 = cos3𝜃c, or 𝜃c = 11.620.

For stable equilibrium,

cos 𝜃0 > cos3𝜃, or cos 𝜃 < (cos 𝜃0)
1
3

or

𝜃 >

{
cos−1

[
cos (𝜃0)

1
3

]}
hence,

𝜃 > 𝜃c = 11.620 and 𝜃 < 𝜃c = −11.620

For unstable equilibrium, cos 𝜃0 < cos3𝜃, or cos 𝜃 > (cos 𝜃0)
1
3

or

𝜃 <

{
cos−1

[
cos (𝜃0)

1
3

]}
hence,

𝜃 < 𝜃c = 11.620 and 𝜃 > 𝜃c = −11.620

A plot of Eq. (1.6g) is shown for 𝜃0 = 200 in Figure 1.7.
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F 

0.0328

–0.0328

Figure 1.7 Displacement path of three-member truss.

In Figure 1.7 the stable equilibrium paths lie on the lines ABC and DEF, while the unstable
equilibrium path lie on the segment CD. As the load P increases from zero, first the stable
equilibrium path BC is followed until the critical load at point C is reached. At point C the
structure snaps through from point C to F as shown by the dashed line in Figure 1.7. This occurs
because as the load is increased infinitesimally from the peak point C, the stable equilibrium
available at that load is corresponding to point F. Therefore, there is a large deformation for
a small change in the load until the state corresponding to point F is reached. The structure
is in stable equilibrium beyond F in new configuration. The change of state from point C to F
does not occur through equilibrium paths but occurs dynamically and the structure is unstable
during this change. This type of instability is called snap through or limit point instability. If
the load P is decreased, the structure follows the path FED, and at point D snaps through to
point A. The load deflection curve in Figure 1.7 also shows that this problem is nonlinear even
at small deformations. We cannot obtain meaningful results if linearization simplification is
used for angles 𝜃 and 𝜃0, even if these angles are small.

1.3.4 Three Rigid Bars with Two Linear Springs

1.3.4.1 The Displaced Shape Equilibrium Method
Three rigid bars are shown in Figure 1.8a. the system is supported by a hinge at A and a roller
support at B. The bars are joined by pins C and D, the supports at C and D consist of two linear
springs each of stiffness k. The system is subjected to an axial force P as shown. As the force
increases, the system deflects as shown in Figure 1.8b, the vertical deflections at C and D are
𝛿1 and 𝛿2 respectively. It is a two degrees of freedom system because these two deflections are
needed to define the displaced shape. The deflections are assumed to be small.

In Figure 1.8b,
ΣMB = 0
VA(3L)–k 𝛿1(2L)–k 𝛿2(L) = 0

VA =
2
3

k𝛿1 +
1
3

k𝛿2, and
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(c) (d)

P 

P 
B 

D´ L 

VD´

VB

δ2δ1
L

A

P
C´

P

VA VC´

(a)

P P

A B C D 

k k 

L L L 

(b)

kδ2
kδ1

δ1 δ2

P P 

A B C D 

C´ D´VA VB
L L L 

Figure 1.8 Three rigid bars with two linear springs: (a) Three rigid bars; (b) Displaced shape; (c) Free body diagram
of AC’; (d) Free body diagram of BD’.

ΣFvertical = 0
2
3

k 𝛿1 +
1
3

k 𝛿2–k𝛿1–k 𝛿2 + VB = 0

VB =
1
3

k𝛿1 +
2
3

k 𝛿2

From Figures 1.8c and 1.8d, and small deformations
ΣMC′ = 0(2

3
k𝛿1 +

1
3

k𝛿2
)

L–P𝛿1 = 0 (1.7a)

ΣMD′ = 0(1
3

k𝛿1 +
2
3

k𝛿2
)

L − P𝛿2 = 0 (1.7b)

Equations (1.7a and 1.7b) can be written in the matrix form as[
2
3

kL–P 1
3

kL
1
3

kL 2
3

kL − P

]⎧⎪⎨⎪⎩
𝛿1

𝛿2

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩

0

0

⎫⎪⎬⎪⎭ (1.7c)
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For a nontrivial solution the determinant of the coefficient matrix is zero,|||||
2
3

kL–P 1
3

kL
1
3

kL 2
3

kL − P

||||| = 0 (1.7d)

The characteristic equation is

P2 − 4
3

k L P + 1
3

k2 L2 = 0 (1.7e)

The two roots of Eq. (1.7e) are P1 =
1
3

kL, and P2 = kL.
The first eigenvector is{

𝛿1
𝛿2

}
=
{

1
−1

}
for P1 = Pcr =

1
3

kL, and the deflected shape is the buckling mode as given in Figure 1.9a.
The second eigenvector is{

𝛿1
𝛿2

}
=
{

1
1

}
for P2 = kL, and the deflected shape is symmetric as shown in Fig. 1.9b.

1.3.4.2 The Energy Method
The strain energy of the system in Figure 1.8b is given by

U = 1
2

k𝛿12 + 1
2

k𝛿2
2

(1.8a)

The potential energy of the external force is

V = −P
[(

L −
(

1 − cos
𝛿1

L

)
+ L

(
1 − cos 𝛿2

L

)
+ L

[
1 − cos

𝛿2 − 𝛿1

L

]
(1.8b)

Total potential energy of the system is
Π = U + V (1.8c)

(a)
L

L Lδ1 
δ2 = –δ1

(b)

L L
L

δ1 δ2 = δ1 

Figure 1.9 Mode shapes of the three rigid bars with linear springs: (a) Asymmetrical deflected shape; (b) Symmet-
rical deflected shape.
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or

Π = 1
2

k𝛿12 + 1
2

k𝛿2
2
− PL

[
3 − cos

𝛿1

L
− cos 𝛿2

L
− cos

𝛿2 − 𝛿1

L

]
(1.8d)

The first derivatives of the potential energy function, Π, with respect to 𝛿1 and 𝛿2 must be zero
for potential energy to be stationary. Therefore,

𝜕Π
𝜕𝛿1

= k𝛿1 − PL
[

1
L

sin
𝛿1

L
− 1

L
sin

𝛿2 − 𝛿1

L

]
(1.8e)

𝜕Π
𝜕𝛿1

= k𝛿2 − PL
[

1
L

sin
𝛿2

L
+ 1

L
sin

𝛿2 − 𝛿1

L

]
(1.8f)

For small angle approximation, sin
𝛿1

L
≈

𝛿1

L
, sin

𝛿2

L
≈

𝛿2

L
, and sin

𝛿2 − 𝛿1

L
≈

𝛿2 − 𝛿1

L
, therefore,

𝜕Π
𝜕𝛿1

= k𝛿1 − P
(
𝛿1

L
−

𝛿2 − 𝛿1

L

)
= 0 (1.8g)

𝜕Π
𝜕𝛿2

= k𝛿2 − P
(
𝛿2

L
+

𝛿2 − 𝛿1

L

)
= 0 (1.8h)

Equations (1.8g and 1.8h) can be written in the matrix form as:[
k − P 2

L
P
LP

L
k − P 2

L

]⎧⎪⎨⎪⎩
𝛿1

𝛿2

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩

0

0

⎫⎪⎬⎪⎭ (1.8i)

For a nontrivial solution the determinant of the coefficient matrix is zero,[
k − P 2

L
P
LP

L
k − P 2

L

]
= 0 (1.8j)

or

P2 − 4
3

PLk + L2

3
k2 = 0 (1.8k)

Equation (1.8k) is the same characteristic equation as Eq. (1.7e), giving the same two roots of
P1 = Pcr =

kL
3

, and P2 = kL as before by the displaced shape equilibrium method.

𝜕2 ∏
𝜕𝛿2

1
= K11 = k − 2P

L
(1.8l)

𝜕2 ∏
𝜕𝛿2

2
= K22 = k − 2P

L
(1.8m)

𝜕2 ∏
𝜕𝛿1𝜕𝛿2

= K12 = K21 =
P
L

(1.8n)

The three rigid bar system in Figure 1.8 is in stable equilibrium if 𝛿2Π> 0, therefore from
Eq. (1.1i)

D1 = K11 = k − 2P
L
> 0, or P <

kL
2

(1.8o)
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and |D2| = ||||K11 K12
K21 K22

|||| = |||||k −
2P
L

P
LP

L
k − 2P

L

||||| > 0

or P2 − 4
3

PkL + k2L2

3
> 0

and
(

P − kL
3

)
(P − kL) > 0 (1.8p)

Therefore, the three bar rigid system is in stable equilibrium if P < Pcr =
kL
3

, because the

inequalities in Eqs. (1.8o and 1.8p) are satisfied. It is unstable if P > Pcr =
kL
3

.

1.4 Large Displacement Analysis

So far, the analysis has been limited to the linear, small deflection theory that applies to
infinitely small deformations from the initial stressed state of the structure. The small
deflection theory gives information about the critical load and it is also possible to determine
the state of equilibrium in the initial position by studying the second derivatives of the total
potential energy by this theory. This is sufficient for most structural engineering problems.
However, nonlinear finite displacement theory is needed to gain a full understanding of the
post-buckling behavior of a system. We can plot the post buckling equilibrium path using this
large displacement theory. It also gives us an indication of the stability of bifurcation.

1.4.1 Rigid Bar Supported by a Translational Spring

1.4.1.1 The Displaced Shape Equilibrium Method
The rigid bar given in Figure 1.4 will be considered here without making the assumption of
small deformation. The equilibrium equation is

P = kL cos 𝜃 (1.2d)

and the critical load is given by Pcr = k L. The equilibrium diagram, P
Pcr

versus 𝜃, giving the

post-buckling path is plotted in Figure 1.10 using Eqs. (1.2d and 1.2e). The initial inclination of
the column to the right or left causes a decrease in the load capacity of the column and values of
P

Pcr
continually decrease with increasing 𝜃. The post-buckling displacement path is also sym-

metric about the initial position of the column, therefore, the bifurcation is called symmetric
unstable bifurcation.

1.4.1.2 The Energy Method
This method can also be used to find the critical load and the load deflection graph as
shown in Figure 1.10. In addition, it can give the nature of equilibrium in the system ini-
tially when the applied load reaches the critical load value as well as during post-buckling.
Equations (1.3i–1.3m) can be rewritten from Figure 1.4 as

Π = −P L(1 − cos 𝜃) + 1∕2k(L sin 𝜃)2 (1.3i)
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0

0.2

0.4

0.6

0.8

1

–π/2 –π/3 –π/6 0 π/6 π/3 π/2
Deformation

P/Pcr

Stable Unstable

θ –θ

Figure 1.10 Equilibrium path of rigid bar in Figure 1.4.

dΠ
d𝜃

= −PL sin 𝜃 + k L2 sin 𝜃 cos 𝜃 (1.3j)

dΠ
d𝜃
= 0, and we get the equilibrium equation as

P = kL cos 𝜃 (1.3k)
cos 𝜃 ≈ 1 for small values of 𝜃
or

Pcr = kL (1.3l)
d2Π
d𝜃2 = −PL cos 𝜃 + kL2 cos 2𝜃 (1.3m)

From Eq. (1.3k) and Eq. (1.3m)
d2 ∏
d𝜃2 = −kL2 cos 𝜃 + kL2 cos 2𝜃 (1.9a)

Substituting P = Pcr = kL, and 𝜃 = 0 in Eq. (1.9a),
d2 ∏
d𝜃2 = 0. This does not give us an idea

of the nature of equilibrium at the bifurcation. Therefore, to determine the initial post-critical
behavior near bifurcation we may write total potential energy, Π, as a Taylor series as follows:∏

=
∏|||𝜃=0

+
d
∏

d𝜃

|||||𝜃=0
𝜃 + 1

2!
d2 ∏
d𝜃2

|||||𝜃=0
𝜃2 + 1

3!
d3 ∏
d𝜃3

|||||𝜃=0
𝜃3 + 1

4!
d4 ∏
d𝜃4

|||||𝜃=0
𝜃4 + − − − (1.9b)

d3 ∏
d𝜃3 = PL sin 𝜃 − 2kL2 sin 2𝜃 (1.9c)

At

P = Pcr = kL, and 𝜃 = 0, d3Π
d𝜃3 = 0

d4 ∏
d𝜃4 = PL cos 𝜃 − 4kL2 cos 2𝜃 (1.9d)
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At P = Pcr = kL and 𝜃 = 0,
d4 ∏
d𝜃4 = −3kL2 (1.9e)

Therefore,

Π = −3kL2

24
𝜃4 = −1

8
kL2

𝜃4 (1.9f)

This indicates that the total potential energy,Π, is negative or it decreases with increasing 𝜃, at
the initial position, 𝜃 = 0 and P= Pcr. The bifurcation is symmetric and unstable from Eqs. (1.3k
and 1.9f), as shown in Figure 1.10.

During the post-buckling path when 𝜃 ≠ 0, Eqs. (1.3k and 1.3m) give
d2 ∏
d𝜃2 = −kL2cos2𝜃 + kL2 cos 2𝜃

or
d2 ∏
d𝜃2 = −kL2sin2

𝜃 (1.9g)

Therefore,
d2 ∏
d𝜃2 < 0 for different values of 𝜃, and the post-buckling path is unstable.

1.4.2 Rigid Bar Supported by Translational and Rotational Springs

1.4.2.1 The Displaced Shape Equilibrium Method
A rigid bar connected to a translational spring at the top and a rotational spring at the bottom
is acted on by an axial force P as shown in Figure 1.11a. The free body diagram of the deflected
system is shown in Figure 1.11b. Taking the moment of all the forces acting on the system in
Figure 1.11b about A and equating to zero, we have

PL sin 𝜃–kL sin 𝜃 (L cos 𝜃)–c𝜃 = 0 (1.10a)
or

P = kL cos 𝜃 + c
L

𝜃

sin 𝜃
(1.10b)

For small values of 𝜃, cos 𝜃 ≈ 1, sin𝜃 ≈ 𝜃, hence, the critical load is

Pcr = kL + c
L
. (1.10c)

(a) (b)

C

A

B

k

c

L

P

θ 

A
cθ

P

P

kL sinθ

kL sinθ

Figure 1.11 Rigid bar connected to translational and rotational springs: (a) Rigid bar with two springs; (b) Free
body diagram of displaced shape.
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1.4.2.2 The Energy Method
The strain energy of the system in Figure 1.11 is

U = 1
2

k(L sin 𝜃)2 + 1
2

c 𝜃2 (1.11a)

and the potential energy of the external forces is
V = −P(L − L cos 𝜃) (1.11b)

Total potential energy is given by

Π = 1
2

k(L sin 𝜃)2 + 1
2

c 𝜃2 − P (L − L cos 𝜃) (1.11c)

Taking the first derivative of the total potential energy with respect to 𝜃 and equating it to zero
gives the equilibrium equation

d
∏

d𝜃
= kL2 sin 𝜃 cos 𝜃 + c𝜃–PL sin 𝜃 = 0 (1.11d)

giving the same relation between the force P and 𝜃 as in Eq. (1.10b) and the same critical load
Pcr as before.

or
d
∏

d𝜃
= kL2

2
sin 2𝜃 + c𝜃 − PL sin 𝜃

d2 ∏
d𝜃2 = kL2 cos 2𝜃 + c − PL cos 𝜃 (1.11e)

Substituting P = Pcr = kL + c
L

, and 𝜃 = 0 in Eq. (1.11e) gives

d2 ∏
d𝜃2 = kL2 cos(𝜃) + c −

(
kL + c

L

)
L cos(𝜃) = 0

Therefore, use higher terms in the Taylor series in Eq. (1.9b) to know whether the total potential
energy is relative maximum or minimum at the bifurcation.

d3 ∏
d𝜃3 = −2kL2 sin 2𝜃 + PL sin 𝜃 (1.11f)

At the bifurcation,

P = Pcr = kL + c
L
, 𝜃 = 0,

d3 ∏
d𝜃3 = 0

and
d4 ∏
d𝜃4 = −4kL2 cos 2𝜃 + PL cos 𝜃

= −4 k L2 +
(

k L + c
L

)
L = −3k L2 + c (1.11g)

Therefore, from the Taylor series of Eq. (1.9b) we have

Π = 1
24
(−3kL2 + c)𝜃4 =

(
−kL2

8
+ c

24

)
𝜃4 (1.11h)



Trim Size: 187mm x 235mm Single Column Jerath c01.tex V1 - 11/06/2020 6:52pm Page 21�

� �

�

1.4 Large Displacement Analysis 21

Π is positive, if c
24

>
kL2

8
, or kL2

c
<

1
3

for stable equilibrium at the bifurcation. On the other

hand, Π is negative if kL2

c
>

1
3

, and the equilibrium at the bifurcation is unstable.
During the post-buckling path when 𝜃 ≠ 0, from Eqs. (1.10a and 1.11e)

d2 ∏
d𝜃2 = kL2cos2𝜃 − kL2sin2

𝜃 + c −
(

kL cos 𝜃 + c𝜃
L sin 𝜃

)
L cos 𝜃

or
d2 ∏
d𝜃2 = −kL2 sin 2𝜃 + c − c𝜃 cot 𝜃

For
d2 ∏
d𝜃2 > 0, the post-buckling path is stable, and at

d2 ∏
d𝜃2 < 0, it is unstable. Therefore,

if kL2

c
<

sin 𝜃 − 𝜃 cos 𝜃
sin3

𝜃
(1.11i)

the post-buckling path is stable, and for

kL2

c
>

sin 𝜃 − 𝜃 cos 𝜃
sin3

𝜃
(1.11j)

the post-buckling path is unstable.

At 𝜃 = 0, sin 𝜃 − 𝜃 cos 𝜃
sin3

𝜃
= 0

0
. Therefore, differentiate numerator and denominator with

respect to 𝜃, and applying Le Hospital’s rule, we get sin 𝜃 − 𝜃 cos 𝜃
sin3

𝜃
= 1

3
for 𝜃 = 0. Hence, if

kL2

c
<

1
3

, it is stable bifurcation, and for kL2

c
>

1
3

, it is unstable at 𝜃 = 0 as shown before.

Let kL2

c
= 0.35, or k L = 0.35 c

L
, and from Eq. (1.10c)

Pcr = 0.35 c
L
+ c

L
= 1.35c

L
From Eq. (1.10b)

PL
c
= kL2

c
cos 𝜃 + 𝜃

sin 𝜃
, dividing both sides of the equation by 1.35

PL
1.35c

= P
Pcr

=
0.35 cos 𝜃 + 𝜃

sin 𝜃

1.35
(1.11k)

P
Pcr

versus 𝜃 graph is plotted in Figure 1.12, and it shows that post-buckling path is unstable

at the bifurcation because kL2

c
= 0.35 >

1
3

and it continues to be unstable until kL2

c
= 0.35 <

sin 𝜃 − 𝜃 cos 𝜃
sin3

𝜃
, when it becomes stable.
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0.9985

0.999

0.9995

1.0005

P/Pcr

0.998 

1

θ–θ

Deformation 

Stable Unstable 

–π/6 –π/9 –π/18 0 π/18 π/9 π/6 

Figure 1.12 Displacement path of rigid bar supported by translational and rotational springs.

1.4.3 Two Rigid Bars Connected by Rotational Springs

1.4.3.1 The Energy Method
The two rigid bars of equal length L and connected by rotational springs of equal spring stiffness
c shown in Figure 1.5 are analyzed here by large displacement analysis. The first and second
derivatives of the total potential energy function, Π, from Eqs. (1.5d, 1.5e, 1.5g, 1.5h, and 1.5i)
are as follows:

𝜕Π
𝜕𝜃1

= 2c 𝜃1 − c 𝜃2 − PL sin 𝜃1 = 0 (1.12a)

𝜕Π
𝜕𝜃1

= −c𝜃1 + c𝜃2 − PL sin 𝜃2 = 0 (1.12b)

𝜕2 ∏
𝜕𝜃1

2 = 2c − PL cos 𝜃1 (1.12c)

𝜕2 ∏
𝜕𝜃2

2 = c − PL cos 𝜃2 (1.12d)

𝜕2 ∏
𝜕𝜃1𝜕𝜃2

= −c (1.12e)

Equations (1.12a and 1.12b) are equilibrium equations of the system. These are solved by elim-
inating 𝜃2. From Eq. (1.12a)

𝜃2 =
2c𝜃1 − PL sin 𝜃1

c
(1.12f)

Substituting Eq. (1.12f) in Eq. (1.12b), we get

−c𝜃1 + 2c𝜃1 − PL sin 𝜃1 − PL sin
2c𝜃1 − PL sin 𝜃1

c
= 0
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0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

–60 –20–40 0 20 40 60

Deformation in degrees, θ1

P/Pcr

Figure 1.13 Displacement path of two rigid bars connected by rotational springs.

or
P
c
L

=
𝜃1

sin 𝜃1 + sin
(

2𝜃1 −
PL
c

sin 𝜃1

) (1.12g)

Pcr = 0.382 c
L

, from Eq. (1.5i).
Therefore,

P
Pcr

= 1
0.382

⎡⎢⎢⎢⎣
𝜃1

sin 𝜃1 + sin
(

2𝜃1 −
PL
c

sin 𝜃1

)⎤⎥⎥⎥⎦ (1.12h)

P
Pcr

vs. 𝜃1 graph is plotted in Figure 1.13, and it shows that the post-buckling path is stable.

1.5 Imperfections

So far, it has been assumed that the rigid bars considered were geometrically perfect. In general,
the columns may be imperfect, having a certain amount of deformation present in the initial
state when the springs are unrestrained at the load P = 0.

1.5.1 Rigid Bar Supported by a Rotational Spring at the Base

1.5.1.1 The Displaced Shape Equilibrium Method
Consider a rigid bar of length L supported by a rotational spring of stiffness c. The column is
initially imperfect and inclined by an angle 𝛼 as shown in Figure 1.14. From the equilibrium of
the column in the displaced position making an angle of 𝜃 with the vertical, we have

PL sin 𝜃–c (𝜃–𝛼) = 0 (1.13a)



Trim Size: 187mm x 235mm Single Column Jerath c01.tex V1 - 11/06/2020 6:52pm Page 24�

� �

�

24 1 Structural Stability

(a) (b)

θ 
α

P PL sinθ 

L 

c (θ – α)

P 

α

P 

L 

Figure 1.14 Imperfect rigid-bar column with rotational spring at the base: (a) Imperfect rigid bar; (b) Free body
diagram of displaced shape.

or

P = c(𝜃 − 𝛼)
L sin 𝜃

(1.13b)

1.5.1.2 The Energy Method
Strain energy of the imperfect column in Figure 1.14 is

U = 1
2

c(𝜃 − 𝛼)2 (1.14a)

and the potential energy of the external forces is

V = −P L (cos 𝛼– cos 𝜃) (1.14b)

The total potential energy is given by

Π = 1
2

c(𝜃 − 𝛼)2 − P L(cos 𝛼 − cos 𝜃) (1.14c)

dΠ
d𝜃

= c(𝜃 − 𝛼) − P L sin 𝜃 (1.14d)

Setting dΠ
d𝜃

= 0, we have the equilibrium condition, and P = c(𝜃 − 𝛼)
L sin 𝜃

as before. For a perfect

column and small 𝜃, Pcr =
c
L

The equilibrium diagrams, P
Pcr

versus 𝜃, are plotted in Figure 1.15 for initial imperfections

of 𝛼 = − 10, −5, 5, and 10∘ of inclination with the vertical. The points where columns change

from stable to unstable state lie on the critical curve defined by d2Π
d2𝜃

= 0.

d2Π
d𝜃2 = c − PL cos 𝜃 (1.14e)

If d2Π
d2𝜃

= 0, P = c
L cos 𝜃

, or P
Pcr

= 1
cos 𝜃

, and P
Pcr

versus 𝜃 critical curve is plotted in Figure 1.15.
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The column is stable if d2Π
d2𝜃

> 0, and it is unstable if d2Π
d2𝜃

< 0. Substituting the value of P= Pcr

from Eq. (1.13b) into Eq. (1.14e), we have

d2Π
d𝜃2 = c

[
1 − (𝜃 − 𝛼)

tan 𝜃

]
(1.14f)

So the equilibrium path is stable if tan 𝜃 > 𝜃 – 𝛼 if 𝛼 < 𝜃 <𝜋/2, and tan 𝜃 < 𝜃 – 𝛼 if –𝜋/2<𝜃 < 0.
This can also be seen from the slopes of the equilibrium curves in Figure 1.15.

P = c
L

(
𝜃 − 𝛼

sin 𝜃

)
dP
d𝜃

= c
L sin 𝜃

[
1 − 𝜃 − 𝛼

tan 𝜃

]
(1.14g)

For 𝛼 > 0 and 𝜃 > 𝛼, tan 𝜃 > 𝜃 – 𝛼; and from Eq. (1.14g), dP
d𝜃

> 0. Similarly, for 𝛼 > 0 and 𝜃 < 0,

tan 𝜃 < 𝜃 – 𝛼; and from Eq. (1.14g), dP
d𝜃

< 0. Therefore, equilibrium curves are stable when their
slope is positive in the bottom right and negative in the top left in Figure 1.15. The same way it
can be proved that for 𝛼 < 0, the equilibrium curves are stable when their slope is negative for
𝜃 < 0 in the bottom left; and the slope is positive for 𝜃 > 0 in the top right in Figure 1.15. The

results are symmetrical. For the critical state, d2Π
d2𝜃

= 0, therefore, from Eqs. (1.14f and 1.14g),
dP
d𝜃

= 0 and

tan 𝜃 = 𝜃–𝛼 (1.14h)

Deformation in radians, θ

0
0.2
0.4
0.6
0.8
1.0
1.2

1.8
1.6
1.4

π/60 π/2π/3–π/6–π/3–π/2

α = 100

α = 50

P/Pcr

α = 50

α = 100

α = –50

α = –50
α = –100

α = –100

Critical 
Curve 

Figure 1.15 Equilibrium path of the rigid bar imperfect column with rotational spring at the base.
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The zero slope point on each equilibrium curve gives the critical state. Figure 1.15 also shows
that the imperfect column can be stable at loads higher than that of the perfect column.

1.5.2 Two Rigid Bars Connected by Rotational Springs

1.5.2.1 The Displaced Shape Equilibrium Method
Consider the column shown in Figure 1.16a that has two degrees of freedom. The deflected
shape of the column is defined by the angles 𝜃1 and 𝜃2. Initially the column is imperfect shown
by the angles of inclination 𝛼1 and 𝛼2 of the two bars with the vertical.

Taking the sum of the moments about A in Figure 1.16b equal to zero,

PL sin 𝜃1 + c[(𝜃2–𝛼2)–(𝜃1–𝛼1)]–c(𝜃1–𝛼1) = 0

or

c 𝜃2 = 2c𝜃1–2c𝛼1 + c𝛼2–PL sin 𝜃1 (1.15a)

Similarly taking the sum of the moments about B in Figure 1.16c equal to zero,

PL sin 𝜃2–c[(𝜃2 − 𝛼2)–(𝜃1–𝛼1)] = 0 (1.15b)

Eliminating 𝜃2 from Eqs. (1.15a and 1.15b), we have
P
c
L

=
𝜃1 − 𝛼1

sin 𝜃1 + sin
(

2𝜃1 − 2𝛼1 + 𝛼2 −
PL
c

sin 𝜃1

) (1.15c)

1.5.2.2 The Energy Method
The strain energy of the column in Figure 1.16 is given by

U = 1
2

c(𝜃1 − 𝛼1)2 +
1
2

c[𝜃2 − 𝛼2 − (𝜃1 − 𝛼1)]2 (1.16a)

θ2

θ1

L 

L 

B 

C 

α1

α2

P

A 

(a)

α1

A

L sin θ1

P 

P 

L 

θ1

c(θ1 – α1) 

c[(θ2– α2)
– (θ1 – α1)]

B

(b)

Bc[(θ2 – α2) 
– (θ1 – α1)]

C

P 

P 

L 

L sin θ2

α2

θ2 

(c)

Figure 1.16 Imperfect column with two rigid bars and two rotational springs: (a) Displaced shape of the column;
(b) Free body diagram of the lower bar; (c) Free body diagram of the upper bar.
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V = −P[L cos 𝛼2–L cos 𝜃2 + L cos 𝛼1–L cos 𝜃1] (1.16b)
The total potential energy is Π = U +V, or

Π = 1
2

c(𝜃1 − 𝛼1)2 +
1
2

c[(𝜃2 − 𝛼2)–(𝜃1–𝛼1)]2 − P[L cos 𝛼2–L cos 𝜃2 + L cos 𝛼1–L cos 𝜃1]

By differentiating, we obtain the equilibrium conditions:
𝜕Π
𝜕𝜃1

= c(𝜃1 − 𝛼1) − c(𝜃2 − 𝛼2 − 𝜃1 + 𝛼1) − PL sin 𝜃1 = 0 (1.16c)

or c 𝜃2 = 2c𝜃1 – 2c𝛼1 + c𝛼2 – PL sin 𝜃1, same as Eq. (1.15a).
𝜕Π
𝜕𝜃2

= PL sin 𝜃2 − c[𝜃2 − 𝛼2 − (𝜃1–𝛼1)] = 0 (1.16d)

Equation (1.16d) is the same as Eq. (1.15b), therefore, eliminating 𝜃2 from above equations
will lead to the same P versus 𝜃1 relation as in Eq. (1.15c). For the column in Figure 1.16 if
it is perfect, i.e. 𝛼1 = 𝛼2 = 0, and if the displacements, 𝜃1 and 𝜃2 are small, the critical load
Pcr = 0.382 c

L
. From Eq. (1.15c) we get

P
Pcr

=
𝜃1 − 𝛼1

0.382
[
sin 𝜃1 + sin

(
2𝜃1 − 2𝛼1 + 𝛼2 −

PL
c

sin 𝜃1

)] (1.16e)

Assume
𝛼1 = 𝛼2 = 𝛼.

The equilibrium path given by Eq. (1.16e) is plotted in Figure 1.17.
Discrete systems with one or two degrees of freedom have been analyzed in this chapter. In

the analysis for stability of discrete systems, algebraic equations were developed and solved.
Differential equations are formed when the analysis of continuous systems such as beams and

0

0.2

0.4

0.6

1.2

1.4

1.6

1.8

–π/2 –π/3 –π/6 0 π/6 π/3 π/2

0.8

10

α = –50

α = –100

α = – 100

α = 100

α = 50 α = –50

α = 100

α = 50

Figure 1.17 Displacement path of two imperfect rigid bars column connected by two rotational springs.
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columns is performed. The solution of these differential equations is much more difficult than
the algebraic equations. These differential equations can be converted to algebraic equations
by discretizing a structure or assuming a Fourier series expansion for its displacements. So the
analysis of discrete systems is also valuable to analyze the continuous systems. The methods
for solving stability problems learned here will be useful in later chapters.

Problems

1.1 Find the critical load Pcr for the rigid bar column in Figure P1.1 by using the equilibrium
method. The column is restricted by a rotational spring of stiffness c at the support

P 

A B
L 

c 

Figure P1.1

1.2 Solve Problem 1.1 by the energy method.

1.3 Determine the critical load Pcr for the rigid bar column in Figure P1.3 a, b by using the
equilibrium method.

(a) (b)

45o

P

k

P
k2

k1

L L

Figure P1.3

1.4 Solve Problem 1.3 by the energy method.

1.5 Analyze the stability behavior of the rigid bar system in Figure P1.5.
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c1c2 
P 

L L 

CBA

Figure P1.5

1.6 Analyze the stability behavior of the rigid bar and spring system in Figure P1.6. The col-
umn is initially imperfect and is inclined by an angle 𝛼.

45o
α 

k

P 

A 

L 

Figure P1.6
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Columns

2.1 General

Vertical straight members whose lengths are considerably greater than their lateral dimensions
are usually called columns. These structural members are generally thought of as carrying axial
compressive force, and are important load-carrying elements in a structure. An understanding
of their behavior is therefore important for the overall safety of a structure. Columns can usually
be classified as short, intermediate, and long, depending on the ratio of their length to the lateral
dimensions and are defined by structural codes. A column can fail either due to material failure
or because of lateral deflection called instability or buckling. Short columns fail due to material
failure at a load that causes a yield point in a steel column, or crushing in a concrete column.
In this failure, capacity of the column material to bear the load is exceeded. On the other hand,
long columns reach a load that causes lateral deflection called buckling before the material
capacity is reached. In long columns, buckling may occur when the material is still elastic in
all fibers of the cross-section. When elastic stress of the material occurs before buckling takes
place in the case of intermediate columns, this is called inelastic buckling.

The maximum axial load a column can support when it is on the verge of buckling is called
the critical or buckling load. Though these two terms are used interchangeably, there is a differ-
ence between the two. The critical load is the load obtained theoretically for an ideal structure,
whereas the buckling load is the actual load obtained for a real structure. A straight column
subjected to a small axial force P remains straight and undergoes only axial displacement. This
straight form of elastic equilibrium is stable because a lateral deflection produced by a small lat-
eral force disappears when the lateral force is removed. If the axial force P is gradually increased,
a condition will be reached when a small lateral force will produce a displacement that does not
disappear when the lateral force is removed. This happens because the column in its straight
equilibrium position becomes unstable. The smallest axial force at which this happens is called
the critical load. This axial force value where a column can remain in equilibrium in the straight
position as well as in a slightly deflected position is called the point of bifurcation.

2.2 The Critical Load According to Classical Column Theory

We first study the behavior of an idealized perfect column subjected to axial force. The axially
loaded member is assumed to be made of homogeneous material and has a constant cross-section

Structural Stability Theory and Practice, First Edition. Sukhvarsh Jerath.
© 2021 Sukhvarsh Jerath. Published 2021 by John Wiley & Sons, Inc.
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throughout its length. We will use the displaced shape or neutral equilibrium method to write
equilibrium equations of the slightly bent column. This approach is called the Euler method
or an eigenvalue analysis. The critical load is given by the eigenvalues and the deflected shape
is obtained from the eigenvectors. The solution gives only the deflected shape called the mode
shape and not the magnitude of deflections. The solution was originally given by Swiss math-
ematician Leonhard Euler [1] in 1744. Though Euler analyzed an axially loaded column fixed
at the base and free at the other end [2], nowadays a member that is simply supported at both
ends is usually called a Euler column. Certain assumptions are made in the analysis:

i) The column is perfectly straight.
ii) The load is applied along the centroidal axis of the column.

iii) The material of the column is homogeneous and obeys Hooke’s law.
iv) The assumption of the theory of bending, i.e. plane sections before deformation remain

plane after deformation applies.
v) The deformation of the column is small so that the curvature can be assumed to be

1/𝜌 = d2y/d x2, because the term (dy/dx)2 is negligible in comparison to 1 in the curvature

expression, 1
𝜌
=

d2y
dx2

⎡⎢⎢⎣1+
⎛⎜⎜⎝
dy
dx

⎞⎟⎟⎠
2⎤⎥⎥⎦

3
2

[3]. Where 𝜌 is the radius of curvature, and y is the lateral

deflection of the column.

2.2.1 Pinned-Pinned Column

Considering the equilibrium of the deflected shape of the column in Figure 2.1a under the
action of axial load P, we can write the equilibrium equation of the free body diagram shown
in Figure 2.1b.

y 

x 

L 

P 

(a) (b)

P 

x 

y 

P

P 

Mx = –EI y"

Figure 2.1 Pinned-pinned column under axial load: (a) Pinned-pinned column; (b) Free body diagram.
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From bending theory [4],
M
I
= E

𝜌
(2.1a)

where M is the internal mending moment at a section, I is the moment of inertia of the section
about the axis of bending, E is the modulus of elasticity of the material, and 𝜌 is the radius of
curvature of the bent shape at the section. The radius of curvature as shown before is given by

1
𝜌
= y′′ (2.1b)

where y′′ =
d2y
dx2 , a prime shows the derivative with respect to x. In Figure 2.1b, y′ =

dy
dx

, is a

positive quantity for the coordinate axes chosen. The slope, y′, is decreasing with the increase
of coordinate x, therefore, the rate of change of slope, y′′ , is negative. The internal moment
Mx at a distance x, in Figure 2.1b is positive, so the expression relating the moment Mx and the
curvature is given by Mx = −EIy′′. The moment equilibrium equation in Figure 2.1b is given by

P y −Mx = 0

or

EI y′′ + P y = 0 (2.1c)

and

y′′ + k2y = 0 (2.1d)

where k2 = P/EI. Equation (2.1d) is a linear, second-order, homogeneous differential equation
with constant coefficients. The general solution for the equation is

y = A sin kx + B cos kx (2.1e)

Constants A and B are calculated from the boundary conditions

y = 0 at x = 0 (2.1f)

and

y = 0 at x = L (2.1g)

Substituting Eq. (2.1f) into Eq. (2.1e) gives

B = 0

That gives

y = A sin kx (2.1h)

Substituting Eq. (2.1g) into Eq. (2.1h) we get

A sin kL = 0 (2.1i)

Equation (2.1i) is satisfied if either A = 0 or sinkL = 0.
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If A = 0, it states that y = 0 always, or the straight line position is the equilibrium position. It
is called the trivial solution. Hence, A cannot be zero, therefore, sinkL = 0. This gives the equi-
librium position of the column in a slightly deformed position, called the nontrivial solution.

Therefore,

kL = n 𝜋, where n = 1, 2, 3, ------- (2.1j)

or

k2 = n2𝜋2

L2

and

P = n2𝜋2EI
L2 (2.1k)

The deformed shape is given by

y = A sin n𝜋x
L

(2.1l)

The smallest value of load P is when n = 1, and the associated axial load on the column is
called the critical load Pcr or the Euler load. It is the smallest load at which the column ceases
to be in stable equilibrium. Thus,

Pcr =
𝜋2EI

L2 (2.1m)

and the corresponding deflected shape is

y = A sin 𝜋x
L

(2.1n)

Equation (2.1n) gives the deflected shape and not the exact value of the deflection because
constant A is unknown. This is because the governing equilibrium condition given by the
homogeneous differential Eq. (2.1c) became linear because of the linearization of curvature
expression in assumption (v). The solution of Eq. (2.1c) is called an eigenvalue problem that
leads to eigenvalues and eigenvectors given by Eqs. (2.1k) and (2.1l) respectively. The load ver-
sus the displacement of the column is shown in Figure 2.2. The column remains straight up
to the Euler critical load, Pcr. After this load, the column can remain straight or displace, sig-
nifying the state of neutral equilibrium exists at the Euler critical load, therefore, it marks the
transition from stable to unstable equilibrium.

L2
π2EI

Pcr = 

P

Deflection, y

Figure 2.2 Load displacement path.
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Critical stress 𝜎cr is given by 𝜎cr =
Pcr
A

, where
A = cross - sectional area of the column
or

𝜎cr =
𝜋2EI
L2A

and

𝜎cr =
𝜋2E
L∕r2 (2.1o)

where I = A r2, r is the radius of gyration of the column cross-section about its axis of bending.
For values of n larger than 1, higher forces can be obtained from Eq. (2.1k) and the correspond-
ing displaced shapes called mode shapes can be obtained from Eq. (2.1l), shown in Figure 2.3.

2.2.2 Fixed-Fixed Column

2.2.2.1 Symmetric Mode
If a column is fixed at both ends, it will bend as shown in Figure 2.4a when it is displaced
slightly in a symmetric mode. Fixed end bending moments, MF , are generated at the ends of
the column. The column will have zero displacements and rotations at both the ends. For the
deformed shape to be in equilibrium, the resisting internal moment should be equal to the
external moment in the free body diagram in Figure 2.4b at a distance x from the origin. Taking
the equilibrium of moments in the free body diagram we get

P y −Mx −MF = 0 (2.2a)

Since Mx = −EI y′′, Eq. (2.2a) becomes

y′′ + k2y =
MF

EI
(2.2b)

where k2 = P/EI, as before. Equation (2.2b) is a non-homogeneous differential equation. The
complete solution consists of a complementary part satisfying the homogeneous equation and
a particular part of the total solution satisfying the entire equation. The complementary part is

L 

(a) (b) (c)

L/2

L/2 
L/3

L/3 

L/3

Figure 2.3 Mode shapes of buckling: (a) First mode shape; (b) Second mode shape; (c) Third mode shape.
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L/4

P

P
MF

MF

MF

x

v

L

L/4

L/2
Inflection
Points 

y 

P

x

P

Mx = –EIy"

(a) (b)

Figure 2.4 Fixed-fixed column under axial load and symmetric mode: (a) Fixed fixed column; (b) Free body diagram.

given by Eq. (2.1e). The right-hand side of Eq. (2.2b) is constant, so we can assume the particular
solution also a constant yp, that can be obtained by observation and substituting it in Eq. (2.2b).

yp =
MF

k2EI
(2.2c)

Therefore, the complete solution of Eq. (2.2b) is given by

y = A sin kx + B cos kx +
MF

k2EI
Now, k2 = P

EI
, thus,

y = A sin kx + B cos kx +
MF

P
(2.2d)

Boundary conditions at the bottom of the column in Figure 2.4a are

y = 0, and y′ = 0 at x = 0

Substituting these boundary conditions in Eq. (2.2d), we have

B = −
MF

P
, and A = 0

or

y =
MF

P
(1 − cos kx) (2.2e)

Substitute the boundary condition, y = 0 at x = L in Eq. (2.2e). Since MF and P are not zero,

1 − cos kL = 0, or cos kL = 1

or

kL = 2n𝜋 n = 1, 2, 3, -----
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and the load P is given by P = 4n2𝜋2EI
L2

The lowest load is obtained when n = 1, giving

Pcr =
4𝜋2EI

L2 (2.2f)

and the corresponding deformed shape from Eq. (2.2e) is

y =
MF

P

(
1 − cos 2𝜋x

L

)
(2.2g)

y′′ =
MF

P

(
4𝜋2

L2 sin 2𝜋x
L

)
(2.2h)

when x = L/2 and 3L/4, y′′ = 0. Therefore, at these sections the bending moment is zero, and
these sections are the points of inflection on the column bent shape. The column of length
L/2 between the inflection points bends in the shape of a pinned-pinned column, and is thus
equivalent to a pinned-pinned column of length L/2. The critical load can be obtained by using
this observation as

Pcr =
𝜋2EI(

L
2

)2 (2.2i)

It can be seen that the critical load for a fixed-fixed column is that of an equivalent
pinned-pinned column of length L/2, from Eq. (2.1m). It is called the effective length, KL, for
the particular column, thus the effective length of a fixed-fixed column is half its actual length.

2.2.2.2 Anti-Symmetric Mode
The fixed-fixed column will bend as shown in Figure 2.5a in an anti-symmetric displaced shape.
The fixed end bending moment, MF, and the end shears are also shown in the Figure 2.5a by
taking the equilibrium of the entire column as a free body diagram in the deflected position.
The column will have zero displacements and rotations at the fixed supports.

From the moment equilibrium of the free body diagram in Figure 2.5b

Py +
2MF

L
x − (−EIy′′) −MF = 0

or

y′′ + k2y =
MF

EI
−

2MFx
EIL

(2.3a)

where k2 = P/EI. The total solution of the differential Eq. (2.3a) is given by

y = A sin kx + B cos kx +
MF

P
−

2MFx
PL

(2.3b)

Boundary conditions at the bottom of the column in the Figure 2.5 are y = 0 and y′ = 0 at
x = 0.
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(a) (b)

P
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x

Mx = –EIy"

2 MF/L

2 MF/L

MF

MF

MF

P

P

x

L

L/2

2 MF/L

2 MF/L

y

L/2

Figure 2.5 Fixed-fixed column under axial load and anti-symmetric mode:(a) Fixed-fixed column; (b) Free body
diagram.

Substituting these boundary conditions in the Eq. (2.3b), we get

B = −
MF

P
and A =

2MF

kPL
or

y =
2MF

kPL
sin kx −

MF

P
cos kx +

MF

P
−

2MFx
PL

(2.3c)

At the other end of the column, the boundary condition is y = 0, at x = L. Substituting it into
Eq. (2.3c) we have

MF

P

(
2 sin kL

kL
− cos kL − 1

)
= 0 (2.3d)

Since MF
P

is not zero,

2 sin kL
kL

− cos kL − 1 = 0 (2.3e)

Use the trigonometric expressions: sin kL = 2 sin kL
2

cos kL
2

and coskL = 2cos2kL − 1 in
Eq. (2.3e) to obtain

tan kL
2
= kL

2
(2.3f)

The smallest root of the transcendental Eq. (2.3f) is kL/2 = 4.4934, or k2L2 = 80.76, and

Pcr =
80.76EI

L2 (2.3g)

The critical load for the anti-symmetric buckling given by Eq. (2.3g) is much larger than that
given by Eq. (2.2f) for symmetrical buckling. Hence, unless the column is restrained in the mid-
dle of its length, the column will buckle in the symmetrical mode at a much lesser critical load.
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For practical purposes the critical load for the fixed-fixed column is given by Pcr = 4𝜋2EI/L2 in
Eq. (2.2f) and the corresponding deflected shape is given by Eq. (2.2g).

2.2.3 Cantilever Column

A cantilever column will bend as shown in Figure 2.6a when it is displaced laterally by a small
amount. The lateral deflection at the free end is 𝛿, and a moment, P𝛿, is developed at the fixed
end at the base. The slope, y′, is increasing with the increase of coordinate x, therefore, the rate
of change of slope, y′′, is positive. The internal moment Mx at a distance x, in Figure 2.6b is
negative, so the expression relating the moment Mx and the curvature is Mx = −EI y′′. The
moment equilibrium in Figure 2.6b is given by

P y − (−EI y′′) − P𝛿 = 0 (2.4a)

or

y′′ + k2y = k2𝛿 (2.4b)

where k2 = P/EI. The general solution of Eq. (2.4b) is

y = A sin kx + B cos kx + 𝛿 (2.4c)

Applying the boundary conditions at the base of the column, at x = 0: y(0) = y′(0) = 0, we get
A = 0, and B = − 𝛿. Therefore,

y = 𝛿(1 − cos kx) (2.4d)

Now, applying the boundary condition at the upper end of the member, at x = L: y(L) = 𝛿, we
have

cos kL = 0 (2.4e)

(a) (b) (c)

y

P

P

Pδ

x

y

Mx = –EIy"

P

P

Pδ

x

y

L

δ

P

P

L

2L

Figure 2.6 Cantilever column under axial load: (a) Cantilever column; (b) Free body diagram; (c) Equivalent pinned-
pinned column.
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MF
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P
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0.7L 

Inflection 
Point 

Mx = –EIy"

MF/L

MF/L

MF/L

MF/L

Figure 2.7 Fixed-pinned column under axial load: (a) Fixed-pinned column; (b) Free body diagram.

or

kL = n𝜋
2
,n = 1, 3, 5, ----- (2.4f)

and

y = 𝛿

(
1 − cos n𝜋x

2L

)
(2.4g)

The critical load is obtained when n = 1, or from Eq. (2.4f), kL = 𝜋

2
, and

Pcr =
𝜋2EI
4L2 (2.4h)

The corresponding mode shape is given by

y = 𝛿

(
1 − cos 𝜋x

2L

)
(2.4i)

The displacement curve of the cantilever column can be thought of as half the displacement
curve of a pinned-pinned column as shown in Figure 2.6c. The effective length of a cantilever
column is thus KL = 2L, and the critical load is expressed as

Pcr =
𝜋2EI
(2L)2

(2.4j)

2.2.4 Fixed-Pinned Column

A column that is pinned at the base and fixed at the top is shown in Figure 2.7 when it is
displaced laterally by a small amount. There will be moment MF at the fixed support and shear
forces MF/L at each support that can be found by considering the equilibrium of the entire
column in Figure 2.7a. From the moment equilibrium of the free body diagram in Figure 2.7b,
we have
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EIy′′ + Py =
MFx

L
(2.5a)

or

y′′ + k2y =
MFx
EIL

(2.5b)

where k2 = P/EI. The complete solution of Eq. (2.5b) is

y = A sin kx + B cos kx +
MFx
PL

(2.5c)

Boundary conditions are

y = 0 at x = 0
y = 0 at x = L

y′ = 0 at x = L

Applying the first boundary condition gives B = 0, and using the second boundary condition
leads to

A = −
MF

P sin kL

Hence, from Eq. (2.5c) the deflection is given by

y =
MF

P

(
x
L
− sin kx

sin kL

)
(2.5d)

or

y′ =
MF

P

(
1
L
− k cos kx

sin kL

)
(2.5e)

Substituting the boundary condition y′ = 0 at x = L, we have

0 =
MF

P

(
1
L
− k cos kL

sin kL

)
(2.5f)

Since MF/P is not zero, Eq. (2.5f) leads to

tan kL = kL (2.5g)

The lowest root of this transcendental equation is kL = 4.4934, therefore

Pcr =
20.19EI

L2 (2.5h)
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Substituting kL = 4.4934 into Eq. (2.5d), the deflected shape of the column at the critical
load is

y =
MF

P

[ x
L
+ 1.0245 sin

(
4.4934 x

L

)]
(2.5i)

y′ =
MF

P

[ 1
L
+ 1.0245

(4.4934
L

)
cos

(4.4934x
L

)]
(2.5j)

y′′ =
MF

P

[
−1.0245

(4.4934
L

)2
sin

(4.4934x
L

)]
(2.5k)

From Eq. (2.5k), bending moment Mx at a section is zero, if

sin
(4.4934x

L

)
= 0

or

4.4934x
L

= n𝜋, n = 0, 1, 2, 3 − − − −−

The smallest nonzero value is 4.4934x
L

= 𝜋, or x = 0.699 L≈ 0.7 L. The point of inflection is at
a distance of 0.7L from the origin on the bent shape of the column in Figure 2.7a. The column of
length 0.7L between the inflection points bends in the shape of a pinned-pinned column, and is
thus equivalent to a pinned-pinned column of length 0.7L. The effective length of a fixed-pinned
column is thus KL = 0.7L. and the critical load can be obtained from

Pcr =
𝜋2EI
(0.7L)2

(2.5l)

2.3 Effective Length of a Column

It is seen in Eqs. (2.1m), (2.2i), (2.4j), and (2.5l) that the critical load for an elastic straight
perfect column loaded with an axial force depends on the boundary conditions and can be
written as

Pcr =
𝜋2EI
(KL)2

(2.6)

where KL is called the effective length of the column. Theoretical and design values for the
effective lengths are given in Table 2.1 for various boundary conditions. Theoretical values have
been derived for the ideal boundary conditions. Recommended design values are given by the
American Institute of Steel Construction (AISC) [5] in their Specification for Structural Steel
Buildings for use when these boundary conditions are not fully realized in practice. The design
values are higher than the theoretical values because joint fixity is generally not completely
realized.
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Table 2.1 Effective length factor K for columns.

Buckled shape of the column
is shown by solid line.

L 
L L/2 

L
2L L

0.7L

Theoretical K value 1.0 0.5 2.0 0.7
Recommended AISC design value 1.0 0.65 2.1 0.8

2.4 Special Cases

Four standard cases of column buckling have been discussed above. Critical loads were
obtained as eigenvalues and the eigenvectors gave the buckled shapes of those columns.
Usually the lowest eigenvalue is of interest because it gives the lowest force at which the
column will buckle and hence gives the critical load. The corresponding eigenvector is the
deflected shape of the column when it bends. Now we will examine some more cases where
the axial force and the column cross-section are not constant along the length of the column.

2.4.1 Pinned-Pinned Column with Intermediate Compressive Force

The case where axial forces are applied at the ends and at an intermediate cross-section of a
column that is hinged at both ends is discussed here. If the axial forces slightly exceed their
critical value, the column will buckle as shown in Figure 2.8a. I1 and I2 are the moments of
inertia of the cross -sections for the portions BC and AB portions of the column. Let 𝛿 be the

P1

P1

P2 δ/L

P2 δ/L

P2 δ/L
P2 δ/L

y1

y1

C 

x2

x1

x1

 

y2
Mx2 = –EI2 y2"

Mx1 = –EI1 y1"y2

x2

A 

δ
BL1

L2

A

C

(a) (b) (c)

V = P2 δ/L

V = P2 δ/L

P1 + P2

P1 + P2

P1 + P2

P1

P2

L 

Figure 2.8 Pinned-pinned column under axial forces at the ends and at the intermediate cross-section:
(a) Pinned-pinned column; (b) Free body diagram within length L2; (c) Free body diagram within length L1.
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deflection at the cross-section at point B where the intermediate force P2 is applied. Taking the
entire column in its displaced shape as a free body diagram and taking the moment equilibrium
of the column, the lateral reactions at the supports are obtained from P2 𝛿 −VL= 0, or V =

P2𝛿

L
as shown in Figure 2.8a.

In Figure 2.8c, y′1 =
dy1

dx1
, is a positive quantity for the coordinate axes chosen. The slope, y ′

1 ,

is decreasing with the increase of coordinate x1, therefore, the rate of change of slope, y′′1 , is
negative. The internal moment Mx1 at a distance x1, in Figure 2.8c is positive, so the expres-
sion relating the moment Mx1 and the curvature is given by Mx1 = −EI y′′1 . From the moment
equilibrium of the free body diagram in Figure 2.8c of length B to C, we have

EI1y′′1 + P1y1 = −
P2𝛿

L
x1

or

y′′1 + k2
1y1 = −k2

4
𝛿

L
x1 (2.7a)

where k2
1 = P1∕EI1, and k2

4 = P2∕EI1.
For the length A to B, the moment equilibrium of the free body diagram in Figure 2.8b gives

EI2y′′2 + (P1 + P2)y2 =
P2𝛿

L
x2

or

y′′2 + k2
3y2 = k2

2
𝛿

L
x2 (2.7b)

where k2
2 = P2∕EI2 and k2

3 = (P1 + P2)∕EI2. Eqs. (2.7a) and (2.7b) have the following general
solutions

y1 = A1 sin k1x1 + B1 cos k1x1 −
k2

4

k2
1

𝛿

L
x1 0 < x1 < L1 (2.7c)

y2 = A2 sin k3x2 + B2 cos k3x2 +
k2

2

k2
3

𝛿

L
x2 0 < x2 < L2 (2.7d)

The constants of integration are obtained from the following end conditions of the two portions
of the buckled bar: BC and AB.

Portion BC
y1 = 0 at x1 = 0, and y1 = δ at x1 = L1

From these conditions we find

A1 =
𝛿(k2

1L + k4
2L1)

k2
1L sin k1L1

, B1 = 0
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Portion AB
y2 = 0 at x2 = 0, and y2 = δ at x2 = L2

From these conditions we find

A2 =
𝛿(k2

3L − k2
2L2)

k2
3L sin k3L2

, B2 = 0

The continuity condition at B is
(

dy1
dx1

)
x1=L1

= −
(

dy2
dx2

)
x2=L2

. Differentiate Eqs. (2.7c) and (2.7d)
to get

dy1

dx1
= y ′

1 =
𝛿(k2

1L + k2
4L1)

k2
1L sin k1L1

k1 cos k1x1 −
k2

4

k2
1

𝛿

L

dy2

dx2
= y′2 =

𝛿(k2
3L − k2

2L2)
k2

3L sin k3L2
k3 cos k3x2 +

k2
2

k2
3

𝛿

L

Substituting these values in the continuity condition at B, we get

k2
4

k2
1
−

k2
1L + k2

4L1

k1 tan k1L1
=

k2
2

k2
3
+

k2
3L − k2

2L2

k3 tan k3L2
(2.7e)

If P2 = 0, I1 = I2 = I, and L1 = L2 = L/2, then

k2
1 = P1∕EI1 = P1∕EI, k2

2 = P2∕EI2 = 0,
k2

3 = (P1 + P2)∕EI2 = P1∕EI, k2
4 = P2∕EI1 = 0

and

k2
1 = k2

3 = k2 = P1∕EI.

Substituting the above values of k1, k2, k3, and k4 in Eq. (2.7e) we obtain

− k
tan kL

2

= k
tan kL

2

or

tan kL
2
= ∞,

kL
2
= n𝜋

2
, n = 1, 3, 5,− − −

The lowest value of the compressive force is given by

kL = 𝜋, or Pcr =
𝜋2EI

L2

Thus, we get critical compressive force that is the same as for the pinned-pinned column with
a single axial force in Figure 2.1. For the two-force system, assume

P1 + P2

P1
= m,

I2

I1
= n, and

L2

L1
= p (2.7f)
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The critical or the smallest values of the axial compressive forces P1 +P2 that satisfy Eq. (2.7e)
were obtained using trial and error by Gere and Timoshenko [4]. This critical force is repre-
sented by the formula

(P1 + P2)cr =
𝜋2EI2

(KL)2
(2.7g)

in which KL is the effective length of the bar. For the case where L1 = L2, or p = 1, the values of
the effective length factor K are given from the above reference [4] in Table 2.2.

2.4.2 Cantilever Column with Intermediate Compressive Force

Consider a cantilever column subjected to axial compressive forces at the ends and at an inter-
mediate cross-section. Let a force P1 act at the intermediate cross-section and a force P2 act
at the free end of the column. The moments of inertia of the column vary along the length
of the column. I1 is the moment of inertia in the lower portion AB and I2 is the moment of
inertia in the upper portion BC of the column as shown in Figure 2.9. The deflected shape of
the entire column is shown in Figure 2.9a. Consider the equilibrium of the entire column in
its displaced shape to find the external reactions at the bottom of the column. The deflection
at the cross-section of the application of load P1 is 𝛿1 and the deflection at the free end of the
column in its displaced position is 𝛿2. The reactions at the fixed end at the base of the column
are found to be (P1 +P2) in the vertical direction and a moment of (P1𝛿1 +P2𝛿2) by considering
the equilibrium of the displaced shape of the entire column.

Considering the moment equilibrium of the portion AB, 0≤ x ≤L1 in Figure 2.9b

(P1 + P2)y1 − (−EI1y′′1 ) −MA = 0, where MA = P1𝛿1 + P2𝛿2

y′′1 + k2
1y1 =

MA

EI1
(2.8a)

where
P1 + P2

EI1
= k2

1

Table 2.2 Effective length factor K for column in
Figure 2.8, with L1 = L2 = L/2.

m/n 1.00 1.25 1.50 1.75 2.00

1.00 1.00 0.95 0.91 0.89 0.87
1.25 1.06 1.005 0.97 0.94 0.915
1.50 1.12 1.06 1.02 0.99 0.96
1.75 1.18 1.11 1.07 1.04 1.005
2.00 1.24 1.16 1.12 1.08 1.05
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Figure 2.9 Cantilever column under axial forces at the free end and at the intermediate cross-section: (a) Cantilever
column; (b) Free body diagram within portion AB; (c) Free body diagram within portion BC.

The general solution of Eq. (2.8a) is

y1 = A1 sin k1x + B1 cos k1x +
MA

EI1k2
1

(2.8b)

y′1 = k1A1 cos k1x − k1B1 sin k1x (2.8c)
Boundary conditions in the portion AB are: y1 = 0 at x = 0, and y′1 = 0 at x = 0. Substituting

these conditions in Eq. (2.8b) we get

A1 = 0, B1 = −
MA

EI1k2
1

Therefore,

y1 =
MA

EI1k2
1
(1 − cos k1x) (2.8d)

y′1 =
MA

EI1k1
sin k1x (2.8e)

Considering the moment equilibrium of the portion BC, L1 ≤ x ≤L in Figure 2.9(c)
P2y2 + EI2y′′2 + P1𝛿1 − (P1𝛿1 + P2𝛿2) = 0 (2.8f)

or
y′′2 + k2

2y2 = k2
2𝛿2 (2.8g)

where

Where ∶
P2

EI2
= k2

2
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and the general solution of Eq. (2.8g) is
y2 = A2 sin k2x + B2 cos k2x + 𝛿2 (2.8h)

Boundary conditions in the portion BC are: y2 = 𝛿1, at x = L1, and y2 = 𝛿2 at x = L. Substituting
these conditions in Eq. (2.8h) we get

A2 =
𝛿1 − 𝛿2

sin k2L1 − tan k2L cos k2L1

B2 = −
𝛿1 − 𝛿2

sin k2L1 − tan k2L cos k2L1
tan k2L

y2 =
𝛿1 − 𝛿2

sin k2L1 − tan k2L cos k2L1
[sin k2x − tan k2L cos k2x] + 𝛿2 (2.8i)

y2 =
𝛿1 − 𝛿2

sin k2L1 − tan k2L cos k2L1
[k2 cos k2x + k2 tan k2L sin k2x] (2.8j)

Continuity conditions between the portions AB and BC are:
y1(L1) = y2(L1)

or
MA

EI1k2
1
(1 − cos k1L1) =

𝛿1 − 𝛿2

sin k2L1 − tan k2L cos k2L1
(sin k2L1 − tan k2L cos k2L1) + 𝛿2

or
MA

EI1k2
1
(1 − cos k1L1) = 𝛿1 (2.8k)

and y′1(L1) = y′2(L1), from Eqs. (2.8e) and (2.8j)
MA

P1 + P2
k1 sin k1L1 =

𝛿1 − 𝛿2

sin k2L1 − tan k2L cos k2L1
(k2 cos k2L1 + k2 tan k2L sin k2L1) (2.8l)

Substituting MA = P1𝛿1 +P2𝛿2, and reorganizing the terms in Eqs. (2.8k) and (2.8l), we have[
P1

P1 + P2
(1 − cos k1L1) − 1

]
𝛿1 +

P2

P1 + P2
(1 − cos k1L1)𝛿2 = 0[

P1

P1 + P2
k1 sin k1L1 −

k2 cos k2L1 + k2 tan k2L sin k2L1

sin k2L1 − tan k2L cos k2L1

]
𝛿1+[

P2

P1 + P2
k1 sin k1L1 +

k2 cos k2L1 + k2 tan k2L sin k2L1

sin k2L1 − tan k2L cos k2L1

]
𝛿2 = 0

or ⎡⎢⎢⎢⎢⎢⎢⎢⎣

−
P2

P1 + P2
−

P1

P1 + P2
cos k1L1

P2

P1 + P2
(1 − cos k1L1)

P1

P1 + P2
k1 sin k1L1−

k2 cos k2L1 + k2 tan k2L sin k2L1

sin k2L1 − tan k2L cos k2L1

P2

P1 + P2
k1 sin k1L1+

k2 cos k2L1 + k2 tan k2L sin k2L1

sin k2L1 − tan k2L cos k2L1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

{
𝛿1
𝛿2

}
=
{

0
0

}

(2.8m)
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2.4.2.1 Case 1
Suppose P1 = P2 = P, and L1 = L2 =

L
2

, Eq. (2.8m) will become

[
−1 − cos k1

L
2

1 − cos k1
L
21

2
k1 sin k1

L
2

sin k2
L
2
+ k2 cos k2

L
2

k1 sin k1
L
2

sin k2
L
2
− k2 cos k2

L
2

]⎧⎪⎨⎪⎩
𝛿1

𝛿2

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩

0

0

⎫⎪⎬⎪⎭ (2.9a)

If I1 = I2 = I, k1 =
√

2k2, substituting in Eq. (2.9a) we have

⎡⎢⎢⎣
−1 − cos k2L√

2
1 − cos k2L√

2
1√
2

sin k2L√
2

sin k2L
2
+ cos k2L

2
1√
2

sin k2L√
2

sin k2L
2
− cos k2L

2

⎤⎥⎥⎦
⎧⎪⎨⎪⎩
𝛿1

𝛿2

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩

0

0

⎫⎪⎬⎪⎭ (2.9b)

For a nontrivial solution by Cramer’s rule||||||
−1 − cos k2L√

2
1 − cos k2L√

2
1√
2

sin k2L√
2

sin k2L
2
+ cos k2L

2
1√
2

sin k2L√
2

sin k2L
2
− cos k2L

2

|||||| = 0 (2.9c)

or

cos
k2L√

2
cos

k2L
2
− 1√

2
sin

k2L√
2

sin
k2L

2
= 0 (2.9d)

By trial and error the lowest value of k2L satisfying Eq. (2.9d) is k2L = 1.4378.

k2
2 =

P
EI

=
(1.4378

L

)2

Pcr =
𝜋2EI

4.775L2 (2.9e)

2.4.2.2 Case 2
Suppose P1 = 0, and P2 = P, then k2

1 =
P

EI1
, and k2

2 =
P

EI2
From Eq. (2.8m) we obtain

⎡⎢⎢⎣
−1 (1 − cos k1L1)

−
k2 cos k2L1 + k2 tan k2L sin k2L1

sin k2L1 − tan k2L cos k2L1
k1 sin k1L1 +

k2 cos k2L1 + k2 tan k2L sin k2L1

sin k2L1 − tan k2L cos k2L1

⎤⎥⎥⎦
×
{
𝛿1
𝛿2

}
=
{

0
0

}
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For a nontrivial solution by Cramer’s rule, the determinant of the coefficient matrix is equal
to zero.||||||||

−1 (1 − cos k1L1)

−
k2L1 + k2 tan k2L sin k2L1

sin k2L1 − tan k2L cos k2L1

k1 sin k1L1+
k2 cos k2L1 + k2 tan k2L sin k2L1

sin k2L1 − tan k2L cos k2L1

|||||||| = 0

or − k1 sin k1L1 sin k2L1 + k1 sin k1L1
sin k2L
cos k2L

cos k2L1 − k2 cos k1L1 cos k2L1−

k2 cos k1L1
sin k2L
cos k2L

sin k2L1 = 0

Thus,
k1 sin k1L1 sin(k2L − k2L1) − k2 cos k1L1 cos(k2L − k2L1) = 0

Therefore, k1 sin k1L1 sin k2L2 − k2 cos k1L1 cos k2L2 = 0
Finally, we get:

tan k1L1 tan k2L2 =
k2

k1
(2.10a)

If L1 = L2 =
L
2
, I1 = I2 = I, k1 = k2 = k =

√
P
EI

Eq. (2.10a) becomes: tan kL
2

tan kL
2
= 1

or

tan kL
2
= 1 (2.10b)

Lowest value of kL
2

satisfying Eq. (2.10b) is

kL
2
= 𝜋

4

or Pcr =
𝜋2EI
4L2 , same as Eq. (2.4h)

2.5 Higher-Order Governing Differential Equation

The second-order differential equations were derived for particular loads and boundary condi-
tions for various columns in the previous sections. In this section, a general differential equation
that is applicable to all boundary conditions in a column is derived by taking an element of
length dx in Figure 2.10a.
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From the equilibrium of horizontal forces in Figure 2.10b we have

V +
(

dV
dx

)
dx − V = 0

or
dV
dx

= 0 (2.11a)

Similarly, from the equilibrium of the moments in Figure 2.10b we get

P dy + V dx +M −
(

M + dM
dx

dx
)
= 0

V = dM
dx

− P
dy
dx

(2.11b)

dV
dx

= d2M
dx2 − P

d2y
dx2 (2.11c)

Substituting Eq. (2.11a) into Eq. (2.11c) we have

d2M
dx2 − P

d2y
dx2 = 0

M = −EI
d2y
dx2 (2.11d)

For a uniform homogeneous column EI is constant, therefore:

EI
d4y
dx4 + P

d2y
dx2 = 0

y

x

dy 
P

V

M
V + (dV/dx)dx

M + (dM/dx)dx

P

dx

x

dx

y 

x

L 

P 

P 

(a) (b)

Figure 2.10 Column under axial force shown with internal forces: (a) Column under axial force; (b) Free body
diagram of an element of length dx.
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or

yIV + k2y′′ = 0 (2.11e)

where

k2 = P
EI

The general solution of the fourth- order differential Eq. (2.11e) is

y = A sin kx + B cos kx + Cx + D (2.11f)

Boundary conditions are used to find the constants and the critical load from Eq. (2.11f) for
various columns.

2.5.1 Boundary Conditions for Different Supports

2.5.1.1 Pinned Support
At this support the lateral deflection and bending moment are zero, and hence we have the
conditions:

y = 0 and y′′ = 0 (2.12a)

2.5.1.2 Fixed Support
In this case, the lateral deflection and the slope of the deflected shape of the column are zero,
and hence the boundary conditions are:

y = 0 and y′ = 0 (2.12b)

2.5.1.3 Free End
At the free end the bending moment and shear force must be zero. Referring to Eqs. (2.11b)
and (2.11d), we get the following conditions:

y′′ = 0 and y′′′ + k2y′ = 0 (2.12c)

2.5.1.4 Guided Support
The slope of the deflected shape and shear force are zero at the guided support. Therefore, using
Eq. (2.12c), we have

y′ = 0 and y′′′ = 0 (2.12d)

2.5.2 Pinned-Pinned Column

Consider a pinned-pinned column in Figure 2.11. The general solution is given by

y = A sin kx + B cos kx + Cx + D (2.13a)



Trim Size: 187mm x 235mm Single Column Jerath c02.tex V1 - 11/06/2020 6:52pm Page 53�

� �

�

2.5 Higher-Order Governing Differential Equation 53

y 

x

L

P 

P 

Figure 2.11 Pinned-pinned column under axial load.

where

k2 = P
EI

Taking the derivatives of Eq. (2.13a), we have

y′ = kA cos kx − kB sin kx + C (2.13b)

y′′ = −k2A sin kx − k2B cos kx (2.13c)

Substituting y = 0 and y′′ = 0 from Eq. (2.12a) into Eqs. (2.13a) and (2.13c) at x = 0, we get

B = 0, and D = 0

Equations (2.13a) and (2.13c) reduce to

y = A sin kx + Cx (2.13d)

and

y′′ = −k2A sin kx (2.13e)

Now, substitute y = 0 and y′′ = 0 in Eqs. (2.13d) and (2.13e) at x = L

A sin kL + CL = 0

and

−k2 sin kL = 0

or [
sin kL L
−k2 sin kL 0

] {
A
C

}
=
{

0
0

}
(2.13f)
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For a nontrivial solution, the determinant of the coefficient matrix in Eq. (2.13f) must vanish,
therefore,|||| sin kL L

−k2 sin kL 0
|||| = 0 (2.13g)

k2L sin kL = 0, or sin kL = 0

Therefore,

kL = n π, n = 1, 2, 3, 4, -------

The critical load is the least valued obtained by setting n = 1,

Pcr =
𝜋2EI

L2

which is same as Eq. (2.1m), and the corresponding deflection from Eq. (2.13d), since C = 0, is

y = A sin 𝜋x
L

That is the same as in Eq. (2.1n).

2.5.3 Cantilever Column

Consider a cantilever column in Figure 2.12. Substituting the boundary conditions, y = 0 and
y′ = 0, at the fixed end x = 0, in Eqs. (2.13a) and (2.13b), we have

B + D = 0 (2.14a)
A k + C = 0 (2.14b)

The third derivative of Eq. (2.13a) is

y′′′ = −k3A cos kx + B k3 sin kx (2.14c)

P

P

Pδ

x

y

L

δ

Figure 2.12 Cantilever column under axial load.
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At the free end, x = L, the boundary conditions are: y′′ = 0, and y′′′ + k2y′ = 0.
By substituting the free end boundary conditions in Eqs. (2.13c) and (2.14c) we have:

A sin kL + B coskL = 0 (2.14d)

and C = 0
Therefore, from Eq. (2.14b) A = 0
Now, Eqs. (2.14a) and (2.14d) can be written as[

1 1
cos kL 0

] {
B
D

}
=
{

0
0

}
(2.14e)

For nontrivial solution, the determinant of the coefficient matrix in Eq. (2.14e) is zero,
or |||| 1 1

cos kL 0
|||| = 0

and cos kL = 0, this is satisfied if

kL = n𝜋
2
, n = 1, 3, 5,− − −

When n = 1, we get the critical load

Pcr =
𝜋2EI
4L2

It is the same as Eq. (2.4h). At the free end, y = 𝛿, at x = L, so from Eqs. (2.13a) and (2.14a)
we have

y = 𝛿

(
1 − cos 𝜋x

2L

)
which is the deflection of the deformed shape at the critical load, and is the same as in Eq. (2.4i).

2.5.4 Pinned-Guided Column

Consider a pinned-guided column in Figure 2.13. The general solution and its derivatives are
given by Eqs. (2.13a), (2.13b), (2.13c), and (2.14c) as before.

y = A sin kx + B cos kx + Cx + D (2.13a)

y′ = k A cos kx − k B sin kx + C (2.13b)

y′′ = −k2A sin kx − k2B cos kx (2.13c)

y′′′ = −k3A cos kx + B k3 sin kx (2.14c)

where

k2 = P
EI
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L

x

y

Pδ

P

P

δ

Figure 2.13 Pinned-guided column under axial load.

Boundary conditions: y = 0 and y′′ = 0, at the pinned end at x = 0, substituting these values
in Eqs. (2.13a) and (2.13c) we have

B = 0, and D = 0

Therefore, Eq. (2.13a) becomes

y = A sin kx + Cx (2.15a)

At the guided end, substituting y′′′ = 0, at x = L, into Eq. (2.14c) we have

A k3 cos kL = 0

or cos kL = 0, this is satisfied if

kL = n𝜋
2
, n = 1, 3, 5,− − −

The smallest value of kL = 1 gives the critical load as

Pcr =
𝜋2EI
4L2 (2.15b)

Another boundary condition at the guided end, x = L, is y′ = 0. Therefore, Eq. (2.13b) gives

A k cos kL + C = 0, or C = 0

The deflected shape at buckling is

y = 𝛿 sin 𝜋x
2L

(2.15c)

2.6 Continuous Columns

Let us consider a continuous column supported on three supports and compressed by forces P
applied at the ends as shown in Figure 2.14. It is intended to find the critical load for this column
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y1

x1

y2
x2

P P

EI1 EI2

L1 L2

A B C

Figure 2.14 Continuous column under axial load.

at which buckling takes place. Divide the column into two spans, AB and BC with the axes for
each span shown in Figure 2.14. For the span AB, the fourth-order differential equation is

yIV
1 + k1y′′1 = 0 (2.16a)

where k2
1 =

P
EI1

, and the general solution of Eq. (2.16a) is

y1 = A1 sin k1x1 + B1 cos k1x1 + C1x1 + D1 (2.16b)

The first and second derivatives of Eq. (2.16b) are

y′1 = A1k1 cos k1x1 − B1k1 sin k1x1 + C1 (2.16c)

y′′1 = −A1k2
1 sin k1x1 − B1k2

1 cos k1x1 (2.16d)

Using the boundary conditions, y1(0) = y′′1 (0) = y1(L1) = 0, for the span AB, we get

B1 = D1 = 0, and

A1 sin k1L1 + C1L1 = 0 (2.16e)

For the span BC the fourth-order differential equation is

yIV
2 + k2y′′2 = 0 (2.16f)

where k2
2 =

P
EI2

, and the general solution of Eq. (2.16f) is

y2 = A2 sin k2x2 + B2 cos k2x2 + C2x2 + D2 (2.16g)

The first and second derivatives of Eq. (2.16g) are

y ′
2 = A2k2 cos k2x2 − B2k2 sin k2x2 + C2 (2.16h)

y′′2 = −A2k2
2 sin k2x2 − B2k2

2 cos k2x2 (2.16i)

Using the boundary conditions, y2(0) = y′′2 (0) = y2(L2) = 0, for the span CB, we get

B2 = D2 = 0,

and

A2 sin k2L2 + C2L2 = 0 (2.16j)
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From the continuity condition at B, y ′
1 (L1) = −y ′

2 (L2), we have

A1k1 cos k1L1 + A2k2 cos k2L2 + C1 + C2 = 0 (2.16k)

From the equilibrium of moments at B, we have

MBA +MBC = 0

or

E I1y′′1 − E I2y′′2 = 0

or

−A1I1k2
1 sin k1L1 + A2I2k2

2 sin k2L2 = 0 (2.16l)

Equations (2.16e), (2.16j), (2.16k), and (2.16l) can be expressed in the matrix form as⎡⎢⎢⎢⎣
sin k1L1 L1 0 0

0 0 sin k2L2 L2
k1 cos k1L1 1 k2 cos k2L2 1
−I1k2

1 sin k1L1 0 I2k2
2 sin k2L2 0

⎤⎥⎥⎥⎦
⎧⎪⎨⎪⎩

A1
C1
A2
C2

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩

0
0
0
0

⎫⎪⎬⎪⎭ (2.16m)

By Cramer’s rule for a nontrivial solution of Eq. (2.16m), the determinant of the coefficient
matrix is zero. Therefore,||||||||

sin k1L1 L1 0 0
0 0 sin k2L2 L2

k1 cos k1L1 1 k2 cos k2L2 1
−I1k2

1 sin k1L1 0 I2k2
2 sin k2L2 0

|||||||| = 0 (2.16n)

or

sin k1L1 sin k2L2(I1k2
1L1 + I2k2

2L2)
−L1L2k1k2(I1k1 sin k1L1 cos k2L2 + I2k2 sin k2L2 cos k1L1) = 0 (2.16o)

If I1 = I2 = I, then k1 = k2 = k, and Eq. (2.16o) becomes

(L1 + L2) sin kL1 sin kL2 − k L1 L2 sin k(L1 + L2) = 0 (2.16p)

Let us take L1 = 1.5 L and L2 = L, then from Eq. (2.16p) we have

5 sin 3
2

kL sin kL − 3kL sin 5
2

kL = 0 (2.16q)

The lowest value of kL that satisfies Eq. (2.16q) is obtained by trial and error as 2.427.

kL = 2.427

or

Pcr =
5.89EI

L2 (2.16r)

If L2 = 2L1, then from Eq. (2.16p)

3 sin kL1 sin 2kL1 − 2kL1 sin 3kL1 = 0 (2.16s)
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or

kL1 = 1.93, Pcr =
3.725EI

L2
1

In terms of L2, Eq. (2.16p) can be written as

3 sin
kL2

2
sin kL2 − kL2 sin

3kL2

2
= 0 (2.16t)

or

kL2 = 3.86, Pcr =
14.9EI

L2
2

which is the same as in Timoshenko and Gere [4]. If the two bars were separate spans with
hinged ends, the critical loads for spans AB and BC will be given by 𝜋2EI

L2
1

and 𝜋2EI
L2

2
respectively.

The stability of the shorter span is reduced due to the action of the longer span, while the
stability of the longer span is increased due to the action of the shorter span.

2.7 Columns on Elastic Supports

2.7.1 Column Pinned at One End and Elastic Support at the Other End

The end conditions considered for columns were ideal boundary conditions, but in reality the
columns are usually connected to other members, which are elastic in nature. This type of
support is referred to as elastically restrained support. The support fixity depends on the relative
rigidities of the members at the support. The members connected at the elastically restrained
supports are considered to be joined by a rigid joint, the angle between the members at the
support remains the same before and after deformation.

Consider a column AB of length L1 and stiffness rigidity EI1 that is hinged at the base A, and
elastically restrained at the end B by a beam BC. The beam is fixed at the end C, it has a length
of L2 and stiffness rigidity of EI2 as shown in Figure 2.15. It is assumed that the joint B is a
rigid joint. It is assumed that there is no bending in the beam prior to column buckling, and
the beam bends after the column buckles. The beam resists bending due to its stiffness and in
turn exerts a restraining moment MB on the column as shown in Figure 2.15. It is assumed that
deformations are small and hence the shear forces and the axial forces acting on the beam are
small, and can be neglected. The axial force acting on the column can still be assumed to be
equal to P. The governing equation is given by

yIV + k2y′′ = 0 (2.17a)

where

k2 = P
EI1
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θB

y
A

x P

EI2

L1

B

P

MB

EI1

L2

Figure 2.15 Elastically restrained column: hinged base.

The general solution of the fourth-order differential Eq. (2.17a) is

y = A sin kx + B cos kx + Cx + D (2.17b)

The first and second derivatives of the general solution are

y′ = Ak cos kx − Bk sin kx + C (2.17c)

y′′ = −Ak2 sin kx − Bk2 cos kx (2.17d)

Four boundary conditions are needed to solve for the constants in Eq. (2.17b), two of them
are at the base A of the column and another two are obtained at the upper end B. At the base,
at x = 0, the deflection, y, and the moment, M, are both equal to zero, so

y(0) = y′′(0) = 0

and substituting these boundary conditions in Eqs. (2.17b) and (2.17d) we get

B = D = 0 (2.17e)

At the upper end of the column, at x = L1, y(L1) = 0, giving

A = −
CL1

sin kL1

hence,

y = −
CL1

sin kL1
sin kx + Cx (2.17f)

dy
dx

= CL1

(
1

L1
− k cos kx

sin kL1

)
d2y
dx2 =

CL1k2 sin kx
sin kL1

(2.17g)
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dy
dx
||||x=L1

= CkL1

(
1

kL1
− 1

tan kL1

)
(2.17h)

The slope deflection equation at the end B of the beam BC is

MB =
EI2

L2
(4𝜃B + 2𝜃C) +MFB (2.17i)

where 𝜃C, the rotation at end C of the beam, is zero. Also the fixed end moment at the end C,
MFC = 0, because there is no transverse force on the beam BC.

𝜃B =
MBL2

4EI2
(2.17j)

At the rigid joint B, − dy
dx
|||x=L1

= 𝜃B, the negative sign is used because the slope at the upper
end of the column given by Eq. (2.17h) is negative, whereas 𝜃B is positive. Using Eqs. (2.17h)
and (2.17j) we have

MBL2

4EI2
= −CkL1

(
1

kL1
− 1

tan kL1

)
(2.17k)

At the upper end of the column AB, MB = EI1y′′, the moment MB and the y′′ are both of the
same sign, i.e. negative. Also, at the upper end of the column, y′′ = CL1k2, from Eq. (2.17g).
Substituting in Eq. (2.17k), we have

EI1CL1k2L2

4EI2
= −CkL1

(
1

kL1
− 1

tan kL1

)
(2.17l)

k2I1L2

4I2
= − 1

L1
+ k

tan kL1

or
I1L2

I2L1
(kL1)2 tan kL1 − 4kL1 + 4 tan kL1 = 0 (2.17m)

Equation (2.17m) is a transcendental equation that can be solved for the smallest root of kL1

for a given
(

I1
L1
∕ I2

L2

)
, and the corresponding critical load is found as

Pcr =
(kL1)2EI1

L2
1

(2.17n)

If L1 = L2 = L, and I1 = I2 = I, Eq. (2.17m) reduces to

tan kL = 4kL
(kL)2 + 4

(2.17o)

The smallest root satisfying Eq. (2.17o) is kL = 3.83, and the corresponding critical load is

Pcr =
14.7EI

L2 (2.17p)

The critical load in Eq. (2.17p) falls between Pcr for a hinged-hinged column, 𝜋2EI
L2 , and that of

a hinged-fixed column, 20.19EI
L2 . The upper elastically restrained end falls between a hinge and a

fixed end.
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Figure 2.16 Elastically restrained column: fixed base.

2.7.2 Column Fixed at One End and Elastic Support at the Other End

Consider a column AB similar to the one shown in Figure 2.15, except that it is fixed at the
bottom. At the upper end B, it is elastically restrained by a beam as shown in Figure 2.16.The
governing equation and its derivatives are given by Eqs. (2.17a), (2.17b), (2.17c), and (2.17d) as
before

yIV + k2y′′ = 0 (2.17a)

where

k2 = P
EI1

The general solution of the fourth-order differential Eq. (2.17a) is

y = A sin kx + B cos kx + Cx + D (2.17b)

The first and second derivatives of the general solution are

y′ = Ak cos kx − Bk sin kx + C (2.17c)

y′′ = −Ak2 sin kx − Bk2 cos kx (2.17d)

The boundary conditions at the base of the column are

y(0) = y′(0) = 0

and substituting these boundary conditions in Eqs. (2.17b) and (2.17c) we get

B + D = 0 (2.18a)

Ak + C = 0 (2.18b)

At the upper end of the column, y (L1) = 0, giving

A sin kL1 + B cos kL1 + CL1 + D = 0 (2.18c)
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From Eq. (2.17c) at the upper end of the column
dy
dx
||||x=L1

= Ak cos kL1 − Bk sin kL1 + C (2.18d)

The slope 𝜃B at the end of the beam from the slope deflection equation is given by Eq. (2.17j)

as before by 𝜃B =
MBL2

4EI2
. At the rigid joint B, −

dy
dx
||||x=L1

= 𝜃B, the negative sign is used because

the slope at the upper end of the column given by Eq. (2.18d) is negative, whereas 𝜃B is positive.
From Eqs. (2.17j) and (2.18d) we have

MBL2

4EI2
= −Ak cos kL1 + Bk sin kL1 − C (2.18e)

At the upper end of the column AB, MB = EI1y′′, because the moment MB and the y′′ are
both of the same sign, i.e. negative. Thus, the moment MB at the upper end of the column from
Eq. (2.17d) is

MB = EI1(−Ak2 sin kL1 − Bk2 cos kL1) (2.18f)

Substituting MB from Eq. (2.18f) into Eq. (2.18e) we have

A
(

k2I1L2

4I2
sin kL1 − k cos kL1

)
+ B

(
k2I1L2

4I2
cos kL1 + k sin kL1

)
− C = 0 (2.18g)

Equations (2.18a), (2.18b), (2.18c), and (2.18g) can written in matrix form as

⎡⎢⎢⎢⎢⎣
0 1 0 1
k 0 1 0
sin kL1 cos kL1 L1 1
k2I1L2

4I2
sin kL1 − −k cos kL1

k2I1L2
4I2

cos kL1 + k sin kL1 − 1 0

⎤⎥⎥⎥⎥⎦
⎧⎪⎨⎪⎩

A
B
C
D

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩

0
0
0
0

⎫⎪⎬⎪⎭
(2.18h)

For a nontrivial solution of Eq. (2.18h), the determinant of the coefficient matrix should
be zero.

Therefore,|||||||||
0 1 0 1
k 0 1 0
sin kL1 cos kL1 L1 1
k2I1L2

4I2
sin kL1 − k cos kL1

k2I1L2
4I2

cos kL1 + k sin kL1 − 1 0

|||||||||
= 0 (2.18i)

Solving this determinant gives

8I2 − k sin kL1(4I2L1 − I1L2) − k2I1L1L2 cos kL1 − 8I2 cos kL1 = 0

which can be written as(
I1

L1
∕

I2

L2

)
(kL1 sin kL1 − k2L2

1 cos kL1) + 8(1 − cos kL1) − 4kL1 sin kL1 = 0 (2.18j)
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If L1 = L2 = L, and I1 = I2 = I, Eq. (2.18j) reduces to

3kL sin kL + cos kL(8 + k2L2) − 8 = 0 (2.18k)

The smallest root satisfying the transcendental Eq. (2.18k) is kL= 5.33, and the corresponding
critical load is given by

Pcr =
28.41EI

L2 (2.18l)

The critical load in Eq. (2.18l) falls between Pcr for a fixed-hinged column,20.19EI
L2 , and that

of a fixed-fixed column, 4𝜋2EI
L2 , because the upper elastically restrained end falls between a

hinge and a fixed end. The values of the critical load, Pcr, are shown in Table 2.3 for different
ratios of

I1

L1
∕

I2

L2
for two columns shown in Figures 2.15 and 2.16.

Table 2.3 shows that as the ratio I1
L1
∕ I2

L2
decreases, the column at the upper end approaches a

fixed end, whereas with the increase in this ratio, the column at the upper end approaches a
hinged end as expected. The critical loads also tend to approach the values for the corresponding
columns with ideal boundary conditions.

2.8 Eccentrically Loaded Columns

In practice, most of the time columns are not perfectly loaded by an axial load, there is always
some accidental eccentricity present. Critical load given by Euler’s theory does not match that
obtained from experiments due to the presence of this eccentricity. The values given by Euler’s
load are on the non-conservative side, they are higher than the experimental force. Therefore, in

Table 2.3 Critical loads for elastically restrained columns.

One end elastically
restrained, the other
hinged (Figure 2.15)

One end elastically
restrained, the other
fixed (Figure 2.16)

I1
L1

∕
I2
L2

kL1 Pcr

(
L2

1

EI1

)
I1
L1

∕
I2
L2

kL1 Pcr

(
L2

1

EI1

)

0.5 4.065 16.52 0.5 5.660 32.03
1.0 3.830 14.67 1.0 5330 28.41
1.5 3.685 13.58 1.5 5.140 26.42
2.0 3.590 12.89 2.0 5.019 25.19
10.0 3.259 10.62 10.0 4.624 21.38
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design of even axially loaded columns AISC [5] and American Concrete Institute [6] specifica-
tions take into account the lowering of critical load due to this accidental eccentricity. A simply
supported column acted on by an axial force with an eccentricity of e is shown in Figure 2.17a.

It is assumed that the member is initially straight, elastic, and small deflection theory is
applied. Considering the moment equilibrium of the free body diagram in Figure 2.17b, we
have

P(e + y) − (−EIy′′) = 0
EIy′′ + Py = −Pe

or

y′′ + k2y = −k2e (2.19a)

where k2 = P/EI. The general solution of the Eq. (2.19a) is

y = A sin kx + B cos kx − e (2.19b)

Boundary conditions are:

At x = 0, y = 0
x = L, y = 0

Substituting these boundary conditions in Eq. (2.19b) we get

B = e, and A = e(1 − cos kL)
sin kL

Therefore, the general solution of differential Eq. (2.19a) is

y = e
(

1 − cos kL
sin kL

sin kx + cos kx − 1
)

(2.19c)

P

(a) (b)

P
e

e

L

y 

x 

Pe + y

P

–EIy"
x

Figure 2.17 Eccentrically loaded column: (a) Simply supported column; (b) Free body diagram.
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Maximum deflection occurs at the mid-height, x = L/2, given by

ymax = e
(

1 − cos kL
sin kL

sin kL
2
+ cos kL

2
− 1

)
(2.19d)

Using trigonometric relations

cos kL = 1 − 2sin2 kL
2
, and sin kL = 2 sin kL

2
cos kL

2
and substituting in Eq. (2.19d), we obtain

ymax = e
(

sec kL
2
− 1

)
(2.19e)

kL
2
=
√

P
EI

L
2
= 𝜋

2

√
PL2

𝜋2EI
= 𝜋

2

√
P
Pe

where Euler’s buckling load for a simply supported column is Pe =
𝜋2EI

L2 .
Therefore,

ymax = e
(

sec 𝜋

2

√
P
Pe
− 1

)
(2.19f)

From Eq. (2.19c),

y′ = e
(

1 − cos kL
sin kL

k cos kx − k sin kx
)

(2.19g)

y′′ = e
[

1 − cos kL
sin kL

(−k2 sin kx) − k2 cos kx
]

(2.19h)

Maximum bending moment also occurs at the mid-span, Mmax = −EIy′′|
x=

L
2

Mmax = EIek2 sec kL
2

(2.19i)
or

Mmax = Pe sec 𝜋

2

√
P
Pe

(2.19j)

The end moment Pe, is amplified by an amplification factor Af = sec 𝜋

2

√
P
Pe

to give the max-
imum moment in the column. As P approaches the Euler buckling load Pe, the maximum
moment tends to become very large. A plot of load versus total maximum deflection (ytotal)
is shown in Figure 2.18, where

ytotal = ymax + y = e sec 𝜋

2

√
P
Pe

(2.19k)

As the load P acting eccentrically on the column approaches the Euler critical load Pe, the
deflection increases very rapidly and the load-deflection curve tends to become almost horizon-
tal. It indicates the maximum load an eccentrically loaded column can take is below the Euler
critical load, the greater the eccentricity, the less force the column can take before failing. This
observation is very important from a practical point of view because the failure load in practice
is lower than the theoretical Euler load. In this case, the theory gives non-conservative values.
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2.8.1 The Secant Formula

The maximum stress in elastic eccentrically loaded columns can be obtained by combining the
axial stress and the bending stress as follows:

𝜎max =
P
A
+

Mmaxc
I

(2.20a)

where

P =Axial force on the column
A =Area of cross-section of the column
I =Moment of inertia of the column cross-section about the bending axis
c =Distance from the neutral axis to the outer fiber of the column

Substituting the maximum bending moment from Eq. (2.19j) in Eq. (2.20a) we have

𝜎max =
P
A

(
1 + ec

r2 sec 𝜋

2

√
P
Pe

)
(2.20b)

where I = Ar2, r is the radius of gyration of the cross-section of the column about the bending
axis. For a given value of 𝜎max, plots of Eq. (2.20b) can be plotted as L/r versus P/A for various
values of eccentricity ratio ec/r2 as shown in [3]. The curves show that the eccentricity values
matter more for short columns than long columns. Therefore, it is important to know more
accurately the eccentricity for the design of short columns.

0
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

0.1

0.2

0.3
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0.5

0.6

0.7

0.8

0.9

1

ytotal/L

P/
Pe

e/L = 0.001 

e/L = 0.003 

e/L = 0.005 

Figure 2.18 Load versus maximum total deflection for eccentrically loaded column.
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Figure 2.19 Geometrically imperfect column: (a) Initially bent column; (b) Free body diagram.

2.9 Geometrically Imperfect Columns

It is assumed that a column is perfectly straight and the loading axis passes through the center of
gravity of every cross-section in the derivation of Euler’s formula. In real-life columns, perfectly
straight columns are hard to find, and certain amount of geometric imperfections exist in all
columns. It is assumed here that the column is initially bent, the material remains elastic, and
the deformations are small.

Let the initial bent shape be given by

y0 =
∞∑

n=1
an sin n𝜋x

L
(2.21a)

Considering the moment equilibrium of the free body diagram in Figure 2.19b, we have

P(y + yo) − (−EIy′′) = 0
EIy′′ + Py = −Pyo

y′′ + k2y = −k2yo

or

y′′ + k2y = −k2
∞∑

n=1
an sin n𝜋x

L
(2.21b)

The general solution of the differential Eq. (2.21b) is

y = yc + yp

The complementary solution is

yc = A sin kx + B cos kx
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And the particular solution is given by

yp =
∞∑

n=1
bn sin n𝜋x

L
or

y′p =
∞∑

n=1
bn

n𝜋
L

cos n𝜋x
L

and
y′′p =

∞∑
n=1
−bn

(
n𝜋
L

)2
sin n𝜋x

L

Substituting the particular solution and its second derivative in Eq. (2.21b) we have
∞∑

n=1
−
(n𝜋

L

)2
bn sin n𝜋x

L
+ k2

∞∑
n=1

bn sin n𝜋x
L

= −k2
∞∑

n=1
an sin n𝜋x

L
or

∞∑
n=1

bn

(
k2 −

(n𝜋
L

)2
)
= −k2

∞∑
n=1

an

or

bn = −
k2an

k2 − n2𝜋2

L2

=
an

n2𝜋2

k2L2 − 1
=

an

n2 Pe

P
− 1

where Pe =
𝜋2EI

L2 . Let 𝛼 = P
Pe

, then

bn =
an𝛼

n2 − 𝛼
, and the particular solution of the Eq. (2.21b) is

yp =
∞∑

n=1

an𝛼

n2 − 𝛼
sin n𝜋x

L

Hence the general solution of Eq. (2.21b) is given by

y = A sin kx + B cos kx +
∞∑

n=1

an𝛼

n2 − 𝛼
sin n𝜋x

L
(2.21c)

Boundary conditions, at x = 0, y = 0; and at x = L, y = 0 are applied to get the values of the
constants A and B. Substituting x = 0, y = 0, gives B = 0; and x = L, y = 0, we get 0 = A sin kL +
∞∑

n=1

an𝛼

n2−𝛼
sin n𝜋, or A sin kL = 0, because sinn𝜋 = 0. If sin kL = 0, is assumed, it gives P = Pe,

which is not the desired solution. Therefore, A= 0. So, the general solution given by Eq. (2.21c)
becomes

y =
∞∑

n=1

𝛼

n2 − 𝛼
an sin n𝜋x

L
(2.21d)
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If the initial column is bent, the problem is not an eigenvalue problem because for every load
there is a definite deflection given by Eq. (2.21d). It gives the deflection, y, from the initial bent
position, whereas the total defection from the vertical x axis is given by

ytotal = yo + y

Combining Eqs. (2.21a) and (2.21d), we get

ytotal =
∞∑

n=1

1
1 − 𝛼

n2

an sin n𝜋x
L

(2.21e)

If
n = 1,

ytotal =
1

1 − 𝛼
𝛿0 sin 𝜋x

L
(2.21f)

The mid-height total deflection, 𝛿total, as shown in Figure 2.19a is obtained from Eq. (2.21f)
by substituting, x = L/2:

𝛿total = 𝛿0 + ymax =
𝛿0

1 − 𝛼
(2.21g)

𝛿total =
1

1 − P
Pe

𝛿0

𝛿total = Af 𝛿o (2.21h)

where Af is the amplification factor given by

Af =
1

1 − P
Pe

(2.21i)

if n is more than 1, then

ytotal =
a1

1 − 𝛼
sin 𝜋x

L
+

a2

1 − 𝛼

22

sin 2𝜋x
L

+
a3

1 − 𝛼

32

sin 3𝜋x
L

+ − − − − − (2.21j)

Moment in the column at any distance x is given by

Mx = −EIy′′

From Eq. (2.21d)

y′ =
∞∑

n+1

𝛼

n2 − 𝛼

(n𝜋
L

)
an sin n𝜋x

L

or

y′′ =
∞∑

n=1

𝛼

n2 − 𝛼

(
n2𝜋2

L2

) (
−an sin n𝜋x

L

)



Trim Size: 187mm x 235mm Single Column Jerath c02.tex V1 - 11/06/2020 6:52pm Page 71�

� �

�

2.9 Geometrically Imperfect Columns 71

Therefore,

Mx = EI
∞∑

n=1

𝛼

n2 − 𝛼

(
n2𝜋2

L2

)(
an sin n𝜋x

L

)
For
n = 1,

Mx = EI 𝛼

1 − 𝛼

(
𝜋2

L2

)
𝛿0 sin 𝜋x

L
= Pe

P
Pe

1 − P
Pe

𝛿0 sin 𝜋x
L

or

Mx =
1

1 − P
Pe

P𝛿0 sin 𝜋x
L

The same result can be obtained alternatively as

Mx = P(y0 + y) = Pytotal

Substituting from Eq. (2.21f)

Mx =
1

1 − P
Pe

P𝛿0 sin 𝜋x
L

(2.21k)

If MI, is the first-order moment in the column caused by the load P based on the initial geome-
try of the geometrically imperfect member, then Mx in Eq. (2.21k) is the second-order moment,
MII, based on the deformed geometry of the column at any distance x. Thus,

MII = Af MI (2.21l)
The maximum second-order moment at the mid-height is given by substituting x = L/2, and

is
MII max = Af P𝛿o (2.21m)

The mid-height deflection 𝛿total/L versus load ratio P/Pe is plotted in Figure 2.20 for three
values of imperfection ratios. Initially, the imperfect column starts to bend as soon as the load is
applied. As the load approaches the Euler’s buckling load, the deflection increases very rapidly.
The larger the initial deflection, the larger is the deflection corresponding to any load. The
failure load for any initially imperfect column is smaller than the Euler load. Columns with
small initial imperfections fail at a slightly smaller than the Euler load, whereas if the initial
imperfection is large, the failure load will be much smaller than the Euler load.

2.9.1 The Southwell Plot

From Eq. (2.21d)

y = 𝛼

1 − 𝛼
a1 sin 𝜋x

L
+ 𝛼

22 − 𝛼
a2 sin 2𝜋x

L
+ 𝛼

32 − 𝛼
a3 sin 3𝜋x

L
+ − − − (2.22a)
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If in the imperfection, a1 existed, then near the critical load Pe, the ratio 𝛼 = P/Pe → 1. In
the series given by Eq. (2.22a), the first term predominates, and we can assume the mid-length
deflection, 𝛿, as

𝛿 =
𝛼a1

1 − 𝛼
(2.22b)

𝛿 =
P
Pe

1 − P
Pe

a1 = 𝛿
P
Pe
+ a1

P
Pe

or

𝛿

P
= 𝛿

Pe
+

a1

Pe
(2.22c)

𝛿 and P can be measured from an experiment conducted on an initially imperfect column.
𝛿/P versus 𝛿 is plotted as a straight line given by Eq. (2.22c). This is known as the Southwell
plot [7] as shown in Figure 2.21. The intercepts in the plot give a1/Pe and a1, from which the
critical load Pe can be found.
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Figure 2.20 Load versus maximum total deflection for imperfect column.
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δa1

x - Experimental 
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Figure 2.21 The Southwell plot.

2.10 Large Deflection Theory of Columns

2.10.1 Pinned-Pinned Column

The curvature, 1/𝜌, is given by

1
𝜌
=

d2y
dx2[

1 +
(

dy
dx

)2
]3

2

(2.23a)

So far, we have assumed that the deflections are small, so the curvature was approximated
by 1

𝜌
= y′′ in Eq. (2.1b). Furthermore, the magnitude of the deflection at critical load remained

indeterminate because of this assumption. In the large deflection analysis of columns, the exact
expression for the curvature is used. This enables us to determine at various axial forces on the
column the magnitude of the corresponding deflections. Consider the pinned-pinned column
shown in Figure 2.22a subjected to an axial force. Other assumptions made to derive the Euler
buckling load, e.g. the column is straight, the material is homogeneous and elastic, etc. are still
valid.

Considering the moment equilibrium of the free body diagram in Figure 2.22b we have

EI
𝜌
+ Py = 0 (2.23b)

For a curve, the relationship between the subtended angle, d𝜃, the arc length, ds, and the
radius of curvature, 𝜌, is given by

ds
𝜌
= d𝜃 (2.23c)

The equilibrium equation for the column free body diagram can be found from Eqs. (2.23b)
and (2.23c) as

EI d𝜃
ds
+ Py = 0 (2.23d)
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(a) (b)

y 
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θ

x

y

P

P

–EI/ρ

Figure 2.22 Large deflection under axial load of a pinned-pinned column: (a) Large deflection of pined-pinned
column; (b) Free body diagram.

The solution of Eq. (2.23d) is given by Wang [8]. Differentiating Eq. (2.23d) with respect to s,
and using the relation, dy

ds
= sin 𝜃, and substituting P/EI = k2, we have

d2𝜃

ds2 + k2 sin 𝜃 = 0 (2.23e)

Multiply both sides by d𝜃 and integrating gives

∫

d2𝜃

ds2
d𝜃
ds

ds +
∫

k2 sin 𝜃 d𝜃 = 0 (2.23f)

Equation (2.23f) can be expressed in the form

1
2 ∫

d
ds

(
d𝜃
ds

)2

ds + k2
∫

sin 𝜃 d𝜃 = 0 (2.23g)

Integrating, we obtain

1
2

(
d𝜃
ds

)2

− k2 cos 𝜃 = C (2.23h)

where C is the constant of integration. At the lower end of the column in Figure 2.22a, 𝜃 = 𝛼,
and d𝜃/ds= 0, since the bending moment is zero. Applying these conditions to Eq. (2.23h) gives

C = −k2 cos α

And, therefore,(
d𝜃
ds

)2

= 2k2(cos 𝜃 − cos 𝛼) (2.23i)

or
d𝜃
ds
= ±k

√
2(cos 𝜃 − cos 𝛼) (2.23j)
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d𝜃/ds is negative from Figure (2.22a), because 𝜃 decreases as s increases, therefore
d𝜃
ds
= −k

√
2(cos 𝜃 − cos 𝛼) (2.23k)

ds = − d𝜃
k
√

2(cos 𝜃 − cos 𝛼)
The total length of the column is obtained by integrating ds from 0 to L. So

L =
∫

L

0
ds = −

∫

−𝛼

𝛼

d𝜃
k
√

2(cos 𝜃 − cos 𝛼)
Reversing the limits of integration we obtain

L =
∫

𝛼

−𝛼

d𝜃
k
√

2(cos 𝜃 − cos 𝛼)

Using trigonometric relations: cos 𝜃 = 1 − 2sin2 𝜃

2
, and cos 𝛼 = 1-2sin2 𝛼

2
, we obtain

L = 1
2k ∫

𝛼

−𝛼

d𝜃√
sin2 𝛼

2
− sin2 𝜃

2

(2.23l)

Substitute, p = sin 𝛼

2
, and introduce a new variable 𝜙, such that

sin 𝜃

2
= p sin𝜙 = sin 𝛼

2
sin𝜙 (2.23m)

When 𝜃 = − 𝛼, sin𝜙 = − 1, then 𝜙 = −𝜋

2
; and when 𝜃 = 𝛼, sin𝜙 = 1, then 𝜙 = 𝜋

2
.

Taking differential of terms in Eq. (2.23m) gives
1
2

cos 𝜃
2

d𝜃 = p cos𝜙 d𝜙
or

d𝜃 =
2p cos𝜙 d𝜙

cos 𝜃

2

=
2p cos𝜙 d𝜙√

1-sin2 𝜃

2

Therefore,

d𝜃 =
2p cos𝜙 d𝜙√

1 − p2sin2
𝜙

(2.23n)

Now,√
sin2 𝛼

2
− sin2 𝜃

2
=
√

sin2 𝛼

2
− sin2 𝛼

2
sin2

𝜙 = p cos𝜙 (2.23o)

Substituting Eqs. (2.23n) and (2.23o) into Eq. (2.23l) we obtain

L = 1
k ∫

𝜋

2

− 𝜋

2

d𝜙√
1 − p2sin2

𝜙
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L = 2
k ∫

𝜋

2

0

d𝜙√
1 − p2sin2

𝜙

(2.23p)

or

L =
2K(p)

k
(2.23q)

where

K(p) =
∫

𝜋

2

0

d𝜙√
1 − p2sin2

𝜙

(2.23r)

The integral in Eq. (2.23r) is known as the complete elliptic integral of the first kind and is
designated by K(p). Consider now the case of small end rotation 𝛼, then p = sin(𝛼/2) is ≪1.
The integral in Eq. (2.23r) can be written by expanding the integrand by binomial theorem.
Binomial theorem can be written as

(1 − x)−n = 1 + nx + n(n + 1)
2!

x2 + n(n + 1)(n + 2)
3!

x3 + − − − − (x2 < 1)

or

(1 − p2sin2
𝜙)−

1
2 = 1 + 1

2
p2sin2

𝜙 + 3
8

p4sin4
𝜙 + 15

48
p6sin6

𝜙 + ---- (p2 < 1)

Hence,

K(p) =
∫

𝜋

2
0

(
1 + 1

2
p2sin2

𝜙 + 3
8

p4sin4
𝜙 + 15

48
p6sin6

𝜙 + − − −−
)

d𝜙

or

K(p) = 𝜋

2

[
1 +

(1
2

)2
p2 +

(3
8

)2
p4 +

(15
48

)2
p6 + − − − − −−

]
(2.23s)

The value of K(p) can be obtained from integral tables or from Eq. (2.23s) for different values
of p.

We can write Eq. (2.23q) as

L =
2K(p)√

P
EI

or
P
Pe
=

4K2(p)
𝜋2 (2.23t)

where Pe =
𝜋2EI

L2 , is the Euler buckling load for the column. When the deflection of the column
is very small, 𝛼 and p will also be very small and the higher terms containing p in Eqs. (2.23r)
and (2.23s) can be neglected in comparison with unity. Then value of K(p) tends to 𝜋/2, and
P = Pe from Eq. (2.23t). Large deflection nonlinear theory gives the same critical load as the
small deflection linear theory, since both theories apply for small deflections.
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Knowing dy = sin 𝜃 ds, and making use of Eq. (2.23k) we get

dy = − sin 𝜃 d𝜃
k
√

2(cos 𝜃 − cos 𝛼)
Mid-height deflection is given by

𝛿 =
∫

𝛿

0
dy =

∫

0

𝛼

− sin 𝜃 d𝜃
k
√

2(cos 𝜃 − cos 𝛼)
As 𝜃 varies from 𝛼 to 0, y varies from 0 to 𝛿. Using trigonometry and switching the limits of

integration, we obtain

𝛿 = 1
2k ∫

𝛼

0

sin 𝜃 d𝜃√(
sin2 𝛼

2
− sin2 𝜃

2

) (2.23u)

Using Eq. (2.23m),

sin 𝜃 = 2 sin 𝜃

2
cos 𝜃

2
= 2p sin𝜙

√
1 − p2sin2

𝜙 (2.23v)

Equations (2.23n), (2.23o), (2.23u), and (2.23v) are used to give

𝛿 =
2p
k ∫

𝜋

2

0
sin𝜙 d𝜙 =

2p
k

(2.23w)

𝛿 =
2p√

P
EI

=
2pL

𝜋

√
P
Pe

or
𝛿

L
=

2p

𝜋

√
P
Pe

(2.23x)

Now assume 𝛼, and find K(p) from Eq. (2.23s). Then P/Pe can be found from Eq. (2.23t) and
the corresponding 𝛿/L can be obtained from Eq. (2.23x) for various values of 𝛼. This procedure
is illustrated in Table 2.4 and the results are plotted in Figure 2.23.

It can be seen from Table 2.4 and Figure 2.23 there is considerable increase in deflection when
there is a slight increase in P above the Euler buckling load of Pe. At 𝛼 = 30∘, 𝛿/L= 0.162, a con-
siderable increase in the deflection in Table 2.4, but the axial force is only 3.5% above Pe. The
curve in Figure 2.23 is tangent to the horizontal line at P = Pe, where the deflection is zero.
Thus, the increase in load P, corresponding to a small increment of deflection, is a small quan-
tity of second order. That is why the deflection was found to be indefinite in magnitude when
the approximation for curvature was used as stated by Timoshenko and Gere [9]. Large deflec-
tion analysis gives the amplitude of deflection corresponding to a particular load, whereas the
small deflection theory gives only the deflected shape. Post-buckling behavior of the column is
stable because the column can support additional load beyond the Euler load Pe as the deflec-
tion increases. The graph in Figure 2.23 is valid only as long as the material remains linearly
elastic.
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Table 2.4 Load and mid-length deflection from
the large deflection analysis.

𝜶(deg) p = sin𝜶/2 K(p) P/Pe 𝜹/L

0 0.00 1.571 1.000 0
30 0.259 1.598 1.035 0.162
60 0.500 1.686 1.151 0.297
90 0.707 1.852 1.390 0.382
120 0.866 2.114 1.811 0.410
150 0.966 2.410 2.354 0.401

0
0 0.1 0.2 0.3 0.4 0.5

0.5

1

1.5

2

2.5

P/
Pe

δ/L

Figure 2.23 Load deflection graph for pinned-pinned column from large deflection analysis.

Consider now the case of small end rotation 𝛼, then p= sin(𝛼/2) is≪1. Since p is small, taking
the first two terms only in Eq. (2.23s) we have

K(p) = 𝜋

2

(
1 + 1

4
p2
)

p = sin
(

𝛼

2

)
≈ 𝛼

2
,

because 𝛼 is small, therefore

K(p) = 𝜋

2

(
1 + 𝛼2

16

)
(2.23y)
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Substituting K(p) from Eq. (2.23y) into Eq. (2.23q) we get√
P
EI

L = 𝜋

(
1 + 𝛼2

16

)
Squaring both sides and neglecting small terms of higher order of 𝛼 gives

P
EI

L2 = 𝜋2
(

1 + 𝛼2

8

)
Therefore, for a pinned-pinned column

P
Pe
= 1 + 𝛼2

8
(2.23z)

2.10.2 Cantilever Column

Consider a column fixed at the base and free at the upper end. The coordinate axes are taken
as shown in Figure 2.24a, and measure the distance s along the axis of the column from the
origin O.

The exact expression for the curvature of the bar is 1/𝜌 = d𝜃/ds. Considering the equilibrium
of the free body of the column in the deformed position in Figure 2.24b, we have the same
expression as for a pinned-pinned column

EI d𝜃
ds
+ Py = 0 (2.23d)

Following the same steps as for the pinned-pinned column and solving for ds gives

ds = − d𝜃
k
√

2(cos 𝜃 − cos 𝛼)
(2.24a)

(a) (b)

s

Pδ

y

x

o 

P

Pδ

L θ

α
s

P

y
o

P
EI/ρ

x y 

Figure 2.24 Large deflection under axial load of cantilever column: (a) Large deflection of cantilever column;
(b) Free body diagram.
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The total length of the column after reversing the limits of integration is

L =
∫

𝛼

0

d𝜃
k
√

2(cos 𝜃 − cos 𝛼)
(2.24b)

Substituting p = sin 𝛼

2
and introducing a new variable 𝜙, such that

sin 𝜃

2
= p sin𝜙 = sin 𝛼

2
sin𝜙

It can be concluded from these relations that when 𝜃 varies from 0 to 𝛼, the quantity sin𝜙
varies from 0 to 1. Hence 𝜙 varies from 0 to 𝜋

2
. Again following the same steps as before for the

pinned-pinned column we obtain total length of the column as

L = 1
k ∫

𝜋

2

0

d𝜙√
1 − p2sin2

𝜙

(2.24c)

or

L = 1
k

K(p) (2.24d)

and

L =
K(p)√

P
EI

or
P
Pe
=

4K2(p)
𝜋2 (2.24e)

where Pe =
𝜋2EI
4L2 is the Euler buckling load for the cantilever column. The complete integral of

the first kind, K(p) can be obtained from Eq. (2.23s). When the deflection of the column is very
small, K(p) tends to 𝜋/2, and

P = Pe =
𝜋2EI
4L2 (2.24f)

Maximum deflection at the top of this column is also given by Eq. (2.23u), that can be sim-
plified and written as Eq. (2.23w). Therefore,

𝛿 =
2p
k
=

2p√
P
EI

=
2p√
4PL2

𝜋2EI

2L
𝜋
=

4pL

𝜋

√
P
Pe

or
𝛿

L
=

4p

𝜋

√
P
Pe

(2.24g)

Assume 𝛼, and find K(p) from Eq. (2.23s). Then P/Pe can be found from Eq. (2.24e) and the
corresponding 𝛿/L can be obtained from Eq. (2.24g) for various values of 𝛼. This procedure is
illustrated in Table 2.5 and Figure 2.25.
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Table 2.5 Load and deflection at the top of the
cantilever column by the large deflection analysis.

𝜶(deg) p = sin(𝜶/2) K(p) P/Pe 𝜹/L

0 0 1.571 1.000 0
30 0.259 1.598 1.035 0.324
60 0.500 1.686 1.151 0.593
90 0.707 1.852 1.390 0.764
120 0.866 2.114 1.811 0.819
150 0.966 2.410 2.354 0.801

0
0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

P/
Pe

δ/L 

Figure 2.25 Load deflection graph for a cantilever column from large deflection analysis.

Substituting K(p) from Eq. (2.23y) into Eq. (2.24d) we get√
P
EI

L = 𝜋

2

(
1 + 𝛼2

16

)
Squaring both sides gives

P
EI

L2 = 𝜋

4
2
(

1 + 𝛼2

8

)
neglecting small terms of higher order of 𝛼
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Therefore, for a cantilever column
P
Pe
= 1 + 𝛼2

8
(2.24h)

which is valid when 𝛼 is not too large. For 𝛼→ 0 we have P = Pe. With increasing end rotation
𝛼, the load P increases, therefore the post-buckling behavior of the column is stable. 𝛼 = 15∘,
P/Pe = 1.00857 from Eq. (2.24h), or the error in P from small deflection linear theory is 0.857%.
Also, the substantial increase in load above the Euler load can be achieved at a very large end
rotation or lateral deflection, when the material of the column becomes inelastic. Consequently,
within the range of elastic behavior, results obtained from the small deflection linear theory can
be used to obtain the critical load of the column.

2.10.3 Effective Length Approach

We have shown solutions for two end conditions. The solutions for other types of supports can
be obtained directly from the solution of the pinned-pinned column by using effective length
approach as in Section 2.3. Let KL be the effective length of the column. Eq. (2.23q) can be
written as

KL =
2K(p)

k
(2.25a)

And Eq. (2.23w) can be written as

𝛿 =
2p
k
=

2p√
P
EI

K2L2

𝜋2

KL
𝜋

or
𝛿

KL
=

2p

𝜋

√
P
Pe

(2.25b)

2.10.3.1 Pinned-Pinned Column
The effective length is equal to L, because K = 1.Therefore, from Eqs. (2.25a) and (2.25b) we
obtain

L =
2K(p)

k
same as before in Eq. (2.23q), and

𝛿

L
=

2p

𝜋

√
P
Pe

same as before in Eq. (2.23x)
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2.10.3.2 Cantilever Column
The effective length is equal to 2L, because K = 2. Therefore, from Eqs. (2.25a) and (2.25b)
we get

L =
K(p)

k
same as Eq. (2.24d), and

𝛿

L
=

4p

𝜋

√
P
Pe

same as before in Eq. (2.24g).

2.10.3.3 Fixed-Fixed Column
The effective length is equal to 0.5L, because K = 0.5. Therefore, from Eqs. (2.25a) and (2.25b)
we obtain

L =
4K(p)

k
(2.26a)

And
𝛿

L
=

p

𝜋

√
P
Pe

(2.26b)

The deflection 𝛿 in Eq. (2.26b) is the maximum mid height deflection in the fixed-fixed
column.

2.10.3.4 Fixed-Pinned Column
The effective length is equal to L√

2
, because K = 1√

2
.Therefore, from Eqs. (2.25a) and (2.25b)

we get

L =
2
√

2K(p)
k

(2.27a)

𝛿

L
=

√
2p

𝜋

√
P
Pe

(2.27b)

The deflection 𝛿 in Eq. (2.27b) is the maximum horizontal deflection in the fixed-pinned
column.
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2.11 Energy Methods

2.11.1 Calculus of Variations

The calculus of variation is a generalization of the minimum and maximum problem of the
ordinary calculus. It seeks to determine a function y = f (x) that minimizes/maximizes a def-
inite integral called functional (function of functions) and whose integrant contains y and its
derivatives and the independent variable x given by Eq. (2.28a).

I =
∫

x2

x1

F(x, y, y′, y′′,……… , yn) dx (2.28a)

In ordinary calculus, one obtains the actual value of a variable at which a given function has
a stationary value. In the calculus of variations, one does not get a function that extremizes a
given integral. Here, one only gets the differential equation that the function must satisfy so
that the function has a stationary value. Thus the calculus of variations is used to obtain the
governing differential equation of a stationary value problem. It is not a computational tool to
solve the problem [10].

In structural mechanics the method is used to find the deformed shape of a system at which
the system has a stationary potential energy or, in other words, finding the deformation corre-
sponding to the equilibrium state of the system. To illustrate the calculus of variation, consider a
pinned-pinned column in Figure 2.26a and find the conditions under which it will be in equilib-
rium under a deformed shape. The strain energy of bending for the column free body diagram

y 

L

P 

P

x

S 

x

y 

P

P 

(a) (b) (c)

Mx = –EIy"

dsdx

dy

Figure 2.26 Buckling of pinned-pinned column: (a) Pinned-pinned column; (b) Free body diagram; (c) Differential
element.
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in Figure 2.26b is

U =
∫

L

0

M2
x dx

2EI
= 1

2 ∫

L

0
EI
(

d2y
dx2

)2

dx (2.28b)

The potential energy V of the external forces is given by
V = −PΔ (2.28c)

From Figure 2.26c
ds2 = dx2 + dy2

or

ds2 =

[
1 +

(
dy
dx

)2
]

dx2

or

ds =

[
1 +

(
dy
dx

)2
] 1

2

dx

or

ds =

[
1 + 1

2

(
dy
dx

)2
]

dx

Hence,

∫

S

0
ds =

∫

L

0

[
1 + 1

2

(
dy
dx

)2
]

dx (2.28d)

Δ = S − L = 1
2 ∫

L

0

(
dy
dx

)2

dx (2.28e)

V = −P
2 ∫

L

0

(
dy
dx

)2

dx (2.28f)

Π = EI
2 ∫

L

0

(
d2y
dx2

)2

dx − P
2 ∫

L

0

(
dy
dx

)2

dx (2.28g)

It is intended to find y(x) which will make the total potential energy of the system stationary,
that is

𝛿(U + V) = 0 (2.28h)
y(x) must be continuous and it must satisfy the boundary conditions y(0) = y(L) = 0. Assume

ȳ(x) = y(x) + 𝜀𝜂(x) (2.28i)
which satisfies only the geometric boundary conditions. 𝜂 (x) is an arbitrary function satisfying
boundary conditions and is twice differentiable, and 𝜀 is a small parameter.

𝜂(0) = 𝜂(L) = 0 (2.28j)
The function ȳ (x) is drawn graphically in Figure 2.27.
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The total potential energy in terms of the displacement ȳ (x) is

Π = U + V =
∫

L

0

[EI
2
(y′′ + +𝜀𝜂′′)2 − P

2
(y′ + 𝜀𝜂′)2

]
dx (2.28k)

Π is a function of 𝜀 for a given 𝜂 (x). If 𝜀 = 0, then ȳ (x) = y(x), which is the curve that provides
a stationary value to Π. Hence||||d(U + V)

d𝜀
||||𝜀=0

= 0 (2.28l)

d(U + V)
d𝜀

=
∫

L

0
[EI(y′′ + 𝜀𝜂′′)𝜂′′ − P(y′ + 𝜀𝜂′)𝜂′] dx (2.28m)

Eq. (2.28m) is zero at 𝜀 = 0, hence

∫

L

0
[EIy′′𝜂′′ − Py′𝜂′] dx = 0 (2.28n)

Integrate Eq. (2.28n) by parts using ∫ udv = uv− ∫ vdu

∫

L

0
𝜂′y′dx = y′𝜂|L0 − ∫

L

0
𝜂y′′dx

Use Eq. (2.28j) to get

∫

L

0
𝜂′y′dx = −

∫

L

0
𝜂y′′dx

∫

L

0
y′′𝜂′′dx = y′′𝜂′|L0 − ∫

L

0
𝜂′y′′′dx = y′′𝜂′|L0 − y′′′𝜂|L0 + ∫

L

0
𝜂yIV dx

Thus, Eq. (2.28n) becomes

∫

L

0
(EIyIV + Py′′) 𝜂dx + (EIy′′𝜂′)L0 = 0 (2.28o)

Each of the two parts of Eq. (2.28o) is separately equal to zero because 𝜂 is arbitrary. Hence

∫

L

0
(EIyIV + Py′′) 𝜂dx = 0 (2.28p)

(EIy′′𝜂′)L0 = 0 (2.28q)
Since 𝜂 ′ (0), 𝜂 ′ (L)are not zero, 𝜂(x) is arbitrary, also 𝜂

′(0)≠ 𝜂 ′ (L), therefore, y (x) must satisfy
EIyIV + Py′′ = 0 (2.28r)

L 
X 

Y
y (x) y (x) = y (x) + ε η (x) -

Figure 2.27 Deflected shape.
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EIy′′|x=0 = 0 (2.28s)

EIy′′|x=L = 0 (2.28t)

Equation (2.28r) is the Eulerian differential equation of an axially loaded column as was
found in Eq. 2.11e) by considering the moment equilibrium of the deformed column.
Equations (2.28s) and (2.28t) give the natural boundary conditions and indicate that the
bending moments at the ends of a simply supported column are zero. For simple systems,
such as simply supported columns, the governing differential equation can be obtained by
considering the equilibrium of the deformed shape. For complex systems such as plate and
shell buckling, the stationary potential energy method is simpler to obtain the governing
differential equation. The geometric or kinematic boundary conditions involve displacements
(deflection and slope), where natural boundary conditions give force conditions (bending
moment or shear force) at the boundary.

2.11.2 The Rayleigh-Ritz Method

The principle of stationary potential energy is used here to find the critical load for a
hinged-hinged column. The total potential energy of the column is given by

Π = U + V (2.29a)

where U is the strain energy in the column due to bending, and V is the potential energy due
to external force P.

U =
∫

L

0

M2
x dx

2EI
= 1

2 ∫

L

0
EI
(

d2y
dx2

)2

(2.29b)

V = −P
2 ∫

L

0

(
dy
dx

)2

dx (2.29c)

Π = EI
2 ∫

L

0

(
d2y
dx2

)2

dx − P
2 ∫

L

0

(
dy
dx

)2

dx (2.29d)

Assume

y = A sin 𝜋x
L

(2.29e)

The function in Eq. (2.29e) satisfies the boundary conditions at the ends of the hinged-hinged
column given as

y = 0 at x = 0, and y = 0 at x = L (2.29f)

Substitute Eq. (2.29e) in Eq. (2.29d) to obtain

Π = EIA2𝜋4

2L4 ∫

L

0
sin2𝜋x

L
dx − PA2𝜋2

2L2 ∫

L

0
cos2𝜋x

L
dx (2.29g)

The definite integrals

∫

L

0
sin2𝜋x

L
dx =

∫

L

0
cos2𝜋x

L
dx = L

2
(2.29h)
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Hence,

Π = EIA2𝜋4

4L3 − PA2𝜋2

4L
(2.29i)

At the critical load, the neutral equilibrium is possible, therefore, dΠ
dA
= 0. Therefore,

dΠ
dA

= AEI𝜋4

2L3 − AP𝜋2

2L
= 0

or

Pcr =
𝜋2EI

L2 (2.29j)

In this case, the critical force Pcr is the same as obtained in Eq. (2.1m). In this case, the exact
critical load, Pcr, is obtained because we could assume the correct deflected shape given by
Eq. (2.29e). In other cases of column boundary conditions where the exact deflected shape is
not available, the critical load obtained will be an approximate value. The error will depend on
the deflected shape assumed.

2.11.3 The Galerkin Method

The Galerkin method is another approximate method of finding the buckling load of a struc-
ture. The difference between the Rayleigh-Ritz method and the Galerkin method is that the
former requires the integration of energy expression, whereas the latter requires the integra-
tion of the governing differential equation. We can approximate the deflection of a column by
assuming a series consisting of n independent functions gi (x) each multiplied by undetermined
coefficients ai. Hence,

y ≈ a1g1(x) + a2g2(x) + − − − − − + angn(x) ≈
n∑

i=1
aigi(x) (2.30a)

For the potential energy of a hinged-hinged column to be stationary, Eq. (2.28o) can be written
as follows:

∫

L

0
(EIyIV + Py′′) 𝛿ydx + (EIy′′𝛿y′)L0 = 0 (2.30b)

where 𝛿y is a virtual displacement. If each gi (x) function satisfied the geometric and the natural
boundary conditions, the second term in Eq. (2.30b) containing the natural boundary condi-
tions given by Eqs. (2.28s) and (2.28t) vanishes when y is replaced by yapprox. To make the first
term in Eq. (2.30b) equal to zero, the coefficients ai are chosen such that yapprox satisfies the
differential equation given by Eq. (2.28r). The column differential equation can be written as

Q(𝜙) = 0 (2.30c)
where

Q = EI d4

dx4 + P d2

dx2 (2.30d)

and

𝜙 =
n∑

i=1
aigi(x) (2.30e)
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The first term in Eq. (2.30b) vanishes for yapprox if

∫

L

0
Q(𝜙)𝛿𝜙dx = 0 (2.30f)

𝜙 is a function of n parameters ai, hence

𝛿𝜙 =
n∑

i=1

𝜕𝜙

𝜕ai
𝛿ai =

n∑
i=1

gi(x)𝛿ai (2.30g)

or

∫

L

0
Q(𝜙)

n∑
i=1

gi(x)𝛿aidx = 0 (2.30h)

Since gi (x) are independent of each other, the only way the Eq. (2.30h) is satisfied (identically
zero) if each of the n terms in the Eq. (2.30h) vanish individually, that is

∫

L

0
Q(𝜙)gi(x)𝛿aidx = 0 for i = 1, 2, ---n (2.30i)

Since ai is arbitrary

∫

L

0
Q(𝜙)gi(x)dx = 0 for i = 1, 2, ---n (2.30j)

The equations given by Eq. (2.30j) are called Galerkin equations.
A hinged-hinged column is used to illustrate the Galerkin method to compute the critical

load. In this case, we know the deflected shape can be assumed as

y = A sin 𝜋x
L

(2.30k)

Q(𝜙) =
(

EI d4

dx4 + P d2

dx2

)
A sin 𝜋x

L
(2.30l)

or

Q(𝜙) = A𝜋2

L2

(
EI𝜋

2

L2 − P
)

sin 𝜋x
L

(2.30m)

g(x) = sin 𝜋x
L

(2.30n)

∫

L

0
Q(𝜙)g(x)dx = 0 (2.30o)

A𝜋2

L2 ∫

L

0

(
EI𝜋

2

L2 − P
)

sin 𝜋x
L

sin 𝜋x
L

dx = 0 (2.30p)

or

A𝜋2L2

L2

(
EI𝜋

2

L2 − P
)

L
2
= 0

or

Pcr =
𝜋2EI

L2 (2.30q)
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Again, the critical load given by Eq. (2.30q) is the same as given by Eq. (2.1m). In this case,
the exact critical load, Pcr, is obtained because we could assume the deflected shape given in
Eq. (2.30n). In other cases of column boundary conditions where the exact deflected shape is
not available, the critical load obtain will be an approximate value. The error will depend on
the deflected shape assumed.

Problems

2.1 Find the critical load of the fixed-guided column in Figure P2.1. The column is completely
fixed at the lower end and is free to translate laterally but prevented from rotating at the
upper end.

x

y

P 

L

Figure P2.1

2.2 Determine the critical load of the structure in Figure P2.2.

Lc

Lb

EIb

EIc

P 

Figure P2.2
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2.3 A steel bar of 10 ft. (3048 mm) length and cross-section of 2 in.× 3 in. (50.8 mm× 76.2 mm)
is hinged at both ends with respect to bending about the strong axis, and is clamped at
both ends with respect to bending about the weak axis. Determine the critical load for the
elastic buckling if E = 10.6× 103 ksi (73 GPa).

2.4 Use the Rayleigh-Ritz method to obtain the critical elastic buckling load of the cantilever
stepped column in Figure P2.4.

L

L1

L2

P

EI1

EI2

Figure P2.4

2.5 Consider the stepped column in Figure P2.4. Find the critical load by using the Galerkin
method.

2.6 Consider a continuous column supported on three supports shown in Figure P2.6 and is
compressed by forces P applied at the ends. Determine the critical load for the column.

EI EI 

L L

y1

x1

y2

x2

P

A B C
P

Figure P2.6

2.7 Find the critical load for the column in Figure P2.7. Modulus of elasticity = E.
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P

L L

P

I = ∞ I

Figure P2.7

2.8 An imperfect column is hinged at both ends. If the imperfection along the length of the
column is given by

y = 𝛿 sin 𝜋x
L

Show that the maximum stress due to axial load on a circular column of diameter d is
given by

𝜎max =
4P
𝜋d2

⎡⎢⎢⎣1 +
⎛⎜⎜⎝ 1

1 − P
Pe

⎞⎟⎟⎠
8𝛿0

d

⎤⎥⎥⎦
2.9 Find the critical load for a pinned-pinned column where moment of inertia varies from

Io to 2Io shown in Figure P2.9 by the energy method. Assume the deflection is given by
y = a sin 𝜋x

L
.

P

L

Io

2Io

P

x

y

Figure P2.9
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Inelastic and Metal Columns

3.1 Introduction

Structures can fail either due to material failure or to instability. But they can also fail due
to a combination of both. The material failure is usually preceded by inelastic phenomena,
which generally has a destabilizing influence on structures, and must therefore be taken into
consideration. Even for structures that are elastic under service loads, achievement of a uniform
safety margin requires the consideration of overloads, and overloads inevitably involve inelastic
deformations. The strength of a perfectly straight prismatic column with concentric loading
is the Euler buckling load, as long as the material is still elastic when the buckling occurs.
Many practical columns are found in a range of slenderness where, at buckling, portions of the
column are no longer elastic, and thus one of the key assumptions underlying the Euler column
theory is violated. Essentially the stiffness of the column is reduced by yielding.

Before considering the theory of inelastic column behavior, let us briefly review the histor-
ical development of column buckling theories. The Euler formula was derived by Leonhard
Euler in 1744. Later on, it was found that the formula gave higher values of critical load than
found from experiments on short columns, in other words the formula was unconservative for
these columns. Engesser and Considère in 1889 and 1891 respectively [1, 2] found that Euler’s
formula was valid only for slender columns. They also realized that the Euler formula can be
used to find the critical load for short columns if the modulus of elasticity which is a material
constant is replaced by an effective modulus whose value depends on the magnitude of stress
at buckling. Engesser proposed using tangent modulus as the effective modulus for inelastic
column buckling. Considère did not give any specific value for the effective modulus. Instead
he suggested that as a column begins to bend at the critical load, stresses on the concave side,
which is in compression, increase in accordance with the tangent modulus given by the slope
of the tangent CC′, and the stresses on the convex side, which is in tension, decrease in accor-
dance with the modulus of elasticity given by the slope of the line CC′′ in Figure 3.1. Point
C corresponds to the critical condition and the curve OBC represents the compression stress
strain diagram for the column material. Thus, the thought of combining the tangent modulus
and the elastic modulus to get the reduced modulus that forms the basis for the double modulus
theory was born. Engesser [3] was the first to derive the value of reduced modulus on the basis
of double modulus theory. However, the double modulus theory did not gain wide acceptance

Structural Stability Theory and Practice, First Edition. Sukhvarsh Jerath.
© 2021 Sukhvarsh Jerath. Published 2021 by John Wiley & Sons, Inc.
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B 

Strain

Stress

σp

Proportional 

Limit 

σcr

O

C C’

C”

Figure 3.1 Stress strain diagram for a column under compression.

until von Kármán [4] also derived the double modulus theory independently in 1910. He later
conducted experiments on short rectangular columns of mild steel and supported the double
modulus theory. The double modulus theory or reduced modulus theory was accepted for some
time as the correct theory for inelastic buckling. Shanley [5, 6] experimented with columns of
different shapes of an aluminum alloy in 1947 and found that the results found from the double
modulus or reduced modulus theory were different than those obtained from the experiments.
The experimental values in his case were closer to the theoretical values obtained from the tan-
gent modulus theory. In the double modulus theory, it is assumed that when the column bends
at the critical load, strains decrease on the convex side while strains increase on the concave
side of the column. This strain reversal will take place only if the load remains constant when
the column bends. If the load continues increasing, the strain reversal may not take place at any
point in the column cross-section. In that case, tangent modulus theory governs the behavior of
the column at buckling. Tangent modulus theory gives a lower buckling load than the double
modulus theory and gives closer values to the experimental results, so it has been accepted for
inelastic buckling. It is lot easier to find the tangent modulus than the double modulus, because
the double modulus depends on the shape of the cross-section in addition to the properties of
the material.

3.2 Double Modulus Theory

The double modulus theory, also called the reduced modulus theory, was put forward by
Engesser [3] in 1895 using the concepts enunciated by Considère [2]. It is assumed in this
theory that

1. A column is initially perfectly straight and is concentrically loaded.
2. Both ends of the column are hinged.
3. Bending deformations are small so that the curvature can be assumed as y′′.
4. Plane sections before bending remain plane after bending. Therefore, strains at a point in

the cross-section of a column can be assumed to vary linearly with the distance from the
neutral axis.



Trim Size: 187mm x 235mm Single Column Jerath c03.tex V1 - 11/04/2020 12:11pm Page 97�

� �

�

3.2 Double Modulus Theory 97

5. Up to the critical condition the column remains straight, and the critical load Pcr is calculated
as the force at which a column can also remain in equilibrium in a slightly deflected shape
from the straight position.

6. Central compressive force is applied first and then maintained at this constant value while
a small lateral deflection was given to the column.

The critical load is found by considering the equilibrium of the inelastic column in its
deflected shape in Figure 3.2a. As the axial force is assumed to remain constant during
bending, there will be a small increase in the strain and stress on the concave side, and a
decrease in the strain and stress on the convex side. It is assumed that the critical stress
𝜎cr = Pcr/A is above the elastic limit of the material.

Consider a column cross-section where the centroidal and neutral axes are as shown in
Figure 3.3. Deformation is linear with the distance from the neutral axis because of the fourth
assumption as shown in Figure 3.4a. The stresses also vary linearly but with different slopes
on two sides of the neutral axis as shown in Figure 3.4b.

(a)

y 

x 

L 

P

P
O

x

y 

P 

P 

Mint

O

(b)

Figure 3.2 Inelastic pinned-pinned column under axial force: (a) Deflected shape of column; (b) Free body diagram
of deflected shape.

Convex 

outside face 

Concave inside 

face 

Neutral axis 

Centroidal 

axis 

y2 y1

h2 h1

 

dA1

dA2

Figure 3.3 Cross-section of the column.
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(a)

ds 

ρ

dφ 

ε2ds 
Tension Compression 

y2 y1

y2 y1

σcr = P/A
Axial compressive

stress before

buckling

σ1

σ2

Bending stress 

during buckling

ε1ds

(b)

Figure 3.4 Stresses and strains by double modulus theory: (a) Deformation due to bending; (b) Axial and bending
stresses.

𝜌 denotes the radius of curvature of the deflection curve in Figure 3.4a. It is assumed that the
axial force remains constant during bending, therefore, the first equation of equilibrium is that
the resultant of the compressive and tensile forces due to bending should be zero in Figure 3.4b.

∫
h1

0
𝜎1dA1 − ∫

h2

0
𝜎2dA2 = 0 (3.1a)

Stresses 𝜎1 and 𝜎2 are the tensile and compressive bending stresses at the distances of y1 and
y2 respectively from the neutral axis in Figure 3.4b. The stress-strain relation on the tensile
(convex) side is governed by the slope of line CC′′, i.e. modulus of elasticity E of the material
because the fibers unload, whereas the stress-strain relation on the compression (concave) side
is governed by the slope of the line CC′, which is the tangent modulus Et at C, in Figure 3.1.
Therefore,

𝜎1 = E𝜀1 (3.1b)
𝜎2 = Et𝜀2 (3.1c)

Similar triangles in Figure 3.4a give
𝜀1ds

y1
= ds

𝜌

or

𝜀1 =
y1

𝜌
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Since the curvature is given by

1
𝜌
= d𝜙

ds
= −y′′

𝜀1 = −y1y′′ (3.1d)

Similarly,

𝜀2 = −y2y′′ (3.1e)

Now substitute the quantities from Eqs. (3.1b), (3.1c), (3.1d), and (3.1e) in Eq. (3.1a) and we
obtain

Ey′′ ∫
h1

0
y1dA1 = Ety′′ ∫

h2

0
y2dA2 (3.1f)

or

EQ1 = EtQ2 (3.1g)

Q1 and Q2 are the moments of the areas on either side of the neutral axis about the neutral axis
in Figure 3.3. The position of the neutral axis is obtained from Eq. (3.1g). Since the modulus of
elasticity, E, and the tangent modulus, Et, are not equal, the moments of areas Q1 and Q2 are
not equal. So, the neutral axis does not pass through the centroid of the cross-section for double
modulus theory for inelastic buckling.

The second equation of equilibrium is obtained by taking the moment of the forces about the
centroidal axis of the column at O in Figure 3.2b, and is written as

P y − Mint = 0 (3.1h)

Mint=∫
h1

0
𝜎1y1dA1 + ∫

h2

0
𝜎2y2dA2

or

Mint = −Ey′′ ∫
h1

0
y2

1dA1 − Ety′′ ∫
h2

0
y2

2dA2 (3.1i)

or

Mint = −y′′(EI1 + EtI2) (3.1j)

where

I1 = ∫
h1

0
y2

1dA1 and I2 = ∫
h2

0
y2

2dA2

are the moments of inertias of the areas on either side of the neutral axis about the neutral axis
in Figure 3.3. Equations (3.1h) and (3.1j) are combined to give

(EI1 + EtI2)y′′ + Py = 0
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or
(EI1 + EtI2)

I
y′′ +

Py
I

= 0

and

Ery′′ +
Py
I

= 0 (3.1k)

where

Er =
EI1 + EtI2

I
(3.1l)

I is the moment of inertia of the column cross-section about the axis of bending passing through
the centroid. Er is called the reduced modulus. Its value depends on the stress–strain relation
of the material of column and on the shape of the cross-section. Er is always smaller than the
modulus of elasticity of the material E. Er does not vary along the length of the column, i.e. it
is not a function of x, and is constant along a given column. Equation (3.1k) can be written as

y′′ + k2y = 0 (3.1m)

where k2 = P/ErI. Equation. (3.1m) is of the same form as Eq. (2.1d) for elastic buckling except
that Er takes the place of E. The critical load for a pinned-pinned column in which the stress
exceeds the elastic limit prior to buckling is therefore given by integrating Eq. (3.1m) as

(Pr)cr =
𝜋2ErI

L2 (3.1n)

We see that the Euler formula used previously for elastic columns can also be used for inelas-
tic buckling if reduced modulus is used instead of the modulus of elasticity. (Pr)cr is referred to
as the reduced modulus load. Since Er <E, the reduced modulus load is always smaller than the
Euler load in elastic buckling. The corresponding reduced modulus critical stress is obtained
from

(𝜎r)cr =
𝜋2Er

(L∕r2)
(3.1o)

3.2.1 Rectangular Section

Consider now a perfect pin-ended column of a rectangular section of width b and depth h as
shown in Figure 3.5. Assume that the column buckles at constant axial force P. At the start of
buckling, the concave face of the column, i.e. the one toward the center of curvature undergoes
further shortening, that is loading, and the convex face undergoes extension, unloading. At the
neutral axis within the cross-section the axial strain does not change. The distances of the neu-
tral axis from the convex and concave faces of the column are denoted as h1 and h2 respectively
in Figure 3.5.

For a rectangular cross-section, Eq. (3.1g) gives

Eh2
1 = Eth2

2 (3.2a)
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Centroidal axis Neutral axis 

b

h1h2

h 

Concave (E) Convex (Et)

Figure 3.5 Rectangular cross-section.

or
h1

h2
=

√
Et√
E

(3.2b)

Total depth of the section h can be written as

h = h1 + h2 (3.2c)

Substitute Eq. (3.2c) in Eq. (3.2b) and we obtain

h1 =
h
√

Et√
E +

√
Et

, h2 =
h
√

E√
E +

√
Et

I1 = 1
3

bh3
1 = 1

3
b

(
h
√

Et√
E +

√
Et

)3

(3.2d)

I2 = 1
3

bh3
2 = 1

3
b

(
h
√

E√
E +

√
Et

)3

(3.2e)

and the moment of inertia of the rectangular section about the centroidal bending axis is

I = 1
12

bh3 (3.2f)

For a rectangular section substituting moment of inertia values in Eq. (3.1l) gives

Er =
4EEt

(
√

E +
√

Et)2
(3.2g)

For a rectangular section (Pr)cr and (𝜎r)cr can be determined from Eqs. (3.1n) and (3.1o) sub-
stituting Er from Eq. (3.2g).

3.3 Tangent Modulus Theory

Although the early test results agreed with the reduced modulus theory well, some experi-
mental studies conducted after the publication of von Kármán’s work in 1910 [4] revealed that
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columns can fail by buckling at loads that are significantly lower than the reduced modulus
critical load. The reason for this discrepancy was explained by Shanley in 1947 [5]. He showed
that in a normal practical situation the column does not buckle at a constant load, as assumed
in the reduced modulus theory. The first five assumptions made in the double modulus the-
ory are valid in the tangent modulus theory to calculate the critical load. However, the sixth
assumption where the axial force applied to the column remains constant during buckling is
no longer retained.

During the testing of an actual column, the axial force increases simultaneously with lateral
deflection as shown in Figure 3.6a. In that case, it is possible that the tensile strain increments
caused by the deflection may be compensated for by the axial shortening increment due to
the increase of the axial load, so that there is no strain reversal in the cross-section anywhere.
Thus, the actual deformation may proceed without any release of stress in the fibers on the
convex side. The deformations beyond the critical load are small, so the increase in stress during
bending,𝛥𝜎, is very small in comparison to the critical stress 𝜎cr. Therefore, Et corresponding to
the stress 𝜎cr is taken as the governing modulus for the entire cross-section. The only difference
between this case and the bending during elastic buckling is that stresses are related to strain
by the tangent modulus Et, rather than by the modulus of elasticity of the column material,
E. The column remains in the straight position until the axial force reaches the critical load.
Then the axial force is increased by 𝛥P and the column moves from the straight position to a
bent shape. The incremental force 𝛥P is negligible in comparison to the critical load P, so the
moment equilibrium of the free body diagram in Figure 3.6b is taken by neglecting 𝛥P, and it
leads to

EtIy′′ + P y = 0 (3.3a)

or

y′′ + k2y = 0 (3.3b)

where k2 = P/EtI. Equation (3.3b) is of the same form as Eq. (2.1d) for elastic buckling except
that Et takes the place of E. The critical load for a pinned-pinned column in which the stress

(a)

y 

x

L 

P + ΔP
P + ΔP

P + ΔP
P + ΔP

y 

x

–EtIy"

(b)

Figure 3.6 Inelastic pinned-pinned column by tangent modulus theory: (a) Deflected shape of column; (b) Free
body diagram of the deflected shape.
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exceeds the elastic limit prior to buckling is therefore given by tangent modulus theory as

(Pt)cr =
𝜋2EtI

L2 (3.3c)

(Pr)cr is referred to as the tangent modulus load. Since Et <Er as shown in Eq. (3.1l), the tangent
modulus load is less than the reduced modulus load and is independent of the shape of the
cross-section. The corresponding tangent modulus critical stress is obtained from

(𝜎t)cr =
𝜋2Et

(L∕r2)
(3.3d)

3.4 Shanley’s Theory for Inelastic Columns

In Shanley’s [5] model, it is assumed that the load is increasing while buckling is taking place.
If deflections are small as assumed in both the tangent and reduced modulus theories, the
tangent modulus can be assumed to be constant over the part of the cross-section where the
compressive stress is increasing. However, for the finite deformations necessary to be consid-
ered when studying post-buckling behavior, the tangent modulus varies along the various fibers
of a cross-section as well as along the length of the member. Since it is not possible to find an
analytical solution to study the post-buckling behavior, the problem can be solved by numerical
methods only.

In 1947, Shanley [5] used a simple column model consisting of an idealized pin-ended column
to study the post-buckling behavior of an inelastic column. An approximate analytical solution
can be obtained for this model. The model consists of two rigid bars connected at the mid-span
by a very short elastic–plastic link of length h< <L that deforms, as shown in Figure 3.7a.
This short deformable link has the cross-section of an ideal I-beam whose height is also h.
The I-beam consists of two flange elements, each of area A/2. All the deformable material is
concentrated in the elements, which permit us to avoid variation of the tangent modulus along
the length and across the section of the column.

The moment of inertia of the deformable link is I = Ah2/4, where A is the cross-sectional
area of the link. The model is supposed to remain straight until the critical load is reached. The
initial equilibrium of the straight column at load P0 is disturbed by applying a small disturbing
lateral displacement q while the axial load is raised by a small increment 𝛥P to P = P0 +𝛥P.
Taking the equilibrium of moments in Figure 3.7b, we have

P(q) − Mi = 0 (3.4a)

The incremental strains in the deformable link due to bending and any change in axial
load during bending in the two elements of the deformable link are 𝜀1 and 𝜀2, as shown in
Figure 3.7c. These strains do not include axial strains before bending. We can write from
Figures 3.7b and c

q = 𝜃L∕2 (3.4b)
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(a) (b)

(c) (d)
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h 

Figure 3.7 Shanley’s rigid bar column with the elastic-plastic link: (a) Shanley’s rigid bar column; (b) Free body
diagram of the deflected shape; (c) Strain increments and internal forces in the link; (d) Loading and unloading
moduli.

and

𝜃 =
(𝜀1 + 𝜀2)h

2h
=

𝜀1 + 𝜀2

2
(3.4c)

or

q =
(𝜀1 + 𝜀2)L

4
(3.4d)

In Figure 3.7c, the internal forces in the two links of the deformable link are

P1=𝜀1E1
A
2
, and P2 = 𝜀2E2

A
2

(3.4e)

where the modulus E1 is applicable on the concave side, and the modulus E2 is applicable on the
convex side. The internal moment in the deformable link, Mi, in Figure 3.7c using Eq. (3.4e) is

Mi = (P1 + P2)
h
2
= Ah

4
(E1𝜀1 + E2𝜀2) (3.4f)

Equations (3.4a), (3.4d), and (3.4f) give
PL
4
(𝜀1 + 𝜀2) =

Ah
4
(E1𝜀1 + E2𝜀2) (3.4g)
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or

P =
Ah (E1𝜀1 + E2𝜀2)

L(𝜀1 + 𝜀2)
(3.4h)

If it is assumed that there is no strain reversal while bending takes place, then E1 = E2 = Et,
and the tangent modulus load from Eq. (3.4h) is given by

Pt =
AhEt

L
(3.4i)

Now, assume that the applied load on the column is increased during the bending of the
column after the critical load has been reached. Then

E1 = Et (3.4j)

And let

E2 = 𝜉Et (3.4k)

The value of 𝜉 depends on whether strain reversal takes place on the convex side or not. If
strain reversal takes place, then 𝜉 = E/Et > 1, and E2 = E; if strain reversal does not take place,
then 𝜉 = 1, and E2 = Et.

Substitute Eqs. (3.4j) and (3.4k) into Eq. (3.4h), and we have

P =
AhEt(𝜀1 + 𝜉𝜀2)

L(𝜀1 + 𝜀2)
(3.4l)

From Eq. (3.4d) we have

𝜀1 =
4q
L

− 𝜀2 (3.4m)

Substitute Eqs. (3.4d) and (3.4m) into Eq. (3.4l), and we get

P =
AhEt

L

[
1 + L

4q
(𝜉 − 1)𝜀2

]
Or using Eq. (3.4i) we obtain

P = Pt

[
1 + L

4q
(𝜉 − 1)𝜀2

]
(3.4n)

If bending starts at the critical load given by the tangent modulus load Pt, then

P = P0 + 𝛥P = Pt + 𝛥P

The increase of load during bending is given from the equilibrium of vertical forces as

𝛥P = P1 − P2 (3.4o)

Combine Eqs. (3.4e) and (3.4o) and we get

ΔP =
𝜀1E1A

2
−

𝜀2E2A
2

(3.4p)
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Use Eqs. (3.4j) and (3.4k) to give

ΔP =
𝜀1EtA

2
−

𝜀2𝜉EtA
2

(3.4q)

Combine Eqs. (3.4m) and (3.4q) to get

ΔP =
AEt

2

[
4q
L

− (𝜉 + 1)𝜀2

]
(3.4r)

P = Pt + ΔP = Pt +
AEt

2

[
4q
L

− (𝜉 + 1)𝜀2

]
Rearranging the terms, we have

P = Pt

[
1 +

2q
h

− L
2h

(𝜉 + 1)𝜀2

]
(3.4s)

Both Eqs. (3.4n) and (3.4s) give value of P, so by equating these values we obtain

Pt

[
1 + L

4q
(𝜉 − 1)𝜀2

]
= Pt

[
1 +

2q
h

− L
2h

(𝜉 + 1)𝜀2

]
or

L
4q

(𝜉 − 1)𝜀2 =
2q
h

− L
2h

(1 + 𝜉)𝜀2

or

𝜀2 =
4q

L(𝜉 − 1)
1

h
2q

+
(

𝜉+1
𝜉−1

) (3.4t)

Substitute 𝜀2 from Eq. (3.4t) into Eq. (3.4n) to get

P = Pt

⎡⎢⎢⎢⎢⎣
1 + 1

h
2q

+
(
𝜉 + 1
𝜉 − 1

)
⎤⎥⎥⎥⎥⎦

(3.4u)

Equation (3.4u) gives the relationship between load P and the lateral deflection q after the
critical load Pt was reached, giving the post-buckling behavior of the idealized column. It is
assumed in the derivation of Eq. (3.4u) that the bending begins at the tangent modulus load Pt,
therefore, when q = 0, P = Pt. As q increases, P increases, and the P - q relationship is guided
by the value 𝜉 = E2/Et. If there is no strain reversal on the convex side, 𝜉 = 1, and P = Pt from
Eq. (3.4u). That means the load during bending is constant, which should lead to strain reversal,
a contradiction, so this is discarded. That means strain reversal takes place on the convex side,
and 𝜉 = E/Et, so P increases as q increases. As q becomes very large in comparison to h, P from
Eq. (3.4u) tends to the following value:

P = Pt

[
1 + 𝜉 − 1

𝜉 + 1

]
(3.4v)
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The reduced modulus value, Pr, for the model can be derived, assuming the bending takes
place at the constant load as follows:

For constant load, P1 −P2 = 𝛥P = 0, thus, 𝜀1E1 = 𝜀2E2 from Eq. (3.4p). Hence

𝜀2 =
𝜀1E1

E2
=

𝜀1Et

E
=

𝜀1

𝜉
(3.4w)

Substitute Eq. (3.4w) in Eq. (3.4d), and it gives

𝜀2 =
4q

L(1 + 𝜉)
and substituting the value of 𝜀2 in Eq. (3.4n) we get

P = Pr = Pt

(
1 + 𝜉 − 1

𝜉 + 1

)
The same result as in Eq. (3.4v). This means the load on the idealized column reaches the

reduced modulus load Pr, as the lateral deflection q becomes very large.
A plot of Eq. (3.4u) where load P vs lateral deflection q at the mid-height of the idealized

column is shown in Figure 3.8. The solid curve in the plot shows post-buckling behavior in the
model column after the critical load is reached at Pt. The tangent modulus Et is assumed to be
constant in the model column, whereas in the actual column, the tangent modulus reduces with
the increase in the compressive strain and varies both across the cross-section and along the
length of the column. The dashed line gives the behavior of the actual column. The maximum
load for an actual column lies between the tangent modulus and reduced modulus loads. Hence
the tangent modulus load represents the lower bound and the reduced modulus load represents
an upper bound for a real column that is straight, inelastic, and is loaded concentrically.

The most significant finding of the analysis of the idealized column is that the maximum
load reached for a real column lies somewhere between the tangent and reduced modulus
loads. Experiments on real columns show that the maximum load they can reach is closer
to the tangent modulus load than to the reduced modulus load [7] because of imperfections
and accidental eccentricity. Some experimental studies suggest that Pt/Pmax ≈ 1.02 to 1.10 [8].
In practice, tangent modulus theory can be used to find the buckling load of inelastic straight
columns loaded concentrically, because it is easier to find Pt in comparison to Pr, and it gives
conservative results of buckling load. Von Kármán, in response to Shanley’s work, stated that it

Pt

Pr

q 

P Actual column 

Idealized column 

Figure 3.8 Post-buckling behavior of an idealized column.
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determines “What is the smallest value of the axial load at which bifurcation of the equilibrium
position can occur, regardless of whether or not the transition to the bent position requires an
increase of the axial load.” Thus, the tangent modulus load gives a safe lower bound of the
critical load of an elasto-plastic structure. This is the principal merit of Shanley’s work [9].

3.5 Columns with Other End Conditions

In Section 3.4, the critical load for an axially loaded elastoplastic column was found with
hinged ends. A similar approach can be used to find the critical load for axially loaded inelastic
columns with other end conditions. Elastic columns with other end conditions were discussed
in Section 2.2 of Chapter 2. The differential equation of the slightly bent column is of the
same form when compressed beyond the elastic limit as that of the elastic column. The only
difference is that the modulus of elasticity, E, is replaced by the tangent modulus, Et. The
mathematical expressions for the end conditions also remain the same. Hence the formulas
for the critical loads beyond the proportional limit remain unchanged except for replacing E
by Et. Thus, the effective lengths derived previously for elastic conditions can be used in the
inelastic columns to find the critical loads for various end conditions from the critical load for
the hinged-hinged column, as given in Section 2.3.

3.6 Eccentrically Loaded Inelastic Columns

In practice, there are situations where the columns are acted on by forces that are not passing
through the centroids of the cross-sections of the column throughout its length. Hence, it is
necessary to consider eccentrically loaded columns where stresses exceed the elastic limit. It is
not possible to get a closed form solution because of the complexity of the variation of stress
from point to point in the column. Von Kármán (see Bleich) [4, 10] suggested a numerical
solution of the problem that is laborious. Instead an approximate solution given by Chajes [8]
is given here. The approximate solution is based on the following assumptions:

1. The deflected shape of the column is assumed as a half sine wave.
2. The stress varies linearly across the section of the column. The actual stress-strain diagram

for the material, which is a curve, is assumed to obtain the stresses at the extreme fibers, and
then a linear variation between these stresses is assumed to exist. For an idealized I-section
consisting of two flanges connected by a web of negligible area, the linear variation is an
exact stress distribution.

3. Plane sections before bending remain plane after bending and normal to the center line of
the column.

4. The deformations are small, so that the curvature can be approximated by the second deriva-
tive of the deflection of the column.

An eccentrically loaded column is shown in Figure 3.9a. The line joining the extreme stresses
𝜎1 and 𝜎2 is taken as the chord modulus, ECH , in the stress–strain diagram shown in Figure 3.9b.
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Figure 3.9 Inelastic column under eccentric load: (a) Eccentrically loaded column; (b) Stress strain diagram for the
material; (c) Stress variation across the column section; (d) Deformation across the column section.

The stresses at any section consist of an axial stress 𝜎0 = P/A, and a bending stress 𝜎b. Extreme
fiber stresses, are shown as 𝜎1 and 𝜎2 in Figure 3.9c, also the actual and assumed stress varia-
tions are shown by dashed and solid lines respectively. Deformations across the column depth
h are shown in Figure 3.9d.

From the mechanics of materials, 𝜀 = y/𝜌, where ε is the strain in the fiber of a member in
bending that lies at a distance of y from the neutral axis, and 𝜌 is the radius of curvature of the
bent shape of the column. Therefore,

𝜀1 =

h
2
𝜌

(3.5a)

𝜀2 =

−h
2
𝜌

(3.5b)

In Eq. (3.5b) a negative sign is used because the distance h/2 is in the negative direction of
y. 𝜀1 and 𝜀2 are the strains corresponding to the stresses 𝜎1 and 𝜎2 in the outer fibers of the
column in Figure 3.9c. Equations (3.5a) and (3.5b) give

𝜀1 − 𝜀2

h
= 1

𝜌
(3.5c)
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Because of assumption (4) above, the curvature, 1/𝜌, can be written as

y′′ = 1
𝜌

(3.5d)

Combining Eqs. (3.5c) and (3.5d) we have
𝜀1 − 𝜀2

h
= y′′ (3.5e)

The chord modulus in Figure 3.9b is given by

ECH =
𝜎2 − 𝜎1

𝜀2 − 𝜀1
(3.5f)

Substituting Eq. (3.5e) into Eq. (3.5f) we obtain

y′′ =
𝜎1 − 𝜎2

hECH
(3.5g)

In Figure 3.9c 𝜎1 = P
A
− Mh

2I
, and 𝜎2 = P

A
+ Mh

2I
or

𝜎1 − 𝜎2 = −Mh
I

or

y′′ = − M
ECHI

(3.5h)

Assume the deformed shape of the member as per assumption no. 1 as

y = 𝛿0 sin 𝜋x
L

and

y′′ = −𝛿0
𝜋2

L2 sin 𝜋x
L

(3.5i)

where 𝛿0 is the deflection of the column at the mid-height. Substituting Eq. (3.5i) into Eq. (3.5h),
we have

𝛿0
𝜋2

L2 sin 𝜋x
L

= M
ECHI

(3.5j)

Substitute x = L/2 and M = P (e+ 𝛿0), into Eq. (3.5j)

𝛿0 = L2

𝜋2
P(e + 𝛿0)

ECHI

Since I = Ar2 and P = 𝜎0A, we can write

𝛿0

(
1 − L2

𝜋2
𝜎0

ECHr2

)
= L2

𝜋2
𝜎0e

ECHr2
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or

𝛿0 = e
𝜋2ECH

(L∕r)2𝜎0
− 1

(3.5k)

The maximum stress in the column cross-section at the mid-height is given by

𝜎2 = P
A

+
P(e + 𝛿0)h

2Ar2

or

𝜎2 = 𝜎0

[
1 + eh

2r2

(
1 +

𝛿0

e

)]
(3.5l)

Substituting 𝛿0/e from Eq. (3.5k) into Eq. (3.5l) we have

𝜎2 = 𝜎0

⎡⎢⎢⎢⎢⎣
1 + eh

2r2
1

1 −
𝜎0(L∕r)2

𝜋2ECH

⎤⎥⎥⎥⎥⎦
(3.5m)

Load P versus deflection 𝛿0 can be plotted using Eq. (3.5k) if ECH is known. Equation (3.5m)
cannot be used directly to determine ECH corresponding to a value 𝜎0 = P/A, because 𝜎2 is also
unknown. Therefore, Eq. (3.5m) is solved by iteration. Assume a value of ECH , and solve for 𝜎2
from Eq. (3.5m) for a certain value of P (𝜎0 = P/A). Now, find new value of ECH using Eq. (3.5f),
where the strain values are obtained from the stress–strain graph of the material of the column.
𝜎1 is obtained assuming a doubly symmetric section using Figure 3.9c as follows:

𝜎0 =
𝜎1 + 𝜎2

2
, or 𝜎1 = 2𝜎0 − 𝜎2 (3.5n)

The solution of the eccentrically loaded inelastic column is demonstrated by solving an
example.

Example 3.1 Consider an eccentrically loaded pinned-pinned column as shown in
Figure 3.10a. It is made of an idealized symmetric I section of an aluminum alloy consisting
of two flanges and a web whose area is negligible as shown in Figure 3.10b. Each flange area
is 12, 900 mm2, and the flanges are 254 mm apart. The stress-strain diagram of the material
of the column is shown in Figure 3.10c. The slenderness ratio of the column (L/r) is equal to
30.4. The average compression stress 𝜎0 = 262 MPa, and the external force P is applied at an
eccentricity of 25.4 mm. Find the deflection of the column loaded in inelastic range.

Moment of inertia, I = 12,900 (127)2(2) = 416,128, 200 mm4

r2 = I
A

= 416,128, 200
12,900x2

= 16,129 mm2
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Figure 3.10 Inelastic eccentrically loaded column: (a) Eccentrically loaded column; (b) Cross-section of the column;
(c) Stress strain diagram of the column material.

Substituting the given values in Eq. (3.5m) we have
eh
r2 = ec

r2 = 25.4x127
16,129

= 0.2

𝜎2 = 262

⎡⎢⎢⎢⎢⎣
1 + 0.2 1

1 − 262(30.4)2

𝜋2ECH

⎤⎥⎥⎥⎥⎦
or

𝜎2 = 262 + 52.4

1 − 24532.9
ECH

MPa (3.5o)
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First trial:
Assume

𝜎2 = 332 MPa
𝜎1 = 2 𝜎0 − 𝜎2 = 2(262) − 332 = 192 MPa

From Figure 3.10c,

𝜀2 = 0.00460, 𝜀1 = 0.00262

Using Eq. (3.5f) we have

ECH =
𝜎2 − 𝜎1

𝜀2 − 𝜀1
= 332 − 192

0.00460 − 0.00262
= 70707 MPa

From Eq. (3.5o) we get

𝜎2 = 262 + 52.4

1 − 24532.9
70707

= 342 MPa

Second trial:
Assume

𝜎2 = 342 MPa
𝜎1 = 2𝜎0 − 𝜎2 = 2(262) − 342 = 182 MPa

From Figure 3.10c,

𝜀2 = 0.00475, 𝜀1 = 0.00245

Using Eq. (3.5f) we have

ECH =
𝜎2 − 𝜎1

𝜀2 − 𝜀1
= 342 − 182

0.00475 − 0.00245
= 69565 MPa

From Eq. (3.5o) we get

𝜎2 = 262 + 52.4

1 − 24532.9
69565

= 343 MPa

Third trial:
Assume

𝜎2 = 343 MPa
𝜎1 = 2𝜎0 − 𝜎2 = 2(262) − 343 = 181 MPa

From Figure 3.10c,

𝜀2 = 0.00480, 𝜀1 = 0.00244
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Using Eq. (3.5f) we have

ECH =
𝜎2 − 𝜎1

𝜀2 − 𝜀1
= 343 − 181

0.00480 − 0.00244
= 68644 MPa

From Eq. (3.5o) we get

𝜎2 = 262 + 52.4

1 − 24532.9
68644

= 343.54 MPa ≈ 343 MPa

Therefore, 𝜎2 = 343 MPa, and ECH = 68644 MPa corresponding to 𝜎0 = 262 MPa. The
mid-height deflection of the column from Eq. (3.5k) is

𝛿0 = e
𝜋2ECH

(L∕r)2𝜎0
− 1

= 25.4
68644

24532.9
− 1

= 14.12 mm

Two solutions of mid-height deflection exist for each value of 𝜎0. By trial and error as before,
assume 𝜎2 = 412 MPa. Thus, from Eq. (3.5n) we get

𝜎1 = 2(262) − 412 = 112 MPa

From Figure 3.10c corresponding to stress values of 412 MPa and 112 MPa we obtain

𝜀2 = 0.0094, and 𝜀1 = 0.0016

and Eq. (3.5f) gives

ECH = 412 − 112
0.0094 − 0.0016

= 38462 MPa

Substituting in Eq. (3.5o) we get

𝜎2 = 262 + 52.4

1 − 24532.9
38462

= 407 MPa

Repeating the above process

𝜎1 = 2(262) − 407 = 117 MPa.

From Figure 3.10c corresponding to stress values of 407 and 117 MPa we obtain

𝜀2 = 0.0094 and 𝜀1 = 0.0016

and Eq. (3.5f) gives

ECH = 412 − 112
0.0094 − 0.0016

= 38462 MPa

Substituting in Eq. (3.5o) we get

𝜎2 = 262 + 52.4

1 − 24532.9
38462

= 407 MPa
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Figure 3.11 Average compressive stress 𝜎0 versus mid-height deflection 𝛿0.

Using 𝜎2 = 407 MPa, and ECH = 38462 MPa in Eq. (3.5k) we have

𝛿0 = e
𝜋2ECH

(L∕r)2𝜎0
− 1

= 25.4
38462

24532.9
− 1

= 44.74 mm

The procedure used here can be used to obtain and plot mid-height deflections versus aver-
age compressive stress for different values of eccentricity of the external loading, as shown in
Figure 3.11 for three different eccentricities of 2.54, 12.70, and 25.4 mm. It is seen from these
curves that in the beginning the load increases as deflection increases until a maximum value
of the external force is reached. The load decreases with the increase of deflection after the
maximum load is reached. So, there are two branches of the load deflection curves, ascend-
ing and descending. The ascending branch shows the region when the column exhibits stable
buckling, whereas the descending branch of the curve depicts the unstable buckling behavior
of the column.

When the load corresponding to the maximum load occurs in a column as shown in
Figure 3.11, it collapses because the load decreases with the increase in deflection. The
maximum load drops substantially as the eccentricity of the load increases in the column,
thus in the case of short columns where buckling occurs at stresses above the elastic limit, the
buckling and collapse of a column occur simultaneously, as seen in Figure 3.11. In the case
of long columns that buckle elastically, there is a delay between the onset of buckling and
the collapse of a column. It is also found from the quantitative curves by Chajes [8] that the
maximum load is approaching the tangent modulus load as the eccentricity in the column
approaches zero. In addition, as seen before, the tangent modulus load is conservative and
easier to calculate in comparison to the reduced modulus buckling load. Therefore, the tangent
modulus load is preferred to the reduced modulus load to measure the inelastic buckling of
columns.
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3.7 Aluminum Columns

Tangent modulus theory is used in the design applications for aluminum-alloy columns in the
inelastic range. The tangent modulus theory can be used only if the mechanical properties of
the column are constant throughout the cross-section and the length of the member. Research
by Mazzolani and Frey in 1977 [11] has shown that the residual stresses are insignificant in the
aluminum columns. Residual stresses in the extruded aluminum members are small because of
the method of production and the straightening of the finished member by stretching. There is
also good agreement between column test results and the calculated values using the tangent
modulus theory in the case of initially straight aluminum alloy 6061-T6 columns shown by
Batterman and Johnston in 1967 [12]. So, the design and analysis of aluminum-alloy columns
have generally been based on the tangent modulus theory. The maximum strength of initially
curved aluminum-alloy columns reduces as the imperfectness in the form of initial curvature
increases [12]. Tests by Hariri in 1967 [13] have also indicated that the effect of end eccentricity
was more harmful than the effect of the same magnitude of initial curvature.

The buckling load, Pcr, using the tangent modulus theory is given by

Pcr = Pt =
𝜋2EtI
(KL)2

or

𝜎cr =
Pcr

A
=

𝜋2Et

(KL∕r)2

I = Ar2

and

KL
r

= 𝜋

√
Et

𝜎cr
(3.6a)

where A= area of cross-section, r= radius of gyration of the cross-section, I =moment of inertia
of the cross-section about the bending axis, KL = effective length of the column, and Et is the
tangent modulus at the critical stress 𝜎cr. The relation between KL/r versus 𝜎cr is called the
column strength curve. To plot this curve, the tangent modulus, Et, should be known which is
a function of 𝜎cr. That means the stress-strain graph of the column material should be known.
The Ramberg-Osgood formula [14] can be used to fit the experimental results of stress-strain
diagrams of aluminum alloys in the form given below:

𝜀 = 𝜎

E
+ 0.002

(
𝜎

𝜎0.2

)n

(3.6b)

where E = elastic Young ’ s modulus, 𝜎0.2 = 0.2 % offset yield stress, n = hardening parame-
ter. The tangent modulus Et is the slope of the stress-strain curve, therefore, differentiating
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Eq. (3.6b) with respect to strain 𝜀, we get

d𝜎
d𝜀

= Et =
E

1 + 0.002nE
𝜎0.2

(
𝜎

𝜎0.2

)n−1 (3.6c)

For a particular aluminum alloy E, 𝜎0.2, and n are known from the stress-strain diagram
for that material. The coefficient, n, the hardening parameter (it reflects the shape of the
stress-strain diagram) can be taken as the value of the yield strength in kN/cm2 as suggested by
Steinhart and Galambos [15, 16]. For a particular column, assume 𝜎 = 𝜎cr, Et can be obtained
from Eq. (3.6c), then use Eq. (3.6a) to calculate the slenderness ratio, KL/r, of the column. This
way we choose different values of 𝜎 = 𝜎cr, find tangent modulus Et at those values, and then
obtain corresponding slenderness ratios, KL/r.

The stress-strain graph of the aluminum alloy 6061-T6 is given by Batterman and Johnston
[12] from experimental values. The non-dimensional stress-strain diagram showing 𝜎/𝜎0.2 ver-
sus strain 𝜀 is shown in Figure 3.12. The graph is used to calculate E = 10, 100 ksi (69, 690 MPa),
𝜎0.2 = 40.25 ksi (277.72 MPa), then, n = 27.77 (277.72/10 = 27.77 kN/cm2) [15] for the alu-
minum alloy 6061-T6. Now we use Eqs. (3.6c) and (3.6a) to obtain Et and KL/r a) corresponding
to 𝜎 = 𝜎cr, and prepare Table 3.1. The column strength curve for the aluminum alloy 6061-T6
is plotted in Figure 3.13.

3.7.1 North American and Australian Design Practice

The Aluminum Association design manual-AA 1994 [17], CSA 1980 [18], and SAA 1979 [19]
specifications provide formulas based on the tangent modulus formula, that is simplified in the
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Figure 3.12 Stress ratio (𝜎/𝜎0.2) versus strain diagram of aluminum alloy 6061-T6.
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Table 3.1 Calculated quantities for column strength curve.

𝝈 = 𝝈cr ksi(MPa) 𝝈cr

𝝈0.2

Et

E
a) KL

r
a) KL/rb)

24(165.6) 0.596 1.000 64.45 71.18
28(193.2) 0.696 0.999 59.64 57.83
30(207.0) 0.745 0.995 57.49 51.16
32(220.8) 0.795 0.971 54.99 44.49
34(234.6) 0.845 0.868 50.44 37.81
36(248.4) 0.894 0.587 40.33 31.14
38(262.2) 0.944 0.251 25.65 24.47
40(276.0) 0.994 0.078 13.96 17.79
40.25(277.72) 1.000 0.067 12.88 16.96
40.5(279.45) 1.006 0.057 11.88 16.12
41(282.9) 1.019 0.042 10.10 14.45

a) Tangent modulus theory.
b) [17].
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Figure 3.13 Column strength curve for aluminum alloy 6061-T6.

inelastic range to a straight line as follows [16]:
𝜎c

𝜎y
= 𝛼2(1 − k𝛼𝜆) for 𝜆 < C (3.7a)

in which 𝜆 = (KL/r)/𝜋g and g = (E/𝜎y)1/2. For fully heat-treated alloys,

𝛼 = (1 + 2∕g)1∕2, k = 0.31, and C = 1.3∕𝛼
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and for non-heat-treated aluminum alloys,

𝛼 = (1 + 3∕g)1∕2, k = 0.38, and C = 1.75∕𝛼

where 𝜎c = critical stress, 𝜎y = yield strength, g = distance from the shear center of girder
to the point of application of transverse load, K = effective length factor, L = length of the
column, r = radius of gyration of the cross-section of the column, E= modulus of elasticity
of the material of the column. The above formulas are based on the ratios 𝜎0.2/𝜎0.1 of 1.04 for
fully heat-treated alloys and 1.06 for non-heat-treated alloys, where 𝜎0.2 and 𝜎0.1 are the yield
strengths of the aluminum alloy at 0.2 and 0.1% offset strains in the stress-strain diagram of the
material under axial compression. For 𝜆>C, the Euler formula is used.

If the above-mentioned substitutions are made in Eq. (3.7a) we get the following:
For fully heat-treated aluminum alloys

𝜎c

𝜎y
=

(
1 + 2

√
𝜎y

E

)
− 0.31

(
1 + 2

√
𝜎y

E

)3∕2
KL
𝜋 r

√
𝜎y

E
(3.7b)

for

𝜆 = KL
𝜋r

√
𝜎y

E
< C = 1.3(

1 + 2
√

𝜎y

E

)1∕2

And for non-heat-treated aluminum alloys

𝜎c

𝜎y
=

(
1 + 3

√
𝜎y

E

)
− 0.38

(
1 + 3

√
𝜎y

E

)3∕2
KL
𝜋 r

√
𝜎y

E
(3.7c)

for

𝜆 = KL
𝜋r

√
𝜎y

E
< C = 1.75(

1 + 3
√

𝜎y

E

)1∕2

For both fully heat-treated and non-heat-treated aluminum alloys in the elastic range
𝜎c

𝜎y
= 𝜋2E(KL

r

)2
𝜎y

for 𝜆 > C (3.7d)

The above-mentioned formulas to calculate the critical buckling stress in the inelastic range
are given in the Specifications for Aluminum Structures, the design manual of the AA (2005)
[20] and the Standards Association of Australia SSA 1997 [21] in a different form as

𝜎c =
(

Bc − Dc
kL
r

)
for KL

r
< Cc (3.7e)
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Formulas for buckling constants for aluminum alloy products whose temper designation
begins with T5, T6, T7, T8, or T9 are given in AA 2005 [20] by

Bc = 𝜎y

[
1 +

(
𝜎y

2250

)1∕2
]
,where Bc is in kips∕in.2, (3.7f)

Bc = 𝜎y

[
1 +

(
𝜎y

15510

)1∕2
]
,where Bc is in MPa, (3.7g)

Dc =
Bc

10

(
Bc

E

)1∕2

,where Dc is in kips∕in.2 or MPa, (3.7h)

and Cc = 0.41
Bc

Dc
,where both Bc and Dc are in kips∕in.2 or MPa. (3.7i)

Substituting the values of Bc and Dc from Eqs. (3.7f), (3.7h), and (3.7i) into Eq. (3.7e) we have

𝜎c

𝜎y
=

[
1 +

(
𝜎y

2250

)1∕2
]
− 1

10

[
1 +

(
𝜎y

2250

)1∕2
]3∕2

KL
r

√
𝜎y

E
(3.7j)

for
KL
𝜋 r

√
𝜎y

E
<

1.3[
1 +

(
𝜎y

2250

)1∕2
]1∕2

where 𝜎y and E are in kips/in.2.
Now, substituting the values of Bc and Dc from Eqs. (3.7g), (3.7h), and (3.7i) into Eq. (3.7e)

we have

𝜎c

𝜎y
=

[
1 +

(
𝜎y

15510

)1∕2
]
− 1

10

[
1 +

(
𝜎y

15510

)1∕2
]3∕2

KL
r

√
𝜎y

E
(3.7k)

for
KL
𝜋 r

√
𝜎y

E
<

1.3[
1 +

(
𝜎y

15510

)1∕2
]1∕2

where 𝜎y and E are in MPa. If the modulus of elasticity E values of an aluminum alloy are
substituted in Eq. (3.7b) in kips/in.2, Eq. (3.7j) will be obtained. On the other hand, if the E
values are substituted in Eq. (3.7b) in MPa, Eq. (3.7k) will be obtained.

Formulas for buckling constants for aluminum alloy products whose temper designation
begins with O, H, T1, T1, T3, or T4 are given by (AA 2005 [20]):

Bc = 𝜎y

[
1 +

(
𝜎y

1000

)1∕2
]
,where Bc is in kips∕in.2 (3.7l)
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Bc = 𝜎y

[
1 +

(
𝜎y

6900

)1∕2
]
,where Bc is in MPa (3.7m)

Dc =
Bc

20

(
6Bc

E

)1∕2

,where Dc is in kips∕in.2 or MPa (3.7n)

and Cc =
2Bc

3Dc
,where both Bc and Dc are in kips∕in.2 or MPa. (3.7o)

Substituting the values of Bc and Dc from Eqs. (3.7l), (3.7n), and (3.7o) in Eq. (3.7e) we have

𝜎c

𝜎y
=

[
1 +

(
𝜎y

1000

)1∕2
]
−

√
6

20

[
1 +

(
𝜎y

1000

)1∕2
]3∕2

KL
r

√
𝜎y

E
(3.7p)

for

KL
𝜋 r

√
𝜎y

E
<

1.75[
1 +

(
𝜎y

1000

)1∕2
]1∕2

where 𝜎y and E are in kips/in.2.
Now, substituting the values of Bc and Dc from Eqs. (3.7m), (3.7n), and (3.7o) in Eq. (3.7e) we

have

𝜎c

𝜎y
=

[
1 +

(
𝜎y

6900

)1∕2
]
−

√
6

20

[
1 +

(
𝜎y

6900

)1∕2
]3∕2

KL
r

√
𝜎y

E
(3.7q)

for

KL
𝜋 r

√
𝜎y

E
<

1.75[
1 +

(
𝜎y

6900

)1∕2
]1∕2

where 𝜎y and E are in MPa. If the modulus of elasticity E values of an aluminum alloy are
substituted in Eq. (3.7c) in kips/in.2, Eq. (3.7p) will be obtained. On the other hand if the E
values are substituted in Eq. (3.7c) in MPa, Eq. (3.7q) will be obtained.

For all columns in compression in the elastic range, buckling stress is given by the Euler
elastic buckling formula [20, 21]

𝜎c

𝜎y
= 𝜋2E(KL

r

)2
𝜎y

for KL
r

> Cc (3.7r)

which is the same equation as Eq. (3.7d).Thus, the Guide to Stability Design Criteria for Metal
Structures [16, 22] and the aluminum design manual [17, 20] give the same equations to find
the buckling load for aluminum alloy columns. Equations (3.7b) and (3.7j) are used to calculate
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KL/r values in Table 3.1 and to plot the straight line as per AA 1994 [17] and AA 2005 [20], in
the column strength curve given by Figure 3.13.

For most alloys used in structural applications, welding reduces the strength of the metal
in a narrow zone around the weld, thereby diminishing the capacity of columns of low and
intermediate slenderness ratios. Welding can also introduce residual stresses and crookedness
in the column. For columns with longitudinal welds or with transverse welds that affect only
part of the cross-section, the test results can be predicted by the equation [16, 22]

𝜎pw = 𝜎n−
Aw

A
(𝜎n − 𝜎w) (3.7s)

where

𝜎pw = Critical stress for columns with part of the cross-section affected by welding
𝜎n = Critical stress for the same column if there were no welds
𝜎w = Critical stress for the same column if the entire cross-section was affected

by welding
Aw = Cross-sectional area of affected zone

A = Total area of cross-section

Details of the effects of welds on the buckling strength of aluminum alloy columns are given
by Brungraber and Clark [23]. Mazzolani [24], Hong [25], and Lai and Nethercot [26].

3.8 Steel Columns

In the case of steel columns for buckling in the inelastic range even if the elastoplastic behavior
and the imperfections are taken into account, there still is a discrepancy between the theoret-
ical and experimental values. For aluminum columns, the nonlinear stress-strain behavior is
primarily due to material nonlinearity and all fibers exhibit the same stress-strain relationship.
This is not true for steel columns. In steel columns there is an additional effect due to resid-
ual stresses that are produced during the manufacture of the structural steel shapes. Therefore,
direct application of the tangent modulus theory is not possible in order to calculate the critical
load. Several research studies by Osgood [27], Yang, Beedle, and Johnston (1952) [28], Beedle
and Tall [29], have shown the residual stresses in steel columns have a major effect on the load
capacity of short hot-rolled steel columns.

Residual stresses arise from non-uniform cooling of structural steel shapes during their man-
ufacture. The tips of the flanges of wide flange shapes cool faster than the flange web intersec-
tions. When the central parts of the flanges cool and try to shrink, the contraction is resisted
by the already hardened flange tips. This causes tension in the central part of flanges and com-
pression in the flange tips to maintain the equilibrium of forces as shown in Figure 3.14a. The
central part of the web also cools faster than the flange-web junction, creating compressive
residual stresses there, as shown in Figure 3.14a. Residual stresses in the flanges are more
important than in the web because it is closer to the neutral axis. The stress-strain curve of
mild steel is elastic-perfectly plastic, which can be observed from a coupon test, whereas the
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Figure 3.14 Hot rolled wide flange steel sections: (a) Residual stress in a W-section; (b) Strain curve for a steel
column.

stress-strain graph for a stub column under compression has a gradually decreasing slope, as
shown in Figure 3.14b.

The apparent yield strength σP is much lower in a stub column than the actual yield strength
𝜎y, i.e. 𝜎p = 𝜎y − 𝜎r, where 𝜎r is the maximum residual stress. Parts of the cross-section that have
large residual compressive stress yield first before the applied stress reaches the yield strength
of the material. As the load increases, the yielding occurs in other fibers with less or no initial
compressive residual stresses. Finally, fibers with initial tensile residual stress yield. Because of
this, there is slowly increasing curve between stresses 𝜎P and 𝜎y in Figure 3.14b. A triangular
distribution of residual stresses is assumed in the flanges from a maximum compressive stress
of 𝜎r at the flange tip to a maximum tensile stress of 𝜎r at the flange web junction, as shown
in Figure 3.15a. It is not possible to calculate the critical load in the case of a steel column
directly from the tangent modulus theory due to the presence of residual stresses. An analyt-
ical approach is presented here to find the critical load corresponding to a particular value of
slenderness ratio in the inelastic range. The column is assumed to be perfect, and there is no
deflection until the tangent modulus load is reached. Axial load and bending moment increase
simultaneously after the critical load has reached, and there is no strain reversal as buckling
takes place. For calculation purposes an ideal I section is chosen in which the area of the web
is neglected in Figure 3.15.

Initially residual stresses are present in the cross-section before any external axial compres-
sive force is applied. The flange tips are in compression whereas the central portion of the flange
near the flange web junction is in tension, as shown in Figure 3.15b. As the external axial force,
P, increases, the stresses consist of the algebraic sum of the residual and the stresses due to
applied load. Total stresses at various stages of loading are shown in Figures 3.15c–f, where A
is the area of the entire cross-section. A positive sign for tensile and a negative sign for com-
pressive stress are used. The yielding begins at the flange tips and progresses inward until the
entire cross-section has yielded, as shown in Figure 3.15f.

3.8.1 Buckling of Idealized Steel I-Section

In a steel column, if we assume that there is no stress reversal as the buckling proceeds, it means
that the increased load is taken by the elastic part of the cross-section because the yielded por-
tion cannot carry any further load because the material is elastic-perfectly plastic as observed
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residual stress distribution
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Figure 3.15 Idealized steel I section and effect of residual stresses.

by Yang, Beedle, and Johnston [28]. In this case, the tangent modulus, Et = E, is the elastic
modulus outside the yielded zone. Therefore, the critical load of the column is given by

Pcr =
𝜋2EIe

(KL)2 (3.8a)

or

Pcr = Pe
Ie

I
(3.8b)

Where KL = effective length of the column, Pe = Euler ’ s buckling load, Ie moment of inertia
of the cross-section that is elastic, I = moment of inertia of the whole cross-section. The tangent
modulus, Et, at a point on the curved portion of the stress-strain relation in Figure 3.14b is given
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by

Et =
d𝜎
d𝜀

=

dP
A
dP

AeE

=
EAe

A
(3.8c)

or
Et

E
=

Ae

A
= 𝜍 (3.8d)

The A and Ae are the areas of cross-section of the entire section and of elastic portion of the
section, respectively. If the stress-strain relation of a stub column is known experimentally, the
ratio 𝜁 = Ae/A can be obtained from there using Eq. (3.8d). Otherwise considering the linear
residual stress distribution shown in Figure 3.15a, for the idealized I section, the quantity 𝜁 can
be calculated analytically. The value of 𝜁 depends on the shape of the cross-section, the residual
stress distribution, and the bending axis.

3.8.1.1 Strong Axis Bending
Neglecting the resistance of the web, and ignoring the moment of inertia of the flanges about
the axes parallel to the strong axis and passing through their centroids, the ratio Ie/I can be
written as

Ie

I
=

2(bet)h2

4

2(bt)h2

4

=
Ae

A
= 𝜍 (3.9a)

Where A = 2tb, Ae = 2tbe; b, be are the widths of the entire flange and the elastic portion of
the flange respectively; and t is the flange thickness shown in Figure 3.16.

The critical load for strong axis bending can be obtained from Eqs. (3.8a) and (3.9a) as

Pcr = 𝜍
𝜋2EI
(KL)2 (3.9b)

(a)

ElasticYielded 

b 

be

t

(b)

σr
σy

σ0

Figure 3.16 Elastic–plastic idealized I section.
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3.8.1.2 Weak Axis Bending
Similarly, the ratio Ie/I for weak axis bending can be derived as follows:

Ie

I
=

2
tb3

e

12

2 tb3

12

=
(

be

b

)3

=
(

Ae

A

)3

= 𝜍3 (3.10a)

and the critical load for weak axis is given by Eqs. (3.8a) and (3.10a) as

Pcr = 𝜍3 𝜋
2EI

(KL)2 (3.10b)

3.8.2 Column Strength Curves for Steel Columns

It is seen from Eqs. (3.9b) and (3.10b) that the effect of residual stresses is more pronounced for
bending about the weak axis than for the strong axis. The Pcr and 𝜁 are not known in Eqs. (3.9b)
and (3.10b). One extra Eq. (3.11a) can be formed by considering the equilibrium of the column
in the vertical direction.

P = 2
[
𝜎y(b − be)t +

𝜎y + 𝜎0

2
(bet)

]
(3.11a)

From parallel lines in Figure 3.16b, we have
𝜎y − 𝜎0

be

2

=
2𝜎r

b
2

or

𝜎0 = 𝜎y − 2𝜎r
be

b
Substituting for 𝜎0 in Eq. (3.11a)

P = 2t
(
𝜎yb − 𝜎r

b2
e

b

)
or

𝜎avg =
P
A

= 𝜎y − 𝜎r

(
Ae

A

)2

,

or

𝜍 =
Ae

A
=
(
𝜎y − 𝜎avg

𝜎r

) 1
2

(3.11b)

Strong axis bending: Eqs. (3.9b) and (3.11b) give by substituting 𝜎cr = 𝜎avg

Pcr

Py
=
(
𝜎y − 𝜎cr

𝜎r

) 1
2 𝜋2EI
(KL)2

1
Py
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or

Pcr

Py
=

(
𝜎y − 𝜎cr

𝜎r

) 1
2

𝜆2 (3.11c)

where

𝜆 =
(KL

r

)( 1
𝜋

)√
𝜎y

E
(3.11d)

Weak axis bending: Eqs. (3.10b) and (3.11b) give by substituting 𝜎cr = 𝜎avg

Pcr

Py
=
(
𝜎y − 𝜎cr

𝜎r

)3
2 𝜋2EI
(KL)2

1
Py

or

Pcr

Py
=

(
𝜎y − 𝜎cr

𝜎r

) 3
2

𝜆2 (3.11e)

Now, taking 𝜎r = 0.3 𝜎y for hot rolled steel sections, and substituting Pcr = 𝜎cr A, Py = 𝜎y
A, 𝜆 can be found for a specific value of 𝜎cr from Eqs. (3.11c) and (3.11e). Thus, separate col-
umn strength curves can be plotted for I-sections with respect to strong and weak axis bending.
The analytical derivation above is based on the linear distribution of the residual stresses. If
the residual stress variation is assumed to be different, say, a parabolic, then different column
strength curves will be obtained [7]. Column research at Lehigh University [29–32, 34] has
shown the residual stress distribution lies between linear and parabolic variations.

The Euler’s curve and the column curves for the strong and weak axes bending meet at
𝜎cr = (1− 0.3) 𝜎y = 0.7𝜎y as shown in Figure 3.17. From Eq. (3.11c), we have

Pcr

Py
=
⎛⎜⎜⎜⎝

1 −
𝜎cr

𝜎y
𝜎r

𝜎y

⎞⎟⎟⎟⎠
1
2

1
𝜆2 =

⎛⎜⎜⎜⎝
1 −

𝜎cr

𝜎y
0.3

⎞⎟⎟⎟⎠
1
2

1
𝜆2

or

𝜆2 = 1.8257

(
1 −

𝜎cr

𝜎y

) 1
2

(
𝜎cr

𝜎y

) , or 𝜆 = 1.2

Similarly, it can be shown, 𝜆 = 1.2, where the weak axis bending curve for inelastic buckling
meets the elastic buckling given by Euler’s curve, as shown in Figure 3.17.
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Figure 3.17 Column strength curves for wide flange steel sections.

3.8.3 Column Research Council Curve

Based on analysis and experiments, the Column Research Council (CRC) gave the following
column formula [33] in the inelastic range to take into account both the strong and weak axis
bending.

𝜎cr = A − B
(KL

r

)2
(3.12a)

whereas, in the elastic range, the column strength is represented by the Euler formula. The
constants A and B are calculated from the conditions,

𝜎cr = 𝜎y at KL
r

= 0

This condition gives A = 𝜎y. Another condition is that the parabola of Eq. (3.12a) intersects
the Euler’s curve at the proportional limit, 𝜎P = 𝜎y − 𝜎r, of a stub column. Thus, from Eq. (3.12a)
and the Euler formula we have at the intersection

𝜎y − 𝜎r = 𝜎y − B
(KL

r

)2
and

𝜎y − 𝜎r =
𝜋2E(KL
r

)2 (Euler’s formula)

or

B =
𝜎r(𝜎y − 𝜎r)

𝜋2E
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It is assumed that the maximum residual stress is 𝜎r = 0.5 𝜎y, instead of 0.3 𝜎y, to accommo-
date both strong and weak axes bending and to be more conservative. Now the CRC formula
can be written as

𝜎cr = 𝜎y −
𝜎2

y

4𝜋2E

(KL
r

)2
(3.12b)

The KL/r value that is at the junction of the Euler’s curve and the CRC curve is called the
critical slenderness ratio, Cc. This slenderness ratio corresponds to 𝜎cr = 0.5 𝜎y, and is given by

Cc =

√
2𝜋2E
𝜎y

(3.12c)

In terms of the slenderness parameter, 𝜆 =
(

KL
𝜋 r

)√
𝜎y

E
, Eq. (3.12b) can be written as

𝜎cr

𝜎y
= 1 − 𝜆2

4
(3.12d)

Substitute 𝜎cr = 0.5 𝜎y into Eq. (3.12d), and we get 𝜆 =
√

2. In the elastic range, the Euler
formula gives

𝜎cr =
𝜋2E(KL
r

)2

𝜎y

𝜎y
, or

𝜎cr

𝜎y
= 1

𝜆2

So, the CRC formula in terms of the slenderness parameter is given by

𝜎cr

𝜎y
=
⎧⎪⎨⎪⎩

1 − 𝜆2

4
for 𝜆 ≤ √

2

1
𝜆2 for 𝜆 >

√
2

(3.12e)

For idealized wide flange sections with residual stresses, the CRC column strength curve
meets the Euler curve at 𝜆 =

√
2 as shown in Figure 3.17.

3.8.4 Structural Stability Research Council Curves

The CRC was later renamed the Structural Stability Research Council (SSRC). It adopted
curves 1, 2, and 3, introducing the concept of multiple column curves. The critical load for
steel columns depends on the length, cross-sectional and material properties, end restraints,
magnitude and distribution of residual stresses, and the shape and magnitude of the initial
out-of-straightness. On the basis of numerical analysis and column tests of pin-ended mem-
bers, where the actual magnitude and distribution of residual stress were known, a set of
112 column curves were generated. For these curves with the initial out-of-straightness of
sinusoidal shape of 1/1000, the column length was assumed at the mid-height of the columns.
The column tests included rolled and welded shapes, light and heavy cross-sections, and
different steels. The concept of multiple column curves was developed from the investigation
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to take into account multiple variables for different steel grades, shapes, and manufacturing
methods by Bjorhovde and Tall [34] and Bjorhovde [35]. These curves were divided into three
subgroups, identified by an average curve for the subgroup. These three column curves were
adopted by the SSRC, earlier known as the CRC, in the third edition of its Guide to Stability
Design Criteria for Metal Structures [36], indicating the column types to which these curves
are applicable. The equations for the three curves were obtained by curve fitting and are as
follows:

SSRC Curve 𝟏 ∶
𝜎u

𝜎cr
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 (Material yields) for 0 ≤ 𝜆 ≤ 0.15
0.990 + 0.122𝜆 − 0.376𝜆2 for 0.15 ≤ 𝜆 ≤ 1.2
0.051 + 0.801𝜆−2 for 1.2 ≤ 𝜆 ≤ 1.8
0.008 + 0.942𝜆−2 for 1.8 ≤ 𝜆 ≤ 2.8
𝜆−2 (Euler buckling curve) for 𝜆 ≥ 2.8

(3.13a)

SSRC Curve 𝟐 ∶
𝜎u

𝜎cr
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 (Material yields) for 0 ≤ 𝜆 ≤ 0.15
1.035 − 0.202𝜆 − 0.222𝜆2 for 0.15 ≤ 𝜆 ≤ 1.0
−0.111 + 0.636𝜆−1 + 0.087𝜆−2 for 1.0 ≤ 𝜆 ≤ 2.0
0.009 + 0.877𝜆−2 for 2.0 ≤ 𝜆 ≤ 3.6
𝜆−2 (Euler buckling curve) for 𝜆 ≥ 3.6

(3.13b)

SSRC Curve 𝟑 ∶
𝜎u

𝜎r
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 (Material yields) for 0 ≤ 𝜆 ≤ 0.15
1.093 − 0.622𝜆 for 0.15 ≤ 𝜆 ≤ 0.8
−0.128 + 0.707𝜆−1 − 0.102𝜆−2 for 0.8 ≤ 𝜆 ≤ 2.2
0.008 + 0.792𝜆−2 for 2.2 ≤ 𝜆 ≤ 5.0
𝜆−2 (Euler buckling curve) for 𝜆 ≥ 5.0

(3.13c)

The SSRC curves can be approximated by one equation presented by Rondal and Maquoi [37],
and Lui and Chen [38] and given in the fifth edition of the Guide to Stability Design Criteria for
Metal Structures [16]:

𝜎u =
𝜎y

2𝜆2 (Q −
√

Q2 − 4𝜆2) ≤ 𝜎y (3.13d)

where

Q = 1 + 𝛼(𝜆 − 0.150 + 𝜆2, and

𝛼 =
⎧⎪⎨⎪⎩

0.103 for SSRC curve 1
0.293 for SSRC curve 2
0.622 for SSRC curve 3
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In 1974, the Canadian Standards Association (CSA) adopted SSRC curve 2 to calculate the
basic column strength. The CSA also adopted SSRC curve 1 for heat-treated tubes in 1984, and
later incorporated SSRC curve 1 for the design of columns made of welded wide flange sections
in 1994 [16]. The Euler, CRC, and three different curves of SSRC are given in Figure 3.18.

3.8.5 European Multiple Column Curves

The concept of multiple column curves was also developed in Europe, beginning in the late
1950s. German standard DIN 4114 used one curve for tubes and another for different other
shapes. Research was conducted under the sponsorship of European Convention for Construc-
tional Steelwork (ECCS) by Beer and Schultz [39], Jacquet [40], and Sfintesco [41]. The ECCS
curves are now part of the column design procedure described in the Eurocode 3 [42]. The
ECCS also used the initial out-of-straightness of 1/1000 of the length in the development of their
curves. The European multiple column strength curves show the strength of columns made of
different steels and shapes of cross-section by different curves. These curves vary for the shapes
of the same category, e.g. rolled or welded W and H sections, but different dimensions. There
are five curves, a0, a, b, c, and d [16, 22] shown in Figure 3.19.

Curve a0 is applicable to welded W and H annealed sections made of high strengths steels.
Curve a is used for rolled W, hot formed tubes, welded box, W and H annealed sections. Curve
b is suitable for rolled W, welded box and H, and rolled W annealed sections. Curve c gives the
strength of columns made of rolled W, welded H, Tee, Channel, circular and rectangular tubes,
and welded heavy H sections. Curve d is used for rolled heavy W, and welded heavy H sections
made of steel.
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Figure 3.18 Euler, CRC, and SSRC column strength curves.
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Figure 3.19 ECCS (a0, a, b, c, and d), AISC (LRFD and ASD), and Euler column strength curves.

3.8.6 AISC Design Criteria for Steel Columns

The use of multiple curves seems to be better but it is unclear whether there is any signif-
icant gain in accuracy from the results obtained for real columns because some effects are
not precisely known in the formulation of these curves. The uncertainties of end restraint,
the inelastic behavior, the calculation of effective length, initial imperfectness, residual stress
distribution, etc. all affect the column strength. The American Institute of Steel Construction
(AISC) has adopted a single curve for the design of steel columns. In the ninth edition of the
AISC (1989) Manual of Steel Construction: Allowable Stress Design (ASD) [43], the allowable
stress was obtained by dividing the CRC formula given by Eq. (3.12d) by a variable factor of
safety for slenderness parameter, 𝜆 ≤ √

2, as shown below:

Safety factor = 5
3
+ 3

8

(
𝜆√

2

)
− 1

8

(
𝜆√

2

)3

The safety factor depended on the slenderness ratio, KL/r, of a column. The higher the slen-
derness ratio, the higher was the safety factor. This is supported by the fact that the effect of
imperfection is larger for more slender columns. For columns in which the slenderness param-
eter is 𝜆 >

√
2, allowable stress was obtained from the Euler’s formula divided by a constant
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factor of safety of 23/12. The two formulas of AISC ASD [43] design were:

𝜎a

𝜎y
=

1 − 𝜆2

4

5
3
+ 3

8

(
𝜆√

2

)
− 1

8

(
𝜆√

2

)3 for 𝜆 ≤ √
2 (3.14a)

𝜎a

𝜎y
= 12

23𝜆2 for 𝜆 >
√

2 (3.14b)

where 𝜎a is the allowable stress in the column, and 𝜎y is the yield strength of column steel. The
allowable load that a concentrically loaded column can carry is given by Fa = 𝜎aAg, where Ag
is the gross area of the cross-section of the column.

In the third edition of the AISC (2001), Manual of Steel Construction: Load Resistance Factor
Design (LRFD) [44], the critical stress was given by

𝜎cr

𝜎y
= 0.658𝜆2 for 𝜆 ≤ 1.5 (3.14c)

𝜎cr

𝜎y
= 0.877

𝜆2 for 𝜆 > 1.5 (3.14d)

The nominal load that a column can sustain was Pn = 𝜎crAg. The maximum design load for
a concentrically loaded column was given by Pu = 𝜙c Pn, where 𝜙c is the resistance factor for
direct compression, taken as 0.85.

In 2005, the thirteenth edition of the AISC manual combined the allowable stress design and
the load resistance factor design methods into one manual and the same design practice is
continued in the fifteenth edition [45].

The allowable compressive strength (ASD) is given by

Pa = Pn∕Ωc (3.14e)

and the design compressive strength (LRFD) is given by

Pu = 𝜙cPn (3.14f)

where

Pn = 𝜎crAg (3.14g)

and the critical stress 𝜎cr is given by

𝜎cr

𝜎y
= 0.658

𝜎y

𝜎e for KL
r

≤ 4.71
√

E
𝜎y

or (𝜎e ≥ 0.44 𝜎y) (3.14h)

𝜎cr

𝜎y
= 0.877

𝜎e

𝜎y
for KL

r
> 4.71

√
E
𝜎y

or (𝜎e < 0.44 𝜎y) (3.14i)
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3.5m (11.48 ft)

3.5m (11.48 ft)

4m (13.12 ft)

x 

x

y y 

P

P

Figure 3.20 Wide flange steel column.

where 𝜎e =
𝜋2E(KL
r

)2 =
𝜎y

𝜆2 is the Euler critical stress. Eqs. (3.14h) and (3.14i) are the same as

Eqs. (3.14c) and (3.14d) respectively in terms of the slenderness parameter 𝜆. So, the equations
to find the critical stress in the fifteenth edition of the AISC manual are the same as in the third
edition of the AISC LRFD design manual:

Ωc = 1.67, is the factor of safety for the AISC allowable stress design (ASD)

and 𝜙c = 0.90 is the resistance factor for the AISC load resistance factor design (LRFD).

The European design curves and the AISC (2017) ASD and LRFD design curves along with
the Euler curve for concentrically loaded columns are given in Figure 3.19. The AISC ASD
curve shows the column allowable load whereas the others show the maximum critical load.

Example 3.2 Determine the allowable design strength and the design strength using
the AISC (2005) ASD and LRFD methods for the pin-ended axially loaded steel column
that is supported in the weak direction as shown in Figure 3.20. Its cross-section is a
W12× 50 (in.× lb/ft) or W310× 74 (mm× kg/m) wide flange shape. The yield strength of steel
is 𝜎y = 50 ksi (345 MPa). The area of the cross-section is A = 14.6 in.2 (9419.3 mm2). The radii
of gyration about the x and y axes are: rx = 5.18 in. (131.57 mm), and ry = 1.96 in. (49.78 mm).

The effective length factors in the x and y directions are: Kx = 1.0, and Ky = 1.0.

KxLx = 36.08 ft (11 m), and KyLy = 13.12 ft (4 m)
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The slenderness ratios in the x and y directions are given by
KxLx

rx
= 36.08x12 in.

5.18 in.
or

(11x1000 mm
131.57 mm

)
= 83.61

KyLy

ry
= 13.12x12 in.

1.96 in.
or

(4x1000 mm
49.78 mm

)
= 80.35

The slenderness ratio about the x axis is larger, so it governs the buckling strength of the
column.

𝜆 = KL
𝜋r

√
𝜎y

E
= 83.61

𝜋

√
50,000 lb∕in.2

29x106 lb∕in.2
or

(
83.61
𝜋

√
345 MPa

200,000 MPa

)
= 1.105

𝜆 < 1.5, so it is a case of inelastic buckling.
𝜎cr

𝜎y
= 0.658𝜆2 = 0.658(1.105)2 = 0.6

𝜎cr = 0.6 × 50 ksi or (0.6 × 345 MPa) = 30 ksi or (207 MPa)
Pn = 𝜎crA = 30 ksi × 14.6 in.2 or (207 MPa × 9419.3 mm2∕1000)

or

Pn = 438 kips or (1949.80 kN)

Maximum design strength from LRFD

Pu = 𝜙cPn = 0.9 × 438 = 394.20 kips or (0.9 × 1949.80 = 1754.82 kN)

Allowable strength from ASD

Pa =
Pn

Ωc
=

438 kips
1.67

or
(1949.80 kN

1.67

)
= 262.28 kips or (1167.54 kN)

Problems

3.1 Construct a column design curve, i.e. tangent modulus stress 𝜎cr versus slenderness ratio,
KL/r.
It is an aluminum alloy column whose stress-strain values are given.

𝝈 ksi (MPa) 𝛜 in./in. (mm/mm) 𝝈 ksi (MPa) 𝛜 in./in. (mm/mm)

10 (69) 0.001 55 (380) 0.006
21 (145) 0.002 57 (393) 0.007
30 (207) 0.0028 58 (400) 0.008
41 (280) 0.0037 60 (414) 0.01
50 (345) 0.0047 60 (414) 0.015
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3.2 Plot the reduced modulus column design curve for the aluminum column in Problem 3.1.
The cross-section is an idealized cross-section in Figure 3.10b.

3.3 A steel column with a wide flange cross-section W14× 53 (in.× lb/ft) [W310× 79
(mm× kg/m)] and length of 30 ft. (9.14 m) has a yield strength of 36 ksi (250 MPa). The
cross-sectional dimensions are: A = 15.6 in.2 (10100 mm2), the moment of inertia about
the x and y axes, Ix = 425 in.4 (177× 106 mm4) and Iy = 95.8 in.4 (39.9× 106 mm4),
respectively. Find the allowable strength and design strength using the AISC ASD and
LRFD methods, respectively. The column is pinned-pinned with respect to the strong axis
and clamped at both ends with respect to the weak axis bending. Modulus of elasticity of
the steel, E = 29× 106 psi (200, 000 MPa).
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4

Beam columns

4.1 Introduction

In the previous chapters we studied the axial loading on columns and its effect on the stability
of columns. The presence of bending moment either due to small accidental eccentricities or
imperfections was studied. In these cases, the predominant effect was the axial load that was
accompanied by small bending effects. In this chapter we study the effect of combined axial load
and bending moment on the bending and buckling of a member. Members are supposed to carry
simultaneously significant values of both moments and axial loads. Members that are subjected
to axial loads and bending moments simultaneously are called beam columns. In this chapter,
beam columns containing different supports and loadings will be analyzed for buckling. In the
case of beams subjected to lateral loads and moments, it is assumed for small deflection anal-
ysis that the deformed shape of the beam does not significantly affect the analysis. Thus, it is
possible to make calculations for shear forces, bending moments, stresses, and deformations
on the basis of the initial shape of the member. However, the transverse forces and moments
cause bending moments and lateral deflections in beam columns that are called primary effects.
Furthermore, the axial force acts along with this lateral deflection causing additional lateral
deflections and moments in the member that are called secondary effects. Therefore, the prob-
lem becomes nonlinear and the principle of superposition cannot be applied.

4.2 Basic Differential Equations of Beam Columns

Consider a beam column of length L simply supported on two end supports, as shown in
Figure 4.1a. It carries an axial compressive force of P and a distributed lateral load of w (x) that
varies along the length of the beam column. For stability analysis by the equilibrium method,
the equilibrium of the beam column is considered in its deflected shape. The assumed lateral
force is considered positive in the positive direction of y axis, which is downward here. The axial
force is taken along the horizontal axis x, the undeformed axis of the beam column, whereas
the shear force is shown along the y-axis perpendicular to the x-axis.

The basic equations for the stability analysis of the beam column can be derived by consider-
ing the equilibrium of an element of projected length dx shown in Figure 4.1b. Shearing force

Structural Stability Theory and Practice, First Edition. Sukhvarsh Jerath.
© 2021 Sukhvarsh Jerath. Published 2021 by John Wiley & Sons, Inc.
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Figure 4.1 Beam column with a distributed lateral load and axial force: (a) Beam column; (b) Element of length dx.

and bending moments are shown in the positive directions for the differential element. Over
the length dx measured along the x-axis, the shear force varies by dV , the internal moment
changes by dM, and the axial force P remains constant. Considering the equilibrium of the
forces acting on the differential element in the y direction we obtain

V − w(dx) − (V + dV) = 0

or
dV
dx

= −w (4.1a)

Considering the equilibrium of moments about the point o of the forces acting on the differen-
tial
element we get

M + P
dy
dx

dx + (V + dV)dx − (M + dM) + wdx dx
2
= 0

Neglecting second-order terms, we have

dM
dx

= V + P
dy
dx

(4.1b)

For small deformations, M = −EI d2y/dx2 as before in Chapter 1. Substituting this expression
into Eq. (4.1b) we get

EI
d3y
dx3 + P

dy
dx

= −V (4.1c)

Differentiating Eq. (4.1c) with respect to x, and substituting from Eq. (4.1a), the following is
obtained

EI
d4y
dx4 + P

d2y
dx2 = w (4.1d)

Now substitute k2 = P/EI, in Eqs. (4.1c) and (4.1d), and we have
d3y
dx3 + k2 dy

dx
= − V

EI
(4.1e)
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and
d4y
dx4 + k2 d2y

dx2 =
w
EI

(4.1f)

Equations (4.1e) and (4.1f) are the basic differential equations for analyzing stability for beam
columns. If the axial force P is zero, we get same equations as for bending of beams by lateral
forces only.

4.3 Beam Column with a Lateral Concentrated Load

Consider a beam column simply supported at the ends and subjected to an axial force P and
a lateral concentrated load of Q at a distance of a from the left-hand support in Figure 4.2a.
Free body diagrams are shown in Figures 4.2b and c for the left and right portions of the beam
column with respect to a section at a distance x from the left support.

Considering the moment equilibrium of the free body diagram in Figure 4.2b, we have

Py + Q(L − a)
L

x −M = 0 (4.2a)

Substitute M = −EId2y/dx2, and P/EI = k2 in Eq. (4.2a) and we get

y′′ + k2y = −Q(L − a)
EIL

x for 0 ≤ x ≤ a (4.2b)

Now, considering the moment equilibrium of the free body diagram in Figure 4.2c, we have

Py + Qa
L
(L − x) −M = 0 (4.2c)

y 
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P 
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P
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P 

Figure 4.2 Beam column with a concentrated lateral load and axial force: (a) Beam column; (b) Free body diagram
left portion of the beam; (c) Free body diagram right portion of the beam.
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Substitute M = −EId2y/dx2, and P/EI = k2 in Eq. (4.2c), and we get

y′′ + k2y = − Qa
EIL

(L − x) for a ≤ x ≤ L (4.2d)

Equations (4.2b) and (4.2d) are second-order differential equations because these have been
derived for particular end conditions, in this case of simply supported ends, as opposed to the
general case for developing Eqs. (4.1e) and (4.1f).

The general solution of Eq. (4.2b) is given by

y = A sin kx + B cos kx − Q(L − a)
EILk2 x for 0 ≤ x ≤ a (4.2e)

or

y′ = Ak cos kx − Bk sin kx − Q(L − a)
EILK2 for 0 ≤ x ≤ a (4.2f)

The general solution of Eq. (4.2d) is given by

y = C sin kx + D cos kx − Qa
EILk2 (L − x) for a ≤ x ≤ L (4.2g)

or

y′ = Ck cos kx − Dk sin kx + Qa
EILK2 for a ≤ x ≤ L (4.2h)

The constants of integration A, B, C, and D are found from the boundary conditions at the
ends of the beam column and the conditions of continuity at the point of application of the
lateral load Q. The boundary conditions at the ends of the member are

y = 0 at x = 0, and y = 0 at x = L (4.2i)
Substituting y = 0 at x = 0, in Eq. (4.2e) we obtain

B = 0 (4.2j)
And substituting y = 0 at x = L into Eq. (4.2g) we have

D = −C tan kL (4.2k)
The continuity conditions are as follows:
At

x = a

y in Eq.(4.2e) = y in Eq.(4.2g) (4.2l)
and

y′ in Eq.(4.2f) = y′ in Eq.(4.2h) (4.2m)
The continuity condition from Eq. (4.2l) combined with Eqs. (4.2j) and (4.2k) gives

A sin ka = C sin ka − C tan kL cos ka
or

A = C − C tan kL
tan ka

(4.2n)
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The continuity condition from Eq. (4.2m) combined with Eqs. (4.2j) and (4.2k) gives

Ak cos ka − Q
EIk2 = Ck cos ka + Ck tan kL sin ka (4.2o)

Combining Eqs. (4.2n) and (4.2o) we have

−Ck cos ka tan kL
tan ka

− Q
EIk2 = Ck tan kL sin ka

C = − Q sin ka
EIk3 tan kL

(4.2p)

The constants A and D can be determined from Eqs. (4.2k), (4.2n) and Eq. (4.2p), and are as
follows:

A = Q
EIk3 sin kL

sin k(L − a) (4.2q)

D = Q sin ka
EIk3 (4.2r)

The constants A, B, C, and D are now substituted in Eqs. (4.2e), (4.2f), (4.2g), and (4.2h) to
give the following deflection and slope relations along the length of the beam column:

y = Q sin k(L − a)
EIk3 sin kL

sin kx − Q(L − a)
EILk2 x for 0 ≤ x ≤ a (4.2s)

y = − Q sin ka
EIk3 tan kL

sin kx + Q sin ka
EIk3 cos kx − Qa(L − x)

EILk2 for a ≤ x ≤ L

y = Q sin ka
EIk3 sin kL

sin k(L − x) − Qa(L − x)
EILk2 for a ≤ x ≤ L (4.2t)

or

y′ = Q sin k(L − a)
EIk2 sin kL

cos kx − Q(L − a)
EILk2 for 0 ≤ x ≤ a (4.2u)

y′ = − Q sin ka
EIk2 sin kL

cos k(L − x) + Qa
EILk2 for a ≤ x ≤ L (4.2v)

The rotations at the ends A and B of the beam column are given by

𝜃A = y′|x=0 =
Q sin k(L − a)

EIk2 sin kL
− Q(L − a)

EILk2 (4.2w)

𝜃B = −y′|x=L =
Q sin ka

EIk2 sin kL
− Qa

EILk2 (4.2x)

Now differentiate Eqs. (4.2u) and (4.2v) with respect to x, and the following relations are
obtained:

y′′ = −Q sin k(L − a)
EIk sin kL

sin kx for 0 ≤ x ≤ a (4.2y)

y′′ = − Q sin ka
EIk sin kl

sin k(L − x) for a ≤ x ≤ L (4.2z)
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The absolute maximum deflection and bending moment in a beam column subjected to a
concentrated lateral load occur at the center of the span when the concentrated load acts at the
mid-span.

4.3.1 Concentrated Lateral Load at the Mid-span

If the concentrated lateral load acts at the mid-span, a = L/2, then the maximum deflection
and bending moment occur at x = L/2. Substituting these values of a, and x into Eqs. (4.2s) or
(4.2t), Eqs. (4.2w) or (4.2x), and Eqs. (4.2y) or (4.2z), we have

ymax =
Q

2EIk3 tan kL
2
− QL

4EIk2 (4.3a)

and

𝜃A = 𝜃B =
Q sin kL

2

EIk2 sin kL
− QL

2EIk2L
or

𝜃A = 𝜃B =
QL2

16EI

[
2(1 − cos u)

u2 cos u

]
where

u = kL
2
, or k = 2u

L
or

𝜃A = 𝜃B =
QL2

16EI
𝜆(u) (4.3b)

where

𝜆(u) = 2(1 − cosu)
u2 cosu

(4.3c)

and

Mmax = −EIy′′ = Q
2k

tan kL
2

(4.3d)

Therefore, from Eq. (4.3a)

ymax =
QL3

16EI

[ tan u
u3 − 1

u2

]
or

ymax = y0

[
3(tan u − u)

u3

]
(4.3e)

where y0 =
QL3

48EI
is the deflection in a simply supported beam at the center of span, when a

concentrated load Q acts at the mid-span without the axial load P acting on it
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or

ymax =
QL3

48EI
𝜒(u) (4.3f)

where

𝜒(u) =
[

3(tan u − u)
u3

]
(4.3g)

The tan u can be written in series form as [1]

tan u = u + u3

3
+ 2

15
u5 + 17

315
u7 + 62

2835
u9 + − − −− (4.3h)

Therefore, Eq. (4.3e) can be written as

ymax =
3y0

u3

[
u + u3

3
+ 2

15
u5 + 17

315
u7 + 62

2835
u9 + − − − − −u

]
or

ymax = y0

[
1 + 2

5
u2 + 17

105
u4 + 62

945
u6 + − − −−

]
(4.3i)

Now

u2 = k2L2

4
= P

EI
L2

4
𝜋2

𝜋2 =
𝜋2

4
P
Pe
= 2.467 P

Pe

where Pe is the Euler’s critical load for a pinned-pinned column with axial compressive force.
Substituting for u2 in Eq. (4.3i) we have

ymax = y0

[
1 + 0.987 P

Pe
+ 0.986

(
P
Pe

)2

+ 0.986
(

P
Pe

)3

+ − − −

]
or

ymax ≈ y0

[
1 + P

Pe
+
(

P
Pe

)2

+
(

P
Pe

)3

+ − − − − −

]
(4.3j)

Binomial theorem gives [1]

(1 − x)−1 = 1 + x + x2 + x3 + x4 + x5 + ------- (4.3k)

Using binomial theorem and Eq. (4.3j) we get

ymax ≈
y0

1 − P
Pe

(4.3l)

where
[

1
1−(P∕Pe)

]
is the amplification factor for the deflection due to the presence of an axial force

in the beam column. Similarly, an expression giving the magnification factor for the maximum
bending moment can be derived as follows:



Trim Size: 187mm x 235mm Single Column Jerath c04.tex V1 - 11/06/2020 6:52pm Page 146�

� �

�

146 4 Beam columns

Substitute u = kL/2 in Eq. (4.3d)

Mmax =
QL
4u

tan u

or

Mmax = M0

[ tan u
u

]
(4.3m)

where M0 =
QL
4

is the bending moment in a simply supported beam at the center of span, when
a concentrated load Q acts at the mid-span without the axial load P acting on it. Substitute tan
u from Eq. (4.3h) in Eq. (4.3m)

Mmax = M0

[
1 + u2

3
+ 2

15
u4 + 17

315
u6 + 62

2835
u8 + − − −

]
Now, u2 = 2.467 P/Pe, therefore

Mmax ≈ M0

[
1 + 0.82 P

Pe

{
1 + P

Pe
+
(

P
Pe

)2

+
(

P
P3

)3

+
(

P
P4

)4

+ − − −

}]
or

Mmax ≈ M0

[
1 + 0.82 P

Pe

(
1

1 − (P∕Pe)

)]
or

Mmax ≈ M0

[
1 − 0.18(P∕Pe)

1 − (P∕Pe)

]
(4.3n)

where
[

1−0.18(P∕Pe)
1−(P∕Pe)

]
is the amplification factor for the bending moment due to the presence of

an axial force in the beam column.

4.3.2 Beam Columns with Several Concentrated Loads

Results for one concentrated load in Section 4.3 show that the deflections and their deriva-
tives of a beam column are linearly proportional to the transverse load Q acting on them.
Whereas the relationship between the axial load and the deflections and their derivatives is
nonlinear because k2 = P/EI is contained in the trigonometric functions. This fact can be
used to obtain deflections, slopes, and bending moments in a beam column by the method
of superposition when several transverse concentrated loads are acting on it along with an
axial load.

Assume there are n lateral forces, Q1, Q2, - - - , Qm, Qm+ 1, - - - - - , Qn, that are acting on the
beam column at a1, a2, - - - - , am, am+ 1, - - - - , an distances respectively from the left support,
where a1 < a2 < - - - < am < am+ 1 - - - - < an as shown in Figure 4.3. Then using Eqs. (4.2s) and
(4.2t) for a single lateral load and the method of superposition, the deflection between the loads
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Figure 4.3 Beam column with several concentrated loads.

Qm and Qm+ 1 in the beam column subjected to several lateral loads and an axial load P is
given by

y = sin k(L − x)
EIk3 sin kL

m∑
i=1

Qi sin kai −
(L − x)
EILk2

m∑
i=1

Qiai

+ sin kx
EIk3 sin kL

n∑
i=m+1

Qi sin k(L − ai ) − x
EIk2L

n∑
i=m+1

Qi (L − ai) (4.4a)

Differentiating Eq. (4.4a) with respect to x, the slope between the loads Qm and Qm+ 1 in the
beam column subjected to several lateral loads and an axial load P is given by

y′ = −cos k(L − x)
EIk2 sin kL

m∑
i=1

Qi sin kai +
1

EIk2L

m∑
i=1

Qiai

+ cos kx
EIk2 sin kL

n∑
i=m+1

Qi sin k(L − ai) −
1

EIk2L

n∑
i=m+1

Qi(L − ai) (4.4b)

Differentiating Eq. (4.4b) with respect to x, following relation is obtained:

y′′ = −sin k(L − x)
EIk sin kL

m∑
i=1

Qi sin kai −
sin kx

EIk sin kL

n∑
i=m+1

Qi sin k(L − ai) (4.4c)

The bending moment between the loads Qm and Qm+ 1 at the beam column subjected to sev-
eral lateral loads and an axial load P is given by

M = −EIy′′ = sin k(L − x)
k sin kL

m∑
i=1

Qi sin kai +
sin kx

k sin kL

n∑
i=m+1

Qi sin k(L − ai) (4.4d)
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4.3.3 Beam Column with Lateral Uniformly Distributed Load

Consider a simply supported beam column loaded with a uniformly distributed load w through-
out its span, and axial force P as shown in Figure 4.4a. The free body diagram of the left portion
at a distance x from the left support is shown in Figure 4.4b.

Considering the moment equilibrium of the free body diagram in Figure 4.4b we have

Py + wL
2

x − wx2

2
−M = 0 (4.5a)

Substitute M = −EId2y/dx2, and P/EI = k2 in Eq. (4.5a) and we get

y′′ + k2y = wx2

2EI
− wLx

2EI
(4.5b)

The general solution of Eq. (4.5b) is given by

y = A sin kx + B cos kx + yp (4.5c)

where yp is the particular solution. Assume yp in the form of a polynomial

yp = Cx2 + Dx + E (4.5d)

The degree of the polynomial is assumed to be the same as in the right term in Eq. (4.5b).

y′p = 2Cx + D, and y′′p = 2C

Substituting yp and its derivatives into Eq. (4.5b) we have

2C + k2(Cx2 + Dx + E) = wx2

2EI
− wLx

2EI

(a)

x 
P 

L 

P

y 

w

x 
2

wL
2

wL

(b)

y 

x 

y

M P 

V 

P 

2

wL

Figure 4.4 Beam column with a uniformly distributed load and axial force: (a) Beam Column; (b) Free body diagram
of left portion of the beam.
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or

C = w
2EIk2 (4.5e)

D = − wL
2EIk2 (4.5f)

and

E = − w
k4EI

(4.5g)

Substituting the coefficients C, D, and E from Eqs. (4.5e), (4.5f), and (4.5g) in Eqs. (4.5d) and
(4.5c) we have

y = A sin kx + B cos kx + w
2EIk2 x2 − wL

2EIk2 x − w
EIk4 (4.5h)

Now applying boundary conditions at the ends of the member:

y = 0 at x = 0, and y = 0 at x = L

Substituting y = 0 at x = 0, in Eq. (4.5h) we obtain

B = w
EIk4 (4.5i)

And substituting y = 0 at x = L, in Eq. (4.5h) we have

A = w
EIk4 tan kL

2
(4.5j)

Substitute A and B from Eqs. (4.5i) and (4.5j) into Eq. (4.5h), and we have

y = w
EIk4

(
tan kL

2
sin kx + cos kx − 1

)
− w

2EIk2 x (L − x) (4.5k)

Let

u = kL
2
, k2 = 4u2

L2 , and k4 = 16u4

L4

Therefore,

y = wL4

16EIu4

(
tan u sin 2ux

L
+ cos 2ux

L
− 1
)
− wL2

8EIu2 x (L − x) (4.5l)

and

y′ = wL4

16EIu4

(2u
L

tan u cos 2ux
L
− 2u

L
sin 2ux

L

)
− wL2

8EIu2 (L − 2x) (4.5m)

The rotations at the ends A and B are

𝜃A =
dy
dx
||||x=0

= wL4

16EIu4

[2u
L

tan u
]
− wL3

8EIu2
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and

𝜃B = −
dy
dx
||||x=L

= − wL4

16EIu4

[2u
L

tan u cos 2u − 2u
L

sin 2u
]
− wL3

8EIu2

or

𝜃A = 𝜃B =
wL3

24EI

[
3(tan u − u)

u3

]
= wL3

24EI
𝜒(u) (4.5n)

y′′ = wL4

16EIu4

(
−4u2

L2 tan u sin 2ux
L
− 4u2

L2 cos 2ux
L

)
+ wL2

4EIu2 (4.5o)

M = −EIy′′

or

M = wL2

4u2

(
tan u sin 2ux

L
+ cos 2ux

L
− 1
)

(4.5p)

The maximum deflection occurs at x = L
2

ymax =
wL4

16EIu4 [tan u sin u + cos u − 1] − wL4

32EIu2

or

ymax =
5wL4

384EI

[
12(2 sec u − u2 − 2)

5u4

]
(4.5q)

or

ymax =
5wL4

384EI
𝜂(u) (4.5r)

where

𝜂(u) = 12(2 sec u − u2 − 2)
5u4 (4.5s)

Expressing sec u [1] in an infinite series as

sec u = 1 + 1
2

u2 + 5
24

u4 + 61
720

u6 + 277
8064

u8 + − − − − − (4.5t)

and substituting this series in Eq. (4.5q), we get

ymax = y0[1 + 0.4067u2 + 0.1649u4 + − − −] (4.5u)

where y0 =
5wL4

384EI
[2] is the maximum deflection that would occur in a beam that is loaded

with a uniform transverse load without axial force.

u = kL
2
= L

2

√
P
EI

= 𝜋

2

√
P
Pe

,where Pe =
𝜋2EI

L2
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or

ymax = y0

[
1 + 1.003 P

Pe
+ 1.004

(
P
Pe

)2

+ − − −−

]
(4.5v)

or

ymax≈y0

[
1 + P

Pe
+
(

P
Pe

)2

+ − − −

]
The binomial theorem [1] states

(1 − x)−1 = 1 + x + x2 + x3 + − − − − −for x2 < 1

Therefore,

ymax = y0

⎡⎢⎢⎣ 1
1 − P

Pe

⎤⎥⎥⎦ (4.5w)

The term in the bracket is the amplification factor for the deflection due to the presence of
axial load along with the transverse load on the beam column.

Maximum bending moment occurs at x = L
2

, so from Eq. (4.5p)

Mmax =
wL2

4u2 (tan u sin u + cos u − 1)

or

Mmax =
wL2

8

[
2(sec u − 1)

u2

]
= wL2

8
𝜆(u) (4.5x)

Substituting sec u as an infinite series from Eq. (4.5t), we get

Mmax = M0[1 + 0.4167u2 + 0.1694u4 + 0.0687u6 + − − −] (4.5y)

where M0 [2] is the maximum bending moment that would occur in a beam that is loaded with
a uniform transverse load without axial force.

Substitute

u = 𝜋

2

√
P
Pe

or

Mmax = M0

[
1 + 1.028 P

Pe
+ 1.029

(
P
Pe

)2

+ 1.032
(

P
Pe

)3

− −−

]
or

Mmax = M0

[
1 + 1.028 P

Pe

{
1 + P

Pe
+
(

P
Pe

)2

+ −−

}]
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or

Mmax = M0

⎡⎢⎢⎣1 + 1.028 P
Pe

⎛⎜⎜⎝ 1
1 − P

Pe

⎞⎟⎟⎠
⎤⎥⎥⎦

or

Mmax = M0

⎡⎢⎢⎣
1 + 0.028 P

Pe

1 − P
Pe

⎤⎥⎥⎦ (4.5z)

The term in the bracket is the amplification factor for the bending moment due to the pres-
ence of the axial load along with the transverse load on the beam column.

4.3.4 Beam Columns with Uniformly Distributed Load Over a Portion of Their Span

Consider the case of a simply supported beam column where the load is distributed along only
a portion of the span shown in Figure 4.5.

The principle of superposition is applied in the case of partially loaded beam column to find
deflection at a distance x in Figure 4.5. There can be three cases depending on the value of x as
shown below:

0 ≤ x ≤ a
In this case, the section under consideration is to the left of the partial distributed load. We

consider a small element of length dc at a distance c from the left support. The load acting on
the element can be considered a concentrated load of w dc acting at a distance c from the left
support. The deflection dy at a distance x due to the elemental load is given by Eq. (4.2s) by
substituting c for a and w dc for Q in the equation.

dy = w dc sin k(L − c)
EIk3 sin kL

sin kx − w dc(L − c)
EILk2 x

The deflection produced by the total load is then found by integrating between the limits c= a
and c = b, and is given by

y =
∫

b

a

w sin k(L − c)
EIk3 sin kL

sin kx dc −
∫

b

a

w(L − c)
EILk2 x dc (4.6a)

y
b

L 

x

a

wc dc

x P P

o

Figure 4.5 Beam column with partial distributed load.
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a ≤ x ≤ b
If it is intended to find the deflection at a point o under the load, then use Eq. (4.2t) for the

load to the left of x, and Eq. (4.2s) for the load to the right of o. Then the deflection at o produced
by the total load is obtained from

y =
∫

x

a

sin k(L − x)
EIk3 sin kL

w sin kc dc −
∫

x

a

(L − x)
EILk2 wc dc +

∫

b

x

sin kx
EIk3 sin kL

w sin k(L − c)dc

−
∫

b

x

x
EIk2L

w(L − c) dc (4.6b)

If the beam is fully loaded with a uniformly distributed load as shown in Figure 4.4a, then
Eq. (4.6b) can be used to find the deflection at a point o distance x from the left support by
changing the integration limits and substituting a = 0 and b = L. The results obtained will be
the same as in Section 4.3.3 given by Eqs. (4.5l) and (4.5p).

b ≤ x ≤ L
If the deflection is to be determined at a point distance x from the left support, the point is to

the right of the partial uniform load. The deflection y at a distance x produced by the total load
is given by Eq. (4.2t) by substituting c for a, and w dc for Q in the equation. Then integrate the
expression between c = a and c = b, and we get

y =
∫

b

a

w sin kc
EIk3 sin kL

sin k(L − x) dc −
∫

b

a

wc(L − x)
EILk2 dc (4.6c)

4.3.5 Beam Columns with Uniformly Increasing Load Over a Portion of Their Span

If w is not uniformly distributed but is a certain function of c, we can obtain the deflections
in the beam column for various values of x by substituting for w the given function of c from
Eqs. (4.6a), (4.6b), and (4.6c). Consider the case of a uniformly increasing load covering part of
the span of the beam column shown in Figure 4.6.

The deflections are obtained by substituting w = w0(c−a)
b−a

into Eqs. (4.6a), (4.6b), and (4.6c)
for various values of x. If the triangular load in Figure 4.6 spans the entire length of the beam
column increasing from 0 at the left support to w0 at the right support, the deflection at any
point distance x from the left support is given by Eq. (4.6b) and the integration limits are taken as
a= 0, and b= L. The method of superposition can be used to find the deflection and moment at
any section of a beam column subjected to a given loading combination consisting of distributed
and concentrated loads.

4.4 Beam Columns Subjected to Moments

So far the effects of transverse loads combined with axial load have been considered to find the
deflections and bending moments in beam columns. Now let us consider the effects of different
cases of moments combined with an axial load on the beam columns.



Trim Size: 187mm x 235mm Single Column Jerath c04.tex V1 - 11/06/2020 6:52pm Page 154�

� �

�

154 4 Beam columns

y 

x P 
P

b
x

a

wo
c dc

b – a
wo(c – a)

O

L 

Figure 4.6 Beam column with triangular load.

4.4.1 Span Moment on Beam Column

A moment Ma is applied at a distance a from the left support in Figure 4.7a, and an equivalent
couple consisting of two equal and opposite forces of magnitude Q is applied as shown
in Figure 4.7b. The magnitude of the couple is Q Δa = Ma. Assume that the distance Δa
approaches zero and at the same time Q increases, so that QΔa =Ma remains finite. This way,
we obtain a moment Ma acting at a distance a, from the left support.

For 0≤ x ≤ a, the deflection to the left of Q is given by

y = Q[−f (a + Δa) + f (a)] (4.7a)

(a)

(b)

a Ma

x 

P 

L 

x 

P x 

P P x 

y

a

Q 

y

Δa

Q 
L 

Figure 4.7 Beam column with span moment and axial force: (a) Span moment on beam column; (b) Beam column
with equivalent couple.
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The deflection given by the right-hand force Q acting upward in Figure 4.7b is upward, so it
is negative in Eq. (4.7a). The f (a) is obtained from Eq. (4.2s) as given below:

f (a) = sin k(L − a)
EIk3 sin kL

sin kx − (L − a)
EIlk2 x

Dividing and multiplying the right-hand side of Eq. (4.7a) by Δa, we get

y = −QΔa
f (a + Δa) − f (a)

Δa
(4.7b)

Taking the limit as Δa→ 0, we have

y = −Ma
df (a)

da
(4.7c)

or

y =
Ma

P

[
cos k(L − a) sin kx

sin kL
− x

L

]
(4.7d)

where
P = EIk2.

y′ =
dy
dx

=
Ma

P

[
cos k(L − a)k cos kx

sin kL
− 1

L

]
(4.7e)

y′′ =
d2y
dx2 =

Ma

P

[
−k2 cos k(l − a) sin kx

sin kL

]
(4.7f)

The bending moment at any section at a distance x is given by

M = −EIy′′ = Ma

[
cos k(L − a) sin kx

sin kL

]
(4.7g)

For a≤ x ≤L, the deflection is given by Eq. (4.7c), where f (a) is obtained from Eq. (4.2t) as
given below:

f (a) = sin ka
EIk3 sin kL

sin k(L − x) − a(L − x)
EILk2

Hence, from Eq. (4.7c) we have

y =
Ma

P

[
−cos ka

sin kL
sin k(L − x) + (L − x)

L

]
(4.7h)

y′ =
Ma

P

[
cos ka (k) cos k(L − x)

sin kL
− 1

L

]
(4.7i)

y′′ =
Ma

P

[
k2 cos ka sin k(L − x)

sin kL

]
(4.7j)
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The bending moment at any distance x is given by

M = −EIy′′ = −Ma

[
cos ka sin k(L − x)

sin kL

]
(4.7k)

If the moment Ma is applied at the center of span of the beam column, i.e. a = L/2, then the
deflected shape of the beam column is antisymmetric about the mid-span, and Eqs. (4.7d) and
(4.7h) give y (x = L/2) = 0. In this case, the slope of the deflected shape at the center of the span
is obtained by substituting a = L

2
and x = L

2
in Eqs. (4.7e) or (4.7i). Hence

y′|x=L∕2 =
Mak

P

[
1

2 tan kL
2

− 1
kL

]
(4.7l)

4.4.2 End Moment on a Beam Column

If a beam column is subjected to moment MA at one end in addition to an axial force P in
Figure 4.8a, the deflection can be obtained by the same procedure as shown for the span
moment. The moment MA can be represented by two equal and opposite transverse vertical
forces, each of magnitude Q acting at the distance, a, apart as shown in Figure 4.8b.

Assume that the distance a approaches zero and at the same time Q increases so that the
magnitude of the equivalent couple Qa = MA remains finite. The deflection at a distance x is
given by Eq. (4.2t) as follows:

y = Q sin ka
EIk3 sin kL

sin k(L − x) − Qa(L − x)
EILk2

x 

L 

x 

L 

P x 

P x 

(b)

(a)
y

A B 

P 
MA

θA θB

A 
P 

a

Q

y

Q 
B 

Figure 4.8 Beam column with end moment and axial force: (a) End moment on beam column; (b) Beam column
with equivalent couple.
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For a→ 0, substitute sin ka = ka, and we get

y = Qka
EIk3 sin kL

sin k(L − x) − Qa(L − x)
EILk2

Substituting Qa = MA, and P = EIk2, we have

y =
MA

P

[
sin k(L − x)

sin kL
− (L − x)

L

]
(4.8a)

Taking the derivative of y we get
dy
dx

=
MA

P

[
−k cos k(L − x)

sin kL
+ 1

L

]
(4.8b)

𝜃A =
(

dy
dx

)
x=0

= −
MA

P

[
k cos kL
sin kL

− 1
L

]
(4.8c)

𝜃B = −
(

dy
dx

)
x=L

=
MA

P

[
k

sin kL
− 1

L

]
(4.8d)

Now, substitute u = kL
2
, or k = 2u

L

Also u = L
2

√
P
EI

, or P = 4u2

L2 EI

Therefore,

𝜃A =
MAL
3EI

3
2u

[ 1
2u

− 1
tan 2u

]
(4.8e)

and

𝜃B =
MAL
6EI

3
u

[ 1
sin 2u

− 1
2u

]
(4.8f)

The expressions MAL/3EI and MAL/6EI give the angles produced by the moment MA alone.
The influence of the axial force P on the angles of rotations of the beam column is given by the
terms inside the square brackets of Eqs. (4.8e) and (4.8f). Using the following notations

𝜓u =
3

2u

[ 1
2u
− 1

tan 2u

]
(4.8g)

𝜙u =
3
u

[ 1
sin 2u

− 1
2u

]
(4.8h)

We can write

𝜃A =
MAL
3EI

𝜓u (4.8i)

and

𝜃B =
MAL
6EI

𝜙u (4.8j)
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(a)

(b)

A B 
θA

y

MB 

θB

θBA 

L − c 

Q 

B 
c

Q

y 

θA

P x P 

P x P 

x 

L 

x 

L 

Figure 4.9 Beam column with the end moment on the right support and axial force: (a) End moment at the right
support in beam column; (b) Beam column with equivalent couple.

The numerical values of the functions in Eqs. (4.3c), (4.3g), (4.5s), (4.8g), and (4.8h) are given
by Timoshenko and Gere [3] for different u values.

If a moment MB is acting on the right end as shown in Figure 4.9a, the deflection can be
obtained by the same procedure by replacing the moment by two vertical forces, each of mag-
nitude Q acting at the distance, c, apart forming a couple of magnitude MB as illustrated in
Figure 4.9b.

Assume as c approaches zero, the quantity Qc = MB remains finite. The deflection at a dis-
tance x is given by substituting a = L− c, or c = L− a in Eq. (4.2s).

y = Q sin kc
EIk3 sin kL

sin kx − Qc
EILk2 x for 0 ≤ x ≤ L − c

For c→ 0, substitute sinkc = kc, and we get

y = Qkc
EIk3 sin kL

sin kx − Qc
EILk2 x

Substituting Qc = MB, we obtain

y =
MB

P

[
sin kx
sin kL

− x
L

]
(4.8k)

Taking the derivative of y we get
dy
dx

=
MB

P

[
k cos kx
sin kL

− 1
L

]
(4.8l)

𝜃A =
(

dy
dx

)
x=0

=
MB

P

[
k

sin kL
− 1

L

]
(4.8m)

𝜃B = −
(

dy
dx

)
x=L

= −
MB

P

[
k cos kL
sin kL

− 1
L

]
(4.8n)
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Now, substitute u = kL
2
, or k = 2u

L

Also u = L
2

√
P
EI

, or P = 4u2

L2 EI

Therefore,

𝜃A =
MBL
6EI

3
u

[ 1
sin 2u

− 1
2u

]
(4.8o)

and

𝜃B=
MBL
3EI

3
2u

[ 1
2u

− 1
tan 2u

]
(4.8p)

or

𝜃A =
MBL
6EI

𝜙u (4.8q)

and

𝜃B =
MBL
3EI

𝜓u (4.8r)

4.4.3 Moments at Both Ends of Beam Column

If two moments are applied at the ends A and B of the beam column, the deflection at any point
on the deflected shape can be obtained by superposing Eqs. (4.8a) and (4.8k), giving the deflec-
tions due to MA and MB respectively. Adding these results together, we get the deflection for
the moments applied in Figure 4.10a. This type of load occurs when two eccentrically applied
forces act as shown in Figure 4.10b.

y =
MA

P

[
sin k(L − x)

sin kL
− (L − x)

L

]
+

MB

P

[
sin kx
sin kL

− x
L

]
(4.9a)

𝜃A is obtained by adding the results from Eqs. (4.8c) and (4.8m), whereas 𝜃B is obtained by
adding the results of Eqs. (4.8d) and (4.8n) as follows:

𝜃A = −
MA

P

[
k cos kL
sin kL

− 1
L

]
+

MB

P

[
k

sin kL
− 1

L

]
(4.9b)

𝜃B =
MA

P

[
k

sin kL
− 1

L

]
−

MB

P

[
k cos kL
sin kL

− 1
L

]
(4.9c)

or

𝜃A =
MAL
3EI

𝜓(u) +
MBL
6EI

𝜙u (4.9d)

and

𝜃B =
MBL
3EI

𝜓(u) +
MAL
6EI

𝜙(u) (4.9e)
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Similarly, the slope at any point on the deflected shape can be obtained by superposing
Eqs. (4.8b) and (4.8l) giving the slopes due to moments MA and MB respectively. Adding these
results together, we get the slope for the moments applied in Figure 4.10a.

y′ =
MA

P

[
−k cos k(L − x)

sin kL
+ 1

L

]
+

MB

P

[
k cos kx
sin kL

− 1
L

]
(4.9f)

y′′ =
MA

P

[
−k2 sin k(L − x)

sin kL

]
+

MB

P

[
−k2 sin kx

sin kL

]
(4.9g)

y′′′ =
MA

P

[
k3 cos k(L − x)

sin kL

]
+

MB

P

[
−k3 cos kx

sin kL

]
(4.9h)

The bending moment at a point in the span of the beam column is given by

M = −EIy′′, and substituting P = EIk2

M = MA

[
sin k(L − x)

sin kL

]
+MB

[
sin kx
sin kL

]
(4.9i)

The maximum bending moment will occur where dM
dx
= 0, or y′′′ = 0, therefore, from

Eq. (4.9h), we have
MA

P

[
k3 cos k(L − x)

sin kL

]
+

MB

P

[
−k3 cos kx

sin kL

]
= 0

(a)

P 
x 

y

A B 

P 

ebea

θA θB

MB

θA θB

MA

A B 

y
L

MA–MB MA– MB

L

(b)

P x P 

x 

L 

x 

L 

Figure 4.10 Beam column loaded with two end moments: (a) Beam column with two end moments; (b) Eccentri-
cally loaded column.
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or

tan kx̄ =
−MA cos kL +MB

MA sin kL
(4.9j)

Eq. (4.9i) gives the position x̄ of the maximum bending moment in the span of the beam
column.

Therefore,

sin kx̄ =
−MA cos kL +MB√

M2
A−2MAMB cos kL +M2

B

(4.9k)

and

cos kx̄ =
MA sin kL√

M2
A−2MAMB cos kL +M2

B

(4.9l)

Eq. (4.9i) can be written as

M = MA

[
sin kL cos kx − cos kL sin kx

sin kL

]
+MB

sin kx
sin kL

(4.9m)

Substitute the values of sin kx̄ and coskx̄ from Eqs (4.k and 4.9l) in the Eq. (4.9m) and we
have

Mmax = MB

⎡⎢⎢⎢⎢⎣

√√√√√(MA
MB

)2
− 2
(

MA
MB

)
cos kL + 1

sin2kL

⎤⎥⎥⎥⎥⎦
(4.9n)

The calculated value of x̄ may not lie within the span of the beam column, i.e. within the
range 0≤ x ≤L. In that case, Eq. (4.9m) is not applicable and the maximum moment on the
beam column is equal to the larger of the two end moments and acts at the end.

4.4.3.1 Two Equal Moments
If two equal moments act at the two ends given by

MA = MB = Me

then the defection curve is obtained from Eq. (4.9a) as follows:

y =
Me

P

[
sin k(L − x)

sin kL
− (L − x)

L
+ sin kx

sin kL
− x

L

]
(4.10a)

or

y =
Me

P cos kL
2

[
cos
(

kL
2
− kx
)
− cos kL

2

]
(4.10b)
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Substituting, u = kL
2

, we get

y =
MeL2

8EI
2

u2 cos u

[
cos
(

u − 2ux
L

)
− cos u

]
(4.10c)

In this case, the maximum deflection always occurs at the center of the span, it is obtained
by substituting x = L/2, and the result is

ymax = (y)x= L
2
=

MeL2

8EI
2

u2 cos u
(1 − cos u) =

MeL2

8EI
𝜆(u) (4.10d)

Differentiating Eq. (4.10c) we have

y′ =
MeL2

8EI
2

u2 cos u

[2u
L

sin
(

u − 2ux
L

)]
(4.10e)

The angles at the end can be obtained by taking

𝜃A = (y′)x=0, and 𝜃B = −(y′)x=L

or

𝜃A = 𝜃B =
MeL
2EI

tan u
u

(4.10f)

Taking the second derivative of Eq. (4.10c)

y′′ = −
Me

EI cos u
cos
(

u − 2ux
L

)
(4.10g)

The bending moment is given by

M = −EIy′′ =
Me

cos u
cos
(

u − 2ux
L

)
(4.10h)

The maximum bending moment occurs at the middle of the beam column at x = L/2, there-
fore

Mmax = Me sec u (4.10i)

When the axial force P is small in comparison to its critical value, P = 𝜋2EI
L2 , the term u is small

and sec u can be taken equal to unity, that means the bending moment is constant along the
span of the beam column. As P approaches Pcr, the value of u increases to 𝜋/2, and sec u goes
to infinity. At such a value of P, the bending moment at the mid-span is very large.

4.4.3.2 Moments at Both Ends of the Beam Column: Alternate Method
The beam column in Figure 4.10 can also be analyzed by considering the equilibrium of the
free body diagram of the deflected shape as shown in Figure 4.11.

Taking moments of all the forces in Figure 4.11 about the right end of the free body diagram
we have

−
MA −MB

L
x + Py +MA −Mx = 0 (4.11a)
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L V =

MA – MB

L

MA – MB

P 

MA y

x 

y

Mxv = –EIy''

P 

Figure 4.11 Free body diagram of beam column loaded with two end moments.

Substitute Mx = −EIy′′ , and P = EIk2, then Eq. (4.11a) becomes

y′′ + k2y =
MA −MB

LEI
x −

MA

EI
(4.11b)

The general solution of the differential Eq. (4.11b) is

y = A sin kx + B cos kx +
MA −MB

EIk2L
x −

MA

EIk2 (4.11c)

The boundary conditions at the end of the member are
x = 0, y = 0; and x = L, y = 0

Substituting these boundary conditions, the constants A and B are obtained as

B =
MA

EIk2 , and A = − 1
EIk2 sin kL

(MA cos kL −MB) (4.11d)

The general solution of Eq. (4.11b) is given by

y = 1
EIk2 sin kL

(−MA cos kL +MB) sin kx +
MA

EIk2 cos kx

+
MA −MB

EIk2L
x − MA

EIk2 (4.11e)

or

y =
MA

P

[
−cos kL sin kx

sin kL
+ cos kx + x

L
− 1
]
+

MB

P

[
sin kx
sin kL

− x
L

]
(4.11f)

or

y =
MA

P

[
sin k(L − x)

sin kL
− L − x

L

]
+

MB

P

[
sin kx
sin kL

− x
L

]
(4.11g)

Equation (4.11g) is the same as Eq. (4.9a) before being obtained by the method of superposi-
tion.

4.4.3.3 End Moments of the Same Sign Giving Double Curvature
Equation (4.11g) is derived for a beam column bent in a single curvature, but it can also be used
when the member is bent in a double curvature by two clockwise end moments as shown in
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θA

MBMA 

A B 

L
MA + MB L

MA + MB
x 

L 

y 

θB

P x P 

Figure 4.12 Beam column in a double curvature due to end moments.

Figure 4.12. Replacing MB in the Eq. (4.11g) by −MB, we have

y =
MA

P

[
sin k(L − x)

sin kL
− L − x

L

]
−

MB

P

[
sin kx
sin kL

− x
L

]
(4.12a)

dy
dx

=
MA

P

[
−k cos k(L − x)

sin kL
+ 1

L

]
−

MB

P

[
k cos kx
sin kL

− 1
L

]
(4.12b)

𝜃A =
dy
dx
||||x=0

=
MA

P

[
−k cos kL

sin kL
+ 1

L

]
−

MB

P

[
k

sin kL
− 1

L

]
Now, substitute u = kL

2
, or k = 2u

L

Also u = L
2

√
P
EI

, or P = 4u2

L2 EI

𝜃A =
MAL
3EI

𝜓(u) −
MBL
6EI

𝜙(u) (4.12c)

𝜃B =
dy
dx
||||x=L

=
MA

P

[
− k

sin kL
+ 1

L

]
−

MB

P

[
k cos kL
sin kL

− 1
L

]
or

𝜃B = −
MAL
6EI

𝜙(u) +
MBL
3EI

𝜓(u) (4.12d)

The maximum bending moment due to end moments causing a double curvature is given by
replacing MB by −MB in Eq. (4.9n) as follows:

Mmax = −MB

⎡⎢⎢⎢⎢⎣

√√√√√(MA
MB

)2
+ 2
(

MA
MB

)
cos kL + 1

sin2kL

⎤⎥⎥⎥⎥⎦
(4.12e)

This maximum moment occurs at x̄ obtained from Eq. (4.9j) by replacing MB by −MB

tan kx̄ =
−(MA cos kL +MB)

MA sin kL
(4.12f)
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If the calculated value of x̄ lies outside the span, 0≤ x ≤L, the maximum moment lies at
the member end given by the larger of the two end moments in Figure 4.12. The maximum
absolute moments for single curvature and double curvature bent shapes of a beam column
can be written together in the following form:

Mmax = |MB|
⎡⎢⎢⎢⎢⎣

√√√√√(MA
MB

)2
+ 2
(

MA
MB

)
cos kL + 1

sin2kL

⎤⎥⎥⎥⎥⎦
(4.12g)

The ratio MA
MB

is taken as positive for a double curvature bending and is taken as negative if
the member is bent in a single curvature.

4.5 Columns with Elastic Restraints

Most of the columns in practice do not have idealized end conditions. These members are sup-
ported by other members such as beams or columns at the ends. Hence the end conditions are
elastically restrained, the degree of restraint depends on the stiffness of the supporting mem-
bers. A column that is supported against translation but is allowed to rotate partially by two
rotational springs at the ends is considered here as shown in Figure 4.13. Since these rotational
springs exert moments at the ends, the problem is similar to the beam columns subjected to
end moments.

The end moments caused by bending of the member are shown in the positive direction in
Figure 4.12. Those end moment that cause compression on the top of the beam column are
considered positive. The angles are considered positive when the ends rotate in the direction of
positive moments. Let 𝛽A and 𝛽B be the stiffness of the rotational springs at the ends A and B
of the member. The rotational stiffness is defined as the reactive moment at the end when the
angle of rotation is equal to unity. If 𝜃A and 𝜃B are the end rotations, there will be couples MA
and MB at the ends of the member given by

MA = −𝛽A𝜃A, and MB = −𝛽B𝜃B (4.13a)

MBMA 

θA θB
A B 

L 
y

P
x P 

Figure 4.13 Elastically restrained column.
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Using Eqs. (4.9d) and (4.9e) and Eq. (4.13a) yields

−
MA

𝛽A
=

MAL
3EI

𝜓(u) +
MBL
6EI

𝜙u

and

−
MB

𝛽B
=

MBL
3EI

𝜓(u) +
MAL
6EI

𝜙u (4.13b)

Thus, we get the following homogeneous linear algebraic equations in MA and MB:

⎡⎢⎢⎢⎣
1
𝛽A
+ L

3EI
𝜓(u) L

6EI
𝜙(u)

L
6EI

𝜙(u) 1
𝛽B
+ L

3EI
𝜓(u)

⎤⎥⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩

MA

MB

⎫⎪⎪⎬⎪⎪⎭
=

⎧⎪⎪⎨⎪⎪⎩

0

0

⎫⎪⎪⎬⎪⎪⎭
(4.13c)

For a nontrivial solution, the determinant of the coefficient matrix should be zero. Therefore||||||||
1
𝛽A
+ L

3EI
𝜓(u) L

6EI
𝜙(u)

L
6EI

𝜙(u) 1
𝛽B
+ L

3EI
𝜓(u)

|||||||| = 0 (4.13d)

The characteristic equation is[
1
𝛽A
+ L

3EI
𝜓(u)
] [

1
𝛽B
+ L

3EI
𝜓(u)
]
−
[ L

6EI
𝜙(u)
]2
= 0 (4.13e)

If 𝛽A = 𝛽B = 𝛽, then
1
𝛽
+ L

3EI
𝜓(u) = ± L

6EI
𝜙(u) (4.13f)

From the first equation of Eq. (4.13c)[
1
𝛽A
+ L

3EI
𝜓(u)
]

MA+
L

6EI
𝜙(u)MB = 0 (4.13g)

From Eqs. (4.13f) and (4.13g)

MB = ∓MA (4.13h)

Consider the first case, MB = −MA. In this case, the end moments are acting as shown in
Figure 4.12 and the member bends in a double curvature. Equation (4.13g) yields

1
𝛽A
+ L

3EI
𝜓(u) = L

6EI
𝜙(u)

Substitute values of 𝜓(u) and 𝜑(u) from Eqs. (4.8g) and (4.8h)
1
𝛽
+ L

3EI

( 3
2u

) [ 1
2u

− 1
tan 2u

]
= L

6EI

(3
u

) [ 1
sin 2u

− 1
2u

]
(4.13i)

or

tan u = u
1 + 2EIu2

𝛽L

(4.13j)
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The quantity u can be calculated for a particular value of 𝛽 from Eq. (4.13j), which then gives
the critical load. For example, as As 𝛽→ 0, the end conditions are pinned, tan u→ 0, ucr = 𝜋.

Therefore, Pcr =
4𝜋2EI

L2 = 𝜋2EI(
L
2

)2 , which is the same result as for a pinned-pinned column of

length L/2. The member acts as two pinned-pinned columns, each of length equal to L/2.
As 𝛽→∞, the end conditions are fixed, tan u→u, ucr = 4.493.
Therefore, Pcr =

8.18𝜋2EI
L2 = 𝜋2EI(

0.7 L
2

)2 , which is the same result as for a fixed-pinned column of

length L/2. The member acts as two fixed-pinned columns, each of length equal to L/2.
Consider the second case, MB = MA. In this case the end moments are acting as shown in

Figure 4.10 and the member bends in a single curvature. Eq. (4.13g) yields
1
𝛽A
+ L

3EI
𝜓(u) = − L

6EI
𝜙(u)

Substitute values of 𝜓u and 𝜑u from Eqs. (4.8g) and (4.8h)
1
𝛽
+ L

3EI

( 3
2u

) [ 1
2u

− 1
tan 2u

]
= − L

6EI

(3
u

) [ 1
sin 2u

− 1
2u

]
(4.13k)

or

tan u = −2EI
𝛽L

u (4.13l)

The u can be calculated for a particular value of 𝛽, which then gives the critical load. For
example as 𝛽→ 0, the end conditions are pinned, tan u→∞, or ucr = 𝜋/2.

Therefore, Pcr =
𝜋2EI

L2 , and we get the same result as for a pinned-pinned column. The member
acts as a pinned-pinned column of length L.

As 𝛽→∞, the end conditions are fixed, tan u→ 0, or ucr = 𝜋.
Therefore, Pcr =

4𝜋2EI
L2 , and we get the same result as for a fixed-fixed column. The member

acts as a fixed-fixed column of length L.
Out of the two cases presented by Eq. (4.13h), a critical load for the column whose ends

are elastically restrained occurs when the member bends in a single curvature. Therefore, the
minimum critical load is given by Eq. (4.13l) for the column that is elastically restrained at
the ends.

4.6 Beam Columns with Different End Conditions and Loads

4.6.1 Pinned-fixed Beam Columns with a Concentrated Load

Consider the beam column that is simply supported at the left end and is fixed at the right
support. A concentrated force Q is acting on it at a distance a from the left support as shown
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Figure 4.14 Pinned-fixed beam column with concentrated force: (a) Fixed-pinned beam column; (b) Pinned-pinned
beam column with concentrated force; (c) Pinned-pinned beam column with end moment.

in Figure 4.14. The method of superposition is used here to find the deflection and bending
moment at any section of the member.

The beam column in Figure 4.14a can be considered to be the sum of the simply supported
beam acted upon by a concentrated load Q in Figure 4.14b, and the simply supported beam
column subjected to an end moment MB as shown in Figure 4.14c. The fixed end moment MB
is shown in the positive direction in Figure 4.14c. The fixed end moment MB is found by adding
the rotation produced by the concentrated force Q in Figure 4.14b (Eq. 4.2x) and the rotation
produced by the moment MB in Figure 4.14c (Eq. 4.8r), and equating the sum equal to zero.

Q sin ka
EIk2 sin kL

− Qa
EILk2 +

MBL
3EI

𝜓(u) = 0 (4.14a)

If we consider the concentrated force Q acting at the mid-span, then a = L/2.
or

Q sin kL
2

EIk2 sin kL
− QL

2EIk2L
+

MBL
3EI

𝜓(u) = 0
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or
QL2

16EI
2(1 − cos u)

u2 +
MBL
3EI

𝜓(u) = 0

or

MB = −
3QL
16

𝜆(u)
𝜓(u)

(4.14b)

The negative sign in Eq. (4.14b) shows that the moment MB acts opposite to the assumed
direction.

Having found MB, the deflection at the mid-span, x = L/2, produced by the end moment MB
in Figure 4.14c can be found from Eq. (4.8k) as follows:

y =
MB

2EIk2

[1 − cos u
cos u

]
=

MBL2

16EI

[
2(1 − cos u)

u2 cos u

]
(4.14c)

The deflection at the mid-span in Figure 4.14a when a = L/2 is obtained by superposing
deflections due to the concentrated force Q in Figure 4.14b is given by Eq. (4.3e) and the deflec-
tion produced by the end moment MB given by Eq. (4.14c) is as follows:

y|x=L∕2=
QL3

48EI

[
3(tan u − u)

u3

]
+

MBL2

16EI

[
2(1 − cos u)

u2 cos u

]
or

y|x=L∕2 =
QL3

48EI
𝜒(u) +

MBL2

16EI
𝜆(u) (4.14d)

If there was no axial load P, the deflection at the center of span produced by the concentrated
load Q acting at the mid-span in Figure 4.14a is given by discarding the terms of u in Eqs. (4.14b)
and (4.14d).

y|x= L
2
= QL3

48EI
+

MBL2

16EI
= QL3

48EI
− 3QL

16

[
L2

16EI

]
or

y|x= L
2
= 7QL3

768
a result that can be verified from the structural analysis of pinned-fixed beam subjected to a
concentrated load Q at the center of span.

4.6.2 Pinned-fixed Beam Columns Subjected to Uniformly Distributed Load

A uniformly distributed load w is applied on the column shown in Figure 4.15. The beam col-
umn is assumed to consist of the sum of the uniformly loaded, simply supported member in
Figure 4.4a and the simply supported member subjected to an end moment MB in Figure 4.14c
to solve the problem. The method of superposition is used here.
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L
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Figure 4.15 Pinned-fixed beam column with uniformly distributed load.

The fixed end moment MB is obtained by adding the rotations at the end B produced by
the uniformly distributed load in Figure 4.4a (Eq. 4.5n) and the moment MB in Figure 4.14c
(Eq. 4.8r) and equating the sum equal to zero

wL3

24EI
𝜒(u) +

MBL
3EI

𝜓(u) = 0

or

MB = −
wL2

8
𝜒(u)
𝜓(u)

(4.15a)

The negative sign shows that the moment is in the opposite direction to that assumed. Know-
ing the end moment, the deflection curve is obtained by superposing the deflections produced
by the uniform load (Eq. 4.5l) and the deflections produced by the end moment MB (Eq. 4.8k).
If x = L/2, then the deflection at the mid-span is found by superposing the deflection produced
by the uniformly distributed load (Eq. 4.5r) and the deflection at the mid-span produced by the
end moment MB (Eq. 4.8k, x = L/2).

y|x= L
2
= 5wL4

384EI
𝜂(u) +

MBL2

16EI
𝜆(u) (4.15b)

It can easily be shown that if the axial force P is zero, the deflection at the mid-span of the
beam column is wL4

192EI
, which is obtained by discarding the terms of u in Eqs. (4.15a) and (4.15b)

Similarly, the bending moment at a section of the member can be found by superposing the
bending moment produced by the uniform load (Eq. 4.5p) and the moment produced by the
end moment MB (second part of Eq. 4.9i).

M = wL2

4u2

[
tan u sin 2ux

L
+ cos 2ux

L
− 1
]
+MB

[
sin kx
sin kL

]
(4.15c)

If

x = L
2

M|x= L
2
= wL2

8

[
2(1 − cos u)

u2 cos u

]
+

MB

2
sec u

Substituting MB from Eq. (4.15a) we have
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or

M|x= L
2
= wL2

8
𝜆(u) − wL2

16
𝜒(u)
𝜓(u)

sec u (4.15d)

It can easily be shown that if the axial force P = 0, the bending moment at the center of the
span is wL2

8
.

4.6.3 Fixed-fixed Beam Column with Concentrated Force

The method of superposition can be used to evaluate the deflection and bending moment in
the fixed-fixed beam column acted on by a concentrated force shown in Figure 4.16. The beam
column can be considered as a sum of a simply supported beam column acted on by a transverse
concentrated force and the axial force P (Figure 4.2a) plus the simply supported beam column
acted on by two end moments and the axial force P (Figure 4.10a). The moments at the ends,
MA and MB, are found from the conditions that the slopes at the ends are zero. The equations
for finding the end moments are

𝜃A = 𝜃A0 + 𝜃A(MA) + 𝜃A(MB) = 0 (4.16a)

𝜃B = 𝜃B0 + 𝜃B(MA) + 𝜃B(MB)
=0 (4.16b)

The rotations 𝜃A0 and 𝜃B0 (Eqs. 4.2w and 4.2x) are the angles of rotation at the ends of the
simply supported beam column when the concentrated load acts along with the axial force.
The angles 𝜃A(MA) (Eq. 4.8i) and 𝜃B(MA) (Eq. 4.8j) are the rotations at the ends of the simply
supported member due to the end moment MA. Whereas the angles 𝜃A(MB) (Eq. 4.8q) and 𝜃B(MB)
(Eq. 4.8r) are the rotations at the ends of the simply supported member due to the end moment
MB. The axial force P also acts along with the end moments on the member. Equations (4.16a)
and (4.16b) can be written as

𝜃A = 𝜃A0 +
MAL
3EI

𝜓(u) +
MBL
6EI

𝜙(u) = 0 (4.16c)

𝜃B = 𝜃B0 +
MAL
6EI

𝜙(u) +
MBL
3EI

𝜓(u) = 0 (4.16d)

If the concentrated force Q acts at the center of the span of the member, a = L/2, then

MA = MB = MF

MB
MA

P

y

Q

A B

P 

L

a
x

Figure 4.16 Fixed-fixed beam column with a concentrated force.
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and

𝜃A0 = 𝜃B0 =
QL2

16EI
𝜆(u) (4.3b)

Substituting in Eq. (4.16c) or (4.16d), we get

MF = −
QL
8

[ u
tan u

𝜆(u)
]

or

MF = Mmax = −
QL
8

[
2(1 − cos u)

u sin u

]
(4.16e)

The minus sign indicates that the moments are in the opposite directions to those assumed.
The term, QL

8
, is the absolute value of the fixed end moments when the axial force P is zero. The

maximum deflection occurs at the mid-span and from Eqs. (4.3f) and (4.10d) is equal to

ymax = y|x= L
2
= QL3

48EI
𝜒(u) +

MFL2

8EI
𝜆(u) (4.16f)

In the absence of the axial load, P = 0, the ymax becomes

ymax =
QL3

48EI
+

MFL2

8EI
= QL3

48EI
− QL

8

[
L2

8EI

]
= QL3

192EI
(4.16g)

The bending moment at the mid-span from Eqs. (4.3m) and (4.10i) is given by

M|x= L
2
= QL

4

[ tan u
u

]
+MF sec u

When P is absent

M|x= L
2
= QL

4
− QL

8
= QL

8
(4.16h)

4.6.4 Fixed-fixed Beam Column with Uniformly Distributed Load

Consider the case of beam column that has both built-in ends and is loaded with a uniformly
distributed load w and an axial force P in Figure 4.17. The member is considered to be the sum
of a simply supported beam column subjected to uniform load and an axial force plus a simply
supported member acted on by end moments and the axial force P.

The deflection curve in this case is symmetrical and the moments at the built in ends are
equal, MA = MB = MF . The end moments are obtained from the condition that the sum of the
rotations produced by the uniformly distributed transverse load acting on a simply supported
member are canceled by the rotations produced by the end moments on the simply supported
member. In both cases, the beam column is also subjected to the axial force P in addition to the
transverse load or the end moments. Use Eqs. (4.5n) and (4.10f) to get

wL3

24EI
𝜒(u) +

MFL
2EI

[ tan u
u

]
= 0 (4.17a)
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MBMA
w

A

y

P
x

B

P 

L

Figure 4.17 Fixed-fixed beam column with uniformly distributed load.

or
wL3

24EI

[
3(tan u − u)

u3

]
+

MFL
2EI

[ tan u
u

]
= 0

or

MF=Mmax = −
wL2

12

[
3(tan u − u)

u2 tan u

]
(4.17b)

The minus sign indicates the end moments are in the opposite direction to those assumed.
In the absence of axial force P, MF = −

wL2

12
.

The deflection at any cross-section is given by superposing the deflection produced by the
uniform load (Eq. 4.5l) and the deflection produced by the two equal end moments (Eq. 4.10c).
Similarly, the bending moment at any section is obtained by superposing the bending moment
produced by the uniform load and the bending moment produced by the two equal end
moments (Eqs. 4.5p and 4.10h). The maximum deflection occurs at the center of the span
given by adding the deflections from Eqs. (4.5q) and (4.10d).

ymax =
5wL4

384EI

[
12(2 sec u − u2 − 2)

5u4

]
+

MFL2

8EI

[
2(1 − cos u)

u2 cos u

]
or

ymax =
wL4

384EI

[
12(2 − 2 cos u − u sin u)

u3 sin u

]
(4.17c)

If the axial force is absent, P = 0, and, ymax =
wL4

384EI
.

The bending moment at the mid-span is obtained by adding the bending moments from
Eqs. (4.5x) and (4.10i).

M|x= L
2
= wL2

8

[
2(1 − cos u)

u2 cos u

]
+MF sec u

or

M|x= L
2
= wL2

8

[
2(1 − cos u)

u2 cos u

]
wL2

12

[
3(tan u − u)

u2 tan u

]
1

cos u
or

M|x= L
2
= wL2

24

[
6(u − sin u)

u2 sin u

]
(4.17d)



Trim Size: 187mm x 235mm Single Column Jerath c04.tex V1 - 11/06/2020 6:52pm Page 174�

� �

�

174 4 Beam columns

If
P = 0, M|x= L

2
= wL2

24
.

4.7 Alternate Method Using Basic Differential Equations

4.7.1 Fixed-fixed Beam Column with Uniformly Distributed Load

The beam column with the clamped supports and a uniformly distributed load acting on it as
shown in Figure 4.17 is analyzed here using the basic differential Eq. (4.1f).

d4y
dx4 + k2 d2y

dx2 =
w
EI

(4.1f)

The general solution is
y = A sin kx + B cos kx + Cx + D + y(p) (4.18a)

Where y(p) is the particular solution. Assume the particular solution as a polynomial
y(p) = Ex4 + Fx3 + Gx2 +Hx + I (4.18b)

Take the derivatives of Eq. (4.18b) with respect to x and substitute into Eq. (4.18a) to get the
particular solution

y(p) = wx2

2EIk2 (4.18c)

Therefore, the general solution becomes

y = A sin kx + B cos kx + Cx + D + wx2

2EIk2 (4.18d)

The constants A, B, C, and D are obtained from the boundary conditions
At x = 0, y = 0, and y′ = 0

and x = L, y = 0, and y′ = 0
Substitute y = 0 at x = 0

B = −D (4.18e)

y′ = Ak cos kx − Bk sin kx + C + wx
EIk2 (4.18f)

Substitute y′ = 0 at x = 0
C = −Ak (4.18g)

Now substitute at x = L, y = 0, and y′ = 0, we obtain

A sin kl + B cos kL + CL + D + wL2

2EIk2 = 0 (4.18h)
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and

Ak cos kL − Bk sin kL + C + wL
EIk2 = 0 (4.18i)

Solving Eqs. (4.18e), (4.18g), (4.18h), and (4.18i), we get

A = wL
2EIk3 (4.18j)

B = wL
2EIk3 tan kL

2

(4.18k)

C = − wL
2EIk2 (4.18l)

D = − wL
2EIk3 tan kL

2

(4.18m)

Now, Eq. (4.18a) becomes

y = wL
2EIk3 sin kx + wL

2EIk3 tan kl
2

cos kx − wLx
2EIk2 −

wL
2EIk3 tan kL

2

+ wx2

2EIk2

or

y = wL
2EIk3

[
tan kL

2
sin kx + cos kx − 1

tan kl
2

]
− w

2EIk2 [x(L − x)] (4.18n)

y′ = wL
2EIk3

[
k cos kx − k sin kx

tan kL
2

− k + 2kx
L

]
(4.18o)

y′′ = wL
2EIk3

[
−k2 sin kx − k2 cos kx

tan kL
2

+ 2k
L

]
(4.18p)

The maximum deflection occurs at x = L/2

ymax|x= L
2
= wL4

384EI

[
12(2 − 2 cos u − u sin u)

u3 sin u

]
(4.18q)

That is the same as Eq. (4.17c).

M = −EIy′′

The bending moment at a section at a distance x from the left support is given by

M = wL
2k3

[
k2 sin kx + k2 cos kx

tan kL
2

− 2k
L

]
(4.18r)

The maximum bending moment occurs at the fixed end, x = 0, and is equal to

M = −
wL2

12

[
3(tan u − u)

u2 tan u

]
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That is the same as Eq. (4.17b).
The bending moment at the mid-span, x = L/2, is given by

M|x= L
2
= wl2

24u2

[
6(u − sin u)

sin u

]
(4.18s)

That is the same as Eq. (4.17d).

4.7.2 Pinned-fixed Beam Column with Uniformly Distributed Load

Consider the beam column in Figure 4.15, that is pinned at the left-hand support and fixed at the
right-hand support. The basic differential equation governing the equilibrium in the deflected
shape is given by

d4y
dx4 + k2 d2y

dx2 =
w
EI

(4.1f)

The general solution is

y = A sin kx + B cos kx + Cx + D + wx2

2EIk2 (4.18d)

y′ = Ak cos kx − Bk sin kx + C + wx
EIk2 (4.18f)

y′′ = −k2A sin kx − Bk2 cos kx + w
EIk2 (4.19a)

The constants A, B, C, and D are obtained from the boundary conditions

At x = 0, y = 0, and y′′ = 0
and x = L, y = 0, and y′ = 0

Substituting y = 0 at x = 0

B = −D (4.19b)

Substitute y′′ = 0 at x = 0

B = w
EIk4 (4.19c)

Now substituting at x = L, y = 0, and y′ = 0, we obtain

A sin kl + B cos kL + CL + D + wL2

2EIk2 = 0 (4.19d)

and

Ak cos kL − Bk sin kL + C + wL
EIk2 = 0 (4.19e)

Solving Eqs. (4.19b), (4.19c), (4.19d), and (4.19e), we get

A = w
2EIk4

[
k2L2 − 2 cos kL − 2kL sin kL + 2

sin kL − kL cos kL

]
(4.19f)
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B = w
EIk4 (4.19g)

C = w
2EIk3

[
k2L2 cos kL − 2 cos kL − 2kL sin kL + 2

sin kL − kL cos kL

]
(4.19h)

D = − w
EIk4 (4.19i)

Substitute the constants A, B, C, and D from Eqs. (4.19f–4.19i) in Eq. (4.18d) to get the deflec-
tion curve for the beam column. It can be shown that the deflection at the mid-span, x = L/2, is
the same as obtained in Eqs. (4.15a) and (4.15b). Similarly, the bending moment at any section
is obtained from

M = −EIy′′

or

M = w
2k2

[
k2L2 − 2 cos kL − 2kL sin kL + 2

sin kL − kL cos kL

]
sin kx + w

k2 (cos kx − 1) (4.19j)

It can easily be seen that the moment is zero at the left support, x = 0. It can also be shown
that the moment at the right support, x = L, and the bending moment at the mid-span, x = L/2,
are the same obtained from Eq. (4.15a) and Eq. (4.15d) respectively.

4.8 Continuous Beam Columns

If the beam columns are supported continuously on more than two supports, then they are
called continuous beam columns and these structures are statically indeterminate. Continuous
beam columns on rigid supports with a lateral load and axial forces are considered here. In
these cases the support bending moments are considered as redundant forces. Let 1, 2, 3, ------,
m denote the consecutive supports; M1, M2, M3, - - - - - - - , Mm be the corresponding support
moments; and L1, L2, L3, - - - - - - , Lm− 1 are the span lengths between the supports. For each
span the axial force is given by P1, P2, P3, - - - - - - - , Pm− 1; and the flexural rigidity is given by
EI1, EI2, EI3, - - - - - - , EIm− 1. The compressive force and the flexural rigidity may vary from
span to span but it is constant within the span.

Now, consider any two consecutive spans between the supports n− 1, n, and n+ 1, as shown
in Figure 4.18. The bending moments at the supports are shown in their positive directions.
They are considered positive if they produce compression at the top of the member. The angles
are considered positive when they occur in the same direction as the positive bending moments.
At the intermediate support n, the tangent to the deflection curves in the two spans is a straight
line. Hence,

𝜃n = −𝜃′n (4.20a)
The rotations are found for each span considering it as a simply supported member sub-

jected to lateral load and the end moments. The total angle of rotation is obtained by adding
the rotations due to lateral load and the end moments from Eqs. (4.9d) and (4.9e) as follows:

𝜃n = 𝜃0n +
MnLn−1

3EIn−1
𝜓(un−1) +

Mn−1Ln−1

6EIn−1
𝜙(un−1) (4.20b)
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n–1

y

P
n–1

Pn

Ln–1 Ln

n

Q1 Q2 
w

Mn–1 Mn
Mn

θn–1 θn

–θn’ θn+1 

n + 1 

x

Figure 4.18 Continuous beam column.

and

𝜃′n = 𝜃′0n +
MnLn

3EIn
𝜓(un) +

Mn+1Ln

6EIn
𝜙(un) (4.20c)

where the angles 𝜃0n and 𝜃′0n are the angles produced by the lateral load on the two spans shown
in Figure 4.18, if each span was a simply supported beam column. Thus, Eq. (4.20a) becomes

𝜃0n +
MnLn−1

3EIn−1
𝜓(un−1) +

Mn−1Ln−1

6EIn−1
𝜙(un−1) = −𝜃′0n −

MnLn

3EIn
𝜓(un) −

Mn+1Ln

6EIn
𝜙(un)

(4.20d)
or

Mn−1𝜙(un−1) + 2Mn

[
𝜓(un−1) +

In−1Ln

InLn−1
𝜓(un)

]
+Mn+1

In−1Ln

InLn−1
𝜙(un)

= −
6EIn−1

Ln−1
(𝜃0n + 𝜃′0n) (4.20e)

If the Eq. (4.20e) is written for each intermediate support, and also using the boundary con-
ditions at the two end supports, we obtain a sufficient number of equations to solve for all the
unknown moments (see Examples 4.1 and 4.2).

Example 4.1 Consider a two-span continuous beam column shown in Figure 4.19 with two
spans loaded by concentrated forces Q1 and Q2 at the middle of each span. The ends A and C
are simply supported, and the end B is a continuous support. The modulus of elasticity of the
entire member is constant, E. The span lengths are L1 and L2, whereas the moments of inertias
are I1 and I2.

If the ends of the continuous beam column are simply supported, then the equations of the
type given by Eq. (4.20e), when written for each intermediate support, will provide as many

L2 

P1

P2

Q1 Q2 
P1 P2

I2I1A B C

y

x

L1

Figure 4.19 Two-span continuous beam column.
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equations as there are statically indeterminate moments. In this problem just one equation
will be sufficient to find the bending moment at the intermediate support B. Thus, Eq. (4.20a)
at the support B becomes

MA𝜙(u1) + 2MB

[
𝜓(u1) +

I1L2

I2L1
𝜓(u2)

]
+MC

I1L2

I2L1
𝜙(u2) = −

6EI1

L1
(𝜃02 + 𝜃′02) (4.20f)

Now, MA = MC = 0, therefore,

MB

[
𝜓(u1) +

I1L2

I2L1
𝜓(u2)
]
= −

3EI1

L1
(𝜃02 + 𝜃′02) (4.20g)

From Eq. (4.3b)

𝜃02 =
Q1L1

2

16EI1
𝜆(u1) (4.20h)

𝜃′02 =
Q2L2

2

16EI2
𝜆(u2) (4.20i)

where

u1 =
k1L1

2
=

√
P1

EI1

L1

2
; u2 =

k2L2

2
=

√
P2

EI2

L2

2

Knowing u1 and u2; 𝜓(u1) and 𝜓(u2), 𝜆(u1) and 𝜆(u1), 𝜃02, and 𝜃′02 can be calculated. Then
the unknown moment MB can be calculated as

MB =
−3EI1

L1
(𝜃02 + 𝜃′02)[

𝜓(u1) +
I1L2
I2L1

𝜓(u2)
] (4.20j)

At the critical value of the axial compressive force P, the moment MB becomes infinite, there-
fore

𝜓(u1) +
I1L2

I2L1
𝜓(u2) = 0 (4.20k)

Equation (4.20k) is the characteristic equation to determine the critical load for a two-span
continuous column.

Let L1 = 1.5 L, L2 = L, I1 = I2 = I, and P1 = P2 = P, then Eq. (4.20k) becomes
𝜓(u1)
𝜓(u2)

= −
L2

L1
or

(tan 2u1 − 2u1) tan 2u2

(tan 2u2 − 2u2) tan 2u1
= −

L2

L1

u1
2

u2
2

k1 = k2 = k =
√

P
EI

, u1 =
3kL

4
, u2 =

kL
2
, and

u1

u2
= 3

2
or

2 tan 2u2(tan 2u1 − 2u1) + 3 tan 2u1(tan 2u2 − 2u2) = 0



Trim Size: 187mm x 235mm Single Column Jerath c04.tex V1 - 11/06/2020 6:52pm Page 180�

� �

�

180 4 Beam columns

or

5 sin 3kL
2

sin kL − 3kL sin 5kL
2

= 0 (4.20l)

Equation (4.20l) is the same as the Eq. (2.13g) derived before to find the critical axial com-
pressive force for the two-span continuous column in Chapter 2.

Example 4.2 Consider a two-span continuous beam column shown in Figure 4.20 with two
spans loaded by concentrated forces Q1 and Q2 at the middle of each span. The end A is simply
supported, end C is built in, and end B is a continuous support. The modulus of elasticity of the
entire member is constant, E. The span lengths are L1 and L2, whereas the moments of inertias
are I1 and I2.

In this case, there are two redundant moments, MB and MC. To get the three moment
equations at the supports B and C, add an imaginary span to the right of support C of length
zero. This way we obtain

At B

0 + 2MB

[
𝜓(u1) +

I1L2

I2L1
𝜓(u2)
]
+MC

I1L2

I2L1
𝜙(u2) = −

6EI1

L1
(𝜃0B + 𝜃′0B) (4.20m)

At C

MB𝜙(u2) + 2MC[𝜓(u2) + 0] + 0 = −
6EI2

L2
(𝜃0C + 0) (4.20n)

or

⎡⎢⎢⎢⎢⎣
2
[
𝜓(u1) +

I1L2
I2L1

𝜓(u2)
]

I1L2
I2L1

𝜙(u2)

𝜙(u2) 2𝜓(u2)

⎤⎥⎥⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩

MB

MC

⎫⎪⎪⎬⎪⎪⎭
=
⎧⎪⎨⎪⎩
− 6EI1

L1
(𝜃0B + 𝜃′0B)

− 6EI2
L2

𝜃0C

⎫⎪⎬⎪⎭ (4.20o)

Knowing the properties of the beam column, the axial force, and the lateral loads, the bend-
ing moments MB and MC can be determined from Eq. (4.20o). The critical values of the axial
forces are those at which the bending moments become infinitely large. This requires that the

P1

P2

Q1 Q2 
P1 P2

I2I1A B C

y

x

L2 L1

Figure 4.20 Two-span beam column with one end fixed.
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determinant of the coefficient matrix in Eq. (4.20o) is zero. In this way we get the characteristic
equation for obtaining the critical values of the axial compressive forces.|||||||||

2
[
𝜓(u1) +

I1L2
I2L1

𝜓(u2)
]

I1L2
I2L1

𝜙(u2)

𝜙(u2) 2𝜓(u2)

|||||||||
= 0 (4.20p)

or

4𝜓(u1)𝜓(u2) + 4
I1L2

I2L1
𝜓(u2)𝜓(u2) −

I1L2

I2L1
𝜙(u2)𝜙(u2) = 0

If
I1 = I2 = I; L1 = L2 = L; P1 = P2 = P;

then
u1 = u2 = u

and

𝜓(u1) = 𝜓(u2);𝜙(u2) = 𝜙(u1)

or

8 [𝜓(u)]2 = [𝜙(u)]2 (4.20q)

𝜓(u) = 3
2u

[ 1
2u

− 1
tan 2u

]
𝜙(u) = 3

u

[ 1
sin 2u

− 1
2u

]
or

8
{ 3

2u

[ tan 2u − 2u
2u tan 2u

]}2
=
{3

u

[2u − sin 2u
2u sin 2u

]}2

or √
2[sin 2u − 2u cos 2u] = ±[2u − sin 2u]

Consider the case√
2[sin 2u − 2u cos 2u] = [2u − sin 2u]

or

1.207 sin 2u − 1.414 u cos 2u − u = 0 (4.20r)

The smallest root of the transcendental Eq. (4.20r) is u = 1.785, kL/2 = 1.785, therefore,

P = 1.29𝜋2EI
L2 .

Now consider the case√
2[sin 2u − 2u cos 2u] = −[2u − sin 2u]
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or

0.207 sin 2u − 1.414u cos 2u + u = 0 (4.20s)

The smallest root of the transcendental Eq. (4.20s) is u = 2.721, kL/2 = 2.721, therefore,

P = 3.00𝜋2EI
L2 .

Equations (4.20r and 4.20s) are the characteristic equations to obtain the critical value of the
axial compressive force, P. The minimum value is the critical load given by

Pcr = 1.29𝜋
2EI
L2 (4.20t)

If the two members AB and BC were separate spans, AB with hinged ends, BC with one end
hinged and the other clamped, the critical load for the spans will be given by 𝜋2EI

L2 and 𝜋2EI
(0.7L)2

respectively. In the given continuous beam column, the critical load in Eq. (4.20t) lies in
between those two values. The stability of the span AB is increased due to the presence of
stiffer span BC, while the stability of span BC is reduced due to the action of less stiff span AB.

4.9 Slope Deflection Equations for Beam Columns

The slope deflection equations that calculate the end moments MA and MB when the ends of
the beam column in Figure 4.21 have been rotated through 𝜃A and 𝜃B are now derived. In this
derivation, the effect of the axial force on the bending stiffness is included. First, we neglect
the lateral joint translations of the joints A and B relative to each other. In the slope deflection
convention, the moments acting on the member and the end rotations are considered positive
when clockwise. The relation between the end moments and the end rotations is given by

𝜃A =
MAL
3EI

𝜓(u) −
MBL
6EI

𝜙(u) (4.12c)

𝜃B = −
MAL
6EI

𝜙(u) +
MBL
3EI

𝜓(u) (4.12d)

Equations (4.12c and 4.12d) can be written in the matrix form as{
𝜃A
𝜃B

}
= L

6EI

[
2𝜓(u) −𝜙(u)
−𝜙(u) 2𝜓(u)

]{
MA
MB

}
(4.21a){

𝜃A
𝜃B

}
= L

6EI

[
f11 f12
f21 f22

]{
MA
MB

}
(4.21b)

The coefficients fij, i= 1,2 and j= 1,2; when multiplied by L/6EI are the flexibility coefficients
for a beam column subjected to axial and lateral forces in Eq. (4.21b) where f 11 = f 22 = 2𝜓(u)
and f 12 = f 21 = −𝜙(u). When the axial force is zero, u = 0. Then

𝜓(u) = 3
2u

[ 1
2u

− 1
tan 2u

]
= 3

2

[ tan 2u − 2u
2u2 tan 2u

]
= 0

0
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θA

MB
MA

A B 

L
MA+ MB L

MA+ MB

x 

P P
x 

y 

θB

L1

Figure 4.21 Beam column with ends rotated through 𝜃A and 𝜃B.

In such cases, we can use L’Hospital’s rule, according to which we continue taking derivatives
of the numerator and the denominator terms with respect to u, until substituting u = 0 gives a
finite value for the function 𝜓(u). In this case, we will see that as u goes to zero, 𝜓(u) becomes
1. Similarly, when the axial force is zero

𝜙(u) = 3
u

[ 1
sin 2u

− 1
2u

]
= 3

2

[2u − sin 2u
u2 sin 2u

]
= 0

0
By using L’Hospital’s rule, it can be shown that as u goes to zero, 𝜙(u) becomes 1. Therefore,

f 11 = f 22 = 2, and f 12 = f 21 = − 1. Thus, when there is no axial force, the Eq. (4.21b) becomes{
𝜃A
𝜃B

}
= L

6EI

[
2 −1
−1 2

]{
MA
MB

}
(4.21c)

Eq. (4.21c) is the same relation between the end rotations and the end moments as given in
structural analysis texts [4] for beams subjected to clockwise end moments with no axial force.

4.9.1 Matrix Inversion

Let the matrix be [A] =
⎡⎢⎢⎣

a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤⎥⎥⎦
[A]−1 =

Adjoint[A]|A|
The minor, Mij, is the determinant of the (n− 1)× (n− 1) submatrix of an n×n matrix [A]

obtained by deleting the ith row and jth column. The cofactor, Aij, associated with Mij, is defined
to be Aij = (−1)i+ jMij. The adjoint [A] is the transpose of the matrix obtained by replacing each
element of [A] by its cofactor. Then the adjoint [A] is given by

Adjoint [A] =
⎡⎢⎢⎣

A11 A21 A31
A12 A22 A32
A13 A23 A33

⎤⎥⎥⎦
|A| is the determinant of matrix [A]. From Eq. (4.21a){

MA
MB

}
=
{

L
6EI

[
2𝜓(u) −𝜙(u)
−𝜙(u) 2𝜓(u)

]}−1{
𝜃A
𝜃B

}
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MA
MB

}
= 6EI

L
1

4𝜓2(u) − 𝜙2(u)

[
2𝜓(u) 𝜙(u)
𝜙(u) 2𝜓(u)

]{
𝜃A
𝜃B

}
(4.21d){

MA
MB

}
= EI

L

[
k11 k12
k21 k22

]{
𝜃A
𝜃B

}
(4.21e)

where

k11 = k22 =
12𝜓(u)

4𝜓2(u) − 𝜙2(u)
(4.21f)

k12 = k21 =
6𝜙(u)

4𝜓2(u) − 𝜙2(u)
(4.21g)

Equation (4.21e) gives two slope deflection equations for a beam column subjected to axial
force and end rotations. The slope deflection coefficients for the beam column buckling, k11,
k22, k12, and k21 are given in Appendix A for various values of kL.

The coefficients kij, i = 1, 2 and j = 1, 2; when multiplied by EI/L are the stiffness coefficients
for a beam column subjected to axial and lateral forces in Eq. (4.21e). When the axial force is
zero, u = 0, and 𝜓(u) = 𝜙(u) = 1 as shown before. Therefore k11 = k22 = 4, and k12 = k21 = 2.
Thus, when there is no axial force on the beam column, Eq. (4.21e) becomes{

MA
MB

}
= EI

L

[
4 2
2 4

]{
𝜃A
𝜃B

}
(4.21h)

Equation (4.21h) is the same relation as given in structural analysis texts [4], giving induced
moments at the ends of a beam whose ends have been rotated clockwise with no axial force.

4.9.2 Beam Columns Subjected to Rotations and Relative Displacement at the Ends

Let 𝜃A and 𝜃B be the total rotations including Δ/L rotation due to the relative displacement of
the end A with respect to the end B as shown in Figure 4.22. therefore, the moments at the ends
are produced by the rotations, 𝜃′A = 𝜃A − (Δ∕L), and 𝜃′B = 𝜃B − (Δ∕L).

MB

MA

L
MA+ MB

L
MA+ MB

ΘA

ΘA

ΘB

ΘBP 

B 

X 

Y 

A Δ 

L

Figure 4.22 Beam column with end rotations and relative end displacement.
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Thus, the slope deflection equations relating the end rotations, the relative displacement of
the ends, and the end moments using Eq. (4.21e) are

MA =
EI
L

[
k11

(
𝜃A −

Δ
L

)
+ k12

(
𝜃B −

Δ
L

)]
MA =

EI
L

[
k11𝜃A + k12𝜃B − (k11 + k12)

Δ
L

]
(4.22a)

and

MB =
EI
L

[
k21

(
𝜃A −

Δ
L

)
+ k22

(
𝜃B −

Δ
L

)]
MB =

EI
L

[
k21𝜃A + k22𝜃B − (k21 + k22)

Δ
L

]
(4.22b)

Equations (4.22a) and (4.22b) are the slope deflection equations for a beam column that is
subjected to end rotations and the relative joint translation of the ends. When the axial force is
zero, Equations (4.22a) and (4.22b) become

MA =
EI
L

(
4𝜃A + 2𝜃B − 6Δ

L

)
(4.22c)

MB =
EI
L

(
2𝜃A + 4𝜃B − 6Δ

L

)
(4.22d)

Equations (4.22c) and (4.22d) are the same equations as given in structural analysis texts [4]
for a beam subjected to end rotations and relative joint translation.

4.9.3 Beam Columns Having One End Hinged

In this case, there is a hinge at either end A or B.
If there is a hinge at the end A, MA = 0, the beam column will bend in a single curvature and

the two slope deflection equations given by Eq. (4.21e) can be written as

MA = 0 = EI
L
[k11𝜃A + k12𝜃B]

or

𝜃A = −
k12

k11
𝜃B

and

MB =
EI
L

[
k22 −

k12
2

k11

]
𝜃B (4.23a)

Similarly, if there is a hinge at the end B, MB = 0, we get

MA =
EI
L

[
k11 −

k12
2

k22

]
𝜃A (4.23b)
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4.9.4 Beam Columns with Transverse Loading

When a transverse load is acting on the beam column, say, a uniformly distributed load, and
the member is given end rotations, as shown in Figure 4.23, the total rotations at the ends are
given by

𝜃A = 𝜃′A + 𝜃′′A
𝜃B = 𝜃′B − 𝜃′′B

Where 𝜃′′A and 𝜃′′B are the rotations at the ends due to transverse load; 𝜃A and 𝜃B are the total
rotations at the ends. The angles 𝜃′A and 𝜃′B induce moments MA and MB at the ends.

𝜃′A = 𝜃A − 𝜃′′A
𝜃′B = 𝜃B + 𝜃′′B

The slope deflection equation at the end A is

MA =
EI
L
[k11(𝜃A − 𝜃A

′′) + k12(𝜃B + 𝜃B
′′)] (4.24a)

MA =
EI
L
[k11𝜃A + k12𝜃B] +

EI
L
[−k11𝜃A

′′ + k12𝜃B
′′] (4.24b)

Substituting the values of k11, k12, and 𝜃′′A = 𝜃′′B , from Eqs. (4.21f), (4.21g), and (4.5n), we have

EI
L
[−k11𝜃A

′′ + k12𝜃B
′′] = EI

L

[
− 12𝜓(u)

4𝜓2(u) − 𝜙2(u)

(
wL3

24EI
𝜒(u)
)
+ 6𝜙(u)

4𝜓2(u) − 𝜙2(u)

(
wL3

24EI
𝜒(u)
)]

(a)

(b)

θB’

B

θB

θA θA’

θA”

θB”

A

L 

L 

P 

MA MB w

Figure 4.23 Beam column subjected to end moments and transverse load: (a) Transverse loading and end moments
on beam column; (b) Deflected shape of beam column subjected to end moments and transverse load.
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Substitute the values of the functions 𝜓(u) and 𝜙(u) from Eqs. (4.8g) and (4.8h), we have

EI
L
[−k11𝜃A

′′ + k12𝜃B
′′] = −wL2

12
𝜒(u) u

tan u
Substituting the value of the function 𝜒(u) from Eq. (4.3g), we have

EI
L
[−k11𝜃A

′′ + k12𝜃B
′′] = −wL2

12

[
3(tan u − u)

u2 tan u

]
(4.24c)

The right-hand side of Eq. (4.24c) is the fixed end moment at the support A as shown
in Eq. (4.17b). The negative sign shows that the fixed end moment at the support A is
counter-clockwise due to uniformly distributed transverse load.

MFA = −
wL2

12

[
3(tan u − u)

u2 tan u

]
(4.24d)

Thus, Eq. (4.24b) becomes

MA =
EI
L
[k11𝜃A + k12𝜃B] +MFA (4.24e)

The slope deflection equation at the end B is

MB =
EI
L
[k21(𝜃A − 𝜃A

′′) + k22(𝜃B + 𝜃B
′′)] (4.24f)

MB =
EI
L
[k21𝜃A + k22𝜃B] +

EI
L
[−k21𝜃A

′′ + k22𝜃B
′′] (4.24g)

It can be shown as before that

EI
L
[−k21𝜃A

′′ + k22𝜃B
′′] = wL2

12

[
3(tan u − u)

u2 tan u

]
= MFB (4.24h)

The positive sign shows that the fixed end moment, MFB, at the support B is clockwise due to
uniformly distributed transverse load. Thus, Eq. (4.24g) becomes

MB =
EI
L
[k21𝜃A + k22𝜃B] +MFB (4.24i)

Equations (4.24e and 4.24i) are the slope deflection equations for a beam column subjected
to an axial force, the end rotations, and a uniformly distributed load of intensity, w, per unit
length over the entire span. The extra terms are added in Eq. (4.24e) and Eq. (4.24i) if there is
relative translation between the end joints, as shown in Eq. (4.22a) and Eq. (4.22b) respectively.
The fixed end moments, MFA and MFB reduce to the values of−wL2/12 and wL2/12 respectively,
if there is no axial force, that is u = 0.
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4.9.5 Beam Columns in Single Curvature

If the end rotations are as shown in Figure 4.24, the beam column is bent in a single curvature.
In this case Eqs. (4.21e) can be used by substituting 𝜃B = − 𝜃B.

Slope deflection equations are

MA =
EI
L
[k11𝜃A + k12(−𝜃B)] (4.25a)

MB =
EI
L
[k21𝜃A + k22(−𝜃B)] (4.25b)

4.10 Inelastic Beam Columns

So far we have considered the problems of beam columns where the material remained elas-
tic. The elastic buckling analysis is possible if we are not concerned about the failure of the
members. If the members are to be analyzed for failure, then inelasticity in the material is to
be taken into account. The inelastic behavior makes the problem much more difficult because
stress-strain relationship is not linear and the rigidity of a member changes with the level of
stress. Under these conditions it is very cumbersome to find the curvature of the bending curve.
Inelastic beam column problems are solved numerically or in some limited cases these can be
solved by making simplified assumptions. The solution presented here follows the procedure
given by Ježek [5, 6] and Bleich [7]. The solution is based on the following assumptions:

1) The cross-section of the beam column is rectangular, as shown in Figure 4.25b.
2) The stress-strain diagram of beam column material is elastic-perfectly plastic, as shown in

Figure 4.25d. The modulus of elasticity, E, is assumed to be constant up to the yield point,
𝜎y, from there on, it is zero. The yield point is considered to be the same in tension and
compression.

3) The deflection curve of the member is a half sine wave. This assumption makes it possible
to use the method that is valid for eccentrically loaded and laterally loaded beam columns.

4) The problem is solved by assuming equilibrium conditions at the center of the member span.
5) Deformations are small so that the curvature can be approximated by the second derivative

of the deflection curve.

MBMA

A B 
θA θB

P P
x 

y 
L

MA–MB

L

MA–MB

L

Figure 4.24 Beam column in a single curvature.
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Consider a simply supported straight beam column of rectangular cross-section that is sub-
jected to axial force and lateral load, that produces a bending moment varying over the span
but is symmetrical about the center of the span.

At any cross-section distance x, the total bending moment is

Mext = Mx + Py (4.26a)

where Mx is the bending moment due to the eccentricity of the axial force and lateral load as
shown in Figure 4.25c, and y is the deflection of the member at distance x in Figure 4.25a. The
moment equilibrium condition gives

Mx + P y = Mint (4.26b)

where Mint is the moment produced by the internal stress distribution. In the case of elastic
members, the internal moment is given by

Mint = −EI
d2y
dx2 (4.26c)

where E and I are the modulus of elasticity of the material and the moment of inertia of the
member cross-section about the neutral axis, respectively.

1
𝜌
= −

d2y
dx2 (4.26d)

where 𝜌 is the curvature of the deflection curve, Eqs. (4.26b), (4.26c), and (4.26d) give the
moment curvature relation for an elastic member. Equations (4.26a, 4.26b, and 4.26d) are valid

(a)

εεy

σ

σy

b

h

x 

2
L

A B 

L 

C 

L 

P P 

δ

y 

x
y

2
L

x 

McMx

(b)

(c) (d)

Figure 4.25 Elastic-perfectly plastic beam column subjected to axial force and bending moment: (a) Inelastic beam
column; (b) Cross section; (c) Bending moment diagram; (d) Stress strain diagram.
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(a)

σ1 σ0

2

h

2
h

σy 

d1

e1

f1

Mext P

Neutral axis

Centroidal axis

εy

εc > εy

εt < εy

(b)

Figure 4.26 Stress distribution in case 1 of an inelastic beam column: (a) Stress diagram; (b) Strain diagram.

for both elastic and inelastic cases. However, Eq. (4.26c) giving the moment curvature relation
within the elastic limit is not valid for the inelastic case. The inelastic moment curvature rela-
tion is derived by taking into consideration the stress distribution across the depth of the mem-
ber. There are two different cases of stress distribution possible. In Case 1 shown in Figure 4.26,
the yield point is reached on the concave, i.e. the compressive side of the bent column. The ten-
sile stresses on the convex side still remain within the elastic limit. In Case 2, the yield strength
is reached on both compression and tension sides of the member cross-section.

4.10.1 Case 1: Yielding on the Compression Side Only

In this case, the yield point is reached on the concave, the compressive side of a bent col-
umn. The tensile stresses on the convex side still remain within the elastic limit. The yielding
in the compression zone is assumed to extend a distance d1 into the cross-section shown in
Figure 4.26a. Two equilibrium equations are used in the analysis. The first states that the sum
of the internal normal forces acting on a cross-section is equal to the axial force on the beam
column. The second equation states that the moment of the internal normal forces about the
centroidal axis is equal to Mext, the external moment about the centroidal axis.

The equilibrium conditions are

∫

h∕2

−h∕2
𝜎dA = P (4.27a)

∫

h∕2

−h∕2
𝜎ydy = Mx + Py (4.27b)
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The integrals in the present case are solved by using the stress and strain diagrams in
Figure 4.26. The distances d1, e1, and f 1 are determined as follows:

P = 𝜎ybd1 +
𝜎y

2
be1 −

𝜎1

2
bf 1 (4.27c)

Mint =
[
𝜎ybd1

(
h
2
−

d1

2

)
+

𝜎ybe1

2

(
h
2
− d1 −

e1

3

)
+

𝜎1bf 1

2

(
h
2
−

f1

3

)]
(4.27d)

d1 + e1 + f1 = h (4.27e)

From similar triangles in Figure 4.26a

𝜎1 =
𝜎yf1

e1
(4.27f)

Divide both sides of Eq. (4.27c) by A = bh, the area of the cross-section of the rectangular
section. Now substitute 𝜎1 from Eq. (4.27f), and f 1 = h− d1 − e1, from Eq. (4.27e) into
Eq. (4.27c). After some calculation we get

e1 =
𝜎y(h − d1)2

2h(𝜎y − 𝜎0)
(4.27g)

where 𝜎0 = P/A is the average stress. Similarly, substitute the values of f 1 and 𝜎1 from
Eqs. (4.27e) and (4.27f) into Eq. (4.27d) and we get

Mint =
b𝜎y

12e1
[h3 − 3hd1

2 + 2d1
3]

or

e1 =
b𝜎y

12Mint
[h3 − 3hd1

2 + 2d1
3] (4.27h)

Now equate the right-hand sides of Eqs. (4.27g) and (4.27h) and in solving we have

𝜎y(h − d1)2

2h(𝜎y − 𝜎0)
=

b𝜎y

12Mint
[(h + 2d1)(h − d1)2]

d1 =
3Mint

bh(𝜎y − 𝜎0)
− h

2
(4.27i)

Substitute the d1 obtained in Eq. (4.27i) into Eq. (4.27g) and we have

e1 =
𝜎y

2h(𝜎y − 𝜎0)

[
h −
{

3Mint

bh(𝜎0 − 𝜎y)
− h

2

}]2

After some calculations we obtain

e1 =
9𝜎yh

8(𝜎y − 𝜎0)3

[
𝜎y − 𝜎0 −

2Mint

bh2

]2
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or

e1 =
9𝜎y

[
h
2

(
𝜎y

𝜎0
− 1
)
− Mint

P

]2
2𝜎0h
(

𝜎y

𝜎0
− 1
)3 (4.27j)

From Figure 4.26b, and the strength of materials [8], assuming the plane sections before bend-
ing remain plane after bending, we get

𝜀y =
e1

𝜌
, or

𝜎y

E
=

e1

𝜌
,

Therefore,

1
𝜌
=

𝜎y

Ee1
(4.27k)

Substitute e1 from Eq. (4.27j) into Eq. (4.27k) and obtain the inelastic moment curvature rela-
tion that should be used instead of Eq. (4.26c) when the stresses are above the elastic limit.

1
𝜌
=

2𝜎0h
(

𝜎y

𝜎0
− 1
)3

9E
[

h
2

(
𝜎y

𝜎0
− 1
)
− Mint

P

]2 (4.27l)

Assume the deflection curve of the centroidal axis of the beam column is

y = 𝛿 sin 𝜋x
L

(4.27m)

where 𝛿 is the deflection of the beam column at the mid-span shown in Figure 4.25a.

d2y
dx2 = −

𝜋2

L2 𝛿 sin 𝜋x
L

d2y
dx2

|||||x= L
2

= −𝜋2

L2 𝛿 (4.27n)

Using Eqs. (4.26d), (4.27l), and (4.27n) we get

𝜋2

L2 𝛿 =
2𝜎0h
(

𝜎y

𝜎0
− 1
)3

9E
[

h
2

(
𝜎y

𝜎0
− 1
)
− Mint

P

]2
Substitute Mint from Eq. (4.26b)

𝛿

[
h
2

(
𝜎y

𝜎0
− 1
)
− 𝛿 −

Mx

P

]2

−
2𝜎0hL2

9𝜋2E

(
𝜎y

𝜎0
− 1
)3

= 0 (4.27o)
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Euler’s elastic buckling stress is given by

𝜎e =
𝜋2EI
L2A

=
𝜋2E
(

1
12

bh3
)

L2bh
= 𝜋2Eh2

12L2

Now Eq. (4.27o) can be written as

𝛿

h

[
1
2

(
𝜎y

𝜎0
− 1
)
− 𝛿

h
−

Mx

Ph

]2

−
𝜎0

54𝜎e

(
𝜎y

𝜎0
− 1
)3

= 0 (4.27p)

Equation (4.27p) gives the load (in terms of average stress) versus mid-span deflection 𝛿, in the
inelastic range which can be drawn for the various values of Mx/P, provided the stress remains
elastic on the tension side. The critical value of the average stress 𝜎0, can be obtained from the
expression

d𝜎0

d𝛿
= 0 (4.27q)

The derivative of the expression in Eq. (4.27o) is taken with respect to 𝛿 and use Eq. (4.27q),
which leads to[

h
2

(
𝜎y

𝜎0
− 1
)
− 𝛿 −

Mx

P

]2

− 2𝛿
[

h
2

(
𝜎y

𝜎0
− 1
)
− 𝛿 −

Mx

P

]
= 0

or

𝛿 = 1
3

[
h
2

(
𝜎y

𝜎0
− 1
)
−

Mx

P

]
(4.27r)

Substitute 𝛿 from Eq. (4.27r) into Eq. (4.27o) to obtain

1
3

[
h
2

(
𝜎y

𝜎0
− 1
)
−

Mx

P

] [
h
2

(
𝜎y

𝜎0
− 1
)
−

Mx

P
− 1

3

{
h
2

(
𝜎y

𝜎0
− 1
)
−

Mx

P

}]2

−
2𝜎0hL2

9𝜋2E

(
𝜎y

𝜎0
− 1
)3

= 0

1
3

[
h
2

(
𝜎y

𝜎0
− 1
)
−

Mx

P

]
4
9

[
h
2

(
𝜎y

𝜎0
− 1
)
−

Mx

P

]2

−
2𝜎0hL2

9𝜋2E

(
𝜎y

𝜎0
− 1
)3

= 0

or

𝜎c =
𝜋2Eh2

12L2

⎡⎢⎢⎢⎣
𝜎y

𝜎c
− 1 −

2Mx

Ph
𝜎y

𝜎c
− 1

⎤⎥⎥⎥⎦
3

(4.27s)

where the critical average stress 𝜎c = 𝜎0

𝜋2Eh2

12L2 = 𝜋2EI
L2A

= 𝜋2E
(L∕r)2
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or

𝜎c =
𝜋2E
(L∕r)2

⎡⎢⎢⎣
𝜎y

𝜎c
− 1 − 2Mx

Ph
𝜎y

𝜎c
− 1

⎤⎥⎥⎦
3

(4.27t)

Equation (4.27t) gives the relation between the critical average stress and the slenderness
ratio for any given value of Mx/P for the beam column. If there is no lateral load on the mem-
ber, only the eccentric axial force is acting, then the parameter Mx/P can be substituted by the
eccentricity e of the axial force. With the aid of Eq. (4.27t) the column curve giving the relation
between the slenderness ratio, L/r, and the critical stress can be plotted in continuation of the
Euler curve, provided the stress remains elastic on the tension side of the beam column.

4.10.2 Case 2: Yielding on Both the Compression and Tension Sides

In Case 2, the yield strength is reached in both the compression and tension sides of the member
cross-section. It is assumed that the yield extends distances d2 and f 2 in the compression and
tension zones of the cross-section respectively, as shown in Figure 4.27a.

The procedure in Case 2 is similar to that in Case 1. The equations of equilibrium are used to
find the distances d2, e2, and f 2 in Figure 4.27a.

P = 𝜎ybd2 +
𝜎y

2
be2 −

𝜎y

2
be2 − 𝜎ybf 2

or

𝜎0 =
𝜎y

h
(d2 − f2) (4.28a)

(a)

σ0σy

2

h

2

h

Mext

Neutral axis

Centroidal axis

d2

e
2 P

e2 

σy

εy

εc > εy

εt > εy 

εy

(b)

f2 

Figure 4.27 Stress and strain distributions in Case 2 of an inelastic beam column: (a) Stress diagram; (b) Strain
diagram.
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where

𝜎0 =
P

bh
.

Mint = 𝜎ybd2

(
h
2
−

d2

2

)
+ 𝜎y

be2

2

(
h
2
− d2 −

e2

3

)
+ 𝜎y

be2

2

(
h
2
− f2 −

e2

3

)
+ 𝜎ybf 2

(
h
2
−

f2

2

)
(4.28b)

d2 + 2e2 + f2 = h (4.28c)

Equations (4.28a and 4.28c) give

𝜎0 =
𝜎y

h
[d2 − h + d2 + 2e2]

e2 =
𝜎0h
2𝜎y

+ h
2
− d2 (4.28d)

Equations (4.28c and 4.28d) give

f2 = d2 −
𝜎0h
𝜎y

(4.28e)

Simplifying Eq. (4.28b) we get

Mint = b𝜎y

[
d2h

2
−

d2
2

2
+

e2h
2
−

e2d2

2
−

e2
2

3
−

e2f2

2
+

f2h
2
−

f2
2

2

]
(4.28f)

Substitute e2 and f 2 from Eqs. (4.28d) and (4.28e) in Eq. (4.28f) and simplify

Mint = b𝜎y

[
h2

6
−

𝜎0
2h2

3𝜎y
2 −

d2
2

3
−

𝜎0h2

6𝜎y
+

𝜎0hd2

3𝜎y
+

hd2

3

]
(4.28g)

or

d2
2 − hd2

(
1 +

𝜎0

𝜎y

)
−
[

h2

2
−

𝜎0
2h2

𝜎y
2 −

𝜎0h2

2𝜎y
−

3Mint

b𝜎y

]
= 0 (4.28h)

Equation (4.28h) is a quadratic equation in d2, hence the roots are

d2 =
h
(

1 + 𝜎0
𝜎y

)
±
√

h2
(

1 + 𝜎0
𝜎y

)2
+ 4
[

h2

2
− 𝜎0

2h2

𝜎y
2 − 𝜎0h2

2𝜎y
− 3Mint

b𝜎y

]
2

(4.28i)

or

d2 =
h
2

(
1 +

𝜎0

𝜎y

)
− h

√
3
4

(
1 −

𝜎0
2

𝜎y
2

)
−

3Mint

bh2
𝜎y

(4.28j)

The negative sign is chosen before the term inside the square root so that we have e2 a positive
quantity, as shown later.
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Substitute d2 given in Eq. (4.28j) into Eqs. (4.28d) and (4.28e) and we obtain

e2 = h

√
3
4

(
1 −

𝜎0
2

𝜎y
2

)
−

3Mint

bh2
𝜎y

(4.28k)

and

f2 =
h
2

(
1 −

𝜎0

𝜎y

)
− h

√
3
4

(
1 −

𝜎0
2

𝜎y
2

)
−

3Mint

bh2
𝜎y

(4.28l)

𝜀y =
e2

𝜌
or

𝜎y

E
=

e2

𝜌

Therefore,

1
𝜌
=

𝜎y

Ee2
(4.28m)

Substitute e2 from Eq. (4.28k) into Eq. (4.28m) and we have

1
𝜌
=

𝜎y

Eh
√

3
4

(
1 − 𝜎0

2

𝜎y
2

)
− 3Mint

bh2
𝜎y

or

1
𝜌
=

√√√√√√ 𝜎y
3

3E2𝜎0h

h𝜎y

4𝜎0

(
1 − 𝜎0

2

𝜎y
2

)
− Mint

P

(4.28n)

Using Eqs. (4.26d), (4.27n), and (4.28n) we get

𝜋2𝛿

L
=

√√√√√√ 𝜎y
3

3E2𝜎0h

h𝜎y

4𝜎0

(
1 − 𝜎0

2

𝜎y
2

)
− Mint

P

or

𝛿

√
h𝜎y

4𝜎0

(
1 −

𝜎0
2

𝜎y
2

)
− 𝛿 −

Mx

P
−

L2𝜎y

𝜋2

√
𝜎y

3hE2
𝜎0
= 0 (4.28o)

Eq. (4.28n) gives the load (in terms of average stress) versus the mid-span deflection 𝛿, relation
in the inelastic range which can be drawn for the various values of Mx/P when the yield strength
is reached on both the compression and tension sides of the cross- section. The critical value of
the average stress 𝜎0, can be obtained from the expression

d𝜎0

d𝛿
= 0 (4.27q)
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The derivative of the expression in Eq. (4.28o) is taken with respect to δ and uses Eq. (4.27q),
which leads to[h𝜎y

4𝜎0

(
1 −

𝜎0
2

𝜎y
2

)
− 𝛿 −

Mx

P

] 1
2

− 𝛿

2

[h𝜎y

4𝜎0

(
1 −

𝜎0
2

𝜎y
2

)
− 𝛿 −

Mx

P

]− 1
2

= 0

or

𝛿 =
h𝜎y

6𝜎0

(
1 −

𝜎0
2

𝜎y
2

)
−

2Mx

3P
(4.28p)

Substitute 𝛿 from Eq. (4.28p) into Eq. (4.28o) to obtain

2

[
h𝜎y

12𝜎0

(
1 −

𝜎 2
0

𝜎 2
y

)
−

Mx

3P

] 3
2

= L2

𝜋2

(
𝜎 3

y

3hE2
𝜎0

) 1
2

4h3

123

[
𝜎y

𝜎0
−

𝜎0

𝜎y
−

4Mx

Ph

]3

=
L4𝜎 3

y

3𝜋4hE2
𝜎0

or

𝜎c =
122L4𝜎y

3

𝜋4h4E2
[
𝜎y

𝜎c
− 𝜎c

𝜎y
− 4Mx

Ph

]3 (4.28q)

where the average critical stress 𝜎c = 𝜎0

𝜋2Eh2

12L2 = 𝜋2EI
L2A

= 𝜋2E
(L∕r)2

or

𝜎c =

[
(L∕r)2

𝜋2E

]2
𝜎y

3[
𝜎y

𝜎c
− 𝜎c

𝜎y
− 4Mx

Ph

]3 (4.28r)

Equation (4.28r) gives the relation between the critical average stress and the slenderness
ratio for any given value of Mx/P for the beam column when the yield strength is reached on
both the compression and tension sides of the cross-section. If there is no lateral load on the
member, only the eccentric axial force is acting, then the parameter Mx/P can be substituted
by the eccentricity e of the axial force.

If h is expressed by the core radius s= h/6 of therectangular section in Eqs. (4.27t) and (4.28r),
then the two equations can be used for non-rectangular cross-sections [7]. The core radius
defines the core of a cross-section within which a compressive force can act on a short column
without causing tensile stress in any extreme fiber. For an eccentrically loaded column

𝜎 = P
A
± Pec

I
or 𝜎 = P

A

(
1 − ec

r2

)
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For no tension in any extreme fiber, then the maximum value of e = r2

c
. The quantity, r2/c, is

called the core radius, where r is the radius of gyration of the cross-section about the centroidal
axis parallel to the neutral axis, and c is the distance of the extreme fiber from the centroidal
axis. For a rectangle, the core radius, s = h/6. Upon substituting the eccentricity ratio for a
rectangle

𝜅 = e
s
= 6e

h
(4.28s)

and Mx/P = e into Eq. (4.27t) we have

𝜎c =
𝜋2E
(L∕r)2

⎡⎢⎢⎣
𝜎y

𝜎c
− 1 − 𝜅

3
𝜎y

𝜎c
− 1

⎤⎥⎥⎦
3

or

(L
r

)2
= 𝜋2E

𝜎c

⎡⎢⎢⎢⎣
3
(

𝜎y

𝜎c
− 1
)
− 𝜅

3
(

𝜎y

𝜎c
− 1
) ⎤⎥⎥⎥⎦

3

(4.28t)

Equation (4.28t) is valid for(L
r

)2
− 𝜋2E𝜅3

9𝜎y(3 − 𝜅)
> 0,Case 1. [7]

Similarly, from Eq. (4.28r) we have

𝜎c =

[
(L∕r)2

𝜋2E

]2
𝜎y

3[
𝜎y

𝜎c
− 𝜎c

𝜎y
− 2𝜅

3

]3
or (L

r

)2
= 𝜋2E

𝜎y

√
𝜎c

𝜎y

(
𝜎y

𝜎c
−

𝜎c

𝜎y
− 2𝜅

3

)3

(4.28u)

Equation (4.28u) is valid for(L
r

)2
− 𝜋2E𝜅3

9𝜎y(3 − 𝜅)
< 0,Case 2 [7].

For large eccentricities 𝜅 ≥ 3, Eq. (4.28u) is used because the stress distribution across the
cross-section is that of case 2. Examples 4.3 and 4.4 are presented.

Example 4.3 Draw the column curves for the inelastic beam columns made of structural
steel. Given data is:

Modulus of elasticity, E = 29× 106 psi (200, 000 MPa)
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Figure 4.28 Column curves for the inelastic beam column.

Yield strength of steel, 𝜎y = 50 ksi (345 MPa)
Eccentricity ratio, 𝜅 = 1, 2, 3, and 4.

Assume different values of critical stresses 𝜎c and apply Eq. (4.28t) for eccentricity ratios, 𝜅 = 1
and 2 to calculate the slenderness ratios L/r. Similarly apply Eq. (4.28u) for eccentricity ratios
of 𝜅 = 3 and 4 to calculate the slenderness ratios L/r for different assumed values of critical
stresses. The column curves in Figure 4.28 are obtained by this procedure.

Example 4.4 Draw the load deflection curve for a simply supported rectangular beam col-
umn subjected to an eccentric axial load. The member is made of structural steel with the
following properties and dimensions:

Modulus of elasticity, E = 29× 106 psi (200, 000 MPa)
Yield strength of steel, 𝜎y = 50 ksi (345 MPa)
Eccentricity of the axial load, e = 1.5 in. (38 mm)
Length of the beam column – 150 in. (3.8 m)
Depth of the rectangular cross-section, h = 4.5 in. (114 mm)

Solution
e
h
== 1

3

Eccentricity ratio, 𝜅 = 6e
h
= 2
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Radius of gyration, r = h
2
√

3

Slenderness ratio, L
r
=

2
√

3L
h

= 115.47

Euler’s buckling stress, 𝜎e =
𝜋2E
(L∕r)2

= 21.47 ksi (148.04 MPa)
Within the elastic limit the combination of Eqs. (4.26b) and (4.26c) leads to

Mx + Py = −EI
d2y
dx2

Mx + Py = EI𝜋
2𝛿

L2 , using Eq.(4.27n)

Assume

Mx = Pe

Therefore,
P(e + 𝛿) = 𝛿Pe, where Pe =

𝜋2EI
L2 is the Euler′s buckling load

Rearrange the terms and divide both sides by h
𝛿

h
= e

h
(

Pe
P
− 1
) ,

or
𝛿

h
= e

h
(

𝜎e
𝜎0
− 1
) (4.29a)

where 𝜎0 = P/A is the average axial stress on the member cross-section. The maximum stress
within the elastic limit is given by

𝜎max =
P
A
+ Mc

I
= P

bh
+

P(e + 𝛿)(h∕2)
bh3∕12

or

𝜎max = 𝜎0

[
1 + 6(e + 𝛿)

h

]
(4.29b)

Assume the values of 𝜎0, and find 𝛿/h and 𝜎max from Eqs. (4.29a) and (4.29b) shown in
Table 4.1 within the elastic limit. The maximum stress of 49.90 ksi (344.70 MPa), approximately
the yield stress reaches at an average stress 𝜎0 of 10.30 ksi (71.07 MPa). Beyond this average
stress Eq. (4.27p) for the inelastic analysis is used because the eccentricity ratio in the problem
is κ = 2. For inelastic analyis it is better to assume 𝛿/h quantities and calculate the average stress
𝜎0 from Eq. (4.27p).
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Table 4.1 Load deflection relation for the beam column.

𝝈0 ksi (MPa) 𝝈0/𝝈y 𝜹/h 𝝈max ksi (MPa)

Elastic analysis

2 (13.80) 0.040 0.034 6.41 (44.23)
4 (27.60) 0.080 0.076 13.83 (95.44)
6 (41.40) 0.120 0.129 22.65 (156.31)
8 (55.20) 0.160 0.198 33.50 (231.17)
10.00 (69.00) 0.200 0.291 47.44 (327.31)
10.30 (71.07) 0.206 0.307 49.90 (344.27)

𝝈0 ksi (MPa) 𝝈0/𝝈y 𝜹/h

Inelastic analysis

10.50 (72.45) 0.210 0.320
11.00 (75.90) 0.220 0.370
11.20 (77.28) 0.224 0.420
11.28 (77.80) 0.226 0.460
11.25 (77.63) 0.225 0.470
11.25 (77.63) 0.225 0.480
11.24 (77.56) 0.2248 0.490
11.23 (77.49) 0.2246 0.500
11.22 (77.42) 0.2244 05.10
11.20 (77.28) 0.2240 0.520
11.17 (77.07) 0.2234 0.530

The load deflection graph in terms of 𝜎0/𝜎y and 𝛿/h is shown in Figure 4.29. The first yield
in the material occurs at 𝜎0/𝜎y = 0.206, whereas the maximum stress in the material occurs
at 𝜎0/𝜎y = 0.226. The member is not able to resist further load after the maximum stress is
reached.

The quantity 𝜎0/𝜎y = 0.225 from the column curves in Figure 4.28 is for a slenderness ratio,
L/r = 115.47 for the eccentricity ratio, 𝜅 = 2. A close result to 0.226 is obtained in this problem.
The results shown are for the rectangular section made of elastic-perfectly plastic material. In
cases where other shapes and materials are involved, numerical solutions are used to obtain
maximum load. Galambos and Ketter [9] obtained numerical solution for steel I-beams for
maximum load.



Trim Size: 187mm x 235mm Single Column Jerath c04.tex V1 - 11/06/2020 6:52pm Page 202�

� �

�

202 4 Beam columns

4.11 Design of Beam Columns

In beam columns consideration has to be given to additional moments called secondary
moments which arise as a result of the axial force acting through the lateral displacements
of the member. This is called P− 𝛿 effect, and these moments are to be added to the primary
moments acting on the members due to applied end moments or transverse load. These
secondary moments increase the stresses and deformations and should be considered in
the design of beam columns. It is difficult to calculate the collapse load of beam columns
theoretically. As shown in the previous sections, there are lengthy calculations in spite of
the simplifying assumption of elastic-perfectly plastic material and if the section chosen was
rectangular. For other cross-sections and materials it would be much more complex and often
numerical solutions are used in such cases. To simplify the analysis the interaction equations
are used in the design of beam columns. The interaction equations are graphs between M/Mu
and P/Pu ratios as shown in Figure 4.30, where

P = Axial failure force in the presence of primary bending moment
Pu =Ultimate axial force (buckling load) at failure in the absence of primary bending moment
M = Maximum primary bending moment along with the axial force
Mu = Ultimate bending moment at failure (plastic moment if lateral torsional buckling does

not occur) without the axial force

The simplest interaction equation is given by a straight line, as shown below:
P
Pu
+ M

Mu
= 1 (4.30a)

0
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Figure 4.29 Load deflection relation for the beam column.



Trim Size: 187mm x 235mm Single Column Jerath c04.tex V1 - 11/06/2020 6:52pm Page 203�

� �

�

4.11 Design of Beam Columns 203

0

0.2

0.4

0.6

0.8

1

1.2

M / Mu

MP
+ = 1

Pu

MP
+ = 1

Pu M[1–(P / Pu)]

Mu

P
 / 

P
u

Figure 4.30 Interaction curve for a beam column.

It is given in the literature [9, 10] that the theoretical and experimental values fall below the
straight line graph. Thus, the straight line formula of Eq. (4.30a) gives nonconservative val-
ues of strength for beam columns. This discrepancy occurs because only the primary bending
moment, M, is included in Eq. (4.30a). The straight line formula is modified to include the sec-
ondary bending moment exerted by the axial force due to the lateral deflection of the member.
If the primary bending moment, M, is multiplied by the amplification factor, 1

1−(P∕Pe)
, to include

the secondary moment as shown in Eq. (4.30b), then the references quoted before show the the-
oretical and experimental values fall closer to the curved line in Figure 4.30. It is also shown
there that these interaction equations can be applied to different cross-sections and materials.

P
Pu
+ M

Mu(1 − P∕Pe)
= 1 (4.30b)

Equations (4.3n and 4.5z) give the expressions for maximum moments when a concentrated
force is acting at the middle of the span, and a uniformly distributed load acts on the entire
span of simply supported beam columns respectively. These expressions can be written in the
form

Mmax = M0

[
1 + Ψ(P∕Pek)
1 − (P∕Pek)

]
(4.30c)

where Mmax =maximum bending moment in the column including the secondary moment; M0
= maximum primary bending moment in the column in the absence of axial force; P = actual
axial force in the presence of bending moment; Pek = critical axial force of the beam column
considering the end conditions in the absence of primary bending moment; and Ψ = constant.
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Table 4.2 Amplification factors Ψ and Cm .

Case 𝚿 Cm

0 1.0

−0.4 1 − 0.4 P
Pek

−0.4 1 − 0.4 P
Pek

L/2

−0.2 1 − 0.2 P
Pek

L/2

−0.3 1 − 0.3 P
Pek

L/2

−0.2 1 − 0.2 P
Pek

The values ofΨ have been adopted as−0.2 and 0 respectively for cases in the Sections 4.3.1 and
4.4 in the steel design by AISC [11]. Similarly the quantities Ψ are adopted for other cases of
beam columns for their design as shown in Table 4.2.

4.11.1 Concept of Equivalent Moment and Factor Cm

In Eq. (4.12g) if MB is the larger of the two end moments, then the term in the brackets can be
considered as the amplification factor for beam columns subjected to two end moments and an
axial force. The maximum moment thus obtained may lie within the span or outside the span.
In the latter case, the maximum moment is then the larger of the two end moments.

Mmax = |MB|
⎡⎢⎢⎢⎢⎣

√√√√√(MA
MB

)2
+ 2
(

MA
MB

)
cos kL + 1

sin2kL

⎤⎥⎥⎥⎥⎦
(4.12g)

For design purposes, the concept of an equivalent moment is used to simplify the calculations.
The end moments MA and MB in the Figures 4.10 and 4.12 are replaced by two equal moments
of magnitude Meqt shown in Figure 4.31.
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(a)

(b)

y 

Meqt Meqt

Meqt

P P
x 

Mmax
Meqt

L/2

L

Figure 4.31 Beam column subjected to equivalent moment: (a) Equivalent moment; (b) Bending moment diagram.

Meqt can be calculated by substituting Me = Meqt in Eq. (4.10i), and equating the right-hand
sides of Eqs. (4.10i) and (4.12g) as follows:

Meqt sec kL
2
= |MB|

⎡⎢⎢⎢⎢⎣

√√√√√(MA
MB

)2
+ 2
(

MA
MB

)
cos kL + 1

sin2kL

⎤⎥⎥⎥⎥⎦
or

Meqt = |MB|
⎡⎢⎢⎢⎢⎣

√√√√√(MA
MB

)2
+ 2
(

MA
MB

)
cos kL + 1

2(1 − cos kL)

⎤⎥⎥⎥⎥⎦
or

Meqt = Cm ∣ MB ∣ (4.31a)

where Cm, the amplification factor using the equivalent moment concept, is given by

Cm =

√√√√√(MA
MB

)2
+ 2
(

MA
MB

)
cos kL + 1

2(1 − cos kL)
(4.31b)

The ratio MA/MB is taken as positive for a double curvature bending and is taken as negative
for a single curvature bending as described before. Two simplified expressions for Cm have been
given for design purposes. One of them as proposed by Austin [12] is

Cm = 0.6 − 0.4(MA∕MB) ≥ 0.4 (4.31c)
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The other expression given by Massonnet [13] is

Cm =
√

0.3(MA∕MB)2 − 0.4(MA∕MB) + 0.3 (4.31d)

In both the expressions for Cm, the ratio MA/MB is taken as positive for a double curvature
bending and is taken as negative for a single curvature bending. It is shown by Chen and Lui
[14] that the simplified values of Cm given by Eqs. (4.31c) and (4.31d) give a good approximation
of the values given by Eq. (4.31b). The Austin equation is the simpler of the two, and has been
adopted for design purposes when the beam columns are subjected to end moments and have
no transverse loads on their span [11]. Now using Eq. (4.10i)

Mmax = Meqt sec kL
2

(4.31e)

The substitution of Eq. (4.31a) into Eq. (4.31e) leads to

Mmax = CmMB sec kL
2

or

Mmax ≈
Cm

1 − P
Pek

MB (4.31f)

Equation (4.31f) is derived for beam columns subjected to end moments, but it can be used
for beam columns subjected to transverse loads by modifying the value of Cm. In cases where
the primary bending moment is due to transverse loads, the comparison of Eqs. (4.30c) and
(4.31f) leads to

Cm = 1 + Ψ(P∕Pek) (4.31g)

Table 4.2 gives the values of Ψ and Cm for different transverse loads and end supports for beam
columns. Now Eq. (4.30b) can be written in the modified form incorporating the amplification
factor Cm, as follows:

P
Pu
+

CmM
Mu(1 − P∕Pe)

= 1 (4.31h)

If the bending occurs about two axes, x and y, then Eq. (4.31h) can be extended as follows:

P
Pu
+

CmxMx

Mux(1 − P∕Pex)
+

CmyMy

Muy(1 − P∕Pey)
= 1 (4.31i)

The variables in Eq. (4.31i) are the same as in Eq. (4.30b), where x and y subscripts relate to
the respective axes.

4.11.2 AISC Design Criteria for Steel Beam Columns

4.11.2.1 Doubly and Singly Symmetric Members Subjected to Flexure and Compression
The AISC Steel Construction Manual 2017, Section H1, 15th edition [11] combines the Allow-
able Strength Design (ASD) and the Load Resistance Factor Design (LRFD) methods in the
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same manual. The interaction equations from the AISC manual for these members that are
constrained to bend about a geometric axis (x and/or y) are given by

Pr

Pc
+ 8

9

(
Mrx

Mcx
+

Mry

Mcy

)
≤ 1.0 for

Pr

Pc
≥ 0.2 (4.32a)

And
Pr

2Pc
+
(

Mrx

Mcx
+

Mry

Mcy

)
≤ 1.0 for

Pr

Pc
< 0.2 (4.32b)

Where Pr = required axial compressive strength, kips (N)
Pc = available axial compressive strength, kips (N)
Mr = required flexural strength, kip-in. (N-mm)
Mc = available flexural strength, kip-in. (N-mm)
x = subscript for strong axis
y = subscript for weak axis

For the LRFD design:

Pr = required axial compressive strength using LRFD load combinations (actual loads multi-
plied by load factors), kips (N)

Pc = 𝜙cPn = design axial compressive strength, kips (N)
Pn = nominal compressive strength of the member in the absence of bending moment, kips (N)
Mr = required flexural strength using LRFD load combinations (actual loads multiplied by load

factors), kip-in. (N-mm)
Mc = 𝜙bMn, design flexural strength of the member, kip-in. (N-mm)
Mn = nominal flexural strength of the member in the absence of axial force, kip-in. (N-mm)
𝜙c = resistance factor for compression = 0.90
𝜙b = resistance factor for flexure = 0.90

For the ASD design:

Pr = required axial compressive strength using ASD load combinations (actual loads), kips (N)
Pc = Pn/Ωc = allowable axial compressive strength, kips (N)
Mr = required flexural strength using ASD load combinations (actual loads), kip-in. (N-mm)
Mc = Mn/Ωb = allowable flexural strength, kip-in. (N-mm)
Ωc = safety factor for compression = 1.67
Ωb = safety factor for flexure = 1.67

4.11.2.2 Unsymmetric and Other Members Subject to Flexure and Axial Force
The interaction equation for shapes not covered by Section 4.11.2.1 is given by||||| fa

Fa
+

fbw

Fbw
+

fbz

Fbz

||||| ≤ 1.0 (4.33a)
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where f a = required axial stress at the point of consideration, ksi (MPa)
Fa = available axial compressive stress at the point of consideration, ksi (MPa)
f bw, f bz = required flexural stresses at the point of consideration, ksi (MPa)
Fbw, Fbz = available flexural stresses at the point of consideration, ksi (MPa)
w = subscript for major principal axis
z = subscript for minor principal axis
Lower case stresses f , are computed by the elastic analysis for the applicable loads, includ-

ing second-order effects. The upper case stresses F correspond to the limit state of yielding or
buckling.

For the LRFD design:

f a = required axial stress using LRFD load combinations, ksi (MPa)
Fa = 𝜙cFcr = design axial compressive stress, ksi (MPa)
Fcr = flexural buckling stress [𝜎cr by Eqs. (3.14h) or (3.14i)]
f bw, f bz = required flexural stresses at the point of consideration using LRFD load combinations,

ksi (MPa)
Fbw,Fbz =

𝜙bMn
S
= design flexural stresses at the point of consideration, ksi (MPa)

S = Section modulus of the cross-section at the point of consideration

For the ASD design:

f a = required axial stress using ASD load combinations, ksi (MPa)
Fa =

Fcr
Ωc
= allowable axial compressive stress, ksi (MPa)

f bw, f bz = required flexural stresses at the point of consideration using ASD load combinations,
ksi (MPa)

Fbw,Fbz =
Mn
ΩbS

= allowable flexural stresses at the point of consideration, ksi (MPa)

The resistance factors, 𝜙, and safety factors, Ω, are the same for Eqs. (4.32a), (4.32b), and
(4.33a).

The required second-order axial strength, Pr, and flexural strength, Mr, are determined as
follows:

Mr = B1Mnt + B2Mlt (4.33b)

and

Pr=Pnt + B2Plt (4.33c)

where

B1 =
Cm

1 − 𝛼Pr∕Pe1
≥ 1 (4.33d)

For members loaded in axial compression, B1 in Eq. (4.33d) is calculated by taking
Pr = Pnt +Plt. B1 is the magnification factor to take into account second-order effects due
to displacements between support points of beam columns, called P− 𝛿 effects. B2 is the
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magnifier to account for second-order effects due to displacements of the support points,
called P−Δ effects:

B2 =
1

1 − 𝛼ΣPnt
ΣPe2

≥ 1 (4.33e)

The various terms used in Eqs. (4.33b–4.33e) are:
Mnt = moment in the member calculated by using LRFD or ASD load combinations and

first-order elastic analysis, assuming there is no lateral translation in the frame, kip-in.
(N-mm)

Mlt =moment in the member calculated by first-order elastic analysis using LRFD or ASD load
combinations caused by the lateral translation of the frame only, kip-in. (N-mm)

Pnt = axial compression forces in the member calculated by first-order analysis using LRFD or
ASD load combinations, assuming there is no lateral translation in the frame, kips (N)

Plt = axial compression forces in the member calculated by first-order analysis using LRFD or
ASD load combinations, caused by the lateral translation of the frame only, kips (N)

𝛼 = a factor equal to 1.00 for LRFD design and 1.60 for ASD design
Pe1 = elastic buckling resistance for the member in the plane of bending assuming zero sidesway
= 𝜋2EI

(K1L)2
, kips (N)

K1 = effective length factor in the plane of bending assuming no lateral translation, taken as
equal to 1.0, unless a smaller value is indicated by analysis

L = story height, in. (mm)
I = moment of inertia in the plane of bending, in.4 (mm4)
E = modulus of elasticity of steel = 29 000 ksi (200 000 MPa)
Cm =modification coefficient as described before, assuming no lateral translation of the frame.

Its value is taken as
(i) For beam columns not subjected to transverse loading between supports in the plane of

bending,

Cm = 0.6− 0.4(M1/M2)

where M1 and M2 are the smaller and larger moments at the ends of the unbraced length
in the plane of bending, and are calculated from the first-order analysis. M1/M2 is posi-
tive for reverse or double curvature bending, negative for the single curvature.

(ii) For beam columns subjected to transverse loading between supports, the coefficient Cm
is determined by analysis as shown in Table 4.2, or taken conservatively as 1.0 for all
cases.
ΣPnt = total vertical axial compressive forces supported by all the columns in a story
including the gravity column loads, kips (N)
ΣPe2 = elastic buckling resistance for all the columns in a story = Σ 𝜋2EI

(K2L)2
, kips (N)

or ΣPe2 = RM
ΣHL
ΔH

(alternate expression), kips (N)
K2 = effective length factors in the plane of bending based on the sidesway buckling
analysis
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RM = 1.0 for braced frame systems and 0.85 for moment frame and combined systems
ΣH = total story shear due to lateral forces used to compute ΔH , kips (N)
ΔH = the first-order inter-story drift due to lateral forces, in. (mm)

The European [15], Canadian [16], and Australian [17] steel design codes calculate the
cross-section strength, the member in-plane strength, and the member lateral-torsional
strength separately. For a given ratio of bending and axial compression, the governing strength
is taken as the least of these strengths [18, 19]. The AISC uses the same equations for all
potential modes of failures. For comparison, equations from different codes for steel design
are given below for cross-section strength. To make the comparison easier, the AISC notations
are used in all equations.

4.11.3 Eurocode 3 (ECS, 1993) Design Criteria

For standard rolled I and H sections that are defined as class 1 or class 2, Eurocode 3 (EN 1993)
[15] specifies the cross-section strength for strong axis bending as

Pu

𝜙Py
+ 0.9

Mux

𝜙Mpx
≤ 1.0 (4.34a)

and for weak axis bending as

Muy

𝜙Mpy
≤ 1.56

(
1 −

Pu

𝜙Py

)(
Pu

𝜙Py
+ 0.6
)

for
Pu

Py
> 0.2 (4.34b)

and
Muy

𝜙Mpy
≤ 1.0 for

Pu

Py
≤ 0.2 (4.34c)

where
Pu = Design axial load on the member

Py = Nominal yield load for the cross-section
Mux =Maximum second-order elastic moment (amplified to account for the deflection of axial

load) within span or at the ends of member about the x axis
Mpx = Nominal plastic moment capacity of the cross-section about the x axis
Muy = Maximum second-order elastic moment (amplified to account for deflection of axial

load) within span or at the ends of member about the y axis
Mpy = Nominal plastic moment capacity of the cross-section about the y axis
𝜙 = Effective resistance factors = 0.91 = 1/1.1 for both axial compression and bending

4.11.4 Canadian Standards Association (CSA 1994 – CSA-S16.1)

For class 1 sections (suitable for plastic design) the cross-section strength for strong axis bend-
ing is given by [16]

Pu

𝜙Py
+ 0.85

Mux

𝜙Mpx
≤ 1.0 (4.35a)
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and for weak axis bending the cross-section strength is

Pu

𝜙Py
+ 0.6

Muy

𝜙Mpy
≤ 1.0 (4.35b)

Where Pu = Design axial load on the member as per CSA 1994 – CSA-S16.1

Mux, Muy = Maximum of second-order elastic moments about major and minor axes of
cross-section at member ends

Mpx, Mpy = Plastic section strengths about major and minor axes of bending
𝜙 = Resistance factor = 0.9 for both axial compression and bending

4.11.5 Australian Standard AS4100-1990

The cross-section strength for strong axis bending is given by [17]
Pu

𝜙Py
+ 1

1.18
Mux

𝜙Mpx
≤ 1.0 (4.36a)

The weak axis cross-section strength for an I shape is written as(
Pu

𝜙Py

)2

+ 1
1.19

Muy

𝜙(1.5SyFy)
≤ 1.0 (4.36b)

where
Pu = Design axial load on the member as per AS4100–1990

Mux, Muy = Maximum of second-order elastic moments about major and minor axes of
cross-section in the member

Mpx, Mpy = Plastic section strengths about major and minor axes of bending
Fy = Yield stress
Sy = Elastic section modulus about y axis
𝜙 = Resistance factor = 0.9 for both axial compression and bending

In the above equations the applied axial force and moment terms are calculated differently
for various codes. The reader should consult these codes to know the full extent of application
of these equations. Example 4.5 is presented.

Example 4.5 A W14 in.× 145 lb/ft (W360 mm× 216 kg/m) wide flange section of 50 ksi
(345 MPa) steel is used as a beam column in a braced frame. It is bent in a single curvature
by equal moments as shown in Figure 4.32. Determine if the section is satisfactory as per the
AISC code.

L

P P 

Figure 4.32 Beam column in a braced frame.
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Given: Lx = Ly = 14.0 ft (4.27 m), PD (Axial dead load) = 90 kips (405 kN), PL (Axial live
load) = 165 kips (743 kN).

The first-order moments are: MDx (Dead load moment) = 75 kip - ft (103 kN - m), MLx (Live
load moment) = 135 kip - ft (185 kN - m), MDy (Dead load moment) = 45 kip - ft (62 kN - m),
MLy (Live load moment) = 105 kip - ft (144 kN - m).

Properties of W 14 in.× 145 lb/ft (W 360 mm× 216 kg/m) are: A = 42.7 in.2 (27, 600 mm2),
Ix = 1710 in.4 (712× 106 mm4), Iy = 677 in.4 (283× 106 mm4), rx = 6.33 in. (161 mm),
ry = 3.98 in. (101 mm), zx = 260 in.3 (4260× 103 mm3), zy = 133 in.3 (2180× 103 mm3).
Properties of steel are:
Fy = 50 ksi (345 MPa), Fu = 65 ksi (448.5 MPa), E = 29× 106 psi (200, 000 MPa).
For the braced frame, Kx = Ky = 1.0, KxLx = KyLy = 14.0 ft (4.27 m)

Solution (the LRFD Method)

Pr = 1.2 PD + 1.6 PL

Pr = 1.2(90) + 1.6(165) = 372 kips [1.2 (405) + 1.6(743) = 1675 kN]

Mntx = 1.2 MDx + 1.6 MLx

Mntx = 1.2(75) + 1.6(135) = 306 kip-ft[1.2(103) + 1.6(185) = 420 kN-m]

Mnty = 1.2 MDy + 1.6 MLy

Mnty = 1.2(45) + 1.6(105) = 222 kip-ft[1.2(62) + 1.6(144) = 305 kN.m]

KyLy

ry
= 14x12

3.98
= 42.2

[KyLy

ry
= 4.27x1000

101
= 42.2

]
4.71
√

E
Fy
= 4.71

√
29x106

50,000
= 113.4

[
4.71
√

E
Fy
= 4.71

√
200,000

345
= 113.4

]
KyLy

ry
= 42.2 < 4.71

√
E
Fy
= 113.4

Therefore,

Fcr =
(

0.658
Fy
Fe

)
Fy

where

Fe =
𝜋2E(
KL
r

)2 =
𝜋2(29000)
(42.2)2

= 161.5 ksi
[

Fe =
𝜋2(200,000)
(42.2)2

= 1114 MPa
]

or

Fcr =
(

0.658
50

161.5

)
(50) = 43.92 ksi

[
Fcr =

(
0.658

345
1114

)
(345) = 303 MPa

]
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Pn = FcrAg = (43.92)(42.7) = 1875 kips
[

Pn =
303(27600)

1000
= 8363 kN

]
Pc = 𝜙cPn = 0.9(1875) = 1688 kips [Pc = 0.9(8363) = 7527 kN]

Pr

Pc
= 372

1688
= 0.22 > 0.2

[
Pr

Pc
= 1675

7527
= 0.22 > 0.2

]
Therefore,

Pr

Pc
+ 8

9

(
Mrx

Mcx
+

Mry

Mcy

)
≤ 1.0

Mr = B1Mnt + B2Mlt,B2Mlt = 0 for braced frames.
Mrx = B1xMntx, Mry = B1yMnty

B1x =
Cmx

1 − 𝛼
Pr

Pe1x

, B1y =
Cmy

1 − 𝛼
Pr

Pe1y

, 𝛼 = 1.00

Pe1x =
𝜋2EIx

(KxLx)2
= 𝜋2(29000)(1710)

(14x12)2
= 17,341 kips

[
Pe1x =

𝜋2(200,000)(712x106)
(4.27x1000)2x1000

= 77,082 kN
]

Pe1y =
𝜋2EIy

(KyLy)2
= 𝜋2(29000)(677)

(14x12)2
= 6865 kips

[
Pe1y =

𝜋2(200,000)(283x106)
(4.27x1000)2x1000

= 30,638 kN
]

Cmx = Cmy = 0.6 − 0.4(−1) = 1.0

B1x =
1

1 − (1) 372
17341

= 1.02

[
B1x =

1
1 − (1) 1675

77082

= 1.02

]

B1y =
1

1 − (1) 372
6865

= 1.06

[
B1y =

1
1 − (1) 1675

30638

= 1.06

]
Mrx = 1.02(306) = 313 kip-ft [Mrx = 1.02(420) = 429 kN-m]
Mry = 1.06(222) = 235 kip-ft [Mry = 1.06(305) = 323 kN-m)

The distance between braced points, Lb = 14.0 ft (4.27 m)
The limiting length for lateral-torsional buckling, Lp = 14.1 ft (4.3 m) for W 14× 145

(W 360× 216) wide flange section.
Therefore,

Lb = 14.0 ft (4.27 m) < Lp = 14.1 ft (4.3 m)

Mnx = Mpx = FyZx =
50(260)

12
= 1083kip-ft

[
Mnx =

345(4260x103)
1000x1000

= 1470kN-m
]
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Mcx = 𝜙bMnx = 0.9(1083) = 975 kip-ft [Mcx = 0.9 (1470) = 1323 kN-m]

Mny = Mpy = FyZy =
50(133)

12
= 554 kip-ft

[
Mny =

345(2180x103)
1000x1000

= 752 kN-m
]

Mcy = 𝜙bMny = 0.9(554) = 499 kip-ft [Mcy = 0.9(752) = 677 kN-m]

Pr

Pc
+ 8

9

(
Mrx

Mcx
+

Mry

Mcy

)
≤ 1.0

372
1688

+ 8
9

(313
975

+ 235
499

)
= 0.93 < 1.0

[1675
7527

+ 8
9

( 429
1323

+ 323
677

)
= 0.93 < 1.0

]
The section is satisfactory.

Solution (the ASD Method)

Pr = PD + PL

Pr = 90 + 165 = 255 kips [Pr = 405 + 743 = 1148 kN]

Mntx = MDx +MLx

Mntx = 75 + 135 = 210 kip-ft [Mntx = 103 + 185 = 288 kN-m]

Mnty = MDy +MLy

Mnty = 45 + 105 = 150 kip-ft [Mnty = 62 + 144 = 206 kN-m]

Pc =
Pn

Ωc
(Pn is the same as in LRFD method)

Pc =
1875
1.67

= 1123 kips
[

Pc =
8363
1.67

= 5008kN
]

Pr

Pc
= 255

1123
= 0.23 > 0.2

[
Pr

Pc
= 1148

5008
= 0.227 > 0.2

]
Therefore,

Pr

Pc
+ 8

9

(
Mrx

Mcx
+

Mry

Mcy

)
≤ 1.0

B1x =
Cmx

1 − 𝛼
Pr

Pe1x

, B1y =
Cmy

1 − 𝛼
Pr

Pe1y

, 𝛼 = 1.60

(Cmx, Cmy, Pe1x and Pe1y are the same as in the LRFD method.)

B1x =
1

1 − (1.6) 255
17341

= 1.02

[
B1x =

1
1 − (1.6) 1148

77082

= 1.02

]
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B1y =
1

1 − (1.6) 255
6865

= 1.06

[
B1y =

1
1 − (1.6) 1148

30638

= 1.06

]
Mr = B1Mnt + B2Mlt,B2Mlt = 0 for braced frames.

Mrx = B1xMntx, Mry = B1y Mnty

Mrx = 1.02(210) = 215 kip-ft[Mrx = 1.02(288) = 295 kN-m]

Mry = 1.06(150) = 159 kip-ft [Mry = 1.06(206) = 219 kN-m)

Lb = 14.0 ft (4.27 m) < Lp = 14.1 ft (4.3 m) same as in the LRFD method.

Mnx = Mpx = 1083 kip-ft [Mnx = 1470 kN-m] same as in the LRFD method.

Mcx =
Mnx

Ωb
= 1083

1.67
= 649 kip-ft

[
Mcx =

1470
1.67

= 880 kN-m
]

Mny = Mpy = 554 kip-ft [Mny = 752 kN-m] same as in the LRFD method.

Mcy =
Mny

Ωb
= 554

1.67
= 332 kip-ft

[
Mcy =

752
1.67

= 450 kN-m
]

Pr

Pc
+ 8

9

(
Mrx

Mcx
+

Mry

Mcy

)
≤ 1.0

255
1123

+ 8
9

(215
649

+ 159
332

)
= 0.95 < 1.0

[1148
5008

+ 8
9

(295
880

+ 219
450

)
= 0.95 < 1.0

]
The section is satisfactory.

Problems

4.1 Find the deflection at a distance of x from the left support when a triangular load is acting
as shown in Figure P4.1. Calculate the deflection and bending moment at the mid-span.

A 

L 

B 
P P 

wo

EI

Figure P4.1
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4.2 Find the deflection and bending moment at the mid-span of the beam with the load shown
in Figure P4.2.

y b

L 
x

a

c
dc

x 

P 
P

Q 
L/2 

Figure P4.2

4.3 Compare the maximum moments (Figure P4.3) in the beam columns obtained for vari-
ous values of P/Pek from the exact equations in the text with those determined from the
following expression:

Mmax = M0

1 + Ψ P
Pek

1 − P
Pek

Where P = axial force in the beam column, P/Pek = 𝜋2EI/(KL)2, 𝜓 = − 0.4

M0 = Maximum moment in the beam column without the presence of axial load.

(a) 

(b) 

EI = constant 

w

L

P P

AB

y

EI = constant 

w

P
P

y

A
BL

x

x

Figure P4.3
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4.4 Find the critical load P for the continuous beam of Figure P.4.4 by the slope deflection
method. The two spans are loaded by the uniformly distributed loads of w1 and w2. the
modulus of elasticity of the entire beam is E.

P

C

P
MCB

A B

MAB MBA MBC

I1 I2

w1 w2

L1 L2

Figure P4.4

4.5 Show that the slope deflection coefficients for beam columns kii and kij are equal to 4 and
2 respectively if the axial force P = 0.

4.6 Find the maximum moment and its location for the beam column in Figure P4.6, when

P P
EI

L
A B

MA MB

Figure P4.6

(a) P
Pe
= 0.2, MA

MB
= 0 (b) P

Pe
= 0.2, MA

MB
= −0.2 (c) P

Pe
= 0.4, MA

MB
= 1.0

4.7 A W14 in.× 68 lb/ft (W360 mm× 101 kg/m) wide flange section of 50 ksi (345 MPa) steel
is used as a beam column in an unbraced frame. The axial load and moments obtained
from the first-order analysis based on service loads are shown in Figure P4.7. The bend-
ing moments are about the x axis, the strong axis. The frame and the gravity loads are
symmetric. Properties of W14 in.× 68 lb/ft (W360 mm× 101 kg/m) are:

A = 20 in.2 (12900 mm2), Ix = 722 in.4 (302× 106 mm4),
Iy = 121 in.4 (50.6× 104 mm4), rx = 6.01 in. (153 mm),
ry = 2.46 in. (62.6 mm), zx = 115 in.3 (1880× 103 mm3),
zy = 36.9 in.3 (606× 103 mm3).
Properties of steel are: 𝜎y = 50 ksi (345 MPa), Fu = 65 ksi (448.5 MPa),
E = 29× 106 (200, 000 MPa).
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Effective length factors are Kx (braced case) = 0.85, Kx (unbraced case) = 1.2,
Ky = 1.0.
Determine if the section is satisfactory as per the AISC code.
PD = 95 kips (423 kN), PL = 150 kips (667 kN)

ML = 35 kft (47 kN.m) 

MD = 10 kft (14 kN.m)

Mwind = 90kft (122 kN.m) (4.58 m) 15 ft

MD = 15 kft (20 kN.m)

ML = 40 kft (54 kN.m) 

Mwind = 90kft (122 kN.m) 

Figure P4.7
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5

Frames

5.1 Introduction

So far we have considered the stability of members, i.e. columns, beams, and beam columns as
individual members that have ideal boundary conditions, e.g. pinned, fixed, or free. In actual
engineering systems these members exist as part of a larger framework, and their ends are elas-
tically restrained by other members to which they are joined. It is usually assumed that, in a
frame, members are connected by rigid joints, meaning all members connected at a joint rotate
in the same direction by an equal amount. Under these conditions the member end restraints
not only depend on the stiffness of members joining directly at a joint, but end restraints depend
on the stiffness of all other members in the system. Therefore, we need to examine the stability
of the whole frame. Another problem is that a member of a frame does not exactly behave like
a column with spring supports at both ends, because the spring stiffness varies with the load.
There can be different cases of loading in a frame. If the member of a frame are geometrically
perfect and there is no primary moments present in the members, then there is no bending
deformation and moment in the member until the critical load Pcr is reached. In this case, the
problem can be solved as an eigenvalue problem as in the case of an individual column. On
the other hand, if the members are geometrically imperfect or primary moments are present
in the members due to eccentric loading or lateral loads, the frame will experience bending
deformations from the instant the loads are applied and it requires second-order analysis con-
sidering geometric nonlinearity if the stresses are within the elastic limit. In this chapter we
will consider frames with rigid joints whose member stresses are within the elastic limit at
buckling.

5.2 Critical Loads by the Equilibrium Method

5.2.1 Portal Frame Without Sidesway

Consider a symmetrical frame fixed at the bottom in which sidesway is prevented, and it is
loaded by point loads P as shown in the Figure 5.1a. The forces in the individual members of

Structural Stability Theory and Practice, First Edition. Sukhvarsh Jerath.
© 2021 Sukhvarsh Jerath. Published 2021 by John Wiley & Sons, Inc.
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the frame are shown in Figure 5.1b. Considering the equilibrium of the free body diagram of
the deflected shape of the left vertical column in Figure 5.1c, we have

P(−y) + (−EIy′′) +
MA −MB

Lc
x −MA = 0 (5.1a)

or

y′′ + k2
c y =

MA −MB

Lc

x
EIc

−
MA

EIc
, where k2

c =
P

EIc

or

y′′ + k2
c y =

MAk2
c

P

(
x
Lc
− 1

)
−

MBk2
c

P

(
x
Lc

)
(5.1b)

The general solution of Eq. (5.1b) is

y = A sin kcx + B cos kcx +
MA

P

(
x
Lc
− 1

)
−

MB

P

(
x
Lc

)
(5.1c)

y′ = Akc cos kcx − Bkc sin kcx +
MA

PLc
−

MB

PLc
(5.1d)

The constants A and B are calculated by substituting boundary conditions in Eqs. (5.1c) and
(5.1d).

y = 0 at x = 0, therefore,B =
MA

P

and y′ = 0 at x = 0, therefore,A = −
MA−MB

PLckc

Substitute the values of A and B in Eq. (5.1c), and then

y =
MA

P

(
− 1

kcLc
sin kcx + cos kcx + x

Lc
− 1

)
+

MB

P

(
1

kcLc
sin kcx − x

Lc

)
(5.1e)

There is no sidesway at top of the vertical column, therefore

y = 0 at x = Lc, and substituting in Eq. (5.1e)we have

MA(kcLc cos kcLc − sin kcLc) +MB(sin kcLc − kcLC) = 0 (5.1f)

Apply slope deflection equations to the horizontal member BC in Figure 5.1b. Neglecting the
axial forces in the horizontal member BC, we have

MB =
EIb

Lb
(4𝜃B + 2𝜃C), Now 𝜃B = −𝜃c

Therefore,

MB =
2EIb

Lb
𝜃B (5.1g)
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(a)

(b)

Lb 

Lc 

EIb 

EIc 

A

B C

D

P P

Lc 

A

B

yc 

MA 

P

xc 

MB 

P

Lc

MA – MB MD – MC

Lc

MA – MB

MC =  MB

MD = MA

L

MD – MC

L

C

DP

P

Lb LcLc

MA – MB MD – MC

MB MC 
xb 

yb

B C

θB θC 

(c)

P Lc

A

P
y

x
Lc

Mx = – EIy"

MA

xc 

yc 

MA – MB

MA – MB

Figure 5.1 Symmetrical frame fixed at the base having no sidesway buckling: (a) No sidesway symmetrical buckling
in a frame fixed at the base; (b) Forces in the horizontal and vertical members; (c) Free body diagram of the left
vertical member.
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At the joint B, compatibility of the slopes between the horizontal member BC and the vertical
member AB gives

𝜃B =
dy
dx

||||x=lc

(5.1h)

Differentiating Eq. (5.1e)
dy
dx

=
MA

P

(
− 1

Lc
cos kcx − kc sin kcx + 1

Lc

)
+

MB

P

(
1
Lc

cos kcx − 1
Lc

)
(5.1i)

dy
dx

||||x=lc

=
MA

P

(
− 1

Lc
cos kcLc − kc sin kcLc +

1
Lc

)
+

MB

P

(
1
Lc

cos kcLc −
1
Lc

)
(5.1j)

Equations (5.1g), (5.1h), and (5.1j) provide
MA

P

(
− 1

Lc
cos kcLc − kc sin kcLc +

1
Lc

)
+

MB

P

(
1
Lc

cos kcLc −
1
Lc

)
=

MBLb

2EIb
or

MA(− cos kcLc − kcLc sin kcLc + 1) +MB

(
cos kcLc − 1 −

LbLcIck2
c

2Ib

)
= 0 (5.1k)

Equations (5.1f) and (5.1k) can be written as⎡⎢⎢⎢⎣
kcLc cos kcLc − sin kcLc sin kcLc − kcLc

− cos kcLc − kcLc sin kcLc + 1 cos kcLc − 1 −
LbLcIck2

c

2Ib

⎤⎥⎥⎥⎦
{

MA
MB

}
=

{
0
0

}
(5.1l)

For a nontrivial solution of MA and MB, the determinant of the coefficient matrix in Eq. (5.1l)
should be zero. Therefore,||||||||

kcLc cos kcLc − sin kcLc sin kcLc − kcLc

− cos kcLc − kcLc sin kcLc + 1 cos kcLc − 1 −
LbLcIck2

c

2Ib

|||||||| = 0 (5.1m)

or

2 − 2 cos kcLc − kcLc sin kcLc +
LbIckc

2Ib
(sin kcLc − kcLc cos kcLc) = 0 (5.1n)

Let

Ic = Ib = I, and Lc = Lb = L

Then

cos kL(4 + k2L2) + kL sin kL = 4 (5.1o)

Solving the transcendental Eq. (5.1o) gives

kcL = 5.02 or k2
c L2 = (5.02)2
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Therefore,

Pcr =
25.2EI

L2 (5.1p)

5.2.1.1 Portal Frame Without Sidesway with Rigid or Extremely Flexible Beam
When the beam is rigid, it does not bend, and remains horizontal, as shown in Figure 5.2a.
Since the joints between the columns and the beam are rigid, the columns cannot rotate at the
upper ends. Since we are assuming no sidesway case, the columns cannot translate at their
upper ends. Therefore, they behave as if they are fixed both at the top and the bottom. The

critical load for such columns is given by Eq. (2.2f), i.e. Pcr =
4𝜋2EIc

Lc
2 = 4Pe, where Pe is the

Euler buckling load, that is the critical load for the same dimensioned column as the present
ones, whose both ends are pinned.

When the beam is extremely flexible, as shown in Figure 5.2b, it offers no resistance to rota-
tion of the columns at their upper ends. The columns cannot translate at their upper ends
because of no sidesway condition. The columns in this case behave as if they are fixed at the
bottom and hinged at the top. The critical load for such columns is given by Eq. (2.5 h), i.e.
Pcr =

20.19EIc

Lc
2 . In the practical cases the stiffness of the beams lies between the two extreme

values shown in Figure 5.2. If Lc = L, and Ic = I, the critical load given by Eq. (5.1p) can be
expressed as

20.19EI
L2 <

25.2EI
L2 <

4𝜋2EI
L2 (5.2a)

5.2.2 Portal Frame with Sidesway

If a frame is not braced, it may buckle in a sidesway mode. It is assumed there is no primary
bending prior to buckling in the frame, and the material remains elastic during buckling and

(a) (b)

Lb 

Lc

Ib = ∞

EIc 

A

B C

D

P P

Lb 

Lc

Ib = 0

EIc 

A

B C

D

P P

Figure 5.2 Frames fixed at the base having no sidesway with rigid and extremely flexible beams: (a) Frame with
rigid beam; (b) Frame with extremely flexible beam.
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the deformations are small. The frame is fixed at the bottom and is subjected to two axial forces
each equal to P shown in Figure 5.3a.

The forces in the individual members of the frame are shown in Figure 5.3b neglecting the
effect of the shear forces, V , coming on the vertical members from the equilibrium of the hori-
zontal member. These shears are much smaller than the applied loads on the vertical columns.
Considering the equilibrium of the free body diagram of deflected shape of the left vertical
column in Figure 5.3c, we have

P y −MA + EIcy′′ = 0

or

y′′ + k2
c y =

MA

EIc
, (5.3a)

where

k2
c =

P
EIc

.

The general solution of Eq. (5.3a) is

y = A sin kcx + B cos kcx +
MA

P
(5.3b)

y′ = A cos kcx − Bkc sin kcx (5.3c)

The constants A and B are calculated by substituting boundary conditions in Eqs. (5.3b) and
(5.3c).

y = 0 at x = 0, therefore,B = −
MA

P
and

y′ = 0 at x = 0, therefore,A = 0

or

y =
MA

P
(1 − cos kcx) (5.3d)

y = Δ at x = Lc

or

Δ =
MA

P
(1 − cos kcLc) (5.3e)

From the moment equilibrium of the left column in Figure 5.3b we get

PΔ = MA +MB (5.3f)

Substituting Δ from Eq. (5.3e) into Eq. (5.3f) we have

MA cos kcLc +MB = 0 (5.3g)
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(b)

(a)

Lb 

Lc 

EIb

EIc 

A

B C

D

P P

P 

A
P

MA

MB

B

Lc

P 
Δ

Δ

P

C

D

MB

MC = MB

MC = MB

MD = MA

Lb

MB + MC MB + MCV =
Lb

V =

CB θB 
θC

(c)
A

P

MA 

Mx = −EIy"

y

x P 

x

y

Figure 5.3 Portal frame fixed at the base with sidesway buckling: (a) Sidesway antisymmetrical buckling in a frame
fixed at the base; (b) Forces in the horizontal and vertical members; (c) Free body diagram of the left vertical member.
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Apply the slope deflection equations to the horizontal member BC in Figure 5.3b.

MB =
EIb

Lb
(4𝜃B + 2𝜃C),now 𝜃B = 𝜃C

Therefore,

MB = 6
EIb

Lb
𝜃B (5.3h)

At the joint B,
dy
dx

||||x=LC

= 𝜃B (5.3i)

Differentiating Eq. (5.3d)
dy
dx

=
MA

P
kc sin kcx (5.3j)

dy
dx

||||x=LC

=
MA

P
kc sin kcLc (5.3k)

Equations (5.3h), (5.3i), and (5.3k) give
MA

P
kc sin kcLc =

MBLb

6EIb
, now P

EIc
= k2

c

Therefore,
6Ib

kcIc
MA sin kcLc −MBLb = 0 (5.3l)

Equations (5.3g) and (5.3l) can be written as⎡⎢⎢⎢⎣
cos kcLc 1

6Ib

kcIc
sin kcLc −Lb

⎤⎥⎥⎥⎦
{

MA
MB

}
=

{
0
0

}
(5.3m)

For a nontrivial solution of MA and MB, the determinant of the coefficient matrix in Eq. (5.3m)
should be zero. Therefore,|||||||

cos kcLc 1
6Ib

kcIc
sin kcLc −Lb

||||||| = 0 (5.3n)

−Lb cos kcLC −
6Ib

kcIc
sin kcLc = 0

or
tan kcLc

kcLc
= −

Lb

6Lc

Ic

Ib
(5.3o)
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If

Ic = Ib = I, and Lc = Lb = L

tan kL
kL

= −1
6

(5.3p)

kL = 2.71 or k2L2 = (2.71)2

Therefore,

Pcr =
7.34EI

L2 (5.3q)

5.2.2.1 Portal Frame Having Sidesway with a Rigid or Extremely Flexible Beam
When the beam is rigid, it does not bend and remains horizontal as shown in Figure 5.4a.
At the upper ends the vertical columns can translate but cannot rotate. Also, the inflexion
points in the columns are at their mid-height. The critical load for the vertical columns is
equal to that of a cantilever column whose length is half the column height in the frame.

Therefore, the critical load is given by Eq. (2.4j), i.e. Pcr =
𝜋2EIc

4
(

Lc
2

)2 =
𝜋2EIc

L2
c

= Pe, where Pe

is the Euler buckling load. If the beam is extremely flexible as in Figure 5.4b, the upper
ends of the vertical columns behave as free ends. The entire vertical column behaves a
fixed-free column of length, Lc. The critical load in this case is given by Eq. (2.4h), i.e.

Pcr =
𝜋2EIc

4L2
c
=

Pe

4
, where Pe is the Euler buckling load.

(a) (b)

Ib = ∞

P P

EIc

Lb

Lc

P P

Ib = 0 

EIc

Lb

Lc

Figure 5.4 Frames fixed at the base having sideway with rigid and flexible beams: (a) Frame with rigid beam;
(b) Frame with extremely flexible beam.
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In the practical cases the stiffness of the beams lies between the two extreme values shown
in Figure 5.4. If Lc = L, and Ic = I, the critical load given by Eq. (5.3q) can be expressed as

𝜋2EI
4L2 <

7.34EI
L2 <

𝜋2EI
L2 (5.4a)

5.2.3 Frame with Prime Bending and Without Sidesway

In the previous cases buckling of the frames was studied when there were no transverse loads on
the horizontal members, i.e. the beams. Let us consider a symmetrical frame with symmetrical
loading as shown in Figure 5.5 so that there is no sidesway. The free body diagrams of the beam
and the left column are given in Figures 5.5b and c. The reactions at A and D are P and H as
shown in Figure 5.5a. The slope of the column at B is given by Eq. (4.8c), that is

𝜃B = −
HLc

P

(
kc cot kcLc −

1
Lc

)
(5.5a)

where

kc =
√

P
EIc

(a)

EIc

C 

Lb 

Lc

EIb

EIc

P P 
a 

P P

A

B 

H 
H 

D 

a 

(b)

Ca a 

H H
B 

MB = HLc

P P 

P P

x

y

MB = HLc

(c)

Lc 

H

H

P

PA

B
HLc 

y

x

Figure 5.5 Symmetrical portal frame hinged at the base with prime bending and no sidesway: (a) Frame hinged
at the base with transverse load and no sidesway; (b) Free body diagram of the horizontal member (beam); (c) Free
body diagram of the vertical member (column).
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The slope of the beam at B caused by two transverse forces is given by Eqs. (4.2w) and (4.2x)
as follows:

𝜃1
B =

P sin kb(Lb − a)
EIbk2

b sin kbLb
−

P(Lb − a)
EIbLbk2

b

+
P sin kba

EIbk2
b sin kbLb

− Pa
EIbLbk2

b

where

kb =
√

H
EIb

or

𝜃1
B =

P
H

(
sin kb(Lb − a)

sin kbLb
+

sin kba
sin kbLb

−
(Lb − a)

Lb
− a

Lb

)
or

𝜃1
B =

P
H

[
sec

kbLb

2
cos

(
kbLb

2
− kba

)
− 1

]
(5.5b)

The slope of the beam at B caused by two end moments is given by Eq. (4.9b) as follows:

𝜃2
B =

HLc

H

(
kb cos kbLb

sin kbLb
− 1

Lb

)
−

HLc

H

(
kb

sin kbLb
− 1

Lb

)
or

𝜃2
B = −kbLc tan

kbLb

2
(5.5c)

Total slope of the beam at B is

𝜃B = 𝜃1
B + 𝜃2

B

𝜃B =
P
H

[
sec

kbLb

2
cos

(
kbLb

2
− kba

)
− 1

]
− kbLc tan

kbLb

2
(5.5d)

At the joint B

𝜃B column = 𝜃B beam (5.5e)

Substitute 𝜃B column and 𝜃B beam from Eqs. (5.5a) and (5.5d) respectively in Eq. (5.5e), and we
get

kbLc tan
kbLb

2
+ H

P
(1 − kcLc cot kcLc) −

P
H

[
sec

kbLb

2
cos

(
kbLb

2
− kba

)
− 1

]
= 0 (5.5f)

Equation (5.5f) is the equation relating the horizontal force H to the applied transverse load
P. Assume a case where Ib = Ic = I, Lb = Lc = L, and a = L/3, Eq. (5.5f) reduces to

kbL tan
kbL

2
+

(
kbL
kcL

)2

(1 − kcL cot kcL) −
(

kcL
kbL

)2 [
sec

kbL
2

cos
(

kbL
6

)
− 1

]
= 0 (5.5g)

Assume kcL, and find kbL by trial and error that satisfies Eq. (5.5g). Plot kcL =
√

P
EI

L versus

kbL =
√

H
EI

L as shown in Figure 5.6. It can be seen in Figure 5.6 that as P increases, first H also
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0
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2

2.5

3

3.5

kbL

k c
L

Figure 5.6 Plot of kcL versus kbL.

increases then decreases and becomes zero. It is because initially the frame behaves linearly,
then as P increases further, the capacity of the column to sustain moment decreases, so the
H also decreases. Finally, a stage is reached when the column is unable to resist any moment
given by HL, and hence H also becomes zero [1]. The stage when the column is unable to resist
any moment is characterized by the buckling of the frame and it occurs at kcL = 𝜋. Therefore,

kcL =
√

P
EI

L = 𝜋

or

Pcr =
𝜋2EI

L2 (5.5h)

5.3 Critical Loads by Slope Deflection Equations

5.3.1 Portal Frame Without Sidesway

The slope deflection equations for members subjected to both axial force and bending are given
by Eq. (4.21e), where the constants in the coefficient matrix are given by Eqs. (4.21f) and (4.21g),
and are given in Appendix A for various values of kL.

Consider the frame shown Figure 5.1a. The moments and the slopes in the frame are consid-
ered positive if they are clockwise in the slope deflection method. Positive moments and the
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Lc

A

B

yc

MAB

P

xc

P

Lc

Lc

Lb LcLc

MAB + MBA

MAB + MBA

MAB + MBA

MCD + MDC

Lc

Lc

MCD + MDC

MCD + MDC

MBC MCB

xb

yb

B C

θB θC

MCD = −MBA

C

DP

P

MBA 

MDC = −MAB

Figure 5.7 Portal frame fixed at the base without sidesway by slope deflection method.

corresponding forces in the members are shown in Figure 5.7. The slope deflection equation
for the column AB can be written as

MBA =
EIc

Lc
(k11c𝜃B + k12c𝜃A) =

EIc

Lc
(k11c𝜃B) (5.6a)

Because 𝜃A = 0. The slope deflection equation for the horizontal beam BC can be written as

MBC =
EIb

Lb
(k11b𝜃B + k12b𝜃c)

Neglecting the axial force in the horizontal member BC, we have

MBC =
EIb

Lb
(4𝜃B + 2𝜃C), since 𝜃B = −𝜃C

MBC =
2EIb

Lb
𝜃B (5.6b)

The subscripts c and b are used for the column and the beam respectively. For the joint equi-
librium at B, we have

MBA +MBC = 0 (5.6c)
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or [
EIc

Lc
k11c +

2EIb

Lb

]
𝜃B = 0, 𝜃B ≠ 0

Therefore,
EIc

Lc
k11c +

2EIb

Lb
= 0

Consider the case where Ic = Ib = I, and Lc = Lb = L, then
EI
L
(k11c + 2) = 0, or k11c = −2

From Appendix A,

kL = 5.02

or

(kL)2 = 25.2

and

Pcr =
25.2EI

L2 (5.6d)

That is the same as in Eq. (5.1p).

5.3.2 Portal Frame with Sidesway

Now apply the slope deflection method to find the critical load for the frame shown in Fig. 5.3a.
Positive moments and the corresponding forces are shown in Figure 5.8. The slope deflection

equation for the column AB is given by

MAB =
EIc

Lc

[
k11c𝜃A + k12c𝜃B − (k11c + k12c)

Δ
Lc

]
MBA =

EIc

L

[
k21c𝜃A + k22c𝜃B − (k21c + k22c)

Δ
Lc

]
𝜃A = 0,

therefore,

MAB =
EIc

Lc

[
k12c𝜃B − (k11c + k12c)

Δ
Lc

]
(5.7a)

MBA =
EIc

Lc

[
k22c𝜃B − (k21c + k22c)

Δ
Lc

]
(5.7b)

For the beam, the slope deflection equations are

MBC =
EIb

Lb
(k11b𝜃B + k12b𝜃C)
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MBC

MCB = MBC

V = V =

B C

MBA

MBA

P 

P 

Δ B

Lc

A

P 
Δ 

P 

C

D

Lc

MBC + MCBMBC + MCB

MCD = MBA

MDC = MAB

MCD + MDC + PΔ

Lc

MCD + MDC + PΔ

Lc

Lc

MAB + MBA + PΔ

MAB + MBA + PΔ

LbLb

Figure 5.8 Portal frame fixed at the base with sidesway by slope deflection method.

Neglecting the axial force in the horizontal beam, we have

MBC =
EIb

Lb
(4𝜃B + 2𝜃C), Since 𝜃B = 𝜃C

MBC =
6EIb

Lb
𝜃B (5.7c)

The subscripts b and c are used for the column and the beam respectively. For the joint equi-
librium at B, we have

MBA +MBC = 0 (5.7d)

EIc

Lc

[
k22c𝜃B − (k21c + k22c)

Δ
Lc

]
+

6EIb

Lb
𝜃B = 0

or (
k22c +

6Ib

Lb

Lc

Ic

)
𝜃B − (k21c + k22c)

Δ
Lc
= 0 (5.7e)

From the equilibrium of story shear in Figure 5.8, we get
MAB +MBA + PΔ

Lc
+

MCD +MDC + PΔ
Lc

= 0

Now, MAB = MDC, and MBA = MCD because the deformation of the frame is antisymmetric.
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Therefore,
MAB +MBA + PΔ

Lc
= 0 (5.7f)

Substitute the moments MAB and MBA in terms of 𝜃A, 𝜃B, Δ from Eqs. (5.7a) and (5.7b), and
we obtain

1
Lc

[
EIc

Lc

{
k12c𝜃B − (k11c + k12c)

Δ
Lc

}
+

EIc

Lc

{
k22c𝜃B − (k21c + k22c)

Δ
Lc

}
+ PΔ

]
= 0

The slope deflection coefficients, k11c = k22c, and k12c = k21c, therefore

−(k12c + k11c) 𝜃B + (2k11c+2k12c − k2
c L2

c )
Δ
Lc
= 0 (5.7g)

where

k2
c =

P
EIc

.

Equations (5.7e) and (5.7g) can be written in the matrix form as

⎡⎢⎢⎢⎢⎣
k11c +

6Ib

Lb

Lc

Ic
−(k12c + k11c)

−(k12c + k11c) 2k11c + 2k12c − k2
c L2

c

⎤⎥⎥⎥⎥⎦
⎧⎪⎨⎪⎩
𝜃B

Δ
Lc

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩

0

0

⎫⎪⎬⎪⎭ (5.7h)

Let Ib = Ic = I, and Lb = Lc = L, then Eq. (5.7h) becomes

⎡⎢⎢⎢⎢⎣
k11 + 6 −(k12 + k11)

−(k12 + k11) 2k11 + 2k12 − k2L2

⎤⎥⎥⎥⎥⎦
⎧⎪⎨⎪⎩
𝜃B

Δ
L

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩

0

0

⎫⎪⎬⎪⎭ (5.7i)

For a non-trivial solution for the quantities, 𝜃B and Δ
L

, the determinant of the coefficient
matrix should be zero. So||||||||

k11 + 6 −(k12 + k11)

−(k12 + k11) 2k11 + 2k12 − k2L2

|||||||| = 0 (5.7j)

or

(k11 + 6)(2k11 + 2k12 − k2L2) − (k12 + k11)2 = 0

and

(k 2
11 + 12k11 − k2L2k11) − (k 2

12 − 12k12 + 6k2L2) = 0 (5.7k)
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EIc

EIc

A

B C 

D 

E F 
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2P 2P 

Figure 5.9 Two-story frame hinged at the base without sidesway by the slope deflection method.

Equation (5.7k) is a characteristic equation for the frame shown in Figure 5.3a. By trial and
error and using Appendix A, the value of kL that satisfies Eq. (5.7k) is given by

kL = 2.71, and corresponding k11 = 2.9086, k12 = 2.3149
k2L2 = 7.344

Therefore, the critical load for the frame is

Pcr =
7.344 EI

L2 , the same as in Eq. (5.3q). (5.7l)

5.3.3 Two-Story Frame Without Sidesway

The slope deflection method is used to find the critical load for a two-story frame in Figure 5.9.
The sidesway is prevented in the frame. It is symmetrical about the vertical center line of the
frame, as shown in Figure 5.9. Therefore, we can consider only the left half to calculate the
critical load for this frame. The slope deflection equations for the various members of the frame
can be written as

MAB =
EIc

Lc
[k11AB𝜃A + k12AB𝜃B] (5.8a)

MBA =
EIc

Lc
[k21AB𝜃A + k22AB𝜃B] (5.8b)

MAB = 0
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because end A is a hinge support, therefore,

𝜃A = −
k12AB

k11AB
𝜃B, substituting in Eq. (5.8b)

MBA =
EIc

Lc

[
k22AB −

k2
12AB

k11AB

]
𝜃B (5.8c)

MBE =
EIc

Lc
[k11BE𝜃B + k12BE𝜃E] (5.8d)

MEB =
EIc

Lc
[k21BE𝜃B + k22BE𝜃E] (5.8e)

MBC =
EIb

Lb
[k11BC𝜃B + k12BC𝜃C] (5.8f)

MEF =
EIb

Lb
[k11EF𝜃E + k12EF𝜃F] (5.8g)

Neglecting the axial force in the horizontal beams BC and EF, we have

k11BC = k11EF = 4, and k12BC = k12EF = 2

Also, 𝜃B = −𝜃C, and 𝜃E = −𝜃F ,

Substitute these values in Eqs. (5.8f) and (5.8g) to get

MBC =
EIb

Lb
[2𝜃B] (5.8h)

MEF =
EIb

Lb
[2𝜃E] (5.8i)

Moment equilibrium equations at the joints B and E are

MBA +MBC +MBE = 0 (5.8j)

MEB +MEF = 0 (5.8k)

Substituting Eqs. (5.8c), (5.8d), (5.8e), (5.8h), and (5.8i), and k11 = k22, k12 = k21 into Eqs. (5.8j)
and (5.8k) we have

⎡⎢⎢⎢⎢⎣
EIc

Lc

(
k11AB −

k2
12AB

k11AB
+ k11BE

)
+

2EIb

Lb

EIc

Lc
k12BE

EIc

Lc
k12BE

EIc

Lc
k11BE + 2

EIb

Lb

⎤⎥⎥⎥⎥⎦
⎧⎪⎨⎪⎩
𝜃B

𝜃E

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩

0

0

⎫⎪⎬⎪⎭ (5.8l)
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Let Ib = Ic = I, and Lb = Lc = L. For a non-trivial solution for the quantities 𝜃B and 𝜃E, the
determinant of the coefficient matrix in Eq. (5.8l) should be zero, so|||||||||

k11AB −
k2

12AB

k11AB
+ k11BE + 2 k12BE

k12BE k11BE + 2

|||||||||
= 0 (5.8m)

or (
k11AB −

k2
12AB

k11AB
+ k11BE + 2

)
(k11BE + 2) − k2

12BE = 0 (5.8n)

Therefore,

k11BE(k2
11AB − k2

12AB + 4k11AB + k11ABk11BE) + k11AB(2k11AB − k2
12BE + 4) − 2k2

12AB = 0
(5.8o)

Now,

k2
BE =

P
EI

and k2
AB =

2P
EI

Therefore,

kAB =
√

2kBE

Assume kBEL and calculate the corresponding, kABL =
√

2kBEL, then find the slope deflection
coefficients k11AB, k12AB, k11BE, and k12BE from Appendix A from the assumed and calculated
values of kBEL and kABL. Alternately, the slope deflection coefficients can be obtained from
Eqs. (4.8g), (4.8h), (4.21f), and (4.21g), where u = kL

2
. Solve Eq. (5.8o) by trial and error to find

the correct value of kBEL. The trial and error procedure gives

kBEL = 2.697 (5.8p)

or

k2
BEL2 = 7.274 or PL2

EI
= 7.274

Therefore, the critical load for the two-story frame in Figure 5.9 is given by

Pcr =
7.274EI

L2 (5.8q)

5.3.4 Two-Bay Frame Without Sidesway

The slope deflection method is applied to the two-bay frame shown in Figure 5.10 to find the
critical load.

Assume 𝜃A, 𝜃B, 𝜃C, 𝜃D, 𝜃E, and 𝜃F are the angles of rotation at the joints A, B, C, D, E, and
F respectively. The slope deflection equations for the different members of the frame can be
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Figure 5.10 Two-bay frame hinged at the supports without sidesway by the slope deflection method.

written in terms of the slope deflection coefficients and moments, M, in different members as
follows:

MAB =
EIc

Lc
[k11AB𝜃A + k12AB𝜃B]

MBA =
EIc

Lc
[k21AB𝜃A + k22AB𝜃B]

MAB = 0, therefore

𝜃A = −
k12AB

k11AB𝜃B

or

MBA =
EIc

Lc

(
k22AB −

k2
12AB

k11AB

)
𝜃B (5.9a)

MBC =
EIb

Lb
(4𝜃B + 2𝜃C) (5.9b)

MCB =
EIb

Lb
(2𝜃B + 4𝜃C) (5.9c)

MCD =
EIc

Lc
(k11CD𝜃C + k12CD𝜃D)

MDC =
EIc

Lc
(k21CD𝜃C + k22CD𝜃D) = 0

Therefore,

𝜃D = −
k21CD

k22CD
𝜃C = −

k12CD

k11CD
𝜃C
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MCD =
EIc

Lc

(
k11CD𝜃C −

k2
12CD

k11CD
𝜃C

)
(5.9d)

MCE =
EIb

Lb
(4𝜃C + 2𝜃E) (5.9e)

MEC =
EIb

Lb
(2𝜃C + 4𝜃E) (5.9f)

MEF =
EIc

LC
(k11EF𝜃E + k12EF𝜃F)

MFE =
EIc

Lc
(k12EF𝜃E + k22EF𝜃F) = 0

Therefore,

𝜃F = −
k12EF𝜃E

k11EF

MEF =
EIc

Lc

(
k11EF𝜃E −

k2
12EF

K11EF
𝜃E

)
(5.9g)

Moment equilibrium equations at the joints B, C, and E are given by

MBA +MBC = 0 (5.9h)

MCB +MCD +MCE = 0 (5.9i)

MEC +MEF = 0 (5.9j)

Substitute Eqs. (5.9a–5.9g) into Eqs. (5.9h)–(5.9j), also k11 = k22, k12 = k21, then we get

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

EIc

Lc

(
k11AB −

k2
12AB

k11AB

)
+

4EIb

Lb

2EIb

Lb
0

2EIb

Lb

EIc

Lc

(
k11CD −

k2
12CD

k11CD

)
+

8EIb

Lb

2EIb

Lb

0
2EIb

Lb

EIc

Lc

(
k11EF −

k2
12EF

k11EF

)
+

4EIb

Lb

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
×

⎧⎪⎨⎪⎩
𝜃B
𝜃C
𝜃E

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩

0
0
0

⎫⎪⎬⎪⎭ (5.9k)
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Let Ib = Ic = I and Lb = Lc = L. For a nontrivial solution for the quantities 𝜃B, 𝜃C, and 𝜃E, the
determinant of the coefficient matrix in Eq. (5.9k) should be zero, therefore||||||||||||||

k11AB −
k2

12AB

k11AB
+ 4 2 0

2 k11CD −
k2

12CD

k11CD
+ 8 2

0 2 k11EF −
k2

12EF

k11EF
+ 4

||||||||||||||
= 0 (5.9l)

or (
k11AB −

k2
12AB

k11AB
+ 4

)[(
k11CD −

k2
12CD

k11CD
+ 8

)(
k11EF −

k2
12EF

k11EF
+ 4

)
− 4

]

+ 2

[
−2

(
k11EF −

k2
12EF

k11EF
+ 4

)]
= 0 (5.9m)

Now,

k2
AB = k2

CD = k2
EF =

P
EI

Assume a value of kABL = kCDL = kEFL, and then find the slope deflection coefficients k11AB,
k12AB, k11CD, and k12CD, k11EF , and k12EF from Appendix A from the assumed values of kABL,
kCDL, and kEFL. Alternately, the slope deflection coefficients can be obtained from Eqs. (4.8g),
(4.8h), (4.21f), and (4.21g), where u = kL

2
. Solve Eq. (5.9m) by trial and error to find the correct

value of kABL = kCDL = kEFL. The trial and error procedure gives

kABL = kCDL = kEFL = 4.115 (5.9n)

or

k2
ABL2 = (4.115)2 or PL2

EI
= 16.93

Therefore, the critical load for the two-bay frame in Figure 5.10 is given by

Pcr =
16.93 EI

L2 (5.9o)

5.3.5 Frames with Prime Bending and Without Sidesway

5.3.5.1 Frame with Hinged Supports
The slope deflection method is used to find the critical load for the frame in Figure 5.5a. The
frame and the transverse loads on the beam are symmetrical about the vertical center line of
the frame. Therefore, we can consider only the left half of the frame to calculate the critical
load. The slope deflection equations for the different members of the frame are

MAB =
EIc

Lc
[k11AB𝜃A + k12AB𝜃B] (5.10a)
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MBA =
EIc

Lc
[k21AB𝜃A + k22AB𝜃B] (5.10b)

MAB = 0, because end A is a hinge support, therefore,

𝜃A = −
k12AB

k11AB
𝜃B, substituting in Eq. (5.10b) leads to

MBA =
EIc

Lc

[
k22AB −

k2
12AB

k11AB

]
𝜃B (5.10c)

because k12AB = k21AB. For the beam

MBC =
EIb

Lb
(k11BC𝜃B + k12BC𝜃C) −

Pa
Lb
(Lb − a) (5.10d)

Where Pa
Lb
(Lb − a) is the fixed end moment at B due to transverse load in the horizontal member

BC, neglecting axial force. It is counterclockwise, so there is minus sign before the term as per
the slope deflection convention.

Due to symmetry, 𝜃C = − 𝜃B
Therefore, Eq. (5.10d) becomes

MBC =
EIb

Lb
(k11BC − k12BC) 𝜃B −

Pa
Lb
(Lb − a) (5.10e)

From Figures 5.5b and 5.5c we have

MBA = HLc, and MBC = −HLc

From Eq. (5.10c)

𝜃B column =
HL2

c

EIc

1

k22AB −
k2

12AB

k11AB

(5.10f)

and Eq. (5.10e)

𝜃B beam =
−HLcLb + Pa(Lb − a)

EIb(k11BC − k12BC)
(5.10g)

𝜃B column = 𝜃B beam

HL2
c

EIc

1

k22AB −
k2

12AB

k11AB

=
−HLcLb + Pa(Lb − a)

EIb(k11BC − k12BC)
(5.10h)
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Equation (5.10h) is the equation relating the horizontal force H to the applied transverse load
P. For the case Ib = Ic, = I, Lb = Lc = L, and a = L/3, Eq. (5.10h) reduces to

HL2

EI

k22AB −
k2

12AB

k11AB

=
−HL2

EI
+ 2

9
PL2

EI
k11BC − k12BC

(5.10i)

kc =
√

P
EIc

, and kb =
√

H
EIb

, and k11AB = k22AB

Therefore, Eq. (5.10i) can be written as

(kbL)2
(

k11BC − k12BC + k11AB −
k2

12AB

k11AB

)
− 2

9
(kcL)2

(
k11AB −

k2
12AB

k11AB

)
= 0 (5.10j)

Assume kcL and find kbL that satisfies Eq. (5.10j) by trial and error. For each value of kcL and
kbL, find the slope deflection coefficients k11AB, k12AB, k11BC, and k12BC from Appendix A or from
Eqs. (4.8g), (4.8h), (4.21f), and (4.21g). If we plot kcL =

√
P
EI

L versus kbL =
√

H
EI

L values that
satisfy Eq. (5.10j), we will get Figure 5.6, and kcL = 𝜋, as before. Therefore,

kcL =
√

P
EI

L = 𝜋

or

Pcr =
𝜋2EI

L2 (5.10k)

Equations (5.5h) and (5.10k) are the same.
Alternately, at the joint B, the moment equilibrium equation is

MBA +MBC = 0

EIc

Lc

[
k22AB −

k2
12AB

k11AB

]
𝜃B +

EIb

Lb
(k11BC − k12BC)𝜃B −

Pa
Lb
(Lb − a) = 0 (5.10l)

For the case Ib = Ic, = I, Lb = Lc = L, and a = L/3, the Eq. (5.10l) reduces to

𝜃B =
2
9

k2
c L2

k11AB −
k2

12AB

k11AB
+ k11BC − k12BC

(5.10m)

where

kc =
√

P
EI

Neglecting the axial force in the horizontal member, k11BC = 4, and k12BC = 2. Assume dif-
ferent values of kcL, for each value find the slope deflection coefficients k11AB and k12AB in
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Eq. (5.10m) from Appendix A or Eqs. (4.21f) and (4.21g). Find 𝜃B, for each assumed value of kcL
from Eq. (5.10m). Plot 𝜃B versus kcL shown in Figure 5.11. The buckling of the frame occurs at
kcL = 3.1416 = 𝜋 as before where the curve tends to become horizontal, i.e. there is very large

increase in 𝜃B with a small increase of kcL. So Pcr =
𝜋2EI

L2 ,which is the same as in Eq. (5.10k).

5.3.5.2 Frame with Fixed Supports
Consider a frame with fixed supports and loaded with transverse loads as shown in Figure 5.12.
The slope deflection equations for the frame members are

MAB =
EIc

Lc
(k11AB𝜃A + k12AB𝜃B) (5.11a)

MBA =
EIc

Lc
(k21AB𝜃A + k22AB𝜃B) (5.11b)

Since 𝜃A = 0

MBA =
EIc

Lc
(k22AB𝜃B) (5.11c)

MBC =
EIb

Lb
(k11BC𝜃B + k12BC𝜃C) −

Pa
Lb
(Lb − a) (5.11d)

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0.5

1

1.5

2

2.5

3

3.5

k c
L

3.1416

θB

Figure 5.11 𝜃B versus kcL for a hinged frame with prime bending and no sidesway.
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θB

a a 

θB

Lb

Lc

EIb

EIc

A

B C

D

P P

EIc

Figure 5.12 Frame fixed at the supports with transverse load and no sidesway.

where Pa
Lb
(Lb − a) is the fixed end moment at B due to transverse load in the horizontal member

BC, neglecting axial force. It is counterclockwise, so there is a minus sign before the term as
per the slope deflection convention.

𝜃C = −𝜃B

At the joint B, MBA +MBC = 0, therefore
EIc

Lc
(k22AB𝜃B) +

EIb

Lb
(k11BC − k12BC)𝜃B −

Pa
Lb
(Lb − a) = 0 (5.11e)

Assume Ib = Ic, = I, Lb = Lc = L, and a = L/3, then Eq. (5.11e) becomes

(k22AB + k11BC − k12Bc)𝜃B −
2
9

k2
c L2 = 0 (5.11f)

where

kc =
√

P
EI

or

𝜃B =

2
9

k2
c L2

k22AB + k11BC − k12Bc
(5.11g)

Neglecting the axial force in the horizontal member

k11BC = 4, and k12BC = 2

or

𝜃B =

2
9

k2
c L2

k22AB + 2
(5.11h)
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Assume different values of kcL, and for each value find the slope deflection coefficients k22AB
in Eq. (5.11h) from Appendix A or Eqs. (4.21f) and (4.21g). Find 𝜃B, for each assumed value of
kcL from Eq. (5.11h). Plot 𝜃B versus kcL shown in Figure 5.13. Buckling of the frame occurs at
kcL = 4.67 where the curve tends to become horizontal, i.e. there is a very large increase in 𝜃B
with a small increase of kcL. So

Pcr =
21.81EI

L2 (5.11i)

5.3.6 Frames with Prime Bending and Sidesway

Consider a hinged frame loaded with transverse loads on the horizontal member and allowed
to sway horizontally as shown in Figure 5.14. The slope deflection equations for the members
of the frame are

MAB =
EIc

Lc

[
k11AB𝜃A + k12AB𝜃B − (k11AB + k12AB)

Δ
Lc

]
(5.12a)

0
0 1 2 3 4 5 6

1

2

3

4

5

6

k c
L

θB

4.67

Figure 5.13 𝜃B versus kcL for a fixed frame with prime bending and no sidesway.
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θC

θB

θA

EIc

HH

PP

θB

Δ 

Lb 

Lc 

EIb

EIc

A

C

D

P Pa
a

Figure 5.14 Frame hinged at the supports with transverse load and sidesway.

MBA =
EIc

Lc

[
k21AB𝜃A + k22AB𝜃B − (k21AB + k22AB)

Δ
Lc

]
(5.12b)

MAB = 0

0 =
EIc

Lc

[
k11AB𝜃A + k12AB𝜃B − (k11AB + k12AB)

Δ
Lc

]
𝜃A =

(
1 +

k12AB

k11AB

)
Δ
Lc
−

k12AB

k11AB
𝜃B (5.12c)

Substitute 𝜃A in Eq. (5.12b)

MBA =
EIc

Lc

[(
k22AB −

k2
12AB

k11AB

)
𝜃B−

(
k22AB −

k2
12AB

k11AB

)
Δ
Lc

]
(5.12d)

MBC =
EIb

Lb
(k11BC𝜃B + k12BC𝜃C) −

Pa
Lb
(Lb − a) (5.12e)

where Pa
Lb
(Lb − a) is the fixed end moment at B due to transverse load in the horizontal member

BC, neglecting the axial force. It is counterclockwise, so there is a minus sign before the term
as per the slope deflection convention.

Due to antisymmetry, 𝜃B = 𝜃C, therefore Eq. (5.12e) becomes

MBC =
EIb

Lb
(k11BC + k12BC)𝜃B −

Pa
Lb
(Lb − a) (5.12f)

For the joint equilibrium at B, we have
MBA +MBC = 0

EIc

Lc

[(
k22AB −

k2
12AB

k11AB

)
𝜃B −

(
k22AB −

k2
12AB

k11AB

)
Δ
Lc

]
+

EIb

Lb
(k11BC + k12BC)𝜃B −

Pa
Lb
(Lb − a) = 0

(5.12g)
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From the equilibrium of story shear in Figure 5.14, we have

MAB +MBA + PΔ
Lc

+
MCD +MDC + PΔ

Lc
= 0 (5.12h)

Ends A and D are hinges, so MAB = MDC = 0, and because of antisymmetry, MBA = MCD.
Therefore, Eq. (5.12h) reduces to

MBA + PΔ
Lc

= 0

or

EIc

L2
c

[(
k22AB −

k2
12AB

k11AB

)
𝜃B−

(
k22AB −

k2
12AB

k11AB

)
Δ
Lc

]
+ PΔ

Lc
= 0

√
P

EIc
= kc

or (
k22AB −

k2
12AB

k11AB

)
𝜃B −

(
k22AB −

k2
12AB

k11AB
− k2

c L2
c

)
Δ
Lc
= 0 (5.12i)

For the case when Ib = Ic = I, Lb = Lc = L, Eq. (5.12g) gives[(
k22AB −

k2
12AB

k11AB

)
+ (k11BC + k12BC)

]
𝜃B −

(
k22AB −

k2
12AB

k11AB

)
Δ
L
− 2

9
k2

c L2 = 0 (5.12j)

Neglecting the axial force in the horizontal beam, k11BC = 4 and k12BC = 2, and Eq. (5.12j)
becomes(

k22AB −
k2

12AB

k11AB
+ 6

)
𝜃B −

(
k22AB −

k2
12AB

k11AB

)
Δ
L
− 2

9
k2

c L2 = 0 (5.12k)

From Eq. (5.12i) we get(
k22AB −

k2
12AB

k11AB

)
𝜃B −

(
k22AB −

k2
12AB

k11AB
− k2

c L2

)
Δ
L
= 0 (5.12l)

Equations (5.12k) and (5.12l) are solved simultaneously. From Eq. (5.12l) we have

Δ
L
=

(
k22AB −

k2
12AB

k11AB

)
𝜃B

k22AB −
k2

12AB

k11AB
− k2

c L2

(5.12m)
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Substitute Δ
L

from Eq. (5.12m) into Eq. (5.12k) and we have

𝜃B =

2
9

k2
c L2

k22AB −
k2

12AB

k11AB
+ 6 −

(
k22AB −

k2
12AB

k11AB

)⎛⎜⎜⎜⎜⎝
k22AB −

k2
12AB

k11AB

k22AB −
k2

12AB

k11AB
− k2

c L2

⎞⎟⎟⎟⎟⎠

(5.12n)

The slope deflection coefficients k11AB = k22AB.
Assume different values of kcL, for each value, find the slope deflection coefficients k11AB and

k12AB in Eq. (5.12n) from Appendix A or Eqs. (4.21f) and (4.21g). Find 𝜃B, for each assumed
value of kcL from Eq. (5.12n). Plot 𝜃B versus kcL shown in Figure 5.15. Buckling of the frame
occurs at kcL = 1.333 where the curve tends to become horizontal, i.e. there is a very large
increase in 𝜃B with a small increase of kcL.

Or √
Pcr

EI
L = 1.333

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.4

0.6

0.8

1

1.2

1.4

k c
L

θB

1.33

Figure 5.15 𝜃B versus kcL for a hinged frame with prime bending and sidesway permitted.
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Therefore,

Pcr =
1.778EI

L2 (5.12o)

which is the same value given by A. Kumar [1].

5.3.7 Box Frame Without Sidesway

Consider the buckling of a box frame that is symmetrical about the vertical center line of the
frame. It is loaded as shown in Figure 5.16 such that there is no sidesway in the frame. The
columns AB and CD are elastically restrained at the top and the bottom by the beams BC
and AD.

The slope deflection equations for the members of the box frame are

MAB =
EIc

Lc
(k11AB𝜃A + k12AB𝜃B) (5.13a)

MBA =
EIc

Lc
(k21AB𝜃A + k22AB𝜃B) (5.13b)

Neglecting the horizontal force in the horizontal beams BC and AD

MBC =
EIb1

Lb
(4𝜃B + 2𝜃C) (5.13c)

MAD =
EIb2

Lb
(4𝜃A + 2𝜃D) (5.13d)

At the joint A, moment equilibrium gives

MAB +MAD = 0

Lb

Lc EIc EIc

EIb1

EIb2

P P

P P

A D

C
B

Figure 5.16 Symmetrical buckling without sidesway in a box frame.
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EIc

Lc
(k11AB𝜃A + k12AB𝜃B) +

EIb2

Lb
(4𝜃A + 2𝜃D) = 0 (5.13e)

At the joint B, moment equilibrium gives

MBA +MBC = 0

EIc

Lc
(k21AB𝜃A + k22AB𝜃B) +

EIb1

Lb
(4𝜃B + 2𝜃C) = 0 (5.13f)

Due to symmetry about the vertical center line of the frame, we have 𝜃A = − 𝜃D,
and 𝜃B = − 𝜃C, therefore

EIc

Lc
(k11AB𝜃A + k12AB𝜃B) +

2EIb2

Lb
𝜃A = 0

EIc

Lc
(k21AB𝜃A + k22AB𝜃B) +

2EIb1

Lb
𝜃B = 0

or ⎡⎢⎢⎢⎣
k11AB + 2

Lc

Lb

Ib2

Ic
k12AB

k21AB
k22AB + 2

Lc

Lb

Ib1

Ic

⎤⎥⎥⎥⎦
⎧⎪⎨⎪⎩
𝜃A

𝜃B

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩

0

0

⎫⎪⎬⎪⎭ (5.13g)

For nontrivial solution of 𝜃A and 𝜃B we have||||||||
k11AB + 2

Lc

Lb

Ib2

Ic
k12AB

k21AB k22AB + 2
Lc

Lb

Ib1

Ic

|||||||| = 0 (5.13h)

k11AB = k22AB, and k12AB = k21AB,

therefore,(
k11AB + 2

Lc

Lb

Ib2

Ic

) (
k11AB + 2

Lc

Lb

Ib1

Ic

)
− k2

12AB = 0 (5.13i)

Assume various values of kcLc for the columns and find corresponding quantities k11AB and
k12AB for the given values of Lc, Lb, Ic, Ib1, and Ib2 from Appendix A or Eqs. (4.21f) and (4.21g).
The value of kcLc that satisfies Eq. (5.13i) gives the critical load P for the frame.

For the case where Lb = Lc = L, and Ic = Ib1 = Ib2 = I, Eq. (5.13i) reduces to

k12AB − k11AB = 2 (5.13j)

kcL = 4.0583 satisfies Eq. (5.13j),

therefore,

k2
c L2 = 16.47
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or

Pcr =
16.47EI

L2 (5.13k)

Which is the same value given by N.G.R. Iyengar [2].

5.3.8 Multistory-Multibay Frames Without Sidesway

In practice, single story and single bay frames are not much used, instead multistory-multibay
frames are used. Theoretically, critical loads for these frames under axial compression can
also be found using the slope deflections equations as before, but it becomes very lengthy
and complex to solve for frames that are of large size. A two-story and three-bay frame is
solved for illustration purposes to show how the slope deflection method works for the
multistory-multibay frames. The slope deflection equations are written for different members
of the frame in Figure 5.17.

MBA =
EIc

Lc

(
k22AB −

k2
12AB

k11AB

)
𝜃B (5.14a)

MBC =
EIc

Lc
(k11BC𝜃B + k12Bc𝜃c) (5.14b)

MCB =
EIc

Lc
(k21BC𝜃B + k22BC𝜃C) (5.14c)

Lc 

Lc 

Lb

EIb

EIb

EIc

EIc
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C F P P 

P 
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2P 2P
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H 

G M 

N 

O 

EIb
EIb

EIb
EIb

EIc EIc EIc

EIc EIc EIc

P P 

P 
P 

2P 2P

Lb Lb

Figure 5.17 Symmetrical buckling of multistory multibay frame without sidesway.
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Neglecting the axial force in the horizontal members, we get

MBE =
EIb

Lb
(4𝜃B + 2𝜃E) (5.14d)

MEB =
EIb

Lb
(2𝜃B + 4𝜃E) (5.14e)

MCF =
EIb

Lb
(4𝜃c + 2𝜃F) (5.14f)

MFC +
EIb

Lb
(2𝜃C + 4𝜃F) (5.14g)

MED =
EIc

Lc

(
k22DE −

k2
12DE

k11DE

)
𝜃E (5.14h)

MEF =
EIc

Lc
(k11EF𝜃E + k12EF𝜃F) (5.14i)

MFE =
EIc

Lc
(k21EF𝜃E + k22EF𝜃F) (5.14j)

Neglecting the axial force in the horizontal members, we get

MEH =
EIb

Lb
(4𝜃E + 2𝜃H)

Because of symmetry about the vertical center line of the frame, 𝜃E = − 𝜃H , therefore

MEH =
EIb

Lb
(2𝜃E) (5.14k)

MFJ =
EIb

Lb
(4𝜃F + 2𝜃J)

Because of symmetry about the vertical center line of the frame, 𝜃F = − 𝜃J , therefore,

MFJ =
EIb

Lb
(2𝜃F) (5.14l)

From the moment equilibrium at the joints B, C, E, and F, we have

MBA +MBC +MBE = 0 (5.14m)

MCB +MCF = 0 (5.14n)

MED +MEF +MEB +MEH = 0 (5.14o)

MFE +MFC +MFJ = 0 (5.14p)
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Substitute for different moments from Eqs. (5.14a–5.14l) into Eqs. (5.14m)–(5.14p) to get

EIc

Lc

[(
k22AB −

k2
12AB

k11AB
+ k11BC

)
𝜃B + k12BC𝜃c

]
+

EIb

Lb
(4𝜃B + 2𝜃E) = 0 (5.14q)

EIc

Lc
[k21BC𝜃B + k22BC𝜃c] +

EIb

Lb
(4𝜃C + 2𝜃F) = 0 (5.14r)

EIc

Lc

[(
k22DE −

k2
12DE

k11DE
+ k11EF

)
𝜃E + k12EF𝜃F

]
+

EIb

Lb
(2𝜃B + 6𝜃E) (5.14s)

EIc

Lc
(k21EF𝜃E + k22EF𝜃F) +

EIb

Lb
(2𝜃c + 6𝜃F) = 0 (5.14t)

Equations (5.16q)–(5.16t) can be written as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

EIc

Lc

(
k22AB −

k2
12AB

k11AB
+ k11BC

)

+
4EIb

Lb

EIc

Lc
k12BC

2EIb

Lb
0

EIc

Lc
k21BC EIc

Lc
(k22BC) +

4EIb

Lb

0
2EIb

Lb

2EIb

Lb
0

EIc

Lc

⎛⎜⎜⎝k22DE −
k2

12DE

k11DE
+k11EF

⎞⎟⎟⎠
+6EIb

Lb

EIc

Lc
k12EF

0
2EIb

Lb

EIc

Lc
k21EF

EIc

Lc
k22EF +

6EIb

Lb

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×
⎧⎪⎨⎪⎩
𝜃B
𝜃C
𝜃E
𝜃F

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩

0
0
0
0

⎫⎪⎬⎪⎭ (5.14u)
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For the case where Lb = Lc = L, and Ib = Ic = I, Eq. (5.14u) reduces to||||||||||||||||||||

(
k22AB −

k2
12AB

k11AB
+ k11BC + 4

)
k12BC 2 0

k21BC k22BC + 4 0 2

2 0

(
k22DE −

k2
12DE

k11DE
+ k11EF + 6

)
k12EF

0 2 k21EF k22EF + 6

||||||||||||||||||||

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜃B

𝜃C

𝜃E

𝜃F

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0

0

0

0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(5.14v)

For a nontrivial solution of 𝜃B, 𝜃C, 𝜃E, and 𝜃F the determinant of the coefficient matrix should
be zero, and we have||||||||||||||||||||

(
k22AB −

k2
12AB

k11AB
+ k11BC + 4

)
k12BC 2 0

k21BC k22BC + 4 0 2

2 0

(
k22DE −

k2
12DE

k11DE
+ k11EF + 6

)
k12EF

0 2 k21EF k22EF + 6

||||||||||||||||||||

= 0

(5.14w)

Or

(
k22AB −

k2
12AB

k11AB
+ k11BC + 4

)
(k22BC + 4)

(
k22DE −

k2
12DE

k11DE
+ k11EF + 6

)
(k22EF + 6)

−

(
k22AB −

k2
12AB

k11AB
+ k11BC + 4

)
(k22BC + 4)(k12EF)2

−

(
k22AB −

k2
12AB

k11AB
+ k11BC + 4

)(
k22DE −

k2
12DE

k11DE
+ k11EF + 6

)
(4)

−k2
12BC

(
k22DE −

k2
12DE

k11DE
+ k11EF + 6

)
(k22EF + 6)

+k2
12BCk2

12EF − 8k12BCk12EF − 4(k22BC + 4)(k22EF + 6) + 16 = 0 (5.14x)

k2
BC = k2

EF =
P
EI

, k2
AB = k2

DE =
2P
EI

kAB = kDE =
√

2kBC
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Assume kBCL= kEFL and calculate the corresponding kABL = kDEL =
√

2kBCL. Find the slope
deflection coefficients k11AB, k12AB, k11Bc, k12BC, k11DE,k12DE,k11EF, and k12EF from Appendix A
from the assumed and calculated values of kBCL, kEFL, kABL, and kDEL. Alternately, the slope
deflection coefficients can be obtained from Eqs. (4.8g), (4.8h), (4.21f), and (4.21g), where
u = kL

2
. Equation (5.14x) is solved by trial and error to find the correct value of kBCL. The trial

and error procedure gives
kBCL = 2.747

or

k2
BCL2 = 7.547 or PL2

EI
= 7.547

Therefore, the critical load for the two-story three-bay frame in Figure 5.17 is given by

Pcr =
7.547EI

L2 (5.14y)

5.4 Critical Loads by Matrix and Finite Element Methods

In the stability analysis of the frames the equilibrium is satisfied on the deformed shape of
the structure. The first-order analysis in which the material is assumed as linearly elastic and
the equilibrium is satisfied on the original shape of the structure is inadequate to measure the
frame stability. To predict the stability limit of a frame, second-order analysis is performed.
Second-order analysis can include both geometric and material nonlinearities. The analysis
takes into consideration the effects of large deflections (geometrically nonlinear) and the inelas-
tic material (material nonlinearity). Hence the inelastic second-order analysis is the most accu-
rate method to find the loading strength of a structure. The load calculated from the elastic
second-order analysis where only geometric nonlinearity is considered gives the elastic stability
limit for the structure. A load-deflection graph is plotted where the curve approaches asymp-
totically the elastic stability limit load of the structure. Another approach is to calculate the
elastic critical load by eigenvalue or bifurcation analysis where geometric nonlinearity is taken
into account to form the structure stiffness matrix. The elastic analysis is valid only if stresses
in a structure do not exceed the proportional limit at any time. In the second-order analysis
both primary and secondary bending moments due to P -Δ (frame instability) and P - 𝛿 (mem-
ber instability) effects are taken into account. The P -Δ moments are caused by the axial force
acting though the relative lateral displacement of the two ends of a member such as caused by
the sidesway ofΔ in a frame [3]. The P - 𝛿 moments are caused by the axial force acting through
the lateral displacement of a member as in the case of a frame where sidesway is prevented. The
secondary moments due to P - 𝛿 are generated in the beam and the column of the frame due to
the lateral deflection 𝛿 along the length of the column [4].

The matrix and finite element methods have gained popularity because of the extensive use of
computers. Engineers can solve complex problems using these methods for which exact close
form solutions are not available. In this method the element stiffness matrix which relates
the element end forces to its end displacements is formed for every member of the frame.
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The element stiffness matrices are then assembled into the structure stiffness matrix which
relates the structural nodal forces to the structural nodal displacements. In the displacement
method the element stiffness matrices are derived based on the general energy principles. In
the finite element formulation, a displacement field is assumed for the element. The stiffness
matrix relating the nodal forces to nodal displacements is derived by minimizing the total
potential energy of the element.

5.4.1 Formation of the Element Stiffness Matrix

The principle of stationary total potential energy is used here to form the equilibrium equations
for an element. Total potential energy Π for an element is given by

Π = U + V (5.15a)

where U is the strain energy in the element, and V is the potential energy of the external forces
on the element. From the principle of stationary total potential energy, equilibrium is obtained
when the first variation of the total potential energy vanishes, that is

𝛿Π = 𝛿(U + V) = 𝛿U + 𝛿V = 0 (5.15b)

The potential energy of external forces on the element can be expressed as

V = −
∫

Pi dqi (5.15c)

Pi and dqi are the external forces and the corresponding displacements. If the external forces
and displacements in the element are expressed in terms of the n nodal forces {q} and the cor-
responding nodal displacements {d}, then the potential energy of external forces is given by

V = −
n∑

i=1
qidi = −{d}T{q} (5.15d)

The strain energy of the frame element is given by

U =
∫Vol

(
∫
𝜀

𝜎 d𝜀
)

dVol (5.15e)

where 𝜎 and 𝜀 are the axial stress and the corresponding axial strain, and Vol is the volume of
the element. Assuming linearly elastic material, from Hooke’s law we have

σ = E𝜀

Substitution in Eq. (5.15e) and integrating we get

U = E
2 ∫

L

0 ∫A
(𝜀2) dA dx (5.15f)

where L is the length and A is the area of cross-section of the element. For nonlinear elastic
analysis, the strain 𝜀 is given by

𝜀 = u,x +
1
2

u2
,x +

1
2

v2
,x − yv,xx (5.15g)
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where u and v represent the axial and transverse displacements of the element respectively and
subscripts show derivatives, for example

du
dx

= u,x,
dv
dx

= v,x, and d2v
dx2 = v,xx

The first three terms in Eq. (5.15g) give the strain of the element at its centroid according
to Green’s strain tensor [5]. The last term gives the axial strain due to flexure in the fibers
at a distance y from the centroid of the cross-section of the element. The second term u2

,x is
neglected in comparison to the first term u,x because the axial displacement is usually small.
Substitution of Eq. (5.15g) into Eq. (5.15f) leads to

U = E
2 ∫

L

0 ∫A

(
u,x +

1
2

v2
,x − yv,xx

)2
dA dx (5.15h)

U = E
2 ∫

L

0 ∫A

(
u2
,x +

1
4

v4
,x + y2v2

,xx + u,xv2
,x − yv2

,xv,xx − 2yu,xv,xx

)
dx dA (5.15i)

Neglect the term, 1
4

v4
,x in comparison to other terms, and integrate with respect to the area A.

Substitute I = ∫A y2dA, the second moment of inertia of the cross-section, and ∫A ydA = 0 , the
first moment of the area about the centroidal axis, which is zero. We get

U = E
2 ∫

L

0
(Au2

,x + Iv2
,xx + Au,xv2

,x)dx (5.15j)

Substitute EAu,x = P, the axial force in the member. The first variation of the strain energy
can be written as

𝛿U =
∫

L

0
[EA(u,x)(𝛿u,x) + EI(v,xx)(𝛿v,xx) + P(v,x)(𝛿v,x)] dx (5.15k)

The first variation of the potential energy obtained from Eq. (5.15d) is

𝛿V = −{𝛿d}T{q} (5.15l)

Apply the principle of stationary total potential energy, then from Eq. (5.15b) we get

∫

L

0
[EA(u,x)(𝛿u,x) + EI(v,xx)(𝛿v,xx) + P(v,x)(𝛿v,x)]dx − {𝛿d}T{q} = 0 (5.15m)

The displacement field for u and v in the element shown in Figure 5.18 is assumed as

u = a0 + a1x (5.15n)
v = b0 + b1x + b2x2 + b3x3 (5.15o)

The constants a0, a1, b0, b1, b2, and b3 are determined from the boundary conditions:

x = 0
u = d1, v = −d2, and v,x = d3 and
x = L
u = d4, v = −d5, and v,x = d6
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Substitute these boundary conditions in Eqs. (5.15n) and (5.15o) and we get

{
u
v

}
=

⎡⎢⎢⎢⎣
(

1 − x
L

)
0 0 x

L
0 0

0
(
−1 + 3x2

L2 − 2x3

L3

) (
x − 2x2

L
+ x3

L2

)
0

(
−3x2

L2 + 2x3

L3

) (
−x2

L
+ x3

L2

)⎤⎥⎥⎥⎦

×

⎧⎪⎪⎪⎨⎪⎪⎪⎩

d1
d2
d3
d4
d5
d6

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(5.15p)

Eq. (5.15p) can be written as

{u} = [N] {d} (5.15q)

where {u} is the displacement function, [N] is called the shape function, and {d} represents
the nodal displacements for the frame element. The total axial strain in the element can be
represented by

{𝜀} = {𝜀0} + {𝜀i} (5.15r)

(a)

(b)

L

q1 

q2 
q3 

q4

q5q6 

Undeformed
element

d1 

d2 

d3

d4 

d5 

d6 

x

y

Deformed
element

Figure 5.18 Beam element nodal displacements and forces: (a) Frame element displacements; (b) Frame element
nodal forces.
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where {𝜀i} is the initial strain due to axial force, and {𝜀0} linear elastic strain. The strain dis-
placement relations for Eq. (5.15r) can be written as

{𝜀} =
{

u,x
v,xx

}
+ {v,x} (5.15s)

or

{𝜀} = [B0]{d} + [Bi]{d} (5.15t)

Eq. (5.15m) can be written as

∫

L

0
[ 𝛿u,x 𝛿v,xx ]

[
EA 0
0 EI

] {
u,x
v,xx

}
dx + P

∫

L

0
[𝛿v,x]T [v,xx] dx − { 𝛿d }T{ q } = 0

(5.15u)

Substitute Eq. (5.15t) in Eq. (5.15u) and we have

{𝛿d}T
{
∫

L

0

(
[B0]T

[
EA 0
0 EI

]
[B0] + P[Bi]T[Bi]

)
dx

}
{d} = {𝛿d}T{q} (5.15v)

Equation (5.15v) is derived for any arbitrary increase in nodal displacements {𝛿d}, therefore,{
∫

L

0

(
[B0]T

[
EA 0
0 EI

]
[B0] + P[Bi]T[Bi]

)
dx

}
{d} = {q} (5.15w)

or

{[k0] + P[kP]}{d} = {q} (5.15x)

where the element stiffness matrix {k0} is the linear elastic or first order stiffness matrix. The
{kp} is the element geometrical or initial stiffness matrix, it takes into account the effect of the
axial load P on the stiffness of the flexural member. P is positive for a tensile axial force and is
negative for a compressive axial force.

We can calculate the strain displacement relations coefficient matrices [B0] and [Bi] from
Eqs. (5.15p), (5.15s), and (5.15t) and are given as follows:

[B0] =
⎡⎢⎢⎢⎣
− 1

L
0 0 1

L
0 0

0
( 6

L2 −
12x
L3

) (
− 4

L
+ 6x

L2

)
0

(
− 6

L2 +
12x
L3

) (
− 2

L
+ 6x

L2

)⎤⎥⎥⎥⎦
and

[Bi] =
[

0
(

6x
L2 −

6x2

L3

) (
1 − 4x

L
+ 3x2

L2

)
0

(
−6x

L2 +
6x2

L3

) (
−2x

L
+ 3x2

L2

)]
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Substitute [B0] in Eq. (5.15w) and we get

∫

L

0

(
[B0]T

[
EA 0
0 EI

]
[B0]

)
dx = [k0]

or

[k0] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

EA
L

0 0 −EA
L

0 0

0 12EI
L3 −6EI

L2 0 −12EI
L3 −6EI

L2

0 −6EI
L2

4EI
L

0 6EI
L2

2EI
L

−EA
L

0 0 EA
L

0 0

0 −12EI
L3

6EI
L2 0 12EI

L3
6EI
L2

0 −6EI
L2

2EI
L

0 6EI
L2

4EI
L

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.15y)

and

[kP] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 6
5L

− 1
10

0 − 6
5L

− 1
10

0 − 1
10

2L
15

0 1
10

− L
30

0 0 0 0 0 0

0 − 6
5L

1
10

0 6
5L

1
10

0 − 1
10

− L
30

0 1
10

2L
15

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.15z)

5.4.2 Formation of the Structure Stiffness Matrix

Prior to the assembly of element stiffness matrices into the structure stiffness matrix, it is nec-
essary to transform the element nodal forces and displacements to global coordinates. This
is accomplished by a transformation of coordinates. The element stiffness matrix is written
in terms of element forces and deformations using element or local coordinates, whereas the
structure stiffness matrix represents the relationship between structure forces and deforma-
tions in structure or global coordinates. Thus, element stiffness matrices are transformed into
structure coordinates by transformation from element to global coordinates. The element and
structure coordinates are shown in Figure 5.19 by the x, y and X , Y directions respectively. The
out of plane z and Z axes coincide for a two-dimensional case of deformations and forces.
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X,U

Y,V

x, u

y,v

β

β

Figure 5.19 Global and local coordinates.

The transformation matrix T that transforms from element or local to structure or global
coordinates is given by⎧⎪⎪⎪⎨⎪⎪⎪⎩

d1
d2
d3
d4
d5
d6

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎣

cos 𝛽 sin 𝛽 0 0 0 0
− sin 𝛽 cos 𝛽 0 0 0 0

0 0 1 0 0 0
0 0 0 cos 𝛽 sin 𝛽 0
0 0 0 − sin 𝛽 cos 𝛽 0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨⎪⎪⎪⎩

D1
D2
D3
D4
D5
D6

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(5.16a)

or

{d} = [T]{D} (5.16b)

{d} and {D} are the element and structure nodal displacements matrices, respectively. The
element nodal forces {q} and structure nodal forces {Q} transform in the same way as the defor-
mations, that is

{q} = [T]{Q} (5.16c)

The element nodal forces {q} are related to the element nodal deformations {d} by

[k]{d} = {q}

or

[k][T]{D} = [T]{Q}

or

[T]−1[k][T]{D} = {Q}

Since [T] is an orthogonal matrix, [T]−1 = [T]Tor

[T]T[k][T]{D} = {Q}
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or

[K]{D} = {Q} (5.16d)

Therefore,

[K] = [T]T[k][T] (5.16e)

An element stiffness matrix is transformed into the structure coordinates as shown in
Eq. (5.16e) before assembling it into a structure stiffness matrix. By coordinate transforma-
tions, structure stiffness matrices can be formed from Eqs. (5.15y), (5.15z) and (5.16e) as
follows:

[K0] = [T]T[k0][T] (5.16f)

and

[KP] = [T]T[kP][T] (5.16g)

5.4.3 In Span Loading

So far, we have considered concentrated nodal forces, but frame members are also subjected
to distributed loads on their spans. The distributed loads are replaced by equivalent nodal
forces by using the concept that the work of the distributed loads is equal to that of equivalent
nodal forces for any arbitrary nodal displacements. Consider the distributed loading shown in
Figure 5.20 on an element that consists of forces px and py along the span and perpendicular to
the span of the element.

The work done by the distributed forces is given by

W =
∫

L

0
(pxu + pyv) dx (5.17a)

or

W =
∫

L

0

[
u v

] {
px
py

}
dx (5.17b)

qf1

qf2

qf3
qf4

qf5

qf6

px

py

x

y

Figure 5.20 Distributed forces and equivalent nodal forces.
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Substitution from Eq. (5.15q) into Eq. (5.17b) gives

W =
∫

L

0
{d}T[N]T {p}dx (5.17c)

where

{p} =
{

px
py

}
(5.17d)

Work done by equivalent nodal forces {qf } is given by

W = {d}T{qf } (5.17e)

Equate W in Eqs. (5.17c) and (5.17e), and we get

{qf } =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

qf 1
qf 2
qf 3
qf 4
qf 5
qf 6

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=
∫

L

0
[N]T{p}dx (5.17f)

The in span forces are accounted by introducing the equivalent nodal forces vector {qf } to the
right side of Eq. (5.15x). Consider a simply supported beam column in Figure 5.21a subjected
to the distributed force of px = p, and py = w. From Eq. (5.17f) we have

(a)

(b)

L 

w

p

L 

pL/2

wL2/12
wL/2

wL2/12
wL/2

pL/2

Figure 5.21 Beam with distributed load and equivalent nodal forces: (a) Beam with a distributed load; (b) The
equivalent nodal forces.
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{qf } = ∫

L

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
1 − x

L

)
0

0
(
−1 + 3x2

L2 − 2x3

L3

)
0

(
x − 2x2

L
+ x3

L2

)
x
L

0

0
(
−

3x2

L2 + 2x3

L3

)
0

(
−x2

L
+ x3

L2

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨⎪⎩
p

w

⎫⎪⎬⎪⎭ dx =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

pL
2

−wL
2

wL2

12
pL
2

−wL
2

−wL2

12

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

(5.17g)

The equivalent nodal forces are shown in Figure 5.21b and it is seen that the equivalent
nodal forces are equal and opposite to the reactions in a fixed-fixed beam column under similar
loading.

5.4.4 Buckling of a Frame Pinned at the Base and with Sidesway Permitted

Consider the frame loaded by two vertical forces each equal to P acting on the horizontal mem-
ber shown in Figure 5.22a. Let each member consist of only single element, the positive element
nodal forces and displacements are shown in Figure 5.22b. The members are assumed to be
inextensible, that is the change in length due to axial force is neglected in the members. There-
fore, each element has four degrees of freedom d1, d2, d3, d4 and the corresponding element
forces q1, q2, q3, q4 shown in their positive sense in Figure 5.22b. So, the element stiffness matri-
ces are 4× 4 instead of 6× 6 as shown in Eqs. (5.15y) and (5.15z). Each member is of length L
and stiffness EI. The frame is hinged at the bottom and is allowed horizontal lateral movement
at the top. The structure nodal forces and displacements are shown in Figure 5.22a in their pos-
itive sense. The structure and element coordinates are also shown in Figure 5.22. The element
stiffness matrices for the column elements 1 and 3 are

[k1] = [k3] =
EI
L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

12
L2 − 6

L
−12

L2 − 6
L

− 6
L

4 6
L

2

−12
L2

6
L

12
L2

6
L

− 6
L

2 6
L

4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
− P

L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

6
5

− L
10

−6
5

− L
10

− L
10

2L2

15
L
10

−L2

30

−6
5

L
10

6
5

L
10

− L
10

−L2

30
L
10

2L2

15

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.18a)
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or

[k1] = [k3] =
EI
L
[k01] −

P
L
[kp1] =

EI
L
[k03] −

P
L
[kp3] (5.18b)

The element stiffness matrix for the beam element 2 is

[k2] =
EI
L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

12
L2 − 6

L
−12

L2 − 6
L

− 6
L

4 6
L

2

−12
L2

6
L

12
L2

6
L

− 6
L

2 6
L

4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
= EI

L
[k02] (5.18c)

x

(a)

(b)

x

y
2

x

y

1

y

3

L

X

Y
EI 

P

L 1

2

3EI 

EI 

D4,Q4

D1,Q1

D2,Q2

D3,Q3

D9,Q9

D7,Q7

D8,Q8

d3,q3

d4,q4

d4,q4
d4,q4

d3,q3

d3,q3

d2,q2
d2,q2

d1,q1
d1,q1

d2,q2
d1,q1

D5,Q5

D6,Q6
L/3 L/3 L/3

Figure 5.22 Structure and element forces and displacements: (a) Structure coordinates, degrees of freedom and
forces; (b) Element coordinates, degrees of freedom and forces.
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The element stiffness matrices are now converted into structure coordinates by using
Eq. (5.16a). For element 1, 𝛽 = 90∘, substituting in Eq. (5.16a) we get

⎧⎪⎨⎪⎩
d1
d2
d3
d4

⎫⎪⎬⎪⎭ =
⎡⎢⎢⎢⎣
− sin 𝛽 cos 𝛽 0 0 0

0 0 1 0 0
0 0 0 0 − sin 𝛽

0 0 0 1 0

⎤⎥⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩

D1
D2
D3
D4
D5

⎫⎪⎪⎬⎪⎪⎭
(5.18d)

or

[T1] =
⎡⎢⎢⎢⎣
−1 0 0 0 0
0 0 1 0 0
0 0 0 0 −1
0 0 0 1 0

⎤⎥⎥⎥⎦ (5.18e)

For element 2, 𝛽 = 0, substituting in Eq. (5.16a) we get⎧⎪⎨⎪⎩
d1
d2
d3
d4

⎫⎪⎬⎪⎭ =
⎡⎢⎢⎢⎣
0 0 0
1 0 0
0 − sin 𝛽 0
0 0 1

⎤⎥⎥⎥⎦
⎧⎪⎨⎪⎩

D4
D5
D6

⎫⎪⎬⎪⎭ (5.18f)

or

[T2] =
⎡⎢⎢⎢⎣
0 0 0
1 0 0
0 0 0
0 0 1

⎤⎥⎥⎥⎦ (5.18g)

For element 3, 𝛽 = 90∘, substituting in Eq. (5.16a) we get

⎧⎪⎨⎪⎩
d1
d2
d3
d4

⎫⎪⎬⎪⎭ =
⎡⎢⎢⎢⎣
− sin 𝛽 cos 𝛽 0 0 0

0 0 1 0 0
0 0 0 − sin 𝛽 0
0 0 0 0 1

⎤⎥⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩

D7
D8
D9
D5
D6

⎫⎪⎪⎬⎪⎪⎭
(5.18h)

or

[T3] =
⎡⎢⎢⎢⎣
−1 0 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 1

⎤⎥⎥⎥⎦ (5.18i)

The element stiffness matrices are now transformed into structure coordinates by using the
following equation

[K] = [T]T[k][T] (5.16e)
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For element 1

[K1] =
EI
L
[T1]T[k01][T1] −

P
L
[T1]T[kp1][T1] (5.18j)

or

[K1] =
EI
L

D1 D2 D3 D4 D5⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12
L2 0 6

L
6
L

−12
L2

0 0 0 0 0
6
L

0 4 2 − 6
L

6
L

0 2 4 − 6
L

−12
L2 0 − 6

L
− 6

L
12
L2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− P
L

D1 D2 D3 D4 D5⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6
5

0 L
10

L
10

−6
5

0 0 0 0 0

L
10

0 2L2

15
−L2

30
− L

10
L
10

0 −L2

30
2L2

15
− L

10

−6
5

0 − L
10

− L
10

6
5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

D1

D2

D3

D4

D5

(5.18k)

For element 2

[K2] =
EI
L
[T2]T[k02][T2] (5.18l)

or

[K2] =

D4 D5 D6

EI
L

⎡⎢⎢⎣
4 0 2
0 0 0
2 0 4

⎤⎥⎥⎦
D4
D5
D6

(5.18m)

For element 3

[K3] =
EI
L
[T3]T[k02][T3] −

P
L
[T3]T[kp3][T3] (5.18n)

or

[K3] =
EI
L

D7 D8 D9 D5 D6⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12
L2 0 6

L
−12

L2
6
L

0 0 0 0 0
6
L

0 4 − 6
L

2

−12
L2 0 − 6

L
12
L2 − 6

L
6
L

0 2 − 6
L

4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− P
L

D7 D8 D9 D5 D6⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6
5

0 L
10

−6
5

L
10

0 0 0 0 0

L
10

0 2L2

15
− L

10
−L2

30

−6
5

0 − L
10

6
5

− L
10

L
10

0 −L2

30
− L

10
2L2

15

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

D7

D8

D9

D5

D6

(5.18o)
Three element matrices in structure coordinates given by Eqs. (5.18k), (5.18m), and (5.18o)

are assembled to give the structure stiffness matrix. The procedure to assemble a structure
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stiffness matrix can be seen in a text book on structural analysis using the matrix methods [6].
The total structure stiffness matrix can be written as

[K] = EI
L
[K0] −

P
L
[KP] (5.18p)

[Ko] =

D1 D2 D3 D4 D5 D6 D7 D8 D9⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12
L2 0 6

L
6
L

−12
L2 0 0 0 0

0 0 0 0 0 0 0 0 0
6
L

0 4 2 − 6
L

0 0 0 0

6
L

0 2 4 + 4 − 6
L

2 0 0 0

−12
L2 0 − 6

L
− 6

L
12
L2 +

12
L2 − 6

L
−12

L2 0 − 6
L

0 0 0 2 − 6
L

4 + 4 6
L

0 2

0 0 0 0 −12
L2

6
L

12
L2 0 6

L
0 0 0 0 0 0 0 0 0

0 0 0 0 − 6
L

2 6
L

0 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

D1

D2

D3

D4

D5

D6

D7

D8

D9

(5.18q)

[KP] =

D1 D2 D3 D4 D5 D6 D7 D8 D9⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6
5

0 L
10

L
10

−6
5

0 0 0 0

0 0 0 0 0 0 0 0 0

L
10

0 2L2

15
−L2

30
− L

10
0 0 0 0

L
10

0 −L2

30
2L2

15
− L

10
0 0 0 0

−6
5

0 − L
10

− L
10

6
5
+ 6

5
− L

10
−6

5
0 − L

10

0 0 0 0 − L
10

2L2

15
L
10

0 −L2

30

0 0 0 0 −6
5

L
10

6
5

0 L
10

0 0 0 0 0 0 0 0 0

0 0 0 0 − L
10

−L2

30
L
10

0 2L2

15

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

D1

D2

D3

D4

D5

D6

D7

D8

D9

(5.18r)
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The supports at the bottom of the frame are hinged, so the horizontal and vertical displace-
ments and the corresponding structure degrees of freedoms D1, D2, D7, and D8 are zero there.
Eliminate the rows and columns corresponding to these degrees of freedom from the structure
stiffness matrix to form the reduced structure stiffness matrix given by

[K] = EI
L

D3 D4 D5 D6 D9⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 2 − 6
L

0 0

2 8 − 6
L

2 0

− 6
L

− 6
L

24
L2 − 6

L
− 6

L

0 2 − 6
L

8 2

0 0 − 6
L

2 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

− P
L

D3 D4 D5 D6 D9⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2L2

15
−L2

30
− L

10
0 0

−L2

30
2L2

15
− L

10
0 0

− L
10

− L
10

12
5

− L
10

− L
10

0 0 − L
10

2L2

15
−L2

30

0 0 − L
10

−L2

30
2L2

15

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

D3

D4

D5

D6

D9

(5.18s)

The nodal forces from Eq. (5.17g) are given by

⎧⎪⎪⎨⎪⎪⎩

Q3
Q4
Q5
Q6
Q9

⎫⎪⎪⎬⎪⎪⎭
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0
2PL

9
0

−2PL
9

0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(5.18t)

where 2PL/9 is the fixed end moment magnitude on both ends of the horizontal member due
to load in Figure 5.22. The clockwise moment is taken as positive and the counterclockwise
moment as negative. The equilibrium equation for the frame in the deformed position is given
by

[K]{D} = {Q} (5.18u)

where [K] and {Q} are given by Eqs. (5.18s) and (5.18t) respectively, and {D} is given by

{D} =

⎧⎪⎪⎨⎪⎪⎩

D3
D4
D5
D6
D9

⎫⎪⎪⎬⎪⎪⎭
(5.18v)
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The deflected shape of the frame is antisymmetric, therefore, D3 = D9, and D4 = D6. The
stiffness matrix in Eq. (5.18s) can be further reduced to

[K] = EI
L

⎡⎢⎢⎢⎢⎢⎣
4 2 − 6

L
2 10 − 6

L
−12

L
−12

L
24
L2

⎤⎥⎥⎥⎥⎥⎦
− P

L

⎡⎢⎢⎢⎢⎢⎣

2L2

15
−L2

30
− L

10
−L2

30
2L2

15
− L

10
−L

5
−L

5
12
5

⎤⎥⎥⎥⎥⎥⎦
(5.18t)

The structure nodal displacements and the corresponding structure forces are related by⎧⎪⎪⎪⎨⎪⎪⎪⎩
EI
L

⎡⎢⎢⎢⎢⎢⎢⎣

4 2 − 6
L

2 10 − 6
L

−12
L

−12
L

24
L2

⎤⎥⎥⎥⎥⎥⎥⎦
− P

L

⎡⎢⎢⎢⎢⎢⎢⎣

2L2

15
−L2

30
− L

10

−L2

30
2L2

15
− L

10

−L
5

−L
5

12
5

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎬⎪⎪⎪⎭

⎧⎪⎨⎪⎩
D3
D4
D5

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩

0
2PL

9
0

⎫⎪⎬⎪⎭ (5.18u)

At the critical load, there is large increase in {D} for a small increase in {Q} because the bending
stiffness of the member is considerably reduced. We can write Eq. (5.18u) as

{D} = [K]−1{Q} (5.18v)

The inverse of the stiffness matrix, {K]−1, is determined by dividing the adjoint matrix of [K]
by its determinant. At the critical load found by bifurcation theory, the bending stiffness of
the structure vanishes, so the determinant of [K] should be zero. This leads to an eigenvalue
problem, the solution of which gives the critical load as the minimum eigenvalue. The structure
stiffness matrix from Eq. (5.18t) can be written as

[K] =

⎡⎢⎢⎢⎢⎢⎢⎣

4EI
L
− 2PL

15
2EI

L
+ PL

30
−6EI

L2 + P
10

2EI
L
+ PL

30
10EI

L
− 2PL

15
−6EI

L2 + P
10

−12EI
L2 + P

5
−12EI

L2 + P
5

24EI
L3 − 12P

5L

⎤⎥⎥⎥⎥⎥⎥⎦
(5.18w)

The determinant of the structure stiffness matrix in Eq. (5.18w) is equated to zero, thus

|K| = EI
L

|||||||||||||

4 − 4𝜆 2 + 𝜆
−6 + 3𝜆

L

2 + 𝜆 10 − 4𝜆 −6 + 3𝜆
L

−12 + 6𝜆
L

−12 + 6𝜆
L

24 − 72𝜆
L2

|||||||||||||
= 0,where 𝜆 = PL2

30EI



Trim Size: 187mm x 235mm Single Column Jerath c05.tex V1 - 11/07/2020 8:50pm Page 273�

� �

�

5.4 Critical Loads by Matrix and Finite Element Methods 273

or
25λ3 − 105λ2 + 72λ − 4 = 0 (5.18x)

or
𝜆 = 0.0609

or

Pcr =
1.827EI

L2 (5.18y)

That is almost the same as Pcr =
1.778EI

L2 in Eq. (5.12o).

5.4.5 Nonlinear Geometric or Large Deflection Analysis (Second-Order Elastic Analysis)

The elastic critical load for the frame can be found by conducting the geometric nonlinear anal-
ysis where the loads on the frame are increased in steps and the stiffness matrix is updated at
the end of each step to account for the deformation that occurred in the previous step. Thus,
the solution of a nonlinear problem is obtained by a series of linear analyses. In one of the
approaches the load is applied in a number of increments and within each increment an itera-
tive technique is applied to obtain the solution. It is assumed that during a particular iteration
cycle the structure behaves linearly. The deformed configuration of the structure at the end of
each cycle is used to analyze the structure in the next cycle. A second-order analysis described
here will generate a load-deflection curve, the peak point on the curve where the tangent is
horizontal gives the critical load. The incremental-iterative procedure is described below.

1. The element stiffness matrices are formulated by Eqs. (5.15x), (5.15y), and (5.15z) in the
element coordinate systems, then they are converted to the structure coordinate system
and assembled to form the structure stiffness matrix. For the first load increment and first
iteration, the stiffness matrix is formed on the basis of undeformed geometry.

2. To describe the procedure in general, let us say that the equilibrium and kinematic states
of the frame are known at the end of load step (i-1), and it is desired to find the state of the
structure at the end of load step i.

3. The incremental displacements at the end of first iteration of the load step i are given by
[K1

i ]{ΔD1
i } = {ΔQi} (5.19a)

or
{ΔD1

i } = [K
1
i ]
−1{ΔQi} (5.19b)

where
[K1

i ] = Stiffness matrix formed for the first iteration of load step i, and based on the equi-
librium and

kinematic states at the end of load step (i-1)
{ΔD1

i } = Incremental structural nodal displacement vector calculated in the first iteration
of the load

step i
{ΔQi}= Load increment at the load step i
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4. The structural nodal displacement vector is now given by

{D1
i } = {Di−1} + {ΔD1

i } (5.19c)

where
{D1

i }= Structural nodal displacement vector after first iteration of load step i
{Di− 1} = Structure nodal displacement vector at the beginning of load step i
In Figure 5.23a the equilibrium iterations are performed by the Newton-Raphson method
and are shown schematically for a one degree of freedom system.

5. Extract the element end displacement vector {di} from {D1
i } for each element.

6. Calculate the element axial displacement u and element end rotations 𝜃A and 𝜃B from
Figure 5.24 as follows:

𝜃A = 𝛼 + d3 − 𝛽 (5.19d)
𝜃B = 𝛼 + d6 − 𝛽 (5.19e)
u = Lf − Lo (5.19f)

where[
d1 d2 d3 d4 d5 d6

]T = Element end displacement vector
𝛼 = Initial slope of the underformed element with reference to the horizontal
𝛽 = Slope of the deformed element with reference to the horizontal
Lo = Initial length of the element in the undeformed position
Lf = Length of the element in deformed position
u = Axial deformation in the element

𝛽 = tan−1 d5 + Lo sin 𝛼 − d2

d4 + Lo cos 𝛼 − d1
(5.19g)

Lf =
√
(d4 + Lo cos 𝛼 − d1)2 + (d5 + Lo sin 𝛼 − d2)2 (5.19h)

7. Calculate the axial force P, and end moments MA and MB for each element from the slope
deflection equations [3]

MA =
EI
Lf
(sii𝜃A + sij𝜃B) +MFA (5.19i)

MB =
EI
Lf
(sij𝜃A + sjj𝜃B) +MFB (5.19j)

P = EA
Lf

u (5.19k)

where EI = Stiffness of the element; A is the area of cross-section of the element; sii etc. are
the slope deflection coefficients for a beam column from Appendix A; MFA and MFB are the
fixed end moments at the ends A and B of the element respectively, which are zero if there
is no in span load in the element.
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Figure 5.23 Second-order frame analysis with the Newton-Raphson iteration method: (a) Newton-Raphson
method; (b) Modified Newton-Raphson method.
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Figure 5.24 Large deflection analysis kinematics relations.

8. For each element evaluate the end forces {q} in the structure coordinates from the internal
forces P, MA, and MB as shown in Figure 5.25. These forces are given by Eq. (5.19l).

⎧⎪⎪⎪⎨⎪⎪⎪⎩

q1
q2
q3
q4
q5
q6

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− cos 𝛽 sin 𝛽

Lf

sin 𝛽

Lf

− sin 𝛽 −cos 𝛽
Lf

−cos 𝛽
Lf

0 1 0

cos 𝛽 −sin 𝛽

Lf
−sin 𝛽

Lf

sin 𝛽
cos 𝛽

Lf

cos 𝛽
Lf

0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎨⎪⎩
P

MA
MB

⎫⎪⎬⎪⎭ (5.19l)

In Eq. (5.19l) clockwise moments are positive and the axial tension is taken as positive.
The element end forces in structure coordinates are calculated for all the elements and
assembled to get the internal force vector, {Q1

i }, at the end of first iteration of the load step
i as shown in Figure 5.23a.

9. The external force vector {Qi} at the end of load step i is
{Qi} = {Qi−1} + ΔQi (5.19m)

10. The difference between the external force vector and the internal force vector gives the
unbalanced force ΔQ1

i after the first iteration of load step i as

{ΔQ1
i } = {Qi} − {Q1

i } (5.19n)
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Figure 5.25 Internal forces in the element: (a) Axial force and the end moments in the element; (b) Internal nodal
forces in the element in the structure coordinates.

11. Using the current value of the axial force, update the stiffness matrix [k] for each element
and form the updated structure stiffness matrix [K2

i ] for the second iteration of load step i.
Calculate the incremental displacement vector {ΔD2

i } as follows:

{ΔD2
i } = [K

2
i ]
−1{ΔQ1

i } (5.19o)

The formation and inversion of the stiffness matrix require considerable computer time,
sometimes the same structure stiffness matrix is used for all iterations in a load incre-
ment. The stiffness matrix is changed at the end of each load step or when there is diffi-
culty in convergence during iteration within a load step. This procedure is called modified
Newton-Raphson method, and is shown schematically for one degree of freedom system
in Figure 5.23b.

12. Form the updated structure nodal displacement vector {D2
i } as follows:

{D2
i } = {Di−1} +

2∑
j=1
ΔDj

i (5.19p)

13. Extract the element end displacement vector {di} from {D2
i } for each element. Find new

values of u, 𝜃A, 𝜃B; and then find P, MA, and MB for the second iteration of the load step i
as was found for first iteration for all the elements.

14. Find the new element end forces in the structure coordinates and form the structure inter-
nal force vector {Q2

i } for the second iteration of the load step i as was done in step 8.
15. The new unbalanced force at the end of second iteration of load step i is given by

{ΔQ2
i } = {Qi} − {Q2

i } (5.19q)
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16. Repeat the process from steps 11–15 until the solution converges. The convergence is said
to occur when the unbalanced force {ΔQj

i} at the end of the j-th iteration is negligible, i.e.
it falls within the allowable tolerance.

17. The structure nodal displacements at the end of load step i if the convergence occurs after
n number of iterations, are given by

{Di} = {Di−1} +
n∑

j=1
ΔDj

i

18. Now increase the load by another load step ΔQi+ 1, and repeat the procedure from steps
3–17 for the load step (i+ 1).

19. This way, a complete nonlinear load displacement curve can be drawn and the critical load
of the frame can be found.

5.5 Design of Frame Members

In the design of frames, the stability of the entire frame is to be considered, including the sta-
bility of individual members. The critical load for the frame can be found by carrying out a
stability analysis of the entire frame. From this the loads in the individual compression mem-
bers at the time of buckling of the frame can be found. To simplify the procedure for the design
of individual compression members, a simple approximate approach is used. In this approach
the effective lengths of various compression members in the framed structure are found by the
Julian and Lawrence (1959) [7] method. The effective length is found by considering the effect
of members that frame directly into the compression member, whereas the effect of members
not directly connected to the compression member is neglected. The method is based on the
following assumptions:

1. All members in the frame are prismatic and their behavior is elastic.
2. Axial compressive force in the beams is neglected.
3. All joints are rigid.
4. The stiffness parameter L

√
P
EI

is constant for all the columns in a story.
5. All columns buckle simultaneously in a story.
6. At a joint the restraint provided by beams is distributed to the columns above and below the

joint in proportion to their I
L

values.
7. For braced frames, rotations at the opposite ends of the restraining beams are equal in mag-

nitude and opposite in direction (single curvature bending in beams).
8. For unbraced frames, rotations at the opposite ends of the restraining beams are equal in

magnitude and direction (double curvature bending in beams). The inflection point is in
the middle of a beam span if only lateral loads are acting.

The Julian and Lawrence (1959) [7] approach produces alignment charts and is described for
braced and unbraced frames.
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5.5.1 Braced Frames (Sidesway Inhibited)

It is intended to find the effective length factor K for the column BC in a braced frame shown
partly in Figure 5.26. When the frame buckles, the moments are developed at the ends of the
members. These moments for the columns AB, BC, and CD in Figure 5.26 are given by the slope
deflection equations as follows:

(MB)AB =
(EI

L

)
AB
(kii𝜃B + kij𝜃C) (5.20a)

(MB)BC =
(EI

L

)
BC
(kii𝜃B + kij𝜃C) (5.20b)

(MC)BC =
(EI

L

)
BC
(kij𝜃B+kjj𝜃C) (5.20c)

(MC)CD =
(EI

L

)
CD
(kii𝜃C + kij𝜃B) (5.20d)

where E is the modulus of elasticity of the material of columns, I and L are the moment of
inertia and unbraced length of the columns in the plane of buckling.

For horizontal beams, the axial force is neglected, therefore, kii = kjj = 4, and kij = kji = 2.
The slope deflection equations for the horizontal beams BE, BF, CG, and CH in Figure 5.26

are as follows:

(MB)BE =
(EI

L

)
BE
(4𝜃B − 2𝜃B) =

(2EI
L

)
BE
𝜃B (5.20e)

(MB)BF =
(EI

L

)
BF
(4𝜃B − 2𝜃B) =

(2EI
L

)
BF
𝜃B (5.20f)

D 
P 
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C 
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E
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Figure 5.26 Column in a braced frame along with adjoining members.
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(MC)CG =
(EI

L

)
CG
(4𝜃C − 2𝜃C) =

(2EI
L

)
CG
𝜃C (5.20g)

(MC)CH =
(EI

L

)
CH
(4𝜃C − 2𝜃C) =

(2EI
L

)
CH

𝜃C (5.20h)

where E is the modulus of elasticity of the material of beams, I and L are the moment of inertia
and unbraced length of the beams in the plane of buckling.

Joint equilibrium at B gives

MBA +MBC +MBE +MBF = 0 (5.20i)

Substituting from Eqs. (5.20a), (5.20e), and (5.20f) we get

MBC = −
(EI

L

)
AB
(kii𝜃B + kij𝜃C) −

(2EI
L

)
BE
𝜃B −

(2EI
L

)
BF
𝜃B (5.20j)

Equating the right-hand terms in Eqs. (5.20b) and (5.20j) we have⎡⎢⎢⎢⎣2

∑
B

(
EI
L

)
b∑

B

(
EI
L

)
c

+ kii

⎤⎥⎥⎥⎦ 𝜃B + kij𝜃C = 0 (5.20k)

where∑
B

(EI
L

)
b
=

(EI
L

)
BE
+

(EI
L

)
BF
= Sum of the stiffness of beams meeting at the joint B, and

∑
B

(EI
L

)
c
=

(EI
L

)
AB
+

(EI
L

)
BC
= Sum of the stiffness of columns meeting at the joint B.

Let

GB =

∑
B

(
EI
L

)
c∑

B

(
EI
L

)
b

(5.20l)

Joint equilibrium at C gives

MCB +MCD +MCG +MCH = 0 (5.20m)

Substituting from Eqs. (5.20d), (5.20g), and (5.20h), we get

MCB = −
(EI

L

)
CD
(kii𝜃C + kij𝜃B) −

(2EI
L

)
CG
𝜃C −

(2EI
L

)
CH

𝜃C (5.20n)

Equating the right-hand terms in Eqs. (5.20c) and (5.20n), we have

kij𝜃B +
⎡⎢⎢⎢⎣2

∑
C

(
EI
L

)
b∑

C

(
EI
L

)
c

+ kii

⎤⎥⎥⎥⎦ 𝜃C = 0 (5.20o)
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where∑
C

(EI
L

)
b
=

(EI
L

)
CG
+

(EI
L

)
CH
= Sum of the stiffness of beams meeting at the joint C, and

∑
C

(EI
L

)
c
=

(EI
L

)
CB
+

(EI
L

)
CD
= Sum of the stiffness of columns meeting at the joint C.

Let

GC =

∑
C

(
EI
L

)
c∑

C

(
EI
L

)
b

(5.20p)

Equations (5.20k) and (5.20o) can be written as(
kii +

2
GB

)
𝜃B + kij𝜃C = 0

kij𝜃B +
(

kii +
2

GC

)
𝜃C = 0

or ⎡⎢⎢⎢⎣
kii +

2
GB

kij

kij kii +
2

GC

⎤⎥⎥⎥⎦
{
𝜃B
𝜃C

}
=

{
0
0

}
(5.20q)

For a nontrivial solution the determinant of the coefficient matrix should be zero. Therefore,||||||||
kii +

2
GB

kij

kij kii +
2

GC

|||||||| = 0 (5.20r)

The slope deflection coefficients are given before by Eqs. (4.21f) and (4.21g) as

kii = kjj=
12𝜓(u)

4𝜓2(u) − 𝜙2(u)
(4.21f)

kij = kji =
6𝜙(u)

4𝜓2(u) − 𝜙2(u)
(4.21g)

and the parameters 𝜓(u) and 𝜙(u) are given before by Eqs. (4.8g) and (4.8h) as

𝜓(u) = 3
2u

[ 1
2u

− 1
tan 2u

]
(4.8g)

𝜙(u) = 3
u

[ 1
sin 2u

− 1
2u

]
(4.8h)

where

u = kL
2
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or

2u = kL =
√

P
EI

L =
√

PL2

EI𝜋2 𝜋 = 𝜋

√
P
Pe
= 𝜋

K

Because at buckling, P = 𝜋2EI
(KL)2

, where K is the effective length factor for the column under
consideration.

Therefore,

kii =

⎛⎜⎜⎜⎝
tan 𝜋

K
− 𝜋

K
𝜋2

K2 tan 𝜋

K

⎞⎟⎟⎟⎠⎛⎜⎜⎜⎝
tan 𝜋

K
− 𝜋

K
𝜋2

K2 tan 𝜋

K

⎞⎟⎟⎟⎠
2

−
⎛⎜⎜⎜⎝
𝜋

K
− sin 𝜋

K
𝜋2

K2 sin 𝜋

K

⎞⎟⎟⎟⎠
2 (5.20s)

or

kii =

𝜋

K
sin 𝜋

K
−

(
𝜋

K

)2
cos 𝜋

K
2 − 2 cos 𝜋

K
− 𝜋

K
sin 𝜋

K

(5.20t)

Similarly,

kij =

(
𝜋

K

)2
− 𝜋

K
sin 𝜋

K
2 − 2 cos 𝜋

K
− 𝜋

K
sin 𝜋

K

(5.20u)

Equation (5.20r) can be written as

k2
ii + 2kii

GB + GC

GBGC
+ 4

GBGC
− k2

ij = 0 (5.20v)

Substitute Eqs. (5.20t) and (5.20u) into Eq. (5.20v), and we obtain

⎛⎜⎜⎜⎝
𝜋

K
sin 𝜋

K
−

(
𝜋

K

)2
cos 𝜋

K
2 − 2 cos 𝜋

K
− 𝜋

K
sin 𝜋

K

⎞⎟⎟⎟⎠
2

+ 2
⎛⎜⎜⎜⎝
𝜋

K
sin 𝜋

K
−

(
𝜋

K

)2
cos 𝜋

K
2 − 2 cos 𝜋

K
− 𝜋

K
sin 𝜋

K

⎞⎟⎟⎟⎠
GB + GC

GBGC

+ 4
GBGC

−
⎛⎜⎜⎜⎝

(
𝜋

K

)2
− 𝜋

K
sin 𝜋

K
2 − 2 cos 𝜋

K
− 𝜋

K
sin 𝜋

K

⎞⎟⎟⎟⎠
2

= 0 (5.20w)
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or (
𝜋

K

)3
sin 𝜋

K
2 − 2 cos 𝜋

K
− 𝜋

K
sin 𝜋

K

+ 2
⎛⎜⎜⎜⎝
𝜋

K
sin 𝜋

K
−

(
𝜋

K

)2
cos 𝜋

K
2 − 2 cos 𝜋

K
− 𝜋

K
sin 𝜋

K

⎞⎟⎟⎟⎠
GB + GC

GBGC
+ 4

GBGC
= 0

or

GBGC

4

(
𝜋

K

)2
+ 1

2

⎛⎜⎜⎜⎝1 −

(
𝜋

K

)2
cos 𝜋

K
𝜋

K
sin 𝜋

K

⎞⎟⎟⎟⎠
⎛⎜⎜⎝GB + GC) +

2
𝜋

K
sin 𝜋

K

−
2 cos 𝜋

K
𝜋

K
sin 𝜋

K

− 1
⎞⎟⎟⎠ = 0

or

GBGC

4

(
𝜋

K

)2
+

(
GB + Gc

2

)⎛⎜⎜⎝1 −

𝜋

K
tan 𝜋

K

⎞⎟⎟⎠ + 2
𝜋

K

tan
(

𝜋

2K

)
− 1 = 0 (5.20x)

Equation (5.20x) is shown in the form of a nomograph in Figure 5.27, where the effective
length factor values K for a column vary from 0.5 to 1.0. If the column end beams are much
stiffer than the column, then the K factors are lower. K = 0.5 corresponds to the fixed end
condition and K = 1.0 means the end of the column is pin connected. The use of the nomograph
is recommended by the American Institute of Steel Construction (AISC) [8]. The subscripts A
and B refer to the joints at the two ends of the column section being considered. G is defined
assuming the modulus of elasticity E to be constant for all the columns and beams as follows:

G =
∑
(Ic∕Lc)∑
(Ig∕Lg)

(5.20y)

where Σ indicates a summation of all members rigidly connected to the joint and lying on the
plane in which buckling of the column is being considered. Ic is the moment of inertia and Lc
is the unsupported length of a column section, whereas Ig is the moment of inertia and Lg is
the unsupported length of a girder or other restraining member. Ic and Ig are taken about axes
perpendicular to the plane of buckling being considered.

The Structural Stability Research Council (SSRC) makes several recommendations concern-
ing the use of the nomograph:

For pinned columns at the footing, theoretically, G = ∞, but it could be taken = 10 for prac-
tical designs. For rigid connections of columns to a properly designed footing, theoretically, G
approaches zero, but it may be taken = 1.0 as no connection is perfectly rigid.

For the design of a column in a frame, compute G at each end of the column and label the
values GA and GB as desired. Then draw a straight line on the nomograph between the GA and
GB values and read K where the line intersects the center K scale. For example, if GA = 0.8,
GB = 2.0, then K = 0.8 as shown by the intersection of dotted line with the center K scale.
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Figure 5.27 Nomograph for effective length factor K of columns in braced frames.

5.5.2 Unbraced Frames (Sidesway Not Inhibited)

Now we examine the effective length factor K for laterally unbraced frames. In these frames
the two ends of columns move laterally relative to each other, i.e. the columns are subjected
to sidesway. We wish to determine the effective length factor K for the column BC shown in
Figure 5.28. The method is based on the same assumptions that were used for the braced frames
except that in the assumption “7” rotations at the opposite ends of the restraining beams are
equal in magnitude and same in direction (double curvature bending in horizontal beams).
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Figure 5.28 Column in unbraced frame along with adjoining members.

The end moments for the columns AB, BC, and CD are given by the slope deflection equations
as follows:

(MB)AB =
(EI

L

)
AB

[
kii𝜃B + kij𝜃C − (kii + kij)

Δ
LAB

]
(5.21a)

(MB)BC =
(EI

L

)
BC

[
kii𝜃B + kij𝜃C − (kii + kij)

Δ
LBC

]
(5.21b)

(MC)BC =
(EI

L

)
BC

[
kij𝜃B + kjj𝜃C − (kjj + kij)

Δ
LBC

]
(5.21c)

(MC)CD =
(EI

L

)
CD

[
kii𝜃C + kij𝜃B − (kii + kij)

Δ
LCD

]
(5.21d)

where E is the modulus of elasticity of the materials of columns, I and L are the moment of
inertia and unbraced length of the columns in the plane of buckling.

For horizontal beams, the axial force is neglected, therefore, kii = kjj = 4, and kij = kji = 2.
The slope deflection equations for the horizontal beams BE, BF, CG, and CH in Figure 5.28

are as follows:

(MB)BE =
(EI

L

)
BE
(4𝜃B + 2𝜃B) =

(6EI
L

)
BE
𝜃B (5.21e)

(MB)BF =
(EI

L

)
BF
(4𝜃B + 2𝜃B) =

(6EI
L

)
BF
𝜃B (5.21f)



Trim Size: 187mm x 235mm Single Column Jerath c05.tex V1 - 11/07/2020 8:50pm Page 286�

� �

�

286 5 Frames

(MC)CG =
(EI

L

)
CG
(4𝜃C + 2𝜃C) =

(6EI
L

)
CG
𝜃C (5.21g)

(MC)CH =
(EI

L

)
CH
(4𝜃C + 2𝜃C) =

(6EI
L

)
CH

𝜃C (5.21h)

where E is the modulus of elasticity of the material of beams, I and L are the moment of inertia
and unbraced length of the beams in the plane of buckling.

Joint equilibrium at B gives

MBA +MBC +MBE +MBF = 0 (5.21i)

Substitute Eqs. (5.21a), (5.21e), and (5.21f) into Eq. (5.21i) to get

MBC = −
(EI

L

)
AB

[
kii𝜃B + kij𝜃C − (kii + kij)

Δ
LAB

]
−

(6EI
L

)
BE
𝜃B −

(6EI
L

)
BF
𝜃B (5.21j)

Equate the right-hand sides in Eqs. (5.21b) and (5.21j), and assume LAB = LBC, to get⎡⎢⎢⎢⎣6

∑
B

(
EI
L

)
b∑

B

(
EI
L

)
c

+ kii

⎤⎥⎥⎥⎦ 𝜃B + kij𝜃C − (kii + kij)
Δ

LAB
= 0 (5.21k)

where∑
B

(EI
L

)
b
=

(EI
L

)
BE
+

(EI
L

)
BF
= Sum of the stiffness of beams meeting at the joint B, and∑

B

(EI
L

)
c
=

(EI
L

)
AB
+

(EI
L

)
BC
= Sum of the stiffness of columns meeting at the joint B.

Let

GB =

∑
B

(
EI
L

)
c∑

B

(
EI
L

)
b

(5.21l)

Joint equilibrium at C gives

MCB +MCD +MCG +MCH = 0 (5.21m)

Substituting from Eqs. (5.21d), (5.21g), and (5.21h) we get

MCB = −
(EI

L

)
CD

[
kii𝜃C + kij𝜃B − (kii + kij)

Δ
LCD

]
−

(6EI
L

)
CG
𝜃C −

(6EI
L

)
CH

𝜃C (5.21n)

Equate the right-hand terms in Eqs. (5.21c) and (5.21n), and assume LBC = LCD, to get

kij𝜃B +
⎡⎢⎢⎢⎣6

∑
C

(
EI
L

)
b∑

C

(
EI
L

)
c

+ kii

⎤⎥⎥⎥⎦ 𝜃C − (kii + kij)
Δ

LBC
= 0 (5.21o)
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where∑
C

(EI
L

)
b
=

(EI
L

)
CG
+

(EI
L

)
CH

= Sum of the stiffness of beams meeting at the joint C, and

∑
C

(EI
L

)
c
=

(EI
L

)
CB
+

(EI
L

)
CD

= Sum of the stiffness of columns meeting at the joint C.

GC =

∑
C

(
EI
L

)
c∑

C

(
EI
L

)
b

(5.20p)

Member equilibrium of column BC in Figure 5.29 gives

MBC +MCB + PΔ − VLBC = 0

Since there is no external horizontal force present, V = 0.or

MBC +MCB + PΔ = 0 (5.21p)

Equation (5.21b) can be written as
MBC(
EI
L

)
BC

= kii𝜃B + kij𝜃C − (kii + kij)
Δ

LBC

and substitute in Eq. (5.21j) to get

MBC = −
(EI

L

)
AB

⎡⎢⎢⎢⎣
MBC(
EI
L

)
BC

⎤⎥⎥⎥⎦ − 6
[(EI

L

)
BE
+

(EI
L

)
BF

]
𝜃B

P 

V 
MCB

C 

MBC

V 
B 

P Δ

LBC

Figure 5.29 Member equilibrium for column BC.
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or

MBC = −6

∑
B

(
EI
L

)
b∑

B

(
EI
L

)
c

(EI
L

)
BC
𝜃B (5.21q)

Similarly considering equations at the joint C, we get

MCB = −6

∑
C

(
EI
L

)
b∑

6

(
EI
L

)
c

(EI
L

)
BC
𝜃C (5.21r)

√
P
EI

= k

Therefore,

PΔ =
(EI

L

)
BC
(kL)2BC

Δ
LBC

(5.21s)

Substitute Eqs. (5.21q), (5.21r), and (5.21s) into Eq. (5.21p), and we obtain

−6

∑
B

(
EI
L

)
b∑

B

(
EI
L

)
c

(EI
L

)
BC
𝜃B − 6

∑
C

(
EI
L

)
b∑

6

(
EI
L

)
c

(EI
L

)
BC
𝜃C +

(EI
L

)
BC
(kl)2BC

Δ
LBC

= 0

or

− 6
GB

𝜃B −
6

GC
𝜃C + (kL)2BC

Δ
LBC

= 0 (5.21t)

Equations (5.21k), (5.21o), and (5.21t) can be written in matrix form as⎡⎢⎢⎢⎢⎢⎢⎣

(
kii +

6
GB

)
kij −(kii + kij)

kij

(
kii +

6
GC

)
−(kii + kij)

− 6
GB

− 6
GCBC

(kL)2BC

⎤⎥⎥⎥⎥⎥⎥⎦
⎧⎪⎨⎪⎩
𝜃B
𝜃C
Δ

LBC

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩

0
0
0

⎫⎪⎬⎪⎭ (5.21u)

For the nontrivial solution for 𝜃B, 𝜃C, and Δ
LBC

the determinant of the coefficient matrix should
be zero, or|||||||||||||

(
kii +

6
GB

)
kij −(kii + kij)

kij

(
kii +

6
GC

)
−(kii + kij)

− 6
GB

− 6
GC

(kL)2BC

|||||||||||||
= 0 (5.21v)



Trim Size: 187mm x 235mm Single Column Jerath c05.tex V1 - 11/07/2020 8:50pm Page 289�

� �

�

5.5 Design of Frame Members 289

or (
kii +

6
GB

)[(
kii +

6
GC

)
(kL)2BC −

6
GC
(kii + kij)

]
+ kij

[
6

GB
(kii + kij) − kij(kL)2BC

]
− (kii + kij)

[
− 6

GC
kij +

6
GB

(
kii +

6
GC

)]
= 0

After some algebraic calculations we get

6(k2
ij − k2

ii) (GB + GC) − 72 (kii + kij) + [(k2
ii − k2

ij)GBGC + 6kii(GB + GC) + 36] (kL)2BC = 0
(5.21w)

Substitute kii and kij from Eqs. (5.20t) and (5.20u) into Eq. (5.21w), and we get

−
6
(

𝜋

K

)3
sin 𝜋

K

2 − 2 cos 𝜋

K
− 𝜋

K
sin 𝜋

K

(GB + GC) −
72

(
𝜋

K

)2 (
1 − cos 𝜋

K

)
2 − 2 cos 𝜋

K
− 𝜋

K
sin 𝜋

K

+
⎡⎢⎢⎢⎣

(
𝜋

K

)3
sin 𝜋

K

2 − 2 cos 𝜋

K
− 𝜋

K
sin 𝜋

K

(GB + GC) +
6
(

𝜋

K

)
sin 𝜋

K
− 6

(
𝜋

K

)2
cos 𝜋

K

2 − 2 cos 𝜋

K
− 𝜋

K
sin 𝜋

K

(GB + GC) + 36
⎤⎥⎥⎥⎦ (kL)2BC = 0

(5.21x)

After some algebraic calculations we obtain

GBGC

(
𝜋

K

)2
tan 𝜋

K
− 6 𝜋

K
(GB + GC) − 36 tan 𝜋

K
= 0

or

GBGC

(
𝜋

K

)2
− 36

6 (GB + GC)
−

𝜋

K

tan 𝜋

K

= 0 (5.21y)

Equation (5.21y) is shown in the form of a nomograph by AISC [8] in Figure 5.30, where the
effective length factors K vary from 1.0 to above 20.0.

As before, A and B refer to the two ends of the column cross-section under consideration.
Similarly, G is defined assuming the modulus of elasticity E to be constant for all the columns
and beams as follows:

G =
∑
(Ic∕Lc)∑
(Ig∕Lg)

(5.20y)

The nomograph of the unbraced frames in Figure 5.30 is used in a similar way as described
for the nomograph of the braced frames in Figure 5.27.
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0

Figure 5.30 Nomograph for effective length factor K of columns in unbraced frame.

5.5.3 Inelastic Buckling of Frames

The nomographs were made for elastic buckling of beam columns, i.e. the stresses are in the
elastic region. If stresses in the beam columns are in the inelastic region at buckling, the end
restraint parameter G is modified. The G value should be corrected by multiplying the elastic
G value by the stiffness reduction factor (SRF) given by J.A. Yura [9] as

Stiffness reduction factor (SRF) =
ET

E
(5.22a)

where ET is the tangent modulus of the column material. Therefore,

Ginelastic = Gelastic
ET

E
(5.22b)

Where Ginelastic = End restraint parameter for inelastic buckling of columns
and Gelastic = End restrain parameter for elastic buckling of columns
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The G values for inelastic columns are smaller than those of elastic columns and therefore
smaller K factors are obtained for inelastic columns than those for elastic columns. It is con-
servative to base the column design on elastic K factors.

Example 5.1
Calculate the critical load for the columns AB and BE in the frame of Figure 5.9 by using
the nomograph in Figure 5.27. Assume Ib = Ic = I, and Lb = Lc = L. Compare the result with that
obtained in
Section 5.3.3.

Solution
From Eq. (5.20y) we have

G =
∑
(Ic∕Lc)∑
(Ig∕Lg)

Column BE

GE =

IEB

LEB
IEF

LEF

=

I
L
I
L

= 1.0, GB =

IBA

LBA
+

IBE

LBE
IBC

LBC

=

I
L
+ I

L
I
L

= 2.0

Draw a straight line between GA = 1.0 and GB = 2.0 on the nomograph in Figure 5.27, it would
intersect at K = 0.82. Therefore,

PcrBE
= 𝜋2EI
(0.82L)2

= 14.68EI
L2

Column AB
GB = 2.0, GA = ∞ (Hinge)

And K = 0.92 is obtained as before from the nomograph in Figure 5.27. The force on the
column AB = 2P. Therefore,

PcrAB
= 1

2
𝜋2EI
(0.92L)2

= 5.83EI
L2

The critical load for the column AB governs the maximum critical load the frame can take.
Therefore, the critical load for the frame in Figure 5.9 is given by

Pcr =
5.83EI

L2

Equation (5.8q) gives Pcr =
7.274EI

L2 in Section 5.3.3. Hence, the nomograph method gives a
conservative value for the frame critical load.

Example 5.2
Design the columns in the two-story, two-bay frame by considering the dead load, live load,
and wind load. Given: Dead load = 1.2 k/ft (17.52 kN/m), Live load = 2.00 k/ft (29.2 kN/m),
the wind load is taken as concentrated on the floor levels shown in Figure 5.31.
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I 

Figure 5.31 Two-story, two-bay frame’s geometry and loading: (a) Gravity load on the frame; (b) Wind load on the
frame.

Solution
The classical method of moment distribution is used in this example to perform the first-order
analysis for the frame. First, the stiffness factors for the various members are calculated and are
given by K = 4EI

L
. In this case, the stiffness factors for different members are the same because

they have same length and cross-sectional area. Then the distribution factors (DF) are calcu-
lated at the different joints.

Gravity loading
Consider the dead load of w = 1.2 k/ft (17.52 kN/m) in Figure 5.31a. The fixed end moments

(FEM) at the ends of the horizontal beam members BE, EH, CF, and FI are given by

wL2

12
= 1.2(15)2

12
= 22.5 k.ft

[
17.52(4.575)2

12
= 30.56 kN.m

]
The clockwise moments are taken positive and counterclockwise moments are taken as nega-

tive.
The moment distribution steps are shown in Table 5.1.

Wind load
The wind load is assumed to be concentrated horizontal forces of W1 = 3 kips (13.5 kN), and

W2 = 6 kips (27.0 kN) shown in Figure 5.31b. Assume fixed end moments of −100 k.ft. (−137
kN.m) and calculate the end moments at the joints shown in Table 5.2.

From the free body diagrams of the columns calculate the end reaction shown in Figure 5.32.
The sum of the reactions at A, D, and G is given by

7.77 k + 9.91 k + 7.77 k = 25.45 k [34.97 kN + 44.6 kN + 34.97 kN = 114.54 kN]



Trim Size: 187mm x 235mm Single Column Jerath c05.tex V1 - 11/07/2020 8:50pm Page 293�

� �

�

5.5 Design of Frame Members 293

Table 5.1 Moment distribution for gravity load.

Joint A B C D E

Member AB BA BC BE CB CF DE ED EB EH EF

DF 1
3

1
3

1
3

1
2

1
2

1
4

1
4

1
4

1
4

FEM
k.ft.
(kN.m)

−22.5
(−30.6)

−22.5
(−30.6)

22.5
(30.6)

−22.5
(−30.6)

DIST. 7.5
(10.2)

7.5
(10.2)

7.5
(10.2)

11.25
(15.3)

11.25
(15.3)

CO 3.75
(5.1)

5.62
(7.65)

3.75
(5.1)

3.75
(5.1)

−3.75
(−5.1)

DIST. −1.87
(−2.55)

−1.87
(−2.55)

−1.88
(−2.55)

−1.88
(−2.55)

−1.87
(−2.55)

CO −0.94
(−1.28)

−0.94
(−1.28)

−0.94
(−1.28)

−0.94
(−1.28)

0.94
(1.28)

DIST. 0.31
(0.43)

0.31
(0.43)

0.32
(0.42)

0.47
(0.64)

0.47
(0.64)

Final
Moment

2.81
(3.82)

5.94
(8.08)

10.62
(14.45)

−16.56
(−22.5)

12.65
(17.2)

−12.65
(−17.2)

25.31
(34.4)

−25.31
(−34.4)

Joint F G H I

Member FE FC FI GH HG HE HI IF IH

DF 1
3

1
3

1
3

1
3

1
3

1
3

1
2

1
2

FEM
k.ft.
(kN.m)

22.5
(30.6)

−22.5
(−30.6)

22.5
(30.6)

22.5
(30.5)

DIST −7.5
(−10.2)

−7.5
(−10.2)

−7.5
(−10.2)

−11.25
(−15.25)

−11.25
(−15.25)

CO 5.62
(7.65)

−5.62
(−7.65)

−3.75
(−5.1)

−5.62
(−7.65)

−3.75
(−5.1)

DIST 1.87
(2.55)

1.87
(2.55)

1.88
(2.55)

1.88
(2.55)

1.87
(2.55)

CO −0.94
(−1.28)

0.94
(1.28)

0.94
(1.28)

0.94
(1.28)

0.94
(1.28)

DIST −0.31
(−0.43)

−0.31
(−0.43)

−0.32
(−0.42)

−0.47
(−0.64)

−0.47
(−0.64)

Final
Moment

27.18
(36.97)

−27.18
(−36.97)

−2.81
(3.82)

−5.94
(−8.08)

16.56
(22.5)

−10.62
(−14.45)

12.66
(17.16)

−12.66
(−17.16)
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Table 5.2 Moment distribution for wind loads.

Joint A B C D E

Member AB BA BC BE CB CF DE ED EB EH EF

DF 1
3

1
3

1
3

1
2

1
2

1
4

1
4

1
4

1
4

FEM
k.ft.
(kN.m)

−100
(−137)

−100
(−137)

−100
(−137)

−100
(−137)

−100
(−137)

−100
(−137)

−100
(−137)

DIST. 66.67
(91.5)

66.67
(91.5)

66.67
(91.5)

50
(68.6)

50
(68.6)

50
(68.6)

50
(68.6)

50
(68.6)

50
(68.6)

CO 33.34
(45.8)

25
(34.3)

25
(34.3)

33.34
(45.8)

16.67
(22.9)

25
(34.3)

33.33
(45.8)

33.33
(45.8)

16.67
(22.9)

DIST. −16.67
(−22.9)

−16.67
(−22.9)

−16.67
(−22.9)

−25
(−34.4)

−25
(−34.4)

−20.83
(−28.6)

−20.83
(−28.6)

−20.83
(−28.6)

−20.83
(−28.6)

CO −8.34
(−11.5)

−12.5
(−17.2)

−10.42
(−14.3)

−8.34
(−11.5)

−12.5
(−17.2)

−10.42
(−14.3)

−8.34
(−11.5)

−8.34
(−11.5)

−12.5
(−17.2)

DIST. 7.64
(10.50)

7.64
(10.50)

7.64
(10.50)

10.42
(14.4)

10.42
(14.4)

7.3
(10.1)

7.3
(10.1)

7.3
(10.1)

7.3
(10.1)

CO 3.82
(5.3)

5.21
(7.2)

3.65
(5.1)

3.82
(5.3)

5.91
(8.1)

3.65
(5.1)

3.82
(5.3)

3.82
(5.3)

5.91
(8.1)

D IST. −2.95
(−4.1)

−2.95
(−4.1)

−2.96
(−4.1)

−4.87
(−6.7)

−4.86
(−6.7)

−3.39
(−4.68)

−3.39
(−4.68)

−3.39
(−4.68)

−3.38
(−4.67)

Final
Moment

−71.18
(−97.4)

−45.31
(−62.0)

−27.6
(−37.8)

72.9
(99.8)

−40.63
(−55.5)

40.64
(55.6)

−81.77
(−111.9)

−66.92
(−91.6)

61.89
(84.7)

61.89
(84.7

−56.84
(−77.8)

Corrected
Final
Moment

−25.17
(−34.5)

−16.02
(−21.9)

−4.78
(−6.5)

20.8
(28.4)

−7.04
(−9.61)

7.04
(9.61)

−28.92
(−39.6)

−23.67
(−32.4)

16.76
(23.0)

16.76
(23.0)

−9.85
(−13.5)

Joint F G H I

Member FE FC FI GH HG HE HI IF IH

DF 1
3

1
3

1
3

1
3

1
3

1
3

1
2

1
2

FEM
k.ft.
(kN.M)

−100
(−137)

−100
(−137)

−100
(−137)

−100
(−137)

−100
(−137)

DIST. 33.33
(45.8)

33.33
(45.8)

33.33
(45.8)

66.67
(91.5)

66.67
(91.5)

66.67
(91.5)

50
(68.6)

50
(68.6)

CO 25
(34.3)

25
(34.3)

25
(34.3)

33.34
(45.8)

25
(34.3)

25
(34.3)

16.67
(22.9)

33.34
(45.8)

(Continued)
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Table 5.2 (Continued)

Joint F G H I

Member FE FC FI GH HG HE HI IF IH

DIST. −25
(−34.3)

−25
(−34.3)

−25
(−34.3)

−16.67
(−22.9)

−16.67
(−22.9)

−16.67
(−22.9)

−25
(−34.3)

−25
(−34.3)

CO −10.42
(−14.3)

−12.5
(−17.2)

−12.5
(−17.2)

−8.34
(−11.5)

−10.42
(−14.4)

−12.5
(−17.2)

−12.5
(−17.2)

−8.34
(−11.5)

DIST. 11.81
(16.3)

11.81
(16.3)

11.81
(16.3)

7.64
(10.5)

7.64
(10.5)

7.64
(10.5)

10.42
(14.3)

10.42
(14.3)

CO 3.65
(5.0)

5.41
(7.4)

5.21
(7.2)

3.82
(5.3)

3.65
(5.0)

5.41
(7.4)

5.91
(8.1)

3.82
(5.3)

DIST. −4.76
(−6.6)

−4.76
(−6.6)

−4.75
(−6.4)

−3.02
(−4.2)

−3.02
(−4.1

−3.02
(−4.1)

−4.87
(−6.7)

−4.86
(−6.7)

Final
Moment

−66.39
(−90.8)

33.31
(45.4)

33.31
(45.4)

−71.18
(−97.4)

−45.31
(−62.0)

72.84
(99.8)

−27.60
(−37.8)

40.63
(55.7)

−40.63
(−55.5)

Corrected
Final
Moment

−11.51
(−15.7)

5.76
(7.9)

5.76
(7.9)

−25.17
(−34.5)

−16.05
(−21.9)

20.81
(28.4)

−4.76
(−6.5)

7.04
(9.6)

−7.04
(−9.6)

H 

I 

D

E

A 

B 

B 

C 

G 

H 

E

F

71.18 k.ft

(97.4 kN.m)

45.31 k.ft

(62.0 kN.m)

27.6 k.ft

(37.8 kN.m)

40.63 k.ft

(55.5 kN.m)

81.77 k.ft

(111.9 kN.m)

56.84 k.ft

(77.8 kN.m)

66.39 k.ft

(90.8 kN.m)

71.18 k.ft

(97.4 kN.m)

45.31 k.ft

(62.0 kN.m)

27.6 k.ft

(37.8 kN.m)

40.63 k.ft

(55.5 kN.m)

7.77 K

(34.97 kN)

7.77 K

(34.97 kN) 
7.77 K

(34.97 kN)

4.55 K

(20.48 kN) 4.55 K 

(20.48 kN)

4.55 K

(20.48 kN)

66.92 k.ft

(91.6 kN.m)

7.77 K

(34.97 kN)

4.55 K

(20.48 kN)

9,91 K

(44.6 kN)

9.91 K

(44.6 kN)

8.22 K

(37.0 kN)

8.22 K

(37.0 kN)

Figure 5.32 End moments and end reactions in columns due to −100 k.ft. (−137 kN.m) end moments applied in
Table 5.2.
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where this sum should be equal to 9 K (40.5 kN), the bottom story horizontal shear due to
service wind force. The corresponding end moments in the columns of the bottom story can be
determined by proportion. Therefore, the end moments developed in the bottom story columns
by the service wind load in Figure 5.31b are given by

MAB =
71.18x9

25.45
= 25.17 k.ft

[97.4x40.5
114.54

= 30.48 k.Nm
]

MBA =
45.31x9

25.45
= 16.02 k.ft

[62x40.5
114.54

= 21.95 kN.m
]

MDE =
81.77x9

25.4
= 28.92 k.ft

[111.9x40.5
114.54

= 39.61 kN.m
]

MED =
66.92x9

25.45
= 23.67 k.ft

[91.6x40.5
114.54

= 32.43 kN.m
]

MGH =
71.18x9

25.45
= 25.17 k.ft

[97.4x40.5
114.54

= 34.48 kN.m
]

MHG =
45.31x9

25.45
= 16.05 k.ft

[62x40.5
114.54

= 21.95 kN.m
]

The sum of the reactions at B, E, and H is given by
4.55 k + 8.22 k + 4.55 k = 17.32 k [20.48 kN + 37 kN + 20.48 kN = 77.96 kN]

where this sum should be equal to 3 K (13.5 kN), the top story horizontal shear due to service
wind force. The corresponding end moments in the columns of the top story can be determined
by proportion. Therefore, the end moments developed in the top story columns by the service
wind load in Figure 5.31b are given by

MBC =
27.6x3
17.31

= 4.78 k.ft
[37.8x13.5

77.96
= 6.55 kN.m

]
MCB =

40.63x3
17.31

= 7.04 k.ft
[55.5x13.5

77.96
= 9.61 kN.m

]
MEF =

56.84x3
17.31

= 9.85 k.ft
[77.8x13.5

77.96
= 13.47 kN.m

]
MFE =

66.39x3
17.31

= 11.51 k.ft
[90.8x13.5

77.96
= 15.72 kN.m

]
MHI =

27.60x3
17.31

= 4.76 k.ft
[37.8x13.5

77.96
= 6.55 kN.m

]
MIH =

40.63x3
17.31

= 7.04k.ft
[55.65x13.5

77.96
= 9.64kN.m

]
The calculated end moments for the wind load are shown as Corrected Final Moments in

Table 5.2. Assume 1.2D+ 1.6L is the most severe load combination [10] for the gravity load
in the load resistance factor design, where D is the dead load and L is the live load. For this
load combination the uniformly distributed gravity load acting on the horizontal beams of the
frame is

1.2D + 1.6L = 1.2 × 1.2 + 1.6 × 2.0 = 4.64 k∕ft [1.2 × 17.52 + 1.6 × 29.2 = 67.74 kN∕m]
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The end moments calculated in Table 5.1 for a gravity load of 1.2 k/ft. (17.52 kN/m) are mul-
tiplied by 4.64

1.2
= 3.87

[67.74
17.52

= 3.87
]

to get the end moments for the gravity load case of
1.2D+ 1.6L. Now draw the free body diagrams of the frame members and find end reactions
for the load case 1.2D+ 1.6L in Figure 5.33.

The span moments (wL2/8 at the midspan) on the horizontal members are now superimposed
on the end moments shown in the Figure 5.33. The bending moment diagrams for the various
members of the frame are shown in Figure 5.34 due to the gravity load equal to 1.2D+ 1.6L.

Assume 1.2D+L+ 1.0 W is the most severe load combination [10] in the presence of wind
load for the load resistance factor design, where W is the wind load. The bending moment
diagrams for the wind load on the frame are shown in Figure 5.35, from Table 5.2.

The free body diagrams of the frame members and the end reactions, for the wind load are
shown in Figure 5.36. The symbols used in this example are explained in the Section 4.12.2. For
the design of columns, the following load combinations are considered:

Load case − 1.2 D + 1.6 L

The moments Mnt and the axial forces Pnt are given below from Figure 5.33 for various
columns:

Columns BC and HI Mnt = 48.91 k.ft (67.13 kN.m), Pnt = 31.05 k (139.73 kN)
Columns AB and GH Mnt = 22.97 k.ft (31.53 kN.m), Pnt = 63.59 k (286.16 kN)
Column FE Mnt = 0, Pnt = 77.1 k (346.96 kN)
Column DE Mnt = 0, Pnt = 151.22 k (680.5 kN)

where the subscript nt stands for no translation.

Load case − 1.2 D + L +W

The moments Mnt and the axial forces Pnt are calculated from Figure 5.33 by multiplying the

quantities there by the ratio 1.2D + L
1.2D + 1.6L

= 1.2(1.2) + (2)
1.2(1.2) + 1.6(2)

= 0.741
[

1.2(17.52) + 29.2
1.2(17.52 + 1.6(29.2)

= 0.741
]

for various columns and are as follows:

Columns BC and HI Mnt = 36.26 k.ft (49.76 kN.m), Pnt = 23.02 k (103.58 kN)
Columns AB and GH Mnt = 17.03 k.ft (22.97 × 0.741 = 17.03 k.ft)

[23.37 kN.m (31.53 × 0.741 = 23.37 kN.m)]
Pnt = 47.14 k (63.59 × 0.741 = 47.14 k)

[212.13 kN (286.16 × 0.741 = 212.13 kN)]
Column FE Mnt = 0, Pnt = 57.13 k (257.1 kN)
Column DE Mnt = 0, Pnt = 112.11 k (504.45 kN)
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C F 

48.91k.ft

(67.13 kN..m)

105.1 k.ft 

(144.25 kN..m)

31.05 k.

(139.73 kN)

38.55 k.

(173.48 kN)

4.64 k/ft 

(67.74 kN/m)

6 k 

(27 kN)
6 k 

(27 kN)15 ft 

(4.575 m)

F I

105.1 k.ft 

(144.25 kN..m)

48.91k.ft

(67.13 kN..m)

31.05 k.

(139.73 kN..m)
38.55 k.

(173.48 kN)

4.64 k/ft.

(144.25 kN/m)

6 k 

(27 kN)

6 k 

(27 kN)
15 ft 

(4.575 m)

6 k.

(27 kN)

6 k.

(27 kN)B 

C 

48.91k.ft

(67.13 kN..m)

41.06k.ft

(56.35 kN..m)

31.05 k.

(139.73 kN)

31.05 k.

(139.73 kN)

15 ft 

(4.575 m)

6 k 

(27 kN)
H

I
48.91k.ft

(67.13 kN..m)

41.06k.ft

(56.35 kN..m)

31.05 k 

(139.73 kN) 6 k 

(27 kN)

31.05 k 

(139.73 kN)

15 ft 

(4.575 m)

E 

F 

15 ft 

(4.575 m)

77.1 k 

(346.96 kN)

77.1 k 

(346.96 kN)

B E 

64.03 k.ft

(87.88 kN..m)

97.87 k.ft

(134.33 kN..m)

37.06 k 

(166.77 kN)32.54 k 

(146.43 kN)

3.74 k 

(16.83 kN)

3.74 k 

(16.83 kN)

4.64 k/ft 

(67.74 kN/m)

15 ft 

(4.575 m)

E H

64.03 k.ft

(87.88 kN..m)

97.87 k.ft

(134.33 kN..m)

4.64 k/ft

(67.74 kN/m)

15 ft

(4.575 m)37.06 k 

(166.77 kN)

32.54 k 

(146.43 kN)

3.74 k

(16.83 kN)
3.74k

(16.83 kN)

A 

B 
22.97 k.ft

(31.53 kN..m)

10.87 k.ft

(14.92 kN..m)

15 ft 

(4.575 m)

63.59 k 

(286.16 kN)

63.59 k 

(286.16 kN)

2.26 k 

(10.17 kN)

2.26 k 

(10.17 kN) D 

E 

15 ft 

(4.575 m)

151.22 k 

(680.5 kN)

151.22 k 

(680.5 kN)

G 

H 

22.97 k.ft

(31.53 kN..m)

10.87 k.ft

(14.92 kN..m)

15 ft 

(4.575 m)

2.26 k 

(10.17 kN)

2.26 k 
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63.59 k 

(286.16 kN)

Figure 5.33 Free body diagrams for the frame under gravity load.
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48.91 k.ft

(67.13 kN.m)

41.06 k.ft

(56.35 kN.m)

53.51 k.ft

(73.44 kN.m)

105.1 k.ft

(144.25 kN.m)

53.51 k.ft

(73.44 kN.m)

48.91 k.ft

(67.13 kN.m)

48.91 k.ft

(67.13 kN.m)
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(56.35 kN.m)

49.57 k.ft
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(134.33 kN.m)

10.87 k.ft

(14.92 kN.m)
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D

E

F

G

H

I

Figure 5.34 Bending moment diagrams for the gravity load from the first-order analysis.
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Figure 5.35 Bending moment diagrams for the wind load from the first-order analysis.
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C

F7.04 k.ft

(9.61 kN.m)

5.76 k.ft

(7.91 kN.m)
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(3.83 kN)

0.85 k
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Figure 5.36 Free body diagrams for the frame under wind load.
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The moments Mlt and the axial forces Plt are given below from Figure 5.36 for various
columns:

Column BC Mlt = 7.04 k.ft (9.61 kN.m), Plt = 0.85 k (3.83 kN) Tension
Column HI Mlt = 7.04 k.ft (9.61 kN.m), Plt = 0.85 k (3.83 kN)Compression
Column AB Mlt = 25.17 k.ft (34.5 kN.m), Plt = 3.35 k (15.08 kN) Tension
Column GH Mlt = 25.17 k.ft (34.5 kN.m), Plt = 3.35 k (15.08 kN)Compression
Column FE Mlt = 11.51 k.ft (15.7 kN.m), Plt = 0
Column DE Mlt = 28.92 k.ft (39.6 kN.m), Plt = 0

where the subscript lt stands for lateral translation.
Assume the frame consists of members as shown in Figure 5.37.

Design of column GH by AISC LRFD method [8]

Gravity load − 1.2D + 1.6L

Pnt (Axial load with no lateral translation of the frame) = 63.59 k (286.16 kN)
Mnt = (Moment with no lateral translation of the frame) = 22.97 k.ft (31.53 kN.m)

Section properties of the wide flange W 10× 30 (W 250× 44.8) are:
Nominal weight W = 30 lb/ft (0.439 kN/m); Area Ag = 8.84 in.2 (5720 mm2); depth

d = 10.5 in. (266 mm); Area moment of inertia about x axis Ixx = 170 in.4 (71.1× 106 mm4);
Radius of gyration about x axis rxx = 4.38 in. (111 mm); Area moment of inertia about y axis
Iyy = 16.7 in.4 (7.03× 106 mm4); Radius of gyration about y axis ryy = 1.37 in. (35.1 mm).

15 ft

(4.575 m)

15 ft

(4.575 m)

15 ft 

(4.575 m)

15 ft 

(4.575 m)

W14x48

W10x30 

A 

B 

C 

D 

E 

F 

G 

H 

I W14x48

W14x48

W10x33 W10x30

W10x30 W10x33 W10x30

W14x48

Figure 5.37 Two-story, two-bay frame.
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Section properties of the wide flange W 10× 33 (W 250× 49.1) are:

W = 33 lb∕ft (0.482 kN∕m);Ag = 9.71 in.2 (6250 mm2); d = 9.73 in.(247 mm);
Ixx = 171 in.4 (70.6 × 106 mm4); rxx = 4.19 in. (106 mm); Iyy = 36.6 in.4 (15.1 × 106 mm4);
ryy = 1.94 in. (49.2 mm).

Section properties of the wide flange W 14× 48 (W 360× 72) are:

W = 48 lb∕ft (0.706 kN∕m); Ag = 14.1 in.2 (9110 mm2); d = 13.8 in.(350 mm);
Ixx = 484 in.4 (201 × 106 mm4); rxx = 5.85 in. (149 mm); Iyy = 51.4 in.4 (21.4 × 106 mm4);
ryy = 1.91 in. (48.5 mm).

The material properties are:
Yield strength Fy = 50 ksi (345 MPa); Ultimate strength Fu = 65 ksi (448.5 MPa); Modu-

lus of elasticity E = 29× 106 psi (200,000 MPa). Assume W10× 30 (W250× 44.8) is used for
the member GH along with other members as shown in Figure 5.37. End G is a fixed end, so
GG = 1.0.

GH =
∑
(Ic∕Lc)∑
(Ig∕Lg)

=

170
15

+ 170
15

484
15

= 0.7
⎛⎜⎜⎜⎝GH =

71.1x106

4575
+ 71.1x106

4575
201x106

4575

= 0.7
⎞⎟⎟⎟⎠

Draw a straight line between GG = 1.0, and GH = 0.7 on the non-sway nomograph in
Figure 5.27, it would intersect at Kx1 = 0.75. Similarly, from the sidesway uninhibited
nomograph in Figure 5.30, Kx2 = 1.28. Assume for the member GH, Ky = 1.0.

KyLy

ryy
= 1x15x12

1.37
= 131.39

[KyLy

ryy
= 1x4575

35.1
= 131.39

]

4.71
√

E
Fy
= 4.71

√
29x106

50,000
= 113.4 < 131.39

[
4.71

√
E
Fy
= 4.71

√
200,000

345
= 113.4 < 131.39

]

Hence the column will have elastic buckling, and the critical stress Fcr is given by

Fcr = 0.877 Fe
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where the Euler buckling stress Fe is obtained from

Fe =
𝜋2E(
KyLy

ryy

)2 =
𝜋2(29,000)
(131.39)2

= 16.58 ksi
[

Fe =
𝜋2(200,000)
(131.39)2

= 114.34 MPa
]

Fcr = 0.877 × 16.58 = 14.54 ksi [Fcr = 0.877 × 114.34 = 100.28 MPa]

Pn = FcrAg = 14.54 × 8.84 = 128.53 kips
[

Pn =
100.28(5720)

1000
= 573.60 kN

]
Pc = 𝜙Pn = 0.9(128.53) = 115.68 kips [Pc = 0.9(573.60) = 516.24 kN]
Pr

Pc
= 63.59

115.68
= 0.55 > 0.2

[
Pr

Pc
= 286.16

516.24
= 0.55 > 0.2

]
Pr

Pc
+ 8

9

(
Mrx

Mcx
+

Mry

Mcy

)
≤ 1.0

Mr = B1xMnt + B2Mlt

For gravity loads,Mlt = 0, therefore Mrx = B1x Mntx

B1x =
Cmx

1 − 𝛼
Pr

Pe1x

≥ 1, 𝛼 = 1.0 for LRFD design.

Cmx = 0.6 − 0.4
(

M1x

M2x

)
where M1x and M2x are the smaller and larger of the end moments in the member GH.
or

Cmx = 0.6 − 0.4
(10.87

22.97

)
= 0.411 > 0.4

[
Cmx = 0.6 − 0.4

(14.92
31.53

)
= 0.411 > 0.4

]
Therefore,Cmx = 0.411

Pe1x =
𝜋2EIx

(Kx1Lx)2
= 𝜋2(29000)(170)
(0.75x15x12)2

= 2669.80 kips[
Pe1x =

𝜋2(200000)(71.1x106)
(0.75x4.575x1000)2x1000

= 11920.50 kN
]

B1x =
0.411

1 − (1) 63.59
2669.80

= 0.421 ≥ 1
⎡⎢⎢⎢⎣B1x =

0.411

1 − (1) 286.16
11920.50

= 0.421 ≥ 1
⎤⎥⎥⎥⎦

Therefore, B1x = 1.0, and Mrx = 1 (22.97) = 22.97 k.ft [Mrx = 1 (31.53) = 31.53 kN. m]

Lb(unbraced length for lateral displacement ) = 15 ft (4.574 m)

From the AISC manual [8] Lp = 4.84 ft (1.48 m), and Lr = 16.1 ft (4.91 m) for the W10× 30
(250× 44.8) section:
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where

Lp = Limiting laterally unbraced length for compact sections to achieve their full plastic
moment, Mp, capacity, and

Lr = Limiting laterally unbraced length for the limit state of inelastic lateral-torsional buckling.
If the unbraced length is more than Lr, the section will buckle elastically.

Lp = 4.84 ft(1.48 m) < Lb = 15 ft (4.575 m) < Lr = 16.1 ft(4.91 m)

Therefore, from the AISC manual [8], 𝜙bMn = Mcx = 90.5 k. ft [124.21 kN. m]
Pr

Pc
+ 8

9
Mrx

Mcx
= 63.59

115.68
+ 8

9

(22.97
90.5

)
= 0.55 + 0.226 = 0.776 < 1.0[

Pr

Pc
+ 8

9
Mrx

Mcx
= 286.16

516.24
+ 8

9

( 31.53
124.21

)
= 0.55 + 0.226 = 0.776 < 1.0

]
Gravity and wind load combined for Column GH − 1.2D + L +W

Pnt (Axial load with no lateral translation of the frame) = 47.14 k (212.13 kN) Compression
Mntx (Moment with no lateral translation of the frame) = 17.03 k.ft. (23.37 kN.m)
Plt (Axial load in the member caused by the lateral translation of the frame only by wind load)
= 3.35 k (15.08 kN) Compression

Mltx (Moment in the member caused by the lateral translation of the frame only by wind load)
= 25.17 k.ft. (34.5 kN.m)

Pr = Pnt + B2Plt

Mrx = B1xMntx + B2Mltx

B1x =
Cmx

1 −
𝛼Pr

Pe1x

≥ 1

To find B1x

Pr = Pnt + Plt = 47.14 + 3.35 = 50.49 k [212.13 + 15.08 = 227.21 kN]
M1x = 10.87(0.741) = 8.05 k.ft [14.92 (0.741) = 11.06 kN.m]

Cmx = 0.6 − 0.4
( 8.05

17.03

)
= 0.411

[
Cmx = 0.6 − 0.4

(11.06
23.37

)
= 0.411

]
The Pe1x for W10× 30 (W250× 49.1) is the same as for gravity load calculated before and is

equal to

Pe1x = 2669.80 k (11920.50 kN)

B1x =
0.411

1 − 1(50.49)
2269.80

= 0.42 < 1.0
⎡⎢⎢⎢⎣B1x =

0.411

1 − 1(227.21)
11920.50

= 0.42 < 1.0
⎤⎥⎥⎥⎦
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Therefore,

B1x = 1.0

ΣPnt = (63.59 + 151.22 + 63.59)0.741 − 3.35 + 3.35 = 206.29 k
[(286.16 + 680.5 + 286.16)0.741 − 15.08 + 15.08 = 928.34 kN]

Pe2x =
𝜋2EI
(Kx2L)2

= 𝜋2(29000)(170)
(1.28x15x12)2

= 916.6k[
Pe2x =

𝜋2(200,000)(71.1x106)
(1.28x4.575x1000)2(1000)

= 4092.58 kN
]

ΣPe2x = 3(916.6) = 2749.8 k [3(4092.58) = 12,277.74 kN]

B2x =
1

1 −
𝛼ΣPnt

ΣPe2x

≥ 1

B2x =
1

1 − 1(206.29)
2749.8

= 1.08
⎡⎢⎢⎢⎣B2x =

1

1 − 1(928.34)
12277.74

= 1.08
⎤⎥⎥⎥⎦

Pr = Pnt + B2xPltx = 47.14 + 1.08(3.35) = 50.76 k [212.3 + 1.08(15.08) = 228.42 kN]

Mrx = B1xMntx + B2xMltx

Mrx = 1(17.03) + 1.08(25.17) = 44.21 k.ft [Mrx = 1(23.37) + 1.08(34.5) = 60.63 kN.m]

Kx2Lx

rxx
= 1.28x15x12

4.38
= 52.60

[
KxLx

rxx
= 1.28x4.575x1000

111
= 52.76

]
<

KyLy

ryy
= 1x15x12

1.37
= 131.39

[KyLy

ryy
= 1x4.575x1000

35.1
= 130.34

]
Therefore,Pc = 115.68 k (516.24 kN) as before.

Pr

Pc
= 50.76

115.68
= 0.439 > 0.2

[
Pr

Pc
= 228.42

516.24
= 0.442 > 0.2

]
Pr

Pc
+ 8

9

(
Mrx

Mcx
+

Mry

Mcy

)
≤ 1.0,Mry = 0

therefore,
Pr

Pc
+ 8

9

(
Mrx

Mcx

)
= 0.439 + 8

9

(44.21
90.5

)
= 0.873 < 1.0 O.K.[

Pr

Pc
+ 8

9

(
Mrx

Mcx

)
= 0.442 + 8

9

( 60.63
124.21

)
= 0.876 < 1.0 O.K.

]
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The section is satisfactory.

Design of column GH by the AISC ASD method [8]

Gravity load − D + L
D + L = 1.2 + 2.0 = 3.2 k∕ft [17.52 + 29.2 = 46.72 kN∕m]

3.2
1.2(1.2) + 1.6(2.0)

= 3.2
4.64

= 0.69
[

46.72
1.2(17.52) + 1.6(29.2)

= 46.72
67.74

= 0.69
]

Pr = PD + PL = Pnt = 63.59 × 0.69 = 43.88 k [286.16 × 0.69 = 197.45 kN]
Mnt = 22.97 × 0.69 = 15.85 k.ft [31.53 × 0.69 = 21.76 kN.M]

Pc =
Pn

Ωc
(Pn is the same as in LRFD design)

where

Ωc = safety factor for compression = 1.67

or

Pc =
128.53

1.67
= 76.96 k

[
Pc =

573.6
1.67

= 343.47 kN
]

Pr

Pc
= 43.88

76.96
= 0.57 > 0.2

[
Pr

Pc
= 197.45

343.47
= 0.57 > 0.2

]
Pr

Pc
+ 8

9

(
Mrx

Mcx
+

Mry

Mcy

)
≤ 1.0

Mr = B1Mnt + B2Mlt

For gravity loads,Mlt = 0, therefore Mrx = B1xMntx

B1x =
Cmx

1 − 𝛼
Pr

Pe1x

, 𝛼 = 1.6 for ASD design.

Cmx = 0.6 − 0.4
(

M1x

M2x

)
M1x = 10.87 × 0.69 = 7.5 k.ft [14.92 × 0.69 = 10.29 kN.m]
M2x = 22.97 × 0.69 = 15.85 k.ft [31.53 × 0.69 = 21.76 kN.m]

Cmx = 0.6 − 0.4
( 7.5

15.85

)
= 0.411 > 0.4

[
Cmx = 0.6 − 0.4

(10.29
21.76

)
= 0.411 > 0.4

]
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Therefore,

Cmx = 0.411

B1x =
Cmx

1 − 𝛼
Pr

Pe1x

Pe1x is the same as for the LRFD design.
or

B1x =
0.411

1 − 1.6 43.88
2669.80

= 0.422 < 1.0
⎡⎢⎢⎢⎣B1x =

0.411

1 − 1.6 197.45
11920.50

= 0.422 < 1.0
⎤⎥⎥⎥⎦

Therefore,

B1x = 1.0
Mrx = B1xMntx = 1.0(15.85) = 15.85 k.ft [1.0(21.76) = 21.76 kN.m]

Nominal moment of resistance from the AISC manual [8]

Mn =
90.5
0.9

= 100.56 k.ft
[

Mn =
124.21

0.9
= 138.01 kN.m

]
Mc =

Mn

Ωb

Ωb = Safety factor for flexure = 1.67

Mcx =
100.56

1.67
= 60.22 k.ft

[
Mcx =

138.01
1.67

= 82.64 kN.m
]

Pr

Pc
+ 8

9

(
Mrx

Mcx

)
= 43.88

76.96
+ 8

9

(15.85
60.22

)
= 0.57+).234 = 0.804 < 1.0 O.K.

or [
Pr

Pc
+ 8

9

(
Mrx

Mcx

)
= 197.45

343.47
+ 8

9

(21.76
82.64

)
= 0.57 + 0.234 = 0.804 < 1.0 O.K.

]
Gravity and wind load combined for Column GH − D + 0.75 L + 0.75 (0.6W)

The load combination is given by

D + 0.75L + 0.45W

or

D + 0.75L = 1.2 + 0.75 × 2 = 2.7 k∕ft [17.52 + 0.75 × 29.2 = 39.42 kN∕m]
2.7

4.64
= 0.582

[39.42
67.74

= 0.582
]
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Pnt = 63.59 × 0.582 = 37 k [286.16 × 0.582 = 166.55 kN]

Mnt = 22.97 × 0.582 = 13.37 k.ft [31.53 × 0.582 = 18.35 kN.m]

Plt = 3.35 × 0.45 = 1.51 k [15.08 × 0.45 = 6.79 kN]

Mlt = 16.05 × 0.45 = 7.22 k.ft [21.9 × 0.45 = 9.86 kN.m]

Pr = Pnt + B2Plt

Mrx = B1xMntx + B2Mltx

B1x =
Cmx

1 −
𝛼Pr

Pe1x

≥ 1

To find B1x

Pr = Pnt + Plt = 37 + 1.51 = 38.51 k [166.55 + 6.79 = 173.34 kN]
M1x = 10.87 (0.582) = 6.33 k.ft [14.92 (0.582) = 8.68 kN.m]
M2x = 22.97(0.582) = 13.37 k.ft [31.53(0.582) = 18.35 kN.m]

Cmx = 0.6 − 0.4
( 6.33

13.37

)
= 0.411 > 0.4

[
Cmx = 0.6 − 0.4

( 8.68
18.35

)
= 0.411 > 0.4

]
The Pe1x for W10× 30 (W250× 49.1) is the same as for the gravity load calculated before for

the LRFD method, and is equal to

Pe1x = 2669.80 k(11920.50 kN)

B1x =
0.411

1 − 1.6(38.51)
2269.80

= 0.422 < 1.0
⎡⎢⎢⎢⎣B1x =

0.411

1 − 1.6(173.34)
11920.50

= 0.421 < 1.0
⎤⎥⎥⎥⎦

Therefore,

B1x = 1.0

ΣPnt = (63.59 + 151.22 + 63.59)0.582 − (3.35 − 3.35)0.45 = 162.03 k
[(286.16 + 680.5 + 286.16)0.582 − (15.08 − 15.08)0.45 = 729.14 kN]
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Pe2x =
𝜋2EI
(Kx2L)2

= 𝜋2(29000)(170)
(1.28x15x12)2

= 916.6k[
Pe2x =

𝜋2(200,000)(71.1x106)
(1.28x4.575x1000)2(1000)

= 4092.58kN
]

ΣPe2x = 3 (916.6) = 2749.8 k [3(4092.58) = 12, 277.74 kN], same as in the LRFD method

B2x =
1

1 −
𝛼ΣPnt

ΣPe2x

≥ 1

B2x =
1

1 − 1.6(162.03)
2749.8

= 1.10
⎡⎢⎢⎢⎣B2x =

1

1 − 1.6(729.14)
12277.74

= 1.10
⎤⎥⎥⎥⎦

Pr = Pnt + B2xPltx = 37 + 1.10(1.51) = 38.66 k [166.55 + 1.10(6.79) = 174.02 kN]

Mrx = B1xMntx + B2xMltx

Mrx = 1(13.37) + 1.10(11.33) = 25.83 k.ft [Mrx = 1(18.35) + 1.10(15.53) = 35.43 kN.m]

Kx2Lx

rxx
= 1.28x15x12

4.38
= 52.60

[
KxLx

rxx
= 1.28x4.575x1000

111
= 52.76

]
<

KyLy

ryy
= 1x15x12

1.37
= 131.39

[KyLy

ryy
= 1x4.575x1000

35.1
= 130.34

]
Therefore, Pc = 76.96 k (343.47 kN) as for the ASD design before

Mcx = 60.22 k.ft [82.64 N.m] from the AISC manual [8]
Pr

Pc
= 38.66

76.96
= 0.502 > 0.2

[
Pr

Pc
= 174.02

343.47
= 0.507 > 0.2

]
Pr

Pc
+ 8

9

(
Mrx

Mcx
+

Mry

Mcy

)
≤ 1.0

Mry = 0,

therefore,
Pr

Pc
+ 8

9

(
Mrx

Mcx

)
= 38.66

76.96
+ 8

9

(25.83
60.22

)
= 0.502 + 0.381 = 0.883 < 1.0 O.K.[

Pr

Pc
+ 8

9

(
Mrx

Mcx

)
= 174.02

343.47
+ 8

9

(35.43
82.64

)
= 0.507 + 0.381 = 0.888 < 1.0 O.K.

]
The section is satisfactory.
Similarly, the other members of the frame can be designed.
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Problems

5.1 Find the buckling load of the frame in Figure P5.1 by the equilibrium method when there
is no sidesway.

B C

D

P P 

L

L EI EI

EI

A 

Figure P5.1

5.2 Find the buckling load of the frame in Figure P5.1 by the equilibrium method when there
is sidesway.

5.3 Find the buckling load of the frame in Figure P5.3 by the slope deflection method when
there is no sidesway. EI = Constant.

A

B C

D

L

2L

P

Figure P5.3

5.4 Find the buckling load of the frame in Figure P5.3 by the slope deflection method when
the sidesway is permitted. EI = Constant.
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5.5 Find the critical load of the frame in Figure P5.5 by the matrix method.

EI

EI

EI

L

L

L/3 L/3
P P

P P

Figure P5.5

5.6 For the frame in Figure P5.6, find the difference in G factor for both sway inhibited and
sway not inhibited cases, when

(a) the ends of the beams are pinned
(b) the ends of the beams are fixed.

L

L 

A 

B
Pinned or fixed end

EI = Constant

Pinned or fixed end
C D

L

Figure P5.6
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6

Torsional Buckling and Lateral Buckling of Beams

6.1 Introduction

So far we have assumed that buckling of members occurs due to bending only, where the bend-
ing deformation takes place in the plane of one of the principal axes and there is no rotation.
This occurs if the bending rigidity of a member EI is smaller than the torsion rigidity GJ. Closed
thin-walled and solid sections usually fail in this type of failure. However, beams and columns
can also fail by buckling due to torsion alone or by a combined torsion-flexure mode. This
type of failure occurs in sections where torsion rigidity is low in comparison to the flexural
rigidity. Open thin-walled sections made of narrow rectangles, such as I, channel, T, angle, etc.
sections usually have low torsion rigidity and are thus likely to buckle through torsion. A pure
torsion buckling can occur in a section with two axes of symmetry where the centroidal and
shear center axes coincide. For other sections, such as angle and channel sections, where the
centroidal and shear center axes do not coincide, combined torsion-flexure mode of buckling
occurs. The torsion-flexural buckling also occurs in transversely loaded beams, when the com-
pression flange becomes unstable and wants to buckle laterally but the tension flange is stable
and straight. We will consider in this chapter both axially loaded columns and transversally
loaded beams for different buckling modes.

6.2 Pure Torsion of Thin-Walled Cross-Sections

In the case of a circular cross-section, there is no warping when a twisting moment is applied.
When a twisting moment is applied to a non-circular structural member, the cross-section
warps in the axial direction in addition to twisting. If the noncircular member is twisted by
couples at its ends, acting in planes normal to the axis of the member, and the ends are free
to warp, we have the case of pure torsion as shown in Figure 6.1a. In this case the transverse
sections that were plane before twisting are no longer plane after deformation. Since the warp-
ing deformation is the same for all cross-sections and it takes place without causing any axial
strain/stress, shear stresses are the only stresses produced. The distribution of the shear stresses
depends on the shape of the cross-section and is the same for all sections along the length of
the member. These shear stresses entirely resist the applied torque similar to those present in

Structural Stability Theory and Practice, First Edition. Sukhvarsh Jerath.
© 2021 Sukhvarsh Jerath. Published 2021 by John Wiley & Sons, Inc.
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(a) (b) 

TT

Figure 6.1 Twisting of an I-section free to warp: (a) I-section under uniform torsion; (b) Shear stress distribution.

a circular section. The shear stresses are called St. Venant shear stresses, and the associated
torque is called St. Venant or pure torsion, Tsv.

For pure torsion, the relation between the angle of twist, β, and the applied torque, T = Tsv, is
given by [1].

Tsv = GJ d𝛽
dz

(6.1a)

where G is the shear modulus of elasticity of the material, J is the torsion constant of the
cross-section, and z is the distance along the longitudinal axis of the member. The quantity,
d𝛽
dz

, is the angle of twist per unit length, and is constant for pure torsion over the length of the

member. For thin-walled open sections, it can be assumed that the shearing stress at any point
in an element is parallel to the tangent to the middle line at that point in that element. The
magnitude of the shear stresses is proportional to the distance from that middle line shown in
Figure 6.1b. The torsion constant J for the cross-section is given by

J = 1
3

n∑
i=1

bit3
i (6.1b)

where bi and ti are the length of the middle line and thickness, respectively, of any element, i,
of the cross-section. n is the number of elements in the cross-section. Eq. (6.1b) is valid if bi/ti is
more than 10, if it is smaller than 10, a correction factor is used [2]. The values of J, for various
shapes are given in Appendix B. For a thin-walled closed section, a membrane analogy [2] can
be used to find the torsion constant J as follows:

J = 4A2

∮
dl
t

(6.1c)

where A is the area enclosed by the middle line, l is the peripheral mean length, and t is the
thickness of the section. For sections made of thin rectangular elements, the maximum shear
stress due to pure torsion, Tsv is given by Boresi and Schmidt [2].

𝜏max =
2Tsvhmax

J
(6.1d)

where hmax is the maximum value of hi.
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6.3 Non-uniform Torsion of Thin-Walled Open Cross-Sections

6.3.1 I-section

The non-uniform torsion occurs if any cross-sections of the beam are not free to warp or the
torsion moment varies along the length of the member. In such cases, the warping due to torsion
varies along the bar and there will be axial compressive or tension stresses in the cross-section
in addition to the shear stresses. Consider the case of a symmetrical I section cantilever beam.
One end of the beam is fixed where there is no warping allowed, and the other end is free where
the cross-section can warp. In this case a constraint on warping results in a differential bending
of the flanges, one flange bends to the right and another to the left, as shown in Figure 6.2a. The
applied torque T is resisted partially by the shear stresses due to pure torsion, as shown before,
and partially by the bending resistance of the flanges. The total applied torque is given by

T = Tsv + Tw (6.2a)

where Tsv is the St. Venant’s torsion, and Tw is the warping torsion resistance due to the bending
of the flanges. If Mf denotes the bending moment in one flange due to the bending of flanges,
and V f is the corresponding shear force shown in Figure 6.2b, then by beam theory

Vf = −
dMf

dz
(6.2b)

The minus sign in Eq. (6.2b) is present because the bending moment Mf decreases as the dis-
tance z along the beam increases. The shear forces V f are acting in the opposite direction
because the flanges bend in the opposite directions. The couple formed by these two shear
forces is the value of the warping torsion given as

Tw = Vf (h) (6.2c)

or from Eq. (6.2b),

Tw = −
dMf

dz
(h) (6.2d)

(a) (b) 
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Figure 6.2 Noncircular section under the action of applied torque: (a) Flange bending due to warping; (b) Twisting
of I-section.
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Let u be the lateral displacement of the upper flange and 𝛽 is the angle of twist at any distance z,
then

u = 𝛽
h
2

(6.2e)

The bending moment in the upper flange is given by

Mf = EIf
d2u
dz2 (6.2f)

Equations (6.2d)–(6.2f) are combined to give

Tw = −
EIf h2

2
d3𝛽

dz3

or

Tw = −ECw
d3𝛽

dz3 (6.2g)

where If =moment of inertia of one flange about its strong axis, E=modulus of elasticity of the

material of the cross-section, and Cw =
If h2

2
is called the warping constant of the I-section. In

the case of non-uniform torsion, the total resistance of an I-section is obtained from Eqs. (6.1a)
and (6.2g) as follows:

T = Tsv + Tw = GJ d𝛽
dz
− ECw

d3𝛽

dz3 (6.2h)

The angle of twist 𝛽 can be found from the integration of Eq. (6.2h), if T is the known function
of z. Now, when 𝛽 is known, the St. Venant’s and warping torsion resistances, Tsv and Tw, can
be obtained. The stresses in the beam can be calculated from these two torsion components.

6.3.2 General Thin-Walled Open Cross-Sections

The warping constant calculated before for an I-section is a property of a cross-section and is
different for different cross-sections. The warping constant Cw for a general open thin-walled
section in Figure 6.3 is derived here with the help of material available in the literature [3]. The
quantity ws is called the warping function and is expressed as

ws = ∫

s

0
rds (6.3a)

where r= distance from the tangent at the middle line of the cross-section at any point P around
the cross-section to the shear center O, it is taken as positive if a vector along the tangent and
pointing toward the increasing s direction acts counterclockwise about the axis of rotation.
s = distance along the middle line from one end of the cross-section. The quantity, w̄s, called
the average value of ws over the entire cross-section is written as

w̄s =
1
m ∫

m

0
wsds (6.3b)
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Figure 6.3 Thin-walled open section bar under non-uniform torsion: (a) Thin wall open section bar; (b) Thin walled
open cross-section; (c) Element from the bar wall.

where m is the total length of the middle line of the cross-section. The quantity w, called the
warping displacement [3], denotes the displacement in the z direction (along the longitudinal
axis of the member) and is given by

w = (w̄s − ws)
d𝛽
dz

(6.3c)

where d𝛽
dz

is the angle of twist per unit length, and is variable along the length of the member
in the non-uniform torsion. The axial strain at a point in the member is given by

𝜀z =
𝜕w
𝜕z

or

𝜀z = (w̄s − ws)
d2𝛽

dz2 (6.3d)

because w̄s and ws are independent of z. The normal stress produced by non-uniform torsion
by applying Hooke’s law is

𝜎z = E𝜀z = E(w̄s − ws)
d2𝛽

dz2 (6.3e)
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The sum of the forces on a cross-section in the z direction should be zero when it is subjected
to torsion only, i.e. ΣFz = 0. Therefore,

∫

m

0
𝜎ztds = E d2𝛽

dz2 ∫

m

0
(w̄s − ws)tds = 0

or

∫

m

0
(w̄s − ws)tds = 0 (6.3f)

Assume a thin bar of open arbitrary shape shown in Figure 6.3a is built in at one end and is
subjected to a torque T at the free end. The line OO’ is the shear center axis, and it remains
straight during torsion [3]. The cross-sections of the bar rotate about the axis OO′. Let 𝛽 be
the angle of rotation of any cross-section as before. The normal stresses 𝜎z produce shearing
stresses as shown in Figure 6.3c. Let us consider an element abcd cut out from the wall of the
member shown in Figure 6.3b. It is assumed that the shearing stresses 𝜏, are constant over the
thickness t and are parallel to the tangent to the middle surface of the cross-section. Assume t,
the thickness of the cross-section, may vary with s but it is independent of z. In the z direction,
Σ Fz = 0 in Figure 6.3b, therefore

𝜎ztds −
(
𝜎z +

𝜕𝜎z

𝜕z
dz
)

tds + 𝜏tdz −
(
𝜏t + 𝜕(𝜏t)

𝜕s
ds
)

dz = 0

or
𝜕𝜎z

𝜕z
tdsdz + 𝜕(𝜏t)

𝜕s
dsdz = 0

or
𝜕(𝜏t)
𝜕s

= −t
𝜕𝜎z

𝜕z
(6.3g)

Substituting 𝜎z from Eq. (6.3e) for 𝜎z in Eq. (6.3g) gives
𝜕(𝜏t)
𝜕s

= −Et(w̄s − ws)
d3𝛽

dz3

Integrating both sides with respect to s, substitute 𝜏 = 0 for s = 0, and since 𝛽 is independent of
s, we get

𝜏t = −E d3𝛽

dz3 ∫

s

0
(w̄s − ws)tds (6.3h)

The warping torsion resistance Tw is calculated by summing the moments of the elemental
shear forces about the shear center. Therefore,

Tw = ∫

m

0
r𝜏t ds

Substituting 𝜏t from Eq. (6.3h) we get

Tw = −E d3𝛽

dz3 ∫

m

0

[
∫

s

0
(w̄s − ws)t ds

]
r ds (6.3i)
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From Eq. (6.3a) we have

ws = ∫

s

0
r ds

or

r ds = d(ws)

We can write the following because w̄s is independent of s,

r ds = − d
ds
(w̄s − ws) ds

The integrant in Eq. (6.3i) can be expressed as

∫

m

0

[
∫

s

0
(w̄s − ws)t ds

]
r ds = −

∫

m

0

[
∫

s

0
(w̄s − ws)t ds

]
d(w̄s − ws)

ds
ds

Integration of the right-hand side by parts and using Eq. (6.3f) gives

∫

m

0

[
∫

s

0
(w̄s − ws)t ds

]
r ds =

∫

m

0
(w̄s − ws)2t ds

Substitute in Eq.(6.3i) and we get

Tw = −E d3𝛽

dz3 ∫

m

0
(w̄s − ws)2t ds

or

Tw = −ECw
d3𝛽

dz3 (6.3j)

where Cw is the warping constant for the thin-walled open cross-section of general shape, and
is given by

Cw = ∫

m

0
(w̄s − ws)2t ds (6.3k)

For non-uniform torsion, the total torsion resistance of a thin-walled open cross-section of gen-
eral shape, Eq. (6.2h) is still applicable, i.e.

T = Tsv + Tw = GJ d𝛽
dz
− ECw

d3𝛽

dz3 (6.2h)

where the warping constant of a general shape, thin-walled cross-section is given by Eq. (6.3k),
and the torsion constant J is given by Eq. (6.1b). Equation (6.2h) is applicable to any thin-walled
open section. If T is known as a function of z, the angle of twist 𝛽 is found by solving the
differential Eq. (6.2h). When 𝛽 is known, torques Tsv and Tw can be found from Eqs. (6.1a) and
(6.3j), respectively. The stresses due to St. Venant’s torque Tsv are calculated in the same way as
for pure torsion. The normal and shear stresses produced by warping torsion Tw are obtained
from Eqs. (6.3e) and (6.3h), respectively.
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6.3.3 Warping Constant Cw of a Channel Section

Consider a channel section and assume that the rotation occurs about the longitudinal axis
passing through the shear center O in Figure 6.4. The warping constant is given by

Cw = ∫

m

0
(w̄s − ws)2t ds (6.3k)

The warping function ws is given from Eq. (6.3a) as

ws = ∫

s

0
r ds

For the element EF, 0≤ s≤ b, the distance r = h
2

, and it is positive

ws = ∫

s

0

h
2

ds = sh
2

(6.4a)

For the element FG, b≤ s≤ b+ h, the distance r = e, and it is negative

ws =
bh
2
−
∫

s

b
eds = bh

2
+ be − se (6.4b)

For the element GH, b+ h≤ s≤ 2b+ h, the distance r = h
2

, and it is positive

ws =
bh
2
− he +

∫

s

b+h

h
2

ds = bh
2
− he + h

2
(s − b − h) = −he − h2

2
+ hs

2
(6.4c)

The average value of the warping function w̄s is given from Eq. (6.3b) as

w̄s =
1
m ∫

m

0
wsds

or w̄s =
1
m

[
∫

b

0

sh
2

ds +
∫

b+h

b

(
bh
2
+ be − se)ds

)
+
∫

2b+h

b+h

(
−he − h2

2
+ hs

2

)
ds

]
y 

b 
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h
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Figure 6.4 Channel cross-section.
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or w̄s =
1
m

[
h
2
(b − e)(2b + h)

]
m = b + h + b = 2b + h

or w̄s =
h
2
(b − e) (6.4d)

Substitute Eqs. (6.4a)–(6.4d) into Eq. (6.3c), and we get

w =
(

h
2

)
(b − e − s)d𝛽

dz
0 ≤ s ≤ b (6.4e)

w = e
(

s − b − h
2

)
d𝛽
dz

b ≤ s ≤ b + h (6.4f)

w = h
2
(b + e + h − s)d𝛽

dz
b + h ≤ s ≤ 2b + h (6.4g)

The warping constant Cw is given, as before, by

Cw = ∫

m

0
(w̄s − ws)2t ds (6.3k)

Substitute Eqs. (6.4a)–(6.4d) into Eq. (6.3k), and we obtain

Cw = ∫

b

0

h2

4
(b − e − s)2tds +

∫

b+h

b
e2
(
−b − h

2
+ s
)2

tds +
∫

2b+h

b+h

h2

4
(b + e + h − s)2tds

(6.4h)

Find the squares of the quantities in the parentheses and integrate with respect to s, noting that
b, e, h, and t are constant. The integration which is simple and lengthy gives

Cw =
h2t
4

(
2e2b − 2eb2 + 2

3
b3
)
+ e2th3

12
or

Cw =
h2t
12
[e2h + 2b3 − 6eb(b − e)] (6.4i)

The distance e for the channel section in Figure 6.4 whose flange thickness tf and web thickness
tw are constants is given in Appendix B as

e =
3b2tf

6btf + htw
(6.4j)

If

tf = tw = t,

then

e = 3b2

6b + h
(6.4k)
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Tee

O

Cruciform

O

V- section

O

Angle

O

Figure 6.5 Cross-section having zero warping constant (Cw = 0).

Substitute e from Eq. (6.4k) into Eq. (6.4j), we get the warping constant for the channel section
given by

Cw =
h2tb3

12

(
3b + 2h
6b + h

)
(6.4l)

Similarly, the warping constant can be found for various other sections. The torsion constants
J and Cw, and the shear center for different thin-walled open cross-section are shown in
Appendix B. For cross-sections that consist of thin rectangular elements that intersect at
a common point, such as those shown in Figure 6.5, if the rotation is taken about an axis
passing through the shear center O, the warping constant is zero. The warping constant is zero
because the distance r in Eq. (6.3a) is zero for all the points lying on the center lines of different
elements. This means these sections do not warp when subjected to torsion moments.

6.4 Torsional Buckling of Columns

A doubly symmetric bar with a thin-walled cross-section when subjected to an axial compres-
sive force may have pure torsion buckling, while its longitudinal axis remains straight. This
type of buckling is important for columns that have short length and wide flanges. The pure
torsional buckling of doubly symmetric bars whose center of gravity and shear center coincide,
such as symmetric I-section, a Z-section, or cruciform section is considered here. Consider a
doubly symmetric cruciform section having four identical flanges of width b, and thickness t.
The length of the column is L as shown in Figure 6.6.

The column cross-section has x and y axes of symmetry, and z is the longitudinal axis. Pure
torsional buckling may occur under compression and the column may take the buckled shape
shown in Figure 6.6a. In the buckled shape, each flange has rotated about the z axis, whereas
the longitudinal z axis remains straight. Assume the column is pin-supported at the top and the
bottom. We consider the equilibrium of the deflected shape of the column to find the buckling
load. Initially the column is straight and is subjected to an axial force. When the axial force
reaches its critical value, the column can be in equilibrium in a slightly deflected shape shown
in Figure 6.6. Now, in addition to the initial uniform compressive stresses, the bending stresses



Trim Size: 187mm x 235mm Single Column Jerath c06.tex V1 - 11/06/2020 7:01pm Page 323�

� �

�

6.4 Torsional Buckling of Columns 323

(a) 

m

x

y

z

b

dz L

O

n

ρβ

σt dρ

σt dρ z

(b)

x

b

t

ρ

dρ
y

σt dρ

(c)

nmP P

L

z

v

z

y

dz

Figure 6.6 Torsional buckling of a doubly symmetric column under axial force: (a) Cruciform column under com-
pressive load; (b) Cross-section of the element mn; (c) A section of the bent column.

are superposed on the cross-section. The differential equation of the deflected longitudinal fiber
mn at a distance 𝜌 from the z axis is found from Eq. (4.1f) in Chapter 4, and can be rewritten as

EIx
d4v
dz4 + P d2v

dz2 =
w(z)
EI

(6.5a)

Taking w(z) = 0, therefore,

EIx
d4v
dz4 = −P d2v

dz2 (6.5b)

From Eqs. (2.1a and 2.1b) we have

M = EI d2v
dz2
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or
dM
dz

= EI d3v
dz3

From Mechanics of Materials [4].
dM
dz

= V ,
dV
dz

= w(z)

where M and V are the bending moment and shear force at a section of a beam loaded by lateral
load of intensity w (z) per unit length. Therefore,

V = EI d3v
dz3

or
dV
dz

= EI d4v
dz4

or

w(z) = EI d4v
dz4 (6.5c)

Comparing Eqs. (6.5b) and (6.5c), we can say that the column is subjected to a fictitious lateral

load intensity of −P d2v
dz2 . The lateral load is responsible for the torsion of the column about the

z axis. The cross-section area of the fiber mn is t d𝜌, shown in Figure 6.6b. The deflection of the
element mn in the y direction due to torsion buckling is given by

v = 𝜌𝛽 (6.5d)

where 𝛽 is the small angle of twist of the cross-section due to torsion buckling. It is assumed
the cross-section does not distort, its shape does not change, and it only rotates. The vertical
compressive force in the element mn at its ends is given by 𝜎t d𝜌, where 𝜎 = P

Ac
is the initial

compressive stress in the column, and Ac is the cross-sectional area. The equivalent lateral load
intensity w(z) due to the compressive force is found from Eq. (6.5b) and we get

w(z) = −(𝜎td𝜌)d
2v

dz2 (6.5e)

Substitute Eq. (6.5d) into Eq. (6.5e) and we have

w(z) = −𝜎t(d𝜌)𝜌d2𝛽

dz2 (6.5f)

The fictitious lateral force w(z) acts on the column at a distance 𝜌 from the z axis. The torsional
moment of the force w(z) acting on the element mn in Figure 6.6c about the z axis is equal to

−𝜎t𝜌d𝜌d2𝛽

dz2 (dz)(𝜌) = −𝜎 d2𝛽

dz2 dzt𝜌2d𝜌 (6.5g)
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Summing up the moments for the entire cross-section at a distance z along the length of the
column, we get the torsion acting on the element mn of the buckled bar. This torsion is given by

mzdz = −𝜎 d2𝛽

dz2 dz
∫A

t𝜌2d𝜌 = −𝜎 d2𝛽

dz2 Iodz

where Io is the polar moment of inertia of the entire cross-section about the shear center O.
The entire cross-section in this case consists of four flanges in Figure 6.6. In this derivation,
the centroid and the shear center of the cross-section coincide. The torque generated per unit
length of the column mz is obtained from

mz = −𝜎
d2𝛽

dz2 Io (6.5h)

Equation (6.5h) is valid for any cross-section where the centroid and the shear center coincide.
We can use Eq. (6.2h) derived for non-uniform torsion in a thin-walled open cross-section to
find the torsional buckling load.

T = GJ d𝛽
dz
− ECw

d3𝛽

dz3 (6.2h)

Differentiate Eq. (6.2h) with respect to z, and we have

dT
dz

= GJ d2𝛽

dz2 − ECw
d4𝛽

dz4 (6.5i)

Assuming the counterclockwise torsional moment is positive, then considering the equilibrium
of the element of length dz in Figure 6.7, we have

−T +mzdz + T + dT = 0

mz

x

y

z

O

dz

T + dT

T

Figure 6.7 Torsional buckling of an open thin-walled section.
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or

mz = −
dT
dz

(6.5j)

Combine Eqs. (6.5i) and (6.5j) and we get

mz = −GJ d2𝛽

dz2 + ECw
d4𝛽

dz4 (6.5k)

Substitute Eq. (6.5h) into Eq. (6.5k) and we obtain

ECw
d4𝛽

dz4 − (GJ − 𝜎Io)
d2𝛽

dz2 = 0 (6.5l)

Equation (6.5l) is the governing differential equation for the pure torsional buckling of a
thin-walled open cross-section column as long as the shear center and centroid coincide. The
critical compressive stress 𝜎z and the critical load can be calculated from Eq. (6.5l). In addition
to the torsional mode, the column may have pure flexural modes in the XZ and YZ planes in
Figure 6.6. The buckling load will be the minimum of the three loads corresponding to the
three modes.

6.5 Torsional Buckling Load

6.5.1 Thin-Walled Open Sections with Rectangular Elements Intersecting at a Point

For the column shown in Figure 6.6, Cw = 0, therefore, for torsional buckling of a column of
the cruciform section, Eq. (6.5l) gives

GJ − 𝜎Io = 0

or

𝜎cr =
GJ
Io

(6.6a)

where the torsional constant of the cross-section from Eq. (6.1b) is given by

J = 1
3

4∑
1

bit3
i =

1
3
(4bt3) = 4

3
bt3

and the polar moment of inertia of the cruciform section about the z axis passing through the
shear center o is equal to

Io =
4
3

tb3

Therefore,

𝜎cr =
G
(

4
3

bt3
)

4
3
(tb3)

= Gt2

b2 (6.6b)
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6.5.2 Thin-Walled Open Doubly Symmetric Sections

For column cross-sections where the shear center and centroid coincide, while the warping con-
stant Cw is not equal to zero, the critical stress and the critical load can be found from Eq. (6.5l)
as follows:

d4𝛽

dz4 + 𝜆2 d2𝛽

dz2 = 0 (6.7a)

where

𝜆2 =
𝜎Io − GJ

ECw
(6.7b)

The solution of Eq. (6.7a) is given by (see Section 2.5)

𝛽 = A sin 𝜆z + B cos 𝜆z + Cz + D (6.7c)

6.5.2.1 Pinned-pinned Columns
For the compressed pinned-pinned column, the ends of the column cannot rotate about the z
axis, but are free to warp, the boundary conditions are:

𝛽 = 0 and d2𝛽

dz2 = 0 (because the bending moment is zero) at z = 0

𝛽 = 0 and d2𝛽

dz2 = 0 (because the bending moment is zero) at z = L.

Apply the boundary conditions at z = 0 to Eq. (6.7c) and we have

B + D = 0

d2𝛽

dz2 = −𝜆
2A sin 𝜆z − 𝜆2B cos 𝜆z

or

B = 0 and D = 0

Now, apply the boundary conditions at z = L to Eq. (6.7c) and we get

𝛽 = A sin 𝜆L + CL = 0

d2𝛽

dz2 = −𝜆
2A sin 𝜆L = 0

or

A sin 𝜆L = 0 and C = 0

Therefore, sin 𝜆L = 0, or 𝜆L = n𝜋,n = 1, 2, 3, ----
Substitute 𝜆 into Eq. (6.7b) to obtain

n2𝜋2

L2 =
𝜎Io − GJ

ECw
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or

𝜎 = 1
Io

(
GJ + n2𝜋2

L2 ECw

)
the smallest value of n = 1, which corresponds to the critical stress given by

𝜎cr =
1
Io

(
GJ + 𝜋2

L2 ECw

)
The critical load for this case for pure torsion is obtained from

Pcrz
= 1

r2
o

(
GJ + 𝜋2

L2 ECw

)
(6.8a)

where ro is the polar radius of gyration of the cross-section with respect to the shear center. The
column may buckle because of lateral bending about the x and y axes given by Euler’s formula
as follows:

Pcrx
=

𝜋2EIx

L2

Pcry
=

𝜋2EIy

L2

where Ix and Iy are the moment of inertia of the cross-section about the x and y axes. The
buckling load is taken as the minimum of Pcrx

,Pcry
, and Pcrz

. The three buckling loads are inde-
pendent of each other.

The buckling shape at the critical stress is obtained from

𝛽 = A sin 𝜋z
L

(6.8b)

Example 6.1 Find the torsional buckling load of a 20 ft (6.1 m) long column that is simply
supported at its ends, whose cross-section is a W18×65 (in.× lb./ft) or W460×97 (mm× kg/m)
wide flange shape, according to the American Institute of Steel Construction manual [5]. The
area of cross-section is A= 19.1 in.2 (12 300 mm2). The moment of inertia about the x and y axes
are: Ix = 1070 in.4 (445× 106 mm4), and Iy = 54.8 in.4 (22.8× 106 mm4). The radius of gyration
about the x and y axes are: rx = 7.49 in. (190 mm), and ry = 1.69 in. (43.1 mm). The torsional con-
stant J = 2.73 in.4 (1130× 103mm4), and the warping constant Cw = 4240 in.6 (1140× 109mm6).
The modulus of elasticity of steel E = 29× 106 psi (200 000 MPa), and the modulus of rigidity
G = 11× 106 psi (75 000 MPa).

ro =
√

r2
x + r2

y =
√
(7.49)2 + (1.69)2 = 7.68 in. (

√
(190)2 + (43.1)2 = 194.83 mm)

The pure torsional buckling load from Eq. (6.5f) is

Pcrz
= 1
(7.68)2

(
11x106(2.73) + 𝜋2

(20x12)2
(29x106)(4240)

)
1

1000
= 866.34 kips(

1
(194.83)2

[
75000(1130x103) + 𝜋2

(6.1x1000)2
(200000)(1140x109)

]
1

1000
= 3825.86 kN

)
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The buckling load because of bending about the x axis is given by Euler’s formula

Pcrx
=

𝜋2EIx

L2 = 𝜋2(29x106)(1070)
(20x12)2

x 1
1000

= 5316.91 kips(
𝜋2(200000)(445x106)

(6.1x1000)2
x 1

1000
= 23606.42 kN

)
The buckling load because of bending about the y axis is given by Euler’s formula

Pcry
=

𝜋2EIy

L2 = 𝜋2(29x106)(54.8)
(20x12)2

x 1
1000

= 272.31 kips(
𝜋2(200000)(22.8x106)

(6.1x1000)2
x 1

1000
= 1209.50 kN

)
The lowest of the three values gives the buckling load for the column

Pcr = 272.31 kips (1209.50 kN)

For the doubly symmetric, hot rolled steel sections, the flexural buckling load about the weak
axis is usually the lowest of the three buckling loads. Hence, these sections are designed for the
flexural load and we neglect the pure torsional buckling load.

6.5.2.2 Fixed-fixed Columns
For the fixed-fixed columns, the ends of the column cannot rotate about the z axis and cannot
warp. The boundary conditions are given by

𝛽 = 0 and d𝛽
dz

= 0 (From Eq.6.3c, because w = 0) at z = 0

𝛽 = 0 and d𝛽
dz

= 0 (From Eq.6.3c, because w = 0) at z = L

Apply the boundary conditions at z = 0 to Eq. (6.5e) and we have

B + D = 0 (6.9a)

d𝛽
dz

= A𝜆 cos 𝜆z − B𝜆 sin 𝜆z + C

or

A𝜆 + C = 0 (6.9b)

Now, apply the boundary conditions at z = L to Eq. (6.7c) and we get

A sin 𝜆L + B cos 𝜆L + CL + D = 0, and
A𝜆Cos𝜆L − B𝜆 sin 𝜆L + C = 0

Substitute C and D in terms of A and B from above to get[
sin 𝜆L − 𝜆L cos 𝜆L − 1
𝜆(cos 𝜆L − 1) −𝜆 sin 𝜆L

]{
A
B

}
=
{

0
0

}
(6.9c)
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For a non-trivial solution, the determinant of the coefficient matrix in Eq. (6.9c) should be zero|||| sin 𝜆L − 𝜆L cos 𝜆L − 1
𝜆(cos 𝜆L − 1) −𝜆 sin 𝜆L

|||| = 0

or

sin 𝜆L
2

(
𝜆L cos 𝜆L

2
− 2 sin 𝜆L

2

)
= 0 (6.9d)

or

sin 𝜆L
2
= 0,

therefore,
𝜆L
2
= n𝜋

𝜆L = 2n𝜋, n = 1, 2, 3 − − − −

The minimum value of 𝜆 occurs when n = 1, therefore

𝜆L = 2𝜋

Also, from Eq. (6.5k) we have

tan 𝜆L
2
= 𝜆L

2
or

𝜆L = 8.987

The minimum critical stress is found from

𝜆L = 2𝜋

or 𝜆2 = 4𝜋2

L2 . Using Eq. (6.5d) we obtain

4𝜋2

L2 =
𝜎Io − GJ

ECw

The compressive critical stress is given by

𝜎cr =
1
Io

(
GJ + 4𝜋2

L2 ECw

)
The critical load for this case for pure torsion is obtained from

Pcr =
1
r2

o

(
GJ + 4𝜋2

L2 ECw

)
(6.9e)

where ro is the polar radius of gyration of the cross-section with respect to the shear center. The
column may buckle because of lateral bending about the x and y axes given by Euler’s formula



Trim Size: 187mm x 235mm Single Column Jerath c06.tex V1 - 11/06/2020 7:01pm Page 331�

� �

�

6.5 Torsional Buckling Load 331

as follows:

Pcrx
=

4𝜋2EIx

L2

Pcry
=

4𝜋2EIy

L2

where Ix and Iy are the moment of inertia of the cross-section about the x and y axes. The
buckling load is taken as the minimum of Pcrx

,Pcry
, and Pcrz

. The three buckling loads are inde-
pendent of each other.

Equations (6.9a) and (6.9b) give

B = −D and A = C = 0

Therefore, using Eq. (6.7c), the buckled shape is of the form is given below

𝛽 = B
(

cos 2𝜋z
L

− 1
)

(6.9f)

Example 6.2 Find the torsional buckling load for the column in the Example 6.1 if both ends
are fixed.

ro =
√

r2
x + r2

y =
√
(7.49)2 + (1.69)2 = 7.68 in. (

√
(190)2 + (43.1)2 = 194.83 mm)

The pure torsional buckling load from Eq. (6.5l) is

Pcrz
= 1
(7.68)2

(
11x106(2.73) + 4x𝜋2

(20x12)2
(29x106)(4240)

)
1

1000
= 1937.96 kips

(
1

(194.83)2

[
75000(1130x103) + 4x𝜋2

(6.1x1000)2
(200000)(1140x109)

]
1

1000
= 8605.38 kN

)
The buckling load because of bending about the x axis is given by Euler’s formula

Pcrx
=

4𝜋2EIx

L2 = 4x𝜋2(29x106)(1070)
(20x12)2

x 1
1000

= 21267.63 kips

(
4x𝜋2(200000)(445x106)

(6.1x1000)2
x 1

1000
= 94425.67 kN

)
The buckling load because of bending about the y axis is given by Euler’s formula

Pcry
=

4𝜋2EIy

L2 = 4x𝜋2(29x106)(54.8)
(20x12)2

x 1
1000

= 1089.24 kips(
4x𝜋2(200000)(22.8x106)

(6.1x1000)2
x 1

1000
= 4838.00 kN

)
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The lowest of the three values gives the buckling load for the column
Pcr = 1089.24 kips (4838.00 kN)

For the doubly symmetric, hot rolled steel sections, the flexural buckling load about the weak
axis is usually the lowest of the three buckling loads. Hence these sections are designed for the
flexural load and we neglect the pure torsional buckling load.

6.6 Torsional Flexural Buckling

In general, the buckling failure usually occurs in thin-walled open cross-sections due to a com-
bination of torsion and bending. Consider an unsymmetrical section shown in Figure 6.8 to
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Figure 6.8 Torsional flexural buckling of a thin-walled section: (a) Displacement of section during torsional flexural
buckling; (b) Displacement of centroid; (c) Displacement of a point on the section.
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study this type of buckling. Let x and y be the principal axes of the cross-section passing through
its centroid C, and xo and yo be the coordinates of the shear center O. The shear center of a
cross-section is the point through which if the lateral forces pass, there will be bending with-
out twisting. Also, the shear center is the center of rotation of the section in pure torsion. It is
assumed that during buckling the deformation consists of bending about the two axes x and y,
and a rotation of the cross-section about the shear center. The shear center displaces by u and
v in the x and y directions respectively during buckling. In addition, during buckling, there is
a rotation of the cross-section about the shear center O by an angle 𝛽 about the longitudinal
axis z of the member passing through the shear center. It is assumed the geometric shape of
the cross-section in the xy plane remains constant during buckling. The lengths OC, O′C′, and
O′C′′ in Figure 6.8a shown as r in Figure 6.8b remain constant.

The point O moves to O′ and the point C moves to C′, and the cross-section moves from KL to
K’L’ during the translation of the cross-section in Figure 6.8a. The cross-section moves to K′′L′′
and the centroid moves to C′′ in Figure 6.8a during the rotation of the section about the shear
center.

The displacement ū of the centroid C to C′′ during buckling in the x direction in Figures 6.8a
and b is given by

ū = xo + u − r cos(𝛼 + 𝛽)
or

ū = xo + u − r cos 𝛼 cos 𝛽 + r sin 𝛼 sin 𝛽 = xo + u − xo cos 𝛽 + yo sin 𝛽

For small deformations, cos𝛽 ≈ 1 and sin 𝛽 ≈ 𝛽, hence
ū = u + yo𝛽 (6.10a)

The displacement v̄ of the centroid C to C′′ during buckling in the y direction in Figures 6.8a
and b is obtained from

v̄ = yo + v − r sin(𝛼 + 𝛽)
or v̄ = yo + v − r sin 𝛼 cos 𝛽 − r cos 𝛼 sin 𝛽 = yo + v − yo cos 𝛽 − xo sin 𝛽

or v̄ = v − xo𝛽 (6.10b)
The differential equations for the deflection curve of the longitudinal axis passing through the
shear center from the theory of bending are

My = −EIy
d2u
dz2 = P(u + yo𝛽)

or EIy
d2u
dz2 + P(u + yo𝛽) = 0 (6.10c)

Mx = −EIx
d2v
dz2 = P(v − xo𝛽)

or EIx
d2v
dz2 + P(v − xo𝛽) = 0 (6.10d)

where P is the axial compressive force. A point Q on the cross-section moves to Q′ during the
translation of the cross-section, and then it moves to Q′′ during the rotation of the section about
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the shear center in Figure 6.8c. The displacement of the point Q to Q′′ during buckling in the x
direction in Figures 6.8a and 6.8c is given by

uQ = u + x′ = u + Q′Q′′ sin𝜓 = u + 𝜌𝛽 sin𝜓

or uQ = u + (yo − y)𝛽 (6.10e)

The displacement of the point Q to Q′′ during buckling in the y direction in Figures 6.8a and
6.8c is obtained from

vQ = v − y′ = v − Q′Q′′ cos𝜓 = v − 𝜌𝛽 cos𝜓

or

vQ = v − (xo − x)𝛽 (6.10f)

Consider an element of length dz and cross-section t ds at point Q having coordinates x, y in
the plane of the cross-section. The compressive force in the element is 𝜎tds. Using Eq. (6.5b),
the forces in the x and y direction per unit length are respectively

−(𝜎tds)
d2uQ

dz2 = −(𝜎tds) d2

dz2 [u + (yo − y)𝛽] (6.10g)

and

−(𝜎tds)
d2vQ

dz2 = −(𝜎tds) d2

dz2 [v − (xo − x)𝛽] (6.10h)

The moment of the forces given by Eqs. (6.10g) and (6.10h) about the longitudinal axis z passing
through the shear center gives the torque per unit length for the elementary strip of the bar as

dmz = (𝜎tds)(xo − x)
[

d2v
dz2 − (xo − x)d

2𝛽

dz2

]
− (𝜎tds)(yo − y)

[
d2u
dz2 + (yo − y)d

2𝛽

dz2

]
(6.10i)

Integrate over the entire cross-section area Ac, and we get the torque per unit length of the bar
as follows:

mz = ∫Ac

dmz = 𝜎xo
d2v
dz2 ∫Ac

tds − 𝜎
d2v
dz2 ∫Ac

xtds − 𝜎
d2𝛽

dz2 ∫Ac

(xo − x)2tds−

𝜎yo
d2u
dz2 ∫Ac

tds + 𝜎
d2u
dz2 ∫Ac

tyds − 𝜎
d2𝛽

dz2 ∫Ac

(yo − y)2tds (6.10j)

Now

𝜎
∫Ac

tds = P,
∫Ac

xtds = 0,
∫Ac

ytds = 0

∫Ac

x2tds = Iy, ∫Ac

y2tds = Ix

Therefore,

mz = Pxo
d2v
dz2 − Px2

o
d2𝛽

dz2 − 𝜎Iy
d2𝛽

dz2 − Pyo
d2u
dz2 − Py2

o
d2𝛽

dz2 − 𝜎Ix
d2𝛽

dz2 (6.10k)
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or

mz = P
[

xo
d2v
dz2 − yo

d2u
dz2

]
− P
[

x2
o + y2

o +
Ix

Ac
+

Iy

Ac

]
d2𝛽

dz2

or

mz = P
[

xo
d2v
dz2 − yo

d2u
dz2

]
−

PIo

Ac

d2𝛽

dz2 (6.10l)

where
Io = Ix + Iy + Ac(x2

o + y2
o)

Ix and Iy are the moments of inertia of the section about the principal axes of the cross-section
passing through the centroid C. Io is the polar moment of inertia of the cross-section about the
longitudinal axis passing through the shear center O. For non-uniform torsion from Eq. (6.5k)
we have

mz = ECw
d4𝛽

dz4 − GJ d2𝛽

dz2 (6.5k)

Combine Eqs. (6.5k and 6.10l) to get

ECw
d4𝛽

dz4 −
(

GJ −
IoP
Ac

)
d2𝛽

dz2 − Pxo
d2v
dz2 + Pyo

d2u
dz2 = 0 (6.10m)

Equations (6.10c), (6.10d), and (6.10m) are the three simultaneous differential equations for
buckling by bending and torsion, and can be used to find the critical loads. The angle of rotation
𝛽 appears in all the equations and these equations are coupled. In general, torsional buckling
and bending of the axis occur simultaneously.

6.6.1 Pinned-pinned Columns

The ends of the column are free to warp and they can rotate about the x and y axes, but they can-
not rotate about the z axis. The ends cannot deflect in the x and y directions also. The boundary
conditions are

u = v = 𝛽 = 0 at z = 0
u = v = 𝛽 = 0 at z = L

d2u
dz2 =

d2v
dz2 =

d2𝛽

dz2 = 0 (Because the bending moment is zero) at z = 0

d2u
dz2 =

d2v
dz2 =

d2𝛽

dz2 = 0 (Because the bending moment is zero) at z = L

Assume the solution of Eqs. (6.10c, 6.10d, and 6.10m) as

u = A sin 𝜋z
L

(6.11a)

v = B sin 𝜋z
L

(6.11b)

𝛽 = C sin 𝜋z
L

(6.11c)
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The above solution satisfies the boundary conditions. Equations (6.11a)–(6.11c) are substituted
into Eqs. (6.10c, 6.10d, and 6.10m) and we obtain(

P −
𝜋2EIy

L2

)
A + PyoC = 0(

P −
𝜋2EIx

L2

)
B − PxoC = 0

PyoA − PxoB −
(

ECw
𝜋2

L2 + GJ −
Io

Ac
P
)

C = 0

Let
𝜋2EIx

L2 = Px,
𝜋2EIy

L2 = Py, and P𝜙 =
Ac

Io

(
GJ +

𝜋2ECw

L2

)
(6.11d)

where Px and Py are the Euler buckling loads about the x and y axes, and P𝜙 is the critical load
for pure torsional buckling (Eq. 6.8a).

A(P − Py) + CPyo = 0 (6.11e)

B(P − Px) − CPxo = 0 (6.11f)

APyo − BPxo + C
Io

Ac
(P − P𝜙) = 0 (6.11g)

Equations (6.11e)–(6.11g) can be written in matrix form as⎡⎢⎢⎢⎣
(P − Py) 0 Pyo

0 (P − Px) −Pxo

Pyo −Pxo
Io

Ac
(P − P𝜙)

⎤⎥⎥⎥⎦
⎧⎪⎨⎪⎩

A
B
C

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩

0
0
0

⎫⎪⎬⎪⎭ (6.11h)

The determinant of the coefficient matrix should be zero for a nontrivial solution of
Eqs. (6.11h). Hence, we get||||||||

(P − Py) 0 Pyo
0 (P − Px) −Pxo

Py0 −Pxo
Io

Ac
(P − P𝜙)

|||||||| = 0 (6.11i)

The characteristic equation is given by
Io

Ac
(P − Py)(P − Px)(P − P𝜙) − (P − Py)P2x2

o − (P − Px)P2y2
o = 0 (6.11j)

or (
Io

Ac
− x2

o − y2
o

)
P3 +

Io

Ac

(
Py

Acx2
o

Io
+ Px

Acy2
o

Io
− Px − Py − P𝜙

)
P2

+
PIo

Ac
(PxPy + PxP𝜙 + PyP𝜙) −

Io

Ac
PxPyP𝜙 = 0
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or
(Ix + Iy)

Io
P3 +
[

Ac

Io
(Pxy2

o + Pyx2
o) − (Px + Py + P𝜙)

]
P2

+ (PxPy + PxP𝜙 + PyP𝜙)P − PxPyP𝜙 = 0 (6.11k)

If we know the properties of the column material and the cross-section, we can calculate the
coefficients in Eq. (6.11k). The solution of the cubic equation in P will give three roots, i.e. the
three values of P, and the smallest value will be the critical load. If a column section is sym-
metrical about two axes, the shear center coincides with the centroid, and we have xo = yo = 0.
Then, the Eq. (6.11j) becomes

(P − Py)(P − Px)(P − P𝜙) = 0 (6.11l)

The three roots of this equation are

P = Py =
𝜋2EIy

L

P = Px =
𝜋2EIx

L

P = P𝜙 =
Ac

Io

(
GJ +

𝜋2ECw

L2

)
This is the same as the previous case of pure torsional buckling. In this case, as stated before,
there are two pure flexural buckling modes about the x and y axes, and the third is the pure
torsional buckling. The least of the three loads, Px, Py, and P𝜙 gives the critical buckling load.
The flexural Euler buckling load about the weak axis is almost the least of the three values for
the hot rolled steel, wide flange sections. Hence, the flexural buckling load is usually used for
the design of these cross-sections.

6.6.2 Fixed-fixed Columns

If the ends of the column are built-in, the boundary conditions are:

u = v = 𝛽 = 0 at z = 0 and z = L

and du
dz

= dv
dz
= d𝛽

dz
= 0 at z = 0 and z = L

There will be fixed-end moments during buckling that have to be considered as shown in
Eq. (2.2b). Hence, add the fixed end moments in Eqs. (6.10c and 6.10d) and we obtain

EIy
d2u
dz2 + P(u + yo𝛽) = EIy

(
d2u
dz2

)
z=o

(6.12a)

EIx
d2v
dz2 + P(v − xo𝛽) = EIx

(
d2v
dz2

)
z=o

(6.12b)
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The governing Eq. (6.10m) was developed by considering an element between two sections,
hence, it is not affected by the end conditions of a column.

ECw
d4𝛽

dz4 −
(

GJ −
IoP
Ac

)
d2𝛽

dz2 − Pxo
d2v
dz2 + Pyo

d2u
dz2 = 0 (6.10m)

Equations (6.12a), (6.12b), and (6.10m) are the three governing equations of the torsional flex-
ural buckling of columns with built-in ends. Assume the solution of these three equations is

u = A
(

1 − cos 2𝜋z
L

)
(6.12c)

v = B
(

1 − cos 2𝜋z
L

)
(6.12d)

𝛽 = C
(

1 − cos 2𝜋z
L

)
(6.12e)

The assumed solution satisfies the boundary conditions. Substitute Eqs. (6.12c)–(6.12e) into
Eqs. (6.12a, 6.12b, and 6.10m) and we get the same equation Eq. (6.11h) as before⎡⎢⎢⎢⎣

(P − Py) 0 Pyo
0 (P − Px) −Pxo

Pyo −Pxo
Io

Ac
(P − P𝜙)

⎤⎥⎥⎥⎦
⎧⎪⎨⎪⎩

A
B
C

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩

0
0
0

⎫⎪⎬⎪⎭ (6.12f)

where in Eq. (6.12f)

Px =
4𝜋2EIx

L2 , Py =
4𝜋2EIy

L2 , and P𝜙 =
Ac

Io

(
GJ +

4𝜋2ECw

L2

)
The determinant of the coefficient matrix should be zero for a non-trivial solution of
Eqs. (6.12f), and we get, as before, the characteristic equation to find the critical loads.

Io

Ac
(P − Py)(P − Px)(P − P𝜙) − (P − Py)P2x2

o − (P − Px)P2y2
o = 0 (6.12g)

Or, as before
(Ix + Iy)

Io
P3 +
[

Ac

Io
(Pxy2

o + Pyx2
o) − (Px + Py + P𝜙)

]
P2 + (PxPy + PxP𝜙 + PyP𝜙)P − PxPyP𝜙 = 0

(6.12h)
The cubic characteristic equation for calculating the critical loads for built-in columns is the

same as for simply supported ends, just use 4𝜋2

L2 in place of 𝜋
2

L2 . The calculations for the doubly

symmetric sections where the Shear center and the centroid coincide are also similar except for
the stated change.

6.6.3 Singly Symmetric Sections

When a cross-section is symmetric about one axis, such as a channel and T-section, the
shear center lies on the axis of symmetry. Let us assume that the x axis is the axis of
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Figure 6.9 Singly symmetric section.

symmetry. In this case, yo = 0, as shown in Figure 6.9. Equations (6.10c), (6.10d), and (6.10m)
become

EIy
d2u
dz2 + Pu = 0 (6.13a)

EIx
d2v
dz2 + P(v − xo𝛽) = 0 (6.13b)

ECw
d4𝛽

dz4 −
(

GJ −
IoP
Ac

)
d2𝛽

dz2 − Pxo
d2v
dz2 = 0 (6.13c)

Equation (6.13a) does not contain 𝛽 and the buckling given by the equation in the plane of
symmetry is independent of torsion. Equations (6.13b) and (6.13c) contain 𝛽 and hence the
buckling perpendicular to the plane of symmetry is coupled with torsion.

6.6.3.1 Pinned-pinned Columns
Since the ends are hinged, the column can rotate about x and y axes but cannot deflect in these
directions. In addition, the column is free to warp but cannot rotate about the z axis. The bound-
ary conditions are:

u = v = 𝛽 = 0 at z = 0 and z = L (6.14a)
d2u
dz2 =

d2v
dz2 =

d2𝛽

dz2 = 0 at z = 0 and z = L (6.14b)

The shape functions satisfying the boundary conditions as before are given by Eqs. (6.11a)–(6.11c)
as follows:

u = A sin 𝜋z
L

(6.11a)

v = B sin 𝜋z
L

(6.11b)

𝛽 = C sin 𝜋z
L

(6.11c)
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Equation (6.13a) can be solved independently by substituting in this equation Eq. (6.11a). The
buckling load in this case is the flexural buckling load given by Euler’s formula as

Pcr1 =
𝜋2EIy

L2 (6.14c)

The shape functions in Eqs. (6.11b and 6.11c) represent the first mode shape of buckling by
flexure and torsion. These shape functions are substituted into governing differential equations
given by Eqs. (6.13b) and (6.13c), and we get⎡⎢⎢⎣

(P − Px) −Pxo

−Pxo
Io

Ac
(P − P𝜙)

⎤⎥⎥⎦
{

B
C

}
=
{

o
o

}
(6.14d)

The various terms in Eq. (6.14d) have been defined before. The determinant of the coefficient
matrix should be zero for a nontrivial solution of Eqs. (6.14d). Hence we get||||||

(P − Px) −Pxo

−Pxo
Io

Ac
(P − P𝜙)

|||||| = 0 (6.14e)

Io

Ac
(P − Px)(P − P𝜙) − P2x2

o = 0

Hence, the quadratic characteristic equation is given by

P2
(

1 −
Acx2

o

Io

)
− P(Px + P𝜙) + PxP𝜙 = 0 (6.14f)

The two roots of the quadratic characteristic equation are

Pcr2, cr3 =

(Px + P𝜙) ±

√√√√(Px + P𝜙)2 − 4PxP𝜙

(
1 −

Acx2
0

Io

)

2
(

1 −
Acx2

o

Io

)
or

Pcr2,cr3 =
1

2k
[(Px + P𝜙) ±

√
(Px + P𝜙)2 − 4PxP𝜙k] (6.14g)

where

k =
(

1 −
Acx2

o

Io

)
, and Io = Axo

2 + Ix + Iy

Ix and Iy are the moments of inertia of the section about the principal axes of the cross-section
passing through the centroid C. Io is the polar moment of inertia of the cross-section about the
longitudinal axis passing through the shear center O.

The two roots, Pcr2 and Pcr3, correspond to a combination of bending and twisting, i.e. tor-
sional flexural buckling. The smaller root is smaller than Px or P𝜙, while the larger root is larger
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than Px or P𝜙. For sections with one axis of symmetry, the critical load is the smaller of the two
roots of Eq. (6.14g) corresponding to the torsional flexural buckling or the Euler load, Pcr1, cor-
responding to the bending in the plane of symmetry. Thus, sections that are symmetric about
one principal axis can fail either by flexural buckling in the plane of symmetry, or by torsional
flexural buckling in the plane perpendicular to the plane of symmetry. The non-symmetric
sections, on the other hand, always fail by torsional flexural buckling.

Example 6.3 Find the torsional flexural buckling load of a 25 ft (4.57 m) column
that is simply supported at its ends, where the cross-section is an equal L 6×6′′×3/4′′

(152 mm× 152 mm× 19 mm) , according to the AISC manual [5]. The area of the cross-section
is Ac = 8.46 in.2 (5420 mm2). The moment of inertia about the x and y axes are: Ix = 28.1 in.4
(11.6× 106mm4), and Iy = 28.1 in.4 (11.6× 106mm4). The radius of gyration about the x, y,
and z axes is: rx = 1.82 in. (46.3 mm), ry = 1.82 in. (46.3 mm), and rz = 1.17 in. (29.7 mm). the
torsional constant J = 1.61 in.4 (629× 103mm4), Cw = 4.17 in.6 (1.1× 109mm6), ro = 3.24 in.
(82.4 mm), tan 𝛼 = 1, x̄ = ȳ = 1.77 in. (44.9 mm).

u and z are the major and minor principal axes for the equal angle section (Figure 6.10). C
is the centroid and O (at the intersection of the center lines of two legs of the angle) is the
shear center for the cross-section. Some of the physical properties of the angle section [6] are
calculated below

Iz = A rz
2 = 8.44 (1.17)2 = 11.6 in.4 [5420 (29.7)2 = 4.78 × 106mm4]

Iu = Ix + Iy − Iz = 28.1 + 28.1 − 11.6 = 44.6 in.4

[11.6 × 106 + 11.6 × 106 − 4.78 × 106 = 18.42 × 106mm4]

xo = yo = x̄ − t
2
= 1.77 − 3

8
= 1.395 in.

[
44.9 − 19

2
= 35.4 mm

]
uo = xo cos 𝛼 + yo sin 𝛼 = 1.395 × 0.707 + 1.395 × 0.707 = 1.973 in.

[35.4 × 0.707 + 35.4 × 0.707 = 50.06 mm]

O

x–

–y

u

uz

z

xx

y

α

C

Figure 6.10 Equal angle cross-section.
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Shear center O lies at the intersection of the two legs of the angle, zo = 0.

Io = Iu + Iz + Auo
2 + Azo

2

Io = 44.6 + 11.6 + 8.46 (1.973)2 + 0 = 89.13 in.4

[11.6 × 106 + 11.6 × 106 + 5420 (50.06)2 + 0 = 36.78 × 106mm4]

Pcr1 = Pz =
𝜋2EIz

L2 = 𝜋2x29x106x11.6
(15x12)2

x 1
1000

= 102.47kips
[
𝜋2x200000x4.78x106

(4.57x1000)2
x 1

1000
= 451.78 kN

]
Pu =

𝜋2EIu

L2 = 𝜋2x29x106x44.6
(15x12)2

x 1
1000

= 393.99 kips
[
𝜋2x200000x18.42x106

(4.57x1000)2
x 1

1000
= 1740.95 kN

]
P𝜙 =

Ac

Io

(
GJ +

𝜋2ECw

L2

)
= 8.46

89.13

(
11x106x1.61 + 𝜋2x29x106x4.17

(15x12)2

)
x 1

1000
= 1684.49 kips[

5420
36.78x106

(
75000x629x103 + 𝜋2x200000x1.1x109

(4.57x1000)2

)
x 1

1000
= 6966.67 kN

]
k = 1 −

Acx2
o

Io
= 1 − 8.46x1.3952

89.13
= 0.815

[
1 − 5420x35.42

36.78x106 = 0.815
]

Pcr2,cr3 =
1

2k

[
(Pu + P𝜙) ±

√
(Pu + P𝜙)2 − 4PuP𝜙k

]
Pcr2,cr3 =

1
2x0.815

[
(393.99 + 1684.49) ±

√
(393.99 + 1684.49)2 − 4(393.99)(1684.49)(0.815)

]
Pcr2 = 2176.08 kips and Pcr3 = 373.22 kips

Pcr2,cr3 =
1

2x0.815

[
(1740.95 + 6966.67) ±

√
(1740.95 + 6966.67)2 − 4(1740.95)(6966.67)(0.815)

]
Pcr2 = 9037.54 kN and Pcr3 = 1645.33 kN

The critical buckling load for the simply supported single angle column is given by the mini-
mum of three values Pcr1, Pcr2, Pcr3, hence

Pcr = 102.47 kips (451.78 kN).

6.6.3.2 Fixed-fixed Columns
In this case the governing equations of buckling are obtained from Eqs. (6.12a), (6.12b), and
(6.10m) by substituting yo = 0. The governing equations of buckling are

EIy
d2u
dz2 + Pu = EIy

(
d2u
dz2

)
z=o

(6.15a)

EIx
d2v
dz2 + P(v − xo𝛽) = EIx

(
d2v
dz2

)
z=o

(6.15b)

ECw
d4𝛽

dz4 −
(

GJ −
IoP
Ac

)
d2𝛽

dz2 − Pxo
d2v
dz2 = 0 (6.15c)
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The boundary conditions are

u = v = 𝛽 = 0 at z = 0 and z = L (6.15d)

du
dz

= dv
dz
= d𝛽

dz
= 0 at z = 0 and z = L (6.15e)

Assume the solution of these three equations is the same as given by Eqs. (6.12c)–(6.12e).

u = A
(

1 − cos 2𝜋z
L

)
(6.12c)

v = B
(

1 − cos 2𝜋z
L

)
(6.12d)

𝛽 = C
(

1 − cos 2𝜋z
L

)
(6.12e)

Equation (6.15a) can be solved independently by substituting in this equation Eq. (6.12c). The
buckling load in this case is the flexural buckling load given by Euler’s formula as

Pcr1 =
4𝜋2EIy

L2 (6.15f)

The shape functions in Eqs. (6.12d and 6.12e) represent the first mode shape of buckling by
flexure and torsion. These shape functions are substituted into governing differential equations
given by Eqs. (6.15b) and (6.15c), and we get Eq. (6.14f) as the quadratic characteristic equation
which is the same as given for a singly symmetric pinned-pinned column

P2
(

1 −
Acx2

o

Io

)
− P(Px + P𝜙) + PxP𝜙 = 0 (6.14f)

where

Px =
4𝜋2EIx

L2 and P𝜙 =
Ac

Io

(
GJ +

4𝜋2ECw

L2

)
(6.15g)

The two roots of the quadratic Eq. (6.14f) are given by the same Eq. (6.14g) as given before for
a singly symmetric pinned-pinned column

Pcr2,cr3 =
1

2k
[(Px + P𝜙) ±

√
(Px + P𝜙)2 − 4PxP𝜙k] (6.14g)

where k =
(

1 −
Acx2

o

Io

)
, and Io = Axo

2 + Ix + Iy, as before, for pinned-pinned columns. The

smaller of the roots given by Eq. (6.14g) or the Euler buckling load given by Eq. (6.15f) in the
plane of symmetry gives the critical buckling load for the column.

Example 6.4 Find the torsional flexural buckling load of a 15 ft (4.57 m) column that is
built-in at its ends, where the cross-section is MC 10×41.1 (in.× lb./ft) or MC 250×61.2
(mm× kg/m), miscellaneous channel, according to the AISC manual [5]. The area of
cross-section is Ac = 12.1 in.2 (7780 mm2), x̄ = 1.09 in. (27.7 mm), eo = 0.864 in. (22.1 mm)
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_
x

y

h
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Figure 6.11 Channel cross-section.

(Figure 6.11). The moment of inertia about the x and y axes is: Ix = 158 in.4 (64.8 × 106 mm4),
and Iy = 15.8 in.4 (6.65 × 106 mm4). The radius of gyration about the x and y axes is: rx = 3.61 in.
(91.3 mm), and ry = 1.14 in. (29.2 mm). The torsional constant J = 2.27 in.4 (942 × 103 mm4),
Cw = 270 in.6 (84.6 × 109 mm6), ro = 4.26 in. (108 mm).

Io = Ix + Iy + Ac(xo
2 + yo

2)

xo = x̄ + eo = 1.09 + 0.864 = 1.954 in.[27.7 + 22.1 = 49.8 mm]

Io = 158 + 15.8 + 12.1 (1.9542 + 0) = 220 in.4

[64.8 × 106 + 6.65 × 106 + 7780(49.8)2 + 0 = 90.74 × 106 mm4]

k = 1 −
Acx2

0

Io
= 1 − 12.1(1.954)2

220
= 0.79

[
1 − 7780(49.8)2

90.74x106 = 0.79
]

Pcr1 = Py =
4𝜋2EIy

L2 = 4(𝜋2)(29 × 106)(15.8)
(15 × 12)2

× 1
1000

= 558.32 kips

[
4(𝜋2)(200000)(6.5 × 106)

(4.57 × 1000)2
× 1

1000
= 2514.08 kN

]
Px =

4𝜋2EIx

L2 = 4(𝜋2)(29 × 106)(158)
(15 × 12)2

× 1
1000

= 5583.04 kips[
4(𝜋2)(200000)(64.8 × 106)

(4.57 × 1000)2
× 1

1000
= 24, 498.08 kN

]
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P𝜙 =
Ac

Io

(
GJ +

4𝜋2ECw

L2

)
= 12.1

220

(
11 × 106(2.27) + 4(𝜋2)(29 × 106)(270)

(15 × 12)2

)
× 1

1000
= 1898.08 kips[

7780
90.74 × 106

(
75000(942 × 103) + 4(𝜋2)(200000)(84.6 × 109

(4.57 × 1000)2

)
× 1

1000
= 8799.75 kN

]
Pcr2,cr3 =

1
2k
[(Px + P𝜙) ±

√
(Px + P𝜙)2 − 4PxP𝜙k]

Pcr2,cr3 =
1

2x0.79
[(5583.04 + 1898.08) ±

√
(5583.04 + 1898.08)2 − 4(5583.04)(1898.08)(0.79)]

Pcr2 = 7735.74 kips and Pcr3 = 1734.27 kips

[
Pcr2,cr3 =

1
2 × 0.79

[(24, 498.08 + 8799.75) ±
√
(24, 498.08 + 8799.75)2 − 4(24, 498.08)(8799.75)(0.79)]

]
[Pcr2 = 34161.04 kN and Pcr3 = 7989.23 kN]

The critical buckling load for the built-in column whose cross-section is single miscellaneous
channel is given by the minimum of three values Pcr1, Pcr2, Pcr3, hence

Pcr = 558.32 kips [2514.08 kN].

6.7 Torsional Flexural Buckling: The Energy Approach

The energy method can be used to find the torsional flexural buckling load for columns as an
alternative to the differential equations method. This method can be used to obtain an approx-
imate solution though there is the possibility to converge to almost an exact solution. This
method was used in Chapter 1 and some of the same principles are used here. We find the
total potential energy, Π, of a system given by

Π = U + V (6.16a)

where U is the strain energy and V is the potential of the external loads.

6.7.1 Strain Energy of Torsional Flexural Buckling

The strain energy is stored due to bending about the x and y axes and due to torsion about the
z axis during buckling in a column. Strain energy due to torsion is stored due to shear stress
developed in St. Venant’s torsion and the longitudinal stresses developed during warping tor-
sion. The strain energy stored in a member due to longitudinal stresses associated with bending
moments Mx and My about the x and y axes respectively is given by

Ub =
1
2 ∫

L

0 ∫A
𝜎𝜀dA dz (6.17a)

within the elastic limit, 𝜎 = E𝜀
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Hence,

Ub =
1
2 ∫

L

0 ∫A

𝜎2

E
dA dz

Using the flexure formula from Mechanics of Materials [4], the strain energy of bending due to
moments Mx and My about the x and y axes respectively is obtained from

Ub =
1
2 ∫

L

0

M2
x dz

EIx
+ 1

2 ∫

L

0

M2
y dz

EIy
(6.17b)

where Ix and Iy are the area moment of inertias about the x and y axes of the member
cross-section. Use Eqs. (2.1a and 2.1b) to get

Ub =
1
2 ∫

L

0
EIx

(
d2v
dz2

)2

dz + 1
2 ∫

L

0
EIy

(
d2u
dz

)2

dz (6.17c)

where u and v are the displacements in the x and y directions.
Strain energy stored in a member due to shear stresses associated with St. Venant’s torsion is

given by

Usv =
1
2 ∫

L

0 ∫A
𝜏𝛾dA dz (6.17d)

within elastic limit 𝜏 = G𝛾

Usv =
1
2 ∫

L

0 ∫A

𝜏2

G
dA dz

Hence,

𝜏 =
Tsv

J
r, and from Eq. (6.1a) Tsv = GJ d𝛽

dz
or

Usv =
1
2 ∫

L

0
GJ
(

d𝛽
dz

)2

dz (6.17e)

where

J =
∫A

r2dA

Strain energy due to longitudinal stresses associated with the warping torsion is obtained from

Uw =
1
2 ∫

L

0 ∫A
𝜎𝜀dA dz (6.17f)

We can proceed by considering the example of an I-section where the bending moment in the
flange is given by

Mf = EIf
d2u
dz2 (6.17g)
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The strain energy due to bending in one flange associated with warping torsion is

Uw =
1
2 ∫

L

0
EIf

(
d2u
dz2

)2

dz (6.17h)

u = 𝛽
h
2

d2u
dz2 =

h
2

d2𝛽

dz2 (6.17i)

or

Uw =
1
4 ∫

L

0
ECw

(
d2𝛽

dz2

)2

dz

where

Cw =
1
2

If h2 (6.17j)

The strain energy of bending due to warping in both flanges is

Uw =
1
2 ∫

L

0
ECw

(
d2𝛽

dz2

)2

dz (6.17k)

Alternate approach
In this approach a general thin-walled open cross-section is considered. Use Eqs. (6.17f, 6.3d,

and 6.3e) to get

Uw =
1
2 ∫

L

0 ∫A
E(w̄s − ws)2

(
d2𝛽

dz2

)2

dA dz (6.17l)

Uw =
1
2 ∫

L

0
ECw

(
d2𝛽

dz2

)2

dz (6.17m)

where

Cw = ∫A
(w̄s − ws)2dA (6.17n)

Equations (6.17k) and (6.17m) are the same.
U = Ub + Usv + Uw (6.17o)

or

U = 1
2 ∫

L

0
EIx

(
d2v
dz2

)2

dz + 1
2 ∫

L

0
EIy

(
d2u
dz

)2

dz + 1
2 ∫

L

0
GJ
(

d𝛽
dz

)2

dz + 1
2 ∫

L

0
ECw

(
d2𝛽

dz2

)2

dz

(6.17p)
Assume a pinned-pinned column and substitute the assumed deformations u, v, and 𝛽 from
Eqs. (6.11a)–(6.11c) in the strain energy expression (6.17p) to get

U = 𝜋2

4L

[
A2𝜋

2EIy

L2 + B2𝜋
2EIx

L2 + C2
(

GJ +
𝜋2ECw

L2

)]
(6.17q)
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where

∫

L

0
sin2𝜋z

L
dz =

∫

L

0
cos2𝜋z

L
dz = L

2

6.7.2 Potential Energy of External Loads in Torsional Flexural Buckling

When an external load is applied to the column, it deforms and the external force P moves a
distance ofΔL as shown in Figure 6.12a. The potential energy of the external forces is obtained
from the negative of the products of the forces and the corresponding displacements in the
directions of the forces. The potential energy of the external forces is obtained from

V = −
∫

𝜎dA (ΔL) (6.18a)

where 𝜎 is the axial stress in the column cross-section, and dA is the elementary area of the
cross-section.

ΔL = S − L (6.18b)
Consider an element dz in the fiber AB parallel to the z axis in Figure 6.12b. The deformed
length, ds, of the element is obtained as follows:

ds2 = (du′)2 + (dv′)2 + (dz)2 (6.18c)

ds =

[
1 +
(

du′

dz

)2

+
(

dv′

dz

)2
]1

2
dz (6.18d)

(a)

(b)

ΔL
L

S

PP

E’
D’

x

z

dz
B

C

D

v’
v’+ dv’

y

A

u’ + du’
u’x

y

E

ds

Figure 6.12 Torsional flexural buckling of a column: (a) Deformed shape of the column; (b) Deformation of an
element.



Trim Size: 187mm x 235mm Single Column Jerath c06.tex V1 - 11/06/2020 7:01pm Page 349�

� �

�

6.7 Torsional Flexural Buckling: The Energy Approach 349

The quantity in the brackets can be written in a series form by using the binomial theorem [7].
The theorem states

(1 + x)n = 1 + nx + n(n − 1)
2!

x2 + n(n − 1)(n − 2)
3!

x3 + − − − − − − −−

If x is small, then higher powers of x can be neglected and the binomial expansion can be
written as

(1 + x)n ≈ 1 + nx

Equation (6.18d) can be written by using the binomial theorem [7] as follows:

∫

S

0
ds =

∫

L

0

[
1 + 1

2

(
du′

dz

)2

+ 1
2

(
dv′

dz

)2

+ − − −

]
dz

or

ΔL = S − L = 1
2 ∫

L

0

[(
du′

dz

)2

+
(

dv′

dz

)2
]

dz (6.18e)

Equations (6.10e) and (6.10f) give

u′ = u + (yo − y)𝛽 (6.18f)

v′ = v − (xo − x)𝛽 (6.18g)

du′

dz
= du

dz
+ yo

d𝛽
dz
− y d𝛽

dz
(6.18h)

dv′

dz
= dv

dz
− xo

d𝛽
dz
+ x d𝛽

dz
(6.18i)

Substitute Eqs. (6.18h and 6.18i) into Eq. (6.18e) and we have

ΔL = 1
2 ∫

L

0

[(
du
dz

)2

+
(

dv
dz

)2

+ (x2 + y2 + x2
o + y2

o)
(

d𝛽
dz

)2

−2(xxo + yyo)
(

d𝛽
dz

)2

+ 2(yo − y)du
dz

d𝛽
dz
− 2(xo − x)dv

dz
d𝛽
dz

]
dz (6.18j)

Substitute Eq. (6.18j) into Eq. (6.18a) to get

V = −1
2 ∫

L

0 ∫A
𝜎

[(
du
dz

) 2

+
(

dv
dz

)2

+ (x2 + y2 + x2
0 + y2

0)
(

d𝛽
dz

)2

− 2(xx0 + yy0)
(

d𝛽
dz

)2

+ 2(y0 − y)du
dz

d𝛽
dz

−2(x0 − x)dv
dz

d𝛽
dz

]
dAdz

V = −1
2 ∫

L

0
𝜎

[(
du
dz

) 2

A +
(

dv
dz

)2

A + I0

(
d𝛽
dz

)2

+ 2y0A du
dz

d𝛽
dz

−2x0A dv
dz

d𝛽
dz

]
dz
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where

∫A
xdA = 0,

∫A
ydA = 0,

∫A
x2dA = Iy, ∫A

y2dA = Ix

and

I0 = Ix + Iy + A(x2
0 + y2

0), 𝜎A = P

Hence,

V = −P
2 ∫

L

0

[(
du
dz

)2

+
(

dv
dz

) 2

+
Io

A

(
d𝛽
dz

)2

+ 2yo

(
du
dz

)(
d𝛽
dz

)
− 2xo

(
dv
dz

)(
d𝛽
dz

)]
dz

(6.18k)

Assume u, v, and 𝛽 given by Eqs. (6.11a)–(6.11c) for a pinned-pinned column and substitute in
Eq. (6.18k) to get the expression for the potential energy of the external forces

V = −P𝜋2

4L

[
A2 + B2 +

Io

Ac
C2 − 2BCxo + 2ACyo

]
(6.18l)

The total potential energy of the column is

Π =U + V

Π = 𝜋2

4L

[
A2𝜋

2EIy

L2 + B2𝜋
2EIx

L2 + C2
(

GJ +
𝜋2ECw

L2

)]
−P𝜋2

4L

[
A2 + B2 +

Io

Ac
C2 − 2BCxo + 2ACyo

]
Substitute

Px =
𝜋2EIx

L2 ,Py =
𝜋2EIy

L2 , and P𝜙 =
Ac

I0

(
GJ +

𝜋2ECw

L2

)
as before to give

Π = 𝜋2

4L

[
A2(Py − P) + B2(Px − P) +

C2Io

Ac
(P𝜙 − P) − 2ACPyo + 2BCPxo

]
(6.18m)

The expression in Eq. (6.18m) gives the total potential energy in the column in a slightly
deformed position. The critical load is the axial compressive force at which the system is in
equilibrium in a slightly deflected shape. Hence, the total potential energy, Π, has a stationary
value at the critical load. The total potential energy is a function of three variables A, B, C. Its
stationary value can be achieved if the first variation of the total potential energy with respect
to the three variables is separately equal to zero.

𝜕Π
𝜕A

= A(Py − P) − CPyo = 0 (6.18n)
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𝜕Π
𝜕B

= B(Px − P) + CPxo = 0 (6.18o)

𝜕Π
𝜕C

= −APyo + BPxo + C
Io

Ac
(P𝜙 − P) (6.18p)

Equations (6.18n)–(6.18p) can be written in matrix form as⎡⎢⎢⎢⎣
(Py − P) 0 −Pyo

0 (Px − P) Pxo

−Pyo Pxo
Io

Ac
(P𝜙 − P)

⎤⎥⎥⎥⎦
⎧⎪⎨⎪⎩

A
B
C

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩

0
0
0

⎫⎪⎬⎪⎭ (6.18q)

For a nontrivial solution, the determinant of the coefficient matrix should be zero.||||||||
(Py − P) 0 −Pyo

0 (Px − P) Pxo

−Pyo Pxo
Io

Ac
(P𝜙 − P)

|||||||| = 0 (6.18r)

or
Io

Ac
(Py − P)(Px − P)(P𝜙 − P) − (Py − P)P2x2

o − (Px − P)P2y2
o = 0 (6.18s)

Hence, we get the same expression for finding the critical load for a pinned-pinned column
by the energy method as was obtained from the deformed shape equilibrium approach in
Eq. (6.11j). For sections that are symmetrical about both the x and y axes, xo = yo = 0, and
Eq. (6.18s) reduces to

(Py − P)(Px − P)(P𝜙 − P) = 0

This is the same expression as Eq. (6.11l). For sections that are symmetric about one axis only,
say, the x axis, the shear center lies on the axis of symmetry, the x axis. In this case, yo = 0, and
Eq. (6.18s) reduces to

Io

Ac
(Py − P)(Px − P)(P𝜙 − P) − (Py − P)P2x2

o = 0

or

(Py − P)
[

Io

Ac
(Px − P)(P𝜙 − P) − P2x2

o

]
= 0 (6.18t)

The expression in Eq. (6.18t) is satisfied if

(Py − P) = 0

or

Pcr1 = Py =
𝜋2EIy

L2 ,

which is the same as in Eq. (6.14c) and
Io

Ac
(Px − P)(P𝜙 − P) − P2x2

o = 0
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or

P2
(

1 −
Acx2

o

Io

)
− P(Px + P𝜙) + PxP𝜙 = 0 (6.18u)

This is the same expression as Eq. (6.14f). Hence, the solutions obtained from the energy
approach and from the equilibrium of the deformed shape are the same. The energy approach

will give the same solution as before for a fixed-fixed column if we use 4𝜋2

L2 in place of 𝜋
2

L2 .

6.8 Lateral Buckling of Beams

When a beam is loaded by a transverse load in the plane of the web, it may buckle sideways at a
certain critical load if it is not provided adequate lateral support, as shown in Figure 6.13. If the
flexural rigidity of the beam in the plane of the web is much larger than its lateral rigidity, then
the lateral buckling is important in the design of the beam. In this case, the beam may buckle
and collapse long before the bending stresses due to the transverse load reach the yield point.
If the transverse loads remain below a certain value, the structure is in stable equilibrium, i.e.
it will come back to its plane configuration after it is slightly twisted and buckled laterally if
the force causing the displacement ceases to act. When the loads increase, a loading is reached
when the displaced equilibrium position of the beam is also possible in addition to its equi-
librium plane configuration. The plane configuration is now not stable, and the lowest load at
which this change occurs is called the critical load for lateral buckling of the beam.

6.8.1 Lateral Buckling of Simply Supported, Narrow Rectangular Beams in Pure Bending

Consider a narrow rectangular, simply supported beam in pure bending as shown in
Figure 6.14. Simply supported means that the ends of the beam are free to rotate about the
principal axes x and y, but the beam cannot rotate about the principal axis z. Assume the
beam is elastic and the applied moments act in the yz plane, the plane of maximum rigidity.
It is also assumed that a small lateral deflection occurs under the action of the moments
Mx, and the geometry of the cross-section does not change during buckling. We form the

u

β

P

Figure 6.13 Lateral buckling of beams.
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My’

Mz’

CC’

Mx’

uv

y

x

x’

y’

Mx
Mx

β

L

z

z’

b

h

Figure 6.14 Lateral buckling of simply supported, narrow rectangular beam under pure bending.

differential equations of equilibrium for the deformed beam and from there we can calculate
the critical load.

The fixed set of axes x, y, and z are chosen as per the right-hand screw rule, and a second set
of axes x′, y′, and z′ are chosen relative to the deformed shape of the member. The x′ and y′ axes
coincide with the principal directions of the cross-section, and the z′ axis is in the direction of
the tangent to the deformed axis of the member after buckling. The deformation of the beam is
defined by the u and v components of the displacement of the centroid of the cross-section in the
x and y directions respectively, and the angle of rotation 𝛽 of the cross-section about the z axis.
The u and v are taken as positive in the positive directions of the x and y axes respectively, and 𝛽

is the positive rotation about the z axis according to the right-hand screw rule sign convention.
So, all three motions are positive in Figure 6.14.

The external moment Mx can be resolved into internal moment components Mx′ , My′ , and
Mz′ by considering the equilibrium of the free body diagram of the deflected shape of the beam
In Figure 6.14. The positive direction of these internal moments is shown in Figure 6.14. The
internal moment components are calculated as follows:

In the xy plane, the angle between the x and the x′ axis is the angle of rotation 𝛽 in Figure 6.15a.
The moment components about the x′ and y′ axes are given by

Mx′ = Mx cos 𝛽 = Mx (cos 𝛽 ≈ 1 for small angle of rotation 𝛽) (6.19a)

And

My′ = −MX sin 𝛽 = −Mx𝛽 (sin 𝛽 ≈ 𝛽 for small angle of rotation 𝛽) (6.19b)

In the xz plane, the angle between the z and z′ axes is equal to du
dz

in Figure 6.15b. The moment
components about the x′ and z′ axes are

Mz′ = Mx sin du
dz

= Mx
du
dz

(6.19c)

Mx′ = Mx cos du
dz
= Mx as before for small angles.
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(a) 

(b) 

x

y

x’

y’

β

β

Mx

Mx’

My’ = −βMx β

z’

du
dz

x’

x

z

Mz’

Mx’

Mx
du
dz

x’
Mz’ = Mx sin 

du
dz

Figure 6.15 Internal moment components: (a) Moments in the xy plane; (b) Moments in the xz plane.

The differential equations of beam bending are

Mx′ = −EIx
d2v
dz2 (6.19d)

My′ = EIy
d2u
dz2 (6.19e)

For small angle of twist 𝛽, it is assumed that the curvature and moment of inertia in the x′z′ and
y′z′ planes may be taken the same as their corresponding values in the xz and yz planes respec-
tively. The negative sign in Eq. (6.19d) shows that for positive moment Mx′ shown in Figure 6.14

the corresponding curvature d2v
dz2 in y ’ − z′ plane is negative. The differential equation for the

twisting moment of the buckled member is taken from Eq. (6.2h), where Cw = 0, because, for a
narrow rectangle, warping restraint given by Cw can be neglected. The equation for the twisting
moment for the buckled bar is

Mz′ = Mx
du
dz

= GJ d𝛽
dz

(6.19f)

Substitute Eqs. (6.19a)–(6.19c) into Eqs. (6.19d)–(6.19f) to get

Mx + EIx
d2v
dz2 = 0 (6.19g)
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𝛽Mx + EIy
d2u
dz2 = 0 (6.19h)

GJ d𝛽
dz
−Mx

du
dz

= 0 (6.19i)

Equation (6.19g) contains only variable v, hence this equation is not coupled with Eqs. (6.19h
and 6.19i) and can be solved independently for bending in the yz plane. Equations (6.19h) and
(6.19i) that describe the lateral buckling and the twisting contain variables u and 𝛽, and are thus
coupled. These equations have to be solved simultaneously to get the lateral buckling load. If we

differentiate Eq. (6.19i) with respect to z, and substitute for the term, d2u
dz2 , from this expression

into Eq. (6.19h), we have

d2𝛽

dz2 +
M2

x𝛽

EIyGJ
= 0

or
d2𝛽

dz2 + k2𝛽 = 0 (6.19j)

where
M2

x

EIyGJ
= k2 (6.19k)

The solution of Eq. (6.19j) is

𝛽 = A sin kz + B cos kz (6.19l)

The ends of the beam are simply supported, hence, the deflections and the bending moments
are zero there. The boundary conditions are

u = v = d2u
dz2 =

d2v
dz2 = 0 at z = 0 and z = L (6.19m)

The ends of the member do not rotate about the z axis, but are free to warp. Thus,

𝛽 = 0 at z = 0 and z = L (6.19n)

Substitute 𝛽 = 0 at z = 0 and at z = L, into Eq. (6.19l) and we get

0 = 0 + B(1), or B = 0, and
0 = A sin kL

A cannot be zero because we are considering a deformed shape, so

Sin kL = 0

or

kL = n𝜋, n = 0, 1, 2, 3, ---------------
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the least value of kL = 𝜋, or k2L2 = 𝜋2or
M2

x L2

EIyGJ
= 𝜋2

The critical moment is given by

Mcr =
𝜋

L

√
EIyGJ (6.19o)

The maximum critical stress because of lateral buckling is

𝜎cr =
Mcr(h∕2)

Ix
= 𝜋

L

√
EIyGJ

h∕2
Ix

J = hb3

3
, Ix =

bh3

12
or

𝜎cr =
𝜋
√

GE
L∕b

√
Iy

Ix
(6.19p)

The critical stress is proportional to the ratio Iy/Ix and is inversely proportional to L/b. So, the
lateral buckling is important for long, narrow, and deep beams.

6.8.2 Lateral Buckling of Simply Supported I Beams in Pure Bending

Consider a simply supported I beam in pure bending as shown in Figure 6.16. This problem is
similar to the problem in Section 6.8.1 and there is no change in the loading and the support

y’

u

x

y

z

L

v

x’

z’
β

C

C’
Mx

Mx

Mx’

My’

Mz’

Figure 6.16 Lateral buckling of simply supported I beam under pure bending.
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conditions. Equations (6.19a)–(6.19e), (6.19g), and (6.19h) apply here. The only equation
different in this case is Eq. (6.19f) that is modified because in an I section there are both
St. Venant’s and warping torsions. Hence the torsion equation in this case is written as

Mz′ = Mx
du
dz

= GJ d𝛽
dz
− ECw

d3𝛽

dz3 (6.20a)

The governing differential equations for the I-section under pure bending are

Mx + EI

x

d2v
dz2 = 0 (6.19g)

𝛽Mx + EI

y

d2u
dz2 = 0 (6.19h)

GJ d𝛽
dz
− ECw

d3𝛽

dz3 −Mx
du
dz

= 0 (6.20b)

The bending in the vertical plane yz is described by Eq. (6.19g) and the equation is inde-
pendent of lateral buckling. The lateral torsional buckling is defined by the coupled
Eqs. (6.19h and 6.20b). Differentiate Eq. (6.20b) with respect to z and substitute for the term
d2u
dz2 into Eq. (6.19h) to get

d4𝛽

dz4 −
GJ

ECw

d2𝛽

dz2 −
𝛽M2

x

E2IyCw
= 0 (6.20c)

Substitute

a = GJ
2ECw

, b =
M2

x

E2IyCw
(6.20d)

or
d4𝛽

dz4 − 2a d2𝛽

dz2 − b𝛽 = 0 (6.20e)

Equation (6.20e) is a linear differential equation of the fourth order and has constant coeffi-
cients. The general solution of Eq. (6.20e) is

𝛽 = A sin mz + B cos mz + Cenz + De−nz (6.20f)
where m and n are positive, real quantities [3] are given by

m =
√
−a +
√

a2 + b, n =
√

a +
√

a2 + b (6.20g)
Assume the ends of the member do not rotate about the z axis, but are free to warp. Hence

𝛽 = d2𝛽

dz2 = 0 at z = 0 and z = L (6.20h)

d2𝛽

dz2 = −Am2 sin mz − Bm2 cos mz + Cn2enz + Dn2e−nz (6.20i)
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By setting the boundary conditions at z = 0 in Eqs. (6.20f and 6.20i) we get

B + C + D = 0 (6.20j)

−Bm2 + Cn2 + Dn2 = 0 (6.20k)

From Eqs. (6.20j and 6.20k) we obtain

−B(m2 + n2) = 0

Therefore,

B = 0, C = −D (6.20l)

Substitute Eq. (6.20l) into Eq. (6.20f) to get

𝛽 = A sin mz − 2D sinh nz (6.20m)

d2𝛽

dz2 = −Am2 sin mz − 2Dn2 sinh nz (6.20n)

Substitute the boundary conditions at z = L in Eqs. (6.20m and 6.20n), and we have

A sin mL − 2D sinh nL = 0 (6.20o)

Am2 sin mL + 2Dn2 sinh nL = 0 (6.20p)

or [
sin mL −2 sinh nL

m2 sin mL 2n2 sinh nL

]{
A
D

}
=
{

0
0

}
(6.20q)

For a nontrivial solution, the determinant of Eq. (6.20q) should be zero|||| sin mL −2 sinh nL
m2 sin mL 2n2 sinh nL

|||| = 0

or

sin mL(n2 sinh L +m2 sinh nL) = 0

Since m and n are positive nonzero quantities, we obtain

sin mL = 0 (6.20r)

From Eqs. (6.20o and 6.20p), we obtain D = 0. Hence the buckled shape from Eq. (6.20f) is
given by

𝛽 = A sin mz (6.20s)

The values of m satisfying Eq. (6.20r) are

mL = n𝜋, n = 1, 2, 3 -----
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The smallest value of m is given by

m = 𝜋

L
(6.20t)

Using Eq. (6.20g) we have

−a +
√

a2 + b = 𝜋2

L2

Substitute for a and b from Eq. (6.20d) and we get

M2
x =

𝜋2

L2

(
EIyGJ + 𝜋2

L2 E2IyCw

)
The critical moment is given by

Mcr =
𝜋

L

√
EIyGJ

(
1 + 𝜋2

L2
ECw

GJ

)
(6.20u)

or

Mcr = 𝛼

√
EIyGJ

L
(6.20v)

where

𝛼 = 𝜋

√
1 + 𝜋2

L2
ECw

GJ
(6.20w)

6.8.3 Lateral Buckling of Simply Supported I Beams: Concentrated Load at the Mid-Span

If a simply supported beam is bent in the yz plane by a concentrated load P applied at the
centroid of the mid-span cross-section in Figure 6.17, lateral buckling could occur when the
load reaches a critical value. A set of axes x, y parallel to the principal axes of the cross-section,
and the z along the longitudinal axis are taken with the origin at the centroid of the cross-section
at mid-span. It is assumed that the beam can rotate with respect to the principal axes of the
cross-section that are parallel to the x and y axes, but the supports restrict the rotation about
the z axis. Hence lateral buckling of the beam is accompanied by twisting of the beam.

Consider the cross-section in the free body diagram of the deflected shape of the beam at a
distance z from the origin at the mid-span in Figure 6.17. The moments on this cross-section due
to external forces about the axes passing through the centroid of the cross-section and parallel
to the x, y, and z axes are

−P
2

(L
2
+ z
)
+ Pz +Mx = 0

or

Mx =
P
2

(L
2
− z
)

(6.21a)

My = 0 (6.21b)
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Figure 6.17 Lateral buckling of simply supported I beam subjected to a load at mid-span.

−
Pu0

2
+ Pu

2
+ P(u0 − u) +Mz = 0

Mz = −
P
2
(u0 − u) (6.21c)

where u0 is the lateral deflection of the centroid of the mid-span section and u is the lateral
deflection at any cross-section at a distance z from the mid-span in Figure 6.17. The internal
moment components in the directions of axes x′, y′, and z′ at the cross-section are obtained
from Figure 6.18 as follows:

Mx′ = Mx −Mz
du
dz

= P
2

(L
2
− z
)
+ P

2
(uo − u)du

dz
(6.21d)

My′ = −𝛽
P
2

(L
2
− z
)
+ P

2
(uo − u)dv

dz
(6.21e)

Mz′ = −
P
2
(uo − u) + P

2

(L
2
− z
) du

dz
(6.21f)

The internal resisting moments are expressed as

Mx′ = −EIx
d2v
dz2 (6.21g)

My′ = EIy
d2u
dz2 (6.21h)

There is a minus sign on the right-hand side of Eq. (6.21g) because positive moment produces
negative curvature as per the right-hand screw rule. Substitute the moments from Eqs. (6.21d
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Figure 6.18 Internal moment components during lateral buckling.
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and 6.21e) into Eqs. (6.21g and 6.21h) respectively to get

EIx
d2v
dz2 +

P
2

(L
2
− z
)
= 0 (6.21i)

EIy
d2u
dz2 + 𝛽

P
2

(L
2
− z
)
= 0 (6.21j)

The terms containing the multiplication of du/dz and (uo −u), the multiplication of dv/dz and
(uo −u), have been neglected in Eq. (6.21d) and Eq. (6.21e), since these quantities are small.
The internal torsional resisting moment is given by

T = Tsv + Tw = GJ d𝛽
dz
− ECw

d3𝛽

dz3

Mz′ = T (6.2h)
From Eqs. (6.21f and 6.2h) we get

GJ d𝛽
dz
− ECw

d3𝛽

dz3 +
P
2
(uo − u) − P

2

(L
2
− z
) du

dz
= 0 (6.21k)

Equation (6.21i) describes the buckling behavior in the yz plane and is not coupled with lateral
buckling. We are interested in the lateral buckling here, that is described by Eqs. (6.21j and
6.21k). Eliminate u between Eqs. (6.21j and 6.21k) by differentiating Eq. (6.21k) with respect
to z, note that duo/dz = 0 and ignore du/dz because it is small, and substitute d2u/dz2 from
Eq. (6.21j) to get

GJ d2𝛽

dz2 − ECw
d4𝛽

dz4 +
P2𝛽

4EIy

(L
2
− z
)2
= 0 (6.21l)

The solution of this differential equation is obtained by the method of infinite series by Timo-
shenko and Gere [3] and given as

Pcr = 𝛼

√
EIyGJ
L2 (6.21m)

The values of 𝛼 given in the reference are plotted in Figure 6.19 for the concentrated mid-span
load acting on the upper flange, centroid, and the lower flange of the beam. When the load acts
at the upper flange, the external torsional moment is the maximum given by

Mz = −
P
2

(
uo +

𝛽oh
2
− u
)

(6.21n)

If the load acts at the lower flange, the external moment is the least given by

Mz = −
P
2

(
uo −

𝛽oh
2
− u
)

(6.21o)

where 𝛽o is the rotation of the mid-span cross-section. When the load acts at the centroid of the
cross-section, the torsional moment is given by Eq. (6.21c). Hence, the critical force Pcr is the
least when the load acts on the upper flange and the critical force is the maximum when it acts
on the lower flange of an I section, as shown in Figure 6.19.
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Figure 6.19 Lateral buckling of a simply supported I beam subjected to mid-span load.
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6.8.4 Lateral Buckling of Cantilever I Beams: Concentrated Load at the Free End

Consider a cantilever beam subjected to a concentrated force P applied at the centroid of
the end cross-section. The deflected shape of the beam in the yz plane becomes unstable
as the force P is increased and lateral buckling occurs, as shown in Figure 6.20. A set of
axes x, y parallel to the principal axes of the cross-section, and the z axis along the longitu-
dinal axis of the beam are taken with the origin at the centroid of the cross-section at the
fixed end. Consider the equilibrium of the deflected shape of the beam. Now, consider the
cross-section a-a at a distance z from the origin O at the fixed end. Considering the equilibrium
of the deformed beam, the moments of the external force P at the section a-a with respect
to the axes passing through the centroid of the cross-section and parallel to the x, y, and
z axes are

PL − Pz +Mx = 0
Mx = −P(L − z) (6.22a)

My = 0 (6.22b)

−Pu0 + Pu +Mz = 0

Mz = P(u0 − u) (6.22c)

(a)

(b)

Pu0

L

z

y

P

O

a

a

x

PL
P

z

z’

x’

O z

x

y y’
a

a

u

u0

Figure 6.20 Lateral buckling of I beam acted upon by a concentrated load at the free end: (a) Cantilever beam with
a concentrated force P at the free end; (b) Deflected top plan view.
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dv dv= – P(u0–u) dv

dz

= P (u0–u) = MzMz' = Mz cos 
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dz
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du
dz
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x
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Mx’

My’

z

y

z’

y’

dv
dz

y – z plane 

dv
dz Mz = P (u0–u)

My’Mz’

x’

du
dz

x

zz’x – z plane 

du
dzMx’

Mx

Mz’

Mx’

Mz’ Mz

du
dz

Mx’ = Mx cos β = –P (L–z) = Mx  

My’ = – Mx sin β = βP(L–z) = βMx  

= –Mz

du du= – P(u0–u) du
dz dz dz

Mx' = – Mz sin = – Mz

du du= – P(L–z) du
dz dz dz

Mz' =  Mx sin = Mx 

Figure 6.21 Internal moment components of a buckled cantilever beam.

The quantity u0 is the deflection of the centroid of the cross-section at the free end of the beam
in the x direction, taken as positive in the positive x direction, whereas u is the deflection of the
centroid of the cross-section at a distance z in the x direction. The internal moment components
at the section a-a in the directions of axes x’, y’, and z’ in Figure 6.20 from Figure 6.21 are as
follows:

Mx′ = Mx −Mz
du
dz

= −P(L − z) − P(u0 − u)du
dz

(6.22d)
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My′ = −𝛽Mx −Mz
dv
dz
= 𝛽P(L − z) − P(u0 − u)dv

dz
(6.22e)

Mz′ = Mz +Mx
du
dz

= P(u0 − u) − P(L − z)du
dz

(6.22f)

The internal moment components are given by Eqs. (6.21g and 6.21h)

Mx′ = −EIx
d2v
dz2 (6.21g)

My′ = EIy
d2u
dz2 (6.21h)

Substitute the moments given by Eqs. (6.22d and 6.22e) into Eqs. (6.21g and 6.21h), and we
obtain

EIx
d2v
dz2 − P(L − z) = 0 (6.22g)

EIy
d2u
dz2 − 𝛽P(L − z) = 0 (6.22h)

The terms containing the multiplication of du/dz and (uo −u), the multiplication of dv/dz and
(uo −u), have been neglected in Eq. (6.22d) and Eq. (6.22e), since these quantities are small.
The internal torsional resisting moment is given by

T = Tsv + Tw = GJ d𝛽
dz
− ECw

d3𝛽

dz3

Mz′ = T (6.2h)

Combine Eqs. (6.22f and 6.2h) to give

GJ d𝛽
dz
− ECw

d3𝛽

dz3 − P(u0 − u) + P(L − z)du
dz

= 0 (6.22i)

Eliminate u between Eqs. (6.22h and 6.22i) by differentiating Eq. (6.22i) with respect to z, note
du0/dz = 0 and ignore du/dz because it is small. Now substitute d2u/dz2 from Eq. (6.22h) to
obtain

GJ d2𝛽

dz2 − ECw
d4𝛽

dz4 +
P2

EIy
(L − z)2𝛽 = 0 (6.22j)

or
d4𝛽

dz4 −
GJ

ECw

d2𝛽

dz2 +
P2

E2IyCw
(L − z)2𝛽 = 0 (6.22k)

The solution of this differential equation is shown by Timoshenko and Gere [3] to be of the
form

Pcr = 𝛼

√
EIyGJ
L2 (6.22l)
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where for large values of the ratio GJL2

ECw
, approximate value of 𝛼 is given by the equation

𝛼 = 4.013(
1 −
√

ECw

GJL2

)2 (6.22m)

6.8.4.1 Lateral Buckling of Cantilever Narrow Rectangular Beams: Concentrated Load at the
Free End
If the beam cross-section is a narrow rectangle, the warping constant Cw can be neglected, the
differential Eq. (6.22j) for the calculation of the angle of twist 𝛽 becomes

d2𝛽

dz2 +
P2

EIyGJ
(L − z)2𝛽 = 0 (6.23a)

The solution of Eq. (6.23a) is shown by Timoshenko and Gere [3] to be

Pcr =
4.013

L2

√
EIyGJ (6.23b)

6.8.5 Lateral Buckling of Narrow Rectangular Cantilever Beams Acted on by Uniform
Moment

Let us study a cantilever beam of rectangular cross-section acted on by uniform moment by solv-
ing the differential equations of equilibrium for the deformed beam. Consider the equilibrium
of the deformed shape of the beam shown in Figure 6.22. The internal moment components at
the section a-a with respect to the axes passing through the centroid of the cross-section and
parallel to the x, y, and z axes are

Mx = −M (6.24a)

My = 0 (6.24b)

Mz = 0 (6.24c)
The internal moment components at the section a-a in the directions of axes x′, y′, and z′ can
be obtained as before from Figure 6.21 and Eqs. (6.22d)–(6.22f) as follows:

Mx′ = Mx = −M (6.24d)

M

z a

z’
yx a

M

z

Figure 6.22 Lateral buckling of cantilever beam under uniform moment.
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My′ = −𝛽Mx = 𝛽M (6.24e)

Mz′ = −M du
dz

(6.24f)
Use Eqs. (6.21g, 6.21h, 6.24d, and 6.24e) to get

EIx
d2v
dz2 −M = 0 (6.24g)

EIy
d2u
dz2 − 𝛽M = 0 (6.24h)

For a narrow rectangular beam, the warping constant Cw can be neglected, hence the internal
torsional resisting moment is given by

T = GJ d𝛽
dz

Mz′ = T (6.24i)

Combine Eqs. (6.24f and 6.24i) to obtain

GJ d𝛽
dz
+M du

dz
= 0 (6.24j)

Eliminate u between Eqs. (6.24h and 6.24j) by differentiating Eq. (6.24j) with respect to z, and

substitute d2u
dz2 from Eq. (6.24h) to get

GJ d2𝛽

dz2 + 𝛽
M2

EIy
= 0 (6.24k)

Substitute M2

EIyGJ
= k2, and we have

d2𝛽

dz2 + k2𝛽 = 0 (6.24l)

The solution of Eq. (6.24l) is given by

𝛽 = A sin kz + B cos kz (6.24m)

The boundary conditions are:

𝛽 = 0 at z = 0, and d𝛽
dz

= 0 at z = L (6.24n)

Substitute the boundary conditions in Eq.(6.24n) to obtain

B = 0, and cos kL = 0

Hence,

kL = n𝜋
2
, n = 1, 3, 5,−−
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The smallest load is obtained when n = 1, therefore

kL = 𝜋

2
or

M2

EIyGJ
= 𝜋2

4L2

Therefore,

Mcr =
𝜋

2L

√
EIyGJ (6.24o)

6.9 The Energy Method

6.9.1 Lateral Buckling of Simply Supported I Beams: Concentrated Load at the Mid-Span

The lateral buckling load of a simply supported I beam in Figure 6.17 subjected to a concen-
trated load at the mid-span can also be found by using the energy method. It is assumed the
concentrated load is applied at the centroid of the cross-section. When the beam buckles later-
ally, the strain energy consists of energy due to lateral buckling because of the bending moment
about the y axis, and due to the twisting moment about the longitudinal z axis. The x and y axes
are the principal axes of the cross-section, whereas the z axis is the centroidal axis. The strain
energy of bending in the plane of the beam is comparatively small, hence it can be neglected.
The total strain energy, U, is given by

U = Ub + Usv + Uw (6.25a)

where Ub, Usv, and Uw are the strain energies due to lateral bending, St. Venant’s torsion, and
warping torsion, respectively. Use Eqs. (6.17b, 6.17e, and 6.17k) to get

U = 1
2

EIy ∫

L

0

(
d2u
dz2

)2

dz + 1
2

GJ
∫

L

0

(
d𝛽
dz

)2

dz + 1
2

ECw ∫

L

0

(
d2𝛽

dz2

)2

dz (6.25b)

The potential energy of the external load will consist of the negative of the product of the
force P and the vertical distance the force moves during lateral buckling. When the load P
is applied, the member bends in the vertical plane and moves from position 1 to 2 as shown
in Figure 6.23a. Then the member moves from position 2 to 3 due to lateral buckling. The
displacement from 2 to 3 consists of a horizontal displacement u0 and a vertical movement w0.
In Eq. (6.25b) the strain energy caused by u is considered, whereas the strain energy due to w,
being small, is neglected [1]. If the rigidity of the beam is very large in the plane of the web in
comparison to the rigidity in the lateral direction, the assumption is sufficiently accurate for
practical purposes. We are concerned here about the potential energy due to lateral buckling.
The vertical movement of the force P during lateral buckling is wo. Consider an element of
length dz in Figure 6.23b located at a distance z from the mid span of the beam. The horizontal
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(a) (b) 

P

PP

uo

vo

wo

βo

1

2

3

z

x

z
dz

du

Figure 6.23 Lateral buckling of I beam subjected to concentrated load at the center of the beam span: (a) Different
positions of the beam deformation (b) Horizontal deviation of an element during lateral buckling.

deviation du due to lateral buckling at the right support between the two tangents at the two
ends of the element [1] is given by the moment area theorem as

−du =
My′

EIy
dz
(L

2
− z
)

Vertical displacement, dw, corresponding to du is

dw = 𝛽du = −
My′

EIy
𝛽

(L
2
− z
)

dz

where 𝛽 is the angle of twist about z axis. Hence, the vertical displacement at the mid-span is

wo = −∫

L∕2

0

My′

EIy
𝛽

(L
2
− z
)

dz

From Eq. (6.21e), neglecting the second term as before because it is small, we have

My′ = −𝛽Mx = −𝛽
P
2

(L
2
− z
)

(6.25c)

Also,

My′ = EIy
d2u
dz2 (6.21h)

Combine Eqs. (6.21h and 6.25c) to get

d2u
dz2 =

My′

EIy
= − P𝛽

2EIy

(L
2
− z
)

(6.25d)
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Therefore,

wo = ∫

L∕2

0

P𝛽2

2EIy

(L
2
− z
)2

dz (6.25e)

The potential energy, V , due to the external force P is given by

V = −Pw0 = −∫

L∕2

0

P2𝛽2

2EIy

(L
2
− z
)2

dz (6.25f)

The total potential energy due to lateral buckling is
Π = U + V

Π = 1
2

EIy ∫

L

0

(
d2u
dz2

)2

dz + 1
2

GJ
∫

L

0

(
d𝛽
dz

)2

dz + 1
2

ECw ∫

L

0

(
d2𝛽

dz2

)2

dz − −
∫

L∕2

0

P2𝛽2

2EIy

(L
2
− z
)2

dz

(6.25g)

Substitute Eq. (6.25d) into Eq. (6.25g) and we have

Π = − P2

4EIy ∫

L∕2

0
𝛽2
(L

2
− z
)2

dz + 1
2

GJ
∫

L

0

(
d𝛽
dz

)2

dz + 1
2

ECw ∫

L

0

(
d2𝛽

dz2

)2

dz (6.25h)

Assume

𝛽 = A cos 𝜋z
L

(6.25i)

The expression in Eq. (6.25i) satisfies the boundary conditions that the ends of the member do
not rotate about the z axis, but are free to warp. Hence,

𝛽 = d2𝛽

dz2 = 0 at z = −L
2

and z = L
2

(6.25j)

Substitute Eq. (6.25i) in Eq. (6.25h) and we get

Π = −P2A2

4EIy ∫

L∕2

0

(L
2
− z
)2

cos2𝜋z
L

dz + GJA2
𝜋2

2L2 ∫

L

0
sin2𝜋z

L
dz +

ECwA2𝜋4

2L4 ∫

L

0
cos2𝜋z

L
dz

(6.25k)

In Eq. (6.25k) the definite integrals have the following values:

∫

L∕2

0

(L
2
− z
)2

cos2𝜋z
L

dz = L3

8𝜋2

(
𝜋2

6
+ 1
)

∫

L

0
sin2𝜋z

L
dz =

∫

L

0
cos2𝜋z

L
dz = L

2
(6.25l)

Substitute Eqs. (6.25l) into Eq. (6.25k) to get

Π = − P2A2L3

32EIy𝜋
2

(
𝜋2

6
+ 1
)
+ GJA2

𝜋2

4L
+

ECwA2𝜋4

4L3 (6.25m)
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Table 6.1 Values of 𝛼 for simply supported I beams with concentrated load at the mid-span acting through the
centroid of the beam cross-section.

L2GJ
ECw

0.4 4 8 16 24 32 48 64 80

𝛼 86.97 31.96 25.65 21.83 20.39 19.63 18.85 18.44 18.19

At the critical load, the neutral equilibrium is possible, therefore dΠ
dA

= 0. Hence,

dΠ
dA

= A
2

[
− P2L3

8EIy𝜋
2

(
𝜋2

6
+ 1
)
+ GJ𝜋2

L
+

ECw𝜋
4

L3

]
= 0

Hence, the critical load Pcr is given by

Pcr =
4𝜋2

L2

√
3EIy

𝜋2 + 6

(
GJ +

ECw𝜋
2

L2

)
(6.25n)

Equation (6.25n) can be rewritten as

Pcr = 4𝜋2
√

3
𝜋2 + 6

√
EIyGJ
L2

√
1 +

ECw𝜋
2

L2GJ
(6.25o)

or

Pcr = 𝛼

√
EIyGJ
L2 (6.25p)

where

𝛼 = 17.1647
√

1 +
ECw𝜋

2

L2GJ
(6.25q)

The values of α given by Eq. (6.25q) are given in Table 6.1., and these values compare well with
those given in Figure 6.19.

6.9.1.1 Lateral Buckling of Simply Supported, Narrow Rectangular Beams: Concentrated Load
at the Mid-Span
For a narrow rectangular beam, the warping restraint given by Cw can be neglected, therefore,
the critical load given by Eq. (6.25n) can be written as

Pcr =
4𝜋2

L2

√
3EIyGJ
𝜋2 + 6

(6.26a)

or

Pcr =
17.1647

√
EIyGJ

L2 (6.26b)

The constant, 17.1647, obtained here by the energy method is very close to the exact solution
given by Timoshenko and Gere [3], where the constant is 16.94.
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6.9.2 Lateral Buckling of Simply Supported I Beams: Uniformly Distributed Load

It is assumed the uniform load is applied at the centroid of the cross-section. The energy method
described for the case of a concentrated load at the mid-span can be used for the beam loaded
with a uniform load of q per unit length in Figure 6.24. The total strain energy for the beam is
given by Eq. (6.25b) as before

U = 1
2

EIy ∫

L

0

(
d2u
dz2

)2

dz + 1
2

GJ
∫

L

0

(
d𝛽
dz

)2

dz + 1
2

ECw ∫

L

0

(
d2𝛽

dz2

)2

dz (6.25b)

The potential energy of applied load is calculated by the same procedure as given for the sim-
ply supported beam loaded with a concentrated load at the mid-span. The external force is
uniform, so to calculate the potential energy, the elemental load, q(dz), acting on the element
of length dz is multiplied by the vertical deflection, w, under the element and the negative sign
of the product is taken. The product is then integrated over the span of the beam to get the total
potential energy of the external uniform load. Consider an element dz located at a distance z
from the mid-span of the beam in Figure 6.24. The horizontal deviation du due to lateral bend-
ing between the tangents drawn at the two ends of the element at the right support is given by
the moment area theorem as before as

−du =
My′

EIy
dz
(L

2
− z
)

and the vertical displacement corresponding to du is

dw = 𝛽du = −
My′

EIy
𝛽

(L
2
− z
)

dz

The tangent to the deflected curve of the beam at A is horizontal so the vertical deviation of
point B from the tangent at A gives the vertical displacement of the mid-span by moment area
theorem. Hence the vertical displacement w0 at the center of the span is given by

wo = −∫

L∕2

0

My′

EIy
𝛽

(L
2
− z
)

dz

My′ = −𝛽Mx = −𝛽
[

qL
2

(L
2
− z
)
−

q
2

(L
2
− z
)2]

or
My′ = −𝛽

q
8
(L2 − 4z2) (6.27a)

z

z

x
C

B

A
du

L

2
L dz

Figure 6.24 Horizontal deviation of an element due to lateral buckling.
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or

w0 =
q

8EIy ∫

L∕2

0

(
L3

2
− L2z − 2Lz2 + 4z3

)
𝛽2dz (6.27b)

Assume

𝛽 = A cos 𝜋z
L

(6.27c)

The 𝛽 assumed above satisfies the boundary conditions at the ends of the beam. Therefore,

w0 =
qA2

8EIy ∫

L∕2

0

(
L3

2
− L2z − 2Lz2 + 4z3

)
cos2𝜋z

L
(6.27d)

In Eq. (6.27d) the definite integrals have the following values:

∫

L∕2

0
cos2𝜋z

L
dz = L

4

∫

L∕2

0
zcos2𝜋z

L
dz = L2

16
− L2

4𝜋2

∫

L∕2

0
z2cos2𝜋z

L
dz = L3

48
− L3

8𝜋2

∫

L∕2

0
z3cos2𝜋z

L
dz = L4

128
− 3L4

32𝜋2 +
3L4

8𝜋4 (6.27e)

Substitute the values of definite integrals from Eq. (6.27e) in Eq. (6.27d) to get

w0 =
qA2

8EIy

[
L3

2

(L
4

)
− L2
(

L2

16
− L2

4𝜋2

)
− 2L
(

L3

48
− L3

8𝜋2

)
+ 4
(

L4

128
− 3L4

32𝜋2 +
3L4

8𝜋4

)]
or

w0 =
qA2

8EIy

(
5L4

96
+ L4

8𝜋2 +
3L4

2𝜋4

)
(6.27f)

Now consider an element of length ds at a distance s from the mid-span within the distance z as
shown in Figure 6.25. The horizontal deviation dus due to lateral bending between the tangents
drawn at the two ends of length ds at the point D in Figure 6.25b is given by

−dus =
My′

EIy
(z − s)ds

and the vertical displacement corresponding to dus is

dw = 𝛽du = −
My′

EIy
𝛽(z − s)ds

The moment Mx at D is obtained from

Mx =
qL
2

(L
2
− s
)
−

q
2

(L
2
− s
)2
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(a) (b)

D E

z

dus

A

Cs ds

x

B
s

ds
z

A D CE

L

2
L z

Figure 6.25 Horizontal deviation of element of length ds: (a) Element of length ds within the length z; (b) Enlarged
view of AC.

Hence,

My′ = −𝛽Mx = −𝛽
q
8
(L2 − 4s2) (6.27g)

Similar to the vertical displacement at mid-span, the vertical deviation of point C from the
tangent at mid-span A in the deflected beam is expressed as

tC∕A = −∫

z

0

My′

EIy
𝛽(z − s)ds

or

tC∕A =
q

8EIy ∫

z

0
𝛽2(L2 − 4s2)(z − s)ds (6.27h)

Assume
𝛽 = A cos 𝜋s

L
It satisfies the boundary conditions at the ends of the beam segment AC. Substitute the assumed
𝛽 in Eq. (6.27h) to obtain

tC∕A =
qA2

8EIy ∫

z

0
(L2z − L2s − 4zs2 + 4s3)cos2𝜋s

L
ds (6.27i)

In Eq. (6.27i) the definite integrals have the following values:

∫

z

0
cos2𝜋s

L
ds = z

2
+ L

4𝜋
sin 2𝜋z

L

∫

z

0
s cos2𝜋s

L
ds = z2

4
+ Lz

4𝜋
sin 2𝜋z

L
+ L2

8𝜋2 cos 2𝜋z
L

− L2

8𝜋2

∫

z

0
s3 cos2𝜋s

L
ds = z4

8
+
(

3L2z2

8𝜋2 − 3L4

16𝜋4

)
cos 2𝜋z

L
+
(

Lz3

4𝜋
− 3L3z

8𝜋3

)
sin 2𝜋z

L
+ 3L4

16𝜋4

(6.27j)
Substitute Eqs. (6.27j) into Eq. (6.27i) to obtain

tC∕A =
qA2

8EIy

[
L2z2

4
− z4

6
+ L4

8𝜋2 +
3L4

4𝜋4 −
(

zL3

𝜋3

)
sin 2𝜋z

l
+
(
− L4

8𝜋2 +
L2z2

2𝜋2 −
3L4

4𝜋4

)
cos 2𝜋z

L

]
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The vertical displacement at C at a distance z from the mid-span is equal to

w = w0 − tC∕A

or

w =
qA2

8EIy

[
5L4

96
+ 3L4

4𝜋4 −
L2z2

4
+ z4

6
+
(

zL3

𝜋3

)
sin 2𝜋z

L
−
(
− L4

8𝜋2 +
L2z2

2𝜋2 −
3L4

4𝜋4

)
cos 2𝜋z

L

]
(6.27k)

The potential energy, dV , due to the external uniform load (q dz) over the span length dz is
given by

dV = −qdz (w)
Hence, the total potential energy V of the uniform load is obtained from

V = −
q2A2

4EIy ∫

L∕2

0

[
5L4

96
+ 3L4

4𝜋4 −
L2z2

4
+ z4

6
+
(

zL3

𝜋3

)
sin 2𝜋z

L
−
(
− L4

8𝜋2 +
L2z2

2𝜋2 −
3L4

4𝜋4

)
cos 2𝜋z

L

]
dz

(6.27l)

In Eq. (6.17l) the definite integrals have the following values:

∫

L∕2

0
z sin 2𝜋z

L
dz = L2

4𝜋

∫

L∕2

0
z3 sin 2𝜋z

L
dz = L4

16𝜋
− 3L4

8𝜋3

∫

L∕2

0
cos 2𝜋z

L
dz = 0

∫

L∕2

0
z2 cos 2𝜋z

L
dz = − L3

4𝜋2 (6.27m)

Substitute Eqs. (6.27m) into Eq.(6.27l) to get

V = −
q2A2L5

16EIy

( 1
15
+ 3

𝜋4

)
(6.27n)

The total potential energy due to lateral buckling is

Π = U + V

Combine Eqs. (6.25b and 6.27n) and we have

Π = 1
2

EIy ∫

L

0

(
d2u
dz2

)2

dz + 1
2

GJ
∫

L

0

(
d𝛽
dz

)2

dz + 1
2

ECw ∫

L

0

(
d2𝛽

dz2

)2

dz −
q2A2L5

16EIy

( 1
15
+ 3

𝜋4

)
(6.27o)

My′ = EIy
d2u
dz2 (6.21h)
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Combine Eqs. (6.21h and 6.27a) to have

d2u
dz2 =

My′

EIy
= −

𝛽q
8EIy

(L2 − 4z2) (6.27p)

Substitute Eqs. (6.27c and 6.27p) to obtain

1
2

EIy ∫

L

0

(
d2u
dz2

)2

dz =
q2A2

64EIy ∫

L∕2

0
(L4 − 8L2z2 + 16z4)cos2𝜋z

L
dz (6.27q)

In Eq. (6.27q) the definite integral has the following value:

∫

L∕2

0
z4cos2𝜋z

L
dz = L5

8

( 1
40
− 1

2𝜋2 +
3
𝜋4

)
(6.27r)

Substitute Eqs. (6.27e and 6.27r) into Eq. (6.27q) to get

1
2

EIy ∫

L∕2

0

(
d2u
dz2

)2

dz =
q2A2L5

16EIy

( 1
30
+ 3

2𝜋4

)
(6.27s)

The following expressions were derived before (to derive Eq. (6.25m))

1
2

GJ
∫

L∕2

0

(
d𝛽
dz

)2

dz = GJA2
𝜋2

4L
(6.27t)

1
2

ECw ∫

L

0

(
d2𝛽

dz2

)2

dz =
ECwA2𝜋4

4L3 (6.27u)

Substitute Eqs. (6.27s)–(6.27u) into Eq. (6.27o) and we have total potential energy equal to

Π =
q2A2L5

16EIy

(
− 1

30
− 3

2𝜋4

)
+ GJA2

𝜋2

4L
+

ECwA2𝜋4

4L3 (6.27v)

At the critical load, the neutral equilibrium is possible, therefore, dΠ
dA

= 0. Hence,

dΠ
dA

= A
2

[
q2L5

4EIy

(
− 1

30
− 3

2𝜋4

)
+ GJ𝜋2

L
+

ECw𝜋
4

L3

]
= 0

q2 =
4EIy𝜋

4

L5
(
𝜋4 + 45

30

) (GJ𝜋2

L
+

ECw𝜋
4

L3

)

(qL)cr = 2𝜋3

(√
30

𝜋4 + 45

) √
EIyGJ
L2

√
1 +

ECw𝜋
2

GJL2 (6.27w)

or

(qL)cr = 𝛼

√
EIyGJ
L2 (6.27x)
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Table 6.2 Values of 𝛼 for simply supported I beams with uniformly distributed load acting through the centroid
of the beam cross-section.

L2GJ
ECw

0.4 4 8 16 24 32 48 64 80

𝛼 144.21 52.99 42.54 36.19 33.81 32.55 31.25 3.58 30.16

where

𝛼 = 28.46

√
1 +

ECw𝜋
2

GJL2 (6.27y)

The values of 𝛼 given by Eq. (6.27y) are given in Table 6.2.

6.9.2.1 Lateral Buckling of Simply Supported, Narrow Rectangular Beams: Uniformly
Distributed Load along the Centroidal Axis
For a narrow rectangle the warping constant Cw can be assumed to be zero, therefore the critical
load given by Eq. (6.27w) can be written as

(qL)cr = 2𝜋3

(√
30

𝜋4 + 45

) √
EIyGJ
L2

(qL)cr = 28.46
√

EIyGJ
L2 (6.28a)

The value of 𝛼 is given by 28.3
√

EIyGJ
L2 in Timoshenko and Gere’s book [3], which is obtained

from the exact solution. The critical load obtained from Eq. (6.28a) is only 0.57% different from
the exact solution. The solution here is not exact because only one term is taken in the series
to calculate the 𝛽 value.

6.9.3 Lateral Buckling of Cantilever Rectangular Beams: Concentrated Load at the Free
End

The energy method is used here to calculate the lateral buckling load of a cantilever rectangular
beam acted upon by a concentrated force P at the centroid of the cross-section at the free end,
shown in Figure 6.20. The total strain energy of the beam is given by Eq. (6.25b) in which the
term containing warping constant is neglected.

U = 1
2

EIy ∫

L

0

(
d2u
dz2

)2

dz + 1
2

GJ
∫

L

0

(
d𝛽
dz

)2

dz (6.29a)

Consider an element AB of length dz at a distance z from the fixed support in Figure 6.26. The
horizontal deviation du at the free end due to lateral buckling between the tangents drawn at
the two ends of the element is given below by the moment area theorem as before

du =
My′

EIy
dz(L − z) (6.29b)
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du

L

z dz

u0
u

z

x

P

P

A B

Figure 6.26 Top plan view of cantilever beam.

The vertical displacement corresponding to du in Figure 6.26 is given by

dw = 𝛽du = 𝛽
My′

EIy
(L − z)dz (6.29c)

Hence, the vertical displacement w0 at the free end of the cantilever is given by

w0 = ∫

L

0

𝛽My′

EIy
(L − z)dz (6.29d)

From Eq. (6.22e), neglecting the second term as before because it is small, we have

My′ = −𝛽Mx = 𝛽P(L − z) (6.29e)

My′ = EIy
d2u
dz2 (6.21h)

Combine Eqs. (6.21h and 6.29e) to obtain

d2u
dz2 =

My′

EIy
= 𝛽P(L − z)

EIy
(6.29f)

Therefore,

w0 = ∫

L

0

P𝛽2(L − z)2

EIy
dz (6.29g)

The potential energy, V , due to the external force P is given by

V = −Pw0 = −∫

L

0

P2𝛽2(L − z)2

EIy
dz (6.29h)

Total potential energy due to lateral buckling is

Π = U + V

Π = 1
2

EIy ∫

L

0

(
d2u
dz2

)2

dz + 1
2

GJ
∫

L

0

(
d𝛽
dz

)2

dz −
∫

L

0

P2𝛽2(L − z)2

EIy
dz (6.29i)
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Substitute Eq. (6.29f) into Eq. (6.29i) and we have

Π = −1
2 ∫

L

0

P2𝛽2(L − z)2

EIy
dz + 1

2
GJ

∫

L

0

(
d𝛽
dz

)2

dz (6.29j)

Assume [8]

𝛽 =
𝛽L(2Lz − z2)

L2 (6.29k)

where 𝛽L is the rotation of the cross-section at the free end.
The expression in Eq. (6.29k) satisfies the boundary conditions

𝛽 = 0 at z = 0 (No rotation at the fixed end) (6.29l)

and d𝛽
dz

= 0 at z = L
(

St.Venant′s torsion,Tsv = GJ d𝛽
dz

= 0, at the free end
)

(6.29m)

Substitute Eq. (6.29k) into Eq. (6.29j) to get

Π = − P2

2EIy ∫

L

0

(
𝛽L

L2 (2Lz − z2)
)2

(L − z)2dz + 1
2 ∫

L

0
GJ
(
𝛽L

L2 (2L − 2z)2
)

dz (6.29n)

After integrating Eq. (6.29n), we have

Π = −
4P2𝛽2

LL3

105EIy
+

2GJ𝛽2
L

3L
(6.29o)

The critical load is obtained by considering the neutral equilibrium. Therefore,
dΠ
d𝛽L

= 0

or
dΠ
d𝛽L

= −𝛽L

(
−8P2L3

105EIy
+ 4GJ

3L

)
= 0

Hence, the critical load is given by

Pcr =
4.183

L2

√
EIyGJ (6.29p)

The exact solution for this problem given in Timoshenko and Gere’s book [3] is given by Pcr =
4.013

L2

√
EIyGJ. The solution given by Eq. (6.29p) is 4.24% different from the exact solution.

6.10 Beams with Different Support and Loading Conditions

We have studied simply supported beams under the action of uniform moments, concentrated
load at mid-span, and uniformly distributed load by using differential equations or energy
approach. We also developed the solutions for cantilever beams subjected to uniform moment
and concentrated load at the free end. Now it is intended to find general expression for the
lateral buckling of beams with different support and loading conditions.
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6.10.1 Different Support Conditions

The critical moment expressions for cantilever beams and simply supported beams acted on by
uniform moments are as follows:

Mcr =
𝜋

L

√
EIyGJ (Simply supported narrow rectangular beam) (6.19o)

Mcr =
𝜋

L

√
EIyGJ

(
1 + 𝜋2

L2
ECw

GJ

)
(Simply supported I − beam) (6.20u)

Mcr =
𝜋

2L

√
EIyGJ (Cantilever narrow rectangular beam) (6.24o)

The fixed beam in Figure 6.27 can rotate about the principal axis x, but cannot rotate about the
principal axis y at the ends. The applied moments act in the y–z plane, the plane of maximum
rigidity. Hence the beam is simply supported when bending in the y–z plane. The beam is acted
on by a uniform moment in the y–z plane. The critical moment can be calculated by assuming
that there will be inflection points at the distances of L/4 from the ends. The middle portion of
the beam of length L/2 acts similar to the simply supported beam shown in Figure 6.16. Hence,
the critical moments can be found from Eqs. (6.19o and 6.20u) by substituting L/2 for L, and
we obtain

Mcr =
2𝜋
L

√
EIyGJ (Narrow rectangle beam fixed at the ends) (6.30a)

Mcr =
2𝜋
L

√
EIyGJ

(
1 + 4𝜋2

L2
ECw

GJ

)
(I − beam fixed at the ends) (6.30b)

The critical moments given by Eqs. (6.19o, 6.20u, 6.30a, and 6.30b) suggest that we can find the
critical moments for different end conditions by using the concept of effective length, We can
write a general equation for a beam acted on by uniform moments as follows;

Mcr =
𝜋

kL

√
EIyGJ

[
1 + 𝜋2

(kL)2
ECw

GJ

]
(6.30c)

In Eq. (6.30c), kL, is the effective length of the beam. For a simply supported beam, kL = L, the
actual length of the beam; for a cantilever, kL = 2L; for a beam with one end simply supported
and the other fixed, kL = 0.70L; and for the fixed beam, kL = L/2. Equation (6.30c) can be used

(a) (b)

z

x

z

y

Figure 6.27 Lateral buckling of fixed-fixed beams: (a) Warping and lateral bending prevented at both ends in the
x-z plane; (b) Bending in the y-z plane permitted at both ends.
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for narrow rectangles, by taking Cw = 0. Galambos [9], Nethercot [10], and Vlasov [11] have
listed effective length factors for other support conditions.

6.10.2 Different Loading Conditions

The critical moment for a simply supported beam subjected to uniform moments is given by
Eq. (6.20u), as shown below:

Mcr =
𝜋

L

√
EIyGJ

(
1 + 𝜋2

L2
ECw

GJ

)
(6.20u)

Whereas the same beam acted on by a concentrated load at mid-span the critical load is given
by Eq. (6.25o). as shown below:

Pcr = 4𝜋2
√

3
𝜋2 + 6

√
EIyGJ
L2

√
1 +

ECw𝜋
2

L2GJ
(6.25o)

At the critical load Pcr, the critical moment Mcr will be at the center of the span that can be
obtained from Eq. (6.25o) as

Mcr = Mmax =
PcrL

4
= 1.37𝜋

L

√
EIyGJ

(
1 +

𝜋2ECw

L2GJ

)
(6.31a)

The critical load for a simply supported beam under the action of uniformly distributed load is
given by Eq. (6.27w), as shown below:

(qL)cr = 2𝜋3

(√
30

𝜋4 + 45

) √
EIyGJ
L2

√
1 +

𝜋2ECw

L2GJ
(6.27w)

The critical moment Mcr will be at the center of the span obtained from

Mcr = Mmax =
qcrL2

8
= 1.13𝜋

L

√
EIyGJ

(
1 +

𝜋2ECw

L2GJ

)
(6.31b)

If we use the criterion of critical moment instead of critical load, then we may write a general
expression for different loading conditions to give the critical moment as follows:

Mcr = C𝜋

L

√
EIyGJ

(
1 +

𝜋2ECw

L2GJ

)
(6.31c)

Where the constant C varies with different load conditions, it is being equal to 1.0 for uniform
moment, 1.37 for concentrated load at the mid span, and 1.13 for the uniformly distributed load.

If we combine Eqs. (6.30c and 6.31c), the critical moment expression can be written as

Mcr = C 𝜋

kL

√
EIyGJ

(
1 +

𝜋2ECw

(kL)2GJ

)
(6.31d)

The values of constant C are given by Clark and Hill [12] corresponding to different loading
conditions.
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6.10.2.1 Beams with Unequal Moments
If a beam is subjected to unequal moments at its ends, moments in the beam vary along the
span. In such cases the governing differential equations will have variable coefficients and
solutions to such problems are difficult. For the purpose of design, Salvadori [13] suggested
a solution given below:

Mcr = Cb
𝜋

L

√
EIyGJ

(
1 +

𝜋2ECw

L2GJ

)
(6.32a)

where Cb is given by

Cb = 1.75 + 1.05
(

MA

MB

)
+ 0.3
(

MA

MB

)2

≤ 2.3 (6.32b)

In Eq. (6.32b), MA is the smaller of the two end moments, and MB is the larger moment. The

ratio
(

MA

MB

)
is positive for a double curvature bending shown in Figure 4.21, and the ratio is

negative for a single curvature bending shown in Figure 4.24. If the loading is of another form,
an expression given by Kirby and Nethercot [14] can be used to calculate Cb.

Cb =
12

3(M1∕Mmax) + 4(M2∕Mmax) + 3(M3∕Mmax) + 2
(6.32c)

where M1, M2, and M3 are the moments at the quarter point, mid-point, and three-quarter point
of the beam respectively, and the moment Mmax is the maximum moment in the beam. Other
cases of loading and boundary conditions, including continuous beams, are given by Chen and
Lui [8].

6.11 Design for Torsional and Lateral Buckling

In the design of beams, Eq. (6.32a) is many times simplified by neglecting St. Venant’s torsion
or the warping term inside the square root sign. For members that have long unbraced spans,
the warping term can be omitted because the warping term decreases with the span increase,
whereas the St. Venant’s torsion resistance does not. For thin-walled members, the St. Venant’s
torsion resistance is proportional to the cube of the thickness in Eq. (6.1b), hence it can be
neglected in comparison to the warping term.

6.11.1 AISC Design Criteria for Steel Beams

According to AISC [5], if a beam can remain stable until it reaches its plastic moment capacity
Mp, the nominal flexural strength, Mn, of the beam is given by

Mn = Mp = FyZ (6.33a)
where Fy is the yield strength of steel, and Z is the plastic section modulus. This depends on
the cross-sectional geometry, and the lateral unbraced length of the beam. The AISC specifi-
cations define two types of buckling in the beam cross-sections: local buckling or the overall
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lateral buckling. A beam may fail by flange local buckling, web local buckling, or lateral tor-
sional buckling. Any of these failures can be either in the elastic or inelastic range. The strength
corresponding to these modes is calculated and the smallest value is taken.

6.11.1.1 Local Buckling
Steel beam cross-sections are classified as compact, noncompact, or slender-element sections.
For a section to be qualified as compact, its flanges must be continuously connected to the
web or webs, and the width to thickness ratio of its compression elements must be within the
limiting ratio 𝜆p. The elements supported on only one side parallel to the direction of the com-
pressive force are called unstiffened, such as the flanges of I-shaped members and tees, legs of
angles and flanges of channels. The elements supported along two edges parallel to the direc-
tion of the compressive force are called stiffened, such as webs of rolled steel sections. The
classification of the shapes is given in Table 6.3. For flanges of I-shaped members and tees, the
width b is one half the flange width bf . For legs of angles and flanges of channels, the width b
is the full nominal dimension. For webs of rolled sections, the width is h is the clear distance
between the flanges less the fillet or corner radius at each flange.

For noncompact sections, local buckling may occur before the plastic moment capacity is
reached. The nominal moment capacity Mn for doubly symmetric I shapes with compact webs
and noncompact or slender flanges bent about their major axis is calculated as below.

Compression flange local buckling
For sections with noncompact flanges, buckling is inelastic, and

Mn = Mp − (Mp − 0.7FySx)
(

𝜆 − 𝜆p

𝜆r − 𝜆p

)
(6.34a)

For sections with slender flanges the buckling is elastic, and

Mn =
0.9EkcSx

𝜆2 (6.34b)

Table 6.3 Width thickness ratios for compression elements in flexure.

Element 𝛌 𝝀p 𝝀r

Flanges of rolled I shapes
bf

2tf
0.38
√

E
Fy

1.0
√

E
Fy

Flanges of channels
bf

tf
0.38
√

E
Fy

1.0
√

E
Fy

Webs of doubly symmetric I shapes and channels h
tw

3.76
√

E
Fy

5.70
√

E
Fy

where 𝜆 = width to thickness ratio; tf = thickness of the element; E = modulus of elasticity of material
If 𝜆≤ 𝜆p, and the flange is continuously connected to the web, the shape is compact.
𝜆p <𝜆≤ 𝜆r , the flange of the shape is noncompact.
𝜆>𝜆r , the flange of the shape is slender.
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where 𝜆 =
bf

2tf
; 𝜆p = limiting width to thickness ratio for a compact flange in Table 6.3; and 𝜆r

= limiting width to thickness ratio for a noncompact flange in Table 6.3.
kc =

4√
h∕tw

, its value is not taken less than 0.35 and not more than 0.76 for calculation pur-

poses; and Sx = elastic section modulus taken about x axis.
The nominal moment capacity for doubly symmetric I shapes with noncompact or slender

webs bent about their major axis is calculated as below.
Compression flange local buckling

Mn = RpgFcrSxc (6.34c)

where Sxc = elastic section modulus referred to the compression flange; and the bending
strength reduction factor Rpg is expressed as

Rpg = 1 −
aw

1200 + 300aw

(
hc

tw
− 5.7
√

E
Fy

)
≤ 1.0 (6.34d)

and

aw =
hctw

bfctfc
≤ 1.0 (6.34e)

where hc = two times the depth of the web in compression; tw = thickness of the web; bfc =
compression flange width; tfc = compression flange thickness.

For sections with noncompact flanges

Fcr = Fy − (0.3Fy)
(

𝜆 − 𝜆p

𝜆r − 𝜆p

)
(6.34f)

For sections with slender flange sections

Fcr =
0.9Ekc( bf

2tf

)2 (6.34g)

kc =
4√

h∕tw

, it should not be taken to be less than 0.35 nor greater than 0.76.

6.11.1.2 Lateral Torsional Buckling
Lateral torsional buckling can be prevented by lateral supporting or bracing the beam at close
intervals. The moment capacity of a beam depends upon the compactness of the cross-section
and the lateral unbraced length Lb, the distance between points of lateral support, or bracing.
For doubly symmetric compact I shapes and channels bent about their major axis the moment
capacity depends on the unbraced length and is given as follows:

When Lb ≤ Lp
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where Lp = the maximum laterally unbraced length for which a beam can reach its plastic
moment capacity, Mp, and the lateral torsional buckling will not occur, as before:

Mn = Mp = FyZ (6.33a)

When Lp <Lb ≤Lr, the moment capacity is based on the inelastic lateral torsional buckling
given as

Mn = Cb

[
Mp − (Mp − 0.7FySx)

(Lb − Lp

Lr − Lp

)]
≤ Mp (6.35a)

where Lr = unbraced length at which elastic torsional buckling will occur
When Lb >Lr, the moment capacity is based on elastic lateral torsional buckling given as

Mn = FcrSx ≤ Mp (6.35b)

Fcr =
Cb𝜋

2E(
Lb

rts

)2

√
1 + 0.078 Jc

Sxh0

(
Lb

rts

)2

(6.35c)

where
Cb = lateral torsional buckling modification factor for nonuniform moment over the

unbraced length Lb, and is obtained from

Cb =
12.5Mmax

2.5Mmax + 3MA + 4MB + 3MC
Rm ≤ 3.0 (6.35d)

Note: Equation (6.35d) is similar to Eq. (6.32c) shown before.
where

Mmax = absolute value of maximum moment in the unbraced segment
MA = absolute value of moment at quarter point of the unbraced segment
MB = absolute value of moment at centerline of the unbraced segment
MC = absolute value of moment at three-quarter point of the unbraced segment
Rm = cross-section mono-symmetry parameter
= 1.0 for doubly symmetric members
= 1.0 for singly symmetric members subjected to single curvature bending

= 0.5 + 2
( Iyc

Iy

)2

for singly symmetric members subjected to reverse curvature bending

Iy = moment of inertia of the cross-section about the principal y axis
Iyc =moment of inertia about the y axis referred to the compression flange, or if reverse curva-

ture bending,
referred to the smaller flange

Cb is permitted to be taken as 1.0 for all cases, which is its value for uniform bending.
J = torsional constant
Sx = elastic section modulus about the x axis
h0 = distance between the flange centroids
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c = 1 for doubly symmetric I shapes
and for a channel

c =
h0

2

√
Iy

Cw
(6.35e)

r2
ts =
√

IyCw

Sx
(6.35f)

For doubly symmetric I shapes with rectangular flanges, the warping constant Cw =
Iyh2

0

4
.

Note: For non-uniform moment acting on a beam, the critical elastic lateral torsional buckling
moment is given by Eq. (6.32a) derived before.

Mn = Mcr = Cb
𝜋

L

√
EIyGJ +

𝜋2E2IyCw

L2 (6.32a)

G = E
2(1 + 𝜈)

For steel, 𝜈 = 0.3, hence G = 0.385 E. Substitute L = Lb, and Cw from Eq. (6.35f) into Eq. (6.32a)
to get

Mn = Cb
𝜋2E(
Lb

rts

)2

√√√√0.385IyJ
𝜋2

L2
b

r4
ts
+ S2

x

Substitute the value of c from Eq. (6.35e), and simplifying further we obtain

Fcr =
Mn

Sx
=

Cb𝜋
2E(

Lb

rts

)2

√
1 + 0.078 Jc

Sxh0

(
L
rts

)2

(6.35c)

which is the same as Eq. (6.35c) given before in the AISC [5] design criteria. It shows the
critical elastic lateral torsional buckling moment used in the code is that obtained from the
theory of elastic stability shown before. The inelastic lateral torsional buckling moment given
by Eq. (6.35a) is the linear interpolation between the plastic moment MP at Lb = LP and the
elastic lateral torsional buckling moment Mr at Lb = Lr shown in Figure 6.28.

The lengths Lp and Lr are obtained as follows:

Lp = 1.76ry

√
E
Fy

(6.35g)
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Lb

Mn

Mp

Lp Lr

Mr

No
instability 

Inelastic 
LTB

Elastic
LTB

Figure 6.28 Unbraced length Lb versus nominal moment capacity Mn for compact sections.

where ry is the radius of gyration of a cross-section about the y axis, and

Lr = 1.95rts
E

0.7Fy

√
Jc

Sxh0

√√√√1 +

√
1 + 6.76

(0.7Fy

E
Sxh0

Jc

)
(6.35h)

If the square root term in Eq. (6.35c) is taken as 1, according to AISC manual [5], then
Eq. (6.35h) becomes

Lr = 𝜋rts

√
E

0.7Fy
(6.35i)

For a doubly symmetric I shape, warping constant, Cw =
Iyh2

0

4
, hence

r2
ts =

Iyh0

2Sx
(6.35j)

The rts may be taken as per AISC manual [5], equal to the radius of gyration of the compression
flange plus one-sixth of the web

rts =
bf√

12
(

1 + 1
6

htw

bf tf

) (6.35k)

Example 6.5
Find the design and the allowable strength of a W18 in.× 65 lb./ft (W460 mm× 97 kg/m) wide
flange section [5] of 50 ksi (345 MPa) steel. It is subjected to a uniformly distributed load and the
bending is about its strong axis on a 40 ft (12.2 m) simply supported span. Assume the lateral
bracing as follows:
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(a) The beam is laterally braced at 4 ft (1.22 m) intervals.
(b) The beam is laterally braced at the ends and the third points (Lb = 13.33 ft or 4.07 m).
(c) The beam is laterally braced at the supports only (Lb = 40 ft or 12.2 m).

Cross-section properties of W18in.×65 lb./ft (W460 mm× 97 kg/m) wide flange section are:
d = 18.4 in. (466 mm), tw = 0.45 in. (11.4 mm), h0 = 17.6 in. (447 mm), Ix = 1070 in.4

(445× 106mm4), Sx = 117 in.3 (1910× 103mm3), Zx = 133 in.3 (2180× 103mm3), ry = 1.69 in.
(43.1 mm), J = 2.73 in.4 (1130× 103mm4), Cw = 4240 in.6 (1140× 109mm6), bf

2tf
= 5.06(5.08),

h
tw
= 35.7 (35.8), rts = 2.03 in. (51.56 mm), c = 1.

Properties of steel are: Fy = 50 ksi (345 MPa), Fu = 65 ksi (448.5 MPa), E = 29× 106 psi psi
(200 000 MPa).

Solution
Equations used are from the AISC Steel Construction Manual [5].

Lp = 1.76ry

√
E
Fy
= 1.76(1.69)

√
29000

50
= 71.64 in. = 5.97ft[

1.76(43.1)
√

200000
345

= 1826.40 mm = 1.83 m

]

Lr = 1.95rts
E

0.7Fy

√
Jc

Sxh0

√√√√1 +

√
1 + 6.76

(0.7Fy

E
Sxh0

Jc

)
(6.35h)

or

Lr = 1.95(2.03) 29000
0.7(50)

√
2.73(1)

117(17.60)

√
1 +
√

1 + 6.76
(0.7x50

29000
117x17.60

2.73x1

)
= 228.93 in. = 19.08 ft

⎡⎢⎢⎢⎣
1.95(51.56) 200000

0.7(345)

√
1130x103(1)

1910x103(447)

√√√√1 +

√
1 + 6.76

(
0.7x345
200000

1910x103x447
1130x103x1

)
= 5808.81mm = 5.81 m

⎤⎥⎥⎥⎦
Flange compactness

𝜆p = 0.38
√

E
Fy
= 0.38

√
29000

50
= 9.15

[
0.38
√

200000
345

= 9.15

]

𝜆 =
bf

2tf
= 5.06 < 𝜆p = 9.15 [𝜆 = 5.08 < 𝜆p = 9.15]

Hence, the flanges are compact.
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Web compactness

𝜆p = 3.76
√

E
Fy
= 3.76

√
29000

50
= 90.55

[
3.76
√

200000
345

= 90.53

]
𝜆 = h

tw
= 35.7 < 𝜆p = 90.55 [𝜆 = 35.8 < 𝜆p = 90.53]

Hence, the web is compact. The section is compact because both the flanges and the web are
compact.
(a) The unbraced length Lb = 4 ft <Lp = 5.97 ft [Lb = 1.22 m<Lp = 1.83 m]

Therefore, the beam is adequately braced, and its moment strength is governed by the plas-
tic moment Mp of the beam.

Mn = Mp = FyZx =
50(133)

12
= 554.17kft

[
345(2180x103)

1000x1000
= 752.10 kN.m

]
Design moment strength from the LRFD method is obtained from

Mu = 𝜙bMn = 0.90(554.17) = 498.75 kft [0.90(752.10) = 676.89 kN.m]
Allowable moment from the ASD method is calculated as

Ma =
Mn

Ωb
= 554.17

1.67
= 331.84 kft

[752.10
1.67

= 450.36 kN.m
]

(b) Lp = 5.97 ft <Lb = 13.33 ft <Lr = 19.08 ft [Lp = 1.22 m<Lb = 4.07 m<Lr = 5.81 m ]

Therefore, the nominal moment capacity Mn of the beam is controlled by the inelastic lat-
eral torsional buckling.

Mn = Cb

[
Mp − (Mp − 0.7FySx)

(Lb − Lp

Lr − Lp

)]
≤ Mp (6.35a)

Cb =
12.5Mmax

2.5Mmax + 3MA + 4MB + 3MC
Rm ≤ 3.0 (6.35d)

Rm = 1.0 for doubly symmetric shapes
Bending moment at a distance x shown in Figure 6.29 is expressed as

M = wL
2

x − wx2

2
= w

2
(Lx − x2)

Bending moment diagram

M

w

L/3 L/3 L/3

2
wL

2
wL

A B C D

L

x

Figure 6.29 Simply supported beam laterally braced at third points.
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For the end segments AB and CD

Mmax =
w
2

(
L
(L

3

)
− L2

9

)
= wL2

9

MA =
w
2

(
L
( L

12

)
− L2

144

)
= 11wL2

288

MB =
w
2

(
L
(L

6

)
− L2

36

)
= 5wL2

72

MC =
w
2

(
L
(L

4

)
− L2

16

)
= 3wL2

32

Cb =
12.5(1.00)

2.5(1.00) + 3(0.344) + 4(0.625) + 3(0.844)
= 1.46

Similarly, for the center segment BC

Cb =
12.5(1.00)

2.5(1.00) + 3(0.972) + 4(1.00) + 3(0.972)
= 1.01

Hence, the center segment controls the design
The nominal moment strength is obtained from Eq. (6.21i)

Mn = 1.01
{

554.17 −
(

554.17 − 0.7x50x117
12

)(13.33 − 5.97
19.08 − 5.97

)}
= 439.17 kft[

1.01
{

752.10 −
(

752.10 − 0.7x345x1910x103

1000x1000

)(4.07 − 1.83
5.81 − 1.83

)}
= 594.30 kN.m

]
Design moment strength from the LRFD method is obtained from

Mu = 𝜙bMn = 0.90(439.17) = 395.25 kft [0.90(594.30) = 534.87 kN.m]

Allowable moment from the ASD method is calculated as

Ma =
Mn

Ωb
= 439.17

1.67
= 262.98 kft

[594.30
1.67

= 355.87 kN.m
]

(c) Lb = 40 ft >Lr = 19.08 ft [Lb = 12.20 m>Lr = 5.81 m ]
Therefore, the nominal moment capacity Mn of the beam is controlled by the elastic lateral
torsional buckling.

Mn = FcrSx ≤ Mp (6.35b)

Fcr =
Cb𝜋

2E(
Lb

rts

)2

√
1 + 0.078 Jc

Sxh0

(
Lb

rts

)2

(6.35c)

As before

Cb =
12.5(1.00)

2.5(1.00) + 3(0.75) + 4(1.00) + 3(0.75)
= 1.14
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Fcr =
1.14x𝜋2x29000(

40x12
2.03

)2

√
1 + 0.078 2.73x1

117x17.6

(40x12
2.03

)2
= 15.20 ksi

⎡⎢⎢⎢⎣
1.14x𝜋2x200000(

12.20x1000
51.56

)2

√
1 + 0.078 1130x103x1

1910x103x447

(12.20x1000
51.56

)2
= 104.65 MPa

⎤⎥⎥⎥⎦
Mn =

15.20x117
12

= 148.20 kft
[

104.65x1910x103

1000x1000
= 199.88 kN.m

]
Design moment strength from the LRFD method is obtained from

Mu = 𝜙bMn = 0.90(148.20) = 133.38kft [0.90(199.88) = 179.82 kN.m]
Allowable moment from the ASD method is calculated as

Ma =
Mn

Ωb
= 148.20

1.67
= 88.74kft

[199.88
1.67

= 119.69 kN.m
]

Example 6.6
Find the design and the allowable strength of a W14 in.× 90 lb./ft (W360 mm× 134 kg/m) wide
flange section [5] of 50 ksi (345 MPa) steel. It is subjected to a uniformly distributed load and the
bending is about its strong axis on a 40 ft (12.2 m) simply supported span. Assume the lateral
bracing as follows:
(a) The beam is laterally braced at 4 ft (1.22 m) intervals.
(b) The beam is laterally braced at the ends and the third points (Lb = 13.33 ft or 4.07 m).
Cross-section properties of W14 in.×90 lb./ft (W360 mm× 134 kg/m) wide flange section are:

d = 14.0 in. (356 mm), tw = 0.44 in. (11.2 mm), h0 = 13.3 in. (337.82 mm), Ix = 999 in.4
(415× 106mm4), Sx = 143 in.3 (2330× 103mm3), Zx = 157 in.3 (2560× 103mm3), ry = 3.70 in.
(94.0 mm), J = 4.06 in.4 (1680× 103mm4), Cw = 16, 000 in.6 (4310× 109mm6), bf

2tf
= 10.2(10.3),

h
tw
= 25.9 (25.9), rts = 4.11 in. (104.39 mm), c = 1.

Properties of steel are: Fy = 50 ksi (345 MPa), Fu = 65 ksi (448.5 MPa), E = 29× 106 psi
(200 000 MPa).

Solution
Equations used are from the AISC Steel Construction Manual [5].

Lp = 1.76ry

√
E
Fy
= 1.76(3.70)

√
29000

50
= 156.83 in. = 13.07ft[

1.76(94.0)
√

200000
345

= 3983.33 mm = 3.98 m

]

Lr = 1.95rts
E

0.7Fy

√
Jc

Sxh0

√√√√1 +

√
1 + 6.76

(0.7Fy

E
Sxh0

Jc

)
(6.35h)
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or

Lr = 1.95(4.11) 29000
0.7(50)

√
4.06(1)

143(13.3)

√
1 +
√

1 + 6.76
(0.7x50

29000
× 143x13.3

4.06x1

)
= 548.49 in. = 45.71 ft

⎡⎢⎢⎢⎣
1.95(104.39) 200000

0.7(345)

√
1680x103(1)

2330x103(337.82)

√√√√1 +

√
1 + 6.76

(
0.7x345
200000

2330x103x337.82
1680x103x1

)
= 13924.35mm = 13.92 m

⎤⎥⎥⎥⎦
Flange compactness

𝜆p = 0.38
√

E
Fy
= 0.38

√
29000

50
= 9.15

[
0.38
√

200000
345

= 9.15

]

𝜆r = 1.0
√

E
Fy
= 1.0
√

29000
50

= 24.08

[
1.0
√

200,000
345

= 24.08

]
𝜆p = 9.15 < 𝜆 = 10.2 < 𝜆r = 24.08 [𝜆p = 9.15 < 𝜆 = 10.3 < 𝜆r = 24.08]

Hence, the flanges are noncompact.
Web compactness

𝜆p = 3.76
√

E
Fy
= 3.76

√
29000

50
= 90.55

[
3.76
√

200000
345

= 90.53

]
𝜆 = h

tw
= 25.9 < 𝜆p = 90.55 [𝜆 = 25.9 < 𝜆p = 90.53]

Hence, the web is compact. The flanges are noncompact, hence W14×90 (W360×134) is
designed as a noncompact section.

(a) The unbraced length Lb = 4 ft <Lp = 13.07 ft [Lb = 1.22 m<Lp = 3.98 m]
Therefore, the beam is adequately braced, and its moment strength is governed by the
inelastic flange local buckling.

Mp = FyZx =
50(157)

12
= 654.17kft

[
345(2560x103)

1000x1000
= 883.20 kN.m

]
The nominal moment strength is obtained from

Mn = Mp − (Mp − 0.7FySx)
(

𝜆 − 𝜆p

𝜆r − 𝜆p

)
(6.34a)

Mn = 654.17 −
(

654.17 − 0.7x50x143
12

)( 10.2 − 9.15
24.08 − 9.15

)
= 637.50 kft[

883.2 −
(

883.2 − 0.7x345x2330x103

1000x1000

)( 10.3 − 9.15
24.08 − 9.15

)
= 860.66 kN.m

]
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The design strength from the LRFD method is given as

Mu = 𝜙bMn = 0.90(637.50) = 573.75 kft [0.90(860.66) = 774.59 kN.m]

Allowable moment from the ASD method is calculated as

Ma =
Mn

Ωb
= 637.50

1.67
= 381.74 kft

[860.66
1.67

= 515.37 kN.m
]

(b) Lp = 13.07 ft <Lb = 13.33 ft <Lr = 45.71 ft [Lp = 3.98 m<Lb = 4.07 m<Lr = 13.92 m ]
The nominal moment capacity Mn of the beam is controlled by either the flange local buck-
ling or the inelastic lateral torsional buckling. From the solution of part (a), the flexural
nominal strength for flange local buckling is

Mn = 637.50 kft [860.66 kN.m]

For the inelastic lateral torsional buckling the flexural nominal strength is

Mn = Cb

[
Mp − (Mp − 0.7FySx)

(Lb − Lp

Lr − Lp

)]
≤ Mp (6.35a)

Cb = 1.01 from Example 6.5

Mn = 1.01
[
654.17 −

(
654.17 − 0.75x50x143

12

)(13.33 − 13.07
45.71 − 13.07

)]
= 659.04 kft > 637.50 kft[

1.01
{

883.20 −
(

883.20 − 0.75x345x2330x103

1000x1000

)( 4.07 − 3.98
13.92 − 3.98

)}
= 889.47 kN.m > 860.66 kN.m

]
Hence, the nominal flexural strength is controlled by the flange local buckling and is given
by

Mn = 637.50 kft [860.66 kN.m]

Design moment strength for the load and resistance factor design (LRFD) method is

Mu = 0.9(637.50) = 573.75 kft [0.9(860.66) = 774.59 kN.m]

Allowable moment from the ASD method is

Ma =
637.50

1.67
= 381.74 kft

[860.66
1.67

= 515.37 kN.m
]

Example 6.7
Solve for the flexural strength of the beam in Example 6.6 if the beam is supported on a 50 ft
(15.25 m) simple span. Also, the beam is laterally braced at the supports only (Lb = 50 ft or
15.25 m).

Solution
Equations used are from the AISC Steel Construction Manual [5].

Lb = 50 ft [15.25] m > Lr = 45.71 ft [13.94 m]
Cb = 1.14 (from Example 6.5)



Trim Size: 187mm x 235mm Single Column Jerath c06.tex V1 - 11/06/2020 7:01pm Page 395�

� �

�

Problems 395

The nominal moment capacity Mn of the beam is controlled by either the flange local buck-
ling or the elastic lateral torsional buckling. From the solution of Example 6.11.2 (part a), the
flexural nominal strength for flange local buckling is

Mn = 637.50 kft [860.66 kN.m]

For the elastic lateral torsional buckling, the flexural nominal strength is

Mn = FcrSx ≤ Mp (6.35b)

Fcr =
Cb𝜋

2E(
Lb
rts

)2

√
1 + 0.078 Jc

Sxh0

(
Lb

rts

)2

(6.35c)

Fcr =
1.14x𝜋2x29000(50x12

4.11

)2

√
1 + 0.078 4.06x1

143x13.3

(50x12
4.11

)2
= 32.65 ksi

⎡⎢⎢⎢⎣
1.14x𝜋2x200,000(

15.25x1000
104.39

)2

√
1 + 0.078 1680x103x1

2330x103x337.82

(15.25x1000
104.39

)2
= 224.99 MPa

⎤⎥⎥⎥⎦
The nominal flexural strength is given by

Mn =
32.65(143)

12
= 389.08 kft < 637.50 kft[

224.99 × 2330 × 103

1000 × 1000
= 524.23 kN.m < 860.66 kN.m

]
Hence, the nominal flexural strength is controlled by the elastic lateral torsional buckling and
is given by

Mn = 389.08 kft [524.23 kN.m]

Design moment strength for the LRFD method is

Mu = 0.9(389.08) = 350.17 kft [0.9 (524.23) = 471.81 kN.m]

Allowable moment from the ASD method is

Ma =
389.08

1.67
= 232.98 kft

[524.33
1.67

= 313.91 kN.m
]

Problems

6.1 Find the torsional buckling load for the column in Example 6.1 if one end is fixed and the
other is simply supported.
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6.2 Find the torsional buckling load of a 20 ft (6.1 m) cantilever column whose cross-section
is the same as in Example 6.4.

6.3 Find the lateral buckling load of a simple supported I section in Example 6.1 by the energy
method if the concentrated load is applied at the mid-span and the load acts at the
(a) upper flange
(b) centroid of the cross-section
(c) lower flange

6.4 Use Eq. (6.20g) to calculate the coefficient Cb for different loading conditions.
(a) Simple supported beam subjected to the concentrated load at the mid-span in

Figure P6.4a.
(b) Simple supported beam subjected to the uniform increasing load in Figure P6.4b.

P

L

Figure P6.4 (a)

A B

w0

L

Figure P6.4 (b)

6.5 Derive the differential equation governing the lateral torsional buckling load of a can-
tilever I beam subjected to uniform distributed load shown in Figure P6.5.

x y

z

L

O

w

Figure P6.5 Cantilever beam.
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6.6 Derive the differential equation governing the lateral torsional buckling load of a simple
supported I beam subjected to uniform distributed load shown in Figure P6.6.

z

x
y

w

L/2 L/2

Figure P6.6 Simple supported beam.

6.7 Calculate the design and the allowable strength of a W18 in.×65 lb./ft (W460 mm×
97 kg/m) wide flange section of 50 ksi (345 MPa) steel. It is subjected to a uniformly
distributed load and the bending is about its strong axis on a 40 ft (12.2 m) beam fixed at
both end supports. Assume the lateral bracing as follows:
(a) The beam is laterally braced at 4 ft (1.22 m) intervals.
(b) The beam is laterally braced at the ends and the third points (Lb = 13.33 ft or 4.07 m).
(c) The beam is laterally braced at the supports only (Lb = 40 ft or 12.2 m).
Cross-section properties of W18in.×65 lb./ft (W460 mm× 97 kg/m) wide flange
section are:
d = 18.4 in. (466 mm), tw = 0.45 in. (11.4 mm), h0 = 17.6 in. (447 mm), Ix = 1070 in.4
(445× 106mm4), Sx = 117 in.3 (1910× 103mm3), Zx = 133 in.3 (2180× 103mm3),
ry = 1.69 in. (43.1 mm), J = 2.73 in.4 (1130× 103mm4), Cw = 4240 in.6 (1140× 109mm6),
bf

2tf
= 5.06(5.08), h

tw
= 35.7 (35.8), rts = 2.03 in. (51.56 mm), c = 1.

Properties of steel are: Fy = 50 ksi (345 MPa), Fu = 65 ksi (448.5 MPa), E = 29× 106psi
(200 000 MPa), G = 11× 106psi (75 000 MPa).
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7

Buckling of Plates

7.1 Introduction

Thin plates are considered as two-dimensional members and the bending takes place in two
planes, whereas columns were one-dimensional members and the bending could be assumed
in one plane. The deflections and bending moments in the columns were functions of one inde-
pendent variable, whereas in plates these quantities are dependent on two independent vari-
ables. Hence, the governing equations in the columns were ordinary differential equations. In
the case of plates, the behavior is governed by partial differential equations. Another difference
between the behavior of columns and plates is that the columns cannot take additional forces
beyond their buckling loads, and the critical load is the failure load for columns. Plates have
additional capacity to resist forces beyond their buckling load and their failure load is much
higher. The failure load for the plates can be found by considering their post-buckling behavior.
Plates are used as elements of wide flange, channel, angles, and other column cross-sections.
In such cases, the buckling of plates is responsible for the local buckling of the column
cross-sections. In addition, the plates are used as flat surfaces in buildings, bridges, aircraft
wings, plate girder webs, ship hulls, etc. Plates are of different shapes, and sizes, e.g. circular
and rectangular plates, thin and thick plates. Plates are supported by different types of supports.

7.2 Theory of Plate Bending

It is customary to take the X and Y axes along the edges of the plate and the Z axis perpendicular
and downwards as shown in Figure 7.1. If the plate is subjected to small deflections, the plane
midway between the top and the bottom surfaces of the plate called the middle surface is the
XY plane. Consider the bending of a rectangular plate by distributed load q(x, y) as shown in
Figure 7.1a that acts perpendicular to the middle surface of the plate. Assume h is the thickness
of the plate and is small in comparison to the other dimensions of the plate.

The following assumptions are made in the bending theory of thin plates:
1. The lines normal to the middle surface prior to bending remain normal and straight to the

middle surface during bending.

Structural Stability Theory and Practice, First Edition. Sukhvarsh Jerath.
© 2021 Sukhvarsh Jerath. Published 2021 by John Wiley & Sons, Inc.



Trim Size: 187mm x 235mm Single Column Jerath c07.tex V1 - 11/06/2020 7:04pm Page 400�

� �

�

400 7 Buckling of Plates

(a) (b) 

b

a

X

Y
Z

h
σx

σy τyz

cd

X

τxz
τyx

2
h

2
h

dx
x

dy
y

z

dz

a b

Y τxy

Figure 7.1 Plate coordinates and differential element: (a) Coordinates of a plate; (b) Differential element of plate.

2. The normal stress 𝜎z and the strain 𝜀z are negligible and hence the transverse deflection of
points in the plate varies with their x and y coordinates but is independent of the coordinate
z, i.e. w = w (x,y).

3. It is assumed there is no strain in the middle surface of the plate caused by bending if the
transverse deflections of the plate are small in comparison to its thickness, and is therefore
the neutral surface.

In addition, it is assumed here that the material of the plate is homogeneous and isotropic
and obeys Hooke’s law. Hence, the plate can be treated as a two-dimensional stress problem
and we get linear differential equations with constant coefficients to describe the behavior of
the plate.

An element of the plate of length dx and dy and thickness h is shown in Figure 7.1b. The
strains of an elementary lamina abcd at a distance z from the neutral surface and of thickness
dz are given by

𝜀x =
z
𝜌x
, 𝜀y =

z
𝜌y

(7.1a)

where 1/𝜌x and 1/𝜌y are the curvatures of the neutral surface in the XZ and YZ planes. The
stress strain relations of an elastic plane stress case are

𝜎x =
E

1 − 𝜈2 (𝜀x + 𝜈𝜀y) (7.1b)

𝜎y =
E

1 − 𝜈2 (𝜀y + 𝜈𝜀x) (7.1c)

𝜏xy =
E

2(1 + 𝜈)
𝛾xy (7.1d)

E is the modulus of elasticity and 𝜈 is the Poisson’s ratio of the plate material. 𝜎x, 𝜎y, and 𝜀x, 𝜀y
are the stresses and strains at a point in the lamina abcd in the X and Y directions respectively.



Trim Size: 187mm x 235mm Single Column Jerath c07.tex V1 - 11/06/2020 7:04pm Page 401�

� �

�

7.2 Theory of Plate Bending 401

The thin element abcd at a distance z below the middle surface undergoes displacements
shown in Figure 7.2a during bending. The strain of fiber ab in the X direction is given by

𝜀x =
a′b′ − ab

ab
=

dx +
(

ub +
𝜕ub

𝜕x
dx

)
− ub − dx

dx
or

𝜀x =
𝜕ub

𝜕x
(7.1e)

Similarly, the strain of the fiber ad in the y direction is

𝜀y =
𝜕vb

𝜕y
(7.1f)

The shear strain is given by the change in the angle dab and is

𝛾xy =
𝜕ub

𝜕y
+

𝜕vb

𝜕x
(7.1g)

It is assumed that the plane sections remain plane during bending (during transverse displace-
ment w), the displacements u and v of the point e above a distance z from the middle surface in
Figure 7.2b are given by

ub = −z𝜕w
𝜕x

(7.1h)

Similarly,

vb = −z𝜕w
𝜕y

(7.1i)

(a) 

+

+

+

+

(b) 

z

e

e’

X

Z

z

ub

𝜕w

w

X

Y

dx dx

dx
dy ub

ub

ub

νb
νb

νb
𝜕vb

𝜕vb

𝜕y

𝜕y

𝜕x

𝜕x
𝜕x

𝜕vb

𝜕vb

dy

dy

b’

d’

a b

d
c

c’

a’

Figure 7.2 Displacements in the plate due to bending: (a) Displacements in the X – Y plane; (b) Displacements in
the X – Z plane.
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The negative sign indicates that for negative z (point e in Figure 7.2b) and positive slope
(

𝜕w
𝜕x

)
,

displacements are positive. Substitute Eqs. (7.1h) and (7.1i) into Eqs. (7.1e)–(7.1g) to get

𝜀x = −z𝜕
2w
𝜕x2 (7.1j)

𝜀y = −z𝜕
2w
𝜕y2 (7.1k)

𝛾xy = −2z 𝜕2w
𝜕x𝜕y

(7.1l)

For small deflections of the plate, the curvatures of the middle surface of the plate are given by
[1]:

1
𝜌x
= −𝜕2w

𝜕x2 ,
1
𝜌y
= −𝜕2w

𝜕y2

The quantity, 1/𝜌xy, is called the twist of the middle surface with respect to the X and Y axes,
and is given by [1]:

1
𝜌xy

= 𝜕2w
𝜕x𝜕y

Substituting Eqs. (7.1j)–(7.1l) into Eqs. (7.1b)–(7.1d) we get

𝜎x = −
Ez

1 − 𝜈2

(
𝜕2w
𝜕x2 + 𝜈

𝜕2w
𝜕y2

)
(7.1m)

𝜎y = −
Ez

1 − 𝜈2

(
𝜕2w
𝜕y2 + 𝜈

𝜕2w
𝜕x2

)
(7.1n)

𝜏xy = −
Ez

1 + 𝜈

𝜕2w
𝜕x𝜕y

(7.1o)

The stresses are positive when they are in the direction shown in Figure 7.1b. The normal and
shear stresses distributed over the lateral sides of the element in Figure 7.1b produce the fol-
lowing moments and vertical shear forces:

Mx = ∫

h
2

− h
2

𝜎xzdz My = ∫

h
2

− h
2

𝜎yzdz (7.1p)

Mxy = −∫

h
2

− h
2

𝜏xyzdz Myx = ∫

h
2

− h
2

𝜏yxzdz (7.1q)

Qx = ∫

h
2

− h
2

𝜏xzdz Qy = ∫

h
2

− h
2

𝜏yzdz

where Mx and My are the bending moments per unit length acting on the lateral sides of the
element parallel to the Y and X axes respectively. These are considered positive when they
produce compression at the top and tension at the bottom surfaces of the plate. The moments
Mxy and Myx are the twisting moments per unit length on the lateral sides of the element. The
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negative sign in Eq. (7.1q) shows that Mxy is negative when z and 𝜏xy are positive. Qx and Qy are
the vertical shear forces per unit length.

The bending moments Mx, My, the twisting moments Mxy, Myx, and vertical shear forces are
positive as shown in Figure 7.3. In addition, the distributed load q(x,y) acts perpendicular to the
middle surface of the plate. Since 𝜏xy = 𝜏yx, hence Myx = −Mxy. Substituting Eqs. (7.1m)–(7.1o)
into Eqs. (7.1p) and (7.1q) we have

Mx = −D
(
𝜕2w
𝜕x2 + 𝜈

𝜕2w
𝜕y2

)
(7.1r)

My = −D
(
𝜕2w
𝜕y2 + 𝜈

𝜕2w
𝜕x2

)
(7.1s)

Mxy = −Myx = D(1 − 𝜈) 𝜕
2w

𝜕x𝜕y
(7.1t)

where D = Eh3

12(1 − 𝜈2)
is called the flexural rigidity of the plate per unit width.

The plate element in Figure 7.3 is in equilibrium in which all forces are in the Z direction
and the moments are about the X and Y axes. Therefore, we have to consider equations of
equilibrium in the Z direction for forces, and equations of equilibrium for moments about the
X and Y directions, for a total of three equations of equilibrium. Hence,

ΣFZ = 0

−Qxdy +
(

Qx +
𝜕Qx

𝜕x
dx

)
dy − Qydx +

(
Qy +

𝜕Qy

𝜕y
dy

)
dx + qdxdy = 0

X

Y
+

+

+

+

+

+

𝜕My

𝜕Mxy

𝜕Mx

𝜕Qy

𝜕Qx

𝜕y

𝜕x

𝜕x

𝜕x

𝜕y

𝜕y

dy

dx

dx

dx

dy

dy

Qy

Qx

𝜕MyxMyx

My

My

Myx

Qy

QxMx

Mxy Mxy

Mx

dx

dy

Figure 7.3 Moments and shears on a plate element.
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or
𝜕Qx

𝜕x
+

𝜕Qy

𝜕y
+ q = 0 (7.1u)

ΣMX = 0

Mydx −
(

My +
𝜕My

𝜕y
dy

)
dx +

(
Qy +

𝜕Qy

𝜕y
dy

)
dxdy − Qxdy

dy
2
+

(
Qx+

𝜕Qx

𝜕x
dx

)
dy

dy
2

+ qdxdy
dy
2
−Mxydy +

(
Mxy +

𝜕Mxy

𝜕x
dx

)
dy = 0

Neglecting higher-order terms, we have
𝜕Mxy

𝜕x
−

𝜕My

𝜕y
+ Qy = 0 (7.1v)

ΣMY = 0

−Mxdy +
(

Mx +
𝜕Mx

𝜕x
dx

)
dy − −Myxdx +

(
Myx +

𝜕Myx

𝜕y
dy

)
dx −

(
Qx +

𝜕Qx

𝜕x
dx

)
dydx

+Qydx dx
2
−

(
Qy +

𝜕Qy

𝜕y
dy

)
dx dx

2
− qdxdy dx

2
= 0

Neglecting higher-order terms, we have
𝜕Myx

𝜕y
+

𝜕Mx

𝜕x
− Qx = 0 (7.1w)

Differentiate Qx and Qy from Eqs. (7.1v) and (7.1w), and substitute in Eq. (7.1u) to get

𝜕2Myx

𝜕x𝜕y
+

𝜕2Mx

𝜕x2 −
𝜕2Mxy

𝜕x𝜕y
+

𝜕2My

𝜕y2 + q = 0

Mxy = −Myx

Hence,
𝜕2Mx

𝜕x2 +
𝜕2My

𝜕y2 − 2
𝜕2Mxy

𝜕x𝜕y
= −q (7.1x)

Substitute Eqs. (7.1r)–(7.1t) into Eq. (7.1x) to obtain
𝜕4w
𝜕x4 + 2 𝜕4w

𝜕x2𝜕y2 +
𝜕4w
𝜕y4 =

q
D

(7.1y)

The deflection of a plate can be determined by the integration of Eq. (7.1y) for a given load q and
the given boundary conditions. The bending and twisting moments are then calculated from
Eqs. (7.1r)–(7.1t). The shearing forces are obtained from the Eqs. (7.1v) and (7.1w) as follows:

Qx = −D 𝜕

𝜕x

(
𝜕2w
𝜕x2 +

𝜕2w
𝜕y2

)
, and Qy = −D 𝜕

𝜕y

(
𝜕2w
𝜕x2 +

𝜕2w
𝜕y2

)
(7.1z)
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7.3 Buckling of Thin Plates

The stability problems in plates can be investigated by assuming that the plate slightly buckles
under the action of forces applied in the middle surface. The critical forces are obtained from
the magnitudes of these forces that keep the plate in the buckled shape. The equations of equi-
librium for the plate are formed in a slightly deformed position to find the critical in-plane load
for a flat plate. An element of a laterally bent plate is acted on by two sets of forces. One set is
the applied in-plane forces, and the second set consists of moments and shears resulting from
the transverse bending of the plate. The equations of equilibrium for these two sets of forces
are considered separately and then combined [2].

7.3.1 In-plane Forces

Consider a plate subjected to axial and shear forces in the middle plane of the plate. A small
element cut from the plate by the planes XZ and YZ and acted on by in-plane forces Nx, Ny,
Nxy, and Nyx per unit length is shown in Figure 7.4. The in-plane forces are due to the in-plane
loads because the middle surface strains caused by the bending of the plate are neglected.

The sum of the forces in the X and Y axes give the following equilibrium equations:

−Nxdy +
(

Nx +
𝜕Nx

𝜕x
dx

)
dy − Nyxdx +

(
Nyx +

𝜕Nyx

𝜕y
dy

)
dx = 0

𝜕Nx

𝜕x
+

𝜕Nyx

𝜕y
= 0 (7.2a)

−Nydx +
(

Ny +
𝜕Ny
𝜕y

dy
)

dx − Nxydy +
(

Nxy +
𝜕Nxy

𝜕x
dx

)
dy

𝜕Ny

𝜕y
+

𝜕Nxy

𝜕x
= 0 (7.2b)

X

+

+

+

+

Y Z

𝜕Nx

𝜕Nxy

𝜕Nxy

𝜕Ny

Nx

Nxy

Nxy

Ny

dx

dx

dy

dy

𝜕x

𝜕x

𝜕y

𝜕y

Nx

Ny

Nxy

Nyx

dx

dy

Figure 7.4 In-plane forces on a plate element.
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Nx Nxy

Ny

Nyx

𝜕NxNx

Nxy

Ny +

Nxy +

𝜕Nxy

𝜕w

𝜕Ny

𝜕Nyx

𝜕w

𝜕w

𝜕w

𝜕w

𝜕w
𝜕y 𝜕y

𝜕y

𝜕y

𝜕x 𝜕x 𝜕x

𝜕x

𝜕x

𝜕y

𝜕w

𝜕w

𝜕

𝜕

𝜕y

𝜕x

𝜕x

𝜕y

dy

dx

dx

dy
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dx

dx

dy

h

X

+

+

+

+Y

Figure 7.5 In-plane forces on a deformed plate element.

The sum of the moments of the forces about the x, y, and z axes shown in Figure 7.4 are identi-
cally zero. To consider the sum of the components of the forces in Figure 7.4 in the Z direction,
we have to consider the deflection of the plate shown in Figure 7.5.

The components of the normal forces Nx in the Z direction due to the curvature of the plate
in the XZ plane are

−Nxdy𝜕w
𝜕x

+
(

Nx +
𝜕Nx

𝜕x
dx

)(
𝜕w
𝜕x

+ 𝜕2w
𝜕x2 dx

)
dy

Neglecting higher-order terms, we have

Nx
𝜕2w
𝜕x2 dxdy +

𝜕Nx

𝜕x
𝜕w
𝜕x

dxdy (7.2c)

The components of the normal forces Ny in the Z direction due to the curvature of the plate in
the YZ plane are

−Nydx 𝜕w
𝜕y

+
(

Ny +
𝜕Ny

𝜕y
dy

)(
𝜕w
𝜕y

+ 𝜕2w
𝜕y2 dy

)
dx

Neglecting higher-order terms, we have

Ny
𝜕2w
𝜕y2 dxdy +

𝜕Ny

𝜕y
𝜕w
𝜕y

dxdy (7.2d)
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The z component of the shear forces Nxy is

−Nxydy𝜕w
𝜕y

+
(

Nxy +
𝜕Nxy

𝜕x
dx

)
dy

(
𝜕w
𝜕y

+ 𝜕2w
𝜕x𝜕y

dx
)

Neglecting higher-order terms, we have

Nxy
𝜕2w
𝜕x𝜕y

dxdy +
𝜕Nxy

𝜕x
𝜕w
𝜕y

dxdy (7.2e)

The z component of the shear forces Nyx is

−Nyxdx 𝜕w
𝜕x

+
(

Nyx +
𝜕Nyx

𝜕y
dy

)
dx

(
𝜕w
𝜕x

+ 𝜕2w
𝜕x𝜕y

dy
)

Neglecting higher-order terms, we have

Nyx
𝜕2w
𝜕x𝜕y

dxdy +
𝜕Nyx

𝜕y
𝜕w
𝜕x

dxdy (7.2f)

Adding expressions (7.2c)–(7.2f) and using Eqs. (7.2a) and (7.2b), the sum of the z components
of all the normal and shear forces after substituting Nxy = Nyx is given by

Nx
𝜕2w
𝜕x2 dxdy + Ny

𝜕2w
𝜕y2 dxdy + 2Nxy

𝜕2w
𝜕x𝜕y

dxdy (7.2g)

In addition to the in-plane forces in Figure 7.4, the differential element of a slightly bent plate
will have moments and shear forces shown in Figure 7.3. The sum of the components of shear
forces in the z directions is

−Qxdy +
(

Qx +
𝜕Qx

𝜕x
dx

)
dy − Qydx +

(
Qy +

𝜕Qy

𝜕y
dy

)
dx

and the expression becomes(
𝜕Qx

𝜕x
+

𝜕Qy

𝜕y

)
dxdy (7.2h)

Add the z components given by Eqs. (7.2g) and (7.2h) to get the equilibrium equation of forces
in the plate in z direction as(

𝜕Qx

𝜕x
+

𝜕Qy

𝜕y

)
dxdy + Nx

𝜕2w
𝜕x2 dxdy + Ny

𝜕2w
𝜕y2 dxdy + 2Nxy

𝜕2w
𝜕x𝜕y

dxdy = 0 (7.2i)

Using Eq. (7.1z) we get the following equation
𝜕4w
𝜕x4 + 2 𝜕4w

𝜕x2𝜕y2 +
𝜕4w
𝜕y4 = 1

D

(
Nx

𝜕2w
𝜕x2 + Ny

𝜕2w
𝜕y2 + 2Nxy

𝜕2w
𝜕x𝜕y

)
(7.2j)

Equation (7.2j) is the equation of buckling of a rectangular thin plate under the action of
in-plane forces Nx, Ny, and Nxy. The in-plane forces Nx and Ny are positive for tensile loads
in Eq. (7.2j), whereas in buckling these forces are negative. Equation (7.2j) is a fourth-order
partial differential equation in x and y. It requires eight boundary conditions, four in the x and
four in the y direction to get a unique solution.
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7.4 Boundary Conditions

The boundary conditions for rectangular plates with different support conditions are consid-
ered here.

7.4.1 Simply Supported Edge

If the edge x = 0 of the plate in Figure 7.1a is simply supported, the deflection w= 0 at this edge.
This edge can rotate about the Y axis freely, hence there is no bending moment Mx along this
edge. Therefore,

(w)x=0 = 0, and using Eq.(7.1r),
(
𝜕2w
𝜕x2 + 𝜈

𝜕2w
𝜕y2

)
x=0

= 0 (7.3a)

7.4.2 Built-in Edge

If the edge x = 0 of the plate in Figure 7.1a, is built-in, the deflection along this edge is zero. The
edge cannot rotate about the Y axis, and the tangent to the deflected surface along this edge
coincides with the initial middle plane of the plate. Hence,

(w)x=0 = 0, and
(
𝜕w
𝜕x

)
x=0

= 0 (7.4)

7.4.3 Free Edge

If x = a is the free edge of the plate in Figure 7.6, then

(Mx)x=a = 0, (Mxy)x=a = 0, and (Qx)x=a = 0 (7.5a)

Kirchoff’s theory of an elastic rod in 1859 [3] proved that these three boundary conditions can be
reduced to two boundary conditions that are sufficient to solve the problem for w completely.
The twisting moment of Mxy dy acting on an element of length dy at the edge x = a can be

a

+

b

X

Y

dy

dy

dy

Mxy

Mxy

𝜕Mxy

𝜕Mxy

Mxy +

Mxy

𝜕y

𝜕y

Figure 7.6 Plate boundary conditions at the free edge.
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replaced by two vertical forces of Mxy acting at dy distance apart shown in Figure 7.6. This does
not change the bending of the plate and produces only local changes.

The distribution of twisting moments Mxy is statically equivalent to the distribution of vertical

shear forces of−
(
𝜕Mxy

𝜕y

)
x=a

per unit length. Hence, the net vertical shear force at the edge x= a

is given by Qx −
𝜕Mxy

𝜕y
per unit length. Therefore, at the free edge

(Mx)x=a = 0 and
(

Qx −
𝜕Mxy

𝜕y

)
x=a

= 0 (7.5b)

Substitute Eqs. (7.1r), (7.1t), and (7.1z) for Mx, Mxy, and Qx respectively in Eq. (7.5b) to get(
𝜕2w
𝜕x2 + 𝜈

𝜕2w
𝜕y2

)
x=a

= 0 (7.5c)

and

−D
(
𝜕3w
𝜕x3 +

𝜕3w
𝜕x𝜕y2

)
− D(1 − 𝜈) 𝜕3w

𝜕x𝜕y2 = 0

or [
𝜕3w
𝜕x3 + (2 − 𝜈) 𝜕3w

𝜕x𝜕y2

]
x=a

= 0 (7.5d)

The boundary conditions at the free edge, x = a, are given by Eqs. (7.5c) and (7.5d).

7.4.4 Elastically Supported and Elastically Built-in Edge

If the edge x = a of a rectangular plate is rigidly joined with a supporting beam shown in
Figure 7.7, the deflection at the edge is equal to the deflection in the beam. Also, the rotation
of the edge is equal to the twist of the beam.

The force per unit length from the plate on the beam from Eq. (7.5d) is

−
(

Qx −
𝜕Mxy

𝜕y

)
x=a

= D
(
𝜕3w
𝜕x3 + (2 − 𝜈) 𝜕3w

𝜕x𝜕y2

)
x=a

(7.6a)

X

Y

a

Figure 7.7 Elastically supported edge with a beam.
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The differential equation for the beam from Eq. (4.1d) is

EI 𝜕
4w
𝜕y4 + P𝜕2w

𝜕y2 = q

where q is the force per unit length on the beam. If the axial force P is zero, then using Eq. (7.6a)
we have

EI
(
𝜕4w
𝜕y4

)
x=a

= D
(
𝜕3w
𝜕x3 + (2 − 𝜈) 𝜕3w

𝜕x𝜕y2

)
x=a

(7.6b)

where EI is the flexural stiffness of the beam. The angle of rotation of any cross-section of the

beam is counterclockwise and hence is taken as −
(
𝜕w
𝜕x

)
x=a

. The rate of change of this slope

along the length of the beam is −
(

𝜕2w
𝜕x𝜕y

)
x=a

. The twisting moment in the beam is given by

−GJ
(

𝜕2w
𝜕x𝜕y

)
x=a

, where GJ is the torsional stiffness of the beam. G is the shear modulus of the

beam material, and J is the torsion constant of the beam cross-section. For the equilibrium of
the edge, the twisting moment per unit length of the beam and the bending moment, Mx, per
unit length in the plate are related as follows:

−GJ 𝜕

𝜕y

(
𝜕2w
𝜕x𝜕y

)
x=a

+ (Mx)x=a = 0

Substitute Mx from Eq. (7.1r) to have

GJ
(

𝜕3w
𝜕x𝜕y2

)
x=a

+ D
(
𝜕2w
𝜕x2 + 𝜈

𝜕2w
𝜕y2

)
x=a

= 0 (7.6c)

Equations (7.6b) and (7.6c) are the boundary conditions at the elastically supported edge x = a,
of the plate that is supported by the beam.

7.5 Buckling of Rectangular Plates Uniformly Compressed in One
Direction

7.5.1 Buckling of Rectangular Plates with Simply Supported Edges

Consider a simply supported rectangular plate with sides of a and b subjected to a compressive
force of Nx per unit length acting on the edges x = 0 and x = a, shown in Figure 7.8. Assuming
the edges of the plate can move in the plane of the plate, hence there is no additional in-plane
force, i.e. Ny = 0 and Nxy = 0.

The governing equation of plate buckling, Eq. (7.2j) is written as

𝜕4w
𝜕x4 + 2 𝜕4w

𝜕x2𝜕y2 +
𝜕4w
𝜕y4 +

Nx

D
𝜕2w
𝜕x2 = 0 (7.7a)
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x x Simply supported edge

X

Y

Nx Nx

a

b
x

x

x

x

x

x

x

x

x x xx

x

Figure 7.8 Simply supported plate under compressive axial force.

Equation (7.7a) is written by taking Nx as negative in Eq. (7.2j) because it is a compressive force.
Since all edges are simply supported, the boundary conditions are given by Eq. (7.3a) as

w = 0, and 𝜕2w
𝜕x2 + 𝜈

𝜕2w
𝜕y2 = 0 at x = 0 and x = a (7.7b)

and

w = 0, and 𝜕2w
𝜕y2 + 𝜈

𝜕2w
𝜕x2 = 0 at y = 0 and y = b (7.7c)

The lateral deflection w = 0 along all four sides, hence

𝜕2w
𝜕y2 = 0 at x = 0 and x = a (7.7d)

and
𝜕2w
𝜕x2 = 0 at y = 0 and y = b (7.7e)

Substitute Eqs. (7.7d) and (7.7e) into Eqs. (7.7b) and (7.7c) and we have

w = 0, and 𝜕2w
𝜕x2 = 0 at x = 0 and x = a (7.7f)

w = 0, and 𝜕2w
𝜕y2 = 0 at y = 0 and y = b (7.7g)

We are considering small deformations of the plate, hence the bending strains are only con-
sidered and the in-plane strains due to bending are neglected. Therefore, only the boundary
conditions related to transverse deformations are needed. For simply supported plates, the
deflection surface can be assumed as

w =
∞∑

m=1

∞∑
n=1

Amn sin m𝜋x
a

sin
n𝜋y

b
m = 1, 2, 3 − −−,n = 1, 2, 3,− − − (7.7h)

where m and n define the number of half waves that the plate buckles in the x and y direc-
tions respectively. Amn gives the amplitudes of the mode shapes or shape functions. The double
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trigonometric series in Eq. (7.7h) satisfies boundary conditions given by Eqs. (7.7f) and (7.7g).
The substitution of w and its derivatives from Eqs. (7.7h) into Eq. (7.7a) gives

∞∑
m=1

∞∑
n=1

Amn

[
m4𝜋4

a4 + 2m2n2𝜋4

a2b2 + n4𝜋4

b4 −
Nx

D
m2𝜋2

a2

]
sin m𝜋x

a
sin

n𝜋y
b

= 0 (7.7i)

The terms in the brackets in Eq. (7.7i) consist of the sum of an infinite number of independent
functions. The only way such a sum can be zero is when the coefficient of each of the terms is
equal to zero. Hence,

Amn

[
𝜋4

(
m2

a2 +
n2

b2

)2

−
Nx

D
m2𝜋2

a2

]
= 0 (7.7j)

Equation (7.7j) is satisfied if either Amn = 0, or the term in the brackets is zero. If Amn = 0, then
the plate does not deform for all loads, and this is the trivial solution. The nontrivial solution
is obtained by equating the term in the brackets equal to zero and we have

Nx =
Da2𝜋2

m2

(
m2

a2 +
n2

b2

)2

or

Nx =
D𝜋2

b2

(
mb
a
+ n2a

mb

)2

(7.7k)

We wish to know the lowest value of Nx called the critical load at which the equilibrium of
the plate can change from the plane to a bent shape. The values of m and n, the number of
half-waves that will minimize Nx is to be found. In Eq. (7.7k) as n increases Nx increases, there-
fore n = 1 gives the smallest value of Nx. This shows that the plate buckles in a single half sine
wave in the y direction. The number of half sine waves in the x direction corresponding to the
minimum value of Nx is found by taking the derivative of the expression in Eq. (7.7k) with
respect to m at n = 1, and equating it to zero.

dNx

dm
= 2D𝜋2

b2

(
mb
a
+ a

mb

)(
b
a
− a

bm2

)
= 0

This gives

m = a
b

(7.7l)

Substitute Eqs. (7.7l) into (7.7k) and we obtain

(Nx)cr =
4D𝜋2

b2 (7.7m)

Thus, the simply supported plate buckles with one half-wave in the y direction, and m = a/b
half-waves in the x direction. This means a/b is a whole number and Eq. (7.7m) gives the critical
load only when a/b is a whole number. For plates in this category, the buckling pattern consists
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of one half-wave in the Y direction and a/b half-waves in the X direction. Hence, the plate
buckles into a/b square waves. If a/b is not a whole number, we can write Eq. (7.7k) as

(Nx)cr =
kD𝜋2

b2 (7.7n)

where

k =
(

mb
a
+ n2a

mb

)2

(7.7o)

The value of k depends on the aspect ratio of the plate a/b and on the m and n values, the
number of half-waves into which the plate buckles. The lowest value of Nx occurs when n = 1
as before. That is the plate buckles with one wave in the Y direction. In the X direction we have
to find the variation of k versus a/b for various values of m, with n = 1 from Eq. (7.7o), so that
Nx is the lowest value. The variation of k for various values of m with n = 1 from Eq. (7.7o) is
plotted in Figure 7.9.

The curves showing variation of k for m = 1, 2, 3, 4, and 5 are shown in Figure 7.9. We are
interested in the lowest value of k for a particular aspect ratio a/b to get the minimum Nx. The
solid lines in Figure 7.9 give the critical values of buckling load coefficient k as a function of
a/b along with the number of half-waves into which the plate will buckle. For all plates of a/b
ratio less than

√
2, k values are obtained from the curve drawn for m = 1 in Figure 7.9. Hence

these plates buckle into a single half-wave in the x direction. For plates of
√

2 < a∕b <
√

6, the
critical value of k is given by the curve for m = 2 in Figure 7.9, and these plates buckle into two
half-waves in the x direction at buckling. Similarly, for the plates with

√
6 < a∕b <

√
12 the

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6

k

a/b

m = 3m = 1 m = 2 m = 4 m = 5

2 6 12 20

Figure 7.9 Variation of buckling load coefficient k for uniaxially compressed plate.
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(c) 

Plate with a/b = 3,  m = 3, k = 4

(a) (b) 

Plate with a/b = 1,  m = 1, k = 4 Plate with a/b = 1.5,  m = 2, k = 4.34

Figure 7.10 Buckling modes of plates with different dimensions.

curve for m = 3, and for the plates of
√

12 < a∕b <
√

20 the curve for m = 4 give the critical
values of k to calculate the minimum buckling force Nx. The buckling modes for plates of a/b
ratios of 1, 1.5, and 3 are given in Figure 7.10.

The transition from m to m+ 1 half-waves occurs when the two corresponding curves have
equal k values. Thus, from Eq. (7.7o)

mb
a
+ a

mb
= (m + 1)b

a
+ a
(m + 1)b

or a
mb

= b
a
+ a
(m + 1)b

(7.7p)

Let a
b
= p, Eq. (7.7p) reduces to

p
m
= 1

p
+

p
m + 1

or p = a
b
=

√
m(m + 1) (7.7q)

For m = 1, there is a transition from one to two half-waves at the aspect ratio of a∕b =
√

2. For
m = 2, the transition from two to three half-waves occurs at a∕b =

√
6. Similarly, the transition

from three to four half-waves occurs at a∕b =
√

12, and from four to five half-waves occurs at
a∕b =

√
20. For a/b> 4, the buckling coefficient k varies very little from 4, and can be approx-

imately taken as 4.0, as seen in Figure 7.9. The critical compressive stress from Eq. (7.7n) is

𝜎cr =
Nx

h
= kD𝜋2

b2h
(7.7r)

where D = Eh3

12(1 − 𝜈2)
, b is the width of the plate, and h is the thickness of the plate. Thus,

𝜎cr =
k𝜋2E

12(1 − 𝜈2)
1

(b∕h)2
(7.7s)
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The buckling load for a plate given by Eq. (7.7r) is similar to the expression for a column
given by

𝜎cr =
𝜋2E

(KL∕r)2
(7.7t)

where KL is the effective length of the column that depends on the boundary conditions. The
plate and column buckling strengths are proportional to the modulus of elasticity of the mate-
rial E, and inversely proportional to (b/h)2 in the plate, and the slenderness ratio squared, (L/r)2,
in the column. Thus, the critical stress in a column depends on its length, whereas the critical
stress in a plate depends on its width, and is independent of its length.

7.5.2 Buckling of Rectangular Plates with Other Boundary Conditions

We now consider plates that are simply supported on the loading edges (x = 0 and x = a), on
which a compressive force of Nx per unit length is applied. The other two edges have various
edge conditions (Figure 7.11). The governing equation of plate buckling is

𝜕4w
𝜕x4 + 2 𝜕4w

𝜕x2𝜕y2 +
𝜕4w
𝜕y4 +

Nx

D
𝜕2w
𝜕x2 = 0 (7.8a)

Assume that under the action of compressive force Nx the plate buckles in m sinusoidal
half-waves in the x direction. Hence, we take the solution of Eq. (7.8a) in the form

w = f (y) sin m𝜋x
a

(7.8b)

where f (y) is a function of y only. Equation (7.8b) satisfies the boundary conditions

w = 0 and 𝜕2w
𝜕x2 + 𝜈

𝜕2w
𝜕y2 = 0

at the simply supported edges, x = 0 and x = a. Taking the derivatives of (Eq. 7.8b) we have

𝜕2w
𝜕x2 = −f (y)m

2𝜋2

a2 sin m𝜋x
a

,
𝜕4w

𝜕x2𝜕y2 = −
d2f
dy2

m2𝜋2

a2 sin m𝜋x
a

,

𝜕4w
𝜕x4 = f (y)m

4𝜋4

a4 sin m𝜋x
a

, and 𝜕4w
𝜕y4 =

d4f
dy4 sin m𝜋x

a

a

b

X

Y

Nx Nx

x x Simply supported edge

x

x

x

x

x

x

x

x

Figure 7.11 Plates under compressive force with different edges.
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Substitute these derivatives into Eq. (7.8a) to have the following ordinary differential equation
because sin m𝜋x

a
is not zero:

d4f
dy4 −

2m2𝜋2

a2
d2f
dy2 +

(
m4𝜋4

a4 −
Nx

D
m2𝜋2

a2

)
f = 0 (7.8c)

The general solution of Eq. (7.8c) can be written as
f (y) = A1 sinh 𝛼y + A2 cosh 𝛼y + A3 sin 𝛽y + A4 cos 𝛽y (7.8d)

where

𝛼 =

√
m2𝜋2

a2 +
√

Nx

D
m2𝜋2

a2 , 𝛽 =

√
−m2𝜋2

a2 +
√

Nx

D
m2𝜋2

a2 (7.8e)

Due to some constraints on the edges y = 0 and y = b, we always have
Nx

D
>

m2𝜋2

a2 [3]. The
constants A1, A2, A3, and A4 are determined from the edge conditions at y = 0 and y = b.

7.5.3 Loading Edges Simply Supported, the Side y = 0 Is Clamped, and the Side y = b Is
Free

The plate and the loading are shown in Figure 7.12. The boundary conditions in this case are
given by

w = 0, 𝜕w
𝜕y

= 0 at y = 0 (7.9a)

𝜕2w
𝜕y2 + 𝜈

𝜕2w
𝜕x2 = 0, 𝜕3w

𝜕y3 + (2 − 𝜈) 𝜕3w
𝜕x2𝜕y

= 0 at y = b (7.9b)

The governing equation here is Eq. (7.8c), as in Section 7.5.2:
d4f
dy4 −

2m2𝜋2

a2
d2f
dy2 +

(
m4𝜋4

a4 −
Nx

D
m2𝜋2

a2

)
f = 0 (7.8c)

a

b

X

Y

Nx Nx

x x Simply supported edge

x

x

x

x

x

x

x

x

Fixed edge

Free edge

Figure 7.12 Plate with loading edges simply supported, side y = 0 clamped, and y = b free.
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The general solution of Eq. (7.8c) is

f (y) = A1 sinh 𝛼y + A2 cosh 𝛼y + A3 sin 𝛽y + A4 cos 𝛽y (7.8d)

where

𝛼 =

√
m2𝜋2

a2 +
√

Nx

D
m2𝜋2

a2 , 𝛽 =

√
−m2𝜋2

a2 +
√

Nx

D
m2𝜋2

a2 (7.8e)

Use Eqs. (7.8b) and (7.9a) and (7.9b) to get the boundary conditions in terms of f , as follows:

f (y) = 0 at y = 0 (7.9c)

df
dy
= 0 at y = 0 (7.9d)

d2f
dy2 −

m2𝜋2𝜈

a2 f (y) = 0 at y = b (7.9e)

d3f
dy3 − (2 − 𝜈)m

2𝜋2

a2
df
dy
= 0 at y = b (7.9f)

Using Eqs. (7.9c)–(7.9f) and (7.8d), we get the following algebraic equations:

A2 + A4 = 0 (7.9g)

𝛼A1 + 𝛽A3 = 0 (7.9h)

𝛼2A1 sinh 𝛼b + 𝛼2A2 cosh 𝛼b − 𝛽2A3 sin 𝛽b − 𝛽2A4 cos 𝛽b

−m2𝜋2𝜈

a2

[
A1 sinh 𝛼b + A2 cosh 𝛼b + A3 sin 𝛽b + A4 cos 𝛽b

]
= 0 (7.9i)

𝛼3A1 cosh 𝛼b + 𝛼3A2 sinh 𝛼b − 𝛽3A3 cos 𝛽b + 𝛽3A4 sin 𝛽b

−(2 − 𝜈)m
2𝜋2

a2

[
𝛼A1 cosh 𝛼b + 𝛼A2 sinh 𝛼b + 𝛽A3 cos 𝛽b − 𝛽A4 sin 𝛽b

]
= 0 (7.9j)

Equations (7.9i) and (7.9j) can be simplified using Eqs. (7.9g) and (7.9h) and written as

A1

[
sinh 𝛼b

(
𝛼2 − m2𝜋2𝜈

a2

)
+

(
𝛽2 + m2𝜋2𝜈

a2

)
𝛼

𝛽
sin 𝛽b

]
+A2

[
cosh 𝛼b

(
𝛼2 − m2𝜋2𝜈

a2

)
+

(
𝛽2 + m2𝜋2𝜈

a2

)
cos 𝛽b

]
= 0 (7.9k)

and

A1

[
𝛼 cosh 𝛼b

{
𝛼2 − (2 − 𝜈)m

2𝜋2

a2

}
+ 𝛼 cos 𝛽b

{
𝛽2 + (2 − 𝜈)m

2𝜋2

a2

}]
+A2

[
𝛼 sinh 𝛼b

{
𝛼2 − (2 − 𝜈)m

2𝜋2

a2

}
− 𝛽 sin 𝛽b

{
𝛽2 + (2 − 𝜈)m

2𝜋2

a2

}]
= 0 (7.9l)
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Equation (7.8e) can be written as

𝛼2 = m2𝜋2

a2 + m𝜋

a

√
Nx

D
, 𝛽2 = −m2𝜋2

a2 + m𝜋

a

√
Nx

D
or

𝛼2 = 𝛽2 + 2m2𝜋2

a2

Substitute

s = 𝛼2 − m2𝜋2𝜈

a2 = 𝛽2 + 2m2𝜋2

a2 − m2𝜋2𝜈

a2

or

s = 𝛼2 − m2𝜋2𝜈

a2 = 𝛽2 + (2 − 𝜈)m
2𝜋2

a2 (7.9m)

Substitute

t = 𝛽2 + m2𝜋2𝜈

a2 = 𝛼2 − 2m2𝜋2

a2 + m2𝜋2𝜈

a2

or

t = 𝛽2 + m2𝜋2𝜈

a2 = 𝛼2 − (2 − 𝜈)m
2𝜋2

a2 (7.9n)

Make the substitutions of Eqs. (7.9m) and (7.9n), and we can write Eqs. (7.9k) and (7.9l) as
follows:[

s sinh 𝛼b + t𝛼
𝛽

sin 𝛽b s cosh 𝛼b + t cos 𝛽b

𝛼t cosh 𝛼b + s𝛼 cos 𝛽b 𝛼t sinh 𝛼b − 𝛽s sin 𝛽b

] ⎧⎪⎨⎪⎩
A1

A2

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩

0

0

⎫⎪⎬⎪⎭ (7.9o)

For a nontrivial solution for A1 and A2, the determinant of the coefficient matrix should be zero.
Hence,||||||

s sinh 𝛼b + t𝛼
𝛽

sin 𝛽b s cosh 𝛼b + t cos 𝛽b

𝛼t cosh 𝛼b + s𝛼 cos 𝛽b 𝛼t sinh 𝛼b − 𝛽s sin 𝛽b

|||||| = 0 (7.9p)

or (
s sinh 𝛼b + t𝛼

𝛽
sin𝛽b

)
(𝛼t sinh 𝛼b − 𝛽s sin 𝛽b)

−(s cosh 𝛼b + t cos 𝛽b)(𝛼t cosh 𝛼b + 𝛼s cos 𝛽b) = 0

The critical compressive force can be obtained from the following transcendental characteristic
equation:

2𝛼𝛽st + 𝛼𝛽(s2 + t2) cosh 𝛼b cos 𝛽b − (𝛼2t2 − 𝛽2s2) sinh 𝛼b sin 𝛽b = 0
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or

2st + (s2 + t2) cosh 𝛼b cos 𝛽b −
(
𝛼

𝛽
t2 − 𝛽

𝛼
s2
)

sinh 𝛼b sin 𝛽b = 0

or

2 +
( s

t
+ t

s

)
cos h𝛼b cos 𝛽b −

(
𝛼

𝛽

t
s
− 𝛽

𝛼

s
t

)
sinh 𝛼b sin 𝛽b = 0 (7.9q)

Equation (7.9q) can be used to calculate the critical value of Nx if the dimensions of the plate
and the material properties are known, since 𝛼 and 𝛽 contain Nx. The magnitude of critical Nx
can be expressed as

(Nx)cr =
kD𝜋2

b2 (7.7n)

and

𝜎cr =
(Nx)cr

h
= k𝜋2E

12(1 − 𝜈2)
1

(b∕h)2
(7.7s)

Example 7.1 Determine the critical stress for a simply supported plate on the edges x = 0
and x = a, and clamped on the side y = 0 and free on the side y = b. The plate is loaded in
the x direction on the simply supported edges as shown in Figure 7.12. Given: the modulus of
elasticity, E = 29× 106 psi (200 000 MPa), Poisson’s ratio, 𝜈 = 0.3, a/b = 1.0, h/b = 0.01.

Find the value of k that satisfies the transcendental Eq. (7.9q) for different a/b ratios.
Let a

b
= 1.0. By trial and error the minimum value of k = 1.65 is found at m = 1. The calcula-

tions here show that k = 1.65 satisfies Eq. (7.9q) at m = 1.

𝛼b = m𝜋

a∕b

√
1 + a

mb

√
k = 1(𝜋)

1

√
1 + 1

√
1.65 = 4.748

sb2 = (𝛼b)2 − 𝜈
m2𝜋2

(a∕b)2
= (4.748)2 − 0.31(𝜋)2

1
= 19.583

𝛽b = m𝜋

a∕b

√
−1 + a

mb

√
k = 1(𝜋)

1

√
−1 + 1

√
1.65 = 1.676

tb2 = 𝛽2b2 + 𝜈
m2𝜋2

(a∕b)2
= (1.676)2 + 0.3 1(𝜋)2

1
= 5.770

s
t
= 19.583

5.770
= 3.394, t

s
= 0.295

𝛼

𝛽
= 4.748

1.676
= 2.833, 𝛽

𝛼
= 0.353

cosh 𝛼b = cosh 4.748 = 57.68, sinh 𝛼b = sinh 4.748 = 57.67

cos 𝛽b = cos 1.676 = −0.105, sin 𝛽b = sin 1.676 = 0.994
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From Eq. (7.9q) we have

2 + (3.394 + 0.295)(57.68)(−0.105) − (2.833x0.295 − 0.353x3.394)(57.67)(0.994)
= 0.429 ≈ 0

Therefore, k = 1.65 satisfies Eq. (7.9q).
From Eq. (7.7s)

𝜎cr =
k𝜋2E

12(1 − 𝜈2)
1

(b∕h)2
(7.7s)

𝜎cr =
1.65(𝜋)2x29x106

12(1 − 0.32)
(0.01)2 = 4324.73psi

[
1.65(𝜋)2x200,000

12(1 − 0.32)
(0.01)2 = 29.83MPa

]
Find the value of k that satisfies the transcendental Eq. (7.9q) for different a/b ratios as shown
in Example 7.5.1. Then find Nx and critical stress 𝜎cr from Eqs. (7.7n) and (7.7s) respectively
knowing the material properties and dimensions of the plate. The critical values of k along
with m values for various a/b ratios are given in Table 7.1. For a/b = 2.8, 3.0, 4.0, and 5.0, the
minimum value of k occurs for m= 2, a phenomenon similar to the results shown in Figure 7.9
for the simply supported plates.

Table 7.1 Values of the factor k for an axially compressed plate when two loaded
sides are simply supported, the side y = 0 is clamped and the side y = b is free
(Figure 7.12).

a/b m k

0.2 1 25.21
0.4 1 6.65
0.6 1 3.28
0.8 1 2.15
1.0 1 1.65
1.2 1 1.43
1.4 1 1.32
1.6 1 1.28
1.8 1 1.29
2.0 1 1.34
2.2 1 1.40
2.4 1 1.49
2.6 1 1.60
2.8 2 1.31
3.0 2 1.29
4.0 2 1.34
5.0 2 1.55
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a

b

X

Y

Nx Nx

x x Simply supported edge

x

x

x

x

x

x

x

x

Fixed edge

Figure 7.13 Plate with loading edges simply supported, sides y = 0 and y = b clamped.

7.5.4 Loading Edges Simply Supported and the Sides y = 0 and y = b Are Clamped

The plate and the loading are shown in Figure 7.13. The boundary conditions in this case are
given by

w = 0 at y = 0 and y = b (7.10a)
𝜕w
𝜕y

= 0 at y = 0 and y = b (7.10b)

We can transform the boundary conditions given by Eqs. (7.10a) and (7.10b) in terms of f (y)
using Eq. (7.8b). Substitute f (y) and its derivatives from Eq. (7.8d) into Eqs. (7.10a) and (7.10b)
to get

A2 + A4 = 0 (7.10c)

𝛼A1 + 𝛽A3 = 0 (7.10d)

A1 sinh 𝛼b + A2 cosh 𝛼b + A3 sin 𝛽b + A4 cos 𝛽b = 0 (7.10e)

A1𝛼 cosh 𝛼b + A2𝛼 sinh 𝛼b + A3𝛽 cos 𝛽b − A4𝛽 sin 𝛽b = 0 (7.10f)
Equations (7.10c) and (7.10d) give

A4 = −A2 and A3 = −
(
𝛼

𝛽

)
A1

Now substitute A3 and A4 in Eqs. (7.10e) and (7.10f) to get[
sinh 𝛼b − 𝛼

𝛽
sin 𝛽b cosh 𝛼b − cos 𝛽b

𝛼 cosh 𝛼b − 𝛼 cos 𝛽b 𝛼 sinh 𝛼b + 𝛽 sin 𝛽b

] ⎧⎪⎨⎪⎩
A1

A2

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩

0

0

⎫⎪⎬⎪⎭ (7.10g)

For a nontrivial solution the determinant of the coefficient matrix in Eq. (7.10g) should vanish||||||
sinh 𝛼b − 𝛼

𝛽
sin 𝛽b cosh 𝛼b − cos 𝛽b

𝛼 cosh 𝛼b − 𝛼 cos 𝛽b 𝛼 sinh 𝛼b + 𝛽 sin 𝛽b

|||||| = 0 (7.10h)
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or (
sinh 𝛼b − 𝛼

𝛽
sin 𝛽b

)
(𝛼 sinh 𝛼b + 𝛽 sin 𝛽b)

−(cosh 𝛼b − cos 𝛽b)(𝛼 cosh 𝛼b − 𝛼 cos 𝛽b) = 0

The critical value of the compressive forces can be obtained from the following transcendental
characteristic equation:

2(1 − cosh 𝛼b cos 𝛽b) =
(
𝛽

𝛼
− 𝛼

𝛽

)
sinh 𝛼b sin 𝛽b (7.10i)

where 𝛼 and 𝛽 are given by Eq. (7.8e). The critical load is again given by Eq. (7.7n). Substitute
the critical load Nx given by Eq. (7.7n) in Eq. (7.8e) to get

𝛼b = m𝜋

a∕b

√
1 + a

mb

√
k, and 𝛽b = m𝜋

a∕b

√
−1 + a

mb

√
k (7.10j)

The critical load of Nx per unit length is given by Eq. (7.7k) as before

Nx =
D𝜋2

b2

(
mb
a
+ n2a

mb

)2

(7.7k)

or

Nx =
D𝜋2

a2

(
m + 1

m
a2

b2

)2

for n = 1 (7.10k)

The quantity outside the parentheses in Eq. (7.10k) represents Euler’s buckling load for a strip
of unit width and length a. The quantity in the parentheses determines in what proportion the
stability of a plate is greater than the stability of an isolated column strip, and it depends on
the ratio a/b and the quantity m, the number of half-waves into which the plate buckles. If
a< b, the second term in the parentheses of Eq. (7.10k) is always smaller than the first, and the
minimum value of the expression given by Eq. (7.10k) is when m = 1. If we write the critical
load as

(Nx)cr =
kD𝜋2

b2 (7.7n)

For a/b≤ 1, the minimum value of k occurs for m = 1. When the a/b> 1, the values of m = 2,
3, - - - give the minimum values of k similar to the results shown in Figure 7.9 for the simply
supported plates.

Find the value of k that satisfies transcendental Eq. (7.10i). Once the k is known, the critical
force Nx can be found from Eq. (7.7n). The critical stress can be found from Eq. (7.7s) knowing
the material properties and the dimensions of the plate. The variation of k with various values
of a/b is given in Table 7.2 along with m values.
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Table 7.2 Values of k for axially compressed plate when two sides are simply
supported and the other two are clamped in Figure 7.13.

a/b m k

0.2 1 27.46
0.3 1 13.91
0.4 1 9.45
0.5 1 7.69
0.6 1 7.05
0.7 1 7.00
0.8 1 7.29
0.9 1 7.83
1.0 1 8.60√

2 = 1.414 2 7.02
2.0 2 8.60√

6 = 2.45 3 7.38
3.0 3 8.62√

12 = 3.46 4 7.64√
20 = 4.47 5 7.82

Example 7.2 The smallest value of k is 7.00 in Table 7.2. If E = 29× 106 psi (200 000 MPa),
𝜈 = 0.3, h/b = 0.01, then the critical stress is given by

𝜎cr =
k𝜋2E

12(1 − 𝜈2)
1(

b∕h
)2 (7.7s)

or

𝜎cr =
7(𝜋)2x29x106

12(1 − 0.32)
(0.01)2 = 18, 347.34 psi

[
7(𝜋2)x200,000

12(1 − 0.32)
(0.01)2 = 126.53 MPa

]

7.5.5 Loading Edges Simply Supported, the Side y = 0 Is Simply Supported, and the Side
y = b Is Free

The plate and the loading are shown in Figure 7.14. The boundary conditions in this case are
given by

w = 0, 𝜕2w
𝜕y2 + 𝜈

𝜕2w
𝜕x2 = 0 at y = 0 (7.11a)

𝜕2w
𝜕y2 + 𝜈

𝜕2w
𝜕x2 = 0, 𝜕3w

𝜕y3 + (2 − 𝜈) 𝜕3w
𝜕x2𝜕y

= 0 at y = b (7.11b)
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x x x x x

a

b

X

Y

Nx Nx

x x Simply supported edge

x

x

x

x

x

x

x

x

Free edge

Figure 7.14 Plate with loading edges simply supported, side y = 0 simply supported, and y = b free.

The governing equation for the plate is Eq. (7.8c) as in Section 7.5.2. The general solution is
given by Eq. (7.8d)

f (y) = A1 sinh 𝛼y + A2 cosh 𝛼y + A3 sin 𝛽y + A4 cos 𝛽y (7.8d)

where 𝛼 and 𝛽 are given by Eq. (7.8e).
From Eq. (7.8b) we have,

w = f (y) sin m𝜋x
a

(7.8b)

Use the boundary conditions in Eqs. (7.11a) and (7.11b) and (7.8b) to get the boundary condi-
tions in terms of f as follows:

f (y) = 0 at y = 0 (7.11c)
d2f
dy2 −

m2𝜋2𝜈

a2 f (y) = 0 at y = 0 (7.11d)

d2f
dy2 −

m2𝜋2𝜈

a2 f (y) = 0 at y = b (7.11e)

d3f
dy3 − (2 − 𝜈)m

2𝜋2

a2
df
dy
= 0 at y = b (7.11f)

Use Eqs. (7.11c) and (7.11d) and (7.8d) to get

A2 = 0 and A4 = 0 (7.11g)

Hence Eq. (7.8d) can be written as

f (y) = A1 sinh 𝛼y + A3 sin 𝛽y (7.11h)

Substitute Eq. (7.11h) into Eqs. (7.11e) and (7.11f) to obtain

A1

[
sinh 𝛼b

(
𝛼2 − m2𝜋2𝜈

a2

)]
− A3

[
sin 𝛽b

(
𝛽2 + m2𝜋2𝜈

a2

)]
= 0 (7.11i)

A1

[
𝛼 cosh 𝛼b

{
𝛼2 − (2 − 𝜈)m

2𝜋2

a2

}]
− A3

[
𝛽 cos 𝛽b

{
𝛽2 + (2 − 𝜈)m

2𝜋2

a2

}]
= 0 (7.11j)
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or

⎡⎢⎢⎢⎢⎣
sinh 𝛼b

(
𝛼2 − m2𝜋2𝜈

a2

)
− sin 𝛽b

(
𝛽2 + m2𝜋2𝜈

a2

)
𝛼 cosh 𝛼b

{
𝛼2 − (2 − 𝜈)m

2𝜋2

a2

}
−𝛽 cos 𝛽b

{
𝛽2 + (2 − 𝜈)m

2𝜋2

a2

}
⎤⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨⎪⎪⎪⎩

A1

A3

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0

0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(7.11k)

For a nontrivial solution for A1 and A3, the determinant of the coefficient matrix in Eq. (7.11k)
should be zero. Hence||||||||||

sinh 𝛼b
(
𝛼2 − m2𝜋2𝜈

a2

)
− sin 𝛽b

(
𝛽2 + m2𝜋2𝜈

a2

)
𝛼 cosh 𝛼b

{
𝛼2 − (2 − 𝜈)m

2𝜋2

a2

}
−𝛽 cos 𝛽b

{
𝛽2 + (2 − 𝜈)m

2𝜋2

a2

}
||||||||||
= 0 (7.11l)

or

𝛼

(
𝛽2 + m2𝜋2𝜈

a2

)2

tan 𝛽b = 𝛽

(
𝛼2 − m2𝜋2𝜈

a2

)2

tanh 𝛼b (7.11m)

The critical compressive force is obtained from the characteristic Eq. (7.11m). The quantities
𝛼b and 𝛽b are given by Eq. 7.10j.

𝛼b = m𝜋

a∕b

√
1 + a

mb

√
k, and 𝛽b = m𝜋

a∕b

√
−1 + a

mb

√
k (7.10j)

Equation (7.11m) can be written as

𝛼

𝛽

t2

s2 tan 𝛽b = tanh 𝛼b (7.11n)

where

s = 𝛼2 − m2𝜋2𝜈

a2 = 𝛽2 + (2 − 𝜈)m
2𝜋2

a2 (7.9m)

and

t = 𝛽2 + m2𝜋2𝜈

a2 = 𝛼2 − (2 − 𝜈)m
2𝜋2

a2 (7.9n)

Find the value of k that satisfies Eq. (7.11n). The critical force Nx can be found from Eq. (7.7n)
knowing k. The critical stress 𝜎cr is found from Eq. (7.7s) if the material properties and the
dimensions of the plate are known. The critical values of k along with m for various a/b ratios
are given in Table 7.3. All minimum values of k occur at m = 1, meaning the buckled plate
consists of only one half-wave.
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Table 7.3 Factor k for axially compressed plate when two loaded sides are simply
supported, the side y = 0 is simply supported and the side y = b is free (Figure 7.14).

a/b m k

0.2 1 25.15
0.4 1 6.58
0.6 1 3.15
0.8 1 1.95
1.0 1 1.43
1.2 1 1.13
1.4 1 0.95
1.6 1 0.83
1.8 1 0.75
2.0 1 0.69
2.2 1 0.63
2.4 1 0.60
2.6 1 0.58
2.8 1 0.56
3.0 1 0.55
4.0 1 0.49
5.0 1 0.47

Example 7.3 Determine the critical stress for a simply supported plate on the edges x = 0 and
x = a, and simply supported on the side y = 0 and free on the side y = b. The plate is loaded in
the x direction on the simply supported edges as shown in Figure 7.14. Given: the modulus of
elasticity, E = 29× 106 psi (200 000 MPa), Poisson’s ratio, 𝜈 = 0.3, a/b = 3.0, h/b = 0.01.

Take m = 1 (for a/b = 3.0, m = 1 gives the minimum critical load shown in Table 7.3), and
assume k = 0.55.

𝛼b = m𝜋

a∕b

√
1 + a

mb

√
k = 1(𝜋)

3

√
1 + 3

√
0.55 = 1.8805

sb2 = (𝛼b)2 − 𝜈
m2𝜋2

(a∕b)2
= (1.8805)2 − 0.31(𝜋)2

(3)2
= 3.2073

𝛽b = m𝜋

a∕b

√
−1 + a

mb

√
k = 1(𝜋)

3

√
−1 + 3

√
0.55 = 1.1589

tb2 = 𝛽2b2 + 𝜈
m2𝜋2

(a∕b)2
= (1.1589)2 + 0.31(𝜋)2

(3)2
= 1.6720

𝛼

𝛽
= 1.8805

1.1589
= 1.6227, t2

s2 =
(1.6720

3.2073

)2
= 0.2718

A4
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From Eq. (7.11n) we have
1.6227(0.2718) (2.2889) − 0.9545 = 0.055

Therefore,
k = 0.55
From Eq. (7.7s)

𝜎cr =
k𝜋2E

12(1 − 𝜈2)
1

(b∕h)2
(7.7s)

𝜎cr =
0.55(𝜋)2x29x106

12(1 − 0.32)
(0.01)2 = 1441.57 psi

[
0.55(𝜋)2x200,000

12(1 − 0.32)
(0.01)2 = 9.94 MPa

]
7.5.6 Loading Edges Simply Supported, the Side y = 0 Is Elastically Built-in and the Side
y = b Is Free

The plate and the loading are shown in Figure 7.15. In many practical cases, the constraint at
a support will be that between a simply supported edge and the built-in edge. We consider that
the upper edge of the plate is elastically built in, and the bending moments that develop at this
edge during buckling of the plate are proportional to the rotation of the edge. The restraining
support may consist of a flange shown in Figure 7.15.

The boundary conditions at the upper edge, y = 0 are
w = 0 (7.12a)

For the second boundary condition, the continuity between the restraining flange and the web
plate are considered. For continuity, it is necessary that the angle of rotation at the edge of the
buckling plate is equal to the angle of rotation at the edge of the restraining support.

The angle of rotation of the flange during buckling =
(
𝜕w
𝜕y

)
y=0

The rate of change of the slope along the upper edge =
(

𝜕2w
𝜕y𝜕x

)
y=0

Hence, the twisting moment at the upper edge at any section along the x axis=GJ
(

𝜕2w
𝜕x𝜕y

)
y=0

where GJ is the torsional rigidity of the flange. The rate of change of the torsional moment is

b

a

x
x

x

x

x

X

Y

Nx Nx

Free edge

x

x

x

Figure 7.15 Plate with loading edges simply supported, side y = 0 elastically built in, and y = b free.
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equal to the bending moment My per unit length at the upper edge of the web plate. The signs
of the torsional and bending moments are same, hence

GJ
(

𝜕3w
𝜕x2𝜕y

)
y=0

= (My)y=0

Using Eq. (7.1s) we have

GJ
(

𝜕3w
𝜕x2𝜕y

)
y=0

+ D
(
𝜕2w
𝜕y2 + 𝜈

𝜕2w
𝜕x2

)
y=0

= 0 (7.12b)

From Eq. (7.8b) we have

w = f (y) sin m𝜋x
a

𝜕2w
𝜕x2 = −f (y)m

2𝜋2

a2 sin m𝜋x
a

= −m2𝜋2

a2 w

𝜕3w
𝜕x2𝜕y

= −m2𝜋2

a2
𝜕w
𝜕y

Since w = 0 at y = 0, we have, 𝜕
2w
𝜕x2 = 0. From Eq. (7.12b) we have

GJ m2𝜋2

a2
𝜕w
𝜕y

= D𝜕2w
𝜕y2 (7.12c)

Equations (7.12a) and (7.12c) give the two boundary conditions at the elastically built in edge
at y = 0. At the free edge, y = b the boundary conditions are given by Eq. (7.11b)

𝜕2w
𝜕y2 + 𝜈

𝜕2w
𝜕x2 = 0, 𝜕3w

𝜕y3 + (2 − 𝜈) 𝜕3w
𝜕x2𝜕y

= 0 (7.11b)

The general solution of the governing differential equation for the plate is given by Eq. (7.8d)

f (y) = A1 sinh 𝛼y + A2 cosh 𝛼y + A3 sin 𝛽y + A4 cos 𝛽y (7.8d)

Substitute Eqs. (7.8b) and (7.8d) in the boundary conditions at y = 0 given by Eqs. (7.12a) and
(7.12c) to give

A2 + A4 = 0 (7.12d)

and

GJ m2𝜋2

a2 (A1𝛼 + A3𝛽) = D(A2𝛼
2 − A4𝛽

2)

Let

r = GJ m2𝜋2

a2D
or

A1𝛼 + A3𝛽 =
A2𝛼

2 − A4𝛽
2

r
(7.12e)
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Substitute Eqs. (7.8b) and (7.8d) in the boundary conditions at y = b given by Eq. (7.11b) to get
A1𝛼

2 sinh 𝛼b + A2𝛼
2 cosh 𝛼b − A3𝛽

2 sin 𝛽b − A4𝛽
2 cos 𝛽b

−m2𝜋2𝜈

a2 (A1 sinh 𝛼b + A2 cosh 𝛼b + A3 sin 𝛽b + A4 cos 𝛽b) = 0 (7.12f)

A1𝛼
3 cosh 𝛼b + A2𝛼

3 sinh 𝛼b − A3𝛽
3 cos 𝛽b + A4𝛽

3 sin 𝛽b

−(2 − 𝜈)m
2𝜋2

a2 (A1𝛼 cosh 𝛼b + A2𝛼 sinh 𝛼b + A3𝛽 cos 𝛽b − A4𝛽 sin 𝛽b) = 0 (7.12g)

Use Eqs. (7.12d) and (7.12e) to eliminate A3 and A4 as follows:
A4 = −A2 (7.12h)

and

A3 =
[
−A1𝛼 + A2

(
𝛼2 + 𝛽2

r

)]
1
𝛽

(7.12i)

A3 and A4 are substituted from Eqs. (7.12h) and (7.12i) in the Eqs.(7.12f) and (7.12g) and we
have

A1

[
s sinh 𝛼b + 𝛼

𝛽
t sin 𝛽b

]
+ A2

[
s cosh 𝛼b + t cos 𝛽b − t

(
𝛼2 + 𝛽2

𝛽r

)
sin 𝛽b

]
= 0 (7.12j)

A1[t𝛼 cosh 𝛼b + s𝛼 cos 𝛽b] + A2

[
t𝛼 sinh 𝛼b − s𝛽 sin 𝛽b − s

(
𝛼2 + 𝛽2

r

)
cos 𝛽b

]
= 0

(7.12k)
where s and t are given by Eqs. (7.9m) and (7.9n).

If the torsional rigidity of the flange is very large, then 1/r = 0, and Eqs. (7.12j) and (7.12k)
reduce to those of one end fixed and one end free, Eqs. (7.9k) and (7.9l). Equations (7.12j) and
(7.12k) are written as

⎡⎢⎢⎢⎣
s sinh 𝛼b + 𝛼

𝛽
t sin 𝛽b s cosh 𝛼b + t cos 𝛽b − t

(
𝛼2 + 𝛽2

𝛽r

)
sin 𝛽b

t𝛼 cosh 𝛼b + s𝛼 cos 𝛽b t𝛼 sinh 𝛼b − s𝛽 sin 𝛽b − s
(
𝛼2 + 𝛽2

r

)
cos 𝛽b

⎤⎥⎥⎥⎦
⎧⎪⎨⎪⎩

A1

A2

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩

0

0

⎫⎪⎬⎪⎭
(7.12l)

For the nontrivial solution of A1 and A2 the determinant of the coefficient matrix in Eq. (7.12l)
should be zero. Hence|||||||||

s sinh 𝛼b + 𝛼

𝛽
t sin 𝛽b s cosh 𝛼b + t cos 𝛽b − t

(
𝛼2 + 𝛽2

𝛽r

)
sin 𝛽b

t𝛼 cosh 𝛼b + s𝛼 cos 𝛽b t𝛼 sinh 𝛼b − s𝛽 sin 𝛽b − s
(
𝛼2 + 𝛽2

r

)
cos 𝛽b

|||||||||
= 0 (7.12m)
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or
2st

cos 𝛽b cosh 𝛼b
+ (t2 + s2) + 1

𝛼𝛽
(s2𝛽2 − t2𝛼2) tan 𝛽b tanh 𝛼b

−
(
𝛼2 + 𝛽2

r𝛼

)
𝛼

𝛽

(
t2 tan 𝛽b − s2 𝛽

𝛼
tanh 𝛼b

)
= 0 (7.12n)

or
2

cos 𝛽b cosh 𝛼b
+

( t
s
+ s

t

)
+

(
𝛽

𝛼

s
t
− 𝛼

𝛽

t
s

)
tan 𝛽b tanh 𝛼b

−𝛼

𝛽

(
𝛼b
rb
+ 𝛽2b2

(rb)(𝛼b)

)(
t
s

tan 𝛽b − s
t
𝛽

𝛼
tanh 𝛼b

)
= 0 (7.12o)

Find the values of k that satisfy Eq. (7.12o). the critical force Nx can be found from Eq. (7.7n)
knowing k. The critical stress is found from Eq. (7.7s) if the material properties and the dimen-
sions of the plate are known. The critical values of k along with m for various a/b ratios are
given in Table 7.4. It is seen that with the increase of r, the factor k increases. For rb = 10, the
values of k approach the values given in the Table 7.1 for the clamped edge.

Table 7.4 Factor k for axially compressed plate when the two loaded sides are simply
supported, the side y = 0 is elastically built in and the side y = b is free (Figure 7.15).

a/b k (m)

rb = 1 rb = 10

0.2 25.17(1) 25.18(1)
0.4 6.59(1) 6.62(1)
0.6 3.16(1) 3.22(1)
0.8 2.0(1) 2.06(1)
1.0 1.44(1) 1.55(1)
1.2 1.15(1) 1.30(1)
1.4 0.98(1) 1.17(1)
1.6 0.88(1) 1.12(1)
1.8 0.83(1) 1.10(1)
2.0 0.78(1) 1.12(1)
2.2 0.76(1) 1.15(1)
2.4 0.75(1) 1.21(1)
2.6 0.74(1) 1.27(1)
2.8 0.76(1) 1.17(2)
3.0 0.77(1) 1.14(2)
4.0 0.78(2) 1.12(2)
5.0 0.75(2) 1.24(2)
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Y

x

x

x

x
NxNx

b
x

a

x

x

x

X

Figure 7.16 Plate with loading edges simply supported, and elastically built in at y = ± b/2.

7.5.7 Loading Edges Simply Supported, the Sides y = ± b/2 Are Elastically Built-in

Consider the buckling of a vertical web partially constrained by the flanges. The plate and the
loading are shown in Figure 7.16. The governing equation of plate buckling is

𝜕4w
𝜕x4 + 2 𝜕4w

𝜕x2𝜕y2 +
𝜕4w
𝜕y4 +

Nx

D
𝜕2w
𝜕x2 = 0 (7.8a)

Assume

w = f (y) sin m𝜋x
a

(7.8b)

Hence,
d4f
dy4 −

2m2𝜋2

a2
d2f
dy2 +

(
m4𝜋4

a4 −
Nx

D
m2𝜋2

a2

)
f = 0 (7.8c)

The general solution of Eq. (7.8c) can be written as

f (y) = A1 sinh 𝛼y + A2 cosh 𝛼y + A3 sin 𝛽y + A4 cos 𝛽y (7.8d)

where

𝛼 =

√
m2𝜋2

a2 +
√

Nx

D
m2𝜋2

a2 , 𝛽 =

√
−m2𝜋2

a2 +
√

Nx

D
m2𝜋2

a2 (7.8e)

The deflection of the plate is symmetrical function of y for the coordinates shown in Figure 7.16.
Therefore, A1 = A3 = 0, and Eq. (7.8d) reduces to

f (y) = A2 cosh 𝛼y + A4 cos 𝛽y (7.13a)

df
dy
= A2𝛼 sinh 𝛼y − A4𝛽 sin 𝛽y (7.13b)

d2f
dy2 = A2𝛼

2 cosh 𝛼y − A4𝛽
2 cos 𝛽y (7.13c)

Let GJ be the torsional rigidity of the flanges at y = ± b/2.
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The boundary conditions at the upper edge, y= − b/2 are similar to the plate in Section 7.5.6,
that is

w = 0 (7.12a)
and

GJ m2𝜋2

a2
𝜕w
𝜕y

= D𝜕2w
𝜕y2 (7.12c)

Equations (7.12a) and (7.12c) represent the boundary conditions at y = − b/2.
Substitute Eqs. (7.8b) and (7.13a) in (7.12a) to obtain at y = − b/2

A2 cosh 𝛼b
2
+ A4 cos 𝛽b

2
= 0 (7.13d)

From Eq. (7.8b) we have
𝜕w
𝜕y

=
df
dy

sin m𝜋x
a

or
𝜕w
𝜕y

= (A2𝛼 sinh 𝛼y − A4𝛽 sin 𝛽y) sin m𝜋x
a

(7.13e)

𝜕2w
𝜕y2 =

d2f
dy2 sin m𝜋x

a
or

𝜕2w
𝜕y2 = (A2𝛼

2 cosh 𝛼y − A4𝛽
2 cos 𝛽y) sin m𝜋x

a
(7.13f)

Substitute Eqs. (7.13e) and (7.13f) and y = − b/2 into Eq. (7.12c) to obtain

A2

(
GJ m2𝜋2

a2D
𝛼 sinh 𝛼b

2
+ 𝛼2 cosh 𝛼b

2

)
− A4

(
GJ m2𝜋2

a2D
𝛽 sin 𝛽b

2
+ 𝛽2 cos 𝛽b

2

)
= 0

Let

r = GJ m2𝜋2

a2D

A2

(
𝛼 sinh 𝛼b

2
+ 𝛼2

r
cosh 𝛼b

2

)
− A4

(
𝛽 sin 𝛽b

2
+ 𝛽2

r
cos 𝛽b

2

)
= 0 (7.13g)

The boundary conditions at the lower edge y = b/2 are given by
w = 0 (7.13h)

The angle of rotation of the flange during buckling = −
(
𝜕w
𝜕y

)
y=b∕2

The rate of change of the slope along the lower edge = −
(

𝜕2w
𝜕y𝜕x

)
y=b∕2

Hence, the twisting moment at the lower edge at any section along the x axis =

−GJ
(

𝜕2w
𝜕x𝜕y

)
y=b∕2
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The rate of change of the torsional moment is equal to the bending moment My per unit
length at the lower edge of the web plate. The signs of the torsional and bending moments are
same, hence

−GJ
(

𝜕3w
𝜕x2𝜕y

)
y=b∕2

= (My)y=b∕2

or

−GJ
(

𝜕3w
𝜕x2𝜕y

)
y=b∕2

+ D
(
𝜕2w
𝜕y2 + 𝜈

𝜕2w
𝜕x2

)
y=b∕2

= 0 (7.13i)

Since w = 0 at y = b/2, therefore, 𝜕
2w
𝜕x2 = 0. From Eq. (7.13i) we have

GJ m2𝜋2

a2
𝜕w
𝜕y

= −D𝜕2w
𝜕y2 (7.13j)

Equations (7.13h) and (7.13j) give the two boundary conditions at the elastically built in edge
at y = b/2.

Substitute Eqs. (7.8b) and (7.13a) into (7.13h) to obtain at y = b/2.

A2 cosh 𝛼b
2
+ A4 cos 𝛽b

2
= 0 (7.13k)

Substitute Eqs. (7.13e) and (7.13f) and y = b/2 into Eq. (7.13j) to obtain

GJ m2𝜋2

a2

(
A2𝛼 sinh 𝛼b

2
− A4𝛽 sin 𝛽b

2

)
= −D

(
A2𝛼

2 cosh 𝛼b
2
− A4𝛽

2 cos 𝛽b
2

)
or

A2

(
𝛼 sinh 𝛼b

2
+ 𝛼2

r
cosh 𝛼b

2

)
− A4

(
𝛽 sin 𝛽b

2
+ 𝛽2

r
cos 𝛽b

2

)
= 0 (7.13l)

Equations (7.13d) and (7.13k), and (7.13g) and (7.13l) are identical respectively, hence
Eqs. (7.13d) and (7.13g) can be written as⎡⎢⎢⎢⎣

cosh 𝛼b
2

cos 𝛽b
2

𝛼 sinh 𝛼b
2
+ 𝛼2

r
cosh 𝛼b

2
−𝛽 sin 𝛽b

2
− 𝛽2

r
cos 𝛽b

2

⎤⎥⎥⎥⎦
⎧⎪⎨⎪⎩

A2

A4

⎫⎪⎬⎪⎭ =
⎧⎪⎨⎪⎩

0

0

⎫⎪⎬⎪⎭ (7.13m)

For a nontrivial solution for A2 and A4 the determinant of the coefficient matrix in Eq. (7.13m)
should be zero. Hence,|||||||

cosh 𝛼b
2

cos 𝛽b
2

𝛼 sinh 𝛼b
2
+ 𝛼2

r
cosh 𝛼b

2
−𝛽 sin 𝛽b

2
− 𝛽2

r
cos 𝛽b

2

||||||| = 0 (7.13n)

The characteristic equation is obtained by expanding the determinant of Eq. (7.13n) as

𝛼 tanh 𝛼b
2
+ 𝛽 tan 𝛽b

2
+ 𝛼2 + 𝛽2

r
= 0 (7.13o)
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Equation (7.13o) can be solved to obtain the critical value of Nx. The above solution was given
by Bryan in 1891 [4].

If the plate is simply supported at y = ± b/2, we have r = GJ m2𝜋2

a2D
= 0, and

𝛼 tanh 𝛼b
2
+ 𝛽 tan 𝛽b

2
= ∞

tanh 𝛼b
2

is a finite value, therefore,

tan 𝛽b
2
= ∞, or 𝛽b

2
= 𝜋

2
Substitute the value of 𝛽 from Eq. (7.8e) to obtain

m𝜋b
2a

√
−1 + a

m𝜋

√
Nx

D
= 𝜋

2

a
m𝜋

√
Nx

D
= a2

m2b2 + 1

or

Nx =
D𝜋2

b2

(
mb
a
+ a

mb

)2

This is the same as Eq. (7.7k) for n = 1.

7.5.7.1 Loading Edges Simply Supported, the Sides y = ± b/2 Are Elastically Restrained
by Rotational Springs
The deflection is a symmetric function of y for the coordinate shown in Figure 7.16. Hence,
A1 = A3 = 0 and

f (y) = A2 cosh 𝛼y + A4 cos 𝛽y (7.14)

Let c be the rotational spring constant per unit length. The angles of rotation of the plate during
buckling are shown in Figure 7.17.

The boundary conditions are as follows:

w = 0, My = c𝜕w
𝜕y

, at y = −b
2

b/2
Y

Z, w
–

MyMy

b/2

2
b+

y = –

𝜕w 𝜕w
𝜕y 𝜕y

2
by =

Figure 7.17 Plate with loading edges simply supported, and elastically restrained at y = ± b/2.
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and

w = 0, My = c
(
−𝜕w
𝜕y

)
at y = b

2
The determinant to find the coefficients A2 and A4 can be calculated by the same procedure as
in Section 7.5.7, and is as follows:||||||||

cosh 𝛼b
2

cos 𝛽b
2

𝛼 sinh 𝛼b
2
+ D

c
𝛼2 cosh 𝛼b

2
−𝛽 sin 𝛽b

2
− D

c
𝛽2 cos 𝛽b

2

|||||||| = 0

7.5.7.2 Loading Edges Simply Supported, the Sides y = 0 and y = b Are Elastically Built
with Different Flange Sizes
The plate and the loading are shown in Figure 7.18. Let GJ1 and GJ2 be the torsional rigidities
of the flanges at y = 0 and y = b respectively. The boundary conditions at the upper edge y = 0
are given by Eqs. (7.12a) and (7.12c), that are similar to the plate in Section 7.5.6

w = 0 (7.12a)

and

GJ1
m2𝜋2

a2
𝜕w
𝜕y

= D𝜕2w
𝜕y2 (7.12c)

At the lower edge, y = b, the boundary conditions are given by
w = 0 (7.15a)

The angle of rotation of the flange during buckling = −
(
𝜕w
𝜕y

)
y=b

The rate of change of the slope along the lower edge = −
(

𝜕2w
𝜕y𝜕x

)
y=b

Hence, the twisting moment at the lower edge at any section along the x axis =

−GJ2

(
𝜕2w
𝜕x𝜕y

)
y=b

Nx

x

x

x

Y

x

x

x

x

a

Nx

b

X

Figure 7.18 Plate with loading edges simply supported, and elastically built in at y = 0 and y = b.
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The rate of change of the torsional moment is equal to the bending moment My per unit
length at the lower edge of the web plate. The signs of the torsional and bending moments are
same, hence,

−GJ2

(
𝜕3w
𝜕x2𝜕y

)
y=b

= (My)y=b

or

−GJ2

(
𝜕3w
𝜕x2𝜕y

)
y=b

+ D
(
𝜕2w
𝜕y2 + 𝜈

𝜕2w
𝜕x2

)
y=b

= 0 (7.15b)

From Eq. (7.8b), we have

w = f (y) sin m𝜋x
a

𝜕2w
𝜕x2 = −f (y)m

2𝜋2

a2 sin m𝜋x
a

= −m2𝜋2

a2 w

𝜕3w
𝜕x2𝜕y

= −m2𝜋2

a2
𝜕w
𝜕y

Since w = 0 at y = b, we have, 𝜕
2w
𝜕x2 = 0. Use Eq. (7.15b) to obtain

GJ2
m2𝜋2

a2
𝜕w
𝜕y

= −D𝜕2w
𝜕y2 (7.15c)

Equations (7.15a) and (7.15c) give the two boundary conditions at the elastically built-in edge
at y = b. The general solution of the governing differential equation for the plate is given by

f (y) = A1 sinh 𝛼y + A2 cosh 𝛼y + A3 sin 𝛽y + A4 cos 𝛽y (7.8d)

Substitute Eqs. (7.8b) and (7.8d) in the boundary conditions at y = 0 given by Eqs. (7.12a) and
(7.12c) to obtain

A2 + A4 = 0 (7.15d)

and

GJ1
m2𝜋2

a2 (A1𝛼 + A3𝛽) = D(A2𝛼
2 − A4𝛽

2)

Let

r1 = GJ1
m2𝜋2

a2D
or

A1𝛼 + A3𝛽 =
A2𝛼

2 − A4𝛽
2

r1
or

A3 = −A1
𝛼

𝛽
+

A2

r1𝛽
(𝛼2 + 𝛽2) (7.15e)
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Substitute Eqs. (7.8b) and (7.8d) in the boundary conditions at y = b given by Eqs. (7.15a) and
(7.15c) to get

A1 sinh 𝛼b + A2 cosh 𝛼b + A3 sin 𝛽b + A4 cos 𝛽b = 0 (7.15f)

GJ2
m2𝜋2

a2 (A1𝛼 cosh 𝛼b + A2𝛼 sinh 𝛼b + A3𝛽 cos 𝛽b − A4𝛽 sin 𝛽b)

= −D(A1𝛼
2 sinh 𝛼b + A2𝛼

2 cosh 𝛼b − A3𝛽
2 sin 𝛽b − A4𝛽

2 cos 𝛽b) (7.15g)
Let

r2 = GJ2
m2𝜋2

a2D
Use Eq. (7.15d) and (7.15e) to eliminate A3 and A4 from Eqs. (7.15f) and (7.15g) to have

A1

[
sinh 𝛼b − 𝛼

𝛽
sin 𝛽b

]
+ A2

[
cosh 𝛼b + 1

r1𝛽
(𝛼2 + 𝛽2) sin 𝛽b − cos 𝛽b

]
= 0 (7.15h)

A1

[
𝛼 cosh 𝛼b − 𝛼 cos 𝛽b + 1

r2
(𝛼2 sinh 𝛼b + 𝛼𝛽 sin 𝛽b)

]
+A2

[
𝛼 sinh 𝛼b + 1

r1
(𝛼2 + 𝛽2) cos 𝛽b + 𝛽 sin 𝛽b + 1

r2
𝛼2 cosh 𝛼b

− 1
r1r2

𝛽(𝛼2 + 𝛽2) sin 𝛽b + 1
r2
𝛽2 cos 𝛽b

]
= 0 (7.15i)

or ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sinh 𝛼b − 𝛼

𝛽
sin 𝛽b cosh 𝛼b + 1

r1𝛽
(𝛼2 + 𝛽2) sin 𝛽b − cos 𝛽b{

𝛼 cosh 𝛼b − 𝛼 cos 𝛽b
{
𝛼 sinh 𝛼b + 1

r1
(𝛼2 + 𝛽2) cos 𝛽b

+ 1
r2
(𝛼2 sinh 𝛼b + 𝛼𝛽 sin 𝛽b)

}
+𝛽 sin 𝛽b + 1

r2
𝛼2 cosh 𝛼b

− 1
r1r2

𝛽(𝛼2 + 𝛽2) sin 𝛽b + 1
r2
𝛽2 cos 𝛽b

}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A1

A2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0

0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(7.15j)

For a nontrivial solution for A1 and A2 the determinant of the coefficient matrix in Eq. (7.15j)
should be zero. Hence,|||||||||||||||||||

sinh 𝛼b − 𝛼

𝛽
sin 𝛽b cosh 𝛼b + 1

r1𝛽
(𝛼2 + 𝛽2) sin 𝛽b − cos 𝛽b{

𝛼 cosh 𝛼b − 𝛼 cos 𝛽b
{
𝛼 sinh 𝛼b + 1

r1
(𝛼2 + 𝛽2) cos 𝛽b

+ 1
r2
(𝛼2 sinh 𝛼b + 𝛼𝛽 sin 𝛽b)

}
+𝛽 sin 𝛽b + 1

r2
𝛼2 cosh 𝛼b

− 1
r1r2

𝛽(𝛼2 + 𝛽2) sin 𝛽b + 1
r2
𝛽2 cos 𝛽b

}

|||||||||||||||||||

= 0 (7.15k)
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The characteristic equation is obtained by expanding the determinant of Eq. (7.15k) and solved
to obtain the critical value of Nx.

7.5.8 Loading Edges Simply Supported, the Sides y=0 and y = b Are Supported
by Elastic Beams

The plate is simply supported at the edges x = 0 and x = a, and the plate is supported by two
equal elastic beams along the edges y = ± b/2 as shown in Figure 7.19. The plate is free to
rotate along the edges y = ±b/2 during buckling, but the deflections of the plate at these edges
are resisted by the elastic beams. Since the plate is free to rotate, the boundary condition is

My = −D
(
𝜕2w
𝜕y2 + 𝜈

𝜕2w
𝜕x2

)
= 0

or (
𝜕2w
𝜕y2 + 𝜈

𝜕2w
𝜕x2

)
= 0 at y = ±b∕2 (7.16a)

To obtain the second boundary condition we consider the beams are simply supported at the
ends, and the modulus of elasticity of the beams and plate materials is the same. The differential
equation for the beam deflection is given by Eq. (4.1d) as

EI 𝜕
4w
𝜕x4 + P𝜕2w

𝜕x2 = q (7.16b)

where P is the axial compressive force on the beam, and q is the intensity of the lateral load
transmitted from the plate to the beam. At

y = b
2

from Figure 7.3 and Eq. (7.5b) we have

q = −
(

Qy +
𝜕Myx

𝜕x

)
(7.16c)

Y

x

x

x

x

x

a

NxNx

X
b

x

x

x

x

x

Figure 7.19 Plate with loading edges simply supported, and supported by beams at y = 0 and y = b.



Trim Size: 187mm x 235mm Single Column Jerath c07.tex V1 - 11/06/2020 7:04pm Page 439�

� �

�

7.5 Buckling of Rectangular Plates Uniformly Compressed in One Direction 439

Substitute Eqs. (7.1t) and (7.1z) into Eq. (7.16c) to obtain

q = D
[
𝜕3w
𝜕y3 + (2 − 𝜈) 𝜕3w

𝜕x2𝜕y

]
(7.16d)

At

y = −b
2

q = Qy +
𝜕Myx

𝜕x
(7.16e)

Substitute Eqs. (7.1t) and (7.1z) into Eq. (7.16e) to obtain

q = −D
[
𝜕3w
𝜕y3 + (2 − 𝜈) 𝜕3w

𝜕x2𝜕y

]
(7.16f)

Substitute the q values in Eqs. (7.16d) and (7.16f) in the beam deflection Eq. (7.16b) to have the
following boundary conditions:

EI 𝜕
4w
𝜕x4 = D

[
𝜕3w
𝜕y3 + (2 − 𝜈) 𝜕3w

𝜕x2𝜕y

]
− P𝜕2w

𝜕x2 at y = b
2

(7.16g)

EI 𝜕
4w
𝜕x4 = −D

[
𝜕3w
𝜕y3 + (2 − 𝜈) 𝜕3w

𝜕x2𝜕y

]
− P𝜕2w

𝜕x2 at y = −b
2

(7.16h)

The deflection of the plate is given by

w = f (y) sin m𝜋x
a

(7.8b)

The deflection of the plate is a symmetrical function of y for the coordinates shown in
Figure 7.19. Hence, A1 = A3 = 0, and, as before, Eq. (7.8d) reduces to

f (y) = A2 cosh 𝛼y + A4 cos 𝛽y (7.14a)

Substitute derivatives of w and f (y) in Eq. (7.16a) to get y = ± b
2

A2

(
𝛼2 − m2𝜋2𝜈

a2

)
cosh 𝛼b

2
− A4

(
𝛽2 + m2𝜋2𝜈

a2

)
cos 𝛽b

2
= 0 (7.16i)

Similarly, substitute derivatives of w and f (y) in Eqs. (7.16g) and (7.16h) that will yield the same
expression for y = ± b

2
as follows:

EI m4𝜋4

a4

[
A2 cosh 𝛼b

2
+ A4 cos 𝛽b

2

]
sin m𝜋x

a

= D
[

A2𝛼
3 sinh 𝛼b

2
+ A4𝛽

3 sin 𝛽b
2
+ (2 − 𝜈)

(
−m2𝜋2

a2

)
×

(
A2𝛼 sinh 𝛼b

2
− A4𝛽 sin 𝛽b

2

)]
sin m𝜋x

a

+P
(

m2𝜋2

a2

)[
A2 cosh 𝛼b

2
+ A4 cos 𝛽b

2

]
sin m𝜋x

a
(7.16j)
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or

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
𝛼2 − m2𝜋2𝜈

a2

)
cosh 𝛼b

2
−
(
𝛽2 + m2𝜋2𝜈

a2

)
cos 𝛽b

2

EI m4𝜋4

a4 cosh 𝛼b
2
− D𝛼3 sin h𝛼b

2

+D(2 − 𝜈)m
2𝜋2

a2 𝛼 sinh 𝛼b
2

−P m2𝜋2

a2 cosh 𝛼b
2

EI m4𝜋4

a4 cos 𝛽b
2
− D𝛽3 sin 𝛽b

2

−D(2 − 𝜈)m
2𝜋2

a2 𝛽 sin 𝛽b
2

−P m2𝜋2

a2 cos 𝛽b
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A2

A4

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0

0

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(7.16k)

The determinant of the coefficient matrix will be zero to get nontrivial solution for A2 and A4.
Hence,

||||||||||||||||||

(
𝛼2 − m2𝜋2𝜈

a2

)
cosh 𝛼b

2
−
(
𝛽2 + m2𝜋2𝜈

a2

)
cos 𝛽b

2

EI m4𝜋4

a4 cosh 𝛼b
2
− D𝛼3 sinh 𝛼b

2

+D(2 − 𝜈)m
2𝜋2

a2 𝛼 sinh 𝛼b
2

−P m2𝜋2

a2 cosh 𝛼b
2

EI m4𝜋4

a4 cos 𝛽b
2
− D𝛽3 sin 𝛽b

2

−D(2 − 𝜈)m
2𝜋2

a2 𝛽 sin 𝛽b
2

−P m2𝜋2

a2 cos 𝛽b
2

||||||||||||||||||
= 0 (7.16l)

or

(
𝛼2 − m2𝜋2𝜈

a2

)
cosh 𝛼b

2

[
EI m4𝜋4

a4 cos 𝛽b
2
− D𝛽3 sin 𝛽b

2

−D(2 − 𝜈)m
2𝜋2

a2 𝛽 sin 𝛽b
2
− P m2𝜋2

a2 cos 𝛽b
2

]
+
(
𝛽2 + m2𝜋2𝜈

a2

)
cos 𝛽b

2

×
⎡⎢⎢⎢⎣
EI m4𝜋4

a4 cosh 𝛼b
2
− D𝛼3 sin h𝛼b

2
+ D(2 − 𝜈)m

2𝜋2

a2 𝛼 sinh 𝛼b
2

−P m2𝜋2

a2 cosh 𝛼b
2

⎤⎥⎥⎥⎦ = 0
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or

𝛽 tan 𝛽b
2

D
[
−𝛼2𝛽2 a2

m2𝜋2 − 2𝛼2 + 𝜈(𝛼2 + 𝛽2) + (2 − 𝜈)𝜈m2𝜋2

a2

]
m2𝜋2

a2

+ 𝛼 tanh 𝛼b
2

D
[
−𝛼2𝛽2 a2

m2𝜋2 + 2𝛽2 − 𝜈(𝛼2 + 𝛽2) + (2 − 𝜈)𝜈m2𝜋2

a2

]
m2𝜋2

a2

= m2𝜋2

a2 (𝛼2 + 𝛽2)
(

P − m2𝜋2EI
a2

)
(7.16m)

From Eq. (7.8e) we have

𝛼2 + 𝛽2 = 2m𝜋

a

√
Nx

D
and 𝛼2𝛽2 = m2𝜋2

a2
Nx

D
− m4𝜋4

a4

Substituting in Eq. (7.16m), we get

𝛽 tan 𝛽b
2

m2𝜋2

a2

[
−

Nx

D
a2

m2𝜋2 − 1 − 2a
m𝜋

√
Nx

D
(1 − 𝜈) + 𝜈(2 − 𝜈)

]

+ 𝛼 tanh 𝛼b
2

m2𝜋2

a2

[
−

Nx

D
a2

m2𝜋2 − 1 + 2a
m𝜋

√
Nx

D
(1 − 𝜈) + 𝜈(2 − 𝜈)

]

= 2m𝜋

a

√
Nx

D

(
P
D
− m2𝜋2

a2
EI
D

)
(7.16n)

or

𝛽

(
1 − 𝜈 + a

m𝜋

√
Nx

D

)2

tan 𝛽b
2
+ 𝛼

(
1 − 𝜈 − a

m𝜋

√
Nx

D

)2

tanh 𝛼b
2

= 2m𝜋

a

√
Nx

D

(
EI
D
− a2

m2𝜋2
P
D

)
(7.16o)

From Eq. (7.7n)

Nx =
kD𝜋2

b2

P
D
=

ANx

hD
= A

h
k𝜋2

b2

where h is the thickness of the plate, b is the width of the plate, and A is the area of cross-section
of one beam.

Substituting for Nx and P/D in Eq. (7.16o), we have

𝛽b
(

1 − 𝜈 + a
m𝜋

√
k𝜋

b

)2
tan 𝛽b

2
+ 𝛼b

(
1 − 𝜈 − a

m𝜋

√
k𝜋

b

)2
tanh 𝛼b

2

= 2m𝜋2

a
b

√
k
(

EI
bD

− a2k
m2b2

A
bh

)
(7.16p)
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where EI = flexural rigidity of one beam, bD = flexural rigidity of the plate, and bh = area of
cross-section of the plate. 𝛼b and 𝛽b are given by

𝛼b = m𝜋

a∕b

√
1 + a

mb

√
k and 𝛽b = m𝜋

a∕b

√
−1 + a

mb

√
k

The procedure for calculation is as follows:

1. Calculate EI
bD

and A
bh

using beam and plate dimensions.
2. Assume m, the number of half-waves.
3. For a particular value of a

b
ratio, find the k that satisfies the transcendental Eq. (7.16p). The

critical stress 𝜎cr for the plate is given by

𝜎cr =
k𝜋2E

12(1 − 𝜈2)
1

(b∕h)2
(7.7s)

7.6 The Energy Method

The principle of stationary potential energy can also be used in the case of plates as it was
used in Section 2.11 for columns. This method is useful where the solution of the differential
Eq. (7.2j) is not known. For plates with stiffeners, non-uniform plates where the plate thickness
varies with x and y but is symmetrical with respect to the z axis, and the plates are subjected
to varying edge forces, the energy method can be used to approximate a solution of the critical
load. We assume the plate is stressed by forces acting in the middle of the plate and undergoes
small bending consistent with the boundary conditions. It is assumed the middle plane of the
plate does not stretch, hence the strain energy due to bending is only considered. For thin plates
where the thickness h is less than 1/10 of plate lateral dimensions, it is assumed that the stresses
𝜎z, 𝜏xz, and 𝜏yz are negligible. Thus, the plate is in-plane stress containing internal stresses of
𝜎x, 𝜎y, and 𝜏xy.

7.6.1 Strain Energy Due to Bending in Plates

The strain energy stored in the plate is given by

U = 1
2 ∫

h
2

− h
2
∫

b

0 ∫

a

0
(𝜎x 𝜀x + 𝜎y 𝜀y + 𝜏xy 𝛾xy) dx dy dz (7.17a)

For the plane stress, the constitutive equations are

𝜎x =
E

1 − 𝜈2 (𝜀x + 𝜈𝜀y) (7.1b)

𝜎y =
E

1 − 𝜈2 (𝜀y + 𝜈𝜀x) (7.1c)

𝜏xy =
E

2(1 + 𝜈)
𝛾xy (7.1d)
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Substitute Eqs. (7.1j)–(7.1o) into Eq. (7.17a) to obtain

U = 1
2 ∫

h
2

− h
2
∫

b

0 ∫

a

0

[
Ez

1 − 𝜈2

(
𝜕2w
𝜕x2 + 𝜈

𝜕2w
𝜕y2

)(
z𝜕

2w
𝜕x2

)
+ Ez

1 − 𝜈2

(
𝜕2w
𝜕y2 + 𝜈

𝜕2w
𝜕x2

)(
z𝜕

2w
𝜕y2

)
+ Ez

1 + 𝜈

𝜕2w
𝜕x𝜕y

(
2z 𝜕2w

𝜕x𝜕y

)]
dxdydz (7.17b)

U = D
2 ∫

b

0 ∫

a

0

[(
𝜕2w
𝜕x2

)2

+
(
𝜕2w
𝜕y2

)2

+ 2𝜈
(
𝜕2w
𝜕x2

)(
𝜕2w
𝜕y2

)
+ 2(1 − 𝜈)

(
𝜕2w
𝜕x𝜕y

)2
]

dxdy

(7.17c)

Equation (7.17c) is the equation of strain energy due to bending only in a thin plate.

7.6.2 Potential Energy of the External Forces in Plates

7.6.2.1 Potential Energy Due to Nx and Ny
Consider a strip of width dy in Figure 7.20. The load acting on this strip is Nxdy. The potential
energy for any strip of width dy is given by

dv1 = −Nxdy(ΔL) (7.18a)

where ΔL is the change in length of the strip due to bending. The change in length of the strip
can be obtained from Eq. (2.28e) as

ΔL = 1
2 ∫

a

0

(
𝜕w
𝜕x

)2
dx

dv1 = −(Nxdy)
[

1
2 ∫

a

0

(
𝜕w
𝜕x

)2
dx

]
(7.18b)

There is no factor of 1/2 present in calculating the external work because Nx dy remains constant
during the shortening of this strip due to bending. The total potential energy of the entire plate

a

b

dy

NxNx

X

Y

Figure 7.20 Plate subjected to in-plane external force.
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is obtained by adding the potential energies of all such strips or by integrating with respect to
y. Hence,

V1 = −
1
2 ∫

a

0 ∫

b

0
Nx

(
𝜕w
𝜕x

)2
dxdy (7.18c)

Similarly considering a strip of width dx, we can write the potential energy of the plate due to
Ny as

V2 = −
1
2 ∫

a

0 ∫

b

0
Ny

(
𝜕w
𝜕y

)2

dxdy (7.18d)

7.6.2.2 Potential Energy Due to Nxy
To find the shear strain due to displacement w, consider two small elements OA and OB of
lengths dx and dy respectively in the directions of axes X and Y shown in Figure 7.21. The
elements move to O’A’ and O’B’ due to displacement w. The difference between the angles
AOB

(
𝜋

2

)
and A’O’ B’ is the shear strain, 𝛾 , due to w. Hence, angle A′O′B′ = 𝜋

2
− 𝛾 . From the

triangle A’O’B’

(A′B′)2 = (O′A′)2 + (O′B′)2 − 2(O′A′)(O′B′) cos
(
𝜋

2
− 𝛾

)
(7.19a)

cos
(
𝜋

2
− 𝛾

)
= sin 𝛾 = 𝛾 for small values of 𝛾.

(O′A′)2 = dx2 +
(
𝜕w
𝜕x

dx
)2

(O′B′)2 = dy2 +
(
𝜕w
𝜕y

dy
)2

(A′B′)2 = dx2 +
(
𝜕w
𝜕x

dx
)2
+ dy2 +

(
𝜕w
𝜕y

dy
)2

− 2(dx)(dy)𝛾 (7.19b)

Also

(A′B′)2 = dx2 + dy2 +
(
𝜕w
𝜕y

dy − 𝜕w
𝜕x

dx
)2

(7.19c)

𝜕w

𝜕w
𝜕w

𝜕w

dy𝜕y

𝜕y
𝜕x

𝜕x
B

O’
O

dy

A

A’

B’

dx
X

Y

dx
w

w

Figure 7.21 Shear strain corresponding to deflection w.
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Equations (7.19b) and (7.19c) give

𝛾 = 𝜕w
𝜕x

𝜕w
𝜕y

Hence, the potential energy of the plate due to Nxy is given by

V3 = −
1
2 ∫

b

0 ∫

a

0
2Nxy

(
𝜕w
𝜕x

)(
𝜕w
𝜕y

)
dxdy (7.19d)

The factor 2 is to account for the contribution of Nyx.

7.6.3 Rectangular Plate Subjected to Uniaxial Compressive Force and Fixed on All Edges

The plate and the loading are shown in Figure 7.22 and the boundary conditions are

w = 𝜕w
𝜕x

= 0 at x = 0, a (7.20a)

w = 𝜕w
𝜕y

= 0 at y = 0, b (7.20b)

The edges of the plate are free to move in the XY plane. The boundary conditions are satisfied
if w is assumed as

w = A
(

1 − cos 2𝜋x
a

)(
1 − cos

2𝜋y
b

)
𝜕w
𝜕x

= A
(2𝜋

a

)(
sin 2𝜋x

a

)(
1 − cos

2𝜋y
b

)
𝜕2w
𝜕x2 = A4𝜋2

a2 cos 2𝜋x
a

(
1 − cos

2𝜋y
b

)
𝜕w
𝜕y

= A
(2𝜋

b

)(
1 − cos 2𝜋x

a

)
sin

2𝜋y
b

𝜕2w
𝜕y2 = A

(
4𝜋2

b2

)(
1 − cos 2𝜋x

a

)
cos

2𝜋y
b

𝜕2w
𝜕x𝜕y

= A
(

4𝜋2

ab

)
sin 2𝜋x

a
sin

2𝜋y
b

(7.20c)

b

X

Y

Nx Nx

a

Figure 7.22 Fixed rectangular plate under compressive forces.
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From Eq. (7.17c), we have

U = D
2 ∫

b

0 ∫

a

0

[(
𝜕2w
𝜕x2

)2

+
(
𝜕2w
𝜕y2

)2

+ 2𝜈
(
𝜕2w
𝜕x2

)(
𝜕2w
𝜕y2

)
+ 2(1 − 𝜈)

(
𝜕2w
𝜕x𝜕y

)2
]

dxdy

or

U =
(D

2

)(
16𝜋4A2

a2b2

)[
∫

b

0 ∫

a

0

b2

a2 cos2 2𝜋x
a

(
1 + cos2 2𝜋y

b
− 2 cos

2𝜋y
b

)
+ a2

b2 cos2 2𝜋y
b

(
1 + cos2 2𝜋x

a
− 2 cos 2𝜋x

a

)
+2𝜈

(
cos 2𝜋x

a
− cos2 2𝜋x

a

)(
cos

2𝜋y
b
− cos2 2𝜋y

b

)
+ 2(1 − 𝜈)

(
sin2 2𝜋x

a

)(
sin2 2𝜋y

b

)]
dxdy (7.20d)

We have the following definite integrals

∫

a

0
sin2 2𝜋x

a
dx = a

2
,
∫

b

0
sin2 2𝜋y

b
dy = b

2
(7.20e)

∫

a

0
cos2 2𝜋x

a
dx = a

2
,
∫

b

0
cos2 2𝜋y

b
dy = b

2
(7.20f)

∫

a

0
cos2 2𝜋x

a
dx = 0,

∫

b

0
cos2 2𝜋y

b
dy = 0 (7.20g)

Use the definite integrals in Eqs. (7.20e)–(7.20g) to obtain

U = 2D𝜋4A2

a2𝛽
(3 + 2𝛽2 + 3𝛽4) (7.20h)

where the aspect ratio a
b

of the plate = 𝛽.
The potential energy of the external force Nx is given by Eq. (7.18c) as

V = −1
2 ∫

b

0 ∫

a

0

[
Nx

(
𝜕w
𝜕x

)2]
dxdy (7.18c)

or

V = −1
2 ∫

b

0 ∫

a

0
Nx

[
A2 4𝜋2

a2

(
sin2 2𝜋x

a

)(
1 + cos2 2𝜋y

b
− 2 cos

2𝜋y
b

)]
dxdy (7.20i)

Use the definite integrals given by Eqs. (7.20e)–(7.20g), to get

V = −
3Nx𝜋

2A2b
2a

(7.20j)
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The total potential energy of the plate is obtained from Eqs. (7.20h) and (7.20i) as follows:

Π = U + V = 2D𝜋4A2

a2𝛽
(3 + 2𝛽2 + 3𝛽4) − 3

2
Nx𝜋

2A2

𝛽
(7.20k)

Using the principle of stationary potential energy and the Rayleigh-Ritz method, take the vari-
ation of Π with respect to A and equate it to zero. Thus, we get

dΠ
dA

= 4D𝜋4A
a2𝛽

(3 + 2𝛽2 + 3𝛽4) −
3Nx𝜋

2A
𝛽

= 0

or

(Nx)cr =
4D𝜋2a2

3

( 3
a4 +

3
b4 +

2
a2b2

)
(7.20l)

For a square plate, a
b
= 𝛽 = 1, and from Eq. (7.20l) we have

(Nx)cr =
32D𝜋2

3a2 = 10.67D𝜋2

a2 (7.20m)

Levy [5] obtained an exact solution of this problem by using infinite series for w as

(Nx)cr = 10.07D𝜋2

a2 (7.20n)

Error in the one-term solution of Eq. (7.20m) is equal to [(10.67–10.07)/10.07]× 100 = 5.96%.
The energy method gives an upper bound to the exact value.

7.6.4 A Rectangular Plate with Clamped Edges under Compressive Pressure in Two
Perpendicular Directions

The plate and the loading are shown in Figure 7.23 and the boundary conditions are

w = 𝜕w
𝜕x

= 0 at x = 0, a (7.20a)

w = 𝜕w
𝜕y

= 0 at y = 0, b (7.20b)

b

X

Y

Nx Nx

a Ny

Ny

Figure 7.23 Fixed rectangular plate under compressive forces in two perpendicular directions.
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The edges of the plate are free to move in the XY plane. The boundary conditions are satisfied
if w is assumed as

w = A
(

1 − cos 2𝜋x
a

)(
1 − cos

2𝜋y
b

)
(7.20c)

The strain energy for the plate is the same as in the case in Section 7.6.3 and is as follows:

U = 2D𝜋4A2

a2𝛽
(3 + 2𝛽2 + 3𝛽4) (7.20h)

From Eqs. (7.18c) and (7.18d) the work done by the compressive forces during the buckling of
the plate is given by

V = −1
2

Nx ∫

b

0 ∫

a

0

(
𝜕w
𝜕x

)2
dxdy − 1

2
Ny ∫

b

0 ∫

a

0

(
𝜕w
𝜕y

)2

dxdy (7.21a)

or

V = −1
2 ∫

b

0 ∫

a

0
Nx

[
A2 4𝜋2

a2

(
sin2 2𝜋x

a

)(
1 + cos2 2𝜋y

b
− 2 cos

2𝜋y
b

)]
dxdy

−1
2 ∫

b

0 ∫

a

0
Ny

[
A2 4𝜋2

b2

(
sin2 2𝜋y

b

)(
1 + cos2 2𝜋x

a
− 2 cos 2𝜋x

a

)]
dxdy (7.21b)

or

V = −3𝜋2A2b
2a

(
Nx +

a2

b2 Ny

)
(7.21c)

The total potential energyΠ of the plate is obtained by adding the strain and potential energies
from Eqs. (7.20h) and (7.21c) as follows:

Π = U + V = 2D𝜋4A2

a2𝛽
(3 + 2𝛽2 + 3𝛽4) − 3𝜋2A2

2𝛽
(Nx + 𝛽2Ny) (7.21d)

where the aspect ratio a
b

of the plate = 𝛽.
Using the principle of stationary potential energy and the Rayleigh-Ritz method, take the

variation of Π with respect to A and equate it to zero. Thus, we get
dΠ
dA

= 4D𝜋4A
a2𝛽

(3 + 2𝛽2 + 3𝛽4) − 3𝜋2A
𝛽

(Nx + 𝛽2Ny) = 0

or (
Nx +

a2

b2 Ny

)
cr
= 4D𝜋2a2

3

( 3
a4 +

3
b4 +

2
a2b2

)
(7.21e)

For a square plate, a/b = 1, thus

(Nx + Ny)cr =
32D𝜋2

3a2 (7.21f)

If Ny = 0, we get the same result as given by Eq. (7.20m) in Section 7.6.3. If Nx = Ny = Ncr, we
get

Ncr =
16D𝜋2

a2 = 5.34 D𝜋2

a2 (7.21g)
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7.6.5 Buckling of Simply Supported Rectangular Plates Under the Action of Shear Forces

Consider a simply supported plate on all sides subjected to shear forces Nxy as shown in
Figure 7.24. The energy method is used to calculate the distributed shear force Nxy per unit
length along the edges at which buckling takes place. The boundary conditions are satisfied if
we take the double series as follows:

w =
∞∑

m=1

∞∑
n=1

Amn sin m𝜋x
a

sin
n𝜋y

b
m = 1, 2, 3-----,n = 1, 2, 3--- (7.22a)

The strain energy expression is the same as before

U = D
2 ∫

b

0 ∫

a

0

[(
𝜕2w
𝜕x2

)2

+
(
𝜕2w
𝜕y2

)2

+ 2𝜈
(
𝜕2w
𝜕x2

)(
𝜕2w
𝜕y2

)
+ 2(1 − 𝜈)

(
𝜕2w
𝜕x𝜕y

)2
]

dxdy

(7.22b)

The derivatives of w needed to calculate the strain energy are

𝜕w
𝜕x

=
∞∑

m=1

∞∑
n=1

Amn
m𝜋

a
cos m𝜋x

a
sin

n𝜋y
b

𝜕2w
𝜕x2 = −

∞∑
m=1

∞∑
n=1

Amn
m2𝜋2

a2 sin m𝜋x
a

sin
n𝜋y

b

𝜕w
𝜕y

=
∞∑

m=1

∞∑
n=1

Amn
n𝜋
b

sin m𝜋x
a

cos
n𝜋y

b

𝜕2w
𝜕y2 = −

∞∑
m=1

∞∑
n=1

Amn
n2𝜋2

b2 sin m𝜋x
a

sin
n𝜋y

b

𝜕2w
𝜕x𝜕y

=
∞∑

m=1

∞∑
n=1

Amn
mn𝜋2

ab
cos m𝜋x

a
cos

n𝜋y
b

(7.22c)

a

b

X

Y

Nxy

Nxy

Figure 7.24 Simply supported plate subjected to pure shear.
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The following definite integrals are also needed to calculate the strain energy

∫

b

0 ∫

a

0
sin2 m𝜋x

a
sin2 n𝜋y

b
dxdy = ab

4
(7.22d)

∫

b

0 ∫

a

0
cos2 m𝜋x

a
cos2 n𝜋y

b
dxdy = ab

4
Substitute derivatives of w given by Eqs. (7.22c) into Eq. (7.22b) and make use of the definite
integrals in Eq. (7.22d) to have

U = abD
8

∞∑
m=1

∞∑
n=1

A2
mn

(
m4𝜋4

a4 + n4𝜋4

b4 + 2m2n2𝜋4

a2b2

)
or

U = 𝜋4abD
8

∞∑
m=1

∞∑
n=1

A2
mn

(
m2

a2 +
n2

b2

)2

(7.22e)

From Eq. (7.19d) the potential energy of the external shear Nxy is given by

V = −1
2 ∫

b

0
2Nxy

(
𝜕w
𝜕x

)(
𝜕w
𝜕y

)
dxdy (7.19d)

Substitute the derivatives of w from Eqs. (7.22c) in (7.19d) to get

V = −Nxy ∫

b

0 ∫

a

0

∞∑
m=1

∞∑
n=1

∞∑
r=1

∞∑
s=1

ms𝜋2

ab

(
AmnArs cos m𝜋x

a
sin

n𝜋y
b

sin r𝜋x
a

cos
s𝜋y

b

)
dxdy

(7.22f)
The following definite integrals are also needed to calculate the potential energy

∫

a

0
sin m𝜋x

a
cos r𝜋x

a
dx = 0 if m ± r is an even number

∫

a

0
sin m𝜋x

a
cos r𝜋x

a
dx = 2a

𝜋

m
m2 − r2 if m ± r is an odd number (7.22g)

V = −Nxy

∞∑
m=1

∞∑
n=1

∞∑
r=1

∞∑
s=1

ms𝜋2

ab

{
AmnArs

(2a
𝜋

r
r2 −m2

)(
2b
𝜋

n
n2 − s2

)}
V = −4Nxy

∞∑
m=1

∞∑
n=1

∞∑
r=1

∞∑
s=1

AmnArs
mnrs

(m2 − r2)(s2 − n2)
(7.22h)

In Eq. (7.22h) the integers m, n, r, s have such values that m± r and n± s are odd numbers.
The total potential energy in the plate is

Π = U + V = 𝜋4abD
8

∞∑
m=1

∞∑
n=1

A2
mn

(
m2

a2 +
n2

b2

)2

− 4Nxy

∞∑
m=1

∞∑
n=1

∞∑
r=1

∞∑
s=1

AmnArs
mnrs

(m2 − r2)(s2 − n2)
(7.22i)
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In these equations the combinations of m± r and n± s are odd numbers from Eq. (7.22h). Let
us assume m, n, r, s can each have only the values of 1 or 2. The possible combinations of m, n,
r, s are as follows:

m n r s
1 1 2 2
1 2 2 1
2 1 1 2
2 2 1 1

With the above combinations of m, n, r, and s the total potential energy in the plate is given by

Π = 𝜋4abD
8

[
A2

11

( 1
a2 +

1
b2

)2
+ A2

12

( 1
a2 +

4
b2

)2
+ A2

21

( 4
a2 +

1
b2

)2
+ A2

22

( 4
a2 +

4
b2

)2]
− 4Nxy

[
A11A22

(1)(1)(2)(2)
(1−4)(4−1)

+ A12A21
(1)(2)(2)(1)
(1−4)(1−4)

+ A21A12
(2)(1)(1)(2)
(4−1)(4−1)

+ A22A11
(2)(2)(1)(1)
(4−1)(1−4)

]
or

Π = 𝜋4abD
8

[
A2

11

( 1
a2 +

1
b2

)2
+ A2

12

( 1
a2 +

4
b2

)2
+ A2

21

( 4
a2 +

1
b2

)2
+ A2

22

( 4
a2 +

4
b2

)2]
+32

9
Nxy(A11A22 − A12A21) (7.22j)

Using the principle of stationary potential energy and the Rayleigh-Ritz method, we are inter-
ested in finding the constants Amn and Ars such that the total potential energyΠ is a minimum.
Take the derivatives ofΠwith respect to each of these coefficients and equate them to zero and
we get a system of homogeneous linear equations.

dΠ
dA11

= 𝜋4abD
4

[
A11

( 1
a2 +

1
b2

)2
]
+ 32

9
Nxy(A22) = 0

dΠ
dA12

= 𝜋4abD
4

[
A12

( 1
a2 +

4
b2

)2]
− 32

9
Nxy(A21) = 0

dΠ
dA21

= 𝜋4abD
4

[
A21

( 4
a2 +

1
b2

)2]
− 32

9
Nxy(A12) = 0

dΠ
dA22

= 𝜋4abD
4

[
A22

( 4
a2 +

4
b2

)2]
+ 32

9
Nxy(A11) = 0 (7.22k)

Take 𝜋4abD
4

( 1
a2 +

1
b2

)2
= 𝜋4D

4𝛽3b2 (1 + 𝛽2)2, where 𝛽 = a
b

. Similarly, we can calculate other coef-

ficients in terms of 𝛽.
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Since (m+ r) and (n+ s) are both odd, (m+ r+n+ s) is even. If (m+n) is even, (r+ s) must
be even, and if (m+n) is odd, (r+ s) must be odd. Thus, (i+ j) is either even or odd in the Aij
coefficients in each of the linear homogeneous Eq. (7.22k) and can be subdivided into two sets
of equations that can be solved independently. In one set of equations (i+ j) is even and in the
other set (i+ j) is odd. The equations where (i+ j) is even, the buckling mode is symmetric and

gives maximum deflection at the center of the plate, i.e.
(
𝜕w
𝜕x

= 𝜕w
𝜕y

= 0
)

. In the equations

where (i+ j) is odd, the buckling mode is antisymmetric and requires zero deflection at the
center of the plate, i.e. w = 0. One of these modes give the minimum value of Nxy, the critical
shear force at which buckling occurs. The two sets of equations corresponding to (i+ j) even
and odd are respectively as follows:

⎡⎢⎢⎢⎣
𝛿(1 + 𝛽2)2

4𝛽3
32
9

Nxy

32
9

Nxy
16𝛿(1 + 𝛽2)2

4𝛽3

⎤⎥⎥⎥⎦

⎧⎪⎪⎪⎨⎪⎪⎪⎩

A11

A22

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=

⎧⎪⎪⎨⎪⎪⎩

0

0

⎫⎪⎪⎬⎪⎪⎭
(7.22l)

and

⎡⎢⎢⎢⎢⎣
𝛿(1 + 4𝛽2)2

4𝛽3 −32
9

Nxy

−32
9

Nxy
𝛿(4 + 𝛽2)2

4𝛽3

⎤⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A12

A21

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0

0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(7.22m)

where
𝛿 = 𝜋4D

b2 .
For nontrivial solutions of Aij in the Eqs. (7.22l) and (7.22m), the determinants of the coeffi-

cient matrices should be zero. Hence, from Eq. (7.22l)(
𝛿(1 + 𝛽2)2

4𝛽3

)(
16𝛿(1 + 𝛽2)2

4𝛽3

)
−

(32
9

)2
N2

xy=0

or

Nxy = ±
9

32
𝛿

(
1
𝛽3 +

2
𝛽
+ 𝛽

)
(7.22n)

For a square plate, a
b
= 𝛽 = 1, and

Nxy = ±
9
8
𝛿 (7.22o)
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The plus and minus signs indicate that the direction of the shear force does not affect the critical
value of shear force.

Nxy =
9
8
𝜋4D
b2 = 11.10𝜋

2D
b2 = k𝜋

2D
b2 (7.22p)

or
k = 11.10 (7.22q)

From Eq. (7.22m) we have(
𝛿(1 + 4𝛽2)2

4𝛽3

)(
𝛿(4 + 𝛽2)2

4𝛽3

)
−

(32
9

)2
N2

xy=0 (7.22r)

or

Nxy = ±
9

128
𝛿

(
4
𝛽3 +

17
𝛽
+ 4𝛽

)
(7.22s)

For a square plate, 𝛽 = 1 leads to

Nxy = 17.35𝜋
2D
b2 = k𝜋

2D
b2

or
k = 17.35

Hence, the minimum

Nxy = 11.10𝜋
2D
b2 (7.22t)

The solution given by Eq. (7.22t) is an approximate solution. The more accurate solution [3] is
obtained by taking more terms in Eq. (7.22k), and for a square plate the critical shear stress is
given by the expression

𝜏cr = k𝜋
2D

b2h
= 9.34𝜋

2D
b2h

The error in 𝜏cr by taking m = n = 1,2 obtained from Eq. (7.22t) = 11.10 − 9.34
9.34

x100 = 18.84%.
Changes in the coefficient k by taking more and more terms are given in Table 7.5, whereas
Table 7.6 gives values of k calculated by [6] taking m = n = 10 in the series for w(x, y).

For a/b< 2, i+ j = even gives the smallest value of (Nxy)cr. For larger plates both sets of
equations should be considered.

7.6.6 Buckling of Simply Supported Rectangular Plates Under Combined Bending
and Compression

Consider a simply supported plate subjected to in-plane distributed forces on sides x = 0 and
x = a that are varying with respect to y. The intensity of the force per unit length of the edge is
given by

Nx = N0

(
1 −

𝛼y
b

)
(7.23a)
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Table 7.5 Effect of the number of terms in the series for w(x, y) on k.

𝜷 =
a
b

m = n = 2 m = n = 3 m = n = 4

i + j = even i + j = odd i + j = even i + j = odd i + j = even i + j = odd

1.0 11.10 17.35 9.42 11.73 9.40 11.65
1.2 9.56 14.75 8.00 9.87 8.05 9.76
1.4 8.86 13.32 7.37 8.68 7.35 8.50
1.5 8.68 12.85 7.15 8.24 7.07 8.03

Table 7.6 Values of k for m = n = 10.

𝜷 i + j = even i + j = odd

1.0 9.35 11.63
1.2 8.00 9.70
1.5 7.07 7.97
2.0 6.59 6.61
2.5 6.29 6.06
3.0 6.04 5.89
4.0 5.67 5.77

where N0 is the intensity of compressive force at y = 0 and 𝛼 is a numerical factor, by changing
it, we get different types of forces on the plate. When 𝛼 = 0, we get a uniformly distributed
compressive load, for 𝛼 = 2 the case of pure bending is obtained. If 𝛼 < 2, we get a combination
of an axial compressive force and bending moment as shown in Figure 7.25.

The deflection of the simply supported plate can be taken as

w = sin m𝜋x
a

∞∑
n=1

Amn sin
n𝜋y

b
(7.23b)

a

b

X

Y

N0
N0

Figure 7.25 Rectangular plate subjected to combined bending and compression.
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This is equivalent to the assumption that the buckled plate is subdivided along the X axis in m
half-waves. The plate can be considered as simply supported between two nodal lines contain-
ing one half-wave. The strain energy of bending due to deflection given by Eq. (7.23b) can be
expressed from Eq. (7.22e) as

U = 𝜋4abD
8

∞∑
n=1

A2
mn

(
m2

a2 +
n2

b2

)2

(7.23c)

The potential energy due to applied forces is

V = −1
2 ∫

b

0 ∫

a

0
Nx

(
𝜕w
𝜕x

)2
dxdy (7.23d)

𝜕w
𝜕x

= m𝜋

a
cos m𝜋x

a

∞∑
n=1

Amn sin
𝜋y
b

(7.23e)

V = −1
2 ∫

b

0 ∫

a

0

[
N0

(
1 −

𝛼y
b

) m2𝜋2

a2 cos2 m𝜋x
a

( ∞∑
n=1

∞∑
s=1

AmnAms sin
n𝜋y

b
sin

s𝜋y
b

)]
dxdy

(7.23f)
The following definite integrals are needed to calculate the potential energy

∫
b

0 y sin
n𝜋y

b
sin

s𝜋y
b

dy = b2

4
for n = s

∫
b

0 y sin
n𝜋y

b
sin

s𝜋y
b

dy = 0 for n ≠ s and n ± s an even number

∫
b

0 y sin
n𝜋y

b
sin

s𝜋y
b

dy = −4b2

𝜋2
ns

(n2 − s2)2
for n ≠ s and n ± s an odd number

(7.23g)

V = −
N0

2
ab
4

∞∑
n=1

m2𝜋2

a2 A2
mn +

N0𝛼

2b
a
2

m2𝜋2

a2

[
b2

4

∞∑
n=1

A2
mn −

8b2

𝜋2

∞∑
n=1

∞∑
s

AmnAmsns
(n2 − s2)2

]
(7.23h)

The total potential energyΠ can be written by combining the strain and potential energies from
Eqs. (7.23c) and (7.23h) as

Π = U + V = 𝜋4abD
8

∞∑
n=1

A2
mn

(
m2

a2 +
n2

b2

)2

−
N0ab

8

∞∑
n=1

m2𝜋2

a2 A2
mn

+
N0𝛼b
16a

m2𝜋2
∞∑

n=1
A2

mn −
2N0𝛼b

a
m2

∞∑
n=1

∞∑
s

AmnAmsns
(n2 − s2)2

(7.23i)

where s is taken such that n± s is an odd number. Take derivatives of Π with respect to
Amn(n = 1, 2, - - -), and we get a system of linear homogeneous equations given below:

𝜋4abD
4

Amn

(
m2

a2 +
n2

b2

)2

−
N0ab

4
m2𝜋2

a2 Amn +
N0𝛼b

8a
m2𝜋2Amn −

2N0𝛼b
a

m2
∞∑
s

Amsns
(n2 − s2)2

= 0
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or

𝜋4DAmn

(
m2

a2 +
n2

b2

)2

− N0
m2𝜋2

a2 Amn +
N0𝛼

2a2 m2𝜋2Amn −
8N0𝛼

a2 m2
∞∑
s

Amsns
(n2 − s2)2

= 0

(7.23j)
In Section 7.5.1 containing simply supported plates under axial compression load, it is seen that
these plates buckle into equal half-waves with nodal lines perpendicular to the X-axis. We can
consider each buckle a plate simply supported on its four edges. Assume m = 1 in Eq. (7.23j)
and we obtain a system of the following equations:

A1n

[(
1 + n2 a2

b2

)2

−
N0a2

𝜋2D

(
1 − 𝛼

2

)]
−

8a2N0𝛼

𝜋4D

∞∑
s

A1sns
(n2 − s2)2

= 0 (7.23k)

where n± s is an odd number. Equation (7.23k) are linear homogeneous equations in A11,
A12, . . . . For a nontrivial solution, the determinants of the coefficient matrices should be zero. If
only the coefficient A11 is considered, and others are taken as zero, we obtain one term approx-
imate solution given below:

A11

[(
1 + a2

b2

)2

−
N0a2

𝜋2D

(
1 − 𝛼

2

)]
= 0

The critical force (N0)cr per unit length is obtained from

(N0)cr =
(

b
a
+ a

b

)2
𝜋2D
b2

1
1 − 𝛼

2

(7.23l)

The critical stress 𝜎cr is defined by, 𝜎cr =
(N0)cr

h
, where h is the thickness of the plate. Hence,

𝜎cr =
(

b
a
+ a

b

)2
𝜋2D
b2h

1
1 − 𝛼

2

(7.23m)

For uniform compression, 𝛼 = 0, Eq. (7.23m) reduces to

𝜎cr =
(

b
a
+ a

b

)2
𝜋2D
b2h

(7.23n)

It is the same expression for uniformly compressed plate given by Eq. (7.7k) for m = 1, n = 1.
This solution, however, is not accurate for higher values of a/b = 𝛼. To obtain a more accurate
solution, more terms should be considered in the set of equations given by Eq. (7.23k). Consider
a two-term solution where n = 1, 2 and take two terms A11 and A12.

n = 1 and s = 2, so that n+ s is odd, we get from Eq. (7.23k)

A11

[(
1 + a2

b2

)2

−
N0a2

𝜋2D

(
1 − 𝛼

2

)]
−

8a2N0𝛼

𝜋4D
A12

(1)(2)
(12 − 22)2

= 0 (7.23o)

n = 2 and s = 1, so that n+ s is odd, we get from Eq. (7.23k)

A12

[(
1 + 4a2

b2

)2

−
N0a2

𝜋2D

(
1 − 𝛼

2

)]
−

8a2N0𝛼

𝜋4D
A11

(2)(1)
(22 − 12)2

= 0 (7.23p)
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Equations (7.23o) and (7.23p) can be written in the matrix form as

⎡⎢⎢⎢⎢⎣

(
1 + a2

b2

)2

−
N0a2

𝜋2D

(
1 − 𝛼

2

)
−

8a2N0𝛼

𝜋4D
2
9

−
8a2N0𝛼

𝜋4D
2
9

(
1 + 4a2

b2

)2

−
N0a2

𝜋2D

(
1 − 𝛼

2

)
⎤⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

A11

A12

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0

0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(7.23q)

For a nontrivial solution of A11 and A12, the determinant of the coefficient matrix is zero, hence,[(
1 + a2

b2

)2

−
N0a2

𝜋2D

(
1 − 𝛼

2

)][(
1 + 4a2

b2

)2

−
N0a2

𝜋2D

(
1 − 𝛼

2

)]
−

(
8a2N0𝛼

𝜋4D
2
9

)2

= 0

(
N0a2

𝜋2D

)2 [(
1 − 𝛼

2

)2
−

(16𝛼
9𝜋2

)2]
−

N0a2

𝜋2D

(
1 − 𝛼

2

)[(
1 + a2

b2

)2

+
(

1 + 4a2

b2

)]

+
(

1 + a2

b2

)2(
1 + 4a2

b2

)2

= 0 (7.23r)

For pure bending, 𝛼 = 2, for square plate a/b = 1, and substitute in Eq. (7.23r) to get(
N0a2

𝜋2D

)( 32
9𝜋2

)
= 10

or

(N0)cr =
45
16

𝜋4D
b2 (7.23s)

and

𝜎cr =
45
16

𝜋4D
b2h

= k𝜋
2D

b2h
(7.23t)

where

k = 45𝜋2

16
= 27.76 (7.23u)

The exact value of k = 25.6 given by Timoshenko and Gere [3]. The error in the two-term solu-
tion is

Error = 27.76 − 25.6
25.6

x100 = 8.44%

To increase the accuracy for 𝛼 = 2, let us take a three-term solution where n = 1, 2, 3 and
consider three terms A11, A12., A13.

Take n = 1 and s = 2, so that n+ s is odd, we get from Eq. (7.23k)(
1 + a2

b2

)2

A11 −
16N0a2

𝜋4D

(2
9

A12

)
= 0 (7.23v)
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Take n = 2 and s = 1, 3, so that n+ s is odd, we get from Eq. (7.23k)

A12

(
1 + 4a2

b2

)2

−
16N0a2

𝜋4D

(
A11

2x1
(4 − 1)2

+ A13
2x3

(4 − 9)2

)
= 0 (7.23w)

Take n = 3 and s = 2, so that n+ s is odd, we get from Eq. (7.23k)

A13

(
1 + 9a2

b2

)2

−
16N0a2

𝜋4D

(
A12

3x2
(9 − 4)2

)
= 0 (7.23x)

Assume
32N0a2

𝜋4D
= 𝜆 and a/b = 1. Eqs. (7.23v)–(7.23x) can be written as

⎡⎢⎢⎢⎢⎣
4 −𝜆

9
0

−𝜆

9
25 − 3

25
𝜆

0 − 3
25

𝜆 100

⎤⎥⎥⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩

A11

A12

A13

⎫⎪⎪⎬⎪⎪⎭
=

⎧⎪⎪⎨⎪⎪⎩

0

0

0

⎫⎪⎪⎬⎪⎪⎭
(7.23y)

For a nontrivial solution of A11, A12, A13, the determinant of the coefficient matrix should be
zero. Hence,

4
[

2500 −
( 3

25

)2
𝜆2

]
− 𝜆

9

(100𝜆
9

)
= 0

𝜆 =
32N0a2

𝜋4D
= 87.97

(N0)cr =
87.97

32
𝜋4D
b2 or 𝜎cr =

87.97
32

𝜋4D
b2h

= k𝜋
2D

b2h
where

k = 87.97𝜋2

32
= 27.13 (7.23z)

Error = 27.13 − 25.6
25.6

x100 = 5.98%

Similarly, by taking more equations of the system of equations given by Eq. (7.23k), a higher
accuracy for the solution of k can be obtained.

7.6.7 Buckling of Plates with Stiffeners

We have seen the critical stress for normal and shear forces is proportional to the flexural rigid-
ity of the plate. For given boundary conditions and the aspect ratio a/b, the critical stress is
proportional to h2/b2, where h is the thickness and b is the width of the plate. This shows
that the stability of a plate can be improved by increasing the thickness of the plate, but it
will increase the weight of the plate. Another way of increasing the stability is to reduce the
width of a plate. This is accomplished by providing longitudinal stiffeners. The stiffeners are
rigidly connected to a plate. Hence, at common points stiffeners deflect and twist similar to the
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plate. Longitudinal stiffeners carry a portion of the compressive force as well as subdivide the
plate into smaller panels. Stiffeners can be provided in the transverse direction also. We saw
before that simply supported rectangular plates that are compressed in one direction buckle in
a number of half-waves that correspond to the width of the plate. Thus, these stiffeners have
to be placed at much closer distances that are less than the width of the plate to increase the
stability of the plate. The Rayleigh-Ritz method can be used to find the critical load for the
plates reinforced with stiffeners by adding the strain energy stored in the stiffeners and taking
into account the potential energy of the external forces in the stiffeners. We assume that the
deflections are small in the stiffened plates and the material is elastic and isotropic.

7.6.8 Simply Supported Rectangular Plates with Longitudinal Stiffeners

Consider a plate with a longitudinal stiffener placed at a distance ci from the edge y = 0 shown
in Figure 7.26. Using the energy method, the strain and potential energies are contributed by
both the plate and the stringer. Assume the deflected shape of the plate during buckling as a
double trigonometric series that satisfies the boundary conditions

w =
∞∑

m=1

∞∑
n=1

Amn sin m𝜋x
a

sin
n𝜋y

b
(7.24a)

The strain energy of bending of the plate is given by Eq. (7.22e)

U = 𝜋4abD
8

∞∑
m=1

∞∑
n=1

A2
mn

(
m2

a2 +
n2

b2

)2

(7.22e)

The strain energy of an ith stiffener placed at a distance ci from the edge y = 0 is obtained from

Ui =
EIi

2 ∫

a

0

(
𝜕2w
𝜕x2

)2

y = ci

dx + GJi ∫

a

0

(
𝜕2w
𝜕x𝜕y

)2

y = ci

(7.24b)

a

b
ci

X

Y

Figure 7.26 Simply supported rectangular plate with longitudinal stiffener.
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EIi is the flexural rigidity of the rib and GJi is its torsional rigidity. By neglecting the strain
energy of twist of the stiffener we get

Ui =
EIi

2 ∫

a

0

∞∑
m=1

(
Am1

m2𝜋2

a2 sin m𝜋x
a

sin
𝜋y
b
+ Am2

m2𝜋2

a2 sin m𝜋x
a

sin
2𝜋y

b
+ −−−

)2

y = ci

dx

The definite integrals have the values given below

∫

a

0
sin2 m𝜋x

a
dx =

∫

a

0
cos2 m𝜋x

a
dx = a

2

∫

a

0
sin m𝜋x

a
sin

n𝜋y
b

dx = 0, m ≠ n

We get

Ui =
𝜋4EIi

4a3

∞∑
m=1

m4
(

Am1 sin
𝜋ci

b
+ Am2 sin

2𝜋ci

b
+ −−

)2

(7.24c)

The potential energy of the force Nx on the plate during buckling is given by

V = −
Nx

2 ∫

b

0 ∫

a

0

(
𝜕w
𝜕x

)2
dxdy

or

V = −
Nx

2 ∫

b

0 ∫

a

0

( ∞∑
m=1

∞∑
n=1

Amn
m𝜋

a
cos m𝜋x

a
sin

n𝜋y
b

)2

dxdy

or

V = −
Nx

2
ab
4

∞∑
m=1

∞∑
n=1

A2
mn

m2𝜋2

a2 (7.24d)

The potential energy of the compressive force Pi acting on a stiffener i during buckling is

Vi = −
Pi

2 ∫

a

0

(
𝜕w
𝜕x

)2

y=ci

dx

or

Vi = −
Pi

2 ∫

a

0

∞∑
m=1

(
Am1

m𝜋

a
cos m𝜋x

a
sin

𝜋y
b
+ Am2

m𝜋

a
cos m𝜋x

a
sin

2𝜋y
b
+ −−

)2

y=ci

dx

Vi = −
Pi𝜋

2

4a

∞∑
m=1

m2
(

Am1 sin
𝜋ci

b
+ Am2 sin

2𝜋ci

b
+ −−

)2

(7.24e)

The total potential energy of the plate and stiffeners is obtained from

Π = U +
r∑

i=1
Ui + V +

r∑
i=1

Vi (7.24f)
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where r is the number of longitudinal stiffeners provided at distances c1, c2,… cr from the edge
y = 0.

Π =
(
𝜋2D
8a2

)(
𝜋2b

a

) ∞∑
m=1

∞∑
n=1

A2
mn(m2 + 𝛽2n2)2 +

(
𝜋2D
8a2

)(
2𝜋2b

a

)
r∑

i=1
𝛾i

∞∑
m=1

m4

( ∞∑
n=1

Amn sin
n𝜋ci

b

)2

−
(

Nx

8

)(
𝜋2b

a

) ∞∑
m=1

∞∑
n=1

m2A2
mn −

(
Nx

8

)(
2𝜋2b

a

) r∑
i=1

𝛿i

∞∑
m=1

m2

( ∞∑
n=1

Amn sin
n𝜋ci

b

)2

(7.24g)

where
a
b
= 𝛽,

EIi

bD
= 𝛾i,

Pi

bNx
=

Ai

bh
= 𝛿i

and bh = Cross-sectional area of the plate
Ai =Cross-sectional area of one stiffener

The minimum buckling load for the plate, Nx, can be obtained by taking the derivatives of
the total potential energy,Π, with respect to the coefficients Amn and equating them to zero. We
get a set of homogeneous linear algebraic equations as follows:

𝜋2D
b2𝛽2

[
Amn(m2 + n2𝛽2)2 + 2

r∑
i=1

𝛾i sin
n𝜋ci

b
m4

∞∑
s=1

Ams sin
s𝜋ci

b

]

−Nx

[
m2Amn + 2

r∑
i=1

𝛿i sin
n𝜋ci

b
m2

∞∑
s=1

Ams sin
s𝜋ci

b

]
= 0 (7.24h)

Assume there is only one longitudinal stiffener provided at ci =
b
2

. We saw before that for a
simply supported plate, minimum buckling load occurs when the plate buckles into one half
sine wave in the X direction, i.e. m = 1. Then we can write equations for different values of n,
the number of half-waves in the Y direction, from Eq. (7.24h) in the following form.

Take n = 1 to get

𝜋2D
b2𝛽2

[
A11(1 + 𝛽2)2 + 2𝛾

×
{

sin 𝜋

2
(1)4

(
A11 sin 𝜋

2
+ A12 sin𝜋 + A13 sin 3𝜋

2
+ A14 sin 2𝜋 + A15 sin 5𝜋

2
+ −

)}]
−Nx

[
(1)2A11 + 2𝛿

×
[{

sin 𝜋

2
(1)2

(
A11 sin 𝜋

2
+ A12 sin𝜋 + A13 sin 3𝜋

2
+ A14 sin 2𝜋 + A15 sin 5𝜋

2
+ −

)}]
= 0
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or
𝜋2D
b2𝛽2 [A11(1 + 𝛽2)2 + 2𝛾(A11 − A13 + A15 − −)] − Nx[A11 + 2𝛿(A11 − A13 + A15 − −)] = 0

(7.24i)

Similarly, take n = 2 to have
𝜋2D
b2𝛽2 A12(1 + 4𝛽2)2 − NxA12 = 0 (7.24j)

For n = 3

𝜋2D
b2𝛽2 [A13(1 + 9𝛽2)2 − 2𝛾(A11 − A13 + A15 − −)] − Nx[A13 − 2𝛿(A11 − A13 + A15 − −)] = 0

(7.24k)

For n = 4
𝜋2D
b2𝛽2 A14(1 + 16𝛽2)2 − NxA14 = 0 (7.24l)

Equations for other values of n can be written the same way. For even values of n = 2,4,…, etc.
the stiffener does not contribute to the buckling load. In these cases, a nodal line coincides with
the stiffener, and the stiffener remains straight during the buckling of the plate. To connect the
buckling load with the flexural rigidity of the stiffener, the equations having n = 1,3,5 …, etc.
should be considered.

The first approximation to the Ncr can be obtained by taking only the A11 coefficient and
assuming others zero. This way, we obtain from Eq. (7.24i)

𝜋2D
b2𝛽2 [A11(1 + 𝛽2)2 + 2𝛾A11] − Nx(1 + 2𝛿)A11 = 0

or

Ncr =
𝜋2D
b2𝛽2

(1 + 𝛽2)2 + 2𝛾
(1 + 2𝛿)

(7.24m)

The second approximation of Ncr is obtained by considering the coefficients A11 and A13 in
Eqs. (7.24i) and (7.24k), as follows;

𝜋2D
b2𝛽2 [A11(1 + 𝛽2)2 + 2𝛾(A11 − A13)] − Nx[A11 + 2𝛿(A11 − A13)] = 0

𝜋2D
b2𝛽2 [A13(1 + 9𝛽2)2 − 2𝛾(A11 − A13)] − Nx[−2𝛿A11 + A13(1 + 2𝛿)] = 0

or

⎡⎢⎢⎢⎣
c
𝛽2 − k(1 + 2𝛿) −2𝛾

𝛽2 + 2k𝛿

−2𝛾
𝛽2 + 2k𝛿 d

𝛽2 − k(1 + 2𝛿)

⎤⎥⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩

A11

A13

⎫⎪⎪⎬⎪⎪⎭
=

⎧⎪⎪⎨⎪⎪⎩

0

0

⎫⎪⎪⎬⎪⎪⎭
(7.24n)
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where

(1 + 𝛽2)2 + 2𝛾 = c, (1 + 9𝛽2)2 + 2𝛾 = d, and
Nxb2

𝜋2D
= k

The determinant of the coefficient matrix in Eq. (7.24n) should be zero for nontrivial solution
for the A11 and A13 coefficients. Hence,||||||||

c
𝛽2 − k(1 + 2𝛿) −2𝛾

𝛽2 + 2k𝛿

−2𝛾
𝛽2 + 2k𝛿 d

𝛽2 − k(1 + 2𝛿)

|||||||| = 0

or [
c
𝛽2 − k(1 + 2𝛿)

] [
d
𝛽2 − k(1 + 2𝛿)

]
−

[
−2𝛾
𝛽2 + 2k𝛿

]2

= 0

or

(k𝛽2)2(1 + 4𝛿) − k𝛽2[(1 + 2𝛿)(c + d) − 8𝛾𝛿] + cd − 4𝛾2 = 0 (7.24o)

For various values of 𝛽, 𝛾 , and 𝛿, the value of k can be found from Eq. (7.24o), then

Ncr = k𝜋
2D
b2 (7.24p)

The critical stress is given by

𝜎cr = k𝜋
2D

b2h
(7.24q)

7.6.8.1 Plates with Two Longitudinal Stiffeners Dividing the Width of the Plate
Suppose there are two equal longitudinal stiffeners dividing the width of the plate in three equal
parts. The problem can be analyzed the same way as before. Assume the deflection of the plate
is symmetrical about the middle longitudinal axis (y = b/2), and the stiffeners are placed at the
distances of c1 = b/3 and c2 = 2b/3. Take only one term of A11, then from Eq. (7.24h) by taking
m = n = 1 we can write

𝜋2D
b2𝛽2

[
A11(1 + 𝛽2)2 + 2

{
𝛾1 sin 𝜋

3
A11 sin 𝜋

3
+ 𝛾2 sin 2𝜋

3
A11 sin 2𝜋

3

}]
−Nx

[
A11 + 2

{
𝛿1 sin 𝜋

3
A11 sin 𝜋

3
+ 𝛿2 sin 2𝜋

3
A11 sin 2𝜋

3

}]
= 0 (7.25a)

or

𝜋2D
b2𝛽2

⎡⎢⎢⎣A11(1 + 𝛽2)2 + 2𝛾

(√
3

2

)2

+ 2𝛾

(√
3

2

)2⎤⎥⎥⎦A11 − Nx

×
⎡⎢⎢⎣1 + 2𝛿

(√
3

2

)2

+ 2𝛿

(√
3

2

)2⎤⎥⎥⎦A11 = 0



Trim Size: 187mm x 235mm Single Column Jerath c07.tex V1 - 11/06/2020 7:04pm Page 464�

� �

�

464 7 Buckling of Plates

The first approximation of the critical load is given by

Ncr =
𝜋2D
b2𝛽2

(1 + 𝛽2)2 + 3𝛾
1 + 3𝛿

(7.25b)

𝜎cr =
𝜋2D

b2𝛽2h
(1 + 𝛽2)2 + 3𝛾

1 + 3𝛿
(7.25c)

If there are more than two stiffeners, the critical stress from the first approximation is obtained
from Eq. (7.24h) as

𝜎cr =
𝜋2D

b2𝛽2h

(1 + 𝛽2)2 + 2
r∑

i=1
𝛾isin2𝜋ci

b

1 + 2
r∑

i=1
𝛿isin2𝜋ci

b

(7.25d)

7.6.9 Simply Supported Rectangular Compressed Plate with Transverse Stiffeners

Suppose the plate is simply supported on all sides and is uniaxially compressed as shown in
Figure 7.27. Assume there is a transverse stiffener at a distance x = ci from the edge x = 0. In this
the strain energy results from the bending of the plate and the stringer/stringers. The potential
energy is contributed by the shortening of the plate. The stringer/stringers do not contribute to
the potential energy because these are placed in the Y direction and the load is applied in the
X direction. We assume that the plate forms one-half sine wave in the Y direction, hence the
deflected shape of the plate during buckling is assumed as

w =
∞∑

m=1
Am sin m𝜋x

a
sin

𝜋y
b

(7.26a)

where n = 1.

a

b

Y

ci

X

Figure 7.27 Simply supported rectangular plate with transverse stiffener.
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The strain energy of the plate by using Eq. (7.22e) is obtained from

U = 𝜋4D
8𝛽a2

∞∑
m=1

A2
m(m2 + 𝛽2)2 (7.26b)

The strain energy in the stiffener is given by

Ui =
EIi

2 ∫

b

0

(
𝜕2w
𝜕y2

)2

x=ci

dy (7.26c)

or

Ui =
EIi

2 ∫

b

0

∞∑
m=1

(
Am

𝜋2

b2 sin
m𝜋ci

a
sin

𝜋y
b

)2

dy

or

Ui =
𝜋4EIi

4b3

∞∑
m=1

A2
msin2 m𝜋ci

a
(7.26d)

The potential energy of the plate is given by

V = −
Nx

2 ∫

b

0 ∫

a

0

(
𝜕w
𝜕x

)2
dxdy

or

V = −
Nx

2 ∫

b

0 ∫

a

0

( ∞∑
m=1

Am
m𝜋

a
cos m𝜋x

a
sin

𝜋y
b

)2

dxdy

or

V = −
𝜋2Nx

8𝛽

∞∑
m=1

A2
mm2 (7.26e)

The total potential energy is

Π = U +
r∑

i=1
Ui + V (7.26f)

where r is the number of transverse stiffeners provided at distances c1, c2, ------ cr from the edge
x = 0.

Π = 𝜋2D
𝛽2b2

𝜋2

8𝛽

∞∑
m=1

A2
m(m2 + 𝛽2)2 +

(
𝜋2D
𝛽2b2

)(
𝜋2

8𝛽

)
2𝛽3

r∑
i=1

𝛾1

∞∑
m=1

A2
msin2 m𝜋ci

a

−
𝜋2Nx

8𝛽

∞∑
m=1

A2
mm2 (7.26g)
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where

𝛽 = a
b
,

EIi

bD
= 𝛾i.

The minimum buckling load for the plate, Nx, can be obtained by taking the derivatives of the
total potential energy, Π, with respect to the coefficients Am and equating them to zero. We get
a set of homogeneous linear algebraic equations. Hence,
dΠ

dAm
= 0

𝜋2D
b2

[
Am(m2 + 𝛽2)2 + 2𝛽3

r∑
i=1

𝛾i sin
m𝜋ci

a

(
A1 sin

𝜋ci

a
+ A2 sin

2𝜋ci

a
+ −−

)]
− Nx𝛽

2m2Am = 0

(7.26h)

If there is only one transverse stiffener in the middle, i.e. c1 =a/2, and assume m= 1, the number
of half sine waves along the X direction in Eq. (7.26a). We obtain the first approximation for
critical force Nx, from Eq. (7.26h) by taking A1 as the only nonzero coefficient

𝜋2D
b2 [A1(1 + 𝛽2)2 + 2𝛽3𝛾A1] − Nx𝛽

2A1 = 0

or

Ncr =
𝜋2D
b2𝛽2 [(1 + 𝛽2)2 + 2𝛾𝛽3] (7.26i)

and

𝜎cr =
𝜋2D

b2h𝛽2 [(1 + 𝛽2)2 + 2𝛾𝛽3] (7.26j)

If we assume A1, A2, and A3 different than zero by taking m= 1, 2, and 3, we get from Eq. (7.26h)
three homogeneous linear equations.

m = 1
𝜋2D
b2

[
A1(1 + 𝛽2)2 + 2𝛽3𝛾 sin 𝜋

2

(
A1 sin 𝜋

2
+ A2 sin𝜋 + A3 sin 3𝜋

2
+ −−

)]
− A1Nx𝛽

2 = 0

m = 2
𝜋2D
b2

[
A2(4 + 𝛽2)2 + 2𝛽3𝛾 sin𝜋

(
A1 sin 𝜋

2
+ A2 sin𝜋 + A3 sin 3𝜋

2
+ −−

)]
− 4A2Nx𝛽

2 = 0

m = 3
𝜋2D
b2

[
A3(9 + 𝛽2)2 + 2𝛽3𝛾 sin 3𝜋

2

(
A1 sin 𝜋

2
+ A2 sin𝜋 + A3 sin 3𝜋

2
+ −−

)]
− 9A3Nx𝛽

2 = 0

or

A1

[
(1 + 𝛽2)2 + 2𝛽3𝛾 −

Nxb2𝛽2

𝜋2D

]
− 2𝛽3𝛾A3 = 0 (7.26k)
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A2

[
(4 + 𝛽2)2 −

4Nxb2𝛽2

𝜋2D

]
= 0 (7.26l)

A1[−2𝛽3𝛾] + A3

[
(9 + 𝛽2)2 + 2𝛽3𝛾 −

9Nxb2𝛽2

𝜋2D

]
= 0 (7.26m)

If we consider Eqs. (7.26k) and (7.26m), we can get a better approximation of the critical force
Ncr.

⎡⎢⎢⎣
e − k𝛽2 −2𝛽3𝛾

−2𝛽3𝛾 f − 9k𝛽2

⎤⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩

A1

A3

⎫⎪⎪⎬⎪⎪⎭
=

⎧⎪⎪⎨⎪⎪⎩

0

0

⎫⎪⎪⎬⎪⎪⎭
(7.26n)

where

(1 + 𝛽2)2 + 2𝛽3𝛾 = e, (9 + 𝛽2)2 + 2𝛽3𝛾 = f , and
Nxb2

𝜋2D
= k

For nontrivial solution of the coefficients A1 and A3 the determinant of the coefficient matrix
is zero, thus||||||

e − k𝛽2 −2𝛽3𝛾

−2𝛽3𝛾 f − 9k𝛽2

|||||| = 0

or

(e − k𝛽2)(f − 9k𝛽2) − 4𝛽6𝛾2 = 0

or

9k2𝛽4 − k𝛽2(9e + f ) + ef − 4𝛽6𝛾2 = 0 (7.26o)

For various values of 𝛽 and 𝛾 , the value of k can be found from Eq. (7.26o). Then Ncr and 𝜎cr
can be found from Eqs. (7.24p) and (7.24q).

If 𝛾 is increased, the plate will buckle in two half sine-waves and the stiffener becomes the
nodal line in the buckled plate, i.e. the stiffener remains straight during the buckling of plate.
In this case, the critical force is obtained from Eq. (7.26l).

Ncr =
𝜋2D
b2

(4 + 𝛽2)2

4𝛽2 (7.26p)

For a square plate, 𝛽 = 1, hence

Ncr = 6.25𝜋
2D
b2 , k = 6.25

whereas for the unstiffened square plate, k = 4 given in Figure 7.10a. The effect of the stiffener
on the critical force depends on a/b ratio of the plate.
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For a/b = 1.41, Eq. (7.26p) gives for a stiffened plate

k = (4 + 𝛽2)2

4𝛽2 = (4 + 1.412)2

4(1.41)2
= 4.51

For a∕b =
√

2 = 1.41, Eq. (7.7o) and Figure 7.9 give for an unstiffened plate

k =
(

mb
a
+ n2a

mb

)2

=
( 1

1.41
+ 1.41

)2
= 4.49

where m = 1 or 2 from Figure 7.9 for the minimum value of k.

7.6.10 Simply Supported Rectangular Plate with Stiffeners in Both the Longitudinal
and Transverse Directions

If there are a number of equal and equidistant stiffeners, we can consider the stiffened plate
as a plate having two different flexural rigidities in the two perpendicular directions [1]. It is
considered an orthotropic plate and the moment curvature relations are obtained from

Mx = −
(EI)x

1 − 𝜈xy𝜈yx

(
𝜕2w
𝜕x2 + 𝜈yx

𝜕2w
𝜕y2

)
(7.27a)

My = −
(EI)y

1 − 𝜈xy𝜈yx

(
𝜕2w
𝜕y2 + 𝜈xy

𝜕2w
𝜕x2

)
(7.27b)

Mxy = 2(GI)xy
𝜕2w
𝜕x𝜕y

= 2Dxy
𝜕2w
𝜕x𝜕y

(7.27c)

where Dxy is the torsional rigidity of the plate, 𝜈xy and 𝜈yx are Poisson’s ratios in the X and Y
directions.

Combine Eqs. (7.1v), (7.1w), and (7.2i) and we have

𝜕2Mx

𝜕x2 − 2
𝜕2Mxy

𝜕x𝜕y
+

𝜕2My

𝜕y2 + Nx
𝜕2w
𝜕x2 + Ny

𝜕2w
𝜕y2 + 2Nxy

𝜕2w
𝜕x𝜕y

= 0 (7.27d)

Substitute Eqs. (7.27a)–(7.27c) into Eq. (7.27d), assume that the plate is subjected to a uniform
compression in the X direction (Ny = Nxy = 0), then we can write

Dx
𝜕4w
𝜕x4 + 2H 𝜕4w

𝜕x2𝜕y2 + Dy
𝜕4w
𝜕y4 = Nx

𝜕2w
𝜕x2 (7.27e)

where

Dx =
Exh3

12(1 − 𝜈xy𝜈yx)
, Dy =

Eyh3

12(1 − 𝜈xy𝜈yx)
,Dxy =

Gh3

12
= E

2(1 + 𝜈)
h3

12
(7.27f)

2H = Dx𝜈yx + Dy𝜈xy + 4Dxy

Dx𝜈yx = Dy𝜈xy

H = Dx𝜈yx + 2Dxy (7.27g)
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where Dx and Dy are the flexural rigidities of the plate corresponding to the bending moments
Mx and My respectively. Assume the plate buckles into one half sine wave in the X and Y direc-
tions, then

w = A sin 𝜋x
a

sin
𝜋y
b

(7.27h)

Substitute w and its derivatives in Eq. (7.27e) and we get(
Dx

𝜋4

a4 + 2H 𝜋4

a2b2 + Dy
𝜋4

b4 − Nx
𝜋2

a2

)
A sin 𝜋x

a
sin

𝜋y
b
= 0 (7.27i)

or

Nx =
𝜋2

b2

(
Dx

b2

a2 + 2H + Dy
a2

b2

)
or

Nx =
𝜋2

b2

(
Dx

𝛽2 + 2H + Dy𝛽
2
)

(7.27j)

where 𝛽 = a/b. The minimum value of critical force (Nx)cr is obtained by taking the derivative
of Nx with respect to 𝛽 and equating it to zero. Thus

dNx

d𝛽
= 𝜋2

b2

(
−

2Dx

𝛽3 + 2Dy𝛽

)
= 0

or

Dx = Dy𝛽
4, and 𝛽 =

(
Dx

Dy

) 1
4

(7.27k)

Substitute 𝛽 from Eqs. (7.27k) into Eq. (7.27j) to obtain

(Nx)cr =
2𝜋2

b2

(√
DxDy +H

)
(7.27l)

The critical compressive force is given by Eq. (7.27l). For an isotropic plate, Eq. (7.27g) gives

H = 𝜈
Eh3

12(1 − 𝜈2)
+ 2 E

2(1 + 𝜈)
h3

12
= Eh3

12(1 − 𝜈2)
= D

Hence for an isotropic plate, Dx = Dy = H = D and from Eq. (7.27l)

(Nx)cr =
4𝜋2D

b2 ,

The same result as obtained in Eq. (7.7m).
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7.7 Buckling of Circular Plates

We have so far analyzed the stability of rectangular plates. Many times circular plates are used
in practice, e.g. pressure vessels, containers, foundations, etc. In the analysis of circular plates,
it is simpler to employ polar coordinates. It is assumed that the material is linearly elastic
and isotropic. Consider a circular plate of uniform cross-section that is subjected to a uni-
form compressive force Nr distributed around the edge of the plate as shown in Figure 7.28.
The symmetric mode of deflection about the axis passing through the center of the plate and
perpendicular to the plate is considered. The deflected surface of the plate is a surface of revo-
lution, where 𝜙 is the angle between the axis of revolution and normal to the deflected plate at
any point. Let O be the origin of coordinates at the center of the un-deflected plate. Let us take
r to be the radial distance of a point in the middle plane of the plate, 𝜃 is the horizontal angle,
and the z coordinate is perpendicular to the original plate surface before deflection.

The maximum slope of the deflection surface at any point is – dw/dr. For small deflections the
curvatures of the middle surface of the plate in the diametral section rz and in the perpendicular
direction are respectively given by [1]:

1
rn
= −d2w

dr2 = d𝜙
dr

(7.28a)

1
rt
= −1

r
dw
dr

= 𝜙

r
(7.28b)

For pure bending

Mr = D
(

1
rn
+ 𝜈

1
rt

)
(7.28c)

and

M𝜃 = D
(

1
rt
+ 𝜈

1
rn

)
(7.28d)

(a) (b) 

R dθ
a

b c

d

r
dr

O

θd𝜙

C

𝜙

Z

NrNr
aa

Ow
B
rdr

R

Z
Q

Q
MrMr +

+
dMrdr
dr

O

dQ
dr

dr

Figure 7.28 Circular plate subjected to compressive force at the edge: (a) Buckling of circular plate; (b) Internal
forces on an element.
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Substitute the curvature values given by Eqs. (7.28a) and (7.28b) in the moment curvature rela-
tions for pure bending, assuming these also hold during buckling of the plate subjected to pure
compression

Mr = −D
(

d2w
dr2 +

𝜈

r
dw
dr

)
= D

(
d𝜙
dr

+ 𝜈
𝜙

r

)
(7.28e)

and

M𝜃 = −D
(

1
r

dw
dr

+ 𝜈
d2w
dr2

)
= D

(
𝜙

r
+ 𝜈

d𝜙
dr

)
(7.28f)

where Mr and M𝜃 are the bending moments per unit length on the circumferential and radial
sections respectively shown in Figure 7.28. Q and Q + dQ

dr
dr are the shear forces per unit length

on the circumferential sections cd and ab respectively in Figure 7.28. Ignore the small difference
in the shear forces. Consider the moment equilibrium of the element abcd about 𝜃 axis to get(

Mr +
dMr

dr
dr

)
(r + dr)d𝜃 −Mrrd𝜃 −M𝜃drd𝜃 + Qrdrd𝜃 = 0

Neglecting small quantities,

Mr + r dM
dr

−M𝜃 + Qr = 0 (7.28g)

Substitute for Mr and M𝜃 from Eqs. (7.28e) and (7.28f) into Eq. (7.28g) to have
d2𝜙

dr2 +
1
r

d𝜙
dr

− 𝜙

r2 = −
Q
D

(7.28h)

or
d3w
dr3 +

1
r

d2w
dr

− 1
r2

dw
dr

= Q
D

(7.28i)

The shear force Q as a component of the distributed force Nr around the plate edge as shown
in Figure 7.29 is written

Q = Nr𝜙 (7.28j)

Let
Nr

D
= 𝜆2 (7.28k)

Q

Q

𝜙

𝜙Nr

Nr

Figure 7.29 Plate element showing shear and compressive force.
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Substitute for Q and Nr/D in Eq. (7.28h) to obtain

r2 d2𝜙

dr2 + r d𝜙
dr

+ (𝜆2r2 − 1)𝜙 = 0 (7.28l)

Let u = 𝜆r, thus, du
dr
= 𝜆, hence

d𝜙
dr

= d𝜙
du

du
dr

= 𝜆
d𝜙
du

, and r d𝜙
dr

= u d𝜙
du

Similarly,

r2 d2𝜙

dr2 = u2 d2𝜙

du2

Now, we can write Eq. (7.28l) in terms of the new variable, u, and its derivatives

u2 d2𝜙

du2 + u d𝜙
du

+ (u2 − 1)𝜙 = 0 (7.28m)

It is a Bessel differential equation of order 1 for real variable u. If instead of (u2 − 1), the term was
(u2 – n), the Bessel differential equation would be classified of order n [7]. The general solution
of Eq. (7.28m) is [3]

𝜙 = C1J1(u) + C2Y1(u) (7.28n)

where J1(u) and Y 1(u) are Bessel functions of the first order of the first and second kinds, respec-
tively. The coefficients C1 and C2 are obtained from the boundary conditions.

7.7.1 Clamped Plate

For a circular plate that is fixed around its edge, the boundary conditions are:

1. At the center of the plate (r = u = 0), and the angle 𝜙 = 0 because of the symmetry of the
deflected plate. Since Y 1(0) = −∞[8] as u approaches zero, we should take C2 = 0. Hence,

𝜙 = C1J1(u) (7.29a)

2. The slope at the clamped edge of the plate is zero, i.e. 𝜙|r = a = 0. Hence from Eq. (7.29a) we
have

C1J1(𝜆 a) = 0

or

J1(𝜆a) = 0 (7.29b)

From the table of function J1(u) [8], the smallest root of Eq. (7.29b) is

𝜆 a = 3.832
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Substitute for 𝜆 in Eq. (7.28k) to get

(Nr)cr =
14.684D

a2 (7.29c)

For a strip of unit width and length equal to the diameter of the plate having clamped ends, the
critical compressive force is

(Nr)cr =
𝜋2D
a2

It shows the buckling capacity of a circular plate is 48.78% higher than for a strip of unit width
with clamped ends.

7.7.2 Simply Supported Plate

For a circular plate that is simply supported around its edge, the boundary conditions are

1. From the symmetry of deflection at the center of the plate we have

C2 = 0

or

𝜙 = C1J1(u) (7.30a)

2. The bending moment along the edge is zero, hence,

Mr =
(

d𝜙
dr

+ 𝜈
𝜙

r

)
= 0

d𝜙
dr

= 𝜆
d𝜙
du

= C1𝜆
dJ1(u)

du
or

C1𝜆

[
dJ1(u)

du
+ 𝜈

J1(u)
u

]
r=a

= 0 (7.30b)

The derivative of J1(u) is written as [7]

d
du
[uJ1(u)] = uJ0(u)

or
dJ1

du
= J0(u) −

J1(u)
u

(7.30c)

From Eqs. (7.30b) and (7.30c) we obtain

C1𝜆

[
J0(u) −

J1(u)
u

+ 𝜈
J1(u)

u

]
r=a

= 0 (7.30d)
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where J0 is the Bessel function of the zero order:

𝜆J0(u) −
J1(u)

a
+ 𝜈

J1(u)
a

= 0

Assume the Poisson’s ratio 𝜈 = 0.3 and we get

𝜆aJ0(𝜆a) − 0.7J1(𝜆a) = 0 (7.30e)

The smallest root of Eq. (7.30e) by using tables of functions Jo and J1 is found to be, 𝜆a = 2.05.
Substitute for 𝜆 in Eq. (7.28k) to get

(Nr)cr =
4.2025D

a2 (7.30f)

The critical force for the clamped circular plate in Eq. (7.29c) is 3.494 times the critical force
for the simply supported circular plate given by Eq. (7.30f).

7.8 The Finite Difference Method

The finite difference method is a numerical technique to solve differential equations. The
method reduces an infinite degree of freedom problem to one with finite degrees of freedom.
In this method, a differential equation is replaced by a set of equivalent algebraic difference
equations that are easier to solve. This is achieved by replacing each derivative of a function at
a point by an algebraic expression consisting of the value of the function at the reference and
neighboring points. Hence, the accuracy of the solution is increased if the points are closer
to one another because the algebraic approximations of the derivatives are more accurate.
The number of simultaneous equations solved increase as the number of points increase.
This method has the disadvantage that it gives the values of the function at discrete points
only instead of an analytical expression that can be used for the entire system. If an analytical
expression for the function is needed, it is obtained by fitting a curve to the discrete values
obtained. More discussion on this technique is given by Salvadori and Baron [9], Ralston [10],
and Szilard [11].

Let us consider a function f (x) shown in Figure 7.30 whose values are known at the reference
point x = i and at other evenly spaced points to the left and the right of it. The first derivative
of the function f (x) at the point x = i can be written as

df
dx

||||x=i
= f ′(xi) ≅ Δfi =

f (xi+h) − f (xi)
h

(7.31a)

where f (xi) and f (xi+ h) are the values of the function f (x) at x = i and x = i+ h, and h is the
interval at which the function’s values are known. The accuracy of differentiation given by
Δf i is called the first difference. It increases as the interval h is reduced. The differentiation in
Eq. (7.31a) is called the forward difference.
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f(xi)

f(xi + h)

f(xi – h)
hh

X

f(x)

xi xi + hxi – h

Figure 7.30 Grid points for the central finite difference method.

Similarly, we can write
df
dx

||||x=i
= f ′(xi) ≅ Δfi =

f (xi) − f (xi−h)
h

(7.31b)

where f (xi− h) is the value of the function at x = i− h. The differentiation in Eq. (7.31b) is called
the backward difference. If we use the values of the function f (x) on both sides of x = i, the
differentiation can be written as

df
dx

||||x=i
= f ′(xi) ≅ Δfi =

f (xi+h) − f (xi−h)
2h

(7.31c)

The differentiation in Eq. (7.31c) is called the central difference, and it is the most accurate
of the three differentiations for an interval h. The higher derivatives of the function f (x)
are derived here for the central differences only. The second derivative, d2f

dx2 , is approximately
expressed by the second difference,Δ2f i, by taking the difference of the first difference. Hence,

d2f
dx2

|||||x=i
= f ′′(x) ≅ Δ2fi = Δ(Δfi) =

Δ[f (xi+h∕2) − f (xi−h∕2)]
h

=
Δf (xi+h∕2) − Δf (xi−h∕2)

h

d2f
dx2

|||||x=i
≅ Δ2fi =

f (xi+h) − f (xi)
h

−
f (xi) − f (xi−h)

h
h

=
f (xi+h) − 2f (xi) + f (xi−h)

h2 (7.31d)

Similarly, the third derivative is approximately expressed by the third difference as follows:

d3f
dx3

|||||x=i
= f ′′′(x) ≅ Δ3fi = Δ2(Δfi) =

Δ2f (xi+h) − Δ2f (xi−h)
2h

d3f
dx3

|||||x=i
≅ Δ3fi =

f (xi+2h) − 2f (xi+h) + f (xi)
h2 −

f (xi) − 2f (xi−h) + f (xi−2h)
h2

2h

=
f (xi+2h) − 2f (xi+h) + 2f (xi−h) − f (xi−2h)

2h3 (7.31e)
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The fourth derivative is approximately expressed by the fourth difference as

d4f
dx4

|||||x=i
≅ Δ4fi = Δ2(Δ2fi) =

Δ2f (xi+h) − 2Δ2f (xi) + Δ2f (xi−h)
h2

Δ4fi =

f (xi+2h) − 2f (xi+h) + f (xi)
h2 − 2

[ f (xi+h) − 2f (xi) + f (xi−h)
h2

]
+

f (xi) − 2f (xi−h) + f (xi−2h)
h2

h2

d4f

dx4

||||x=i
≅ ≅ Δ4fi = −

f (xi+2h) − 4f (xi+h) + 6f (xi) − 4f (xi−h) + f (xi−2h)
h4 (7.31f)

To solve plate problems it is necessary to obtain the expressions for partial derivatives in terms
of differences. Consider a plate that is represented by a number of discrete points as shown
in Figure 7.31. The points are equally spaced at distances of h and k in the X and Y directions
respectively. Equations (7.31d) and (7.31f) can be used to write the second and fourth difference
expressions representing the second- and fourth-order partial derivatives as

(
𝜕2w
𝜕x2

)
i,j
=

wi+h,j − 2wi,j + wi−h,j

h2 (7.31g)(
𝜕4w
𝜕x4

)
i,j
=

wi+2h,j − 4wi+h,j + 6wi,j − 4wi−h,j + wi−2h,j

h4 (7.31h)(
𝜕2w
𝜕y2

)
i,j
=

wi,j+k − 2wi,j + wi,j−k

k2 (7.31i)

(
𝜕4w
𝜕y4

)
i,j
=

wi,j+2k − 4wi,j+k + 6wi,j − 4wi,j−k + wi,j−2k

k4 (7.31j)

i , j−2k

i ,  j−k

k

X

Y

i , j+k

i , j+2k

h

i–2h, j i–h, j i+h, j i+2h,j i, j

Figure 7.31 Finite difference grid points in two dimensions.
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𝜕4w

𝜕x2𝜕y2

)
i,j
= 𝜕2

𝜕x2

(
𝜕2w
𝜕y2

)
i,j
= 1

h2

[(
𝜕2w
𝜕y2

)
i+h,j

− 2
(
𝜕2w
𝜕y2

)
i,j
+

(
𝜕2w
𝜕y2

)
i−h,j

]
(

𝜕4w
𝜕x2𝜕y2

)
i,j
= 1

h2k2 [(wi+h,j+k − 2wi+h,j + wi+h,j−k) − 2(wi,j+k − 2wi,j + wi,j−k)

+ (wi−h,j+k − 2wi−h,j + wi−h,j−k)] (7.31k)

7.8.1 Critical Load for a Simply Supported Plate Subjected to Biaxial Loading

Consider a plate that is simply supported on all sides acted on by distributed compressive forces
of Nx = Ny = N shown in Figure 7.32.

The governing equation of plate buckling, Eq. (7.2j) is written as

𝜕4w
𝜕x4 + 2 𝜕4w

𝜕x2𝜕y2 +
𝜕4w
𝜕y4 +

N
D

(
𝜕2w
𝜕x2 +

𝜕2w
𝜕y2

)
= 0 (7.32a)

The boundary conditions for a simply supported plate are

w = 𝜕2w
𝜕x2 = 0 at x = 0, a (7.32b)

w = 𝜕2w
𝜕y2 = 0 at y = 0, b (7.32c)

Divide the plate into a mesh of m × n size. The distances of points in the x and y directions are
h = a/m and k = b/n respectively, as shown in Figure 7.33.

Consider a point, w(i, j), on the edges x = 0 and x = a then

w(i, j) = 0 for i = 0 and j = 0,1,2, ---n (7.32d)

w(i, j) = 0 for i = m and j = 0,1,2, ---n (7.32e)

xb

a
X

Y

N
N

x x x x x
x

x

x

x

x

x

x

x x x x x

N

N

Figure 7.32 Simply supported plate with a biaxial loading.
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(–1,–1)

(–1,1)

(–1,2)

(–1,3)

(0,2)

(0,3) (1,3) (2,3) (3,3) (4,3) (5,3)

(1,2) (2,2) (3,2) (4,2) (5,2)

(–1,0) (0,0)

(0,1) (1,1) (2,1) (3,1) (4,1) (5,1) b

a

X

Y

(1,0) (2,0) (3,0) (4,0) (5,0)

(0,–1) (1,–1) (2,–1) (3,–1) (4,–1) (5,–1)

Figure 7.33 Finite difference mesh for m = 4 and n = 2.

Now (
𝜕2w
𝜕x2

)
i,j
=

wi+h,j − 2wi,j + wi−h,j

h2 = 0,

hence,

wi+h,j − 2wi,j + wi−h,j = 0

Using Eqs. (7.32d) and (7.32e) we have

wi+h,j = −wi−h,j (7.32f)

at

i = 0, and j = 0, 1, 2, ---n

and
i = m, and j = 0, 1, 2, - - - n

Similarly, if we consider a point w(i, j) on the edges y = 0 and y = b, we can show using
Eqs. (7.32c) and (7.31i) that

wi,j+k = −wi,j−k (7.32g)

at j = 0, and i = 0, 1, 2, - - - m
and
j = n, and i = 0, 1, 2, - - - m
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This shows that for a simply supported edge, the deflection at a point immediately outside
the boundary is negative of the deflection at the corresponding point inside the boundary. We
write for the governing Eq. (7.32a) the difference equation at the internal point (1,1) as

1
h4

[
6w1,1 − 4w2,1 − 4w0,1 + w3,1 + w−1,1

]
+ 1

k4

[
6w1,1 − 4w1,2 − 4w1,0 + w1,−1 + w1,3

]
+ 1

h2k2

[
8w1,1 − 4w2,1 − 4w0,1 − 4w1,2 − 4w1,0 + 2w2,2 + 2w2,0 + 2w0,2 + 2w0,0

]
+ N

D

[w2,1 − 2w1,1 + w0,1

h2 +
w1,2 − 2w1,1 + w1,0

k2

]
= 0

Substitute w0, 1 = w1,2 = w1,0 = w2,2 = w2,0 = w0,2 = w0,0 = 0 at the boundaries to obtain
1
h4

[
6w1,1 − 4w2,1 + w3,1 + w−1,1

]
+ 1

k4

[
6w1,1 + w1,−1 + w1,3

]
+ 1

h2k2

[
8w1,1 − 4w2,1

]
+N

D

[w2,1 − 2w1,1

h2 +
−2w1,1

k2

]
= 0

Substitute w3,1 =w1,1 for symmetrical deflection of the plate and for simply supported boundary
conditions w−1,1 = w1,− 1 = w1,3 = −w1,1 to get

1
h4

[
6w1,1 − 4w2,1

]
+ 1

k4

[
4w1,1

]
+ 1

h2k2

[
8w1,1 − 4w2,1

]
+ N

D

[w2,1 − 2w1,1

h2 +
−2w1,1

k2

]
= 0

w1,1

h4k4

[
4h4 + 6k4 + 8h2k2 − 2Nh2k4

D
− 2Nh4k2

D

]
−

w2,1

h4k4

[
4k4 + 4h2k2 − Nh2k4

D

]
= 0

(7.32h)
Similarly, the difference equation at the internal point (2,1) is

1
h4

[
6w2,1 − 4w3,1 − 4w1,1 + w4,1 + w0,1

]
+ 1

k4

[
6w2,1 − 4w2,2 − 4w2,0 + w2,−1 + w2,3

]
+ 1

h2k2

[
8w2,1 − 4w3,1 − 4w1,1 − 4w2,2 − 4w2,0 + 2w3,2 + 2w3,0 + 2w1,2 + 2w1,0

]
+ N

D

[w3,1 − 2w2,1 + w1,1

h2 +
w2,2 − 2w2,1 + w2,0

k2

]
= 0

Substitute w0, 1 = w4,1 = w2,2 = w2,0 = w3, 2 = w3,0 = w1,2 = w1,0 = 0 at the boundaries to obtain
1
h4

[
6w2,1 − 4w3,1 − 4w1,1

]
+ 1

k4

[
6w2,1 + w2,−1 + w2,3

]
+ 1

h2k2

[
8w2,1 − 4w3,1 − 4w1,1

]
+N

D

[w3,1 − 2w2,1 + w1,1

h2 +
−2w2,1

k2

]
= 0

Substitute w3,1 = w1,1 for the symmetrical deflection of the plate and for the simply supported
boundary conditions w2,− 1 = w2,3 = −w2,1, w1,3 = −w1,1 to get

w1,1

h4k4

[
−8k4 − 8h2k2 + 2Nh2k4

D

]
+

w2,1

h4k4

[
4h4 + 6k4 + 8h2k2 − 2Nh2k4

D
− 2Nh4k2

D

]
= 0

(7.32i)
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Equations (7.32h) and (7.32i) can be written in the form

⎡⎢⎢⎢⎢⎢⎣

( 4h4 + 6k4 + 8h2k2

−2Nh2k4

D
− 2Nh4k2

D

)
−
(

4k4 + 4h2k2 − Nh2k4

D

)
−
(

8k4 + 8h2k2 − 2Nh2k4

D

) ( 4h4 + 6k4 + 8h2k2

−2Nh2k4

D
− 2Nh4k2

D

)
⎤⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨⎪⎪⎪⎩

w1,1

w2,1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0

0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
= 0 (7.32j)

Substitute

4h4 + 6k4 + 8h2k2 − 2Nh2k4

D
− 2Nh4k2

D
= c

and

4k4 + 4h2k2 − Nh2k4

D
= d

Hence, Eq. (7.32j) can be written as[
c −d
−2d c

]{
w1,1
w2,1

}
=

{
0
0

}
(7.32k)

For a nontrivial solution for w1,1 and w2,1, the determinant of the coefficient matrix in
Eq. (7.32k) should be zero, thus

c2 − 2d2 = 0 (7.32l)

For a
b
= 1

h = a
4
, k = b

2
= a

2
, k = 2h

c = 132h4 − 40N
D

h6

d = 80h4 − 16Nh6

D
Substitute c and d in Eq. (7.32l) to get

Ncr = 1.76𝜋
2D
a2 (7.32m)

The exact solution is 2𝜋2D/a2, given in [3]. Hence, the approximate solution for 4× 2 mesh size
by the finite difference method differs by 12% [8].

For a
b
= 0.5

h = a
4
, k = b

2
= a, k = 4h
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c = 1668h4 − 544Nh6

D

d = 1088h4 − 256Nh6

D
Substitute c and d in Eq. (7.32l) to obtain

Ncr = 1.15𝜋
2D
a2 (7.32n)

The exact solution is 1.25𝜋2D/a2, given in [3]. So the approximate solution for 4× 2 mesh size
by the finite difference method differs by 8%. The accuracy of the finite difference solution can
be increased by decreasing the mesh size.

7.9 The Finite Element Method

The finite element method used in Section 5.4 for frames can also be applied to solve plate
buckling problems. A plate can be discretized into a number of elements, each connected to
the other at the nodal points. A plate is a two-dimensional structure, hence triangular, rect-
angular and other shapes of elements can be used to model the structure. In this method the
structure is divided into number of finite elements that are connected at the joints called nodes.
A continuum is thus discretized into a finite degree of freedom system, the greater the num-
ber of elements, the higher the accuracy of analysis one can expect. The unknowns in this
method are the displacements and their derivatives at the nodes. A displacement function can
be expressed as a polynomial whose coefficients are determined from the boundary conditions.
The function should satisfy the continuity requirements within the element and should satisfy
the compatibility conditions between the adjacent elements and should include rigid body dis-
placements. By choosing such a function we can expect convergence of the solution. For more
on the finite element method, books on the subject by Zienkiewicz [12] and Desai [13] can be
recommended. A plate divided into a number of rectangular elements and the rectangular plate
bending element are shown in Figures 7.34a and 7.34b respectively.

The plate element has three degrees of freedom at each node. The vertical deflection wi and

rotations about the x and y axes are shown at node i in Figure 7.34c. The negative sign in
𝜕wi

𝜕x
indicates that if positive displacement dwi at a distance dx from the node i is considered, then
the rotation about Y axis at the node i is in the negative direction of the Y axis. Therefore, the
plate element has 12∘ of freedom and the shape function can be a 12-term polynomial. The
shape function is given by

w(x, y) = 𝛼1 + 𝛼2x + 𝛼3y + 𝛼4x2 + 𝛼5xy + 𝛼6y2 + 𝛼7x3 + 𝛼8x2y + 𝛼9xy2 + 𝛼10y3 + 𝛼11x3y + 𝛼12xy3

(7.33a)

or

w = [𝜓] {𝛼} (7.33b)
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(a) (b) 

(c) 

j

i
(0,0)

(0,b) (a,b)

(a,0)a

b

k

l

Y

X

wi
𝜕wi𝜕wi
𝜕y𝜕x

= θxθy = –

X

Y Z

i

Figure 7.34 Finite element modeling of a plate: (a) Rectangular plate' (b) Rectangular plate bending element;
(c) Nodal displacements.

where
[𝜓] =

[
1 x y x2 xy y2 x3 x2y xy2 y3 x3y xy3] (7.33c)

and
{𝛼} =

[
𝛼1 𝛼2 𝛼3 𝛼4 𝛼5 𝛼6 𝛼7 𝛼8 𝛼9 𝛼10 𝛼11 𝛼12

]T (7.33d)
The conditions at node i are

w = wi, −𝜕w
𝜕x

= −
𝜕wi

𝜕x
,

𝜕w
𝜕y

=
𝜕wi

𝜕y
, i = 1, 2, 3, 4 (7.33e)

Use Eqs. (7.33a) and (7.33e) to write
[A] {𝛼} = {𝛿}e (7.33f)

where

[A] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0 0 0
1 0 b 0 0 b2 0 0 0 b3 0 0
0 0 1 0 0 2b 0 0 0 3b2 0 0
0 −1 0 0 −b 0 0 0 −b2 0 0 −b3

1 a b a2 ab b2 a3 a2b ab2 b3 a3b ab3

0 0 1 0 a 2b 0 a2 2ab 3b2 a3 3ab2

0 −1 0 −2a −b 0 −3a2 −2ab −b2 0 −3a2b −b3

1 a 0 a2 0 0 a3 0 0 0 0 0
0 0 1 0 a 0 0 a2 0 0 a3 0
0 −1 0 −2a 0 0 −3a2 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7.33g)
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and {𝛿}e is the nodal displacement vector for an element that can be written as

{𝛿}e =
⎧⎪⎨⎪⎩
𝛿1
𝛿2
𝛿3
𝛿4

⎫⎪⎬⎪⎭ (7.33h)

where

{𝛿1} =

⎧⎪⎪⎨⎪⎪⎩

wi
𝜕wi

𝜕y

−
𝜕wi

𝜕x

⎫⎪⎪⎬⎪⎪⎭
, i = 1, 2, 3, 4, (7.33i)

From Eq. (7.33f)

{𝛼} = [A]−1{𝛿}e (7.33j)

and from Eq. (7.33g)

w = [𝜓] [A]−1{𝛿}e (7.33k)

The bending moments and the torsional moments acting on a dx × dy rectangular differential
plate element are given by

{M} =
⎧⎪⎨⎪⎩

Mx
My
Mxy

⎫⎪⎬⎪⎭ (7.33l)

The corresponding curvatures and the twists are obtained from

{𝜙} =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

−𝜕2w
𝜕x2

−𝜕2w
𝜕y2

2 𝜕2w
𝜕x𝜕y

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(7.33m)

Equation (7.33m) can be written as

{𝜙} = [Q] {𝛼} (7.33n)

where [Q] is obtained from Eq. (7.33a) by differentiating twice as follows:

[Q] =
⎡⎢⎢⎣
0 0 0 −2 0 0 −6x −2y 0 0 −6xy 0
0 0 0 0 0 −2 0 0 −2x −6y 0 −6xy
0 0 0 0 2 0 0 4x 4y 0 6x2 6y2

⎤⎥⎥⎦ (7.33o)
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From Eqs. (7.33j) and (7.33n) we have
{𝜙} = [Q] [A]−1{𝛿}e

or
{𝜙} = [B] {𝛿}e (7.33p)

where
[B] = [Q] [A]−′1

For a linear elastic material, the moment curvature relations are given by Eqs. (7.1r)–(7.1t), so
we can write

[M] = [D] {𝜙} (7.33q)
where

[D] = Eh3

12(1 − 𝜈2)

⎡⎢⎢⎢⎣
1 𝜈 0
𝜈 1 0
0 0

(1 − 𝜈

2

)⎤⎥⎥⎥⎦ (7.33r)

E and 𝜈 are the modulus of elasticity and Poisson’s ratio of the plate material respectively, and h
is the thickness of the plate. The principle of stationary potential energy is used as was applied in
Section 5.4 to formulate the stiffness matrix for the plate element. The strain energy of bending
for the differential plate element is given by

dU = 1
2
{𝜙}T [M] dxdy

The strain energy for the entire plate element is obtained from

U = 1
2 ∫

b

0 ∫

a

0
{𝜙}T [M] dxdy

or

U = 1
2 ∫

b

0 ∫

a

0
{𝜙}T [D] {𝜙}dxdy

or

U = 1
2
{𝛿}T

e ∫

b

0 ∫

a

0
[B]T [D] [B] {𝛿}edxdy (7.33s)

The external work is done by the nodal forces {q}e consisting of two moments and a lateral force
at each node, corresponding to the nodal degrees of freedom {𝛿}e, and by the in-plane forces [N].
For an element, the nodal forces are

{q}e =

⎧⎪⎪⎨⎪⎪⎩

q1

q2

q3

q4

⎫⎪⎪⎬⎪⎪⎭
(7.33t)
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where

{qi} =
⎧⎪⎨⎪⎩

Qi

Myi

Mxi

⎫⎪⎬⎪⎭
The relation between the nodal forces and the nodal displacements is given by

{q}e =
[
k
]

e{𝛿}e (7.33u)

where [k]e is the element stiffness matrix. The external work due to nodal forces is

Wq =
1
2
{𝛿}T

e {q}e

or

Wq =
1
2
{𝛿}T

e
[
k
]

e{𝛿}e

The external work done by the in-plane forces is obtained from Eqs. (7.18c), (7.18d), and (7.20f)

WN =
1
2 ∫

b

0 ∫

a

0
{𝛽}T [N] {𝛽}dxdy

where

{𝛽} =
⎧⎪⎨⎪⎩
𝜕w
𝜕x
𝜕w
𝜕y

⎫⎪⎬⎪⎭
{𝛽} = [P] {𝛼} and [N] =

[
Nx Nxy
Nxy Ny

]
where [P] is obtained from Eq. (7.33a) by differentiating once as follows:

[P] =
[

0 1 0 2x y 0 3x2 2xy y2 0 3x2y y3

0 0 1 0 x 2y 0 x2 2xy 3y2 x3 3xy2

]
{𝛽} = [P] [A]−1{𝛿}e = [C] {𝛿}e

where

[C] = [P] [A]−1

Hence,

WN =
1
2 ∫

b

0 ∫

a

0
{𝛿}T

e [C]T [N] [C] {𝛿}edxdy

The total external work

W = Wq +WN =
1
2
{𝛿}T

e
[
k
]

e{𝛿}e +
1
2
{𝛿}T

e ∫

b

0 ∫

a

0
[C]T [N] [C] {𝛿}edxdy
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Equate the total external work to the strain energy and we get

1
2
{𝛿}T

e
[
k
]

e{𝛿}e +
1
2
{𝛿}T

e ∫

b

0 ∫

a

0
[C]T [N] [C] {𝛿}edxdy = 1

2
{𝛿}T

e ∫

b

0 ∫

a

0
[B]T [D] [B] {𝛿}edxdy

or [
k
]

e{𝛿}e =

{
∫

b

0 ∫

a

0
[B]T [D] [B] dxdy −

∫

b

0 ∫

a

0
[C]T [N] [C] dxdy

}
{𝛿}e

Therefore, the stiffness matrix of a plate element is given by[
k
]

e = ∫

b

0 ∫

a

0
[B]T [D] [B] dxdy −

∫

b

0 ∫

a

0
[C]T [N] [C] dxdy (7.33v)

or [
k
]

e =
[
k
]1

e −
[
k
]2

e (7.33w)

Thus, the stiffness matrix for the plate element contains two matrices, the first one,
[
k
]1

e , is
the pure bending matrix, and the second,

[
k
]2

e , is called the geometric or initial stress stiffness
matrix that gives the influence of in-plane forces on the bending stiffness. The numerical values
of the stiffness matrices

[
k
]1

e and
[
k
]2

e require the calculation of [A], [B], and [C] matrices and
then solve the integrals in Eq. (7.33v). We get the element stiffness matrix in Eq. (7.33w) in
the local coordinates of the element shown in Figure 7.34. These element stiffness matrices
are converted into a global coordinate system and then combined to give the structure stiffness
matrix. The structure stiffness matrix is then reduced by applying the boundary conditions.
When a uniform compressive force of Nx is applied on a plate, the critical loading is obtained
from the equations{[

K1] − Nx
[
K2]} {𝛿} = 0 (7.33x)

where [K1] and [K2] are the structure bending and geometric or initial stress stiffness matrices,
and {𝛿} is the structure nodal displacement vector. For a nontrivial solution, the determinant
is |{[K1]−Nx[K2]}| = 0, which gives the characteristic equation whose smallest root called the
lowest eigenvalue gives the critical load. If we are dealing with a large number of equations,
then the lowest eigenvalue is obtained by iteration. Equation (7.33x) is pre-multiplied by [K2]−1

before conducting iteration as follows:{[
K2]−1 [K1] − Nx

[
K2]−1 [K2]} {𝛿} = 0

or {[
K2]−1 [K1] − Nx [I]

}
{𝛿} = 0 (7.33y)

where I is the identity matrix. By iteration the highest eigenvalue is obtained first from the
matrix in Eq. (7.33y). The matrix in Eq. (7.33y) is inverted to give{

[K1]−1 [K2] − 1
Nx
[I]

}
{𝛿} = 0 (7.33z)
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From the iteration process of the matrix in Eq. (7.33z) we find first the highest value of 1/Nx,
which will be the lowest value for Nx. For more details of the procedure to find the critical load
for plates under compressive loading by finite element method, books on the subject mentioned
above in this chapter can be referred to.

7.10 Large Deflection Theory of Plates

The in-plane equilibrium equations for the small displacement theory of plates are given by
𝜕Nx

𝜕x
+

𝜕Nyx

𝜕y
= 0 (7.2a)

𝜕Ny

𝜕y
+

𝜕Nxy

𝜕x
= 0 (7.2b)

The equilibrium equation in the z direction is

D
(
𝜕4w
𝜕x4 + 2 𝜕4w

𝜕x2𝜕y2 +
𝜕4w
𝜕y4

)
− Nx

𝜕2w
𝜕x2 − Ny

𝜕2w
𝜕y2 − 2Nxy

𝜕2w
𝜕x𝜕y

= 0 (7.2j)

In these equations the strains in the middle surface of the plate due to bending are neglected,
therefore, the quantities Nx, Ny, and Nxy are constant, whereas in the large deflection analyses
these quantities are variable unknown forces as a function of x and y. They represent variable
membrane forces in the middle surface of the plate due to bending, which were neglected in
the small deflection theory, and the constant applied edge loads. There are four unknown vari-
ables in the above nonlinear equations, three in-plane forces Nx, Ny, Nxy, and vertical deflection
w. Hence, one additional equation is needed to solve the problem. The additional equation is
obtained by considering the strain-displacement relations of the middle surface of the plate.

At any point in the plate the total displacement consists of two parts, one due to in-plane
forces that is constant over the thickness of the plate, and the other due to bending that varies
from zero at the middle surface to maximum at the outer surfaces. The total displacements u
and v at a point in the plate are given by

u = u0 + ub

v = v0 + vb

where u0 and v0 are the middle surface displacements, ub and vb are the displacements due
to bending relative to the middle surface. The strain 𝜀z is neglected, hence w is constant over
the thickness of the plate. Consider an element AB of the middle surface of the plate shown in
Figure 7.35. The element AB goes to position A’B’ due to buckling of the plate. The elongation

of the element due to in-plane displacement u0 is given by
𝜕u0

𝜕x
dx. The change in the length of

the element due to w displacement from Chapter 2 (see Eq. 2.28e) is given by 1
2

(
𝜕w
𝜕x

)2
dx.

The total middle surface strain in the X direction is

𝜀x0 =
𝜕u0

𝜕x
+ 1

2

(
𝜕w
𝜕x

)2
(7.34a)
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A B

A'

B'

dx

u0

w
u0

𝜕u0

𝜕w
𝜕x

𝜕x
dx+

dx

X

Z

Figure 7.35 Axial displacements in plate large deflection analysis.

Similarly, the middle surface strain in the Y direction is

𝜀y0 =
𝜕v0

𝜕y
+ 1

2

(
𝜕w
𝜕y

)2

(7.34b)

The middle surface shear strain that is the change in the angle between the two perpendicular
lines OA and OB occurs due to the buckling of the plate shown in Figure 7.36. It consists of
two parts, one due to the plane displacements u0 and v0 and the other due to the transverse
displacement w.

(a)

(b) 

dy

dx

𝜕v0

𝜕u0

𝜕w

𝜕w
𝜕w

𝜕w

𝜕x
𝜕x

𝜕y

𝜕y

𝜕x

𝜕y

dxdy u0

v0

O A

B

O’
A’

B’

X

Y

dy

B

O’
O

dy

A

A’

B’

dx

X

Y

dx
w

w

Figure 7.36 Shear strain in a plate large deflection analysis: (a) Shear strain due to middle surface displacements
u0 and v0; (b) Shear strain due to displacement w in the z direction.
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The shear strain due to u0 and v0 from Figure 7.36a is
𝜕u0

𝜕y
+

𝜕v0

𝜕x
. The shear strain due to w is

given by the difference between the angles AOB and A’O’B’. The angle A’O’B’ is equal to 𝜋

2
− 𝛾

in Figure 7.36b. The length A’B’ is expressed as

(O′A′)2 = dx2 +
(
𝜕w
𝜕x

dx
)2

(O′B′)2 = dy2 +
(
𝜕w
𝜕y

dy
)2

(A′B′)2 = dx2 + dy2 +
(
𝜕w
𝜕y

dy − 𝜕w
𝜕x

dx
)2

(7.34c)

A’B’ can also be written as
(A′B′)2 = (O′A′)2 + (O′B′)2 − 2(O′A′)(O′B′) cos

(
𝜋

2
− 𝛾

)
O′A′ = dx

[
1 +

(
𝜕w
𝜕x

)2] 1
2

= dx
[

1 + 1
2

(
𝜕w
𝜕x

)2
+ −−

]
≈ dx

Similarly, O’B’≈ dy
Hence,

(A′B′)2 = dx2 +
(
𝜕w
𝜕x

dx
)2
+ dy2 +

(
𝜕w
𝜕y

dy
)2

− 2dxdy cos
(
𝜋

2
− 𝛾

)
(7.34d)

From Eqs. (7.34c) and (7.34d), we have

cos
(
𝜋

2
− 𝛾

)
= 𝜕w

𝜕x
𝜕w
𝜕y

For small shear strain of 𝛾

cos
(
𝜋

2
− 𝛾

)
= cos 𝜋

2
cos 𝛾 + sin 𝜋

2
sin 𝛾 ≈ 𝛾

Therefore, the shear strain due to w is 𝛾 = 𝜕w
𝜕x

𝜕w
𝜕y

, and the total middle surface shear strain is

𝛾xy0 =
𝜕u0

𝜕y
+

𝜕v0

𝜕x
+ 𝜕w

𝜕x
𝜕w
𝜕y

(7.34e)

The relations between middle surface strains and middle surface forces are

𝜀x0 =
1

Eh
(Nx − 𝜈Ny) (7.34f)

𝜀y0 =
1

Eh
(Ny − 𝜈Nx) (7.34g)

𝛾xy0 =
2(1 + 𝜈)

Eh
Nxy (7.34h)

Equations (7.2a), (7.2b), (7.2j), (7.34a), (7.34b), (7.34e)–(7.34h) are a set of nine equations in
the nine unknowns of Nx, Ny, Nxy, w, u0, v0, 𝜀x0, 𝜀y0, and 𝛾xy0. We wish to reduce the number
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of equations by uncoupling some unknowns. Differentiate Eq. (7.34a) twice with respect to y,
Eq. (7.34b) with respect to x, and differentiate Eq. (7.34e) successfully with respect to x and y
to get

𝜕2𝜀x0

𝜕y2 =
𝜕3u0

𝜕x𝜕y2 +
(

𝜕2w
𝜕x𝜕y

)2

+ 𝜕w
𝜕x

𝜕3w
𝜕x𝜕y2

𝜕2𝜀y0

𝜕x2 =
𝜕3v0

𝜕x2𝜕y
+

(
𝜕2w
𝜕x𝜕y

)2

+ 𝜕w
𝜕y

𝜕3w
𝜕x2𝜕y

𝜕2𝛾xy0

𝜕x𝜕y
=

𝜕3u0

𝜕x𝜕y2 +
𝜕3v0

𝜕x2𝜕y
+ 𝜕3w

𝜕x2𝜕y
𝜕w
𝜕y

+ 𝜕2w
𝜕x2

𝜕2w
𝜕y2 +

(
𝜕2w
𝜕x𝜕y

)2

+ 𝜕w
𝜕x

𝜕3w
𝜕x𝜕y2

𝜕2𝜀x0

𝜕y2 +
𝜕2𝜀y0

𝜕x2 −
𝜕2𝛾xy0

𝜕x𝜕y
=

(
𝜕2w
𝜕x𝜕y

)2

− 𝜕2w
𝜕x2

𝜕2w
𝜕y2 (7.34i)

To further reduce the number of equations, a stress function F(x, y) is introduced.
Equations (7.2a) and (7.2b) are satisfied if the in-plane forces are defined as

Nx = h𝜕
2F
𝜕y2 (7.34j)

Ny = h𝜕
2F
𝜕x2 (7.34k)

Nxy = −h 𝜕2F
𝜕x𝜕y

(7.34l)

Substitute the in-plane forces in terms of the function F(x, y) given by Eqs. (7.34j)–(7.34l) in
Eqs.(7.34f)–(7.34h) to get

𝜀x0 =
1
E

(
𝜕2F
𝜕y2 − 𝜈

𝜕2F
𝜕x2

)
(7.34m)

𝜀y0 =
1
E

(
𝜕2F
𝜕x2 − 𝜈

𝜕2F
𝜕y2

)
(7.34n)

𝛾xy0 = −
2(1 + 𝜈)

E
𝜕2F
𝜕x𝜕y

(7.34o)

Substitute Eqs. (7.34m)–(7.34o) into Eq. (7.34i) and we obtain

𝜕4F
𝜕x4 + 2 𝜕4F

𝜕x2𝜕y2 +
𝜕4F
𝜕y4 = E

[(
𝜕2w
𝜕x𝜕y

)2

− 𝜕2w
𝜕x2

𝜕2w
𝜕y2

]
(7.34p)

Substitute Eqs. (7.34j)–(7.34l) into Eqs. (7.2j) and we get

𝜕4w
𝜕x4 + 2 𝜕4w

𝜕x2𝜕y2 +
𝜕4w
𝜕y4 −

h
D

(
𝜕2F
𝜕y2

𝜕2w
𝜕x2 +

𝜕2F
𝜕x2

𝜕2w
𝜕y2 − 2 𝜕2F

𝜕x𝜕y
𝜕2w
𝜕x𝜕y

)
= 0 (7.34q)

We have reduced the number of equations to be simultaneously solved to two given by
Eqs. (7.34p) and (7.34q). These equations are the governing equations and were first derived
by von Kármán and are known as von Kármán large deflection plate equations [14].
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7.10.1 Post-buckling Behavior of Plates

The large deflection theory of plates is used to find the post-buckling behavior of plates. It is not
possible to obtain the closed form solution of the two governing equations. Hence, approximate
or numerical methods are used to find the solution. The numerical solutions involve lengthy
computations. Approximate methods that are less accurate than the numerical solutions are
sometimes used because of their relative simplicity. This method is illustrated here for a simply
supported square plate subjected to a uniaxial compressive force Nx shown in Figure 7.37. The
finite deflection involves deflections in the middle surface of the plate as well as transverse
bending deformations. Both in-plane and transverse boundary conditions must be satisfied.
The solution given here is based on the works of Volmir [15].

Transverse boundary conditions for a simply supported plate are

w = 0, and 𝜕2w
𝜕x2 = 0 at x = 0 and x = a (7.7f)

w = 0, and 𝜕2w
𝜕y2 = 0 at y = 0 and y = a (7.7g)

The following assumptions are made for the in-plane boundary conditions:

1. All edges remain straight and retain the original 90∘ angles during bending.
2. The shearing forces Nxy and Nyx are zero on the four edges of the plate.
3. The edges y = 0 and y = a are free to move in the y direction.

It is assumed that the displacement u remains constant along the edges y = 0 and y = a,
whereas distribution of the force Nx is not known in the x direction. Nx is assumed to vary
because of large displacement during post-buckling. Hence, use the average value of the com-
pressive stress in the x direction given by

𝜎x avg = −
1

ah ∫

a

0
Nxdy (7.35a)

The negative sign indicates that the stress is compressive. The problem is solved by assuming
the lateral deflection as follows:

w = f sin 𝜋x
a

sin
𝜋y
a

(7.35b)

a
x xx x

x xx x

x

x

x

x

x

x

x

x
a

X

Y

NxNx

Figure 7.37 Simply supported plate under uniaxial compression.
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The assumed deflection expression satisfies the boundary conditions given by Eqs.(7.7f) and
(7.7g) and hence is a good approximation of w. Substitute Eqs. (7.35b) in (7.34p) and we get

𝜕4F
𝜕x4 + 2 𝜕4F

𝜕x2𝜕y2 +
𝜕4F
𝜕y4 = f 2 E𝜋4

a4

(
cos2𝜋x

a
cos2𝜋y

a
− sin2𝜋x

a
sin2𝜋y

a

)
(7.35c)

Use the following trigonometry relations

cos2𝜋x
a
= 1

2

(
1 + cos 2𝜋x

a

)
, sin2𝜋x

a
= 1

2

(
1 − cos 2𝜋x

a

)
in Eq. (7.35c) to obtain

𝜕4F
𝜕x4 + 2 𝜕4F

𝜕x2𝜕y2 +
𝜕4F
𝜕y4 = f 2 E𝜋4

2a4

(
cos 2𝜋x

a
+ cos

2𝜋y
a

)
(7.35d)

The solution of the Eq. (7.35d) is
F = Fc + Fp (7.35e)

where Fc and Fp are the complementary and particular solutions of Eq. (7.35d). The com-
plementary solution is obtained by taking the right-hand side of Eq. (7.35c) equal to zero. It
implies that the transverse deflection w = 0 in the plate. Hence, the complementary solution
corresponds to the in-plane stress distribution in the plate before buckling. The in-plane forces
consist of constant Nx at any point in the plate, and Ny = Nxy = 0 before buckling. Now

Nx = h𝜕
2F
𝜕y2 = Constant

or
Fc = Ay2

𝜎x avg = −
Nx

h
= −𝜕2F

𝜕y2 = −2A

Hence, the complementary solution of Eq. (7.35d) is

Fc = −
𝜎x avg

2
y2 (7.35f)

The complementary solution gives the in-plane stress distribution before buckling takes place
in the plate. Thus, the particular solution gives the changes in the plane stress distribution due
to the buckling of the plate. We can assume the particular solution of Eq. (7.35d) by considering
the terms on the right-hand side of the equation. Assume

Fp = B cos 2𝜋x
a

+ C cos
2𝜋y

a
(7.35g)

Substitute the derivatives of Fp from Eqs. (7.35g) into Eq. (7.35d) to give

16B𝜋4

a4 cos 2𝜋x
a

+ 16C𝜋4

a4 cos
2𝜋y

a
= f 2 E𝜋4

2a4

(
cos 2𝜋x

a
+ cos

2𝜋y
a

)
Equate the coefficients of like terms to obtain

B = C =
Ef 2

32
(7.35h)
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Hence, the particular solution of Eq. (7.35d) is

Fp =
Ef 2

32

(
cos 2𝜋x

a
+ cos

2𝜋y
a

)
The complete solution of Eq. (7.35d) is given by

F =
Ef 2

32

(
cos 2𝜋x

a
+ cos

2𝜋y
a

)
−

𝜎x avgy2

2
(7.35i)

To determine the coefficient f , solve Eq. (7.34q) by the Galerkin method shown in Chapter 2,
Section 2.11.3. For the plate under consideration, the Galerkin equation is given by

∫

a

0 ∫

a

0
Q(𝜙)g(x, y)dxdy = 0 (7.35j)

where, Q(𝜙) is the left-hand side of the differential equation of the plate in the z direction given
by Eq. (7.34q), and

g(x, y) = sin 𝜋x
a

sin
𝜋y
a

(7.35k)

Substitute w from Eq. (7.35b) and F from Eq. (7.35i) to obtain

Q(𝜙) =

[
4f𝜋4D

4
−

Ehf 3
𝜋4

8a4

(
cos 2𝜋x

a
+ cos

2𝜋y
a

)
− 𝜎x avg

hf𝜋2

a2

]
sin 𝜋x

a
sin

𝜋y
a

(7.35l)

The Galerkin Eq. (7.35j) can be written as

∫

a

0 ∫

a

0

[(
4fD𝜋4

a4 − 𝜎x avg
hf𝜋2

a2

) (
sin2𝜋x

a
sin2𝜋y

a

)
−

Ehf 3
𝜋4

8a4

(
cos 2𝜋x

a
+ cos

2𝜋y
a

)(
sin2𝜋x

a
sin2𝜋y

b

)]
dxdy = 0 (7.35m)

The following definite integrals have the values given by

∫

a

0
sin2𝜋x

a
dx =

∫

a

0
sin2𝜋y

a
dy = a

2(
4fD𝜋4

a4 − 𝜎x avg
hf𝜋2

a2

)
a2

4
−

Ehf 3
𝜋4

16a3

(
∫

a

0
cos 2𝜋x

a
sin2𝜋x

a
dx +

∫

a

0
cos

2𝜋y
a

sin2𝜋y
a

)
= 0

(7.35n)

cos 2𝜋x
a

sin2𝜋x
a
= 1

2

(
cos 2𝜋x

a
− cos2 2𝜋x

a

)
cos

2𝜋y
a

sin2𝜋y
a
= 1

2

(
cos

2𝜋y
a
− cos2 2𝜋y

a

)
∫

a

0
cos2 2𝜋x

a
dx = a

2
,
∫

a

0
cos 2𝜋x

a
dx = 0
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Hence, Eq. (7.35n) can be written as

fD𝜋4

a2 − 𝜎x avg
hf𝜋2

4
+

Ehf 3
𝜋4

32a2 = 0 (7.35o)

𝜎x avg =
4D𝜋2

ha2 +
E𝜋2f 2

8a2

or

𝜎x avg = 𝜎cr +
E𝜋2f 2

8a2 (7.35p)

where for the plate the critical stress is given by

𝜎cr =
4D𝜋2

ha2

see Eq. (7.7m), or

f 2 = 8a2

E𝜋2 (𝜎x avg − 𝜎cr) (7.35q)

It is shown in Eq. (7.35q) that the lateral deflection given by the coefficient f continues to
increase after buckling with the increase in the average stress 𝜎x avg. It shows that a plate can
resist axial loads more than its critical load and it is known as its post-buckling strength. The
post-buckling behavior of plates is different from that of columns. Columns collapse as soon as
the critical load is reached whereas plates can take a load in excess of their critical load.

From Eqs. (7.34j) and (7.35i) we have

𝜎x = −
𝜕2F
𝜕y2 =

E𝜋2f 2

8a2 cos
2𝜋y

a
+ 𝜎x avg

The negative sign is taken because 𝜎x is a compressive stress.
From Eq. (7.35p) we have

𝜎x = 𝜎x avg + (𝜎x avg − 𝜎cr) cos
2𝜋y

a
(7.35r)

Similarly, use Eqs. (7.34k) and (7.35i) to obtain

𝜎y =
−𝜕2f
𝜕x2 =

E𝜋2f 2

8a2 cos 2𝜋x
a

or from Eq. (7.35p) we have

𝜎y = (𝜎x avg − 𝜎cr) cos 2𝜋x
a

(7.35s)

Figure 7.38 shows the stress distribution in the middle surface of the plate given by Eqs. (7.35r)
and (7.35s). In the post-buckling range the stress 𝜎x varies across the width of the plate whereas
it was constant in the plate before buckling occurs. The stress 𝜎y varies from compression at the
edges to tension in the middle of the length of the plate in the post-buckling stage, whereas it
was not there before buckling. The presence of the tensile stress stiffens the plate and prevents
its collapse after buckling.



Trim Size: 187mm x 235mm Single Column Jerath c07.tex V1 - 11/06/2020 7:04pm Page 495�

� �

�

7.11 Inelastic Buckling of Plates 495

σx
σx

σy

σy

X

Y

Figure 7.38 Variation of stress in post-buckling range in the middle surface of the plate.

It is seen in Figure 7.38 that the ends of the plate withstand higher stresses than the middle
portion of the plate. This indicates that the sides of the plate are stiffer than the middle portion.

7.11 Inelastic Buckling of Plates

So far we have assumed that stress remains within the elastic range when buckling occurs.
We showed in Chapter 3 that stresses at buckling may exceed the elastic limit in columns. In
plates too, the stresses may exceed the elastic limit at buckling, depending on the thickness
of the plate and the load applied. In the case of plates, the applied load may be applied along
the longitudinal direction only, then the stress in this direction is likely to increase beyond the
elastic limit. In that case, the nonlinear behavior of the plate is governed by either the tangent
modulus or reduced modulus theory in the longitudinal direction, whereas in the transverse
direction, it may remain within the elastic limit and is governed by the modulus of elasticity.
Hence, the plate response is governed by the two moduli. On the other hand if the load acting
on the plate is in both directions, the entire plate will show the inelastic behavior. Here the
approach given by Bleich and Bleich [16] is used to solve the problem. According to this theory,
when the stress in the longitudinal direction exceeds the elastic limit, the tangent modulus, Et,
is used to calculate deformation along this direction. In the transverse direction the modulus
of elasticity E is used. If the stress exceeds the elastic limit in both directions, then the tangent
modulus governs the deformation in both the X and Y directions.

The expressions for moments M and shears Q in terms of the curvature were derived in
Eqs. (7.1r), (7.1s), (7.1t), and (7.1z) assuming the plate remained elastic. When the buckling
stress is higher than the elastic limit, the expressions for moment M and shear Q are modified
by introducing a quantity 𝜏 = Et/E, where Et is the tangent modulus and E is the modulus of
elasticity. If a plate is subjected to a compressive force of Nx per unit length only (Ny =Nxy = 0)
in the X direction acting on the edges x = 0 and x = a in Figure 7.39, then the modulus Et gov-
erns the plate behavior in the X direction and modulus of elasticity E governs the plate behavior
in the Y direction. The moment curvature and transverse shear force equations are

Mx = −D
(
𝜏
𝜕2w
𝜕x2 + 𝜈

√
𝜏
𝜕2w
𝜕y2

)
(7.36a)
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a

b

X

Y

Nx Nx

x x x x x

x

x

x

x

x

x

x

x
x x x xx

Figure 7.39 Simply supported rectangular plate under axial compression.

My = −D
(
𝜈
√
𝜏
𝜕2w
𝜕x2 +

𝜕2w
𝜕y2

)
(7.36b)

Mxy = −Myx = D
√
𝜏(1 − 𝜈) 𝜕

2w
𝜕x𝜕y

(7.36c)

Qx = −D 𝜕

𝜕x

(
𝜏
𝜕2w
𝜕x2 +

√
𝜏
𝜕2w
𝜕y2

)
(7.36d)

Qy = −D 𝜕

𝜕y

(√
𝜏
𝜕2w
𝜕x2 +

𝜕2w
𝜕y2

)
(7.36e)

where D = Eh3

12(1 − 𝜈2)
is called the flexural rigidity of the plate per unit width. In Eq. (7.36a)

the first and second terms within the parentheses are the contribution to Mx from the curva-
tures along the X axis and Y axis respectively. Hence the first term is multiplied by the ratio
Et/E = 𝜏, the second term is multiplied by the mean value between 1 and 𝜏 which is chosen
arbitrarily by Bleich and Bleich [16] as

√
𝜏. Substitute the expressions from Eqs. (7.36d) and

(7.36e) into Eq. (7.2i) to obtain

D
(
𝜏
𝜕4w
𝜕x4 + 2

√
𝜏

𝜕4w
𝜕x2𝜕y2 +

𝜕4w
𝜕y4

)
+ Nx

𝜕2w
𝜕x2 = 0 (7.36f)

If a plate is subjected to a compressive force of Ny per unit length only in the Y direction acting
on the edges y = 0 and y = b, then the moment curvature and transverse shear force equations
are

Mx = −D
(
𝜕2w
𝜕x2 + 𝜈

√
𝜏
𝜕2w
𝜕y2

)
(7.36g)

My = −D
(
𝜈
√
𝜏
𝜕2w
𝜕x2 + 𝜏

𝜕2w
𝜕y2

)
(7.36h)

Mxy = −Myx = D
√
𝜏(1 − 𝜈) 𝜕

2w
𝜕x𝜕y

(7.36i)

Qx = −D 𝜕

𝜕x

(
𝜕2w
𝜕x2 +

√
𝜏
𝜕2w
𝜕y2

)
(7.36j)
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Qy = −D 𝜕

𝜕y

(√
𝜏
𝜕2w
𝜕x2 + 𝜏

𝜕2w
𝜕y2

)
(7.36k)

The governing equation is given by

D
(
𝜕4w
𝜕x4 + 2

√
𝜏

𝜕4w
𝜕x2𝜕y2 + 𝜏

𝜕4w
𝜕y4

)
+ Ny

𝜕2w
𝜕y2 = 0 (7.36l)

If a plate is subjected to forces in the X and Y directions both, then Eqs. (7.36g)–(7.36l) reduce
to those derived in Section 7.3 with D𝜏 replacing D. Eqs. (7.36f) and (7.36l) are considered valid
because the theoretical values of critical stress agree with the test results.

7.11.1 Rectangular Plates with Simply Supported Edges

Consider a simply supported plate with sides of a and b subjected to a compressive force of Nx
per unit length only acting on the edges x = 0 and x = a shown in Figure 7.39. Take the tangent
modulus, Et, as the modulus governing the plate behavior in the X direction and the modulus
of elasticity, E, the modulus governing the plate behavior in the Y direction when the critical
load exceeds the elastic limit. There are no applied loads in the Y direction, Ny = 0, and also
Nxy = 0. The governing equation is

D
(
𝜏
𝜕4w
𝜕x4 + 2

√
𝜏

𝜕4w
𝜕x2𝜕y2 +

𝜕4w
𝜕y4

)
+ Nx

𝜕2w
𝜕x2 = 0 (7.36f)

Boundary conditions are

w = 0, 𝜕2w
𝜕x2 = 0 at x = 0 and x = a (7.37a)

and

w = 0, 𝜕2w
𝜕y2 = 0 at y = 0 and y = b (7.37b)

The solution is

w =
∞∑

m=1

∞∑
n=1

Amn sin m𝜋x
a

sin
n𝜋y

b
m = 1, 2, 3… ,n = 1, 2, 3,… (7.37c)

where m and n define the number of half-waves that the plate buckles in the x and y direc-
tions respectively. Amn gives the amplitudes of the mode shapes or shape functions. The double
trigonometric series in Eq. (7.37c) satisfies the boundary conditions given by Eqs. (7.37a) and
(7.37b). The substitution of w and its derivatives from Eq. (7.37c) into Eq. (7.36f) gives

∞∑
m=1

∞∑
n=1

Amn

[
𝜏

m4𝜋4

a4 + 2
√
𝜏

m2n2𝜋4

a2b2 + n4𝜋4

b4 −
Nx

D
m2𝜋2

a2

]
sin m𝜋x

a
sin

n𝜋y
b

= 0 (7.37d)

or

Amn

[
𝜋4

(√
𝜏

m2

a2 +
n2

b2

)2

−
Nx

D
m2𝜋2

a2

]
= 0 (7.37e)
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For Eq. (7.37e) to be satisfied, either Amn is zero, which leads to a trivial solution, where the
plate remains flat for all loads. For nontrivial solution the quantity in the parenthesis should
be zero, which gives

(Nx)cr =
Da2𝜋2

m2

(√
𝜏

m2

a2 +
n2

b2

)2

or

(Nx)cr =
D𝜋2

b2

(√
𝜏

mb
a
+ n2a

mb

)2

(7.37f)

We wish to know the lowest value of Nx called the critical load at which the equilibrium of
the plate can change from the plane to a bent shape. The values of m and n, the number of
half-waves that will minimize Nx is to be found. In Eq. (7.37f) as n increases Nx increases,
therefore n = 1 gives the smallest value of Nx. This shows that the plate buckles in a single half
sine wave in the Y direction. The number of half sine waves in the X direction corresponding
to the minimum value of Nx is found by taking the derivative of the expression in Eq. (7.37f)
with respect to m at n = 1, and equating it to zero.

dNx

dm
= 2D𝜋2

b2

(
𝜏

mb
a
+ a

mb

)(
𝜏

b
a
− a

bm2

)
= 0

This gives

m = a
b𝜏

1
4

(7.37g)

Substitute Eqs. (7.37g) into (7.37f) and we obtain

(Nx)cr =
4D𝜋2

b2

√
𝜏 (7.37h)

In Eq. (7.37g) the wave length given by m in the X direction depends on the material properties
and is larger than that given by Eq. (7.7l) for the elastic case. In general, the load (Nx)cr can be
written as

(Nx)cr =
k1D𝜋2

b2 (7.37i)

where

k1 =
(√

𝜏
mb
a
+ n2a

mb

)2

(7.37j)

Find the lowest k1 for a particular aspect ratio a/b, 𝜏, and n = 1, to get the critical load. Hence,
find the value of m that gives the lowest value of k1 as was done in Section 7.5.1. To find the
transition point, where the number of half-waves m change to m+ 1 half-waves for the same
value of k1, is given by√

𝜏
mb
a
+ a

mb
=

√
𝜏
(m + 1)b

a
+ a
(m + 1)b

(7.37k)
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Let p = a/b, then

p
m
−

√
𝜏

p
−

p
m + 1

= 0

or

p = a
b
= 𝜏

1
4
√

m(m + 1) (7.37l)

Therefore, the aspect ratio a/b at which the transition takes place also depends on the material
property.

7.11.2 Plate with Loading Edges Simply Supported and the Sides
y = 0 and y = b Are Clamped

Consider the plate shown in Figure 7.40. The boundary conditions are

w = 0, 𝜕2w
𝜕x2 = 0 at x = 0 and x = a (7.38a)

and

w = 0, 𝜕w
𝜕y

= 0 at y = 0 and y = b (7.38b)

The governing differential equation is

D
(
𝜏
𝜕4w
𝜕x4 + 2

√
𝜏

𝜕4w
𝜕x2𝜕y2 +

𝜕4w
𝜕y4

)
+ Nx

𝜕2w
𝜕x2 = 0 (7.36f)

Take the solution of Eq. (7.36f) as

w = f (y) sin m𝜋x
a

(7.38c)

b

X

Y

Nx Nx

x x Simply supported edge

x

x

x

x

x

x

x

x

Fixed edge

a

Figure 7.40 Plate with loading edges simply supported and others clamped.
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It satisfies the boundary conditions given by Eq. (7.38a). Substitute Eq. (7.38c) and its deriva-
tives in Eq. (7.36f) to get

D
[
𝜏f m4𝜋4

a4 − 2
√
𝜏

m2𝜋2

a2
d2f
dy2 +

d4f
dy4

]
sin m𝜋x

a
− Nxf m2𝜋2

a2 sin m𝜋x
a

= 0 (7.38d)

Since sin m𝜋x
a

is not zero, hence

d4f
dy4 − 2

√
𝜏

m2𝜋2

a2
d2f
dy2 +

(
𝜏

m4𝜋4

a4 −
Nx

D
m2𝜋2

a2

)
f = 0 (7.38e)

The solution of Eq. (7.38e) is
f (y) = A1 sinh 𝛼y + A2 cosh 𝛼y + A3 sin 𝛽y + A4 cos 𝛽y (7.38f)

where

𝛼 =

√√
𝜏

m2𝜋2

a2 +
√

Nx

D
m2𝜋2

a2 , 𝛽 =

√
−
√
𝜏

m2𝜋2

a2 +
√

Nx

D
m2𝜋2

a2 (7.38g)

The constants A1, A2, A3 and A4 are to be determined from the boundary conditions given by
Eq. (7.38b). The same steps as in Section 7.5.4 can be followed to obtain the transcendental
equation

2(1 − cosh 𝛼b cos 𝛽b) =
(
𝛽

𝛼
− 𝛼

𝛽

)
sinh 𝛼b sin 𝛽b = 0 (7.38h)

where 𝛼 and 𝛽 are given by Eq. (7.38g). As before in Section 7.5.1, the critical load is given by

(Nx)cr =
kD𝜋2

b2 (7.38i)

Substitute the critical load Nx in Eq. (7.38g) to get

𝛼b = m𝜋

a∕b

√√
𝜏 + a

mb

√
k, and 𝛽b = m𝜋

a∕b

√
−
√
𝜏 + a

mb

√
k (7.38j)

Find the lowest value of k and the corresponding m that satisfied Eq. (7.38h) for a particular
aspect ratio a/b, 𝜏, and n = 1. The critical load (Nx)cr is then found from Eq. (7.38i) once the
lowest value of k is known, as was done in Section 7.5.4.

7.12 Ultimate Strength of Plates in Compression

It is desirable in plate design to eliminate buckling under service loads. However, it was shown
in Section 7.10 that a plate carries after buckling a much larger force before failure. Therefore,
in situations where lightweight structures are required, as in aircraft design, it is important
to consider the ultimate load a plate can carry in addition to the critical load. A theoretical
calculation of ultimate strength will be difficult because it will involve both material and geo-
metric nonlinearities. Thus, the ultimate load at which a plate collapses is usually determined
by an approximate method. It can be seen in Figure 7.38 that as the axial compressive force is
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increased on a plate after initial buckling, the stresses on the edges are much higher than in the
central region. It is observed that a plate fails when the stresses in the direction of the applied
compressive load reach the yield point strength of the material at the edges of the plate. It is
assumed that the load on the plate is carried by two strips of width be and the stress is considered
uniform over the width of these strips as shown in Figure 7.41. The middle portion of the plate
is disregarded and the simply supported rectangular plate is considered of equivalent width 2be.
The concept of the effective width was introduced by von Kármán, Sechler, and Donnell [17].

The ultimate load the plate can support is given by

Pu = 2beh𝜎y (7.39a)

Von Kármán suggested the following formula for the effective width of simply supported plates

2be = b
√

𝜎cr

𝜎y
(7.39b)

For simply supported plates, we have from Eq. (7.38i)

(Nx)cr =
kD𝜋2

b2 , k = 4

or

𝜎cr =
4𝜋2

b2
Eh3

12(1 − 𝜈2)h
= 𝜋2E

3(1 − 𝜈2)
1

(b∕h)2
(7.39c)

Substitute Eqs. (7.39c) into Eq. (7.39b) to obtain

be =
𝜋h√

12(1 − 𝜈2)

√
E
𝜎y

(7.39d)

or

Pu =
𝜋h√

3(1 − 𝜈2)

√
E
𝜎y
(h𝜎y) =

𝜋h2√
3(1 − 𝜈2)

√
E𝜎y

or

Pu = 1.90h2
√

E𝜎y for 𝜈 = 0.3 (7.39e)

be be
b

σmax = σy

Equivalent uniform

stress distribution 
Actual nonuniform

stress distribution

Figure 7.41 Stress variation across the plate width.
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An alternate approximate formula was given by G. Winter [18] to find the effective width based
on test results as follows:

2be = b
√

𝜎cr

𝜎y

(
1 − 0.25

√
𝜎cr

𝜎y

)
(7.39f)

From Eq. (7.39c)

𝜎cr =
4𝜋2

b2
Eh3

12(1 − 𝜈2)h
= 𝜋2E

3(1 − 𝜈2)
1

(b∕h)2√
𝜎cr

𝜎y
= 𝜋h√

3b

√
E

(1 − 𝜈2)𝜎y

be =
𝜋h√

12(1 − 𝜈2)

√
E
𝜎y

[
1 − 0.25 𝜋h

b
√

3(1 − 𝜈2)

√
E
𝜎y

]
(7.39g)

Pu =
𝜋h√

3(1 − 𝜈2)

√
E
𝜎y

[
1 − 0.25 𝜋h

b
√

3(1 − 𝜈2)

√
E
𝜎y

]
h𝜎y

or

Pu = 1.90h2
√

E𝜎y

[
1 − 0.475h

b

√
E
𝜎y

]
(7.39h)

Example 7.4 A steel plate panel is axially loaded and is simply supported along the loaded
edges. The plate is provided with stiffeners, as shown in Figure 7.42. The panel is consid-
ered simply supported along the bolt lines and free at the sides. Each stiffener has the area
of cross-section 0.1 in.2 (64.52 mm2). Take the modulus of elasticity of the plate and stiffener
material, E = 29× 106 psi (200 000 MPa). Find the compressive force P when the plate (i) first
buckles and (ii) when the stress in the stiffeners is 𝜎u = 36 ksi (248 MPa).

Panel 1: 10 in.× 5 in.× 1/16 in. (254 mm× 127 mm× 1.59 mm) – simply supported on all four
sides.

Panel 2: 10 in.× 2 in.× 1/16 in. (254 mm× 50.8 mm× 1.59 mm) – simply supported on three
sides and free on the fourth side.

(1) When the plate buckles first
Panel 1: a = 10 in. (254 mm), b = 5 in. (127 mm), 𝜎cr1 =

kD𝜋2

b2h
a
b
= 10

5
= 2

(254
127

= 2
)
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(a)

(b)

5 in. 

(127 mm)
2 in. 

(50.8 mm)

2 in.

(50.8 mm)
1
16

in.

(1.59 mm)

12 2 10 in.
(254 mm).

P

P

Figure 7.42 Stiffened plate panel: (a) Top view; (b) Front view.

From Figure 7.9 for a plate simply supported on all four sides, k = 4.

𝜎cr1 =
4𝜋2

b2
Eh3

12(1 − 𝜈2)h
= 𝜋2E

3(1 − 𝜈2)
1

(b∕h)2
(7.39c)

= 4𝜋2E
12(1 − 0.32)

(
h
b

)2

= 3.615E
(

h
b

)2

= 3.615(29x106)
( 1

16x5

)2
= 16380.47 psi[

3.615(200,000)
(1.59

127

)2
= 113.32 MPa

]
Panel 2: a = 10 in.(254 mm), b = 2 in. (50.8 mm),

𝜎cr2 =
kD𝜋2

b2h
a
b
= 10

2
= 5

( 254
50.8

= 5
)

From Table 7.3 for a plate simply supported on two loaded sides, simply supported on the
third side and free on the fourth side, k = 0.47.

𝜎cr2 =
0.47𝜋2

b2
Eh3

12(1 − 𝜈2)h
= 0.425E

(
h
b

)2

= 0.425(29x106)
( 1

16x2

)2
= 12036.13psi[

0.425(200,000)
(1.59

50.8

)2
= 83.27MPa

]
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This means the plate panels 2 buckle first. Before buckling, the entire width of the plate
carries the load. The area of the plate including stiffeners is given by

Aplate = (5 + 2 + 2)x 1
16
+ 2x0.1 = 0.76 in.2

×
[
(127 + 50.8 + 50.8)x1.59 + 2x64.52 = 492.51 mm2]

Pcr = 12036.13x0.76 = 9147.46 lbs. (492.51x83.27 = 41011.31 N = 41 kN)

(2) The post-buckling region when the stress in the stiffeners is 36 ksi (248 MPa)
In the post-buckling region, use the effective width of the plate
Panel 1:

2be1 =
𝜋h√

3(1 − 𝜈2)

√
E
𝜎y
= 1.90h

√
E
𝜎y

= 1.90
( 1

16

)√
29x106

36000
= 3.37 in.

[
1.90(1.59)

√
200,000

248
= 85.79 mm

]
Panel 2:

𝜎cr2 = 0.425E
(

h
b

)2

2be2 = b
√

𝜎cr

𝜎y
= b

√
0.425E
𝜎y

(
h
b

)
= 0.65h

√
E
𝜎y

= 0.65
( 1

16

)√
29x106

36000
= 1.15 in.

[
0.65(1.59)

√
200,000

248
= 29.35 mm

]
The effective area of the plate including stiffeners is given by

Aeffectiive = (3.37 + 2x1.15) 1
16
+ 2x0.1 = 0.55 in.2[

(85.79 + 2x29.35)1.59 + 2x64.52 = 358.78 mm2]
The ultimate load is

Pu = 0.55x36000 = 19,800 lbs. (358.78x248 = 88977.44 N = 89 kN)

The post-buckling load is about two times the initial buckling load.

7.13 Local Buckling of Compression Elements: Design

In the design of hot rolled structural elements, the width to thickness ratio of flanges and webs
is proportioned such that overall failure occurs before local buckling takes place. In the design
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of steel columns and beams according to the AISC Specifications [19], the local buckling stress
for these elements is kept higher than the yield stress for the material. If local buckling is not
to occur for stresses smaller than yield stress for the material, then

𝜎cr > 𝜎y (7.40a)

where 𝜎cr is the critical stress for the plate element depending on how it is supported, and 𝜎y
is the yield strength of the material of the plate element. Use Eq. (7.7s) for the critical stress in
Eq. (7.40a) to obtain

k𝜋2E
12(1 − 𝜈2)

(
h
b

)2

> 𝜎y (7.40b)

If

𝜈 = 0.3

we get

b
h
< 0.904

√
kE
𝜎y

(7.40c)

If the plate element has one edge simply supported and the other edge as free, then k = 0.47 for
a/b = 5 from Section 7.5.5, hence

b
h
< 0.62

√
E
𝜎y

(7.40d)

The ratio given in Eq. (7.40d) is further reduced by the AISC Specifications [19] to account
for initial imperfections and residual stresses. In the Specifications, a member is defined as
compact where the overall buckling failure occurs before local buckling. For flanges in rolled
I-shaped sections, channels and tees, the thirteenth edition of AISC specifies

b
h
< 0.38

√
E
𝜎y

(7.40e)

and for the legs of single angles, AISC specifies

b
h
< 0.54

√
E
𝜎y

(7.40f)

If the plate element is simply supported along both of its unloaded edges, then k = 4.0 from
Figure 7.9, hence from Eq. (7.40b) we have

b
h
< 1.81

√
E
𝜎y

(7.40g)
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For the flanges of a rectangular box section and hollow structural sections of uniform thickness,
the AISC specifies

b
h
< 1.12

√
E
𝜎y

(7.40h)

Problems

7.1 Determine the critical load of a simply supported rectangular plate compressed in two
perpendicular directions by uniformly distributed forces shown in Figure P7.1. Find the
solution by
(a) the differential equation method
(b) the energy method

x x

X

Y

a

b
x

x

x

x

x

x
x

x

x x xx

x x x x

Nx
Nx

Ny

Ny

Simply supported

Figure P7.1

7.2 Find the buckling load of a rectangular plate simply supported on two opposite edges. The
uniformly distributed compressive force is acting on the perpendicular faces that are fixed
as shown in Figure P7.2 by the energy method.

a

b

X

Y
x x

x

x

x

x

x

x

x

x

Fixed edge

Ny

Ny
Simply supported

Figure P7.2
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7.3 Find the critical load of a simply supported plate subjected to in-plane sinusoidal load Nx
per unit length shown in Figure P7.3. Use the energy method.

x x

X

Y

a

b
x

x

x

x

x

x

x

x

x x xx

x x x x

Simply supported

Nx = N sin 
b

Nx = N sin 
πy πy

b

Figure P7.3

7.4 Obtain the buckling force for a rectangular plate clamped on all sides, which is stiffened
by two transverse stiffeners shown in Figure P7.4. The plate and the stiffeners are of the
same material. Take I as the second moment of area for each stiffener, E as the modulus
of elasticity and 𝜈 as the Poisson’s ratio of the material.

b

X

Y

Nx Nx

a

a–
3

a–
3

a–
3

Figure P7.4

7.5 A simply supported plate of 20 in.× 10 in. (508 mm× 254 mm) is subjected to a shear force
of 500 lb./in. (87.5 kN/m) shown in Figure P7.5. Find the thickness h required to resist
buckling. Modulus of elasticity E = 29× 106 psi (200 000 MPa), Poisson’s ratio 𝜈 = 0.3.

a

b

X

Y

Nxy

Nxy

Figure P7.5
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7.6 Use the finite difference method to find the critical load for a rectangular plate which is
clamped on all four edges. It is subjected to uniformly distributed forces Nx and Ny as
shown in Figure P7.6. Divide the plate into eight elements.

b

X

Y

Nx Nx

a
Ny

Ny

Figure P7.6

7.7 The stresses in the rectangular plate exceed the elastic limit at buckling. The plate is simply
supported on the loaded edges by uniformly distributed force Nx as shown in Figure P7.7.
The side y = 0 is clamped and the side y = b is free. Find the critical stress in the plate by
using the modified plate equilibrium equation taking into account inelasticity. Assume
a/b = 1.5, h/b =0.02, Et/E = 0.414, h = thickness of the plate, Et = tangent modulus,
E = modulus of elasticity.

a

b

X

Y

Nx Nx

x x Simply supported

x

x

x

x

x

x
x

x

Fixed edge

Free edge

Figure P7.7
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8

Buckling of Shells

8.1 Introduction

Shells are three-dimensional structures but the stresses can be considered in two planes only if
the thickness of the shells is small in comparison to other dimensions. The difference between
a shell and a plate is that a shell structure has an initial curvature whereas a plate is considered
flat before an external load is applied. Because of their curved shape, shell structures are very
efficient in supporting the external force. Shell structures are used in many industries to store
and handle different materials. The materials stored by shell structures include solids, as in agri-
cultural industries, and liquids such as gasoline and other petroleum products. Shell structures
are used as water storage tanks and cooling towers in nuclear power plants. In recent times the
size of the storage facilities has increased along with the use of high strength materials. In many
cases, failure of these structures occurs due to instability before the material reaches its strength
capacity. Therefore, there is a great deal of interest in the process of shell buckling nowadays. In
the case of cylindrical shells, the buckling load reduces considerably when slight imperfections
are present, which makes the analysis more important. In this chapter, the applications consid-
ered involve examples that can be solved by analytical methods. Practical structures and loads
are much more complicated, which can now be solved by numerical methods with the help of
computers. The stability of cylindrical shells under static and earthquake loads was considered
by Jerath and Lee [1]. Comparison was made between static and earthquake buckling loads for
cylindrical shells using the finite element large deflection method.

Shells have two types of forces: primary and secondary forces. Primary forces are in-plane
forces that cause a membrane action whether the initial curvature exists or not. The secondary
forces are caused by flexural deformations. If the structure is initially flat, the secondary forces
do not cause appreciable membrane action if the deflections are small. That is why in small
deflection theory the membrane action due to secondary forces is ignored, but in the large
deflection theory it is considered for plates. If there is initial curvature, the membrane action
caused by the secondary forces is considerable, regardless of the magnitude of the deformation.
Hence, the membrane action due to secondary forces is considered in shells for both the small
and the large deflection theories.

Structural Stability Theory and Practice, First Edition. Sukhvarsh Jerath.
© 2021 Sukhvarsh Jerath. Published 2021 by John Wiley & Sons, Inc.
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8.2 The Large Deflection Theory of Cylindrical Shells

The governing equations for shell buckling analysis are derived based on the following
assumptions:

1. The shell is thin, i.e. its thickness is small in comparison to other dimensions.
2. The shell is made of homogeneous, isotropic, elastic material that obeys Hooke’s law.
3. Lines perpendicular to the middle surface of the shell before bending remain straight and

normal during bending.
4. It is a perfect cylinder initially and is loaded concentrically at every cross-section.

(a)

(b)

h
+

+

+

+

+

𝜕x
dx

dx

dy

dyNy

Z , w

Nxy

Nyx

Nx

Ny

X , u 

𝜕Nx

𝜕Nxy

𝜕Nyx

𝜕Ny

𝜕x

𝜕y

𝜕y

Nx

Nxy

NxyY , v R

Mxy

Qx

Qy +

Qx +

Mx +

Mx My

My

Myx +

Myx

Qy

Z , w 
𝜕Qy

𝜕Qx

𝜕My
𝜕Mx

𝜕Myx

𝜕y
dy

𝜕y
𝜕x

𝜕y
dy

𝜕x

dy

X , u 

dx

dx

Y , v 

p

Figure 8.1 Cylindrical shell displacements and forces: (a) Cylindrical shell displacements and in-plane forces;
(b) Cylindrical shell moments, transverse shears and external force.
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Consider a small element of a cylindrical shell of thickness h and radius of curvature R in
Figure 8.1. The origin of the coordinates is in the middle surface of the shell. The X axis is
parallel to the axis of the cylinder, the Y axis is along the tangent to the circular curve, and the Z
axis is normal to the middle surface pointing to the center of the curvature. Shell displacements
are given by the components u, v, and w in the X , Y, and Z directions shown in Figure 8.1. The
in-plane forces are shown in Figure 8.1a and the transverse shears, bending moments, and
twisting moments are shown in Figure 8.1b.

The positive directions of the in-plane forces, bending moments, twisting moments, trans-
verse shears, and external force p are shown in Figure 8.1. If the initial curvature of the shell
surface and the curvature due to bending in the X and Y directions are neglected, the equations
of equilibrium in the X and Y directions are simplified. That means we assume the transverse
shear forces have negligible components in the X and Y directions. Also, the components of
the in-plane forces in the X and Y directions are equal to the forces themselves. Then the sum-
mation of the forces in the X and Y directions leads to the same equations (Eqs. 7.2a and 7.2b)
as in the case of plates as follows:

𝜕Nx

𝜕x
+

𝜕Nyx
𝜕y

= 0 (8.1a)

𝜕Ny

𝜕y
+

𝜕Nxy

𝜕x
= 0 (8.1b)

It is necessary to take into account the initial curvature of the shell element and the curvature
due to bending to write the equation of equilibrium in the Z direction. The force Ny has a
component in the Z direction due to the initial curvature of the shell given by Ny

R
dxdy, as shown

in Figure 8.2. None of the other in-plane forces have components in the Z direction due to the
initial curvature of the shell, whereas all the in-plane forces have components in the Z direction
due to curvature from bending. These components are identical to the ones in a bent plate that
are given by Eq. (7.2g). If we add all the components of the in-plane forces in the Z direction
including the component of Ny we get[

Nx
𝜕2w
𝜕x2 + Ny

(
𝜕2w
𝜕y2 +

1
R

)
+ 2Nxy

𝜕2w
𝜕x𝜕y

]
dxdy (8.1c)

To the Z direction forces we should add the transverse shear forces and the external force p
shown in Figure 8.1b to obtain[

Nx
𝜕2w
𝜕x2 + Ny

(
𝜕2w
𝜕y2 +

1
R

)
+ 2Nxy

𝜕2w
𝜕x𝜕y

+
(
𝜕Qx

𝜕x
+

𝜕Qy

𝜕y

)
+ p

]
dxdy = 0 (8.1d)

The moment equilibrium equations about the X and Y axes are the same as for the plates
given by Eqs. (7.1v) and (7.1w) as follows:

𝜕Mxy

𝜕x
−

𝜕My

𝜕y
+ Qy = 0 (8.1e)
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dy

Ny

Z

Ny
Y

dyNy R

dy
R

θ =

Figure 8.2 Component of Ny in the Z direction due to initial curvature.

or
𝜕2Mxy

𝜕x𝜕y
−

𝜕2My

𝜕y2 +
𝜕Qy

𝜕y
= 0 (8.1f)

𝜕Myx

𝜕y
+

𝜕Mx

𝜕x
− Qx = 0 (8.1g)

or
𝜕2Myx

𝜕x𝜕y
+

𝜕2Mx

𝜕x2 −
𝜕Qx

𝜕x
= 0 (8.1h)

Substitute
𝜕Qx

𝜕x
and

𝜕Qy

𝜕y
from Eqs. (8.1f) and (8.1h) into Eq. (8.1d), and Myx = −Mxy to get

𝜕2Mx

𝜕x2 −
2𝜕2Mxy

𝜕x𝜕y
+

𝜕2My

𝜕y2 + Nx
𝜕2w
𝜕x2 + +2Nxy

𝜕2w
𝜕x𝜕y

+ Ny

(
𝜕2w
𝜕y2 +

1
R

)
+ p = 0 (8.1i)

The moment curvature relations in the shell can be assumed to be the same as given by
Eqs. (7.1r)–(7.1t) in plates, thus

Mx = −D
(
𝜕2w
𝜕x2 + 𝜈

𝜕2w
𝜕y2

)
(7.1r)

My = −D
(
𝜕2w
𝜕y2 + 𝜈

𝜕2w
𝜕x2

)
(7.1s)

Mxy = −Myx = D(1 − 𝜈) 𝜕
2w

𝜕x𝜕y
(7.1t)

where D = Eh3

12(1 − 𝜈2)
is called the flexural rigidity of the shell per unit width. Substitute these

expressions into Eq. (8.1i) to give

D
(
𝜕4w
𝜕x4 + 2 𝜕4w

𝜕x2𝜕y2 +
𝜕4w
𝜕y4

)
− Nx

𝜕2w
𝜕x2 − 2Nxy

𝜕2w
𝜕x𝜕y

− Ny

(
𝜕2w
𝜕y2 +

1
R

)
− p = 0 (8.1j)
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Equations (8.1a), (8.1b), and (8.1j) are nonlinear equilibrium equations for thin cylindrical
shells. There are four unknowns Nx, Ny, Nxy, and w in Eqs.(8.1a), (8.1b), and (8.1j). The strain
displacement relations for the middle surface of the shell are identical to those given for plates
(Eqs. 7.34a, 7.34b, and 7.34e) except for 𝜀y because in the Y direction the shell has a curvature
which was not present in a plate. The strain in the X direction is given by

𝜀x =
𝜕u
𝜕x
+ 1

2

(
𝜕w
𝜕x

)2
(8.1k)

The additional term in the shell to be added in the middle surface strain 𝜀y is calculated from
Figure 8.3. The element AB moves to A′B′ due to the radial deformation w. The strain due to
this displacement of the element is given by

A′B′ − AB
AB

= (R − w)d𝜃 − Rd𝜃
Rd𝜃

= −w
R

(8.1l)

Adding the expression in Eq. (8.1l) to the middle surface strain in the Y direction given for
plates by Eq. (7.34b) we obtain

𝜀y =
𝜕v
𝜕y
− w

R
+ 1

2

(
𝜕w
𝜕y

)2

(8.1m)

Since the initial curvature of the shell has no effect on the middle surface shear strain, it is
given by Eq. (7.34e) for the middle surface strain of plates as follows:

𝛾xy =
𝜕u
𝜕y
+ 𝜕v

𝜕x
+ 𝜕w

𝜕x
𝜕w
𝜕y

(8.1n)

The constitutive relations for the thin walled elastic isotropic cylindrical shells are the same
as for plates (Eqs. 7.34f–7.34h)

𝜀x =
1

Eh
(Nx − 𝜈Ny) (8.1o)

𝜀y =
1

Eh
(Ny − 𝜈Nx) (8.1p)

𝛾xy =
2(1 + 𝜈)

Eh
Nxy (8.1q)

B

R

dθ

A
A’

B’

w

Figure 8.3 Circumferential strain due to radial displacement w
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Three equations in three unknowns, u, v, and w can be obtained by using the kinematic and
constitutive relations of Eqs. (8.1k), (8.1m), and (8.1n) and (8.1o)–(8.1q) respectively. These
equations can be reduced further as follows:

𝜕2𝜀x

𝜕y2 = 𝜕3u
𝜕x𝜕y2 +

(
𝜕2w
𝜕x𝜕y

)2

+ 𝜕w
𝜕x

𝜕3w
𝜕x𝜕y2 (8.1r)

𝜕2𝜀y

𝜕x2 = 𝜕3v
𝜕x2𝜕y

− 1
R
𝜕2w
𝜕x2 +

(
𝜕2w
𝜕x𝜕y

)2

+ 𝜕w
𝜕y

𝜕3w
𝜕x2𝜕y

(8.1s)

𝜕2𝛾xy

𝜕x𝜕y
= 𝜕3u

𝜕x𝜕y2 +
𝜕3v

𝜕x2𝜕y
+ 𝜕3w

𝜕x2𝜕y
𝜕w
𝜕y

+ 𝜕2w
𝜕x2

𝜕2w
𝜕y2 +

(
𝜕2w
𝜕x𝜕y

)2

+ 𝜕w
𝜕x

𝜕3w
𝜕x𝜕y2 (8.1t)

Equations (8.1r)–(8.1t) are used to obtain the compatibility relation

𝜕2𝜀x

𝜕y2 +
𝜕2𝜀y

𝜕x2 −
𝜕2𝛾xy

𝜕x𝜕y
=

(
𝜕2w
𝜕x𝜕y

)2

− 𝜕2w
𝜕x2

𝜕2w
𝜕y2 −

1
R
𝜕2w
𝜕x2 (8.1u)

Now a stress function F (x, y) is introduced that satisfies Eqs. (8.1a) and (8.1b) such that

Nx = h𝜕
2F
𝜕y2 (8.1v)

Ny = h𝜕
2F
𝜕x2 (8.1w)

Nxy = −h 𝜕2F
𝜕x𝜕y

(8.1x)

Substitute the forces from Eqs. (8.1v)–(8.1x) in terms of the function F(x, y) into
Eqs. (8.1o)–(8.1q) to give

𝜀x =
1
E

(
𝜕2F
𝜕y2 − 𝜈

𝜕2F
𝜕x2

)
𝜀y =

1
E

(
𝜕2F
𝜕x2 − 𝜈

𝜕2F
𝜕y2

)
𝛾xy = −

2(1 + 𝜈)
E

(
𝜕2F
𝜕x𝜕y

)
Substitute these relations into Eq. (8.1u) to obtain

𝜕4F
𝜕x4 + 2 𝜕4F

𝜕x2𝜕y2 +
𝜕4F
𝜕y4 = E

[(
𝜕2w
𝜕x𝜕y

)2

− 𝜕2w
𝜕x2

𝜕2w
𝜕y2 −

1
R
𝜕2w
𝜕x2

]
(8.1y)

Substitute Eqs. (8.1v)–(8.1x) into Eq. (8.1j) to get

𝜕4w
𝜕x4 + 2 𝜕4w

𝜕x2𝜕y2 +
𝜕4w
𝜕y4 −

h
D

[
𝜕2F
𝜕y2

𝜕2w
𝜕x2 − 2 𝜕2F

𝜕x𝜕y
𝜕2w
𝜕x𝜕y

+ 𝜕2F
𝜕x2

(
1
R
+ 𝜕2w

𝜕y2

)]
−

p
D
= 0

(8.1z)
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We have reduced the number of equations to be simultaneously solved to two in two variables,
F and w, given by Eqs. (8.1y) and (8.1z). These equations were first derived by Donnell in 1934
[2] using the von Kármán large deflection plate theory. Therefore, the equations are called the
von Kármán–Donnell large displacement equilibrium equation for thin cylindrical shells.

8.3 The Linear Theory of Cylindrical Shells

Linear equilibrium equations can be obtained by omitting all quadratic and higher-order terms
in u, v, and w from the nonlinear Eqs. (8.1a), (8.1b), and (8.1j) as follows:

𝜕Nx

𝜕x
+

𝜕Nyx
𝜕y

= 0 (8.2a)

𝜕Ny

𝜕y
+

𝜕Nxy

𝜕x
= 0 (8.2b)

and

D∇4w −
Ny

R
= p (8.2c)

where

∇4w = 𝜕4w
𝜕x4 + 2 𝜕4w

𝜕x2𝜕y2 +
𝜕4w
𝜕y4

The stress-strain and strain-displacement relations for the small displacements in the
shell are

Nx = 𝜎xh = Eh
1 − 𝜈2 (𝜀x + 𝜈𝜀y) (8.2d)

Ny = 𝜎yh = Eh
1 − 𝜈2 (𝜀y + 𝜈𝜀x) (8.2e)

Nxy = 𝜏xyh = Eh
2(1 + 𝜈)

𝛾xy (8.2f)

𝜀x =
𝜕u
𝜕x

, 𝜀y =
𝜕v
𝜕y
− w

R
, 𝛾xy =

𝜕u
𝜕y
+ 𝜕v

𝜕x
(8.2g)

Equations (8.2a)–(8.2c) are a set of three coupled equations in four unknowns Nx, Ny, Nxy, and
w. Substitute the constitutive and kinematic relations (Eqs. 8.2d–8.2g) into Eqs. (8.2a)–(8.2c)
to get the following three equations in three unknowns u, v, and w:

𝜕2u
𝜕x2 +

1 − 𝜈

2
𝜕2u
𝜕y2 +

1 + 𝜈

2
𝜕2v
𝜕x𝜕y

− 𝜈

R
𝜕w
𝜕x

= 0 (8.2h)

𝜕2v
𝜕y2 +

1 − 𝜈

2
𝜕2v
𝜕x2 +

1 + 𝜈

2
𝜕2u
𝜕x𝜕y

− 1
R
𝜕w
𝜕y

= 0 (8.2i)
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D∇4w − 1
R

Eh
1 − 𝜈2

(
𝜕v
𝜕y
− w

R
+ 𝜈

𝜕u
𝜕x

)
= p (8.2j)

Equations (8.2h)–(8.2j) were partially uncoupled by Donnell [3] to get

∇4u = 𝜈

R
𝜕3w
𝜕x3 −

1
R

𝜕3w
𝜕x𝜕y2 (8.2k)

∇4v = 𝜈 + 2
R

𝜕3w
𝜕x2𝜕y

+ 1
R
𝜕3w
𝜕y3 (8.2l)

Apply the operator ∇4 to Eq. (8.2j) to get

D∇8w − 1
R

Eh
1 − 𝜈2

(
∇4 𝜕v

𝜕y
− 1

R
∇4w + 𝜈∇4 𝜕u

𝜕x

)
= ∇4p (8.2m)

Now operate Eq. (8.2k) by 𝜕

𝜕x
and Eq. (8.2l) by 𝜕

𝜕y
to give

∇4 𝜕u
𝜕x

= 𝜈

R
𝜕4w
𝜕x4 −

1
R

𝜕4w
𝜕x2𝜕y2 (8.2n)

and

∇4 𝜕v
𝜕y
= 𝜈 + 2

R
𝜕4w

𝜕x2𝜕y2 +
1
R
𝜕4w
𝜕y4 (8.2o)

Substitute Eqs. (8.2n) and (8.2o) into Eq. (8.2m) to obtain

D∇8w + Eh
R2

𝜕4w
𝜕x4 = ∇

4p (8.2p)

Equations (8.2k), (8.2l), and (8.2p) are partially uncoupled linear equilibrium equations.

8.3.1 Linear Membrane Equations for Cylindrical Shells

If we set the bending rigidity of a shell element to be zero, we get from Eqs. (8.2a)–(8.2c) linear
membrane equations for a cylindrical shell below

𝜕Nx

𝜕x
+

𝜕Nxy
𝜕y

= 0 (8.3a)

𝜕Ny

𝜕y
+

𝜕Nxy

𝜕x
= 0 (8.3b)

−
Ny

R
= p (8.3c)

These are three equations in three unknowns Nx, Ny, and Nxy, and are statically determinate.
From Eq. (8.3c) we get Ny = − pR and hoop stress

𝜎y = −
pR
t

(8.3d)

Where p is the external radial pressure, R is the radius, and t is the thickness of a cylinder.
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8.4 Donnell’s Linear Equations of Stability of Cylindrical Shells

There are relatively small quantities in the shell equilibrium equations that can be neglected to
simplify the solution. The nonlinear equations give the bifurcation point and the corresponding
critical load as well as the post-buckling behavior of the shells shown in Figure 8.4. However,
the solution of the nonlinear equations becomes difficult, so there has been a tendency to sim-
plify the nonlinear equations. To simplify, investigators have omitted different terms leading to
various types of shell equations. The linear equations give the bifurcation point and the corre-
sponding critical load, but do not give the post-buckling behavior of a shell. The curve of the
axial compressive strain versus the axial compressive stress is plotted in Figure 8.4 [4].

The most notable characteristic of the curve is that, as the cylinder bends further after reach-
ing the critical load, the axial load drops. This shows that at finite deflection an equilibrium
position exists at loads that are considerably below the critical load. The phenomenon of sud-
den drop in the axial load is responsible for the discrepancy between the critical load calculated
by the linear theory and the experimental results. In addition, if there are initial imperfections
in the shell, then the critical load drops further, as shown in Figure 8.4 by the dotted line.
Hence, it is believed now that the major reason for the difference between the theoretical and
experimental critical load values lies in the presence of imperfections.

Here we are using the Donnell equations [3] to develop the linear stability theory for cylin-
drical shells. All the idealizations made previously for the nonlinear theory are valid except
that the transverse deflections are assumed to be small in comparison to the shell thickness.
As a consequence, quadratic terms that are functions of the deformations and their derivatives
are negligible and are ignored when formulating the linear governing differential equations of
stability for cylindrical shells.

The equations for determining the bifurcation point load are derived using the adjacent equi-
librium criterion [5]. To the equilibrium configuration at the bifurcation point give small dis-
placement increments that represent the bending of the shell. The total displacements and

1.0

Perfect cylinder

Imperfect cylinder

A

Bσx

εx
εcr

σcr

Figure 8.4 Axially compressed cylinder.
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strains at a point in the shell are assumed to consist of two parts. These total displacements and
strains are

u = uo + ub

v = vo + vb

w = wo + wb

𝜀x = 𝜀xo + 𝜀xb

𝜀y = 𝜀yo + 𝜀yb

𝛾xy = 𝛾xyo + 𝛾xyb (8.4a)

The terms with the subscript o are middle surface pre-buckling terms and the terms with the
subscript b denote bending or buckling mode terms relative to the middle surface. It is assumed
that the displacements (uo, vo, wo) and (u, v, w) are adjacent equilibrium configurations when
there has been no increment in the applied pressure p. The linearization is applied to the non-
linear Eqs. (8.1a), (8.1b), and (8.1j). The increment given to the displacements changes the
internal forces as follows:

Nx = Nxo + ΔNx

Ny = Nyo + ΔNy

Nxy = Nxyo + ΔNxy (8.4b)

where the terms with the subscripts o correspond to the displacements uo, vo, wo and the incre-
mental quantities with prefixes Δ correspond to the incremental displacements ub, vb, wb. Let
Nxb, Nyb, and Nxyb be parts of ΔNx, ΔNy, and ΔNxy that are linear in ub, vb, wb. The strain
displacement relations are given by

𝜀x =
𝜕u
𝜕x
+ 1

2

(
𝜕w
𝜕x

)2

or 𝜀x =
(
𝜕uo

𝜕x
+

𝜕ub

𝜕x

)
+ 1

2

(
𝜕wo

𝜕x

)2

+
(
𝜕wo

𝜕x

)(
𝜕wb

𝜕x

)
+ 1

2

(
𝜕wb

𝜕x

)2

(8.4c)

𝜀y =
𝜕v
𝜕y
− w

R
+ 1

2

(
𝜕w
𝜕y

)2

𝜀y =
(
𝜕vo

𝜕y
+

𝜕vb

𝜕y

)
−

(wo

R
+

wb

R

)
+ 1

2

(
𝜕wo

𝜕y

)2

+
(
𝜕wo

𝜕y

)(
𝜕wb

𝜕y

)
+ 1

2

(
𝜕wb

𝜕y

)2

(8.4d)

𝛾xy =
𝜕u
𝜕y
+ 𝜕v

𝜕x
+ 𝜕w

𝜕x
𝜕w
𝜕y

𝛾xy =
𝜕uo

𝜕y
+

𝜕ub

𝜕y
+

𝜕vo

𝜕x
+

𝜕vb

𝜕x
+

𝜕wo

𝜕x
𝜕wo

𝜕y
+

𝜕wo

𝜕x
𝜕wb

𝜕y
+

𝜕wb

𝜕x
𝜕wo

𝜕y
+

𝜕wb

𝜕x
𝜕wb

𝜕y
(8.4e)

The constitutive relations for thin-walled isotropic elastic cylindrical shells are given as before

Nx = 𝜎xh = Eh
1 − 𝜈2 (𝜀x + 𝜈𝜀y), (8.2d)
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Ny = 𝜎yh = Eh
1 − 𝜈2 (𝜀y + 𝜈𝜀x) (8.2e)

Nxy = 𝜏xyh = Eh
2(1 + 𝜈)

𝛾xy (8.2f)

Equations (8.4c)–(8.4e) and Eqs. (8.2d)–(8.2f) give

Nx = Nxo + ΔNx

= Eh
1 − 𝜈2

[(
𝜕uo

𝜕x
+

𝜕ub

𝜕x

)
+ 1

2

(
𝜕wo

𝜕x

)2

+
(
𝜕wo

𝜕x

)(
𝜕wb

𝜕x

)
+ 1

2

(
𝜕wb

𝜕x

)2

+ 𝜈

{(
𝜕vo

𝜕y
+

𝜕vb

𝜕y

)
−

(wo

R
+

wb

R

)
+ 1

2

(
𝜕wo

𝜕y

)2

+
(
𝜕wo

𝜕y

)(
𝜕wb

𝜕y

)
+ 1

2

(
𝜕wb

𝜕y

)2
}]

(8.4f)

Nxo =
Eh

1 − 𝜈2

[
𝜕uo

𝜕x
+ 1

2

(
𝜕wo

𝜕x

)2

+ 𝜈

{
𝜕vo

𝜕y
−

wo

R
+ 1

2

(
𝜕wo

𝜕y

)2
}]

ΔNx =
Eh

1 − 𝜈2

[
𝜕ub

𝜕x
+

(
𝜕wo

𝜕x

)(
𝜕wb

𝜕x

)
+ 1

2

(
𝜕wb

𝜕x

)2

+𝜈

{
𝜕vb

𝜕y
−

wb

R
+

(
𝜕wo

𝜕y

)(
𝜕wb

𝜕y

)
+ 1

2

(
𝜕wb

𝜕y

)2
}]

(8.4g)

Hence,

Nxb ==
Eh

1 − 𝜈2

[
𝜕ub

𝜕x
+

(
𝜕wo

𝜕x

)(
𝜕wb

𝜕x

)
+ 𝜈

{
𝜕vb

𝜕y
−

wb

R
+

(
𝜕wo

𝜕y

)(
𝜕wb

𝜕y

)}]
(8.4h)

Similarly,

Ny = Nyo + ΔNy

Nyo =
Eh

1 − 𝜈2

[
𝜕vo

𝜕y
−

wo

R
+ 1

2

(
𝜕wo

𝜕y

)2

+ 𝜈

{
𝜕uo

𝜕x
+ 1

2

(
𝜕wo

𝜕x

)2
}]

(8.4i)

ΔNy =
Eh

1 − 𝜈2

[
𝜕vb

𝜕y
−

wb

R
+

(
𝜕wo

𝜕y

)(
𝜕wb

𝜕y

)
+ 1

2

(
𝜕wb

𝜕y

)2

+𝜈

{
𝜕ub

𝜕x
+

(
𝜕wo

𝜕x

)(
𝜕wb

𝜕x

)
+ 1

2

(
𝜕wb

𝜕x

)2
}]

Hence,

Nyb ==
Eh

1 − 𝜈2

[
𝜕vb

𝜕y
−

wb

R
+

(
𝜕wo

𝜕y

)(
𝜕wb

𝜕y

)
+𝜈

{
𝜕ub

𝜕x
+

(
𝜕wo

𝜕x

)(
𝜕wb

𝜕x

)}]
(8.4j)
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Nxy = Nxyo + ΔNxy

Nxyo =
Eh

2(1 + 𝜈)

[
𝜕uo

𝜕y
+

𝜕vo

𝜕x
+

(
𝜕wo

𝜕x

)(
𝜕wo

𝜕y

)]
(8.4k)

ΔNxy =
[
𝜕ub

𝜕y
+

𝜕vb

𝜕x
+

(
𝜕wo

𝜕x

)(
𝜕wb

𝜕y

)
+

(
𝜕wo

𝜕y

)(
𝜕wb

𝜕x

)
+

(
𝜕wb

𝜕x

)(
𝜕wb

𝜕y

)]
Hence,

Nxyb =
[
𝜕ub

𝜕y
+

𝜕vb

𝜕x
+

(
𝜕wo

𝜕x

)(
𝜕wb

𝜕y

)
+

(
𝜕wo

𝜕y

)(
𝜕wb

𝜕x

)]
(8.4l)

Substitute Eqs. (8.4a) and (8.4b) into Eqs. (8.1a), (8.1b), and (8.1j). All terms containing uo,
vo, and wo alone and the corresponding Nxo, Nyo, and Nxyo and the radial pressure term p
drop out because uo, vo, and wo is an equilibrium configuration. In addition, the quadratic and
higher-order terms in ub, vb, wb or their counterpart in the form of Nxb, Nyb, and Nxyb may be
neglected because ub, vb, wb are small. The resulting equations are

𝜕Nxb

𝜕x
+

𝜕Nxyb

𝜕y
= 0 (8.4m)

𝜕Nyb

𝜕y
+

𝜕Nxyb

𝜕x
= 0 (8.4n)

D∇4wb −
[(

Nxo
𝜕2wb

𝜕x2 + Nxb
𝜕2wo

𝜕x2

)
+

(
Nyo

𝜕2wb

𝜕y2 + Nyb
𝜕2wo

𝜕y2

)
+

(
2Nxyo

𝜕2wb

𝜕x𝜕y
+ 2Nxyb

𝜕2wo

𝜕x𝜕y

)]
−

Nyb

R
= 0 (8.4o)

where

Nxo = 𝜎xoh = Eh
1 − 𝜈2 (𝜀xo + 𝜈𝜀yo) Nxb = 𝜎xbh = Eh

1 − 𝜈2 (𝜀xb + 𝜈𝜀yb)

Nyo = 𝜎yoh = Eh
1 − 𝜈2 (𝜀yo + 𝜈𝜀xo) Nyb = 𝜎ybh = Eh

1 − 𝜈2 (𝜀yb + 𝜈𝜀xb)

Nxyo = 𝜏xyoh = Eh
2(1 + 𝜈)

𝛾xyo Nxyb = 𝜏xybh = Eh
2(1 + 𝜈)

𝛾xyb (8.4p)

and the strain displacement elations are

𝜀xo =
𝜕uo

𝜕x
+ 1

2

(
𝜕wo

𝜕x

)2

𝜀xb =
𝜕ub

𝜕x
+

(
𝜕wo

𝜕x

)(
𝜕wb

𝜕x

)
𝜀y0 =

𝜕v0

𝜕y
− w

R
+ 1

2

(
𝜕w0

𝜕y

)2

𝜀yb =
𝜕vb

𝜕y
−

wb

R
+

(
𝜕wo

𝜕y

)(
𝜕wb

𝜕y

)
(8.4q)

𝛾xyo =
𝜕uo

𝜕y
+

𝜕vo

𝜕x
+

(
𝜕wo

𝜕x

)(
𝜕wo

𝜕y

)
𝛾xyb =

𝜕ub

𝜕y
+

𝜕vb

𝜕x
+

(
𝜕wo

𝜕x

)(
𝜕wb

𝜕y

)
+

(
𝜕wo

𝜕y

)(
𝜕wb

𝜕x

)
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The influence of pre-buckling rotations is very small in many cases, hence we neglect the

terms containing pre-buckling rotations
𝜕wo

𝜕x
and

𝜕wo

𝜕y
. The terms containing the rotations,

𝜕wo

𝜕x
,
𝜕wo

𝜕y
are eliminated from Eqs. (8.4m)–(8.4o) to get the stability equations

𝜕Nxb

𝜕x
+

𝜕Nxyb

𝜕y
= 0

𝜕Nyb

𝜕y
+

𝜕Nxyb

𝜕x
= 0

D∇4wb −
[

Nxo
𝜕2wb

𝜕x2 + Nyo
𝜕2wb

𝜕y2 + 2Nxyo
𝜕2wb

𝜕x𝜕y

]
−

Nyb

R
= 0 (8.4r)

Similarly, neglecting the pre-buckling rotations
𝜕wo

𝜕x
and

𝜕wo

𝜕y
in the strain displacement rela-

tions (Eq. (8.4q) gives

𝜀xo =
𝜕uo

𝜕x
𝜀xb =

𝜕ub

𝜕x

𝜀y =
𝜕vo

𝜕y
− w

R
𝜀yb =

𝜕vb

𝜕y
−

wb

R

𝛾xyo =
𝜕uo

𝜕y
+

𝜕vo

𝜕x
𝛾xyb =

𝜕ub

𝜕y
+

𝜕vb

𝜕x
(8.4s)

Equations (8.4p), (8.4r), and (8.4s) lead to a coupled set of three linear homogeneous
equations in the variables ub, vb, wb.

By substituting constitutive and kinematic relations from Eqs. (8.4p) and (8.4s) in Eq.(8.4r)
we get

𝜕2ub

𝜕x2 + 1 − 𝜈

2
𝜕2ub

𝜕y2 + 1 + 𝜈

2
𝜕2vb

𝜕x𝜕y
− 𝜈

R
𝜕wb

𝜕x
= 0

1 + 𝜈

2
𝜕2ub

𝜕x𝜕y
+ 1 − 𝜈

2
𝜕2vb

𝜕x2 +
𝜕2vb

𝜕y2 − 1
R
𝜕wb

𝜕y
= 0 (8.4t)

D∇4wb −
[

Nx0
𝜕2wb

𝜕x2 + Ny0
𝜕2wb

𝜕y2 + 2Nxy0
𝜕2wb

𝜕x𝜕y

]
− 1

R
Eh

1 − 𝜈2

(
𝜕vb

𝜕y
−

wb

R
+ 𝜈

𝜕ub

𝜕x

)
= 0

Equation (8.4t) are the Donnell’s coupled equations in the variables ub, vb, and wb. Donnell
[3] uncoupled these equations partially and wrote them in the following form

∇4ub =
𝜈

R
𝜕3wb

𝜕x3 − 1
R

𝜕3wb

𝜕x𝜕y2 (8.4u)
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∇4vb =
𝜈 + 2

R
𝜕3wb

𝜕x2𝜕y
+ 1

R
𝜕3wb

𝜕y3 (8.4v)

D∇8wb +
Eh
R2

𝜕4wb

𝜕x4 − ∇4
(

Nx0
𝜕2wb

𝜕x2 + 2Nxy0
𝜕2wb

𝜕x𝜕y
+ Ny0

𝜕2wb

𝜕y2

)
= 0 (8.4w)

Equations (8.4u)–(8.4w) are called Donnell’s uncoupled stability equations that can be com-
pared with Eqs. (8.2k), (8.2l), and (8.2p). Equation (8.4w) is a homogeneous equation in wb
only, with variable coefficients Nx0, Ny0, and Nxy0. The coefficients Nx0, Ny0, and Nxy0 are gov-
erned by the linear equilibrium equations given by Eqs. (8.2a)–(8.2c) because the influence
of pre-buckling rotations has been neglected. The cylindrical shell stability equations where
pre-buckling rotation terms are retained are given by Eqs. (8.4m)–(8.4o). The corresponding
equations where pre-buckling terms are omitted are given in equivalent forms by Eqs. (8.4r),
(8.4t) and (8.4u)–(8.4w).

8.5 The Energy Method

The nonlinear equilibrium equations for the cylindrical shells are now derived using the prin-
ciple of minimum potential energy. The total potential of the cylindrical shell is the sum of
the strain energy U of the shell and the potential energy V of the applied load and can be
written as

Π = U + V (8.5a)

The strain energy of a deformed shell can be expressed as the sum of strain energy due to
membrane action Um and the strain energy due to bending Ub:

U = Um + Ub (8.5b)

Um =
1
2 ∫

h
2

− h
2
∫ ∫

(𝜎x𝜀x + 𝜎y𝜀y + 𝜏xy𝛾xy)dxdydz

Substitute Eqs. (8.2d)–(8.2f) to get

Um =
1
2

Eh
1 − 𝜈2 ∫ ∫

(
𝜀2

x + 𝜀2
y + 2𝜈𝜀x𝜀y +

1 − 𝜈

2
𝛾2

xy

)
dxdy (8.5c)

The strain energy due to bending is given by Eq. (7.17c) as in the case of plates

Ub =
D
2 ∫ ∫

[(
𝜕2w
𝜕x2

)2

+
(
𝜕2w
𝜕y2

)2

+ 2𝜈
(
𝜕2w
𝜕x2

)(
𝜕2w
𝜕y2

)
+ 2(1 − 𝜈)

(
𝜕2w
𝜕x𝜕y

)2
]

dxdy

(8.5d)

For a cylindrical shell subjected to lateral pressure p, the potential energy of the applied load
is

V = −
∫ ∫

pwdxdy (8.5e)
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The total potential energy of the shell is given by using Eqs. (8.5b)–(8.5e) as

Π =
∫ ∫

[
1
2

Eh
1 − 𝜈2

(
𝜀2

x + 𝜀2
y + 2𝜈𝜀x𝜀y +

1 − 𝜈

2
𝛾2

xy

)
+

D
2

{(
𝜕2w
𝜕x2

)2

+
(
𝜕2w
𝜕y2

)2

+ 2𝜈
(
𝜕2w
𝜕x2

)(
𝜕2w
𝜕y2

)
+ 2(1 − 𝜈)

(
𝜕2w
𝜕x𝜕y

)2
}
− pw

]
dxdy

(8.5f)
The integrant F is given by

F = 1
2

Eh
1 − 𝜈2

(
𝜀2

x + 𝜀2
y + 2𝜈𝜀x𝜀y +

1 − 𝜈

2
𝛾2

xy

)
+D

2

{(
𝜕2w
𝜕x2

)2

+
(
𝜕2w
𝜕y2

)2

+ 2𝜈
(
𝜕2w
𝜕x2

)(
𝜕2w
𝜕y2

)
+ 2(1 − 𝜈)

(
𝜕2w
𝜕x𝜕y

)2
}
− p w

(8.5g)

The Euler equations for the integrant F in the total potential energy expression in Eq. (8.5f)
are given by Eq. (D.10) in Appendix D

𝜕F
𝜕u

− 𝜕

𝜕x
𝜕F
𝜕u,x

− 𝜕

𝜕y
𝜕F
𝜕u,y

= 0

𝜕F
𝜕v
− 𝜕

𝜕x
𝜕F
𝜕v,x

− 𝜕

𝜕y
𝜕F
𝜕v,y

= 0

𝜕F
𝜕w

− 𝜕

𝜕x
𝜕F
𝜕w,x

− 𝜕

𝜕y
𝜕F
𝜕w,y

+ 𝜕2

𝜕x2
𝜕F
𝜕w,xx

+ 𝜕2

𝜕x𝜕y
𝜕F
𝜕w,xy

+ 𝜕2

𝜕y2
𝜕F
𝜕w,yy

= 0 (D.10)

𝜀2
x =

(
u,x +

1
2

w2
,x

)2
= u2

,x +
1
4

w4
,x + u,xw2

,x

𝜀2
y =

(
v,y −

w
R
+ 1

2
w2
,y

)2

𝛾2
xy = (u,y + v,x + w,xw,y)2 (8.5h)

Equations (8.5g) and (8.5h) give
𝜕F
𝜕u

= 0

𝜕F
𝜕u,x

= 1
2

Eh
1 − 𝜈2

{
2
(

u,x +
1
2

w2
,x

)
+ 2𝜈

(
vy −

w
R
+ 1

2
w2
,y

)}
𝜕

𝜕x
𝜕F
𝜕u,x

= 1
2

Eh
1 − 𝜈2

{
2u,xx + 2w,xw,xx + 2𝜈

(
v,yx −

1
R

w,x + w,yw,yx

)}
𝜕F
𝜕u,y

= 1
2

Eh
1 − 𝜈2 {(1 − 𝜈)(u,y + v,x + w,xw,y)}

𝜕

𝜕y
𝜕F
𝜕u,y

= 1
2

Eh
1 − 𝜈2 {(1 − 𝜈)(u,yy + v,xy + w,xw,yy + w,yw,xy)}
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Substitute in the first equation of Eq. (D.10) to obtain
1
2

Eh
1 − 𝜈2

{
2u,xx + 2w,xw,xx + 2𝜈

(
v,yx −

1
R

w,x + w,yw,yx

)
+

(1 − 𝜈)(u,yy + v,xy + w,xw,yy + w,yw,xy)
}
= 0

Eh
1 − 𝜈2

[
u,xx + w,xw,xx + 𝜈

(
v,xy −

1
R

w,x + wyw,yx

)]
+

Eh
2(1 + 𝜈)

[u,yy + v,xy + w,xw,yy + w,yw,xy] = 0 (8.5i)

Equation (8.5i) is the same as Eq. (8.1a), the nonlinear equilibrium equation for thin cylin-
drical shells

𝜕Nx

𝜕x
+

𝜕Nxy

𝜕y
= 0 (8.1a)

Similarly, the second and third Euler equations in Eq. (D.10) will lead to the nonlinear equi-
librium equations of Eqs. (8.1b) and (8.1j) respectively.

𝜕Ny

𝜕y
+

𝜕Nxy

𝜕x
= 0 (8.1b)

D
(
𝜕4w
𝜕x4 + 2 𝜕4w

𝜕x2𝜕y2 +
𝜕4w
𝜕y4

)
− Nx

𝜕2w
𝜕x2 − 2Nxy

𝜕2w
𝜕x𝜕y

− Ny

(
𝜕2w
𝜕y2 +

1
R

)
− p = 0 (8.1j)

8.6 Application of the Linear Stability Equations

Donnell’s stability equations are used in this section to obtain critical loads for circular cylin-
ders. Pre-buckling rotations are omitted in these applications. The subscript b, for example in
the incremental quantities wb, Nxyb, etc. is omitted for simplicity.

8.6.1 Circular Cylinders Under Axial Compression

Consider a cylindrical shell of length L and radius R that is simply supported at its ends and is
subjected to a uniformly distributed axial compressive force P in lbs. (Newtons). The cylinder
shortens under the action of the compressive force and increases in diameter except at the
ends and the pre-buckling deformation of the shell is axisymmetric as shown in Figure 8.5a.
The radial displacement w0 is a function of x with the localized bending near the cylinder ends
but we assume it to be uniform for simplicity, as shown in Figure 8.5b. Then the pre-buckling
deformation may be determined by the linear membrane equations with sufficient accuracy.
From membrane analysis of the unbuckled cylinder

Nx0 = −
P

2𝜋R
and Nxy0 = Ny0 = 0 (8.6a)
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(a) (b)

w0
R

w0 L

Figure 8.5 Cylinder under the action of axial compression: (a) Buckled shape: (b) Buckled shape idealization.

The critical load Pcr is the lowest load at which the equilibrium ceases to be stable in the
axisymmetric form. The critical load is determined by solving the Donnell equation, Eq. (8.4w),
as given by Batdorf [6]. Substitute Eq. (8.6a) into Eq. (8.4w) to get

D∇8w + Eh
R2

𝜕4w
𝜕x4 +

P
2𝜋R

∇4 𝜕
2w
𝜕x2 = 0 (8.6b)

Equation (8.6b) is a linear partial differential equation with constant coefficients. For simply
supported ends, the boundary conditions are

w = 𝜕2w
𝜕x2 = 0 at x = 0 and x = L (8.6c)

Both the governing differential equation and the boundary conditions are satisfied if the lat-
eral displacement is taken, of the form

w = A sin m𝜋x
L

sin
n𝜋y
𝜋R

(8.6d)

where m and n are the number of half-waves in the longitudinal and the circumferential direc-
tions respectively. Let

𝛽 = nL
𝜋R

(8.6e)

then Eq. (8.6d) can be written as

w = A sin m𝜋x
L

sin
𝛽𝜋y

L
(8.6f)

From Eq. (8.6f), we have

∇8w = ∇4∇4w = ∇4
(
𝜕4w
𝜕x4 + 2 𝜕4w

𝜕x2𝜕y2 +
𝜕4w
𝜕y4

)
𝜕2w
𝜕x2 = −

m2𝜋2

L2 A sin m𝜋x
L

sin
𝛽𝜋y

L
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𝜕4w
𝜕x4 =

m4𝜋4

L4 A sin m𝜋x
L

sin
𝛽𝜋y

L
𝜕4w
𝜕y4 = 𝛽4𝜋4

L4 A sin m𝜋x
L

sin
𝛽𝜋y

L

2 𝜕4w
𝜕x2𝜕y2 = 2m2𝜋2

L2
𝛽2𝜋2

L2 A sin m𝜋x
L

sin
𝛽𝜋y

L

∇4w = 𝜋4

L4 (m
2 + 𝛽2)2A sin m𝜋x

L
sin

𝛽𝜋y
L

∇8w = 𝜋8

L8 (m
2 + 𝛽2)4A sin m𝜋x

L
sin

𝛽𝜋y
L

∇4 𝜕
2w
𝜕x2 = −

m2𝜋2

L2

(
𝜋

L

)4
(m2 + 𝛽2)2A sin m𝜋x

L
sin

𝛽𝜋y
L

(8.6g)

Substitute Eq. (8.6g) into Eq. (8.6b) to obtain

D
(
𝜋

L

)8
(m2 + 𝛽2)4 + Eh

R2 m4
(
𝜋

L

)4
− P

2𝜋R

(
𝜋

L

)6
m2(m2 + 𝛽2)2 = 0 (8.6h)

Divide Eq. (8.6h) by D
(
𝜋

L

)8
, and substitute, D = Eh3

12(1 − 𝜈2)
, and we can write

(m2 + 𝛽2)4 + 12Z2m4

𝜋4 − kxm2(m2 + 𝛽2)2 = 0 (8.6i)

where

Z = L2

Rh
(1 − 𝜈2)

1
2 (8.6j)

and

kx =
P

2𝜋R
L2

D𝜋2 (8.6k)

Z is a nondimensional Bartdorf parameter useful for differentiating between long and short
cylinders. kx is a buckling stress parameter similar to that appears in plate buckling equation
(Eq. (7.7n)).

Solving for kx in Eq. (8.6i) we have

kx =
(m2 + 𝛽2)2

m2 + 12Z2m2

𝜋4(m2 + 𝛽2)2
(8.6l)

Differentiate kx with respect to (m
2 + 𝛽2)2

m2 and set equal to zero to get minimum kx.

Let s = (m2 + 𝛽2)2

m2 , and substitute in Eq. (8.6l) to get

kx = s + 12Z2

𝜋4s
dkx

ds
= 1 + 12Z2

𝜋4

(
− 1

s2

)
= 0
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or

s =
(

12Z2

𝜋4

) 1
2

or

(m2 + 𝛽2)2

m2 =
(

12Z2

𝜋4

) 1
2

(8.6m)

Substitute Eq. (8.6m) into Eq. (8.6l) to get

kx = 2
(

12Z2

𝜋4

) 1
2

or

kx =
4
√

3
𝜋2 Z (8.6n)

From Eqs. (8.6k) and (8.6n) we obtain

kx =
P

2𝜋R
L2

D𝜋2 =
4
√

3
𝜋2 Z (8.6o)

or

𝜎cr =
P

2𝜋Rh
= Eh

R
1√

3(1 − 𝜈2)
(8.6p)

If

𝜈 = 0.3

𝜎cr = 0.605Eh
R

(8.6q)

From Eq. (8.6m), 𝛽 is given by

𝛽 =

[
(12Z2)

𝜋

1
4

m −m2

] 1
2

(8.6r)

At

Z = 2.85

𝛽 = m
1
2 (1 −m)

1
2 (8.6s)

which means Z can be smaller than 2.85 if either m< 1 or 𝛽 is imaginary. Neither of these
conditions are true, hence Eqs. (8.6o) and (8.6q) are only applicable to cylinders for which
Z > 2.85. Equation (8.6m) indicates that cylindrical shells subjected to axial compression can
have a large number of instability modes corresponding to a single bifurcation point. Since m
and n are positive integers, for Z < 2.85, Eq. (8.6h) and the trial and error procedure may be
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used to determine the critical load. The calculations are simplified if for Z < 2.85, the critical
stress coefficient kx is determined by setting m = 1 and 𝛽 = 0 in Eq. (8.6l).

kx = 1 + 12Z2

𝜋4 (8.6t)

The critical stress for cylinders with Z < 2.85 is given by Eq. (8.6k) as

𝜎cr =
P

2𝜋Rh
=

kxD𝜋2

L2h
(8.6u)

where kx is given by Eq. (8.6t). The graph of Z versus kx found from Eqs. (8.6t) and (8.6o) is plot-
ted in Figure 8.6. As Z approaches zero (cylinder radius approaches infinity), the kx approaches
1. Thus, Eq. (8.6u) gives

𝜎cr =
D𝜋2

L2h
(8.6v)

This indicates the critical stress of a short cylinder approaches that of a wide column, i.e. a
flat plate which is simply supported on the loaded ends and free on the unloaded edges. In the
analysis so far, it is assumed that the failure of a cylinder would occur due to local surface buck-
ling. A very long cylinder can buckle as a column with undeformed cross-section (m = n = 1)
before local surface buckling occurs. The Donnell equations do not give accurate results for
moderately long columns. The critical load is determined by setting, I = 2𝜋Rh(R2)/2 = 𝜋R3h,
in the appropriate column equations in Chapter 2 to determine the critical load.

In summary, the critical load for an axially loaded cylindrical shell depends on its length to
radius ratio. Short length and large radius cylinders behave like plates and buckle into a single
half-wave along the length and with no waves along the circumference. On the other hand, very

1

10

100

1000

10000

1 10 100 1000 10000

kx

z

Figure 8.6 Critical axial pressure for cylindrical shells.
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long cylinders do not involve surface buckling and behave like Euler columns. The cylinders
whose length lies between these two extremes are called intermediate length or moderately
long cylinders, the majority of actual cylinders lie in this category. These cylinders buckle by
developing surface deformations both in the longitudinal and circumferential directions. The
critical stress for the intermediate length cylinders is given by Eq. (8.6p) derived from the Don-
nell linear theory, but the results are not very accurate. Results obtained from the experiments
are usually much smaller than those given by Eq. (8.6q), more accurate results are given in
the literature [7]. The buckled shape of the axially compressed cylindrical shell is shown in
Figure 8.5a. It shows the applied load is eccentric to the shell wall in the mid-length. The
pre-buckling deformations are nonlinear due to this eccentricity and the primary buckling path
is curved from the beginning. The inclusion of this eccentricity is taken care of by a non-linear
large deflection analysis.

8.6.2 Circular Cylinders Under Uniform Lateral Pressure

Consider a cylindrical shell of length L and radius R that is simply supported at its ends
and is subjected to uniform external pressure p in lbs./in.2 (Newtons per square mm). The
pre-buckling deformation is axisymmetric under such loading, as shown in Figure 8.7a. The
radial displacement, w0, is a function of x with the localized bending near the cylinder ends
but we assume it to be uniform for simplicity, as shown in Figure 8.7b. Then the coefficient
Ny0 is governed by the linear membrane equations (Eqs. 8.3a–8.3c), and it is constant. There is
no moment at the ends because of simply supported ends, but the boundary condition allows
longitudinal and radial translations. If the cylinder is free to expand longitudinally as the
lateral pressure is applied, Nxo = 0. Also, Nxyo = 0 if no torsional load is applied. The membrane
analysis of the unbuckled cylinder gives from Eqs. (8.3a–8.3c).

Ny0 = −pR (8.7a)
The critical pressure is defined as the lowest pressure pcr at which the axisymmetric form

loses its stability. Substituting Eq. (8.7a) into Eq. (8.4w) gives

D∇8wb +
Eh
R2

𝜕4w
𝜕x4 + pR∇4 𝜕

2w
𝜕y2 = 0 (8.7b)

L
w0

R

R

w0

(a) (b)

Figure 8.7 Cylinder subjected to uniform external pressure: (a) Buckled shape; (b) Buckled shape idealization.
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The boundary conditions at the simply supported ends are

w = 𝜕2w
𝜕x2 = 0 at x = 0 and x = L (8.7c)

Both the governing equation and the boundary conditions are satisfied by the lateral displace-
ment of the form

w = A sin m𝜋x
L

sin
n𝜋y
𝜋R

m = 1, 2, 3--- and n = 1, 2, 3--- (8.7d)

where m is the number of half-waves in the longitudinal direction and n is the number of
half-waves in the circumferential direction. Let us introduce a variable

𝛽 = nL
𝜋R

(8.7e)

Then Eq. (8.7d) can be written as

w = A sin m𝜋x
L

sin
𝛽𝜋y

L
(8.7f)

Similar to the case of axial compression on the cylinders, we can get the partial derivatives of
w with respect to x and y.

𝜕2w
𝜕y2 = −𝛽2𝜋2

L2 A sin m𝜋x
L

sin
𝛽𝜋y

L

∇4 𝜕
2w
𝜕y2 = −𝛽2𝜋2

L2

(
𝜋

L

)4
(m2 + 𝛽2)2A sin m𝜋x

L
sin

𝛽𝜋y
L

(8.7g)

Substitute Eq. (8.7g) into Eq. (8.7b) to have

D
(
𝜋

L

)8
(m2 + 𝛽2)4 + Eh

R2 m4
(
𝜋

L

)4
− pR

(
𝜋

L

)6
𝛽2(m2 + 𝛽2)2 = 0 (8.7h)

Divide Eq. (8.7h) by
(

𝜋

L

)6
and substitute D = Eh3

12(1−𝜈2)
to obtain

pR
Eh

= h2(m2 + 𝛽2)2

12(1 − 𝜈2)𝛽2

(
𝜋

L

)2
+ m4

R2𝛽2(m2 + 𝛽2)2
(L
𝜋

)2
(8.7i)

For particular values of L/R and R/h, the m and n corresponding to the smallest eigenvalue
that gives the external pressure p may be calculated by trial and error. It is indicated by Brush
and Almroth [5] that for the external pressure p to be minimum, the secondary equilibrium
path will have one half sine wave in the axial direction, i.e. m = 1, and the Eq. (8.7i) can be
written as

pR
Eh

= h2(1 + 𝛽2)2

12(1 − 𝜈2)𝛽2

(
𝜋

L

)2
+ 1

R2𝛽2(1 + 𝛽2)2
(L
𝜋

)2
(8.7j)

Equation (8.7j) can be written as

pR
Eh

=
h2

(
1
𝛽2 + 1

)2

𝛽2

12(1 − 𝜈2)

(
𝜋

L

)2
+ 1

R2𝛽6
(

1
𝛽2 + 1

)2

(L
𝜋

)2
(8.7k)
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If L/R approaches infinity, 𝛽 also approaches infinity and Eq. (8.7k) becomes

p = Eh3

12(1 − 𝜈2)
n2

R3 = n2 D
R3 (8.7l)

Example 8.1 A circular cylinder of diameter, D = 48 in. (1219.2 mm), length, L = 24 in.
(609.6 mm), and a wall thickness of h = 0.24 in. (6.1 mm) is subjected to the uniform exter-
nal pressure, p. Find the critical pressure pcr if the cylinder is made of steel with E = 29× 106psi
(200 000 MPa), and the Poisson’s ratio for the material is 𝜈 = 0.3.

Assume n = 7, then 𝛽 = nL
𝜋R

= 7
𝜋
(1) = 2.23

L∕R = 1 and R∕h = 24∕0.24 [609.6∕6.1] = 100

From Eq. (8.7j) we have

p = 29x106

100

{
(1 + 2.232)2

12(1 − 0.32)2.232
𝜋2

(100)2
+ 1

2.232(1 + 2.232)2𝜋2

}
= 353.66 lb∕in.2[

200,000
100

{
(1 + 2.232)2

12(1 − 0.32)2.232
𝜋2

(100)2
+ 1

2.232(1 + 2.232)2𝜋2

}
= 2.44 N∕mm2

]
Similarly for n = 8, 𝛽 = nL

𝜋R
= 8

𝜋
(1) = 2.55, and pcr = 307.34 lb/in.2 [2.12 N/mm2]

For n = 9, 𝛽 = nL
𝜋R

= 9
𝜋
(1) = 2.87, and p = 312.98 lb/in.2 [2.16 N/mm2]

For other values of n, p is higher, hence pcr = 307.34 lb/in.2 [2.12 N/mm2]

8.6.2.1 Critical Pressures for Cylinders Subjected to External Pressure

Let p̄ = L2R
𝜋2D

p, then, from Eq. (8.7j) we have

p̄ = (1 + 𝛽2)2

𝛽2 + 1
𝛽2(1 + 𝛽2)2

12Z2

𝜋4 (8.8a)

Minimize p̄ with respect to 𝛽 in Eq. (8.8a) to get p̄ as a function of single geometric parameter
Z instead of the two parameters L/R and R/h.

dp̄
d𝛽

= 𝛽2[2(1 + 𝛽2)(2𝛽)] − (1 + 𝛽2)2(2𝛽)
𝛽4 − 2𝛽(1 + 𝛽2)2 + 𝛽2(1 + 𝛽2)(4𝛽)

[𝛽2(1 + 𝛽2)2]2
12Z2

𝜋4 = 0

or
(𝛽2 − 1)(𝛽2 + 1)4

1 + 3𝛽2 = 12Z2

𝜋4 (8.8b)

Let 𝛽 = 2, then, from Eq. (8.8b)

Z2 = 3(5)4

13
𝜋4

12
= 1170.78, and Z = 34.22
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Figure 8.8 Critical external lateral pressure for cylindrical shells.

Use Eq. (8.8a) to get

p̄ = (1 + 4)2

4
+ 1

4(1 + 4)2
12
𝜋4 (1170.78) = 7.69

Similarly, we can calculate Z and p̄ for other assumed values of 𝛽. The graph of Z versus p̄
is plotted in Figure 8.8. From the given dimensions of a cylindrical shell and properties of the
material, we can find the critical external pressure for the cylinder from Figure 8.8 and the crit-
ical stress is given by, 𝜎cr =

pcrR
h

. For the long cylinders which will have large values of L and Z,
the minimization shown here is not very accurate, because n, the number of half-wave lengths
in the circumferential direction, are small and cannot be treated as a continuous variable. As
the cylinder radius approaches infinity, the parameter Z approaches zero, and the critical stress
𝜎cr approaches that of long plates in compression given by 𝜎cr = 4𝜋2D/(L2h) from Figure 7.9.

In the literature Jerath, Sadid, and Ghosh have investigated the buckling of isotropic and
orthotropic cylinders under non-uniform external pressure due to wind load [8, 9].

8.6.3 Cylinders Subjected to Torsion

Consider a simple supported cylindrical shell at its ends of length L and radius R that is sub-
jected to a twisting moment. For simplicity, assume that the membrane analysis can be used
for the pre-buckling deformation. In this case, Nxy0 is constant and Eq. (8.4w) can be written as

D∇8w + Eh
R2

𝜕4w
𝜕x4 − 2Nxy0∇4 𝜕2w

𝜕x𝜕y
= 0 (8.9a)

There is a difference between Eq. (8.9a) and Eqs. (8.6b) and (8.7b) obtained for axial or lateral
compressive forces acting on a cylinder. The difference is that there are odd orders of deriva-
tives with respect to each coordinate in the third term, and even orders of derivatives in the first
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two terms in Eq. (8.9a). Therefore, we cannot satisfy the equation by using the deflection as a
product of sine functions. It means there are no generators that remain straight during buck-
ling due to torsion, instead they are transformed into helical form. The buckling deformation
under the torsional moment consists of a number of waves that spiral around the cylinder from
one end to the other. These waves can be expressed by the displacement function given by the
following expression:

w = A sin
(

m𝜋x
L

−
𝛽𝜋y

L

)
(8.9b)

where 𝛽 = nL
𝜋R

, m and n are the number of half-waves in the longitudinal and circumferential
directions respectively. Equation (8.9b) does not satisfy the boundary conditions at the cylinder
ends, but satisfies the differential equation and the periodicity in the circumferential direc-
tion. Hence, Eq. (8.9b) can be used only for long cylinders in which the constraints at the ends
have little influence on the magnitude of the critical stresses. Now substitute Eq. (8.9b) into
Eq. (8.9a). We can write the partial derivatives of w from Eq. (8.9b) as follows:

𝜕4w
𝜕x4 =

m4𝜋4

L4 A sin
(

m𝜋x
L

−
𝛽𝜋y

L

)
𝜕4w
𝜕y4 = 𝛽4𝜋4

L4 A sin
(

m𝜋x
L

−
𝛽𝜋y

L

)
2 𝜕4w
𝜕x2𝜕y2 = 2m2𝛽2𝜋4

L4 A sin
(

m𝜋x
L

−
𝛽𝜋y

L

)
(8.9c)

∇4w = 𝜋4

L4 (m
2 + 𝛽2)2A sin

(
m𝜋x

L
−

𝛽𝜋y
L

)
∇8w = 𝜋8

L8 (m
2 + 𝛽2)4A sin

(
m𝜋x

L
−

𝛽𝜋y
L

)
∇4 𝜕2w

𝜕x𝜕y
= m𝛽

𝜋6

L6 (m
2 + 𝛽2)2A sin

(
m𝜋x

L
−

𝛽𝜋y
L

)
Substitute Eq. (8.9c) into Eq. (8.9a)[

D𝜋8

L8 (m
2 + 𝛽2)4 + Eh

R2
m4𝜋4

L4 − 2Nxy0
m𝛽𝜋6

L6 (m2 + 𝛽2)2
]

A sin
(

m𝜋x
L

−
𝛽𝜋y

L

)
= 0 (8.9d)

or

Nxy0 =
D

2m𝛽

𝜋2

L2 (m
2 + 𝛽2)2 + Eh

2R2
m3L2

𝜋2𝛽

1
(m2 + 𝛽2)2

(8.9e)

For long cylinders the shell buckles in two circumferential waves, i.e. the smallest value of
Nxy0 corresponds to n = 2 [3]. Substitution of n = 2 gives

Nxy0 =
DL

4m𝜋R3

(
m2𝜋2R2

L2 + 4
)2

+ Ehm3
𝜋3R3

4L3
1(

m2𝜋2R2

L2 + 4
)2
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Also for long cylindrical shells,
(m𝜋R

L

)2
<< 4, hence the Nxy0 can be expressed approxi-

mately as

Nxy0 =
4DL
𝜋R3

1
m
+ Eh

64
𝜋3R3

L3 m3 (8.9f)

The value of m to make Nxy0 minimum can be found from

dNxy0

dm
= 4DL

𝜋R3

(
− 1

m2

)
+ Eh

64
𝜋3R3

L3 (3m2) = 0

or

m4 = 256
3

1
Eh

DL4

𝜋4R6 (8.9g)

Substitute D = Eh3

12(1 − 𝜈2)
to get

m4 = 64
9(1 − 𝜈2)

(
h
R

)2( L
𝜋R

)4
(8.9h)

Equation (8.9f) can be written as

Nxy0 =
Eh
m

[
h2

3(1 − 𝜈2)
L

𝜋R3 +
𝜋3R3m4

64L3

]
Substitute the value of m from Eq. (8.9h) to get

Nxy0 =
0.272E

(1 − 𝜈2)
3
4

(
h
R

) 3
2

h (8.9i)

or

Nxy0

h
= 𝜏cr =

0.272E

(1 − 𝜈2)
3
4

(
h
R

) 3
2

(8.9j)

𝜏cr in Eq. (8.9j) is the approximate value given by Donnell [3] which is 15.25% higher than a
more accurate value given by Eq. (8.9k) in Timoshenko and Gere [7].

𝜏cr =
0.236E

(1 − 𝜈2)
3
4

(
h
R

) 3
2

(8.9k)

The formula in Eq. (8.9k) gives correct critical stress for long cylinders under torsion.
For shorter cylinders the boundary conditions cannot be ignored and finding critical stresses

is more complicated. The solution for shorter cylinders can be found by using the deflection
function composed of a finite sum of terms in Eq. (8.9b). This procedure was followed by Don-
nell [3] to give results for simply supported and clamped cylinders at their ends. The analysis
is simplified by omitting small terms from the equations [7]. Equations (8.9l) and (8.9m) were
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obtained for the short and moderately long cylinders based on these simplifications, where the

parameter, Z < 10
(R

h

)2
. For simply supported ends:

(1 − 𝜈2)
𝜏cr

E
L2

h2 = 2.8 +

√√√√2.6 + 1.40
(√

1 − 𝜈2 L2

2hR

) 3
2

(8.9l)

and for clamped ends:

(1 − 𝜈2)
𝜏cr

E
L2

h2 = 4.6 +

√√√√7.8 + 1.67
(√

1 − 𝜈2 L2

2hR

) 3
2

(8.9m)

Define a parameter, k =
L2h𝜏cr

𝜋2D
= (1 − 𝜈2)

𝜏cr

E
L2

h2
12
𝜋2 and use Z = L2

Rh
(1 − 𝜈2)

1
2 to get, for simply

supported ends:

k =
⎛⎜⎜⎝2.8 +

√
2.6 + 1.40

(Z
2

) 3
2
⎞⎟⎟⎠ 12
𝜋2 (8.9n)

and for clamped ends:

k =
⎛⎜⎜⎝4.6 +

√
7.8 + 1.67

(Z
2

) 3
2
⎞⎟⎟⎠ 12
𝜋2 (8.9o)

The critical shear stress 𝜏cr is plotted in terms of a non-dimensional coefficient k versus Z

in Figure 8.9 for short and moderately long cylinders defined by Z < 10
(R

h

)2
. As the cylinder

radius approaches infinity, the parameter Z approaches zero. In this case, the critical coeffi-
cient k approaches the values of 5.35 and 8.98 obtained for infinitely long flat plates [5] whose
loaded edges are simply supported, whereas the other edges are simply supported and clamped
respectively.

8.6.4 Cylinders Subjected to Combined Axial Compression and Uniform External Lateral
Pressure

Consider a cylindrical shell with simply supported ends subjected to a combined loading con-
sisting of an axial compressive load P in lbs. (Newtons), and a uniform external pressure p in
lbs./in.2 (N/mm2). Under the action of these forces, the cylindrical shell may retain its cylindri-
cal form, but at a certain critical combination of forces the cylindrical form of equilibrium may
become unstable and the cylinder may buckle. If the linear membrane analysis is assumed to
be satisfactory for the axisymmetric pre-buckling deformation, then Eq. (8.4w) for this type of
loading can be written as

D∇8w + Eh
R2

𝜕4w
𝜕x4 + ∇

4
(

P
2𝜋R

𝜕2w
𝜕x2 + pR𝜕2w

𝜕y2

)
= 0 (8.10a)
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Figure 8.9 Critical shear stress for cylindrical shells subjected to torsion.

where the axial compression is given by Nx0 = −
P

2𝜋R
, and the uniform external pressure is

given by Ny0 = − pR. Assume

P
2𝜋R

= qpR (8.10b)

where q is a non-dimensional constant giving the value of load ratio. Substitute Eq. (8.10b) into
Eq. (8.10a) to obtain

D∇8w + Eh
R2

𝜕4w
𝜕x4 + pR∇4

(
q𝜕

2w
𝜕x2 +

𝜕2w
𝜕y2

)
= 0 (8.10c)

Substitute the deflection “w” given by Eq. (8.7f)

w = A sin m𝜋x
L

sin
𝛽𝜋y

L
(8.7f)

in Eq. (8.10c) to get

D
(
𝜋

L

)8
(m2 + 𝛽2)4 + Eh

R2 m4
(
𝜋

L

)4
− pR(qm2 + 𝛽2)𝜋

6

L6 (m
2 + 𝛽2)2 = 0 (8.10d)

or

pR = D(m2 + 𝛽2)2

(qm2 + 𝛽2)

(
𝜋

L

)2
+ Eh

( L
𝜋R

)2 m4

(m2 + 𝛽2)2(qm2 + 𝛽2)
(8.10e)

For any given load ratio “q,” a distinct eigenvalue corresponds to each pair of m and n values.
The minimum eigenvalue may be determined by trial. When the ratio q = 1/2, then P = p𝜋R2,
and the cylinder is acted on by the same uniform pressure p on both of its lateral surface and the
ends. This is called hydrostatic pressure loading. Interaction curves for different combinations
of loads are given in [10].
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8.6.5 Cylindrical Shells with Different End Conditions

The assumed solution of

w = C sin m𝜋x
L

sin
𝛽𝜋y

L
(8.11a)

satisfies the differential Eq. (8.4w), and is satisfactory for the simply supported cylinders with
end conditions of w = 0, and 𝜕2w

𝜕x2 = 0. Substitute Eq. (8.11a) into the uncoupled stability
equations given by Eqs. (8.4u) and (8.4v), and we will see that the displacements u and v must
be expressed as

u = A cos m𝜋x
L

sin
𝛽𝜋y

L
(8.11b)

v = B sin m𝜋x
L

cos
𝛽𝜋y

L
(8.11c)

Substitute the displacements u, v, and w into the uncoupled stability equations, and we will
see that the equations are reduced to a set of three homogeneous ordinary differential equations
with constant coefficients. These displacements satisfy only the end conditions 𝜕u

𝜕x
= v = 0

at x = 0, L. The boundary conditions u = v = w = 𝜕2w
𝜕x2 = 0 are not satisfied. Hence uncou-

pled form of Donnell stability Eqs. (8.4u)–(8.4w) are not suitable for solving cylindrical shell
problems with different end conditions. For general end conditions in cylinders, the coupled
Donnell equations (Eq. 8.4t) may be used. These coupled equations are second order in u and
v and fourth order in w. Therefore, the assumed displacement functions have to satisfy peri-
odicity requirement along the circumference of the cylinder, and four boundary conditions at
each end of the cylindrical shell with a total of eight end conditions. The boundary conditions
can be different at each end including displacements and rotations that have elastic restraints.
Consider a cylinder that is not simply supported at the ends and is subjected to external hydro-
static pressure p. The membrane analysis of the pre-buckled shell under hydrostatic pressure
gives, from Eqs. (8.3a)–(8.3c)

Nx0 = −
1
2

pR
(

see Eq.8.10b, q = 1
2

)
, Ny0 = −pR, Nxy0 = 0 (8.11d)

Substitute these values in Eqs. (8.4t) to have
𝜕2u
𝜕x2 +

1 − 𝜈

2
𝜕2u
𝜕y2 +

1 + 𝜈

2
𝜕2v
𝜕x𝜕y

− 𝜈

R
𝜕w
𝜕x

= 0 (8.11e)

1 + 𝜈

2
𝜕2u
𝜕x𝜕y

+ 1 − 𝜈

2
𝜕2v
𝜕x2 +

𝜕2v
𝜕y2 −

1
R
𝜕w
𝜕y

= 0 (8.11f)

D∇4w − 1
R

Eh
1 − 𝜈2

(
𝜕v
𝜕y
− w

R
+ 𝜈

𝜕u
𝜕x

)
+ pR

(
1
2
𝜕2w
𝜕x2 +

𝜕2w
𝜕y2

)
= 0 (8.11g)

Assume the displacement functions as

u = un(x) cos
𝛽𝜋y

L
(8.11h)
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v = vn(x) sin
𝛽𝜋y

L
(8.11i)

w = wn(x) cos
𝛽𝜋y

L
(8.11j)

Substituting Eqs. (8.11h)–(8.11j) into Eqs. (8.11e)–(8.11g) gives the following coupled ordi-
nary differential equations

d2un

dx2 − 1 − 𝜈

2
𝛽2𝜋2

L2 un +
1 + 𝜈

2
𝛽𝜋

L
dvn

dx
− 𝜈

R
dwn

dx
= 0 (8.11k)

−1 + 𝜈

2
𝛽𝜋

L
dun

dx
+ 1 − 𝜈

2
d2vn

dx2 − 𝛽2𝜋2

L2 vn +
1
R
𝛽𝜋

L
wn = 0 (8.11l)

D
(

d4wn

dx4 − 2𝛽
2𝜋2

L2
d2wn

dx2 + 𝛽4𝜋4

L4 wn

)
− Eh

R(1 − 𝜈2)

(
𝜈

dun

dx
+ 𝛽𝜋

L
vn −

1
R

wn

)
+ pR

(
−𝛽2𝜋2

L2 wn +
1
2

d2wn

dx2

)
= 0 (8.11m)

Sobel [11] obtained the solution of the ordinary differential equations for different sets of
boundary conditions. This procedure is applicable for stability equations with constant coef-
ficients and is not applicable for the stability equations with variable coefficients. For such
problems, numerical methods of analysis are used. Even for the stability equations with con-
stant coefficients, the amount of work involved is so great that the numerical methods are used
in applications.

8.7 Failure and Post-buckling Behavior of Cylindrical Shells

The equilibrium paths of initially perfect and imperfect cylindrical shells subjected to axial
compression are shown in Figure 8.4. It is evident from Figure 8.4 that the buckling load repre-
sents the ultimate strength of the cylinder. It also shows that the buckling load of an imperfect
cylindrical shell is substantially lower than that of the perfect shell. In Figure 8.4 the plot is
for axial compression load but the drop in the buckling load in the presence of imperfections
occurs for other loading conditions also. In the case of cylinders subjected to external pressure
or torsion, the effect of imperfections is small in comparison to the axially loaded case. The
classical solution by the small deflection linear theory was first obtained by Lorenz in 1908 [12]
and was later independently solved by Timoshenko in 1910 [13], Southwell in 1914 [14] and
Flügge in 1932 [15]. The buckling loads obtained from experiments were as low as 30% of the
loads given by the classical theories. Donnell in 1934 [2] proposed a non-linear large deflection
theory to understand the discrepancy between the theoretical and the experimental results.

Donnell added the same nonlinear terms that von Kármán used in solving nonlinear
plate equations and derived the von Kármán–Donnell large displacement cylindrical shell
equations. However, this analysis did not give satisfactory buckling loads. In 1942, von Kármán
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and Tsien [16] used the same nonlinear equations that were used by Donnell but approximated
the lateral deflection that represented more adequately the deformed shape of the buckled
shell. Their analysis gave the stress versus strain solid curve shown in Figure 8.4. It shows
that the actual load a cylinder in practice could support would be less than the critical load
in the post-buckling stage. Several other researchers: Leggett and Jones [17], Michielsen [18],
Kempner [19], Hoff, Madsen, and Mayers [20], have improved on the von Kármán–Tsien
work by including more terms in the nonlinear equations and the assumed deflection
function.

Donnell and Wan [4] in 1950 took into account the initial imperfections in the analysis of
cylindrical shells. They showed that the main reason for the difference in the theoretical and
experimental buckling loads is due to the presence of initial imperfections as shown by the dot-
ted curve in Figure 8.4. It is seen from the two curves that the maximum load reached by an
imperfect cylinder represented by point B is much smaller than the critical load represented by
the point A for the perfect cylinder. Donnell and Wan’s analysis is based on the nonlinear differ-
ential equilibrium equations and assumes a deflected shape of the shell that is slightly different
from the cylindrical shape. Koiter [21] in 1945 confirmed the influence of initial imperfections
and his analysis focused on the initial post-buckling behavior. Koiter’s analysis showed that
a limited amount of information can be obtained about the secondary path by examining the
state of equilibrium at the bifurcation point. When the initial slope of the secondary path at
the bifurcation point is negative, the post-buckling path is unstable and is more sensitive to the
imperfections. In the case of cylinders, the slope of the initial post-buckling path at the bifur-
cation point is negative, hence the cylinders are very sensitive to the presence of imperfections.
This point was emphasized in Chapter 1 also.

8.7.1 Post-Buckling Behavior of Cylindrical Shells

The von Kármán–Donnell large displacement Eqs. (8.1y) and (8.1z) were derived for initially
perfect cylinders. These equations are modified to include the initial imperfections in the shells.
Assume there is an initial distortion w0 in addition to the deformation w produced by the
applied forces in the lateral direction. The initial distortion will change Eq. (8.1z), which is an
equation of equilibrium in the radial direction of the cylinder. The first three terms in Eq. (8.1z)
are related to the lateral shear forces that depend only on the curvature caused by bending due
to external forces, the initial distortion does not affect them. The remaining terms are obtained
by multiplying the components of the middle surface forces by the surface curvature of the
shell. Since the lateral surface curvature is to be used, the total lateral deformation w+w0 is
substituted for w in Eq. (8.1z) to get [22]

𝜕4w
𝜕x4 + 2 𝜕4w

𝜕x2𝜕y2 +
𝜕4w
𝜕y4 −

h
D

[
𝜕2F
𝜕y2

(
𝜕2w
𝜕x2 +

𝜕2w0

𝜕x2

)
− 2 𝜕2F

𝜕x𝜕y

(
𝜕2w
𝜕x𝜕y

+
𝜕2w0

𝜕x𝜕y

)
+ 𝜕2F

𝜕x2

(
1
R
+ 𝜕2w

𝜕y2 +
𝜕2w0

𝜕y2

)]
=

p
D

(8.12a)



Trim Size: 187mm x 235mm Single Column Jerath c08.tex V1 - 11/10/2020 6:44pm Page 542�

� �

�

542 8 Buckling of Shells

The strain–displacement relations (Eqs. 8.1k, 8.1m, 8.1n) are rewritten by replacing w by
w+w0 as follows:

𝜀x =
𝜕u
𝜕x
+ 1

2

(
𝜕(w + w0)

𝜕x

)2

= 𝜕u
𝜕x
+ 1

2

(
𝜕w
𝜕x

+
𝜕w0

𝜕x

)2

or

𝜀x =
𝜕u
𝜕x
+ 1

2

(
𝜕w
𝜕x

)2
+ 1

2

(
𝜕w0

𝜕x

)2

+ 𝜕w
𝜕x

𝜕w0

𝜕x

Neglecting the small term we get

𝜀x =
𝜕u
𝜕x
+ 1

2

(
𝜕w
𝜕x

)2
+ 𝜕w

𝜕x
𝜕w0

𝜕x
(8.12b)

Similarly, we can write

𝜀y =
𝜕v
𝜕y
− w

R
+ 1

2

(
𝜕w
𝜕y

)2

+ 𝜕w
𝜕y

𝜕w0

𝜕y
(8.12c)

𝛾xy =
𝜕u
𝜕y
+ 𝜕v

𝜕x
+ 𝜕w

𝜕x
𝜕w
𝜕y

+ 𝜕w
𝜕x

𝜕w0

𝜕y
+

𝜕w0

𝜕x
𝜕w
𝜕y

(8.12d)

𝜕2𝜀x

𝜕y2 = 𝜕3u
𝜕x𝜕y2 +

𝜕w
𝜕x

𝜕3w
𝜕x𝜕y2 +

(
𝜕2w
𝜕x𝜕y

)2

+ 2
𝜕2w0

𝜕x𝜕y
𝜕2w
𝜕x𝜕y

+ 𝜕w
𝜕x

𝜕3w0

𝜕x𝜕y2 +
𝜕w0

𝜕x
𝜕3w
𝜕x𝜕y2 (8.12e)

𝜕2𝜀y

𝜕x2 = 𝜕3v
𝜕x2𝜕y

− 1
R
𝜕2w
𝜕x2 +

𝜕w
𝜕y

𝜕3w
𝜕y𝜕x2 +

(
𝜕2w
𝜕x𝜕y

)2

+ 2
𝜕2w0

𝜕x𝜕y
𝜕2w
𝜕x𝜕y

+ 𝜕3w
𝜕y𝜕x2

𝜕w0

𝜕y
+ 𝜕w

𝜕y
𝜕3w0

𝜕y𝜕x2

(8.12f)

𝜕2𝛾xy

𝜕x𝜕y
= 𝜕3u

𝜕x𝜕y2 +
𝜕3v

𝜕x2𝜕y
+ 𝜕w

𝜕y
𝜕3w
𝜕y𝜕x2 +

𝜕2w
𝜕x2

𝜕2w
𝜕y2 +

(
𝜕2w
𝜕x𝜕y

)2

+ 𝜕w
𝜕x

𝜕3w
𝜕x𝜕y2 +

𝜕3w
𝜕x2𝜕y

𝜕w0

𝜕y

+𝜕2w
𝜕x2

𝜕2w0

𝜕y2 + 2 𝜕2w
𝜕x𝜕y

𝜕2w0

𝜕x𝜕y
+ 𝜕w

𝜕x
𝜕3w0

𝜕y2𝜕x
+ 𝜕w

𝜕y
𝜕3w0

𝜕x2𝜕y
+

𝜕2w0

𝜕x2
𝜕2w
𝜕y2 +

𝜕w0

𝜕x
𝜕3w
𝜕y2𝜕x

(8.12g)

Equations (8.12e)–(8.12g) are used to obtain the compatibility relation

𝜕2𝜀x

𝜕y2 +
𝜕2𝜀y

𝜕x2 −
𝜕2𝛾xy

𝜕x𝜕y
=

(
𝜕2w
𝜕x𝜕y

)2

+ 2
𝜕2w0

𝜕x𝜕y
𝜕2w
𝜕x𝜕y

− 𝜕2w
𝜕x2

𝜕2w
𝜕y2

− 𝜕2w
𝜕x2

𝜕2w0

𝜕y2 −
𝜕2w0

𝜕x2
𝜕2w
𝜕y2 −

1
R
𝜕2w
𝜕x2 (8.12h)



Trim Size: 187mm x 235mm Single Column Jerath c08.tex V1 - 11/10/2020 6:44pm Page 543�

� �

�

8.7 Failure and Post-buckling Behavior of Cylindrical Shells 543

Use the constitutive relations (Eqs. 8.1o–8.1q) and substitute the stress function from
Eqs. (8.1v)–(8.1x) into Eq. (8.12h) to have

𝜕4F
𝜕x4 + 2 𝜕4F

𝜕x2𝜕y2 +
𝜕4F
𝜕y4 = E

[(
𝜕2w
𝜕x𝜕y

)2

+ 2
𝜕2w0

𝜕x𝜕y
𝜕2w
𝜕x𝜕y

− 𝜕2w
𝜕x2

𝜕2w
𝜕y2

−𝜕2w
𝜕x2

𝜕2w0

𝜕y2 −
𝜕2w0

𝜕x2
𝜕2w
𝜕y2 −

1
R
𝜕2w
𝜕x2

]
(8.12i)

Equations (8.12a) and (8.12i) are the governing differential equations for an initially imper-
fect shell.

8.7.2 Post-buckling Behavior of Cylindrical Panels

The post-buckling behavior of a cylindrical shell is shown here by depicting the post-buckling
behavior of a rectangular cylindrical panel because its behavior is similar to that of a complete
cylinder. It is easier to study the behavior of the panel than that of a complete cylinder and avoid
complex calculations. The rectangular circular panel analysis given here follows that given by
Volmir [23]. A rectangular panel is basically a portion of the entire cylinder bounded by two
generators and two circular arcs. Consider a panel acted upon by a uniform axial compression
px. Let R be the radius of curvature of the panel. Its thickness is h, and the lengths along the gen-
erator (x direction), and along the circumference (y direction) are a. The x and y axes are taken
along the generator and the circumference of the cylindrical panel as shown in Figure 8.10.

It is assumed the panel is simply supported on its edges, the shear force Nxy is absent on each
edge, the edges y = 0, a are free to move in the y direction, and the panel remains rectangular
during buckling. The displacement shape that satisfies these conditions is

w = g sin 𝜋x
a

sin
𝜋y
a

(8.13a)

and assumes the initial distortion in the panel as

w0 = g0 sin 𝜋x
a

sin
𝜋y
a

(8.13b)

a

a

R

h

X

Y Z

pxh
pxh

Figure 8.10 Cylindrical panel under axial compressive load.
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Subsitute Eqs. (8.13a) and (8.13b) in (8.12i) to get

𝜕4F
𝜕x4 + 2 𝜕4F

𝜕x2𝜕y2 +
𝜕4F
𝜕y4 = E

[
(g2 + 2gg0)

𝜋4

2a4

(
cos 2𝜋x

a
+

cos 2𝜋y
a

)
+

g
R
𝜋2

a2 sin 𝜋x
a

sin
𝜋y
a

]
(8.13c)

Use the method of undetermined coefficients to get the particular solution Fp of Eq. (8.13c).
Assume

Fp = A
(

cos 2𝜋x
a

+ cos
2𝜋y

a

)
+ B sin 𝜋x

a
sin

𝜋y
a

(8.13d)

Obtain the necessary derivatives of Fp from Eq. (8.13d) and substitute in Eq. (8.13c) on the
left side. Now, equate the relevant terms on the left and the right sides of (Eq. 8.13c) to obtain

A = E
g2 + 2gg0

32
and B = E

g
R

a2

4𝜋2 (8.13e)

Hence,

Fp = E
g2 + 2gg0

32

(
cos 2𝜋x

a
+ cos

2𝜋y
a

)
+

Eg
4R

a2

𝜋2 sin 𝜋x
a

sin
𝜋y
a

(8.13f)

The homogeneous solution of Eq. (8.13c) should satisfy∇4F = 0 and the boundary conditions
for F. The homogeneous solution can be obtained by considering the primary middle surface
stresses that exist prior to buckling. Prior to buckling Nx = − pxh, Ny =Nxy = 0. Eq. (8.1v) gives

Nx = h𝜕
2F
𝜕y2 . Hence, the homogeneous solution Fh is given by

h𝜕
2F
𝜕y2 = −pxh, or Fh = −

pxy2

2
(8.13g)

Therefore, the total solution of Eq. (8.13c) is given by

F = −
pxy2

2
+ E

g2 + 2gg0

32

(
cos 2𝜋x

a
+ cos

2𝜋y
a

)
+

Eg
4R

a2

𝜋2 sin 𝜋x
a

sin
𝜋y
a

(8.13h)

The quantities g, g0, and px are obtained using the Galerkin method from Eq. (8.12a). Here,
the Galerkin equation is

∫

a

0 ∫

a

0
Q(g)f (x, y)dxdy = 0 (8.13i)

Q(g) is the left-hand side of Eq. (8.12a) and f (x, y) = sin 𝜋x
a

sin
𝜋y
a

.

Q(g) = 𝜕4w
𝜕x4 + 2 𝜕4w

𝜕x2𝜕y2 +
𝜕4w
𝜕y4 −

h
D

[
𝜕2F
𝜕y2

(
𝜕2w
𝜕x2 +

𝜕2w0

𝜕x2

)
− 2 𝜕2F

𝜕x𝜕y

(
𝜕2w
𝜕x𝜕y

+
𝜕2w0

𝜕x𝜕y

)
+ 𝜕2F

𝜕x2

(
1
R
+ 𝜕2w

𝜕y2 +
𝜕2w0

𝜕y2

)]
(8.13j)
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Note that p is zero because there is no radial force in this problem. Use Eqs. (8.13a), (8.13b),
(8.13h) for w, w0, and F to obtain
𝜕4w
𝜕x4 = g𝜋

4

a4 sin 𝜋x
a

sin
𝜋y
a
,

𝜕4w
𝜕y4 = g𝜋

4

a4 sin 𝜋x
a

sin
𝜋y
a
,

𝜕4w
𝜕x2𝜕y2 = g𝜋

4

a4 sin 𝜋x
a

sin
𝜋y
a

𝜕2w
𝜕x2 = −g𝜋

2

a2 sin 𝜋x
a

sin
𝜋y
a
,

𝜕2w
𝜕y2 = −g𝜋

2

a2 sin 𝜋x
a

sin
𝜋y
a
,

𝜕2w
𝜕x𝜕y

= g𝜋
2

a2 cos 𝜋x
a

cos
𝜋y
a

𝜕2w0

𝜕x2 = −g0
𝜋2

a2 sin 𝜋x
a

sin
𝜋y
a
,

𝜕2w0

𝜕y2 = −g0
𝜋2

a2 sin 𝜋x
a

sin
𝜋y
a
,

𝜕2w0

𝜕x𝜕y
= g0

𝜋2

a2 cos 𝜋x
a

cos
𝜋y
a

(8.13k)
𝜕2F
𝜕x2 = −E

g2 + 2gg0

8
𝜋2

a2 cos 2𝜋x
a

−
Eg
4R

sin 𝜋x
a

sin
𝜋y
a

𝜕2F
𝜕y2 = −px − E

g2 + 2gg0

8
𝜋2

a2 cos
2𝜋y

a
−

Eg
4R

sin 𝜋x
a

sin
𝜋y
a

𝜕2F
𝜕x𝜕y

=
Eg
4R

cos 𝜋x
a

cos
𝜋y
a

(8.13l)

Substitute Eqs. (8.13k) and (8.13l) into Eq. (8.13j) to have

Q(g) = 4g𝜋
4

a4 sin 𝜋x
a

sin
𝜋y
a
− h

D

{[
E

g2 + 2gg0

8
𝜋2

a2 cos
2𝜋y

a
+

Eg
4R

sin 𝜋x
a

sin
𝜋y
a
+ px

]
×
[
(g + g0)

𝜋2

a2 sin 𝜋x
a

sin
𝜋y
a

]
−

Eg
2R

cos2𝜋x
a

cos2𝜋y
a
(g + g0)

𝜋2

a2

+
[

E
(g2 + 2gg0)

8
𝜋2

a2 cos 2𝜋x
a

+
Eg
4R

sin 𝜋x
a

sin
𝜋y
a

][
− 1

R
+ (g + g0)

𝜋2

a2 sin 𝜋x
a

sin
𝜋y
a

]}
(8.13m)

Substitute Eq. (8.13m) into Eq. (8.13i) to have

∫

a

0 ∫

a

0

{[
4Dg𝜋

4

a4 +
Ehg
4R2 −

pxh𝜋2

a2 (g + g0)
]

sin2𝜋x
a

sin2𝜋y
a

−Eh𝜋4

8a4 (g
2 + 2gg0)(g + g0)

(
cos

2𝜋y
a

sin2𝜋x
a

sin2𝜋y
a
+ cos 2𝜋x

a
sin2𝜋x

a
sin2𝜋y

a

)
−

Ehg
2R

(g + g0)
𝜋2

a2 sin3𝜋x
a

sin3𝜋y
a
+

Eh(g2 + 2gg0)
8R

𝜋2

a2 cos 2𝜋x
a

sin 𝜋x
a

sin
𝜋y
a

+
Egh
2R

(g + g0)
𝜋2

a2

(
cos2𝜋x

a
cos2𝜋y

a
sin 𝜋x

a
sin

𝜋y
a

)}
dxdy = 0 (8.13n)

Use the following trigonometric quantities and integrals

∫

a

0 ∫

a

0
sin2𝜋x

a
sin2𝜋y

a
dxdy = a2

4

∫

a

0 ∫

a

0
cos

2𝜋y
a

sin2𝜋y
a

sin2𝜋x
a

dxdy =
∫

a

0 ∫

a

0
cos 2𝜋x

a
sin2𝜋x

a
sin2𝜋y

a
dxdy = −a2

8
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∫

a

0 ∫

a

0
sin3𝜋x

a
sin3𝜋y

a
dxdy = 16a2

9𝜋2

∫

a

0 ∫

a

0
cos 2𝜋x

a
sin 𝜋x

a
sin

𝜋y
a

dxdy = − 4a2

3𝜋2

∫

a

0 ∫

a

0
cos 2𝜋x

a
cos

2𝜋y
a

sin 𝜋x
a

sin
𝜋y
a

dxdy = 4a2

9𝜋2

Substituting the integrals into Eq. (8.13n) we get

Dg𝜋4

a2 − px
h𝜋2

4
(g + g0) +

Ehga2

16R2 − Eh
R

(5
6

g2 + gg0

)
+ Eh𝜋4

32a2 (g
3 + 3g2g0 + 2g2

9g) = 0

(8.13o)

or

px =
[

4D𝜋2

ha2 + Ea2

4R2𝜋2 −
4E
𝜋2R

(5
6

g + g0

)
+ E𝜋2

8a2 (g
2 + 3gg0 + 2g2

0)
]

g
g + g0

(8.13p)

Assume the following non-dimensional parameters

p̄x =
pxa2

Eh2 , k = a2

Rh
, 𝛿 =

g
h
, 𝛿0 =

g0

h
(8.13q)

These parameters measure the loading, the curvature and the deflection. Substitute the
parameters from Eq. (8.13q) into Eq. (8.13p) to give

p̄x =
[

𝜋2

3(1 − 𝜈2)
+ k2

4𝜋2 −
4k
𝜋2

(5
6
𝛿 + 𝛿0

)
+ 𝜋2

8
(𝛿2 + 3𝛿𝛿0 + 2𝛿2

0)
]

𝛿

𝛿 + 𝛿0
(8.13r)

p̄x =
[

3.615 + k2

39.478
+ 1.234(𝛿2 + 3𝛿𝛿0 + 2𝛿2

0) − 0.405k(0.833𝛿 + 𝛿0)
]

𝛿

𝛿 + 𝛿0
, If 𝜈 = 0.3

(8.13s)

The relation between the load parameter p̄x and the total deflection parameter 𝛿 + 𝛿0 given
by Eq. (8.13s) is plotted in Figure 8.11 for k = 0 (R = ∞), which is a flat plate. The relation-
ship curves are plotted for initial imperfections of 𝛿0 = 0, and 0.1–0.25 for plates. The curves in
Figure 8.11 show that the imperfect plates with an initial deformation start bending immedi-
ately as soon as the external load is applied. The deflections increase slowly in the beginning as
the load is applied and then increase more rapidly as the critical load is reached. In the case of
perfect and imperfect plates, the maximum load-carrying capacity is much higher than the crit-
ical load. In the post-buckling stage, as the deflection increases, the load continues to increase.
The curves of the imperfect plates approach that of the perfect plates as the deflections increase
further. Thus, one can infer that minor imperfections do not affect the buckling behavior very
seriously in the case of plates. Hence, plates exhibit a stable equilibrium at buckling and the
results obtained from the perfect plates can be used for plates containing minor imperfections.
Koiter [21] called this an imperfection insensitive phenomenon.



Trim Size: 187mm x 235mm Single Column Jerath c08.tex V1 - 11/10/2020 6:44pm Page 547�

� �

�

8.7 Failure and Post-buckling Behavior of Cylindrical Shells 547

0

1

2

3

4

5–

6

7

8

0 0.5
δ + δ0

1 1.5 2

δ0 = 0

0.1

0.15

0.2

0.25

px

Figure 8.11 Post-buckling behavior of flat plates, k = 0.

The behavior of curved panels is described in Figure 8.12. The relation between the load
parameter p̄x and the total deflection parameter 𝛿 + 𝛿0 given by Eq. (8.13s) is plotted in
Figure 8.12 for curved panels where k = 30. The relationship curves are plotted for initial
imperfections of 𝛿0 = 0, and 0.1–0.25. The curves in Figure 8.12 show that the imperfect
cylindrical panels with an initial deformation start bending immediately as soon as the
external load is applied. The deflections increase slowly in the beginning as the load is applied
and then the load drops as the critical load is reached. In the post-buckling stage, as the
deflection increases, the load continues to decrease. The curves of the imperfect curved panels
approach that of the perfect panels as the deflections increase further. The most important
conclusion that can be drawn is that the maximum load that an imperfect curved panel
can support is much less than the critical load obtained from the classical shell theory for
initially perfect panels. For k = 30, the maximum load for initial deformations of 𝛿0 = 0.1
and 0.25 are 66.29 and 51.14% respectively of the maximum load for a perfect panel. The
critical loads for the curved panels represent the maximum carrying capacity for the panels,
which is in contrast to the plates where the maximum load-carrying capacity is higher than
the critical loads. The initial imperfections have a significant effect on the load-carrying
capacity of the curved panels. The curves obtained here for the curved panels compare well
with the curves obtained by Donnell and Wan [4] and thus can be used to draw conclusions
about cylindrical shells. This case is imperfection sensitive because at the critical load, the
cylindrical shell has unstable equilibrium. Koiter [24] studied the effect of initial imperfections
on the post-buckling behavior of cylindrical shells and his work is considered an important
contribution in this area. It is interesting to note that the cylinders subjected to the external
pressure or torsion are not very imperfection sensitive. In these cases, the failure stress is fairly
close to the critical stress calculated by the linear theory.
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Figure 8.12 Post-buckling behavior of cylindrical shells, k = 30.

8.8 General Shells

The theory of thin elastic shells of arbitrary shape is considered here, it means the distance
from any point inside the shell thickness to some reference surface, usually the middle sur-
face, is small in comparison to other dimensions of the shell, such as the radius of curvature
of a shell. The thin shell theory reduces the three-dimensional problem to a two-dimensional
problem. The displacement of any point in the shell is expressed in terms of the displacement
of a corresponding point on the middle surface. The basic equations for the behavior of a thin
elastic shell were first derived by Love [25] in 1888. Love’s theory is based on the following
assumptions:

1. The shell is thin.
2. The deflections of the shell are small.
3. Transverse normal stress is small so it can be neglected.
4. Normals to the reference surface remain straight and normal during the deformation.

The entire theory is based on the thickness of the shell being small, so the ratio of the thick-
ness to the radius of curvature of the reference surface is neglected in comparison to unity.
Usually the shells are considered thin, if the ratio of the thickness to the radius of curvature of
the shell reference surface is less than one-tenth. The assumption of small deflections allows
all derivations with reference to the original configuration of the shell. The assumption that
normal remain normal to the deformed surface implies that the resistance to the deformation
under transverse shear is infinite. This assumption is an extension of the Bernoulii–Euler beam
theory which states that plane sections remain plane after deformation.

8.8.1 Nonlinear Equations of Equilibrium

The nonlinear equilibrium equations and linear stability equations discussed here are based on
the analyses done by Brush and Almroth [5], who followed the approach given by Koiter [26]
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Figure 8.13 General shell coordinates.

and Sanders [27]. The derivations that follow are valid for small strains. The curvilinear coor-
dinates x, y, and z are used in the shell theory as shown in Figure 8.13. If X , Y , and Z are the
rectangular Cartesian coordinates of a point on the middle surface, then X = X (x, y), Y = Y
(x, y), Z = Z (x, y) define the middle surface in Figure 8.13. The middle surface is taken as a
reference surface. The coordinates of a point in the shell are given by x, y, and z, where z is the
normal distance from the middle surface in the thickness of the shell. The positive distance z
is in the direction of positive normal n to the middle surface. The shell coordinates x, y, and z
are orthogonal and are in the direction of the lines of principal curvature. The Rx and Ry are
the principal radii of curvature. The distances dsx and dsy along the coordinate lines are given
by Eq. (E.19) in Appendix E as

dsx = A dx and dsy = B dy (8.14a)

where A and B are called Lamé coefficients for the coordinate system. A and B are given by
Eqs. (E.21) and (E.22) in Appendix E as

A =
√(

𝜕X
𝜕x

)2
+

(
𝜕Y
𝜕x

)2
+

(
𝜕Z
𝜕x

)2
(E.21)

B =

√(
𝜕X
𝜕y

)2

+
(
𝜕Y
𝜕y

)2

+
(
𝜕Z
𝜕y

)2

(E.22)

The area of the surface is given by

area =
∫ ∫

dsxdsy = ∫ ∫
ABdxdy (8.14b)

The strain energy of thin elastic shells is given by

U = Um + Ub (8.14c)

Um =
C
2 ∫ ∫

(
𝜀2

x + 𝜀2
y + 2𝜈𝜀x𝜀y +

1 − 𝜈

2
𝛾2

xy

)
ABdxdy (8.14d)

Ub =
D
2 ∫ ∫

(𝜅2
x + 𝜅2

y + 2𝜈𝜅x𝜅y + 2(1 − 𝜈)𝜅2
xy)ABdxdy (8.14e)
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where 𝜀x, 𝜀y, and 𝛾xy are middle surface normal and shear strains, and 𝜅x, 𝜅y, and 𝜅xy are middle

surface curvature changes and twist. C = Eh
1 − 𝜈2 , and D = Eh3

12(1 − 𝜈2)
, where h is the thickness

of the shell. Um and Ub are the membrane and bending strain energies of the shell. The total
potential energy of the shell Π is given by

Π = U + V (8.14f)

where V is the potential energy of the external forces. Let px, py, and pz be the x, y, and z com-
ponents, respectively, of the load distributed over the surface of the shell element, and let u, v,
and w be the corresponding x, y, and z components of the displacement of a point on the middle
surface. The potential energy of applied load is

V = −
∫ ∫

(pxu + pyv + pzw)ABdxdy (8.14g)

The nonlinear middle surface kinematic relations used here were derived by Sanders [27]

𝜀x = exx +
1
2
𝛽2

x , 𝜀y = eyy +
1
2
𝛽2

y , 𝛾xy = exy + 𝛽x𝛽y

𝜅x = 𝜒xx, 𝜅y = 𝜒yy, 𝜅xy = 𝜒xy (8.14h)

Sanders [27] kinematic relations are given by

exx =
u,x

A
+

A,yv
AB

− w
Rx

eyy =
v,y
B
+

B,xu
AB

− w
Ry

exy =
v,x
A
+

u,y

B
−

B,xv + A,yu
AB

(8.14i)

𝛽x = −
w,x

A
− u

Rx
, 𝛽y = −

w,y

B
− v

Ry
(8.14j)

𝜒xx =
𝛽x,x

A
+

A,y𝛽y

AB

𝜒yy =
𝛽y,y

B
+

B,x𝛽x

AB

2𝜒xy =
𝛽y,x

A
+

𝛽x,y

B
−

A,y𝛽x + B,x𝛽y

AB
(8.14k)

It has been seen in numerical examples that the u and v terms in Eq. (8.14j) have negligible
influence in shell segments that are almost flat and for shells whose displacements are rapidly
varying functions of shell coordinates, such as small buckles where the bases are significantly
smaller than the radius. Such shells are called “quasi-shallow.” By discarding u and v terms in
Eq. (8.14j) we obtain

𝛽x = −
w,x

A
, 𝛽y = −

w,y

B
(8.14l)
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Use Eq. (8.14l) to obtain

𝛽x,x = −
wx,x

A
+

w,xA,x

A2 , 𝛽y,y = −
wy,y

B
+

w,yB,y
B2

𝛽x,y = −
Aw,xy − w,xA,y

A2 𝛽y,x = −
Bw,yx − w,yB,x

B2 (8.14m)

Substitute Eqs. (8.14i), and (8.14l) into Eq. (8.14h) to have

𝜀x =
u,x

A
+

A,yv
AB

− w
Rx
+ 1

2
w,2x

A2

𝜀y =
v,y
B
+

B,xu
AB

− w
Ry
+ 1

2
w,2y

B2

𝛾xy =
v,x
A
+

u,y

B
−

B,xv + A,yu
AB

+
w,xw,y

AB
(8.14n)

Substitute Eq. (8.14m) into Eq. (8.14k) and the expressions for the curvature changes and the
twist for the quasi-shallow shells are given by

𝜅x = 𝜒xx = −
w,xx

A2 +
w, xA,x

A3 −
A,yw,y

AB2

𝜅y = 𝜒yy −
w,yy

B2 +
w, yB,y

B3 −
B,xw,x

A2B

𝜅xy = 𝜒xy = −
w,xy

AB
+

w,xA,y

A2B
+

B,xw,y

AB2 (8.14o)

Substitute Eqs. (8.14n) and (8.14o) into Eqs. (8.14d) and (8.14e) to get the total strain energy
U, and add to it the potential energy of the external forces V to get the total potential energy Π
as follows:

Π = C
2 ∫ ∫

⎡⎢⎢⎣
(u,x

A
+

A,yv
AB

− w
Rx
+ 1

2
w,2x

A2

)2

+

(
v,y
B
+

B,xu
AB

− w
Ry
+ 1

2
w,2y

B2

)2

+2𝜈
(u,x

A
+

A,yv
AB

− w
Rx
+ 1

2
w,2x

A2

)(
v,y
B
+

B,xu
AB

− w
Ry
+ 1

2
w,2y

B2

)

+1 − 𝜈

2

(v,x
A
+

u,y

B
−

B,xv + A,yu
AB

+
w,xw,y

AB

)2
]

ABdxdy

+D
2 ∫ ∫

[(
−

w,xx

A2 +
w, xA,x

A3 −
A,yw,y

AB2

) 2

+
(
−

w,yy

B2 +
w, yB,y

B3 −
B,xw,x

A2B

)2

+2𝜈
(
−

w,xx

A2 +
w, xA,x

A3 −
A,yw,y

AB2

)(
−

w,yy

B2 +
w, yB,y

B3 −
B,xw,x

A2B

)
+

+ 2(1 − 𝜈)
(
−

w,xy

AB
+

w,xA,y

A2B
+

B,xw,y

AB2

)2
]

ABdxdy −
∫ ∫

(pxu + pyv + pzw)ABdxdy

(8.14p)
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Equation (8.14p) is the total potential energy expression for the Donnell-Mushtari-Vlasov
(DMV) form of the general shell equations. The nonlinear equilibrium equations can be
derived from Eq. (8.14p) by applying the principle of stationary potential energy. The Euler
equations derived by the calculus of variations in Appendix D are given by Eq. (D.10)

𝜕F
𝜕u

− 𝜕

𝜕x
𝜕F
𝜕u,x

− 𝜕

𝜕y
𝜕F
𝜕u,y

= 0

𝜕F
𝜕v
− 𝜕

𝜕x
𝜕F
𝜕v,x

− 𝜕

𝜕y
𝜕F
𝜕v,y

= 0

𝜕F
𝜕w

− 𝜕

𝜕x
𝜕F
𝜕w,x

− 𝜕

𝜕y
𝜕F
𝜕w,y

+ 𝜕2

𝜕x2
𝜕F
𝜕w,xx

+ 𝜕2

𝜕x𝜕y
𝜕F
𝜕w,xy

+ 𝜕2

𝜕y2
𝜕F
𝜕w,yy

= 0 (D.10)

where F is the integrand in Eq. (8.14p).

𝜕F
𝜕u

= B,xC(𝜀y + 𝜈𝜀x) − A,y
C
2
(1 − 𝜈)𝛾xy − pxAB

or
𝜕F
𝜕u

= B,xNy − A,yNxy − pxAB

𝜕F
𝜕u,x

= CB(𝜀x + 𝜈𝜀y) = BNx

or

𝜕

𝜕x

(
𝜕F
𝜕u,x

)
= B,xNx + BNx,x

𝜕F
𝜕u,y

= A C
2
(1 − 𝜈)𝛾xy = ANxy

or

𝜕

𝜕y

(
𝜕F
𝜕u,y

)
= A,yNxy + ANxy,y

Substitute the partial derivatives of F in the first equation of Eq. (D.10) to get

B,xNx + BNx,x + 2A,yNxy + ANxy,y − B,xNy = −ABpx

or

(BNx),x + (ANxy),y − B,xNy + A,yNxy = −ABpx (8.14q)

Similarly, substitute the partial derivatives of F in the second and third equations of Eq. (D.10)
to obtain

(ANy),y + (BNxy),x − A,yNx + B,xNxy = −ABpy (8.14r)
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A
(BMx),x

]
,x
−

(A,y

B
Mx

)
,y
+

[ 1
B
(AMy),y

]
,y
−

(
B,x
A

My

)
,x

+2

[
Mxy,xy+

(A,y

A
Mxy

)
,x
+

(
B,x
B

Mxy

)
,y

]
+ AB

(
Nx

Rx
+

Ny

Ry

)
−[(BNx𝛽x + BNxy𝛽y),x + (ANy𝛽y + ANxy𝛽x),y] = −ABpz (8.14s)

where

Nx = C(𝜀x + 𝜈𝜀y) Mx = D(𝜅x + 𝜈𝜅y)
Ny = C(𝜀y + 𝜈𝜀x) My = D(𝜅y + 𝜈𝜅x)

Nxy = C 1 − 𝜈

2
𝛾xy Mxy = D(1 − 𝜈)𝜅xy (8.14t)

Equations (8.14q)–(8.14s) are the nonlinear equations of equilibrium for thin shells of general
shape. These equations can be converted to the rectangular flat plate equations by assuming
A = B = 1 and 1/Rx = 1/Ry = 0. If we substitute the new assumed values in Eqs. (8.14q)–(8.14s)
we have

Nx,x + Nxy,y = 0
Ny,y + Nxy,x = 0 (8.14u)

D∇4w − Nxw,xx − Nyw,yy − 2Nxyw,xy = p

Equation (8.14u) are the flat plate equations given by Eqs. (7.2a), (7.2b), and (7.2j) subjected
to a normal external force of intensity p. We can use Eqs. (8.14q)–(8.14s) to derive equations of
cylindrical shells by assuming A = B = 1 and 1/Rx = 0, Ry = R to obtain

Nx,x + Nxy,y = 0
Ny,y + Nxy,x = 0

D∇4w − Nxw,xx − Ny

(
w,yy +

1
R

)
− 2Nxyw,xy = p (8.14v)

Equations (8.14v) are the circular cylindrical shell equations given by Eqs. (8.1a), (8.1b), and
(8.1j) subjected to a radial pressure p. Similarly, we can derive column equations by setting
A = B = 1, 1/Rx = 1/Ry = 0, Ny = Nxy = My = Mxy = 0, and D = EI. Hence,

EI d4w
dx4 + P d2w

dx2 = 0 (8.14w)

which is the same as Eq. (2.11e) for columns.

8.8.2 Linear Equations of Stability (the Donnell Type)

Linear equilibrium equations can be obtained from the nonlinear equations of Eqs. (8.14q)–
(8.14s) as outlined by Brush and Almroth [5] from the adjacent equilibrium configurations.
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Consider the equilibrium at the bifurcation point given by the displacements u0, v0, and w0.
This equilibrium position is perturbed by the small arbitrary incremental displacements u1, v1,
w1, and we get an adjacent equilibrium configuration represented by the displacements u, v,
and w at the same applied load such that

u → u0 + u1

v → v0 + v1

w → w0 + w1 (8.15a)

The increments in the displacement components change the internal forces and rotations
such as

Nx → Nx0 + ΔNx

Ny → Ny0 + ΔNy

Nxy → Nxy0 + ΔNxy

𝛽x → 𝛽x0 + 𝛽x1

𝛽y → 𝛽y0 + 𝛽y1 (8.15b)

The terms with 0 subscript correspond to u0, v0, w0 displacements, whereas ΔNx, ΔNy,
ΔNxy, 𝛽x1, and 𝛽y1 are the increments corresponding to the displacements u1, v1, and w1.
Substitution of Eqs. (8.15a) into Eqs. (8.14q)–(8.14s) give equations that contain terms that
are linear, quadratic, and cubic in u0, v0, w0 and u1, v1, w1 displacement components. In these
equations, the terms containing u0, v0, w0 equate to zero because they constitute an equilibrium
position. The quadratic and cubic terms of u1, v1, w1 can be neglected because the arbitrary
displacement increments are small. Therefore, the resulting equations are homogeneous and
linear in u1, v1, w1. Let Nx1, Ny1, Nxy1 be the portions of ΔNx, ΔNy, ΔNxy respectively that
are linear in u1, v1, w1. Substitute Eqs. (8.14h), (8.14i), (8.14k), and (8.14l) into Eqs. (8.14t)
to obtain

Nx = C
{

1
A

u,x +
A,y

AB
v − w

Rx
+ 1

2A2 (w,x)2 + 𝜈

[v,y
B
+

B,x
AB

u − w
Ry
+ 1

2B2 (w,y)2
]}

(8.15c)

Nx0 + ΔNx = C
{

1
A
(u0,x + u1,x) +

A,y

AB
(v0 + v1) −

1
Rx
(w0 + w1)

+ 1
2A2 (w0,x)2 +

1
A2 (w0,x)(w1,x) +

1
2A2 (w1,x)2

+ 𝜈

[
1
B
(v0,y + v1,y) +

B,x

AB
(u0 + u1) −

1
Ry
(w0 + w1)

+ 1
2B2 (w0,y)2 +

1
B2 (w0,y)(w1,y) +

1
2B2 (w1,y)2

]}
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Nx0 = C
{

1
A

u0,x +
A,y

AB
v0 −

1
Rx

w0 +
1

2A2 (w0,x)2 + 𝜈

[
1
B

v0,y +
B,x

AB
u0 −

w0

Ry
+ 1

2B2 (w0,y)2
]}

ΔNx = C
{

1
A

u1,x +
A,y

AB
v1 −

1
Rx

w1 +
1

A2 (w0,x)(w1,x) +
1

2A2 (w1,x)2

+ 𝜈

[
1
B

v1,y +
B,x

AB
u1 −

1
Ry

w1 + 1
B2 (w0,y)(w1,y) +

1
2B2 (w1,y)2

]}
Nx1 = C

{
1
A

u1,x +
A,y

AB
v1 −

1
Rx

w1 +
1

A2 (w0,x)(w1,x)

+ 𝜈

[
1
B

v1,y +
B,x

AB
u1 −

1
Ry

w1 + 1
B2 (w0,y)(w1,y)

]}
(8.15d)

Similarly,

Ny = C
{

1
B

v,y +
B,x
AB

u − w
Ry
+ 1

2B2 (w,y)2 + 𝜈

[
u,x
A
+

A,y

AB
v − w

Rx
+ 1

2A2 (w,x)2
]}

(8.15e)

Ny0 + ΔNy = C
{

1
B
(v0,y + v1,y) +

B,x
AB
(u0 + u1) −

1
Ry
(w0 + w1)

+ 1
2B2 (w0,y)2 +

1
B2 (w0,y)(w1,y) +

1
2B2 (w1,y)2

+ 𝜈

[
1
A
(u0,x + u1,x) +

A,y

AB
(v0 + v1) −

1
Rx
(w0 + w1)

+ 1
2A2 (w0,x)2 +

1
A2 (w0,x)(w1,x) +

1
2A2 (w1,x)2

]}

Ny0 = C
{

1
B

v0,y +
B,x
AB

u0 −
1

Ry
w0 +

1
2B2 (w0,y)2 + 𝜈

[
1
A

u0,x +
A,y

AB
v0 −

w0

Rx
+ 1

2A2 (w0,x)2
]}

ΔNy = C
{

1
B

v1,y +
B,x
AB

u1 −
1

Ry
w1 +

1
B2 (w0,y)(w1,y) +

1
2B2 (w1,y)2

+ 𝜈

[
1
A

u1,x +
A,y

AB
v1 −

1
Rx

w1 + 1
A2 (w0,x)(w1,x) +

1
2A2 (w1,x)2

]}
Ny1 = C

{
1
B

v1,y +
B,x
AB

u1 −
1

Ry
w1 +

1
B2 (w0,y)(w1,y)

+ 𝜈

[
1
A

u1,x +
A,y

AB
v1 −

1
Rx

w1 +
1

A2 (w0,x)(w1,x)
]}

(8.15f)

Nxy = C 1 − 𝜈

2

(
1
A

v,x +
1
B

u,y −
B,xv + A,yu

AB
+ 1

AB
w,xw,y

)
(8.15g)
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Nxy0 + ΔNxy = C 1 − 𝜈

2

[
1
A
(v0,x + v1,x) +

1
B
(u0,y + u1,y) −

B,x(v0 + v1) + A,y(u0 + u1)
AB

+ 1
AB

(w0 + w1),x(w0 + w1),y
]

Nxy0 = C 1 − 𝜈

2

[
1
A
(v0,x) +

1
B
(u0,y) −

B,x(v0) + A,y(u0)
AB

+ 1
AB

(w0),x(w0),y
]

ΔNxy = C 1 − 𝜈

2

[
1
A
(v1,x) +

1
B
(u1,y) −

B,x(v1) + A,y(u1)
AB

+ 1
AB

(w0,xw1,y + w1,xw0,y+w1,xw1,y)
]

Nxy1 = C 1 − 𝜈

2

[
1
A
(v1,x) +

1
B
(u1,y) −

B,x(v1) + A,y(u1)
AB

+ 1
AB
(w0,xw1,y + w1,xw0,y)

]
(8.15h)

For moments,

Mx = D
[
−

w,xx

A2 +
w,xA,x

A3 −
A,yw,y

AB2 + 𝜈

(
−

w,yy

B2 +
w,yB,y

B3 −
B,xw,x

A2B

)]
(8.15i)

Mx0 + ΔMx = D
[
− 1

A2 (w0,xx + w1,xx) +
A,x

A3 (w0,x + w1,x) −
A,y

AB2 (w0,y + w1,y)

+ 𝜈

{
− 1

B2 (w0,yy + w1,yy) +
B,y

B3 (w0,y + w1,y) −
B,x

A2B
(w0,x + w1,x)

}]
Mx0 = D

[
−

w0,xx

A2 +
A,x

A3 w0,x −
A,y

AB2 w0,y + 𝜈

(
− 1

B2 w0,yy +
B,y

B3 w0,y −
B,x

A2B
w0,x

)]
ΔMx = Mx1 = D

[
−

w1,xx

A2 +
A,x

A3 w1,x −
A,y

AB2 w1,y + 𝜈

(
−

w1,yy

B2 +
B,y

B3 w1,y −
B,x

A2B
w1,x

)]
Mx1 = D

[(
𝛽x1,x

A
+

A,y

AB
𝛽y1

)
+ 𝜈

(
𝛽y1,y

B
+

B,x𝛽x1

AB

)]
(8.15j)

Similarly,

My1 = D
[(

𝛽y1,y

B
+

B,x

AB
𝛽x1

)
+ 𝜈

(
𝛽x1,x

A
+

A,y𝛽y1

AB

)]
(8.15k)

Mxy1 = D1 − 𝜈

2

(
𝛽y1,x

A
+

𝛽x1,y

B
−

A,y𝛽x1 + B,x𝛽y1

AB

)
(8.15l)

Substitution of Eqs. (8.15d), (8.15f), (8.15h), (8.15j)–(8.15l) into Eqs. (8.14q)–(8.14s) gives

(BNx1),x + (ANxy1),y − B,xNy1 + A,yNxy1 = 0 (8.15m)

(ANy1),y + (BNxy1),x − A,yNx1 + B,xNxy1 = 0 (8.15n)
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A
(BMx1),x

]
,x
−

(A,y

B
Mx1

)
,y
+

[ 1
B
(AMy1),y

]
,y
−

(
B,x
A

My1

)
,x

+2

[
Mxy1,xy+

(A,y

A
Mxy1

)
,x
+

(
B,x
B

Mxy1

)
,y

]
+ AB

(
Nx1

Rx
+

Ny1

Ry

)
−[(BNx0𝛽x1 + BNxy0𝛽y1),x + (B𝛽x0Nx1 + B𝛽y0Nxy1),x
+(ANy0𝛽y1 + ANxy0𝛽x1),y + (A𝛽y0Ny1 + A𝛽x0Nxy1),y] = 0 (8.15o)

where

exx1 =
u1,x

A
+

A,yv1

AB
−

w1

Rx

eyy1 =
v1,y

B
+

B,xu1

AB
−

w1

Ry

exy1 =
v1,x

A
+

u1,y

B
−

B,xv1 + A,yu1

AB
(8.15p)

𝛽x0 = −
w0,x

A
𝛽y0 = −

w0,y

B

𝛽x1 = −
w1,x

A
𝛽y1 = −

w1,y

B
(8.15q)

Nx0 = C(𝜀x0 + 𝜈𝜀y0)
Ny0 = C(𝜀y0 + 𝜈𝜀x0)

Nxy0 = C 1 − 𝜈

2
𝛾xy0 (8.15r)

Nx1 = C[(exx1 + 𝛽x0𝛽x1) + 𝜈(eyy1 + 𝛽y0𝛽y1)]
Ny1 = C[(eyy1 + 𝛽y0𝛽y1) + 𝜈(exx1 + 𝛽x0𝛽x1)]

Nxy1 = C 1 − 𝜈

2
(exy1 + 𝛽x0𝛽y1 + 𝛽y0𝛽x1) (8.15s)

𝜅x1 = 𝜒xx1 =
𝛽x1,x

A
+

A,y𝛽y1

AB
= −

w1,xx

A2 +
A,x

A3 w1,x −
A,y

AB2 w1,y

𝜅y1 = 𝜒yy1 =
𝛽y1,y

B
+

B,x𝛽x1

AB
= −

w1,yy

B2 +
B,y

B3 w1,y −
B,x

A2B
w1,x

2𝜅xy = 2𝜒xy1 =
𝛽y1,x

A
+

𝛽x1,y

B
−

A,y𝛽x1 + B,x𝛽y1

AB
= 2

(
−

w1,xy

AB
+

A,yw1,x

A2B
+

B,xw1,y

AB2

)
(8.15t)

Equations (8.15m)–(8.15o) are the linear stability equations for shells of general shape under
the DMV approximations.
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8.9 Shells of Revolution

Shells of revolution are common types of structural shells. The middle surface of a shell of
revolution is formed by the rotation of a plane curve about an axis that lies in the plane of the
curve. The surface curves formed by the intersection of planes containing the axis of rotation
with the surface are called the lines of principal curvature or meridians. The surface curves
formed by the intersection of planes perpendicular to the axis of rotation with the surface are
called parallels. Points on the middle surface are expressed by the coordinates 𝜙 and 𝜃, where 𝜙
is the angle between the axis of rotation and a normal to the surface, and 𝜃 is a circumferential
coordinate shown in Figure 8.14a. The principal radii of curvature of the surface of revolution
in the 𝜙 and 𝜃 direction are denoted by R𝜙 and R𝜃 , respectively.

An additional variable r is defined in Figure 8.14b as

r = R𝜃 sin𝜙 (8.16a)

The distances ds𝜙 and ds𝜃 along the coordinate lines are given by

ds𝜙 = R𝜙d𝜙, ds𝜃 = rd𝜃 (8.16b)

If 𝜙 and 𝜃 correspond to the x and y curvilinear coordinates respectively, then the Lamé coef-
ficients are

A = R𝜙 B = r (8.16c)

and

Rx = R𝜙, Ry = R𝜃 (8.16d)

From Eq. (E.87) we have

𝜕

𝜕x

(
B
Ry

)
= 1

Rx

𝜕B
𝜕x

(E.87)

(a) (b)

θ

𝜏
𝜏Parallel

Meridian r
Rθ

R𝜏

uw

Axis of revolution

Figure 8.14 Shell of revolution: (a) Coordinates of shell of revolution; (b) Meridian of a shell of revolution.
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or

d
d𝜙

(
R𝜃 sin𝜙

R𝜃

)
= 1

R𝜙

dr
d𝜙

or
dr
d𝜙

= R𝜙 cos𝜙

or

dr = ds𝜙 cos𝜙 (8.16e)

The variables R𝜙, R𝜃 , and r are the functions of 𝜙 only, and define the shape of the middle
surface of the undeformed shell. Let u, v, w be the middle surface displacement components in
the 𝜙, 𝜃, and the normal directions, respectively. The displacement components are functions
of both 𝜙 and 𝜃.

8.9.1 Stability Equations Where Pre-buckling Rotations Are Retained

The linear equations of stability for the shells of revolution are obtained by substituting
Eqs. (8.16a)–(8.16e) into Eqs. (8.15m)–(8.15o) as follows [5]:

(rN𝜙1),𝜙 + (R𝜙N𝜙𝜃1),𝜃 − r,𝜙N𝜃1 + R𝜙,𝜃N𝜙𝜃1 = 0

or

(rN𝜙1),𝜙 + R𝜙,𝜃N𝜙𝜃1 + R𝜙N𝜙𝜃1,𝜃 − r,𝜙N𝜃1 + R𝜙,𝜃N𝜙𝜃1 = 0

r,𝜙 =
dr
d𝜙

= R𝜙Cos𝜙, and R𝜙,𝜃 = 0

or

(rN𝜙1),𝜙 + R𝜙N𝜙𝜃1,𝜃 − R𝜙N𝜃1 cos𝜙 = 0 (8.17a)

Similarly, Eqs. (8.15n) and (8.15o) give

(rN𝜙𝜃1),𝜙 + R𝜙N𝜃1,𝜃 + R𝜙N𝜙𝜃1 cos𝜙 = 0 (8.17b)[
1

R𝜙

(rM𝜙1),𝜙
]
,𝜙

+ 2
(

M𝜙𝜃1,𝜙𝜃 +
R𝜙

r
M𝜙𝜃1,𝜃 cos𝜙

)
+
[R𝜙

r
(M𝜃1,𝜃𝜃) − (M𝜃1 cos𝜙),𝜙

]
+ (rN𝜙1 + R𝜙N𝜃1 sin𝜙)

−[(rN𝜙0𝛽𝜙1 + rN𝜙𝜃0𝛽𝜃1),𝜙 + (r𝛽𝜙0N𝜙1 + r𝛽𝜃0N𝜙𝜃1),𝜙
+R𝜙(N𝜃0𝛽𝜃1 + N𝜙𝜃0𝛽𝜙1),𝜃 + R𝜙(𝛽𝜃0N𝜃1 + 𝛽𝜙0N𝜙𝜃1),𝜃] = 0 (8.17c)
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where

N𝜙1 = C[(e𝜙𝜙1 + 𝛽𝜙0𝛽𝜙1) + 𝜈(e𝜃𝜃1 + 𝛽𝜃0𝛽𝜃1)]
N𝜃1 = C[(e𝜃𝜃1 + 𝛽𝜃0𝛽𝜃1) + 𝜈(e𝜙𝜙1 + 𝛽𝜙0𝛽𝜙1)]

N𝜙𝜃1 = C 1 − 𝜈

2
(e𝜙𝜃1 + 𝛽𝜙0𝛽𝜃1 + 𝛽𝜃0𝛽𝜙1) (8.17d)

M𝜙1 = D
[
𝛽𝜙1,𝜙

R𝜙

+ 𝜈

r
(𝛽𝜃1,𝜃 + 𝛽𝜙1 cos𝜙)

]
M𝜃1 = D

[
1
r
(𝛽𝜃1,𝜃 + 𝛽𝜙1 cos𝜙) + 𝜈

R
𝜙

(𝛽𝜙1,𝜙)

]

M𝜙𝜃1 = D1 − 𝜈

2

[
r

R𝜙

(
𝛽𝜃1

r

)
,𝜙

+
𝛽𝜙1,𝜃

r

]
(8.17e)

e𝜙𝜙1 =
1

R𝜙

(u1,𝜙 − w1)

e𝜃𝜃1 =
1
r
(v1,𝜃 + u1 cos𝜙 − w1 sin𝜙)

e𝜙𝜃1 =
v1,𝜙

R𝜙

+
u1,𝜃

r
−

r,𝜙v1

R𝜙r
= r

R𝜙

[rv1,𝜙 − v1r,𝜙
r2

]
+

u1,𝜃

r
(8.17f)

or

e𝜙𝜃1 =
r

R𝜙

(v1

r

)
,𝜙

+
u1,𝜃

r

𝛽𝜙1 = −
w1,𝜙

R𝜙

𝛽𝜃1 = −
w1,𝜃

r
(8.17g)

Equations (8.14q)–(8.14s) are specialized for a shell of revolution, and are used to obtain
the coefficients N𝜙0,N𝜃0,N𝜙𝜃0,𝛽𝜙0,and 𝛽𝜃0 in Eqs. (8.17a)–(8.17c). If the applied load is axisym-
metric, the deformation prior to loss of stability is also axisymmetric. Then, 𝛽𝜃0 = 0, and
N𝜙0,N𝜃0,N𝜙𝜃0, and 𝛽𝜙0 are functions of 𝜙 only. For axisymmetric deformation of a shell of
revolution, specialization of the nonlinear equilibrium equations in (8.14q)–(8.14s) reduces to

d
d𝜙
(rN𝜙) − R𝜙N𝜃 cos𝜙 = −rR𝜙p𝜙 (8.17h)

d
d𝜙
(rN𝜙𝜃) + R𝜙N𝜙𝜃 cos𝜙 = −rR𝜙p𝜃 (8.17i)

d
d𝜙

[
1

R𝜙

d
d𝜙
(rM𝜙)

]
− d

d𝜙
(M𝜃 cos𝜙) + (rN𝜙 + R𝜙N𝜃 sin𝜙) − d

d𝜙
(rN𝜙𝛽𝜙) = −rR𝜙p (8.17j)
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where p𝜙, p𝜃, and p are surface load components in the𝜙, 𝜃, and normal directions, respectively.
The constitutive relations are specialized for the shell of revolutions from Eq. (8.14t) as

N𝜙 = C(𝜀𝜙 + 𝜈𝜀𝜃), M𝜙 = D(𝜅𝜙 + 𝜈𝜅𝜃)

N𝜃 = C(𝜀𝜃 + 𝜈𝜀𝜙), M𝜃 = D(𝜅𝜃 + 𝜈𝜅𝜙)

N𝜙𝜃 = C 1 − 𝜈

2
𝛾𝜙𝜃

(8.17k)

The kinematic relations are obtained from Eqs. (8.14h), (8.14i), (8.14k), and (8.14l) by spe-
cializing these equations for the shells of revolution as

𝜀𝜙 = e𝜙𝜙 +
1
2
𝛽2
𝜙

𝜀𝜃 = e𝜃𝜃 𝛾𝜙𝜃 = e𝜙𝜃 (8.17l)

e𝜙𝜙 =
1

R𝜙

(
du
d𝜙

− w
)

e𝜃𝜃 =
1
r
(u cos𝜙 − w sin𝜙) e𝜙𝜃 =

r
R𝜙

d
d𝜙

(v
r

)
(8.17m)

𝜅𝜙 = 𝜒𝜙𝜙 =
1

R𝜙

d𝛽𝜙
d𝜙

, 𝜅𝜃 = 𝜒𝜃𝜃 =
1
r
𝛽𝜙 cos𝜙 (8.17n)

𝛽𝜙 = −
1

R𝜙

dw
d𝜙

(8.17o)

If the shell is not subjected to torsion, the coefficient N𝜙𝜃0 = 0 in Eq. (8.17c), and (8.17i) is
omitted.

8.9.2 Stability Equations with Pre-buckling Rotations Neglected

When the pre-buckling rotations are small, the terms containing 𝛽𝜙0 and 𝛽𝜃0 are neglected in
Eqs. (8.17a)–(8.17c) to obtain the stability equations as follows:

(rN𝜙1),𝜙 + R𝜙N𝜙𝜃1,𝜃 − R𝜙N𝜃1 cos𝜙 = 0 (8.18a)

(rN𝜙𝜃1),𝜙 + R𝜙N𝜃1,𝜃 + R𝜙N𝜙𝜃1 cos𝜙 = 0 (8.18b)[
1

R𝜙

(rM𝜙1),𝜙
]
,𝜙

+ 2
(

M𝜙𝜃1,𝜙𝜃 +
R𝜙

r
M𝜙𝜃1,𝜃 cos𝜙

)
+
[R𝜙

r
(M𝜃1,𝜃𝜃) − (M𝜃1 cos𝜙),𝜙

]
+ (rN𝜙1 + R𝜙N𝜃1 sin𝜙)

−[(rN𝜙0𝛽𝜙1 + rN𝜙𝜃0𝛽𝜃1),𝜙 + (R𝜙N𝜃0𝛽𝜃1 + R𝜙N𝜙𝜃0𝛽𝜙1),𝜃] = 0 (8.18c)

where

N𝜙1 = C(e𝜙𝜙1 + 𝜈e𝜃𝜃1)

or

N𝜙1 = C
[

1
R𝜙

(u1,𝜙 − w1) +
𝜈

r
(v1,𝜃 + u1 cos𝜙 − w1 sin𝜙)

]
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N𝜃1 = C(e𝜃𝜃1 + 𝜈e
𝜙𝜙1)

or

N𝜃1 = C
[

1
r
(v1,𝜃 + u1 cos𝜙 − w1 sin𝜙) + 𝜈

R𝜙

(u1,𝜙 − w1)
]

(8.18d)

N𝜙𝜃1 = C 1 − 𝜈

2
e𝜙𝜃1 = C 1 − 𝜈

2

[
r

R𝜑

(v1

r

)
,𝜙

+
u1,𝜃

r

]
or

N𝜙𝜃1 = C 1 − 𝜈

2

[
r

R𝜙

(rv1,𝜙 − v1r,𝜙
r2

)
+

u1,𝜃

r

]
= C 1 − 𝜈

2

[v1,𝜙

R𝜙

−
v1

r
cos𝜙 +

u1,𝜃

r

]

M𝜙1 = D
[
𝛽𝜙1,𝜙

R𝜙

+ 𝜈

r
(𝛽𝜃1,𝜃 + 𝛽𝜙1 cos𝜙)

]
M𝜃1 = D

[
1
r
(𝛽𝜃1,𝜃 + 𝛽𝜙1 cos𝜙) + 𝜈

R
𝜙

(𝛽𝜙1,𝜙)

]

M𝜙𝜃1 = D1 − 𝜈

2

[
r

R𝜙

(
𝛽𝜃1

r

)
,𝜙

+
𝛽𝜙1,𝜃

r

]
(8.18e)

𝛽𝜙1 = −
w1,𝜙

R𝜙

𝛽𝜃1 = −
w1,𝜃

r
(8.18f)

The coefficients, N𝜙0, N𝜃0, N𝜙𝜃0, in Eq. (8.18a)–(8.18c) are determined by the linear equilib-
rium equations obtained by specializing Eqs. (8.14q)–(8.14s). For axisymmetric loads, omit the
nonlinear terms from Eqs. (8.17h)–(8.17j) to obtain

d
d𝜙
(rN𝜙) − R𝜙N𝜃 cos𝜙 = −rR𝜙p𝜙 (8.18g)

d
d𝜙
(rN𝜙𝜃) + R𝜙N𝜙𝜃 cos𝜙 = −rR𝜙p𝜃 (8.18h)

d
d𝜙

[
1

R𝜙

d
d𝜙
(rM𝜙)

]
− d

d𝜙
(M𝜃 cos𝜙) + (rN𝜙 + R𝜙N𝜃 sin𝜙) = −rR𝜙p (8.18i)

where the constitutive and kinematic relations are given by (8.17k)–(8.17o), except that

𝜀𝜙 = e𝜙𝜙 (8.18j)

To simplify the determination of the coefficients in the stability equations, the bending terms
in Eq. (8.18i) are considered small in comparison to other terms and are neglected to get the
linear membrane equations

d
d𝜙
(rN𝜙) − R𝜙N𝜃 cos𝜙 = −rR𝜙p𝜙 (8.18k)
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d
d𝜙
(rN𝜙𝜃) + R𝜙N𝜙𝜃 cos𝜙 = −rR𝜙p𝜃 (8.18l)

rN𝜙 + R𝜙N𝜃 sin𝜙 = −rR𝜙p (8.18m)

Equations (8.18k)–(8.18m) are statically determinate, so the solutions can be obtained with-
out the use of constitutive and kinematics equations.

If the shell is not subjected to torsion, the coefficient N𝜙𝜃0 = 0 in Eqs. (8.18a)–(8.18c),
and (8.18h) and (8.18l) is discarded. In these cases, if we substitute Eqs. (8.18d)–(8.18f) into
Eqs. (8.18a)–(8.18c), the stability equations are reduced to ordinary differential equations by
selecting the solution of the form

u1 = un(𝜙) cos n𝜃
v1 = vn(𝜙) sin n𝜃

w1 = wn(𝜙) cos n𝜃 (8.18n)

To summarize, the stability equations for the shells of revolution are given by Eqs. (8.17a)–
(8.17c) if pre-buckling rotations are retained, and are given by Eqs. (8.18a)–(8.18c) if
pre-buckling rotations are neglected. Nonlinear equations of equilibrium for symmetrically
loaded shells of revolutions are given by Eqs. (8.17h)–(8.17j), the corresponding linear bending
equations are given by Eqs. (8.18g)–(8.18i), and the corresponding linear membrane equations
are given by Eqs. (8.18k)–(8.18m).

Now we apply the equations derived for the shells of revolution to some common structural
forms such as circular plates, shallow spherical caps, conical shells, and toroidal shells.

8.9.3 Circular Flat Plates

The middle plane of a circular flat plate is defined by polar coordinates r and 𝜃 shown in
Figure 8.15. To apply the stability equations for the shells of revolution to the circular plates,
we assign the following values to different parameters:

a

a

r

θ

Figure 8.15 Circular flat plate.
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R𝜙 →∞, R𝜃 →∞, 𝜙→ 0, and the limit (R𝜙 d𝜙) = dr
R𝜙 →∞

where the arrow is read as “go to.” Hence, sin 𝜙 = 0 and cos 𝜙 = 1. The subscript 1 is
omitted for the incremental quantities for notational simplicity. Substitute these values into
Eqs. (8.18a)–(8.18c) to get

(rN𝜙),𝜙 + R𝜙N𝜙𝜃,𝜃 − R𝜙N𝜃 cos𝜙 = 0

or
𝜕

R𝜙𝜕𝜙
(rN𝜙) + N𝜙𝜃,𝜃 − N𝜃 = 0

Substitute

R𝜙d𝜙 = dr

or
𝜕

𝜕r
(rN𝜙) + N𝜙𝜃,𝜃 − N

𝜃
= 0

Replace the subscript 𝜙 by r, then

(rNr),r + Nr𝜃,𝜃 − N𝜃 = 0 (8.19a)

Similarly, Eqs. (8.18b) and (8.18c) can be written as

(rNr𝜃),r + N𝜃,𝜃 + Nr𝜃 = 0 (8.19b)

(rMr),rr + 2
(

Mr𝜃,r𝜃 +
1
r

Mr𝜃,𝜃

)
+

(1
r

M𝜃,𝜃𝜃 −M𝜃,r

)
−[(rNr0𝛽r + rNr𝜃0𝛽𝜃),r + (Nr𝜃0𝛽r + N𝜃0𝛽𝜃),𝜃] = 0 (8.19c)

The corresponding constitutive and kinematic relations are from Eqs. (8.18d)–(8.18f) and
given by

Nr = C
[

u,r +
𝜈

r
(v,𝜃 + u)

]
N𝜃 = C

[1
r
(v,𝜃 + u) + 𝜈u,r

]
Nr𝜃 = C 1 − 𝜈

2

[(
v,r −

v
r

)
+

u,𝜃

r

]
(8.19d)

Mr = D
[
𝛽r,r +

𝜈

r
(𝛽𝜃,𝜃 + 𝛽r)

]
M𝜃 = D

[1
r
(𝛽𝜃,𝜃 + 𝛽r) + 𝜈(𝛽r,r)

]
M𝜙𝜃 = D1 − 𝜈

2

[
r
(
𝛽𝜃

r

)
,r
+

𝛽r,𝜃

r

]
(8.19e)
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𝛽r = −w,r 𝛽𝜃 = −
w,𝜃

r
(8.19f)

If we substitute Eqs. (8.19d)–(8.19f) into Eqs. (8.19a)–(8.19c), we get three homogeneous
equations in u, v, and w, in which the third equation is uncoupled from the first two as it was
for rectangular plates.

Example 8.2 Find the critical load of a circular plate subjected to a uniform compressive
force around the circumference of Nr0 = −N lb./in. (N/mm).
𝛽𝜃 = Nr𝜃0 = 0. Let us assume, 𝛽r ≡ 𝛽 to simplify the notation, then Eq. (8.19c) can be written

as
d2

dr2 (rMr) −
d
dr
(M𝜃) +

d
dr
(rN𝛽) = 0 (8.20a)

where we have from Eq. (8.19e)

Mr = D
(

d𝛽
dr
+ 𝜈

r
𝛽

)
M𝜃 = D

(
𝛽

r
+ 𝜈

d𝛽
dr

)
(8.20b)

Integrate Eq. (8.20a) to get

d
dr
(rMr) −M𝜃 + rN𝛽 = C1 (8.20c)

where C1 is a constant. Now, Mr =M𝜃 = 0, when N = 0. Therefore, C1 = 0. Substitute Eq. (8.20b)
into Eq. (8.20c) to get

d
dr

[
D
(

r d𝛽
dr
+ 𝜈𝛽

)]
− D

(
1
r
𝛽 + 𝜈

d𝛽
dr

)
+ rN𝛽 = 0

or

D
[

d𝛽
dr
+ r d2𝛽

dr2 + 𝜈
d𝛽
dr

]
− D

(
𝛽

r
+ 𝜈

d𝛽
dr

)
+ rN𝛽 = 0

or

r2 d2𝛽

dr2 + r d𝛽
dr
−

(
1 − r2N

D

)
𝛽 = 0 (8.20d)

This is the same equation as Eq. (7.28l) in Chapter 7 for a circular plate subjected to a uni-
form compressive force Nr distributed around the edge of the plate shown in Figure 7.28. The
solution of Eq. (8.20d) is repeated here for convenience.

Let

𝜆2 = N
D
, and u = 𝜆r (8.20e)

Thus,
du
dr

= 𝜆,
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hence,
d𝛽
dr

= d𝛽
du

du
dr

= 𝜆
d𝛽
du

, and r d𝛽
dr

= u d𝛽
du

Similarly,

r2 d2𝛽

dr2 = u2 d2𝛽

du2

Now, we can write Eq. (8.20d) in terms of the new variable, u, and its derivatives

u2 d2𝛽

du2 + u d𝛽
du

+ (u2 − 1)𝛽 = 0 (8.20f)

It is a Bessel differential equation of order 1 for real variable u. If instead of (u2 − 1), the term
was (u2 – n), the Bessel differential equation would be classified of order n. The general solution
of Eq. (8.20f) is given by Timoshenko and Gere [7]

𝛽 = C1J1(u) + C2Y1(u) (8.20g)
where J1(u) and Y 1(u) are Bessel functions of first order of the first and second kinds, respec-
tively. The coefficients C1 and C2 are obtained from the boundary conditions.

8.9.3.1 Clamped Plate
For a circular plate that is fixed around its edge, the boundary conditions are:
1. At the center of the plate at r = u = 0, the angle 𝛽 = 0 because of the symmetry of deflected

plate. From the table of Bessel function [28], Y 1(0)→∞, therefore, C2 = 0. Hence
𝛽 = C1J1(u) (8.21a)

2. The slope at the edge of the plate is zero, i.e. 𝛽|r = a = 0. Hence from Eq. (8.21a) we have
C1J1(𝜆 a) = 0

or
J1(𝜆a) = 0 (8.21b)

From the table of function J1(u) [28], the smallest root of Eq. (8.21b) is
𝜆 a = 3.832

Substitute for 𝜆 in Eq. (8.20e) to get

(Nr)cr =
14.684D

a2 (8.21c)

8.9.3.2 Simply Supported Plate
For a circular plate that is simply supported around its edge, the boundary conditions are
1. From the symmetry of deflection at the center of the plate we have

C2 = 0
or

𝛽 = C1J1(u) (8.22a)
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2. The bending moment along the edge is zero, hence

Mr =
(

d𝛽
dr
+ 𝜈

𝛽

r

)
= 0

u = 𝜆r, du
dr

= 𝜆

d𝛽
dr

= d𝛽
du

du
dr

= 𝜆
d𝛽
du

= C1𝜆
dJ1(u)

du
or

Mr = C1𝜆

[
dJ1(u)

du
+ 𝜈

J1(u)
u

]
r=a

= 0 (8.22b)

The derivative of J1(u) is written as [29]
d

du
[uJ1(u)] = uJ0(u)

or
dJ1(u)

du
= J0(u) −

J1(u)
u

(8.22c)

From Eqs. (8.22b) and (8.22c) we obtain

C1𝜆

[
J0(u) −

J1(u)
u

+ 𝜈
J1(u)

u

]
r=a

= 0 (8.22d)

where J0 is the Bessel function of the zero order.

𝜆J0(u) −
J1(u)

a
+ 𝜈

J1(u)
a

= 0

Assume the Poisson’s ratio 𝜈 = 0.3 and we get

𝜆aJ0(𝜆a) − 0.7J1(𝜆a) = 0 (8.22e)

The smallest root of Eq. (8.22e) by using tables of functions Jo and J1 is found to be, 𝜆a= 2.05.
[J0(2.05) = 0.1953 and J1(2.05) = 0.5725]. Substitute for 𝜆 in 𝜆2 = N

D
to get

(Nr)cr =
4.2025D

a2 (8.22f)

The critical force for the clamped circular plate in Eq. (8.21c) is 3.494 times the critical force
for the simply supported circular plate given by Eq. (8.22f).

8.9.4 Shallow Spherical Caps

Shallow spherical caps are segments of spherical shells shown in Figure 8.16. The points on
the middle surface are described by curvilinear coordinates, r and 𝜃. The rise of the shell, H, is
much smaller than the base radius “a.”
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R𝜏o 𝜏

a

H
r

Figure 8.16 Shallow spherical cap.

The parameter, R𝜙 = R is constant, sin 𝜙 = r/R, cos𝜙≈ 1, and R𝜙d𝜙 = dr. Substitute these
values into Eq. (8.18a) (the subscript 1 is omitted from the incremental quantities for notational
simplicity) to get the following:

(rN𝜙),𝜙 + R𝜙N𝜙𝜃,𝜃 − R𝜙N𝜃 cos𝜙 = 0
𝜕r

R𝜙𝜕𝜙
N𝜙 + r

𝜕N𝜙

R𝜙𝜕𝜙
+ N𝜙𝜃,𝜃 − N𝜃 = 0

Substitute R𝜙d𝜙 = dr and replace the subscript 𝜙 by r as before to get
(rNr),r + Nr𝜃,𝜃 − N𝜃 = 0 (8.23a)

Similarly, we have from Eqs. (8.18b) and (8.18c)
(rNr𝜃),r + N𝜃,𝜃 + Nr𝜃 = 0 (8.23b)

(rMr),rr + 2
(

Mr𝜃,r𝜃 +
1
r

Mr𝜃,𝜃

)
+

(1
r

M𝜃,𝜃𝜃 −M𝜃,r

)
+ r

R
(Nr + N𝜃)

−[(rNr0𝛽r + rNr𝜃0𝛽𝜃),r + (N𝜃0𝛽𝜃 + Nr𝜃0𝛽r),𝜃] = 0 (8.23c)
We have from Eqs. (8.18d) and (8.18e)

Nr = C(err + 𝜈e𝜃𝜃) = C
[(

u,r −
w
R

)
+ 𝜈

(v,𝜃 + u
r

− w
R

)]
N𝜃 = C(e𝜃𝜃 + 𝜈err) = C

[(v,𝜃 + u
r

− w
R

)
+ 𝜈

(
u,r −

w
R

)]
Nr𝜃 = C 1 − 𝜈

2
er𝜃 = C 1 − 𝜈

2

[
v,r −

v
r
+

u,𝜃

r

]
(8.23d)

Mr = D
[
𝛽r,r +

𝜈

r
(𝛽𝜃,𝜃 + 𝛽r)

]
= −D

[
w,rr +

𝜈

r

(w,𝜃𝜃

r
+ w,r

)]
M𝜃 = D

[1
r
(𝛽𝜃,𝜃 + 𝛽r) + 𝜈𝛽r,r

]
= −D

[
1
r

(w,𝜃𝜃

r
+ w,r

)
+ 𝜈w,rr

]
Mr𝜃 = D1 − 𝜈

2

[
r
(
𝛽𝜃

r

)
,r
+

𝛽r,𝜃

r

]
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or

Mr𝜃 = D1 − 𝜈

2

[
𝛽𝜃,r −

𝛽𝜃

r
+

𝛽r,𝜃

r

]
= D1 − 𝜈

2

[(
−

w,𝜃

r

)
,r
+

(w,𝜃

r2

)
−

w,r𝜃

r

]
or

Mr𝜃 = −D(1 − 𝜈)
[w,𝜃r

r
−

w,𝜃

r2

]
(8.23e)

If R→∞, Eqs. (8.23a)–(8.23e) reduce to that of the circular plate (Eqs. (8.19a)–(8.19e)). Sub-
stitution of Mr, M𝜃 , and Mr𝜃 from Eq. (8.23e) into Eq. (8.23c) leads to

D∇4w −
Nr + N𝜃

R
− 1

r

[
(rNr0w,r + Nr𝜃0w,𝜃),r +

(
Nr𝜃0w,r + N𝜃0

w,𝜃

r

)
,𝜃

]
= 0 (8.23f)

where

∇2( ) =
[
( ),rr +

1
r
( ), r +

1
r2 ( ),𝜃𝜃

]
and

∇4( ) = ∇2∇2( )

Substitute Eq. (8.23d) into Eqs. (8.23a) and (8.23b), the resulting equations along with
Eq. (8.23f) form a set of three homogeneous equations in u, v, and w. Assume that the
spherical cap is subjected to a uniform external pressure pe normal to the middle surface and
that the pre-buckling state can be analyzed by membrane analysis. Then, Nro =N𝜃0 = − peR/2,
and Nr𝜃0 = 0. Substituting these values into Eq. (8.23f) gives

D∇4w −
Nr + N𝜃

R
− 1

r

[
Nr0w,r + rNr0w,rr + Nr𝜃0w,𝜃r + Nr𝜃0w,r𝜃 + N𝜃0

w,𝜃𝜃

r

]
= 0

or

D∇4w −
Nr + N𝜃

R
+

peR
2

[
1
r

w,r + w,rr +
w,𝜃𝜃

r2

]
= 0

or

D∇4w −
Nr + N𝜃

R
+

peR
2
∇2w = 0 (8.23g)

A stress function f was introduced by Vlasov [30] such that

Nr =
f,r
r
+ 1

r2 f,𝜃𝜃 N𝜃 = f,rr Nr𝜃 = −
( f,𝜃

r

)
,r

(8.23h)

Substitute the values of Nr and N𝜃 from Eq. (8.23h) into Eq. (8.23g) to have

D∇4w − 1
R

( f,r
r
+ 1

r2 f,𝜃𝜃 + f,rr

)
+

peR
2
∇2w = 0
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or

D∇4w − 1
R
∇2f +

peR
2
∇2w = 0 (8.23i)

From Eq. (8.23d) we have

err = u,r −
w
R

err,r = u,rr −
1
R

w,r

err,𝜃𝜃 = u,r𝜃𝜃 −
1
R

w,𝜃𝜃

e𝜃𝜃 =
v,𝜃 + u

r
− w

R
, e𝜃𝜃,r =

1
r
(v,𝜃r + u,r) −

1
r2 (v,𝜃 + u) − 1

R
w,r

r2e𝜃𝜃,r = r(v,𝜃r + u,r) − (v,𝜃 + u) − 1
R

r2w,r

(r2e𝜃𝜃,r),r = r(v,𝜃rr + u,rr) −
1
R
(2rw,r + r2w,rr)

1
r2 (r

2e𝜃𝜃,r) =
v,𝜃rr + u,rr

r
− 1

R

(2w,r

r
+ w,rr

)

er𝜃 = r
(v

r

)
,r
+

u,𝜃

r
= v,r −

v
r
+

u,𝜃

r
(rer𝜃),r = v,r + rv,rr − v,r + u,𝜃r

1
r2 (rer𝜃),r𝜃 =

v,rr𝜃

r
+

u,𝜃𝜃r

r2

Using the relations derived we can write

1
r2 err,𝜃𝜃 −

1
r

err,r +
1
r2 (r

2e𝜃𝜃,r),r −
1
r2 (rer𝜃),r𝜃 = −

1
R

(
w,rr +

w,r

r
+

w,𝜃𝜃

r2

)
or

1
r2 err,𝜃𝜃 −

1
r

err,r +
1
r2 (r

2e𝜃𝜃,r),r −
1
r2 (rer𝜃),r𝜃 = −

1
R
∇2w (8.23j)

err =
1

Eh
(Nr − 𝜈N𝜃) e𝜃𝜃 =

1
Eh
(N𝜃 − 𝜈Nr) er𝜃 =

2(1 + 𝜈)
Eh

Nr𝜃

1
r2 err,𝜃𝜃 =

1
r2Eh

(Nr,𝜃𝜃 − 𝜈N𝜃,𝜃𝜃)

1
r

err,r =
1

rEh
(Nr,r − 𝜈N𝜃,r)

1
r2 (r

2e𝜃𝜃,r),r =
1
r2 (2re𝜃𝜃,r + r2e𝜃𝜃,rr) =

2
r

e𝜃𝜃,r + e𝜃𝜃,rr
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or
1
r2 (r

2e𝜃𝜃,r),r =
2

rEh
(N𝜃,r − 𝜈Nr,r) +

1
Eh
(N𝜃,rr − 𝜈Nr,rr)

1
r2 (rer𝜃),r =

1
r2 (er𝜃 + rer𝜃,r)

1
r2 (rer𝜃),r𝜃 =

1
r2 (er𝜃,𝜃 + r,𝜃er𝜃,r + rer𝜃,r𝜃) =

1
r2 er𝜃,𝜃 +

1
r

er𝜃,r𝜃

or
1
r2 (rer𝜃),r𝜃 =

2(1 + 𝜈)
r2Eh

Nr𝜃,𝜃 +
2(1 + 𝜈)

rEh
Nr𝜃,r𝜃

Equation (8.23j) can be written as
1

r2Eh
(Nr,𝜃𝜃 − 𝜈N𝜃,𝜃𝜃) −

1
rEh

(Nr,r − 𝜈N𝜃,r) +
2

rEh
(N𝜃,r − 𝜈Nr,r) +

1
Eh
(N𝜃,rr − 𝜈Nr,rr)

−2(1 + 𝜈)
r2Eh

Nr𝜃,𝜃 −
2(1 + 𝜈)

rEh
Nr𝜃,r𝜃 = −

∇2w
R

(8.23k)

Substitute the in-plane normal and shearing force intensities of Nr, N𝜃 , and Nr𝜃 in Eq. (8.23k)
in terms of the stress function f , as given in Eq. (8.23h), and we get

∇4f = −Eh
R
∇2w (8.23l)

Now the problem has been reduced to the solution of two homogeneous differential equations
in w and f given by Eqs. (8.23i) and (8.23l). Hutchinson [31] gave a solution by first transform-
ing the coordinates into Cartesian coordinates as follows:

Let
x = r cos 𝜃

and
y = r sin 𝜃

then

∇2( ) = 𝜕

𝜕r2 ( ) +
1
r
𝜕

𝜕r
( ) + 1

r2
𝜕2

𝜕𝜃2 ( )

For the case of Cartesian coordinates it reduces to

∇2( ) = 𝜕

𝜕x2 ( ) +
𝜕

𝜕y2 ( )

Equations (8.23i) and (8.23l) are satisfied by the sinusoidal functions of the form

w = cos
(

kx
x
R

)
cos

(
ky

y
R

)
(8.23m)

f = A1 cos
(

kx
x
R

)
cos

(
ky

y
R

)
(8.23n)

where kx and ky are mode shape parameters and A1 is a constant. In Cartesian coordinates

∇4( ) = 𝜕4

𝜕x4 ( ) + 2 𝜕4

𝜕x2𝜕y2 ( ) +
𝜕4

𝜕y4 ( )
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Substitute Eqs. (8.23m) and (8.23n) into Eq. (8.23l) to obtain

A1

(
k4

x

R4 +
2k2

xk2
y

R4 +
k4

y

R4

)
cos kx

x
R

cos ky
y
R
= Eh

R

(
k2

x

R2 +
k2

y

R2

)
cos kx

x
R

cos ky
y
R

or

A1 = EhR(k2
x + k2

y)−1 (8.23o)

Substitute Eq. (8.23o) and the expression D = Eh3/12(1− 𝜈2) into Eq. (8.23i) to obtain

D

(
k4

x

R4 +
2k2

xk2
y

R4 +
k4

y

R4

)
cos kx

x
R

cos ky
y
R
+

A1

R

(
k2

x

R2 +
k2

y

R2

)
cos kx

x
R

cos ky
y
R

−
peR

2

(
k2

x

R2 +
k2

y

R2

)
cos kx

x
R

cos ky
y
R
= 0

or

pe =
2Eh

R

⎡⎢⎢⎢⎢⎣
(k2

x + k2
y)−1 +

(
h
R

)2

12(1 − 𝜈2)
(k2

x + k2
y)

⎤⎥⎥⎥⎥⎦
(8.23p)

The critical pressure pcr is obtained by finding the minimum of pe with respect to kx
2 + ky

2.
For simplicity of calculations, assume k = kx

2 + ky
2, then

pe =
2Eh

R

⎡⎢⎢⎢⎢⎣
1
k
+

(
h
R

)2

12(1 − 𝜈2)
k

⎤⎥⎥⎥⎥⎦
(8.23q)

or

dpe

dk
= 2Eh

R

⎡⎢⎢⎢⎢⎣
− 1

k2 +

(
h
R

)2

12(1 − 𝜈2)

⎤⎥⎥⎥⎥⎦
= 0

or

k = 2
√

3(1 − 𝜈2)R
h

or

k2
x + k2

y = k = 2
√

3(1 − 𝜈2)R
h

(8.23r)
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Substitute this k2
x + k2

y value into Eq. (8.23p) to get

pcr =
2Eh

R

⎡⎢⎢⎢⎢⎣
h
R

1
2
√

3(1 − 𝜈2)
+

(
h
R

)2

12(1 − 𝜈2)
2
√

3(1 − 𝜈2)R
h

⎤⎥⎥⎥⎥⎦
or

pcr =
2E√

3(1 − 𝜈2)

(
h
R

)2

(8.23s)

Equation (8.23s) is the same as given in [7] for a complete spherical shell. The solution func-
tions in Eqs. (8.23m) and (8.23n) do not satisfy the boundary conditions at the edges of the
spherical cap. Hence, the present buckling analysis is applicable to buckling mode shape wave-
lengths that are small in comparison to the radius of the shell. Even there, it is found to be not
in good agreement with the experimental results. The error is because of neglecting the non-
linear terms in the buckling analysis and due to initial imperfections. That is why in the design
procedures a large safety factor of five or more is used.

8.9.5 Conical Shells

In Section 8.9 a shell of revolution was formed by the rotation of a plane curve about an axis
in the plane of the curve. If the plane curve is an inclined straight line, the shell of revolu-
tion is called a conical shell. A truncated conical shell having a vertex angle of 2𝛼 is shown in
Figure 8.17. Points on the middle surface of the shell are defined by the longitudinal coordinate
s along the incline of the cone, and a circumferential coordinate 𝜃. The coordinates s and 𝜃 are
the orthogonal curvilinear coordinates for conical shells.

s1

R1

L

s

ds r

𝜏

α

Figure 8.17 Conical shell.
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The equations of shells of revolution when applied to conical shells have the following values
for different parameters:

R𝜙 →∞, and limit (R𝜙 d𝜙) = ds, r = s sin 𝛼, 𝜙 = (𝜋/2)–𝛼 (constant),

Then, sin 𝜙= cos 𝛼 and cos 𝜙= sin 𝛼. Substitute these values in Eqs. (8.18a)–(8.18c) to obtain
1

R𝜙

(rN𝜙),𝜙 + N𝜙𝜃,𝜃 − N𝜃 cos𝜙 = 0 (8.18a)

or

sin 𝛼(sNs),s + Ns𝜃,𝜃 − N𝜃 sin 𝛼 = 0

or

(sNs),s +
1

sin 𝛼
Ns𝜃,𝜃 − N𝜃 = 0 (8.24a)

1
R𝜙

(rN𝜙𝜃),𝜙 + N𝜃,𝜃 + N𝜙𝜃 cos𝜙 = 0 (8.18b)

or

sin 𝛼(sNs𝜃),s + N𝜃,𝜃 + Ns𝜃 sin 𝛼 = 0

or
1

sin 𝛼
N𝜃,𝜃 +

1
s
(s2Ns𝜃),s = 0 (8.24b)

1
R
𝜙

[
1

R𝜙

(rM𝜙),𝜙
]
,𝜙

+ 2
(

1
R𝜙

M𝜙𝜃,𝜙𝜃 +
1
r

M𝜙𝜃,𝜃 cos𝜙
)

+
[

1
r
(M𝜃,𝜃𝜃) −

1
R𝜙

(M𝜃 cos𝜙),𝜙
]
+

(
1

R𝜙

rN𝜙 + N𝜃 sin𝜙

)
−
[

1
R𝜙

(rN𝜙0𝛽𝜙 + rN𝜙𝜃0𝛽𝜃),𝜙 + (N𝜃0𝛽𝜃 + N𝜙𝜃0𝛽𝜙),𝜃
]
= 0 (8.18c)

or
1
𝜕s

[ 1
𝜕s
(s sin 𝛼Ms)

]
+ 2

(
Ms𝜃,s𝜃 +

1
s

Ms𝜃,𝜃

)
+

[ 1
s sin 𝛼

(M𝜃,𝜃𝜃) − (M𝜃 sin 𝛼),s
]

+N𝜃 cos 𝛼 − [(s sin 𝛼Ns0𝛽s + s sin 𝛼Ns𝜃0𝛽𝜃),s + (N𝜃0𝛽𝜃 + Ns𝜃0𝛽s),𝜃] = 0

or

(sMs),ss +
2

sin 𝛼

(
Ms𝜃,s𝜃 +

1
s

Ms𝜃,𝜃

)
+ 1

ssin2
𝛼
(M𝜃,𝜃𝜃) −M𝜃,s

+N𝜃 cot 𝛼 −
[
(sNs0𝛽s + sNs𝜃0𝛽𝜃),s +

1
sin 𝛼

(N𝜃0𝛽𝜃 + Ns𝜃0𝛽s),𝜃
]
= 0 (8.24c)
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The subscript 𝜙 has been replaced by s in Eqs. (8.24a)–(8.24c). From Eqs. (8.18d)–(8.18f), the
constitutive relations for the conical shell are

Ns = C
[

u,s +
𝜈

s

( 𝜈,𝜃

sin 𝛼
+ u − w cot 𝛼

)]
N𝜃 = C

[
1
s

( v,𝜃
sin 𝛼

+ u − w cot 𝛼
)
+ 𝜈u,s

]
Ns𝜃 = C 1 − 𝜈

2

[
v,s −

v
s
+

u,𝜃

s sin 𝛼

]
(8.24d)

Ms = D
[
𝛽s,s +

𝜈

s

(
𝛽𝜃,𝜃

sin 𝛼
+ 𝛽s

)]
M𝜃 = D

[
1
s

(
𝛽𝜃,𝜃

sin 𝛼
+ 𝛽s

)
+ 𝜈𝛽s,s

]
Ms𝜃 = D1 − 𝜈

2

[
s
(
𝛽𝜃

s

)
,s
+

𝛽s,𝜃

s sin 𝛼

]
Ms𝜃 = D1 − 𝜈

2

[
𝛽𝜃,s −

𝛽𝜃

s
+

𝛽s,𝜃

s sin 𝛼

]
(8.24e)

𝛽𝜃 = −w,s, 𝛽s = −
w,𝜃

s sin 𝛼
(8.24f)

If 𝛼 = 𝜋/2, then s→ r. Equations (8.24a)–(8.24c) can be reduced to the corresponding expres-
sions for flat plates as follows:

(sNs),s +
1

sin 𝛼
Ns𝜃,𝜃 − N𝜃 = 0 (8.24a)

(rNr),r + Nr𝜃,𝜃 − N𝜃 = 0 (8.24g)
1

sin 𝛼
N𝜃,𝜃 +

1
s
(s2Ns𝜃),s = 0 (8.24b)

or

N𝜃,𝜃 + Ns𝜃 + (sNs𝜃),s = 0

or

N𝜃,𝜃 + Nr𝜃 + (rNr𝜃),r = 0 (8.24h)

(sMs),ss +
2

sin 𝛼

(
Ms𝜃,s𝜃 +

1
s

Ms𝜃,𝜃

)
+ 1

ssin2
𝛼
(M𝜃,𝜃𝜃) −M𝜃,s

+N𝜃 cot 𝛼 −
[
(sNs0𝛽s + sNs𝜃0𝛽𝜃),s +

1
sin 𝛼

(N𝜃0𝛽𝜃 + Ns𝜃0𝛽s),𝜃
]
= 0 (8.24c)

or

(rMr),rr + 2
(

Mr𝜃,r𝜃 +
1
r

Ms𝜃,𝜃

)
+ 1

r
(M𝜃,𝜃𝜃) −M𝜃,r

−[(rNr0𝛽r + rNr𝜃0𝛽𝜃),r + (N𝜃0𝛽𝜃 + Nr𝜃0𝛽r),𝜃] = 0 (8.24i)
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Equations (8.24g)–(8.24i) are the same as Eqs. (8.19a)–(8.19c) derived for the circular flat
plates. For 𝛼 = 0, and replacing s sin 𝛼 by the radius R of a cylinder, Eqs. (8.24a)–(8.24c) give
the Donnell equations for the cylindrical shells.

Substitute Eqs. (8.24d)–(8.24f) in (8.24a)–(8.24c) to obtain

(sNs),s +
1

sin 𝛼
Ns𝜃,𝜃 − N𝜃 = 0

(sNs),s = Ns + sNs,s (8.24a)

Ns = C
[

u,s +
𝜈

s

( 𝜈,𝜃

sin 𝛼
+ u − w cot 𝛼

)]
N𝜃 = C

[
1
s

( v,𝜃
sin 𝛼

+ u − w cot 𝛼
)
+ 𝜈u,s

]
Ns𝜃 = C 1 − 𝜈

2

[
v,s −

v
s
+

u,𝜃

s sin 𝛼

]
(8.24d)

(sNs),s = C
[

u,s +
𝜈

s

( v,𝜃
sin 𝛼

+ u − w cot 𝛼
)]

+ Cs
[

u,ss +
𝜈

s

( v,𝜃s

sin 𝛼
−

v,𝜃
s sin 𝛼

+ u,s −
u
s
− w,s cot 𝛼 + w

s
cot 𝛼

)]
1

sin 𝛼
Ns𝜃,𝜃 = C 1 − 𝜈

2 sin 𝛼

[
v,s𝜃 −

v,𝜃
s
+

u,𝜃𝜃

s sin 𝛼

]
Therefore, Eq. (8.24a) can be written as

su,ss + u,s −
u
s
+ 1 − 𝜈

2
u,𝜃𝜃

ssin2
𝛼
+ 1 + 𝜈

2
v,s𝜃

sin 𝛼
− 3 − 𝜈

2
v,𝜃

s sin 𝛼
−

(
vw,s −

w
s

)
cot 𝛼 = 0

(8.24j)
Similarly, Eqs. (8.24b) and (8.24c) can be written as

1 + 𝜈

2
u,s𝜃

sin 𝛼
+ 3 − 𝜈

2
u,𝜃

s sin 𝛼
+ 1 − 𝜈

2
sv,ss +

1 − 𝜈

2

(
v,s −

v
s

)
+

v
,𝜃𝜃

ssin2
𝛼
−

w,𝜃 cot 𝛼
s sin 𝛼

= 0

(8.24k)
and

Ds
(

w,ssss +
2w,sss

s
−

w,ss

s2 +
w,s

s3 − 2
w,s𝜃𝜃

s3sin2
𝛼
+ 2

w,ss𝜃𝜃

s2sin2
𝛼
+ 4

w,𝜃𝜃

s4sin2
𝛼
+

w,𝜃𝜃𝜃𝜃

s4sin4
𝛼

)
−C

( v,𝜃
s sin 𝛼

+ u
s
− w cot 𝛼

s
+ 𝜈u,s

)
cot 𝛼

−

[(
Ns0sw,s + Ns𝜃0

w,𝜃

sin 𝛼

)
,s
+ 1

sin 𝛼

(
Ns𝜃0w,s + N𝜃0

w,𝜃

s sin 𝛼

)
,𝜃

]
= 0 (8.24l)

Equations (8.24j)–(8.24l) are the coupled three homogeneous equations in u, v, and w.
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Example 8.3 Consider a conical shell subjected to uniform external hydrostatic pressure of
ph in lbs./in.2 (MPa), and the self weight of the shell pw in lbs./in.2 (MPa). If we assume that the
membrane analysis is accurate enough for the pre-buckling analysis, then the coefficients Ns0,
N𝜃0, and Ns𝜃0 can be determined by Eqs. (8.18k)–(8.18m). For a cone R𝜙 →∞, limit (R𝜙 d𝜙)= ds,
r = s sin 𝛼, 𝜙 = (𝜋/2) – 𝛼 (constant), sin 𝜙 = cos 𝛼, and cos 𝜙 = sin 𝛼. Substitute these values
into Eqs. (8.18k)–(8.18m) to obtain

(sNs0),s − N𝜃0 = −sps (8.25a)
(sNs𝜃0),s + Ns𝜃0 = −sp𝜃 (8.25b)
N𝜃0 = −sp tan 𝛼 (8.25c)

where ps, p𝜃, and p are the surface load components in the s, 𝜃, and normal directions, respec-
tively. The subscript 𝜙 has been replaced by s in Eqs. (8.25a)–(8.25c).The self-weight of the shell
pw has the components

ps = pw cos 𝛼, p1 = pw sin 𝛼

p1

pw
ps

α

Therefore, the total surface load normal to the conical surface direction is

p = p1 + ph = pw sin 𝛼 + ph

From Eq. (8.25c) we get

N𝜃0 = −s(pw sin 𝛼 + ph) tan 𝛼 (8.25d)

The load is axisymmetric,

Ns𝜃0 = 0 (8.25e)

From Eq. (8.25a) we get
d
ds
(sNs0) = −s(pw sin 𝛼 + ph) tan 𝛼 − spw cos 𝛼

or

sNs0 = −∫
[s(pw sin 𝛼 + ph) tan 𝛼 + spw cos 𝛼]ds + C

or

sNs0 = −
s2

2
[(pw sin 𝛼 + ph) tan 𝛼 + pw cos 𝛼] + C

At s = 0, Ns = 0, therefore, C = 0

Ns0 = −
s
2

( pw

cos 𝛼
+ ph tan 𝛼

)
(8.25f)
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Substitute the values from Eqs. (8.25d)–(8.25f) into the stability Eqs. (8.24j)–(8.24l), but these
are variable coefficient equations. Hence, numerical techniques have to be used to obtain the
critical load. Baruch, Harari, and Singer [32] analyzed the problem by using the Galerkin pro-
cedure for the hydrostatic pressure ph (pw = 0) and reported the results for a wide range of
parameters.

8.9.6 Toroidal Shells

The shells of revolution are formed by rotating a plane curve about an axis that lies in the plane
of the curve as described in Section 8.9 and is shown in Figure 8.14. If the plane curve is a
circular arc of radius b shown in Figure 8.18, the surface of revolution obtained is a segment of
a torous or toroidal shell. The various parameters of the middle surface of the toroidal shell as
a shell of revolution in Figure 8.18 are:

R𝜙 = b, r = a–b(1 − sin 𝜙), and 𝜕r
𝜕𝜙

= b cos𝜙 (8.26a)

r

a
b

Axis of revolution

𝜏

Figure 8.18 Toroidal shell meridian.

The analysis of toroidal shells was provided by Stein and McElman [33] and by Hutchin-
son [34] and is taken here from Brush and Almroth [5]. For a small segment near the central
horizontal axis of the toroidal shell the angle 𝜙 is approximately equal to 𝜋/2. Then,

cos 𝜙 = 0, sin 𝜙 = 1, 𝜕r
𝜕𝜙

= 0, and r = a (8.26b)

Also, dx = b d𝜙 and dy = a d𝜃, where x and y are the axial and circumferential coordinates
respectively. Substitute these values in Eqs. (8.18a)–(8.18c) and we get the stability equations
for the torus segment. Eqs. (8.18a)–(8.18c) are repeated here for convenience, the subscript 1 is
omitted for the incremental quantities for notational simplicity as before.

(rN𝜙),𝜙 + R𝜙N𝜙𝜃,𝜃 − R𝜙N𝜃 cos𝜙 = 0 (8.18a)

or
r

R𝜙

N𝜙,𝜙 + N𝜙𝜃,𝜃 = 0

or
1
b
𝜕N𝜙

𝜕𝜙
+ 1

a
𝜕N𝜙𝜃

𝜕𝜃
= 0
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or

Nx,x + Nxy,y = 0 (8.26c)

(rN𝜙𝜃),𝜙 + R𝜙N𝜃,𝜃 + R𝜙N𝜙𝜃 cos𝜙 = 0 (8.18b)

Similarly Eq. (8.18b) can be expressed as

Nxy,x + Ny,y = 0 (8.26d)[
1

R𝜙

(rM𝜙),𝜙
]
,𝜙

+ 2
(

M𝜙𝜃,𝜙𝜃 +
R𝜙

r
M𝜙𝜃,𝜃 cos𝜙

)
+
[R𝜙

r
(M𝜃,𝜃𝜃) − (M𝜃 cos𝜙),𝜙

]
+ (rN𝜙 + R𝜙N𝜃 sin𝜙)

−[(rN𝜙0𝛽𝜙 + rN𝜙𝜃0𝛽𝜃),𝜙 + (R𝜙N𝜃0𝛽𝜃 + R𝜙N𝜙𝜃0𝛽𝜙),𝜃] = 0 (8.18c)

or
1

R𝜙

[
1

R𝜙

(rM𝜙),𝜙
]
,𝜙

+ 2
(

1
R𝜙

M𝜙𝜃,𝜙𝜃 +
1
r

M𝜙𝜃,𝜃 cos𝜙
)

+
[

1
r

M𝜃,𝜃𝜃 −
1

R𝜙

(M𝜃 cos𝜙),𝜙
]
+

(
r

R𝜙

N𝜙 + N𝜃 sin𝜙

)
−
[

1
R𝜙

(
rN𝜙0𝛽𝜙 + rN𝜙𝜃0𝛽𝜃

)
,𝜙
+ (N𝜃0𝛽𝜃 + N𝜙𝜃0𝛽𝜙),𝜃

]
= 0

or

(aMx,xx) + 2a(Mxy,xy) + (aMy,yy) +
(a

b
Nx + Ny

)
−[(aNx0𝛽x + aNxy0𝛽y),x + (aNy0𝛽y + aNxy0𝛽x),y] = 0

(8.26e)

Equations (8.18d)–(8.18f) giving the constitutive and kinematic relations can be expressed as

Nx = C
[(

u,x −
w
b

)
+ 𝜈

(
v,y −

w
a

)]
Ny = C

[(
v,y −

w
a

)
+ 𝜈

(
u,x −

w
b

)]
Nxy = C 1 − 𝜈

2
[v,x + u,y] (8.26f)

Mx = D[𝛽x,x + 𝜈𝛽y,y] = −D[w,xx + 𝜈w,yy]
My = D[𝛽y,y + 𝜈𝛽x,x] = −D[w,yy + 𝜈w,xx]

Mxy = D1 − 𝜈

2
[𝛽y,x + 𝛽x,y] = −D1 − 𝜈

2
[w,yx + w,xy] = −D(1 − 𝜈)w,xy (8.26g)

𝛽x = −w,x, 𝛽y = −w,y (8.26h)

Substitute the constitutive and the kinematic relations in Eqs. (8.26f)–(8.26h) into Eq. (8.26e)
to give

D∇4w −
Nx

b
−

Ny

a
− (Nx0w,xx + 2Nxy0w,xy + Ny0w,yy) = 0 (8.26i)
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(a) (b) 

b 2
L

2
L

a

b

a

Figure 8.19 Segments of toroidal shell: (a) Bowed-out segment; (b) Bowed-in segment.

Equations (8.26c), (8.26d), and (8.26i) are the stability equations of the toroidal shell. Stein
and McElman [33] and Hutchinson [34] provided the analyses for both the bowed-out and
bowed-in segments shown in Figure 8.19. For the bowed-out case in Figure 8.19a, the radius
of curvature b of the shell is positive and for the bowed-in case in Figure 8.19b, the radius of
curvature of the shell is negative. When b→∞, the stability equation of the torus reduces to
the Donnell equations of cylindrical shells given by Eq. (8.4r).

Example 8.4 Consider a toroidal shell segment that is subjected to uniform external lateral
pressure of pe in lbs./in.2 (MPa). The shell is simply supported at its ends at x = 0 and x = L. If
we assume that the membrane analysis is accurate enough for pre-buckling analysis, then the
coefficients Nx0, Ny0, and Nxy0 can be determined from Eqs. (8.18k)–(8.18m) to have

d
d𝜙
(rN𝜙) − R𝜙N𝜃 cos𝜙 = −rR𝜙p𝜙 (8.18k)

cos 𝜙 = 0

or
1

R𝜙

d
d𝜙
(rN𝜙) + rp𝜙 = 0

or

(rNx0),x + rpx = 0 (8.27a)

Since

px = 0
Nxo = 0
d

d𝜙
(rN𝜙𝜃) + R𝜙N𝜙𝜃 cos𝜙 = −rR𝜙p𝜃 (8.18l)

Similarly, Eq. (8.18l) can be written as

(rNxy0),x + rpy = 0 (8.27b)
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Since

py = 0
Nxy0 = 0
rN𝜙 + R𝜙N𝜃 sin𝜙 = −rR𝜙p (8.18m)

or
a
b

Nx0 + Ny0 + pea = 0 (8.27c)

Since

Nx0 = 0
Ny0 = −pea

Substitute the values of Nxo, Ny0, and Nxy0 into Eq. (8.26i) to obtain

D∇4w −
Nx

b
−

Ny

a
+ peaw,yy = 0 (8.27d)

At the simply supported ends at x = 0 and x = L, the boundary conditions are

w = w,xx = Nx = v = 0

The solution of this problem was obtained by Hutchinson [34] and is presented here as given
by Bush and Almroth [5]. Assume a stress function f , such that

Nx = f,yy Nxy = −f,xy Ny = f,xx (8.27e)

Substitute these values into Eq. (8.27d) and we get

D∇4w −
f,yy

b
−

f,xx

a
+ peaw,yy = 0 (8.27f)

Now

∇4f =
𝜕4f
𝜕x4 + 2

𝜕4f
𝜕x2𝜕y2 +

𝜕4f
𝜕y4 (8.27g)

Substitute values from Eqs. (8.26f) and (8.27e) into Eq. (8.27g) to obtain

∇4f
Eh

+
w,xx

a
+

w,yy

b
= 0 (8.27h)

The problem is now reduced to the solution of two homogeneous differential equations in w
and f given by Eqs. (8.27f) and (8.27h). The boundary conditions can be written as

w = w,xx = f,xx = f = 0 (8.27i)

Assume the displacement function

w = C1 sin m𝜋x
L

sin
ny
a

(8.27j)
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This displacement function satisfies the differential equations and the boundary conditions,
where C1 is a constant, and m and n are integers. From Eqs. (8.27h) and (8.27j), we get

f = EhL2

𝜋2a
m2 + 𝛽2a∕b
(m2 + 𝛽2)2

C1 sin m𝜋x
L

sin
ny
a

(8.27k)

where 𝛽 = nL/𝜋a. Introduction into Eq. (8.27f) gives the eigenvalues as

p̄ = (m2 + 𝛽2)2

𝛽2 +
(m2 + 𝛽2a∕b)2

𝛽2(m2 + 𝛽2)2
12
𝜋4 Z2 (8.27l)

where

p̄ = L2a
𝜋2D

pe and Z = L2

ah
(1 − 𝜈2)

1
2

When m = 1, the smallest value of eigenvalue is obtained from Eq. (8.27l) as

p̄ = (1 + 𝛽2)2

𝛽2 +
(1 + 𝛽2a∕b)2

𝛽2(1 + 𝛽2)2
12
𝜋4 Z2 (8.27m)

When b→∞, Eq. (8.27m) reduces to Eq. (8.8a) of a cylindrical shell. Minimize p̄ with respect
to 𝛽 in Eq. (8.27m) to get p̄cr as a function of single geometric parameter Z instead of the two
parameters L/R and R/h. Hence,

dp̄
d𝛽

= 𝛽2[2(1 + 𝛽2)(2𝛽)] − 2𝛽(1 + 𝛽2)2

𝛽4

+
𝛽2(1 + 𝛽2)22

(
1 + 𝛽2 a

b

)(
2𝛽 a

b

)
−

(
1 + 𝛽2 a

b

)2
[2𝛽(1 + 𝛽2)2 + 𝛽2(1 + 𝛽2)(2)(2𝛽)]

[𝛽2(1 + 𝛽2)2]2
12Z2

𝜋4 = 0

or

4𝛽3 − 2𝛽(1 + 𝛽2) +
4𝛽3

(
a
b

)
(1 + 𝛽2)

(
1 + 𝛽2 a

b

)
−

(
1 + 𝛽2 a

b

)2
[2𝛽(1 + 𝛽2) + 4𝛽3]

(1 + 𝛽2)4
12Z2

𝜋4 = 0

or
(𝛽2 − 1)(1 + 𝛽2)4(

1 + 𝛽2 a
b

) [
𝛽2 a

b
(𝛽2 − 1) + (1 + 3𝛽2)

] = 12Z2

𝜋4 (8.27n)

When a/b = 0, Eq. (8.27n) reduces to that of Eq. (8.8b) for the cylindrical shells. In these
equations, 𝛽 = nL

𝜋a
, and Z = L2

ah
(1 − 𝜈2)

1
2 . For particular parameters of shell geometry, a, b, and

Z, Eq. (8.27n) gives a relation between 𝛽 (the integer n) and the Z value corresponding to the
critical pressure. Substitute the 𝛽 and Z values so obtained to get the critical p̄ from Eq. (8.27m).
The graph of Z versus p̄ is plotted in Figure 8.20 for various values of a/b.

Once the critical p̄ is known, the critical external pressure pe is given by

pe =
𝜋2Dp̄
L2a

(8.27o)



Trim Size: 187mm x 235mm Single Column Jerath c08.tex V1 - 11/10/2020 6:44pm Page 583�

� �

�

Problems 583

1

10

100

–

1000

1 10 100 1000
Z

a
b

=

p

1.0
0.8
0.6
0.4

0.2

0

Figure 8.20 Critical external lateral pressure for toroidal shells.

For a/b = 0 the curve in Figure 8.20 is the same as for cylindrical shells in Figure 8.8.

Problems

8.1 A steel cylinder simply supported at the ends has a diameter of 48 in. (1219.2 mm), length
of 24 in. (609.6 mm), and a wall thickness of 0.1 in. (2.54 mm). Find:
(a) the critical external lateral pressure; (b) the critical external hydrostatic pressure; and
(c) compare the values of external lateral and external hydrostatic pressures. The modulus
of elasticity E = 29× 106 psi (200 000 MPa), Poisson’s ratio 𝜈 = 0.3.

8.2 An aluminum cylinder has a diameter of 30 in. (762 mm), length of 15 in. (381 mm), and
a wall thickness of 0.03 in. (0.762 mm). It is subjected to torsion, find the critical shear-
ing stress when the ends of the cylinder are: (a) simply supported and (b) clamped. The
modulus of elasticity E = 10× 106 psi (68 950 MPa), Poisson’s ratio 𝜈 = 0.3.

8.3 A simply supported cylinder with a radius to thickness (R/h) ratio of 60 and length to
radius ratio (L/R) of 0.2 is subjected to an axially compressive force. Find the critical
pressure and mode if the modulus of elasticity is E = 10× 106 psi (68 950 MPa), and the
Poisson’s ratio 𝜈 = 0.3.

8.4 A simply supported steel cylinder has a diameter of 48 in. (1219.2 mm), length of 24 in.
(609.6 mm), and wall thickness of 0.1 in. (2.54 mm). It is subjected to external lateral
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pressure p and axial tension force P, and P/2𝜋R = − pR/2. R is the radius of the cylin-
der. Find the critical pressure p and the axial tension force P. The modulus of elasticity
E = 29× 106 psi (200, 000 MPa), and Poisson’s ratio 𝜈 = 0.3.

8.5 Use the potential energy Eq. (8.14p) to derive the nonlinear equilibrium Eqs. (8.14q)–
(8.14s) for the general shells by using the principle of stationary potential energy.

8.6 (a) Derive nonlinear equilibrium equations of (8.1a), (8.1b), and (8.1j) in the text for thin
cylindrical shells from the nonlinear equilibrium equations of (8.14q)–(8.14s) for thin
shells of general shape.
(b) Show similarly the derivations of nonlinear rectangular flat plate equations, also called
von Kármán plate equations, from the general shell equations.

8.7 Find the critical pressure of a simply supported aluminum toroid shell segment in
Figure P8.7 when it is acted on by uniform pressure pe. The dimensions of the shell
are: a = 12 in. (305 mm), L = 3 in. (76.2 mm), thickness h = 0.025 in.(0.635 mm), the
modulus of elasticity E = 10× 106psi (68 950 MPa), Poisson’s ratio 𝜈 = 0.3. (a) a/b = 0.6
(b) a/b = − 0.6.

a/b = 0.6 a/b = –0.6 

b 2
L

2
L

a

b

a

Figure P8.7
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Chapter 1

1.1 Pcr =
c
L

1.2 Pcr =
c
L

1.3 (a) Pcr =
kL
2

(b) Pcr =
k1k2

k1 + k2
L

1.4 (a) Pcr =
kL
2

(b) Pcr =
k1k2

k1 + k2
L

1.5 Pcr=
c1 + 4c2

2L

1.6 P
Pcr

= 2
sin 𝜃

[1
2

cos 2𝜃 − cos(45o − 𝛼) sin(45o − 𝜃)
]

Structural Stability Theory and Practice, First Edition. Sukhvarsh Jerath.
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Chapter 2

2.1 Pcr =
𝜋2EI

L2

Mode 1: y = Δ
2

(
1 − cos 𝜋x

L

)
Mode 2: y = Δ

2

(
1 − cos 3𝜋x

L

)
2.2 tan kLc =

4kLcIb

4Ib + k2LcLbIc

Lb = 2Lc, Ib = Ic

Pcr =
1.14𝜋2EIc

L2
c

2.3 Pcr = 32.69 kips (145.26 kN)

2.4 Pcr =
𝜋2EI1

4L2
1

L1

L
+

I2

I1

L2

L
+ 1

𝜋
sin

𝜋L1

L

(
1 −

I2

I1

)

2.5 Pcr =
𝜋2EI1

4L2

−
L1

2
−

L2

2
I2

I1
+ 2L

𝜋
sin

𝜋L1

2L

(
1 −

I2

I1

)
+ L

2𝜋
sin

𝜋L1

L

(
I2

I1
− 1

)
+

I2

I1

2L
𝜋

−
L1

2
−

L2

2
+ 2L

𝜋

2.6 Pcr =
𝜋2EI
(0.7L)2

2.7 Pcr =
𝜋2EI

(1.548L)2

2.8 Pcr = EIo
3𝜋2

2L2

Chapter 3

3.3 Allowable strength, Pa = 254.74 kips (1143.23 kN)
Design strength, Pu = 382.87 kips (1718.28 kN)
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Chapter 4

4.1 y|x= L
2
=

5woL4

768EI
12(2 sec u − 2 − u2)

5u4

u = 𝜋

2

√
P
Pe

,Pe =
𝜋2EI

L2

M|x= L
2
=

woL2

16

(2 sec u − 2
u2

)
4.2 y|

x=
L
2
= w

2EIk4 cos u
[cos a + cos k(L − b) − 2 cos u] − w

2EIk2

(
Lb − a2

2
− b2

2
− L2

4

)
+ QL3

48EI

[
3(tan u − u)

u3

]
, kL

2
= u, k2 = P

EI

4.3 (a) P∕Pek = 0.6,
Mmaxexact

Mmaxformula
= 1.949

1.900

(b) P∕Pek = 0.6,
Mmaxexact

Mmaxformula
= 1.959

1.900

4.4 Pcr =
𝜋2EI

1.676L2

L2 = L,L1 = 1.5 L, I1 = I2 = I

4.6 (a) Mmax = MB at the end of the member
(b) Mmax = MB at x = 0.975 L
(c) Mmax = MB at the end of the member

4.7 LRFD – Section satisfactory
ASD – Section satisfactory

Chapter 5

5.1 Pcr = 1.31𝜋
2EI
L2

Lb = Lc = L, Ib = Ic = I

5.2 Pcr =
𝜋2EI
(2.33L)2

Lb = Lc = L, Ib = Ic = I
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5.3 Pcr = 2.52𝜋
2EI
L2

5.4 Pcr =
𝜋2EI

L2

5.5 Pcr =
16.8EI

L2

5.6 (a) Gmodified =

∑ EIc

Lc

3
2
∑ EIb

Lb

Sway inhibited

(b) Gmodified =

∑ EIc

Lc

2
∑ EIb

Lb

Sway inhibited

(a) Gmodified =

∑ EIc

Lc

1
2
∑ EIb

Lb

Sway not inhibited

(b) Gmodified =

∑ EIc

Lc

2
3
∑ EIb

Lb

Sway not inhibited

Chapter 6

6.1 Pcr = Pcry = 555.72 kips (2468.36 kN)

6.2 Pcr = 23.86 kips (107.23 kN)

6.3 (a) Pcr = 70.87 kips (312.74 kN)
(b) Pcr = 84.92 kips (375.40 kN)
(c) Pcr = 101.76 kips (450.71 kN)

6.4 (a) Cb = 1.33
(b) Cb = 1.17
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6.5 GJ d2𝛽

dz2 − ECw
d4𝛽

dz4 + wz du
dz
+ 𝛽

EIy

[w
2
(L − z)2

]2
= 0

6.6 GJ d2𝛽

dz2 − ECw
d4𝛽

dz4 − w
(L

2
− z

) du
dz
+
[

w
2

(
L2

4
− z2

)]2
𝛽

EIy
= 0

6.7 (a) Design moment strength, Mu = 498.75 kip. ft (676.89 kN.m)
Allowable moment, Ma = 331.84 kip. ft (450.36 kN.m)

(b) Same as in part (a)
(c) Design moment strength, Mu = 271.41 kip. ft (366.11 kN.m)

Allowable moment, Ma = 180.58 kip. ft (243.59 kN.m)

Chapter 7

7.1 (a) 𝜎cr =
𝜋2D
a2h

(
1 + a2

b2

)
,D = Eh3

12(1 − 𝜈2)
(b) Same as in (a).

7.2 (Ny)cr =
D𝜋2

4a2

(
3
𝛽2 + 16𝛽2 + 8 − 16𝜈

)
𝛽 = a

b

7.3 Ncr =
3
8
𝜋3D(a2 + b2)2

a2b4

7.4 (Nx)cr =
4D𝜋2

3𝛽2b2 (3 + 2𝛽2 + 3𝛽4 + 9𝛾𝛽3)

𝛽 = a
b
, 𝛾 = EI

bD

7.5 h = 0.066 in. (1.68 mm)

7.6 N = 3.45𝜋
2D
a2

a
b
= 1, h = a

4
, k = b

2
,Nx = Ny = N

7.7 𝜎cr = 8796.24 psi (60.66 MPa)
a
b
= 1.5, h

b
= 0.02,

Et

E
= 0.414, h = Thickness of the plate,

Et = Tangent modulus, E = Modulus of elasticity
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Chapter 8

8.1 (a) 32.94 psi (0.227 MPa)
(b) 31.39 psi (0.22 MPa)

(c)
External lateral pressure

Hydrostatic pressure
= 1.05

8.2 (a) 3280 psi (22.61 MPa)
(b) 3651.63 psi (25.18 MPa)

8.3 103.3 ksi (712.33 MPa)
It is short cylinder with Z < 2.85. Its mode in buckling is single half wave along the length
and no waves along the circumference.

8.4 p = 34.65 psi (0.24 Mpa)
P = 62.7 kips (280.2 kN)

8.7 (a) 19.92 psi (0.137 MPa)
(b) 5.54 psi (0.0382 MPa)



Trim Size: 187mm x 235mm Single Column Jerath bapp01.tex V1 - 11/04/2020 2:34pm Page 593�

� �

�

593

Appendix A

Slope Deflection Coefficients for Beam Column Buckling

kL kii kij

0.0000 4.0000 2.0000
0.1000 3.9987 2.0003
0.2000 3.9947 2.0013
0.3000 3.9880 2.0030
0.4000 3.9786 2.0054
0.5000 3.9666 2.0084
0.6000 3.9518 2.0121
0.7000 3.9342 2.0166
0.8000 3.9139 2.0218
0.9000 3.8908 2.0277
1.0000 3.8649 2.0344
1.1000 3.8360 2.0419
1.2000 3.8043 2.0502
1.3000 3.7695 2.0594
1.4000 3.7317 2.0695
1.5000 3.6907 2.0806
1.6000 3.6466 2.0926
1.7000 3.5991 2.1057
1.8000 3.5483 2.1199
1.9000 3.4940 2.1353

Structural Stability Theory and Practice, First Edition. Sukhvarsh Jerath.
© 2021 Sukhvarsh Jerath. Published 2021 by John Wiley & Sons, Inc.
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kL kii kij

2.0000 3.4361 2.1519
2.1000 3.3745 2.1699
2.2000 3.3090 2.1893
2.3000 3.2395 2.2102
2.4000 3.1659 2.2328
2.5000 3.0878 2.2572
2.6000 3.0052 2.2834
2.7000 2.9178 2.3118
2.8000 2.8254 2.3425
2.9000 2.7276 2.3756
3.0000 2.6242 2.4115
3.1000 2.5148 2.4503
3.2000 2.3990 2.4924
3.3000 2.2763 2.5382
3.4000 2.1463 2.5880
3.5000 2.0083 2.6424
3.6000 1.8618 2.7017
3.7000 1.7060 2.7668
3.8000 1.5400 2.8382
3.9000 1.3627 2.9168
4.0000 1.1731 3.0037
4.1000 0.9698 3.1001
4.2000 0.7510 3.2074
4.3000 0.5149 3.3273
4.4000 0.2592 3.4619
4.5000 −0.0191 3.6140
4.6000 −0.3234 3.7866
4.7000 −0.6582 3.9839
4.8000 −1.0289 4.2112
4.9000 −1.4427 4.4751
5.0000 −1.9087 4.7845
5.1000 −2.4394 5.1514
5.2000 −3.0516 5.5921
5.3000 −3.7688 6.1296
5.4000 −4.6253 6.7977
5.5000 −5.6726 7.6472
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kL kii kij

5.6000 −6.9922 8.7589
5.7000 −8.7214 10.2692
5.8000 −11.1106 12.4278
5.9000 −14.6715 15.7453
6.0000 −20.6375 21.4540
6.1000 −32.9345 33.4784
6.2000 −74.3621 74.6167
6.3000 374.6369 −374.6900
6.4000 54.5347 −54.9159
6.5000 29.4960 −30.2280
6.6000 20.1038 −21.2118
6.7000 15.0847 −16.5971
6.8000 11.8889 −13.8378
6.9000 9.6187 −12.0405
7.0000 7.8755 −10.8118
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Appendix B

Torsion Properties of Thin-Walled Open Cross-Sections

Cross-section Shear center O Torsion constant J Warping constant Cw

b

b

h
h/2

twtf

tf
O

J =
2btf

3 + ht3
w

3
Cw =

tf h2b3

24

If t = tf = tw

J = t3

3
(2b + h)

tf

b2

b1

tf

O
tw

he

e = h
b3

1

b3
1 + b3

2

J =
(b1 + b2)t3

f + ht3
w

3
Cw =

tf h2

12
b3

1b3
2

b3
1 + b3

2

If t = tf = tw

J = t3

3
(b1 + b2 + h)

Structural Stability Theory and Practice, First Edition. Sukhvarsh Jerath.
© 2021 Sukhvarsh Jerath. Published 2021 by John Wiley & Sons, Inc.
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Cross-section Shear center O Torsion constant J Warping constant Cw

h
e

b

b

tw
tf

tf

O

e =
3b2tf

6btf + htw
J =

2bt3
f + ht3

w

3
Cw =

tf b3h2

12
3btf + 2htw

6btf + htw

If t = tf = tw If t = tf = tw If t = tf = tw

e = 3b2

6b + h
J = t3

3
(2b + h) Cw =

tb3h
12

2 3b + 2h
6b + h

h

h/2

b

b

tw

tf

tf

O

J =
2bt3

f + ht3
w

3
Cw =

b3h2

12(2b + h)2
x[2tf (b2 + bh + h2) + 3twbh]

If t = tf = tw If t = tf = tw

J = t3

3
(2b + h) Cw =

tb3h2

12
b + 2h
2b + h

ta
α
α

e

O

e = 2a sin 𝛼 − 𝛼 cos 𝛼
𝛼 − sin 𝛼 cos 𝛼

J = 2a𝛼t3

3
Cw =

2ta5

3

[
𝛼3 − 6(sin 𝛼 − 𝛼 cos 𝛼)2

𝛼 − sin 𝛼 cos 𝛼

]
If 2𝛼 = 2𝜋 If 2𝛼 = 2𝜋 If 2𝛼 = 2𝜋

e = 4a
𝜋

J = 𝜋at3

3
Cw =

2ta5

3

(
𝜋3

8
− 12

𝜋

)
= 0.0374ta5

Source: Timoshenko.
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Appendix C

Calculus of Variations

C.1 Calculus of Variations

The calculus of variation is a generalization of the minimum and maximum problem of the
ordinary calculus. It seeks to determine a function y = f (x) that minimizes/maximizes a def-
inite integral called functional (function of functions) and whose integrant contains y and its
derivatives and the independent variable x given by Eq. (C.1).

I =
∫

x2

x1

F(x, y, y′, y′′,……… , yn) dx (C.1)

In ordinary calculus, one obtains the actual value of a variable at which a given function has
a stationary value. In the calculus of variations, one does not get a function that extremizes a
given integral. Here, one only gets the differential equation that the function must satisfy so
that the function has a stationary value. Thus, the calculus of variations is used to obtain the
governing differential equation of a stationary value problem. It is not a computational tool to
solve the problem.

In structural mechanics, the method is used to find the deformed shape of a system at which
the system has a stationary potential energy or in other words finding the deformation corre-
sponding to the equilibrium state of the system. To illustrate the calculus of variation consider
a pinned-pinned column in Figure C.1 and find the conditions under which it will be in equi-
librium under a deformed shape. The strain energy for bending for the column is

U =
∫

L

0

M2
x dx

2EI
= 1

2 ∫

L

0
EI

(
d2y
dx2

)2

(C.2)

V = −PΔ (C.3)

From Figure C.1c

ds2 = dx2 + dy2

or

ds2 =

[
1 +

(
dy
dx

)2
]

dx2

Structural Stability Theory and Practice, First Edition. Sukhvarsh Jerath.
© 2021 Sukhvarsh Jerath. Published 2021 by John Wiley & Sons, Inc.
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(a) (b) (c)

y 

L 

P 

P 

x 

S x 

y 

P 

P 

Mx = –EIy"

dsdx

dy

Figure C.1 Buckling of pinned-pinned column: (a) Pinned-pinned column; (b) Free body diagram; (c) Differential
element.

or

ds =

[
1 +

(
dy
dx

)2
] 1

2

dx

or

ds =

[
1 + 1

2

(
dy
dx

)2
]

dx

Hence,

∫

S

0
ds =

∫

L

0

[
1 + 1

2

(
dy
dx

)2
]

dx (C.4)

Δ = S − L = 1
2 ∫

L

0

(
dy
dx

)2

dx (C.5)

V = −P
2 ∫

L

0

(
dy
dx

)2

dx (C.6)

Π = EI
2 ∫

L

0

(
d2y
dx2

)2

dx − P
2 ∫

L

0

(
dy
dx

)2

dx (C.7)

It is intended to find y(x) which will make the total potential energy of the system stationary,
that is

𝛿(U + V) = 0 (C.8)
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L 
X 

Y y (x)  (x) = y (x) +  (x)

Figure C.2 Deflected shape.

y(x) must be continuous and it must satisfy the boundary conditions y(0) = y(L) = 0. Assume

ȳ(x) = y(x) + 𝜀 𝜂(x) (C.9)

which satisfies only the geometric boundary conditions. 𝜂 (x) is an arbitrary function satisfying
boundary conditions and is twice differentiable, and 𝜀 is a small parameter.

𝜂(0) = 𝜂(L) = 0 (C.10)

The function ȳ(x) is drawn graphically in Figure C.2.
The total potential energy in terms of the displacement ȳ(x) is

Π = U + V =
∫

L

0

[EI
2
(y′′ + +𝜀𝜂′′)2 − P

2
(y′ + 𝜀𝜂′)2

]
dx (C.11)

Π is a function of 𝜀 for a given 𝜂 (x). If 𝜀 = 0, then ȳ(x) = y(x), which is the curve that provides
a stationary value to Π. Hence,||||d(U + V)

d𝜀
||||𝜀 = 0

= 0 (C.12)

d(U + V)
d𝜀

=
∫

L

0
[EI(y′′ + 𝜀𝜂′′)𝜂′′ − P(y′ + 𝜀𝜂′)𝜂′] dx (C.13)

Equation (C.13) is zero at 𝜀 = 0, hence,

∫

L

0
[EIy′′𝜂′′ − Py′𝜂′] dx = 0 (C.14)

Integrate Eq. (C.14) by parts using ∫ udv = uv− ∫ vdu

∫

L

0
𝜂′y′dx = y′𝜂|L0 − ∫

L

0
𝜂y′′dx

Use Eq. (C.10) to get

∫

L

0
𝜂′y′dx = −

∫

L

0
𝜂y′′dx

∫

L

0
y′′𝜂′′dx = y′′𝜂′|L0 − ∫

L

0
𝜂′y′′′dx = y′′𝜂′|L0 − y′′′𝜂|L0 + ∫

L

0
𝜂yIV dx

Thus, Eq. (C.14) becomes

∫

L

0
(EIyIV + Py′′) 𝜂dx + (EIy′′𝜂′)L0 = 0 (C.15)
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Each of the two parts of Eq. (C.15) is separately equal to zero because 𝜂 is arbitrary. Hence

∫

L

0
(EIyIV + Py′′) 𝜂dx = 0 (C.16)

(EIy′′𝜂′)L0 = 0 (C.17)

Since 𝜂 ′ (0), 𝜂 ′ (L)are not zero, 𝜂(x) is arbitrary, also 𝜂
′(0)≠ 𝜂 ′ (L), therefore, y(x) must satisfy

EIyIV + Py′′ = 0 (C.18)
EIy′′|x=0 = 0 (C.19)
EIy′′|x=L = 0 (C.20)

Equation (C.18) is the Eulerian differential equation of an axially loaded column as was found
in Eq. (2.11e) by considering the moment equilibrium of the deformed column. Eqs. (C.19)
and (C.20) give the natural boundary conditions and indicate that the bending moments at
the ends of a simply supported column are zero. For simple systems, such as simply supported
columns, the governing differential equation can be obtained by considering the equilibrium
of the deformed shape. For complex systems, such as plate and shell buckling, the Stationary
Potential Energy method is simpler to obtain the governing differential equation. The geometric
or kinematic boundary conditions involve displacements (deflection and slope), where natural
boundary conditions give force conditions (bending moment or shear force) at the boundary.
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Appendix D

Euler Equations

Let us consider a structure for which the integrand F is a given function of one independent
variable x, and one dependent variable w and its derivatives w′ and w′′, then say the potential
energy V is

V =
∫

x1

x0

F(x,w,w′,w′′) dx (D.1)

To study the behavior of V for a particular configuration w = w0, let w→w0 +w1 where
w1(x) = 𝜀𝜁(x), 𝜀 is an arbitrary small constant, and 𝜁(x) is any arbitrary function that satisfies
the necessary continuity and forced boundary conditions at x0 and x1. Substitute into Eq. (D.1)
to give

ΔV =
∫

x1

x0

[F(x,w0 + 𝜀𝜁,w′
0 + 𝜀𝜁 ′,w′′

0 + 𝜀𝜁 ′′) − F(x,w0,w′,w′′
0 )]dx (D.2)

The Taylor series of a function of n variables is given by

ΔV = 𝛿V + 𝛿2V + 𝛿3V + − − −

where

𝛿V =
n∑

i=1

𝜕V
𝜕qi

𝛿qi, 𝛿2V = 1
2!

n∑
i=1

n∑
j=1

𝜕2V
𝜕qi𝜕qj

𝛿qi𝛿qj, 𝛿3V = 1
3!

n∑
i=1

n∑
j=1

n∑
k=1

𝜕3V
𝜕qi𝜕qj𝜕qk

𝛿qi𝛿qj𝛿qk

The expansion of the integrand in Eq. (D.2) in the Taylor series gives

𝛿V = 𝜀
∫

x1

x0

(
𝜕F
𝜕w0

𝜁 + 𝜕F
𝜕w′

0
𝜁 ′ + 𝜕F

𝜕w′′
0
𝜁 ′′

)
dx (D.3)

where 𝜕F
𝜕w0

is the value of 𝜕F
𝜕w

at w = w0, etc. For equilibrium, V should be a relative minimum

which gives, 𝛿V = 0. Since 𝜀 is arbitrary, we have

∫

x1

x0

(
𝜕F
𝜕w0

𝜁 + 𝜕F
𝜕w′

0
𝜁 ′ + 𝜕F

𝜕w′′
0
𝜁 ′′

)
dx = 0 (D.4)

Structural Stability Theory and Practice, First Edition. Sukhvarsh Jerath.
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Equation (D.4) is repeatedly integrated by parts as follows:

∫
udv = uv −

∫
vdu

∫

x1

x0

𝜕F
𝜕w′

0
𝜁 ′dx = 𝜕F

𝜕w′
0
𝜁 −

∫

x1

x0

𝜁
d

dx

(
𝜕F
𝜕w′

0

)
dx

∫

x1

x0

𝜕F
𝜕w′′

0
𝜁 ′′dx = 𝜕F

𝜕w′′
0
𝜁 ′ −

∫

x1

x0

𝜁 ′
d

dx

(
𝜕F
𝜕w′′

0

)
dx = 𝜕F

𝜕w′′
0
𝜁 ′

−
[

d
dx

(
𝜕F
𝜕w′′

0

)
𝜁 −

∫

x1

x0

𝜁
d2

dx2

(
𝜕F
𝜕w′′

0

)
dx

]
Now Eq. (D.4) can be written as

𝜁
𝜕F
𝜕w′

0
+ 𝜁 ′

𝜕F
𝜕w′′

0
− 𝜁

d
dx

(
𝜕F
𝜕w′′

0

)
+
∫

x1

x0

𝜁

[
𝜕F
𝜕w0

− d
dx

(
𝜕F
𝜕w′

0

)
+ d2

dx2

(
𝜕F
𝜕w′′

0

)]
dx = 0

(D.5)

For Eq. (D.5) to be zero, each of the three terms and the integral must be separately zero for
equilibrium. That means the multiplier of 𝜁 in the integrant must be zero for all values of x,
hence

𝜕F
𝜕w0

− d
dx

(
𝜕F
𝜕w′

0

)
+ d2

dx2

(
𝜕F
𝜕w′′

0

)
= 0 for x0 ≤ x ≤ x1 (D.6)

The subscript 0 can be omitted in the Eq. (D.6), so that w(x) represents the configuration at
which the potential energy V is stationary. Hence,

𝜕F
𝜕w

− d
dx

(
𝜕F
𝜕w′

)
+ d2

dx2

(
𝜕F
𝜕w′′

)
= 0 (D.7)

Equation (D.7) is known as the Euler equation of the calculus of variations. The Euler equation
for the integrant in the total potential energy expression gives the criterion for equilibrium of
the continuous systems. For example, in the case of an axially loaded simply supported col-
umn in Figure 2.26 in Chapter 2, the total potential energy, Π, in the deformed configuration
is given by

Π = EI
2 ∫

L

0
(w′′)2dx − P

2 ∫

L

0
(w′)2dx (2.28g)

The integrand, F, for the example of the column is

F = EI
2
(w′′)2 − P

2
(w′)2

Therefore, 𝜕F
𝜕w

= 0, 𝜕F
𝜕w′ = −Pw′, and 𝜕F

𝜕w′′ = EIw′′. Substitute in Eq. (D.7) to get

EIwIV + Pw′′ = 0 (D.8)



Trim Size: 187mm x 235mm Single Column Jerath bapp04.tex V1 - 11/04/2020 2:36pm Page 605�

� �

�

Reference 605

Equation (D.8) is the same differential equation of equilibrium of the column in its deformed
position as was given by Eq. (2.28r). Eq. (D.7) is the Euler equation for a functional of one depen-
dent variable given by Eq. (D.1). When the functional contains two dependent variables, u(x)
and w(x), where the highest derivatives in u and w are of the first and second order respectively,
the Euler equations are given by [1].

𝜕F
𝜕u

− d
dx

𝜕F
𝜕u′

= 0

𝜕F
𝜕w

− d
dx

𝜕F
𝜕w′ +

d2

dx2
𝜕F
𝜕w′′ = 0 (D.9)

When there are three dependent variables u, v, w, and two independent variables x, y, and the
highest derivatives are of first order in u and v, and second order in w, then the Euler equations
are given by [1].

𝜕F
𝜕u

− 𝜕

𝜕x
𝜕F
𝜕u,x

− 𝜕

𝜕y
𝜕F
𝜕u,y

= 0

𝜕F
𝜕v
− 𝜕

𝜕x
𝜕F
𝜕v,x

− 𝜕

𝜕y
𝜕F
𝜕v,y

= 0

𝜕F
𝜕w

− 𝜕

𝜕x
𝜕F
𝜕w,x

− 𝜕

𝜕y
𝜕F
𝜕w,y

+ 𝜕2

𝜕x2
𝜕F
𝜕w,xx

+ 𝜕2

𝜕x𝜕y
𝜕F
𝜕w,xy

+ 𝜕2

𝜕y2
𝜕F
𝜕w,yy

= 0 (D.10)

Reference

1 Brush, D.O. and Almroth, B.O. (1975). Buckling of Bars. Plates, and Shells, McGraw Hill, New York,
p 365.
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Appendix E

Differential Geometry in Curvilinear Coordinates

A three-dimensional curve in a rectangular coordinate system (x, y, z) can be represented by
the locus of the end point of the position vector r in Figure E.1.

r = x i + y j + z k (E.1)

Let s be the arc length along the space curve, then

d
ds
(r) = dx

ds
i +

dy
ds

j + dz
ds

k (E.2)

From the dot product of the foregoing derivative with itself we get

d
ds
(r)•

d
ds
(r) =

(
dx
ds

)2

+
(

dy
ds

)2

+
(

dz
ds

)2

(E.3)

(ds)2 = (dx)2 + (dy)2 + (dz)2 (E.4)

Hence,
d
ds
(r)•

d
ds
(r) = 1 (E.5)

This shows that dr/ds is a unit vector. The vector Δr/Δs in Figure E.1 becomes the vector
tangent to the curve at the point P asΔs approaches zero. Therefore, t = dr/ds is a unit tangent
vector. The vector

d
dt
(r) = d

ds
(r)ds

dt
(E.6)

is also a tangent vector in the direction dr/ds but is not necessarily a unit vector.

E.1 Curvature

By Eq. (E.5)
d
ds
(r). d

ds
(r) = t . t = 1

Structural Stability Theory and Practice, First Edition. Sukhvarsh Jerath.
© 2021 Sukhvarsh Jerath. Published 2021 by John Wiley & Sons, Inc.
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r 

r + Δr 
Δr 

Δs 

s 

x 

y 

z 

P 
P’

dr/ds Δr/Δs 

o 

Figure E.1 Position vectors on a curve.

d
ds
(t . t) = 2 t . t′ = 0 (E.7)

where prime denotes differentiation with respect to s. It shows that t and t′ are perpendicular
vectors. From the definition of t, we have

t = d
ds
(r) = d

dt
(r) dt

ds
= ṙ t′ (E.8)

d
ds
(t) = t′= ṙ t′′ + d2

dt2 (r) (t
′)2 (E.9)

Equation (E.9) indicates that the vector t′ lies in the plane of the vectors ṙ and d2

dt2 r, i.e. in

the osculating plane. Since t′ is perpendicular to tangent t, it is concluded that t′ is parallel to
the principal normal and can be written as

t′ = K = KN (E.10)
where N is a unit normal vector in the direction of the principal normal to the curve at a point.
The vector K is called the curvature vector and gives the rate of change of the tangent vector
as a point moves along the curve. The factor K is called the curvature, and its reciprocal is the
radius of curvature, i.e. R = 1

K
. It is assumed that the normal vector N points away from the

center of curvature. From Eq. (E.10) when the sense of K and N are the same, K > 0, and when
the sense of N is opposite to that of K, we have K < 0.

E.2 Surfaces

A thin shell is bounded by two closely spaced curved surfaces. The middle surface of a shell is
defined as X = X(x, y), Y = Y (x, y), and Z = Z(x, y), where X, Y, Z is a rectangular coordinate
system and x, y, z are surface coordinates in Figure E.2. We can write

r = X(x, y) i + Y (x, y)j + Z(x, y) k (E.11)
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X 

Y 

Z 

x

y

z P’ 

P

drr,y r,xds 

r

r  + dr

n

Figure E.2 Shell coordinate system.

From differential calculus

dr = r,xdx + r,ydy (E.12)

where

r,x =
𝜕

𝜕x
(r), r,y =

𝜕

𝜕y
(r) (E.13)

dr . dr = (ds)2 = E(dx)2 + 2F dx dy + G (dy)2 (E.14)

where

E = r,x.r,x, F = r,x.r,y, G = r,y.r,y (E.15)

The differential length of the arc along the surface coordinates is expressed as

dsx =
√

E dx along the x curvilinear coordinate (E.16)

dsy =
√

G dy along the y curvilinear coordinate

The quantities r,x and r,y are tangents to the curvilinear coordinates x and y at P respectively.
If these coordinates are orthogonal, then F will be zero, and it is usually written as

ds2 = A2(dx)2 + B2(dy)2 (E.17)

or

ds2 = ds2
x + ds2

y (E.18)

where

A =
√

E,B =
√

G, and F = 0

dsx = Adx and dsy = Bdy (E.19)

From Eq. (E.11) we have

r,x =
𝜕

𝜕x
(r) = 𝜕X

𝜕x
i + 𝜕Y

𝜕x
j + 𝜕Z

𝜕x
k

E = 𝜕

𝜕x
(r). 𝜕

𝜕x
(r) =

(
𝜕X
𝜕x

)2
+
(
𝜕Y
𝜕y

)2

+
(
𝜕Z
𝜕x

)2
(E.20)
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or

A =
√

E =
√(

𝜕X
𝜕x

)2
+
(
𝜕Y
𝜕x

)2
+
(
𝜕Z
𝜕x

)2
(E.21)

Similarly,

B =
√

G =

√(
𝜕X
𝜕y

)2

+
(
𝜕Y
𝜕y

)2

+
(
𝜕Z
𝜕y

)2

(E.22)

For orthogonal surface coordinates, the magnitudes of vectors r,x and r,y are given by A and B
respectively. A unit normal to the surface at a point P is perpendicular to the plane that contains
vectors r,x and r,y, the tangent plane at P. The unit normal is thus parallel to the cross-product
of r,x and r,y and is given by

n(x, y) = (r,x x r,y)∕| r,x x r,y | (E.23)

From vector algebra| r,x x r,y | = | r,x | |r,y| sin 𝜃 = AB sin 𝜃 (E.24)

and | r,x.r,y | = | r,x | |r,y| cos 𝜃 = AB cos 𝜃 (E.25)

where 𝜃 is the angle between the vectors r,x and r,y. From Eq. (E.15) we have

F = AB cos 𝜃

or

cos 𝜃 = F
AB

= F√
EG

(E.26)

sin 𝜃 =
√

1 − cos2𝜃 =
√

EG − F2

EG
(E.27)

The unit normal vector n (x,y) is thus given by

n(x, y) = (r,x x r,y)∕AB sin 𝜃 =
r,x x r,y√
EG − F2

=
r,x x r,y

H
(E.28)

where H =
√

EG − F2, provided H does not vanish.
It should be noted that the principal normal N of a curve on a surface need not be normal to

the surface, i.e. in general N. n≠ 1. Like the principal normal of a curve, the sense of a normal
to a surface is arbitrary. Therefore, we adopt the convention that the parametric curves should
always be arranged in such a manner that the normal n points from the concave side to the
convex side of the surface.

From Eq. (E.10)

K = d
ds
(t) = Kn + Kt (E.29)
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where Kn and Kt are the normal curvature vector and tangential vectors respectively. The nor-
mal curvature vector can be written as

Kn = −Kn n (E.30)

where Kn is called the normal curvature. The minus sign is there because the sense of the
curvature vector K is opposite to that of the unit normal vector n. Since n is perpendicular to t

n . t = 0

Differentiate the scalar product to get
d
ds
(n) . t + n .

d
ds
(t) = 0

or
d
ds
(n) . t = −n .

d
ds
(t) (E.31)

From Eq. (E.30) the dot product with n gives

−Kn .n=Kn (E.32)

From Eq. (E.29) the scalar product with n gives
d
ds
(t) .n=Kn.n (E.33)

because Kt.n = 0 (Perpendicular to each other).
From Eqs. (E.31), (E.32), and (E.33) we have

d
ds
(n) . t =Kn

or
d
ds
(n) . d

ds
(r) = Kn

or

Kn = (dn . dr)∕(ds2)

or

Kn = (dn . dr)∕(dr . dr) (E.34)

where

(ds)2 = dr . dr

From Eq. (E.12)

dr = r,xdx + r,y dy (E.12)

Similarly,

dn = n,x dx + n,y dy (E.35)
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Substitute Eqs. (E.12) and (E.35) into Eq. (E.34) to get

Kn = (n,x dx + n,y dy) .(r,xdx + r,y dy)∕(r,xdx + r,ydy) .(r,xdx + r,y dy)

or

Kn =
L(dx)2 + 2Mdxdy + N(dy)2

E(dx)2 + 2Fdxdy + G(dy)2
(E.36)

where, L, M, and N are defined as

L = n,x . r,x, 2M = (n,x . r,y + n,y . r,x), N = n,y . r,y
In Eq. (E.36) E, F, G, L, M, and N are all functions of x and y and are constant at a given point,

therefore, the normal curvature Kn in Eq. (E.36) depends only on the direction dx / dy.

E.3 Principal Curvatures

It is intended to seek those directions dy / dx for which the normal curvature Kn is either max-
imum or minimum. Dropping the subscript n, the normal curvature can be written as

K(𝜆) = L + 2M𝜆 + N𝜆2

E + 2F𝜆 + G𝜆2 (E.37)

where

, 𝜆 =
dy
dx

To find the direction dy / dx for the normal curvature to be maximum or minimum, dK
d𝜆

= 0.
Hence from Eq. (E.37) we have

(E + 2F𝜆 + G𝜆2)(M + N𝜆) − (L + 2M𝜆 + N𝜆2)(F + G𝜆) = 0 (E.38)

We can write

E + 2F𝜆 + G𝜆2 = (E + F𝜆) + 𝜆(F + G𝜆)
L + 2M𝜆 + N𝜆2 = (L +M𝜆) + 𝜆(M + N𝜆) (E.39)

Using Eq. (E.39) we can write Eq. (E.38) as

(E + F𝜆)(M + N𝜆) = (L +M𝜆)(F + G𝜆) (E.40)

Substitute Eq. (E.38) into Eq. (E.37) to obtain

K = M + N𝜆

F + G𝜆

Now make use of Eq. (E.40) to get

K = M + N𝜆

F + G𝜆
= L +M𝜆

E + F𝜆
(E.41)
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From Eq. (E.40) we have

(MG − NF)𝜆2 + (LG − NE)𝜆 + (LF −ME) = 0 (E.42)

Equation (E.42) is a quadratic equation in𝜆 giving two roots𝜆1 and𝜆2, that give two directions
(dy/dx)1 and (dy/dx)2, corresponding to the maximum and minimum values of the normal
curvature, K1 and K2 respectively. These are called principal curvatures, and R1 =

1
K1

and R2 =
1

K2
are called the principal radii of curvature. We can prove that the directions of the principal

curvatures are orthogonal. Consider the angle 𝜃 between two directions tangent to a surface
given by dy/dx and 𝛿y/𝛿x. Along these directions differential change in the position vector r is
given by

dr = r,xdx + r,ydy
𝛿r = r,x𝛿x + r,y𝛿y (E.43)

The cosine of the angle between the dr and 𝜹r can be found from the dot product of the two
vectors as

cos 𝜃 = (dr . 𝛿r)∕|dr| |𝛿r|
or

cos 𝜃 = [(r,x dx + r,y dy) .(r,x 𝛿x + r,y 𝛿y)]∕| dr | | 𝛿r | (E.44)

or

cos 𝜃 =
E dx 𝛿x + F(dx 𝛿y + dy 𝛿x) + G dy 𝛿y√

dx2 + dy2 + dz2√
𝛿x2 + 𝛿y2 + 𝛿z2

(E.45)

Substitute ds =
√

dx2 + dy2 + dz2 and 𝛿s =
√
𝛿x2 + 𝛿y2 + 𝛿z2

Hence,

cos 𝜃 = E dx
ds

𝛿x
𝛿s
+ F

(
dx
ds

𝛿y
𝛿s
+

dy
ds

𝛿x
𝛿s

)
+ G

(
dy
ds

𝛿y
𝛿s

)
(E.46)

If 𝜃 = 𝜋

2
, we get the orthogonality condition for two directions on a surface as

E dx 𝛿x + F(dx 𝛿y + dy 𝛿x) + G dy 𝛿y = 0 (E.47)

Divide by dx𝛿x and let 𝜆1 =
dy
dx

and 𝜆2 =
𝛿y
𝛿x

to obtain

E + F(𝜆1 + 𝜆2) + G𝜆1𝜆2 = 0 (E.48)

From Eq. (E.42) the two roots are given by

𝜆1,2 =
−(LG − NE) ±

√
(LG − NE)2 − 4(MG − NF)(LF −ME)

2(MG − NF)
(E.49)
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From Eq. (E.49) we can obtain

𝜆1 + 𝜆2 = −
(LG − NE)
(MG − NF)

𝜆1𝜆2 =
(LF −ME)
(MG − NF)

(E.50)

Substituting (𝜆1 + 𝜆2) and 𝜆1𝜆2into Eq. (E.48) we see that the orthogonality condition is sat-
isfied. Therefore, the directions of the principal curvatures are orthogonal.

If the lines of curvature are taken as parametric lines (curves) of the surface, then the
Eq. (E.42) must be satisfied by both dx/dy = 0 and dy/dx = 0. This is possible if

LF–ME = 0 and MG–NF = 0 (E.51)

We have postulated that the parametric lines are to be the lines of curvature and the latter are
orthogonal, therefore, F = 0. It can be shown that EG−F2 > 0, so that for F = 0, neither E nor
G can be zero. Thus, from Eq. (E.51), M = 0. Hence, the conditions under which the parametric
lines are also lines of curvature are

F = M = 0. (E.52)

When parametric lines are also lines of curvature, then we can find their curvature by setting
F = M = 0 in Eq. (E.36), then letting dx = 0 and dy = 0, in turn to get

Kx =
1

Rx
= L

E
, and Ky =

1
Ry
= N

G
(E.53)

In the theory of thin elastic shells, the lines of curvature of the reference surface are also used
as parametric lines. Hence we assume that Eq. (E.52) is satisfied.

E.4 Derivatives of Unit Vectors along Parametric Lines

Consider mutually orthogonal unit vectors tx, ty, and n at a point on a surface so that these are
tangent to the x and y directions and normal to the surface, respectively. As these vectors are
moved over the surface, the magnitudes of these unit vectors remain constant and they remain
mutually perpendicular, but their directions change. A unit vector can be obtained by dividing
the vector by its magnitude, hence

tx = r, x∕|r, x| = r, x∕A (E.54)

ty = r, y∕|r, y| = r, y∕B (E.55)

n = (tx x ty) = (r, x x r, y)∕AB (E.56)

The vector derivatives n,x and n,y are perpendicular to n, thus they lie in the plane formed
by tx and ty and each vector derivative can be decomposed into its components along tx and ty.
Hence,

n, x = a tx + b ty (E.57)
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Where a and b represent the projections of n,x on tx and ty respectively and are unknown. a
and b are determined by forming the following scalar products

tx .n, x = r, x .n, x∕A = L∕A (E.58)

tx .n, x = tx .(a tx + bty) = a(tx . tx) + b(tx . ty) (E.59)

ty .n, x = r, y .n, x∕B = M∕B (E.60)

ty .n, x = ty .(atx + bty) = a (ty . tx) + b (ty . ty) (E.61)

From Eqs. (E.58) and (E.59) we have

a = L
A

(E.62)

For orthogonal systems, M = 0, hence from Eqs. (E.60) and (E.61) we get

b = 0 (E.63)

Therefore, from Eq. (E.57) we obtain

n, x =
L
A

tx (E.64)

From Eq. (E.53)

Kx =
1

Rx
= L

A2 (E.65)

or

n, x =
A
Rx

tx (E.66)

Similarly,

n, y =
B
Ry

ty (E.67)

Let us now find the derivatives of the unit vectors tx and ty by noting first that r,xy = r,yx.
From Eqs. (E.54) and (E.55) we have

r, x = A tx, and r, y = B ty (E.68)

or

(A tx),y = (B ty),x
or

A tx,y + txA, y = B ty , x + tyB, x

or

ty,x =
1
B
(A tx , y + txA, y − tyB, x) (E.69)
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tx, x is perpendicular to tx and will lie in the plane formed by ty and n. Thus, we can express
tx, x in terms of ty and n as

t, xx = c n + d ty (E.70)

Where c and d are projections of t,xx on n and ty and are unknown. c and d are determined
by forming the following scalar products

n . txx = c (n .n) + d(ty .n) = c (E.71)

Now,

tx .n = 0

or

(tx .n), x = tx .n, x + n . tx , x = 0 (E.72)

From Eq. (E.71) and Eq. (E.72) we have

c = n . tx , x = −tx .n, x = −tx .
A
Rx

tx = −
A
Rx

(E.73)

ty . tx , x = ty .(cn + dty) = c(ty .n) + d(ty . ty) = d (E.74)

(ty . tx), x = ty , x . tx + ty . tx,x = 0 (E.75)

From Eq.(E.74) and Eq. (E.75) we have

d = ty . tx,x = −tx . ty , x (E.76)

Using Eq. (E.68) and r,xy = r,yx we get

(A tx), y = (Bty), x

or

A, y tx + A tx , y = B, x ty + Bty , x

or

ty,x = (A,ytx + A tx , y − B,xty)∕B (E.77)

Using Eq. (E.76) we obtain

d = −tx .(A,y tx + A tx , y − B,xty)∕B (E.78)

tx,y is perpendicular to tx, hence

d = −
A,y

B
(E.79)

Substitute c and d from Eq. (E.73) and Eq. (E.79) in Eq. (E.70) to get

tx,x = −
A
Rx

n − 1
B
𝜕A
𝜕y

ty (E.80)
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Similarly

tx,y =
1
A
𝜕B
𝜕x

ty (E.81)

ty,x =
1
B
𝜕A
𝜕y

tx (E.82)

ty,y = −
B
Ry

n − 1
A
𝜕B
𝜕x

tx (E.83)

We can now drive equations that relate the quantities A, B, Rx, and Ry of a given surface. From
the equality of mixed second derivatives of the unit vectors we have

n,xy = n,yx (E.84)

From Eqs. (E.66) and (E.67) we have(
A
Rx

tx

)
, y −

(
B
Ry

ty

)
,x = 0 (E.85)

or
A
Rx

tx,y +
(

A
Rx

)
,y

tx −
B
Ry

ty,x −
(

B
Ry

)
,x

ty = 0

Substitute for tx, y and ty, x from Eqs. (E.81) and (E.82) to get

A
Rx

1
A

B,xty +
(

A
Rx

)
,y

tx −
B
Ry

1
B

A,ytx −
(

B
Ry

)
,x

ty = 0

or

tx

[(
A
Rx

)
,y
−
(A,y

Ry

)]
+ ty

[(
B,x
Rx

)
−
(

B
Ry

)
,x

]
= 0 (E.86)

The above vector equation is true only if the quantities in the square brackets are zero. Hence,(
A
Rx

)
,y
=

A,y

Ry
,

(
B
Ry

)
,x
=

B,x
Rx

(E.87)

Eq. (E.87) is known as the Codazzi condition.
In a similar manner, if we start with the equation

tx,xy = tx,yx

we will obtain( 1
A

B,x

)
,x
+
( 1

B
A,y

)
= − AB

RxRy
(E.88)

Equation (E.88) is known as the Gauss condition.
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A
AA, see Aluminum Association
ACI (American Concrete Institute), 65, 93
AISC, see American Institute of Steel

Construction
Allowable compressive strength, 133
Allowable Strength Design (ASD):

beam column, 206, 207, 214–215
frame member, 306–309

Almroth, B.O., 519, 532, 537, 548, 553, 559,
578, 581, 584, 605

Aluminum Association (AA), 117, 119,
119–121, 136, 137

Aluminum columns, 116–122
American Concrete Institute (ACI), 65, 93
American Institute of Steel Construction

(AISC), 65, 93, 138, 218, 312, 397, 509
ASD method, 207, 214–215, 306–309
compression element specifications,

504–506
on eccentricity and critical load, 65
on effective length, 42–43, 283, 289, 290
frame design criteria, 304–306, 309
LRFD method, 207, 212–214, 301–306
member design criteria, 132–135, 204,

206–210, 383–395
torsional buckling load calculation,

328–329, 341–342
American Society of Civil Engineers (ASCE),

296, 297, 312

Amplification factors, 204–206, 209
Angular displacement, 9
Anti-symmetric mode, 37–39
Applied torque, 313–314
AS4100-1990 standard, 211–215
ASCE, see American Society of Civil

Engineers
ASD, see Allowable Strength Design
Austin, W.J., 205, 218
Australia, 117–122, 211
Axial compression, cylinders under, 519,

526–531, 537–538
Axial force:

in double modulus vs. tangent modulus
theories, 102

in frames, 274, 276, 277, 300
Axial load, 139, 207–210
Axial strain, 317
Axisymmetric deformation, of shells of

revolution, 560, 562

B
Backward difference, 475
Baron, M.L., 472, 474, 509
Baruch, M., 578, 586
Batdorf, S.B., 527, 584
Batterman, R.H., 116, 117, 136
Bazant, Z.P., 3, 29, 108, 136
Beams, 313–395

buckling modes, 313

Structural Stability Theory and Practice, First Edition. Sukhvarsh Jerath.
© 2021 Sukhvarsh Jerath. Published 2021 by John Wiley & Sons, Inc.
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Beams (contd.)
elastic, 438–442
energy method, 345–352, 369–380
lateral buckling, 352–369

designing beams for, 383–395
general expression, 380–382
lateral buckling load, 373–380

thin-walled cross-sections of, 313–322
torsional buckling, 313–332

designing beams for, 383–395
and non-uniform torsion, 315–322
and pure torsion on I sections, 313–314
torsional buckling load, 326–332
and torsional buckling of columns,

322–326
torsion properties of thin-walled open

cross sections, 597–598
torsional flexural buckling, 332–352

energy approach, 345–352
fixed-fixed columns, 337–338, 342–345
pinned-pinned columns, 335–337,

339–342
singly-symmetric sections, 338–345

Beam columns, 139–215
axial load and bending moment on, 139
basic differential equations of, 139–141,

174–177
with concentrated load, 141–153, 167–169
continuous, 177–182
defined, 139
design of, 202–215
effects of moments on, 153–165
with elastic restraints, 165–167
fixed-fixed, 171–176
inelastic, 188–201
pinned-fixed, 167–169, 176–177
slope deflection coefficients for, 593–595
slope deflection equations for, 182–188
with uniformly distributed load, 169–171,

172–174
Becker, H., 538, 585
Beedle, L.S., 122, 137
Beer, H., 131, 137

Bending:
beams:

buckling load due to torsion vs., 328, 332
section shapes susceptible to buckling by,

313
simply supported beams in pure bending,

352–359
frames with prime bending:

with fixed supports, 245–247
with hinged supports, 242–245
with sidesway, 247–251
without sidesway, 230–232, 251–253

plate:
bending in columns vs., 399
buckling under compression and,

453–458
strain energy due to, 442–443
theory of, 399–404

strain energy due to stresses associated
with, 346–347

Bending moment. See also Maximum
bending moment

for beams, 315, 316
for beam columns, 139

with concentrated force or loads,
148, 171

continuous beam columns, 177–182
fixed-fixed columns, 171, 174, 175
with moments at both ends, 160
pinned-fixed columns, 171, 177
with two equal moments, 161–162
with uniformly distributed load, 172, 174,

176, 177
in frame analysis, 257
for plates:

with elastically supported/built-in edge,
408, 428, 433, 436

with free edge, 408–409, 428
from theory of plate bending, 402–404

Bernoulli–Euler beam theory, 548
Bessel differential equations, orders of, 472
Biaxial loading, plate under, 477–481
Bifurcation, 3–4, 17
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Bifurcation point load, cylindrical shell,
519–524

Bjorhovde, R., 130, 137
Bleich, F., 108, 136, 188, 197, 198, 218,

495–500, 509
Bleich, H.H., 108, 136, 188, 197, 198, 218,

495–500, 509
Bleich and Bleich approach, 495–500
Boresi, A.P., 314, 397
Boundary conditions:

for columns, 50–56
cantilever columns, 54–55
pinned-guided columns, 55–56
pinned-pinned columns, 52–54
and supports, 52

for cylinders, 539–540
geometric/kinematic vs. natural,

87, 602
for plates:

and buckling under uniform
compression, 415–442

circular plates, 566–567
and energy method, 442–458
and inelastic buckling, 497–500
rectangular plates, 408–410
as shells of revolution, 566–567

Box frame, without sidesway, 251–253
Braced frames, 279–284
Brungraber, R.J., 122, 137
Brush, D.O., 519, 532, 537, 548, 553, 559, 578,

581, 584, 605
Bryan, G.H., 434, 509
Buckling. See also Failure; Instability(-ies)

of beams, 313
lateral buckling, 352–382
lateral torsional buckling, 385–395
torsional buckling, 326–332, 383–395
torsional flexural buckling, 332–352

of beam columns, 593–595
of columns, 95–96, 322–326
defined, 1
of frames, 266–273, 290–309
local, 384–385, 504–506

of plates (see Plates)
of shells (see Shells)

Buckling capacity, clamped circular plate, 473
Buckling load, 1

for columns, 31, 95, 119–122
Euler, for inelastic column, 95
for plates with stiffeners, 461, 466
torsional, for beams, 326–332
torsional flexural, for beams, 332–352

Buckling stress parameter, 528–530
Built-in edges, plate, 408, 427–438

C
Calculus of variations, 84–87, 599–602, 604
Canadian Standards Association (CSA), 131,

137, 210, 211, 219
Cantilever beams, 364–369, 379–380
Cantilever columns:

critical load from classical column theory
for, 39–40

effective length approach to, 82
governing differential equation for,

54–55
inelastic, 108
with intermediate compressive force, 46–50
large deflection theory for, 79–82

Caps, shallow spherical, 567–573
Carrying capacity, critical load and, 547
Cedolin, L., 3, 29, 108, 136
CEN (Comité Européen de Normalisation),

131, 138. See also European
Committee for Standardization (ECS)

Central difference, 475
Centroidal axis, beam with uniformly

distributed load along, 378
Centroid displacement, 333
Chajes, A., 84, 93, 108, 115, 136, 314, 369,

370, 397, 490, 509
Channel section, warping constant of,

320–322
Chen, W.F., 4, 29, 107, 127, 130, 136, 137, 206,

311, 257, 274, 311, 380, 383, 398
Chord modulus, 108–110
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Circular cylinders, 526–534
Circular plates, 470–474, 563–567
Clamped sides:

circular plates with, 566, 566
rectangular plates with:

and free side, 416–421
inelastic buckling for, 499–500
under pressure in two directions,

447–448
and simply supported loading edges,

416–423, 499–500
Clark, J.W., 122, 137, 218, 382, 398
Clarke, M., 219
Classical column theory, 31–42

for cantilever columns, 39–40
critical load from, 31–42
for fixed-fixed columns, 35–39
for fixed-pinned column, 40–42
for pinned-pinned columns, 32–35

Cm amplification factor, 204–205, 209
Codazzi condition, 617
Columns, 31–90. See also Inelastic columns;

Metal columns; specific end-support
types

about, 31
bending in plates vs., 399
boundary conditions, 50–56
buckling, 95–96, 322–326
cantilever:

classical column theory, 39–40
effective length approach, 82
governing differential equation, 54–55
inelastic, 108
with intermediate compressive force,

46–50
large deflection theory, 79–82

classical column theory, 31–42
continuous, 56–59
critical load for, 31–42
defined, 31
eccentrically loaded, 64–66
effective length, 42–50, 82

on elastic supports, 59–62
energy methods with, 84–90
and general shells, 553
geometrically imperfect, 68–73
governing differential equation for

boundary conditions, 50–56
with intermediate compressive force, 43–50
large deflection theory of, 73–83
pinned-pinned, 43–46
plates vs., 399, 494
rigid bar, 5–28

with imperfections, 23–28
large displacement analysis, 17–23
small deflection analysis, 5–17

Column curves, inelastic beam column, 198,
199

Column Research Council (CRC), 128–129,
145, 150, 151, 218, 346, 397, 566, 585

Column strength curves, 117–118, 126–128
Comité Européen de Normalisation (CEN),

131, 138. See also European
Committee for Standardization (ECS)

Complete elliptic integral of the first kind, 76
Compression:

axial compression on cylinders, 519,
526–531, 537–538

of beam columns, 190–201, 206–207
intermediate compressive force on

columns, 43–50
of plates:

buckling under bending and, 453–458
buckling under uniform uniaxial

compression, 410–442
circular plates, 566
designing plates to prevent local

buckling, 504–506
and ultimate strength, 500–504

Compression flange, 384–385
Concentrated load(s):

on beams:
critical moment and critical load, 382
at free end, 364–367, 378–380
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at mid-span, 359–363, 369–372
on beam columns, 141–153

beam columns with several concentrated
loads, 146–147

fixed-fixed beam columns, 171–172
at mid-span of beam column, 144–146
pinned-fixed beam columns, 165–169
uniformly distributed load over portion

of span, 152–153
uniformly increasing load over portion of

span, 153
Conical shells, 573–578
Considère, A., 95, 96, 136
Continuous beam columns, 177–182
Continuous columns, 56–59
Continuous systems, 27
Core radius, 197
Crandall, S.H., 32, 67, 93
CRC, see Column Research Council
Critical elastic lateral torsional buckling

moment, 387
Critical force:

and effective length of column, 46, 49–50,
51

for plates:
circular plates 565–566, 567
with clamped edges, 418, 422, 449, 566
compressive force, 418, 422, 425, 430,

434, 438, 442, 446, 449, 469
with elastically built-in edges, 430, 434,

438
with elastically supported edges, 442
with fixed edges, 446
with free edges, 418, 425, 430
rectangular plates, 418, 422, 425, 430,

434, 438, 442, 446, 449, 469
shear force, 452–453
with simply supported edges, 418, 422,

425, 430, 434, 438, 442, 456–458,
567

with stiffeners, 469
under two-directional force, 449

Critical load:
for beam columns, 167, 182
for beams:

with concentrated load at free end,
364–367, 378–380

with concentrated load at mid-span,
359–363, 369–372

defined, 351
fixed-fixed columns, 337–338
lateral buckling of beams, 351, 359–367,

369–382
loading conditions and, 382–383
pinned-pinned columns, 335–337,

350–351
with singly symmetric sections, 338–345
torsional flexural buckling in beams,

342–345, 350–351
with uniformly distributed load, 373–378
with unsymmetrical sections, 332–335

buckling load vs., 31
for columns, 31–42

aluminum columns, 116
cantilever columns, 39–40
continuous columns, 56–59
eccentrically loaded columns, 66
on elastic supports, 59–62
from energy methods, 87–90
fixed-fixed columns, 35–39
fixed-pinned column, 40–42
from governing differential equation,

54–56
pinned-pinned columns, 32–35
rigid bar columns, 6, 7, 9–10, 19
from Southwell plot, 72
steel columns, 122, 123

defined, 4
in displaced shape equilibrium method,

2–3
for frames, 221–278

braced frames, 291
by equilibrium method, 221–232
by finite element method, 257–278
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Critical load (contd.)
by matrix method, 257–278
from slope deflection equations, 232–257

for plates:
under biaxial loading, 477–481
from finite element method, 481–487
inelastic plate buckling, 497–500
with simply supported edges, 412,

477–481, 497–500
with stiffeners, 461–464, 466

for shells:
conical shells, 578
cylindrical panels, 547
cylindrical shells, 526–540

Critical moment:
for beam acted on by uniform moment,

367–369
for beam in pure bending, 356, 359
for cantilever beams, 367–369, 381, 382
for fixed-fixed beams, 381–382
for lateral buckling of beams, 356, 359,

367–369
and loading conditions of beam, 382–383
for simply supported beams, 356, 359, 381,

382
Critical pressure:

for circular cylinders, 531–533
for shallow spherical caps, 572–573
for toroidal shells, 580–583

Critical slenderness ratio, 129
Critical stress:

average, for inelastic beam columns,
193–194, 196–198

for beam in pure bending, 356
for columns, 35, 119, 122, 133
compressive, for plates, 414–415, 419–421,

422–423, 426–427, 430
for cylindrical shells, 529–531, 536–537
for plates:

under bending and compression,
456–458

and edge supports, 415, 419–421,
422–423, 426–427, 430

with longitudinal stiffeners, 463, 464
and post-buckling behavior, 494
with transverse stiffeners, 466

reduced modulus, 100
shear, 537
tangent modulus, 103

Cross-section strength, steel beam columns,
210

Cruciform column, torsional buckling of,
322–326

CSA, see Canadian Standards Association
Curvature, 402, 607–608

double, 163–165, 383
and inelastic moment in beam column,

189, 192
normal, 511
principal, 612–614
principal radii of, 613
single, 188, 383

Curvilinear coordinates, 607–608
Cylindrical panels, 543–548
Cylindrical shells, 512–548

critical load, 526–540
Donnell’s linear equations of stability,

519–524
energy method of deriving nonlinear

equilibrium equations for, 524–526
failure and post-buckling behavior of,

540–543
large deflection theory of, 512–517
linear membrane equations for,

518–519
linear theory of, 517–518

D
Dahl, N.C., 32, 67, 93
Deflection:

of beam columns:
with concentrated load, 146–147, 169
with double curvature, 163–164
with end moments, 156–162
pinned-fixed column, 169–171, 177
with span moment, 154–156
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with uniformly distributed load, 152–153,
169–171, 177

with uniformly increasing load, 153
large deflection theory:

for columns, 73–83
for frames, 273–278
for plates, 487–495
for shells, 512–517

load-deflection relationship:
for columns, 66–67, 70–71, 106, 111
for cylindrical panels, 547–548
for frames, 273, 275
for inelastic beam columns, 198–201
from large deflection theory, 77–78,

80–81
maximum deflection:

for beam columns, 144–146, 150–151,
162, 171–175

for eccentrically loaded column, 66–67
mid-height deflection of columns:

eccentrically loaded columns, 114–115
from effective length approach, 82–83
geometrically imperfect columns, 70–72
from large deflection theory, 77, 80

slope deflection convention, 182, 243–246,
248

slope deflection equations:
for beam columns, 182–188, 593–595
for frames, 232–257

small deflection analysis:
of plates, 487
of rigid bars, 5–17

symmetrical, of plate with biaxial loading,
477–478

Deformed length, under torsional flexural
bending, 348

Deformed shape of columns:
from calculus of variations, 84–87,

599–602
from classical column theory, 34, 37–42
and critical load from energy methods,

88–90, 351
geometrically imperfect columns, 68–70

from governing differential equation, 52–56
Desai, C.S., 481, 509
Design compressive strength, 133
Design considerations:

for aluminum columns, 117–122
for beam columns, 202–215
for beams, 383–395
for compression elements, 504–506
for frame members, 278–309
for plates, 504–506
for steel columns, 132–135

Design values, for effective length, 42–43
Differential equations:

for beam columns:
basic equation, 139–141
fixed-fixed beam columns, 174–176
pinned-fixed beam columns, 176–177
with uniformly distributed load, 174–177

for beams under torsional flexural
buckling, 332–345

beams with singly symmetric sections,
338–345

fixed-fixed columns, 337–338
pinned-pinned columns, 335–337

for columns with different boundary
conditions, 52–56

for cylindrical shells with different
boundary conditions, 540

Differential geometry, in curvilinear
coordinates, 607–617

Discrete systems, 27–28
Displaced shape equilibrium method:

for bar supported by rotational spring at
the base, 23–24

for bar supported by translational and
rotational springs, 19

for bar supported by translational spring,
5–6, 17

equilibrium equations in, 2
for three bars with two linear springs,

13–15
for two bars connected by rotational

springs, 8–9, 26
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Displacement:
angular, for rigid bars, 9
centroid, in torsional flexural buckling, 333
relative, beam columns with, 184–185
from theory of plate bending, 401

Distributed loading, on frame spans, 264–266
DMV form of shell equations. see

Donnell-Mushtari-Vlasov (DMV)
form of shell equations

Donnell, L.H., 501, 509, 517–518, 523, 535,
536, 541, 547, 580–585

Donnell linear equations of stability:
coupled, 523, 539–540
critical load determinations with, 526–540
for cylindrical shells, 519–524

under axial compression, 526–531,
537–538

with different end conditions, 539–540
under external pressure, 533–534
with torsion, 534–537
under uniform lateral pressure, 531–533,

537–538
for general shells, 553–557
uncoupled, 523–524, 539

Donnell-Mushtari-Vlasov (DMV) form of
shell equations, 552, 556, 557

Double curvature, 163–165, 383
Double modulus theory, 95–101
Doubly symmetric members:

AISC design criteria for, 206–210
lateral torsional buckling of, 385–388
local buckling at compression flanges for,

385
with thin-walled open beam sections,

322–332
torsional buckling of, 322–326

E
Eccentrically loaded beam columns, 197–198
Eccentrically loaded columns, 64–68,

108–115
ECCS (European Convention for

Constructional Steelwork), 131–132

ECS (European Committee for
Standardization), 210, 219. See also
Comité Européen de Normalisation
(CEN)

Edge conditions of plates. see Boundary
conditions

Effective length method, beam critical
moment from, 381–382

Effective length of columns, 42–50
and braced frames, 282–284
cantilever columns, 39–40, 46–50
fixed-fixed columns, 37, 83
fixed-pinned columns, 42, 83
general case, 42–43
inelastic, 108
with intermediate compressive

force, 43–50
and large deflection theory, 82–83
pinned-pinned columns, 43–46, 82
and unbraced frames, 284–290

Effective width, of simply supported plates,
501–502

Eigenvalue analysis. see Euler equations
Elastically built-in edge(s), plates with:

boundary conditions for, 409–410
and different flange sizes, 435–438
and one free side, 427–431
rotational springs for restraining, 434–435
and simply supported loading edges,

427–438
Elastically restrained supports, 59, 165
Elastic beams, plate supported by, 438–442
Elastic critical load for frame, 257
Elastic stability limit load, frame, 257
Elastic supports:

columns with, 59–64
plates with, 409–410, 438–442

Element axial displacement, in frame large
deflection analysis, 274, 276

Element stiffness matrix:
formation of, 258–262
for frame pinned at base with sidesway

permitted, 268
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in large deflection analysis of frames, 273,
277

for plates, 486
End forces, in large deflection analysis of

frame, 276, 277
End moment(s):

for beam columns, 156–159
double curvature from, 163–165
with elastic restraints, 165–167
and equivalent moments, 204–205
from matrix inversion, 183–184
with one hinged end, 185
with rotations and relative displacement

at ends, 184–185
in single curvature, 188
from slope deflection equations, 182–183
with transverse loading, 186–187
two equal end moments, 161–162

for frames:
in large deflection analysis, 274, 275,

277
two-story two-bay frames, 296–298

End restraint parameter, for frames, 283,
289–291

End rotation, columns with, 77–79, 82
Energy methods:

with beams, 345–352
with columns, 84–90
equilibrium equations in, 2
with rectangular plates, 442–469
with rigid bar columns, 9–28
with shells, 524–526

Engesser, F., 95, 96, 136
Equilibrium:

bifurcation of, 3–4
neutral, 2
nonlinear equations of, 524–526, 548–553
stable, 2

and lateral buckling of beams, 352
for rigid bar columns, 7, 10–13, 16–17,

22–23, 25
types of, 2
unstable, 2, 10

is small deflection analysis of rigid bars,
12–13, 17

in large displacement analysis of rigid
bars, 17–22

total potential energy for, 7
Equilibrium method. See also Displaced

shape equilibrium method
for beam columns, 139–141, 162–163,

190–198
for frames, 221–232

Equivalent moment, 204–205
Euler buckling, for columns, 76, 80
Euler buckling load, inelastic

column, 95
Euler column, 32
Euler critical load, eccentrically loaded

column, 66
Euler equations, 552, 603–605
Euler formula, 95
Euler, L., 32, 93, 95
Eurocode 3 design criteria, 131, 210
Europe, 131, 210
European Committee for Standardization

(ECS), 210, 219. See also Comité
Européen de Normalisation (CEN)

European Convention for Constructional
Steelwork (ECCS), 131–132

External forces. see Potential energy, of
external forces

External loads. see Potential energy, of
external loads

External moment, of beam in pure bending,
353

External pressure, cylinders under:
and axial compression, 537–538
critical pressure for, 533–534
uniform lateral external pressure, 531–533,

537–538
External torsional moment, I beam with

concentrated load, 362
External work, for rectangular plate,

484–485
Extremely flexible beams, 225, 229
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F
Failure, 1. See also Buckling

of columns, 31, 95
material, 1, 95
of shells, 540–548

Finite difference method, for plates, 474–481
Finite disturbance instability, 4–5
Finite element method:

for frames, 257–278
for plates:, 481–487

First difference, 474, 475
First law of thermodynamics, 6
Fixed edges, plates with, 445–447
Fixed-fixed beams, 381
Fixed-fixed beam columns, 108, 171–176
Fixed-fixed columns:

in anti-symmetric mode, 37–39
critical load for, 35–39
effective length approach to, 83
singly-symmetric, 342–345
in symmetric mode, 35–37
torsional buckling load for, 329–332
torsional flexural buckling load for,

337–338, 342–345
unsymmetric, 337–338

Fixed-pinned column, 40–42, 83, 108
Fixed supports:

boundary conditions for, 52
and elastic support, 62–64
frames with, 245–247

Flanges:
compression, 384–385
in frame design, 301
plates with different sizes of, 435–438

Flat plates, as shells of revolution,
563–567

Flexural rigidity of the plate per unit width,
403, 496

Flexural rigidity of the shell per unit width,
514

Flexure, design criteria for members subject
to, 206–210

Flügge, W., 540, 585
Forward difference, 474
Fourth difference, 476
Frame member design, 278–309

braced frames, 279–284
to prevent inelastic buckling of frames,

290–309
unbraced frames, 284–290

Frames, 221–309
braced, 279–284
critical load for, 221–278

by equilibrium method, 221–232
by finite element method, 257–278
by matrix method, 257–278
from slope deflection equations,

232–257
design of, 278–309

braced frames, 279–284
to prevent inelastic buckling of frames,

290–309
and unbraced frames, 284–290

equilibrium method, 221–232
frames with prime bending and without

sidesway, 230–232
portal frames without sidesway,

221–225
portal frames with sidesway, 225–230

matrix and finite elements methods,
257–278

element stiffness matrix formation,
258–262

for frame pinned at base with sidesway
permitted, 266–273

nonlinear geometric/large deflection
analysis, 273–278

in span loading in, 264–266
structure stiffness matrix formation,

262–264
slope deflection equations for, 232–257

box frame without sidesway, 251–253
frames with prime bending and

sidesway, 247–251
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frames with prime bending and without
sidesway, 242–247

multistory-muiltibay frames without
sidesway, 253–257

portal frame without sidesway, 232–234
portal frame with sidesway, 234–237
two-bay frame without sidesway, 239–242
two-story frame without sidesway,

237–239
stability of members vs., 221
unbraced, 284–290

Free edges, plates with:
boundary conditions for, 408–410
and clamped edge, 416–421
and elastically built-in edge, 427–431
and simply supported edges, 416–421,

423–427
Free end:

of beam, concentrated load at, 364–367,
378–380

of column, boundary conditions for, 52
Frey, F., 116, 136
Fully heat-treated aluminum alloys,

118–120
Fundamental equilibrium path, 3–4
Fung, Y.C., 259, 311

G
Galambos, T.V., 117, 131, 136, 201, 218, 382,

398
Galerkin method, 88–90, 493, 544
Gauss condition, 617
General shells, 548–557
Geometrically imperfect columns, 68–73
Gerard, G., 405, 508, 538, 585
Gere, J.M., 2, 29, 33, 46, 59, 77, 93, 158, 218,

270–273, 312, 316–318, 357, 362, 366,
367, 372, 378, 380, 397, 408, 416, 453,
457, 472, 480, 481, 509, 531, 536, 566,
573, 585

Ghosh, A.K., 534, 585
Global coordinates, local and, 262–263

Governing differential equation:
from calculus of variations, 84–87,

599–602
for column boundary conditions, 50–56
and Galerkin method, 88–90
of plate buckling, 407, 410, 415, 416, 424,

430, 477
Gravity loading, for two-story two-bay frame,

291–309
Guided support, 52

H
Harari, O., 578, 586
Hariri, R., 116, 136
Hibbeler, R.C., 192, 218, 324, 346, 397
Hill, H.N., 382, 398
Hinged supports:

beam columns with, 184–185
frames with, 242–245
inelastic columns without, 108

Hoff, N.J., 541, 585
Hong, G.M., 122, 137
Horizontal force, transverse load on frame

and, 244
Huber, A.W., 137
Hutchinson, J.W., 571–572, 578, 580, 581, 586
Hydrostatic pressure loading, 538, 539

I
I beams:

buckling of idealized sections of, 123–125
cantilever, 364–367
with concentrated load at free end, 364–367
with concentrated load at mid-span,

359–363, 369–372
non-uniform torsion on, 315–316
in pure bending, 356–359
pure torsion on, 313–314
simply supported, 356–363, 359–363,

369–378
torsion properties of, 597
with uniformly distributed load, 373–378
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Imperfections:
columns with, 68–73
cylindrical panels with, 547–548
cylindrical shells with, 511, 519,

540–541
rigid bar columns with, 23–28

Imperfection insensitive phenomenon, 546,
547

Inelastic beam columns, 188–201
compression and tension side yielding for,

194–201
compression side yielding for, 190–194

Inelastic buckling:
frame member design to prevent,

290–309
of rectangular plates, 495–500

Inelastic columns, 95–115
double modulus theory for, 96–101
eccentrically loaded, 108–115
and history of column buckling theories,

95–96
metal columns as (see Metal columns)
Stanley’s theory for, 103–108
tangent modulus theory for,

101–103
without hinged ends, 108

Inelastic lateral torsional buckling moment,
386, 387

Inelastic moment curvature relation, beam
column, 190, 192

In-plane forces, thin plate, 405–407
In span loading of frames, 264–266
Instability(-ies), 3–5. See also Buckling
Internal moment, beam:

for beam acted on by uniform moment,
367–368

for beam with concentrated load at free
end, 365–366

for beam with concentrated load at
mid-span, 359–361

for cantilever beam, 365–369
for simply supported beam, 359–361

Internal torsional resisting moment, beam,
362, 368

Iyengar, N.G.R., 136, 253, 311

J
Jacquet, J., 131
Ježek, K., 188, 218
Jerath, S., 511, 534, 584, 585
Johnston, B.G., 116, 117, 122, 124, 127, 130,

136, 137
Jones, R.P.N., 541, 585
Julian, O.G., 278, 312

K
Kassimali, A., 151, 218
Kempner, J., 541, 585
Ketter, R.L., 137, 201, 218
Kirby, P.A., 383, 398
Kirchoff, G.R., 408
Koiter, W.T., 541, 546–549, 585
Kreyszig, E., 9, 29, 472, 473, 509, 567, 586
Kumar, A., 232, 251, 311, 453, 509

L
Lai, Y.F.W., 122, 137
Lamé coefficients, 549, 558–559
Langhaar, H.L., 6, 29
Lardner, T.J., 32, 67, 93
Large deflection theory:

for columns, 73–83
for frames, 273–278
for plates, 487–495
for shells, 512–517

Large displacement analysis of rigid bars,
17–23

Lateral buckling of beams, 352–369
cantilever beams, 364–369, 378–380
with concentrated load at free end,

364–367, 378–380
with concentrated load at mid-span,

359–363, 369–372
designing to prevent, 383–395
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and energy method of finding load on
beam, 369–380

general expression for, 381–383
I beams, 356–367, 369–378
narrow rectangular beams, 352–356,

367–369, 378–380
in pure bending, 352–359
simply supported beams, 352–363, 369–378
with uniformly distributed load, 373–378
with uniform moment, 367–369

Lateral load intensity, with torsional
buckling, 324

Lateral torsional buckling, AISC design
criteria to prevent, 385–395

Lateral torsional buckling modification
factor, 386

Lawrence, L.S., 278, 312
Lee, M., 511, 584
Lee, S.C., 541, 585
Leggett, D.M.A., 541, 585
Lehigh University, 127
Levy, S., 447, 509
L’Hospital’s rule, 183
Limit load instability, 4–5, 13
Linear membrane equations for cylindrical

shells, 518
Linear springs, rigid bars with, 13–17
Linear theory of shells, 517–518
Load-deflection relationship:

for columns:
eccentrically loaded columns,

66–67, 111
geometrically imperfect columns,

70–71
inelastic columns, 106, 111

for cylindrical panels, 547–548
for frames, 273, 275
for inelastic beam columns, 198–201
from large deflection theory, 77–78,

80–81
Load Resistance Factor Design (LRFD):

beam column, 206–207, 212–214
frame member, 306–309

Local buckling:
of plate compression elements, 504–506
of steel beams, 384–385

Local coordinates, global and, 262–263
Longitudinal stiffeners, 456, 458–464,

468–469
Lorenz, R., 540, 585
Love, A.E.H., 548, 585
Love’s theory of thin elastic shell, 548
Lowest eigenvalue, 486
LRFD. see Load Resistance Factor Design
Lui, E.M., 3, 29, 108, 127, 130, 136, 206, 218,

257, 274, 311, 380, 383, 398

M
Madsen, W.A., 541, 585
Maquoi, R., 130
Massonnet, C., 206, 218
Material failure, 1, 95
Matrix inversion, 183–184
Matrix method for frames, 257–278

element stiffness matrix formation,
258–262

for frame pinned at base with sidesway
permitted, 266–273

nonlinear geometric/large deflection
analysis, 273–278

in span loading in, 264–266
structure stiffness matrix formation,

262–264
Maximum bending moment:

for beam columns, 144, 146, 151–152
with double curvature, 164–165
with moments at both ends, 160
secondary moment, 203
with two equal moments, 162

for eccentrically loaded columns, 66
Maximum deflection:

for beam columns, 144–146, 150–151
with concentrated force, 172
with two equal moments, 162
with uniformly distributed load, 172–175

for eccentrically loaded column, 66–67
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Maximum shear stress, for pure torsion, 314
Maximum stress, in eccentrically loaded

columns, 67
Mayers, J., 541, 585
Mazzolani, F.M., 116, 122, 136, 137
McCormack, J.C., 183–185, 218
McElman, J.A., 578, 580, 586
Members. See also specific types

failure in, 1
stability of frames vs., 221

Meridians, of shells of rotation, 553
Metal columns, 116–135

aluminum columns, 116–122
steel columns, 122–135

AISC design criteria for, 132–135
buckling of idealized I-section, 123–125
Column Research Council curve for,

128–129
column strength curves for, 126–129
European curves for, 131–132
Structural Stability Research Council

curves for, 129–131
Michielsen, H.F., 541, 585
Mid-height deflection, of columns:

eccentrically loaded columns, 114–115
from effective length approach, 82–83
geometrically imperfect columns, 70–72
from large deflection theory, 77, 80

Mid-span, concentrated load at:
beam column with, 144–146
I beams with, 359–363, 369–372
narrow rectangular beams with, 359–363,

372
Minimum buckling load, for plates with

stiffeners, 461, 466
Mode shape, column, 32, 35, 40
Modified Newton-Raphson method, 275, 277
Modulus of elasticity, 95, 495
Moment of inertia, for inelastic columns, 100,

101
Moments. See also Bending moment

critical elastic lateral torsional buckling,
387

critical, for beams, 356, 359, 367–369,
381–383

end:
for beam columns, 156–159, 161–167,

182–188, 204–205
for frames, 274, 275, 277, 296–298

equivalent, 204–205
external, of beam in pure bending, 353
external torsional, 362
in frame design, 280, 300
in geometrically imperfect columns, 70–71
and inelastic buckling plates, 495–496
inelastic lateral torsional buckling, 386, 387
internal, beam, 356–361, 365–369
internal torsional resisting, 362, 368
for plate with stiffeners in both directions,

468
secondary, 202–204
span, 154–156, 297
torsional, 324
twisting, plates with, 402–404, 408–409,

432, 435
unequal, beams with, 383
uniform, beams with, 367–369, 382

Multistory-multibay frames, 253–257

N
Narrow rectangular beams:

cantilever, 367–369
with concentrated load at mid-span, 372
in pure bending, 352–356
simply supported, 352–356, 372, 378
with uniformly distributed load along

centroidal axis, 378
with uniform moment, 367–369

Nelson, J.K., 183–185, 218
Nethercot, D.A., 122, 137, 382, 383, 398
Neutral axis, in double modulus

theory, 100
Neutral equilibrium, 2
Newton-Raphson method, 274, 275
Nominal flexural strength, beam, 383
Nominal moment capacity, 384–385
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Non-heat-treated aluminum alloys, 118–120
Nonlinear equations of equilibrium:

for cylindrical shells, 524–526
for general shells, 548–553

Nonlinear geometric analysis of frames,
273–278

Non-uniform torsion, 315–322
on I-sections, 315–316
on thin-walled open cross-sections in

general, 316–319
and warping constant of a channel section,

320–322
Normal curvature, for surface, 611–612
North America, aluminum columns in,

117–122. See also specific standards
organizations

O
Orthotropic plates, 468
Osgood, W.R., 116, 122, 137

P
Panels, cylindrical, 543–548
Parallels, shells of rotation, 553
Parametric curves, normal convention for,

610
Parametric lines, 614–617
P–𝛿 effects, 202, 208
Perpendicular directions, compressive

pressure on plate in, 447–448
Pinned-fixed beam columns:

basic differential equations method with,
176–177

with concentrated load, 167–169
with uniformly distributed load, 169–171,

176–177
Pinned-guided columns, 55–56
Pinned-pinned columns:

critical load from classical column theory
for, 32–35

deformed shape of, in equilibrium state,
84–87, 599–602

effective length approach to, 82

governing differential equation for, 52–54
inelastic, 100–108, 111–115
with intermediate compressive force, 43–46
large deflection theory for, 73–79, 82
potential energy of external load in, 351
singly-symmetric, 338–342
strain energy of, 347
torsional buckling load for, 327–329
torsional buckling of, 322–326
torsional flexural buckling load for,

335–337, 339–342
unsymmetric, 335–337

Pinned support:
boundary conditions for, 52
buckling of frame with, 266–273

Plate bending, theory of, 399–404
Plates, 399–506

under bending and compression,
453–458

boundary conditions:
and buckling under uniform

compression, 415–442
for circular plates, 473–474
and energy method, 445–458
inelastic buckling of, 497–500
for rectangular plates, 408–410
as shells of revolution, 566–567

circular, 470–474, 563–567
with clamped edges, 447–448
columns vs., 399
under compressive pressure in two

perpendicular directions, 447–448
designing, 504–506
energy method for, 442–469
energy method with, 442–469

plates under bending and compression,
453–458

plates under compressive pressure in two
perpendicular directions, 447–448

plates under shear forces, 449–453
plates under uniaxial compressive force,

445–447
plates with clamped edges, 447–448
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Plates (contd.)
plates with fixed edges, 445–447
plates with stiffeners, 458–469
potential energy of external forces,

443–445
simply supported plates, 449–469
strain energy due to bending, 442–443

finite difference method with, 474–481
finite element method with, 481–487
with fixed edges, 445–447
inelastic buckling of, 495–500
large deflection theory for, 487–495
local buckling of compression elements of,

504–506
nonlinear equations of equilibrium for, 552
rectangular, 399–469
under shear forces, 449–453
shells vs., 511
simply supported, 449–469
with stiffeners, 458–469
theory of plate bending, 399–404
thin, 405–407
ultimate strength of, 500–504
under uniaxial compressive force, 445–447
uniformly compressed, 410–442

Point, intersecting elements of open sections
at, 326

Portal frames:
critical load by equilibrium method for,

221–230
with sidesway, 225–230, 234–237
slope deflection equations for, 232–237
without sidesway, 221–225, 232–234

Post-buckling behavior. See also Large
displacement analysis

of cylindrical panels, 543–548
of cylindrical shells, 541–543
of inelastic columns, 107
of plates, 491–495

Post-buckling equilibrium path, 3–4
Potential energy. See also Total potential

energy

equilibrium and, 2
of external forces:

for frames, 258
for rectangular plates, 443–447, 450–451,

455, 460, 465
for rigid bar columns, 6–7, 9, 11, 15, 20,

24, 27
for thin elastic shells, 550

of external loads for beams:
cantilever beams, 379
with concentrated load at free end,

379
with concentrated load at mid-span,

369–370
simply supported I beams, 369–370, 373,

376
in torsional flexural buckling,

348–352
with uniformly distributed load,

373, 376
stationary (see Stationary potential energy,

principle of)
Pre-buckling rotations, for shells of

revolution, 559–563
Primary equilibrium path, 3–4
Primary forces, on shells, 511
Prime bending:

equilibrium method for frames with,
230–232

for frames without sidesway, 230–232,
242–247

frames with sidesway and, 247–251
slope deflection equations for frames with,

242–251
Principal curvature, 612–614
Principal radii of curvature, 613
ψ amplification factor, 204
Pure bending:

section shapes susceptible to, 313
for simply supported I beams, 356–359
for simply supported narrow rectangular

beams, 352–356
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Pure torsion. See also Torsional buckling
and beam design, 383
on I beam sections, 313–314
strain energy due to stresses associated

with, 347

Q
Quasi-shallow shells, 550–551

R
Ralston, A., 474, 509
Ramberg, W., 116, 136
Rayleigh-Ritz method:

with columns, 87–88
with plates, 447, 448, 451, 459

Rectangular beams:
cantilevered, 367–369, 378–380
with concentrated load at free end, 378–380
with concentrated load at mid-span, 372
in pure bending, 352–356
simply supported, 352–356, 372, 378
with uniformly distributed load along

centroidal axis, 378
with uniform moment, 367–369

Rectangular column section, double modulus
theory for, 100–101

Rectangular elements, open sections with
intersecting, 326

Rectangular plate(s):
boundary conditions for, 408–410
buckling:

under combined bending and
compression, 453–458

inelastic buckling of plates, 497–499
of plates with stiffeners, 459
under shear forces, 449–453
under uniform compression in one

direction, 410–415
with clamped sides, 416–423
columns vs., 399
with elastically built-in sides, 427–438
with elastically supported side, 438–442
energy method for

plates under uniaxial compressive force
with fixed edges, 445–447

plates under uniform compression with
simply supported loading edges,
410–442

and one clamped side, other side free,
416–421

and one side elastically built in, other
side free, 427–431

and one side simply supported, other
side free, 423–427

and other sides clamped, 421–423
and other sides elastically built in,

431–438
and other sides simply supported,

410–415
and other sides supported by elastic

beams, 438–442
with fixed edges, 445–447
with free edges, 416–421, 423–431
inelastic buckling of, 497–500
post-buckling behavior of, 491–495
with sides supported by elastic beams,

438–442
with simply supported edges, 410–442,

449–469, 497–499
theory of plate bending for, 399–404
thin, 405–410
under uniaxial compressive force,

445–447
under uniform compression,

410–442
Reduced modulus, 100–102
Reduced modulus critical stress, inelastic

column, 100
Reduced modulus load, 100, 107
Reduced modulus theory. see Double

modulus theory
Relative displacement, beam columns with,

184–185
Residual stresses, in steel columns, 122, 124,

127
Revolution. see Shells of revolution
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Rigid bar columns, 5–28
with imperfections, 23–28
large displacement analysis, 17–23
with linear springs, 13–17
with rotational springs, 8–10, 19–28
small deflection analysis, 5–17
three-member truss, 11–13
with translational springs, 5–7, 17–22

Rigid beams, in portal frames, 225, 229
Rigid joints, in frames, 221
Rondal, J., 130
Rotation(s):

columns with end, 77–79, 82
shells of revolution with pre-buckling,

559–563
slope deflection equations for beam

columns with, 184–185
Rotational spring(s):

plate with sides elastically restrained by,
434–435

rigid bars connected by, 8–10, 22–23, 26–28
rigid bar supported by rotational spring at

base, 23–26
rigid bar supported by translational and,

19–22

S
SAA. see Standards Association of Australia
Sadid, H., 534, 585
Safety factor, for steel columns, 132
St. Venant shear stresses, 314
St. Venant torsion. see Pure torsion
Salvadori, M.G., 383, 398, 474, 509
Sanders, J.L., 549, 550, 585
Schmidt, R.J., 314, 397
Schultz, G., 131
Secant formula, 67
Sechler, E.E., 501, 509
Secondary effects, on beam columns, 139
Secondary equilibrium path, 3–4
Secondary forces, on shells, 511
Secondary moments, in beam column design,

202–204

Second difference, 475
Second-order analysis for frames, 257,

273–278
Sfintesco, D., 131
Shallow spherical caps, 567–573
Shanley, F.R., 96, 102–108, 136
Shape function, 260, 339–340, 343
Shear center, 333, 338, 597–598
Shear forces:

buckling of plates under, 449–453
on circular plates, 471
in pure torsion of beams, 313
vertical, in plates, 402, 403, 408–409

Shear strain, 488–489, 495
Shear stress, for pure torsion, 313–314
Shells, 511–583

conical, 573–578
critical load for cylindrical shells,

526–540
under axial compression, 526–531,

537–538
with different end conditions, 539–540
with torsion, 534–537
under uniform lateral pressure, 531–534,

537–538
cylindrical, 512–524

critical load, 526–540
Donnell’s linear equations of stability,

519–524
energy method with, 524–526
failure and post-buckling behavior of,

541–543
large deflection theory of, 512–517
linear membrane equations for, 518
linear theory of, 517–518

Donnell linear equations of stability:
critical load determinations with,

526–540
for cylindrical shells, 519–524
for general shells, 553–557

energy method of deriving nonlinear
equilibrium equations for,
524–526
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failure and post-buckling behavior of,
540–548

general, 548–557
large deflection theory of, 512–517
linear theory of, 517–518
shallow spherical caps, 567–573
stability of, 511
toroidal, 578–583

Shells of revolution, 558–583
circular flat plates, 563–567
clamped plates, 566
conical shells, 573–578
shallow spherical caps, 567–573
simply supported plates, 566–567
stability equations for, 559–563
toroidal shells, 578–583

Sidesway:
box frame without, 251–253
buckling of frame pinned at base with,

266–273
frame member design allowing, 284–290
frame member design inhibiting, 279–284
multistory-muiltibay frames without,

253–257
portal frames with, 225–230, 234–237
portal frames without, 221–225
portal frame without, 232–234
and prime bending, 230–232, 242–251
two-bay frames without, 239–242
two-story frames without, 237–239

Simply supported beams:
with concentrated load at mid-span,

359–363, 369–372
I beams, 356–363, 369–378
narrow rectangular beams, 352–356, 372,

378
in pure bending, 352–359
with uniformly distributed load, 373–378

Simply supported edge(s):
boundary conditions for plates with,

408
buckling of rectangular plates with:

under action of shear forces, 449–453

under combined bending and
compression, 453–458

inelastic buckling of plates, 497–499
under uniform compression in one

direction, 410–415
circular plates with, 473–474, 566–567
critical load for plate under biaxial loading

with, 477–481
as loading edges of rectangular plates:

under inelastic compression, 497–500
under uniform compression, 410–442

plates under uniform compression with:
and one clamped side, other side free,

416–421
and one side elastically built in, other

side free, 427–431
and one side simply supported, other side

free, 423–427
and other sides clamped, 421–423,

499–500
and other sides elastically built in,

431–438
and other sides simply supported,

410–415, 497–499
and other sides supported by elastic

beams, 438–442
stiffeners for plates with, 458–469

buckling of plates with stiffeners,
458

longitudinal and transverse stiffeners,
468–469

longitudinal stiffeners, 459–464
transverse stiffeners, 464–468

Singer, J., 578, 586
Single curvature, 188, 383
Singly-symmetric members:

AISC design criteria for, 206–210
in fixed-fixed columns, 342–345
in pinned-pinned columns, 338–342
torsional flexural buckling load for,

338–345
6061-T6 aluminum alloy, 117–119
Slenderness ratio, 117, 132
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Slenderness ratio (contd.)
critical, 129
and critical average stress, 194, 197

Slope deflection convention, 182, 243–246,
248

Slope deflection equations:
for beam columns, 182–188

coefficients, 593–595
matrix inversion, 183–184
with one hinged end, 184–185
with rotations and relative displacement

at ends, 184–185
in single curvature, 188
with transverse loading, 186–187

for frames, 232–257
box frames without sidesway, 251–253
and frame member design, 279, 285
frames with prime bending, 242–251
multistory-muiltibay frames without

sidesway, 253–257
portal frames, 232–237
two-bay frame without sidesway, 239–242
two-story frame without sidesway,

237–239
Small deflection analysis:

of plates, 487
of rigid bars, 5–17

bar supported by translational spring, 5–7
three bars with two linear springs, 13–17
three-member trusses, 11–13
two bars connected by rotational springs,

8–10
Snap-through buckling, 4, 13
Sobel, L.H., 540, 585
Southwell, R.V., 72, 93, 540, 585
Southwell plot, 71–73
Span moment, 154–156, 297
Span portion, of beam column:

uniformly distributed load over, 152–153
uniformly increasing load over, 153

Spherical caps, shallow, 567–573
Spherical shells, 567–573

SSRC (Structural Stability Research Council),
129–131, 283

Stability equations, for shells of revolution,
559–563

Stable equilibrium, 2
and lateral buckling of beams, 352
for rigid bar columns:

imperfect, 25
in large displacement analysis, 22–23
in small deflection analysis, 10–13, 16–17
total potential energy, 7

Stable system, 1
Standards Association of Australia (SAA),

117, 119, 137, 210–211, 219
Stanley’s theory, 103–108
Stationary potential energy, principle of:

and calculus of variations, 84
for hinged-hinged column, 87–88
for plates, 442, 447, 448, 451

Stationary total potential energy, 258, 259
Steel beam columns:

AISC design criteria for, 206–210
column curves for, 198, 199
load deflection curve for, 198–201

Steel beams, 383–395
Steel columns, 122–135

AISC design criteria for, 132–135
buckling of idealized I-section, 123–125
Column Research Council curve for,

128–129
column strength curves for, 126–129
European multiple curves for, 131–132
Structural Stability Research Council

curves for, 129–131
Steinhart, G., 117, 136
Stein, M., 578, 580, 586
Stiffeners, 502–504

buckling of plates with, 458
longitudinal, 459–464, 468–469
transverse, 464–468

Strain energy:
for beams:
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with lateral buckling, 369, 373, 378
with torsional flexural buckling, 345–348

for cylindrical shells, 524
for frame elements, 258
for rectangular plate:

under bending and compression, 455
and bending of plate, 442–443
in finite element method, 484
with longitudinal stiffeners, 459
under shear forces, 449
with transverse stiffeners, 465
under two-directional compressive force,

448
for rigid bar columns, 6

imperfect, 24, 26–27
in large displacement analysis, 20
in small deflection analysis, 9, 11, 15

for thin elastic shells, 549–550
Stress distribution, post-buckling behavior

and, 492, 494
Stress-strain relationship:

for 6061-T6 alloy, 117, 118
and double modulus theory, 98–99
in inelastic beam columns, 188
in plates, 400
in steel columns, 122

Strong axis bending, in steel columns,
125–128

Structural nodal displacement vector, 274,
275

Structural stability, 1–28
bifurcation of equilibrium, 3–4
finite disturbance instability, 4–5
for frames vs. members, 221
and imperfections, 23–28
large displacement analysis of, 17–23
limit load instability, 4
reasons for member failure, 1
for rigid bar columns, 5–17
for shells, 511

Structural Stability Research Council (SSRC),
129–131, 283

Structure stiffness matrix:
formation of, 262–264
for frame pinned at base, 268–273
for plates, 486

Superposition method with beam columns:
with concentrated loads, 146–147,

167–172
fixed-fixed columns, 171–174
with increasing load over portion of span,

153
with moments at both ends, 159–161
pinned-fixed columns, 167–171
with uniformly distributed loads, 152–153,

169–171, 172–174
Support(s). See also specific types

and boundary conditions, 52
lateral buckling and beam, 381–382

Surfaces, curvilinear coordinates for, 608–612
Symmetrical deflection, 477–478
Symmetric members, AISC design criteria

for, 206–210
Symmetric mode, fixed-fixed columns in,

35–37
Symmetric unstable bifurcation, 17
Szilard, R., 474, 509

T
Tabedge, N., 137
Tall, L., 122, 130, 137
Tangent modulus, 101–103, 107–108, 117, 495
Tangent modulus critical stress, 103
Tangent modulus load, 103, 115
Tangent modulus theory, 95

for aluminum columns, 116–122
for inelastic columns, 101–103
for steel columns, 122

Temper, buckling constants and, 120
Tension side, beam column yielding on,

194–201
Theoretical values, of effective length, 42–43
Thin plates, 399–407
Thin shell theory, for general shells, 548
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Thin-walled open cross-sections, beams with,
313–322

doubly symmetric, 327–332
non-uniform torsion of, 315–322
pure torsion of, 313–314
with rectangular elements intersecting at a

point, 326
shear center of, 597–598
strain energy of torsional flexural bending,

347
torsional buckling load for, 326
torsion constant of, 597–598
warping constant of, 597–598

Third difference, 475
Timoshenko, S.P., 2, 29, 33, 46, 59, 77, 93,

158, 218, 316–318, 357, 362, 366, 367,
372, 378, 380, 397, 402, 408, 416, 453,
457, 468, 470, 472, 480, 481, 508, 509,
531, 536, 540, 566, 573, 585, 597–598

Toroidal shells, 578–583
Torque, applied, 313–315
Torque per unit length, for beam, 334
Torsion:

cylinders subjected to, 534–537
non-uniform, 315–322
pure, 313–314, 347, 383
shells of revolution not subjected to, 561,

562
for thin-walled beams, 313–322
warping, 346–347, 383

Torsional buckling:
beam design to prevent, 383–395
of columns, 322–326
sections susceptible to, 313

Torsional buckling load, 326–332
for fixed-fixed columns, 329–332
for open sections in pure torsion, 325
for open sections with elements

intersecting at a point, 326
for pinned-pinned columns, 327–329

Torsional flexural buckling:
potential energy of external loads in,

348–352

sections susceptible to, 313
strain energy of, 345–348

Torsional flexural buckling load, 332–352
energy method of finding, 345–352
for singly-symmetric fixed-fixed columns,

342–345
for singly-symmetric pinned-pinned

columns, 338–342
for singly-symmetric sections, 338–345
for unsymmetric fixed-fixed columns,

337–338
for unsymmetric pinned-pinned columns,

335–337
Torsional moment, 324
Torsion constant, 314, 597–598
Total displacement, in large deflection theory

of plates, 487
Total length of column:

from effective length approach, 82–83
and large deflection theory, 75–76, 80

Total potential energy:
for cylindrical shells, 525
for general shells, 550, 552
and lateral buckling of beams, 371,

376–380, 379
and post-buckling path, 18–19
for rectangular plates:

under bending and compression, 455
with longitudinal stiffeners, 460
under shear forces, 451
with transverse stiffeners, 465
under two-directional compressive force,

447
under uniaxial compressive force, 447

for rigid bar columns, 7, 9, 11, 15, 20, 24
stationary, 258, 259
and torsional flexural buckling of beams,

345
Total torsion resistance, 319
Translational springs, rigid bars and, 5–7,

17–22
Transverse loading, of beam columns,

186–187
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Transverse stiffeners, 458, 464–468
Trusses, three-member, 11–13
Tsien, H.S., 541, 585
Twist, angle of, 314, 316
Twisting moments, for plates:

at elastically supported/built-in edge, 410,
432, 435

at free edge, 408–409
and theory of plate bending, 402–404

Twist, of middle surface, 402
Two-bay frames, 239–242
Two-directional compressive pressure, plate

under, 447–448
Two-story frames, 237–239

U
Ultimate strength, of plates in compression,

500–504
Unbalanced force vector, for frames, 275, 277
Unbraced frames, 284–290
Unequal moments, beams with, 383
Uniaxial compressive force, plate with four

fixed edges under, 445–447
Unidirectional uniform compression, on

rectangular plates:
with clamped sides, 416–423
with elastically built-in sides, 427–438
with free sides, 416–421, 423–431
with sides supported by elastic beams,

438–442
with simply supporting sides, 410–442

Uniform external pressure, on shallow
spherical cap, 569–572

Uniform lateral pressure, on cylinders,
531–534, 537–538

Uniformly distributed load:
on beam columns:

basic differential equations for, 174–177
fixed-fixed beam columns, 172–174
maximum deflection and bending

moment with, 148–152
pinned-fixed beam columns, 169–171,

176–177

and uniformly distributed load over
portion of span, 152–153

and uniformly increasing load over
portion of span, 153

on beams:
along centroidal axis, 378
and critical moment/critical load,

382–383
I beams with, 373–378
narrow rectangular beam with, 378

over portion of beam column span, 152–153
Uniformly increasing load, over portion of

beam column span, 153
Uniform moment, beams with, 367–369, 382
Unit vectors, derivatives, along parametric

lines, 615–617
Unstable equilibrium, 2, 10

is small deflection analysis of rigid bars,
10, 12–13, 17

in large displacement analysis of rigid bars,
17–22

total potential energy for, 7
Unsymmetric members:

AISC design criteria for, 206–210
fixed-fixed columns with, 337–338
pinned-pinned columns with, 335–337

V
Vertical displacement, in beams:

cantilever beams, 379
with concentrated load at free end,

379
with concentrated load at mid-span,

370
simply supported I beams, 370, 373–375
with uniformly distributed loadwith

uniformly distributed load,
373–375

Vertical shear forces, in plates:
at free edge, 409
and in-plane forces, 406–407
and theory of plate bending, 402–403

Vlasov, V.Z., 382, 398, 569, 586
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Volmir, A.S., 491, 509, 543, 585
Von Kármán, T., 96, 101–102, 108, 136, 490,

501, 509, 540, 585
Von Kármán–Donnell large displacement

cylindrical shell equations, 541–543
Von Kármán large deflection plate equations,

490, 540

W
Wan, C.C., 519, 541, 547, 581–583, 584
Wang, C.T., 74, 93
Warping constant:

of channel section, 320–322
cross-sections with zero, 322
for thin-walled open cross-sections,

316–319, 597–598
Warping function, 316–318, 320
Warping torsion, 346–347, 383
Warping torsion resistance, 315–316
Weak axis bending, in steel columns,

125–128

Weaver, W., 270–273, 312
Welding, buckling strength and, 122
White, D.W., 219
Wind load, for two-story two-bay frame,

291–309
Winter, G., 502, 509
Woinowsky-Krieger, S., 402, 468, 470, 508

Y
Yang, C.H., 122, 124, 137
Yielding of beam column:

on compression and tension sides, 194–201
on compression side only, 190–194

Yoo, C.H., 541, 585
Yura, J.A., 290, 312

Z
Ziemian, R.D., 137, 257, 311, 341,

397
Zienkiewicz, O.C., 481, 509
Zwillinger, D., 480, 509


