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Foreword

– By Alex Lipton

Co-Founder and CTO, Silamoney, Partner,
Numeraire Financial, Connection Science Fellow,

Massachusetts Institute of Technology, Cambridge, USA

Prof. Andrey Itkin, a well-known and highly respected financial engineer,

gives a tour de force performance in this short, insightful book. To under-

stand his contribution properly, we need to step back in history.

Derivatives, including options, forwards, and futures, have been around

at least since early modern times. While forwards and futures are linear

instruments, which are relatively simple to handle, options are nonlinear in

nature and are more difficult to deal with. They come in all kind of flavors

and include vanilla calls and puts with hockey-stick payoffs, European op-

tions with more general payoffs, American, Bermudan and Asian options,

as well as barrier and other exotic options. The corresponding underliers

include stocks, bonds, currencies, commodities, etc.

The original scientific approaches to options valuation were developed

by Bachelier (1900), Bronzin (1908), Boness (1964), Samuelson (1965), and

others. Yet, explosive development of the field is due to the seminal work

of Black–Scholes–Merton (BSM), Black and Scholes (1973), and Merton

(1973), who developed a novel theory of rational option pricing, which

gained universal acceptance and eventually became an indispensable tool

of modern financial engineering. The main advantage of their theory com-

pared to its predecessors is its ability to tie together pricing and hedging.

By necessity, BSM theory is based on several idealized assumptions, which

do not hold in the real world. These assumptions are as follows: (A) markets

are efficient and frictionless, i.e., there are no transaction costs and taxes;

(B) there are no restrictions on short sales, frequency of trading, or the

amount of shares bought and sold; (C) the stock prices are governed by log-

normal stochastic processes with time-independent parameters. Provided

v
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that these assumptions hold, one can construct a perfect hedge for a con-

tingent claim and price it under a risk-neutral measure. In the BSM frame-

work every stock is characterized by a single number σ, which is called its

volatility, while its physical drift µ is unimportant, and can be risk neutral-

ized, so that µ → r − q, where r is the risk-free interest rate, and q is the

dividend rate. Thus, in order to price an option, we can assume that the

corresponding stock price is governed by the following stochastic differential

equation (SDE):

dS (t)

S (t)
= (r − q) dt+ σdW (t), (1)

S (0) = S0,

where W is a standard Wiener process.

For a European option, the corresponding BSM partial differential equa-

tion (PDE) and the terminal condition have the form

Vt (t, S) +
1

2
σ2S2VSS (t, S) + (r − q)SVS (t, S)− rV (t, S) = 0, (2)

V (T, S) = v (S) ,

where T is the option maturity, and v(S) is its payoff. For calls and puts,

we have

v(S) = (ω (S −K))+ , (3)

where

(x)+ =

{
x, x ≥ 0,

0 x < 0,
(4)

and ω is the call/put indicator, ω = 1 for calls, and ω = −1 for puts. It is

easy to show that BSM prices of vanilla calls and puts with strike K and

maturity T have the form

V (t, S, T,K; r, d, σ) = ωe−rτ
[
F (t, T )N

(
ω

ln (F (t, T ) /K) + 1
2σ

2τ

σ
√
τ

)
(5)

− KN

(
ω

ln (F (t, T ) /K)− 1
2σ

2τ

σ
√
τ

)]
,

where N (.) is the cumulative normal distribution, τ = T −t, and F (t, T ) =

exp ((r − q) τ)S (t) is the forward price. Prices of more complicated options

can be computed either analytically or numerically.

However, in real markets, idealized BSM assumptions do not hold.

Market prices are such that different vanilla options on a given underlier



January 3, 2020 20:32 Fitting Local Volatility – 9in x 6in b3761-main page vii

Foreword vii

must be priced using different implied volatilities σI(t, S, T,K) in Eq. (3),

so that every underlier has its implied volatility surface, rather than a sin-

gle volatility. For a fixed maturity T , this fact results in the volatility skew

or smile; for a fixed strike K it manifests itself as the term structure of

volatility. As a result, considerable modeling insight is required for pricing

vanilla and, especially, exotic options consistently with the market and with

each other.

Local volatility models assume that the stock price is governed by

Eq. (1), with the constant σ replaced by the so-called local volatility

σL(t, S). These models extend the standard BSM framework in a relatively

mild fashion, so that they are complete and allow for a perfect hedge. In

general, local volatility models cannot generate proper implied volatility

dynamics and tend to misprice exotic options, while at the same time pric-

ing vanillas perfectly. The variance gamma model of Madan and Seneta

(1990) can be generalized to the local variance gamma model of Carr and

Nadtochiy (2017).

Jump diffusion models, first proposed by Merton (1976), augment the

regular diffusion with Poissonian jumps. These models are necessarily

incomplete and don’t allow for a perfect hedge, since small and large move-

ments of the underlier cannot be handled simultaneously. For many un-

derliers, local volatility models augmented with jumps tend to agree with

market prices well.

Stochastic volatility models are useful in many situations. The most

popular model of this kind is due to Heston (1993). The model assumes that

volatility is driven by a mean-reverting square-root process and generates

closed-form expressions for call and put prices. For certain underliers, for

example, liquid currency pairs, stochastic volatility models are adequate,

though never perfect.

Finally, universal volatility models proposed by Lipton (2002) combine

the best features of local, jump diffusion and stochastic volatility models;

as a result, they produce reliable prices and hedges not only for calls and

puts but also for many exotic options.

A large portion of Itkin’s book is devoted to the calibration of local

volatility models. The instrument of choice for calibrating these models

to the market is the celebrated forward equation of option pricing due

to Dupire (1994). An alternative but equivalent formulation is given by

Derman and Kani (1994). The Dupire equation allows one to price calls

and puts with different strikes and maturities at once. Depending on the

context, it can he used to express σI(t, S) in terms of σL(t, S), or, conversely,
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to express σL(t, S) in terms of σI(t, S). Specifically, written in terms of call

prices C (t, S, T,K), the Dupire equation reads

CT (T,K)− 1

2
σ2
L (T,K)K2CKK (T,K)

+ (r − q)KCK (T,K) + qC (T,K) = 0,

C (0,K) = (S −K)+ . (6)

For a given σL, Eq. (6) can be solved forward to generate the corresponding

C (T,K), and then σI via Eq. (5). Alternatively, and more importantly,

for a given price surface C (T,K), Eq. (6) can be used to calibrate the

corresponding local volatility model and get

σ2
L (T,K) =

CT (T,K) + (r − q)KCK (T,K) + qC (T,K)
1
2K

2CKK (T,K)
. (7)

Once σL is known, one can use an appropriately modified BSM pricing

problem to find prices of more complicated options.

Equation (7) is beautiful in theory, but rather difficult to use in practice

for a variety of reasons, first and foremost due to the fact that in real

markets C (T,K) is known for a rather sparse set of discrete pairs Ξ =

{(Ti,Ki)}, i = 1, ..., N . This book is dedicated to developing novel and

technically advanced methods for solving the calibration problem in earnest.

In Part I, the author discusses the general concept of local volatility and

introduces the all-important no-arbitrage conditions. He develops various

forms of no-arbitrage interpolation which are used in the rest of the book.

The advantage of these interpolations is that, in addition to preserving

no-arbitrage conditions by construction, they allow closed-form solutions

for various special cases of the general volatility problem. In addition, the

author discusses a recent work of Carr and Pelts (2015) on no arbitrage for

the implied volatility surface, and puts it into the general framework.

In Part II, the calibration problem for a discrete set of maturities

and strikes is analyzed in great detail. The author extends the work of

Andreasen and Huge (2011), and, more closely, Lipton and Sepp (2011), to

produce a continuous piecewise linear local volatility surface σL (t, S) in the

spirit of Itkin and Lipton (2018). He also uses modern regression methods

to perform parameter calibration, starting with the Stochastic Volatility

Inspired (SVI) local volatility parameterization, Gatheral (2006), and pro-

ceeding to his own parameterization, Itkin (2015), which he developed a

decade ago while working as a market maker. The author convincingly

demonstrates the advantages of this parameterization by comparing the fit

with representative market data as well as with SVI.
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Finally, in Part III, the author expands the local variance gamma model

of Carr and Nadtochiy (2017) in the spirit of Carr and Itkin (2018a, 2018b).

He adds a drift and makes the stochastic driver geometric rather than

arithmetic by using a clever time change. After that, the author shows how

to calibrate the model to the market in an efficient manner by exploiting

various new no-arbitrage interpolations introduced in Part I.

This book expands the previous work done by the author, some solo and

some in co-authorship with Peter Carr and Alexander Lipton, by providing

additional material, which makes the exposition clear and uniform. One of

the key advantages of the book is its coverage of the most recent findings

in the general area of volatility calibration. The other one is that it is a

treasure trove of numerical recipes making the volatility surface calibration

both fast and accurate.

Itkin’s book can be used as a foundation for an advanced master or

PhD course in financial engineering and mathematical finance. It can also

be used by practitioners and academics who want to learn the most modern

and efficient approaches to building local and implied volatility surfaces in

a fast and accurate way. I recommend it wholeheartedly.
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The concept of local volatility as well as the local volatility model is one of

classical topics of mathematical finance. The model was invented indepen-

dently by B. Dupire and E. Derman/I. Kani around 1994 as a relatively

simple extension of the celebrated Black–Scholes model with the aim to

explain the volatility smile and skew. They can be observed by comparing

the implied volatilities of options written on the same underlying asset and

having the same expiration date but different strikes. There exists an in-

teresting opinion [Gatheral (2002)] that Dupire, Derman and Kani unlikely

ever thought of local volatility as representing a model of how volatilities

actually evolve. Rather, perhaps they introduced a notion of local volatil-

ities as representing some kind of average over all possible instantaneous

volatilities in a stochastic volatility world (an “effective theory”). As such,

this model allows practitioners to price exotic options consistently with the

known prices of vanilla options. This means that using the Dupire equation

one can find a unique local volatility function σ(K,T ) from the market

prices of standard options, and then construct, e.g., an implied tree that

incorporates these local volatilities to value exotic options and to hedge

standard options [Derman et al. (2016)]. Later this approach was further

extended by introducing the local stochastic volatility models, see, e.g.,

[Bergomi (2016)] and references therein.

Despite, as mentioned, this topic with years has become classical and the

existing literature on the subject is wide, yet there exist various problems

with no sufficient attention drawn so far, e.g., (a) construction of analytical

solutions of the Dupire equation for an arbitrary shape of the local volatility

function, (b) construction of parametric or non-parametric regression of

the local volatility surface suitable for fast calibration, (c) no-arbitrage

interpolation and extrapolation of the local and implied volatility surfaces,

xi
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(d) extension of the local volatility concept beyond the Black-Scholes model,

etc.

All these topics were of the author’s interest at least within the last

decade. Moreover, recent progress of deep learning and artificial neural

networks as applied to financial engineering made it reasonable to look

again at various classical problems of mathematical finance including that

of building a no-arbitrage local/implied volatility surface and calibrating

it to the option market data. Therefore, this book was written with the

purpose of presenting our new results previously developed in a series of

papers, and explaining them consistently starting from the general concept

of Dupire, Derman and Kani and then being concentrated on various ex-

tensions proposed by the author and his co-authors. I felt the necessity to

collect all the results in one place, also providing some typical examples of

the problems that could be efficiently solved using the proposed methods.

That was a motivation for this book to be finally written.

The book is conventionally split into three parts. In Part 1, we shortly

describe the concept of the local volatility and the classical results of Dupire,

Derman and Kani. Chapter 2 discusses no-arbitrage interpolation as this

topic is important for all the remaining chapters, and is heavily used for

our analytic constructions. We also shortly discuss some modern concepts

of building the local volatility surface which are based on deep learning.

In Part 2, the local volatility model is considered as an extension of the

Black–Scholes model. In Chapter 3, we consider a classical problem of cali-

bration of the local volatility models to a given set of option prices. Here we

present an extension of the approach proposed in [Lipton and Sepp (2011a)]

which is developed by (a) replacing a piecewise constant local variance with

a piecewise linear one, and (b) allowing non-zero interest rates and divi-

dend yields. Our approach remains analytically tractable as it combines

the Laplace transform in time with an analytical solution of the resulting

spatial equations in terms of Kummer’s degenerate hypergeometric func-

tions. We also provide the results of various numerical experiments which

demonstrate robustness of our approach. These results have been obtained

in co-authorship with A. Lipton.

Chapter 4 presents an alternative view on this problem where construc-

tion of the local volatility surface is done by using a regression method,

rather than the analytical solution of the Dupire equation. First, we give a

short overview of the existing parameterizations, and also describe in more

detail the SVI model of J. Gatheral which is popular among practitioners.

We then describe another static parameterization of the implied volatility
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surface proposed by the author, which is constructed by using polynomials

of sigmoid functions combined with some other terms. This parameteriza-

tion is flexible enough to fit market implied volatilities which demonstrate

smile or skew. An arbitrage-free calibration algorithm is considered that

constructs the implied volatility surface as a grid in the strike-expiration

space and guarantees a lack of arbitrage at every node of this grid. We also

demonstrate how to construct an arbitrage-free interpolation and extrapo-

lation in time, as well as build a local volatility and implied PDF surfaces.

Asymptotic behavior of this parameterization is discussed, as well as results

on stability of the calibrated parameters are presented. Numerical examples

show the efficiency and of this approach in building these surfaces as well

as demonstrate a better quality of the fit as compared with some known

models.

Part 3 of the book is devoted to a new model which original version

was invented by P. Carr in [Carr and Nadtochiy (2014)]). In that paper

and later in [Carr and Nadtochiy (2017)], the concept of local volatility was

applied to a time-homogeneous model where the underlying is driven by the

arithmetic Brownian motion with stochastic time-change. The latter is done

by using the Gamma process, so the model was called the Local Variance

Gamma model. The original version relies on some restricted assumptions

which include: no drift, a piecewise constant local volatility function, etc.

However, in contrast to the approach in Chapter 3, this construction leads

not to the Dupire PDE, but to a partial differential difference equation,

which permits both explicit calibration and fast numerical valuation.

In Chapter 5, we describe an expanded version of this model by adding

drift to the governing underlying process. Still in this new model it is pos-

sible to derive an ordinary differential equation for the option price which

plays a role of Dupire’s equation for the standard local volatility model.

It is shown how calibration of multiple smiles (the whole local volatility

surface) can be done in such a case. Further, assuming the local variance to

be a piecewise linear function of strike and piecewise constant function of

time this ODE is solved in closed form in terms of confluent hypergeometric

functions. Calibration of the model to market smiles does not require solv-

ing any optimization problem and can be done term-by-term by solving a

system of non-linear algebraic equations for each maturity, which is faster.

These results are obtained in co-authorship with P. Carr.

In Chapter 6, we describe another extension of the Local Variance

Gamma model. First, we develop a geometric version of this model with

drift. Second, we consider three piecewise linear models: the local variance
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as a function of strike, the local variance as a function of log-strike, and the

local volatility as a function of strike (so, the local variance is a piecewise

quadratic function of strike). We show that for all these new constructions

it is still possible to derive an ordinary differential equation for the op-

tion price, which plays a role of the Dupire equation for the standard local

volatility model, and, moreover, it can be solved in closed form. Finally,

similar to Chapter 5, we show that given multiple smiles the whole local

variance/volatility surface can be recovered which does not require solving

any optimization problem. These results are also obtained in co-authorship

with P. Carr.

Overall, the book could potentially be helpful for those readers who

want to learn of modern extensions of the local volatility model. Definitely,

it doesn’t pretend to give an extensive introduction into this subject, so it

is assumed that the readers are already familiar with some basic concepts,

e.g. by reading [Derman et al. (2016)]. Since from the mathematical point of

view, the level of details is closer to the applied rather than to the abstract

or pure theoretical mathematics, the book could also be recommended to

graduate students with major in computational or quantitative finance,

financial engineering or even applied mathematics.

I used to teach some topics of this book as a part of my special course

on computational finance in School of Engineering of NYU in 2009–2019. I

thank all my students for their questions, comments and remarks.

Andrey Itkin

Tandon School of Engineering

Department of Finance and Risk Engineering

New York University

New York, August, 2019
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Chapter 1

Local Volatility and Dupire’s
Equation

Local volatility model was invented around 1994 in [Dupire (1994)] for the

continuous case and [Derman and Kani (1994a)] for the discrete case in

response to the following problem.

In the celebrated Black-Scholes model, see e.g. [Hull (1997)], the dynam-

ics of the stock price is modeled as a Geometric Brownian motion process

with constant volatility parameter σ

dSt = µSt + σStdWt, St

∣∣∣
t=0

= S0. (1.1)

Here, St is the stock price at the time t, µ is the drift, Wt is the standard

Brownian motion. It can be shown that under the risk-neutral measure Q
the drift becomes µ = r − q, where r, q are the constant interest rate and

continuous dividends functions.

Next, we introduce a notion of the Black-Scholes implied volatility. In

financial mathematics, the implied volatility σBS of an option contract is

that value of the volatility of the underlying instrument which, when input

in an Black-Scholes option pricing model will return a theoretical value

equal to the current market price of the option. The implied volatility shows

what the market implies about the underlying stock volatility in the future.

For instance, the implied volatility is one of six inputs used in a simple

option pricing (Black-Scholes) model, but is the only one that is not directly

observable in the market. The standard way to determine it by knowing the

market price of the contract and the other five parameters, is solving for the

implied volatility by equating the model and market prices of the option

contract. There exist various reasons why traders prefer considering option

positions in term of the implied volatility, rather than the option price itself,

see e.g., [Natenberg (1994)].

The Black-Scholes implied volatility is a useful measure, as it is a market

practice instead of quoting the option premium in the relevant currency,

3
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the options are quoted in terms of the Black-Scholes implied volatility. Over

the years, option traders have developed an intuition in this quantity. How-

ever, it can be further generalized by using a similar concept, but replacing

the Black-Scholes framework with another one. For instance, in [Corcuera

et al. (2009)] this is done under a Lévy framework, and, therefore, based on

distributions that match more closely historical returns. Here we don’t con-

sider these generalizations, and are concentrated only on the Black-Scholes

implied volatility.

Assume we are given an underlying and the continuous dividends func-

tion for this underlying. Also assume that the market constant interest rate

is somehow known. Finally, assume that we are given a snapshot of market

prices of, say European Call and Put options written on this underlying with

the same expiration date T . Then one can compute the Black-Scholes im-

plied volatilities for these options which will be a function of strikes K, and

plot them against the strike price. Thus obtained line is called a volatility

smile if it slopes upward on either end, or volatility skew if it slopes upward

only on the left. The former behavior is typical for the stock options, while

the latter — for the index options.

The important observation is that the volatility smiles should never oc-

cur based on standard Black-Scholes option theory, which normally requires

a completely flat volatility curve. However, the first notable volatility smile

was apparently seen back to 1987 following the stock market crash. Since

that time the topic attracted a lot of attention in the financial industry. As

mentioned in [Derman et al. (2016)], “After the crash, and ever since, equity

index option markets have displayed a volatility smile, an anomaly in bla-

tant disagreement with the Black-Scholes-Merton model. Since then, quants

around the world have labored to extend the model to accommodate this

anomaly”. There exist various books on local and implied volatility with

main focus on modeling, description, understanding, etc. We mentioned

just few of them based on our own preferences, [Derman et al. (2016);

Gatheral (2006); Natenberg (1994); Bossu (2014)], but the reader can also

find numerous references therein.

The existence of the smile forced the quants to move from the simple

Black-Scholes model to more sophisticated ones that would be able to de-

scribe this pattern. The idea of the local volatility model as proposed in

[Dupire (1994); Derman and Kani (1994a)] was as follows. Assuming that

only minimal changes should be applied to the Black-Scholes model, they

proposed to replace the constant volatility σ with that which is a determin-

istic function of St and t. In other words, in this model instead of Eq.(1.31)
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we have

dSt = µSt + σ(St, t)StdWt, St

∣∣∣
t=0

= S0. (1.2)

Thus, in this model the local volatility is a function of the stock level St
and time t (rather than the constant value) which might be sufficient to

build a smile. With that, several natural questions become subject of an

immediately concern [Derman et al. (2016)]:

(1) Is there exist a unique local volatility function or surface σ(S, t) to

match the observed implied volatility surface σBS(S, t,K, T, r, q)?

(2) If yes, that means that we can explain the observed smile by means of

a local volatility process for the stock. Is the explanation meaningful?

Does the stock actually evolve according to an observable local volatility

function? There are many different models that can match the implied

volatility surface, but achieving a match doesn’t mean that model is

“correct.”

(3) What does the local volatility model tell us about the hedge ratios of

vanilla options and the values of exotic options? How do the results

differ from those of the classic Black-Scholes model?

The first question was positively answered by [Derman and Kani

(1994a)] who constructed a binomial-tree model with volatilities at every

model being calibrated to some stock and options market data. This mod-

ification of the binomial tree is called now the implied tree, [Hull (1997);

Derman et al. (2016)]. In turn, [Dupire (1994)] considered the stock’s local

volatility function as σ(K,T ), i.e. this is the local volatility σ(S, t) when

the future stock price is K at time T . He derived a forward PDE (known

now as the Dupire equation) which describes the dynamics of σ(K,T ) in

the continuous case, which means the derivatives of σ(K,T ) represent the

market prices of infinitesimal strike spreads, calendar spreads, and butterfly

spreads. We discuss this derivation in the next Section.

1.1 Dupire’s equation

The derivation of the Dupire equation is provided in many textbooks and

papers, e.g., [Dupire (1994); Gatheral (2004); Derman et al. (2016); Rouah

(2001)]. Here, we consider two ways to obtain it.
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1.1.1 Derivation using the Fokker-Planck equation

Below suppose that the interest rate is deterministic, r = r(t) and denote

the discount factor D(t, T ) as

D(t, T ) = exp

(
−
∫ T

t

r(k)dk

)
. (1.3)

By definition, a European option Call C(S, t, T ) and Put P (S, t, T ) prices

can be defined as, [Hull (1997)]

C(S,K, T − t) = D(t, T )EQ[(ST −K)+], (1.4)

P (S,K, T − t) = D(t, T )EQ[(K − ST )+],

where for simplicity we dropped the dependence of the option prices on

r, q, σ, x+ = max(x, 0), and the expectation EQ is taken under the risk-

neutral measure Q. Therefore, it reads

EQ[x] =

∫
xp(x, xT , T − t)dxT ,

where p(x, xT , T − t) is the transition probability density from the state

(x, t) into the state (xT , T ).

The function p(S, ST , T − t) satisfies the forward Kolmogorov (Fokker-

Planck) equation (see, e.g. [Risken and Haken (1989); Soize (1994); Van

Kampen (2007)] and references therein). With the simplified notation

p(S, t) instead of p(S, ST , T − t), it reads

∂

∂t
p(S, t) = − ∂

∂S
[µSp(S, t)] +

1

2

∂2

∂σ2
[σ2S2p(S, t)]. (1.5)

This equation should be solved subject to the initial condition p(S, 0) =

δ(S − S0), where δ(x) is the Dirac delta-function.

The next step is to find an explicit expression for the option Theta:

Θ = ∂C
∂T by using the definition of C in Eq.(1.4). Using the chain rule we

get

∂C

∂T
=
∂D(t, T )

∂T

∫ ∞
K

(ST −K)p(S, ST , T − t)dST (1.6)

+D(t, T )

∫ ∞
K

(ST −K)
∂p(S, ST , T − t)

∂T
dST

= −r(T )C +D(t, T )

∫ ∞
K

(ST −K)
∂p(S, ST , T − t)

∂T
dST .
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Now the derivative under the integral in Eq.(1.7) can be substituted with

the right hands side of Eq.(1.5) taken at t = T which yields

∂C

∂T
+ r(T )C = D(t, T )

∫ ∞
K

(ST −K) (1.7)

·
{
− ∂

∂ST
[µ(T )ST p(S, ST , T − t)] +

1

2

∂2

∂σ2
[σ2S2

T p(S, ST , T − t)]
}
dST

= D(t, T )

(
−µ(T )I1 +

1

2
I2

)
,

where the short notation I1, I2 is introduced for the integrals in the second

line of Eq.(1.7). To evaluate these integrals we need two identities.

1.1.1.1 First identity

From the definition of the Call option price in Eq.(1.4) we have

C

D(t, T )
=

∫ ∞
K

ST p(S, ST , T − t)dST −K
∫ ∞
K

p(S, ST , T − t)dST . (1.8)

On the other hand, from Eq.(1.4)

∂C

∂K
= −D(t, T )

∫ ∞
K

p(S, ST , T − t)dST . (1.9)

Therefore,∫ ∞
K

ST p(S, ST , T − t)dST =
1

D(t, T )

(
C −K ∂C

∂K

)
. (1.10)

1.1.1.2 The Breeden-Litzenberger identity

Differentiating both sides of Eq.(1.9) on K and using the fundamental the-

orem of calculus, we obtain

∂2C

∂K2
= D(t, T )p(S,K, T − t). (1.11)

This identity is known as the Breeden-Litzenberger formula, [Breeden and

Litzenberger (1978)], which states that the risk-neutral probability of mak-

ing a transition from S at time t to K at time T is proportional to the

second partial derivative of the call price with respect to strike. �
With these identities we can proceed with evaluating the integrals I1, I2.

For I1 we get

I1 =

∫ ∞
K

(ST −K)
∂

∂ST
[ST p(S, ST , T − t)]dST (1.12)
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= (ST −K)
[
ST p(S, ST , T − t)

]∞
K
−
∫ ∞
K

ST p(S, ST , T − t)dST

= −
∫ ∞
K

ST p(S, ST , T − t)dST =
1

D(t, T )

(
K
∂C

∂K
− C

)
, (1.13)

where in the last line the result in Eq.(1.10) is used, and also it is assumed

that

lim
ST→∞

(ST −K)ST p(S, ST , T − t) = 0.

In other words, the first and the second moment of the density p(S, ST , T−t)
are finite.

For I2 we obtain

I2 =

∫ ∞
K

(ST −K)
∂2

∂S2
T

[σ2S2
T p(S, ST , T − t)]dST (1.14)

= (ST −K)
∂

∂ST

[
σ2S2

T p(S, ST , T − t)
]∞
K

−
∫ ∞
K

∂

∂ST
[ST p(S, ST , T − t)]dST

= −
[
σ2S2

T p(S, ST , T − t)
]∞
K

= σ2K2p(S,K, T − t).

Here σ2 = σ(K,T )2, and it is assumed that

lim
ST→∞

(ST −K)
∂

∂ST
[ST p(S, ST , T − t)] = 0.

Using the Breeden-Litzenberger we finally obtain

I2 =
σ2

D(t, T )
K2 ∂

2C

∂K2
. (1.15)

1.1.1.3 The final step

Substituting Eq.(1.12) and Eq.(1.15) into Eq.(1.7) we obtain

∂C

∂T
+ r(T )C = µ(T )C − µ(T )K

∂C

∂K
+

1

2
σ2K2 ∂

2C

∂K2
. (1.16)

Taking into account that under the risk-neutral measure, the drift reads

µ(T ) = r(T )− q(T ), [Brigo and Mercurio (2006)], we finally get the Dupire

equation

∂C

∂T
=

1

2
σ2K2 − [(r(T )− q(T )]K

∂C

∂K
− q(T )C. (1.17)
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This equation can also be solved for the local variance σ2(K,T ) to obtain

σ2(K,T ) =
∂C
∂T + [(r(T )− q(T )]K ∂C

∂K + q(T )C
1
2K

2 ∂2C
∂K2

. (1.18)

1.1.2 A probabilistic approach

Here we derive the Dupire equation by using a probabilistic argument pro-

posed in [Derman and Kani (1998)]. Let us define the stochastic variable

f(ST , t, T ) = D(t, T )(ST −K)+, (1.19)

where St is the Geometric Brownian motion introduced in Eq.(1.31).

Obviously, based on Eq.(1.4),

EQ[f(ST , t, T )|St = S] = C(S,K, T − t). (1.20)

Using Itö’s lemma at time t = T , one can find that f(ST , t, T ) follows

the process

df =

(
∂f

∂T
+ µ(T )ST

∂f

∂ST
+

1

2
σ(T )2S2

T

∂2f

∂S2
t

)
dT + σ(T )ST

∂f

∂ST
dWT .

(1.21)

The partial derivatives in this expression could be easily found using the

definition of f in Eq.(1.19):

∂f

∂T
= −r(T )D(t, T )(ST −K)+, (1.22)

∂f

∂ST
= D(t, T )1ST>K , 1x =

{
1, x ≥ 0

0, x < 0

∂2f

∂S2
T

= D(t, T )δ(ST −K).

Substituting this into Eq.(1.21) yields

df = D(t, T )
[(
− r(T )(ST −K)+ + µ(T )ST1ST>K (1.23)

+
1

2
σ(T )2S2

T δ(ST −K)
)
dT + σ(T )ST1ST>KdWT

]
.

The first two terms in parentheses can be re-written as follows

−r(T )(ST −K)+ + µ(T )ST1ST>K = 1ST>K [−r(T )(ST −K) + µ(T )ST ]

= r(T )K1ST>K − q(T )ST1ST>K . (1.24)
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Since Wt is a martingale, taking the risk-neutral expectation of Eq.(1.23)

and using Eq.(1.20) yields

dC = D(t, T )EQ

[
r(T )K1ST>K − q(T )ST1ST>K (1.25)

+
1

2
σ(T )2S2

T δ(ST −K)
]
dT.

Since

D(t, T )EQ[ST1ST>K ] = C +KD(t, T )EQ[1ST>K ],

and

∂C

∂K
= −D(t, T )EQ[1ST>K ]. (1.26)

Eq.(1.25) can also be represented as

∂C

∂T
= D(t, T )K[r(T )− q(T )]EQ[1ST>K ]− q(T )C (1.27)

+
1

2
D(t, T )EQ[σ2(T )S2

T δ(ST −K)]

= −K[r(T )− q(T )]
∂C

∂K
− q(T )C +

1

2
D(t, T )EQ[σ2(T )S2

T δ(ST −K)].

The last term in this equation can be simplified by using the sifting property

of the Dirac delta function

1

2
D(t, T )EQ[σ2(T )S2

T δ(ST −K)] =
1

2
D(t, T )EQ[σ2(T )S2

T |ST = K] (1.28)

· EQ[δ(ST −K)] =
1

2
D(t, T )EQ[σ2(T )|ST = K]K2EQ[δ(ST −K)]

=
1

2
EQ[σ2(T )|ST = K]K2 ∂

2C

∂K2
,

since it follows from Eq.(1.26) that

∂2C

∂K2
= D(t, T )EQ[δ(St −K)].

Thus, from Eq.(1.27) and Eq.(1.28) we finally obtain

∂C

∂T
= −K[r(T )− q(T )]

∂C

∂K
− q(T )C +

1

2
EQ[σ2(T )|ST = K]K2 ∂

2C

∂K2
.

(1.29)

Comparing this with the Dupire equation Eq.(1.17) we see that

σ2(K,T ) = EQ[σ2(ST , T )|ST = K].
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This means that the local variance is the risk-neutral expectation of the

instantaneous variance conditional on the final stock price ST being equal

to the strike price K.

1.2 Local volatility via the implied volatility

In this Section we derive the identity that connects the local and Black-

Scholes implied variances. The identity was introduced in [Lipton (2002);

Gatheral (2006)] and reads

σ2(T,K) =
∂Tw(

1− y∂yw

2w

)2

− (∂yw)2

4

(
1

w
+

1

4

)
+
∂2
yw

2

, (1.30)

where y = logK/F , F = Se(r−q)T is the stock forward price, and w = σ2
BST

is the total implied variance. In terms of these variables the Black-Scholes

formula for the future value of the Call option price becomes, [Gatheral

(2006)]

CBS(FT , y, w) = D(t, T )FT [N(d1)− eyN(d2)] (1.31)

= D(t, T )FT

[
N

(
− y√

w
+

√
w

2

)
− eyN

(
− y√

w
−
√
w

2

)]
,

where N(x) is the normal CDF, and

d1 =
ln FT

K +
σ2
BS

2 T

σBS
√
T

, d2 = d1 −
1

2
σBS
√
T . (1.32)

The Dupire equation Eq.(1.17) can also be re-written in terms of the

new variables. It is easy to check that this yields

∂C

∂T
=

1

2
σ2

[
∂2C

∂y2
− ∂C

∂y

]
− qC. (1.33)

Computing derivatives of the Black-Scholes formula in Eq.(1.31), we

obtain

∂2CBS
∂w2

=

(
−1

8
− 1

2w
+− y2

2w2

)
∂CBS
∂w

, (1.34)

∂2CBS
∂w∂y

=

(
1

2
− y

w

)
∂CBS
∂w

,

∂2CBS
∂y2

− ∂CBS
∂y

= 2
∂CBS
∂w

.
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Taking into account that w = w(y, T ), the Dupire equation in Eq.(1.33)

can be also transformed by using the identities

∂C

∂y
=
∂CBS
∂y

+
∂CBS
∂w

∂w

∂y
, (1.35)

∂2C

∂y2
=
∂2CBS
∂y2

+ 2
∂2CBS
∂w∂y

∂w

∂y
+
∂2CBS
∂w2

(
∂w

∂y

)2

+
∂CBS
∂w

∂2w

∂y2
,

∂C

∂T
=
∂CBS
∂T

+
∂CBS
∂w

∂w

∂T
=
∂CBS
∂w

∂w

∂T
− qCBS .

Substituting these expressions into Eq.(1.33) yields

∂CBS
∂w

∂w

∂T
=

1

2
σ2 ∂CBS

∂w
A, (1.36)

A = 2− ∂w

∂y
+

(
−1

8
− 1

2w
+

y2

2w2

)(
∂w

∂y

)2

+
∂2w

∂y2

+ 2

(
1

2
− ∂y

∂w

)
∂w

∂y
.

Taking out a factor ∂CBS
∂w and simplifying, we finally obtain Eq.(1.30).

An interesting particular case is when ∂w
∂y = 0. This implies

∂σBS(S,K,T )
∂K = 0, i.e., there is no skew and the implied volatility is flat.

Then it follows from Eq.(1.30) that σ2 = ∂w
∂T . In other words, in this case

the local variance reduces to the forward Black-Scholes implied variance,

and

w(T ) =

∫ T

0

σ2(k)dk. (1.37)

Also, it is possible to show that the implied volatility σBS(S,K, T ) of

an option is approximately the average of the local volatilities σ(S, t) en-

countered over the life of the option between the current underlying price

and the strike. A detailed discussion of this rule of thumb is provided in

[Derman et al. (2016)].
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Chapter 2

Local Volatility Surface and
No-arbitrage

Suppose that the local volatility function σ(K,T ) is somehow known. Also,

suppose that given σ(K,T ), there exist theoretical option prices that solve

the Dupire equation derived in the previous chapter. Finally, suppose that

for a given set of option strikes K and maturities T these theoretical prices

exactly coincide with the corresponding market prices. Then one can build

a local volatility surface by using the values of σ(K,T ) at the given set

of [K,T ], and say that this surface represents the given set of the market

quotes. Note, that in practice, we usually solve the inverse problem. This is,

given the market quotes, find the local volatility function that being used

in the Dupire equation produces the theoretical option prices such that the

difference between this set of option prices and the corresponding market

prices reaches minimum under some suitable norm.

It is well-known, that the theoretical option prices obtained by solving

the Dupire equation are no-arbitrage (we will discuss this notion below in

this chapter). Therefore, if build the local volatility surface as described

in above, at the given set of points [K,T ] our surface also respects no-

arbitrage. This is true even if the market prices are arbitragable. Indeed, in

the latter case the theoretical prices found by solving the Dupire equation,

are no-arbitragable themselves, but will deviate from those at the market.

Suppose, however, that in addition to the option prices at the given

[Ki, Tj ], i, j ∈ Ω, where Ω is a set of the discrete pairs [i, j], i = 1, ..., N, j =

1, ...,M , corresponding to the given market quotes and used to build the

local volatility surface, we also need those for [i, j] /∈ Ω. An immediate idea

is to use some kind of interpolation. However, in this case we need to be

careful about no-arbitrage, as, by default, interpolation doesn’t preserve it.

Therefore, in this chapter we discuss construction of a no-arbitrage local

volatility surface. The proposed constructions are then widely used in the

13
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book for several purposes. First, when building tractable analytical meth-

ods for solving Dupire’s or Dupire-like equations, no-arbitrage interpolation

helps with computing the killing terms of the equation in closed from. Sec-

ond, even when regression methods such as those described in Chapter 4

are in use, still the no-arbitrage conditions must be taken into account at

every point of the surface to guarantee no-arbitrage at least at this points.

While the details of this are discussed in the corresponding chapters of this

book, here we present a general description of the problem and provide

some helpful solutions developed by the author in [Itkin and Lipton (2018);

Carr and Itkin (2018a,b)].

2.1 No-arbitrage conditions and interpolation

According to [Cox and Rubinstein (1985)]1, given three Put option prices

P (K1), P (K2), P (K3) for three strikes K1 < K2 < K3, the necessary and

sufficient conditions for those prices to be arbitrage-free, read

P (K3) > 0, P (K2) < P (K3), (2.1)

(K3 −K2)P (K1)− (K3 −K1)P (K2) + (K2 −K1)P (K3) > 0.

Suppose that we want to use linear interpolation in the strike space on the

interval [K1,K3] to find the unknown Put option price P (K2) given the

values of P (K1), P (K3),

P (K2) ≡ Pl(K2) =
P (K1)K3 − P (K3)K1

K3 −K1
+
P (K3)− P (K1)

K3 −K1
K2.

When plugging this expression into the second line of Eq.(2.1), the LHS of

the latter vanishes, so the third no-arbitrage condition is violated.

This problem, however, could be resolved if we use linear interpolation

with a modified independent variable,

P (K2) ≡ PF (K2) (2.2)

=
P (K1)f(K3)− P (K3)f(K1)

f(K3)− f(K1)
+
P (K3)− P (K1)

f(K3)− f(K1)
f(K2),

where f(K) is a convex and increasing function in [K1,K3]. Indeed, if f(K)

is convex, then P (K2) = PF (K2) = Pl(K2) − ε, ε > 0 (see Fig. 2.1).

Substitution of this expression into the second line of Eq.(2.1) gives

1In [Cox and Rubinstein (1985)] these conditions are given for Call option prices. In

that case the first and the third conditions remain the same as in Eq.(2.1) if we replace

P (K) with C(K), while the second condition changes to C(K2) > C(K3).
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(K3−K1)ε > 0, which is true. The second condition in Eq.(2.1) now reads

(P (K1)− P (K3))(f(K3)− f(K2))(f(K1)− f(K3)) > 0,

which is also true since f(K) is an increasing function of K.

Alternatively, one can use non-linear interpolation. For instance, in

[Itkin and Lipton (2018)] by combining both approaches for the sake of

tractability, the following interpolation scheme is proposed

P (K2) ≡ PF (K2) = γ1 + γ2K2 logK2, (2.3)

γ1 =
P3K1 logK1 − P1K3 logK3

K1 logK1 −K3 logK3
,

γ2 =
P1 − P3

K1 logK1 −K3 logK3
.

Proposition 2.1. The interpolation scheme in Eq.(2.3) preserves no-

arbitrage.

Proof. Observe, that the no-arbitrage conditions in Eq.(2.1) are discrete

versions of the conditions

P > 0, PK > 0, PK,K > 0.

By differentiating the first line of Eq.(2.3) one can check that the pro-

posed interpolation obeys these conditions provided that P is an increasing

function of K given the values of all other parameters to be constant. For

instance, this is the case for the Black-Scholes Puts.

At very small K2 the derivative PK in Eq.(2.3) is still positive, because

γ2 in this limit becomes negative and tends to zero.

For the sake of illustration, in Fig. 2.1 we present a comparison of the

no-arbitrage interpolation PN with its linear counterpart PL and the exact

price PE computed for the Black-Scholes model (for emphasis, the differ-

ences D(PN ) = PN − PL, D(PE) = PE − PL are displayed). The plot is

computed using the following values: S = 100,K1 = 95,K3 = 100, r = 0.05,

q = 0.01, σ = 0.5, T = 1. It is clear that the no-arbitrage conditions are

satisfied.

2.2 No-arbitrage at consecutive intervals

Proposition 2.1 guarantees that the proposed interpolation doesn’t intro-

duce an arbitrage into the solution if any three strikes belong to the same

interval [K1,K3]. However, what if we consider strikes K2,K3,K4 as this

is schematically depicted in Fig. 2.2.
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0
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Linear PL vs non-linear PN  interpolations and the exact PE solutions
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–0.015D
(P

) 
= 

P
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L

–0.02

95 96 97 98

K
99 100

D(PN)

D(PE)

Figure 2.1: Absolute differences D(P ) = P −PL for no-arbitrage non-linear

interpolation PN , and the exact Black-Scholes Put prices PE , with the linear

interpolation PL. The line D(PL) = 0 corresponds to PL.

K

P (K)

0 K1

P1
•

K2

P2

•

K3

P3
•

K4

P4
•

K5

P5
•

Exact solution

Interpolation

Figure 2.2: Three strikes K2,K3,K4 which belong to the consecutive

intervals.
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Here at the interval [K1,K3] the exact solution is depicted by the red

line, while our quadratic interpolation is in blue. Accordingly, the Put prices

P1, P3 are the market quotes, so they assumed to be the exact prices with

no market arbitrage. By our construction, these prices also don’t have a

model arbitrage. At the consecutive interval [K3,K5] a similar construction

applies.

We have to emphasize that this graph is pure illustrative, and no-

arbitrage interpolation guarantees that P ′(K) > 0, while the blue line in

Fig. 2.2 doesn’t support this. However, if we draw an accurate picture by

using the above formulae, it would be almost impossible to distinguish the

red and blue lines. Therefore, we changed convexity and skew of the blue

line to make the difference visible.

By Proposition 2.1 given a set of strikesK1,K2,K3 the price P2 obtained

by interpolation preserves no-arbitrage. The same is true for P5 given the

Put prices P3, P5 at strikes K3,K5. Now assume that given K1,K3,K5 and

P1, P3, P5 we want to check the no-arbitrage conditions for the set of strikes

K2,K3,K4. The Proposition 2.1 doesn’t help in this situation, so we need

a special consideration of this case.

Obviously, the first and second conditions in Eq.(2.1) are still satisfied

in this case, so we need to check that the butterfly spread is positive. Unfor-

tunately, at the moment we don’t have a general analytical solution of this

problem, while some particular cases can be addressed. Thus this remains

an open question. However, we checked this condition numerically. In doing

so we used the Black-Scholes Put prices P1, P3, P5
2 and built a 2D plot of

Bs which is the left-hands side of the third line in Eq.(2.1). The results for

two cases presented in Table 2.1 are presented in Figs. 2.3 and 2.4.

Table 2.1: Parameters of the test for non-negativity of the Butterfly spread.

σBS is the Black-Scholes implied volatility.

Test S r σBS T K1 K3 K5

1 100 0.01 0.5 2 80 100 130

2 100 0.1 0.1 0.1 90 100 105

Overall, we ran a lot of tests and didn’t find any case where the butter-

fly spread would become negative. This partly supports our no-arbitrage

interpolation. More sophisticated cases where, e.g., instead of strike K3 in

2This is done to preserve upper bounds on the Put price that P (S,K, T, r) ≤ Ke−rT ,
[Levy (1985)].
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the butterfly spread at strikes K2,K3,K4 we use another strike K6 such

that K1 < K2 < K3 < K4 < K6 < K5, could be treated in a similar way.

Again, our numerical tests didn’t reveal any case where a butterfly spread

would become negative.

Figure 2.3: Butterfly spread Bs for

a set of strikes K2,K3,K4 com-

puted in Test 1 in Table 2.1.

Figure 2.4: Butterfly spread Bs for

a set of strikes K2,K3,K4 com-

puted in Test 2 in Table 2.1.

2.3 Another types of no-arbitrage interpolation

As shown in Section 2.1, to construct a no-arbitrage interpolation one can

use a suitable non-linear interpolation. The non-linear function, however, is

not unique. It could be chosen based on some additional consideration. For

instance, the interpolation scheme in Eq.(2.3) is further used in Section 3.3,

see also [Itkin and Lipton (2018)]). With this representation the modified

Put price (which is a dependent variable of the approach) acquires a nice

tractable representation, so the integral I12 can be computed in closed form.

Here we want to exploit the same idea, but propose another interpolation

scheme which will be used in Chapter 5.

Below let us consider the following interpolation scheme

P (x) ≡ PF (x) = γ1 + γ2x
2, x1 ≤ x ≤ x3, (2.4)

γ1 =
P (x3)x2

1 − P (x1)x2
3

x2
1 − x2

3

, γ2 =
P (x1)− P (x3)

x2
1 − x2

3

.

Then similar to Proposition 2.1, we can prove the following Proposition

Proposition 2.2. The interpolation scheme in Eq.(2.3) is arbitrage free

at the interval [K1,K3].
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Proof. Observe, that the no-arbitrage conditions in Eq.(2.1) are discrete

versions of the conditions

P > 0, PK > 0, PK,K > 0.

They, in turn, correspond to the conditions

P > 0, Px > 0, Px,x > 0,

as x′(K) = 1/S > 0. By differentiating the first line of Eq.(2.4) one can

check that the proposed interpolation obeys these conditions provided that

P is an increasing function of K (or x) given the values of all other pa-

rameters to be constant. For instance, this is the case for the Black-Scholes

Puts.

Note, that the concept of no-arbitrage interpolation is widely used

throughout this book. In Chapter 6 we describe the Geometric Local

Variance Gamma model introduced in [Carr and Itkin (2018b)]. Three par-

ticular models of the local variance function are considered there: the local

variance as a piecewise linear function of strike, the local variance as a

piecewise linear function of log-strike, and the local volatility as a piece-

wise linear function of strike (so, the local variance is a piecewise quadratic

function of strike). We show that in this new model it is still possible to

derive an ordinary differential equation for the option price, which plays

a role of Dupire’s equation for the standard local volatility model. More-

over, it all three cases, this equation can be solved in closed form. This

is achieved by replacing the continuous function — the local variance in

the killing term — with its no-arbitrage interpolator. Again, as there exist

many no-arbitrage interpolations, a particular form is chose in such a way

to make all the integrals to be taken in closed form. These interpolations

are discussed in detail in Section 6.4.

In Section 4.3.6 we discuss a no-arbitrage interpolation of the implied

volatility surface. This interpolation is inspired by the approach [Gatheral

and Jacquier (2014)], despite differs in many details. This interpolation

is not focused on tractability as the model is discrete and calibrated nu-

merically, however is useful as provides a natural financial meaning of the

construction.

2.4 No-arbitrage as positivity

In the Black-Scholes world the no-arbitrage conditions which we discussed

in the previous Sections are equivalent to the existence of a risk-neutral



January 3, 2020 20:32 Fitting Local Volatility – 9in x 6in b3761-main page 20

20 Fitting Local Volatility

density (state price density). This density allows finding the option price in

every possible state and is connected to the second derivative of the option

price on strike by the Breeden-Litzenberger formula Eq.(1.11).

Rebonato in [Rebonato (2004)] discusses the conditions that guarantee

the existence of a risk neutral density, which finally give rise to Eq.(2.1).

He separates them into the following categories:

(1) Market Conditions: The market is complete, frictionless, there are no

bid-ask spreads, short sales are allowed and there are nt taxes.

(2) Traded Instruments: There exist and traded the underlying asset and

plain-vanilla calls and puts options for all maturities and strikes. There

also exist bonds with the payoff determined by a risk free interest.

(3) Probability Spaces: Market information is determined by using a fil-

tered probability space (Ω,Ft,Q) where Ω is the state space, Ft is the

filtration and Q is the risk-neutral probability measure. The state space

Ω contains all present and possible future values of the underlying as-

set and derivative options, and Ft is the natural filtration generated by

history of prices of the underlying and the options for a finite but large

number of dates.

The no-arbitrage conditions Eq.(2.1) are a useful alternative to the pos-

itivity of the implied density as they can be easily checked having a set of

option prices for the same underlying but various strikes and maturities.

However, as this could be see below in Chapter 4, these conditions require

either various restrictions on parameters of the implied volatility surface, or

running the constrained optimization which is computationally expensive.

Therefore, in [Carr and Pelts (2015)] the authors ask a reasonable question:

might there be an alternative to an implied variance rate surface for which

no arbitrage just requires positivity?

Indeed, in the local volatility model one needs a positive local volatil-

ity function σ(K,T ) to generate an arbitrage-free implied volatility sur-

face. In [Schweizer and Wissel (2008)] for getting this surface the authors

quote a positive function of just moneyness M = S/K. And in [Carr and

Pelts (2015)] the authors claim the need of either one positive function of

log-moneyness, or one positive function of log-moneyness and one positive

function of maturity. In the second case the positive function of T controls

the level of ATM implied volatility at each term, and the second positive

function of M controls the implied volatility skew across all terms. Below

we shortly present the approach of [Carr and Pelts (2015)] (note also a

recent extension of this approach in [Antonov et al. (2019)]) as it demon-
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strates a useful alternative way of constructing a no-arbitrage implied (and

so local) volatility surface by expressing it not in terms of the option prices

or implied variance rates, but some alternatives.

So, Carr and Pelts start with considering the FX options with the in-

trinsic value given by (N+ − N−)+, where N+ denotes the spot price in

the specified pricing currency of the contract received in the optional ex-

change, and N− denotes the spot price in the same pricing currency of

the contract delivered. The option price is given by the pricing function

P (N+, N−, T ) : R+ × R+ × R+× 7→ R+. The ultimate goal is to find an

unconstrained non-negative alternative to P (N+, N−, T ), which respects all

of no arbitrage constraints.

The function P (N+, N−, T ) is linearly homogeneous in the first two

arguments, and, therefore, follows the Euler representation

P (N+, N−, T ) = N+P1(N+, N−, T ),+N−P2(N+, N−, T ), (2.5)

where P1, P2 are first partial derivatives of P (N+, N−, T ) with respect to

N+ and N−, respectively. They can be referred as options Deltas: ∆+,∆−,

and also as probabilities of the option finishing in-the-money under the

corresponding measures Q+ and Q−:

∆+ = P1(N+, N−, T ) = Q+

{
N+,T > N−,T

}
, (2.6)

∆− = −P2(N+, N−, T ) = Q−
{
N+,T > N−,T

}
.

Let’s now introduce

P̂ (R, T ) =
P (N+, N−, T )

N−
, R =

N+

N−
. (2.7)

From Eq.(2.5) and Eq.(2.7) we have

−P2(N+, N−, T ) = RP̂1(R, T )− P̂ (R, T ), (2.8)

P̂1(R, T ) ≡ P1(N+, N−, T ).

The right hands part of the first line in Eq.(2.8) can be written as a function

of ∆+ = P1(N+, N−, T ) = P̂1(R, T ) in the form

D−(∆+, T ) = RP̂1(R, T )− P̂ (R, T ) = sup
R>0

[
R∆+ − P̂ (R, T )

]
. (2.9)

Then the function D−(∆+, T ) becomes the Legendre transform of the con-

vex function P̂ (R, T ), see, e.g., [Carr (2014a); Itkin (2018)]. It can be ver-

ified that ∀T > 0 D− : [0, 1] 7→ [0, 1], D−(0, T ) 7→ 0, D−(1, T ) 7→ 1, and

D−(∆+, T ) is an increasing function of ∆+. Therefore, D−(∆+, T ) is the

distortion function, [Denneberg (1990)].
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An important observation made by [Carr and Pelts (2015)] is that if a

convex distortion function ∆− = D−(∆+, T ) is somehow specified directly

∀T > 0, it also generates the convex function linking the normalized option

price P̂1(R, T ) to the ratio R of its underlyings

P̂1(R, T ) = sup
∆+∈[0,1]

[R∆+ −D−(∆+, T )] (2.10)

= R∆+(R, T )−D−(∆+(R, T ), T ),

where ∆+(R, T ) is the inverse of the increasing function R = ∂D−
∂∆+

(∆+, T ).

Moreover, the convexity of ∆− in ∆+ implies the convexity of P̂ in R and

so in N+ and N−. Therefore, such the option pricing function will be free

of butterfly spread arbitrage.

To avoid the arbitrage in T (a calendar spread arbitrage) ∀R ≥ 0, the

normalized option price P̂ must be increasing in T . It turns out that this is

equivalent to D− be the decreasing function of T also ∀∆+ ∈ [0.1]. Thus, to

provide no arbitrage of all types the distortion function should be convex

in ∆+ ∈ [0.1] and increasing in T ≥ 0.

This statement is the main result of [Carr and Pelts (2015)]. Then they

discuss various ways of generating an arbitrage-free distortion function.

For instance, for the Black-Scholes model the stochastic variable logRT is

normally distributed under both measures Q+ and Q−. It is well-known that

∆− = N(−d1), ∆+ = N(−d2) (see Eq.(1.32)), and hence the distortion

function is

∆− = N
(
N−1(∆+)−

√
σ2T

)
. (2.11)

This type of distortion function is called a Wang transform. It can be

checked that this distortion function is arbitrage-free, i.e. it obeys the con-

ditions specified in the previous paragraph.

The second step in [Carr and Pelts (2015)] is to generalize this approach

of constructing an arbitrage-free distortion function for some non-Black

Scholes models. For doing that they choose two variables z+, z− to rep-

resent log-moneyness, similar to what −d2 and −d1 variables do in the

Black-Scholes world. Then they introduce a generalized Wang Transform

(compare with Eq.(2.11)

∆− = Ω
(
Ω−1(∆+)− τ(T )

)
. (2.12)

Here Ω is a CDF of some random variable ZT ∈ R, and τ(T ) ≥ 0. For

convexity of ∆− we need that the function R(∆+, T ) = ∂∆−
∂∆+

is increasing in

∆+. This could be achieved, e.g., if both R and ∆+ are increasing functions
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of some third variable z− ∈ R at each T ≥ 0. Assuming z− = Ω−1(∆−),

from Eq.(2.12) we obtain ∆+ = Ω(z− + τ(T )), i.e. indeed ∆+ is increasing

in z−.

Both parts of Eq.(2.12) can be differentiated with respect to ∆+ to

obtain

R =
Ω′(z−)

Ω′(z+)
, z+ = z− + τ(T ).

Then Carr and Pelts show that a sufficient condition for R to be increasing

in z− at each T ≥ 0 is that the PDF Ω′(z−) is log concave in z−. Then

the generalized Wang Transform defined in Eq.(2.12) is an arbitrage-free

distortion function.

To construct such a function, they also observe that the log concav-

ity of Ω′(z−) is equivalent to the convexity of another function h(z−) =

− log Ω′(z−) in z−. And a convex function h(z−) : R 7→ R can be generated

by picking a positive function p(z−) : R 7→ R+ and then integrating it twice

in z−. In a similar way, an increasing function τ(T ) : R+ 7→ R+, τ(o) = 0

can be constructed by picking a positive function q(T ) : R+ 7→ R+ and

integrating it once in T .

In the simplest case when p(z−) = p0 > 0, i.e. constant, h(z−) is a

quadratic function, and the log concave PDF Ω′(z−) = e−h(z−) is Gaussian.

Furthermore, logRT is linear in ZT , so is also Gaussian. Hence, flat p(z−)

implies the Black Scholes variance as does flat implied variance. However,

the former is arbitrage-free while the latter can produce vertical and/or

butterfly spread arbitrage.



b2530    International Strategic Relations and China’s National Security: World at the Crossroads

b2530_FM.indd   6 01-Sep-16   11:03:06 AM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank



January 3, 2020 20:32 Fitting Local Volatility – 9in x 6in b3761-main page 25

PART 2

The Black-Scholes Model

25



b2530    International Strategic Relations and China’s National Security: World at the Crossroads

b2530_FM.indd   6 01-Sep-16   11:03:06 AM

This page intentionally left blankThis page intentionally left blankThis page intentionally left blankThis page intentionally left blank



January 3, 2020 20:32 Fitting Local Volatility – 9in x 6in b3761-main page 27

Chapter 3

Analytical Methods of Building the
Local Volatility Surface

In Chapter 1 a general concept of the local volatility model invented by

[Dupire (1994)] and [Derman and Kani (1994a)], and some basic definitions

and notions have been introduced. This chapter continues studying this

model in more detail. Throughout the chapter we deal with a classical

flavor if the local volatility model where the underlying stochastic process is

represented by the Geometric Brownian Motion with the constant volatility

replaced by a local volatility function. The other model will be discussed in

Part 3 of this book.

Our focus here is one of the classical problems of mathematical finance:

given a current snapshot of option prices for various strikes and maturities

written on the same underlying, build a local volatility surface which in

a certain norm minimizes the difference between the market quotes and

the corresponding values from the surface. Solving this problem is called

calibration.

So far we didn’t speak about calibration. The calibration of the local

volatility (LV) surface to the market data, representing either prices of

European options or the corresponding implied volatilities for a given set

of strikes and maturities, drew a lot of attention over the past two decades.

Various approaches to solving this important problem were proposed, see,

e.g., [Andreasen and Huge (2011); Lipton and Sepp (2011b); Itkin (2015)]

and references therein. Below, we refer to [Lipton and Sepp (2011b)] as

LS2011 for the sake of brevity.1

There are two main approaches to solving the calibration problem. The

first approach attempts to construct a continuous implied volatility (IV)

surface matching the market quotes by using either some parametric or

1We emphasize that the solution proposed in [Andreasen and Huge (2011)] is static in
nature, while the solution developed in LS2011 is fully dynamic.

27
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non-parametric regression, and then generates the corresponding LV sur-

face via the Dupire formula. We consider this approach in the next Chapter,

see also [Itkin (2015)] and references therein. To be practically useful, this

construction should guarantee no arbitrage for all strikes and maturities,

which is a serious challenge for any model based on interpolation. If the

no-arbitrage condition is satisfied, then the LV surface can be calculated

using Eq.(3.2) below, which is equivalent to, but more convenient than, the

original Dupire formula. The second approach relies on the direct solution

of the Dupire equation using either analytical or numerical methods. The

advantage of the latter approach is that it guarantees no-arbitrage. How-

ever, the problem of the direct solution can be ill-posed, [Coleman et al.

(2001)], and is rather computationally expensive.

An additional difficulty with both approaches is that the calibration al-

gorithm has to be fast in order to be practically useful. On the one hand,

analytical or numerical solutions of the Dupire equation are naturally nu-

merically expensive. On the other hand, building a no-arbitrage IV surface

could also be surprisingly numerically challenging, because it requires solv-

ing a rather involved constrained optimization problem, see [Itkin (2015)].

An additional complication arises from the fact that in the wings the im-

plied variance surface should be at most linear in the normalized strike,

[Lee (2004)].

In this chapter we consider a particular approach where calibration is

provided by solving the Dupire equation semi-analytically, while the next

one describes a parametric approach. Obviously, as the Dupire equation

in continuous in the (K,T ) space, it cannot be solved given a discrete set

of the market quotes. In other words, the local volatility function σ(K,T )

should be continuous and known. This problem can be overcome if, when

solving the Dupire equation, we make some assumptions about the shape

of this function. For instance, a simple approach proposed in [Andreasen

and Huge (2011)] assumes that the Dupire equation is first discretized by

using an implicit finite-difference scheme. This translates the local volatility

function into arbitrage consistent prices for a discrete set of expiries but it

does not directly specify the option prices between the expiries. These gaps

are filled by further assuming the local volatility function to be piecewise

constant in time.

In LS2011 this methodology was improved by assuming the local volatil-

ity function to be piecewise constant in the strike space. Then the Dupire

equation could be solved analytically. Thus, a continuous local volatility

function in the strikes space can be obtained by calibration. This approach



January 3, 2020 20:32 Fitting Local Volatility – 9in x 6in b3761-main page 29

Analytical Methods of Building the Local Volatility Surface 29

was further improved and extended (also performance-wise) in [Itkin and

Lipton (2018)]. In what follows, we focus on describing the approach of

[Itkin and Lipton (2018)] and their results obtained.

To construct a semi-analytical solution of the Dupire equation we extend

the approach proposed in LS2011, which is based on the direct solution

of the transformed Dupire equation. In LS2011 a piecewise constant LV

surface is chosen, and an efficient semi-analytical method for calibrating

this surface to the sparse market data is proposed. However, one can argue

that ideally the LV function should be continuous in the log-strike space.

Below we demonstrate how to extend LS2011 approach by assuming that

the local variance is piecewise linear in the log-strike space, so that the

corresponding LV surface is continuous in the strike direction (but not

in the time direction). While derivatives of the LV function with respect

to strike have discontinuities, the option prices, Deltas and Gammas are

continuous. This is to compare with LS2011 where the option prices and

deltas are continuous while the option Gammas are discontinuous. We also

allow for non-zero interest rates and proportional dividends.

The chapter is organized as follows. Section 3.1 introduces the Dupire

equation and discusses a general approach to constructing the LV surface.

Section 3.2 considers all necessary steps for solving the Dupire equation.

Section 3.3 introduces a no-arbitrage interpolation of the source term, which

naturally appears when the Laplace transform in time is used, and shows

that using this interpolation all the integrals containing this source term

can be obtained in a closed form. Section 3.4 considers a special case when

the slope of the local variance on some interval is small, so the linear local

variance function on this interval becomes flat. Section 3.5 discusses various

asymptotic results which are useful for constructing the general solution of

the Dupire equation. Section 3.6 is devoted to the calibration of the model

and also describes how to get an educated initial guess for the optimizer.

Since computing the inverse Laplace transform could be expensive for small

time intervals, Section 3.7 describes an asymptotic solution obtained in this

limit in [Gatheral et al. (2012)] and shows how to use it for our purposes.

Section 3.8 describes numerical results for a particular set of market data.

3.1 Local volatility surface

As a general building block for constructing the local volatility surface we

consider Dupire’s (forward) equation for the Put option price P which is a

function of the strike price K and the time to maturity T , [Dupire (1994)].
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We assume that the underlying stock process St under the risk neutral

measure is governed by the following stochastic differential equation

dSt = (r − q)Stdt+ σ(St, t)StdWt, S0 = S,

where r ≥ 0 is a constant risk free rate, q ≥ 0 is a constant continuous

dividend yield, σ is a given local volatility function, and Wt is the standard

Brownian motion. We recall that the Dupire forward equation derived in

Section 1.1 for the option Put price P (K,T ) reads

PT (K,T ) =

{
1

2
σ2(K,T )K2 ∂2

∂K2
− (r − q)K ∂

∂K
− q
}
P (K,T ), (3.1)

(K,T ) ∈ (0,∞)× [0,∞),

subject to the initial and boundary conditions

P (K, 0) = (K − S0)+,

P (0, T ) = 0, P (K,T )K↑∞ = KD, D = e−rT ,

where S0 = St|t=0, and D is the discount factor.

If the market quotes for P (K,T ) are known for all K,T , then the

LV function σ(K,T ) can be uniquely determined everywhere by invert-

ing Eq.(3.1).2 However, in practice, the known set of market quotes is a

discrete set of pairs (Ki, Tj), i = 1, . . . , nj , j = 1, . . . ,M , where nj is the

total number of known quotes for the maturity Tj , which obviously doesn’t

cover all K,T . So the form of σ(K,T ) remains unknown.

In order to address this issue, it is customary to choose a functional

form of σ(K,T ) for the corresponding time slice. For instance, in LS2011

σ(K,T ) is assumed to be a piecewise constant function of K,T . The authors

propose a general methodology of solving Eq.(3.1) for their chosen explicit

form of σ(K,T ) by using the Carson-Laplace transform in time and Green’s

function method in space. This opens the door for using a version of the

least-square method for the calibration routine. Of course, by construction,

it makes the whole local volatility surface discontinuous at the boundaries

of the tiles, and flat in the wings. While the former feature, in itself, is not

necessarily an issue, but should be avoided if possible, the latter feature

is somewhat more troubling, since, it is shown in [De Marco et al. (2013);

Gerhold and Friz (2015)], that the asymptotic behavior of the local variance

is linear in the log strike at both K →∞ and K → 0. While the result for

K → 0 is shown to be true at least for the Heston and Stein-Stein models,
2If the Call option market prices are given for some strikes and maturities, we can use

Call-Put parity in order to convert them to Put prices, since for calibration we usually

use vanilla European option prices.
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the result for K → ∞ directly follows from Lee’s moment formula for the

implied variance vBS , [Lee (2004)], and the representation of σ2 via the

total implied variance w = vBST [Lipton (2001); Gatheral (2006)]

wL ≡ σ2(T,K)T =
T∂Tw(

1− X∂Xw

2w

)2

− (∂Xw)2

4

(
1

w
+

1

4

)
+
∂2
Xw

2

, (3.2)

where w = w(X,T ), X = logK/F and F = Se(r−q)T is the stock forward

price. Therefore, having a flat local volatility deep in the wings should be

avoided if possible.

That is why, here we consider a continuous, piecewise linear local vari-

ance v = σ2(X,T ) in the spatial variable X for a fixed T = const. This

allows us to match the asymptotic behavior of v in the wings as well as

build the whole surface which is much smoother than in the piecewise con-

stant case. Also, in LS2011 the interest rates and dividends are assumed to

be zero, while here we take them into account.

3.2 Solution of Dupire’s equation

Introducing a new dependent variable

B(X,T ) = e−X/2(KD − P (X,T ))/Q, Q = Se−qT ,

which is a scaled covered Put, the problem in Eq.(3.1) can be re-written as

follows

BT −
1

2
vBXX +

1

8
vB = 0, (3.3)

B(X, 0) =
K − (K − S)+

S
e−X/2 = e−X/21X>0 + eX/21X≤0,

B(X,T )X↓−∞ = 0, B(X,T )X↑∞ = 0, (X,T ) ∈ (−∞,∞)× [0,∞).

A similar transformation is used in [Lipton (2002)] in order to solve the

backward Black-Scholes equation. Suppose that there are option price

quotes (at least for one strike) for M different maturities T1, . . . , TM .3

Also suppose that for each Tj the market quotes are provided at Xi, i =

1, . . . , nj .
4 Then the corresponding continuous piecewise linear local vari-

ance function vj(X)5 on the interval [Xi, Xi+1] reads

vj,i(X) = v0
j,i + v1

j,iX, (3.4)

3We assume the maturities are sorted in the increasing order.
4The strikes also are assumed to be sorted in the increasing order.
5Here in the notation we drop off the dependence of v on T since T is given, and

hopefully it doesn’t bring any confusion.
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where we use the super-index 0 to denote a level v0, and the super-index 1

to denote a slope v1. Subindex i = 0 in v0
j,0, v

1
j,0 corresponds to the interval

(−∞, X1]. Since vj(X) is continuous, we have

v0
j,i + v1

j,iXi+1 = v0
j,i+1 + v1

j,i+1Xi+1, i = 0, . . . , nj − 1. (3.5)

The first derivative of vj(X) experiences a jump at the points Xi, i ∈
Z ∩ [1, nj ].

Further, assume that v(X,T ) is a piecewise constant function of time,

i.e. v0
j,i, v

1
j,i don’t depend on T on the intervals [Tj , Tj+1), j ∈ [0,M − 1],

and jump to new values at the points Tj , j ∈ Z ∩ [1,M ]. In the original

independent variables K,T this condition implies that

v(Ki, T ) ≡ vj,i = v0
j,i + v1

j,i [log(Ki/S)− (r − q)T ] , T ∈ [Tj , Tj+1),

i.e. that the local variance is a (discontinuous) piecewise linear function of

time T . In other words, in the original log-variables (logK,T ) the function

v(logK,T ) is piecewise linear in both variables, while in the transformed

variables (X,T ) the function v(X,T ) is piecewise linear in X and piecewise

constant in T . Thus, X can be viewed as an automodel variable.6

With the above assumptions in mind, Eq.(3.3) can be solved by in-

duction. One starts with T0 = 0, and on each time interval [Tj−1, Tj ],

j ∈ Z ∩ [1,m] solves the modified problem for Bj(X, τ)

Bj,τ (X, τ)− 1

2
vj(X)Bj,XX(X, τ) +

1

8
vj(X)Bj(X, τ) = 0, (3.6)

B1(X, 0) = B(X, 0), Bj(X, 0) = Bj−1(X, τj−1), j > 1

B(X, τ)X→±∞ = 0, (X, τ) ∈ (−∞,∞)× [0, τj ],

where τ is a continuous time T counted from Tj−1, so τj ≡ Tj − Tj−1, and

Bj is the solution of Eq.(3.3) corresponding to the time interval Tj−1 ≤
T ≤ Tj , j ∈ Z ∩ [1,m].

To solve Eq.(3.6), similarly to LS2011, we use the Laplace-Carson trans-

form B̂ = L(p){B} of Eq.(3.6) (for application of the Laplace transform to

derivatives pricing, see [Lipton (2001)]) to obtain

−1

2
vj(X)B̂j,XX +

(
vj(X)

8
+ p

)
B̂j = pBj−1(X, τj−1), (3.7)

B̂(X, p)X↑±∞ = 0.

Since v(X) is a piecewise linear function, the solution of Eq.(3.7) can also be

constructed separately for each interval [Xi−1, Xi]. By taking into account
6This terminology is borrowed from aerodynamics and physics of gases and fluids.
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the explicit representation of v(X) in Eq.(3.4), from Eq.(3.7) for the i-th

spatial interval we obtain

(b2 + a2X)B̂j,XX + (b0 + a0X)B̂j = pBj−1(X, τj−1), (3.8)

b2 = −v0
j,i/2, a2 = −v1

j,i/2, b0 = p+ v0
j,i/8, a0 = v1

j,i/8.

Eq.(3.8) is an inhomogeneous Laplace equation, [Polyanin and Zaitsev

(2003)], page 155. It is well known that if y1 = y1(X), y2 = y2(X) are two

fundamental solutions of the corresponding homogeneous equation, then the

general solution of Eq.(3.8) can be represented as

B̂j(p) = C1y1 + C2y2 + pI12 (3.9)

I12 = y2

∫
y1Bj−1(X, τj−1)

(b2 + a2X)W
dX − y1

∫
y2Bj−1(X, τj−1)

(b2 + a2X)W
dX,

where W = y1(y2)X − y2(y1)X is the so-called Wronskian corresponding to

the chosen solutions y1, y2. Thus, the problem is reduced to finding suitable

fundamental solutions of the homogeneous Laplace equations. Based on

[Polyanin and Zaitsev (2003)], if a2 6= 0 and a0 6= 0, the general solution

reads

B̂j = ekXJ (a, 0, 2k(µ−X)), (3.10)

k =
√
−a0/a2 = ±1

2
, µ = − b2

a2
= −

v0
j,i

v1
j,i

, a =
b2k

2 + b0
2a2k

.

Here J (a, b, z) is an arbitrary solution of the degenerate hypergeomet-

ric equation, i.e., Kummer’s function, [Abramowitz and Stegun (1964)],

page 504 with a, b being some constants and z being an independent vari-

able. Two types of Kummer’s functions are known, namely M(a, b, z) and

U(a, b, z), which are Kummer’s functions of the first and second kind.7

3.2.1 Numerically satisfactory solutions

To explicitly represent Eq.(3.9), among all possible fundamental pairs of

the solutions given in Eq.(3.10), for every spatial interval we have to de-

termine the pair that is numerically satisfactory, [Olver (1997)]. Since our

boundary conditions are set at positive and negative infinity, we need a

numerically satisfactory solution for the whole real line. However, it is well

known that a single pair of Kummer’s functions cannot be numerically

satisfactory throughout the whole real line. To overcome this problem, a
7Due to the linearity of the degenerate hypergeometric equation any linear combination

of Kummer’s functions also solves this equation.
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combined solution can be constructed; below we describe our construction

in some detail.

As a preliminary notice, observe that based on the definitions in

Eq.(3.10), Eq.(3.8) the variable z can be re-written as z = −2kvj,i/v
1
j,i.

Based on the usual shape of the local variance curve and its positivity, see,

e.g., [Itkin (2015)] and references therein, for X → −∞, we expect that

v1
j,i < 0. Similarly, for X → ∞ we expect that v1

j,i > 0. In between these

two infinite limits the local variance curve for a given maturity Tj is as-

sumed to be continuous, but the slope of the curve could be both positive

and negative. Also vj,i ≥ 0 ∀X ∈ R, and a = −p/(kv1
j,i). With these

observations in mind, we now present our methodology.8

3.2.1.1 v1
j,i < 0

For every interval where v1
j,i < 0, i.e. ∀ i ∈ Z ∩ [1, nj ] such that X ∈

[Xi−1, Xi], X0 = −∞, Xi ≤ Xmj , as the first independent solution of the

Kummer equation we take Y1(z) = zU(a + 1, 2, z) with k = 1/2, which

means a > 0.9 From the definition of z it follows that X = µ − z/(2k) =

µ− z. Thus, when X → −∞ we have z →∞ and ekXY1(z)→ 0.

This solution is numerically stable across the whole interval X < Xmj

except the point z = 0, which corresponds to X = µ, or, equivalently,

vj,i = 0; this point belongs to our interval if µ < Xmj .
10 At z = 0 the solu-

tion has a branch point, [Olver (1997)]. The principal branch of U(a, b, z)

corresponds to the principal value of z−a and has a cut in the z-plane along

the interval (−∞, 0]. However, one can observe, that at z = 0 Eq.(3.8)

becomes a degenerated ODE, and its solution immediately reads

B̂j = p
Bj−1(X, τj−1)

b0 + a0X
= Bj−1(X, τj−1). (3.11)

Therefore, we can exclude this special case from the below consideration,

while if this case were to occur during the actual calibration, we just use

the special solution given by Eq.(3.11) instead of the general solution.

As the second independent solution of Kummer’s equation for v1
j,i < 0

(or X < Xmj ) we have two choices: Y2(z) = zezU(1− a, 2,−z) or Y2(z) =

zM(a+ 1, 2, z). It can be shown that if we take the former with k = −1/2

8The case where the local volatility is flat on some interval, i.e. a2 = 0, and a→∞, is

considered in Section 3.4.
9Since in our case b = 0, by Kummer’s transformation, [Olver (1997)], page 254,

[Abramowitz and Stegun (1964)], page 505, U(a, 0, z) = zU(a+ 1, 2, z).
10As the local variance is linear and non-negative, either this point is at the edge of the
interval, or the local variance is flat and vanishes on this interval.
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(so a < 0 and X = µ+ z), then two solutions e−X/2Y2(X) and eX/2Y1(X)

differ just by a constant eµ, so that they are not independent. Therefore,

we are compelled to keep k = 1/2, a > 0, and X = µ−z. However, then the

function zez+kXU(1 − a, 2,−z) diverges at both X → −∞ and at z → 0.

Similarly, the function zM(a + 1, 2, z) also diverges at X → −∞, but is

numerically stable at z → 0.

Thus, we have to put C2 = 0 in Eq.(3.9) on the very first interval

(−∞, X1] to preserve the boundary conditions at X → −∞. However, the

solution Y2(z) still contributes to I12. In what follows we will use Y2(z) =

zM(1 + a, 2, z), and show that I12 converges in the limit X → −∞.

For future reference, note that the solutions y1(z) = ekXzM(a+ 1, 2, z)

and y2 = ekXzU(a+ 1, 2, z) can also be re-written in terms of Whittaker’s

functions Mp,s(z),Wp,s(z) [Abramowitz and Stegun (1964)], page 504,

y1(z) = ekµM−a,1/2(z), y2(z) = ekµW−a,1/2(z).

3.2.1.2 v1
j,i > 0

For every interval where v1
j,i > 0, i.e. ∀ i ∈ Z ∩ [2, nj + 1] such that X ∈

[Xi−1, Xi], Xnj+1 = ∞, Xi > Xmj , as the first independent solution of

Kummer’s equation we again take Y1(z) = zU(a + 1, 2, z) with k = −1/2,

which means a > 0, and X = µ + z. Thus, when X → ∞ we have z → ∞
and ekXY1(z)→ 0.

Again, this solution is numerically stable on the whole interval X > Xmj

except for a singularity at z = 0 (if µ > Xmj ). However, the solution at

z = 0 of Eq.(3.8) was already given in the previous subsection.

As far as the second numerically stable solution is concerned, the anal-

ysis of the previous subsection is applicable here as well. Therefore, we also

take Y2(z) = zM(1+a, 2, z) again with k = −1/2, so a > 0, and X = µ+z.

Accordingly, in Eq.(3.9) we put C2 = 0 on the very last interval [Xnj ,∞)

to preserve the boundary conditions at X →∞.

3.2.2 The combined solution across the whole real line

The solutions described in the previous section are schematically repre-

sented in Table 3.1. Accordingly, for j > 1 the solution in Eq.(3.9) on the

interval i reads

B̂i = C
(1)
1,i y1,i(z) + C

(1)
2,i y2,i(z) + pI

(1)
12,i(X), (3.12)

W ≡W1,i = eXz2W [U(1 + ai, 2, z),M(1 + ai, 2, z)] = − eµi

Γ(ai + 1)
,
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Table 3.1: Our construction of numerically satisfactory Kummer’s pairs.

Here “fc” means from continuity.

Interval v1j,i k z y1 y2 C2

(−∞, X1] < 0 1/2 µ−X eX/2zU(a+ 1, 2, z) eX/2zM(a+ 1, 2, z) 0

[Xi, Xi+1] < 0 1/2 µ−X eX/2zU(a+ 1, 2, z) eX/2zM(a+ 1, 2, z) fc

[Xi, Xi+1] > 0 -1/2 X − µ e−X/2zU(a+ 1, 2, z) e−X/2zM(a+ 1, 2, z) fc

[Xmj ,∞) > 0 -1/2 X − µ e−X/2zU(a+ 1, 2, z) e−X/2zM(a+ 1, 2, z) 0

where Γ(x) is the gamma function, I12,i is I12 defined in Eq.(3.9) and

computed on the interval i, and the superscript(s) in I
(s)
12,i means that

y1,i(X), y2,i(X) (the solutions of the homogeneous equation) in the defi-

nition of I12 in Eq.(3.9) are taken on the corresponding area (s).11

For j = 1 the term Bj−1(X, τj−1) should be replaced with eX/2 if X ∈
[Xi−1, Xi], X ≤ 0, and with e−X/2 if X ∈ [Xi−1, Xi], X > 0 in the definition

of I12,i.

Also in order to satisfy the boundary conditions, see Eq.(3.7), I12 in

Eq.(3.9) should vanish when X → ±∞. This is a subject of the following

proposition.

Proposition 3.1. For X → ±∞ the function I12(X), defined in Eq.(3.9),

vanishes.

Proof. First, we intend to prove this Proposition for j = 1. In this case

the Eq.(3.9) has the form

B̂ =

{
C1y1 + C2y2 + ph1(X), X ≤ 0,

C3y1 + C4y2 + ph2(X), X > 0,
(3.13)

hi(X) = y2I1(gi(X))− y1I2(gi(X)), i = 1, 2,

g1(X) = eX/2, g2(X) = e−X/2,

Is(gl(X)) =

∫ X

ξ

ys
gl(X)

(b2 + a2X)W
dX, s, l ∈ Z ∩ [1, 2].

Thus, in this case I12(X) = h1(X) if X ≤ 0, and I12(X) = h2(X) if X > 0.

Once this is done, due to the boundary conditions at X → −∞, the function

B̂(X, τj) in Eq.(3.9) tends to g1(X) in Eq.(3.13), and at X → ∞ we have

B̂(X, τj)→ g2(X). Therefore, at X → −∞ we have I12(X)→ h1(X), and

at X → ∞, similarly I12(X) → h2(X). Thus, the first step of the proof is

11We use the notation C
(l)
1,i, C

(l)
2,i for the integration constants, where super index l ∈

Z∩ [1, 2] marks the corresponding area in Fig. 3.1, and the sub index i marks the interval

in the X space.
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sufficient to prove the Proposition in its entirety. At X → −∞ (according

to Section 3.2.1 this region belongs to the area where v1
j,i < 0) we have

z →∞, and, as follows from Table 3.1 and Eq.(3.13)

I1(g1(X)) =

∫
y1(X)g1(X)

(b2 + a2X)W
dX =

Γ(a+ 1)

a2
e−µ/2

∫
e−z/2M(1 + a, 2, z)dz,

(3.14)

I2(g1(X)) =

∫
y2(X)g1(X)

(b2 + a2X)W
dX =

Γ(a+ 1)

a2
e−µ/2

∫
e−z/2U(a+ 1, 2, z)dz.

Thus,

h1(z) =
Γ(a+ 1)

a2
G(z), (3.15)

G(z) ≡ e−z/2M(1 + a, 2, z)

∫
e−z/2U(a+ 1, 2, z)dz

− e−z/2U(1 + a, 2, z)

∫
e−z/2M(1 + a, 2, z)dz.

From [Olver (1997)], at z → ∞ we have the following asymptotic series

representation

U(a, 2, z) = Φ∞(z), Φn(z) ≡ z−a
n∑
s=0

(a(a− 1))s
s!

(−z)−s, (3.16)

M(a, 2, z) = Ψ∞(z), Ψn(z) ≡ ezza−2

Γ(a)

n∑
s=0

(1− a)s(2− a)s
s!

z−s,

where (·)s is the Pochhammer symbol.

Let us define the function Gn(z) in the same way as G(z) in

Eq.(3.15), but replacing U(a, 2, z) = Φ∞(z) with Φn(z). It is clear that

limn→∞Gn(z) = G(z). Substituting Eq.(3.16) into this definition and per-

forming integration term-by-term, we arrive at∫
e−z/2Φn(z) = −2−a

n∑
s=0

f(a, s)2n−s(−1)sΓ(−s− a, z/2), (3.17)

∫
e−z/2Ψn(z) = −(−2)a

n∑
s=0

f(a, s)2n−s(−1)sΓ(−s+ a,−z/2),

f(a, s) =
(a(a− 1))s

s!
.

where Γ(a, z) is an incomplete gamma function. By [Olver (1997)], at z →
∞ we have

Γ(a, z) = za−1e−z
∞∑
s=0

(−1)s
(1− a)s
zs

.
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Substituting this expression into Eq.(3.17) and collecting terms, we can

check that the leading term in this series is Gn(z) ∼ z−2. Thus, Gn → 0 at

z → ∞ as 1/z2. Since this convergence rate doesn’t depend on n, we can

take the limit n → ∞ and see that G(z) → 0 at z → ∞. Since at k = 1/2

we have z = µ−X, that means that that h1(X)→ 0 for X → −∞.

For h2(x) the representation for I1(g2(X)), I2(g2(X)) is similar to that

in Eq.(3.14) and reads

I1(g2(X)) =

∫
y1(X)g2(X)

(b2 + a2X)W
dX =−Γ(a+ 1)

a2
e−µ/2

∫
e−z/2U(1 + a, 2, z)dz,

I2(g2(X)) =

∫
y2(X)g2(X)

(b2 + a2X)W
dX =−Γ(a+ 1)

a2
e−µ/2

∫
e−z/2M(1 + a, 2, z)dz.

Since we need the limit z → ∞, the convergence of these integrals to zero

can be proved similarly to the previous case of z → −∞. Thus, h2(X)→ 0

for X →∞.

Using these results, we can now proceed to constructing the solution of

Eq.(3.7) on the whole real line X ∈ [−∞,∞] by matching solutions on all

the intervals.

X

v(X)

0X1

•

A1

X2

•

A12

Xmj X3

•

A23

. . . Xnj

•

Anj

2

1

Figure 3.1: Construction of the whole solution of the Dupire equation. 1

(solid curve — the real (unknown) local variance curve, 2 (dashed curve) —

a piecewise linear solution.

Suppose that Put prices for T = Tj are known for nj ordered strikes.

Also, first suppose that these quotes are available for both K > F and

K < F . The location of these strikes on the X line is schematically depicted

in Fig. 3.1.
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According to the analysis of Section 3.2, on the open interval A1 the

solution of Eq.(3.7) is given by the first line of Table 3.1. It contains one

unknown constant C
(1)
1,1 since we put C

(1)
2,i = 0 due to the boundary condi-

tions. The solutions from line 2 in Table 3.1 should be used for all other

intervals Ak−1,k such that k ≥ 1, v1
j,k ≤ 0. These solutions have two yet

unknown constants C
(1)
1,k , C

(2)
1,k , since X is finite on the corresponding inter-

val, and therefore, both solutions y1(X), y2(X) are well-behaved. For Xk,

where v1
j,k > 0 and k ≤ mj we use the solution given in the third line of

Table 3.1, which also has two yet unknown constants C
(2)
1,k , C

(2)
2,k for each

interval. Finally, for the interval X ∈ [Xnj ,∞)), we use the solution in the

last line of Table 3.1. Again, to obey the boundary conditions we must set

C
(2)
2,nj+1 = 0.

Thus, we have 2nj unknown constants to be determined. Since the local

volatility function vi is continuous at the points Xi, i = 1, . . . , nj , so should

be the solution B̂(X, τj). Therefore, we require that at the points zi, i =

1, ..., nj the solution and its first derivative in X should be a continuous

function of X. Thus, the above constants solve a system of 2nj algebraic

equations. This system has a special structure that allows one to reduce its

LHS matrix to the upper triangular form (actually even the upper banded

form). Therefore, it can be efficiently solved with the linear complexity

O(2nj). For more details, see LS2011.

When computing the first derivatives, we take into account that

hi,X = y1,XI1(gi(X))− y2,XI2(gi(X)), i = 1, 2,

and according to [Abramowitz and Stegun (1964)], page 507

∂M(a, b, z)

∂z
=
a

b
M(a+ 1, b+ 1, z),

∂U(a, b, z)

∂z
= −aU(a+ 1, b+ 1, z).

Also, in some special cases which are discussed in the following sections,

the solution can be represented in terms of the modified Bessel functions.

But it is known, [Abramowitz and Stegun (1964)], that the derivatives of

the modified Bessel functions are expressed in closed form via the same set

of functions. Therefore, computing the derivatives of the solution doesn’t

cause any new technical problems.

Note, that in the definition of the integrals I12 in Eq.(3.9), for the sake

of convenience, we define the low limit of integration ξ(X) as follows. For

the interval A1 we take ξ = −∞. Then for each integral I12(Xi), i =

2, . . . , nj we use ξi = Xi−1 (or zi−1 if the integral is expressed in z variables,

see Appendix). This choice is inspired by the fact that all the parameters

ai, a2,i, b2,i, µi in Eq.(3.9) are constant on the interval [Xi−1, Xi].
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Also repeat that, for the sake of simplicity, in the above construction we

assumed that market quotes are available for a set of strikes with K < F ,

as well as for a set of strikes with K > F . However, it could happen that

the market provides just a set of strikes such that all Xi > 0 or Xi < 0. In

this case we can construct the whole solution as follows.

Suppose Xi < Xmj , ∀ i ∈ Z ∩ [1, nj ]. Introduce an additional auxiliary

point X∗ > Xmj . Of course, since this is an auxiliary point, the correspond-

ing market quote is not available. Therefore, we don’t need to calibrate the

local variance at this point. However, introduction of such a point helps

to construct the solution on the whole real line, similarly to how it was

done above. An unknown constant C
(2)
1,∗ again can be found assuming the

continuity of the solution at the point X∗, while C
(2)
2,∗ should be set to 0 to

preserve the boundary conditions. Thus, this trick just helps to construct

a numerically stable solution across the region (−∞, X1] with X1 > Xmj

(when there are no points Xi < Xmj ), or across the region [Xnj ,∞) with

Xnj < Xmj (when there are no points Xi > Xmj ).

According to our construction, the options values as well as option deltas

and gammas are continuous in X (and, therefore, in S). Indeed, in the

above we required B̂(X, τj), B̂X(X, τj) and vj to be continuous functions

of X. Then, based on Eq.(3.7), B̂XX is also a continuous function of X.

Applying the inverse Laplace transform, we obtain that BXX is also con-

tinuous in X, and, hence, by the definition of X, in S. Therefore, by the

definition of B, P, ∂P∂S ,
∂2P
∂S2 are also continuous. This result demonstrates

the additional advantage of our model as compared, e.g., with LS2011,

where the options gammas are discontinuous due to only a piecewise con-

tinuity of vj .

3.3 Analytical representation of the integrals I12(X)

To compute the RHS term h(X) = pI12(X) at some time step j we need a

functionBj−1(X, τj−1) obtained at the previous time step. However, market

quotes at Tj and Tj−1 could be given at different sets of X even if the

strikes are same since, by definition, X = log(K/F (T )). Therefore, when

computing pI12(X) in Eq.(3.9) by using a numerical quadrature, we need

to know the values of Bj−1(X, τj−1) at points X where they have not been

calculated yet. There are at least two possible approaches to addressing this

issue.

The first approach relies on the fact that the solution B̂j−1 is already

known for each space interval [Xi−1, Xi]. Therefore, to compute Bj−1(X),
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Xi−1 < X < Xi we can use the inverse Laplace transform method as

described below. Also this would require computation of I12(X, τj−1) since

this is a part of the solution for B̂j−1. Thus, this method, despite being

exact, is very computationally expensive as it requires the inverse Laplace

transform and numerical integration embedded into another inverse Laplace

transform and numerical integration.

The second approach, which is advocated by the author, uses interpola-

tion to computeBj−1(X) given the values ofBj−1(X̄), where X̄ = X(Tj−1),

and X = X(Tj). In general, linear interpolation would be sufficient. How-

ever, as this is shown in Section 2.1, it gives rise to the violation of the

no-arbitrage conditions. Therefore, we proceed with a no-arbitrage version

which was proposed in [Itkin and Lipton (2018)], and also described in

Section 2.1.

Using the definition of X and B(X,T ) and some algebra, the interpo-

lation formula in Eq.(2.2) for B(X) can be re-written as

B[X, τ ] = α−1 e
−X/2 + (β+

1 X + β+
2 )eX/2, (3.18)

α−1 =
e
X1+X3

2

R

[
e
X1+X3

2 (k3 − k1) + e
X1
2 k1B(X3, T )− e

X3
2 k3B(X1, T )

]
,

β+
1 =

1

R

[
eX3 − eX1 − e

X3
2 B(X3, T ) + e

X1
2 B(X1, T )

]
,

β+
2 =

1

R

[(
e
X1
2 B(X1, T )− e

X3
2 B(X3, T )

)
logF + eX1X1 − eX3X3

]
,

R = k1e
X1 − k3e

X3 .

where ki = Xi + logF . In Fig. 3.2 the relative difference for linear BL and

non-linear BN interpolations vs. the exact Black-Scholes value BE is shown

as a function of X. It can be seen that in this test the difference is around

3 bps.

Now the expression given by Eq.(3.18) can be substituted into the defini-

tion of I12(X) in Eq.(3.9). It turns out that then the corresponding integral

can be computed in closed form as we show in the next Section.

3.3.1 Closed form representation of all integrals in I12(X)

Here we derive an analytical expression for I12(X) in Eq.(3.9), which takes

into account our approximation of B(X, τj−1) presented in Section 3.3, and
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Figure 3.2: Absolute differences D(B) = B − BL for no-arbitrage non-

linear interpolation BN , and the exact Black-Scholes Put prices BE , with

the linear interpolation BL. The line D(BL) = 0 corresponds to BL.

reads

I12(X) = y2I1(X)− y1I2(X),

I1(X) =

∫ X

ξ

y1Bj−1(X, τj−1)

(b2 + a2X)W
dX

=

∫ X

ξ

y1[α−1 e
−X/2 + (β+

1 X + β+
2 )eX/2]

(b2 + a2X)W
dX,

I2(X) =

∫ X

ξ

y2Bj−1(X, τj−1)

(b2 + a2X)W
dX

=

∫ X

ξ

y2[α−1 e
−X/2 + (β+

1 X + β+
2 )eX/2]

(b2 + a2X)W
dX.

Suppose we compute these integrals on the interval [Xi, Xi+1], i.e. X ∈
[Xi, Xi+1]. As the lower limit of integration ξ it is convenient to choose

ξ = Xi. Then the coefficient a2, b2 are constant on this interval, and so are

a, α, β. The homogeneous solutions y1, y2 should be chosen according to the

analysis of Section 3.2.
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v1
j,i < 0 According to Table 3.1, for negative v1

j,i we have

y1 = zeX/2U(a+ 1, 2, z), y2 = zeX/2M(1 + a, 2, z),

W = − eµ

Γ(ai + 1)
, z = µ−X.

Therefore,

I2 = −Γ(a+ 1)e−µ
∫
eX/2zM(1 + a, 2, z)

b2 + a2X
[α−1 e

−X/2 + (β+
1 X + β+

2 )eX/2]dX

=
Γ(a+ 1)

a2

[
α−1 J0 + β+

2 e
µJ1 + eµβ+

1 J2

]
,

J0 =

∫
M(1 + a, 2, z)dz, J1 =

∫
e−zM(1 + a, 2, z)dz,

J2 =

∫
(µ− z)e−zM(1 + a, 2, z)dz = µJ1 − J3,

J3 =

∫
ze−zM(1 + a, 2, z)dz.

From [Ng and Geller (1970)] after some transformations we obtain

J1 =

∫
e−zM(1 + a, 2, z)dz =

1

a
e−zM(1 + a, 1, z),

J0 =

∫
M(1 + a, 2, z)dz =

1

a
M(a, 1, z),

J3 =

∫
ze−zM(1 + a, 2, z)dz =

1

2
z2e−zM(a+ 2, 3, z).

Similarly,

I1 = −Γ(a+ 1)e−µ
∫
eX/2zU(1 + a, 2, z)

b2 + a2X
[α−1 e

−X/2 + (β+
1 X + β+

2 )eX/2]dX

=
Γ(a+ 1)

a2
e−µ

[
α−1 J0 + β+

2 e
µJ1 + β+

1 e
µJ2

]
,

J0 =

∫
U(1 + a, 2, z)dz, J1 =

∫
e−zU(1 + a, 2, z)dz,

J2 =

∫
Xe−zU(1 + a, 2, z)dz = µJ1 − J3, J3 =

∫
ze−zU(1 + a, 2, z)dz.

Again, from [Ng and Geller (1970)] we can obtain

J0 =

∫
U(a+ 1, 2, z)dz = −1

a
U(a, 1, z),

J1 =

∫
e−zU(a+ 1, 2, z)dz = −e−zU(a, 1, z),

J3 =

∫
ze−zU(a, 2, z)dz = −z2e−zU(a+ 2, 3, z).
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v1
j,i > 0 According to Table 3.1, for positive v1

j,i we have

y1 = ze−X/2U(a+ 1, 2, z), y2 = ze−X/2M(1 + a, 2, z),

W = − eµ

Γ(a+ 1)
, z = µ+X.

Hence

I2 = −Γ(a+ 1)e−µ
∫ ze−X/2M(1 + a, 2, z)

×[α−1 e
−X/2 + (β+

1 X + β+
2 )eX/2]

b2 + a2X
dX

= −Γ(a+ 1)

a2
e−µ

[
α−1 e

µI0 + β+
2 I1 + β+

1 I2

]
,

I0 =

∫
e−zM(1 + a, 2, z)dz = J1, I1 =

∫
M(1 + a, 2, z)dz = J0,

I2 =

∫
(z − µ)M(1 + a, 2, z)dz = I3 − µJ0,

I3 =

∫
zM(1 + a, 2, z)dz =

z − 1

a
M(a, 1, z) +

1

a
M(a− 1, 1, z).

Similarly,

I1 = −Γ(a+ 1)e−µ
∫ ze−X/2U(1 + a, 2, z)

×[α−1 e
−X/2 + (β+

1 X + β+
2 )eX/2]

b2 + a2X
dX

= −Γ(a+ 1)

a2
e−µ

[
eµα−1 P2 + β+

2 P0 + β+
1 (P3 − µP0)

]
,

P0 =

∫
U(1 + a, 2, z)dz = J0, P2 =

∫
e−zU(1 + a, 2, z)dz = J1,

P3 =

∫
zU(1 + a, 2, z)dz = −z

a

(
U(a, 1, z) +

1

a− 1
U(a, 2, z)

)
.

Sometimes, it could happen that for the new maturity deep out-of-

the-money (OTM) or in-the-money (ITM) strikes are positioned outside of

the region covered by strikes given for the previous maturity. That means,

that no-arbitrage interpolation cannot be used in such a case, while us-

ing Eq.(3.18) for extrapolation will lead to arbitrage. This issue can be

addressed as follows.

Suppose that at Tj the last strike with a known market quote is

Kj,nj . Suppose that at Tj+1 > Tj we are given a set of new strikes

Kj+1,1, ...,Kj+1,nj+1
, such that Xj+1,l > Xj,nj , ∀l : nj+1 ≤ l ≤ i, where i

is some integer i ∈ Z ∩ [1, nj+1]. Now introduce an auxiliary point Xj,∗,
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such that Xj,∗ > Xj+1,nj+1 and Xj,∗ < ∞. Based on the boundary condi-

tions we can assume that B(X∗, Tj) = 0. Then, having this extra auxiliary

point, the problem of extrapolation reduces to interpolation which was dis-

cussed above. A similar approach can be used at the opposite end when

Xj+1,l < Xj,1, ∀ l ∈ Z∩ [1, i] for some i > 0. Then the auxiliary point Xj,∗
should be inserted on the interval −∞ < Xj,∗ < Xj+1,1.

Solution for the first term T1: For the first term T1 we don’t need

interpolation since we know the solution B(X, 0) along the whole real line

X ∈ (−∞,∞). It is given by the terminal condition in Eq.(3.3) and fits

into our interpolation formula in Eq.(3.18) if we set α−1 = p1X>0 and

β+
1 = 0, β+

2 = p1X≤0. Thus, in this case the analytical solution for I12(X)

is still available.

3.4 Small |v1
j,i|

When calibrating the model to the market data, it could happen that some

values of v1
j,i become small, so that |v1

j,iXi| � 1.12 In this case, the solutions

considered in Section 3.2 are no longer valid. Therefore, we need to consider

Eq.(3.8) which can be represented in the form

(1 + ε) B̂j,XX +
(
κ2 − ε

4

)
B̂j =

p

b2
Bj−1(X, τj−1), (3.19)

where κ =
√
b0/b2, and for each interval [Xi−1, Xi], i ∈ Z ∩ [2, nj ] the

parameter ε is defined as

ε = v1
j,iXi/v

0
j,i.

If |εi| � 1, a general solution of Eq.(3.19) B̂j can be represented as a power

series in ε, i.e.,

B̂j =

∞∑
s=0

B̂
(s)
j (X)εs.

Zeroth-order approximation: In zeroth-order approximation

Eq.(3.19) can be written as

B̂
(0)
j,XX + κ2B̂

(0)
j =

p

b2
Bj−1(X, τj−1),

12The case v1j,i = 0 is considered in LS2011, where the integrals I12(X) were computed
numerically.
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So that the corresponding variance is piecewise constant. A general solution

of this equation has the form

B̂
(0)
j = C1y1(X) + C2y2(X) +

p

b2
I12(X), (3.20)

y1 = eıκX , y2 = e−ıκX ,

I12 = y2

∫
y1Bj−1(X, τj−1)

W
dX − y1

∫
y2Bj−1(X, τj−1)

W
dX.

Obviously, for these y1, y2 (which are always numerically satisfactory), we

have W [y1, y2] = −2ıκ. Again, we use the no-arbitrage interpolation of the

solution obtained at the previous time step to compute I12(X) explicitly:

I1(X,κ) =

∫
eıκXBj−1(X, τj−1)

dX

W

= − 1

2ıκ

∫
eıκX [α−1 e

−X/2 + (β+
1 X + β+

2 )eX/2]dX

= − 1

2ıκ

[
α−1
δ−

eδ−X +
β+

1 (δ+X − 1) + δ+β
+
2

δ2
+

eδ+X

]
, δ± = ıκ± 1/2,

I2(X) = − 1

2ıκ

∫
e−ıκX [α−1 e

−X/2 + (β+
1 X + β+

2 )eX/2]dX

=
1

2ıκ

[
α−1
δ+

e−δ+X +
β+

1 (δ−X + 1) + δ−β
+
2

δ2
−

e−δ−X

]
,

I12(X) = e−ıκXI1(X,κ)− eıκXI2(X,κ) = − 1

ıκ

[
A−e

−X/2 +A+e
X/2
]
,

A− = α−1

(
1

δ+
+

1

δ−

)
,

A+ =
β+

1 (δ−X + 1) + δ−β
+
2

δ2
−

+
β+

1 (δ+X − 1) + δ+β
+
2

δ2
+

.

These solutions can be considered as a further improvement of LS2011,

since (i) they embed a no-arbitrage interpolation, and (ii) this interpo-

lation allows computation of the source terms in closed form. Obviously,

performance-wise such an approach significantly speeds up the calculations.

First-order approximation: In first-order approximation in ε � 1,

Eq.(3.19) has the form

XB̂
(1)
j,XX + (2 + κ2X)B̂

(1)
j = XB(0)(X),

B(0)(X) =

(
κ2 +

1

4

)
B̂

(0)
j −

p

b2
Bj−1(X, τj−1).
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If |X| � 1, then

B̂
(1)
j =

X

2
B(0)(X).

Otherwise, the solution to this equation reads, see [Polyanin and Zaitsev

(2003)], page 155

B̂
(1)
j = C2 + C1y1(X) + I12(X), (3.21)

y1 = −κ2Ei(−κ2X)− e−κ
2X

X
, W =

e−κ
2X

X2 ,

I12 =

∫
y1XB0(X)

W
dX − y1

∫
XB0(X)

W
dX,

where Ei(X) is the exponential integral, [Abramowitz and Stegun (1964)],

page 227. If κ2 > 0 then C1 should be set to zero when X → −∞, i.e., on

the very first interval. If κ2 < 0 C1 should be set to zero when X → ∞,

i.e., on the very last interval.

3.5 Large values of the parameter |a|

In many practical situations the parameter |a| in Eq.(3.10) can become

large. Indeed, it follows from the analysis of Section 3.2.2 that |ai| =

2p/|v1
j,i|. The values of p we are interested in can be estimated by taking

into account the fact that for computation of the inverse Laplace trans-

form we use the Gaver-Stehfest algorithm described in Section 3.6. Then,

by virtue of Eq.(3.28), p = s(log 2)/τj , where s runs from 1 to N = 12.

Therefore, for a typical value of τj = 0.1, p changes in the range from 7 to

83. At the same time, usually |v1
j,i| = O(0.1), so that |a| � 1.

From [Abramowitz and Stegun (1964); Olver (1997)] we know that for

large values of a the value of U(a+ 1, 2, z) is very small, while the value of

U(1−a, 2,−z) is very big. Therefore, the computation of unknown constants

C
(2)
1,i , C

(2)
2,i is difficult, because (i) it requires high-precision arithmetic, and

(ii) it is pretty unstable. On the other hand, in this case we have a small

parameter 1/|a| � 1 in Eq.(3.8), so we can find an asymptotic solution of

Eq.(3.8).

We start with a rigorous definition of the small parameter ε ≡ −kv1
j,i/p.

Here, when choosing the sign of k, we should not rely on the analysis of

Section 3.2.2, because we only require convergence of our asymptotic solu-

tion when ε → 0. Below we assume that |ε| � 1.13 With this definition in
13In what follows, for simplicity we omit the modulo, i.e. by saying that ε is small we
mean that |ε| � 1.
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mind, and using definitions in Eq.(3.10), we re-write Eq.(3.8) in the form

εX̄B̂j,XX +

(
2k − 1

4
εX̄

)
B̂j = 2kBj−1(X, τj−1), X̄ = X − µ, (3.22)

where |2k| = 1. This equation belongs to the class of singularly perturbed

differential equations, [Wasow (1987)]. It can be solved by using either the

method of matching asymptotic expansions, [Nayfeh (2000)], or the method

of boundary functions, [Vasil’eva et al. (1995)] which we will use below.

The need for a special method is due to the fact that for a regu-

lar asymptotic expansion of the unknown function B̂(X, τ) in a series

in powers of the small parameter ε, zeroth-order approximation yields

B̂(0)(X, τj) = Bj−1(X, τj−1). Here the superscript (0) denotes the order

of the approximation. Obviously, this solution, which doesn’t does not de-

pend on any free parameter, is incorrect in the vicinity of the end points

of the interval [Xi−1, Xi], where the solution and its first derivative have

to be continuous functions of X. So we don’t have any degrees of freedom

to satisfy this continuity. That is why Eq.(3.22) belongs to the class of sin-

gularly perturbed differential equations, which cannot be solved by using

regular expansions in powers of ε.

Following [Vasil’eva et al. (1995)], we represent the solution of Eq.(3.22)

on the interval [Xi−1, Xi] in the form

B̂(X, τj) =

∞∑
s=0

εsB̂∗,s(X, τj) +

∞∑
s=0

εsΠ(s)(xi−1, τj) +

∞∑
s=0

εsΞ(s)(xi, τj).

(3.23)

Here B̂∗(X, τj) is the solution of the so-called “reduced” equation, while

Π(xi−1, τj) and Ξ(xi, τj) are the so-called boundary functions. The bound-

ary functions vanish far away from the boundaries Xi−1, Xi when ε → 0.

On the other hand, they are needed to ensure that the solution satisfies

the boundary conditions. For any small fixed ε� 1, ε 6= 0 the asymptotic

solution is an approximation of the exact solution which can be obtained

up to O(εN ) with N being an arbitrary positive integer, see [Vasil’eva et al.

(1995)].

Also in Eq.(3.23) xi−1 = (X − Xi−1)/
√
ε is the stretched distance to

the left boundary, and xi = (X −Xi)/
√
ε is the stretched distance to the

right boundary.

Based on the method of [Vasil’eva et al. (1995)], in zeroth-order approx-

imation the reduced equation, which follows from Eq.(3.22) at ε → 0, has

a trivial solution B̂,0∗(X, τj) = Bj−1(X, τj−1). Then, from Eq.(3.22) the



January 3, 2020 20:32 Fitting Local Volatility – 9in x 6in b3761-main page 49

Analytical Methods of Building the Local Volatility Surface 49

boundary function Π(0)(x, τj) solves the equation

(x− µi)Π(0)
xx (x, τj) + 2kΠ(0)(x, τj) = 0. (3.24)

The latter has the following solution, [Polyanin and Zaitsev (2003)]

Π(0)(x, τj) = C1φi−1(x)I1(2φi−1(x)) + C2φi−1(x)K1(2φi−1(x)), (3.25)

φ2
i−1(x) ≡ −2k (x− µi) = − 2k√

ε

(
X −Xi−1 −

√
εµi
)
.

Here C1, C2 are two integration constants, and I1(x),K1(x) are the modified

Bessel functions of the first and second kind.

We must prove that Π(0)(x, τj)→ 0 when ε→ 0. Based on [Abramowitz

and Stegun (1964)], page 358, we know that this is true for K1(2φi−1(x))

if k < 0 since X > Xi−1, but not for I1(2φi−1(x)). Therefore, in Eq.(3.25)

we must put C1 = 0, and k = −1/2. Note, that for v1
j,i < 0 ε ∈ C, but this

is not a problem.

Similar arguments show that for Ξ(0)(x, τj) in zeroth-order approxima-

tion in ε the solution reads

Ξ(0)(x, τj) = C2φi(x)K1(2φi(x)),

φ2
i (x) = − 1√

ε

(
X −Xi −

√
εµi
)
.

Thus, finally, zeroth-order asymptotic solution of Eq.(3.22) has the form

B̂(0)(X, τj) = Bj−1(X, τj−1) + C1φi−1(x)K1(2φi−1(x))

+ C2φi(x)K1(2φi(x)).

The unknown constants C1, C2 can be found using the method described in

the next section. The values of Bj−1(X, τj−1) at the points Xi−1, Xi can be

obtained by using our no-arbitrage interpolation described in Section 3.3.

The next approximations in ε can also be constructed based on the

general method of [Vasil’eva et al. (1995)]. The reduced equation now reads

X̄B̂
(∗,0)
XX (X, τj)−

1

4
X̄B̂(∗,0)(X, τj) + 2kB̂(∗,1)(X, τj) = 0,

with the obvious solution

B̂(∗,1)(X, τj) =
1

2k
X̄

[
1

4
∂X,XB̂j−1(X, τj−1)− B̂j−1(X, τj−1)

]
.

As B̂j−1(X, τj−1) solves Eq.(3.7), we can represent ∂X,XB̂j−1(X, τj−1) with

j > 1 in the form

∂X,XB̂j−1(X, τj−1) = − 2p

vj−1,i(X)
Bj−2(X, τj−2)−

(
2p

vj−1,i(X)
+

1

4

)
B̂j−1.
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The equation for Π(1)(x, τj) is

(x− µi)Π(1)
xx (x, τj) + 2kΠ(1)(x, τj) =

1

4
(x− µi)Π(0)

xx (x, τj) = −k
2

Π(0)(x, τj).

This equation is similar to Eq.(3.24), the only difference being that now it

is inhomogeneous. Accordingly, its solution reads

Π(1)(x, τj) = φi−1(x)K1(2φi−1(x)) + I
(1)
i−1, (3.26)

I
(1)
i−1 = −k

2

{
φi−1(x)I1(2φi−1(x))

∫
K1(2φi−1(x))

φi−1(x)
Π(0)(x, τj)dx

− φi−1(x)K1(2φi−1(x))

∫
I1(2φi−1(x))

φi−1(x)
Π(0)(x, τj)dx

}

= −k
2

{
φi−1(x)I1(2φi−1(x))

∫
K2

1 (2φi−1(x))dx

− φi−1(x)K1(2φi−1(x))

∫
I1(2φi−1(x))K1(2φi−1(x))dx

}
.

From [Prudnikov et al. (1986)] we have∫
K2

1 (2φi−1(x))dx = φi−1(x)K2
1 (2φi−1(x))−K0(2φi−1(x))K2(2φi−1(x)),∫

I1(2φi−1(x))K1(2φi−1(x))dx =

∫
I1(2
√
x− µi)K1(2

√
x− µi)dx

= 2

∫
yI1(2y)K1(2y)dy = y2

[(
1 +

1

4y2

)
I1(2y)K1(2y)

− I ′1(2y)K ′1(2y)
]
− 1

4
, y ≡ φi−1(x),

I ′1(2y) = 2

[
I0(2y)− 1

y
I1(2y)

]
, K ′1(2y) = −2

[
K0(2y) +

1

y
K1(2y)

]
.

We emphasize that in Eq.(3.26) we don’t need free constants since they

already appear in zeroth-order solution. Therefore, the boundary conditions

can be satisfied by choosing appropriate values for these constants.

Accordingly, the function Ξ(1)(x, τj) can be found in a similar way. The

overall solution is given by the expression Eq.(3.26), where φi−1(x) must

be replaced with φi(x). This finalizes the construction of the first-order

approximation.

We will not construct higher order approximations for B̂(s)(X, τj), s > 1

because incorporation of the first two terms already provides a good approx-

imation with the accuracy of O(ε2) (since usually ε is of order 0.1 or less).
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Also, as we observed in our numerical experiments, using these asymp-

totic solutions as part of the calibration procedure makes the latter fairly

stable.

3.6 The calibration procedure

The calibration procedure runs sequentially for each time step beginning

from j = 1 and up to j = M . Given the solution at the previous time

step Bj−1(X, τj), we proceed by making some initial guess for the param-

eters v0
j,i, v

1
j,i, i = 0, . . . , nj .

14 Actually, we need this guess just for v1
j,i,

i = 0, . . . , nj and v0
j,nj

, because based on Eq.(3.5)

v0
j,i = v0

j,nm +

nj∑
k=i+1

Xk(v1
j,k − v1

j,k−1), i = 0, nj − 1. (3.27)

So the total number of the unknown parameters to be determined is nj +2.

Since for maturity Tj only nj market quotes are given, we need two addi-

tional conditions to provide a unique solution. For instance, often traders

have an intuition about the asymptotic behavior of the volatility surface at

infinity, which, according to our construction, is determined by v1
j,nj

and

v1
j,0.

Using the analytical solution B̂j(X, p) for a given maturity, the scaled

Put option prices B(Xi, τj) can be calculated similarly to LS2011 by com-

puting the inverse Laplace-Carson transform. The latter can be efficiently

performed by using the Gaver-Stehfest algorithm

B(X, τj) =

(N)∑
s=1

St(N)
s

k
B̂(X, sΛ), Λ =

log 2

τj
. (3.28)

This algorithm was studied in many papers (see, e.g., [Kuznetsov (2013)]

and references therein), and, provided that the resulting function is non-

oscillatory, converges very quickly. For instance, choosing N = 12 is usually

sufficient. The coefficients St
(12)
s can be found explicitly, see, e.g., LS2011.

It is also known that this algorithm requires high-precision arithmetic for

its implementation. This effect is especially pronounced for small τj , so the

inversion can become numerically unstable unless a sufficient number of

significant digits is used.

Once all the option prices are computed, they can be compared with

given market quotes. Hence, some kind of a least-square minimization pro-

cedure can be utilized to find the final values of all the unknown parameters
14If j = 1 the previous time solution is just the payoff function.
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that fit model option prices to market quotes. Complexity-wise, at every

iteration we need to compute the solution at nj spatial points and N tem-

poral points, the former are given, the latter are prescribed by the Gaver-

Stehfest algorithm. Also every such solution, as it is defined in Eq.(3.12),

requires 2nj constants C1, ..., C2nj , which solve the corresponding system

of linear equations. As it was mentioned earlier, due to its special structure,

this system can be solved with complexity of O(2nj). Overall, complexity

of performing one iteration is O(2njN)O(Ku), where O(Ku) is complexity

of computing all Kummer’s functions for the solution in one spatial point.

This seems to be a significant improvement in performance as compared,

e.g., with LS2011, where computation of the source terms required numer-

ical integration.

3.6.1 Initial guess for the calibration

Obviously, the calibration is a time-consuming process, therefore, having a

smart initial guess significantly improves its convergence rate.

Suppose we have already obtained all values of the parameters for ma-

turities Tj , j ∈ [1, j1], j1 < M , and now need to run the calibration for

the maturity Tm, m = j1 + 1. Also suppose we are given market values

w(m, i), i = 1, . . . , nm for the implied variance. To produce an “educated”

initial guess for the calibration procedure, we suggest to use Eq.(3.2) to get

the initial values of v1
m,i, i = 1, . . . , nm − 1 and v0

m,nm. In particular, the

first derivatives ∂Tw(m, i), ∂Xw(m, i) in the right-hand-side of Eq.(3.2) can

be approximated by the finite-differences of the first order using two given

values of w in the strike and time space, and the second derivative ∂2
Xw —

by using the second order approximation with three given values of w in the

strike space. When computing ∂Tw(m, i) ≈ [w(m,Ki)− w(m− 1,Ki)]/τm
it is possible that market quote w(m − 1,Ki) is not available at Tm−1;

in this case interpolation/extrapolation in K over given quotes at Tm−1

can be used to get this value. This calculation generate values for σm,i,

i ∈ Z ∩ [1, nm]. If some of them are negative, they can be replaced by a

small positive number δ.

Next, we use Eq.(3.27) and obtain a system of linear equations of the

form

v0
m,nm +

nm∑
k=i

Xk(v1
m,k − v1

m,k−1) + v1
m,iXi = σi,m, i ∈ [1, nm − 1],

v0
nm,m = σnm,m − v1

nm,mXnm ,



January 3, 2020 20:32 Fitting Local Volatility – 9in x 6in b3761-main page 53

Analytical Methods of Building the Local Volatility Surface 53

where the values v1
m,nm , v1

m,0 are given. Since this system is upper triangu-

lar, it could be efficiently solved with linear complexity O(nm).

3.7 Option prices for short T

As was mentioned in the previous section, computation of the inverse

Laplace transform by using the Gaver-Stehfest algorithm requires very high-

precision arithmetic for small τj . Therefore, in this limit it does make sense

to solve the modified Dupire’s equation in a different way, namely by using

an asymptotic expansion for its solution at τj → 0, see also LS2011.

For the time-homogeneous models of the local volatility, i.e., when the

volatility does not depend explicitly on time, this problem was considered in

various papers, see, e.g., [Gatheral et al. (2012)] and references therein. For

the time-inhomogeneous model it was further analyzed in [Gatheral et al.

(2012)]. In that paper an asymptotic representation for the European call

option price C(τj , x) with x = logS was obtained by using an expansion of

the transition density function of a one-dimensional time inhomogeneous

diffusion. If x < logK this asymptotic solution reads

C−(τj , x) =
vj(K)K√

2π

u0(x, logK)

d2(x, logK)
τ

3/2
j exp

[
−d

2(x, logK)

2τj

]
,

d(x, y) =

∫ y

x

dx√
vj(x)

, (3.29)

u0(x, y) =

(
vj(x)

v3
j (y)

)1/4

exp

[
−1

2
(y − x) + (r − q)

∫ y

x

ds

vj(s)

]
,

where the superscript (−) is used to indicate that this solution corresponds

to x < logK.15 Also, when deriving Eq.(3.29) it is assumed that ∀x ∈
R ∃C > 0 : C−1 ≤ σj(x), |σ′j(x)| ≤ C, |σ′′j (x)| ≤ C. This assumption may

fail at the boundaries when S → 0 and S →∞.

Having Call prices C(τj , xi) computed for all strikes Ki, i = 1, . . . , nj
and a particular maturity τj � mini(1/σj,i), we can also compute the

corresponding Put prices by using Call-Put parity. Then, running param-

eters for the local variance function can be found by calibration. Note,

that since vj(x) is piecewise linear in X, the integral in Eq.(3.29) can also

be constructed as a sum of various contributions. When calculating these

contributions, we rely on the fact that if x, y belong to the interval i, the

15In our notation x = logK − (r − q)T −X.
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variance on this interval is given by Eq.(3.4), so that

d(x, y) =

∫ y

x

dx√
b− a2x

=
2

a2

(√
b2 + a2Y −

√
b2 + a2X

)
,∫ y

x

ds

vj(s)
=

1

a2
log

b2 + a2Y

b2 + a2X
,

where b = b2 + a2(logK + κ).

If x > logK, from [Gatheral et al. (2012)] we have

C+(τj , x) = ex −Ke−rτj − C−(τj , x).

3.8 Results and discussion

In our numerical test we use the same data set as in [Itkin (2015)], i.e., we

take data from http://www.optionseducation.org on XLF traded at NY-

SEArca on March 25, 2014. The spot price of the index is S = 22.64, and

r = 0.0148, q = 0.01. The option implied volatilities (IV) are given in Ta-

bles 3.2,3.3. We take all OTM quotes and some ITM quotes which are very

close to the at-the-money (ATM).

When strikes for Calls and Puts coincide, we take an average of Icall
and Iput with weights proportional to 1 − |∆|c and 1 − |∆|p respectively,

where ∆c,∆p are option Call and Put deltas.16

We have already mentioned that in our model for each term the slopes

of the smile at plus and minus infinity, v1
j,nj

and v1
j,0, are free parameters.

So often traders have an intuition about these values. However, in our

numerical experiments we take for them just some plausible values, which

are given in Table 3.5.

When calibrating the model to market data, we use the standard Matlab

fmincon function. We start by using an “active-set” algorithm (see Matlab

documentation on fmincon), and if it doesn’t converge, switch to an “sqp”

algorithm (it is also described in the Matlab documentation). We emphasize

that optimization of this step is not a subject of this research, and for a

more detailed discussion of various problems related to the calibration of

the local volatility surface we refer the reader to a recent paper [Lindholm

(2014)] and references therein.

16By doing so we do take into account effects reported in [Ahoniemi (2009)], who pointed

out that the IVs calculated from Call and Put option prices corresponding to the same
strike do not coincide, although they should be equal in theory. Our weights are chosen
according to a pure empirical rule of thumb, and a more detailed investigation of this

effect is required.

http://www.optionseducation.org
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Table 3.2: XLF implied volatilities for the Call options.

T K, Put
18 19 20 21 21.5 22 23

4/4/2014 - - 39.53 23.77 19.73 16.67 -

4/19/2014 - 32.90 26.79 20.14 - 15.19 12.93

5/17/2014 33.27 26.88 23.08 18.94 - 16.12 13.86

6/21/2014 27.84 23.90 21.07 18.88 - 16.95 15.82

7/19/2014 26.09 22.81 20.29 18.13 - 16.30 14.93

9/20/2014 24.20 22.23 20.32 18.76 - 17.40 16.41

Table 3.3: XLF implied volatilities for the Put options.

T K, Call
21 21.5 22 22.5 23 24 25 26 27 28

4/4/2014 - 16.60 14.69 14.40 14.86 - - - - -

4/19/2014 - - 15.79 - 13.38 15.39 - - - -

5/17/2014 16.71 - 14.48 - - 13.75 - - - -

6/21/2014 16.31 - 14.78 - - 13.92 14.28 16.58 - -

7/19/2014 16.82 - 15.24 - - 14.36 14.19 15.20 - -

9/20/2014 17.02 - 15.84 - - 14.99 14.56 14.47 14.97 16.31

Table 3.4: Typical time to converge (per strike) using various algorithms for computing B̂(X,T ).

Method T � 1 |a| >> 1 general

Time, sec 1.0-1.4 1-7 5-7



January 3, 2020 20:32 Fitting Local Volatility – 9in x 6in b3761-main page 56

56 Fitting Local Volatility

Table 3.5: Parameters v1
j,0 and v1

j,nj
for the option data in Tables 3.2

and 3.3.

j Tj v1j,0 v1j,nj
1 4/04/2014 -0.1206 0.1000

2 4/19/2014 -0.1000 0.1000

3 5/17/2014 -0.1309 0.1000

4 6/21/2014 -0.1000 0.1000

5 7/19/2014 -0.1000 0.1000

6 9/20/2014 -0.1000 0.1000

Figure 3.3: Term-by-term fitting of market prices constructed using the

whole set of data in Tables 3.2 and 3.3.

To elaborate a bit more on this point, construction of the local volatility

surface given the market data on vanilla European options requires solving

two embedded problems. One is to provide an efficient optimization algo-

rithm to solve, e.g., a minimization problem which appears if one uses a

least-square approach. There is a wide literature on various approaches to

solving this problem, which is known to be ill-posed. The other problem

is that when running this optimization, at every step we need to compute

either the theoretical option prices or the corresponding implied volatili-

ties, by solving the Dupire equation. Here we deal with the second problem
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by (i) given T we use a piecewise linear approximation in X of the local

variance term, and (ii) provide a no-arbitrage interpolation of the source

term in X17 which allows the whole solution to be obtained in closed form.

Therefore, since we don’t consider the optimization in detail, it is pro-

vided here for illustrative purposes, and, certainly, a more sophisticated and

powerful algorithm could be used to a greater effect.

The results of such a calibration which is done term-by term, are given

in Fig. 3.3. Here each subplot corresponds to a single maturity T (marked in

the legend) and shows market data (discrete points) and computed values

(solid line). This simple local calibration algorithm provides rather decent

results, except for the vicinity of X = −0.5 in the last subplot.

For the first two maturities we successfully use the asymptotic method

described in Section 3.7. Then, for the next two maturities, the method

described in Section 3.5 provides good results. Finally, for the last two

maturities a combination of the general algorithm with that described in

Section 3.5 has to be used.

The local variance curves obtained as a result of this fitting are given

term-by-term in Fig. 3.4. The corresponding local variance surface is rep-

resented in Fig. 3.5

It can be seen that the local variance is positive everywhere on the grid,

so that our construction is arbitrage-free.

Performance-wise the proposed algorithm is reasonably efficient. Indeed,

we ran our tests in Matlab using two Intel Quad-Core i7-4790 CPUs, each

of 3.80 Ghz. As was mentioned in the previous section, the calibration

time strongly depends on the method chosen to compute B̂(X,T ). Typical

results are given in Table 3.4. These results are normalized per number

of strikes for a given term. Obviously, they could be considered just as a

crude estimation, since the convergence strongly depends on the quality

of the initial guess. In our calculations we used the approach described in

Section 3.6.1. Still, it can be seen that the second method in Table 3.4 is

slower than the first one as it requires the evaluation of the Bessel functions.

The third method requires multiple computations of Kummer’s functions

and is the slowest one. However, as we use the Gaver-Stehfest algorithm,

it can be fully parallelized. Same is true for the computation of Kummer’s

functions in all points Xi, i ∈ Z∩[1, nj ] for a given maturity Tj , which we do

at every iteration of the calibration procedure. Therefore, having a sufficient

17The no-arbitrage in T , i.e., the calendar no-arbitrage is already addressed in this

approach since we use an exact in time solution of the Dupire equation given by the
inverse Laplace transform.
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Figure 3.4: Term-by-term fitting of the local variance.

number of cores, a potential speedup of the parallel implementation should

be proportional to N = 12 (the number of the Gaver-Stehfest algorithm

time steps) times the number of strikes. In our case this provides the cali-

bration in less than a second per maturity even when the general method

is used.

To summarize, in this chapter we described the methodology of con-

structing a semi-analytical solution of the Dupire equation proposed in

[Itkin and Lipton (2018)], and construction of the local volatility surface

based on this methodology. This approach extends the approach proposed

in LS2011 by replacing a tiled local variance shape with a piecewise lin-

ear construction and relaxing their assumptions about zero interest rates

and dividend yields. Yet, our approach, which combines an application of

the Laplace-Carson transform and solution of the resulting inhomogeneous

ordinary differential equation in terms of Kummer’s hypergeometric func-

tions, remains analytically tractable.

When solving the modified Dupire equation by utilizing the Laplace-

Carson transform method, one must be cognizant of the following issue. To

compute the source term h(X) = pI12(X) at some time step j we need the

function Bj−1(X, τj−1) obtained at the previous time step. However, the

market quotes for the maturities Tj and Tj−1 could be given at different sets
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Figure 3.5: The local variance surface constructed using the proposed

approach.

of X even if the strikes K are same, since, by definition, X = log(K/F ) and

F = F (T ). Therefore, we need the values of Bj−1(X, τj−1) at certain points

X where they have not been calculated yet. LS2011 used an interpolation

to obtain the required values. However, this interpolation must be carefully

constructed to preserve no-arbitrage, and this problem was not addressed

in LS2011. Here we propose an interpolation which allows computation of

the source terms in closed form (while in LS2011 an additional numerical

integration for computing the source terms was required), and prove that

our interpolation does not create arbitrage. Overall, our approach is more

accurate (piecewise linear term instead of a piecewise constant), more ef-

ficient (closed form solution instead of a numerical integration) and more

reliable (proven no-arbitrage).

In addition, we noticed that using the general algorithm for small ma-

turities or steep local variance slopes often results in various inefficiencies

and instabilities. Therefore, for these special cases we propose alternative

methods constructed by using asymptotic (regular or singular) expansions,

which do not suffer from these issues. In our opinion, this is an interesting
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and practically important extension of the general methodology described

in the previous two paragraphs.

The numerical experiments demonstrate robustness of our approach.

Obviously, closed-form solutions for the source terms and asymptotic solu-

tions, expressed in terms of functions less computationally expensive than

Kummer’s functions, significantly speed up the calibration. The implemen-

tation could be made more efficient by using the internal parallelism of

the Gaver-Stehfest algorithm, and the fact that Kummer’s functions cor-

responding to different points Xi, i ∈ Z ∩ [1, nj ] for a given maturity Tj
could be computed in parallel.

By its nature, our model (as well as any other LV model) provides just

a fit for the current market snapshot, and does not consider any dynamics

for the local volatility surface itself. While the latter issue should be inves-

tigated separately, our choice of the LV is parsimonious enough to greatly

facilitate this endeavor.
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Regression-based Methods

In this chapter we describe the second and, perhaps, the most popular

approach to building the local volatility surface by regressions. Regression-

based methods include both parametric and non-parametric fits. Usually,

all these methods deal with construction of the implied volatility surface

while the local volatility can be found afterwards by using Eq.(3.2) or any

its flavor.

4.1 Overview

The amount of literature on constructing the implied volatility surface is

huge, and this topic can be subject of a separate book. Obviously, we cannot

describe all available ideas and approaches within one chapter. Therefore,

we consider only the most popular models while trying to refer the reader

to the existing surveys where they are available. From this prospective, for

the survey of methods published before 2014 we mention [Gatheral (2006);

Homescu (2011, 2014)] and references therein. More recent books include

[Bergomi (2016); Derman et al. (2016)].

Having said that, below we provide just a short description of the main

ideas related to construction of the parametric regressions. As the examples

of this methodology, in the next Sections we describe a very popular SVI

model of J. Gatheral, and also the parametric model proposed in [Itkin

(2015)].

In general, various parameterizations of the implied volatility (IV) sur-

face were proposed to address several goals:

(1) Given an European option and a set of market quotes for various (K,T ),

construct an arbitrage-free local volatility surface. Then, for instance,

it could used as an input for calibration of more sophisticated local

stochastic volatility model to cover both exotic and European options.

61
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(2) Use the IV surface for pricing OTC options and other derivatives with

strikes and maturities other than that offered by the option exchanges.

(3) Assess an adequacy of an option pricing model based on the shape of

the IV surface.

(4) Option traders and marker makers often use the current snapshot of the

implied volatility over all strikes and maturities as a basis to produce

a short-term volatility forecast over future periods of time using some

assumptions about the future dynamic of the IV.1

There exist two major approaches to construct an arbitrage-free IV

surface. The first one uses some stochastic model for the underlying spot or

forward price which is calibrated to the market data. For instance, in the

Equity or Fixed Income worlds one can use the popular Heston ([Heston

(1993)]) or SABR ([Hagan et al. (2002)]) model, calibrate it to the market

data and then use this model to find the IVs for the missing strikes and

expirations where the market quotes are not available. By construction the

IVs produced by the arbitrage-free model are also arbitrage-free. However,

the main problem with this approach is that it is difficult to come up with

a model which is rich enough to fit well the observed market data.

Another approach does not consider any model of the underlying, but

instead uses some parametric fit of the implied volatility surface. Paramet-

ric models of the IV came to a regular consideration at the end of 1990s.

Several parametric models for the IV surface were suggested by [Dumas

et al. (1998)],2 and adapted and tested for FTSE options by [Alentorn

(2004)] In the Dumas parametric model the IV surface is modeled as a

quadratic function of the so-called normalized strike (rather than the strike

price). Later this approach was further extended by [Tompkins (2001);

1As was mentioned by one of referees, a single point on the implied volatility surface

could potentially be such a forecast. Also market models of implied volatility, e.g., [Cont
and Fonseca (2002)] tell us that implied volatilities also forecast their covariance with
spot and their own volatilities as well. However, the usefulness of even a single implied
volatility as a forecast is hampered by the difference between risk-neutral and real world
probability measures. It is well known that for S&P500, the at-the-money forward implied

volatility is on average above the subsequent realized volatility, suggesting that this
distinction is important and empirically verifiable. However, in a short run, say up 10
minutes, in a quiet market such a forecast could be potentially helpful.
2He actually suggested a model for the local volatility, which, however, could be

re-mapped to the implied volatility.
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Kotzé et al. (2013); Carr et al. (2013)]. The normalized strike is defined as

z =
log(K/F )

σ∗
√
T

, (4.1)

where K is the option strike, F is the forward price, T is the time to expira-

tion, and σ∗ is the normalization constant which usually is set either to 1, or

to the ATM implied volatility. The normalized strike is a unit-less quantity.

Some people also call it moneyness or log-moneyness, however we reserve

this word for a standard definition of the forward moneyness as M = K/F .

By definition normalized strike vanishes at the forward money (ATM). For

a call option, positive normalized strike corresponds to the In-The-Money

option and negative normalized strike — to the Out-of-The-Money option.

Usually the normalized strike is used under an assumption of “sticky mon-

eyness” which means that the IV doesn’t change when z stays constant (it

is also known as “sticky delta”), which allows elimination of refitting the

volatility smile within some postulated period of time even when the un-

derlying price changes. This is different from another popular assumption

which is called a “sticky strike” rule ([Derman and Kani (1994b); Derman

(1999); Sinclair (2013)]).

Despite within the second approach (a static parameterization) the qual-

ity of the fit is often better than in the first one (a dynamic model of the

underlying or the implied volatility itself), static parameterization tells us

something just about the current market snapshot of the option prices/IVs,

and nothing about the temporal dynamics of the IV. For instance, the above

mentioned “sticky” assumptions about the future dynamics of the IVs are

irrelevant to the parameterization itself. Clearly one can construct such a

parameterization using the normalized strike as a convenient underlying

variable if he/she relies on a “sticky log-moneyness” dynamics assumption

to be true. This, however, doesn’t mean that another parameterization

which uses the normalized strike as an underlying variable and relies on

a sticky-moneyness assumption might not be used to fit the same set of

the market IVs. That is because this type of parameterizations is static by

nature. In other words, it is impossible to forecast the future IVs per se us-

ing this static fit. Rather, when using this approach by term “forecasting”

the practitioners usually mean that when the IV of some option with time

horizon (maturity) T is known, it provides some average value of volatility

from today to T . This, however, is not a property of the parameterization,

but rather the property of the current option market to provide some “on

average” information about the future behavior of the stock market.
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An extended work on modeling the IV surface using the static ap-

proach has been done by Gatheral in many papers, starting perhaps with

[Gatheral (2004)]). He used a different parameterization of the smile, known

as stochastic-volatility-inspired (SVI) model, which is driven by a forward

log-moneyness χ = log(K/F ). Gatheral and co-workers also proposed some

empirical dependencies of how parameters of the fit evolve with time,

[Gatheral (2006)]. Later in [Gatheral and Jacquier (2011)] it was shown

that the SVI parameterization and the large-time asymptotic of the Heston

implied volatility agree algebraically, which provides an additional theo-

retical justification for the above parameterization. Finally, a no-arbitrage

version of the SVI model was proposed in [Gatheral and Jacquier (2014)].

We describe this approach in more detail in Section 4.2.

Some other static parameterizations were also proposed in the literature,

e.g. [Fengler (2005); Zhao and Hodges (2013); Andreou et al. (2014); Sehgal

and Vijayakumar (2008); Daglish et al. (2007); Carr et al. (2013); Romo

(2011); Rosenberg (2000)], and also references therein. In Section 4.3 we

discuss the main highly desirable features that any such a parameterization

should provide the user with. It could be observed that in contrast to the

old approaches, recent models, e.g. the extended SVI model, and models in

[Kotzé et al. (2013); Zhao and Hodges (2013)] do make account for these

features, and thus could be useful in practice.

As far as a demand for the dynamic models of the IV is concerned,

[Cont and Fonseca (2002)] considered the prices of the index options at a

given date (they are usually represented via the corresponding IV surface)

that clearly demonstrated skew/smile features and also a term structure,

the behavior that several IV models have attempted to reproduce. They

underlined that the IV surface also changes dynamically over time in a way

that is not taken into account by the existing modeling approaches, giving

rise to a Vega risk in option portfolios. Using time series of option prices on

the S&P500 and FTSE indices, they studied the deformation of this surface

and showed that it may be represented as a randomly fluctuating surface

driven by a small number of orthogonal random factors. Then Cont and

Fonseca identified and interpreted the shape of each of these factors, studied

their dynamics and their correlation with the underlying index. A simple

factor model compatible with the empirical observations was proposed. The

authors illustrated how this approach simulates and improves the well-

known “sticky moneyness” rule used by option traders for updating the

IVs. Their approach gave justification for using Vega when measuring the

volatility risk, and provided decomposition of the volatility risk as a sum

of contributions from empirically identifiable factors.
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It is worth mentioning that the popular assumptions of “sticky strike”

or “sticky moneyness” are just an empirical rule-of-thumb. For instance,

[Ciliberti et al. (2008)] analyzed these assumptions by considering in detail

the skew of some stock option smiles, which is induced by the so-called

leverage effect on the underlying, i.e., the correlation between past returns

and future square returns. This naturally explains the anomalous depen-

dence of the skew as a function of the option maturity. The market cap

dependence of the leverage effect is analyzed using a one-factor model. The

authors show how this leverage correlation gives rise to a non-trivial smile

dynamics, which turns out to be intermediate between the “sticky strike”

and the “sticky delta” rules. Finally, they compare their result with stock

options data, and find that the option markets overestimate the leverage ef-

fect by a large factor, in particular, for the long-dated options. This subject

requires some further investigation.

Another interesting idea was proposed in [Carr and Wu (2010)]. This

paper considers the future dynamics of the Black-Scholes implied volatil-

ity surface, and derives no-arbitrage constraints on the current shape of

the volatility surface. Under the specified proportional volatility dynam-

ics, the shape of the surface can be cast as solutions to a simple quadratic

equation. Furthermore, corresponding to the option implied volatility for

each contract, the paper defines a new, option-specific expected volatility

measure that can be estimated from the historical sample price path of the

underlying security. The measure is defined as the volatility input that gen-

erates zero expected delta-hedged gains from holding this option and can

thus differ across different option strikes and expiries. Applying the new

theoretical framework to the S&P500 index options market, the authors

extract volatility risk and volatility risk premium from the two volatility

surfaces, and find that the extracted volatility risk premium significantly

predicts future stock returns. Thus, knowledge of the future dynamics also

eliminates the necessity in any artificial assumptions like “stickiness”, etc.

See, a recent paper of [Sepp (2014)] and also [le Roux (2007); Romo (2014)].

So far, most of the IV researchers have been focused on Equity and FX

derivatives. However, [Borovkova and Parmana (2009)] applied this idea to

the option price data from oil markets. They combined the simplicity of

the Gatheral parametric method with the flexibility of a non-parametric

approach. The authors claim that the method can successfully deal with a

limited amount of the option price data. Performance of the method was

investigated by applying it to prices of the exchange-traded crude oil and

gasoline options, and the results were compared with those obtained by a

purely parametric approach. Furthermore, investigation of the relationship
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between volatilities implied from the European and Asian options showed

that the Asian options in oil markets are significantly more expensive than

the theoretical arguments imply.

To summarize, various static parameterizations were in use by traders

since 1990 when the skew became pronounced in the market. However,

as practitioners observed in their day-to-day trading, even the best models

such as SVI and recent versions of the quadratic fit sometimes fail to fit

well the market data. The author’s own experience also justifies a failure to

fit these models to the data sets, obtained from some data providers. Also,

according to [Biscamp (2008)] the SVI model was thoroughly tested by

practitioners in recent years and did not prove to work well for all products

(like the index options, dispersion, equity options etc.). Therefore, some

trading firms run their own proprietary models that exploit an idea of

building a piecewise polynomial smile in the z space. This approach also

has some problems, namely:

• Determining a boundary point between two pieces of the smile, where

in addition the smile is C2 continuous. Usually it requires solving some

non-linear equation, which is expensive. The necessity of solving the

nonlinear equation slows down the volatility smile fit, and especially

computation of derivatives of the smile with respect to the model pa-

rameters which usually are computed by the bump-and-grind method.

• This approach still does not resolve the problem of fitting maturities

close to expiration.

• This functional form does not fit the market data well for both skew

and smile.

• The asymptotic behavior of the smile at wings in z does not agree with

the result of [Lee (2004)] that the variance should be asymptotically

linear in z.

All the above suggests that a model suitable to better fit the static

market volatility data could be helpful. Motivated by this, in [Itkin

(2015)] a rather flexible model was proposed that we further discuss in

Section 4.3. The model amounts to resolving the discussed issues with

the existing approaches. We also show how to construct a arbitrage-free

IV surface by using an arbitrage-free interpolation and/or extrapolation if

necessary.

We emphasize that according to [Carr (2014b)] any such a formula must

provide the following three properties:
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(1) It analytically describes implied volatilities instead of option prices.

(2) It exactly fits any set of arbitrage-free mid-market implied volatilities.

(3) It does not produce arbitrage.

Similar thoughts could be found in [Rebonato (2004); Castagna (2010)].

While the first one is obvious, it is usually hard to guarantee the last

two properties. In [Itkin (2015)] an exact fit to the given mid-market quotes

is also not guaranteed since the fit is provided by using a least-square

optimization. However, that approach does guarantee, that the regressed

implied volatility is in between of the given bid and ask, and is close (in some

norm) to the mid price. Second, by construction it guarantees no-arbitrage

in time and for a given grid of strikes. This grid could be non-uniform, and

it consists of the nodes with different strikes and/or maturities provided

by the user. The intermediate quotes could be found by the arbitrage-

free interpolation/extrapolation in the strike space as this is described in

Chapter 2.

As an example, suppose we use the local stochastic volatility model to

price and hedge a set of exotic and vanilla options simultaneously. To do

that we need a local volatility (LV) surface calibrated to the market data.

The appropriate LV grid could, e.g., coincide with the finite-difference grid

in the spot space. To get the LV surface we may first build the IV surface

and calibrate it to the vanilla quotes, and the use the Dupire’s formula

to re-map the IV into the LV. When using such an approach we are not

interesting in the values of the implied volatilities in between the grid nodes,

and, therefore, the proposed method could be applied. We also guarantee a

correct asymptotic behavior of the smile at both large positive and negative

normalized strikes.

The latter means that this model of the implied volatility is a discrete

model defined at a given given set of “states” (strikes), similar to, say, a

discrete Markov chain model. And we are not aware of any continuous limit

of this model at the moment. Compare this with the SVI model where a

nice result is available that the model structurally coincides with the hight

T asymptotic of the Heston model.

At the end, we have to mention that recent progress in the field of

artificial intelligence (AI), machine learning (ML) and also in computer in-

dustry resulted in the ongoing boom of using these techniques as applied to

solving complex tasks in science and industry also including the financial

industry and mathematical finance. This technique could be used for mod-

eling the implied volatility surface as well. For instance, in a recent paper
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[Zheng et al. (2019)], unlike some previous studies, in which machine learn-

ing algorithms were used directly as a “black box”, the authors propose

an approach which tailored to the implied volatility surfaces. This means

that they first construct a so-called gated deep neural network, and then

calibrate (train) it by incorporating the related financial conditions and

empirical evidence such as no static arbitrage,3 boundaries, asymptotic be-

havior of slopes, etc. The latter is done in the form of soft constraints or

a penalty function. The training set consists of the option data on the

S&P 500 index over twenty years (i.e., the historical prices), and even in-

cludes the options with a short time to maturity. The paper claims that

this approach outperforms the widely used SVI model on the mean aver-

age percentage error in both in-sample and out of-sample datasets. It also

outperforms other similar neural network models which do not incorporate

the financial conditions and empirical evidence.

The main advantage of this approach is that it doesn’t require any par-

ticular parametric form of the smile (despite a particular activation func-

tion is proposed in [Zheng et al. (2019)]). Rather, it relies on a full power

of deep learning technique which uses non-linear regressions to fit the data

subject to the necessary constraints. Therefore, this approach has a lot of

advantages. At the same time, as the financial constraints are introduced in

the form of penalty functions, this doesn’t guarantee the exact fulfillment

of these conditions, even for in-sample data. Obviously, for out of-sample

data one can only believe that these conditions are still satisfied. In more

detail this problem is discussed in the recent paper of the author, [Itkin

(2019)]. Despite being very interesting, we don’t have space to discuss the

deep learning approach in detail in this book.

4.2 SVI model

The stochastic volatility inspired (or SVI) parameterization was developed

by J. Gatheral in 1999 at Merrill Lynch and then publicly presented in

[Gatheral (2004)]. The model was inspired by earlier parameterization of

the implied variance (rather than the implied total variance) invented by

Tim Klassen at Goldman Sachs. The construction was motivated by two

key features the model should follow:

• As follows from Roger Lee’s formula [Lee (2004)], the implied Black-

Scholes variance should be linear in the log-strike χ at fixed T . In other

3However, they missed no-arbitrage conditions for the so-called vertical spread.
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words, the implied variance as a function of χ at wings χ → ±∞ is

linear with the slope 0 < φ(∞) < 2.4

• The parameterization should be simple enough to provide a fast cali-

bration to market quotes. At the same time it should reproduce both

smile and skew of the listed options.

According to [Gatheral (2004)], the SVI parametrization is of the form

w(χ; a, b, σ, ρ,m) = a+ b
{
ρ(χ−m) +

√
(χ−m)2 + σ2

}
. (4.2)

Here w is the total implied variance, w = σ2
BST , σBS is the implied volatil-

ity, χ = log(K/F ), a ∈ R gives the overall level of variance, b ≥ 0 gives the

angle between the left and right asymptotes, σ > 0 determines how smooth

the vertex is, |ρ| < 1 determines the orientation of the graph, and changing

m ∈ R translates the graph. Obviously, these parameters should obey the

condition a + bσ
√

1− ρ2 ≥ 0 which ensures that w(χ; a, b, σ, ρ,m) ≥ 0 for

all χ ∈ R.

As per [Gatheral and Jacquier (2014)] changes in the parameters of the

model have the following effects:

• Increasing a increases the general level of variance, a vertical translation

of the smile;

• Increasing b increases the slopes of both the put and call wings, tight-

ening the smile;

• Increasing ρ decreases (increases) the slope of the left(right) wing, a

counter-clockwise rotation of the smile;

• Increasing m translates the smile to the right;

• Increasing σ reduces the at-the-money (ATM) curvature of the smile.

Despite the parameterization in Eq.(4.2) is simple, it is not intuitive

to traders. This is inherent not just to SVI, but almost to all known pa-

rameterizations. Also, suppose that we calibrate this model to a current

snapshot of the option quotes. Since the fit is static, the model should be

re-calibrated later at some time when the trader believes the market moves

are significant enough, and the previous fit cannot be used. Therefore, a

natural question would: how stable are parameters of the fit over vari-

ous calibrations. This questions is also considered later in Section 4.2 as

4Note, that an asymptotic no-arbitrage argument was pioneered by [Hodges (1996)],
then [Gatheral (1999)] and later [Lipton (2001)] who mentions that the resulting IV (χ)
bounds are O(|χ|1/2) for large |χ|. This was then further extended by the familiar results

of [Lee (2004)].
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applied to the model of [Itkin (2015)]. In general, there is no reason to

expect these parameters of the fit to be particularly stable.

Another, more intuitive version of the SVI model is called the SVI-

Jump-Wings (SVI-JW), and is parameterization of σBS . For a given T > 0

and a parameter set ξJ = {vT , ψT , pT , cT , ṽT } the SVI-JW parameters are

defined from the SVI model as follows, [Gatheral and Jacquier (2014)]

vT =
a+ b

(
−ρm+

√
m2 + σ2

)
T

, (4.3)

ψT =
b

2
√
wT

(
ρ− m√

m2 + σ2

)
,

pT =
b
√
wT

(1− ρ),

cT =
b
√
wT

(1 + ρ),

ṽT =
1

T

(
a+ bσ

√
1− ρ2

)
,

with wT = vtT . This parameterization has an explicit dependence on T , and

hence can be viewed as generalizing the raw SVI parameterization which is

independent on expiration T . The SVI-JW parameters have the following

interpretations:

• vT gives the ATM variance;

• ψT gives the ATM skew;

• pT gives the slope of the left (put) wing;

• cT gives the slope of the right (call) wing;

• ṽT is the minimum implied variance.

In [Gatheral and Jacquier (2014)] it is argued that in practice the ob-

served smiles are scaled almost perfectly as 1/
√
wT . If so, the parameters

in Eq.(4.3) are constant and independent of the slice t. This is a convenient

feature as it makes it easy to extrapolate the SVI surface to expirations

beyond the longest expiration in the data set.

The inverse map from the SVI-JW parameters to those of the SVI is

given by Lemma 3.2 in [Gatheral and Jacquier (2014)] which we present

below for completeness:

Lemma 4.1 ([Gatheral and Jacquier (2014)]). Suppose m 6= 0, T > 0

and define the quantities

β = ρ−
2ψT
√
wT

b
, α =

sign(β)

β

√
1− β2.
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Further assume that β ∈ [−1, 1] which is true if −pT ≤ 2ψT ≤ cT . Then

the raw SVI and SVI-JW parameters are related as follows:

b =

√
wT
b

(cT + pT ),

ρ = 1− pT
√
wT
b

,

a = ṽTT − bσ
√

1− ρ2,

m =
(vt − ṽT )T

b

(
−ρ+ sign(α)

√
1 + α2 − α

√
1− ρ2

)−1

,

σ = αm.

If m = 0, this map still holds, but σ = (vTT − a)/b.

So far we discussed just various parameterizations inherent to the SVI

model. However, they should be supported by some conditions on the

parameters which would guarantee no-arbitrage. This conditions are also

established in [Gatheral and Jacquier (2014)]. For instance, for the raw SVI

parameterization a sufficient condition for the absence of calendar spread

arbitrage reads:

Lemma 4.2 (Lemma 3.3 in [Gatheral and Jacquier (2014)]). By

definition, there is no calendar arbitrage if for any two expires T1 6= T2 the

corresponding slices w(K,T1), w(K,T2) do not intersect. Let these two slices

be characterized by the sets of the SVI parameters ξ1 := {a1, b1, σ1, ρ1,m1}
and ξ2 := {a2, b2, σ2, ρ2,m2}. The raw SVI surface in Eq.(4.2) is free of

calendar spread arbitrage if a quartic polynomial
∑4
i=0 αiχ

i has no real

root. Here, coefficients αi, i ∈ [0.4] can be explicitly expressed in terms of

the parameters in ξ1, ξ2, and could be found on http:// faculty.baruch.cuny.

edu/ jgatheral .

The proof and further details could be found in [Gatheral and Jacquier

(2014)].

To consider static arbitrage, a concept of SSVI surface is introduced,

which is defined as

w(ξ, T ) =
θT
2

{
1 + ρφ(θT )χ+

√
(1− ρ2) + [ρ+ φ(θT )χ]2

}
, (4.4)

where θT = σ2
BS(0, T ) is the at-the-money (ATM) implied total variance,

φ is a smooth function from R∗+ to R∗+ such that the limit limT→0 θTφ(θT )

exists in R. This representation amounts to considering the volatility surface

in terms of ATM variance time, instead of standard calendar time. It should

http://faculty.baruch.cuny.edu/jgatheral
http://faculty.baruch.cuny.edu/jgatheral
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also be assumed that θ ∈ C1 on R∗+, and θ0 = 0 an ATM option with zero

time to expiry has no value.

The following Theorems are proved in [Gatheral and Jacquier (2014)].

Theorem 4.1. The SSVI volatility surface in Eq.(4.4) is free of butterfly

arbitrage if the following conditions are satisfied for all θ > 0:

θφ(θ)(1 + |ρ|) < 4,

θφ2(θ)(1 + |ρ|) ≤ 4.

Theorem 4.2. The SSVI volatility surface in Eq.(4.4) is free of calendar

spread arbitrage if and only if

∂T θT ≥ 0, ∀T ≥ 0,

0 ≤ ∂θ(θφ(θ)) ≤ 1 +
√

1− ρ2

ρ2
φ(θ),

where the upper bound is infinite when ρ = 0.

Finally, as the SVI construction is done by using a discrete set of expi-

rations, it is not immediately obvious how to interpolate these smiles (in

case one needs it for the intermediate expirations) in such a way as to

ensure the absence of static arbitrage. In [Gatheral and Jacquier (2014)]

such an interpolation in time is proposed that guarantees no-arbitrage in

time. We omit a detailed consideration of this problem here because (i) we

have already discussed no-arbitrage interpolations in Chapter 2, and (ii) in

Section 4.3.6 we will discuss it as applied to the model [Itkin (2015)] using

a similar approach.

4.3 Model of [Itkin (2015)]

4.3.1 Motivation

Before we describe our construction, it is interesting to note that traditional

parametric models represent the smile as some polynomial function of z.

One of the reasons for doing this is that according to [Cont and Fonseca

(2002)] the IV patterns across moneyness vary less in time than when ex-

pressed as a function of the strike. Also, there is an additional computational

benefit by regressing at moneyness rather than at the strike prices, since

the function is of a simpler form, and, therefore, the estimation algorithm

converges faster.
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A typical study is that of [Alentorn (2004)] where using data in the

FTSE 100 index, the following models were tested:

σ(z) = β0 + β1z + β2z
2 + ε (4.5)

σ(z) = β0 + β1z + β2z
2 + β3T + β4Tzε,

where βi, i ∈ [0, 4] are the regression parameters that usually are a function

of time, therefore Eq.(4.5) with the fixed coefficients represents just one

term T = const of the volatility surface. In [Borovkova and Parmana (2009)]

the authors use a similar regression. They also noticed that the parabolic

shape of the implied volatility function for a fixed maturity is the average

shape of the actual volatility functions. Note that increasing the power of

the polynomial volatility function (from two to three or higher) does not

really offer a solution here, since this volatility function will still be the same

for all maturities. Quadratic profile of the implied volatility as a function of

z is also supported by PCA analysis of the implied volatility surface ([Cont

and Fonseca (2002); Alexander (2001); Fengler et al. (2003)]).

Comparison of these models with the market data showed that they are

able to capture a form of the volatility smile in the ATM region while often

fail at wings. Another problem is fitting the smile close to expiration. Here

T → 0 implies z → ∞, and the volatility at wings tends to infinity which

is not supported by the market data. Therefore, the regression coefficients

β1, β2 must tend to zero, and the fitting function degenerates in this limit.

This poses a real problem for the optimization routine (it never converges

to such a limit).

In Section 4.2 we described the SVI parametrization of J. Gatheral. To

recall, in [Gatheral (2004)]) he derives necessary and sufficient conditions

for the IV surface to be arbitrage free and shows how this parametriza-

tion fits the IV surfaces generated by various currently popular models,

including the stochastic volatility and jump models. Also some examples

are provided where the SVI well fits the actual IV surfaces — even the

notoriously hard-to-fit very short expirations. Later, it was observed that

the SVI updated with the arbitrage-free interpolation and extrapolation,

[Gatheral and Jacquier (2014)] and the latest versions of the quadratic

regressions work well in many situations. In our experience, however, we

would need another model which combine capabilities of the latter mod-

els with better flexibility. For instance, (i) the model should be capable of

fitting both smile and skew using the same regression (which could be a

problem with the quadratic model); (ii) it would be good to have a sep-

arate model parameter which determines location of the smile minimum
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and could be calibrated to the market data (e.g., in SVI this location is

predetermined by the values of the model parameters); (iii) the behavior at

wings could be sublinear (see below) while in the original SVI it is strictly

linear, etc.

4.3.2 Parameterization

From this prospective we do our construction of a new parametric model

based on the following assumptions.

(1) As the independent variables of the parametric regression we choose

the normalized strike z defined in Eq.(4.1) and time to maturity T .

(2) In the form presented in Eq.(4.6) the model is capable to simulat-

ing a different behavior of the smile at call and put wings ([Zhao and

Hodges (2013)]). Such a situation could be helpful when modeling com-

modities where one wing could demonstrate a linear behavior while the

other one — sublinear. For the sake of brevity, however, when doing

an asymptotic analysis of the model we omit a detailed discussion of

sub linearity (to be discussed elsewhere), and concentrate at the case

where the variance smile at wings is linear in z.

(3) As there exist multiple justifications that the smile is not symmetric in

the z space, it is highly desirable to fit the call and put wings indepen-

dently.

(4) The parametric function must be continuous in z.

(5) It should be well-behaved close to expiration.

(6) We fit the term structure of the IV term-by-term, i.e., first the variance

curve at the first maturity T1, than the variance curve at the second

maturity T2 > T1, etc. Therefore, we do not consider the dependence

of the regression parameters on time. However, we do discuss how to

build the whole arbitrage-free IV surface.

(7) As a possible extension of this approach one can rely on the definition

of z where the calendar clock T is replaced with a business clock Tv.

Here we just mention this opportunity which apparently improves the

fitting capability of the model, especially close to expiration, but don’t

discuss it in detail.

(8) The number of parameters must be minimal.

(9) The parametric function must be fast to evaluate.5

(10) The whole IV surface should respect the no-arbitrage conditions.

5For instance, a recent extension of the SVI model proposed in [Zhao and Hodges (2013)]
utilizes the Kummer hypergeometric functions which makes the computation expansive.
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Given T , our new parametrization of one term at the IV surface reads

w(z) = wc + SC
y

1 + y2 + F (y)
√
T

n∑
i=1

aiY
i(y) (4.6)

y = z − C, Y (y) ≡


1
αS (−αy) y ≤ 0

1
β
S (−βy) , y > 0

,

where w(z) is the total implied variance, w(z) = I2(z)T, I(z) is the im-

plied volatility, n determines the maximum degree of the polynomial on

Y (y), and S(x) belongs to the class of the so-called sigmoid functions, [von

Seggern (2007)]. The sigmoid functions tend to some constant at both ends

when the argument x tends to ±∞, and vanish at x = 0. Many natural

processes, including those of complex system learning curves, exhibit a pro-

gression from small beginnings that accelerates and approaches a climax

over time. Besides the logistic function, sigmoid functions include the ordi-

nary arctangent, the hyperbolic tangent, the Gudermannian function, and

the error function, but also the generalized logistic function and algebraic

functions like x/
√

1 + x2.

In Eq.(4.6) the function F (y) defines the model behavior at wings. It

could be chosen in such a way that close to y = 0 we have F (y) ∝ |y|α0 while

F (y) → yα+ , → ∞, and F (y) → (−y)α− , y → −∞ where 0 < α− ≤ 1,

0 < α+ ≤ 1, 0 < α0 are some constants. This construction is accounting

for both linear and sublinear behavior of the regression at wings. However,

in this paper we will explore only the case F (y) ≡ |y|, so the sublinear case

will be discussed elsewhere.

From the performance point of view, we want w(z) to be computed

with the minimal possible number of computer operations. This guides us

in choosing S(x) = erf(x) due to the approximation

erf(x) ≈ 1− (1 + a1x+ a2x
2 + ...+ a6x

6)−16,

with the maximum error 3 · 10−7, where a1 = 0.0705230784, a2 =

0.0422820123, a3 = 0.0092705272, a4 = 0.0001520143, a5 = 0.0002765672,

a6 = 0.0000430638. This approximation is valid for x ≥ 0. To use it

for the negative x, exploit the fact that erf(x) is an odd function, so

erf(x) = −erf(−x) ([Abramowitz and Stegun (1964)]).

It is worth mentioning that using polynomial functions in arctan(z) was

a popular choice among practitioners a while ago, however we don’t put

this restriction. Also for clarity we fix n = 2 and provide a special notation
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for S ≡ a1, K ≡ a2. The reason for this notation will become clear right

below.

Under these assumptions, w(z) in Eq.(4.6) has 7 parameters:

• C–shift. This is an edge point between the left and right branches of

the smile. For equity options C ≈ 0, i.e. this is close to the ATM point.

Then, the left branch is a put wing while the right branch is a call

wing. For index options the minimum of the smile is usually shifted

into positive z. The parameter C just reflects the value of this shift.

Note, that the smile is C2 at z = C. Indeed, the direct differentiation of

Y (z) in the Eq. (4.6) shows that the first derivative is continuous and

reads Y ′(z) |z=C = −1 , while the second derivative vanishes.

• wC–this is the variance at z = C.
• SC–this parameter determines skew of the smile at z = C.
• α–this is a put wing parameter which determines how steep the put

wing should be.

• β–this is a call wing parameter which determines how steep the call

wing should be.

• S–this parameter determines skew of the smile outside of the region

0 ≤ z ≤ C.
• K–this parameter determines kurtosis of the smile outside of the region

0 ≤ z ≤ C.

In the limit α→ 0 or β → 0 we obtain Y (z)→ C − z.
Further on, for getting better results we need a minor refinement of the

model. As the fitted variance w(z) is expected to be at least C2 continuous in

z, it would be better to eliminate such a non-continuous function as |z−C|.
This could be relatively easy done if we find a continuous approximation of

the function |z − C|. Among various possible functions we chose that

|y| ≈ y tanh[py], (4.7)

where p is some constant parameter. Choosing p big enough, say 1000, gives

us highly accurate approximation of |y| which is infinitely continuous.

4.3.3 Asymptotic analysis and meaning of the parameters

Below we provide an asymptotic analysis of the model to reveal the financial

meaning of all the model parameters.
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4.3.3.1 Behavior at z = C

To better understand why one needs a linear correction term, consider the

asymptotic behavior of the smile. As z → C the function w(z) behaves like

w(z) ≈ wC + SCy −
(
SC + pS

√
TYy(0)

)
y3 +O(y4). (4.8)

Thus, this is a polynomial function of z − C which is similar to what

[Dumas et al. (1998)] model does. More rigorously, it is linear in y at small

y if p < 1/y, and quadratic if we choose p ≈ 1/y at small y. Also as the

parameter α determines the steepness of the smile in the put wing, it is

reasonable to have an independent parameter to better shape the linear

part of the smile near z = C. That is why in the Eq. (4.6) we introduced an

extra term which is proportional to zSC at z ≈ C, and vanishes at z →∞.

From Eq.(4.8) it is clear that wC is the total variance at z = C, and

SC is the skew at z = C, while the kurtosis at z = C vanishes. Also, it is

seen that varying p one can change the value of higher moments, which,

however, for our analysis is not that important.

Thus, we can interpret the coefficients wC ,SC and C as some form of

adjustment for the critical point not being at z = 0.

Note that since the derivatives bear no dependence on β (or α), the

model is indefinitely continuous around z = C.

4.3.3.2 Behavior ATM

Let’s consider the behavior of our model at the money when the strike K

is equal to the forward price F , and so z = 0. To simplify the analysis, we

assume C > 0, pC � 1. The value of p could be always chosen such that

pC � 1 unless C = 0. Then tanh(pC) ≈ 1 if C > 0, and tanh(pC) ≈ −1

if C < 0. For easy of notation, denote A ≡ Y (−C), A′ ≡ Yy(−C), A′′ ≡
Yyy(−C).

From the Eq.(4.6) the ATM variance is given by

w0 = wC −
C

1 + C2
SC +AC

√
T tanh(pC)Sα+AK

α2
+O(y + C). (4.9)

Accordingly, the ATM skew is approximately given by

SATM = −
(
C2 − 1

)
(C2 + 1)

2SC + tanh(pC)
√
T [−A(S +KA) + CA′(S + 2KA)]

+O(y + C), (4.10)
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and the ATM kurtosis is

KATM = −2SC
C
(
C2 − 3

)
(C2 + 1)

3 (4.11)

+
√
T tanh(pC) [−2A′ (K(2A− CA′) + S) + CA′′ (2AK + S)]

+O(y + C).

Further on, we want to determine a connection between the inflection

point C and parameters of the smile ATM. In order to do that, first suppose

C is small, but our assumption pC � 1 is still preserved because of a big

p. Also, in our numerous experiments where we calibrated this model to

various equity and index options with a wide range of maturities and strikes

it was observed that a typical value of K is about 1.0, S is of the order of

1.0, and α varies from 0 to 5. Therefore, from Eq.(4.10) we obtain

C2 =
SC − SATM

3SC − 2pS
√
TYy(0)

. (4.12)

Thus, our assumption that the value of C is small is true if SC−SATM �
3Sc − 2pS

√
TYy(0). As C is small (in other words, close to the ATM) the

difference SC − SATM also has to be small.

At very small T the above solution transforms to

SATM = −
(
C2 − 1

)
(C2 + 1)

2SC . (4.13)

At small C this equation has the root

C =

√
SC − SATM

3SC
.

If C is positive, the ATM point belongs to the put wing, and SATM < 0.

Therefore, SC has to be positive in order for the Eq. (4.12) to be consistent.

Note, that the Eq.(4.12) does not contain α or β, therefore it is valid

regardless of whether C is positive or negative. Also from the Eq.(4.10) it

follows that the minimum of the smile at C = 0 does not coincide with the

ATM point.

To illustrate this analysis, here we provide an example of a real smile

computed using the proposed model. We run this test on Oct. 7, 2010 and fit

the implied volatility of options written on the Eldorado Gold Corporation

(EGO) stock with expire on Oct. 15, 2010. The results of fitting are given

in Fig. 4.1 where NSt ≡ z/σATM .

In the below plots and tables, we use w = I2(z) which is the implied

variance, rather than the total implied variance.



January 3, 2020 20:32 Fitting Local Volatility – 9in x 6in b3761-main page 79

Regression-based Methods 79

Figure 4.1: Fitting of the IV smile

for EGO, T =10/15/2010.

Figure 4.2: Fitting of the IV smile

for EGO, T =11/19/2010.

Parameters of the fit found by calibration are given in Tab. 4.1:

Table 4.1: Experiment 1, parameters of the fit.

wC SC C S K α β

0.1652 −0.04302 0 −0.20 1.035 −0.42623 0.60308

Thus, this smile does not demonstrate any shift of the minimum from

ATM.

In the second example we fitted the next term of the same product. The

results are given in Fig. 4.2. Parameters of the fit found by calibration are

given in Tab. 4.2:

Table 4.2: Experiment 2, parameters of the fit.

wC SC C S K α β

0.16775 0 0.5769 −0.003 0.11 −0.0004 2.7457

It is seen that in the test C is not a small parameter, therefore simple

approximations suggested in the above cannot be used in this case.

The third example is given for options written on Financial Select Sector

SPDR Fund (XLF) stock, also for the front term Oct.15, 2010. The results

are given in Fig. 4.3.
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Figure 4.3: Fitting of the IV smile for EGO, T =10/15/2010.

Parameters of the fit found by calibration are given in Tab. 4.3:

Table 4.3: Experiment 3, parameters of the fit.

wC SC C S K α β

0.0703 −0.038 0.0032 −0.2 0.99 0.5741 −0.80175

In this test the calibrated value of C is small, so one can use the proposed

approximations which connect the ATM skew and kurtosis with the value

of C.

4.3.3.3 Behavior At Infinity

As K → ∞ at fixed S, so does z. Assume, for example, that S(x) ≡
arctan(x). Expanding variance in series around positive infinity, we have

w(z) ≈ wC +

√
T

β3
(βS − πK) + π

√
T

1
2πK − Sβ

2β2
y +O (1/y) . (4.14)

Hence, the variance is linear in log-moneyness χ at positive infinity, with

the slope

φ(∞) =
1

2
πβ−2(

1

2
πK − Sβ). (4.15)
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This well agrees with the result of [Lee (2004)]. Thus, our interpretation

of β follows: this parameter controls the slope of the smile at the infinite

strike.

At K → 0, z → −∞. Expanding variance in series around negative

infinity, we have

w(x) ≈ wC −
√
T

α2
(αS + πK)− π

√
T

1
2πK + Sα

2α2
y +O (1/y) . (4.16)

Hence, the variance is also linear in log-moneyness χ at negative infinity,

with the slope

φ(−∞) = −1

2
πα−2(

1

2
πK + Sα). (4.17)

This also agrees with the result by [Lee (2004)]. Accordingly, our interpre-

tation of α is: this parameter controls the slope at strike close to zero.

Close to expiration z tends to infinity. However, for our function in the

Eq.(4.6) this is not a problem. Indeed, at T → 0, z → ∞, the product

z
√
T → logK/F , therefore from Eq.(4.14)

w(z)→ wC +
π

2β2

(
1

2
Kπ − βS

)
log

K

F
, (4.18)

As mentioned in [Medvedev and Scaillet (2008); Ledoit et al. (2002)] in

diffusion models, the ATM implied volatility is known to converge to the

spot volatility when T goes to zero. In our case from Eq.(4.18) the ATM

value w(z)|z=0 = wC , which implies I(z) = σC = const, wC = σ2
CT .

This provides another interpretation of the parameter σC as the IV of the

underlying stock at T = 0.

4.3.4 No arbitrage conditions

In Chapter 3 the local volatility (or IV) surface is built based on the

stochastic mode which guarantees no-arbitrage by construction. Here our

regression-based approach doesn’t provide such a nice feature per se. There-

fore, a special care should be taken under calibration in order not to in-

troduce arbitrage into the IV surface. See, for instance, [Andreasen and

Huge (2011); Lipton and Sepp (2011b); Gatheral and Jacquier (2014)] and

references therein.

The no-arbitrage conditions could be expressed in various forms. One

of the approaches is to say that the local volatility function must be non-

negative. The reason for that is that the local volatility function is directly
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related to the pdf (density) of the underlying, which in turn has to be non-

negative. For convenience, here we recall Eq.(3.2) which expresses the local

volatility via w(z)

σ2
loc(T,K) =

∂Tw(
1− χ∂χw

2w

)2

− (∂χw)2

4

(
1
w + 1

4

)
+

∂2
χw

2

, (4.19)

The nominator of this expression is the so-called calendar spread, and the

denominator of it is equivalent to the so-called butterfly spread (which for

the call option with price C(T,K) is defined as ∂2C(T,K)
∂K2 , [Gatheral and

Jacquier (2014)]). Both spreads must be non-negative for no-arbitrage.

However, as shown in [Carr and Madan (2005)], one more condition

is required in addition to the above mentioned, which tells that so-called

vertical call spread (which for the call option with price C(T,K) is defined

as ∂C(T,K)
∂K ) should be negative for the call options, or the vertical put

spread should be positive for the put options. For the IV these conditions

for the vertical spreads could be transformed to the following, [Carr (2004)]

R(d2)√
T
≤ K∂I(K,T )

∂K
≤ R(−d2)√

T
, (4.20)

where R(d) ≡ 1−N(d)
N ′(d)

is Mill’s ratio, N(d) is the normal cdf, and d2 comes

from the Black-Scholes formula. The convenience of such a representation

lies in the fact that Mill’s ratio for the standard normal distribution reads

R(x) = ex
2/2

√
π

2
erfc

(
x√
2

)
.

The latter can be efficiently computed by the particularly simple continued

fraction representation at x > 1

R(x) =
1

x+
1

x+
2

x+ ...

, (4.21)

or by using Taylor series expansion at 0 ≤ x ≤ 1, [Gasull and Utzet (2014)].

The IV surface should also satisfy the asymptotic conditions discussed in

the previous section, namely: the slope φ(∞) of the call wing at z → ∞
should be 0 ≤ φ(∞) ≤ 2, and the slope of the put wing φ(−∞) at z → −∞
should be 0 ≥ φ(−∞) ≥ −2.

Being equipped with all these no-arbitrage conditions, the next step to

consider is the construction of the IV surface in the domain (T,K). This
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is not a problem if, say, we want to have the IV surface to be defined

at some discrete grid in the (T,K) space (that could be a grid where we

want the local volatility function to be determined — a standard approach

when one calibrates the LSV model to the market data): G : [Ti×Kj ], i ∈
[1, N ], j ∈ [1,M ] under two assumptions made: (i) for every grid node (i, j)

there exists a market quote Q(Ti,Kj) which is an option price (call or put,

or both); (ii) there is no need to ever know the IV at other possible values

of T,K which don’t belong to G. Certainly, in practice both assumptions

are unrealistic. Therefore, some kind of interpolation/extrapolation which

preserves no-arbitrage is necessary.

Therefore, in order to calibrate our model to the market data such that

not every node on the computational grid is provided with a corresponding

market quote, a special calibration algorithm ws elaborated on which in

more detail is described in the next Section.

4.3.5 Finding parameters for one term

To obtain the values of the smile parameters, a non-linear least square

optimization is used. Every market point is taken with some weight which

is usually of the following form

w(z) =
1

2
(wc(z) + wp(z)) , (4.22)

wc(z) = (1− |∆c|) min

[
0.1,

(
z

σatm

)ν]
wp(z) = (1− |∆p|) min

[
0.1,

(
z

σatm

)ν]
.

Here ∆c and ∆p are the market call and put deltas of the option, σatm is

the ATM market implied volatility, ν is some parameter which is typically

taken to be −2 or −3. Having these weights, the following optimization

problem was solved to obtain parameters of the fit

min
p1...p7

N∑
i=1

Wi(z) [wm(zi)− w(zi, p1...p7)]
2
, (4.23)

where N is the total number of the raw option data, Wi(z) is the weight of

the ith point, wm is the market total implied variance of the data, νi, i = 1, 7

are the parameters of the model.

This minimization problem is solved under the whole bunch of

no-arbitrage constraints discussed in the previous section. The no-arbitrage
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constraints are checked at every node on the grid G, while the asymptotic

slope is checked at two edge points on the grid for every time slice.

Further on, we calibrate all terms, provided as an input, that contain

at least a single data point, by using bootstrap, i.e. term by term. We start

with reordering all the market data in the ascending order, and then pro-

ceed with fitting the shortest term at T = T1. Then the next term at T = T2

is fitted, etc. To solve this optimization problem we use a genetic algorithm

implemented in [Hansen (2008)] which we updated with allowance for the

equality and inequality constraints. This algorithm guarantees finding a

global minimum. A typical time necessary to get the values of the param-

eters for one term in C++ is about 0.5 secs with the maximum number of

function evaluations set to 104. Based on our experiments this value pro-

vides a very good fit, while it could be lowered to get a better performance.

Note that as our algorithm belongs to the class of evolutionary optimization

([Simon (2013)]) it is very suitable for parallelization.

We also need to underline that the above minimization problem is solved

at points zi, i = 1...s where for the given term Tj the market prices are

available at s strikes K̂i, ı = 1...s such that zi = (log K̂i/F (Tj))/
√
Tj , i =

1...s. However, the no-arbitrage constraints are checked at another set of

points: that ones that belong to the G grid. According to the definition of

G these points are zi = (log(Ki)/F (Tj))/
√
Tj , i = 1...M . By construction

the implied volatilities obtained on the grid nodes are arbitrage-free.

Smart initial guess. When calibrating every term at the beginning we

use a special algorithm to provide a good initial guess. The idea behind

this algorithm is that as follows from Eq.(4.6) wzz(z) = 0 at the point

z = C. Therefore, one can look at the input IVs in the z space, compute the

second derivative and find where it vanishes. In case the second derivative

is positive everywhere, as the value of C one can take such z where the IV

is minimal among all values belonging to this term. This construction also

works well when the IV surface has a skew, not a smile, which is typical for

index options.

Given C other parameters could be obtained relatively straightforward.

Indeed, from Eq.(4.6)

wC = w(z)|z=C , SC = wz(z)|z=C . (4.24)

Now denote

κ(y) =
1

y tanh(py)
√
T

(
w(y + C)− w(C)− SC

y

1 + y2

)
, y ≡ z − C,
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so based on Eq.(4.24) κ(y) is a known function of y. Accordingly Eq.(4.6)

could be re-written in the form

SY (y) +KY 2(y) = κ(y). (4.25)

To find the initial guess for the remaining parameters α, β,S,K we need 4

additional market IVs. At least two of them should lie on the different sides

of the IV curve with regard to the point y = 0. As an example, consider

three points y1 > y2 > y3 > 0. Then, Y (y) in Eq.(4.25) is defined via

parameter β, see Eq.(4.6). Using Eq.(4.25) with y1 and y2 we find

S =
κ(y1)Y 2(y2)− κ(y2)Y 2(y1)

Y (y1)Y 2(y2)− Y (y2)Y 2(y1)
, K =

κ(y2)Y (y1)− κ(y1)Y (y2)

Y (y1)Y 2(y2)− Y (y2)Y 2(y1)
.

(4.26)

Now using the point y3 we numerically solve the equation Eq.(4.25) with

regard to β.

Since parameters S,K are already found, the last point y4 < 0 could

be used together with Eq.(4.25) to numerically solve for α. This finalizes

computation of the initial guess.

In case the input data points are located as y1 > y2 > 0 > y3 > y4 the

easiest way is to add an extra point to the negative y by using interpolation,

and then remove one point, e.g., y2 from the positive y, thus getting back

to the previous case.

4.3.6 No-arbitrage interpolation on the grid

Various approaches were discussed in the literature with regard to this

problem. For instance, an arbitrage-free interpolation was considered in

[Andreasen and Huge (2011); Fengler (2005); Gatheral and Jacquier (2014)]

(see also references therein). Here, however, we suggest another approach,

which is similar in spirit to that in [Gatheral and Jacquier (2014)].

If one works in the z space given T the usual approach would be to

choose some number γ such that all z = [z1...zM ] for this term are in

the range −γ < z/σ∗ < γ. Here σ∗ is some normalization constant which

doesn’t depend on T . By financial meaning, σ∗ could be chosen as the ATM

IV which corresponds to the shortest maturity, This is the most liquid strike

of the instrument, and usually it is pretty well-known from the market data.

In other words, for the IV surface just a range of γ standard deviations in

both up and down directions from the ATM is taken into account. Outside of

this domain the remaining strikes are treated to be illiquid, and, therefore,
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they are taken out of consideration. In practical applications γ = 5 could

be chosen, but this assumption could be easily relaxed.

Another situation is if we want the IV surface to be a building block of

the numerical method which solves the pricing/calibration problem using

the local stochastic volatility model. The idea is first to calibrate the IV

surface to the market quotes of the vanilla options, and then compute the

local volatility surface using the Dupire’s formula. In this case, we need

the values of the local volatility function not only at strikes and maturities

available were the market data are available, but at all nodes in the com-

putational domain K,T which is these calculations. In more detail, in this

case we fist define a fixed domain in K space: [K1...KM ]. Accordingly, for

the z variable we have a map zi = log(Ki/F (Tj))/
√

(Tj) which depends

on the current expiration Tj , j = 1...N . In other words, we work on the G
grid which was described in the above.

Provided by a set of the IV market data for expirations T1 < T2 < ...

< Tm (these expirations in general don’t coincide with the temporal nodes

of the grid G, but could be a subset of that) we calibrate our model term by

term based on the algorithm of Appendix 4.3.5. To remind, this algorithm

takes into account the entire set of the no-arbitrage constraints at every

point on the given grid G. By construction, despite the market provides

the option quotes per strikes, the grid was built in the z space, not in

the strike K space. At the end we obtain all values w(z, t) where z ∈
[−γσ∗ = z1, ..., zN = γσ∗], T ∈ [T1, ..., Tm]. Given thus found w(z, t) the

corresponding undiscounted call and put prices can be further obtained by

using the Black-Scholes formula afterwards.

After this step is completed the arbitrage-free values w(z, t) become

available for the terms with expirations T1 < T2 < ... < Tm. For the sake

of clearness let us denote them as w1(z, t) ≡ w(z, t), t ∈ [T1, ..., Tm]. How-

ever, our grid G by construction also might contain some other expirations

T̂1, ..., T̂l where l is the total number of temporal nodes on the grid. Let us

denote this set as w2(z, t). Also let us emphasize that the space nodes z are

the same for both w1(x, t) and w2(t) by construction.

Therefore, to find w2(z, t) next we need to interpolate w1(x, t) to the

expirations of w2(z, t) at every point z on the G grid. When doing that

it is more convenient to proceed in the pricing space despite this is a bit

more computationally intensive as we need to convert the IVs force to the

prices at the beginning of this step, and back to the IVs at the end of

this step. For the fitted terms after calibration is done we already know

all parameters of the fit, so we are able to compute the call option value
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at any point at the G grid. And the no-arbitrage conditions were already

respected in these points as well. Also we know the corresponding map

Ki → F (Tj)e
zi
√
Tj , i = 1...M, j = 1...N .

Accordingly, in K space the no-arbitrage conditions for the call option:

non-negativity of the calendar and butterfly spreads and non-positivity of

the vertical spread read

∂C(K,T )

∂T
≥ 0,

∂C(K,T )

∂K
≤ 0,

∂2C(K,T )

∂K2
≥ 0. (4.27)

Now chose a monotonic time interpolation of C(K,T ) at K=const of the

form

C(K,T ) = α(T )C(K,T1) + [1− α(T )]C(K,T2) (4.28)

where T1 < T < T2 and

α(T ) =
a(T2)− a(T )

a(T2)− a(T1)
, (4.29)

where a(T ) is some monotonic function. Obviously, α(T ) ∈ [0, 1], and α(T )

doesn’t depend on K. And this is a valid interpolation formula in a sense

that the values of C(K,T ) at T = T1 and T = T2 coincide with C(K,T1)

and C(K,T2). Also thus defined C(K,T ) provides

∂C(K,T )

∂T
= α(T )

∂C(K,T1)

∂T
+ [1− α(T )]

∂C(K,T2)

∂T
(4.30)

+
∂α(T )

∂T
[C(K,T1)− C(K,T2)] ≥ 0,

if ∂Tα(T ) < 0, i.e., ∂Ta(T ) < 0. That is because we constructed

C(K,T1), C(K,T2) such that they obey the no-arbitrage condition

∂TC(K,T )|T=Ti > 0, i = 1, 2.

It is easy to see that Eq.(4.28) also solves the second and third lines

in Eq.(4.27) provided that these conditions were met at T = T1 and

T = T2. The latter follows from our construction at the previous step

of the algorithm. Also it can be shown that this expression still pre-

serves the extreme slopes of the interpolated terms (that are at z → ∞
and at z → −∞) to follow the asymptotic conditions provided by [Lee

(2004)]. To see that, note that the latter could be represented in the form

C(K,T, I) < C(K,T,
√

2|χ|/T ). Therefore, our interpolation provides

C(K,T, I) = α(T )C(K,T1, I1(K,T1)) + (1− α(T )C(K,T2, I(K,T2))

< α(T )C(K,T1,
√

2|χ1|/T1) + (1− α(T )C(K,T2,
√

2|χ2|/T2)

< C(K,T,
√

2|χ|/T ). (4.31)
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The last equality holds because we interpolate at K=const, S=const, so

C(K,T,
√

2|χ|/T ) is a function of T only, and this is a concave function of

T .

As far as extrapolation is concerned, in addition to the no-arbitrage

conditions we need to prove that the extreme slopes of the extrapolated

terms (that are at z → ∞ and at z → −∞) still preserve the asymptotic

conditions provided by [Lee (2004)].

We show that an extrapolation formula

T kC(K,T ) = α(T )T k1 C(K,T1) + [1− α(T )]T k2 C(K,T2), (4.32)

with k ∈ Re, k ≤ −0.5 is suitable for this purpose.

Indeed, similar to Eq.(4.28)

T kC(K,T, I) = α(T )T k1 C(K,T1, I1(K,T1)) + (1− α(T )T k2 C(K,T2, I(K,T2))

< α(T )T k1 C
(
K,T1,

√
2|χ1|/T1

)
+ (1− α(T )T k2 C

(
K,T2,

√
2|χ2|/T2

)
< T kC(K,T,

√
2|χ|/T ). (4.33)

The last inequality holds because we interpolate at K=const, S=const, so

f(T ) ≡ T kC(K,T,
√

2|χ|/T ), (4.34)

is a function of T only, and k < 0 is chosen such that f(T ) is a convex

function. The latter condition depends on the value of the interest rate r,

and χ. Usually, k = −1 is sufficient even for the ATM strikes.6 Also thus

defined C(K,T ) provides

T k
∂C(K,T )

∂T
= α(T )T k1

∂C(K,T1)

∂T
+ [1− α(T )]T k2

∂C(K,T2)

∂T
(4.35)

+
∂α(T )

∂T
[T k1 C(K,T1)− T k2 C(K,T2)]− kT k−1C(K,T ) ≥ 0,

if ∂Tα(T ) < 0. That is because we constructed C(K,T1), C(K,T2) such

that they obey the no-arbitrage condition ∂TC(K,T )|T=Ti > 0, i = 1, 2,

and T k1 C(K,T1) − T k2 C(K,T2) < 0 since T1 < T2 and k = −1. Thus,

the calendar spread is non-negative for the call option. The other two no-

arbitrage conditions obviously follow.

6As it could be easily seen from analysis of the Black-Scholes formula for the call option

prices this is the most sensitive region. Therefore, the choice of, e.g., k = −0.5 could make
f(T ) to be concave close to ATM.
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4.3.7 Numerical experiments

4.3.7.1 Stability of the fitted parameters

In a typical experiment a volatility smile of an option written on the S&P

500 index (SPX) was fitted using the proposed model. The raw data S&P

are collected for T = 0.6247 (228 days to expiration), F = 76.58, Tv =

0.6215. We find that our model fits the data pretty well, with parameters

of the fit obtained by running the above described minimization algorithm,

given in Tab. 4.4.

Table 4.4: Values of the parameters obtained in the test

wC S K α β C SC
0.0435 −0.763 74.5 3.12468 1.5000 0.2739 −0.05921

It is interesting to see, however, how the fitting parameters behave as a

function of time. In other words, what is the sensitivity of the fit to changes

in time. To investigate this we use the same data on the SPX closing IVs

given for 133 sequential days and plot time-series of the model parameter

values. These results are given in Figs. 4.4–4.10.

Figure 4.4: Sensitivity of wC to the

time change.

Figure 4.5: Sensitivity of S to the

time change.

As one can see, the most time sensible parameters are α and β. So they

need to be refitted more often, probably few times a day. At the time scale

of a few days other parameters change just within 10–20 %; therefore, they

could be refitted less often.
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Figure 4.6: Sensitivity of K to the

time change.

Figure 4.7: Sensitivity of C to the

time change.

Figure 4.8: Sensitivity of SC to the

time change.

Figure 4.9: Sensitivity of β to the

time change.

We want to emphasize that by construction our model provides just

the static fit of the current market snapshot of the options IVs, and does

not consider any dynamics of the IV surface. Therefore, the dependence of

the model parameters on time serves just to the illustrative purposes and

helps in organizing a rapid calibration procedure. This does not mean that

looking at the time dependence of the model parameters one can make a

predictive conclusion on how the future IV behaves with time.
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Figure 4.10: Sensitivity of α to the time change.

4.3.8 Constructing a local volatility surface

In this example we take data from http://www.optionseducation.org on

XLF traded at NYSEArca on March 25, 2014. The spot price of the index

is S = 22.64, the interest rate r = 0.0148. The option IVs are given in

Tab. 4.5. We take all OTM quotes and some ITM quotes which are very

close to the ATM. At the overlapped strikes for calls and puts we take an

average of Icall and Iput with weights proportional to 1− |∆|c and 1− |∆|p
correspondingly.7 We use the proposed parametric fit to construct the IV

surface at all given expirations and strikes in a range K ∈ [17, 28] with the

step 0.5. In doing so we calibrate the first and the last term using the above

described algorithm. The other terms are found on the grid by applying the

arbitrage-free interpolation with a(T ) = C(K,T, I(K,T )) and K = 17 (in

this case I(K,T ) is assumed to be provided in the given set of data).

7By doing so we do take into account effects reported in [Ahoniemi (2009)] that the IVs
calculated from identical call and put options have often been empirically found to differ,
although they should be equal in theory. However, our weights are a pure empirical rule

of thumb, and more detailed investigation of this is required.

http://www.optionseducation.org
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Table 4.5: XLF option IVs: C–call options, P–put options.

T K, Put

18 19 20 21 22 23

4/19/2014 – 32.90 26.79 20.14 15.19 12.93

5/17/2014 33.27 26.88 23.08 18.94 16.12 13.86

6/21/2014 27.84 23.90 21.07 18.88 16.95 15.82

7/19/2014 26.09 22.81 20.29 18.13 16.30 14.93

9/20/2014 24.20 22.23 20.32 18.76 17.40 16.41

12/20/2014 23.75 22.09 20.67 19.44 18.36 17.60

T K, Call

21 22 23 24 25 26 27 28

4/19/2014 – 15.79 13.38 15.39 – – – –

5/17/2014 16.71 14.48 – 13.75 – – – –

6/21/2014 16.31 14.78 – 13.92 14.28 16.58 – –

7/19/2014 16.82 15.24 – 14.36 14.19 15.20 – –

9/20/2014 17.02 15.84 – 14.99 14.56 14.47 14.97 16.31

12/20/2014 17.63 16.61 – 15.86 15.47 15.12 15.18 15.03

The results of this fitting are given term-by-term in Fig. 4.11. Accord-

ingly, thus constructed the IV surface is represented in Fig. 4.12, and the

local volatility surface and the implied density obtained from the IV surface

by applying the Dupire’s and Breeden-Litzenberger formulas are given in

Figs. 4.13–4.14.

Figure 4.11: Term-by-term fitting

of the IV surface constructed using

the whole set of data in Tab. 4.5.

Figure 4.12: The IV surface ob-

tained using the first and last

terms in Tab. 4.5 and interpola-

tion.
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Figure 4.13: The local volatility

surface produced from the IV sur-

face.

Figure 4.14: The density implied

from the IV surface in Fig. 4.12.

One can see that the local volatility is positive everywhere on the grid

which is provided by (i) using the no-arbitrage constraints when calibrating

each term, and (ii) using the arbitrage-free interpolation instead of calibra-

tion for some terms.

Also the above results clearly show that calibration provides a very good

fit to the market data for the first and the last term. However, for the other

terms the no-arbitrage conditions could be very restrictive. Therefore, the

genetic algorithm requires many evaluations of the objective function, and

could be slow. In contrast, the arbitrage-free interpolation is very fast but

doesn’t give such a good fit to the market data.

4.4 Discussion

When fitting the IV surface we rely on raw quotes for liquid options pro-

vided by the market. Unfortunately, markets are different. For instance, in

the oil market only a few strikes are traded as European listed options,

usually the ATM, one ITM and one OTM option. Other strikes are traded

OTC and, moreover, as Asian options. Also, the smile behavior at wings

could be different for index and equity options. The variance smile could

still be linear in z at wings but with a very different skew. And it seems

there is no a clear theoretical reason why it could not be. Therefore, if some-

body has just an intuition on how the smile wings should behave, he/she

could better rely on this intuition rather than on some unreliable illiquid

data, and treat the latter as outliers.
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Fortunately, the proposed model is able to address such an intuition by

doing the following trick. Suppose that we want to have the new model

for the index options smile at the call wing being as close as possible to

the existing smile produced by some proven (reference) model. Then we

can move the value of the call wing parameter β into a different region

by imposing a special constraint. By doing that, we make the fit a bit

worse, but thus found slope (after the minimization is done) turns to be

closer to the corresponding reference model skew. And we still preserve the

continuity of the model.

Another issue with the model is as follows. Suppose, for a given

term the number of strikes for which the market quotes are available, is

less than the number of the model parameters, i.e. 7. In this case the

parameterization is over determined. The no-arbitrage constraints and the

asymptotic behavior of the smile help to resolve this however could not be

sufficient. For instance, if only the ATM quote is liquid and available. In

this situation we have either to reduce the number of parameters, or to use

some tricks.

To give an example of such a trick consider the case when only a sin-

gle quote I corresponding to the strike K is available given the time to

expiration T . Under this situation it doesn’t make sense to calibrate our

parameterization to this single point. Instead, we treat the entire term as

fully unknown, and find the IV values by using the arbitrage-free interpo-

lation in time as it was described in the above. However, to fit exactly thus

found IVs to the given quote we exploit the remaining flexibility in the

definition of the function a(T ). We remind that a(T ) was not yet defined

explicitly, and only indirectly via the condition ∂Ta(T ) > 0. Then taking

a(T ) = C(K,T, I) provides this inequality on one hand. On the other hand,

as it could be easily checked, thus defined a(T ) matches exactly the given

quote C(K,T, I).

When 3 or 4 quotes are available for the given term, the kurtosis K
is a natural candidate to be removed from the parameterization. In other

words, we fix K = 0 and so reduce the total number of parameters to 6.

Also, SC could be the next preferable choice to omit.

As far as the relation of the proposed model to the existing ones and

comparison of our results with that obtained using, e.g., the SVI model

we want to underline the following. There are at least two problems that,

e.g., quantitative analysts are dealing with pretty often, and that require

knowledge of the implied volatility. One, which is important for traders and

market makers, is to fit the existing market IV data, basically on a term-

by-term basis, so the IV values in between of the tradable strikes could be
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out of their interest. This problem could be solved sufficiently well using

various popular models, including SVI and the modern quadratic fit, while

the proposed in this paper model also falls into this class. Then to choose

an appropriate model questions about stability of the model parameters,

uniqueness of the set of parameters that provide a reasonable fir to the

given smile/skew should be addressed. An interesting discussion on this

subject as applied to the SVI model could be found in ([Nuclear Phynance

(2007)]). The SVI model often produces a non-unique set of the calibrated

parameters in a sense that using various initial guess es in the calibration

procedure one can get different sets of the SVI parameters that fit the

given market data with almost same accuracy. This means that stability of

fitting parameters could be in question. In our model to eliminate a possible

instability a practical recipe is as follows. We calibrate the model for the

first time, and then, when after some period of time we need to refit it,

we fix one of the parameters, for instance, C, at the previous level, thus

refitting only the remaining parameters. Then in our experience the daily

variations of the model parameters are pretty much suitable for traders,

i.e., the fit could be treated as stable.

The second and more challenged problem is to build a local volatility

function for some grid pricer given the market option quotes. This could

be addressed by first building the IV surface and then using the Dupire’s

formula. Here a good quality of the fit at the given quotes is not suffi-

cient, and in addition no-arbitrage constraints in every grid point in the

(K,T ) space as well as the correct asymptotic behavior of the smile/skew

should be preserved. Under these restrictive conditions perhaps any model,

including SVI, which operates just with 5 model parameters is not flexi-

ble enough to be able to meet all the constraints. Thus, it either sacrifices

by the quality of the fit, or by the no-arbitrage conditions, or by the cor-

rect asymptotic behavior in order to converge. Finally, finding the correct

fit could be slow because of these limitations. As a possible resolution in

this paper we demonstrate that fitting just the first and the last term and

then using the arbitrage-free interpolation could be a reasonable alterna-

tive from both performance and goodness of the fit point of view. Also as

our model contains more parameters, it provides an additional flexibility to

better solve the above constrained optimization problem.

To illustrate this in Figs. 4.15–4.18 we present the results of the test

described in Section 4.3.8, where now instead of our model the SVI model

was used. When calibrating this model in the first test the no-arbitrage

constraints on a grid were not taken into account except positivity of the

total variance w.



January 3, 2020 20:32 Fitting Local Volatility – 9in x 6in b3761-main page 96

96 Fitting Local Volatility

Figure 4.15: Term-by-term fitting

of the IV surface based on the data

in Tab. 4.5 and the SVI model.

Figure 4.16: The local volatility

surface produced from the IV sur-

face using the SVI model.

Figure 4.17: The local volatility

surface built from the SVI IV sur-

face.

Figure 4.18: The density implied

from the SVI IV surface shown in

Fig. 4.16.

The quality of the IV fit is good, however, the no-arbitrage conditions

in the strike space are not validated as well as the calendar arbitrage could

be observed for the OTM call options. Accordingly, the grid local volatility

is negative at some strikes and expirations. However, the implied density is

positive on the grid.

Surprisingly, if we take the no-arbitrage constraints into account and

repeat the above test, at least in our numerical experiments the optimizer

was never able to find a good fit. Moreover, thus found model parameters

always produced negative local volatilities at some strikes and expirations.

This justifies our hypothesis that constructing the local volatility surface
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on a grid by using the implied volatility surface calibrated to the market

data with the SVI model could be inefficient. Most likely bad fit (and as the

consequence — negative local volatilities) are observed due to insufficient

flexibility of the SVI model which has only 5 parameters per one expiration

term.
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Chapter 5

An Expanded Local Variance Gamma
Model

In this part of the book we consider another local volatility model. In this

model the underlying is driven by a Variance Gamma process of [Madan

and Seneta (1990)], rather than the Geometric Brownian Motion, but also

equipped with a local volatility function. Such a model was first proposed

in [Carr and Nadtochiy (2014)] to (i) improve computational efficiency of

calibration of the local volatility surface, and (ii) to built a richer flavor

of the local volatility model. The latter is achieved by adding a stochastic

volatility component via a stochastic change of time. We will discuss this

in more detail in what follows.

The original paper [Carr and Nadtochiy (2014)] was then re-worked

to [Carr and Nadtochiy (2017)] where the Local Variance Gamma (LVG)

model has been fully elaborated as well as calibration of the model was

provided. With a bit more detail, the model assumes that the risk-neutral

process for the underlying futures price is a pure jump Markov martin-

gale, and that European option prices are given at a continuum of strikes

and at one or more maturities. The authors construct a time-homogeneous

process which meets a single smile and a piecewise time-homogeneous pro-

cess, which can meet multiple smiles. However, in contrast to eg, [Itkin

and Lipton (2018)], their construction leads not to a PDE, but to a par-

tial differential difference equation (PDDE), which permits both explicit

calibration and fast numerical valuation. In particular, it does not require

application of any optimization methods, rather just a root solver. In [Carr

and Nadtochiy (2017)] this model is used to calibrate the local volatility

surface assuming its piecewise constant structure in the strike space.

One of the potential criticism of this calibration method is the fact that

the resulting local volatility function has a finite number of discontinuities.

So it would be advantaged to relax the piecewise constant behavior of the

101
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surface. This is similar to how [Itkin and Lipton (2018)] was developed to

overcome the same problem as compared with [Lipton and Sepp (2011a)].

On this way, recently [Falck and Deryabin (2017)] applied the LVG

model to the FX options market where usually option prices are quoted only

at five strikes. They assumed that the local volatility function is continuous,

piecewise linear in the four inner strike subintervals and constant in the

outer subintervals. A closed form solution of the PDDE derived in [Carr and

Nadtochiy (2014)]) is obtained with this parametrization, and calibration of

some volatility smiles is provided. Still, to calibrate the model the authors

rely on a residual minimization by using a least-square approach. So, despite

an improved version of the LVG model is used, computational efficiency of

this method is not perfect.

Another remark of [Carr and Nadtochiy (2017)] is about the limitation

that the risk-neutral price process of the underlying is assumed to be a

martingale, i.e. the main driving process in Eq.(5.1) doesn’t have a drift.

However, the drift may not be negligible. If the drift is deterministic, e.g

when the interest rate and dividends are deterministic, and the drift is a

deterministic function of them, the calibration problem can be reduced to

the driftless case by discounting, but this assumption might be inconsistent

with the market. Therefore, an expansion of the proposed model that allows

for a non-zero and stochastic drift is very desirable. In particular, it would

be interesting to expand the LVG model to a risk-neutral price process

obtained by stochastic time change of a drifted diffusion. In this way, similar

to local Variance Gamma model, [Madan et al. (1998)], we introduce both

stochastic volatility and stochastic drift.

With this in mind, en expanded version of the LVG model was proposed

in [Carr and Itkin (2018a)] by adding drift to the governing underlying

process. It turned out that this relatively simple step (at the first glance)

requires re-derivation and re-thinking of almost every step in the construc-

tion proposed in [Carr and Nadtochiy (2017)]. The authors show that still

it is possible to find an ordinary differential equation (ODE) for the option

price which plays a role of Dupire’s equation for the standard local volatil-

ity model, and how calibration of multiple smiles (the whole local volatility

surface) can be done in such a case.

Further, assuming the local variance to be a piecewise linear function of

strike and piecewise constant function of time we solve this ODE in closed

form in terms of Confluent hypergeometric functions. Calibration of the

model to market smiles does not require solving any optimization problem.

In contrast, it can be done term-by-term by solving a system of non-linear

algebraic equations for each maturity, and thus is much faster.
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Below in this Chapter we describe the approach of [Carr and Itkin

(2018a)] providing all the details as well as the results of computational ex-

periments. The Chapter is organized as follows. In Section 5.1 the Expanded

Local Variance Gamma model is formulated. In Section 5.2 we derive a

forward equation (which is an ordinary differential equation (ODE)) for

Put option prices using a homogeneous Bochner subordination approach.

Section 5.3 generalizes this approach by considering the local variance

being piece-wise constant in time. In Section 5.4 a closed form solution

of the derived ODE is given in terms of Confluent hypergeometric func-

tions. The next Section discusses computation of a source term of this

ODE which requires a no-arbitrage interpolation. Using the idea of [Itkin

and Lipton (2018)]), we show how to construct non-linear interpolation

which provides both no-arbitrage, and a nice tractable representation of

the source term, so that all integrals in the source term can be com-

puted in closed form. In Section 5.6 calibration of multiple smiles in our

model is discussed in detail. To calibrate a single smile we derive a sys-

tem of nonlinear algebraic equations for the model parameters, and ex-

plain how to obtain a smart guess for their initial values. In Section 5.7

asymptotic solutions of our ODE at extreme values of the model param-

eters are derived which improve computational accuracy and speed of the

numerical solution. Section 5.8 presents the results of some numerical ex-

periments where calibration of the model to the given market smiles is done

term-by-term.

5.1 Process

Below where possible we follow the notation of [Carr and Nadtochiy (2017)].

Let Wt be a Q standard Brownian motion with time index t ≥ 0. Con-

sider a stochastic process Dt to be a time-homogeneous diffusion

dDt = µDtdt+ σ(Dt)dWt, (5.1)

where the volatility function σ is local and time-homogeneous, and µ is

deterministic.

A unique solution to Eq.(5.1) exists if σ(D) : R→ R is Lipschitz contin-

uous in D and satisfies growth conditions at infinity. According to Eq.(5.1)

we have Dt ∈ (−∞,∞) while t ∈ [0,∞). Since D is a time-homogeneous

Markov process, its infinitesimal generator A is given by

Aφ(D) ≡
[
µD∇D +

1

2
σ2(D)∇2

D

]
φ(D) (5.2)
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for all twice differentiable functions φ. Here ∇x is a first order differential

operator on x. The semigroup of the D process is

T Dt φ(Dt) = etAφ(Dt) = EQ[φ(Dt)|D0 = D], ∀t ≥ 0. (5.3)

In the spirit of Variance Gamma model, [Madan and Seneta (1990);

Madan et al. (1998)] and similar to [Carr and Nadtochiy (2017)], introduce

a new process DΓt which is Dt subordinated by the unbiased Gamma clock

Γt. The density of the unbiased Gamma clock Γt at time t ≥ 0 is

Q{Γt ∈ dν} =
νm−1e−νm/t

(t∗)mΓ(m)
dν, ν > 0, m ≡ t/t∗. (5.4)

Here t∗ > 0 is a free parameter of the process, Γ(x) is the Gamma function.

It is easy to check that

EQ[Γt] = t. (5.5)

Thus, on average the stochastic gamma clock Γt runs synchronously with

the calendar time t.

As applied to the option pricing problem, we introduce a more complex

construction. Namely, consider options written on the underlying process

St. Without loss of generality and for the sake of clearness let us treat

below St as the stock price process. Here, in contrast to [Carr and Nad-

tochiy (2017)], we don’t ignore interest rates r and continuous dividends q

assuming them to be deterministic (below for simplicity of presentation we

treat them as constants, but this can be easily relaxed). Then, let us define

St as

St = DΓX(t)
, X(t) =

1− e−(r−q)t

r − q
. (5.6)

It is clear that in the limit r → 0, q → 0 we have X(t) = t, i.e., in this

limit our construction coincides with that in [Carr and Nadtochiy (2017)]

who considered a driftless diffusion and assumed St = DΓt . Also based on

Eq.(5.5)

EQ[ΓX(t)] = X(t). (5.7)

Function X(t) starts at zero, i.e., X(0) = 0, and is a continuous increasing

function of time t. Indeed, if r − q > 0, then X(t) is increasing in t on

t ∈ [0,∞), and at t → ∞ it tends to constant. The infinite time horizon

is not practically important, but for any finite time t function X(t) can

be treated as an increasing function in t. If r − q < 0, function X(t) is

strictly increasing ∀t ∈ [0,∞). Thus, X(t) has all properties of a good

clock. Accordingly, ΓX(t) has all properties of a random time.



January 3, 2020 20:32 Fitting Local Volatility – 9in x 6in b3761-main page 105

An Expanded Local Variance Gamma Model 105

Under a risk-neutral measure Q, the total gain process, including the

underlying price appreciation and dividends, after discounting at the risk

free rate should be a martingale, see, e.g., [Shreve (1992)]. This process

obeys the following stochastic differential equation

d
(
e−rtSte

qt
)

= e(q−r)t [(q − r)Stdt+ dSt] . (5.8)

Taking an expectation of both parts we obtain

EQ[d
(
e(q−r)tSt

)
] = e(q−r)t {(q − r)EQ[St]dt+ dEQ[St]} . (5.9)

Observe, that from Eq.(5.6), Eq.(5.1)

EQ[dSt] = EQ[dDΓX(t)
] = µEQ[DΓX(t)

dΓX(t)] + EQ[σ(DΓX(t)
)dWΓX(t)

]

= µEQ[DΓX(t)
dΓX(t)], (5.10)

because the process WΓt is a local martingale, see [Revuz and Yor (1999)],

chapter 6. Accordingly, the process WΓX(t)
inherits this property from WΓt ,

hence EQ[σ(DΓX(t)
)dWΓX(t)

] = 0.

Further assume that the Gamma process Γt is independent of Wt (and,

accordingly, ΓX(t) is independent of WΓX(t)
). Then the expectation in the

RHS of Eq.(5.10) can be computed, by first conditioning on ΓX(t), and

then integrating over the distribution of ΓX(t) which can be obtained from

Eq.(5.4) by replacing t with X(t), i.e.

EQ[DΓX(t)
dΓX(t)|Ss] =

∫ ∞
0

EQ[DΓX(t)
dΓX(t)|ΓX(t) = ν]

νm−1e−νm/X(t)

(t∗)mΓ(m)

=

∫ ∞
0

EQ[Dν ]
νm−1e−νm/X(t)

(t∗)mΓ(m)
dν, (5.11)

ν > 0, m ≡ X(t)/t∗.

The find EQ[Dν ] we take into account Eq.(5.1) to obtain

dEQ[Dν ] = EQ[dDν ] = EQ[µDνdν + σ(Dν)DνdWν ] = µEQ[Dν ]dν. (5.12)

Solving this equation with respect to y(ν) = EQ[Dν |Ds], we obtain

EQ[Dν |Ds] = Dse
µ(ν−s). Since we condition on time s, it means that

Ds = DΓX(s)
= Ss, and thus EQ[Dν |Ds] = Sse

µ(ν−s).

Further, we substitute this into Eq.(5.11), set the parameter of the

Gamma distribution t∗ to be t∗ = X(t) (so m = 1) and integrate to obtain

dEQ[St|Ss] = EQ[dSt|Ss] = µEQ[DΓX(t)
dΓX(t)] = Ss

e−sµµ

1− µX(t)
. (5.13)

Setting now m = r − q and solving this equation we find

EQ[St|Ss] = Ss(r − q)e(q−r)(s−t). (5.14)
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Substituting Eq.(5.14) and Eq.(5.13) into Eq.(5.9) yields d (e−rtSte
qt) = 0.

Thus, if we chose µ = r − q, the right hands part of Eq.(5.8) vanishes, and

our discounted stock process with allowance for non-zero interest rates and

continuous dividends becomes a martingale. So the proposed construction

can be used for option pricing.

This setting can be easily generalized for time-dependent interest rates

r(t) and continuous dividends q(t). We leave it for the reader.

The next step is to consider connection between the original and time-

changed processes. It is known from [Bochner (1949)] that the process GΓt

defined as

dGt = σ2(G)dWt

is a time-homogeneous Markov process. As the deterministic process µt is

also time-homogeneous, the whole process Dt defined in Eq.(5.1) is also a

time-homogeneous Markov process. Accordingly, the semigroups TSt of St
and TDt of DΓX(t)

are connected by the Bochner integral

T St U(S) =

∫ ∞
0

T Dν U(S)Q{ΓX(t) ∈ dν}, ∀t ≥ 0, (5.15)

where U(S) is a function in the domain of both T Dt and T St . It can be

derived by exploiting the time homogeneity of the D process, conditioning

on the gamma time first, and taking into account the independence of Γt
and Wt (or ΓΓX(t)

and WΓX(t)
in our case).

We set parameter t∗ of the gamma clock to t∗ = X(t). Then Eq.(5.15)

and Eq.(5.4) imply

T St U(S) =

∫ ∞
0

T Dν U(S)
e−ν/X(t)

X(t)
dν. (5.16)

In what follows for the sake of brevity we will call this model as an Expanded

Local Variance Gamma model, or ELVG.

5.2 Forward equation for Put option prices

Following [Carr and Nadtochiy (2017)] we interpret the index t of the semi-

group T St as the maturity date T of a European claim with the valuation

time t = 0. Also let the test function U(S) be the payoff of this European

claim, i.e.,

U(ST ) = e−rT (K − ST )+. (5.17)

Then define

P (S0, T,K) = T ST U(S0), (5.18)
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as the European Put value with maturity T at time t = 0 in the ELVG

model. Similarly

PD(S0, ν,K) = T Dν U(S0), (5.19)

would be the European Put value with maturity ν at time t = 0 in the

model of Eq.(5.1).1 Then the Bochner integral in Eq.(5.16) takes the form

P (S, T,K) =

∫ ∞
0

PD(S, ν,K)pe−pνdν, p ≡ 1/X(T ). (5.20)

Thus, P (S,X(T ),K) is represented by a Laplace-Carson transform of

PD(S, ν,K) with p being a parameter of the transform. Note that

P (S, 0,K) = PD(S, 0,K) = U(S). (5.21)

To proceed, we need an analog of the Dupire forward PDE for PD(S, ν,K).

5.2.1 Derivation of the Dupire forward PDE

Despite this can be done in many different ways, below for the sake of

compatibility we do it in the spirit of [Carr and Nadtochiy (2017)]. First,

differentiating Eq.(5.19) by ν with allowance for Eq.(5.3) yields

∇νPD(S, ν,K) = e−rνeνA [A− r]U(S) = e−rνEQ [A− r]U(S). (5.22)

We take into account the definition of the generator A in Eq.(5.2), and also

remind that at t = 0 we have D0 = S0. Then Eq.(5.22) transforms to

∇νPD(S, ν,K) = −rPD(S, ν,K) + (r − q)S∇SPD(S, ν,K) (5.23)

+ e−rν
1

2
EQ
[
σ2(S)∇2

SU(S)
]
.

However, we need to express the forward equation using a pair of indepen-

dent variables (ν,K) while Eq.(5.22) is derived in terms of (ν, S). To do

this, observe that

e−rνEQ
[
σ2(S)∇2

SU(S)
]

= e−rνEQ
[
σ2(S)δ(K − S)

]
(5.24)

= e−rνEQ
[
σ2(K)δ(K − S)

]
= e−rνEQ

[
σ2(K)∇2

KU(S)
]

= σ2(K)∇2
KP

D(S, ν,K).

1Below for simplicity of notation we drop the subscript ‘0’ in S0.
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where the sifting property of the Dirac delta function δ(S −K) has been

used. Also

−rPD(S, ν,K) + (r − q)S∇SPD(S, ν,K) (5.25)

= e−rνEQ

[
−r(K − S)+ + (r − q)S ∂(K − S)+

∂S

]
= e−rνEQ

[
−r(K − S)+ − (r − q)(K − S)

∂(K − S)+

∂S

+ (r − q)K∂(K − S)+

∂S

]
= e−rνEQ

[
−r(K − S)+ + (r − q)(K − S)+ − (r − q)K∂(K − S)+

∂K

]
= −qPD(S, ν,K)− (r − q)K∇KPD(S, ν,K).

Therefore, using Eq.(5.24) and Eq.(5.25), Eq.(5.22) could be transformed to

∇νPD(S, ν,K) = −qPD(S, ν,K)− (r − q)K∇KPD(S, ν,K)

+
1

2
σ2(K)K2∇2

KP
D(S, ν,K) ≡ AKPD(S, ν,K), (5.26)

AK = −q − (r − q)K∇K +
1

2
σ2(K)K2∇2

K .

This equation looks exactly like the Dupire equation with non-zero interest

rates and continuous dividends, see, e.g., [Ekström and Tysk (2012)] and

references therein. Note, that AK is also a time-homogeneous generator.

5.2.2 Forward partial divided-difference equation

Our final step is to apply the linear differential operator AK defined in

Eq.(5.26) to both parts of Eq.(5.20). Using time-homogeneity of Dt and,

again, the Dupire equation Eq.(5.26), we obtain

−qP (S, T,K)− (r − q)K∇KP (S, T,K) +
1

2
σ2(K)∇2

KP (S, T,K) (5.27)

=

∫ ∞
0

pe−pν
[
−qPD(S, ν,K)− (r − q)K∇KPD(S, ν,K)

+
1

2
σ2(K)∇2

KP
D(S, ν,K)

]
dν =

∫ ∞
0

pe−pν∇νPD(S, ν,K)dν

= −pPD(S, 0,K) + p

∫ ∞
0

PD(S, ν,K)pe−pνdν

= p
[
P (S, T,K)− PD(S, 0,K)

]
= p [P (S, T,K)− P (S, 0,K)] ,

where in the last line Eq.(5.21) was taken into account.
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Thus, finally P (S, T,K) solves the following problem

−qP (S, T,K)− (r − q)K∇KP (S, T,K) +
1

2
σ2(K)∇2

KP (S, T,K) (5.28)

=
P (S, T,K)− P (S, 0,K)

X(T )
, P (S, 0,K) = (K − S)+.

At r = q = 0 this equation translates to the corresponding equation in

[Carr and Nadtochiy (2017)]. In contrast to the Dupire equation which

belongs to the class of PDE, Eq.(5.28) is an ODE, or, more precisely, a

partial divided-difference equation (PDDE), since the derivative in time in

the right hands part is now replaced by a divided difference. In the form of

an ODE it reads[
1

2
σ2(K)∇2

K − (r − q)K∇K −
(
q +

1

X(T )

)]
P (S, T,K) = −P (S, 0,K)

X(T )
.

(5.29)

This equation could be solved analytically for some particular forms of the

local volatility function σ(K) which are considered later in this Chapter.

Also in the same way a similar equation could be derived for the Call option

price C0(S, T,K) which reads[1

2
σ2(K)∇2

K − (r − q)K∇K −
(
q +

1

X(T )

)]
C0(S, T,K) = −C0(S, 0,K)

X(T )
,

C0(S, 0,K) = (S −K)+. (5.30)

Solving Eq.(5.29) or Eq.(5.30) provides the way to determine σ(K)

given market quotes of Call and Put options with maturity T . However,

this allows calibration of just a single term. Calibration of the whole local

volatility surface, in principle, could be done term-by-term (because of the

time-homogeneity assumption) if Eq.(5.29), Eq.(5.30) could be generalized

to this case. We consider this in the following Section.

5.3 Local variance piece-wise constant in time

To address calibration of multiple smiles, we need to relax some assumptions

about time-homogeneity of the process Dt defined in Eq.(5.1). This includes

several steps which are described below in more detail.

5.3.1 Local variance

Here we assume that the local variance σ(Dt) is no more time-homogeneous,

but a piece-wise constant function of time σ(Dt, t).



January 3, 2020 20:32 Fitting Local Volatility – 9in x 6in b3761-main page 110

110 Fitting Local Volatility

Let T1, T2, . . . , TM be the time points at which the variance rate σ2(Dt)

jumps deterministically. In other words, at the interval t ∈ [T0, T1), the

variance rate is σ2
0(Dt), at t ∈ [T1, T2) it is σ2

1(Dt), etc. This can be also

represented as

σ2(Dt, t) =

M∑
i=0

σ2
i (Dt)wi(t), (5.31)

wi(t) ≡ 1t−Ti − 1t−Ti+1
, i = 0, . . . ,M, T0 = 0, TM+1 =∞,

1x =

{
1, x ≥ 0

0, x < 0.

Note, that
M∑
i=0

wi(t) = 1t − 1t−∞ = 1, ∀t ≥ 0.

Therefore, in case when all σ2
i (Dt) are equal, i.e., independent on index i,

Eq.(5.31) reduces to the case considered in the previous Sections.

It is important to notice that our construction implies that the volatility

σ(Dt) jumps as a function of time at the calendar times T0, T1, . . . , TM , and

not at the business times ν determined by the gamma clock. Otherwise, the

volatility function would change at random (business) times which means

it is stochastic. But this definitely lies out of scope of our model. Therefore,

we need to change Eq.(5.31) to

σ2(DΓX(t)
,ΓX(t)) =

M∑
i=0

σ2
i (Dt)w̄i(EQ(ΓX(t))), (5.32)

w̄i(t) = 1X−1(t)−Ti − 1X−1(t)−Ti+1
, i = 0, . . . ,M,

X−1(t) =
1

q − r
log [1− (r − q)t] .

Hence, when using Eq.(5.6) we have

σ2(Dt, t)
∣∣∣
t=ΓX(t)

=

M∑
i=0

σ2
i (Dt)w̄i(X(t)) =

M∑
i=0

σ2
i (Dt)wi(t). (5.33)

Accordingly, if the calendar time t belongs to the interval T0 ≤ t < T1,

the infinitesimal generator A of the semigroup T Dν is a function of σ(Dt)

(and not on σ(Dν)). As at T0 ≤ t < T1 we assume σ(D) = σ0(D), i.e., is

constant in time, it doesn’t depend of ν. Thus, A (which for this interval

of time we will denote as A0) is still time-homogeneous.

Similarly, one can see, that for T1 ≤ t < T2 the infinitesimal generator

A1 of the semigroup T Dν is also time-homogeneous and depends on σ1(D),

etc.
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5.3.2 Bochner subordination

We start with re-definition of Eq.(5.18), Eq.(5.19). We now define the

European Put value with maturity T at the evaluation time t = X(T1)

in the ELVG model

P (S0, T1 + T,K) = T ST [e−rTP (S0, T1,K)]. (5.34)

And, clearly we are interesting in the value of T to be T = T2 − T1.

Similarly, we define the European Put value with maturity ν at the

evaluation time t = T1 in the model given by Eq.(5.1) as

PD(S0, T1 + ν,K) = T Dν [e−rνP (S0, T1,K)]. (5.35)

By these definitions

P (S0, T1 + T,K)
∣∣∣
T=0

= PD(S0, T1 + ν,K)
∣∣∣
ν=0

= P (S0, T1,K)].

In contrast to Eq.(5.20), in case of multiple smiles at t > T1 we need to

change the definition of t in Eq.(5.16) from t 7→ X(t) to

t 7→ X(T1 + t)−X(T1) ≡ ∆x(T1, t). (5.36)

This definition implies two observations.

First, function ∆x(T1, t) starts at zero at t = 0 and is an increasing

function of time. Also, in case r = q = 0 we have ∆x(T1, t) = t. Therefore,

∆x(T1, t) can be used as a good clock. Accordingly, similar to Eq.(5.5) we

have

EQ[Γ∆x(T1,t)] = ∆x(T1, t). (5.37)

Second, a proof that in our model the discounted stock price is a martingale

given in Section 5.1 could be repeated for times t : T1 < t ≤ T2. When

doing so, at t > T1 we reset the definition of St to

ST1+t = DΓ∆x(T1,t)
, t ≥ 0.

Then instead of Eq.(5.10) we now have

EQ[dST1+t] = EQ[dDΓ∆x(T1,t)
] (5.38)

= µEQ[DΓ∆x(T1,t)
dΓ∆x(T1,t)] + EQ[σ(DΓ∆x(T1,t)

)dWΓ∆x(T1,t)
]

= µEQ[DΓ∆x(T1,t)
]d∆x(T1, t) = µEQ[DΓ∆x(T1,t)

]dX(T1 + t).

On the other hand,

EQ[d
(
e(q−r)(T1+t)ST1+t

)
] = e(q−r)(T1+t) {(q − r)EQ[ST1+t]dt+ dEQ[ST1+t]}

= e(q−r)t[µ+ (q − r)ST1e
−(r−q)T1 ]dt. (5.39)
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One can check, that with µ = r − q the RHS of Eq.(5.39) vanishes,

therefore this construction can be used for option pricing.

The definition in Eq.(5.36) implies that parameter t of the Gamma

random clock is reset at the point T1, i.e., at 0 ≤ t ≤ T1 it is t 7→ X(t) =

X(t)−X(0), while at T1 < t ≤ T2 it is t 7→ X(T1 + t)−X(T1). Using the

definition of wi(t) in Eq.(5.31), this could be written as

t 7→
M∑
i=0

wi(Ti + t)[X(Ti + t)−X(Ti)]. (5.40)

Resetting t was also first proposed in [Carr and Nadtochiy (2017)] but in a

different form.

Then, the Bochner integral in Eq.(5.16) transforms to

T ST P (S, T1,K) =

∫ ∞
0

T Dν P (S, T1 + ν,K)
νm−1e−νm/∆X(T1,T )

(t∗)mΓ(m)
dν. (5.41)

Since for a tractability reason we still want to have m ≡ ∆X(T1, T )/t∗ = 1.

we need to redefine t∗ in accordance with Eq.(5.40). Based on that, the

Bochner integral in Eq.(5.20) now finally reads

P (S, T1 + T,K) =

∫ ∞
0

PD(S, T1 + ν,K)pe−pνdν, p ≡ 1/∆X(T1, T ).

(5.42)

5.3.3 Forward partial divided-difference equation for the

second term

Now we need to derive a Forward partial divided-difference equation for

the second term T2 similar to how this is done in Section 5.2.2. Obviously,

the Put price PD(S0, T1 +ν,K) solves the same Dupire equation Eq.(5.26).

Therefore, proceeding in the same way as in Section 5.2.2, we apply linear

differential operator L defined in Eq.(5.26) to both parts of Eq.(5.42). Us-

ing time-homogeneity of Dt at the interval [T1, T2) and again the Dupire

equation Eq.(5.26), we obtain

−qP (S, T1 + T,K)− (r − q)K∇KP (S, T1 + T,K)

+
1

2
σ2(K)∇2

KP (S, T1 + T,K) (5.43)

=

∫ ∞
0

pe−pν
[
− qPD(S, T1 + ν,K)− (r − q)K∇KPD(S, T1 + ν,K)

+
1

2
σ2(K)∇2

KP
D(S, T1 + ν,K)

]
dν =

∫ ∞
0

pe−pν∇νPD(S, T1 + ν,K)dν
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= −pPD(S, T1,K) + p

∫ ∞
0

PD(S, T1 + ν,K)pe−pνdν

= p
[
P (S, T1 + T,K)− PD(S, T1,K)

]
= p [P (S, T1 + T,K)− P (S, T1,K)] .

Finally, taking T = T2−T1 we obtain an ODE for the Put price P (S, T2,K).[1

2
σ2(K)∇2

K − (r − q)K∇K −
(
q +

1

X(T2)−X(T1)

)]
P (S, T2,K)

= − P (S, T1,K)

X(T2)−X(T1)
. (5.44)

Here the local variance function σ2(K) = σ2
1(K) as it corresponds to the

interval (T1, T2] where the above ODE is solved.

We continue in the same way to derive an ODE for the Put price

P (S, Ti,K), i = 1, . . . ,M , which finally reads[1

2
σ2(K)∇2

K − (r − q)K∇K −
(
q +

1

X(Ti)−X(Ti−1)

)]
P (S, Ti,K)

= − P (S, Ti−1,K)

X(Ti)−X(Ti−1)
. (5.45)

This is a recurrent equation that can be solved for all i = 1, . . . ,M sequen-

tially starting with i = 1 subject to some boundary conditions. The natural

boundary conditions for the Put option price are, [Hull (1997)]

P (S, Ti,K) = 0, K → 0,

P (S, Ti,K) = DiK −QiS ≈ DiK, K →∞,
(5.46)

where Di = e−rTi is the discount factor, and Qi = e−qTi .

A similar equation can be obtained for the Call option prices, which

reads[1

2
σ2(K)∇2

K − (r − q)K∇K −
(
q +

1

X(Ti)−X(Ti−1)

)]
C(S, Ti,K)

= − C(S, Ti−1,K)

X(Ti)−X(Ti−1)
, (5.47)

subject to the boundary conditions

C(S, Ti,K) = QiS, K → 0,

C(S, Ti,K) = 0, K →∞. (5.48)

A more careful analysis shows that the above boundary conditions are

not rigorous, while are a good approximation of a the real boundary condi-

tions. This analysis is presented in the next Chapter in Section 6.2.4. Since
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our equations are piecewise constant in time, i.e. discrete, the boundary

conditions turns out to be also discrete. But they converge to the standard

boundary conditions in the continuous case (Dupire). These conditions are

constructed using some analog of discrete compounding which is natural

for the LVG model, again see Section 6.2.4.

5.4 Solution of the ODE Eq.(5.45)

Below we use the approach similar to [Itkin and Lipton (2018)] by assuming

the local variance to be a piecewise linear continuous function of strike. In

contrast to [Itkin and Lipton (2018)], instead of a standard local volatility

model we use the ELVG model. As the result, instead of a partial differential

(Dupire) equation, we face a problem of solving the ODE in Eq.(5.45).

It is worth noticing, however, that for any piecewise model of the local

variance/volatility, at edge intervals where strikes are close either to 0 or

to infinity one has to switch to the local variance linear in the log-strike

because of Roger Lee’s moment formula, [Lee (2004)]. Thus, the whole local

variance/volatility model becomes a combination of the original model at

the internal intervals and local variance linear in log-strike at the edge

intervals. In this Chapter we neglect this to illustrate our construction in

more transparent way. However, we will give the full consideration of this

approach in Chapter 6.

We proceed by first, doing a change of the dependent variable from

P (S, Tj ,K) to

V (S, Tj ,K) = P (S, Tj ,K)−DjK,

which is known as a covered Put. The advantage of the covered Put is that

according to Eq.(5.46) its price obeys homogeneous boundary conditions.

Using this definition we now re-write Eq.(5.45) in a more convenient

form (while with some loose of notation)

− v(x)Vx,x(x) + b1xVx(x) + b0,jV (x) = cj , (5.49)

b1 = (r − q)pj , b0,j = qpj + 1, cj = V (Tj−1, x) + βx,

pj = X(Tj)−X(Tj−1) > 0, x =
K

S
, V (x) = V (S, Tj , x),

v(x) = pj
σ2(x)

2S2
, β = −S[Dj(1 + pjr)−Dj−1].

In Eq.(5.49) x is the inverse moneyness. In what follows we also assume

that r > q > 0, but this assumption could be easily relaxed.
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Further, suppose that for each maturity Tj , j ∈ [1,M ] the market quotes

are provided at a set of strikes Ki, i = 1, . . . , nj where the strikes are as-

sumed to be sorted in the increasing order. Then the corresponding contin-

uous piecewise linear local variance function vj(x) on the interval [xi, xi+1]

reads

vj,i(x) = v0
j,i + v1

j,ix, (5.50)

where we use the super-index 0 to denote a level v0, and the super-index 1

to denote a slope v1. Subindex i = 0 in v0
j,0, v

1
j,0 corresponds to the interval

(0, x1]. Since vj(x) is continuous, we have

v0
j,i + v1

j,ixi+1 = v0
j,i+1 + v1

j,i+1xi+1, i = 0, . . . , nj − 1. (5.51)

The first derivative of vj(x) experiences a jump at points xi, i ∈ Z∩ [1, nj ].

We also assume that v(x, T ) is a piecewise constant function of time, i.e.,

v0
j,i, v

1
j,i don’t depend on T on the intervals [Tj , Tj+1), j ∈ [0,M − 1], and

jump to new values at the points Tj , j ∈ Z ∩ [1,M ].

With the above assumptions in mind, Eq.(5.49) can be solved by induc-

tion. One starts with T0 = 0, and on each time interval [Tj−1, Tj ], j ∈
Z ∩ [1,M ] solves the problem Eq.(5.49) for V (x) 7→ P (S, Tj , x)− djSx.

Since v(x) is a piecewise linear function, the solution of Eq.(5.49) can

also be constructed separately for each interval [xi−1, xi]. By taking into

account the explicit representation of v(x) in Eq.(5.50), from Eq.(5.49) for

the i-th spatial interval we obtain

−(b2 + a2x)Vxx(x) + b1xVx(x) + b0V (x) = c (5.52)

b2 = v0
j,i, a2 = v1

j,i.

We proceed by introducing a new independent variable z = (b2 +

a2x)b1/a
2
2, z ∈ R+, so that Eq.(5.52) transforms to

−zVzz(z) + (z − q2)Vz(z) + q1V (z) = χ (5.53)

q1 = b0/b1, q2 = b2b1/a
2
2, χ = c/b1.

The Eq.(5.53) is an inhomogeneous Laplace equation, [Polyanin and

Zaitsev (2003)], page 155. It is well known that if y1 = y1(z), y2 = y2(z)

are two fundamental solutions of the corresponding homogeneous equation,

then the general solution of Eq.(5.53) can be represented as

V (z) = C1y1(z) + C2y2(z) +
1

b1
I12(z) (5.54)

I12(z) = −y2(z)

∫
y1(z)f(z)

Wz
dz + y1(z)

∫
y2(z)f(z)

Wz
dz ≡ I1 + I2,

f(z) = V (Tj−1, z)− k1 − k2z, k1 = β
b2
a2
, k2 = −β a2

b1
,
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where W = y1(y2)z−y2(y1)z is the so-called Wronskian, and β is defined in

Eq.(5.49). Then the problem is to determine suitable fundamental solutions

of the homogeneous Laplace equations. Based on [Polyanin and Zaitsev

(2003)], if a2 6= 0, they read

yi(z) = Vi(q1, q2, z), i = 1, 2 (5.55)

Here Vi(a, b, z) is an arbitrary solution of the degenerate hypergeometric

equation, i.e., Kummer’s function, [Abramowitz and Stegun (1964)]. Two

types of Kummer’s functions are known, namely M(a, b, z) and U(a, b, z),

which are Kummer’s functions of the first and second kind.

It is known, that there exist several pairs of such independent solutions.

Therefore, for every spatial interval in z among all possible fundamental

pairs we have to determine just one which is numerically satisfactory at

this interval (see [Olver (1997)] for the detailed definition of satisfactory

solutions and the corresponding discussion). Since our boundary conditions

are set at zero and positive infinity, we need a numerically satisfactory

solution for the positive half of the real line.

Similar to [Itkin and Lipton (2018)], in the vicinity of the origin we

choose the numerically satisfactory pair as, [Olver (1997)]

y1(χ) = M (q1, q2, z) = ezM(q2 − q1, q2,−z), (5.56)

y2(χ) = z1−q2M (q1 − q2 + 1, 2− q2, z) = z1−q2ezM(1− q1, 2− q2,−z),
W = sin(πq2)z−q2ez/π.

However, in the vicinity of infinity the numerically satisfactory pair is,

[Olver (1997)]

y1(χ) = U (q1, q2, z) = z1−q2U(q1 − q2 + 1, 2− q2, z), (5.57)

y2(χ) = ezU (q2 − q1, q2,−z) = ezz1−q2U(1− q1, 2− q2,−z),
W = (−1)q1−q2ezz−q2 .

As two solutions J1(q1, q2, z), J2(q1, q2, z) are independent, Eq.(5.54) is

a general solution of Eq.(5.53). Two constants C1, C2 should be determined

based on the boundary conditions for the function V (z).

The boundary conditions for the ODE Eq.(5.52) in a strike K space (or

in x space) should be set at zero and infinity. Based on the usual shape

of the local variance curve and its positivity, for x → 0, we expect that

v1
j,i < 0. Similarly, for x→∞ we expect that v1

j,i > 0. In between these two

limits the local variance curve for a given maturity Tj is assumed to be con-

tinuous, but the slope of the curve could be both positive and negative, see,

e.g., [Itkin (2015)] and references therein. Also, by definition z = vj,i, and
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Dom(z) = R+. Thus, at high strikes a2 = v1
j,i > 0. Therefore, the boundary

conditions for Eq.(5.53) should be set at z = b2 (which corresponds to the

boundary K = 0) and at z →∞. These are the boundary conditions given

in Eq.(5.46).

5.5 Computation of the source term

Computation of the source term pI12 in Eq.(5.54) could be achieved in

several ways. The most straightforward one is to use numerical integration

as the Put price P (x, Ti−1) as a function of x is already known when we

solve Eq.(5.49) for T = Ti. However, as this is discussed in [Itkin and Lipton

(2018)], and also in more detail in Chapter 2, function P (x, Ti−1) is known

only for a discrete set of points in x. Therefore, some kind of interpolation

is necessary to find its values at the other points.

5.5.1 Computing the integrals in Eq.(5.54) far from z = 0

Using the interpolation scheme described in Section 2.3, consider the

first integral in Eq.(5.54). To remind, we compute it at some interval

z ∈ [zi, zi+1], i ∈ Z ∩ [1, nj ]. Picking together the solutions in Eq.(5.56)

with the interpolation scheme for P (z, Tj−1) and Wronskians in Eq.(5.56),

and substituting them into the first integral in Eq.(5.54) we obtain∫
y2(z)f(z, Tj−1)

Wz
dz = A

[
−B0 +B1M(−2− q1,−1− q2,−z) (5.58)

+B2M(−1− q1,−q2,−z) +B3M(−q1, 1− q2,−z)
]
,

A =
1

b21q1

π(1− q2) csc(πq2),

B0 =
1

a2
2(q1 + 1)(q1 + 2)

[
a2b1(q1 + 2)

(
a2

2βq2 − b1(q1 + 1)(βb2 − a2γ1)
)

+ γ2

(
2a4

2q2(q2 + 1)− 2a2
2b1b2(q1 + 2)q2 + b21b

2
2(q1 + 1)(q1 + 2)

) ]
,

B1 = 2a2
2γ2

q2(q2 + 1)

(1 + q1)(2 + q1)
,

B2 = (a2b1β − 2b1b2γ2 + 2a2
2γ2z)

q2

1 + q1
,

B3 =
1

a2
2

[
a2b1

(
a2

2βz + a2b1γ1 − βb1b2
)

+ γ2

(
b1b2 − a2

2z
)2]

.
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Similarly ∫
y1(z)f(z, Tj−1)

Wz
dz = Ā

[
B̄1M(q2 − q1, 1 + q2,−z)

+ B̄2 2F2 (q2 − q1, 1 + q2; q2, 2 + q2;−z)

+ B̄3 2F2 (q2 − q1, 2 + q2; q2, 3 + q2;−z)
]
, (5.59)

A = πzq2 csc(πq2)Γ(q2),

B1 =
a2

2γ1 − a2βb2 + b22γ2

a2
2Γ(1 + q2)

,

B2 =
Γ(q2 + 1)

Γ(q2)Γ(2 + q2)b1
(a2β − 2b2γ2)z,

B3 =
Γ(q2 + 1)

Γ(q2)Γ(3 + q2)b21
a2

2(1 + q2)γ2z
2,

where pFq (a1, ..., ap; b1, ..., bq; z) is the generalized hypergeometric func-

tion, [Olver (1997)].

5.5.2 Computing the integrals in Eq.(5.54) far from

z = ±∞

Here we proceed in the same way as in the previous section. Again, we

pick together the solutions in Eq.(5.57) with the interpolation scheme for

P (z, Tj−1) and Wronskians in Eq.(5.57), and substitute them into the first

integral in Eq.(5.54) we obtain∫
y2(z)f(z, Tj−1)

Wz
dz = (−1)q2−q1 [C0J0 + C1J1 + C2J2], (5.60)

Ji =

∫
ziU(1− q1, 2− q2,−z)dz,

C0 =
b22γ2

a2
2

− βb2
a2

+ γ1, C1 =
a2β − 2b2γ2

b1
, C2 =

a2
2γ2

b21
.

It is known, [Abramowitz and Stegun (1964)], that

J0 = − 1

q1
U(−q1, 1− q2,−z).
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Then, J1, J2 can be found using integration by parts to yield

J1 = zJ0 +
1

q1(1 + q1)
U(−1− q1,−q2,−z),

J2 = zJ1 +
1

q1(2 + 3q1 + q2
1)
U(−2− q1,−1− q2,−z)

− z 1

q1(1 + q1)
U(−1− q1,−q2,−z).

Similarly∫
y1(z)f(z, Tj−1)

Wz
dz = (−1)q2−q1 [C0J0 + C1J1 + C2J2], (5.61)

Ji =

∫
zie−zU(1 + q1 − q2, 2− q2, z)dz.

The integrals Ji have been considered in [Itkin and Lipton (2018)] using

the approach of [Ng and Geller (1970)]. Borrowing from there the result

J0 =

∫
e−zU(1 + q1 − q2, 2− q2, z)dz = −e−zU(q1 − q2, 1− q2, z),

and using integration by parts, we obtain

J1 = zJ0 + e−zU(q1 − q2 − 1,−1− q2, z),

J2 = zJ1 −
∫
J1dz = (z − 1)J1 −

∫
e−zU(q1 − q2 − 1,−1− q2, z)dz

= (z − 1)J1 + e−zU(q1 − q2 − 2,−2− q2, z).

5.5.3 Some additional notes

Based on the no-arbitrage interpolation and some analytics proposed in this

Section, we managed to find the solution Eq.(5.54) of the forward equation

Eq.(5.49) in closed form . This solution by construction is arbitrage free at

any interval where the local variance function defined in Eq.(5.50) is linear.

In other words we proved, that if we consider, say 3 strikes 0 < K1 < K2 <

K3 < ∞ such that, e.g., x1 = K1/S ∈ [xi, xi+1], x2 = K2/S ∈ [xi, xi+1],

x3 = K3/S ∈ [xi, xi+1], then the solution at these 3 points obeys no-

arbitrage conditions.

5.6 Calibration of smile for a given term Ti

Calibration problem for the local volatility model can be formulated as

follows: given market quotes of Call and/or Put options corresponding to a
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set of N strikes {K} := Kj , j ∈ [1, N ] and same maturity Ti, find the local

variance function σ(K) such that these quotes solve equations in Eq.(5.45),

Eq.(5.47).

As mentioned in [Itkin and Lipton (2018)], there are two main ap-

proaches to solving this problem. The first approach attempts to construct

a continuous implied volatility (IV) surface matching the market quotes

by using either some parametric or non-parametric regression, and then

generates the corresponding LV surface via the well-known relationship be-

tween the local and implied variance s also known as the Dupire formula,

see, e.g., [Itkin (2015)] and references therein. To be practically useful, this

construction should guarantee no arbitrage for all strikes and maturities,

which is a serious challenge for any model based on interpolation. If the

no-arbitrage condition is satisfied, then the LV surface can be calculated

using the Dupire formula. The second approach relies on the direct solution

of the corresponding forward equation (which is the Dupire equation in the

Black-Scholes world, or Eq.(5.47), Eq.(5.45) in our model) using either an-

alytical or numerical methods. The advantage of this approach is that it

guarantees no-arbitrage. However, the problem of the direct solution can be

ill-posed, [Coleman et al. (2001)], and is rather computationally intensive.

In this Section we show that the second approach could be significantly

simplified when using the ELVG model, so calibration of the smile could be

done very fast and accurate.

Further, for the sake of certainty, suppose that all known market quotes

are Puts, despite this can be easily relaxed. Also, suppose that the shape of

a local variance is given by some function σj(K) = fj(K, p1, . . . , pL), where

p1, . . . , pL is a set of the model parameters to be determined. For instance,

in [Lipton and Sepp (2011a); Carr and Nadtochiy (2017)] the local variance

is assumed to be a piecewise constant function of strike, while in [Itkin and

Lipton (2018)] this is a piecewise linear function of strike.

We also assume the local variance to be a piecewise linear function of

strike. Moreover, for our model we obtained a closed form representation

of the Put option prices via parameters of the model given in Sections 5.4,

5.5. Therefore, calibration of the model to the given set of smiles could be

provided as follows. First, using the above-mentioned closed form solution

for a fixed interval in x where parameters of the model are constant, we

construct the combined solution valid for all x ∈ R+. At the second step,

the parameters of the local variance function v0
j,i, v

1
j,i can be found together

with the integration constants C1, C2 in Eq.(5.54) by solving a system of

non-linear algebraic equations.
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Figure 5.1: Construction of the combined solution in x ∈ R+: 1 (solid line —

the real (unknown) local variance curve, 2 (dashed line) — a piecewise linear

solution.

5.6.1 The combined solution in x ∈ R+

Suppose that the Put prices for T = Tj are known for nj ordered strikes.

The location of these strikes on the x line is schematically depicted in

Fig. 5.1.

Recall, that the Put prices are given by Eq.(5.54), which in a more

convenient form at the interval xi−1 ≤ x ≤ xi and at T = Tj can be

represented as

Pi(x) = C
(1)
j,i J1(q1, q2, z) + C

(2)
j,i J2(q1, q2, z) +

1

b1
I12(z) +DjK, (5.62)

z ≡ (b2 + a2x)b1/a
2
2 = (v0

j,i + v1
j,ix)b1/a

2
2.

Here, for consistency we change notation of two integration constants which

belong to the i-th interval in x and j-th maturity to C
(1)
j,i , C

(2)
j,i .

For the open interval B1 in Fig. 5.1, since function Kν(z) diverges when

z → 0, we have to put C
(1)
j,1 = 0 as the boundary condition.2 Therefore,

Eq.(5.62) contains just one yet unknown constant C
(2)
j,1 . For the closed

intervals x ∈ [xi−1, xi], i ∈ [2, nj ] the solutions in Eq.(5.62) have two

2Actually, since x → 0 implies z = v → b2, so b2 should be non-negative, b2 ≥ 0.

Therefore, the only case when z → 0 at x→ 0 is when b2 = 0.
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yet unknown constants C
(1)
j,i , C

(2)
j,i , since x is finite on the corresponding

intervals, and both solutions y1(x), y2(x) are well-behaved. Finally, for the

interval x ∈ [xnj ,∞), according to the boundary conditions in Eq.(5.46) we

must set C
(2)
2,nj+1 = 0.

Rigorously speaking, we also have to show that in the limits x→ 0 and

x → ∞ the source term I12(z) in Eq.(5.54) also vanishes. This could be

done similar to Proposition 2 in [Itkin and Lipton (2018)].

Thus, we have 2nj unknown constants to be determined. Since the

local volatility function vi is continuous at the points xi, i = 1, . . . , nj ,

so should be the Put options prices P (x, Tj). Therefore, we require that

at the points xi, i = 1, ..., nj the solution for Puts and its first deriva-

tive in x should be a continuous function of x. Thus, if the local variance

function is known, the above constants solve a system of 2nj algebraic

equations. This system has a block-diagonal structure where each block is

a 2×2 matrix. Therefore, it can be easily solved with the linear complexity

O(nj).

When computing the first derivatives, we take into account that,

[Abramowitz and Stegun (1964)]

∂M(a, b, z)

∂z
=
a

b
M(a+ 1, b+ 1, z),

∂U(a, b, z)

∂z
= −aU(a+ 1, b+ 1, z),

∂zI12(z) =

[
y′1(z)

y1(z)
I1 +

y′2(z)

y2(z)
I2

]
a2. (5.63)

Therefore, computing the derivatives of the solution doesn’t cause any new

technical problem.

5.6.2 Additional equations for calibration

As we have already mentioned above, the standard way of doing calibra-

tion of the local volatility model would be that described, e.g., in [Itkin and

Lipton (2018)]. Namely, given the maturity Tj and some initial guess of

the local variance parameters v0
j,i, v

1
j,i, ∀i ∈ [1, nj ], the following steps rep-

resented in Panel 1 have to be achieved, e.g., in the standard least-square

method.
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Input: Strikes zi, i ∈ [1, nj ], Put prices V marketi , i ∈ [1, nj ]

Output: v0
j,i, v

1
j,i, ∀i ∈ [1, nj ]

Initialization: The initial guess of v0
j,i, v

1
j,i, ∀i ∈ [1, nj ], the

tolerance ε;

while 1 do

1. Solve the system for C
(1)
j,i , C

(2)
j,i ;

2. Compute Put option prices V (x);

3. Compute the total error ∆ =
∑nj
i=1[V (xi)− V market(xi)]2;

if ∆ > ε then

New guess for v0
j,i, v

1
j,i, ∀i ∈ [1, nj ];

else

break;

end

end

Algorithm 1: Calibration of the local volatility model using a least-

square method.

Here V market(zi) are the market Put quotes at the given strikes and ma-

turity. Obviously, when the number of calibration parameters (strikes) is

high, this algorithm is slow even if the closed form solution is known and

can be used at Step 2. Things become even worse when a numerical solution

at Step 2 has to be used if the closed form solution is not available.

However, in our case this tedious algorithm can be fully eliminated.

Indeed, at every point i in strike space, i ∈ [1, nj ] we have four unknown

variables v0
j,i, v

1
j,i, C

(1)
j,i , C

(2)
j,i . We also have four equations which contain

these variables, namely

Pi(x)|x=xi = Pi+1(x)|x=xi , (5.64)

Pi(x)|x=xi = Pmarket(xi),

∂Pi+1(x)

∂x

∣∣∣
x=xi

=
∂Pi(x)

∂x

∣∣∣
x=xi

,

v0
j,i + v1

j,ixi = v0
j,i+1 + v1

j,i+1xi, i = 1, . . . , nj .
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Also, based on Eq.(5.51), the last line in Eq.(5.64) could be re-written as a

recurrent expression

v0
j,i = v0

j,nj +

nj∑
k=i+1

xk(v1
j,k − v1

j,k−1), i = 0, . . . , nj − 1. (5.65)

The Eq.(5.64) is a system of 4nj nonlinear equations with respect to

4(nj + 1) variables v0
j,i, v

1
j,i, C

(1)
j,i , C

(2)
j,i . We remind that according to the

boundary conditions C
(1)
j,1 = C

(2)
j,nj

= 0. Therefore, we need two additional

conditions to provide a unique solution. For instance, often traders have an

intuition about the asymptotic behavior of the volatility surface at infinity,

which, according to our construction, is determined by v1
j,nj

and v1
j,0.

Overall, solving the nonlinear system of equations Eq.(5.64) provides the

final solution of our problem. This can be done by using standard methods,

and, thus, no any optimization procedure is necessary. However, a good

initial guess still would be helpful for a better (and faster) convergence.

5.6.3 Smart initial guess

The initial guess of the solution of Eq.(5.62) can be constructed, for in-

stance, as follows. We take advantage of the fact that according to Eq.(5.49)

the local variance function v(x) could be explicitly expressed as

v(x) =
b1xVx(x) + b0V (x)− c

Vx,x(x)
. (5.66)

Given maturity Tj and approximating derivatives by central finite dif-

ferences with the second order of approximation in step h in the strike space

(see, e.g. [Itkin (2017)]), Eq.(5.66) can be represented in the form

v0
j,i + v1

j,ixi =
b1xVx(xi) + b0,jV (xi)− cj

Vx,x(xi)
, (5.67)

Vx(xi) = α−1V (xi−1) + α0V (xi) + α1V (xi+1),

Vx,x(xi) = δ−1V (xi−1) + δ0V (xi) + δ1V (xi+1),

α−1 = − hi+1

hi(hi+1 + hi)
, α0 =

hi+1 − hi
hi+1hi

, α1 =
hi

hi+1(hi+1 + hi)
.

δ−1 =
2

hi(hi+1 + hi)
, δ0 = − 2

hi+1hi
, δ1 =

2

hi+1(hi+1 + hi)
.

hi = xi − xi−1, i ∈ [1, nj ].
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Further, associating Put prices P (S, Tj , xi) with the given market quotes,

the right hands side of the first line in Eq.(5.67) can be found explicitly.

This then can be combined with the last line of Eq.(5.64) to produce a

system of 2(nj − 1) equations for v1
j,i and v1

j,i, i ∈ [1, nj ]. Finally, we take

into account the asymptotic behavior of the volatility surface in x at zero

and infinity, which, according to our construction, is determined by v1
j,nj

and v1
j,0 and is assumed to be known. Thus, we obtain a closed system

of 2(nj − 1) linear equations with a banded matrix which can be easily

solved with a linear complexity. This provides an explicit representation

of the local variance function over the whole set of intervals in the strike

space determined according to our approximation where the continuous

derivatives are replace by finite differences.

Note, that at the first and last strike intervals the approximation of the

first and second derivatives by central finite differences should be replaced

by one-sided approximations, in more detail see [Itkin (2017)], chapter 2.

It could also happen that at some strikes this solution (the smart guess)

gives rise to a negative local variance. In such a case we do another step

which is a kind of smoothing. Namely, we exclude from the initial guess all

values where the local variance is negative and using the remaining points

create a spline. Then the negative values in the initial guess are replaced

by those given by the constructed spline.

The final step utilizes the exact representation Eq.(5.62) of the Put price

in the ELVG model. As the variance function is already known from the

previous step, this equation contains two yet unknown constants C
(1)
j,i , C

(2)
j,i .

Accordingly, they can be found by solving the system of 2 linear equations

represented by the first and third lines of Eq.(5.64). Then, after this last

step is complete, all unknown variables are determined, and thus found

solution could be used as an educated initial guess for solving Eq.(5.64)

numerically.

5.7 Asymptotic solutions

In many practical situations either some coefficients a2 = v1
j,i, or both

b2 = v0
j,i, a2 = v1

j,i in Eq.(5.52) are small. Of course, in that case the general

solution Eq.(5.62) remains valid. However, in this case when computing

the values of Kummer functions numerically, numerical errors significantly

grow. This is especially pronounced when computing the integral I12. The

main point is that either the Kummer function takes a very small value,

and then the constants C
(1)
j,i , C

(2)
j,i should be big to compensate, or vice
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versa. Resolution of this requires a high-precision arithmetics, and, which

is more important, taking many terms in a series representation of the

Kummer functions, which significantly slows down the total performance

of the method.

On the other hand, to eliminate these problems we can look for asymp-

totic solutions of Eq.(5.52) taking into account the existence of small param-

eters from the very beginning. This approach was successfully elaborated

on in [Itkin and Lipton (2018)], and below we proceed in a similar spirit.

5.7.1 Small a2

We can build the solution of Eq.(5.53) directly using an independent vari-

able x (so not switching to the variable z). We represent it as a series on

the small parameter a2, i.e.

V (x) =

∞∑
i=0

ai2Vi(x). (5.68)

In the zero-order approximation by plugging Eq.(5.68) into Eq.(5.53) and

neglecting by terms proportional to a2 � 1 we obtain the following equation

for V0(x)

−b2Vxx(x) + b1xVx(x) + b0V (x) = c. (5.69)

This equation is simpler than Eq.(5.62). Still, its solution is given by a

general formula

V (x) = C1y1(x) + C2y2(x) + I12(x),

but the fundamental solutions y1(x), y2(x) now read

y1(x) = H

(
−b0
b1
,

√
b1
2b2

x

)
, y2(x) = M

(
b0
2b1

,
1

2
,
b1
2b2

x2

)
,

where H(a, x), a, x ∈ R is the generalized Hermite polynomial Ha(x),

[Abramowitz and Stegun (1964)].

5.7.2 Small |z|

Based on the definition of z = (b2+a2x)b1/a
2
2, this could occur in two cases:

either at some finite interval in the strike space |a2| � |b1x|, |a2| � |b2|,
or just z is small, so b2 and a2 have the opposite signs. In any case

we have a small parameter under the high-order derivative. This equa-

tion belongs to the class of singularly perturbed differential equations,
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[Wasow (1987)]. It can be solved by using either the method of match-

ing asymptotic expansions, [Nayfeh (2000)], or the method of boundary

functions, [Vasil’eva et al. (1995)]. The latter was used in [Itkin and Lipton

(2018)] in a similar situation, so for further details we refer a reader to that

paper.

However, we can partly eliminate this by constructing solutions of

Eq.(5.52) using the original variable x. Then we have to consider vari-

ous cases where instead of a small parameter z some other combinations of

parameters could be small or large. But if so, a general solution as a func-

tion of the original independent variable x could be represented as regular

series on the new small parameter. Then, truncating the series, one gets a

simplified solution.

To make it more transparent let us represent the general solution of

Eq.(5.52) expressed in variable x, rather than in z, as this was done in

Eq.(5.54)

V (x) = C
(1)
j,i y1(x) + C

(2)
j,i y2(x) + I12(x), (5.70)

yi(x) = ak2(b2 + a2x)kVi
(
−1− b0

b1
+
b1b2
a2

2

, 2− b1b2
a2

2

,
b1
a2

2

(b2 + a2x)

)
,

i = 1, 2, k = 1− b1b2
a2

2

.

Observe, that based on the definition of b1 in Eq.(5.49), b1 ≈ (r− q)∆T , so

usually small. Therefore, small z doesn’t mean that w is necessarily small.

Below we consider two cases.

5.7.2.1 w � 1

As |z| � 1 and w � 1 we have w � |a2
2/b1|. So a2 ≥

√
b1. In this case w � 1

is an actual small argument. Therefore, the general solution Eq.(5.70) can

be expanded into series on small w. The condition 0 < w � 1 implies that

a2 and b2 have the opposite signs. If a2 > 0 (and so b2 < 0), then in the

zero-order approximation we obtain

y1(w) = (a2w)k−1

[
Γ(−k)

Γ(b0/b1)
a2w +O(w2)

]
(5.71)

−
(
b1
a3

2

)1−k
Γ(k − 1)

b1Γ(k + b0/b1)
(a2b1b2 − b0a2w) +O(w2),

y2(w) = (a2w)k−1
[
a2w +O(w2)

]
.

As b1 > 0 we have k − 1 > 0.
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If a2 < 0 and b2 > 0, then both RHS in Eq.(5.71) should be multiplied

by a factor exp(−2iπb1b2/a
2
2).

5.7.2.2 a2
2 � |b1w|

In this case we can also expand the solution in Eq.(5.70) into series on small

z to obtain

y1(z) =
1

Γ(1 + q1 − q2)
[Γ(1− q2)− q1Γ(−q2)z] (5.72)

+ z−q2
[

Γ(q2 − 1)

Γ(q1)
z +O(z2)

]
+O(z2),

y2(w) = 1 +
q1

q2
z +O(z2).

Note, that based on the definition q2 = b2b1/a
2
2, at large a2 the coefficient

q2 could also be small. But z/q2 = 1 + a2x/b2 = w/b2 = O(1).

5.8 Numerical experiments

In our numerical test we use the same data set as in [Itkin (2015); Itkin and

Lipton (2018)]. This is done first, to compare performance and a quality

of the fit for all those models. Also, we already know that these smiles are

difficult to fit precisely, see discussions in [Itkin (2015); Itkin and Lipton

(2018)].

To remind, we take data from http://www.optionseducation.org on XLF

traded at NYSEArca on March 25, 2014. The spot price of the index is S =

22.64, and r = 0.0148, q = 0.01. The option implied volatilities (Icall, Iput)

are given in Tables 5.1,5.2. We take all OTM quotes and some ITM quotes

which are very close to the at-the-money (ATM). When strikes for Calls and

Puts coincide, we take an average of Icall and Iput with weights proportional

to 1−|∆|c and 1−|∆|p respectively, where ∆c,∆p are option Call and Put

deltas.3

We have already mentioned that in our model for each term the slopes

of the smile at plus and minus infinity, v1
j,nj

and v1
j,0, are free parameters.

So often traders have an intuition about these values. However, in our

numerical experiments we take for them just some plausible values. In more
3By doing so we do take into account effects reported in [Ahoniemi (2009)], who pointed

out that the IVs calculated from Call and Put option prices corresponding to the same
strike do not coincide, although they should be equal in theory. Our weights are chosen
according to a pure empirical rule of thumb, and a more detailed investigation of this

effect is required.

http://www.optionseducation.org
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Table 5.1: XLF implied volatilities for the Put options.

T

K,Put
10 11 12 13 14 15 16 17 18 19 19.5 20 20.5 21 21.5 22 23

4/4/2014 39.53 23.77 19.73 16.67
4/11/2014 35.89 30.33 26.62 22.06 18.49 16.11
4/19/2014 32.90 26.79 20.14 15.19 12.93
5/17/2014 37.66 33.27 26.88 23.08 18.94 16.12 13.86
6/21/2014 40.51 37.21 31.41 27.84 23.90 21.07 18.88 16.95 15.82
7/19/2014 36.71 33.35 29.96 26.09 22.81 20.29 18.13 16.30 14.93

12/20/2014 31.98 29.38 27.21 25.30 23.75 22.09 20.67 19.44 18.36 17.60
1/17/2015 42.75 38.79 35.60 33.26 30.94 28.82 26.52 24.96 23.12 21.67 20.29 19.10 17.90 18.07

Table 5.2: XLF implied volatilities for the Put options.

T

K,Call
21 21.5 22 22.5 23 23.5 24 25 26 27 28 29 30

4/4/2014 16.60 14.69 14.40 14.86
4/11/2014 16.89 14.96 14.52 14.77 14.98
4/19/2014 15.79 13.38 15.39
5/17/2014 16.71 14.48 13.75
6/21/2014 16.31 14.78 13.92 14.28 16.58
7/19/2014 16.82 15.24 14.36 14.19 15.20

12/20/2014 17.63 16.61 15.86 15.47 15.12 15.18 15.03
1/17/2015 16.95 17.25 16.23 15.73 15.50 15.58 15.86 16.47
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detail, for a normalized variance v(x) defined in Eq.(5.49), for all smiles

we use v1
j,0 = −0.1, and v1

j,nj
= 0.1. Accordingly, for the instantaneous

variance σ2(x) = 2S2v(x)/pj the slopes at both zero and plus infinity are

time-dependent and can be computed by using the above formula.

When calibrating the model to market data, we use the standard Matlab

fsolve function, and utilize a “trust-region-dogleg” algorithm (see Matlab

documentation on fsolve). Parameter “TypicalX” has to be chosen carefully

to speedup calculations.

The results of this calibration which is done term-by term, are given

in Fig. 5.2. Here each subplot corresponds to a single maturity T (marked

in the legend) and shows market data (discrete points) and computed val-

ues (solid line). It can be seen that this simple local calibration algorithm

provides a very accurate fit for all terms.4

Figure 5.2: Term-by-term fitting of market Put prices constructed using the

whole set of data in Tab. 5.1,5.2.

We constructed the calibration algorithm to be smart enough in a sense

that based on the values of parameters at each iteration it decides itself

which particular solution (full or asymptotic) should be used at this iter-

4Note, that in [Itkin and Lipton (2018)] in the last subplot the fit is not perfect in the
vicinity of X = −0.5, where X = logK/F and F = Se(r−q)T .
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ation. We also observed that all full and asymptotic solutions are utilized

by the algorithm when calibrating these market smiles.

Table 5.3 presents some performance measures of our algorithm. It can

be seen that the elapsed time depends on the number of iterations and

function evaluations necessary to converge to the given tolerance (we use

a relative tolerance ε = 10−4). This, in turn, depends on the number of

evaluated Kummer functions (for the full solution), or number of exponen-

tial and Gamma functions (for the asymptotic solutions). Of course, the

asymptotic solutions are much faster to evaluate, therefore an average time

to calibrate a typical term is less than a second. For the last term 8 in

Tab. 5.3 calibration is slow for two reasons: (i) full solution is used based

on the values of parameters, and (ii) the number of strikes is higher than for

the other terms. But the main reason is that the market data for this term

is quite irregular. In any case, performance of this model is much better

than that reported in both [Itkin (2015)] and [Itkin and Lipton (2018)].

Table 5.3: Performance characteristics of the algorithm in the described

experiment.

Term T , years Elapsed time, sec iterations function evaluations strikes

1 0.0274 0.86 97 1202 6

2 0.0466 2.83 97 1808 9

3 0.0685 1.43 95 1200 6

4 0.1452 0.64 48 433 8

5 0.2411 0.90 37 470 12

6 0.3178 2.98 82 1523 12

7 0.7397 6.60 106 3017 15

8 0.8164 149.67 56 1317 21

The local variance curves obtained as a result of this fitting are given

term-by-term in Fig. 5.3. The corresponding local variance surface is rep-

resented in Fig. 5.4

By comparing the surface with that given in [Itkin and Lipton (2018)],

one can notice that the shape is quite different while for calibration we use

the same market smiles. This is because in [Itkin and Lipton (2018)] the

standard local volatility model is used, where the underlying price follows a

Geometric Brownian motion equipped with an instantaneous local volatility

function, while here the model is quite different.

To look at a more regular surface, we proceed with another example

which is taken from [Balaraman (2016)]. In that paper an implied volatility
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Figure 5.3: Term-by-term fitting of the instantaneous local variance

σ2(x, T ).

surface of S&P500 is presented, and the local volatility surface is con-

structed using the Dupire formula. In our test we take data for the first

12 maturities and all strikes as they are given in [Balaraman (2016)], and

apply our model to calibrate the local variance surface as this is described

in above. When doing so we set v1
j,0 = −0.3, and v1

j,nj
= 0.1 for all

smiles.

The results of this calibration are presented in Figs. 5.5,5.6,5.7.

By construction, our surface preserves no-arbitrage, while for the

approach in [Balaraman (2016)] they have to solve some additional

problems.5

In Table 5.4 we present the performance of our algorithm in this

experiment. It can be seen that here the elapsed time is similar or shorter

as compared with the previous test presented in Table 5.3.

5As this is mentioned in [Balaraman (2016)], the correct pricing of local volatility

surface requires an arbitrage free implied volatility surface. If the input implied volatility

surface is not arbitrage free, this can lead to negative transition probabilities and/or
negative local volatilities and can give rise to mispricing.
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Figure 5.4: The instantaneous local variance surface σ2(x, T ) constructed

by using the proposed approach.

Table 5.4: Performance characteristics of the algorithm for calibration of a

S&P500 surface.

Term T , years Elapsed time, sec iterations function evaluations strikes

1 0.0822 1.09 99 1604 8

2 0.1671 0.56 40 377 8

3 0.2521 2.32 94 1615 8

4 0.3315 1.70 97 1186 8

5 0.4164 0.10 15 64 8

6 0.4986 2.35 111 1600 8

7 0.5836 2.40 111 1584 8

8 0.6658 2.25 131 1604 8

9 0.7507 1.51 95 1072 8

10 0.8356 2.30 98 1603 8

11 0.9178 0.07 13 46 8

12 1.0027 72.80 74 795 8

At the end, it is worth to underline that the ELVG model relies on a

no-arbitrage interpolation, and then constructs a closed-form solution of the
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Figure 5.5: Term-by-term fitting of market S&P500 Put prices constructed

using data of [Balaraman (2016)].

Dupire-wise ODE in terms of hypergeometric and generalized hypergeomet-

ric functions. An important advantage of this approach is that calibration

of the model to market smiles does not require solving any optimization

problem, and can be done term-by-term by solving a system of non-linear

algebraic equations for each maturity, which, in general, is significantly

faster, especially since we provide an algorithm for constructing a smart

initial guess. Also, we provide various asymptotic solutions which allow a

significant acceleration of the numerical solution and improvement of its

accuracy in the corresponding cases (i.e, when parameters of the model at

some iteration obey the conditions to apply the corresponding asymptotic).

In principle, somebody could claim that solving a system of nonlinear

equations with a generic solver is not much different from solving a nonlinear

optimization problem. Obviously, when our ODE is used as an alternative

to the Dupire equation, the difference comes from the fact that calibration

based on the Dupire equation requires solving this PDE at every iteration

by either numerically, or semi-analytically by using a Laplace transform,

which is obviously slower. As was mentioned in Introduction there exist
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Figure 5.6: Term-by-term fitting of the instantaneous local variance σ2(x, T )

for S&P500.

Figure 5.7: The instantaneous local variance surface σ2(x, T ) for S&P500

constructed by using the proposed approach.
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many other calibration algorithms which reduce to a nonlinear optimization

problem (e.g., taking a sufficiently large parametric family of local volatility

functions and choosing the parameters that provide the best fit of observed

prices). For the latter computation of the objective function is fast, but

optimization must be constrained to preserve no-arbitrage, and, thus, slow.

The results of the test demonstrate robustness of the proposed approach

from both the speed and accuracy point of view, especially in cases where

the above referred papers experienced some difficulties with achieving a

perfect fit. An additional test performed for the S&P500 data taken from

[Balaraman (2016)] gives rise to the same conclusion.
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Chapter 6

Geometric Local Variance Gamma
Model

As mentioned in Chapter 5, the Local Variance Gamma (LVG) volatility

model was first introduced by P. Carr in 2008 and then presented in [Carr

and Nadtochiy (2014, 2017)] as an extension of the local volatility model by

[Dupire (1994)] and [Derman and Kani (1994a)]. The latter was developed

on top of the celebrating Black-Scholes model to take into account the

existence of option smile. The main advantage of all local volatility models

is that given European options prices or their implied volatilities at points

(T,K) where K,T are the option strike and time to maturity, they are able

to exactly replicate the local volatility function σ(T,K) at these points.

This process is called calibration of the local volatility (or, alternatively,

implied volatility) surface, and is one of the main topics of this book.

In Chapter 5 we described an extension of the Local Variance Gamma

model which is called ELVG and was originally proposed in [Carr and Itkin

(2018a)]. As compared with the classical local volatility model, the LVG

and ELVG have several advantages. First, they are richer in the financial

sense. Indeed, it is worth noting that the term “local” in the name of the

LVG/ELVG models is a bit confusing. This is because, e.g., the ELVG is

constructed by equipping an arithmetic Brownian motion with drift and

local volatility by stochastic time change ΓX(t). Here Γt is a Gamma

stochastic variable, and X(t) is a deterministic function of time t. As

stochastic change is one of the ways of introducing stochastic volatility,

it could be observed that the LVG/ELVG is actually a local stochastic

volatility (LSV) model which combines local and stochastic features of the

volatility process. For more information on the LSV models, see [Bergomi

(2016); Kienitz and Wetterau (2012)].

Another advantage of the LVG/ELVG is that their calibration is com-

putationally more efficient. This is because this construction gives rise not

137
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to a partial differential equation (which in the classical case is known as

Dupire’s equation), but to a partial differential difference equation (PDDE).

The latter is actually an ordinary differential equation (ODE) and permits

both explicit calibration and fast numerical valuation. In particular, cal-

ibration of the local variance surface does not require any optimization

method, rather just a root solver, [Carr and Itkin (2018a)].

As discussed in [Itkin and Lipton (2018)], given the market quotes of

European options for various maturities and strikes, the local (and then

implied) volatility surface can be obtained by directly solving the Dupire

equation using either analytical or numerical methods. The advantage of

such an approach is that it guarantees no-arbitrage if the corresponding

analytical or numerical method does preserve no-arbitrage (including var-

ious interpolations, etc.). Obviously, solving Dupire’s PDE requires either

numerical methods, e.g. that in [Coleman et al. (2001)], or, as in [Itkin and

Lipton (2018)], a semi-analytic method which: (i) first uses the Laplace-

Carson transform, and (ii) then applies various transformations to obtain

a closed form solution of the transformed equation in terms of Kummer

Hypergeometric functions. Still, it requires an inverse Laplace transform to

obtain the final solution. To make the second approach tractable, some as-

sumptions should be made about the behavior of the local/implied volatility

surface at strikes and maturities where the market quotes are not known.

Usually, the corresponding local variance is assumed to be either piecewise

constant, [Lipton and Sepp (2011a)], or piecewise linear [Itkin and Lipton

(2018)] in the log-strike space, and piecewise constant in the time to matu-

rity space. A similar assumption is also necessary to make the LVG/ELVG

models tractable. In particular, in [Carr and Nadtochiy (2017)] the model

was calibrated to option smiles assuming the local variance is a piecewise

constant function of strike, while in [Carr and Itkin (2018a)] the local vari-

ance is a piecewise linear function of strike.

Despite these nice features of the ELVG, one possible problem could

be that the model is developed based on the arithmetic Brownian motion

with drift. That means that the underlying, in principle, could acquire

negative values, which in some cases is undesirable, e.g., if the underlying is

a stock price. Therefore, another extension of the LVG model was developed

in [Carr and Itkin (2018b)] which operates with a Gamma time-changed

geometric Brownian motion with drift, and the local variance which is a

function of the spot level only (so is not a function of time).

Second, in [Carr and Nadtochiy (2017)] the model was calibrated to

option smiles assuming the local variance is a piecewise constant function
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of strike, while in [Carr and Itkin (2018a)] the local variance is a piece-

wise linear function of strike. In [Carr and Itkin (2018b)] we consider

three piecewise linear models: the local variance as a function of strike,

the local variance as a function of log-strike, and the local volatility as a

function of strike (so, the local variance is a piecewise quadratic function

of strike). We show that in this new model it is still possible to derive

an ordinary differential equation for the option price, which plays the role

of Dupire’s equation for the standard local volatility model. Moreover, it

all three cases, this equation can be solved in closed form. Finally, similar

to [Carr and Itkin (2018a)] we show that given multiple smiles the whole

local variance/volatility surface can be recovered which does not require

solving any optimization problem. Instead, it can be done term-by-term,

and for every maturity the entire calibration is done by solving a system of

non-linear algebraic equations which is significantly faster.

In this Chapter we describe in detail the approach of [Carr and Itkin

(2018b)] in detail. The Chapter has the following structure. In Section 6.1

the new model, which for an obvious reason we call the Geometric Lo-

cal Variance Gamma model or the GLVG, is formulated. In Section 6.2

we derive a forward equation (which is an ordinary differential equation

(ODE)) for Put option prices using a homogeneous Bochner subordination

approach. Section 6.3 generalizes this approach by considering the local

variance being piecewise constant in time. A closed form solution of the de-

rived ODE is given in terms of Hypergeometric functions for various models

of the local variance or volatility. The next Section discusses computation

of a source term of this ODE which requires a no-arbitrage interpolation.

Using the idea of [Itkin and Lipton (2018)]), we show how to construct non-

linear interpolation which provides both no-arbitrage, and a nice tractable

representation of the source term, so that all integrals in the source term

can be computed in closed form. In Section 6.5 calibration of multiple smiles

in our model is discussed in detail. To calibrate a single smile we derive a

system of nonlinear algebraic equations for the model parameters, and ex-

plain how to obtain a smart guess for their initial values. In Section 6.6 we

discuss the results of some numerical experiments where calibration of the

model to the given market smiles is done term-by-term.

Despite some similarity with the ELVG model, Section 5.1, the deriva-

tion of the time-changed function is done in a different (reverse engineering)

way which deserves a full description. This is discussed in Section 6.1.
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6.1 Stochastic model

Let Wt be a Q standard Brownian motion with time index t ≥ 0. Consider

a stochastic process Dt to be a time-homogeneous diffusion with drift µ

dDt = µDtdt+ σ(Dt)DtdWt, (6.1)

where the volatility function σ is local and time-homogeneous.

A unique solution to Eq.(6.1) exists if σ(D) : R → R is Lipschitz con-

tinuous in D and satisfies growth conditions at infinity. Since D is a time-

homogeneous Markov process, its infinitesimal generator A is given by

Aφ(D) ≡
[
µD∇D +

1

2
σ2(D)D2∇2

D

]
φ(D), (6.2)

for all twice differentiable functions φ. Here ∇x is a first order differential

operator (the first derivative) on x. The semigroup of the D process (which

here is an expectation under Q) is

T Dt φ(Dt) = etAφ(Dt) = EQ[φ(Dt)|D0 = D], ∀t ≥ 0. (6.3)

This first equality could be also thought of as the Feynman-Kac theo-

rem representation of the solution to the terminal value problem (see, e.g.,

[Lörinczi et al. (2011)]), which connects the expectation in the right hand

side to the solution of the corresponding PDE, and then the formal solution

of this PDE is given by the exponential operator etA applied to the initial

condition φ(Dt).

In the spirit of [Carr and Nadtochiy (2017); Carr and Itkin (2018a)],

introduce a new process DΓt which is Dt subordinated by the unbiased

Gamma clock Γt. The density of the unbiased Gamma clock Γt at time

t ≥ 0 is

Q{Γt ∈ dν} =
νm−1e−νm/t

(t∗)mΓ(m)
dν, ν > 0, m ≡ t/t∗. (6.4)

Here t∗ > 0 is a free parameter of the process, Γ(x) is the Gamma function.

It is easy to check that

EQ[Γt] = t. (6.5)

Thus, on average the stochastic gamma clock Γt runs synchronously with

the calendar time t.

As applied to the option pricing problem, we introduce a more complex

construction. Namely, consider options written on the underlying process
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St. Without loss of generality and for the sake of clearness let us treat below

St as the stock price process. Let us define St as

St = DΓX(t)
(6.6)

where X(t) is a deterministic function of time t. We need to determine

X(t) such that under a risk-neutral measure Q, the total gains process Ŝt,

including the underlying price appreciation and continuous dividends q,

after discounting at the risk free rate r is a martingale, see [Shreve (1992)].

Taking first a derivative of Ŝt

dŜt = d
(
e−rtSte

qt
)

= e(q−r)t [(q − r)Stdt+ dSt] , (6.7)

and then an expectation of both parts we obtain

EQ[d
(
e(q−r)tSt

)
] = e(q−r)t {(q − r)EQ[St]dt+ dEQ[St]} . (6.8)

So in order for Ŝt to be a martingale, the RHS of Eq.(6.8) should vanish.

Solving the equation

(q − r)y(t)dt+ dy(t) = 0, y(t) = EQ[St|Ss], s < t,

we obtain

y(t) = EQ[St|Ss] = Sse
(r−q)(t−s), (6.9)

EQ[dSt|Ss] = dEQ[St|Ss] = Ss(r − q)e(r−q)(t−s)dt.

On the other hand, from Eq.(6.6)

EQ[dSt|Ss] = EQ[dDΓX(t)
|Ss] = µEQ[DΓX(t)

dΓX(t)|Ss] (6.10)

+ EQ[σ(DΓX(t)
)DΓX(t)

dWΓX(t)
|Ss] = µEQ[DΓX(t)

dΓX(t)|Ss],
because the processWΓX(t)

is a local martingale, see [Revuz and Yor (1999)],

Chapter 6. Accordingly, the process WΓX(t)
inherits this property from WΓt ,

hence EQ[σ(DΓX(t)
)DΓX(t)

dWΓX(t)
] = 0.

To proceed, assume the Gamma process Γt is independent of Wt (and,

accordingly, ΓX(t) is independent of WΓX(t)
). Then the expectation in the

RHS of Eq.(6.10) can be computed, by first conditioning on ΓX(t), and

then integrating over the distribution of ΓX(t) which can be obtained from

Eq.(6.4) by replacing t with X(t), i.e.

EQ[DΓX(t)
dΓX(t)|Ss] =

∫ ∞
0

EQ[DΓX(t)
dΓX(t)|ΓX(t) = ν]

νm−1e−νm/X(t)

(t∗)mΓ(m)

(6.11)

=

∫ ∞
0

EQ[Dν ]
νm−1e−νm/X(t)

(t∗)mΓ(m)
dν,

ν > 0, m ≡ X(t)/t∗.
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To find EQ[Dν ] we take into account Eq.(6.1) to obtain

dEQ[Dν ] = EQ[dDν ] = EQ[µDνdν + σ(Dν)DνdWν ] = µEQ[Dν ]dν. (6.12)

Solving this equation with respect to y(ν) = EQ[Dν |Ds], we obtain

EQ[Dν |Ds] = Dse
µ(ν−s). Since we condition on time s, it means that

Ds = DΓX(s)
= Ss, and thus EQ[Dν |Ds] = Sse

µ(ν−s).

Further, we substitute this into Eq.(6.11), set the parameter of the

Gamma distribution t∗ to be t∗ = X(t) (so m = 1) and integrate to obtain

EQ[dSt|Ss] = µEQ[DΓX(t)
dΓX(t)] = Sse

−sµ µ

1− µX(t)
dt. (6.13)

Finally, equating representations of EQ[dSt|Ss] obtained in Eq.(6.9) and

Eq.(6.13) we arrive at the equation for X(t)

S0(r − q)e(r−q)(t−s) = Sse
−sµ µ

1− µX(t)
. (6.14)

Assuming µ = r − q, this equation can be solved to provide

X(t) =
1− e−(r−q)t

r − q
. (6.15)

A similar expression for X(t) was also used in [Carr and Itkin (2018a)] for

the ELVG. We already mentioned that the ELVG could be considered as

an arithmetic analog of the described model, which is geometric in Dt.

It is clear that in the limit r → 0, q → 0 we have X(t) = t. Also based

on Eq.(6.5)

EQ[ΓX(t)] = X(t). (6.16)

The function X(t) starts at zero, i.e. X(0) = 0,1 and is a continuous non-

decreasing function of time t. In more detail, if r − q > 0, the function

X(t) is increasing in t in all points except at t → ∞, where it tends to

constant. However, the infinite time horizon doesn’t have much practical

sense, therefore for any finite time t the function X(t) can be treated as

an increasing function in t. In the other case when r − q < 0, the function

X(t) is strictly increasing ∀t ∈ [0,∞). This means that, overall, X(t) has

all properties of a good clock. Accordingly, ΓX(t) has all properties of a

random time.

Thus, we managed to demonstrate that with this choice of µ and X(t)

the right hands part of Eq.(6.8) vanishes, and our discounted stock process

with allowance for non-zero interest rates and continuous dividends becomes

a martingale. So the proposed construction can be used for option pricing.
1So our assumption made in above that X(0) = 0 is consistent.
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This setting can be easily generalized for time-dependent interest rates

r(t) and continuous dividends q(t). We leave it for the reader.

The next step is to establish a connection between the original and time-

changed processes. It is known from [Bochner (1949)] that the process GΓt

defined as

dGt = σ2(G)GtdWt,

is a time-homogeneous Markov process. Same is true for the process

(r − q)Gtdt. Thus, the entire process Dt defined in Eq.(6.1) is also a time-

homogeneous Markov process. Accordingly, the semigroups TSt of St and

TDt of DΓX(t)
are connected by the Bochner integral2

T St U(S) =

∫ ∞
0

T Dν U(S)Q{ΓX(t) ∈ dν}, ∀t ≥ 0, (6.17)

where U(S) is a function in the domain of both T Dt and T St . It can be

derived by exploiting the time homogeneity of the D process, conditioning

on the gamma time first, and taking into account the independence of Γt
and Wt (or ΓΓX(t)

and WΓX(t)
in our case).

As we set parameter t∗ of the gamma clock to t∗ = X(t), Eq.(6.17) and

Eq.(6.4) imply

T St U(S) =

∫ ∞
0

T Dν U(S)
e−ν/X(t)

X(t)
dν. (6.18)

In what follows for the sake of brevity we call this model as the Geometric

Local Variance Gamma model, or the GLVG.

6.2 Forward equation for option prices

In this section we derive a forward equation for put option prices, which is

an analog of the Dupire equation for the standard local volatility model.

In doing so, we closely follow the description in the corresponding section

of [Carr and Itkin (2018a)], as from the derivation point of view the GLVG

differs from the ELVG just by the definitions of infinitesimal generator A
of the process Dt.

Let us interpret the index t of the semigroup T St as the maturity date

T of a European claim with the valuation time tv = 0. Also let the test

function U(S) be the payoff of this European claim, i.e.

U(ST ) = e−rT (K − ST )+. (6.19)
2Here it represents an expectation of the option price with respect to the second stochas-

tic driver — stochastic clock ν.



January 3, 2020 20:32 Fitting Local Volatility – 9in x 6in b3761-main page 144

144 Fitting Local Volatility

Then define

P (S0, T,K) = T ST U(S0), (6.20)

as the European Put value with maturity T at time t = 0 in the ELVG

model. Similarly

PD(S0, ν,K) = T Dν U(S0), (6.21)

would be the European Put value with maturity ν at time t = 0 in the

model of Eq.(6.1).3 Then the Bochner integral in Eq.(6.18) takes the form

P (S, T,K) =

∫ ∞
0

PD(S, ν,K)pe−pνdν, p ≡ 1/X(T ). (6.22)

Thus, P (S, T,K) is represented by a Laplace-Carson transform of

PD(S, ν,K) with p being the transform parameter. Note that

P (S, 0,K) = PD(S, 0,K) = U(S). (6.23)

To proceed, we need an analog of the Dupire forward PDE for PD(S, ν,K).

6.2.1 Dupire-like forward PDE

The derivation of the Dupire-like forward PDE is similar to that given in

Section 5.2.1. Nevertheless, here we provide it in full for completeness.

First, differentiating Eq.(6.21) by ν with allowance for Eq.(6.3) yields

∇νPD(S, ν,K) = e−rνeνA [A− r]U(S) = e−rνEQ [A− r]U(S). (6.24)

We take into account the definition of the generator A in Eq.(6.2), and also

remind that at t = 0 we have D0 = S0 ≡ S. Then Eq.(6.24) transforms to

∇νPD(S, ν,K) =− rPD(S, ν,K) + (r − q)S∇SPD(S, ν,K) (6.25)

+ e−rν
1

2
EQ
[
σ2(S)S2∇2

SU(S)
]
.

However, we need to express the forward equation using a pair of indepen-

dent variables (ν,K) while Eq.(6.24) is derived in terms of (ν, S). To do

this, observe that

EQ
[
σ2(S)S2∇2

SU(S)
]

= EQ
[
σ2(S)S2δ(K − S)

]
= EQ

[
σ2(K)K2δ(K − S)

]
= EQ

[
σ2(K)K2∇2

KU(S)
]

= erνσ2(K)∇2
KP

D(S, ν,K). (6.26)

3Below for simplicity of notation we drop the subscript ‘0’ in S0.
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where the sifting property of the Dirac delta function δ(S −K) has been

used. Also

−rPD(S, ν,K) + (r − q)S∇SPD(S, ν,K) (6.27)

= e−rνEQ

[
−r(K − S)+ + (r − q)S ∂(K − S)+

∂S

]
= e−rνEQ

[
−r(K − S)+ − (r − q)(K − S)

∂(K − S)+

∂S

+ (r − q)K∂(K − S)+

∂S

]
= e−rνEQ

[
−r(K − S)+ + (r − q)(K − S)+ − (r − q)K∂(K − S)+

∂K

]
= −qPD(S, ν,K)− (r − q)K∇KPD(S, ν,K).

Therefore, using Eq.(6.26) and Eq.(6.27), Eq.(6.24) could be transformed to

∇νPD(S, ν,K) = −qPD(S, ν,K)− (r − q)K∇KPD(S, ν,K) (6.28)

+
1

2
σ2(K)K2∇2

KP
D(S, ν,K) ≡ AKPD(S, ν,K),

AK = −q − (r − q)K∇K +
1

2
σ2(K)K2∇2

K .

This equation looks exactly like the Dupire equation with non-zero interest

rates and continuous dividends, see, e.g., [Ekström and Tysk (2012)] and

references therein. Note, that AK is also a time-homogeneous generator.

6.2.2 PDDE for a single term

Our final step is to apply the linear differential operator L defined in

Eq.(6.28) to both parts of Eq.(6.22). Using time-homogeneity of Dt and

again the Dupire equation Eq.(6.28), we obtain

−qP (S, T,K)− (r − q)K∇KP (S, T,K) +
1

2
σ2(K)K2∇2

KP (S, T,K)

=

∫ ∞
0

pe−pν
[
− qPD(S, ν,K)− (r − q)K∇KPD(S, ν,K) (6.29)

+
1

2
σ2(K)K2∇2

KP
D(S, ν,K)

]
dν =

∫ ∞
0

pe−pν∇νPD(S, ν,K)dν

= −pPD(S, 0,K) + p

∫ ∞
0

PD(S, ν,K)pe−pνdν

= p
[
P (S, T,K)− PD(S, 0,K)

]
= p [P (S, T,K)− P (S, 0,K)] ,

where in the last line we took into account Eq.(6.23).
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Thus, finally P (S, T,K) solves the following problem

−qP (S, T,K)− (r − q)K∇KP (S, T,K) +
1

2
σ2(K)K2∇2

KP (S, T,K)

=
P (S, T,K)− P (S, 0,K)

X(T )
,

P (S, 0,K) = (K − S)+. (6.30)

In contrast to the Dupire equation which belongs to the class of PDE,

Eq.(6.30) is an ODE, or more precisely a partial divided-difference equation

(PDDE), since the derivative in time in the right hands part is now replaced

by a divided difference. In the form of an ODE it reads[
1

2
σ2(K)K2∇2

K − (r − q)K∇K −
(
q +

1

X(T )

)]
× P (S, T,K) = −P (S, 0,K)

X(T )
. (6.31)

This equation could be solved analytically for some particular form of the

local volatility function σ(K) which are considered in the next Section. Also

in the same way a similar equation could be derived for the Call option price

C0(S, T,K) which reads[1

2
σ2(K)K2∇2

K − (r − q)K∇K −
(
q +

1

X(T )

)]
×C0(S, T,K) = −C0(S, 0,K)

X(T )
,

C0(S, 0,K) = (S −K)+. (6.32)

Solving Eq.(6.31) or Eq.(6.32) provides the way to determine σ(K)

given market quotes of Call and Put options with maturity T . However,

this allows calibration of just a single term. Calibration of the entire local

volatility surface, in principle, could be done term-by-term (because of the

time-homogeneity assumption) if Eq.(6.31), Eq.(6.32) could be generalized

to this case.

6.2.3 PDDE for multiple terms

This generalization can be done in the same way as presented in [Carr and

Itkin (2018a)], Section 4. Therefore, we refer the reader to that Section

while here we provide just some useful comments.

To address calibration of multiple smiles we need to relax the assumption

about time-homogeneity of the Dt process defined in Eq.(6.1). We assume
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that the local variance σ(Dt) is no more time-homogeneous, but a piecewise

constant function of time σ(Dt, t).

Let T1, T2, . . . , TM be the time points at which the variance rate σ2(Dt)

jumps deterministically. In other words, at the interval t ∈ [T0, T1), the

variance rate is σ2
0(Dt), at t ∈ [T1, T2) it is σ2

1(Dt), etc. This can be also

represented as

σ2(Dt, t) =

M∑
i=0

σ2
i (Dt)wi(t), (6.33)

wi(t) ≡ 1t−Ti − 1t−Ti+1
, i = 0, . . . ,M, T0 = 0, TM+1 =∞.

where the function 1x is defined in Eq.(5.31).

Note, that

M∑
i=0

wi(t) = 1t − 1t−∞ = 1, ∀t ≥ 0.

Therefore, in case when all σ2
i (Dt) are equal, ie, independent on index i,

Eq.(6.33) reduces to the case considered in the previous Sections.

This implies that the volatility σ(Dt) jumps as a function of time at the

calendar times T0, T1, . . . , TM , and not at the business times ν determined

by the Gamma clock. Otherwise, the volatility function would have been

changed at random (business) times which means it is stochastic. But this

definitely lies out of scope of our model. Therefore, we need to change

Eq.(6.33) to

σ2(Dt, t) =

M∑
i=0

σ2
i (D)w̄i(EQ(t)), (6.34)

w̄i(EQ(t)) = 1X−1(t−Ti) − 1X−1(t−Ti+1), i = 0, . . . ,M,

X−1(t) =
1

q − r
log [1− (r − q)t] . (6.35)

As per the last line, X(t) exists ∀t ≥ 0 if q > r, and ∀t < 1/(r− q) if r > q.

Hence, when using Eq.(6.6) we have

σ2(Dt, t)
∣∣∣
t=ΓX(t)

=

M∑
i=0

σ2
i (D)w̄i(X(t)) =

M∑
i=0

σ2
i (D)wi(t). (6.36)

Accordingly, if the calendar time t belongs to the interval T0 ≤ t < T1,

the infinitesimal generator A of the semigroup T Dν is a function of σ(Dt)

(and not of σ(Dν)). As at T0 ≤ t < T1 we assume σ(D) = σ0(D), i.e. is

constant in time, it doesn’t depend on ν. Thus, A (which for this interval

of time we will denote as A0) is still time-homogeneous.
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Similarly, one can see, that for T1 ≤ t < T2 the infinitesimal gener-

ator A1 of the semigroup T Dν is also time-homogeneous and depends on

σ1(D), etc.

Further, similar to [Carr and Itkin (2018a)] it could be shown

that the forward partial divided difference equation for the Put price

P (S, Ti,K), i = 1, . . . ,M reads[1

2
σ2(K)K2∇2

K − (r − q)K∇K −
(
q +

1

X(Ti)−X(Ti−1

)]
P (S, Ti,K)

= − P (S, Ti−1,K)

X(Ti)−X(Ti−1)
. (6.37)

Here the local variance function σ2(K) = σ2
i (K) as it corresponds to the

interval (Ti−1, Ti] where the above ODE is solved.

Eq.(6.37) is a recurrent equation that can be solved for all i = 1, . . . ,M

sequentially starting with i = 1 subject to some boundary conditions.

6.2.4 Boundary conditions

In many financial models where dynamics of the stock price is represented

by a geometric Brownian motion (perhaps with local or stochastic volatil-

ity), for instance, the celebrated Black-Scholes model, the boundary condi-

tion at K →∞ is set to be

P (S, Ti,K)→ DiK −QiS, K →∞,
where Di = e−rTi is the discount factor, and Qi = e−qTi . Indeed, as it could

be easily checked this condition is a valid solution of the Dupire forward

equation Eq.(6.28), and also reflects the fact that at K →∞ the Put option

price should be linear in K. However, this boundary condition doesn’t solve

Eq.(6.31), so it could not be used in our model.

Therefore, we propose to setup the boundary condition at K → ∞ by

still assuming it to be a linear function of K of the form

lim
K→∞

P (S, T,K) = A(T )K −B(T )S, (6.38)

where A(T ), B(T ) are some functions of maturity T to be determined, so

the expression in Eq.(6.38) solves Eq.(6.31).

Obviously, T0 = 0 implies A(T0) = B(T0) = 1. Then we can proceed

recursively. For the next given maturity T = T1 plugging in Eq.(6.38) into

Eq.(6.37) we obtain at K →∞
−(r − q)KA(T1)p1 − (p1q + 1)(A(T1)K −B(T1)S) = −P (S, T0,K),

P (S, T0,K) = A(T0)K −B(T0)S = K − S, (6.39)

pj = X(Tj)−X(Tj−1) > 0.
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From these equations we obtain

B(T1) =
1

p1q + 1
, A(T1) =

1

p1r + 1
. (6.40)

So in this case A(T1), B(T1) are an analog of some kind of discrete com-

pounding.

Proceeding recursively, we derive a general relationship

B(Ti) =
B(Ti−1)

piq + 1
=

1∏i
k=1(piq + 1)

, (6.41)

A(Ti) =
A(Ti−1)

pir + 1
=

1∏i
k=1(pir + 1)

, i = 1, . . . ,M.

Therefore, in our model the natural boundary conditions for the Put

option price are{
P (S, Ti,K) = 0, K → 0,

P (S, Ti,K) = A(Ti)K −B(Ti)S ≈ A(Ti)K, K →∞,
(6.42)

A similar equation can be obtained for the Call option prices, which

reads[1

2
σ2(K)K2∇2

K − (r − q)K∇K −
(
q +

1

X(Ti)−X(Ti−1

)]
C(S, Ti,K)

= − C(S, Ti−1,K)

X(Ti)−X(Ti−1)
, (6.43)

subject to the boundary conditions{
C(S, Ti,K) = B(Ti)S, K → 0,

C(S, Ti,K) = 0, K →∞.
(6.44)

6.3 Piecewise models of local variance/volatility

To calibrate the local volatility surface by solving Eq.(6.37) we need to

make further assumptions about the shape of the local volatility surface.

To recall, we assume this surface to be piecewise constant in time. In the

strike space [Carr and Nadtochiy (2017)] considered it to be a piecewise

constant, while in [Carr and Itkin (2018a)] a piecewise linear local variance

in the strike space was considered. As shown in [Carr and Itkin (2018a)],

in those cases Eq.(6.37) can be solved in closed form.

Here we want to extend a class of local volatility models that allow a

closed form solution. To proceed, we start by doing a change of the depen-

dent variable from P (S, Tj ,K) to

V (S, Tj ,K) = P (S, Tj ,K)− [A(Tj)K −B(Tj)S]+, (6.45)
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where V is known as a covered Put. This definition of V allows re-writing

Eq.(6.37) in a more elegant form

− vj(x)x2Vx,x(x) + b1,jxVx(x) + b0,jV (x) = cj(x), (6.46)

b1,j = pj(r − q), b0,j = pjq + 1, cj(x) = V (S, Tj−1, x),

vj(x) = pjσ
2(x)/2,

where V (x) = V (S, Tj , x) and x = K/S is the inverse moneyness.

Accordingly, based on the definition of V (x) and Eq.(6.42), the bound-

ary conditions to Eq.(6.46) become homogeneous{
V (x) = 0, x→ 0,

V (x) = 0, x→∞.
(6.47)

In the next sections we consider several popular approximations of the

local volatility surface in the strike space. Each approximation assumes

some functional form of the local volatility curve in the strike space, which

is a strip of the volatility surface given time to maturity T . Thus, parameters

of these approximations change with time. Also further on for simplicity we

assume that r > q > 0, but this assumption could be easily relaxed.

6.3.1 Local variance piecewise linear in a log-strike space

Suppose that for each maturity Tj , j ∈ [1,M ] the market quotes are

provided for a set of strikes Ki, i = 1, . . . , nj where these strikes are

assumed to be sorted in the increasing order. Then the corresponding

continuous piecewise linear local variance function σ2
j (χ) at the interval

[χi, χi+1], χ = logKi/S, reads

vj,i(χ) = v0
j,i + v1

j,iχ. (6.48)

Here we use the super-index 0 to denote a level v0, and the super-index 1

to denote a slope v1. Subindex i = 0 in v0
j,0, v

1
j,0 corresponds to the interval

(0, χ1]. Since vj(χ) is a continuous function in χ, we have

v0
j,i + v1

j,iχi+1 = v0
j,i+1 + v1

j,i+1χi+1, i = 0, . . . , nj − 1. (6.49)

This means that the first derivative of vj(χ) experiences a jump at points

χi, i ∈ Z ∩ [1, nj ]. As we assumed that v(χ, T ) is a piecewise constant

function of time, v0
j,i, v

1
j,i do not depend on T at the intervals [Tj , Tj+1), j ∈

[0,M − 1], and jump to the new values at the points Tj , j ∈ Z ∩ [1,M ].

A simple analysis shows that under this assumption by making a change

of variables x 7→ χ, Eq.(6.46) could be transformed to

−v(χ)Vχ,χ(χ) + (b1 + v(χ))Vχ(χ) + b0V (χ) = c(χ), (6.50)

where for simplicity of notation we dropped index j.
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This equation has the same type as that considered in [Itkin and Lipton

(2018)], Section 2, and its solution could also be expressed in terms of

confluent Hypergeometric functions, see [Polyanin and Zaitsev (2003)]

V (χ) = C1y1(χ) + C2y2(χ) + I12(χ) (6.51)

I12(χ) = y2(χ)

∫
y1(χ)c(χ)

(b2 + a2χ)W
dχ− y1(χ)

∫
y2c(χ)

(b2 + a2χ)W
dχ,

where W = y1(y2)χ−y2(y1)χ is the so-called Wronskian of the fundamental

solutions y1, y2. Thus, the problem is reduced to finding suitable fundamen-

tal solutions of the homogeneous version of Eq.(6.51). Based on [Polyanin

and Zaitsev (2003)], if a2 6= 0 and a0 6= 0, the general solution reads

V (χ) = (a2z)
β1−1J (α1, β1, z), (6.52)

z = χ+
b2
a2
, α1 = 1 +

b0 + b1
a2

, β1 = 2 +
b1
a2
.

Here J (a, b, z) is an arbitrary solution of the degenerate Hypergeometric

equation, i.e., Kummer’s function, [Abramowitz and Stegun (1964)]. Two

types of Kummer’s functions are known, namely M(a, b, z) and U(a, b, z),

which are Kummer’s functions of the first and second kind.4

Accordingly, the approach of [Itkin and Lipton (2018)] can be directly

applied to obtain a closed form solution of Eq.(6.51). In particular, in the

vicinity of the origin the numerically satisfactory pair is, [Olver (1997)]

y1(χ) = (a2z)
β1−1M (α1, β1, z), (6.53)

y2(χ) = (a2)β1−1M (α1 − β1 + 1, 2− β1, z).

W = a2β1−2
2 ezzβ1−2 sin(πβ1)/π.

However, in the vicinity of infinity the numerically satisfactory pair is,

[Olver (1997)]

y1(χ) = (a2z)
β−1U (α1, β1, z), (6.54)

y2(χ) = ez(a2z)
β−1U (β1 − α1, β1,−z).

W = (−1)α1−β1a2β1−2
2 ezzβ1−2.

6.3.2 Local variance piecewise linear in the strike space

Another tractable model is where the local variance is piecewise linear in

the strike space. In particular, this is the model we used in [Carr and Itkin

(2018a)].
4Due to the linearity of the degenerate Hypergeometric equation any linear combination

of Kummer’s functions also solves this equation.
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Similar to the previous section, the corresponding continuous piecewise

linear local variance function vj(x) at the interval [xi, xi+1] reads

vj,i(x) = v0
j,i + v1

j,ix, (6.55)

where, however, it is now a function of x rather than χ. Since vj(x) is a

continuous function in x, we have

v0
j,i + v1

j,ixi+1 = v0
j,i+1 + v1

j,i+1xi+1, i = 0, . . . , nj − 1. (6.56)

This means that the first derivative of vj(x) experiences a jump at points

xi, i ∈ [1, nj ]. As we assumed that v(x, T ) is a piecewise constant function

of time, v0
j,i, v

1
j,i don’t depend on T at the intervals [Tj , Tj+1), j ∈ 0,M−1],

and jump to the new values at the points Tj , j ∈ [1,M ].

The Eq.(6.46) can be solved by induction. One starts with T0 = 0, and

at each time interval [Tj−1, Tj ], j ∈ [1,M ] solves the problem Eq.(6.46) for

V (x), and then obtains P (S, Tj , x) from Eq.(6.45). Accordingly, the solution

of Eq.(6.46) can be constructed separately for each interval [xi−1, xi].

Substituting the representation Eq.(6.55) into Eq.(6.46), for the i-th

spatial interval we obtain

−(b2 + a2x)x2Vx,x(x) + b1xVx(x) + b0,jV (x) = c(x), (6.57)

b2 = v0
j,i, a2 = v1

j,i.

Again, Eq.(6.57) is an inhomogeneous ordinary differential equation, and

its solution can be represented in the form of Eq.(6.51) with

I12(x) = −y2(x)

∫
y1(x)c(x)

(b2 + a2x)x2W (x)
dx+ y1(x)

∫
y2(x)c(x)

(b2 + a2x)x2W (x)
dx

≡ J1 + J2. (6.58)

The corresponding homogeneous equation can be solved as follows.

First, if b2 6= 0 we make a change of independent variable x 7→ z = −a2x/b2.

As the result the homogeneous Eq.(6.57) takes the form

b2(z − 1)zVz,z(z) + b1zVz(z) + b0V (z) = 0. (6.59)

Then we make a change of the dependent variable V (z) 7→ zmG(z) with m

being some constant for the given time slice. This leads to the equation

zm[γ + b2(m− 1)mz]G(z) + zm+1[b1 + 2b2m(z − 1)]G′(z) (6.60)

+ b2(z − 1)zm+2G′′(z) = 0,

γ = b0 +m(b2 + b1 − b2m).
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Next we solve for m which makes γ vanish, to obtain

m± =
b2 + b1 ±

√
4b2b0 + (b2 + b1)2

2b2
. (6.61)

It is worth mentioning that if the determinant D in this expression is nega-

tive, both m+, m− become complex. However, this is not a problem for the

solution as coefficients C1, C2 in Eq.(6.51) could be complex as well, and

such that the Put price is real.

Substituting this into Eq.(6.60) and rearranging we obtain

−m(m− 1)G(z) +

(
2m− b1

b2
− 2mz

)
G′(z) + z(1− z)G′′(z) = 0, (6.62)

m ∈ [m+,m−],

which is a Hypergeometric equation. As m can take two values, we need to

choose the right one such that the final solution would obey the boundary

conditions.

Combining all the above steps, the solution of Eq.(6.59) could be written

as

y1(x) = zm [2F1 (m− 1,m, c; z) ] , (6.63)

y2(x) = zm
[
z1−c

2F1 (m− c,m+ 1− c, 2− c; z)
]
,

m = m+, c = 2m− b1
b2
, z = −a2

b2
x,

Here 2F1 (a, b, c; z) is the ordinary Hypergeometric function, [Olver (1997)].

It has regular singularities at z = 0, 1,∞. In terms of the solution in

Eq.(6.52), these singularities correspond to K = 0, v = 0 and K → ∞.

We will show below that at K → ∞ the coefficient a2 for this interval is

usually positive, so the variance is positive. However, the sign of b2 could

be both plus and minus. Therefore, if b2 > 0 at this interval, we have

x→∞, z → −∞. If b2 < 0 at this interval, we have x→∞, z →∞.

When none of c, c−a−b, a−b is an integer, we have a pair of fundamental

solutions f1(x), f2(x) that in Eq.(6.52) are represented by expressions in

square brackets. It is known that this pair is numerically satisfactory, [Olver

(1997)] aside of singularities at z = 1 and z → ∞. Wronskian of these

fundamental solutions W (f1(x), f2(x)) is

W (f1(x), f2(x)) = (1− c)z−c(1− z)c−2m, z = −a2x/b2.

Accordingly,

W (y1(x), y2(x)) = −a2(1− c)
b2

z2m−c(1− z)c−2m, z = −a2x/b2. (6.64)
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In the vicinity of singularity at z = 1 this pair, however, is not numeri-

cally satisfactory. Then we have to use another solution of Eq.(6.62) which

is, [Olver (1997)]

y1(x) = zm [2F1 (m− 1,m, 2m− c; 1− z) ], (6.65)

y2(x) = zm
[
(1− z)c−2m+1

2F1 (c−m+ 1, c−m, c− 2m+ 2; 1− z)
]
,

W (y1(x), y2(x)) = −a2(2m− 1− c)
b2

(1− z)c−2mz2m−c, z = −a2x/b2.

The numerically satisfactory fundamental solutions in the vicinity of

singularity at z =∞ are described below.

6.3.2.1 Numerically satisfactory solutions of Eq.(6.59) at z →∞

According to [Olver (1997)], the numerically satisfactory fundamental

solutions of Eq.(6.59) in the vicinity of singularity at z =∞ are

y1(x) = zm[z−A2F1 (A,A− C + 1, A−B + 1, 1/z) ], (6.66)

y2(x) = zm[z−B 2F1 (B,B − C + 1, B −A+ 1; 1/z) ],

where in our case A = m− 1, B = m,C = c. This substitution transforms

the second solution in Eq.(6.66) to

y2(x) = zm[z−m 2F1 (m,m− c+ 1, 2; 1/z) ], (6.67)

and behaves well at z →∞. However, since in our setting n ≡ A−B+ 1 =

m− 1−m+ 1 = 0, and due to the property

lim
c→−n

F (a, b, c; z)

Γ(c)
=

(a)n+1(b)n+1

(n+ 1)!
zn+1F (a+ n+ 1, b+ n+ 1, n+ 2; z),

y1(x) = F (m− 1,m− c, 0; z)

= Γ(0)
(m− 1)1(m− c)1

(1)!
zF (m,m− c+ 1, 2; z),

it turns out that the first solution differs from the second one just by a

constant multiplier, i.e. they are not independent. Therefore, in this case

instead the first solution y1(x) should be chosen based on a more sophisti-

cated analytic continuation of the Hypergeometric function, [Bateman and

Erdélyi (1953)].

y1(x) = zm[(−z)1−m Γ(c)

Γ(m)Γ(c−m+ 1)
Ψ(z)], |z| > 1, |ph(−z)| < π,

Ψ(z) = 1− 1

z

∞∑
k=0

(m− 1)k+1(m− c)k+1

k!(k + 1)!
z−k [log(−z) + φk)] , (6.68)
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φk ≡ ψ(k + 1) + ψ(k + 2)− ψ(m+ k)− ψ(c−m− k),

(m)k = Γ(m)/Γ(k), ψ(x) = Γ′(x)/Γ(x).

�
However, we cannot use this solution at z → ∞ as well as to use the

solution in Eq.(6.63) at z → 0. This is caused by the Roger Lee’s moment

matching formula, [Lee (2004)] which states that in the wings the implied

variance surface should be at most linear in the normalized strike (or log-

strike). It is also shown in [De Marco et al. (2013); Gerhold and Friz (2015)],

that the asymptotic behavior of the local variance is linear in the log strike

at both K → ∞ and K → 0. While the result for K → 0 is shown to be

true at least for the Heston and Stein-Stein models, the result for K →∞
directly follows from Lee’s moment formula for the implied variance vBS
and the representation of σ2 via the total implied variance w = vBST in

Eq.(1.30).

Thus, the considered model of the local variance linear in strike is not

applicable at the first 0 ≤ x ≤ x1 and the last xnj < x <∞ strike intervals

for every smile T = Tj as it violates Lee’s formula. Therefore, at these

two intervals we use the model discussed in Section 6.3.1 where the local

variance is linear in the log-strike.

It is interesting to mention, that in [Itkin and Lipton (2018); Carr and

Itkin (2018a)] and in section 6.3.1 the closed form solution was obtained in

terms of Kummer’s functions. Here the solution is expressed via Hyperge-

ometric functions 2F1 (a, b, c;x).

As two solutions y1(x) and y2(x) are independent, Eq.(6.51) is a general

solution of Eq.(6.57). Two constants C1, C2 should be determined based on

the boundary conditions for the function y(x).

The boundary conditions for the ODE Eq.(6.57) in the x space at zero

and infinity are given in Eq.(6.47), i.e. they are homogeneous. Based on

the usual shape of the local variance curve and its positivity, for x → 0,

we expect that v1
j,i < 0. Similarly, for x → ∞ we expect that v1

j,i > 0. In

between these two limits the local variance curve for a given maturity Tj is

assumed to be continuous, but the slope of the curve could be both positive

and negative, see, e.g., [Itkin (2015)] and references therein.

6.3.3 Local volatility piecewise linear in the strike space

Another popular model is where the local volatility is assumed to be

piecewise linear in the strike space. This model previously was frequently
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considered in the literature, e.g., [Hull and White (2015); Kienitz and

Caspers (2017)]. Below we show that with this assumption our model re-

mains tractable, and a closed form solution can be obtained by using the

same approach as elaborated on in [Itkin and Lipton (2018); Carr and Itkin

(2018a)].

Accordingly, the corresponding continuous piecewise linear local volatil-

ity function σj(x) on the interval [xi, xi+1] reads

σj,i(x) = σ0
j,i + σ1

j,ix, (6.69)

Since σj(x) is a continuous function in x, we have

σ0
j,i + σ1

j,ixi+1 = σ0
j,i+1 + σ1

j,i+1xi+1, i = 0, . . . , nj − 1. (6.70)

Again, this means that the first derivative of σj(x) experiences a jump at

points xi, i ∈ [1, nj ]. As σ(x, T ) is a piecewise constant function of time,

σ0
j,i, σ

1
j,i do not depend on T at the intervals [Tj , Tj+1), j ∈ [0,M − 1], and

jump to the new values at the points Tj , j ∈ [1,M ].

Substituting the representation Eq.(6.69) into Eq.(6.46), for the i-th

spatial interval we obtain

−(b2 + a2x)2x2Vx,x(x) + b1xVx(x) + b0,jV (x) = c(x), (6.71)

b2 = σ0
j,i, a2 = σ1

j,i.

Again, Eq.(6.71) is an inhomogeneous ordinary differential equation, and

its solution can be represented in the form of Eq.(6.51) with

I12(x) = −y2(x)

∫
y1(x)c(x)

(b2 + a2x)2x2W (x)
dx+ y1(x)

∫
y2(x)c(x)

(b2 + a2x)2x2W (x)
dx

≡ L1 + L2.

The corresponding homogeneous equation can be solved as follows.

First, if b2 6= 0, b2 + a2x 6= 0 we make a change of independent variable

x 7→ z = a2b1x/[b
2
2(b2 + a2x)]. As the result the homogeneous Eq.(6.71)

takes the form

b2z
2(−b1+b22z)Vz,z(z)+z

[
2b42z +

(
b1 − b22z

)2]
Vz(z)+b0(b1−b22z)V (z) = 0.

Next we make a change of the dependent variable

V (z) 7→ zk1

(
z

b22z + b1

)k2

G(z)
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with k1, k2 being some constants for the given time slice. This leads to the

equation

0 = −b22z
(
b1 − b22z

)2
G′′(z) + f1(z)G′(z) + f0(z)G(z), (6.72)

f1(z) = z
(
b1 − b22z

) [
b42z(2k1 + z + 2)− 2b22b1(k1 + k2 + z) + b21

]
,

f0(z) = q0 + q1z + q2z
2 − b62k1z

3,

q2 = b42
[
b0 − b22k1(k1 + 1) + b1(3k1 + k2)

]
,

q1 = b22b1
[
2b22k1(k1 + k2)− 2b0 − b1(3k1 + 2k2)

]
,

q0 = b1
2
[
b0 − (k1 + k2)

(
b22(k1 + k2 − 1)− b1

)]
.

We now request that f0(z) is proportional to z
(
b1 − b22z

)2
with some con-

stant multiplier q, i.e.

f0(z) = qz
(
b1 − b22z

)2
.

Solving this equation term by term in powers of z, we obtain

k1 = − q

b22
, k2 =

q(b1 + q)− b22(b0 + q)

b22b1
,

q =
1

2

(
b22 − b1 ±

√
b42 + 2b22(2b0 + b1) + b1

2

)
.

Accordingly, substituting these definitions into Eq.(6.72) one finds

0 = zG′′(z) + (b+ z)G′(z)− aG(z),

b = 2− b1 + 2q

b22
, a =

q

b22
.

This is a sort of Kummer equation which has two independent solutions,

[Polyanin and Zaitsev (2003)]

G(z) = e−zU(a+ b, b, z), G(z) = e−zM(a+ b, b, z). (6.73)

Accordingly, as q can take two values corresponding to the plus and minus

sign, we have four fundamental solutions of the original equation Eq.(6.72).

Similar to the previous section, we cannot use these solutions at the

first 0 ≤ x ≤ x1 and the last xnj < x < ∞ strike intervals for every smile

T = Tj as it violates Lee’s formula. Therefore, at these two intervals we use

the model discussed in Section 6.3.1 where the local variance is linear in

the log-strike. Accordingly, the local volatility is a square root of the local

variance.
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6.4 Computation of the source term

Computation of the source term pI12 in Eq.(6.51) could be achieved in

several ways. The most straightforward one is to use numerical integra-

tion since the Put price P (x, Ti−1) as a function of x is already known

when we solve Eq.(6.51) for T = Ti. We underline that this is not the

case in [Itkin and Lipton (2018)], because there the function P (x, Ti−1) is

obtained by using an inverse Laplace transform, and as such is known only

for a discrete set of strikes at the previous time level. Therefore, some kind

of interpolation is necessary to find the local variance at all strikes when

doing integration. Moreover, this interpolation must preserve no-arbitrage,

see [Itkin and Lipton (2018)].

On the other hand, using no-arbitrage interpolation provides another

advantage, as it makes it possible to compute the source term integrals in

closed form if the interpolating function is wisely chosen. Here we want to

exploit the same idea, thus significantly improving computational perfor-

mance of our model as compared with the numerical integration.

Below as an example consider the case of the local variance piecewise

linear in the strike space. Then based on solutions found in Section 6.3.2 in

Eq.(6.63) we have

J1(x) = −y2(x)

∫
y1(x)c(x)

(b2 + a2x)x2W (x)
dx = −y2(x)

a2
2

b32

∫
y1(z)c(z)

(1− z)z2W (z)
dz,

(6.74)

y1(z) = zm2F1 (m− 1,m, c; z) , c(z) = V (S, Tj−1, z), z = −a2x/b2,

where W (z) is defined in Eq.(6.64).

Following the idea of [Itkin and Lipton (2018)], in [Carr and Itkin

(2018a)]) we introduced a non-linear interpolation

P (x) = γ0 + γ2x
2, x1 ≤ x ≤ x3, (6.75)

γ0 =
P (x3)x2

1 − P (x1)x2
3

x2
1 − x2

3

, γ2 =
P (x1)− P (x3)

x2
1 − x2

3

.

Then Proposition 6.1 in [Carr and Itkin (2018a)] proves that this interpo-

lation scheme is arbitrage-free.

It is worth emphasizing that the proposed interpolation doesn’t affect

the solution values (quotes) at given market strikes since the piecewise in-

terpolator is constructed to exactly match those values. So the interpolation

only affects the Put values that are not known, i.e., those with strikes that

lie in between the given market strikes. Therefore, if these strikes are not
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used, i.e. in trading or hedging, the influence of the interpolation is unob-

servable at all. If, however, they are used for some purpose, the difference

with the exact solution is small (within the error of interpolation), while

the approximate solution for these strikes yet preserves no-arbitrage.

Recall, that we introduced V (x) using Eq.(6.45). Accordingly, compu-

tation of the term c(z) in Eq.(6.74) is given below.

6.4.1 No-arbitrage interpolation at z → 1

As by definition in Eq.(6.63) z = −a2

b2
x, this implies that

1− z = 1 +
a2

b2
x =

vji
b2
.

Obviously, vji ≥ 0. Therefore, when z is close to 1, two situations are

possible:

(1) z < 1, which implies b2 > 0, and accordingly a2 < 0;

(2) z > 1, which implies b2 < 0, and accordingly a2 > 0.

Suppose for interpolation of the Put price we use Eq.(6.75), i.e.

P (x) = γ0 + γ2x
2, x1 ≤ x ≤ x3, (6.76)

γ0 =
P (x3)x2

1 − P (x1)x2
3

x2
1 − x2

3

= P1 −
P3 − P1

x2
3 − x2

1

x2
1 > 0,

γ2 =
P (x1)− P (x3)

x2
1 − x2

3

> 0.

The second inequality is obvious since P (x3) > P (x1) if x3 > x1. The first

one follows from the fact that the Put price exceeds its intrinsic value, i.e.

Pi = [A(Tj)Ki −B(Tj)S]+ + εi, εi > 0.

Suppose, e.g., that both strikes K1,K3 are in-the-money. Then

γ0 = P1 −
P3 − P1

x2
3 − x2

1

x2
1 = P1 −

A(Tj)S(x3 − x1) + ε3 − ε1

x2
3 − x2

1

x2
1 (6.77)

=
P1x3 + x1(P1 −A(Tj)K1)

x3 + x1
+
ε1 − ε3

x2
3 − x2

1

x2
1 > 0,

as based on the properties of the Put price ε1 > ε3.

From Eq.(6.76) it follows that

V = γ0 + γ2x
2 −A(Tj)Sx+B(Tj)S = γ̄0 + γ1z + γ̄2z

2, (6.78)

γ̄0 = γ0 + +B(Tj)S, γ1 =
a2

b2
A(Tj)S, γ̄2 = γ2

a2
2

b22
.
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It was proven in [Carr and Itkin (2018a)] that interpolation Eq.(6.76) pre-

serves no-arbitrage, and so that in Eq.(6.78). We use it when computing

J2(x) in Eq.(6.99). �
It turns out that now the integral in Eq.(6.74) can be computed in closed

form. Indeed∫
y1(z)c(z)

(1− z)z2W (z)
dz = I0 + I1 + I2, (6.79)

I0 = γ0

∫
y1(z)

(1− z)z2W (z)
dz

= γ̄0A(z)
1

Γ(c)(c−m− 1)
2F1 (c−m− 1, c−m+ 1, c, z) ,

I1 = γ1

∫
zy1(z)

(1− z)z2W (z)
dz

= γ1zA(z)
1

Γ(c)(c−m)
2F1 (c−m, c−m, c, z)

I2 = γ̄2

∫
z2y1(z)

(1− z)z2W (z)
dz

= γ̄2A(z)z2 1

(c−m+ 1)Γ(c)
3F2

[
c−m, c−m+ 1, c−m+ 1

c, 2 + c−m
; z

]
,

A(z) =
b2
a2

Γ(c− 1)zc−m−1,

where 3F2

[
a1, a2, a3

b1, b2
; z

]
is a generalized Hypergeometric function ([Askey

and Daalhuis (2010)]).

The second integral in the definition of J2

J2(x) = y1(x)

∫
y2(x)c(x)

(b2 + a2x)x2W (x)
dx = y1(x)

a2
2

b32

∫
y2(z)c(z)

(1− z)z2W (z)
dz,

(6.80)

y2(z) = zm+1−c
2F1 (m− c,m+ 1− c, 2− c; z),

could be computed in a similar way. The result reads∫
y2(z)c(z)

(1− z)z2W (z)
dz = I0 + I1 + I2, (6.81)

I0 = γ0

∫
y2(z)

(1− z)z2W (z)
dz = γ̄0A(z)

1

m
2F1 (2−m,−m, 2− c, z),

I1 = γ1

∫
zy2(z)

(1− z)z2W (z)
dz
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= γ1A(z)z
1

(m− 1)
2F1 (1−m, 1−m, 2− c, z),

I2 = γ̄2

∫
z2y2(z)

(1− z)z2W (z)
dz

= γ̄2A(z)z2 1

(m− 2)
3F2

[
1−m, 2−m, 2−m

2− c, 3−m
; z

]
,

A(z) =
b2
a2

Γ(1− c)
Γ(2− c)

z−m,

Two special cases are the first 0 ≤ x ≤ x1 and the last xnj < x < ∞
intervals where the solution is given by Eq.(6.53) and Eq.(6.54).

6.4.2 Last interval xnj ≤ x <∞

Since the right edge of this interval lies at infinity, the interpolation scheme

in Eq.(6.75) should be slightly modified. This could be done twofold. The

first option is to move the boundary from infinity to any very large but

finite positive strike. Then the scheme in Eq.(6.75) could be used with no

problem. But in our case it turns out that we are not able to compute

these integrals in closed form. Therefore, we use another approach which

consists in replacing the quadratic form in Eq.(6.75) with another nonlinear

interpolation

c(χ) = V (χ, Tj−1, S) = γ∞z
−ν , z = χ+

b2
a2
, (6.82)

where γ∞ > 0, ν > 0 are some constants to be determined. Obviously,

at χ → ∞ this interpolation preserves the correct boundary value of V as

in Eq.(6.47), i.e. V (χ) vanishes in this limit. Derivation of the appropriate

values of γ∞, ν and a proof that the proposed interpolation preserves no-

arbitrage are given in the next Section.

6.4.2.1 No-arbitrage interpolation at χ→∞

In this Appendix we prove the following Proposition:

Proposition 6.1. Recall that according to Eq.(6.82) the proposed inter-

polation scheme for V (χ, Tj−1, S) at the interval xnj ≤ x <∞ reads

c(χ) = V (χ, Tj−1, S) = γ∞z
−ν , z = χ+

b2
a2
, (6.83)

where γ∞ > 0, ν > 0 are some constants determined below in the proof.

Also this scheme preserves no-arbitrage.
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Proof. By construction, at K →∞, c(χ) converges to the correct bound-

ary condition, i.e. vanishes. Assuming that Knj is in-the-money, Eq.(6.82)

can be re-written in the form

P (K) = A(Tj−1)K −B(Tj−1)S + γ∞[log(K/S) + b2/a2]−ν . (6.84)

As at this interval v = b2 + a2 log(K/S) > 0, and it was assumed that

K > S, we must have a2 > 0. Accordingly, to have a positive Put price we

require γ∞ > 0. This constant could be determined by using a known Put

value at Knj , i.e. P (Knj ) = Pnj . This yields

γ∞ = [Pnj −A(Tj−1)Knj −B(Tj−1)S]

[
b2
a2

+ log

(
Knj

S

)]ν
> 0. (6.85)

Therefore, this definition is also consistent with the requirement of posi-

tiveness of γ∞.

As this is described in detail in [Itkin and Lipton (2018)], the no-

arbitrage conditions for the Put price read

P > 0, PK > 0, PK,K > 0.

Differentiating Eq.(6.84) on K, and then again, we obtain

P ′K = A(Tj−1)− γ∞ν

K

[
b2
a2

+ log

(
K

S

)]−1−ν

, (6.86)

P ′′K =
γ∞ν

a2K2

[
b2
a2

+ log

(
K

S

)]−ν−2

[b2 + a2(1 + ν + log(K/S))].

Analyzing these expressions we conclude that P ′′K > 0. Observe that at

K →∞ we also have P ′K > 0. Also observe that P ′K is a monotone function

of K. Therefore, let us look at P ′K(Knj ). Substitution of K = Knj into the

first line of Eq.(6.86) yields

P ′K(Knj ) = A(Tj−1) +
a2ν

Knj (b2 + a2 log(K/S)

[
A(Tj−1)Knj (6.87)

−B(Tj−1)S − Pnj
]
.

As the Put value exceeds its intrinsic value, P ′K(Knj ) is positive if

0 < ν <A(Tj−1)Knj

[
b2
a2

+ log

(
Knj

S

)]
(6.88)

×
[
Pnj −A(Tj−1)Knj +B(Tj−1)S

]−1

≡ Ω.
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At large Knj the expression in the first square brackets is large, and in the

second ones — small. Thus the upper boundary for ν is high enough.

Finally, we take into account the well-known upper bound of the Put

option price which is, [Hull (1997)]

Pnj ≤ A(Tj)Knj .

Because of that, we can re-write Eq.(6.88) as

0 < ν <
A(Tj−1)

B(Tj−1)

Knj

S

[
b2
a2

+ log

(
Knj

S

)]
≈
Knj

S

[
b2
a2

+ log

(
Knj

S

)]
≤ Ω.

(6.89)

Therefore, if ν is chosen according to Eq.(6.88) or Eq.(6.89), this guarantees

that P ′K(Knj ) > 0. As P ′K(K) is a monotone function of K, this proves that

with this choice of ν the condition P ′K(K) > 0 is valid at the whole interval

xnj ≤ x <∞. Thus, this interpolation preserves no-arbitrage.

Recall that at this interval we assume the local variance to be linear

in the log-strike χ. Therefore, the numerically stable pair of solutions of

Eq.(6.51) is given in Eq.(6.54). Then the integral in Eq.(6.51) can be com-

puted in closed form. In doing so we use the following notation from [Ng

and Geller (1970)] ∫
e−αzzνU(a, b, z)dz = Uν(α; a, b, z),∫
e−αzzνM(a, b, z)dz = Mν(α; a, b, z).

Then

I12(χ) = y2(χ)

∫
y1(χ)c(χ)

(b2 + a2χ)W
dχ− y1(χ)

∫
y2(χ)c(χ)

(b2 + a2χ)W
dχ,

(6.90)∫
y1(χ)c(χ)

(b2 + a2χ)W
dχ = ξ∞

∫
e−zz−νU(α1, β1, z)dz = ξ∞U−ν(−1;α1, β1, z),∫

y2(χ)c(χ)

(b2 + a2χ)W
dχ = ξ∞

∫
z−νU(β1 − α1, β1,−z)dz

= (−1)−νξ∞U−ν(0;β1 − α1, β1,−z),

ξ∞ = (−1)β1−α1γ∞a
2−β1

2 .
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As per [Ng and Geller (1970)],

Mν(−1; a, b, z) = eiπ(ν+1)Mν(0; b− a, b,−z), (6.91)

Mν(0; a, b, z) =
zν+1

ν + 1
2F2

[
ν1 + 1, a

ν + 2, b
; z

]
,

b 6= 0,−1,−2, . . . , ν 6= −1,−2, . . . ,

M−1(0; a, b, z) =
a

b
z 3F3

[
a+ 1, 1, 1

b+ 1, 2, 3
; z

]
+ log(z),

Uν(α; a, b, z) =
π

sin(πb)

[
Mν(α; a, b, z)

Γ(1 + a− b)Γ(b)

− Mν+1−b(α; 1 + a− b, 2− b, z)
Γ(a)Γ(2− b)

]
.

Therefore, all necessary integrals could be expressed in terms of general-

ized Hypergeometric functions. Alternatively, these integrals could be rep-

resented as

U−ν(−1;α1, β1, z) = G 2,1
2,3

(
1, 2+α1−β1−ν
1−ν, 2−β1−ν, 0

∣∣∣∣ z), (6.92)

U−ν(0;α1, β1,−z) =
z1−ν

Γ(1− α1)Γ(β1 − α1)
G 2,2

2,3

(
ν, 1+α1−β1

0, 1−β1, ν−1

∣∣∣∣ − z),
where Gm,n

p,q

(
a1,...,ap
b1,...,bq

∣∣∣∣ z) is the Meijer G-function, see [Olver (1997)].

It is not difficult to verify that at K →∞, and so z →∞, the integral

I12(χ) vanishes.

6.4.3 First interval 0 ≤ x ≤ x1

Recall that at this interval we assume the local variance to be linear in the

log-strike χ. Since at K → 0 we have χ→ −∞, the numerically stable pair

of solutions of Eq.(6.51) is still given by Eq.(6.54).

However, at this interval we need another interpolation scheme because

the previously described schemes don’t give rise to tractable integrals. How-

ever, this could be achieved by using, e.g., the following nonlinear interpo-

lation

c(χ) = V (χ, Tj−1, S) = ω0e
z/z, z = χ+

b2
a2
, (6.93)

where ω0 < 0 is a constant to be determined. Obviously, at K → 0,

and so z → −∞, this interpolation preserves the correct boundary value

of V as in Eq.(6.47), i.e. V (χ) vanishes in this limit. Derivation of the
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appropriate value of ω0 and a proof that the proposed interpolation pre-

serves no-arbitrage are given below.

6.4.3.1 No-arbitrage interpolation at χ→ −∞

In this Appendix we prove the following Proposition:

Proposition 6.2. Recall that according to Eq.(6.82) the proposed inter-

polation scheme for V (χ, Tj−1, S) at the interval −∞ ≤ x < x1 reads

V (χ, Tj−1, S) = ω0e
z/z, z = χ+

b2
a2
, (6.94)

where ω0 = V (χ1, Tj−1, S)z1e
−z1 < 0 is constant. Also this scheme pre-

serves no-arbitrage.

Proof. Obviously, at K = K1 we have χ1 = log(K1/S), V (χ, Tj−1, S) =

V (χ1, Tj−1, S) ≡ V1, therefore, assuming the strike K1 is out of the money

ω0 = V1z1e
−z1 < 0. (6.95)

As this is described in detail in [Itkin and Lipton (2018)], the no-arbitrage

conditions for the Put price read

P > 0, PK > 0, PK,K > 0.

Based on Eq.(6.82) and the definition of V in Eq.(6.45), the Put price at

this interval can be represented as

P (K,Tj−1, S) = ω0e
z/z = ω0e

b2/a2
K/S

log(K/S) + b2/a2
. (6.96)

As at this interval v = b2 + a2 log(K/S), and it was assumed that K < S,

we must have a2 < 0. Accordingly, to have a positive Put price we require

ω0 < 0. This is consistent with the value of ω0 introduced in Eq.(6.95).

Differentiating Eq.(6.96) on K, and then again, we obtain

P ′K =
ω0a2

S
eb2/a2

b2 − a2 + a2 log(K/S)

(b2 + a2 log(K/S))2
> 0, (6.97)

P ′′K = −ω0
a2

2

KS
eb2/a2

b2 − 2a2 + a2 log(K/S)

(b2 + a2 log(K/S))3
> 0.

Thus, the proposed scheme can be used for interpolation because it provides

correct Put option prices at K = K1 and K → 0, and is monotone in K.

Moreover, it preserves no-arbitrage.
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Now the integral in Eq.(6.51) can be computed in closed form

I12(χ) = y2(χ)

∫
y1(χ)c(χ)

(b2 + a2χ)W
dχ− y1(χ)

∫
y2(χ)c(χ)

(b2 + a2χ)W
dχ,

(6.98)∫
y1(χ)c(χ)

(b2 + a2χ)W
dχ = ξ0

∫
z−1U(α1, β1, z)dz = ξ0U−1(0;α1, β1, z),∫

y2(χ)c(χ)

(b2 + a2χ)W
dχ = ξ0

∫
ezz−1U(β1 − α1, β1,−z)dz

= −ξ0U−1(−1;β1 − α1, β1, z),

ξ0 = (−1)β1−α1ω0a
−β1

2 .

Representation of functions U−1(−1;β1 − α1, β1, z), U−1(0;α1, β1, z) via

the Meijer G-function is given in Eq.(6.92). Again, it can be easily verified

that at K → 0, and so z → −∞, the integral I12(χ) vanishes.

6.4.4 Special case z ≈ 1 or |v/b2| � 1

This case occurs when at the interval [Ki,Ki+1] for some i ∈ [1, nj ] coeffi-

cients a2, b2 are such that either |1 − zi| � 1 or |1 − zi+1| � 1. Suppose,

e.g. that zi+1 = 1 + ε with 0 < ε � 1. As shown in the next section, then

we can introduce a ghost point K∗ such that z∗ = 1− ε. So at the interval

[K∗,Ki+1] we will use the numerically stable solution in Eq.(6.65), while at

the interval [Ki,K∗] — the regular solution in Eq.(6.63). Same construction

could be provided if zi = 1− ε.
At the interval z ∈ [1 − ε, 1 + ε] where the values of z are close to

singularity of the Hypergeometric function at z = 1 there are two ways to

construct the solution. First, one can build an asymptotic solution using

v/b2 as a small parameter, because at z → 1 we have v/b2 = (b2+a2x)/b2 =

1 − z → 0. As shown in [Carr and Itkin (2018a)], this can be done, e.g.,

using the method of boundary functions, [Vasil’eva et al. (1995)].

Alternatively, it follows from Eq.(6.65) that y1(z) → 1, y2(z) → 0 at

z → 1. Therefore, these solutions have a regular behavior in the vicinity of

z = 1. So all we need to do is to propose a suitable no-arbitrage interpola-

tion to make computation of the source term in Eq.(6.58) tractable. This

interpolation is constructed in 6.4.1.

Thus, based on Eq.(6.74) and Eq.(6.65) we need to compute 2 integrals

J1(x) =

∫
y1(z)c(z)

(1− z)z2W (z)
dz, J2(x) =

∫
y2(z)c(z)

(1− z)z2W (z)
dz, (6.99)
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y1(z) = zm2F1 (m− 1,m, 2m− c; 1− z) , c(z) = V (z, Tj−1, S),

y2(z) = zm(1− z)c−2m+1
2F1 (c−m+ 1, c−m, c− 2m+ 2; 1− z),

W (y1(z), y2(z)) = ω1(1− z)c−2mz2m−c, ω1 = −a2(2m− 1− c)
b2

.

The integral J2(x) can be found in closed form, and the result reads

J2(x) = γ̄0J2,0(x) + γ1J2,1(x) + γ̄2J2,1(x), (6.100)

J2,0(x) =
π

ω1
csc(πc)z−mΓ(c−2m+2)

[zc−1
2F1(c−m− 1, c−m+ 1; c; z)

(c−m− 1)Γ(c)Γ(1−m)Γ(2−m)

+
2F1(2−m,−m; 2− c; z)

mΓ(2− c)Γ(c−m)Γ(c−m+ 1)

]
,

J2,1(x) =
π

(m− 1)ω1
csc(πc)z−mΓ(c− 2m+ 2)

·
[z(c−m) 2F1(1−m, 1−m; 2− c; z)

Γ(2− c)Γ(c−m+ 1)2
− zc 2F1(c−m, c−m; c; z)

(c−m)Γ(c)Γ(1−m)2

]
,

J2,2(x) =
Γ(c− 2m+ 2)

ω1Γ(1−m)Γ(2−m)Γ(c−m)Γ(c−m+ 1)

× G 2,3
3,3

(
1,1,2

2−m, c−m+1, 0

∣∣∣∣ z).
The integral J1(x) with the use of no-arbitrage interpolation defined in

Eq.(6.78) reads

J1(x) = ω−1
1

∫
(1− z)−c+2m−1zc−m−2

2F1(m− 1,m; 2m− c; 1− z)

· (γ̄0 + γ1z + γ̄2z
2)dz.

This integral can be computed as follows. We remind that z ∈ [1− ε, 1 + ε],

|ε| � 1. Therefore, the term zk, k ∈ R can be expanded into series around

z = 1 to obtain

zk =

∞∑
i=0

(−1)i
(
k

i

)
(1− z)i.

Then J1(x) takes the form

J1(x) = ω−1
1

{
γ̄0

∞∑
i=0

(−1)i
(
c−m− 2

i

)
·
∫

(1− z)i−c+2m−1
2F1(m− 1,m; 2m− c; 1− z)dz (6.101)

+ γ1

∞∑
i=0

(−1)i
(
c−m− 1

i

)
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·
∫

(1− z)i−c+2m−1
2F1(m− 1,m; 2m− c; 1− z)dz

+ γ̄2

∞∑
i=0

(−1)i
(
c−m
i

)∫
(1− z)i−c+2m−1

× 2F1(m− 1,m; 2m− c; 1− z)dz

}

= ω−1
1

∞∑
i=0

νi

∫
(1− z)i−c+2m−1

2F1(m− 1,m; 2m− c; 1− z)dz,

= ω−1
1

∞∑
i=0

νi
c− i− 2m

(1− z)−c+i+2m

× 3F2

[
m− 1, m, 2m− c+ i

2m− c, 2m+ i− c+ 1
; 1− z

]
,

νi = (−1)i
[
γ̄0

(
c−m− 2

i

)
+ γ1

(
c−m− 1

i

)
+ γ̄2

(
c−m
i

)]
.

The exponent −c + i + 2m = i + b1/b2 is always positive if b2 > 0 in

the vicinity of z = 1. According to 6.4.1, this condition on b2 is valid if

1 − ε ≤ z < 1. Therefore, 2–3 terms in the expansion Eq.(6.101) provide

the sufficient accuracy in computation of the integral. However, this is also

true when 1+ε > z > 1 (and so b2 is negative) which implies that the entire

exponent is also negative, at least at low i. This is because the behavior

of the product (1− z)i−c+2m
3F2

[
m−1, m, 2m−c+i
2m−c, 2m+i−c+1 ; 1− z

]
is regular even in

this case.

In a similar manner the source terms for other models of the local vari-

ance/volatility considered in previous sections could be computed in closed

form. We leave this exercise to the reader.

6.5 Smile calibration for a single term

Calibration problem for the local volatility model is described in [Carr and

Itkin (2018a)] as well as the construction of the solution for the entire

smile. Here we follow the same approach, and, therefore, provide just some

short comments specific to the GLVG model. Again, as an example consider

the case where the local variance is a piecewise linear function of strike.

Calibration for the other cases considered in Section 6.3 can be done in a

similar manner.



January 3, 2020 20:32 Fitting Local Volatility – 9in x 6in b3761-main page 169

Geometric Local Variance Gamma Model 169

A general calibration problem we need to solve is: given market quotes

of Call and/or Put options corresponding to various strikes {K} := Kj , j ∈
[1, N ] and same maturity Ti, find the local variance function v(x) such that

these quotes solve equations in Eq.(6.37), Eq.(6.43).

Suppose that the Put prices for T = Tj are known for nj ordered strikes.

The location of those strikes on the x line is schematically depicted in

Fig. 6.1.

x

v(x)

0 x1

•

V1

x2

•

V12

x3

•V23

. . . xnj

•

Vnj

2

1

Figure 6.1: Schematic construction of the combined solution in x ∈ R+: 1

(solid line) — the real (unknown) local variance curve, 2 (dashed line) —

a piecewise linear solution. At x > xnj and x < x1 the dashed line is

b2 + a2 log(x).

Recall that the general form of the solution is given in Eq.(6.51) which

at every interval xi−1 ≤ x ≤ xi and T = Tj can be represented as

V (x) = C
(1)
j,i y1(x) + C

(2)
j,i y2(x) + I12(x). (6.102)

Here for better readability we changed the notation of two integration con-

stants which belong to the i-th interval in x and j-th maturity to C
(1)
j,i , C

(2)
j,i .

Similar to [Carr and Itkin (2018a)], we assume continuity of the options

price and its first derivative at every node i = 1, . . . , nj . We also supplement

this by two additional conditions: the first one is given by Eq.(6.49), and

the other one is that at every node the solution P (S, Tj ,Ki) must coincide

with a given market quote for the pair (Tj ,Ki). So together this provides
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four equations for four unknown variables v0
j,i, v

1
j,i, C

(1)
j,i , C

(2)
j,i :

Pi(x)|x=xi = Pi+1(x)|x=xi , (6.103)

Pi(x)|x=xi = Pmarket(xi),

∂Pi+1(x)

∂x

∣∣∣
x=xi

=
∂Pi(x)

∂x

∣∣∣
x=xi

,

v0
j,i + v1

j,ixi = v0
j,i+1 + v1

j,i+1xi, i = 1, . . . , nj .

The Eq.(6.103) is a system of 4nj nonlinear equations with respect to

4(nj + 1) variables v0
j,i, v

1
j,i, C

(1)
j,i , C

(2)
j,i . Therefore we need 4 additional

conditions to unquietly solve it.

To this end observe that the constants C
(2)
j,1 , C

(2)
j,nj

could be determined

based on the boundary conditions in Eq.(6.47). Indeed, at K → 0 function

y2(χ) in Eq.(6.54) vanishes (as a2 < 0 at this interval), but not y1(x).

Therefore, to obey the vanishing boundary condition in Eq.(6.47) we must

set C
(1)
j,1 = 0. As that was already discussed, the source term in Eq.(6.98)

also vanishes in this limit. Therefore, the solution in Eq.(6.54) with the

source term in Eq.(6.98) and C
(2)
j,1 = 0 obeys the boundary condition at

z → 0.

At K → ∞ based on representation of the solution in Eq.(6.54) with

a2 > 0 at this interval, similarly we must set C
(2)
j,nj

= 0, as the solution

y2(x) in Eq.(6.54) diverges at z →∞.

The remaining two additional conditions could be set in many different

ways. Here we rely on traders intuition about the asymptotic behavior of

the volatility surface at strikes close to zero and infinity. According to our

construction, they are determined by v1
j,0 and v1

j,nj
. Therefore, we assume

these coefficients to be somehow known, i.e. consider them as the given

parameters of our model.

Overall, by solving the nonlinear system of equations Eq.(6.103) we

find the final solution of our problem. This can be done by using standard

methods, and, thus, no optimization procedure is necessary. However, a

good initial guess still would be helpful for a better (and faster) convergence.

Construction of such a guess is described in [Carr and Itkin (2018a)]. Also

note that this system has a block-diagonal structure where each block is a

2x2 matrix. Therefore, it can be easily solved with the linear complexity

O(nj).

When computing the first derivatives, we take into account that deriva-

tives of Hypergeometric functions belong to the same class of functions,
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since, [Abramowitz and Stegun (1964)]
∂

∂z
2F1 (a, b, c, z) =

ab

c
2F1 (a+ 1, b+ 1, c+ 1, z) ,

∂

∂z
3F2

[
a, b, c

d, e
; z

]
=
abe

cd
3F2

[
a+ 1, b+ 1, c+ 1

d+ 1, e+ 1
; z

]
.

Same is true for the Meijer G-function. For instance,
∂

∂z
G 2,2

2,3

(
ν, 1+α1−β1

0, 1−β1, ν−1

∣∣∣∣ − z) =
Γ(1− α1)Γ(β1 − α1)

z
U(β1 − α1, β1,−z)

(6.104)

+ (ν − 1)G 2,2
2,3

(
ν, 1+α1−β1

0, 1−β1, ν−1

∣∣∣∣ − z).
Therefore, computing derivatives of the solution does not cause any new

technical problem.

6.5.1 Special case |1− zi| � 1 at some node Ki, i ∈ [1, nj]

Without loss of generality suppose that zi = 1 − ε and zi+1 � 1 + ε

with 0 < ε � 1. The other case zi = 1 + ε and zi−1 � 1 − ε could be

treated in a similar way. Then let us introduce a ghost point K∗ such that

z∗ = 1 + ε. So at the interval [Ki,K∗] we will use the numerically stable

solution in Eq.(6.65), while at the interval [K∗,Ki+1] — the regular solution

in Eq.(6.63).

Since K∗ is the ghost point, we don’t have a market quote available at

K∗. All we can say is that yet we assume the local variance/volatility to

be a piecewise linear function of K at [K∗,Ki+1] and [Ki,K∗]. It has to be

continuous but with a possible jump in skew at K∗.

Since a market quote at K∗ is not available, we can replace it with any

reasonable value. For instance, an interpolated value between market quotes

at Ki,Ki+1 could be used obtained by using no-arbitrage interpolation.5

Then we obtain four equations for C
(1)
j,∗ , C

(2)
j,,∗, v

0
j,∗, v

1
j,∗

Pi(x)|x=xi = P∗(x)|x=xi , (6.105)

P∗(x)|x=x∗ = Pinterp(x)|x=x∗ ,

∂P∗(x)

∂x

∣∣∣
x=xi

=
∂Pi(x)

∂x

∣∣∣
x=xi

,

v0
j,i + v1

j,ix∗ = v0
j,∗ + v1

j,∗x∗, i = 1, . . . , nj .

that should be added to Eq.(6.103). Solving this new combined linear sys-

tem in the same way as we did it for Eq.(6.103) we find the values of all

unknown C
(1)
j,i , C

(2)
j,,i, v

0
j,i, v

1
j,i where now i ∈ {[1, nj ] ∪ ∗}.

5Despite it looks attractive, we cannot require v1j,i = v1j,∗ since this also gives rise to

v0j,i = v0j,∗. However, v0j,i changes sign at z = 1.
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6.6 Discussion

First, let us mention that in many practical calculations either coefficients

a2 = v1
j,i at some i, or both b2 = v0

j,i, a2 = v1
j,i (see, for instance, Eq.(6.57))

are small. Of course, in that case the general solution Eq.(6.63) remains

valid. However, when computing the values of Hypergeometric functions

numerically, the errors significantly grow in such a case. This is especially

pronounced when computing the source term integral I12. The main point is

that either the Hypergeometric function takes a very small value, and then

the constants C
(1)
j,i , C

(2)
j,i should be very large to compensate, or vice versa.

Resolution of this issue requires high-precision arithmetics, and, which is

more important, taking into account many terms in a series representation

of the Hypergeometric functions, which significantly slows down the total

performance of the method.

To eliminate these problems we can look at asymptotic solutions of

Eq.(6.57) taking into account the existence of small parameters from the

very beginning. This approach was successfully elaborated on in [Itkin and

Lipton (2018); Carr and Itkin (2018a)], so we don’t describe it here in detail.

In [Carr and Itkin (2018a)] we calibrated the ELVG model, e.g. to the

data set taken from [Balaraman (2016)]. In that paper an implied volatil-

ity surface of S&P500 is presented, and the local volatility surface is con-

structed using the Dupire formula. We took data for the first 12 maturities

and all strikes as they are given in [Balaraman (2016)]. Our results demon-

strated high accuracy and speed of calibration.

When doing so, a technical note should be made. We mentioned

already that in our model for every term the slopes of the smile at strikes

close to zero, v1
j,0 and infinity, v1

j,nj
are free parameters of the model. So of-

ten traders have an intuition about these values. However, in our numerical

experiments we setup them just using some plausible test values. In par-

ticular, in [Carr and Itkin (2018a)] for the sake of simplicity for all smiles

we used v1
j,0 = −0.3, and v1

j,nj
= 0.1. Accordingly, for the instantaneous

variance vj(xi) = pj(v
0
j,i + v1

j,i log(xi))/2 the slopes at both zero and plus

infinity are time-dependent and can be computed by using this definition.

As a numerical solver for the system of linear equations we used the stan-

dard Matlab fsolve function, and utilized a “trust-region-dogleg” algorithm.

Parameter “TypicalX” has to be chosen carefully to speedup calculations.

In [Carr and Itkin (2018b)] we repeated this test, but now using the

GLVG instead of the ELVG. The results look same as in Fig.5 of [Carr

and Itkin (2018a)], i.e. the quality of the fit is same, and performance of
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the method is almost same. But the conclusion of [Carr and Itkin (2018a)]

remains intact, namely that performance of this model is much better than

that reported in both [Itkin (2015)] and [Itkin and Lipton (2018)].

Therefore, a natural question would be: which flavor of the Local Vari-

ance Gamma model — arithmetic or geometric one is preferable. Perhaps,

if the ultimate goal is fast calibration of the given smile, both could be used

interchangeably, and both are capable to provide a good and fast fit. How-

ever, for modeling option prices the difference between the geometric and

arithmetic LVG models is of the same kind as between the Bachelier and

Black-Scholes models. So, for instance, for modeling stock prices the lat-

ter would be preferable, while for modeling interest rates the former could

provide negative values, which nowadays is a desirable feature.
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Steve Shreveś 65th Birthday Conference, http://www.math.cmu.edu/CCF/
CCFevents/shreve/abstracts/P.Carr.pdf.

Carr, P. and Wu, L. (2010). A new framework for analyzing volatility risk and
premium across option strikes and expiries, http://papers.ssrn.com/sol3/
papers.cfm?abstract id=1701685.

Castagna, A. (2010). FX Options and Smile Risk (Wiley).
Ciliberti, S., Bouchaud, J., and Potters, M. (2008). Smile dynamics — a theory

of the implied leverage effect, (arXiv, 0809.3375v1 [q-fin.PR]).
Coleman, T., Kim, Y., Li, Y., and Verma, A. (2001). Dynamic hedging with

a deterministic local volatility function model, The Journal of Risk 4, 1,
pp. 63–89.

Cont, R. and Fonseca, J. (2002). Dynamics of implied volatility surfaces, Quan-
titative Finance, 2, pp. 45–60.

Corcuera, J., Guillaume, F., Leoni, P., and Schoutens, W. (2009). Implied Lévy
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