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Preface

Wireless edge caching refers to a novel distributed architecture for storing contents at
the wireless edge networks, such as at base stations and user terminals, to efficiently
accommodate the proliferation of mobile devices and new data-hungry applications.
Efficient deployment of edge caching is facing various challenges and requires a cross-
layer design method when applied to wireless networks. One major challenge is how
to jointly design caching (at the network layer) and signal transmission (at the physical
layer) in an effective manner. Another problem is to deal with dynamic content popular-
ity and network topology. Since content popularity is time varying, caching operations
can be optimized only if a fresh view of the system is maintained. This requires massive
data collection and processing and statistical inference from these data, which by itself is
a complex task to handle. The successful implementation of wireless edge caching there-
fore heavily depends on joint research developments in different scientific domains, such
as networking, information theory, machine learning, and wireless communications.

This book is intended to give a broad overview of the current literature as well as the
latest research results for both uncoded and coded caching techniques for future wireless
network design. The book covers the range from high-level architectures to specific
requirement-oriented caching design and analysis. A number of new techniques are also
presented to improve the edge caching systems in terms of backhaul load minimization,
deployment cost reduction, security, energy efficiency, and user quality of experience.

It is our hope that this book will serve as a useful reference for academic researchers,
postgraduate students, and engineers and that it will motivate more researchers to con-
tribute to the wireless edge caching research, which will be fruitful for the next genera-
tion of networks.
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1 Introduction
Ejder Baştuğ, Thang X. Vu, Symeon Chatzinotas, and Tony Q.S. Quek

1.1 History of Caching

The idea of caching can be traced back to the sixties in context of fast memory access
in operating systems. According to [1], the most effective online cache replacement
strategy is earliest deadline first (EDF) policy that replaces contents in memory blocks
that are not going to be requested in the nearest future, provided that the future content
demand profile is perfectly available. Other examples include analysis of least recently
used (LRU) cache placement policy under stationary demand, either using a Markovian
model [2] or an approximate cache placement method [3]. Implementation of these
methods in the systems of that era are largely based on LRU, least frequently used
(LFU), hybrid, and/or randomized approaches, while maintaining low-complexity
design. The main objective therein is to maximize cache hits subject to ultra-low
memory capacity constraints, thus achieving the goal of fast content access in such a
localized setting.

The nineties witnessed an explosion of interconnected devices and systems over the
internet, with the rise of world wide web contributing to creation of millions of websites,
startups, and projects. This growth together with the dot-com bubble introduced a huge
congestion over the web infrastructure, even leading its inventor, Sir Tim Berners-
Lee, to mention the network congestion and the conventional client–server connectivity
model as the main bottlenecks for the scalability of the web-based internet. Regarding
the client–server model by which a web page is downloaded from the same central-
ized server by every internet client/user (often) multiple times, a workaround solution
to alleviate the bottleneck was to replicate contents across several proxy servers that
are geographically close to users, mostly supporting heuristic caching placements of
unencrypted traffic and static contents. This allowed websites and content providers
to minimize their global network bandwidth, provide rapid content access, and offload
their servers.

The automation of this technical process and new business models ultimately led to
creating content delivery networks (CDNs) around the late 1990s (see [4] for a brief
literature review), and over the time, this evolution yielded complex infrastructures
supporting various features, like the caching of large video streaming, social network
data, and high-traffic websites, mostly over secure connections and distributed around
the planet. Several cache placement strategies for CDN have been proposed [9] and
implemented in this regard, allowing content providers to minimize access delays to the

1



2 Ejder Baştuğ, Thang X. Vu, Symeon Chatzinotas, and Tony Q.S. Quek

requested contents. The questions that have been targeted in this scope are (1) where
to deploy the cache servers, (2) how much cache capacity is required for each node,
(3) which content to cache, and (4) how and when to redirect/route the contents to end
users. Concepts like content centric networking (CCN) and information centric network-
ing (ICN) emerged during this period (see [5, 6] for examples), aiming to fundamentally
shift the way that content is stored and accessed on the internet and looking to pave the
way of successful implementations. Most of CDN-like caching technologies are now
crucial elements of the world networking infrastructure.

Nowadays, all these networking-level caching challenges are being revisited in the
wireless domain, mostly driven by the steep increase of mobile data traffic and bil-
lions of devices/users connected to the mobile networks, where telecom operators and
organizations are looking for innovative ways to design and deploy cellular networks
of the future. The aforementioned technical challenges of caching are not only being
revisited but also taking a twisted step, with majority of traditional caching problems
taking into account limited backhaul capabilities in dense cellular deployments, base
station cooperation and coordination, coded/uncoded techniques, learning in large scale,
mobility, economics, ultra-performance demanding new applications, level of content
placement at the wireless edge (namely at base stations and user devices), and others.
The research community is growing and aims to bring the wireless caching into reality
(see [7, 8, 10] for examples), also with industrial and startup activities taking place. The
aim of our book is to cover most of these technical aspects of wireless edge caching,
with the help of experts and researchers active in the domain.

1.2 Summary of the Book

The book presents a collection of invited chapters on a wide range of issues and open
challenges related to edge caching applied to future wireless networks, which are coher-
ently presented in four parts:

• Part I: Optimal Cache Placement and Delivery

• Part II: Proactive Caching

• Part III: Cache-Aided Interference and Physical Layer Management

• Part IV: Energy-Efficiency, Security, Economics, and Deployment

Part I provides a comprehensive view on optimal cache design for both placement
and delivery phases. The five chapters in this part cover most advanced techniques in
coded caching, cache-aided device-to-device communications, and cooperative caching.
More specifically, Chapter 2 provides the comprehensive performance analysis of coded
caching in heterogeneous wireless networks via a joint design of storage and delivery
and the optimal trade-off between the cache memory size and the broadcast delivery rate.
Chapter 3 investigates the performance of cache-aided device-to-device networks under
both uncoded and coded caching strategies. Chapter 4 proposes a cooperative hierarchi-
cal caching framework in cloud radio access networks (C-RAN) and explores the syner-
gies of the in-network computing and storage resources. Chapter 5 proposes the concept
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of stochastic caching in large wireless networks and analyzes the three main perfor-
mance metrics: cache-hit probability, successful delivery probability, and content deliv-
ery latency. Chapter 6 studies the edge caching via a joint design of caching, routing,
and channel assignment for video delivery over coordinated small-cell cellular systems.

Part II provides key aspects in designing proactive caching algorithms with users’
behavior prediction and learning techniques. In particular, Chapter 7 proposes a novel
popularity-predicting-based caching procedure based on raw video data to determine
an optimal cache placement policy, which deals with both published and unpublished
videos. Chapter 8 studies wireless edge caching paradigms for mobile social networks
to improve reliable and low-latency communication services for mobile users on social
networking. In Chapter 9, a big data analytic-based framework is proposed for content
popularity estimations and proactive caching at base stations. Chapter 10 investigates
the impact of mobility on edge caching and proposes the optimal cache in both static
and mobile user scenarios.

Part III consists of four chapters that provide the cross-layer cache-aided design for
interference and physical layer resources management under both coded caching and
uncoded methods. More precisely, Chapter 11 studies the caching effects on multicast-
enabled access downlinks and proposes cache-aware joint designs of the content-centric
base station clustering and multicast beamforming. Chapter 12 analyzes the impact of
caching in the interference networks under both fully and partially connected topologies.
Chapter 13 studies the performance enhancement brought by the caching capabilities in
full-duplex radios in the context of ultra-dense networks. Chapter 14 investigates the
impact of edge caching in mobile millimeter wave systems via a mobility management
framework that exploits broadband millimeter wave connectivity to cache the contents
of interest.

Part IV highlights the edge caching in future wireless networks from various aspects
such as energy efficiency, security, and economics as well as the edge caching deploy-
ment in unmanned aerial vehicle (UAV) and virtual reality systems. Chapter 15 investi-
gates the energy-efficiency and delivery time performance of the wireless edge caching
systems via both uncoded and coded caching strategies. Chapter 16 studies the cache-
enabled UAVs in C-RAN to reduce the content delivery latency and improve the users’
quality of experience. Chapter 17 investigates the application of edge caching to enhance
the physical layer security of cellular networks via proactive content sharing policy
across a subset of base stations. Chapter 18 proposes a framework for the delivery of
360◦-navigable videos to 5G virtual reality wireless clients in future cooperative multi-
cellular systems. Finally, Chapter 19 investigates the elastic wireless edge caching that
reveals the economic interactions of different stake holders in the network and provides
the key differences between in-network and edge caching.
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2 Coded Caching for Heterogeneous
Wireless Networks
Nikhil Karamchandani, Jad Hachem, Suhas Diggavi, and Sharayu Moharir

2.1 Introduction

Broadband data consumption has witnessed a tremendous growth over the past few
years, due in large part to multi-media applications such as video-on-demand. Increasing
data demand has been managed in the wired internet via content distribution networks
(CDNs) that mirror data in various locations and effectively push content closer to end
users. CDNs help reduce host server load by serving user requests locally via content
cached locally. This solution works best when neither local storage nor data rates are
bottlenecks [1]. Neither of these is true in cellular networks; the last-hop wireless link
has low throughput (improvements in cellular data rates do not sufficiently compensate
for exploding demand) and there is virtually no storage at base stations. To address the
throughput issue, a heterogeneous wireless network (HetNet) architecture has been pro-
posed for 5G systems [2, 3]. HetNets consist of a dense deployment of very small cells
(pico/femto) with high data rates, combined with a sparse deployment of larger macro-
cellular base stations (BSs) of comparatively lower data rates; WiFi access points (APs)
can be a typical small cell. However, this architecture is “incomplete” because the APs
are connected to the backbone via best-effort backhaul, which is a bottleneck [4]. Even
joint management of APs and BSs cannot provide enough improvement to deal with pro-
jected demand growth [2, 5]. This leads us to argue that the traditional CDN approach in
an enhanced wireless system design is an incomplete solution: the CDNs optimize con-
tent placement without accounting for characteristics of wireless communications, and
wireless system design focuses only on increasing delivery rates agnostic to content. To
fully enable content-centric wireless networks, we need a joint design of content place-
ment, access, and delivery. Broadly, the proposal is to provide storage capabilities at the
network nodes (base stations and WiFi access points) and create a large-scale distributed
cache. Users will be served by connecting them to one or more nodes hosting their
requested content. Delivery protocols will use algorithms that are aware of attributes of
wireless networks like the broadcast medium and interference. Figure 2.1 illustrates this.

In this chapter we describe a problem based on an architecture where content is
stored at multiple APs without a priori knowing the user requests, and the base station
broadcast is used judiciously to complement the local caching, after the user requests

Nikhil Karamchandani would like to acknowledge support from SERB, Govt. of India, in the form of a grant
titled “Content Caching and Delivery over Wireless Networks.” Suhas Diggavi’s work was supported in part
by NSF grant 1514531, UC-NL grant LFR-18-548554 and ARL cooperative grant W911NF-17-2-0196.
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Figure 2.1 Caching in a wireless heterogeneous network (HetNet).

are known. This is motivated by the new approach initiated in the seminal works
[6, 7], where it has been shown that joint design of storage and delivery (also known
as “coded caching”) can significantly improve content delivery-rate requirements. This
was enabled by content placement that creates (network-coded) multicast opportunities
among users with access to different storage units, even when they have different (and a
priori unknown) requests. This enables an examination of the optimal trade-off between
the cache memory size and the broadcast delivery rate.

We will begin by discussing the setup studied in [6, 7], which introduced the idea
of coded caching, and describing their main results. These works considered the case
where all files in the catalog have the same popularity. However, it is well understood
that content demand is non-uniform in practice, with some files being more popular than
others. Motivated by this, we then describe models that take this non-uniform popularity
into account and discuss how it impacts the results and proposed caching and delivery
schemes. While all these focus on a setup where each user has (fixed) access to a single
unique cache and hears the common message broadcast by the base station, several gen-
eralizations to the network structure have been studied recently. In particular, we then
discuss in detail the case where, based on the user requests, each user can be adaptively
matched to one cache (possibly among a subset of caches). Finally, we end the chapter
by considering a setting where multiple base stations simultaneously communicate with
users over an interference network. We will argue for a separation-based architecture for
such a setting where reliable (physical-layer) wireless communication is appropriately
matched to coded caching.

2.2 Overview of Coded Caching

Coded caching was first introduced in 2012 by Maddah-Ali and Niesen [6] as a
solution to the content distribution problem in a wireless setting. In order to focus
on this new technique, the setup ignored variations in content popularity and limited
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user-to-cache access to exactly one user connecting to one cache. The authors showed
that conventional caching techniques are inefficient in such a setup. Instead, one can
leverage the broadcast capabilities inherent to wireless communications in order to
send a small network-coded message that can serve a large number of users at once.
The setup and ideas became fundamental to much of the following literature on
the subject, and so in this chapter we give an overview of the results and insights
from [6].

2.2.1 Setup and Notation

We begin by describing the setup studied in the seminal work of Maddah-Ali and Niesen
[6], illustrated in Figure 2.2. Consider a server hosting a content library with N files,
labeled W1, . . . ,WN , of size F bits each. There are K users in the network, each of
which is equipped with a local cache of size MF bits. The server is connected to the
users via an error-free broadcast link.

The system operates in two phases. We start with a placement phase in which all
the user caches are populated with content related to the N files. No restrictions are
posed on this placement phase aside from the cache memory constraint. In particular, the
caches are not restricted to holding just files or parts of files; any function (deterministic
or not) of the files can be used, and the caches do not necessarily have to hold the
same information. Crucially, this is done before the user requests are revealed to the
system. Next, we move to the delivery phase, which starts with each user making a
request for one file from the content library. Based on the user requests and the content
stored in the caches, the server transmits a message of size RF bits across the error-
free broadcast link, intended to serve the requests of all the users. Each user then
combines this message with the contents of its own cache in order to recover the file
that it requested.

Our resources here are the cache memory M and the broadcast rate R. Clearly there
is a trade-off between them: the larger the cache, the smaller the size of the broadcast
message needed to serve the users. The goal is to characterize the optimal trade-off.

cache

server 1 · · · N

files

cache cache cacheM

R

Figure 2.2 The basic coded caching problem, with N files, K caches, and one user at every cache.
There is an error-free broadcast link from the server to the users.
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Formally, we say that a pair (R,M) is achievable if there exists a caching scheme SF for
every file size F such that

• SF uses a cache memory at each user of capacity at most MF bits and a broadcast
rate from the server of size at most RF bits; and

• for any collection of user requests, the probability that each user recovers its
requested file without error goes to one as F →∞.

Then, our goal is to find, for every M ≥ 0, the information-theoretically optimal rate
defined as

R�(M) = inf {R: (R,M) is achievable} . (2.1)

Note that the infimum in (2.1) is over all possible caching and delivery schemes, without
any restrictions.

We discuss a small example in the next section to illustrate the setup as well as some
representative caching and delivery schemes.

2.2.2 A Small Illustrative Example

Consider a special case of the system described earlier with N = 2 files, K = 2 users,
and M = 1 memory at each user. Denote the two files by A and B. Any caching and
delivery scheme has to specify what to store in the caches during the placement phase
and what the server should transmit during the delivery phase so that the user requests
can be served.

For instance, a natural cache placement strategy is to split file A into two equal parts
A1,A2 and similarly file B into B1,B2. Each cache stores one-half of each file. In a
conventional caching and delivery system, each cache would store (A1,B1), and the
server would handle each user request via a separate transmission. For example, if one
user wants file A and the other wants file B, the server would transmit A2 to the first user
and B2 to the second user, and thus the broadcast message size is equivalent to the size
of one file. This scheme leverages the local presence of a cache at every user: each user
has access to the half file present in its cache, which reduces the message size by that
amount per user. However, using network coding techniques, we can design the cache
contents in such a way that each user benefits from the contents of both its cache and
the other user’s cache.

To do so, we consider an alternate placement and delivery strategy whose main
idea is to store different file parts in each user’s cache in a way that enables sending
linear combinations of file parts that are simultaneously useful to both users. First, in
the placement phase the first user’s cache stores (A1,B1) while the second user’s cache
stores (A2,B2). Second, instead of treating the two user requests separately during the
delivery phase, we consider them jointly. For example, if the first user requests file A

and the second user requests file B, then the server sends a linear combination A2 ⊕B1

on the shared broadcast link, where ⊕ denotes the bitwise-xor operation. The first user
has A1 available in its local cache and can combine B1 with A2⊕B1 in order to recover
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A2; the second user can similarly obtain both B1 and B2. Thus the users’ requests were
both served with a broadcast message size of only half a file.

Note that this scheme reduces the server transmission rate by a factor of two over a
conventional scheme. The main idea is to carefully design the cache contents so as to
maximize the number of coded multicasting opportunities during server transmission,
enabling the server to send a single message satisfying multiple users, possibly request-
ing different files, simultaneously.

2.2.3 Achievable Rate

These ideas were generalized in [6], which proposed a new caching and delivery scheme
for the general setup described in Section 2.2.1 and also characterized its achievable rate,
as shown in the following result.

theorem 2.1 For the system described in Section 2.2.1 with M ∈ N
K
· {0,1, . . . ,K},

there exists a placement and delivery scheme that achieves the following server trans-
mission rate:

R(M) = K ·
(

1− M

N

)
· 1

1+KM/N
.

For M ∈ [0,N ], the lower convex envelope of these points can be achieved.

A rate of N −M can also be achieved (without coded caching) and is useful when
the number of files is small, but in the more relevant case where N ≥ K , the rate in
Theorem 2.1 is smaller, and we will henceforth focus on it.

The scheme achieving this rate is a generalization of the ideas described in
Section 2.2.2, and we describe it later in the chapter. Before we do that, we can gain
some insights about the achievable rate in Theorem 2.1 by factoring it into three terms.
The first term, K , is the total number of users and represents the rate needed without
caching, since in the worst case the server might be required to transmit K distinct
files. The second term, 1 −M/N , is referred to as the local caching gain. It is the gain
obtained by the fact that each user already has a fraction M/N of its requested file
stored locally. The third term, 1/(1+KM/N ), is referred to as the global caching gain.
It is specifically achieved by the fact that the server sends coded multicast messages that
are useful to many users at once (more precisely, each bit is used by exactly 1+KM/N

users). In effect, the coded multicast allows each user to benefit from the caches of
all the other users as well, hence the appearance of the total system memory KM in
the expression. This is the gain that the proposed scheme derives over a conventional
caching and delivery scheme that serves the user requests through separate unicast
server messages.

The significance of the global caching gain can be captured by noticing that the
achievable rate in Theorem 2.1 can be upper-bounded by

R(M) ≤ min

{
K,

N

M

}(
1− M

N

)
. (2.2)
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Consequently, as long as the total memory in the network is large enough to hold the
entire library (i.e., KM ≥ N ), the achievable rate is at most N/M − 1, and is thus
independent of the number of users!

Proof of Theorem 2.1 We now describe a placement and delivery scheme for the gen-
eral system described in Section 2.2.1.

Placement phase: Denote the files by W1,W2, . . . ,WN . Let t
�= MK/N . From the

statement of the theorem, note that t is an integer between 0 and K . Divide each file Wi

into
(
K
t

)
equal parts and index them as follows:

Wi =
(
WS

i : S ⊆ {1,2, . . . ,K},|S| = t
)

.

Note that each subfile is of size F/
(
K
t

)
. For any user i, its cache stores

(
K−1
t−1

)
pieces of

each file Wj given by (
WS

j : i ∈ S,S ⊆ {1,2, . . . ,K},|S| = t
)

.

The total amount of storage each cache needs to store these pieces is given by

N ·
(

K − 1

t − 1

)
· NF(

K
t

) = F t

K
= MF,

where the last equality follows from the definition of t . Thus, the storage constraint is
satisfied at each cache.

Delivery phase: For t = K , the memory at each cache is M = N and is sufficient to
store the entire file catalog. Thus, the required server transmission rate is zero. Later we
consider t ∈ {0,1,2, . . . ,K − 1}. Denote by di the index of the file requested by user i,
i.e., user i requests file Wdi

. Consider a subset S ⊆ {1,2, . . . ,K} of size t + 1. Note that

for each j ∈ S, there is a subfile of its requested file Wdj
, given by W

S\{j}
dj

, which is
stored in the caches of all the other users in S. Corresponding to this subset S, the server
transmits the message

⊕j∈SW
S\{j}
dj

. (2.3)

We repeat this procedure for each of the
(

K
t+1

)
subsets of {1,2, . . . ,K} of size t + 1.

We now show that this placement and delivery scheme allows each user i to recover
its requested file Wdi

. Consider a subset S ⊆ {1,2, . . . ,K} of size t + 1 such that i ∈
S. Note from (2.3) that among the t + 1 subfiles involved in the transmitted message
corresponding to S, all except its desired subfile W

S\{i}
di

is already available in the cache
of user i. Thus, the user is able to recover its desired subfile.

Repeating this argument, user i is able to recover all the subfiles of the form(
WT

di
: T ⊆ {1,2, . . . ,K}\{i},|T | = t

)
.

Furthermore, all the other subfiles of the requested file Wdi
are already available in the

cache of user i. Thus, the described placement and delivery strategy represents a feasible
scheme for the general system.
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To complete the proof of the theorem, we have to evaluate the server transmission
rate for the proposed scheme. From (2.3), the size of the transmission corresponding to
any subset S of size t + 1 is F/

(
K
t

)
. Since there is one such transmission corresponding

to each such subset, the total transmission size is given by(
K

t + 1

)
· F(

K
t

) = K − t

t + 1
= K ·

(
1− M

N

)
· 1

1+KM/N
.

Decentralized scheme Note that the described scheme carefully orchestrates the
placement phase to create simultaneous coded multicasting opportunities during the
delivery phase. In particular, the number of users and their identities are required
to ensure that each cache is populated with the right file pieces. Since this kind
of information might not always be available in practice, the authors develop a
decentralized placement (and corresponding delivery scheme) scheme in [7], where
each user randomly samples MF bits from the NF bits in the content library.
The achievable rate of this scheme is characterized in [7] and is presented in the
following:

theorem 2.2 Consider the system described in Section 2.2.1. For M ∈ [0,N ], there
exists a decentralized placement scheme and a corresponding delivery scheme that
achieves a server transmission rate arbitrarily close to

RD(M) = K ·
(

1− M

N

)
·min

{
N

KM

(
1− (1−M/N )K

)
,
N

K

}
,

for a large enough file size F .

Although the decentralized scheme cannot control the placement as precisely as the
centralized scheme, the authors nevertheless show that the decentralized placement
creates almost as many coding opportunities as the centralized placement with very high
probability. In fact, the resulting achievable rates are within a constant multiplicative
factor of each other.

2.2.4 Approximate Optimality

Next, we examine how the performance of the centralized placement and delivery
scheme proposed in Section 2.2.3 compares to the optimal scheme for this setup with
no restrictions on the placement and delivery phases. The next theorem [6] states the
approximate optimality of the achievable rate R(M) in Theorem 2.1 with respect to the
optimal rate R�(M) as defined in (2.1).

theorem 2.3 The rate achieved in Theorem 2.1 is within a constant multiplicative
factor of the optimal rate. Specifically, for all values of N , K , and M ,

1 ≤ R(M)

R�(M)
≤ 12.
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Note that the bound is independent of the problem parameters: the achievable rate
is within a factor of 12 of the optimum, even if N and K are arbitrarily large. Proving
Theorem 2.3 requires deriving information-theoretically lower bounds on the optimal
rate using cut-set-based arguments [8]. We will not cover this here and instead point the
interested reader to [6] for details. Finally, while the constant gap factor of 12 is indeed
quite large, there have been significant improvements in terms of both the achievable
rates [9–11] and the lower-bound arguments [12–14], which can be used to tighten the
gap significantly. In fact, under the restriction of uncoded placement, the rate proposed
in Theorem 2.1 is shown to be exactly optimal in [15, 16].

2.3 Non-uniform Content Popularity

In general, the popularity of a file can be thought of as the likelihood that a given user
will request this file. Under a stochastic popularity model, this translates to a probability
distribution over the files such that each user requests one file based on this probability.
Note that, since the number of files is typically large compared to the number of users,
we cannot reliably predict the number of users requesting each file from prior requests,
especially for the less popular files. However, if the files are partitioned into a small
number of levels by grouping together contents of similar popularity, we can more
reliably estimate the cumulative popularity across these levels. If the number of users
is large compared to the number of levels, the number of users per level under the
stochastic popularity model will concentrate around the average value. The multi-level
popularity model, introduced in [17], captures this aspect by making the number of users
requesting files from each level fixed, deterministic, and known a priori; the worst-case
rate (under this restriction on the demand) is then analyzed in a similar vein as in Section
2.2.1. We discuss this multi-level popularity model in this section.

More formally, in the multi-level popularity model, the files in the content library
are partitioned into a certain number of groups called popularity levels. Each level
i ∈ {1, . . . ,L} consists of Ni files, and there are a total of Ki users requesting files from
this level. Each of these Ki users can request any file belonging to level i. It is useful to
think of the popularity of each file in level i as being proportional to the number of users
per file of the level, Ki/Ni . For simplicity, we restrict the discussion here to the case
where there are more files than users for every level, i.e., Ni ≥ Ki for all i ∈ {1, . . . ,L}.
Note that the setup studied in Section 2.2 is a special case, with L = 1 level, N1 = N ,
and K1 = K .

The multi-level popularity model turns out to be useful in studying how the total
number of users in the network, as compared to the number of caches, affects the system
under non-uniform popularity. We will look at two extremes: one in which each cache
has exactly one associated user (the single-user setup) and one in which each cache
has a large number of associated users (the multi-user setup). In the single-user setup,
only one level is represented at each cache since each user requests one file from one
popularity level, as shown in Figure 2.3a. In the multi-user setup, the number of users
is large enough for every level to be represented at every cache by at least one user,
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(a) The single-user setup
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(b) The multi-user setup

Figure 2.3 Multi-level popularity, with L = 2 levels.

as shown in Figure 2.3b. Interestingly, it turns out that the strategies required for these
two setups are quite different: a level-merging approach works for the single-user setup,
while a level-separation approach works for the multi-level setup.

In order to understand the major difference between these two setups, it is useful
to first reflect on what enables the coding gains in the original setup in Section 2.2.
Recall that a coded message from the server consists of a linear combination of parts
of files requested by a subset of users, for example see (2.3). Each such user has access
to different side information through its distinct caches. It is precisely this difference
in side information that allows the same linear combination to be beneficial to multiple
users possibly requesting distinct files. If two users’ cache contents were identical, then
their side information is identical and no coding gains can be achieved among them.

Moreover, because of the symmetry of the delivery message in (2.3), the procedure is
most efficient when the involved subfiles are of the same size or equivalently when the
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files involved are stored equally in each cache. When adapting this to the non-uniform
popularities setup, this creates a conflict: since the more popular files are more likely
to be requested, we would want to give them a larger portion of the cache memory
than the less popular files. However, as mentioned before, this would negatively impact
the efficiency of coded messages involving requests for files with significantly different
popularities. Hence there is a potential dilemma between giving the more popular files a
larger memory share on the one hand and obtaining more efficient coding opportunities
on the other hand.

The dilemma is naturally resolved for the multi-user setup. Notice from Figure 2.3b
that the users can be partitioned into “rows” of K users each, such that each user in the
row connects to one cache and requests a file from the same popularity level. A natural
strategy here is to ensure that each linear combination the server sends is intended for
only a subset of users belonging to the same row. Since all involved requests in a row will
be for files belonging to the same level, they will have the same popularity and hence
the same allocated cache memory. Furthermore, grouping an additional user (requesting
a distinct file) with a row of K users in a single coded-multicast transmission cannot
be beneficial since this user will necessarily share a cache with another user in the
considered row. These two users will thus have access to the same side information,
and hence, as discussed before, no coding gains can be obtained between them. As we
will see later, the approximately optimal strategy here is to partition each cache among
the various levels during the placement phase and then address the demands in each row
of users separately during the delivery phase using coded-multicast transmissions, as
discussed in Section 2.2.

On the other hand, the dilemma is not so easily resolved in the single-user setup.
Notice from Figure 2.3a that in this case there is only one “row” of users in which all the
file popularity levels are represented. This is unlike the multi-user setup where all users
in a row requested files from the same popularity level, and hence if we allow all
linear combinations in the server transmission, we might have to combine requests
for files with very different popularities. However, if we restrict server transmissions
to combine only requests belonging to the same popularity level, that will limit the
coded-multicasting opportunities severely and increase the required server transmission
rate. As we will see later, it turns out that the approximately optimal strategy here is to
“merge” a subset of the higher popularity levels so that all the files belonging to them
are given the same amount of memory and so that the requests belonging to these levels
can be efficiently combined in the coded-multicast messages.

Thus, the schemes corresponding to the multi-user and single-user setups have dif-
ferent philosophies, and this difference marks the dichotomy between the two setups.
Next, we study each of these setups in more detail.

2.3.1 The Single-User Setup

In the single-user setup, there is exactly one user connected to each of the K caches.
As mentioned before, Ki users in the system request a file from level i and
K1 + · · · +KL = K . Importantly, while placing content in the caches, we know exactly
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how many users will request a file from each level, but we do not know which users will
request from which level.

As discussed before, the idea in this setup is to strike a balance between two opposing
principles: creating coding opportunities across popularity levels on the one hand and
allocating more of the cache memory to the more popular files on the other hand. The
balance that turns out to be approximately optimal is to partition the levels into two
groups, which we will call H and I . The files belonging to levels in the set I will all be
treated as if they were of the same popularity and were all allocated the same amount of
memory; effectively the levels in I are merged into one superlevel with

∑
i∈I Ni files

and
∑

i∈I Ki users. All the cache memory will be given to the set I , while the files in
set H will not be stored at all. A coded caching scheme is then used on the set I as
described in Section 2.2.3, and all requests for files from set H are handled by direct
unicast transmissions from the server.

We can therefore apply Theorem 2.1 on each of H and I separately, which using (2.2)
yields an achievable rate upper bounded by

RSU(M) ≤ max

{∑
i∈I Ni

M
− 1,0

}
+
∑
h∈H

Kh. (2.4)

The maximization with zero is necessary since, depending on the choice of I , the
memory M could be larger than

∑
i∈I Ni .

Example 1 Consider an example multi-level single-user setup with L = 3 file popu-
larity levels; N1 = 100,N2 = 500, and N3 = 1,000 files; and K1 = 100,K2 = 50, and
K3 = 5 users. Consider the memory per cache to be M = N1 = 100. We evaluate the
rate of this proposed strategy for different choices of H , I :

1. Store most popular only: In this case, we set I = {1} and H = {2,3} and thus
store the files of only the most popular level, level 1, in the caches. From (2.4),
the rate of the scheme for this choice is max{N1/N1 − 1,0} +K2 +K3 = 55.

2. Treat all levels as uniform: In this case, we set I = {1,2,3} and H = φ and thus
allocate equal memory to all the files. From (2.4), the rate of the scheme for this
choice is max{(N1 +N2 +N3)/N1 − 1,0} = 15.

3. Merge subset of levels: Let us set I = {1,2} and H = {3} and thus allocate
equal memory to all the files belonging to the more popular levels, levels 1 and 2.
From (2.4), the rate of the scheme for this choice is max{(N1+N2)/N1− 1,0} +
K3 = 10.

Thus this example suggests that the optimal choice of H and I is nontrivial and greatly
impacts the rate of the proposed scheme.

To understand how to, in general, choose the sets H and I optimally, consider the
following back-of-the-envelope calculation. Suppose that all levels except one (call it
level �) have been partitioned into two sets H ′ and I ′. If we put � with H ′, we get the
achievable rate

R1(M) ≈
∑

i∈I ′ Ni

M
+
∑
h∈H ′

Kh +K�,
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whereas if we combine it with I ′ we get

R2(M) ≈
∑

i∈I ′ Ni +N�

M
+
∑
h∈H ′

Kh.

Then, R1(M) ≤ R2(M) if and only if K�/N� ≤ 1/M , in which case the better
choice is to group level � with H ′. Following this intuition, we choose the sets H

and I as

H = {h ∈ {1, . . . ,L} : Kh/Nh < 1/M} ; I = {1, . . . ,L} \H, (2.5)

where, as mentioned before, the cache memory is divided equally among only the files
belonging to levels in I in accordance with the scheme described in Section 2.2.3.
Recall that for our setup, we can think of the popularity of each file in level i as being
proportional to the number of users per file of the level, Ki/Ni . Thus, the decision rule
suggests 1/M as a popularity threshold: all files with popularity above this threshold are
assigned equal memory and all files with lower popularity are not allocated any memory
during the placement phase.

The scheme leads to the following achievable rate for the single-user multi-level
caching setup.

theorem 2.4 In the single-user setup, the following rate is achievable for all L, K ,
{Ni,Ki}, and M:

RSU(M) ≤ max

{∑
i∈I Ni

M
− 1,0

}
+
∑
h∈H

Kh,

where H and I are as defined in (2.5).

As we did for the single-level setup in Section 2.2.4, next we examine how the
performance of the proposed scheme compares to that of the optimal scheme. The next
result [17] states the approximate optimality of the achievable rate RSU(M) in Theorem
2.4 with respect to the optimal rate R�

SU(M) for this setup.

theorem 2.5 The rate RSU(M) achieved in Theorem 2.4 for the system with multi-
level popularity and a single user per cache is within a constant multiplicative factor of
the information-thoeretically optimal rate R�

SU(M). Specifically, for all values of L, K ,
{Ni,Ki} with Ni ≥ Ki , and M ,

1 ≤ RSU(M)

R�
SU(M)

≤ 72.

Note that the bound is independent of the problem parameters. As before, the proof
derives information-theoretically lower bounds on the optimal rate using cut-set-based
arguments; details are available in [17]. Finally, the focus of this result is on proving
constant factor optimality (irrespective of system parameters), and while the factor of
72 is very large, this can be vastly improved using the aforementioned progress made
on designing better achievable strategies and lower-bound arguments.
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2.3.2 Multi-user Setup

We begin with some notation; see Figure 2.3b for an illustration of a multi-level multi-
user setup. For each popularity level i, each cache has exactly Ui users requesting files
from level i, which implies that the total number of users demanding files from level
i is Ki = KUi . As mentioned earlier, we assume that Ni ≥ Ki = KUi for each
level i.

As compared to the single-user setup described in the previous section, the biggest
difference in the multi-user setup is that every level is represented at each cache, equally
across the caches. In other words, every cache has the same user profile, where a user
profile is an indicator of the number of users requesting a file from each given level.
This allows separating the popularity levels and restricting all coding opportunities to
be among users requesting files from a single level and not across levels.

More precisely, the idea is to partition the memory M among the popularity levels,
giving level i ∈ {1, . . . ,L} a memory of αiM for some αi ∈ [0,1], and then apply the
single-level coded caching scheme from Section 2.2 on each row of users separately,
with each row consisting of users requesting files from a single level. Under this strategy,
we can derive the achievable rate using Theorem 2.1 and (2.2) to be

RMU(M) ≤
L∑

i=1

Ui ·min

{
K, max

{
Ni

αiM
− 1,0

}}
. (2.6)

The factor Ui appears because there are exactly Ui rows of users for level i.
By optimizing the overall rate over the memory-sharing parameters α1, . . . ,αL, we

establish a memory allocation that we will show achieves a rate that is information-
theoretically order optimal. At a high level, this allocation is done by partitioning the
popularity levels into three sets: H , I , and J . The levels in H have such a small
popularity that they will get no cache memory. Thus, for all levels h ∈ H , we will
assign αhM = 0. On the opposite end of the spectrum, the most popular levels are
assigned to J and are given enough cache memory to completely store all their files
in every cache. Thus, for every level j ∈ J , we have αjM = Nj , since that is the
amount of memory needed to completely store all files of level j in each cache. Finally,
the rest of the levels, in the set I , will share the remaining memory among themselves,
obtaining some non-zero amount of memory per cache but not enough to completely
store all of their files in every cache. The more popular files should get more memory,
and as discussed before we can think of KUi/Ni as representing the popularity of a
level i. For the order-optimal strategy we propose, we choose to give level i a memory
per cache of roughly αiM ∝ Ni ·

√
Ui/Ni (hence the memory per file is proportional to√

Ui/Ni).1

The above assignment will represent a valid choice for the memory-sharing param-
eters as long as the partition (H,I,J ) is selected so that each αi ∈ [0,1]. When
we plug the this choice of the memory-sharing parameters into (2.6), we get the
following result.

1 The square root comes from minimizing the rate expression in (2.6), which has an inverse function of {αi }.
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theorem 2.6 Given a multi-user caching setup with K caches; L levels; and, for
each level i, Ni files and Ui users per cache; and a cache memory of M , the following
rate2 is achievable:

RMU(M) ≈
∑
h∈H

KUh +
(∑

i∈I
√

NiUi

)2

M −∑j∈J Nj

−
∑
i∈I

Ui, (2.7)

where (H,I,J ) is the unique partition of the set of popularity levels that satisfies:

∀h ∈ H, M̃ <
1

K

√
Nh

Uh

;

∀i ∈ I,
1

K

√
Ni

Ui

≤ M̃ ≤
(

1+ 1

K

)√
Ni

Ui

;

∀j ∈ J,

(
1+ 1

K

)√
Nj

Uj

< M̃,

where M̃ ≈ (M −∑j∈J Nj )/
∑

i∈I
√

NiUi .

The proof of the this result is rather involved, and we point the reader to [17]
for details. Intuitively, since a level h ∈ H receives no cache memory, all requests
from its KUh users must be handled directly from the broadcast. Since we have
Ni ≥ Ki = KUi for all levels i, then in the worst case a total of KUh distinct files must
be completely transmitted for the users requesting files from level h. This contributes
the term

∑
h∈H KUh in the expression of the achievable rate (2.7). The users in set J

require no transmission as the files are completely stored in all the caches; however, it
does affect the rate through the memory available for levels in I . This is apparent in
the expression M −∑

j∈J Nj in (2.7). Finally, the levels in I , having received some
memory, require a rate that is inversely proportional to the effective memory and that
depends on the level-specific parameters Ni and Ui .

Notice in the theorem statement that in the inequalities defining the chosen partition
(H,I,J ) the different sets are largely determined by the quantity

√
Ni/Ui for each

level i, which is a function of the file popularities. Moreover, the inequalities satisfy the
natural choice that the most popular levels (i.e., those with the smallest Ni/Ui) will be
in J , while the least popular levels (those with the largest Ni/Ui) will go to the set H .

Example 2 Consider an example multi-level multi-user setup with K = 10 caches;
L = 3 file popularity levels; N1 = 100, N2 = 200, N3 = 300 files; and U1 = 10,
U2 = 5, U3 = 1 users/cache. Consider the memory per cache to be M = N1 = 100.
We evaluate the rate of the proposed strategy for different choices of H , I , J :

1. Store most popular only: In this case, we set J = {1}, I = φ, and H = {2,3} and
thus, store the files of only the most popular level, level 1, in the caches. From
(2.7), the rate of the scheme for this choice is KU2 +KU3 = 60.

2 This expression of the rate is a slight approximation, which we use here for simplicity as it is more
intuitive. An exact and complete description of the achievable rate can be found in [17].
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2. Share memory among all levels: In this case, we set I = {1,2,3} and thus allocate
memory to each level in proportion to the square root of its popularity. From (2.7),

the rate of the scheme for this choice is approximately (
√

N1U1+
√

N2U2+
√

N3U3)
2

N1
−

(U1 + U2 + U3) ≈ 65− 16 = 49.
3. Share memory among a subset of levels: In this case, we set I = {1,2} and H =

{3}, and thus allocate memory to only the more popular level in proportion to the
square root of its popularity. From (2.7), the rate of the scheme for this choice is

approximately KU3 + (
√

N1U1+
√

N2U2)
2

N1
− (U1 + U2) = 50− 15 = 35.

Thus, we say that the optimal choice of H , I , J is non-trivial and greatly impacts the
rate of the proposed scheme.

The next result [17] states the approximate optimality of the achievable rate RMU(M)
in Theorem 2.1 with respect to the optimal rate R�

MU(M) for this setup.

theorem 2.7 The rate RMU(M) achieved in Theorem 2.6 for the system with multi-
level popularity and multiple users per cache is within a constant multiplicative factor
of the information-thoeretically optimal rate R�

MU(M). Specifically, for all values of L,

K , M , {Ni,Ui} with Ni ≥ Ki and satisfying regularity condition3
√

Ui/Ni

Uj /Nj
≥ 1

β ,

1 ≤ RMU(M)

R�
MU(M)

≤ c,

where β = 198 and c = 9909 are constants (independent of all problem parameters).

Unlike the approximate optimality results presented before, the proof of this theo-
rem requires the use of non cut-set-based arguments to derive information-theoretically
lower bounds on the optimal rate; details are available in [17]. As before, the constants
involved can all potentially be improved greatly.

2.4 Multiple Cache Access

So far, we have considered situations only in which each user accesses exactly one
cache, with no flexibility. However, in a wireless heterogeneous network such as the
one in Figure 2.4, the density of access points that have caches could be high enough for
each user to potentially access a large number of caches. This enables some interesting
capabilities that can be harnessed to achieve a lower broadcast rate R for the same cache
memory M . For instance, each user could have access to the contents of multiple caches
at once, effectively increasing the memory available to it. Alternatively, we could allow
the system to adaptively assign to each user one cache out of a set of nearby caches,
based on the file that it requested. In this section, we explore the latter approach in
detail as studied in [18], and leave the former as a short discussion at the end.

3 The reasoning behind this condition is that, if it did not hold for some levels i and j , then we can think of
them as essentially one level with Ni +Nj files and Ui + Uj users per cache. The resulting popularity
Ui+Uj

Ni+Nj
would be close to both Ui/Ni and Uj /Nj .
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cache cluster

users

1 N· · ·

files

server

Figure 2.4 Partial adaptive matching setup. The caches are partitioned into clusters, and each
user can be matched to one cache in its cluster, with a load constraint on the caches.
Excess users in a cluster cannot be matched, such as the user colored in gray.

2.4.1 Overview of Adaptive User-to-Cache Matching

In the adaptive matching setup, we keep the restriction of each user accessing the
contents of exactly one cache but allow the flexibility of choosing which cache (possibly
among some subset of caches) the user should access based on its requested file. An
additional restriction is a load constraint on the caches: each cache can serve at most
only one user. Such a problem was studied in [19, 20], in the extreme case where
all users are able to access any cache. The surprising insight in both papers is that,
contrary to the “static matching case” where each user is preattached to a unique cache
(the setting described in Section 2.2), an approximately optimal scheme is to replicate
complete files across multiple caches in proportion to their popularity in the placement
phase, and then during the delivery phase, match as many users as possible to a cache
that holds their requested file.

We thus observe a dichotomy between two extremes: In the static matching case
(when each user is restricted to one cache), appropriate splitting of files and careful
placement of subfiles to enable coded-multicast transmissions during delivery, as
described in Section 2.2, is approximately optimal, while simple file replication is
not. On the other hand, in the fully “adaptive matching case,” where each user can be
matched to any cache during the delivery phase, appropriate file replication coupled
with maximum matching during delivery is approximately optimal, while a static
pairing of users and caches along with the coded caching approach of Section 2.2 is
suboptimal. The natural next question is then: What happens when each user can be
matched adaptively to one of a subset of caches? This problem was studied in [18], and
we will discuss the main results here.

2.4.2 System Model

Suppose there is a content library of N files, called W1, . . . ,WN . There are K caches,
partitioned into K/d mutually exclusive clusters of d caches each (assume d divides K).
At each cluster c, there is a stochastic number of users un(c) that request file Wn, where
un(c) is a Poisson random variable of parameter ρd/N , with ρ ∈ (0,1/2) a constant.
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Thus at every cluster (whose size is d caches), the expected number of users is ρd. We
will refer to u = {un(c)}n,c as the user profile.

In addition to the usual placement and delivery phases, there is an intermediate match-
ing phase, which occurs after the users have made their requests. In this phase, we assign
each user in a cluster to one cache in the same cluster, subject to a load constraint of
no more than one user per cache. Thus if there are more users than caches in a cluster
(
∑

n un(c) > d for some c), there will necessarily be some unmatched users who will
have access to the contents of no cache. Note that the placement phase occurs without
knowing the user profile, while both the matching phase and the delivery phase have
knowledge of the user profile.

Let Ru denote the broadcast rate given a specific user profile u. We are interested in
the expected rate R̄ = Eu[Ru], and more specifically the optimal expected rate R̄�(M)
for every memory M over all possible placement, matching, and delivery strategies.

The choice of a Poisson number of users is useful as it not only more closely models
real-world user requests but also simplifies the analysis in this problem. There is also
little difference, fundamentally, between the Poisson model and the model with a fixed
number of users (such as the one studied in the previous sections), as long as the cluster
size d is large enough, namely d = �(log K). This means that comparisons with other
works in the literature are possible. Note that for smaller d, the Poisson model is less
meaningful; when d = 1 for instance, each cluster has a constant positive probability
(e−ρ) to have more than one user, which means that with high probability, a significant
fraction of the users cannot be matched to any cache, and consequently a high server
transmission rate is necessary irrespective of the cache memory size.

As mentioned earlier, the Poisson model makes sense only for d = �(log K), and so
we adopt this regularity condition in this section. More precisely, we assume that

d ≥ 2(1+ t0)

α
log K, (2.8)

where α = − log(2ρe1−2ρ) > 0, and t0 > 0 is some constant. Finally, we restrict our
attention to the case when N ≥ K .

2.4.3 Balancing Two Extremes

The decribed model, known as the partial adaptive matching setup, is a generalization
of the two extremes (Figure 2.4). When d = 1, we have a static matching setup as in
[6] (while the Poisson model is not meaningful for d = 1, insights can still be gained).
When d = K , we have the full adaptive matching setup as in [19, 20].

As discussed, there is a dichotomy between these two extremes: the former favors
a coded delivery scheme, while the other favors an uncoded replication scheme. In
what follows, we examine how each scheme performs if adapted to the partial adaptive
matching setup. Specifically, we look at

• pure coded delivery (PCD), which ignores any potential adaptive matching bene-
fits by arbitrarily assigning users to caches and applying a standard Maddah-Ali–
Niesen scheme, as discussed in Section 2.2; and
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Figure 2.5 An approximate visualization of the regimes in which each scheme is more favorable.
The boundary between the PCD- and PAM-dominated regions is blurry; the regime
�(N ) < dM < O(N log N ) is still not very well understood.

• pure adaptive matching (PAM), which ignores any potential coding gains and
focuses only on file replication within a cluster and on adaptively matching users
to caches within a cluster.

As we will see, in the general case we observe two regimes, and each scheme will be
preferred in one regime. These regimes are roughly defined by a threshold on the total
cluster memory dM: when dM�N then PCD is favorable, and when dM�N then
PAM is favorable. Furthermore, in each regime, the favorable scheme is approximately
optimal for almost all values of the cache memory. This is illustrated in Figure 2.5.
Notice that in the special case d = 1 (respectively, d =K), Figure 2.5 shows that PCD
(respectively, PAM) is always preferred, as expected from the previous results.

Each of the two schemes focuses on one idea: PCD ignores adaptive matching in
favor of coding gains, and PAM ignores coded delivery in favor of adaptive matching
gains. A hybrid coding and matching (HCM) scheme is introduced in [18] that performs
better than both schemes in most memory regimes.

2.4.4 The Pure Coded Delivery (PCD) Scheme

The PCD scheme is a straightforward adaptation of the Maddah-Ali–Niesen scheme
described in Section 2.2; the placement phase is identical to the one described there.
During the matching phase, we pick any valid user-to-cache matching and provide each
user with access to the corresponding cache; this is sufficient since the placement is
completely symmetric with respect to the caches and the files. The delivery phase is
conducted in two parts:

1. For the subset of users that were matched to caches, delivery proceeds in the same
fashion as in Section 2.2 by creating coded-multicast transmissions.

2. Any users that were not matched (because there were more users than caches in
their cluster) will simply be served directly by the server.
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Note that for the model described in Section 2.4.2, the expected number of such
unmatched users is very small. In fact it can be shown that

E[U0] ≤ K−t0/
√

2π,

where U0 is the total number of excess users across all clusters and t0 > 0 is from
(2.8). Note that the expected number of excess users goes to zero as K increases.
All the other users (i.e., those that are matched to some cache) will be served by the
basic Maddah-Ali–Niesen scheme, and so PCD can achieve the rate in the following
theorem.

theorem 2.8 For the partial adaptive matching model described in Section 2.4.2, the
expected rate achieved by PCD is

R̄PCD(M) ≤ min

{
ρK,

[
N

M
− 1

]+
+ K−t0

√
2π

}
.

Notice that this is not much different from the rate achieved in the static matching
setup. This is expected since we are not making any intelligent use of the adaptive
matching feature at all in PCD. However, this turns out to be approximately optimal
when the total memory in any cluster is not enough to hold the entire library, as
stated next.

theorem 2.9 When M ≤ (1 − e−1/2)N/2d, the expected rate achieved by PCD is
approximately optimal in the sense that

R̄PCD(M) ≤ C · R̄�(M)+ o(1),

where R̄�(M) is the information-theoretically optimal rate, C is a constant independent
of the problem parameters, and the o(·) notation is to be understood with respect to the
growth of K .

We skip the proof of these results here and instead point the interested reader to [18],
which has all the details and discusses more general scenarios with non-uniform content
popularity.

2.4.5 The Pure Adaptive Matching (PAM) Scheme

As previously mentioned, the PAM scheme takes the opposite approach to PCD. It
ignores all possible coding in favor of a more intelligent matching of users to caches.
The idea is to store only replicas of files in every cluster and rely as much as possible on
the matching phase to connect each user to a cache that contains the file that it requested.

More precisely, the three phases work as follows. In the placement phase, the total
cluster memory is dM , and we store a complete copy of every file in �dM/N� caches in
every cluster. In the matching phase, we find the best matching of users to caches so that
the number of users matched to a cache containing their requested file is maximized. In
the delivery phase, any users that could not be successfully matched to a suitable cache
are served directly from the server.
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Notice that the scheme really takes off only once dM ≥ N : for smaller memory
values, there is a significant fraction of users whose requests cannot be satisfied locally
and have to be served directly by the server. What’s more interesting is that after this
threshold of dM ≥ N , the achieved expected rate decays exponentially with the cluster
memory! The precise rate expression is given in the following theorem.

theorem 2.10 For the partial adaptive matching model described in Section 2.4.2,
the expected rate achieved by PAM is

R̄PAM(M) ≤
{
ρK if M < N/d;

KMe−ρhdM/N if M ≥ N/d ,

where h = (1/ρ) log(1/ρ)+ 1− 1/ρ.

The proof follows along similar lines as [19], which focuses on the fully adaptive
matching case and generalizes the results to the partially adaptive matching case.

Notice that R̄PAM(M) = o(1) when dM > �(N log N ). Thus, once the total cluster
memory is slightly larger than the total catalog size, the PAM scheme requires neg-
ligible server transmission rate. This also trivially implies that PAM is approximately
information-theoretically optimal in that regime. Combining with Theorem 2.9, we have
that PCD is approximately optimal when dM < O(N ), and PAM is approximately
optimal when dM >�(N log N ), as illustrated in Figure 2.5 (ignoring the log N factor
for simplicity).

2.4.6 The Hybrid Coding and Matching (HCM) Scheme

So far, we have looked at two schemes that each focuses on a single gain: either a
coding gain or an adaptive matching gain. The schemes are approximately optimal in
complementary regimes, as illustrated in Figure 2.5. This section explores a hybrid
scheme that unifies coded delivery and adaptive matching by incorporating ideas of
both PCD and PAM. This HCM scheme, first introduced in [18], turns out to perform
better than both PCD and PAM in most memory regimes.

The hybrid scheme combines ideas from both PCD and PAM by introducing a color-
ing scheme at both the cache level and the file level. First, we choose a certain number
of colors χ ∈ {1, . . . ,d}. The exact value is not important for now; the ideas work for
any χ. We then partition the caches in every cluster into χ subsets of (almost) equal
size, and color each subset with a unique color. Similarly, we partition the files in the
content library into χ subsets of (almost) equal size, and color each subset with one
color. Finally, we apply the coded delivery ideas within each color, while applying the
adaptive matching ideas across colors.

More precisely, the three phases proceed as follows. In the placement phase, for
every color x we perform a Maddah-Ali–Niesen placement of the files of color x in
only the caches of the same color. The placement phase is agnostic to the cluster to
which a cache belongs. In the matching phase, every user can be matched to an arbitrary
cache in its cluster whose color matches the file that the user requested; the user is
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matched to the color, but the choice of cache within that color is arbitrary. In the delivery
phase, the Maddah-Ali–Niesen coded delivery is performed for every color x separately,
and unmatched users are served directly. Like the placement phase, the delivery phase
ignores clusters and serves all users of the same color in the same broadcast message.

Since we have χ subsystems of N/χ files, each running a separate Maddah-Ali–
Niesen scheme, using Theorem 2.8 we can show that the hybrid scheme can achieve a
rate of

R̄(M) ≈ min

{
ρK,χ ·

(
N/χ

M
− 1

)
+ Ū0(χ)

}
,

where Ū0(χ) is the expected number of unmatched users when choosing χ colors. What
is left is therefore to choose the right value of χ.

If the number of colors is too small, then there is little benefit in adaptive matching
since the number of choices is reduced. Conversely, if the number of colors is too large,
then the number of caches in each color becomes small, and it becomes likely that a
significant number of colors have fewer caches than there are users requesting a file
from them; the number of unmatched users thus becomes too large. The balance is
struck when χ ≈ d/ log K colors, as stated more precisely in the next theorem.

theorem 2.11 For any t ∈ [0,t0], the HCM scheme can achieve an expected rate of

R̄HCM(M) ≤
⎧⎨⎩min

{
ρK, N

M
− χ + K−t√

2π

}
if M ≤ �N/χ�;

K−t√
2π

if M ≥ �N/χ�,
where χ = �αd/(2(1+ t) log K)� and t0 > 0 is a positive constant.

The rate expression can be approximately written as

R̄HCM(M) ≈ min

{
ρK,

[
N

M
−�

(
d

log K

)]+
+ o(1)

}
.

Comparing the performances of PCD, PAM, and HCM, we find that HCM performs
better than both of them in most memory regimes. In fact, HCM is a unified scheme that
is approximately optimal for almost all memory regimes. Specifically, we have

• for all M ≥ 0, HCM performs better than PCD;

• when dM ≤ O(N ), both HCM and PCD are approximately optimal, while PAM
is not;

• when dM ≥ �(N log N ), both HCM and PAM achieve a rate of o(1) and are
trivially approximately optimal, while PCD is not;4 and

• the intermediate regime �(N ) ≤ dM ≤ O(N log N ) is not very well understood,
and the exact relationship between the different rates, as well as their approximate
optimality, is not known.

More details can be found in [18].

4 In fact, HCM achieves a rate of o(1), even for dM ≥ �(N log K). If N grows polynomially with K , then
N log N = �(N log K).
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2.4.7 Simultaneous Cache Multi-access

In Section 2.4.6, we studied the adaptive matching setup where each user has many
nearby caches but is matched to only one among them, based on its file request. In
this section, we briefly discuss an alternative setting where each user is allowed access
to the information stored in all the neighboring caches. This problem was introduced
in [17] where it was analyzed within the larger multi-level popularity setting. In this
section, we restrict the discussion to a uniform popularities setup in order to focus on
the simultaneous multi-access aspect of the problem.

The first question we must ask ourselves is: What sort of multi-access model should
we adopt here? A setting with caches divided into clusters like in Section 2.4.2 is not
very interesting in this scenario. Indeed, suppose like in Section 2.4.2 that the caches are
partitioned into clusters of d caches each, and that every user could access all the caches
in its cluster. Thus, any two users in the same cluster will have access to the same
subset of caches. Then the problem is effectively reduced to the basic setup seen in
Section 2.2.1, but with K/d caches of memory dM each and multiple users access-
ing each cache. This is a special case of the multi-level multi-user setup described in
Section 2.3, restricted to a single popularity level. Hence a cache-cluster model with
simultaneous cache access does not introduce any new concepts.

A more interesting scenario is when the sets of caches that users can access have
nontrivial intersections. In other words, two users can have a few caches in common but
also a few caches that are exclusive to one or the other. One way to model this is using
a “sliding window” approach, where user k accesses caches k,k + 1, . . . ,k + d − 1 for
some d ∈ {1,2, . . . ,K}, using a cyclic wraparound to preserve symmetry. Specifically,
if we label the caches as Z1 through ZK , then user k ∈ {1, . . . ,K} has access to
the d caches

Zk,Z〈k+1〉, . . . ,Z〈k+d−1〉,

where 〈m〉 = m if m ≤ K and 〈m〉 = m − K if m > K . We call d the access degree.
Thus if K = 4 and d = 2, then user 1 has access to caches Z1 and Z2, while user 4
accesses caches Z4 and Z1.

This problem setup can be motivated by a scenario in which caches are arranged
linearly and users access the d nearest caches to them. While this linearity assumption
is simplistic, the problem can be easily extended to a more realistic scenario in which
the caches are arranged in a 2-dimensional lattice and, as before, every user accesses the
d nearest caches.

At this point, it is interesting to think about how the local and global caching gains
would be different in this scenario compared with the basic setup in Section 2.2.1. Recall
that the global caching gain is caused by the total memory in the system, KM . In this
scenario, the total memory is still KM , so we might not expect the global caching gain
to be different. However, also recall that the local caching gain is caused by the cache
memory available for each user, which in the basic setup was M . But a key difference
in this simultaneous multi-access problem is that every user actually has access to a
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memory of dM . Thus one might expect that in the simultaneous multi-access problem
we can achieve a rate of

RSM(M) ≈ K ·
(

1− dM

N

)
· 1

1+KM/N
, (2.9)

which is similar to the expression in Theorem 2.1 except for the dM term in the factor
that represents the local caching gain. Note that it is not immediate whether the above
rate expression is achievable for the setup being considered here, since no two users
share the same cache-access structure.

We will now analyze (2.9) in order to get insights into schemes that can achieve this
rate. Notice that the effect of multi-access appears only when dM is larger than some
fraction of N , e.g., dM > N/2. Below this threshold, the global caching gain, which is
not affected by multi-access, dominates. This inspires the following simple scheme:

• When dM ≤ N/2, we ignore multi-access and assume that user k accesses
only cache Zk . We apply the Maddah-Ali–Niesen scheme under this assumption,
achieving a rate of R(M) ≤ min{K,N/M}.

• When dM = N , we apply a (K,d)-erasure-correcting code on each file, creating
K coded messages of size F/d bits each, such that any d of them can re-create
the entire file. We store each such coded message in one unique cache. Thus
every user, by accessing the d caches in its neighborhood, can recover any file by
retrieving the corresponding d coded messages in those caches. This achieves a
rate of zero.

• When N/2 < dM < N , we use memory sharing between the two schemes at
dM = N/2 and dM = N , respectively, to achieve a linear combination of the
two rates.

The described scheme achieves the rate expression in the theorem that follows.

theorem 2.12 In the simultaneous multi-access problem with N files, K caches and
users, and a cyclic cache-access structure with a per-user access degree of d, we can
achieve a rate of

RSA(M) ≤ 4 ·min

{
K,

N

M

}(
1− dM

N

)
,

for all cache memory M ∈ [0,N/d]. A rate of zero is achieved for M ≥ N/d . Fur-
thermore, the gap of the achievable rate to the information-theoretically optimal rate
R�

SA(M) is given by

1 ≤ RSA(M)

R�
SA(M)

≤ c · d,

where c is some constant.

The proof of Theorem 2.12 and further details can be found in [17].
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2.5 Wireless Interference Networks: A Separation Architecture

In the previous sections, we studied a simple network structure in which the server
communicates directly with the users via an error-free broadcast link. Such a structure
was useful for deriving the coded multicasting gains of caching. However, in practice
we observe more complex network structures such as interference networks, device-to-
device networks, and hierarchical structures. In this section we mostly focus on caching
in interference networks and argue that an efficient way to operate content delivery in
cache-aided wireless networks is to appropriately separate the role of physical-layer
communication from the role of the messages it delivers, using coded caching.

2.5.1 Caching in Interference Networks

Wireless networks, by their very nature, exhibit both the broadcast of signals as well
as their superposition. The previous sections discussed the former and established the
caching gains of broadcast (or, more precisely, multicast). This however is limited to
networks with a single base station. An interesting problem is to consider multiple
base stations, each of which has access to the content library one way or another.
These base stations will then interfere with each other, and the question becomes how to
manage this interference for the purpose of content distribution. We will therefore study
cache-aided interference networks, which incorporate both the broadcast and superpo-
sition properties.

Moreover, our discussion has so far ignored the physical layer, instead treating all
channels as error-free bit pipes. In broadcast networks, this is not a big issue since sep-
arating what to send from how to transmit it is natural in a broadcast setting. However,
this is no longer the case when several base stations are present, and in this section we
also take the physical layer into consideration when studying the interference networks.

The problem of caching in interference networks was first studied in [21], which
had an interference channel with three transmitters that were equipped with caches and
three receivers that were requesting content. This was later extended in [22] to consider
an arbitrary number of transmitters and receivers. Problems with caches both at the
transmitters and at the receivers were then studied, but with restrictions on the schemes:
[23] was limited to one-shot linear schemes while [24] prohibited coding across files
during the placement phase. Furthermore, both [24, 25] looked at a limited number of
transmitters and receivers (no more than three).

The first general result was published in [26], which found an approximate charac-
terization of the information-theoretically optimal rate-memory trade-off in the high
signal-to-noise ratio (SNR) regime. Three key insights into the problem are derived.
First, it is shown that a separation of the physical and network layers is approximately
optimal: a physical-layer scheme focuses on transmitting some message set across the
interference network by generalizing a technique known as interference alignment [27],
and the network-layer scheme uses this message set as error-free bit pipes to implement
a coded caching scheme. Second, it is shown that, as long as the transmitters can col-
lectively store exactly the entire content library, then increasing the transmitter memory
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has no effect on the optimal rate beyond a constant multiplicative factor. A consequence
of this is that it is not necessary for the transmitters to share information: they can all
store distinct parts of the content library for most gains to be obtained. Third, there
is a trade-off between the receiver memory and the number of transmitters needed to
approximately achieve maximal system performance: as the receiver memory increases,
fewer transmitters are required. In particular, when each receiver can hold a fraction of
the library, then a constant number of transmitters is sufficient to achieve most benefits.
We discuss these results in more detail later in the chapter.

At the other extreme, the low-SNR regime was studied in [28], where a similar
separation of the network and physical layers is proposed. This separation architecture
is shown to be approximately optimal in some cases, namely the single-receiver and
the single-transmitter cases. Contrary to the high-SNR regime, it is shown in [28] that
transmitter cooperation, by storing shared content in their caches, is crucial in the low-
SNR regime.

2.5.2 The Separation Architecture

Although the separation architecture was studied specifically for a Gaussian interference
network, we first describe it in a very general context as the same ideas hold. We then
show how it applies to the Gaussian network.

2.5.2.1 High-Level Overview of the Separation Architecture
We will first describe a general cache-aided interference network. There is a content
library containing N files of size F bits. The library is separated from the users by an
interference channel. The interference channel has Kt transmitters and Kr receivers, that
act as the users. Each transmitter has a cache of memory MtF bits, and each receiver
has a cache of memory MrF bits.

During the placement phase, we place information about the files in every transmitter
and receiver cache. During the delivery phase, each transmitter � ∈ {1, . . . ,Kt } sends
a code word x� = (x�(1), . . . ,x�(T )) over a block length of T through the interference
network. Importantly, the code word x� can depend only on the file requests and the
contents of transmitter �’s cache. Each receiver k ∈ {1, . . . ,Kr} then receives a signal
yk = (yk(1), . . . ,yk(T )), which is some (noisy) function of the input code words.
Finally, each receiver k uses the received signal yk in combination with the contents
of its cache to recover the requested file. The goal is to find the largest possible trans-
mission rate defined as R = F/T over all possible strategies.5

A key aspect of this problem that has not been discussed in previous sections is that it
combines the content delivery problem with that of physical-layer transmission. One
of the main questions that arise is whether a joint design of the network layer and

5 The “rate” defined in this section is not the same as the one in previous sections. In this section it
represents the rate of communication as is common in the literature on interference networks, whereas in
the previous sections it denoted the size of the message sent by the server, which is sometimes called the
“normalized delivery time” (NDT). The two terms are inversely proportional to each other.
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Figure 2.6 Illustration of the separation architecture. The cache-aided interference channel is split
into a physical layer and a network layer; the two layers interface using a message set.

the physical layer is necessary. The question is answered in [26] in the negative by
proposing the separation architecture and showing that it is approximately optimal.

The key idea of the separation architecture is to separate the caching aspect (what to
store in the caches and what to send from transmitters to receivers) from the physical-
layer aspect (how to send it through the interference network). Thus the system is split
into an overlay network layer and a physical layer. The two layers interface through a set
of messages from (subsets of) transmitters to (subsets of) receivers. This is illustrated in
Figure 2.6.

In the most general sense, we define a set of n messages

V = {
VK1L1,VK2L2, . . . ,VKnLn

}
,

where Ki ⊆ {1, . . . ,Kr} and Li ⊆ {1, . . . ,Kt }, and VKiLi
is a message from the

transmitters in Li to the receivers in Ki . At the physical layer, we have the sub-problem
of transmitting this message set across the interference network reliably. It is assumed
that all the transmitters in Li have access to the message VKiLi

. At the network layer,
we can use these messages as orthogonal, noninteracting bit pipes through which we
can pass information from the transmitters to the receivers. The constraint is that every
transmitter in Li must be able to cosntruct VKiLi

from the contents of its cache.
Suppose the physical-layer scheme can transmit every message in the message set at a

rate of at least R′, over a block length of T . Suppose also that the network-layer scheme
can deliver the requested files using at most vF bits through each bit pipe represented
by the messages in the message set. Then the message set can be supported by both the
network layer and the physical layer as long as R′T ≥ vF . Therefore, by choosing the
smallest supported block length T = vF/R′, we can reliably deliver the files to all the
users at a rate of R = F/T = R′/v.

2.5.2.2 The High-SNR Gaussian Interference Network
In the particular case of the memoryless Gaussian interference network, the inputs and
outputs to the channel are real valued. At each time step τ, every output symbol yk(τ)
is a linear combination of all the input symbols xk(τ), plus a Gaussian unit-variance
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random noise variable. Furthermore, a power limit of P is imposed on the input code
words, ‖x�‖2 ≤ PT .

We are interested in the high-SNR regime, i.e., the regime in which P is large.
More specifically, we look at the degrees of freedom (DoF) of the system, which is the
behavior of the rate as a scaling of the capacity of a point-to-point Gaussian channel.
Specifically, if we write the information-theoretically optimal rate for a specific power
P as R�(P ), then the degrees of freedom is defined as

DoF = lim
P→∞

R�(P )
1
2 log P

.

We next describe the approximately optimal strategy within the context of the high-
SNR cache-aided Gaussian interference network. This strategy makes use of the sepa-
ration architecture in the following way.

1. The message set V that is chosen is a set of messages from every single transmitter
� to every subset K of receivers of a fixed size |K| = κ+1, where κ ≈ KrMr/N .
Notice that this is exactly the same as the multicast size in the broadcast setup in
Section 2.2. Thus the message set represents a set of single-transmitter multicast
channels.

2. At the network layer, we partition every file in the content library into Kt parts
and store each part at one transmitter. Thus each transmiter has a content subli-
brary consisting of part of every file. A standard centralized Maddah-Ali–Niesen
scheme is performed on each sublibrary, and each multicast message (intended
for κ + 1 receivers) is sent through the corresponding bit pipe.

3. At the physical layer, we apply a technique known as interference alignment in
order to transmit the message set as efficiently as possible.6

The following theorem gives the approximate degrees of freedom of the network, as
determined in [26].

theorem 2.13 The degrees of freedom of the cache-aided Gaussian interference
network is approximately given by

DoF ≈ KtKr

Kt +Kr − 1
· 1

1−Mr/N
· KrMr/N + 1

Mr

N
( 1
Kr
+ 1

Kt−1 )−1 + 1
,

for all N , Kt , Kr , Mr ∈ [0,N ], and Mt ≥ N/Kt . The approximation is within a constant
multiplicative factor.

Notice that the degrees of freedom can be written as the product of three gains, in
a similar way to the rate expression in Section 2.2. The first term is the interference
alignment gain and represents the DoF when no receiver caches are present. The second
term is the local caching gain, as with the broadcast case. The third term is the global
caching gain.

6 In fact, interference alignment can exactly achieve the degrees of freedom of the communication problem
that arises at the physical layer. Note that this is the degrees of freedom associated with the rate R′
described earlier; it is not the degrees of freedom of the entire cache-aided interference network.
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Finally, some powerful insights can be gained from Theorem 2.13. The first is that
a separation of the network and physical layers is approximately optimal. Second, one
can see that the DoF expression does not involve the transmitter memory Mt , except
through the constraint KtMt ≥ N . This implies that there is no benefit (no more than
a constant factor) in increasing the transmitter memory. In particular, it shows that
transmitter cooperation is unnecessary: the DoF can be approximately achieved even if
the transmitters share no information at all. Third, as the receiver memory increases, the
number of transmitters needed for approximately achieving the DoF decreases. These
insights together show that the cache-aided interference network problem can be solved
with a system that is layered and simple to design and implement.

Before we conclude the discussion on the interference networks, some thoughts on
the low-SNR regime. We can apply a very similar separation architecture in the low-
SNR regime. However, some crucial differences arise. First, the message set used for
the high-SNR regime is insufficient: it is necessary for each message to be from subsets
of transmitters to subsets of receivers. Second, the physical-layer scheme consists in
the transmitters co-operating and beam-forming signals to multiple receivers, yielding a
beamforming gain (in lieu of the interference alignment gain in the high-SNR regime).
Third, there is a trade-off between the beam-forming gain and the global caching gain;
consequently it is sometimes better to ignore any coded caching gains in favor of an
increase in the beam-forming gain. We point the interested reader to [28] for a more
detailed analysis of the low-SNR regime.

2.5.3 Other Network Topologies

There have been several works in the literature that study other complex topologies for
the cache network. We briefly describe two such models:

1. Hierarchical networks: In this model, the server is connected to the users via a
tree network, with caches of possibly different sizes at each level of the tree and
where each cache at level i communicates with its children at level i + 1 via
an error-free broadcast link. Note that the server is the root of this hierarchical
caching network, and the users are the leaves. One study [29] looked at the
special case of a two-level hierarchical tree caching network with N files of size
F bits each at the server, communicating via an error-free broadcast link with K1

mirrors each with a cache of memory size M1F bits, at level 1. Each of these
mirror nodes is connected to K2 users each with a cache of size M2F bits. The
system operates as before in two phases: a placement phase when all caches are
populated with content and then, after the user requests are revealed, a delivery
phase where the server sends a common message of size R1F bits to the mirrors
and each mirror sends a message of size R2F bits to its connected users. [29]
proposed a scheme and showed that for any M1,M2, the required rates R1,R2

for the proposed scheme are within a constant factor (independent of all problem
parameters) of the information-theoretically optimal rates. A desired feature of
the proposed scheme is that the delivery phase only uses messages that involve
coding across a single layer of storage at a time. Details can be found in [29].
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2. Device-to-device networks: In this model, there is no designated server in the net-
work that hosts the entire catalog of N files. The system consists of K co-located
users, each with a cache of size MF bits, which can communicate with each
other over an error-free broadcast link. This setup was studied in [30, 31], where
the authors proposed a caching and delivery scheme for this setup and analyzed
the total required transmission size on the shared link, as well as compared it to
information-theoretically lower bounds.
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3 Wireless Device-to-Device Caching
Networks
Mingyue Ji

3.1 Overview

Internet traffic has been increasing significantly in the past few years, mainly due to
on-demand video streaming. While users prefer to use wireless to connect to the internet,
seamless and cost-effective on-demand video streaming service could not be supported
by today’s cellular wireless technologies. For instance, a single streaming session of
a standard definition (SD) movie, from a service such as iTunes, Netflix, Hulu, or
Amazon Prime (duration of 1 hour and 30 minutes with size of about 2 GB), could
completely consume most of the viewer’s monthly cellular data plan. It is evident that a
dramatic technological paradigm shift will be required in order to fill the gap between
users’ expectations and the provided services’ limitations. Recently, in this perspective,
caching at wireless edge, i.e., caching part of or entire content library directly in the
wireless nodes such as femtocell base stations and/or user devices, has been recognized
for its potential to solve this problem by providing per-node throughput scaling much
higher than that of conventional unicast transmissions in a variety of scenarios.

One important feature of on-demand video streaming services is that user demands
are highly redundant over space and time. For example, consider a university campus
where n≈10,000 users (distributed over an area of approximately 1 km2) stream movies
from a library of approximately 100 files, such as the weekly top-of-the chart titles of
iTunes, Netflix, Hulu, or Amazon Prime. In this scenario, each user’s demand can be
satisfied via short-range local communications from a cache, instead of arranging thou-
sands of unicast sessions from a cellular base station and without requiring deployment
of a large number of small cell access points or femtocell/pico base stations, each of
which requires a costly high-throughput backhaul. Intuitively, caching can effectively
take advantage of the inherent redundancy of user demands, although, differently from
live streaming; users in on-demand streaming do not request the same content at the
exact same time. This type of redundancy is referred to in [1–3] as asynchronous content
reuse. It has been shown recently that the throughput for delivery of wireless video
files can be greatly enhanced by wireless device-to-device (D2D) communications in
conjunction with caching on the devices. In particular, systems have been proposed in
which each device is equipped with storage capacity for caching carefully designed parts
of library content either randomly or deterministically. When a user requests a file not
already in its own cache, it can obtain it from one of its neighbors through a spectrally
and cost-efficient, short-range D2D link. As user density increases, the aggregate storage
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capacity of the D2D network increases linearly with the user size, while the average
communication distance decreases (and hence the spatial reuse increases). For these
reasons, D2D caching networks are scalable, such that both demand and throughput
increase linearly with the user density. An overview of D2D for video is given by [11].
A series of papers about this topic includes [2, 3, 5–13].

In this chapter, we first describe the general network model used in wireless D2D
caching networks in Section 3.2. Under the simple and deterministic protocol channel
model, in Section 3.3, we focus on the case of uncoded D2D caching networks, and we
relax the uncoded constraint and study the coded D2D caching network in Section 3.4.
In Section 3.5, we relax the constraint of the protocol channel model and study the D2D
caching over a noisy physical layer channel. Finally, we study caching in D2D networks
with user mobility patterns in Section 3.6.

3.2 General Network Model

In this chapter, we consider a network formed by wireless user nodes U = {1, . . . ,n},
which could be placed deterministically on a grid (e.g., Section 3.3.1) or randomly
according to either a uniform distribution (e.g., Section 3.3.2) or a point Poisson process
(PPP) (e.g., Section 3.5.2). The area of the network is assumed to be A(n), which is a
function of the number of users n.1 Each user u ∈ U makes an arbitrary request or
a random request for a file f ∈ F = {1, . . . ,m} in an independent and identically
distributed (I.I.d.) manner, according to a probability mass function Pr (f ), which is
assumed to be a Zipf distribution as follows:2

Pr (f ) =
1

f γ

m∑
j=1

1
jγ

, 1 ≤ f ≤ m, (3.1)

where γ is the parameter of the Zipf distribution. We assume that each user caches
M files, each of which consists of F bits uniformly generated over {1, . . . ,2F }. In
general, the caching networks consists of a cache placement phase and a delivery phase.
Specifically, delivery phase includes coded delivery (generates and decodes the [coded]
messages) and transmission policy (transmits the [coded] messages)3. Therefore, we
have the following definitions.

definition 3.1 (Cache Placement) The cache placement is a map of the file library
{Wf : f ∈ F} onto the cache of the users in U . Each cache has size MF bits (i.e., M

files). For each u ∈ U , the function φu : FmF
2 → FMF

2 generates the cache content
Zu � φu(Wf : f ∈ F). The cache messages Zu are stored in the user caches at the
beginning of time and kept fixed through the subsequent network operations. ♦

1 Note that A(n) can also be a constant.
2 In practice, the realistic demand distribution may follow a MZipf distribution, which is a modified version

of Zipf distribution. The scheme based on the MZipf distribution may have similar performance [14].
3 Note that the uncoded message is a special case of the coded message.
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definition 3.2 (Coded Delivery) The delivery phase is defined by two sets of func-
tions: the node encoding functions, denoted by {ψu : u ∈ U}, and the node decoding
functions, denoted by {λu : u ∈ U}. Let RT

u denote the number of coded bits transmitted

by node u to satisfy the request vector f. The rate of node u is defined by Ru = RT
u

F
. The

function ψu : FMF
2 ×Fn→ F

FRu

2 generates the transmitted message Xu,f � ψu(Zu,f)
of node u as a function of its cache content Zu and of the demand vector f.

Let Du denote the set of users whose transmit messages are received by user u

(according to some transmission policy that will be given in Definition 3.3). The function

λu : F
F
∑

v∈Du
Rv

2 × FMF
2 × Fn → FF

2 decodes the request of user u from the received
messages and its own cache, i.e., we have

Ŵu,f � λu({Xv,f : v ∈ Du},Zu,f). (3.2)

♦

As anticipated in Section 3.1, in video on-demand services, the probability that two
users wish to stream a file at the exact same time is essentially zero, although there is
a large redundancy in the demands when n � m. A rigorous mathematical model for
asynchronous content reuse is introduced in [3]. This involves the request of random
segments, each formed by K ′ packets of F bits each, from files of K packets, and then
letting K → ∞ while keeping K ′ fixed to some arbitrary constant. Here, for the sake
of brevity, we simply forbid the possibility of naive multicasting.

With this in mind, we move on and define the worst-case error probability as

Pe = max
f∈Fn

max
u∈U

P
(
Ŵu,f �= Wfu

)
. (3.3)

For given number of users n and library size m, by letting R = ∑
u∈U Ru, the cache-

rate pair (M,R) is achievable if ∀ ε > 0 there exists a sequence indexed by the file size
F →∞ of cache encoding functions {φu}, delivery functions {ψu}, and decoding func-

tions {λu}, with rate R(F ) and probability of error P
(F )
e such that lim supF→∞ R(F ) ≤ R

and lim supF→∞ P
(F )
e ≤ ε. The optimal achievable transmission rate is given by

R∗(M) � inf{R : (M,R) is achievable}. (3.4)

The definition of transmission policy is given by the following definition.

definition 3.3 (Transmission Policy) The transmission policy � is a rule to acti-
vate the D2D links in the network at different time slots. Let L denote the set of all
directed D2D links. Let A ⊆ 2L be the set of all possible feasible subsets of links (this
is a subset of the power set of L, formed by all sets of links forming independent sets
in the network interference graph induced by the protocol model). Let A ⊂ A denote
a feasible set of simultaneously active links. Then, � is a conditional probability mass
function over A given f (requests) and the caching functions, assigning probability �(A)
to A ∈ A. ♦

Note that the deterministic transmission policy is a special case of Definition 3.3.
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3.3 Uncoded D2D Caching Networks Based on the Protocol Channel Model

In this section, we study the D2D caching networks when the channel model follows a
seminal deterministic and noiseless protocol model [15]. The protocol channel model
is defined as follows. When node i transmits a packet to node j , the transmission is
successful if and only if (1) the distance between i and j is less than r and (2) any other
node k transmitting simultaneously is at distance d(k,j ) ≥ (1 + �)r from the receiver
j , where r,� > 0 are parameters of the protocol model. In practice, nodes often send
data at some constant rate Cr bit/s/Hz, where Cr is a nonincreasing function of the
transmission range r . In this section, we focus on the uncoded D2D cache placement and
delivery, which means that only packets or the entire files will be cached and transmitted
directly without coding among them. The request distribution is assumed to be a Zipf
distribution given by (3.1). In the following, first, we focus on the case where only
single-hop transmissions are allowed. Second, we consider the case where the multi-
hop transmission opportunities are exploited.

3.3.1 Throughput-Outage Trade-off in Single-Hop D2D Caching Networks

When a grid node location is considered (see Figure 3.1a) and only single hop trans-
missions are allowed, under the uncoded constraint, we design an independent and
randomized cache placement of the entire files and unicast delivery.

3.3.1.1 Random Cache Placement and Unicast Delivery
When a random and independent caching placement scheme is considered, we divide
the network into clusters of equal size and independent of the users’ demands and cache
placement realizations (see Figure 3.1b). The D2D communications can take place only
inside the corresponding cluster, given the cardinality of the number of users in each
cluster as gc.4 In [3], it is shown that the optimal caching distribution P ∗c for maximizing
the probability that any user finds its demanded file inside its own cluster is given (for a
node deployment on a grid as described earlier) by

P ∗c (f ) =
[

1− ν

zf

]+
, f = 1, . . . ,m, (3.5)

where ν = m∗−1∑m∗
f=1

1
zf

, zf = Pr (f )
1

M(gc−1)−1 , m∗= min
{

M
γr

gc,m
}

and [�]+= max[�,0].

The delivery scheme is as follows. Inside a cluster, all the potential links (the links
established by one source-destination pair) are served in a round robin manner. Different
clusters will be scheduled in a time division multiple access (TDMA) manner. It can be
seen that it is possible that users may not find the requested files in their own cluster such
that they cannot be served by the delivery scheme. We call this event an outage, and the
probability of outage is po. We define the random variable Tu as the number of useful

4 We also use gc(m) when we need to emphasize the dependence of gc on m.
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√

n
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Figure 3.1 (a) An example of a grid D2D network with n = 49 users (black points), minimum
separation pf r√

2
= 1√

n
, and the protocol channel model. In this figure, the gray area is the disk

where the protocol model does not allow other concurrent transmissions, r is the common
worst-case transmission range, and � is the interference parameter. (b) An example of
single-cell deployment and the interference avoidance (e.g., TDMA) scheme. In this figure, each
square represents a cluster and the gray squares represent the simultaneous transmitting clusters.
In this example, the TDMA parameter is K= 9, which means each cluster can be activated every
9 scheduling slots.

received information bits per slot unit time by user u and the average throughput for
user u is T = E[Tu]. We focus on max–min fairness and express the throughput-outage
trade-off in terms of minimum average user throughput defined as T min = minu∈U T u.
Hence, we will focus on solving the following optimization problem:

maximize T min, s.t. po ≤ p, (3.6)
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where the maximization is with respect to the cache placement and transmission policies
�c,�t . Hence, it is immediately clear that T ∗(p) is nondecreasing in p, which is the
requirement of the outage probability.

Let αγ = 1−γ
2−γ . It can be shown that the only practically interesting regime, meaning

vanishing outage probability, is the case when limn→∞ m
αγ

n
= 0. Based on this fact, the

optimal achievable throughput-outage trade-off is given by the following theorem.

theorem 3.4 Assume limn→∞ m
αγ

n
= 0 and M is a constant. Then, the throughput-

outage trade-off T (p) achievable by random caching and clustering behaves as

T (p) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

C
K

M
ρ1m
+ o(1/m), p = (1− γ)eγ−ρ1

CA
K

M

m(1−p)
1

1−γ
+ o

(
1

m(1−p)
1

1−γ

)
, p = 1− a

(
gc(m)

m

)1−γ

CB
K

m−α + o
(
m−αγ

)
,1− aρ

1−γ
2 m−αγ ≤ p ≤ 1− ab1−γm−αγ

CD
K

m−αγ + o
(
m−αγ

)
, 1− ab1−γm−αγ ≤ p ≤ 1,

(3.7)

where we define a = γγM1−γ, b =
(

1−γ
a

) 1
2−γ

, A
�=γ

γ
1−γ , B

�= aρ
1−γ
2

1+aρ
2−γ
2

, and D
�= ab1−γ

1+ab2−γ

and where ρ1 and ρ2 are positive parameters satisfying ρ1 ≥ γ and ρ2 ≥ b. The cluster
size gc(m) is any function of m satisfying gc(m) = ω (mα) and gc(m) ≤ γm/M . �

Based on Theorem 3.4, it can be seen that when Mn ≥ m (the entire library can
be cached by the nodes in the network), for an arbitrarily small outage probability,
in [3], it is shown that the per-user throughput scales as �

(
M
m

)
. This means that the

per-user throughput is independent of and increases linearly with the number of users.
Moreover, the throughput also grows linearly with the per-user memory M . This can be
very attractive since, for example, in order to double the per-user throughput, instead of
increasing the bandwidth and/or power, we can just double the (relatively cheap) storage
capacity per user.

Interestingly, this result of throughput scaling coincides with using the subpacketized
cache placement and coded multicasting delivery algorithms by [11, 15]. However, the
practical performance in realistic channels can be quite different. Under more realistic
channel models, D2D caching is with conventional unicasting, harmonic broadcasting
and coded multicasting. Consider a network of size 600 m× 600 m, and let n = 10,000
users distributed uniformly. The file library has size m = 300 (e.g., 300 popular films
and TV shows to be refreshed on a daily basis at off-peak hours by the conventional
cellular network). The per-user storage capacity is assumed to be M = 20, and the Zipf
distribution parameter is γr = 0.4. The channel model is a mixture of models from [16];
for more details see [2]. The simulation results of the throughput-outage trade-off for
different schemes are given in Figure 3.2. We can see that in this realistic propagation
scenario (not the protocol model) the D2D single-hop caching network with simple
transmission scheme can provide both large throughput, sufficient for streaming video
at standard definition quality, and low outage probability. Also, the D2D caching scheme
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Figure 3.2 Simulation results for the throughput-outage trade-off for different schemes under the
realistic indoor/outdoor propagation environment, where n = 10,000, m = 300, M = 20, and
γ = 0.4. For harmonic broadcasting with the m′ most popular files, the solid, dash-dot, and
dashed lines means are m′ = 300, m′ = 280, and m′ = 250, respectively.

significantly outperforms the other schemes for all the regimes of outage probability.5

This performance gain is particularly notable with respect to the current technology,
such as conventional unicasting and harmonic broadcasting from the base station. We
also observe the outstanding performance advantages compared to the coded multi-
casting, despite the fact that the two schemes have the same throughput scaling laws.
The main reason for this observation is that the capacity of multicasting is limited by
the “weakest link” between the base station and the various mobile devices (see [17]),
while for the D2D scheme, short-range transmission (which usually has a high signal-
to-noise ratio [SNR], shallow fading, and thus high capacity) determines the overall
performance.

It is also worth noticing that the scheduling scheme used in the simulations is based
on the clustering structure and the interference avoidance (TDMA). An advanced inter-
ference management scheme such as FlashLinQ by [18] or ITLinQ by [19] may provide
additional gains for the D2D caching networks (see Section 3.5.1 for more details).

3.3.2 Uncoded Multi-hop D2D Caching

In this section, we present a natural extension of the single-hop D2D network by allow-
ing multi-hop transmissions as shown in [20]. The multi-hop D2D caching networks
under the protocol model have been studied in the literature as in [21]. The main

5 When the demand distribution is MZipf, using a similar cache placement and delivery scheme, similar
performance can also be observed, as shown in [14].
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objective of [21] is to minimize the expected number of flows passing through each
node. Such expected number of flows is proportional to the reciprocal of the expected
per-node throughput; on the other hand, [20] adopts the throughput metric guaranteed
for any demand realization with high probability as the number of nodes n increases,
which is a natural extension from the conventional ad hoc network model, e.g., see
[15, 23–26]. It directly derives the lower and upper bounds of throughput by using only
appropriate inequalities (holding with high probability in the limit of large n) without
any approximation. Moreover, in order to provide a comprehensive understanding on
throughput scaling laws, it assumes a general scaling environment, i.e., n, m, and M

scale with a general relationship instead of a fixed M considered in [3, 21]. Finally,
a centralized and deterministic caching placement was proposed in [21] based on
the popularity distribution; in contrast, in [20], it presents a completely decentralized
random caching placement according to a uniform distribution over the entire file
library when m = o(nM), which is “universal” in the sense that it is independent of the
specific popularity distribution. Remarkably, while the placement and the achievability
scheme of [21] would break under the node mobility, such that one should reallocate the
cache content when the nodes are in the presence of node mobility, our scheme is robust
since any random movement of the nodes would generate the same caching distribution
and, therefore, yields the same throughput scaling with high probability.

The proposed caching placement and delivery schemes in [20] yield a per-user
throughput scaling of �(

√
M/m), which achieves order optimality when the popularity

distribution has the “heavy tail” property defined as follows.

definition 3.5 (Heavy-Tailed Popularity Distributions) Define a class of popular-
ity distributions such that, for any 0 < c1 < a1, there exists c2 > 0 satisfying that

lim
n→∞

c1n
α∑

i=1

Pr (i) ≤ 1− c2, (3.8)

where c1 and c2 are some constants and independent of n. ♦

For example, a Zipf distribution (3.1) with an exponent less than one satisfies the
heavy tail property.6 This result shows that multi-hop achieves a much better per-node
throughput scaling than that of single-hop D2D caching networks, which is �(M/m).
Furthermore, it is shown that for other popularity distributions, where the heavy tail
property is not satisfied or the user demands strongly concentrate, a further improvement
of the per-node throughput scaling law beyond �(

√
M/m) is achievable, similar to the

case of single-hop D2D caching networks in [21] and the case of shared-link caching
networks in [27].

In order to provide a comprehensive understanding on capacity scaling laws of the
wireless multi-hop D2D caching network defined earlier, we consider a general rela-
tionship between the parameters n, m, and M as follows:

m = a1n
α and M = a2n

β, (3.9)

6 Throughout this section and Section 3.5.3.2, an “order-optimal” scheme means that it achieves the optimal
scaling law of the per-node throughput within a multiplicative factor of nε for any ε > 0.
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where α,a1,a2 > 0, and β ∈ [0,α]. Notice that the delivery phase becomes trivial if
α < β (each node is able to store the entire library F for this case). For the same reason,
we assume that a1 > a2 if α = β. It can be observed that the regimes where m = ω(M)
and m = o(nM) might be the most important and interesting regimes in practice,
since each node can cache only a subset of the library but there are some caching
redundancies in the entire network so that a nontrivial caching gain is expected in
these regimes.

In the following, we partition the entire parameter space into five regimes given by

• Regime I: α − β > 1.

• Regime II: α − β = 1 and a1 > a2.

• Regime III: α − β = 1 and a1 ≤ a2.

• Regime IV: α − β ∈ (0,1).

• Regime V: α − β = 0 and a1 > a2.

Notice that the shifting from Regimes I to V tends to increase the relative storage
capability at each node, compared to the library size (recall the relation between m

and M in (3.9)).
The distribution of nodes in this network model is assumed to be a random uniform

distribution in contrast to the deterministic grid distribution as in Section 3.3.1. For a
given feasible delivery strategy, we let Tn denote the corresponding per-node symmetric
throughput, i.e., the rate (in bit/s/Hz) at which the request of any node in the network
can be served. Note that the definition of the outage event in this network model is
more strict compared to that in Section 3.3.1. In this case, if there exists an unserved
user u ∈ U , we say that the network is in outage. In this case, conventionally, we let
Tn = 0.

3.3.2.1 Random Caching and Unicast Multi-hop Delivery
We consider the regimes of interest, Regimes IV and V, in this section.7

Decentralized Cache Placement: Each node u caches M distinct files in its own mem-
ory, chosen uniformly at random from the library F , independently of other nodes.
Local Multi-Hop Protocol: We first explain how each node finds its source node
caching the demanded file (source node selection):

• The entire network is divided into square traffic cells of area ac = n−η for some
η ∈ [0,1), where η will be determined later.

• Each node chooses one of the nodes that caches the requested file in the same
traffic cell as its source node. If there are multiple candidates, it picks one of
them uniformly at random.

For the ease of illustration, we refer to the pair formed by a node and its source node as
a source–destination (SD) pair. Note that in our model, each SD pair is located in the

7 For Regimes I and II, the outage probability cannot go to zero as n→∞. For Regime III, which
corresponds to the case nM = �(m), a centralized file placement and a globally multi-hop protocol can be
designed as shown in [20].
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Figure 3.3 (a) The proposed multi-hop routing protocol for file delivery after the source node
selection. (b) TDMA cell size based on the protocol model.

same traffic cell while in the classical wireless ad hoc network, SD pairs are randomly
located over the entire network. It can be seen that caching can reduce the distance of
each SD pair, which means that all nodes are able to find their source nodes within their
traffic cells with high probability.

Next, we illustrate the proposed multi-hop transmission scheme for the file delivery
between n SD pairs, see also Figure 3.3a (multi-hop transmissions):

• Each traffic cell is divided into square hopping cells of area ah = 2 log n
n

.

• We define the horizontal data path (HDP) and the vertical data path (VDP) of a
SD pair as the horizontal line and the vertical line connecting a source node to
its destination, respectively. Each source node transmits the demanded file to its
destination by first hopping to the adjacent hopping cells on its HDP and then on
its VDP.8

• The TDMA scheme is used with the reuse factor K for which each hopping cell
is activated only once out of K time slot durations (see Figure 3.3b).

• A transmitter node in each active hopping cell sends a file (or a fragment of a
file) to the receiver node in an adjacent hopping cell. For simplicity, round-robin
scheduling is used for all transmitters in the same hopping cell.

In this scheme, each hopping cell should contain at least one node for relaying, which
is satisfied with high probability due to the fact that ah = 2 log n

n
.

3.3.2.2 The Characterization of Throughput and Discussions
The following throughput scaling laws hold universally for any popularity distribution.

8 If a source node and its destination node are in the same hopping cell, then the source node directly
transmits the requested file to its destination.
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Figure 3.4 (a) Achievable throughput scaling laws, where the solid curve is for caching wireless
multi-hop D2D networks and the dashed curve is for caching wireless single-hop D2D networks.
(b) Achievable throughput scaling laws in (3.11) (solid curve) and (3.10) (dashed curve) with
respect to γ for Regime IV.

theorem 3.6 For the caching wireless D2D network defined in this section, under
heavy-tail demand distribution, the order optimal achievable throughput satisfies the
following scaling laws with high probability:

Tn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 for Regimes I and II,

�(n−
1
2−ε) for Regime III,

�(n−
α−β

2 −ε) for Regime IV,

�(n−ε) for Regime V,

(3.10)

where ε > 0 is arbitrarily small.

Figure 3.4a compares the achievable throughput scaling laws of the wireless D2D
caching networks between multi-hop and single-hop file deliveries,9 where the term n−ε

is omitted for simplicity. Regimes I and II correspond to the case where the aggregate
storage capacity in the entire network is strictly less than the library size, i.e., Mn < m.
Hence, an outage is inevitable even if a centralized caching scheme is used, which leads
to Tn = 0. As the aggregate storage capacity increases, i.e., α − β decreases, each
node can find its demanded file in the network and thus a non-zero Tn is achievable for
Regimes III and IV. As will be clear from the achievable schemes, the geometric inter-
pretation of this behavior is as follows: as α − β decreases (i.e., the storage capacity M

increases), the file delivery distance decreases, such that an increased spatial reused can
be achieved (multiple links can be activated at the same time under the constraint of the
protocol model). As a result, Tn increases when α − β decreases for the throughputs
of both multi-hop and single-hop D2D communications. Finally, when α = β (i.e.,
Regime V), each node can find its requested file from its nearest neighbors. Therefore,
the delivery distance is O(1/

√
n) and Tn = �(1) is achievable.

9 The throughput of the single-hop D2D caching network in this in this case can be obtained similarly as in
Section 3.3.1.
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One important fact is that single-hop D2D delivery is order optimal only for
Regime V. For almost all parameter regimes of interest (Regimes III and IV), multi-hop

D2D delivery significantly improves the scaling of per-user throughput by a factor
√

m
M

.

Intuitively, spatial reuse is much more effective with multi-hop transmissions since
more concurrent short-rage transmissions can be exploited; meanwhile, the cost of
duplicated transmissions by multi-hop is not comparable with the gains obtained by the
simultaneously active links. It is worth mentioning that, for a Zipf demand distribution
(3.1) with γ < 1, this throughput scaling law matches with that in [21], although
a decentralized random caching is used in this work rather than a centralized and
deterministic caching scheme introduced in [21]. Furthermore, due to the universality
of the proposed scheme (random and independent caching), the proposed scheme
is robust to random user mobility since random movement of each user does not
change the overall distribution of node locations when n is large and the proposed
random caching placement is affected by only the overall node distribution, not by each
user’s location.

As the demand distribution becomes more skewed (e.g., γ increases in a Zipf distri-
bution), the condition in Definition 3.5 may not hold. In this case, it can be expected that
the throughput scaling law can be improved by a more refined cache placement strategy,
biased toward the files demanded with higher probabilities. In fact, we show that caching
only an appropriately optimized subset of the most popular files can guarantee that
the aggregate “tail” probability of the least popular files vanishes, such that no outage
event can be obtained. In the following, we demonstrate this strategy for a Zipf demand
distribution with γ > 1+ 1

α .

theorem 3.7 Consider the wireless D2D caching networks defined in this section and
assume that the requests follow a Zipf demand distribution with exponent γ > 1 + 1

α .
Then the achievable throughput satisfies whp the scaling law:

Tn = �
(
n−

1−min(1,β+1−1/(γ−1))
2 −ε

)
for Regime IV, (3.11)

where ε > 0 is arbitrarily small.

In Figure 3.4b, we compare the improved scaling laws in (3.11) and the scaling laws in
(3.10) for Regime IV, where we omit the term n−ε. When the demands follow a Zipf dis-
tribution, the improved throughput scaling law �(1/

√
n

1/(γ−1)−β) is achievable instead
of �(1/

√
n
α−β) in (3.10) when γ > 1 + 1

α , and eventually �(1) is achievable when
γ ≥ 1 + 1

β (see Figure 3.4b). Moreover, the improved throughput scaling laws in
Theorem 3.7 can still be achieved by a fully decentralized random cache placement
over an appropriately reduced effective library size, i.e., decentralized random caching
uniformly across a subset of popular files. In this regime, we can ignore some files,
whose probability is small enough such that an outage will not occur with high
probability as n→∞.
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3.4 Coded D2D Caching under the Protocol Model

One important property or constraint of the described scheme is that both the caching
placement and the delivery schemes exploit an uncoded approach. The gain of the
throughput is mainly obtained by spatial reuse (TDMA) and multi-hop if applicable.
At this point, a natural and reasonable question to ask is whether coded multicasting
for D2D transmissions can provide an additional gain or whether the coding gain and
the spatial reuse gain can accumulate. In [11], the authors design a (deterministic or
random) subpacketized caching and a network-coded delivery scheme for the single-hop
D2D caching networks. The scheme is explained by the example shown in Figure 3.5,
where it is assumed that no spatial reuse can be used or only one transmission per time-
frequency slot is allowed but the transmission range can be arbitrary (e.g., covering
the entire network). This scheme can be generalized to arbitrary n,m, and M . Without
using spatial reuse, the achievable normalized number of transmissions (transmission
rate) without outage is given by R = m

M

(
1− M

m

)
, which is surprisingly almost the same

as the result shown in [15], where instead of D2D communications, one central server
(base station) with the access to the entire library multicasts coded packets.

Suppose that (M,R) is achievable and that there exists a transmission policy that can
deliver to each user the coded packets necessary to decode its requested file in no more
than D channel uses for the worst-case demands. Then, the per-user throughput, defined
as the useful information bits per channel use, is given by T = F

D
. Thus, we can see

that the per-user throughput �
(

M
m

)
has the same scaling law as the throughput by using

User 1

A1, A2, A3, A4,
B1, B2, B3, B4,
C1, C2, C3, C4, C1, C2, C5, C6,

B1, B2, B5, B6,
A1, A2, A5, A6,

A3, A4, A5, A6,
B3, B4, B5, B6,
C3, C4, C5, C6,

Wants A Wants

Wants

B

C

User 2

User 3

B3 C1⊕ A5 C2⊕

⊕A6 B4

Figure 3.5 An example of 3 users, 3 files, M = 2, and achieving half normalized file
transmissions. Each file is divided into 6 packets (e.g., A is divided into A1, . . . ,A6.) User 1
demands A; user 2 demands B, and user 3 demands C. The cached packets are shown in the
rectangles under each user. For the delivery phase, user 1 sends B3 ⊕ C1, user 2 sends A5 ⊕ C2,
and user 3 sends A6 ⊕ B4. The normalized number of file transmissions is 3 · 1

6 = 1
2 , which also

achieves the information theoretically optimal rate for this network.
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the decentralized random cache placement and uncoded delivery scheme described in
Section 3.3.1. In addition, it can be shown that if spatial reuse is also exploited, no
further order gain is achievable. In other words, the gains from spatial reuse and cod-
ing cannot accumulate. Intuitively, if spatial reuse is not allowed, a complex caching
scheme can be designed such that one transmission can be useful for as many users as
possible. If the transmission range is reduced and coding is exploited in each cluster,
then the number of nodes benefited by one coded transmission is reduced but the D2D
transmissions can operate concurrently at a higher rate. Moreover, the complexity of file
subpacketizations and coding can also be reduced. Hence, the benefit of coding depends
on the actual physical layer link throughput (bits/s/Hz) and the coding complexity rather
than throughput scaling laws.10

3.4.1 Discussions

3.4.1.1 Extension to Multi-hop Coded D2D Caching Networks
In Section 3.3, under an uncoded cache placement and delivery constraint, we consider
edd both single-hop and multi-hop D2D transmission schemes. In this section, we allow
coding for both cache placement phase and delivery and transmission phase but focus
on only single-hop communications. It is natural to consider the extension that relaxes
all the constraints on the cache placement phanse and delivery and transmission phase
under the protocol channel model. It means that we can allow coding on both cache
placement and coded delivery phases and also allow multi-hop communications. In [29],
the authors consider this case. They propose a coded caching placement strategy based
on deterministic assignment of minimum distance separable (MDS)-coded packets
of the files, a coded multicast delivery strategy where the users send linearly coded
messages to each other in order to collectively satisfy their demands, and a randomized
Euclidean minimum spanning tree–based routing strategy for transmission. Under
the worst-case demands, it shows that this approach actually achieves the throughput

scaling law of �

(√
M
m

)
, which is slightly improved over the throughput scaling, as

shown in Section 3.3.2.2 for the case of uncoded cache placement and delivery when
multi-hop transmission is allowed. This throughput scaling law in [29] also achieves
information theoretically outer bound within a multiplicative constant factor in practical
parameter regimes.

3.4.1.2 Consideration of Lower Subpacketizations
One of the biggest practical constraints for coded D2D caching network is the large
number of packets that each file needs to be partitioned into. For example, in the work
of [11], each file needs to be partitioned into

(
n
t

)
t , where t = Mn

m
. When M

m
is fixed,

(
n
t

)
t

grows exponentially with n. To address this concern, in [30–32], the authors propose
several approaches to design coded caching networks with reduced subpacketizations. In
particular, the authors propose two combinatorial designs for centralized D2D caching
networks that have reduced subpacketization compared to [11]. The first approach uses
a “hypercube” to define the cache placement and demonstrates how the geometry of

10 An extensive analysis of the performance for D2D multicast is given by [28].
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this hypercube relates to coded multicasting opportunities for delivery. The hypercube
approach is optimized specifically for D2D caching networks, as opposed to adapting an
already studied shared link scheme. The number of required packets (or bits) per file is
reduced to

(
m
M

)t from
(
n
t

)
t , as in [11], while the transmission rate is m

M
, which is almost

the same as m
M
− 1, as in [11]. In addition, by adopting the idea recently proposed in

[33], this scheme can also be extended to a decentralized coded D2D caching scheme,
which allows a much more flexible design for given network parameters. Meanwhile,
the advantage of the reduced subpacketization of the hypercube approach still remains
in the decentralized D2D caching networks.

The second approach is based on an application of the Ruzsa–Szeméredi graph
[34, 35], which was first used for the design in shared link caching networks in [36]. [31]
extends the use of the Ruzsa–Szeméredi graph to D2D caching networks and shows that
the requirement of file subpacketization is at most subquadratic in terms of the number
of users if no spatial reuse is allowed while the per-user throughput scales as �(n−δ)
for some arbitrarily small δ under some parameter regimes. Both D2D combinatorial
designs sustain the significant throughput gain compared to conventional uncoded
unicast [2], and the required packetizations are reduced exponentially compared to
[11], with respect to the number of users n while keeping the library size m and
memory size M fixed. Finally, the impact of enabling spatial reuse in these caching
network designs has also been studied, showing this can further reduce the required
packetizations, while also improving the per-user throughput significantly for some
parameter regimes, in contrast with the case in [11].

3.5 Physical Layer Caching in D2D Networks

In this section, we relax the constraint of the deterministic protocol channel model
considered in Section 3.3 and consider the realistic physical layer channel model. In
particular, we consider the following scenarios. First, we discuss the direct extension
of Section 3.3.1 by using the optimal rule of treating interference as noise in addition
to interference avoidance (e.g., TDMA) [37]. Second, besides treating interference as
noise, we consider the case when the D2D nodes are distributed according to a point
Poisson process. Finally, we relax the constraints of treating interference as noise and
interference avoidance and allow full cooperation among the D2D users.

In this section, the channel coefficient between a transmitter node j and a receiver
node i is

hi,j = h0e
√−1θi,j r

− η
2

i,j , (3.12)

where h0 is a (random) small-scale fading coefficient, θi,j is the random phase with
uniform distribution on (0,2π], ri,j is the distance between i and j , and η ≥ 2 is the
pathloss exponent. Let the transmit power be Po, the signal-to-interference-plus-noise-
ratio (SINR) of the user i can be expressed as

SINRi =
Pohi,j r

−η
i,j

σ2 + Ir

, (3.13)
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where Ir =
∑

i �=j Po|hi,j |2 is the cumulative interference and σ2 is the variance of the
random noise. The link rate from node j to node i is given by log(1+ SINRi).

3.5.1 D2D Caching with the Optimal Rule of Treating Interference by Noise

In this section, we extend the study of Section 3.3.1 to the case of using the approx-
imately optimal condition of treating interference as noise. This scheme is based on
the information-theoretically link scheduling (ITLinQ) introduced in [38]. There are
three main advantages of using ITLinQ-based caching schemes. First, it can achieve a
high D2D link throughput by exploiting the approximately optimal condition of treating
interference as noise. Second, unlike the protocol channel model, where all the trans-
mission ranges are the same, by using ITLinQ, we do not impose this constraint. Third,
it can relax the “clustering” scheme by allowing each user to be served by any node in
the network satisfying the ITLinQ conditions. In the following, we first introduce the
ITLinQ and then we describe the ITLinQ-based delivery in D2D caching networks.

3.5.1.1 Information-Theoretically Link Scheduling
Let SNRi denote the signal-to-noise ratio at user i, and for two different users i and
j , INRij denotes the interference-to-noise ratio of source j at destination i; then the
approximately optimal condition of treating interference as noise (TIN) is that for each
user i,

SNRi ≥ max
i �=i

INRij ·max
k �=i

INRki, (3.14)

where SNRi denotes the signal-to-noise ratio of the receiver i and INRij denotes the
interference-to-noise ratio from user j to user i. The condition (3.14) means that if for
each user, the desired channel strength is at least the sum of the strengths of the strongest
interference from this user and the strongest interference to this user (on a dB scale),
then treating interference as noise achieves the entire information-theoretically capacity
region of the network within a constant additive gap. Based on condition (3.14), we
define the information-theoretically independent set (ITIS), which is a subset of users
satisfying the condition (3.14) and leads to the spectrum sharing scheme of ITLinQ as
follows [38].

definition 3.8 At each time slot, the information-theoretically link scheduling spec-
trum sharing scheme schedules the sources in an information-theoretic, independent set
to transmit simultaneously. In addition, all the destinations will treat their incoming
interference as noise.

3.5.1.2 The Greedy Closest-Source Policy Based on ITLinQ
Based on a slightly (modified) optimal cache placement scheme as described in
Section 3.3.1,11 [37] proposes an algorithm that can achieve superior performance
compared to the original caching scheme. The main challenge is to find the user

11 The modified cache placement scheme is obtained by enlarging gc(m).
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association that leads to the best performance. [37] presents a greedy user association
algorithm based on ITLinQ as follows.

1. We assign a random ordering to users.
2. Based on the assigned order, we associate each user with the closest potential

source that has not been associated with a previous user.

We call this user associate policy the greedy closest-source policy. Let nαr users
request distinct files at any given time, where αr ∈ (0,1) is a constant; using this
approach, each user has a distinct source node and the delivery phase is over an nαr user
interference channel. Afterward, it uses an ITLinQ scheme in this resulting interference
channel in order to schedule the deliveries from sources to destinations, which is
referred to as the distributed ITLinQ algorithm proposed in [38]. This algorithm was
demonstrated through numerical simulations that it provides throughput gains over the
cluster based state-of-the-art delivery scheme proposed in [2] under the same channel
model. In particular, the gain of the ITLinQ-based delivery scheme can achieve a
265%× to 488%× gain, depending on the library size.

3.5.2 D2D Caching Networks with Poisson Point Processes

In this section, with the TIN condition, we let the D2D node locations be distributed as a
homogeneous PPP instead of either the grid distribution or random uniform distribution
considered in the previous sections. PPP modeling is considered to be more practical
because unlike the cluster-based model in [13], where only a pair of users are allowed
to communication in a square region, this scheme requires no constraint on the link
distance and allows a random number of simultaneous D2D transmissions. In [39],
the authors propose a new file caching strategy exploiting stochastic geometry and
introduce the concept of the density of successful reception (DSR), which is closely
related to the outage probability and can be obtained through the scaling of the cov-
erage, i.e., the complement of the outage probability, with the number of receivers per
unit area.

The mathematical description of the system model is as follows. We consider a
D2D network where users are spatially distributed as a homogenous PPP 	 of density
λ, where a randomly selected user can transmit or receive information. At any time
slot, only a fraction of the D2D users can be scheduled. Differently from the previous
sections, we let any user transmit with probability γ1 and receive with probability
γ2 = 1− γ1 independently of other users. Each user has a cache with storage size of
1 file. If it is selected as a receiver at a time slot, it draws a sample from the request
distribution Pr (·), which is assumed to be Zipf distributed. If it is selected as transmitter
at a time slot, it draws a sample from the caching distribution Pc(·). At any time slot,
each receiver is scheduled based on the closest transmitter association. Without any loss
of generality, we assume that the mobile user under consideration is located at the origin.
A user is in coverage when its SINR from its nearest transmitter is larger than some
threshold Tr and it is in outage when SINR is below Tr. The definition of DSR is given
by [39].
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definition 3.9 (Density of Successful Receptions) The performance of a randomly
chosen receiver is determined by its SINR coverage. For the homogeneous PPP 	 with
density γ, let γ1 fraction of all users be the transmitter process 	t , and γ2 fraction of
users be the receiver process 	r , where 0 ≤ γ1,γ2 < 1. The coverage probability of a
randomly chosen receiver is pcov(Tr,λγ1,η), which is the same for all receivers, and the
total average number of receiver is proportional to the density λγ2. Hence, the DSR,
which denotes the mean number of successful receptions per unit area, is given by

DSR = λγ2pcov(Tr,λγ1,η)

= λγ2

(
πλγ1

∫ ∞
0

e−πλγ1rβ(Tr,η)−μTrσ2rη/2
dr

)
, (3.15)

where pcov(Tr,λγ1,η) = πλ
∫∞

0 e−πλvβ(Tr,η)−μTrσ2rη/2
dr with the thinning prop-

erty of the PPP (	t ), which is obtained from the thinning of 	 and is a homoge-

neous PPP with density λγ1; β(Tr,η) = 2(μTr)
2
η

η E
[
g

2
g
(


(−2η,μTrg

)− γ (−2/η
))]

,

and the expectation is with respect to the interferer’s channel distribution denoted
by g. Also, 
(a,x) = ∫∞

x
ta−1e−t dt denotes the incomplete gamma function, and


(x) = ∫∞
0 tx−1e−t dt the standard gamma function.

3.5.2.1 DSR for a Single File
In this case, we assume that there is a single file in the network. The single-file case is
the baseline model for the more general multi-file model. The receivers demanding only
one file from the nearest transmitter while all other transmitters are interferers, and each
transmitter can serve multiple receivers. Since the total density of receivers is λγ2, and
each receiver is successfully covered with probability pcov(Tr,λγ1,η), the DSR, is given
by their product as in (3.15). In the single-file scenario, since only one file is transmitted
in the network, there is no need to design cache placement. Hence, the objective is to
determine the optimal fractions of transmitter γ1 and receivers γ2 in the PPP network
that maximize the DSR. This will be used for characterizing the optimal random caching
PMF later. The optimization problem to determine γ1 and γ2 is given by

DSR∗ = max
γ1>0,γ2>0

λγ2pcov(T ,λγ1,η)

s.t . γ1 + γ2 = a, 0 < a ≤ 1, (3.16)

where a is the total fraction of transmitters and receivers in the D2D network.12

3.5.2.2 Sequential Serving Model with Multiple Files
In this section, we aim to determine the optimal caching distribution for the transmitters
to maximize the DSR. In particular, we focus on the sequential serving-based strategy
due to its analytical tractability. Under a Zipf demand distribution (3.1), in this model,
only the set of transmitters having a common file transmits simultaneously, which is
the special case in which only one file is transmitted in the network at a given time. In

12 For the readers who are interested in the computation of the optimization problem (3.16), please refer to
[39].
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particular, if a user is selected as a receiver at a time slot, it makes a random request
according to the known Pr . If any user is randomly selected as the transmitter at a time
slot with probability γ1, it randomly caches a file according to the caching distribution
Pc(·), which is not known yet. At any time slot, each receiver is scheduled based on
closest transmitter association. Since file i is available at each transmitter with Pc(i),
using the thinning property of the PPP, the probability of coverage file i is

pcov(T ,λtPc(i),η) = πλtPc(i)
∫ ∞

0
e−πλt Pc(i)rβ(T ,η)−μT σ2ra/2

dr, (3.17)

where λt = λγ1 is the total density of the transmitters. Our objective is to maximize
the DSR of users for the sequential serving-based model, denoted by DSRS , for a PPP
model with density λ:

max
Pc

DSRS

s.t.
m∑

i=1

Pc(i) = 1, Pr (i) = i−γ∑m
j=1 j−γ

,i = 1, . . . ,m, (3.18)

where DSRS = λγ2
∑M

i=1 Pr (i)pcov(T ,λγ2Pc(i),η). The optimal values of γ1 can be
found by taking the derivative of (3.18) with respect to γ1. Note that the optimal value
of γ1 and Pc are coupled. Hence, we can first solve (3.18) by optimizing Pc and then
determine γ1. We illustrate the optimal solution of (3.18) by considering the case in
which the noise is small but non-zero and η > 2 in the following theorem.13

theorem 3.10 The optimal caching distribution is Pc(i) = i−γc∑m
j=1 j−γc , i = 1, . . . ,m,

which is also a Zipf distribution, where γc = γc

η/2+1 is the Zipf exponent for the caching
probability mass function (PMF).

Assuming η > 2, the caching PMF exponent satisfies γc <
γr

2 , which implies that the
optimal caching PMF that maximizes the DSR has a more uniform distribution, which
exhibits less locality compared to the demand distribution that is more skewed toward
the most popular files.

3.5.3 D2D Caching Networks with Cooperations

In Section 3.5.1 and Section 3.5.2, we focused on the case under the TIN condition. In
this section, we relax this constraint by allowing the cooperation among the D2D nodes.
It turns out that caching can be used to mitigate interference and enable cooperative
transmissions in the physical layer. In particular, we consider two schemes, that are
proposed to extended networks, and dense networks respectively.14 In the physical layer,
both schemes are based on the hierarchical multiple-input multiple output (MIMO)

13 Please refer to [39] for the case of arbitrary noise with η > 2.
14 The area of extended networks can grow linearly with the number of users n and the nearest distance

between two nodes are above a constant, while the area of dense networks is a constant.
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cooperation scheme proposed in [25]. In both schemes, no coded caching enabled mul-
ticasting is allowed. Throughout this subsection, we let h0 in (3.12) be 1, which means
that only random phase fading will be considered.

3.5.3.1 Hierarchical Cooperation in Dense Network Model
In [40], the authors propose a scheme based on the hierarchical cooperation and focus
on the dense network model. The network is divided into square clusters of area Ac with
Nc nodes and Ac = nν for some ν > 0. The user requests follow a uniform distribution
(Zipf distribution (3.1) with γ = 0). We describe the cache placement phase and the
transmission policy in the following.
Cache Placement: Each file in the library is divided into B equal sized packets. In
the cache placement phase, each user randomly picks MB packets from the total mB

packets in the library and stores them in its own cache based on �c such that the
packets stored at one node are different from the packets of other nodes with high
probability.
Transmission Policy: The transmission policy has two stages. In the first stage, it
designs the transmission policy �t based on the fact that each user caches different
packets from distinct files with high probability. For each user, in order to receive all
B packets of its requested file, it finds B source nodes, which store the B distinct
packets in their caches, respectively, and are not in the neighboring clusters of the
sink node. Then, to serve the destination user, a virtual MIMO transmission is formed
from these B source nodes to the destination cluster D.15 After finding all the source
nodes, we choose all the Nc nodes in D as receivers. All the packets of the requested
file are simultaneously transmitted from the B source nodes to the Nc receivers via
the virtual MIMO transmission, which can be formed if the received signals at all
receivers can be jointly processed in the second stage. Note that to form the virtual
MIMO transmissions, all the source nodes are required to be synchronized for their
transmissions. For serving all nodes in the network, the same transmission policy is
applied in a TDMA manner. In the second stage, we apply the hierarchical cooper-
ations. The goal of this stage is to collect and jointly process the received signals
from the virtual MIMO transmissions from the first stage at each destination node.
To this end, we apply the hierarchical cooperative MIMO similar to that in [25, 41].
Within a destination cluster, each node quantizes the received signal and transmits it
to the destination node, which then jointly processes the Nc copies of superimposed
signals received from previous virtual MIMO transmissions. Hence, an actual MIMO
transmission from the source nodes to the destination node has been formed through
the two-stage transmissions.16 The achievable throughput scaling law is given by the
following theorem.

15 If there are multiple candidates of source nodes, we randomly pick up any B candidates that meet the
criteria.

16 Note that the quantization does not change the linear scaling of MIMO capacity, which is shown in [25].
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theorem 3.11 For the considered wireless D2D caching network with a library of
m files and local caches of M files, if nM > m, as n → ∞, the following per-user
throughput scaling law is achievable with high probability:

Tn = �
(
n

τ
τ+1

)
, (3.19)

where τ,τ ≥ 1, is an integer constant independent of n.

From Theorem 3.11, it can be seen that the throughput scaling law by using hier-
archical cooperation based D2D caching scheme has a order gain compared to both
single-hop (Tn = M/m) and multi-hop (Tn =

√
M/m) based caching schemes in the

corresponding parameter regimes discussed in Section 3.3.1 and Section 3.3.2.

3.5.3.2 Hierarchical Cooperation in Extended Network Model
In [42], the authors propose a different hierarchical cooperation–based scheme by con-
sidering an extended network model with area of A(n), which consists of n = 4L nodes,
where L is some positive integer.17 All nodes are distributed on a grid (see Figure 3.6a).
In this work, the capacity scaling laws in the extended D2D caching networks under the
physical model as in (3.12) with h0 = 1 is characterized. The proposed scheme is called
cache-induced hierarchical MIMO cooperation.
The Hierarchical Cache Content Placement: This phase decides how to distribute
files into caches of different nodes in the network. In detail, nodes are grouped into clus-

V1,1 V1,2 V1,3 V1,4

V1,5 V1,6 V1,7 V1,8

V1,9 V1,10 V1,11 V1,12

V1,13 V1,14 V1,15 V1,16

V2,1 V2,2

V2,3 V2,4

(a)

· · · · · · · · ·

· · · · · · · · ·

Level 3

Level 2

Level 1

Level 0

V3,1

V2,1 V2,2 V2,3 V2,4

V1,1 V1,2 V1,5 V1,6

V0,1V0,2 V0,3 V0,4

Source cluster for V0,2

Routing path for V0,2

(b)

Figure 3.6 (a) An illustration of clusters at different levels for the D2D caching network with
n = 64 nodes. (b) An illustration of the tree-graph-based content delivery for the D2D caching
network on the left, with n = 64 nodes. Suppose node V0,2 requests a file cached in the second
level. Then the set of source nodes is V2,1 and the routing path from the source cluster V2,1 to
the destination V0,2 is demonstrated with the arrows.

17 It could be shown that the result still holds when n �= 4L.
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ters of different levels. In the �th level, A(n) is divided into 4L−� equally sized squares
with 4� nodes each. These squares form a cluster in the �th level. Let V�,i ⊂ V (n)
be the i-th cluster in the �th level where i ∈ {1, . . . ,4L−�}. In this cache placement,

each node caches qf F bits of file f , where qf ∈
{

0, 1
4L , 1

4L−1 , . . . ,
1
4,1

}
. If qf = 1

4� ,

the file f is equally distributed over the nodes in V�,i for any i ∈ {1, . . . ,4L−�}.
In other words, each node in Vm,i caches a portion of the 4−�F bits of file f such
that file f can be reconstructed by collecting all portions from the nodes in Vm,i . Let
x = [x0,x1, . . . ,xL] ∈ ZL+1

+ , where x� =
∑m

f=1 1(qf = 4−�) is the number of files

cached at the �th level. In addition, we also have
∑M

�=0 x� = m and
∑L

�=0 x�4−� ≤ M

in order to satisfy the cardinality of library and the memory constraint.
The Tree-Graph-Based Content Delivery: This phase exploits each node’s cached
content to serve users’ demands, and it has of four layers, which are (1) the source
determination layer, ((2) routing layer, (3) cooperation layer, and (4) physical layer.
In this phase, a tree graph (see Figure 3.6b) is used to abstract the original graph.
Based on this tree graph, we can determine the source and design the routing scheme.
Specifically, in the tree graph, each user is a leaf node, and an internal node is a set of
source nodes for a leaf node. The routing layer routes packets between the source nodes
and the sink node. The cooperation layer designs this tree abstraction to the routing
layer by appropriate concentrating traffic over the D2D network. Finally, the physical
layer implement of this concentration of traffic in the wireless network is based on two
physical layer transmission modes, namely, the hierarchical cooperation mode [25]18

and multi-hop mode. Using this scheme, given cache content placement parameter x,
we can formulate the following optimization problem:

max
x∈Z�+

Tn

s.t.
m∑

f=∑�−1
i=0 xi+1

Pr (f )R ≤ C�4−(�−1),

L∑
�=0

x�4−� ≤ M,

L∑
�=0

x� = m, (3.20)

where C� = 4�Ru(4�)
3Lb

, ∀� ∈ {Lb + 1, . . . ,L}; Lb = max{� : x� > 0}, and Ru(gc) is the
per-node throughput for a grid network under per-cluster uniform permutation traffic
with cluster size gc. The optimization problem (3.20) is an integer optimization problem,
and a closed form solution is difficult to obtain. However, it is possible to obtain the
order-optimal scaling laws for the optimal value by allowing some relaxations on Cm.
Throughput Scaling Laws under Zipf Popularity Distribution: We assume the same
parameters scaling as in Section 3.3.2.2. In particular, we focus on Regimes III, IV, and
V. Then we have the following theorem for the order-optimal achievable scaling laws.19

18 This is similar to the stage two of the transmission policy in the previous scheme for dense networks.
19 This order optimality is subject to an independent delivery mechanism, which means that messages of

different users are treated as independent messages. It is not guaranteed that this scheme is order optimal

without any constraint. Nevertheless, it can be proved in some parameter regimes, such as γ >
min{3,η}

2 ,
this scheme can still achieve order optimal throughput. Moreover, the order optimality also means that the
ratio between the optimal throughput and the achievable throughput is upper bounded by nε , where ε is
arbitrarily small.
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theorem 3.12 (Achievable Scaling Law in Extended Networks): For extended net-
works with A(n) = n, in Regimes III and IV, the order-optimal achievable throughput
T ∗n obtained by the cache-induced hierarchical cooperation is given by

T ∗n =

⎧⎪⎪⎨⎪⎪⎩
�
(
nβ−α(γη − 1)− εη

)
, γ ∈ [0,1]

�
(
nα(γ−γη)+β(γη−1)−εη

)
, γ ∈ (1,γη]

�
(
nβ(γ−1)−εη

)
, γ > γη,

(3.21)

where γη = min{3,η}
2 , εη = �

(
1

log n

)
for η ∈ (2,3) and εη = 0 for η ≥ 3.

In Regime V, we have

T ∗n =
{

�(1) , γ ∈ [0,1]
�
(
nβ(γ−1)

)
, γ > 1.

(3.22)

From Theorems 3.12, we can see the order improvement by using the order-optimal
physical layer schemes compared to the case when only a multi-hop scheme is allowed.
In particular, when γ ∈ [0,1], η < 3 and in Regimes III and IV, the improvement is

from �
(
n−

α−β
2

)
(see Section 3.3.2.2) to �

(
n−(α−β)(1− η

2 )
)

. Depending on the value of

η and α, when γ > 1 and in Regime IV, the improvement of the throughput can be from

�
(
n−

1−min(1,β+1−1/(γ−1))
2

)
(see Section 3.3.2.2) to �

(
nα(γ−γη)+β(γη−1)

)
or �

(
nβ(γ−1)

)
.

3.6 Mobile D2D Caching

In previous sections, we assume all the D2D users are static or do not assume an explicit
model for their mobility. In this section, we present how mobility can effect the behavior
and the performance of D2D caching networks. The effect of user mobility on D2D
caching was investigated by simulations in [13], which shows that user mobility does
not have a significant impact on a random caching scheme. Nevertheless, such a caching
strategy may not take advantage of the specific user mobility pattern. In [43], the authors
show that user mobility has positive effect on D2D caching network and in [44], the
authors consider the case where mobile users can update cache placement based on
the demand and user mobility. However, it is assumed that one complete file can be
transmitted via any D2D link when two users contact, which may not be practical. In
this section, we consider two explicit user mobility models, which are based on the
distribution of contact and intercontact time [45, 46] and random walk model [47],
respectively.

3.6.1 Mobility-Aware D2D Caching Based on Contact and Intercontact Time

3.6.1.1 User Mobility Model
In the user mobility model, when mobile users are within the transmission range, they
may contact each other. Hence, the contact time for two mobile users is defined as the
time that they can transmit to or serve each other. Then, the intercontact time for two
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mobile users is defined as the time between two consecutive contact times. In particular,
the locations of contact times in the timeline for any two users i and j are modeled
as a Poisson process with intensity λi,j . For simplicity, the timelines for different user
pairs are independent. λi,j is defined as the pairwise contact rate between users i and j ,
which is the average number of contacts per unit time slot.

3.6.1.2 Cache Placement and File Delivery
Coded cache placement within each file is considered. Each file is partitioned and
encoded into a large number of distinct segments, and it can be retrieved by collecting
enough encoded segments. Accordingly, it can be guaranteed that no repetitive encoded
segment is in the network. Specifically, it assumes that each file is encoded into multiple
segments, each within size s bits, and the file f can be recovered by collecting Kf

encoded packet. Notice that Kf depends on the size of file f . The number of encoded
packets of file f cached in user i is denoted as yi,f . With a little bit of abuse of the
notation, we let each user cache M packets. Similar to before, each user requests file
f with probability Pr (f ) and it will start to download coded packets of file f from
the encountered mobile nodes, and it will also check its own cache. The duration of
each contact of user i and j and the link rate from user j to user i are assumed to
be tci,j seconds and ri,j bits/second, respectively. Therefore, it can be computed that

Bi,j =
⌊

tci,j ri,j

s

⌋
packets can be sent within one contact from user j to user i. Moreover,

a delay constraint, denoted as T d , is assumed, which means that if each user cannot
collect a least Kf packets of the requested file within T d , it will be served via the base
station for the remaining requested packets.

3.6.1.3 Problem Formulation and Discussions
The data offloading ratio of user i is

Ei =
∑
f∈F

Pr (f )

Kf

⎛⎝E

⎡⎣min

⎛⎝∑
j∈N

min(Bi,jMi,j,yj,f ),Kf

⎞⎠⎤⎦⎞⎠ ,

where Mi,j denotes the number of contact times from user i and j within time T d ,
and it follows a Poisson distribution with mean λi,j T

d . Hence, we obtain the following
optimization problem:

max
yj,f

1

n

∑
j∈U

Ei, s.t.
∑
f∈F

yj,f ≤ M,yj,f ∈ N,yj,f ≤ Kf,∀j ∈ U,f ∈ F . (3.23)

This optimization problem is a mixed integer nonlinear program, and it is NP-hard.
In [45], a divide and conquer algorithm is designed to evaluate the objective function,
and a dynamic programing algorithm is proposed to solve the optimization problem.
However, the complexity of the dynamic programing algorithm increases exponentially
with the number of mobile users. To solve this problem, a suboptimal algorithm can
be designed by reformulating the optimization problem (3.23) into one that maximizes
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a monotone submodular function over a matroid constraint [48] that has been widely
studied; effective algorithms with provable approximation ratios have been proposed.

Simulation results show that this well-designed mobility-aware caching scheme pro-
vides significant performance gains over commonly used caching strategies, including
popular caching and random caching placement. In addition, it can be observed that
users with very low speed tend to rarely contact others, and hence it is more advanta-
geous for them to cache the most popular files to meet their own demands. On the other
hand, the users with high velocity can contact others more frequently, and they also
need to cache the most popular files in order to serve other mobile users to download
the demanded files.

A recent work [46] by the same authors studies the case that relaxes the assumption
of constant contact durations and provides analytical performance evaluations. In par-
ticular, it considers users’ contact and intercontact durations via an alternating renewal
process. Then a tractable expression of the data offloading ratio can be derived and
maximized, which was proved to be increasing with the user moving speed. In addition,
it was shown that the variation of contact durations is important while designing cache
placement, especially when the average contact duration is relatively short or compara-
ble to the intercontact duration.

3.6.2 Mobility-Aware Centralized D2D Caching Based on Random Walks

In [47], the authors consider a different D2D mobility model based on random walks.
The user demand distribution considered here varies over time. For any time t , let pf

u,t be
the probability that user u requests file f in time slot t . Let the requests be independent
among time slots and users. Moreover, the demand profiles of each user follows a cyclo-
stationary pattern that repeats itself in a period of T time slots. That is, p

f
u,t = p

f
u,t+kT

for nonnegative integer k. We assume that single-hop D2D communication is allowed
and can be used to transfer data items between users. A fixed link rate between all users
is assumed. We capture the cost of caching each byte by a parameter rD2D > 0.

3.6.2.1 User Mobility Model
We assume that the service provider is interested in P popular locations P =
{1,2, . . . ,P } where high demand can be related with mobility of users. Moreover, a
service provider can track, learn, and predict the mobility of each user over time and
hence constructs a mobility profile for user u denoted by θ

ρ
u,t , which is the probability

that user u will be present at location ρ in time slot t , where
∑P

ρ=1 θ
ρ
u,t = 1, ∀u,t .

It assumes that users stay in the same location within a time slot and may move to
another location at the beginning of each time slot. Let λl,k

u,t be the transition probability

that user u moves from location l to location k in time slot t , where
∑P

k=1 λ
l,k
u,t = 1,

∀u,t,l. These transition probabilities may change from one time slot to another to
capture the mobility of each user. In addition, the probability of being at a certain
location in a time slot t depends on the location in the previous time slot t − 1 only,

i.e., θ
ρ
u,t =

∑P
k=1 θ

k
u,t−1λ

k,ρ
u,t , where θ

ρ
u,1 = λ

ρ,ρ
u,1 . We assume that each user randomly



62 Mingyue Ji

takes a trajectory every day, starting from one location and moving to other locations.
However, the mobility profile of each user follows a cyclo-stationary pattern that repeats
itself in a period of T time slots.

3.6.2.2 Cost Function
Let user u cache an amount x

f
u of data item f , where 0 ≤ x

f
u ≤ Sf . The service

provider replaces the data stored in users devices when they are expired at the end of
time slot Te. Hence, the total network load is given by

LP
t =

m∑
f=1

n−1∑
u=2

∑
αk∈Ak

(
Sf −

∑
u∈αk

x
f
u

)+∑
u∈αk

p
f
u,t

P∑
l=1

�u∈αk
θl

u,t�j /∈αn

(
1− θl

j,t

)

+
m∑

f=1

(
Sf −

n∑
u=1

x
f
u

)+ n∑
u=1

p
f
u,t

P∑
l=1

�n
u=1θ

l
u,t

+
m∑

f=1

n∑
u=1

(Sf − x
f
u )pf

u,t

⎛⎝1−
P∑

l=1

n∑
k=2

∑
αk∈Ak

�j∈αk
θl

j,t�i /∈αk(1−θl
i,t )

⎞⎠ , (3.24)

where Ak =
{
αk = {a1, . . . ,ak,aj ∈ {1, . . . ,n},∀j}

}
and |Ak| =

(
n
k

)
. In (3.24), the

first term is the case when some users get together, the second term represents the case
when all users get together, and the third term is the case when each user is moving
alone. We assume users share cached data items when they meet each other and get the
remaining portion from the service provider. In addition, the shared items between users
are free. Hence, the corresponding objective cost under the proactive operation is given
by CP = lim supT→∞ 1

T

∑T
t=1 E

[
C(LP

t )
]+ rD2D

∑n
u=1

∑m
f=1 x

f
u .

3.6.2.3 Problem Formulations and Discussions
Our objective is to find an optimal caching policy {xf

u

∗} that minimize CP. The problem
is defined as

min CP, s.t. 0 ≤ x
f
u ≤ Sf . (3.25)

The optimization problem (3.25) depends mainly on the cost function C, which may
be linear, quadratic, or a polynomial of higher order. The exact solution of (3.25) for
nonlinear cost functions can be obtained using convex optimization techniques. How-
ever, this case may not provide enough insights on the effect of a user’s mobility, and
finding an optimal caching policy will be nontractable in the sense that the complexity
of the optimal policy grows exponentially with the number of users n.

We will not discuss how to solve the optimization problem (3.25).20 However, we
can get some insights from the optimal solution. First, the service provider’s optimal
caching decision depends on the exact value of the caching cost rD2D. In particular, a
smaller value of rD2D yields more caching and vice versa. Second, the possibility of
over-caching reduces when the probability of meeting increases. Third, higher demand
values yield more caching.

20 For the interested readers, please see [47].
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4 Cooperative Caching in
Cloud-Assisted 5G Wireless Networks
Tuyen X. Tran, Guosen Yue, and Dario Pompili

Cloud-assisted wireless networks are emerging solutions that unite wireless networks
and cloud-computing to provide cloud services at the edge of the network in order to
support the foreseen massive demands from data and computation hungry mobile users.
In this chapter, we first provide an overview of the two emerging cloud-assisted wireless
network paradigms, namely, cloud radio access network (C-RAN), where the function-
alities at the base stations (BSs) are centralized, and mobile-edge computing (MEC),
recently renamed multi-access edge computing, which aims at providing the RAN with
computing and storage resources. We then leverage the C-RAN and MEC paradigms
to design novel cooperative caching frameworks that explore the synergies of the
in-network computing and storage resources. Specifically, a novel cooperative hierar-
chical caching framework is designed in C-RAN, where caching is performed both
at the distributed BSs and at the center processing unit (CPU) that bridges the gap
between the traditional edge-based and core-based caching schemes. Furthermore, a
joint cooperative caching and processing framework is designed in an MEC network,
where the MEC servers perform both cache storage and video transcoding to support
adaptive bitrate (ABR) video streaming. Numerical simulations are performed using
real-world video requests on YouTube and synthetic content requests. It is shown that
important gains can be achieved in terms of content access delay, cache-hit ratio, and
backhaul traffic load using the envisioned cooperative caching frameworks.

4.1 Cloud-Assisted Wireless Networks

The next generation of mobile wireless systems, e.g., 5G, will imply major changes in
the implementation and deployment of networking infrastructure, based on software-
defined networking (SDN) and network functions virtualization (NFV). Network opera-
tions and services are becoming cloud enabled in almost every industry, and it creates an
apparent opportunity to generate value for the telecommunication industry from exploit-
ing distributed storage and cloud computing toward specific clients and services. To
overcome the limitations of current connection-centric RANs, cloud-assisted wireless
networks are promising solutions that unite wireless networks and cloud computing to
deliver cloud services directly from the network edges. The two emerging paradigms
for cloud-assisted wireless networks are C-RAN, which leverages virtualization tech-
nology to consolidate the BS functionalities in a centralized cloud, and MEC, which

66
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aims at equipping storage, computing, and networking resources at the edge of the
mobile RAN.

4.1.1 Cloud Radio Access Network (C-RAN)

C-RAN was introduced as a revolutionary redesign of the cellular architecture to address
the increase in data traffic and to reduce the capital expenditure (CAPEX) and oper-
ating expenditure (OPEX) [1]. The idea of C-RAN is to decouple the computational
functionalities from the distributed BS (a.k.a. eNodeB in long-term evolution [LTE])
and to consolidate them in a centralized processing center. Its main characteristics are
(1) centralized and flexible management of spectrum and computing resources, (2) coor-
dinated radio control algorithms, and (3) softwarization of BS functionalities on generic
computing platforms.

A typical C-RAN is composed of (1) lightweight, distributed radio remote heads
(RRHs), which are deployed at the remote site and are controlled by a centralized virtual
base station pool; (2) the central processing unit (CPU) (also known as the baseband
unit [BBU] pool), which utilizes high-speed programmable processors and real-time
virtualization technology to carry out the digital processing tasks; and (3) low-latency
high-bandwidth optical fibers, which connect the RRHs to the CPU. The communi-
cation functionalities of the CPU are implemented on virtual machines (VMs) hosted
over general-purpose computing platforms, which are housed in one or more racks
of a small cloud data center. As a precautionary measure and to be on the safe side,
the optical fiber transmission latency is limited to less than 1% of the physical layer
(PHY) processing latency. Hence, the range of CPU is limited by latency constraints of
wireless systems.

4.1.2 Mobile-Edge Computing (MEC)

In the past decade, we have witnessed cloud computing playing a significant role for
control, massive data storage, and computation offloading. However, severe demands
have been posed by the rapid proliferation of mobile applications and the internet of
things (IoT) over the last few years on cloud infrastructure and wireless access networks.
On the other hand, fast developments and deployments of the 5G cellular specifications
open opportunities for many vertical services. The flexible frame structure and design in
5G not only provides significant enhancement on the mobile broadband (MBB) services
but also enables massive machine-type communication (MTC) and ultra-reliable low-
latency communication (URLLC). Stringent requirements such as ultra-low latency,
user experience continuity, and high reliability in the new generation of cellular network
necessitate the support of localized services that are closer to the end users. To this end,
MEC can play a key role in assisting wireless networks with context-aware and low-
latency services that are deployed directly at the network edge.

Different from conventional cloud computing systems that utilize public clouds, the
MEC system relies on the deployment of the MEC servers as commodity servers at the
edge of the wireless network. Depending on the deployment topology of the BSs in
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the C-RAN and the functional splitting therein, a MEC server can be deployed at each
BS or at an aggregation point serving several BSs. With this position, MEC enables
application execution and data transfer in relatively short distances from the end users,
resulting in reduced end-to-end (E2E) latency and reduced backhaul traffic load [2, 3].
Additionally, there are various benefits for MEC to empower the network potentially,
including (1) hosting compute-intensive services at the network edge for optimizing
the utilization of mobile resources, (2) reducing backhaul traffic by preprocessing raw
data before forwarding them (or some extracted features) to the cloud, and (3) context-
aware applications with the help of the RAN state information such as radio resource
utilization, cell load, and user locations.

4.1.3 Co-deployment of C-RAN and MEC

While C-RAN and MEC propose to shift computing capabilities in a different direction
(to the cloud instead of to the edge), they are highly complementary technologies,
and their co-location will help make the economics of each significantly more attrac-
tive [4]. On the one hand, the centralized nature of C-RAN can be exploited to address
the problem of capacity fluctuation and to improve spectrum and energy efficiency in
mobile networks. The full centralization principle of C-RAN and the densification of
cellular BSs, however, entail heavy exchanges of raw physical-layer data between the
radio heads and CPU, which impose stringent requirements in terms of throughput and
latency to the fronthaul connections [5]. On the other hand, the main benefits of the
MEC paradigm are in improving localized user experience and reducing service latency.
However, the computing and storage capacity at the MEC server would be much lower
than that of the centralized cloud in C-RAN, making the resource provisioning and
allocation problem a critical challenge in MEC networks.

The rest of this chapter is organized as follows. We give a brief overview of the state
of the art in cooperative caching in Section 4.2. We then present details of the innova-
tive solutions for cooperative caching, including a cooperative hierarchical caching for
C-RANs, in Section 4.3 and a joint cooperative caching and transcoding for adap-
tive bitrate video streaming in MEC networks in Section 4.4. Finally, conclusions are
discussed in Section 4.5.

4.2 State of the Art in Cooperative Caching

In wireless caching systems, the limited cache capacity at each BS often results in
moderate cache-hit ratio. To overcome this limitation, cooperative caching has been
proposed to utilize the collective cache storage capacities at different BSs. In small-
cell networks, cooperative caching has been studied among the BSs in [6–9], and
among the network operators in [10]. In this direction, the works in [7, 11] proposed
online cooperative caching algorithms that minimize the total cost incurred to content
providers without knowing in advance the content popularity. Recently, a collaborative
joint caching and processing strategy for multi-bitrate video streaming in MEC
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networks has been proposed [12]. In this scheme, each MEC server is envisioned to
act as both a cache server and a transcoding server. Additionally, Poularakis et al. [13]
proposed a method that combines multicast and caching in a 5G network with massive
demand for delay-tolerant content to improve energy efficiency. Considering user
mobility, Tran et al. [14] proposed a coded caching algorithm that aims at minimizing
the system energy consumption.

Existing cooperative caching schemes have focused on two categories: (1) horizontal
cooperation, which exploits the coordination between caches at the BSs, and (2) vertical
cooperation (hierarchical caching), which exploits the coordination between caches at
the BSs and at the core network (CN). While these cooperative caching schemes offer
great potential to improve the performance over the non-cooperative approaches in terms
of cache-hit ratio; there are several challenges that fundamentally limit their effective-
ness. First, in hierarchical caching, considerable delay is incurred by fetching contents
from the CN’s cache to the BSs, which is usually many-fold higher than the delay of
transferring content among the caches at the BSs [6, 7]. Second, direct interconnections
between the BSs are relied on for current cooperative caching techniques. Those inter-
connections usually have very limited capacity and thus are not suitable for handling
huge amounts of content sharing. In the current 4G LTE cellular network, the BSs
communicate with each other via the X2 interface, which is designed for exchanging
control messages or users’ data buffer during handover [15]. Therefore, it is not practical
to use such interface for transferring of data between edge caches at BSs and to realize
the benefits of cooperative caching.

4.3 Cooperative Hierarchical Caching in C-RANs

Leveraging the ample storage and computing resources, the CPU in C-RAN can provide
a central port for content management and traffic offloading to help address the rapidly
growing multimedia traffic from mobile users. As shown in Figure 4.1, by taking advan-
tage of the C-RAN architecture, a cooperative hierarchical caching scheme is proposed
utilizing both the cloud cache at the CPU and distributed edge caches at the BSs. The
deployments of cloud cache and edge caches are complementary and interoperable.
Different from the existing solutions, the cloud cache serves as an additional layer in
the in-network cache hierarchy, consisting of the core-based caching schemes (high
access latency, large cache capacity) and the edge based caching (low access latency,
small cache capacity) to reduce the average content access latency. Specifically, we
leverage the low-latency, high-bandwidth fronthaul interconnections (e.g., optical fiber)
among the BSs [1] for transferring the contents between the edge caches. Hence, each
BS can retrieve cache contents available at the neighboring BSs through a “U-turn” path
(BS–CPU–BS) with lower latency than fetching the contents from the original remote
sources in the content delivery network (CDN) via backhaul links [6, 7]. The proposed
scheme exploits the high flexibility provided by C-RAN to utilize the collective storage
capacity in order to improve cache-hit performance and to reduce backhaul traffic due
to content requests going to the higher-level network units.
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p

Figure 4.1 C-RAN caching system.

In order to design an efficient cooperative hierarchical caching in C-RAN, it is impor-
tant to determine the allocations of contents among the cache nodes subject to their
capacity constraints such that the content access delay is minimized. The cache place-
ment problem becomes difficult due to the presence of multiple cache layers, which are
coupled with the geographical variation of content demand at different cell sites. In the
following, we formulate the optimization problem of cache placement, which is then
shown to be NP-hard. We then propose the design of a heuristic cache management
strategy with low complexity, which achieves a constant approximation ratio compared
to the optimal solution.

4.3.1 System Model

As shown in Figure 4.1, we consider a C-RAN system that consists of K BSs that are
distributed at different cell sites and a common CPU that is connected to all BSs via low-
latency and high-capacity fronthaul links. The backhaul link connects the CPU with the
evolve package core (EPC), which is further connected to the CDN in the internet. We
assume that there is a central cache manager (CCM) that is co-located with the CPU
and is responsible for monitoring content requests from users and for making cache
allocation decisions.
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Denote U = {1,2, . . . ,U} and K = {1,2, . . . ,K} as the set of active users and the set
of BSs in the considered C-RAN system, respectively. Denote V = {1,2, . . . ,V } as the
set of indices for all content files that the users can download. Additionally, we let k = 0
represent the CPU. For convenience, we assume that all files have an equal size [MB];
however this assumption could be easily lifted by considering a finer packetization to
break a longer file into small file packets of the equal length. Define the popularity
distribution of the files at the kth cell served by the kth BS as P = {

p1
k,p

2
k, . . . ,p

V
k

}
,

where pv
k ∈ [0,1] is the probability that a user in cell k requests for file v. Hence,∑

v∈V pv
k = 1,∀k ∈ K. In this C-RAN system, it is assumed that there is one edge-cache

co-located at each BS that provides certain capabilities for caching, such as content
storage and look up besides the radio frequency (RF) front-end integration. Similarly
there is a cloud cache co-located with the CPU. We assume that the edge cache at
the BS k ∈ K has a normalized storage capacity of Mk [files], and the cloud cache
at the CPU has a normalized storage capacity of M0 [files]. One valid assumption on
M0 is M0 �Mk,k = 1, . . . ,K . Denote Ck , k ∈ K as the set of files stored at BS k,
which is referred to as the cache at BS k. Additionally, we denote C0 as the set of files
stored at the cloud cache. To formulate the cache placement decision, which determines
the set of files being stored at each cache, we define the ground set for cache placement
as,

∑
v∈V pv

k = 1,∀k ∈ K:

G = {f10,f20, . . . ,fV 0, . . . ,f1K,f2K, . . . ,fV K } , (4.1)

where fvk denotes the presence of file v in cache Ck,k ∈ K ∪ {0}. In the sequel, we will
refer to file v and to its presence indicator fvk interchangeably, unless stated otherwise.
The ground set G can be divided into K+1 non-overlapping sets, G0,G1, . . . ,GK , where
Gk = {f1k,f2k, . . . ,fV k} is the collection of all files that can be stored in the cache Ck ,
and thus Ck ⊆ Gk . For a cache placement decision to be feasible, the following storage
capacity constraints must be satisfied

|Ck| ≤ Mk,∀k ∈ K ∪ {0} . (4.2)

When a request is initiated from a user to BS k for file v that is available in Ck , the
user can directly download file v from Ck without incurring traffic on the fronthaul and
backhaul links. Otherwise, the request is deferred to the CCM. Once the CCM receives a
request for file v originated from BS k, it will first search for v in the cloud cache C0, and
then in the edge caches of neighboring BS k, i.e., Cj ’s, j ∈ K\ {k}. If file v is found, the
CCM will direct the user to download the file from the cache of a neighboring BS (with
lowest cost) via the fronthaul link; otherwise the CCM will direct the user to retrieve the
file from the original content server in the CDN. For a given cache placement decision
C, we define the following binary variables (∀v ∈ V,j ∈ K,k ∈ {0} ∪K),

cv
k =

{
1
0

fvk ∈ Ck,

otherwise,
(4.3)

zv
k,j =

{
1
0

request of file v from BS k is retrieved from Cj,

otherwise,
(4.4)
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zv
k,K+1 =

{
1
0

request of file v from BS k is retrieved from the CDN,

otherwise.
(4.5)

We introduce the following constraint to ensure that each request is served by one
source, ∑K+1

j=0
zv
k,j = 1,∀k ∈ K,v ∈ V . (4.6)

Content Access Delay Cost: Although the cost for storage (e.g., hask disk) is getting
much lower nowdays, it is still not cost-efficient and sometimes infeasible to store all
available files in the caches. When a file is requested by a user and is not present in
the serving BS’s edge cache, the file has to be retrieved from other places, which incurs
higher access delay. In this case, the content access delay is defined as the time period
between the time when a user initiates the request for content to the time when the user
receives the content data. Denote dk as the delay cost incurred when retrieving a file
from the cloud cache to the edge cache Ck , which is assumed to be the same as the delay
cost of the reverse path of the file transferring, i.e., from edge cache Ck to the CPU.
Thus, the delay cost of transferring a file from cache of BS j to BS k is dkj = dj + dk .
Denote d0 as the delay cost incurred when retrieving a file from the CDN to the CPU.
In practice, d0 is usually much larger than dj and dkj [6] and thus it is most effective
to retrieve content from the edge caches in the RAN whenever possible. The delay cost
when a user downloads a file directly from the cache of its serving BS will be mostly
determined by the delay of the wireless access channel, which is independent of the
caching decision. Hence, without loss of generality when studying cache placement
policy, we assume that such last-mile delay is zero.

Denote the set of users being served by BS k as Uk ⊆ U . For a given cache-placement
decision C and a given content popularity distribution P , the average delay cost of user
u ∈ Uk can be calculated as

D̄u,k =
∑
v∈V

pv
k

⎛⎝zv
k,0dk + zv

k,K+1(dk + d0)+
∑

j∈K\{k}
zv
k,j dkj

⎞⎠ . (4.7)

This delay cost reflects the expected content access delay that the users have to experi-
ence before having access to the requested contents. Since d0 � dj and djk , reducing
the average access delay cost will decrease the usage in backhaul network, i.e., the
amount of data traffic going through the backhaul links, consequently, reduce the net-
work resource consumption.

4.3.2 Cache Management Algorithms

4.3.2.1 Problem Formulation
We consider the design of a cache-management scheme that proactively distributes
content files in the caches and dynamically updates these caches based on cache-hit/miss
statistics. Note that the same file can be placed at different caches. The strategy design
can be formulated as the optimization problem below,
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min
C,zv

k,j

∑
k∈K

∑
u∈Uk

D̄u,k, (4.8a)

s.t.
∑

v∈V cv
k ≤ Mk, ∀k ∈ {0} ∪K, (4.8b)∑K+1

j=0
zv
k,j = 1, ∀k ∈ K, (4.8c)

zv
k,j ≤ cv

j, ∀k ∈ K,j ∈ {0} ∪K,v ∈ V, (4.8d)

zv
k,j ∈ {0,1} ,zv

k,K+1 ∈ {0,1} ,cv
j ∈ {0,1} ,∀k ∈ K,j ∈ {0} ∪K,v ∈ V, (4.8e)

where D̄u,k is given in (4.7). The objective function (4.8a) is the total average delay
cost incurred by serving all users’ requests. The constraint in (4.8b) imposes the cache
capacities at the BSs and at the CPU and (4.8d) represents the cache availability con-
straint, i.e., it is possible to retrieve a content file from a cache only if such cache
stores the request file. From (4.8c), by substituting zv

k,K+1 by 1−∑K
j=0 zv

k,j into (4.7),
we get,

D̄u,k =
∑

v∈V pv
k

(
d0 + dk − Sv

k

)
, (4.9)

where

Sv
k = zv

k,0d0 + zv
k,k (d0 + dk)+

∑
j∈K\{k}

zv
k,j

(
d0 − dj

)
. (4.10)

Observe that Sv
k can be viewed as the reduction of delay cost when there is a request

for file v by user u at BS k, and that only the term Sv
k in (4.9) is dependent on the

optimization variables. Therefore, problem (4.8) can be reformulated as an optimization
problem of maximizing the average delay cost saving, given by,

max
C,zv

k,j

∑
k∈K

∑
u∈Uk

∑
v∈V

pv
kS

v
k, (4.11a)

s.t.
∑

v∈V cv
k ≤ Mk, ∀k ∈ {0} ∪K, (4.11b)∑K

j=0
zv
k,j ≤ 1, ∀k ∈ K, v ∈ V, (4.11c)

zv
k,j ≤ cv

j, ∀k ∈ K,j ∈ {0} ∪K,v ∈ V, (4.11d)

zv
k,j ∈ {0,1} ,zj

k,K+1 ∈ {0,1} ,cv
j ∈ {0,1} ,∀k ∈ K,j ∈ {0} ∪K,v ∈ V . (4.11e)

The objective function (4.11a) adds up the utility value corresponding to each BS,
and the goal here is to maximize the sum utility value for all BSs. Problem (4.11) can
be shown to be NP-complete [16], and thus it is very difficult to derive a global optimal
solution with practical complexity.

This motivates us to design a suboptimal strategy with low complexity, as will be
detailed in the following. In particular, we exploit the special structure of problem (4.11)
and reformulate it as a submodular function maximization problem subject to matroid
constraints [17]. Specifically, we show that the objective function in (4.11) can be
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expressed as a monotone submodular function and the constraints can be represented
as the independent sets of a matroid.1

4.3.2.2 Cache Placement Design via Submodular Optimization
First, according to the definition of the ground set G in (4.1), we have that Ck ⊆ G and
Ck = C ∩ Gk,∀k = 0,1, . . . ,K . As such, the cache-capacity constraint in (4.16b) can be
expressed as C ⊆ I , where,

I = {C ⊆ G : |C ∩ Gk| ≤ Mk,∀k = 0,1, . . . ,K} . (4.12)

It can be seen that the constraint in (4.12) is in the form of a partition matroid M =
(G,I). Additionally, according to (4.3), the set

{
cv
k : v ∈ V

}
can be considered as the

Boolean representation of Ck . By defining the objective function in (4.11a) as a set
function of the cache placement set C, i.e., g(C) = ∑

k∈K

∑
u∈Uk

∑
v∈V

pv
kS

v
k , the following

lemma has been proved in [18].

lemma 4.1 g(C) is a monotone submodular function.

The result in Lemma 4.1 provides a valuable foundation that allows us to exploit
the techniques developed for the monotone submodular function maximization problem
with a matroid constraint. Specifically, we extend the greedy algorithm [17] to solve our
problem in (4.11). The cache-management solution we proposed contains two stages:
first, the content files are allocated to the caches using the proposed proactive caching
algorithm; then, every time a requested file is missing on the caches and is retrieved
from the remote server, the CCM determines whether to swap this file with an existing
one in the caches via reactive caching.

4.3.2.3 Proactive Cache Distribution
For the initial cache placement phase, we propose the proactive cache distribution (PCD)
algorithm that starts with an empty cache placement set and distributes content files one
by one to the caches in a greedy manner. In each step, a new file is added to the cache
placement set such that the marginal value of the objective function when adding this
file is the highest compared to adding all other files. The process stops when all caches
are filled up. Due to the submodularity of the objective function, the marginal value at
each step will decrease as the cache placement set extends. We outline the procedure
for the proposed greedy PCD algorithm as in Algorithm 1. Since problem (4.16) max-
imizes a monotone submodular objective function, it can be shown that Algorithm 1
achieves 1

2 -approximation of the optimal solution [17].
In Algorithm 1 step 1, all the caches are initialized as empty sets, and in step 2

iteration process begins. In each iteration, given the cache placement set C from the
previous iteration, step 3 searches from all hypotheses and obtains the best solution,
i.e., placement of file v′ in cache Ck′ , represented by fv′k′ , that provides the highest
marginal value to the objective function. Hence, among all the files {fvk ∈ G\C} that

1 Refer to [17] for definition of submodular set functions and their properties.
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Algorithm 1 Proactive Cache Distribution (PCD)
1: Initialize: Gk = {f1k,f2k, . . . ,fV k}, Ck = ∅, k = 0,1, . . . ,K ,

G = (G0,G1, . . . ,GK), C = (C0,C1, . . . ,CK).
2: repeat
3: fv′k′ = arg max

fvk∈G\C

[
g (C + fvk)− g (C)

]
4: C ← C + fv′k′

5: if |Ck′ | = Mk′ then G ← G\Gk′

6: end if
7: until G = ∅
8: Output: C

have not been allocated to any cache, fv′k′ is the best candidate and is added to the
current cache placement set in step 4. Once a cache has reached its full capacity, the
corresponding candidate file set for this cache will be excluded from the super candidate
set G in step 5. The process will terminate in step 7 when all caches are filled up, or
equivalently, the candidate set is empty. We can see from Algorithm 1 that it takes
total

∑K
k=0 Mk iterations to fill up the caches. In each iteration, the algorithm evaluates

the marginal values of at most (K + 1)V files in the candidate set. The complexity
of evaluating each marginal value is O(U ). Therefore, the total complexity order is

O
(
(K + 1) V U

∑K
k=0 Mk

)
.

4.3.2.4 Reactive Cache Replacement
In Algorithm 1 above we describe the solution for the initial cache distribution or the
thorough cache redistribution, which is often performed during off-peak traffic hours
(e.g., nighttime) when the backhaul bandwidth is highly unutilized. During high-traffic
time, upon a cache miss, the requested file will be fetched from the CDN server. As the
missing file, which is new to the current cache-placement set, is downloaded to the BS,
the CCM can reevaluate the marginal value of the objective function. Specifically, the
CCM can decide to replace the new file with an existing file in the cache if this operation
will result in greater objective function. Described in Algorithm 2, the proposed reactive
cache replacement (RCR) algorithm will adapt the cache placement set based on actual
content requests.

Step 1 in Algorithm 2 is trigged whenever there is a cache miss that leads to down-
loading of a new file v∗. Step 2 initiates the evaluation for K + 1 caches to determine
whether one file in each of these cache sets can be replaced by v∗ so to improve the
utility objective but also to satisfy the cache capacity constraints. For each cache, step 3
identifies a file with the smallest utility value to be the candidate for removal. If replacing
the file of the least utility value with the new file can result in a higher objective value, as
verified in step 4, the replacement operation will take place in step 5. The complexity of

step 3 is O
(
U
∑K

k=0 Mk

)
. Since step 3 is performed K+1 times, the overall complexity

of Algorithm 2 is then O
(
(K + 1) U

∑K
k=0 Mk

)
.
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Algorithm 2 Reactive Cache Replacement (RCR)
1: Upon a request of a file v∗ such that fv∗k /∈ C,∀k = 0,1, . . . ,K
2: for k = 0: K do
3: fv′k′ = arg min

fvk∈C

[
g (C)− g (C − fvk)

]
4: if g (C − fv′k′ + fv∗k′) > g (C) then
5: C ← C − fv′k′ + fv∗k′

6: else Break
7: end if
8: end for
9: Output: C

4.3.3 Performance Evaluation

In this section, we evaluate the effectiveness of our proposed algorithms through simu-
lation results with content requests extracted from YouTube trace as well as generated
using statistical models. In particular, we evaluate the impact of the proposed coopera-
tive hierarchical caching scheme compared to the existing approaches. We assume that
there are seven hexagonal cells in the C-RAN system. The content requests are generated
one by one with equal probability of arriving at each BS. The latency of downloading
a file from the CDN’s server to the CPU, i.e., d0, is set as 80 ms.2 The latency of
transferring a video between the CPU and the BSs, dk’s, are randomly generated from
a uniform distribution in the range [10−30 ms] [6]. All the video files are assumed
to have the same size of 20 MB. For brevity of presentation, we consider an example
cache setting where for a given total cache capacity in the system, 10% of this amount
is allocated to each edge cache and the remaining 30% cache capacity is allocated to
the cloud cache. It is straightforward to extend the cache setting to any arbitrary cache
capacity allocation. Two key performance metrics are considered: (1) cache-hit ratio:
the fraction of video requests that can be served by retrieving files from one of the
caches, and (2) average access delay (ms): average latency that the users have to wait
before receiving the requested content. The following caching schemes are compared.

• Cooperative hierarchical caching (CHC): our proposed scheme comprising of the
PCD and RCR algorithms.

• Exclusive most popular caching (ExMPC): the cache placement decision is made
independently at each edge cache that stores the most popular files according to
local popularity. Excluding the files that have been cached at the edge caches, the
cloud cache stores the most popular files from the rest files in the candidate file set
based on the global popularity. This scheme realizes the greedy cache placement
algorithm in [19] for interlevel cache cooperation.

• Femtocaching extension (FemtoX): this scheme is an extension of the Femto-
caching scheme [20] to a hierarchical caching system in C-RAN.

2 Refer to 3GPP TS 23.203, V13.5.1, September 2015, available at www.3gpp.org.

www.3gpp.org
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Figure 4.2 Comparison of different caching schemes when increasing the relative total cache
capacity (as the fraction of the total content library size).

• Least frequently used (LFU): the LFU scheme is introduced in [21]. We now
apply it to the hierarchical caching system. Upon a cache miss, the missing file
will be retrieved from the remote server and stored in the cache of the serving BS.
If the cache is already full, the least frequently used file will be evicted.

• Least recently used (LRU): this scheme is similar to the LFU scheme, except that
in the replacement phase, the least recently used file will be evicted.

4.3.3.1 Simulations with Trace-Based Requests
We first carry out simulations based on the record of video requests to YouTube origi-
nating from the University of Massachusetts Amherst campus during the day of March
12, 2008 [22]. In this record, there were 122,280 requests made for 77,414 different
videos. We calculated the video popularity based on the frequency each video was
requested in the trace. To vary the content popularity at different BSs, we randomly
shuffled the global popularity distribution calculated from the trace. In Figure 4.2a and b,
we show the performance comparisons of the proposed CHC caching policy with the
four baselines listed earlier. It is seen that CHC provides the best performance in terms
of both cache-hit ratio and average access delay.

4.3.3.2 Simulations with Synthetic Requests
To evaluate our proposed scheme in a more generic scenario, we consider a content-
request model in which the popularity of the files follows a Zipf distribution [23].
Specifically, the probability that the ith most popular content at BS k is expressed
as pik = 1/iα∑V

v=1 1/vα
,∀k ∈ K, where V is the set of all contents and α determines

the skewness of the distribution. The estimated value of α may vary from different
measurements. According to the measurements in [24], the estimated value of α ranges
from 0.64 to 0.83. We consider a library of 10,000 files, each having a size of 20 MB and
randomly generate 100,000 requests following the Zipf-based popularity distribution
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Figure 4.3 Performance of different caching schemes with synthetic content requests generated
using the Zipf-based popularity distribution.

with α ∈ [0.6,0.7,0.8]. Figure 4.3a and b illustrates the performance of the CHC
caching scheme as well as the baseline schemes with different α settings for the content
popularity distributions when the relative total cache capacity is set to 30% total library
size. We observe from Figure 4.3 that as α increases, the performance of all schemes
on both cache-hit ratio and average content access delay significantly improves. For all
cases, CHC always performs better than other schemes although the performance gaps
between CHC and the baselines become smaller as α increases.

4.4 Cooperative Caching and Video Transcoding in MEC Networks

Given the dynamic nature of the wireless network connections and the variety of user
devices’ configuration, the users might request different quality variants of the same
video. For example, users with less capable devices and slow network conditions might
prefer low-resolution videos so they can watch the video without stalls; on the other
hand, users with highly capable devices and strong connections may request high-
quality videos to maximize their quality of experience (QoE). Adaptive bitrate (ABR)
video streaming [25] is widely adopted as an effective technique that maximizes the
users QoE by generating and transmitting different variants of a video with differ-
ent bitrates based on the channel condition and capabilities of the requesting users.
The dependency between different video variants of the same video (e.g., one can be
transcoded from one another [26]) is often not considered in traditional video caching
solutions, in which each video variant is treated as an independent stream.

We present in this section a framework that jointly considers both video transcoding
and caching capabilities at the MEC servers in order to facilitate ABR video streaming.
In particular, each MEC server is envisioned to perform both a caching function and
transcoding function. We consider that a higher bitrate variant can be transcoded into
a low bitrate variant [27]. For instance, a video at bitrate of 10 Mbps (1080p) can be
transcoded into the same video with bitrate of 5 Mbps. In addition, we consider a new
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dimension to the cooperative caching scheme, where the MEC servers can utilize the
help from each other not only by retrieving video from neighboring servers but also
by having the requested video being transcoded at those servers. For example, when
a MEC server asks for a video variant from its neighboring server, it can also ask for
this neighbor to transcode the video before transferring it through the backhaul link.
That way, one can better improve the transcoding load balancing among the servers.
This strategy offers several advantages: (1) it is not necessary to generate and store all
video variants at the content server, (2) different users can get video qualities that are
optimized for their network conditions and processing capabilities, and (3) the over-
all cache-hit ratio and load balancing can be improved via collaboration among the
MEC servers.

There are multiple challenges associated with the envisioned cooperative caching
framework. First, there is high storage overhead when caching multiple variants of
each video. Hence, in order to design an effective caching strategy, it is important
to consider the dependency (transcodability) among different video variants, which
in turn increase the complexity of the conventional cache placement problem where
different video variants are cached independently. Second, transcoding videos in real
time is a computation-intensive task and thus only a moderate number of videos can be
transcoded at the same time given the limited computing capacity at the MEC servers.
These challenges necessitate the design of a joint caching and request scheduling
scheme, which effectively utilizes the limited cache storage and processing capacities.
To design such scheme, we formulate a cooperative joint caching and processing
problem that aims at minimizing the average access delay cost of delivering all requested
videos, subject to the cache storage and processing capacity constraints. This is cast
as an integer linear program (ILP). Due to the NP-completeness and the prohibitive
complexities of the existing offline approaches, we employ the online cache placement
policy based on an LRU eviction rule and propose a novel online video transcoding
scheduling scheme that makes decision upon arrival of each new request. One main
advantage of our solution is that it does not assume a priori knowledge of content
popularity as well as request arrivals as commonly considered.

4.4.1 System Model

Our considered wireless network consists of multiple BSs, each of which is equipped
with a MEC server that can act as both a caching server and a transcoding server. Each
MEC server can retrieve videos from the remote content server in the internet as well
as from other neighboring MEC servers. In our caching system, when a user requests a
video, one of the following events will occur (as shown in Figure 4.4: (a) the requested
video is available in the cache of the serving BS; (b) only a higher bitrate variant of the
requested video is available at the cache of the home BS; (c) the requested video variant
is available in the cache of a neighboring BS or in the remote server; (d) a higher bitrate
variant of the requested video is available in the cache of the neighboring BS, which will
also do the transcoding; and (e) same as (d) but the video is transferred to the serving
BS before being transcoded. We refer to the events in (a,c) as exact hit and to those in
(b,d,e) as soft hit.
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Figure 4.4 Possible events that occur when there is a video request to the cache system.

Let K = {1,2, . . . ,K} be the set of K MEC servers that are connected to each other
through a backhaul mesh network. The remote content server is denoted as k = 0. The
indexes of all videos that users can request is denoted by T = {1,2, . . . ,V }. Without
loss of generality, it is assumed that the duration of all videos is the same, and each video
has L different bitrate variants represented by the list {v1,v2, . . . ,vL}, which is sorted
by the ascending order bitrate. The size of each video variant l, denoted as rl

[
bytes

]
,

is therefore proportional to its bitrate. The collection of all video variants that a user
can download can be written as V = {vl |v ∈ T ,l = 1, . . . ,L }. For simplicity, hereafter
we refer to video and video variant interchangeably. It is assumed that variant vl can be
transcoded from the higher bitrate variant vh, l ≤ h and that the computation cost of
transcoding vl from vh is given by bhl , ∀v ∈ T and l,h = 1, . . . ,L. Similar to [27], we
consider that bhl is dependent only on rl , i.e., bhl = bl . Our proposed scheme can also
be generalized to the scenario where bhl is a function of both rl and rh.

We consider that each user is served by only one BS, which is usually the BS with the
strongest channel condition. We define the cache placement variables as c

vl

k ∈ {0,1} ,
k ∈ K,vl ∈ V , where c

vl

k = 1 if vl is stored at server k and c
vl

k = 0 otherwise.
Accordingly, the cache placement set is denoted by C = {

c
vl

k

∣∣cvl

k = 1,k ∈ K,vl ∈ V
}
.

Assuming that the storage capacity of each cache server k is Mk

[
bytes

]
, we can express

the cache capacity constraint at each server j ∈ K as,∑
vl∈V

rlc
vl

k ≤ Mk,∀k ∈ K. (4.13)

To represent different events that occur when file vl is being requested at server k ∈ K,

we define the binary variables
{
x

vl

k ,y
vl

k ,z
vl

kj,t
vl

kj,w
vl

kj

}
∈ {0,1} as follows.
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• x
vl

k = 1 if vl is served directly from cache of BS k (as shown in Figure 4.4a); and
x

vl

k = 0 otherwise.

• y
vl

k = 1 if there is a soft hit at BS k, i.e., vl is obtained from BS k by transcoding
from a higher bitrate variant (as illustrated in Figure 4.4b); and y

vl

k = 0 otherwise.

• z
vl

kj = 1 if vl is obtained from cache of BS j �= k,j ∈ K ∪ {0} (which could also

be the remote server, as shown in Figure 4.4c); and z
vl

kj = 0 otherwise.

• t
vl

kj = 1 if vl is obtained by transcoding a higher bitrate variant from cache of BS

j �= k,j ∈ K (as shown in Figure 4.4d); and t
vl

kj = 0 otherwise.

• wvl

kj = 1 if vl is obtained by retrieving a higher bitrate variant from cache of BS
j �= k,j ∈ K to BS k where transcoding is performed to render vl (as shown in
Figure 4.4e); and wvl

kj = 0 otherwise.

When a specific video variant is requested, depending on the cache availability, the
system will schedule one of the described events to satisfy the request. To ensure there
is one delivery for each request, we take into account the following constraint (∀k ∈ K,

vl ∈ V),

x
vl

k + y
vl

k +
∑

j �=k,j∈K

(
z

vl

kj + t
vl

kj + wvl

kj

)
+ z

vl

k0 = 1. (4.14)

For content access delay cost, the delay cost incurred when cache server k retrieves a
video from a neighbor cache server j and from the remote server are denoted as dkj and
dk0, respectively. Thus, the delay cost incurred when the request for video vl is served
at BS k is calculated as (∀k ∈ K,vl ∈ V),

Dvl,k = dk0z
vl

k0 +
∑

j �=k,j∈K
dkj

(
z

vl

kj + t
vl

kj + wvl

kj

)
. (4.15)

4.4.2 Joint Cooperative Caching and Processing Algorithm

4.4.2.1 Problem Formulation
We consider an arbitrary period of time during which the set of videos being requested
is Nk . Our design objective is to minimize the total access delay cost, expressed as
� = ∑

k∈K
∑

vl∈Nk
Dvl,k . The optimization variables consist of the cache placement

policy C and the video request scheduling policy R �=
{
x

vl

k ,y
vl

k ,z
vl

kj,t
vl

kj,w
vl

kj

}
that must

conform to the cache storage and processing capacity constraints. At every time slot
t , we denote the set of videos being served at BS k as N t

k and thus
⋃

t N t
k = Nk .

With this position, we can derive the optimal solutions {C,R} via solving the static joint
collaborative caching and processing problem J t in (4.16) in every time slot t .

In problem (4.16), constraints (4.16b) and (4.16c) ensure feasibility of the exact
hit; constraints (4.16d), (4.16e), and (4.16f) ensure the feasibility of the soft hit;
constraint (4.16g) ensures that there is one and at most one delivery for each request.
Additionally, the limited cache storage capacity and computing capacity (represented
by transcoding throughput) at each cache server is enforced in constraint (4.16h) and
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(4.16i), respectively. It can be seen that problem J t in (4.16) is an ILP, which can
be shown to be NP-complete by reduction from a multiple knapsack problem [29].
To overcome the intractability of this problem, we employ a decomposition approach
to transform the original problem of solving a series of problems J t into a cache
placement problem and a request scheduling problem whose solutions are derived in the
following:

(J t ) : min
C,R

∑
k∈K

∑
vl∈N t

k

Dvl,k, (4.16a)

s.t. x
vl

k ≤ c
vl

k , ∀k ∈ K,vl ∈ V, (4.16b)

z
vl

kj ≤ c
vl

j , ∀j,k ∈ K, vl ∈ V, (4.16c)

y
vl

k ≤ min

(
1,
∑L

m=l+1
c

vm

k

)
, ∀k ∈ K,vl ∈ V, (4.16d)

t
vl

kj ≤ min

(
1,
∑L

m=l+1
c

vm

j

)
, ∀k,j ∈ K,vl ∈ V, (4.16e)

wvl

kj ≤ min

(
1,
∑L

m=l+1
c

vm

j

)
, ∀k,j ∈ K,vl ∈ V, (4.16f)

x
vl

k + y
vl

k +
∑

j �=k,j∈K

(
z

vl

kj + t
vl

kj + wvl

kj

)
+ z

vl

k0 = 1, ∀k ∈ K, (4.16g)∑
vl∈V

rlc
vl

k ≤ Mk, ∀k ∈ K, (4.16h)

∑
vl∈N t

k

bl

⎛⎝y
vl

k +
∑

j �=k,j∈K
wvl

kj

⎞⎠+ ∑
j �=k,j∈K

∑
vl∈N t

j

bl t
vl

jk ≤ Bk, ∀k ∈ K, (4.16i)

c
vl

k ,x
vl

k ,y
vl

k ,z
vl

kj,t
vl

kj,w
vl

kj ∈ {0,1} , ∀k ∈ K,vl ∈ V . (4.16j)

4.4.2.2 Cache Placement
Without having prior knowledge about request arrival, it is important that the reactive
cache placement policy is simple and can be calculated in real time to avoid additional
delay. To this end, we employ the popular LRU cache placement policy [21, 27, 28].
Following each cache miss, the requested video will be retrieved from either the neigh-
boring caches or the remote server. This retrieved video will be placed in the cache, and
if it was already full, the LRU will evict the existing files that are least recently used.

4.4.2.3 Request Scheduling
In each time slot t , let us use Qt to denote the request-scheduling problem, which is
reduced from problem J t in (4.16) for a given cache placement decision C as:

(Qt ) : min
R

∑
k∈K

∑
vl∈N t

k

Dj (vl ) (4.17a)

s.t. (4.16b)− (4.16g),(4.16i), (4.17b)

x
vl

k ,y
vl

k ,z
vl

kj,t
vl

kj,w
vl

kj ∈ {0,1} ,∀k ∈ K,vl ∈ V . (4.17c)
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Given the formulation of problem Qt , we discuss the alternatives to solve problem
J t as follows.

Optimal request scheduling (OptRS): The optimal request scheduling scheme
solves problem Qt when there is a new request arrival at time t to optimize the request
scheduling specific to this time slot. In this way, the long-term solution is also optimal.
Since Qt is an ILP, the optimal solution can be obtained using standard optimization
solver. The solution to the optimal request scheduling scheme, referred to as OptRS,
can be obtained by using standard ILP solver which usually have very high complexity.

Online request scheduling (OnRS): To avoid the high complexity of the OptRS
approach, we propose here a low-complexity online request scheduling algorithm,
referred to as OnRS. In particular, at each time slot t , OnRS is responsible for
determining how to redirect the incoming request to appropriate cache servers or
remote server. For brevity of presentation, we focus on a particular time slot in the
sequel and omit the index t .

The processing load (due to transcoding) at BS k when serving the set Nk of incoming
requests to this BS can be calculated as,

Ak (N ) =
∑

vl∈Nk

bl

⎛⎝y
vl

k +
∑

j∈K\{k}
wvl

kj

⎞⎠+ ∑
j∈K\{k}

∑
vl∈Nj

bl t
vl

jk . (4.18)

Additionally, we define the closest (in terms of bitrate) transcodable variant of video vl

at BS k as T (k,vl ) = vh, where,

h = min
{
m
∣∣m ∈ {l + 1, . . . ,L} ,cvm

k = 1
}

. (4.19)

For each request of file vl at BS k ∈ K, the proposed OnRS scheme is described as in
Algorithm 3. Specifically, if there cannot be an exact hit (line 2) or a soft hit (lines 3, 4)
at BS k, the algorithm will check whether there is an exact hit (lines 5, 6, 7) or a soft hit
at a neighboring cache (line 8). If a neighboring BS j happens to have the transcodable
variant of vl , this variant can be transcoded either at BS j or BS k to render vl . Our
algorithm will pick the cache server with lower processing load to perform transcoding
in order to balance the load. Finally, if there is neither an exact hit nor a soft hit in the
MEC cache system, vl will be retrieved from the remote server in the CDN (line 20).

The proposed online joint cooperative caching and processing strategy contains OnRS
as the inner loop, which is trigged upon each new request arrival, and the LRU policy as
the conditional routine. If line 20 is reached in an inner-loop iteration, the LRU policy
will be triggered to add the new cache entry c

vl

k while removing some other entries.

4.4.3 Performance Evaluation

Here, we present numerical simulations to demonstrate the effectiveness of the
proposed joint cooperative caching and processing algorithm, which uses LRU policy
for cache placement and OnRS for request scheduling, under various cache sizes and
processing capacities at the MEC servers. We compare LRU–OnRS with the competing
schemes using LRU for cache placement and different request scheduling algorithms:
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Algorithm 3 Online Video Request Scheduling (OnRS)
1: Upon each request for video vl at BS k ∈ K, initiate the algorithm.
2: if c

vl

k = 1 then BS k gets vl from its cache and transmits the file to the user
3: else if T (k,vl ) �= ∅ and Bk − Ak (N )− bl ≥ 0 then
4: BS k transcodes T (k,vl ) to vl and transmits it to the user
5: else if

∑
j∈K\{k}

c
vl

j ≥ 1 then

6: Find j∗ = arg min
j∈K\{k}

dkj s.t. c
vl

j = 1

7: BS k retrieves vl from BS j∗ and then forwards it to the user

8: else if K̃ �= {j ∈ K\ {k} |T (j,vl ) �= ∅} �= ∅ then
9: Evaluate the available processing capacity

Qj (N ) = Bj − Aj (N )− bl, ∀j ∈ K̃ ∪ {k} (4.20)

10: Find j∗ = arg max
j∈K̃∪{k}

Qj (N ) s.t. Qj (N ) ≥ 0

11: if j∗ = k then
12: BS k fetches T (j,vl ) from BS j ∈ K̃ with the lowest delay cost
13: BS k transcodes T (j,vl ) to vl and then sends the file to the user.
14: else if j∗ �= ∅ then
15: BS j∗ transcode T (f,vl ) to vl .
16: BS k retrieves vl from BS j∗ and sends it to the user.
17: else Return to line 20.
18: end if
19: else
20: BS k fetches vl from the remote server and then transmits it to the user.
21: end if

(1) LRU–OptRS: the optimal request scheduling algorithm; (2) LRU–CachePro: joint
caching and processing scheme without collaboration among the cache servers, as
proposed in [27]; and (3) LRU–CoCache: a simplified version of OnRS that does not
consider transcoding.

We consider that there are K = 3 MEC servers in the studied network. Users can
request for video variants from the library V in which there are V = 1,000 different
videos with the same playtime duration of 10 minutes. Each video has L = 4 bitrate
variants whose bitrates are 0.90,1.10,1.34, and 1.64 Mbps, respectively. We randomly
generate 10,000 request arrivals to each BS following a Poisson distribution with arrival
rate λk

[
reqs/min

]
. For each request, the probability that a particular video is requested

is calculated based on a Zipf distribution with the skewness parameter equals to 0.6.
The video transferring delay dkj and dk0 are randomly assigned based on the uniform
distribution in the rage of [5,10](ms), [20,50](ms), and [100,200](ms), respectively. In
the simulation results, the storage capacity at each BS is represented by the percentage
of the total video library size, and the processing capacity is regarded as the transcoding
throughput [bits/s].
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Figure 4.5 Cache-hit ratio and average user delay of different schemes when varying the relative
cache capacity at each server; Bk = 10 Mbps,–k = 8 reqs/minute,∀k ∈ K.

0 5 10 15 20
Processing capacity (Mbps)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
ac

he
-r

at
io

LRU–CachePro
LRU–CoCache
LRU–OnRS
LRU–OptRS

(a)

0 5 10 15 20
Processing capacity (Mbps)

20

40

60

80

100

A
ve

ra
ge

 u
se

r d
el

ay
 (m

s)
LRU–CachePro
LRU–CoCache
LRU–OnRS
LRU–OptRS

(b)

Figure 4.6 Cache-hit ratio and average user delay of different schemes when varying transcoding
throughput at each server; Mk = 20% [Lib.size],–k = 8 reqs/minute,∀k ∈ K.

4.4.3.1 Impact of Cache Capacity
The relative cache capacity is given by the ratio between the cache size at each server
and the total size of the video library. The results shown in Figure 4.5a and b demonstrate
that increasing the cache size results in higher cache-hit ratio and lower average access
delay in all schemes. It can be seen that our proposed schemes LRU–OnRS always yield
better performance compared to the baselines. With moderate cache size, there is a small
performance gap between the LRU–OnRS and LRU–OptRS, however at higher cache
size, this gap diminishes.

4.4.3.2 Impact of Processing Capacity
Figure 4.6a and b compares the performance in terms of cache-hit ratio and average
user delay of different schemes when varying the processing capacity at each cache
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server. Notice that the LRU–CoCache scheme does not involve transcoding, hence,
its performance is not dependent on the processing capacity. We observe that at low
processing capacity regime, the performance of all schemes improve as the processing
capacity increases. Additionally, our proposed LRU–OnRS scheme always outperforms
the baseline schemes. Moreover, the performance gap between LRU–OnRS and LRU–
OptRS diminishes when processing capacity is high.

4.5 Conclusions

In this chapter, we discussed the two emerging cloud-assisted wireless network
paradigms—C-RAN and MEC—and proposed novel cooperative caching schemes
that exploit the specific topology of C-RAN and the in-network processing capability
of MEC. Specifically, a cooperative hierarchical caching in C-RAN is proposed to
exploit both the vertical collaboration between the edge caches and the cloud cache
and the horizontal collaboration among the edge caches to form a heterogeneous cache
storage pool. We then presented a joint cooperative caching and processing framework
in a MEC network where the MEC servers perform both cache storage and video
transcoding in order to enhance the performance of ABR video streaming. Numerical
results have shown the significant advantages of the proposed caching solutions in terms
of improvement in cache-hit ratio as well as reduction in content access latency.
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5 Stochastic Caching Schemes
in Large Wireless Networks
Zheng Chen, Nikolaos Pappas, and Marios Kountouris

In this chapter, we present the concept of stochastic caching in large wireless networks
with randomly distributed nodes. Specifically, we consider a random network where
user devices can directly communicate and exchange information through device-
to-device (D2D) communication. The distribution of D2D-enabled devices follows a
Poisson point process (PPP), and each user stores proactively the popular files based
on some probabilistic caching policy. The optimal caching probabilities depend on
the specific objective functions to be optimized. We investigate three different caching
schemes, namely maximizing the cache-hit probability, maximizing the density of
successfully served requests by local caches, and minimizing the delay to receive the
requested content. By comparing the performance achieved with these schemes, we
show that the success probability of physical layer (PHY) transmission plays a critical
role in the throughput and delay performance of large wireless networks with stochastic
caching methods.

5.1 Introduction

The mobile data traffic is under exponential growth and it is highly likely to have an
eightfold increase between 2015 and 2020, and 75% of the data traffic is expected to be
video [1]. One effective way to reduce the cellular data traffic is to allow mobile devices
to communicate directly without passing through the base stations. This can be done
by establishing short-distance links through D2D communication. As multiple D2D
links can be active at the same time, sharing the same spectrum resources, the spectral
efficiency per area can also be improved. Another perspective is to investigate the source
of wireless data traffic. It is well understood that wireless demand for video content
has become the dominant source of the wireless data traffic. An important property of
video-type content is the high degree of asynchronous content reuse [2], which means
that the same content can be viewed by different users at different time. In general, the
time differences among the user requests are large enough that the multicast system is
not an available option to handle multiple requests for the same content. Furthermore,
user preferences regarding the requested contents are often spatially correlated and
affected by the connections between mobile users on social networks. Therefore, if the
network treats each user request independently, the same video files will be repeatedly
transmitted to the users in proximity. Enabling caching capabilities at the network edge
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has emerged as a potential solution to exploit the content correlation of user requests.
The main idea is to store proactively some popular contents at the wireless network edge
nodes (e.g., small base stations, user devices) during off-peak hours. When the cached
contents are requested by nearby mobile users, they can be delivered with lower latency
and less energy consumption.

Wireless edge caching has been under extensive discussions for its promising advan-
tages, such as improved spectral efficiency, energy efficiency, and reduced end-to-end
latency [3–6]. The early works in this topic always assume deterministic caching strat-
egy, that is, all the cache-equipped nodes will choose the files to cache in a deterministic
way. The most commonly used strategy is to cache the most popular content (MPC)
everywhere, which gives an optimal cache service performance in the case of isolated
caches or when the caching helpers have nonoverlapping service range. In large wireless
networks with randomly distributed caching helpers, one user can be within the coverage
area of multiple caching helpers. In this case, stochastic caching schemes will clearly
outperform the MPC strategy if the caching probabilities are properly optimized.

The concept of random/probabilistic caching was first proposed in [7], referred to as
geographical caching. Considering a fixed number of base stations (BSs), each BS is
assumed to have the same storage capabilities. The BSs decide to cache different files
according to the same probabilistic distribution with respect to its storage constraint. The
optimal caching probabilities have been obtained by maximizing the cache-hit probabil-
ity, i.e., the probability that a randomly requested file can be found in the cache storage
of the covering BSs. In [7], an optimization problem has been formulated by targeting at
maximizing the cache-hit probability, which represents the probability that a randomly
requested file of a user can be found in the caching helpers within the coverage range.

A probabilistic caching scheme has been further investigated in large random net-
works, where the distribution of the caching helpers is modeled by some stochastic point
processes, e.g., PPP. In this case, the number of caching helpers within a certain distance
to a user is a random variable that follows a Poisson distribution. The distribution of
distances between a user to its kth nearest BS can be found in [8]. The optimal caching
placement in Poisson networks has been extensively investigated in many scenarios
[2, 9–13]. In [14], a hard-core placement (HCP) policy is considered, which captures the
pairwise correlation between the caching nodes. When assuming that the file popularity
may change over time, the optimal probabilistic caching and recaching policies has been
investigated in [15].

Except the commonly considered cache-hit maximization, recently, many works
started to consider the impact of PHY transmission on the performance of ran-
dom caching schemes in large wireless networks. Using existing results on the
coverage/outage probability in PPP networks, we can define a performance metric
that is related to the successful transmission probability and formulate the caching
probability optimization problem with respect to the storage capabilities of the caching
helpers. In [16], the channel selection diversity gain has been considered as the
performance metric to optimize. The density of successful transmission/reception
or the network throughput is another popular metric to characterize the performance of
cache-enabled networks [17–19]. Extending the results in single-tier random caching
scheme, the analysis and optimization of probabilistic caching in N -tier heterogeneous
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networks is presented in [20]. In [21], a random caching with cooperative transmission
design has been proposed and optimized to maximize the successful transmission
probability.

In this chapter, we present the analysis and optimization of random/probabilistic
caching in cache-enabled D2D networks. Compared to caching-helper-based networks
where the requested file of a user can be found only in nearby caching helpers, in D2D-
assisted caching networks, the requested file might be cached within the device itself. In
this case, the user request is handled without any delay or energy cost.

5.2 Network Model

The network model we consider is a D2D-enabled wireless network with randomly
distributed mobile user devices, whose distribution follows a homogeneous PPP 	u with
intensity λu. Due to the randomness in user activity, we assume that each mobile user is
actively requesting for some video content with probability ρ ∈ [0,1]. In the meanwhile,
the inactive devices can act as caching helpers and potential D2D transmitters to the
active users. Because of independent thinning, the distributions of actively requesting
devices and potential caching helpers also follow homogeneous PPPs 	r

u and 	t
u with

intensity ρλu and (1 − ρ)λu, respectively. We assume that every device has limited
caching capabilities, i.e., popular video files will be stored proactively inside the caches
of the devices. Denote by Md the cache memory size inside each device, and the video
files have equal unit size.

We assume that the popular video files online form a finite-size content category
F = {f1, . . . ,fN }, with fi being the ith most popular file and N > Md being the size
of the content category. The content popularity is assumed to follow a Zipf distribution,
where similar assumptions can be found in many existing works in the literature [2, 11,
14, 22]. In this case, the request probability of file fi is

pi = 1

iγ
N∑

j=1
j−γ

. (5.1)

Here, γ is the shape parameter of the Zipf distribution, which represents the skewness of
the popularity [23]. A large γ means that most of the requests are generated for very few
most popular files. The request probability pi represents the probability that a randomly
generated request from a random user is for file fi .

Our random caching policy is based on some predetermined probabilistic distribution,
i.e., each user device independently caches file fi with a certain probability qi with
respect to its storage capacity. Denote by q = [q1, . . . ,qN ] the caching probabilities of
the files i ∈ [1,N ], we have

∑N
i=1 qi ≤ Md due to the storage capacity of each device.

When an active user requests a file in F , a cache-hit event refers to the case
that the requested file can be found within local caches, including self-request and
D2D cache hit. The first case is when the requested file of a user can be found in its
own cache, while the second refers to the case when the requested file is not cached in
its own device, but in one of its nearby devices. We assume that there is a maximum
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searching distance Rd to establish D2D connection, due to the fact that a successful
D2D transmission is usually within a short distance. If there is more than one neighbor
device within the searching distance that has the requested file, the file is transmitted
from the nearest one.

In case of a cache miss, which means that the requested file is not cached locally,
the file will be retrieved from the core network to the nearest macro base station and
then transmitted to the user. We consider D2D overlaid cellular networks, which means
that orthogonal frequency bands are used for D2D and cellular communication, to avoid
cross-tier interference.

5.3 Performance Metrics and Analysis

To determine the optimal caching probabilities, we need to first define the performance
metrics to be optimized. The performance of a random caching policy in large
wireless networks is very often characterized by the cache-hit probability, which is
the probability that a randomly requested file can be found in local caches. However,
finding the requested file locally does not guarantee that the request can be successfully
handled. The transmission might fail in case of bad channel condition. Another
important metric is the density of cache-served requests. It can be seen as a throughput-
like metric since it combines the probability to find the requested file and the success
probability of PHY transmission. In this chapter, we also consider the average content
delivery delay as the third metric, which has been rarely investigated in the literature of
random caching networks.

In this section, we give formal definition of the three performance metrics: the cache-
hit probability, the cache-aided throughput, and the average content delivery delay. Note
that in D2D caching networks, to increase the probability of self-request, user devices
tend to cache the most popular files with higher probability. However, this will decrease
the content diversity in local caches. Therefore, the optimal caching probabilities will
strongly depend on the objective of the optimization problem.

5.3.1 Cache-Hit Probability

The cache-hit probability represents the probability that a random active user finds its
requested file in local caches, either by self-request or by D2D cache hit. It is the most
commonly used performance metric in the early studies of wireless caching schemes.

Denoting by pself the self-request probability, it is the probability that the requested
file of a random user can be found within its own cache. It is given by

pself =
N∑

i=1

P[fi requested] · P[fi cached]

=
N∑

i=1

piqi . (5.2)
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If the user cannot find the requested file in its own device, it will search among
the potential D2D helpers within distance Rd. When file fi is requested, as a result
of independent thinning, the distribution of devices that have cached file fi follows a
homogeneous PPP 	i with intensity qi(1 − ρ)λu. The number of points N from 	i

within a circular area of radius Rd follows a Poisson distribution, with P[N = n] =[
π(1−ρ)λuqiR

2
d

]n
n! e−π(1−ρ)λuqiR

2
d [24, 25]. The void probability, which is the probability

of finding the zero point from 	i within the searching distance Rd, is P[N = 0] =
e−π(1−ρ)λuqiR

2
d . Therefore, the probability for a random user device to find fi cached in

the potential D2D helpers within distance Rd is given by [2]:

pd
hit,i = 1− e−π(1−ρ)λuqiR

2
d . (5.3)

Averaging over all the files in the content library F , the D2D cache-hit probability is
given by

pd
hit =

N∑
i=1

P[fi requested] · P[fi not cached] · P[fi found in nearby devices]

=
N∑

i=1

pi (1− qi) pd
hit,i . (5.4)

Plugging (5.3) into (5.4), we obtain

pd
hit =

N∑
i=1

pi (1− qi)
(

1− e−π(1−ρ)λuqiR
2
d

)
. (5.5)

The cache-hit probability is then the sum of the two probabilities, i.e., phit = pself+pd
hit,

which gives

phit = 1−
N∑

i=1

pi (1− qi) e−π(1−ρ)λuqiR
2
d . (5.6)

Note that the cache-hit probability characterizes only the possibility of finding the
requested file within a certain distance. Due to the signal attenuation and the perturba-
tion of interference and noise, the transmission of the file might fail, and the success
probability is affected by the channel statistics, the transmission distance, and some
other network parameters.

5.3.2 Cache-Aided Throughput

The second performance metric is named cache-aided throughput or the density of
cache-served requests, which measures the average density of successfully served user
requests by locally cached content without connecting to the macro base station. This
metric takes into account both the cache-hit probability and the successful content trans-
mission probability.

Assume that the transmission of each file with equal size takes the same amount
of time, one slot for instance. In the self-request case, the request is automatically
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served with probability one, while in the D2D cache hit case, the success probability of
content delivery depends on the received signal-to-interference-plus-noise ratio (SINR).
Let pd

suc,i denote the success probability of D2D transmission for file fi . We have the
cache-aided throughput given by

T = ρλu

[
N∑

i=1

piqi · 1+
N∑

i=1

pi(1− qi)p
d
hit,i · pd

suc,i

]
, (5.7)

where ρλu is the density of active user requests in a given time slot. Assume that the
SINR needs to exceed a certain threshold θ in order to have successful D2D transmis-
sion, the successful transmission probability of file fi is given by

pd
suc,i = P[SINRi > θ]. (5.8)

Without loss of generality, conditioning on a typical receiver k at the origin, its received
SINR is given by

SINRi =
Pd|hk,k|2d−αi

σ2 +∑j∈	d
t \{k} Pd|hj,k|2d−αj,k

, (5.9)

where 	d
t denotes the set of active D2D transmitters; hj,k denotes the small-scale chan-

nel fading from transmitter j to receiver k, which follows CN (0,1) (Rayleigh fading);
d−αj,k denotes the power-law pathloss, where dj,k is the distance between transmitter j

and receiver k, and α is the pathloss exponent; Pd and σ2 denote the device transmission
power and the background noise power, respectively.

Note that depending on which file fi is requested, the typical D2D link distance di

follows different distributions. Conditioning on di ≤ Rd, due to the maximum D2D
searching distance, the probability density function (PDF) of di is given by

fdi
(r) =

⎧⎪⎨⎪⎩
2π(1−ρ)λuqir

1−exp
[−π(1−ρ)λuqiR

2
d

]e−π(1−ρ)λuqir
2

0 ≤ r ≤ Rd

0 r > Rd.

(5.10)

The interference distribution in (5.9) depends on the density of concurrently active
D2D transmissions links. A randomly generated file request from a user in 	u

r will be
served through D2D transmission with probability pd

hit, as given in (5.5). Thus the den-
sity of cache-assisted D2D transmissions is ρλup

d
hit. We approximate the distribution

of the active D2D transmitters 	d
t by a homogeneous PPP with intensity ρλup

d
hit.

The D2D success probability can be obtained as

pd
suc,i = P

[
Pd|hk,k|2d−αi

σ2 +∑k∈	d
t \{k} Pd|hj,k|2d−αj,k

> θ

]

= P

⎡⎣|hk,k|2 >
θdαi

Pd

⎛⎝σ2 +
∑

k∈	d
t \{k}

Pd|hj,k|2d−αj,k

⎞⎠⎤⎦
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(a)= Edi

[
LId

(
θdαi

) · exp
(
−θσ2dαi /Pd

)]
(b)= Edi

[
exp

(
−πρλup

d
hitd

2
i θ

2
α

sinc(2/α)

)
exp

(
−θσ2dαi /Pd

)]

=
∫ ∞

0
fdi

(r) exp

(
−πρλup

d
hitr

2θ
2
α

sinc(2/α)

)
e
− θσ2rα

Pd dr, (5.11)

where LId
(s) = E

[
exp (−sId)

]
is the Laplace transform of D2D interference

Id =
∑

k∈	d
t \{k} |hj,k|2d−αj,k . Here (a) follows from the complementary cumulative

distribution function (CCDF) of |hk,k|2, which is exponentially distributed with
unit mean value; (b) follows from the probability generating functional (PGFL) of
PPP [26].

Substituting (5.3), (5.11), and (5.10) into (5.7), we obtain the cache-aided throughput
averaged over all the files in the content library.

5.3.3 Average Content Delivery Delay

To characterize the delay that a user experiences between the time of requesting a file
and the time of successfully receiving it, we first need to specify the retransmission
policy. When a user finds its requested file cached inside its own device, the delay is
zero. Otherwise, depending on whether a user can locate its requested file within its
neighborhood, the following cases might happen:

• If a user cannot locate the requested content within its searching range:

– If in the next time slot, it is still an active receiver waiting to be served, then
the request goes to the nearest BS;

– If in the next time slot, it acts as a potential transmitter, then wait.

• If a user finds the requested file within nearby D2D transmitters, but the transmis-
sion fails:

– If in the next time slot, it is still an active receiver, it searches again within
its neighborhood for potential D2D transmitters that have the requested
content;

– If in the next time slot, it acts as a potential transmitters, then wait.

Note that in the literature of wireless caching systems, the inverse of the transmission
success probability has been commonly considered as the delay to receive a file. This
way of calculating delay assumes that the transmitter keeps transmitting the file until it
is successfully received. In the random network we consider in this work, the network
topology is changing in each time slot. It is not guaranteed that the same potential
transmitter is still within the searching range of the receiver in the next time slot. In this
case, the re-searching and retransmission policy is critical for the delay performance
and the delay cannot be simply considered the inverse of the transmission success
probability.
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Denote by Dmiss,i and Dfail,i the delay when the file i is requested and it is not stored
locally and the delay when the transmission of file i fails, respectively. We have the
average delay for receiving file i as follows:

Di = pd
hit,i · pd

suc,i + (1− pd
hit,i)(1+Dmiss,i)+ pd

hit,i(1− pd
suc,i)(1+Dfail,i). (5.12)

We define DBS as the delay for a BS to retrieve the content from the core network
and deliver it to the requesting user. In a dense network with overloaded user request,
usually we have DBS � 1. The delay when a cache miss happens is

Dmiss,i = ρ ·DBS + (1− ρ)(1+Dmiss,i). (5.13)

Then we obtain

Dmiss,i = 1+ ρ(DBS − 1)

ρ
, (5.14)

which is the same for all the files. The delay when the first transmission fails is
given by

Dfail,i = ρ · pd
hit,ip

d
suc,i + (1− ρ)(1+Dfail,i)+ ρ · pd

hit,i(1− pd
suc,i)(1+Dfail,i)

+ ρ · (1− pd
hit,i)(1+Dmiss,i). (5.15)

After several steps of derivations, we obtain

Dfail,i =
1+ ρ(1− pd

hit,i)Dmiss,i

ρ − ρ · pd
hit,i(1− pd

suc,i)
. (5.16)

Plugging (5.14) and (5.16) into (5.12), we obtain the delay to successfully receive
file i. Averaging over all the files in the content library, the average delay to receive a
requested file is

D =
N∑

i=1

piDi . (5.17)

5.4 Optimization of Probabilistic Caching Placement

In this section, we simplify the expressions of the three performance metrics defined in
Section 5.3 and study three optimization problems to find the optimal caching probabil-
ities q = [q1, . . . ,qN ] for the considered network.

5.4.1 Cache-Hit Maximization

In the literature of probabilistic caching, the most commonly considered optimization
problem is to maximize the cache-hit probability (or offloading probability) under the
cache capability constraints. Based on (5.6), the optimization problem for maximizing
the cache-hit probability can be defined as



Stochastic Caching Schemes in Large Wireless Networks 97

max
q

1−
N∑

i=1

pi (1− qi) e−π(1−ρ)λuqiR
2
d (5.18)

s.t. 0 ≤ qi ≤ 1 for i = 1, . . . ,N

N∑
i=1

qi ≤ Md.

The second order derivative of the objective function is strictly negative, thus phit is
a concave function of qi for all i = 1, . . . ,N , and (5.18) is a convex optimization
problem.

Define μ as the nonnegative Lagrangian multiplier, we consider the following
Lagrangian function

L(q,μ) = −1+
N∑

i=1

pi (1− qi) e−π(1−ρ)λuqiR
2
d + μ

(
N∑

i=1

qi −Md

)
. (5.19)

We apply the Karush–Kuhn–Tucker (KKT) conditions to solve this optimization prob-
lem. From ∂L

∂qi
= 0, we have

− pie
−π(1−ρ)λuqiR

2
d

[
1+ (1− qi)π(1− ρ)λuR

2
d

]
+ μ = 0, (5.20)

!⇒ μ

pi

exp
[
1+ π(1− ρ)λuqiR

2
d

]
= (1− qi)π(1− ρ)λuR

2
d + 1. (5.21)

Since this equation involves both polynomial and exponential function, its solution can
be written in closed form with the help of the Lambert function. For a general type of
equation that has the form pax+b = cx + d, where x is the variable and a, b, c, d, p are
constant, when p > 0 and a,c �= 0, the solution is

x = −
W

(
− a ln p

c
pb− ad

c

)
a ln p

− d

c
, (5.22)

where W denotes the Lambert W function [27]. Based on this, we obtain the solution to
(5.21) as

qi(μ) = −
W

{
μ
pi

exp
[
1+ π(1− ρ)λuR

2
d

]}
π(1− ρ)λuR

2
d

+ 1

π(1− ρ)λuR
2
d

+ 1. (5.23)

Followed by the additional condition 0 ≤ qi ≤ 1, and defining [x]+ = max{x,0}, we
have

q�
i = min

{
[qi(μ

�)]+,1
}

. (5.24)

Here, the optimal value of μ� can be obtained by the bisection search method subject to
the condition

∑N
i=1 q�

i = Md.



98 Zheng Chen, Nikolaos Pappas, and Marios Kountouris

5.4.2 Cache-Aided Throughput Maximization

As we can see from (5.7) and (5.11), the expression of T involves integrals that are
difficult to solve in optimization problems, even with numerical evaluation. To overcome
this problem, we consider the following approximation

Edi
[exp

(
−ηdδi

)
] ≈ exp

(
−ηE[d2

i ]δ/2
)
, (5.25)

then the success probability pd
suc,i in (5.11) can be approximated by

p̂d
suc,i ≈ exp

[
−πρλup

d
hitE[d2

i ]θ2/α

sinc(2/α)

]
exp

[
−θσ

2E[d2
i ]α/2

Pd

]
. (5.26)

Note that (5.26) does not guarantee to provide a tight approximation on the success
probability, but it simplifies the expression such that it is easier to be solved by
standard optimization solvers. From the PDF of di in (5.10), we can obtain E[d2

i ]
as follows.

E[d2
i ] =

∫ Rd

0
r2 2π(1− ρ)λuqir

1− e−π(1−ρ)λuqiR
2
d

e−π(1−ρ)λuqir
2
dr

= 1

π(1− ρ)λuqi

− R2
d

eπ(1−ρ)λuqiR
2
d − 1

. (5.27)

When qi → 0, we obtain lim
qi→0

E[d2
i ] = R2

d/2 by applying L’Hôpital’s rule.

Then we have an approximated expression for the cache-aided throughput, given as

T̂ =ρλu

[
N∑

i=1

piqi +
N∑

i=1

pi(1− qi)p
d
hit,i · p̂d

suc,i

]
, (5.28)

where p̂d
suc,i is given in (5.26). Our objective is to find q� = max

q
T̂ , subject to

0 ≤ qi ≤ 1 and
∑N

i=1 qi ≤ Md.
Since this optimization problem is non-convex, it is difficult to provide any analytical

solution to this problem. In the numerical evaluation section, we solve this problem
numerically with simulated annealing.

5.4.3 Delay Minimization

Due to the complicated form of the delay as a function of the caching probability vector
q, we resort to numerical methods of finding the optimal solution by using simulated
annealing. Note that in some cases, this method might not be able to find the global
optimal point.
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5.5 Numerical and Simulation Results

In this section, we evaluate the optimal caching probabilities obtained from the
previously defined three optimization problems. The user density we consider falls
in the range λu ∈ [10−4,10−3]/m2. At every time slot, ρ = 50% of the users
will generate a random request for a file in F , according to the request probability
vector p = [p1, . . . ,pN ], which follows the Zipf distribution with skewness parameter
γ ∈ {0.5,1.2}. The remaining 1 − ρ = 50% of users will be potential D2D helpers to
serve the user requests locally. The device cache capacity is Md = 2 files. The content
catalog size is N = 20 files.1 The maximum D2D searching distance is Rd = 75 m.
The D2D transmission power and the background noise power are Pd = 0.1 mW and
σ2 = −110 dB, respectively. The target SINR for successful D2D transmissions is
θ = 0 dB. In case of a cache miss event, the delay to receive a file from the BS is
DBS = 5 timeslots.

In Figures 5.1, 5.2, 5.3, and 5.4, we compare the caching probability vector q�

obtained in the three cases: cache-hit-optimal (Section 5.4.1), throughput-optimal
(Section 5.4.2) and delay-optimal (Section 5.3.3). The results are presented for both
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Figure 5.1 Optimal caching probabilities in sparse network, λu = 10−4/m2. γ = 0.5.

1 In reality, the size of the content catalog is usually very large. Here we consider N = 20 files, mainly to
avoid high complexity to solve the optimization problems. Similar choices of small content catalog size
can also be found in [2, 16].
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Figure 5.2 Optimal caching probabilities in sparse network, λu = 10−4/m2. γ = 1.2.
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Figure 5.3 Optimal caching probabilities in dense network, λu = 10−3/m2. γ = 0.5.
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Figure 5.4 Optimal caching probabilities in dense network, λu = 10−3/m2. γ = 1.2.

sparse and dense networks. The optimal caching probabilities of file fi for i = 1, . . . ,N
are presented as a function of the file popularity order i.

Our first remark is that the throughput-optimal and cache-hit-optimal caching proba-
bilities are very close in sparse D2D network, while with dense users devices, the opti-
mal caching probabilities in these two cases are quite different. To be more specific, with
the throughput-optimal strategy, each device tends to cache the most popular files with
higher probability. For instance, in Figure 5.3, the caching probabilities of the two most
popular files q�

1 and q�
2 in the throughput-optimal case are much higher than in the cache-

hit-optimal case. The delay-optimal caching probabilities are even more concentrated on
the most popular files than the two other cases. The explanation behind this observation
is that in dense D2D networks, due to the high interference level, a D2D connection has
low success probability. Therefore, users’ caching strategy tends to be more “selfish”
such that self-request is more preferable than cache-assisted D2D transmission.

In Figures 5.5 and 5.6, we present the theoretical and simulated cache-aided through-
puts obtained with the throughput-optimal caching probabilities. First, we notice that
the theoretical and simulated throughput results are very close, which shows that the
approximation we used in (5.26) gives negligible error on the cache-aided throughput
optimization problem. To compare the throughput performance of different caching
strategies, we also present the simulated cache-aided throughput when applying the
cache-hit-optimal caching probabilities. A baseline scheme, “cache the most popular
content” (MPC), is also used for comparison.
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Figure 5.5 Simulated cache-aided throughput vs. user device density λu. γ = 0.5.
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Figure 5.7 Minimized average delay vs. user device density λu. γ = {0.5,1.2}.

Since the throughput-optimal strategy takes into account the D2D success probability,
the achieved cache-aided throughput is significantly improved compared to the cache-
hit-optimal and the MPC strategies. The improvement is even more notable in dense
D2D network. In the case with dense users and highly concentrated content popularity
(i.e, γ = 1.2), the cache-aided throughput obtained with MPC gives better perfor-
mance than the cache-hit-optimal case, meaning that it is more beneficial to increase
the chance of “self-request” than increasing the total cache-hit ratio. These results val-
idate the necessity of considering the D2D transmission reliability while searching for
the optimal content placement.

In Figure 5.7 we plot the numerical values of the optimized average delay to receive
a requested file as a function of the user device density. As expected, with larger γ,
the probability to have cache hit is higher, thus the average delay to receive a packet
is smaller. We also notice that with smaller γ, the gain of using delay-optimal caching
probabilities compared to the baseline MPC case is more notable.

5.6 Conclusions

In this chapter, we investigated probabilistic caching placement in stochastic wireless
D2D networks where user device distribution follows a homogeneous PPP. The
optimal caching probabilities were presented for three different optimization objectives:
maximizing cache-hit probability, maximizing the density of successfully served user
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requests, and minimizing the average delay to receive a requested file. We showed
that considering only cache-hit probability as the main performance metric leads to
overconfident evaluation of the percentage of content requests that can be served
locally. The success probability of content delivery is another critical factor that affects
much the performance of wireless D2D caching. An optimal caching strategy should
take into account both factors to improve the throughput and delay performance in
cache-enabled wireless networks.
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6 Joint Policies for Caching,
Routing, and Channel Selection
in Next-Generation Wireless
Edge Systems
Jacob Chakareski

Selecting joint policies for caching, routing, and channel selection in coordinated
multi-cellular systems for edge-based video delivery is challenging, due to the involved
combinatorial complexity. Therefore, related work to date has studied caching and
routing in such cellular networks independently from the problem of channel selection
and interference induced when two nearby wireless links transmit on the same
frequency/channel. We overcome this challenge for the first time by leveraging two
novel concepts in this context: column generation, a mathematical framework for
large-scale optimization that enables adapting the number of variables considered in
an optimization problem, and conflict graph, a mathematical framework for effective
modeling of interference in wireless networks. Integrating these two, we then pursue
a novel problem formulation that makes up a master–slave problem structure for
selecting optimal joint policies for caching, routing, and channel selection in this
setting. The master problem makes up a subset of the original problem variables and
adaptively decides whether to introduce an additional variable via a slave subproblem
that characterizes the reduction in the value of the objective function with the addition
of a new variable. The search for the optimal joint policies concludes when no
new variable can be introduced to further lower the value of the objective function.
Since leveraging a conflict graph still induces an exponential complexity in the
number of wireless links that can be prospectively activated simultaneously, we also
investigate an effective method to quickly approximate the optimal solution within
an ε deviation, at lower computational complexity. We comprehensively evaluate
the performance characteristics of our analytical advances via realistic simulation
experiments, demonstrating a close to 50% improvement in expected video streaming
data rate relative to a competitive state-of-the-art method. Such performance benefits
will enable up to a 5 dB improvement in the video streaming quality of experience
delivered to the mobile user.

Supported in part by NSF Awards CCF-1528030, ECCS-1711592, CNS-1836909, and CNS-1821875, and
research gifts from Adobe Systems and Tencent Research.
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6.1 Background

We ever more often use our mobile devices and cellular networks to access the internet
and related services, such as social networking and video streaming. These outcomes
have led to online video becoming the overwhelmingly dominant source of mobile
and internet network traffic [1], thus requiring new methods for effective allocation
of system resources. Storing the most popular video content in edge-based servers
collocated with small base stations, in emerging cellular systems made up of a collection
of small cells embedded within a bigger macro-cell, has been investigated recently as
one such viable strategy. This will enable local delivery of this content to mobile clients
in such systems, thereby avoiding the costlier alternative of streaming content from a
back-end internet server. A fundamental problem in this context then is the assignment
of the most popular video files to the storage units of each edge server, known also as
caches. The problem features constraints and unique aspects that need to be taken into
consideration, such as the limited storage of an edge server and the content popularity
that may vary across the small cells serving the mobile users.

6.2 Related Work and Our Advances

The highlighted problem has been investigated using a variety of approaches. Related
work has studied this setting using different approaches. Concretely, the study in [2]
facilitates information theory to explore the minimization of the induced cost when
streaming video in caching-enabled small-cell systems. The study in [3] instead facil-
itates game theory and online learning to characterize the statistical risk associated
with learning the popularity of different video files requested by mobile clients served
by a small base station. As elaborated earlier, several shortcomings of existing work
necessitate the present investigation. In particular, cooperative operation of small-cell
base stations in video streaming with local caching has not been studied. We have
recently shown that such cooperation can help avoid the cost of video delivery from a
distant back-end server, by streaming the requested content from an adjacent small cell
via backhaul links that interconnect the small cells [4]. Moreover, to date, interference
has not been integrated into the analysis, due to the challenges it introduces, as explained
earlier. That is, the state-of-the-art considers that transmitting links in the system do
not interfere with each other and that the related channel selection has been solved
externally. Finally, the impact of a small-cell base station not having the requested video
content stored locally is handled uniformly across the macro cell, by existing work.
However, integrating the location of the specific small cell relative to the macro base
station, when addressing such instances, can enhance performance.

We overcome these shortcomings and challenges by exploring joint policies for
caching, routing, and channel selection in next-generation cellular systems. Our
approach advances existing methods notably, as it helps avoid unlikely and performance-
penalizing assumptions about the system, it introduces cooperation among small
cells and enhances the system’s performance. We demonstrate through experimental
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evaluation that these advances enable much higher expected video streaming throughput
and thus much higher quality of experience for the mobile user. We proceed by closely
reviewing existing work.

Caching at the cell level has been studied considerably. The study in [5] formulates
a basic cost model that facilitates determining the benefits of caching at a base station,
for network operators. The study in [6] examines base station video caching for improv-
ing the quality of experience (QoE) of users, among other aspects. The study in [4]
investigates collaborative caching among base stations of different macro cells to min-
imize the overall file delivery cost. The cellular system under investigation comprises
backhaul connections that interlink the base stations. However, installing and maintain-
ing such connections are costly, and if the connections are wireless, facilitating them
reduces the serving capacity of a macro cell. Thus an addition transmission efficiency
is induced.

The work in [3] investigates the caching policy selection at a single base station,
aiming to minimize the file retrieval latency by learning the online popularity of the
cell’s contents. The work in [7] investigates the same problem by using different system
performance measures, such as the data delivery rate to a user or the outage probability,
while integrating aspects such as the base station’s location and the request rate for the
content. The study in [8] integrates network coding to augment the caching performance
of small cells. Finally, the study in [9] utilizes information theory to investigate the min-
imization of the cost of streaming video in small cells enabled with caching capabilities.
We note that these investigations explore only the caching policy selection.

In the broader area of caching, novel integration of caching with packet scheduling
at the application layer has been explored in regard to rate-distortion optimized network
edge proxy-driven video streaming, demonstrating advances over conventional sender-
driven or receiver-driven methods [10–12]. Similarly, novel integration of caching with
edge computing and viewport-driven 360◦ streaming has been explored recently for
next-generation mobile virtual reality applications delivered over 5G cooperative cellu-
lar systems [13].

The present investigation is most closely related to [2, 14, 15]. In particular, the study
in [15] leverages a conflict graph to explore the problem of routing and channel selection
in wireless multi-hop networks. The objective under consideration is to maximize the
achieved throughput. No caching capabilities have been integrated into the analysis.
Small-cell caching and transmission link scheduling were investigated independently
in [2]. The objective of interest is maximizing the user serving rate. The study in [14]
integrates the network bandwidth assigned to a small cell in the analysis of the caching
policy selection. However, it disregards the aspect of interference that arises during
simultaneous transmission of adjacent links on the same channel.

The rest of this chapter is organized as follows. We proceed by describing the for-
mulation of the architecture of our system and the related models that will be needed.
In Section 6.4, we then characterize the problem of interest. We leverage column gen-
eration and a conflict graph to formulate in Section 6.5 an algorithmic strategy that
effectively computes the optimal solution within a small factor of ε approximation. We
explore the performance benefits induced by our analytical advances in Section 6.6. We
present our concluding remarks in Section 6.8.
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6.3 System Modeling

6.3.1 Network Setting Characterization

We formally characterize the setting we investigate as illustrated in Figure 6.1. As
considered in earlier studies as well, there is a macro cell featuring a base station (MBS)
and a set of N small base stations (SBSs), spatially distributed around it. Each SBS
can serve a small subset of mobile users in its vicinity, as indicated by the dashed
circles in Figure 6.1. Let N = {1,2, . . . ,n, . . . ,N,MBS} denote the set of base stations
embedded in the macro cell. Similarly, we define J = {1,2, . . . ,j, . . . ,J } to be the set
of J video files that the mobile users can request. We denote K = {1,2, . . . ,k, . . . ,K}
to be the set of K mobile users in the macro cell. We denote with an and ak the number
of transmit/receive antennas for SBS n and user k, respectively.

We assume that each SBS n comprises a storage capacity CSBS
n . We also assume that

the MBS can store all J files. Hence a user requesting file j can always be served by the
MBS, as the last option. We consider that user k generates αkj requests for video file j

per unit of time. Let Sj denote the data volume of file j . There are C + 1 transmission
channels C = {0,1,2, . . . ,c, . . . C}, with c > 0 indicating a secondary channel, and
c = 0 indicating a primary channel. Let Wc denote the transmission bandwidth of
channel c. We assume that the mobile users and the base stations can use the secondary
channels, and that only the MBS can use the primary channel for communication.
In our setting, we assume a one-hop transmission, i.e., a base station can deliver a file
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SBS7

2

SBS6

L2

Macro base

station
Small base station
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User terminal
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Figure 6.1 The system model under investigation.
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requested by a user, only if the latter is within its transmission range. In the following,
we use transmitter to refer to a base station and receiver to refer to a user, given that we
investigate only downlink transmission in the considered setting.

6.3.2 Network Coding

It has been demonstrated that using network coding leads to higher network throughput
[16] by enabling efficient utilization of resources and exact optimization methods that
can be implemented at lower complexity (typically in polynomial time). To leverage
these benefits in our setting, we assume that a video file is streamed via its network
coded packets, each constructed as

∑M
m=1 κmqm. Here, qi denotes one of the original

data packets making up this file, and km denotes the random coefficients necessary in the
construction. We note that the summation is carried out over a finite Galois field [17].
Selecting the latter to be sufficiently large will enable the constructed network coded
packets to be linearly independent. Then a user can easily recover the original video file
data by having delivered any M different network coded packets.

6.3.3 Transmission and Interference Ranges and Capacity of a Link

For a given communication channel c, we set the transmission range for a base station n

to be constant, by setting its transmit power P c
n to be constants. This will simultaneously

set the interference range for the base station to a constant value. In our analysis,
we adopt a model introduced in [18] that considers a transmission over a channel c

to be successful when the received power at the destination user associated with this
transmission exceeds a threshold P c

T . Similarly, the model considers that the thereby
induced interference to another nearby user receiving on the same channel is nonnegli-
gible when the received power associated with this transmission exceeds an interference
threshold P c

I . Following this model, we can formulate the transmission range T Rc
n and

interference ranges IRc
n of the nth SBS as:

T Rc
n = (gP c

n /P c
T )1/γ,

IRc
n = (gP c

n /P c
I )1/γ.

Here, we denote with γ the pathloss. Moreover, the constant g relates to the electromag-
netic wave wavelength, the transmitter and receiver antenna profiles, and other factors
used in the communication.

Now, we denote with ĉc
nk the transmission capacity of a link between user k and SBS

n, established over channel c. Leveraging Shannon–Hartley’s theorem, we can formulate
this quantity as:

ĉc
nk = Wc log2(1+ GnkP

c
n

η
).

We denote with η the receiver’s white noise. Moreover, we denote with Gnk = g ·
(dnk)−γ the propagation gain of transmission power over Euclidean distance of dnk

between SBS n and user k. Due to the model we leveraged [18], we formulate ĉc
nk via

the related signal-to-noise ratio (SNR). In particular, a small base station is precluded
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from transmitting over a channel to a given user, if the latter is within the interference
range of a different base station communicating over the same channel. Thus the signal-
to-interference-plus-noise ratio (SINR) is irrelevant in this case.

6.3.4 Capturing Interference via a Conflict Graph and Its Independent Sets

As introduced earlier, a conflict graph will enable us to effectively formulate link inter-
ference in our system. In particular, let G(V,E) denote a graph, whose set of vertices V

makes up the triples ((n,k),c), for n ∈ N , k ∈ K, and c ∈ C. Such triplets refer to
the prospective links that can be established in our setting between SBS n and user k,
over a channel c. Two vertices in G are connected, if the two respective triplets share
a common channel c and the receiver k in one triplet is within interference range of
the transmitter n in other triplet. In other words, the two links represented by the two
respective triplets cannot transmit in parallel.

Now, we define as I a set of communication triplets that do not feature interconnect-
ing edges in G, i.e., they represent transmitting links that can be activated in parallel,
as they do not cause interference among them. Such a set is also denoted as a set of
independent communication links or, briefly, an independent set. A desirable objective is
to find the largest independent set, as it can maximize the transmission efficiency of the
system. Such a set is also denoted as maximal. In our analytical modeling, we can formu-
late any prospective I as an ordered (indexed) vector of uniform length, featuring binary
entries for every communication triplet ((n,k),c). An entry of 1 would indicate that the
respective triplet/link is a member of I , and an entry of zero would indicate the opposite.

For concreteness, a small example of conflict graph and independent set construc-
tion is illustrated in Figure 6.2. The respective communication setting comprises three
users, two small base stations, and two transmission channels, as shown in the figure.
Only user 2 can receive communication from SBS 1 over both channels. The conflict
graph captures for example that the communication triplets ((1,1),1) and ((2,2),1) can-
not be activated in parallel, as they interfere with each other, indicated by the edge

Figure 6.2 An example of a conflict graph and independent set construction.
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between the respective nodes in the graph. Finally, leveraging the conflict graph in
Figure 6.2, one can pursue the construction of the associated independent sets. The
set I1 = (1,0,0,0,1) represents one such example. Moreover, we point out that the set
I2 = (1,0,1,0,1) is maximal.

6.4 Formulation of Joint Caching, Routing, and Channel Selection
Policy Problem

We begin by introducing the following required variables:

• Xnj : proportion of network coded packets of video file j cached by SBS n.

• Y k
nj : proportion of network coded packets of video file j streamed to user k from

SBS n.

• Zc
nk: aggregate volume of data streamed to user k by small base station n over

channel c.

• fi : fraction of time during which the communication triplets comprising indepen-
dent set Ii are selected for simultaneous transmission.

• I: collection of all prospective sets Ii .

The problem of identifying the optimal joint policy for caching, routing, and channel
selection in this context can be framed as linear program (LP):

δ∗ = min
∑

1≤i≤|I|
fi, (6.1)

subject to: ∑
j

SjXnj ≤ CSBS
n , ∀n, (6.2)

∑
n

Y k
nj ≥ 1{αkj >0}, ∀k,j, (6.3)

Y k
nj ≤ Xnj, ∀n,k,j, (6.4)∑
j

Y k
njαkj Sj ≤

∑
c

Zc
nk, ∀n,k, (6.5)

Zc
nk ≤

∑
1≤i≤|I|

fi ĉ
c
nk(Ii), ∀n,k,c, (6.6)

∑
1≤i≤|I|

fi ≤ 1. (6.7)

In words, our objective is to minimize the duration of time necessary to stream
the requested video files to the mobile users. We explain the necessary problem con-
straints in the following. To not exceed the storage limit of SBS n, we introduce (6.2).
To ensure recovery of the original video data, we require that the aggregate proportion
of the respective network coded packets received by the user is at least one. Hence we
introduce (6.3). Next, a base station will be able to stream a video file to a user only
if that file is stored by the base station. This condition is captured by constraint (6.4).
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Put together, (6.5) and (6.6) maintain that the data volume streamed to user k by small
base station n over channel c cannot exceed the activation time-weighted cumulative
transmission capacity of the communication triplet ((n,k),c) they comprise, over all
independent sets in which ((n,k),c) appears. Last, we require that a feasible choice for
the aggregate normalized time of activation across all sets Ii should not be greater than
unity. This is ensured by (6.7).

We can reformulate the cost function to pursue other objectives of interest. For exam-
ple, if we are interested instead in maximizing the aggregate network throughput, we
can recast the objective in (6.1) as max

∑
n,k,c Zc

nk .

6.5 Column Generation for Efficient Approximation Solution

An inherent challenge to solving problems (6.1)–(6.7) is its high computational com-
plexity, due to the huge number of variables it will feature in a realistic setting, induced
by the exponentially combinatorial nature of |I|, as explained earlier. Interestingly,
the majority of the problem variables will not have an impact on its objective func-
tion, as they will necessarily be set to zero [19]. We leverage this property of our
problem, to investigate its solution via column generation, which will enable us to
adaptively explore a small subset of variables that can make impact on the objective.
In particular, we partition (6.1)–(6.7) into a hierarchical master–slave problem, made
up fo two components. We denote the former as RMP, or regulated master subprob-
lem, and the latter as PP, or pricing subproblem. We initiate RMP with a very small
subset of variables. We then leverage the optimal dual solution of RMP in the for-
mulation of PP to seek a new variable to be introduced to RMP next, such that this
variable is associated with the highest reduction of the present objective function of
RMP. Once we identify such a variable, we reintroduce it into RMP and repeat the
steps, until we meet an ε bound on the thereby produced approximation solution is
met. A high-level illustration of the described optimization procedure is included in
Figure 6.3.

6.5.1 Formulation of Regulated Master Subproblem

We initiate RMP with a subset I ′ ⊂ I . We construct I ′ by selecting one communication
triplet ((n,k),c) for every member element of I ′, in which case I ′ obtains the form of
an identity matrix with its rows reshuffled. We then cast RMP accordingly as

δ = min
∑

1≤i≤|I ′|
fi, (6.8)

given (6.2)–(6.5), and

Zc
nk ≤

∑
1≤i≤|I ′|

fi ĉ
c
nk(Ii) ∀n,k,c, (6.9)

∑
1≤i≤|I ′|

fi ≤ 1. (6.10)
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Figure 6.3 Hierarchical master–slave optimization procedure enabled by column generation.

We note that the problem also represents a linear program; however, relative to
(6.1)–(6.7), it features a much smaller size. This will allow us to solve it exactly within
a reasonable (polynomial) amount of time [19]. In turn, that will will enable us to
produce its optimal dual solution. Unfortunately, the solution to RMP can serve only
as an upper bound to (6.1)–(6.7), since it examines only a subset I ′. We can gradually
produce a better (smaller) upper bound, by introducing new member element into I ′
one element at a time.

This is where we facilitate the slave subproblem PP. We are interested in identifying
the new variable fi that can be added to I ′ such it leads to the highest reduction of the
objective in (6.8). We present the formulation of PP next.

6.5.2 Formulation of Slave Pricing Subproblem

We pursue the independent set Ii not yet included in I ′ that enables the highest reduction
of the objective in (6.8). Concretely, we formulate the objective function value reduction
induced by such new Ii as [19]:

ωi = 1−
∑
n,k,c

λc
nkĉ

c
nkt

c
nk .

Here, we denote with λc
nk the dual problem variables associated with constraint (6.9).

Moreover, we introduce a new variable, of binary nature, denoted as tcnk , which captures
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the action of including the triplet ((n,k),c) in Ii . To identify the desired Ii , we formulate
and pursue the following problem (PP):

min
Ii∈I/I ′

ωi, (6.11)

which can be equivalently written as

max
Ii∈I/I ′

βi =
∑
n,k,c

λc
nkĉ

c
nkt

c
nk . (6.12)

We denote the optimal solutions of (6.11) and (6.12), as u∗i and β∗i , respectively. Given
that our declared objective is to identify the new Ii with the highest objective function
reduction, the entire iterative procedure of master–slave optimization enabled by column
generation will conclude when no further set Ii can be identified that leads to any
objective reduction, i.e., when it holds that u∗i ≥ 0 or β∗i ≤ 1, for any new Ii .

To ensure that the desired Ii identified by PP is feasible, i.e., it does not comprise two
interfering triplets ((n,k),c)), we introduce these conditions into PP:∑

k

tcnk ≤ 1 ∀n,c (6.13)

∑
n

tcnk ≤ 1 ∀k,c (6.14)∑
k,c

tcnk ≤ an ∀n (6.15)

∑
n,c

tcnk ≤ ak ∀k (6.16)

tcnk +
∑

n′ �=n|k∈Fn′
k′ �=k

tcn′k′ ≤ 1 ∀n,k,c (6.17)

tcnk ∈ {0,1} ∀n,k,c. (6.18)

Concretely, constraint (6.13) ensures that one channel cannot be used by a single
transmitter to communicate over multiple links. Constraint (6.14) ensures the equivalent
for a receiver. Next, (6.15) indicates that the number of antennas a transmitter has limits
the number of communication links it can leverage. Again, (6.16) ensures the equivalent
for a receiver. Moreover, constraint (6.17) ensures that a receiver k of an active commu-
nication triplet ((n,k),c) is not interfered by another prospectively interfering transmitter
n′, where Fn′ denotes the collection of prospectively interfered receivers for n′. Finally,
constraint (6.18) captures the binary nature of the variable tcnk .

6.5.3 An Algorithm for an Approximation Solution with ε Guarantees

The analytical advances described heretofore can facilitate arriving at the optimal solu-
tion with reasonable complexity. However, the challenge of having to examine a huge
number of independent sets in the pricing slave subproblem still poses a concern, due to
the prospectively exponentially large size of |I|, as we explained earlier. Still, the study
in [20] has established that one can quickly reach the optimal solution, with a very fine
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Algorithm 4 ε-Bounded Approximation Algorithm

Input: Approximation factor ε, initial subset of independent sets I ′, δu = ∞, δl = 0
Output: δu,δl,f ∗i ,Xnj,Y

k
nj

while δl

δu < 1
1+ε and β∗i > 1 do

Solve RMP to obtain its optimal solution δu and the dual optimal solution λc
nk

Using λc
nk , solve PP to generate an independent set Ii and obtain β∗i

Update I ′ = I ′ ∪ Ii

ω∗i = 1− β∗i

δl = max{δu +	ω∗i ,0}
end while
if δu ≤ 1 then

Demand can be supported
Cache the files according to Xnj

Route the files according to Y k
nj

elseifδu > 1+ ε or δl > 1
Demand cannot be supported
set ε = 0 to see if demand can be supported

end if

approximation. We leverage this result to characterize an algorithm that can achieve that
for us in this setting. We first introduce some necessary terminology.

We call a solution δ to (6.1)–(6.7) to be within an ε approximation of the optimal
solution, if the following condition holds: (1−ε)δ∗ ≤ δ ≤ (1+ε)δ∗. In Algorithm 4 (see
Section 6.6.2), we provide a formal characterization of our algorithm. Now, following
this definition, we can prove this desired property of Algorithm 4, via the following
theorem.

theorem 6.1 We denote with δu and δl the approximation solution bounds (high
and low) produced by Algorithm 4. They are within an ε approximation of the optimal
solution to (6.1) to (6.7).

Proof When Algorithm 4 exits, one of the following two cases took place: (1) βi ≤ 1,
i.e., there is no further independent set Ii to be added to the RMP such that it leads to a
reduction of the objective function. Hence we have reached δ∗, or (2) δl

δu ≥ 1
1+ε , which

means the following inequalities hold:

δ ≤ δu ≤ (1+ ε)δl ≤ (1+ ε)δ∗, (6.19)

δ ≥ δl ≥ (1− ε)δu ≥ (1− ε)δ∗. (6.20)

Given the earlier condition for an ε approximation of the optimal solution, and the
analysis carried out earlier, we can establish that indeed δ represents a solution that
meets that condition.

The last item that remains is how to produce the low and high approximation solution
bounds δu and δl . To this end, we first recall that solving RMP leads to an upper
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bound to (6.1)–(6.7), as explained earlier. We can leverage the solution of the former
to establish the value of δu. Moreover, we can formulate δl as [19]:

δl = max{δu +	ω∗i ,0}. (6.21)

In particular, we recall that for a feasible solution of RMP, it must hold that∑
1≤i≤|I ′| fi ≤ 1. Therefore, we can establish the value of 	 to one, since following

a result from [19], the latter must represent an upper bound to the former. Moreover,
in (6.21), we set ω∗i to represent the optimal solution of the pricing slave subproblem.
The maximum operator therein is taken to ensure that the selected lower bound leads to
feasible (nonnegative) solutions.

6.6 Experimental Evaluation

6.6.1 Outline

We carry out a select few experiments to illustrate the performance benefits of our
framework. A comprehensive assessment of this nature can be found in [21]. Similarly,
the study in [21] includes a detailed discussion of all relevant implementation aspects
that would arise in a practical deployment. Finally, a rigorous complexity analysis of the
optimization framework we formulate here is also included in [21].

6.6.2 Experimental Setup

The macro cell setting we examine is illustrated in Figure 6.1. We set the macro cell
diameter to 800 m. We distribute the mobile users uniformly across the spatial area
of the cell. Each SBS and user can leverage 5 channels from a pool of 10 available
secondary channels, selected at random. We set the transmission bandwidth of each
such channel to 400 KHz. The primary channel’s bandwidth has been set to 1 MHz.

We set the popularity factors of the video files in the system induced by the mobile
users’ requests for streaming to exhibit a Zipf distribution featuring the parameter
ζ = 0.8 [22]. Concretely, in a sorted collection of files, according to their popularity,
the popularity factor of a video file ranked as the -th most popular is identified as

1/mζ∑|J |
j=1 1/j ζ

. The average data volume of a video file streamed in the system is set to

400 MB. Finally, to terminate the execution of Algorithm 4, we set ε = 0.03.
Table 6.1 summarizes our simulation parameters. We benchmark the performance of

our framework to that of the femtocaching system proposed in [2].

6.6.3 Experimental Results and Discussion

6.6.3.1 Streaming Data Rate against Storage Space
Here we investigate the enabled streaming data rate for a user, while we vary the storage
space at a small base station. In Figure 6.4, we show these results. All base stations
feature the same storage space. We can see that the enabled data rate increases with
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Table 6.1 Main Parameters and Their Values used in Our Simulations

Parameter Value

Diameter of macro cell 800 m

Transmission bandwidth of primary channel 1 MHz

Transmission bandwidth of secondary channel 400 KHz

Number of secondary channels 10

Number of secondary channels available at
SBS and mobile user 5

Average data volume of a video file 400 MB

Number of different video files in the system 200 (unless stated otherwise)

Distribution of video file popularity Zipf (parameter ζ = 0.8)

Average cache size 4 GB (unless stated otherwise)

Number of small base stations 14 (unless stated otherwise)

Number of mobile users 200 (unless stated otherwise)

The transmission range of a base station 100 m (unless stated otherwise)

The interference range of a base station 2× of transmission range

Approximation fidelity ε 0.03
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Figure 6.4 Enabled streaming data rate for a user against storage space at a small base station.
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the storage capacity of an SBS. Larger storage space means more video files can be
cached and served locally, thereby avoiding the need to stream from the macro base
station. In turn, the former can then lead to more parallel communication triplets being
established in parallel from different small base stations. Hence more users can be
streamed video files and at higher data rates. We can also see from Figure 6.4 that
our system outperforms femtocaching by 40%, which is quite considerable. This is
enabled by allowing parallel transmissions from different small base stations over the
same channel, as long as that does not lead to interference.

6.6.3.2 Streaming Data Rate against Number of Video Files
In these experiments, we vary the number of video files in the system and measure the
impact on the enabled streaming data rate to a mobile user. These results are shown in
Figure 6.5. We can see that video file diversity in the system has an adverse impact on the
enabled streaming data rate. Since the users can select from a broader set of files, it will
lead to a higher volume of data being sent over one channel. This in turn will increase
the amount of time required to stream the video files to all requesting users. Still, we
emphasize that relative to femtocaching, we enable performance gains of 39%, for lower
video file diversity, and 42%, for higher video file diversity, as observed from Figure 6.5.
Again, these performance advances stem from the same reason explained earlier.

6.6.3.3 Streaming Data Rate against Transmission Range of SBS
Here we explore the impact of the small base stations’ transmission rage on the enabled
streaming data rate for a user. These results are included in Figure 6.6. As expected,
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Figure 6.5 Enabled streaming data rate for a user against video file diversity in the system.
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Figure 6.6 Enabled streaming data rate for a user against transmission range of an SBS.

extending the transmission range helps boost the streaming data rate at which the video
files can be delivered to the mobile users. Concretely, a longer transmission range for
a small base station means a higher number of mobile users can be streamed video
data directly from it. Otherwise, some may be required to be served by the macro
base station in which case the used communication channels could not be reused by
any SBS across the cell. Hence the aggregate streaming capacity and enabled data rate
for the mobile users would be lower. We observe from Figure 6.6 that considerable
performance advances of 34–46% are enabled relative to femtocaching, induced by the
unique capability introduced by our framework, as explained earlier.

6.7 Benefits for Video Quality of Streaming Application

Our framework leads to considerable benefits in enabled streaming data rate for a
mobile user. These in turn will map to respective benefits in the delivered video
quality of the video streaming application running on the mobile devices of the users.
Concretely, the streaming data rate gains of up to 46% demonstrated here can lead to up
to 4–5 dB of respective video quality gains [23, 24], in the most popular video streaming
settings considered presently [25, 26], inclusive of emerging related applications
such as 360◦ video streaming to mobile virtual reality (VR) devices in 5G systems
[13, 27–30]. In addition, the performance advances introduced by our framework can
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also enable higher temporal–spatial resolution of the streaming video content and lower
initial playback/buffering delays for the related applications. All of these benefits can
similarly augment the quality of experience for the mobile user [31].

It is expected that the further performance benefits can be harnessed within the setting
of our framework, if the video streaming content is represented using scalable video
coding [32–34]. Then, higher utilization of resources and more effective performance
trade-offs can be pursued [12, 35–38]. This motivates future work based on the findings
presented in this chapter.

6.8 Concluding Remarks

We investigated selecting joint policies for caching, routing, and channel selection in
coordinated multi-cellular systems for edge-based video delivery. To overcome the chal-
lenges of this problem, arising from its large-scale nature, and thereby considerably
advance the state-of-the-art, we leverage two novel concepts in this context: column
generation, a mathematical framework for large-scale optimization that enables adapting
the number of variables considered in an optimization problem, and conflict graph, a
mathematical framework for effective modeling of interference in wireless networks.
Integrating these two, we then pursue a novel problem formulation that comprises a
master–slave problem structure for selecting optimal joint policies for caching, routing,
and channel selection in the this setting. The master problem comprises a subset of the
original problem variables and adaptively decides whether to introduce an additional
variable via a slave subproblem, which characterizes the reduction in the value of the
objective function with the addition of a new variable. The search for the optimal joint
policies concludes when no new variable can be introduced to further lower the value
of the objective function. Since leveraging a conflict graph still induces an exponential
complexity in the number of wireless links that can be prospectively activated simulta-
neously, we also investigated an effective method to quickly approximate the optimal
solution within an ε deviation, at lower computational complexity. We comprehensively
evaluated the performance characteristics of our analytical advances via realistic simu-
lation experiments, demonstrating a close to 50% improvement in expected streaming
data rate enabled for a mobile user relative to a competitive state-of-the-art method,
known popularly as femtocaching. Such performance benefits will enable up to 5 dB
improvement in video streaming QoE delivered to the mobile user.
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[7] E. Baştuğ, M. Bennis, and M. Debbah, “Cache-enabled small cell networks: modeling
and tradeoffs,” in Proceeding of the International Symposium of Wireless Communications
Systems, Barcelona, Spain, IEEE, Aug. 2014, pp. 649–653.

[8] P. Ostovari, A. Khreishah, and J. Wu, “Cache content placement using triangular network
coding,” in Wireless Communications and Networking Conference (WCNC), 2013, IEEE,
2013, pp. 1375–1380.

[9] N. Karamchandani, U. Niesen, M. A. Maddah-Ali, and S. Diggavi, “Hierarchical coded
caching,” in 2014 IEEE International Symposium on Information Theory (ISIT), 2014,
pp. 2142–2146.

[10] J. Chakareski and P. Chou, “RaDiO edge: rate-distortion optimized proxy-driven stream-
ing from the network edge,” IEEE/ACM Transactions on Networking, vol. 14, no. 6,
pp. 1302–1312, Dec. 2006.

[11] J. Chakareski, P. Chou, and B. Girod, “Computing rate-distortion optimized policies for
hybrid receiver/sender driven streaming of multimedia,” in Proceedings of the Asilomar
Conference on Signals, Systems, and Computers, vol. 2, IEEE, Nov. 2002, pp. 1310–1314.

[12] J. Chakareski, “In-network packet scheduling and rate allocation: a content delivery
perspective,” IEEE Transactions on Multimedia, vol. 13, no. 5, pp. 1092–1102, Oct. 2011.

[13] J. Chakareski, “VR/AR immersive communication: caching, edge computing, and trans-
mission trade-offs,” in Proceedings of the SIGCOMM Workshop on Virtual Reality and
Augmented Reality Network (VR/AR Network), ACM, Aug. 2017.

[14] K. Poularakis, G. Iosifidis, and L. Tassiulas, “Approximation algorithms for mobile data
caching in small cell networks,” IEEE Transactions on Communications, vol. 62, no. 10, pp.
3665–3677, 2014.

[15] K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu, “Impact of interference on multi-hop
wireless network performance,” Wireless networks, vol. 11, no. 4, pp. 471–487, 2005.

[16] T. Ho and D. Lun, Network Coding: An Introduction. Cambridge University Press, 2008.

[17] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and B. Leong, “A random
linear network coding approach to multicast,” IEEE Transactions on Information Theory,
vol. 52, no. 10, pp. 4413–4430, 2006.

[18] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE Transactions on
Information Theory, vol. 46, no. 2, pp. 388–404, 2000.

[19] D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization, vol. 6, Belmont, MA:
Athena Scientific, 1997.

[20] L. S. Lasdon, Optimization Theory for Large Systems, North Chelmsford, MA: Courier
Corporation, 2013.

[21] A. Khreishah, J. Chakareski, and A. Gharaibeh, “Joint caching, routing, and channel
assignment for collaborative small-cell cellular networks,” IEEE Journal of Selected Areas
in Communications, vol. 34, no. 8, pp. 2275–2284, Aug. 2016.

[22] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and Zipf-like
distributions: evidence and implications,” in INFOCOM ’99. Eighteenth Annual Joint



Joint Policies for Caching, Routing, and Channel Selection 123

Conference of the IEEE Computer and Communications Societies, vol. 1, IEEE, 1999,
pp. 126–134.

[23] J. Chakareski, “Informative state-based video communication,” IEEE Transactions on Image
Processing, vol. 22, no. 6, pp. 2115–2127, June 2013.

[24] J. Chakareski and P. Frossard, “Adaptive systems for improved media streaming experience,”
IEEE Communications Magazine, vol. 45, no. 1, pp. 77–83, Jan. 2007.

[25] J. Chakareski, “Uplink scheduling of visual sensors: when view popularity matters,” IEEE
Transactions on Communications, vol. 2, no. 63, pp. 510–519, Feb. 2015.

[26] J. Chakareski, “Joint source-channel rate allocation and client clustering for scalable
multistream IPTV,” IEEE Transactions on Image Processing, vol. 24, no. 8, pp. 2429–2439,
Aug. 2015.

[27] J. Chakareski, R. Aksu, X. Corbillon, G. Simon, and V. Swaminathan, “Viewport-driven
rate-distortion optimized 360◦ video streaming,” in Proceedings of the International
Conference on Communications, IEEE, May 2018.

[28] X. Corbillon, A. Devlic, G. Simon, and J. Chakareski, “Viewport-adaptive navigable 360-
degree video delivery,” in Proceedings of the International Conference on Communications,
IEEE, May 2017.

[29] X. Corbillon, A. Devlic, G. Simon, and J. Chakareski, “Optimal set of 360-degree videos
for viewport-adaptive streaming,” in Proceedings of the International Conference on
Multimedia, ACM, Oct. 2017, pp. 934–951.

[30] J. Chakareski, “UAV-IoT for next generation virtual reality,” IEEE Transactions on Image
Processing, vol. 28, no. 12, pp. 5977–5990, Dec. 2019.

[31] R. Matos, N. Coutinho, C. Marques, S. Sargento, J. Chakareski, and A. Kassler, “Quality
of experience based routing in multi-service wireless mesh networks,” in Workshop on
Realizing Advanced Video Optimized Wireless Networks at the International Conference
on Communications, IEEE, June 2012.

[32] ITU-T and ISO/IEC JTC 1, “Advanced video coding for generic audiovisual services,
amendment 3: scalable video coding,” Draft ITU-T Recommendation H.264 - ISO/IEC
14496-10(AVC), Apr. 2005.

[33] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the scalable video coding extension of
the H.264/AVC standard,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 17, no. 9, pp. 1103–1120, Sept. 2007.

[34] J. Chakareski, S. Han, and B. Girod, “Layered coding vs. multiple descriptions for video
streaming over multiple paths,” Multimedia Systems Journal, vol. 10, no. 1 pp. 275–285,
Jan. 2005.

[35] Q. Gong, J. W. Woods, K. Kar, and J. Chakareski, “Fine-grained scalable video caching,” in
Proceedings of the International Symposium of Multimedia, IEEE, Dec. 2015, pp. 101–106.

[36] R. Aksu, J. Chakareski, and V. Swaminathan, “Viewport-driven rate-distortion optimized
scalable live 360◦ video network multicast,” in Proceedings of the ICME International
Workshop on Hot Topics in 3D (Hot3D), IEEE, July 2018.

[37] J. Chakareski, “Wireless streaming of interactive multi-view video via network compression
and path diversity,” IEEE Transactions on Communications, vol. 62, no. 4, pp. 1350–1357,
Apr. 2014.

[38] Q. Gong, J. W. Woods, K. Kar, and J. Chakareski, “Multiple-cache pairing for fine-grained
scalable video caching and networking,” in Proceedings of the International Conference on
Future Internet Technologies, ACM, Aug. 2019.





Part II

Proactive Caching





7 Learning Popularity for Proactive
Caching in Cellular Networks
Khai Nguyen Doan, Thang Van Nguyen, and Tony Q.S. Quek

Video data have been shown to dominate a significant portion of mobile data traffic,
which has a strong influence on a backhaul congestion issue in cellular networks. To
tackle the problem, proactive caching is considered as a prominent candidate in terms
of cost efficiency. In this chapter, we study an end-to-end cache placement strategy based
on a popularity prediction of all videos, including published and unpublished ones. For
dealing with unpublished videos with unknown statistical information, features from the
video content are extracted and condensed into a high-dimensional vector. This type of
vector is then mapped to a lower-dimensional space. This process not only alleviates the
computational burden but also creates a new vector that is more meaningful and under-
standable. At this stage, different types of prediction models can be trained to anticipate
the popularity using information from published videos as training data. In addition,
this method also includes the process of updating the popularity of the published video
set based on predictions with an expert advice scheme. Regarding this, the upper bound
of the expected cumulative loss is analyzed to gain more insight into the theoretical
performance of the presented method.

7.1 Introduction

The current network infrastructure has faced a dramatic growth in data demand due to
the development of electronic devices. This is one of the biggest reasons for congestion
in wireless networks, especially for mobile data traffic in which video data make up
a significant portion and have been recorded to have a significant impact [1, 2]. For-
tunately, caching has been proposed as an effective method for tackling this problem.
Specifically, storing multiple copies of the most popular content items across access
points, e.g., base stations (BSs), provides a fast and cost-effective manner to serve users.
Although there are several points from which caching can be deployed, BSs are an
attractive choice because they are capable of serving multiple users on wide areas. In
the case of a cache hit,1 the long-distance communications from users to content server
can be altered by short-range links to a nearby BS.

1 The event that user’s requested items can be found in local cache memories.
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7.1.1 Background and Motivation

Caching is an attractive field that appeals to many research works. These works target
different aspects of caching advantages, such as improving the cache-hit ratio, reducing
the delivery power cost, and latency. For example, the authors of [3–7] sought to design
optimal cache placement policies either to enhance the user’s quality of service (QoS)
or increase the energy efficiency. However, there are many studies that are based on an
assumption of having precise content popularity, where using a Zipf distribution is the
most common assumption. Meanwhile, this information is not available in practice and
requires appropriate estimation or prediction schemes. For this reason, another research
direction is formed that anticipates the popularity of online content items (specifically,
videos). Regarding this, the log-transformed popularity of YouTube videos at different
times was discovered to have a strong correlation in the long run by authors of [8]. This
work also suggested a method that gave out predictions by observing the number of
views. In another work [9], the prediction is made by exploiting K-spectral clustering
technique. Besides that, in [10], the authors made use of both social influence among
users and video correlation to foresee future demand. In addition, [11] enhanced the
cache-hit rate via optimizing the cache replacement where learning short-term popular-
ity of content items was their approach.

There are very few works addressing the complete process from analyzing raw videos
to caching. In addition, published videos are the only focus. Meanwhile, considering
both published and unpublished video sets is a promising way to get even closer to the
network traffic offloading target. This is supported by previous research [12, 13], which
found out that there is a considerably large data volume uploaded to the YouTube server
every day. Further more, in a short time after publishing, many videos have their views
increased remarkably fast. Therefore, this chapter examines a caching strategy that takes
into account all videos that have not reached users’ awareness as a way to push caching
effectiveness to a new high. Unlike published videos, unpublished ones require different
approaches, because a lot of importantly related information is not available.

7.1.2 Approach and Main Outcomes

The main goal behind constructing the mentioned caching procedure is to minimize
the average backhaul load, which is always a highly important issue in current cellular
networks [14]. In particular, our consideration is a cellular network having many users
who are served by a BS given connection to the content server via backhaul links. At
the considered time, this server stores many videos that have been published to the
community. Concurrently, a set of new videos are available that are not acknowledged
by any user. In off-peak time, when caching is executed, a machine-learning approach is
taken to forecast if any of these new videos are worth fetching to cache memory before
to users’ requests. Regarding this, the published video set will serve as training data.
In addition, since the statistical information of published videos may vary over time,
a prediction with expert advice method is presented to keep the knowledge about this
video set up to date.
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7.1.3 Optimal Caching Policy

Our study is based on a system having a BS communicating with K users. The BS
has connection to a content server through backhaul links. In our model, videos in the
server are encoded with the fountain coding method [15], and users are required to
gather enough encoded data pieces to obtain the desired video files. We denote sv as the
total size of data segments required to reconstruct video file v. In our context, caching
will be deployed at the BS.

The server originally contains a set of videos that has already been published to
the community. Besides that, there is another set that is newly uploaded and has not
reached user awareness yet. We denote V the total number of available videos, including
those that have reached and have not reached user’s awareness; αv is a caching variable
indicating the proportion of video v stored in cache memory. We also use pv as the
popularity of video v. In order to minimize the average backhaul load, we come up with
the following problem formulation:

min
αi

V∑
v=1

(1− αv) svpv (7.1)

s.t.
V∑

v=1

αvsv = M, (7.2)

0 ≤ αv ≤ 1, (7.3)

where the function in (7.1) is the average load put on the backhaul. The cache memory
at BS can keep up to M data units as implied by (7.2). The optimal solution can be
presented by

αv =
{
C1 (s1) , for v =M (1)

Cw
({

sM(k)

}w
k=1

)
, for v =M (w) ,w = 2, . . . ,V ,

(7.4)

where

C1 (x1) = min

{
1,

M

x1

}
,

Cw
({xk}wk=1

) = min

{
1,

1

xw

(
M −

∑w−1

k=1
xkCk (xk)

)}
, w = 2, . . . ,V ,

(7.5)

and

M (w) = argmax
k=1,...,V

wpk . (7.6)

Note that (7.6) is actually extracting the wth greatest member in the sequence {pk}Vk=1.
The solution (7.4)–(7.6) requires knowledge of popularity from all videos that need to

be predicted. In terms of this, Figure 7.1 shows every step for estimating how popular a
video can be. At the “analyzing” stage, there are many substeps and all will be presented
clearly in the subsequent section.
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Figure 7.1 A general diagram of the step-by-step process for obtaining popularity values from
raw videos.

7.2 Learning and Predicting Popularity of Unpublished Videos

In terms of unpublished videos, analyzing video frames to anticipate the content pop-
ularity should be an appropriate choice when all statistical data are missing. However,
since there is a diversity in video types and user preferences nowadays, the features
collected from analyzing video frames should be sufficiently sophisticated. In addition,
this needs to be done without human assistance due to a vast amount of movies uploaded
daily. Moreover, processing a video should not take too much time in order to ensure
that those videos can be published on time. Regarding this, conventional methods like
tagging fail to adapt. Because of these strict constraints, deep neural networks appear
to be a potential solution in the video feature extraction step, which are also due to
recent breakthroughs in video and image domains. In Figure 7.1, the “analyzing” block
consists of three main steps, which are discussed in the next three sections.

7.2.1 Feature Extraction with Deep Neural Networks

The first step is called feature extraction. There are many designs for neural networks
that can be applied to this step to extract feature vectors from videos, including those
designed for image processing such as GoogleNet and AlexNet. Input images for those
networks can be produced by sampling from a given video. However, in this section
we would like to introduce a deep neural network model that sets itself apart from
other models by the capability of learning spatial and temporal features all at once.
This model is named the three-dimensional convolutional neural network. Readers may
refer to [16] for the details of the convolutional neural network (CNN). Regarding the
model structure, in order to perpetuate the original temporal information, regular two-
dimensional (2D) neuron network filters are altered by 3D ones. This turns out to be the
main difference between this propose and conventional CNNs. More implementation
and structural details can be found in the original paper [17].

7.2.2 Feature Clustering

After extracting features, the analyzing stage moves to the feature clustering step. This
step is done by merging a number of features into a group where overlapping between
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groups can possibly exist. The term overlapping, here, means that some features can
concurrently present in more than one group. A group of features may represent for
a type of video. For instance, a group consisting of features like fight scenes, guns,
and daggers may represent the action movie category. Therefore, for the ease of pre-
sentation, we call a cluster of features a video category (VC). From the design, as a
VC is formed by a large number of features, it is easier to distinguish a video from
the others. Nevertheless, this results in a high computational load. Criteria and rules
for designing the number of features in each VC may vary across applications and
depend on designer experiences. Let us consider the case where G VCs are formed,
and G is expected to be smaller than the dimension of extracted feature vectors from the
previous step.

First, the motivation for having this step is that feature vectors extracted in the previ-
ous step are high-dimensional vectors containing a large number of features that are
considerably diverse. Hence clustering helps reduce the amount of video properties
to a manageable degree. Second, the high-dimensional vectors provided from neural
networks are not fully understood. Thus having this step provides a basis for the next
one in which the original high-dimensional vector is mapped to another space having
G dimension. This next step will be detailed in the subsequent subsection. This process
not only helps reduce the computational burden but also creates a more understandable
feature vector type for videos.

7.2.3 Probability Estimation in Multi-class Classification

The final step in the analyzing stage is called feature mapping, which maps vectors of
extracted features to a lower-dimensional space (G-dimension to be specific). Let us call
the resulted vector the representation vector, where each element implies how likely the
video has features from a VC. Therefore, this new vector type is able to reveal to us the
characteristic of a video, and as the video becomes popular, we are able to know which
sets of features make it attractive.

This task can be converted into a multi-class classification problem where there are
G given classes, each corresponding to a VC. Then, a video is classified to these VCs,
however, we stop at the second-last step of the classification process to obtain the
probability vectors rather than a label. Each element in these vectors tells the probability
that a video belongs to a VC. Let us denote βij (x) the probability that a video having
feature vector x will belong to the VC i given only VC i and j . To this end, by providing
βij (x), the desired vectors can be obtained following the method proposed in [18],
which is based on a support vector machine (SVM).

Denote ri the probability that a certain video belongs to VC i, it can be obtained by
solving the following equation system.

ri = 1

G− 1

G∑
j=1,j �=i

βij

(
ri + rj

)
, (7.7)
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which is constrained by

G∑
i=1

ri = 1. (7.8)

ri ≥ 0,∀i. (7.9)

As has been proved in [17], the unique solution of ri,∀i is available given that βij >

0,∀i �= j . To this end, there can be several approximation methods for finding βij .
Hereafter, we describe a simple method for estimating this quantity. For the ease of
understanding, we recall that the separating hyperplane in the SVM method is the one
that has the greatest distance to the closest data points of all classes. Let us consider a
classification problem involving class i and j only. We denote δiw the distance between
training data point w of class i to the separating hyperplane and

δmax
i = max

w
δiw, for w in class i. (7.10)

Assume that the considered video has its feature vector separated from the hyperplane
a distance of δ. Then, the estimation of βij is as follows.

βij = 0.5+min

(
δ

δmax
k

,0.5

)
, (7.11)

where k = i if the feature vector of the considered video is on class i side and k = j if
it is on class j side.

The next step is the “popularity estimating” stage (see Figure 7.1), where a regression
model will be trained to predict video popularity.

7.2.4 Performance Evaluation

Recall in Section 7.2.1 we introduced C3D as a prominent candidate in the video feature
extraction task; however, this is not the only option for this stage. Besides that, there are
a variety of regression models that can be applied to predict the video popularity based
on representation vectors computed in the previous section. Therefore, this section is
devoted to evaluating our learning procedure performance under different choices of
feature extractors and regression models.

The figures showed in this section illustrate the performance of the presented method.
They are results from experiments conducted on a combination of YUPENN [19] and
UCF101 [20] datasets. YUPENN is a collection of 14 video clip types from a total of
420 videos, and UCF101 consists of 13,320 videos and 101 types. The two sets are
mixed into a single one, and we consider each video type as a VC; thus G = 115. Next,
the video set is separated to form unpublished and published sets in the proportion of
30% and 70%, respectively. The separation task guarantees that both subsets have all
115 VCs.

The offload ratio is presented as a function of network size, adjusted by the number
of users in Figure 7.2. In this experiment, we investigate two different sizes of cache
memory. The small scale corresponds to 20% of the server content (here we assume that
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Figure 7.2 The effect from the population growth in the cell on the offloading task under small
and large cache capacity scales. A (a) linear SVR and (b) regression tree are used as the
popularity predictor, respectively.
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Figure 7.3 The positive impact from the cache size enhancement on the offloading effectiveness.

the server stores only the mentioned videos set and no other data), and 40% for the large
scale. Then, all combinations between three neural network models and two regression
models are examined. Those neural networks are C3D, AlexNet, and GoogleNet, while
a linear support vector regression (SVR) and regression tree are chosen regression meth-
ods. As shown, the linear SVR predictor performs well with our representation vectors
formed in Section 7.2.3. The performance of both the linear SVR and regression tree
can be further improved by tuning and finding a better set of parameters. The figure
also suggests that C3D should be a better option for feature extractor than AlexNet and
GoogleNet. This example implies that combining linear SVR and C3D is a reasonable
approach in predicting unpublished video popularity.

In Figure 7.3, another influence on the offload ratio that is from cache capacity is
investigated. Although similar to the previous experiment, in this one, the linear function
of SVR is replaced by a radial basis—a nonlinear kernel. It can be seen that the presented
method is efficient, especially in the case of limited cache capacity. As an example, with
only 10% and 20% of cache capacity, the offloading performance jumps up to 35% and
55%, respectively.

Assume that each user has the most favorite VC that receives the highest request
probability from that user compared to other VCs. For each user we define the gap
between the request probability of the most favorite VC and the average request prob-
ability of other VCs as the preference intensity (PI) of that user. This quantity tells us
how easy videos can be cached to serve a certain user. Specifically, if this value is high,
the user has a clear preference; then caching videos in the user’s most favorite VC can
serve most of its requests. Meanwhile, if this value is low, the user seems to requests
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Figure 7.4 Graph illustrating how the difficulty of caching users’ favorite videos is driven by
their PI.

videos from all VCs evenly, which makes the caching job much harder. In Figure 7.4, to
evaluate such an effect, users are randomly given favorite VCs, and we represent PI by
the number of times that their request probability to favorite VCs is higher than that to
other VCs (horizontal axis). Two different user populations, 50 and 120, are involved in
the experiment with a cache that can store up to 30% of all videos. On the one hand, we
can see that it is hard to cache videos from mostly requested VCs when the PI is low,
which limits the offloaded data amount. On the other hand, when the PI is large enough
for our predictor to define the users’ favorite VCs, the offloading performance seems to
reach its peak and the impact from increasing PI turns negligible.

In addition, there is a swap in offloading performance of two cases K = 50 and K =
120 (K denotes the number of users as mentioned in Section 7.1.3) when the PI passes
a certain value, which is 4 with our setup. This can be explained as a double-sided effect
from adding more users. When the PI takes small values, the user request probability
to its favorite VCs is not significantly higher than of other VCs. Then, by adding more
users to the system, there is a chance for some VCs to have their popularity added,
hence becoming far higher than other VCs. Therefore, in this case, caching those VCs
in a crowded system is more efficient, which explains why the 120-user system is better
than the 50-user one when the user PI is less than 4.2 However, there is a second effect
that is more obvious when the user PI is high. This effect is that the added set of new
users has different preferences from the first set, which originally entered in the system.

2 The value 4 may applicable only in the presented setup. When the setup is changed, this value may change
as well.
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Figure 7.5 Performance of the proposed caching strategy with respect to the cache size condition
with the involvement of AlexNet and various regression models. Random caching is added as a
lower bound.

This effect creates more popular VCs; meanwhile, the cache capacity stays unchanged.
Thus in this high-user-PI case, the offloading task in a crowded system seems to be more
difficult, which can be seen as a turnaround when the user PI exceeds 4. To this point,
there should be a pair of cell population and user PI such that the offloading process
works at its optimum. Therefore, as the PI can be obtained (e.g., learning from history
data), the cell coverage can be adjusted to have a suitable number of users within. This
may be an interesting idea for future research.

In our previous experiments, AlexNet’s performance is a little bit below that of other
feature extractors. Hence it is chosen for the experiment shown in Figure 7.5, implying
that other choices of neural network models should result in better offload ratios. This
experiment focuses on examining the effect of predictor selections with 5 different
options, as shown in the figure. “Random caching,” where videos are cached in a com-
pletely random manner, is added and serves as a lower bound for performance evalu-
ation. The presented method is showed to outperform the benchmark random caching,
with a significant gap. Meanwhile, all the predictors seem to have similar performance
in this context.

7.3 Published Set Popularity Updating

The analysis in the “popularity growth predicting” block in Figure 7.1 is presented in
this section for keeping the published set information up to date. This stage is necessary
due to the uncertainty of user preference.
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Specifically, in each time interval, e.g., a day, the popularity of published videos in the
next interval will be predicted and used to make predictions for the unpublished group.
Our updating, however, will follow the prediction with expert advice method [21]. In
practice, each expert represents a predictor associated with the same or different sources
of information. For instance, one predictor is based on people’s download history, the
other predictor is based on unusual events, such as a scandal involving some singers
or actors. Such unusual events can attract immediate community attention, which may
reduce the attention paid on other content items. Hence each predictor can output a
different result and each of them can be considered as advice from an expert. Then the
main predictor will combine all of this advice to produce a final prediction.

In particular, let us consider a slotted time frame where a slot is equivalent to the time
interval mentioned earlier. Using our notations, pv (t) will be referred to as the pop-
ularity of the video v in time slot t , and p̂v (t) is a prediction of it. However, for the
ease of presentation, in this section, we consider the prediction for one specific video.
The process will be exactly similar when considering other videos in the published set.
Therefore, the video index will be dropped, i.e., p (t) and p̂ (t) are used instead. Let
assume we have E experts and each expert i gives a prediction ei (t) about p (t) that is
treated as a piece of advice. Then, our final prediction will be a weighted average of all
such advice:

p̂ (t) =
∑E

n=1 γi (t − 1) ei (t)∑E
n=1 γi (t − 1)

. (7.12)

For the rest of this chapter, this will be called the weighted average prediction (WAP)
method. In (7.12), the nonnegative parameter γi (t) is the weight given to each expert
i. We will show later that this parameter is decided according to the cumulative loss of
each expert i and is expressed as

Li (t) =
t∑

k=1

Linst (k,ei (k)) , (7.13)

with Linst (t,x) indicating the instantaneous loss at time t for a prediction x. Here x

may come from either experts or our predictor. This function is given by

Linst (t,x) = (p (t)− x)2 . (7.14)

Similarly, the cumulative loss of our predictor at t is formally presented as

L (t) =
t∑

k=1

Linst

(
k,p̂ (k)

)
. (7.15)

As mentioned about the weights, this parameter set will be updated at every time slot.
The general updating rule is to maintain the cumulative regret of the final prediction to
all experts at the lowest possible level. The cumulative regret to expert i counting up to
the t th slot is

Ri (t) = L (t)− Li (t) . (7.16)
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Based on the finding in [8] that the number of views of videos in the logarithm form
at different time instants are linearly correlated. Thus our analysis follows the popularity
variation hereafter:

p (t) = n
(
tref ,t

)
p
(
tref

)+ ε (t) , (7.17)

where ε (t) is an instantaneous variation following a 0-mean distribution. This quantity
is driven by many factors such as the popularity of other videos, news, and government
restriction. Some may have a positive effect, making a particular video more popular,
while some others may not. Therefore, it is reasonable to have an approximation that
ε (t) ∼ N

(
0,σ2

)
.3 The reference time of the considered video is tref which is usually

the time when it is published. The parameter n
(
tref ,t

)
can be estimated from history

data. Specifically, this estimation process can be described as follows.
Assume we want to estimate n

(
tref + τ,tref

)
. Let tv,ref indicate the reference time

of video v. Denote S = {v|tv,ref + τ < tpresent }, where tpresent is the current time slot.
S is the index set of videos that have their reference slot earlier than the current time
slot by at least τ slots. S will be used as data to estimate n

(
tref + τ,tref

)
. According to

[22], this estimation is expressed as

n̂
(
tref + τ,tref

) =
∑
v∈S

(
pv
(
tv,ref + τ

)− p̄v
(
tv,ref + τ

)) (
pv
(
tv,ref

)− p̄
(
tv,ref

))
∑
v∈S

(
pv
(
tv,ref

)− p̄
(
tv,ref

))2
,

(7.18)

where

p̄ (t) = 1

|S|
∑
v∈S

pv (t) . (7.19)

The notation |•| implies the cardinality of a set. To this end, the prediction of expert i

about the given video takes the following form:

ei (t) = n̂
(
t,tref

)
p
(
tref

)+ φi (t) . (7.20)

The first right-hand-side term in (7.20) corresponds to trend prediction, while the second
term is the instantaneous change prediction. In practice, different experts associated with
different information sources may provide different advice regarding the instantaneous
variation.

Now equation (7.13) can be expressed as

Ln (t) =
t∑

k=1

(ei (k)− p (k))2 =
t∑

k=1

(
Di (k)+ φi (k)− ε (k)

)2
, (7.21)

with Di (t) denoting the trending popularity estimation error from expert i at time t .
For the presentation of subsequent subsections, we use � to denote the index of the best
expert that has the smallest cumulative loss at the considered time, i.e.,

L� (t) = min
i

Li (t) . (7.22)

3 Normal distribution with mean 0 and variance σ2.
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7.3.1 Cumulative Loss Expectation

Different WAP methods are presented in [21] characterized by different ways to define
the weight set γi,∀i ∈ {1, . . . ,E}. Moreover, the difference between cumulative loss of
our predictor and that of expert � is showed to be upper-bounded by a function of t and
E. Let us denote that function as h (t,E). Then, we have

L (t) ≤ h (t,E)+ L� (t) , (7.23)

where f takes different forms for different WAP methods. To this end, we can further
analyze the upper bound as follows.

L (t) ≤ h (t,E)+ L� (t)

≤ h (t,E)+min
(
Li (t) ,Lj (t)

)
,∀i �= j,

(7.24)

which leads to

E [L (t)] ≤ h (t,E)+min

(
E

[
min
i �=j

(
Li (t) ,Lj (t)

)])
, (7.25)

where E [•] denotes the expectation. The expectation term on the right-hand side will
be derived in the next section as a two-expert scenario.

7.3.2 Two-Expert Scenario

This section is devoted to analyzing the two-expert case, so we will use indexes 1 and
2 instead of i and j . In addition, the distribution ε (t) is assumed to have variance
1 for simplicity. The result for the more general case of variance σ2 can be obtained
straightforwardly and will be mentioned later.

From (7.21), we have

L1 (t)− L2 (t) = 2
t∑

k=1

(
D1 (k)+ φ1 (k)−D2 (k)− φ2 (k)

)
ε (k)

+
t∑

k=1

(
D2

1 (k)+ φ2
1 (k)−D2

2 (k)− φ2
2 (k)

)
.

(7.26)

Hence, under the condition of a given L2 (t), the cumulative loss of the first expert will
follow a Gaussian distribution with mean

μ =
t∑

k=1

(
D2

1 (k)+ φ2
1 (k)−D2

2 (k)− φ2
2 (k)

)
(7.27)

and standard deviation

κ = 2
t∑

k=1

(
D1 (k)+ φ1 (k)−D2 (k)− φ2 (k)

)
ε (k) . (7.28)
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Therefore, the probability density function (PDF) of L1 (t) conditioned on L2 (t) is
written as

fL1(t)|L2(t) (x1|x2) = κ
√

2π exp

(
− 1

2κ2

(
x1 − x2 − μ

)2
)

. (7.29)

In addition, we can figure out from (7.21) that L2 (t) follows a noncentrality chi-
squared distribution, thus

fL2(t) (x2) = 1

2
exp

(
−x2 + d

2

)(x2

d

) t
4− 1

2
I t

2−1

(√
x2d

)
, (7.30)

where

I t
2−1

(√
x2d

)
=
+∞∑
k=0

(√
d/2

)2k+t/2 −1

k! 
 (k + t/2 )
x

k+t/4 −1/2
2 (7.31)

is the modified Bessel function of the first kind, and

d =
T∑

k=1

φ2
2 (t) . (7.32)

To this end, we have

fL1(t),L2(t) (x1,x2) = fL1(t)|L2(t) (x1|x2)× fL2(t) (x2)

= exp

(
−
(
x1 − x2 − μ

)2

2κ2
− x2 + d

2

)
I t

2−1

(√
x2d

)
2κ
√

2π

(x2

d

) t
4− 1

2
.

(7.33)

Then the closed-form of E [min (L1 (t) ,L2 (t))] can be derived following
Theorem 7.1.

theorem 7.1 Two random variables L1 (t) and L2 (t) have the joint PDF as in (7.33),
then, the expectation of their minimum can be expressed as

E [min (L1 (t) ,L2 (t))] = exp
(− d

2

)
4

∑+∞
k=0

21−2k−t/2dk

k! 
 (k + t/2)
�k, (7.34)

with

�k =
k+ t

2−1∑
n=0

{(
k + t

2 − 1

n

)
(−1)k+

t
2−n

(
1

2κ2

) n+1
2




(
n+ 1

2
,

(
2μ + κ2

)
8κ2

2)

×
(
k + t

2 − n− 1
)

!

κ2k+2−2n

(
μ + κ2

2
+ 2

(
k + t

2
− n

))}
(−2)k+

t
2 κ2k+t+2

exp
(
κ2

8

) . (7.35)

Proof: See Section 7.5 (Appendix).
Now, for the case of σ2-variance noise, the expression (7.21) can be modified corre-

spondingly as follows

Li (t) /σ2 =
t∑

k=1

((
Di (k)+ φi (k)

)
/σ − ε (k)

)
. (7.36)
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Figure 7.6 Influence of σ2 on the best expert in two-expert scenario, with the vertical axis in a
logarithm scale. Three different cases about the knowledge of distribution of the instantaneous
change ε (t) are considered.

Note that ε (k) still follows the standard normal distribution. Therefore, by treating
Li (t) /σ as L′i (t), Di (t) /σ and φi (t) /σ as D′i (t) and φ′i (t), respectively, we obtain
E
[
L′1 (t) ,L′2 (t)

]
. This, by multiplying with σ2, gives us the desired result.

Figure 7.6 presents, in a two-expert scenario, the influence of σ2 on the expected
cumulative loss of expert �. This figure also verifies that our result in Theorem 7.1
matches that from the simulation. The three considered cases are when the true distribu-
tion of ε (t) is known, when the empirical distribution is constructed from observations
and used instead, and when a very large variance Gaussian distribution is taken. The
third one represents the case when experts make random guesses. Finally, the situation of
multiple experts is showed in Figure 7.7. The upper bound curves are obtained by plug-
ging the final result of this section to the second term on the right-hand side of (7.25).

7.4 Summary

In this chapter, we discuss a backhaul load alleviation method in cellular networks.
The load minimization task is formulated in the form of linear programming with
a closed-form solution provided. However, the solution still requires the knowledge
of video popularity. Therefore, a raw-video-to-cache-content framework is presented,
which estimates the probability that videos from both published and unpublished types
are requested by users. This multi-step process extracts user preference from statistical
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Figure 7.7 The derived upper bound with actual loss obtained via simulation in a multi-expert
scenario.

information of published videos to predict the popularity of an unpublished set. In
addition, due to the uncertainty of user preference, the popularity of published videos
needs to be kept updating, which is done based on predictions with the expert advice
method. Finally, the effectiveness of the whole procedure is illustrated via various
experimental results.

7.5 Appendix: Proof of Theorem 7.1

Using (7.33), we have

P (L1 (t) ≥ y,L2 (t) ≥ y) =
+∞∫
y

+∞∫
y

fL1(t),L2(t) (x1,x2) dx1dx2 (7.37)

= 1

4

+∞∫
y

(x2

d

) t
4− 1

2
I t

2−1

(√
x2d

)
exp

(
−x2 + d

2

)
erfc

(
y − x2 − μ
κ
√

2

)
dx2 (7.38)

= 1

4
exp (−d/2 )

∑+∞
k=0

dk

k! 
 (k + t/2 ) 22k+t/2 −1
J (k,y), (7.39)
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where

J (k,y) =
+∞∫
y

x
k+ t

2−1
2 exp

(
−x2

2

)
erfc

(
y − x2 − μ
κ
√

2

)
dx2. (7.40)

To this point, based on Leibniz’s integral rule, taking the derivative of the CDF
expression in (7.39) gives us the PDF as follows

∂J (k,y)

∂y
= − 2

κ
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2π
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√
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in which
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and

F (n,m,q,l) �
+∞∫
n

xl exp
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(7.44)

From (7.42), we can obtain

E [min (L1 (t) ,L2 (t))] = 1

4
exp
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−d

2

)∑+∞
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Note that with four given arguments as in (7.46), the expression (7.44) can be computed
as follows:

F
(

y,
1

2κ2
,
μ − y

κ2
+ 1

2
,k + t
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(7.47)

It can be seen that combining (7.47) with (7.46) yields an expression containing a
sequence of sum of integrals with respect to y. Terms in that sequence have the same
form, and each of them can be computed as follows:

+∞∫
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yexp
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)
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2
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2−n2κ2exp
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2
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)
,

(7.48)

where the left-hand side of (7.48) is the form of each integral term in the sequence
obtained by plugging (7.47) into (7.46). Obtaining (7.45) to (7.48) completes our proof.
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8 Wireless Edge Caching for Mobile
Social Networks
Yuris Mulya Saputra, Dinh Thai Hoang, Diep Nguyen, Eryk Dutkiewicz,
and Dusit Niyato

Wireless edge caching for mobile social networks (MSNs) has emerged as one of the
prospective solutions for providing reliable and low-latency communication services for
mobile users on social networking. In this chapter, we first give an overview of MSNs,
including their development and challenges. We then discuss mobile edge caching
(MEC) paradigms to address emerging issues for MSNs, e.g., service delay, users’
experience, and economic efficiency. In addition to the advantages, the development
of MEC networks also has some key challenges such as hierarchical architecture of
MEC networks, proactive caching, privacy, and security issues. We thus review recent
advanced approaches to cope with challenges when MEC networks are deployed
in MSNs. Afterward, we discuss a novel MEC framework that can address some
emerging issues for caching at the edges in MSNs. Specifically, the framework can
authenticate MSN users based on public-key cryptography and predict their content
demands utilizing a matrix factorization method. Based on the prediction, an optimal
content caching policy for an MEC node is presented to minimize the average latency
of all MSN users under the MEC nodes’ storage capacity constraints. Furthermore,
this framework provides an optimal business model to maximize the revenue for
MSN service providers based on the demands of the MSN users and the obtained
optimal caching policy. Through performance evaluation, we show that the considered
framework outperforms other conventional policies in terms of the average delay and
revenue and is expected to be the potential solution for future mobile social networking.

8.1 Introduction

The vast evolution of internet technology has promoted the development of online social
networks (e.g., Twitter, Facebook, Instagram, and LinkedIn) to connect people with
common interests. Following the significant improvement of mobile communication
systems (e.g., cellular networks, WLAN, and device-to-device [D2D] communications)
as well as the proliferation of smart devices (e.g., smartphones and tablets), the social
networking services have also improved their capability in mobile social networks.
A mobile social network (MSN) is a new model for mobile users to share contents and
communicate through their mobile devices. The development of MSNs brings many
advantages to mobile users. Specifically, MSNs can create the virtual and physical
associations between MSN users and their social behaviors/relationships [1].

146
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In general, MSNs are deployed in a centralized architecture in which all contents are
stored at the content servers. This architecture enables effective resource management,
thereby providing high-quality services to mobile users based on the existing network
infrastructure. Nonetheless, the recent tremendous popularity of mobile applications for
social networks (e.g., Instagram, Facebook, Twitter, WhatsApp, and YouTube) induces
a huge demand on bulky and diverse contents (e.g., photo sharing and video streaming).
Consequently, the development of MSNs leads to an explosion of mobile data traffic
on the backhaul link and leads to a significant challenge for MSN service providers.
In particular, a serious congestion may occur in the network, and thus MSN users
can suffer long transmission latency. One possible solution is to deploy more macro
base stations (MBSs) to mitigate the network traffic on the backhaul link. However,
the expensive cost for upgrading the backbone network becomes a main challenge
for network infrastructure providers and mobile network operators. Furthermore, the
additional deployment of MBSs cannot deal with content-duplicate problems. For exam-
ple, multiple MSN users may require popular contents very often concurrently. Conse-
quently, the available bandwidth of the backhaul link is not effectively utilized due to
duplicate requests.

Recently, mobile edge caching (MEC) networks have been introduced as an alter-
native architecture to address the aforementioned problem. An MEC network is a
distributed caching network in which MEC nodes are deployed near mobile users to
help them access their favorite content easier. In other words, instead of downloading
content from content servers, mobile users can download requested content from MEC
nodes that are located nearby to reduce the service delay. In mobile communication
networks, the service delay is one of the critical parameters that determines QoS and
users’ satisfaction. In practice, two types of the delay are considered when a user
requires a content. The first delay is called content preprocessing time [2], which
occurs when some MSN contents have diverse data types (e.g., image processing and
video transcoding). Additionally, this delay can be used when MSN users are using
different kinds of smart devices. For example, when a video content is requested
by two mobile users using a smartphone and a tablet, the MEC node may need
to transcode for the video in order to adapt with the requested devices’ screens.
After the preprocessing time process, the MEC node will transmit the content to
the requested user during transmission time. The transmission time is calculated based
on the allocated bandwidth between the requesting user and its source node (e.g., its
associated MEC node) and the content size. This type of the delay is known as content
downloading time.

The general model of an MEC network is illustrated in Figure 8.1. This new paradigm
aims to achieve low latency, high reliability, and high network effectiveness due to
nearby access connections. Furthermore, the deployment of MEC networks can reduce
network congestion on the backhaul links significantly. The reason is that duplicate
contents can be downloaded from nearby MEC nodes. As a result, the users’ experience
can be greatly improved due to nearby reliable wireless access connections and low
latency services. In addition, the costs of mobile network operators and the network
infrastructure providers can be minimized because the network traffic can be reduced
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Figure 8.1 A general model of wireless edge caching for MSNs.

significantly. Overall, the potential benefits of utilizing mobile edge caching for MSNs
can be summarized as follows:

• Benefits to MSN users: MEC nodes usually provide fast and reliable wireless
network connections, e.g., WiFi connection. Thus energy consumption for com-
munications on the mobile devices is greatly reduced. Moreover, by distributing
popular content closer to the mobile users, the service delay can be significantly
reduced. Therefore, this leads to a great user satisfaction on social network
applications.

• Benefits to network infrastructure providers and mobile network operators:
When MEC networks are deployed, the network traffic can be decreased
significantly. This can help network infrastructure providers and mobile net-
work operators reduce expensive operational costs on the backhaul links [3].
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The reason is that they do not need to upgrade their infrastructure to meet users’
demands.

• Benefits to MSN service providers: Since the users’ experience are improved,
more users may join the MSN services. Therefore, MSN service providers’ profits
can be increased. Furthermore, MSN service providers can achieve the optimum
revenues by optimizing the MEC deployment under their users’ demands.

• Benefits to nearby local devices: The MEC networks architecture can open
potential applications through D2D communications in an ad hoc manner [4].
In particular, several MSN users’ devices can collaborate with other devices to
create social ties/relationship, social neighbors, and communities in an oppor-
tunistic way. For example, MSN users with common interests can share favorite
entertainment program content to each other. As such, a reliable local connection
such as Bluetooth, WiFi, or WiFi Direct can be directly utilized to ensure the
transmission efficient of MSN contents and provide low-cost deployment [1].

To that end, the major contributions of the chapter can be summarized as follows:

• Provide an overview about MSNs and the development of MEC networks for
MSNs.

• Discuss emerging MEC models, challenges, and potential solutions for the devel-
opment of MEC networks for future MSNs.

• Introduce a dynamic edge caching approach that can simultaneously address
users’ privacy, delay tolerance, and economic efficiency.

• Highlight open issues and some potential future research directions of MEC for
MSNs.

The rest of this chapter is organized as follows. In Section 8.2, we discuss challenges
together with potential solutions for the development of MEC for MSNs. Then, in
Section 8.3, we introduce a novel MEC framework that can simultaneously address
some emerging issues in MSNs such as privacy, quality of services, and economic
efficiency. Finally, Section 8.4 summarizes this chapter and highlights some open issues.

8.2 Edge Caching for Mobile Social Networks: Challenges and Solutions

8.2.1 Hierarchical Social-Network Content Caching

A general model of an MEC network for MSNs is illustrated in Figure 8.1. In this
model, MEC servers are deployed in a hierarchical architecture to connect the content
servers, the MBSs, the MEC nodes, and the MSN users. In particular, the hierarchical
caching architecture includes four main layers. The first layer contains the content
servers that store all MSN content. In a centralized architecture, this layer is the most
crucial one because all content can be downloaded from the content servers only through
the backhaul links. However, as mentioned in Section 8.1, the centralized architecture
induces the heavy network traffic on the backhaul links. Hence, we can use an alternative
distributed architecture to mitigate the workloads at the first layer. For example, some
favorite MSN content can be stored at the second layer together with MBSs. Moreover,
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the MSN content can be stored at the MEC nodes that connect directly to the MBSs at
the third layer. These MEC nodes are designed to accommodate particular purposes
for MSN users with similar interests. To maximize the number of cached contents
in MSNs, we can also exploit the local connections (e.g., Bluetooth, WiFi, and WiFi
Direct) of smart devices via D2D communication links at the fourth layer. Based on
the aforementioned distributed architecture, the network traffic on the backhaul link can
be reduced significantly. Furthermore, this architecture can improve users’ experience,
reduce operational cost for network infrastructure providers and mobile network opera-
tors, and raise higher profits for MSN service providers.

To optimize the network traffic distribution in the hierarchical MEC networks, two
techniques can be applied. First, storage capacity of a node at the higher layer is always
set to be larger than that of the one at the lower layer [5]. For example, the capacity
of an MBS is larger than that of an MEC node. The reason is that MBSs need to act
as a central controller to maintain communications and distribute the required content
between the first and third layer. Second, the peak-hour data traffic can be aggregated
opportunistically according to different layers [6]. As such, if workloads cannot be
served by nodes at the lower layer due to their limited capacities, nodes at the higher
layers can handle those unhandled workloads. Hence a more proportional burden among
nodes can be achieved. For example, suppose that storage capacity S is equally allocated
into four MEC nodes and thus each MEC node has S

4 to cache MSN contents. Then, if
we decrease the storage capacity of each MEC node to S

8 and apply the remaining S
2

to an MBS in the higher layer, each MEC node can serve up to S
8 + S

2 = 5S
8 mobile

users. However, this condition applies only when workloads of each MEC node has not
occurred simultaneously.

The efficiency of hierarchical communications on distributing MSN workloads using
a coded caching was further investigated in [7]. The objective is to minimize transmis-
sion rates among different layers. In particular, the content servers at the first layer are
represented as the root nodes, while nodes at the second and third layers can operate as
parent and child nodes, respectively. Generally, an uncoded caching mechanism can be
used to store the same parts of contents at some nodes. For example, the first half part of
two contents c1 and c2 are stored at two parent nodes n1 and n2 equally. When mobile
user u1 and u2 request full-size content c1 through n1 and c2 through n2, respectively,
the root node can transmit the second half part of those contents to the parent nodes
simultaneously. In particular, the root node needs to send the second half part of c1

to n1 and the second half part of c2 to n2 via unicast transmission. As a result, the
transmission rate between a root node and a parent node can be denoted by R

2 , thus
the total transmission rate is R

2 + R
2 = R. To reduce the total transmission rate to R

2 ,
a coded caching mechanism using a multicasting opportunity approach is applied. In
this mechanism, parent nodes n1 and n2 can first cache the first and second half part of
the contents, respectively. Then, the root node can send common coded message to n1

and n2 to reconstruct full-size content via multicast transmissions. Based on the afore-
mentioned mechanism, the coded caching between a parent node and its corresponding
child nodes can also be applied to minimize the total transmission rate. It is shown that
this mechanism can achieve the optimal communication rates under the limited caching
storage capacity and heavy network congestion.
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Although the workload distribution of MSN contents can be greatly improved, how
and where to effectively cache MSN contents on different layers remain challenges. To
address these issues, we need to consider the storage capacity of nodes in all layers. This
aims to balance workloads between the computation and service latency in the hierarchi-
cal architecture. For example, if popular contents are mostly stored at the higher layer, it
will decrease the contention at the lower layer and maximize the workload aggregation.
However, this leads to a longer transmission latency. In practice, the consequence can be
worse when wireless channels and mobility of MSN users dynamically change over time
due to demands and social relationships. Therefore, strategies to select caching nodes
and to deliver MSN nodes to mobile users need to be further examined. (i.e., content
placement and delivery mechanisms).

8.2.2 Social-Aware Content Caching Placement and Delivery

Content placement and delivery for MSNs are always critical issues in caching strate-
gies. The primary reason is that the distributed architecture of wireless edge caching for
MSNs has the following key challenges in managing the caching policy:

• Small coverage: D2D communication ranges between MSN users and MEC
nodes are often very limited. Specifically, Bluetooth and WiFi Direct for
D2D connections have coverage ranges up to 10 and 60 m, respectively [8].
Accordingly, D2D connections are often deployed among MSN users in the
proximity, e.g., a viral video is shared between two mobile users at the bus stop.
Meanwhile, WiFi connections using IEEE 802.11b/g/n for MEC nodes have
operation ranges up to 70 m (indoor) and 250 m (outdoor). Thus the MEC nodes
are mostly deployed in specific areas to support users with similar interests. For
example, MEC nodes can be deployed at commercial areas (e.g., city market and
mall) to provide popular advertisement content for mobile customers. Therefore,
one needs to determine the optimal caching strategy based on the social-aware
and location-based demand of MSN users.

• Diverse contents and various connections: The optimal caching strategies are
often very complicated due to the hierarchical architecture of MEC networks and
the diversity of MSN content. In particular, an MEC node should identify the
demand of mobile users within its coverage. Furthermore, the MEC node needs
to observe the content size, preprocessing time, bandwidth capacity, and network
connections to find the optimal caching strategy.

• Limited storage capacity: In practice, MEC nodes and mobile devices have lim-
ited storage capacity. Hence the MEC nodes and the users’ devices need to select
the optimal content placement and delivery mechanisms. Moreover, since the
number of mobile users and data traffic have been growing [9], solutions to
optimize storage capacity as well as collaborative caching among MEC nodes
and mobile devices need to be further investigated.

In practice, content popularity and data traffic fluctuate due to the behavior of
MSN users [10]. This behavior is influenced by several features of the social network
relationship [1]:
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• Social tie: This feature represents connections among MSN users and/or MEC
nodes to share knowledge, information, feelings, and experiences. In this way,
according to the range of interactions and exchanges between two users/nodes,
social ties can be latent, strong, or weak.

• Community: This term indicates a set of MSN users with common interests based
on the degree of their social ties.

• Centrality: When a user or its associated MEC node has a high influence on other
users’ decisions, that user becomes a central node. Commonly, content requested
by the central node is likely to be requested by other users as well. To determine
the central node, we need to consider its degree (i.e., the number of social ties),
closeness (i.e., the distance among nodes), betweenness (i.e., the routing path
selection), and eigenvector (i.e., the influence of nodes estimation) [11].

• Social selfishness: This condition takes place when a user treats other users dif-
ferently based on the degree of social tie.

Based on the aforementioned challenges, the behavior of MSN users, and their social
relationships, we can determine the optimal content placement and delivery solutions.
The authors in [12] proposed a content placement and delivery policy based on the social
relationship priority. For example, if one of the nearest MSN users caches a requested
content, the requesting user can download the content via D2D links. Otherwise, the
requested content can be downloaded from the serving MEC node. The lowest priority
is applied when none of the available nodes caches the content. It is demonstrated that
this policy can efficiently improve the ratio of delivery rate and bandwidth consumption
up to 25% on the backhaul links.

Following the work in [12], the authors in [13] developed a new mechanism to allow
mobile users to share MSN contents in a more efficient way. This mechanism aims to
provide a content sharing scheme when the mobile users have limited D2D commu-
nication duration due to the restricted energy, i.e, battery life of their mobile devices.
Consider that some mobile users are deployed as content helpers to cache the contents
in their devices. Meanwhile, the other users act as content requesters, which request
the contents from the content helpers via D2D links. This set of content helpers is very
important for recovering the cached contents when some of the content helpers become
invalid due to the aforementioned limitation. For example, if a content helper fails to find
a requested content for a content requester, this invalid content helper can act as a relay
to deliver content. Thus the content requester can download the content from other valid
content helpers through the invalid content helper. This multi-hop mechanism leads to
a larger caching capacity in the network and helps improve the cache-hit ratio when a
content requester cannot obtain contents from one-hop D2D communications.

Another approach for choosing the important nodes for caching contents using D2D
and MBS communications was introduced in [14]. Particularly, two social-network lay-
ers are introduced. An MBS social network is deployed at the first layer to provide shar-
ing capability among MBSs and the Indian buffet model is adopted at the second layer
to express the social relationship among mobile users. To select very important users
and MBSs, their social-tie values from real data collection are considered. Specifically,
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the very important users and MBSs are chosen when their social-tie values are higher
than a specified social-tie value threshold. These nodes can cache the popular content
and provide traffic diversity to other requesting users and MBSs. It is shown that this
approach can achieve high throughput by optimizing the D2D and MBS communication
range and reducing the data traffic by offloading the traffic to the second layer.

The time duration of the social-aware content placement and delivery is also a signif-
icant factor that needs to be investigated. In particular, the authors in [7] showed that the
content placement and delivery should be implemented in different time. Typically, the
content placement should be performed when the network traffic is low. In the content
placement process, all cache-enabled nodes can store MSN content based on their social
relationship prediction. Conversely, the content delivery process should take place when
the network traffic is high, and thus MSN users can request content accordingly. Follow-
ing the aforementioned implementation, a content placement using time schedule along
with an adaptive location caching was proposed in [15]. In particular, content cached in
an MBS is adaptively changed based on the regularity estimation of the mobile users in
the serving area. In this approach, the MBS will cache the specific contents according to
the access history of the mobile users over specific time duration. Since MSN users are
dynamically moving to different locations over time, mobility pattern of the social group
can be adopted. For example, during different periods, a city park may be occupied
by dissimilar groups of MSN users. A group of sport-related users may come to the
park in the morning. Then, a group of students may use the park in the afternoon after
completing their schoolwork. In the end of the day, a group of family-related users can
walk through the park in the evening or at night. As a result, the MSN content should
be updated dynamically over different time periods to satisfy the demand of dissimilar
social groups. Based on their performance results and considering the time needed for
content placement and delivery, it will be possible to increase the data offloading ratio
and improve the caching efficiency.

The content sharing schemes also play an important role in social-aware content
placement and delivery. The authors in [16] introduced a cost-sharing service using a
sequential game formulation. In particular, a Stackelberg game is adopted to represent
the interaction between representative users and a caching node. The caching node acts
as the leader of the game, while the representative users are the followers. The idea is
that the representative users in each community compete to obtain contents from MEC
nodes or MBSs. Specifically, the users first complete the payment process based on the
requested content and specific space of the caching node’s storage capacity. Then, the
users in the same social group will share the payment and the cached contents. Using
this technique, a lower delay and higher hit ratio of distributing video content can be
achieved. Similarly, [17] considered the placement cost for content caching at MEC
nodes and MSN users along with an additional accessing cost for downloading required
contents. These mechanisms aim to address an incentive problem due to additional costs
in sharing contents among MSN users. It is shown that the proposed system can achieve
optimal social group utility and outperform the baseline approaches (i.e., selfish, phys-
ical reciprocity, and social trust caching schemes). Alternatively, a sharing mechanism
using seeding strategy and an opportunistic approach for MSN users was proposed
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in [18]. Specifically, several MSN users are selected to seed/cache the same content
based on two parameters: (1) their sharing impacts in online social networking and
(2) their dynamic positions in offline MSNs. These online and offline social interactions
will efficiently choose MSN users who work as followees to share the MSN contents
with their associated users who act as followers. Based on the performance evaluation,
the mechanism can reduce the network traffic significantly while compensating the
service delay of all users.

Another point of view for content placement and delivery was presented in [19].
Instead of downloading MSN content from MEC nodes or content servers, a user can
generate a specific content independently. In particular, the user will first upload the gen-
erated content to the associated MEC node or to the content servers. Then, the user will
suggest the content to communities and/or friends through social media networks. Sub-
sequently, the probability of other MSN users requiring that content will be increased.
It is shown that the proposed scheme can improve the service delay and cache-hit ratio
compared with the conventional methods (i.e., random and auction methods).

8.2.3 Proactive and Cooperative Social-Network Caching

Proactive caching and cooperative caching are two typical schemes to increase the
cache-hit rate and/or to reduce service delay of mobile users requesting MSN contents.
In the following, issues and approaches for these schemes will be discussed.

8.2.3.1 Proactive Caching
The first scheme is proactive caching, which predicts demands of the MSN content
and its popularity. Using proactive caching schemes, we can obtain the optimal caching
decision and maximize the cache-hit rate based on the current status of users’ requests.
As a result, quality of service (QoS) for the MSN users can be enhanced.

Typically, proactive caching mechanisms are developed based on machine learning–
based prediction. The authors in [20] introduced a learning-based approach to obtain-
ing initial information of popular MSN contents. In particular, the demand estimation
is determined based on the number of requests. Then, the prediction result from the
estimation is applied to find the optimal social-aware caching strategy. However, to
reduce workloads on the backhaul link, we need to determine the optimal time for their
prediction. Hence [11] showed that MSN content can be proactively predicted during
off-peak periods to enhance the number of contents cached at the MEC nodes. This
prediction is generated based on frequency of accesses, association among users, and
content patterns. In practice, a user is likely to appreciate MSN content that is highly
recommended by other important users with similar interests. Therefore, the future
correlation prediction in the network can be determined based on the interdependence of
MSN users through their social links and behavior. It is demonstrated that using machine
learning–based prediction in proactive caching can increase the cache-hit rate because
the requested users can download more preferred contents efficiently.

In general, popularity of MSN contents is subject to change over a specified time
duration due to the diversity of content requests. Therefore, users’ preferences play a sig-
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nificant role for future prediction. This parameter may rely on the context of users [21].
Specifically, the popularity of contents is observed based on the context information
of associated MSN users. This information includes users’ location, individual char-
acteristics (e.g., age, gender, personality, and mood), and users’ devices’ specification
at a particular time. Based on the context information, the MSN service providers can
provide service priority to their active users. For example, an MSN service provider
will prioritize a group of MSN users requesting similar content instead of MSN users
requiring the diverse content. By adding priority factors on similar content, the content
delivery can be optimized. Alternatively, the lower-priority content is transmitted right
after the higher-priority content is successfully downloaded by the requesting users.
As a result, the cache-hit rate can be increased. Another prediction scheme using an
alternative content-aware caching was introduced in [22]. In particular, the popularity
of unpublished MSN content is determined according to the social influence among
active users. In this scheme, the published contents are used as the training dataset.
This mechanism aims to address the problem when the popularity of content increases
quickly in a short period due to some reason (e.g., viral videos and copyright-violated
videos). The point is that the curiosity of MSN users may trigger a tendency to try
searching desired content immediately. The simulation results then demonstrate that the
proposed scheme can minimize the video loads on the backhaul links effectively.

8.2.3.2 Cooperative Caching
To further leverage the optimization of edge caching for MSNs, the second mechanism,
called cooperative caching, is investigated. This mechanism is defined as a collaboration
among active nodes to cache and share MSN contents based on users’ social interactions
and nodes’ storage capacity. In particular, the cooperative caching aims to decrease more
service latency for MSN users in the network. For example, requested contents can be
downloaded from the nearest adjacent nodes instead of directly downloading from the
content servers. Cooperative caching mechanisms mainly focus on the collaboration
with nodes at the same layer. For example, MSN users can request content from other
nearby MSN users via D2D links or from adjacent MEC nodes in the network.

An example of the cooperative caching using D2D links was presented by the authors
in [23]. This work proposes a fairness-aware cooperative caching to treat each user fairly
based on access probabilities. Specifically, each user’s device has the same probability of
being a caching node to satisfy individual fairness. Another example of D2D cooperative
caching using social wireless networks (SWNETs) was introduced in [24]. In particular,
MSN users build a cooperative caching network to share common interests in electronic
books based on Amazon Kindle system. This approach aims to minimize the cost of
downloading the content from a service provider. Consequently, it leverages the sharing
process locally via SWNET. To guarantee that the method is legally implemented, a
peer-to-peer incentive technique is applied. Particularly, commercial benefits are shared
among the cache-enabled devices, the service provider, and the MSN content providers.
To improve D2D cooperative caching performance, a cooperative coded caching was
proposed in [13]. As storage capacity of MSN users’ devices is limited, MSN contents
are cached in several devices using a coded caching mechanism. In this mechanism,



156 Yuris Mulya Saputra, Dinh Thai Hoang, Diep Nguyen, Eryk Dutkiewicz, and Dusit Niyato

fragments of the same contents are stored at different devices and transmitted using
multi-hop cooperative caching efficiently. It is observed that by increasing the utility
of D2D links for cooperative caching, we can obtain lower service latency and higher
cache hit ratio for the requested contents.

Cooperative caching also can be performed through MEC nodes. The authors in [25]
proposed a cooperative beam-forming scheme using multiple MEC nodes with limited
storage capacity. The purpose is to transfer preferred MSN contents to MSN users when
their signal strength is sufficient. In particular, the beam-forming cooperation among the
MEC nodes occurs when multiple nodes cache the same content requested by a user. In
another work [26], the authors introduced a scalable video coding caching mechanism
for cooperative operators. As such, the operators cooperate using their adjacent MEC
nodes to avoid long service delay from the content servers. To provide diverse qualities
for each layer, this approach stores dissimilar layers of a video in different MEC nodes.
When a user requests a full video, MEC nodes that contain a base layer (i.e., the most
important information) will transfer that information first. Afterward, the enhancement
layer (i.e., less important information) from other MEC nodes can be transmitted to pro-
vide the higher-quality video. Furthermore, another distributed caching and cooperation
employing femto base stations was presented in [27]. Particularly, a group of femto
base stations dynamically cooperates to send MSN content to a requesting user based
on a per-user request. Finally, a combined cooperative caching mechanism to maximize
the diversity of MSN content and enhance cache-hit probability was studied in [28].
In this work, several MEC nodes are reserved for caching the most popular content,
while other MEC nodes can cache the less popular content. Similar to the effectiveness
of cooperative caching via D2D links, the cooperative caching through MEC nodes
will provide faster content delivery and better cache-hit ratio compared with the non-
cooperative caching scheme.

8.2.4 Delay Tolerance Social-Network Caching Policies

Based on proactive and cooperative caching policies, we can obtain the optimal caching
policy that meets the delay requirement or minimizes the service delay. The delay
tolerance policy for multi-layer video contents was studied in [16]. In practice, a video
content typically brings a substantial delay due to its vast data size. Thus to maximize
the satisfaction and minimize the payment cost for mobile users in the social group,
several layers of the video can be cached at different MEC nodes or users’ devices.
Similarly, the authors in [18] introduced an optimization technique to minimize the
network traffic while meeting the delay condition of all MSN users. This technique
will find the best content placement strategy for the selected users through online and
offline social MSNs. Since each user may access mobile applications in MSNs with
various frequencies of accesses, the service delay of each user may be different. Dif-
ferent from [16, 18], a preset delay of a requested content was introduced in [15].
Specifically, the delay is applied to choose different types of communications to send the
requested content. For example, when a user requests content that can be likely trans-
mitted within the preset delay, D2D communications can be used for this user directly.
Otherwise, the user can download the content from an MEC node or an MBS. Similarly,
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the authors in [23] pointed out that the lifetime of each cached content may be dissimilar.
The content is considered to be valid if the buffer delay does not exceed its lifetime
threshold. Otherwise, the content can be considered to be useless. It is shown that the
delay requirements to share and download content are important to improve the users’
experience and reduce the service costs.

Another way to minimize the delay for MSN services is to further exploit optimal
caching policies. For example, the workload caching problem to minimize the total
delay for MSNs was introduced in [6]. In particular, MSN content is adaptively stored
at different layers of MEC nodes. This aims to find computational loads for the delay
minimization. Taking into account only one node for each layer, the minimum service
delay is obtained. This is achieved by considering the content size, network bandwidth,
amount of computations, and other nodes at the different layers. Another approach
for minimizing the total delay cost of all MSN users was proposed in [5]. In this
work, the delay is considered to be equivalent with the bandwidth consumption and
users’ experience. To address optimization problem for the delay minimization, a binary
decision variable is applied to represent which server will deliver the contents. Similar to
[5, 6], the authors in [29] also proposed an optimization approach to reduce the average
downloading delay of all MSN users using D2D communications and femto base station
(FBS) connections. Particularly, there are four main parameters used to decide content
placement: network topology, content request probability, storage capacity, and band-
width allocation. To minimize the delay, a joint strategy using two variables for caching
decision and transmission policy was developed. The first decision variable represents
whether the desired content should be cached at a specific node or not. Meanwhile, the
second one indicates whether a particular node is chosen to send the requested content
to its corresponding user or not. It is observed that the aforementioned approaches can
reduce the average delay and increase the local cache hit rate efficiently.

In [25], a comparison between the centralized and distributed approaches of cached
MSN contents was presented. Both approaches consider a delay minimization prob-
lem under limited storage capacity. In the centralized approach, the central controller
is responsible for performing the content placement. Then to solve the optimization
problem, the centralized approach adopts a greedy algorithm. On the other hand, there
exists no central controller in the distributed approach, and thus the content placement
is locally carried out by base stations. In the distributed approach, a distributed algo-
rithm with low-complexity is applied to locally store the contents at the base stations.
Although the centralized approach can achieve service delay performance comparable
to the distributed approach, the computation time and communication overhead of dis-
tributed approach can be significantly reduced compared with those of the centralized
approach.

8.2.5 Privacy and Security for Edge Caching in Mobile Social Networks

Privacy and security are also main concerns for the development of edge caching in
MSNs due to many factors, such as low-security protection at MEC nodes and sensitive
data of MSN users. For example, attackers can breach users’ information by accessing
to the MEC nodes illegally. As such, personal information of users (e.g., location, phone
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number, email address, and interests) can be exploited illegally when they register, login,
and access MEC nodes. Furthermore, viruses can be spread among MSN users when
they download content from untrustworthy users or MEC nodes. This is even worse
when many social networking applications are lack of sufficient privacy protection [4].
Therefore, solutions to protect users when they access MSN contents need to be taken
into consideration.

8.2.5.1 Privacy
One approach to protect the privacy of MSN users was introduced in [30]. In particular,
an interest-matching mechanism to find a suitable community for the requesting user
is considered. Under this mechanism, a requesting user can share only required infor-
mation with other users in the same group to minimize the privacy disclosure. Another
approach to avoid disclosing users’ information when they share MSN contents was
proposed in [31]. Instead of generating a real-time location for social relationships,
a dynamic fake location for anonymous traces is applied. The purpose is to increase
the location privacy without relying on any third-party application. To improve the
system privacy, two privacy protection methods were deployed in [32]. In particular,
location and friendship privacy protections are proposed to protect the current locations
and friendship information of mobile users. In these methods, a novel cryptography
technique, functional pseudonym is introduced to provide anonymous user’s identity
and location. Additionally, the technique can be used for the mobile users’ public key.
Based on this technique, a pair of mobile users can derive a secure shared key to
represent their social ties. As a result, the current location of the mobile users and
their social friendship cannot be accessed by unintended nodes including the MSN
service provider. The performance results show that these methods can provide effi-
cient system privacy for location sharing and sustainability improvement for the mobile
users.

Although the secure privacy mechanisms are necessary for the MSN users, the MSN
users’ access history is still important for MEC nodes to perform the proactive caching
process. In particular, MEC nodes need to predict the expected popular content and
other users’ preferences through using users’ access history. Subsequently, the privacy
for mobile users in MSNs should be safely considered. A mechanism for addressing
the privacy issue for proactive caching was proposed in [33]. The main idea is when a
user us requests a content from another user ud , user us cannot identify if the requested
content is downloaded from the storage of user ud or not. Likewise, user ud cannot know
if the requesting user us requires the content through the service nodes or not. However,
user ud still knows that the requesting user is its neighbor. Alternatively, both users can
provide a plausible deniability factor to improve the privacy among the participating
users. Likewise, another method to provide a secure proactive caching using blind cache
was introduced in [34]. In particular, blind cache is defined as an encryption method that
exchanges the key of encrypted contents from content providers to MSN users. During
the encryption process, the requested contents are stored at the MEC nodes through
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the content providers. It is proposed that the secure proactive caching mechanisms are
essential for obtaining the frequency of access prediction without revealing MSN users’
private information.

8.2.5.2 Security
To provide different security levels for MEC nodes, the authors in [19] presented a trust
operation scheme to review the security of MEC nodes. Since MEC nodes are typically
deployed by third-party providers, they can be openly accessed. Thus dissimilar levels
of security may be applied for different MEC nodes. In particular, the MEC nodes are
separated into four types based on their security levels. The first MEC node is called
honest node, which serves MSN users in a secure way when contents are requested.
This node has the highest level of security during the caching service process. The
second MEC node is called selfish node. Although this node has the same security
level as the honest node, the selfish node may refuse to give caching service for MSN
users. The third MEC node, which provides a lower-level secure caching, is called
speculative node. In a particular time, this node can provide a secure caching service
for MSN users; however, this node can also conduct a malicious attack at another
time. The fourth MEC node, which only carries out the malicious attacks to the MEC
networks, is called malicious node. This node has the lowest level of security because
its lack of sufficient secure protection. To provide a sufficient trust for the MSN users
in the proposed scheme, the probabilities of honest and selfish nodes are always higher
than those of speculative and malicious nodes. Based on the performance evaluation,
the proposed scheme can provide a lower service delay and a higher secured caching
ratio.

8.3 Dynamic Edge Caching Approach for Mobile Social Networks

In this section, we discuss a novel dynamic edge caching approach for MSNs to address
some important issues such as users’ privacy, delay tolerance, and economic efficiency.
In particular, we describe a novel security scheme that can be applied at an MEC node to
protect the privacy of MSN users. In this scheme, the authorized users are authenticated
without using a centralized node and/or a security third party. In other words, the users’
content access history can be accessed by the MEC node without disclosing any personal
information. Then, to help the MEC node update and predict content demands of the
users dynamically, a proactive caching approach using matrix factorization method is
adopted. Based on this prediction, a mixed integer linear programming optimization
problem is applied to obtain an optimal caching policy that minimizes the average delay
for the MSN users. In addition, we discuss the optimal business model for the MSN
service provider to obtain its revenue maximization.

Figure 8.2 [35] shows the considered dynamic caching framework with four main
steps, i.e., authentication, dynamic demand prediction, optimal caching strategy, and
business model for MSN service provider.
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Figure 8.2 General scheme of the proposed wireless edge caching for MSNs.

8.3.1 Authentication

In this procedure, the public-key cryptography (also known as asymmetric cryptogra-
phy) is applied. In fact, this cryptography method has been successfully implemented
in many blockchain networks [36], e.g., Bitcoin, Coloredcoins, and Bitcoin cash. In
particular, asymmetric cryptography consists of pairs of keys, including public keys,
which may be distributed widely in MEC networks, and private keys, which are kept
only by the owner. This accomplishes two functions: (1) authentication, where the
public key is used to verify the holder, who sends the information, and (2) encryption,
where only the paired private key holder can decrypt the information encrypted with the
public key. Thus public key algorithms, unlike private key algorithms (i.e., symmetric
cryptography), do not require a secure channel for exchanging the secret key between a
sender and a receiver.

In this framework, when a mobile user associates to MSN services, the MSN service
provider will assign a digital wallet to the user. This wallet aims to create a pair of public
and private keys for the user. The public key can be sent to MEC nodes for verification,
while the private key of the user is kept secretly by that particular user. The following
procedures explain how the pair of keys is used to help the mobile user authenticate at
an MEC node.

• Step 1: The mobile user sends an access request with the public key to the MEC
node.

• Step 2: The MEC node verifies the public key of the user and generates a smart
contract.

• Step 3: The MEC node sends the smart contract and its public key to the mobile
user.

• Step 4: The mobile user verifies the public key of the MEC node, adds the content
request to the contract, and signs the contract with a digital signature generated
from the private key.
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• Step 5: The mobile user encrypts the signed contract with the MEC node’s public
key and sends back to the MEC node.

• Step 6: The MEC node verifies the signed contract using its private key and the
user’s public key.

• Step 7: The MEC node sends the content to the mobile user if the contract
authentication is completed.

In this process, we note that the authentication process at Step 2 is to verify that the
user is allowed to use MSN services. Meanwhile, the authentication process at Step 6
is to ensure that the requested content is from the verified mobile user. Furthermore,
the signature of the mobile user is dissimilar at disparate times with different content
requests, and thus the private information of the user is secured. This method has the
following advantages:

• Only the MEC node can decode the contract of the user. Thus only the MEC node
knows the user’s requested content.

• The MEC node needs to know only the public key of the user. Therefore, the
private information of the user is guaranteed.

• The user can be authenticated without sharing private information. As a result,
we can decrease the disclosure and spoofing risks by MEC nodes.

• The user and the MEC node can perform authentication processes even when they
are not connected to the internet.

• This technique can be implemented without using a centralized node and/or a
security third-party (i.e., in a decentralized way).

As a result, the proposed method can be implemented effectively for MSNs.

8.3.2 Dynamic Demand Prediction

If a content request from an authorized MSN user is verified, the user’s access history
is generated in the request log file. As shown in Figure 8.2, the file contains a two-
dimensional table with two associated parameters. These parameters include the user’s
public keys in the columns with the corresponding requested contents in the rows. Each
cell in this table indicates the frequency of access of content accessed by a user. If a
particular content has never been requested by the user before, the corresponding cell is
empty. However, this table may encounter some problems related to dynamic demand
and big data of MSN users. Specifically, when the number of records increases over
time, there is a huge amount of data stored in this table. Furthermore, the demand
of users may change over time [37], e.g., some contents may be accessed during a
short period of time. Thus we can implement the following schemes to address these
problems. When a new user connects to the network or a new content is requested, a new
column or row is added to the table, respectively. However, if a user does not request
any available content in a particular period, e.g., four months, the user’s information will
be deleted from the existing table. Likewise, if any content has not been requested by
any user in a certain period, information of the content will be removed from the table.
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In this way, this policy can handle the big data problem, and the dynamic demand of
users as well as the popularity of contents.

Based on the information provided in the request log file, the MEC nodes can predict
the content demands of MSN users in the near future. To make the prediction, the
nonnegative matrix factorization (NMF) [38] can be adopted. The NMF has been widely
known as an analysis tool to extract meaningful features from a set of high-dimensional
and nonnegative data vectors automatically. The reason for the popularity of using
the NMF technique is because of its ability to automatically extract sparse and easily
interpretable factors, as shown in [39, 40].

To clarify the benefits of the NMF, we compare the prediction matrices of the NMF
with another well-known matrix factorization: singular value decomposition (SVD),
which was used for proactive caching in [41]. Given an original table on the left-
hand side, we can predict the demand of mobile users through the NMF and the SVD
techniques as shown in Figure 8.3. For example, Figure 8.3b shows the result of using
the SVD technique to find the prediction matrix, and we observe that there are some
elements in the matrix with negative numbers (numbers in circles) that provide no
information about demands of the users or the popularity of content. The reason is that
the SVD technique shows approximated ranks of elements, and thus the elements can
be negative numbers. In contrast, the NMF technique incorporates the nonnegativity
elements, thus increasing the interpretability of the elements correspondingly by gener-
ating the parts-based representation [39]. As a result, elements of the prediction matrix
obtained by the NMF technique can be used to predict the demand of the mobile users.
For nonnegative matrices with sparse information, it has been demonstrated in some
studies, e.g., [39, 40], that the NMF technique outperforms the SVD technique.

Suppose that the request log file is presented as an original matrix M with C rows and
U columns. This matrix represents nonnegative values of current frequency of accesses
of user u on content c, where u and c indicate the indices with u ∈ [1,U ] and c ∈ [1,C].
Basically, this NMF finds two new matrices A with C rows and N columns and B with
N rows and U columns such that:

A · B = M̂ ≈M, (8.1)

where the elements of A and B contain nonnegative values. In particular, each row of
A and B indicates a correlation strength for a user with its corresponding content and a
content with its corresponding user, respectively. To find A and B, the NMF utilizes an
iterative process to obtain a dot product such that the difference between final factorized
matrix M̂ and original matrix M nearly converges to a difference tolerance δ = |M −
M̂|. Particularly, we set mc,u, ac,n, and bn,u as the matrix elements of M, A, and B,
respectively. Hence a prediction error ξ for each user and corresponding content can be
calculated as follows:

ξc,u = mc,u −
N∑

n=1

ac,nbn,u. (8.2)
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Figure 8.3 Comparisons between the demand prediction table of the (a) NMF and (b) SVD
techniques.

To update the rules iteratively, a gradient descent technique is adopted to modify the
element ac,n and bn,u such that:

âc,n = ac,n + μ
(
ξc,uac,n − ηbn,u

)
, (8.3)

and

b̂n,u = bn,u + μ
(
ξc,ubn,u − ηac,n

)
, (8.4)

where μ and η are applied to handle the rate of updated elements and the magnitudes of
original elements, respectively.

To minimize the final prediction error, we can adopt a Frobenius form, which is
expressed as ||M− AB||2F. Then, the regularized squared error is obtained as:

min
∑

c∈C,u∈U

(
mc,u −

N∑
n=1

âc,nb̂n,u

)2

+ η
N∑

n=1

(
||âc,n||2 + ||b̂n,u||2

)
, (8.5)

s.t. âc,n ≥ 0,b̂n,u ≥ 0. (8.6)
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This procedure terminates when the prediction error converges or the specified number
of iterations is attained [42]. Based on the aforementioned process, we can obtain the
factorized matrix M̂ from A and B.

8.3.3 Optimal Caching Strategy

After the frequency of access prediction matrix is obtained by the NMF technique, the
optimal caching strategy for the MEC node can be derived. Specifically, we denote M̂
with C rows and U columns corresponding to C contents and U users. Different content
may have disparate data sizes z = {z1, . . . ,zC}. Furthermore, different content may
require dissimilar preprocessing time before the content is downloaded by the users. For
example, mobile devices typically have small screen with different resolutions. Hence,
before the users download the requested MSN content (e.g., videos or images), the
content may need to be adjusted into the appropriate size to fit the device. Furthermore,
when MSN users request contents from an MEC node at different locations, the users
may have different signal strengths to receive the contents. In this case, the MEC node
needs to adjust the content size using particular compression methods, e.g., JPEG and
MPEG standards, to maintain users’ experience. Since the MEC node has limitation on
the hardware and computing resources, its content preprocessing time may be different
from the remote content server. Therefore, we denote tmec = {tmec

1 , . . . ,tmec
C } and

tcs = {tcs1 , . . . ,tcsC } as the content preprocessing time at the MEC nodes and the content
server, respectively.

Suppose that the allocated bandwidth between a user u to the MEC node and the
MEC node to the content server are denoted by bu and B, respectively. Then, the delay
dα when a user u wants to download a content c from the MEC node is

dα = zc

bu

+ tmec
c , (8.7)

and the delay dβ when a user u needs to download the content c from the content server is

dβ = zc

bu

+ zc

B
+ tcsc . (8.8)

If we define Z as storage capacity of the MEC node, the problem formulation for
minimizing the total delay of all MSN users can be expressed as follows:

min
X

f (X) =
C∑

c=1

U∑
u=1

m̂c,u

(
xcdα + (1− xc) dβ

)
, (8.9)

s.t.
C∑

c=1

xczc ≤ Z, (8.10)

and xc ∈ {0,1}, ∀c ∈ {1,2, . . . ,C}, (8.11)

where X = [x1, . . . ,xC]$ is a vector of binary decision variables and m̂c,u is the
element of matrix M̂ at row c and column u. Based on (8.9), we can divide the objective
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function into two terms. In particular, the first term indicates the total delay of requested
contents downloaded from the MEC node. Meanwhile, the second term represents the
transmission delay when the requested contents are downloaded from the content server.
Furthermore, the constraint in (8.10) implies that the number of cached MSN contents
at the MEC node cannot exceed its storage capacity. Then, the second constraint is to
ensure that variables are binary. Specifically, the values 1 and 0 correspond to decisions
that a content is cached and not cached at the MEC node, respectively. According to
(8.11), since X are binary variables, a mixed integer nonlinear programming (MILP)
can be adopted to find the caching policy for the MEC node.

8.3.4 Business Model of MSN Service Provider

Practically, when the MSN service provider deploys MEC nodes to deliver contents,
it often collaborates with third-party partners (e.g., Microsoft Azure [3] and Akamai).
This is to reduce the implementation and deployment costs of MEC nodes. Nevertheless,
the deployment of MEC nodes is not free of charge. In particular, MEC nodes with
various storage capacities can be offered at different prices. Thus we denote S =
{S1, . . . ,Si, . . . ,SI } as the set of bundles available for the MSN service provider to
choose from. Each bundle has a renting cost Ci with a corresponding caching capacity
Zi for a certain period. Based on the caching capacity Zi , the optimal caching policy to
minimize the total delay of all MSN users can be obtained by solving (8.9). Generally,
when the caching capacity is bigger, the number of cached contents can be increased,
and thus the average delay can be reduced. However, in this case, we need to trade off
between the delay minimization and renting cost.

To obtain the average revenue R at the MEC node, we denote si as the cost for a user
to download a data unit (e.g., $0.1 per 10 MB) over an average threshold delay di (e.g.,
1 second per 10 MB). Then a representation of caching storage capacity function can be
expressed as follows:

si = s0 + γ
(
d0 − d̂∗i

)
, (8.12)

where s0 and d0 are the base cost and average delay when there is no caching at the
MEC node, respectively. Meanwhile, γ > 0 and d̂∗i represent a conversion parameter
and optimal average delay obtained from (8.9), respectively. The average demand P at
the MEC node over the period is determined from frequency of access prediction M̂ and
size of each content zc as follows:

P =
C∑

c=1

U∑
u=1

m̂c,uzc. (8.13)

Then, based on (8.12) and (8.13), the average revenue at the MEC node is computed as:

R = si × P . (8.14)

When the storage capacity is bigger, the average delay becomes lower, and thus the
offered price becomes higher. Then the average revenue of the MSN service provider
for bundle Si is computed as follows:
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R(Si) = si × P − Ci . (8.15)

If the service bundle Si is known, the corresponding offered price si and renting cost
Ci can be obtained. Therefore, the optimal service bundle Ŝ to maximize the average
revenue of the MSN service provider can be determined accordingly.

8.3.5 Performance Evaluation

We present numerical results under the following parameters to evaluate the perfor-
mance of the proposed approaches. The available bandwidth between a user and the
MEC node is 5 Mbps. The bandwidth 500 Mbps is allocated for the connection between
the MEC node and the content server (i.e., backhaul link). The number of MSN contents
is 10. Each content has a different data size and frequency of access, which are shown
in Table 8.1. Particularly, a set of frequency of accesses is normalized, and it can be
obtained from the matrix M̂ using the aforementioned NMF technique.

To evaluate progressive trend of the average delay of all MSN users, the storage
capacity is varied from 0 to 600 MB. We also exploit the performance with and without
content preprocessing time to show the impact of the preprocessing time. The content
preprocessing time for the MEC node and the content server is shown in Table 8.1.
Furthermore, to evaluate performance of the proposed solution, the most frequently
accessed (MFA) and noncaching policies are used. In particular, for the MFA policy,
content with a high frequency of access has a higher priority to be cached at the MEC
node. Conversely, noncaching policy is to represent that there is no content cached at
the MEC node.

We first discuss the average delay in two cases, i.e., without and with preprocessing
time, as shown in Figure 8.4. Particularly, in Figure 8.4a, we show the average delay
of mobile users when the preprocessing time of all content is zero. In this case, the
average delay obtained by the MFA policy is relatively close to that of the optimal

Table 8.1 The Size, Frequency of Access, and Preprocessing Time of the MSN Content at the MEC Node
and Content Server

Content Size (MB) Frequency of Access tmec
c (s) tcsc (s)

1 70 38 1.5 0.5

2 50 32 0 0

3 5 41 0 0

4 10 42 0 0

5 40 39 0.5 0.1

6 75 28 0 0

7 20 37 0 0

8 85 40 2 0.5

9 47 22 0 0

10 30 12 0 0
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Figure 8.4 The average delay of all MSN users as the storage capacity increases (a) without
considering preprocessing time and (b) with preprocessing time.

policy. The reason is that when we solve Eq. (8.9) to find the optimal caching policy
without considering the content preprocessing time, the frequency of access is the most
important factor. However, when we solve (8.9) with preprocessing time taken into
consideration, the average delay of the mobile users obtained by the optimal policy
is much lower than that of the MFA policy, as shown in Figure 8.4b. The reason is
that the MFA policy considers only the frequency-of-access factor. Consequently, for
the solutions without accounting for the content preprocessing time as the MFA policy,
the average delay of mobile users is even higher than that of noncaching policy. In this
case, some content may require a long time to be preprocessed at the MEC node due
to its hardware constraints, and hence they should be preprocessed at the content server
instead of the MEC node. This implies that the preprocessing time is also an important
factor that significantly impacts the average delay of mobile users.

Given the users’ demand at the MEC node, the offered MSN service price, and the
caching cost, we then analyze the business model for the MSN service provider. The
base price is set at 0.01 monetary unit (MU) per 1 MB. Furthermore, γ is set at 0.05.
We set the caching costs at 30 MUs and 7.5 MUs for the first 50 MB and the next
50 MB, respectively. As observed in Figure 8.5a, users with a full demand (i.e., 100%
demand) occurs at the MEC node. In particular, considering the caching costs and the
users’ demand at this location, the MSN service provider will rent 400 MB to obtain the
maximum revenue. However, if the users’ demand reduces into 70%, the MSN service
provider will rent only 350 MB as seen in Figure 8.5b. Based on the results in Figure 8.5,
the proposed optimal policy outperforms the MFA and noncaching policies in obtaining
the average revenue.

Next, we explain the convergence of the MFA and the optimal policy. In Figure 8.4,
the average delay obtained by both policies will converge. In particular, as the storage
capacity increases, the average delays obtained by the MFA and the optimal policy in
Figure 8.4a converge to 20 s at 450 MB. Meanwhile, the convergence of the average
delays to 20.8 s at 450 MB and 20.11 s at 250 MB are obtained by the MFA and
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Figure 8.5 The average revenue as the storage capacity increases (a) with full demand and (b)
with 70% demand of MSN users at the MEC node.

the optimal policy in Figure 8.4b, respectively. The reason is that when the storage
capacity of the MEC node is very large, it can contain all MSN contents. Hence when
we keep increasing the storage capacity, the average delay will not change because
now all content will be downloaded directly from the MEC node. However, the average
revenue obtained by the MFA and optimal policy will not converge when we increase
the storage capacity as shown in Figure 8.5. The reason can be explained through the
average revenue function: R(Si) = si × P − Ci . As explained in Section 8.3.4, given a
service bundle Si , we can obtain the offered price si and corresponding renting cost Ci .
Thus, given the average demand P for the MEC node, we can find the optimal service
bundle that maximizes the average revenue for the MSN service provider. As a result,
as shown in Figure 8.5, if we keep increasing the storage capacity, the average revenue
will be reducing.

8.4 Conclusions and Open Issues

In this chapter, we first provided an overview of MSNs, including their development and
challenges. We then presented wireless edge caching, a new caching model, to address
many problems for MSNs such as delay, quality of service, and economic efficiency.
Although mobile edge caching networks bring many benefits to MSN users, MSN
service providers, mobile network operators, and network infrastructure providers,
they also place some new challenges. These include hierarchical architecture of MEC
networks, content placement, proactive caching, privacy, and security problems at MEC
nodes. We then reviewed recent approaches in the literature to address the problems
when deploying MEC for MSNs. After that, we discussed the MEC framework, which
can address some urgent issues for edge caching in MSNs. This framework includes the
authentication method using public key cryptography, the proactive caching scheme
using NMF algorithm, the optimal caching policy, and a business strategy using
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advanced optimization techniques. Some numerical results were presented to show
the potential of the considered framework.

However, there are still some open issues that need to be further investigated:

• Implementation of MEC networks: To enhance users’ experience and minimize
the service delay, the MSN service provider can implement more MEC nodes in
its serving area. However, this will increase deployment costs. Furthermore, due
to dynamic mobility of MSN users, the MSN service provider needs to observe
the users’ demands in different locations. Therefore, the efficiency of MEC net-
works deployment should be further investigated.

• Collaborative caching in MEC networks: For a cooperative caching network, an
MEC node can collaborate to share content with other MEC nodes. In this way,
the MEC node needs to determine whether to cache the requested content or
not, and if the MEC node decides to not cache the requested content, where to
download them from. Nonetheless, the popularity of MSN content and associa-
tions among MEC nodes change dynamically over time. Hence how to create a
dynamic protocol to (1) cooperatively cache and update the content information
from other MEC nodes and then (2) find an optimal caching strategy in MEC
networks remains as an open issue.

• Payment management in MEC networks: When a user requests content from
an MEC node, that user needs to pay for the request. Typically, this payment
information is sent to the MSN service provider in a centralized way. However,
this may not be efficient when a huge number of MSN users request at the same
time. Thus we can adopt blockchain technology [43] to manage users’ payment
and information in a decentralized architecture. In particular, we can secure the
payment transactions through mining processes without relying on a central con-
troller. However, how to verify the miners and how to incentive MEC nodes to
mine information are still open issues for future researches.
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9 A Proactive and Big Data–Enabled
Caching Analysis Perspective
Engin Zeydan, Ejder Baştuğ, Mehdi Bennis, and Mérouane Debbah

Large-scale data analysis is becoming an important source of information for mobile
network operators (MNOs). MNOs can now investigate the feasibility of possible
new technological advances such as storage/memory utilization, context-awareness and
edge/cloud computing using analytic platforms designed for big data processing. Within
this context, studying caching from a mobile data traffic analytical perspective can offer
rich insights on evaluating the potential benefits and gains of proactive caching at base
stations. In this chapter, we study how data collected from MNOs can be leveraged
using machine learning tools in order to infer insights into the benefits of caching.
Through our practical architecture, a vast amount of data can be harnessed for content
popularity estimations and placing strategic contents at base stations (BSs). Our results
demonstrate several gains in terms of both content demand satisfaction and backhaul
offloading rates while utilizing real-world data sets collected from a major MNO.

9.1 Introduction

The continuous increase in mobile data traffic demand due to video, social networks, and
over-the-top (OTT) applications are pushing mobile network operators to search for new
ways to handle their growing complex networks. This increase of traffic from diverse
domains (e.g., Internet of things [IoT], healthcare, autonomous cars, user-created con-
tent, smart metering) have different data structures (e.g., structured/nonstructured, semi-
structured) and is usually called big data [1]. While big data brings “big blessings,”
there are compelling challenges in handling large-scale data sets due to the tremendous
volume and dimensionality of the data. A primary challenge of big data analytics for
decision making is to move through huge chunks of data to uncover hidden patterns. In
fact, the time of gathering and storing data in remote standalone servers for offline deci-
sion making is outdated. Instead, mobile network operators are looking to decentralized
and scalable network architectures in which anticipatory resource management plays
an important role exploiting recent advances in storage/memory, context-awareness,
and local/edge/cloud computing [3, 4, 6]. In the world of wireless, big data provides

The research carried out in this chapter has been supported by the projects SHARING (Finland grant no.
128010), TUBITAK TEYDEB 1509 (Turkey grant no. 9120067), BESTCOM, as well as the ERC Starting
Grant 305123 MORE (Advanced Mathematical Tools for Complex Network Engineering). Some of results
here has appeared in parts in [36–38].
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174 Engin Zeydan, Ejder Baştuğ, Mehdi Bennis, and Mérouane Debbah

plenty of new information sets (e.g., social geodata, user velocity, location) to network
planning that can be inter-connected to better understand user and network behaviors.
In addition, public data sets available on social networks like Twitter and Facebook give
additional information about network lifecycle, which could be further leveraged. The
associated advantages are finer granularity of user location information and the ability to
identify and estimate clustering of users efficiently—for example, in particular events.
Definitely, enormous potential associated with big data has stimulated a great research
interest from industry, academics, and government (for more details see [5]), and will
keep going in the upcoming years.

Concurrently, mobile cellular networks are shifting toward the next generation of
5G (and beyond) wireless communications, in which ultra-dense networks, device-to-
device and millimeter wave communications, edge caching, and massive multiple-input
multiple-output (massive MIMO) technologies bring a crucial role for their evolution
(see [6] and references therein). Instead of relying on a classical base station–centric
network paradigm that assumes dumb terminals and reactive network optimization
approaches, 5G (and beyond) networks will be surely disruptive in the sense of being
context aware, user-centric, and proactive/anticipatory in essence. While continued
improvement in spectral efficiency is anticipated, the sophistication of air interfaces of
existing systems (LTE-Advanced) has shown no major improvements in terms of gains
in spectral efficiency. Additionally, extra measures such as the brute force deployment of
mobile network infrastructure (e.g., increasing the number of cells) and more spectrum
licensing are excessively expensive. Therefore, more creative solutions are indeed
necessary.

In this chapter, given these motivations and challenges, we focus on optimization of
5G (and beyond) wireless networks through proposing a proactive caching architecture.
We leverage large amount of available data together with the tools utilized for big
data analytics and machine learning. Particularly, we examine the proactive caching
gains in both backhaul offloading and content demand satisfaction metrics. The
approaches and tools used in machine learning are utilized to model and estimate
the users behavior in both spatial and temporal dimensions for the proactive cache
placement problem. Together with caching critical contents at the edge of a network,
specifically at the base stations, resources of mobile networks are used more efficiently
and further enhancements on the users’ experience is achieved. Notwithstanding, given
the high dimensionality of data, their sparsity, and lack of large-scale measurements,
the prediction of content popularity coupled with users’ spatiotemporal behavior is
a nontrivial problem. In this respect, we introduce a platform that can be used to
parallelize the computation effort so that the execution of the content estimation
algorithms for cache placement can be done at the base stations. As a real-world
practical study a huge amount of data, gathered from a telecom operator in Turkey
with more than 16.2 million active subscribers, are investigated for several caching
scenarios. Specifically, the mobile users’ activity traces are gathered in hourly time
intervals from large-scale areas covered with many base stations. The analysis results
are obtained using the big data platform on the telecom operator’s premises under
privacy and regulation constrains. The cache placements at the base stations have been
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numerically studied to observe both the users’ experience and backhaul offloadings
improvements.

The rest of this chapter is structured as follows. The requirements, challenges, and
benefits of big data analytics in 5G (and beyond) networks are described in Section 9.2.
The proactive edge caching concept and its network model are given in Section 9.3.
A content popularity prediction on a big data platform that showcases a practical
case study and users’ content access behavior characterization is given in Section 9.4.
Afterward, numerical studies for base stations that are cache enabled and technical
discussions are given in Section 9.5. We provide a conclusion and future directions in
Section 9.6.

9.2 Big Data Analytics for Telcos: Requirements, Challenges, and Benefits

Today the requirements on networking over telco infrastructure are transforming toward
a software-defined paradigm with the aim of being more scalable and flexible for big
data. Following this trend, tomorrow’s networks are going to be big and are expected to
be even more complex and interconnected. Because of this, the data centers of mobile
operators (MOs) as well as their network infrastructures will need to track traffic patterns
of tens of millions of users/devices (e.g., location information, generated traffic demand
and pattern of usage, device capabilities). These data can be then used for a more
detailed analysis and better network optimization outcomes.

9.2.1 Big Data Networking Challenges and Trends

Recently, generated data traffic and their corresponding patterns inside the data centers
of MOs have indeed changed dramatically. Big data has allowed large traffic exchange
between gateway devices at backhaul. Even though wireless technologies have evolved
significantly toward 5G, this rapid jump has not been observed in backhaul connections
of mobile cellular networks. Therefore, the intra-traffic in mobile backhaul has been get-
ting larger than the inter-traffic between mobile backhaul devices and end-users over the
years. In fact in existing networks of telecommunication providers, the data produced
by gateway and backhaul elements also contribute to traffic load within the operator’s
infrastructure in addition to traditional operational data generated by management of
mobile users’ traffic via mobile backhaul or data fetched from a number of different
backend, database and cache servers. Indeed, user terminal (UT) level interactions
require various data exchanges with hundreds of routers, switches and servers that
resides between the backhaul and core network domains. For instance, the intranet data
traffic might go up to 930× for an original 1 KB HTTP request of users [7]. This is
in contrast to the traditional mobile architecture of telecommunication providers where
wireless devices, such as UT and wireless access nodes, are assumed to be bottlenecks
that lack the necessary computational overhead instead of the backhaul infrastructure. In
addition, as big data still remains a grand challenge for today’s mobile infrastructures,
moving toward such big data–driven networks in cloud environments is challenging.
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In this regard, multi-access edge computing (formerly mobile edge computing, some-
times called “fog” computing) is yet another rising technology where edge devices have
cloud-computing like features within the radio access network to perform functionalities
such as communication, storage and control [3]. Notwithstanding for 5G (and beyond)
networks, it could be remarked that installing distributed cloud computing capabilities
on top of or near each unique BS site (particularly at locations where relative traffic
volume is low) may also yield a high deployment cost comparable to solutions with
centralized computing capabilities due to the existence of many sites in a traditional MO.
Furthermore, for proper analysis to model and predict the users’ spatiotemporal content
access patterns in 5G (and beyond) mobile networks, traffic handled at a centralized
location requires horizontal scale-out across servers and racks. This is possible only
inside the core network locations of MOs rather than distributed locations with possibly
less traffic.

9.2.2 When Big Data Analytics Meets Caching

Recent advances in standardization networking as well as communications have enabled
big data to receive great popularity, notably for possible usage in data centers and mobile
network operators’ infrastructures. Together with the big data challenges in the network-
ing area, it is becoming clear that the only option to deal with the surge in data traffic
is via developing methods to handle data appropriately and enabling data to move from
cloud to the edge. Lately, a big data management solution named Hadoop has been quite
successful in providing dramatic cost reduction over conventional tier-one database
architectures, processing various data formats and executing parallel computing over
multiple servers. In addition, more sophisticated machine learning analytic techniques
together with nonrelational databases (i.e., NoSQL databases) that exploit big data have
created a better understanding of big data for MOs.

It is evident that placing content closer to the edge is critical whenever connectivity
failures happen during streaming and/or fetching activities. To alleviate this, placement
of data closer to demanding users so that the distance of content to users can be reduced
as well as placing the right content and applications toward the edge give better user
experience. For example, analyzing users’ content access patterns (through the core
networks of MOs) and caching proactively at the edge (i.e., at base stations (BSs)) using
the distributed data processing engine provided by the Hadoop platform can relieve
the backhaul network usage and improve users’ quality of experience (QoE) in terms
of reduction in latency. In the following, we detail the related system model, then
describe our big data processing platform based on the Hadoop framework and its
interconnection with caching at the edge, as one way of handling and exploiting the
existing big data over the infrastructure of MOs.

9.3 System Model

In this chapter, we assume that there are M small base stations (SBSs) from the set
M = {1, . . . ,M} and N UTs from the set N = {1, . . . ,N} in a network deployment
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scenario. A broadband internet connection is provided to each SBS m by a wired back-
haul connection that has Cm Mbps of capacity and the broadband internet service is
provided to wireless users over a wireless link that has C′m Mbps of capacity. Assuming
a densely deployed SBSs scenario where backhaul capacity has its limitations [6], we
further assume that Cm < C′m. Moreover, consider that each user n ∈ N is associated
with single SBS and unicast sessions1 are used to serve each user. Specifically, sup-
pose that the contents (i.e., text, videos, images) are demanded by UTs from a library
F = {1, . . . ,F }, where each content f ∈ F has L(f ) MB of length and B(f ) Mbps of
bitrate requirement, with

Lmin = min
f∈F
{L(f )} > 0 (9.1)

Lmax = max
f∈F
{L(f )} <∞ (9.2)

and

Bmin = min
f∈F
{B(f )} > 0 (9.3)

Bmax = max
f∈F
{B(f )} <∞. (9.4)

The content demands of users indeed can be characterized by a Zipf-like distribution
PF (f ),∀f ∈ F such as [10]:

PF (f ) = �

f α
, (9.5)

where

� =
( F∑

i=1

1

iα

)−1
.

The shape of the distribution is modeled by the α parameter in (9.5). Such power laws
(distributions) characterize several real-world conditions, for example the file distribu-
tion in the web proxies [10] and the traffic dynamics of mobile user devices [11]. Bigger
α values signify a steeper distribution, which means that the popularity of a slight
portion of content is higher than the remaining content catalog. However, the smaller
values mean higher uniformity with almost identical contents popularity. The practical
α value varies based on users’ content access patterns and the deployment scenarios of
SBSs (i.e., enterprise, rural, urban, suburban, and home environments), and next sections
will provide its value using the proposed practical setup.

Provided that our global content popularity is decreasingly ordered, the mth SBS’s
content popularity matrix at time t is specifically modeled by Pm(t) ∈ RN×F , where
each component P m

n,f (t) quantizes to the probability of the nth user demands for content
f . In other words, the matrix Pm(t) signifies the local content popularity distribution
experienced at mth the base station and time t , while the global content popularity
distribution of all contents in decreasing order is modeled via the Zipf distribution
PF (f ),∀f ∈ F .

1 One can also extend the unicast service model to the multicast case. See [8, 9] for more details.



178 Engin Zeydan, Ejder Baştuğ, Mehdi Bennis, and Mérouane Debbah

In our considered deployment scenario, each SBS is assumed to have a limited storage
size of Sm and content that is selected strategically from F is proactively cached by each
SBS in the course of off-peak hours. By following this approach, the bottlenecks due
to the finite-backhaul capacity are mitigated when users’ content demands are delivered
during peak hours. The number of satisfied requests as well as the backhaul load are of
high significance and are given in the following. Assume that in the course of T seconds,
the number of demanded content is D and is selected from the set D = {1, . . . ,D}.
Consider that content delivery is commenced instantly just after SBS receives the con-
tent demand d ∈ D. Later on, the demand d is assumed satisfied if the content delivery
rate is equal or higher than the content bitrate at final delivery, that is:

L(fd )

τ′(fd )− τ(fd )
≥ B(fd ), (9.6)

where fd models the demanded content; L(fd ) and B(fd ) are content length and bitrate,
respectively; τ(fd ) is the content demand appearance time; and τ′(fd ) is the final deliv-
ery time.2 Defining the condition in (9.6) is due to the fact that, if the rate of delivery rate
is not equal or lower than the requested content bitrate, disruption at the time of play-
back (or download) happens. This results in lower QoE experienced by users.3 For this
reason, the scenarios where this condition holds are more preferable for higher QoE. In
(9.6), observe also that the final delivery time for demand d, given by τ′(d), is dependent
on network load, backhaul, and wireless links’ capacities as well as content availability
at SBSs. Under these motivations and given the definition of satisfied demands used
here, the average demand satisfaction ratio of users is therefore defined for all demands
sets, particularly:

η(D) = 1

D

∑
d∈D

1

{
L(fd )

τ′(fd )− τ(fd )
≥ B(fd )

}
, (9.7)

where 1 {. . .} denotes the indicator function, which is 1 if the condition is satisfied and 0
if not. Moreover, let Rd (t) Mbps denote the instantaneous backhaul rate for the demand
d at time t , with Rd (t) ≤ Cm and ∀m ∈ M, then the average backhaul load can be
written as:

ρ(D) = 1

D

∑
d∈D

1

L(fd )

τ′(fd )∑
t=τ(fd )

Rd (t). (9.8)

In Eq. (9.8) the outer sum is used to sum over all demands set whereas the inner sum
yields the total data over backhaul for demand d, which is no more than the size of
demanded content L(fd ). The instantaneous backhaul rate for demand d, modeled by
Rd (t), excessively depends on system load, backhaul link capacity, and contents that are
strategically cached at the base stations.

Indeed, by performing a content caching operation at the small base stations (SBSs),
the experienced delays when accessing the content diminish, particularly during peak

2 Future information (i.e., content’s start and final delivery times) can also be leveraged during proactive
resource allocation (e.g., see [12]).

3 In general, the bitrate requirement of video content is normally between 1.5 and 68 Mbps [13].
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hours, hence producing better satisfaction ratios with a smaller backhaul load. To detail
this, assume that SBSs’ cache decision matrix is denoted as X(t) ∈ {0,1}M×F , where
each component of the matrix xm,f (t) is 1 if the mth SBS caches content f at time t , and
0 if it does not. Thereupon, the formal problem of offloading backhaul under a specific
constraint of demand satisfaction is modeled as follows:

minimize
X(t),Pm(t)

ρ(D) (9.9)

subject to Lmin ≤ L(fd ) ≤ Lmax, ∀d ∈ D, (9.9a)

Bmin ≤ B(fd ) ≤ Bmax, ∀d ∈ D, (9.9b)

Rd (t) ≤ Cm, ∀t,∀d ∈ D,∀m ∈M, (9.9c)

R′d (t) ≤ C′m, ∀t,∀d ∈ D,∀m ∈M, (9.9d)∑
f∈F

L(f )xm,f (t) ≤ Sm, ∀t,∀m ∈M, (9.9e)

∑
n∈N

∑
f∈F

P m
n,f (t) = 1, ∀t,∀m ∈M, (9.9f)

xm,f (t) ∈ {0,1}, ∀t,∀f ∈ F,∀m ∈M, (9.9g)

ηmin ≤ η(D), (9.9h)

where R′d (t) Mbps is the wireless link’s instantaneous rate for demand d and ηmin

denotes the minimum targeted ratio of satisfaction. Moreover, the constraints in (9.9a)
and (9.9b) are used to restrict the content length and bitrate in the catalog to obtain an
attainable solution, the constraints in (9.9c) and (9.9d) represent the capacity constraints
over backhaul and wireless links, (9.9e) represents the caching capacity for storage,
(9.9f) confirms the content popularity matrix as a probability measure, (9.9g) represents
caching binary decision variables, and finally the constraint in (9.9h) models the QoE
satisfaction ratio.

To solve with the problem just defined, joint optimization of X(t) (decision matrix
for caching) and Pm(t) (the estimate of content popularity matrix) is necessary. Unfor-
tunately, solving the problem (9.9) is not straightforward as:

1. Wireless/backhaul links’ and SBSs’ storage capacities are limited.
2. Very large contents in the catalog as well as a high number of users with unex-

plored rating values4 exist in real-world scenarios.
3. Non-tractability for optimal uncoded5 cache placement exists for a given demand

[15–17],
4. The sparse content popularity/rating matrix of SBSs Pm(t) needs to be tracked,

learned, and predicted by SBSs while making the cache placement.

4 The term rating is used to define the empirical content popularity/probability value and is used
interchangeably in this chapter.

5 From an information-theoretical perspective, two groups can be formed with the caching placement such
as “coding” and “uncoded” groups (see [14]) for details).
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To deal with these problems, our scenario is restricted to the case when cache placement
is done at the time of off-peak hours. Therefore X(t) is fixed at the time of the delivery
of content during peak hours and modeled by X. In addition, in the course of T time
slots, the content popularity matrix becomes stationary and equivalent between the base
stations, therefore Pm(t) is denoted by P.

After considering these assumptions, another assumption is to decompose the prob-
lem into two separate subproblems in which the content popularity matrix P is first
predicted, and later exploited for the caching placement X appropriately for solutions.
Indeed, if a sufficient number of users’ ratings can be collected at the SBSs, a k-
rank approximate popularity matrix P ≈ NT F can be built, by jointly learning the
factor matrices N ∈ Rk×N and F ∈ Rk×F , which can minimize the following cost
function:

minimize
P

∑
Pij∈P

(
nT

i fj − Pij

)2 + μ
(
||N||2F + ||F||2F

)
, (9.10)

where the aggregation is applied over the analogous pairs of user/content rating Pij

inside the training set P . The ni and fj vectors represent the ith and j th columns of
N and F matrices, respectively, and ||.||2F means the Frobenius norm. The μ value is
utilized to balance the regularization and the training data fitting terms. Hence a better
estimate of P due to the high correspondence between the content factor matrix F and
user factor matrix N can be achieved. Indeed, the problem in (9.10) can be considered
to be a problem of regularized least squares in which the formulation has embedded
the matrix factorization. Among many methods to solve these problems, the matrix
factorization methods are usually applied and have various utilization areas inside
the recommendation systems (e.g., inside the video recommendation systems of
Netflix). In the considered setup explained in the rest of the chapter, a regularized
sparse singular value decomposition (SVD) method is applied to find a solution to
the problem in an algorithmic manner by exploiting the least-squares type of the
considered problem. The surveys of these considered methods, which are also called
collaborative filtering (CF) tools, are available in [18] and [19]. Just after content
popularity matrix P estimation is completed, the caching placement X may be done
accordingly.

During practical deployment scenarios, the estimation of P in (9.10) can be done by
collecting and analyzing the huge amount of existing data using the on-premise big-data
platforms of the MO. Hence cache-enabled base stations, with cache decisions that are
modeled by X, can cache the strategic and most popular contents from an estimation of
P. With this way of operation, the minimization of the backhaul offloading problem in
(9.9) can be accomplished and users’ content demands are better satisfied. Figure 9.1
illustrates the considered system model that includes the overall envisioned practical
setup. In the next section, as a real-world practical case study, we first describe our
big data–enabled platform, which analyzes the users’ traffic characteristics by gathering
large chunks of data onto the platform. Then, the collected data are utilized to predict
the content popularity matrix P, which will later be used for the cache placement X. The
details are described in the next sections.
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Figure 9.1 The considered network model. Users’ demands are tracked/predicted by a big data
platform, whereas cache-enabled base stations cache the predicted strategic/popular content by
exploiting the big data platform.

9.4 Big Data Platform

This section details our big data analysis platform for processing users’ huge amount
of data traffic. One of main targets of this platform is to collect users’ data traffic and
excerpt meaningful analysis results to accomplish proactive cache placement at base
stations. Assuming that Apache Hadoop is deployed and connected to the core network
gateways of the MO, the requirements of the considered platform can be debated as
follows:

1. Massive processing power for a huge amount of data in a short time: In order to
cache the contents proactively, a big data analysis platform connected to the core
network infrastructure needs to gather and combine data from various sources
and ensure quick and reliable ways to extract smart insights. Therefore, for a
comprehensive analysis of streaming data after mirroring the interface using
tools for network analysis, the collected/gathered data should be ingested into
a storage platform that is designed for big data, such as Hadoop distributed file
system (HDFS), using techniques from enterprise data integration, such as spring
integration.

2. Data cleansing, parsing, and formatting: During the data analysis process, data
cleansing plays a key role. Indeed, before application of any statistical analysis
and machine learning methods on data, data have to be cleansed. In general, this
mechanism can consume more time than the analysis used within machine learn-
ing approaches for the data scientists. In fact, several steps are required for data
cleansing process. In the first step, raw data should be cleaned. There can be, for
example inappropriate, malfunctioning, and inconsistent packets with incorrect
character encoding inside the raw data itself, which requires elimination. Then
the next (second) step is to extract the relevant fields/properties from the raw data.
During this step, both the data and the control packet headers that are required for
our analysis are determined based on modeling and data analysis requirements.
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Finally, the serialization and deserialization of the parsed/extracted data need to
be done accordingly (e.g., in Parquet or Avro format) for HDFS storage.

3. Data analysis: Given the processed information in HDFS, high-level query
languages (e.g., [HiveQL] and Pig Latin) can be used for various data analytics
purposes to exploit control/data planes’ headers as well as payload information.
The goal of such a procedure is to relate data and control packets with each other,
e.g., the position or mobile subscriber integrated services for digital network
number (MSISDN) of mobile users (which is available only in control packets
rather than data packets) to the demanded content (which is available only in
data packets) via MapReduce operations. Note that the concept of MapReduce is
naturally embedded under HiveQL and Pig Latin.

4. Statistical analysis and visualizations: After prediction of the spatio temporal
user content access patterns are done using machine learning analysis, the results
can be recorded and recycled. In addition, the reformatting of analysis results can
be done using appropriate extract, transform and load (ETL) tools or via different
kinds of analytics engines such as Apache Spark’s MLlib for more advanced data
analytics purposes. Moreover, visualizations such as tables and graphs can be
utilized to present the analysis results in a visual way to obtain better insights.

Together with a big data processing platform described earlier, the strategic contents
of users can be deduced from a massive data set through application of machine learning
methods, which lies at the core of recommendation systems. Subsequently, a simulation
exercise for characterizing the potential benefits of caching at BSs are performed.

9.4.1 Platform Description

The big data platform that we use is installed in the core network of the operator.
The aim of this platform, as explained before, is to record users’ traffic and extract
necessary information that will be exploited for estimation of content popularity.
Regarding the infrastructure, the operator’s network is made of multiple districts (about
10 regional areas) scattered around Turkey. The total average throughput spanning
over many regional areas is made of more than 15 billion packets in uplink as well as
20 billion packets in the downlink per day. These figures add up to a daily use of almost
80 TB of data flow in uplink and downlink in the core network of operator. The data
consumption behavior leads to an exponential usage in data traffic of a mobile network
operator. For instance, in 2012, approximately 7 TB of daily traffic (together in uplink
and downlink) was observed.

The data traces that are discussed hereafter were gathered from one of the major
network regions of the operator (which has mobile traffic from several base stations)
and are stored on a server equipped with a high-speed link up to 200 Mbps at peak
times/hours. As part of capturing the internet traffic by this server available on the
platform, a mechanism is established to mirror/copy real-world Gn interface data.6

6 Gn is an interface representing the serving GPRS support node (SGSN) and gateway GPRS support node
(GGSN). Packets in the network, transmitted from a user device to the packet data network (PDN), i.e.
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Once this mechanism of Gn interface is established, network traffic is then forwarded to
the server on the platform. In order to establish a technical analysis, we have gathered
mobile traffic of roughly 7 hours (between 12 PM and 7 PM, Saturday March 21, 2015).
The big data platform, based on Hadoop, is then used to analyze this mobile traffic.

Given the existing platforms, Hadoop appears to be one of commonly used solutions
as open source software [20]. A storage module (named HDFS) as well as a computation
module (named MapReduce) are integral parts of Hadoop. While HDFS can operate in
both centralized and distributed fashions, MapReduce naturally considers a distributed
mechanism where the the jobs can be executed in parallel on many computers.

As mentioned, the precision/accuracy of our data collection was examined within
the operator’s network. In particular, the big data platform was implemented using a
modified version of Hadoop distributed by Cloudera [21], consisting of four computers
(one being a cluster node), with each computer having the following computational
power and equipment: 32 core CPU (namely, Intel Xeon CPU E5-2670 performing at 2.6
GHz), 132 GB of RAM, and 20 TB of storage. This big data system is utilized to infer
the meaningful information from processing raw data and is detailed in Section 9.4.2.

9.4.2 Data Extraction Procedures

First of all, the raw data is fed to a tshark tool (namely, the Wireshark command line
utility [22]) for extraction of relevant fields, such as:

• The service area within location area, represented by service area code (SAC)
and location area code (LAC) fields, respectively. They identify an area of single
or multiple base stations, where in practice, tens or even hundreds of base stations
can operate in a specific location area.

• The requested content related field such as hypertext transfer protocol (HTTP)
request uniform resource identifier (URI).

• Tunnel end point identifiers such as the tunnel end point identifier (TEID) and
TEID-DATA, for control and data plane respectively.7

• Arrival time of requests, which could be approximately captured by a field like
FRAME TIME.

Note that control packets with fields like ID (CELL-ID), LAC, and TEID-DATA, contain
information about future data packets, whereas data packets have fields such as HTTP-
URI and TEID.

Next, after both control and data packets are obtained, the data are then transferred
to HDFS for more comprehensive analysis. With HDFS in hand, one can experiment
with various data analytics over the collected data, using tools like Hive Query lan-
guage (HiveQL) [23]. In order to find more information about the requested contents

internet, go through SGSN and GGSN in which the GPRS tunneling protocol (GTP) is the main protocol
in network packets going through the Gn interface.

7 A TEID uniquely identifies a tunnel end point on the receiving end of the GTP tunnel. A local TEID value
is given at the receiving end of a GTP tunnel for sending messages through the tunnel.
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(namely, HTTP-URIs) at a specific location and time, one can match CELL-ID-LAC
fields over the same TEID (data panel) and TEID-DATA (control panel) fields. Due
to limited number of rows we could have obtained for exact matching (with each row
storing HTTP-URI, CELL-ID-LAC fields, and other fields), we have continued with
HTTP-URIs and TEID matchings that approximately represent request–location pairs,
therefore providing us more rows for further analysis.

After the matching operation, the data are then stored in a temporary table called
the traces-table-temp, using HiveQL. Note that this temporary table contains HTTP
Request-URI, FRAME TIME, and TEID fields. The final stage in this process is to
find the size/length of the content (namely, lengths of HTTP-URI), which was done
by implementing a size calculator application via HTTPClient API [24]. The final
table is called the traces-table, where each row has fields of FRAME TIME, HTTP
Request-URIs, TEID, and SIZE. The total size of this final table is roughly 420,000
rows, after iterating over 4 million rows (which were available in the temporary table)
and discarding all SIZE queries returning zero or null. We would like to remark that,
in a particular session with a specific TEID, one could expect several HTTP request-
URIs. While each TEID belongs to a particular user, on the other hand, a user can have
several TEIDs with multiple HTTP request-URIs. All the procedures of data extraction
mentioned here, with the help of the big data platform, are summarized in Figure 9.2.
We remark that this data extraction procedure is developed for our setup of proactive
caching. Nevertheless, similar approaches in terms of platform and exploitation of big
data analytics for mobile network operators could be observed in [25–30].
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Size
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(HTTP client API)
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Figure 9.2 A summary of the data extraction procedures on the big data platform.
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Figure 9.3 Global content popularity distribution.

9.4.3 Traffic Characteristics

The information stored in the traces-table, representing the global content popu-
larity distribution (namely, global popularity distribution of HTTP-URI), is shown
in Figure 9.3, with popularities in a decreasing ranked order. Based on our gath-
ered/processed data, we note that the popularity behavior of files can be characterized
by a Zipf law, where the steepness parameter α equals 1.36.8 In the figure, the Zipf
line is computed in a least-squares fashion, and the parameter α is then obtained from
the slope of the Zipf line. Additionally, the cumulative size distribution of content is
depicted in Figure 9.4, using the same support of global content popularity (with a
decreasing order) and taking into account the size of content cumulatively. The content
up to the 41st most-popular content has a total/cumulative size of 0.1 GB, whereas a
dramatical jump in cumulative size appears afterward. One could remark that this is an
indication that most content in our catalog has a small size, and bigger content/files are
relatively less demanded.

While our results here shed light on the characterization of content popularity in base
stations, we would like state that a more detailed study can be conducted in the future.
Additionally, while our work differs from existing works in the sense that we take into
account mobile traffic from a large geographical area and leverage the data for traffic

8 The practical values of the steepness/shape parameter α can different in other scenarios. For example, the
shape of the parameter of content popularities in the YouTube catalog is observed to be between 1.5 and
2.5 [31, 32].
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characterization and caching, we note that some interesting studies could be found in
the context of web caching [10], campus network [33], mobile users in Mexico [34]
and others. In Section 9.5, we utilize information in the traces-table and perform a
simulation study to asses the impact of cache-enabled mobile networks.

9.5 Numerical Results and Discussions

The parameter setting considered in our simulation setup is summarized in Table 9.1. In
addition, we assume for sake of simplicity that wireless, backhaul, and storage capacities
are identical with each other.

In the simulation study, there are in total D number of content requests found in the
processed/collected data (called the traces-table), spanning over 6 hours 47 minutes.
The arrival time of each demand (FRAME TIME), demanded content (HTTP-URI),
and content size (SIZE) are taken from the traces-table. Then, these content demands
are mapped to M base stations pseudo-randomly. For the backhaul offloading problem
we stated in (9.9), the content popularity matrix P and cache placement strategy X are
calculated separately. More precisely, we have considered two different approaches for
constructing the content popularity matrix P:

• Ground truth: We built the matrix P (namely, the content popularity matrix) from
all available data in the traces-table without relying on the problem stated in
(9.10). This matrix in fact quantifies how popular files are across base stations,



A Proactive and Big Data–Enabled Caching Analysis Perspective 187

Table 9.1 List of Simulation Parameters

Parameter Description Value

T Total number of time units/slots 6 h 47 min

D Number of content requests 422,529

F Number of files 16,419

M Number of small cells 16

Lmin Minimum size of a content 1 byte

Lmax Maximum size of a content 6.024 GB

B(f ) Bitrate of content f 4 Mbps∑
m Cm Cumulative backhaul link capacity 3.8 Mbps∑
m

∑
n C′m Cumulative wireless link capacity 120 Mbps

with columns representing the content and rows indicating the base stations. It is
observed that the matrix P has rating density of 6.42%.

• Collaborative filtering: We have estimated the content popularity matrix P, via
attempting to solve the problem in (9.10). For this, we have uniformly and ran-
domly picked 10% of ratings from the traces-table for the test set, and the remain-
ing 90% is used for training via regularized SVD (see CF approaches [19, 35]).

Given both methods for constructing the content popularity matrix P, the content cache
replacement decision (X) is then performed by picking the most popular files greedily at
all SBSs subject to storage constraints (see [15] for more details). Assuming that these
selected files/contents are proactively available at SBSs at t = 0, the content demand of
users is then satisfied over the time. The measurements of performance metrics, such as
backhaul load and content demand satisfaction, are recorded for analysis.

Figure 9.5 represents the changes of users’ demand for satisfaction as the storage size
increases, where (1) 100% of storage size is representing the whole file/content catalog
(17.7 GB), and (2) 0% means no storage capacity, for both collaborative filtering and
ground truth approaches. The users’ content demand satisfaction substantially improves
with the increase in storage size, whereas the performance gap between the methods
is arguably small until 87% of caching/storage capacity (potentially due to estimation
errors). As an example, with 40% of storage capacity, one can observe that the CF
method can achieve 69% of users’ demand satisfaction whereas the ground truth could
go up to 92%.

Figure 9.6 presents the changes of backhaul usage/load as the storage size at each
base station increases. The higher backhaul load reduction is observed at the base
stations while increasing the storage size. For example, both ground truth and CF
methods can have offloading up to 98%. On one hand, one can also observe that the
performance of the ground truth approach is higher since all available information
from the traces-table is used for the construction of content popularity matrix. On the
other hand, after a specific storage size capacity, the figure shows a sharp decrease of
backhaul load in both approaches, mostly because of the fact that relatively less popular
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Figure 9.5 Change of satisfaction with respect to the storage size.
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(but large-size) files have less impact compared to highly popular files in our setting.
While not considered in the cache placement methods of this numerical study, this
behavior shows the importance of considering content sizes (see Figure 9.4) when
designing placement algorithms, in order to more efficiently use the storage size at base
stations.

Finally, Figure 9.7 shows the evolution of root-mean-square error (RMSE) with
respect to the training density for CF approach. Note that the training density in the
evaluations described is 90%, whereas the aim in this figure is to assess its impact on
performance and show the validity of those evaluations. The performance of the CF
method is evidently better when the training density is increasing, allowing the CF
method to better estimate, thus leading to smaller estimation errors.

9.6 Conclusions

Our study in this chapter focused on a proactive caching method that leverages tools
from machine learning and big data platforms, with the aim of improving performance
of cache-enabled base stations in 5G (and beyond) wireless networks. The experimental
test bed as well as data extraction procedures enabled us to have an estimation of content
popularity matrix in a real-world setup, and the cache performance benefits in terms of
network backhaul offloadings and users’ content request satisfaction were provided.
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Regarding future directions of the work, one could think of a more detailed charac-
terization of the mobile data traffic that takes into account joint spatiotemporal varia-
tion of content access patterns. As far as learning for cache placement is concerned,
online machine learning mechanisms, such as deep reinforcement learning, could be
considered. For cache placement, the development of new randomized/deterministic
algorithms are needed and should take into account not only content popularity but also
content lengths and other factors; therefore, higher backhaul offloading and demand
satisfaction could be achieved. Finally, another line of work would be to extend the big
data platform such that real-time processing (instead of offline) could be performed. In
this regard, the recent tools of the Hadoop ecosystem, like Apache Spark and related
libraries such as Spark Streaming, could be considered as well as MLLib for machine
learning analysis.
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10 Mobility-Aware Caching in Cellular
Networks
Shankar Krishnan, Mehrnaz Afshang, and Harpreet S. Dhillon

Driven by the inherent spatiotemporal correlation in wireless data demand, cellular
network design is becoming increasingly content centric. An integral component of
this new paradigm is the network’s ability to cache popular content at its edge, which
includes base stations, access points [1], and handheld devices [2]. This additionally
reduces latency, which is one of the key challenges facing the next generation of
cellular networks. As discussed in the earlier chapters, the huge size of a typical library
of popular files and relatively smaller storage capacities of edge devices, especially
small cell base stations (SCBSs) and handheld devices, makes it necessary to carefully
determine the set of files (cache) that should be placed on each device. Compared
to a wireless network for which caching mechanisms are fairly well understood, a
distinctive feature of content-centric wireless networks is the mobility of the end users,
which needs to be included in the system design. Inspired by this, in this chapter we
investigate the impact of mobility on edge caching. In particular, we determine the
optimal caching policies in both static and mobile user scenarios and show that the
optimal solutions in the two scenarios are significantly different. In particular, while it
is preferable for the SCBSs to cache the most popular files in the static scenario, the
files can be cache much more evenly in the mobile case.

10.1 Optimal Caching in Static Networks

With the increasing consumption of internet content, the number of popular files
accessed by the users is growing, which makes a strong case for wireless edge caching.
Said differently, whenever some content becomes popular, say a YouTube video goes
viral, it is beneficial to cache it in edge devices, such as SCBSs, rather than retrieving it
each time from the internet. Determining the content that should be cached at each SCBS
is, however, the main challenge while designing such a network. Due to the amount
of content available on the internet, this problem seems hopeless at first. However, as
already discussed in earlier chapters, popular content forms a small fraction of the total
content, while a large amount of content remains unpopular and sparsely requested [4].
This allows one to focus on the library of popular files, where each file is associated with
a popularity distribution, which can be empirically determined and is often modeled as
Zipf distribution [5].

This chapter is an expanded version of [3].
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In this chapter, we specifically focus on small cell caching, which is perhaps the
most realistic use case of edge caching. The problem of small cell caching has two key
dimensions: (1) learning the library of popular files and (2) determining the subset of
library contents to be placed on each SCBS in order to optimize system performance.
In this chapter, we focus on the latter, assuming that the library of popular files has
already been determined. Note that while the library of popular files is a small fraction
of the total content available on the internet, it is still, in general, not possible to cache
the whole library at each SCBS due to the limited capacities of cache storage units.
Therefore, one can cache only a subset of the library on each SCBS. This means that
even if the file requested by a particular user is a part of the library of popular files, the
user may still not be able to download it because it may not be cached at any SCBS
located in the user’s vicinity.

There are two basic approaches for determining the optimal subset of library content
to be placed at each SCBS/device, namely the deterministic and probabilistic. In [6]
and [7], deterministic content placement was analyzed, where optimal placement of
the popular content was determined by exploiting information about the node locations
along with the statistical or instantaneous channel states. In deterministic content place-
ment, the optimal strategy is to cache the same copy of popular contents in all SCBSs.
However, in reality, the geographic locations of the users, wireless channel states, and
content popularity are all the time varying, and thus the optimal cache needs to be
frequently updated in the deterministic content placement strategy. In order to over-
come this, probabilistic content placement was proposed and analyzed in the context of
device-to-device (D2D) network caching in [8], where each mobile terminal caches a
specific subset of the library with a given caching probability. In this chapter, we also
focus on probabilistic content placement.

The performance of wireless caching systems depends heavily on the adopted cache
placement strategy. Most prior works focus on optimizing cache placement, determinis-
tic or probabilistic, by maximizing some performance metric of interest. This metric, say
successful reception probability or download time, is optimized by constructing a suit-
able utility function. For instance, [9] and [10] provide an optimal probabilistic place-
ment policy, which guarantees maximum total hit probability in cache-enabled cellular
networks. To achieve optimality, this policy exploits multi-coverage regions and delivers
considerable performance improvement. Similarly, considering both coded and uncoded
cases, [6] studies optimal cache placement that minimizes download time. A common
assumption in all these works is that the user locations are stationary. In the resulting
static setup, optimal cache is predominantly determined by the request probabilities of
the files in the library. However, as we discuss in detail in this chapter, optimal cache
placement is significantly different when the mobility of the users is taken into account.

10.2 Mobility in Cellular Networks

A large fraction of users in a wireless network are in general mobile [11]. User mobility
impacts (1) resource management aspects, such as channel allocation schemes, call
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blocking rate, and traffic volume per cell, and (2) radio propagation aspects, such as
signal strength variation and time dispersion of signals. For efficient design and dimen-
sioning of the network, it is necessary to analyze mobility-aware metrics such as handoff
rate [12], handoff probability [13–15], and sojourn time (or dwell time) [16]. Along with
these classical metrics, the transformation toward a content-centric design of cellular
networks renders it important to investigate the impact of mobility on optimal caching
strategies in cellular networks [3, 17–20]. For instance, consider the content request
pattern of a mobile user who moves over large distances, e.g., from office to home, in
a certain time period. This user at home may be interested in a completely different
content compared to when the user is in office. Considering different interest levels
over requested content in different locations, a large-scale mobility model, such as the
clustering algorithm proposed in [21], needs to be considered, where users are grouped
into clusters based on their request profile. In such large-scale mobility scenarios, deter-
mining the optimal content to be cached depends on determining the library of files that
are popular in that specific region (say home or office) [22]. Since our focus is not on
determining the library of popular files, this large-scale mobility case does not come
under the purview of our analysis. Instead, we focus on small-scale mobility scenarios,
which correspond to the cases where the users move over smaller distances, such as
within a mall or a university. In such scenarios, it is reasonable to assume that the library
of popular files is not impacted by the user mobility. For instance, users likely to access
a similar set of files irrespective of where they are in the university. The main question
here is to determine the distribution of the files that should be placed in the cache and
how it is impacted by user mobility.

The existing methodologies for mobility-aware network performance analysis can be
classified in two major categories: trajectory-based and association-based approaches.
Trajectory-based approaches consider explicit mobility models that emulate movement
patterns of mobile users. These models are either obtained using logs of connectivity
information of mobile users, e.g., see [23], or are based on mathematical models, such
as random walk mobility [24], random way point mobility [25], and random direction
mobility [16]. On the other hand, association-based mobility approach, as the name sug-
gests, is conducive for answering mobility-related questions related to the association
of users to the BSs. For instance, if one wants to know whether there was a handover
when a mobile moved from a given location to another location, one simply needs to
determine whether that user is associated with the same or different base station at the
two locations. Since association-based mobility approaches are known to be much more
tractable than the trajectory-based approaches, we also focus on them in this chapter.
More finer details about the mobility model are provided in the next section.

10.3 Overview of System Model

We consider a cache-enabled cellular network in which the locations of SBSs are mod-
eled as a homogeneous Poisson point processes (PPP) 	 with density λ [26]. It is
assumed that a maximum of L files can be cached by each SCBS, while the total
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number of files in the library is denoted by K . We denote by PRi
the probability that

the ith file, Fi , will be requested. The files are ordered based on their popularity, with
the indexing i = 1 and i = K corresponding to the most popular and least popular
files, respectively. It is assumed that the users’ content requests follow Zipf’s law, i.e.,
PRi
= i−γ/

∑K
j=1 j−γ, where γ > 0 is the Zipf parameter [5]. It is also assumed that

each SCBS caches file Fi with probability bi , which is independent of the other SCBSs.
Thus

∑K
i=1 bi = L.

10.3.1 Mobility Model

As noted, we consider the association-based mobility approach in this chapter. This
circumvents the need for going into the trajectory details for each mobile user and
hence results in more tractable analytical analysis compared to the trajectory-based
approaches. This approach is also more conducive for the large-system analysis of
the considered setup. In order to visualize this system, let us assume that a user fol-
lows an arbitrary trajectory as illustrated in Figure 10.1. The mobile user attempts to
download a file of interest at multiple discrete points along the trajectory, as shown
in Figure 10.1. Since each SCBS caches only a subset of files in the library, it is
quite likely that none of the SCBSs in the user’s vicinity has cached the file that is
currently being requested by the user. However, if the user’s equipment is allowed
to access the caches at multiple locations on the trajectory, it becomes more likely
that it will run into an SCBS, which will have the requested file in its cache. This is
fundamentally what makes the static and mobile scenarios different from the caching
perspective.

In a dense cellular network, even a displacement by a small distance (small-scale
mobility) may take the user in a completely new local neighborhood of small cells.

Figure 10.1 Illustration of the system model in which a user moves from location 1 to 5 while
trying to obtain the file of interest cached in certain SCBS using Policy 1 (P1) and Policy 2
(P2). In Policy 1, the user connects to the closest SCBS, while in Policy 2, the user connects to
the closest SCBS that caches its requested file.
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As a result, a user may perceive a completely different set of serving and interfering
SCBSs when it tries to access files at the two locations (original and new). This is
evident from Figure 10.1 where the user sees a completely new neighborhood of cached
SCBSs while moving from location 1 to 2. The file of interest is cached at an SCBS
far from the user location 1 while it is much closer at location 2. Again, the user is
served by an entirely different SCBS at location 3 compared to locations 1 or 2. The
user displacement, even though small with respect to its previous location, can be per-
ceived as an infinite-mobility scenario due to its perceived new neighborhood at the new
location [27, 28]. We first provide formal insights under the infinite mobility assumption
and then show in Section 10.5 that the insights hold for the general case (finite-mobility
scenario) as well. For completeness, note that because of the infinite mobility assump-
tion, we do not need to make any specific assumptions about the user trajectories in our
analysis.

For the setup studied in this chapter, it is assumed that the typical user can attempt
to receive its desired file Fi from SCBSs within at most n transmission attempts. This
is equivalent to n − 1 SCBS retransmissions. In the kth transmission, the signal-to-
interference ratio (SIR) at the typical user is

SIRi,k = hxk‖x‖−α∑
y∈	\{x}

hyk‖y‖−α , (10.1)

where fading gains are assumed to be independent across transmission attempts. Here,
{hxk,hyk} ∼ exp(1) represent Rayleigh fading channel gains from the serving SCBS
x ∈ 	 and interferer {y} in the kth transmission attempt, and ‖ · ‖−α (with α > 2) is
standard power-law pathloss.

10.3.2 Cell Selection Policy

For the typical user, a straightforward choice of selecting the serving SCBS is to connect
to the SCBS with maximum average received power, irrespective of the cached file
in that SCBS. This would correspond to the closest SCBS to the typical user. We
refer this policy as Policy 1 (cache-agnostic policy) and denote it by P1. However,
in cache-enabled networks, the closest SCBS may not necessarily cache the user’s file
of interest. To address this drawback in cache-enabled networks, we define Policy 2
(cache-aware policy) and denote it by P2 in which the user connects to the closest
SCBS that has cached its file of interest, instead of blindly connecting to the closest
SCBS by distance. This, however, requires the knowledge of the cache contents of
SCBSs in the user’s vicinity, which can perhaps be obtained with the assistance of
the macro cells. That said, in Policy 2, the file transfer may not necessarily succeed,
as the SCBS with the cached file of interest may not always be close enough to the
typical user.

We determine optimal caching probabilities that maximize the hit probability (HP) for
this system model in the next section. The notation used in this chapter is summarized
in Table 10.1.



198 Shankar Krishnan, Mehrnaz Afshang, and Harpreet S. Dhillon

Table 10.1 Summary of Notation

Notation Description

	, λ A homogeneous PPP modeling the locations of SCBSs, density of SCBSs

PRi
The probability that the ith file, Fi , will be requested

K The total number of files in the library

L The maximum number of files that can be cached by each SCBS

P1, P2 Cache-agnostic policy, cache-aware policy

psi,n , pci,n , poi,n Success probability, coverage probability, outage probability

p
(1)
c , p

(2)
c Coverage probability under P1, Coverage probability under P2

α Pathloss exponent, α > 2

hxk , hyk Exponential fading coefficients with unity mean

T SIR threshold for successful demodulation and decoding

Phit Hit probability

10.4 Optimal Caching in Cellular Networks

In a given transmission attempt, a file is successfully received only if the user is in the
coverage of an SCBS that has its requested file in its cache. The coverage probability of
file Fi in the kth transmission is defined as P(SIRi,k > T ), where T is SIR threshold
for successful decoding. Let Si be the event that file Fi is successfully received within
n transmission attempts. The success probability is psi,n

= P(Si). It is assumed that
the fading gains are independent and identically distributed over the n transmission
attempts. Therefore, the success probability of file Fi in each transmission attempt is the
same, which we denote by psi

. If all the n transmission attempts are unsuccessful (i.e.,
the requested file is not received successfully in any of the transmissions), the user is said
to be in outage of file Fi . The outage probability of file Fi after n transmission attempts
is poi,n

= 1−psi,n
. In this chapter, we study network performance in terms of HP, which

is mathematically defined as the sum of the probabilities of successfully receiving each
file in the library within n transmission attempts, weighted by their request probabilities,
which can be expressed as:

Phit =
K∑

i=1

PRi
psi,n

=
K∑

i=1

PRi
(1− poi,n

). (10.2)

In the next two sections, we maximize the hit probability and obtain optimal caching
probabilities {bi} for two scenarios: a mobile user and a static user.

10.4.1 Mobile User

The success (or outage) probability in each transmission attempt does not depend on the
prior transmission attempts under infinite mobility assumption. Hence the outage prob-
ability of file Fi after n transmission attempts is the product of the outage probabilities
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in each transmission attempt, i.e., poi,n
= (1 − psi )

n. In order to maximize the HP, we
formulate an optimization problem as follows:

max
{bi }

K∑
i=1

PRi
(1− (1− psi )

n), (10.3)

s.t.
K∑

i=1

bi = L and 0 ≤ bi ≤ 1, i = 1, . . . K .

10.4.1.1 Policy 1
As described in Section 10.3, the user connects to the closest SCBS that maximizes its
average received power under Policy 1. A successful reception of the file depends on the
probability that the closest SCBS caches the file requested by the user and that the SIR
is larger than a given threshold. In a given transmission under Policy 1, the probability
of successfully receiving file Fi is the product of its caching probability bi and coverage
probability, which can be written as p

(1)
ci

, i.e., psi = bip
(1)
ci

. It is important to note that
coverage probability (when the user is served by the closest SCBS) does not depend on
the density of SCBSs under an interference-limited regime as shown in [29]. For a given
transmission under Policy 1, the probability of successfully receiving file Fi is therefore,

psi = bip
(1)
ci
= biP(SIRi,k ≥ T ) = biP

(
hxk‖x‖−α∑

y∈	\{x}
hyk‖y‖−α > T

)
(a)= biE

[
exp

(
− T ‖x‖α

∑
y∈	\{x}

hyk‖y‖−α
)]

(b)= biE
[ ∏

y∈	\{x}

1

1+ T ‖x‖α‖y‖−α
]

(c)= bi

∫ ∞
0

exp
(
− 2πλ

∫ ∞
x

(
1− 1

1+ T rαu−α
)
udu

)
2πλr exp(−πλr2)dr

= bi

1+ ρ1(T ,α)
, (10.4)

where

ρ1(T ,α) = T 2/α
∫ ∞

T −2/α

du

1+ uα/2
. (10.5)

Steps (a) and (b) follow from {hxk,hyk} ∼ exp(1). Step (c) follows from the probability
generating functional (PGFL) of PPP, where ‖x‖ = r and ‖y‖ = u. Differentiating
(10.3) with respect to bi , we obtain

d

dbi

K∑
i=1

PRi
(1− (1− bipci

)n) =
K∑

i=1

PRi
pci

n(1− bipci
)n−1 ≥ 0, (10.6)

and hence the objective function is concave, which implies that the Karush–Kuhn–
Tucker (KKT) conditions provide necessary and sufficient conditions for optimality.
The Lagrangian function corresponding to problem (10.3) is
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L(b,ν,μ,w) =
K∑

i=1

PRi
(1− (1− bip

(1)
ci

)n)+ ν
(

K∑
i=1

bi − L

)
−

K∑
i=1

μibi +
K∑

i=1

wi(bi − 1),

where μ,w ∈ RK+, and ν ∈ R. Let b∗,ν∗,μ∗, and w∗ be primal and dual optimal. The
KKT conditions for problem (10.3) state that

K∑
i=1

b∗i = L, (10.7)

0 ≤ b∗i ≤ 1,μ∗i ≥ 0, w∗i ≥ 0,μ∗i b
∗
i = 0, ∀i = 1, . . . K (10.8)

w∗i (b∗i − 1) = 0, ∀i = 1, . . . K, (10.9)

PRi
n(1− b∗i p

(1)
ci

)n−1p(1)
ci
+ ν∗ − μ∗i + w∗i = 0, ∀i = 1, . . . K . (10.10)

Based on this, the optimal cache placement under Policy 1 is given next.

theorem 10.1 Under Policy 1 with a maximum of n transmission attempts, the opti-
mal caching probability of file Fi denoted by b∗i , which maximizes the HP for a mobile
user, is

b∗i =

⎧⎪⎪⎨⎪⎪⎩
0, ν∗ < −PRi

np
(1)
ci

1, ν∗ > −PRi
np

(1)
ci

(1− p
(1)
ci

)n−1,

1
p

(1)
ci

[
1− ( −v∗

PRi
np

(1)
ci

) 1
n−1

]
, otherwise

(10.11)

where ν∗ = −PRi
n(1−b∗i p

(1)
ci

)n−1p
(1)
ci

can be obtained as the solution of the constraint∑K
i=1 b∗i = L.

Proof From (10.8) and (10.10), we have

w∗i = b∗i [−PRi
n(1− b∗i p

(1)
ci

)n−1p(1)
ci
− ν∗], (10.12)

which when inserted into (10.9) gives

b∗i (b∗i − 1)[−PRi
n(1− b∗i p

(1)
ci

)n−1p(1)
ci
− ν∗] = 0. (10.13)

From (10.13), it can be seen that 0 < b∗i < 1 only if,

ν∗ = −PRi
n(1− b∗i p

(1)
ci

)n−1p(1)
ci

. (10.14)

Given that 0 ≤ b∗i ≤ 1, we have

ν∗ ∈ [−PRi
np(1)

ci
, − PRi

np(1)
ci

(1− p(1)
ci

)n−1]. (10.15)

For this interval, solving for ν∗ using the constraint
∑K

i=1 b∗i = L, we get,

K∑
i=1

1

p
(1)
ci

[
1−

( −v∗

PRi
np

(1)
ci

) 1
n−1

]
= L

( −v∗

np
(1)
c

) 1
n−1 (a)= K − Lp

(1)
c∑K

j=1

( 1
PRj

) 1
n−1

, (10.16)
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where (a) results by using p
(1)
ci
= p

(1)
c ,∀i = 1, . . . K and rearranging a few terms. Also,

it can be seen that for ν∗ < −PRi
np

(1)
ci

,b∗i = 0 and if v∗ > −PRi
np

(1)
ci

(1 − p
(1)
ci

)n−1,
b∗i = 1.

We now specialize Theorem 10.1 to the simple case of unitary storage space (L = 1)
in the SCBS and two files in the library (K = 2).

corollary For K = 2, the optimal value (b∗1,b
∗
2) obtained as solution of the opti-

mization problem (10.3) is

b∗1 =

⎧⎪⎪⎨⎪⎪⎩
1, n < 1+ γ

log2

(
1

1−p
(1)
ci

)
a−1+p

(1)
ci

(a+1)p(1)
ci

, otherwise
, (10.17)

where a = 2
γ

n−1 , γ is the Zipf parameter and b∗2 = 1− b∗1 .

Proof Using Eq. (10.16) for the case of K = 2 and L = 1, we obtain,( −v∗

np
(1)
c

) 1
n−1

= 2− p
(1)
c( 1

PR1

) 1
n−1 + ( 1

PR2

) 1
n−1

. (10.18)

Rearranging a few terms in the intervals of Theorem 10.1, we obtain

b∗1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,

(
−ν∗
np

(1)
c

) 1
n−1

> P
1

n−1
R1

1,

(
−ν∗
np

(1)
c

) 1
n−1

< P
1

n−1
R1

(1− p
(1)
c )

1
p

(1)
c

[
1−

(
1
PR1

) 1
n−1

(
−v∗
np

(1)
c

) 1
n−1

]
, otherwise

(a)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0, 1− p
(1)
c >

(
PR1
PR2

) 1
n−1

1, 1
1−p

(1)
c

<
(
PR1
PR2

) 1
n−1

1
p

(1)
c

⎡⎣1− 2−p
(1)
c

1+(
PR1
PR2

)
1

n−1

⎤⎦ , otherwise

(b)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, n < 1+ γ

log2 (1−p
(1)
c )

1, n < 1+ γ

log2( 1

1−p
(1)
c

)
,

a−1+p
(1)
c1

(a+1)p(1)
c1

, otherwise

where (a) follows by using Eq. (10.18) and rearranging a few terms. Step (b) is obtained
by using the Zipf’s law PRi

= i−γ/
∑K

j=1 j−γ, where γ > 0 is the Zipf parameter

and using a = 2
γ

n−1 . The final result follows by ignoring the interval corresponding to
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b∗1 = 0 as it happens only when the number of transmission attempts n < 1, which is
not possible.

From Corollary 10.4.1.1, it can be seen that it is optimal to cache only the most
popular file F1 if n < 1+ γ

log2( 1

1−p
(1)
c

)
, and hence for a single transmission attempt (i.e.,

n = 1 scenario), it is optimal to cache the most popular file.

10.4.1.2 Policy 2
In this Policy 2, the user connects to the closest SCBS that has cached the file of interest
instead of just connecting to the closest SCBS based on received signal strength. In
Policy 2, the success probability is not weighted by the file’s caching probability as the
user always connects to the SCBS that contains its requested file. Hence, under Policy 2,
the success probability of getting file Fi is the same as its coverage probability, which is
denoted by p

(2)
ci

. The p
(2)
ci

for a similar scenario is obtained in [30, theorem 1]. Denote by
	1 the set of SCBSs that have Fi in their caches and its complement by 	2 ≡ 	 \	1.
We have

psi = p(2)
ci
= P

(
hxk‖x‖−α∑

y∈	1\{x}
hyk‖y‖−α +

∑
y∈	2

hyk‖y‖−α ≥ T

)

=
∫ ∞

0
exp

(
− 2π(1− bi)λ

∫ ∞
0

(
1− u−α

T r−α + u−α

)
udu

)
(10.19)

×exp

(
− 2πbiλ

∫ ∞
r

(
1− u−α

T r−α + u−α

)
udu

)
2πλbir exp(−πλbir

2)dr

= bi

bi + ρ1(T ,α)+ (1− bi)ρ2(T ,α)
, (10.20)

where

ρ2(T ,α) = T 2/α
∫ T −2/α

0

du

1+ uα/2
, (10.21)

and ρ1(T ,α) is defined in (10.5). In Policy 2, the solution of the optimization problem
(10.3) is obtained on the same lines as Theorem 10.1 (Policy 1) by using the success
probability psi . The optimal solution is provided next.

theorem 10.2 Under Policy 2 with a maximum of n transmission attempts, the opti-
mal caching probability of file Fi denoted by b∗i , which maximizes the hit probability for
a mobile user, is

b∗i =

⎧⎪⎨⎪⎩
0, ν∗ <

−PRi
n

C

1, ν∗ >
−PRi

nC(B+C−1)n−1

(B+C)n+1

φ(ν∗), otherwise

, (10.22)
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where φ(v∗) is the solution over bi of

PRi
nC((B − 1)bi + C)n−1

(Bbi + C)n+1
+ ν∗ = 0, (10.23)

B = 1− ρ2(T ,α), C = ρ1(T ,α)+ ρ2(T ,α), and ν∗ can be obtained as the solution of
the constraint

∑K
i=1 b∗i = L.

The success probability psi for Policy 2 (given by (10.20)) is more complicated than
Policy 1 (given by (10.4)). Therefore, it is more difficult to obtain the optimal solution
since it requires solving the polynomial equalities of the form (10.23), which may not
have closed-form solutions. Thereby, we limit our further discussion on the optimal
solution under Policy 2 only to the extreme cases (n = 1 and n→∞)

corollary (Single transmission, Policy 2) Under Policy 2 with n = 1 and L = 1,
the optimal caching probability of file Fi denoted by b∗i , which maximizes the HP for a
mobile user, is

b∗i =
⎡⎣
√

PRi

ε − (ρ1(T ,α)+ ρ2(T ,α))

1− ρ2(T ,α)

⎤⎦+ ,i = 1, . . . K, (10.24)

where [x]+ = max(0,x),
√
ε =

∑K∗
i=1
√
PRi

(K∗−1)ρ1(T ,α)+K∗ρ2(T ,α)+1 and K∗, 1 ≤ K∗ ≤ K ,
satisfies the constraint that 0 ≤ b∗i ≤ 1. Here ρ1(T ,α) and ρ2(T ,α) are defined in
(10.5) and (10.21), respectively.

Proof The result is obtained by substituting n = 1 in Theorem 10.2, solving for v∗

using the constraint
∑K

i=1 b∗i = 1, along with simple algebraic manipulation.

corollary (Large transmission attempt scenario) In a scenario with large number
of transmission attempts (approaching infinite attempts asymptotically) for the mobile
user case (Policies 1 and 2), it is optimal to cache the files uniformly, i.e., lim

n→∞ bi
∗ = L

K
,

where K is the total number of popular files in the library.

Proof It can be seen from (10.4) and (10.20) that psi
is a monotonically increasing

function of bi for caching policies 1 and 2. The generalized optimization function for
(10.3) can hence be written as

max
{bi }

K∑
i=1

PRi
(1− (1− f (bi))

n), s.t.
K∑

i=1

bi = L. (10.25)

After taking the differential of (10.25) with respect to {bi}i=1,...K , we get

PRi
n(1− (1− f (bi))

n−1) = 0 ∀ i = 1, . . . K, i.e.,

PRi
n(1− (1− f (bi))

n−1) = PRj
n(1− (1− f (bj ))n−1), ∀i �= j,

1− f (b∗i )

1− f (b∗j )
=
(
−

f ′(b∗j )PRj

f ′(b∗i )PRi

) 1
n−1

, ∀i �= j .



204 Shankar Krishnan, Mehrnaz Afshang, and Harpreet S. Dhillon

For n → ∞, we therefore get f (b∗i ) = f (b∗K ) , or equivalently b∗i = b∗j . With∑K
i=1 b∗i = L, the optimal caching strategy is therefore to cache the files uniformly

for a mobile user scenario encountering large number of retransmissions.

10.4.2 Static User

For comparison purpose, we also consider a static scenario, where the user attempts
to receive its file of interest within n transmission attempts while being stationary at a
certain location in the network. Since the user does not move, it sees exactly the same set
of transmitters across n transmission attempts, resulting in the temporal coupling in the
success probabilities. Hence, the probability that a file will be successfully received in a
given transmission depends on its success probability in the prior transmission attempts.
Let Si,k denote the event that file Fi is in coverage during the kth transmission attempt.
The probability that file Fi is in coverage (at least) once in n transmission attempts,
denoted by pci,n

is given as

pci,n
= P(∪n

k=1Si,k) = P(∪n
k=1(SIRi,k > T ))

(a)=
n∑

k=1

(
n

k

)
(−1)k+1Pi,k, (10.26)

where (a) follows from the inclusion–exclusion principle and Pi,k = P(∩k
j=1(SIRi,j >

T )) is defined as the joint coverage probability of file Fi in k transmission attempts.
Similar to the mobile user scenario, we now formulate an optimization problem to

maximize the HP for a static user under P1 and P2.

10.4.2.1 Policy 1
As we know that the file of interest Fi is cached with probability bi in the closest
SCBS, the success probability in n transmission attempts can be derived by multiplying
coverage probability pci,n

by bi , i.e., psi,n
= bipci,n

. We therefore obtain the following
optimization problem after using (10.26) in the earlier result and substituting in (10.2).

max
{bi }

K∑
i=1

PRi

n∑
k=1

(
n

k

)
(−1)k+1biP

(1)
i,k, (10.27)

s.t.
K∑

i=1

bi = L, (10.28)

where P(1)
i,k , the joint coverage probability of file Fi in k transmission attempts under

P1, is derived next.

P(1)
i,k = ER1

[
P

( ⋂
j∈{1...k}

hxj r
−α
1∑

y∈	\{x}
hyj‖y‖−α > T

∣∣r1

)]

(a)= ER1

[ k∏
j=1

exp

(
− T rα1

∑
y∈	\{x}

hyj‖y‖−α
)]



Mobility-Aware Caching in Cellular Networks 205

(b)= ER1

[ ∏
y∈	\{x}

(
1

1+ T rα1 ‖y‖−α
)k]

P(1)
i,k =

∞∫
0

exp

(
− 2πλ

∞∫
r1

(
1− ( uα

T rα + uα

)k)
udu

)
fR1 (r1)dr1,

where (a) follows from hxj ∼ exp(1) and the assumption of independent and identical
distribution fading across the k transmission attempts and (b) follows from hyj ∼
exp(1). The final result follows from the PGFL of PPP 	 followed by converting the
coordinates from Cartesian to polar and deconditioning with respect to R1, where R1

represents the distance of the closest SCBS from the typical user. Here, the probability
density of R1 is given from the null probability of PPP as fR1 (r1) = 2λπr1e

−λπr2
1 [31].

10.4.2.2 Policy 2
In Policy 2, as the user always connects to the closest SCBS that has the file of interest
in its cache, the success probability of getting Fi is the same as the coverage probabil-
ity, i.e., psi,n

= pci,n
. Thereby, simply using (10.26) in (10.2), we get the following

optimization problem.

max
{bi }

K∑
i=1

PRi

n∑
k=1

(
n

k

)
(−1)k+1P(2)

i,k, s.t.
K∑

i=1

bi = L, (10.29)

where P(2)
i,k , the joint coverage probability of file Fi in k transmission attempts under

Policy 2, is obtained using a similar derivation approach as Policy 1, which is pre-
sented next.

P(2)
i,k =

∫ ∞
0

exp

(
− 2π(1− bi)λ

∫ ∞
0

(
1− ( uα

T r2
α + uα

)k)
udu

)
× exp

(
− 2πbiλ

∫ ∞
r2

(
1− ( uα

T r2
α + uα

)k)
udu

)
fR2 (r2)dr2,

where R2 represents the distance of the typical user to the closest SCBS that has cached
the file of interest Fi . As the caching probability of file Fi in the network is bi , the
distribution of R2 is therefore given by the closest point of the PPP of intensity biλ, and
its probability distribution is given by 2λπr2e

−biλπr2
2 . The key difference to be noted

while analyzing Policy 2 is that the interference field is now divided into two regions: (1)
interference from those SCBSs that have cached the file of interest Fi , which constitutes
a PPP of intensity biλ outside a radius r2 (closest distance of Fi) and (2) interference
from the remaining SCBSs (not having cached Fi), which constitutes a PPP of intensity
(1− bi)λ in R2.

Similar to the mobile user scenarios, we can obtain the optimal caching probabilities
of a static user under P1 and P2, i.e., the solutions of the optimization problem (10.27)
and (10.29). In the next section, we provide more insights on the optimal caching
probabilities for a static user.
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10.5 Results and Discussion

For the setup described thus far in this chapter, we now numerically analyze the effect of
mobility on the HP-optimal caching for the two policies. For brevity, we first limit our
focus to P1 in the results presented in Figures 10.2 and 10.3. Similar observations can be
drawn for P2 as well. To complete the picture, the primary difference between the two
policies (in terms of the resulting optimal caching probabilities) is highlighted later in
the section. For the purpose of numerical results, we assume that SCBSs are distributed
according to a homogeneous PPP with density 150 SCBSs/km2. For this setup, we
consider a library of K files, with an SIR threshold of β = 0 dB and Zipf parameter
of γ = 1.2. Please note that the asterisk denotes the optimal caching probability in all
figures.

10.5.1 Mobility in Ultra-dense Networks

Figure 10.2 plots the HP for different caching probabilities of file F1 for a 2-file library
scenario (K = 2) and various levels of mobility. For the setup described (SCBS density
of 150 BSs/km2), the average cell “radius” of the SCBSs comes out to be approximately
40 m. Following P1, the user tries to access the file of interest at two locations on its
trajectory (say x meters apart). We consider x = 0 m to model the static case, a large
value of x = 400 m to model the infinite mobility case, and the intermediate values
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Figure 10.2 Effect of mobility in ultra-dense networks when number of attempts to access the file
of interest is n = 2.
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Figure 10.3 Effect of number of attempts n on the optimal caching probability.

of x = 50 m and 100 m to model the finite mobility cases. It can be observed from
Figure 10.2 that the HP for all levels of mobility is significantly higher compared to the
static case for all caching probabilities of file F1. As discussed in the previous sections,
this is due to the fact that mobility allows a user to come across more unique SCBSs,
thus providing access to more unique caches, which increases the probability of finding
one that has its file of interest. Even a displacement of 50 m (approximately the cell
radius) gives substantial gains in HP and can be approximated by the infinite-mobile
scenario for a dense network. Therefore, for the simplicity of exposition, we focus on
the infinite mobility (or large-scale mobility) scenario in the rest of this section. Also,
the optimal caching probabilities for all levels of mobility are seen to be shifted toward
the left, allowing the network to cache the files in a more balanced way compared to the
static case.

10.5.2 Effect of the Number of Attempts

The number of attempts n made to access the file of interest plays a significant role in
determining the optimal cache for a given library of files. As observed from Figure 10.3,
the optimal strategy for a K = 2 file library varies from caching only the most popular
file in the network (n = 1) to caching both files in the library with an equal probability
for a large number of attempts (n ≥ 20). In the general case with K files in the library,
it is seen that the optimal caching probability of each file in the library approaches
1/K asymptotically. Therefore, mobility (in particular the flexibility of accessing the
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file at multiple unique locations) allows the network to have a more balanced cache
compared to the static case, where all the SCBSs tend to cache only the most popular
files.

10.5.3 Comparison of P1 and P2

So far, we have focused only on P1 in Section 10.5. We now compare the two policies in
terms of the HP for different caching probabilities of file F1 in Figire 10.4. The results
are plotted for several different numbers of attempts n. The figure depicts the optimal
caching probability of file F1 that maximizes the HP while obtaining the file of interest
from a library of 2 files. It can be observed that the optimal caching probabilities are
slightly lower (while resulting in slightly higher HP) in case of P2 compared to P1.
This asserts that it is not required to cache the most popular file (file F1) as frequently
under this policy and can allow the SCBSs to cache the less popular files with a relatively
larger probability. This slight shift in optimal caching probabilities and a higher HP of
P2 can be attributed to the policy mechanism itself. By connecting to the closest SCBS
having the file in its cache under P2, we get a better chance of obtaining the desired file
than connecting to the SCBS closest to the user and hoping it has the file of interest in
its cache. Finally, it can also be seen that the HP for both P1 and P2 increases with the
number of attempts n.
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Figure 10.4 Effect of cache gathering policy (Policies 1 and 2) on the HP.
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Figure 10.5 Effect of mobility on the optimal caching probabilities for varying number of
attempts. User follows Policy 2.

10.5.4 Comparison of the Mobile and Static Cases as a Function of n for P2

In the numerical result shown in Figure 10.5, we compare the HP for the mobile and
static cases under the 2-library case. For this comparison, we consider that a maximum
of n attempts are made by the user to receive the file of interest using Policy 2. In the
mobile case, the n user attempts to obtain the file are made from different locations,
whereas in the static case, all attempts are made from the same location. However,
fading gains are assumed to be independent across different transmission attempts.
Therefore, increasing the number of transmission attempts n also increases the HP even
for the static case due to the temporal diversity. Similar observations were made earlier
for P1.

10.5.5 Effect of Library Size (K ) on the Hit Probability

Figure 10.6 characterizes the optimal hit probability in a network (for a mobile user
following P1) with cache size L = 1 and K files in the library. It can be seen from the
figure that as the number of files in the library increases, the hit probability decreases.
Larger the number of files in the library, the fewer the chances of a file hit from the
SCBS cache with a certain cache size. As discussed before, it can also be observed that
the optimal HP increases as the number of retransmissions increases.
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Figure 10.6 Effect of library size K on the hit probability for a mobile user following Policy 1
(L = 1).

10.6 Outlook

Providing reliable high-capacity backhaul to each small cell in a cellular network is
prohibitively expensive. The idea of caching popular content at the SCBSs has emerged
as one of the promising solutions to address this challenge. In this chapter, we focused
on the problem of determining the optimal cache for each small cell assuming the library
of popular files is known a priori. We focused on the case where the user is mobile, and
can hence access its file of interest at multiple possible locations along its trajectory.
Our results concretely demonstrated that the optimal cache contents are significantly
different for the mobile and static cases.

In the static scenario, SCBSs need to cache the most popular files for a higher HP.
In the mobile case, however, files can be cached at SCBSs more evenly compared to
the static case. The overall network performance (in terms of the successful reception
probability) was shown to be much better for the mobile case compared to the static
case. This is due to the fact that when the user is mobile it comes across more unique
small cells and hence more unique caches, which increases the probability of it being
close to the small cell that has its file of interest.

This work has several promising extensions. First, it is important to consider device
caching (i.e., caching content on the handheld devices) along with the small cell caching
studied in this chapter. Jointly optimizing the cache for devices and small cells, with
different constraints on their cache storage capacities, is a meaningful problem to pur-
sue. Second, users usually form physical clusters, e.g., see [32–35], which means it
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is important to determine optimal caching strategies for clustered networks. Finally,
the purpose of this study was to expose fundamental performance trends using simple
models. It would be interesting to perform a similar analysis using actual mobility traces
and actual data for the SCBS locations.
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Access Networks
Meixia Tao, Erkai Chen, Wei Yu, and Ya-Feng Liu

This chapter presents a content-centric framework for transmission optimization in
cloud radio access networks (RANs) by leveraging wireless edge caching and physical-
layer multicasting. We consider a cache-enabled cloud RAN, where each base station
(BS) is connected to a central processor (CP) via a potentially capacity-limited backhaul
link and equipped with a local cache to alleviate the backhaul load. We first study the
caching effects on multicast-enabled access downlink, where users that request the
same content form a multicast group and are served by the same BS or BS cluster
using multicasting. We study the cache-aware joint design of the content-centric
BS clustering and multicast beam-forming to minimize the system total power cost
and backhaul cost under individual minimum transmission rate constraints for each
multicast group. Through simulation results, we show that the proposed cache-aware
content-centric multicast transmission is much superior to the traditional user-centric
unicast transmission in terms of system total transmit power reduction and backhaul
saving. We then study the caching effects on backhaul downlink with wireless multicast
backhaul, where the CP delivers the requested contents to a single cluster of BSs
via multicasting. Given a total cache size constraint, we study the joint cache size
allocation at the BSs and the optimal multicast beam-forming transmission at the CP to
minimize the expected downloading time of requested contents from the CP to the BSs.
Numerical results provide some useful insights into the BS caching design and show
that the optimized cache size allocation scheme outperforms the uniform allocation and
other heuristic schemes.

11.1 Introduction

Cloud radio access network (cloud RAN) is a promising network architecture for
the next generation of wireless cellular networks [1]. It can boost network capacity
and increase energy efficiency by centralized signal processing among all the BSs
that are connected to a central processor via potentially capacity-limited backhaul
links. However, performing full joint processing requires the users’ payload data
to be shared among all the BSs, which can place a significant burden on backhaul
links. As such, there is a fundamental trade-off between the access link efficiency
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and the backhaul link consumption in cloud RANs. This chapter presents how to
exploit wireless edge caching, in conjunction with physical-layer multicasting, in cloud
RAN architectures to alleviate the backhaul requirement and improve system energy
efficiency.

Wireless edge caching has emerged as a promising approach that can reduce peak
traffic and backhaul burden for wireless content delivery by caching some popular
contents at the local BSs or pushing directly the contents at user devices during the off-
peak time [2]. On the other hand, multicasting provides an efficient capacity-offloading
approach to deliver a common message to multiple receivers concurrently [3, 4]. It has
great potential in many applications, e.g., video streaming, mobile application updates,
and public group communications. It can also be exploited in wireless backhaul to push
common information from a macro BS to multiple small BSs. Caching and multicasting
are thus two important enabling techniques to accelerate content delivery in wireless
networks.

This chapter presents a content-centric framework for transmission optimization in
cloud RANs by collectively leveraging caching and multicasting. We consider a cache-
enabled cloud RAN, where each BS has a local cache with limited storage size and is
connected to a CP via a dedicated or shared backhaul link. If the requested content
is not cached in the local cache of a BS, it will acquire the content from the core
network via the backhaul links. Users requesting a same content form a group and
are served by the same BS cluster via multicast transmission. This chapter shows that
caching can improve the system-level performance of cloud RAN in two different ways:
for both the access link and the backhaul link. The first part of the chapter studies
the design of caching and multicasting in the access link. We study the cache-aware
joint content-centric BS clustering and multicast beam-forming design to minimize the
system total network cost subject to a minimum rate constraint for each individual
multicast group. Simulation results show that the proposed cache-aware content-centric
multicast transmission is superior to the traditional user-centric unicast transmission in
terms of system transmit power reduction and backhaul saving.

The second part of the chapter studies the design of caching and multicasting in
the backhaul link, where the BSs fetch the requested content from the CP through
a shared wireless backhaul using joint cache-channel coding. Given a total cache
size constraint, we study a mixed time-scale optimization for cache size allocation
among all the BSs and multicast beam-forming at the CP to minimize the expected
downloading time of requested contents in the backhaul phase. Numerical results
provide some useful insights into the BS caching design and show that the optimized
cache size allocation scheme outperforms the uniform allocation and other heuristic
schemes.

The rest of this chapter is organized as follows. Section 11.2 introduces the model of
the cache-enabled cloud RAN. Section 11.3 studies caching and multicasting in the
access link. Section 11.4 studies the caching and multicasting in the backhaul link.
Finally, we draw conclusions in Section 11.5 and outline some possible directions for
future research.
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11.2 Cache-Enabled Cloud RAN Model

11.2.1 Network Model

As shown in Figure 11.1, we consider the downlink transmission of a cloud RAN, where
there are N BSs and K users. Each BS has a local cache and is connected to a cloud-
based CP via a backhaul link. The CP has a database consisting of F files, where the size
of each file is normalized as 1. Let pf denote the request probability (i.e., popularity
distribution) of the f th file, which satisfies 0 ≤ pf ≤ 1 and

∑F
f=1 pf = 1. Let Cn

(Cn ≤ F ) denote the cache size of the nth BS. Each BS can prestore some file bits
during off-peak time prior to user request. If the requested file of its serving user has
been entirely stored in the local cache of this BS, the BS can access the file directly.
Otherwise, it will download the requested file or the uncached part of this file from the
CP via its backhaul link.

In this chapter, it is assumed that the channel state information (CSI) is perfectly
known at the CP for joint signal processing and all BSs can precisely synchronize with
each other for downlink cooperative transmission. Our focus is to illustrate a content-
centric transmission framework in the cached-enabled cloud RAN and its baseband
beam-forming design.

11.2.2 Content-Centric BS Clustering

A prominent approach for mitigating the backhaul load in traditional cloud RANs is to
serve each user using an individually selected subset of neighboring BSs, referred to

p

Figure 11.1 An example of cache-enabled cloud RAN downlink.
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as user-centric BS clustering, regardless of the content each user requests. By adopting
user-centric BS clustering, the CP needs only to deliver the user’s payload data to its
serving BSs rather than all the BSs, which can reduce the backhaul load significantly.
In this case, different clusters for different users may overlap, and there are no explicit
cluster boundaries [5].

Generally, the users request content according to some popularity distribution
such as the Zipf distribution [6]. The more popular the content is, the more likely
it will be requested and the more requests it will receive. By taking the content
popularity into account, a content-centric BS clustering strategy is proposed in [7].
In the content-centric BS clustering, the users requesting the same content are grouped
together and served by a cluster of BSs formed with respect to each content. Within
each cluster, multicast transmission is then adopted to serve the users. The BS clusters
for different content can overlap with each other. Compared with user-centric BS
clustering, content-centric BS clustering exploits the popularity of the request contents
and benefits from multicast transmission, and thus can provide efficient content delivery
in the considered networks.

In the following, we present the transmission model with content-centric BS clus-
tering in detail. We assume that each user can request content in each scheduling time
slot. Denote Gm as the mth multicast group formed by the users requesting file fm, for
all m = 1, . . . ,M , where M (1 ≤ M ≤ min{K,F }) is the total number of the formed
multicast groups. Denote the serving BS cluster of multicast group m as Qm, where
Qm ⊆ N . An example with three multicast groups is illustrated in Figure 11.1, where
the serving BSs of the three multicast groups are Q1 = {1,2}, Q2 = {1,2,3}, and
Q3 = {3}, respectively.

Define a binary matrix S ∈ {0,1}M×N as the indicator of BS clustering, where
sm,n = 1 represents that BS n is within the BS cluster of multicast group m, otherwise
sm,n = 0. Denote wm = [wH

m,1,w
H
m,2, . . . ,w

H
m,N ]H ∈ CNL×1 as the network-wide

beam-former for the mth group, where wm,n ∈ CL×1 is the beam-former of group m at
BS n. Note that wm,n = 0 if sm,n = 0. Therefore, wm is potentially (group) sparse. For
each user k ∈ Gm, the received signal can be written as

yk = hH
k wmxm +

M∑
j �=m

hH
k wj xj + nk, (11.1)

where hk = [hH
k,1,h

H
k,2, . . . ,h

H
k,N ]H ∈ CNL×1 is the composite channel vector between

all BSs and the kth user, xm ∈ C is the message intended for group m, and nk ∼
CN (0,σ2

k ) is the additive white Gaussian noise. The corresponding SINR at user k can
be expressed as

SINRk =
|hH

k wm|2∑M
j �=m|hH

k wj |2 + σ2
k

. (11.2)

Accordingly, the total transmit power of the network can be expressed as

CP =
M∑

m=1

N∑
n=1

‖wm,n‖22. (11.3)
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Compared with the traditional user-centric BS clustering, where each user is served
by its nearby BSs that have good channel conditions, the content-centric BS clustering
is more complicated. In the content-centric BS clustering, since the users within the
same multicast group may be dispersed geographically, it is no longer feasible to deter-
mine the BS clustering simply according to the received signal strength or the physical
closeness between each BS and each user. Moreover, by considering the local cache at
each BS, the BS that has cached the requested file may have a higher chance to joint the
cluster. As such, the content-centric BS clustering in the considered network must be
aware of both channel states and cache states.

11.2.3 Caching at BSs

Caching at the BSs can enable more BSs to cooperatively transmit the same content to
the users in the access link. What contents to cache at each BS is a crucial design factor
in cache-enabled cloud RAN. Intuitively, in a sparse network where each user can
access only one single BS, it is optimal to cache contents with the largest popularities
in each BS in terms of cache-hit ratio maximization. While in a densely deployed
network where each user can access to multiple BSs, finding the optimal cache place-
ment is often intractable [2]. By allowing coded caching at each BS, one can find
the optimal coded fraction of each file efficiently [8]. In this chapter, however, we
restrict to uncoded caching for simplicity and consider three heuristic caching strategies
as follows.

• Popularity-aware caching (PopC): All the storage sizes of each BS are used to
cache the contents with the largest popularities. This strategy can fully exploit the
benefits of full cooperation. However, when the content popularity is uniformly
distributed, it may cause high backhaul load due to the low cache-hit ratio.

• Random caching (RanC): All the contents are cached at the BSs randomly and
equally without knowing their popularity. Due to the randomness in the cache
placement, it is highly probable that each user can find its requested file from the
caches of the BSs without resorting to CP via backhaul. However, since different
BSs tend to cache distinct contents, there is little opportunity for cooperative
transmission.

• Probabilistic caching (ProC): Each BS randomly caches a content with a certain
probability that is related to its popularity. With a higher popularity, the content
is more likely to be cached at the BSs. In this caching strategy, a better trade-off
between the cooperation gain and the cache-hit ratio can be made.

We will evaluate the performance of these three caching strategies via simulation in
Section 11.3.2. Besides content placement, how much cache size to deploy at each BS
is also an important design factor, which will be discussed in detail in Section 11.4.

11.2.4 Backhauling

The backhaul with limited capacity has become a big concern for small-cell deployment.
Although the traditional fiber-based backhaul solution can provide high data rates, the
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prohibitive cost is high and the geographical limitations also make it impossible to
deploy in many practical scenarios. Instead, with low-cost and plug-and-play instal-
lation, wireless backhauling is a promising solution. It is worth noting with wireless
backhauling, the data-sharing strategy is preferred since it has the following two advan-
tages. First, the CP can exploit the multicast transmission to deliver the user messages
simultaneously to multiple BSs via the shared backhaul. Second the BSs can cache part
of the user messages to further reduce the backhaul load. While for the compression
strategy, since the compressed signals generated for different BSs are different and they
are also adaptive to the channel conditions, it cannot exploit the benefits of multicasting
or caching. In this chapter, we assume that the backhaul connections can be dedicated
fiber optic cables or they can be a shared wireless link.

11.2.4.1 Dedicated Wired Backhaul
We model the cost of the dedicated backhaul link as the required transmission rate of this
link. Define a binary matrix C ∈ {0,1}F×N to denote the cache status, where cf,n = 1
represents that the f th file is cached in the nth BS, otherwise cf,n = 0. For each BS, if
the requested file is not cached in its local storage, it should fetch the file from the CP
with the backhaul transmission rate as large as the content-delivery rate Rm. Therefore,
we model the backhaul cost as the transmission rate of the corresponding file. Then the
overall backhaul cost is

CB =
M∑

m=1

N∑
n=1

sm,n(1− cfm,n)Rm, (11.4)

where fm denotes the file requested by multicast group m and Rm is the transmission
rate for group m.

11.2.4.2 Shared Wireless Backhaul
Compared to the dedicated wired backhaul, shared wireless backhaul not only is much
easier to deploy (when wireline infrastructure is not available) but also enjoys the crucial
wireless multicast advantage that allows for efficient content delivery to multiple BSs
using a same resource block. Wireless multicast is ideally suited for enabling the
cooperative transmission benefit of C-RAN; but it also brings in the challenge of
pathloss, fading, and shadowing effect of the wireless medium. In particular, because
of the different locations of the BSs, there may be considerable disparity in the quality
of their respective channels. Deploying caching at BSs [9] (i.e., BSs can pre-store
contents of popular files) can handle the channel disparity issue in wireless multicast
to aid the BSs with weak channels. For wireless backhauling, the backhaul efficiency
is often modeled as the (expected) downloading time. In this chapter, we consider
a cluster of N BSs cooperatively serving users. The CP delivers the user’s message
to all the BSs via multicasting. Suppose that each file has normalized size of 1
and each BS n has a local storage of size Cn that can cache some of the files. In
other words, given cache size allocation Cn, each BS n can cache Cn fraction of
the file. We assume that the channel coherent time is large enough such that the file
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delivery can be completed within one coherent time. According to [10, lemma 1], by
adopting the joint cache-channel coding strategy [11], the file delivery rate R can be
written as

R = min
n

{
I (x;yn)

1− Cn

}
, (11.5)

and the downloading time thus can be expressed as

T = 1

R
= max

n

{
1− Cn

I (x;yn)

}
. (11.6)

Here, I (x;yn) denotes the mutual information between the transmit signal x and the
received signal yn. If the file size is S, then the real downloading time should be S × T .

Notice that the {I (x;yn)} depend on the channel realizations and the beam-forming
vectors at the CP and hence change quickly in different fading blocks; while the cache
size {Cn} should be allocated based on the long-term statistics of the backhaul channel.
Therefore, the BS cache size allocation and the beam-forming design occur in different
time scales. Later in the chapter, we will focus on the downloading time T in (11.6).

11.3 Caching at BSs for Cooperation in Access Link

We now treat the optimization of caching and multicasting in the access link of cloud
RAN. It is worth mentioning that the cache placement and content delivery occur in
different timescales. Specifically, cache placement often happens in days or hours, while
content delivery happens in a much shorter timescale [2, 12]. In the shorter timescale
of each transmission slot, the cache placement is usually fixed according to some strat-
egy. We can then optimize the content delivery scheme, which should be adaptive to
the instantaneous channel realization and the cache placement. In the larger timescale,
the cache placement can be optimized by taking into account the content popularity
distribution as well as the long-term statistics of the wireless channel. In this section,
we mainly focus on the short timescale problem in the access link, i.e., the joint opti-
mization of content-centric BS clustering and multicast beam-forming with given cache
placement. The large timescale problem, i.e., the design of cache placement will be
briefly addressed via numerical results.

11.3.1 Joint BS Clustering and Beam-Forming Design

In this section, given the BS caching, we study the joint content-centric BS clustering
and multicast beam-forming design in access link to seek the minimum network cost.
Specifically, in the considered network architecture, the network cost is modeled as the
weighted sum of the backhaul cost and the transmission power:

CN = CB + ηCP, (11.7)

where η > 0 is a weighting parameter.
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The total network cost minimization problem with given cache placement can be
formulated as:

P0 : min
{wm,n},{sm,n}

M∑
m=1

N∑
n=1

sm,n(1− cfm,n)Rm + η
M∑

m=1

N∑
n=1

‖wm,n‖22 (11.8a)

s.t. SINRk ≥ γm, ∀ k ∈ Gm, ∀ m (11.8b)

sm,n ∈ {0,1}, ∀ m,n (11.8c)

(1− sm,n)wm,n = 0, ∀ m,n, (11.8d)

where Rm = B log(1 + γm) is the transmission rate for group m, B is the channel
bandwidth, and γm is the target SINR for group m.

Note that constraint (11.8d) indicates that if BS n is not in the BS clustering of group
m, i.e., sm,n = 0, then the beam-former wm,n should be zero. We also note that problem
P0 can be infeasible due to the QoS constraint (11.8b). In general, determining the
feasibility of this problem is very difficult. Therefore, in this section, we discuss P0

only when it is feasible.
Problem P0 is a nonconvex mixed-integer nonlinear programming (MINLP) problem

and is combinatorial in nature; it is in general challenging to find its global optimum
solution. However, an exhaustive search can be adopted to find the global optimum BS
clusters. Specifically, there are a total of 2MN candidate BS clustering matrices {S}. For
each given S, we can solve the following power minimization problem to obtain the
power cost:

P(ZS) : min
{wm,n}

M∑
m=1

N∑
n=1

‖wm,n‖22 (11.9a)

s.t. (11.8b),

wm,n = 0, ∀(m,n) ∈ ZS, (11.9b)

where ZS = {(m,n) | sm,n = 0} denotes the set of inactive BS-content pairs. While the
backhaul cost CB reduces to a constant.

Similar to the traditional multicast beam-forming problems [13, 14], P(ZS) is a
nonconvex quadratically constrained quadratic programming (QCQP) problem, which
is different from the unicast beam-forming problem, which can be equivalently trans-
formed into a second-order cone programming (SOCP) problem and hence solved effi-
ciently. The multicast beam-forming problem is generally NP-hard. A semi-definite
relaxation (SDR) method is developed in [14] to obtain a near-optimal solution. After
solving P(ZS) with all possible matrices Ss, we can find the one with the minimum
objective.

Another approach to deal with problem P0 is to reformulate it as a more tractable
sparse multicast beam-forming (SBF) problem. Specifically, when wm,n = 0, we have:

sm,n =
{

0, if cfm,n = 0,

0 or 1, if cfm,n = 1.
(11.10)
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Otherwise, according to constraint (11.8d), there holds sm,n = 1. Therefore, we have
the following relationship between the BS cluster and the beam-former:

sm,n =
∥∥‖wm,n‖22

∥∥
0. (11.11)

Note that the �0-norm is defined as the number of non-zero elements of a vector.
It reduces to the indicator function in the scalar case. By substituting (11.11) into
the objective function (11.8a), P0 can be equivalently transformed into the following
problem:

PSBF : min
{wm,n}

M∑
m=1

N∑
n=1

∥∥‖wm,n‖22
∥∥

0(1− cfm,n)Rm + η
M∑

m=1

N∑
n=1

‖wm,n‖22 (11.12)

s.t. (11.8b).

With �0-norm in the objective function, problem PSBF is a sparse multicast beam-
forming problem. It considers the adaptive content-centric BS clustering inexplicitly,
since by solving this problem, a sparse beam-former for each multicast group may be
obtained, whose non-zero entries correspond to its serving BSs. The equivalent problem
PSBF is still difficult due to the nonconvex discontinuous �0-norm in the objective and
the nonconvex QoS constraint (11.8b).

One way to tackle this issue is to first adopt a smoothed �0-norm approximation
to replace the discontinuous �0-norm with a concave smooth function. The problem
after approximation then can be represented as a general form of difference of convex
(DC) programming problem, for which the convex–concave procedure (CCP) [15] based
algorithm can be adopted to find a stationary solution with convergence guarantee. The
main idea behind CCP is to convexify the DC problem by approximating its concave
parts with their first-order Taylor expansions and then solve the approximated convex
subproblems successively until convergence. The details of such an approach can be
found in [7].

11.3.2 Performance Evaluation

This section provides numerical results to demonstrate the superiority of the proposed
content-centric transmission framework. A hexagonal multi-cell cloud RAN consisting
of N = 7 BSs is considered, where each BS has L = 4 antennas. The distance
between BSs is 500 m. There are K = 30 users uniformly distributed within the
network. The total number of contents is F = 100. The cache size of BS n is set to
Cn = C for all n. The channel bandwidth is 10 MHz. The BS antenna gain is 10 dBi.
The noise power σ2

k is set to be −102 dBm for all users. The pathloss is modeled
as PL(dB) = 148.1+ 37.6log10(d), where d is the distance in km. The shadowing
follows the log-normal distribution with parameter being 8 dB. The small-scale fading
is modeled as the Rayleigh fading. The SINR target is γm = 10 dB for all multicast
groups. All the results are averaged over 100 independent simulation trials.

In this section, we assume the following unequal content popularity distribution: there
is one popular content accounting for 0.5 of the request probability, while the rest F −1
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contents follows a Zipf distribution with a skewness parameter α and the sum probability
of 0.5. In the following simulation, the skewness parameter is set to α = 1. Each BS can
caches up to C = 10 contents. More results with different setups can be found in [7].

11.3.2.1 Effects of Caching
We first evaluate the caching effects and compare the performance of different caching
strategies in Figure 11.2. We consider two scenarios with the number of users being
K = 30 and K = 7, respectively. The skewness parameter α is set to α = 1. It can
be seen that by carefully designing the caching strategy, the proposed heuristic caching
strategy can significantly reduce the backhaul cost and hence improve the trade-off per-
formance between backhaul and power. In addition, it is observed that PopC is superior
to ProC for most of the trade-off parameter η, except the extreme case when η → 0.
Intuitively, in PopC, the most popular content is cached in all BSs, the cooperative
transmission gain can then be fully exploited. This is very helpful when the network
does not care about the backhaul overhead. However, when backhaul is the main concern
of the network cost (i.e., η → 0), ProC can outperform PopC. We can also see that all
the caching strategies have the minimum transmit power. This is because the minimum
transmit power depends only on the target SINRs of the multicast groups.

We also illustrate the performance comparison of multicast transmission and unicast
transmission with different numbers of active users in Figure 11.3. For unicast trans-
mission, we design an individual beam-former for each of the users regardless of their
requested contents. In order to ensure fairness of the backhaul link overhead, if multiple
users that request the same content are served by the same BS, the BS only needs to
fetch a copy of the content from the CP with the maximum requested rate if it does not
cache the content. We adopt the iterative reweighted �1-norm based on the algorithm
proposed in [16] to solve the sparse unicast beam-forming problem.

From Figure 11.3, it is seen that when K = 30, the unicast transmission performs very
poorly. This is mainly due to the fact that the number of transmit antennas is less than
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Figure 11.2 Performance comparison of different caching strategies for unequal content
popularity with α = 1.
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Figure 11.3 Performance comparison between multicast transmission and unicast transmission.

the number of users, and hence there are not enough design dimensions for the unicast
beam-forming. On the other hand, the performance of multicast transmission is much
better since it can exploit the content reuse feature among different users and hence
fewer beam-formers are required. With the number of users decreasing, the performance
of unicast transmission becomes better, but still far inferior to multicast transmission.
Specifically, in the extreme case when η → +∞, which means only power cost is
concerned, we can see that multicast transmission can save 3 dB power compared with
unicast transmission when K = 20.

11.4 Caching at BSs for Multicasting in Backhaul Link

11.4.1 Joint BS Cache Allocation and Beam-Forming Design

Next, we study the effect of caching to improve the wireless backhauling of cloud
RAN. We consider the downlink transmission with wireless multicast backhaul, where
each user is cooperatively served by a single cluster of BSs. The CP delivers the user’s
message to these BSs via multicasting. The BSs can also pre-store some fraction of the
popular content during the off-peak hours. The rest of the contents will be fetched from
the CP using coded delivery via the wireless multicast backhaul. Assuming that the CP
is equipped with multiple antennas and given a total cache size constraint, we study the
joint design of cache size allocation at the BSs and the multicast beam-forming transmis-
sion at the CP so that the expected downloading time of requested files in (11.6) from the
CP to the BSs is minimized. It is worthwhile emphasizing that the designs of cache size
allocation and the beam-forming strategy occur in two different time scales. The cache
size allocation is optimized in a much large timescale, which is adaptive to the long-term
statistics of the wireless backhaul channel, while the beam-forming design is performed
under a given cache size allocation and adapts to the instantaneous channel conditions.



228 Meixia Tao, Erkai Chen, Wei Yu, and Ya-Feng Liu

11.4.1.1 Single-File Case
We consider the single file case of normalized size and formulate a mixed-time
scale problem for a joint design of cache size allocation and multicast beam-forming.
We first focus on the beam-forming design in the shorter time scale with fixed cache
size allocation and given content placement. Suppose that w is the beam-forming vector
used by the CP, and hn is the channel between the nth BS and the CP. The mutual
information can be expressed as

I (x;yn) = log

(
1+ Tr (HnW)

σ2

)
,

where σ2 is the variance of the complex Gaussian noise, Hn = hnhH
n is the channel

covariance matrix, W = wwH is the covariance matrix for the transmit signal x, where
{W & 0 | Tr (W) ≤ P, rank(W) = 1}, and P is the peak power of the CP. We shall drop
the rank-one constraint in this set and define

W = {W & 0 | Tr (W) ≤ P } .
With the given cache allocation {Cn}, the file downloading time (11.6) can be
expressed as

T ∗ = min
W∈W

max
n

⎧⎨⎩ 1− Cn

log
(

1+ Tr(HnW)

σ2

)
⎫⎬⎭ . (11.13)

Suppose that all Hn remain constant within a coherent block but change according
to certain channel distribution in different coherent blocks, then T ∗ in (11.13) is a
random variable. In this section, our aim is to find the optimal cache size allocation
such that the long-term expected file downloading time is minimized. The problem can
be mathematically formulated as [10]:

min
{Cn}

E{Hn}
[
T ∗
]

(11.14a)

s.t.
∑
n∈N

Cn ≤ C, 0 ≤ Cn ≤ 1, n ∈ N , (11.14b)

where C(≤ N ) is the total cache size across all the BSs.
This problem is difficult mainly due to expectation in the objective function (11.14a),

which has no closed-form expression. A popular approach to handling this difficulty is
to approximate the expectation in (11.14a) with its sample average [17]. By adopting
the sample average approximation, the problem can be approximated as:

min
{Cn, Wm}

1

Ms

Ms∑
m=1

max
n

⎧⎨⎩ 1− Cn

log
(

1+ Tr(Hm
n Wm)
σ2

)
⎫⎬⎭ (11.15a)

s.t.
∑
n

Cn ≤ C, 0 ≤ Cn ≤ 1, n ∈ N , (11.15b)

Tr
(
Wm

) ≤ P, Wm & 0, m ∈Ms, (11.15c)
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where Ms is the sample size, Ms := {1,2, . . . ,Ms} ,
{
Hm

n

}
m∈Ms

are the samples of Hn,

and Wm is the covariance matrix corresponding to the samples
{
Hm

n

}
n∈N . Furthermore,

dropping the constant 1/Ms in (11.15a) and introducing the auxiliary variable {ξm},
problem (11.15) can be reformulated as

min
{Cn, Wm, ξm}

Ms∑
m=1

1

ξm
(11.16a)

s.t. log

(
1+ Tr

(
Hm

n Wm
)

σ2

)
≥ ξm(1− Cn), n ∈ N , m ∈Ms, (11.16b)

(11.15b) and (11.15c).

Problem (11.16) can be efficiently solved by the trust region method [18], where the
nonconvex term ξm(1 − Cn) in (11.16b) is iteratively approximated by its first-order
Taylor expansion and the approximation subproblem at each iteration is convex and
can be solved by the alernating direction method of multipliers algorithm (ADMM)
approach [19]. For more details of solving problem (11.14), please refer to [10].

11.4.1.2 Multi-file Case
We now study the cache size allocation problem in the general case with multiple files
and different popularities. We assume that the user requests file f with probability
pf , f ∈ F := {1,2, . . . ,F }, where

∑
f pf = 1. The fraction of file f cached in

BS n is Cnf . Therefore, we have the total cache size constraint
∑

n

∑
f Cnf ≤ C,

where C ≤ NF . If file f is requested, the downloading time, denoted as T ∗f , can be
expressed as

T ∗f = min
Wf ∈W

max
n

⎧⎨⎩ 1− Cnf

log
(

1+ Tr(HnWf )
σ2

)
⎫⎬⎭ . (11.17)

Different from the downloading time (11.13) in the single-file case, the downloading
time T ∗f here depends on both the channel conditions and the requested file. We then
formulate the cache size allocation problem with multiple files as [10]

min{Cnf }
∑
f

pfE{Hn}
[
T ∗f
]

(11.18a)

s.t.
∑
n

∑
f

Cnf ≤ C, 0 ≤ Cnf ≤ 1, n ∈ N , f ∈ F . (11.18b)

This problem can be solved using the same sample approximation approach as in the
single file case. Please see [10] for more details.

11.4.2 Performance Evaluation

In this section, we demonstrate the performance of the proposed cache size alloca-
tion scheme via simulations. As shown in Figure 11.4, we consider a C-RAN with
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Figure 11.4 A downlink C-RAN setup with 5 BSs. The distances from the CP to the 5 BSs are
398,278,473,286, and 267 m, respectively.

N = 5 BSs, where the BSs are randomly distributed on one side of the CP. The distances
between the CP and the BSs are (398,278,473,286, and 267 m, respectively. We gener-
ate 1,000 channel realizations of hn according to the distribution hn = K1/2

n vn, where
Kn denotes the large-scale pathloss component and vn is the small-scale fading. The
pathloss is modeled as 128.1+ 37.6 log10(d) dB, where d is the distance in kilometers.
The small-scale fading is modeled as a random vector following the independently and
identically Gaussian distribution, i.e., vn ∼ CN (0,1). We use the first 100 samples for
the sample average approximation method to optimize the cache allocation and use the
remaining 900 samples to evaluate the performance with the obtained cache allocation.
More parameters settings can be found in [10, table I].

11.4.2.1 Cache Allocation for BSs with Varying Channel Strengths
In this section, the superiority of the proposed scheme is demonstrated when caching a
single file across multiple BSs with different channel strengths. The following schemes
are considered as benchmarks:

• Uniform cache allocation: Each BS has the same cache size of Cn = C/N .

• Proportional cache allocation: The allocated cache sizes among the BSs satisfy

that (F − Cn) / log
(

1+ P Tr(Kn)

Nσ2

)
are equalized for all n.

• Lower bound: We solve problem (11.13) to obtain the cache sizes by treating {Cn}
as the optimization variables for each channel realization. This is not practical, but
can serve as a lower bound for the minimum expected file downloading time.
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Table 11.1 Cache allocation for Different Schemes under Normalized Total Cache Size C = 1

Schemes

BSs Uniform Proportional Optimized

BS1 0.2 0.232 0.222

BS2 0.2 0.170 0.071

BS3 0.2 0.261 0.588

BS4 0.2 0.175 0.101

BS5 0.2 0.163 0.019
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Figure 11.5 CDF of downloading time under different caching schemes.

• Rank-one multicast beam-former: The cache sizes are the same as the optimized
scheme, but with the multicast beam-former being rank-one obtained using eigen-
vector decomposition.

In Table 11.1, we show the cache size allocation obtained by different schemes under
normalized total cache size constraint C = 1. It can be seen that the proposed caching
scheme and the proportional caching scheme allocate more cache size to the weaker BS
3 comparing with the uniform caching scheme, but our scheme is more aggressive. In
Figure 11.5, we compare the cumulative distribution function (CDF) of the downloading
time between different caching schemes. From Figure 11.5, we first see that the pro-
posed caching scheme is superior to all the benchmark schemes in the high downloading
time regime. It is also seen that the performance loss of the rank-one multicast beam-
former is negligible compared to the solution obtained by solving (11.13).
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Table 11.2 Optimized Cache Allocation for a 2-File Case with Different File Popularities under C = 1

File Popularity (p1,p2)

BSs (0.5,0.5) (0.6,0.4) (0.7,0.3) (0.8,0.2) (0.9,0.1)

BS1 (0.082,0.082) (0.132,0.027) (0.168,0) (0.202,0) (0.222,0)
BS2 (0,0) (0,0) (0,0) (0.046,0) (0.071,0)
BS3 (0.418,0.418) (0.482,0.359) (0.536,0.27) (0.568,0.109) (0.588,0)
BS4 (0,0) (0,0) (0.026,0) (0.075,0) (0.101,0)
BS5 (0,0) (0,0) (0,0) (0,0) (0.018,0)
Total (0.5,0.5) (0.614,0.386) (0.73,0.27) (0.891,0.109) (1,0)

11.4.2.2 Cache Allocation for Files of Varying Popularity
In this part, we show simulation results for the cache size allocation schemes with
multiple files and different popularities. We first consider only two files with the request
probabilities being (p1,p2) shown in the first row of Table 11.2. Each column denotes
the cache size allocation of the BSs under different file popularities given in the first
row. From Table 11.2 we first see that for different file popularities, the cache size of
the weakest BS 3 is always the largest, as in the single-file case shown in Table 11.1.
We also see that the more popular a file is, the more cache size it will be allocated. For
example, when (p1,p2) = (0.9,0.1), file 1 occupies all the cache space without caching
any fraction of file 2.

In Figure 11.6, we compare the file downloading time of the optimized cache scheme
with the following benchmarks:

• Uniform cache allocation: All the files have the same cache size of Cnf = C/NF

at all the BSs.

• Proportional cache allocation: The total allocated cache size of file f is first set
as pf C. The cache size of this file is then obtained according to the proportional
cache allocation scheme in the single-file case.

• Caching the most popular file: We cache the most popular file in its entirety
first, followed by caching of the second most popular file, and so on. When the
remaining cache space is not enough for caching a whole file, we allocate the
remaining cache space according to the proportional cache allocation scheme.

In Figure 11.6, we consider F = 4 files and assume the file popularity follows the the

Zipf distribution [20], i.e., pf = f−α∑F
i=1 i−α

,∀ f . We compare the average downloading

time of all the schemes with different α. Note that when α increases, the differences
among the file popularities also increase. From Figure 11.6, it can be seen that for all
schemes, except the uniform scheme, the average downloading time decreases when α
increases. This is expected, since in a uniform cache allocation scheme, the cache sizes
of all files are the same and the downloading time is the same for all files, whereas in
the other three schemes, more cache size is allocated to files with greater popularity.
We can also see that the proposed caching scheme outperforms the other three schemes
for different α, and it converges to the scheme of caching the most popular file when
α = 1.5.
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Figure 11.6 Average downloading time for different Zipf file distributions under the same number
of files F = 4 and the total normalized cache size C = 4.

To sum up, from the simulation results and discussion, it is beneficial to allocate more
cache sizes to the files with greater popularity, and our proposed cache allocation scheme
can provide a better cache allocation solution compared to the heuristic schemes.

11.5 Conclusions and Open Issues

This chapter presented a content-centric framework for transmission optimization in
cloud RANs by leveraging caching and multicasting. We first studied the effects of
caching and multicasting on the access link in a cloud RAN with dedicated back-
haul through the joint design of the content-centric BS clustering and multicast beam-
forming under different but given BS caching strategies. Simulation results showed that
our proposed content-centric multicast transmission is much superior to the traditional
user-centric unicast transmission in terms of system total transmit power reduction and
backhaul saving. We then studied the effects of caching and multicasting on a backhaul
link in a cloud RAN with wireless backhaul through the joint design of cache size
allocation at the BSs and the multicast beam-forming at the CP. Numerical results
showed the optimized cache size allocation scheme can greatly improve the network
performance compared to other heuristic schemes.

To exploit the full potential of cache-enabled cloud RAN, it is worth investigat-
ing the joint design of access and backhaul links in the future. It is also of practical
importance to seek a scalable solution for caching and multicasting in a large cache-
enabled cloud RAN.



234 Meixia Tao, Erkai Chen, Wei Yu, and Ya-Feng Liu

References

[1] P. Rost, C. Bernardos, A. Domenico, M. Girolamo, M. Lalam, A. Maeder, D. Sabella, and
D. Wübben, “Cloud technologies for flexible 5G radio access networks,” IEEE Commun.
Mag., vol. 52, no. 5, pp. 68–76, May 2014.

[2] K. Shanmugam, N. Golrezaei, A. Dimakis, A. Molisch, and G. Caire, “Femtocaching:
wireless content delivery through distributed caching helpers,” IEEE Trans. Inf. Theory,
vol. 59, no. 12, pp. 8402–8413, Dec. 2013.

[3] D. Lecompte and F. Gabin, “Evolved multimedia broadcast/multicast service (eMBMS) in
LTE-advanced: overview and rel-11 enhancements,” IEEE Commun. Mag., vol. 50, no. 11,
pp. 68–74, Nov. 2012.

[4] N. D. Sidiropoulos, T. N. Davidson, and Z.-Q. Luo, “Transmit beamforming for physical-
layer multicastings,” IEEE Trans. Signal Process., vol. 54, no. 6, pp. 2239–2251, June 2006.

[5] B. Dai and W. Yu, “Sparse beamforming and user-centric clustering for downlink cloud
radio access network,” IEEE Access, vol. 2, pp. 1326–1339, 2014.

[6] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching and Zipf-like
distributions: evidence and implications,” in Proc. IEEE INFOCOM, 1999, pp. 126–134.

[7] M. Tao, E. Chen, H. Zhou, and W. Yu, “Content-centric sparse multicast beamforming for
cache-enabled cloud RAN,” IEEE Trans. Wireless Commun., vol. 15, no. 9, pp. 6118–6131,
Sep. 2016.

[8] X. Xu and M. Tao, “Modeling, analysis, and optimization of coded caching in small-cell
networks,” IEEE Trans. Commun., vol. 65, no. 8, pp. 3415–3428, Aug. 2017.

[9] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,” IEEE Trans. Inf. Theory,
vol. 60, no. 5, pp. 2856–2867, May 2014.

[10] B. Dai, Y.-F. Liu, and W. Yu, “Optimized base-station cache allocation for cloud radio access
network with multicast backhaul,” IEEE J. Sel. Areas Commun., vol. 36, no. 8, 2018.

[11] S. S. Bidokhti, M. A. Wigger, and R. Timo, “Noisy broadcast networks with receiver
caching,” IEEE Trans. Inf. Theory, 2018. [Online]. Available: http://arxiv.org/abs/1605.
02317

[12] A. F. Molisch, G. Caire, D. Ott, J. R. Foerster, D. Bethanabhotla, and M. Ji, “Caching
eliminates the wireless bottleneck in video aware wireless networks,” Adv. Elect. Eng., vol.
2014, pp. 1–13, 2014.

[13] Z. Xiang, M. Tao, and X. Wang, “Coordinated multicast beamforming in multicell net-
works,” IEEE Trans. Wireless Commun., vol. 12, no. 1, pp. 12–21, Jan. 2013.

[14] E. Karipidis, N. Sidiropoulos, and Z.-Q. Luo, “Quality of service and max-min fair transmit
beamforming to multiple cochannel multicast groups,” IEEE Trans. Signal Process., vol. 56,
no. 3, pp. 1268–1279, Mar. 2008.

[15] A. L. Yuille and A. Rangarajan, “The concave-convex procedure,” Neural Comput., vol. 15,
no. 4, pp. 915–936, 2003.

[16] E. Chen and M. Tao, “User-centric base station clustering and sparse beamforming for
cache-enabled cloud RAN,” in Proc. IEEE/CIC ICCC, Nov. 2015, pp. 1–6.

[17] J. R. Birge and F. Louveaux, Introduction to Stochastic Programming, 2nd ed., New York:
Springer, 2011.

[18] A. R. Conn, N. I. Gould, and P. L. Toint, Trust Region Methods, Philadelphia: Society for
Industrial and Applied Mathematics (SIAM), 2000.

http://arxiv.org/abs/1605.02317
http://arxiv.org/abs/1605.02317


Cache-Enabled Cloud Radio Access Networks 235

[19] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and
statistical learning via the alternating direction method of multipliers,” Found. Trends Mach.
Learn., vol. 3, no. 1, pp. 1–122, 2011.

[20] M. Zink, K. Suh, Y. Gu, and J. Kurose, “Characteristics of YouTube network traffic at a
campus network—measurements, models, and implications,” Comput. Netw., vol. 53, no. 4,
pp. 501–514, 2009.



12 Fundamentals of Coded Caching
for Interference Management
Meixia Tao, Fan Xu, Youlong Cao, and Kangqi Liu

12.1 Introduction

Over the last decades, there has been increasing interest in characterizing the approxi-
mate capacity of wireless networks to understand their performance limits. In particular,
to provide the fundamental insights into the capacity characterization, there have been
many optimal interference management schemes for several kinds of interference
networks in the high signal-to-noise ratio (SNR) regime, where the local additive
white Gaussian noise (AWGN) at receivers is deemphasized relative to the signal and
interference powers. In the high SNR regime, the degrees of freedom (DoF) provides
an approximation of the network capacity with high accuracy. A network with a
sum DoF of d indicates that the sum capacity of the network can be expressed as
d log(SNR) + o(log(SNR)). Since the dimension of each noninterfering signal stream
contributes a rate of log(SNR)+o(log(SNR)), the DoF can be interpreted as the number
of resolvable signal space dimensions. There have been many works characterizing the
optimal DoF of various interference networks, such as the interference channel [1], X
channel [2], two-user multiple-input multiple-output (MIMO) interference channel [3],
three-user MIMO interference channel [4], and two-user MIMO X channel [5].

Recently, caching has been playing an important role in wireless networks to reduce
the network traffic load and improve the user perceived experience. Therefore, it is
natural and timely to investigate the impact of caching in wireless interference networks.
In [6], Naderializadeh et al. studied the impact of caching in the interference networks
with caches at both transmitter and receiver sides. They showed that transmitter
caches can achieve load balancing gain as well as transmitter cooperation gain and
that receiver caches can be exploited for known interference elimination. By using
a one-shot linear transmission scheme, they obtained an achievable sum DoF that is
within a constant factor of 2 to the optimum. In [7], Xu et al. proposed a generic
file splitting and caching scheme and transformed the interference network topology
to the cooperative X-multicast channels to leverage coded multicasting gain and
transmitter cooperation gain, as well as receiver local caching gain. By adopting
normalized delivery time (NDT) as the performance metric, this scheme achieves
the optimality in certain transmitter and receiver cache size regions and is within a
bounded multiplicative gap to the optimum in the rest regions. Hachem et al. in [8]
proposed a caching and delivery scheme that separates the system into a network layer
and a physical layer. By exploiting receiver-coded multicasting gain in the network
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layer and by characterizing the optimal per-user DoF in the formed X-multicast channel
via transmitter coordination in the physical layer, they provided a constant-factor
characterization of the optimal system DoF. There are also other works studying caching
in the interference network. For example, Roig et al. in [9] proposed a new achievable
scheme where the combination of zero-forcing, interference alignment, and interference
neutralization is leveraged by transmitter caches in the delivery phase, in addition
to the coded multicasting gain leveraged by receiver caches; and Cao et al. in [10]
considered the 3× 3 MIMO interference network and obtained the spatial multiplexing
gain apart from the cache-aided transmitter cooperation gain and cache-aided coded
multicasting gain.

This chapter takes a close look at the impact of caching in the interference networks.
Section 12.2 briefly reviews the basics of some classic interference networks and the cor-
responding interference management techniques. Then an interference network where
all transmitters and receivers have local caches, termed as cache-aided interference
network, is introduced in Section 12.3, where the information-theoretic metric NDT is
introduced to characterize the system performance. Section 12.4 characterizes the NDT
in the cache-aided interference network, for both single-antenna and multiple-antenna
cases. It is shown that with different cache sizes, the network topology is changed
to different classic interference networks opportunistically, where coded multicasting
gain and transmitter cooperation gain (via interference alignment and interference
neutralization) can be leveraged in the delivery phase, apart from local caching gain.
Then, the NDT results are extended to the partially connected interference network in
Section 12.5. Finally, Section 12.6 summarizes this chapter and outlines some possible
directions for future research.

12.2 Preliminaries of Interference Networks and Interference Management

Before we present the fundamental limits of the cache-aided interference network
in the next section, let us first briefly review some classic interference networks,
including interference channel, X channel, X-multicast channel, and cooperative
X-multicast channel. We will also introduce the corresponding interference management
techniques.

12.2.1 Interference Channel

Consider a K × K interference channel with K receivers and K transmitters, where
each transmitter k needs to send an independent message Wk to receiver k. In this
channel, Cadambe and Jafar characterized the optimal per-user DoF of 1

2 in [1] by using
interference alignment. In what follows, we take K = 3 as an example to review the
idea of the delivery strategy in [1].

In the 3×3 interference channel, transmitter 1,2,3 needs to send message W1,W2,W3

to receiver 1,2,3, respectively. Denote xk as the transmitted symbol for message Wk (for
k ∈ {1,2,3}) and vk as the n× 1 beamforming vector of xk at transmitter k, by using an



238 Meixia Tao, Fan Xu, Youlong Cao, and Kangqi Liu

n-symbol extension. Here parameter n will be determined later. Consider an arbitrary
receiver k. Its received signal yk is given by

yk = Hk,1v1x1 +Hk,2v2x2 +Hk,3v3x3, (12.1)

where Hk,1,Hk,2,Hk,3 is the n × n diagonal channel matrix between receiver k and
transmitter 1,2,3, respectively, and their diagonal entries are independently and iden-
tically distributed (i.i.d.) as some continuous distribution. Here, we ignore the additive
noise since we aim to characterize the system DoF which is defined in the high SNR
regime.

If the beam-forming vectors v1,v2,v3 are chosen to be arbitrary non-zero vectors,
each receiver k can decode its desired symbol xk from received signal yk as long as
n ≥ 3, given that the channel matrices are randomly and independently distributed. For
each receiver, since its desired symbol occupies one dimension in its received signal
space while the interferences occupy the rest two dimensions, a per-user DoF of 1

3 is
achieved.

On the other hand, if we design {v1,v2,v3} so as to align the two undesired symbols
into the same subspace at each receiver, we can leave more space for the desired symbol
and achieve a higher per-user DoF. This is the key idea of interference alignment, where
the beam-forming vectors v1,v2,v3 need to satisfy⎧⎨⎩

span(H1,2v2) = span(H1,3v3) at Rx 1,
span(H2,1v1) = span(H2,3v3) at Rx 2,
span(H3,1v1) = span(H3,2v2) at Rx 3.

(12.2)

Besides these three equations, the beam-forming vectors also need to guarantee that the
desired symbol and interferences lie in different directions in the received signal space
so that each receiver can decode its desired symbol. The detailed design for v1,v2,v3

is given in [1], where asymptotic interference alignment is adopted. As a result, for
each receiver, all the interferences occupy only one dimension in its received signal
space while the desired symbol occupies another dimension, thus a DoF of 1

2 per user
is achieved.

12.2.2 X Channel

In this section, let us review another classic interference network, X channel, by using
interference alignment to achieve its optimal per-user DoF. A general NT ×NR X chan-
nel has NT transmitters and NR receivers. Each transmitter j (for j ∈ {1,2, . . . ,NT })
needs to send an independent message Wi

j to each receiver i (for i ∈ {1,2, . . . ,NR}).
The optimal per-user DoF of NT

NT+NR−1 is characterized in [2] by using asymptotic
interference alignment. In what follows, we use NT = NR = 3 as an example to review
the idea of the delivery strategy in [2].

In the 3×3 X channel, transmitter j (for j ∈ {1,2,3}) should deliver three independent
messages, W 1

j ,W 2
j ,W 3

j , to receiver 1,2,3, respectively. Denote xi
j (for j,i ∈ {1,2,3}) as

the transmitted symbol of message Wi
j , and vi

j as the n × 1 beam-forming vector for
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xi
j at transmitter j , by using an n-symbol extension. Consider an arbitrary receiver i. Its

received signal yi is given by

yi = Hi,1

(
v1

1x
1
1 + v2

1x
2
1 + v3

1x
3
1

)
+Hi,2

(
v1

2x
1
2 + v2

2x
2
2 + v3

2x
3
2

)
+Hi,3

(
v1

3x
1
3 + v2

3x
2
3 + v3

3x
3
3

)
. (12.3)

Similar to the interference channel, to increase per-user DoF at each receiver, we
aim to align the interferences into the same subspace at each receiver. For example, at
receiver 1, the beam-forming vectors should satisfy{

span(H1,1v2
1) = span(H1,2v2

2) = span(H1,3v2
3),

span(H1,1v3
1) = span(H1,2v3

2) = span(H1,3v3
3).

(12.4)

Therefore, the unwanted symbols x2
1,x

2
2,x

2
3 but intended for receiver 2 are aligned into

the same subspace, and the unwanted symbols x3
1,x

3
2,x

3
3 but intended for receiver 3 are

aligned into the same subspace. Similarly, we align the unwanted symbols {x1
1,x

1
2,x

1
3}

and {x3
1,x

3
2,x

3
3} by receiver 2 into the same subspaces, respectively, i.e.,{

span(H2,1v1
1) = span(H2,2v1

2) = span(H2,3v1
3),

span(H2,1v3
1) = span(H2,2v3

2) = span(H2,3v3
3),

(12.5)

and align the unwanted symbols {x1
1,x

1
2,x

1
3} and {x2

1,x
2
2,x

2
3} by receiver 3 into the same

subspaces, respectively, i.e.,{
span(H3,1v1

1) = span(H3,2v1
2) = span(H3,3v1

3),
span(H3,1v2

1) = span(H3,2v2
2) = span(H3,3v2

3).
(12.6)

In addition, the beam-forming vectors should ensure that the desired symbols and inter-
ferences lie in different directions in the received signal space so that each receiver can
decode its three desired symbols. The detailed design of the beam-forming vectors is
given in [2].

As a result, the received signal space for an arbitrary receiver, e.g., receiver 1, is
given by[

span(H1,1v1
1) span(H1,2v1

2) span(H1,3v1
3), span(H1,1v2

1) span(H1,1v3
1)

]
(12.7)

where the received signal vector of desired symbols x1
1,x

1
2,x

1
3 lies on span(H1,1v1

1),
span(H1,2v1

2), span(H1,3v1
3), respectively, and the received signal vectors of interfer-

ences lie on span(H1,1v2
1) and span(H1,1v3

1). Therefore, the desired symbols of each
receiver occupy three dimensions out of the five dimensions of the received signal space,
and thus an achievable per-user DoF of 3

5 is obtained by interference alignment.

12.2.3 Cooperative X-Multicast Channel

The cooperative X-multicast channel was first proposed and analyzed in [7] when study-
ing caching and delivery problems in the interference network. Based on their proposed
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parametric file splitting and caching scheme, the original interference network is trans-
formed into the cooperative X-multicast channel. The authors obtained an achievable
per-user DoF in this channel via a collective use of interference alignment and interfer-
ence neutralization techniques. The general

(
NT

t

)×(NR

σ

)
cooperative X-multicast channel

is defined as follows.

definition 12.1 [7, definition 2] The channel characterized as follows is called the(
NT

t

)× (NR

σ

)
cooperative X-multicast channel:

1. There are NR receivers and NT transmitters.
2. Each set of σ (σ ≤ NR) receivers forms a receiver multicast group.
3. Each set of t (t ≤ NT ) transmitters forms a transmitter cooperation group.
4. Each transmitter cooperation group has an independent message for each

receiver multicast group.

In can be seen that the X-multicast channel introduced in [8] is a special case of
the cooperative X-multicast channel when t = 1. The achievable per-user DoF of the(
NT

t

)× (NR

σ

)
cooperative X-multicast channel obtained in [7] is given by

dσ,t =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, σ + t − 1 ≥ NR

(
NR−1
σ−1 )(NT

t )t

(
NR−1
σ−1 )(NT

t )t+1
, σ + t − 1 = NR − 1

max
{
d ′σ,t,

σ+t−1
NR

}
, σ + t − 1 ≤ NR − 2

, (12.8)

where

d ′σ,t � max
1≤t ′≤t

{ (
NR−1
σ−1

)(
NT

t ′
)(

NR−σ
t ′−1

)
t ′(

NR−1
σ−1

)(
NT

t ′
)(

NR−σ
t ′−1

)
t ′ + (NR−1

σ

)(
NR−σ−1

t ′−1

)(
NT

t ′−1

)} . (12.9)

We now take the
(3

2

)× (3
2

)
cooperative X-multicast channel as an example to review the

idea of the delivery scheme in [7].
In the considered cooperative X-multicast channel, there are three transmitter coop-

eration groups: transmitters {1,2}, transmitters {1,3}, and transmitters {2,3}; and three
receiver multicast groups: receivers {1,2}, receivers {1,3}, and receivers {2,3}. Denote
W

i,k
j,l (for j,l,i,k ∈ {1,2,3},j �= l,i �= k) as the message transmitted by transmitters

{j,l} and desired by receivers {i,k}, which is encoded into the transmitted symbol x
i,k
j,l .

By an n-symbol extension, the n × 1 beam-forming vector of x
i,k
j,l at transmitter j is

given by vi,k
j,l(j ), and the n× 1 beam-forming vector of x

i,k
j,l at transmitter l is given by

vi,k
j,l(l). Consider an arbitrary receiver i. Its received signal yi is given by

yi = Hi,1

(
v1,2

1,2(1)x1,2
1,2 + v1,3

1,2(1)x1,3
1,2 + v2,3

1,2(1)x2,3
1,2

)
+Hi,1

(
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1,3(1)x1,2
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1,3(1)x1,3
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)
+Hi,2

(
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1,2(2)x1,2
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1,2(2)x2,3
1,2

)
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(
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2,3

)
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+Hi,3

(
v1,2

1,3(3)x1,2
1,3 + v1,3

1,3(3)x1,3
1,3 + v2,3

1,3(3)x2,3
1,3

)
+Hi,3

(
v1,2

2,3(3)x1,2
2,3 + v1,3

2,3(3)x1,3
2,3 + v2,3

2,3(3)x2,3
2,3

)
. (12.10)

Since each symbol causes interference to only one receiver, it can be neutralized out at
this receiver by carefully designing its beam-forming vectors between the two transmit-
ters in the corresponding cooperation group. In specific, take symbol x

1,2
1,2 , for exam-

ple. It can be neutralized out at receiver 3, by designing the beam-forming vectors
{v1,2

1,2(1),v1,2
1,2(2)} to satisfy

H3,1v1,2
1,2(1)+H3,2v1,2

1,2(2) = 0. (12.11)

Since the channel matrices {Hi,j } are diagonal and their diagonal entries are i.i.d. as
some continuous distributions, these matrices are invertible with probability 1. Then,
v1,2

1,2(2) can be determined by

v1,2
1,2(2) = −H−1

3,2H3,1v1,2
1,2(1), (12.12)

and v1,2
1,2(1) can be chosen as a random non-zero vector.

The interference neutralization can be applied to the rest of the eight symbols so
that each symbol will be neutralized out at its undesired receiver. Then, each receiver
receives only its six desired symbols, and can successfully decode all six symbols as
proven in [7]. Thus each receiver can achieve a per-user DoF of 1.

In the general
(
NT

t

) × (
NR

σ

)
cooperative X-multicast channel, each symbol is coop-

eratively transmitted by t transmitters and neutralized at a maximum of t − 1 unde-
sired receivers. Note that for each message, when the number of receivers that do not
want this message, NR − σ, is larger than t − 1, the interference neutralization can
cancel the interference at only t − 1 of them; the rest of the receivers that do not
want this message still suffer interference from this message. Then, we should further
partition the interfering messages into different groups and use asymptotic interfer-
ence alignment to align interferences in a same group into a same subspace at each
interfered receiver, so as to obtain the achievable per-user DoF given in (12.8), as
detailed in [7].

Note that the per-user DoF (12.8) in the cooperative X-multicast channel reduces
to the per-user DoF in the X channel when σ = t = 1, and reduces to the per-
user DoF in the X-multicast channel when t = 1. In fact, (12.8) is the largest DoF
among the per-user DoFs in the four considered channels, because receiver multicast,
interference neutralization, and interference alignment are considered and utilized
jointly.

12.3 System Model and Performance Metric

In this section, we formally define the cache-aided interference network model. Then,
we use a new latency-oriented metric, namely normalized delivery time, to characterize
the performance limit.
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Figure 12.1 Cache-aided wireless interference network with three transmitters and three receivers.

12.3.1 Network Model

We consider an arbitrary interference network consisting of NR (≥ 2) receivers and NT

(≥ 2) transmitters. Each node has a local cache memory with finite size. Figure 12.1
shows an example with NT = NR = 3. The channel from each transmitter to each
receiver is assumed to experience both fading and additive noise.

The database consists of N files, denoted by {W1,W2, . . . ,WN }, each with F bits. We
assume that N ≥ NR so that each receiver can demand a distinct file. Each transmitter
has a storage that is able to store μT NF bits from the database, and each receiver has a
storage that is able to store μRNF bits from the database. Here, we refer to μT and μR

as the normalized cache sizes at each transmitter and receiver, respectively.

12.3.2 Two-Phase Operation Model

The cache-aided communication consists of two operation phases, a cache placement
phase and a content delivery phase. In the cache placement phase, there is a caching
function for each transmitter j , mapping the database into its local cached content
Uj . Each receiver i also has a caching function mapping the database into its local
cached content Vi . The caching functions should satisfy the cache memory constraints
at nodes, i.e., H (Uj ) ≤ μT NF,H (Vi) ≤ μRNF , and we assume that these functions
are globally known.

Now let us consider the delivery phase. We assume that each receiver i requests a file
Wqi

from the database and use q � (qi)
NR

i=1 ∈ [N ]NR to denote the demand vector. After
the receiver demand is revealed, each transmitter j uses an encoding function to map
its local cached content Uj , receiver demand vector q, and channel realization to the



Fundamentals of Coded Caching for Interference Management 243

codeword (Xj [t])Tt=1, where T is defined as its block length. The codeword (Xj [t])Tt=1
should satisfy the average transmit power constraint P . After receiving signals from
the interference network, each receiver i uses a decoding function to decode Ŵqi

of its
desired file Wqi

with the help of the channel realization and its local cached content Vi .
We define the worst-case error probability as

Pε = max
q∈[N ]NR

max
i∈[NR]

P(Ŵqi
�= Wqi

). (12.13)

The given caching and coding scheme is feasible if Pε → 0 when F → ∞ for almost
all channel realizations.

In the considered network model, each receiver can obtain its desired file only from
either its local cache or any of the NT transmitters. Thus we must have μRNF +
NT μT NF ≥ NF for the cache size constraint. This is equivalent to the following
region: {

0 ≤ μR,μT ≤ 1
μR +NT μT ≥ 1

, (12.14)

which is referred to as the feasible region of normalized cache sizes.

12.3.3 Performance Metric

We characterize the performance of the cache-aided interference network using a
latency-oriented metric defined as follows.

definition 12.2 [11, definition 3] For a feasible caching and coding scheme at
normalized cache size tuple (μR,μT ), the normalized delivery time is defined as

τ(μR,μT ) � lim
P→∞

lim
F→∞

sup
max

q
T

F/ log P
. (12.15)

The minimum NDT is defined as

τ∗(μR,μT ) = inf{τ(μR,μT ) : τ(μR,μT ) is achievable}. (12.16)

By Definition 12.2, if a feasible caching and coding scheme can achieve an NDT of τ,
it means its worst-case delivery time to meet any possible use demand is τ times of the
reference time required to transmit a single file of F bits in a Gaussian baseline system
at high SNR regime.

The per-user capacity of this network is approximately (d · log P + o(log P )) in the
high SNR regime, with d being the per-user DoF. Denote R as the per-user worst-
case traffic load normalized by the file size F . Then, we can rewrite the worst-case
transmission time as max

q
T = RF

d·log P+o(log P ) . By Definition 12.2, we can express

NDT as

τ = R/d. (12.17)
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Therefore, NDT characterizes the asymptotic time, i.e., when P → ∞ and F → ∞,
to use a transmission rate characterized by d to deliver a per-user traffic load R. In the
following, we will use (12.17) to calculate the NDT.

12.4 NDT Analysis in Wireless Interference Networks

In this section, we first introduce the parametric caching scheme proposed in [7].
We then present the content delivery scheme by treating the cache-aided network as the
cooperative X-multicast channel. Given this delivery scheme, we obtain an achievable
NDT by optimizing the file splitting ratios through a linear programming (LP) problem.
Compared to the lower bound derived in [7], this achievable NDT is optimal in some
transmitter and receiver cache size regions. We also prove that the multiplicative gap
between the achievable NDT and this lower bound is bounded in the entire region. We
then extend these results to the multiple-antenna interference networks.

12.4.1 Parametric Caching Scheme

We first present a parametric caching scheme for arbitrary transmitter and receiver
node numbers NT and NR and any normalized cache sizes μR and μT , proposed
in [7]. This scheme splits and caches each file in the database in the same manner.
Specifically, consider an arbitrary file Wn (for n ∈ {1,2, . . . ,N}). It is partitioned into∑NR

r=0

∑NT

t=1

(
NR

r

)(
NT

t

) + 1 subfiles exclusively. Each subfile, denoted by Wn,R	,T� , is
cached exclusively in transmitter subset � and receiver subset 	, and with possibly
different length. For example, Wn,R1,T12 is the subfile cached in receiver 1 and
transmitters 1 and 2. Given the independence of all files as well as the symmetry
of all the nodes, we also assume that subfiles cached in the same number of receivers
and transmitters are of the equal length. Under this assumption, denote the size of
Wn,R	,T� by ar,tF , with r = |	|,t = |�|. Here we refer to ar,t as the file splitting
ratio, which satisfies ar,t ∈ [0,1] and should be determined as in the following sections.
For example, subfile Wn,R1,T12 is of a1,2F bits. The file splitting ratios {ar,t } must
satisfy three constraints, given as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

NR∑
r=0

NT∑
t=1

(
NR

r

)(
NT

t

)
ar,t + aNR,0 = 1,

NR∑
r=1

NT∑
t=1

(
NR − 1

r − 1

)(
NT

t

)
ar,t + aNR,0 ≤ μR,

NR∑
r=0

NT∑
t=1

(
NR

r

)(
NT − 1

t − 1

)
ar,t ≤ μT .

(12.18)

(12.19)

(12.20)

Constraint (12.18) results from the file size constraint, because there are
(
NR

r

)(
NT

t

)
subfiles for each file that are exclusively cached in t transmitters and r receivers in



Fundamentals of Coded Caching for Interference Management 245

the network and each of these subfiles has ar,tF bits, for r ∈ {0,1, . . . ,NR} and
t ∈ {1,2, . . . ,NT } or (r = NR,t = 0). Similarly, constraint (12.19) and constraint
(12.20) result from the cache size constraints in receivers and transmitters, respectively,
which will not be explained in detail.

This scheme is called as the parametric caching scheme because it does not specify
the values of the file splitting ratios {ar,t } once they satisfy constraints (12.18), (12.19),
and (12.20). These ratios will be determined later to minimize the sum NDT in the
delivery phase.

Alternatively, the authors in [6] and [9] propose another caching scheme, called
symmetric file splitting and caching scheme, when the normalized cache sizes satisfy
NRμR = m and NT μT = n with m ∈ [0,NR] ∩ Z and n ∈ [0,NT ] ∩ Z. We refer to
these values as integer point cache size pairs, since each bit of every file is cached in n

transmitters and m receivers simultaneously on average. More specifically, we split each
file into

(
NR

m

)(
NT

n

)
subfiles with equal sizes. Each subfile is cached in a unique receiver

subset with m receivers and a unique transmitter subset with n transmitters. Then, each
receiver and transmitter caches

N ·
(

NR − 1

m− 1

)(
NT

n

)
· F(

NR

m

)(
NT

n

) = m

NR

NF = μRNF, (12.21)

N ·
(

NR

m

)(
NT − 1

n− 1

)
· F(

NR

m

)(
NT

n

) = n

NT

NF = μT NF (12.22)

bits, respectively, and satisfies the local cache sizes.
It can be seen that the parametric caching scheme degenerates to the symmetric

caching scheme by letting am,n = 1
(NR

m )(NT
n )

and other file splitting ratios be 0. Since

we can select suitable file splitting ratios in the parametric caching scheme for NDT
optimization, this scheme is more general than the symmetric caching scheme.

12.4.2 Content Delivery Strategy

In this section, we aim to introduce the content delivery scheme. We focus on the worst
demand that each receiver demands a different file. Note that we can still apply our
scheme if one file is requested by two or more receivers, by seeing the demands as
different demands. We assume that receiver i needs file Wi . Given local caches, receiver
i requires only subfiles {Wi,R	,T� : 	 �' i}.

We first divide these subfiles into NT NR groups, where the subfiles in each group,
denoted as (r,t), are cached exactly at r receivers and t transmitters. By this grouping
method, group (r,t) contains all the subfiles with length ar,tF bits. In this group, there
are in total NR

(
NR−1

r

)(
NT

t

)
subfiles, among which each receiver needs

(
NR−1

r

)(
NT

t

)
sub-

files. We deliver each group individually in the time division manner. In this section, we
illustrate the transmission scheme for an arbitrary group (r,t), for r ∈ [0,NR − 1] ∩ Z

and t ∈ [0,NT ] ∩ Z .
In this group, each subfile is cached at t transmitters and r receivers. We can thus

use coded multicasting via bit-wise xor to combine these subfiles, similar to [12].
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More specifically, for any transmitter set � with |�| = t and any receiver set 	+

with |	+| = r + 1, message
⊕

i∈	+
Wi,R	+\{i},T� can be generated by each transmitter

in �, and all receivers in 	+ desire this message. To illustrate it, consider an arbitrary
receiver i ∈ 	+. Since it caches subfiles {Wi′,R	+\{i′},T�

: i′ ∈ 	+ \ {i}, it is able
to decode the required subfile Wi,R	+\{i},T� from

⊕
i∈	+

Wi,R	+\{i},T� . By applying this

method, a coded message is generated by combining r + 1 subfiles via bit-wise xor.
Transmitters thus need to deliver only

(
NR

r+1

)(
NT

t

)
messages to receivers, each available

at t transmitters and desired by r + 1 receivers. The network is transformed into the(
NT

t

) × (
NR

r+1

)
cooperative X-multicast channel, with per-user DoF dr+1,t achieved in

(12.8) where σ = r + 1.
Since each receiver requires

(
NR−1

r

)(
NT

t

)
messages and each message has ar,tF bits,

the NDT for the considered group is τr,t = (NR−1
r )(NT

t )
dr+1,t

ar,t . Combining the delivery for
all NT NR groups, the sum NDT is given by

τ =
NR−1∑
r=0

NT∑
t=1

(
NR−1

r

)(
NT

t

)
dr+1,t

ar,t . (12.23)

12.4.3 Achievable NDT

Now, we aim to minimize the total NDT (12.23) by optimizing the file splitting ratios
{ar,t } subject to constraints (12.18), (12.19), and (12.20). This results in the following
achievable upper bound of NDT [7].

theorem 12.3 (Achievable NDT) [7, theorem 1] For the considered network con-
sisting of NT ≥ 2 transmitters, NR ≥ 2 receivers, and a database with N ≥ NR

files, where each transmitter and each receiver have normalized cache sizes μT and
μR , respectively, the minimum NDT is upper-bounded by the optimal solution of the LP
problem given as follows:

P1 : τU (μR,μT ) � min
{ar,t :(r,t)∈A}

NR−1∑
r=0

NT∑
t=1

(
NR−1

r

)(
NT

t

)
dr+1,t

ar,t, (12.24)

s.t. 0 ≤ ar,t ≤ 1,∀(r,t) ∈ A (12.25)

(12.18)(12.19)(12.20) (12.26)

where A � {(r,t) : r + NRt ≥ NR,0 ≤ r ≤ NR,0 ≤ t ≤ NT ,r,t ∈ Z}, {ar,t } are
the file splitting ratios, and dr+1,t is the achievable per-user DoF in the

(
NT

t

) × (
NR

r+1

)
cooperative X-multicast channel in (12.8) where σ = r + 1.

Compared to the theoretical lower bound in [7, theorem 2] where interfile coding is
not permitted in the caching strategy, the optimality of the achievable NDT and its gap
to this lower bound are given by two corollaries as follows, whose proofs are in [7,
appendix B] and [7, appendix C], respectively.
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corollary (Optimality) [7, corollary 1] When interfile coding is not allowed in the
cache placement strategy, the achievable NDT in Theorem 12.3 is optimal if (μR,μT )
satisfies any of the following conditions:

1. NRμR +NT μT ≥ NR: the optimal NDT is τ∗ = 1− μR .
2. (μR,μT ) = (0,1): the optimal NDT is τ∗ = NR

min{NT ,NR} .
3. (μR,μT ) = (0,1/NT ): the optimal NDT is τ∗ = NT+NR−1

NT
.

4. μR + NT μT = 1 if intrafile coding is not permitted in the cache placement: the
optimal NDT is τ∗ = NT+NR−1

NT
(1− μR).

corollary (Gap of NDT) [7, corollary 2] If interfile coding is not permitted in
the caching strategy, the multiplicative gap between the achievable NDT in 12.3 and
the lower bound in [7, theorem 2] is within 2 when NT ≥ NR , within 12 when
NT < NR,μT ≥ 1

NT
, and within NT+NR−1

NT
when NT < NR,μT < 1

NT
.

The optimality results of the achievable NDT in Theorem 12.3 are based on the
assumption that there is no interfile coding in the cache placement strategy. The authors
in [8] derived a theoretical lower bound of NDT without any assumptions on the caching
functions. By using this lower bound, they found that the multiplicative gap between
their achievable NDT and the optimum is no larger than 13.5. The authors in [6] also
proposed an achievable scheme by using interference neutralization in a one-shot linear
transmission scheme, and found that the multiplicative gap between their achievable
NDT and the optimum is no larger than 2 under the assumptions of uncoded prefetching
in the cache placement and one-shot linear transmission schemes.

In the following, we focus on the achievable NDT in Theorem 12.3, and present some
discussions.

12.4.3.1 On Caching at Integer Point Cache Size Pairs
In the achievable scheme presented earlier, caching gains are reflected by file split-
ting ratios in the LP problem. Here, we consider only the symmetric file splitting and
caching scheme at any integer point cache size pair (μR = m/NR,μT = n/NT ), with
m ∈ [0,NR]∩Z and n ∈ [0,NT ]∩Z, while the caching gains exploited at general tuple
(μR,μT ) is detailed in [7].

In the symmetric file splitting and caching scheme, each file is split to
(
NR

m

)(
NT

n

)
subfiles with equal sizes. Each subfile is cached at n transmitters and m receivers,
corresponding to the file splitting ratio am,n = 1

(NR
m )(NT

n )
, with the rest being 0. In the

delivery phase, the network topology is transformed into the
(
NT

n

) × (
NR

m+1

)
coopera-

tive X-multicast channel by the coded generation method, whose achievable NDT is
given by

τm,n = 1− μR

dm+1,n
, (12.27)

where dm+1,n is the achievable per-user DoF in (12.8).
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We can rewrite (12.27) as

τm,n = NR(1− μR)

(m+ 1)dsum
, (12.28)

where dsum = NRdm+1,n
m+1 is the sum DoF derived from per-user DoF (12.8) in the coop-

erative X-multicast channel. In dsum, the numerator NRdm+1,n comes from the fact that
there are NR receivers in total, each with per-user DoF of dm+1,n; and the dominator
m+ 1 comes from the fact that each message in the cooperative X-multicast channel is
desired by m+ 1 receivers.

The expression in (12.28) reveals the caching gains more explicitly. Specifically, the
local caching gain is reflected by (1 − μR), because each receiver caches μRF bits of
its desired file in advance; the coded multicasting gain is reflected by (m + 1), which
is exactly the number of desired receivers of each transmitted message; the transmit-
ter cooperation gain is reflected by dsum, which is achieved through joint interference
alignment and interference neutralization techniques.

12.4.3.2 On the Optimal File Splitting Ratios
We can use equation substitutions and other suitable manipulations to solve the LP
problem in Theorem 12.3. In general, it does not have unique solutions, which implies
that we may have multiple solutions for optimal file splitting ratios of the LP problem
in Theorem 12.3. The different optimal file splitting ratios reflect different caching and
delivery schemes, even though the same NDT is achieved. In the following, we will
use the 3 × 3 network as an example to show the impact of different solutions of file
splitting ratios. The following corollary presents the optimal solution of the LP problem
in Theorem 12.3 for this network.

corollary For the cache-aided 3 × 3 interference network, the minimum NDT is
upper bounded by

τ∗(μR,μT ) ≤ τU =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1− μR, (μR,μT ) ∈ R1
33

4
3 − 4

3μR − 1
3μT , (μR,μT ) ∈ R2

33
3
2 − 5

3μR − 1
2μT , (μR,μT ) ∈ R3

33
13
6 − 8

3μR − 3
2μT , (μR,μT ) ∈ R4

33
8
3 − 8

3μR − 3μT , (μR,μT ) ∈ R5
33

, (12.29)

where {Ri
33}5i=1 are given as follows and sketched in Figure 12.2.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

R1
33 = {(μR,μT ) : μR + μT ≥ 1,μR ≤ 1,μT ≤ 1}

R2
33 = {(μR,μT ) : μR + μT < 1,2μR + μT ≥ 1,μR + 2μT > 1}

R3
33 = {(μR,μT ) : 3μR + 3μT ≥ 2,2μR + μT < 1,μR ≥ 0}

R4
33 = {(μR,μT ) : 3μR + 3μT < 2,μR ≥ 0,3μT > 1}

R5
33 = {(μR,μT ) : 3μT ≤ 1,μR + 2μT ≤ 1,μR + 3μT ≥ 1}

. (12.30)

Let us take the integer point cache size pair (μR = 1
3,μT = 2

3 ) as an example.
We have two solutions of file splitting ratios to achieve (12.29). The first solution is
a∗0,3 = 2

3 and a∗3,0 = 1
3 while the rest ratios being 0. It implies that we should split
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Figure 12.2 Cache size regions in the 3× 3 network.

each file into two subfiles. The first subfile has 2
3F bits, and we let all three transmitters

but not any receivers cache this subfile. The second subfile has 1
3F bits and we let

all receivers but not any transmitters cache this subfile. By transforming the network
into a multiple-input single-output (MISO) broadcast channel in the delivery phase, this
solution exploits transmitter cooperation gain as well as local caching gain.

We can also let a∗1,2 = 1
9 and the rest ratios be 0. Note that symmetric file splitting

and caching scheme is adopted in this solution, i.e., each file is split into 9 subfiles,
each with the same 1

9F bits. Each subfile is exclusively cached at two transmitters
and one receiver. By transforming the interference network into a partially cooperative
X-multicast channel in the delivery phase, this solution exploits transmitter cooperation
gain as well as coded multicasting gain, besides local caching gain. Since both solutions
achieve the NDT τ∗ = 2

3 , they are both optimal when (μR = 1
3,μT = 2

3 ).
In general, we find that the caching and transmission scheme is not unique at integer

point cache size pairs (μR = m
NR

,μT = n
NT

) with m + n ≥ NR . In specific, when
NT ≥ NR , besides the symmetric file splitting and caching strategy, we can also let
a∗NR,0 = μR,a∗0,NR

= 1−μR

(
NT
NR

)
, which implies that we split each file into 1+ (NT

NR

)
subfiles.

The first subfile has μRF bits and we let all NR receivers but not any transmitters

cache this subfile, while each of the other subfiles has 1−μR

(
NT
NR

)
F bits and we let NR out

of NT distinct transmitters but not any receivers cache it. In the delivery phase, we
can transform the network to the

(
NT

NR

) × (
NR

1

)
cooperative X-multicast channel with

d1,NR
= 1 and achieve the following NDT
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τ = 1− μR

d
= 1− μR . (12.31)

In this scheme, we do not use bit-wise xor; therefore, we exploit only transmitter
cooperation gain but not coded multicasting gain here. Since (12.31) achieved by this
scheme is the same as (12.27) achieved by symmetric file splitting and caching scheme
when m+ n ≥ NR and NT ≥ NR , it implies that transmitter cooperation gain can have
the same contribution as the combined transmitter cooperation and coded-multicasting
gain in this case.

If NT < NR , the system performance is limited by the number of transmitters. Thus,
unlike the previous case, we should use bit-wise xor here. Specifically, we let a∗NR,0 =
1 − NR

NT
(1 − μR),a∗NR−NT ,NT

=
NR
NT

(1−μR)

(
NR

NR−NT
)

, which implies that we split each file into

1 + (
NR

NR−NT

)
subfiles. The first subfile has 1 − NR

NT
(1 − μR)F bits and we let all NR

receivers but not any transmitters cache this subfile, while each of the rest of the subfiles

is of
NR
NT

(1−μR)

(
NR

NR−NT
)

F bits and we let all NT transmitters and NR − NT out of NR distinct

receivers cache it. Given this caching strategy, only the subfiles with size
NR
NT

(1−μR)

(
NR

NR−NT
)

F

bits should be transmitted, and transmitter cooperation gain, coded-multicasting gain,
and local caching gain can be exploited in the delivery phase.

Given the various choices to select suitable file splitting ratios, we should choose
a proper scheme to improve the system performance in practical systems with other
constraints, such as file splitting number constraints or computation limitations at nodes.

12.4.4 MIMO Interference Network

In this section, we extend our scheme to the multiple-antenna case, where each trans-
mitter and each receiver have MT and MR antennas, respectively.

We still adopt the parametric caching scheme presented in Section 12.4.1. The
delivery phase is similar to the previous case, where the network is transformed to
the cooperative X-multicast channels with multiple antennas. However, unlike the
single antenna case, it is much more difficult to obtain the achievable DoF in the
multiple antenna case. In [10], interference management techniques in finite symbol
extensions, such as zero forcing, interference neutralization, and interference alignment,
are proposed by using linear precoding to obtain the achievable DoFs in the cooperative
X-multicast channels when NT = NR = 3. Substituting this DoF into problem P1

and solving it, we obtain an achievable upper bound of NDT in the 3 × 3 MIMO
network in [10, theorem 1]. It is seen that each additive term in the achievable NDT
is inversely proportional to MT or MR . This means that spatial multiplexing gain is
exploited here. When interfile coding is not permitted in the caching strategy, we prove
that this achievable NDT achieves the optimality for some cache size regions and some
antenna configurations, and the multiplicative gap between the achievable NDT and the
optimum is no larger than 3 in the rest cases.



Fundamentals of Coded Caching for Interference Management 251

In the special case when MT = MR = 1, the MIMO interference network degenerates
to the single-antenna case, and the achievable NDT in [10] is no larger than 1.2 times
of the NDT obtained in [7] with single antenna. Compared to [7], the increase is from
the fact that interference management schemes in [10] are restricted to linear precoding
with finite symbol extensions, while [7] applies infinite symbol extensions.

Unlike the single-antenna case, the symmetric file splitting and caching scheme in
the 3 × 3 MIMO interference network is not always optimal at integer point cache
size pairs. To illustrate, let us consider the case (μR = 0,μT = 2

3 ) with antenna
configuration (MR = 5,MT = 3). By using symmetric file splitting and caching
scheme, we split each file into three subfiles with equal size. Each subfile is cached
in two different transmitters. In the delivery phase, by transforming the network into
the partially cooperative MIMO X channel, a per-user DoF of 2 is achieved. Thus the
achievable NDT is given by 1

2 . On the other hand, by applying the parametric file
splitting, each file can be split into four subfiles. The first subfile has 1

2F bits and is
cached at all the three transmitters, while each of the rest three subfiles has 1

6F bits and
is cached at a distinct transmitter. In the delivery phase, for the transmission of subfiles
cached at all the three transmitters, the network is transformed into the MIMO broadcast
channel, and we can achieve a per-user DoF of 3; for the transmission of subfiles cached
at one transmitter, the network is transformed into the MIMO interference channel, and
we can achieve a per-user DoF of 2. The achievable NDT is thus 5

12 , which is less than
the NDT of 1

2 obtained by symmetric file splitting and caching scheme.

12.5 Partially Connected Interference Network

Section 12.4 focuses on a fully connected interference network where all the channel
realizations are assumed to be i.i.d. However, in practice, there always exist some links
weaker than the rest, due to the signal attenuation resulting from blocking objects or
the natural pathloss resulting from radio propagation. We refer to this scenario as the
partially connected interference network, where each receiver is locally connected to
a part of the transmitters, and extend the previous discussion to this network in the
following.

12.5.1 Network Model

We focus on a (K + L− 1)×K partially connected linear interference network. There
are K receivers, given by {0,1, . . . ,K − 1}, and K + L − 1 transmitters, given by
{0,1, . . . ,K + L − 2}. Each receiver i can locally communicate with L continuous
transmitters {i,i + 1, . . . ,i + L − 1}, and we assume L ≤ K where L is referred to as
the receiver connectivity. Figure 12.3 plots the 6 × 4 network with L = 3 and K = 4.
We use set Ti � {i,i + 1, . . . ,i + L − 1} to denote the L transmitters communicated
with receiver i, and use set Rj � {j,j − 1, . . . ,j − L + 1} ∩ {0,1, . . . ,K − 1}, with
|Rj | ≤ L, to denote the receivers communicated with transmitter j . Each transmitter
and receiver has a local storage and has a single antenna. We assume that the normalized
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Figure 12.3 6× 4 partially connected linear interference network with receiver connectivity
L = 3.

cache sizes should satisfy μT ≥ 1
L

and μR ≥ 0, which implies that the entire database
can be stored at any L transmitters.

Note that our considered model is an extension of the conventional Wyner’s model
[13] and the K ×K partially connected network studied in [14]. There are L− 1 more
transmitters in this model, indexed by {K,K + 1, . . . ,K + L − 2}, to ensure that each
receiver is connected to L transmitters. Note that this constant receiver connectivity is
critical in this work so that the following achievable scheme proposed in [15] is tractable
in the linear network topology.

The linear network has a direct relation with the K × K partially connected circular
interference network. In the circular network, each receiver i communicates with L

circulant transmitters, given by T c
i � {i,i + 1, . . . ,i + L − 1} mod K . Denote Rc

j �
[j−L+1: j ] mod K as the L receivers communicated with transmitter j in the circular
network. Note that we have Rc

j = Rj ∪RK+j for all j ∈ [0,L− 2]. This implies that,
we can transform the linear network into the circular network by combining transmitters
K+j and j in the linear network, for all j ∈ [0,L−2], into transmitter j in the circular
network. If L = K , the circular network degenerates to the fully connected network.
In the final section, our study on the linear network will be extended to the circular
network, and we will also compare the results to the fully connected network.
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12.5.2 Achievable Scheme

12.5.2.1 Cache Placement
Each file Wn is first split into L subfiles with equal size, given as {Wn,Tp }L−1

p=0.

Subfiles {Wn,Tp }N−1
n=0 are cached at transmitters {j : j mod L = p}. By using this

caching strategy, each receiver is able to obtain the entire database from the L

transmitters it communicates with. Note that each transmitter caches only NF
L

bits
by this cache placement strategy, which satisfies its local cache capacity.

To fill the receiver caches, we further split each subfile Wn,Tp into 2L subfiles, denoted
by {Wn,Tp,RQ

}, where Q ⊆ {0,1, . . . ,L−1}. Each subfile Wn,Tp,RQ
is stored in receivers

R̃Q � {i : (i mod L) ∈ Q}. It can be seen that the same subfiles are cached at trans-
mitters congruent modulo L, given as {j,j + L,j + 2L, . . .}, and the same subfiles are
cached at receivers congruent modulo L, given as {i,i+L,i+2L, . . .}. Taking the 6×4
network (see Fig. 12.3) as an example, we have U0 = U3, U1 = U4, U2 = U5, and
V0 = V3. Similar to the parametric caching in fully connected network, we assume
that the size of each subfile Wn,Tp,RQ

satisfying |Q| = r is arF bits, where ar is
referred to as the file splitting ratio. Similar to (12.18) and (12.19), {ar} should satisfy
two constraints given as follows:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

L

L∑
r=0

(
L

r

)
ar = 1,

L

L∑
r=1

(
L− 1

r − 1

)
ar ≤ μR,

(12.32)

(12.33)

where constraints (12.32) and (12.33) come from the file size constraint and receiver
cache constraint, respectively.

12.5.2.2 Content Delivery
Each receiver i is assumed to request file Wi+1, and it only needs subfiles:

W need
i+1 �

{
Wi+1,Tp,RQ

: p ∈ {0, . . . ,L− 1},Q ⊆ {0,1, . . . ,L− 1} \ {i mod L}} ,

(12.34)

given its local cache. To deliver these subfiles, we partition them into L groups according
to the cardinality of Q. Subfiles in the same group are with the same |Q|. There are
KL

(
L−1

r

)
subfiles in each group r , for r = |Q| ∈ {0, . . . ,L− 1}. We deliver the groups

in time division manner. In this section, we focus on an arbitrary group r to present the
transmission scheme.

Since each subfile is cached at r of any L consecutive receivers, similar to the fully
connected network, coded multicasting opportunities can be exploited by combining
r + 1 transmitted subfiles via xor. To do this, we first add 2L − 2 virtual receivers to
expand the considered linear network, as shown in [15], so that each transmitter needs to
send an independent message to any r + 1 of its connected L receivers via coded multi-
casting. Then, the original network is transformed into the expanded (K + L− 1)×K
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partially connected X-multicast channel, whose achievable DoF is d = L

L+L−r−1
r+1

, via

asymptotic interference alignment.
Given that each receiver needs L

(
L−1

r

)
subfiles and each subfile has arF bits, the

NDT for this group is

τr =
L
(
L−1

r

)
ar

d
=
[
L

(
L− 1

r

)
+
(

L− 1

r + 1

)]
ar . (12.35)

12.5.3 Achievable NDT

Minimizing the sum NDT for the delivery of all groups subject to the constraints (12.32)
and (12.33), an achievable NDT is given in the following theorem.

theorem 12.4 [15, theorem 1] (Achievable NDT) For the considered network con-
sisting of K receivers and K + L − 1 transmitters with receiver connectivity L, an
achievable NDT is obtained by solving the LP problem given as follows:

τ∗(μR,μT ) ≤ τub �min
{ar }

L−1∑
r=0

[
L

(
L− 1

r

)
+
(

L− 1

r + 1

)]
ar (12.36)

s.t. Constraints (12.32),(12.33). (12.37)

It is shown in [15] that the multiplicative gap between the achievable NDT in Theorem
12.4 and the optimal NDT is no larger than 2.

In Theorem 12.4, the caching gains can be reflected more explicitly at μR = l
L

, for
l ∈ {0,1, . . . ,L}. In specific, a valid solution when μR = l

L
is given by a∗l = 1

L(L
l )

while the rest a∗l = 0. This solution achieves the following NDT

τub =
L
(
L−1

l

)+ (L−1
l+1

)
L
(
L
l

) =
(

1− 1

L
+ 1

1+ LμR

)
·(1− μR

)
. (12.38)

In (12.38), (1− μR) reflects receiver local caching gain, and (1 − 1
L
+ 1

1+LμR
) reflects

a combined transmitter coordination and coded multicasting gain.

12.5.4 Application to Circular Network

As mentioned before, the linear network can be transformed into the circular network
by combining transmitters j and K + j together, for j ∈ {0, . . . ,L − 2}. To apply
the scheme into the circular network, we need to ensure that these two transmitters
cache the same contents, which is automatically satisfied when L divides K . As a
result, we can extend Theorem 12.4 directly to the K × K circular network if L

divides K .
If K = L, the circular network reduces to the fully connected network, and the

achievable DoF in the considered circular channel in [15] is the same as the DoF in the
X-multicast channel.
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12.6 Conclusion and Open Issues

This chapter presents interference management techniques in the cache-aided wireless
networks. We first reviewed some basic interference networks and their achievable
DoF results. Then we introduced the network model for the considered cache-aided
interference network. Specifically, we adopted normalized delivery time as the perfor-
mance metric. The achievable caching and delivery schemes for both single-antenna
and multiple-antenna cases thus transform the interference network into cooperative
X-multicast channels. We can thus opportunistically leverage transmitter cooperation
gain and coded multicasting gain, apart from local caching gain in the delivery phase.
The achievable NDTs are optimal in some cases, while the multiplicative gap between
this achievable NDT and the optimal NDT is bounded in all cases. Finally, we extended
our results to the partially connected networks and present a caching and delivery
scheme which is tailor-made for the linear and circular network models. We prove that
the the multiplicative gap between the achievable NDT and the optimal NDT in this
network is no larger than 2.

There are several open issues in the cache-aided interference networks. First, the
globally optimal NDT remains unknown in some cases. To approach the optimal NDT,
one possible solution is to adopt coded cache placement so as to achieve a higher DoF
in the cooperative X-multicast channel.

Second, while this chapter focuses only on the cache size region where all the
requested files can be retrieved from either the receiver local cache or the transmitter
caches, it still needs to investigate the caching and delivery scheme when the cache
size is not large enough so that some file bits need to be fetched from a cloud through
backhaul or fronthaul links.

Last, but not least, it is of practical importance to study the performance of a cache-
aided interference network at the finite SNR regime, where the exact delivery time rather
than NDT is more valued.
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13 Full-Duplex Radios for Edge Caching
Italo Atzeni and Marco Maso

Recent studies have shown that edge caching may have a beneficial effect on the
sustainability of future wireless networks. While its positive impact at the network
level is rather clear (in terms of, e.g., access delay and backhaul load), assessing its
potential benefits at the physical layer is less straightforward. This chapter builds
upon this observation and focuses on the performance enhancement brought by the
addition of caching capabilities to full-duplex (FD) radios in the context of ultra-dense
networks (UDNs). More specifically, we aim at showing that the interference footprint
of such networks, i.e., the major bottleneck to overcome to observe the theoretical FD
throughput doubling at the network level, can be significantly reduced thanks to edge
caching. As a matter of fact, fundamental results available in the literature show that
most of the gain, as compared to their half-duplex (HD) counterparts, can be achieved by
such networks only if costly modifications to their infrastructure are performed and/or if
high-rate signaling is exchanged between user equipments (UEs) over suitable control
links. Therefore, we aim at proposing a viable and cost-effective alternative to these
solutions based on prefetching locally popular content at the network edge. We start by
considering an interference-rich scenario such as an ultra-dense FD small-cell network,
in which several noncooperative FD base stations (BSs) serve their associated UE while
communicating with a wireless backhaul node (BN) to retrieve the content to deliver. We
then describe a geographical caching policy aiming at capturing local files popularity
and compute the corresponding cache-hit probability. Thereupon, we calculate the
probability of successful transmission of a file requested by a UE, either directly by its
serving small cell base station (SBS) or by the corresponding BN: this quantity is then
used to lower-bound the throughput of the considered network. Our approach leverages
tools from stochastic geometry in order to guarantee both analytical tractability of the
problem and generality of the results. A set of suitable numerical simulations is finally
performed to confirm the correctness of the theoretical findings and characterize the
performance enhancement brought by the adoption of edge caching. The most striking
result in this sense is the remarkable performance improvement observed when shifting
from cache-free to cache-aided FD small-cell networks.

The work of Italo Atzeni was supported by the European Research Council under the Horizon 2020
Programme (ERC 670896 PERFUME).
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13.1 Introduction

The last decade has witnessed the progressive introduction of the 4G cellular network
technology and the concurrent adoption of increasingly competitive pricing strategies by
device manufacturers and telcos. As a consequence, devices that are able to offer reliable
broadband data connections to their users, i.e., smartphones, ceased to be premium
products and became a commodity. Their market penetration is already massive and
keeps progressing at steady pace. Recent studies forecast that smartphones will represent
86% of the total mobile data traffic by 2021, compared to 81% in 2016, and that monthly
mobile data traffic will reach 49 exabytes worldwide (or, equivalently, a run rate of
587 exabytes annually) [1].

The amount of network resources needed to support these trends is ever-increasing.
Telcos already anticipate that current mobile networks will have to be restructured to
cope with both future service demands and the multitude of novel mobile broadband
applications constantly introduced in the market. Many important requirements have
been identified in this context, such as the need for higher spectral and energy efficiency,
lower end-to-end delays, better coverage, large scalability, and lower capital expense
(CAPEX) and operating expenses (OPEX), just to name a few [2]. As a consequence,
one of the strongest drivers in the last years for several research groups in both indus-
try and academia has been the need to define a more advanced and flexible network
technology as compared to 4G, i.e., the so-called 5G. The remarkable results of such
activities have already yielded significant outcomes within standardization develop-
ment organizations like the 3GPP, who have already published the first version of the
standard that will guide the deployment of future 5G wireless networks, i.e., 3GPP
Release 15 [3, 4].

From a practical point of view, NR deployments will be characterized by the intro-
duction, or further development, of several key solutions expected to bring the sought
performance enhancement as compared to existing networks. Interestingly, only some
strategies and network configurations have been and are subject to standardization,
whereas some others are considered as part of the implementation aspects. Noteworthy
and representative examples of these two categories are [3, 4]:

• Massive multiple-input multiple-output (MIMO): this natural candidate for the
physical layer of NR has imposed a revision of the reference sequences and
channel state information (CSI) feedback mechanisms [5, 6]; and

• Advanced MIMO precoding: the adoption of such strategies at the BS should be
completely transparent to the UE, i.e., precoding solutions are implementation
aspects that are not specified in the standard.

As a matter of fact, the relevance and impact of many other technologies and approaches
will increase in future 5G networks as compared to their current role in mobile and
fixed networks, regardless of their 3GPP standardization status (i.e., specified or not). In
this chapter, we specifically focus on two of these approaches to study and discuss the
potential brought by their mutual interactions:
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Figure 13.1 Cache-aided SBS. The SBS is equipped with a storage unit to prefetch popular
content.

• The proactive caching at the network edge, by means of which contents (e.g.,
videos, images, and news) are brought closer to the users and intelligently cached
at SBS equipped with high-capacity storage units, as illustrated in Figure 13.1. As
a result, the end-to-end access delay is significantly reduced, the mobile infras-
tructure is offloaded, and the impact of limited-capacity backhaul on the network
performance is mitigated [7–12]. The role of edge caching becomes particularly
crucial in case of UDN deployments, i.e., massively populated (and possibly het-
erogeneous) networks in which the distance between BS and served UE is reduced
as compared to classic macro-cell networks [13–16]. Such UDNs may comprise
several layers, each of them including different categories of cells (i.e., femto,
pico, micro, and macro cells) [17–19]. In general, this layered architecture allows
us to design efficient strategies to offload the preexisting macro-cell infrastructure
and enhance the network capacity, especially when several nodes provide caching
support [20].

• The transition from HD to FD operations at radio terminals also promises to
offer many benefits, although subject to some peculiar limitations [21–25]. An FD
device does not require separate time/frequency resources to be able to support
data transmission and reception. In other words, it can simultaneously transmit
and receive data over the same bandwidth, thus having the potential to achieve
a theoretical throughput doubling and energy efficiency enhancement in compar-
ison to HD radios. In particular, equipping network nodes with FD capabilities
can simplify the adoption of flexible duplexing strategies such as dynamic time
division duplex (TDD) and enable readjustments to frame structures on the fly.
Additionally, FD transmission offers advantages in terms of operation, cost, and
efficiency as compared to traditional HD operating mode [26].

The aforementioned approaches certainly have significant potential if taken individ-
ually. Nevertheless, assessing the extent of their interoperability is not straightforward.
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This is mostly due to the interference footprint of the FD links [24], which may compli-
cate a seamless integration of caching capabilities at each network node. At this stage,
a brief introduction of such technology is in order, to better characterize its features and
issues, before studying the impact of edge caching on the performance of FD radios and
networks.

13.1.1 Full-Duplex Communications

The majority of current wireless radios operate in HD mode. In practice, these devices
perform data transmission and reception over separate time/frequency resources.
Depending on the way such resources are used, we can have either TDD or frequency
division duplex (FDD) operations, i.e., uplink (UL) and downlink (DL) transmissions
occur over two different time or frequency resources, respectively. This approach has
several advantages in terms of both ease of implementation and rather straightforward
network operations to perform multi-cell transmissions. As a matter of fact, it can be
argued that this implicitly sets a hard constraint on the spectral efficiency of the system.
For this reason, many research efforts have been performed lately to investigate the
potential and the feasibility of FD communications, in which the same time/frequency
resource is used to perform the UL and DL data transmissions. However, the strong
self-interference (SI) observed by the FD radio during the signal reception enforces
a crucial obstacle to the feasibility of such approach. In other terms, a nonnegligible
portion of the transmitted signal is always received by the device’s receive chain, in
turn reducing the signal-to-interference-plus-noise ratio (SINR) of the incoming useful
signals [27–29]. This situation is depicted in Figure 13.2. Many different transceiver
designs and self-interference cancellation (SIC) algorithms have been devised to ensure
the feasibility of FD operations [28–38]. These solutions can be classified into two
major categories based on passive or active cancellation. In the former case, SIC is
achieved in the propagation domain by physical separation of the transmit and receive
antennas. Conversely, active SIC solutions exploit the FD node’s knowledge of its own
transmitted signal to subtract it from the receive signal after appropriate manipulations
and processing.

Unfortunately, the SI is not the only problem that system designers must face when
dealing with FD radios. The major obstacle to their practical adoption in future 5G
networks is arguably the aggregated interference footprint resulting from multiple and
concurrent FD communications within the network. Let us provide an example to
highlight this issue. Consider a simple network composed of several FD nodes arranged
in BS/UE pairs and take an active BS/UE pair as reference. During UE-to-BS UL
operations, every neighboring BS engaging in DL transmission strongly interferes with
the considered BS, inducing the so called BS-to-BS interference. Similarly, during
BS-to-UE DL operations, all the UEs performing UL transmission heavily interfere
with the considered UE, creating the so called UE-to-UE interference, also referred to
as INI [39, 40]. In practice, the FD throughput gain tends to 2 in case of very sparse
deployment of nodes. Nevertheless, such gain saturates quickly as the network density
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Figure 13.2 FD SBS. Data transmission and reception occur over the same time/frequency
resource.

increases, the fundamental reason being that the number of interfering nodes also
doubles with respect to the HD case. This becomes more significant when either the
link distance decreases or the node density increases [41]. In other words, the theoretical
throughput doubling brought by FD at the device level does not seem to materialize
straightforwardly at the network level (regardless of the effectiveness of the adopted
SIC algorithms), unless specific and possibly costly countermeasures are taken. As a
result, the aggressive spatial frequency reuse inherent to dense network deployments
may not be feasible due to the presence of a multitude of FD links mutually interfering
at all times.

Studies and analysis of the FD interference footprint have been recently carried out to
identify viable strategies to reduce it and improve the scalability of the FD throughput
enhancement. Myriad approaches have been proposed to address this problem; indeed
they range from user scheduling algorithms to advanced interference management and
power control techniques. A common feature shared by such solutions is that they
require the adoption of additional signaling among nodes or the implementation of
heavy infrastructural changes [24, 25, 38–40, 42, 43]. In this context, two fundamental
results can be highlighted: on the one hand, it is shown in [24] that most of the theoretical
network throughput gain is achievable if only the BSs operate in FD while the UEs
operate in HD, and centralized scheduling decisions are taken by a central unit enjoying
full access to global system information; on the other hand, it is shown in [43] that, in
case of distributed network control and operations, FD gains can be observed only if the
UEs can exchange suitable information about INI over one or more orthogonal control
links. Hence, the relevance of the aforementioned results is mostly theoretical, as the
advocated infrastructural changes at the network level are extremely expensive. One
of the goals of this chapter is to investigate the feasibility of a constructive alternative
to such approaches: this considers the interactions between FD operations and smart
caching strategies, and avoids any substantial changes to the network infrastructure and
to the signaling exchange among nodes.



262 Italo Atzeni and Marco Maso

13.2 System Model

13.2.1 Network Model

Consider a UDN made up of (1) a tier of macro-cell BNs equipped with internet access,
(2) a tier of SBSs providing network coverage, and (3) a set of mobile UEs. Each SBS
communicates with only one BN in the UL direction and transmits contents to only one
UE in the DL direction, functioning as a relay between the two. The SBSs operate in
FD, whereas both BNs and UEs operate in HD mode; the same time/frequency resource
is used for the communications in both directions. In the following, and focusing our
attention on the SBSs, the BNs and the UEs are referred to as UL nodes and DL nodes,
respectively.

Spatial random models allow us to seize the randomness of realistic ultra-dense
small-cell deployments and, in addition, to derive tractable and accurate expressions for
system-level performance analysis [44]. Therefore, we model the spatial distribution of
the network nodes (i.e., SBSs and UL/DL nodes) using the homogeneous, independently
marked PPP 	 �

{
(x,u(x),d(x))

} ⊂ R2 × R2 × R2. Here, we let 	 � {x}
denote the ground PPP of the SBSs with spatial density λ (measured in [SBSs/m2]),
whereas the isotropic marks 	UL � u(	) = {u(x)}x∈	 and 	DL � d(	) = {d(x)}x∈	
denote the PPPs of the UL and DL nodes, respectively. Furthermore, let ry,z � ‖y − z‖
be the distance between nodes y,z ∈ 	; the distances of the UL and DL nodes from their
associated SBSs are assumed fixed and are denoted by RUL � ru(x),x and RDL � rx,d(x),
∀x ∈ 	, respectively. It is thus evident that, according to these definitions, the PPPs
	UL and 	DL are dependent on the ground PPP 	 and have the same spatial density
of the latter. Last, since the SBSs cover small areas compared with the BNs, one can
reasonably assume that RUL � RDL. A snapshot of the considered two-tier network is
given in Figure 13.3.

13.2.2 Cache-Aided Network Nodes

Let us assume that the UL nodes have direct access to the global file catalog
F � {f1,f2, . . . ,fF }, with |F | = F , which can be interpreted as a subset of all
the contents available on the internet. Without loss of generality, we assume that all files
have identical length, as files with different lengths can be always split into chunks of
equal size. In this context, whenever a DL node sends a request for a content in F , its
serving SBS, operating in FD mode, fetches the corresponding file from the associated
UL node and delivers it to the DL node. In UDN scenarios, however, the reliability
of the content transmission may be reduced by the aggressive spatial frequency reuse,
which may sensibly diminish the throughput with respect to an equivalent HD network.

Assume that SBS x ∈ 	 is equipped with a storage unit �x with size S < F files
and that DL node d(x) sends a request for file fi ∈ F . Let P � {p1,p2, . . . ,pF },
with

∑F
i=1 pi = 1, be the set of request probabilities of each file, which depends on

the files popularity over the whole network. Now, a cache-hit event occurs whenever
fi ∈ �x , i.e., if fi is cached at SBS x. In this case, DL node d(x) is served directly



Full-Duplex Radios for Edge Caching 263

Backhaul

link

100

50

0

-50

-100

-100 -50 0 50 100

Storage

unit
UE

BN

Cache-aided SBS

   Snapshot of  

UEs, BNs, and SBSs

Broadband

connection

Central router

DL

UL
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Figure 13.4 Communication links in case of cache hit and cache miss.

by SBS x without any communication between SBS x and UL node u(x); alternatively,
a cache-miss event occurs whenever fi �∈ �x , i.e., if fi is not available in the cache,
and SBS x must fetch the file from UL node u(x) and deliver it to d(x) in FD mode
(see Figure 13.4). Thus a cache-hit event allows us to offload the overlaying macro-cell
infrastructure and, since the UL becomes inactive, removes the need for the SBS to
operate in FD mode. As a consequence, two major advantages can be observed in terms
of reduced interference: (1) at the single-cell level, both the SI (at the SBS) and the INI
(at the DL node) disappear, and (2) at the network level, the inter-cell interference is
substantially reduced. Figure 13.5 provides a representation of the so-obtained scenario,
whose interference terms are described in Section 13.2.4.
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Figure 13.5 System model with cache-aided SBSs, UL nodes, and DL nodes, with corresponding
direct and interfering links.

A key parameter to assess the effectiveness of the considered cache-aided approach is
the cache-hit probability, denoted by Phit, which is the probability that any file requested
by a given DL node is cached at its associated SBS. The framework adopted in this chap-
ter to model such probability is presented in Section 13.3. In particular, such framework
is designed to capture the local files popularity in noncooperative random networks.
Subsequently, we investigate the system-level performance gain brought by the deploy-
ment of cache-aided SBSs in FD networks for a given Phit in Section 13.4.

13.2.3 Channel Model

In the considered system model, we assume that all nodes are single-antenna devices;
the extension of our study to multi-antenna settings goes beyond the scope of this
chapter and can be accomplished using the analytical framework presented in [25, 45].
In addition, it is assumed that the UL nodes and the SBSs transmit with powers ρUL and
ρDL, respectively.

The wireless channel propagation is characterized as the combination of two
main parameters, i.e., large-scale pathloss attenuation and small-scale fading. Let
�(y,z) � r−αy,z be the pathloss function between nodes y and z. We base our model
upon the ITU-R urban micro-cellular (UMi) pathloss model described in [46], where
different attenuations are specified for the links between different types of nodes.
Accordingly, we let α = α2 if y ∈ 	UL ∧ z ∈ 	DL (i.e., between BNs and UEs) and
α = α1 otherwise (i.e., between BNs and SBSs as well as between SBSs and UEs).
In this respect, we assume non-line-of-sight propagation between UL and DL nodes,
which results in stronger pathloss attenuation as compared to the other links, and set
α2 ≥ α1 > 2. Switching the focus to the small-scale fading, let hy,z denote the channel
power fading gain between nodes y and z. We assume that the SI channel is subject
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to Rician fading [27], whereas all the other channels are subject to Rayleigh fading.
In other terms, we have that hy,z ∼ exp(1) if y �= z and hy,y ∼ 
(a,b). In particular,
the shape parameter a and scale parameter b of the SI distribution can be computed in
closed form from the Rician K-factor K and the SI attenuation � measured at the SBS
when communicating in FD, as detailed in [25, lemma 1].

13.2.4 Signal-to-Interference Ratio

Massive and dense small-cell deployments, such as the one considered in this chapter,
are often characterized by heavy inter-cell interference as a result of the very short
inter-site distance [25]. As a consequence, it is meaningful to specifically focus on the
interference-limited regime, where the noise is overwhelmed by interference. In this
context, the definition of an appropriate metric, such as the measured SIR at the SBSs
and at the DL nodes, is paramount to be able to capture the essential features of the
interference-limited regime. We start by denoting a cache-miss event at SBS x with the
notation /�x and accordingly define the indicator function

1 /�x
�
{

1, if /�x,

0, otherwise.
(13.1)

The SIR at SBS x may be written as

SIRx � ρULR
−α1
UL hu(x),x

Ix

, (13.2)

with aggregate interference given by

Ix �
∑

y∈	\{x}

(
ρDLr−α1

y,x hy,x + ρULr
−α1
u(y),xhu(y),x1 /�y

)+ hx,x1 /�x
(13.3)

as the interference term. Similarly, the SIR at DL node d(x) may be written as

SIRd(x) �
ρDLR

−α1
DL hx,d(x)

Id(x)
, (13.4)

with aggregate interference given by

Id(x) �
∑

y∈	\{x}

(
ρULr

−α1
y,d(x)hy,d(x) + ρDLr

−α1
u(y),d(x)hu(y),d(x)1 /�y

)
+ ρULr

−α2
u(x),d(x)hu(x),d(x)1 /�x

. (13.5)

The effect of equipping the SBSs with storage capabilities and shifting from a cache-free
to a cache-aided scenario is rather evident upon observing (13.3) and (13.5). More
precisely, a cache-hit event induces a reduction of the following major interference
components, at both the network and the device level:

• Aggregate network interference

• SI at the SBSs [27]

• INI at the DL nodes [39, 40]
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We recall that the last two interference terms are the two main causes hindering the
practical feasibility of FD technology at the network level.

13.3 Caching Model

A necessary step when performing studies on the performance of cache-aided networks
is the definition of a caching model, whose role is to establish how files are requested and
cached by DL nodes and SBSs, respectively [7]. Accordingly, this section introduces
the noncooperative, static caching model used throughout this chapter, which aims at
mimicking a geographical caching policy based on local files popularity.1 In this regard,
it is important to note that existing literature typically does not consider geographical
aspects of the files popularity of the UEs when defining caching models (we refer to
[12] for an overview on content request models).

Here, the spatial distribution of the contents from the global file catalog F is modeled
by means of the homogeneous, independently marked PPP � �

{
(y,f (y))

} ⊂ R2×F ,
where �F � {y} is the PPP of the files with spatial density η (measured in [files/m2]).
In this context, each file fi ∈ F corresponds to a thinned PPP with spatial density
piη. Moreover, we assume that the files in F are ordered by decreasing popularity, i.e.,
p1 ≥ p2 ≥ · · · ≥ pF . The considered caching model consists of two core concepts,
i.e., the request region and the caching policy, which describe how DL nodes request
files and how SBSs cache files, respectively. The introduction of the last notation is
in order to be able to explicitly add a geographical dimension to these two concepts.
Accordingly, we let B(z,ν) denote the ball of radius ν (measured in [m]) centered at
node z ∈ 	 ∪	DL.

definition 13.1 (Request region) Assume that DL node d(x) ∈ 	DL is interested
in requesting locally popular files. Then the request region of DL node d(x) is
defined as

Rd(x) �
{
�F ∩ B(d(x),RR)

}
, (13.6)

with RR defined as the radius of the request region.

remark 1 From a qualitative point of view, RR is related to the local interests of the
UEs with respect to globally requested files. In other terms, if DL node d(x) is interested
in requesting all possible files in the global file catalog F , then RR →∞ (provided that
{pi > 0}Fi=1).

definition 13.2 (Caching policy) Assume that SBS x ∈ 	 is interested in caching
locally popular files. Then the potential cache region is defined as

Cx �
{
�F ∩ B(x,RC)

}
, (13.7)

1 More complex cooperative caching policies can be devised. However, this goes beyond the scope of this
chapter.
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with RC defined as the radius of the potential cache region. The caching policy of
SBS x ∈ 	 is defined as

�x �
{
fi : fi ∈ Cx ∧ i ≤ S

}
. (13.8)

remark 2 SBSs operating according to such caching policy will cache only geo-
graphically close (and, therefore, popular) files, in turn aiming at reducing the overhead
associated with pre-fetching files from the BNs.

remark 3 Similarly to what has been previously observed for the request region, as
RC → ∞, we note that such caching policy will always converge to storing globally
popular files as in [7].

Finally, the following lemma formalizes the cache-hit probability under the described
caching model.

lemma 13.3 The cache-hit probability is given by

Phit = 1

F

S∑
i=1

(
1− e−piηπR2

R
)(

1− e−piηπR2
C
)
. (13.9)

Proof By definition, each file fi is distributed according to a thinned PPP with spatial
density piη. Hence we can straightforwardly infer that the probabilities of fi falling
independently into the request region Rd(x) and into the potential cache region Cx are

1− e−piηπR2
R and 1− e−piηπR2

C , respectively. Assume now that S →∞, i.e., the SBSs
are equipped with unlimited storage. Then, in this case, the cache-hit probability of
file fi can be derived as the probability of file fi falling into both the request region and
the potential cache region, which is readily given by

(
1 − e−piηπR2

R
)(

1 − e−piηπR2
C
)
.

Finally, considering the totality of the contents included in the global file catalog F and
imposing storage constrains from Definition 13.2 yields the expression in (13.9).

remark 4 Note that, in noncooperative caching settings, the maximization of Phit is
straightforwardly achieved by caching the S most popular files at the SBSs.

13.4 Performance Analysis

In this section, we use tools from stochastic geometry to analyze the system-level per-
formance enhancements brought by the considered cache-aided FD network over its
cache-free counterpart. This choice provides analytical tractability of the problem and
is crucial to guarantee the generality of our results. As a main performance metric,
we study the probability that a DL node successfully receives a requested content,
either through a direct transmission from its associated SBS or with the aid of the
corresponding UL node. We term this metric as probability of successful transmission,
which is denoted by Psuc(·). In this context, it is convenient to recall that the delivery of
a requested file will be performed over different links depending on the occurrence of a
cache-hit event. In particular:
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• Cache-hit event: the transmission involves one hop, i.e., from the SBS to the DL
node.

• Cache-miss event: the transmission requires two hops, i.e., first from the UL node
to the SBS and then from the latter to the DL node through the SBS (which
introduces additional interference).

In our analysis, we focus on a typical SBS, indexed by x, and its marks u(x) and d(x),
referred to as typical UL node and typical DL node, respectively. Building on Slivnyak’s
theorem [44, chapter 8.5] and on the stationarity of 	 (resp. of 	DL), the statistics of
the typical SBS’s (resp. of the typical DL node’s) signal reception are representative of
the statistics seen by any SBS (resp. by any DL node) in the system.

Switching our focus back to Psuc(·), we consider that a requested file is success-
fully received by the typical DL node (i.e., through the two-hop communication link
involving the typical UL node, the typical SBS, and the typical DL node) if SIRx >

θ ∧ SIRd(x) > θ, with θ defined as a target SIR threshold. Additionally, we con-
sider that the correct reception of the requested file over one hop uniquely depends on
the SIR experienced at the receiver, regardless of the considered hop. For simplicity,
and without loss of generality, we assume the same SIR threshold for both UL and
DL directions.

Now, thanks to the caching capabilities at the typical SBS, we can state that the UL
communication does not occur with probability Phit. We can then express the probability
of successful transmission as

Psuc(θ) � PhitP(SIRd(x) > θ)+ (1− Phit)P(SIRx > θ,SIRd(x) > θ). (13.10)

Building upon this definition, other useful performance metrics can be expressed
in terms of probability of successful transmission. Noteworthy examples are the
outage probability, given by Pout(θ) � 1 − Psuc(θ), and the achievable areal spec-
tral efficiency (ASE), defined as ASE(θ) � λPsuc(θ) log2(1 + θ) (measured in
[bps/Hz/m2]).

Before proceeding with our analysis, we provide some useful preliminary definitions
for the sake of notational simplicity in the remainder of the section:

ϒ̂(s) �
π(sρDL)

2
α1 csc

( 2π
α1

)
α1

, (13.11)

ϒ̃(s) �
∫ ∞

0

(
1− 1

1+ sρDLr−α1
�(s,r)

)
rdr, (13.12)

�(s,r) � 1

2π

∫ 2π

0

dϕ

1+ sρUL(R2
UL + r2 + 2RULr cosϕ)−

α2
2

. (13.13)

Recalling the expressions of Ix and Id(x) in (13.3) and (13.5), respectively, a tight
analytical lower bound on Psuc(θ) is provided next in Theorem 13.4, with additional
properties given in Corollary 13.4.

theorem 13.4 The probability of successful transmission in (13.10) is bounded
asPsuc(θ) ≥ Psuc(θ), with
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Psuc(θ) � PhitLId(x) (θρ
−1
DLR

α1
DL)+ (1− Phit)L /�x

Ix
(θρ−1

ULR
α1
UL)L /�x

Id(x)
(θρ−1

DLR
α1
DL),

(13.14)

where LId(x) (s) is the Laplace transform of the interference observed at DL node d(x)

in case of cache hit, whereas L /�x

Ix
(s) and L /�x

Id(x)
(s) are the Laplace transforms of the

interference observed at SBS x and at DL node d(x), respectively, in case of cache miss:

LId(x) (s) � exp
(− 2πλPhitϒ̂(s)

)
exp

(− 2πλ(1− Phit)ϒ̃(s)
)
, (13.15)

L /�x

Ix
(s) � 1

(1+ sρDLb)a
LId(x) (s), (13.16)

L /�x

Id(x)
(s) � �(s,RDL)LId(x) (s). (13.17)

Proof The construction of (13.14) relies on the assumption of uncorrelated locations
of the UL and DL nodes in presence of a cache-miss event. As a matter of fact, according
to the Fortuin–Kasteleyn–Ginibre (FKG) inequality [44, chapter 10.4.2], such an uncor-
related case yields a lower bound on the network performance for the correlated case
(we refer to [25] for further details). Therefore, given Psuc(θ) in (13.10), we can write

Psuc(θ) ≥ PhitPsuc,2(θ)+ (1− Phit)P
/�x

suc,1(θ)P /�x

suc,2(θ), (13.18)

where Psuc,2(θ) represents the probability of successfully transmitting a requested file

from the typical SBS to the typical DL node in case of a cache-hit event, and P /�x

suc,1(θ)

(resp. P /�x

suc,2(θ)) denotes the probability of successfully transmitting a requested file
from the typical UL node to the typical SBS (resp. from the typical SBS to the typical
DL node) in case of a cache-miss event.

We begin by focusing on the latter components, i.e., P /�x

suc,1(θ) and P /�x

suc,2(θ). In

particular, P /�x

suc,1(θ) is obtained as the Laplace transform of Ix in (13.3) in presence of

SI [25, theorem 1], which is given by L /�x

Ix
(s) in (13.16). Likewise, P /�x

suc,2(θ) is obtained

as the Laplace transform of Id(x) in (13.5) in presence of INI, which is given by L /�x

Id(x)
(s)

in (13.17). Following a similar approach, Psuc,2(θ) can be obtained as the Laplace
transform of Id(x) in (13.5) in absence of INI, which is given by LId(x) (s). Now, let us

define 	̃ � {x ∈ 	 : /�x} and 	̂ � 	\	̃, which are, by definition, independent PPPs
with spatial densities Phitλ and (1−Phit)λ, respectively. As a consequence, LId(x) (s) in
(13.15) can be derived as

LId(x) (s) = E[e−sId(x) ] (13.19)

= E

[
exp

(
− s

∑
y∈	\{x}

(
ρDLr

−α1
yd(x)hyd(x) + ρULr

−α1
u(y)d(x)hu(y)d(x)1 /�y

))]
(13.20)

= E

[ ∏
y∈	\{x}

exp

(
− s

(
ρDLr

−α1
yd(x)hyd(x) + ρULr

−α1
u(y)d(x)hu(y)d(x)1 /�x

))]
(13.21)



270 Italo Atzeni and Marco Maso

= E

[ ∏
y∈	̂\{x}

exp
(− sρDLr

−α1
yd(x)hyd(x)

)]

× E

[ ∏
y∈	̃\{x}

exp

(
− s

(
ρDLr

−α1
yd(x)hyd(x) + ρULr

−α1
u(y)d(x)hu(y)d(x)

))]
,

(13.22)

and, using the moment-generating function of the exponential distribution, we obtain

LId(x) (s) = E	̂

[ ∏
y∈	̂\{x}

1

1+ sρDLr
−α1
yd(x)

]

× E	̃

[ ∏
y∈	̃\{x}

1

1+ sρDLr
−α1
yd(x)

1

1+ ρULr
−α1
u(y)d(x)

]
. (13.23)

Then applying the probability generating functional of a PPP [44, chapter 4.3] yields

LId(x) (s) = exp

(
− 2πλPhit

∫ ∞
0

(
1− 1

1+ sρDLr−α1

)
rdr

)
× exp

(
− 2πλ(1− Phit)

∫ ∞
0

(
1− 1

1+ sρDLr−α1
�(s,r)

)
rdr

)
.

(13.24)

Finally, the integral appearing in the first exponential of (13.24) has a closed-form
solution given by ϒ̂(s) in (13.11). This concludes the proof.

corollary The lower bound on the probability of successful transmission in (13.14)
is characterized by the following properties:

(1) Psuc(θ)→ Psuc(θ) as Phit → 1.
(2) Psuc(θ) = Psuc(θ) in case of uncorrelated locations of the nodes between UL and

DL communications.

Proof The proof follows directly from Theorem 13.4.

Last, we introduce the FD throughput gain, which will be used as a performance
metric in Section 13.5, defined as

TGFD(θ) � 2Psuc(θ) exp

(
2πλ

πθ
2
α1
(
R2

UL + R2
DL

)
csc

( 2π
α1

)
α1

)
. (13.25)

This performance metric quantifies the throughput gain of a cache-aided small-cell
network operating in FD mode as compared to its cache-free HD counterpart by
relating the probability of successful transmission Psuc(θ) in the two settings and
taking into account the theoretical FD throughput doubling (we refer to [25] for
details). In particular, we note that the FD setting outperforms its HD counterpart when
TGFD(θ) > 1.
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13.5 Numerical Results and Discussion

In this section, we present and discuss numerical results obtained by means of suitable
Monte Carlo simulations in order to assess the validity of our theoretical findings. We
specifically focus on the analytical expressions obtained in Sections 13.3 and 13.4.

As commonly assumed in the literature (see, e.g., [12]), the global file catalog follows
a Zipf popularity distribution such that the request probability pi ∈ P of each file
fi ∈ F can be written as

pi =
(

iγ
F∑

j=1

1

j γ

)−1

(13.26)

for a certain catalog shape parameter γ. The SBSs cache contents from the global file
catalog (depending on the policy defined in Definition 13.2) serve the corresponding
UEs accordingly. The corresponding storage-to-catalog ratio is defined as κ � S

F
≤ 1.

The values of the most relevant parameters adopted for the simulations are listed in
Table 13.1; furthermore, the shape parameter a and the scale parameter b of the SI
distribution, which appear in (13.16), are computed from the Rician K-factor K and the
SI attenuation � measured at the FD SBSs as in [25, lemma 1].

The probability of successful transmission Psuc(θ) in (13.10) and its analyti-
cal lower bound Psuc(θ) in (13.14) are illustrated in Figure 13.6 as functions of
the file request density η for a fixed SBS density λ = 5 × 10−4 SBSs/m2. With
reference to Corollary 13.4, we recall that Psuc(θ) gives the exact expression of
Psuc(θ) for uncorrelated locations of the nodes between UL and DL phases. More-
over, note that the curves for κ = 0 are related to the cache-free scenario ana-
lyzed in [25] (see also Figures 13.7 and 13.8). Qualitatively, it is evident from
Figure 13.6 that the probability of successful transmission grows with both the file
request density η and the storage-to-catalog ratio κ. On the one hand, we observe

Table 13.1 System Parameters Used in the Simulations

System Parameter Symbol Value

Radius of request region RR 8 m
Radius of potential cache region RC 40 m
Catalog shape parameter γ 0.7
Storage-to-catalog ratio κ {0.1,0.35,0.6}
Distance UL node–SBS RUL 20 m
Distance SBS–DL node RDL 5 m
Transmit power of UL nodes ρUL 30 dBm
Transmit power of DL nodes ρDL 24 dBm
Pathloss exponent UL nodes–SBSs/SBSs–DL nodes α1 3
Pathloss exponent UL nodes–DL nodes α2 4
Target SIR θ 0 dB

Rician K-factor K 1
SI attenuation � 60 dB
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Figure 13.6 Probability of successful transmission against file request density, with SBS density
λ = 5× 10−4 SBSs/m2.
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Figure 13.7 Probability of successful transmission against SBS density, with file request density
η = 1 files/m2.
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Figure 13.8 FD throughput gain against SBS density, with file request density η = 1 files/m2.

that a higher file request density yields a larger Phit, which in turn improves the
efficiency of the storage use. On the other hand, the variation experienced by the
probability of successful transmission over η increases with the storage capabilities
at the SBSs, and so does the tightness of the analytical lower bound. Concern-
ing this last aspect, we note that, even if such bound may look rather loose for
κ ≤ 0.35, its quantitative difference with the actual numerical performance never
exceeds 10%.

Assume now a file request density η = 1 files/m2. Figure 13.7 plots the probability
of successful transmission Psuc(θ) in (13.10) and its analytical lower bound Psuc(θ)
in (13.14) as functions of the SBS density λ. The analytical lower bound is remark-
ably tight and, in accordance with Figure 13.6, becomes increasingly accurate as the
storage-to-catalog ratio κ grows. Nonetheless, it is even more meaningful to analyze
the FD throughout gain in (13.25) together with its analytical lower bound (obtained by
replacing Psuc(θ) with Psuc(θ) in the aforementioned expression), which are illustrated
in Figure 13.8 against the SBS density λ. In practice, higher ASE can be achieved by
deploying a very dense FD network in which each SBS is equipped with suitable caching
capabilities. In this respect, we observe that:

• A SBS density λ = 10−4 SBSs/m2 yields TGFD(θ) = 1.7 with κ = 0 and
TGFD(θ) = 1.85 with κ = 0.6.

• A SBS density λ = 10−3 SBSs/m2 yields TGFD(θ) = 0.42 with κ = 0 and
TGFD(θ) = 1.11 with κ = 0.6.
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It is evident that the optimal trade-off between the SBS density and the storage size
installed at each SBS must be found by network planners taking into account the deploy-
ment cost of each element; the interested reader may refer to [16] for further details on
this subject.

13.6 Conclusions

Several research efforts in both academic and industrial contexts have highlighted that
edge caching can provide significant benefits in terms of network performance as, e.g.,
end-to-end access delay. Conversely, very few straightforward insights can be drawn on
the benefits experienced at the physical layer when the network nodes are equipped with
caching capabilities. This is mostly due to the complexity of the physical interactions
occurring among devices in modern network.

This chapter takes a step forward with respect to the aforementioned position by
showing that edge caching can actually offer a remarkable degree of interoperability
with one of the most promising technologies for next-generation network deployments,
i.e., FD communications. More specifically, we show that integrating caching capa-
bilities at the FD SBSs is a cost-effective means of improving the scalability of the
theoretical throughput doubling brought by the FD paradigm from the device to the
network level.

Our study considers an interference-limited UDN setting consisting of several non-
cooperative SBSs with FD capabilities, which simultaneously communicate with both
their served UEs and wireless BNs. In this case, the interference footprint of the UDN,
already significant by design, is further increased by the FD operations. In fact, the latter
induce higher levels of inter-cell and inter-node interference as compared to the HD
scenario, in turn causing a spectral efficiency bottleneck that prevents the theoretical
FD throughput doubling to occur at the network level. Fundamental results available
in the literature show that most of such doubling can be achieved only if the network
infrastructure is subject to radical and expensive modifications or if high-rate signaling
is exchanged between UEs over suitable control links.

In this context, we add file storage capabilities to SBSs and consider a geographical
caching policy aiming at capturing local files popularity, whereby the SBSs intelligently
store popular contents anticipating the UEs’ requests. The rationale of this choice is
that the presence of prefetched popular files at the SBSs reduces the need for the lat-
ter to retrieve contents from the wireless BNs upon the UEs’ request. This clearly
diminishes the number of transmissions performed by the BNs toward the SBSs, in
turn reducing the interference footprint of the UDN. Remarkably, this low-cost solution
can be implemented without the need for additional signaling between the nodes or any
infrastructural change.

The performance of such a cache-aided FD network is characterized in terms of
throughput gain as compared to its HD counterpart. To this end, two fundamental met-
rics are identified and analyzed:
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• The probability that any file requested by a given DL node is cached at its serving
SBS, which is termed as cache-hit probability.

• The probability of successful transmission of a file requested by a UE, either
directly by its associated SBS (if present in its cache) or by the corresponding BN.

In particular, the second metric is used to derive an analytical lower bound on the
throughput of the UDN. As a final step, we perform a set of suitable numerical simula-
tions to assess the performance enhancement brought by the adoption of edge caching.
The obtained results highlight that shifting from cache-free to cache-aided UDNs allows
us to effectively operate the network in FD mode while supporting higher SBS densities,
in turn improving the ASE. In other words, the deployment of cache-aided SBSs has
beneficial effects on the network throughput experienced over a given area, thanks to
a nonnegligible reduction of the aggregate interference observed in the FD network in
comparison with the cache-free case.

The results presented in this chapter demonstrate that the interoperability between
edge caching and FD communications is not only possible but also desirable from the
network throughput perspective. However, from a quantitative point of view, the extent
of the benefits may strongly depend on several parameters, such as:

• Adopted caching policy;

• UEs association policy; and

• Mobility of the network nodes, either in the form of moving SBSs or classic UEs’
dynamics.

Therefore, future additional studies and investigations should be performed in these
directions to further deepen our understanding of the benefits brought by edge caching
to the physical layer of wireless communication networks, especially when the FD
paradigm is adopted.
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14 Caching in Mobile Millimeter Wave:
Sub-6 GHz Networks
Omid Semiari, Walid Saad, and Mehdi Bennis

14.1 Background, Related Works, and Summary of Contributions

Emerging applications with high data rate requirements such as uncompressed video
streaming, high-definition maps for autonomous vehicles [1], and mobile TV have sub-
stantially increased the traffic in cellular networks. To manage the high traffic demand,
new promising techniques are introduced to boost the capacity of wireless cellular
networks, including but not limited to (1) operating at high-frequency millimeter wave
(mmW) bands that can yield extremely large throughput by using large beam-forming
gains from antenna arrays with many elements and transmitting over large GHz band-
width, (2) dense deployment of small base stations (SBSs) to remove coverage holes
and improve spectral efficiency, and (3) using the storage capabilities of use equipment
(UE) to cache the data for mobile UE (MUE). Via caching, MUE can store the content
proactively and use the cached content without requesting wireless resources from the
network during peak traffic hours.

Nonetheless, dense deployment of SBSs within the coverage of macro-cell base
stations (MBSs) will pose several critical issues in cellular networks. (1) As an
MUE travels across densely deployed SBSs, frequent handovers (HOs) are inevitable.
Frequent HOs increase signaling overhead for MUE. Also, with more HOs, an MUE
will naturally experience greater handover failure (HOF), particularly if the MUE moves
very fast [2]. Indeed, the MUE cannot finish the HO by the time it travels across a target
SBS. (2) The discovery target SBSs needs inter-frequency measurements, which are
power consuming. (3) Given that sub-6 GHz μW frequencies are highly congested,
frequency resources needed for frequent HOs of MUE will strain the capacity of the
network for static users due to limiting available resources. Hence transferring traffic
from congested μW frequency bands to mmW bands can play a key role in reducing
traffic at the μW network.

14.1.1 Related Works

In [3], various decentralized protocols are presented for mobility management in
emerging heterogeneous networks (HetNets). The work in [4] introduces a new energy-
efficient SBS discovery method. The work in [5] studies HO methods for enhancing HO
across LTE-Advanced and femtocell systems. In [6], existing vertical HO approaches
are discussed. The work in [7] shows that the ping-pong effect (i.e., making an MUE
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perform HOs repeatedly between two base stations) is impacted by the HO sampling
period. The work in [8] develops a new HO policy that accounts for the speed of MUE to
prevent frequent HOs. The authors in [9] introduce an HO policy that supports soft HOs
by enabling MUE to connect simultaneously to both an MBS and SBSs. Additionally,
the work in [10] proposes a decentralized framework that leverages different bands to
separate the data and control traffic for MUEs.

The works in [3–11], despite being interesting, do not take into account leveraging
caching capabilities at mmW frequencies and consider only μW networks. The
work in [12] proposes an HO policy at mmW frequencies that allows an MBS to
help mmW SBSs at a control plane. Nonetheless, [12] considers only line of sight
(LoS) mmW links and does not analyze the stochastic and unreliable communications
at mmW frequencies. In [13], a joint mmW-μW HO scheme is developed that uses
mmW links to buffer videos. Nonetheless, mobility challenges are not addressed in
[13]. Furthermore, the work in [14] does not account for dynamic energy and mobility
management in mobile scenarios.

The works in [15–18] study proactive caching for optimizing mobility management.
The authors in [15] overview different aspects of caching to offload the core network
traffic. In addition, the work in [16] incorporates the mobility of an MUE to cache the
content proactively and transfer it across different data centers along the trajectory of
MUE. In [17], the authors develop a strategy that places different portions of a file at
multiple SBSs. This enables MUE to opportunistically download different cached parts
of the original content as it moves within different cells. Moreover, in [18], a proactive
caching scheme is introduced that exploits the MUE’s trajectory information to improve
mobility management. However, the body of work in [15–18] focuses on developing
protocols at higher network layers. Moreover, caching directly at the MUE is over-
looked. However, we will demonstrate how exploiting mmW frequencies complements
content caching at MUE and how it will provide opportunities to effectively reduce the
number of necessary HOs.

14.1.2 Summary of Contributions

This chapter presents a new framework that addresses challenging mobility management
problems, such as substantial energy consumption and high rate of handover failure
in dense wireless networks. In particular, we develop a model that exploits broadband
mmW connectivity whenever available to cache content that the MUE is interested in.
Thus it will enable the MUE to skip unnecessary HOs to small-sized SBSs. To this
end, tractable expressions will be derived to analyze the performance of caching over
mmW links. In addition, performance improvements (such as reduction of handover
failure rate) achievable via caching in mmW–μW will be studied. Furthermore, we will
propose a decentralized mobility management solution via dynamic matching. Then,
we discuss why conventional matching algorithms such as those proposed in [19] and
[20] cannot be applied to solve the proposed problem. Thereby, a new decentralized
solution will be developed that yields a dynamically stable HO policy in mobile net-
works. Finally, we will discuss the complexity of our developed method and show the
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Table 14.1 Description of Notation

Notation Description Notation Description

U MUE set K SBSs set

θu Moving angle of MUE vu Speed of MUE

pk Transmit power B Segment size of video (bits)

�u Cache size of MUE u �max
u Maximum cache size

tcu Caching duration of MUE u Q Video play rate

R̄c(u,k) Average achievable caching rate dc Traversed distance using
cached content

�T Time-to-trigger (TTT) rc Traversed distance in caching
duration

Ts Interfrequency cell scanning interval tMTS Minimum time-of-stay (ToS)

θk Beamwidth for SBS k Es Energy consumption for each
cell search

tu,k Time-of-stay for MUE u at SBS k tMTS Minimum required
time-of-stay

achievable performance gains via extensive simulations. See Table 14.1 for notation
used in this chapter.

14.2 System Model

Consider a set K of K uniformly distributed SBSs along with an MBS in a hetero-
geneous cellular network. In addition, consider U randomly distributed MUE, in a
set U . θu ∈ [0,2π] is a random direction of an MUE u, during the considered time
T . The average speed of an MUE u is vu ∈ [vmin,vmax]. Let pk denote the transmit
power of each SBS (either picocell or femtocell) k ∈ K. No interference exists between
the MBS and SBSs since the MBS operates at a different μW frequency [4, 21]. The
SBSs can also serve MUE over mmW frequencies [14, 22–26]. We note that the MAC
layer integration of μW and mmW RATs can reduce the time and signaling overhead
associated with vertical HOs [27].

14.2.1 Channel Model

The pathloss (in dB) of a mmW link is

L(u,k) = 20 log10

(
4πr0

λ

)
+ 10α log10

(
ru,k

r0

)
+ χ, (14.1)

where (14.1) holds for ru,k ≥ rref, and rref and ru,k represent the reference distance
and the MUE u to SBS k distance, respectively. Moreover, λ is the wavelength at
fc = 73 GHz, α is the pathloss exponent, and χ is a Gaussian random variable with
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Figure 14.1 SBSs coverage (RSS > −80 dB) and the simplified cell coverage (shown by circles).

a zero mean and variance ξ2. Depending on the state of the link, i.e, whether the link is
LoS or non–line of sight (NLoS), pathloss parameters will be different. Similar pathloss
models can be used for the μW links with different values for the parameters.

Figure 14.1 shows the considered HetNet along with the coverage area of each
μW SBS according to the maximum receive signal strength (max-RSS) criteria. In
Figure 14.1, white areas are covered by the MBS. Because of the shadowing, an MUE
may have to perform frequent HOs repeatedly between two base stations (known as the
ping-pong effect).

14.2.2 Antenna Gain Pattern

Due to the sever pathloss over mmW frequencies, it is necessary to perform beam-
forming to exploit antenna gains and extend the communication range. At the MUE, the
simplified antenna gain model is [28]:

G(θ) =
{

Gmax, if θ < |θm|,
Gmin, otherwise.

(14.2)

In this model, Gmax and Gmin represent the main lobe and side lobes gains, respectively.
Moreover, θm denotes the beam width of the antenna main lobe. A similar sector-
ized pattern is also considered at SBSs; nonetheless, every SBS k can have Nk beams.
Figure 14.2 shows the beam pattern configuration of an SBS k with Nk = 3 beams
formed uniformly in θ ∈ [0,2π]. Due to the mobility of MUEs, dynamic beam training
will result in significant control overhead to establish mmW links. Hence, in this work,
we consider fixed mmW beams at each SBS and let the MUE access the mmW link
opportunistically when the MUE traverses across the coverage of a mmW beam. We
assume that the total precoding and combining gains is ψu,k = G2

max.
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Figure 14.2 Example of a dual-mode SBS with Nk = 3 mmW beams (shaded areas).

14.2.3 Traffic Model

High-definition video transmission is one of the prominent wireless services with very
high quality of service (QoS) requirements. In mobile HetNets, frequent HOs as well as
HOFs will degrade the QoS for such applications. Therefore, the focus of this work is
addressing the challenges of HOs for MUE, particularly with streaming service requests.
The key idea is to use caching to download incoming B bits of video segments to an
MUE, once it is feasible to be served over a mmW link. With this approach, fast caching
of the video can be done within a limited time. The number of segments that can be
cached is given by:

�u(k) = min
{⌊ R̄c(u,k)tcu

B

⌋
,�max

u

}
, (14.3)

where �max
u is the maximum cache size. Moreover, the time it takes for an MUE u to

traverse across its serving SBS’s mmW beam is defined as the caching duration and
denoted by tcu. In fact, as shown in Figure 14.2, tcu = rc

u/vu, where rc
u is the traversed

distance across the mmW beam. The notations �.� and min{.,.} represent the floor and
minimum operations, respectively. In addition, the average achievable rate within the
caching duration is denoted by R̄c(u,k). Accordingly, the distance that an MUE can
travel and use the cached content will be

dc(u,k) = �u(k)

Q
vu, (14.4)

where Q is the video play rate. In fact, during the time that an MUE travels the distance
dc(u,k), there is no need to search for an SBS to perform HO and the control information
can be managed solely via the MBS. As we show later, this caching mechanism results
in a more efficient and reliable HO in small cell networks.
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14.2.4 Handover Process and Relevant Parameters

The HO procedure introduced by 3GPP includes the following steps: First, a cell search
will be performed by the MUE periodically (every Ts seconds). Second, if the value of
the received signal strength exceeds that of the current serving cell, the average RSS
will be calculated by the MUE during the time to trigger (TTT) of �T seconds. Then, if
the serving SBS has a smaller average RSS than that of the target SBS during TTT, the
MUE will trigger the HO. Finally, relevant HO data will be sent to the target SBS and
the HO will be executed.

In this work, the described HO process will be changed to accommodate caching in
mobile scenarios. In particular, instead of a fixed value for Ts , determining the search
period will depend on the caching metrics such as Q and �u. During the time period at
which the MUE can play the cached video segments, HO search will be muted. The HO
search will be resumed once �u/Q is less than the �T .

Given that in small cell networks, the time of stay (ToS) is generally small, the MUE
may not have sufficient time to successfully execute the HO process. This results in an
HOF and can reduce the quality of mobile services. Hence we characterize the HOF as
a main performance indicator. The HOF can be formulated as:

γHOF(u,k) =
{

1, if tu,k < tMTS,

0, otherwise,
(14.5)

where tMTS is the minimum ToS (MTS) required to successfully perform the HO. In
addition, tu,k represents the ToS for MUE u when attempting HO to the SBS k. Although
limited available time for HO is not the only cause for HOFs, it can be a major factor in
an ultra-dense HetNet that encompasses high-speed MUE [29].

Additionally, let Es be the energy required per each cell search. Therefore, the cell
search energy consumption during time T will be

Es
total = Es T

Ts

. (14.6)

Here, we note that this energy is needed to acquire primary and secondary synchroniza-
tion signals of the target SBSs [4]. We also need to note that there is a trade-off between
energy efficiency and the amount of traffic that can be managed by SBSs over the mmW
band, rather than the μW MBS. In fact, although increasing Ts is clearly more energy
efficient, it will result in fewer HOs to SBSs, and the MUE will be primarily served by
the MBS. The proposed caching-based HO strategy, on the other hand, will allow us to
increase Ts without reducing offloading traffic from the MBS.

14.3 Caching-Enabled Mobility Management

As mentioned earlier, we consider SBSs with both mmW and μW radio interfaces (dual-
mode). Here, we focus on analyzing the performance in terms of the probability for
caching content at an MUE via the mmW radio interface.
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14.3.1 Probability of Caching via mmW Links

The small circle in Figure 14.2 shows the point at which the MUE u’s path intersects
with the cell k. From Figure 14.2, we can observe that caching via a mmW link is
feasible only if the MUE’s moving path falls within ÂoB in order to pass across the
coverage area of a mmW link. Thus if we denote the probability of caching via a mmW
link by Pc

k(Nk,θk), we can make the following observation directly from geometry:

theorem 14.1 If there are Nk ≥ 2 main lobes for the mmW radio interface of an
SBS, each with a beamwidth θk > 0, then:

Pc
k(Nk,θk) =

[
Nkθk

2π

]
+
[

1− Nkθk

2π

] [
1

2

(
1− 1

Nk

)
+ θk

4π

]
. (14.7)

Proof See appendix A in [22].

We note that (14.7) can be verified for an example scenario with Nk = 3 and θk = 2π
3 .

For this scenario, (14.7) results in Pc
k(Nk,θk) = 1 which is valid since for this scenario,

the mmW interface will provide coverage for the entire cell.

14.3.2 Statistics of the Caching Duration

Given the random direction and speed of an MUE, the time duration available for
caching a content will not be deterministic. Hence it is important to derive the statistics
of the caching duration that then will be used for the performance analysis.

To this end, let the triangle in Figure 14.2 show the location of an arbitrary MUE u,
xu = (xu,yu) ∈ R2, crossing a mmW beam. In addition, let the SBS of interest be
located at xk = (0,0). Accordingly, we can characterize the geometry of a mmW beam
by representing its two sides as follows:

y = x tan(θ0 − θk),y = x tan(θ0), x > 0. (14.8)

From Figure 14.2, the MUE (shown as a triangle) is considered to be located on the

side x = y cos(θ0 − θk). Hence θ0 in (14.8) is θ0 = arccos
(

xu

ru,k(xu)

)
+ θk , where

ru,k(x) = √
x2
u + y2

u. The statistics of the caching duration tc is captured by

Ftcu
(t0) = P(tcu ≤ t0) = P(rc

u ≤ vut0), (14.9)

where rc
u is the distance that MUE u will traverse across the mmW beam, as shown in

Figure 14.2, and Ftc (.) is the cumulative distribution function (CDF) of tc. Based on xu,
the minimum distance will be:

rmin
u =

∣∣xu tan θ0 − yu

∣∣√
1+ tan2 θ0

. (14.10)

If rmin
u > vut0, then Ftcu

(t0) = 0. Thus we let rmin
u ≤ vut0. Moreover, we can

easily observe that x′u =
(
xu + rc

u cos θu,yu + rc
u sin θu

)
where x′u is the point

at which the MUE’s trajectory intersects with the line y = x tan(θ0). Therefore,
yu + rc

u sin θu =
[
xu + rc

u cos θu

]
tan θ0, and
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rc
u = vut

c
u =

yu − xu tan θ0

tan θ0 cos θu − sin θu

, (14.11)

where rc
u clearly represents the traversed distance during the caching duration tc. Next,

from (14.9) and (14.11), the CDF can be written as

Ftcu
(t0) = P

(
yu − xu tan θ0

tan θ0 cos θu − sin θu

≤ vut0

)
. (14.12)

lemma 14.2 Considering an arbitrary MUE u with a random speed vu, the CDF of
the caching duration is

Ftc (t0) = 1

π − θk

(
arccos

(
rmin
u

vut0

)
+min

{
arccos

(
rmin
u

ru,k(x)

)
, arccos

(
rmin
u

vut0

)})
.

(14.13)

Proof See appendix B in [22].

Figure 14.3 shows the CDF of tc for different MUE locations. It can be observed that
with smaller distances between the MUE and the SBS, it is more probable to have less
time for caching the content over a mmW link. On the other hand, the achievable data
rate will be higher if the MUE is close to the SBS. That being said, in the next section,
we present comprehensive performance analysis while considering both data rates and
caching duration.
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Figure 14.3 Distribution of caching duration tc.
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14.4 Performance Analysis of the Proposed Cache-Enabled Mobility
Management Scheme

In this section, we consider only free space pathloss and disregard the shadowing effect
to derive tractable expressions for the average achievable rate for content caching over
the mmW radio interface.

14.4.1 Average Caching Data Rate

Considering ru,k(x) as the initial distance between the SBS and the MUE, and if the
MUE travels across a mmW beam, the achievable data rate for caching is

Rc(u,k) = 1

vutcu

∫ ru,k(x′)

ru,k(x)
w log

(
1+ βPtψr−αu,k

wN0

)
dru,k, (14.14)

where β = ( λ
4πr0

)2rα0 . Using this rate, we can find the following result.

theorem 14.3 The average caching data rate for an MUE u is

R̄c(u,k) = Pc
k(Nk,θk)Rc(u,k), (14.15)

= δ2

∫ f (0)

f (θk)

1

f 2(θ)
log

(
1+ δ1f

α(θ)
)
df (θ), (14.16)

(a)= δ2

ln(2)

[
2
√
δ1 arctan(

√
δ1f (θk))− ln(δ1f

2(θk)+ 1)

f (θk)
,

− 2
√
δ1 arctan(

√
δ1f (0))+ ln(δ1f

2(0)+ 1)

f (0)

]
, (14.17)

where δ1 = βPtψ
wN0

[
ru,k(x) sin θ̂

]−α
. In addition, δ2 = wru,k(x) sin θ̂Pc

k(Nk,θk)/vut
c,

and θ̂ = θu − θ0 + θk . We note that (a) results from setting α = 2, which is a valid
assumption for LoS links [30].

Proof See appendix C in [22].

14.4.2 Analysis of Performance Gains from the Proposed Caching-Based Mobility
Management

Using the previous results in (14.3), (14.4), and (14.17), we can find the performance
gains of the proposed caching-based mobility management approach, based on the num-
ber cell searches that can be avoided by using the cached content. In fact,

η ≈
⌊
E
[
dc(u,k)

]
l

⌋
, (14.18)

where dc(u,k), as defined earlier, represents the distance that the MUE u can travel
while playing the cached video content. In (14.18), the expected value is due to the fact
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that dc(u,k) is a random variable that depends on θu and can be obtained directly from
(14.4) and Ftc (.) in Lemma 14.2. Moreover, l represents the average cell size.

Remark 14.1 Considering η defined in (14.18), the proposed method will minimize
the average energy consumption Es for interfrequency cell search by a factor of 1/η, if
the energy consumption linearly increases with the number of scans.

In addition, from the definition of γHOF in (14.5), we define the HOF probability as
P(Du,k < vutMTS) [31], where Du,k = tu,kvu, and tu,k is the ToS. The HOF probability
is given by:

P(Du,k < vutMTS) =
∫ vutMTS

0

2

π
√

4a2
k −D2

dD = 2

π
arcsin

(
vutMTS

2ak

)
. (14.19)

where (14.19) considers ak as the radius of the cell and the MUE’s trajectory as a random
cord with length Du,k = tu,kvu within the cell. In fact,

fD(D) = 2

π
√

4a2 −D2
, (14.20)

where fD(D) is the PDF of the chord’s length. This analysis clearly demonstrates the
gains of caching-based mobility management for a single mobile users. In the next
section, we focus on developing a framework in multi-user scenarios that leverages
caching to enhance the mobility management.

14.5 Proposed Cache-Enabled Mobility Management Based on Dynamic
Matching

Our framework allows a single MUE to use caching in order to avoid unnecessary HOs
to SBSs. Therefore, the proposed scheme provides this flexibility for an MUE to decide
whether to perform an HO to an SBS or remain connected to the MBS and receive data
content over μW band or use the cached content without performing any HO. Similar
options are available for an MUE that is already served by an SBS. At the network level,
the goal can be maximizing the traffic offloads from the congested μW frequencies to
the mmW links provided by SBSs. In this network performance optimization we need to
account for other described challenges of mobility management, such as guaranteeing
bounds for the HOF, total MUEs that a single SBS can serve, and the MUEs capacity
constraints to cache video contents. Given these constraints, we seek to find an optimal
HO policy as follows:

arg minζ
∑
u∈U

ζ(u,k0), (14.21a)

s.t. P

(∑
k∈K

ζ(u,k)Du,k < vutMTS

)
≤ P th

u , (14.21b)
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[
1−

∑
k∈K′

ζ(u,k)

]
Ts ≤ �u

Q
, (14.21c)

∑
k∈K′

ζ(u,k) ≤ 1, (14.21d)

∑
u∈U

ζ(u,k) ≤ U th
k ,∀k ∈ K, (14.21e)

ζ(u,k) ∈ {0,1}, (14.21f)

where K′ = K ∪ {k0} and ζ includes decision variables ζ(u,k) ∈ {0,1}. Indeed,
ζ(u,k) = 1, if HO is done by an MUE u to the target cell k and ζ(u,k) = 0, otherwise.
The objective function in (14.21a) aims to maximize the traffic offloads from the MBS
to SBSs. Constraint (14.21b) ensures that the probability of HOF for an MUE that
is assigned to an SBS does not exceed a threshold P th

u (selected based on the QoS
demands); (14.21c) guarantees that MUE u is assigned to a BS, unless enough content
is cached for the next Ts seconds. In addition, (14.21d) and (14.21e) represent the quotas
for MUEs and BSs.

From (14.19), (14.21b) can be represented as a linear constraint∑
k∈K

2

π
arcsin

(
vutMTS

2ak

)
ζ(u,k) ≤ P th

u .

Therefore, the proposed problem in (14.21a) to (14.21f) is an integer linear program
(ILP) problem, and hence it is NP-hard. Although approximation methods can be
adopted to solve (14.21a) to (14.21f), centralized approaches are not desirable in real-
time mobile scenarios, due to the scalability issues and the additional latency and
overhead. Furthermore, in dynamic mobile networks, it is imperative to account for
future situations to properly optimize the network performance. We elaborate on this
by explaining two examples in Figure 14.4. As scenario 1, let’s assume that a feasible
solution for (14.21a) to (14.21f) does not assign an MUE u to the target SBS k. Instead,
as shown in scenario 1, the solution suggests that the MUE uses the cached content for
the next Ts seconds. Given that the goal is to maximize the traffic offloads from the
MBS to the SBSs, the given solution in scenario 1 is not efficient since the MUE has to
eventually perform an HO to the MBS. That is because the solution does not take into
account the future HO instance after the cached content runs out. Alternatively, the SBS
could be assigned to the target SBS, fill out the cache, and then start using the cached
content. With this strategy, the MUE could reach to the coverage of the next target SBS
without the need to perform HO to the MBS.

As the second scenario in Figure 14.4, let a feasible solution for (14.21a) to (14.21f)
assign an arbitrary MUE 1 to a target SBS k1. Again, the target is to avoid performing
HO to the MBS as much as possible. Now, if HO fails and the MUE 1 does not have
sufficient cached content, the MUE has to perform an HO to the MBS. This could be
avoided if the MUE 2 with a large cache size was assigned to the SBS k1. In this way,
even with an HOF, the MUE 2 could still reach the next target SBS k2 by playing the
cached video segments.
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Figure 14.4 Example scenarios for dynamic HO.

These scenarios demonstrate that an effective HO strategy must account for future
instances. Hence we develop an HO strategy based on dynamic matching theory [32] to
solve the problem in (14.21a) to (14.21f).

14.5.1 Mobility Management as a Matching Game

As shown in prior works [33–37], matching theory is an effective method for developing
efficient solutions for complex problems such as (14.21a) to (14.21f). The matching
problem can be defined as follow:

definition 14.4 Considering the MUEs and BSs sets, U and K′ = K ∪ {k0}, a
single-period HO matching is defined as a many-to-one mapping μ : U ∪K′ → U ∪K′
that

1. ∀u ∈ U , μ(u) ∈ K′ ∪ {u}.
2. ∀k ∈ K′, μ(k) ⊆ U ∪ {k}, and ∀k ∈ K, |μ(k)| ≤ U th

k .
3. μ(u) = k, if and only if u ∈ μ(k).

Here, μ(u) = k indicates that u is matched to k, and μ(u) = u means that the MUE
u is not assigned to any BS, and hence it uses the cached content. Similarly, μ(k) = k

means that the BS k has no MUE to serve.

By definition, the matching meets the HO conditions in (14.21d) to (14.21f). The
utility of MUE u ∈ U for an SBS k ∈ K is

	(u,k) = P th
u −P

(∑
k∈K

ζ(u,k)Du,k < vutMTS

)
= P th

u −
2

π
arcsin

(
vutMTS

2ak

)
.

(14.22)

We observe that the defined utiltiy in (14.22) increases with the cell radius ak .
The SBS k’s utility for an MUE u is


(u,k) = Ts − �u

Q
. (14.23)
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Clearly, the utility increases as the available cache size for the next time duration Ts

decreases. This gives higher priority to MUEs with urgent need to be served by an SBS
before their run out of cached content. According to the defined utilities, the preference
profile of an MUE u, )u, is

k )u k′ ⇔ 	(u,k) > 	(u,k′), (14.24a)

u )u k ⇔ 	(u,k) < 0, (14.24b)

where k )u k′ means that SBS k is strictly preferred to SBS k′. In addition, u )u k

indicates that if the utility is negative, MUE u does not accept SBS k. In fact, (14.24b)
is in line with meeting (14.21b). We also define the preference profile of an SBS k, )k ,
as

u )k u′ ⇔ 
(u,k) > 
(u′,k), (14.25a)

k )k u ⇔ 
(u,k) < 0, (14.25b)

where (14.25b) is equivalent to meeting the condition in (14.21c). The tuple � � (U ∪
K, )u , )k) formally defines the proposed matching problem where )u= {)u}u∈U
and )k= {)k}k∈K.

Within this framework, we are interested in finding the two-sided stable matching,
μ∗, defined as follow [38]:

definition 14.5 Matching μ is stable, μ ≡ μ∗, if and only if there is no (blocking)
pair (u,k) /∈ μ such that k )u {μ(u),u} and u )k {μ(k),k}.

It is easy to observe that the notion of stable matching ensures two-sided fairness in
assignment of MUEs to SBSs.

Remark 14.2 The deferred acceptance (DA) algorithm (see Algorithm 5) always con-
verges to a stable matching in a single-period HO matching game [19].

Algorithm 5 Greedy DA Algorithm for Single-Period HO

Inputs: � � (U ∪K, )u , )k).
Outputs: Stable matching μ∗.

1: Every unassigned MUE u ∈ U proposes to the most preferred SBS k )u u. Exclude
k from u’s preference profile )u.

2: Every k ∈ K collects the proposals in Step 1 and tentatively accepts the U th
k most

preferred proposals.
3: repeat Steps 1 to 2
4: until Every u is applied for all SBSs k )u u, or already accepted.
5: if ∃u ∈ U,μ(u) /∈ K and �u/Q < Ts , then
6: μ(u) = u,
7: else
8: Associate u with the MBS.
9: end if
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Here we note that it is not feasible to guarantee stability in a dynamic scenario if the
DA algorithm is used to associate MUEs to SBSs. That is because the DA algorithm
cannot account for the scenarios that may occur after an HOF (such as the two scenarios
described earlier). Hence in order to achieve a stable matching in dynamic mobile
scenarios, we need to extend the notion of stability from one stage to dynamic stability,
as described next.

14.5.2 Mobility Management Based on Dynamic Matching

In order to take into account network instances that may occur after HO for an MUE
and to guarantee the dynamic stability, we extend the concept of preferences from an
ordering of individual SBSs to the ranking of association plans. In fact, we define an
association plan as two consecutive matchings for an MUE or SBS. In this framework,
if an MUE is associated with the SBS k and then performs a HO to another SBS k′,
such an association plan will be denoted as kk′. Accordingly, k1k2 )u k′1k

′
2 means

that plan k1k2 is more preferred than k′1k
′
2. We also extend the notion of matching in

Definition 14.4 to μ† : U ∪ K′ → (U ∪ K′)2, such that μ†(u) = (μ1(u),μ2(u)), where
μ1 and μ2 are one-period matchings. The definition of stability can then be revisited as
follow [32]:

definition 14.6 If a pair (u,k) meets the following conditions: (1) kk )u μ†(u) and
uu )k μ†(k), (2) ku )u μ†(u) and uk )k μ†(k), (3) uk )u μ†(u) and ku )k μ†(k), or
(4) uu )u μ†(u) and kk )k μ†(k), then it is said that the pair (u,k) can period-1 block
the matching. A matching that cannot be period-1 blocked by any pair is considered
ex-ante stable.

To account for scenarios in which an MUE or BS may block the matching after μ1 is
done, we define the dynamic stability as follows:

definition 14.7 If there is an MUE u such that (μ1(u),u) )u μ†(u), then the MUE
u can period-2 block the matching μ†. Additionally, a pair (u,k) can period-2 block
if either of the following conditions is met: (1) (μ1(u),k) )u μ†(u) and (μ1(k),u) )k

μ†(k) or (2) (μ1(u),u) )u μ†(u) and (μ1(k),k) )k μ†(k). A dynamically stable match-
ing cannot be period-1 or period-2 blocked by any MUE or MUE-BS pair.1

We note that although dynamic stability is not ensured if matching is ex-ante stable,
a dynamically stable matching is also an ex-ante stable. With this in mind, we propose
a mechanism that is guaranteed to yield a dynamically stable solution for the proposed
problem.

14.5.3 Proposed Algorithm for Dynamically Stable Mobility Management

The proposed algorithm is given in Algorithm 6. We first develop an algorithm, based
on [32], to find an ex-ante stable (Phase 1). Then, we design a strategy to remove all the
period-2 blocking pairs (Phase 2).

1 This notion can be extended to more than two periods.
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Algorithm 6 Proposed Algorithm for Mobility Management
Inputs: κ for all users and base stations.
Outputs: Dynamically stable matching μ∗.

Phase 1:
1: Let Pu = ∪k∈K{kk,uk,ku} be the set of all plans for u. For every u ∈ U , if uu )u κ, for

all κ ∈ Pu, then u does not propose to base stations. Otherwise, MUE u selects the most
preferred plan κ∗u and proposes to the corresponding BS.

2: Every base station k ∈ K receives the proposals and tentatively accepts most preferred plans,
while considering the quota U th

k
. Obviously, any accepted plan κ by SBS k meets κ )k kk.

3: repeat Steps 1 to 2
4: until No plan is rejected. The resulting ex-ante stable matching is shown by μ† = (μ†

1,μ
†
2).

Phase 2:
5: if ∃u ∈ U,μ†

2(u) = u, then run DA algorithm in Algorithm 5 to the subset of users with

μ†
2(u) = u and the subset of base stations with |μ†

2(k)| < U th
k

, while ensuring that (14.26)
and (14.27) are satisfied. Return the outcome.

6: else
7: return μ†.
8: end if

Proposition 1 The outcome of the Stage 1 in the proposed algorithm is an ex-ante
stable assignment.

Proof See appendix D in [22].

The proposed algorithm follows the following strategy to avoid period-2 blockage:
For any SBS that |μ†

2(k)| = U th
k , where U th

k denotes the maximum quota,

μ† )k

(
μ†

1(k), μ̃2
†(k) ∪ {u}

)
, (14.26)

where μ̃2
†(k) is identical to μ2

†(k), except one of associated MUE is replaced by the
new matching with MUE u. This condition guarentees that the SBS k cannot pair with
any MUE to period-2 block the matching. Moreover,

(μ1(k0),u) )k0 μ
† ⇐⇒ P th

μ†
1(u)
− 2

π
arcsin

(
vutMTS

2aμ†
1(u)

)
< ε, (14.27)

where ε ≥ 0. This constraint ensures that if the HOF criteria is not met for an MUE
in the period-1 association, the MUE must be assigned to the MBS in the second
period.

theorem 14.8 Algorithm 6 always converges to a dynamically stable MUE associa-
tion in heterogeneous networks.

Proof See appendix E in [22].

To consider the overhead of implementing the proposed algorithm in practice, it is
interesting to consider the number of HO request signals transmitted by MUEs. We note
that other control messages sent by SBSs can be handled over broadcast channels and
do not significantly contribute to the signaling overhead. As discussed in [22], for a
scenario in which the MUEs have the same preference profile, the signaling overhead
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Table 14.2 Simulation Parameters

Notation Parameter Value

fc Carrier frequency 73 GHz

Pt,k Total transmit power of SBSs dBm [20;27;30]

K Total number of SBSs 50

w Available bandwidth 5 GHz

(αLoS,αNLoS) Pathloss exponent (2,3.5) [30]

d0 Pathloss reference distance 1 m [30]

Gmax Antenna main lobe gain 18 dB [28]

Gmin Antenna side lobe gain −2 dB [28]

Nk Number of mmW beams 3

θm,θk beam width 10◦ [28]

N0 Noise power spectral density −174 dBm/Hz

tMTS Minimum time of stay 1s [29]

Q Play rate 1k segments per second

B Size of video segments 1 Mbits

(vmin,vmax) Minimum and maximum MUE speeds (1,16) m/s

Es Energy per interfrequency scan 3 mJ [21]

of the proposed scheme will be O(UK). In the next section, we demonstrate via simu-
lations the merits of the proposed caching-based mobility management in reducing the
signaling overhead.

14.6 Simulation Results

An area with a radius of 500 m is considered with K = 50 small base stations distributed
uniformly around the MBS located at the center. The distance between SBSs is at least
30 m. Other key parameters are listed in Table 14.2.

14.6.1 Performance Analysis for Single-User Scenarios

Figure 14.5 shows a performance comparison between the proposed scheme and a HO
policy with no caching. The considered performance metric is the average handover
failure rate. The results show that the proposed approach significantly improves the
performance in mobile small cell networks. Figure 14.5 demonstrates that using mmW
link to cache content can effectively minimize the handover failure. For example, the
gain can reach up to 45% at vu = 60 km/h speed.

The achievable rate of caching is shown in Figure 14.6 for vu = 60 km/h, versus
ru,k(x) for different θu. Figure 14.6 demonstrates that the caching rate is significant,
even at high speeds for all θu. However, the performance is noticeably degraded by
blockage.
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Figure 14.5 HOF versus different MUE speeds.
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Figure 14.6 Achievable rate of caching versus ru,k(x) for different θu.

14.6.2 Performance Analysis of the Developed Algorithm

A set of mobile UEs is considered, each with a randomly selected speed and direction
entering the coverage of a target cell. In addition, �u = 104 segments for all MUEs and
U th

k = 10 for each SBS.
Figure 14.7 compares the average probability of handover failure for the proposed

algorithm as compared to the baseline scheme. The results confirm that as the speed
increases, the ToS reduces, which results in a higher HOF probability. Figure 14.7 also
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Figure 14.7 Average HOF probability versus MUEs speeds.
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Figure 14.8 Number of assigned MUEs to the target SBS versus the network size.

demonstrates that at speeds larger than vu = 8 m/s, the MUE can use caching to travel
a larger distance, which results in lower HOF.

Figure 14.8 shows the number of users assigned to the target cell versus the number
of MUEs. The speed of MUEs are selected from vu = 8,10,12 m/s, U th

k = 10, and
�u = 104. At higher speeds, the load of the target cell decreases since the ToS is small
and HOF is more likely. Additionally, as the speed increases, it is more feasible for the
MUE to reach the next cell by only using the cached content. As shown in Figure 14.8,
there is an up to 45% load reduction once vu changes from 8 to 10 m/s with U = 40.
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Figure 14.9 Energy savings versus the network size.
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Figure 14.10 Signaling overhead versus the network size.

Figure 14.9 shows the advantages of the proposed scheme in terms of energy sav-
ings. With U = 50, Figure 14.9 demonstrates that the energy saving gains are up to
80%, 52%, and 29%, respectively, for vu = 8,10, and 12 m/s achieved via skipping
unnecessary cell searches when cached content is available.

The overhead of the proposed scheme is shown in Figure 14.10 for �u = 104 and
various speeds. The overhead is defined as the number of HO requests that MUEs send
to the target base station. We can observe that at low speeds (e.g., vu = 2 m/s), the
overhead is larger. However, it is clear that the overhead is not very large and does not
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exceed 17 signals for U = 50 with vu = 8 m/s. Figure 14.10 shows a key advantage of
the proposed scheme, which is less overhead at higher speeds. In fact, although handover
is overall more challenging at higher speeds, the proposed algorithm allows users at
higher speeds to use caching more effectively to reduce the complexity and overhead of
mobility management.

14.7 Summary

We have developed a new cache-enabled mobility management framework in integrated
mmW–μW small cell networks. We have demonstrated the key merits of caching via fast
mmW links to optimize the performance in mobile scenarios. We have presented funda-
mental analysis for caching data rate, caching duration, and the probability of caching.
Moreover, we have proposed a novel handover policy, based on dynamic matching
games and have proposed a new algorithm that guarantees dynamically stable handover.
Furthermore, both the theoretical results and simulations have shown substantial per-
formance gains achievable via the proposed scheme, in terms of reducing the handover
failure and energy consumption, as compared with a baseline scheme with no caching
mechanism. Future extensions of this work may consider more complex mobility
patterns for mobile users, variable speeds, and multi-stage stable mobility management.
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15 Energy-Efficient Deployment
in Wireless Edge Caching
Thang X. Vu, Symeon Chatzinotas, and Björn Ottersten

In this chapter, we investigate the performance of edge caching wireless networks by
taking into account the caching capability when designing the signal transmission. We
consider hierarchical caching systems in which the contents can be prefetched at both
user terminals or the base station (BS) and investigate the energy performance under two
notable uncoded and coded caching strategies. The backhaul and access throughputs are
derived for both caching policies for arbitrary values of base station and user cache sizes
from which closed-form expressions for the corresponding system energy efficiency
(EE) are obtained. Furthermore, we propose two optimization problems to maximize
the system EE and minimize the content delivery time subject to some given quality of
service requirements.

15.1 Introduction

Future wireless networks will have to address stringent requirements of delivering
content at high speed and low latency due to the proliferation of mobile devices
and data-hungry applications. Toward this goal, there have proposed various network
architectures to improve the system throughput such as cloud radio access networks
(C-RANs) [1, 2] and heterogeneous networks (HetNets). Unfortunately, traffic conges-
tion might still occur during peak-traffic hours, due to the uneven popularity distribution
of the convent. A promising solution to overcome this challenge is to distribute the
content in advance close to end users via distributed storages in the network, which
is known as caching [3]. In general, caching consists of two phases: placement and
delivery. The placement phase is implemented during off-peak hours when the network
resources are abundant, which prefetch some popular contents in the caches. In the
latter, which usually occurs during peak-traffic times, the users request desirable files.
The requested files will be served immediately if they have been prefetched in the local
caches. In this manner, caching improves load balancing and significantly reduces the
backhaul’s load during peak-traffic times [3, 4].

Existing research on caching focuses on two methods—namely uncoded and coded
caching [3, 5–7]. In the uncoded caching strategy, the placement phase is designed

This work is supported by the Luxembourg National Research Fund under project FNR CORE ProCAST,
grant R-AGR-3415-10.
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to maximize the local caching gain that linearly increases with the number of file
parts available in the local storage. On the other hand, the coded caching can further
improve the caching gain by allowing multicast transmission of coded messages during
the delivery phase [4, 8, 9]. Thanks to the careful design in coded caching placement
phase, all users can recover the requested files via a multicast stream [4]. The trade-
off between the memory and the transmission latency is studied in [10], which is
normalized delivery time. The rate-memory trade-off of multi-layer coded caching
networks is studied in [11, 12]. It is worthy noting that in order to achieve the global
gain in the coded caching, the data center requires to know the number of users in order
to construct the coded messages.

The performance of caching systems can be further improved via joint design of
content caching and signal transmission. Such improvements come from the considera-
tion of the cached content at the edge nodes when designing the signal transmission. It is
shown in [13] that transmission costs (power and bandwidth) can be reduced, thanks to
a joint design of multicast beam-forming and power allocation. In [14], the authors
study the impact of wireless backhaul on the energy efficiency in edge caching wireless
networks. A joint optimization of caching, routing, and channel assignment is proposed
in [15]. The benefit of caching in wireless networks are analysed in [16–20] for device-
to-device (D2D) networks and in [21–23] under energy efficiency perspective. It is worth
noting that the above mentioned works investigate either only the uncoded caching
policy or separate caching at higher layers without considering the signal transmission.

In this chapter, we investigate edge caching wireless networks in which caching can
be implemented at both the BS and user levels. The contributions of this chapter are
summarized as follows:

• First, we investigate the performance of two popular uncoded and (inter-file)
coded caching policies and consider arbitrary storage capacities when calculating
the backhaul and access throughputs.

• Second, we analyze the system EE via closed-form expressions for both caching
strategies, which give insights of the key system parameters. The system EE
is further optimized subject to some given quality-of-service (QoS) constraints.
Furthermore, we derive a closed-form expression for the maximum EE under
zero-forcing (ZF) precoding design.

• Third, the delivery time under both caching policies are analyzed and optimized
via the joint design of the beam-forming vectors and power allocation. The effec-
tiveness of the proposed designs are validated via numerical results. In particular,
we show that the uncoded caching can surpass the coded caching in terms of EE
in some cases.

The rest of this chapter is organized as follows. Section 15.2 describes the system
model and the caching strategies. Section 15.3 provides analyses for EE. Section 15.4
provides details of our proposed optimizations. Section 15.5 minimizes the delivery
time. Section 15.6 derives the EE for general content popularity. Section 15.7 shows
numerical results. Finally, Section 15.8 concludes the chapter.
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Notation: (.)H,(x)+ and Tr(.) denote the Hermitian transpose, max(0,x) and the
trace(.) function, respectively. �x� denotes the largest integer not exceeding x.

15.2 Signal Transmission and Caching Model

A system under consideration consists of K users, denoted by K = {1, . . . ,K}, served
by a data center via a common BS, shown in Figure 15.1. The considered model can
find application in many practical use cases in which the users can play the role of
various cache-assisted edge nodes such as small-cell BSs in the HetNet. Let L denote
the antenna number at the BS, where L ≥ K , which serves all users via a shared wireless
medium. The BS has full access to the contents at the data center. We consider block
Rayleigh fading channels, in which the channel fading coefficients are fixed within
a block and are mutually independent across the users. It is assumed that the block
duration is sufficiently long such that all the user requests can be served. Without loss
of generality, the data center contains N files of equal size of Q bits and is denoted by
F = {F1, . . . ,FN }.

15.2.1 Caching Model

A multi-layer caching network is considered in which popular contents can be stored at
both the BS and users. Denote Mb and Mu with 0 ≤ Mb,Mu ≤ N as the cache size at
the BS and users, respectively. In this chapter, offline caching policy is employed, which
comprise two separate placement and delivery phases. The placement phase is executed
during off-peak hours [4]. For robustness, we employ distributed cache placement in
which the BS is unaware of user cache’s content. As such, the BS’s cache is feed
with MbQ

N
(non-overlapping) bits of every file, which are randomly chosen. In the same

Figure 15.1 Cache-assisted wireless networks. Caching is available at the BS or users.



306 Thang X. Vu, Symeon Chatzinotas, and Björn Ottersten

manner, each user keeps MuQ
N

bits of every file in its local storage under the uncoded
caching strategy. For the coded caching policy, the placement phase at the user caches is
implemented as in [4]. As a result, total number of bits stored at the BS and user caches
are respectively MbQ and MuQ bits, which satisfy the memory constraints.

In the delivery phase, each user send a file index to the data center via the BS. Similar
to [4], we consider the worst case in which the files are equally popular and one user
request is different from the others. Non-uniform distributions of the content popularity,
e.g., Zipf distribution, is discussed in Section 15.6. Denote d1, . . . ,dK as the file indexes
requested by user 1, . . . ,K , respectively. We note that the requested file can be served
immediately if it is available in the user cache. Otherwise, the requested file will be sent
from the BS. In the following, we describe in details the delivery phase for two popular
uncoded and coding caching policies.

15.2.1.1 Uncoded Caching
In the uncoded caching policy, the user requests are served independently. The benefits
of this policy lay in the fact that the users do not know the cache content of each other
and hence do not require any cooperation among the users. Let Qunc,BH and Qunc,AC

denote the aggregated number of bits transmitted through the backhaul and access links,
respectively.

Proposition 2 The total number of bits transmitted through the backhaul and access

links under the uncoded caching policy are Qunc,BH = KQ
(

1− Mu

N

)
×
(

1− Mb

N

)
and

Qunc,AC = KQ
(

1− Mu

N

)
, respectively.

The proof of Proposition 2 is given in [8, section II].

15.2.1.2 Coded Caching
In order for the coded caching to exploit the multicast benefit of the shared wireless
medium, the BS needs to know the number of users in both placement and delivery
phases in order to intelligently encodes the requested files.

Proposition 3 Denote m = �KMu

N
� ∈ Z� and δ = KMu

N
− m with 0 ≤ δ < 1.

The access throughput under the coded caching is Qcod,AC = (1 − δ)Q(K−m)
m+1 +

δQ(K−m−1)
m+2 , and the backhaul throughput is Qcod,BH = (1 − δ)

(
1−

(
Mb

N

)m+1
)

Q(K−m)
m+1 + δ

(
1−

(
Mb

N

)m+2
)

Q(K−m−1)
m+2 .

Proof The proof of Proposition 3 is given in [24].

The results in Proposition 3 provide the close-form expressions of the backhaul and
access throughputs under the two caching policies for arbitrary values Mu ∈ [0,N ].

Specially if KMu

N
∈ Z� then δ = 0, the results are simplified as

(
1−

(
Mb

N

)m+1
)

Q(K−m)
m+1

and KQ(1−Mu/N )
1+KMu/N

, respectively, which can also be found in [4]. It is worth highlighting
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that the results in [4] apply only to integer KMu

N
. Meanwhile Proposition 3 derives

general results for arbitrary values of the user cache size.

15.2.2 Transmission Model

The requested files, which are not available in the user’s local storage, will be transmit-
ted from the BS. Denote hk ∈ CL×1 as the channel coefficients from the BS antennas to
the kth user, whose elements follows a complex Gaussian distribution with zero-mean
and variance σ2

hk
, which accounts for the pathloss from the BS antennas to user k. We

assume that the BS has full knowledge of all channels thanks to pilot-assisted channel
estimation.

15.2.2.1 Signal Transmission for Uncoded Caching Strategy
In uncoded caching, the BS serves the user requests separately. Let Fdk

denote the
file requested by user k, where dk indicates the index of the requested file. Let F̄dk

denote part of the requested file that is not at the user k’s cache. Upon receiving the
user requests, the BS first modulates F̄dk

in to a corresponding modulated signal xk and
then sends the precoded signal through the shared access channels. In order to mitigate
interuser interference, the BS applies a precoding vector wk ∈ CL×1 for user k. Denote
by nk the noise at user k, which is a Gaussian random variable with zero-mean and
variance σ2. User k will receive a signal given as yk = hH

k wkxk +
∑

l �=k hH
k wlxl + nk .

The achievable information rate of user k is

Runc,k = B log2 (1+ SINRk) ,1 ≤ k ≤ K, (15.1)

where SINRk = |hH
k wk |2∑

l �=k |hH
k wl |2+σ2 is the signal-to-interference-plus-noise ratio at user k,

and B is the access channel bandwidth.
The total transmit power in this case is Punc =

∑K
k=1 ‖ wk ‖2.

15.2.2.2 Signal Transmission for Coded Caching Strategy
It is observed in the policy that one coded message is needed by a group of users. Thus
in order to exploit the coded-caching architecture, physical-layer multicasting [25] is
employed to multicast the coded messages to the corresponding users.

In the coded caching strategy, the BS transmits the total number of Cm+1
K coded

messages (of length Q
Cm

K
bits), each of which is received by a subset of m+1 users [4]. Let

S ⊂ K denote an arbitrary subset of m+ 1 users, and let S = {S | |S| = m+ 1} denote
all possible subsets. It is straightforward to have |S| = Cm+1

K . For ease of presentation,
let XS denote the coded message interested by the users in S. The coded message is
first modulated into xS before being multiplied by a common precoding vector wS . The
achievable rate for the users within S is given as

Rcod,S = min
k∈S

{
B log2

(
1+ |h

H
k wS |2
σ2

)}
. (15.2)

The transmit power in the coded caching is Pcod = ‖ wS ‖2.
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15.3 Energy-Efficiency Analysis

In this section, we analyze EE performance of the two considered caching policies.

definition 15.1 (Energy efficiency) The EE measured in bit/Joule is defined as:

EE = KQ

E�

,

where KQ stands for the total bits requested by K users and E� is the amount of energy
spent to serve these bits.

Remember that E� in the EE represents the energy cost during the delivery phase
since the cost in the cache placement phase is negligible because it occurs rarely com-
pared with the delivery phase [4, 13].

15.3.1 EE Analysis for Uncoded Caching Strategy

In uncoded caching, the total energy consumption is computed as Eunc,� = Eunc,BH +
Eunc,AC, where Eunc,BH and Eunc,AC represents the energy consumption on the backhaul
and access channels, respectively.1 It is noted that each user requests Qunc,AC

K
bits, which

are sent to the users independently via unicast mode. With the required rate Runc,k , it
costs Qunc,AC

KRunc,k
seconds to serve user k’s request. As a result, the access links consume a

total amount of energy given as

Eunc,AC = Qunc,AC

KRunc,k
Punc = Q

(
1− Mu

N

)∑K

k=1

‖ wk ‖2
Runc,k

.

Because the backhaul link has sufficient capacity to serve the access network, the
backhaul’s energy consumption can be calculated as a linear function of the backhaul
throughput, given as

Eunc,BH = ηQunc,BH = ηKQ

(
1− Mu

N

)(
1− Mb

N

)
,

where η is a constant, which plays a role as the pricing factor used to trade energy for
delivered bits [13]. We note that the practical value of η is determined by the backhaul
technology.

As a result, the EE under the uncoded caching strategy is given as

EEunc = K(
1− Mu

N

) (
ηK

(
1− Mb

N

)
+∑K

k=1
‖wk‖2
Runc,k

) . (15.3)

From (15.3) we can see that EEunc is jointly determined by the cache sizes Mu and Mb

and the access transmitted power.

1 E� may also include a static energy consumption factor in practice.
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15.3.2 EE Analysis for Coded Caching Strategy

Similar to the uncoded caching, the backhaul energy cost is given as Ecod,BH =
ηQcod,BH, where η is the pricing factor. To compute the access energy cost Ecod,AC,
we note that the BS transmits to all users in S simultaneously. With the rate Rcod,S , it

takes Qcod,AC

Cm+1
K Rcod,S

seconds to send XS . As a result, the total energy cost in this case is

calculated as Ecod,AC = Qcod,AC

Cm+1
K

∑
S∈S

Pcod,S
Rcod,S

. Thus the EE under the coded caching

strategy is given as

EEcod = KQ

Ecod,�
= KQ

ηQcod,BH + Qcod,AC

Cm+1
K

∑
S∈S

Pcod,S
Rcod,S

. (15.4)

From Proposition 3 we obtain

EEcod = 1+KMu/N(
1−Mu

N

)(
η

(
1−

(
Mb
N

)KMu
N
+1
)
+ 1

C
m+1
K

∑
S∈S

‖wS ‖2
Rcod,S

) .

It is observed that the EE in the coded-caching is driven by the BS and user cache
size as well as the BS’s transmit power.

15.3.3 Comparison between the Two Strategies

In this subsection, we give insights on the comparison between the two caching strate-
gies in some specific scenarios, e.g., the sate quality of service requirements Runc,k =
Rcod,S = γ,∀k,S.

15.3.3.1 Free-Cost Backhaul Link
When the backhaul capacity is sufficiently large, we can assume that all the requested
files are available at either the BS or user storages. Such a case is equivalent to Mb = N

or η = 0. As a result, we have

EEunc = K(
1− Mu

N

)
Punc
γ

, EEcod = 1+KMu/N(
1− Mu

N

)
Pcod
γ

.

Consider the case that the BS operates at the same transmit power, i.e., Punc = Pcod, we
have EEunc > EEcod. As such the coded caching method obtains a higher EE than the

uncoded caching strategy when Mu >
(

Pcod
Punc
− 1

K

)
N .

No caching at the BS: Mb = 0 In this case, all the un-cached files at the user storage
will be transmitted from the data center, and thus

EEunc = 1(
1− Mu

N

) (
η + Punc

γK

), EEcod = 1+KMu/N(
1− Mu

N

) (
η + Pcod

γ

) .
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It is clearly shown that the coded-caching strategy will surpass the uncoded caching for
the same transmit power because KMu

N
> 0 and Punc

K
< Pcod.

15.4 Energy-Efficiency Maximization in Edge Caching Wireless Networks

In this section, we maximize the system EE for the two considered caching policies via
joint design of the precoding vectors. In general, the optimization can be stated as

Maximize
{wk}Kk=1,w

EE s.t. QoS constraint, (15.5)

where EE ∈ {EEunc,EEcod}.

15.4.1 EE Maximization for Uncoded Caching Strategy

In the uncoded caching method, the BS serves the users separately. If the requested
file has not been cached, it takes tk = Q

γk
seconds to deliver the requested file to

user k, where γk is the rate requirement of user k (bits per second). In case that
part of the requested file is available at user’s local cache, the BS will send only
noncached parts to the users. The equivalent QoS constraint in this case becomes
γ̄k = (1− Mu

N
)Q/tk = (1− Mu

N
)γk . An important observation from (15.3) is that the

network topology and the cache sizes are usually fixed in practice. Thus problem (15.5)
is equivalent to the minimization of the transmit energy, stated as

Minimize
{wk∈CL}Kk=1

∑K

k=1

‖wk ‖2
Runc,k

, s.t.
|hH

k wk|2∑
l �=k|hH

k wl |2 + σ2
≥ ζk,∀k, (15.6)

where the rate constraint is transferred into a SINR requirement ζk = 2
γ̄k
B − 1.

In the following section, we optimize the EE based on two beamforming vector
designs.

15.4.1.1 Cost Minimization by Zero-Forcing Precoding
The ZF design is selected thanks to its fast implementation. In this design, the direction
of the beam-forming vectors are chosen to fully mitigate interuser interference. Thus
the main goal is to optimize transmit power on each beam. Denote pk,1 ≤ k ≤ K, as
the transmit power designed for user k. The precoding vector for user k under the ZF
design is wk = √pkh̃k , where h̃k the kth column of the ZF matrix HH (HHH )−1, with
H = [h1, . . . ,hK ]T .

theorem 15.2 Under the ZF design, the uncoded caching strategy achieves the max-
imum EE

EEZF
unc =

K(
1− Mu

N

) (
ηK

(
1− Mb

N

)
+ σ2

∑K
k=1

ζk‖h̃k‖2
γ̄k

) .

Proof By design, |hH
l wk|2 = pkδlk , where δij is equal to 1 if i = j and 0 otherwise.

As a result, we can reformulate problem (15.6) as
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Minimize
{pk :pk≥0}Kk=1

∑K

k=1

akpk

log2(1+ pk/σ2)
, s.t. pk ≥ ζkσ

2,∀k, (15.7)

where ak =‖ h̃k ‖2.
Now we consider a function f (x) = ax

log2(1+bx) with a,b ≥ 0 in R+. It is straight-
forward to see that this function strictly increases in its domain. As a result, the
optimal solution of (15.7) is achieved at p�

k = ζkσ2, and the minimum transmit power

is σ2∑K
k=1ζk ‖ h̃k ‖2. We complete the proof of Theorem 15.2 by substituting the

minimum transmit power into EEunc.

15.4.1.2 Cost Minimization by Semi-definite Relaxation
The EE can be further improved via the optimization of both the direction and mag-
nitude of the precoding vectors. Since problem (15.6) is difficult to solve due to the
nonconvexity of its objective function, we instead solve (15.6) suboptimally by using

the upper bound of the objective function. Obviously, we have ‖wk‖2
Runc,k

≤ ‖wk‖2
γ̄k

. Let

Kt �
{
k | γ̄k ≤ Q

t
,∀t ∈ [0, Q

mink(γ̄k)

]}
denote a group of users that are active at time

instance t . Then we can approximate problem (15.6) as follows:

Minimize
wk∈CL

∑
k∈Kt

‖wk ‖2
γ̄k

, s.t.
|hH

k wk|2∑
k �=l∈Kt

|hH
k wl |2 + σ2

≥ ζk,∀k. (15.8)

In the next step, we employ new variables Xk = wkwH
k ∈ CL×L and denote parame-

ters Ak = hkhH
k ∈ CL×L. It is straightforward to verify that |hH

l wk|2 = hH
l wkwH

k hl =
Tr(hlhH

l wkwH
k ) = Tr(AlXk). Thus problem (15.8) can be reformulated as follows:

Minimize
Xk∈CL×L

∑
k∈Kt

Tr(Xk), s.t. Tr(AkXk) ≥ ζk

∑
k �=l∈Kt

Tr(AlXk)+ ζkσ
2,∀k, (15.9)

Xk & 0,rank(Xk) = 1,∀k.

Because the trace function is linear, the objective and the two first constraints of (15.9)
are convex. The challenge to solve (15.9) lays in the nonconvex rank-one constraint.
Fortunately, this constraint can be handled efficiently by the semi-definite relaxation
(SDR) method [26]. In order to improve the performance of the SDR, a Gaussian
randomization procedure is used if the rank-one constraint is violated. It has been shown
in [27] that the SDR method can approach the performance of the optimal solution.

15.4.2 EE Maximization for Coded Caching Strategy

In order to satisfy user k with a QoS γk , the BS must serve the requested file within
tk = Q

γk
seconds. In the coded caching method, each user receives only Cm

K−1 coded

messages in a total of Cm+1
K . Therefore, user k is actually active in

Cm
K−1

Cm+1
K

tk = (m+1)Q
Kγk

.

Consequently, the equivalent QoS for user k is γ̄k =
(

Q∗Cm
K−1

Cm
K

)/( (m+1)Q
Kγk

)
= K−m

m+1 γk ,

where
Q∗Cm

K−1
Cm

K
is total number of bits sent to user k. It is observed from (15.4) that
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the EE maximization is equivalent to minimizing Pcod
Rcod,S

. The optimization problem is
formulated as

Minimize
wS∈CL×1

‖wS ‖2
Rcod,S

, s.t. Rcod,S ≥ γ̄k,∀k ∈ S, (15.10)

where S denote the subset of active users.
Solving problem (15.10) is challenging due to the nonconvexity of the objective func-

tion. Thus we instead minimize the upper bound of the objective function, i.e., Tr(X)
γ̄min,S

,

where γ̄min,S = mink∈S γ̄k . Let X = wH
S wS ∈ CL×L denote a new variable. We then

reformulate the problem as

Minimize
X∈CL×L

Tr(X)

γ̄min,S
, s.t.X & 0; rank(X) = 1; (15.11)

Tr(AkX)≥σ2
(

2
γ̄min,S

B − 1

)
,∀k ∈ S.

A similar observation is that the objective function of (15.11) is convex since func-
tion trace is linear. In addition, the constraints are also convex, except the rank-one
constraint. Therefore, we employ the SDR method to approximately solve (15.11) by
avoiding the rank-one constraint. Since the SDR does not always provide a rank-one
solution, we employ Gaussian randomization to improve the SDR solution [27].

15.5 Minimization of Content Delivery Time

One important performance metric is the average delivery time it takes to serve
all the user requests. In general, there are two components that contribute to the
delivery time: backhaul and access. Because the backhaul capacity is generally much
larger than the access capacity, the delivery time on the backhaul link is negligible. In
addition, we assume that the processing time at the BS is fixed and negligible. Thus the
access links mainly contribute to the total delivery time.

15.5.1 Minimization of Delivery Time for Uncoded Caching Strategy

Denote by tk a time that the BS needs to send all user k’s requested bits. With a serving
rate Runc,k , we have tk = Qunc,AC

KRunc,k
. Therefore, the uncoded caching policy spends an

average delivery time

τunc = 1

K

∑K

k=1
tk = Q

K

(
1− Mu

N

)∑K

k=1

1

Runc,k
.

The average delivery time minimization problem can be formulated as follows:

Minimize
{wk∈CL}Kk=1

Q

K

(
1− Mu

N

)∑K

k=1

1

Runc,k
(15.12)

s.t. Runc,k ≥ γ̄k,∀k;
∑K

k=1
‖wk ‖2≤ P� .
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In (15.12), the first constraint is to satisfy the QoS requirement and the second constraint
is to not exceed for the total transmit power budget.

15.5.1.1 Zero-Forcing Precoding Design
Similar to the previous section, we consider ZF-based design to reduce the computa-
tional complexity. The precoding vectors in ZF design is given as wk = √pkh̃k , where
pk is the scaling power for user k and h̃k is the the ZF beam-forming vector that is the kth

column of HH (HHH )−1. Since hH
l h̃k = δlk , we thus obtain RZF

unc,k = log2

(
1+ pk

σ2

)
.

Therefore, we can equivalently reformulate (15.12) as

Minimize
{pk :pk≥0}Kk=1

Q

K

(
1− Mu

N

)∑K

k=1

1

log2(1+ pk/σ2)
(15.13)

s.t.
pk

σ2
≥ ζk,∀k;

∑
k
pk ‖ h̃k ‖2≤ P� .

Proposition 4 Given the total power P� satisfying P� ≥ σ2∑K
k=1ζk ‖ h̃k ‖2, the

problem (15.13) is convex and feasible.

The proof of Proposition 4 can be found in [24, proposition 3]

15.5.1.2 General Beam-Forming Design
In a general beam-forming design, we jointly optimize the direction and magnitude for
every beamforming vector. Since the original problem is difficult to solve as its objective
function is nonconvex, we instead minimize the upper bound of the objective function

of (15.12), i.e., max{t1, . . . ,tK} = Q
(

1−Mu
N

)
min{Runc,1,...,Runc,K } . The suboptimal optimization of

(15.12) is given as

Maximize
{wk∈CL}Kk=1

min{Runc,1, . . . ,Runc,K} (15.14)

s.t. Runc,k ≥ γ̄k,∀k;
∑

k
‖wk ‖2≤ P� .

In the next step, we introduce a positive variable x and express the first constraint via
SINR representation. Then problem (15.14) can be equivalently reformulated as

Maximize
x>0,{wk∈CL}Kk=1

x, s.t.
|hH

k wk|2∑
l �=k |hH

k wl |2 + σ2
≥ x,∀k, (15.15)

x ≥ ζk;
∑

k
‖wk ‖2≤ P� .

Next, we introduce new variables Xk = wkwH
k and remember that Ak = hkhH

k . The
problem (15.15) can be reformulated to

Maximize
{Xk∈CL×L}Kk=1,x

x, s.t. x ≥ ζk;
∑

k

Tr(Xk) ≤ P�; rank(Xk) = 1 (15.16)

Tr(AkXk)− x
∑
l �=k

Tr(AkXl) ≥ xσ2,∀k; Xk & 0.
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Table 15.1 Algorithm to Solve (15.16)

1. Initialize AH , AL = ζ, and the accuracy ε.
2. AM = (AH + AL)/2.
3. Given AM , if (15.17) is feasible, then AL : = AM .

Otherwise AH : = AM .
4. Repeat Steps 2 and 3 until |AH − AL| ≤ ε.

Table 15.2 Algorithm to Solve (15.19)

1. Initialize AH , AL = 2γ̄min,S − 1, ε.
2. AM = (AH + AL)/2.
3. Given AM , if (15.20) is feasible, then AL : = AM .

Otherwise AH : = AM .
4. Repeat Steps 2 and 3 until |AH − AL| ≤ ε.

We observe that for a given x, all the constraints of (15.16) are convex except the rank-
one constraint. This motivates us to employ the SDR method to suboptimally solve
(15.16) via bisection, the details of which are provided in Table 15.1.

find {Xk ∈ CL×L}Kk=1, s.t.
∑

k
Tr(Xk) ≤ P�; Xk & 0,∀k (15.17)

Tr(AkXk)− AM

(∑
l �=k

Tr(AkXl)+ σ2
)
≥ 0,∀k.

15.5.2 Minimization of Delivery Time for Coded Caching Strategy

Remember that the BS under coded caching policy multicasts a common (coded) mes-
sage XS to all users in S. The delivery time of coded messages, taking into account
the fact that each XS has Qcod,AC

Cm+1
K

bits, is calculated as τcod = Qcod,AC

Cm+1
K

∑
S∈S

1
Rcod,S

,

where Rcod,S is given in (15.2). Because the BS sends the coded messages in a con-
secutive manner, minimizing the average delivery time τcod is equivalent to minimizing
the transmission time of each coded message. Thus the optimization is formulated as
follows:

Minimize
wS∈CL

1

Rcod,S
, s.t. Rcod,S ≥ γ̄min,S ; ‖wS ‖2≤ P� . (15.18)

With the help of a slack variable x > 0 and X = wSwH
S ∈ CL×L, problem (15.18) can

be equivalently reformulated as

Maximize
x ,X∈CL×L

x, s.t. Tr(AkX) ≥ xσ2,∀k ∈ S; X & 0; (15.19)

x ≥ 2γ̄min,S − 1; Tr(X) ≤ P�; rank(X) = 1.

It is observed that for a given x, the first constraint in (15.19) is convex. Problem (15.19)
can thus be solved via SDR and the bisection methods, whose steps are provided in
Table 15.2.
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find X ∈ CL×L, s.t. Tr(AkX)− AMσ
2 ≥ 0,∀k ∈ S (15.20)

Tr(X) ≤ P�; X & 0.

15.6 Non-uniform File Popularity Distribution

In practice, the requested files are not always equally popular. In fact, there is a small
number of files that are more frequently requested by a large number of users. To cap-
ture such scenarios, we assume generic distribution of content popularity and focus on
uncoded caching in this section. Denote by pk = {qk,1, . . . ,qk,N } the content popularity
of user k, in which qk,n represents the average request rate of user k to file n. Obviously,∑N

n=1 qk,n = 1.
The BS collects all the user requests, and hence sees the global popularity as

qG,n = 1

K

K∑
k=1

qk,n. (15.21)

For robustness, we consider arbitrary user cache sizes. Denote by M0 (files) the BS’s
cache size and by Mk (files) the cache size at user k. The distributed cache placement
phase is implemented in which each user prefetches its cache with the most locally
popular files until full. In addition, we denote q̃k = �(qk) and q̃G = �(qG) as the
ranked version in decreasing order of qk and qG, respectively. Then user k stores the
first nk = Mk files in q̃k . In a similar way, the BS stores the first nG = M0 files in q̃G.

Proposition 5 Denote by D = {d1, . . . ,dK } the requested file indexes, e.g., user k

requests file dk . The total throughput on the backhaul and access links are QBH(D) =
Q
∑K

k=1InG
(�G(dk)) and QAC(D) = Q

∑K
k=1Ink

(�k(dk)), respectively, where �k(dk)
denotes the sorted position of file dk , and In(i) = 1 if i > n and 0 otherwise.

The proof of Proposition 5 can be found by considering the user’s and BS’s cached
contents.

It is worth noting that if a file is cached, the whole content is available in the cache. As
such, only a subset of users K̃(D) = {k | �k(dk) > nk} who do not have the requested
files receive data from the BS. A following transmission procedure is applied to serve
the users:

Minimize
w

k∈K̃(D)∈CL

∑
k∈K̃(D)

‖ wk ‖2
R̃unc,k

, s.t. R̃unc,k ≥ γ,∀k ∈ K̃(D), (15.22)

where R̃unc,k = B log2

(
1+ |hH

k wk |2∑
k �=l∈K̃(D) |hH

k wl |2+σ2

)
.

The delivery time minimization problem is formulated as:

Minimize
w

k∈K̃(D)∈CL

∑
k∈K̃(D)

Q

R̃unc,k
, s.t. R̃unc,k ≥ γ,∀k ∈ K̃(D). (15.23)

By using a similar technique as that in in Sections 15.4.1 and 15.5.1, we can obtain
the solutions of problems (15.22) and (15.23), respectively.
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15.7 Numerical Results

The effectiveness of the proposed designs are demonstrated via numerical results, which
are measured over 500 channel realizations. In the figures, we use SDR to refer to the
SDR-based precoding design for the uncoded caching and ZF to refer to the zero-forcing
design in Section 15.4.1.1. In addition, the system parameters are as follows: N =
1,000 files, L = 10 antennas, K = 8 users, B = 1 MHz, η = 10−6 bits/Joule [13],
σ2

hk
= 1,∀k, Q = 10 Mb, γk = 2 Mbps ,∀k.

15.7.1 Energy Efficiency Performance

Figure 15.2a plots the EE performance of the two caching strategies as a function of Mu

N
,

the normalized cache size, and no cost on the backhaul. In general, it is observed that the
SDR-based uncoded caching design is more efficient than the coded caching for small
cache sizes. This interesting observation suggests an important guideline for employing
the uncoded caching in practice because user storage capacity is usually small. For user
storage capacity larger than 20% of the library size, i.e., N , it is better to switch to the
coded caching. Furthermore, it is shown that SDR-based design always surpasses the
ZF for all cache sizes, which confirms the efficiency of SDR over the ZF.

Figure 15.2b shows the EE performance for various user cache sizes with Mb = 0.7N

(backhaul’s cost is counted). In this case, the coded caching strategy performs better than
its counterpart uncoded caching when the users are able to cache certain files. The larger
the cache size, the better the coded caching outperforms the uncoded method. Focusing
on the uncoded caching strategy, the SDR design achieves slightly better EE than the
ZF design, at the cost of higher complexity (Table 15.3). The relationship between the
EE version and the user cache size is presented in Figure 15.2c for small BS and user
storage capacities. An interesting observation is that that the uncoded caching surpasses
the coded caching method, which is in agreement with Figure 15.2b. Figure 15.2d plots
the EE versus the BS cache size with Mu = 0.5N . It is shown that caching at the
BS affects both caching strategies. Furthermore, coded caching is more efficient than
uncoded caching regardless Mb.

The EE under non-uniform Zipf distribution is presented in Figure 15.3a as a function
of the normalized user cache size. Note that only the uncoded caching algorithm is
shown. Under the Zipf content popularity distribution, we have qk,n = n−α∑N

i=1 i−α
,∀k.

The figure shows that the SDR-based design achieves a significantly larger EE than ZF.
Specifically, the SDR achieves an EE of almost 3 times higher than the ZF design when
the user is able to store up to 40% the library. It is also observed that a larger Zipf

Table 15.3 Simulation Time in Seconds, m = K − 1

K Coded Uncoded-SDR Uncoded-ZF
4 0.197 0.384 8.7e-5
8 0.204 1.131 10e-5
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Figure 15.2 Energy efficiency of the two caching methods. (a) EE versus normalized user cache
size, cost-free on backhaul; (b) EE versus normalized user cache size; (c) EE versus normalized
user cache size with small values (d) EE versus normalized BS cache size.
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Figure 15.3 Energy efficiency of the uncoded caching algorithm with Zipf content popularity
distribution with different Zipf exponents.
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Figure 15.4 Delivery time of the two caching methods versus the normalized user memory Mu.
Average transmit power is 10 dB.

exponent factor provides higher EE. In such cases, the requests are more concentrated
to the most popular files. Figure 15.3b shows the EE performance for various BS cache
sizes. Similar conclusions are obtained, i.e., the SDR design is more efficient than the
ZF design.

15.7.2 Delivery Time Performance

Figure 15.4 plots the delivery times for various user cache sizes with K = 8 and
P� = 10 dB. When the user is equipped with a small storage memory, employing
uncoded caching is more efficient than the coded caching policy. As the cache size
increases, the coded-caching policy performs better than the uncoded caching. From
practical point of view, employing which strategy depends on the memory availability in
order to exploit the benefit of both caching strategies. We also observe that the uncoded
caching performance is linearly proportional to the cache size, which is in line with
Proposition 2.

Figure 15.5 presents the delivery times as a function of the BS transmit power.
Spending more transmit power will significantly decrease the delivery times in both
caching policies. It is shown that in the small user cache size regime (Figure 15.5a), the
uncoded caching strategy spends less time serving the requests than the coded caching
method, which is also observed from Figure 15.4. In the large cache size regime,
(Figure 15.5b), the coded caching strategy is more efficient than the uncoded caching. In
addition, the SDR and ZF-based designs obtain the same performance for large transmit
power, which is because a transmission with high transmit power can accommodate both
SDR and ZF.

Figure 15.6 presents the effect of the number of users on the delivery times for a
given BS transmit power. When there are less active users, e.g., small K , the uncoded
caching slightly outperforms the coded caching method. When there are more active
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Figure 15.5 Delivery time of the two caching methods versus the average transmit power.
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Figure 15.6 Delivery time of the two caching methods versus the number of users. Average
transmit power is 10 dB, Mu = 0.4N .

users, e.g., large K , the uncoded caching is defeated by the coded caching. This is
reasonable because larger K is equivalent to having larger total cache size, thus the
coded caching algorithm is more efficient.

15.8 Conclusions

There have been two popular coded and uncoded caching strategies in the edge caching
wireless networks whose performance in terms of energy efficiency and delivery time
depend on key system parameters, e.g., cache size, number of users, and transmit power.
By jointly designing the signal transmission while taking into consideration the cached
contents, we can significantly improve the performance metrics of interests. In general,
the coded caching achieves better performance than the uncoded caching if the user
cache size is sufficient large. This result provides a useful guideline on the implementa-
tion of which caching policy to use in practice.
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16 Cache-Enabled UAVs in Wireless
Networks
Mingzhe Chen, Walid Saad, and Changchuan Yin

16.1 Introduction

Drones, small aircrafts, and tethered balloons are being considered to provide service
to ground wireless users that cannot be served by the ground communication system.
Compared to traditional ground communication systems, an unmanned aerial vehicle
(UAV) based wireless system is flexible to deploy and can provide line-of-sight links for
wireless communications so as to improve the data rates of the ground users. However,
enabling the UAVs to service wireless ground users requires a high data rate and reliable
wireless connections to ground base stations (BSs) or to the core network. Meeting these
requirements is very challenging due to the inherent bandwidth and spectrum limitations
of wireless transmission links. To address this challenge, one promising solution is
to use content caching techniques at the level of UAVs. In such cache-enabled UAV
networks, UAVs can cache content locally (e.g., at off peak hours) and then directly
send the stored content to ground users so as to reduce the traffic over UAV-BS links
and UAV-core network links.

Caching at ground BSs has been studied in many existing works such as in [1–7]. A
content pushing scheme is developed in [1] to decrease the traffic load. The authors in
[2] used echo state networks (ESNs) for the predictions of the users’ content request
distribution and mobility. In [3], the authors developed a cache-enabled framework,
during which BSs can store multimedia content in advance to efficiently serve users.
The authors in [4] proposed a hierarchical framework in cloud radio access networks
(C-RANs) for caching. The work in [5] used a centralizer to make decisions for all BSs
so as to determine the cached contents. In [6], the authors proposed a caching strategy
to reduce the traffic load over backhaul. The authors in [7] proposed a caching strategy
to offload the fronthaul traffic. However, mobile users may not be effectively served as
the cache is placed at static ground BSs in cases of frequent handovers. In particular, as
a given ground user connects to a new ground BS, the contents that the ground user
requests may not be stored at the new BSs. In consequence, the new BSs may not
efficiently service the ground users that need to connect to the new BSs. In order to serve
ground users effectively, one can store the contents that the users request at multiple

This work was supported in part by the National Natural Science Foundation of China under Grant 61671086
and Grant 61629101, the 111 Project under Grant B17007, the Director Funds of Beijing Key Laboratory of
Network System Architecture and Convergence under Grant 2017BKL-NSAC-ZJ-04, the BUPT Excellent
Ph.D. Students Foundation, and in part by the U.S. National Science Foundation under Grants IIS-1633363.
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ground BSs. However, this caching scheme will waste caching storage and increase
signaling overheads. In consequence, to improve caching efficiency, it is necessary to
deploy cache-enabled UAVs that can change their deployment according to the users’
mobility so as to effectively transmit the contents that are requested by the ground users.

The cache-enabled UAVs can be used for air BSs, relays, and user equipment [8].
In particular, when UAVs act as BSs or relays, they can cache the contents requested
by the users and send these contents to the ground users so as to reduce delay. When
the UAVs act as user equipment, they can cache data files collected via cameras and
sensors, which are used for generating videos. Recently, research [8–14] has investigated
a number of cache-enabled UAV problems. In [9] and [10], the authors proposed a
scheme for UAV-based networks by using proactive caching techniques. The authors
in [11] optimized the resource allocation in a cache-based UAV network. A UAV-based
transmission scheme is proposed in [12] for scalable videos in hyperdense networks.
The work in [8] and [13] review the opportunities and challenges for the cache-enabled
cellular connected UAVs. The authors in [14] introduced four representative scenarios
to explain the applications of UAV-based networks in caching, energy transfer, and
communications. However, a number of opportunities and challenges in cache-enabled
UAV networks still needs to be solved. First, since the communication links of UAVs
are line of sight (LoS) and the mobility of UAVs is flexible, one can study the coop-
erative caching for UAVs so as to improve the caching hit ratio and thus efficiently
service the users on the ground. Moreover, it is of interest to consider content delivery
with caching for cache-enabled UAVs. In particular, one can study how to change the
cache-enabled UAV deployment so as to maximize the content delivery rate of the links
from core network to the cache-enabled UAVs and from the UAVs to users. In addition,
due to the capacity-limited battery installed at UAVs, it is natural to investigate how
to use caching technology to improve the energy efficiency of cache-enabled UAVs.
In addition, it is imperative to investigate the machine learning–based algorithm to
investigate the behaviors of mobile users so as to optimize the routing path, cached
content, and deployment of cache-enabled UAVs. Finally, to enable the cache-enabled
UAVs to service the emerging wireless services, such as virtual reality applications, it is
necessary to consider cache-enabled UAVs with other optimizing metrics such as delay
and computation.

In this chapter, we study one application of cache-enabled UAVs in C-RANs so as to
maximize the users’ quality of experience (QoE).

16.2 Cache-Enabled UAVs for Users’ QoE Maximization

In this section, we study how a network can deploy cache-enabled UAVs that can change
their deployment based on the users’ locations and service the mobile users so as to
maximize the users’ QoE in a C-RAN. In particular, we develop a novel prediction algo-
rithm based on the conceptor-based echo state networks [15] for the predictions of the
users’ content request distributions and mobility patterns. Based on these predictions,
the locations of cache-enabled UAVs and the contents stored at the UAV cache can be
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determined and the users’ QoE can be maximized. First, we motivate the problem and
develop a basic system model. Then, we present a novel prediction algorithm based on
an echo state network to predict the users’ content request distributions and mobility pat-
terns. Based on these predictions, the optimal deployment of cache-enabled UAVs and
optimal cached contents can be determined. We conclude by evaluating the performance
of cache-enabled UAVs via simulations.

16.2.1 Motivation

In a C-RAN, various wireless users are served by a large amount of remote radio heads
(RRHs) connected with cloud-based baseband units (BBUs) via fronthaul links [16].
In order to improve the spectral efficiency, one can implement cooperative signal pro-
cessing techniques at the BBUs [17]. However, a C-RAN performance will be limited
by the capacity-limited backhaul (C-RAN to core) and fronthaul links [17]. In fact,
due to the C-RAN feature, it it impossible to rely on backhaul and fiber fronthaul
links. Hence it is necessary to find methods to overcome the problems related to the
capacity limited backhaul and fronthaul links. Caching techniques [18–22] in which
the ground users can receive content from cache placed at the RRH or cloud level can
be utilized to reduce the data traffic load over backhaul and fronthaul links in C-RANs.
However, deploying cache in a C-RAN faces multiple challenges, such as determina-
tion of cache placement, accurate content request distribution predictions, and optimal
cache update.

Recently, a number of existing works have studied the a number of problems related
to caching such as [1–7, 23–25]. However, the existing literature, such as [1–7, 23–25],
can be used only for a static network during which the users cannot move. This is due
to the fact that the cache in the existing works [1–7, 23–25] is placed at the static
terrestrial BSs. However, the cache-enabled ground static BSs cannot satisfy the high
data rate requirements of the users in an area with high-rise buildings (i.e., hotspots
or stadiums) and ultradense users. Moreover, cache-enabled ground static BSs cannot
service the mobile users efficiently since they may move outside the BSs’ coverage
range. Hence it is necessary to investigate a base station that can move and can track
the mobility patterns of the users so as to improve the caching efficiency. In such a case,
UAVs must be used as flying base stations to track the ground users’ mobility patterns,
store the popular content, and then effectively service them. Due to the UAVs’ flexible
deployment, they can build reliable transmission links between the UAVs and users by
the mitigation of the blockage effect.

Using UAVs for improving wireless communications was studied in [26–33]. How-
ever, the existing works such as in [26–33] focused on the performance analysis of
deploying UAVs over wireless networks. They completely ignored the user behavior
predictions and did not investigate deploying cache at UAVs. In fact, the user behavior
prediction such as mobility pattern prediction enables the UAVs to move effectively,
thus immediately servicing the ground users. Moreover, deploying UAVs into a C-RAN
must consider the fact that the UAV-cloud transmission links will be capacity limited.
This is because the transmission links between UAVs and the cloud are wireless, and
the bandwidth of the UAV-cloud transmission links is limited. To solve this challenge,
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Figure 16.1 A C-RAN with cache-enabled UAVs.

the network can use caching techniques to store the contents at the UAVs. Cache-
enabled UAVs can transmit the contents to its requested users and offload the traffic
over fronthaul links.

16.2.2 Basic Problem

Consider a downlink C-RAN network that consists of a set U ground users and a set R
RRHs. We assume that the RRHs are grouped into E clusters via K-mean clustering
approach [34], as shown in Figure 16.1. In consequence, the RRHs and UAVs use zero-
forcing beam-forming (ZFBF) [35] to serve the ground mobile users. In this model, a
set K cache-enabled UAVs and ground RRHs jointly service the ground mobile users.
For the UAV–user transmission links, since UAVs are located at high altitude and the
blocking effect due to obstacles can be reduced, we use the millimeter wave (mmWave)
frequency spectrum for air-to-ground transmissions from UAVs to the ground users.
Meanwhile, the cellular band is used for the transmission from ground RRHs to the
users. The RRHs are associated with the BBUs using capacity-limited fronthaul links.
Moreover, the content servers are associated with the BBUs using fiber backhaul links.
The licensed cellular band is used for the wireless fronthaul links from the UAVs to the
cloud. In consequence, the wireless UAV-cloud fronthaul links will interfere with the
RRH-ground mobile user transmission links.

In this model, a set N of N content that is requested by all of the ground mobile users
is stored at the content server. We assume that each content data size is L. UAV cache
is used to cache the users’ requested contents. Caching the contents that are requested
by the users can significantly reduce the transmission delay of the content server–UAV
transmission links since cache-enabled UAVs can directly transmit their cached contents
to their associated ground users.

We assume that a set Ck contents is stored at cache of UAV k. We also assume that,
at each time slot τ, each ground mobile user will request only one content. �τ denotes
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the duration of each time slot τ. The contents cached at the UAV will be updated every
T time slots.

For pedestrian mobility patterns, we consider a realistic model in which each user
will periodically visit a number of certain locations. For instance, a certain ground
user will often work at the same office during weekdays. In this system, the BBUs will
collect the users’ locations once every H time slots. We also assume that each ground
mobile user moves with a constant speed. The mobility pattern of each user can be used
to decide the cached contents and the optimal locations of UAVs, thus impacting each
user’s QoE. In this system, the ground mobile user association will change according to
the requirement of QoE. To service the ground mobile users effectively, one must adjust
the deployment of the UAVs as the users’ locations continuously vary.

The transmission models of BBU–UAV links, UAV–user links, and RRH–user links
are introduced next. We assume that a time slot τ consists of F equally time inter-
vals �t , which is given by �τ = F�t . We also assume that the duration of a time
interval �t is sufficiently small. In consequence, the location of each user is constant
[27]. The standard log-normal shadowing model [36] is used to model the UAVs–user
transmission links over mmWave. By setting specific parameters, this model can be used
to model the non-line-of-sight (NLoS) and LoS links. In consequence, for UAV k that is
located at

(
xτ,k,yτ,k,hτ,k

)
and sending a content to user i, the NLoS and LoS pathloss

at interval t is (in dB) [37]:

lLoS
t,ki

(
wτ,t,k,wτ,t,i

) = LFS (d0)+ 10μLoS log
(
dt,ki

(
wτ,t,k,wτ,t,i

))+ χσLoS, (16.1)

lNLoS
t,ki

(
wτ,t,k,wτ,t,i

) = LFS (d0)+ 10μNLoS log
(
dt,ki

(
wτ,t,k,wτ,t,i

))+ χσNLoS,

(16.2)

where wτ,t,k =
[
xτ,k,yτ,k,hτ,k

]
represents UAV k’s coordinate. Here, hτ,k is UAV k’s

altitude. Meanwhile, wτ,t,k =
[
xt,i,yt,i

]
represents user i’s coordinate at interval t .

Finally, LFS (d0) is the free space pathloss that is expressed by 20 log
(
d0fc4π

/
c
)
,

where d0 represents the reference distance, c is the light speed, and fc is the car-
rier frequency. The distance between user i and UAV k is dt,ki

(
wτ,t,k,wτ,t,i

) =√(
xt,i − xτ,k

)2 + (yt,i − yτ,k
)2 + h2

τ,k; μNLoS and μLoS, respectively, represent
the pathloss exponents of NLoS and LoS links; and χσNLoS and χσLoS represent the
shadowing random variables, which the Gaussian distribution with σNLoS, σLoS standard
deviations, and zero mean.

The LoS connection probability relies on the height and density of buildings, the
elevation angle between the user and the UAV, as well as the UAVs’ and users’ locations.
Then, the LoS connection probability can be given by [26]:

Pr
(
lLoS
t,ki

)
= (

1+X exp
(−Y

[
φt −X

]))−1
, (16.3)

where Y and X are constants and φt = sin−1 (hτ,k/dt,ki

(
wτ,t,k,wτ,t,i

))
represents the

elevation angle. The average pathloss between UAV k and user i can be given by [29]:

l̄t,ki

(
wτ,t,k,wτ,t,i

) = Pr
(
lLoS
t,ki

)
× lLoS

t,ki + Pr
(
lNLoS
t,ki

)
× lNLoS

t,ki , (16.4)
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where Pr
(
lNLoS
t,ki

)
= 1 − Pr

(
lLoS
t,ki

)
. Based on this pathloss model, for user i that is

located at wτ,t,i and associated with UAV k, the average signal-to-noise ratio (SNR) is
given by:

γV
t,ki =

Pt,ki

10l̄t,ki(wτ,t,k,wτ,t,i )
/

10σ2
, (16.5)

where Pt,ki indicates the transmit power of UAV k, and σ2 represents the Gaussian
noise. Let BV be the total bandwidth of each UAV. The total bandwidth of each UAV is
equally allocated to the connected users. For user i associated with UAV k, the channel
capacity is given by:

CV
τ,ki =

1

Fτ,i

Fτ,i∑
t=1

BV

Uk

log2
(
1+ γV

t,ki

)
, (16.6)

where Uk represents the number of users that are associated with UAV k. Fτ,i is the
number of intervals for which each user i requests a content.

The probabilistic NLoS and LoS links over Sub-6 GHz band are considered for the
BBU–UAV links, since the content transmission using Sub-6 GHz band will have a
smaller pathloss and a more reliable transmission compared to the use of mmWave
band. The NLoS links will experience higher attenuations compared to the LoS links
due to the diffraction loss. The pathloss of the NLoS and LoS BBU-UAV k transmission
links are [26]:

LLoS
t,k = dt,ki

(
wτ,t,k,wτ,t,B

)−β
, (16.7)

LNLoS
t,k = ηdt,ki

(
wτ,t,k,wτ,t,B

)−β
, (16.8)

where wτ,t,B =
[
xB,yB

]
represents the BBUs’ location, and β denotes the exponent

of the pathloss. According to (16.3)–(16.5), for the link between UAV k and the BBUs,
one can calculate the average SNR and LoS probability.

For the users connected to RRH cluster q, the received signals at interval t can be
given by:

bt,q =
√

PRH t,qF t,qat,q + n, (16.9)

where H t,q ∈ RUq×Rq represents the pathloss matrix. Here Uq denotes the number
of users connected to RRH cluster q. Rq represents the number of antennas of
each RRH. PR represents each RRH’s transmit power. at,q ∈ RUq×1 represents the
content that needs to transmit at interval t . nt,q ∈ RUq×1 denotes the noise power.

F t,q = HH
t,q

(
H t,qHH

t,q

)−1 ∈ RRq×Uq represents the beam-forming matrix [38]. We

also assume that each user’s bandwidth is B. For user i within cluster Mq , the received
signal-to-interference-plus-noise-ratio (SINR) at interval t is

γH
t,qi =

PR

∥∥ht,qif t,qi

∥∥2

E∑
j=1,j �=q

∑
u∈Uj

PR

∥∥ht,j if t,ju

∥∥2

︸ ︷︷ ︸
other cluster RRHs interference

+ PBgt,Bid
−β
t,Bi︸ ︷︷ ︸

wireless fronthaul interference

+σ2

,
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where Mj represents a set of RRHs in cluster j , Uj represents a set of users associated
with the RRHs in cluster j , ht,qi ∈ R1×Rq represents the channel gain from the RRHs
to the users in group Mq , where ht,ki = gt,kidt,ki (xi,yi)

−β. gt,ki represents the param-

eters of the Rayleigh fading at interval t . dt,ki (xi,yi) =
√(

xt,k − xt,i

)2 + (yt,k − yt,i

)2

is the distance between RRH k and user i. f t,qi ∈ RRq×1 indicates the beam-forming
vector. Given each user i associated with the RRHs in cluster Mq , the channel capacity
of transmitting each content can be given by:

CH
τ,qi =

1

Fτ,i

Fτ,i∑
t=1

Blog2

(
1+ γH

t,qi

)
. (16.10)

Next, we introduce each user’s QoE model. In our work, the QoE of each user cap-
tures the delay, data rate, and device type of each user.

In the considered system, the users can receive the contents by three types of trans-
mission links: (1) content servers–BBU–RRH–user, (2) content servers–BBU–UAV–
user, and (3) UAV cache–user. In our model, the links between the core network and the
cloud is fiber. In consequence, the transmission delay between the cloud and the core
network can be neglected. The capacity of the wired BBU–RRH link is assumed to be
limited, and its maximum data rate for all users is vF . In consequence, the BBU–RRH
fronthaul data rate for each user can be given by vFU = vF

/
NFR , with NFR being the

number of users that receive the content from RRHs. Hence for a user i that receives a
content n, the delay is

Dτ,i,n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L

vFU
+ L

CH
τ,qi

, link (a) ,

L

CF
τ,k
+ L

CV
τ,ki

, link (b) ,

L

CV
τ,ki

, link (c) ,

(16.11)

where CF
τ,k is the data rate of the transmission link between UAV k and the BBUs. The

sensitivity to the delay is categorized into five levels via the mean opinion score (MOS)
model [39]. The mapping between the MOS model [39] and delay can be given by:

D̄τ,i,n = �τ −Dτ,i,n

�τ −min
{

L
vF

, L
Cmax

K

}, (16.12)

as shown in Table 16.1.
The screen size of each device will affect each user’s QoE. In fact, users whose

devices have larger screens may be more sensitive to QoE compared to those who have
smaller devices (such as small smartphones). The screen size’s impact is captured by a
parameter Si , which reflects the length of the device of each user. In particular, a device
with a larger screen must display a content with a higher resolution. Therefore, the user

Table 16.1 Mean Opinion Score Model [39]

QoE Poor Fair Good Very Good Excellent

Interval scale 0–0.2 0.2–0.4 0.4–0.6 0.6–0.8 0.8–1
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that owns a larger screen requires a higher data rate. For user i that uses device Si to
receive a content n, the data rate requirement can be given δSi,n = SiĈn, with Ĉn being
the data rate requirement. The mapping from the data rate requirement δSi,n to the MOS
model can be given by:

Vt,i =
{

1, j ≥ δSi,n,

0, j < δSi,n,
(16.13)

where j ∈
{
CV

t,ki,C
H
t,qi

}
. Vt,i = 1 means that user i’s data rate meets the requirement,

Vt,i = 0, otherwise. For each user i that receives content n, the QoE is [39]:

Qτ,i,n = ζ1D̄τ,i,n + ζ2

Fτ,i

Fτ,i∑
t=1

Vt,i, (16.14)

where ζ1 and ζ2 are the weighting parameters with ζ1 + ζ2 = 1.
Next, we first determine the minimum data rate required to meet the QoE require-

ment. Then, we decide each UAV’s minimum transmit power that can meet the QoE
requirement of its connected users. Finally, we introduce the minimization problem.
Table 16.1 shows that, as 0.8 ≤ D̄τ,i,n ≤ 1, the delay MOS will be “excellent”. This
indicates that a given user’s delay is minimized. In such a case, the minimum value that
can maximize the delay is D̄min = 0.8. Based on (16.11), for UAV k that transmits a
content n to user i, the delay requirement of user i is

CR
τ,ki,n =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L(

�τ−D̄min

(
�τ−min

{
L

vF
, L

Cmax
k

})
− L

CF
τ,k

),n /∈ Ck,

L(
�τ−D̄min

(
�τ−min

{
L

vF
, L

Cmax
k

})), n ∈ Ck .
(16.15)

Eq. (16.15) shows that, as UAV k stores a content n, the requirement of the delay
decreases.

We assume that user i’s device data rate requirement is δSi,n. Hence, the QoE is

optimized as CV
t,ki ≥ max

{
CR
τ,ki,n,δSi,n

}
. In consequence, the minimum data rate that

is needed to optimize the QoE of each user i is given by δR
i,n = max

{
CR
τ,ki,n,δSi,n

}
.

Given (16.5), the minimum transmit power that is required to meet the QoE requirement
at interval t can be given by:

P min
t,ki

(
wτ,t,k,δR

i,n,n
)
=
(

2δ
R
i,nUk/BV − 1

)
σ210l̄t,ki(wτ,t,k,wτ,t,i )

/
10. (16.16)

Eq. (16.16) shows that UAV k’s minimum transmit power depends on the transmitted
content n, the data rate that is required to meet user i’s QoE requirement, and UAV’s
location.

Given the proposed model, our purpose is to design an effective deployment for
UAVs so as to improve each user’s QoE while minimizing the UAVs’ transmit power.
This QoE maximization problem is given by:

min
Ck,Uτ,k,wτ,t,k

T∑
τ=1

∑
k∈K

∑
i∈Uτ,k

Fτ,i∑
t=1

P min
τ,t,ki

(
wτ,t,k,δR

i,n,nτ,i

)
, (16.17)
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s. t. hmin ≤ hτ,k,k ∈ K, (16.17a)

m �= j,m,j ∈ Ck,Ck ⊆ N ,k ∈ K, (16.17b)

0 < P min
τ,t,ki ≤ Pmax,i ∈ U,k ∈ K, (16.17c)

where P min
τ,t,ki represents UAV k’s minimum transmit power to user i. nτ,i indicates

the content requested by user i. Uτ,k represents a set of users connected to UAV k.
hmin represents each UAV’s minimum altitude. Eq. (16.17b) indicates that each UAV
cache can store a unique, single contrent: Eq. (16.17c) captures the fact that each UAV’s
transmit power must be minimized. Since the problem in (16.17) is to meet the data
rate that is needed to maximize each user’s QoE at future time slots, the user behavior
predictions will significantly affect the solution. Eq. (16.17) shows that the mobility
pattern prediction enables the BBUs to determine each UAV’s optimal location. Mean-
while, the prediction related to the content requests enables the BBUs to find the optimal
cached contents of UAVs. Moreover, since the transmission links impacts the UAVs’
transmit power needed to satisfy the QoE requirement, the problem in (16.17) includes
the optimization of cached contents.

16.2.3 Conceptor Echo State Networks for Content Request Distribution and Mobility
Pattern Predictions

Next, we introduce a conceptor-based ESN prediction approach for the predictions of
the content request distributions and mobility patterns of each user. These predictions
will be used in Section 16.2.4 to determine the optimal cached contents at UAVs, the
UAVs’ optimal locations, and user-UAV association. We first specify the components
of the prediction approach. Next, we introduce how the prediction approach for the
predictions of the mobility patterns and content request distribution of each user.

16.2.3.1 Components of the Conceptor-Based ESN
The conceptor-based ESN prediction algorithm has four components: input, output,
ESN model, and conceptor.

The components of the conceptor-based ESN learning algorithm for content request
distribution prediction is given as follows:

• Input: The input of the conceptor-based ESN learning algorithm is a vector xt,j =[
xtj1, · · · ,xtjNx

]T that denotes user j ’s context including occupation, gender,
device type (e.g., smartphone or tablet), and age. In this vector, Nx represents
the number of properties of each user j ’s context information.

• Output: The output of the conceptor ESN learning algorithm is yt,j =[
ptj1,ptj2, . . . ,ptjN

]
, which denotes the content request distribution probability

of user j , where ptjn represents the probability that user j requests content n.

• ESN model: An ESN model of the conceptor ESN prediction algorithm of
each user j is used to find the relationship between the output yt,j and input
xt,j so as to build the function between the content request distribution and
the user’s context. Typically, an ESN model consists of the recurrent matrix
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W α
j ∈ RNw×Nw , the input weight matrix W

α,in
j ∈ RNw×Nx , and the output weight

matrix W
α,out
j ∈ RN×Nw . Here, the dynamic reservoir consists of the input

weight matrix W
α,in
j ∈ RNw×Nx and the input weight matrix W

α,in
j ∈ RNw×Nx .

Nw represents the number of neurons in the dynamic reservoir.
The dynamic reservoir of each user j is used to record each user’s historical

context. The output weight matrix W
α,out
j and the reservoir can be used to predict

the content request distribution. The generation of the ESN model is given in [40].

• Conceptors: To predict the content request distribution, one must collect the con-
tent requests and each user’s context information at the same time slots in different
weeks so as to train the conceptor ESN model. In this model, each content request
distribution is referred to one prediction pattern. The reservoir states are given by

vi
j =

[
vi

1,j, . . . ,v
i
t,j

]
, where vi

t,j =
[
vi
t,j1, . . . ,v

i
t,jNw

]T
represents the predic-

tion pattern of i’s reservoir state at time t and Ri
j = E

[
vi
t,j

(
vi
t,j

)T]
is the state

correlation matrix. Then, prediction pattern i’s conceptor can be given by [41]:

M i
j = Ri

j

(
Ri

j + χ−2I
)−1

, (16.18)

where χ is aperture, which is defined in [41]. To accurately learn several
prediction patterns, the aperture χ must be set appropriately. As the aperture
is small, the states of the reservoir of the conceptor ESN will slightly change to
learn a new prediction pattern. However, as a aperture is large, the states of the
reservoir will change significantly to learn a new prediction pattern.

The components of the conceptor ESN learning algorithm for the prediction of the
mobility pattern include the following:

• Input: The input is a vector mt,j =
[
mtj1, . . . ,mtjNx+1

]T, which represents user
j ’s current location and context at time t . The input mt,j is used to predict each
user j ’s future locations.

• Output: The output of the conceptor ESN algorithm for the mobility pattern
prediction is a vector st,j =

[
stj1, . . . ,stjNs

]T, which denotes each user j ’s
predicted locations in the next time slots, with Ns being the number of predicted
locations.

• ESN model: The ESN model of the conceptor ESN algorithm for mobility pattern
prediction also consists of the dynamic reservoir and the output weight matrix
W out

j ∈ RNs×Nw . Similar to the ESN model used for the prediction of the con-
tent request distribution, the dynamic reservoir of an ESN model consists of the
recurrent matrix W j ∈ RNw×Nw and the input weight matrix W in

j ∈ RNw×Nx+1.
The generation of an ESN model for the mobility pattern prediction is similar to
the ESN model that is used for content request distribution prediction.

• Conceptors: The mobility of each user in each day is referred to one prediction
pattern. The equation of the conceptors for the prediction of the mobility patterns
is similar to the equation given in (16.18).
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16.2.3.2 Predictions of Content Request Distribution and Mobility Patterns
Next, we introduce the learning approach for the predictions of the mobility patterns
and content request distribution. The prediction procedure has two stages: the training
stage and the prediction stage.

For the training stage, user j ’s prediction pattern i’s dynamic reservoir state vi
t,j is

[40]:

vi
t,j = f

(
W α

j vi
t−1,j +W

α,in
j xt,j

)
, (16.19)

where f (x) = ex−e−x

ex+e−x . Here, the input and its corresponding output is training data that
consist of Ntr contexts of each user. Using (16.19) and Ntr training data, for each predic-

tion pattern j , the reservoir states before update are vi
old,j =

[
0,vi

1,j, . . . ,v
i
Ntr−1,j

]
. The

reservoir states after update are vi
j =

[
vi

1,j, . . . ,v
i
Ntr,j

]
. vi

old,j will be used for training

an input simulation matrix Dj ∈ RNw×Nw . vi
j with the updated reservoir states can be

used to update W
α,out
j .

Dj with W
α,out
j can be used to predict each prediction pattern. The procedure of

adding prediction pattern i to user j and updating Dj can be given by [41]:

Dj = Dold,j +Di
inc,j, (16.20)

where Di
inc,j =

((
SST

/
Ntr + χ−2I

)†
ST T/Ntr

)T
, S = F i−1

j vi
old,j , and T = W

α,in
j xi

j−
Dold,j vi

old,j . In (16.20), F i−1
j = ¬ ∨

{
M1

j, . . . ,M
i−1
j

}
represents the reservoir’s

memory that has not been used to record the input data, where ¬ and ∨ represent

the Boolean operators. xi
j =

[
xi

1,j, . . . ,x
i
Ntr,j

]
represents prediction pattern i’s input

sequences. During the training stage, M i
j will be updated based on (16.18).

W
α,out
j in the conceptor ESN learning algorithm can be trained in an offline manner

via the ridge regression method [40] so as to approximate the prediction function. The
training procedure can be given by:

W
α,out
j = yj vT

j

(
vT
j vj + λ2I

)−1
, (16.21)

where vj =
[
v1
j,v

2
j, . . . ,v

NM

j

]T
, vi

j =
[
vi

1,j, . . . ,v
i
Ntr,j

]
represents the sequence of

the prediction pattern i’s reservoir states, λ denotes the learning rate, and NM is the
number of the content request distribution prediction patterns of each user. vi

j will also

be utilized to update the conceptor M i
j for user j ’s prediction pattern i.

After training the ESNs and conceptors, the matrices Dj , W
α,out
j , and the conceptors

Mj =
[
M1

j, . . . ,M
NM

j

]
can be used for the predictions of the user’s mobility patterns

and content request distributions. During the prediction stage, the reservoir states of user
j ’s prediction pattern i can be given by [41]:

vi
t,j = Ci

j f
(
W α

j vi
t−1,j +Dj vi

t−1,j

)
. (16.22)
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Table 16.2 The Conceptor ESN Prediction Algorithm

Inputs: Ntr training data,

Training Stage:

for each prediction pattern i do.
if the reservoir memory’s space F i−1

j
> 0 do.

(a) BBUs collect the reservoir states vi
old,j and vi

j
to update Dj , using

(16.20).
(b) BBUs use the reservoir states vi

j
to calculate Ci

j
using (16.18).

else
(c) Update the reservoir matrix Wα

j
, retrain all prediction patterns.

end if
end for

(d) BBUs collect the reservoir states for all prediction patterns vj to train

W
α,out
j

using (16.21).

Prediction Stage:

(a) BBUs choose the conceptor to get the corresponding reservoir states
based on (16.22).

(b) Obtain the content request distribution prediction based on (16.23).

Output: Prediction yt,j

Eq. (16.22) shows that the conceptor of prediction pattern j , Ci
j , determines the reser-

voir states’ update. Through changing Ci
j , the conceptor-based ESN learning algorithm

can predict different prediction patterns using one ESN model. In such case, content
request distribution i’s prediction is given as follows:

yt,j = W
α,out
j vi

t,j . (16.23)

Eq. (16.22) and (16.23) show that the conceptor-based ESN prediction algorithm uses a
matrix Dj to manage the ESN’s reservoir memory. The process of using the proposed
algorithm for the prediction of each user j ’s content request distribution is given in
Table 16.2. The table shows that the proposed algorithm can use a unique nonlinear
system to approximate each prediction pattern. Based on this property, the ESNs can
predict the mobility patterns using different nonlinear systems. Moreover, using the
proposed algorithm, the cloud can learn the information related to the memory of the
reservoir and identify the learned patterns.

16.2.4 Optimal Content Caching and Locations for UAVs

Next, we introduce the use of the predictions to solve the problem (16.17). In the
considered model, the BBUs will select a subset of users to associate with the RRHs.
Then the remaining users will be grouped into K groups. Each UAV will service the
users in one group. Given the predictions and the user association, the optimal cached
contents and locations of UAVs can be determined. Finally, we analyze the complexity
and implementation of the conceptor ESN approach.
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16.2.4.1 RRH-Users Association
The RRH-users association is determined according to the predicted locations of the
users. Typically, the prediction accuracy of each user’s mobility patterns will directly
impacts the user–RRH association. A ground user will connect to the RRHs as the
requirement is satisfied:

theorem 16.1 Given the device screen size Si and the minimum data rate requirement
D̄min of a given user i, a given user i will connect to the RRHs within cluster k if the
following rate condition is satisfied:

CH
t,qi ≥ max

⎧⎨⎩ L(
�τ − D̄min

(
�τ −min

{
L
vF

, L
Cmax

k

})
− L

vFU

),δSi,n

⎫⎬⎭ . (16.24)

Proof According to D̄min and (16.12), the delay of each user i is Dτ,i,n = �τ −
D̄min

(
�τ −min

{
L
vF

, L
Cmax

k

})
. In consequence, the delay requirement of transmitting

content n from RRHs within cluster q to user i is:

CR
τ,qi =

L

�τ − D̄min

(
�τ −min

{
L
vF

, L
Cmax

k

})
− L

vFU

. (16.25)

Hence the delay requirement will be CR
τ,qi . Since δSi,n is the device data rate require-

ment, the data rate of transmitting content n to user i, CH
τ,qi must follow CH

t,qi ≥
max

{
CR
τ,qi,δSi,n

}
.

Theorem 16.1 shows that the RRH–user association is determined by the require-
ments of delay, the data rate, as well as the fronthaul rate. Eq. (16.24) shows that
each user’s fronthaul rate decreases when the number of users connected to the RRHs
increases. This is because as the fronthaul rate decreases, the delay requirement will be
improved. Here we do not consider the RRH energy consumption since the ground can
continuously supply power to the RRHs. However, the UAVs are powered by limited
energy batteries. Thus it is necessary to encourage the ground users to first connect to
the RRHs as the RRHs can satisfy the users’ QoE requirements.

16.2.4.2 Optimal Cached Contents for UAVs
As the users that are associated with the RRHs are determined, the remaining users
will be serviced by the cache-enabled UAVs. In such cases, we need to determine the
users–UAVs association. First, we exploit K-mean approach [34] to divide the users
into K groups. Performing the K-mean algorithm enables the users that are located
near each other to be clustered into one group. We assume that each UAV will serve
one cluster of users and the association between UAVs and the users can be determined.
According to the user-UAV association, the cached contents of UAVs can be determined.
Eq. (16.15) shows that the optimal cached contents of UAVs can reduce the UAV’s
transmit power required to satisfy the QoE requirement of each user. This is due to
the fact that the UAVs can directly transmit the cached contents to the requested users,
and hence the transmission delay decreases and the UAV transmit power is reduced.
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We assume that pj,i =
[
pj,i1,pj,i2, . . . ,pj,iN

]
represents user i’s content request

distribution at period j . The optimal cached contents of each UAV is decided by the
following theorem.

theorem 16.2 The optimal cached contents Ck of UAV k during period T is given
by:

Ck = arg max
Ck

T /H∑
j=1

H∑
τ=1

∑
i∈Uτ,k

∑
n∈Ck

(
pj,in�Pj,τ,ki,n

)
, (16.26)

where �Pj,τ,ki,n =⎧⎨⎩P min
τ,ki

(
CR
τ,ki

)
n/∈Ck

− P min
τ,ki

(
CR
τ,ki

)
n∈Ck

,CR
τ,ki,n/∈Ck

≥δSi,n,

P min
τ,ki

(
δSi,n

)
n/∈Ck
− P min

τ,ki

(
CR
τ,ki

)
n∈Ck

,δSi,n > CR
τ,ki,n/∈Ck

,

and P min
τ,ki

(
CR
τ,ki

)
refers to P min

τ,ki

(
wτ,t,k,CR

τ,ki,n
)

.

Proof Since CR
τ,ki,n is determined by the cached contents of each UAV, it can be

given by δR
i,n = max

{
CR
τ,ki,n(n∈Ck)

,CR
τ,ki,n(n/∈Ck)

,δSi,n

}
. We assume that P min

τ,ki =
Fτ,i∑
t=1

P min
j,τ,t,ki . Then the transmit power reduction of each UAV is given by:

�Pj,τ,ki,n=
⎧⎨⎩ P min

τ,ki

(
CR
τ,ki

)
n/∈Ck

− P min
τ,ki

(
CR
τ,ki

)
n∈Ck

,CR
τ,ki,n/∈Ck

≥δSi,n,

P min
τ,ki

(
δSi,n

)
n/∈Ck
− P min

τ,ki

(
CR
τ,ki

)
n∈Ck

, δSi,n > CR
τ,ki,n/∈Ck

.
(16.27)

Since the content request distribution of each user will change once a period, the power
minimization problem of each UAV k can be given by:

min
Ck

T∑
τ=1

∑
i∈Uτ,k

P min
τ,ki min

Ck

=
T /H∑
j=1

H∑
τj=1

∑
i∈Uτ,k

P min
τj ,ki

= min
Ck

T /H∑
j=1

H∑
τ=1

∑
i∈Uτ,k

P min
j,τ,ki

(a)⇔max
Ck

T /H∑
j=1

H∑
τ=1

∑
i∈Uτ,k

�Pj,τ,ki,n,

(b)= max
Ck

T /H∑
j=1

H∑
τ=1

∑
i∈Uτ,k

⎛⎝∑
n∈Ck

(
pj,in�Pj,τ,ki,n

)+∑
n/∈Ck

(
pj,in�Pj,τ,ki,n

)⎞⎠ ,

= max
Ck

T /H∑
j=1

H∑
τ=1

∑
i∈Uτ,k

∑
n∈Ck

(
pj,in�Pj,τ,ki,n

)
,

(16.28)

where (a) stems from the fact that the minimization of each UAV’s transmit power is
equal to the maximized transmit power reduction due to caching, and (b) is obtained
by using each user’s content request probability distribution to compute the average
transmit power reduction. This completes the proof.
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Theorem 16.2 shows that as all users’ fronthaul data rates are equal, �Pj,τ,ki,n will

be a constant. Hence the optimal cached contents is Ck = arg maxCk

∑T /H
j=1

∑H
τ=1∑

i∈Uτ,k
∑

n∈Ck
pj,in. Theorem 16.2 also shows that the optimal cached contents of each

UAV depends on the user–UAV association and the predictions. In consequence, using
the prediction results, we can decide the optimal cached contents of each UAV.

16.2.4.3 Optimal UAV Locations
Once the UAVs determined the optimal cached contents, the content transmission link
and the delay requirement CR

τ,ki,n will be determined. In consequence, the QoE require-

ment δR
i,n is also decided. Next, a closed form expression of each UAV k’s optimal

location within two special cases is derived.

theorem 16.3 To minimize the transmit power of each UAV k, each UAV k’s optimal
location for the two cases—(a) UAV k is located at low altitude, h2

τ,k �
(
xt,i − xτ,k

)2+(
yt,i − yτ,k

)2
and μNLoS = 2, and (b) UAV k is located at high altitude, h2

τ,k �(
xt,i − xτ,k

)2 + (yt,i − yτ,k
)2

—are given as follows:

xτ,k =

∑
i∈Uτ,k

Fτ,i∑
t=1

xt,iψt,ki

∑
i∈Uτ,k

Fτ,i∑
t=1

ψt,ki

,yτ,k =

∑
i∈Uτ,k

Fτ,i∑
t=1

yt,iψt,ki

∑
i∈Uτ,k

Fτ,i∑
t=1

ψt,ki

, (16.29)

where ψt,ki =
(

2δ
R
i,n/B − 1

)
σ210(LFS(d0)+χσ)

/
10 and σ =

{
σNLoS, for case a) ,

σLoS, for case b) .

Proof As the altitude of each UAV k is very low, h2
τ,k�

(
xt,i − xτ,k

)2+(yt,i − yτ,k
)2,

hτ,k
dt,ki(wτ,t,k,wτ,t,i)

≈0 results in φt = 0◦. Thus Pr
(
lNLoS
t,ki

)
= 1. As such, l̄t,ki

(
wτ,t,k,wτ,t,i

)=
lNLoS
t,ki . Eq. (16.16) can be given as follows:

P min
τ,t,ki=

(
2δ

R
i,n/B − 1

)
σ210

(
LFS(d0)+χσNLoS

)/
10dt,ki

(
wτ,t,k,wτ,t,i

)μNLoS . (16.30)

The derivation of
∑

i∈Uτ,k

Fτ,i∑
t=1

P min
τ,t,ki with respect to xτ,k can be given by:

∂
∑

i∈Uτ,k

Fτ,i∑
t=1

P min
τ,t,ki

∂xτ,k
=

∑
i∈Uτ,k

Fτ,i∑
t=1

∂P min
τ,t,ki

∂xτ,k
=

∑
i∈Uτ,k

Fτ,i∑
t=1

μNLoS
(
xτ,k − xt,i

)
ψt,ki

((
xτ,k − xt,i

)2 + (yτ,k − yt,i

)2 + h2
τ,k

)μNLoS
2 −1

.

(16.31)
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When μNLoS = 2, (16.31) can be simplified to
∑

i∈Uτ,k
∑Fτ,i

t=12
(
xτ,k − xt,i

)
ψt,ki = 0.

As a result, xτ,k =
∑

i∈Uτ,k
∑Fτ,i

t=1 xt,iψt,ki∑
i∈Uτ,k

∑Fτ,i
t=1 ψt,ki

. Similarly, we can obtain that yτ,k =
∑

i∈Uτ,k
∑Fτ,i

t=1 yt,iψt,ki∑
i∈Uτ,k

∑Fτ,i
t=1 ψt,ki

.

For case (b), h2
τ,k �

(
xt,i − xτ,k

)2 + (
yt,i − yτ,k

)2, dt,ki

(
wτ,t,k,wτ,t,i

) ≈ hτ,k .

Thus hτ,k
dt,ki(wτ,t,k,wτ,t,i )

≈ 1→ φt = 90◦. In consequence, Pr
(
lLoS
t,ki

)
= 1. Then we have

l̄t,ki

(
wτ,t,k,wτ,t,i

) = lLoS
t,ki . The derivation of

∑
i∈Uτ,k

∑Fτ,i
t=1 P min

τ,t,ki is

∂
∑

i∈Uτ,k

Fτ,i∑
t=1

P min
τ,t,ki

∂xτ,k

=
∑

i∈Uτ,k

Fτ,i∑
t=1

μLoS
(
xτ,k − xt,i

)
ψt,ki

((
xτ,k − xt,i

)2 + (yτ,k − yt,i

)2 + h2
τ,k

)μLoS
2 −1

≈
∑

i∈Uτ,k

Fτ,i∑
t=1

μLoS
(
xτ,k − xt,i

)
ψt,kih

μLoS−2
τ,k = 0.

As a result, xτ,k =
∑

i∈Uτ,k
∑Fτ,i

t=1 xt,iψt,ki∑
i∈Uτ,k

∑Fτ,i
t=1 ψt,ki

and yτ,k =
∑

i∈Uτ,k
∑Fτ,i

t=1 yt,iψt,ki∑
i∈Uτ,k

∑Fτ,i
t=1 ψt,ki

. This completes

the proof.

As the users association and altitude hτ,k are determined, one can use Theorem 16.3
to find the optimal locations of the UAVs. However, Theorem 16.3 can be applied for
only the two special cases. For more generic cases, it is difficult to use the derivation
for finding the optimal UAV locations. This is because the UAV altitude relies on x and
y coordinates. Hence a learning algorithm given in [42] and [43] can be used to find a
suboptimal locations of UAVs. The conceptor-based ESN learning algorithm can exploit
different actions to find the optimal locations of the UAVs.

In the next section, we present some simulation results so as to show the benefits of
the deployment of cache-enabled UAVs.

16.2.5 Simulation Results

To assess the performance of benefits of cache-enabled UAVs, we set up a circular
C-RAN area. The radius of this C-RAN area is r = 500 m. R = 20 RRHs and U = 70
users are randomly located at this C-RAN area. Table 16.3 lists other simulation
parameters. The data used for the training and content request distribution prediction of
ESN were collected from the Youku of China network video index. The actual mobility
data were collected from the students at the Beijing University of Posts and Telecom-
munications. Three baseline algorithms: (1) optimal algorithm, (2) ESN algorithm
in [2] for the prediction of the mobility pattern and content request distribution, and
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Table 16.3 System Parameters

Parameter Value Parameter Value Parameter Value

F 1,000 Y 0.13 PB 30 dBm
X 11.9 N 25 PR 20 dBm
χσLoS 5.3 H 10 Pmax 20 W

Ntr 1,000 d0 5 m σ2 −95 dBm
Ns 12 λ 0.01 hmin 100 m
Nx 4 β 2 B 1 MHz
μLoS 2 μNLoS 2.4 δSi,n 5 Mbit/s
χ 15 ζ1 0.5 fc 38 GHz
χσNLoS 5.27 η 100 Bv 1 GHz
K 5 C 1 L 1 Mbit
T 120 ζ2 0.5 Nw 1,000

Figure 16.2 Conceptor-based ESN learning algorithm for mobility pattern predictions. Here, the
gray curve denotes the mobility pattern predicted by conceptor-based ESN learning algorithm,
the black curve represents the actual positions. Top rectangle j represents the mobility pattern
index. The legend on the bottom left is the total memory that the ESN has used. The legend on
the bottom right represents the NRMSE of each mobility pattern prediction.

(3) random caching with ESN algorithm in [2] for the content request distribution
prediction. The accuracy of ESN prediction is measured by normalized root mean
square error (NRMSE) [41].

Figure 16.2 shows how the conceptor-based ESN’s memory capacity varies as the
number of the already learned mobility patterns changes. In this figure, each mobility
pattern denotes the trajectory of a given user in one day of a week. The colored
region denotes the memory that has been used by the proposed learning algorithm.
Figure 16.2 also shows that, as the number of the already learned mobility patterns
increases, the ESN memory used for data recording increases. This is because the
conceptor-based ESN learning algorithm exploits a limited-capacity memory to learn
the mobility patterns. In Figure 16.2, we can also see that, compared to pattern 6, the
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Figure 16.3 Content request probability predictions.

proposed algorithm uses less memory to learn mobility pattern 2. This is due to the fact
that mobility pattern 2 is similar to mobility pattern 1. In consequence, the proposed
algorithm needs less memory to learn mobility pattern 2 compared to pattern 6. In fact,
as the conceptor-based ESN learning algorithm needs to learn a new mobility pattern, it
needs only to learn the difference between the mobility patterns that have been learned
and the mobility pattern that will be learned.

Figure 16.3 shows how two content request probabilities of a given user change as
time elapses. Figure 16.3 shows that the probability of the user requesting content 1
decreases at 9:00–11:00 and 14:00–18:00 and increases at other times. Meanwhile, the
probability that this user requests content 2 increases at 9:00–11:00 and 14:00–18:00
and decreases in the rest of the time. This is because content 1 is entertainment content
while content 2 is work-related content. From Figure 16.3, we can also see that the sum
of the probability of this user requesting content 1 and 2 exceeds 0.5. This corresponds
to the fact that a user requests only a small amont of content in each day.

Figure 16.4 shows how the UAVs’ transmit power varies when the number of ground
users changes. The figure shows that, when the number of ground users increases, the
total transmit power of the UAVs increases. This is because, as the number of ground
users increases, the number of ground users connected to the RRHs increases. Thus the
wireless fronthaul data rate decreases. In consequence, the UAVs must use more transmit
power to meet each user’s QoE requirement. Figure 16.4 also shows that the proposed
algorithm can reduce 33.3% and 20% of the transmit power compared to the conceptor-
based ESN learning algorithm without cache and to the conceptor-based ESN learning
algorithm without optimization of the locations of the UAVs in a network with 80 users.

In summary, the developed ESN algorithm can be used for the predictions of the
content request distributions and mobility patterns. These predictions can be used to
determine the optimal location of UAVs and optimal cached contents of UAVs. The
results have shown that, given the accurate predictions of users’ mobility patterns and
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content request distributions, the optimal location of UAVs and optimal caching con-
tents can be determined. The results have also shown that the cache-enabled UAVs can
efficiently service the users so as to maximize the users’ QoE.

16.3 Summary

Caching is envisioned to be a key technique that offloads the traffic over the transmission
links between the UAVs and the cloud in cloud radio access networks. As discussed
in this chapter, cache-enabled UAVs can cache the most popular contents and directly
transmit them to the users without the backhaul transmission so as to maximize the
users’ QoE.

In this chapter, first, we have developed and analyzed a scenario in which the cache-
enabled UAVs are used to service the ground mobile users in a cloud radio access
network. We have shown that, in this model, a variety of challenges need to be tackled,
such as modeling users’ QoE, developing an air-to-ground mmWave channel model and
designing a machine learning–based algorithm for predicting of users’ mobility patterns
and content request distributions. We have discussed how the use of the predictions of
users’ mobility patterns and content request distributions determine the optimal loca-
tions of UAVs and optimal caching contents of each UAV. Through numerical analysis,
we have evaluated the performance of predictions for the learning algorithm and the
benefit of the use of cache-enabled UAVs.

This chapter has only scratched the surface of the emerging topic of cache-enabled
UAVs. While our focus was on the deployment of cache-enabled UAVs and caching
content replacement, many important problems remain open. On the one hand, it is
of interest to develop new cooperative cache-enabled UAVs models in which all of
the cache-enabled UAVs will cooperate with each other to improve the caching hit



Cache-Enabled UAVs in Wireless Networks 341

ratio so as to improve the users’ QoE. For example, one cache-enabled UAV that has
remaining storage can store the contents that another cache-enabled UAV wants to
store but does not have enough storage. On the other hand, it is imperative to jointly
consider cache-enabled UAVs with content delivery. In particular, the cache-enabled
UAVs can adjust the update rate of caching content according to the content delivery
rate. When the content delivery rate increases, the cache-enabled UAVs can increase the
update rate of caching content. Certainly, storing contents at the UAV cache will require
the information related to the users’ behaviors such as users’ mobility patterns and
content requests. In consequence, there is a need to develop novel learning algorithms
to extract and analyze the data related to the users’ behaviors so as to predict the users’
movements. One potential direction is to apply neural networks such as convolutional
neural network to extract the properties of users’ behaviors and use recurrent neural
networks to predict the users’ movements. Finally, in order to deliver emerging wireless
service, such as virtual reality services [44], the effect of optimizing metrics such as
energy efficiency, delay, and computation must be incorporated into the studied cache-
enabled UAV models.
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17 Physical Layer Security for Edge
Caching Wireless Networks
Xiang Lin, Derrick W. K. Ng, Robert Schober, and Vincent W. S. Wong

17.1 Introduction

The wireless cellular networks have been witnessing a rapid growth in video-on-demand
(VoD) streaming traffic. Different from conventional voice and data applications, VoD
streaming requires both high data rate and low latency during data delivery. Meeting
the stringent VoD streaming requirements with off-the-shelf wireless cellular networks
has been a great challenge due to capacity limitations in both the radio access and
backhaul links [1]. To tackle this problem, a disruptive technique employing caching at
the wireless edge has been proposed [2–5]. As has been shown in the previous chapters,
by storing a priori the popular video files at edge nodes, e.g., base stations (BSs), access
points (APs), and user equipment (UE), caching facilitates not only traffic offloading
on the backhaul but also capacity enhancement, latency reduction, and energy savings
during radio access. Therefore, caching has been considered as a promising solution to
support large-scale VoD streaming for next-generation wireless cellular networks.

On the other hand, due to increasing cyberattacks in communication networks,
security and privacy are among the utmost concerns for wireless technologies. For
example, edge nodes may be untrusted, i.e., they may intercept the cached data.
Moreover, wireless transmission is insecure due to its broadcast nature. As a result,
the streaming of video data may suffer potential eavesdropping from, e.g., nonpaying
subscribers, and the privacy of premium subscribers may not be guaranteed. To tackle
the security challenges caused by untrusted and/or eavesdropping nodes, secure caching
and VoD streaming schemes that can protect video data and guarantee streaming quality
of service (QoS) simultaneously are crucially needed, especially for streaming private
and paid video content. Hence in this chapter, we study security issues associated with
employing caching in wireless networks.

17.1.1 Literature Survey

The development of security techniques for networks adopting wireless caching has
gone through several stages. In the early literature, providing security for cache-enabled
networks was considered impossible [6]. This is because, with off-the-shelf hypertext

This work is support in part by Australian Research Council’s Discovery Early Career Researcher Award
funding scheme (DE170100137), by the Alexander von Humboldt Professorship Program, and by the
Natural Sciences and Engineering Research Council of Canada.
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transfer protocol (HTTP) and hypertext transfer protocol secure (HTTPS), communica-
tion security has been ensured using end-to-end encryption methods [6]. Thereby, video
content intended for each streaming UE has to be uniquely encrypted and hence cannot
be reused to serve other UEs, which compromises the benefits of content caching. For
this reason, security constraint has been usually neglected for video content caching.

In fact, the pessimistic perspective in [6] is overly conservative and can be lifted
by security techniques proposed in the recent literature [7–13]. Thereby, reuse of
cached content is achieved by either modifying the encryption protocol [7–9] or
resorting to non-encryption-based security schemes such as physical-layer security
(PLS) techniques [10–13]. These security schemes can be classified into two categories,
namely passive and proactive. For passive security schemes, secure cache placement
and data delivery are ensured by performing sophisticated encryption, and caching is
not exploited to obtain secrecy benefits. The schemes in [7–9] employed the one-time
pad method together with the coded caching scheme proposed in [14, 15]. Specifically,
a cache is deployed at each user to store parts of popular video content. To achieve
high data rates for serving the UEs, the cached and the delivered contents are encoded
intelligently via network coding to facilitate coded multicast delivery [14]. In [7],
by encoding the contents together with random keys that are kept secret from the
eavesdroppers, the authors propose a secure coded multicast delivery scheme to protect
the video data from being deciphered passively over the multicast link. However, due
to the shortcomings of the one-time pad method, secrecy can be ensured only when the
length of the secret keys is large enough, e.g., at least as large as the content size, which
increases the system overhead for secure sharing of the secret keys. In [8], an enhanced
secure coded caching employing an advanced key generation and encryption scheme
is proposed for device-to-device (D2D) networks. Moreover, considering caching in
heterogeneous small cell networks, the authors in [9] design a novel secure delivery
scheme to prevent eavesdroppers from obtaining a sufficient number of coded packets
needed for deciphering the video files.

To eliminate the overhead of generating and distributing secret keys, secure trans-
mission using PLS has been thoroughly investigated in wireless communications.
In particular, PLS exploiting multiple-input multiple-output (MIMO) techniques has
demonstrated significant advantages over one-time pad-based methods [16–19]. On the
one hand, PLS techniques can enhance communication secrecy by opportunistically
exploiting the random wireless channels without adopting secret keys. On the other
hand, the abundant degrees of freedom offered by MIMO communication can be
exploited to significantly improve the secrecy capacity and/or the power efficiency of
the system. Inspired by the MIMO-based PLS techniques, caching schemes facilitating
PLS were reported for the first time in [10]. By caching each video content at multiple
transmitters, cooperative MIMO transmission of the video content can be enabled
among these transmitters, and the resulting large transmit antenna array can be utilized
to significantly increase the secrecy capacity. As caching also reduces the data sharing
overhead typically needed for cooperative transmission [20], cache-enabled PLS is
applicable even when the backhaul links have limited capacity. Cache-enabled PLS
has been investigated in scenarios with imperfect [11] and statistical [12] channel
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state information (CSI) about the eavesdropper(s). In [13], cache-enabled PLS was
extended to combat the secrecy challenges caused by untrusted cache helpers. Different
from the passive security schemes, by cache-enabled PLS schemes [10–13], caching is
exploitable to proactively enhance the security of the system.

The aforementioned works from the literature suggest that cache-enabled PLS tech-
niques provide an advanced mechanism for proactively exploiting caching to improve
the security of cache-enabled transmission. In this chapter, we discuss the design
and optimization of cache placement and cache-enabled secure cooperative MIMO
transmission toward achieving enhanced PLS. The chapter is organized as follows. In
Section 17.2, we describe the adopted system model. In Sections 17.3 and 17.4, we
formulate and solve the two-stage optimization problem arising in the design of cache-
enabled PLS systems, respectively. Section 17.5 presents the numerical results. In
Section 17.6, we discuss some research challenges in applying cache-enabled PLS and
paths to potential solutions. Section 17.7 concludes the chapter.

17.2 System Model

In this section, we present the system model for cache-enabled secure video streaming
in cellular networks. First, we introduce the cellular video streaming system. Then, we
discuss how caching is exploited to reduce the latency of video delivery and, at the same
time, enable secure video data delivery. We provide a list of key notations in Table 17.1.

17.2.1 Network Topology

We consider a cellular VoD streaming system that includes a video server, M BSs, and
K legitimate receivers (LRs); see Figure 17.1. The BSs and the LRs are indexed by
sets M � {1, . . . ,M} and K � {1, . . . ,K}, respectively. Each BS is equipped with Nt

antennas while, for convenience, only a single antenna is deployed at an LR. A library
of F video files, indexed by F � {1, . . . ,F }, is available at the video server, which is
located on the internet edge and provides video streaming services for the LRs with the
aid of the BSs. The BSs are connected to the video server, and the LRs via dedicated
backhaul links such as digital subscriber lines and wireless links, respectively. When
the LRs’ requests are received, the BSs are responsible for fetching the files requested
by the LRs from the video server and for delivering them to the requesting LRs, which
take place over the backhaul links and the wireless links, respectively. The backhaul
links are assumed to be secure. However, the wireless data transmission from the BSs
to the LRs may be leaked to a passive eavesdropping receiver (ER) within the system.
The ER has Ne antennas (the Ne antennas may be either co-located or distributed but
connected in performing joint eavesdropping). For ensuring communication security,
we assume MNt > Ne.

The considered VoD streaming system is time-slotted and employs HTTP [21]. If
requested, file f ∈ F will be delivered in L time slots, where L � 1 usually holds.
Thereby, a portion of file f , referred to as subfile (f,l), is delivered in time slot
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Table 17.1 Nomenclature Adopted in This Chapter

Operators Description

diag(v) Diagonal matrix with the diagonal elements given by v

(·)T , (·)H Transpose and complex conjugate transpose

tr(·), rank(·) Trace and rank of a matrix

det(·), λmax(·) Determinant and maximum eigenvalue of a matrix

∼, Pr(·) Distributed as and probability mass operator

|X |, X × Y Cardinality of set X , Cartesian product of sets X and Y
A & 0 (A ) 0) Matrix A is positive semi-definite (definite)

∇Xf (X) Complex-valued gradient of f (X) with respect to X
�·� Rounding operator

[x]+ max (0,x)

Symbols Description

R and C Fields of real and complex numbers

IL, 1L, and 0L L× L identity, all-one, and zero matrices

K, M Sets of K LRs and M BSs

MCoop
f,l

Set of BSs cooperating in delivery of subfile (f,l)

F , L Sets of F video files and L subfiles per file

Vf Size of file f ∈ F in bits

ρ � (k,f ,l) Request for subfile (f,l) by LR k

S Set of user requests

cf,l,m (cf,l), Caching, backhaul loading, and cooperation

bf,l,m, qf,l,m decisions for delivering subfile (f,l) at BS m

wρ , wm,ρ Beam-forming coefficients at BS set M and BS m for LR ρ

Cmax
m , Bmax

m Cache size and backhaul link capacity at BS m


ρ , Rρ , Rsec
ρ SINR, achievable data rate, and secrecy rate at LR ρ

Re,ρ Capacity of the ER for eavesdropping LR ρ

l ∈ L � {1, . . . ,L}. We assume that the subfiles of file f have equal size. The sizes of
file f ∈ F and subfile (f,l) are denoted as Vf and Vf /L, respectively. Moreover, an
LR is assumed to request only one (sub)file at a time. Hence the request of LR k for
subfile (f,l), denoted by ρ � (k,f ,l), can be mapped to user k on a one-to-one basis.
For this reason, in the following, we may use k and ρ interchangeably to index the LRs.
Let S be the set of user requests. We have S ⊆ K × F × L and |S| = K .

Assume that the fading channel during video transmission is frequency flat. Let
yρ ∈ C and ye ∈ CNe×1 be the signals received at LR ρ ∈ S and the ER, respectively.
The input–output channel model is then given as

yρ = hH
ρ x+ zρ, (17.1)

ye = GH x+ ze, (17.2)
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m

M

K

b

Figure 17.1 Illustration of cache-enabled cooperative beam-forming for secure downlink VoD
streaming in multi-cell cellular networks.

where x ∈ CMNt×1 is the joint transmit signals of all considered BSs in set M.
hρ = [hH

1,ρ, . . . ,h
H
M,ρ]H ∈ CMNt×1 and G = [GH

1 , . . . ,GH
M ]H ∈ CMNt×Ne denote the

propagation channel vector/matrix from the BSs in set M and the ER to LR ρ, where
hm,ρ ∈ CNt×1 and Gm ∈ CNt×Ne capture the propagation channels from BS m ∈ M
and the ER to LR ρ, respectively. Finally, zρ ∼ CN (0,σ2) and ze ∼ CN (0,σ2

e INe ) are
the receiver front-end noises at the LRs and the ER, which follow zero-mean complex
Gaussian distributions with variance σ2 and covariance matrix σ2

e INe , respectively.

17.2.2 Caching and Backhaul Loading

In practice, a backhaul link has to accommodate several types of traffic (e.g., voice, data,
multimedia, control signaling) simultaneously, where the backhaul capacity is allocated
on a dynamic basis. As a result, VoD streaming may have to utilize an intermittent and
limited backhaul capacity [22, 23]. This increases the latency of video data delivery
and may even cause congestion on the backhaul links. To tackle this problem, a cache
is deployed at each BS. The operation of the cache-enabled system divides into two
stages. In the first stage, e.g., during off-peak traffic hours, a portion of the video files is
cached at the BSs by utilizing the idle network capacity. In the second stage, i.e., when
users issue video file requests during peak traffic hours, the BSs cooperatively serve the
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requests. Such a two-stage model is often assumed for studying cache-enabled systems.
It can also be executed repeatedly over time to adapt the dynamic network traffic and
backhaul capacity conditions.

By caching popular video files at the BSs before video streaming starts, the backhaul
traffic incurred in the second stage is reduced. This in turn reduces the delivery latency
as (portions of) the video data can be fetched from the cache at the BSs in the close prox-
imity of the LRs. In particular, the video files/subfiles can be shared to the BSs either
by caching them ahead of time or by loading them via backhaul links instantaneously
during delivery. Assume that cf,l,m ∈ [0,1] and bf,l,m ∈ [0,1] portions of subfile
(f,l) are shared to BS m via caching and backhaul loading, respectively. For modeling
simplicity, we assume cf,l,m = cf,m, ∀l ∈ L. Define binary variable qf,l,m ∈ {0,1} as
follows,

qf,l,m =
{

1, if bf,l,m + cf,m = 1,

0, otherwise.
(17.3)

Hence qf,l,m indicates whether subfile (f,l) is available at BS m ∈ M during video
delivery.

17.2.3 Secure Cooperative MIMO Transmission

On the other hand, caching facilitates cooperative MIMO transmission opportunities
for securely delivering the video files to the LRs while mitigating potential information
leakage to the ER. In particular, by sharing subfile (f,l) at multiple BSs via both caching
and backhaul loading, these BSs can cooperatively deliver the subfile by performing
joint transmission. The set of BSs allowed for cooperative transmission of subfile (f,l)
is given as MCoop

f,l �
{
m ∈M | qf,l,m = 1

} ⊆ M. Therefore, qf,l,m also indicates
whether BS m can cooperate with other BSs in delivering subfile (f,l).

As the system’s degrees of freedom increases due to the large virtual antenna array
formed by the cooperating BSs, they can be exploited during beam-forming to improve
communication security [16–19]. To this end, we design the joint transmit signal of all
considered BSs, x ∈ CMNt×1, as

x =
∑
ρ∈S

wρsρ, (17.4)

where sρ ∈ C denotes the symbols intended for LR ρ and sρ ∼ CN (0, 1) is a complex
Gaussian random variable [24, chapter 5]. wρ � [wH

1,ρ, . . . ,w
H
M,ρ]H ∈ CMNt×1 is the

joint beam-forming vector for serving LR ρ, where beam-forming vector wm,ρ ∈ CNt×1

is adopted at BS m ∈M. To adjust the beam-formers, wm,ρ, in adaption to qf,l,m and

MCoop
f,l , which further depend on the cache status and the backhaul capacities, cf. (17.3),

we impose

(1− qf,l,m)wm,ρ = 0, ∀m ∈M, ∀ρ ∈ S. (17.5)

Due to (17.5), any BS m /∈MCoop
f,l can only employ wm,ρ = 0.
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Remark 17.1 We note that (17.4) and (17.5) allow to flexibly adjust the BS cooperation
topology via controlling qf,l,ms (and MCoop

f,l ). For example, (17.4) and (17.5) capture

both joint transmission with full BS cooperation, by setting |MCoop
f,l | = M,∀f , and

coordinated beam-forming, by setting |MCoop
f,l | = 1,∀f , respectively. In general, any

cooperative set MCoop
f,l ⊆M can be configured using (17.4) and (17.5).

17.3 Problem Formulation

In this chapter, we focus on investigating the secrecy threat from, e.g., a nonpaying
video subscriber, where the system has perfect knowledge about the CSIs of all the
subscribers. In this case, jamming methods using, e.g., artificial noise cannot improve
the PLS for the considered system [25] and thus are not considered herein. The impact
of imperfect CSI will be discussed in Section 17.6. To maximize the performance gains
of cache-enabled cooperative transmission, we propose a two-stage framework for opti-
mizing the caching and delivery of video contents. As power efficiency is of paramount
importance for reducing the operation cost and carbon footprint of future communica-
tion systems [26–32], the two-stage optimization problem aims to minimize the total
BS transmit power subject to QoS and secrecy constraints. In the first stage, the caching
decisions are determined using the statistics or historical records of the user requests.
The cache status is updated according to the first-stage (caching) decisions and remains
unchanged thereafter. In the second stage when the user requests, the CSI, and the back-
haul capacity are known, this knowledge is exploited for optimizing backhaul loading
and cooperative transmission at BSs in real time.

17.3.1 Achievable Secrecy Rate

The achievable secrecy rate of LR ρ hinges on not only the channels but also the
receiver adopted at the ER. For guaranteeing secure VoD streaming, it is preferable
that the secure delivery scheme can ensure communication secrecy even in the worst-
case scenario. In particular, when the ER adopts a successive interference cancellation
receiver [24], it may attempt to eavesdrop the subfile intended for LR ρ after canceling
the interference caused by all other LRs. Consequently, an achievable secrecy rate at LR
ρ is given by [16, 25]

Rsec
ρ =

[
Rρ − Re,ρ

]+
, ρ ∈ S. (17.6)

Herein, Rρ denotes the achievable data rate of LR ρ and is given by

Rρ = log2
(
1+ 
ρ

)
, ρ ∈ S, (17.7)


ρ =
1
σ2

∣∣∣hH
ρ wρ

∣∣∣2
1+ 1

σ2

∑
ρ′∈S,ρ′ �=ρ

∣∣∣hH
ρ wρ′

∣∣∣2 , (17.8)
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where 
ρ is the received signal-to-interference-plus-noise ratio (SINR) of LR ρ. More-
over, Re,ρ is the capacity of the ER in decoding the subfile intended for LR ρ and is
given by

Re,ρ = log2 det

(
INe +

1

σ2
e

GGH wρwH
ρ

)
, ρ ∈ S. (17.9)

17.3.2 Second-Stage Online Delivery Optimization

Assume that the cache status
{
cf,m

}
and the set of user requests S are given,

e.g.,
{
cf,m

}
is determined in the first stage. The second-stage control is invoked to adjust

the BS cooperation strategy DII � [qf,l,m, bf,l,m,wρ]. The resulting optimization
problem to be solved in the second stage, denoted as problem R0, is then formulated as

R0: min
DII

fII �
∑
ρ∈S

tr(wρwH
ρ ) (17.10)

s.t. C1: bf,l,m = (1− cf,m)qf,l,m, f ∈ F,l ∈ L,m ∈M
C2: qf,l,m ∈ {0,1} , bf,l,m ∈ [0,1],f ∈ F,l ∈ L,m ∈M

C3:
∑
f∈F

bf,l,mQf ≤ Bmax
m , l ∈ L,m ∈M

C4: tr
(
�mwρwH

ρ

)
≤ qf,l,mP max

m , m ∈M, ρ ∈ S

C5: tr

⎛⎝∑
ρ∈S

�mwρwH
ρ

⎞⎠ ≤ P max
m , m ∈M

C6: Rρ ≥ R
req
ρ , ρ ∈ S

C7: Re,ρ ≤ Rtol
e,ρ, ρ ∈ S.

Herein, �m is an MNt ×MNt diagonal matrix,

�m = diag(0T
(m−1)Nt×1,1

T
Nt×1,0

T
(M−m)Nt×1), (17.11)

whereby tr
(

wm,ρwH
m,ρ

)
= tr

(
�mwρwH

ρ

)
holds. Moreover, C3 and C5 limit the maxi-

mum backhaul traffic load and the maximum power consumption at BS m to Bmax
m and

P max
m , respectively. The parameter Qf (in bps) in C3 denotes the data rate allocated for

loading subfile (f,l) via the backhaul links. Assume that each time slot has duration τ.
We set Qf = Vf /(τL) or equivalently cf,mVf /L + bf,l,mQf τ = Vf /L. Note that,
as (17.3) and (17.5) are difficult to handle due to the “if-else” structure and the bilinear
term, they have been reformulated as convex equality and inequality constraints C1 and
C4, respectively. The equivalence between C1 and (17.3) can be easily verified. C4 is
the big-M formulation [33] for BS cooperation: if qf,l,m = 0 or bf,l,m + cf,m < 1

hold in C1, it leads to tr
(
�mwρwH

ρ

)
= ∥∥wm,ρ

∥∥2
2 = 0, i.e., wm,ρ = 0; on the other

hand, if qf,l,m = 1 and bf,l,m + cf,m = 1, C4 becomes inactive as it is always less
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restrictive than C5. Thus C4 guarantees wm,ρ = 0 whenever BS m /∈ MCoop
f,l fails to

cooperate in delivering subfile (f,l) and hence is equivalent to (17.5). Furthermore, C6
is a streaming QoS constraint, which ensures a minimum data rate, R

req
ρ , to be provided

for LR ρ. C7 provides video data protection, whereby the capacity of the ER is limited
within a maximum threshold Rtol

e,ρ. By imposing C6 and C7, the achievable secrecy rate

of LR ρ is guaranteed to at least exceed Rsec
ρ = [Rreq

ρ − Rtol
e,ρ]+, whenever problem R0

is feasible.

17.3.3 First-Stage Offline Cache Training

Assume that � data sets are adopted for training the cache in the first stage. Each
data set, indexed by ω ∈ {1, . . . ,�}, is a time series of user requests, CSI, and
the available backhaul capacities. The data sets can be obtained either from the
system record or generated by Monte Carlo simulations. Moreover, prediction of
the users’ future requests based on historical user profiles using, e.g., neural net-
works [34] can be included in the cache training phase to further improve the cache
placement. Using these data sets, the first stage controller determines the optimal
caching decisions while taking into account their potential impact on the video
delivery in the second stage. Thereby, the first-stage optimization space, defined as
CI � [cf,m, DI,ω] consists of not only caching decisions, cf,m, but also auxiliary
delivery decisions for training data set ω, denoted as DI,ω � [qf,l,m,ω,bf,l,m,ω,wρ,ω].
Herein, the feasible delivery set for each training data set ω can be defined as
DI,ω �

{
DI,ω | C1, C2, C4–C7

}
, similar to problem R0. However, as a slight dif-

ference from problem R0, constraints C1, C2, and C4–C7 are defined per training
data set. For example, C1 and C2 have to be reformulated by augmenting the data
set index

C1: bf,l,m,ω = (1− cf,m)qf,l,m,ω (17.12)

C2: cf,m,bf,l,m,ω ∈ [0,1], qf,l,m,ω ∈ {0,1} , (17.13)

and C4–C7 can be rewritten in the same manner.
Then, to coordinate the first stage control for power efficiency enhancement, the

caching optimization problem is formulated as

Q0: min
CI

1

�

�∑
ω=1

fI,ω (17.14)

s.t. DI,ω ∈ DI,ω, ω ∈ {1, . . . ,�}

C3:
1

�

�∑
ω=1

∑
f∈F

bf,l,m,ωQf ≤ 1

�

�∑
ω=1

Bmax
m,ω, m ∈M,l ∈ L

C8:
∑
f∈F

cf,mVf ≤ Cmax
m , m ∈M,
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which minimizes the empirical average of the transmit powers over all considered data
sets. Herein, fI,ω �

∑
ρ∈S tr(wρ,ωwH

ρ,ω) is the instantaneous transmit power for data

set ω. C3 and C8 are the backhaul capacity and cache capacity constraints, respectively,
where Cmax

m denotes the cache capacity available at BS m. We note that C3 limits only
the average backhaul capacity of all considered data sets rather than restricting the
backhaul capacity per data set as in

∑
f∈F bf,l,m,ωQf ≤ Bmax

m,ω, ω ∈ {1, . . . ,�}. The

reasons for adopting C3 instead of the latter constraints in the first stage are twofold. On
the one hand, in the considered two-stage control, the actual cooperative transmission
decisions, which are affected by the backhaul capacity constraints, are deferred to the
second stage after the available backhaul capacity is known. Hence C3 can avoid a
conservative use of the backhaul links when the actual value of the backhaul capacity
during delivery is still unknown/uncertain in the first stage. On the other hand, as will
be revealed in Section 17.4.3, C3 also enables computational convenience in solving
problem Q0, whereby a low-complexity cache training can be realized.

17.4 Problem Solution

Problems R0 and Q0 contain nonconvex constraints C6, C7, and binary variables
qf,l,m ∈ {0,1} and qf,l,m,ω ∈ {0,1}, for which they belong to nonconvex mixed-integer
nonlinear programs (MINLPs) [33]. That is, even if the binary constraints in problems
R0 and Q0 are relaxed to continuous convex constraints, the resulting problems remain
nonconvex. Moreover, constraint C1 in problem Q0 is bilinear. This type of problem is
known to be NP-hard, for which polynomial-time optimization algorithms rarely exist
[33]. To balance between performance and computational complexity, we propose two
effective suboptimal algorithms for solving problems R0 and Q0, which are based on
relaxation techniques and have only polynomial-time computational complexity. Strik-
ingly, we show that the proposed algorithms become optimal when the cache capacity
available at the BSs and the number of training data sets become large, respectively.

17.4.1 Optimal Solution of Problem R0 in Large Cache Capacity Regime

We discuss the solution of problem R0 in two steps. First, we show that problem R0
admits a polynomial-time optimal solution when the cache capacity is sufficiently large.
Then, based on the derived results, we discuss the general solution of problem R0 in
Section 17.4.2.

For given S, define the set of requested files as F(S) � {f | (·,f ,·) ∈ S}, where
F(S) ⊆ F . As a file may be requested by multiple LRs, we have F (S) ≤ min {|S| ,F },
where F (S) � |F(S)|. Note that, if

{
cf,m

}
is given, variables bf,l,m can be eliminated

by substituting C1 into C3. As a result, problem R0 can be rewritten as in (17.15), where
Qf,m � Qf (1− cf,m) is the “effective” data rate required for loading subfile (f,l) via
the backhaul link into BS m, after taking into account the cache status of BS m. Note
that C̃3 and C3 are equivalent. Moreover, the BS cooperation strategy in (17.15) satisfies
the monotonicity given in the following lemma.
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R0: min
DII

fII (17.15)

s.t. C1, C2, C4, C5, C6, C7

C̃3 :
∑

f∈F (S)

qf,l,mQf,m ≤ Bmax
m , m ∈M,

lemma 17.1 (Monotonicity of problem R0 [10, 11]). Given two cooperation sets
MCoop,1

f,l ⊆MCoop,2
f,l , ∀(f,l) ∈ F(S) × L, the corresponding optimal transmit powers

of the BSs, denoted as f 1
II , f 2

II , respectively, satisfy f 1
II ≥ f 2

II .

Lemma 17.1 implies that fully cooperative transmission strategy with cooperation
set MF−Coop

f,l = M is optimal if feasible, e.g., in systems with large cache capacity,

due to MCoop
f,l ⊆ MF−Coop

f,l ,∀MCoop
f,l . In this case, the backhaul constraints C3 or C̃3

are inactive since the cache can effectively offload the backhaul traffic. Consequently,
by removing C3 and C̃3 from R0, the resulting problem is polynomial time solvable
without loss of optimality. In general, the optimization problem obtained by fixing
the cooperation sets in problem R0, denoted by R0(wρ) with optimization variable
wρ, i.e.,

R0(wρ): min
wρ

fII (17.16)

s.t. C4, C5, C6, C7,

can be solved to optimality in polynomial time. This is due to a hidden convexity of
R0(wρ). To show this, in the following, we first rewrite the nonconvex constraints C6
and C7 in their equivalent convex forms.

Let Wρ � wρwH
ρ & 0 and Hρ � hρhH

ρ . Then, C6 can be reformulated as affine
constraints,

C6 ⇐⇒ 
ρ ≥ κreq
ρ � 2R

req
ρ − 1,

⇐⇒ C6 :
1

κreq
ρ

tr
(
WρHρ

) ≥ σ2 +
∑
ρ′ �=ρ

tr
(
Wρ′Hρ

)
. (17.17)

C6 and C6 are equivalent if and only if Wρ further satisfies

C9: rank(Wρ) = 1 and Wρ & 0.

Furthermore, C7 can be rewritten as

C7
(a)⇐⇒ det

(
INe +

1

σ2
e

GH WρG
)
≤ 2Rtol

e,ρ

(b)!⇒ tr
(

GH WρG
)
≤ σ2

eκ
tol
ρ � σ2

e

(
2Rtol

e,ρ − 1
)

(c)!⇒ λmax

(
GH WρG

)
≤ σ2

eκ
tol
ρ

⇐⇒ C7: GH WρG 0 σ2
eκ

tol
ρ I, ρ ∈ S,
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where (a) employs the matrix identity det(I + AB) = det(I + BA), (b) is due to
det(I + A) ≥ 1 + tr(A) provided that A & 0, and (c) follows from the inequality
λmax(A) ≤ tr(A) if A & 0. Moreover, if rank(A) = 1, equality holds in (b) and (c).
Therefore, if rank(Wρ) = 1, C7 is an equivalent reformulation of C7.

By substituting C6, C7, and C9, although problem R0(wρ) is nonconvex due to
C9, it can be solved via a relaxation technique. In particular, by removing the rank
constraint rank(Wρ) = 1 from C9, a convex semi-definite program (SDP) is readily
obtained,

R1: min
Wρ

tr

⎛⎝∑
ρ∈S

Wρ

⎞⎠ (17.18)

s.t. C4: tr
(
�mWρ

) ≤ qf,l,mP max
m , m ∈M,

C5: tr

⎛⎝∑
ρ

�mWρ

⎞⎠ ≤ P max
m , m ∈M,

C6, C7, C9: Wρ & 0,rank(Wρ) = 1, ρ ∈ S.

which can be efficiently solved using the interior-point method [35] and the standard
convex optimization solvers such as CVX [36]. Generally, the optimal value of problem
R1 provides a lower bound for that of R0(wρ). However, for the problem at hand,
we can strengthen the result by showing that the optimal solution of problem R1
satisfies rank(W∗ρ) = 1, ρ ∈ S, i.e., W∗ρ also defines the optimal beamformer for
problem R0(wρ).

theorem 17.2 Problems R0(wρ) and R1 are equivalent such that both problems have
an identical optimal value. Moreover, the optimal beam-forming matrix W∗ρ obtained
by solving problem R1 has rank one, i.e., rank(W∗ρ) = 1, ρ ∈ S, and the optimal beam-
forming vector w∗ρ of problem R0(wρ) corresponds to the principal eigenvector of W∗ρ.

Proof Please refer to Appendix 17.8.1.

17.4.2 Suboptimal Solution of Problem R0

When the cache capacities available at the BSs are limited, determining the optimal
solution of problem R0 has to resort to exponential-time optimization algorithms, such
as exhaustive search and branch-and-bound [33]. These algorithms have to enumer-
ate all possible cooperation sets defined by C1, C2, and C3 in the worst case while
searching for the optimal solution; hence their overall computational complexity is
an exponential function of the number of BSs. To show this in detail, let us define
T m � min

{⌊
Bmax

m / minf∈F (S) Qf,m

⌋
,F (S)

}
, and T m �

⌊
Bmax

m / maxf∈F (S) Qf,m

⌋
.

According to Lemma 17.1, the optimal cooperation formation solutions are contained
in the vertices of polyhedral simplexes defined by

∑
f∈F (S) qf,l,m ≤ Tm and qf,l,m ∈

[0,1], where T m ≤ Tm ≤ T m,m ∈M. This implies that, for solving R0, the exhaustive
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Algorithm 7 Iterative Suboptimal Algorithm for Problem R0

1: Initialization: Set Q0 by
∏

f∈F (S) M
F−Coop
f , set k = 1;

2: Solve optimization problem R0(wρ) for Q0;
3: while Mvio

k−1 �= ∅ (cf. (17.21)) do
4: for each (f,m) ∈ F(S)×Mvio

k do
5: Solve optimization problem R0(wρ) for Qk−1\ {(f,m)};
6: end for
7: Update Qk by Qk−1\

{
(f ′,m′)

}
, where (f ′,m′) corresponds to the solution of

(17.19);
8: Update k by k + 1;
9: end while

search (branch-and-bound) has to enumerate over
∏M

m=1

(
Tm

F (S)

)
choices of the cooper-

ation sets in total (in the worst case).
Due to the overwhelming computational complexity, the enumeration methods are

applicable only for small systems but cannot scale to practical large systems. To
tackle this problem, we consider a low-complexity iterative algorithm as given in
Algorithm 7 to solve R0. The proposed algorithm utilizes the greedy heuristics and the
result of Theorem 17.2 that the cooperative beam-forming vectors can be efficiently
solved in problem R0(wρ) for each given cooperation sets.

The iteration of the algorithm is indexed by k. The BS cooperation set obtained at
iteration k is given by Qk �

{
(f,m) | qf,l,m = 1,m ∈M,f ∈ F (S)

}
. Algorithm 7

starts with an initial BS cooperation set Q0 =
∏

f∈F (S) M
F−Coop
f,l = ∏

f∈F (S) M and
then refines the BS cooperation set in an iterative manner. At iteration k = 1,2, . . . , we
solve problem R0(wρ) by optimizing over the cooperative beam-forming vectors while
fixing the values of qf,l,m according to Qk−1. The resulting optimal value is denoted as
f ∗II (Qk−1). If Qk−1 is feasible, i.e., satisfying C1, C2, and C3, Algorithm 7 terminates
and returns the BS cooperation set and beam-formers obtained so far. Otherwise, BS m′

is eliminated from the cooperative transmission of subfile (f ′,l) by setting qf ′,l,m′ = 0,
where (f ′,m′) ∈ Qk−1 incurs the smallest amount of extra BS transmit power, i.e.,

(f ′,m′) ∈ arg min
(f,m)∈F (S)×Mvio

k

[
f ∗II (Qk−1\ {(f,m)})− f ∗II (Qk−1)

]
, (17.19)

Qk = Qk−1\
{
(f ′,m′)

}
, (17.20)

and Mvio
k−1 indexes the set of BSs violating constraint C3 by adopting Qk−1, i.e.,

Mvio
k−1 �

{
m ∈M |

∑
(f,m)∈Qk−1

Qf,m > Bmax
m

}
. (17.21)

This process is executed repeatedly until Qk becomes feasible, whence Algorithm 7
terminates.

During iteration k, solving (17.19) in Algorithm 7 may incur an enumeration over
F (S) × ∣∣Mvio

k−1

∣∣ choices of (f,m). In the worst case, the total number of choices is
given by F (S) × ∣∣Mvio

0

∣∣ × T , where
∑

m∈M T m ≤ T ≤ ∑
m∈M T m. Since the
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beam-forming optimization for each choice of (f,m) can be solved in polynomial time,
the overall computational complexity of Algorithm 7 is only a polynomial function of
M . We note that the proposed algorithm is in general suboptimal. However, if the cache
capacity is sufficiently large, Algorithm 7 would terminate without the need to solve
(17.19) and, according to Lemma 17.1, the obtained solution is globally optimal.

17.4.3 Solution of Problem Q0

The size of problem Q0 is � times larger than that of problem R0. Moreover, constraint
C1 of problem Q0 is bilinear in {CI}. Consequently, neither the enumeration methods
nor the greedy method (cf. Algorithm 7) can be conveniently applied for solving Q0. In
the following, we solve problem Q0 using the binary relaxation technique. For conve-
nience, let us rewrite constraint C1 as

C̃1 : cf,m + bf,l,m,ω ≥ qf,l,m,ω. (17.22)

If constraint C̃1 is active, we have bf,l,m,ω = (1 − cf,m)qf,l,m,ω due to C̃1, C2, and
C8. Thus constraints C̃1 and C1 are equivalent.

Next, replace the binary variables in C̃1 by qf,l,m,ω ∈ [0,1] and denote the resulting
constraint as Ĉ1. By substituting C̃1 with Ĉ1 in Q0, we have

Q1: min
CI

1
�

�∑
ω=1

fI,ω (17.23)

s.t. DI,ω ∈ D̂I,ω, ω ∈ {1, . . . ,�} ,C3,C8,

where D̂I,ω �
{
DI,ω | Ĉ1, C4–C7

}
. Although problem Q1 is nonconvex due to

the auxiliary beam-forming optimization, its hidden convexity can be verified sim-
ilar to problem R0, cf. Theorem 17.2. As a result, problem Q1 can be efficiently
solved.

For its simplicity, the binary relaxation technique has usually been adopted in the
literature to obtain low-complexity yet suboptimal solutions for MINLPs. However, for
the caching problem at hand, the binary relaxation technique can exploit the problem
structure for a high-quality solution as well. In particular, we further show that the
solution obtained from the relaxed problem Q1 turns out to be asymptotically optimal
when � is sufficiently large.

theorem 17.3 When �→∞, problems Q1 and Q0 becomes equivalent, where both
problems have the same optimum objective value and optimal caching decisions.

Proof Please refer to [11] for a proof.

17.5 Numerical Examples

In this section, we provide numerical evaluations about the performance of the proposed
caching and secure delivery schemes in a cellular network consisting of M = 7
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Table 17.2 System Parameters

Parameters Values

Carrier frequency 2 GHz
System bandwidth 10 MHz
Duration of time slot τ = 10 ms
Number of subfiles L = 45 min/τ = 2.7× 104

Pathloss 3GPP “Urban Macro NLOS” model [37]
Multi-path fading distribution Rayleigh
Maximum transmit power at BSs P max

m = 46 dBm

Noise power spectral density −172.6 dBm/Hz [49]

Probability distribution of Pr(Bmax
m = 0 Mbps) = 0.3, Pr(Bmax

m = 3 Mbps) = 0.4,

backhaul capacity Pr(Bmax
m = 6 Mbps) = 0.3, ∀m

Minimum delivery rate R
req
ρ = 1.1× Rsec

ρ = 1.65 Mbps [10]

Maximum leakage rate Rtol
e,ρ = 0.1× Rsec

ρ = 150 kbps [10]

hexagonal cells. The BSs are located at the center of each cell and the inter-BS distance
is 500 m. Each BS is mounted with Nt = 4 antennas and the ER employs Ne = 2
antennas. The VoD streaming system owns F = 10 video files to serve K = 5
single-antenna LRs, which are randomly placed in the system while respecting a
minimum distance of 50 m to the BSs. Each video file has a length of 45 minutes
with size Vf = 500 MB (Bytes). It can be estimated that, to facilitate secure
and uninterrupted VoD streaming, each LR would require a secrecy data rate of
Rsec
ρ = Qf = 500× 8.0× 106/(45× 60) ≈ 1.5 Mbps. The requests at an LR follow

probability distribution θ = [θ1, . . . ,θF ], where θf is the probability of file f ∈ F
being requested. The requests of the LRs are independent of each other. We choose
θf = 1

f κ
/
∑

f∈F
1

f κ
with κ = 1.1, i.e., θ follows the Zipf distribution as in [38]. Table

17.2 provides a summary of the relevant system parameters. The cache status at the BSs
is initialized using the caching solution of problem Q0, where � = 50 data sets are
generated according to the defined user request, backhaul capacity, and channel models.

17.5.1 Performance Comparisons with Baseline Schemes

For performance comparison, several baseline caching and delivery schemes are also
considered:

• Baseline 1 (preference-based caching): Assuming θ is known, the caching deci-
sion solves the following optimization problem

max
cf,m

∑
f,m

θf cf,mVf

s.t. C2,cf,m ∈ [0,1],∀f ∈ F,∀m ∈M.

Thereby, the system will choose the most popular files to be cached at the BSs
until the cache capacity is depleted.

• Baseline 2 (identical caching): The system caches an identical amount of each
video file at the BSs, independent of the users’ preference, i.e.,
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cf,mVf = 1

F
min

⎧⎨⎩Cmax
m ,

F∑
j=1

Vj

⎫⎬⎭ , ∀f,m.

For a fair comparison with the proposed caching scheme, Baselines 1 and 2 also
adopt the proposed delivery scheme, i.e., Algorithm 7.

• Baseline 3 (coordinated beam-forming): The video file requested by an LR is
delivered only from the nearest BS that has sufficient backhaul capacity available.
We thus have

∑
m∈M qf,l,m = 1,∀(f,l) ∈ F × L.

• Baseline 4 (full BS cooperation): The backhaul links have unlimited capacity such
that all BSs can cooperate to serve each LR. Hence we have qf,l,m = 1,∀f,l,m.
For Baselines 3 and 4, the optimal beam-forming vectors are solved via R0(DII,2)
after fixing the {qf,l,m} accordingly.

Figure 17.2 compares the performance of the considered caching and delivery
schemes for different cache capacities, where the optimal solution of R0 is obtained
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Figure 17.2 Total BS transmit power of considered caching and delivery schemes with respect to
cache capacity.
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using exhaustive search. Figure 17.2 shows that the total BS transmit powers of
the proposed caching and delivery schemes decrease monotonically with the cache
capacity. This is because caching enables more BSs to participate in cooperative
transmission. As a result, the BSs can utilize a larger virtual antenna array to improve
the power efficiency of video delivery. For instance, as the cache capacity increases
from Cmax

m = 1000 MB to Cmax
m = 4000 MB, the transmit power is reduced by up

to 6 dB without degrading the system performance. Comparing the proposed caching
schemes with Baselines 1 and 2, only negligible performance gap exists in the small
and large cache capacity regimes, as the BS cooperation opportunities are insufficient
and saturated, respectively; in contrast, the proposed caching scheme attains much
higher power efficiency than Baselines 1 and 2 in the medium cache capacity regime.
Figure 17.2 also reveals that the performance of the proposed delivery scheme is
bounded by those of Baselines 3 and 4. Moreover, as the cache capacity increases,
the performance gap between the proposed delivery scheme and the optimal delivery
scheme decreases and even vanishes, e.g., when 40% of the video files have been cached
at the BSs. This is because the backhaul traffic is reduced by using large-capacity cache,
which further reduces the likelihood of C3 being active.

17.5.2 Impact of Number of Antennas

Figure 17.3 illustrates the secrecy outage probability and the total BS transmit power
of the proposed delivery scheme by considering different number of transmit and
eavesdropper antennas, respectively. For the problem at hand, secrecy outage arises if
constraints C6 and C7 cannot be simultaneously satisfied, whereby problem R0 becomes
infeasible. In this case, the secrecy outage probability is given by pout = Pr(Rsec

ρ <

[Rreq
ρ −Rtol

e,ρ]+). Figure 17.3 shows that, for a given cache capacity, increasing Nt at the
BSs and/or decreasing Ne can reduce the likelihood of secrecy outage and the transmit
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Figure 17.3 Secrecy outage probability and total BS transmit power of proposed delivery scheme
with respect to cache capacity for different number of transmit and eavesdropping antennas.
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power simultaneously as more secrecy degrees of freedom can be exploited during
cooperative beamforming. Moreover, the performance gains can be further enlarged by
deploying large-capacity cache at the BSs.

17.6 Research Challenges and Opportunities

In practice, the application of cache-enabled PLS faces several challenges caused by,
e.g., other secrecy threats and CSI estimation errors. In this section, we analyze these
challenges and point out possible solutions that may inspire future research in this
direction.

17.6.1 Trustworthiness of Cache-Enabled Devices

In the aforementioned discussions, the cache devices are assumed to be trusted so that
video content can be securely cached and exploited for PLS benefits. However, as
caching is being increasingly considered in heterogeneous cellular networks, so are con-
cerns over the trustworthiness of cache devices. In particular, untrusted cache devices
may arise in, e.g., small cell BSs compromised to third parties, which may eavesdrop
premium video content without paying as well as LRs’ private video content. Moreover,
a prudent untrusted device may even utilize cached video files for interference mitigation
and hence improve the eavesdropping performance [13, 39]. In these cases, caching at
the untrusted devices will unfavorably introduce a new secrecy threat, which has to be
combated cautiously.

In the presence of untrusted cache devices, an intuitive approach to ensure communi-
cation security is to detect these untrusted devices, e.g., via machine learning techniques,
and prevent video content from being cached at them. In this case, the proposed cache-
enabled PLS schemes are still applicable for trusted devices. However, with this intuitive
approach, the cache capacity of untrusted devices cannot be exploited for PLS benefits.
Moreover, for imperfect detection of the untrusted devices, caching may compromise
the system security.

Another method to tackle untrusted cache devices employs scalable video coding
(SVC) based caching [13, 39]. Thereby, each video content is encoded into one base
layer and multiple enhancement layers. While the base layer can be decoded indepen-
dently of the enhancement layers, an enhancement layer can be decoded only after the
base layer and all lower enhancement layers have already been decoded [13, 39, 40].
Exploiting this hierarchical encoding/decoding structures of SVC, the enhancement
layer subfiles can be cached at untrusted devices without degrading system security
as long as the eavesdroppers have no access to the baseline subfiles. For example, when
a larger number of antennas are equipped at the trusted nodes than at the untrusted
nodes, the cache-enabled PLS techniques are applicable to the untrusted devices and
the content cached at the untrusted devices can be also exploited for enhancing system
security. Inspired by SVC based caching, advanced coding schemes facilitating better
exploitation of untrusted cache devices are a promising research topic.
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17.6.2 Imperfect, Statistical, and no CSI Knowledge about the Eavesdropper

In this chapter, we have assumed perfect CSI knowledge about the eavesdropper. In
practical systems, however, perfect estimation of the transmitter-to-eavesdropper chan-
nel is usually infeasible if the eavesdropper remains silent [41]. Due to CSI estimation
errors in these systems, cooperative MIMO beam-forming cannot perfectly align the
legitimate data signals in the null space of the eavesdropping channels. Consequently,
the likelihood of data leakage increases and the secrecy capacity for cooperative MIMO
transmission is reduced [42].

One promising approach for ensuring communication security in the presence of
CSI estimation errors is to employ artificial noise–based jamming [22, 25, 43, 44]. In
particular, as the CSI of the legitimate receivers may be easily estimated with high
accuracy, the artificial noise can be designed to proactively interfere the ERs while
avoiding interference to the LRs. Applying a deterministic channel estimation error
model, robust joint optimization of cache-enabled PLS and jamming was investigated in
[11]. The results in [11] suggest that, by employing robust joint optimization of beam-
forming and jamming, both the power efficiency and the secrecy of the cache-enabled
system can be significantly improved.

On the other hand, the CSI of the eavesdropper may also be completely unknown
at the transmitter. In this case, cache-enabled joint transmission may not outperform
conventional disjoint transmission in terms of PLS. This is because joint transmission
may unfavorably enhance the ER’s reception. Therefore, there is an interesting trade-off
between cache-enabled joint and disjoint transmissions, as investigated in [12].

17.6.3 Active Eavesdropper

So far, we have focused on passive eavesdroppers. Employing cache-enabled PLS to
combat active attacks such as spoofing and jamming [45] and pilot contamination
attacks [19], is an interesting topic but has not been investigated in the literature.

17.6.4 Other Forms of Cache-Enabled PLS Techniques

Recent works have also exploited caching for developing advanced physical layer
techniques including cache-enabled interference cancellation (at receivers), cache-aided
non-orthogonal multiple access [46, 47], cache-enabled relaying [48, 49], and cache-
aided massive MIMO [49]. Extending these schemes for PLS is feasible. Appealingly,
caching may lead to additional secrecy benefits that are infeasible in conventional
cellular networks (without caching). For example, a novel PLS technique exploiting
caching and superposition coded transmission was proposed in [51, chapter 2]. Thereby,
if a video content has been cached at the LRs but is not requested, it can still be
transmitted together with the requested video content in superposition to proactively
interfere the eavesdropper. Meanwhile, the LRs can cancel this artificially added
interference using the cached file, e.g., by re-encoding and modulating the cached
data and subtracting its contribution from the received signals [51]. Consequently,
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the proposed scheme achieves a positive secrecy capacity even if the legitimate
channel conditions are strictly worse than the eavesdropping channel. In contrast, for
conventional cellular networks (without caching), the secrecy capacity in such a case is
strictly zero.

17.7 Summary

While enormous research has demonstrated the benefits of traffic offloading and deliv-
ery latency reduction enabled by caching, in this chapter, caching was exploited as a
PLS mechanism to improve the secrecy capacity of cellular video streaming. Thereby,
caching was utilized as alternative “backhaul links” to facilitate cooperative transmis-
sion for large groups of BSs and hence increase the secrecy degrees of freedom in the
system. A two-stage nonconvex optimization problem was formulated to determine
caching and the corresponding cooperative transmission. To solve the problem effi-
ciently while balancing between complexity and performance, suboptimal algorithms
with polynomial-time computational complexity were proposed. Thanks to the special
structure of the problem, the proposed algorithms were verified to be asymptotically
optimal when the cache capacity available at the BSs and the number of training data
sets become large, respectively. Through numerical examples we showed that the pro-
posed schemes can achieve significant gains in PLS and power efficiency. Finally, future
research challenges and potential solutions for the application of cache-enabled PLS
have been discussed.

17.8 Appendix

17.8.1 Proof of Theorem 17.2

To show the equivalence between problems R0(wρ) and R1, we need to verify that
the beam-forming matrix obtained by solving problem R1 satisfies rank(W∗ρ) = 1. In
particular, we introduce α = [αmρ], β = [βm], λ = [λρ], �ρ, and �ρ = [�1ρ, �2ρ]
as the Lagrangian multipliers for C4, C5, C6, C7, and C9, respectively, with

αmρ ≥ 0,βm ≥ 0,λρ ≥ 0,�ρ & 0,�1ρ & 0, and �2ρ & 0. (17.24)

Then, for problem R1, the Lagrangian is formulated as

L(Wρ; α,β,λ,�ρ,�ρ) = tr

⎡⎣∑
ρ

(
Bρ − 2λρHρ −�1ρ

)
Wρ

⎤⎦+�, (17.25)

where � includes the constant terms and

Bρ � I+�
α,β
ρ +G�ρGH +

∑
ρ∈S

(1+ κreq
ρ )λρHρ ) 0, (17.26)



364 Xiang Lin, Derrick W. K. Ng, Robert Schober, and Vincent W. S. Wong

for �
α,β
ρ �

∑
m∈M(αmρ + βm)�m and �β �

∑
m∈M βm�m. As problem R1 is a

convex optimization problem and fulfills the Slater’s condition, strong duality holds for
R1. According to the duality theory [35], a primal-dual point (Wρ; α,β,λ,�ρ,�ρ) is
optimal if and only if it satisfies the Karush–Kuhn–Tucker (KKT) conditions, which are
given by

∇WρL = Bρ − 2λρHρ −�1ρ = 0, (17.27)

Wρ�1ρ = 0, (17.28)

Wρ & 0, λρ ≥ 0. (17.29)

Based on (17.27) and (17.28), we have WρBρ = 2λρWρHρ. Since rank(Hρ) ≤ 1, we
have the following rank inequalities

rank(Wρ)
(a)= rank(WρBρ)

(b)= rank(λρWρHρ) (17.30)

(c)≤ min
{
rank(λρWρ), rank(Hρ)

} ≤ 1, (17.31)

where (a) utilizes the fact that Bρ ) 0, (b) follows from (17.27) and (17.28), and (c) is a
result of inequality rank(AB) ≤ min {rank(A), rank(B)}. Since problem R1 is feasible
only if Wρ �= 0, we have rank(Wρ) = 1, which completes the proof.
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18 Mobile VR Edge Delivery:
Computing, Caching, and
Communication Trade-Offs
Jacob Chakareski

We investigate streaming 360◦ videos to mobile virtual reality (VR) clients in next-
generation cooperative 5G cellular systems. The setting under consideration comprises
a set of 5G small-cells that are interconnected via backhaul links, aiming to share
their resources of computing and caching when serving the clients. We formulate
efficient 360◦ video representations to enable streaming only the contents of remote
scenario/scene viewpoint demanded by a user at any time, thus outperforming the cur-
rent largely inefficient practice of sending a bulky 360◦ video, that might contain many
redundant parts of scene information not browsed by a user. In addition, we formulate
an optimization framework that allows the small-cell base station to cooperatively
choose streaming/caching/rendering methods that optimize the cumulative reward they
obtain while communicating with its users, subject to computing and caching/storage
constraints at each small cell base station. We characterize the problem as integer
programming, show that it is NP-hard, and formulate an approximation algorithm that
shows strong performance guarantees in fully polynomial time. Our framework enables
considerable operational efficiency advantage over the existing caching techniques
operating in concert with 360◦ video.

18.1 Introduction

Virtual reality and augmented reality (AR) are two rising technologies with a large
impact on our society. While VR brings a virtual or actual location to our perception in
an immerse manner (i.e., via virtual human teleportation [1]), AR enables embedding
(virtual) digital objects into our perceived physical surrounding. Their rapidly growing
popularity in the market and the mainstream forebodes future opportunities. In partic-
ular, there has been a flurry of related equipment/services/platforms released on the
market, developed by startups and large companies [2–12], with increasing investments
and acquisitions [13–16]. By 2020, the VR/AR market is expected to reach $150 billion
and dramatically shift the existing mobile market revenues at the same time [17].

Supported in part by NSF Awards CNS-1821875, CNS-1836909, ECCS-1711592, and CCF-1528030, and
research gifts from Adobe Systems and Tencent Research.
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Figure 18.1 Illustration of 360◦ streaming. Viewport Vi on the 360◦ sphere.

Networked VR/AR applications are going to play a key role in enriching the world
of the internet of things (IoT) [18–22] as well as large ecosystem of 5G tactile internet
[23, 24]. Concretely, with the capability of traveling virtually and having a superhuman
kind of vision, one can expect that VR/AR might lead to fruitful and diverse changes
in technology and society. Still, there are considerable challenges on the road to such a
future due to technology limitations and infrastructure costs.

For instance, emerging applications of VR at this stage are constrained to offline
configuration and computer-generated content, featuring a 3D scene that is statically
360◦-navigable and is constructed for a user with VR device that is externally linked
to a powerful desktop computer. In an online scenario, the content will be required to
streamed to the user. Examples of this scenario are engineered by internet companies
such as YouTube and Facebook [10, 25], providing video-on-demand (VoD) services of
360◦ video.

The 360◦ video is a novel video format recorded by an omnidirectional camera that
captures incident light rays from every angle. It allows a remote user to have a look
around the actual surrounding scenario/scene in 360◦ using a VR device, with the user
being virtually placed at the camera location, as Figure 18.1 illustrates.

However, existing implementations are highly inefficient as they require downloading
practically the entire 360◦ video file in advance, prior to the start of the streaming
session. This is required because the data rate of the encoded 360◦ video panorama
is considerably higher than the network bandwidth C available to stream the file. More-
over, the downloaded file features the complete 360◦ panorama of the scene; however,
a user can experience only a small portion of it, at any time, denoted as viewpoint Vi

in Figure 18.1. This is necessary to avoid simulator/motion sickness [26] and ideally
deliver good quality of experience, as the intuitive approach of sending only the current
Vi required by the user using traditional server–client delivery architectures, where the
server responds to client updates, would preclude application interactivity due to the
inherent latency. In reality, these design choices require the user client to first ingest and
then manage a huge volume of data, on the order of many hundreds of Gigabytes, which
has the following penalizing consequences:
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Figure 18.2 Virtual reality communication via small-cell cooperation.

• The sensation of immersion and the interactive nature of the VR application are
considerably degraded, as the service is not streaming, but, rather operating in an
offline-like download and play mode.

• The user can consume only very short low-quality 360◦ videos, as its client device
has limited storage/computing capabilities and its internet access link features a
limited data rate.1

Both of these consequences considerably impact the quality of immersion experience
delivered to the user.

This chapter investigates a future 5G setting, made up of a set of mobile VR clients
experiencing streaming 360◦ videos, as Figure 18.2 illustrates. The VR users are
distributed spatially and have network connectivity through a set of small-cells base
stations. These small cells are interconnected via backhaul, and provide service to their
users in concert area. The base stations also feature limited caching and computing
resources they can leverage in serving the mobile VR clients.

In this context, we provide multiple contributions under the setting depicted in
Figure 18.2. We first represent the 360◦ videos that are delivered and containing solely
viewpoint of interest of users in the scene. Subsequently, the remaining viewpoints
are adaptively delivered to users in navigation. Moreover, the optimization framework
we formulate allows the small cell base stations to collaboratively choose caching,
edge/fog computing, and streaming methods, thus ultimately aiming to maximize the
cumulative benefit/reward during their service. Third, we show that the problem under
consideration is NP-hard, therefore a fully polynomial-time approximation algorithm is
provided by relying on dynamic programming. The approximation algorithm enables

1 The 360◦ video panorama data rate is multiple orders of magnitude bigger than the available network
transmission bandwidth C.
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us to have a stronger performance guarantees (namely, (1 − ε)) compared to existing
methods with half the guarantees [27]. Last, we show strong advances in operational
efficiency relative to present caching methods operating in concert with emerging 360◦

video representation techniques.

18.2 Related Work

The 360◦ video streaming to mobile VR clients in cooperative 5G systems has not
been intensively explored before. In this regard, immersive telecollaboration [28, 29],
wireless systems with multiple camera and views [30], compression of multi-view video
and its communication [31–34], single 360◦ video streaming through the internet [35–
38], and scheduling of video packets subject to rate-distortion optimization [39–45] are
some of related works in this regard.

Prior work exploring wireless base station caching includes [46], which studies
estimation of content popularity distribution in a small cell and minimization of delay
during the content retrieval, characterizing the latter as a knapsack problem [47].
Moreover, [27] studied content delivery delay minimization via caching at small cell
base stations (aka wireless helper nodes), featuring low coverage but having large
storage capabilities. The decision of node availability therein is made based on the
closeness to a node to be served. Similarly, the work in [48] examined optimizing the
network parameters under a single small cell cache, while the works in [49, 50] explored
cellular networks with backhaul and hierarchical caching. Additionally, hierarchical
caching from information-theoretical perspective has been investigated in [51, 52].

18.3 System Models

18.3.1 VR Data Model

The traditional approach: 360◦ VR video provides a user with a visual immersion
of a remote scene that the user can interactively experience and navigate from any
perspective. We can illustrate this conceptually via the setting included in Figure 18.1,
in which the user is centered in a 3D sphere where the scene video evolving on the
inner surface of the sphere. With Vi , we denote the present viewpoint of interest of
the user navigating the remote scene. Vi is commonly denoted as the user viewport
in the literature. The VR device with vertical and horizontal fields of view (namely, a
head-mounted display; HMD) will establish the surface area of the 360◦ video content
shown on the device, as delineated in Figure 18.1. For simplicity, the symbol Vi is
interchangeably used to denote the direction of viewing of the user associated with the
corresponding viewpoint, as the two are uniquely related. In particular, the vector Vi

indicating the direction of viewing, represents the 360◦ surface normal of the respective
viewpoint, and its intersection with the 360◦ sphere is the center of symmetry for the
viewpoint Vi .
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R C P D

Figure 18.3 The 360◦ coding. Sphere to planar shape projections.

To leverage the benefits of conventional video compression, which operates on planar
surfaces, the 360◦ video panorama is first projected to a planar shape: equirectangle,
pyramid, cube, or dodecahedron, as illustrated in Figure 18.3. The latter three shapes
have been studied because an approximately 30% pixel duplication is created in
the case of the first projection (equirectangle) [35, 53]. However, they feature their
own shortcomings; for example, they introduce projection distortions around the
planar shape’s edges. The latest modern video codec high-efficiency video coding
(HEVC) [54] is then used for encoding the mapped 360◦ panorama. The rectangular
projection is predominantly used in present implementations, and we will consider
it here.

Proposed approach: Suppose that the view space panorama linked to the 360◦ sphere
is denoted by V , and a partition therein is represented by V = {V1, . . . ,VN }. We can
construct V in multiple ways; for example, we can uniformly divide the complete solid
angle of the sphere into N number of equal segments of 4π/N steradians. Then, the
surface normals on the sphere related to each such solid angle segment will represent
the respective vectors Vi . Using techniques like optimal 2D (vector) quantization [55],
one can also alternatively define V as the set of centroids of the 360◦ sphere surface,
divided into N partitions according to a probability/popularity distribution over the view
space V , that is pν,ν ∈ V . In other words, pν will represent how often viewpoint ν is
navigated by a VR user during a session. For sake of simplicity, our intention here is to
investigate the first option, where a detailed study on the advantage of second approach
is left for future work.

Suppose that the initial 360◦ sphere surface area related to viewpoint Vi due to the
partition V is denoted by S0

i . We expand S0
i in each direction uniformly across the

sphere surface to construct a larger area Si that encompasses views v ∈ V adjacent to
Vi . The thereby constructed Si is denoted as the quality emphasized region (QER) for
the viewpoint Vi [35]. The 360◦ video content associated with each viewpoint Vi ∈
V that is delivered to a VR user is then constructed as follows. The section of the
360◦ video panorama spanned by Si is encoded at high quality. The remaining por-
tion of the panorama denoted as Sc

i = S360◦ \ Si is encoded at low quality, where
S360◦ denotes the surface area of the entire panorama and “\” denotes the operator set
difference.
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Figure 18.4 Partitioned 360◦ video panorama. Viewpoint Vi (black dot) is surrounded by a spatial
area Si encoded at high quality (gray). The remaining area of the panorama Sc

i
is encoded at low

quality (light gray).

Si is selected to be the maximum possible surface area such that the aggre-
gate encoding rate associated with the 360◦ video content represented by view-
point Vi does not exceed the network bandwidth C available to a mobile VR user,
i.e., R(Si)+ R(Sc

i ) ≤ C. Figure 18.4 illustrates the partitioned 360◦ video i associated
with viewpoint Vi . Integrating the part of the panorama Sc

i ensures smooth navigation,
if the user diverges too far from Vi over time, while encoding it at low quality
considerably reduces the data rate required to transmit the resulting 360◦ video and
thus enables streaming 360◦ video to mobile VR clients. Moreover, expanding S0

i to a
larger Si accommodates rendering of minor local variations of Vi and smooth temporal
navigation between two adjacent partitions/viewpoints Vi and Vj during which the user
will consistently experience high-quality viewports, as ensured by our streaming model,
described next. Both of these characteristics will considerably enhance the quality of
experience of the user.

18.3.2 The 360◦ Streaming Model

A 360◦ video is encoded into temporal segments (groups of consecutive video frames)
of duration of several seconds. Each segment can be decoded independently at a client.
In our case, at the beginning of a segment, the client informs the server of its present
viewpoint v. The server responds accordingly by sending the partitioned 360◦ video
content associated with the viewpoint Vi that is closest to v on the 360◦ sphere surface.
This process is illustrated in Figure 18.5, which captures the streaming model between
the server and client that we designed.

Selecting the duration of a segment is important in this context, as the server can
only send 360◦ video content associated with another viewpoint/partition Vi at the
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Figure 18.5 A VR client navigates over time from viewpoint v1 at time t1 through viewpoint v2 at
time t2 to viewpoint v3 at time t3. The server responds accordingly by streaming segment s1 at
time t1 with QER for viewpoint Vi , segment s2 at time t2 with QER for viewpoint Vj , and
segment s3 at time t3 with QER for viewpoint Vk . The client experiences consistently
high-quality viewports over time and enhanced quality of experience.

beginning of the next segment. Thus the user should be navigating within the QER
of the present segment’s viewpoint Vi with high likelihood until then, to ensure good
quality of experience. Shorter segment lengths increase this probability, however, at
the expense of compression and transmission efficiency. We have established that a
segment duration of 2 seconds ensures a very high likelihood of retaining the user within
the present QER during that time, with minimal impact on compression/transmission
efficiency [35].

18.3.3 VR Computing and Data Complexity

Each partitioned 360◦ video j that is thereby constructed will feature different computa-
tional and data complexity characteristics. Let Bj indicate the volume of data generated
by video j at encoding. Similarly, let Bo

j denote the computing requirement imposed by
video j needed to render a viewport v from its encoded data. In an offline VR system,
the rendering of v is enabled by the desktop computer where the virtual reality device is
attached. In the case of online streaming, a server is required to implement such a task,
by interactively constructing different viewpoints v for user/client (due to navigation)
from the corresponding 360◦ video. Observe that the complexity of the remote scene
and dynamics will be proportional to Bo

j , as one can observe from the viewpoint Vj that
defines this partitioned 360◦ video (see Figure 18.4), i.e., for a sophisticated scene one
could expect higher value of Bo

j .
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18.3.4 Cellular Network Model

In the network setting we are considering, backhaul links interconnect the small cell base
stations, providing at the same time internet access to them, as Figure 18.2 illustrates.
Note that other types of wireless access networks could be also applied to our set-
ting. We consider N0 partitioned 360◦ videos (following the procedures described in
Section 18.3.1) and K number of small cell base stations. The small cells can utilize
the backhaul links to collaboratively serve their users. We denote aij as the access rate
(or popularity) of video j observed at base station i. This quantity essentially captures
how often segments from video j has been requested by users at the ith small cell
base station.

Let us suppose that the binary variable Xk
ij quantifies the choice to render and serve

the VR content representing video j , requested by a user connected to base station i,
from the cache of base station k. Hence selecting Xi

ij = 1 indicates the event of locally
rendering/serving the viewpoints of the partitioned 360◦ video j , such as from the cache
base station i. Last, setting XK+1

ij = 1 denotes the event where VR content j is served
via the internet. In our investigation, we assume that each base station i has caching
capacity of Ci and computing capability of Co

i .

18.3.5 Reward Model

The location from where the VR content represented by a demanded 360◦ video
is rendered (and streamed) will determine the network provider’s reward/benefit. In
particular, this will be reward Ri,p (ith base station serving locally) or Rk

i,p, for k �= i

and k ≤ K , where k = K + 1 denotes streaming from a remote back-end server. We
denote with Rj,v the reward specifically earned by the provider delivering video j , i.e.,
the viewpoints v that can be rendered from its QER.

Having diverse reward factors Ri,p, Rk
i,p is motivated by the need to capture the

different degrees of benefit the provider will obtain by streaming video j from different
places/locations. Concretely, one can intuitively assume that Ri,p > Rk

i,p > RK+1
i,p ,

reflecting the fact that provider can gain better if serving locally and gain less if
serving from the most distant location. One can alternatively define Ri,p and Rk

i,p by
allowing them to be inversely proportional to the cost due to delivery from different
locations.

Similarly, Rj,v can also quantify the different levels of quality of experience aimed to
the user, taking into account the degree of details in the scene and level of interactivity
performed by the video j . In fact, both factors are usually proportional to the volume of
data and complexity of rending video j . Hence one might also associate Rj,v with a cost
for the service provider. Examples of reward and cost/penalty factors in this context are
video quality and interactivity degree for the former (relating to quality of experience)
and energy and latency for the latter.

Last, introducing the factors aij will enable us to capture the base stations’ content
popularity distributions (probability of user requests), which are typically non-uniform.
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18.4 Problem Formulation

Our objective is to maximize the aggregate reward earned by the provider serving the
offered pool of N0 360◦ videos to users managed by the K base stations. The maximiza-
tion problem is formulated as follows:

max
∑

i

Ri,p

(∑
j

aijRj,vX
i
ij

)
+
∑

i

∑
k �=i

Rk
i,p

(∑
j

aijRj,vX
k
ij

)

+
∑

i

RK+1
i,p

(∑
j

aijRj,vX
K+1
ij

)
, (18.1)

subject to:∑
j

WijBj ≤ Ci,∀i,
∑
j

WijB
c
j ≤ Co

i ,∀i, (18.2)

Xk
ij ≤ Wkj,∀i,j,k,

K+1∑
k=1

Xk
ij = 1{aij≥0},∀i,j, (18.3)

Xk
ij ∈ {0,1},∀i,j,k, Wkj ∈ {0,1},∀k,j . (18.4)

In the problem formulation, Xk
ij and Wij are the decision variables, where the latter

denotes the choice of caching video j at base station i. The first term in the objective
function is the reward for caching the requested item at the local base station. The second
term captures the reward of having the requested item in nearby base stations. The last
term represents the reward for content obtained from the internet. Hence our general
goal is to maximize the average reward via a joint design for content placement and
routing.

The constraints (18.2) indicate a base station’s caching and computing capacity limits.
The first condition in (18.3) indicates that an item can be retrieved only from a base
station that cached the item. The second condition guarantees no more than one copy of
the requested item is delivered to the client. Finally, the constraints (18.4) capture the
binary nature of the decision variables Xk

ij and Wij .

lemma 18.1 The problem (18.1)–(18.4) is NP-complete.

Proof We can complete the checking of the feasibility of a given solution in polyno-
mial time, by verifying that it meets the constraints (18.2)–(18.4). Hence it remains to
show that (18.1) is NP hard.

We carry out a mapping from the well-known 0-1 multiple knapsack problem [47]
that is defined as follows. Consider K knapsacks of a set consisting of N items, with
N ≥ K . Denote Wj as the weight of the j th item and Pj as the profit associated to
item j . In addition, let Capi denote the capacity of the ith knapsack. To proceed, we
divide the N items into K disjoint groups and assign a different knapsack to a group.
The groups are determined in such a way that the group’s total profit is maximized
and the total weight does not exceed the corresponding knapsack. The mapping to an
instance of our own problem is carried out via the following steps: First of all, each
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base station’s cache is assigned with a knapsack, i.e., Ci = Capi,∀i. Next, each content
j is linked to the j th item and set Bj = Wj and

∑
i aij = Pj,∀j . Finally, we set

Ri,p = Rk
i,p = 1,∀k ∈ {1, . . . ,K} and RK+1

i,p = 0. We note that the necessary and
sufficient condition for a value V to make the 0-1 multiple knapsack problem feasible
is that it also makes our problem feasible. As the simplified problem can be executed in
polynomial time, our problem of interest is NP complete.

18.5 Polynomial-Time Approximation

We leverage dynamic programming [56] to characterize a polynomial-time approxima-
tion algorithm for solving (18.1)–(18.4). We consider here that Rk

i,p is the same for all

i �= j combinations, which fits the problem setting. Thus we denote R̄ = Rk
i,p, ∀i �= k.

Consequently we can rewrite the objective function O({Xk
ij }) as:∑

i,j

Ri,paijRj,vX
i
ij +

∑
i,j,k:k �=i,

k≤K

R̄aijRj,vX
k
ij +

∑
i,j

RK+1
i,p aijRj,vX

K+1
ij .

Hence, our optimization problem can be rewritten formally as:

max
{Xk

ij }
O({Xk

ij }); s.t. (18.2)–(18.4). (18.5)

Our approach is to scale the profit of every cached content at each base station
such that they are polynomially bounded in KN . Then, we will be able to solve the
scaled instance of the problem using dynamic programming and output an approximate
solution to the original problem. Moreover, proper adjustment of the degree of scaling
that integrates the approximation factor ε is needed to reduce the algorithm complexity
to polynomial time in regard to 1/ε.

Denote wij = Ri,paijRj,v +
∑

k �=i R̄akjRj,v as the maximum profit obtained
by prefetching content j at the ith base station i. The scaling factor is chosen as
wmax = maxi,j wij . Next, we define the vector product set of all possible combinations
of contents and caches as C = {1, . . . ,K} × {1, . . . ,N} and a precision factor as
p = �log (εwmax/NK)�. By definition, the set size is C = |C| and any member of the
set is represented by c ∈ C.

We point out that the re-indexing enables us to conceptually transform (18.5) into a
knapsack problem over C, in which each base station is bounded by multiple knapsack
constraints. In particular, if wmax is the maximum reward obtained by storing item c ∈ C,
then |C|wmax denotes an upper bound on the accrued aggregate profit p. Now, let Si,p be
a subset of {c1, . . . ,ci} that takes the smallest caching/computing volume and exhibits
the highest aggregate profit, ∀i ∈ {1, . . . ,|C|} and p ∈ {1, . . . ,|C|wmax}. We denote with
A(i,p) the size of the set Si,p. Leveraging the dynamic programming recurrence relation
(the Bellman equation [56]), we can formulate the expression:

A(i + 1,p) = min{A(i,p),Size(ci+1)+ A(i,p − Reward(ci+1))},
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Algorithm 8 Fully Polynomial-Time Approximation
1: Initialize T = ∅,P0 = 0,Q0 = {(T,P0)}
2: for ∀c ∈ C,l = 1 to C do
3: (i,j )← c
4: Grow Ql = Ql−1∪{(T∪{c},Pl−1+w′

ij
)|∑c′∈T:i′=i Bj ′ +Bj ≤ Ci,

∑
c′∈T:i′=i Bc

j ′ +
Bc

j
≤ Cc

i
,(T,Pl−1) ∈ Ql−1}

where w′
ij
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
�Ri,paij Rj,v

10p � +∑k �=i�
R̄akj Rj,v

10p �,
if �c′ ∈ T : j ′ = j,

�Riaij Rj,v
10p � − � R̄aij Rj,v

10p �,
otherwise.

5: if ∃(T1,P 1),(T2,P 2) ∈ Ql : P 1 = P 2 and

6:
{(∑

c∈T1 Bj >
∑

c∈T2 Bj and
∑

c∈T1 Bc
j
≥∑c∈T2 Bc

j

)
or

7:
(∑

c∈T1 Bj ≥
∑

c∈T2 Bj and
∑

c∈T1 Bc
j

>
∑

c∈T2 Bc
j

)}
then

8: Prune Ql = Ql \ {(T1,P 1)}
9: end if

10: end for
11: Select {(T∗,P ∗)} ∈ QC : P ∗ = maxP {(T,P ) ∈ QC}

for the evolution of the optimal caching configuration size, to populate A(i,p), ∀i,p. We
then seek the optimal caching setup corresponding to a feasible set Si,p that imposes the
smallest A(i,p) and simultaneously maximizes p. In the following, we formulate an
algorithm that will determine this set Si,p effectively.

In particular, we first introduce an approximated algorithm and subsequently verify
its performance in terms of accuracy and fully polynomial-time nature. We formally
characterize the details of the proposed algorithm in Algorithm 8. It leverages a data
structure Ql that tracks the explored state-space via stage l. Specifically, member ele-
ments (T,P ) ∈ Ql of the data structure indicate subsets (T) of size k ≤ l of the first l

entities in C, which represent the maximum earned reward (P ) for the predefined cached
contents and computing volumes

(∑
(i,j ):c∈T Bj and

∑
(i,j ):c∈T Bc

j

)
. For each element

l (c ∈ C), our algorithm features an expansion phase and a pruning phase. In the former,
the optimal paths stored in Ql−1 are branched out, taking into consideration the next
caching decision variable. While the later keeps only the optimal paths after the expan-
sion. We maintain the computing and caching constraints at each base station during the
expansion phase. Last, when stage KN completes, our algorithm completes by selecting
the caching configuration T∗ in QKN , which features the maximum profit P ∗.

Given the notation used in (18.5), we then set the optimization variables as follows.
If c ∈ T∗, then Xi

ij = 1 and XK+1
kj = 0,∀k, with (i,j )← c. In the next step, if ∃i ≤ K :

Xi
ij = 1 and ∃k �= i : Xm

kj = 0,m ≤ K , we set Xi
kj = 1. Finally, ∀i,j : Xk

ij = 0,k ≤ K ,

we set XK+1
ij = 1.

theorem 18.2 We denote with OPT the maximum value of the objective in (18.5).
Moreover, we denote with {Xk

ij }∗ the respective solution. Let {Xk
ij }′ denote the solution

produced by Algorithm 8. It holds O({Xk
ij }′) ≥ (1− ε) · OPT.
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Proof We first divide the corresponding reward of each item pair c = (i,j ) by a scaling
factor S = εwmax/NK (with rounding), in Algorithm 8. Hence the resulting reward
w′ij , which includes an item c in the scaled problem instance, satisfies S · w′ij ≤ wij .

Hence the reward obtained by {Xk
ij }∗ can decrease by the largest S for every cached

item (according to {Xk
ij }∗), evaluating in the scaled instance. Thus the overall reward

decrease can be bounded as:

O({Xk
ij }∗)− S ·O ′({Xk

ij }∗) ≤ CS, (18.6)

where O ′ represents the scaled objective in (18.5).
Now, Algorithm 8 uses dynamic programming to compute {Xk

ij }′. Hence {Xk
ij }′ is

the optimal solution to the scaled instance of the problem (18.5). Hence O ′({Xk
ij }′) ≥

O ′({Xk
ij }∗) must hold. We leverage this, to write the following inequalities:

O({Xk
ij }′) ≥ S ·O ′({Xk

ij }′) ≥ S ·O ′({Xk
ij }∗) (18.7)

≥ O({Xk
ij }∗)− CS (18.8)

= OPT− εwmax (18.9)

≥ (1− ε) · OPT (18.10)

where (18.9) follows from (18.6) and (18.10) holds as OPT ≥ wmax.

Algorithm 8 features running time that is polynomial in C, as it has to complete a
table A(c,r) consisting of C2�wmax/S� entries (1 ≤ c ≤ C and 1 ≤ r ≤ C�wmax/S�.
We point out that the scaling we select enables Algorithm 8 to be fully polynomial,
i.e., the corresponding running time is also polynomial in 1/ε, since wmax/S = C/ε. A
minimization version of Algorithm 8 necessitates reversing constraint in (18.6). In that
case, the variables wij will then capture the expense for storing item j at base station i.

18.6 Experiment Evaluation

We evaluate the performance of our framework via simulation experiments. In the eval-
uation, we also benchmark our approach (identified henceforth as Opt) to two recent
competitive methods. We call the first one LRU, as it implements a policy that evicts the
least popular cached item to make room for new fresh data. We call the second reference
method NCC, and it implements the framework explored in [46]. To facilitate imple-
menting our framework, here we have implemented the optimization in (18.1), with
the max operator being replaced with a min operator. Accordingly, we have replaced the
reward factors therein with corresponding cost counterparts. Actual network energy con-
sumption information is readily available in the public domain. Hence the cost factors
relate to how much energy is consumed to stream the 360◦ content to the mobile users.
In particular, the consumed energy due to local delivery include only the transmission
energy dispensed by a small base station, streaming the content to one of its users.
We account for the additional consumed energy, when the content needs to be delivered
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first from another small base station or a remote back-end server in the internet, as being
proportional to the number of network hops that would need to be traversed. We leverage
the information from [57], to consider that the latter case will have 15 intermediate
network hops. Moreover, we follow the published information from [58, 59], to set the
energy consumption of wireless links to 3.5 micro-Joules and the energy consumption
of wireline links to 0.5 micro-joule. The number of base stations is set to 10.

The two reference methods leverage video files whose size is randomly chosen from
a range of values, with 200 megabytes as the lower end and 800 megabytes as the upper
end, in increments of 100. For Opt, we select Bj again at random, however, from a
range that features 10 times smaller values, enabled by the efficient viewport-aware
representation of the content we formulate. The popularity factors for the video files are
generated according to a probability distribution that follows the Zipf law, with a factor
of γ, we set to 4/5. This choice has been motivated by earlier work [60]. A base station
is assigned a number of mobile users, chosen at random.

We transform the quantities Rj,v to their cost equivalents, by inversely normalizing
them with a reference value, representing Rj,v for the most data voluminous video file.
Similarly, we leverage published information from [61], to define κE to be the rendering
energy per unit of time (second) needed to reconstruct a VR viewport at the temporal
frame rate of 60 fps, and set its value to 100 milliwatts. We then characterize Bo

j for any
video file j as κEBj/Bj, min, where the last quantity captures the least data volume of a
video file. Here, we consider that the energy consumed due to rendering is proportional
to the data volume of the video content to be reconstructed.

In the remainder, we evaluate the overall consumption of energy of each system under
comparison, against three factors: the storage space at a base station, how many base
stations there are in the macro cell, and the computing budget at each base station.

We first examine the impact of the first factor on the system performance of each
method. In these experiments, we adopt published information from [62], to set the value
of Co

i to 65 watts, for every base station. The respective results are shown in Figure 18.6.
It can be observed that Opt enables enhanced performance, by consuming 3 to 7 times
less energy with respect to the competing techniques, for all values of storage space
considered. Moreover, its energy consumption drops much faster as more storage space
is introduced, as observed from the lower range in the figure. Finally, even when no
caching takes place (cache size of zero), enabled by the efficient viewport-aware repre-
sentation of the content we formulate, Opt still leads to considerable energy savings, as
seen from Figure 18.6. To gain additional insights on this aspect, we evaluated how Opt
would perform if it streams the entire monolithic 360◦ panorama to users, identically
to LRU and NCC. This approach has been identified as Opt-NVDC in the figure, and
it can be seen that it features identical energy cost as the competing methods, when the
base stations have no storage space. On the other hand, Opt-NVDC consumes much less
energy, when the base stations can store video files, enabled by our framework. We note
for example that it leads to 50% energy savings relative to the competing methods, for
most of the storage space values examined in Figure 18.6.

Next, we examine the impact of the network size/density, in terms of how many small
base stations are deployed in the macro cell. For every base station, the values of Ci
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Figure 18.6 Consumed system energy against storage space at a small base station.
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Figure 18.7 Consumed system energy against network size (number of small base stations).

and Co
i have been fixed to 60 gigabytes and 65 watts, respectively. These results are

shown in Figure 18.7. It can be seen that introducing more base stations improves the
energy efficiency of all three systems. The savings in energy as the number of base
stations increases are only marginal for LRU and NCC, as expected. In contrast, Opt
benefits from more small base stations in the system, by more effectively combining
and leveraging the higher level of resources available in the system thereby, such that
the system efficiency is thus augmented. This is evident from the performance of our
approach (and its variant Opt-NVDC) exhibited in Figure 18.7.
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Figure 18.8 Consumed system energy against available computing capabilities at the mobile
network edge.

Last, we investigate the impact of available computing resources on energy con-
sumption. We summarize these results in Figure 18.8, considering Ci = 60 GB, ∀i.
Similar trends are observed as those in Figure 18.6. Concretely, for small values of the
computing budget Co

i , all systems under examination consume more energy. This is not
surprising, as when insufficient rendering capabilities exist at the edge of the network,
the mobile clients need to have their content streamed from the back-end server, which
augments the aggregate energy cost of the system. On the other hand, we also observe
from Figure 18.8 that once Co

i starts increasing, the system efficiency in turn starts
improving uniformly across all techniques, enabled by the local capabilities for render-
ing and therefore streaming. It should be noted though that our approach, benefiting
from our analytical advances, leverages the available system resources more effectively,
to enable lower consumed energy for the system, as evident from Figure 18.8.

18.7 Concluding Remarks

This chapter explored a system framework for streaming 360◦ content to mobile virtual
reality clients in next-generation cooperative 5G systems. Our framework integrates an
effective method for representing 360◦ videos such that they can enable streaming of
only the portion of the 360◦ panorama required by a client at any time. This over-
comes a major shortcoming of emerging practices that deliver the entire voluminous
panorama, which usually includes information not needed by the respective user. Our
framework allows for cooperation among the base stations in selecting joint caching,
streaming, and edge computing (rendering) policies, whose objective is to minimize the
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overall energy consumption of the system, when delivering the requested content to the
mobile clients. Constraints that need to be met while meeting this goal is the limited
storage and computational resources at each small base station. We formally verify that
our problem of interest is NP hard and formulates an efficient solution algorithm that
exhibits strong performance approximation guarantees in fully polynomial time. Our
experiments demonstrate considerable performance advances over competitive caching
methods employed in concert with prevalent 360◦ video representation practices. These
benefits motivate further investigation.
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19 Economic Ecosystems in Elastic
Wireless Edge Caching
George Iosifidis, Jeongho Kwak, and Georgios Paschos

The delivery of content over the internet is a multibillion-dollar business involving
different stakeholders: the content providers (CPs) that create and sell content to users;
the content distribution networks (CDNs) that manage large-scale content cache servers,
and the internet service providers (ISPs) or mobile network operators (MNOs) that are
responsible for transferring the content to end request points. The economic interac-
tions of these entities have always been convoluted as their decisions about content
pricing, caching, and delivery are inherently intertwined. Moreover, recent advances in
network management, including software-defined networking (SDN), network function
virtualization (NFV), and in caching architectures, i.e., the deployment of caches at the
network edge, further exacerbate these effects, creating new opportunities but also new
challenges.

In this chapter, we study the technoeconomic challenges for one of the most
promising new caching paradigms, the elastic wireless edge caching solution, where
third-parties dynamically lease storage resources in a wireless cloud. The main idea
is the following: an MNO advertises storage prices for servers placed in proximity to
the end users, and various content providers lease on demand capacity to enhance the
quality of their services. We describe the main concepts and existing business models
for the elastic CDN solution, provide a summary of the related work, and discuss the
key differences between in-network and edge caching. We then present a detailed model
for this system where the caches reside in cellular base stations. We formulate a problem
where cache dimensioning, content caching, and request routing decisions are jointly
optimized by a CP in order to reduce content delivery delay subject to a given leasing
budget. We design a suite of dynamic solution algorithms, based on the Lyapunov drift-
minus-benefit technique, and present numerical experiments that quantify the benefits
of elastic over typical static cache deployments. See Table 19.1 for the abbreviations
used in this chapter.

19.1 Introduction

The constant mobile data traffic growth [1] and the increasing congestion of inter-
net pipes due to video and other content traffic has spurred many research efforts for
the design of content caching infrastructures. However, the economic aspects of these
systems have been largely overlooked. Figure 19.1 depicts just how different is the
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Table 19.1 List of Abbreviations

Abbreviation Full Name Abbreviation Full Name

CP Content Provider CDN Content Delivery Network
CSP Cloud Service Provider ISP Internet Service Provider
MNO Mobile Network Operator Telco CDN CDN of Telecommunication

Operator
BS Base Station NFV Network Function

Virtualization
SDN Software Defined

Networking
SBS Small Base Station

MBS Macro Base Station D2D Device to Device
QoS Quality of Service CDNaaS CDN as a Service
QoE Quality of Experience WEC Wireless Edge Caching

Payment for

edge caching and

bandwidth usage

Edge caching and

bandwidth pricing
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Figure 19.1 Technical and economic perspectives of wireless edge caching. From an economic
point of view, vertical stakeholders represent different classes of entities such as users, CPs,
ISPs, and CDN providers; and horizontal stakeholders represent different entities within each
class. In general, the issues between the vertical stakeholders are pricing for caching or
transferring the content and collaboration between them, whereas the issues between the
horizontal stakeholders are making service fairness for the same service price.

content delivery process in perspectives of technology and economy. From a technical
standpoint, the caching decisions at every edge server are made in order to maximize the
caching hit ratio and/or reduce the end-to-end delay. Yet, the key stakeholders involved
in this process have most often different goals. This introduces intricate trade-offs about
which files to cache, which routes to use, and even how to price the cached content. The
focus of this chapter is to highlight these trade-offs, which will be very common in the
fast emerging elastic caching ecosystem.

Although memory is typically cheaper than link bandwidth [2], the entire amount
of storage capacity in a mobile network can be significant, thus introducing important
costs [3]. These costs increase further when it comes to edge storage, which is more
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expensive than cloud storage in data centers. For example, the cost of the Amazon
Web Service (AWS) CloudFront for storing files at edge servers is $0.085/GB, whereas
in AWS Simple Storage Service (S3), which uses data center storage, the respective
price is four times smaller, i.e., $0.023/GB [4]. On the other hand, caching at the edge
reduces backhaul utilization, known to be the performance bottleneck of dense wireless
networks. This suggest that leasing caches at wired or wireless networks mandate a
careful cost analysis and novel pricing schemes [5].

When it comes to moving massive amounts of video in the internet, a number of
stakeholders are involved. For example, CPs such as YouTube, Netflix, and Facebook,
produce content; CDNs such as Akamai offer content storage and delivery services; the
ISPs or MNOs are responsible for delivering this traffic to the end users who create the
demand and pay for this service. In the constantly evolving ecosystem of caching, new
roles and new interactions are created among these entities [6]. For instance, companies
such as Akamai and Limelite offer CDN as a service (CDNaaS), i.e., they rent their
storage infrastructure to third parties. ISPs often choose to build their own CDNs (known
as Telco-CDNs), when they decide that in-network storage can reduce their costs. On
the other hand, since CPs own the encryption rights of the video content, they often
select to install their own cache servers within the ISP or MNO networks. Users may
produce their own content (e.g., in YouTube or Facebook) or choose to circulate the
videos themselves, e.g., by using peer-to-peer overlays. Caching plays a dominant role
in gluing together all these stakeholders and content delivery solutions, leading to many
and diverse business models.

In this chapter, we focus on a very promising model, namely the elastic CDN ser-
vice. In eCDNs, there are three key stakeholders: (1) the storage infrastructure owner,
a prominent example of which is Amazon AWS ElastiCache [4] or a Telco CDN;
(2) a small-size CP that cannot afford a private CDN; and (3) the users that consume
the video content. The CP purchases storage on demand and serves the users. The
service is called elastic because the storage can be leased dynamically, e.g., on an
hourly basis, and to be dimensioned based on the needs at each time instance. This
provides unprecedented levels of flexibility and opportunities for budget economization,
but complicates the system design and the interactions among these business entities.
The idea of elastic CDNs is built upon recent technological advances that enable the
flexible control of storage and network resources [7]. For instance, cloud companies
offer elastic-anything, e.g., AWS provides a variety of options for flexible services such
as Amazon EC2 Auto Scaling, Elastic Load Balancing, and Elastic File System [4].
Similarly, Akamai proposed the concept of cloud CDN, where caching capacity can be
dynamically dimensioned to host virtual caches [8, 9].

Following this trend, the elastic CDN service provides two significant advantages:
it allows us to meet spatiotemporal demand variations by installing caches where and
when needed (just-in-time caching), and it enables small-size CPs (such as Pinterest,
Snapchat, and Tumbler) to enter the content delivery market with small costs. Tradi-
tional CDN pricing reflects the storage usage costs or small-scale traffic fluctuations
but is mainly based on a flat-rate price across large geographical regions (e.g., con-
tinents) arranged in long-term contracts (e.g., few months to years) based on peak
traffic estimations [10]. Therefore, small-size CPs, faced with unpredictable demand,
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must either invest in building a large private CDN or buy such flat contracts, both of
which create a barrier-to-entry into the content business. In contrast, elastic CDNs allow
these entities to improve content delivery with a flexible pricing scheme. Indeed, the
first commercial services, such as Akamai Aura [11] and Huawei uCDN [12], enable
us to dynamically scale cache capacity and enable fine-grained payment service [13].
However, due to the complicated nature of caching resource allocation and network
environment, the elastic CDN service seems to have very complicated engineering-
oriented solutions. In this chapter, we propose a mathematical model toward addressing
this challenge.

19.2 Background

Before we delve deeper into the economics of wireless edge caching, we discuss the
related work and the main business models for content caching.
Wireless edge caching in heterogeneous networks. The wireless edge caching (WEC)
idea, in its current form, has been largely shaped by the femtocaching proposal [14],
which optimizes the caching of files in small-cell networks with capacity-limited back-
haul links. Many followup works have studied different aspects or different versions
of this caching architecture; see [6] for a brief overview. For instance, [15] proposed
the capacitated femtocaching model that takes into account the wireless link capacity
that is fast drained in massive demand scenarios; [16] proposed the joint design of
caching and multicast policies, [17] studied the problem of leasing storage from third
parties in wireless networks; [18] proposed the hierarchical file caching at different
level of edge clouds; and [19] addressed a joint file caching and user-BS association
problem with a consideration of spatial dynamics of content popularity. All these works,
however, assume that the caches have a given capacity or that they are dimensioned only
one time. Clearly, this is a fundamentally different model than that envisaged elastic
CDN solution.
Techno-economical content caching and delivery techniques. Many works on the
CDN server placement problem considering the cost of the cache memory [20–23]
have been studied. For instance, [20] proposed the joint minimization problem of server
deployment, file caching, and routing cost, and solved it exploiting the Benders’ decom-
position method; while [22] leveraged dynamic programming. On the other hand, [23]
formulated a storage budget allocation problem that aims to minimize the content deliv-
ery costs in a hierarchical CDN.

Few works have designed mechanisms to enable cooperation among ISPs, CDNs,
CPs, and users. For instance, [24] developed an algorithm for the joint design of
caching and user association policies in a femtocaching network, where the storage is
leased from residential Wi-Fi access points. This idea was further extended in [17],
which studied the cooperation between a content provider leasing caches from an
MNO, and the impact of the user association policy on the caching performance. Such
cooperation mechanisms have been also considered in wired networks, where it has
been shown that the coordination of routing and caching decisions between ISPs and
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CDNs, respectively, can produce significant cost savings and performance gains; see
[25] and references therein.
Business models for content caching.

• Akamai Intelligent Platform: Akamai operates CDNs offerring a large amount
of internet traffic. They have 0.2 million caching servers distributed over the
world, offering 1–10 ms access to content. A recent study [9] proposed the idea
of elastic CDN, which enables us to change leased cache capacity with a fined-
grained time scale. This framework combines storage placement with decisions
of caching.

• Google Global Cache (GGC): This model consists of caches owned by ISPs. The
GGC’s aim is reducing network bandwidth costs by locally serving requests for
YouTube content [26].

• Netflix Open Connect: Netflix partially deploys CDN servers within ISPs [27].
Nevertheless, Netflix faces difficult challenges, because their file library is smaller
than YouTube.

• Amazon AWS: The Amazon CloudFront is a virtual CDN service that leverages
cloud storage to provide content caching services. AWS provides dynamic content
caching and bandwidth services where the customers can change their policy
every hour.

• Cedexis and Conviva: By far, major CPs have contracted with a single CDN, such
as Akamai, Level 3 or Amazon CloudFront, or deployed their own CDN, such as
Google and Netflix.

19.3 Wireless Edge Caching versus In-Network Caching

Wireless edge caching systems differ from typical in-network caching architectures in
many different aspects:

• The population of users reaching a cache of a base station (or, any edge server) in
WEC, is significantly smaller than the respective population that creates requests
for a core-network cache. This makes the timely collection of statistics about
content demand a very challenging task in WEC.

• Contrary to data centers, edge servers have limited storage resources. Hence the
cost for leasing storage at the edge is higher than that of cloud storage.

• Finally, WEC systems are inherently dynamic for a variety of reasons, including
user mobility, wireless channel state variations, and the overlap of their coverage
areas.

This raises the following specific technical challenges in WEC: (1) popularity predic-
tion is difficult, and hence caching efficiency might be compromised; (2) the deployment
of storage is of high importance for the system performance, yet is challenging to
optimize given the small scope of these caches; (3) the storage investment can reduce
the backhaul link utilization; but (4) the cost of leasing edge storage is very high, which
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in turn calls for dynamic cache dimensioning. In the next section, we study an elastic
CDN scenario and propose a solution that tackles these issues.

19.4 Elastic Wireless Cache Lease, Content Caching, and Routing

The elastic CDN model allows small-scale CPs to rent on-demand cache capacity
at the various edge servers of ISPs or MNOs, to improve the service quality. We
formalize this scenario and develop an optimization framework in a scenario that the
CPs have their budget to lease cache capacity with a consideration of spatiotemporally
varying file popularity and electricity price for storage. This chapter follows a systematic
optimization approach where we jointly consider the decisions about elastic storage
lease, content caching, and content-user routing. The goal is to maximize the benefits
in terms of average download delay reduction (compared to not using edge caching),
conditioned that the CPs do not overspend their budget compared to the time-average
storage lease payment. We should note that the delay reduction from edge caching
can be directly translated to monetary benefits for the CPs, as the users are extremely
sensitive in the content delivery delay, and hence higher prices can be charged to
them when the edge caches are employed. We leverage the Lyapunov drift-plus-benefit
framework to change an original long-term average problem into online snapshot
problems that do not require future content demand and network conditions.

19.4.1 Scenario

The eCDN solution [9] is particularly suitable for small CPs, which can dynamically
lease cache capacity. Such CPs operate typically with tight monetary budgets and need
to serve fast-changing user demand, and also seek fine-grained control over the leased
caches in order to accrue the highest possible benefits. In this scenario, the CPs need
to make decisions of leased cache capacity in an edge server attached to a small BS
and stored contents in the edge server. Since the content request temporally changes, we
need to periodically (every hour) bring them up to date.

This chapter assumes that an MNO has the eCDN, hence the MNO manages both
user-small BS association and content caching. In this scenario, the end users subscribe
to a content service from a CP and pay a Telco-CDN operator for the network usage. The
latter provides both edge caching and data delivery services (from core data centers to
the edge servers) to the CP, and mobile internet connectivity to end users. The Telco
CDN operator sets the price for the delivery of data and the edge caching service
dynamically, based on, e.g., the varying electricity prices.

In our framework, we assume Poisson point process for service area, i.e., each point in
the service area receives the requested file from a small BS where the service coverage
of small BSs can be overlapped. If the requested file is cached at the routing BS,
the retrieving delay can be reduced since the original retrieving delay is that from
the original content server to the service point. Moreover, the CP is assumed to let
the MNO know its cache rental budget. The aim is at maximizing total service delay
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Figure 19.2 An example of the elastic policy and the static policy in a cache rental system. For the
simplicity of the model, the only experienced wireless delay is a time-varying parameter and
other parameters are static in this model. Note that the association solution for static policy is fair
time-sharing between BS 1 and BS 2 for both time slots since time-average delays for both BSs
are the same.

benefit, i.e., delay difference between retrieving the corresponding file from the original
content server and that from the small BS that caches the corresponding file, constrained
by the cache rental budget. The latter is elastic in the sense that the CP can violate
it in some rounds and underspend in some others, keeping the average below a given
threshold. Clearly, one can consider different business and operational models.

19.4.2 Motivating Example of Elastic Cache Lease

Figure 19.2 shows an example of the elastic cache lease, file caching and area-BS
association policy1, and compares these to a respective static policy in a cache rental
system.2 In this example, a CP provides content service to users in area 1 and a Telco
CDN operator has two edge servers attached to each BS that can be leased by the CP.
Parameter db,n denotes the backhaul delay for transferring files between the CP and
each BS, and dw,n is the wireless delay when transmitting files from each BS to the
users in area 1, respectively where n ∈ 1,2 denotes the BS index. In this example, we
consider the following dynamic and static states (or, conditions): dynamic states (dw,n

changes for all BSs over each time slot) and static states (db,n is constant for all BSs
and requests for all files f1,f2). We assume that db,n = 2 for both BSs, and that 2 file
requests arrive for both files in every time slot. At the first slot, the CP is likely to lease
memory space at BS 1 for all files. In this case, all requests would be associated with
that BS since the wireless delay from BS2 to area 1 is larger. At time slot 2, the CP is

1 Here we simply consider BSs instead of small BSs.
2 To simplify, we do not include the units of all parameters.
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likely to lease memory space at BS 2 to store all files; and hence all requests would be
associated with that BS, since the wireless delay from BS 2 to area 1 is smaller than
that from BS 1 to area 1. However, the CP that adopts the static policy is likely to lease
memory space at both BSs (namely, to cache f1 at BS 1 and f2 at BS 2) and use fair
time-sharing association between the two BSs, since the time-average wireless delays
are the same from both BSs to area 1.

We evaluate the elastic policy and the static policy using three metrics: total
cache lease costs, total backhaul bandwidth usage costs, and total end-to-end delay
(from the closest location that caches the corresponding file to area 1). First, we note
that the total cache lease costs for both policies are equal, since the memory space to
cache two files is leased by the Telco CDN operator every time slot. Second, the total
backhaul bandwidth cost for the elastic policy is zero, and for the static policy it is
4R, where R is the bandwidth cost per file. The cost for the static policy arises since
one request of each file must be transmitted from the original content servers via BS 1
or BS 2 in both time slots. Finally, the end-to-end delay of the elastic policy is 2
(2 file requests for file f1) and additionally 2 units (2 file requests for file f2), hence
in total equal to 4 at the first slot. Similarly, they are 4 at time slot 2. For the static
policy, it is 1 (f1 from BS 1 caching), plus 3 additional units (f2 from the CP to area
1 via BS 1), 2 units (f2 from BS2 caching), and 4 units (f1 from the CP to area 1
via BS2), which yield a total of 10 units at the first slot. Similarly, we can calculate
that for the second slot it is also 10, which bring about an total cost of 20 units. This
chapter concludes that in this example the elastic policy offers better QoS with the same
memory leasing cost and using less backhaul bandwidth than the static policy.3

19.4.3 System Model

The cache rental framework includes a macro BS (MBS) (denoted with s) and multiple
small BSs collected in set J . All stations together J ∪ {s} cover spatial zone (see
Figure 19.3). We partition the area into I nonoverlapping subareas and use Ji ⊆ J
to denote the subset of small BSs that are reachable by area i ∈ I. The MBS is
reachable from all points in the plane. The Telco-CDN offers storage for leasing at
each small BS, that can be used to cache files and facilitate their delivery. Time is
slotted in hours t = 0,1, . . .. For each file f in a catalog F , we denote with λi,f (t) the
traffic is requested from area i at time slot t . We assume that λi,f (t) is identically and
independently distributed.4 The traffic demand reflects the spatiotemporal fluctuation of
file demand. Hence it is of utmost importance to control file caching across different
time slots.

If a location emanates a file request, the corresponding retrieving delay dij (t),j ∈
Ji ∪ {s} (which is related to the area i where the user is placed) will be generated,
and the station j ∈ J ∪ {s} from which the file is retrieved will together determine

3 In this example, we assume that file popularity can be exactly predicted. There exists many studies that
address the prediction of the file popularity using machine learning techniques such as the one in [28] and
references therein.

4 It is possible to extend the model to Markovian arrivals using the framework of [29].
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Figure 19.3 Overview of cache rental, file caching, and association in wireless elastic CDNs.

the employed communication path. A possibly different delay is associated with each
path for various reasons, such as wireless interference, congestion, and propagation
time which are all path specific. When the file is retrieved from the MBS, a remote
server is contacted to obtain the file (see Figure 19.3), and the download delay dis(t)
is generally large. To improve the QoS offered to end users, the file can be retrieved
from a nearby small BS cache instead of the MBS. This improvement can directly lead
to revenue increase for the CP, which can, for instance, charge higher prices for the
offered service.

The storage is leased at a fluctuating price of hj (t) dollars per byte, at each small BS
j , which is extrinsic to our system. For instance, the price might follow electricity cost
fluctuations [30], or may be determined by a spot storage market where idle capacity
is dynamically sold in a small time scale. Hence the price is affected by temporal ebbs
and flows of traffic and storage demand. We introduce the investment variables yj (t),
which is the leased caching capacity of small BS at time slot t . The investment decisions
are subject to an average budget Bavg , which must be satisfied over a long horizon. On
one hand, cloud service providers, like Amazon AWS, provide storage lease (called S3)
and backhaul transmission (called CloudFront) at prices that are adapted every hour,
which motivates investment decisions on hourly basis. On the other hand, CPs must
meet operational expenditure (OpEx) billing targets only at a larger scale of time, e.g.,
over a month. Hence, we introduce the time-average budget constraint as follows:

lim
T→∞

1

T

T−1∑
t=0

∑
j∈J

yj (t)hj (t) ≤ Bavg, (billing constraint) (19.1)

where
∑

j∈J yj (t)hj (t) represents the total investment in slot t , the LHS is the time
average investment, and Bavg is the available average budget per hour to be spent on
storage.



396 George Iosifidis, Jeongho Kwak, and Georgios Paschos

To determine the average delay experienced within an hour, we must describe
carefully how each file request is served. For this, we consider the file caching
zj,f (t) ∈ {0,1} and association xij,f (t) ∈ [0,1]. For example, zj,f (t) = 1 if content f

is placed at small BS j at time slot t , and xij (t) = 1 if location i requests content f to
small BS j at time slot t . Now, we consider the hourly end-to-end delay benefit from
file caching for the area i and small BS j as follows:

Dij (x(t),z(t);λ(t),d(t)) = (dis(t)− dij (t))
∑
f∈F

xij,f (t)zj,f (t)λi,f (t). (19.2)

Observe that the delay is a function of the proportion of served traffic to location
i (xij,f (t)), existance of file f at small BS j (zj,f (t)), and the amount of requests
(λi,f (t)). Note that the hourly end-to-end delay benefit of each area and each BS is
defined as the total reduction of end-to-end delay for that area thanks to edge caching.
By improving in this way the QoS, the CP can make more profits from end users. For
example, the CP can set the price for the content delivery service in proportion to the
delay savings. Then, the unit price multiplied by the sum of end-to-end delay benefit
for all areas and small BSs reflects the total revenue of the CP. The total delay benefit in
slot t is:

gt (x(t),z(t);λ(t),d(t)) =
∑
i∈I

∑
j∈Ji

Dij (x(t),z(t);λ(t),d(t)). (19.3)

Below, we will drop (λ(t),d(t)) from the argument of g, though the dependence on these
parameters remains implied. We note that the total delay and the total delay benefit add
up to a constant term (equal to the total delay without caching) and hence minimizing
total delay is equivalent to maximizing total delay benefit. We focus on the latter.

A number of constraints must be satisfied at each time slot. Specifically, the entire
demand emanating from each area must be served by the small BSs or ultimately the
MBS: ∑

j∈Ji∪{s}
xij,f (t) = 1, ∀i,f ,t, (service constraint) (19.4)

and the file placement is limited by the available leased storage:∑
f∈F

zj,f (t) ≤ yj (t)/b, ∀ j,t, (storage space constraint) (19.5)

where b denotes the file size. Even though the size for all files is assumed to be identical
for simplicity in this chapter, different file sizes can be modeled if we consider a large
file that consists of several chunks with the identical size. Please find a summary of
notations in Table 19.2.

19.4.4 Problem Formulation

The system is operated with an elastic CDN strategy, which at slot t maps the current
state of the system to a decision tuple

(
xij,f (t),yj (t),zj,f (t)

)
. An elastic CDN strat-

egy is called feasible if it satisfies the billing constraint (19.1) and the instantaneous
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Table 19.2 Summary of the Notation

Notation Definition Notation Definition

i ∈ I Area Index dis (t) Average Delay for Serving Area i by
Remote Servers

j ∈ J SBS Index dij (t) Average Delay for Serving Area i by
SBS j

s MBS Index hj (t) Price to Lease Cache Storage per
unit bit

f ∈ F File Index λi,f (t) Demand Profile

Bavg Average Budget Constraint yj (t) Leased Cache Space at SBS j

t Hour Index (time slot) zj,f (t) File Caching Indicator

xij,f (t) Association Probability

constraints of service (19.4) and caching space (19.5) explained earlier. We consider the
mobile operator’s curiosity: What is the feasible elastic CDN polity that maximizes the
average delay benefit? This question can be addressed by the following control problem:

(P) : max
x,y,z

lim
T→∞

1

T

T−1∑
t=0

gt (x(t),z(t)), (19.6)

s.t. lim
T→∞

1

T

T−1∑
t=0

∑
j∈J

yj (t)hj (t) ≤ Bavg,

∑
j∈Ji

xij,f (t) = 1,∀i,f ,t,
∑
f∈F

zj,f (t) ≤ yj (t)/b,∀j,t .

In other words, the problem (P) is to find investment for edge caching, cached files and
area-cache association solutions at every time slot to maximize the average delay bene-
fit, i.e., indirectly maximizing the CP’s profits, by staying below a predetermined budget.

We should note that the control problem is difficult to solve because

• Crucial factors for the objective such as future traffic demand λi,f (t) and future
delay gains dis(t)−dij (t) are unknown at the time the investment decisions yj (τ)
are taken (τ < t).

• Due to the time average billing constraint, a large investment yj (τ) reduces the
available budget in future slots t > τ, which can be problematic in combina-
tion with the unknown future costs hj (t), delays dij (t),dis(t), and traffic demand
λi,f (t).

19.4.5 Lyapunov-Based Elastic CDN Strategy

Since problem (P) involves the challenging time-average constraint (19.1), a promising
approach is to couple the fate of this constraint with an evolving controllable counter.
To this end, let us consider a virtual queue (or counter) as follows.
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QB (t + 1) =
[
QB (t)+

∑
j∈J

yj (t)hj (t)− Bavg

]+
. (19.7)

Related work [31] proved that if weak stability conditions hold for the virtual
queue, i.e.,

lim
T→∞

1

T

T−1∑
t=0

QB (t) <∞, (19.8)

then constraint (19.1) is asymptotically satisfied, in the sense that its residual tends to
zero as T → ∞. In other words, satisfying (19.8) implies that the time-average of
billing constraint (19.1) is satisfied. Intuitively, the backlog QB (t) estimates the total
excess budget spent in the previous time slots (instantaneous residual), and therefore
QB (t) is valuable information for deciding how to invest at slot t . Then, let us focus on
slot t . The decision maker is aware of (1) the mean traffic demand profile for the next
hour [λi,f (t)]i,f , which in practice is achieved by measurements and use of machine
learning methods, cf. [28]; (2) the delay profile realizations [dij (t)]i,j , which are readily
available by measurements; (3) the prices [hj (t)]j ; and (4) the virtual queue length
QB (t), while file size b is assumed to be known. Therefore, the elastic CDN strategy is
applied on the state

(
[λi,f (t)]i,f ,[dij (t)]i,j,[hj (t)]j,QB (t)

)
. To design a strategy that

solves (P) we leverage a Lyapunov drift-minus-benefit framework in the following.
We first define the quadratic Lyapunov function and arising drift in the following.

L(t) � 1

2
QB (t)2, (19.9)

�(t) � E{L(t + 1)− L(t)|QB (t)}. (19.10)

The meaning of minimizing (19.10) is that we strive to stabilize the virtual queue
QB (t) or satisfy the billing constraint (19.1). Readers can refer to [29] for more
theoretical information on the Lyapunov function and arising drift. In addition, our
aim is to maximize the time-average total delay benefit limT→∞ 1

T

∑T−1
t=0 gt while

satisfying the stability of the virtual queue. Therefore, we consider the Lyapunov
drift-minus-benefit function (DMB), which balances the drift and the instantaneous
obtained delay benefit:

DMB(x(t),z(t)) = �(t)− VE{gt (x(t),z(t))|Q(t)}. (19.11)

Here, V denotes a trade-off parameter between queue stability and maximization of
total average delay benefit. In summary, trying to minimize (19.11) in every time slot
has the similar meaning with trying to satisfy the original long-term problem (P), i.e.,
maximizing the average delay benefit and remaining below a predetermined budget on
average.

From equation (19.7) and [32], we have the following inequality for ([yj (t)]j,
[xij,f (t)]ijf ,[zj,f (t)]jf ):

DMB(x(t),z(t)) ≤ P − VE{gt (x(t),z(t))|QB (t)}
− E

{(
Bavg −

∑
j∈J

yj (t)hj (t)
)
QB (t)|QB (t)

}
, (19.12)
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where P = (B2
avg + |J |y2

maxh
2
max)/2 is a positive constant, and ymax and hmax denote

the maximum storage that can be leased at any small BS during an hour, and the max-
imum price respectively. One study [29] showed the optimal solutions of our problem
are the same with a minimization of the right-hand-side of (19.12) in every time slot.

We propose the elastic CDN strategy (SBSD), which at slot t takes actions
(x(t),y(t),z(t)) = (x∗,y∗,z∗), where

(x∗,y∗z∗) ∈ arg maxx,y,zVgt (x,z)−
∑
j∈J

QB (t)yjhj (t), (19.13)

s.t.
∑
j∈Ji

xij,f = 1,∀i,f ,t,
∑
f∈F

zj,f ≤ yj /b,∀j,t .

The first straightforward result is that SBSD is a feasible elastic CDN policy. First,
the instantaneous constraints of service (19.4) and storage space (19.5) are automatically
satisfied at each slot by the design of the policy. Then we may observe that SBSD min-
imizes the RHS of (19.12), therefore using lemma 4.6 in [29], we can show that SBSD
also stabilizes QB (t), and hence the billing constraint (19.1) is asymptotically satisfied.

Some further remarks are in order:

• As long as the technical requirement “λ(t) and d(t) have finite second moments”
is satisfied (used in the proof of asymptotic feasibility), SBSD will satisfy the
budget constraint.

• Information of the hourly file popularity, delay profile, and instantaneous budget
counter make the caching system achieve a close to optimal performance despite
absence of future file popularity or future delay profile.

It remains to solve the slot-by-slot problem (19.13) in every time slot. We provide the
solutions for two different cases: nonoverlapping and overlapping small BS coverages.

Nonoverlapping small BS coverage. When small BS coverage is nonoverlapping,
each area can reach a single small BS cache, which immediately simplifies routing splits
xij,f (t) to xij,f (t) = 1, ∀t if area i can reach small BS j (otherwise, xij,f (t) = 0), for
all i,j,f . In essence, each request can be served only by the reachable cache (or the
MBS when the file is not cached there). Now, it decouples the small area BS association
problem from the file caching and caching capacity dimensioning problems as follows.
First, we note that caching file f at small BS j in slot t yields the delay benefit as
follows:

Kj,f (t) �
∑

i

(dis(t)− dij (t))xij,f (t)λi,f (t),

which is calculated by d,x,λ (x is a parameter here because it is fully determined by
the reachability of the cache) and independent of the decisions y(t),z(t). Consequently,
the SBSD optimization becomes

max
yj≥0

zj,f ∈{0,1}
V
∑
j,f

Kj,f (t)zj,f −QB (t)
∑
j∈J

yjhj (t), (19.14)

s.t.
∑
f∈F

zj,f ≤ yj /b, ∀j,f .
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Because yj is an integer multiplication of the file size b and zj,f (t) has a binary
value, the first term of (19.14) can be expressed with a relation of yj as follows:

V
∑�yj /b�

f=1 Kj,σ(f )(t), where σ(f ) denotes file index when we let Kj,σ(1)(t) ≥ · · · ≥
Kj,σ(|F |)(t). Then, the problem can be transformed so as to find y∗j (t) as follows:

y∗j (t) ∈ arg maxyj≥0

�yj /b�∑
f=1

Kj,σ(f )(t)− QB (t)

V
hj (t)yj . (19.15)

This problem can be easily solved by finding the maximum value among �ymax/b�
candidates. Then, the complexity of this algorithm in each small BS becomes
O(�ymax/b�).

Moreover, since we decouple the problem with the area-small BS association, the
problem can be decomposed into each small BS’s problem. Next, we give the algorith-
mic steps to find yj and zj for all small BS j ∈ J optimally in detail:

1. Calculate Kj,f (t) =∑
i(dis(t)− dij (t))xij,f (t)λi,f (t) for all files.

2. Sort Kj,f (t) with permutation σ, such that Kj,σ(1)(t) ≥ · · · ≥ Kj,σ(|F |)(t).
3. Let S(e) =∑e

f=1 Kj,σ(f )(t), for e = 1,2, . . ..

4. Find e∗ that is the smallest e that ensures S(e)− S(e − 1) <
QB (t)

V
hj (t).

5. Calculate the optimal cache lease capacity: y∗j (t) = e∗b.
6. Calculate file caching:

z∗j,σ(f )(t) =
{

1 if f ≤ �y∗j (t)/b�,
0 otherwise.

Then, the algorithm, namely the Optimal algorithm in the nonoverlapping small BS
case has the following features:

• Given virtual queue length, storage price, and parameter V , the algorithm finds
the amount of storage that if leased it optimizes a weighted sum of delay benefits
and budget penalties.

• For the found storage amount that is leased, files are cached at each small BS
according to which yields the highest delay benefit, until the available leased
storage is completely filled up.

Overlapping small BS coverage. Now, this chapter addresses a scenario that each
location can be served from different small BSs. Therefore, we have to consider the
area and small BS routing problem whose variables are xij,f (t) in addition to the
lease of cache capacity and file caching, and we may no longer use the trick with
Kj,f (t), since the file request from user can be addressed from possibly several
small BSs and the actual collected delay benefit depends on which small BS is
selected. We remind the reader that the SBSD strategy determines the decisions that
solve:
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max
yj≥0

xij,f ∈[0,1]
zj,f ∈{0,1}

Vgt (x,z)−QB (t)
∑
j∈J

yjhj (t), (19.16)

s.t.
∑
f∈F

zj,f ≤ yj

b
, ∀j,

∑
j∈Ji

xij,f = 1,∀i,f .

It is difficult to directly solve (19.16) since xij,f and zj,f are tightly coupled with
each other. Therefore, we remove zj,f from (19.16) and include a constraint xij,f (t) ≤
zj,f (t).

It should be noted that (19.16) as formulated is a mixed integer nonlinear program
(MINLP) because of xij,f (t)zj,f (t), which is located inside gt . Hence we remove
zj,f (t) from the objective and add an extra constraint xij,f (t) ≤ zj,f (t). For example,
if zj,f (t) = 1, xij,f (t) is not affected by the new constraint, and works as before.
Otherwise, zj,f (t) = 0, xij,f (t) becomes 0 due to the new constraint.

Now, the problem is transformed into a mixed integer linear program (MILP). To
solve this problem, we can consider two approaches as follows:

• We may solve the linear relaxation of (19.16) and then use a rounding technique to
obtain an approximation guarantee, e.g., a possibility is to combine the relaxation
with randomized rounding [33]. According to section 4.7 of [34], our approximate
solution of (19.16) will provide an elastic CDN strategy with an approximate
feasibility and average delay benefit. In turn, the approximate feasibility can lead
to a feasible strategy with some extra losses.

• A second approach is to obtain an efficient approximate solution is to apply the
idea of “low complexity scheduling” from [35]. This method assigns to the leased
cache capacity by smoothly increasing it or decreasing it with small step size. The
sign of the change is randomly chosen. Then it resolves our SBSD optimization
to get a new average delay benefit, and if these new values outperform previous
delay benefits, the random solution is applied.

In this chapter, we take the second method as an example for deriving an algorithm in
the general case. In this context, we provide a stability guarantee for the budget queue
length QB (t), which implies that the produced strategy is asymptotically feasible. The
strategy, namely, a randomized algorithm is described as follows:

1. For the first time slot, leased cache capacity y∗j (1) is chosen as Bavg/(|J |havg)
for all small BSs.

2. Based on the decided leased storage for each small BS, file caching and user
association solutions (x∗(t),z∗(t)) are obtained using a greedy file caching (GFC)
policy and an optimal user association (OUA) policy for a given file caching
solution, which are described in the following.
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3. For time slots t > 1, leased cache capacity y′j (t) is chosen as y∗j (t − 1) + δ ·
Uj (t − 1) where δ denotes small step size and Uj (t − 1) is uniformly chosen in
{−1,1} for all small BSs.

4. Based on the decided leased storage for each small BS, file caching and user
association solutions (x′(t),z′(t)) are obtained using a GFC policy with an OUA
policy for a given file caching solution.

5. Compare Vgt (x′(t),z′(t))−QB (t)
∑

j∈J y′j (t)hj (t) and Vgt (x∗(t−1),z∗(t−1))
−QB (t)

∑
j∈J y∗j (t−1)hj (t) and choose a set of solutions whose objective value

is greater as an optimal set of solutions, i.e., (x∗(t),z∗(t)).

The GFC policy begins with an empty cache set in all small BSs. Then, this policy
iteratively caches files one-by-one in all small BSs where an added file in each step is
selected so as to maximize the differential objective value in (19.16). For a given set of
cached files, the OUA policy is to choose association variables by

x∗ij,f (t) = arg maxxij,f (t) (dis(t)− dij (t))z∗j,f (t)λi,f (1), ∀i,f .

This solution is robust due to the comparison mechanism between the solution of
the current time slot and that of the previous time slot. Namely, if the budget queue
increases due to the excessive investment for cache lease, it reduces the objective value,
hence forcing the decision maker to choose the solution of the previous time slot. On
the other hand, if the budget queue decreases due to the less investment for cache lease,
it increases the objective value, hence forcing the decision maker to choose the solution
of the current time slot. This mechanism stabilizes the budget queue.

Moreover, for a given leased cache capacity, a joint file caching and user association
problem is shown to be a monotone submodular problem with matroid constraints in
respect to cached files in small BSs according to the recent literature e.g., [36]. This
implies a greedy-fashioned file caching algorithm in conjunction with the OUA policy
(for a given file caching solution) probably achieves a constant factor approximation
(1− 1/e) to the optimal performance.

To quantify the performance improvement of the elastic cache lease and file caching
over the static policies, we run simulations under a simple nonoverlapping small BS
scenario (10 small BSs, 10 areas, 50 files in each small BS). We assume that each area
is associated with the nearest small BS. In this scenario, delay for the corresponding
zone by a small BS and delay for the corresponding zone by the original file servers in
each time slot are picked from the Gaussian distribution with various parameters and
given only positive values. To capture the spatio-temporal diversity of file popularity,
the arrival rate of each file is drawn from the Zipf distribution [28] and different Zipf
parameters are used for each area and each period of time slots.5

We compare the proposed algorithms of optimal and randomized with the static
caching and static budget policies. The static caching policy caches the files based
on the general content popularity with the static cache investment, i.e., caching the
same number of files at all small BSs, whereas the static budget policy uses the static

5 The sum traffics for all files at each time slot and each area are picked from the Gaussian distribution with
various parameters and taken only positive values.
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Figure 19.4 Improvement in performance due to the elastic cache lease and file caching and the
elastic behavior in a non-overlapping SBS scenario, with 10 SBSs, 10 areas, and 50 files in each
SBS. The average cache lease budget is the same with caching 10 files in each time slot.

cache lease for all time slots but file caching is chosen so as to maximize our objec-
tive function in SBSD, i.e., this policy adopts an adaptive file caching for a given
cache capacity.

Figure 19.4 shows the budget queue statistics of the elastic algorithms, the end-to-
end statistics, and leased cache capacity for all algorithms. The elastic algorithms (i.e.,
optimal and randomized) opportunistically exploit the dynamics of network delays and
file request arrivals with keeping average leased cache capacity, whereas the static algo-
rithms (i.e., static caching and static budget) lease a fixed amount of budget every time
slot. For example, when the traffic demand is high and the Zipf parameter is small, then
the larger cache capacity is leased, and vice versa. Hence some interesting remarks here
are the following: (1) the elastic algorithms perform better than the static algorithms in
terms of total end-to-end delay (at least 53% reduction) using even less cache capacity.
(2) The randomized policy achieves close to the optimal performance (83% in terms
of average end-to-end delay). These results can be found in real spatiotemporal traffic
and content popularity variation scenarios where the traffic arrival is high and Zipf
parameter is small during the day, while being low and high, respectively, during night
hours (temporal diversity); and these statistics depend on the area, e.g., when the CDN
simultaneously serves locations in different time zones (spatial diversity). Note that the
end-to-end delay indirectly captures the average profits of CPs from end users since the
QoS of end users depend on the delay.

Figure 19.5 depicts the end-to-end delay for different average parameters, i.e., average
demand, price, and budget. The main differences between the proposed elastic algo-
rithms and the baseline static algorithms for large average demand, price, and budget,
arise due to the fact that the proposed algorithms have more degrees of freedom and can
exploit a given budget more flexibly than the baseline static algorithms. Therefore, the
CP increases its profits from subscribers by offering better QoS. From the perspective
of the Telco-CDN operator, e.g., AWS, they are likely to be unhappy since the CP
can save money by not using memory at low traffic. However, the real economical
benefits of the CDN operator will appear if the remained memory can be covered by
other CPs because several CPs have more budget by making more profits from their
end users.
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Figure 19.5 Total end-to-end delay versus different parameters. The simulation scenario is the
same as Figure 19.4 except average demand, average price, and budget. As average demand,
price, and budget become larger, the delay benefit of the proposed algorithms get higher. For
example, the performance difference between the proposed randomized algorithm and static
caching is 1% for budget 1, whereas the performance difference between them is 72.31% for
budget 5.

19.5 Open Research Issues

In this chapter, we proposed an elastic edge caching solution for small CPs leasing
storage from a wireless Telco-CDN, which relies on a general model and hence captures
different technical and economic aspects of this idea. However, this is a novel and quite
rich research problem with many challenges that should be carefully addressed. We
outline some of the most important challenges in this section.

Fairness mechanism among subscribers: In most of the previous works on caching,
including our proposal in this chapter, the objective is to maximize the aggregate per-
formance for all users, e.g., here the total delay savings. However, from an economic
point of view, it is often beneficial (sometimes, also necessary) for the CP to offer
different classes of services to the users, and each user to subscribe to the one that is
suitable for its needs. For instance, some of the services might offer content delivery
delay guarantees, while others might not. It is therefore necessary to design a fairness
mechanism that will ensure all users within each class enjoy the same QoS and that users
in different service classes will be given priority according to their subscription level.

Different objectives of different stakeholders: In this chapter, we analyzed the problem
from the perspective of the CP that attempts to optimize the delay savings for a given
investment budget. Other stakeholders however, such as CDN providers, MNOs, or
even larger CPs (e.g., Amazon AWS, YouTube and AT&T) can have different objectives.
For example, AWS would like to select a pricing policy that maximizes its revenue,
instead of alleviating the delivery delay of files. Similarly, a Telco might prefer to
prioritize the cache-hit ratio, independently of the delay that is induced from the caching
policy, in order to save off-network bandwidth. It is thus necessary to analyze the
problem from the different perspectives of these stakeholders and, going a further step,
understand how these can be aligned.

Incentives: Indeed, the underlying assumption in our model is that the involved enti-
ties, i.e., the CP, the Telco-CDN, and the end users will all agree to participate in
this cooperative framework. However, this requires a mechanism that will ensure that
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their incentives are properly aligned. For instance, the coordination between the CP
and the Telco-CDN creates additional revenue, both due to bandwidth savings and the
improvement of the offered service. It is hence natural to investigate how this profit can
be dispersed among these entities so as to incentivize their collaboration.

19.6 Conclusion

The caching economics is one of the less studied areas in the literature of content
caching, yet it is quickly increasing thanks to the increasing interests in network and
storage softwarization. These technologies revolutionize the business of caching and
give rise to new ideas and new types of caching services. And even more opportuni-
ties, as well as also challenges, arise when we focus on the inherently volatile wire-
less/mobile networks. It is clear to us and hopefully to the reader as well at this point
that these challenges require a hybrid technoeconomic approach as they cannot be solely
addressed with engineering solutions.

In this chapter, we focused on the fast emerging wireless elastic CDN paradigm,
which is as promising as is challenging to deploy. We started with a discussion about the
current state of the caching ecosystem, presenting the latest business models. We high-
lighted the difference of this edge caching solution with the standard core in-network
caching architecture, both from a technical and from an economic perspective. We
then focused on a specific elastic cache lease scheme, and designed a joint policy
that dimensions the caches on demand, and decides the content caching and small-
request BS routing in order to achieve the minimum possible delay. The decisions are
being made by a CP that has a limited time-average (elastic) investment budget. The
problem was solved by the design of a dynamic policy that relies on the Lyapunov
optimization technique and randomized scheduling to alleviate the complexity for the
implementation. Finally, we demonstrated the benefits of the elastic cache leasing over
static cache leasing policies and discussed several open issues that must be addressed
before this promising idea is widely deployed.
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