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Foreword

Perhaps I should immediately explain to the reader that this foreword is neither a
voice from the grave, nor a remarkable display of anticipation. The “Frank A. Ben-
ford” who’s the author of this foreword is a grandson of the “Frank A. Benford”
for whom Benford’s Law is named. As this relationship by itself hardly qualifies
me to write this foreword, let me hasten to add that I’m a professional applied
mathematician with a Ph.D. from Harvard.

That my grandfather’s “Law of Anomalous Numbers” became known as “Ben-
ford’s Law” instead of “Newcomb’s Law” is, of course, a historical accident. I’m
not complaining, obviously, but descendants of Simon Newcomb have a legitimate
beef. I recently learned that my possibly distant cousin Gregory Benford, the well
known physicist and science fiction author, had a colleague William Newcomb who
was Simon Newcomb’s grandson. Although Gregory and William worked closely
together, the Benford/Newcomb connection never seems to have come up! Well,
they’re physicists, not mathematicians, so maybe I shouldn’t be too surprised.

Figure 1 Frank Benford and his family, 1946.
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I’d like to be able to claim that I remember grandfather, but that would not be
true; he died when I was only three. I know that I met him, however, because a
photograph (see Figure 1) from 1946 shows him and grandmother, their four sons,
four daughters-in-law, and eight grandchildren at a family reunion. My mother was
impressed by grandfather’s ability to work calculus problems amid the hubbub of a
family gathering.

My grandfather worked as a physicist in the Research Laboratory of the General
Electric Company in Schenectady, NY, and most of his work for G.E. concerned
optics. I’m sure that grandfather, being a conscientious employee, did all the re-
search and writing of “The Law of Anomalous Numbers” on his own time. In a
three-page autobiographical sketch he wrote for Leonard Clark of Union College
in 1939, only one short paragraph concerns his Law of Anomalous Numbers.

Steven Miller, the editor of this volume, suggested that I include “stories about
your grandfather, anything you know about the reception of his work, how he felt
about it, how he would feel to see his name attached to something arising in so many
different fields.” As I don’t have any first-hand information about grandfather, I
passed this request along to my father, who wrote in his reply,

My father was extremely modest and had little to say about his publi-
cations. He certainly never boasted. He was, indeed, interested in the
phenomenon of first digits, but not excessively so. He would truly be
surprised to learn of the interest that seems currently alive.

Figure 2 Publications on Benford’s Law from 1938 to 2007.

I think my grandfather was proud of his paper, and fond of it, but he wasn’t the
sort to brag, and I suppose he was resigned to the idea that his Law of Anomalous
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Numbers would soon disappear into obscurity. He would certainly be gratified (and
possibly astonished) that the first-digit phenomenon he’d rediscovered seems to be
a topic of perennial interest. As Ken Ross puts it, writing papers about Benford’s
Law appears to be “a growth industry.” I offer as evidence some data I’ve compiled
from the Benford Online Bibliography [BerH2]. Figure 2 shows the number of
known “Benford relevant” publications per year for the first 70 years: 1938 until
2007; the last few years are omitted as there is a delay between when some pa-
pers are published and when they are added to the online bibliography. In Table
1 we give the frequencies of the first digits of the publication data from Figure 2
(omitting years where no relevant papers were published). The pattern of first digits
should look familiar!1

First digit Frequency Percentage Benford’s Law
1 20 35.7 30.1
2 9 16.1 17.6
3 8 14.3 12.5
4 5 8.9 9.7
5 3 5.4 7.9
6 2 3.6 6.7
7 6 10.7 5.8
8 1 1.8 5.1
9 2 3.6 4.6

Table 1 Frequencies in publication data of papers on Benford’s Law: 1938 to 2007.

Roughly speaking, publications dealing with Benford’s Law may be sorted into
three classes: theoretical (extensions of Benford’s Law, and investigations into the
circumstances where Benford’s Law does, or does not, apply), applications of Ben-
ford’s Law, and popularizations (i.e., expository pieces aimed at the “intelligent
layman”). I expect that almost all papers published between 1940 and 1965 are
theoretical in nature. Starting with Ralph Raimi’s 1969 Scientific American article
[Rai], popular accounts of Benford’s Law have appeared at a steady rate. This is
attributable, of course, to the counterintuitive nature of the phenomenon. While
theoretical papers on the first digit phenomenon have continued to appear, the pub-
lication of Mark Nigrini’s 1992 dissertation [Nig1] marks the beginning of a wave
of publications concerned with applications of Benford’s Law. This is reflected,
appropriately, in the contents of this book. There are 5 chapters that are theoretical
in nature, and 13 chapters concerned with applications in accounting, vote fraud,
economics, psychology, the natural sciences, and image processing.

It’s been 75 years since my grandfather published “The Law of Anomalous Num-
bers,” and it seems like a propitious time to publish a summary of the current state

1The chi-square statistic (comparing to the Benford frequencies) is 5.8 with 8 degrees of freedom
(the 5% threshold value is 15.5, and thus the data is consistent with Benford behavior).
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of affairs, i.e., the book you’re reading. In the 75 years since grandfather wrote his
article, the first-digit phenomenon has gone from an obscure curiosity to a fairly
well-known and useful “law.” Who knows what another 75 years will bring? There
may be departments of Pure and Applied Benfordology at most major universities!

Frank A. Benford
BenfordAppliedMath.com

Salem, Oregon
June, 2014

http://www.BenfordAppliedMath.com


Preface

One of the greatest beauties in mathematics is how the same equations can de-
scribe phenomena in widely different fields. Benford’s Law of digit bias is an
outstanding example of this. Briefly, it asserts that for many natural data sets we
are more likely to see numbers with small leading digits than large ones. More
precisely, our system is Benford if the probability of a first digit of d is log10

d+1
d ;

we often consider the related but stronger statement that the probability of a sig-
nificand being at most s is log10 s, or the natural generalizations to other number
bases. Base 10, the probabilities range from having a leading digit of 1 almost 30%
of the time, to only about a 4.6% chance of starting with a 9.

Benford’s Law arises in a variety of disciplines, including accounting, computer
science, dynamical systems, economics, engineering, medicine, number theory,
probability, psychology and statistics, to name just a few, and provides a won-
derful opportunity for a common meeting ground for people with diverse interests
and backgrounds. My first encounter with it was in Serre’s A Course in Arithmetic
[Ser]. On page 76 he remarks that Bombieri showed him a proof that the analytic
density of the set of primes with leading digit 1 is log10 2, which is the Benford
probability; a short argument using Poisson Summation yields the proof. I next
saw it in Knuth’s The Art of Computer Programming, Volume 2: Seminumerical
Algorithms ([Knu], page 255), where he discusses applications of Benford’s Law
to analyzing floating point operations, especially the fact that Benford behavior im-
plies the relative error from rounding is typically higher than one would expect.
Once aware (or perhaps I should say doubly aware) of its existence, I saw it more
and more often.

Our purposes here are to show students and researchers useful techniques from
a variety of subjects, highlight the connections between the different areas and en-
courage research and cross-departmental collaboration on these problems. To do
this, we develop much of the general theory in the first few chapters (concentrat-
ing on the methods which are applicable to a variety of problems), and then con-
clude with numerous chapters on applications written by world-experts in that field.
Though there are common themes and methods throughout the applications, these
chapters are self-contained, needing only the introductory chapters and some stan-
dard material. For those wishing to use this as a textbook, numerous exercises
and supplemental material are collected in the final chapter, and additionally
are posted online (where more problems can easily be added, and links to rel-
evant material for that chapter are collected); see



xviii PREFACE

http://web.williams.edu/Mathematics/sjmiller/public html/benford/ .

One advantage of posting problems online is that this need not be a static list, and
thus please feel free to email suggestions for additional exercises.

Below we briefly outline the major themes of the book.

• Part I: General Theory I: Basis of Benford’s Law: We begin our study of
Benford’s Law with a brief introduction by Miller in Chapter 1. We concen-
trate on the history and some possible explanations, and briefly discuss a few
of the many applications and central questions in the field.

While for many readers this level of depth suffices, the subject can (and
should!) be built on firm foundations. We do this in Chapter 2, where
Berger and Hill rigorously derive many results through the use of appro-
priate σ-algebras. There are many approaches to proving a system satisfies
Benford’s Law. One of the most important is the Fundamental Equivalence
(also called the uniform distribution characterization), which says a system
{xn} satisfies Benford’s Law base B if and only if its logarithm modulo 1
(i.e., yn = logB xn mod 1) is uniformly distributed. In other words, in the
limit, the probability the logarithm modulo 1 lies in a subinterval [a, b] of
[0, 1] is just b − a. The authors describe this and additional characteriza-
tions of Benford’s Law (including the scale-invariance characterization and
the base-invariance characterization), and prove many deterministic and ran-
dom processes satisfy Benford’s Law, as well as discussing flaws of other
proposed explanations (such as the spread distribution approach).

For the uniform distribution characterization to be useful, however, we need
ways to show these logarithms are uniformly distributed. Often techniques
from Fourier analysis are well suited for such an analysis. The Fundamen-
tal Equivalence reduces the Benfordness of {xn} to the distribution of the
fractional parts of its logarithms {yn}. Fourier analysis is built on the func-
tions em(t) := exp(2πimt) (where i =

√−1); note that the painful mod-
ulo condition in yn vanishes when it is the argument of em, as em(yn) =
em(yn mod 1). Chapter 3 by Miller is devoted to developing Fourier ana-
lytic techniques to prove Benford behavior. We demonstrate the power of
this machinery by applying it to a variety of problems, including products
and chains of random variables, L-functions, special densities and the infa-
mous 3x+ 1 problem. For example, using techniques from Fourier analysis
(especially Poisson Summation), one can show that the standard exponential
random variable is very close to satisfying Benford’s Law. The exponential
is a special case of the three-parameter Weibull distribution. A similar anal-
ysis shows that, so long as the shape exponent of the Weibull is not too large,
it too is close to being Benford. There are numerous applications of these re-
sults. The closeness of the standard exponential to Benford implies that order

http://web.williams.edu/Mathematics/sjmiller/public_html/benford/
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statistics are almost Benford as well. The Weibull distribution arises in many
survival models, and thus the analysis here provides another explanation of
the prevalence of Benford behavior in many diverse systems.

• Part II: General Theory II: Distributions and Rates of Convergence:
Combinations of data sets or random variables are often closer to satisfying
Benford’s Law than the individual data sets or distributions. This suggests
a natural problem: looking for distributions that are exactly or at least close
to being Benford. One of the most important examples of a distribution that
exhibits Benford behavior is that of a geometric random variable. Numerous
phenomena obey a geometric growth law; in particular, the solution to almost
any linear difference equations is a linear combination of geometric series.
We then investigate other important distributions and see how close they are
to Benford. Although Benford’s Law applies to a wide variety of data sets,
none of the popular parametric distributions, such as the exponential and
normal distributions, conforms exactly. Chapter 4 highlights the failure of
several well-known probability distributions, then delves into the geometry
associated with probability distributions that obey Benford’s Law exactly.
The starting point of these constructions is the fact that if U is a uniform
random variable on [a, a + n] for some integer n, then T = 10U is Benford
base 10.

As the exponential and Weibull distributions are not exactly Benford, it is
important to obtain estimates on the size of the deviations. There are many
ways to obtain such bounds. In Chapter 3 these bounds were obtained from
Poisson Summation and the Fourier transform; in Chapter 5 Dümbgen and
Leuenberger derive bounds from the total variation of the density (and its
derivatives). These results are applied to numerous distributions, such as
exponential, normal and Weibull random variables.

This part concludes with Chapter 6 by Schürger. Earlier in the book we
showed geometric Brownian motions are Benford. While processes such as
the stock market were initially modeled by Brownian motions, such models
have several defects, and current work must incorporate jumps and heavy
tails. This leads to the study of Lévy Processes. These processes are de-
scribed in detail, and their convergence to Benford behavior is shown. The
techniques required are similar to those for geometric Brownian motion. On
the other hand, the class of Lévy processes is much more general than just
geometric Brownian motion, with applications in stochastic processes and fi-
nance; in particular, these and related processes model financial data, which
has long been known to closely follow Benford’s Law.

The final parts of this book deal with just some of the many applications of Ben-
ford’s Law. Due to space constraints it is impossible to discuss all of the places
Benford’s Law appears. We have therefore chosen to focus on just a few situa-
tions, going for depth over breadth. We encourage the reader to peruse the many
resources, such as the searchable online bibliography at [BerH2] or the large com-
pilation [Hu], for a tour through additional areas to explore.



xx PREFACE

• Part III: Applications I: Accounting and Vote Fraud: Though initially
an amusing observation about the distribution of digits in various data sets,
since then Benford’s Law has found numerous applications in many diverse
fields. We briefly survey some of these. Probably the most famous applica-
tion is to detecting tax fraud, though of course it is fruitfully used elsewhere
too. We start in Chapter 7 with some of the basics of accounting, where
Cleary and Thibodeau describe how Benford’s Law can be integrated into
business statistics and accounting courses. In particular, in the American Sta-
tistical Association’s 2005 report Guidelines for Assessment and Instruction
in Statistics Education, the following four goals (among others) are listed for
what students should know after a first statistics course: (1) that variability is
natural, predictable and quantifiable; (2) that random sampling allows results
of surveys and experiments to be extended to the population from which the
sample was taken; (3) how to interpret statistical results in context; (4) how
to critique news stories and journal articles that include statistical informa-
tion, including identifying what’s missing in the presentation and the flaws
in the studies or methods used to generate the information. The rest of the
chapter shows how incorporating Benford’s Law realizes these objectives.

Chapter 8 by Nigrini describes one of the most important applications of Ben-
ford’s Law: detecting fraud. Many diverse systems approximately obey the
law, and thus deviations often indicate fraud. The chapter begins by examin-
ing some data sets that follow the law (tax returns, the 2000 census, stream
flow data and accounts payable data), and concludes by showing how Ben-
ford’s Law successfully detected fraud in accounts payable amounts, payroll
data and corporate numbers (such as Enron).

We continue with another important example where Benford’s Law has suc-
cessfully detected fraud. Chapters 9 by Mebane and 10 by Roukema discuss
how Benford’s Law can detect vote fraud; the first chapter develops tests
based on the second digit and explores its use in practice, while the sec-
ond concentrates on a recent Iranian election whose official vote counts were
claimed to be invalid. .

• Part IV: Applications II: Economics: While there is no dearth of interest-
ing topics to explore, we have chosen to devote this part of the book to eco-
nomics because of the huge impact of recent events. A spectacular example
of this is given by European Union (EU) policy, and the situation in Greece.
We begin in Chapter 11 by Rauch, Göttsche, Brähler and Engel with a de-
scription of EU practices and data from several countries. As the stakes are
high, there is enormous pressure to misreport statistics to avoid being hit with
EU deficit procedures. We continue in Chapter 12 by Tödter with additional
analysis, especially of published economics research papers. A surprisingly
large proportion of first digits of regression coefficients and standard errors
violate Benford’s Law, in contrast to second digits. Routine applications of
Benford tests would increase the efficiency of replication exercises and raise
the risk of scientific misconduct. Another issue discussed is fitting data to
a Generalized Benford Law, a topic Lee, Cho and Judge address in Chapter
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17; both of these chapters deal with the issues facing the public arising from
researchers falsifying data. We conclude this part with an analysis of data
from the U.S. financial sector. The main finding is that Benford’s Law fits
the data from before the housing crisis well, but not the data afterwards.

• Part V: Applications III: Sciences: In previous chapters we discussed which
distributions fit (and which don’t fit) Benford’s Law, as well as tests to detect
fraud. In this part we take a different approach, and explore the psychology
behind the people generating numbers. Chapters 14 by Burns and Krygier
and 15 by Chou, Kong, Teo and Zheng explore patterns and tendencies in
number generation, and the resulting implications, followed by Hoyle’s chap-
ter on the prevalence of Benford’s Law in the natural sciences, including a
summary of its occurrences and a discussion of the consequences. We end
in Chapter 17 by Lee, Cho and Judge with a nice mix of theory and applica-
tion. The authors consider a generalization of Benford’s Law, developing the
theory and analyzing known cases of fraud. They study the related Stigler
distribution, and describe how it may be found from information-theoretic
methods. This leads to alternative digit distributions based on maximum en-
tropy principles. The chapter ends by using these new distributions in an
analysis of some medical data which was known to be falsified, where the
falsified data is detected. An important application of the material of this
part is in developing tests to detect whether researchers are submitting fraud-
ulent data. Similar to the chapters from economics, as the costs to society
from incorrectly adopting conclusions of faulty research can be high, these
tests provide a valuable tool to check the veracity of claims.

• Part VI: Applications IV: Images: Our final part deals with whether or not
images follow Benford’s Law. Chiverton and Wells, in Chapter 18, explore
the relationship between intensities in medical images and Benford behav-
ior. They describe a simple classifier based on Bayes theory which uses the
Benford Partial Volume (PV) distribution as a prior; the results show exper-
imentally that the Benford PV distribution is a reasonable modeling tool for
the classification of imaging data affected by the PV artifact. The fraud-based
applications of Benford’s Law have grown from financial data sets to others
as well. The last chapter, Chapter 19 by Pérez-González, Quach, Abdal-
lah, Heileman and Miller, explores whether or not Benford’s Law can detect
modifications in images. Specifically, while images in the pixel domain are
not close to Benford, the result after applying the Discrete Cosine Transform
is. These results can be used to look for hidden messages in pictures, as well
as to test whether or not the image has been compressed.

We are extremely grateful to Princeton University Press, especially to our editor
Vickie Kearn and to Betsy Blumenthal and Jill Harris, for all their help and aid, to
our copyeditor Alison Durham who did a terrific job, especially in standardizing
the exposition across chapters, to Meghan Kanabay for assistance with many of
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the illustrations, and Amanda Weiss for help with the jacket design. Many people
proofread the book, looking not just for grammatical issues but also making sure it
was a coherent whole with widely accessible expositions; it is a pleasure to thank
them, especially John Bihn and Jaclyn Porfilio.

The editor was partially supported by NSF Grants DMS0600848, DMS0970067
and DMS1265673; some of his students assisting with the project were supported
by NSF Grants DMS0850577 and DMS1347804, the Clare Boothe Luce Program,
and Williams College. Some of this book is based on a conference organized by
Chaouki T. Abdallah, Gregory L. Heileman, Steven J. Miller and Fernando Pérez-
González and assisted by Ted Hill: Conference on the Theory and Applications
of Benford’s Law (16–18 December 2007, Santa Fe, NM). This conference was
supported in part by Brown University, IEEE, NSF Grant DMS-0753043, the New
Mexico Consortium’s Institute for Advanced Study, Universidade de Vigo and the
University of New Mexico, and it is a pleasure to thank them and the participants.

Steven J. Miller
Williams College

Williamstown, MA
October 2013

sjm1@williams.edu, Steven.Miller.MC.96@aya.yale.edu
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Notation

� : indicates the end of a proof.

≡: x ≡ y mod n means there exists an integer a such that x = y + an.

∃ : there exists.

∀ : for all.

| · | : |S| (or #S) is the number of elements in the set S.

�·� : �x� is the smallest integer greater than or equal to x, read “the ceiling of x.”

�·	 or [·] : �x	 (also written [x]) is the greatest integer less than or equal to x, read
“the floor of x.”

{·} or 〈·〉 : {x} is the fractional part of x; note x = [x] + {x}.

�, : see big-Oh notation.

∨ : a ∨ b is the maximum of a and b.

∧ : a ∧ b is the minimum of a and b.

1A (or IA) : the indicator function of set A; thus 1A(x) is 1 if x ∈ A and 0 other-
wise.

δa : Dirac probability measure concentrated at a ∈ Ω.

λ : Lebesgue measure on (R,B) or parts thereof.

λa,b : normalized Lebesgue measure (uniform distribution) on
(
[a, b),B[a, b)).

σ(f) : the σ-algebra generated by the function f : Ω → R.

σ(A) : the spectrum (set of eigenvalues) of a d× d-matrix A.
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Ac : the complement of A in some ambient space Ω clear from the context; i.e.,
Ac = {ω ∈ Ω : ω �∈ A}.

A\B : the set of elements of A not in B, i.e., A\B = A ∩Bc.

AΔB : the symmetric difference of A and B, i.e., AΔB = A\B ∪B\A.

a.e. : (Lebesgue) almost every (or almost everywhere).

a.s. : almost surely, i.e., with probability one.

B : Benford distribution on (R+,S).

B : Borel σ-algebra on R or parts thereof.

Big-Oh notation : A(x) = O(B(x)), read “A(x) is of order (or big-Oh) B(x),”
means there exists a C > 0 and an x0 such that for all x ≥ x0, |A(x)| ≤ CB(x).
This is also written A(x) � B(x) or B(x)  A(x).

C : the set of complex numbers: {z : z = x+ iy, x, y ∈ R}.

C� : the set of all � times continuously differentiable functions, � ∈ N0.

C∞ : the set of all smooth (i.e., infinitely differentiable) functions;C∞ =
⋂

�≥0 C
�.

D1, D2, D3, . . . : the first, second, third, . . . significant decimal digit.

D
(b)
m : the mth significant digit base b.

E[X ] (or EX) : the expectation of X .

e(x) : e(x) = e2πix.

f∗P : a probability measure on R induced by P and the measurable function
f : Ω → R, via f∗P(·) := P

(
f−1(·)).

Fn: {Fn} is the sequence of Fibonacci numbers, {Fn} = {0, 1, 1, 2, 3, 5, 8, . . .}
(Fn+2 = Fn+1 + Fn with F0 = 0 and F1 = 1).

FP , FX : the distribution functions of P and X .

i : i =
√−1.
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i.i.d. : independent, identically distributed (sequence or family of random vari-
ables); often one writes i.i.d.r.v.

�z: see �z.

infimum : the infimum of a set, denoted infn xn, is the largest number c (if one
exists) such that xn ≥ c for all n, and for any ε > 0 there is some n0 such that
xn0 < c + ε. If the sequence has finitely many terms, the infimum is the same as
the minimum value.

j : in some chapters j =
√−1 (this convention is frequently used in engineering).

Leb : Lebesgue measure.

Little-Oh notation : A(x) = o(B(x)), read “A(x) is little-Oh of B(x),” means
limx→∞A(x)/B(x) = 0.

L1(R) : all f : R −→ C which are measurable and Lebesgue integrable.

log : usually the natural logarithm, though in some chapters it is the logarithm base
10.

ln : the natural logarithm.

N : the set of natural numbers: {0, 1, 2, 3, . . .}.

N0 : the set of positive natural number: {1, 2, 3, . . .}.

Nf : the Newton map associated with a differentiable function f .

o(·), O(·): see “little-Oh” and “big-Oh” notation, respectively.

OT (x0) : the orbit of x0 under the map T , possibly nonautonomous.

{pn} : the set of prime numbers: 2, 3, 5, 7, 11, 13, . . . .

P : probability measure on (R,B), possibly random.

PX : the distribution of the random variable X .

Prob (or Pr) : a probability function on a probability space.

Q : the set of rational numbers: {x : x = p
q , p, q ∈ Z, q �= 0}.

R : the set of real numbers.
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R+ : the set of positive real numbers.

�z, �z : the real and imaginary parts of z ∈ C; if z = x + iy then �z = x and
�z = y.

S : the significand function: if x > 0 then x = S(x) · 10k(x), where S(x) ∈ [1, 10)
and k(x) ∈ Z; more generally one can study the significand function SB in base B.

S : the significand σ-algebra.

supremum : given a sequence {xn}∞n=1, the supremum of the set, denoted supn xn,
is the smallest number c (if one exists) such that xn ≤ c for all n, and for any ε > 0
there is some n0 such that xn0 > c − ε. If the sequence has finitely many terms,
the supremum is the same as the maximum value.

u.d. mod 1 : uniformly distributed modulo 1.

Var(X) (or var(X)) : the variance of the random variable X , assuming the ex-
pected value of X is finite; Var(X) = E[(X − E[X ])2].

W : the set of whole numbers: {1, 2, 3, 4, . . .}.

Xn
D→ X : (Xn) converges in distribution to X .

Xn
a.s.→ X : (Xn) converges to X almost surely.

z, |z| : the conjugate and absolute value of z ∈ C.

Z : the set of integers: {. . . ,−2,−1, 0, 1, 2, . . .}.

Z+ : the set of non-negative integers, {0, 1, 2, . . .}.



PART I

General Theory I: Basis of Benfordʼs Law





Chapter One

A Quick Introduction to Benfordʼs Law

Steven J. Miller1

The history of Benford’s Law is a fascinating and unexpected story of the in-
terplay between theory and applications. From its beginnings in understanding the
distribution of digits in tables of logarithms, the subject has grown enormously.
Currently hundreds of papers are being written by accountants, computer scien-
tists, engineers, mathematicians, statisticians and many others. In this chapter we
start by stating Benford’s Law of digit bias and describing its history. We discuss
its origins and give numerous examples of data sets that follow this law, as well
as some that do not. From these examples we extract several explanations as to
the prevalence of Benford’s Law, which are described in greater detail later in the
book. We end by quickly summarizing many of the diverse situations in which
Benford’s Law holds, and why an observation that began in looking at the wear
and tear in tables of logarithms has become a major tool in subjects as diverse as
detecting tax fraud and building efficient computers. We then continue in the next
chapters with rigorous derivations, and then launch into a survey of some of the
many applications. In particular, in the next chapter we put Benford’s Law on a
solid foundation. There we explore several different categorizations of Benford’s
Law, and rigorously prove that certain systems satisfy these conditions.

1.1 OVERVIEW

We live in an age when we are constantly bombarded with massive amounts of
data. Satellites orbiting the Earth daily transmit more information than is in the
entire Library of Congress; researchers must quickly sort through these data sets
to find the relevant pieces. It is thus not surprising that people are interested in
patterns in data. One of the more interesting, and initially surprising, is Benford’s
Law on the distribution of the first or the leading digits.

In this chapter we concentrate on a mostly non-technical introduction to the sub-
ject, saving the details for later. Before we can describe the law, we must first set
notation. At some point in secondary school, we are introduced to scientific nota-
tion: any positive number x may be written as S(x) · 10k, where S(x) ∈ [1, 10) is
the significand and k is an integer (called the exponent). The integer part of the

1Department of Mathematics and Statistics, Williams College, Williamstown, MA 01267. The author
was partially supported by NSF grants DMS0970067 and DMS1265673.
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significand is called the leading digit or the first digit. Some people prefer to call
S(x) the mantissa and not the significand; unfortunately this can lead to confusion,
as themantissa is the fractional part of the logarithm, and this quantity too will be
important in our investigations. As always, examples help clarify the notation. The
number 1701.24601 would be written as 1.70124601 · 103 in scientific notation.
The significand is 1.70124601, the exponent is 3 and the leading digit is 1. If we
take the logarithm base 10, we find log10 1701.24601≈ 3.2307671196444460726,
so the mantissa is approximately .2307671196444460726.

There are many advantages to studying the first digits of a data set. One reason is
that it helps us compare apples and apples and not apples and oranges. By this we
mean the following: two different data sets could have very different scales; one
could be masses of subatomic particles while another could be closing stock prices.
While the units are different and the magnitudes differ greatly, every number has a
unique leading digit, and thus we can compare the distribution of the first digits of
the two data sets.

The most natural guess would be to assert that for a generic data set, all numbers
are equally likely to be the leading digit. We would then posit that we should
observe about 11% of the time a leading digit of 1, 2, . . . , 9 (note that we would
guess each number occurs one-ninth of the time and not one-tenth of the time, as
0 is the leading digit for only one number, namely 0). The content of Benford’s
Law is that this is frequently not so; specifically, in many situations we expect the
leading digit to be d with probability approximately log10

(
d+1
d

)
, which means the

probability of a first digit of 1 is about 30% while a first digit of 9 happens about
4.6% of the time.

1.2 NEWCOMB

Though it is called Benford’s Law, he was not the first to observe this digit bias. Our
story begins with the astronomer–mathematician Simon Newcomb, who observed
this behavior more than 50 years before Benford. Newcomb was born in Nova
Scotia in 1835 and died in Washington, DC in 1909. In 1881 he published a short
article in the American Journal of Mathematics, Note on the Frequency of Use of
the Different Digits in Natural Numbers (see [New]). The article begins,

That the ten digits do not occur with equal frequency must be evident
to any one making much use of logarithmic tables, and noticing how
much faster the first pages wear out than the last ones. The first signif-
icant figure is oftener 1 than any other digit, and the frequency dimin-
ishes up to 9. The question naturally arises whether the reverse would
be true of logarithms. That is, in a table of anti-logarithms, would
the last part be more used than the first, or would every part be used
equally? The law of frequency in the one case may be deduced from
that in the other. The question we have to consider is, what is the prob-
ability that if a natural number be taken at random its first significant
digit will be n, its second n′, etc.
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As natural numbers occur in nature, they are to be considered as the
ratios of quantities. Therefore, instead of selecting a number at ran-
dom, we must select two numbers, and inquire what is the probability
that the first significant digit of their ratio is the digit n. To solve the
problem we may form an indefinite number of such ratios, taken inde-
pendently; and then must make the same inquiry respecting their quo-
tients, and continue the process so as to find the limit towards which
the probability approaches.

In this short article two very important properties of the distribution of digits are
noted. The first is that all digits are not equally likely. The article ends with a
quantification of how oftener the first digit is a 1 than a 9, with Newcomb stating,

The law of probability of the occurrence of numbers is such that all
mantissæ of their logarithms are equally probable.

Specifically, Newcomb gives a table (see Table 1.1) for the probabilities of first and
second digits.

d Probability first digit d Probability second digit d
0 0.1197
1 0.3010 0.1139
2 0.1761 0.1088
3 0.1249 0.1043
4 0.0969 0.1003
5 0.0792 0.0967
6 0.0669 0.0934
7 0.0580 0.0904
8 0.0512 0.0876
9 0.0458 0.0850

Table 1.1 Newcomb’s conjecture for the probabilities of observing a first digit of d or a
second digit of d; all probabilities are reported to four decimal digits.

The second key observation of his paper is noting the importance of scale. The
numerical value of a physical quantity clearly depends on the scale used, and thus
Newcomb suggests that the correct items to study are ratios of measurements.

1.3 BENFORD

The next step forward in studying the distribution of the leading digits of numbers
was Frank Benford’s The Law of Anomalous Numbers, published in the Proceed-
ings of the American Philosophical Society in 1938 (see [Ben]). In addition to ad-
vancing explanations as to why digits have this distribution, he also presents some
justification as to why this is a problem worthy of study.
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It has been observed that the pages of a much used table of common
logarithms show evidences of a selective use of the natural numbers.
The pages containing the logarithms of the low numbers 1 and 2 are apt
to be more stained and frayed by use than those of the higher numbers
8 and 9. Of course, no one could be expected to be greatly interested
in the condition of a table of logarithms, but the matter may be con-
sidered more worthy of study when we recall that the table is used in
the building up of our scientific, engineering, and general factual lit-
erature. There may be, in the relative cleanliness of the pages of a
logarithm table, data on how we think and how we react when dealing
with things that can be described by means of numbers.

Benford studied the distribution of leading digits of 20 sets of data, including
rivers, areas, populations, physical constants, mathematical sequences (such as

√
n,

n!, n2, . . . ), sports, an issue of Reader’s Digest and the first 342 street addresses
given in the (then) current American Men of Science. We reproduce his observa-
tions in Table 1.2.

Title 1 2 3 4 5 6 7 8 9 Count
Rivers, Area 31.0 16.4 10.7 11.3 7.2 8.6 5.5 4.2 5.1 335
Population 33.9 20.4 14.2 8.1 7.2 6.2 4.1 3.7 2.2 3259
Constants 41.3 14.4 4.8 8.6 10.6 5.8 1.0 2.9 10.6 104
Newspapers 30.0 18.0 12.0 10.0 8.0 6.0 6.0 5.0 5.0 100
Spec. Heat 24.0 18.4 16.2 14.6 10.6 4.1 3.2 4.8 4.1 1389
Pressure 29.6 18.3 12.8 9.8 8.3 6.4 5.7 4.4 4.7 703
H.P. Lost 30.0 18.4 11.9 10.8 8.1 7.0 5.1 5.1 3.6 690
Mol. Wgt. 26.7 25.2 15.4 10.8 6.7 5.1 4.1 2.8 3.2 1800
Drainage 27.1 23.9 13.8 12.6 8.2 5.0 5.0 2.5 1.9 159
Atomic Wgt. 47.2 18.7 5.5 4.4 6.6 4.4 3.3 4.4 5.5 91
n−1,

√
n 25.7 20.3 9.7 6.8 6.6 6.8 7.2 8.0 8.9 5000

Design 26.8 14.8 14.3 7.5 8.3 8.4 7.0 7.3 5.6 560
Digest 33.4 18.5 12.4 7.5 7.1 6.5 5.5 4.9 4.2 308
Cost Data 32.4 18.8 10.1 10.1 9.8 5.5 4.7 5.5 3.1 741
X-Ray Volts 27.9 17.5 14.4 9.0 8.1 7.4 5.1 5.8 4.8 707
Am. League 32.7 17.6 12.6 9.8 7.4 6.4 4.9 5.6 3.0 1458
Black Body 31.0 17.3 14.1 8.7 6.6 7.0 5.2 4.7 5.4 1165
Addresses 28.9 19.2 12.6 8.8 8.5 6.4 5.6 5.0 5.0 342
n, n2, . . . , n! 25.3 16.0 12.0 10.0 8.5 8.8 6.8 7.1 5.5 900
Death Rate 27.0 18.6 15.7 9.4 6.7 6.5 7.2 4.8 4.1 418
Average 30.6 18.5 12.4 9.4 8.0 6.4 5.1 4.9 4.7 1011
Benford’s Law 30.1 17.6 12.5 9.7 7.9 6.7 5.8 5.1 4.6

Table 1.2 Distribution of leading digits from the data sets of Benford’s paper [Ben]; the
amalgamation of all observations is denoted by “Average.” Note that the agree-
ment with Benford’s Law is better for some examples than others, and the amal-
gamation of all examples is fairly close to Benford’s Law.

Benford’s paper contains many of the key observations in the subject. One of the
most important is that while individual data sets may fail to satisfy Benford’s Law,
amalgamating many different sets of data leads to a new sequence whose behavior
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is typically closer to Benford’s Law. This is seen both in the row corresponding to
n, n2, . . . (where we can prove that each of these is non-Benford) as well as in the
average over all data sets.

Benford’s article suffered a much better fate than Newcomb’s paper, possibly in
part because it immediately preceded a physics article by Bethe, Rose and Smith
on the multiple scattering of electrons. Whereas it was decades before there was
another article building on Newcomb’s work, the next article after Benford’s paper
was six years later (by S. A. Goutsmit and W. H. Furry, Significant Figures of
Numbers in Statistical Tables, in Nature), and after that the papers started occurring
more and more frequently. See Hurlimann’s extensive bibliography [Hu] for a list
of papers, books and reports on Benford’s Law from 1881 to 2006, as well as the
online bibliography maintained by Arno Berger and Ted Hill [BerH2].

1.4 STATEMENT OF BENFORD’S LAW

We are now ready to give precise statements of Benford’s Law.

Definition 1.4.1 (Benford’s Law for the Leading Digit). A set of numbers satisfies
Benford’s Law for the Leading Digit if the probability of observing a first digit of d
is log10

(
d+1
d

)
.

While clean and easy to state, the above definition has several problems when
we apply it to real data sets. The most glaring is that the numbers log10

(
d+1
d

)
are

irrational. If we have a data set with N observations, then the number of times the
first digit is d must be an integer, and hence the observed frequencies are always
rational numbers.

One solution to this issue is to consider only infinite sets. Unfortunately this is
not possible in many cases of interest, as most real-world data sets are finite (i.e.,
there are only finitely many counties or finitely many trading days). Thus, while
Definition 1.4.1 is fine for mathematical investigations of sequences and functions,
it is not practical for many sets of interest. We therefore adjust the definition to

Definition 1.4.2 (Benford’s Law for the Leading Digit (Working Definition)).
We say a data set satisfies Benford’s Law for the Leading Digit if the probability of
observing a first digit of d is approximately log10

(
d+1
d

)
.

Note that the above definition is vague, as we need to clarify what is meant by
“approximately.” It is a non-trivial task to find good statistical tests for large data
sets. The famous and popular chi-square tests, for example, frequently cannot be
used with extensive data sets as this test becomes very sensitive to small deviations
when there are many observations. For now, we shall use the above definition
and interpret “approximately” to mean a good visual fit. This approach works
quite well for many applications. For example, in Chapter 8 we shall see that
many corporate and other financial data sets follow Benford’s Law, and thus if the
distribution is visually far from Benford, it is quite likely that the data’s integrity
has been compromised.
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Finally, instead of studying just the leading digit we could study the entire sig-
nificand. Thus in place of asking for the probability of a first digit of 1 or 2 or 3, we
now ask for the probability of observing a significand between 1 and 2, or between
π and e. This generalization is frequently called the Strong Benford’s Law.

Definition 1.4.3 (Strong Benford’s Law for the Leading Digits (Working Defi-
nition)). We say a data set satisfies the Strong Benford’s Law if the probability of
observing a significand in [1, s) is log10 s.

Note that Strong Benford behavior implies Benford behavior; the probability of a
first digit of d is just the probability the significand is in [d, d+1). Writing [d, d+1)
as [1, d+1)\[1, d), we see this probability is just log10(d+1)−log10 d = log10

d+1
d .

1.5 EXAMPLES AND EXPLANATIONS

In this section we briefly give some explanations for why so many different and
diverse data sets satisfy Benford’s Law, saving for later chapters more detailed
explanation. It’s worthwhile to take a few minutes to reflect on how Benford’s Law
was discovered, and to see whether or not similar behavior might be lurking in other
systems. The story is that Newcomb was led to the law by observing that the pages
in logarithm tables corresponding to numbers beginning with 1 were significantly
more worn than the pages corresponding to numbers with higher first digit. A
reasonable explanation for the additional wear and tear is that numbers with a low
first digit are more common than those with a higher first digit. It is thus quite
fortunate for the field that there were no calculators back then, as otherwise the law
could easily have been missed. Though few (if any) of us still use logarithm tables,
it is possible to see a similar phenomenon in the real world today. Our analysis
of this leads to one of the most important theorems in probability and statistics,
the Central Limit Theorem, which plays a role in understanding the ubiquity of
Benford’s Law.

Instead of looking at logarithm tables, we can look at the steps in an old building,
or how worn the grass is on college campuses. Assuming the steps haven’t been
replaced and that there is a reasonable amount of traffic in and out of the building,
then lots of people will walk up and down these stairs. Each person causes a small
amount of wear and tear on the steps; though each person’s contribution is small,
if there are enough people over a long enough time period then the cumulative
effect will be visually apparent. Typically the steps are significantly more worn
towards the center and less so as one moves towards the edges. A little thought
suggests the obvious answer: people typically walk up the middle of a flight of
stairs unless someone else is coming down. Similar to carbon dating, one could
attempt to determine the age of a building by the indentation of the steps. Looking
at these patterns, we would probably see something akin to the normal distribution,
and if we were fortunate we might “discover” the Central Limit Theorem. There
are many other examples from everyday life. We can also observe this in looking
at lawns. Everyone knows the shortest distance between two points is a line, and
people frequently leave the sidewalks and paths and cut across the grass, wearing
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Frequency of first digit in various data sets

Figure 1.1 Frequencies of leading digits for (a) U.S. county populations (from 2000 cen-
sus); (b) U.S. county land areas in square miles (from 2000 census); (c) daily
volume of NYSE trades from 2000 through 2003; (d) fundamental constants
(from NIST); (e) first 3219 Fibonacci numbers; (f) first 3219 factorials. Note the
census data includes Puerto Rico and the District of Columbia.

it down to dirt in some places and leaving it untouched in others. Another example
is to look at keyboards, and compare the well-worn “E” to the almost pristine “Q.”
Or the wear and tear on doors. The list is virtually endless.

In Figure 1.1 we look at the leading digits of the several “natural” data sets. Four
arise from the real world, coming from the 2000 census in the United States (popu-
lation and area in square miles of U.S. counties), daily volumes of transactions on
the New York Stock Exchange (NYSE) from 2000 through 2003 and the physical
constants posted on the homepage of the National Institute for Standards and Tech-
nology (NIST); the remaining two data sets are popular mathematical sequences:
the first 3219 Fibonacci numbers and factorials (we chose this number so that we
would have as many entries as we do counties).

If these are “generic” data sets, then we see that no one law describes the behav-
ior of each set. Some of the sets are quite close to following Benford’s Law, others
are far off; none are close to having each digit equally likely to be the leading digit.
Except for the second and third sets, the rest of the data behaves similarly; this is
easier to see if we remove these two examples, which we do in Figure 1.2.

Before launching into explanations of why so many data sets are Benford (or at
least close to it), it’s worth briefly remarking why many are not. There are several
reasons and ways a data set can fail to be Benford; we quickly introduce some of
these reasons now, and expand on them more when we advance explanations for
Benford’s Law below. For example, imagine we are recording hourly temperatures
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Figure 1.2 Frequencies of leading digits for (a) U.S. county populations (from 2000 census);
(b) fundamental constants (from NIST); (c) first 3219 Fibonacci numbers; (d)
first 3219 factorials. Note the census data includes Puerto Rico and the District
of Columbia.

in May at London Heathrow Airport. In Fahrenheit the temperatures range from
lows of around 40 degrees to highs of around 80. As all digits are not accessible,
it’s impossible to be Benford, though perhaps given this restriction, the relative
probabilities of the digits are Benford.

For another issue, we have many phenomena that are given by specific, concen-
trated distributions that will not be Benford. The Central Limit Theorem is often a
good approximation for the behavior of numerous processes, ranging from heights
and weights of people to batting averages to scores on exams. In these situations
we clearly do not expect Benford behavior, though we will see below that pro-
cesses whose logarithms are normally distributed (with large standard deviations)
are close to Benford.

Thus, in looking for data sets that are close to Benford, it is natural to concentrate
on situations where the values are not given by a distribution concentrated in a small
interval. We now explore some possibilities below.

1.5.1 The Spread Explanation

We drew the examples in Figure 1.1 from very different fields; why do so many
of them behave similarly, and why do others violently differ? While the first ques-
tion still confounds researchers, we can easily explain why two data sets had such
different behavior, and this reason has been advanced by many as a source of Ben-
ford’s Law (though there are issues with it, which we’ll comment on shortly). Let’s
look at the first two sets of data: the population in U.S. counties in 2000 and daily
volume of the NYSE from 2000 through 2003. You can see from the histogram in
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Figure 1.3 (Left) The population (in thousands) of U.S. counties under 250,000 (which is
about 84% of all counties). (Right) The daily volume of the NYSE from 2000
through 2003. Note the population spans two orders of magnitude while the
stock volumes are mostly within a factor of 2 of each other.
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Figure 1.4 (Left) The population of U.S. counties. (Right) The daily volume of the NYSE
from 2000 through 2003.

Figure 1.3 the stock market transactions are clustered around one value and span
only one order of magnitude. Thus it is not surprising that there is little variation in
these first digits. For the county populations, however, the data is far more spread
out. These effects are clearer if we look at a histogram of the log-plot of the data,
which we do in Figure 1.4. A detailed analysis of the other data sets shows similar
behavior; the four data sets that behave similarly are spread out on a logarithmic
plot over several orders of magnitude, while the two sets that exhibit different be-
havior are more clustered on a log-plot.

Our discussion above leads to our first explanation for Benford’s Law, the spread
hypothesis. The spread hypothesis states that if a data set is distributed over several
orders of magnitude, then the leading digits will approximately follow Benford’s
Law. Of course, a little thought shows that we need to assume far more than the
data just being spread out over several orders of magnitude. For example, if our set
of observations were

{1, 10, 100, 1000, . . . , 102015}
then clearly it is non-Benford, even though it does cover over 2000 orders of mag-
nitude! As remarked above, our purpose in this introduction is to just briefly intro-
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duce the various ideas and approaches, saving the details for later. There are many
issues with the spread hypothesis; see Chapter 2 and [BerH3] for an excellent
analysis of these problems.

1.5.2 The Geometric Explanation

Our next attempt to explain the prevalence of Benford’s Law goes back to Benford’s
paper [Ben], whose second part is titled Geometric Basis of the Law. The idea is
that if we have a process with a constant growth rate, then more time will be spent
at lower digits than higher digits. For definiteness, imagine we have a stock that
increases at 4% per year. The amount of time it takes to move from $1 to $2 is the
same as it would take to move from $10,000 to $20,000 or from $100,000,000 to
$200,000,000. If nd is the number of years it takes to move from d dollars to d+1
dollars then d · (1.04)nd = (d+ 1), or

nd =
log

(
d+1
d

)
log 1.04

. (1.1)

In Table 1.3 we consider the (happy) situation of a stock that rises 4% each and
every year. Notice that it takes over 17 years to move from being worth $1 to being
worth $2, but less than 3 years to move from being worth $9 to $10.

First digit Years Percentage of time Benford’s Law
1 17.6730 0.30103 0.30103
2 10.3380 0.17609 0.17609
3 7.3350 0.12494 0.12494
4 5.6894 0.09691 0.09691
5 4.6486 0.07918 0.07918
6 3.9303 0.06695 0.06695
7 3.4046 0.05799 0.05799
8 3.0031 0.05115 0.05115
9 2.6863 0.04576 0.04576

Table 1.3 How long the first digit of a stock has leading digit d, given that the stock rises
4% each year. It takes the stock approximately 58.7084 years to increase from $1
to $10.

A little algebra shows that this implies Benford behavior. If n is the amount of
time it takes to move from $1 to $10, then 1 · (1.04)n = 10 or n = log 10

log 1.04 . Thus
by (1.1), we see the percentage of the time spent with a first digit of d is

log
(
d+1
d

)
log 1.04

/
log 10

log 1.04
=

log
(
d+1
d

)
log 10

= log10

(
d+ 1

d

)
, (1.2)

which is just Benford’s Law! There is nothing special about 4%; the same analysis
works in general provided that at each moment we grow by the same, fixed rate. The
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analysis is more interesting if at each instance the growth percentage is a random
variable, say drawn from a Gaussian. For more on such processes see Chapter 6.

This is not an isolated example. Many natural and mathematical phenomena
are governed by geometric growth. Examples range from radioactive decay and
bacteria populations to the Fibonacci numbers. One reason for this is that solutions
to many difference equations are given by linear combinations of geometric series;
as difference equations are just discrete analogues of differential equations, it is
thus not surprising that they model many situations. For example, the Fibonacci
numbers satisfy the second order linear recurrence relation

Fn+2 = Fn+1 + Fn. (1.3)

Once the first two Fibonacci numbers are known, the recurrence (1.3) determines
the rest. If we start with F0 = 0 and F1 = 1, we find F2 = 1, F3 = 2, F4 = 3,
F5 = 5 and so on. Moreover, there is an explicit formula for the nth term, namely

Fn =
1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1−√

5

2

)n

; (1.4)

known as Binet’s formula; generalizations of it hold for solutions to linear re-
currence relations. As

∣∣ 1+√5
2

∣∣ > 1 and
∣∣ 1−√5

2

∣∣ < 1, for large n this implies

Fn ≈ 1√
5

(
1+
√
5

2

)n
. Note that Fn+1 ≈ 1+

√
5

2 Fn, or Fn+1 ≈ 1.61803Fn. This
means that the Fibonacci numbers are well approximated by what would be a highly
desirable stock rising about 61.803% each year, and hence by our previous analysis
it is reasonable to expect the Fibonacci numbers will be Benford as well.

While the discreteness of the Fibonacci numbers makes the analysis a bit more
complicated than the continuous growth rate problem, a generalization of these
methods proves that the Fibonacci numbers, as well as the solution to many differ-
ence equations, are Benford. Again, our purpose here is to merely provide some
evidence as to why so many different, diverse systems satisfy Benford’s Law. It is
not the case that every recurrence relation leads to Benford behavior. To see this,
consider an+2 = 2an+1 − an with either a0 = a1 = 1 (which implies an = 1 for
all n) or a0 = 0 and a1 = 1 (which implies an = n for all n). While there are
examples of recurrence relations that are non-Benford, a “generic” one will satisfy
Benford’s Law, and thus studying these systems provides another path to Benford.

1.5.3 The Scale-Invariance Explanation

For our next explanation, we return to a comment from Newcomb’s [New] paper:

As natural numbers occur in nature, they are to be considered as the
ratios of quantities. Therefore, instead of selecting a number at ran-
dom, we must select two numbers, and inquire what is the probability
that the first significant digit of their ratio is the digit n.

The import of this comment is that the behavior should be independent of the units
used. For example, if we look at the value of stocks in our portfolio then the
magnitudes will change if we measure their worth in dollars or euros or yen or bars



14 CHAPTER 1

of gold pressed latinum, though the physical quantities are unchanged. Similarly
we can use the metric system or the (British) imperial system in measuring physical
constants. As the universe doesn’t care what units we use for our experiments, it is
natural to expect that the distribution of leading digits should be unchanged if we
change our units.

For definiteness, let’s consider the areas of the countries in the world. There are
almost 200 countries; if we measure area in square kilometers then about 28.49%
have a first digit of 1 and 18.99% have a first digit of 2, while if we measure in
square miles it is 34.08% have a first digit of 1 and 16.20% have a first digit of 2,
which should be compared to the Benford probabilities of approximately 30.10%
and 17.61%; one observes a similar closeness with the other digits.

The assumption that there is a distribution of the first digit and that this distri-
bution is independent of scale implies the first digits follow Benford’s Law. The
analysis of this involves introducing a σ-algebra and studying scale-invariant prob-
ability measures on this space. Without going into these details now, we can at least
show that Benford’s Law is consistent with scale invariance.

Let’s assume our data set satisfies the Strong Benford Law (see Definition 1.4.3).
Then the probability the significand is in [a, b] ⊂ [1, 10) is log10(b/a). Assume
now we rescale every number in our set by multiplying by a fixed constant C.
For definiteness we take C =

√
3 and compute the probability that numbers in the

scaled data set have leading digit 1. Note that multiplying [1, 10) by
√
3 gives us the

interval [
√
3, 10

√
3) ≈ [1.73, 17.32). The parts of this new interval with a leading

digit of 1 are [
√
3, 2) and [10, 10

√
3), which come from [1, 2/

√
3) and [10/

√
3, 10).

As we are assuming the strong form of Benford’s Law, the probabilities of these

two intervals are log10
2/
√
3

1 and log10
10

10
√
3

. Summing yields the probability of
the first digit of the scaled set being 1 is

log10

(
2/

√
3

1

)
+ log10

(
10

10
√
3

)
= log10 2,

which is the Benford probability! A similar analysis works for the other leading
digits and other choices of C.

We close this section by noting that scale invariance fits naturally with the other
explanations introduced to date. If our initial data set were spread out over several
orders of magnitude, so too would the scaled data. Similarly, if we return to our
hypothetical stock increasing by 4% per year, the effect of changing the units of
our currency can be viewed as changing our principal; however, what governs how
long our stock spends with a leading digit of d is not the principal but rather the
rate of growth, and that is unchanged.

1.5.4 The Central Limit Explanation

We need to introduce some machinery for our last heuristic explanation. If y ≥ 0
is a real number, by y mod 1 we mean the fractional part of y. Other notations for
this are {y} or y−�y	. If y < 0 then y mod 1 is 1− (−y mod 1). In other words,
y mod 1 is the unique number in [0, 1) such that y− (y mod 1) is an integer. Thus
3.14 mod 1 is .14, while −3.14 mod 1 is .86. We say y modulo 1 for y mod 1.
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Recall that any positive number x may be written in scientific notation as x =
S(x) · 10k, where S(x) ∈ [1, 10) and k is an integer. The real number S(x), called
the significand, encodes all the information about the digits of x; the effect of k is
to specify the decimal point’s location. Thus, if we are interested in either the first
digit or the significand, the value of k is immaterial. This suggests that rather than
studying our data as given, it might be worthwhile to transform the data as follows:

x �→ log10 x mod 1. (1.5)

A little algebra shows that two positive numbers have the same leading digits if
and only if their signficands have the same first digit. Thus if we have a set of values
{x1, x2, x3, . . . } then the subset with leading digit d is {xi : S(xi) ∈ [d, d + 1)},
which is equivalent to {xi : log10 S(xi) ∈ [log10 d, log10(d+ 1))}.

This innocent-looking reformulation turns out to be not only one of the most
fruitful ways of exploring Benford’s Law, but also highlights what is going on. We
first explain the new perspective gained by transforming the data. According to
Benford’s Law, the probability of observing a first digit of d is log10

d+1
d . This is

log10(d+1)− log10 d, which is the length of the interval [log10 d, log10(d+1))! In
other words, consider a data set satisfying Benford’s Law, and transform the set as
in (1.5). The new set lives in [0, 1) and is uniformly distributed there. Specifically,
the probability that we have a value in the interval [log10 d, log10(d + 1)) is the
length of that interval.

While it may not seem natural to take the logarithm base 10 of each number,
and then look at the result modulo 1, under such a process the resulting values
are uniformly distributed if the initial set obeys Benford’s Law. Another way of
looking at this is that there is a natural transformation which takes a set satisfying
Benford’s Law and returns a new set of numbers that is uniformly distributed.

We briefly comment on why this is a natural process. We replace x with log10 x
mod1. If we write x = S(x) · 10k, then log10 x mod 1 is just log10 S(x). Thus
taking the logarithm modulo 1 is a way to get our hands on the significand (ac-
tually, its logarithm), which is what we want to understand. While the logarithm
function is a nice function, removing the integer part in general is messy and leads
to complications; however, there is a very important situation where it is painless
to remove the integer part. Recall the exponential function

e(x) := e2πix = cos(2πx) + i sin(2πx), (1.6)

where i =
√−1. As e(x+ 1) = e(x), we see

e(x mod 1) = e(x). (1.7)

The utility of the above becomes apparent when we apply Fourier analysis. In
Fourier analysis one uses sines, cosines or exponential functions to understand
more complicated functions. From our analysis above, we may either include the
modulo 1 or not in the argument of the exponential function. While we will elab-
orate on this at great length later, the key takeaway is that the transformed data is
ideally suited for Fourier analysis.

We can now sketch how this is related to Benford’s Law. There are many data
sets in the world whose values are the product of numerous measurements. For
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example, the monetary value of a gold brick is a product of the brick’s length,
width, height, density and value of gold per pound. Imagine we have some quantity
X which is a product of n values, so

X = X1 ·X2 · . . . ·Xn.

We assume the Xi’s are nice random variables. From our discussion above, to
show that X obeys Benford’s Law it suffices to know that the distribution of the
logarithm of X modulo 1 is uniformly distributed. Thus we are led to study

log10 X = log10(X1 ·X2 · . . . ·Xn) = log10 X1 + · · ·+ log10 Xn.

By the Central Limit Theorem, if n is large then the above sum is approximately
normally distributed, and the variance will grow with n; however, what we are
really interested in is not this sum but rather this sum modulo 1:

log10 X mod 1 = (log10 X1 + · · ·+ log10 Xn) mod 1.

A nice computation shows that as the variance σ tends to infinity, if we look at the
probability density of a normal with varianceσ modulo 1 then that is approximately
uniformly distributed on [0, 1]. Explicitly, let Y be normally distributed with some
mean μ and very large variance σ. If we look at the probability density of the
new random variable Y mod 1, then this is approximately uniformly distributed
on [0, 1). This means that the probability that Y ∈ [log10 d, log10(d + 1)) is just
log10(d+ 1)− log10 d, or log10

d+1
d ; however, note that these are just the Benford

probabilities!
While we have chosen to give the argument for multiplying random variables,

similar results hold for other combinations (such as addition, exponentiation, etc.).
The Central Limit Theorem is lurking in the background, and if we adjust our
viewpoint we can see its effect.

1.6 QUESTIONS

Our goal in this book is to explain the prevalence of Benford’s Law, and discuss
its implications and applications. The question of leading digits is but one of many
that we could ask. There are many generalizations; below we state the two most
common.

1. Instead of studying the distribution of the first digit, we may study the distri-
bution of the first two, three, or more generally the significand, of our number.
The Strong Benford’s Law is that the probability of observing a significand
of at most s is log10 s.

2. Instead of working in base 10, we may work in baseB, in which case the Ben-
ford probabilities become logB

(
d+1
d

)
for the distribution of the first digit,

and logB s for a significand of at most s.
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Incorporating these two generalizations, we are led to our final definition of Ben-
ford’s Law.

Definition 1.6.1 (Strong Benford’s Law Base B). A data set satisfies the Strong
Benford’s Law Base B if the probability of observing a significand of at most s in
base B is logB s. We shall often refer to the distribution of just the first digit as
Benford’s Law, as well as the distribution of the entire significand.

We end the introduction by briefly summarizing the goals of this book and what
follows. We address two central questions:

1. Which data sets (mathematical expressions, physical data, financial transac-
tions) follow this law, and why?

2. What are the practical implications of this law?

There are several different arguments for the first question, depending on the
structure of the data. Our studies will show that the answer is deeply connected
to results in subjects ranging from probability to Fourier analysis to dynamical
systems to number theory. We shall develop enough of these topics for our investi-
gations, recalling standard results in each when needed.

The second question leads to many surprising characters entering the scene. The
reason Benford’s Law is not just a curiosity of pure mathematics is due to the wealth
of applications, in particular to data integrity and fraud tests. There have (sadly)
been numerous examples of researchers and corporations tinkering with data; if
undetected, the consequences could be severe, ranging from companies not paying
their fair share of taxes, to unsafe medical treatments being approved, to unscrupu-
lous researchers being funded at the expense of their honest peers, to electoral fraud
and the effective disenfranchisement of voters. With a large enough data set, the
laws of probability and statistics state that certain patterns should emerge. Some
of these consequences are well known, and thus are easily incorporated by people
modifying data. For example, while everyone knows that if you simulate flipping
a fair coin 1,000,000 times then there should be about 500,000 heads, fewer know
how likely it is to have 100 consecutive heads in the sequence of tosses. The situa-
tion is similar with Benford’s Law. Almost anyone unfamiliar with Benford’s Law
would, if asked to simulate data, create a set where either the first digits are equally
likely to be anything from 1 to 9, or else clustered around 5. As many real-world
data sets follow Benford’s Law, this leads to a quick and easy test for fraud. Such
tests are now routinely used by the IRS to detect tax fraud, while generalizations
may be used in the future to detect whether or not an image has been modified.
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What better way to end the introduction than with notes from a talk that Frank
Benford gave on the law that now bears his name! While this was one of the ear-
liest talks in the subject, it was by no means the last. As the online bibliography
[BerH2] shows, Benford’s Law has become a very active research area with numer-
ous applications across disciplines, many of which are described in the following
chapters. Enjoy!
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Chapter Two

A Short Introduction to the Mathematical Theory

of Benfordʼs Law

Arno Berger and T. P. Hill1

This chapter is an abbreviated version of [BerH4], which can be consulted for
additional details. Many of the results presented here, notably those in Sections
2.5 and 2.6, can be strengthened considerably; the interested reader may want to
consult [BerH5] in this regard.

2.1 INTRODUCTION

Benford’s Law, or BL for short, is the observation that in many collections of
numbers, be they mathematical tables, real-life data, or combinations thereof, the
leading significant digits are not uniformly distributed, as might be expected, but
are heavily skewed toward the smaller digits. The reader may find many formula-
tions and applications of BL in the online database [BerH2].

More specifically, BL says that the significant digits in many data sets follow a
very particular logarithmic distribution. In its most common formulation, namely
the special case of first significant decimal (i.e., base-10) digits, BL is also known
as the First-Digit Phenomenon and reads

Prob (D1 = d1) = log10
(
1 + d−1

1

)
for all d1 = 1, 2, . . . , 9 ; (2.1)

here D1 denotes the first significant decimal digit [Ben, New]. For example, (2.1)
asserts that

Prob (D1 = 1) = log10 2 = 0.3010 . . . ,

Prob (D1 = 9) = log10
10

9
= 0.04575 . . . . (2.2)

In a form more complete than (2.1), BL is a statement about the joint distribution
of all decimal digits: For every positive integer m,

Prob
(
(D1, D2, . . . , Dm) = (d1, d2, . . . , dm)

)
= log10

⎛⎜⎝1 +

⎛⎝ m∑
j=1

10m−jdj

⎞⎠−1
⎞⎟⎠ (2.3)

1Department of Mathematical & Statistical Sciences, University of Alberta, and School of Mathe-
matics, Georgia Institute of Technology.
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holds for all m-tuples (d1, d2, . . . , dm), where d1 is an integer in {1, 2, . . . , 9}
and for j ≥ 2, dj is an integer in {0, 1, . . . , 9}; here D2, D3, D4, etc. represent
the second, third, fourth, etc. significant decimal digit. Thus, for example, (2.3)
implies that

Prob
(
(D1, D2, D3) = (3, 1, 4)

)
= log10

315

314
= 0.001380 . . . .

Note. Throughout this overview of the basic theory of BL, attention will more or
less exclusively be restricted to significant decimal (i.e., base-10) digits. From now
on in this chapter, therefore, log x will always denote the logarithm base 10 of x,
while lnx is the natural logarithm of x. For convenience, the convention log 0 := 0
will be adopted.

2.2 SIGNIFICANT DIGITS AND THE SIGNIFICAND

Since Benford’s Law is a statement about the statistical distribution of significant
(decimal) digits, a natural starting point for any study of BL is the formal definition
of significant digits and the significand (function).

2.2.1 Significant Digits

Definition 2.2.1 (First significant decimal digit). For every non-zero real number
x, the first significant decimal digit of x, denoted by D1(x), is the unique integer
j ∈ {1, 2, . . . , 9} satisfying 10kj ≤ |x| < 10k(j+1) for some (necessarily unique)
k ∈ Z.
Similarly, for every m ≥ 2, m ∈ N, the mth significant decimal digit of x,

denoted by Dm(x), is defined inductively as the unique integer j ∈ {0, 1, . . . , 9}
such that

10k

(
m−1∑
i=1

Di(x)10
m−i + j

)
≤ |x| < 10k

(
m−1∑
i=1

Di(x)10
m−i + j + 1

)
for some (necessarily unique) k ∈ Z; for convenience,Dm(0) := 0 for allm ∈ N.

Note that, by definition, the first significant digit D1(x) of x �= 0 is never zero,
whereas the second, third, etc. significant digits may be any integers in {0, 1, . . . , 9}.

Example 2.2.2. Since
√
2 ≈ 1.414 and 1/π ≈ 0.3183,

D1(
√
2) = D1(−

√
2) = D1(10

√
2) = 1 , D2(

√
2) = 4 , D3(

√
2) = 1 ;

D1(π
−1) = D1(10π

−1) = 3 , D2(π
−1) = 1 , D3(π

−1) = 8 .

2.2.2 The Significand

The significand of a real number is its coefficient when it is expressed in floating
point (“scientific notation”) form, more precisely
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Definition 2.2.3. The (decimal) significand function S : R → [1, 10) is defined
as follows: If x �= 0 then S(x) = t, where t is the unique number in [1, 10) with
|x| = 10kt for some (necessarily unique) k ∈ Z; if x = 0 then, for convenience,
S(0) := 0.

Example 2.2.4.

S(
√
2) = S(10

√
2) =

√
2 = 1.414 . . . ,

S(π−1) = S(10π−1) = 10π−1 = 3.183 . . . .

The significand uniquely determines the significant digits, and vice versa. This
relationship is recorded in the next proposition which immediately follows from
Definitions 2.2.1 and 2.2.3. Here and throughout the floor function, �x	, denotes
the largest integer not larger than x.

Proposition 2.2.5. For every real number x,

1. S(x) =
∑

m∈N 101−mDm(x);

2. Dm(x) = �10m−1S(x)	 − 10�10m−2S(x)	 for everym ∈ N.

Since the significant digits determine the significand, and are in turn determined by
it, the informal version (2.3) of BL in the introduction has an immediate and very
concise counterpart in terms of the significand function, namely

Prob (S ≤ t) = log t for all 1 ≤ t < 10 . (2.4)

2.2.3 The Significand σ-Algebra

The informal statements (2.1), (2.3), and (2.4) of BL involve probabilities. The key
step in formulating BL precisely is identifying the appropriate probability space,
and hence in particular the correct σ-algebra. As it turns out, in the significant digit
framework there is only one natural candidate which is both intuitive and easy to
describe.

Definition 2.2.6. The significand σ-algebra S is the σ-algebra on R+ generated
by the significand function S, i.e., S = R+ ∩ σ(S).

The importance of the σ-algebra S comes from the fact that for every event A ∈ S
and every x > 0, knowing S(x) is enough to decide whether x ∈ A or x �∈
A. Worded slightly more formally, this observation reads as follows, where σ(f)
denotes the σ-algebra generated by f , i.e., the smallest σ-algebra containing all
sets of the form {x : a ≤ f(x) ≤ b}, and B(I) denotes the real Borel σ-algebra
restricted to an interval I . If I = R or I = R+ = {t ∈ R : t > 0} then, for
convenience, instead of B(I) simply write B and B+, respectively. Also, here and
throughout, for every set C ⊂ R and t ∈ R, let tC := {tc : c ∈ C}.

Lemma 2.2.7. For every function f : R+ → R the following statements are equiv-
alent:
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1. f can be described completely in terms of S, that is, f(x) = ϕ
(
S(x)

)
holds

for all x ∈ R+, with some function ϕ : [1, 10) → R satisfying σ(ϕ) ⊂
B[1, 10).

2. σ(f) ⊂ S.
Proof. Routine. �

Theorem 2.2.8 ([Hi4]). For every A ∈ S,
A =

⋃
k∈Z

10kS(A) (2.5)

where S(A) = {S(x) : x ∈ A} ⊂ [1, 10). Moreover,

S = R+ ∩ σ(D1, D2, D3, . . .) =

{⋃
k∈Z

10kB : B ∈ B[1, 10)
}

. (2.6)

Proof. By definition,

S = R+∩σ(S) = R+∩{S−1(B) : B ∈ B} = R+∩{S−1(B) : B ∈ B[1, 10)} .
Thus, given any A ∈ S, there exists a set B ∈ B[1, 10) with A = R+ ∩ S−1(B) =⋃

k∈Z 10
kB. Since S(A) = B, it follows that (2.5) holds for all A ∈ S.

To prove (2.6), first observe that by Proposition 2.2.5(1) the significand function
S is completely determined by the significant digits D1, D2, D3, . . . , so σ(S) ⊂
σ(D1, D2, D3, . . .) and hence S ⊂ R+ ∩ σ(D1, D2, D3, . . .). Conversely, accord-
ing to Proposition 2.2.5(2), every Dm is determined by S, thus σ(Dm) ⊂ σ(S)
for all m ∈ N, showing that σ(D1, D2, D3, . . .) ⊂ σ(S) as well. To verify the
remaining equality in (2.6), note that for every A ∈ S, S(A) ∈ B[1, 10) and hence
A =

⋃
k∈Z 10

kB for B = S(A), by (2.5). Conversely, every set of the form⋃
k∈Z 10

kB = R+ ∩ S−1(B) with B ∈ B[1, 10) obviously belongs to S. �

Note that for every A ∈ S there is a unique B ∈ B[1, 10), the Borel subsets of
[1, 10), such that A =

⋃
k∈Z 10

kB, and (2.5) shows that in fact B = S(A).

Example 2.2.9. The set A4 of positive numbers with

A4 = {10k : k ∈ Z} = {. . . , 0.01, 0.1, 1, 10, 100, . . .}
belongs to S. This can be seen either by observing that A4 is the set of positive
reals with significand exactly equal to 1, i.e., A4 = R+ ∩ S−1({1}), or by noting
that A4 = {x > 0 : D1(x) = 1, Dm(x) = 0 for all m ≥ 2}, or by using (2.6) and
the fact that A4 =

⋃
k∈Z 10

k{1} and {1} ∈ B[1, 10).
Example 2.2.10. The singleton set {1} and the interval [1, 2] do not belong to S,
since the number 1 cannot be distinguished from the number 10, for instance, using
only significant digits. Nor can the interval [1, 2] be distinguished from [10, 20].
Formally, neither of these sets is of the form

⋃
k∈Z 10

kB for any B ∈ B[1, 10).
The next lemma establishes some basic closure properties of the significand σ-

algebra that will be essential later in studying characteristic aspects of BL such
as scale and base invariance. To concisely formulate these properties, for every
C ⊂ R+ and n ∈ N, let C1/n := {t > 0 : tn ∈ C}.
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Lemma 2.2.11. The following properties hold for the significand σ-algebra S:
1. S is self-similar with respect to multiplication by integer powers of 10, i.e.,

10kA = A for every A ∈ S and k ∈ Z .

2. S is closed under multiplication by a scalar, i.e.,

αA ∈ S for every A ∈ S and α > 0 .

3. S is closed under integral roots, i.e.,

A1/n ∈ S for every A ∈ S and n ∈ N .

Proof. (1) This is obvious from (2.5) since S(10kA) = S(A) for every k.
(2) Given A ∈ S, by (2.6) there exists B ∈ B[1, 10) such that A =

⋃
k∈Z 10

kB.
In view of (1), assume without loss of generality that 1 < α < 10. Then

αA =
⋃
k∈Z

10kαB

=
⋃
k∈Z

10k
((

αB ∩ [α, 10)
) ∪ ( α

10
B ∩ [1, α)

))
=

⋃
k∈Z

10kC,

with C =
(
αB ∩ [α, 10)

) ∪ (
α
10B ∩ [1, α)

) ∈ B[1, 10), showing that αA ∈ S.
(3) Since intervals of the form [1, t] generate B[1, 10), i.e., since B[1, 10) =

σ
({[1, t] : 1 < t < 10}), it is enough to verify the claim for the special case

A =
⋃

k∈Z 10
k[1, 10s] for every 0 < s < 1. In this case

A1/n =
⋃
k∈Z

10k/n[1, 10s/n]

=
⋃
k∈Z

10k
n−1⋃
j=0

[10j/n, 10(j+s)/n]

=
⋃
k∈Z

10kC,

with C =
⋃n−1

j=0 [10
j/n, 10(j+s)/n] ∈ B[1, 10). Hence A1/n ∈ S. �

Since, by Theorem 2.2.8, the significand σ-algebra S is the same as the significant
digit σ-algebra σ(D1, D2, D3, · · · ), the closure properties established in Lemma
2.2.11 carry over to sets determined by significant digits. The next example illus-
trates closure under multiplication by a scalar and integral roots, and that S is not
closed under taking integer powers.

Example 2.2.12. Let A5 be the set of positive real numbers with first significant
digit 1, i.e.,

A5 = {x > 0 : D1(x) = 1} = {x > 0 : 1 ≤ S(x) < 2} =
⋃
k∈Z

10k[1, 2) .
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Then

2A5 =
{
x > 0 : D1(x) ∈ {2, 3}} = {x > 0 : 2 ≤ S(x) < 3}

=
⋃
k∈Z

10k[2, 4) ∈ S,

(2.7)

and also

A
1/2
5 =

{
x > 0 : S(x) ∈ [1,

√
2) ∪ [

√
10,

√
20)

}
=

⋃
k∈Z

10k
(
[1,

√
2) ∪ [

√
10, 2

√
5)
) ∈ S,

whereas on the other hand clearly

A2
5 =

⋃
k∈Z

102k[1, 4) �∈ S,

since e.g. [1, 4) ⊂ A2
5 but [10, 40) �⊂ A2

5.

The next lemma provides a very convenient framework for studying probabilities
on the significand σ-algebra by translating them into probability measures on the
classical space of Borel subsets of [0, 1), that is, on

(
[0, 1),B[0, 1)).

Lemma 2.2.13. The function � : R+ → [0, 1) defined by �(x) = logS(x) es-
tablishes a one-to-one and onto correspondence (measure isomorphism) between
probability measures on (R+,S) and on ([0, 1),B[0, 1)).
Proof. Routine. �

2.3 THE BENFORD PROPERTY

In order to translate the informal versions (2.1), (2.3), and (2.4) of BL into more
precise statements about various types of mathematical objects, it is necessary to
specify exactly what the Benford property means for any one of these objects. For
the purpose of the present section, the objects of interest fall into three categories:
sequences of real numbers; real-valued functions defined on [0,+∞); and proba-
bility distributions associated with random variables. Accordingly, denote by #M
the cardinality of a finite set M , and let λ symbolize Lebesgue measure on (R,B)
(or parts thereof).

2.3.1 Benford Sequences

Definition 2.3.1. A sequence (xn) of real numbers is a Benford sequence, or Ben-
ford for short, if

lim
N→∞

#{1 ≤ n ≤ N : S(xn) ≤ t}
N

= log t for all t ∈ [1, 10) ,
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or equivalently, if for allm ∈ N, all d1 ∈ {1, 2, · · · , 9} and all dj ∈ {0, 1, · · · , 9},
j ≥ 2,

lim
N→∞

#
{
1 ≤ n ≤ N : Dj(xn) = dj for j = 1, 2, . . .

}
N

= log

⎛⎜⎝1+

⎛⎝ m∑
j=1

10m−jdj

⎞⎠−1
⎞⎟⎠ .

Two specific sequences of positive integers will be used repeatedly to illus-
trate key concepts concerning BL: the Fibonacci numbers and the prime num-
bers. Both sequences play prominent roles in many areas of mathematics. As
will be seen in Example 2.4.12, the sequence (Fn) = (1, 1, 2, 3, 5, 8, 13, . . .) of Fi-
bonacci numbers, where every entry is simply the sum of its two predecessors, and
F1 = F2 = 1, is Benford. In Example 2.4.11(v), it will be shown that the sequence
(pn) = (2, 3, 5, 7, 11, 13, 17, . . .) of prime numbers is not Benford.

2.3.2 Benford Functions

BL also appears frequently in real-valued functions such as those arising as solu-
tions of initial value problems for differential equations (see Section 2.5.3 below).
Thus, the starting point is to define what it means for a function to follow BL.

Definition 2.3.2. A (Borel measurable) function f : [0,+∞) → R is Benford if

lim
T→+∞

λ
({

τ ∈ [0, T ) : S
(
f(τ)

) ≤ t
})

T
= log t for all t ∈ [1, 10) ,

or equivalently, if for allm ∈ N, all d1 ∈ {1, 2, . . . , 9} and all dj ∈ {0, 1, . . . , 9},
j ≥ 2,

lim
T→+∞

λ
({

τ ∈ [0, T ) : Dj

(
f(τ)

)
= dj for j = 1, 2, . . . ,m

})
T

= log

⎛⎜⎝1+
⎛⎝ m∑

j=1

10m−jdj

⎞⎠−1
⎞⎟⎠ .

As will be seen below, the function f(t) = eαt is Benford whenever α �= 0, but
f(t) = t and f(t) = sin2 t, for instance, are not.

2.3.3 Benford Distributions and Random Variables

This section lays the foundations for analyzing the Benford property for probability
distributions and random variables.

Definition 2.3.3. A Borel probability measure P on R is Benford if

P
({x ∈ R : S(x) ≤ t}) = log t for all t ∈ [1, 10) .
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A random variableX on a probability space (Ω,A,P) is Benford if its distribution
PX on R is Benford, i.e., if

P
(
S(X) ≤ t

)
= PX

({x ∈ R : S(x) ≤ t}) = log t for all t ∈ [1, 10) ,

or equivalently, if for allm ∈ N, all d1 ∈ {1, 2, . . . , 9} and all dj ∈ {0, 1, . . . , 9},
j ≥ 2,

P
(
Dj(X) = dj for j = 1, 2, . . . ,m

)
= log

⎛⎜⎝1 +

⎛⎝ m∑
j=1

10m−jdj

⎞⎠−1
⎞⎟⎠ .

Example 2.3.4. IfX is a Benford random variable on a probability space (Ω,A,P),
then

P(D1(X) = 1) = P(1 ≤ S(X) < 2) = log 2 = 0.3010 . . . ,

P(D1(X) = 9) = log
10

9
= 0.04575 . . . ,

P
((
D1(X), D2(X), D3(X)

)
= (3, 1, 4)

)
= log

315

314
= 0.001380 . . . .

As the following example shows, there are many Benford probability measures
on the positive real numbers, and thus many positive random variables that are
Benford.

Example 2.3.5. For every integer k, the probability measurePk with density fk(x) =
1/(x ln 10) on [10k, 10k+1) is Benford, and so is 1

2 (Pk+Pk+1). In fact, every con-
vex combination of the (Pk)k∈Z, i.e., every probability measure

∑
k∈Z qkPk with

0 ≤ qk ≤ 1 for all k and
∑

k∈Z qk = 1, is Benford.

As will be seen in Example 2.6.4 below, if U is a random variable uniformly dis-
tributed on [0, 1), then the random variable X = 10U is Benford, but the random
variable X log 2 = 2U is not.

Definition 2.3.6 (Benford distribution). The Benford distribution B is the unique
probability measure on (R+,S) with

B(S ≤ t) = B

(⋃
k∈Z

10k[1, t]

)
= log t for all t ∈ [1, 10) ,

or equivalently, for all m ∈ N, all d1 ∈ {1, 2, . . . , 9} and all dj ∈ {0, 1, . . . , 9},
j ≥ 2,

B
(
Dj = dj for j = 1, 2, . . . ,m

)
= log

⎛⎜⎝1 +

⎛⎝ m∑
j=1

10m−jdj

⎞⎠−1
⎞⎟⎠ .

The combination of Definitions 2.3.3 and 2.3.6 gives

Proposition 2.3.7. A Borel probability measure P on R+ is Benford if and only if

P (A) = B(A) for all A ∈ S .
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(For probability measures on all of R, an analogous result holds via Definition
2.3.3; cf. [BerH4].)

Example 2.3.8. (i) If X is distributed according to U(0, 1), the uniform distribu-
tion on [0, 1), then for every 1 ≤ t < 10,

P
(
S(X) ≤ t

)
=

∑
n∈N

10−n(t− 1) =
t− 1

9
�≡ log t ,

showing that S(X) is uniform on [1, 10), and hence is not Benford.

(ii) If X is distributed according to exp(1), the exponential distribution with
mean 1, whose distribution function is given by Fexp(1)(t) = P(exp(1) ≤ t) =
max(0, 1− e−t), then

P(D1(X) = 1) = P

(
X ∈

⋃
k∈Z

10k[1, 2)

)
=

∑
k∈Z

(
e−10k − e−2·10k

)
>

(
e−1/10 − e−2/10

)
+
(
e−1 − e−2

)
+
(
e−10 − e−20

)
= 0.3186 . . . > log 2 ,

and hence exp(1) is not Benford either. (See [EngLeu, MiNi2] for a detailed anal-
ysis of the exponential distribution’s relation to BL.)

2.4 CHARACTERIZATIONS OF BENFORD’S LAW

The purpose of this section is to establish and illustrate four useful characteriza-
tions of the Benford property in the context of sequences, functions, distributions,
and random variables, respectively. These characterizations will be instrumental
in demonstrating that certain data sets are, or are not, Benford, and helpful for
predicting which empirical data are likely to follow BL closely.

2.4.1 The Uniform Distribution Characterization

Here and throughout, denote by 〈t〉 the fractional part of any real number t, that is,
〈t〉 = t− �t	. For example, 〈π〉 = 〈3.1415 . . .〉 = 0.1415 . . . = π − 3. Recall that
λa,b, for any a < b, denotes (normalized) Lebesgue measure on

(
[a, b),B[a, b)).

Definition 2.4.1. A sequence (xn) of real numbers is uniformly distributed modulo
one, abbreviated henceforth as u.d. mod1, if

lim
N→∞

#{1 ≤ n ≤ N : 〈xn〉 ≤ s}
N

= s for all s ∈ [0, 1) ;

a (Borel measurable) function f : [0,+∞) → R is u.d. mod1 if

lim
T→+∞

λ{τ ∈ [0, T ) : 〈f(τ)〉 ≤ s}
T

= s for all s ∈ [0, 1) ;

a random variableX on a probability space (Ω,A,P) is u.d. mod1 if

P(〈X〉 ≤ s) = s for all s ∈ [0, 1) ;
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and a probability measure P on (R,B) is u.d. mod1 if

P ({x : 〈x〉 ≤ s}) = P

(⋃
k∈Z

[k, k + s]

)
= s for all s ∈ [0, 1) .

The next simple theorem (cf. [Dia, MiT-B]) is one of the main tools in the theory
of BL because it allows application of the powerful theory of uniform distribution
mod 1, as developed e.g. in [KuiNi]. (Recall the convention log 0 := 0.)

Theorem 2.4.2 (Uniform distribution characterization). A sequence of real num-
bers (a Borel measurable function, a random variable, a Borel probability measure)
is Benford if and only if the decimal logarithm of its absolute value is uniformly dis-
tributed modulo 1.

Proof. Let X be a random variable and, without loss of generality, assume that
P(X = 0) = 0. Then, for all s ∈ [0, 1),

P(〈log |X |〉 ≤ s) = P

(
log |X | ∈

⋃
k∈Z

[k, k + s]

)
= P

(
|X | ∈

⋃
k∈Z

[10k, 10k+s]

)
= P(S(X) ≤ 10s).

Hence, by Definitions 2.3.3 and 2.4.1, X is Benford if and only if P(S(X) ≤
10s) = log 10s = s for all s ∈ [0, 1), i.e., if and only if log |X | is u.d. mod 1.
The proofs for sequences, functions, and probability distributions are completely
analogous. �

Next, several tools from the basic theory of uniform distribution mod 1 will be
recorded that will be useful, via Theorem 2.4.2, in establishing the Benford prop-
erty for many sequences, functions, and random variables; for proofs, see [BerH4].

Lemma 2.4.3.

1. The sequence (xn) is u.d. mod 1 if and only if the sequence (kxn + b) is u.d.
mod 1 for every non-zero integer k and every b ∈ R. Also, (xn) is u.d. mod
1 if and only if (yn) is u.d. mod 1 whenever limn→∞ |yn − xn| = 0.

2. The function f is u.d. mod 1 if and only if t �→ kf(t) + b is u.d. mod 1 for
every non-zero integer k and every b ∈ R.

3. The random variableX is u.d. mod 1 if and only if kX + b is u.d. mod 1 for
every non-zero integer k and every b ∈ R.

Example 2.4.4. (i) The sequence (nπ) = (π, 2π, 3π, . . .) is u.d. mod 1, by Weyl’s
Equidistribution Theorem; see Proposition 2.4.8(1) below. Similarly, the sequence
(xn) = (n

√
2) is u.d. mod 1, whereas (xn

√
2) = (2n) = (2, 4, 6, . . .) clearly is

not, as 〈2n〉 = 0 for all n. Thus the requirement in Lemma 2.4.3(i) that k be an
integer cannot be removed.
(ii) The sequence (logn) is not u.d. mod 1. A straightforward calculation shows

that, for every s ∈ [0, 1), the sequence
(
N−1#{1 ≤ n ≤ N : 〈logn〉 ≤ s})

N∈N
has

1

9
(10s − 1) and

10

9
(1− 10−s)
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as its limit inferior and limit superior, respectively.

Example 2.4.5. (i) The function f(t) = at + b with real a, b is u.d. mod 1 if and
only if a �= 0. As a consequence, although the function f(t) = αt is not Benford
for any α, the function f(t) = eαt is Benford whenever α �= 0, via Theorem 2.4.2,
since log f(t) = αt/ ln 10 is u.d. mod 1.

(ii) The function f(t) = log |at+ b| is not u.d.mod 1 for any a, b ∈ R. Similarly,
f(t) = − log(1+t2) is not u.d.mod 1, and hence f(t) = (1+t2)−1 is not Benford.

(iii) The function f(t) = et is u.d. mod 1. As a consequence, the superexponen-
tial function f(t) = ee

αt

is also Benford if α �= 0.

Example 2.4.6. (i) If the random variableX is uniformly distributed on [0, 2) then
it is clearly u.d. mod 1. However, if X is uniform on, say [0, π), thenX is not u.d.
mod 1.

(ii) No exponential random variable is u.d. mod 1 (cf. [BerH3, BerH4, LeScEv,
MiNi2]).

(iii) If X is a normal random variable then X is not u.d. mod 1, and neither
is |X | or max(0, X). While this is easily checked by a direct calculation, it is
illuminating to obtain more quantitative information. To this end, assume thatX is
a normal variable with mean 0 and variance σ2. By means of Fourier series [Pin],
it can be shown that

Δ(σ) := max
0≤s<1

∣∣F〈X〉(s)− s
∣∣ ≤ 1

π

∞∑
n=1

n−1e−2σ2π2n2

,

where F〈X〉(s) = P(〈X〉 ≤ s). In particularΔ(σ) = (e−2σ2π2

)/π +O(e−8σ2π2

)
as σ tends to infinity, showing that Δ(σ), the deviation of 〈X〉 from uniformity,
goes to zero very rapidly as σ → +∞. Already for σ = 1 one finds that Δ(1) <
8.516 · 10−10. Thus even though a standard normal random variableX is not u.d.
mod 1, the distribution of 〈X〉 is extremely close to uniform. Consequently, a log-
normal random variable with large variance is practically indistinguishable from
a Benford random variable.

Corollary 2.4.7.

1. A sequence (xn) is Benford if and only if, for all α ∈ R and k ∈ Z with
αk �= 0, the sequence (αxk

n) is also Benford.

2. A function f : [0,+∞) → R is Benford if and only if 1/f is Benford.

3. A random variableX is Benford if and only if 1/X is Benford.

The next two statements, recorded here for ease of reference, list several key
tools concerning uniform distribution mod 1, which via Theorem 2.4.2 will be used
to determine Benford properties of sequences, functions, and random variables.
Conclusion (1) in Proposition 2.4.8 is Weyl’s classical uniform distribution result
[KuiNi, Thm.3.3], conclusion (2) is an immediate consequence of Weyl’s criterion
[KuiNi, Thm.2.1], conclusion (3) is [Ber2, Lem.2.8], and conclusion (4) is [BerBH,
Lem.2.4.(i)].
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Proposition 2.4.8. Let (xn) be a sequence of real numbers.

1. If limn→∞(xn+1 − xn) = θ for some irrational θ, then (xn) is u.d. mod 1.

2. If (xn) is periodic, i.e., xn+p = xn for some p ∈ N and all n, then (nθ+xn)
is u.d. mod 1 if and only if θ is irrational.

3. The sequence (xn) is u.d. mod 1 if and only if (xn + α logn) is u.d. mod 1
for all α ∈ R.

4. If (xn) is u.d. mod 1 and non-decreasing, then (xn/ logn) is unbounded.

Another very useful result is Koksma’s metric theorem [KuiNi, Thm.4.3]. For
its formulation, recall that a property of real numbers is said to hold for almost
every (a.e.) x ∈ [a, b) if there exists a set N ∈ B[a, b) with λa,b(N) = 0 such
that the property holds for every x �∈ N . The probabilistic interpretation of a given
property of real numbers holding for a.e. x is that this property holds almost surely
(a.s.), which means that with probability one for every random variable that has a
density (i.e., is absolutely continuous).

Proposition 2.4.9. Let fn be continuously differentiable on [a, b] for all n ∈ N. If
f ′m − f ′n is monotone and |f ′m(x) − f ′n(x)| ≥ α > 0 for allm �= n, where α does
not depend on x,m, and n, then

(
fn(x)

)
is u.d. mod 1 for almost every x ∈ [a, b].

Theorem 2.4.10 ([BerHKR]). If a, b, α, β are real numbers with a �= 0 and |α| >
|β| then (αna+ βnb) is Benford if and only if log |α| is irrational.

Proof. Since a �= 0 and |α| > |β|, limn→∞
βnb

αna
= 0, and therefore

log |αna+ βnb| − log |αna| = log

∣∣∣∣1 + βnb

αna

∣∣∣∣ → 0 ,

showing that (log |αna+βnb|) is u.d. mod 1 if and only if (log |αna|) = (log |a|+
n log |α|) is. According to Proposition 2.4.8(1), this is the case whenever log |α| is
irrational. On the other hand, if log |α| is rational then 〈log |a| + n log |α|〉 attains
only finitely many values and hence (log |a| + n log |α|) is not u.d. mod 1. An
application of Theorem 2.4.2 therefore completes the proof. �

Example 2.4.11. (i) By Theorem 2.4.10 the sequence (2n) is Benford since log 2
is irrational, but (10n) is not Benford since log 10 = 1 ∈ Q. Similarly, (0.2n),
(3n), (0.3n),

(
0.01 · 0.2n + 0.2 · 0.01n) are Benford, whereas (0.1n), (√10

n)
,(

0.1 · 0.02n + 0.02 · 0.1n) are not.
(ii) The sequence

(
0.2n + (−0.2)n

)
is not Benford, since all odd terms are zero,

but
(
0.2n + (−0.2)n + 0.03n

)
is Benford—although this does not follow directly

from Theorem 2.4.10.

(iii) By Proposition 2.4.9, the sequence (x, 2x, 3x, . . .) = (nx) is u.d. mod 1
for almost every real x, but clearly not for every x, as for example x = 1 shows.
Consequently, by Theorem 2.4.2, (10nx) is Benford for almost all real x, but not
e.g. for x = 1 or, more generally, whenever x is rational.
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(iv) By Proposition 2.4.8(4) or Example 2.4.4(ii), the sequence (logn) is not u.d.
mod 1, so the sequence (n) of positive integers is not Benford, and neither is (αn)
for any α ∈ R.

(v) Consider the sequence (pn) of prime numbers. By the Prime Number Theo-
rem, pn = O(n log n) as n → ∞. Hence it follows from Proposition 2.4.8(4) that
(pn) is not Benford.

Example 2.4.12. Consider the sequence (Fn) = (1, 1, 2, 3, 5, 8, 13, . . .) of Fi-
bonacci numbers, defined inductively as Fn+2 = Fn+1 + Fn for all n ∈ N, with
F1 = F2 = 1. It is well known (and easy to check) that

Fn =
1√
5

((
1 +

√
5

2

)n
−

(
1−√

5

2

)n)
=

ϕn − (−ϕ−1)n√
5

for all n ∈ N ,

where ϕ = 1
2 (1 +

√
5) ≈ 1.618. Since ϕ > 1 and logϕ is irrational, (Fn)

is Benford, by Theorem 2.4.10. Sequences such as (Fn) which are generated by
linear recurrence relations will be studied in detail in Section 2.5.2.

Theorem 2.4.13. Let X,Y be random variables. Then

1. if X is u.d. mod 1 and Y is independent ofX , thenX + Y is u.d. mod 1;

2. if 〈X〉 and 〈X +α〉 have the same distribution for some irrational α thenX
is u.d. mod 1;

3. if (Xn) is an i.i.d. sequence of random variables andX1 is not purely atomic
(i.e., P(X1 ∈ C) < 1 for every countable set C ⊂ R), then

lim
n→∞

P

⎛⎝〈
n∑

j=1

Xj

〉
≤ s

⎞⎠ = s for every 0 ≤ s < 1 , (2.8)

that is,
〈∑n

j=1 Xj

〉 → U(0, 1) in distribution as n → ∞.

Proof. Elementary Fourier analysis; see [BerH4, Thm.4.13]. �

None of the familiar classical probability distributions or random variables, such
as normal, uniform, exponential, beta, binomial, or gamma distributions are Ben-
ford. Specifically, no uniform distribution is even close to BL, no matter how large
its range or where it is centered. This statement can be quantified explicitly as
follows.

Proposition 2.4.14 ([BerH3]). For every uniformly distributed random variable
X ,

max
0≤s<1

∣∣F〈logX〉(s)− s
∣∣ ≥ −9 + ln 10 + 9 ln 9− 9 ln ln 10

18 ln 10
= 0.1334 . . . ,

and this bound is sharp.
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Similarly, all exponential and normal random variables are uniformly bounded
away from BL, as is explained in detail in [BerH3]. However, some distributions,
such as the exponential distribution with mean 1, and the standard normal distribu-
tion, do come fairly close to being Benford.

The next result says that every random variable X with a density is asymptoti-
cally uniformly distributed on lattices of intervals as the size of the intervals goes
to zero. Equivalently, 〈nX〉 is asymptotically uniform, as n → ∞. This result
has been the basis for several recent fallacious arguments claiming that if a random
variable X has a density with very large “spread” then logX must also have a
density with large spread and thus, by the theorem, must be close to u.d. mod 1,
implying in turn that X must be close to Benford. The error in those arguments is
that, regardless of which notion of “spread” is used, the variable X may have large
spread and at the same time the variable logX may have small spread; for details,
the reader is referred to [BerH3].

Theorem 2.4.15. If X has a density then

lim
n→∞

P(〈nX〉 ≤ s) = s for all 0 ≤ s < 1 , (2.9)

that is, 〈nX〉 → U(0, 1) in distribution as n → ∞.

Proof. Since 〈nX〉 = 〈
n〈X〉〉, it can be assumed that X only takes values in [0, 1).

Let f be the density of X , i.e., f : [0, 1] → R is a non-negative measurable function

with P(X ≤ s) =

∫ s

0

f(σ) dσ for all s ∈ [0, 1). From

P(〈nX〉 ≤ s) = P

(
X ∈

n−1⋃
l=0

[
l

n
,
l + s

n

])
=

n−1∑
l=0

∫ (l+s)/n

l/n

f(σ) dσ

=

∫ s

0

1

n

n−1∑
l=0

f

(
l+ σ

n

)
dσ ,

it follows that the density of 〈nX〉 is given by

f〈nX〉(s) =
1

n

n−1∑
l=0

f

(
l + s

n

)
, 0 ≤ s < 1 .

Note that if f is continuous, or merely Riemann integrable, then, as n → ∞,

f〈nX〉(s) →
∫ 1

0

f(σ) dσ = 1 for all s ∈ [0, 1) .

In general, for any ε > 0 there exists a continuous density gε with
∫ 1

0

|f(σ)− gε(σ)| dσ
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< ε and hence∫ 1

0

|f〈nX〉(σ)− 1| dσ ≤
∫ 1

0

∣∣∣∣∣ 1n
n−1∑
l=0

f

(
l + σ

n

)
− 1

n

n−1∑
l=0

gε

(
l+ σ

n

)∣∣∣∣∣ dσ
+

∫ 1

0

∣∣∣∣∣ 1n
n−1∑
l=0

gε

(
l + σ

n

)
− 1

∣∣∣∣∣ dσ
≤

∫ 1

0

|f(σ)− gε(σ)|dσ

+

∫ 1

0

∣∣∣∣∣ 1n
n−1∑
l=0

gε

(
l + σ

n

)
−
∫ 1

0

g(τ) dτ

∣∣∣∣∣ dσ ,

which in turn shows that

lim sup
n→∞

∫ 1

0

|f〈nX〉(σ) − 1| dσ ≤ ε ,

and since ε > 0 was arbitrary,
∫ 1

0

|f〈nX〉(σ) − 1| dσ → 0 as n → ∞. From this,

the claim follows immediately because, for every 0 ≤ s < 1,∣∣P(〈nX〉 ≤ s)− s
∣∣ =

∣∣∣∣∫ s

0

(f〈nX〉(σ)− 1) dσ

∣∣∣∣ ≤ ∫ 1

0

|f〈nX〉(σ)− 1| dσ → 0 .

�

2.4.2 The Scale-Invariance Characterization

One popular hypothesis often related to BL is that of scale invariance. Informally
put, scale invariance captures the intuitively attractive notion that any universal law
should be independent of units. For instance, if a sufficiently large aggregation of
data is converted from meters to feet, US dollars to euros, etc., then while the indi-
vidual numbers change, the statements about the overall distribution of significant
digits should not be affected by this change.

While a positive random variableX cannot be scale invariant, it may nevertheless
have scale-invariant significant digits. For this, however, X has to be Benford. In
fact, Theorem 2.4.18 below shows that being Benford is (not only necessary but)
also sufficient for X to have scale-invariant significant digits. The result will first
be stated in terms of probability distributions. For every function f : Ω → R
with A ⊃ σ(f) and every probability measure P on (Ω,A), let f∗P denote the
probability measure on (R,B) defined according to

f∗P(B) = P
(
f−1(B)

)
for all B ∈ B . (2.10)

Definition 2.4.16. Let A ⊃ S be a σ-algebra on R+. A probability measure P on
(R+,A) has scale-invariant significant digits if

P (αA) = P (A) for all α > 0 and A ∈ S ,
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or equivalently if for allm ∈ N, all d1 ∈ {1, 2, . . . , 9} and all dj ∈ {0, 1, . . . , 9},
j ≥ 2,

P
({

x : Dj(αx) = dj for j = 1, 2, . . . ,m
})

= P
({

x : Dj(x) = dj for j = 1, 2, . . . ,m
})

(2.11)

holds for every α > 0.

Example 2.4.17. (i) The Benford probability measure B on (R+,S) has scale-
invariant significant digits. This follows from Theorem 2.4.18 below.

(ii) The Dirac probability measure δ1 concentrated at the constant 1 does not
have scale-invariant significant digits, since δ2 = 2∗δ1 yet δ1(D1 = 1) = 1 �= 0 =
δ2(D1 = 1).

(iii) The uniform distribution on [0, 1) does not have scale-invariant digits, since
if X is distributed according to λ0,1 then, for example

P(D1(X) = 1) =
1

9
<

11

27
= P

(
D1

(
3

2
X

)
= 1

)
.

As mentioned earlier, the Benford distribution is the only probability measure (on
the significand σ-algebra) having scale-invariant significant digits.

Theorem 2.4.18 (Scale-invariance characterization [Hi3]). A probability measure
P on (R+,A) with A ⊃ S has scale-invariant significant digits if and only if
P (A) = B(A) for every A ∈ S, i.e., if and only if P is Benford.

Proof. Fix any probability measure P on (R+,A), denote by P0 its restriction
to (R+,S), and let Q := �∗P0 with � given by Lemma 2.2.13. According to
Lemma 2.2.13, Q is a probability measure on

(
[0, 1),B[0, 1)). Moreover, under

the correspondence established by �,

P0(αA) = P0(A) for all α > 0, A ∈ S (2.12)

is equivalent to

Q(〈t+B〉) = Q(B) for all t ∈ R, B ∈ B[0, 1) , (2.13)

where 〈t + B〉 = {〈t + x〉 : x ∈ B}. Pick a random variable X such that the
distribution of X is given by Q. With this, (2.13) simply means that, for every
t ∈ R, the distributions of 〈X〉 and 〈t +X〉 coincide. By Theorem 2.4.13(1) and
(2) this is the case if and only if X is u.d. mod 1, i.e., Q = λ0,1. (For the “if” part,
note that a constant random variable is independent from every random variable.)
Hence (2.12) is equivalent to P0 = (�−1)∗λ0,1 = B. �

The next example is an elegant and entertaining application of the ideas underly-
ing Theorem 2.4.18 to the mathematical theory of games. The game may be easily
understood by a schoolchild, yet it has proven a challenge for game theorists not
familiar with BL.

Example 2.4.19 ([Morr]). Consider a two-person game where Player A and Player
B each independently choose a (real) number greater than or equal to 1, and Player
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A wins if the product of their two numbers starts with a 1, 2, or 3; otherwise, Player
B wins. Using the tools presented in this section, it may easily be seen that there is
a strategy for Player A to choose her numbers so that she wins with probability at
least log 4 ∼= 60.2%, no matter what strategy Player B uses. Conversely, there is a
strategy for Player B so that Player A will win no more than log 4 of the time, no
matter what strategy Player A uses.
The idea is simple, using the scale-invariance property of BL discussed above. If

Player A chooses her numberX randomly according to BL, then since BL is scale
invariant, it follows from Theorem 2.4.13(1) and Example 2.4.17(i) that X · y is
still Benford no matter what number y Player B chooses, so Player A will win with
the probability that a Benford random variable has first significant digit less than
4, i.e., with probability exactly log 4. Conversely, if Player B chooses his number
Y according to BL then, using scale invariance again, x · Y is Benford, so Player
A will again win with the probability exactly log 4.

Theorem 2.4.18 showed that for a probability measure P on (R+,B+) to have
scale-invariant significant digits it is necessary (and sufficient) that P be Benford.
In fact, as noted in [Sm], this conclusion already follows from a much weaker
assumption: It is enough to require that the probability of a single significant digit
remain unchanged under scaling.

Theorem 2.4.20. For every random variableX with P(X = 0) = 0 the following
statements are equivalent:

1. X is Benford.

2. There exists a number d ∈ {1, 2, . . . , 9} such that
P(D1(αX) = d) = P(D1(X) = d) for all α > 0 .

In particular, (2) implies that P(D1(X) = d) = log(1 + d−1).

Example 2.4.21 (“Ones-scaling test” [Sm]). In view of the last theorem, to in-
formally test whether a sample of data comes from a Benford distribution, simply
compare the proportion of the sample that has first significant digit 1 with the pro-
portion after the data has been rescaled, i.e., multiplied by α, α2, α3, . . ., where
logα is irrational, e.g. α = 2.

2.4.3 The Base-Invariance Characterization

The idea behind base invariance of significant digits is simply this: A base-10
significand event A corresponds to the base-100 event A1/2, since the new base
b = 100 is the square of the original base b = 10. As a concrete example, denote
by A the set of positive reals with first significant digit 1, i.e.,

A = {x > 0 : D1(x) = 1} = {x > 0 : S(x) ∈ [1, 2)} .
It is easy to see that A1/2 is the set

A1/2 = {x > 0 : S(x) ∈ [1,
√
2) ∪ [

√
10,

√
20)} .
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Consider now the base-100 significand function S100, i.e., for any x �= 0, S100(x)
is the unique number in [1, 100) such that |x| = 100kS100(x) for some, necessarily
unique, k ∈ Z. (To emphasize that the usual significand function S is taken relative
to base 10, it will be denoted S10 throughout this section.) Clearly,

A = {x > 0 : S100(x) ∈ [1, 2) ∪ [10, 20)} .
Hence, letting a = log 2,{

x > 0 : Sb(x) ∈ [1, ba/2) ∪ [b1/2, b(1+a)/2)
}

=

{
A1/2 if b = 10 ,

A if b = 100 .

Thus, if a distribution P on the significand σ-algebra S has base-invariant signif-
icant digits, then P (A) and P (A1/2) should be the same, and similarly for other
integral roots (corresponding to other integral powers of the original base b = 10).
Thus P (A) = P (A1/n) should hold for all n. (Recall from Lemma 2.2.11(3) that
A1/n ∈ S for all A ∈ S and n ∈ N, so those probabilities are well defined.) This
motivates the following definition.

Definition 2.4.22. Let A ⊃ S be a σ-algebra on R+. A probability measure P
on (R+,A) has base-invariant significant digits if P (A) = P (A1/n) holds for all
A ∈ S and n ∈ N.

Example 2.4.23. (i) Recall that δa denotes the Dirac measure concentrated at the
point a, that is, δa(A) = 1 if a ∈ A, and δa(A) = 0 if a �∈ A. The probability
measure δ1 clearly has base-invariant significant digits since 1 ∈ A if and only if
1 ∈ A1/n. Similarly, δ10k has base-invariant significant digits for every k ∈ Z.
On the other hand, δ2 does not have base-invariant significant digits since, with
A = {x > 0 : S10(x) ∈ [1, 3)}, δ2(A) = 1 yet δ2(A1/2) = 0.

(ii) It is easy to see that the Benford distribution B has base-invariant significant
digits. Indeed, for any 0 ≤ s < 1, let

A = {x > 0 : S10(x) ∈ [1, 10s)} =
⋃
k∈Z

10k[1, 10s) ∈ S .

Then, as seen in the proof of Lemma 2.2.11(3),

A1/n =
⋃
k∈Z

10k
n−1⋃
j = 0

[10j/n, 10(j+s)/n)

and therefore

B(A1/n) =
n−1∑
j=0

(
log 10(j+s)/n − log 10j/n

)
=

n−1∑
j=0

(
j + s

n
− j

n

)
= s = B(A) .

(iii) The uniform distribution λ0,1 on [0, 1) does not have base-invariant signifi-
cant digits. For instance, again taking A = {x > 0 : D1(x) = 1} leads to

λ0,1(A
1/2) =

∑
n∈N

10−n(
√
2− 1 +

√
20−

√
10) =

1

9
+

(
√
5− 1)(2−√

2)

9

>
1

9
= λ0,1(A).
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The next theorem is the main result for base-invariant significant digits.

Theorem 2.4.24 (Base-invariance characterization [Hi3]). A probability mea-
sure P on (R+,A) with A ⊃ S has base-invariant significant digits if and only if,
for some q ∈ [0, 1],

P (A) = qδ1(A) + (1− q)B(A) for every A ∈ S . (2.14)

Corollary 2.4.25. A continuous probability measure P on R+ has base-invariant
significant digits if and only if P (A) = B(A) for all A ∈ S, i.e., if and only if P is
Benford.

Recall that λ0,1 denotes Lebesgue measure on
(
[0, 1),B[0, 1)). For every n ∈ N,

denote the map x �→ 〈nx〉 of [0, 1) into itself by Tn. Generally, if T : [0, 1) → R
is measurable, and T

(
[0, 1)

) ⊂ [0, 1), a probability measure P on
(
[0, 1),B[0, 1))

is said to be T -invariant, or T is P -preserving, if T∗P = P . Which probability
measures are Tn-invariant for all n ∈ N? A complete answer to this question is
provided by

Lemma 2.4.26. A probability measure P on
(
[0, 1),B[0, 1)) is Tn-invariant for all

n ∈ N if and only if P = qδ0 + (1 − q)λ0,1 for some q ∈ [0, 1].

Proof. Recall the definition of the Fourier coefficients of P ,

P̂ (k) =

∫ 1

0

e2πıksdP (s) , k ∈ Z ,

and observe that

T̂nP (k) = P̂ (nk) for all k ∈ Z, n ∈ N .

Assume first that P = qδ0 + (1 − q)λ0,1 for some q ∈ [0, 1]. From δ̂0(k) ≡ 1 and

λ̂0,1(k) = 0 for all k �= 0, it follows that

P̂ (k) =

{
1 if k = 0 ,
q if k �= 0 .

For every n ∈ N and k ∈ Z\{0}, therefore, T̂nP (k) = q, and clearly T̂nP (0) = 1.
Thus T̂nP = P̂ and since the Fourier coefficients determine P uniquely, Tn∗P =
P for all n ∈ N.

Conversely, assume that P is Tn-invariant for all n ∈ N. In this case, P̂ (n) =

T̂nP (1) = P̂ (1), and similarly P̂ (−n) = T̂nP (−1) = P̂ (−1). Since generally

P̂ (−k) = P̂ (k), there exists q ∈ C such that

P̂ (k) =

⎧⎪⎨⎪⎩
q if k > 0 ,

1 if k = 0 ,

q if k < 0 .

Also, observe that for every t ∈ R,

lim
n→∞

1

n

n∑
j=1

e2πıtj =

{
1 if t ∈ Z ,

0 if t �∈ Z .
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Using this and the Dominated Convergence Theorem, it follows from

P ({0}) =

∫ 1

0

lim
n→∞

1

n

n∑
j=1

e2πısjdP (s) = lim
n→∞

1

n

n∑
j=1

P̂ (j) = q ,

that q is real, and in fact q ∈ [0, 1]. Hence the Fourier coefficients of P are exactly
the same as those of qδ0 + (1− q)λ0,1. By uniqueness, therefore, P = qδ0 + (1−
q)λ0,1. �

Proof. As in the proof of Theorem 2.4.18, fix a probability measure P on (R+,A),
denote by P0 its restriction to (R+,S), and let Q = �∗P0. Observe that P0 has
base-invariant significant digits if and only if Q is Tn-invariant for all n ∈ N.
Indeed, with 0 ≤ s < 1 and A = {x > 0 : S10(x) < 10s},

Tn∗Q
(
[0, s)

)
= Q

⎛⎝n−1⋃
j=0

[
j

n
,
j + s

n

)⎞⎠
= P0

⎛⎝⋃
k∈Z

10k
n−1⋃
j=0

[10j/n, 10(j+s)/n)

⎞⎠ = P0(A
1/n) (2.15)

and hence Tn∗Q = Q for all n precisely if P0 has base-invariant significant digits.
In this case, by Lemma 2.4.26, Q = qδ0 + (1 − q)λ0,1 for some q ∈ [0, 1], which
in turn implies that P0(A) = qδ1(A) + (1− q)B(A) for every A ∈ S. �

Corollary 2.4.27. If a probability measure on R+ has scale-invariant significant
digits then it also has base-invariant significant digits.

2.4.4 The Sum-Invariance Characterization

As first observed by M. Nigrini [Nig1], if a table of real data approximately follows
BL, then the sum of the significands of all entries in the table with first significant
digit 1 is very close to the sum of the significands of all entries with first significant
digit 2, and to the sum of the significands of entries with the other possible first
significant digits as well. This clearly implies that the table must contain more
entries starting with 1 than with 2, more entries starting with 2 than with 3, and so
forth. This motivates the following definition.

Definition 2.4.28. A sequence (xn) of real numbers has sum-invariant significant
digits if, for everym ∈ N, the limit

lim
N→∞

∑N
n=1 Sd1,...,dm(xn)

N
exists and is independent of d1, . . . , dm.

The definitions of sum invariance of significant digits for functions, distributions,
and random variables are similar, and it is in the context of distributions and random
variables that the sum-invariance characterization of BL will be stated.

Definition 2.4.29. A random variableX has sum-invariant significant digits if, for
everym ∈ N, the value of ESd1,...,dm(X) is independent of d1, . . . , dm.
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Example 2.4.30. (i) If X is uniformly distributed on [0, 1), then X does not have
sum-invariant significant digits. This follows from Theorem 2.4.31 below.

(ii) Similarly, if P(X = 1) = 1 then X does not have sum-invariant significant
digits, as

ESd(X) =

{
1 if d = 1 ,
0 if d ≥ 2 .

(iii) Assume X is Benford. For every m ∈ N, d1 ∈ {1, 2, . . . , 9} and dj ∈
{0, 1, . . . , 9}, j ≥ 2,

ESd1,...,dm(X) =

∫ d1+10−1d2+···+101−m(dm+1)

d1+10−1d2+···+101−mdm

t · 1

t ln 10
dt =

101−m

ln 10
.

Thus X has sum-invariant significant digits.

According to Example 2.4.30(iii) every Benford random variable has sum-invariant
significant digits. As hinted at earlier, the converse is also true, i.e., sum-invariant
significant digits characterize BL.

Theorem 2.4.31 (Sum-invariance characterization [Al]). A random variable X
with P(X = 0) = 0 has sum-invariant significant digits if and only if it is Ben-
ford.

Proof. See [Al] or [BerH4, Thm.4.37]. �

2.5 BENFORD’S LAW FOR DETERMINISTIC PROCESSES

The goal of this section is to present the basic theory of BL in the context of de-
terministic processes, such as iterates of maps, powers of matrices, and solutions
of differential equations. Except for somewhat artificial examples, processes with
linear growth are not Benford, and among the others, there is a clear distinction
between those with exponential growth or decay, and those with superexponential
growth or decay. In the exponential case, processes typically are Benford for all
starting points in a region, but are not Benford with respect to other bases. In con-
trast, superexponential processes typically are Benford for all bases, but have small
sets (of measure zero) of exceptional points whose orbits or trajectories are not
Benford.

2.5.1 One-Dimensional Discrete-Time Processes

Let T : C → C be a (measurable) map that maps C ⊂ R into itself, and for every
n ∈ N denote by T n the n-fold iterate of T , i.e., T 1 := T and T n+1 := T n ◦ T ;
also let T 0 be the identity map idC on C, that is, T 0(x) = x for all x ∈ C. The
orbit of x0 ∈ C is the sequence

OT (x0) :=
(
T n−1(x0)

)
n∈N =

(
x0, T (x0), T

2(x0), . . .
)
.
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Example 2.5.1. (i) If T (x) = 2x thenOT (x0) = (x0, 2x0, 2
2x0, . . .) = (2n−1x0)

for all x0. Hence limn→∞ |xn| = +∞ whenever x0 �= 0.

(ii) If T (x) = x2 then OT (x0) = (x0, x
2
0, x

22

0 , . . .) =
(
x2n−1

0

)
for all x0. Here

xn approaches 0 or +∞ depending on whether |x0| < 1 or |x0| > 1. Moreover,
OT (±1) = (±1, 1, 1, . . .).

(iii) If T (x) = 1 + x2 then OT (x0) = (x0, 1 + x2
0, 2 + 2x2

0 + x4
0, . . .). Since

xn ≥ n for all x0 and n ∈ N, limn→∞ xn = +∞ for every x0.

Recall from Example 2.4.11(i) that (2n) is Benford, and in fact (2nx0) is Benford
for every x0 �= 0. In other words, Example 2.5.1(i) says that with T (x) = 2x, the
orbit OT (x0) is Benford whenever x0 �= 0. The goal of the present subsection is to
extend this observation to a much wider class of maps T . The main result (Theorem
2.5.5) rests upon three lemmas.

Lemma 2.5.2. Let T (x) = ax with a ∈ R. Then OT (x0) is Benford for every
x0 �= 0 or for no x0 at all, depending on whether log |a| is irrational or rational,
respectively.

Proof. By Theorem 2.4.10, OT (x0) = (an−1x0) is Benford for every x0 �= 0 or
none, depending on whether log |a| is irrational or not. �

Clearly, the simple proof of Lemma 2.5.2 works only for maps that are exactly
linear. The same argument would for instance not work for T (x) = 2x+ e−x even
though T (x) ≈ 2x for large x. To establish the Benford behavior of maps like this,
a simple version of shadowing will be used.

Lemma 2.5.3 (Shadowing Lemma). Let T : R → R be a map, and β a real
number with |β| > 1. If supx∈R |T (x) − βx| < +∞ then there exists, for every
x ∈ R, one and only one point x such that the sequence (T n(x)−βnx) is bounded.

Proof. See [BerBH]. �

The next lemma enables application of Lemma 2.5.3 to establish the Benford prop-
erty for orbits of a wide class of maps.

Lemma 2.5.4.

1. Assume that (an) and (bn) are sequences of real numbers with |an| → +∞
and supn∈N |an − bn| < +∞. Then (bn) is Benford if and only if (an) is
Benford.

2. Suppose that the measurable functions f, g : [0,+∞) → R are such that
|f(t)| → +∞ as t → +∞, and supt≥0 |f(t) − g(t)| < +∞. Then f is
Benford if and only if g is Benford.

Proof. To prove (1), let c := supn∈N |an − bn| + 1. By discarding finitely many
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terms if necessary, it can be assumed that |an|, |bn| ≥ 2c for all n. From

− log

(
1 +

c

|an| − c

)
≤ log

|bn|
|bn|+ c

≤ log
|bn|
|an|

≤ log
|an|+ c

|an| ≤ log

(
1 +

c

|an| − c

)
,

it follows that∣∣ log |bn| − log |an|
∣∣ =

∣∣∣∣log |bn|
|an|

∣∣∣∣ ≤ log

(
1 +

c

|an| − c

)
→ 0 as n → ∞ .

Lemma 2.4.3(1) now shows that (log |bn|) is u.d. mod 1 if and only (log |an|) is.
The proof of (2) is completely analogous. �

Lemmas 2.5.3 and 2.5.4 can now easily be combined to produce the desired gen-
eral result. The theorem is formulated for orbits converging to zero. As explained
in the subsequent Example 2.5.6, a reciprocal version holds for orbits converging
to ±∞.

Theorem 2.5.5 ([BerBH]). Let T : R → R be a C2-map with T (0) = 0. Assume
that 0 < |T ′(0)| < 1. Then OT (x0) is Benford for all x0 �= 0 sufficiently close to 0
if and only if log |T ′(0)| is irrational. If log |T ′(0)| is rational then OT (x0) is not
Benford for any x0 sufficiently close to 0.

Proof. Let α := T ′(0) and observe that there exists a continuous function f :
R → R such that T (x) = αx

(
1 − xf(x)

)
. In particular, T (x) �= 0 for all x �= 0

sufficiently close to 0. Define

T̃ (x) := T (x−1)−1 =
x2

α
(
x− f(x−1)

) ,
and note that

T̃ (x)− α−1x =
x

α
· f(x−1)

x− f(x−1)
=

f(x−1)

α
+

f(x−1)2

α
(
x− f(x−1)

) .
From this it is clear that sup|x|≥ξ |T̃ (x) − α−1x| is finite, provided that ξ is suf-
ficiently large. Hence Lemma 2.5.3 shows that for every x with |x| sufficiently
large,

(|T̃ n(x) − α−nx|) is bounded with an appropriate x �= 0. Lemma 2.5.4
implies that OT̃ (x0) is Benford if and only if (α1−nx0) is, which in turn is the case
precisely if log |α| is irrational. The result then follows from noting that, for all
x0 �= 0 with |x0| sufficiently small, OT (x0) =

(
T̃ n−1(x−1

0 )−1
)
n∈N, and Corollary

2.4.7(1) which shows that (x−1
n ) is Benford whenever (xn) is. �

Example 2.5.6. (i) For T (x) = 1
2x + 1

4x
2, the orbit OT (x0) is Benford for

every x0 �= 0 sufficiently close to 0. A simple graphical analysis shows that
limn→∞ T n(x) = 0 if and only if −4 < x < 2. Thus for every x0 ∈ (−4, 2)\{0},
OT (x0) is Benford. Clearly, OT (−4) = (−4, 2, 2, . . .) and OT (2) = (2, 2, 2, . . .)
are not Benford.
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(ii) To see that Theorem 2.5.5 applies to the map T (x) = 2x+ e−x, let

T̃ (x) := T (x−2)−1/2 =
x√

2 + x2e−1/x2
, x �= 0 .

With T̃ (0) := 0, the map T̃ : R → R is smooth, and T̃ ′(0) = 1√
2
. Moreover,

limn→∞ T̃ n(x) = 0 for every x ∈ R. By Theorem 2.5.5, OT̃ (x0) is Benford for
every x0 �= 0, and hence OT (x0) is Benford for every x0 �= 0 as well, because
T n(x) = T̃ n(|x|−1/2)−2 for all n.

Processes with Superexponential Growth or Decay

The following is an analog of Lemma 2.5.2 in the doubly exponential setting. Re-
call that a statement holds for almost every x if there is a set of Lebesgue measure
zero that contains all x for which the statement does not hold.

Lemma 2.5.7. Let T (x) = αxβ for some α > 0 and β > 1. Then OT (x0) is
Benford for almost every x0 > 0, but there also exist uncountably many exceptional
points, i.e., x0 > 0 for which OT (x0) is not Benford.

Proof. Note first that letting T̃ (x) = cT (c−1x) for any c > 0 implies OT (x) =

c−1OT̃ (cx), and with c = α(β−1)−1

one finds T̃ (x) = xβ . Without loss of gener-
ality, it can therefore be assumed that α = 1, i.e., T (x) = xβ . Define R : R → R
as R(y) = logT (10y) = βy. Since x �→ log x establishes a bijective correspon-
dence between both the points and the nullsets in R+ and R, respectively, all that
has to be shown is that OR(y) is u.d. mod 1 for a.e. y ∈ R, but also that OR(y)
fails to be u.d. mod 1 for at least uncountably many y. To see the former, let
fn(y) = Rn(y) = βny. Clearly, f ′n(y) − f ′m(y) = βn−m(βm − 1) is monotone,
and |f ′n − f ′m| ≥ β − 1 > 0 whenever m �= n. By Proposition 2.4.9, therefore,
OR(y) is u.d. mod 1 for a.e. y ∈ R.

The statement concerning exceptional points will be proved here only under the
additional assumption that β is an integer; see [Ber4] for the remaining cases.
Given an integer β ≥ 2, let (ηn) be any sequence of 0s and 1s such that ηnηn+1 = 0
for all n ∈ N, that is, (ηn) does not contain two consecutive 1s. With this, consider

y0 :=

∞∑
j=1

ηjβ
−j

and observe that, for every n ∈ N,

0 ≤ 〈βny0〉 =

∞∑
j=n+1

ηjβ
n−j ≤ 1

β
+

1

β2(β − 1)
< 1 ,

from which it is clear that (βny0) is not u.d. mod 1. The proof is completed by not-
ing that there are uncountably many different sequences (ηn), and each sequence
defines a different point y0. �

The following is an analog of Theorem 2.5.5 for the case when T is dominated
by power-like terms.
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Theorem 2.5.8 ([BerBH]). Let T be a smooth map with T (0) = 0, and assume
that T ′(0) = 0 but T (p)(0) �= 0 for some p ∈ N\{1}. Then OT (x0) is Benford
for almost every x0 sufficiently close to 0, but there are also uncountably many
exceptional points.

Proof. Without loss of generality, assume that p = min{j ∈ N : T (j)(0) �= 0}.
The map T can be written in the form T (x) = αxp

(
1 + f(x)

)
where f is a C∞-

function with f(0) = 0, and α �= 0. As in the proof of Lemma 2.5.7, it may be
assumed that α = 1. Let R(y) = − logT (10−y) = py − log

(
1 + f(10−y)

)
, so

that OT (x0) is Benford if and only if OR(− log x0) is u.d. mod 1. As the proof of
Lemma 2.5.7 has shown, (pny) is u.d. mod 1 for a.e. y ∈ R. Moreover, Lemma
2.5.3 applies to R, and it can be checked by term-by-term differentiation that the
shadowing map

h : y �→ y = y −
∞∑
j=1

p−j log
(
1 + f

(
10−Rj(y)

))
is a C∞-diffeomorphism on [y0,+∞) for y0 sufficiently large. For a.e. sufficiently
large y, therefore, OR(y) is u.d. mod 1. As explained earlier, this means that
OT (x0) is Benford for a.e. x0 sufficiently close to 0. The existence of exceptional
points follows similarly as in the proof of Lemma 2.5.7. �

Example 2.5.9. (i) Consider the map T (x) = 1
2 (x

2 + x4) and note that limn→∞
T n(x) = 0 if and only if |x| < 1. Theorem 2.5.8 shows that OT (x0) is Benford
for a.e. x0 ∈ (−1, 1). If |x| > 1 then limn→∞ T n(x) = +∞, and Theorem 2.5.8
applies to the reciprocal version T̃ of T , namely

T̃ (x) := T (x−1)−1 =
2x4

1 + x2

near x = 0. Overall, therefore, OT (x0) is Benford for a.e. x0 ∈ R.

(ii) Let T (x) = 1 + x2. Again Theorem 2.5.8 applied to

T̃ (x) = T (x−1)−1 =
x2

1 + x2
,

shows that OT (x0) is Benford for a.e. x0 ∈ R.

An Application: Newton’s Method and Related Algorithms

In scientific calculations using digital computers and floating point arithmetic, round-
off errors are inevitable, thus, for the problem of finding numerically the root of a
function by means of Newton’s Method, it is important to study the distribution of
significant digits (or significands) of the approximations generated by the method.

Throughout this subsection, let f : I → R be a differentiable function defined
on some open interval I ⊂ R, and denote by Nf the map associated with f by
Newton’s Method, that is,

Nf (x) := x− f(x)

f ′(x)
for all x ∈ I with f ′(x) �= 0.
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For Nf to be defined wherever f is, set Nf(x) := x if f ′(x) = 0.
If f : I → R is real-analytic and x∗ ∈ I is a root of f , i.e., if f(x∗) = 0, then

f(x) = (x − x∗)mg(x) for some m ∈ N and some real-analytic g : I → R with
g(x∗) �= 0. The number m is the multiplicity of the root x∗; if m = 1 then x∗ is
referred to as a simple root.

Theorem 2.5.10 ([BerH1]). Let f : I → R be real-analytic with f(x∗) = 0, and
assume that f is not linear. Then

1. if x∗ is a simple root, then (xn − x∗) and (xn+1 − xn) are both Benford for
(Lebesgue) almost every, but not every x0 in a neighborhood of x∗;

2. if x∗ is a root of multiplicity at least two, then (xn − x∗) and (xn+1 − xn)
are Benford for all x0 �= x∗ sufficiently close to x∗.

Here (xn) denotes the sequence of iterates of Nf starting at x0, that is, (xn) =
ONf

(x0).

The full proof of Theorem 2.5.10 can be found in [BerH1]. It uses the following
lemma which may be of independent interest for studying BL in other numerical
approximation procedures. Part (1) is an analog of Lemma 2.5.4, and (2) and (3)
follow directly from Theorems 2.5.8 and 2.5.5, respectively.

Lemma 2.5.11. Let T : I → I be C∞ with T (y∗) = y∗ for some y∗ ∈ I .

1. If T ′(y∗) �= 1, then for all y0 such that limn→∞ T n(y0) = y∗, the sequence
(T n(y0)− y∗) is Benford precisely when

(
T n+1(y0)− T n(y0)

)
is Benford.

2. If T ′(y∗) = 0 but T (p)(y∗) �= 0 for some p ∈ N\{1}, then (T n(y0)− y∗) is
Benford for (Lebesgue) almost every, but not every y0 in a neighborhood of
y∗.

3. If 0 < |T ′(y∗)| < 1, then (T n(y0)−y∗) is Benford for all y0 �= y∗ sufficiently
close to y∗ precisely when log |T ′(y∗)| is irrational.

Example 2.5.12. (i) Let f(x) = x/(1 − x) for x < 1. Then f has a simple
root at x∗ = 0, and Nf (x) = x2. By Theorem 2.5.10(1), the sequences (xn)
and (xn+1 − xn) are both Benford sequences for (Lebesgue) almost every x0 in a
neighborhood of 0.

(ii) Let f(x) = x2. Then f has a double root at x∗ = 0 andNf (x) = x/2, so by
Theorem 2.5.10(2), the sequence of iterates (xn) ofNf as well as (xn+1 − xn) are
both Benford for all starting points x0 �= 0. (They are not, however, 2-Benford.)

Utilizing Lemma 2.5.11, an analog of Theorem 2.5.10 can be established for other
root-finding algorithms as well (see [BerH1]).

Time-Dependent Systems

So far, the sequences considered in this section have been generated by the itera-
tion of a single map T . Beyond this setting there has been, in the recent past, an
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increased interest in systems that are non-autonomous, i.e., explicitly time depen-
dent in one way or the other.

Throughout, let (Tn) be a sequence of maps that map R or parts thereof into
itself, and for everyn ∈ N denote by T n the n-fold compositionT n := Tn◦· · ·◦T1;
also let T 0 be the identity map on R. Given x0, it makes sense to consider the
sequence OT (x0) :=

(
T n−1(x0)

)
n∈N =

(
x0, T1(x0), T2

(
T1(x0)

)
, . . .

)
.

The following is a non-autonomous variant of Theorem 2.5.5. A proof (of a
substantially more general version) can be found in [BerBH]. It relies heavily on a
non-autonomous version of the Shadowing Lemma, Lemma 2.5.3.

Theorem 2.5.13 ([BerBH]). Let Tj : R → R be C2-maps with Tj(0) = 0 and
T ′j(0) �= 0 for all j ∈ N, and set αj := T ′j(0). Assume that supj max|x|≤1 |T ′′j (x)|
and

∑∞
n=1

∏n
j=1 |αj | are both finite. If limj→∞ log |αj | exists and is irrational,

then OT (x0) is Benford for all x0 �= 0 sufficiently close to 0.

Example 2.5.14. (i) Let Rj(x) = (2 + j−1)x for j = 1, 2, . . . . It is easy to see
that all assumptions of Theorem 2.5.13 are met for

Tj(x) = Rj(x
−1)−1 =

j

2j + 1
x,

with limj→∞ log |αj | = − log 2. Hence OR(x0) is Benford for all x0 �= 0.

(ii) Let Tj(x) = Fj+1/Fjx for all j ∈ N, where Fj denotes the jth Fibonacci

number. Since limj→∞ log(Fj+1/Fj) = log 1+
√
5

2 is irrational, and by taking
reciprocals as in (i), Theorem 2.5.13 shows that OT (x0) is Benford for all x0 �= 0.
In particular, OT (F1) = (Fn) is Benford, as was already seen in Example 2.4.12.
Note that the same argument would not work to show that (n!) is Benford.

In situations where most of the maps Tj are power-like or even more strongly
expanding, the following generalization of Lemma 2.5.7 may be useful. (In its
fully developed form, the result also extends Theorem 2.5.8; see [BerBH, Thm.5.5]
and [Ber3, Thm.3.7].) Again the reader is referred to [Ber4] for a proof.

Theorem 2.5.15 ([Ber4]). Assume the maps Tj : R
+ → R+ satisfy, for some ξ > 0

and all j ∈ N, the following conditions:

1. x �→ lnTj(e
x) is convex on [ξ,+∞);

2. xT ′j(x)/Tj(x) ≥ βj > 0 for all x ≥ ξ.

If lim infj→∞ βj > 1 then OT (x0) is Benford for almost every sufficiently large
x0, but there are also uncountably many exceptional points.

Example 2.5.16. (i) To see that Theorem 2.5.15 does indeed generalize Lemma
2.5.7, let Tj(x) = αxβ for all j ∈ N. Then x �→ lnTj(e

x) = βx + lnα clearly is
convex, and xT ′j(x)/Tj(x) = β > 1 for all x > 0.

(ii) Theorem 2.5.15 also shows that OT (x0) with T (x) = ex is Benford for
almost every, but not every x0 ∈ R, as x �→ lnT (ex) = ex is convex, and
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xT ′(x)/T (x) = x as well as T 3(x) > e holds for all x ∈ R. Similarly, the
theorem applies to T (x) = 1 + x2.

(iii) For a truly non-autonomous example consider

Tj(x) =

{
x2 if j is even ,
2x if j is odd ,

or Tj(x) = (j + 1)x .

In both cases, OT (x0) is Benford for almost every, but not every x0 ∈ R.

(iv) Finally, it is important to note that Theorem 2.5.15 may fail if one of its
hypotheses is violated even for a single j. For example,

Tj(x) =

{
10 if j = 1 ,
x2 if j ≥ 2 ,

satisfies (1) and (2) for all j > 1, but does not satisfy assumption (2) for j = 1.
Clearly, OT (x0) is not Benford for any x0 ∈ R, since D1

(
T n(x0)

) ≡ 1 for all
n ∈ N.

2.5.2 Multidimensional Discrete-Time Processes

The purpose of this subsection is to extend the basic results of the previous section
to multidimensional systems, notably to linear, as well as some non-linear recur-
rence relations. Recall from Example 2.4.12 that the Fibonacci sequence (Fn) is
Benford. Hence the linear recurrence relation xn+1 = xn +xn−1 generates a Ben-
ford sequence when started from x0 = x1 = 1. As will be seen shortly, many, but
not all linear recurrence relations generate Benford sequences.

Example 2.5.17. (i) Let the sequence (xn) be defined recursively as

xn+1 = xn − xn−1 , n = 1, 2, . . . , (2.16)

with given x0, x1 ∈ R. By using the matrix

[
0 1

−1 1

]
associated with (2.16), it

is straightforward to derive an explicit representation for (xn),

xn = x0 cos
(
1
3πn

)
+

2x1 − x0√
3

sin
(
1
3πn

)
, n = 0, 1, . . . .

From this it is clear that xn+6 = xn for all n, i.e., (xn) is 6-periodic. For no choice
of x0, x1, therefore, is (xn) Benford.

(ii) Consider the linear 3-step recursion

xn+1 = 2xn + 10xn−1 − 20xn−2 , n = 2, 3, . . . . (2.17)

Clearly, limn→∞ |xn| = +∞ unless x0 = x1 = x2 = 0, so unlike in (i) the
sequence (xn) is not bounded or oscillatory. However, if |c2| �= |c3| then
log |xn| =

n

2
+log

∣∣∣c110−n( 1
2−log 2) + c2 + (−1)nc3

∣∣∣ ≈ n

2
+log |c2+(−1)nc3| ,

showing that
(
S(xn)

)
is asymptotically 2-periodic and hence (xn) is not Benford.

Similarly, if |c2| = |c3| �= 0 then
(
S(xn)

)
is convergent along even (if c2 = c3) or

odd (if c2 = −c3) indices n, and again (xn) is not Benford. Only if c2 = c3 = 0
yet c1 �= 0, or equivalently if 1

4x2 = 1
2x1 = x0 �= 0, is (xn) Benford.
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The above recurrence relations (2.16) and (2.17) are linear and have constant co-
efficients. Hence they can be rewritten and analyzed using matrix–vector notation.
For instance, in Example 2.5.17(i)[

xn

xn+1

]
=

[
0 1

−1 1

] [
xn−1

xn

]
,

so that, with A =

[
0 1

−1 1

]
∈ R2×2, the sequence (xn) is simply given by

xn =
[
1 0

]
An

[
x0

x1

]
, n = 0, 1, . . . .

It is natural, therefore, to study the Benford property of more general sequences
(x�Any) for any A ∈ Rd×d and x, y ∈ Rd. Linear recurrence relations like the
ones in Example 2.5.17 are then merely special cases.

Recall complex numbers z1, z2, . . . , zm are rationally independent if
∑m

j=1 qjzj
= 0 with rational q1, q2, . . . , qm implies that qj = 0 for all j = 1, 2, . . . ,m. Let
Z ⊂ C be any set such that all elements of Z have the same modulus ζ, i.e.,
Z is contained in the periphery of a circle with radius ζ centered at the origin
of the complex plain. Call the set Z resonant if either #(Z ∩ R) = 2 or the
numbers 1, log ζ, and the elements of 1

2π argZ are rationally dependent, where
1
2π argZ =

{
1
2π arg z : z ∈ Z

} \{− 1
2 , 0}.

Definition 2.5.18. A matrix A ∈ Rd×d is Benford regular (base 10) if σ(A)+ (the
subset of the spectrum of A with non-negative imaginary components) contains no
resonant set.

Note that in the simplest case, i.e., for d = 1, the matrix A = [a] is Benford regular
if and only if log |a| is irrational. Hence Benford regularity may be considered a
generalization of this irrationality property. Also note that A is regular (invertible)
whenever it is Benford regular.

Example 2.5.19. None of the matrices associated with the recurrence relations

in Example 2.5.17 are Benford regular. Indeed, in (i), A =

[
0 1

−1 1

]
, hence

σ(A)+ = {eıπ/3}, and clearly log |eıπ/3| = 0 is rational. Similarly, in (ii),

A =

⎡⎣ 0 1 0
0 0 1

−10 10 2

⎤⎦, and σ(A)+ = {−√
10, 2,

√
10} contains the resonant

set {−√
10,

√
10}.

Example 2.5.20. Let A =

[
1 −1
1 1

]
∈ R2×2, with characteristic polynomial

pA(λ) = λ2−2λ+2, and henceσ(A)+ = {√2eıπ/4}. As 1, log√2, and 1
2π ·π4 = 1

8
are rationally dependent, the matrix A is not Benford regular.

Example 2.5.21. ConsiderA =

[
0 1
1 1

]
∈ R2×2. The characteristic polynomial

of A is pA(λ) = λ2−λ− 1, and so, with ϕ = 1
2 (1+

√
5), the eigenvalues ofA are
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ϕ and−ϕ−1. Since pA is irreducible and has two roots of different absolute value,
it follows that logϕ is irrational (in fact, even transcendental). Thus A is Benford
regular.

With the one-dimensional result (Lemma 2.5.2), as well as Example 2.5.17 and
Definition 2.5.18 in mind, it seems realistic to hope that iterating (i.e., taking pow-
ers of) any matrix A ∈ Rd×d produces many Benford sequences, provided that A
is Benford regular. This is indeed the case. To concisely formulate the pertinent
result, call a sequence (zn) of complex numbers terminating if zn = 0 for all
sufficiently large n.

Theorem 2.5.22 ([Ber2]). Assume that A ∈ Rd×d is Benford regular. Then, for
every x, y ∈ Rd, the sequence (x�Any) is either Benford or terminating. Also,
(‖Anx‖) is Benford for every x �= 0.

Proof. Apply Theorem 2.4.2 and the following proposition, a variant of [Ber2,
Lem.2.9]. �

Proposition 2.5.23. Assume that the real numbers 1, ρ0, ρ1, . . . , ρm are rationally
independent. Let (zn) be a convergent sequence in C, and at least one of the
numbers c1, c2, . . . , cm ∈ C non-zero. Then (xn) given by

xn = nρ0 + log
∣∣� (

c1e
2πınρ1 + · · ·+ cme2πınρm + zn

)∣∣
is u.d. mod 1.

Example 2.5.24. According to Example 2.5.21, the matrix
[

0 1
1 1

]
is Benford

regular. By Theorem 2.5.22, every solution of the difference equation xn+1 =
xn + xn−1 is Benford, except for the trivial solution xn ≡ 0 resulting from x0 =
x1 = 0. In particular, therefore, the sequences of Fibonacci and Lucas numbers,
(Fn) = (1, 1, 2, 3, 5, . . .) and (Ln) = (−1, 2, 1, 3, 4, . . .), generated respectively
from the initial values

[
x0 x1

]
=

[
1 1

]
and

[
x0 x1

]
=

[ −1 2
]
, are

Benford. For the former sequence, this has already been seen in Example 2.4.12.
Note that (F 2

n), for instance, is Benford as well by Corollary 2.4.7(1).

Example 2.5.25. Recall from Example 2.5.20 that A =

[
1 −1
1 1

]
is not Ben-

ford regular. Hence Theorem 2.5.22 does not apply, and (x�Any) may, for some
x, y ∈ R2, be neither Benford nor terminating. Indeed, pick for example x = y =[
1 0

]�
and note that for n = 0, 1, . . . ,

x�Any =
[
1 0

]
2n/2

[
cos(14πn) − sin( 14πn)

sin( 14πn) cos(14πn)

][
1
0

]
= 2n/2 cos

(
1
4πn

)
is clearly not Benford as x�Any = 0 whenever n = 2 + 4l for some l ∈ N0.

The present section closes with an example of a non-linear system. The sole
purpose is to hint at possible extensions of the results presented earlier; for more
details the interested reader is referred to [Ber2].
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Example 2.5.26. Consider the non-linear map T : R2 → R2 given by

T :

[
x1

x2

]
�→

[
2 0
0 2

] [
x1

x2

]
+

[
f(x1)
f(x2)

]
,

with the bounded continuous function

f(t) =
3

2
|t+2|−3|t+1|+3|t−1|− 3

2
|t−2| =

⎧⎪⎪⎨⎪⎪⎩
0 if |t| ≥ 2 ,
3t+ 6 if − 2 < t < −1 ,
−3t if − 1 ≤ t < 1 ,
3t− 6 if 1 ≤ t < 2 .

Sufficiently far away from the x1- and x2-axes, i.e., formin{|x1|, |x2|} sufficiently
large, the dynamics of T is governed by the matrix

[
2 0
0 2

]
, and since the latter

is Benford regular, one may reasonably expect that
(
x�T n(y)

)
should be Benford.

This is indeed the case.

2.5.3 Differential Equations

By presenting a few results on, and examples of, differential equations, i.e., deter-
ministic continuous-time processes, this section aims at convincing the reader that
the emergence of BL is not at all restricted to discrete-time dynamics. Rather, so-
lutions of ordinary or partial differential equations often turn out to be Benford as
well. Recall that a (Borel measurable) function f : [0,+∞) → R is Benford if and
only if log |f | is u.d. mod 1.

Consider the initial value problem (IVP)

ẋ = F (x) , x(0) = x0 , (2.18)

where F : R → R is continuously differentiable with F (0) = 0, and x0 ∈ R.
In the simplest case, F (x) ≡ αx with some α ∈ R. In this case, the unique
solution of (2.18) is x(t) = x0e

αt. Unless αx0 = 0, therefore, every solution of
(2.18) is Benford. As in the discrete-time setting, this feature persists for arbitrary
C2-functions F with F ′(0) < 0. The direct analog of Theorem 2.5.5 is

Theorem 2.5.27 ([BerBH]). Let F : R → R be C2 with F (0) = 0. Assume that
F ′(0) < 0. Then, for every x0 �= 0 sufficiently close to 0, the unique solution of
(2.18) is Benford.

Proof. Pick δ > 0 so small that xF (x) < 0 for all 0 < |x| ≤ δ. As F is C2,
the IVP (2.18) has a unique local solution whenever |x0| ≤ δ; see [Walt]. Since
the interval [−δ, δ] is forward invariant, this solution exists for all t ≥ 0. Fix any
x0 with 0 < |x0| ≤ δ and denote the unique solution of (2.18) as x = x(t).
Clearly, limt→+∞ x(t) = 0. With y : [0,+∞) → R defined as y = x−1 therefore
y(0) = x−1

0 =: y0 and limt→+∞ |y(t)| = +∞. Let α := −F ′(0) > 0 and note
that there exists a continuous function g : R → R such that F (x) = −αx+x2g(x).
From

ẏ = − ẋ

x2
= αy − g(y−1) ,



54 CHAPTER 2

it follows via the variation of constants formula that, for all t ≥ 0,

y(t) = eαty0 −
∫ t

0

eα(t−τ)g
(
y(τ)−1

)
dτ .

As α > 0 and g is continuous, the number

y0 := y0 −
∫ +∞

0

e−ατg
(
y(τ)−1

)
dτ

is well defined. Moreover, for all t > 0,∣∣y(t)− eαty0
∣∣ = ∣∣∣∣∫ +∞

t

eα(t−τ)g
(
y(τ)−1

)
dτ

∣∣∣∣
≤

∫ +∞

0

e−ατ
∣∣g(y(t+ τ)−1

)∣∣ dτ ≤ ‖g‖∞
α

,

where ‖g‖∞ = max|x|≤δ |g(x)|, and Lemma 2.5.4(2) shows that y is Benford if
and only if t �→ eαty0 is. An application of Corollary 2.4.7(2) therefore completes
the proof. �

Example 2.5.28. (i) The function F (x) = −x+ x4e−x2

satisfies the assumptions
of Theorem 2.5.27. Thus except for the trivial solution x = 0, every solution of
ẋ = −x+ x4e−x2

is Benford.

(ii) The function F (x) = −x3 + x4e−x2

is also smooth with xF (x) < 0 for
all x �= 0. Hence for every x0 ∈ R, the IVP (2.18) has a unique solution with
limt→+∞ x(t) = 0. However, F ′(0) = 0, and it is not hard to see that this causes
x to approach 0 rather slowly. In fact, limt→+∞ 2tx(t)2 = 1 whenever x0 �= 0,
and this prevents x from being Benford.

Similar results follow for the linear d-dimensional ordinary differential equations
ẋ = Ax, where A is a real d× d-matrix; see [Ber2].

Finally, it should be mentioned that at present little seems to be known about
the Benford property for solutions of partial differential equations or more gen-
eral functional equations such as e.g. delay or integro-differential equations. Quite
likely, it will be very hard to decide in any generality whether many, or even most,
solutions of such systems exhibit the Benford property in one form or another.

Example 2.5.29. A fundamental example of a partial differential equation is the
so-called one-dimensional heat (or diffusion) equation

∂u

∂t
=

∂2u

∂x2
, (2.19)

a linear second-order equation for u = u(t, x). Physically, (2.19) describes e.g.
the diffusion over time of heat in a homogeneous one-dimensionalmedium. Without
further conditions, (2.19) has many solutions of which for instance

u(t, x) = cx2 + 2ct ,

with any constant c �= 0, is neither Benford in t (“time”) nor in x (“space”),
whereas

u(t, x) = e−c2t sin(cx)
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is Benford (or identically zero) in t but not in x,

u(t, x) =
1√
t
e−x2/(4t) (t > 0)

is Benford in x but not in t, and

u(t, x) = ec
2t+cx

is Benford in both t and x.

2.6 BENFORD’S LAW FOR RANDOM PROCESSES

The purpose of this section is to show how BL arises naturally in a variety of
stochastic settings, including products of independent random variables, mixtures
of random samples from different distributions, and iterations of random maps.
Perhaps not surprisingly, BL arises in many other important fields of stochastics as
well, such as geometric Brownian motion, random matrices, Lévy processes, and
Bayesian models. The present section may also serve as a preparation for the spe-
cialized literature on these advanced topics [EngLeu, JaKKKM, LeScEv, MiNi1,
MiNi2, Schür2].

2.6.1 Independent Random Variables

Recall that a sequence (Xn) of random variables converges in distribution to a

random variable X , symbolically Xn
D→ X , if limn→∞ P(Xn ≤ t) = P(X ≤ t)

holds for every t ∈ R for which P(X = t) = 0. By a slight abuse of terminology,

say that (Xn) converges in distribution to BL if S(Xn)
D→ S(X), where X is a

Benford random variable, or equivalently if

lim
n→∞P(S(Xn) ≤ t) = log t for all t ∈ [1, 10) .

An especially simple way of generating a sequence of random variables is this:
Fix a random variable X , and set Xn := Xn for every n ∈ N. While the sequence
(Xn) thus generated is clearly not i.i.d. unless X = 0 a.s. or X = 1 a.s., Theorems
2.4.10 and 2.4.15 imply

Theorem 2.6.1. Assume that the random variableX has a density. Then

1. Xn converges in distribution to BL;

2. with probability one, (Xn) is Benford.

Proof. To prove (1), note that the random variable log |X | has a density as well.
Hence, by Theorem 2.4.15,

P(S(Xn) ≤ t) = P(〈log |Xn|〉 ≤ log t) = P(〈n log |X |〉 ≤ log t) → log t

as n → ∞ holds for all t ∈ [1, 10), i.e., (Xn) converges in distribution to BL.
To see (2), simply note that log |X | is irrational with probability one. By Theo-

rem 2.4.10, therefore, P
(
(Xn) is Benford

)
= 1. �
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Example 2.6.2. (i) Let X be uniformly distributed on [0, 1). For every n ∈ N,

FS(Xn)(t) =
t1/n − 1

101/n − 1
, 1 ≤ t < 10 ,

and a short calculation, together with the elementary estimate
et − 1− t

et − 1
<

t

2
for

all t > 0 shows that∣∣FS(Xn)(t)− log t
∣∣ ≤ 101/n − 1− ln 10

n

101/n − 1
<

ln 10

2n
→ 0 as n → ∞ ,

and hence (Xn) converges in distribution to BL. Since P( logX is rational ) = 0,
the sequence (Xn) is Benford with probability one.

(ii) Assume thatX = 2 a.s. Thus PX = δ2, andX does not have a density. For
every n, S(Xn) = 10〈n log 2〉 with probability one, so (Xn) does not converge in
distribution to BL. On the other hand, (Xn) is Benford a.s.

The sequence of random variables considered in Theorem 2.6.1 is very special
in that Xn is the product of n quantities that are identical, and hence dependent
in extremis. Note that Xn is Benford for all n if and only if X is Benford. This
invariance property of BL persists if, unlike the case in Theorem 2.6.1, products of
independent factors are considered.

Theorem 2.6.3. Let X , Y be two independent random variables with P(XY =
0) = 0. Then

1. if X is Benford then so is XY ;

2. if S(X) and S(XY ) have the same distribution, then either logS(Y ) is
rational with probability one, orX is Benford.

Proof. As in the proof of Lemma 2.4.26, the argument becomes short and trans-
parent through the usage of Fourier coefficients. Note first that logS(XY ) =
〈log S(X) + logS(Y )〉 and, since the random variables X0 := log S(X) and
Y0 := logS(Y ) are independent,

̂Plog S(XY ) = ̂P〈X0+Y0〉 = P̂X0 · P̂Y0 . (2.20)

To prove (1), simply recall that X being Benford is equivalent to PX0 = λ0,1, and

hence P̂X0(k) = 0 for every integer k �= 0. Consequently, ̂PlogS(XY )(k) = 0 as
well, i.e., XY is Benford.

To see (2), assume that S(X) and S(XY ) have the same distribution. In this
case, (2.20) implies that

P̂X0(k)
(
1− P̂Y0(k)

)
= 0 for all k ∈ Z .

If P̂Y0(k) �= 1 for all non-zero k, then P̂X0 = λ̂0,1, i.e., X is Benford. Alterna-

tively, if P̂Y0(k0) = 1 for some k0 �= 0 then PY0(
1
|k0|Z) = 1, hence |k0|Y0 =

|k0| logS(Y ) is an integer with probability one. �
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Example 2.6.4. Let V , W be independent random variables distributed accord-
ing to U(0, 1). Then X := 10V and Y := W are independent and, by Theorem
2.6.3(1), XY is Benford even though Y is not. If, on the other hand, X := 10V

and Y := 101−V then X and Y are both Benford, yet XY is not. Hence the in-
dependence ofX and Y is crucial in Theorem 2.6.3(1). It is essential in assertion
(2) as well, as can be seen by lettingX equal either 10

√
2−1 or 102−

√
2 with prob-

ability 1
2 each, and choosing Y := X−2. Then S(X) and S(XY ) = S(X−1)

have the same distribution, but neither X is Benford nor log S(Y ) is rational with
probability one.

Theorem 2.6.5. Let (Xn) be an i.i.d. sequence of random variables that are not
purely atomic, i.e., P(X1 ∈ C) < 1 for every countable set C ⊂ R. Then

1.
(∏n

j=1 Xj

)
converges in distribution to BL;

2. with probability one,
(∏n

j=1 Xj

)
is Benford.

Proof. Let Yn = log |Xn|. Then (Yn) is an i.i.d. sequence of random variables
that are not purely atomic. By Theorem 2.4.13(3), the sequence of

〈∑n
j=1 Yj

〉
=〈

log |∏n
j=1 Xj |

〉
converges in distribution to U(0, 1). Thus

(∏n
j=1 Xj

)
converges

in distribution to BL.
To prove (2), let Y0 be u.d. mod 1 and independent of (Yn)n∈N, and define

Sj := 〈Y0 + Y1 + · · ·+ Yj〉 , j ∈ N0 .

Recall from Theorem 2.4.13(1) that Sj is u.d. mod 1 for every j ≥ 0. Also note
that, by definition, the random variables Yj+1, Yj+2, . . . are independent of Sj . The
following argument is most transparent when formulated in ergodic theory termi-
nology. To this end, endow T∞ := [0, 1)N0 = {(xj)j∈N0 : xj ∈ [0, 1) for all j }
with the σ-algebra

B∞ := σ
({B0 ×B1 × · · · ×Bj × [0, 1)× [0, 1)× · · · : j ∈ N0,

B0, B1, . . . , Bj ∈ B[0, 1)}) (2.21)

=
⊗
j∈N0

B[0, 1).

A probability measure P∞ is uniquely defined on (T∞,B∞) by setting
P∞(B0 ×B1 × · · · ×Bj × [0, 1)× [0, 1)× · · · )
= P(S0 ∈ B0, S1 ∈ B1, . . . , Sj ∈ Bj)

for all j ∈ N0 and B0, B1, . . . , Bj ∈ B[0, 1).
The map σ∞ : T∞ → T∞ with σ∞

(
(xj)

)
= (xj+1), often referred to as the

(one-sided) left shift on T∞, is clearly measurable, i.e., σ−1
∞ (A) ∈ B∞ for every

A ∈ B∞. As a consequence, (σ∞)∗P∞ is a well-defined probability measure on
(T∞,B∞). In fact, since S1 is u.d. mod 1 and (Yn) is an i.i.d. sequence,

(σ∞)∗P∞(B0 ×B1 × · · · ×Bj × [0, 1)× [0, 1)× · · · )
= P∞([0, 1)×B0 ×B1 × · · · ×Bj × [0, 1)× [0, 1)× · · · )
= P(S1 ∈ B0, S2 ∈ B1, . . . , Sj+1 ∈ Bj)

= P(S0 ∈ B0, S1 ∈ B1, . . . , Sj ∈ Bj)

= P∞(B0 ×B1 × · · · ×Bj × [0, 1)× [0, 1)× · · · ) ,
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showing that (σ∞)∗P∞ = P∞, i.e., σ∞ is P∞-preserving. (In probabilistic terms,
this is equivalent to saying that the random process (Sj)j∈N0 is stationary; see
[Shi, Def.V.1.1].) It will now be shown that σ∞ is even ergodicwith respect to P∞.
Recall that this simply means that every invariant set A ∈ B∞ has measure zero
or one, or, more formally, that P∞(σ−1

∞ (A)ΔA) = 0 implies P∞(A) ∈ {0, 1};
here the symbol Δ denotes the symmetric difference of two sets, i.e., AΔB =
A\B ∪ B\A. Assume, therefore, that P∞(σ−1

∞ (A)ΔA) = 0 for some A ∈ B∞.
Given ε > 0, there exists a number N ∈ N and sets B0, B1, . . . , BN ∈ B[0, 1)
such that

P∞
(
AΔ (B0 ×B1 × · · · ×BN × [0, 1)× [0, 1)× · · · )) < ε .

For notational convenience, let Aε := B0×B1×· · ·×BN × [0, 1)× [0, 1)×· · · ∈
B∞, and note that P∞

(
σ−j
∞ (A)Δσ−j

∞ (Aε)
)
< ε for all j ∈ N0. Recall now from

Theorem 2.4.13(3) that, given S0, S1, . . . , SN , the random variables Sn converge
in distribution to U(0, 1). Thus, for all sufficiently large M ,∣∣P∞(

Ac
ε ∩ σ−M

∞ (Aε)
)− P∞(Ac

ε)P∞
(
σ−M
∞ (Aε)

)∣∣
=

∣∣P∞(
Ac

ε ∩ σ−M
∞ (Aε)

)− P∞(Ac
ε)P∞(Aε)

∣∣ < ε,

and similarly
∣∣P∞(

Aε ∩ σ−M
∞ (Ac

ε)
) − P∞(Aε)P∞(Ac

ε)
∣∣ < ε. (Note that (2.22)

may not hold if X1, and hence also Y1, is purely atomic.) Overall, therefore,

2P∞(Aε)
(
1− P∞(Aε)

)≤ 2ε+ P∞
(
AεΔσ−M

∞ (Aε)
)

≤ 2ε+ P∞(AεΔA) + P∞
(
AΔσ−M

∞ (A)
)

+ P∞
(
σ−M
∞ (A)Δσ−M

∞ (Aε)
)

(2.22)

< 4ε,

and consequently P∞(A)
(
1 − P∞(A)

)
< 4ε + ε2. Since ε > 0 was arbitrary,

P∞(A) ∈ {0, 1}, which in turn shows that σ∞ is ergodic. (Again, this is equivalent
to saying, in probabilistic parlance, that the random process (Sj)j∈N0 is ergodic;
see [Shi, Def.V.3.2].) By the Birkhoff Ergodic Theorem (e.g. [Ber1]), for every

(measurable) function f : [0, 1) → C with
∫ 1

0

|f(x)| dx < +∞,

1

n

n∑
j=0

f(xj) →
∫ 1

0

f(x) dx as n → ∞

holds for all (xj)j∈N0 ∈ T∞, with the possible exception of a set of P∞-measure
zero. In probabilistic terms, this means that

lim
n→∞

1

n

n∑
j=0

f(Sj) =

∫ 1

0

f(x) dx a.s. (2.23)

Assume from now on that f is actually continuous with limx↑1 f(x) = f(0), e.g.
f(x) = e2πıx. For any such f , as well as any t ∈ [0, 1) and m ∈ N, let

Ωf,t,m :=⎧⎨⎩ω ∈ Ω : lim sup
n→∞

∣∣∣∣∣∣ 1n
n∑

j=1

f
(〈t+ Y1(ω) + · · ·+ Yj(ω)〉

)−∫ 1

0

f(x) dx

∣∣∣∣∣∣ < 1

m

⎫⎬⎭ .
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According to (2.23), 1 =

∫ 1

0

P(Ωf,t,m) dt, and hence P(Ωf,t,m) = 1 for a.e.

t ∈ [0, 1). Since f is uniformly continuous, for every m ≥ 2 there exists tm > 0
such that P(Ωf,tm,m) = 1 and Ωf,tm,m ⊂ Ωf,0,�m/2�. From

1 = P

⎛⎝ ⋂
m≥2

Ωf,tm,m

⎞⎠ ≤ P

⎛⎝ ⋂
m≥2

Ωf,0,�m/2�

⎞⎠ ≤ 1 ,

it is clear that

lim
n→∞

1

n

n∑
j=1

f
(〈Y1 + · · ·+ Yj〉

)
=

∫ 1

0

f(x) dx a.s. (2.24)

As the intersection of countably many sets of full measure has itself full measure,
choosing f(x) = e2πıkx, k ∈ Z in (2.24) shows that, with probability one,

lim
n→∞

1

n

n∑
j=1

e2πık(Y1+···+Yj) =

∫ 1

0

e2πıkxdx = 0 for all k ∈ Z, k �= 0 . (2.25)

By Weyl’s criterion [KuiNi, Thm.2.1], (2.25) is equivalent to

P

⎛⎝⎛⎝ n∑
j=1

Yj

⎞⎠ is u.d. mod 1

⎞⎠ = 1 .

In other words, (
∏n

j=1 Xj) is Benford with probability one. �

Example 2.6.6. (i) Let (Xn) be an i.i.d. sequence withX1 distributed according to
U(0, a), the uniform distribution on [0, a) with a > 0. The kth Fourier coefficient
of P〈logX1〉 is

̂P〈logX1〉(k) = e2πık log a ln 10

ln 10 + 2πık
, k ∈ Z ,

so that, for every k �= 0,∣∣∣ ̂P〈logX1〉(k)
∣∣∣ =

ln 10√
(ln 10)2 + 4π2k2

< 1 .

As seen in the proof of Theorem 2.4.13(3), this implies that
(∏n

j=1 Xj

)
converges

in distribution to BL, a fact apparently first recorded in [AdhSa]. Note also that
E logX1 = log a

e . Thus with probability one,
(∏n

j=1 Xj

)
converges to 0 or +∞,

depending on whether a < e or a > e. In fact, by the Strong Law of Large
Numbers [ChT],

n

√√√√ n∏
j=1

Xj
a.s.→ a

e

holds for every a > 0. If a = e then

P

⎛⎝lim inf
n→∞

n∏
j=1

Xj = 0 and lim sup
n→∞

n∏
j=1

Xj = +∞
⎞⎠ = 1 ,
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showing that in this case the product
∏n

j=1 Xj does not converge but rather attains,
with probability one, arbitrarily small as well as arbitrarily large positive values.
By Theorem 2.6.5(2), the sequence

(∏n
j=1 Xj

)
is a.s. Benford, regardless of the

value of a.

(ii) Consider an i.i.d. sequence (Xn) with X1 distributed according to a log-
normal distribution such that logX1 is standard normal. Denote by fn the density
of

〈
log

∏n
j=1 Xj

〉
. Since log

∏n
j=1 Xj =

∑n
j=1 logXj is normal with mean zero

and variance n,

fn(s) =
1√
2πn

∑
k∈Z

e−(k+s)2/(2n) , 0 ≤ s < 1 ,

from which it is straightforward to deduce that

lim
n→∞

fn(s) = 1 , uniformly in 0 ≤ s < 1 .

Consequently, for all t ∈ [1, 10),

P

⎛⎝S

⎛⎝ n∏
j=1

Xj

⎞⎠ ≤ t

⎞⎠ = P

⎛⎝〈
log

n∏
j=1

Xj

〉
≤ log t

⎞⎠
=

∫ log t

0

fn(s) ds →
∫ log t

0

1 ds = log t,

i.e.,
(∏n

j=1 Xj

)
converges in distribution to BL. By Theorem 2.6.5(2) also

P

⎛⎝⎛⎝ n∏
j=1

Xj

⎞⎠ is Benford

⎞⎠ = 1 ,

even though E log
∏n

j=1 Xj =
∑n

j=1 E logXj = 0, and hence, as in the previous

example, the sequence
(∏n

j=1 Xj

)
a.s. oscillates forever between 0 and +∞.

Having seen Theorem 2.6.5, the reader may wonder whether there is an anal-
ogous result for sums of i.i.d. random variables. After all, the focus in classical
probability theory is on sums much more than on products. Unfortunately, the
statistical behavior of the significands is much more complex for sums than for
products. The main basic reason is that the significand of the sum of two or more
numbers depends not only on the significand of each number (as in the case of
products), but also on their exponents. For example, observe that

S
(
3 · 103 + 2 · 102) = 3.2 �= 5 = S

(
3 · 102 + 2 · 102) ,

while clearly

S
(
3 · 103 × 2 · 102) = 6 = S

(
3 · 102 × 2 · 102) .

Practically, this difficulty is reflected in the fact that for positive real numbers u, v,
the value of log(u + v), relevant for conformance with BL via Theorem 2.4.2, is
not easily expressed in terms of log u and log v, whereas log(uv) = log u+ log v.

In view of these difficulties, it is perhaps not surprising that the analog of Theo-
rem 2.6.5 for sums arrives at a radically different conclusion.
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Theorem 2.6.7. Let (Xn) be an i.i.d. sequence of random variables with finite
variance, that is, EX2

1 < +∞. Then

1. not even a subsequence of
(∑n

j=1 Xj

)
converges in distribution to BL;

2. with probability one,
(∑n

j=1 Xj

)
is not Benford.

Proof. See [BerH4, Thm.6.8]. �

Example 2.6.8. Let (Xn) be an i.i.d. sequence with P(X1 = 0) = P(X1 = 1) =
1
2 . Then EX1 = EX2

1 = 1
2 , and by Theorem 2.6.7(1) neither

(∑n
j=1 Xj

)
nor any

of its subsequences converges in distribution to BL. Note that
∑n

j=1 Xj is binomial
with parameters n and 1

2 , i.e., for all n ∈ N,

P

⎛⎝ n∑
j=1

Xj = l

⎞⎠ = 2−n

(
n
l

)
, l = 0, 1, . . . , n .

The law of the iterated logarithm [ChT] asserts that
n∑

j=1

Xj =
n

2
+ Yn

√
n ln lnn for all n ≥ 3 , (2.26)

where the sequence (Yn) of random variables is bounded; in fact |Yn| ≤ 1 a.s. for
all n. From (2.26) it is clear that, with probability one, the sequence

(∑n
j=1 Xj

)
is not Benford.

2.6.2 Mixtures of Distributions

The main goal of this section is to provide a statistical derivation of BL, in the form
of a Central-Limit-like theorem that says that if random samples are taken from
different distributions, and the results combined, then—provided the sampling is
“unbiased” as to scale or base—the resulting combined samples will converge to
the Benford distribution.

Denote by M the set of all probability measures on (R,B). Recall that a (real
Borel) random probability measure, abbreviated henceforth as r.p.m., is a func-
tion P : Ω → M, defined on some underlying probability space (Ω,A,P), such
that for every B ∈ B the function ω �→ P (ω)(B) is a random variable. Thus, for
every ω ∈ Ω, P (ω) is a probability measure on (R,B), and, given any real numbers
a, b and any Borel set B,

{ω : a ≤ P (ω)(B) ≤ b} ∈ A ;

see e.g. [Ka] for an authoritative account on random probability measures.

Example 2.6.9. (i) Let P be an r.p.m. that is, U(0, 1) with probability 1
2 , and

otherwise is exp(1), i.e., exponential with mean 1, hence P(X > t) = min(1, e−t)
for all t ∈ R, see Example 2.3.8(i,ii). Thus, for every ω ∈ Ω, the probability
measure P (ω) is either U(0, 1) or exp(1), and P

(
P (ω) = U(0, 1)

)
= P

(
P (ω) =

exp(1)
)
= 1

2 . For a practical realization of P simply flip a fair coin—if it comes
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up heads, P(ω) is a U(0, 1)-distribution, and if it comes up tails, then P (ω) is an
exp(1)-distribution.

(ii) Let X be distributed according to exp(1), and let P be an r.p.m. where, for
each ω ∈ Ω, P (ω) is the normal distribution with mean X(ω) and variance 1. In
contrast to the example in (i), here P is continuous, i.e., P(P = Q) = 0 for each
probability measure Q ∈ M.

The following example of an r.p.m. is a variant of a classical construction due to
L. Dubins and D. Freedman which, as will be seen below, is an r.p.m. leading to
BL.

Example 2.6.10. Let P be the r.p.m. with support on [1, 10), i.e., P
(
[1, 10)

)
= 1

with probability one, defined by its (random) cumulative distribution function FP ,
i.e.,

FP (t) := FP (ω)(t) = P (ω)
(
[1, t]

)
, 1 ≤ t < 10 ,

as follows: Set FP (1) = 0 and FP (10) = 1. Next pick FP (10
1/2) according to

the uniform distribution on [0, 1). Then pick FP (10
1/4) and FP (10

3,4) indepen-
dently, uniformly on

[
0, FP (10

1/2)
)
and

[
FP (10

1/2), 1
)
, respectively, and con-

tinue in this manner. This construction is known to generate an r.p.m. a.s. [DuFr,
Lem.9.28], and as can easily be seen, is dense in the set of all probability measures
on

(
[1, 10),B[1, 10)), i.e., it generates probability measures that are arbitrarily

close to any Borel probability measure on [1, 10).

The next definition formalizes the notion of combining data from different dis-
tributions. Essentially, it mimics what Benford did in combining baseball statistics
with square-root tables and numbers taken from newspapers etc. This definition
is key to everything that follows. It rests upon using an r.p.m. to generate a ran-
dom sequence of probability distributions, and then successively selecting random
samples from each of those distributions.

Definition 2.6.11. Let m be a positive integer and P an r.p.m. A sequence of P -
randomm-samples is a sequence (Xn) of random variables on (Ω,A,P) such that,
for all j ∈ N and some i.i.d. sequence (Pn) of r.p.m.s with P1 = P , the following
two properties hold:

Given that Pj = Q, the random variablesX(j−1)m+1, X(j−1)m+2, . . . , Xjm

are i.i.d. with distributionQ. (2.27)

The random variablesX(j−1)m+1, X(j−1)m+2, . . . , Xjm are independent of

Pi, X(i−1)m+1, X(i−1)m+2, . . . , Xim for every i �= j. (2.28)

Thus for any sequence (Xn) of P -random m-samples, for each ω ∈ Ω in the
underlying probability space, the first m random variables are a random sample
(i.e., i.i.d.) from P1(ω), a random probability distribution chosen according to the
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r.p.m. P ; the second m-tuple of random variables is a random sample from P2(ω)
and so on. Note the two levels of randomness here: First a probability is selected
at random, and then a random sample is drawn from this distribution, and this two-
tiered process is continued.

Example 2.6.12. Let P be the r.p.m. in Example 2.6.9(i), and let m = 3. Then a
sequence ofP -random 3-samples is a sequence (Xn) of random variables such that
with probability 1

2 , X1, X2, X3 are i.i.d. and distributed according to U(0, 1), and
otherwise they are i.i.d. but distributed according to exp(1); the random variables
X4, X5, X6 are again equally likely to be i.i.d. U(0, 1) or exp(1), and they are
independent of X1, X2, X3, etc. Clearly the (Xn) are all identically distributed
as they are all generated by exactly the same process. Note, however, that for
instance X1 and X2 are dependent: Given that X1 > 1, for example, the random
variable X2 is exp(1)-distributed with probability one, whereas the unconditional
probability thatX2 is exp(1)-distributed is only 1

2 .

Although sequences of P -random m-samples have a fairly simple structure, they
do not fit into any of the familiar categories of sequences of random variables. For
example, they are not in general independent, exchangeable, Markov, martingale,
or stationary sequences. (See [Hi4]).

Recall that, given an r.p.m.P and any Borel set B, the quantityP (B) is a random
variable with values between 0 and 1. The following property of the expectation of
P (B), as a function of B, is easy to check.

Proposition 2.6.13. Let P be an r.p.m. Then EP , defined as

(EP )(B) := EP (B) =

∫
Ω

P (ω)(B) dP(ω) for all B ∈ B ,

is a probability measure on (R,B).
Example 2.6.14. Let P be the r.p.m. of Example 2.6.9(i). Then EP is the Borel
probability measure with density

fEP (t) =

⎧⎪⎨⎪⎩
0 if t < 0 ,
1
2 + 1

2e
−t if 0 ≤ t < 1 ,

1
2e
−t if t ≥ 1 ,

⎫⎪⎬⎪⎭ =
1

2
1[0,1)(t)+

1

2
e−t

1[0,+∞) , t ∈ R .

The next lemma shows that the limiting proportion of times that a sequence of
P -random m-samples falls in a (Borel) set B is, with probability one, the average
P-value of the set B, i.e., the limiting proportion equals EP (B). Note that this is
not simply a direct corollary of the classical Strong Law of Large Numbers as the
random variables in the sequence are not in general independent.

Lemma 2.6.15. Let P be an r.p.m., and let (Xn) be a sequence of P -random m-
samples for somem ∈ N. Then, for every B ∈ B,

#{1 ≤ n ≤ N : Xn ∈ B}
N

a.s.→ EP (B) as N → ∞ .
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Proof. Fix B ∈ B and j ∈ N, and let Yj = #{1 ≤ i ≤ m : X(j−1)m+i ∈ B}. It
is clear that

lim
N→∞

#{1 ≤ n ≤ N : Xn ∈ B}
N

=
1

m
lim
n→∞

1

n

n∑
j=1

Yj , (2.29)

whenever the limit on the right exists. By (2.27), given Pj , the random variable Yj

is binomially distributed with parameters m and E
(
Pj(B)

)
, hence a.s.

EYj = E
(
E(Yj |Pj)

)
= E

(
mPj(B)

)
= mEP (B) (2.30)

since Pj has the same distribution as P . By (2.28), the Yj are independent. They
are also uniformly bounded, as 0 ≤ Yj ≤ m for all j, and hence

∑∞
j=1 EY

2
j /j

2 <
+∞. Moreover, by (2.30) all Yj have the same mean value mEP (B). Thus by
[ChT, Cor.5.1]

1

n

n∑
j=1

Yj
a.s.→ mEP (B) as n → ∞ , (2.31)

and the conclusion follows by (2.29) and (2.31). �

The stage is now set to give a statistical limit law (Theorem 2.6.18 below) that
is, a Central-Limit-like theorem for significant digits mentioned above. Roughly
speaking, this law says that if probability distributions are selected at random, and
random samples are then taken from each of these distributions in such a way that
the overall process is scale or base neutral, then the significant digit frequencies of
the combined sample will converge to the logarithmic distribution. This theorem
may help explain and predict the appearance of BL in significant digits in mixtures
of tabulated data such as the combined data from Benford’s individual data sets,
and also his individual data set of numbers gleaned from newspapers.

Definition 2.6.16. An r.p.m. P has scale-unbiased (decimal) significant digits if,
for every significand event A, i.e., for every A ∈ S, the expected value of P (A) is
the same as the expected value P (αA) for every α > 0, that is, if

E
(
P (αA)

)
= E

(
P (A)

)
for all α > 0, A ∈ S .

Equivalently, the Borel probability measure EP has scale-invariant significant dig-
its.
Similarly, P has base-unbiased significant (decimal) digits if, for every A ∈ S

the expected value of P (A) is the same as the expected value of P (A1/n) for every
n ∈ N, that is, if

E
(
P (A1/n)

)
= E

(
P (A)

)
for all n ∈ N, A ∈ S ,

i.e., if EP has base-invariant significant digits.

An immediate consequence of Theorems 2.4.18 and 2.4.24 is

Proposition 2.6.17. Let P be an r.p.m. with EP ({0}) = 0. Then the following
statements are equivalent:

1. P has scale-unbiased significant digits.
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2. P ({±10k : k ∈ Z}) = 0, or equivalently S∗P ({1}) = 0, holds with proba-
bility one, and P has base-unbiased significant digits.

3. EP (A) = B(A) for all A ∈ S, i.e., EP is Benford.

As will be seen in the next theorem, scale- or base-unbiasedness of an r.p.m.
implies that a sequence of P -random samples are Benford a.s. A crucial point
in the definition of an r.p.m. P with scale- or base-unbiased significant digits is
that it does not require individual realizations of P to have scale- or base-invariant
significant digits. In fact, it is often the case (see Benford’s original data in [Ben]
and Example 2.6.20 below) that a.s. none of the random probabilities has either
of these properties, and it is only on average that the sampling process does not
favor one scale or base over another. Recall from the notation introduced above
that S∗P ({1}) = 0 is the event {ω ∈ Ω : P (ω)(S = 1) = 0}.

Theorem 2.6.18 ([Hi4]). Let P be an r.p.m. Assume that P either has scale-
unbiased significant digits, or else has base-unbiased significant digits andS∗P ({1})
= 0 with probability one. Then, for every m ∈ N, every sequence (Xn) of P -
randomm-samples is Benford with probability one, that is, for all t ∈ [1, 10),

#{1 ≤ n ≤ N : S(Xn) < t}
N

a.s.→ log t as N → ∞ .

Proof. Assume first that P has scale-unbiased significant digits, i.e., the probability
measure EP has scale-invariant significant digits. According to Theorem 2.4.18,
EP is Benford. Consequently, Lemma 2.6.15 implies that for every sequence (Xn)
of P -random m-samples and every t ∈ [1, 10),

#{1 ≤ n ≤ N : S(Xn) < t}
N

=
#
{
1 ≤ n ≤ N : Xn ∈ ⋃

k∈Z 10
k
(
(−t,−1] ∪ [1, t)

)}
N

a.s.→ EP

(⋃
k∈Z

10k
(
(−t,−1] ∪ [1, t)

))
= log t

as N → ∞. Assume in turn that S∗P ({1}) = 0 with probability one, and that P
has base-unbiased significant digits. Then

S∗EP ({1}) = EP
(
S−1({1})) =

∫
Ω

S∗P (ω)({1}) dP(ω) = 0 .

Hence q = 0 holds in (2.14) with P replaced by EP , proving that EP is Benford,
and the remaining argument is the same as before. �

Corollary 2.6.19. If an r.p.m. P has scale-unbiased significant digits, then for
every m ∈ N, every sequence (Xn) of P -random m-samples, and every d ∈
{1, 2, . . . , 9},

#{1 ≤ n ≤ N : D1(Xn) = d}
N

a.s.→ log(1 + d−1) as N → ∞ .
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Justification of the hypothesis of scale- or base-unbiasedness of significant digits
in practice is akin to justification of the hypothesis of independence (and identical
distribution) when applying the Strong Law of Large Numbers or the Central Limit
Theorem to real-life processes: Neither hypothesis can be formally proved, yet in
many real-life sampling procedures, they appear to be reasonable assumptions.

Many of the standard constructions of r.p.m. automatically have scale- and base-
unbiased significant digits, and thus satisfy BL in the sense of Theorem 2.6.18.

Example 2.6.20. Recall the classical Dubins–Freedman construction of an r.p.m.
P described in Example 2.6.10. It follows from [DuFr, Lem.9.28] that EP is Ben-
ford. Hence P has scale- and base-unbiased significant digits. Note, however, that
with probability one P will not have scale- or base-invariant significant digits. It is
only on average that these properties hold but, as demonstrated by Theorem 2.6.18,
this is enough to guarantee that random sampling from P will generate Benford
sequences a.s.

2.6.3 RandomMaps

The purpose of this brief concluding section is to illustrate one basic theorem that
combines the deterministic aspects of BL studied in Section 2.5 with the stochas-
tic considerations of the present section. Specifically, it is shown how applying
randomly selected maps successively may generate Benford sequences with prob-
ability one. Random maps constitute a wide and intensely studied field, and for
stronger results than the one discussed here the interested reader is referred e.g. to
[Ber3].

For a simple example, first consider the map T : R → R with T (x) =
√|x|.

Since T n(x) = |x|2−n → 1 as n → ∞ whenever x �= 0, the orbit OT (x0) is not
Benford for any x0. More generally, consider the randomized map

T (x) =

{ √|x| with probability p ,

x3 with probability 1− p ,
(2.32)

and assume that, at each step, the iteration of T is independent of the entire past
process. If p = 1, this is simply the map studied before, and hence for every
x0 ∈ R, the orbit OT (x0) is not Benford. On the other hand, if p = 0 then Theorem
2.5.8 implies that, for almost every x0 ∈ R, OT (x0) is Benford. It is plausible to
expect that the latter situation persists for small p > 0. As the following theorem
shows, this is indeed that case even when the non-Benford map

√|x| occurs more
than half of the time: If

p <
log 3

log 2 + log 3
= 0.6131 . . . , (2.33)

then, for a.e. x0 ∈ R, the (random) orbit OT (x0) is Benford with probability one.
To concisely formulate the result from which this follows, recall that for any (deter-
ministic or random) sequence (Tn) of maps mapping R or parts thereof into itself,
the orbit OT (x0) of x0 ∈ R simply denotes the sequence

(
Tn−1◦· · ·◦T1(x0)

)
n∈N.
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Theorem 2.6.21 ([Ber3]). Let (βn) be an i.i.d. sequence of positive random vari-
ables, and assume that log β1 has finite variance, i.e., E(log β1)

2 < +∞. For
the sequence (Tn) of random maps given by Tn : x �→ xβn and a.e. x0 ∈ R,
the orbit OT (x0) is Benford with probability one or zero, depending on whether
E log β1 > 0 or E log β1 ≤ 0.

Proof. See [Ber3]. �

Statements in the spirit of Theorem 2.6.21 are true also for more general random
maps, not just monomials [Ber3].



Chapter Three

Fourier Analysis and Benfordʼs Law

Steven J. Miller1

This chapter continues the development of the theory of Benford’s Law. We use
Fourier analysis (in particular, Poisson Summation) to prove many systems either
satisfy or almost satisfy the Fundamental Equivalence, and hence either obey Ben-
ford’s Law, or are well approximated by it. Examples range from geometric Brow-
nian motions to random matrix theory to products and chains of random variables
to special distributions (this latter topic is explored further in Part II). We develop
the notion of a Benford-good system, which describes many of our systems. Unfor-
tunately one of the conditions concerns the cancelation in sums of translated errors
related to the cumulative distribution function, and proving the required cancelation
often requires techniques specific to the system of interest; for example, the 3x+1
problem is related to the irrationality exponent of log10 2.

3.1 INTRODUCTION

Chapter 2 introduced a rigorous definition of Benford’s Law, and discussed ap-
proaches to proving Benford behavior. The purpose of this chapter is to expand on
a theme briefly touched there, describing applications of Fourier analysis in gen-
eral, and Poisson Summation in particular, to Benford problems.
Fourier analysis is concerned with expanding periodic functions as a sum of

complex exponentials. For a “nice” function f : [0, 1] → C (f twice continuously
differentiable suffices), we have the Fourier series expansion

f(x) =
∞∑

n=−∞
f̂(n)e2πinx, (3.1)

where

f̂(n) =

∫ 1

0

f(x)e−2πinxdx (3.2)

(and of course i =
√−1, eiθ = cos θ + i sin θ). The f̂(n)’s are the Fourier

coefficients of f , and inherit decay properties from the smoothness of f (if f is

1Department of Mathematics and Statistics, Williams College, Williamstown, MA 01267. The author
was partially supported by NSF grants DMS0970067 and DMS1265673.
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k times continuously differentiable, then f̂(n) � 1/nk). For more on Fourier
analysis, see [MiT-B, StSh1].

The reason Fourier analysis is so beautifully suited to Benford investigations is
due to the Uniform Distribution Characterization (Theorem 2.4.2). There we
see that a random variable X (or a sequence of data) is Benford base B if and only
if logB X is equidistributed modulo 1 (see [BrDu, Wash] for applications of these
ideas to proving the Benfordness of Fibonacci numbers). This leads us to study
logB X mod 1, the fractional part of logB X . While typically the modulo 1 func-
tion interacts poorly with compositions of functions, this is not the case with the
exponential functions of Fourier analysis. There we have e2πinx = e2πin(x mod 1).
The upshot of this is that we may drop the modulo 1 function if it occurs as the
argument of an exponential function, and this is why Fourier analysis is ideally
suited to attack these problems. In particular, many convergence theorems, as well
as Poisson Summation, are now available to aid us in analyzing Benford behavior.

A major theme of this chapter is the advantage of different perspectives in simpli-
fying the computations. Sometimes it is more convenient to work with the density
of X than that of logB X ; in this case, instead of the Fourier transform one uses the
Mellin transform. These two transforms are the same after a logarithmic change of
variables, which of course exactly mirrors the passage from X to logB X . Finally,
instead of a Fourier series we might have the Fourier transform, given by

f̂(y) =

∫ ∞

−∞
f(x)e−2πixydx. (3.3)

After converting a given Benford problem to one in Fourier analysis, frequently
Poisson Summation is useful in showing Benford behavior. The following is not the
most general statement of the theorem, but suffices for most applications. We first
set some notation. We say a function f(x) decays like x−a if there are constants
x0 and C such that for all |x| > x0, |f(x)| ≤ C/|x|a.

Theorem 3.1.1 (Poisson Summation). Assume f is twice continuously differen-
tiable and that f , f ′ and f ′′ decay like |x|−(1+η) for some η > 0. Then

∞∑
n=−∞

f(n) =

∞∑
n=−∞

f̂(n). (3.4)

The power of Poisson Summation is that it converts one infinite sum with slow
decay to another sum with rapid decay; because of this, Poisson Summation is an
extremely useful technique for a variety of problems.

This chapter is based on the papers [CuLeMi, JaKKKM, KonMi, MiNi1, MiNi2],
and is meant to give a flavor of how Fourier analysis can be successfully applied
to a diverse set of systems. The main idea is the following. Frequently we have
some process whose logarithm is a Gaussian, and the variance of the Gaussian is
growing as some parameter grows. For example, perhaps we have a product of in-
dependent random variables, and the parameter is the number of random variables.
Using Poisson Summation, one can show that as the variance tends to infinity, the
normal distribution modulo 1 converges to the uniform distribution on [0, 1]. This
is plausible, as the density changes very little on scales of size 1 when the variance
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is enormous, and thus locally it looks constant. As the logarithm modulo 1 is con-
verging to the uniform distribution, by the Uniform Distribution Characterization
the original process converges to Benford’s Law.

We first prove that a geometric Brownian motion (roughly, this means the log-
arithm is normally distributed with growing variance; see the next section for a
complete definition) is Benford. While some important systems do exhibit such be-
havior, frequently only the main term is given by a Brownian motion. This requires
us to deal with the complications that arise from the error term. Unfortunately,
while we can isolate the key steps and general features a system must have to be
solvable by these methods, the actual analysis of these error terms is often specific
to the problem, and thus different techniques are needed depending on the structure
of the problem. We briefly describe methods to overcome such issues, and refer the
reader to the literature for the details. We next discuss some interesting examples
from random matrix theory, L-functions and the 3x + 1 problem. We then attack
products and chains of random variables (which are often equivalent after a change
of variables), finding conditions which yield convergence to Benford behavior as
the number of variables grows (with explicit error estimates), as well as when these
products or chains are never Benford. We end with an analysis of Weibull random
variables. This is a three-parameter distribution which is very useful in survival
analysis (the exponential distribution is a special case) and order statistics, and we
quantify how close it is to Benford as a function of its parameters.

3.2 BENFORD-GOOD PROCESSES

In this section we first formally define a geometric Brownian motion, and show that
it converges to Benford behavior. We then generalize to what we call a Benford-
Good Process, where typically the main term of the behavior is a geometric Brow-
nian motion. We show how to prove many Benford-Good Processes, as the name
suggests, do indeed converge to Benford behavior. We then discuss some systems
that exhibit this behavior, primarily from number theory and random matrix theory.

3.2.1 Geometric Brownian Motion

A Brownian motion (or aWiener process) is a continuous process with indepen-
dent, normally distributed increments. If W is a Brownian motion, then Wt −Ws

is a random variable having the Gaussian distribution with mean zero and variance
t− s, and is independent of the random variable Ws −Wu provided u < s < t. A
standard realization of Brownian motion is as the scaled limit of a random walk.

Let X1, X2, X3, . . . be independent Bernoulli trials (taking the values +1 and
−1 with equal probability) and let Sn =

∑n
i=1 Xi denote the partial sum. Then the

normalized process W (n)
t = Snt/

√
n (extended to a continuous process by linear

interpolation) converges, as n → ∞, to the Wiener process. See [Bi2] or Chapter
2.4 of [KaSh] for further details. The continuous, scaled limit is significantly easier
to investigate, as there are neither error terms nor discreteness issues, and thus we
study this important example first.
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A geometric Brownian motion is a process X such that the process Y = logX
is a Brownian motion. Often the stock market is modeled by geometric Brownian
motion (though the work of Mandelbrot and others suggests this model is incorrect
and a fractal model would do better; see for example [ManHu]), and there is an
extensive literature on stock prices and Benford’s Law. As the Uniform Distribution
Characterization (Theorem 2.4.2) implies that a data set is Benford base B if and
only if its logarithms base B are equidistributed modulo 1, to show a geometric
Brownian motionX is Benford it suffices to show that Y = logX is equidistributed
modulo 1.

We are thus reduced to studying the random variables YN whose densities are

fYN (y) =
1√
2πσ2

N

exp
(−(y − μN )2/2σ2

N

)
, (3.5)

where μN is the mean at time N and σ2
N is the variance at time N . To simplify

the resulting algebra, we assume that we are working base e, that the mean is zero
(there is no drift), and that the variance at time N is N/2π. We must show that, as
N → ∞, YN = logXN becomes equidistributed modulo 1. This is equivalent to
showing, for any [a, b] ⊂ [0, 1], that

lim
N→∞

Prob(Y mod 1 ∈ [a, b]) = b− a, (3.6)

or equivalently that

lim
N→∞

∞∑
n=−∞

∫ b

a

1

N
exp

(−(y + n)2/N2
)
= b− a. (3.7)

The first step is to determine which n contribute significantly to the probability
above. We first show that we may restrict our sum to n at most a little more than
the standard deviation by showing the contribution from large |n| is negligible.

Lemma 3.2.1. We have
2√
2πσ2

∫ ∞

σ1+δ

e−x2/2σ2

dx � e−σ2δ/2. (3.8)

Proof. Change the variable of integration to w = x
σ
√
2

. Denoting the above integral
by I , we find

I =
2√
2πσ2

∫ ∞

σδ/
√
2

e−w2 · σ
√
2 dw =

2√
π

∫ ∞

σδ/
√
2

e−w2

dw. (3.9)

The integrand is monotonically decreasing. For w ∈
[
σδ√
2
, σδ√

2
+ 1

]
, the integrand

is bounded by substituting in the left endpoint, and the region of integration is of
length 1. Thus,

I < 1 · 2√
π
e−σ2δ/2 +

2√
π

∫ ∞

σδ√
2
+1

e−w2

dw < 4e−σ2δ/2. (3.10)

�

Using the above lemma, we now prove a geometric Brownian motion converges
to Benford behavior (see Corollary 5.4.7 for an alternate proof).
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Theorem 3.2.2. As N → ∞, fYN (y) =
e−πy2/N√

N
becomes equidistributed modulo

1, implying thatXN = exp(YN ) converges to Benford behavior base e.

Proof. For any [a, b] ⊂ [0, 1], we must show that as N → ∞ we have the proba-
bility of YN mod 1 in [a, b] tends to b− a; i.e., we must show∫ ∞

y=−∞
y mod 1∈[a,b]

pN (y)dy =
1√
N

∑
n∈Z

∫ b

y=a

e−π(y+n)2/Ndy (3.11)

converges to b − a as N → ∞. For y ∈ [a, b], the Taylor series expansion of the
Gaussian density gives

e−π(y+n)2/N = e−πn2/N +O

(
max(1, |n|)

N
e−n2/N

)
. (3.12)

It’s sufficient to restrict the summation in (3.11) to |n| ≤ N5/4. The proof is
immediate from Lemma 3.2.1: we increase the integration by expanding to y ∈
[0, 1], and then trivially estimate. Thus, up to negligible terms, all the contribution
is from |n| ≤ N5/4.

We now use the Poisson Summation (Theorem 3.1.1), which in this case yields

1√
N

∞∑
n=−∞

e−πn2/N =
∞∑

n=−∞
e−πn2N (3.13)

(we chose our normalization to make the Fourier transform of the Gaussian factor
nice). The exponential terms on the left of (3.13) are all of size 1 for n ≤ √

N , and
are not small until n  √

N (for instance, once n >
√
N logN , the exponential

terms are small for large N ); however, almost all of the contribution on the right
comes from n = 0. The power of Poisson Summation is it often allows us to
approximate well long sums with short sums. We therefore have

1√
N

∑
|n|≤N5/4

∫ b

y=a

e−π(y+n)2/Ndy

=
1√
N

∑
|n|≤N5/4

∫ b

y=a

[
e−πn2/N +O

(
max(1, |n|)

N
e−n2/N

)]
dy

=
b− a√

N

∑
|n|≤N5/4

e−πn2/N +O

⎛⎝ 1

N

N5/4∑
n=0

n+ 1√
N

e−π(n/
√
N)2

⎞⎠
=

b− a√
N

∑
|n|≤N5/4

e−πn2/N +O

(
1

N

∫ N3/4

w=0

(w + 1)e−πw2√
Ndw

)

=
b− a√

N

∑
|n|≤N5/4

e−πn2/N +O
(
N−1/2

)
. (3.14)

By Lemma 3.2.1 we can extend all sums to n ∈ Z in (3.14) with negligible error.
We now apply Poisson Summation and find that up to lower-order terms,

1√
N

∑
n∈Z

∫ b

y=a

e−π(y+n)2/Ndy ≈ (b− a) ·
∑
n∈Z

e−πn2N . (3.15)
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For n = 0 the right-hand side of (3.15) is b−a. For all other n, we trivially estimate
the sum: ∑

n�=0

e−πn2N ≤ 2
∑
n≥1

e−πnN ≤ 2e−πN

1− e−πN
, (3.16)

which is less than 4e−πN for N sufficiently large. �

3.2.2 Benford-Good Processes

We generalize our analysis from geometric Brownian motions to handle error terms
(i.e., processes that are not purely Brownian motions). We closely follow the ar-
guments in Kontorovich–Miller [KonMi]. We develop a general framework that is
applicable for a variety of problems, and quickly summarize three interesting ap-
plications: the distribution of values of L-functions, characteristic polynomials of
random matrices, and iterates of the 3x+1 map. These three problems live in three
very different fields, and illustrate the power of these methods.

We first set the notation. At time T the values of our system are described by
the random variable XT with log-process YT,B = logB XT with density fYT,B ; we
are interested in the behavior as T → ∞. As always, by the Uniform Distribution
Characterization (Theorem 2.4.2) proving XT converges to Benford behavior base
B is equivalent to showing that as T → ∞, YT,B becomes equidistributed modulo
1.

Throughout we let f(x) be a fixed probability density with cumulative distri-
bution function F (x) =

∫ x

−∞ f (t) dt. The specific form of f is often unim-
portant (and, in fact, is frequently the Gaussian density). In the examples below
the probability densities of YT,B are approximately a spread version of f such as
fT (x) = 1

T f
(
x
T

)
. The difficulty is in dealing with the error terms, not the spe-

cific form of f . Because of the error term, the log-process YT,B has a cumulative
distribution function given by

FT (y) = P {YT,B ≤ y}
=

∫ y

−∞

1

T
f

(
t

T

)
dt+ ET (y)

= F
( y

T

)
+ ET (y) , (3.17)

where ET is an error term. For many systems the error term is negligible and
fT (x) spreads to make YT,B equidistributed modulo 1 as T → ∞, implying that
X is Benford. Analyzing the error term is the most difficult part of the proofs, and
frequently requires techniques specific to the problem of interest. The following
conditions are fairly weak and frequently met.

Definition 3.2.3 (Benford-good). We say YT,B with cumulative distribution func-
tions FT is Benford-good if FT satisfies (3.17), the probability density f satisfies
sufficient conditions for Poisson Summation and there is a monotone increasing
function h(T ) with limT→∞ h(T ) = ∞ such that f and ET satisfy the following
conditions:
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Condition 1. Small tails:

FT (∞)− FT (Th(T )) = o(1), FT (−Th(T ))− FT (−∞) = o(1). (3.18)

Condition 2. Rapid decay of the characteristic function:

S (T ) =
∑
k∈Z

k �=0

∣∣∣∣∣ f̂(Tk)k

∣∣∣∣∣ = o(1). (3.19)

Condition 3. Small truncated translated error: for all 0 ≤ a < b ≤ 1,

ET (a, b) =
∑

|k|≤Th(T )

[ET (b+ k)− ET (a+ k)] = o(1). (3.20)

The Poisson Summation Formula holds if f is a Gaussian density or it and its
first two derivatives decay sufficiently fast. We briefly comment on the conditions.

Condition 1 asserts that essentially all of the mass lies in [−Th(T ), T h(T )]. In
applications T is the standard deviation, and this follows from Central-Limit-type
convergence.

Condition 2 is quite weak and is satisfied in all cases of interest. For example, if
f is differentiable and f ′ is integrable (as is the case if f is the Gaussian density),

then |f̂(y)| ≤ 1
|y|

∫ |f ′(x)|dx = O
(

1
|y|
)

, which suffices to show S (T ) = o(1).

Condition 3 is the most difficult to prove for a system. Unfortunately there
are some systems, such as Bernoulli trials, where the best attainable estimate is
ET (x) = O

(
1
T

)
. Errors this large lead to ET (a, b) = O(1) (see [Fel] for details).

In our investigation of the 3x+ 1 problem we’ll see that dealing with this issue for
that system requires us to use a quantified version of the Kronecker–Weyl equidis-
tribution theorem, which depends on how well a relevant irrational number can be
approximated by rationals.

The main result is

Theorem 3.2.4 (Kontorovich–Miller [KonMi]). Let XT have corresponding log-
process YT,B , and assume YT,B is Benford-good. Then YT,B → YB , where YB is
equidistributed modulo 1, and thusX is Benford base B.

Sketch of the proof: The argument is similar to that used in proving geometric
Brownian motions tend to Benford behavior. There are two differences: for general
f we need to use Condition 2 to show that the sum of the Fourier transform at n
with 0 < |n| ≤ Th(T ) tends to zero, and Condition 3 to handle the sums of the
errors in replacing FT (y) with F (y/T ). See [KonMi] for details. �

3.2.3 Applications

We now give a few examples of Benford-good systems. The challenge in each
analysis is proving Condition 3 holds.

3.2.3.1 Random Matrix Theory

Randommatrix theory (RMT) began in the early 1900s in the study of the statis-
tics of population characteristics [Wis]. The field developed rapidly in the 1950s
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when it was found to describe the spacing distributions of adjacent resonances (of
the same spin and parity) observed in the interaction of low energy neutrons with
nuclei [Wig1], and it flourished in the 1970s following a chance encounter between
Hugh Montgomery and Freeman Dyson [Mon] (when they saw it also predicted
answers to many of the most difficult problems in number theory). Since then nu-
merous problems have been shown to be well modeled by random matrix theory,
covering everything from mathematical physics to bus routes in Cuernevaca, Mex-
ico [BaBoDS]. As random matrix theory describes so many phenomena, it is worth
investigating whether or not it, and the phenomena it models, satisfy Benford’s
Law.

We briefly describe the basics of random matrix theory; the discussion below is
paraphrased from [FiMil], where complete details are given. LetH be the Hamilto-
nian of some system, with energy eigenstates ψN with corresponding energy levels
EN : HψN = ENψN . In practice it is impossible to compute the EN ’s and ψN ’s,
as H is an infinite-dimensional matrix with extremely complicated rules governing
its entries. Wigner’s great insight was that this enormous complexity is similar to
what happens in statistical mechanics, and actually helps us. The interactions are
so complex we might as well regard each entry as some randomly chosen number.
Thus instead of considering the true Hamiltonian H for the system, we consider
N ×N real symmetric matrices with entries independently chosen from nice prob-
ability distributions. We compute whatever statistics we are interested in for these
matrices, average over all matrices, and then take the N → ∞ scaling limit. The
main result is that the behavior of the eigenvalues of an arbitrary matrix is often
well approximated by the behavior obtained by averaging over all matrices, and
this is a good model for many systems.

While the eigenvalues of these ensembles have been found to describe many
systems, the values of the characteristic polynomials are also of use and interest.
For example, if U is a unitary (which implies its eigenvalues are of the form eiθn

for θn real) then

Z(U, θ) := det(I − Ue−iθ) =

N∏
n=1

(
1− ei(θn−θ)

)
(3.21)

is the characteristic polynomial of U . The values of characteristic polynomials
have been shown to model well the values of L-functions (described later in this
section).

The following result connects Benford’s Law and random matrix theory (see
[KonMi] for the proof); as random matrix theory describes numerous natural phe-
nomena, this is another indication that Benford behavior should be prevalent.

Theorem 3.2.5 (Kontorovich–Miller [KonMi]). As N → ∞, the distribution of
digits of the absolute values of the characteristic polynomials of N × N unitary
matrices (with respect to Haar measure) converges to the Benford probabilities.
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3.2.3.2 L-Functions

We now turn to number theory. One of the central objects of study is the Riemann
zeta function ζ(s):

ζ(s) =

∞∑
n=1

1

ns
=

∏
p prime

(
1− 1

ps

)−1

; (3.22)

both the sum and the product converge for �(s) > 1, and the equivalence of the two
follows from the unique factorization property of the integers. This means every
integer n can be written uniquely as a product of prime powers, where the primes
are the integers {2, 3, 5, 7, 11, . . .} which are divisible only by themselves and 1.
The primes are the building blocks of the integers, and not surprisingly number
theorists want to know as much about them as possible. While there is much we
don’t know about the primes, the integers are quite well understood, and we can use
the Riemann zeta function to pass from knowledge of the integers to knowledge of
the primes through the product–sum equivalence. For example, as s → 1 from
above we have ζ(s) approaches the harmonic sum

∑
n 1/n, which diverges. Thus

there must be infinitely many primes, as otherwise the product would have a finite
limit as s → 1 from above.

This is but one of many results about primes which can be deduced by studying
ζ(s). It turns out ζ(s) can be meromorphically continued to the entire complex
plane, yielding a new function ξ(s) = π−s/2Γ(s/2)ζ(s) which satisfies the func-
tional equation ξ(s) = ξ(1 − s). As the functional equation relates values at s
to values at 1 − s, it suffices to study ζ(s) for �(s) ≥ 1/2. One can show that
ζ(s) �= 0 for �(s) > 1. The fact that ζ(s) �= 0 for �(s) = 1 is equivalent
to the Prime Number Theorem, which states the number of primes at most x is
x/ log x + o(x/ log x). Finer questions about the primes turn out to involve the
distribution of zeros of ζ(s). The celebrated Riemann Hypothesis asserts these
zeros either have real part equal to 1/2 or are a negative even integer.

The Riemann zeta function can be generalized. One typically studiesL-functions

L(s, f) =
∞∑
n=1

an(f)

ns
=

∏
p prime

Lp

(
p−s, f

)−1
, (3.23)

whereLp (p
−s, f) is polynomial. For a general choice of coefficients an(f) we will

of course not have a product expansion; however, this product expansion (called the
Euler product) holds for many arithmetically interesting choices of an(f). Good
choices include Dirichlet L-functions (where the an(f) are related to characters
from groups such as (Z/qZ)∗) and elliptic curve L-functions (where ap(f) is re-
lated to the number of solutions to y2 ≡ x3 + Ax + B mod p). As the Riemann
zeta function yields information about primes, these L-functions provide informa-
tion about other systems: the Dirichlet L-functions are useful in studying primes
in arithmetic progression, and the elliptic curve L-functions provide information
about the group of rational solutions to an elliptic curve (these groups are fre-
quently used in cryptographic applications). For more details on L-functions, see
[IwKo, MiT-B, Ser].
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We assume our L-functions below are “good” (see [KonMi] for the precise, tech-
nical definition of good in this context, which is known to include the Riemann zeta
function). Using Hejhal’s [Hej] estimates on the error term in the log-normal law
for the distribution of values of L-functions near the critical line, one finds

Theorem 3.2.6 (Kontorovich–Miller [KonMi]). Let L(s, f) be a good L-function;
for example we may take ζ(s). Fix a δ ∈ (0, 1). For each T , let σT = 1

2 + 1
logδ T

.
Then

lim
T→∞

μ {t ∈ [T, 2T ] : 1 ≤ MB (|L(σT + it, f)|) ≤ τ}
T

= logB τ (3.24)

(with μ Lebesgue measure). Thus the values of the L-function satisfy Benford’s
Law in the limit (with the limit taken as described above) for any base B.

As values of L-functions are believed to be modeled by the characteristic poly-
nomials in random matrix theory, seeing Benford behavior in both areas is a good
consistency check. The above result is just one of many that relate L-functions
and Benford’s Law. For others, see [AnRoSt, JaThYe] on coefficients of modular
forms and partition functions, or Barrale, Hendel and Sluys [BaHeSl] on sequences
related to the Fibonacci numbers.

3.2.3.3 The 3x+ 1 Problem

While there are a multitude of interesting problems that we could study, the 3x+1
problem is a particularly good choice as the analysis of its convergence to Ben-
ford behavior highlights many of difficulties that can arise in applying the tools
from Fourier analysis (especially in showing Condition 3 holds). This leads to a
lattice supported distribution. We can surmount the challenges this causes by using
a quantified version of the Kronecker–Weyl theorem (see [HaWr, MiT-B]). The
standard version says that if α is irrational, then the set {nα mod 1 : n ≤ N}
becomes equidistributed as N → ∞; for this problem, we need some control over
how rapidly the equidistribution sets in. We obtain the needed control by studying
how well α may be approximated by rationals.

The 3x + 1 problem is one of the most captivating problems in mathematics
(see [Lag1, Lag2, Lag3] for more details, especially the latter). There are several
variants; we define the 3x+ 1map by

an+1 =
3an + 1

2k
, (3.25)

where k is the largest power of 2 that divides 3an + 1. For example,

11 → 17 → 13 → 5 → 1 → 1 → 1 · · · . (3.26)

If we start with 21 and iterate we get to 1 in 1 step, if we start with 23 we iterate
to 1 in 4 steps, if we start with 25 we iterate to 1 in 7 steps, and if we start with 29
we iterate to 1 in 5 steps. The astute reader might notice we skipped 27; for 27 we
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Digit Number Observed Benford Number Observed Benford
1 24251 0.301 0.301 72924 0.302 0.301
2 14156 0.176 0.176 42357 0.176 0.176
3 10227 0.127 0.125 30201 0.125 0.125
4 7931 0.099 0.097 23507 0.097 0.097
5 6359 0.079 0.079 18928 0.078 0.079
6 5372 0.067 0.067 16296 0.068 0.067
7 4476 0.056 0.058 13702 0.057 0.058
8 4092 0.051 0.051 12356 0.051 0.051
9 3650 0.045 0.046 11073 0.046 0.046

Table 3.1 The 80,514 (left columns) iterations of a random 10,000 digit number (the pre-
dicted number of iterations to reach 1 is 80,319) under the 3x+ 1 map, removing
as many powers of 2 as possible in each step. The chi-square value is 13.5 (the
critical value at the 5% level is 15.5). The three right columns are the result of
removing at most one power of 2 in a given step. There are 241,344 iterations
with a chi-square of 11.4.

have

27 → 41 → 31 → 47 → 71 → 107 → 161 → 121 → 91 →
137 → 103 → 155 → 233 → 175 → 263 → 395 → 593 →
445 → 167 → 251 → 377 → 283 → 425 → 319 → 479 →
719 → 1079 → 1619 → 2429 → 911 → 1367 → 2051 → 3077 →
577 → 433 → 325 → 61 → 23 → 35 → 53 → 5 → 1

(42 steps); it takes longer, but it does iterate to 1. The famous 3x+1 conjecture is
that, no matter what integer we start with, it will iterate to 1 eventually. Kakutani
described this problem as a Soviet conspiracy to slow down American mathematics,
while Erdös stated that mathematics is not yet ready for problems such as this!

As this is a book on Benford’s Law, the natural question for us to ask is whether
or not the distribution of leading digits satisfies Benford’s Law. Even though 27
yields only 41 iterates, the agreement with Benford’s Law is already quite striking.
We list the observed versus predicted percentages for each digit: 28.6% (30.1%),
19.0% (17.6%), 16.7% (12.4%), 14.3% (9.7%), 9.5% (7.9%), 2.4% (6.7%), 4.8%
(5.8%), 0% (5.1%), 4.8% (4.6%). The fit improves as our number grows; in Table
3.1 we explore the iterates of a random 10,000 digit number under the 3x+1 map,
while in Table 3.2 we do the same but for a generalization: the 5x+ 1 map.

We state two results about Benford behavior for the 3x+1 problem (the definition
of finite irrationality type is given later in the section). The first requires some
notation. Let x0 denote the starting seed, and let xm be its mth iterate. By the
Structure Theorem of Sinai [Sin] and Kontorovich–Sinai [KonSi], we expect the
sequence of xi’s to behave like a geometric Brownian motion with drift log(3/4) <
0, which implies that it should iterate to 1 and that xm ≈ (3/4)

m
x0; as we know

geometric Brownian motions are Benford, we expect Benford behavior here as
well. In the first theorem we see Benford behavior by looking at the ratio of the
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Digit Number Observed Benford Number Observed Benford
1 8154 0.302 0.301 72652 0.301 0.301
2 4770 0.177 0.176 42499 0.176 0.176
3 3405 0.126 0.125 30153 0.125 0.125
4 2634 0.098 0.097 23388 0.097 0.097
5 2105 0.078 0.079 19110 0.079 0.079
6 1787 0.066 0.067 16159 0.067 0.067
7 1568 0.058 0.058 13995 0.058 0.058
8 1357 0.050 0.051 12345 0.051 0.051
9 1224 0.045 0.046 11043 0.046 0.046

Table 3.2 The first 27,004 (left columns) iterations of a random 10,000 digit number under
the 5x + 1 map, removing as many powers of 2 as possible in each step. The
chi-square value is 1.8 (the critical value at the 5% level is 15.5). The three right
columns are the result of removing at most one power of 2 in a given step. The
results are for the first 241,344 iterations, with a chi-square of 3 · 10−4.

observed mth iterate to the expected value of the mth iterate, while in the second
theorem we look at the distribution of digits in the iterates of one given seed.

Theorem 3.2.7 (Kontorovich–Miller [KonMi]). Let B be any real number such
that logB 2 is irrational of type κ < ∞ (for example, one may take any integer B
which is not a perfect power of 2). Then for any [a, b] ⊂ [0, 1],

lim
m→∞

P

(
logB

[
xm(

3
4

)m
x0

]
mod 1 ∈ [a, b]

)
= b− a. (3.27)

As (3/4)m x0 is the expected value of xm, this implies the distribution of the ratio
of the actual versus predicted value afterm iterates obeys Benford’s Law (baseB).

If B = 2n for some integer n, in the limit logB
[

xm

(3/4)mx0

]
mod 1 takes on the

values 0, 1
n ,

2
n , . . . ,

n−1
n with equal probability, leading to a non-Benford digit bias

depending only on n.

These Benford results can be generalized to other, related iterative processes (see
[KonMi] for details).

Theorem 3.2.8 (Lagarias–Soundararajan [LagSo]). Let B ≥ 2 be a fixed integer
base. For each N ≥ 1 and each X ≥ 2N , for all but at most c(B)N−1/36X
initial seeds (where c(B) is a positive constant depending only on B) the distribu-
tion of the first N iterates of the 3x + 1 map are within 2N−1/36 of the Benford
probabilities.

We conclude with a few words about the proof of Theorem 3.2.7 (see [KonMi]
for the details). The key step is using the finite irrationality type of logB 2 in the
Erdös–Turan Theorem to get a quantified form of equidistribution ofn logB 2 mod
1. We describe these ingredients in some detail as this is the heart of the proof, and
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these techniques should be useful for other related investigations. For many ap-
plications, it is essential to understand the rate of convergence. For example, in
Chapter 8 we see the IRS uses Benford’s Law to detect tax fraud; arguments like
this let us know how many data points are needed before the limiting behavior sets
in.

We need a few preliminary facts and notation before sketching the proof. A
number α is of irrationality type κ if κ is the supremum of all γ with

limq→∞qγ+1 min
p

∣∣∣∣α− p

q

∣∣∣∣ = 0. (3.28)

Measuring the quality of the rational approximation in terms of the denominator
is very natural. For instance, it is trivial to approximate π ≈ 3.1415926536 to 6
decimal places by 31415926/10000000; however, we get a much better approxi-
mation from 355/113 ≈ 3.141592920 (for an error of about 2.7 · 10−7). It should
be clear that the latter approximation is preferred; it’s of comparable quality but has
a significantly smaller denominator and is thus much “simpler.”

The most frequently encountered irrationals are the algebraic numbers, which
are solutions to polynomials with rational coefficients. By Roth’s theorem, every
algebraic irrational is of irrationality type 1; however, there do exist irrationals that
can be arbitrarily well approximated by rationals. The standard example is the
Liouville numbers, such as

∑∞
n=1 10

−n!. These numbers have infinite irrational-
ity type, and from a computational perspective are very hard to distinguish from
rational numbers. See Chapters 5 and 6 of [MiT-B] for more details.

For our purposes, we need to know that logB 2 is of finite type if B is an integer
not of the form 2n. This is proved in [KonMi] by using Baker’s theory of linear
forms in logarithms [Bak]. Crudely applying Baker’s results gives an irrationality
exponent for log10 2 of at most κ = 2.3942×10602 (though a more careful analysis
would lead to a lower number!).

We now show the connection between the irrationality type of α and equidistri-
bution of nα mod 1; see Theorem 3.3 on page 124 of [KuiNi] for complete details.
Define the discrepancy of a sequence {xn} by

DN =
1

N
sup

[a,b]⊂[0,1]

|N(b− a)−#{n ≤ N : xn mod 1 ∈ [a, b]}| ; (3.29)

if our sequence is equidistributed then DN should be o(1) as we expect the number
of valid n to be on the order of (b− a)N . Finally, let ||x|| denote the distance from
x to the nearest integer.

Theorem 3.2.9 (Erdös–Turan Inequality). There exists a C such that for allm,

DN ≤ C

(
1

m
+

m∑
h=1

1

h

∣∣∣∣∣ 1N
N∑

n=1

e2πihxn

∣∣∣∣∣
)
. (3.30)

See [KuiNi], page 112 for a proof.
In our Benford investigations, we frequently have sequences of the form xn =

nα. We sketch the bound from the Erdös–Turan inequality in this case. Using
the geometric series formula to evaluate the exponential sum, we find it is less
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than 1
| sin(πhα)| ≤ 1

2||hα|| . We must control
∑m

h=1
1

h||hα|| , and this is where the
irrationality type enters. One can show that if α has irrationality type κ then∑m

h=1
1

h||hα|| = O
(
mκ−1+ε

)
. We then balance the two terms in the inequality

by taking m = �N1/κ	, which gives DN = O(N−1/κ+ε′) where ε′ can be made
arbitrarily small. We are thus left with a power savings in the discrepancy; the
power savings might be small (as it is with our bounds for log10 2), but there is a
power savings in N .

3.3 PRODUCTS OF INDEPENDENT RANDOM VARIABLES

The Uniform Distribution Characterization (Theorem 2.4.2) states that X is Ben-
ford base B if and only if its logarithm base B is uniformly distributed modulo 1.
Earlier in this chapter we saw how this observation, combined with results from
Fourier analysis, lead to the limiting behavior of many processes being Benford.
We now see another example of the power of this perspective. If XN = X1 · · ·XN

is the product of N independent random variables, then taking logarithms gives

logB XN = Y1 + · · ·+ YN , (3.31)

where Ym = logB Xm. Thus the Benford behavior of a product of independent
random variables is reduced to understanding a sum, which is far more familiar.

In Chapter 2, using Fourier analytic methods, Berger and Hill proved the product
of independent, identically distributed random variables converges to Benford’s
Law provided the random variables are not purely atomic. Our goal in this section
is to generalize to the case of non-identical random variables. While the “typical”
outcome is Benford behavior, we’ll construct a sequence of random variables with
different densities such that their product converges to non-Benford behavior (but
if we took all our random variables from any of these densities we would obtain
Benford’s Law).

If the logXm are sufficiently nice, we can appeal to the Central Limit Theorem.
The resulting Gaussian has increasing variance. Using Poisson Summation, we
find it becomes uniformly distributed modulo 1 as N → ∞; see §3.2. Our goal in
this section is to prove Benford behavior under weaker conditions than are required
for the Central Limit Theorem to be applicable. For instance, if we want to use
the Central Limit Theorem then we need the variances of the logB Pk to be finite;
however, for Benford’s Law we need to understand the resulting sum modulo 1
only, and thus this condition (though often met in practice) is needlessly restrictive
(we give an example illustrating this in §3.3.4).

So far in this chapter we’ve chosen to give proofs based on Poisson Summation.
We take a different approach in this section. Using elementary results from Fourier
analysis, we give a necessary and sufficient condition for the sum of M indepen-
dent continuous random variables modulo 1 to converge to the uniform distribution
in L1([0, 1]) (similar results hold for sums of discrete random variables). A con-
sequence is that if X1, . . . , XM are independent continuous random variables with
densities f1, . . . , fM , for any base B as M → ∞ for many choices of the densi-
ties the distribution of the digits of X1 · · ·XM converges to Benford’s Law base
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B. The rate of convergence can be quantified in terms of the Fourier coefficients
of the densities, which we do in Corollary 3.4.2 in the next section). These re-
sults provide another explanation for the prevalence of Benford behavior in many
diverse systems, as many observations arise as the product of independent random
variables.

This section is a modification of [JaKKKM, MiNi1], which the reader may con-
sult for additional details and examples.

3.3.1 Introduction

Many authors [Sak, SpTh, AdhSa, Adh, Ha, Tur] have observed that the product
(and more generally, any nice arithmetic operation) of two random variables is often
closer to satisfying Benford’s Law than the input random variables; further, as the
number of terms increases, the resulting expression seems to approach Benford’s
Law. While many of the previous works are concerned with exact formulas for
the distribution of X1 · · ·XM , to understand the distribution of the digits by the
Uniform Distribution Characterization (Theorem 2.4.2) it suffices to understand
logB |X1 · · ·XM | mod 1. This is because a sequence is Benford base B if and
only if its base B logarithms are equidistributed modulo 1.

This is an ideal problem for Fourier analysis, as

logB |X1 · · ·XM | = logB |X1|+ · · ·+ logB |XM |. (3.32)

Letting Ym = logB |Xm|, we see we have a sum of independent random variables,
which can often be analyzed by appealing to the Central Limit Theorem. There are,
however, some differences between our situation and standard applications of the
Central Limit Theorem. Typically one studies

∑
m Ym−E[

∑
m Ym]

StDev(
∑

m Ym) , where we have
subtracted off the mean and divided by the standard deviation to obtain a quantity
which will be finite as M → ∞. There is no need to do either in our case, as we
are considering sums modulo 1.

The main result is a variant of the Central Limit Theorem, which in this context
states that for “nice” random variables, as M → ∞ the sum of M independent
random variables modulo 1 tends to the uniform distribution; as remarked by simple
exponentiation this is equivalent to Benford’s Law for the product. To emphasize
the similarity to the standard Central Limit Theorem and the fact that the sums are
modulo 1, we refer to such results as Modulo 1 Central Limit Theorems. Many
authors [Bh, Boy, Hol, JanRu, Lév2, Loy, Rob, Sc1, Sc2, Sc3] have analyzed this
problem in various settings and generalizations, obtaining sufficient conditions on
the random variables (often identically distributed) as well as estimates on the rate
of convergence.

We let ĝm(n) denote the nth Fourier coefficient of a probability density gm on
[0, 1]:

ĝm(n) =

∫ 1

0

gm(x)e−2πinxdx. (3.33)

Theorem 3.3.1 (Miller–Nigrini [MiNi1]: The Modulo 1 Central Limit Theorem for
Independent Continuous Random Variables). Let {Ym} be independent continuous
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random variables on [0, 1), not necessarily identically distributed, with densities
{gm}. A necessary and sufficient condition for the sum Y1 + · · ·+ YM modulo 1 to
converge to the uniform distribution asM → ∞ inL1([0, 1]) is that for each n �= 0
we have limM→∞ ĝ1(n) · · · ĝM (n) = 0. In particular, X1 · · ·XM converges to
Benford’s Law base B, where Ym = logB Xm.

As other authors have noticed, the importance of results such as Theorem 3.3.1
is that they give an explanation of why so many data sets follow Benford’s Law (or
at least a close approximation to it). Specifically, if we can consider the observed
values of a system to be the product of many independent processes with reasonable
densities, then the distribution of the digits of the resulting product will be close to
Benford’s Law.

We briefly compare this approach with other proofs of results such as Theorem
3.3.1 (where the random variables are often taken as identically distributed). If the
random variables are identically distributed with density g, our condition reduces
to |ĝ(n)| < 1 for n �= 0. For a probability distribution, |ĝ(n)| = 1 for n �= 0
if and only if there exists α ∈ R such that all the mass is contained in the set
{α, α+ 1

n , . . . , α+
n−1
n }. As we are assuming our random variables are continuous

and not discrete, the corresponding densities are in L1([0, 1]) and this condition
is not met. In other words, the sum of identically distributed random variables
modulo 1 converges to the uniform distribution if and only if the support of the
distribution is not contained in a coset of a finite subgroup of the circle group [0, 1).
Interestingly, Lévy [Lév2] proved this just one year after Benford’s paper [Ben],
though his paper does not study digits. Lévy’s result has been generalized to other
compact groups, with estimates on the rate of convergence [Bh]. Stromberg [Str]
proved that2 the n-fold convolution of a regular probability measure on a compact
Hausdorff group G converges to the normalized Haar measure in the weak-star
topology if and only if the support of the distribution is not contained in a coset of
a proper normal closed subgroup of G.

The arguments in the proof of Theorem 3.3.1 may be generalized to indepen-
dent discrete random variables, at the cost of replacing L1-convergence with weak
convergence; see [MiNi1] for statements and proofs.

3.3.2 Fourier Analysis Preliminaries

We quickly recall some standard facts from Fourier analysis (see [MiT-B, StSh1]
for example). The convolution of two functions in L1([0, 1]) is

(f ∗ g)(x) =

∫ 1

0

f(y)g(x− y)dy =

∫ 1

0

f(x− y)g(y)dy. (3.34)

Convolution is commutative and associative, and the nth Fourier coefficient of a
convolution is the product of the two nth Fourier coefficients. Note if X and Y are
two independent random variables, the convolution of their densities is the density
of X + Y .

2The following formulation is taken almost verbatim from the first paragraph of [Bh].
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Definition 3.3.2 (Fejér kernel, Fejér series). Let f ∈ L1([0, 1]). The N th Fejér
kernel is

FN (x) =

N∑
n=−N

(
1− |n|

N

)
e2πinx, (3.35)

and the N th Fejér series of f is

TNf(x) = (f ∗ FN )(x) =

N∑
n=−N

(
1− |n|

N

)
f̂(n)e2πinx. (3.36)

The Fejér kernels are an approximation to the identity (they are non-negative, inte-
grate to 1, and for any δ ∈ (0, 1/2) we have limN→∞

∫ 1−δ

δ
FN (x)dx = 0).

Instead of looking at Fejér kernels and series, one could study Dirichlet ker-
nels and series, which lead to approximating f(x) by

∑N
n=−N f̂(n)e2πinx. While

this unweighted Fourier series is the more natural object to study, it has signifi-
cantly worse convergence properties. For example, Kolmogorov [Kol] constructed
an L1([0, 1]) function f whose Fourier series diverges at each point! Though the
Fourier series is a fascinating object worthy of study, for us it’s merely a tool to in-
vestigate Benford behavior. As such, we use the weighted Fourier series (the Fejér
series). A major result in the subject is Fejér’s Theorem, which we recall.

Fejér’s Theorem: If f is continuous and periodic on [0, 1] then as N → ∞,
TNf converges uniformly to f .

For our purposes, Fejér’s Theorem is just barely insufficient as we wish to con-
sider random variables whose densities are L1([0, 1]) and not just those whose den-
sity functions are continuous. Fortunately it is easy to generalize Fejér’s Theorem
to handle this case.

Theorem 3.3.3 (Lebesgue’s Theorem). Let f ∈ L1([0, 1]). As N → ∞, TNf

converges to f in L1([0, 1]), i.e., limN→∞
∫ 1

0
|f(x)− TNf(x)|dx = 0.

Lebesgue’s Theorem follows from Fejér’s Theorem by a standard three-epsilon
argument. Given f , we find a continuous g that is close to f . We then apply Fejér’s
Theorem to g, and then show the Fejér series of g is close to the Fejér series of f .

The following fact is useful in proving the Modulo 1 Central Limit Theorem.

Lemma 3.3.4. Let f, g ∈ L1([0, 1]). Then TN(f ∗ g) = (TNf) ∗ g.
Proof. One first shows that convolution is associative, so h1 ∗ (h2 ∗ h3) = (h1 ∗
h2) ∗ h3. As TNh = FN ∗ h, we have

TN (f ∗ g) = FN ∗ (f ∗ g) = (FN ∗ f) ∗ g = (TNf) ∗ g. (3.37)

�
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3.3.3 Proof of the Modulo 1 Central Limit Theorem

We can now prove Theorem 3.3.1.

Proof. We first show our condition is sufficient. The density of the sum modulo 1
is hM = g1 ∗ · · · ∗ gM . It suffices to show that, for any ε > 0,

lim
M→∞

∫ 1

0

|hM (x)− 1|dx < ε. (3.38)

Using Lebesgue’s Theorem (Theorem 3.3.3), choose N sufficiently large so that∫ 1

0

|h1(x) − TNh1(x)|dx <
ε

2
. (3.39)

While N was chosen so that (3.39) holds with h1, in fact this N works for all
hM (with the same ε). This follows by induction. The base case is immediate (this
is just our choice of N ). Assume now that (3.39) holds with h1 replaced by hM ;
we must show it holds with h1 replaced by hM+1 = hM ∗ gM+1. By Lemma 3.3.4
we have

TNhM+1 = TN(hM ∗ gM+1) = (TNhM ) ∗ gM+1. (3.40)

This implies∫ 1

0

|hM+1(x) − TNhM+1(x)|dx

=

∫ 1

0

|(hM ∗ gM+1)(x) − (TNhM ) ∗ gM+1(x)|dx

=

∫ 1

0

∣∣∣∣∫ 1

0

(hM (y)− TNhM (y)) · gM+1(x− y)

∣∣∣∣ dy dx
≤

∫ 1

0

∫ 1

0

|hM (y)− TNhM (y)| · gM+1(x− y)dx dy

=

∫ 1

0

|hM (y)− TNhM (y)|dy · 1 <
ε

2
; (3.41)

the interchange of integration above is justified by the absolute value being inte-
grable in the product measure, and the x-integral is 1 as gM+1 is a probability
density.

To show hM converges to the uniform distribution in L1([0, 1]), we must show
limM→∞

∫ 1

0
|hM (x) − 1|dx = 0. Let N and ε be as above. By the triangle

inequality we have∫ 1

0

|hM (x) − 1|dx ≤
∫ 1

0

|hM (x) − TNhM (x)|dx +

∫ 1

0

|TNhM (x) − 1|dx.
(3.42)

From our choices of N and ε,
∫ 1

0
|hM (x) − TNhM (x)|dx < ε/2; thus we need
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show only that
∫ 1

0
|TNhM (x)− 1|dx < ε/2 to complete the proof. As ĥM (0) = 1,∫ 1

0

|TNhM (x) − 1|dx =

∫ 1

0

∣∣∣∣ N∑
n=−N
n �=0

(
1− |n|

N

)
ĥM (n)e2πinx

∣∣∣∣dx
≤

N∑
n=−N
n �=0

(
1− |n|

N

)
|ĥM (n)|. (3.43)

However, ĥM (n) = ĝ1(n) · · · ĝM (n), and by assumption tends to zero as M → ∞
(as each ĝm(n) is at most 1 in absolute value, for each n the absolute value of the
product is non-increasing in M ). For fixed N and ε, we may choose M sufficiently
large so that |ĥM (n)| < ε/4N whenever n �= 0 and |n| ≤ N . Thus∫ 1

0

|TNhM (x) − 1|dx < 2N · ε

4N
=

ε

2
, (3.44)

which implies ∫ 1

0

|hM (x) − 1|dx < ε (3.45)

for M sufficiently large. As ε is arbitrary, this completes the proof of the suffi-
ciency; we now prove this condition is necessary.

Assume for some n0 �= 0 that limM→∞ |ĥM (n0)| �= 0 (where as always hM =
g1 ∗ · · · ∗ gM ). As the gm are probability densities, |ĝm(n)| ≤ 1; thus the sequence
{|ĥM (n)|}∞M=1 is non-increasing for each n, and hence by assumption converges
to some number cn ∈ (0, 1].

Let EM (x) = hM (x) − 1; note ÊM (n) = ĥM (n) for n �= 0. To show hM does
not converge to the uniform distribution on [0, 1], it suffices to show that EM does
not converge almost everywhere to the zero function on [0, 1]. Let n0 be as above.
We have∣∣∣ĥM (n0)

∣∣∣ =
∣∣∣ÊM (n0)

∣∣∣ =

∣∣∣∣∫ 1

0

EM (x)e2πin0xdx

∣∣∣∣ ≥ cn0 > 0. (3.46)

Therefore at least one of the following integrals is at least cn0/2:∫
x∈[0,1]

Re(EM (x))≥0

Re (EM (x)) dx,

∫
x∈[0,1]

Re(EM (x))≤0

Re (−EM (x)) dx,∫
x∈[0,1]

Im(EM (x))≥0

Im (EM (x)) dx,

∫
x∈[0,1]

Im(EM (x))≤0

Im (−EM (x)) dx, (3.47)

and hM cannot converge to the zero function in L1([0, 1]); further, we obtain an
estimate on the L1-distance between the uniform distribution and hM . �

The behavior is non-Benford if the conditions of Theorem 3.3.1 are violated. It is
enough to show that we can find a sequence of densities gB,m such that limM→∞∏M

m=1 ĝB,m(1) �= 0. We are reduced to searching for an infinite product that
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Figure 3.1 Distribution of digits (base 10) of 1000 products X1 · · ·X1000 , where g10,m =
φ11m .

is non-zero; we also need each term to be at most 1, as the Fourier coefficients
of a probability density are dominated by 1. One solution is

∏∞
m=1

m2+2m
(m+1)2 , which

equals 1
2 . Thus as long as ĝB,m(1) ≥ m2+2m

(m+1)2 , the conclusion of Theorem 3.3.1 will
not hold for the products of the associated random variables; analogous reasoning
yields a sum of independent random variables modulo 1 which does not converge
to the uniform distribution.

Example 3.3.5 (Non-Benford behavior of products). Consider

φm =

{
m if |x− 1

8 | ≤ 1
2m ,

0 otherwise;
(3.48)

φm is non-negative and integrates to 1. As m → ∞ we have |φ̂m(1)| → 1 be-
cause the density becomes concentrated at 1

8 (direct calculation gives φ̂m(1) =

e2πi/8 + O(m−2)). Let X1, . . . , XM be independent random variables where
the associated densities gB,m of logB M(|Xm|) are φ11m . The behavior is non-
Benford (see Figure 3.1). Note, however, that if each Xm had the common distri-
bution φi for any fixed i, then in the limit the product will satisfy Benford’s Law.

3.3.4 Comparison with Alternate Techniques

We discuss an alternate approach to proving Theorem 3.3.1. One could try to apply
the standard Central Limit Theorem to the sum logB |X1|+· · ·+logB |XM |, noting
that as the variance of a Gaussian increases to infinity, the Gaussian becomes uni-
formly distributed modulo 1. A significant drawback of a proof by the Central Limit
Theorem is the requirement (at a minimum) that the variance of each logB |Xm| be
finite. This is a very weak condition, and in fact many random variablesX with in-
finite variance (such as Pareto or modified Cauchy distributions) do have logB |X |
having finite variance; however, there are distributions where logB |X | has infinite
variance. One example is to let X be the random variable with density

fα(x) =

{
α/(x logα+1 x)−1 if x ≥ e,

0 otherwise.
(3.49)
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This is a probability distribution for α > 0, and is a modification of a Pareto distri-
bution (which arises in power law behavior). See [Mi1] for some applications and
properties of this distribution. For α ∈ (0, 2] the logarithm modulo 1 has infinite
variance, and thus the Central Limit Theorem is not applicable, though the resulting
behavior does converge to Benford’s Law (see [MiNi1] for the proof). The reason
the Central Limit Theorem fails for densities such as that in (3.49) is that it tries to
provide too much information. The Central Limit Theorem tries to give us the lim-
iting distribution of logB |X1 · · ·XM | = logB |X1| + · · · + logB |XM |; however,
as we are interested in only the distribution of the digits of X1 · · ·XM , this is more
information than we need.

3.4 CHAINS OF RANDOM VARIABLES

In this section we examine chains of random variables, and give conditions im-
plying Benford behavior. Through a change of variables, these chains are often
equivalent to products of related random variables. In the previous section we ob-
tained convergence of products to Benford’s Law, but without good estimates on
the rate of convergence. We remedy this below, quantifying the convergence in
terms of the Mellin and Fourier transforms of densities related to the random vari-
ables, depending on whether or not we are studying the original random variables
or their logarithms. Both viewpoints are useful. Each leads to a different trans-
form entering the error expressions, and one of the goals here is to highlight both
approaches.

3.4.1 Introduction

We describe how Benford’s Law arises in chains of probability distributions and hi-
erarchical Bayesian models. This allows us to construct tests (based on Benford’s
Law) of certain models. We may interpret these results as saying that in many
Markov chain Monte Carlo problems, the distribution of first digits of the station-
ary distribution satisfies Benford’s Law, and the chain has rapid mixing (i.e., few
iterations are required to have excellent agreement with Benford’s Law).

Since the early work of Newcomb [New] and Benford [Ben], there have been
numerous theoretical advances as to why various data sets and operations yield
Benford behavior. One reason for the immense amount of interest generated by
this law is the observation that, in many cases, combining two data sets yields
a new set which is closer to Benford’s Law (see for example [Ha]). A common
example is street addresses. If one studies the distribution of leading digits on a
long street, the result is clearly non-Benford; depending on the length of the street,
the probability of a first digit of 1 can oscillate between 1/9 and 5/9. However, if
we consider many streets and amalgamate the data (as Benford [Ben] did), the result
is quite close to Benford’s Law. We may interpret the above as first choosing a street
length from some distribution, so the street addresses say are integers in [1, X ] for
some random variable X . Then for each choice of X we study the distribution of
the leading digits on that street, and then calculate the expected frequencies as X
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varies.
In [Koss1, Koss2], Kossovsky suggested such an interpretation and proposed that

generalizations of the above procedure will rapidly lead to convergence to Benford
behavior. Explicitly, he studied the distribution of leading digits of chained prob-
ability distributions, and conjectured that as the length of the chain increases then
the behavior tends to Benford’s Law. Let Di(θ) denote a one-parameter distribution
with parameter θ and density function fDi(θ); thus by X ∼ Di(θ) we mean

Prob(X ∈ [a, b]) =

∫ b

a

fDi(θ)(x)dx. (3.50)

We can create a chain of random variables as follows. Let p : N → N. Let
X1 = Dp(1)(1) and define Xm inductively by Xm ∼ Dp(m)(Xm−1). Computer
simulations and other considerations led Kossovsky to conjecture that if our under-
lying distributions are “nice,” then as n → ∞ the distribution of the leading digits
of Xn converges to Benford’s Law.3 Note that our example of street addresses is
just a special case with a chain length of two and uniform distributions. Another
way of stating our results is that for certain Markov chain Monte Carlo processes,
Benford’s Law is absorbing for the distribution of first digits (and in fact the system
is rapidly mixing as well).

While it is possible to attack chained random variables directly, these problems
can often be recast in terms of products of independent random variables. Assume
the density fDp(m)(θ)(x) = θ−1fp(m)(x/θ) for some fp(m) (with antiderivative F ).
Notation as above, the density of Xn is exactly that of the density of W1 · · ·Wn,
where the Wm are independent random variables with Wm ∼ Dp(m)(1). For ex-
ample, the density of the random variable W1 ·W2 is given by∫ ∞

0

fDp(2)(1)

(x
t

)
fDp(1)(1)(t)

dt

t
(3.51)

(the generalization to more products is straightforward). To see this, we calculate
the probability that W1 ·W2 ∈ [0, x] and then differentiate with respect to x. Thus

Prob(W1 ·W2 ∈ [0, x]) =

∫ ∞

t=0

Prob
(
W2 ∈

[
0,

x

t

])
fDp(1)(1)(t)dt

=

∫ ∞

t=0

FDp(2)(1)

(x
t

)
fDp(1)(1)(t)dt. (3.52)

Differentiating gives the density of W1 ·W2, which equals∫ ∞

t=0

fDp(2)(1)

(x
t

)
fDp(1)(1)(t)

dt

t
=

∫ ∞

t=0

fDp(2)(t) (x) fDp(1)(1)(t)dt, (3.53)

which from the definition of conditional probability is the density for the chained
variable X2. An advantage of the approach below is the good, explicit error esti-
mates. Further, it allows us to view this problem in a more familiar language.

3The conjecture may fail if we chain arbitrary parameters of arbitrary distributions. A good test case
is to consider chaining the shape parameter γ of a Weibull distribution: f(x) = γxγ−1 exp(−xγ) for
x ≥ 0. The difficulty with numerics here is that very quickly we end up with a shape parameter very
small (say less than 10−20), and thus the numerics become suspect.
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The analysis is significantly easier if one of the random variables is Benford; it
is straightforward to show that if W1 is Benford then W1 · · ·Wn is Benford (essen-
tially this is due to the fact that if we add the uniform distribution modulo 1 to any
distribution, the result is also the uniform distribution modulo 1); see [Wój] for a
converse involving knowing the distributions of X and XY for Y independent of
X .

3.4.2 Mellin Transform Preliminaries

We introduce some notation before giving precise statements of convergence of
chains and products to Benford behavior. Let f(x) be a continuous real-valued
function on [0,∞). We define itsMellin transform, (Mf)(s), by

(Mf)(s) =

∫ ∞

0

f(x)xs dx

x
. (3.54)

Note (Mf)(s) = E[xs−1], and thus results about expected values translate to re-
sults on Mellin transforms; for example, (Mf)(1) = 1 for any distribution sup-
ported on [0,∞). Additionally, if we let x = e2πu and s = σ − iξ, then we find

(Mf)(σ − iξ) = 2π

∫ ∞

−∞

(
f(e2πu)e2πσu

)
e−2πiuξdu, (3.55)

which is the Fourier transform of g(u) = 2πf(e2πu)e2πσu. The Mellin and Fourier
transforms are thus related; in fact, it is this logarithmic change of variables which
explains why both enter into Benford’s Law problems. For proofs of the Mellin
transform properties one can therefore just mimic the proofs of the corresponding
statements for the Fourier transform; a good reference is [StSh1].

In particular, properties of the Fourier transform have Mellin analogues. If we
set g(s) = (Mf)(s) then f(x) = (M−1g)(x). In this setting, it’s now convenient
to define the convolution of two functions f1 and f2 by

(f1 � f2)(x) =

∫ ∞

0

f2

(x
t

)
f1(t)

dt

t
=

∫ ∞

0

f1

(x
t

)
f2(t)

dt

t
. (3.56)

TheMellin convolution theorem states that

(M(f1 � f2))(s) = (Mf1)(s) · (Mf2)(s), (3.57)

which by induction gives

(M(f1 � · · · � fn))(s) = (Mfn)(s) · · · (Mfn)(s). (3.58)

We state one last result which is useful for convergence questions. If g(s) is an
analytic function for �(s) ∈ (a, b) such that g(c + iy) tends to zero uniformly as
|y| → ∞ for any c ∈ (a, b), then the inverse Mellin transform, (M−1g)(x), is
given by

(M−1g)(x) =
1

2πi

∫ c+i∞

c−i∞
g(s)x−sds (3.59)

(provided that the integral converges absolutely); this is known as the Mellin In-
version Theorem. See Appendix 2 of [Pat] for an enumeration of properties of the
Mellin transform.



FOURIER ANALYSIS AND BENFORDʼS LAW 91

3.4.3 Benford Behavior of Chains and Products

The following theorem give conditions on when chained random variables are Ben-
ford. We also isolate the corresponding statement for an associated product of ran-
dom variables, which is equivalent by our analysis above.

Theorem 3.4.1 (Jang, Kang, Kruckman, Kudo, Miller [JaKKKM]). Let {Di(θ)}i∈I
be a collection of one-parameter distributions with associated densities fDi(θ)

which vanish outside of [0,∞). Let p : N → I ,X1 ∼ Dp(1)(1),Xm ∼Dp(m)(Xm−1),
and assume

1. for eachm ≥ 2,

fm(xm) =

∫ ∞

0

fDp(m)(1)

(
xm

xm−1

)
fm−1(xm−1)

dxm−1

xm−1
(3.60)

where fm is the density of the random variableXm (this condition is always
satisfied if fDp(m)(θ)(x) = θ−1fp(m)(x/θ) for some fp(m));

2. we have

lim
n→∞

∞∑
�=−∞
� �=0

n∏
m=1

(MfDp(m)(1))

(
1− 2πi�

logB

)
= 0. (3.61)

Then as n → ∞ the distribution of the leading digits of Xn tends to Benford’s
Law. Further, the error is a nice function of the Mellin transforms. Explicitly, if
Yn = logB Xn, then

|Prob(Yn mod 1 ∈ [a, b])− (b− a)|

≤ (b− a) ·

∣∣∣∣∣∣∣
∞∑

�=−∞
� �=0

n∏
m=1

(MfDp(m)(1))

(
1− 2πi�

logB

)∣∣∣∣∣∣∣ . (3.62)

If I is finite and all densities are continuous, then the second condition holds.
If Wi has density fDi(1) and the Wi’s are independent random variables, then
W1 · · ·Wn has the same density as Xn, and the above statements are therefore
true for this product.

The above results are stated in terms of the Mellin transform of the densities of
the chained random variable Xn (or the density of the product). It’s possible to
restate the result with the Fourier transform. After some algebra we find

(Mf)

(
1− 2πiξ

logB

)
=

∫ ∞

0

f(t)e−2πiξ logB tdt, (3.63)

which implies that (Mf)
(
1− 2πiξ

logB

)
is the Fourier transform of f(u) = f(eu)eu

at ξ/ logB. A simple change of variables shows that if a random variable Wi :
[0,∞) has density fi(wi), then the random variable Vi = logWi has density
fi(vi) = fi(e

vi)evi . Thus we can measure the deviation of a product of indepen-
dent random variables Wi either in terms of the Mellin transform of the densities
fi or the Fourier transforms of the fi’s, the densities of the logarithms of the Wi’s.
We isolate this important result.
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Corollary 3.4.2. Let W1, . . . ,Wn be independent random variables with fi the
density of logWi. If Yn = W1 · · ·Wn then

|Prob(Yn mod 1 ∈ [a, b])− (b− a)| ≤ (b− a) ·
∣∣∣∣ ∞∑
�=−∞
� �=0

n∏
m=1

f̂m (�/ logB)

∣∣∣∣.
(3.64)

Before giving the proof, we discuss the convergence, and refer the reader to
[JaKKKM] for generalizations and comments on the weakness of the conditions
on our chained random variables. If f is a continuous density function, then

(Mf)
(
1− 2πiξ

logB

)
< 1 if ξ �= 0. This is because f(x) is non-negative and

(Mf)

(
1− 2πiξ

logB

)
=

∫ ∞

0

f(t)e−2πiξ logB tdt; (3.65)

note the integral is clearly at most
∫∞
0 f(t)dt = 1 (since f is a density), and in

fact is less than this because of the oscillation due to the exponential factor. As |ξ|
grows this integral tends to zero rapidly. This follows from our assumption that the
Mellin transform is a nice function, and indicates that we have rapid convergence
if all the distributions in the chain are equal. An alternate proof of the decay in |ξ|
is to note that (Mf)

(
1− 2πiξ

logB

)
is the Fourier transform of g(u) = f(eu)eu at

ξ/ logB, and this tends to zero by the Riemann–Lebesgue lemma.

Proof. We first calculate fn, the density of Xn. The basis case is clear, and for the
inductive step we note

fn(xn) =

∫ ∞

0

fDp(n)(1)

(
xn

xn−1

)
fn−1(xn−1)

dxn−1

xn−1

= (fDp(n)(1) � fn−1)(xn). (3.66)

By the Mellin convolution theorem and induction we have

(Mfn)(s) = (M(fDp(n)(1) � fn−1))(s)

= (MfDp(n)(1))(s) · (Mfn−1)(s)

=

n∏
m=1

(MfDp(m)(1))(s). (3.67)

By theMellin inversion theorem we find

fn(xn) =

(
M−1

(
n∏

m=1

(MfDp(m)(1)(·))
))

(xn). (3.68)

To investigate the distribution of the digits of Xn (base B), it’s convenient to
make a logarithmic change of variables. Thus set Yn = logB Xn. We have

Prob(Yn ≤ y) = Prob(Xn ≤ By) = Fn(B
y). (3.69)

Taking the derivative gives the density of Yn, which we denote by gn(y):

gn(y) = fn(B
y)By logB. (3.70)
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We again use the Uniform Distribution Characterization (Theorem 2.4.2) to prove
Benford behavior. The key ingredient here is Poisson Summation. While the
argument is similar to ones earlier in the chapter, the resulting expressions are
not in the form considered there. Fortunately a trivial modification suffices. Let
hn,y(t) = gn(y + t). Then

∞∑
�=−∞

gn (y + �) =
∞∑

�=−∞
hn,y(�) =

∞∑
�=−∞

ĥn,y(�) =
∞∑

�=−∞
e2πiy�ĝn(�),

(3.71)
where f̂ denotes the Fourier transform of f :

f̂(ξ) =

∫ ∞

−∞
f(x)e−2πixξdx. (3.72)

Letting [a, b] ⊂ [0, 1], we see that

Prob(Yn mod 1 ∈ [a, b]) =

∞∑
�=−∞

∫ b+�

a+�

gn(y)dy

=

∫ b

a

∞∑
�=−∞

gn(y + �)dy

=

∫ b

a

∞∑
�=−∞

e2πiy�ĝn(�)dy,

|Prob(Yn mod 1 ∈ [a, b])− (b− a)| ≤ |b− a|
∑
� �=0

|ĝn(�)|, (3.73)

as ĝn(0) = 1 since gn is a probability density. We thus need to compute ĝn(�):

ĝn(ξ) =

∫ ∞

−∞
gn(y)e

−2πiyξdy

=

∫ ∞

−∞
fn(B

y)By logB · e−2πiyξdy

=

∫ ∞

0

fn(t)t
−2πiξ/ logBdt

= (Mfn)

(
1− 2πiξ

logB

)
=

n∏
m=1

(MfDp(m)(1))

(
1− 2πiξ

logB

)
. (3.74)

Substituting completes the proof. �

3.4.4 Examples

We give two explicit examples of the types of rapidly converging error estimates
easily obtainable from Theorem 3.4.1 and Corollary 3.4.2 (see [JaKKKM] for the
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calculations). The first example is chaining exponential distributions. Many pro-
cesses have wait times governed by a Poisson or exponential distribution; thus ap-
plications of these results could be to more involved processes where the wait time
parameter depends on another process. For our second example we consider chain-
ing uniform distributions. Our street example gives one instance where this could
arise, namely when we choose uniformly among options of varying size.

3.4.4.1 Chains (or Products) of the Exponential Distribution

Let X1,W1, . . . ,Wn ∼ Exp(1) (the standard exponential distribution) and Xm ∼
Exp(Xm−1), and set Ym = logB Xm. We know that as n → ∞ the distribution of
digits of Xn or W1 · · ·Wn tends to Benford’s Law, and we have

|Prob(Yn mod 1 ∈ [a, b])− (b− a)| ≤ |b− a|
∞∑
�=1

(
2π2�/ logB

sinh(2π2�/ logB)

)n/2

,

(3.75)

or, equivalently, the probability that the mantissa of Xn (or W1 · · ·Wn) is in [1, s]

is within logB s
∑∞

�=1

(
2π2�/ logB

sinh(2π2�/ logB)

)n/2

of logB s. As sinh(x) grows expo-

nentially in x, we see the above sum converges rapidly (i.e., the large � terms are
immaterial), and the error term decreases rapidly with n.

If we take B = 10 we find the difference between the probability of observ-
ing the mantissa of Xn in [1, s] and the Benford probability of logB s is at most
0.0033 logB s if n = 2, 0.00019 logB s if n = 3, 0.000011 logB s if n = 5
and 3.6 · 10−13 logB s if n = 10. If B = 10 then for all � ≥ 1 we have
exp(2π2�/ log 10) − exp(−2π2�/ log 10) ≥ 10000

10001 exp(2π
2�/ log 10). Thus the

error term is bounded by

log10 s
∞∑
�=1

(
17.148�

exp(8.5726�)

)n/2

≤ 0.057n log10 s. (3.76)

3.4.4.2 Chains (or Products) of the Uniform Distribution

Let X1 ∼ Unif(0, k) (without loss of generality we may assume k ∈ [1, 10))
and set Xm ∼ Unif(0, Xm−1); equivalently, we could study W1 · · ·Wn where
the {Wi}ni=1 denote independent Unif(0, k) random variables. We know that as
n → ∞, Xn and W1 · · ·Wn converge to Benford behavior. Explicitly, if Pn(s) is
the probability that the base 10 mantissa of Xn (or W1 · · ·Wn) is at most s, then
for n ≥ 4 we have

|Pn(s)− log10 s| ≤ k

s

(log k)n−1

Γ(n)
+

(
1

2.9n
+

ζ(n)− 1

2.7n

)
2 log10 s,

(3.77)

where Γ is the Gamma function and ζ(s) is the Riemann zeta function (1 < ζ(n) <
2 for n ≥ 2 and ζ(n) = 1 +O(1/2n)).
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3.4.5 Discussion

We end with a brief discussion of some consequences. Returning to our street
example, we see we may reformulate it in terms of a Bayesian model (see [Berg]
for more details). In Bayesian models we have some data (say x) whose values
depend on a parameter (say β, called the prior). Thus there are two densities:
that of the data (which depends on β) and that of the prior. In our situation, x
would be the street address, drawn from a uniform distribution on say [1, β], and
then β would be drawn from some distribution modeling how street lengths are
distributed. One can of course consider more involved models where the prior
depends on a hyperparameter drawn from a different distribution (and so on). These
are called hierarchical Bayesian models, and in this setting we again encounter
chains of distribution, where the number of chains is basically the number of levels.

One of the major problems in Bayesian theory is to justify the choice of the
prior. Many ideas have been proposed (for example, Jeffrey’s prior, conjugate pri-
ors, empirical Bayes, hierarchical models). In putting priors on hyperparameters,
we often make our prior more “diffuse,” so to speak, or less informative. Our main
result says that, in many cases, a non-informative prior in this hierarchical sense
leads to sample data closely approximating Benford’s Law; further, in many situ-
ations a Benford prior might be the true non-informative prior, rather than classic
approaches which are essentially variants on the uniform distribution. Our results
can thus be used as a data integrity check in this situation.

Our results immediately apply to the situation of hierarchical Bayesian models
with each variable depending on just one other variable, establishing a connection
between this field and Benford’s Law. In particular, we see that when there are
many levels then the observed sample values should approximately follow Ben-
ford’s Law, and thus these simple digit frequency tests can be used to test some
detailed assumptions about hierarchical Bayesian models. In practice there is ex-
cellent agreement with Benford’s Law even when there are few levels (see the ex-
amples with explicit bounds from uniform and exponential chains).

Finally, a major goal of [JaKKKM] was to demonstrate the ease of using the
Mellin transform to obtain rapidly converging estimates on deviations from Ben-
ford’s Law. For many distributions, the associated Markov chains rapidly con-
verge to a stationary distribution. It is of great interest to obtain estimates on
the rate of convergence. Our results allow us to deduce such bounds in terms
of the Mellin transform. Further, our results hold for a large class of underly-
ing distributions; in particular, it is not necessary that the Markov chain converge
to a stationary distribution. For more on Markov chains and convergence, see
[DiaS-C, Has, MaRa, MeRRTT, Ran, Sinc1, Sinc2].
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3.5 WEIBULL RANDOMVARIABLES, SURVIVALDISTRIBUTIONS AND

ORDER STATISTICS

3.5.1 Introduction

This section, written jointly with Victoria Cuff and Allison Lewis, is motivated
by two observations. First, since Benford’s seminal paper, many investigations
have shown that amalgamating data from different sources leads to Benford behav-
ior; second, many standard probability distributions are close to Benford behavior.
These observations have, in fact, been used to detect fraud in many data sets (see
Chapter 8).

Particularly important and interesting distributions to study are exponential ran-
dom variables. The distribution of digits of an random variable drawn from the
standard exponential distribution has been shown [EngLeu, LeScEv, MiNi2] to be
close to Benford’s Law base 10 (Leemis, Schmeiser and Evans [LeScEv] observed
that the standard exponential is quite close to Benford’s Law; this was proved by
Engel and Leuenberger [EngLeu], who showed that the maximum difference in the
cumulative distribution function from Benford’s Law (base 10) is at least 0.029 and
at most 0.03). In addition to being of interest in its own right, this result is impor-
tant because of its applications to order statistics. (Recall the order statistics of a
set of values x1, . . . , xn are yi − yi−1, where the yi’s are the xi’s in increasing or-
der.) For many probability distributions, the resulting order statistics of a sample of
N independent random variables has spacings between the adjacent observations
(the order statistics) approximately exponentially distributed, and thus the almost
Benford behavior of the standard exponential density translates to almost Benford
behavior in order statistics. For detailed statements and proofs, see [MiNi2], and
see [NiMi2] for a nice application of these results in devising a new test for data
integrity.

We provide an alternate proof, due to Miller–Nigrini [MiNi2], to [EngLeu] of the
closeness of the standard exponential to Benford behavior. While both proofs apply
Fourier analysis to periodic functions, in [EngLeu] the main step (their equation
(5)) is interchanging an integration and a limit, whereas here the proof is based
on applying Poisson Summation to the derivative of the cumulative distribution
function of the logarithms modulo 1, FB . Benford’s Law is equivalent to FB(b) =
b, which by calculus is the same as F ′B(b) = 1 and FB(0) = 0. Thus studying
the deviation of F ′B(b) from 1 is a natural way to investigate the deviations from
Benford behavior.

The arguments from [MiNi2] generalize to a variety of other distributions. One
particularly important generalization is to the Weibull distribution (see Theorem
3.5.3), whose density is

f(x;α, β, γ) =

⎧⎨⎩ γ
α

(
x−β
α

)(γ−1)

exp
(
−
(

x−β
α

)γ)
if x ≥ β,

0 otherwise,
(3.78)

where α, γ > 0. Note that α adjusts the scale of the data, β translates the in-
put and only γ affects the shape of the distribution. The exponential distribu-
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tion is just a special case of the Weibull (γ = 1), as is the Rayleigh distribu-
tion (γ = 2). The most common use of the Weibull is in survival analysis,
where a random variable X (modeled by the Weibull) represents the “time-to-
failure,” resulting in a distribution where the failure rate is modeled relative to a
power of time. The Weibull distribution arises in problems in such diverse fields
as food contents, engineering, medical data, politics, pollution and sabermetrics
[An, Carr, CoBr, CrRe, Fry, McSABF, Miko, Mi2, TeKaDu, We] to name just a
few; see [ArJa] for connections between Weibull distributions and Benford’s Law
for Internet traffic. Thus the almost Benford behavior of Weibull random variables
provides another explanation for the prevalence of Benford behavior in numerous
systems.

3.5.2 Exponential Random Variables and Benford’s Law

This section closely follows [MiNi2].

Theorem 3.5.1 (Miller–Nigrini [MiNi2]). Let ζ have the standard (unit) exponen-
tial distribution:

Prob (ζ ∈ [α, β]) ⊂
∫ β

α

e−tdt, [α, β] ∈ [0,∞). (3.79)

For b ∈ [0, 1], let FB(b) be the cumulative distribution function of logB ζ mod 1;
thus FB(b) := Prob(logB ζ mod 1 ∈ [0, b]). Then for allM ≥ 2,

F ′B(b) = 1 + 2

∞∑
m=1

Re

(
e−2πimbΓ

(
1 +

2πim

logB

))

= 1+ 2
M−1∑
m=1

Re

(
e−2πimbΓ

(
1 +

2πim

logB

))
+ E

(
4
√
2πc1(B)e−(π2−c2(B))M/ logB

)
, (3.80)

where c1(B), c2(B) are constants such that for allm ≥ M ≥ 2 we have

e2π
2m/ logB − e−2π2m/ logB ≥ e2π

2m/ logB/c21(B),

m/ logB ≤ e2c2(B)m/ logB,

1− e−(π2−c2(B))M/ logB ≥ 1/
√
2. (3.81)

For B ∈ [e, 10] we may take c1(B) =
√
2 and c2(B) = 1/5, which give

Prob(log ζ mod 1 ∈ [a, b]) = b− a +
2r

π
· sin(π(b+ a) + θ) · sin(π(b− a))

+ E (6.32 · 10−7
)
, (3.82)

with r ≈ 0.000324986, θ ≈ 1.32427186, and

Prob(log10 ζ mod 1 ∈ [a, b]) = b− a +
2r1
π

sin(π(b+ a)− θ1) sin(π(b− a))

−r2
π

sin(2π(b+ a) + θ2) · sin(2π(b− a)) + E(8.5 · 10−5), (3.83)
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with

r1 ≈ 0.0569573, θ1 ≈ 0.8055888,

r2 ≈ 0.0011080, θ2 ≈ 0.1384410. (3.84)

Proof. To prove Theorem 3.5.1, it suffices to study the distribution of logB ζ mod
1 when ζ has the standard exponential distribution; see (3.79). The analysis is aided
by the fact that the cumulative distribution function for the standard exponential
random variable has a nice closed form expression: FB(x) = 1 − exp(−x). We
have the following useful chain of equalities. Let [a, b] ⊂ [0, 1]. Then

Prob(logB ζ mod 1 ∈ [a, b]) =

∞∑
k=−∞

Prob(logB ζ ∈ [a+ k, b+ k])

=

∞∑
k=−∞

Prob(ζ ∈ [Ba+k, Bb+k])

=
∞∑

k=−∞

(
e−Ba+k − e−Bb+k

)
. (3.85)

It suffices to investigate (3.85) in the special case when a = 0, as the probability of
any interval [α, β] can always be found by subtracting the probability of [0, α] from
[0, β]. We are therefore led to studying, for b ∈ [0, 1], the cumulative distribution
function of logB ζ mod 1:

FB(b) := Prob(logB ζ mod 1 ∈ [0, b]) =

∞∑
k=−∞

(
e−Bk − e−Bb+k

)
. (3.86)

This series expansion converges rapidly, and Benford behavior for ζ is equivalent
to the rapidly converging series in (3.86) equalling b for all b.

As Benford behavior is equivalent to FB(b) equals b for all b ∈ [0, 1], it is natural
to compare F ′B(b) to 1. If the derivative were identically 1 then FB(b) would equal
b plus some constant. However, (3.86) is zero when b = 0, which implies that this
constant would be zero. It is hard to analyze the infinite sum for FB(b) directly. By
studying the derivative F ′B(b) we find a function with an easier Fourier transform
than the Fourier transform of e−Bu − e−Bb+u

, which we then analyze by applying
Poisson Summation.

We use the fact that the derivative of the infinite sum FB(b) is the sum of the
derivatives of the individual summands. This is justified by the rapid decay of the
summands; see, for example, Corollary 7.3 of [Lang1]. We find

F ′B(b) =
∞∑

k=−∞
e−Bb+k

Bb+k logB =
∞∑

k=−∞
e−βBk

βBk logB, (3.87)

where for b ∈ [0, 1] we set β = Bb.
Let H(t) = e−βBt

βBt logB; note β ≥ 1. As H(t) is of rapid decay in t, we
may apply Poisson Summation (Theorem 3.1.1). Thus

∞∑
k=−∞

H(k) =

∞∑
k=−∞

Ĥ(k),
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where Ĥ is the Fourier transform of H : Ĥ(u) =
∫∞
−∞H(t)e−2πitudt. Therefore

F ′B(b) =
∞∑

k=−∞
H(k) =

∞∑
k=−∞

Ĥ(k) =

∞∑
k=−∞

∫ ∞

−∞
e−βBt

βBt logB · e−2πitkdt.

(3.88)

We change variables by taking w = Bt. Thus dw = Bt logB dt or dw
w = logB dt.

As e−2πitk = (Bt/ logB)−2πik = w−2πik/ logB we have

F ′B(b) =
∞∑

k=−∞

∫ ∞

0

e−βwβw · w−2πik/ logB dw

w

=

∞∑
k=−∞

β2πik/ logB

∫ ∞

0

e−uu−2πik/ logBdu

=

∞∑
k=−∞

β2πik/ logBΓ

(
1− 2πik

logB

)
, (3.89)

where we have used the definition of the Γ-function,

Γ(s) =

∫ ∞

0

e−uus−1 du, Re(s) > 0. (3.90)

As Γ(1) = 1 we have the following rapidly converging series expansion:

F ′B(b) = 1+
∞∑

m=1

[
β2πim/ logBΓ

(
1− 2πim

logB

)
+ β−2πim/ logBΓ

(
1 +

2πim

logB

)]
.

(3.91)
We can improve (3.91) by using additional properties of the Γ-function. If y ∈ R

then from (3.90) we have Γ(1 − iy) = Γ(1 + iy) (where the bar denotes complex
conjugation). Thus the mth summand in (3.91) is the sum of a number and its
complex conjugate, which is simply twice the real part. We have formulas for the
absolute value of the Γ-function for large argument. We use (see (8.332) on page
946 of [GrRy]) that

|Γ(1 + ix)|2 =
πx

sinh(πx)
=

2πx

eπx − e−πx
. (3.92)

Writing the summands in (3.91) as 2Re
(
e−2πimbΓ

(
1 + 2πim

logB

))
, (3.91) becomes

F ′B(b) = 1 + 2

M−1∑
m=1

Re

(
e−2πimbΓ

(
1 +

2πim

logB

))

+ 2

∞∑
m=M

Re

(
e−2πimbΓ

(
1 +

2πim

logB

))
. (3.93)

The rest of the claims of Theorem 3.5.1 follow from simple estimation, algebra and
trigonometry. �

With constants as in the theorem, if we take M = 1 and B = e (resp., B = 10)
the error is at most 0.00499 (resp., 0.378), while if M = 2 and B = e (resp.,
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B = 10) the error is at most 3.16 · 10−7 (resp., 0.006). Thus just one term is
enough to get approximately five digits of accuracy base e, and two terms give
three digits of accuracy base 10! For many bases we have reduced the problem

to evaluating Re
(
e−2πibΓ

(
1 + 2πi

logB

))
. This example illustrates the power of

Poisson Summation, taking a slowly convergent series expansion and replacing it
with a rapidly converging one.

Corollary 3.5.2. Let ζ have the standard exponential distribution. There is no base
B > 1 such that ζ is Benford base B.

Proof. Consider the infinite series expansion in (3.80). As e−2πimb is a sum of a co-
sine and a sine term, (3.80) gives a rapidly convergent Fourier series expansion. If

ζ were Benford base B, then F ′B(b) must be identically 1; however, Γ
(
1 + 2πim

logB

)
is never zero for m a positive integer because its modulus is non-zero (see (3.92)).
As there is a unique rapidly convergent Fourier series equal to 1 (namely, g(b) = 1;
see [StSh1] for a proof), our F ′B(b) cannot identically equal 1. �

3.5.3 Weibull Random Variables and Benford’s Law

Theorem 3.5.1 can be generalized; see [CuLeMi] for details as the proof is similar
to the result for exponential random variables.

Theorem 3.5.3 (Cuff–Lewis–Miller [CuLeMi]). Let Zα,0,γ be a random variable
whose density is a Weibull with parameters β = 0 and α, γ > 0 arbitrary. For
z ∈ [0, 1], let FB(z) be the cumulative distribution function of logB Zα,0,γ mod 1;
thus FB(z) := Prob(logB Zα,0,γ mod 1 ∈ [0, z)). Then the following conditions
hold.

1. The density of Zα,0,γ , F ′B(z), is given by

F ′B(z)=1 + 2

∞∑
m=1

Re

[
e−2πim(z− log α

log B ) · Γ
(
1 +

2πim

γ logB

)]
. (3.94)

In particular, the densities of logB Zα,0,γ mod 1 and logB ZαB,0,γ mod 1
are equal, and thus it suffices to consider only α in an interval of the form
[a, aB) for any a > 0.

2. ForM ≥ γ logB log 2
4π2 , the error in F ′B(z) from dropping the terms with m ≥

M is at most
1

π3
2
√
2M(40 + π2)

√
γ logB · e−π2M/γ logB. (3.95)

3. In order to have an error of at most ε in evaluating F ′B(z), it suffices to take
the firstM terms, where

M =
k + ln k + 1

2

a
, (3.96)

with k ≥ 6 and

k = − ln
(aε
C

)
, a =

π2

γ logB
, C =

2
√
2(40 + π2)

√
γ logB

π3
. (3.97)
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To see the quality of the fit, we compared the series expansion for the derivative
to the uniform distribution through a Kolmogorov–Smirnov test; see Figure 3.2
for a contour plot of the discrepancy. Note the good fit observed between the two
distributions when γ = 1 (representing the exponential distributions), which we
showed earlier is well fit by the Benford distribution.
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Figure 3.2 Kolmogorov–Smirnov Test. Left: γ ∈ [0, 15]. Right: γ ∈ [0, 2]. As γ (the shape
parameter on the x-axis) increases, the Weibull distribution is no longer a good
fit compared to the uniform. Note that α (the scale parameter on the y-axis) has
less of an effect on the overall conformance.

The Kolmogorov–Smirnov metric gives a good comparison as it allows us to
compare the distributions in terms of both parameters, γ and α. We also look at two
other measures of closeness, the L1- and the L2-norms, which test the differences
between (3.94) and the uniform distribution; see Figure 3.3. The L1-norm of f − g

is
∫ 1

0
|f(t)−g(t)|dt, which puts equal weights on the deviations, while theL2-norm

is
∫ 1

0 |f(t)− g(t)|2dt, which gives more weight to larger distances.
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Figure 3.3 Left: L1-norm of F ′B(z)−1 for γ ∈ [0.5, 10]. Right: L2-norm of F ′B(z)−1 for
γ ∈ [0.5, 10]. As γ increases the cumulative Weibull distribution is no longer a
good fit compared to 1. The L1- and L2-norms are independent of α.

The combination of the Kolmogorov–Smirnov tests and the L1- and L2 norms
shows us that Weibull distributions are almost Benford when γ is modest; as γ
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increases the Weibull no longer conforms to the expected leading digit probabilities.
The scale parameter α has a small effect on the conformance, but not nearly to the
same extent as the shape parameter γ. Fortunately in many applications the shape
parameter γ is not too large (it is frequently less than 2 in the Weibull references
cited earlier), and thus these results provide additional support for the prevalence
of Benford behavior.

3.6 BENFORDNESS OF CAUCHY DISTRIBUTIONS

This section, written jointly with Xixi Edelsbrunner, Karen Huan, Blake Mackall,
Jasmine Powell, Caroline Turnage-Butterbaugh and Madeleine Weinstein, is a con-
tinuation of the analysis of exponential and Weibull random variables earlier in the
chapter. Thus we do not give the most general arguments but rather concentrate
on some of the interesting differences arising from Cauchy random variables, our
object of study. The interested readers can adapt the previous methods to obtain
similarly good estimates of tail probabilities, or see [EdH..].

We say X is a Cauchy random variable if its probability density function is

p (x) =
1

π (1 + x2)
. (3.98)

The function p(x) appears in many areas; in physics, for example, it is the solution
to a differential equation that arises in the analysis of resonance. It has also been
found to be a good predictor of the distribution of prices of certain stocks (see
[ManHu], where it is argued that the Cauchy distribution provides a better fit than
the standard random walk model as it leads to more days of large fluctuations).
More generally, we can consider

pa,r (x) =
2r sin(π/r)

2πa

1

1 + |x/a|r , a > 0, r > 1, x ≥ 0 (3.99)

(the normalization constant is readily determined by contour integration). For con-
venience, we adjusted the definition of our random variable to be non-zero only for
x ≥ 0, which avoids absolute values propagating throughout the equations below.
Thus p1,2(x) is essentially the density of the standard Cauchy random variable.

The purpose of this section is to explain the observation that samples of data
drawn from the Cauchy distribution are very close to Benford (see Table 3.3); as
there is a large body of evidence of the applicability of the Cauchy distribution to
financial data, this is another explanation for the prevalence of Benford’s Law.

As before, we fix a base B > 1 and set Ya,r;B = logB Xa,r, where Xa,r is a
random variable with density pa,r(x). The Uniform Distribution Characterization
(Theorem 2.4.2) states that X is Benford base B if and only if Ya,r;B is uniformly
distributed modulo 1. If Fa,r;B(y) is Ya,r;B’s cumulative distribution function (cdf)
and Fa,r;B(y) is the cdf of Ya,r;B mod 1, this is equivalent to showingFa,r;B(b) =
b or F ′a,r;B(b) = 1 for all b ∈ [0, 1]. We show that this is almost true, and quantify
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Digit Observed Predicted (Benford) Predicted (Cauchy)
1 30908 30103 30930
2 17130 17609 16905
3 11819 12494 11852
4 9340 9691 9382
5 7924 7918 7881
6 6857 6695 6829
7 6065 5799 6022
8 5252 5115 5370
9 4705 4576 4827

Table 3.3 Chi-square test for Cauchy distribution; the critical thresholds (for 8 degrees of
freedom) are approximately 15.5% (at the 95% level) and 20.1% (at the 99%). We
sampled 100,000 points randomly and independently from the standard Cauchy
distribution. The chi-square value comparing to the observed digit frequencies
and Benford’s Law is 107.169, indicating a bad fit; the chi-square value com-
paring to the digit frequencies of a Cauchy random variable is 9.64, which (not
surprisingly) signifies a good fit with the digit frequencies of a standard Cauchy
random variable.

how far F ′a,r;B(b) is from 1 (which allows us to quantify how close Xa,r is to being
Benford base B). We have

Fa,r;B(y) = Prob(Ya,r;B ≤ y) = Prob(logB Xa,r ≤ y)

= Prob(Xa,r ≤ By) = Pa,r(B
y), (3.100)

where Pa,r is the cdf of Xa,r. As the pdf is the derivative of the cdf, we find

F ′a,r;B(y) =
d

dy
[Pa,r(B

y)] = pa,r(B
y)By logB. (3.101)

We are reduced to studying how close

Fa,r;B(b) =

∞∑
n=−∞

∫ n+b

n

F ′a,r;B(y)dy

= 2
∞∑

n=−∞

∫ n+b

n

pa,r (B
y)By logB dy (3.102)

is to b; the closer this is to b, the closer Xa,r is to being Benford.
Rather than studying this probability directly, it is easier to study the derivative

F ′a,r;B(b) and quantify how close this is to 1. The rapid convergence allows us to
differentiate under the integral sign, and then we apply Poisson Summation to the
sum over n (the Fourier transform of the density follows from standard analysis),
yielding

F ′a,r;B (b) = 2

∞∑
n=−∞

pa,r
(
Bb+n

)
Bb+n logB

= sin
(π
r

) ∞∑
n=−∞

e2πi
b log B−log a

log B n csc

(
π

r

(
1− 2πi

n

logB

))
. (3.103)
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Note that the n = 0 term contributes 1 to the sum in (3.103). The fluctuation from
1 is the deviation of the sum from Benford, given by

Ea,r;B(b) = sin
(π
r

) ∑
|n|≥1

e2πi
b log B−log a

log B n csc

(
π

r

(
1− 2πi

n

logB

))
.

(3.104)
Then we can split Er into

Ea,r;B(b) = sin
(π
r

) M−1∑
n=−(M−1)

n�=0

e2πi
b log B−log a

log B n csc

(
π

r

(
1− 2πi

n

logB

))

+ sin
(π
r

) ∑
|n|≥M

e2πi
b log B−log a

log B n csc

(
π

r

(
1− 2πi

n

logB

))
. (3.105)

We have expressed the fluctuation as a rapidly converging sum of trigonometric
polynomials. We bound Ea,r;B,M (b), the sum over all |n| ≥ M . A good bound for
this tail tells us how well the terms with |n| ≤ M − 1 approximate the true answer,
and we can then compare this to Benford behavior. We find

Ea,r;B,M (b) =

4 sin
(π
r

) ∣∣∣∣∣∣
∞∑

n=M

⎛⎝ − sin
(
π
r

)
cosh

(
2π2n
r logB

)
cos

(
2π
r

)− cosh
(

4π2n
r logB

) +
i cos

(
π
r

)
sinh

(
2π2n
r logB

)
cos

(
2π
r

)− cosh
(

4π2n
r logB

)
⎞⎠∣∣∣∣∣∣ .

(3.106)

Further simplification shows

Ea,r;B,M(b)

≤ 4 sin
(π
r

) ∞∑
n=M

⎛⎝∣∣∣∣∣∣
sin

(
π
r

)
cosh

(
2π2n
r logB

)
1− cosh

(
4π2n
r logB

)
∣∣∣∣∣∣+

∣∣∣∣∣∣
cos

(
π
r

)
cosh

(
2π2n
r logB

)
1− cosh

(
4π2n
r logB

)
∣∣∣∣∣∣
⎞⎠

≤ 4
√
2 sin

(π
r

) ∞∑
n=M

∣∣∣∣∣∣
cosh

(
2π2n
r logB

)
2
(
1− cosh2

(
2π2n
r logB

))
∣∣∣∣∣∣ . (3.107)

As long as B and r satisfy cosh2
(

2π2

r logB

)
≥ 2 (which for B = 10 happens for

r < 9.726), we have

Ea,r;B,M (b) ≤ 4
√
2 sin

(π
r

) ∞∑
n=M

sech

(
2π2n

r logB

)

≤ 8
√
2 sin

(π
r

) ∞∑
n=M

e
−
(

2π2n
r log B

)
= 8

√
2 sin

(π
r

) e
−
(

2π2M
r log B

)

1− e
−
(

2π2

r log B

) . (3.108)

We see that for B = 10 the contribution from |n| ≥ 2 is already small, bounded by
about 0.002 (if we took instead M = 3 it is bounded by about 0.00003). Thus just
keeping the first or first two terms already suffices to essentially see the behavior,
which we plot in Figure 3.4.
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Figure 3.4 The fluctuation in the density of the digit distribution from a standard Cauchy
random variable about 1. The maximum fluctuations are at b = 0, 0.5 and 1.

Digit Cauchy Benford
1 0.30930 0.30103
2 0.16906 0.17609
3 0.11852 0.12494
4 0.09382 0.09691
5 0.07882 0.07918
6 0.06829 0.06695
7 0.06022 0.05799
8 0.05370 0.05115
9 0.04827 0.04576

Table 3.4 Probabilities of first digits (standard Cauchy vs. Benford’s Law).

Our analysis allows us to determine the effect of the parameters. When the n =
±1 terms contribute essentially all of the fluctuation, all a does is shift the plot
of the derivative. A similar analysis to the previous section (i.e., integrating the
density function) gives the digit probabilities. For the standard Cauchy, these are
close to but different from Benford’s Law. The probabilities are given in Table 3.4.

Additionally, our analysis shows that as r → 1 the digit probabilities converge
to Benford’s Law. We briefly remark on why X1,r converge to Benford as r → 1
from above. Base 10, a system is Benford if the probability of a significand at most
s is log10 s. Consider a function of the form 1/(1 + x) for x ≥ 0 (note that this
is not a pdf because its integral over the real line does not converge; however, as
r → 1 this is what our densities approach). Letting t = x + 1 yields the function
1/t on [1,∞) with antiderivative log t. For any integer k ≥ 0, the fraction of the
range [10k, 10k+1) for which 1/t has significand at most s is

log
(
10ks

)− log
(
10k

)
log(10k+1)− log(10k)

=
log s

log 10
= log10 s, (3.109)

which are the Benford probabilities.
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Chapter Four

Benfordʼs Law Geometry

Lawrence Leemis1

The original discovery of Benford’s Law by Simon Newcomb was based on the
uneven wear in the pages of logarithm tables. The subsequent independent discov-
ery by Frank Benford was based on conformance of the first digit from a diverse set
of data to Benford’s Law; both of these discoveries were driven by empirical data.
Although Benford’s Law applies to a wide variety of data sets, none of the popular
parametric distributions, such as the exponential and normal distributions, agree
exactly with Benford’s Law. After highlighting the failures of several well-known
probability distributions in conforming to Benford’s Law, we consider what types
of probability distributions might produce data that obey Benford’s Law, and look
at some of the geometry associated with these probability distributions.

4.1 INTRODUCTION

Simon Newcomb (1835–1909) was a largely self-taught American who immigrated
from Canada with professional interests in astronomy and mathematics. During his
lifetime, calculations were typically performed using logarithm tables. Newcomb
noticed that the pages of tables of logarithms had more wear at the beginning of the
tables than at the end. The argument to a logarithm table ranges from 1.0 to 10.0
and is arranged in a linear fashion (for example, the arguments between 1.0 and
2.0 take exactly 1/9 of the pages), yet the tables showed more wear on the earlier
pages. Newcomb postulated that those using the logarithm tables tended to look up
the largest fraction of values beginning with the digit 1 and the smallest fraction of
values beginning with the digit 9. In what can be considered an astoundingly in-
sightful conclusion, particularly considering that his data set could be viewed only
by worn pages, he postulated that the distribution of the leading digit X of num-
bers accessed in the logarithm tables followed a discrete probability distribution
with probability mass function

P (X = x) = log10 (1 + 1/x) , x = 1, 2, . . . , 9.

Newcomb published what was known as the “logarithm law” in the American Jour-
nal of Mathematics in 1881. Considering just the extreme values, this law indicates
that over 30% of the arguments to a logarithm table will have a leading digit of 1

1Department of Mathematics, The College of William & Mary, Williamsburg, VA 23187.
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because P (X = 1) = log10(2)
∼= 0.301, and less than 5% of the arguments to a

logarithm table will have a leading digit of 9 because P (X = 1) = log10(10/9)
∼=

0.0458.
Frank Benford, Jr. (1883–1948) was an electrical engineer and physicist who

spent his career working for General Electric. He apparently independently arrived
at the same conclusion as Newcomb concerning the distribution of the leading digit.
His rediscovery of what has been named “Benford’s Law” came from his collection
of “data from as many fields as possible” to determine whether natural and socio-
logical data sets would obey the logarithm law ([Ben]). In 1938 Benford analyzed
the leading digits of 20, 229 data values that he had gathered from a divergent set
of sources (for example, populations of counties, American League baseball statis-
tics, numbers appearing in Reader’s Digest, areas of rivers, physical constants,
death rates, drainage rates of rivers, atomic weights). The proportions associated
with each of the leading digits are given in Table 4.1, which are a very close fit to
Benford’s Law.

Digits 1 2 3 4 5 6 7 8 9
Benford’s Law 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046

Data 0.306 0.185 0.124 0.094 0.080 0.064 0.051 0.049 0.047

Table 4.1 Benford’s leading digit frequencies.

In hindsight, we know part of the explanation of why Benford’s data came so
close to the proposed distribution of leading digits. First of all, the data set con-
tained observations that spanned several orders of magnitude. This is not a require-
ment for conformity to Benford’s Law, but it seems to help. As shown later in
this chapter, a probability distribution can satisfy Benford’s Law and span only a
single order of magnitude. Second, by choosing such a wide array of data values,
Benford was effectively mixing several probability distributions together, and it has
been seen that this also enhances conformance to Benford’s Law.

Since certain data sets seem to approximate Benford’s Law with regularity, a rea-
sonable next step is to search for probability distributions that give rise to data that
conforms to Benford’s Law. Hill ([Hi4]) framed the question well: “An interesting
open problem is to determine which common distributions (or mixtures thereof)
satisfy Benford’s Law . . . .” This chapter switches from the traditional analysis of
Benford’s Law using data sets to a search for probability distributions that obey
Benford’s Law.

The analogous search occurred in the early days of probability theory when ana-
lysts found so many measurements that produced data that was bell shaped that they
named the associated probability distribution the “normal” distribution. (Perhaps
any non-bell-shaped distribution was considered to be “abnormal” at the time.)
Most of what is known as classical statistics emerged from the derivation of the
probability density function of the normal, or Gaussian, distribution.

In order to limit the focus of this chapter, the following assumptions will be
made.

• The focus of the analysis is on probability distributions rather than data.
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• A probability distribution that might obey Benford’s Law is associated with
a continuous random variable.

• The probability distribution has support on the positive real numbers or some
subset thereof.

• Base 10 is used to represent random variables associated with probability
distributions.

• Only the leading digit is of interest. All digits to the right of the leading digit
are ignored.

Other chapters in this book (especially Chapter 2) concern mathematical results
associated with relaxation of these assumptions.

The next section considers some popular parametric distributions and assesses
their conformity to Benford’s Law. The following section considers probability dis-
tributions that obey Benford’s Law exactly and the geometric and algebraic prop-
erties that they possess. The last section contains conclusions.

4.2 COMMON PROBABILITY DISTRIBUTIONS

As given in the previous section, let X be a discrete random variable whose support
is the integers 1, 2, . . . , 9 with probability mass function

fX(x) = P (X = x) = log10 (1 + 1/x) , x = 1, 2, . . . , 9.

In this chapter, the term “Benford distribution” is used to describe this probabil-
ity distribution. The random variable X has the following associated cumulative
distribution function on its support values:

FX(x) = P (X ≤ x) = log10 (1 + x) , x = 1, 2, . . . , 9.

Using the probability integral transformation, random variates having the Benford
distribution are generated via

X ← �10U	,
where U is a uniform random variable on [0, 1], denoted by U ∼ U(0, 1).

We now define the probability distribution from which the data will be drawn.
Let the continuous random variable T have positive support and cumulative dis-
tribution function FT (t) = P (T ≤ t). We are interested in the leading digit of
a realization of T , which we obtain through the significand function. (Recall we
may write any positive number x uniquely as S(x) · 10k(x), where S(x) ∈ [1, 10)
and k(x) is an integer; S is called the significand function.) For example, S(e) =
S(10e) = S(e/100) = 2.71828 . . . . Using the significand function, the leading
digit of T can be expressed as

Y = �S(T )	.
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The next calculation that is necessary is to determine the probabilities associated
with the nine potential leading digits of T having an arbitrary probability distribu-
tion. The probability mass function of Y is

fY (y) = P (Y = y) = P (�S(T )	 = y)

=

∞∑
i=−∞

[
FT

(
(y + 1) · 10i)− FT

(
y · 10i)] (4.1)

for y = 1, 2, . . . , 9.
Since Benford’s Law seems to apply to a variety of data sets, one would assume

that several of the popular parametric models, such as the exponential or Weibull
distributions, would provide a close fit to Benford’s Law. For certain choices of the
parameters of some of these distributions this is in fact the case. The probability
mass function of Y was calculated for the U(1, 10), unit exponential, and unit
Rayleigh distributions, which respectively have cumulative distribution functions

FT (t) =
t− 1

9
, 1 < t < 10,

FT (t) = 1− e−t, t > 0,

and

FT (t) = 1− e−t2 , t > 0.

The following R code, with a carefully selected lower bound lo and a carefully
selected upper bound hi in order to ensure that nearly all of the probability density
is captured, calculates the probability mass function of Y for the unit Rayleigh
distribution.

cdf = function(x) 1 - exp(-x ^ 2)
digits = rep(0, 9)
for (y in 1:9) {

for (i in lo:hi) {
digits[y] = digits[y] + cdf((y + 1) * 10 ^ i) - cdf(y * 10 ^ i)

}
}
print(digits)

The results of these calculations for all three probability distributions are shown
in Table 4.2. The U(1, 10) distribution provides the worst fit of the three probability
distributions because each leading digit is equally likely to occur. The unit expo-
nential probability mass function is monotone like the Benford probability mass
function, but it gives too many 1s, 8s, and 9s relative to the Benford distribution.
Finally, the unit Rayleigh distribution deviates even further from Benford’s Law.
Although the unit exponential distribution is the best of the three in terms of prox-
imity to Benford’s distribution, none of these perform even as well as Benford’s
original data set.

Having failed to find a distribution that closely approximates Benford’s Law, the
search widens for probability distributions that provide a closer approximation. A
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Leading digit 1 2 3 4 5 6 7 8 9

Benford’s Law 0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046

U(1, 10) distr. 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111 0.111
Unit exponential distr. 0.330 0.174 0.113 0.086 0.073 0.064 0.058 0.053 0.049

Unit Rayleigh distr. 0.379 0.066 0.063 0.074 0.082 0.087 0.087 0.084 0.079

Table 4.2 Leading digit frequencies for common probability distributions.

probability distribution that provides a surprisingly close approximation to Ben-
ford’s Law is the log-normal distribution with cumulative distribution function

FT (t) = Φ

(
ln t− μ

σ

)
, t > 0,

where μ is a real-valued parameter, and σ is a positive real-valued parameter. We
arbitrarily set μ = 0 and gradually increase σ. Since the approximation to Ben-
ford’s Law is very close for the log-normal distribution, we use a measure similar
to the Kolmogorov–Smirnov goodness-of-fit test statistic to assess the fit:

d = max
x=1,2,...,9

{|Pr(Y = x)− Pr(X = x)|} .

Table 4.3 gives the value of d for several values of σ.

σ 1/4 1/2 1 2 3

d 1.96× 10−1 1.17× 10−1 7.30× 10−3 1.03× 10−7 1.03× 10−15

Table 4.3 Assessing conformance to Benford’s Law for the log-normal distribution.

The log-normal distribution appears empirically to be approaching Benford’s
Law as σ increases (see Theorem 3.2.2 and Corollary 5.4.7 for additional theoret-
ical support). What is it about the log-normal distribution that makes this occur?
The geometry behind why certain distributions conform well to Benford’s Law is
taken up in the next section.

4.3 PROBABILITY DISTRIBUTIONS SATISFYING BENFORD’S LAW

Rather than looking at the well-known probability distributions considered by prob-
abilists for modeling or by statisticians for statistical inference, we try to construct
probability distributions that satisfy Benford’s Law exactly. One of the key insights
gleaned from the last section is that random variables whose logarithm provides a
symmetric distribution have a good chance of satisfying Benford’s Law.

We initially look past the obvious continuous probability distribution that satis-
fies Benford’s Law by brute force, that is,

fT (t) = log10(1 + 1/�t	), 1 < t < 10.



114 CHAPTER 4

This distribution spans simply one order of magnitude, dividing the nine leading
digits between 1 and 9 into cells with probabilities that match Benford’s distribution
exactly.

In order to find a nontrivial distribution with exact conformance to Benford’s
Law, we define another random variable: W = log10 T . It is easier to construct
distributions that conform to Benford’s Law by working with W rather than T . For
example, we let W ∼ U(0, 1), which has probability density function

fW (w) = 1, 0 < w < 1.

By using the transformation technique (see for example [HogMC]), the distribution
of T = 10W has probability density function

fT (t) =
1

t ln 10
, 1 < t < 10.

This probability distribution is, from one point of view, the primary continuous
distribution whose leading digit satisfies Benford’s Law because (a) its base 10
logarithm is U(0, 1), (b) its support spans a single order of magnitude, and (c) its
probability density function is a continuous function (unlike the probability density
function described in the previous paragraph). Figure 4.1 shows the probability
density function of W on the left-hand graph and the probability density function
of T on the right-hand graph. The shaded areas on the graphs correspond to the
probability that the leading digit is 4 (the digit 4 was an arbitrary choice).

0 1

0

1

1 4 10

0.0

0.5

5

w

fW (w)

t

fT (t)

Figure 4.1 Probability density functions of W ∼ U(0, 1) and T = 10W with P (Y = 4)
shaded.

This example can be extended to cover two orders of magnitude simply by letting
W ∼ U(0, 2). This distribution also satisfies Benford’s Law exactly. In this case,
the probability density function of W is

fW (w) =
1

2
, 0 < w < 2.

The distribution of T = 10W has probability density function

fT (t) =
1

2t ln 10
, 1 < t < 100.
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Figure 4.2 shows the probability density function of W on the left-hand graph and
the probability density function of T on the right-hand graph. The shaded areas on
the graphs correspond to the probability that the leading digit is 4. Since two orders
of magnitude are spanned by the support of T , there are two ranges (4 ≤ T < 5
and 40 ≤ T < 50) that result in having Y = 4 as a leading digit.
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0.0
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w

fW (w)

t

fT (t)

Figure 4.2 Probability density functions of W ∼ U(0, 2) and T = 10W with P (Y = 4)
shaded.

The previous two distributions that satisfy Benford’s Law exactly can be gen-
eralized to cover all uniform distributions for W that cover an integer number of
orders of magnitude. Let W ∼ U(a, b). As long as b − a is a positive integer,
then the support of T is 10a < T < 10b, which covers b− a orders of magnitude.
Benford’s Law is satisfied exactly because the effect of picking off the leading digit
shifts all W values into the interval (0, 1) and shifts all correspondingT values into
the interval (1, 10). When b − a is an integer, the support of W that falls outside
of (0, 1) that is shifted into the unit interval does so in a fashion that results in T
following Benford’s Law, as will be seen geometrically in the next paragraph. For
example, if W ∼ U(3.507, 6.507), then the support of T spans exactly three orders
of magnitude and it obeys Benford’s Law exactly.

There are non-uniform distributions for W that also satisfy Benford’s Law. One
simple example is to allow W to have the triangular distribution with minimum 0,
mode 1, and maximum 2. In this case, the probability density function of W is

fW (w) =

{
w, 0 < w < 1,
2− w, 1 ≤ w < 2.

The distribution of T = 10W has probability density function

fT (t) =

{
ln t

t(ln 10)2 , 1 < t < 10,
2 ln 10−ln t
t(ln 10)2 , 10 ≤ w < 100.

Figure 4.3 shows the probability density function of W on the left-hand graph and
the probability density function of T on the right-hand graph. The shaded areas
on the graphs correspond to the probability that the leading digit is 4. Since two
orders of magnitude are again spanned by the support of T , there are two ranges
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(4 ≤ T < 5 and 40 ≤ T < 50) that result in having Y = 4 as a leading digit. The
geometry associated with what is happening by picking off the leading digit is most
easily seen by considering the support of W . The probability density function on

0 1 2

0

1

1 100

0.0

0.07

10

w

fW (w)

t

fT (t)

Figure 4.3 Probability density functions of W ∼ triangular(0, 1, 2) and T = 10W with
P (Y = 4) shaded.

the range 1 < w < 2 is being shifted to the left by one unit, as seen in Figure 4.4.
The two shaded bars from Figure 4.3 are stacked on top of one another which
reach to the dashed line in Figure 4.4 that provide the basis for the conformance to
Benford’s Law.

0 1

0

1

w

fW (w)

Figure 4.4 Probability density function of W ∼ triangular(0, 1, 2) with P (Y = 4)
shaded, shifted onto (0, 1).

All of the examples of random variables W that satisfy Benford’s Law have been
symmetric distributions. We now consider the case of a nonsymmetric distribution
of W that satisfies Benford’s Law exactly. Let W ∼ triangular(0, 1, 3). In this
case, the probability density function of W is

fW (w) =

{
2w/3, 0 < w < 1,
1− w/3, 1 ≤ w < 3.
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The distribution of T = 10W has probability density function

fT (t) =

{
2 ln t

3t(ln 10)2 , 1 < t < 10,
ln 10−ln t1/3

t(ln 10)2 , 10 ≤ w < 1000.

Figure 4.5 shows the probability density function of W on the left-hand graph
and the probability density function of T on the right-hand graph. The shaded
areas on the graphs correspond to the probability that the leading digit is 4. Since
three orders of magnitude are spanned by the support of T , there are three ranges
(4 ≤ T < 5, 40 ≤ T < 50, and 400 ≤ T < 500) that result in having Y = 4 as
a leading digit. The geometry associated with what is happening by picking off the
leading digit is most easily seen by considering the support of W . The probability

0 1 2 3
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0.7

1 1000

0.0

0.05

w

fW (w)

t

fT (t)

Figure 4.5 Probability density functions of W ∼ triangular(0, 1, 3) and T with P (Y = 4)
shaded.

density function on the range 1 < w < 2 is being shifted to the left by one unit, and
the probability density function on the range 2 < w < 3 is being shifted to the left
by two units, as seen in Figure 4.6. The probabilities associated with a leading digit
of Y = 4, or any other leading digit for that matter, correspond to the rectangle of
height 1 in Figure 4.6.

All of the examples in this section can be viewed through a different lens. In-
stead of shifting orders of magnitude associated with W onto the unit interval, the
shifting can be considered to be a finite mixture model (see for instance [McLPe]).
Consider the W ∼ triangular(0, 1, 2) example. This is equivalent to two probabil-
ity density functions, namely

fW1(w) = 2w, 0 < w < 1,

and

fW2(w) = 2(1− w), 0 < w < 1,

which are mixed together with equal probabilities. In this case

fW (w) = pfW1(w)+(1−p)fW2(w) =
1

2
·2w+

1

2
·2(1−w) = 1, 0 < w < 1.

Since W ∼ U(0, 1), this implies that W corresponds to a random variable T =
10W that satisfies Benford’s Law.
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0 1
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w

fW (w)

Figure 4.6 Probability density function of W ∼ triangular(0, 1, 3) with P (Y = 4)
shaded, shifted onto (0, 1).

4.4 CONCLUSIONS

Benford’s Law is approximated to varying degrees for common parametric distri-
butions. An infinite array of probability distributions can be constructed, however,
that satisfy Benford’s Law exactly. The geometry discussed in this chapter works
with W = log10 T , which must be U(0, 1) after shifting to account for the var-
ious orders of magnitude, to satisfy Benford’s Law. The distribution of W , with
odd-numbered leading digits shaded, is shown in Figure 4.7.
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1

w

fW (w)

Figure 4.7 Probability density function of W ∼ U(0, 1) with odd leading digits of T =
10W shaded.



Chapter Five

Explicit Error Bounds via Total Variation

Lutz Dümbgen and Christoph Leuenberger1

Similar to earlier work in the book, this chapter is concerned with obtaining
explicit error estimates for convergence to Benford’s law. The analysis is done
through the total variation of the densities. This yields reasonable estimates for
Benford’s law in many cases, and is often simpler to calculate and more elementary
than Fourier methods.

5.1 INTRODUCTION

Let us recall a common heuristic explanation of Benford’s first digit law: “If a
random variableX > 0 has a distribution ranging over several orders of magnitude,
its first leading digit is likely to follow Benford’s law.” This is closely related to
another phenomenon, applied to Y := logB(X) for some integer base B ≥ 2:

Phenomenon: If the distribution of a real random variable Y is diffuse, its round-
ing error

U := Y − �Y 	 ∈ [0, 1)

follows approximately a uniform distribution on [0, 1).

Applying this to Y = logB(X), we may conclude the following: For arbitrary
integers � ≥ 0 and digits d0, . . . , d� ∈ {0, 1, . . . , b− 1} with d0 �= 0,

P
(
X has leading digits d0, . . . , d� base B

)
= P

(
logB(d) ≤ U < logB(d+B−�)

)
, (5.1)

where d :=
∑�

j=0 djB
−j . The latter probability is approximately equal to

logB(d+B−�)− logB(d) = logB(1 +B−�/d). (5.2)

To formulate the phenomenon above rigorously, one has to specify the meaning
of “diffuse” of course. One could think of the distribution of Y ranging over several
units or the standard deviation of Y being large. In fact, Feller [Fel, 1971] is argu-
ing along these lines, but Berger and Hill [BerH3, 2011] report fundamental flaws
in this type of argument. In the present chapter we show that the heuristic above

1University of Bern, Bern, Switzerland and University of Fribourg, Fribourg, Switzerland respec-
tively.
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does work remarkably well if one quantifies “diffuseness” in terms of the total vari-
ation of a probability density or its derivatives. We present explicit bounds due to
Dümbgen and Leuenberger [DueLeu, 2008], extending results of Pinkham [Pin,
1961] and Kemperman [Kemp, 1975]. The latter reference is an abstract of a con-
ference talk, which the present authors learned about only recently. (Apparently, J.
Kemperman never published proofs of his results.) A particular consequence of the
bounds presented here is that the distribution of the remainder U is very close to
the uniform distribution in the case of Y being normally distributed with standard
deviation one or more.

The remainder of this chapter is organized as follows: In Section 5.2 we provide
the distribution of the remainder U in the case of Y having a Lebesgue density f ,
define our measures of non-uniformity of this distribution and collect some basic
facts about the total variation of functions. The main results and examples are then
presented in Sections 5.3 and 5.4. All proofs are deferred to Section 5.5.

5.2 PRELIMINARIES

Throughout this chapter we assume that Y is a real random variable with cumula-
tive distribution function (c.d.f.) F and Lebesgue density f .

5.2.1 The Distribution of the Remainder U

The probability of U falling into a Borel set S ⊂ [0, 1) equals P (U ∈ S) =∑
n∈Z P (Y ∈ n+ S). This entails that the c.d.f. G of U is given by

G(x) := P (U ≤ x) =
∑
n∈Z

(F (n+ x)− F (n)) for 0 ≤ x ≤ 1,

while the corresponding density g equals

g(x) :=
∑
n∈Z

f(n+ x).

Note the latter equation defines a periodic function g : R → [0,∞], i.e., g(x + n)
= g(x) for arbitrary x ∈ R and n ∈ Z. Strictly speaking, a density of U is given
by I{0 ≤ x<1}g(x).

5.2.2 Measuring Non-Uniformity of U

We shall quantify the distance between the distribution of U and Unif[0, 1) by
means of the range of g,

R(g) := sup
x,y∈R

∣∣g(y)− g(x)
∣∣ ≥ sup

u∈[0,1]
|g(u)− 1|.

The latter inequality follows from supx∈R g(x) ≥
∫ 1

0
g(x) dx = 1 ≥ infx∈R g(x).

In addition we shall consider the Kuiper distance between the distribution of U
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and Unif[0, 1),

KD(G) := sup
0≤x<y≤1

∣∣G(y)−G(x)− (y − x)
∣∣

= sup
0≤x<y≤1

∣∣P (x ≤ U < y)− (y − x)
∣∣,

and themaximal relative approximation error,

MRAE(G) := sup
0≤x<y≤1

∣∣∣G(y)−G(x)

y − x
− 1

∣∣∣
= sup

0≤x<y≤1

∣∣∣P (x ≤ U < y)

y − x
− 1

∣∣∣.
Expressions (5.1–5.2) show that these distance measures are canonical in connec-
tion with Benford’s law. Note that KD(G) is bounded from below by the more
standard Kolmogorov–Smirnov distance,

sup
x∈[0,1]

|G(x) − x|,

and it is not greater than twice the Kolmogorov–Smirnov distance.
Any bound on R(g) entails bounds on KD(G) and MRAE(G):

Proposition 5.2.1. For arbitrary 0 ≤ x ≤ y ≤ 1,∣∣G(y)−G(x) − (y − x)
∣∣ ≤ (y − x)

(
1− (y − x)

)
R(g).

In particular,

KD(G) ≤ R(g)/4 and MRAE(G) ≤ R(g).

In connection with smooth densities f and g we shall utilize a refinement of
Proposition 5.2.1.

Proposition 5.2.2. Suppose that for some L(g) > 0 and arbitrary x, y ∈ [0, 1],∣∣g(x)− g(y)
∣∣ ≤ |x− y|(1− |x− y|)L(g).

Then for all 0 ≤ x ≤ y ≤ 1,∣∣G(y)−G(x) − (y − x)
∣∣ ≤ (y − x)

(
1− (y − x)

)
L(g)/6.

In particular,

KD(G) ≤ L(g)/24 and MRAE(G) ≤ L(g)/6.

5.2.3 Total Variation of Functions

Let us recall the definition of total variation (cf. Royden [Roy, chapter 5]): For
any interval J ⊂ R and a function h : J → R, the total variation of h on J is defined
as

TV(h, J) := sup
m∈N; t0<t1<···<tm; t0,...,tm∈J

m∑
i=1

∣∣h(ti)− h(ti−1)
∣∣.

In the case of J = R we just write TV(h) := TV(h,R).
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Example 5.2.3. Suppose that h is absolutely continuous with locally integrable
derivative h′, i.e.,

h(b)− h(a) =

∫ b

a

h′(x) dx for real numbers a < b.

Then

TV(h) =

∫
R

|h′(x)| dx.

Example 5.2.4. Another important special case is unimodal probability densities
f on the real line, i.e., f is non-decreasing on (−∞, μ] and non-increasing on
[μ,∞) for some real number μ. Here

TV(f) = 2f(μ).

Note that total variation may be decomposed as

TV(h, J) = TV+(h, J) + TV−(h, J)

with

TV±(h, J) := sup
m∈N; t0<t1<···<tm; t0,...,tm∈J

m∑
i=1

(
h(ti)− h(ti−1)

)±
and a± := max(±a, 0) for real numbers a. Here is a further useful fact in the case
of J = R.

Lemma 5.2.5. Let h : R → R with TV(h) < ∞. Then both limits h(±∞) :=
limx→±∞ h(x) exist. Moreover, for arbitrary x ∈ R,

h(x) = h(−∞) + TV+(h, (−∞, x]) − TV−(h, (−∞, x]).

In particular, if h(±∞) = 0, then TV+(h) = TV−(h) = TV(h)/2.

This standard result implies that any function h on the real line with TV(h) <
∞ is the difference of two non-decreasing and bounded functions. Furthermore,
lim|x|→∞ h(x) = 0 whenever both

∫ |h(x)| dx and TV(h) are finite.
A function h on the real line is called k ≥ 1 times absolutely continuous if

h ∈ Ck−1(R), and if its derivative h(k−1) is absolutely continuous. With h(k) we
denote some version of the derivative of h(k−1). To be more specific, the derivative
of an absolutely continuous function is a class of locally integrable functions that
differ pairwise only on nullsets. In particular, the derivative cannot be evaluated
pointwise. By the derivative of h we mean a function from the above equivalence
class.

Here is an important extension of Lemma 5.2.5 which we will prove in Sec-
tion 5.5.

Lemma 5.2.6. Let h be integrable and k ≥ 1 times absolutely continuous such
that TV(h(k)) < ∞ for some version of h(k). Then

lim
|x|→∞

h(j)(x) = 0 for j = 0, 1, . . . , k.
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5.3 ERROR BOUNDS IN TERMS OF TV(F )

Pinkham [Pin, corollary to Theorem 2] proved the inequality

sup
0≤x≤1

|G(x) − x| ≤ TV(f)/6

via Fourier techniques. Kemperman [Kemp] formulated the refined inequality

|G(x) − x| ≤ x(1 − x)TV(f)/2 ≤ TV(f)/8 for 0 ≤ x ≤ 1,

which is also a consequence of Corollary 5.3.2 below.

Theorem 5.3.1. Suppose that TV(f) < ∞. Then g is real valued with

TV(g, [0, 1]) ≤ TV(f) and R(g) ≤ TV(f)/2.

Combining this result with Proposition 5.2.1 yields error bounds for G:

Corollary 5.3.2. Under the conditions of Theorem 5.3.1, for 0 ≤ x < y ≤ 1,∣∣G(y)−G(x) − (y − x)
∣∣ ≤ (y − x)(1 − (y − x))TV(f)/2.

In particular,

KD(G) ≤ TV(f)/8 and MRAE(G) ≤ TV(f)/2.

Remark 5.3.3. The inequalities in Theorem 5.3.1 are sharp in the sense that for
each number τ > 0 there exists a density f such that the corresponding density g
satisfies

TV(g, [0, 1]) = TV(f) = 2τ and max
0≤x<y≤1

∣∣g(x)− g(y)
∣∣ = τ. (5.3)

A first class of examples, with continuous densities f and g, is as follows: Let f be
a probability density with f(0) = τ ∈ (0, 2] such that for all integers n ≥ 0,

f is

{
linear and non-increasing on [n, n+ 1/2],

constant on [n+ 1/2, n+ 1],

whereas for all integers n < 0,

f is

{
constant on [n, n+ 1/2],

linear and non-decreasing on [n+ 1/2, n+ 1].

Then f is unimodal with mode at zero, whence TV(f) = 2f(0) = 2τ . Moreover,
one verifies easily that g is linear on both [0, 1/2] and [1/2, 1] with g(0)− g(1/2)
= g(1) − g(1/2) = τ . Thus TV(g, [0, 1]) = 2τ as well. Figure 5.1 illustrates this
construction. The left panel shows a density f with f(0) = 0.4 = TV(f)/2, and
the right panel shows the resulting function g with TV(g, [0, 1]) = TV(f) = 0.8.

Example 5.3.4 (Uniform distributions). Another simple example is the uniform
density f(x) = I{0≤x<τ−1}τ . Writing τ−1 = m+ a for some integerm ≥ 0 and
a ∈ (0, 1], one can easily verify that

g(x) = mτ + τI{0≤x<a},
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Figure 5.1 A density f (left) and the corresponding g (right) such that TV(f) = TV(g).

and this implies (5.3), unless a = 1. Moreover,

G(x) =

{
(m+ 1)xτ for 0 ≤ x ≤ a,

(mx+ a)τ for a ≤ x ≤ 1,

and elementary calculations reveal that

KD(G) = a(1− a) τ = 4a(1− a)TV(f)/8,

MRAE(G) =max(a, 1− a) τ = max(a, 1− a)TV(f)/2 if 0 < a < 1.

Setting a = 1/2 (i.e., τ = (m+ 1/2)−1 for some integerm ≥ 0) yields KD(G) =
TV(f)/8, whereas TV(f)/4 ≤ MRAE(G) ≤ TV(f)/2 whenever 0 < a < 1.

Example 5.3.5 (Pareto and exponential distributions). We recall that if a posi-
tive random variable X has density h then Y = logB(X) has density f(y) =
By log(B) h(By). Now let X be Pareto distributed, i.e., h(x) = ax−a−1I{x≥1}
for some parameter a > 0. Then Y has density

f(y) = c exp(−cy)I{y≥0}

with c := a logB, i.e., Y is exponentially distributed with mean c. Since f is
unimodal with maximum at y = 0, its total variation is given by

TV(f) = 2f(0) = 2c.

Corollary 5.3.2 thus implies that

KD(G) ≤ c/4 and MRAE(G) ≤ c.

Hence the Pareto distributed r.v. X follows Benford’s law approximatively, pro-
vided that c = a logB is sufficiently small. Intuitively, this means that the realiza-
tions of Y are likely to be spread over a range of several powers of B.
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Here the c.d.f. G and density g of U = Y − �Y 	 can be determined explicitly:
For x ∈ [0, 1] and y ∈ [0, 1),

G(x) =
∑
n∈Z

(F (n+ x)− F (z)) = (1− e−cx)

∞∑
k=0

e−ck =
1− e−cx

1− e−c
, (5.4)

g(y) =
1− e−cy

1− e−c
. (5.5)

Since g is decreasing on [0, 1), the maximal relative approximation error equals

MRAE(G) = sup
0≤x<y≤1

∣∣∣G(y)−G(x)

y − x
− 1

∣∣∣ = sup
0≤ξ<1

|g(ξ)− 1|

= max
{
g(0)− 1, 1− g(1−)

}
=

e−c − 1 + c

1− e−c

=
c

2
+

c2

12
+O(c4).

Hence for small c, our general bound forMRAE(G) is sharp up to a factor close
to 2.

Example 5.3.6 (Danish fire insurance data). Let us illustrate Example 5.3.5 with
a famous data set consisting of 2167 losses of over one million Danish crowns in
1985. The loss figure is a total loss including damage to buildings, furniture, and
personal properties as well as loss of profits. These data were studied by several
authors and seem to follow a Pareto distribution, see e.g. Mikosch [Mik, 2004].
We estimated the parameter c = a log(10) by its maximum likelihood estimator
ĉ = 1/Ȳ ≈ 2.926. With this value we computed the theoretical frequencies of the
leading digits using formula (5.4). Figure 5.2 shows (from left to right) the em-
pirical, the (estimated) theoretical, and the Benford frequencies of the first leading
digits d = 1, . . . , 9. Obviously, the empirical and (estimated) theoretical frequen-
cies match very well. The Benford frequencies are quite different, which is not
surprising taking into account that ĉ is rather large.

5.4 ERROR BOUNDS IN TERMS OF TV(F (K))

The previous results are for the case of TV(f) being finite. Kemperman [Kemp] re-
alized already that there exist stronger bounds for smooth densities f . In particular,
he proposed the inequality

|G(x)− x| ≤ (
1− (2x− 1)4

)
TV(f (1))/64 for 0 ≤ x ≤ 1, (5.6)

and promised other bounds in terms of higher-order derivatives. We derive similar
inequalities which apply, for instance, to normal distributions.

Theorem 5.4.1. Suppose that f is k ≥ 1 times absolutely continuous such that
TV(f (k)) < ∞ for some version of f (k). Then g is Lipschitz-continuous on R.
Precisely, for x, y ∈ R with |x− y| ≤ 1,∣∣g(x)− g(y)

∣∣ ≤ |x− y|(1− |x− y|)TV(f (k))

2 · 6k−1
≤ TV(f (k))

8 · 6k−1
.
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Figure 5.2 Danish Fire Data: Bars from left to right indicate the empirical, the (estimated)
theoretical, and the Benford frequencies of the leading digits d = 1, 2, . . . , 9.

Combining this result with Proposition 5.2.2 leads to the following error bounds.

Corollary 5.4.2. Under the conditions of Theorem 5.4.1, for 0 ≤ x ≤ y ≤ 1,∣∣G(y)−G(x) − (y − x)
∣∣ ≤ (y − x)(1 − (y − x))

TV(f (k))

2 · 6k .

In particular,

KD(G) ≤ TV(f (k))

8 · 6k and MRAE(G) ≤ TV(f (k))

2 · 6k .

Remark 5.4.3 (Comparison with Kemperman’s bound). Since TV(f (1)) remains
unchanged when replacing f with f(· − x) for any x ∈ R, one can deduce from
(5.6) that∣∣G(y)−G(x) − (y − x)

∣∣ ≤ (
1− (2(y − x)− 1)4

)
TV(f (1))/64

for 0 ≤ x < y ≤ 1. This entails that

KD(G) ≤ TV(f (1))/64 and MRAE(G) ≤ TV(f (1))/8,

because sup0<u≤1(1− (2u− 1)4)/u = 8. Corollary 5.4.2 yields the inequalities

KD(G) ≤ TV(f (1))/48 and MRAE(G) ≤ TV(f (1))/12,

so (5.6) is stronger in terms of Kuiper distance but weaker in terms of relative
approximation errors.
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Remark 5.4.4 (Location-scale families). For the subsequent examples, the follow-
ing general consideration is useful. Let fo be a probability density on the real line
such that TV(f

(k)
o ) < ∞ for some integer k ≥ 0. For μ ∈ R and σ > 0 let

f(x) = fμ,σ(x) := σ−1fo
(
σ−1(x− μ)

)
.

Then one verifies easily that

TV(f (k)) = TV(f (k)
o )/σk+1.

Example 5.4.5 (Log-normal and normal distributions). For the standard normal
density φ(x) := (2π)−1/2 exp(−x2/2), elementary calculations reveal that

TV(φ) = 2φ(0) ≈ 0.7979,

TV(φ(1)) = 4φ(1) ≈ 0.9679,

TV(φ(2)) = 8φ(
√
3) + 2φ(0) ≈ 1.5100.

In general,

φ(k)(x) = Hk(x)φ(x)

with the Hermite-type polynomial

Hk(x) = exp(x2/2)
dk

dxk
exp(−x2/2)

of degree k. Via partial integration and induction one may show that∫
Hj(x)Hk(x)φ(x) dx = I{j=k}k!

for arbitrary integers j, k ≥ 0 (see for example [AbrSteg, 1964]). Hence the
Cauchy–Schwarz inequality entails that

TV(φ(k)) =

∫
|φ(k+1)(x)| dx

=

∫
|Hk+1(x)|φ(x) dx

≤
(∫

Hk+1(x)
2φ(x) dx

)1/2

·
(∫

φ(x) dx
)1/2

=
√
(k + 1)!.

These bounds yield the following results.

Theorem 5.4.6. Let f(x) = fμ,σ(x) = φ((x − μ)/σ)/σ for μ ∈ R and σ ≥ 1/6.
Then the corresponding functions g = gμ,σ andG = Gμ,σ satisfy the inequalities

R(gμ,σ) ≤ 4.5 · h(�36 σ2	),
KD(Gμ,σ) ≤ 0.75 · h(�36 σ2	),

MRAE(Gμ,σ) ≤ 3 · h(�36 σ2	),
where h(m) :=

√
m!/mm for integersm ≥ 1.
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Upper bounds for
σ h(�36 σ2	) R(gμ,σ) KD(Gμ,σ) MRAE(Gμ,σ)

0.5 0.03061 0.13773 0.02296 0.09182
0.6 0.00733 0.03299 0.00550 0.02199
0.7 6.5572 · 10−4 2.9508 · 10−3 4.9179 · 10−4 1.9672 · 10−3

0.8 3.5187 · 10−5 1.5834 · 10−4 2.6390 · 10−5 1.0556 · 10−4

0.9 1.8557 · 10−6 8.3505 · 10−6 1.3918 · 10−6 5.5670 · 10−6

1.0 5.9132 · 10−8 2.6610 · 10−7 4.4349 · 10−8 1.774 · 10−7

Table 5.1 Some bounds for X = BY with Y ∼ N (μ, σ2) (the normal distribution with
mean μ and variance σ2).

It follows from Stirling’s formula that h(m) = cmm1/4e−m/2 with cm →
(2π)1/4 as m→ ∞. In particular,

lim
m→∞

log h(m)

m
= − 1

2
,

so the bounds in Theorem 5.4.6 decrease exponentially in σ2. For σ between 0.5
and 1.0 we obtain already quite remarkable bounds; see Table 5.1.

Corollary 5.4.7. For an integer base B ≥ 2 let X = BY for some random vari-
able Y ∼ N (μ, σ2) with σ ≥ 1/6. Then for arbitrary digits d0, d1, d2, . . . in
{0, 1, . . . , B − 1} with d0 ≥ 1 and integers � ≥ 0,∣∣∣∣P

(
X has leading digits d0, . . . , d�

)
logB(1 +B−�/d(�))

− 1

∣∣∣∣ ≤ 3 · h(�36 σ2	),
where d(�) =

∑�
i=1 di ·B−i and h(m) :=

√
m!/mm for integersm ≥ 1.

Note that Corollary 5.4.7 provides an alternative proof of Theorem 3.2.2. More-
over, the quantity d introduced in Section 4.2 may be bounded by

0.75 · h (⌊36σ2/ log(10)
⌋)

and thus decreases exponentially as σ → ∞.

Example 5.4.8 (Weibull and Gumbel distributions). Let X > 0 be a random vari-
able withWeibull distribution, i.e., for some parameters γ, τ > 0,

P (X ≤ r) = 1− exp(−(r/γ)τ ) for r ≥ 0.

Then the standardized random variable Yo := τ log(X/γ) satisfies

Fo(y) := P (Yo ≤ y) = 1− exp(−ey) for y ∈ R

and has density function

fo(y) = ey exp(−ey), (5.7)

i.e., −Yo has a Gumbel distribution. Thus Y := logB(X) may be written as Y =
μ+ σYo with μ := logB(γ) and σ = (τ logB)−1.
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Elementary calculations reveal that for any integer n ≥ 1,

f (n−1)
o (y) = pn(e

y) exp(−ey)

with pn(t) being a polynomial in t of degree n. Precisely, p1(t) = t, and

pn+1(t) = t(p′n(t)− pn(t)) (5.8)

for n = 1, 2, 3, . . . . In particular, p2(t) = t(1 − t) and p3(t) = t(1 − 3t + t2).
These considerations lead already to the following conclusion:

Corollary 5.4.9. LetX > 0 have Weibull distribution with parameters γ, τ > 0 as
above. Then for the density function fo given by (5.7) we haveTV(f

(k)
o ) < ∞ and

∣∣∣∣P
(
X has leading digits d0, . . . , d�

)
logB(1 +B−�/d(�))

− 1

∣∣∣∣ ≤ 3 · TV(f (k)
o )

(τ logB
6

)k+1

for arbitrary integers k, � ≥ 0 and digits d0, d1, d2 . . . as in Corollary 5.4.7.

Explicit inequalities as in the Gaussian case seem to be out of reach. Never-
theless some numerical bounds can be obtained. Table 5.2 contains numerical
approximations for TV(f

(k)
o ) and the resulting upper bounds

βτ (k) := 3 · TV(f (k)
o )

(τ log 10

6

)k+1

for the maximal relative approximation error in Benford’s law with decimal expan-
sions, where τ = 1.0, 0.5, 0.3. Note that τ = 1.0 corresponds to the standard
exponential distribution. For a detailed analysis of this special case we refer to
Engel and Leuenberger [EngLeu, 2003] and Miller and Nigrini [MiNi2, 2008].
A final remark on the polynomials pn in this example: Writing

pn(t) =

n∑
k=1

(−1)k−1Sn,k tk,

it follows from the recursion (5.8) that the coefficients can be calculated inductively
via

S1,1 = 1, Sn,k = Sn−1,k−1 + kSn−1,k.

Hence theSn,k are Stirling numbers of the second kind; see Graham et al. [GrKnP,
1994, Chapter 6.1].
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k TV(f
(k)
o ) β1.0(k) β0.5(k) β0.3(k)

0 7.3576 · 10−1 8.4707 · 10−1 4.2354 · 10−1 2.5412 · 10−1

1 9.4025 · 10−1 4.1543 · 10−1 1.0386 · 10−1 3.7388 · 10−2

2 1.7830 3.0232 · 10−1 3.7790 · 10−2 8.1627 · 10−3

3 4.5103 2.9348 · 10−1 1.8343 · 10−2 2.3772 · 10−3

4 1.4278 · 10 3.5653 · 10−1 1.1142 · 10−2 8.6638 · 10−4

5 5.4301 · 10 5.2038 · 10−1 8.1309 · 10−3 3.7936 · 10−4

6 2.4118 · 102 8.8699 · 10−1 6.9296 · 10−3 1.9399 · 10−4

7 1.2252 · 103 1.7292 6.7546 · 10−3 1.1345 · 10−4

8 7.0056 · 103 3.7944 7.4110 · 10−3 7.4686 · 10−5

9 4.4527 · 104 9.2552 9.0383 · 10−3 5.4651 · 10−5

10 3.1140 · 105 2.4840 · 10 1.2129 · 10−2 4.4003 · 10−5

11 2.3763 · 106 7.2744 · 10 1.7760 · 10−2 3.8659 · 10−5

12 1.9648 · 107 2.3083 · 102 2.8177 · 10−2 3.6801 · 10−5

13 1.7498 · 108 7.8888 · 102 4.8150 · 10−2 3.7732 · 10−5

14 1.6698 · 109 2.8890 · 103 8.8166 · 10−2 4.1454 · 10−5

Table 5.2 Some bounds for Weibull-distributed X with τ ≤ 1.0, 0.5, 0.3. Minimal values
are indicated in boldface.

5.5 PROOFS

Proof of Propositions 5.2.1 and 5.2.2. Let 0 ≤ x < y ≤ 1 and δ := y−x ∈ (0, 1].
Then∣∣G(y)−G(x) − (y − x)

∣∣ =
∣∣∣∫ y

x

g(u) du− δ

∫ y

y−1

g(u) du
∣∣∣

=
∣∣∣(1− δ)

∫ y

x

g(u) du− δ

∫ x

y−1

g(u) du
∣∣∣

=
∣∣∣δ(1− δ)

∫ 1

0

(
g(x+ δt)− g(x− (1− δ)t)

)
dt
∣∣∣

≤ δ(1 − δ)

∫ 1

0

∣∣g(x+ δt)− g(x+ δt− t)
∣∣ dt

≤ δ(1 − δ)R(g).

If |g(u)− g(v)| ≤ |u− v|(1− |u− v|)L(g) for arbitrary u, v ∈ [0, 1], then∣∣G(y)−G(x) − (y − x)
∣∣ ≤ δ(1 − δ)

∫ 1

0

∣∣g(x+ δt)− g(x+ δt− t)
∣∣ dt

≤ δ(1 − δ)

∫ 1

0

t(1− t)L(g) dt

= δ(1 − δ)L(g)/6. �
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Proof of Lemma 5.2.6. Define h(k)(±∞) := limx→±∞ h(k)(x). If h(k)(+∞) �=
0, then one can show inductively for j = k − 1, k − 2, . . . , 0 that limx→∞ h(j)(x)
= sign(h(k)(+∞)) · ∞. Similarly, if h(k)(−∞) �= 0, then limx→−∞ h(j)(x) =
(−1)k−jsign(h(k)(−∞)) · ∞ for 0 ≤ j < k. In both cases we would get a
contradiction to h(0) = h being integrable over R.

Now suppose that lim|x|→∞ h(k)(x) = 0. It follows from Taylor’s formula that
for x ∈ R and u ∈ [−1, 1],

|h(x+ u)| =
∣∣∣∣k−1∑
j=0

h(j)(x)

j!
uj +

∫ u

0

h(k)(x+ v)(u − v)k−1

(k − 1)!
dv

∣∣∣∣
≥

∣∣∣k−1∑
j=0

h(j)(x)

j!
uj
∣∣∣− sup

|s|≥|x|−1

|h(k)(s)||u|k
k!

.

Hence ∫ x+1

x−1

|h(t)| dt ≥ |h(j)(x)|
j!

Aj,k−1 − 2 sup
|s|≥|x|−1

|h(k)(s)|
(k + 1)!

for any j ∈ {0, 1, . . . , k − 1}, where for 0 ≤ � ≤ m,

A�,m := min
a0,...,am∈R : a�=1

∫ 1

−1

∣∣∣ m∑
j=0

aju
j
∣∣∣ du > 0.

This shows that

|h(j)(x)| ≤ j!

Aj,k−1

(∫ x+1

x−1

|h(t)| dt+ 2 sup
|s|≥|x|−1

|h(k)(s)|
(k + 1)!

)
→ 0

as |x| → ∞. �

Proof of Theorem 5.3.1. For arbitrary m ∈ N and 0 ≤ t0 < t1 < · · · < tm ≤ 1,∑
n∈Z

m∑
i=1

∣∣f(n+ ti)− f(n+ ti−1)
∣∣ ≤ TV(f). (5.9)

In particular, for two points x, y ∈ [0, 1] with min(g(x), g(y)) < ∞, the difference
g(x)− g(y) is finite. Hence g < ∞ everywhere. Now it follows directly from (5.9)
that TV(g) ≤ TV(f). Moreover, for 0 ≤ x < y ≤ 1,(

g(y)− g(x)
)±

=
(∑
n∈Z

(
f(n+ y)− f(n+ x)

))±
≤

∑
n∈Z

(
f(n+ y)− f(n+ x)

)±
≤ TV±(f) = TV(f)/2,

where the latter equality follows from Lemma 5.2.5. �
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Proof of Theorem 5.4.1. Throughout this proof let x, y ∈ R be generic real
numbers with δ := y − x ∈ [0, 1]. For integers j ∈ {0, . . . , k} and N ≥ 1 we
define

g
(j)
N (x, y) :=

N∑
n=−N

(
f (j)(n+ y)− f (j)(n+ x)

)
.

Note that g(y)−g(x) = limN→∞ g
(0)
N (x, y) whenever g(x) < ∞ or g(y) < ∞. To

establish a relation between g(j)(·, ·) and g(j+1)(·, ·) note first that for absolutely
continuous h : R → R,

h(y)− h(x) = h(y)− h(x) − δ
(
h(y)− h(y − 1)

)
+ δ

(
h(y)− h(y − 1)

)
= δ(1− δ)

∫ 1

0

(
h′(x+ δt)− h′(x+ δt− t)

)
dt

+ δ
(
h(y)− h(y − 1)

)
;

see also the proof of Propositions 5.2.1 and 5.2.2. Hence for 0 < j ≤ k,

g
(j−1)
N (x, y) = δ(1− δ)

∫ 1

0

g
(j)
N (x+ δt, x+ δt− t) dt (5.10)

+ δ
(
f (j−1)(N + y)− f (j−1)(−N + y − 1)

)
.

Recall that lim|z|→∞ f (j)(z) = 0 for 0 ≤ j ≤ k by virtue of Lemma 5.2.6. In
particular, TV±(f (k)) = TV(f (k))/2 by Lemma 5.2.5. Hence

g
(k)
N (x, y) =

N∑
n=−N

(
f (k)(n+ y)− f (k)(n+ x)

)+
−

N∑
n=−N

(
f (k)(n+ y)− f (k)(n+ x)

)−
satisfies the inequality

∣∣g(k)N (x, y)
∣∣ ≤ TV(f (k))/2 and converges, as N → ∞, to a

limit g(k)(x, y). Moreover, it follows from (5.10) that∣∣g(k−1)
N (x, y)

∣∣ ≤ δ(1− δ)
TV(f (k))

2
+ 2‖f (k−1)‖∞

and, via dominated convergence,

lim
N→∞

g
(k−1)
N (x, y) = g(k−1)(x, y) := δ(1− δ)

∫ 1

0

g(k)(x+ δt, x+ δt− t) dt

with ∣∣g(k−1)(x, y)
∣∣ ≤ δ(1− δ)

∫ 1

0

∣∣g(k)(x+ δt, x+ δt− t)
∣∣ dt

≤ δ(1− δ)TV(f (k))/2.

Now we perform an induction step: Suppose that for some 1 ≤ j < k,∣∣g(j)N (x, y)
∣∣ ≤ α(j) < ∞
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and

g(j)(x, y) := lim
N→∞

g
(j)
N (x, y) exists with

∣∣g(j)(x, y)∣∣ ≤ δ(1− δ)β(j).

For j = k − 1 this is true with β(k−1) := TV(f (k))/2. Now it follows from (5.10)
and dominated convergence that∣∣g(j−1)

N (x, y)
∣∣ ≤ α(j) + 2‖f (j−1)‖∞

and

lim
N→∞

g
(j−1)
N (x, y) = g(j−1)(x, y) := δ(1− δ)

∫ 1

0

g(j)(x+ δt, x+ δt− t) dt,

where ∣∣g(j−1)(x, y)
∣∣ ≤ δ(1− δ)

∫ 1

0

∣∣g(j)(x+ δt, x+ δt− t)
∣∣ dt

≤ δ(1− δ)

∫ 1

0

t(1− t)β(j) dt

= δ(1− δ)β(j)/6.

These considerations show that g(0)(x, y) := limN→∞ g
(0)
N (x, y) always exists

and satisfies the inequality∣∣g(0)(x, y)∣∣ ≤ δ(1− δ)
TV(f (k))

2 · 6k−1
≤ TV(f (k))

8 · 6k−1
.

In particular, g is everywhere finite with g(y) − g(x) = g(0)(x, y) satisfying the
asserted inequalities. �

Proof of Corollary 5.4.2. For 0 ≤ x < y ≤ 1 and δ := y − x ∈ (0, 1],∣∣G(y)−G(x) − (y − x)
∣∣ =

∣∣∣δ(1− δ)

∫ 1

0

(
g(x+ δt)− g(x+ δt− t)) dt

∣∣∣
≤ δ(1 − δ)

TV(f (k))

2 · 6k−1

∫ 1

0

t(1− t) dt

= δ(1 − δ)
TV(f (k))

2 · 6k .
�

Proof of Theorem 5.4.6. According to Theorem 5.3.1,

R(gμ,σ) ≤ TV(fμ,σ)

2
=

TV(φ)

2σ
=

φ(0)

σ
,

whereas Theorem 5.4.1 and the considerations preceding Theorem 5.4.6 yield the
inequalities

R(gμ,σ) ≤ TV(f
(k)
μ,σ)

8 · 6k−1
=

TV(φ(k))

8 · 6k−1σk+1
≤

√
(k + 1)!

8 · 6k−1σk+1
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for all k ≥ 1. Since the right-hand side equals 0.75/σ ≥ φ(0)/σ if we plug in
k = 0, we may conclude that

R(gμ,σ) ≤
√
(k + 1)!

8 · 6k−1σk+1
= 4.5 ·

√
(k + 1)!

(36 σ2)k+1

for all k ≥ 0. The latter bound becomes minimal if k + 1 = �36 σ2	 ≥ 1, and this
value yields the desired bound 4.5 · h(�36 σ2	).

Similarly, Corollaries 5.3.2 and 5.4.2 yield the inequalities

KD(Gμ,σ) ≤
√
(k + 1)!

8 · 6kσk+1
= 0.75 ·

√
(k + 1)!

(36 σ2)k+1
,

MRAE(Gμ,σ) ≤
√
(k + 1)!

2 · 6kσk+1
= 3 ·

√
(k + 1)!

(36 σ2)k+1

for arbitrary k ≥ 0, and k + 1 = �36 σ2	 ≥ 1 leads to the desired bounds. �
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Chapter Six

Lévy Processes and Benfordʼs Law

Klaus Schürger1

Lévy processes (LPs) can be thought of as random walks in continuous time,
having independent and stationary increments. We assume throughout that the
characteristic function of the state of an LP at time 1 satisfies a certain “Standard
Condition” (SC). A certain subclass of stable LPs have the property that at all posi-
tive times their states have infinite variance. If their Lévy measure is non-zero, LPs
perform jumps. If an LP X (satisfying (SC)) does not have a Gaussian component,
then for each c > 0 the expected number of non-zero jumps of size less than c per-
formed by X on any time interval of positive length is infinite! Hence exponential
Lévy processes (ELPs) are attractive for modeling many phenomena, such as the
evolution of the price per share of a certain stock. (A special case of an ELP is
given by a geometric Brownian motion (also called a Black–Scholes process).) It
was already known to Benford that often the frequencies of leading digits of stock
market indices are well approximated by the corresponding probabilities given by
Benford’s law. This corresponds to a certain theoretical result in §6.3, which says
that within any ELP model the empirical frequencies of a given initial block of
digits converge a.s. to the probability of that block given by Benford’s law. An
analogous result holds in the continuous-time case, with the frequencies replaced
by normalized Lebesgue measures.

Using a certain variant of the Poisson Summation Formula (obtained in §6.6),
we arrive in §6.2 at convergence results for the expectations of certain normalized
functionals of the significand of an ELP. In §6.3 we obtain, using Azuma’s inequal-
ity for martingales, large deviation results for the above functionals. Combining
these with the results in §6.2 and the Borel–Cantelli Lemma yields the desired a.s.
convergence results. On the other hand, the just-mentioned large deviation results
allow for the construction of non-parametric tests based on certain leading digits of
some strictly positive continuous-time process Z which is observed at discrete time
points n = 1, . . . , T (T being a suitably chosen (finite) time horizon). The null
hypothesis being tested says that Z belongs to a specified class of ELPs. In §6.1 we
recall some basic notions (including infinite divisibility, the Lévy–Khintchin repre-
sentation, Lévy measures, martingales), and give examples of Lévy processes. In
§6.4 we obtain conditions which are sufficient for (SC).

1Department of Economics, University of Bonn, Adenauerallee 24-42, 53113 Bonn, Germany.
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6.1 OVERVIEW, BASIC DEFINITIONS, AND EXAMPLES

A geometric Brownian motion (also called a Black–Scholes process) being of
the form

Zt = Z0 exp
(
μt+ cWt − c2t/2

)
, t ∈ R+ (6.1)

(here, Z0 > 0, c > 0, and μ ∈ R are constants, and (Wt) is a (standard) Brow-
nian motion (or Wiener process) starting at 0) was introduced in [BlS, Mer] to
model the evolution of the price per share of a certain stock. The limited ability
of the process (Zt) (having continuous sample paths!) to reflect financial reality
has become clearer over the years. The (convincing) thesis of a recent book by
Cont and Tankov [ConT] is that jumps are needed in a model. On the other hand,
the logarithms of financial asset returns often show high variability which results
in heavy tails in the empirical distribution of returns (see, e.g., [ConT], page 6).
Thus, Merton [Mer2] was led to replace (Wt) in (6.1) by a certain Lévy process
of jump-diffusion type (see Example 6.1.22) to model prices exhibiting disconti-
nuities (see also [Lan]). The prototype of jump processes is the Poisson process
(see Example 6.1.20), ubiquitous in the modeling of actuarial and insurance prob-
lems. Poisson processes and Brownian motion stand at opposite ends of a spectrum
of processes forming the class of Lévy processes (see Definition 6.1.11) which
are discontinuous if their Lévy measure is non-zero. On the other hand, α-stable
(1 < α < 2) Lévy processes (Xt) have the property that, for all t > 0, Xt has an
infinite variance (see Example 6.1.24).

It was already known to Benford that often the frequencies of leading digits
of stock market indices are well approximated by the corresponding probabilities
given by Benford’s law. Similar results are reported in [PiTTV], and (for one-day
returns of certain indices) in [Ley] (see also [Hi4]). This corresponds to a certain
theoretical result in §6.3. In fact, based on large deviation results, we shall show
that if (Wt) in (6.1) is replaced by a more general Lévy process, then, under a
certain “standard condition” (see Definition 6.2.9), as n → ∞,

1

n
#{1 ≤ j ≤ n : DB,i (Zj) = di, i = 1, . . . ,m} → pB(d1, . . . , dm) a.s.

for any initial block (d1, . . . , dm) of (B-adic) digits such that 1 ≤ d1 ≤ B − 1.
Here, B (= 2, 3, . . . ) denotes a certain base, and the left-hand side is the relative
frequency of all j ≤ n such that the ith leading (B-adic) digit of Zj equals di for
i = 1, . . . ,m. The right-hand side is the probability of occurrence of the block
(d1, . . . , dm) under Benford’s law (base B); see (6.21), (6.23) below, and eq. (1.9)
in [Schür2], page 1221. An analogous result holds in the continuous-time case.

We now give a sketch of the content of this chapter. In this section we recall the
basic notions of characteristic functions, infinite divisibility, generating triples, the
Lévy–Khintchin representation, Lévy processes, . . . , and we give examples of basic
Lévy processes such as Brownian motion, Lévy processes of jump-diffusion type,
gamma and α-stable processes. Martingales play an important role in the (motivat-
ing) Example 6.1.32, and are essential for obtaining large deviation results in §6.3,
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which are used to get a.s. results for certain normalized functionals. In §6.2 we de-
rive results about the asymptotic behavior of the expectation of certain functionals
(including occupation time). In §6.4 we mention some conditions which are either
necessary or sufficient for the “domination” or “standard condition” introduced in
§6.2.

Using the large deviation results in §6.3, we construct certain non-parametric
tests in §6.5 which are based on the observation of leading digits of a certain pro-
cess. The null hypotheses tested are concerning, respectively, Lévy processes of
jump-diffusion type, gamma processes and α-stable processes. The derivation of
some theoretical results (including a variant of the Poisson Summation Formula) is
deferred to the first appendix to this chapter.

Definition 6.1.1 (Characteristic function). Assume that a (real-valued) random
variable ξ has distribution Q̃ (notation: ξ ∼ Q̃), i.e.,

P (ξ ∈ A) = Q̃(A) for all Borel sets A ⊂ R.

The characteristic function of ξ (or Q̃) is defined by

h(z) := E [exp (izξ)] =

∫
R

exp(izx) Q̃(dx), z ∈ R. (6.2)

Note that

|h(z)| ≤ 1 for all z ∈ R. (6.3)

One can show that two random variables with the same characteristic function
are identically distributed (see [Fel], page 508). Recall that L1(R) denotes the
family of all functions f : R −→ C which are (Borel) measurable and (Lebesgue)
integrable, i.e., ∫

R

|f(x)| dx < ∞. (6.4)

Example 6.1.2. It is almost immediate that, for each p > 0, cos (2πpz) is a charac-
teristic function. Using some basic properties of characteristic functions (see, e.g.,
[Fel], page 504), for arbitrary numbers α1 ≥ 0, α2 ≥ 0, . . . and a1 ≥ 0, a2 ≥
0, . . . such that a1 + a2 + · · · = 1, we have

h(z) :=

∞∑
k=1

ak (cos (2παkz))
2
, z ∈ R (6.5)

is a characteristic function.

Example 6.1.3. It follows from Pólya’s criterion (see [Fel], page 509) that

h∗(z) := (1− |z|)1[−1,1](z), z ∈ R (6.6)

is a characteristic function. Hence, by Example 6.1.2,

h̃(z) := (1− |z|)1[−1,1](z)
∞∑
k=1

2−k
(
cos

(
2π9kz

))2
, z ∈ R (6.7)

is a non-negative characteristic function in L1(R) which “wildly fluctuates” in the
sense that it has infinite total variation; for details see Definition 6.2.2 and Example
6.6.4.
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Definition 6.1.4 (Infinite divisibility). Let ξ be a (real-valued) random variable
having distribution Q̃ and characteristic function h. We say that ξ (or Q̃) is in-
finitely divisible if, for each n ≥ 2, there exist random variables ξn1, . . . , ξnn
being independent and identically distributed such that ξn1 + · · · + ξnn ∼ Q̃.
Equivalently, for each n ≥ 2 there exists a characteristic function hn such that
h = (hn)

n.

A series of examples of infinitely divisible distributions will be given later (start-
ing with Example 6.1.17).

For the formulation of a famous result due to Lévy and Khintchin (see [Kh,
Lév1]) which characterizes infinitely divisible distributions in terms of their char-
acteristic functions (see also [Ber, ConT, Ka, Sat2]) we need

Definition 6.1.5 (Generating triple; Lévy measure). By definition, a generating
triple (β, σ2, Q) consists of

• a real number β;

• a real number σ2 ≥ 0;

• a measure Q on (the Borel subsets of) R, called Lévy measure, such that

Q({0}) = 0 and
∫
R

(
x2 ∧ 1

)
Q(dx) < ∞. (6.8)

Remark 6.1.6. It is easy to show that a Lévy measure Q satisfies

Q (R \ (−α, α)) < ∞ for all α > 0. (6.9)

Theorem 6.1.7 (Lévy–Khintchin representation). Let ξ be a (real-valued) ran-
dom variable having distribution Q̃ and characteristic function h. Then we have

1. Q̃ is infinitely divisible iff there exists a (uniquely determined) generating
triple (β, σ2, Q) such that, for all z ∈ R,

h(z) = exp

[
iβz − σ2z2/2 +

∫
R

(
eizx − 1− izx1[−1,1](x)

)
Q(dx)

]
;

(6.10)

2. for each generating triple (β, σ2, Q), the right-hand side in (6.10) defines
the characteristic function of an infinitely divisible distribution.

Definition 6.1.8 (Cadlag function). By definition, a cadlag function f : R+ −→ R
is right-continuous and has (finite!) left limits.

The term “cadlag” is an acronym from the French phrase “continu à droite, lim-
ites à gauche,” meaning “continuous on the right, limits on the left.” If f is cadlag,
we denote the left-hand limit of f at t > 0 by f(t−), and put f(0−) := 0. Then

Δf(t) := f(t)− f(t−) is the (finite!) size of a jump of f at t ≥ 0. (6.11)

The following result collects some useful properties of cadlag functions.
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Proposition 6.1.9. Let f : R+ −→ R be cadlag. Then, for each bounded non-void
set A ⊂ R+ we have

1. f is bounded on A, i.e., sup
t∈A

|f(t)| < ∞.

2. for each r > 0, there exist only finitely many t ∈ A such that |Δf(t)| > r;

Hence, there are at most countably many t ∈ R+ such thatΔf(t) �= 0.

Proposition 6.1.9 is an easy consequence of

Lemma 6.1.10. Let f be cadlag. For each non-void set A ⊂ R+, let Ff (A) :=
sup{|f(s) − f(t)| : s, t ∈ A}. Then, for each a > 0 and ε > 0, there are points
0 = t0 < t1 < · · · < tn = a such that Ff ([tj−1, tj ]) ≤ ε for all j = 1, . . . , n.

For a proof of Lemma 6.1.10 see [Bi1], page 110. We are now prepared for the
central definition of this chapter.

Definition 6.1.11 (Lévy process). A (real-valued or one-dimensional) Lévy pro-
cess X = (Xt) (t ∈ R+) defined on a probability space (Ω,F , P ) has the follow-
ing properties:

1. X0 ≡ 0.

2. X has independent increments, i.e., for each n ≥ 2 and 0 = t0 < t1 <
· · · < tn, the increments Xtm −Xtm−1 (m = 1, . . . , n) are independent.

3. X has stationary increments, i.e., the distribution of the increment Xt −
Xs (0 ≤ s < t) only depends on t− s.

4. For each ω ∈ Ω, the sample path t �→ Xt(ω) is cadlag.

Let (Xt) be a Lévy process. Then, for each t ≥ 0, Xt is infinitely divisible. If X
is a given Lévy process, then, throughout this chapter (except for the appendices),
g denotes the characteristic function of X1.

Combining Theorem 6.1.7 and the remark following Definition 6.1.11 shows that
there exists a (uniquely determined) generating triple

(
β, σ2, Q

)
such that, for all

z ∈ R,

g(z) = exp

[
iβz − σ2z2/2 +

∫
R

(
eizx − 1− izx1[−1,1](x)

)
Q(dx)

]
. (6.12)

Then
(
β, σ2, Q

)
and Q are called, respectively, the generating triple and the Lévy

measure of g (or of X1 or of X). If σ2 > 0, then X is said to have a Gaussian
component.

Proposition 6.1.12 ([Sat2], Corollary 8.3). Let X be a Lévy process with gener-
ating triple

(
β, σ2, Q

)
. Then, the characteristic function gt of Xt (t > 0) has the

generating triple
(
tβ, tσ2, tQ

)
, and

|gt(z)| = |g(z)|t for all z ∈ R and t ≥ 0. (6.13)
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Concerning the existence of a Lévy process we have (see [Sat2], Corollary 11.6)

Theorem 6.1.13 (Existence of Lévy processes). Let Q̃ be an infinitely divisible
distribution. Then there exists a Lévy process X (defined on a suitable probability
space) such that X1 ∼ Q̃. X is uniquely determined up to identity in law, i.e., if
(Yt) is a Lévy process such that Y1 ∼ Q̃, then, for each n ≥ 1 and 0 ≤ t1 <
· · · < tn, the Rn-valued random vectors (Xt1 , . . . , Xtn) and (Yt1 , . . . , Ytn) have
the same distribution.

The following result shows that the Lévy measure of a Lévy process X has a
nice interpretation in terms of the size and the number of jumps of X ; see [ConT],
page 76. (For the Δ-notation see (6.11).)

Theorem 6.1.14 (Explicit expression for the Lévy measure). Let X be a Lévy
process with Lévy measure Q. Then, for each Borel set A ⊂ R,

Q(A) = E [#{0 < t ≤ 1 : ΔXt ∈ A \ {0}}]
= E [#{0 ≤ t ≤ 1 : ΔXt ∈ A \ {0}}] . (6.14)

More generally, for all c > 0 and s ≥ 0,

Q(A) = c−1E [#{s < t ≤ s+ c : ΔXt ∈ A \ {0}}]
= c−1E [#{s ≤ t ≤ s+ c : ΔXt ∈ A \ {0}}] . (6.15)

(Note that the second “=” in (6.14) follows from the first “=” since ΔX0 ≡ 0.)

By (6.15), Q(A) is the expected number, per unit time, of the (non-zero) jumps
of X , whose size belongs to A. Note that, by (6.15), the mean number of (non-
zero) jumps of X with size in A, occurring in a given time interval, is proportional
to the length of that interval. For a proof of (6.14) see [ConT]. The second “=” in
(6.15) follows from the first “=” in (6.15) by using the following (amazing) result
which says that a Lévy process has no fixed jumps. (A cadlag process (Yt) is said
to have a fixed jump at time t > 0 if P (ΔYt �= 0) > 0.)

Proposition 6.1.15. Let X be a Lévy process. Then

ΔXt = 0 a.s. for each t ∈ R+. (6.16)

Proof. Since ΔX0 ≡ 0, it suffices to consider t > 0. Clearly, (6.16) is equivalent
to

E [exp (izΔXt)] = 1 for all z ∈ R. (6.17)

Let X have the generating triple
(
β, σ2, Q

)
. By dominated convergence, the sta-

tionarity of the increments of X , and Proposition 6.1.12, we get that the expectation
in (6.17) equals

lim
s↑t

E [exp (iz (Xt −Xs))] = lim
s↑t

E [exp (izXt−s)]

= lim
s↑t

exp

(
(t− s)

[
iβz − σ2z2/2 +

∫
R

(
eizx − 1− izx1[−1,1](x)

)
Q(dx)

])
= 1 for all z ∈ R. �

The first “=” in (6.15) can be proved by applying (6.14) to another Lévy process
given in the following
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Remark 6.1.16. LetX be a Lévy process having Lévy measureQ. For fixed c > 0
and s ≥ 0, the processX∗ given byX∗

t := Xct+s −Xs (t ∈ R+) is easily seen to
be a Lévy process having Lévy measureQ∗ := cQ.

We now give a series of examples of Lévy processes and hence (see the remark
following Definition 6.1.11!) of infinitely divisible distributions.

Example 6.1.17. For fixed μ ∈ R let Xt ≡ μt (t ∈ R+) which is the most simple
Lévy process. Let μ �= 0. Even in this simple (deterministic!) case, the process

x(t) := a exp (Xt) = a exp (μt) , t ∈ R+ (a > 0) (6.18)

(which occurs, e.g., when a > 0 euros are continuously compounded with rate
μ) has interesting convergence properties related to Benford’s law; see Example
6.1.32 below. In order to give a precise formulation of the latter, we first introduce
some notation which will be used throughout this chapter.

Let B (= 2, 3, . . . ) be any base. For any strictly positive r, the (base B) sig-
nificand SB(r) of r and the jth (base B or B-adic) leading digit DB,j(r) of r
(j = 1, 2, . . . ) are analogously defined as in the case B = 10. (See also eq. (1.9)
in [Schür2], page 1221; recall that we prefer to call SB(r) the significand and not
the mantissa!)

For any base B ≥ 2 and m ≥ 1, let

IB(m) := {(d1, . . . , dm) : 1 ≤ d1 ≤ B − 1, 0 ≤ dj ≤ B − 1 for j = 2, . . . ,m}
(6.19)

(here, d1, . . . , dm are B-adic digits). For (d1, . . . , dm) ∈ IB(m) consider the half-
open interval

JB(d1, . . . , dm) :=

⎡⎣ m∑
j=1

djB
−j+1,

m∑
j=1

djB
−j+1 +B−m+1

⎞⎠ . (6.20)

Note that JB(d1, . . . , dm) ⊂ [1, B) and, for all r > 0,

DB,j(r) = dj for j = 1, . . . ,m ⇔ SB(r) ∈ JB(d1, . . . , dm). (6.21)

Let fB denote the density of (base B) Benford’s law (denoted by BL(B)), given
by

fB(x) = (x logB)−1
1[1,B)(x), x ∈ R (6.22)

(log denoting (as usual) the natural logarithm) and put, for (d1, . . . , dm) ∈ IB(m),

pB(d1, . . . , dm) :=

∫
JB(d1,...,dm)

fB(x) dx = logB

⎡⎢⎣1 +
⎛⎝ m∑

j=1

djB
m−j

⎞⎠−1
⎤⎥⎦ .

(6.23)

For m = 1 this gives

pB(d1) = logB ((d1 + 1)/d1) for d1 = 1, . . . , B − 1. (6.24)
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It follows from results in Example 6.1.32 below that, for all (d1, . . . , dm) ∈ IB(m),
as t → ∞,

1

t
Leb{0 ≤ u ≤ t : DB,j (x(u)) = dj , j = 1, . . . ,m} → pB(d1, . . . , dm)

(6.25)

(Leb denoting Lebesgue measure). For more details see Example 6.1.32 below.

Example 6.1.18 (Wiener process or Brownian motion). Recall that N(δ, σ̃2) de-
notes the normal distribution with mean δ ∈ R and variance σ̃2 > 0. A Wiener
process or (standard)Brownian motion (abbreviated BM), denoted throughout this
chapter byW = (Wt) (t ∈ R+), has the following properties:

1. W0 ≡ 0.

2. W has independent increments.

3. Wt −Ws ∼ N(0, t− s) for all 0 ≤ s < t.

4. All sample paths ofW are continuous.

The existence of a BM follows easily from a criterion due to Kolmogorov (see, e.g,
[RevYo], page 19). Clearly,W is a Lévy process. Since the characteristic function
gt ofWt is given by

gt(z) = exp
(−tz2/2

)
, z ∈ R, t ≥ 0, (6.26)

the generating triple
(
β, σ2, Q

)
ofW is given by β = 0, σ2 = 1, andQ ≡ 0.

Lemma 6.1.19. LetW be a BM. Then

1. for each s > 0, Wt+s −Ws (t ∈ R+) is a BM (time homogeneity);

2. (−Wt) is a BM (symmetry);

3. for every c > 0,
(
cWt/c2

)
is a BM (scaling property).

For a proof see [KaSh], page 104, or [RevYo], page 21.
A process of the form

Zt = Z0 exp
(
μt+ cWt − c2t/2

)
, t ∈ R+ (6.27)

where Z0 > 0, μ ∈ R, and c > 0 are constants, is called a Black–Scholes process
(or geometric Brownian motion) with parameters μ and c. It plays an important
role in stochastic finance. If Zt is modeling the price per share of a certain stock
at time t, then μ may be interpreted as the mean rate of return for the stock, and c2

may be interpreted as the variance of the rate of return (c is also called volatility).

Example 6.1.20 (Poisson process). A Poisson process N = (Nt) (t ∈ R+) with
parameter λ > 0, defined on (Ω,F , P ), has the following properties:

1. N0 ≡ 0.

2. N has independent increments.
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3. For 0 ≤ s < t, Nt−Ns has a Poisson distribution with parameter λ(t−s),
i.e.,

P (Nt −Ns = k) =
(λ(t− s))

k

k!
e−λ(t−s), k = 0, 1, 2, . . . . (6.28)

4. All sample paths of N are cadlag, piecewise constant, increase by jumps of
size 1, perform on each time interval only finitely many jumps, and satisfy

Nt(ω) → ∞ (t → ∞) for all ω ∈ Ω.

For an explicit construction of N see [ConT], page 48. Clearly, N is a Lévy pro-
cess. It is easy to see that the characteristic function gt of Nt is given by

gt(z) = exp
[
λt

(
eiz − 1

)]
, for all z ∈ R and t ≥ 0, (6.29)

which implies that the Lévy measure Q(λ) of N is given by

Q(λ)(A) =

{
λ if 1 ∈ A,

0 if 1 /∈ A,
for all Borel sets A ⊂ R, (6.30)

i.e., the total mass ofQ(λ) equals λ and is concentrated on {1}. It is easily checked
that the generating triple ofN equals

(
λ, 0, Q(λ)

)
.

Example 6.1.21 (Compound (CP-)process). Let ζ1, ζ2, . . . be independent and iden-
tically distributed random variables defined on (Ω,F , P ) such that the distribution
Q1 of ζ1 satisfies Q1({0}) = 0. We therefore may assume ζn(ω) �= 0 for all ω ∈ Ω
and n ≥ 1. Let (Nt) be a Poisson process with parameter λ > 0 such that the
processes

(ζn) (n ≥ 1) and (Nt) are independent of each other. (6.31)

Then the process

Tt :=

Nt∑
j=1

ζj (t ∈ R+) (6.32)

is called a compound Poisson (or CP-)process associated with λ and Q1. (Inter-
pretation: Imagine an insurance company and suppose that the number of acci-
dents by time t equals Nt. If, at the time of the kth accident, the company has to
pay the amount of ζk, then Tt equals the total payment of the company by time
t.) It can be shown that (Tt) is a Lévy process (see [Sat2], page 18) such that the
characteristic function gt of Tt is given by

gt(z) = exp

[
λt

∫
R

(
eizx − 1

)
Q1(dx)

]
for all z ∈ R and t ≥ 0, (6.33)

which implies that the generating triple of (Tt) is given by

(β, σ2, Q) =

(
λ

∫
[−1,1]

xQ1(dx), 0, λQ1

)
. (6.34)
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Example 6.1.22 (Lévy processes of jump-diffusion type). We can build a new Lévy
process from the processes in Examples 6.1.17, 6.1.18, and 6.1.21, assuming that
the processes

(Wt) , (ζt) , and (Nt) are independent of each other. (6.35)

Then, for constants α ∈ R and c > 0,

Xt := αt+ cWt +

Nt∑
j=1

ζj (t ∈ R+) (6.36)

is called a Lévy process of jump-diffusion type associated with α ∈ R, c > 0,
λ ≥ 0 (!), and Q1 (denoting the distribution of ζ1, satisfying Q1 ({0}) = 0; note
that we assume ζn(ω) �= 0 for all ω ∈ Ω and n ≥ 1). In the degenerate case λ = 0
we put Nt ≡ 0 for all t ≥ 0 which is suggested by (6.28). Combining (6.26) and
(6.33) it follows from (6.35) thatX1 has the characteristic function

g(z) = exp

[
iαz − c2z2/2 + λ

∫
R

(
eizx − 1

)
Q1(dx)

]
, z ∈ R. (6.37)

Lévy processes of jump-diffusion type have been used for modeling (log-)prices
on options markets exhibiting discontinuities (see [ConT, Lan, Mer2]). If at (ran-
dom!) time t0 (Nt) jumps from k to k + 1, X performs at t0 a jump of size ζk+1,
representing some rare event (e.g. some “crash”). If Q1 = N(δ, σ̃2), X is called a
Merton model (cf. [ConT, Mer2]); if Q1 is a double exponential distribution of
the form

Q1(dx) =
[
pλ+ exp(−λ+x)1(0,∞)(x)

+ (1− p)λ− exp(−λ−|x|)1(−∞,0)(x)
]
dx (6.38)

(where λ+ > 0, λ− > 0, and 0 ≤ p ≤ 1 are real constants), X is called a Kou
model (cf. [ConT, Kou, KouWa]).

Example 6.1.23 (Gamma process). Let f(·|α,Δ) be the density of a gamma dis-
tribution μα,Δ with parameters α > 0 andΔ > 0, given by

f(x|α,Δ) = αΔxΔ−1 exp(−αx)/Γ(Δ), x > 0 (6.39)

and f(x|α,Δ) = 0 for x ≤ 0. The characteristic function μ̂α,Δ of μα,Δ is given
by

μ̂α,Δ(z) =
(
1− iα−1z

)−Δ
, z ∈ R. (6.40)

Since ([Sat2], page 45) μ̂α,Δ can also be written in the form

μ̂α,Δ(z) = exp

[
Δ

∫ ∞

0

(eizx − 1)x−1e−αx dx

]
, z ∈ R, (6.41)

μα,Δ is infinitely divisible with Lévy measure Q given by

Q(dx) = Δx−1e−αx
1(0,∞)(x)dx. (6.42)

A gamma process with parameters α > 0 and Δ > 0 is a Lévy process X such
thatX1 ∼ μα,Δ. ThenXt ∼ μα,Δt (t > 0).
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Example 6.1.24 (Stable distribution; stable process). Let X be a Lévy process
such that X1 has an α-stable distribution Sα(γ, δ, τ) depending on parameters
0 < α < 2, γ ∈ R, δ ≥ 0, and −1 ≤ τ ≤ 1. The characteristic function hα of
Sα(γ, δ, τ) is of the form

hα(z) =

{
exp [iγz − δ|z|α(1 + iτ sign(z) tan(πα/2))] if α �= 1,

exp
[
iγz − δ|z|(1 + 2iτπ−1 sign(z) log|z|)] if α = 1,

(6.43)

where

sign(z) =

⎧⎪⎨⎪⎩
1 if z > 0,

0 if z = 0,

−1 if z < 0

(6.44)

(see, e.g., [Br], page 204, [SamTa], page 5, or [Shi], page 341). One can show
that Sα(γ, δ, τ) is infinitely divisible. The processX is called an α-stable process.
Furthermore, combining results in [SamTa], page 18, and [Sat2], page 159, yields
that (provided δ > 0)

E [|Xt|p] < ∞ for all t > 0 and 0 < p < α (6.45)

and

E [|Xt|p] = ∞ for all t > 0 and p ≥ α. (6.46)

This implies that, for all t > 0,Xt has an infinite variance if 1 < α < 2.

Martingales, being of fundamental importance in modern probability theory, will
appear in this section in the (hopefully!) motivating Example 6.1.32 below, and also
in §6.3 where they are used to obtain large deviation results for certain functionals.

We first need

Definition 6.1.25 (Filtration). Let I be an index set which is one of the sets R+,Z+

or {0, 1, . . . , N} for someN ≥ 1. By a filtration on a measurable space (Ω,F) we
mean a family of σ-algebras (Ft) (t ∈ I) such that Fs ⊂ Ft ⊂ F for all s, t ∈ I
such that s < t.

Definition 6.1.26 (Martingale). Let (Ft) (t ∈ I) be any filtration. A family of
random variables (ξt) (t ∈ I) defined on a probability space (Ω,F , P ) is called a
martingale with respect to (Ft) if the following three conditions hold:

(M1) Each ξt is integrable, i.e., E [|ξt|] < ∞.

(M2) (ξt) is adapted to (Ft), i.e., for each t ∈ I, ξt is Ft-measurable
meaning that {ξt ∈ A} ∈ Ft for all Borel sets A ⊂ R.

(M3) For all s, t ∈ I such that s < t,

E [ξt|Fs] = ξs a.s. (6.47)

Note that, by (M3) and (M1),

E [ξt] = E [ξ0] for all t ∈ I. (6.48)
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Example 6.1.27 (Partial sums of random variables as martingales). Let ξ0, ξ1, . . .
be a sequence of independent integrable random variables defined on (Ω,F , P )
and let

Fn := σ{ξ0, ξ1, . . . , ξn}, n ∈ Z+ (6.49)

denote the σ-algebra generated by ξ0, ξ1, . . . , ξn, i.e., Fn is the smallest sub-σ-
algebra of F such that ξ0, ξ1, . . . , ξn are all Fn-measurable. Let E [ξn] = 0 for
all n ≥ 1. Then, the partial sums Sn := ξ0 + ξ1 + · · · + ξn (n ∈ Z+) form a
martingale with respect to (Fn).

Example 6.1.28 (Exponential Lévy processes as martingales). Let X = (Xt) be
a Lévy process such that E [exp (Xt)] < ∞ for all t. Let (Ft) (t ∈ R+) be the
filtration generated byX, i.e.,

Ft := σ{Xs : s ≤ t}, t ∈ R+ (6.50)

(the definition of Ft being similar to that in (6.49)). Then the exponential Lévy
process (exp(Xt)) (t ∈ R+) is easily shown to be a martingale with respect to
(Ft) iff

E [exp (Xt)] = 1 for all t ∈ R+. (6.51)

(In order to prove (M3), write Xt = (Xt − Xs) + Xs and note that Xt − Xs is
independent of Fs.)

Example 6.1.29. Let the random variable ξ (defined on (Ω,F , P )) be integrable
and let (Ft) (t ∈ I) be any filtration. Then ξt := E [ξ|Ft] (t ∈ I) is a martingale
with respect to (Ft). In order to prove (M3) one uses the “iteration property” of
conditional expectations, which says that for any σ-algebras G1 ⊂ G2 ⊂ F ,

E [E [ξ|G2]G1] = E [ξ|G1] a.s. (6.52)

In the case I = {0, 1, . . . , N} (N ≥ 1) this example will be crucial when
applying Azuma’s Inequality in §6.3 (see proof of Theorem 6.3.4).

Theorem 6.1.30 (Exponential Lévy processes as martingales). Let (Xt) be a Lévy
process with a generating triple

(
β, σ2, Q

)
. Assume that∫

|x|≥1

eα|x|Q(dx) < ∞ for all α > 0. (6.53)

For each c > 0 let

μ(c) := −cβ − c2σ2/2−
∫
R

(
ecx − 1− cx1[−1,1](x)

)
Q(dx). (6.54)

Then we have that, for all c > 0,

(exp (cXt + μt)) (t ∈ R+) is a martingale iff μ = μ(c) (6.55)

(the filtration is the one generated byX).

Note that (6.53) holds e.g. if Q has compact support (use (6.9)).
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Proof of Theorem 6.1.30. We shall use that

E [exp (cXt)] < ∞ holds for all t ∈ R+ ⇔
∫
|x|≥1

ecxQ(dx) < ∞ (6.56)

(see [Sat2], page 159, or [Kr]). Let (for fixed t > 0) ψ1(z) := E [exp (izXt)]
and

ψ2(z) := exp

(
t

[
iβz − σ2z2/2 +

∫
R

(
eizx − 1− izx1[−1,1](x)

)
Q(dx)

])
.

By (6.53) and (6.8) one obtains, using the dominated convergence theorem, that
ψ1 and the argument of the exponential function defining ψ2 are, as functions of
z ∈ C(!) holomorphic on C. (To prove this, one verifies the Cauchy–Riemann
equations and shows that the partial derivatives involved are continuous; see, e.g.,
[StSh2], page 13.) Since ψ1 = ψ2 on R, we have ψ1 = ψ2 on C (see [StSh2], page
52). Hence, taking z = c/i, we get for c > 0 and t ≥ 0,

E [exp (cXt + μt)] = exp (t(μ− μ(c))) . (6.57)

Hence (6.55) follows from the result in Example 6.1.28.

Example 6.1.31. Let W = (Wt) be a BM. It follows easily from Theorem 6.1.30
that, for each c > 0,(

exp
(
cWt −c2t/2

))
(t ∈ R+) is a martingale, (6.58)

with the filtration given by (6.50) forX = W.

Note that the process in (6.58) is a geometric BM with parameters 0 and c (see
Example 6.1.18).

Example 6.1.32 (Motivation). For fixed a > 0 and μ �= 0 consider the (deter-
ministic!) process x(t) = a exp(μt) (t ∈ R+) as in (6.18). Choose any base
B ≥ 2. We shall show that, for each function G : [1, B] −→ R which is bounded
and measurable, that (as t → ∞)

1

t

∫ t

0

G(SB (x(u))) du →
∫ B

1

G(x)fB(x) dx (6.59)

where fB is the density of BL(B), given by (6.22). Choosing G := 1JB(d1,...,dm)

(for (d1, . . . , dm) ∈ IB(m) given by (6.19)), we obtain from (6.59), using (6.21),
that (as t → ∞)

1

t
Leb{0 ≤ u ≤ t : DB,j(x(u)) = dj , j = 1, . . . ,m} → pB(d1, . . . , dm)

(6.60)
(pB(d1, . . . , dm) given by (6.23)).

According to the usual approximation scheme it suffices to prove (6.59) for G =
1A (A ⊂ [1, B] being any Borel set).

First let μ > 0. Note that, for each integer j and t ≥ 0,

SB(x(t)) = aeμtB−j ⇔ j =

⌊
log(a exp(μt))

logB

⌋
=: n(t) (6.61)
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(�v	 (floor of v) denoting the largest integer ≤ v). Let n0 := 1 +
⌊

log a
logB

⌋
. Clearly

μ−1 log (Bn0/a) ≥ 0 and μ−1 log(Bn(t)/a) ≤ t. (6.62)

In the sequel let t ≥ μ−1 logB. Then n0 ≤ n(t). For each set A1 ⊂ R and α ∈ R,
we shall put

αA1 := {αã : ã ∈ A1} (6.63)

and, if A1 ⊂ (0,∞),

logA1 := {log ã : ã ∈ A1}. (6.64)

By (6.61), the left-hand side in (6.59) equals (as t → ∞)

1

t
Leb {0 ≤ u ≤ t : SB(x(u)) ∈ A}

= o(1) +
1

t

n(t)−1∑
j=n0

Leb
{
u : SB(x(u)) = aeμuB−j , SB(x(u)) ∈ A

}
= o(1) +

1

t

n(t)−1∑
j=n0

Leb
(
μ−1 log(a−1BjA)

)
= o(1) +

n(t)− n0

μt
(logB)

∫
A

fB(x) dx

= o(1) +

∫
A

fB(x) dx.

Hence, if μ > 0, (6.59) holds for general G. If μ < 0, the proof of (6.59) for
G = 1A can be based on the validity of (6.59) for μ > 0 and the fact that, for
all α > 0, either SB(α) = SB(1/α) = 1 or SB(α) · SB(1/α) = B. (Note that
the first alternative only occurs if α = Bm for some m ∈ Z.) This finishes the
proof of (6.59). Now let X be a Lévy process with generating triple

(
β, σ2, Q

)
and suppose Q satisfies (6.53). Note that the process Zt = a exp (cXt + μt) (for

a > 0, c > 0, and μ ∈ R) can be factorized as Zt = Z
(1)
t · Z(2)

t where Z
(1)
t :=

a exp ((μ− μ(c))t) , Z
(2)
t = exp (cXt + μ(c)t) (μ(c) given by (6.54)). Hence, if

μ �= μ(c), Z fluctuates around the (deterministic!) process Z(1) for which (6.59)
holds—due to factors forming a mean 1 martingale (recall (6.55) and (6.48)).

This suggests

Conjecture 6.1.33. Suppose that in (6.59) (x(t)) is replaced by a process of the
form

Zt = a exp (cXt + μt) (t ∈ R+) (6.65)

where a > 0, c > 0, and μ ∈ R are constants, andX is a Lévy process. Let B ≥ 2
be any base and let G : [1, B] −→ R be bounded and measurable. Then (under
certain assumptions onX), as t → ∞,

E

[
t−1

∫ t

0

G (SB(Zu)) du

]
→

∫ B

1

G(x)fB(x) dx (6.66)
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or even

t−1

∫ t

0

G (SB(Zu)) du →
∫ B

1

G(x)fB(x) dx a.s. (6.67)

Note that by dominated convergence, (6.66) is necessary for (6.67).

We shall prove (6.66) in §6.2, and (6.67) in §6.3—provided the characteristic
function g of X1 satisfies a certain “standard condition” (see Definition 6.2.9 in
§6.2). In particular, it follows from our results that (6.67) holds for a geometric
Brownian motion given by (6.27).

6.2 EXPECTATIONS OF NORMALIZED FUNCTIONALS

In this section we study the asymptotic behavior of the significand of the process

Zt := aθctXt+dt , t ∈ R+ (6.68)

which is slightly more general than the one in (6.65). Here, a > 0, θ > 0 (θ �=
1), ct, and dt (t ≥ 0) are real numbers, and we shall assume throughout that

ct ≥ c̃ > 0, t ≥ 0. (6.69)

Furthermore X is a real-valued Lévy process. Recall the convention that through-
out this chapter (except for the appendices)

g denotes the characteristic function ofX1.

If a base B ≥ 2 has (often tacitly!) been chosen, G : [1, B] −→ R denotes a
function which is bounded and measurable. Similarly as in (6.59) we investigate
the asymptotic behavior of the continuous-time functional

Lt :=

∫ t

0

G (SB(Zu)) du, t ∈ R+ (6.70)

where ct and dt (as functions of t) are assumed to be cadlag.
The discrete-time functional

L̃n :=

n∑
j=1

G (SB(Zj)) , n ∈ Z+ (6.71)

will be important for statistical applications in §6.5. If G = 1A for some Borel set
A ⊂ [1, B], (Lt) is the occupation time of A by the significand process (SB(Zt)),
given by

Lt = Leb{0 ≤ u ≤ t : SB(Zu) ∈ A}, t ∈ R+. (6.72)

In particular, for A = JB(d1, . . . , dm) (given by (6.20)) we obtain, using (6.21),
that

Lt = Leb{0 ≤ u ≤ t : DB,j(Zu) = dj , j = 1, . . . ,m}, t ∈ R+. (6.73)

The desired almost sure convergence results for the normalized functionals given
by (6.70) and (6.71), respectively, will be obtained in two steps. In the present
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section it is shown (assuming the Standard Condition (SC) introduced in Defini-
tion 6.2.9) that, given a base B, the expectations of the normalized functionals,

viz. E [Lt/t] and E
[
L̃n/n

]
, converge to E [G(ξ)] for ξ ∼ BL(B) (see Theorem

6.2.14). Here, the crucial tool is the Poisson Summation Formula (see Theorem
6.6.3 in Appendix 6.6). In §6.3 it will be shown (assuming (SC)) that the cen-

tered normalized functionals, viz. Lt/t− E [Lt/t] and L̃n/n− E
[
L̃n/n

]
, tend to

zero almost surely. (This follows from Theorem 6.3.4 combined with the Borel–
Cantelli Lemma.) Here, the basic tool is Azuma’s Inequality for discrete-time mar-
tingales with bounded increments (see Theorem 6.3.1). Combining the above re-
sults, we finally obtain that (Lt/t) and (L̃n/n) converge almost surely to E [G(ξ)]
for ξ ∼ BL(B) (see Theorem 6.3.5).

We shall also consider the mod p functionals (M∗
t ) (t ∈ R+) and (M̃n) (n ∈

Z+) which, for fixed p > 0, are defined as follows. Let H : [0, p] −→ R be
bounded and measurable and put

M∗
t :=

∫ t

0

H ((cuXu + du) mod p) du, t ∈ R+ (6.74)

and

M̃n :=

n∑
j=1

H ((cjXj + dj) mod p) , n ∈ Z+. (6.75)

Here X is a Lévy process, and ct, dt (t ≥ 0) are real numbers such that (6.69)
holds. In (6.74), ct and dt (as functions of t) are assumed to be cadlag. Using
a simple transformation (based on results in Lemma 6.2.1 below), large deviation
and convergence results for (Lt) and (L̃n) carry over to corresponding results for
(M∗

t ) and (M̃n), respectively. This shows (see Theorem 6.3.6 and Remark 6.3.9 in
§6.3) that, under the Standard Conditions (SC) (see Definition 6.2.2 below), Lévy
processes have nice equidistribution properties.

The transformation just mentioned is based on the fact that

logB SB(r) = (logB r) mod 1, r > 0 (6.76)

and, for α > 0 and p > 0,

α (r mod p) = (αr) mod (αp), r ∈ R. (6.77)

Using (6.76) and (6.77) one easily obtains

Lemma 6.2.1. Fix any base B ≥ 2 and p > 0. Let H : [0, p] −→ R be bounded
and measurable. DefineG : [1, B] −→ R by

G(x) := H (p logB x) , 1 ≤ x ≤ B (6.78)

and let

Zt := Bc∗tXt+d∗t , t ∈ R+ (6.79)

where c∗t = ct/p and d∗t := dt/p (t ∈ R+). Then

G (SB(Zt)) = H ((ctXt + dt) mod p) , t ∈ R+ (6.80)
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implying that Lt = M∗
t (t ≥ 0) and L̃n = M̃n (n ≥ 0). Furthermore we have∫ B

1

G(x)fB(x) dx = p−1

∫ p

0

H(y) dy. (6.81)

Throughout we shall assume that the characteristic function g of X1 satisfies
a certain “domination condition” which guarantees that the Poisson Summation
Formula holds (see Theorem 6.6.3 in Appendix 6.6).

Definition 6.2.2 (Domination Condition; total variation). The characteristic func-
tion g is said to satisfy the Domination Condition (D) if there exists a function g̃
on R such that

|g(z)| ≤ g̃(z) for all z ∈ R, (D1)

g̃ ∈ L1(R), (D2)

and

TV (g̃) < ∞. (D3)

Here, for a function ψ : R −→ C, TV(ψ) denotes the total variation of ψ (on R)
which, as usual, is defined by

TV(ψ) := sup

⎧⎨⎩
m∑
j=1

|ψ(zj+1)− ψ(zj)|
⎫⎬⎭ , (6.82)

the supremum taken over allm ≥ 1 and real numbers −∞ < z1 < · · · < zm+1 <
∞. The total variation of ψ on an interval is defined similarly.

Note that

TV(ψ) < ∞ ⇒ TV(|ψ|) < ∞. (6.83)

Remark 6.2.3. There exist characteristic functionsh satisfying (D) such thatTV(h)
= ∞ (see Example 6.6.4).

Remark 6.2.4. Assume that g satisfies (D). By (6.13) this implies that the charac-
teristic function gt of Xt (t ≥ 1) is integrable. Hence, by Fourier inversion (see
Appendix 6.6),Xt (t ≥ 1) has a density f̃t which is continuous and bounded.

Example 6.2.5 (Total variation of Brownian sample paths). Although the sample
paths of a BM (Wt) defined on (Ω,F , P ) are continuous, they show some very
“pathological” behavior. For example, it can be shown (see, e.g., [KaSh], page
106, or [RevYo], page 29) that, for almost all ω ∈ Ω, the sample path t �→ Wt(ω)
is of infinite total variation on each interval [a, b] (0 ≤ a < b < ∞)!

In order to obtain convergence results like (6.66) or (6.67), we have to assume a
“standard condition” (see Definition 6.2.9 below) being stronger than (D). For its
definition we need

Definition 6.2.6. The characteristic function g is said to satisfy condition (CF) if,
for some τ > 0,

lim
z→∞

zτ |g(z)| = 0. (CF(τ ))
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Remark 6.2.7. Assume that g satisfies (D), and let the density f be given by Fourier
inversion (see Appendix 6.6). Then g is the characteristic function of f , i.e., g(z) =∫
R
eizxf(x) dx, z ∈ R. Hence, by the Riemann–Lebesgue Lemma which holds

for arbitrary functions in L1(R) (see, e.g., [Bi3], page 345), g(z) → 0 (z → ∞)
which is weaker than (CF).

Example 6.2.8 (Lévy processes with Gaussian component). Assume that X has a
generating triple

(
β, σ2, Q

)
such that σ2 > 0. Then g satisfies (D) and (CF).

Definition 6.2.9 (Standard Condition). Let X be a Lévy process and let the num-
bers ct (t ∈ R+) be as in (6.69). We shall say that the Standard Condition (SC) is
satisfied if at least one of the following three conditions holds:

(SC1) g ∈ L1(R), and |g| is decreasing on R+.

(SC2) g satisfies (D), and ct = c̃ > 0 for all t ∈ R+.

(SC3) g satisfies (D) and (CF).

Note that (SC) ⇒ (D).

Example 6.2.10. Let X be a gamma process with parameters α > 0 andΔ > 1.
Then g satisfies (D) and (CF) (cf. Example 6.1.23).

Example 6.2.11 (α-stable distribution). Let hα (0 < α < 2) be the characteristic
function of an α-stable distribution (see Example 6.1.24). Then hα satisfies (D)
and (CF(τ )) for all τ > 0.

Remark 6.2.12. LetX = (Xt) be a Lévy process with generating triple (β, σ2, Q)
and denote (as above) by g the characteristic function of X1. The main conver-
gence results (Theorems 6.2.14 and 6.3.5) will be proved assuming the Standard
Condition (SC) which entails that

g ∈ L1(R). (6.84)

It is clear from Theorem 6.1.14 that X is continuous iff Q = 0 (see [Sat2], page
135). Then, by (6.84) and (6.134), we must have σ2 > 0 which means that X
has a Gaussian component. Now assume σ2 = 0. Since, by (6.134), |g(z)| ≥
exp (−2Q(R)), z ∈ R, it follows from (6.84) that Q(R) = ∞ which, by (6.9) is
equivalent to

Q([−α, α]) = ∞ for all α > 0. (6.85)

By Theorem 6.1.14, (6.85) implies that for each α > 0, the expected number, per
unit time, of (non-zero) jumps of size ≤ α, performed by X is infinite!

Lemma 6.2.13. Suppose g satisfies (D). Then, for any numbers a > 0, θ > 0 (θ �=
1), and c > 0, SB(aθ

cXt) (t ≥ 1) has a density which, for 1 ≤ x ≤ B, is given by

h̃t(x) := fB(x)
∞∑

j=−∞
exp

(
−2πij

log(x/a)

logB

)
gt

(
2πjc log θ

logB

)
. (6.86)

(Here, fB is the density of BL(B), given by (6.22), and gt is the characteristic
function ofXt.)
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Proof. Fix θ > 1 and t ≥ 1. For all 1 ≤ s ≤ B we have

SB(aθ
cXt) < s ⇔ Xt ∈

∞⋃
j=−∞

[aj(1), aj(s)) , (6.87)

where, for u ≥ 1, aj(u) := (c log θ)
−1

log
(
a−1Bju

)
. By Remark 6.2.4, Xt has a

density f̃t which is continuous and bounded. Hence, by (6.87),

P
(
SB(aθ

cXt) < s
)

=

∞∑
j=−∞

aj(s)∫
aj(1)

f̃t(x) dx, 1 ≤ s ≤ B. (6.88)

Substituting log y = cx log θ − log
(
a−1Bj

)
gives, for 1 ≤ s ≤ B,

P
(
SB(aθ

cXt) < s
)

=
1

c|log θ|
∞∑

j=−∞

∫ s

1

f̃t

(
j logB

c log θ
+

log(y/a)

c log θ

)
1

y
dy.

Since this also holds in the case 0 < θ < 1, we conclude that SB(aθ
cXt) has a

density h̃t given by

h̃t(x) :=
1

xc|log θ|
∞∑

j=−∞
f̃t

(
j logB

c log θ
+

log(x/a)

c log θ

)
, 1 ≤ x ≤ B (6.89)

for all θ > 0 (θ �= 1). Applying the Poisson Summation Formula (see Theorem
6.6.3) to f̃t and gt gives that, for all λ �= 0 and Δ ∈ R,

∞∑
j=−∞

f̃t

(
jπ

λ
+Δ

)
=

|λ|
π

∞∑
j=−∞

exp (−2ijΔλ) gt(2jλ). (6.90)

Choosing λ = (logB)
−1

πc log θ and Δ = (c log θ)
−1

log (x/a) (for fixed 1 ≤
x ≤ B) we obtain (6.86) from (6.89) and (6.90). �

In the sequel we put

‖G‖∞ := sup
1≤x≤B

|G(x)|. (6.91)

Theorem 6.2.14. Let the process (Zt) be given by (6.68).

1. Suppose g satisfies (D). Then we have, for each base B ≥ 2 that∣∣∣E [G (SB(Zt))]−
∫ B

1

G(x)fB(x) dx
∣∣∣

≤
∣∣∣ ∫ B

1

G(x)fB(x) dx
∣∣∣∑
j �=0

∣∣∣∣gt(2πjct|log θ|
logB

)∣∣∣∣
≤ 2‖G‖∞

∞∑
j=1

∣∣∣∣g(2πjct|log θ|
logB

)∣∣∣∣t , t ≥ 1. (6.92)
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2. Assume the Standard Condition (SC). Then we have, for all bases B ≥ 2, as
t → ∞,

E [G (SB(Zt))] →
∫ B

1

G(x)fB(x) dx (6.93)

which implies

E [Lt/t] →
∫ B

1

G(x)fB(x) dx (t → ∞) (6.94)

and

E
[
L̃n/n

]
→

∫ B

1

G(x)fB(x) dx (n → ∞). (6.95)

In particular (
w−→ denoting weak convergence),

SB(Zt)
w−→ BL(B) (t → ∞) (6.96)

or (equivalently), for allm ≥ 1 and (d1, . . . , dm) ∈ IB(m),

P (DB,j(Zt) = dj , j = 1, . . . ,m) → pB(d1, . . . , dm) (t → ∞) (6.97)

(pB(d1, . . . , dm) given by (6.23)).

Remark 6.2.15. Let the random variable ξB have density fB . It follows from
Theorem 6.2.14 (assuming (SC)) that

G (SB(Zt))
w−→ G (ξB) (t → ∞) (6.98)

for all functions G : [1, B] −→ R which are bounded and measurable. Exam-
ple 2.5 in [Schür2] suggests, however, that, in general, G (SB(Zt)) does not con-
verge in probability (as t → ∞).

Proof of Theorem 6.2.14.

1. Fix t ≥ 1. Using Lemma 6.2.13 and (6.13), we get, putting ã := aθdt ,∣∣∣E [G (SB(Zt))]−
∫ B

1

G(x)fB(x) dx
∣∣∣

=

∣∣∣∣∣
∫ B

1

G(x)h̃t(x) dx −
∫ B

1

G(x)fB(x) dx

∣∣∣∣∣
≤

∣∣∣∣∣
∫ B

1

G(x)fB(x) dx

∣∣∣∣∣
∣∣∣∣∣∑
j �=0

exp

(
−2πij

log (x/ã)

logB

)
gt

(
2πjct log θ

logB

) ∣∣∣∣∣
≤

∣∣∣∣∣
∫ B

1

G(x)fB(x) dx

∣∣∣∣∣∑
j �=0

∣∣∣∣∣gt
(
2πjct|log θ|

logB

) ∣∣∣∣∣
≤ 2‖G‖∞

∞∑
j=1

∣∣∣∣g(2πjct|log θ|
logB

)∣∣∣∣t .
2. The claim (6.93), following from (6.92) and Corollary 6.6.6, entails (6.95).

A similar argument yields (6.94). A well-known criterion for weak conver-
gence (see [Bi3], Theorem 25.8) shows that (6.93) implies (6.96). The equiv-
alence of (6.96) and the validity of (6.97) for all m ≥ 1 and (d1, . . . , dm) ∈
IB(m) follows from (6.21) and Theorem 25.8 in [Bi3].
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6.3 A.S. CONVERGENCE OF NORMALIZED FUNCTIONALS

Recall that if a base B ≥ 2 and a number p > 0 have (often tacitly!) been chosen,
G : [1, B] −→ R and H : [0, p] −→ R are functions which are bounded and mea-
surable. Recall the definitions of the functionals (Lt) and (L̃n) which are given
by

Lt :=

∫ t

0

G (SB(Zu)) du, t ∈ R+ (6.99)

((Zt) given by (6.68)), and

L̃n :=

n∑
j=1

G (SB(Zj)) , n ∈ Z+. (6.100)

We shall also study the mod p functionals (M∗
t ) and (M̃n) given by

M∗
t :=

∫ t

0

H ((cuXu + du) mod p) du, t ∈ R+ (6.101)

and

M̃n :=

n∑
j=1

H ((cjXj + dj) mod p) du, n ∈ Z+. (6.102)

If, in (6.99), G = 1A for some Borel set A ⊂ [1, B], then (Lt) is the occupation
time of A by (SB(Zt)) (cf. (6.72) and (6.73)).

We shall assume throughout that

ct ≥ c̃ > 0 for all t ∈ R+. (6.103)

In (6.99) and (6.101), ct and dt (as functions of t) are assumed to be cadlag.
It turns out that, due to large deviation results (assuming the Standard Condition

(SC)), the normalized functionals (Lt/t), (L̃n/n), (M∗
t /t), (M̃n/n) converge al-

most surely. In order to obtain the desired large deviation results, we shall need (for
proofs see [LedTa, McD, Schür1])

Theorem 6.3.1 (Azuma’s Inequality). Let ξ0, ξ1, . . . , ξN (N ≥ 1) be a martin-
gale such that

ξ0 = 0 a.s. (6.104)

Assume that there exist constants c̃1, . . . , c̃N such that

|ξn − ξn−1| ≤ c̃n a.s., n = 1, . . . , N. (6.105)

Then (putting exp(−∞) := 0)

P

(
max

0≤n≤N
|ξn| ≥ v

)
≤ 2 exp

(
− v2

2(c̃21 + · · ·+ c̃2N )

)
, v > 0. (6.106)

Remark 6.3.2. Azuma’s Inequality can also be applied to obtain large deviation
results for certain sequences of integrable random variables not being martingales.
In order to achieve this, one first tries to construct a suitable martingale to which
Theorem 6.3.1 applies (method of bounded differences (increments)). This idea is
used e.g. in the proof of Theorem 6.3.4 below (based on Example 6.1.29).
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In the sequel let (Ft) (t ∈ R+) be the filtration generated by the Lévy process
X occurring in (Zt), i.e.,

Ft := σ {Xs : s ≤ t} , t ∈ R+ (6.107)

(see Example 6.1.28). Note that F0 = {∅,Ω} which follows from Definition
6.1.11. Similarly, we denote by

F̃n := σ {Xm : m ≤ n} (n ∈ Z+) (6.108)

(see Example 6.1.27) the filtration generated by (Xn) (n ∈ Z+). Note that F̃0 =
{∅,Ω}.

The following result is crucial for the applicability of Azuma’s inequality in our
situation.

Proposition 6.3.3. Assume the Standard Condition (SC) (cf. Definition 6.2.9).
Then we have that

1. there exists a constant μ1 > 0 such that, for all 0 ≤ r < s ≤ t,

|E [Lt|Fs]− E [Lt|Fr]| ≤ 2 (s− r + μ1) ‖G‖∞ a.s.; (6.109)

2. there exists a constant μ̃1 > 0 such that, for all 0 ≤ k < m ≤ n,∣∣∣E[L̃n|F̃m]− E[L̃n|F̃k]
∣∣∣ ≤ 2 (m− k + μ̃1) ‖G‖∞ a.s. (6.110)

IfG is always non-negative or non-positive, the factor 2 in (6.109) and (6.110) can
be omitted. The constants μ1 and μ̃1 depend on g,B, θ, and c̃ if (SC1) or (SC2)
holds; if only (SC3) holds (g satisfying (CF(τ )), they depend also on τ .

The constants μ1 and μ̃1 above do not depend on a > 0 or dt (t ∈ R+), and they
depend on ct (t ∈ R+) only through the lower bound c̃ in (6.103).

Proof of Proposition 6.3.3. We only prove part 2. (This gives us an explicit upper
bound (see (6.114) below) which will be important for statistical applications in
§6.5. The proof of part 1 is similar to that of part 2 in that sums are replaced by
integrals, and Fubini’s theorem is used at a certain step.)

Fix 0 ≤ k < m ≤ n,N ≥ 1, and let

Vr := SB

(
aθcrXr+dr

)
, r = 1, 2, . . . .

Then, since L̃j is F̃s-measurable when j ≤ s,

E[L̃n|F̃m]− E[L̃n|F̃k]

= L̃m − L̃k +

n∑
r=m+1

E[G(Vr)|F̃m]−
n∑

r=k+1

E[G(Vr)|F̃k]

=

m∑
r=k+1

(G(Vr)− E[G(Vr)|F̃k])

+

n∑
r=m+1

(E[G(Vr)|F̃m]− E[G(Vr)|F̃k]) a.s.
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implying

|E[L̃n|F̃m]− E[L̃n|F̃k]|

≤ 2‖G‖∞(m− k +N − 1) +

∞∑
r=m+N

|E[G(Vr)|F̃m]− E[G(Vr)|F̃k]| a.s.

(6.111)

(Note that the factor 2 can be omitted if either G is always non-negative or if G is
always non-positive.) Using Theorem 6.7.1 gives, for r ≥ m+ 1, that

E[G(Vr)|F̃m] = Gr−m,r (Xm) a.s. (6.112)

and

E[G(Vr)|F̃k] = Gr−k,r (Xk) a.s. (6.113)

where, putting a(x) := aθxcr+dr (x ∈ R),

Gu,r(x) := E
[
G(SB(a(x)θ

crXu))
]
, x ∈ R, u = 1, 2, . . . .

(Here, we use that X has independent and stationary increments.) By Lemma
6.2.13 (noting that (SC) ⇒ (D)) we obtain (gu denoting the characteristic function
of Xu)

Gu,r(x)

=

∫ B

1

G(z)fB(z)

[ ∞∑
j=−∞

exp

(
−2πij

log (z/a(x))

logB

)
gu

(
2πjcr log θ

logB

)]
dz.

Using (6.13) we get for u ≥ 1, v ≥ 1, and x, y ∈ R, noting that |exp(iw)| = 1 for
all w ∈ R, and gβ = gαgβ−α for all 0 ≤ α ≤ β,

|Gu,r(x) −Gv,r(y)|

≤ ‖G‖∞
∑
j �=0

[∣∣∣∣gu(2πjcr|log θ|
logB

)∣∣∣∣+ ∣∣∣∣gv (2πjcr|log θ|
logB

)∣∣∣∣]

≤ 4‖G‖∞
∞∑
j=1

∣∣∣∣g(2πjcr|log θ|
logB

)∣∣∣∣u∧v
uniformly with respect to x, y ∈ R. Combining (6.111)–(6.113) yields (this will
also be needed for statistical applications in §6.5)

|E[L̃n|F̃m]− E[L̃n|F̃k]|

≤ ‖G‖∞
[
2(m− k +N − 1) + 4

∞∑
j=1

∞∑
r=N

∣∣∣∣g(2πjcr+m|log θ|
logB

)∣∣∣∣r
]

a.s.

(6.114)

(If G is always non-negative or non-positive, 2(m − k + N − 1) can be replaced
by m− k +N − 1.) Now, (6.109) follows from Corollary 6.6.6.

Combining Proposition 6.3.3 and Azuma’s Inequality gives the desired large de-
viation results for (Lt/t) and (L̃n/n):
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Theorem 6.3.4. Assume (SC) (see Definition 6.2.9). Let ‖G‖∞ > 0. Then we have
that

1. there exists a constantK1 > 0 such that, for all v > 0 and t ≥ 1,

P

(∣∣∣∣1t Lt − E

[
1

t
Lt

]∣∣∣∣ ≥ v

)
≤ 2 exp

(−K1v
2t
)
; (6.115)

2. there exists a constantK2 > 0 such that, for all v > 0 and n ≥ 1,

P

(∣∣∣∣ 1nL̃n − E

[
1

n
L̃n

]∣∣∣∣ ≥ v

)
≤ 2 exp

(−K2v
2n

)
. (6.116)

The constantsK1 andK2 depend on g,B, θ, c̃, and ‖G‖∞ if (SC1) or (SC2) holds;
if only (SC3) holds (g satisfying (CF(τ ))), they depend also on τ .

The constants K1 and K2 above do not depend on a > 0, dt (t ∈ R+), and they
depend on ct (t ∈ R+) only through the lower bound c̃ in (6.103).

Proof of Theorem 6.3.4.

1. Let t ≥ 1 be fixed. We apply Azuma’s Inequality to the martingale (cf.
Example 6.1.29)

ξm := E
[
Lt|Ft(m)

]− E [Lt] , m = 0, 1, . . . , N

(the filtration (Ft) given by (6.107)) where N := �t/μ1� and t(m) :=
mt/N , m = 0, 1, . . . , N . Here �v� (ceiling of v) is the smallest inte-
ger ≥ v, and μ1 occurs in Proposition 6.3.3. Since Lt is Ft-measurable,
ξN = Lt − E [Lt] a.s., and (since F0 = {∅,Ω}) ξ0 = 0 a.s. By Proposition
6.3.3 we have, for m = 1, . . . , N ,

|ξm − ξm−1| =
∣∣E [

Lt|Ft(m)

]− E
[
Lt|Ft(m−1)

]∣∣
≤ 2 (t/N + μ1) ‖G‖∞ =: c̃m a.s.

Now (since (α+ β)2 ≤ 2(α2 + β2) for all α, β ∈ R, and since t ≥ 1),

c̃21 + · · ·+ c̃2N = 4N (t/N + μ1)
2 ‖G‖2∞

≤ 8
(
t2/N +Nμ2

1

) ‖G‖2∞
≤ 8μ1 (μ1 + 2) ‖G‖2∞t =: K−1

1 t/2

which, by Azuma’s Inequality, implies (6.115).

2. Let n ≥ 1 be fixed. We apply Azuma’s Inequality to the martingale

ξm := E[L̃n|F̃m]− E[L̃n], m = 0, 1, . . . , n

(the filtration (F̃n) given by (6.108)). Clearly, ξn = L̃n − E[L̃n] a.s. and
ξ0 = 0 a.s. By Proposition 6.3.3 we have, for m = 1, . . . , N ,

|ξm − ξm−1| = |E[L̃n|F̃m]− E[L̃n|F̃m−1]|
≤ 2 (1 + μ̃1) ‖G‖∞ =: c̃m a.s.

Since c̃21+ · · ·+ c̃2n = 4(1+ μ̃1)
2‖G‖2∞n =: K−1

2 n/2, (6.116) follows from
Azuma’s Inequality.
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Combining Theorems 6.3.4 and 6.2.14 we obtain the following result which (be-
sides Theorem 6.3.4) is our main result about the functionals (Lt) and (L̃n).

Theorem 6.3.5. Assume (SC) (see Definition 6.2.9).

1. We have, as t → ∞,

1

t
Lt →

∫ B

1

G(x)fB(x) dx a.s. and in Lr(1 ≤ r < ∞) (6.117)

(the density fB given by (6.22)). In particular, as t → ∞,

1

t
Leb

{
0 ≤ u ≤ t : DB,j

(
aθcuXu+du

)
= dj , j = 1, . . . ,m

}
→ pB(d1, . . . , dm) a.s.

(6.118)

holds for eachm ≥ 1 and (d1, . . . , dm) ∈ IB(m) (pB(d1, . . . , dm) given by
(6.23)).

2. We have, as n → ∞,

1

n
L̃n →

∫ B

1

G(x)fB(x) dx a.s. and in Lr(1 ≤ r < ∞). (6.119)

In particular, for eachm ≥ 1 and (d1, . . . , dm) ∈ IB(m), as n → ∞,

1

n
#
{
1 ≤ j ≤ n : DB,i

(
aθcjXj+dj

)
= di, i = 1, . . . ,m

}
→ pB(d1, . . . , dm) a.s. (6.120)

(In part 1, we tacitly assume that ct and dt are cadlag (as functions of t).)

Proof. By Theorem 6.2.14,

E [Lt/t] →
∫ B

1

G(x)fB(x) dx (t → ∞).

Hence, for each v > 0 and 0 < ε < 1, there exists a number t0(v, ε) ≥ 1 such that,
for all t ≥ t0(v, ε), ∣∣∣∣∣E [Lt/t]−

∫ B

1

G(x)fB(x) dx

∣∣∣∣∣ ≤ εv.

By Theorem 6.3.4, this implies that, for all v > 0, 0 < ε < 1, and t ≥ t0(v, ε),

P

(∣∣∣1
t
Lt −

∫ B

1

G(x)fB(x) dx
∣∣∣ ≥ v

)
≤ 2 exp

(−K1(1 − ε)2v2t
)

which, by the first Borel–Cantelli Lemma, entails

Ln/n →
∫ B

1

G(x)fB(x) dx a.s. (n → ∞).
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This, in turn, implies (6.117) since |Lt − Ls| ≤ ‖G‖∞ for 0 ≤ s ≤ t ≤ s + 1.
Applying (6.117) to G := 1JB(d1,...,dm) (JB(d1, . . . , dm) given by (6.20)) proves
(6.118). Part 2 is proved in a similar fashion. �

Using a simple transformation (see results in Lemma 6.2.1) one obtains from
Theorems 6.2.14, 6.3.4, and 6.3.5 without extra work, large deviation and almost
sure convergence results for the mod p functionals (M∗

t ) in (6.101) and (M̃n) in
(6.102). This reveals that, under (SC), Lévy processes have nice equidistribution
properties.

Theorem 6.3.6. Assume (SC). Fix any p > 0 and H : [0, p] −→ R which is
bounded and measurable.

1. Then E [M∗
t /t] → p−1

∫ p

0 H(x) dx (t → ∞). (6.121)

2. Letting ‖H‖∞ > 0, then, for all v > 0 and t ≥ 1,

P

(∣∣∣∣1tM∗
t − E

[
1

t
M∗

t

]∣∣∣∣ ≥ v

)
≤ 2 exp

(−K3v
2t
)
. (6.122)

3. As t → ∞, then

M∗
t /t → p−1

∫ p

0

H(x) dx a.s. and in Lr(1 ≤ r < ∞). (6.123)

In particular, for each Borel set A ⊂ [0, p],

1

t
Leb {0 ≤ u ≤ t : Xu mod p ∈ A} → 1

p
Leb(A) a.s. (6.124)

The constantK3 > 0 only depends on g, p, c̃, and ‖H‖∞ if (SC1) or (SC2) holds;
if only (SC3) holds (g satisfying (CF(τ ))), it also depends on τ .

Corollary 6.3.7. Let (Wt) be a BM. Then, for each p > 0 and each Borel set
A ⊂ [0, p], as t → ∞,

1

t
Leb {0 ≤ u ≤ t : Wu mod p ∈ A} → 1

p
Leb(A) a.s. (6.125)

Remark 6.3.8. Fix p > 0. It is easily seen from Corollary 6.3.7 that there exists a
set Ωp ∈ F satisfying P (Ωp) = 0 such that for all intervals A ⊂ [0, p)

lim
t→∞

1

t
Leb {0 ≤ u ≤ t : Wu(ω) mod p ∈ A} =

1

p
Leb(A), ω /∈ Ωp.

(6.126)

Remark 6.3.9. The arguments which lead to Theorem 6.3.6 show that, under (SC),
(6.121)–(6.123) remain true for (M̃n/n) instead of (M∗

t /t). Instead of (6.124) we
have under (SC) that, for each Borel set A ⊂ [0, p], as n → ∞,

1

n
# {1 ≤ j ≤ n : Xj mod p ∈ A} → 1

p
Leb(A) a.s. (6.127)
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6.4 NECESSARY AND SUFFICIENT CONDITIONS FOR (D) OR (SC)

The following result gives a condition which is sufficient for (CF) (see also [Fel],
page 514).

Proposition 6.4.1. Let h be the characteristic function of some random variable ξ
such that h ∈ L1(R). Let f be the continuous and bounded density of ξ, which (by
Fourier inversion) is given by

f(x) =
1

2π

∫
R

e−izxh(z) dz, x ∈ R (6.128)

(see Appendix 6.6). Assume that f ′(x) exists and is finite for all but a countable set
of x ∈ R, and let f ′ ∈ L1(R). Then h satisfies (CF(1)).

Proof. Integration by parts yields, for n ≥ 1 and z �= 0,∫ n

−n

eizxf(x) dx =
1

iz

(
eiznf(n)− e−iznf(−n)

)− 1

iz

∫ n

−n

eizxf ′(x) dx

(cf. [HeSt], page 299). Combining (6.128) and the Riemann–Lebesgue Lemma
(see Remark 6.6.2) we obtain for z �= 0, that

zh(z) = z

∫ ∞

−∞
eizxf(x) dx = i

∫ ∞

−∞
eizxf ′(x) dx = o(1) as |z| → ∞.

�

In the sequel, X = (Xt) is a Lévy process such that
(
β, σ2, Q

)
is the generating

triple of the characteristic function g of X1. Recall that

Q ({0}) = 0 and
∫
R

(
x2 ∧ 1

)
Q(dx) < ∞. (6.129)

Proposition 6.4.2. 1. Assume σ2 > 0 (i.e., X has a Gaussian component).
Then g satisfies (D) and (CF(τ )) for all τ > 0.

2. Let σ2 = 0. Suppose there exists a constant ε1 > 0 such that, for some
z0 ≥ 1,

z2
∫

[−1/z,1/z]

x2Q(dx) ≥ ε1 log z for all z ≥ z0. (6.130)

Then g satisfies (CF(τ )) for all 0 < τ < 2ε1. If, moreover,

ε1 > 1/2, (6.131)

then g satisfies (D).

3. Let σ2 = 0. If g satisfies (D) or (CF), then

Q ([−α, α]) = ∞ for all α > 0 (6.132)

which (by (6.129)) is equivalent to

Q ([−1, 1]) = ∞. (6.133)
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In view of Theorem 6.1.14, the intuitive meaning of condition (6.130) is that X
performs, per unit time, “sufficiently many” jumps of small size.

Proof of Proposition 6.4.2.

1. By the Lévy–Khintchin representation, for z > 0,

|g(z)| = exp

[
−σ2z2/2 +

∫
R

(cos(zx)− 1) Q(dx)

]

≤ exp

⎡⎢⎣−σ2z2/2− z2

2

∫
[−π/z,π/z]

(
sin(zx/2)

zx/2

)2

x2 Q(dx)

⎤⎥⎦
(6.134)

which entails part 1.

2. Let σ2 = 0 and put, for τ > 0,

ψτ (z) := −τ log z +
z2

2

∫
[−π/z,π/z]

(
sin(zx/2)

zx/2

)2

x2Q(dx), z > 0.

Clearly, by (6.134),

ψτ (z) → ∞ (z → ∞) ⇒ g satisfies (CF(τ )). (6.135)

Since sinx is concave on [0, π/2], we have

sinα ≥ 2α/π for 0 ≤ α ≤ π/2. (6.136)

By (6.136) and (6.130), we get for z ≥ πz0 that

ψτ (z) ≥ −τ log z +
2z2

π2

∫
[−π/z,π/z]

x2Q(dx)

≥ (−τ + 2ε1 + o(1)) log z (as z → ∞)

which, by (6.135), proves the first claim. In order to prove the second claim,
note that, by (6.134), (6.136), and (6.130), for z ≥ πz0,

|g(z)| ≤ exp

⎡⎢⎣−2(z/π)2
∫

[−π/z,π/z]

x2Q(dx)

⎤⎥⎦ ≤ (z/π)
−2ε1

which entails that (D) is satisfied if (6.131) holds.

3. Let σ2 = 0. Note that, by (6.9),

Q(R \ (−α, α)) < ∞ for all α > 0. (6.137)

Hence, if Q([−α0, α0]) < ∞ for someα0 > 0, thenQ(R) < ∞. By (6.134),
this implies that |g(z)| ≥ exp (−2Q(R)) > 0 (z ≥ 0) which shows that g
satisfies neither (D) nor (CF). Clearly, by (6.137), (6.133) implies (6.132).
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Example 6.4.3. Let (X(α)
t ) (α > 0) be a Lévy process such that X(α)

1 has Lévy
measure Q(α) given by

Q(α)(dx) = αx−1
1(0,1](x)dx. (6.138)

Then, instead of (6.129), Q(α) satisfies the stronger moment condition∫
R

|x|Q(α)(dx) < ∞, α > 0. (6.139)

Since

z2
∫

[−1/z,1/z]

x2Q(α)(dx) = α/2, α > 0, z ≥ 1, (6.140)

Q(α) (α > 0) does not satisfy condition (6.130). Let σ2 = 0 and let h̃α denote

the characteristic function of X(α)
1 . Then h̃α /∈ L1(R) iff 0 < α ≤ 1. In fact, it is

easily seen (using (6.138)) that

|h̃α(z)| = exp

[
α

∫ z

0

cosx− 1

x
dx

]
, z ≥ 0. (6.141)

It is well known (cf. [GrRy], formula 3.782.1) that∫ z

0

cosx− 1

x
dx = −γ − log z −

∫ ∞

z

cosx

x
dx, z > 0 (6.142)

where γ = 0.5772 . . . is Euler’s constant defined by

γ := lim
n → ∞

(1 + 1/2 + 1/3 + · · ·+ 1/n− logn) .

Although the integrand on the right-hand side in (6.142) is not Lebesgue-integrable
on [z,∞) (z > 0), we get by partial integration∫ ∞

z

cosx

x
dx = − sin z

z
+

∫ ∞

z

sinx

x2
dx, z > 0. (6.143)

Combining (6.141)–(6.143) yields

|h̃α(z)| = (1 + o(1)) exp (−αγ) z−α (z → ∞) (6.144)

which implies that h̃α /∈ L1(R) iff 0 < α ≤ 1. Nevertheless, by (6.144), h̃α

satisfies (CF(τ )) for 0 < τ < α (α > 0), and it satisfies (D) iff α > 1. One can
show (see [FisVa, Sat1, Tuc] and [Sat2], page 177) that, for each α > 0 and t > 0,
X

(α)
t has a density.

It is interesting to compare this example with the following one.

Example 6.4.4. Let the characteristic function g ofX1 have the form

g(z) = exp

[∫
R

(
eizx − 1

)
Qr(dx)

]
, z ∈ R (6.145)

where the Lévy measure Qr (r > 0) is given by

Qr(dx) =
1

x

(
log

1

x

)r

1(0,1](x)dx. (6.146)
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Then Qr ((0, 1]) = ∞ and
∫ 1

0 xQr(dx) < ∞ (r > 0). It is easily seen that, for
each r > 1,

z2
∫

[−1/z,1/z]

x2Qr(dx) ≥ log z for all z ≥ exp
(
21/(r−1)

)
.

(In fact, for z ≥ 1, the left- hand side equals

z2
∫ 1/z

0

x (log(1/x))
r
dx ≥ z2 (log z)

r
∫ 1/z

0

x dx = 2−1 (log z)
r
.)

So, by Proposition 6.4.2, g satisfies (D) and (CF) if r > 1. It turns out that g
satisfies (D) and (CF) for all r > 0. In fact, estimating more carefully, one obtains
that

|g(z)| ≤ exp

(
1

2(r + 1)

)(
3π

2z

)(2(r+1))−1(log (2z/(3π)))r

, z ≥ 4π (6.147)

which shows that, for each r > 0, g satisfies (D) and (CF).

6.5 STATISTICAL APPLICATIONS

Suppose we observe some strictly positive continuous-time process Z = (Zt) and
want to test (based on observing certain leading digits of (Zt)) some null hypoth-
esis H0(c

∗) (c∗ > 0) saying that there exist constants c ≥ c∗, μ ∈ R, and Z0 > 0
such that (Zt) is of the form

Zt = Z0 exp (μt+ cXt), t ∈ R+ (6.148)
where (Xt) is a process which belongs to a certain class of Lévy processes all
satisfying (SC).

Fix any base B ≥ 2 and any block (d1, . . . , dm) ∈ IB(m) of leading digits. The
desired non-parametric test is then based on the observation of the leading digits
DB,1 (Zn) , . . . , DB,m (Zn) for n = 1, . . . , T , where T is a suitably chosen (finite)
time horizon. Let G occurring in the definition of L̃n (see (6.100)) be given by

G := 1JB(d1,...,dm) (6.149)
(see (6.20) and (6.21)). The simple idea is now to reject H0(c

∗) iff

|L̃T /T − pB(d1, . . . , dm)| ≥ v (6.150)

for some 0 < v < 1 which is chosen in advance. Here, L̃T /T is the rela-
tive frequency of time points n ≤ T such that (DB,1 (Zn) , . . . , DB,m (Zn)) =
(d1, . . . , dm). If H0(c

∗) is true, then (even for moderate values of T ), with high
probability, L̃T /T should be close to pB(d1, . . . , dm) given by (6.23) (this is sug-
gested by Theorems 6.3.4 and 6.3.5).

In order to construct the desired test, we shall need the following inequalities
(valid under H0(c

∗)):∣∣∣∣∣E
[
1

n
L̃(n)

]
− pB(d1, . . . , dm)

∣∣∣∣∣
≤ 2

n
pB(d1, . . . , dm)

∞∑
j=1

∞∑
r=1

∣∣∣∣g( 2πcr

logB

)∣∣∣∣j , n ≥ 1 (6.151)
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(this follows immediately from (6.92)) and, for 0 ≤ k < m ≤ n,∣∣∣E[L̃n|F̃m]− E[L̃n|F̃k]
∣∣∣

≤ m− k + 4
∞∑
j=1

∞∑
r=1

∣∣∣∣g( 2πcr

logB

)∣∣∣∣j a.s. (6.152)

(see (6.114); note that, in (6.151) and (6.152) we have that c ≥ c∗ > 0). In order for
(6.151) and (6.152) to become effective, assume that there exists a finite constant
Σ∗ such that

∞∑
j=1

∞∑
r=1

∣∣∣∣g( 2πcr

logB

)∣∣∣∣j ≤ Σ∗ (6.153)

holds whenever H0(c
∗) is true. By Azuma’s Inequality, we get, using (6.152) and

(6.153), that, for all v > 0 and n ≥ 1,

P

(∣∣∣∣ 1nL̃n − E

[
1

n
L̃n

]∣∣∣∣ ≥ v

)
≤ 2 exp

(
− v2n

2(1 + 4Σ∗)2

)
(6.154)

holds under H0(c
∗) (see proof of Theorem 6.3.4). Now choose an upper bound

0 < p0 < 1 for the probability of a Type I error (i.e., rejecting H0(c
∗) although

it is true) and specify the critical region determined by (6.150) by choosing some
0 < v < 1. Finally fix any 0 < ε < 1. Clearly, under H0(c

∗), by (6.151) and
(6.153), ∣∣∣E[L̃T /T ]− pB(d1, . . . , dm)

∣∣∣ ≤ εv (6.155)

provided

T ≥ 2pB(d1, . . . , dm)Σ∗

εv
=:

a1
ε
. (6.156)

Hence, if T satisfies (6.156), we obtain from (6.154) and (6.155) that

P

(∣∣∣∣ 1T L̃T − pB(d1, . . . , dm)

∣∣∣∣ ≥ v

)
≤ 2 exp

(
− (1− ε)2v2T

2(1 + 4Σ∗)2

)
. (6.157)

Assuming (6.156) and

2 exp

(
− (1− ε)2v2T

2(1 + 4Σ∗)2

)
≤ p0

or (equivalently)

T ≥ 2(1 + 4Σ∗)2 log (2/p0)
(1 − ε)2v2

=:
a2

(1 − ε)2
, (6.158)

the level of significance of the test equals p0. Clearly, the maximum (a1ε
−1) ∨

(a2(1− ε)−2) as a function of 0 < ε < 1 is minimal if a1ε−1 = a2(1− ε)−2. One
of the two solutions of this equation is located in (0, 1), and is given by

ε0 := 1 +
a2
2a1

−
√(

1 +
a2
2a1

)2

− 1. (6.159)

This proves (extending a result in [Schür2])
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Proposition 6.5.1. Let the time horizon T satisfy

T ≥ a1
ε0

= a1 +
a2
2

+

√(
a1 +

a2
2

)2

− a21. (6.160)

Then the level of significance of the above test equals p0. In particular, since the
right-hand side in (6.160) gets smaller if a1 is getting smaller,

T ≥ a2. (6.161)

(Note that a2 does not depend on (d1, . . . , dm)!)

Example 6.5.2 (Lévy processes of jump-diffusion type). Recall (compare Example
6.1.22) that a Lévy process of jump-diffusion type is of the form

Xt = αt+ cWt +

Nt∑
j=1

ζj , t ∈ R+ (6.162)

(see, e.g., [ConT], page 111, or [Lan], page 289). Here, c > 0 and α are real
numbers, (Wt) is a BM, and (Nt) is a Poisson process with parameter λ ≥ 0. (In
the degenerate case λ = 0 we put Nt ≡ 0 for all t ∈ R+.) Finally, ζ1, ζ2, . . .
are independent and identically distributed random variables. Additionally it is
assumed that the three processes (Wt), (ζn), and (Nt) are independent of each
other. Let ζ1 ∼ Q1 (assuming that Q1 ({0}) = 0). By Example 6.1.22, (Xt) is a
Lévy process such thatX1 has the characteristic function

g(z) = exp

[
iαz − c2z2/2 + λ

∫
R

(
eizx − 1

)
Q1(dx)

]
, z ∈ R. (6.163)

By Proposition 6.4.2, g satisfies (D) and (CF(τ )) for all τ > 0.

Suppose we observe the process

Zt = Z0 exp (Xt) , t ∈ R+ (6.164)

where Z0 > 0 (X given by (6.162)), i.e., in (6.148), μ = 0 and c = 1. So we have
to estimate the double series in (6.153) for c = 1(!). Note that if, for the process in
(6.162), λ = 0 and α = μ− c2/2, then the process in (6.164) is a Black–Scholes
process with parameters μ and c. Now we want to test H0(c

∗) (c∗ > 0) which
says that there exist α ∈ R, c ≥ c∗, λ ≥ 0, and a distribution Q1 on R (satisfying
Q1 ({0}) = 0) such that X (in (6.164)) is a Lévy process of jump-diffusion type
associated with α, c, λ, and Q1. (Note that, here,H0(c

∗) is a null hypothesis which
differs from that at the beginning of this section!) In order to estimate the double
series in (6.153) (for c = 1(!)), first note that, by (6.163),

|g(z)| = exp

[
−c2z2/2 + λ

∫
R

(cos(zx)− 1)Q1(dx)

]
≤ exp

(−c2z2/2
)
.

Hence,

∞∑
j=1

∞∑
k=1

∣∣∣∣∣g
(

2πk

logB

)∣∣∣∣∣
j

≤
∞∑
j=1

∞∑
k=1

exp

[
−2j

(
cπk

logB

)2
]
.
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Using inequality (6.165) in Lemma 6.5.4 below gives that, under H0(c
∗), the last

double series is not greater than

(π + 2)

(
logB

2πc∗

)2

=: Σ∗.

By (6.156) and (6.158), this yields

a1 =
(π + 2)pB(d1, . . . , dm)(logB)2

2π2(c∗)2v
,

a2 =
2
[
1 + (π + 2)(logB)2/(πc∗)2

]2
log (2/p0)

v2
.

(In [Schür2] this was obtained for a much stronger null hypothesis.)
For a numerical example choose B = 10, c∗ = 1, p0 = v = 0.1, m = 1, and

d1 = 1. Then pB(d1) = log10 2 (see (6.24)), a1 = 4.1573, and a2 = 8479.6677.
Hence, by (6.160), the time horizon T has to satisfy T ≥ 8488. Even if we choose
a much longer block of leading digits, by (6.161), we must use at least 8480 obser-
vations!

Remark 6.5.3. For the test above it turns out that it pays out much less than (per-
haps) expected to base the test on a long block (d1, . . . , dm) of leading digits in
order to reduce the number of observations. Apparently the reason for this is that
the upper bound in (6.154) does not depend on (d1, . . . , dm) which, in turn, is due
to the fact that the upper bound in (6.116) depends on G only through ‖G‖∞.
Lemma 6.5.4. If a > 0 and α > 1, then

∞∑
j=1

∞∑
k=1

exp (−ajkα) ≤ 1

a

[
1 +

π/α

sin (π/α)

]
. (6.165)

Proof. Comparing with a suitable Riemann integral gives that the inner series is
not greater than

exp (−aj)
[
1 + α−1a−1/αΓ(1/α)j−1/α

]
.

Comparing again with a certain Riemann integral and using that

Γ(1/α)Γ(1− 1/α) =
π

sin (π/α)

(see [Iw] or [StSh2], page 164) finally yields (6.165). �

Example 6.5.5 (Gamma processes). Suppose we want to test the null hypothesis
H0(c

∗, α∗,Δ∗) (c∗ > 0, α∗ > 0,Δ∗ > 1) which says that there exist numbers
c ≥ c∗, μ ∈ R, 0 < α ≤ α∗, and Δ ≥ Δ∗ such that the observed process (Zt)
is as in (6.148) where (Xt) is a gamma process with parameters α and Δ (see
Example 6.1.23). Then the characteristic function g of X1 satisfies (D) and (CF)
(see Example 6.2.10), and

|g(z)| = (1 + (z/α)2)−Δ/2, z ∈ R.
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In the sequel we put λ(B) := [2πc∗/(α∗ logB)]
2. Under H0(c

∗, α∗,Δ∗), the
double series in (6.153) is not greater than

∞∑
j=1

∞∑
k=1

(1 + λ(B)k2)−Δ∗j/2 ≤
∞∑
k=1

1

(1 + λ(B)k2)Δ∗/2 − 1

≤ 1

(1 + λ(B))Δ∗/2 − 1
+

∫ ∞

1

dx

(1 + λ(B)x2)Δ∗/2 − 1
=: Σ∗.

For a numerical example choose B = 10, c∗ = α∗ = 1, Δ∗ = 2, p0 = v = 0.1,
m = 1, and d1 = 1. Then λ(10) = 7.4461, Σ∗ = 0.2686, a1 = 1.6171, and
a2 = 2578.2083. Hence, by (6.160), the time horizon T has to satisfy T ≥ 2582.

Example 6.5.6 (α-stable Lévy processes). Suppose we want to testH0(c
∗, α∗, δ∗)

(c∗ > 0, 1 < α∗ < 2, δ∗ > 0) which says that the observed strictly positive
continuous-time process (Zt) is of the form

Zt = Z0 exp (μt+ cXt) , t ∈ R+

for constants c ≥ c∗, μ ∈ R, and Z0 > 0, and, furthermore, (Xt) is an α-stable
Lévy process for some α∗ ≤ α < 2 and certain parameter values γ ∈ R, δ ≥ δ∗,
and −1 ≤ τ ≤ 1 such that

X1 ∼ Sα(γ, δ, τ). (6.166)

Here, Sα(γ, δ, τ) is an α-stable distribution with parameters γ, δ, and τ (see Ex-
ample 6.1.24). Let hα (as in (6.43)) denote the characteristic function of Sα(γ, δ, τ).
It follows from (6.43) that, underH0(c

∗, α∗, δ∗), the double series in (6.153) is not
greater than

∞∑
j=1

∞∑
k=1

exp

(
−δ∗j

(
2πc∗k
logB

)α)
=

∞∑
j=1

∞∑
k=1

exp (−ajkα)

where a := δ∗( 2πc∗
logB )α. By Lemma 6.5.4, the last double series is not greater than

1

a

[
1 +

π/α

sin (π/α)

]
≤ 1

δ∗

(
logB

2πc∗

)α [
1 +

π/α∗

sin (π/α∗)

]
since x(sinx)−1 is increasing on (π/2, π). Assume

logB ≤ 2πc∗. (6.167)

Then, underH0(c
∗, α∗, δ∗), we can choose in (6.153)

Σ∗ :=
1

δ∗

(
logB

2πc∗

)α∗ [
1 +

π/α∗

sin (π/α∗)

]
.

For a numerical example, choose B = 10, c∗ = δ∗ = 1, α∗ = 1.5, p0 = v = 0.1,
m = 1, and d1 = 1. Then (6.167) holds. We calculate Σ∗ = 0.7584, a1 = 4.5660,
a2 = 9748.0703 which, by (6.160), gives T ≥ 9758.
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6.6 APPENDIX 1: ANOTHER VARIANT OF POISSON SUMMATION

We shall obtain the Poisson Summation Formula under sufficient conditions for-
mulated in terms of characteristic functions. This case is particularly useful when
dealing with an infinitely divisible distribution which, by the Lévy–Khintchin rep-
resentation, is given by the generating triple of its characteristic function.

Let g be the characteristic function of some random variable ξ. Suppose g ∈
L1(R). By Fourier inversion, this implies that ξ has a density f given by

f(x) =
1

2π

∫ ∞

−∞
e−ixzg(z) dz, x ∈ R (6.168)

which is continuous and bounded (cf. [Fel], page 509, or [Kat], page 158). In [Fel],
page 630, the following variant of the Poisson Summation Formula is obtained:

Theorem 6.6.1. Let g be a characteristic function such that g ∈ L1(R), and let the
density f be given by (6.168). Let λ �= 0 be a real number such that the function

H1(s) :=

∞∑
k=−∞

g(s+ 2λk), s ∈ R (6.169)

is continuous. Then

H1(s) =
π

|λ|
∞∑

k=−∞
f

(
kπ

λ

)
exp

(
iπks

λ

)
, s ∈ R (6.170)

where the sums in (6.169) and (6.170) are defined by

∞∑
k=−∞

:= lim
N→∞

∑
|k|≤N

.

Remark 6.6.2.

1. In [Fel] only the case λ > 0 is considered. Clearly (6.170) also holds in the
case λ < 0.

2. Note that the function H1 in (6.169) has period 2|λ|. This follows from the
Riemann–Lebesgue Lemma which holds for arbitrary functions in L1(R) (cf.
[Bi3], page 345, or [Kat], page 155.

3. For other conditions which are sufficient for the Poisson Summation Formula
see [StSh1], page 154, or [Zy], Vol. I, page 68.

We have repeatedly used the following variant of the Poisson Summation For-
mula which is a straightforward consequence of Theorem 6.6.1 (fn∗ denoting the
n-fold convolution of the density f ):

Theorem 6.6.3 (Poisson Summation Formula). Let g be a characteristic function
satisfying the Domination Condition (D) (see Definition 6.2.2), and let f be the
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density given by (6.168). Then, for all real numbers λ �= 0,Δ, and integers n ≥ 1,

∞∑
k=−∞

exp (−iΔ(s+ 2λk)) gn(s+ 2λk)

=
π

|λ|
∞∑

k=−∞
exp

(
iπks

λ

)
fn∗

(
kπ

λ
+Δ

)
, s ∈ R. (6.171)

The series on both sides in (6.171) are absolutely and uniformly convergent with
respect to s ∈ R.

Example 6.6.4. Note that in Theorem 6.6.3 it is not assumed that TV(g) < ∞.
The following example shows that there are characteristic functions g ∈ L1(R)
having compact support such that TV(g) = ∞. In fact, define g by

g(t) = (1− |t|)1[−1,1](t)

∞∑
k=1

2−k
(
cos

(
2π9kt

))2
, t ∈ R. (6.172)

Then g is a characteristic function such that g ∈ L1(R) (see Example 6.1.3) and
TV(g) = ∞.
(Hint: For k ≥ 1 consider the increments g(t2j(k))− g(t2j−1(k)) where t2j−1(k)
= (j− 1/4)9−k and t2j(k) = j · 9−k (j = 1, 2, . . . ,

⌊
2−19k

⌋
=: n(k)). Using the

inequality |(cosβ)2 − (cosα)
2| ≤ 2|β−α|, finally yields an inequality of the form

n(k)∑
j=1

|g(t2j(k))− g(t2j−1(k))| ≥
(
1

2
− π

7

)(
9

2

)k

+ const.)

Proof of Theorem 6.6.3. It suffices to prove (6.171) for fixed λ > 0 and Δ. By
(D2), there exists some s0 ∈ [0, 2λ] such that

H̃(s0) :=

∞∑
k=−∞

g̃(s0 + 2λk) < ∞. (6.173)

Here, g̃ occurs in Definition 6.2.2 (see also [Zy], Vol. I, page 68). In fact, by (D2),∫ 2λ

0

{ ∞∑
k=−∞

g̃(s+ 2λk)

}
ds =

∞∑
k=−∞

∫ 2λ

0

g̃(s+ 2λk) ds

=

∫
R

g̃(x) dx < ∞

implying that

∞∑
k=−∞

g̃(s+ 2λk) < ∞ for almost all s ∈ [0, 2λ]. (6.174)

Let vk(λ) denote the total variation of g̃ on [2λk, 2λ(k + 1)]. Then, for each s ∈
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[0, 2λ],
∞∑

k=−∞
g̃(s+ 2λk) ≤

∞∑
k=−∞

|g̃(s+ 2λk)− g̃(s0 + 2λk)|

+
∞∑

k=−∞
g̃(s0 + 2λk)

≤
∞∑

k=−∞
vk(λ) + H̃(s0)

= TV(g̃) + H̃(s0) < ∞. (6.175)

(Note that the series in (6.174) has period 2λ.) Let n ≥ 1 be fixed. Clearly,
exp(−iΔz)gn(z) (as a function of z) is the characteristic function of the density
fn∗(x + Δ). The estimates in (6.175) show that the series on the left-hand side
in (6.171) is a uniform limit of partial sums depending continuously on s. Hence
(6.171) follows from Theorem 6.6.1.

In the proofs of some results in this chapter some consequences of Theorem 6.6.3
were used (see Corollary 6.6.6 below). For their proofs we need

Lemma 6.6.5. Let g be a characteristic function such that g ∈ L1(R). Then

ϕ(t) := sup
|z|≥t

|g(z)| < 1 for all t > 0. (6.176)

Proof. Assuming g ∈ L1(R) implies |g(z)| < 1 for all z �= 0 (see [Fel], page
501). Since g is continuous and, by the Riemann–Lebesgue Lemma, g(z) → 0 as
|z| → ∞, (6.176) follows. �

As a consequence of Theorem 6.6.3 we obtain

Corollary 6.6.6. Let g be a characteristic function and let the numbers ct (t ∈ R+)
satisfy

ct ≥ c̃ > 0 for all t ∈ R+. (6.177)

Suppose the Standard Condition (SC) (cf. Definition 6.2.9). Then, for each α > 0
and β > 0, we have that

lim
t→∞

∞∑
j=1

|g(αctj)|βt = 0, (6.178)

sup
m≥1

∞∑
j=1

∞∑
r=r̃0

|g(αcr+mj)|r =: μ̃ < ∞, (6.179)

and (assuming ct (as a function of t) to be measurable)

sup
s≥0

∞∑
j=1

∫ ∞

r0

|g(αcu+sj)|u du =: μ < ∞. (6.180)
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Here, we put r̃0 := 2 and r0 := 1 if (SC1) or (SC2) holds; if only (SC3) holds (g
satisfying condition (CF(τ )) in Definition 6.2.6), r̃0 = r0 := �2/τ�. Furthermore,
μ̃ and μ are constants which depend on g, α, and c̃ if (SC1) or (SC2) holds; if only
(SC3) holds, they also depend on τ .

Proof. We only prove (6.179). If (SC1) or (SC2) holds, then the double series in
(6.179) is not greater than

∞∑
j=1

∞∑
r=1

|g(αc̃j)|r ≤
∞∑
r=1

(ϕ(αc̃))
r−1

∞∑
j=1

|g(αc̃j)|

(ϕ(·) defined by (6.176)) which is finite by (6.176) and Theorem 6.6.3. Now let g
satisfy (D) and (CF(τ )). Put r̃0 := �2/τ�. First note that, by (6.177) and (6.176),
for each j ≥ 1,

∞∑
r=1

|g(αcr+mj)|r ≤
∞∑
r=1

(ϕ(αc̃))
r
=: K0 < ∞. (6.181)

By (CF(τ )), there exists some t0 ≥ 1 such that

tτ |g(t)| ≤ 2−1(αc̃)τ for all t ≥ t0. (6.182)

Putting j0 := �t0/(αc̃)�, it follows from (6.181) and (6.182) (noting thatαcr+mj ≥
t0 holds for all j ≥ j0, r ≥ 1, and m ≥ 1) that the double series in (6.179) is
bounded from above by

j0K0 +
∞∑

r=r̃0

∞∑
j=j0+1

[
(αcr+mj)τ |g(αcr+mj)|(αcr+mj)−τ

]r
≤ j0K0 +

∞∑
r=r̃0

2−r
∞∑

j=j0+1

j−τr

≤ j0K0 +

∞∑
r=r̃0

2−r
∞∑

j=j0+1

j−2

≤ j0K0 + 1

which proves (6.179). �

The proof of (6.178) uses Theorem 6.6.3, Lemma 6.6.5, and the following simple
analytical result (its proof being left to the reader):

Lemma 6.6.7. Let a1, a2, . . . be real numbers such that 0 ≤ an < 1 (n = 1, 2, . . .)
and

∑∞
n=1 an < ∞. Then

lim
t→∞

∞∑
n=1

atn = 0.

6.7 APPENDIX 2: AN ELEMENTARY PROPERTY OF CONDITIONAL

EXPECTATIONS

In §6.3 we used the following result on conditional expectations:
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Theorem 6.7.1. Let h : Rm+n −→ R+ be Borel measurable. Let ξ and η be,
respectively, Rm- and Rn-valued random vectors which are defined on some prob-
ability space (Ω,F , P ). Let, for some sub-σ-algebra G of F , ξ be G-measurable
and let η be independent of G, i.e., for all Borel sets A1 ⊂ Rn and sets A2 ∈ G,

P ({η ∈ A1} ∩A2) = P (η ∈ A1)P (A2).

Then, if ϕ : Rm −→ R+ ∪ {∞} is defined by
ϕ(x) := E [h(x, η)] , x ∈ Rm, (6.183)

we have

E [h(ξ, η)|G] = ϕ(ξ) a.s. (6.184)

Proof. Since both sides in (6.184) are G-measurable, it suffices to show that∫
A

h(ξ, η) dP =

∫
A

ϕ(ξ) dP for all A ∈ G. (6.185)

First assume that h is bounded. To prove (6.185), let Q1 be the distribution of the
Rm+1-valued random vector (1A, ξ) (for fixed A ∈ G) and let Q̃1 be the distribu-
tion of η. Since (1A, ξ) (being G-measurable) is independent of η, the product mea-
sure Q1 ⊗ Q̃1 is the distribution of the Rm+n+1-valued random vector (1A, ξ, η).
Hence, by Fubini’s theorem,

E [1Ah(ξ, η)] =

∫
Rm+n+1

zh(x, y)Q1 ⊗ Q̃1(dz, dx, dy)

=

∫
Rm+1

z

(∫
Rn

h(x, y) Q̃1(dy)

)
Q1(dz, dx)

=

∫
Rm+1

zE [h(x, η)] Q1(dz, dx)

=

∫
Rm+1

zϕ(x)Q1(dz, dx)

= E [1Aϕ(ξ)]

which is equal to the right-hand side in (6.185). For general h let hN := h ∧
N (N = 1, 2, . . .) which is bounded. From what has already been proved, we get

E [hN(ξ, η)|G] = ϕN (ξ) a.s. (6.186)

if ϕN is given by

ϕN (x) := E [hN (x, η)] , x ∈ Rm.

As N → ∞, by monotone convergence,

E [hN (ξ, η)|G] → E [h(ξ, η)|G] a.s.

and the limit ϕ(x) := lim
N→∞

ϕN (x) = E [h(x, η)] exists which, by (6.186), implies

ϕ(ξ) = E [h(ξ, η)|G] a.s. �
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Applications I: Accounting and Vote Fraud





Chapter Seven

Benfordʼs Law as a Bridge between Statistics and

Accounting

Richard J. Cleary and Jay C. Thibodeau1

Undergraduate accounting students almost universally take a course in elemen-
tary business statistics as part of their program, but only rarely are applications of
the material seen in future accounting courses. Benford’s Law provides a natural
way to tie the topics together so that the principles of statistical thinking are rein-
forced in the accounting curriculum. Conversely, for students primarily interested
in statistics, applications of Benford’s Law provide easy to understand, real-world
examples. In this chapter we explore these connections and consider the questions
of when and how to effectively deliver this material in such a way that Benford’s
Law is more than just a conversation piece but rather a tool that helps accountants
make stronger and more efficient decisions using sound statistical practice.

We begin by looking at the current state of statistics education for accounting
students, and we present some of the ways in which accounting practice, particu-
larly in auditing, can benefit from a statistical point of view. We then demonstrate
how Benford’s Law can be used to reinforce the key concepts that appear at the
intersection of ideas from statistics and accounting. We conclude with some sug-
gestions for how to effectively incorporate Benford’s Law into the curriculum as an
example of an analytical procedure in the introductory financial statement auditing
class that is required in all accounting programs.

7.1 THE CASE FOR ACCOUNTANTS TO LEARN STATISTICS

There is ample evidence that the accounting profession, or at least the academic
wing of the accounting profession, sees learning how to think about variation and
uncertainty as an essential part of the training for undergraduate accounting majors.
A quick glance at ten highly regarded accounting programs reveals that all of these
programs require at least one course in probability and/or statistics. Typically these
courses are not limited to accounting majors, but also attract students from a vari-
ety of the business disciplines. Interestingly, we also noted that statistics courses

1Mathematics & Science Division, Babson College, and Department of Accountancy, Bentley Uni-
versity.
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tend to appear early in the curriculum (sophomore year), when little if any of the
technical content of accounting has been introduced.

Although most auditing professionals are likely to have had a first course in
statistics, such courses tend to provide an overview of key statistical principles
with examples from generic contexts and rarely, if ever, utilize audit examples.
In addition, most statistics courses taken during undergraduate general education
are likely to emphasize calculation rather than “big picture” decision making. It
comes as no surprise, then, that as a discipline, accounting gets shortchanged in
the number of problems and cases devoted to it compared with the other business
disciplines.

As a result, we believe that auditing students could benefit from more statistical
education and related critical thinking demonstrated in real-life auditing contexts.
What should future auditors learn in a statistics course? If the students have had
limited exposure to the vocabulary and practice of accounting when they take the
course, then it makes sense to consider this question at a conceptual level rather
than as a listing of specific topics and techniques. This concept-oriented approach
appeals to the statisticians and mathematicians who primarily teach the first course
in business statistics. These instructors may believe that an introduction to statistics
should be an opportunity for students to learn and appreciate some of the intellec-
tual dimensions of chance and uncertainty.

The American Statistical Association’s 2005 report Guidelines for Assessment
and Instruction in Statistics Education (GAISE) is an excellent document that
presents both the rationale and practical advice on teaching this sort of high-level
critical thinking. The GAISE report [GAISE] includes 22 specific recommenda-
tions for what students should know after the first statistics course. Here we choose
the four examples from that list that we think are particularly important goals of a
first statistics course for future auditors.

Students should know

• Goal 1: That variability is natural, predictable, and quantifiable;

• Goal 2: That random sampling allows results of surveys and experiments to
be extended to the population from which the sample was taken;

• Goal 3: How to interpret statistical results in context;

• Goal 4: How to critique news stories and journal articles that include statisti-
cal information, including identifying what’s missing in the presentation and
the flaws in the studies or methods used to generate the information.

The authors of this chapter, one a professor specializing in statistics and the other
a professor specializing in auditing, have worked together for several years trying to
encourage students and professionals in both fields to recognize the opportunities
in the links between them. In the rest of this chapter our goal is to demonstrate
how Benford’s Law can illustrate these four concepts in the accounting context for
both students and practitioners. To make the examples concrete, we will focus our
applications on the auditing process in which the financial statements of a company
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or institution are reviewed by an independent CPA firm to ensure that they are not
misleading. The next section of the chapter reviews the ways in which auditors
work and introduces the necessary vocabulary.

7.2 THEFINANCIAL STATEMENTAUDITOR’SWORKENVIRONMENT

7.2.1 Regulation

The objective of a financial statement audit is to provide reasonable assurance that
the financial statements prepared by a company have been presented in accordance
with the set of accounting rules that are in place for the company in a particular
jurisdiction. For publicly traded companies in the United States, an annual audit
of the financial statements and related footnotes is required by the Securities and
Exchange Commission (SEC). The SEC was established by Congress to enforce
the Securities and Exchange Act of 1934. The Act requires publicly held compa-
nies to file annual audited financial statements (Form 10-K) with the SEC. While
an audit is not required for privately held companies in the United States, many of
these companies do have their annual financial statements audited for other reasons.
For instance, many banking relationships require that an audit is conducted on an
annual basis to add credibility to the company’s financial statements [AbdTh]. Ben-
ford’s Law is one of many possible analytical techniques that auditors might use in
looking for fraud in the financial statements of a company.

In recent years, the work of financial statement auditors has received increased
scrutiny. Specifically, a significant number of high profile financial statement frauds
(e.g., Enron and WorldCom) that occurred around the year 2000 reduced confidence
in the financial statements being reported by publicly traded companies. As a result,
the US Congress passed the Sarbanes–Oxley Act (SOX) of 2002 in an effort to re-
store confidence in the capital markets. One of most dramatic changes mandated by
SOX has been governmental regulation of the audit profession. Specifically, Sec-
tion 103 of SOX established the Public Company Accounting Oversight Board
(PCAOB).

Under the law, the PCAOB is required to perform detailed inspections of the
audit process employed by each auditing firm. In addition, the PCAOB has as-
sumed responsibility for establishing all standards pertaining to audits of publicly
traded companies. Overall, in executing its responsibilities related to inspections
and standard-setting, the PCAOB has made it clear that the interests of the invest-
ing public will always come first. Importantly, for a profession that previously had
responsibility to formulate its own standards and was subject only to evaluation by
its peers, the change has been dramatic. Indeed, the financial statement auditor now
operates in a highly regulated work environment and all of their professional judg-
ments are being scrutinized. While there are many benefits from these changes, it
has almost certainly reduced the willingness of auditors to use data interrogation
techniques like Benford’s Law. Without statistical expertise, practicing auditors
fear having to explain and justify choices they make on the basis of a statistical or
mathematical test.
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7.2.2 Financial Statement Auditing Process

When completing the financial statement audit, an auditor is required to gather
enough evidence to allow a determination of whether the financial statements have
been recorded in accordance with the relevant financial accounting rules. Once
enough evidence is gathered, an auditor will reach a conclusion about the finan-
cial statements and prepare a written report that communicates the auditors’ opin-
ion about the correspondence of the financial statements with the prescribed rules.
Stated simply, auditors add credibility to financial statements, which provides more
informational value to investors.

The audit report expresses the independent auditor’s professional opinion re-
garding the fairness of presentation of the financial statements. If the financial
statements present fairly, in all material respects, an entity’s financial position (i.e.,
the balance sheet), results of operations (i.e., the income statement), and cash flows
(i.e., the statement of cash flows) in conformity with Generally Accepted Account-
ing Principles (GAAP); and the audit was performed in accordance with the appro-
priate standards (Generally Accepted Auditing Standards for privately held compa-
nies or PCAOB Standards for publicly held companies), then a standard unqualified
opinion can be issued; see [AbdTh, LoRSST]. The typical wording for such a re-
port follows.

Privately Held Company Standard Unqualified Report

Independent Auditor’s Report
We have audited the accompanying balance sheets of the XYZ Company as of

December 31, 20X2 and 20X1, and the related statements of income, retained earn-
ings, and cash flows for the years then ended. These financial statements are the
responsibility of the Company’s management. Our responsibility is to express an
opinion on these financial statements based on our audits.

We conducted our audits in accordance with auditing standards generally ac-
cepted in the United States of America. Those standards require that we plan and
perform the audit to obtain reasonable assurance about whether the financial state-
ments are free of material misstatement. An audit includes examining, on a test
basis, evidence supporting the amounts and disclosures in the financial statements.
An audit also includes assessing the accounting principles used and significant es-
timates made by management, as well as evaluating the overall financial statement
presentation. We believe that our audits provide a reasonable basis for our opinion.

In our opinion, the financial statements referred to above present fairly, in all
material respects, the financial position of the XYZ Company as of [at] December
31, 20X2 and 20X1, and the results of its operations and its cash flows for the
years then ended in conformity with accounting principles generally accepted in
the United States of America.
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The wording in the Independent Auditor’s Report is important because it makes
clear that auditors provide reasonable and not absolute assurance that the financial
statements are free of material misstatement. Note that the auditing vocabulary
can be readily translated into statistical terms. The term “reasonable assurance”
for an auditor is essentially the notion of “confidence” for a statistician, and what
auditors call “material” difference is what a statistics text would call “practically
significant.” In order for an auditor to provide absolute assurance that the financial
statements are free of all misstatements, an auditor would have to examine one hun-
dred percent of the evidence, which would be far too costly. This is where auditors
(whether they know it or not) are applying the first two goals mentioned from the
GAISE report [GAISE] in Section I: understanding and quantifying variability and
the importance of random sampling. The third goal from the GAISE report, putting
data in context, is also vital. An auditor knows that it would be far too costly to de-
sign his/her work to target small monetary dollar or other immaterial mistakes that
would not impact an investor’s decision-making process. The fourth goal, careful
reading of the statistical work of others, is vital for senior managers and partners
who spend less time in the field conducting audits, but must read and approve the
work of their colleagues as well as provide guidance in difficult cases.

The most vital overall objective for auditors is to efficiently use the available
evidential matter to protect against the possibility of a “blown” opinion, that is, the
possibility that audited financial statements that were given an unqualified opinion
actually did in fact contain a material misstatement. As a result, the process formu-
lated by auditors needs to be designed to ensure that auditors have gathered enough
evidence to reach a conclusion about the financial statements. Perhaps not surpris-
ingly, auditors have long struggled with the issue of how to keep audit costs under
control, while also gathering enough evidence to ensure that the risk of a “blown”
opinion has been mitigated. Ultimately, this is a matter of professional judgment.
This judgment can be enhanced with appropriate application of statistical thinking
and tools such as Benford’s Law.

7.2.3 An Auditor’s Professional Judgment Context

An auditor’s professional judgment is on display throughout the entire financial
statement audit. Because of the use of samples to gather evidence about various
populations, the process of gathering and evaluating audit evidence relies substan-
tially on statistical theory. Unfortunately, auditors have limited knowledge and
experience applying relevant statistical thinking. In addition, there are few, if any,
useful quantitative guidelines to assist auditors during the execution phase of the
audit process. Our work in this area has only reinforced our belief that more ef-
fective statistical practice can help improve auditor’s professional judgments and
ultimately improve the effectiveness and efficiency of the financial statement audit-
ing process.

Despite the importance of statistical thinking, many auditors have received very
little training on statistical theory during their undergraduate education. In addi-
tion, it is quite possible that the auditor has not had any further training on using
statistics to make good decisions. We therefore believe that an opportunity cur-
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rently exists to help auditors become far better consumers of statistical information
and better producers of audit evidence based on established statistical practice. In
our view, such grounding will also help the defensibility of audit work papers, a
very important consideration for auditing firms that seek to mitigate their litigation
risk.

Given the importance of helping auditors improve their statistical thinking, we
believe Benford’s Law can be used by professors as a motivating example to help
students make the connection between auditing and statistical theory. In fact, dur-
ing their undergraduate education, we believe that there is a wonderful opportunity
to help future auditors (i.e., our students) understand the world of statistics and
learn how the audit process can be improved as a result.

7.2.4 The Importance of Statistical Thinking on the Audit

As auditors now respond to the new regulatory environment, the profession is fur-
ther challenged to find a practical way to address and document the thought process
of planning our engagements. As a profession, we must identify the right level of
audit effort that will result in effective and efficient audits being completed. Inter-
estingly, in recent years, there has been escalating rhetoric surrounding the substan-
tial cost to public corporations of implementing the Sarbanes–Oxley Act (SOX) of
2002. Corporate managers in particular are expressing a great deal of frustration
with onerous compliance costs, particularly since they cannot envision commensu-
rate returns. It has become clear that auditors need to think hard about how to be
more efficient in executing the financial statement auditing process, while always
maintaining effectiveness.

The bottom line is that, as Goal 1 from Section 7.1 should make clear, risk assess-
ments for an auditor are necessarily imprecise because of the nature of sampling
error. Thus the selection of which fraud risk factors to follow up on, along with
the procedures used and the extent of work that is planned for this endeavor, is
a difficult judgment for auditors. Understanding the benefits and costs of apply-
ing an analytical technique, if properly considered as an aid in decision making,
should help auditors understand and balance their audit firm’s exposure to error
risks [ClTh]. In addition, it may provide a concrete basis to help auditors provide
the documentation necessary to justify the extent of work performed. This is al-
ways important in a highly regulated work environment such as public company
auditing.

Of course, the application of statistical thinking to decision problems like these
is quite difficult. While it would be ideal to develop a statistical formula or rule-of-
thumb, it is hard to mathematically quantify different steps in an auditor’s judgment
and decision-making process. For example, we continue to believe that tools like
Benford’s Law can be useful in helping auditors detect fraud. In particular, in situa-
tions where fraudsters use small dollar amount accounting entries that are designed
to “fall” under the financial statement auditor’s materiality thresholds, Benford’s
Law would be a great tool to help identify anomalous patterns of data that may
indicate fraud.

However, it is important to remember that there are substantial costs to the au-
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diting firm for the extra work that is completed on identified risk factors that result
in no audit findings. Without a doubt, for auditors, the false positives have become
a strong deterrent to the use of Benford’s Law in recent years. The work required
on these “blind alleys” typically necessitates an additional site visit by the audit-
ing firm to follow up on the possible fraud. In addition, it would include costs to
travel to and from the site, along with the professional service time of the auditors
assigned to follow up on the discrepancy. Stated simply, the cost can be substantial.

As a result, the judicious use of Benford’s Law is likely to be the only way the
tool’s use will be kept from extinction for practicing auditors. So, auditors must
think hard about the situations where it should be employed. For example, an
auditor should only use Benford’s Law when the risk of misstatement is higher,
due to the industry and/or financial health of the company being examined. In such
circumstances, the auditor may wish to use Benford’s Law on those accounts that
represent the greatest risk of material misstatement. In addition, an auditor needs to
know enough about statistics to minimize the number of false positives that occur,
and when they do occur, to quickly root out the explanation. The next sections
detail some of the statistical ideas and practices that would help prepare auditors
for this work.

7.3 PRACTICAL AND STATISTICAL HYPOTHESES

Thanks to the efforts of Mark J. Nigrini and others who demonstrated the power
of Benford’s Law as a fraud detection tool, use of first digit and/or first two digit
analysis became a regularly discussed, if rarely applied, technique. Benford’s Law
has been shown to be applicable in a number of auditing contexts, including ex-
ternal, internal, and governmental auditing contexts. For example, Nigrini & Mit-
termaier [NiMit] show how external auditors can use Benford’s Law as an analyt-
ical procedure to help discover surprising patterns in transaction activity. Nigrini
[Nig6, Nig7] was the first to highlight the potential of Benford’s Law as an effec-
tive fraud detection process. He outlined a number of practical applications where
a fraud auditor could effectively employ digital analysis using Benford’s Law in-
cluding accounts payable data, general ledger estimations, duplicate payments, and
customer refunds.

Importantly, Benford’s Law has also been shown to be an effective tool for in-
ternal and governmental auditors as well. Nigrini [Nig6, Nig7] outlines a number
of different contexts where a digital analysis can add value for internal auditors,
including the revenue, canceled checks, inventory, and disbursement areas. Ni-
grini [Nig4] also demonstrated the applicability of Benford’s Law in a taxpayer
compliance context, raising the possibility of its effectiveness as a tool for IRS
(governmental) auditors.

By around 2004, Benford’s Law was incorporated into leading auditing software
packages to be available for practicing auditors, although, as pointed out by Cleary
and Thibodeau [ClTh], this was not always done in a statistically sound way. In
particular, the difference between testing the entire distribution of first digits as a
whole, as opposed to a “digit-by-digit” analysis, made applying Benford’s Law in



184 CHAPTER 7

practice too risky for auditors. The well-documented successes in which such an
analysis uncovered a significant fraud were evidence of the technique’s potential,
but added to audit cost. The complexity of pursuing a “false positive” indication
of fraud was generally deemed too expensive to make use of the technique routine.
As discussed in Section 7.2, this cost concern became even more important after
the passage of Sarbanes–Oxley.

When we look at the realities of the business statistics education and audit prac-
tice environments as described in Sections 7.1 and 7.2, it is easy to see how an
audit manager might be reluctant to apply Benford’s Law, or any data interrogation
technique. Students in a first statistics course, typically the only course practic-
ing auditors have taken, gain some experience in using hypothesis tests to make
decisions. A big part of the difficulty in implementation of Benford’s Law results
from the fact that these courses do not usually discuss the ways in which those de-
cisions have to be implemented in the field, as described in Goal 3 of Section 7.1.
While this lack of alignment between the business curriculum and field practice
has resulted in a reluctance to use analytic techniques, it also raises an important
question. How can the statistics and accounting curricula be integrated to provide
students with the experience they need to translate a statistical result to an effective
decision in the field?

Let us consider how the audit process using Benford’s Law as a test of hypothe-
sis looks when translated into the terms of statistical hypothesis testing. Note that
we present the tests themselves using the vocabulary and notation from what statis-
ticians would call the “frequentist,” or “data-centric” point of view. It would not be
any more difficult to align the terminology with the Bayesian approach, in which
the auditor’s prior estimate of the probability of fraud is explicitly part of the statis-
tical process. Certainly an auditor’s prior estimate of the probability of fraud would
be a factor in choosing whether to apply Benford’s Law, so the Bayesian approach
does seem like a good fit. However, we choose the frequentist paradigm because,
for better or worse, changing a first course in statistics to a Bayesian viewpoint is
unlikely to happen any time soon.

When an auditor begins an engagement with a particular client, we assume that
they have a presumption that their client’s financial statements are free of material
misstatement. This means that the null hypothesis, the statement we are testing,
is one that suggests the accounts are in order. The practical hypothesis of interest,
which we denote PH0 is

PH0: There is no material misstatement.

The auditor’s job is to carefully examine both the actual accounts, and the pro-
cedures and controls that the client has in place, to look for evidence the null hy-
pothesis is incorrect. If such evidence is found and verified by the auditor, then the
auditor must reach the alternate conclusion:

PHa: There is a material misstatement.

The statements PH0 and PHa above are not actually statistical hypotheses. A



BENFORDʼS LAW AS A BRIDGE BETWEEN STATISTICS AND ACCOUNTING 185

statistical hypothesis is a statement about a particular statistical distribution or its
parameters, the numerical summaries of the distribution. The statements that the
auditor is concerned with are much more general and are not typically interpreted
with a single number or result. However, the usual descriptions of Type I and
Type II errors as covered in a first statistics course are still of value. The Type II
error, failing to reject PH0 when it is actually false, leads to the “blown” opinion
that is the auditor’s worst fear. A Type I error, rejecting PH0 when it is actually
true is almost as serious. This results in challenging a client’s financial statements
that are materially correct, which can result in a substantial increase in the costs to
complete an audit and ultimately the loss of a client. A handful of errors of either
type could critically damage the reputation and credibility of an auditor.

Choosing appropriate analytical tests to help in this decision-making process is
clearly of vital importance. If there is concern that fraud might be present the audi-
tor might choose to use any of a number of statistical tests that indicate whether the
data entries of interest conform to Benford’s Law. This leads to a genuine statistical
hypothesis and alternative:

SH0: The data entries in question follow Benford’s Law.

SHa: The data entries in question do not follow Benford’s Law.

It is the moving back and forth between the practical hypotheses about a busi-
ness operation and the statistical outcomes of a particular analytical procedure that
our current statistics and accounting curricula fail to experience. An auditor who
performs a Benford analysis and rejects SH0, a procedure that uses our first two
goals from the statistics course, need not immediately reject PH0 as well. Further
investigation may reveal any of a number of reasons (which we detail below) to
explain the discrepancy between the data and Benford’s distribution. This is the
critical step using Goal 3, putting the statistical results in context of the field work.

In Table 7.1 we review the interaction between these related but different pairs
of hypotheses.

Recall that the auditor is always on the lookout to reduce the risk of a “blown”
opinion, so when SH0 is rejected this “red flag” mandates a detailed (and poten-
tially expensive) follow-up. In the next section, we address the ways in which our
courses can assist students as they learn how to proceed in the critical practice step
of moving from rejecting the statistical hypothesis to making a decision on the
practical hypotheses. As an example we consider how to teach our students to use
the information in Table 7.1 as they make the connection between their courses in
statistics and auditing.

7.4 FROM STATISTICAL HYPOTHESIS TO DECISION MAKING

Imagine that an auditor in the field has a run a Benford’s Law analysis on the first,
or first and second digits, in a particular data field of interest, and has discovered
that the statistical hypothesis that the data conform to Benford’s Law is rejected.
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SH0 rejected – possible SH0 accepted – no
evidence of fraud. evidence of fraud.

PH0 false: Material Follow-up by auditors may Procedure included in
misstatement exists. • Lead to detection of fraud. work notes, no follow-

• Fail to find evidence of the up. High risk of a
fraud; perhaps resulting in a “blown” opinion.
“blown” opinion.

PH0 true: Statements Follow up by auditors may Procedure included in
materially correct. • Produce reasonable work notes, no follow-

explanation. up needed. Correct
• Lead to false charge of decision likely to
fraud; added costs and be reached.
potential loss of client.

Table 7.1 Interaction between practical and statistical hypotheses in Benford’s Law.

(In the language of the previous section, SH0 has been rejected.) This is a possible
indication of fraud, but fabricated data is one of just several possible reasons for
this result. In the following paragraphs we list four possible reasons that the test
may have turned out this way, and we suggest how follow-up testing and documen-
tation can help the auditor choose among them. We also detail which skills from
the first course in statistics come into play at each step.

Reason 1: The data in this field should not have been expected to conform to Ben-
ford’s Law.

It is well known that for Benford’s Law to apply, often the values in a data set
range over several orders of magnitude. In teaching about Benford’s Law in a first
statistics course, we have found that pulse rates, measured in beats per minute, are
an excellent and easily understood example of a variable for which there is no hope
for Benford’s Law to apply to the first digit, as the pulse rates of students almost all
begin with five through eight. Our pulse rates are simply too close to the same size
for Benford’s Law to apply.

Evaluating whether this is the case for a particular variable is a classic exam-
ple of the statistical skill of diagnostic checking, a staple of a good first statistics
course. Just as statisticians learn to verify that a set of data is not wildly skewed
before applying a classical t-test, auditors should learn to look at the size of values
in a data set and not expect Benford’s Law to apply to those fields in which entries
are very similar in size. An auditor applying good statistical methodology would,
we hope, have evaluated the relative size of the entries prior to applying a test for
Benford’s Law. In any event, the first step for an auditor after rejecting SH0 should
be to graph the data and check the size of the entries to make sure that expecting
Benford’s Law to hold was reasonable. Ideally, the data should be plotted prior to
carrying out a Benford test to rule out this possibility ahead of time.
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Reason 2: There is an easily explained feature of the data that causes a first digit
or pair of digits to repeat surprisingly often.

For example, the firm being audited may have a long-standing relationship with
a vendor who is paid for a weekly delivery that is essentially constant from week to
week. The vendor receives the same amount each week and the leading digit of that
amount shows up far too often. This is another explanation that should typically be
found by looking at the data in a summary way prior to applying analytical testing,
but is also easy to discover after the fact.

Reason 3: A Type I error has occurred. That is, SH0 is actually true and the data
in this field do follow a Benford’s Law distribution, but this particular sample was
not representative.

Much to the dismay of practitioners in auditing and other fields, errors in testing
are unavoidable. Goal 1, understanding the nature of random variation, informs stu-
dents that no method is completely reliable. The unfortunate case in which a Type
I error occurs is likely to be expensive for auditors. At a minimum, a follow-up test
should be done on related fields to look for a broader pattern of fraud. Individual
entries in this field will have to be scrutinized. This is the area where an auditor’s
experience in knowing how to look for fraudulent entries would be vital. As de-
tailed in [ClTh], early versions of Benford’s tests in auditing software made this
outcome far too likely, probably leading to additional costs for auditors.

Reason 4: Some of the data was, in fact, fraudulent.

Here is where the promise of Benford’s Law as an analytical technique actually
pays off. The data reveals an anomaly, an analysis of the data set shows that it
should conform to Benford’s Law, and then a careful examination of individual
entries reveals that at least some are not correctly entered. This is a case where the
auditor can, if the amounts involved in the improper entries are material, move with
some confidence from rejecting SH0 to rejecting PH0 and uncovering a material
misstatement.

Note that the auditor who steps through this list of reasons would be following
guidelines for good data analysis as taught in a successful first statistics course
that achieved our goals from Section 1. Data would be previewed using summary
statistics and graphics, the appropriateness of a particular procedure ascertained, a
statistical test carried out, and the results interpreted in context. Due to the nature
of randomness, carrying out these steps with care does not guarantee success, but
it would minimize the risks of failure.
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7.5 EXAMPLE FOR CLASSROOM USE

Here is an example of how instructors in either statistics or auditing can use Ben-
ford’s Law with real data in a classroom setting to illustrate both statistical and
auditing principles.

Repeated trials in a variety of settings have revealed that the first digits of street
addresses tend to follow Benford’s Law in most communities. While this sort of
data would not typically be part of a financial statement audit at a public com-
pany, there are instances where such data is collected and there would be a strong
motivation for fraud. One such case would be petitions collecting signatures to
get political candidates eligible for a ballot. This work is often done under time
pressure by volunteers or temporary workers who might be tempted to invent data,
presuming that a careful check of records is unlikely. Another case could be a small
business that needs a certain number of customers in order to qualify to participate
in a potentially lucrative government program.

To carry out the experiment, each student in the class is provided with a piece
of a page from the white pages of a phone book. Experience shows that about one
quarter of a page will be adequate for the class experiment. The students are asked
to randomly select a number of residential customers from the page and to record
the first digits of each customer’s street address; for instance somebody living at
353 Broad Street would be recorded as a “3.” Data from all students are then
collected and recorded in a spreadsheet.

Instructors should ensure that the total number of residences selected across all
students is at least 150 to be sure that the sample size is large enough to justify a chi-
squared goodness of fit test. Upon collection, the data are summarized in a table
like the one below. This particular table represents actual data from the Boston,
Massachusetts phone book collected at a seminar on Benford’s Law at Harvard
University, given by the authors in 2008.

When the appropriate chi-squared goodness of fit test is carried out, we get the
following result:

First digit Observed Expected (Obs− Exp)2/Exp
1 128 117.4017 0.956749
2 63 68.67559 0.469051
3 45 48.72611 0.284937
4 42 37.79491 0.467863
5 21 30.88069 3.161457
6 25 26.10925 0.047126
7 28 22.61686 1.281266
8 17 19.94948 0.436074
9 21 17.84542 0.557643

Totals 390 390 7.662165 ←− χ2-stat
0.467147 ←− p-value

The instructor then leads a facilitated discussion with students about the meaning
of this result. We suggest that questions such as the following would be useful:
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What is the null hypothesis? What does the p-value mean? Does this result support
the notion that street addresses in Boston follow Benford’s Law?

A useful variation of this experiment is then to have some students act as a control
group. They are asked to make up first digits of street addresses without looking at
the phone book pages. Not surprisingly, their distribution tends to be much closer to
a uniform distribution of first digits. The purpose of this discussion is to highlight
the difference between the real data and the artificial data.

Note that this example is consistent with all of the theory discussed in this chap-
ter. Using real data in an active classroom-learning environment aligns perfectly
with the recommendations in the GAISE report and is considered a best practice
in statistics education. Further, the discussion of why some sets of data, in this
case the control group discussed above, fail to follow Benford’s Law is key to the
decision making, as discussed in Section 7.4.

7.6 CONCLUSION AND RECOMMENDATIONS

In the regulated public company auditing market, the auditor’s responsibility to de-
tect fraud during a financial statement audit has increased dramatically. Such added
responsibility has placed a great demand on auditors to devise more effective and
efficient processes to detect incidents of financial statement fraud. We believe that
auditors can make greater use of Benford’s Law and other statistical techniques that
have been greatly facilitated by the use of Computer Assisted Auditing Techniques
(CAATs) like the ACL auditing software package [LoRSST].

For example, an auditor seeking to apply the Benford command using ACL (the
market’s leading audit software product) need only identify the appropriate data
field (e.g., invoice amount) within the appropriate data file (e.g., client accounts
receivable file) in order to successfully run the command. The auditor would then
have to consider whether additional audit testing should be completed on any field
that did not conform to the Benford’s Law probability distribution, and eventually
issue their audit opinion using this review as one of the components. Empowering
students to have the ability to make good decisions with Benford’s Law is a chal-
lenging but important task for those of us working in the area of business education.

One final advantage of incorporating a unit on Benford’s Law into the first course
in statistics for business majors is the extent to which this will help differentiate
this course from the standard liberal arts statistics course. Many business statistics
books focus far too much on techniques and computation and not enough on the
big picture notions of how to think in a statistical manner. Sometimes there are
very few examples from disciplines outside of business; in fact, some statistics
educators have referred to business statistics texts as “the liberal arts books with the
interesting material removed.” Including Benford’s Law helps to counteract such
complaints. Indeed, since Benford’s Law has intellectual merit and applications
in so many areas, we believe it should be an important part of the statistics and
auditing curriculum.

How can we improve the teaching of a first course in business statistics, and
upper-level courses for accounting majors, so that practicing auditors can use ana-
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lytical procedures with confidence? Given the real-world environment for auditors
spelled out in Section 7.2 and the disconnect between statistical decisions and prac-
tical decisions pointed out in Section 7.3, the task is quite daunting. We believe,
however, that it is important to try to encourage sensible application of Benford’s
Law by students in the undergraduate and possibly the graduate and continuing
education curriculum.

We conclude with three recommendations for the undergraduate business cur-
riculum. These are steps that we have initiated at our own school that require
relatively little in the way of resources. Getting faculty teaching both disciplines
to cooperate and implement these recommendations may take some time, but we
believe the payoff could be substantial.

Recommendation 1: The first course in business statistics should be taught using
the GAISE guidelines, with a particular focus on learning about data in real-life
contexts.

The first course in business statistics should be, and is typically advertised as, a
place to learn to make good decisions with data. Projects, exams, and assignments
should be sure to include the important step of connecting the statistical hypothesis
to the practical decision.

Recommendation 2: Intermediate-level auditing courses should include material
from the prerequisite statistics course in examples and cases.

Using real data and cases is common in the financial statement auditing course.
Recognizing that these cases can be better understood with statistical techniques, or
just statistical thinking, is much less common. Instructors in this important course
should take advantage of their students’ statistical experience. Inviting a statistician
to visit for a case analysis or guest lecture, or even team teaching the course, would
be worthwhile.

Recommendation 3: Benford’s Law should be the topic of choice to help students
understand the connection between statistical and practical hypotheses as applied
to auditing.

No other analytical procedure combines so many appealing features. Benford’s
Law is intellectually interesting, is well understood statistically and mathemati-
cally, and has been incorporated into leading software. The technique has a well-
documented literature with both successful cases and cautionary tales.

Finally, the coauthors have enjoyed working together on educating auditors to
become more effective decision makers with statistics, and we hope our suggestions
encourage other collaborations between statisticians and auditors.



Chapter Eight

Detecting Fraud and Errors Using Benfordʼs Law

Mark Nigrini1

8.1 INTRODUCTION

This chapter will review Benford’s Law as it relates to detecting fraud and errors.
We start with an introduction and a review of selected parts of Benford’s original
1938 paper [Ben]. Thereafter, several complaint data sets will be reviewed. The
next section will discuss several Benford analyses of fraudulent data. The conclud-
ing discussion will discuss the findings and shed some light on when Benford’s
Law might, or might not, detect fraud or errors.

I first came across Benford’s Law in a decision theory course taught by Professor
Marty Lévy in 1989. In the 600-page textbook, Berger ([Berg], 1985), in two
paragraphs, notes that if a statistician’s prior expectation was that the digits should
be equally distributed, then this prior distribution was both an improper and a non-
informative prior, and according to Benford’s Law, the correct prior distribution
was the logarithmic distribution shown in equation 8.1 below:

P (D1 = d1) = log

(
1 +

1

d1

)
; d1 ∈ {1, 2, . . . , 9}, (8.1)

where P indicates the probability of observing the event in parentheses and log
refers to the log to the base 10. Berger’s discussion used about two-thirds of a
page in the textbook and his discussion included words describing the digit patterns
as interesting and intriguing. After this, Berger returned to his business of non-
informative priors, and prior and posterior probabilities. I remember walking to the
library to find a copy of Benford’s paper and I also remember being very happy
at finding a paper copy of the Proceedings of the American Philosophical Society
on the shelves, waiting to be photocopied. That night I read the paper over several
times and was very excited by the prospect that if Benford’s Law were true then
perhaps auditors could use these expected digit frequencies to test whether a data
set was authentic or not. I only had a few ways to test whether Benford’s Law was
true. One way would have been to have tested the digit frequencies of many data
sets and then compared the results to Benford’s Law. This approach was easier
said than done. At that time the internet as we know it now didn’t exist. Obtaining
data was very difficult and analyzing it was just as difficult. I remember my 286

1Department of Accounting, West Virginia University, Morgantown, West Virginia 26506.
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computer straining away to analyze just 1,000 records in Lotus 1-2-3. A more
practical approach was to read and evaluate everything that had been written on the
topic and to consult with published authors in the field. Thus began what has turned
out to be a long-time relationship with Benford’s Law.

8.2 BENFORD’S ORIGINAL PAPER

Benford ([Ben], 1938) shows the results of his analysis of 20,229 records from
a total of 20 sets of data. Back in the 1930s this would have been a very time-
consuming activity because everything would have needed to be done by hand.
Benford analyzes his own data by using a metric that can be described as the Total
Absolute Deviation. This metric simply sums the absolute differences between
the actual percentages and what he called the “theoretical frequencies” (in his own
paper he doesn’t call the expected frequencies “Benford’s Law”). He concludes
that the best fit occurs for “outlaw numbers that are without known relationship”
as opposed to those numbers that “follow an orderly course.” This conclusion of
Benford’s is correct when related to his observed digit patterns, but it isn’t true in
general. There are many examples of recursive data series that have an excellent fit
to Benford’s Law, the best known of which is the Fibonacci sequence.

Benford continues, noting that “In natural events, and in events of which man
considers himself an originator, there are plenty of examples of geometric or loga-
rithmic progressions.” Benford believed that the basis of the expected digit patterns
was that the used numbers in the world generally formed a geometric series. He
cites many examples of geometric progressions in the real world. These examples
include psychological reactions to stimuli, our sense of loudness, music scales, ex-
amples from medicine, engineering phenomena, and examples from physics. Ben-
ford then claims, “Nature counts e0, ex, e2x, e3x, . . . and builds and functions
accordingly.” According to Benford, it is this geometric basis of events and matter
that give us the expected frequencies of Benford’s Law. In his conclusion, Benford
claims that the expected digit patterns are really a theory about phenomena and
events and not really a theory about numbers, which are essentially just symbols
used by human beings.

Benford makes no claim that his theory could be used in any constructive way.
He essentially tests some empirical data, develops the equations for the expected
digit frequencies, and provides some discussion points. In essence, Benford’s pa-
per tells us something about how the world works, but he doesn’t claim that this
knowledge could be terribly useful in any application. This is not surprising, given
how much time would have been necessary to analyze his data. My thoughts on
reading Benford’s paper were, “If there were indeed predictable patterns to the dig-
its in tabulated data, then perhaps auditors could use these expected patterns to test
whether data was authentic or fraudulent.”
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8.3 CASE STUDIES WITH AUTHENTIC DATA

This section reviews four studies of authentic data, and in each case the data follows
Benford’s Law. The first analysis is of interest received amounts from tax return
data. The second application is of census results from the 2000 United States cen-
sus. The third application shows the results of an analysis of streamflow data, and
the final analysis shows the results of analysis of accounts payable data.

In a data analysis setting it is important to evaluate beforehand whether the data
is expected to conform to Benford’s Law. No valid conclusion can be reached by
analyzing the conformity of data that isn’t expected to follow Benford’s Law (for
conformity to Benford). As such, it was necessary to “convert” the mathematical
underpinnings of Benford’s Law into some workable requirements for conformity.
These requirements are set out in Nigrini ([Nig9], 2011) and are summarized below.

1. The data must represent the sizes of facts or events. Examples of such data
would include the populations of towns and cities, the flow rates of rivers, or
the sizes of heavenly bodies. Financial examples include the market values of
companies on the major stock exchanges, the revenues of these companies,
or their daily sales volumes.

2. There should be no built-in minimum or maximum values in the data set. An
example of a minimum would be a stockbroker that has a minimum commis-
sion charge of $50 for a buy or sell transaction. The broker would then have
many people whose small trades are charged the $50 minimum. A data table
of these commission charges for a month would have an excess of first digit
5s and second digit 0s. A built-in minimum of zero is acceptable.

3. The data set should not represent numbers used as identification numbers
or labels. These are numbers that we have given to events and individual
entities, objects and items in place of words. Examples of these include
social security numbers, bank account numbers, county numbers, highway
numbers, car license plate numbers, flight numbers, or telephone numbers.
These numbers have digit patterns that have some meaning to the persons
that developed the sequence.

8.3.1 Analysis of Taxpayer Data

Nigrini ([Nig4], 1996) is an early example of an analysis of several largefinancial
data sets. The paper flowed from my dissertation, which was a comprehensive
review of using Benford’s Law in a taxpayer compliance setting. The dissertation
analyzed, amongst others, interest paid and interest received numbers from 1985
and 1988 individual tax returns. The tests were done on the first and second digits of
the numbers. The data is no longer available to me and since that time I have moved
on from analyzing the first and second digits as two separate graphs to analyzing
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Figure 8.1 The first-two digits of the interest received amounts reported by taxpayers on
1989 tax returns.

the first-two digits in a single graph. That analysis is therefore reproduced on data
that is still available to me (the 1989 Individual Tax Model Files).

The data on the Individual Tax Model Files (ITMFs) are compiled by the Internal
Revenue Service (IRS) from a stratified sample of unaudited individual income tax
returns (Forms 1040, 1040A, and 1040EZ) filed by U.S. citizens and residents (see
[IRS]). The 1989 sample of 95,713 returns was selected from the population of
109.7 million returns filed in 1990. The population included all returns processed
except for tentative and amended returns. All 1989 returns were assigned to sample
strata based on amounts related to the larger of total income or total loss amounts
and the size of business receipts. In addition, the 1989 strata were based on the
presence or absence of various forms and schedules (such as Schedule C or F).
Returns were randomly selected from the strata at rates ranging from 0.02 percent
to 100 percent. A review of the sampling method, methods of disguising taxpayer
data to preserve privacy, and a listing of the indicator and amount fields is presented
in [IRS].

Figure 8.1 shows the first-two digits of the 77,685 tax returns that reported inter-
est received amounts. These amounts follow the three requirements listed above.
The first-two digits (10, 11, 12, . . . , 99) are shown on the x-axis while the y-axis
shows the actual and expected proportions. The line shows the expected propor-
tions of Benford’s Law while the bars show the actual proportions. The results
indicate that the conformity to Benford’s Law is good, as expected. The data con-
forms to the requirements stated above and because of third party reporting (banks
and brokerages that report interest amounts paid to taxpayers to both the taxpayer
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Figure 8.2 The first two digits of the total interest paid amounts claimed by taxpayers as
deductions on 1989 tax returns.

and the IRS) this field is subject to minimal tax evasion (underreporting of interest
income). By way of a contrast, the first-two digits of total interest paid (a deduc-
tion allowed to taxpayers in 1989) are shown in Figure 8.2 for the 48,407 tax returns
claiming interest payments.

The graph follows the same format as the graph in Figure 8.1. The graph shows
that the conformity to Benford’s Law is acceptable, but weaker than the graph for
the interest received amounts. The data also conforms to the requirements stated
above. The conclusion drawn is that the fit to Benford’s Law is weaker than for
interest received, possibly because the interest paid amounts are subject to less
strict third party reporting requirements. This field is consequently open to more
tax evasion (by overstating total interest paid) and the number invention that goes
along with making up overstated amounts, which may explain the weaker fit to
Benford’s Law. The weaker fit is not proof of tax evasion but rather the results (a
weaker fit to Benford) are consistent with more manipulation in this field.

8.3.2 Analysis of Census Data

The United States (U.S.) conducts a census every 10 years, as required by the
U.S. Constitution. The results of the census are used to allocate congressional seats
(the more people that live in an area, the more representatives they will garner in
Congress), electoral votes (relevant in elections for the U.S. president), and various
types of federal funding and state aid. Therefore, the census is taken very seri-
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Figure 8.3 An extract from the Excel file downloaded from the U.S. Census Bureau’s web-
site.

ously, and the total cost of the 2010 census is estimated by the U.S. Census Bureau
(Census Bureau) to come in at around $14.5 billion. Many people have a stake in
the accuracy and integrity of the census. Given the importance of these numbers,
and their cost, we should expect the numbers to be as accurate as possible within
the inherent limitations of counting people, some of whom might not wish to be
counted. Aggregate census data is available from the 2000 census from the website
of the Census Bureau, http://www.census.gov.

The website of the Census Bureau gives county-by-county census results from
the 2000 census. In any analysis, it is important to understand the data (where the
data is from, which numbers were directly measured and which were computed,
and so on). In this case, a file layout document is available and should be read
before any analysis is undertaken. The data was downloaded from the Census
Bureau’s website and an extract from the Excel file is shown in Figure 8.3.

It is usual to perform some data cleansing before an analysis can be done. In this
case, all the records with county numbers of “0” need to be deleted because these
are actually the state totals as opposed to county counts. Also, it was necessary
to determine exactly which of the fields with “2000” in the field name contained
the official census counts. After the data cleansing steps we are left with a data
set of 3,143 records. The sum of the population counts was 281,424,602 and the
minimum amount was 67 people for Loving County, Texas, and the maximum
amount was 9,519,331 people for Los Angeles County, California. The census data
satisfied the three criteria mentioned above and the data was expected to conform
to Benford’s Law.

Figure 8.4 shows the results of the census data. The results show an acceptable
level of conformity to Benford’s Law. The conformity seems better if we look at the
first digits only (not shown). The conclusion is that the data conforms to Benford’s
Law at an acceptable level given that there are only 3,143 records. Note that smaller

http://www.census.gov
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Figure 8.4 The results of an analysis of the first-two digits of the 2000 U.S. Census.

data sets are expected to have a weaker level of conformity due simply to the fact
that they are small. This ties in with sampling theory in statistics, which states that
as the sample size increases, the sample statistics should better approximate the
population parameters.

8.3.3 Analysis of Streamflow Data

Nigrini and Miller ([NiMi1], 2007) analyze a large amount of earth science data
(especially hydrology data). The results showed that streamflow data conformed
closely to Benford’s Law and that deviations from the Benford proportions in other
earth science data could be indicators of either (a) an incomplete data set, (b) the
sample not being representative of the population, (c) excessive rounding of the
data, (d) data errors, inconsistencies, or anomalies, or (e) conformity to a power
law with a large exponent.

Streamflow data was obtained from the U.S. Geological Survey (USGS) website,
http://www.usgs.gov. The agency’s website lists many programs, including
the National Water Information System (NWIS). Under this program the USGS
operates and maintains approximately 7,300 stream gages, which provide data for
many diverse users. There are six main reasons for the collection of accurate, reg-
ular, and dependable streamflow data:

• Interstate and International Waters: Interstate compacts, court decrees, and
international treaties may require long-term, accurate, and unbiased stream-

http://www.usgs.gov
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flow data at key points in a river.

• Streamflow Forecasts: Upstream flow data is used for flood and drought fore-
casting in order to improve estimates of risk and impacts for better hazard
response and mitigation.

• Sentinel Watersheds: Accurate streamflow data is needed to describe the
changes in the watersheds due to changes in climate, land, and water use.

• Water Quality: Streamflow data is a component of the water quality program
of the USGS.

• Design of Bridges and Other Structures: Streamflow data is required to esti-
mate water level and discharge during flood conditions.

• Endangered species: Data is required for an assessment of survivability in
times of low flows.

The methods used for measuring flow at most stream gages are almost identical
to those used 100 years ago. Acoustic Doppler technology can widen the range of
conditions for which accurate flow measurements are possible, but is not yet seen
as providing enhanced efficiency or accuracy at most locations. No new technol-
ogy has yet been found to provide accurate data over a wide range of hydrologic
conditions more cost-effectively than the traditional current meter methods.

The data used in the study was obtained from the USGS Water Data for the
Nation. The data used was the annual data Calendar Year Streamflow Statistics for
the Nation. To obtain a large data set, the only condition that was imposed was
that the period of record included calendar year 1950 or later. The data therefore
consisted of all the annual average readings for any site that had an annual average
recorded in any of the years from 1950 to 2005. The only sites that were excluded
were sites that only had data for the pre-1950 period. After some data cleansing to
remove duplicates and obvious errors (such as negative numbers and zeros) there
were 457,440 records. Each record is an average annual streamflow from a station
from 1874 to 2004 as measured in cubic feet per second. The annual flows ranged
from 0.001 to 980,900 cubic feet per second. The data was highly skewed and the
average annual flow was 2,199 cubic feet per second.

This data set is particularly interesting because (a) the period covered is 130
years and it is rare for any data set to cover such an extended period, (b) at the
time, the data set was the largest analyzed in the Benford’s Law literature to date,
(c) the range in streamflows indicates that the sites covered everything from the
smallest streams to the largest waterways, (d) the measurement technology has
been unchanged over the entire period, which suggests that there are no distortions
due to technological changes, and (e) the data set is used for a variety of important
purposes. The results of an analysis of the digits of the streamflow numbers is
shown in Figure 8.5.

As usual, the expected proportions of Benford’s Law are shown by the smooth
monotonically decreasing line from 0.41 to 0.044. The actual proportions are
shown as vertical bars. The visual fit to Benford’s Law is excellent with a Mean
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Figure 8.5 The first-two digit proportions of the streamflow data and the expected propor-
tions of Benford’s Law.

Absolute Deviation (average of |Actual − Benford’s Law|) of 0.00013. The low
Mean Absolute Deviation means that, on average, the deviation of the actual per-
centage from that of Benford’s Law was one-tenth of one-tenth of one percent. A
visual review of the graph shows no sign of the “overs” or “unders” being clustered
in certain parts of the graph, nor are any of the “overs” or “unders” systematic by
occurring (say) at multiples of 10 (10, 20, 30, . . . , 90). The near-perfect visual fit
to Benford’s Law suggests that the data is consistent with the geometric pattern (or
a combination of interweaving geometric series) assumed by Benford’s Law.

8.3.4 Analysis of Accounts Payable Data

The preceding case studies all related to taxation and other non-financial data.
The taxation data was a data set formed by combining the same type of income and
expense across about 100,000 taxpayers. The final data set relates to combining
many different kinds of expenses for a single company for a single year. The data
set, reviewed in Drake and Nigrini ([DrNi], 2000), is made up of the dollar amounts
of the invoices processed by a single company. There are a few general issues to
consider before using Benford’s Law tests on corporate data. First, the data should
be from a reporting time period such as a month, a quarter, or a fiscal year so
that there is a sufficiently large set. Investigators should be able to reconcile the
data total to the ledger accounts. Second, the data should be for an identifiable
business entity. If data from two or more unrelated divisions are combined, then
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Figure 8.6 Invoice data for a company.

abnormal digit and number duplications existing in the data from one division may
be lost when merged with the data from another division. That is, combined data
might conform to Benford’s Law whereas individual data sets might show only
a weak conformity or a lack of conformity. Third, data should be analyzed at a
transactional level if possible. For example, disbursements should be analyzed on
an invoice-by-invoice basis and employee travel expense claims should be analyzed
(if possible) on a line-by-line basis. If financial numbers are summed, then non-
Benford patterns arising from invented numbers may be lost. For example, if only
the totals of travel and expense amounts are analyzed, then the totals could hide
round line-item numbers such as $250 or $1,000.

The data cleansing steps for corporate data usually include the deletion of num-
bers that are (1) positive numbers less than $10, and (2) zeros and negative numbers.
Small (under $10) positive numbers are deleted because they are usually immaterial
and it seems appropriate to ignore these small numbers when conducting investiga-
tive procedures that are designed to find frauds or large dollar errors. Negative and
positive numbers should be analyzed separately because they are usually subject to
different types of errors and misstatements.

The data analyzed in this section is from a NASDAQ-listed company with offices
in Ohio. The data was analyzed by the author together with internal auditors to
detect inefficiencies, possible errors, and also possible fraud. A Benford’s Law test
was appropriate on the 36,515 invoices totaling about $90 million.

The invoice data results are shown in Figure 8.6. The objective of the first-two
digits test is to look for spikes (first-two digits where the actual proportion exceeds
the expected proportion by a significant margin). Investigators would then look into
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the actual numbers causing the spikes.
Investigators also check for spikes corresponding to numbers forming psycho-

logical boundaries. The usual psychological boundaries are $500, $1,000, $5,000,
$10,000, and $100,000. Spikes (excesses) of (say) 48 and 49, and 98 and 99 would
therefore be of interest. Such spikes might signal that managers are intentionally
using numbers that are just below psychological boundaries because they believe
that numbers at or above the boundaries could be subject to audit.

The first-two digits graph should also be analyzed for spikes just below first-two
digits corresponding to internal corporate limits. For example, claims adjusters at
an insurance company might fall into two groups with authorization limits at $3,000
and $10,000. An analysis of claims amounts would include checking for abnormal
excesses at or just below 29 and 99. Administrative managers at a company may
have expense approval limits of $5,000. A look for invoice amount spikes at 48 and
49 could provide evidence that managers might be splitting their purchases into
“approvable” parts.

Investigator targets are the numbers that correspond to significant positive differ-
ences (spikes) on the graph. These numbers are overused and the excesses could be
the result of processing inefficiencies, errors, biases, or fraud. Investigators usually
ignore first-two digits where the actual proportion is less than the expected pro-
portion since these occur primarily because the sum of the actual proportions must
equal 1.00.

In this example, the review of the summary statistics showed that 14.0 percent of
all invoices were for $50 or less. These low-value invoices were costly to process
and were mainly for courier charges. Some of the invoices were employee claims
for the monthly cost of $22.18 for an additional telephone line so that they could
use the head office computer from home. The processing of these claims (signa-
tures, documentation, and reimbursement) was costly, and the auditors suggested
that the company make direct payments to the local telephone company to reduce
processing costs.

The spike (abnormal excess) of first-two digits 10 was due to an excessive num-
ber of invoices for $10 and $100. The $10 invoices were mainly freight charges
and the $100 invoices were mainly travel advances for sales staff. The processing
of both these amounts was costly and the auditors recommended ways to reduce
these costs. The controls for travel advances were not error proof, and it was pos-
sible that sales staff were reimbursed for the full costs of a travel trip without the
deduction for the advance.

Many credit memos and adjustments (not shown in Figure 8.6 because only pos-
itive numbers greater than or equal to 10 are included on the graph) were for a
vendor used for moving expenses incurred when employees were recruited from
out of state. The auditors started an investigation of the excessive number of cor-
rections.

The spike at 15 was due to an excessive number of invoices for $15 and $1,500.
The $15 invoices were for freight, and the $1,500 invoices were programmer bonuses
for meeting deadlines. The programmer bonuses payments controls were judged to
be valid. The spike at 25 was due mainly to many $25 charges for airfreight. The
recommendation was that these invoices should be summary billed (one bill for all
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the invoices for a week) by the airfreight vendor.
The spike at 46 was due to $46.17 payments to department workers for being

employee of the month. The suggestion was made that the monthly bonuses be
increased to an amount that gave the employees $50 after tax since $50 seems a
lot more than $46.17, but the actual incremental amount is marginal. The spike at
79 was due to 26 payments of $794.98. This was the after-tax amount paid as a
bonus to current employees who recruited a new employee. This amount was low
compared to industry norms and it was suggested that it be increased to pay at least
$1,000 after tax.

There were many payments for amounts of round thousand dollars. The investi-
gation showed that these were mainly payments to directors as director’s fees and to
researchers at universities. The payments were properly authorized. In summary,
the analysis did not reveal any fraud, but it showed several characteristics of the
data that were not easily detectable by the usual auditing methods.

8.4 CASE STUDIES WITH FRAUDULENT DATA

Bolton and Hand ([BolHa], 2002) state that the statistical tools for fraud detection
all have a common theme in that the observed data is usually compared with a set
of expected values. Depending on the context, these expected values can be derived
in various ways and could vary on a continuum from single numerical or graphical
summaries all the way to complex multivariate behavior profiles. They contrast
supervised methods of fraud detection which uses samples of both fraudulent and
non-fraudulent records, or unsupervised methods which identify transactions or
customers that are most dissimilar to some norm (i.e., outliers). They note that we
can seldom be certain by statistical analysis alone that a fraud has been perpetrated.
Rather, the analysis should be regarded as an alert that an observation is anomalous,
or more likely to be fraudulent than others, so that it can be investigated in more
detail. They advocate the concept of a suspicion score where higher scores are
correlated with observations that are more unusual or more like previous fraudulent
values. Their review of detection tools includes a review of Benford’s Law and
expected digit patterns. This section reviews and gives examples of fraudulent data
related to accounts payable amounts, payroll data, and reported corporate numbers.

8.4.1 Fictitious Vendor Fraud

Nigrini ([Nig7], 1999) reviews an interesting case, State of Arizona v. Wayne
James Nelson (CV92-18841), where Nelson was found guilty of trying to defraud
the state of $2 million. Nelson, a manager in the office of the Arizona State Trea-
surer, argued that he had diverted funds to a bogus vendor to show the absence of
safeguards in a new computer system. The amounts of the 23 checks are shown in
Table 8.1.
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Date Amount (dollars)
October 9th 1,927.48

27,902.31
October 14th 86,241.90

72,117.46
81,321.75
97,473.96

October 19th 93,249.11
89,658.17
87,776.89
92,105.83
79,949.16
87,602.93
96,879.27
91,806.47
84,991.67
90,831.83
93,766.67
88,338.72
94,639.49
83,709.28
96,412.21
88,432.86
71,552.16

Total 1,878,687.58

Table 8.1 The checks that a treasurer for the State of Arizona wrote to a fictitious vendor
called Advanced Consulting. The funds were diverted to his own use.
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Since no services were ever delivered, Nelson must have invented all the numbers
in his scheme, and because people are not random, invented numbers are unlikely
to follow Benford’s Law. There are several indications that the data is made up
of invented numbers. First, as is often the case in fraud, he started small and then
increased dollar amounts. The increase was geometric in nature, at least to the
threshold of $100,000. Most of the dollar amounts were just below $100,000. It’s
possible that $100,000+ amounts would receive additional scrutiny or that checks
above that amount required human signatures instead of automated check writing.
By keeping the dollar amounts just below a control threshold, the manager tried to
conceal the fraud. The digit patterns of the check amounts are almost opposite to
those of Benford’s Law. Over 90% have a 7, 8, or 9 as a first digit. Had each vendor
been tested against Benford’s Law, this set of numbers also would have had a low
conformity to Benford’s Law, signaling possible irregularities.

The numbers seem to have been chosen to give the appearance of randomness.
None of the check amounts was duplicated; there were no round numbers; and all
the amounts included cents. Benford’s Law is quite counterintuitive; people do not
naturally assume that some digits occur more frequently. Subconsciously though,
the manager repeated some digits and digit combinations. Among the first-two
digits of the invented amounts, 87 , 88 , 93, and 96 were all used twice. For the
last-two digits, 16 , 67, and 83 were duplicated. There was a tendency towards the
higher digits; note that 7 through 9 were the most frequently used digits, in con-
trast to Benford’s Law. A total of 160 digits were used in the 23 numbers. The
counts for the ten digits from 0 to 9 were 7, 19, 16, 14, 12, 5, 17, 22, 22, and
26, respectively. An investigator familiar with Benford’s Law could have easily
spotted the fact that these numbers—invented to seem random by someone igno-
rant of Benford’s Law—fall outside of the expected patterns and so merit a closer
investigation.

8.4.2 Payroll Fraud

An early application of digital analysis was published in Nigrini ([Nig2], 1994).
A large metropolitan housing authority used off-duty policemen to patrol its hous-
ing complexes for the 8,000 housing units that it managed. From 1981 to 1991 the
head of security managed to embezzle about $500,000 by submitting phony time
records and pay claims for work done by police officers. The policeman named on
each timesheet was a real person that worked for the authority, but the purported
work done and hours worked were phony.

Each payday the security chief would go to the bank to cash checks for policemen
that had worked, but were now back on regular duties in the city. There were usually
one or two checks drawn for work done that were cashed, and the cash kept by the
security chief for his own use.

Since the security chief had to invent a fictitious work schedule, the dollar amounts
of the fraudulent checks lent themselves to an interesting application of Benford’s
Law. The time period of the fraud was divided into two five year periods. The Ben-
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Figure 8.7 The fictitious payroll amounts that the head of security embezzled over a period
of ten years. The left panel shows the analysis of the first five years of the fraud
and the results of the last five years are shown in the right-hand panel.

ford tests were designed to also see whether the security chief’s number invention
patterns changed over time or whether he was consistent over time (in academic
terms it was a test for intertemporal consistency).

The first-two digits of the 273 fraudulent checks for the first five years of the
fraud (1981 to mid-1986) are shown in the left panel of Figure 8.7. Some large
positive spikes are evident and we can see that many different combinations were
used. The fraudster used 52 of the possible 90 first-two digit frequencies. His most
frequently used numbers were $520, $540, $624, $312, $416, and $100. The check
amounts ranged from $50 to $1,352 and totaled approximately $125,000. Recall
from the preceding vendor fraud case that Nelson started off small and then quickly
increased the fraudulent check amounts. This was also the case here because the
dollar amount tripled in the last five years.

The first-two digits of the 600 fraudulent checks for the last five years of the fraud
(mid-1986 to 1991) are shown in the right panel of Figure 8.7. Not only do we get a
larger number of significant spikes, but the significant spikes are larger. The Mean
Absolute Deviation is larger for the right-hand graph (the numbers for the last five
years). Only 14 of the possible 90 first-two digit combinations were used, telling
us that the security chief was gravitating towards using the same numbers over and
over again. The most frequently used numbers were $600, $640, $560, $540, and
$800. The check amounts ranged from $540 (much higher than the previous lows)
to $1,120 and totaled approximately $375,000. The total amount embezzled tripled
in the last five years.

Some interesting conclusions can be drawn from the case. First, as time passed
the security chief gravitated towards reusing the same set of numbers. We also note
that the quantity and amounts of the checks increased. In addition, the security
chief used the names of valid policemen. An audit might have showed that these
policemen often worked 40 hour weeks, yet there were no arrest or activity records
for these energetic policemen who were able to work two full-time physically de-
manding jobs for that week. Finally, given the size of the spikes on the 1986–1991
graph, it is almost certain that these digit combinations would have spiked dur-
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ing an analysis of the general disbursements account (the account from which the
policemen were paid).

This fraud would still be in progress had it not been that one Friday in 1991,
the security chief entered the bank to cash his usual package of checks. The teller
happened to know one of the “prior-week” policeman whose check was cashed
and who happened to be on duty in the bank at the time. Later that afternoon she
told the policeman that the security chief had cashed his check and would probably
have the cash at the station on Central Parkway soon. He was rather surprised by
the statement since he had spent his off time that week working in the bank. The
security chief was probably more surprised when he was arrested (probably not by
the bank policeman) but none were as surprised as the management of the bank
who were successfully sued for $100,000 for negligence by the housing authority.

8.4.3 Accounting Fraud

On November 11, 2001, Enron Corporation filed a Form 8-R with the Securities
and Exchange Commission (SEC) in which it revised its results for 1997 to 2000
(all years inclusive). On December 2, 2001, Enron filed for bankruptcy. This set
off a chain of events that culminated in the Sarbanes–Oxley Act (SOX) in July
2002 which, among other things, requires chief executives and chief financial offi-
cers (CFOs) to certify at regular intervals that both their reports and their financial
statements contain no untruths and omit no material facts (Reforming Corporate
Governance: In Search of Honesty, The Economist, August 17, 2002).

Starting with the March 14th indictment of Arthur Andersen in 2002, the topics
of corporate fraud and accounting were covered by the financial press and finan-
cial programming on television on a regular basis until the June 15th conviction of
Andersen on obstruction of justice charges. In addition to the Andersen case, there
were also other developments within the audit community as a whole. This high
visibility of accounting in a negative vein (with articles such as Special Report:
The Trouble with Accounting: When the Numbers Don’t Add Up, The Economist,
February 9, 2002, expressing the sentiment of the time) gave rise to the research
question as to whether the level of earnings management around this time period
was more or less than “normal.” Did the high visibility of corporate accounting
impact upon management’s actions with regard to earnings management? The ap-
proach taken in Nigrini ([Nig8], 2005) was to look at the digit patterns of reported
earnings and at selected numbers, as reported by Enron.

The Wall Street Journal (WSJ) includes a daily Digest of Corporate Earnings
Reports that reports and summarizes the earnings releases of the previous day. The
information reported includes

• Company name, Ticker symbol, and the Stock Exchange that the company is
listed on;

• Reporting Period (e.g., Q3/31 would indicate quarter ending 3/31);
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2001 2002
Quarter ended March 31 5,483 4869

Quarter ended 12/31, 1/31, 2/28, or 4/30 624 547

New York Stock Exchange listing 1,747 1,633
AMEX or NASDAQ listing 4,360 3,783
Total Number of Records 6,107 5,416

Table 8.2 A summary of all the Earnings Reports published in the Digest of Corporate
Earnings Reports from April 1 to May 31, 2001, and from April 1 to May 31,
2002.

• Revenue (in millions, with a percentage change);

• Income from continuing operations (in millions, with a percentage change);

• Net Income (in millions, with a percentage change);

• Earnings Per Share (in dollars, with comparison to year-earlier period and
percentage change).

The information is timely and, given a standard format for each company, a
database of the earnings announcements was created. The period studied included
all the Earnings Reports published in the Digest of Corporate Earnings Reports
from April 1 to May 31, 2001 and from April 1 to May 31, 2002. A summary of
the Earnings Reports is given in Table 8.2.

Most of the Earnings Reports (about 90 percent) were for the quarter ended
March 31, 2001 or March 31, 2002. About 30 percent of the companies were
New York Stock Exchange (NYSE) listings, with the remainder of the companies
being listed on the American Stock Exchange (AMEX) or NASDAQ exchanges.
Toronto and Foreign listings were omitted because the original numbers were not
denominated in U.S. dollars. Also omitted were companies listed on the NYSE that
were foreign and that did not report an EPS (earnings per share) number.

Benford’s Law was used to detect the manipulation of revenues. Companies with
less than $1 million in revenues were excluded from the analysis to avoid the sit-
uation where a company reported (say) $798,000 and this number was shown by
the WSJ as $0.80 million (revenue numbers were shown in millions to two deci-
mal places). Such a company would have a true second digit nine that would be
analyzed as if it were a second digit zero. In 2001 there were 182 companies with
revenues under $1 million and in 2002 there were 186 such companies. The num-
bers of companies reporting revenues of $1 million or more were 4,792 companies
in 2001 and 4,196 companies in 2002. Benford’s Law is still a valid expected dis-
tribution when all numbers below an integer power of 10 (101, 102, 103, . . . ) are
deleted.
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Figure 8.8 Comparison of first digit of revenue numbers and Benford’s law.

The first digits of the revenue numbers were tested for conformity as a prelimi-
nary test to check that Benford’s Law was a valid expectation for the second digits.
The results are shown in Figure 8.8.

The first digits show a close conformity to Benford’s Law for both 2001 and
2002 for all practical purposes. If the first digits had shown a bad fit to Benford’s
Law it would have been a stretch to attribute any second digit findings to earnings
manipulation, as opposed to nonconformity being due to the data not having the
attributes assumed by Benford’s Law. The second digits of the revenue numbers
are shown in Figure 8.9.

The second digits, as seen as a whole, have a close conformity to Benford’s Law
for each of the years in question. What is of interest is that for both 2001 and 2002
the 0 is overstated by an average of 0.9 percent while again for both 2001 and 2002,
there is a shortage of 8s and 9s as compared to Benford’s Law. These results are
consistent with the hypothesis that when corporate net incomes are just below psy-
chological boundaries, managers would tend to round these numbers up. Numbers
such as $798,000 and $19.97 million might be rounded up to numbers just above
$800,000 and $20 million respectively, possibly because the latter numbers con-
vey a larger measure of size despite the fact that in percentage terms they are just
marginally higher. A sign that this rounding-up was occurring would be an excess
of second digit 0s and a shortage of second digit 9s in reported net income num-
bers. The direction of the deviations in Figure 8.9 is consistent with a rounding-up
hypothesis and consistent with an upward management of revenue numbers where,
for example, a number with first-two digits of 29 or 99 is managed upwards to have
first-two digits of 30 or 10, respectively. The actual percentage of second digit 0s is
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Figure 8.9 Comprison of second digit of revenue numbers and Benford’s law.

13.0 percent in 2002 as opposed to 12.8 percent in 2001 and this by itself suggests
that rounding upwards was more prevalent in 2002 than it was in 2001. It is a little
puzzling that the proportion of second digit 9s was not lower in 2002 than what it
was in 2001.

The preceding analysis focused on an analysis of corporate numbers around psy-
chological thresholds. The collapse of Enron and the indictment and collapse of
Arthur Andersen has been well covered by the news media and documented in the
literature. It was interesting to assess whether the Enron numbers show any signs
of attaining thresholds. Note that second digit zeros are seen to be consistent with
rounding upwards. On November 11, 2001 Enron filed a Form 8-R in which it
revised its results for 1997 to 2000 (four years) inclusive. Table 8.3 shows the
original numbers as reported by Enron for 1997 to 2000 inclusive.

From the Enron numbers in Table 8.3 it can be seen that for three of the four
years the company reported revenues that just exceeded a multiple of $10 billion,
giving the revenue numbers a second digit 0 for three of the four years. Also, for
three of the four years, Enron reported Net Income before the cumulative effect
of accounting changes that just exceeded a multiple of $100 million, giving the
income numbers a second digit 0 for three of the four years. The company seemed
to make it clear that they had no control over the Cumulative effect of accounting
changes and reported two EPS numbers, one for before, and one for after the effects
of accounting changes. For the one year that Enron’s revenue numbers did not
marginally exceed a multiple of $10 billion it can be seen that the EPS number is
$1.01. This number has a second digit zero and just makes a threshold of $1.00.
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Total Revenues (in $ millions) 100,789 40,112 31,260 20,273

Net Income before cumulative effect 979 1,024 703 105
of accounting changes (in $ millions)
Cumulative effect of accounting – (131) – –
changes, net of tax (in $ millions)
Net Income (in $ millions) 979 893 703 105

Earnings Per Share of Common 1.12 1.10 1.01 0.16

Table 8.3 The fraudulent numbers reported by Enron over the period 1997 to 2000.

In Table 8.3 there are 12 “headline” reported numbers. Of these 12 numbers,
seven numbers have a second digit zero. Using the Benford’s Law proportion of
11.968 percent the probability of seven zeros occurring just by chance can be calcu-
lated using the binomial probability distribution. Using this distribution, the prob-
ability of seven or more second digit zeros occurring is 0.000013. So, we would
only expect seven second digit zeros in 12 numbers occurring 13 times out of a
million. These results have an excess of second digit zeros related to numbers just
making psychological thresholds.

8.5 DISCUSSION

The logic underlying using Benford’s Law for fraud detection is that authentic data
should conform to Benford’s Law, whereas fraudulent data would not conform to
Benford. Without a careful consideration of the data and the research approach, this
logic could have problems. First, some data is not expected to conform to Benford
in the first place. For example, salary data is too clustered (there isn’t enough of
a spread) for Benford’s Law to apply to a single set of data from a single location
in a single period. Second, most data sets have some small anomaly that manifests
itself as a spike on a first-two digits graph. A carefully executed analysis would
first ask how fraud might occur, and how it might affect the digit patterns. Then the
challenge would be to find exactly those signs of fraud.

This chapter reviewed several data sets that were judged to be authentic. These
data sets included selected taxpayer data, census data, streamflow data, and ac-
counts payable data. The fraudulent data included a fictitious vendor created by
a state employee, some payroll fraud at a housing authority, and a review of pub-
lished accounting numbers, including the numbers reported by Enron before its
demise due to accounting fraud. The use of Benford’s Law as a forensic investiga-
tion tool of data can detect anomalies that are not easily detectable by other means.
Nigrini and Miller ([NiMi2], 2009) believe that deviations from the Benford pro-
portions could be indicators of either (a) an incomplete data set, (b) the sample not
being representative of the population, (c) excessive rounding of the data, (d) data
errors, inconsistencies, or anomalies, or (e) conformity to a power law with a large
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exponent. Also, the procedure of cleansing the data and performing a Benford anal-
ysis will help an investigator to understand exactly what it is that they are dealing
with.



Chapter Nine

Can Vote Countsʼ Digits and Benfordʼs Law

Diagnose Elections?

Walter R. Mebane, Jr.1

Abstract: The digits in vote counts can help diagnose both the strategies vot-
ers use in elections and nonstrategic special mobilizations affecting votes for some
candidates. The digits can also sometimes help diagnose some kinds of election
fraud. The claim that deviations in vote counts’ second digits from the distribu-
tion implied by Benford’s Law (2BL) is an indicator for election fraud, generally
fails for precinct vote counts. I show that such tests routinely fail in data from
elections in the United States, Germany, Canada and Mexico, countries where it is
usually thought that there is negligible fraud. I illustrate how the conditional mean
of precinct vote counts’ second digits can respond to strategic behavior by voters
in response to the presence of a coalition among political parties.

9.1 INTRODUCTION

The diagnostic use of the second digits of vote counts in connection with Benford’s
Law seems to have first been suggested by Pericchi and Torres [PerTo1], which
met a skeptical response (see [Cart] for observations that the digits in vote counts
do not follow Benford’s Law). The theme was taken up by [Meb1, Meb6], and
[Meb4] used the so-called second-digit Benford’s Law (2BL) to diagnose likely
fraud in Iran’s 2009 election. [PerTo2] claim that Benford’s Law applied to vote
counts’ second digits provides a sufficient standard for diagnosing election fraud,
and here again there are skeptical voices [ShiMa, Lop, DeMyOr, Meb5]. Cantu and
Saleigh [CanSe] find that Benford’s Law approximately describes the first digits in
some district-level election returns in some Argentine elections.

[Meb7] emphasizes how patterns in the conditional mean of the second signifi-
cant digits of precinct vote counts—a statistic he denotes ĵx or ĵxy—help diagnose
the strategies voters are using in elections in the United States, Germany, Canada,
Mexico and other places. The digits also respond to other kinds of mobilization
that affect voters. It is best to think of precinct vote counts as following not Ben-

1Department of Political Science and Department of Statistics, University of Michigan, Ann Ar-
bor, MI. The author thanks Jake Gatof, Joe Klaver, William Macmillan and Matthew Weiss for their
assistance.
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ford’s Law but rather distributions in families of Benford-like distributions. Vote
counts are mixtures of several distinct kinds of processes: some that determine the
number of eligible voters in each precinct; some for how many eligible voters actu-
ally vote; some for which candidate each voter chooses; some for how the voter’s
choice is recorded. Such mixtures can produce numbers that follow Benford-like
distributions but not Benford’s Law [Rod, GrJuSc]. The following tests have been
described as 2BL tests [Meb1], but it is more precise [Meb3] to use 2BL to refer to
second-digit Benford-like tests.

Tests for the second digits of vote counts come in two forms. One uses a Pearson
chi-square statistic: X2

2BL =
∑9

j=0(nj − Nrj)
2/(Nrj), where N is the number

of vote counts of 10 or greater (so there is a second digit), nj is the number having
second digit j ∈ {0, 1, . . . , 9} and rj =

∑9
k=1 log10(1 + (10k + j)−1) is given

by the Benford’s Law formula. For independent vote counts, this statistic should
be compared to the chi-square distribution with nine degrees of freedom. To make
this comparison [PerTo2] advocate using the significance probability α = (1 +
[−ep log(p)]−1)−1 [SelBaBe, 62, equation 3], where p is the p-value of X2

2BL.2 The
second statistic, inspired by [GrJuSc], is the mean of the second digits, denoted
ĵ. If the distribution of the counts’ second-digits has frequencies rj as given by
Benford’s Law, then the second digits’ expectation is j̄ =

∑9
j=0 jrj = 4.187.

No formal theory exists to support interpretations of the patterns in the second
significant digits of precinct vote counts. [Meb7] finds that in several countries—
with both plurality and mixed electoral systems—the second significant digits of
precinct or polling station vote counts behave in regular ways that match the strate-
gies voters are using. But mobilization by strategy is merely one type of mobiliza-
tion that leaves regular traces in vote counts’ digits. [Meb7]’s interpretations are
partly supported by a simulation exercise [Meb3, Meb6].

9.2 2BL AND PRECINCT VOTE COUNTS

The claim by [PerTo2] that failure of vote counts’ second digits to match the dis-
tribution implied by Benford’s Law provides a sufficient standard for diagnosing
election fraud is almost certainly false, at least when precinct or polling station
vote counts are examined. Consider the following examples of 2BL test statistics
computed using precinct (or polling station) vote counts from the United States,
Germany, Canada and Mexico. The data show extensive deviations from what
Benford’s Law implies. [Meb7] argues at length that the deviations are caused by
district imbalance, voters’ strategies and other kinds of mobilization that affect vote
counts in normal elections. In these cases fraud has little to do with it (although the
Mexican case is complicated due to vote buying).

The hypothesis that precinct vote counts follow the 2BL distribution is rejected
when the hypothesis is tested using data from American federal and state legislative

2[PerTo2] use a modified statistic that adjusts for the maximum number of possible votes. An ar-
gument against their modification is that often the maximum is unknown or, as when there is no voter
registration or when registration occurs on election day, the maximum is random and endogenous to
voting decisions and consequently it is unreasonable to condition on it.



214 CHAPTER 9

elections of 1984–1990.3 For candidates affiliated with the Democratic and Repub-
lican parties, Table 9.1 reports χ2

2BL, the corresponding significance probability α
and ĵ. The hypothesis is rejected for all of the 28 test statistics shown in Table 9.1.
In all but a few instances ĵ differs significantly from j̄.

Year Office Party N X2
2BL α ĵ ĵlo ĵhi

1984 President Democrat 152,286 135.40 .00 4.21 4.20 4.22
Republican 152,373 148.34 .00 4.27 4.26 4.29

U.S. Rep Democrat 143,659 87.84 .00 4.22 4.21 4.24
Republican 133,359 112.34 .00 4.24 4.23 4.26

State House Democrat 146,221 104.88 .00 4.22 4.20 4.23
Republican 134,682 98.36 .00 4.23 4.21 4.24

State Senate Democrat 73,952 28.50 .02 4.19 4.17 4.21
Republican 66,066 87.57 .00 4.27 4.25 4.29

1986 U.S. Rep Democrat 142,660 117.90 .00 4.20 4.19 4.22
Republican 134,650 101.73 .00 4.20 4.18 4.21

State House Democrat 151,116 112.56 .00 4.18 4.16 4.19
Republican 139,161 68.54 .00 4.20 4.19 4.22

State Senate Democrat 82,621 91.37 .00 4.16 4.14 4.18
Republican 79,993 29.48 .01 4.22 4.20 4.24

1988 President Democrat 153,330 184.70 0 4.23 4.22 4.24
Republican 153,353 79.44 0 4.23 4.22 4.25

U.S. Rep Democrat 140,013 90.22 0 4.23 4.21 4.24
Republican 131,817 37.04 0 4.21 4.19 4.22

State House Democrat 137,145 68.99 0 4.21 4.20 4.23
Republican 124,800 63.84 0 4.24 4.22 4.25

State Senate Democrat 74,800 73.13 0 4.23 4.21 4.25
Republican 69,565 50.92 0 4.25 4.23 4.27

1990 U.S. Rep Democrat 140,976 132.74 0 4.17 4.15 4.18
Republican 136,928 119.33 0 4.15 4.13 4.16

State House Democrat 152,878 162.62 0 4.15 4.14 4.17
Republican 140,680 95.72 0 4.17 4.16 4.19

State Senate Democrat 87,014 104.54 0 4.14 4.12 4.16
Republican 81,878 53.34 0 4.16 4.14 4.18

Table 9.1 Second-Digit Tests, United States Federal and State Elections, 1984–1990. Note:
Statistics for precinct vote counts. N denotes the number of precincts with ten
or more votes for the candidate. α = (1 + [−ep log(p)]−1)−1 where p is the p-
value of X2

2BL, ĵlo and ĵhi are the lower and upper bounds of the 95% confidence
interval for ĵ. Data source: [Ki..].

The hypothesis that precinct votes counts are 2BL-distributed is also often re-
jected when the hypothesis is tested using data from American elections during the

3I have precinct data from presidential, U.S. House and state legislative elections in 1984, 1986, 1988
and 1990. The precinct data come from the Record of American Democracy (ROAD) [Ki..]. The data
include every state except California.
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2000s.4 Table 9.2 reports χ2
2BL, α and ĵ for candidates affiliated with the Demo-

cratic and Republican parties. The hypothesis is rejected in six out of seven in-
stances for Democrats but is never rejected for Republicans. We find ĵ differs
significantly from j̄ in every instance for the Democrats but never for Republicans.
[MebKe] and [Meb7] argue that differences between Tables 9.1 and 9.2 trace to dif-
ferences across the decades in the patterns of electoral mobilization by the political
parties.

Year Office Party N X2
2BL α ĵ ĵlo ĵhi

2006 U.S. Rep Democrat 121,516 29.71 .01 4.22 4.20 4.23
Republican 109,183 4.35 .22 4.18 4.16 4.20

State House Democrat 99,689 41.25 .00 4.22 4.20 4.24
Republican 95,963 14.23 .40 4.18 4.17 4.20

State Senate Democrat 61,419 21.20 .12 4.24 4.21 4.26
Republican 54,138 15.18 .36 4.18 4.16 4.21

2008 President Democrat 137,427 77.57 .00 4.25 4.23 4.27
Republican 134,519 20.04 .16 4.20 4.19 4.22

U.S. Rep Democrat 135,878 84.75 .00 4.25 4.24 4.27
Republican 126,228 5.05 .30 4.19 4.17 4.20

State House Democrat 120,226 74.69 .00 4.25 4.24 4.27
Republican 111,637 7.81 .47 4.17 4.16 4.19

State Senate Democrat 65,023 77.68 .00 4.28 4.26 4.30
Republican 61,385 11.83 .48 4.21 4.19 4.23

Table 9.2 Second-Digit Tests, United States Federal and State Elections, 2006–2008. Note:
Statistics for precinct vote counts. N denotes the number of precincts with ten
or more votes for the candidate. α = (1 + [−ep log(p)]−1)−1 where p is the p-
value of X2

2BL, ĵlo and ĵhi are the lower and upper bounds of the 95% confidence
interval for ĵ. Data source: 33 states in 2006 and 41 states in 2008 and 29 states
in 2010; collected by the author.

In German Bundestag elections each voter casts two votes. Erststimmen (first
votes) determine the winner of each Wahlkreis (district) through a plurality voting
rule, and Zweitstimmen (second votes) determine the overall share of the seats each
party has in the Bundestag through proportional representation (PR) rules.5

The hypothesis that polling station vote counts are 2BL-distributed is usually
rejected when the hypothesis is tested using data from the German Bundestag elec-

4For several states I have precinct vote count data (collected by the author) for the presidential and
U.S. House elections of 2006 and 2008, as well as precinct data for state legislative elections. Data
come from 33 states in 2006 and 41 states in 2008. The states with data in 2006 are AL, AK, AZ, AR,
CA, DE, FL, GA, HI, ID, IA, KS, LA, ME, MD, MI, MN, MS, NE, NH, NY, NC, ND, OH, PA, RI, SC,
TN, TX, VT, VA, WI and WY. The states with data in 2008 are AL, AK, AZ, AR, CA, CT, DC, DE, FL,
GA, HI, ID, IL, IN, IA, KS, LA, ME, MD, MI, MN, MS, NH, NM, NY, NC, ND, OH, OK, PA, RI, SC,
SD, TN, TX, VT, VA, WA, WV, WI and WY. Data are not available for every precinct in some states.

5To receive seats through the PR process, a party must receive more than 5 percent of the valid
Zweitstimmen or win three Wahlkreise based on Erststimmen [Bun3, Section 6].
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tions of 2002, 2005 and 2009 (see also [ShiMa]).6 The χ2
2BL, α and ĵ statistics

do not vary substantially over the three years, so Table 9.3 reports statistics for the
SPD, CDU/CSU, PDS/Linke and Green parties pooled over years.7 The hypothesis
fails to be rejected only for the Green Erststimmen. We have ĵ differing signifi-
cantly from j̄ in all but one case for Erststimmen but for only two in five instances
for Zweitstimmen. [Meb6, Meb7] argues that these deviations from 2BL can be ex-
plained by the effects on the digits of district imbalance, rolloff and strategic voting
with the latter involving a combination of “wasted vote” reasoning and “threshold
insurance” calculations [Gsch, HePa, ShiHeTh].

Type Party N X2
2BL α ĵ ĵlo ĵhi

Erststimmen SPD 264,929 158.45 0 4.24 4.23 4.25
CDU/CSU 266,731 337.43 0 4.27 4.26 4.29
FDP 234,416 217.94 0 4.27 4.26 4.28
PDS/Linke 182,193 158.27 0 4.11 4.09 4.12
Green 216,109 4.71 .26 4.19 4.18 4.20

Zweitstimmen SPD 264,529 65.07 0 4.18 4.17 4.19
CDU/CSU 266,627 175.01 0 4.21 4.20 4.22
FDP 250,433 69.78 0 4.18 4.17 4.19
PDS/Linke 190,590 129.52 0 4.11 4.10 4.13
Green 233,480 35.54 0 4.17 4.16 4.19

Table 9.3 Second-Digit Tests, German Federal Elections, 2002–2009. Note: Statistics for
polling station vote counts. N denotes the number of polling stations with ten or
more votes for the candidate. α = (1 + [−ep log(p)]−1)−1 where p is the p-
value of X2

2BL, ĵlo and ĵhi are the lower and upper bounds of the 95% confidence
interval for ĵ. Data source: [Bun2, Bun1, Bun4].

The hypothesis that the polling station counts are 2BL-distributed is rejected for
most parties most of the time when the hypothesis is tested using data from the
Canadian federal elections of 2004–2011.8 Of the 20 test instances shown in Table
9.4, the hypothesis is not rejected in only three instances: for NDP in 2004 and
2006, and for the Liberal party in 2011. ĵ usually differs significantly from j̄.
[Meb7] argues that this pattern traces to the fact that Canadian voters usually act
strategically—somewhat in accord with instrumental rationality [BlNa, BlNaGN,
ChKo] but without any nationally oriented coalition awareness [BlGs]. The varying
results for the Liberal party and for NDP reflect the former’s decline and the latter’s
rise in 2011 to Official Opposition status [LeDuc1, LeDuc2, LeDuc3, LeDuc4].

Federal elections in Mexico since 1994 have been closely contested with both
volatility in outcomes and frequent charges that election fraud was widespread, so
it is controversial whether there is significant fraud in any recent elections. Fraud

6Data come from [Bun2, Bun1, Bun4].
7Here “Green” refers to Bündnis 90/Die Grünen.
8Data are from [Ele1, Ele2, Ele3, Ele4].
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Year Party N X2
2BL α ĵ ĵlo ĵhi

2004 Liberal 59,165 163.4 .00 4.06 4.03 4.08
Conservative 55,105 222.6 .00 4.03 4.00 4.05
NDP 48,383 7.3 .45 4.18 4.15 4.20
Bloc Québécois 14,554 247.1 .00 3.83 3.78 3.88
Green Party 27,864 1700.5 .00 3.50 3.46 3.53

2006 Liberal 59,200 149.5 .00 4.06 4.03 4.08
Conservative 60,834 176.1 .00 4.06 4.03 4.08
NDP 55,635 12.2 .47 4.18 4.15 4.20
Bloc Québécois 15,084 241.1 .00 3.84 3.79 3.88
Green Party 27,864 1700.5 .00 3.48 3.45 3.51

2008 Liberal 61,541 96.4 .00 4.10 4.07 4.12
Conservative 64,267 181.6 .00 4.05 4.03 4.07
NDP 59,944 38.1 .00 4.25 4.23 4.28
Bloc Québécois 15,719 225.6 .00 3.85 3.81 3.90
Green Party 37,736 655.3 .00 3.81 3.78 3.84

2011 Liberal 57,377 18.97 .20 4.14 4.12 4.17
Conservative 66,307 404.73 .00 3.96 3.94 3.99
NDP 66,791 60.13 .00 4.13 4.11 4.15
Bloc Québécois 15,717 33.14 .00 4.31 4.26 4.35
Green Party 19,081 2248.08 .00 3.21 3.17 3.25

Table 9.4 Second-Digit Tests, Canadian Federal Elections, 2004–2011. Notes: Statistics
for polling station vote counts. N is the number of polling stations with a vote
count > 9. α = (1 + [−ep log(p)]−1)−1 where p is the p-value of X2

2BL, ĵlo and
ĵhi are the lower and upper bounds of the 95% confidence interval for ĵ. Data
source: [Ele1, Ele2, Ele3, Ele4].

occurred in the presidential election of 1988 ([Cast, 80–87, 199]; [Mag, 5]). Alle-
gations of fraud and postelection protests followed the elections especially of 1994
[McCDo], 2006 [Kles, Lop] and 2012 [Sala1, Sala2, Sande], although in these
cases it is less clear whether substantial fraud actually occurred.

While it may be less a matter of consensus that Mexican elections are largely
free of fraud than the elections we have examined from the United States, Germany
or Canada, test results regarding the hypothesis that Mexican polling station counts
follow the 2BL distribution are comparable to the results from those countries.
Using for example data from the Mexican federal elections for Presidente and for
Diputados Federales of 2006 and 2012, the hypothesis is rejected for most parties
most of the time.9 Following the point made by [Meb1] that the casilla (ballot
box) is too low a level of aggregation for 2BL tests to give meaningful results, I
consider each of these counts aggregated to the sección, a small administrative unit
usually containing several casillas. Of the 20 test statistics shown in Table 9.5, the

9Data are from [Ins1, Ins5]. Results from 1994 and 2000 are similar.
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hypothesis is not rejected in only seven instances.10 In 2012 these non-rejections
include the parties or coalitions that finished in second (MP) and in third (PAN)
place in the presidential election. For the winning party the 2BL hypothesis is
always rejected, and ĵ usually differs significantly from j̄.

Year Office Party N X2
2BL α ĵ ĵlo ĵhi

2006 Presidente PAN 62,490 48.11 .00 4.25 4.23 4.28
APM 63,915 108.96 .00 4.08 4.05 4.10
PBT 63,143 25.30 .04 4.24 4.21 4.26
NA 12,303 1254.78 .00 3.29 3.24 3.34
ASDC 35,364 16.64 .30 4.15 4.12 4.18

Diputados PAN 62,621 34.56 .00 4.23 4.21 4.26
APM 64,424 36.22 .00 4.14 4.12 4.17
PBT 62,718 11.35 .49 4.19 4.17 4.21
NA 43,295 17.57 .26 4.14 4.12 4.17
ASDC 27,229 234.43 .00 3.92 3.89 3.96

2012 Presidente PAN 65,114 19.36 .19 4.17 4.15 4.19
CM 66,658 99.24 .00 4.29 4.27 4.32
MP 64,869 11.34 .49 4.22 4.19 4.24
NA 38,244 223.56 .00 3.98 3.95 4.00

Diputados PAN 64,503 6.46 .41 4.18 4.16 4.20
PRI 27,361 8.09 .48 4.17 4.13 4.20
PVEM 15,855 119.23 .00 3.95 3.90 3.99
NA 47,431 31.31 .01 4.13 4.10 4.15
CM 39,001 149.04 .00 4.36 4.33 4.39
MP 63,963 7.57 .46 4.21 4.18 4.23

Table 9.5 Second-Digit Tests, Mexican Federal Elections, 2006 and 2012. Notes: Statistics
for sección vote counts. N is the number of secciones with a vote count > 9.
α = (1 + [−ep log(p)]−1)−1 where p is the p-value of X2

2BL, ĵlo and ĵhi are
the lower and upper bounds of the 95% confidence interval for ĵ. Data source:
[Ins1, Ins5].

9.3 AN EXAMPLE OF STRATEGIC BEHAVIOR BY VOTERS

The frequent rejections of the 2BL hypothesis do not imply that election fraud is
present in all these elections. Instead [Meb7] argues that the deviations from 2BL

10The parties and coalitions shown in Table 9.5 are as follows: APM, coalición Alianza por México
(PRI, PVEM); ASDC, Partido Alternativa Social Democrática y Campesina; CM, coalición Compro-
miso por México (PRI, PVEM); MP, coalición Movimiento Progresista (PRD, PT, Movimiento Ciu-
dadano); NA, Partido Nueva Alianza; PAN, Partido Acción Nacional; PBT, coalición Por el Bien de
Todos (PRD, PT, Convergencia); PCD, Partido Centro Democrático; PRD, Partido de la Revolución
Democrática; PRI, Partido Revolucionario Institucional; PT, Partido del Trabajo; PVEM, Partido Verde
Ecologista de México.
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are caused by district imbalance, voters’ strategies and other kinds of mobilization
that affect vote counts in normal politics.

To illustrate how normal political activity can affect the distribution of digits in
precinct vote counts and how statistics based on the digits can help diagnose the po-
litical behavior, I present one case drawn from Mexican data. The statistic of inter-
est is the conditional digit mean, ĵx, which is estimated using non-parametric re-
gression [BowAz]11; ĵx shows how the mean of the second digit of the vote counts
for the candidates affiliated with a party or coalition varies with covariates defined
by the margins between the candidates in each legislative district. In districts where
a party won, the margin is the difference between the proportion of votes received
by the winner and the third-place candidate (denoted M13), and in districts where
a party finished in second place the margin is the difference between the propor-
tion of votes received by the second-place candidate and the third-place candidate
(denoted M23). [Meb6, Meb7] motivates these choices for covariates in terms of
basic “wasted vote” instrumental behavior: the key quantity given such strategic
behavior is the difference between each of the top two parties and the party that
comes in third [Cox1, Cox2].

Figures 9.1(a,b) are examples of estimating ĵx using Diputados Federales elec-
tion secciòn data in 2012. The figures shows results for districts in which CM and
MP finished in first and second place. Figure 9.1(a) displays ĵx (conditional district
means) based on the second digits of secciòn votes for CM. ĵx for districts where
CM won and MP was second is plotted for positive values of the x-axis, and for
these estimates the covariate is M13. ĵx for districts where CM was second and
MP won is plotted for negative values of the x-axis, and for these estimates the
covariate is −M23. ĵx is shown surrounded by 95 percent confidence bounds, and
j̄ is indicated by a horizontal dotted line. Figure 9.1(b) displays the analogously
estimated ĵx based on votes for MP.

Elections for Diputados Federales in 2012 are especially interesting because of
the complex mix of coalitions that competed. In particular the PRI and PVEM
parties formed the partial coalition CM: CM had candidates in 199 districts, but PRI
and PVEM had separate candidates in the other 101 districts ([Ins4, 4–11]; [Ins3,
23–30]). Several other parties (PRD, PT and Movimiento Ciudadano) formed the
coalition MP, which unified on all candidates [Ins2]. Estimating ĵx suggests that
voters’ strategies are different when the coalitions are present than when they are
absent. When CM together runs a candidate there is evidence of more strategic
vote switching than when PRI and PVEM sponsor candidates separately. When
CM together runs a candidate there seems to be more strategic vote switching not
only for the CM candidate but also for candidates supported by opposing parties
and coalitions.

The sensitivity of strategic behavior to the presence of a coalition as opposed
to merely the parties comprising the coalition is apparent in races in which MP
and CM or PRI were in the lead. In districts where CM and MP finished in first
and second place, both coalitions have ĵx values that are never significantly less
than 4.35 (Figures 9.1(a,b)). Based in part on simulations, [Meb6, Meb7] identi-

11Nonparametric regressions are computed using the sm package of R [R].
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Figure 9.1 Mexico 2012: Diputados, Sección Count Second-Digit Mean (Districts) by
−M23 and M13. Note: Nonparametric regression of Mayoría Relativa vote
counts’ second digits based on secciòn data. Rug plots show locations of secciòn
values of −M23 and M13.

fies ĵ ≈ 4.35 as a key indicator of strategic vote switching behavior. In districts
where MP won and CM was second, ĵx is slightly greater than 4.35 for MP when
.27 < M13 < .42 and for CM when −.25 < −M23 < −.04. These values are
evidence of strategic vote switching adding to the vote totals of both winners and
second-place finishers in all the districts where the two coalitions led. In contrast
consider the districts in which PRI and MP finished in first and second (Figures
9.1(c,d)). When PRI is sponsoring candidates not as part of the CM coalition, ĵx
for PRI is never significantly greater than j̄ and indeed is somewhat less than j̄ in
some of the districts where PRI won.12 Note ĵx for MP is frequently less than j̄ in
districts where MP was second behind a PRI candidate, a condition that never oc-
curred when an MP candidate finished second behind a CM candidate.13 In districts
where the MP candidate defeated the second-place PRI candidates, ĵx for MP rises
above 4.35 only when .21 < M13. Indeed ĵx for MP in the MP-winning districts
resembles ĵx for the advantaged candidate in a simulation [Meb6, Meb7] with no
strategic vote switching and no turnout decline. In any case, evidence based on ĵx
suggesting there is strategic vote switching in favor of the MP candidate when such
a candidate is running against a strong PRI candidate is much less than the evidence
when an MP candidate is running against a strong CM candidate.

12ĵx for PRI in Figure 9.1(c) is significantly less than j̄ when .15 < M13 < .22.
13ĵx for MP in Figure 9.1(d) is significantly less than j̄ when −.11 < −M23.
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The sensitivity of strategic behavior to the presence of coalitions is apparent as
well in races in which PAN is one of the leading parties. Looking at districts where
PAN and CM or PRI led shows clearly how strategic behavior varies with the pres-
ence of a coalition candidate. In districts where PAN and CM were first and second
(Figures 9.2(c,d)), ĵx for CM is never meaningfully different from 4.35,14 and ĵx
for PAN is never significantly different from 4.35 for winning PRI candidates. Ev-
idence of strategically switched vote gains is strong in these cases. When PAN
finished second behind CM, ĵx for PAN does not differ significantly from j̄ when
−.11 < −M23 and is significantly less than 4.35 when −.2 < −M23. The mean
of the point estimates of ĵx when −.2 < −M23 is ĵx ≈ 4.25. The estimate of
ĵx is bounded significantly below the value of ĵx ≈ 4.35: probably strategic vote
switching can be ruled out for this party in these districts. As −M23 decreases
below −M23 = −.2, ĵx increases to the point that when −M23 < −.34, ĵx be-
comes significantly greater than 4.35. Perhaps these values point to some but not
all PAN candidates receiving strategically switched votes when finishing behind a
CM candidate.
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Figure 9.2 Mexico 2012: Diputados, Sección Count Second-Digit Mean (Districts) by
−M23 and M13. Note: Nonparametric regression of Mayoría Relativa vote
counts’ second digits based on secciòn data. Rug plots show locations of secciòn
values of −M23 and M13.

14ĵx in Figure 9.2(d) is significantly greater than 4.35 when .4 < M13: the lower bound of the
confidence interval for ĵx at M13 = .42 is 4.36 and the point estimate for ĵx is ĵx ≈ 4.5.
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9.4 DISCUSSION

Are statistics based on the second significant digits of precinct vote counts mean-
ingful? [Meb7] argues that not only can digit tests help diagnose strategic voting
[Meb6] but also they are sensitive to other aspects of normal politics such as kinds
of mobilization that go well beyond the scope of strategic voting. The claim by
[PerTo2] that violation of Benford’s Law provides a sufficient standard for diag-
nosing election fraud is almost certainly false, but Benford’s Law is not irrelevant
for the forensic examination of elections. While precinct vote counts often do not
match the distribution implied by 2BL, often they do. The simulation that [Meb7]
relies on takes an election with vote counts that satisfy 2BL as a point of departure
and shows that familiar kinds of political manipulation produce regular patterns of
departure from 2BL. [Meb7] tries to show that the simulated patterns very often
match the patterns found in real data from elections in several countries.

When considered against the background of more complicated patterns that oc-
cur in various electoral settings, tests based on the second significant digits of
precinct vote counts may be useful for detecting election fraud. [Meb4] uses such
tests to diagnose likely fraud in Iran’s 2009 election. [Meb7] compares the Iran
2009 findings to similar statistics for federal elections in Mexico. The Mexican
results strongly suggest effects of vote buying, which some (e.g. [Sande]) consider
election fraud. The analysis becomes intricate, involving covariates such as the
mayoral party affiliation. As [DeMyOr] and [Meb5] argue, it is unlikely that tests
based on precinct vote counts’ second digits will support simple rules of thumb to
diagnose election fraud. Even in Russian elections where tests based on the last
digits of turnout figures diagnose fraud [MyOrSh, MebKa1, KaMeb], the second
digits of polling station vote counts provide plausible strategic diagnostics along
with some hints of fraud [MebKa2].

The fact that digit tests are sensitive to many normal aspects of politics may be
good for general political science interests, but it at least complicates the potential
for using the tests to diagnose election fraud. The question of whether the patterns
in digits produced by fraud differ sharply from the patterns produced by normal
politics is not an easy one to answer. [Meb7] gives some cases where likely fraud
produces very distinctive patterns (such as the Iranian election of 2009 [Meb4], and
other elections), but also cases where natural political shocks produce patterns that
would otherwise be interpreted as political coercion. Except in exceptional, flagrant
cases, there is no reason to think that forensically diagnosing elections should be
any simpler than forensic examinations are in the face of a sophisticated adversary
in any other realm.



Chapter Ten

Complementing Benfordʼs Law for Small N : A

Local Bootstrap

Boudewijn F. Roukema1

In analyzing the 2009 Iranian presidential election initially published results,
this chapter echoes a theme common throughout this book. Apparent anomalies
revealed by the initial application of Benford’s Law (BL) need to be followed up
by more detailed analyses. The local bootstrap model described below provides
a non-parametric method of simulating electoral data—using the data itself. The
minimalist assumption is made that the proportions of people voting in electoral
regions of a given population size can be simulated by randomly drawing (bootstrap
resampling) the voting rates per candidate from the claimed true data for those
regions. This can be thought of as giving a very small nudge to the data, without
introducing any external assumptions of what statistical distributions the voting
follows. If an apparent BL signal disappears when the data are nudged just slightly,
and if no similar signal reappears by chance among 10,000 statistically independent
nudges (local bootstrap simulations on a computer), then the signal is statistically
significant.

Not only was the dramatic BL spike for one of the four presidential candidates
found to be highly significant, but, as in the case studies by Nigrini in Chapter 8,
another method of follow-up was also used. The spike was used as a tracer to
select a suspect subset of the full data set. This subset has several statistically
unusual properties, rendering the null hypothesis of an unaltered data set extremely
unlikely. A similar local bootstrap plus BL approach is most likely applicable to
other settings.

10.1 THE 2009 IRANIAN PRESIDENTIAL ELECTION

The 2009 Iranian presidential election first round, held on 12 June 2009, was
a locally and internationally important geopolitical event. Since it took place in
a country with a high rate of internet usage, it was unsurprising that the ministry
responsible for organizing the election published initial results on the world wide
web. Fortunately for those interested in the first-digit Benford’s Law (see Definition

1Toruń Centre for Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus
University, ul. Gagarina 11, 87-100 Toruń, Poland.
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1.4.1), these initial data were published for 366 electoral regions (shahrestans)
varying by well over an order of magnitude in electoral size. A quick analysis
[Rou, v1] was circulated four days later, showing what appeared to be an obvious
first-digit anomaly for K, one of the four candidates. Benford’s Law using non-
primary digits was also applied to the data [Meb2, BebSca, BerRin].

The three conditions suggested by Nigrini (see Chapter 8) for practical appli-
cations of Benford’s Law (to detect vote fraud) are mostly satisfied for this data
set, with the exception that the total voting population bounds the full set of vote
counts from above. However, some skepticism about the application of BL to this
case was expressed.

It is useful to apply a small N statistical first-digit frequency test that is as non-
parametric as possible in a way that leaves no doubt regarding “how close” the
observed system should be to a Benford’s Law limit. One approach is a local boot-
strap model, designed to closely mimic the data in a way that should statistically
reproduce its first-digit distributions, given some simple hypotheses about the gen-
eral behavior of the system. This method was calibrated on several presidential-
election first rounds from before 2009 and applied to the 2009 Iranian election,
confirming the improbability of candidate K’s first-digit anomaly to high signifi-
cance [Rou]. The computing power required for the test is higher than for a direct
application of Benford’s Law, but practical on a personal computer.

10.2 APPLICABILITY OF BENFORD’S LAW AND THE K7 ANOMALY

First let us consider the election data. For a given election, let us write vij for the
vote count for jth candidate in the ith electoral region. The latter has xi ≥

∑
j vij

total votes (inequality occurs due to invalid votes). Let the voting rate for a given
candidate in a given electoral region be

wij := vij/xi. (10.1)

For BL to be applicable, the standard deviation of the intrinsic distribution of poten-
tial voters per voting area for a given election, estimated using the actual (official)
total votes, σ(log10 xi), and the standard deviation in the voting rates for a candi-
date j, σ(log10 wij), should both be high in order that the resulting vij first-digit
distribution approaches BL.

Figure 10.1 shows these parameters for the Iranian 2009 and five prior presidential-
election first rounds (the data are public; see [Rou, Table 1 and Section 2.3]). The
Iranian 2005 and 2009 elections have the broadest distributions in both parameters.
Thus, these are the elections for which BL is most likely to apply. Moreover, of the
four 2009 candidates, K has the highest voting rate spread σ(log10 wij) = 0.42,
and should be closest to the BL limit. How uniform is the folded logarithmic dis-
tribution of the total votes? Figure 10.2 shows this distribution. It is a little noisy.
Multiplying xi by wij should smooth this out and reduce the chance of deviation
from the BL limit. Yet, Figure 10.3 shows what appears to be a dramatic deviation
from BL, considering just the thick line (BL model) for the moment.

Figure 10.4 shows the folded logarithmic distribution of K’s vote counts. As
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Figure 10.1 Logarithmic spread of voting rates σ(log10 wij) as a function of the logarithmic
spread of the underlying voting populations σ(log10 xi) for elections in (left to
right) Poland 2005, France 2002, France 2007, Brazil 2006, Iran 2005, and Iran
2009. For the four candidates in the latter, σ(log10 wij) = 0.12, 0.34, 0.42,
and 0.24 for candidates A, R, K, and M, respectively.
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Figure 10.2 Folded logarithmic distribution of the total vote count in the 2009 Iranian
presidential-election first round, shown as a frequency histogram over the sig-
nificand S(xi) = 10log10 xi−�log10 xi�. This implicitly shows what the first
digit distribution would be for a candidate getting 100% of the votes in every
shahrestan.



226 CHAPTER 10

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6 7 8 9

f

D1

Figure 10.3 First-digit frequency distribution f(D1) for candidate K (�) in the Iranian 2009
election. The Benford’s Law limit is shown as a thick line (passing by chance
through the f(9) data point). The excess in f(7) is obvious. A local boot-
strap model (Section 10.3), calibrated on earlier, similar elections, gives a con-
servative estimate of confidence levels. Lower and upper confidence levels of
ce = 0.05%, 0.5%, 2.5%, 97.5%, 99.5%, 99.95%, are shown. The upper three
confidence levels can be distinguished; the lower three are almost indistinguish-
able in this plot.
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expected, this is generally flatter and smoother than the total vote count distribu-
tion shown in Figure 10.2, with the exception of the spike which approximately
corresponds to the significand 7 ≤ S < 8. The “K7” spike appears to be highly
discrepant. Is this a “smoking gun,” revealing artificial interference in the data?

10.3 ACONSERVATIVEALTERNATIVE TOBENFORD’SLAW: A SMALL

N , EMPIRICAL, LOCAL BOOTSTRAP MODEL

The local bootstrap model, defined in [Rou, Section 2.2] and summarized here,
is conservative; i.e., it is of high specificity (the chance of falsely rejecting the hy-
pothesis that the data are fully authentic is low), but weak power (the method is
likely to fail to detect some artifacts in the data). The aim is to use a bootstrap of
the data itself to simulate the voting rates for each shahrestan given its approximate
total vote size. This allows the modeling of the possibility that a candidate tends to
be more popular in big cities, for example, without needing to make any specific
hypothesis on the type of distribution (e.g. normal, log-normal, unimodal, or bi-
modal). Using the above notation, let us define a realization of the model ([Rou,
Definition 2.1]).

Definition 10.3.1 (Local bootstrap realization). Sort the set of xi such that the
sequence (xi1 , xi2 , . . . , xim) is in ascending order. A local bootstrap realization
for candidate j is a set of simulated votes

{wik′ j xik}k=1,...,m (10.2)

where {k′(k)} are drawn from a random realization G of a Gaussian distribution
of width mΔ, where Δ := log10(10/9) ≈ 0.0458 and centered at k, truncated at
the limits of {k}, i.e.,

k′(k) := max(1, min(m, �G(k,mΔ) + 0.5	)). (10.3)

The value of Δ and the Gaussian smoothing are designed in order that the data
are randomly reselected (allowing repeats) within approximately the logarithmic
width of the narrowest first-digit interval, i.e., from 9 to 10. Varying Δ with respect
to the value defined here helps to understand it. In the limit Δ → 0, the realization
approaches an exact copy of the data itself: the real data will be considered to
be highly probable, no matter what its real nature is. For Δ  log10(10/9), the
realization would tend towards the assumption that the voting rate is independent
of the size of the total voting population, and possibly imply a rejection of the real
data because of an oversimplified model. The word “local” refers to Δ being small.

An example of a local bootstrap realization is shown in Fig. 10.5. Apart from
the general similarity of the distributions evident in the figure, one conservative
property of this approach that can be seen is that the bootstrap realization has a
similar number of outliers (in this case, extremely low voting rate tails) to the orig-
inal distribution.
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Figure 10.5 Example local bootstrap realization for candidate 1 in the Polish 2005
presidential-election first round. Real voting rates wij (�) and bootstrapped
voting rates wik′ j (×) are shown. The latter statistically imitate the former.

Since bootstrap methods tend to overestimate the variance in a data set and
require bias and skewness corrections, the method of Definition 10.3.1 can be cali-
brated using the earlier five elections [Rou, Table 1]. Let us assume that the earlier
election results were all fully valid. In this case, we have both empirical distri-
butions of first-digit frequencies, cej(d1) for digit d1 for votes {vij}i=1,...,m for
candidate j in a given election, and bootstrap distributions cbj(d1) for simulated
votes {wik′ j}i=1,...,m. An almost-everywhere-smooth, continuous, piecewise fit to
the five elections’ real and local bootstrap data gave the correction from bootstrap
to “empirical” confidence levels [Rou, Eqs (8), (9)]:

ce(cb) =

⎧⎪⎨⎪⎩ 0.5
(

cb
c∗b

)β−

if cb < c∗b,

1− 0.5
(

1−cb
1−c∗

b

)β+

if cb ≥ c∗b,
(10.4)

where

β− = 1.824, β+ = 1.487, c∗b = 0.566. (10.5)

Since β− > 1 and β+ > 1, this confirms that direct use of ensembles of local
bootstrap realizations leads to conservative confidence levels near the extremes:
first-digit frequencies are rejected less strongly than they should be, given the cali-
bration on the previous elections.

The direct bootstrap confidence level (one-sided) for rejecting the K7 spike is
cbK7 > 99.924%. Applying Eqs (10.4) and (10.5), the calibrated confidence level
is ceK7 > 99.9960%, i.e., 1 − ceK7 ≈ 4 × 10−5. So the local bootstrap method
provides a conservative complement to applying BL directly. Of course, as with any
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statistical analysis, meta-questions regarding the number of statistical tests applied
need to be considered. A Šidàk–Bonferonni correction factor [Abd] of 36, for
considering all of the digits for the four candidates, increases the latter probability
to p < 1.5× 10−3, which is still low.

We can now return to Figure 10.3, which shows the confidence levels ce in ad-
dition to the BL limit. By the bootstrap nature of the model, the confidence levels
show a positive bump for D1 = 7. For Δ → 0, the model would approach the offi-
cial data exactly, making it impossible to reject the data in comparison to the model.
For Δ := log10(10/9) as defined in Definition 10.3.1, i.e., just nudging the official
data very slightly, a Gaussian spread in voting rates wij with a width of the narrow-
est interval (for D1 = 9) shifts the model f(7) distribution down towards the BL
model. Sociologically, this represents the assumption that among the shahrestans
of approximately a given voting population x, the voting rates wij for K among
those shahrestans are drawn from a random probability density function identical
to that in the official results for shahrestans with xi ≈ x, where “≈” is defined by
the Gaussian distribution of width mΔ in the ordered sequence (xi1 , xi2 , . . . , xim).

For example, typically (apart from truncation at the lower and upper limits), an
official voting rate of 0.95% for K is resampled with a 68% chance of lying among
the voting rates for K in the 17 shahrestans with slightly lower populations and 17
shahrestans with slightly higher populations. The shahrestans of those sizes might
have some peculiar characteristics (e.g. a sharply bimodal distribution because of
cities in regions of different ethnic mixes), and these are (statistically) reflected in
the model. Intuitively, this could be thought of as giving a very gentle “nudge” to
the official data set. Figure 10.3 shows that for this data set, the official data are
fragile, and become extremely unlikely when nudged just slightly.

10.4 USING A SUSPECTED ANOMALY TO SELECT SUBSETS OF THE

DATA

As recommended by Nigrini for accounting data (Section 8.3.4), the data corre-
sponding to anomalous spikes compared to BL can be usefully investigated further,
possibly revealing innocent explanations that help understand the data rather than
leading to further statistical anomalies. In the 2009 Iranian election, the K7 spike
can be considered as a tracer. If it is just a 1 in 670 fluke, then the shahrestans
identified by the K7 spike should not be expected to also have unusual statistical
properties.

Figure 10.6 shows that among the most populous shahrestans, the K7 spike does
indeed imply another anomaly: of the six most populous shahrestans, the K7 spike
selects those three that voted the most for candidate A. This is clearly unusual (e.g.
p < 5×10−4; see [Rou, Section 4.4.1]) and correlates with the most sociologically
likely possibility of interference, that someone from the Ministry altered the data
in support of the incumbent, candidate A. Table 10.1 gives more details, revealing
an unusual second-digit distribution: the big shahrestan d1 = 7 vote counts have
d2 = 0 in every case. Nigrini (Section 8.4.3) argues in favor of a psychological bias
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Figure 10.6 Voting rates wij for candidate A as a function of shahrestan total voting popula-
tion xi. Shahrestans corresponding to the K7 spike are shown as plus symbols;
all other shahrestans are shown with circles. The K7 spike selects those of the
six most populous shahrestans who (officially) voted the most for candidate A.

Shahrestan xi viK wiA

Tabriz 876919 3513 0.497
Shiraz 947168 7078 0.600
Karaj 950243 8057 0.537
Isfahan 1095399 7002 0.609
Mashhad 1536106 7098 0.669
Tehran 4179188 43073 0.433

Table 10.1 Vote counts for K and voting rates for A for the six most populous voting areas
(as in [Rou, Table 8]).

Candidate j
Shahrestan subset A R K M
N(vij even | d1(viK) = 7) 18 15 18 16
N(vij odd | d1(viK) = 7) 23 26 23 25
p 0.266 0.059 0.266 0.106

Table 10.2 Number of K7-selected shahrestans N with odd or even vote counts vij , and
cumulative binomial tail probabilities p (as in [Rou, Table 10]).
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for selecting zero as a second digit, though in a different sociological setting (Enron
Corporation) and with a different inferred psychological explanation. Even if we
neglect this, the probability that all three second digits are equal, but not necessarily
zero, can be calculated using BL, giving p ≈ 0.01037 [Rou, Section 4.4.1]. The
coincidences continue. Table 10.2 shows that the K7-selected shahrestans mostly
have odd vote counts, no matter who the candidate is. Considering the cumulative
binomial tail probabilities p in the table to be independent, the probability that all
four candidates have their K7-selected subset as dominated by odd votes as they are
in the official results is p ≈ 4.4 × 10−4 [Rou, Section 4.4.2]. Thus, not only does
the local bootstrap method confirm the low probability of the K7 spike revealed by
the Benford’s Law limit, but the K7 spike leads to several improbable patterns in
subsets of the data that it selects.

10.5 WHEN LOCAL BOOTSTRAPS COMPLEMENT BENFORD’S LAW

The implicit sociological model used in the local bootstrap model here is

vij = wijxi (10.6)

for each candidate j in shahrestan i, where {xi} is a known realization of an under-
lying sociological process, and {wij} is considered to be a random process (popu-
larity) characteristic of candidate j and described by an implicitly known probabil-
ity distribution at each shahrestan population size ≈ x. When the aim is to have a
test of high specificity and low power is acceptable, and the number of data points
is small, this model is generic enough to infer “raw” bootstrap confidence intervals
for first-digit frequencies in a wide variety of situations. These will in general be
conservative, and more work—calibration using comparable data sets—would be
required for calculating “empirical” confidence levels as described above.

Figures 10.1 and 10.2 show that the 2009 Iranian presidential-election first round
is better than several other recent elections for applying a first-digit BL analysis.
The other elections have narrower logarithmic widths in xi and wij . Thus, local
bootstraps are more likely to be necessary as a complement to direct application of
the first-digit BL to provide conservative estimates of confidence intervals for simi-
lar, post-2009 presidential-election first rounds. Countries with populations smaller
than about 40 million are not spanned by the populations of the five countries used
in the calibration above, so a recalibration would be preferable if extending to lower
population countries.

Of course, given more credible knowledge about a system, a more detailed, para-
metric statistical model could be built, and then first-digit frequencies could be
compared between model and observation. But Benford’s Law has the special ap-
peal of being trivial to apply to a given data set without requiring the adoption of
possibly wrong assumptions about the processes and properties of the system. A
local bootstrap model follows the spirit of being essentially non-parametric (apart
from the choice of Δ, but BL also depends on the choice of a base), so although
it is less trivial (but still straightforward) to calculate, it has the same advantage of
bypassing a need to make detailed assumptions about the system, and the additional
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advantage of not needing to assume that the system is near the Benford’s Law limit.
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Applications II: Economics





Chapter Eleven

Measuring the Quality of European Statistics

Bernhard Rauch, Max Göttsche, Gernot Brähler, Stefan Engel1

Because of the Stability and Growth Pact criteria the euro countries have an in-
centive to manipulate their macroeconomic statistics. In a recent study we showed
a significant deviation from Benford’s Law of the first digits distribution of Greek
financial statistics. This result supports the effectiveness of Benford’s Law in de-
tecting fraud, as Greece has been convicted of data manipulation. In this chapter
we use a different approach: we analyze Greek statistics which are not relevant to
government deficit spending, and compare the findings with the results of our prior
research. Our hypothesis was that the social data set should conform better with
Benford’s Law than the financial data set, as the incentive for manipulation is lower.
Our results show that in contrast to their financial data, the Greek social statistics
data have a good fit with Benford’s Law. Once again, we interpret our outcome as
a sign for the effectiveness of the Benford test.

11.1 INTRODUCTION

For a company, an excessively high level of debt can lead to bankruptcy, whereas
a country is able to use inflation to reduce public debt denominated in domestic
currency. However, if a country is a member of a monetary union, an unsustainable
level of debt may endanger the monetary system in the entire union. For this reason,
current and prospective members of the European Monetary Union are obliged by
the Stability and Growth Pact to restrict public deficit to 3 percent and public debt
to 60 percent of Gross Domestic Product (GDP).

If a euro country does not meet the criteria of the Stability and Growth Pact,
the European Commission can apply Excessive Deficit Procedures (EDP) to this
country. EDP include restrictions for the country’s government’s policies and ex-
panded fiscal monitoring of the deficit.

However, EDP have not yet been successful in restricting public debt to a sus-
tainable level in all euro states. Some of the euro countries reach ratios of govern-
ment debt to GDP of more than 100 percent ([EUC1], 2012): These countries are

1Rauch: University of Regensburg, Department of Economics, Universitätsstraße 31, 93053 Re-
gensburg, Germany; Göttsche and Engel: Catholic University of Eichstätt-Ingolstadt, Department of
Auditing and Controlling, Auf der Schanz 49, 85049, Ingolstadt, Germany; Brähler: Ilmenau Univer-
sity of Technology, Department of Taxation Theory and Auditing, Helmholtzplatz 3, 98693 Ilmenau,
Germany.
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Greece (165.3%), Italy (120.1%), Ireland (108,2%) and Portugal (107,8%). Since
the beginning of the euro crisis in 2010, tremendous efforts have been necessary to
stabilize the monetary union.

Given the high pressure from both the financial markets and the European Com-
mission for the euro countries to meet the criteria of the Stability and Growth Pact,
there is an incentive for governments to manipulate their data related to fiscal mon-
itoring. Therefore, the quality of the statistics in the European Union (EU) is an
important prerequisite for effective debt monitoring. To ensure the quality of the
statistics, effective auditing methods are necessary. Benford’s Law has been suc-
cessfully applied to detect manipulation and “cosmetic earnings management” in
the accounting data of companies. Since macroeconomic data are similar in nature
to accounting data, Benford’s law should be applicable to them as well.

In this chapter, we pose the question of whether there is a difference in the quality
of data for statistics which are related to fiscal monitoring and for social statistics,
which have no relation to fiscal monitoring. Our hypothesis is that the quality of EU
government statistics related to fiscal monitoring could be affected by the pressure
of the financial markets and the European Commission. For both types of statistics,
we compare the distribution of the first digits with the distribution of the first digits
generated by Benford’s Law.

11.2 MACROECONOMIC STATISTICS IN THE EU

European Government Finance Statistics are currently provided on the basis of the
European System of Accounts (ESA 95). These data are the “basis for fiscal mon-
itoring in the EU.” The data for the statistics are reported by the different member
states. The member states and their statistical authorities are responsible for the
compliance of the reported data with legal provisions. On the level of the Euro-
pean Union, Eurostat, the EU statistical authority, is responsible for the statistical
methodology and for the quality of assessment of the data provided by the member
states, including data provided in the context of the EDP (cf. [EUC2], 2011).

EDP can be applied by the European Commission and the European Council to
countries which do not fulfill the criteria of the Stability and Growth Pact. The
Stability and Growth Pact limits the permitted government debt for the countries of
the eurozone to three percent of GDP (cf. [EUC2], 2011).

In the last few years, there have been discussions concerning the quality of the
statistics reported to Eurostat, especially in the case of those reported by Greece.
In a report on the Greek EDP data and statistics, the European Commission (cf.
[EUC3], 2010) pointed out that “These most recent revisions are an illustration of
the lack of quality of Greek fiscal statistics (and of macroeconomic statistics in
general) and show that the progress in the compilation of fiscal statistics in Greece
and the intense scrutiny of the Greek fiscal data by Eurostat since 2004 (including
10 EDP visits and 5 reservations on the notified data), have not sufficed to bring the
quality of Greek fiscal data to the level reached by other EU Member States.”

As a consequence of the lack of quality in the EU statistics, Eurostat (cf. [EUC2],
2011) was given more power in 2010. This includes a “system of regular monitor-
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ing and verification of upstream public financial data.” The extended competence
of Eurostat also includes more “in-depth, methodological visits to the Member
States.” For the future, the European Commission plans to “support the imple-
mentation of public accounting standards” to provide the ESA-based information.

11.3 BENFORD’S LAW AND MACROECONOMIC DATA

Similarly to the accounting data of companies, unmanipulated macroeconomic data
from different sources with different distributions can be expected to be Benford
distributed. This is confirmed in Nye and Moul ([NyM], 2007), Gonzales-Garcia
and Pastor ([GonPa], 2009) and Rauch et al. ([RauGBE], 2011). However, one has
to be careful when interpreting a deviation from Benford’s Law in a certain data
set. It cannot be considered as conclusive proof of poor data quality, since it could
be based on e.g. structural shifts in the data set, as argued by Gonzales-Garcia and
Pastor ([GonPa], 2009). Nevertheless, in our opinion a deviation from Benford’s
Law should be regarded as a “red flag,” indicating data that need closer inspection
and further testing.

Consequently, we do not use a hypothesis framework to investigate the confor-
mity of a data set with Benford’s Law. Rather, we compare data sets according to
the extent of their deviation from Benford’s Law. This relation is used to establish a
ranking of data sets, i.e., of countries. The position of each country in this ranking
can be used to indicate the probability of manipulation in its data and determines
the order in which further auditing procedures should be carried out.

We restrict the analysis to the first valid digit. The evaluation of the data sets’
conformity with Benford’s Law is based on χ2 test statistics,

χ2 = n

9∑
i=1

(hi − pi)
2

pi
(11.1)

where n denotes sample size, pi expected and hi observed relative frequencies.
Furthermore, to ensure that the ranking induced by χ2 test statistics is not a

result of variation in sample size between the countries or the choice of a particular
measure, we use three measures of the distance between the actual data distribution
and the Benford distribution which are insensitive to sample size. The first measure
is the χ2 statistics divided by the sample size n as in Leemis et al. ([LeScEv],
2000):

c = χ2/n. (11.2)

The other measures are the normalized Euclidian distance d∗ as in Cho and
Gaines ([ChGa], 2007),

d∗ =

√∑9
i=1 (hi − pi)

2√∑8
i=1 p

2
i + (1− p9)

2
, (11.3)

and the distance measure a∗ used by Judge and Schechter ([JuSc], 2009),

a∗ =
|μe − μb|
9− μb

, (11.4)
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where μe denotes the mean of the data set and μb denotes the mean of the Benford
distribution of first digits.

11.3.1 EDP-Related Statistics

In a recent study (cf. [RauGBE], 2011) we analyze EU macroeconomic data pub-
lished in the Eurostat database.1 The aim of the study is to analyze macroeconomic
data related to the EDP and to provide a ranking of the EU member states based on
the deviation of their data from Benford’s Law. This ranking could be useful as an
indicator for manipulated data. The data set consists of the following categories:

1. Government statistics / government deficit and debt: government deficit /
surplus, debt and associated data.

2. Government statistics / annual government finance statistics: government
revenue, expenditure and main aggregates.

3. National accounts / annual national accounts: GDP and main components—
current prices

4. Financial accounts: balance sheets, assets and liabilities consolidated.

5. Financial accounts: financial transactions, assets and liabilities consolidated.

Our study analyzes the first digits of 156 single positions per country and per year
covering the period from 1999 to 2009. The analysis consists of two steps. First,
we analyze the aggregated data set. For this set, the results of the three distance
measures independent of sample size show a good fit of the first digit distribution
with Benford’s Law. Second, investigating each country individually, we calculate
the mean of the χ2 test statistics for each country and rank the countries according
to this mean value.

On the individual level, among all euro countries Greece shows the highest de-
viation from Benford’s Law with a mean value of 17.74 for the χ2 test statistics,
followed by Belgium with a value of 17.21 and Austria with a value of 15.25. In
contrast, we calculate the lowest deviation for the Netherlands with 7.83. The intro-
duced measures independent of sample size, χ2/n, d∗ and a∗, support the results
of the χ2 test statistics.

The so-called PIIGS countries, an acronym for Portugal, Italy, Ireland, Greece
and Spain, are strongly affected by a high level of debt and might therefore be ex-
pected to manipulate data. However, as far as the PIIGS states are concerned, apart
from Greece only the Irish data indicates a substantial deviation from Benford’s
Law in our study. Potentially poor data was indicated only by a∗ and d∗ for Italy;
for Spain and Portugal, we could not find any such indication. Furthermore, Por-
tugal shows the second-lowest mean of the χ2 test statistics. Our results do not
support the common assumption that data reported by the “PIIGS” are generally of
lower quality than those reported by other euro states.

1http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/search_database.

http://epp.eurostat.ec.europa.eu/portal/page/portal/statistics/search_database
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For all measures, Greece shows the highest deviation from Benford’s Law among
all euro countries. As mentioned above, the European Commission concluded in a
report that the quality of Greek EDP data and macroeconomic statistics is insuffi-
cient (cf. [EUC3], 2010). At least in the case of Greece, the high deviation from
Benford’s Law could be interpreted as an indicator for low data quality.

11.3.2 Social Statistics

As mentioned before, there is high pressure for the euro countries to comply with
the Stability and Growth Pact criteria. This in turn gives countries an incentive
to falsify statistics related to the fiscal monitoring of euro countries and EDP. Our
hypothesis is that countries are more willing to falsify their statistics if they have
an incentive to do so. On the contrary, if there is no incentive for data manipulation
for the countries, the data quality will be higher.

The aim of our study is to use Benford’s Law to investigate the quality of macroe-
conomic data which is not related to fiscal monitoring and EDP provided by EU
member states. If there is no data manipulation, one would expect that the data will
conform well with Benford’s Law. As the Greek data produced the highest devi-
ation from Benford’s Law in our recent study (cf. [RauGBE], 2011) and the ma-
nipulation of Greek data was criticized by the European Commission (cf. [EUC3],
2010), we decided to investigate our hypothesis using Greek statistics.

We choose social statistics, which are not related to fiscal monitoring and the
EDP process, as these are more likely to be subject to fluctuations than population
statistics or area data. We assume that there is no pressure or incentive for Greece
to falsify these data and we would therefore expect no significant deviation for this
data from Benford’s Law. Our data set contains Greek data taken from the database
of Eurostat1 in June 2012. We select the data from two different subsections of the
Eurostat database. The first part of the data is from the group “social protection”
under the theme “living conditions and welfare.” The other part of the data set
is from the group “labour market policy” under the theme “population and social
conditions.” Our sample includes the following categories:

1. Social Protection Expenditure

2. Social Protection Receipts

3. Public expenditure on labor market policy interventions

The data set contains 1,322 observations for the period from 1999 to 2009 with a
total of 267 possible observations per year and an average of 120.18 observations
per year. The main reason for the difference between possible observations and
average observations is that data from the third group include a considerable num-
ber of entries with missing values, especially for the years 1999 to 2005 and the
year 2009. Data are expressed in absolute values in millions of euros; currency
conversions were calculated by Eurostat.

Again we calculate the χ2 test statistics and the three measures independent of
sample size, χ2, χ2/n, d∗ and a∗, for the whole data set and per year. Results are
presented in Figure 11.1.
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Our results indicate a good fit of the investigated data for the whole sample as
well as for the single years. We could not find a significant deviation for any one
of the single years or for the sample as a whole. The results for the three measures
independent of sample size support the results of the χ2 test statistics.

Figure 11.1 Distribution of first digits for Greek social statistics.

11.3.3 EDP-Related Statistics versus Social Statistics

Figure 11.2 summarizes the results for Greece from our first study. Figure 11.2
compares the distribution of Greek EDP-related statistics with the distribution gen-
erated by Benford’s Law. There is a significant deviation of the debt-related statis-
tics from Benford’s Law for all digits.

The results of the second study are presented in Figure 11.3. As shown in Section
11.3.2, we identify a good fit for the social statistics with Benford’s Law for all
digits.

The different results of the two studies are illustrated in Figure 11.4, comparing
the χ2 test statistics for the EDP-related statistics and the social statistics for the
period from 1999–2009. The 5 percent significance level for the χ2 test statistics
(with 8 degrees of freedom) is 15.51. We identify significant deviations, for the
Greek EDP-related statistics, from Benford’s Law for seven of the ten years. In
contrast, we find no significant deviations for the social statistics in the same period.

Comparing the results of the first study with the results of the second study,
we find a lack of data quality for Greek EDP-related statistics, measured by the
deviation of the first digit distribution from the distribution generated by Benford’s
Law. On the contrary, we find evidence that data not related to EDP and debt
do not show a significant deviation from Benford’s Law. Our results support the
hypothesis that, at least in the case of Greece, data will conform well with Benford’s
Law if there is no pressure or incentive to falsify statistics (cf. [RauGBK], 2014).
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Figure 11.2 First digits of Greek EDP-related statistics.

Figure 11.3 First digits of Greek social statistics.
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Figure 11.4 χ2 test statistics for Greece.

11.4 CONCLUSION

For the euro countries, there is high pressure to comply with the Stability and
Growth Pact criteria. The compliance of the member states with the Stability and
Growth Pact criteria is monitored by the European Commission through their statis-
tical authority Eurostat. If a country’s government deficit spending does not comply
with the criteria of the Stability and Growth Pact, the European Commission can
apply EDP to this country’s government. Therefore, governments have an incentive
to falsify statistics related to fiscal monitoring and EDP.

The basis for the fiscal monitoring through Eurostat is the statistics provided by
the member states. Particularly during the current euro crisis, the European Com-
mission has raised considerable doubts concerning the data quality of the Greek
EDP-related statistics (cf. [EUC3], 2010). In view of Greece’s current economic
situation, there is a strong incentive for Greece to manipulate the EDP-related statis-
tics.

In a recent study (cf. [RauGBE], 2011) we could show that the first digits distri-
bution of Greek EDP-related statistics show a significant deviation from Benford’s
Law, indicating low data quality. This result is hardly surprising, considering the
current Greek situation.

In this chapter, we analyzed statistics which are not relevant to government
deficit spending and fiscal monitoring. Our hypothesis was that countries are more
willing to falsify data if they have an incentive to do so, whereas if there is no
incentive to manipulate data, the quality of the data will be higher. We used Ben-
ford’s Law to examine the quality of Greek social statistics, which are not likely
to be manipulated, as there is no incentive or pressure for Greece to falsify these
statistics.

Our results show that the Greek social statistics data have a good fit with Ben-
ford’s Law, for the whole sample as well as for the single years. This supports
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our hypothesis that the quality of statistical data will be higher and will therefore
conform well with Benford’s Law if there is no incentive for data manipulation.

The results of our two studies can thus be interpreted as a sign for the efficiency
of Benford’s Law as a measurement method to check the quality of macroeconomic
statistics.



Chapter Twelve

Benfordʼs Law and Fraud in Economic Research

Karl-Heinz Tödter1

Science and academia are not immune to dishonesty and deception. Scientific
misconduct appears in various forms. Fabrication, falsification, and plagiarism are
as old as science itself. Journal editors and referees have a difficult task when
confronted with empirical research results based on large data sets and complex
econometric techniques.

Replication is considered the prime strategy against scientific misconduct, but
it is seldom performed in empirical economics. Benford’s Law provides tools for
checking reliability and detecting fraud. The chapter reviews applications of Ben-
ford’s Law to uncover fraud in macroeconomic data, forecasts, and econometric
regression results. Moreover, the potential of Benford’s Law to enhance the effi-
ciency of replication as a strategy against fraud in published research is discussed.
We conclude that routine applications of Benford tests could uncover data anoma-
lies and provide valuable hints of irregularities in empirical economics research.

12.1 INTRODUCTION

Science and academia are not immune to dishonesty and deception. Scientific mis-
conduct is as old as science itself. Galileo, Kepler, Newton, Mendel, Pasteur, and
Freud have all been suspected of fraud in some way [Jud]. In an 1830 text enti-
tled Reflections on the Decline of Science in England, mathematician, philosopher,
and computer pioneer Charles Babbage documented his concern about scientific
misconduct, which he classified as hoaxing, forging, trimming, and cooking [Han].
The US Office of Science and Technology Policy defines scientific misconduct as
“fabrication, falsification, or plagiarism in proposing, performing, or reviewing re-
search or in reporting research results” [MaAdV]. Fabrication is invention of data
or cases, falsification is intentional distortion of data or results, and plagiarism is
unquoted copying of data or text.2

Increasing specialization of science, its growing social and economic relevance,
keen competition for research funding, and strong publication pressure in academia

1Research Centre, Deutsche Bundesbank, Frankfurt am Main, Germany
2Beyond that narrow definition, [MaAdV] report “a range of questionable practices that are striking

in their breadth and prevalence,” according to a survey conducted among several thousand scientists.
They concluded that overall, 33% of the respondents admitted having engaged in at least one of the top
ten misbehaviors during the previous three years.
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have all raised the temptation to make up research results [GrLaW, Fre, Sta]. The
development of the internet and of “text mining” platforms have increased the risk
of plain plagiarism,3 but other forms of research misconduct cannot be uncovered
by the same means. The traditional control mechanisms in the publication process
are easily overstrained, particularly when editors and referees are confronted with
empirical research results based on large data sets and/or complex econometric
techniques. Replication is considered as prime strategy against scientific miscon-
duct, but it remains ([Ham], p.715) “an activity that most economists applaud but
few perform.” Since empirical research in economics is rarely replicated by in-
dependent experts, complementary methods for checking reliability and detecting
fraud are called for.

This chapter reviews applications of Benford’s Law to detect fraud in economic
data, forecasts, and research. Regression results and quantitative forecasts form a
large and important part of published research output in economics. Section 12.2
discusses some issues on Benford’s Law. Section 12.3 reports applications of Ben-
ford’s Law to macroeconomic data and forecasts, including Consensus forecasts
and national accounting data of euro member states. In the case of Greece the
suspicion of data manipulation raised by tests of Benford’s Law was confirmed
officially by the European Commission [RauGBE] (for more on Greece, see Chap-
ter 11). Section 12.4 reviews work on Benford’s Law to check for anomalies in
published regression output, and Section 12.5 gauges the potential of Benford’s
Law to enhance the efficiency of replication as a strategy against fraud in published
research. We end with some concluding remarks in Section 12.6

12.2 ON BENFORD’S LAW

The density and distribution functions of Benford’s Law for a variable X defined
on [1, 10) are

f(x) =
1

x log 10
, F (x) = log10(x). (12.1)

From (12.1), the following probabilities of first digits (D1) and conditional proba-
bilities of second digits (D2) are obtained and shown in Table 12.1:

Prob(D1 = d1) = log10

(
1 +

1

d1

)
, d1 ∈ {1, 2, . . . , 9}, (12.2)

Prob(D2 = d2|D1 = d1) = log10

(
1 +

1

10d1 + d2

)
, d2 ∈ {0, 1, 2, . . . , 9}.

(12.3)

3Recently, two prominent cases of plagiarism in their dissertations led to the demise of the German
Minister of Defence Karl-Theodor zu Guttenberg in 2011 and of the President of Hungary Pál Schmitt
in 2012. Also in 2012, Annette Schavan, German Federal Minister of Education and Research, was
accused of plagiarism in her dissertation from 1980 at the University of Düsseldorf, and resigned in
February 2013.
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Benford’s Law Benford’s Law for Rounded Figures
d1,d2 P(d1) P(d2) P(d1)a) P(d2)b) P(d2)c)

0 – 0.120 - 0.103 0.506
1 0.301 0.114 0.198 0.117 –
2 0.176 0.109 0.222 0.111 –
3 0.125 0.104 0.146 0.107 –
4 0.097 0.100 0.109 0.102 –
5 0.079 0.097 0.087 0.098 0.494
6 0.067 0.093 0.073 0.095 –
7 0.058 0.090 0.062 0.092 –
8 0.051 0.088 0.054 0.089 –
9 0.046 0.085 0.048 0.086 –
E(D)d) 3.440 4.187 3.693 4.261 2.470
Var(D)d) 6.057 8.254 5.738 8.063 6.249

a) Figures rounded to one significant digit. b) Figures rounded to two significant digits. c) Second digits rounded to zero and five.

d) E(D) is the expected value and Var(D) is the variance of the distribution.

Table 12.1 Benford’s Law for original and rounded figures.

Newspapers, monographs, and scientific journals often publish only one or two
significant digits. Benford’s Law is scale and base invariant [Hi2, Pin], but it is not
invariant to rounding. From (12.1) probabilities are obtained for figures rounded
to one significant digit, which means that figures 0.5 or more are rounded up and
figures less than 0.5 are rounded down:

P (D1 = d1) =

{
log10

(
1 + 11

19

)
, d1 = 1,

log10

(
1 + 1

d1− 1
2

)
, d1 ∈ {2, 3, . . . , 9}.

(12.4)

If figures are rounded to two significant digits, the probabilities of first digits remain
as in (12.2), whereas the conditional probabilities of second digits are

P (D2 = d2|D1 = d1) =

⎧⎨⎩log10

(
1 + 1

20d1

)
+ log10

(
1 + 1

20d1+19

)
, d2 = 0,

log10

(
1 + 1

10d1+d2− 1
2

)
, d2 �= 0.

(12.5)
In Table 12.1 it can be seen that the unconditional probabilities of rounded first and
second digits are not monotonically decreasing. The final column applies in the
case when second digits are bold rounded to the “half integers” 0 and 5, which
means, e.g., that figures in the range [3.25, 3.75) are rounded to 3.5 and figures in
the range [3.75, 4.25) to 4.0.

To test leading digits for conformity with Benford’s Law, the χ2–goodness-of-fit
test is often used; the χ2-distribution is a special case of the Gamma distribution
with one parameter, called the degrees of freedom. The test checks whether the
sum of squared deviations between observed relative frequencies of leading digits
(hd1 , hd2) and Benford probabilities (Prob(D1=d1) = pd1 , Prob(D2=d2) = pd2) as
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given in (12.2) and (12.3) significantly differs from zero:

Q1 = n

9∑
d1=1

(hd1 − pd1)
2

pd1

, Q2 = n

9∑
d2=0

(hd2 − pd2)
2

pd2

. (12.6)

The sample size is denoted by n, the statistic Q1 (Q2) has an approximate χ2-
distribution with 8 (9) degrees of freedom for testing first (second) digits.

The following test checks whether the arithmetic mean of observed leading dig-
its, defined as d1 =

∑9
d1=1 d1 ∗ hd1 , and d2 =

∑9
d2=0 d2 ∗ hd2 , deviates from its

expectation (E(D1), E(D2)) under Benford’s Law. The test statistics

M1 = n
(d1 − E(D1))

2

Var(D1)
, M2 = n

(d2 − E(D2))
2

Var(D2)
, (12.7)

have an approximate χ2-distribution with 1 degree of freedom for testing first and
second digits; the expectations (E(D1), E(D2)) and variances (Var(D1), Var(D2))
are shown in Table 12.1. The power of both tests depends on the specific pattern
of deviations from Benford’s Law. However, since the M-tests “use up” only one
degree of freedom, they have potentially greater power than the Q-tests.

The uniform distribution is often regarded as natural and thus most plausible.
A tampered data set is likely to have more evenly distributed leading digits than
Benford’s Law requires because mostly people are unaware that data sets should
be Benford. This ignorance suggests, for testing purposes, replacing the observed
distribution of first digits by a linear combination (0≤ λ ≤ 1) of Benford’s Law and
the uniform law (UL): hd1 = (1 − λ)pd1 + λ(1/9). For example, the probability
of the first digit “1” drops from 0.301 to 0.301 − 0.190λ, and that of the digit
“9” increases from 0.046 to 0.046 + 0.065λ. The mean of the mixed distribution
increases from E(D1) = 3.44 to 3.44 + 1.56λ. Thus, both tests have power to
detect this type of manipulation. Both statistics turn out as approximately the same
functions of λ : Q1(λ) ≈ M1(λ) ≈ 0.401nλ2 . Since the critical 5% level of the
Q1-test (=15.51) is 4 times as large as that for the M1-test (=3.84), the latter is more
powerful in detecting violations of Benford’s Law, as shown in columns 2 and 3 of
Table 12.2 for several sample sizes.

For a second comparison, consider theGeneralized Benford Law (GBL), which
is a power law that includes Benford’s Law as a special case for α = 1, as can be
seen by invoking L’Hopital’s rule to evaluate the limit as α tends to unity:

g(x) =
1− α

(101−α − 1)xα
, −∞ ≤ α ≤ ∞. (12.8)

For α > 0, the density is monotonically decreasing. If α > 1 (α < 1) the den-
sity is steeper (flatter) than Benford’s Law, approaching the uniform distribution
as α tends to zero. With negative α-values, the Generalized Benford Law be-
comes monotonically increasing, shifting more mass to higher digits. For example,
assuming α = {2, 1, 0,−1,−2}, the probabilities of leading digit “1” are {0.56,
0.30, 0.11, 0.03, 0.01} and of “9” are {0.01, 0.05, 0.11, 0.19, 0.27}, respectively.
Columns 4 and 5 of Table 12.2 show the range of α-values for which the tests fail
to reject the null hypothesis of Benford’s Law at the 5% level of significance. At
small and moderate sample sizes, fairly large deviations fromα = 1 are required by
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Linear combination of BL and UL GBL
n Q1-test a) M1-test b) Q1-test a) M1-test b)

requires λ >
. . .

λ > . . . α /∈ . . . α /∈ . . .

50 0.88 0.44 (0.13, 1.91) (0.57, 1.47)
100 0.62 0.31 (0.39, 1.63) (0.69, 1.32)
200 0.44 0.22 (0.57, 1.44) (0.78, 1.23)
500 0.28 0.14 (0.73, 1.27) (0.86, 1.14)
1000 0.20 0.10 (0.81, 1.19) (0.90, 1.10)
5000 0.09 0.04 (0.91, 1.09) (0.96, 1.04)

BL = Benford’s Law, GBL = Generalized Benford Law, UL = uniform distribution. a) Q1-test rejects BL at 5% significance level with critical value 15.51.

b) M1 -test rejects BL at 5% significance level with critical value 3.84.

Table 12.2 Sensitivity of the Q1- and M1-test against alternative distributions.

both tests to detect violations of Benford’s Law. However, the range of insignificant
α-values is much wider for the Q1-test, implying that it is uniformly less powerful
against the Generalized Benford Law distributions than the M1-test.

The M1-test cannot discriminate between distributions of first digits that have
identical means. TheMaximumEntropy (MaxEnt) distribution of first significant
digits discussed by Lee et al. in Chapter 17 of this volume provides an example.
For the parameters α = 0.646 (GBL) and λ = 0.154 (MaxEnt) the probabilities of
the first digits are different, e.g., P (D1 = 1) = 0.22(0.19) for GBL (MaxEnt), yet
both have identical mean E(D1) = 4. The Q1-test can discriminate between both
distributions but requires a large sample size (n ≥ 1417 at the 5% level).

12.3 BENFORD’S LAW INMACROECONOMIC DATA AND FORECASTS

National accounting data play a major role in the European Union (EU) because
euro countries have to comply with the stability criteria of the Stability and Growth
Pact. The member states must report their national and financial accounts to Euro-
stat, the European statistics agency. To avoid sanctions, governments may polish
their economic stance in the official data. Rauch et al. (see [RauGBE] and Chap-
ter 11) applied Benford’s Law to investigate macroeconomic data in the EU. The
authors checked the quality of data related to public deficit, public debt, and gross
national product, all of which are relevant to the calculation of the deficit ratio and
the debt ratio. First, aggregate data of the 27 EU member states were checked and
yielded a very good fit to Benford’s Law.

In a second step, data of individual euro and non-euro countries for the 11 years
between 1999 and 2009 were tested. [RauGBE] obtained a robust ranking of the
quality of the data set according to the Q1-statistic and related criteria. For the data
reported by Greece, they found that the Q1-statistic exceeds the 5% significance
level in 6 of 11 years. These data showed “the greatest deviation from Benford’s
Law among all euro countries” ([RauGBE], p.243), followed by Belgium and Aus-
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tria. Among the non-euro countries, the greatest deviations from Benford’s Law
were observed for Romania, Latvia, and Estonia. The suspicion of data manipula-
tion in the case of Greece was confirmed officially by the European Commission
and thus provides evidence for the effectiveness of Benford’s Law in revealing
anomalies in official macroeconomic data ([RauGBE], p.243). This article was
widely commented on in the press after it appeared in the German Economic Re-
view in August 2011. Meanwhile, the International Monetary Fund (IMF) and
Eurostat have declared their interest in Benford procedures.
Quantitative forecasts are research output that plays an important role as an

information source for economic agents. In particular, monetary policy of central
banks and fiscal policy of governments strongly rely on macroeconomic forecasts.
The monthly journal Consensus Forecasts publishes forecasts of the annual growth
rates of the current and the subsequent year for a broad set of macroeconomic vari-
ables and countries, which are widely read and analyzed in the business and finan-
cial press. The forecasts are based on monthly surveys among commercial banks
and private as well as public research institutes. Consensus Forecasts publishes
both the individual forecasts and the aggregate (mean) forecasts averaged over the
participating forecasters. The public pays the most attention to forecasts of the
growth rate of real gross domestic product (GDP) and of the inflation rate of the
consumer price index (CPI). Günnel and Tödter [GüTd] investigated forecasts for
Germany for data anomalies and information inefficiencies. They collected about
18,000 observations of leading digits from 55 panelists to check the forecasts of
annual growth rates of real GDP and CPI inflation from October 1989 to July 2004.

The first digits of Consensus Forecasts have a very limited range: most reported
growth and inflation rates are between 0 and 4. Therefore, [GüTd] looked at the
distribution of “first digits after the decimal point,” as these digits are of comparable
importance in terms of their economic significance. Another important feature of
the data set is rounding. The forecasters have to report figures rounded to one digit
after the decimal point, requiring adjustment of Benford’s Law to take into account
rounding effects. If second digits are rounded, values in the range of, e.g., [1.35,
1.45) are reported as 1.4. The observed second digits strongly violate Benford’s
Law (adjusted for rounding effects) because there is a massive excess of 0s and 5s:
in the four subsamples shown, almost 50% of all forecasts look like d1.0 and d1.5
with any first digit d1.

[GüTd] also checked the forecasts of individual panelists for excessive rounding.
The sample size for individual forecasters ranges between 600 and 700 observa-
tions. In the extreme, one institute recorded the “half integers” 0 and 5 in 70% of
all observations. Such bold rounding could reflect imitation and herding behavior
[Ost]. [GüTd] estimated that on average 30% of the observations come from “bold
rounded” figures. If there are leading forecasters, other institutes might resort to
bold rounding to conceal “plagiarism of numbers.” Reporting “half integers” might
also reflect the fact that some forecasters do not use forecasting models but simply
make “educated guesses.” The strong preference for “half integers” may also be
a crude way to express forecast uncertainty. Rounding forecasts to “half integers”
is not fraud per se, but it is a data anomaly that seriously compromises the infor-
mation content of the surveys and distorts the mean of the aggregated growth and
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Regression coefficients Standard errors
1st digits 2nd digits 1st digits 2nd digits

Empirica
No. of observations 4606 3977 3037 2773
Ave. no. of obs. per article 100 86 66 60
M1- and M2-test 1.42 0.56 1.30 0.01

Applied Economics Letters
No. of observations 5171 4650 2921 2619
Ave. no. of obs. per article 73 65 41 37
M1- and M2-test 0.10 3.13* 1.56 0.79

Source: [GüTd]. * denotes significance at the 10% level.

Table 12.3 First and second digits of regression coefficients and standard errors.

inflation forecasts of the pool.

12.4 BENFORD’S LAW IN PUBLISHED ECONOMIC RESEARCH

Although as early as 1972 the US economist Hal Varian [Va] suggested Benford’s
Law as a diagnostic tool for screening model output and forecasts in economics,
only in the last two decades have people recognized that Benford’s Law could
fruitfully be used to screen data for hints of manipulation and fraud. In particu-
lar, Nigrini’s work [Nig1, Nig2, Nig4, Nig5, Nig6] was instrumental in introducing
Benford’s Law in accountancy, auditing, business, and finance. Meanwhile, tax
authorities in the US, Germany, Switzerland, and The Netherlands, among other
countries, apply Benford’s Law to check tax declarations for anomalies.

Leading digits of regression results were first Benford tested by Diekmann [Die]
in the field of sociology and by Günnel and Tödter [GüTd] in economics. The
latter analyzed whether Benford’s Law applies to estimated coefficients and stan-
dard errors of econometric regressions. Focusing on first and second digits, they
screened 46 articles in four volumes of Empirica (2003 to 2006) and 71 articles
in one volume of Applied Economics Letters (2006), comprising about 30,000 ob-
servations in total. [GüTd] collected data from a broad range of regression mod-
els and estimators, such as Ordinary Least Squares (OLS), Instrumental Variables
(IV), Generalized Method of Moments (GMM), Quantile- and Tobin-Regressions.
All figures were taken from regressions with empirical data, neglecting those with
artificially generated data. To avoid double counting, only results presented in ta-
bles were counted, discarding figures scattered in the text. Table 12.3 provides an
overview of the data set.

There are fewer observations on second digits than on first because about 10% of
the observations show only one significant digit. Often authors just report t-values,
i.e., the ratio of estimated coefficients to their estimated standard errors. In these
cases [GüTd] recalculated standard errors from the published t-values, although
this might induce measurement errors due to rounding in some cases.
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Regression coefficients Standard errors
1st digits 2nd digits 1st digits 2nd digits

No. of observations 9777 8627 5928 5392
Ave. no. of obs. per article 84 74 66 60
Standard deviation 136 123 121 116
No. of articles 117 117 90 90
% doubtful* 26 11 30 14
M-tests (average) 3.65 1.41 3.88 1.91
M-tests (std. dev.) 5.45 2.30 6.60 2.56

Source: [Töd]. *Percentage of articles with M-statistics exceeding the critical 5% value 3.84.

Table 12.4 Benford analysis of leading digits in individual articles.

As Table 12.3 shows, Benford’s Law is confirmed by the M-test for first and
second digits of published regression coefficients and standard errors. Summing up,
[GüTd] conclude that “in economic research Benford’s Law applies to regression
coefficients and standard errors” (p.284).

A publication bias arises from the tendency of researchers, referees, and edi-
tors to prefer significant (positive) to insignificant (negative) results [RobSt]. To
report statistically significant coefficients, authors have an incentive to engage in
questionable activities that might range from extensive data mining to outright ma-
nipulation of data and regression output.4 Thus, published first digits of coefficients
and standard errors with t-values exceeding 1.96 in absolute value, usually consid-
ered significant, may be more likely to have been engineered than those below
([Han], p.24). To check for inflated t-values, [GüTd] divided their sample of stan-
dard errors from Empirica (2006) into two groups and found that deviations from
Benford’s Law occurred more often in the group with t-values above 1.96, which
they interpreted as evidence for irregularities.5

In a closely related study, using the same data set of published regression out-
put in Empirica and Applied Economics Letters, Tödter [Töd] investigated data
anomalies in individual articles. He classified an article as doubtful, deserving fur-
ther scrutiny, if the appropriate M-test rejects Benford’s Law at the 5% level. As
Table 12.4 shows, a surprisingly large proportion of articles had to be classified as
doubtful. First digits of regression coefficients (standard errors) were found doubt-
ful in 26% (30%) of the articles, in stark contrast to second digits of regressions
coefficients (standard errors) with 11% (14%) doubtful articles.

This result makes sense because manipulation of first digits is “more effective”
in achieving a desired result than that of second digits. The evidence on doubtful
articles is reflected by the M-test statistics. On average, the M-statistics are sub-
stantially larger when testing first digits as compared to second digits. In contrast,

4Despite occasional warnings in the literature of the dangers of pretesting biases [DM], data mining
is widespread in econometrics and regarded as unproblematic, e.g., [S-i-M] proudly announces “I just
ran two million regressions.”

5Auspurg and Hinz [AuHi] investigate t-values near 1.96 as an indicator of publication bias and of
data manipulation.
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Figure 12.1 Mean test for first and second digits of regression coefficients.

a test for differences in mean [HogMC] between the first digits of regression coef-
ficients and standard errors is statistically insignificant, as is a test for differences
in means of second digits.6 But the differences between first and second digits are
statistically different from zero, for both regression coefficients and standard errors.
Figure 12.1 displays the values of the M-statistics in increasing order for first and
second digits of regression coefficients in the 117 articles investigated (for stan-
dard errors a similar figure is obtained). Figure 12.1 reveals the striking difference
between first and second digits, suggesting that manipulation of regression results
mostly pertains to first digits because second digits largely confirm Benford’s Law.

List et al. [LiBEM] conducted a survey at an American Economic Association
(AEA) meeting and report that between 4 and 5% of the respondents self-reported
falsification of data and about 5 to 7% of research in the top 30 journals is believed
to be falsified. What does the evidence reported in [Töd] reveal about data anoma-
lies in the population of research articles? Let Ω (0 ≤ Ω ≤ 1) denote the unknown
proportion of Benford’s Law violations in a population of articles with regression
output. Then, the null hypothesis of Benford’s Law for a randomly selected article
is rejected with probability

θ = α(1− Ω) + (1− β)Ω, (12.9)

where α(1 − β) denotes the size (power) of the test. Provided the test is unbiased
(1 − β > α), the rejection probability increases with Ω as it should. If Ω = 0(1),
the rejection probability is equal to the size (power) of the test. Now, let θ̂ be the
proportion of Benford violations in a sample of articles. Equation (12.9) suggests
the estimate Ω̂ = (θ̂ − α)/(1 − α − β). Though the preselected significance

6Tests for differences between the two journals, Empirica and Applied Economics Letters, were
insignificant as well. Moreover, the M-statistics were not correlated with the number of observations in
the articles.
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level is known, the formula is not applicable since the power is unknown, both for
individual articles and on average for all articles sampled. Power increases with the
sample size (n), but it also depends on the specific pattern of manipulation, which
is unknown and likely varies from article to article. However, in large and heavily
contaminated samples power would be close to one, allowing us to provide a lower
bound for the ratio of doubtful articles in the population:

Ω̂ ≥ θ̂ − α

1− α
. (12.10)

If the population is clean, the expected share of rejections is equal to the size of the
test (θ̂ = α), and (12.10) yields the trivial estimation Ω̂ ≥ 0.

From Table 12.4, the estimated range for the proportion of contaminated first
digits of regression coefficients (standard errors) is Ω̂ ≥ 22% (≥ 26%). For second
digits of regression coefficients (standard errors) a substantially smaller estimate
of the contamination ratio is obtained: Ω̂ ≥ 6% (≥ 9%). This evidence is not
proof of falsification, but anomalies revealed by Benford tests provide useful sig-
nals to initiate closer investigations. Since resources are scarce, these signals are
very valuable. Benford tests are a simple and practical tool to obtain first hints of
anomalies, manipulations, and falsifications in empirical research. Tödter ([Töd],
p.349) concludes, “Benford tests do not provide conclusive evidence, but they can
help identify papers that need closer inspection and thus complement the control
mechanisms already in place.”

Recently, Diekmann and Jann ([DieJa], p.397) questioned Benford’s Law as a
good instrument to reveal fraud in statistical and scientific data. They argued that
for a valid test “the probability of ‘false positives’ and ‘false negatives’ has to be
low.” This probability of a false decision (φ) is the sum of falsely rejecting the null
hypothesis and falsely accepting it,

φ = α(1− Ω) + βΩ, (12.11)
where Ω is the probability of fraud in the population and α (β) is the probabil-
ity of a Type I (II) error. If a small Type I error is chosen, β > α can safely be
assumed, implying that the probability of a false decision lies somewhere in the
interval α < φ ≤ β. This is typical for statistical tests in general and not a char-
acteristic of Benford tests. Nonetheless, [DieJa] (p.400) claim that replication “is
the most promising remedy to reduce erroneous results in science.” In the next sec-
tion it is argued that replication and Benford tests are best seen as complementary
strategies: Benford tests increase the effectiveness of replication studies.

12.5 REPLICATION AND BENFORD’S LAW

Independent review of research results is a cornerstone of science, and replication
is widely considered as the prime strategy against scientific misconduct. However,
in contrast to natural sciences, social sciences lack a distinct tradition of replica-
tion.7 In their “call for replication studies,” Burman et al. ([BurRA], p.787) argue,

7The electrochemists Stanley Pons and Martin Fleischman reported in 1989 that a small tabletop
nuclear fusion experiment at room temperature (cold fusion) had produced excess heat. The result was
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“A basic requirement for scientific integrity is the ability to replicate the results of
research, and yet, with some occasional historical exceptions, replication has never
been an important part of economic research. The absence of replication studies
is particularly problematic because empirical economic research is often prone to
error.”

In economics, few professional journals request from authors the filing of data,
programs, and documentation. Even if they do, attempts to replicate studies mostly
fail. McCullough et al. [McCMH] analyzed 150 articles from the Journal of Money,
Credit, and Banking but failed to replicate the results in more than 90% of the cases.
But, as [McCVi] (p.888) point out, “Research that cannot be replicated is not sci-
ence, and cannot be trusted either as part of the profession’s accumulated body of
knowledge or as a basis for policy.” Even when feasible technically, replication is
fraught with severe problems. First, replication fails to detect fraud when authors
submit dressed up data along with tuned software from which all results neatly fol-
low. Second, replication is rare because empirical researchers have poor incentives
to engage in replication exercises ([Ham], p.726). Third, referees of empirical pa-
pers usually will not bother to obtain the data and computer code necessary to rees-
timate the models. Rational researchers weigh the costs of replicating the results of
others against the benefits of doing their own research. And fourth, replication that
takes place after publication leaves room for false results to influence private be-
havior and public policy.8 In contrast to replication, Benford tests are quick, cheap,
and capable of routine, automated implementation before publication.

Assume that the proportion Ω (0 ≤ Ω ≤ 1) in the population of N papers
submitted to a journal is fabricated. Let replication be feasible and reveal fraud
with probability one.9 A strategy of “pure replication”10 randomly selects n (< N )
papers for replication. Since replication is very costly, sampling is done without
replacement. The number of uncovered falsifications follows a hypergeometric
distribution HG(n,N,NΩ), where NΩ is the number of fraudulent articles in the
population. The expected number of fraudulent papers in the sample is nΩ with
variance nΩ(1− Ω)(N − n)/(N − 1).

The alternative strategy first routinely prefilters all N submitted articles by Ben-
ford tests for leading digits anomalies. The expected proportion of rejected articles
is the sum of false rejections (false positives) and correct rejections (true positives)

soon rejected by the scientific community because the experiment could not be replicated consistently
and reliably by other laboratories. In September 2011 a team at CERN announced that neutrinos travel
faster than light, contradicting Einstein’s Theory of Relativity. Replicating the experiment a few months
later, another group at the same laboratory measured the particles traveling at exactly the speed of light.
For details see the Wikipedia articles on Cold Fusion and Measurements of Neutrino Speed.

8A fraudulent paper in medical research had been cited 227 times before it was eventually withdrawn
([Han], p.25). Even without life-or-death consequences in economics, policy decisions on bank regu-
lation, health issues, or climate change, to name only a few, that are based on faulty research can have
huge costs for the society.

9Clearly, this assumption is not very realistic. It was mentioned above that in a comprehensive
study [McCMH] failed to replicate 90% of the papers investigated. Maybe this means fraud is very
widespread.

10Here, pure replication means the technical reproduction of numerical results from empirical re-
search using the same data and/or software, in contrast to scientific replication [Ham] where a different
data set is used in an attempt to check the robustness of the conclusions reached in a study.
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denoted as θ in (12.9). Thus, the probability of a fraudulent paper in the pool of
rejected ones is

Φ =
(1 − β)Ω

θ
. (12.12)

In a second step a sample of n papers is chosen from that pool (assumingn ≤ NΦ),
again without replacement. Now, the number of uncovered falsifications follows
the hypergeometric distribution HG(n,N,NΦ), with expectation nΦ and variance
nΦ(1− Φ)(N − n)/(N − 1).

Relative efficiency (ρ) of both strategies, defined as

ρ =
nΦ

nΩ
=

1− β

(1− β)Ω + α(1 − Ω)
, (12.13)

is a function of three parameters: size and power of the tests and the ratio of fabri-
cated papers. Relative efficiency increases with power (1 − β) and decreases with
size (α) and the degree of falsification (Ω). Prefiltering is more effective than “pure
replication” if the probability of picking a faulty paper from the pool of rejected
ones is greater than the probability of choosing it from the whole population, which
means if ρ is greater than 1. This condition simplifies to (1−β−α) > (1−β−α)Ω.
Thus, the strategy of prefiltering the data with Benford tests is more effective than
“pure replication” under the weak condition that the Benford tests are unbiased
(1 − β > α). Prefiltering is most effective if Ω is small. As an example, let {α =
0.05, 1 − β = 0.3} and Ω = 0.1 (0.2). From (12.13) we get ρ = 4 (3). Thus, pre-
filtering increases the probability of detecting a fraudulent paper by a factor of 3 to
4 when Ω lies between 10 and 20%, even if the tests have the assumed moderate
power.

12.6 CONCLUSIONS

This chapter reviews work on using Benford’s Law to detect data anomalies, irreg-
ularities, and fraud in government accounting data, macroeconomic forecasts, and
published economic research. Widely used macroeconomic Consensus Forecasts
include a large proportion of excessively rounded real growth and inflation fore-
casts with potentially severe distortions of their information content. Benford tests
for national accounting data of EU-member states detected fraud and manipula-
tion, in particular in the case of Greece. Benford tests applied to regression results
published in Empirica and Applied Economics Letters confirmed Benford’s Law
for first and second digits of regression coefficients and standard errors in the ag-
gregate. In individual articles a surprisingly large proportion of first digits violate
Benford’s Law, in contrast with second digits.

Repeatedly surfacing spectacular cases in the press indicate that science is not
free of dishonesty and fraud. Evidence is mounting that this is not misbehavior on
the part of “a few bad apples” but rather the “tip of an iceberg” [Fan]. Honesty
in research is essential for the credibility and support of science in the public. It is
illusive to eliminate fabrication, falsification, plagiarism, and other questionable re-
search practices altogether from published research. However, routine applications
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of Benford tests, preferably prior to publication, could uncover data anomalies and
provide first hints of irregularities in empirical economics research. As diagnos-
tic checks to uncover scientific misconduct, Benford tests would increase the ef-
ficiency of replication exercises and raise the risk for “scientists behaving badly”
[MaAdV].



Chapter Thirteen

Testing for Strategic Manipulation of Economic

and Financial Data

Charles C. Moul and John V. C. Nye1

After surveying applications of Benford’s Law within economics, we consider
how a first-digit analysis informs Value-at-Risk data from the U.S. financial sector
over the past ten years. We find that Benford’s Law fits precrisis data very well but
is rejected for postcrisis data. Opportunities and incentives for such misreporting
are discussed.

13.1 BENFORD IN ECONOMICS

Although there is a literature on the phenomenon of first digit distributions that
goes back to the nineteenth century, the literature on Benford’s Law in economics
and political economy is mostly of recent vintage. The neglect of Benford’s Law
in economics is especially strange considering the distinction of its earliest inves-
tigators. Apparently the late George Stigler had independently been studying the
first digit phenomenon in the 1940s, and work similar to that of the physicist Frank
Benford on what became Benford’s Law was found among Stigler’s papers after
his death (Raimi, ([Rai], 1976)). The first published work in a directly economic
context was Varian’s suggestion (1976) that Benford’s Law could and should be
used to investigate the validity of macroeconomic data series that are widely used
in economics. While violation of Benford’s Law does not guarantee the presence
of manipulation, the observation that series which might otherwise be expected to
be Benford-consistent but which were noticeably inconsistent would serve to alert
us of possible anomalies.

However, interest in Benford’s Law languished over the next two decades, with
economists showing little interest in work devoted to assessing general data va-
lidity. For the most part, published work appeared in applied math, accounting, or
natural science journals. Nye and Moul ([NyM], 2007) on the unreliability of many
of the data series used in international macroeconomic comparisons was probably

1Economics Department, Farmer School of Business, Miami University, Ohio; and Nye Merca-
tus Center and Economics Department, George Mason University and National Research University –
Higher School of Economics, Moscow, respectively; We thank Marc Taub for excellent research assis-
tance.
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the first work in the field that took the suggestions in Varian ([Va], 1972) to heart.
Early work that served as a precursor to what evolved into Nye and Moul ([NyM],
2007), however, could not find a home in an economics journal in the late 1990s.
Despite positive referee reports it was commonplace for early drafts submitted as
far back as 1997 to be rejected by economics journals on the grounds that a) no ref-
eree could be found to judge the paper and b) in any event, assessing data quality
through the use of Benford’s Law was “not economics.” Eventually, Nye and Moul
([NyM], 2007) was accepted by an online economics journal despite the editor’s
avowed difficulty in finding someone even willing to referee the submission due to
lack of familiarity with the issue. Nonetheless, by the mid 2000s, interest in Ben-
ford’s Law and its potential application to the social sciences, especially economics
and political science, had grown, and a number of papers had begun circulating on
similar themes.

Nye and Moul ([NyM], 2007) dealt with a seemingly simple issue—the quality
of reported national income (GDP/GNP) series at the international level. In addi-
tion, it considered the extent to which standard economic transformations success-
fully preserved the Benfordness of the underlying series. The paper demonstrated
that in a number of cases—especially for African nations and those from the com-
munist bloc—strong deviations from Benford’s Law occurred even while the data
set for all nations and for nations excluding these areas showed strong conformity to
Benford’s Law. In addition, there were some puzzling and unexplained deviations
from Benford’s Law in the transformed data typically used by macroeconomists.

Since then Gonzalez-Garcia and Pastor ([GoPa], 2009) have revisited this work
and suggested another plausible reason for violation of Benford’s Law. Their claim
is that macroeconomic structural shifts may account for some violations of Ben-
ford’s Law that are not due to data quality or fraud. However, this work does not
particularly rule out poor data quality and strategic potential for manipulation; it
merely gives us an alternative hypothesis to explore. Nor does it deal with the
problem of how data that conform to Benford’s Law in raw form cease to conform
once put through certain macroeconomic transformations such as adjustments for
inflation or differing price levels.

In recent years, the biggest payoff to the use of Benford’s Law in the social
sciences seems to have centered on the evaluation of published statistics by both
public and private agencies. Most of the business related papers using Benford’s
Law were more focused on accounting issues—identifying cases in which fraud
may have distorted reported statistics. In contrast, the social sciences have found
greater use since Nye and Moul ([NyM], 2007) in focusing on the potential incon-
sistencies with Benford’s Law as a test for problems in governmental and other
publicly reported data sets. In cases in which the data have good reason to conform
to Benford’s Law or where it can be demonstrated that most series do conform to
Benford’s Law, evidence of deviation by a subset of series can be used as a first test
for further investigation as to the potential for data tampering or misrepresentation.

For example, Judge and Schechter ([JuSc], 2009) show that widely used survey
data from nine commonly used series on agriculture showed very different con-
formity to Benford’s Law when collected in developing nations in comparison to
that which came from the United States. They speculate that this might be because
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American farmers have better access to their records when answering surveys and
use less “guesstimation” than those from developing regions (p. 12). It is of fur-
ther interest that a later survey from Mexico in 1997 seems to have been of higher
quality than earlier surveys. They too argued that Benford’s Law could serve as
a preliminary check on data series to complement more conventional econometric
efforts to correct for unobservable data errors. In general their view is that round-
ing errors are the most likely causes of developing country failure to conform to
Benford’s Law.

Rauch et al. ([RauGBE], 2011) studied European Union governmental economic
data to see how those series most relevant to compliance with the Stability and
Growth Pact criteria might have been affected. Using data submitted by all the
euro states, Romania, Latvia, and Belgium do poorly in their ranking of relative
conformity to Benford. Their most noticeable finding, however, is that data from
Greece showed the greatest deviation from Benford’s Law. The fact that Greek
data manipulation has been officially confirmed by the European Commission is
put forward by the authors as evidence of the value of using Benford’s Law as a
forensic tool (p. 253). They make clear that these tests are meant to be suggestive,
not definitive.

Michalski and Stoltz’s [MiSt] (2013) observed that nonconformity of financial
data for balance of payments series is not driven just by countries with low in-
stitutional quality ratings or by countries from sub-Saharan Africa. Rather, this
nonconformity stems at least in part from countries behaving strategically. For
economic reasons favorable to their policies, those with fixed exchange rates, high
negative net foreign asset positions, negative current account balances, or nations
which are generally more vulnerable to capital flow reversals, have more reason to
manipulate balance of payments series. They thus provide a strategic rationale for
those nations’ data being more likely to fail tests of conformity with Benford’s Law.
We note that this paper’s publication at the prestigious Review of Economics and
Statistics reverses earlier rejections of precursor work from the 1990s making use
of Benford’s Law in macroeconomics as being unsuited for economics journals.

These recent papers are notable for their emphasis on issues of data quality and
data manipulation with a very different emphasis from forensic work in the ac-
counting literature, but this list is far from exhaustive. Other published work in
economics or of interest to scholars in political economy, finance, or related social
science research that has appeared in recent years include De Marchi and Hamilton
([DeHa], 2006), Giles ([Gil], 2007), Auffhammer and Carson ([AuCa], 2008), and
Diekmann and Jann ([DieJa], 2010).

Our later application touches on the use of Benford in finance, and so we would
be remiss not to highlight the notable contributions in that field. Ley ([Ley], 1996)
found that first digits of one-day returns from stock indexes mimic the Benford dis-
tribution quite well and better than most of Benford’s original examples. The large
sample sizes (daily observations of Dow Jones Industrial Average 1900–93 and of
Standard & Poor’s 1926–93) led to formal statistical rejections of the Benford null,
but the similarities of the observed and predicted distributions strongly suggest the
idea’s underlying power.

De Ceuster et al. ([DeDS], 1998) take this insight a step farther with respect
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to the apparent psychological barriers regarding stock indices. Specifically, the
literature had implicitly assumed a uniform distribution of first digits and, based
on that foundation, shown that stock indices faced resistance or support at levels
ending in zero(s). These levels of course coincide tightly with Benford’s insights.
By explicitly using a Benford distribution instead of the uniform distribution as the
null of typical behavior, De Ceuster et al. find no evidence of such psychological
barriers in the Dow Jones Industrial Average, the Financial Times Stock Exchange,
or the Nikkei Stock Average.

Corazzo et al. ([CoEZ], 2010) build on this Benford presumption and explore
instances when that distribution does not hold. After confirming that S&P 500
daily returns for the 361 continuously present stocks from 1995 to 2007 essentially
mimic Benford’s Law, they identify the days on which Benford is most decisively
rejected. Many, though not all, of these days have clear linkages with news events
of the day. The most decisive rejection occurred on February 27, 2007, the day
with one of the largest point drops since the markets reopened after September 11,
2001. The authors further point out the curiosity that the vast majority of decisive
rejections in their sample occurred after September 11th, suggesting that markets
were more anomalous after those events than before.

Given the nascent literature, this field is still ripe for exploitation. Given the
strong interest in strategic behavior in economics, it makes sense to use Benford’s
Law to investigate possible anomalies that suggest manipulation or other interfer-
ence especially when incentives increase for such tampering. One does not have
to believe that all deviations from Benford’s Law represent anomalies or manipu-
lation to understand that changes at the margin of the relative deviation of various
series from conformity to Benford’s Law are a very good preliminary check on the
likelihood that changes in conformity correlated to changes in the strategic benefits
of manipulation or error prone recording would serve as a “smoking gun” for fur-
ther investigation. In that light we present a simple application of Benford’s Law to
banking data related to the recent crisis. Indeed, as this article was being prepared
several articles on the use of Benford’s Law for fraud detection in banking were
completed (Grammatikos and Pappanikolaou [GrPa], Özer and Babacan [ÖzBa],
Rauch, Göttsche and F. El Mouaaouy [RauGM], Mir [Mir], and Hoffmarcher and
Hornik [HofHo]).

13.2 AN APPLICATION TO VALUE-AT-RISK DATA

Shareholders, executives, and regulators are all interested in the riskiness of port-
folios at banks’ trading desks. As events continually show, traders tend to push
risky portfolios that work well most of the time but occasionally fail in spectacular
fashion. Such trading, be it in equities, commodities, or bonds, has historically
been associated with investment banks, but a number of large commercial banks
also operate their own trading desks. A popular if imperfect measure for assess-
ing the risk of these portfolios is Value at Risk (VAR). While different banks use
somewhat different techniques in calculating VAR, the following example should
suffice. Imagine that a trading desk begins the day with an allocation of commodi-
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ties, debt, equities, and other financial assets. Analysts consider how this portfolio
would have performed in each of the trading days of the past year (roughly 250
days). These daily returns (both gains and losses) are then ordered. A 95% (99%)
VAR takes the 5th (1st) percentile from the bottom and should then be interpreted
as implying that a firm with this portfolio can expect to lose at least this much with
5% (1%) probability.2 Trading desks therefore provide newly calculated VARs
each day as the portfolio and relevant history changes.

The largest investment banks began publishing summary statistics of their VAR
measures in the 1990s, and some measure of VAR in financial reporting was quite
common by 2002. Measures usually include the total for the trading desk and are
often broken down across different asset types (e.g., Fixed Income VAR, Com-
modities VAR, etc.). The specific statistics varied widely across banks’ quarterly
and annual financial reports but often included an average (either over the quarter
or over the year), extreme values over the period, and the VAR on the last day of
the period.

This VAR measure should therefore roughly vary with the size of the bank’s
investment portfolio. Larger banks will accordingly have larger VARs, and the
converse for smaller banks. To the extent that the size and composition of bank
investment portfolios change over time, we also expect the VARs to mimic those
changes. Given the dispersion among bank sizes and investment portfolios over
time that we observe, it is reasonable to believe that Benford should hold in the ab-
sence of distortionary tactics. The absence of distortionary tactics, however, should
not be taken for granted.

As a number of parties will be supervising the market risk associated with a
portfolio, it may be in traders’ interests to distort VAR in order to make portfolios
seem less risky than they truly are. By doing so, traders put themselves in the
position of holding especially risky portfolios. This enables them to reap large gains
in profitable states of the world and leave the losses with their banks in the unlucky
states. The most straightforward way to minimize VAR would be to smooth daily
gains and losses. Suppose that a desk earns $100M one day but fears the next
day will bring a sizable loss. By only reporting $50M on the first day, the desk
can mitigate its losses the next day. Because VAR looks at infrequent extreme
outcomes, a few such actions could notably disguise the true risk of a portfolio.

The apparent risk of portfolios has seen dramatic swings over the past decade.
While the U.S. housing bubble and inevitable correction were oft-discussed by
2005 and 2006, relatively few economists at the time publicly made the seem-
ingly obvious connection that much of the collateral (specifically mortgage-backed
securities) supporting the U.S. financial sector was vulnerable. The system in
which banks insured each other against losses through credit default swaps pro-
vided a mistaken level of confidence, but this system had not faced a large-scale
panic before. Losses on mortgage-backed securities at Bear Stearns led to its near
bankruptcy and then acquisition by JPMorgan (arranged by the New York Fed)
in March 2008. A similar story unfolded for Merrill Lynch which was acquired

2A common criticism is that VAR is often erroneously described as the most that a desk’s portfolio
will lose with some probability.
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by Bank of America in September 2008. No buyer could be found for Lehman
Brothers at the same time, and its bankruptcy and now worthless commercial paper
caused the money markets to lock up. The Federal Reserve then intervened in a
myriad ways, and the sole surviving investment banks Goldman Sachs and Morgan
Stanley became bank holding companies in the fall of 2008 in order to better access
Federal Reserve lines of credit. During this time, U.S. equity markets suffered a
correction outside of living memory. From October 2007 to March 2009, the Dow
Jones Industrial Average fell 54%, and the more comprehensive Wilshire 5000 and
S&P 500 fell 57%. Changes in commodities markets during this time were less
uniform, with oil prices down 50%, silver prices flat, and gold prices up 30%.

When compared to the relative calm of the 2002–07 period, this volatility was
bound to appear in trading desks’ latter-day VAR measures. Such turbulence, how-
ever, should not have affected the Benfordness of the measure. Even after the de-
parture of the three investment banks, VAR measures by reporting banks spanned
the orders of magnitude necessary for Benford to hold. Furthermore, this increased
volatility, as it appeared in the historical record for the VAR constructions, should
have provided exactly the sort of variation under which one would expect Benford.
If Benfordness is rejected for the VAR sample from 2008–2012, it is not directly
because of the aforementioned events, though it may indirectly stem from those
events if attitudes or constraints changed.

Given this background, we used the SEC’s Electronic Data-Gathering, Anal-
ysis, and Retrieval (EDGAR) system to collect VAR measures from the financial
statements (10-Qs, 10-Ks, and annual reports) of publicly traded commercial and
investment banks in the U.S. from 2002.1 to 2012.1. Trading desks are relatively
unimportant for smaller commercial banks, and we had limited success in finding
VAR measures in those cases. In addition to currently active firms, we also included
the three investment banks (Bear Stearns, Merrill Lynch, and Lehman Brothers) that
did not survive the financial crisis of 2008 as independent firms. Table 13.1 lists the
financial companies (with stock symbol) with quarters of observation and number
of VAR observations.

Both VAR averages and daily observations should satisfy Benford’s Law, so we
limited ourselves to those statistics.3 Where averages over the past four quarters
were provided in lieu of a quarterly average (as was common in annual reports), we
inferred the quarterly average. In all, we collected VAR data for 17 banks. As Table
13.1 indicates, investment banks such as Goldman Sachs were much more likely to
provide detailed breakdowns of VAR across asset type than commercial banks not
known for their trading activity such as Wells Fargo. Because the union of Benford
sets is also Benford, we aggregate the VAR measures for the entire trading desk,
for the specific assets, for both quarterly average and last day of quarter, and for
both 95% and 99% criteria into a single data set.

Our full sample has 3632 observations of VAR. Given our interest in the financial

3Quarterly minimum and maximum VAR could not be reliably recovered when quarters were aggre-
gated.
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Company (Stock Symbol) Period of Obs. #VAR Obs.
Bank of America Corp. (BAC) 2002.1–2012.1 243
Bank of New York Mellon Corp. (BK) 2002.1–2012.1 390
BOK Financial Corp (BOKF) 2002.1–2012.1 41
Bear Stearns Companies, Inc. (BSC) 2002.1–2008.1 210
Citigroup Inc. (C) 2002.1–2012.1 418
Goldman Sachs Group, Inc. (GS) 2002.1–2012.1 410
JPMorgan Chase & Co. (JPM) 2002.1–2012.1 582
Key Bank (KEY) 2002.1–2012.1 52
Lehman Brothers Holdings Inc. (LEH) 2002.1–2008.2 220
Merrill Lynch & Co., Inc. (MER) 2002.1–2008.3 262
Morgan Stanley (MS) 2002.1–2012.1 458
PNC Financial Services Group, Inc. (PNC) 2003.2–2012.1 49
Regions Financial Corp. (RF)a) 2004.3–2011.4 59
Raymond James Financial Inc. (RJF) 2003.2–2012.1 58
SunTrust Banks, Inc. (STI) 2002.4–2012.1 48
State Street Corp. (STT) 2002.1–2012.1 99
Wells Fargo & Co. (WFC) 2004.1–2012.1 33

a) Region’s Financial 10-Q in 1Q2012 stated that VAR measures for that quarter were “immaterial.”

Table 13.1 List of companies with published VAR, alphabetized by stock symbol.

crisis, we split the sample between before 2008 and after 2008 inclusive (respec-
tively 2288 and 1344 observations). Our distinctions between time periods are
intuitive if somewhat arbitrary. Prior to 2007 and the implications of the popped
housing bubble becoming obvious, VAR measures were a lower concern both to
traders and their watchers. After 2007, the greater market volatility presumably
drove up the perception of underlying risk and watchers’ concerns but at the same
time may have driven down trading desks’ appetite for risk. We thus have no ex
ante beliefs regarding how the slices of the data will affect the Benfordness of the
subsets. To the extent that the χ2 test does not properly account for sample size,
we would expect that the larger, pre-2008 sample would be more likely to reject
Benfordness.

Table 13.2 displays the results of simple Benford tests for the various subsamples
of the data. In addition to the Benford and observed first-digit likelihoods, we
also show the χ2 statistic against the null of Benfordness and the corresponding
p-value. We can decisively reject the null that the entire sample has a Benford
distribution; much of this power comes from the mismatch of the prevalence of 2
as the leading digit. A comparison of the Benfordness of the data before 2008 and
after 2008 (inclusive), however, is far more insightful. The first digits from the VAR
data from 2002.1 to 2007.4 match the Benford distribution of first digits very well.
No statistical rejection is possible using the standard χ2 test. The story changes
radically when we examine VAR measures from the time period that included and
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Benford ‘02–’12 ‘02–’07 ‘08–’12
1 0.3010 0.2902 0.2959 0.2805
2 0.1761 0.2073 0.1823 0.2500
3 0.1249 0.1302 0.1281 0.1339
4 0.0969 0.0903 0.0975 0.0781
5 0.0792 0.0732 0.0795 0.0625
6 0.0669 0.0625 0.0621 0.0632
7 0.0580 0.0490 0.0503 0.0469
8 0.0512 0.0512 0.0511 0.0513
9 0.0458 0.0460 0.0533 0.0335

χ2 31.7342 6.9173 61.6254
p-value 0.0001 0.5456 0.0000

Table 13.2 Benford test on VAR first digit. The number of observations for the three periods
are, respectively, 3632, 2288 and 1344.

followed the financial crisis (2008.1 to 2012.1). Despite the smaller sample size,
Benfordness is again rejected. Again, the prevalence of the first digit 2 drives the
rejection. While Benford predicts observing 70% more 1s than 2s, the latter sample
shows only 12% more 1s than 2s.

As with most Benford results, this finding is more suggestive than conclusive.
We have no way to distinguish among the (not mutually exclusive) stories since
2008 that traders have manipulated VAR for private gain or that the government
regulators have turned a blind eye to manipulation for the sake of financial confi-
dence or that the crisis served as a structural break. Nevertheless, it is intriguing
that Benford tests so cleanly identified the crisis. Other slices of the data (not re-
ported) showed far murkier results using 2007 rather than 2008 as the delineating
year. It is our hope that similar analyses may spark new inquiries on comparable
topics.
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Chapter Fourteen

Psychology and Benfordʼs Law

Bruce D. Burns and Jonathan Krygier1

There has been very little interaction between psychology and Benford’s Law,
partly because initially, behavioral data showed that people did not spontaneously
generate random numbers conforming to Benford’s Law. However in this chap-
ter we outline recent research showing that people can approximate Benford’s
Law when generating meaningful numbers. This has theoretical implications for
decision-making research, practical implications for fraud detection, and may help
cast light on Benford’s Law as a property of natural data.

14.1 A BEHAVIORAL APPROACH

Researchers both inside and outside the field of psychology have rarely viewed
Benford’s Law from a behavioral perspective. Even when Dehaene [Deh] pointed
to data showing that the words for low digits occur in human language more often
than those for high digits, he suggests that this discrepancy may not have anything
to do with Benford’s Law because “The exact origin of this [Benford’s] law is
still poorly understood, but one thing is certain: This is a purely formal law, due
solely to the grammatical structure of our number system. It has nothing to do with
psychology.” (Dehaene [Deh], p. 112)

However, we believe that examining how human behavior relates to Benford’s
Law is of growing importance for both practical and theoretical reasons. For exam-
ple, because Benford’s Law is increasingly utilized in fraud detection, we ideally
would like to know whether and when people can spontaneously generate numbers
that approximate it. As Bolton and Hand [BolHa] pointed out in their review of
statistical fraud detection, “The premise behind fraud detection using tools such as
Benford’s Law is that fabricating data which conform to Benford’s Law is difficult”
(p. 238). Thus, the usefulness of Benford’s Law as a tool for fraud detection rests
on the assumption that people are poor at deliberately generating numbers that con-
form to it, just as they are generally poor at generating random numbers (Rapoport
& Budescu [RapBu]). However, this assumption has not yet been systematically
tested.

1School of Psychology, The University of Sydney, NSW 2006, Australia. The authors would like to
thank Hal Willaby for comments on an earlier draft. The authors were supported by a grant from the
University of Sydney, and it is a pleasure to thank them for their generosity.
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A more theoretical example of the increasing importance of Benford’s Law stems
from its potential to cast light on how people generate unknown quantities, a ques-
tion which has implications for judgment and decision making. Assuming people
spontaneously generate numbers that approximate Benford’s Law, understanding
why and under what conditions they do so could inform models of decision mak-
ing. Furthermore, if people can act as Benford’s Law generators, then they might
even be potential models for testing some of the speculations about why Benford’s
Law appears in nature.

The published empirical literature on whether people generate numbers that ap-
proximate Benford’s Law is small, perhaps because an early consensus emerged
that people do not. In this chapter we review early empirical work along with recent
results suggesting that this conclusion may not hold under appropriate conditions.
We then consider the implications of these findings and what new questions need
to be addressed.

14.2 EARLY BEHAVIORAL RESEARCH

One of the earliest citations of Benford’s Law in academic journals was a behavioral
test: Hsü [Hsü] (1948) asked participants to write down a “4-digit number that
must be original, i.e., created in your own mind.” He found no evidence of a fit
between the distribution of the first significant digit (FSD) in the data from his
1044 participants and the frequencies predicted by Benford’s Law. However, there
was a substantial deviation from a uniform distribution, indicating that people do
not generate numbers like dice do. The distribution he found can be seen in Table
14.1. The most common first significant digit was 4, possibly due to the request
being for a 4-digit number (i.e., a priming effect from mentioning “4”). Years later,
Hill [Hi1] (1988) asked 742 undergraduate students to write down the first 6-digit
number that came to mind. The FSD distribution in Table 14.1 shows that digit 1
was generated more often than expected by a uniform distribution, but the data still
did not fit Benford’s Law. Digit 6 was the most common initial digit, perhaps again
due to priming from the request for a 6-digit number.

Kubovy [Kub] further investigated the digit priming effects on number genera-
tion by proposing contrasting hypotheses: (1) specifically mentioning a digit as an
example could reduce the frequency with which it is produced by making it less
representative of a spontaneously generated number; (2) priming due to inciden-
tally mentioning a digit could increase the availability, and hence the production,
of a particular digit. For example, he found that a request for a single digit number
increased responses of “1” above baseline; however, offering “1” as an example
of a potential response dramatically reduced responses of “1.” As shown in Table
14.1, a request for a 4-digit number resulted in an initial digit 4 far more often than
a (mathematically identical) request for a number between 1000 and 9999. These
results support the explanation that the digit 4 peak in Hsü’s ([Hsü], 1948) data and
digit 6 peak in Hill ([Hi1], 1988) data were due to priming. In none of these experi-
ments did participants produce a distribution of first digits that even approximately
fit Benford’s Law.
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First digit 1 2 3 4 5 6 7 8 9

Hsü [Hsü] 4-digit num-
ber “created out of your
own mind,” n=1044.

13.3 9.2 14.3 15.5 6.6 9.3 12.6 9.1 10.5

Kubovy ([Kub], Exp.
3) “first number between
1000 and 9999 that comes
to mind,” n=116 (esti-
mates from Burns, 2009)

51.7 5.3 11.7 4.3 10.3 0.8 6.1 5.3 4.4

Hill [Hi1] “a 6-digit
number out of your own
head” n=742

14.7 10.0 10.4 13.3 9.7 15.7 12.0 8.4 5.8

Scott, Barnard & May
([ScoBM], Exp. 1) “num-
ber from 1 million–10 mil-
lion” unelaborated data
only, n = 90 (estimates
from Krygier [Kry])

5.97 11.9 20.9 8.2 26.1 8.2 8.95 5.2 4.5

Scott, Barnard & May
([ScoBM], Exp. 1) “a
number from 1 million–10
million” elaborated data
only n = 46 (estimates
from Krygier [Kry])

49.0 9.5 16.3 1.4 6.8 2.7 6.8 2.0 5.4

Table 14.1 First-digit percentages (some estimated from graphs) found in studies showing
that human-generated numbers fit poorly to Benford’s Law. The question asked
and the sample size (n) for each study is provided.

Although Scott, Barnard, and May [ScoBM] focused not on Benford’s Law but
on the effect of digit priming on the distribution of the first digits of responses,
they found no evidence supporting Benford’s Law when participants were asked
to generate random numbers. They did, however, find different distributions when
they separated responses containing only one non-zero digit (e.g., 1000), which
they called unelaborated responses, from responses with multiple non-zero digits
(e.g., 1045), which they called elaborated responses. Table 14.1 shows that for the
unelaborated responses, first-digit distributions tended to have a peak at digit 5 and
a smaller peak at digit 3, neither of which were evident in the elaborated data. The
authors suggest that this may be because the greater executive cognitive processing
required to generate elaborated numbers resulted in numbers less influenced by
basic number preferences. For the elaborated responses a big peak for digit 1 was
observed, but still the distribution did not follow Benford’s Law.

The papers listed in Table 14.1 represent all the published behavioral tests of
Benford’s Law prior to 2007 that we have been able to identify. Although they do
appear to show a bias towards digit 1 as a first digit, they strongly suggest that re-
quests for spontaneously generated numbers do not produce a first-digit distribution
like that of Benford’s Law. This is despite evidence that generated first-digit distri-
butions are sensitive to subtle factors, such as digit priming. Therefore the absence
of psychological consideration of Benford’s Law appeared to be amply justified by
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the empirical data.

14.3 RECENT RESEARCH

14.3.1 Diekmann (2007)

The first published study suggesting that people may be able to spontaneously gen-
erate first-digit distributions that approximate Benford’s Law was by Diekmann
[Die] in 2007. He first examined 1457 published regression coefficients from two
volumes of theAmerican Journal of Sociology and found that their FSD distribution
reasonably fit Benford’s Law, or at least that their FSD frequencies monotonically
declined with digit size. In two subsequent experiments he asked statistics students
to fabricate regression coefficients to support a particular hypothesis. Unlike earlier
studies, the FSD distribution of the data they generated was a good fit to Benford’s
Law; the FSD distributions, shown in Table 14.2, failed to reject the null hypothesis
that the results were distributed according to Benford’s Law. However, Diekmann’s
sample sizes were small, and he did not address the discrepancy between his and
earlier studies.

First digit 1 2 3 4 5 6 7 8 9

Benford ([Ben]) logarith-
mic distribution

30.1 17.6 12.5 9.7 7.9 6.7 5.8 5.1 4.6

Diekmann ([Die], Exp.
1) “fabricate plausi-
ble 4-digit regression
coefficients,” n = 10×10

37.0 21.0 10.0 11.0 9.0 2.0 3.0 6.0 1.0

Diekmann ([Die], Exp.
2) “fabricate plausi-
ble 4-digit regression
coefficients,” n = 13×10

26.2 19.2 10.8 5.4 2.3 5.4 5.4 10.8 4.7

Table 14.2 First-digit percentages from Diekmann [Die] compared to Benford [Ben], show-
ing that human-generated numbers can fit reasonably well to Benford’s Law.
Note that “n = 10 × 10” indicates that 10 participants generated 10 numbers
each.

14.3.2 Burns (2009), Study 1

In 2009 Burns [Burns] suggested that the critical difference between earlier studies
and Diekmann ([Die], 2007) was that earlier studies did not provide any meaningful
context for the numbers participants were asked to generate. Instead, they explic-
itly asked participants to produce a random number, a choice that avoided a variety
of biases that presenting a specific context may have invoked. We know that people
are poor at generating truly random numbers and that, when they try, they display
their biases about how they expect numbers to be distributed (Rapoport & Budescu
[RapBu], 1992). Thus, asking participants for random numbers would appear to be
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Figure 14.1 Distribution of first digits in Pilot Study 1 data. This shows the distributions
we tested the data against: Benford’s Law and the (correct) flat distribution. All
data from Burns [Burns] Study 1 is shown plus the subset of elaborated data.
Note that data is a reasonable, but not perfect fit, to Benford’s Law.

an appropriate means of examining whether Benford’s Law biases number genera-
tion. However, there is no reason to expect truly random numbers to fit to Benford’s
Law, and it may be their meaninglessness that obscured evidence of Benford’s Law
in earlier studies.

To test whether generating meaningful numbers could produce behavioral evi-
dence for Benford’s Law, Burns [Burns] asked students to estimate quantities from
fields similar to those for which Benford [Ben] collected data, such as newspaper
circulations and river lengths. If people are sensitive to statistical relationships in
their wider environment, the best behavioral test of Benford’s Law would utilize
fields that in reality fit it, even if participants are not aware of that fit.

In Burns [Burns], Study 1, a computer asked 127 psychology students “to try to
estimate” the answers to a set of nine questions and to “just guess” if all else failed.
Each question referenced a different field, such as the “population of the urban area
of Philadelphia, USA” and the “area drained by the Pearl (Xi Jiang) river.” Each of
the nine correct answers had a different leading digit; thus, if a participant answered
all questions correctly, each digit 1 through 9 would be a first digit exactly once.
Therefore, both correct and random answers should yield a flat distribution of first
digits.

The first digits of each participant’s answers were extracted, and the percentage
of their nine answers using each digit was calculated. Figure 14.1 shows the mean
percentages for each first digit together with lines representing Benford’s Law and
the distribution of the correct answers. The FSD distribution was closer to Ben-
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First digit 1 2 3 4 5 6 7 8 9

Benford (1938) logarith-
mic distribution

30.1 17.6 12.5 9.7 7.9 6.7 5.8 5.1 4.6

Generation (all data) 23.9 15.1 9.7 7.6 19.0 9.1 5.5 5.8 4.4
Generation (elaborated

data only)
26.6 16.3 9.1 9.6 11.7 8.4 7.2 5.7 5.2

Selection data 14.3 13.4 9.7 10.1 10.6 9.9 10.5 8.7 12.9

Table 14.3 First-digit percentages for Burns [Burns] Study 2, for the generation task (all data
and elaborated responses only) and when selecting from a set of nine potential
answers.

ford’s Law than to the correct (flat) distribution. As can be seen, the data with the
exception of digit 5 was an approximate fit to Benford’s Law.

Scott et al. [ScoBM] also found peaks at digit 5 for first digits when they asked
participants to generate random numbers. Therefore, Figure 14.1 also includes
the distribution for FSD of only elaborated numbers (e.g., excluding the answer
“5000”). As can be seen, the peak at digit 5 was reduced, and the fit to Benford’s
Law was significantly improved.

14.3.3 Burns (2009), Study 2

In Study 2, Burns [Burns] replicated the generation result with a new set of ques-
tions drawn from similarly meaningful fields (see Table 14.3) and also gave par-
ticipants a selection task in which they chose answers from sets provided to them.
Given that in reality random numbers should not fit to Benford’s Law whereas
meaningful numbers like those examined by Benford [Ben] do, it makes sense
that attempting to generate random numbers does not yield fits to Benford’s Law
whereas attempting to generate meaningful numbers does. Conceivably, partici-
pants’ lifelong exposure to data from real fields which conform to Benford’s Law
has made them sensitive, perhaps subconsciously, to this distribution. If this is
the case, then it would seem likely that Benford’s Law should emerge when par-
ticipants answer questions by selecting from numbers with different first digits.
Burns’s [Burns] Study 2 asked participants at different times to both generate and
select numbers as answers to questions about the same fields. Participants selected
from amongst nine different answers, each with a different first digit, and the ques-
tions were again designed so that correct responses would yield a flat distribution
of first digits.

Both generation and selection tasks were presented by computer amongst a set of
tasks completed by 335 psychology students. As shown in Table 14.3, the distribu-
tion of first digits in the generation task was very similar to that of Burns’s [Burns]
Study 1, despite utilizing new questions. Again digit 5 deviated the most from
Benford’s Law, and again the distribution of elaborated responses had a greatly
reduced peak for digit 5 and thus more closely approximated Benford’s Law. How-
ever, Table 14.3 shows that the selection task yielded a much flatter distribution
than the generation task, one which was closer to the correct (flat) distribution than
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to Benford’s Law.

14.3.4 Krygier (2009)

Krygier [Kry] in his psychology Honours thesis explored the question of when
people will generate FSD distributions that fit to Benford’s Law. Expanding on
the methodology of Burns [Burns], he manipulated two factors defining the fields
for which participants had to generate numbers: familiarity and true fit to Ben-
ford. Each participant generated numerical answers to questions in three fields for
each of the four conditions familiar/fit (e.g., populations of metropolitan areas),
familiar/no fit (e.g., lottery numbers), unfamiliar/fit (e.g., atomic half-lives), and
unfamiliar/no fit (e.g., hazard codes). Analysis of his 247 participants’ responses
could not reject the null hypothesis of no effect of these conditions on degree of fit
to Benford’s Law. Whereas the distribution of first digits for winning lottery tickets
was closer to the flat distribution than to Benford’s, the results where complex per-
haps because what participants thought was or was not random did not necessarily
fit with reality. This was demonstrated by asking a subgroup to rate how random
or non-random each of the 12 fields was. The 12 fields’ mean randomness ratings
correlated negatively with the fields’ fit to Benford’s Law; the more random a field
was perceived to be, the less likely numbers generated for that field were to fit to
Benford’s Law. More broadly it has been shown experimentally that how people
both perceive and generate sequences of events (such as coin tosses) are influenced
by whether they perceive them as generated by random processes (Rapoport &
Budescu [RapBu]). For example, Burns and Corpus [BurnsCo] showed that the
interpretation of streaks of events was influenced by how random people thought
the generating process was.

14.4 WHY DO PEOPLE APPROXIMATE BENFORD’S LAW?

The results of the studies described above demonstrated repeatedly that people
could generate first-digit distributions that approximate Benford’s Law, but they
also suggest that this is only the case when they were asked to generate answers to
questions from fields for which they thought the answers were non-random. Per-
haps this is the case because people encounter actual Benford distributions in their
lives.

Recent research in psychology has demonstrated that rapid, subconscious eval-
uation of environmental cues can proceed without conscious awareness and that
these evaluations can influence the interpretation of subsequent, unrelated stimuli
(Ferguson, Bargh, & Nayak, [FerBN]). These findings are part of a wider literature
on the automaticity affecting many higher mental processes which show effects of
environment on both simple and complex behavior that proceed without awareness
(Bargh & Ferguson [BarFe]; McCulloch, Ferguson, Kawada, & Bargh [McCFKB]).
It is clear that a wide variety of strategies, heuristics, and decision-making biases
operate in response to environmental and contextual cues throughout a range of
situations. Thus implicit sensitivity to statistical information in the environment
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provides a possible explanation for why people generate numbers that fit to Ben-
ford’s Law in meaningful fields. However, attempts to support such an explanation
have not yet been successful: Burns [Burns] did not find evidence of Benford’s Law
when participants had to select answers from nine different numbers, and Krygier
[Kry] did not find different FSD distributions when he manipulated familiarity.
These studies do not exhaust the possible ways in which this hypothesis could be
tested, but for the moment we lack the evidence to support it.

An alternative explanation could draw on Berger and Hill’s [BerH4] speculation
that Benford’s Law exists in nature due to their “mixture of distributions” theorem:
Hill [Hi2] noted that, in Benford’s [Ben] observations, the more that his data was
the result of the combining of data or factors, the better its first digits fit to Ben-
ford’s Law. Hill ([Hi1], p. 361) stated this as, “If [full-number] distributions are
selected at random (in any ‘unbiased’ way) and random samples are taken from
each of these distributions, then the significant-digit frequencies of the combined
sample will converge to Benford’s distribution, even though the individual [first-
digit] distributions selected may not closely follow the law.” It is crucial that the
sampling be neutral or unbiased as to scale or base. Hill [Hi2] offers a statistical
derivation of this proposal, and Berger and Hill [BerH4] further develop it as a
mixture of distributions theorem. Therefore it could be hypothesized that people
generate numbers with first-digit distributions that approximate Benford’s Law be-
cause when they draw from their own knowledge to think through possible answers
they are effectively combining numbers from different distributions. The finding
that elaborated data fit better than unelaborated data to Benford’s Law could be
seen as consistent with this explanation; Scott et al.’s [ScoBM] analysis suggested
that elaborated numbers may be the product of more complex processing, so if
complexity leads to accessing multiple sources, it could also lead to mixing from
multiple distributions.

14.5 CONCLUSIONS AND FUTURE DIRECTIONS

It appears that people can approximate Benford’s Law, but why is not clear. This
conclusion has important practical and theoretical implications. In terms of appli-
cations of Benford’s Law to fraud detection, the evidence suggests that it cannot
be assumed that when people make up numbers the resulting distributions will not
fit to Benford’s Law. However more research is needed into when people are most
likely to generate distributions that fit. It appears that people can spontaneously
generate numbers approximating to Benford’s Law, so fraud tests utilizing Ben-
ford’s Law could be improved by research into the conditions under which people
are likely to generate numbers that fit and the ways in which numbers may deviate
from Benford. For example, in our research we have consistently found that the
digit 5 tends to be generated with too high a frequency. Therefore perhaps devia-
tions from digit 5 should be given higher weighting in fraud tests, but further study
is required to test the generalizability of this finding.

Theoretically Benford’s Law has the potential to throw light on how people esti-
mate unknown numbers and thus also on how they make decisions based on such
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estimates. A common theme in recent research into reasoning and decision making
has been that people are influenced by statistical relationships in the environment.
This idea is a central part of adaptive approaches to decision making such as that of
Gigerenzer and Todd [GiTo], and it underpins apparent automaticities in everyday
life (Bargh & Ferguson [BarFe]). Key to these approaches is that people are influ-
enced by statistical relationships even if they have little awareness of them. How-
ever, because it is hard to know the precise statistical relationships an individual
has experienced over his or her lifetime, rarely is it possible to test whether people
are truly acting precisely in accord with an unknown naturally occurring statistical
relationship. Therefore Benford’s Law may offer an interesting test case, because
it is a precise statistical relationship that is both widespread and little known to the
public.

Alternatively, if people generate numbers conforming to Benford’s Law due to
the combining of multiple distributions, then this research also has implications
for how people make decisions based on estimates. For example, fit to Benford’s
Law could be an index of the extent to which multiple sources of information are
being combined in a decision. Furthermore, a fit to Benford’s Law could even
be seen as providing prima facie support for Berger and Hill’s [BerH4] “mixture
of distributions” theorem. If people are “Benford generators” because they mix
distributions, maybe this is a plausible explanation for why other natural processes
conform to Benford’s Law. It is not possible to test empirically whether natural
phenomena fit to Benford’s Law due to mixing distributions, but it potentially can
be tested for people.

None of our data sets yields an exact fit to Benford’s Law. Finding an exact
or even very close fit to Benford’s Law in either human or natural data would be
extremely surprising. Such a fit would imply a lack of any other factors influenc-
ing the data; therefore, outside of theoretically generated data, claims of exact fit
to Benford’s Law tend to be failures to reject the null hypothesis of no difference.
With enough data points, data from any field is likely to show some deviation from
it. Almost any large data set shows approximate fit rather than exact fit, so human
data too should be no better than an approximate fit. What is remarkable is how
good the fit of human data is to a function with no free parameters. Whether there
are meaningful parameters that substantially improve FSD fit is another issue for
future research. For example, fitting the free parameter from Nigrini and Miller’s
[NiMi1] would improve the fit of human data to Benford’s Law. If the same param-
eter fit multiple data sets then this parameter value might be viewed as a signature
for human-generated data.

Our studies have established Benford’s Law as a psychological phenomenon, but
how and why it is requires more research. We have only just started to scratch the
surface of Benford’s Law as a behavioral phenomenon.



Chapter Fifteen

Managing Risk in Numbers Games

Mabel C. Chou, Qingxia Kong, Chung-Piaw Teo and Huan Zheng1

We apply Benford’s law to study how players choose numbers in fixed-odds
number lottery games. Empirical data suggests that not all players choose numbers
with equal probability in lottery games. Some of them tend to bet on (smaller) num-
bers that are closely related to events around them (e.g., birthdays, anniversaries,
addresses, etc.). In a fixed-odds lottery game, this small-number phenomenon im-
poses a serious risk on the game operator of a big payout if a very popular number
is chosen as the winning number. In this chapter, we quantify this phenomenon and
develop a choice model incorporating a modified Benford’s law for lottery players
to capture the magnitude of the small-number phenomenon observed in the empir-
ical data. In particular, by combining the frequency distribution of digits from two
types of players, those who choose all numbers randomly with equal probability
and those who go for numbers that are closely related to events around them, we
can estimate well the actual frequency distribution of digits in a numbers game.
Our study can help lottery operators to customize sales limits for each number and
thus control the operational risk of a big payout and the risk of losing rejected bets
to underground markets.

15.1 INTRODUCTION

09/09/09 was a happy day. Some 366 couples in Singapore were reported to have
gotten married that day as compared to 64 couples on a normal day. The reason?
The belief that the auspicious number “999” can bring them eternal love. In Chi-
nese culture, certain numbers are believed by some to be lucky based on the similar-
ity of their pronunciation to that of certain Chinese words. For instance, the number
9 is viewed as lucky for it sounds like the Chinese word for “long-lasting.” People
from different backgrounds may have different views on lucky numbers. The be-
liefs in lucky numbers lead to certain numbers being chosen more frequently than
others because of their auspiciousness. The betting profiles of the numbers selected
in lottery games are thus not uniform, but expected to skew towards the auspicious
numbers. What is the resulting impact of this on the game operators?

1Chou and Teo: National University of Singapore; Kong: Universidad Adolfo Ibañez; Zheng: Shang-
hai Jiao Tong University.
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In a fixed-odds lottery game, the prize is fixed for each ticket, and each winner
receives a total payout proportional to the amount of the wagers he/she makes in the
game. Hence, the game operator bears the risk of paying out a large sum in prizes
if a very popular number is chosen as the winning number. Most game operators
handle this issue by imposing a liability limit on the sales of each number—once
the accumulated sales on a number hit the liability limit, future bets on that number
will be rejected. This raises an associated question: how should a game operator set
an appropriate liability limit? This issue is particularly important to legalized game
operators as a large chunk of their sales will have to be returned to the government
as tax revenues at the end of each year. This prevents the operator from building up
a large reserve to absorb the exposure risk if the limit is set too high. On the other
hand, if the limit is set too low, the game operator might lose the rejected bets to
underground operators.

The choice of the sales limit is intimately related to the ways players select num-
bers to bet on in the games. There is ample empirical evidence suggesting that
players do not choose all numbers with equal probability, but have a tendency to
bet on (small) numbers that are closely related to events around them (e.g., birth
dates, addresses, etc.). In this chapter, we quantify this phenomenon and examine
its relation to Benford’s law. By carefully modeling the ways players compose the
digits in the numbers game, we refine Benford’s law to develop a choice model for
lottery players using a handful of parameters only. Surprisingly, this parsimonious
choice model is already able to capture some of the most important characteristics
of the data in the numbers game.

Exploiting the choice model, we examine the consequences of the small-number
phenomenon on the risk profile of the game operator. We show that the relation-
ship between the total sales revenues and the proportion of hot numbers is more
stable with the presence of the small-number phenomenon in the choice process.
The imposition of a cut-off limit is thus more effective in such an environment.
Besides, our analysis suggests that it would be fruitful for the operators to pursue
strategies to reduce the effect of the small-number phenomenon, that is, to promote
or encourage players to choose numbers randomly.

15.2 PATTERNS INNUMBER SELECTION: THE SMALL-NUMBER PHE-

NOMENON

There are numerous studies in the gaming literature on the selection of lottery num-
bers among the players. One group of studies ([Sim, Hen, Hai, ZiBGS]) focuses on
the lotto games (where players compete to pick, for instance, 6 winning numbers
out of 45), and has revealed many interesting behavioral patterns showing how the
players select their numbers. The most striking conclusion from these studies is
that the players do not select their numbers randomly; that is, not all numbers are
chosen with equal likelihood, and there is a tendency to select “auspicious” num-
bers (for instance, the number 7 is routinely chosen by players in the game in the
UK). In particular, small numbers are more popular, as indicated in Table 15.1—the
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15 most popular numbers in a 1996 powerball game played in the UK are mostly
small numbers([Ti]) .

Rank Number Proportion Rank Number Proportion Rank Number Proportion
1 7 0.036 6 12 0.03 11 6 0.028
2 9 0.033 7 8 0.03 12 23 0.027
3 5 0.033 8 4 0.029 13 13 0.026
4 3 0.033 9 10 0.029 14 22 0.026
5 11 0.031 10 2 0.029 15 1 0.026

Table 15.1 The 15 most popular numbers in a 6/45 powerball game.

Another group of studies ([Che, HalDe]) focuses on the Pick-3 or Pick-4 num-
bers game, where the players compete to pick the 3-digit or 4-digit winning num-
ber. [HalDe] also observe that players in Pennsylvania favor small numbers in the
3-digit numbers game. They observe that the bet volumes decrease rapidly from
numbers in the 100s to 400s, then slowly to the 900s. A similar phenomenon is
also reported by [Che] in his study of the 4-digit game in Massachusetts. A box-
plot of the proportion of bets on the first leading digit in a sample 4-digit game is
as shown in Figure 15.1. Clearly, there is a strong bias towards the smaller leading
digits in this game.
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Figure 15.1 Betting volume on the leading digit.

More detailed sales data received on a particular draw in Pennsylvania is clearly
presented in [HalDe], which allows us to quantify this phenomenon in the num-
bers games. Figure 15.2 shows the empirical distribution of the sum-of-three-digits
statistic of the numbers chosen by the players in the Pennsylvania game. We com-
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pare the empirical distribution against the base case where all the 3-digit numbers
are selected with equal probability. Interestingly, the empirical distribution exhibits
a leftward shift from the base-case distribution, indicating a general preference for
smaller digits in the number selections.
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Figure 15.2 Distribution of the sum-of-three-digits statistics in the 3-digit numbers game.

These empirical sets of evidence indeed suggest that players favor small num-
bers. We call this the small-number phenomenon in the numbers game.

There are a few explanations for the small-number phenomenon in lottery games.
As stated in many studies ([HalDe, Sim]), a large proportion of players tend to
select numbers associated with special dates (e.g., birthdays, anniversaries, etc.),
meaningful numbers (e.g., phone numbers, car numbers, address numbers, etc.),
and special events (e.g., accidents and murders), and these numbers tend to start
with smaller digits. For example, there are only 12 months in a year, so that the
numbers 1–12 should be more popular than the numbers 13–45 in many 6/45 lotto
games.

[Ben] analyzes the underlying causes of this small-number phenomenon using a
geometric method. By simply arranging the set of natural numbers in increasing
order, we can count the frequency of each of the first significant digits as it appears
in this list. Take the first significant digit 1 as an example. It appears 1112 times if
we count from 1 up to 10,000 in this list. Thus, the frequency of numbers with first
significant digit 1 is 11.12%, from 1 to 10,000. If we repeat this experiment with
numbers from 1 to 10,001, up to 100,000, this frequency count reaches a peak of
55.5% (at 19,999), and then decreases gradually. Figure 15.3 plots the frequency
count for numbers from 1 to n, where n ranges from 10,000 to 99,999. The area
under the curve accounts for about 30.103% (the probability of having 1 as first
significant digit according to Benford’s law) of total area.
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Figure 15.3 Frequency of first significant digit 1.

Another explanation put forth by researchers is the observation that human be-
ings simply cannot choose numbers in a uniform manner. [LoeBr] demonstrate
using experimental methods that there is indeed a cognitive bias towards the selec-
tion of small numbers by human beings, even when they are told to select numbers
“randomly.” In one of their studies, a total of 488 subjects were told to “name a
sequence of digits with each digit chosen from 1 to 6 as randomly as possible,” and
they found a surplus of small digits (1, 2, and 3) in all their experiments.

These studies, unfortunately, offer only anecdotal evidence (through surveys and
interviews) and rudimentary explanations for the existence of the small-number
phenomenon, and do not provide an analytical framework to quantify and model
this phenomenon.

15.3 MODELING NUMBER SELECTION WITH BENFORD’S LAW

In a recent paper ([ChKTWZ]), we use Benford’s law to develop a choice model for
number selection in the Pick-3 games. We assume there are two types of players:
Type I players pick all numbers randomly with equal probability; Type II players
pick their “lucky numbers” (arising from events in their daily life, or through super-
stitious beliefs). We also assume that each player bets $1 on each number chosen.
In the following, we investigate the betting profiles generated by putting the two
players together.

Definition 15.3.1. Let βB and βN denote the proportions of Type II and Type I
players respectively, with

βB + βN = 1. (15.1)
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Using the sales data published in [HalDe], we assume that the numbers pur-
chased by the Type II players follow Benford’s law, and calibrate the proportion
of Type I and Type II players. To ensure that the number selected has exactly 3
digits, we assume that the Type II player may choose to compose a 3-digit number
by padding the number he or she has chosen with leading zeros.2

Definition 15.3.2. Let γi denote the proportion of Type II players who are betting
on numbers with i significant digits.

By definition,

3∑
i=1

γi = 1. (15.2)

Assumption 15.3.3. Assume that the Type II player will choose to play the 3-digit
number d1 . . . di (d1 > 0), with 3− i leading zeros, with probability

γi log10

(
1 +

1

d1 × 10i−1 + · · ·+ di

)
. (15.3)

Note that this is none other than the classical Benford’s law, except that we
weight it with a factor γi to account for the proportion of players who bet with
i significant digits.

It is now easy to prove the following proposition.

Proposition 15.3.4. Under Assumption 15.3.3, the expected proportion of the bet-
ting volume on a 3-digit number with first significant digit i, denoted by E[S(i)],
is

E[S(i)] = βB × log10

(
1 +

1

i

)
+ βN × 1

9
, for all i = 1, 2, . . . , 9. (15.4)

Note that E[S(i)] does not depend on γj . We can thus use this property to cal-
ibrate the values of βB and βN by looking at the proportion of bets received for
each significant digit. In the 3D data from Pennsylvania, the proportions of Type
II and Type I players are estimated to be 39.58% (βB = 0.3958) and 60.42%
(βN = 0.6042), according to the least square model.

As shown in Figure 15.4 for the first leading digit comparison, the prediction
from Benford’s law captures the general trend in the empirical data, although we
observe a general higher-than-predicted preference for first significant digits 3, 7,
and 8 among the players, whereas the digit 2 has lower than the expected frequency.

To understand the choice preferences beyond the first significant digit, [ChKTWZ]
model an important characteristic in the way players compose the 3-digit numbers

2Note that this simplifying assumption may not hold in general, as some players may pad the num-
bers with trailing zeros, and some may simply duplicate the numbers to reach a 3-digit number. [HalDe]
mentioned that triplets like 111 or 888 are very popular in the Pick-3 game in Pennsylvania. Unfortu-
nately, it does not appear possible to incorporate such features into the model, without sacrificing the
simplicity and tractability of the calibration model.
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Figure 15.4 Fitted proportion by the model.

in the game. One such common strategy is to combine data from two different se-
ries to form a 3-digit number. For example, the number 246 could come from the
24th day of the month of June, or it could come from the address being level 6 of
block number 24. The previous model assumes that the 3-digit numbers come from
a single data series and hence fails to capture this switching behavior.

We notice that the probability distribution in the first assumption can be written
in a different form:

γi log10

(
1 +

1

d1 × 10i−1 + · · ·+ di

)
= γi log10

(
1 +

1

d1

)
log10(1 +

1
d1×10+d2

)

log10(1 +
1
d1
)

· · · log10(1 +
1

d1×10i−1+···+di
)

log10(1 +
1

d1×10i−2+···+di−1
)
.

Here, γi represents the probability that the Type II player will pick a number with
i significant digits, and log10(1 +

1
d1×10i−1+···+di

)/ log10(1 +
1

d1×10i−2+···+di−1
)

represents the probability that the ith digit is di, given that the first i − 1 digits are
d1 . . . di−1. To model the switching behavior, we refine the recursive approach in
the following way.

• As before, log10(1 +
1
d1
) represents the probability that the first digit is d1.

• Let

log10(1 +
1

d1×10i−1+···+di
)

log10(1 +
1

d1×10i−2+···+di−1
) + λ
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denote the probability that the player continues to generate the ith digit di as
if it comes from the same data series as the first i − 1 digits, with parameter
λ > 0. Note that in this way, the players switch to a different data series with
a non-negative probability

λ

log10(1 +
1

d1×10i−2+···+di−1
) + λ

.

• If the players switch to a different data series, let p0 denote the probability
that they switch to the digit “0.” Otherwise, they switch to digit i, with
i ∈ {1, . . . , 9}, with probability (1− p0) log10(1 +

1
i ).

With a slight abuse of notation, we can write

log10

(
1 +

1

0

)
:=

p0
1− p0

, and λ :=
q

1− q
.

We can now model the switching behavior in the 3-digit game in the following way.

Assumption 15.3.5. We assume that the Type II player will choose to play the
3-digit number d1 . . . di (d1 > 0), with 3− i leading zeros, with probability

γi log10

(
1 +

1

d1

)
(1 − q) log10(1 +

1
d1×10+d2

) + q(1 − p0) log10(1 +
1
d2
)

(1− q) log10(1 +
1
d1
) + q

× · · ·

× (1− q) log10(1 +
1

d1×10i−1+···+di
) + q(1− p0) log10(1 +

1
di
)

(1− q) log10(1 +
1

d1×10i−2+···+di−1
) + q

.

In this way, we can interpret the parameters as follows.

Definition 15.3.6. Let q denote the switching probability. Let p0 denote the proba-
bility that the digit will be switched to 0.

Let E[S(i, j)] denote the expected proportion of bets with first two significant digits
i and j respectively.

Proposition 15.3.7. Under Assumption 15.3.5,

E[S(i)] = βB × log10

(
1 +

1

i

)
+ βN × 1

9
, for all i = 1, 2, . . . , 9,

E[(S(i, j)] = βB × log10

(
1 +

1

i

)
×
(
(1 − q) log10(1 +

1
i×10+j ) + q(1− p0) log10(1 +

1
j )

(1− q) log10(1 +
1
i ) + q

)
.

(15.5)

Note that the expected proportion of first significant digits remains unchanged
under both assumptions. The parameters under Assumption 15.3.5 are calibrated
to be q = 0.9105, p0 = 0.1054, to best fit the empirical data under the least square
model.
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Figure 15.5 Fitted proportion for the first two significant digits.

The expected frequencies of first two significant digits are plotted in Figure 15.5.
The frequencies generated from this model closely fit the frequencies of the em-
pirical data. More interestingly, this model is able to capture the small-number
phenomenon in the second significant digit of the data series.

The choice model under Assumption 15.3.5 proposed in the earlier section has
the ability to track some of the most important characteristics of the betting data
in the 3D game. Figure 15.6 depicts the distributions of the sum-of-digits in three
data series: the actual data, simulated data from the proposed choice model, and
the uniform-choice model.

The estimation of 39.58% Type II and 60.42% Type I players in the population
seems right, as it captures the magnitude of the leftward shift in the empirical data
reasonably well. Also, note that the choice model does not account for the super-
stitious beliefs observed in the empirical data (players generally avoid 2 and prefer
7 and 8). This partially explains why the proportions from our model are higher for
smaller sum-of-digits (from 3 to 7) and lower for sum-of-digits around 15.

15.4 MANAGERIAL IMPLICATIONS

The small-number phenomenon clearly has important implications for the opera-
tional risk management of fixed-odds games. The numbers picked by the Type II
players introduce variability and skewness to the distribution of bets on the 3-digit
numbers. The winning numbers, on the other hand, are randomly (i.e., uniformly)
rolled out by a mechanical device, which implies that the hot numbers are chosen
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Figure 15.6 Distributions of sum-of-digits in empirical data, simulated data with Assump-
tion 15.3.5, and uniform choice.

with the same probability as other numbers. The mismatch between the winning
number distribution and the betting volume distribution leads to a significant opera-
tional risk: the operators may face a substantial payout if a popular number happens
to be picked as the winning number. This is a phenomenon which often worries the
game operators. In Québec, according to [LafSi], “the first drawing caused a prize
liability well in excess of the amount received in sales.” Fortunately, “over the long
run it all evened out and the projected prize percentage was achieved.”

15.4.1 Volatility of Prize Liability

Implication: The higher the proportion of players who pick auspicious num-
bers, the higher the variability in the payout for the game operator.

Consider a game with a prize P and N players, each betting $1 on a number
drawn from a respective distribution. Let XβB (n) denote the amount of bets re-
ceived on the number n when the proportion of Type II players is equal to βB .
When the winning number for that prize is drawn uniformly among the 999 num-
bers (from 001 to 999, as we have ruled out the bets on the number 000), the
expected payout in our choice model is simply

P

999

999∑
n=1

E(XβB (n)) =
P

999
×N.
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The second moment of the payout is

P 2

(∑999
n=1 E(X

2
βB

(n))

999

)
.

Hence, the variance of payout is

P 2

(∑999
n=1 E(X

2
βB

(n))

999
− N2

9992

)
.

If all the N players choose their numbers independently, then we have XβB (n) ∼
Bin(N, pβB (n)), where pβB (n) denotes the probability that number n is picked in
our choice model, given that the proportion of Type II players is βB . Hence

E(XβB (n)
2) = N2p2βB

(n) +NpβB (n)(1− pβB (n)).
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Figure 15.7 Variance of payout as the proportion of Type II players increases.

We can thus analytically compare the variance of the payout, under different
values of βB . As shown in Figure 15.7, under both assumptions, the variability
of payout is increasing as the proportion of Type II players increases. When βB

is equal to 0, that is, the demand is evenly distributed, the variance of payout is
only 0.003 × 1012. When βB increases to 39.58%, the variance of payout un-
der Assumption 15.3.3 is 3.6794× 1012, about 1216 times higher than that of the
uniform-choice model. Since Assumption 15.3.5 captures more of the volatility of
the data, the variance of payout is 13.049× 1012 in this model, 4313 times bigger
than that of the uniform-choice model. For the 3D game in Pennsylvania, we con-
clude that the standard deviation of the prize payout can be reduced by 65 times if
the proportion of the Type II agents (βB) reduces to 0.
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15.4.2 Liability Limit

Implication: Small-number phenomenon allows the use of liability limit as a
risk management tool in the numbers games.

One of the key tools used in the risk management of numbers games is to choose
a liability limit so that only a moderate proportion of numbers hit the sales limit. In-
terestingly, the small-number phenomenon plays a crucial role in this issue. With-
out this, it would be futile for game operators to try figuring out an appropriate
liability limit to use in a particular game.

Let Dn denote the (random) demand of a 3-digit number n. The distribution of
Dn depends on the proportion of Type I and Type II players in the game. Let C
denote the corresponding cut-off limit. Let Sn denote the accepted sales for number
n; i.e.,

Sn = min(Dn, C).

Note that

E[Sn] = C · P (Dn > C) + E(Dn|Dn ≤ C) · P (Dn ≤ C).

Let R(S1, . . . , SN ) denote the “risk exposure” when sales for the N numbers
are given by (S1, . . . , SN ). There are several ways to model the risk measure R(·),
and it generally depends on the distribution of the winning numbers drawn.

Suppose the expected return given a $1 bet is r. We use the mean-risk trade-off
to model the utility function of the game operator. The expected utility function of
the game operator is thus given by

r

N∑
n=1

E[Sn]− λE
{
R(S1, . . . , SN)

}
,

where λ is an exogenous penalty term for risk exposure.
We can find C by solving the following maximizing problem:

max
C>0

r

N∑
n=1

[C · P (Dn > C) + E(Dn|Dn ≤ C) · P (Dn ≤ C)]

−λE
{
R(min(D1, C), . . . ,min(DN , C))

}
. (15.6)

It can be easily shown that the objective function is convex. Thus, according to
the first order condition, the optimal liability limit C satisfies

N∑
n=1

P (Dn > C) =
λ

r
E

[
∂R(min(D1, C), . . . ,min(DN , C))

∂C

]
. (15.7)

Note that the left-hand side corresponds to the expected number of hot numbers,
i.e., the expected number of bet types reaching the cut-off limit in the draw. The
cut-off limit can be set by merely choosing a cut-off limit C to control the number
of hot numbers.

Suppose the total bets collected are to the value of $N , and the cut-off limit is
$C for each number. We next estimate the expected number of hot numbers (i.e.,
the numbers with betting volumes hitting the liability limit).
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We define an indicator function YβB (n) as follows:

YβB (n) =

{
1 if XβB (n) ≥ C;
0 otherwise.

The expected number of hot numbers with liability limit $C is

E

(
999∑
n=1

YβB (n)

)
=

999∑
n=1

P (XβB(n) ≥ C)

=

999∑
n=1

(
1−

C−1∑
i=0

(
N
i

)
(pβB (n))

i(1− pβB (n))
N−i

)
.

Note we can use a normal distribution N(NpβB (n),
√
NpβB (n)(1− pβB (n)))

to approximate the binomial distribution Bi(N, pβB (n)), if N is large enough.
Hence, we have

E

(
999∑
n=1

YβB (n)

)
=

999∑
n=1

(
1− Φ

(
C −NpβB (n)√

NpβB(n)(1 − pβB (n))

))
.
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Figure 15.8 Expected number of hot numbers using different liabilities.

We can thus analytically compute the expected number of hot numbers given a
liability limit $C, and compare the results using different liability limits. Figure
15.8 shows the expected number of hot numbers under different liability limits in
the case that 39.58% of players are Type II and 60.42% of players are Type I, and
in the ideal case that all players are Type I agents.
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In the ideal case, because all numbers are selected with equal probability, the
concentration of measure phenomenon kicks in and the expected number of hot
numbers goes through a phase transition—dropping sharply from 999 (all sold out)
to 0 (none sold out) for a narrow range of cut-off limit. This is most evident from
Figure 15.8: when the total sales are $9M, $10M, $11M, and $12M respectively,
the expected number of hot numbers drops sharply to zero when the liability limit is
around $10,000, $11,000, $12,000, and $13,000 respectively. In this environment,
trying to find the appropriate cut-off limit to control the right level of hot numbers
is almost impossible because this number depends critically on the total sales level,
a number which normally fluctuates from draw to draw.

In the empirical sales data, we have βB ≈ 0.3958. In this environment, inter-
estingly, the phase transition phenomenon disappears, and the relationship between
the cut-off limit and the expected number of hot numbers is more stable. For a
cut-off limit of $1000, the hot numbers fluctuate from 200 to 400 when the total
sales level changes from $9M to $12M. The relationship between the total sales
and proportion of hot numbers is thus more stable.

15.5 CONCLUSIONS

[ChKTWZ] study the sales data on a particular Pick-3 game and find that players do
not uniformly select numbers. Instead, they prefer smaller numbers. For example,
numbers starting with 1 or 2 are generally more popular than those starting with 8
or 9. This is called the small-number phenomenon in the numbers game.

One explanation for the small-number phenomenon is that people tend to select
numbers associated with special dates (e.g., birthdays, anniversaries), meaningful
numbers (e.g., phone, car, or address numbers), and special events (e.g., accidents
and murders), and these tend to start with smaller digits. A very interesting natural
law, Benford’s law, captures this phenomenon. Benford’s law describes the distri-
bution of the first non-zero digit in natural data sets. According to this law, about
30% of the data starts with 1, with the proportion decreasing as the digit increases.
Only about 4.5% of the data starts with 9. Many natural data sets (for example,
accounting data) follow this law.

How does this belief in lucky numbers affect people’s cognitive process when
they gamble? When people believe that they stand a larger chance to win with
certain numbers, instead of perceiving the lottery game as a pure game of chance,
they tend to believe that they have some control over the results by choosing these
lucky numbers. Consequently, perceived luckiness encourages an illusion of con-
trol. This illusion of control in turn makes gambling more attractive and thus,
intensifies the gambling behavior, and consequently, lead to a possible addiction.

While the issue of gambling addiction is beyond the scope of this article, it is
interesting to note that the behavioral biases towards auspicious and lucky numbers
can collectively be modeled using the cold, hard mathematics of Benford’s law.
Given that roughly 40% of the players in our data set tend to believe/select “lucky
numbers,” modifying such erroneous beliefs through relevant correction programs
may be a solution to prevent problem gambling.



Chapter Sixteen

Benfordʼs Law in the Natural Sciences

David Hoyle1

This chapter focuses on the occurrence of Benford’s law within the natural sci-
ences, emphasizing that Benford’s law is to be expected within many scientific data
sets. This is a consequence of the reasonable assumption that a particular scientific
process is scale invariant, or nearly scale invariant. We review previous work from
many fields showing a number of data sets that conform to Benford’s law. In each
case the underlying scale invariance, or mechanism that leads to scale invariance,
is identified. Having established that Benford’s law is to be expected for many data
sets in the natural sciences, the second half of the chapter highlights generic poten-
tial applications of Benford’s law. In addition to detecting potentially fraudulently
generated data sets, Benford’s law has a role to play in monitoring data consistency
and/or data quality. Finally, direct applications of Benford’s law are highlighted,
whereby the Benford distribution is used in a constructive way rather than simply
assessing an already existing data set.

16.1 INTRODUCTION

There are few scientists that do not find Benford’s law surprising on first encounter.
In part, this is probably due to the fact that many scientists will not have an intuitive
feel for what the first significant digit (FSD) distribution of a real data set should
look like. Benford’s law tells us that the probability P (d) of the FSD being d is

P (d) = log(1 + d−1). (16.1)

Despite its unusual nature, many scientific data sets do indeed appear to conform
to Benford’s law. The appearance of this unusual law of numbers within so many
scientific data sets might be taken by some scientists as suggestive of a new fun-
damental process of nature. More often it is simply indicative of the natural but
important requirement that a process be scale invariant. Despite the seemingly
more pedestrian explanation for its ubiquitous occurrence, the role of Benford’s
law within the sciences has many facets which reflect the theoretical studies and
applications outlined in earlier chapters. Consequently, potential applications of
Benford’s law to scientific data include the following.

1Thorpe Informatics Ltd., Adamson House, Towers Business Park, Wilmslow Rd., Manchester, M20
2YY, UK.
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• Benford’s law gives the natural FSD distribution for many scientific data sets.

• Benford’s law can be used to assess data quality and consistency.

• Benford’s law can be used to check for fraudulent scientific data.

• Benford’s law can be used to generate appropriate simulated data sets.

We explore each of these issues throughout the chapter. In Sections 16.3.1 and
16.3.2 we review reports of occurrences of Benford’s law within the physical sci-
ences, and biosciences respectively. Then in Sections 16.4.1, 16.4.2, and 16.4.3 we
discuss examples of applications of Benford’s law to scientific data. We start by
discussing the mathematical origins of the universality of Benford’s law in scien-
tific data. In doing so we potentially gain insight not only into the scientific data
but also the processes that generated the data.

16.2 ORIGINS OF BENFORD’S LAW IN SCIENTIFIC DATA

With Benford’s law still being a novelty to many scientists, there is often suspicion
that conformance with Benford’s law should indicate some profound and universal
underlying mechanism controlling the science. This belief is reinforced to some
degree by the sheer number and diverse range of data sets conforming with Ben-
ford’s law. The true reason for the appearance of Benford’s law in many situations
is not a newly discovered fundamental mechanism, but nonetheless a still important
one—that of scale invariance. The belief that we would not expect to find an in-
trinsic scale to measurements taken from a number of different sources is hardly a
contentious one, and indeed would be considered good scientific principle. Within
the natural sciences scale invariance for a quantity is often taken to mean the prob-
ability density p(x) follows a power-law, and so takes the form

p(x) ∼ x−α. (16.2)

Probably the most common power-law in scientific data is Zipf’s law [Zip], for
which α = 1. Zipf’s law is a frequently observed relationship that is as ubiqui-
tous in data sets as Benford’s law. Recent explanations have been put forward for
the universality of Zipf’s law [CorSo, BaBeMi], extending beyond domain- and
problem-specific explanations that had already been proposed. Zipf’s law and Ben-
ford’s law are in fact linked at a very simple level, as pointed out by Pietronero et
al. [PiTTV]. For the power-law form given in (16.2), the FSD distribution P (d) is
easily derived (see for example [PiTTV]). For α �= 1 we have

P (d) =

∫ d+1

d

x−αdx =
1

1− α

[
(d+ 1)(1−α) − d(1−α)

]
, (16.3)

while for α = 1 we have instead

P (d) =

∫ d+1

d

x−1dx = log

(
d+ 1

d

)
. (16.4)
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The derivations of Pietronero et al. [PiTTV] outlined above are appealing but lack-
ing in rigor. As Hill points out there is no proper scale-invariant distribution on
the positive reals [Hi4]. However, Hill does rigorously show that Benford’s law
follows from base invariance of a probability measure over the mantissa of the pos-
itive reals, and that base invariance follows from scale invariance of the mantissa
[Hi4] (see also Chapter 2). It is a relatively small step to extend the idea that a sci-
entific quantity should have no intrinsic scale to the local notion that the mantissa
of the quantity should have no intrinsic scale. Therefore, we should still expect
Benford’s law to be a natural consequence of our intuitions about collections of
scientific measurements being scale invariant.

However, real scientific systems are finite and any finite system cannot truly be
scale free. Most real systems have natural constraints on scale, both at the lower
and upper ends. Yet, if the effective range is over several orders of magnitude, then
effective scale invariance can be observed and we will see close agreement with
Benford’s law. Clearly, we would expect the precise magnitude of any deviations
from Benford’s law in the observed FSD of a finite system to be dependent upon
the system size.

For finite systems it is also worth asking whether there are other distributions
common within the natural sciences that demonstrate close agreement with Ben-
ford’s law. With Benford’s law essentially corresponding to uniform distribution
of numbers on a logarithmic scale, one concludes that any random variate whose
logarithm displays a broad distribution will result in an FSD distribution close to
Benford’s law. This is often referred to as the spread hypothesis, and while it does
imply Benford behavior in some situations, it fails in others; for more on this see
Chapter 2 and [BerH3].

An obvious example of a distribution with a “good” spread is the log-normal
distribution, with density function

p(x) =
1

x
√
2πσ2

exp

(
− 1

2σ2
(lnx− μ)2

)
. (16.5)

As σ → ∞ we expect to see convergence to Benford’s law for the FSD distribution.
Indeed, it has been commented by Sornette that the tail of a broad log-normal dis-
tribution can be mistaken for a power-law, i.e., a scale-invariant distribution [Sor].
We can rewrite the log-normal density function as

p(x) =
e−μ

√
2πσ2

(
xe−μ

)−1−η(x)
, (16.6)

where η(x) = 1
2σ2 (ln x − μ). We see that with η(x) being a slowly varying func-

tion of x, especially as σ becomes large, then the log-normal density function ap-
proaches a power law, p(x) ∼ x−1. Thus we should not be surprised that numbers
drawn from a broad log-normal distribution can display close agreement with Ben-
ford’s law. Within the natural sciences there are many multiplicative mechanisms
and processes that naturally lead to a log-normal distribution. Examples range from
species abundance—area relationships based upon “broken-stick”-like arguments
[Sug], through to multiplicative noise processes in genomic assays [CuKeCh]. In
the appropriate asymptotic limit the observation of Sornette outlined above would
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suggest that such multiplicative processes would lead to exact agreement with Ben-
ford’s law.

That random multiplicative processes can lead to Benford-like behavior illus-
trates that there are simple common generative processes that can provide generic
mechanisms for explaining the occurrence of Benford’s law within scientific data
sets. As well as growth via a random multiplicative factor, geometric growth pro-
cesses (by a fixed factor per unit time) are equally common within the natural sci-
ences. A geometric growth process would lead to an exponential growth curve
when measured against elapsed time. For example, growth of bacterial or micro-
bial colonies are often considered to partially follow an exponential curve (often
termed the “log-phase”) [Monod, ZwJRR]. Uniform random sampling of colony
ages (elapsed time) within the log-phase of such colonies will lead to an exponen-
tial distribution of colony sizes. As has been observed on numerous occasions,
the exponential distribution produces an FSD distribution very close to Benford’s
law [EngLeu].

The preceding discussions explain in part the ubiquity of Benford’s law but may
give the impression that Benford’s law is inevitable. Clearly, there are some scien-
tific data sets which are patently not scale invariant, and we would not expect them
to be. Examples include repeated measurements of the same source, i.e., simple
technical replication of the measurement process, or a sample of heights of peo-
ple. In the former example we are measuring only one “thing,” while in the latter
there are biological and evolutionary constraints that result in human heights being
concentrated over a relatively small range.

Finally, it is important to reemphasize that while Benford’s law is a fascinat-
ing observation, its underlying cause within scientific data does not necessarily
represent some newly uncovered profound mechanism. We should be wary of
overinterpreting the scientific significance of observing agreement with Benford’s
law. Certainly, there are plenty of examples where power-law behavior in sci-
entific data has been attributed to novel causes (see for example [MBGHPSS]),
when in fact such power-laws can be generated by much more prosaic mechanisms
[IsKaCh, Bon.., Vos]. With scale invariance being at the heart of Benford’s law,
the assigning of significance to observations of Benford’s law by some authors
[Buc, NiRen, NiWeRe] can cause heated debate and consternation in others [Far].
However, Benford’s law is still worthy of study, both in its own right and as the
natural FSD distribution for many scientific data sets. Indeed, with Benford’s law
naturally following from scale invariance it is surprising that Benford’s law is not
more widely known. By highlighting the ubiquity of Benford’s law in scientific
data sets and its potential applications we hope to rectify this situation. As Ben-
ford’s law typically generates considerable interest when it is observed in a data
set, it has been tested against an extremely diverse range of scientific data sets. We
review some of these data sets in the next section.
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16.3 EXAMPLES OF BENFORD’S LAW IN SCIENTIFIC DATA SETS

16.3.1 Physical and Engineering Sciences

Physics on a number of different scales provides a rich source of topics for the study
of Benford’s law, from atomic and nuclear physics through to fundamental particle
physics. Starting at the smallest length scales, Shao and Ma [ShaMa1] found that
hadron full widths showed agreement with Benford’s law. The hadron full width
Γ is related to its half-life τ (a measure of particle stability) through

Γ× τ = h̄, (16.7)

where h̄ = h/2π, with h being Planck’s constant. Shao and Ma demonstrated
the agreement with Benford’s law for both baryons (particles such as neutrons and
protons that are made up of three quarks) andmesons (particles made up of a quark
and anti-quark pair). As with many data sets, the agreement with Benford’s law is
improved when the baryon and meson data sets are combined into a single hadron
data set.

The agreement between Benford’s law and the stability properties of composite
particles extends to larger length scales (lower energy scales). Buck et al. found
agreement between Benford’s law and nuclei α-decay half-lives [Buc]. The agree-
ment is evident in both experimentally measured and theoretically calculated half-
lives. This would indicate that the occurrence of Benford’s law is a result of the
stochastic processes underlying α-decay rather than through experimental mea-
surements being potentially dominated by multiplicative experimental noise. The
calculated half-lives are not simply copies of their experimental counterparts, since
theoretical half-life calculations at the time of the study by Buck et al. were only
accurate to within a factor of 2 or 3. This hints at a common underlying mech-
anism responsible for the emergence of Benford’s law, at work within both real
α-decay processes and theoretical models. A common mechanism for generating
Benford’s law within stability properties of nuclei may also extend to β-decay pro-
cesses. Ni and coworkers also found agreement with Benford’s law in experimen-
tal and theoretical β-decay half-lives [NiRen, NiWeRe]. Although α- and β-decay
represent two modes of nuclei transformations, it is not trivially apparent that both
should conform to Benford’s law since they are controlled by different fundamental
forces: α-decay proceeds through emission of an α-particle (equivalently a Helium
nucleus) and is governed by the strong and electromagnetic forces, while β-decay
proceeds through emission of either an electron or positron and is governed by
weak interactions [CotGr].

As well as emerging in the properties of nuclei, Benford’s law also arises in
atomic physics and hence at still lower energy scales. For example Benford’s law
can be seen in the properties of the electrons orbiting the nucleus. Specifically,
Pain found agreement with Benford’s law in the calculated energy spectrum (line
strength) of electronic transitions (changes between electron energy levels) [Pai].
Pain speculates that the occurrence of Benford’s law in this case can be understood
in terms of a multiplicative process involving random matrix elements. Random
matrices are often used to provide a model Hamiltonian for complex interacting
systems, such as electrons orbiting a nucleus. Indeed, Wigner’s original work on
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random matrices was motivated by the need to understand the energy levels of
complex nuclei [Wig2]. With the line strength involving products over individual
matrix elements a multiplicative process naturally emerges. Pain makes the connec-
tion between Benford’s law and the Random matrix theory (RMT) of electronic
transitions more explicit by noting that from the RMT approach Porter and Thomas
derive an exponential distribution for larger line strengths [PoTh]. As we already
commented, an exponential distribution is known to show close, though not exact,
agreement with Benford’s law. Overall, the RMT explanation of FSD distribution
in line strengths is attractive since it also goes some way to a possible explanation
of the universality of Benford’s law in hadron and nuclear half-lives. It provides a
theoretical model that can be shown to lead to Benford’s law, yet is used to model
physical interactions in composite systems at both atomic and subatomic scales.
See Section 3.2.3.1 for more on the connections between random matrix theory
and Benford’s law, and [FiMil] for a history of its development.

In addition to being prevalent in data sets originating from physical processes
operating at very small length scales, we find Benford’s law occurring in data sets
drawn from much larger length scales. Examples include the density of lightning
flashes [MaRRSD], properties of pulsars (spinning neutron stars) [ShaMa2], and
other astrophysical sources [MorSPZ].

The studies from the physical sciences highlighted above have focused on the
agreement of Benford’s law with experimentally derived data sets. Within ax-
iomatic subjects such as the physical sciences one can ask the perhaps deeper ques-
tion, are there aspects of physical laws that imply there will be agreement with
Benford’s law? To some extent this is addressed in the RMT calculations of Pain
[Pai], though if we are to find agreement with Benford’s law in a specific physical
law it would, by definition, have to be found in one of the fundamental distributions
that occur within the physical sciences. The study of stochastic systems governed
by probability distributions is the realm of statistical physics [LanLi]. Shao and
Ma [ShaMa3] study the agreement with Benford’s law of three fundamental distri-
butions from statistical physics, namely the Boltzmann–Gibbs, Fermi–Dirac, and
Bose–Einstein distributions. These distributions tell us the probability of finding a
system or collection of particles in a state with energy E. The Boltzmann–Gibbs
distribution is appropriate for classical systems while the Fermi–Dirac and Bose–
Einstein distributions apply to quantum systems, with the caveat that for quantum
systems the possible energy levels E are discrete. For fermionic particles no two
particles may occupy the same energy level, leading to the Fermi–Dirac distribu-
tion. Conversely, for bosonic particles the occupancy of any energy level is un-
restricted and leads to the Bose-Einstein distribution. The three distributions are
defined via

PBG(E) ∝ exp(−βE) Boltzmann–Gibbs, (16.8)

PFD(E) ∝ [exp(βE) + 1]−1 Fermi–Dirac, (16.9)

PBE(E) ∝ [exp(βE) − 1]−1 Bose–Einstein, (16.10)
where β = 1/KBT , with KB being Boltzmann’s constant and T the absolute
temperature. Both the Boltzmann–Gibbs and Fermi–Dirac distributions show close
agreement with Benford’s law, with the discrepancy showing periodic behavior
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in β for any choice of FSD. The Bose–Einstein distribution is not normalizable
and its FSD distribution is dominated by the singularity at E = 0. In this region
PBE(E) ∼ 1/E, and so Shao and Ma argue that exact agreement with Benford’s
law is obtained. For the Boltzmann–Gibbs and Fermi–Dirac distributions the close
agreement with Benford’s law is essentially due to the exponential nature of these
distributions, i.e., PFD ∼ e−βE for βE  0 (but see Section 3.5 for a proof
that the exponential and related distributions are never exactly Benford). Thus,
for energies sampled over a wide range the already known close agreement between
the exponential distribution and Benford’s law [EngLeu] will be apparent. Shao and
Ma have also extended their analysis of the classical Boltzmann–Gibbs distribution
to non-extensive statistical mechanics, or so-called Tsallis-statistics [ShaMa4].
Under Tsallis-statistics the probability of finding a system in a state with energy E
is given by one of a family of distributions, Pq(E), parameterized by q,

Pq(E) ∝ [1− (1− q)βE]
1/(1−q)

, 1 ≤ q < 2. (16.11)

As q → 1+ we recover the Boltzmann–Gibbs distribution, while as q → 2− we
recover a power-law distribution. Again Shao and Ma find close agreement between
the FSD distribution from Pq(E) and Benford’s law, with the agreement fluctuating
as β is varied but with the amplitude of such fluctuations decreasing as q → 2−.

What is often more surprising to newcomers is the agreement between Benford’s
law and samples of physical constants. Benford’s original paper [Ben] and work by
others (see [Burke]) illustrate the degree of conformance. However, one would nat-
urally expect the distribution of physical constants, which are themselves measures
of scale, to be scale invariant since the opposite implies a fundamental scale for
all physical processes. Against this, it has been noted that combinations of some
physical constants do appear to be constrained by a scale set by the current age
of the universe. The Large Number Hypothesis (LNH) of Dirac (also called the
Large Number Coincidence) observes that dimensionless combinations of funda-
mental physical constants are often in the order of 1040 [Dir]. Practically, the large
timescale set by the current epoch, and similarly the almost infinitesimal length
scale set by the Planck length �p [Pad], do not provide a significant constraint
on the list of physical constants considered by Benford [Ben] and others [Burke].
Thus, we still expect the scale-invariance argument to apply to the distribution of
physical constants, even in the presence of the LNH.

Finally, we highlight a number of studies involving Benford’s law which fall
more within the realm of computer science. As well as providing a general review
of Benford’s law, Torres et al. [TorFGS] demonstrate sizes of files on a computer
hard disk follow Benford’s law. Again, to the uninitiated the agreement of file sizes
with Benford’s law appears counterintuitive. There is a natural urge to question
what mechanism or physical law could be at play here when surely file sizes are
often a result of the human creative processes producing the content. However,
the natural explanation is once again that we do not expect there to be an intrinsic
scale on which to measure file sizes. Perhaps more intriguing is the observation
of Dorogovtsev et al. [DoMeOl] that numbers gleaned from the Internet follow
Benford’s law. There is no single generating process at work here that we can easily
conceptualize. While we may not be able to conceptualize the data generating
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process it can be argued that we do not expect any intrinsic scale or base for the data,
and therefore Benford’s law should naturally emerge as a consequence. However,
with the numbers obviously coming from a mixture of sources and processes, Hill’s
derivation in [Hi4] of Benford’s law as a collection of samples from a random
mixture of distributions would appear as an equally appropriate justification for the
pattern of numbers from the World Wide Web.

16.3.2 Biosciences

While the intricate complexities of processes within cells and organisms may ap-
pear to make it a harder task to link Benford’s law with fundamental concepts
within the biosciences, data showing such connections abound within the bio-
sciences. Moreover, much of the focus of biological and biomedical sciences is
quite naturally concerned with growth—from individual cells, through to tissues
and organs, and finally up to whole populations. It is hardly surprising that many
data sets within the biosciences, being measurements of size or scale, show good
agreement with Benford’s law. In many cases the data reflect an underlying biolog-
ical multiplicative growth process, but even when the data correspond to measure-
ments of biophysical characteristics we can still find Benford’s law at work.

For example, Moret et al. [MorSSZ] studied the properties of folded proteins. A
protein is produced as a linear sequence, or chain, of amino acids that then subse-
quently folds into its native three-dimensional structure [Whi]. This 3D shape—its
size, pockets, accessibility to other molecules—determines how it interacts with
other biomolecules, and consequently determines the function of the protein. Mea-
surements of protein shape are therefore of key interest to structural biologists, and
Moret et al. obtained measurements of mass, average radius, and solvent accessible
area for a large number of proteins. As might be expected, the standard measure-
ments of size, i.e., mass and average radius, show good agreement with Benford’s
law, with the mass measurements providing a better fit. However, the measure-
ments of solvent accessible area show a more marked deviation from Benford’s
law, though 1 is still the most common FSD. (A similar result was found by Nigrini
and Miller in studies on stream flow amounts and areas of lakes; see [NiMi1].) Al-
though a measurement of size, the solvent accessible area measures that part of the
outer surface of the native fold that can be reached by a water molecule of approx-
imately 1.4Å radius. Therefore, measurements of the solvent accessible area have
a natural intrinsic length scale associated with them, and folded proteins that have
significant proportions of their outer surface with local radius of curvature below
or around 1.4Å may lead to departures from Benford’s law.

Similarly, Grandison and Morris [GrMo] found agreement between kinetic rate
constants (another biophysical quantity) and Benford’s law. The rate constants de-
termine how fast metabolic reactions that are responsible for production of small
essential biomolecules occur within an organism. The agreement with Benford’s
law is far from perfect, but certainly the frequency of 1 as the first significant digit
is much higher than that for any other digit. While this observation may at first
sight appear counterintuitive to systems biologists, as Grandison and Morris point
out the implication is that the distribution of rate constants is approximately scale
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invariant. With no a priori reason to assume a preferred timescale for metabolic
reactions, scale invariance and agreement with Benford’s law are natural conse-
quences. Obviously, physical and biological constraints provide us with intrinsic
scales for the rate constants. For example, quantum physics dictates upper limits
on how fast electronic transitions can occur within enzyme substrate complexes,
while metabolic reactions that occur very slowly may confer such a large disadvan-
tage to the organism that they are effectively selected against and are therefore not
observed. Fortunately the range between these limits is still expected to be large,
and therefore approximately scale-invariant behavior would be expected.

As with the physical sciences, there is a large diversity of biological data sets
which show agreement with Benford’s law, spanning a range of physical length
scales. The work of Moret et al. [MorSSZ] and Grandison and Morris [GrMo] illus-
trates the agreement with Benford’s law at the level of the properties of an individ-
ual biomolecule or complex. We also expect to find agreement with Benford’s law
in the measurements of the number of biomolecules present. Hoyle et al. [HoRJB]
also observed agreement with Benford’s law in messenger RNA (mRNA) abun-
dance measurements. FSD distributions from microarray fluorescence intensi-
ties were studied. The intensities provide a proxy for mRNA abundances. It is
believed that multiplicative noise dominates the experimental process, leading to a
log-normal distribution. Hoyle et al. comment that since a log-normal distribution
of sufficiently large variance can often be mistaken for a power-law distribution, the
conformance to Benford’s law may merely be reflecting the log-normal distribution
arising from the multiplicative noise. Equally, though, the actual mRNA abundance
of a particular gene is determined by a large number of regulatory factors, com-
monly acting in a combinatorial fashion. Consequently, the true underlying mRNA
levels may themselves be determined essentially by a multiplicative process, again
leading to a log-normal-like distribution.

The post-genomic biology data sets of the sort considered by Hoyle et al. pro-
vide an ideal opportunity against which to test Benford’s law. The genome-wide
nature of most modern assays provides us with thousands of measurements from a
single biological sample, and hence an excellent source of numbers from which to
construct reliable estimates of the FSD distribution which can be compared to Ben-
ford’s law. This is illustrated in Figure 16.1 which shows the FSD distribution for a
microarray data set of Mira et al., in this case of a wild-type yeast (Saccharomyces
cervisiae) strain [MiBC]. The excellent agreement between the microarray FSD
distribution and Benford’s law is clear. Within the last few years microarray tech-
nology has been superseded by next-generation sequencing technology, which
purports to give direct, digital, and hence more accurate measurement of gene
expression [Metz]. Figure 16.1 also shows the FSD distribution for the mapped
read counts of a next-generation sequencing data set from the same wild-type yeast
strain [NaWWSRGS]. Although the next-generation sequencing data has been ob-
tained by a different laboratory and the yeast culture grown under slightly differing
conditions, its conformance to Benford’s law is also clearly evident.

As we commented at the beginning this section, multiplicative processes are a
key feature in normal growth of biological populations, from individual cells to hu-
man populations. Benford’s original publication [Ben] examined human population
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Figure 16.1 First digit distributions for example yeast transcriptome data sets.

sizes at the level of US counties. In a modern global age populations at the country
level are just as easily obtainable and the same FSD analysis can be applied. This
has been done by Sandon [Sando] who finds good agreement between Benford’s
law and data from 198 countries, at both the level of population and surface area.

The general mechanisms at work with human populations are on the whole those
that apply to populations of smaller organism such as bacteria. Indeed Costas et al.
[CosLTF] relate the standard geometric bacterial population growth model to Ben-
ford’s law. Costas et al. [CosLTF] then confirm Benford’s law for cell population
sizes of various colonies of the cyanobacterium Microcystis aeruginos collected
from different locations in southern Spain.

Even when growth of a biological population is uncontrolled, as is the case for
developing tumors, the presence of Benford’s law may still be found. Again, this is
due to the underlying processes being multiplicative. Frigyesi et al. [FriGMH] find
that the number of chromosomal aberrations present in the cells of various tumors
follows Zipf’s law, i.e., a power-law distribution with exponent −1. Frigyesi et
al. [FriGMH] do not explicitly compute the FSD distribution for the number of ob-
served chromosomal aberrations, and so do not make an explicit connection with
Benford’s law. However, as Pietronero et al. [PiTTV] point out, agreement with
Zipf’s law implies agreement with Benford’s law. It is the chromosomal aberra-
tions that lead to the deviation away from the normal growth dynamics of the cells,
and in this case it is suggested that the accumulation of aberrations increases the
likelihood of tumor cells becoming more dysfunctional and acquiring new further
aberrations. Consequently, the number of chromosomal aberrations is determined
through a multiplicative stochastic process with cells from older tumors having
larger numbers of chromosomal aberrations.
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16.4 APPLICATIONSOFBENFORD’S LAW INTHENATURAL SCIENCES

16.4.1 Data Quality and Data Consistency

Perhaps the least controversial of the applications of Benford’s law within the sci-
entific arena is its use in monitoring data consistency. In this context changes in
the level of conformance with Benford’s law are simply used to monitor changes
in the underlying processes producing the data. Hoyle et al. [HoRJB] proposed
taking such an approach with microarray measurements of gene expression. Here
the FSD distribution would be used to monitor the consistency of the experimental
process, at least at the level of an individual researcher in a given laboratory. To
use Benford’s law to assess data consistency we do not have to necessarily concern
ourselves with making any statements about whether we believe the data should,
a priori, be Benford or not. Instead we are merely using deviation away from the
Benford distribution as a means of constructing a summary statistic for the patterns
of data observed. In most cases we are using Benford’s law in this fashion to iden-
tify changes that are outside tolerance levels. Thus, in this manner Benford’s law
is being used to monitor not only consistency, but also data quality. We are using
change in conformance with Benford’s law as a marker for change in the underlying
data generation process, but not as a means to indicate what has changed. How-
ever, examples do exist where changes in conformance with Benford’s law have
been more directly interpreted. Horn et al. [HoKKS] directly correlate changes in
FSD distributions from electroencephalography (EEG) data with different states
of anesthesia, or rather concentrations of the Sevoflurane anesthetic given. While a
direct scientific interpretation of the changes in the FSD distribution is being made
here, we must guard against overinterpretation. At the simplest level the degree of
agreement with Benford’s law is merely being used to summarize the information
in the EEG trace. Similarly, Hoyle et al. [HoRJB] suggest that large changes in con-
formance with Benford’s law for microarray gene expression data might be indica-
tive of the original mRNA being obtained from a mixed cell-type population. Here
again the degree of agreement with Benford’s law is essentially being used as a
practical summary statistic for the original data. For large-scale or high-throughput
data sets this approach to using Benford’s law is extremely attractive due to the
relatively low computational complexity of the task. Such an approach has been
used by Brown [Bro1, Bro2] to assess pollutant concentration data sets, as well as
by DeMarchi and Hamilton [DeHa] to monitor the accuracy of self-reported atmo-
spheric releases of toxins from chemical production plants. In both these examples
it is suggested that the data should conform to Benford’s law. Therefore, in this
case deviation away from Benford’s law indicates poor quality data sets that cannot
be relied upon for their original purpose, and should be ignored or down-weighted
in any subsequent analysis. Orita et al. [OrMNO] give an explicit example of how
conformance to Benford’s law can be used to assess the quality or appropriateness
of a data set for subsequent use—in this instance selecting training data for building
statistical models. They first confirm that unbiased selection of data points relat-
ing to various pharmaceutical drugs leads to conformance with Benford’s law for
physio-chemical properties, such as solubility or toxic dosage levels. Inappropriate
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selection of training data can therefore be detected through the use of Benford’s
law. They also suggest that Benford’s law could be used to detect fabricated data.
Similarly, for the toxin data of DeMarchi and Hamilton [DeHa], using deviation
from Benford’s law to assess the quality of self-reported data is suggestive of Ben-
ford’s law also being used in a surveillance capacity and hence for detection of
doctored data. This brings us into a more contentious area, that of scientific fraud.

16.4.2 Data Fraud

As with financial data, Benford’s law has been applied to detect fraudulently gen-
erated or modified scientific data sets (see also Chapter 17). We distinguish fraudu-
lently generated data sets from those which are merely of poor quality, which were
discussed in the previous section. Fraudulently generated data sets are those
where deviation from Benford’s law is as a result of a deliberate attempt to mis-
lead. Poor quality data sets, by contrast, may be misleading in a scientific sense
but deviate from Benford’s law as a result of poor experimental design or the in-
trinsically complex and noisy nature of the signal recording process. The scientific
domains where fraudulent modification of data may be most likely to occur will be
those where the stakes are highest. Such domains include those where significant
investment has been made in obtaining the data. A possible example would be late-
stage clinical trials, where the cost of developing a potential new drug for market
can be in excess of one billion dollars [PMDPMLS]. Similarly, those fields where
the failure to meet regulatory data standards can incur large and punitive fines will
be more prone to fraudulent manipulation of the data. Topical examples of such
fields include CO2 emissions and fisheries catches, as both of these are exam-
ples of fields where countries may be subject to quotas through treaty negotiations
that could be influenced by current data measurements. Indeed, inspired by use
of Benford’s law in survey data, Auffhammer and Carson applied Benford’s law
to CO2 emissions [AuCa], with the explicit aim of detecting fraudulent data sets.
Similarly, Graham et al. [GrHaPa] applied Benford’s law to catch data from sev-
eral North Atlantic fisheries. In this case catch data from highly regulated fisheries
obeyed Benford’s law while catch data from less regulated fisheries did not. It is
probably fair to assume that Benford’s law is unlikely to be uppermost in the mind
of anyone producing fraudulent catch returns. This suggests that in the more highly
regulated fisheries, where penalties for incorrect data are greater, the returned data
properly reflects the actual catches landed. In contrast, for the less regulated fish-
eries there is less penalty and perhaps a commercial incentive for not accurately
reporting the catches landed.

Likewise, commercial, financial, and other indirect pressures or incentives are
undoubtedly issues in the reporting of medical and clinical trial data. Fraudulent ac-
tivity in clinical trial data is a serious issue and one that is perhaps more widespread
than many would initially suspect [RaEtAl]. Anomalous patterns in the reporting
of medical data analysis is something that has been highlighted by García-Berthou
and Alcaraz [GaAl]. Naturally, then, this is an area ripe for analysis of digit distri-
butions. In contrast to the financial case, it is interesting to note that for a number
of studies relating to medical data there has been a focus upon terminal digit pref-
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erence [Hay1, Hay2, Hay3, MosDDK]. Unusual patterns in terminal digits may be
the result of inappropriate rounding, both inadvertent and malicious, but as com-
mented by Hayes this has the potential to impact upon important patient clinical
outcomes [Hay2]. Although Benford’s law is often cited when analyzing first digit
preferences, a uniform distribution is more commonly used when testing terminal
digit preference [GaAl, Hay1], rather than the form of Benford’s law appropriate
for the particular terminal digit.

Clearly, it is somewhat speculative to say that the data sets discussed above have
been produced as a result of attempted fraud. For scientific data sets there are few
circumstances where we can categorically say that a data set is “fake.” Therefore
we might question the validity of using of Benford’s law to detect scientific fraud.
To establish the utility of Benford’s law for fraud detection requires a more rigor-
ous controlled experiment; for more on this see Chapter 14. To this end Diekmann
[Die] conducted experiments in which volunteers were asked to fabricate statistical
data, in this case regression coefficients. The FSD distributions of both the fabri-
cated regression coefficients and a sample of real regression coefficients displayed
a monotonic decline, i.e., 1 being the most frequent FSD, with the real coefficients
displaying closer agreement with Benford’s law [Die]. More interestingly, the dis-
tribution of second and third significant digits displayed a greater deviation from
Benford’s law for the fabricated data, suggesting that application of Benford’s law
to second and third digits might provide a more sensitive test of scientific fraud.
The experiments of Diekmann illustrate the difficulty that humans have in gener-
ating random data, a point emphasized by Mosimann et al. [MosWE] and again
highlights the potential for Benford’s law to detect altered data sets, particularly
where scale invariance would be expected.

16.4.3 Direct Application

The use of Benford’s law to detect fraudulent scientific data sets rests on the as-
sumption that the scientific data should follow Benford’s law. If an assumption of
scale invariance is reasonable, then this use of Benford’s law is apt. However, in
such instances we are essentially only using the expected conformance with Ben-
ford’s law to detect “outlier” data sets. We are not using our knowledge of Ben-
ford’s law in any generative or constructive way. This brings us to perhaps the
third branch of Benford’s law applications in the sciences: directly using the Ben-
ford FSD distribution in a constructive way to produce realistic random artificial
samples of data, or to improve the efficiency of scientific calculations. Uses of
Benford’s law in a constructive manner can be found across a wide range of disci-
plines. For example, Beeli et al. [BeEsJ] use the expected variation in frequency
of second significant digits to study correlation between digit frequency and per-
ceived color in synesthetes (individuals who associate letters or digits with colors).
Similarly, Jolion [Jol] suggests using the Benford distribution to select efficient bi-
nary encoding schemes for transmission of data. In this case shorter length binary
strings are used to encode the more common FSD 1, 2, and so on; see Chapters 18
and 19 for more on Benford’s law in images. This latter example is reminiscent
of Knuth’s discussion of Benford’s law within the context of computer programs
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[Knu].

16.5 CONCLUSION

Benford’s law rarely fails to surprise and arouse the curiosity of any scientist who
encounters it. We have argued that the common occurrence of Benford’s law in
scientific data sets is simply a consequence of many scientific processes being scale
invariant, or de facto scale invariant on the typical measurement scales we can
access. The inference that a scientific process is scale invariant may not have far
reaching consequences, but is still important. If we expect a scientific process
to be scale invariant, then significant deviation from Benford’s law may indicate
the presence of a characteristic length scale or timescale. As scientists we would
immediately enquire as to the origin of that length scale/timescale.

Beyond confirming or highlighting an underlying scale-invariant process, it is
natural to question what practical use Benford’s law is to the working scientist.
Within this chapter we have tried to highlight not only the occurrences of Ben-
ford’s law in scientific data, but also the genuine uses to which Benford’s law can
be put. Predominantly the most practical applications of Benford’s law center on
monitoring data quality or data stability. The acceptance of such applications of
Benford’s law within the sciences or other technological fields will always be dif-
ficult. This is in contrast to its acceptance and uptake within forensic accounting
(see Chapter 8). The reasons for the limited acceptance within the sciences are
manyfold and include the following.

• The lack of a rigorous theory linking changes in FSD frequencies to changes
in data quality.

• Inferences from observing agreement with Benford’s law can be overhyped.

• Those inferences from observing agreement with Benford’s law that can be
rigorously established may not be that useful.

• Overtones that Benford’s law relates to an assessment of how fraudulent a
scientific data set may be, or may not be.

While the theoretical underpinnings of Benford’s law may be rigorous (as high-
lighted by other chapters), the linking of FSD frequencies to data set quality has
heretofore been more heuristic. Similarly, connotations of fraud when deviation
from Benford’s law is observed in scientific data may be due to associations of
using Benford’s law in other settings. As we have emphasized, the reasons for
deviation from Benford’s law can be numerous.

These objections should be seen as a challenge. There is an opportunity to put
the heuristic applications of Benford’s law to scientific data analysis on a more
rigorous footing. Equally, there is an opportunity to extend the range of direct
scientific applications of Benford’s law as new theoretical insights arise.



Chapter Seventeen

Generalizing Benfordʼs Law

Joanne Lee, Wendy K. Tam Cho, and George Judge1

We examine and search for evidence of fraud in two clinical data sets from a
highly publicized case of scientific misconduct. Departures from Benford’s Law
sometimes indicate fraud. Our classical Benford analysis along with a presenta-
tion of a more general class of Benford-like distributions highlights interesting in-
sights into these cases. In addition, our exposition demonstrates how information-
theoretic methods and other data-adaptive methods are promising tools for gener-
ating benchmark distributions of first significant digits (FSDs) and examining data
sets for departures from expectations.

17.1 INTRODUCTION

Data in many realms have been suspected of being falsified. These instances may
be exacerbated in the clinical arena by pressure to obtain certain results, or in the
academic arena by pressure to secure grant money. In either case, science is the
victim, and the costs can be significant. Accordingly, some method of ensuring
data integrity would be a welcome and important advance.

A recent article in the New York Times Magazine highlights a well-known case
of data falsification from clinical experiments [In]. In this case, data were falsified
by Eric Poehlman, a faculty member at the University of Vermont, who pleaded
guilty to fabricating more than a decade of data, some connected to federal grants
from the National Institutes of Health. Poehlman had authored influential studies
on many topics including obesity, menopause, lipids, and aging. In one study,
Poehlman had hoped to demonstrate, with patient data over time, that lipid levels
deteriorate with age. After a graduate student, DeNino, found that the data did
not support this hypothesis, Poehlman tampered with the data, adding fictitious
patient data and changing the values for existing patient cases, until evidence of his
hypothesis was borne out by the data. DeNino became understandably confused
and suspicious when the newly modified data set, ostensibly corrected of mistaken
errors, now exhibited a clear trend consistent with Poehlman’s original hypothesis.

1Lee: Researcher, Mathematica Policy Research; Cho: Departments of Political Science and Statis-
tics, and Senior Research Scientist, National Center for Supercomputing Applications at the University
of Illinois at Urbana-Champaign; Judge: Department of Agricultural and Resource Economics, Univer-
sity of California at Berkeley.
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DeNino proceeded to comb through hundreds of patients’ records in the lab and
university hospital in an attempt to verify the data, but ultimately found evidence
of data tampering.

The implications of this type of data fabrication are severe and have an obvious
relationship with how science and health care evolve. Benford’s Law has been
touted as one way to identify tampered data. While Benford’s Law can be powerful,
its applicability is also known to be limited to certain classes of data. We examine
Benford’s Law in the data tampering context and generalize its reach by relating
Benford’s Law to a family of first significant digit rules that can be applied to a
wider range of data sets. We also demonstrate how these types of methods would
have been helpful in identifying the type of data tampering that occurred in the
Poehlman case.

Our primary insight incorporates the mean of the first significant digits in the data
set. As a data set’s FSD mean changes, we adapt information-theoretic methods
that may be used to create alternative null hypotheses for digit proportions. In
doing so, we extend the range of Benford’s Law to data contexts that may initially
seem to not conform to its professed digit distribution.2 We begin by noting how
Benford’s Law is connected to Stigler’s distribution and extend these connections
to the information-theoretic realm. We then develop alternative digit distributions
based on maximum entropy principles. Finally, we demonstrate the applicability of
these methods on the Poehlman clinical data.

17.2 CONNECTING BENFORD’S LAW TO STIGLER’S DISTRIBUTION

In the mid-1940s, George Stigler, a future economics Nobel Prize winner, claimed
that Benford’s Law contained a theoretical inconsistency and supplied an alterna-
tive distribution of FSDs [Sti]. In Stigler’s derivation, the average frequency, Fd,
for digit d is

Fd =
d ln(d)− (d+ 1) ln(d+ 1) + (1 + 10

9 ln(10))

9
. (17.1)

Stigler claimed that the difference between his alternative and Benford’s Law arose
from the hidden assumptions Benford made about the relative frequencies of the
largest numbers in statistical tables. Benford assumed that numbers with smaller
FSDs occurred more often as bounds for statistical tables. In particular, given a
mixture of uniform distributions, U [0, b), the density of the upper bound b is as-
sumed to be proportional to 1

b . Stigler argued that this assumption was unnecessary
in deriving a logarithmic rule, since it neither expanded the scope of the law nor
contributed to the theoretical basis for modeling a distribution of first significant
digits. In contrast, Stigler’s assumption is that the largest entries in statistical
tables are equally likely to begin with d = 1, 2, . . . , 9, and all other entries are ran-
domly selected from the uniform distribution of numbers smaller than the largest
entry.

2We first examined in [LeCoJu] the theoretical basis of the Stigler distribution, and extended his
reasoning by incorporating FSD first moment information and information-theoretic methods.
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In Stigler’s derivation, he defined the rth cycle of numbers as the interval [10r,
10r+1) for some real positive number r. He then found the distribution of FSDs for
the highest entry in the cycle and computed the average of the expected frequencies
over all highest entries. By the end of the (r−1)st cycle, a digit d has been an FSD
for (10r − 1)/9 out of 10r − 1 numbers. For example, the digit 2, at the end of the
cycle [10,100), has been an FSD for (102−1)/9 = 11 numbers out of 102−1 = 99
numbers, including those from all previous cycles: 2, 20, 21, . . . , 29.

After the (r − 1)st cycle, d is not a FSD in the next (d − 1)10r numbers.
Continuing our example where r − 1 = 1, “2” is not an FSD in the interval
[102, 102 + (2− 1)(102)) = [100, 200). Stigler takes advantage of this alternating
pattern based on multiples of d to separate the cycle into smaller intervals. In the
first cycle and part of the second cycle, “2” has appeared as an FSD in 11 out of 99
plus 100 numbers. We can write the proportion of FSDs that are d after the (r−1)st
cycle and the first (d− 1)10r numbers of the rth cycle as

10r/9

10r + (d− 1)10r
. (17.2)

The expectation, Fd,[10r,d10r), of the proportion of FSDs that are d in the interval
[10r, d10r) is

Fd,[10r,d10r) =
1

(d− 1)10r

∫ (d−1)10r

0

10r/9

10r + n
dn

=
1

9(d− 1)
ln d. (17.3)

The FSDs in the next 10r numbers are all d, so the proportion of d in this cycle is
now

10r/9 + 10r

10r + (d− 1)10r + 10r
. (17.4)

The expectation, Fd,[d10r,(d+1)10r), of the proportion of FSDs that are d in the
interval [d10r, (d+ 1)10r) is

Fd,[d10r,(d+1)10r) =
1

10r

∫ 10r

0

10r/9 + n

10r + (d− 1)10r + n
dn

= 1−
(
d− 1

9

)
ln

(
d+ 1

d

)
. (17.5)

Finally, the last (9−d)10r numbers in the rth cycle contain no numbers with FSDs
that are d. Hence, the average proportion, Fd,[(d+1)10r,10r+1), of FSDs that are d in
the interval [(d+ 1)10r, 10r+1) is

Fd,[(d+1)10r,10r+1) =
1

(9− d)10r

∫ (9−d)10r

0

10r/9 + 10r

(d+ 1)10r + n
dn

=
10

9(9− d)
ln

(
10

d+ 1

)
. (17.6)

Following this logic, Stigler found the overall expected proportion of FSDs that
are d to be

Fd =
d ln d− (d+ 1) ln (d+ 1) +m

9
, (17.7)
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FSD Stigler’s Law Benford’s Law

1 0.241 0.301
2 0.183 0.176
3 0.146 0.125
4 0.117 0.097
5 0.095 0.079
6 0.077 0.067
7 0.061 0.058
8 0.047 0.051
9 0.034 0.046

Table 17.1 Comparison of Benford and Stigler distributions.

where m, the mean of the Stigler FSD distribution, is defined as

m =

∑9
d=1 d

2 ln (d)− d(d+ 1) ln (d+ 1)

9−∑9
d=1 d

. (17.8)

The resulting frequencies from Stigler’s derivation are presented in Table 17.1. The
frequencies from Benford’s Law are presented for comparison.

While the Stigler and Benford relative frequencies differ, the sets of frequencies
are similar in their monotonically decreasing pattern. Because no logarithmic FSD
distribution holds generally for all natural data sets, Stigler’s Law and Benford’s
Law might be viewed as members of a family of monotonically decreasing distri-
butions of FSDs, a family that also includes the Power Law, Zipf’s Law, and the
distributions arising from information-theoretic methods [GrJuSc].

17.3 CONNECTING STIGLER’S LAW TO INFORMATION-THEORETIC

METHODS

Thus far, we have discussed Benford’s and Stigler’s approaches for determining
the null-hypothesis distribution of FSDs in tests for fraudulent data. We now dis-
cuss how information-theoretic methods produce similar distributions, and high-
light their unique ability to easily adapt the specific distribution to moment infor-
mation from any particular data set. Since phenomena often have unique traits,
a distribution that is adaptable to data peculiarities is desirable if such individual
idiosyncrasies might affect the particularities of the monotonically decreasing dis-
tribution.

To recover the FSD distribution from a sequence of positive real numbers, as-
sume, for the discrete random variable di, i = 1, 2, . . . , 9, that at each trial, one
of nine digits is observed with probability pi. Suppose after n trials, we are given
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first-moment information, d̄, the average value of the FSDs,

9∑
j=1

djpj = d̄. (17.9)

Assuming that the only information that exists is this first-moment information,
our inverse problem consists of identifying an FSD distribution that reflects the
best predictions of the unknown probabilities, p1, p2, . . . , p9. It is readily appar-
ent that since there is one data point and nine unknowns, we have an ill-posed
inverse problem where an infinite number of possible discrete probability distribu-
tions with d̄ ∈ [1, 9] exist. Based only on the mean,

∑9
j=1 djpj = d̄, and two

probability constraints,
∑9

j=1 pj = 1 and 0 ≤ pj ≤ 1, the problem does not have
a unique solution. A function must be inferred from insufficient information when
only a feasible set of solutions is specified. In these situations, it is useful to have an
approach that allows the investigator to adapt sample-based information recovery
methods without committing the FSD function to a particular parametric family of
probability densities. The goal is to reduce the infinite-dimensional non-parametric
problem to one that is finite-dimensional, ideally without imposing more assump-
tions than are necessary.

17.3.1 An Information-Theoretic Approach

One way to solve this ill-posed inverse problem for the unknown pj without making
a large number of assumptions or introducing additional information is to formulate
it as an extremum problem. This type of extremum problem is, in many ways,
analogous to allocating probabilities in a contingency table where pj and qj are
the observed and expected probabilities respectively of a given event. A solution
is achieved by minimizing the divergence between the two sets of probabilities by
optimizing a goodness-of-fit (pseudo-distance measure) criterion subject to data-
moment constraint(s). One attractive set of divergence measures is the Cressie–
Read power divergence family of statistics [CrRe, ReaCr, Bag],

I(p,q, γ) =
1

γ(1 + γ)

9∑
j=1

(
pj

[(
pj
qj

)γ

− 1

])
, (17.10)

where γ is an arbitrary unspecified parameter.
Using the Cressie–Read criterion (17.10) to recover the unknown FSD distri-

butions suggests that we seek, given probability expectations q, a solution to the
extremum problem

p̂ = argmin
p

⎡⎣I(p,q, γ) ∣∣∣∣ 9∑
j=1

pjdj = d̄,

9∑
j=1

pj = 1, pj ≥ 0

⎤⎦ . (17.11)

In the limit, as γ ranges from −1 to 1, two main variations of I(p,q, γ) have re-
ceived explicit attention in the literature (see [MitJuMi]). Assuming for expository
purposes that the reference distribution is the discrete uniform, i.e., qj = 1/9 for
all j, then I(p,q, γ) converges to an estimation criterion equivalent to Owen’s
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(2001) empirical likelihood criterion
∑9

j=1 ln(pj), when γ → −1. The empir-
ical likelihood criterion assigns discrete mass across the nine possible FSDs. In
the sense of objective function analogies, it is closest to the classical maximum-
likelihood approach, and in fact, results in a maximum non-parametric likelihood
alternative. The second prominent case for the Cressie–Read statistic corresponds
to γ → 0 and leads to the maximum entropy or the [Shan] and [Jay] entropy func-
tion, −∑9

j=1 pj ln(pj).
3

17.3.2 Maximum Entropy Formulation

Using the Cressie–Read (γ = 0) criterion for the first digit case, the maximum
entropy approach selects probabilities that maximize

H(p) = −
9∑

j=1

pj ln(pj), (17.12)

subject to the mean d̄,
9∑

j=1

pjdj = d̄, (17.13)

and the condition that the probabilities must sum to one,
9∑

j=1

pj = 1. (17.14)

The Lagrangian for the extremum problem is

L = −
9∑

j=1

pj ln(pj) + λ

⎛⎝d̄−
9∑

j=1

pjdj

⎞⎠+ η

⎛⎝1−
9∑

j=1

pj

⎞⎠ . (17.15)

Since H is strictly concave, there is a unique interior solution. Solving the first-
order conditions yields the maximum entropy exponential result for the jth out-
come,

p̂i =
exp(−diλ̂)

9
∑9

j=1 exp(−dj λ̂)
. (17.16)

In this context, p̂i are exponentially distributed and the FSD distribution chosen
is the one that happens in the most likely way (multiplicity). We note again that
p(λ) is a member of a canonical exponential family with mean

9∑
j=1

pj(λ)dj = d̄. (17.17)

The Fisher information measure for λ [GoJM] is

I(λ) =

9∑
j=1

pj(λ)d
2
j −

⎛⎝ 9∑
j=1

pj(λ)dj

⎞⎠2

= Var(d). (17.18)

3The maximum entropy criterion distance measure is equivalent to the Kullback–Leibler (KL) in-
formation criterion and finds the feasible p̂ defining the minimum value of all possible expected log-
likelihood ratios consistent with, in our case, the FSD mean [Kul]. Solutions for these distance measures
cannot be written in a closed form.
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17.3.3 Empirical Likelihood andMaximumEntropy Distributions for Various
FSD Means

FSD mean 2.00 3.00 3.44 3.55 4.00 4.50

p̂1 0.673 0.395 0.281 0.300 0.208 0.151
p̂2 0.111 0.173 0.175 0.177 0.161 0.137
p̂3 0.061 0.111 0.128 0.125 0.132 0.125
p̂4 0.042 0.082 0.100 0.097 0.111 0.115
p̂5 0.032 0.065 0.082 0.079 0.096 0.107
p̂6 0.026 0.053 0.070 0.067 0.085 0.100
p̂7 0.021 0.046 0.061 0.058 0.076 0.093
p̂8 0.018 0.040 0.054 0.051 0.068 0.088
p̂9 0.016 0.035 0.048 0.046 0.062 0.083

Table 17.2 Estimated empirical likelihood FSD distributions for different FSD means.

Tables 17.2 and 17.3 present the FSD distributions derived from the empirical
likelihood and maximum entropy formulations presented above for several different
FSD means, including the Stigler mean (3.55) and the Benford mean (3.44). The
maximum entropy solution becomes a uniform distribution when the FSD mean
is 5 and becomes monotonically increasing for FSD means above 5. FSD means
less than 5 result in distributions that are tilted toward the lower digits and have
monotonically decreasing FSD probabilities. The Benford FSD mean of 3.44 yields
a maximum entropy distribution similar to Benford’s Law, and the Stigler FSD
mean of 3.55 yields an maximum entropy distribution similar to Stigler’s proposed
alternative.

The exponential null hypotheses under maximum entropy have two especially
appealing properties. First, the result is achieved while adhering to the principles
of Occam’s Razor. That is, there are a minimal number of underlying assumptions.
Second, the choice is one of maximum multiplicity—in the absence of assumptions,
the “best” choice of a distribution among the universe of possible distributions is
the one that occurs most frequently.

17.4 CLINICAL DATA

We now turn to an examination of the Poehlman data. We were able to obtain the
falsified clinical data with the generous help of John Dahlberg, head of the Data
Integrity group at Health and Human Services.4 For these data, we also have the
correct data, i.e., the data before they were changed. The correct data includes
142 observations on changes in insulin levels over a six-year period. The falsified

4For background on this data set see [In].
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FSD mean 2.00 3.00 3.44 3.55 4.00 4.50

p̂1 0.496 0.306 0.250 0.238 0.191 0.148
p̂2 0.251 0.217 0.194 0.188 0.163 0.137
p̂3 0.126 0.153 0.150 0.149 0.140 0.127
p̂4 0.064 0.108 0.117 0.118 0.120 0.118
p̂5 0.032 0.077 0.090 0.093 0.103 0.109
p̂6 0.016 0.054 0.070 0.074 0.088 0.101
p̂7 0.008 0.038 0.054 0.058 0.075 0.094
p̂8 0.004 0.027 0.042 0.046 0.065 0.087
p̂9 0.002 0.019 0.033 0.036 0.055 0.081

Table 17.3 Estimated maximum entropy FSD distributions (with a uniform reference dis-
tribution) for different FSD means.

Poehlman data includes 136 observations. The original intent of the study was to
analyze the relationship between insulin levels and age.

Distribution Benford InsulinT InsulinF
FSD mean 3.44 3.54 4.03

Correlation 1.00 0.95 0.66

χ2
8 0.00 10.25 41.80

p̂1 0.301 0.317 0.255
p̂2 0.176 0.148 0.073
p̂3 0.125 0.099 0.102
p̂4 0.097 0.085 0.080
p̂5 0.079 0.134 0.197
p̂6 0.067 0.042 0.139
p̂7 0.058 0.078 0.066
p̂8 0.051 0.063 0.058
p̂9 0.046 0.035 0.029

Table 17.4 The empirical FSD frequencies for Benford and the correct (InsulinT ) and fal-
sified (InsulinF ) Poehlman data.

17.4.1 The Correct Data

We begin by examining the correct Poehlman data that has 142 observations. The
FSD distribution of these data is similar to that proposed by Benford. The distri-
butions of Benford and the correct insulin FSDs are given in Figure 17.1 and Table
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Figure 17.1 Empirical FSD distributions for the Poehlman data.

17.4. The correlation between the Benford and the correct empirical FSD distribu-
tion is 0.95. The χ2 test statistic with 8 degrees of freedom is 10.25. The one-sided
10%, 5%, 1% critical values for χ2

8 are 13.36, 15.5, and 20.09, respectively. We are
not able to reject the null hypothesis of distribution equality between the Benford
and empirical FSD distributions.

17.4.2 The Falsified Data

The FSD distribution for the 136 observations of falsified data are also given in
Table 17.4 and Figure 17.1. Note the obvious fluctuation of the FSD proportions
of the falsified data and their departure from Benford’s distribution. The lack of
a monotonically decreasing distribution of FSD frequencies in the falsified data
contributes to a correlation of only 0.66 between Benford and the falsified data
frequencies. The χ2 test value for the falsified data and Benford’s Law is 41.80,
which exceeds the 5% level χ2 value of 15.51, providing a statistical basis for
rejecting the null hypothesis of equality. Thus, in addition to the testimony of the
graduate student, there is a visual and inferential basis for suspecting manipulation
of these research data.

17.4.3 Problem Reformulation for Information-Theoretic Methods

It seems reasonable that the FSD distribution could vary with the measured phe-
nomenon in question. In this section, we use the empirical likelihood method
and first moment frequency information to examine the FSDs.5 In this context,

5See [Ow] for an introduction to empirical likelihood methods.
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suppose that one of nine digits, i = 1, . . . , 9, is observed with probability pi, and
the information is given in the form of the average value of the FSDs,

9∑
i=1

dipi = d̄. (17.19)

Based on this first moment information and Owen’s (2001) empirical likelihood
metric, 1

9

∑9
i=1 ln pi, we can formulate the problem of recovering the unknown and

unobservable pi as the extremum likelihood function,

max
p

{
1

9

9∑
i=1

ln pi −
9∑

i=1

pidi = d̄,

9∑
i=1

pi = 1

}
. (17.20)

The corresponding Lagrange function is

L(p, η, λ) =
1

9

9∑
i=1

ln pi − η

(
9∑

i=1

pi − 1

)
− λ

(
9∑

i=1

pidi − d̄

)
, (17.21)

where p > 0 is implicit in the structure of the problem. Solving the corresponding
first order condition with respect to pi leads to the solution

p∗i (d̄, λ) =
1

9
(1 + λ∗[di − d])

−1
. (17.22)

This solution implies that an exponential family of distributions will result as the
mean of the FSDs varies over a range implied by actual data sets. In maximizing
Π9

i=1pi subject to
∑9

i=1 pi = 1 and
∑9

i=1 pidi = d̄, the pi are chosen in such a way
that the maximum joint probability among all the possible probability assignments
is assigned.

As an example, some mean-related empirical likelihood FSD distributions are
given for selected FSD means in Table 17.5. Note that the FSD mean for the Ben-
ford distribution is 3.44 and, in this case, the empirical likelihood FSD distribution
is almost identical to the Benford distribution. If clinical researchers are reluctant
to share their data, they might be willing to divulge the mean of their digit fre-
quencies. With this information, empirical likelihood methods offer a viable data
evaluation technique. As shown in Table 17.4, the FSD means of the true and false
insulin data are 3.54 and 4.03, respectively. The empirical likelihood distributions
generated by these means and the Benford FSD mean of 3.44 are also shown in
Figure 17.2 and Table 17.5.

The empirical likelihood FSD distribution for the true insulin data with mean
3.54 has a strong visual correlation with the Benford reference distribution. Alter-
natively, the empirical likelihood FSD distribution for the false insulin data appears
visually distinguishable from the empirical likelihood true insulin data and Benford
reference distributions. The χ2

8 values shown in Table 17.5 show that we cannot re-
ject the null hypothesis of distribution equality of the Benford or true insulin data
set and the empirical likelihood FSD distributions derived from their means. How-
ever, we reject distributional equality for the false insulin data and the empirical
likelihood distribution estimated from its mean based on the χ2

8 value of 34.39.
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Figure 17.2 Empirical likelihood FSD distributions for Poehlman data.
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Figure 17.3 Maximum entropy FSD distributions for Poehlman data.
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Mean from Benford InsulinT InsulinF
FSD mean 3.44 3.54 4.03

Correlation 0.95 1.00 0.98

χ2
8 0.00 9.71 34.39

p̂1 0.30 0.282 0.204
p̂2 0.18 0.176 0.160
p̂3 0.13 0.127 0.132
p̂4 0.10 0.100 0.112
p̂5 0.08 0.082 0.097
p̂6 0.07 0.070 0.086
p̂7 0.06 0.061 0.077
p̂8 0.05 0.054 0.070
p̂9 0.05 0.048 0.064

Table 17.5 Estimated empirical likelihood distributions based on the FSD means of Benford
(3.44), true insulin data (3.54), and falsified insulin data (4.03).

We show the comparable maximum entropy FSD distributions in Figure 17.3.
The maximum entropy FSD distribution from the true insulin data mean also has
a strong visual relationship with the maximum entropy distribution based on the
Benford mean, while both of these distributions are easily distinguishable from the
maximum entropy distribution based on the mean from false insulin data. Again,
we cannot reject the null hypothesis of distribution equality of the Benford or true
insulin data set with their maximum entropy FSD distributions, but we can reject
equality for the false insulin data and maximum entropy distribution from the false
insulin mean.

17.5 SUMMARY AND IMPLICATIONS

In practice, Health and Human Services or any other granting agency would have
available only the falsified data from the researcher. However, in this case, the
departures of the false insulin FSD distribution from the Benford FSD distribution
are significant enough to have likely attracted greater scrutiny of the clinical data
under the Benford, Stigler, empirical likelihood, or maximum entropy frameworks.
Although scientific fraud is hopefully a rare phenomenon, using an array of FSD
distributions including Benford’s Law and data-adaptive distributions appears to be
a quick and objective way to check data.

Finally, we have found it very difficult to obtain additional clinical data to ana-
lyze and regret that we can only report on one set of experimental data. Although
this may be a naive request, given the importance of decisions based on clinical
data, forming an objective clearing house that analyzes, via Benford and other



316 CHAPTER 17

Mean from Benford InsulinT InsulinF
FSD Mean 3.44 3.54 4.03

Correlation 0.96 0.96 0.93

χ2
8 3.82 16.21 34.13

p̂1 0.250 0.238 0.188
p̂2 0.194 0.188 0.162
p̂3 0.150 0.149 0.139
p̂4 0.117 0.118 0.120
p̂5 0.090 0.093 0.103
p̂6 0.070 0.074 0.089
p̂7 0.054 0.058 0.076
p̂8 0.042 0.046 0.066
p̂9 0.033 0.036 0.057

Table 17.6 Estimated maximum entropy distributions based on the FSD means of Benford
(3.44), true insulin data (3.54), and falsified insulin data (4.03).

methods, clinical data as they come from researchers would be a useful first step in
ensuring data quality.
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Chapter Eighteen

PV Modeling of Medical Imaging Systems

John Chiverton and Kevin Wells1

The Benford distribution is a well-known probability distribution that is appli-
cable to many different naturally occurring sources of data. We have found that it
also describes well the distribution of mixtures occurring in medical imaging data
due to the Partial Volume (PV) effect. The Benford distribution provides a conve-
nient formulation that is both scale and base invariant, unlike previous formulations
based on, for example, the Beta distribution; these required ad hoc manipulation of
parameters to obtain the correct distributive shape.

We apply our Bayesian formulation of the PV effect, based on the Benford dis-
tribution, to the statistical classification of nuclear medicine imaging data: specifi-
cally Positron Emission Tomography (PET) acquired as part of a PET-CT phantom
imaging procedure. We describe our PET-CT imaging and post-processing process
to derive a gold standard. We use it as a ground truth for the assessment of our
Benford classifier formulation. The use of this gold standard shows that the classi-
fication of both the simulated and real phantom imaging data are well described by
the Benford distribution.

18.1 INTRODUCTION

The Benford distribution is a discrete probability distribution of great interest for
many applications including medical imaging. This is because it describes the
probabilities of occurrence of single digits e.g. 1, 2, 3, . . . , 9 in many sources of
data. It was first observed in 1881 by Simon Newcomb [New] and later redis-
covered again by Frank Benford [Ben] in 1938. The Benford distribution has been
found to be applicable to a wide array of different sources of data including books of
logarithm tables [Ben], the frequency of digits in tax returns [Nig1], in newspapers
[Ben], the atomic weights of molecules [Ben] and even hydrology data [NiMi1].

The purpose of this chapter is to describe another occurrence, which is in the dis-
tribution of intensities in medical imaging data, yet another particularly interesting
application area. For our model, we use a combination of two Benford distributions
for each pair of components in the data, illustrated in Figure 18.1.

1J. Chiverton is with the School of Engineering, University of Portsmouth, UK and K.
Wells is with the Centre for Vision, Speech and Signal Processing, University of Surrey, UK.
john.chiverton@port.ac.uk, k.wells@surrey.ac.uk, copyright J. Chiverton and K. Wells 2012 (and their

mailto:john.chiverton@port.ac.uk
mailto:k.wells@surrey.ac.uk


320 CHAPTER 18

0.0 0.2 0.4 0.6 0.8 1.0

PV mixture

0.00

0.01

0.02

0.03

0.04

0.05

0.06

P
D

F

Figure 18.1 Illustration of the Benford Partial Volume distribution, composed of two
equal but opposite Benford distributions mapped onto a scale in the range (0, 1).

A component is defined here as a region within an image that represents a mass
of tissue with distinctive properties or a physiological region representing a tissue
cluster that exhibits some form of similar biochemical or physiological behavior.
The actual intensity level for an individual component has a probability correspond-
ing to a scaled Kronecker delta function, the intensity of which depends on the
properties of the tissues for structural imaging or the amount of functional activ-
ity at a particular location in the patient. In contrast to this, the Benford distribution
is useful to describe the probabilities for a range of intensities on the boundaries
between the components. These are regions of image data consisting of mixtures of
the intensities of each component due to the inherent blurring effect of the imaging
system. A simplified illustration of this effect, known as the Partial Volume (PV)
effect is shown in Figure 18.2.

Figure 18.2 Simplified illustration of the PV effect in simulated image data.

The Benford distribution function has a logarithmic form and it is scale and base
invariant [Hi2]. We will show that these properties are particularly relevant for
medical imaging data where points in the image data consisting of a mixture of

institutions) except Figures 18.6 to 18.12 which are copyright IEEE 2007, published in [WCPBKO].
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components are scaled between the arbitrary intensity levels of the components in
the data. We also show, experimentally, that the shape of the Benford distribution
closely follows the distribution of the PV intensities.

Medical imaging systems are a particularly interesting application area because
they are most often used to acquire diagnostic information about some part of a
patient’s anatomy or physiology. Some examples of different medical imaging
modalities includeMagnetic Resonance Imaging (MRI), planar X-ray imaging
and X-ray Computed Tomography (CT), Single Photon Emission Tomography
(SPECT) and Positron Emission Tomography (PET) image acquisition systems.
Some imaging systems result in the emission of some type of signal from within the
patient (e.g. MRI, functional MRI, PET and SPECT, the latter three being used
for producing information about physiology rather than anatomy). Other modali-
ties, such as planar X-ray imaging and X-ray CT, are considered as transmission-
type modalities where X-rays are transmitted through the patient. The X-rays un-
dergo variable amounts of attenuation dependent on the type of tissues through
which they pass and therefore produce images which represent anatomical mor-
phology or shape.

We describe a statistical model based on the use of the Benford distribution as
a prior in a Bayesian probabilistic model. This model is applicable to many types
of medical imaging data including MRI, SPECT and PET. The described model is
applied here to the problem of classifying PET imaging data which is often used
for the diagnosis and staging of cancer and brain imaging studies.

18.1.1 Chapter Overview

The next section, Section 18.2, describes the Partial Volume (PV) effect in more de-
tail which is the name of the imaging artifact that produces the Benford distributed
ranges of intensities. Section 18.3 then expands on some theory first proposed in a
number of papers [ChWe, WCPBKO] to describe the Benford Partial Volume (PV)
distribution. Our Benford PV distribution is composed of two equal but symmetri-
cally opposing Benford distributions, illustrated in Figure 18.1.

Our statistical model of the PV effect, using the Benford distribution is applied
to PET imaging data using a Bayes classifier formulation also described in Section
18.3. We use the Benford PV distribution as a prior on the intensity distribution of
PV voxels, which are three-dimensional (3-D) volumetric data points or volume el-
ements, the 3-D equivalent of the 2-D pixel. An experimental methodology is then
described in Section 18.4 together with simulation-based experimental techniques.
The experimental methodology includes a summary of a PET-CT phantom imaging
study originally described in [WCPBKO] that was used to generate and simulate
some imaging data that we can use to rigorously test our classifier. The generated
imaging data are then classified with the Benford PV distribution Bayes classifier
and results and discussion are presented in Section 18.5. Conclusions then follow
in Section 18.6 to close this chapter.
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Figure 18.3 Illustration of 1-D edge model before and after blurring effects due to the image
acquisition process inherent in any imaging system. In this case a Gaussian
Point Spread Function (PSF) acts on the idealized edge to produce a blurred
representation of the boundary between two regions in an image.

18.2 THE PARTIAL VOLUME EFFECT

The Partial Volume (PV) effect can be understood as the degree of blurring or
mixing of information that occurs at boundaries between objects because of the
finite spatial resolution inherent to an image acquisition process. A finite number
of three-dimensional (3-D) volumetric data points or voxels are therefore utilized to
represent the continuous information in the true object. The signal representing this
information will have been subjected to a number of processes that predominantly
only allow lower frequencies to pass, thus limiting the amount of higher frequency
information.

The Point Spread Function (PSF) is often used to describe imaging and sig-
nal processing systems as it characterizes a system’s response to an infinitesimally
small point source signal. Once the PSF is known, responses to any other signal can
be determined via mathematical operations such as convolution; see e.g. [GoWo].
A Gaussian function is often used as a common imaging system PSF, representing
the natural blurring produced by the process of image acquisition in a particular
imaging system. An example PSF together with the effect on an idealized 1-D edge
model can be seen in Figure 18.3.

This spreading in the digital domain typically carries across multiple voxels. The
broader the PSF the more the imaging information about an object will be spread
or blurred. It is thus logical to bin the discretized image into voxel dimensions
based on the width of a PSF. This helps to reduce redundancy in representation of
the imaging data and to quantify the resolution of the imaging process. Indeed,
Haacke et al. [HaBTV] (for MRI) state that the optimal size of a voxel can be
approximated by the Full-Width at Half Maximum (FWHM) of the PSF. A Sinc
function is commonly used for MRI but the FWHM for the common Gaussian PSF
is approximately 2.35σ, where σ is the standard deviation of the Gaussian function.

The PV effect is therefore directly related to the amount of spreading induced by
the action of the PSF of the image acquisition process. The PV effect describes an
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Figure 18.4 An example of a coronal T1 MR image slice of the human head where the
different brain tissues can be seen and a histogram of the intensities for the
brain tissues: CerebroSpinal Fluid (CSF), Gray Matter (GM) and White
Matter (WM). The histogram is annotated with intensity ranges that are likely
to correspond to pure tissues and intensities of voxels composed of a mixture of
different tissues (Partial Volumes). Data from [CenMA].

artifact that is common to all systems that attempt to represent a continuous signal
with a finite number of samples, although it is described by various different terms
for different fields of application. A simplified illustration of the PV effect in an
image is given in Figure 18.2.

There are several factors that govern the PV effect, which is inextricably linked
with the blurring process associated with discrete signal quantization. This can be
in 1, 2 or 3 dimensions, as well as other physical and technology-limiting effects
associated with capturing the continuous signal in a band-limited acquisition sys-
tem. The effect that PV voxels have on the statistical properties of imaging data
is to reduce the possible independence of statistical classes of interest and merge
them into (conceptually) a single entity. For example, a statistical class in a brain
MR imaging application may include a particular range of intensities that might be
typical forWhite Matter (WM); see e.g. Figure 18.4.

Similarly, a different range of intensities could be used to describe the Gray
Matter (GM) voxels. If the PV effect was not present and ignoring the effect
of other artifacts, i.e., an idealistic imaging device, then the WM and GM classes
would possess distinct intensity bands (ignoring noise and GM regions such as the
Basal Ganglia that are lighter in appearance in T1 MRI). But due to factors such
as noise and the PV effect, the boundary between the GM and WM intensities is
usually quite ambiguous. A particular intensity may then originate from GM, WM
or a mixture of the two classes. This is also true for functional imaging data where
biological activity rather than morphological information is being imaged.

The PV effect is therefore a significant factor in medical imaging data and quan-
titative estimates of particular tissues or tissue volumes (e.g. tumor volume) or
physiological activity (e.g. image maps of glucose utilization or rates of protein
synthesis) often benefit by incorporating the PV effect in quantitative analysis.
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18.3 MODELING OF THE PV EFFECT

A noiseless single channel medical image I : Rd → R can be considered to be
the result of a blurring convolution process of an idealized image space f with a
system PSF h:

I(ω) = (h ∗ f)(ω), (18.1)

where ω ∈ Ω ⊂ Rd represents spatial location so that Ω defines the limits of image
space. The idealized image space function f : Rd → T has a range that consists
of a finite number (n) of tissues or activity values T = {T1, T2, . . . , Tn : Ti ∈ R};
thus f : Rd → (T ⊂ Rn).

The real-valued PSF, h, is characterized by a shape (such as a multidimensional
Gaussian function) and the Full-Width at Half Maximum (FWHM) of that shape.
The PSF action is to blur the distinct class membership of T depending on their
spatial configuration in f . The PSF has the following properties: h : Rd → R and∫
ω∈Ω′ h(ω)dω = 1 where Ω′ = {ω|h(ω) �= 0,ω ∈ Rd}. In practice h is taken to

have compact support because h(ω) ≈ 0 for ‖ ω ‖ 0.
The blurring convolution of the discrete ideal image data f with the PSF h can

be defined either of two ways:

(h ∗ f)(ω) =

∫
ω′∈Ω′

h(ω′)f(ω − ω′)dω′

=

∫
ω′∈Ω′

h(ω − ω′)f(ω′)dω′. (18.2)

This convolution blends together tissue values Ti ∈ T so that each point may
contain a mixture of each tissue in a manner dependent on their spatial arrangement,
such that these values will be in the range [min(T ),max(T )]. This can be seen by
the following simple 1-D edge model.

Theorem 18.3.1 (Simple 1-D edge model). A noiseless 1-D edge model (d = 1)
consisting of two contiguous tissues or activity levels T1 and T2 can be described
by (including the PV affected interface or edge)

I(ω) = T1 +
(T2 − T1)

2

(
erf

(
ω − ωb√

2σ2

)
+ 1

)
, (18.3)

where ωb is the location of the interface.

Proof. The convolution in (18.1) can be performed, as defined here with d = 1 and
n = 2, so that I : R → R and T = {T1, T2} via

I(ω) = (f ∗ h)(ω) =

∞∫
−∞

f(ω′)h(ω − ω′)dω′. (18.4)

This integral can be simplified if we consider the PV distribution generated at a
single interface, e.g. ω = 0. If T1 = 0 and T2 = 1 so that f(ω) = H(ω) (the
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Heaviside step function), the convolution then becomes

I(ω) =

ω∫
−∞

h(ω′)dω′. (18.5)

A Gaussian function is a commonly assumed shape for an imaging system PSF,
which takes the form

h(ω) = exp

(
−‖ ω ‖2

2σ2

)
. (18.6)

The result of the convolution in (18.5) with (18.6) as the PSF is

I(ω) =
1

2

(
erf

(
ω√
2σ2

)
+ 1

)
, (18.7)

where erf(x) = (2/
√
π)

∫ t

−∞ exp(−u2)du is theGaussian error function. Equa-
tion (18.7) is now a 1-D edge model where the edge is located across ω = 0 and
with signal intensities of 0 and 1; see Figure 18.3 for an illustration.

For arbitrary values of T1 and T2, I(ω) scales linearly and the location of the
interface can be shifted by ωb, thus resulting in (18.3). �

Theorem 18.3.1 succinctly describes a 1-D edge model that can be generalized
to higher dimensions via cuts that are orthogonal to an edge through the data. We
have previously shown in [ChWe] that the density of intensities described by (18.7)
are well approximated by the Benford PV distribution, discussed shortly in Section
18.3.1. However, it is difficult to describe any further details without a slightly
different approach and resulting formulation, which we now give.

Definition 18.3.2. A discrete class membership vector c(ω) = (c1 c2 . . . cn)
T

that does not model the PV effect indicates which class is present at a particular
location ω prior to the action of a PSF. It can therefore form a standard basis in
Rn with the properties that for ci ≤ n we have ci ∈ {0, 1} and∑i ci = 1.

We may also define a class membership vector that does describe the PV effect.

Definition 18.3.3. The partial volume vector α(ω) = (α1 α2 . . . αn)
T consists

of αi ≤ n such that αi ∈ [0, 1] and
∑

i αi = 1.

Corollary 18.3.4. For n = 2 the resulting 2-D PV vector α = (α1 α2)
T can be

fully specified by a single scalar variable α = α1 = 1− α2 where α ∈ [0, 1].

An alternative, but more involved description for f , the idealized image space,
is then

f(ω) = c(ω)TT (18.8)

where T = (T1 T2 . . . Tn)
T. This can then be used in (18.2):

(h ∗ f)(ω) =

∫
ω′∈Ω′

h(ω′)c(ω − ω′)TTdω′

=
( ∫
ω′∈Ω′

h(ω′)c(ω − ω′)Tdω′

︸ ︷︷ ︸
α(ω)T

)
T = α(ω)TT. (18.9)
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Substituting (18.9) into (18.1) yields

I(ω) = α(ω)TT. (18.10)

This formulation can be converted into matrix form:

S = GT, (18.11)

where S is a column vector with elements I(ω) and G is a matrix where each row
is a PV vector α(ω)T. Both S and G can contain elements corresponding to all the
image data, i.e., every ω ∈ Ω, or, commonly, a subset of Ω as a Region Of Interest
(ROI).

This formulation was used by Rousset et al. [RouMA] and others who referred
to G as a Geometric Transfer Matrix (GTM). Matrix inversion techniques can
be used to find G directly, but do not explicitly take into account the noise which
is also present in the image data. Different combinations of mixtures may also be
more likely, which is not modeled by just inverting the GTM (unlike a prior in a
Bayesian formulation, which we will see shortly).

A noise model should also be considered, which may be statistically represented
as a Gaussian, Poisson or Rician noise source depending on the particular imaging
modality (e.g. CT, PET or MRI in the above examples, respectively). A Poisson
noise model has a mean parameter λ that governs the shape of the resulting noise.
Similarly the Rician distribution’s shape depends on its mean value. Image sources
with a noise distribution process η would usually need to be modeled with

Iη(ω) = η((h ∗ f)(ω)). (18.12)

A Gaussian noise source ηG can often be treated independently of the underlying
signal if the imaging modality produces noise with constant variance independent
of the mean, hence

IηG(ω) = (h ∗ f)(ω) + ηG. (18.13)

The noise present in the image data can thus otherwise contaminate the estimated
G, often resulting in magnified levels of noise in the PV estimates. Therefore
[RouMA] went on to describe a technique to take into account the noise in the
signal based on upper bounds that used the standard deviations of the noise.

We use a different technique based on a prior distribution p(α) that takes the
form of the Benford distribution for the PV mixtures. We embed the prior in
a Bayesian statistical estimation framework where the noise distribution can be
explicitly modeled as in (18.12) instead of formulating our work solely around
(18.11).

18.3.1 Benford PV Distribution

A possible way of defining a probabilistic model of the PV distribution is one based
on a linear combination of functions κi corresponding to the mixing of two (or
more) components.

Consider the PV distribution being composed of two equal but opposite distribu-
tions, reflected about the point α = 0.5:

p(α) = C (κ1(α) + κ2(α)) , (18.14)
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where κ1(α) = κ2(1− α).
We have found (see [ChWe, WCPBKO]) through mathematical analysis, simula-

tion and physical experimentation that the shape of the Benford distribution closely
matches the shape of the distribution of PV intensities. Thus, the forms considered
here for κ1 and κ2 are distributions based on the Benford distribution. The Benford
distribution was proposed by Frank Benford who observed that the leading digit
β of many natural sources of numerical data can be found to follow a probability
mass function (PMF) of the form

P (β) = logb

(
1 +

1

β

)
, (18.15)

where the leading digits, β ∈ {1, 2, . . . , b − 1}, are constrained to the base of the
logarithm. The following definition, repeated here for convenience is originally
defined in (2.3).

Definition 18.3.5. The Benford distribution can also be extended to any number of
significant digits, β = (β1 β2 . . . βm)T:

P (β) = log10

⎛⎝1 +

(
m∑
q=1

βq10
m−q

)−1
⎞⎠ . (18.16)

We shall refer to this as the Benford distribution, which can be applied to numbers
of arbitrary precisionm.

For example, (18.16) gives the same probability for the numbers 1.34 and 134.
Thus, the distribution can be applied to any decimal range quantified by the preci-
sion parameter m. We can use this, in modified form, to calculate probabilities for
discrete PV quantities in the range (0, 1).

Definition 18.3.6. A discrete PV random variable is specified with a fixed number
of decimal places, i.e., ξ×10λ ∈ N, where ξ ∈ [0, 1] and λ describes the precision
or the number of decimal places of ξ.

This definition for a discrete PV random variable is predicated on a computer-
based PV variable of finite precision, usually based on the precision used in the
software storing the digital samples. This now provides us with sufficient informa-
tion to describe the following.

Conjecture 18.3.7. The discrete PV distribution P (ξ) can be realized as a combi-
nation of Benford distributions, reflected about the axis ξ = 0.5, each representing
the spread of one class being distributed across the other, so that

P (ξ) ∝ log10

(
1 +

1

ξ10λ

)
+ log10

(
1 +

1

(1 − ξ)10λ

)
. (18.17)

Proof. We give the construction, but do not determine the actual shape of the dis-
tribution.

Let us consider a discrete form for the two class PV distribution given by (18.14):

P (ξ) ∝ (κ1(ξ) + κ2(ξ)) . (18.18)
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The κ1 and κ2 can be replaced by the Benford distribution of Definition 18.3.5:

P (ξ) ∝ log10

(
1 +

1

v1(ξ)

)
+ log10

(
1 +

1

v2(ξ)

)
. (18.19)

The functions v1(ξ) and v2(ξ) now have to take a form equivalent to
∑m

q=1 βq10
m−q

in Definition 18.3.5. It is easy to see, because a discrete PV random variable has
the properties given in Definition 18.3.6, that we can say

v1(ξ) = ξ10λ,

v2(ξ) = (1− ξ)10λ. (18.20)

�

Equation (18.17) represents a discrete PV distribution that can be quoted to any
degree of precision λ. This is potentially very useful for the representation of the
PV distribution, consisting of two equal but opposite Benford distributions, as il-
lustrated in Figure 18.1.

We may also consider a number of interesting properties of this Benford PV
distribution.

Lemma 18.3.8. The shape of the Benford PV distribution is invariant to the base
of the logarithm b and the precision λ, where

P (ξ) ∝ logb

(
1 +

1

ξ10λ

)
+ logb

(
1 +

1

(1− ξ)10λ

)
. (18.21)

Proof. This is easy to see because we know that logb(x) =
logc(x)
logc(b)

where logc(b) =

C is a constant. According to (18.15), β ∈ {1, 2, . . . , b−1} and b = 10λ, hence if b
can take any value without changing the shape of the distribution then the precision
λ can also take any value. �

Conjecture 18.3.9. The Benford PV distribution can be recast as a continuous
density function

p(α) ∝ logb

(
1 +

1

α10λ

)
+ logb

(
1 +

1

(1− α)10λ

)
, (18.22)

where the value of the normalizing constant is a function of the precision λ. We
also believe that any integer precision in α or (1− α), after multiplication by 10λ,
will have negligible effect on the shape of the distribution.

18.3.2 Classification of Medical Image Data

The PV distributions described above, p(α) and P (ξ), can be used as prior distri-
butions for the mixing of bicomponent regions of a medical image such as the
boundaries between two tissues or two contiguous regions of activity (see e.g.
[WCPBKO]).
Bayes’ theorem can then provide a convenient approach to calculating the pos-

terior PDF or PMF of PV mixing variables ξ for a voxel with a particular intensity
I (omitting ω for brevity). For the discrete case we have

P (ξ|I) =
p(I|ξ)π(ξ)

p(I)
, (18.23)
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Figure 18.5 Illustration of a classification space for a two-class problem, consisting of the
marginal distribution p(I) composed of individual intensity distributions for
particular PV mixing values p(I |ξ) each weighted by the Benford PV distribu-
tion π(ξ).

where p(I|ξ) is the intensity-based likelihood PDF for a particular mixture value
ξ, and p(I) is the marginal intensity PDF. Here π(ξ) is a prior that combines
both the (Benford) PV distribution and Kronecker delta components for the non-PV
components, defined shortly. Figure 18.5 illustrates the PV classification space for
a two-class PV classification problem. The intensity likelihood p(I|ξ) is dependent
on the noise distribution assumed for the imaging data.

For a Gaussian noise distribution, and assuming linear mixing, the mean can be
calculated with

μξ = ξjμj + ξkμk, (18.24)

and the variance is

σ2
ξ = (ξjσj)

2 + (ξkσk)
2, (18.25)

where μj , μk and σj ,σk are the pure (unmixed or “non-PV affected”) component
means and standard deviations for voxel classes i and j respectively. The marginal
PDF p(I) is calculated here via the numerical method of Riemann sums (see e.g.
[RobCa]).

The expectation over ξ w.r.t. the posterior PDF for ξ corresponds to a value of ξ
that minimizes the mean square error. Therefore, in order to obtain an estimate
of the PV content for a voxel with an intensity I we calculate (for the discrete case)

ξE = E [ξ|P (ξ|I)] =
∑
ξ

ξ

p(I)
p(I|ξ)π(ξ). (18.26)

Here π(ξ) is a combination of P (ξ) for a pair of classes i, j and scaled Kronecker



330 CHAPTER 18

Figure 18.6 Illustration of exemplar classifier output for a hot insert, where the insert con-
tains a greater concentration of the radio-pharmaceutical to simulate increased
biological uptake often associated with pathological conditions such as a tu-
mor. The left image corresponds to the insert mixing value (ξ = ξ1) and the
right corresponds to the complementary mixing component ((1 − ξ) = ξ2).
Brightness is proportional to the magnitude of the mixing present for hot insert
(left) and background (right). c© 2007 IEEE. Reprinted, with permission, from
K. Wells et al., Quantifying the Partial Volume Effect in PET Using Benford’s
Law, IEEE TNS 54 (5:1), 2007 pp. 1616–1625.

delta functions δ(1− ξi) so that

π (ξ) = δ(1 − ξj)Pj(μj) + δ(1 − ξi)Pi(μi) + P (ξi, ξj)Pi,j(μi, μj)U(ξi, ξj),
(18.27)

where U(ξi, ξj) = 1 for 0 < ξi, ξj < 1 and 0 otherwise to switch off the PV
distribution at the extreme values of ξ, P (μi), P (μj) are the pure prior probabilities
and P (μi, μj) is the PV prior probability.

Equation (18.26), together with (18.27), provides a realizable approach to es-
timating PV content of an image I(ω) for ω ∈ Ω or subregion ω ∈ R ⊂ Ω,
known as a Region Of Interest (ROI). The intensity values I(ω) associated with
each voxel ω are used to calculate expected PV content ξE(ω) for each voxel via
(18.26) together with estimated prior probabilities (pure and PV), means and stan-
dard deviations.

These estimated PV vectors ξ = (ξ1 . . . ξn)
T can be used to generate image

maps for each PV scalar variable ξi. An example with n = 2 can be seen in Figure
18.6 for the classification of a hot insert which has a greater concentration of radio-
pharmaceutical in comparison to the surrounding medium.

This approach can be utilized for the classification of 3-D medical imaging data
into regions with similar anatomical or physiological properties, wherein some vox-
els contain mixtures of more than one region’s characteristics known as Partial Vol-
ume (PV) voxels. However, this formulation is only valid for the classification of
data consisting of target objects (and background) with dimensions greater than at
least twice the Full-Width at Half Maximum of the PSF. This means that the ap-
proach will only work for data which contains a proportion of “pure” voxels (i.e.,
unmixed or unaffected by the PV effect). The present formulation considers only
n = 2 but can be simply extended to n > 2 by modifying (18.27) and extending
the sums in (18.24) and (18.25) to include additional components.
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18.3.3 Classification Error

The performance of a classifier on PV imaging data can be quantified via measures
such as the RootMean Square (RMS) error between the estimated PV values and
the ground truth PV errors. However classification performance is dependent on the
amount of noise present in the imaging data and the separation of the pure unmixed
classes in the intensity space (in the absence of noise). Therefore an RMS error
based on the differences between estimated signal levels and ground truth signal
levels could also be used for a region consisting of a majority of classes i and j:

L =

√
1
N

∑
ω

(μT (ω)− μE(ω))
2

|μi − μj | , (18.28)

where μi and μj are the signal levels for voxels composed purely of classes i and
j. The PV signal levels μT and μE are defined here by the following.

Definition 18.3.10. Signal level is the intensity value of a voxel in the absence of
a noise component. Hence for a voxel ω,

μ(ω) =

n∑
i=0

ξi(ω)μi, (18.29)

where μi is the signal level for class i.

An informative measure of the differences between two components in imaging
data that takes into account these classification-dependent properties is the Con-
trast to Noise Ratio (CNR), defined as

CNR =
|μi − μj |

σ
where σ =

√
σ2
i + σ2

j

2
. (18.30)

18.4 MATERIALS ANDMETHODS

We use the results of a PET-CT phantom imaging study,2 originally described in
[WCPBKO], to test the validity of the Benford model on simulated and experimen-
tal (real) imaging data.

A PET-CT scanner is a particularly useful diagnostic instrument because it can
generate a dual representation of the subject: one based on a functional repre-
sentation (using Positron Emission Tomography (PET)) and the other based on
a structural or morphological representation (CT) corresponding to anatomy.
Functional imaging data alone is often difficult to interpret because of the lack
of corresponding structural information, but nonetheless is useful because subtle
changes in physiology, such as higher glucose utilization rate, often precede sub-
sequent gross changes in morphology anatomy. For example, the start of a highly

2PET-CT scanners are a type of dual modality medical imaging scanner, wherein patients first
undergo an X-ray CT scan to produce an image of their anatomy, and are then injected with a radioactive
compound which is then imaged to show the distribution of some aspect of their physiology such as
glucose utilization.
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Figure 18.7 CT cross-sectional and sagittal slices through the CT phantom data used in
this work. The (upper) air-filled (cold) insert and the (lower) “hot” water-filled
insert are clearly defined. The obvious gap between the phantom and the couch
is due to the angle at which the phantom was propped in the axial direction, in
order to experimentally better sample the partial volume voxel distribution. c©
2007 IEEE. Reprinted, with permission, from K. Wells et al., Quantifying the
Partial Volume Effect in PET Using Benford’s Law, IEEE TNS 54 (5:1), 2007
pp. 1616–1625.

visible tumor is preceded by the accumulation of a cluster of cancer cells and their
ability to form into an invasive structure. Integrating both imaging modalities in a
single scanner allows registration of the two separate data sets combining structural
and functional information in a single image. A potential disadvantage of using the
dual PET-CT scanner is due to the physics of the image acquisition process: PET
imaging is an inherently lower spatial resolution imaging process than CT. How-
ever, this property can be used quite advantageously for PV analysis.

Real imaging data is affected by noise and the objective of classifying the data is
to determine the quantity of a tissue or activity concentration for an ROI of voxels.
However it is difficult to directly determine the validity of the Benford PV distri-
bution model because of the hidden nature of the PV content. We therefore study
the validity of the Benford model with the use of a test object, or a phantom, to
control the amount of PV mixing present. First we undertake a simulation based
on part of the phantom’s geometry, and then compare this with experimental PET
measurements made on the phantom.

The simulated geometry used here represents a cylindrical phantom containing
a radioactive solution at a particular concentration in an aqueous solution, with a
water-filled insert at higher activity concentration and a cold air-filled insert. In this
case the hot insert represents the case of an area of high radioactive concentration
in the body, such as the brain or a lesion, and the air filled cavity represents a
lung-like region. A Computed-Tomography (CT) image of the phantom with the
same geometry was used to derive the ground truth data set. Elementary image
processing techniques were used to define three binary templates, corresponding to
the two inserts and another for the main cylinder; see Figure 18.7.

The PET imaging process produces data with relatively larger voxel dimensions
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Figure 18.8 Normalized histogram produced from a simulated noise-free PV data set. The
result of an idealized noiseless situation composed of two peaks (off scale) cor-
responding to high frequency occurrences of the means of the unmixed voxel
regions in the ground truth data and a function linking the two peaks together,
corresponding to the simulated PV voxels. The continuous line demonstrates
excellent agreement between the Benford PV distribution and the synthetic data.
c© 2007 IEEE. Reprinted, with permission, from K. Wells et al., Quantifying
the Partial Volume Effect in PET Using Benford’s Law, IEEE TNS 54 (5:1),
2007 pp. 1616–1625.

in comparison to a CT imaging process where the PET data was generated with
voxel dimensions of 4.00×4.00×4.00 mm3. A Gaussian function with FWHM of
9.89 mm was found to provide a good characterization of the PET PSF validated
by experiment (see [WCPBKO]) to represent the actual PSF of the imaging system
used here (Phillips Gemini PET-CT system) when imaging Ga-68 as a particular
radioisotope. This was assumed to be stationary across the entire 3-D volume.
Spatial variations in the PSF do exist for some PET image acquisition setups but
for the system used here, i.e., one based on a 3-D camera, these variations have
been found to be relatively insignificant; see [GrPaFl].

The CT data was reconstructed with voxel sizes of 1.17×1.17×5.00 mm3. It
was subsequently processed with a number of image processing steps including
region growing and thresholding to produce the image maps that could be used as
the ground truth. The image maps were then filtered with the measured PET PSF
and reregistered so that the individual compartments in the CT data resulted in a
data volume with a one-to-one correspondence of voxels in the two types of data,
i.e., CT derived ground truth versus PET. This ground truth was then used to assess
the performance of the PV classifier.

A PV histogram for the noiseless PSF filtered data set was calculated and com-
pared with the Benford PV distribution and found to exhibit excellent agreement
between the two as shown in Figure 18.8. A similar process was used to generate
a simulated PET data set where Gaussian noise in the noise simulated data set was
generated using parameters estimated from the real PET imaging data.

18.4.1 Classification and Assessment

The PV classifier described in Section 18.3.2, was then applied to the problem of
classifying the PV content for individual voxels in the PET imaging data. ROIs
were defined for the hot insert and the cold insert, as illustrated in Figure 18.9.

The quality of the classification process was quantified via theRootMean Square
(RMS) errorL between the signal levels in the ground truthμT (ω) =

∑
ξT,i(ω)μi

and the estimated signal levels μE(ω) =
∑

ξE,i(ω)μi; see (18.28) for more in-
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Figure 18.9 Exemplar ROI templates used to define the experimental PV analysis area
in each slice: hot insert on left and cold air insert on right. The underlying
grayscale image data has been independently scaled to better show phantom
insert structures. These ROIs ensure air/outer wall mixing effects are avoided.
Combining the ROI template with the CT-derived insert templates allowed the
data simulator to reproduce the same imaging geometry used for experimental
analysis. The apparent change in background gray level is due to grayscale au-
toscaling within the display software, used to create these ROI templates. c©
2007 IEEE. Reprinted, with permission, from K. Wells et al., Quantifying the
Partial Volume Effect in PET Using Benford’s Law, IEEE TNS 54 (5:1), 2007
pp. 1616–1625.

formation. Next L was calculated for the ROI volumes R shown in Figure 18.9.
These were then subdivided into RMS errors for PV voxels alone and RMS errors
for pure voxels alone. This subdivision provides an idea of the effectiveness of the
classifier on these respective classes of voxels.

18.5 RESULTS AND DISCUSSION

18.5.1 Partial Volume Simulation

As described earlier, a number of data volumes were simulated: (i) a noiseless data
set convolved with the PET measured PSF, and (ii) a noise-affected data set also
convolved with the PET measured PSF with noise parameters measured from the
real PET data set. The noise-affected data set was classified and the classification
accuracy using the RMS measure described above for each class can be seen in
Table 18.1.

The results from classifying the simulated data represent the lower limit possible
on these types of errors. We also plot the histogram of the simulated data and
compare it with the Benford PV model in Figure 18.10, demonstrating an excellent
fit. These results are for the simulated data only which do not include the effects
of other imaging artifacts such as from attenuation or scatter. The effects of these
were more fully investigated in [WCPBKO].
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Parameter Overall PV voxel Non-PV voxel
source CNR RMS error RMS error RMS error

Hot insert 72.48 0.01 0.01 0.00
Cold insert 33.49 0.02 0.03 0.02

Table 18.1 RMS differences (quoted to 2 decimal places) in classification performance be-
tween simulated data sets using voxel class parameters taken from corresponding
PET data set.
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Figure 18.10 Histogram from ROI around simulated hot insert. Simulated data using noise
parameters derived from real data (symbols) provide excellent agreement with
the scaledmarginal distribution utilizing the Benford model (continuous line).
Background peak appears leftmost, insert is represented by rightmost peak. c©
2007 IEEE. Reprinted, with permission, from K. Wells et al., Quantifying the
Partial Volume Effect in PET Using Benford’s Law, IEEE TNS 54 (5:1), 2007
pp. 1616–1625.
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Parameter Overall PV voxel Non-PV voxel
source CNR RMS error RMS error RMS error

Hot insert 72.48 0.03 0.04 0.00
Cold insert 33.49 0.08 0.17 0.01

Table 18.2 The RMS classification errors between ground truth (processed CT data) and
classified experimental PET data set.

500 1500 2500 3500
intensity [arb units]

10
0

10
1

10
2

10
3

fr
e
q
u
e
n
c
y

RAMLA-FC model vs experimental data
Hot Insert

Figure 18.11 Histogram of the experimental data obtained from the ROI applied to the hot
insert (symbols) capturing both insert and background. Note excellent fit of
data points compared to the assumed marginal distribution (continuous line).
Background peak appears leftmost, insert is represented by rightmost peak. c©
2007 IEEE. Reprinted, with permission, from K. Wells et al., Quantifying the
Partial Volume Effect in PET Using Benford’s Law, IEEE TNS 54 (5:1), 2007
pp. 1616–1625.

18.5.2 PET-CT Phantom Imaging Study

A similar classification experiment and performance characterization was under-
taken using the real PET imaging data. RMS error measurements were then cal-
culated by using the CT derived ground truth data. The RMS PV errors for these
experiments can be seen in Table 18.2.

As might be expected, the errors obtained from the experimental data are higher
than the errors obtained for the simulated data. The registration process, although
mostly intrinsic to the PET-CT phantom study, may have caused a systematic bias
on the errors. A similar comment can be made about the wall thickness for the
inserts in the phantom. Other potential sources of experimental error include effects
from imaging artifacts such as attenuation. The fit accuracy of the Benford PV
model for the real data set can be seen in Figure 18.11.

The classification results for the cold insert are somewhat worse for the PV vox-
els in comparison to the simulated results. The fit of the model to the cold insert
histogram data, shown in Figure 18.12, confirms that the model is not as applica-
ble to the cold insert part of the data. A potential problem with the classification
of the cold insert is the assumption of a spatially invariant PSF. However, in PET
the width of the PSF is dependent on the local environment that the radiation is
immersed in, and clearly in this case the density changes significantly between the
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Figure 18.12 Histogram of the experimental data obtained from the ROI applied to the cold
insert (symbols) compared to the assumed marginal distribution (continuous
line). Background peak appears rightmost, insert is represented by left peak.
c© 2007 IEEE. Reprinted, with permission, from K. Wells et al., Quantifying
the Partial Volume Effect in PET Using Benford’s Law, IEEE TNS 54 (5:1),
2007 pp. 1616–1625.

water and the air-filled insert. Nevertheless, the PV classification on the experimen-
tal data, even for the cold insert, is still less than 8% overall (PV and pure voxel
errors combined).

18.6 CONCLUSIONS

This chapter has introduced some core concepts in medical imaging, particularly
those related to an imaging artifact known as the PV effect. We have described the
scene for a statistical model based on Benford’s Law, referred to here as the Benford
Partial Volume (PV) distribution. We have gone on to describe a simple classifier
based on Bayes theory which uses the Benford PV distribution as a prior. We
have presented the experimental methodology and results of applying the proposed
classifier to the classification of PV voxels in a PET-CT phantom imaging study
originally published in [WCPBKO].

The results show that we have experimentally found the Benford PV distribution
to be a reasonable modeling tool for the classification of imaging data affected by
the PV artifact. Furthermore the Benford PV distribution provides a convenient
formulation to describe the PV artifact. We have considered the case of when the
number of classification classes is n = 2, but it is a trivial exercise to extend this
to any number of classes, where for each additional classification class another
individual Benford distribution can be introduced.



Chapter Nineteen

Application of Benfordʼs Law to Images

Fernando Pérez-González, Tu-Thach Quach, Chaouki T. Abdallah,
Gregory L. Heileman and Steven J. Miller1

This chapter analyzes the application of Benford’s law to pictures taken from
nature with a digital camera. While the values output by the image capture device
embedded in the camera, i.e., the pixels, do not follow Benford’s law, we show that
if they are transformed into a domain that better approximates the human visual
system then the resulting values satisfy a generalized form of Benford’s law. This
can be used for image forensic applications, such as detecting whether an image has
been modified to carry a hidden message (steganography) or has been compressed
with some loss of quality.

19.1 INTRODUCTION

“An image is worth a thousand words,” and even more so since the advent of digital
technologies that have made it much easier not only to capture images but also to
store and deliver them. Images and videos constitute the dominant type of traffic
in communication networks, and several recent analyses predict that by 2016 more
than 50% of the total Internet traffic will correspond to images/video.

Considering that many natural phenomena seem to follow Benford’s law and
that images are often nothing but “snapshots of nature,” it is pertinent to wonder
whether images (at least those taken from nature) obey Benford’s law. Intriguingly,
very few works have addressed this question. The first is a paper by J. M. Jolion
[Jol], who showed that Benford’s law holds reasonably well for the gradient mag-
nitude of images and in pyramidal decompositions based on the Laplace transform.
Even though [Jol] has great experimental value, we show (cf. Section 19.5) that

1Pérez-González: Department of Signal Theory and Communications, University of Vigo, EE Tele-
comunicacion, Campus Universitario, 36310 Vigo, Spain; Quach: Sandia National Laboratories, Albu-
querque, NM; Miller: Department of Mathematics and Statistics, Williams College, Williamstown, MA;
Abdallah and Heileman: Electrical & Computer Engineering Department, University of New Mexico,
Albuquerque, NM. Research supported by the European Union under project REWIND (Grant Agree-
ment Number 268478), the European Regional Development Fund (ERDF) and the Spanish Govern-
ment under projects DYNACS (TEC2010-21245-C02-02/TCM) and COMONSENS (CONSOLIDER-
INGENIO 2010 CSD2008-00010), the Galician Regional Government under projects “Consolidation of
Research Units” 2009/62, 2010/85 and SCALLOPS (10PXIB322231PR), and the Iberdrola Foundation
through the Prince of Asturias Endowed Chair in Information Science and Related Technologies.
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his analysis for the gradient magnitude of images hinges on some assumptions that
may need to be revised. E. Acebo and M. Sbert [AceSbe] proposed a Benford’s
law test to determine whether synthetic images were generated using physically
realistic methods, although the fact that many real images do not follow Benford’s
law (see Section 19.3) raises some doubts of the suitability of this approach. Acebo
and Sbert’s work also lacks a supporting theory to explain the connections (if any)
of images and Benford’s law. A major step forward, expanded in this chapter,
was taken by Pérez-González et al. in [PéAH1], [PéAH2], where a rigorous link
between well-established statistical models for images and Benford’s law was un-
covered.

In this chapter we show that while images in the “pixel” domain do not conform
to Benford’s law, the situation changes quite dramatically when they are trans-
formed using the Discrete Cosine Transform (DCT). Some key observations re-
garding the logarithm of DCT coefficients lead us to present a generalization of
Benford’s law, based on Fourier analysis, that yields a much closer fit to the ob-
served digits frequencies. We also give a theoretical justification for why images
in the DCT domain satisfy the generalized law; such explanation relies on the fact
that DCT coefficients may be very well modeled by Generalized Gaussian Distri-
butions.

We also revisit Jolion’s derivation for the gradient of images, showing that some
of the approximations made there do not hold. We give an alternative explanation
which is again based on Generalized Gaussian Distributions for both the horizontal
and vertical components of the gradient, and the so-called β-Rayleigh distribution
which is used to model the gradient magnitude. This in turn serves to justify why
closeness to Benford’s law is not as large for the gradient magnitude as it is for the
DCT coefficients. Moreover, with regard to Benford’s law, the DCT is “purer” than
the gradient in the sense that the former is, unlike the latter, an invertible transform.

Finally, we discuss some potential applications in image forensics, by showing
how our Fourier-based formulation may be used to detect whether an image has
been compressed or if it carries a hidden message.

19.2 BACKGROUND

In this section we recall some of the known properties that affect random vari-
ables in the context of Benford’s law. We refer the reader to Chapter 2 for rigor-
ous proofs of those properties. We use the tilde to denote the transformation of
a random variable that reduces modulo 1 its base-10 logarithm, i.e., given V , we
construct Ṽ := log10 |V | mod 1. Given a real positive number x, we will say that
log10 |x| mod 1 is defined in the Benford domain.

Theorem 19.2.1. A random variable X is Benford if and only if the random vari-
able X̃ = log10 |X | mod 1 is uniform in [0, 1).

See Theorem 2.4.2 and its proof.

Theorem 19.2.2 (Scale invariance). Suppose thatX is Benford; then the random
variable Z = αX , for an arbitrary α ∈ R+, is Benford if only ifX is Benford.
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Proof. See Section 2.4.2 for a proof. Alternatively, consider the random variable
log10 |Z| mod 1 = log10 α + log10 |X | mod 1. This corresponds to a cyclic shift
of log10 α mod 1 on the probability density function (pdf) of X̃. Now, for this shift
to have the same probabilities regardless of the value of α one must have that X̃ is
uniform in [0, 1). �

Theorem 19.2.3 (Product of independent random variables). Let X be Benford,
and let Y be another random variable independent ofX . Then the random variable
Z = X · Y is Benford.

Proof. This corresponds to Theorem 2.6.3. For the sketch of an alternative proof,
notice that log10 |Z| = log10 |X | + log10 |Y |. Therefore, the pdf of log10 |Z| will
be the convolution of those of log10 |X | and log10 |Y |. However, we are interested
in the modulo 1 reduction of log10 |Z|; its pdf can be obtained by performing the
convolution between the pdf of X̃ = log10 |X | mod 1 and that of log10 |Y |, and
reducing the result modulo 1. Alternatively, one can do the circular convolution
over [0, 1) of the pdf’s of X̃ and |Ỹ | = log10 |Y | mod 1. But when X̃ is uni-
form in [0, 1) the circular convolution is always uniform in [0, 1), regardless of the
distribution of Ỹ . �

The product interpretation connects Benford’s law to mixtures of random vari-
ables. Mixtures of random variables are relevant in image processing following the
work of Hjorungnes et al. [HjLR], where a Laplacian distribution (often used to
model the coefficients of a blockwise discrete cosine transform; cf. Section 19.3)
is written as a mixture of Gaussians whose variance is controlled by an exponential
distribution. Thus, if fX(x) denotes a zero-mean unit-variance Gaussian pdf, the
mixture pdf takes the form

fZ(z) =

∫ ∞

0

fX(z|σ2)fΣ2(σ2)dσ2 (19.1)

where fΣ2(σ2) is an exponential, i.e., fΣ2(σ2) = λ exp(−λσ2). It can be shown
that the variance of Z coincides with the mean of the mixing density, i.e., 1/λ.
Interestingly, mixtures of the general form given in (19.1) can be written in such a
way that Theorem 19.2.3 is straightforwardly applied. Indeed, the random variable
Z whose pdf is fZ(z) is obtained through (19.1) can be written as Z = X ·Σ, with
Σ2 the random variable that controls the variance. It is therefore easy to conclude
that if either X or Σ conform to Benford’s law, then Z will also do so.

19.3 APPLICATION OF BENFORD’S LAW TO IMAGES

Given the seemingly good match of natural phenomena distributions to Benford’s
law, it is reasonable to ask whether this will be so for images. Unfortunately, it is
well known that image luminances possess a histogram that does not admit a closed
form, as there is a strong variation from picture to picture. Hence, it is highly un-
likely that Benford’s law, or any generalization, will be applicable here. Our exper-
iments confirm that gray-level images do not satisfy Benford’s law. To illustrate,
consider the image “Man” (of size 1024 × 1024 pixels) shown in Figure 19.1 for
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Figure 19.1 Figure “Man” used in the experiments. Image taken from
http://sipi.usc.edu/database/copyright.php (number
5.3.01).

which the histogram of the variable log10 |X | mod 1 is shown in Figure 19.2(a).
Clearly this histogram falls short of being constant, which would guarantee com-
pliance to Benford’s law. Consequently, the Leading Digit distribution is quite
different from that proposed by Benford, as plotted in Figure 19.2(b).

One however obtains quite different results when one considers the coefficients
of the blockwise DCT transform, as it is found that they match a Benford distribu-
tion reasonably well.

Given a gray-level image x(u, v), u, v ∈ {0, 1, . . . , N − 1}, of size N × N
pixels,2 where x is the luminance, u and v denote respectively the horizontal and
vertical coordinates, its DCT is defined by the pair

b(i, k) = C(i)C(k)

N−1∑
u=0

N−1∑
v = 0

x(u, v) cos

[
π

N
i

(
u+

1

2

)]
cos

[
π

N
k

(
v +

1

2

)]
,

(19.2)

x(u, v) =

N−1∑
i=0

N−1∑
k=0

C(i)C(k)b(i, k) cos

[
π

N
i

(
u+

1

2

)]
cos

[
π

N
k

(
v +

1

2

)]
,

(19.3)
where C(0) = 1/

√
N and C(m) =

√
2/

√
N , for m = 1, 2, . . . , N − 1.

2For simplicity, we limit our exposition to square images.

http://sipi.usc.edu/database/copyright.php
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Figure 19.2 Histogram of the luminance values of “Man” in Benford (log10 | · | mod 1)
domain (a). Distribution of the Leading Digit corresponding to “Man” (b).

The transform pair given above is referred to as the full-frame DCT. In many
instances, e.g. in the JPEG compression standard, a blockwise DCT is preferred.
In such cases, the equations above still apply with x(u, v) and b(i, k) respectively
the input and output blocks of size N ×N . The b(i, k) are called the DCT coeffi-
cients, and due to their different properties, a distinction is often made between the
zero-frequency (DC coefficient) (i.e., that corresponding to i = k = 0), and the
remainder, which are known as the AC coefficients.



APPLICATION OF BENFORDʼS LAW TO IMAGES 343

The popularity of the DCT arises from its ability to remove redundancy between
neighboring pixels, which in compression applications leads to uncorrelated coef-
ficients which can be quantized independently. The other desirable feature of the
DCT is its energy compaction, which leads to packing the input pixels into as few
coefficients as possible, allowing the remaining ones to be discarded, with little
perceptual impact.

Figure 19.3(a) shows the histogram of the variable log10 |X | mod 1, with X
given in the block-DCT domain, for the image “Man,” while Figure 19.3(b) rep-
resents the distribution of the Leading Digit, which now lies closer to Benford’s
distribution. The DCT block size used in these figures is 8 × 8; however, similar
results are obtained by considering other block sizes as well as other images. A
crucial observation from Figure 19.3(a) is that the histogram is not quite flat, but
instead can be modeled with a constant plus a sinusoidal term. This somehow sur-
prising phenomenon was observed in the hundreds of images we analyzed, thus
suggesting a generalization of Benford’s law to accommodate the extra term.

The crucial question is therefore why DCT coefficients follow this generalized
form of Benford’s law. The following fact is known about images in the DCT
domain: the AC coefficients of a block-based DCT can be accurately modeled by
a Generalized Gaussian Distribution (GGD). For instance, for the 8 × 8-block
DCT, let b(m)(i, k), i, k ∈ {0, . . . , 7}, i+ k �= 0, denote the (i, k)th AC coefficient
of the DCT of the mth block. Then b(m)(i, k) for all m can be thought of as being
drawn from a GGD. A GGD has the form

fX(x) = Ae−|βx|
c

, (19.4)

where A and β are expressed in terms of c and the standard deviation σ as follows:

β =
1

σ

(
Γ(3/c)

Γ(1/c)

)1/2

; A =
βc

2Γ(1/c)
. (19.5)

The parameter c is the shaping factor. The particular cases of c = 2 and c = 1
correspond to the well-known Gaussian and Laplacian distributions, respectively.
Unfortunately, for real images the parameters σ and c vary with the frequency in-
dices (i, k). This implies that the coefficients we are modeling should be considered
as being generated by a mixture of GGDs, in which the parameters are governed
by a certain rule. This might complicate the derivation of a statistical model for the
variables in the Benford domain; fortunately, in Section 19.5 we will see how this
difficulty can be overcome by averaging with respect to the parameters.

19.4 A FOURIER-SERIES-BASED MODEL

The sinusoidal character of the histogram in Figure 19.3(a) suggests that a Fourier
representation for the pdf of the variable X̃ = log10 |X | mod 1 is plausible (cf.
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Figure 19.3 (a) Histogram of the DCT values of “Man” in Benford (log10 | · | mod 1) do-
main. (b) Distribution of the Leading Digit corresponding to “Man.” Block size
is 8× 8.

Chapter 3).3 For a further justification, let X ′ = log10 |X |, so that

fX̃(x) =

∞∑
n=−∞

fX′(x− n) = fX′(x) ∗
∞∑

n=−∞
δ(x− n), x ∈ [0, 1), (19.6)

where ∗ denotes convolution and δ(x) is Dirac’s delta. Taking the Fourier transform
on both sides of the equation above (extending it in a periodic way to the whole real

3We follow the “engineering” notation throughout this chapter, with j :=
√−1, an denoting the

nth Fourier series coefficient and Φ(ω) the Fourier transform.
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line), we can write

ΦX̃(ω) =

∫ ∞

−∞
fX̃(x)e−jωxdx

= ΦX′(ω)

∞∑
k=−∞

δ(ω − 2πk)

=
∞∑

k=−∞
ΦX′(2πk)δ(ω − 2πk), (19.7)

where ΦX′(ω) denotes the Fourier transform of fX′(x) and ΦX̃(ω) represents
the Fourier transform of the periodically extended fX̃(x). Given the fact that the
Fourier transform of cos(ω0x) is (δ(ω − ω0) + δ(ω + ω0))/2, it follows that the
pdf of the variable in the modular logarithmic domain is

fX̃(x) = 1 + 2

∞∑
n=1

|an| cos(2πnx+ φn), x ∈ [0, 1) (19.8)

where an = |an|ejφn := ΦX′(2πn).
Note that this representation is valid as long as the conditions for convergence of

the Fourier series are met. However, the cases of specific interest to us are those for
which the magnitude of the Fourier coefficients |an| is small for moderate and large
n. Note that the case of a pure Benford random variable corresponds to |an| = 0
for all n ≥ 1.

We want to show that a GGD random variable can be accurately modeled in the
Benford domain by a distribution composed of a constant and one sinusoidal term.
To this end, we compute the Fourier series coefficients of the distribution of X̃ as

an =

∫ ∞

−∞
fX′(x)e

−j2πnxdx

= 2A

∫ ∞

0

exp(−(βz)c) exp(−j2πn log z/ log 10)dz

=
2A

β
ej(2πn log β)/ log 10

∫ ∞

0

exp(−(z)c)z−j2πn/ log 10dz

=
2A

βc
ej(2πn log β)/ log 10Γ

(−j2πn+ log 10

c log 10

)
. (19.9)

We refer to the an as the Benford–Fourier coefficients. The following two prop-
erties will prove to be useful later, and they are both a consequence of 2A/(βc) =
1/Γ(1/c).

• The magnitudes of the coefficients depend only on c and n but are indepen-
dent of the variance.

• The only effect of the variance is a phase change. Suppose that a certain
phase is achieved for σ′; then it is easy to see that the same shift is achieved
for any σ = 10kσ′, with k integer.
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The most important observation however is that the magnitudes of the coeffi-
cients in (19.9) decrease very rapidly with n. In fact, using equation (8.326) of
[GrRy] it is immediately shown that

|an|2 =
∞∏
k=0

(
1 +

(2πn)2

log2(10)(ck + 1)2

)−1

, (19.10)

which quickly converges to the true value, and if truncated provides a good approx-
imation. Moreover, from (19.10) it is easy to see that the Fourier series coefficients
monotonically increase with the shaping factor c.

To get an idea of the magnitude of an, we have evaluated (19.10) for different
values of c. The results for a Gaussian (i.e., c = 2) and a Laplacian (i.e., c = 1) are
represented in Table 19.1. For c = 0.5 we observe that the magnitudes are so small
that even |a1| = 0.00614761.

n 1 2 3 4
c = 2 0.165849 0.0194532 0.00228155 0.00026759
c = 1 0.0569 0.00110 1.866 · 10−5 2.964 · 10−7

Table 19.1 Magnitude of an for different values of the shaping factor c.

The main consequence of all these evaluations is that for all values of the shaping
gain smaller than 2 (which are typical in images), the approximation

fX̃(x) ≈ f̆(x) = 1 + 2|a1| cos(2πx+ φ1), x ∈ [0, 1) (19.11)

is reasonable. However, unless c is small the Benford property does not hold (even
in an approximate way), so one must keep the term corresponding to the first coeffi-
cient of the Fourier series expansion in order to ensure a small approximation error.
In Figure 19.4 we plot the theoretical Leading Digit distribution corresponding to
the “Man” image after using the approximation in (19.11), where a1 is obtained by
computing the histogram (with 100 bins) of the samples {log10 |b(m)(i, k)| mod
1;m = 1, . . . ,M ; i = 0, . . . , 7, k = 0, . . . , 7}, where b(m)(i, k) is the (i, k)th co-
efficient of the mth 8 × 8-block of the DCT and M is the number of blocks. Now
the excellent agreement with the empirical distribution is remarkable.

We are interested in bounding the error made by retaining only one coefficient
of the Fourier series expansion, i.e.,

ε =

∫ 1

0

|fX̃(x)− f̆(x)|2dx =
∞∑
n=2

|an|2,

where the second line is a direct consequence of Parseval’s relation.
In Appendix 19.9 we show that ε < g(c), where

g(c) = 0.0421603·exp
(
c+ 1

c

)
·exp

(
− 2π2

c log 10

)
·
[
1− exp

(
− 2π2

c log 10

)]−1/2

.

(19.12)
The bound g(c) can be numerically evaluated to yield Table 19.2, and the plot in

Figure 19.4.
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Figure 19.4 Empirical digit distribution and generalized Benford law. |a1| = 0.067; φ1 =
−1.221 radians.

c g(c)
0.50 2.70 · 10−8

0.75 4.20 · 10−6

1.00 5.24 · 10−5

1.25 2.38 · 10−4

1.50 6.55 · 10−4

1.75 1.35 · 10−3

2.00 2.32 · 10−3

Table 19.2 Error bound g(c) vs. shape parameter c.

Note that although the Fourier coefficients an may be obtained by projecting the
histogram of log10 |X | onto the complex exponential exp(−j2πnx), a simpler pro-
cedure which does not require the explicit calculation of the histogram can be de-
vised by realizing that the first equality in (19.9) corresponds toE

[
e−j2πn log10 |X|

]
.

Therefore an can be estimated through either of the following sample averages:

an ≈ 1

MN2

M∑
m=1

N−1∑
i=0

N−1∑
k=0

exp
(
−j2πn log10 |b(m)(i, k)|

)
=

1

MN2

M∑
m=1

N−1∑
i=0

N−1∑
k=0

|b(m)(i, k)|−j2πn/ log 10, (19.13)

where M is the number of N ×N DCT blocks.
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19.4.1 Experimental Results with a Large Database

We have validated our approach with the UCID (Uncompressed Color Image
Database) which consists of 1338 uncompressed images representing a variety of
natural scenes [SchSti]. To measure the goodness of fit between the actual Leading
Digit distributions and the model under test, we have selected two measures. The
Kullback–Leibler divergence (KLD) is defined, for two discrete probability mass
functions p(i), q(i), as

D(p||q) =
∑
i

p(i) log2
p(i)

q(i)
, (19.14)

and is measured in bits. Notice that the KLD is not symmetric. On the other hand,
the χ2-divergence is defined as

χ2(p, q) =
∑
i

(p(i)− q(i))2

p(i)
. (19.15)

For both measures, q(i) and p(i), i = 1, . . . , 9, denote respectively the empirical
and theoretical distributions of the Leading Digit.

The results are summarized in Table 19.3. The measures (KLD and χ2) are
computed for every image in the database and then averaged. As discussed in Sec-
tion 19.3, images in the pixel domain do not obey Benford’s law or our proposed
generalization. In fact, seven images of the database had to be left out for this com-
putation because at least one of the digits in {1, . . . , 9} was missing as a Leading
Digit when all pixels were swept. Turning our attention to the generalization, we
see that it gives a more accurate prediction of the Leading Digit distribution: with
respect to Benford’s law, we afford a reduction in both KLD and χ2 of two orders of
magnitude. Finally, we compare the results obtained with the two proposed meth-
ods for calculating a1: one based on projecting the histogram and the other using
(19.13). We conclude that (19.13) is not only less computationally demanding but
also more accurate.
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KLD (mean) KLD (std) χ2 (mean) χ2 (std)
Benford

(pixel domain) 0.3627 0.4085 0.4920 0.5106
Benford

(8× 8-DCT) 0.0023 0.0028 0.0032 0.0038
Benford

(16× 16-DCT) 0.0018 0.0024 0.0025 0.0032
Generalized Benford
(16× 16-DCT). Hist. 3.2 · 10−5 2.2 · 10−5 4.5 · 10−5 3.0 · 10−5

Generalized Benford
(16× 16-DCT). (19.13) 3.1 · 10−5 2.1 · 10−5 4.3 · 10−5 2.9 · 10−5

Table 19.3 Goodness of fit for Benford’s law and the proposed generalization for images in
the pixel and the DCT domains (UCID database).

The divergence measures presented above can be used to conceive an image-
dependent hypothesis test in which the null hypothesis corresponds to the probabil-
ities of the Leading Digits following Benford’s law (or our generalization) accord-
ing to the observed data. To this end, it is common to use Pearson’s test statistic,
which amounts to multiplying the χ2-divergence in (19.15) by the number of sum-
mands in (19.15). In addition, it is worth mentioning that when p(i) ≈ q(i), for all
i = 1, . . . , 9, a Taylor series expansion of (19.14) yields

D(p||q) ≈ χ2(p, q)

2 log 2
, (19.16)

with log denoting the natural (base e) logarithm. Noticing this relation, for our
hypothesis-testing purposes it suffices to focus on Pearson’s statistic. In Pearson’s
hypothesis test, the statistic is compared to a chi-square distribution with as many
degrees of freedom as the cardinality of the sample space minus 1, which in our
case becomes 8. From a table of the cumulative distribution function of a chi-
square distribution with 8 degrees of freedom, it is immediate to see that for a
significance level of 5%, the null hypothesis is rejected if the statistic is larger than
15.51 [PapPU].

We have carried out the hypothesis test for each of the images in the UCID
database. For the 16 × 16-block DCT against Benford’s law, the mean Pearson’s
statistic is 486.35 with a standard deviation of 631.92. For a 5% significance level,
the null hypothesis is rejected in 1283 images out of the 1338 (95.89% of the cases).
In contrast, for our proposed generalization where a1 is computed using (19.13),
the mean test statistic is 8.33 with a standard deviation of 5.70. For the same signifi-
cance, now we only reject 112 out of the 1338 images (8.37% of the cases). We can
conclude that the generalized law performs much better in terms of explaining the
distribution of the Leading Digit. This in turn paves the way for some applications
which will be presented in Section 19.7.
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Figure 19.6 Maximum-likelihood estimated values of log10 σ (in (a)) and of c (in (b)) for
the 16× 16-block DCT of “Man.”

19.5 RESULTS CONCERNING ENSEMBLES OF DCT COEFFICIENTS

So far, we have shown that GGD’s are closely approximated as in (19.11). How-
ever, as we have remarked, different DCT coefficients will have different param-
eters σ and c. Figure 19.6 shows the values of σ and c estimated through Max-
imum Likelihood for each DCT coefficient of the “Man” image when blocks of
size 16× 16 are considered.

Suppose that these two parameters are modeled as being drawn from a joint
distribution fC,Σ(c, σ). Then the pdf of the variable in the modular logarithmic
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domain can be written as

fX̃(x) = 1 +

∫ ∞

0

∫ ∞

0

fC,Σ(c, σ)

∞∑
n=−∞
n�=0

an(c, σ)e
j2πnxdc · dσ

= 1 + 2Re

{ ∞∑
n=1

ane
j2πnx

}
, (19.17)

where an is the mean value of an averaged over the joint distribution of C and Σ.
Then as long as the averaged Benford–Fourier coefficients an are such that their
magnitude is small for n > 1, the approximation of the form (19.11) is valid.

We can now state the following.

Lemma 19.5.1. Let X be a GGD with shaping parameter c drawn from a distri-
bution fC(c). Then

|an| ≤
∫ ∞

0

fC(c)|an(c)|dc. (19.18)

Proof. We have

an =

∫ ∞

0

∫ ∞

0

an(c, σ)fΣ|C(σ|c)fC(c)dσ dc. (19.19)

Since for any complex random variable X , |E{X}| ≤ E{|X |}, we can write

|an| ≤
∫ ∞

0

fC(c)

∫ ∞

0

|an(c, σ)|fΣ|C(σ|c)dc dσ

=

∫ ∞

0

|an(c)|fC(c)dc, (19.20)

where the last equality follows from the fact that for a GGD |an(c, σ)| is invariant
with σ. �

As a corollary, suppose that c is such that for all i, k, c(i, k) ≤ c+ for some real
number c+. Then for all (i, k) and all n,

|an(c, σ)| ≤ |an(c+)|, (19.21)

which follows from the previous lemma and the fact that for a GGD, |an(c)| mono-
tonically increases with c. Inequality (19.21) suggests that for values of c+ less
than 2, as is customary in practice,4 the approximation given in (19.11) is valid.

The previous discussion has important implications in video applications: if all
frames of a video sequence can be modeled as in (19.11), then the whole sequence
also satisfies this property. Therefore, our generalized form of Benford’s law ap-
plies to video sequences as well, provided that one works with the block-DCT co-
efficients of each frame. This occurs, for instance, in the prevalent MPEG-2 video
compression standard.

4For instance, in the case of the 16 × 16-block DCT of “Man” we have found that the maximum-
likelihood estimated values for c are in the range [0.56, 1.43].
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The problem with the bound in (19.21) is that the value of c+ clearly leads to an
overestimate of |an(c)|. One alternative is to use the expansion given in [PapPU]
that allows us to write

E{|an(c)|} ≈ |an(μc)|+ d|an(c)|2
dc2

∣∣∣
c=μc

· σ2
c/2. (19.22)

It is possible to calculate the second derivative of |an(c)| as a combination of
gamma, digamma and trigamma functions and then evaluate the function above.
For instance, in the “Man” image (with 8× 8 blocks) we have μc = 0.866406 and
σ2
c = 0.047179 and hence, doing the calculations, |a1(c)| ≈ 0.04381, |a2(c)| ≈

0.0013457 and |a3(c)| ≈ 3.11 · 10−5.
The previous results have focused on the influence of the distribution shaping

parameter c upon the Benford–Fourier coefficients. We discuss next the effect of
the GGD standard deviation being a random variable and show that in general it
also produces a reduction in the coefficients’ magnitude.

Lemma 19.5.2. LetX be a zero-mean generalized Gaussian r.v. such that its stan-
dard deviation Σ is itself a Benford r.v., i.e., Σ̃ ∼ U [0, 1). Then X̃ ∼ U [0, 1).

Proof. First, notice that this result is a particular case of the mixture of random
variables discussed in Section 19.2. However, the proof that we give here illustrates
some aspects that will be interesting later. For a fixed standard deviation σ we can
write the Benford–Fourier coefficients in (19.9) as

an = K exp(−j2πnlog10 σ), n ≥ 1, (19.23)

where K is a complex number independent of σ. Let V = log10 Σ; then marginal-
izing with respect to V we have

an = K

∫ ∞

−∞
exp(−j2πnv)fV (v)dv

= K

∞∑
k=−∞

∫ 1

0

exp(−j2πn(v + k))fV (v + k)dv

= K

∫ 1

0

exp(−j2πnv)
∞∑

k=−∞
fV (v + k)dv

= 0 (19.24)

for all n ≥ 1. The last equality is because
∑∞

k=−∞ fV (v+ k), for v ∈ [0, 1), is the

pdf of V mod 1 = Σ̃, and that E{e−j2πnX} = 0 if X ∼ U [0, 1). �

The former result can be relaxed in a number of ways if we focus on a1 which,
as we have seen, is for practical values of the GGD parameters the only significant
coefficient. Thus, to guarantee that a1 = 0 it is enough that

E{exp(−j2πlog10 Σ)} = 0, (19.25)

where the expectation is taken with respect to the standard deviation Σ. The fol-
lowing example illustrates such a situation.
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Example 19.5.3. Consider four zero-mean generalized Gaussian r.v.’s with shaping
parameter c = 1 and standard deviations 1, 100.25, 100.5 and 100.75. Then the
average is such that a1 = 0.

Lemma 19.5.2 and Example 19.5.3 show that as long as the individual variances
spread over different orders of magnitude, the average of the Leading Digits is
closer to Benford’s distribution than the individual random variances.

Another result along the same line of research is the following.

Lemma 19.5.4. LetX be a zero-mean generalized Gaussian r.v. such that its stan-
dard deviation Σ is such that log10 Σ is uniformly distributed in [t0, t1). Let |an,∗|
denote the magnitude of the nth coefficient obtained for any σ ∈ [10t0 , 10t1). Then

|E [an] | ≤ |an,∗|
πn(t1 − t0)

. (19.26)

Proof. From (19.23) we have

E [an] =
K

(t1 − t0)

∫ t1

t0

exp(−j2πnv)dv, n > 1

=
jK

2πn(t1 − t0)
[exp(−j2πnt0)− exp(−j2πnt1)], (19.27)

and then (19.26) follows from the fact that the term within brackets in (19.27) has
an upper bound of 2. �

Note that the decrease in (19.26) depends on the interval spanned by the standard
deviation Σ in a base-10 logarithmic scale. Of course, the result in (19.26) is an
upper bound, so it is possible that in some cases the magnitude is even smaller, as
when (t1 − t0) is an integer, in which case we recover Lemma 19.5.2.

Another interesting question is what happens when one averages the Leading
Digits of different images. Notice that this is the approach followed by Fu et al.
in [FuSS], who empirically showed that the average of the Leading Digits from
the images in the UCID database followed Benford’s distribution when working in
the DCT domain. This result might seem surprising at first since we have already
shown that they do not follow Benford’s distribution, but rather a generalized distri-
bution. We have repeated the experiment and found that the KLD is 6.2909 · 10−4

and the χ2 is 8.6758 · 10−4 (compare these results with the second row of Ta-
ble 19.3). To understand the apparent contradiction, notice that while we are av-
eraging the goodness of fit from individual images, Fu et al. were measuring the
goodness of fit for the average Leading Digit in the database. This is why we do
not report the standard deviation of the measurements, as there is only one.

We discuss next the rationale behind Fu et al.’s result and then comment on its
possible pitfalls. Given two continuous random variables X,Y , D(X ||Y ) denotes
the KLD, which is measured similarly to (19.14), by replacing the sum by an inte-
gral.

Lemma 19.5.5. Let X1 and X2 be two zero-mean generalized Gaussian random
variables with the same shaping parameter c and different variances. Let Y be a
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Benford r.v., i.e., Ỹ ∼ U [0, 1). Finally, let X̃ be a random variable with pdf fX̃(x)
such that

fX̃(x) =
fX̃1

(x) + fX̃2
(x)

2
. (19.28)

ThenD(X̃ ||Ỹ ) < D(X̃1||Ỹ ) andD(X̃||Ỹ ) < D(X̃2||Ỹ ).

Proof. From (19.9) we know that the Benford–Fourier coefficients of X1 and X2

in the Benford domain, which we denote by respectively an,1 and an,2, have the
same magnitude but different phase. Let an denote the nth Fourier coefficient of X
in the Benford domain. Then by the triangle inequality, we have that |an| < |an,1|
and |an| < |an,2|, for all n > 1. The rest of the proof is straightforward. �

To fully interpret the implications of this result, notice that the distribution of the
average of the Leading Digits of the random variables X1 and X2 is obtained by
integrating the distribution of X̃ in intervals of the form [log10 k, log10(k + 1)),
k = 1, . . . , 9. The lemma states that X̃ gets closer to uniform (i.e., a Benford r.v.)
than the individual variables. The main consequence of this result is that if we
average the Leading Digits of two generalized Gaussian random variables having
the same shaping parameter, the resulting random variable will likely5 get closer to
the Benford distribution.

We now understand why it is plausible that the average of the Leading Digits
of many images in the DCT domain is very close to Benford’s law, and that this
does not contradict our findings regarding the Leading Digit distribution for indi-
vidual images. This fact should not be overlooked in forensic applications: it is not
reasonable to expect that the Leading Digits of a given image in the DCT domain
conform to Benford’s law, so it is not possible to devise a useful test that simply
measures the closeness of the Leading Digit distribution to Benford’s.

19.6 JOLION’S RESULTS REVISITED

Jolion [Jol] experimentally showed that the gradient magnitude of images follows
Benford’s law approximately. As we discussed in the Introduction, this was the first
time a connection between images and Benford’s law was made. He attempted an
analytical justification for the observed behavior, but his explanation is not entirely
satisfactory, as we discuss in this section.

Jolion focuses his attention on the response of the bidimensional gradient to im-
age edges, as he argues that the gradient of images is dominated by such response.
A detailed analysis is provided for the one-dimensional case: a derivative-Gaussian
operator is applied to a step function. Since the convolution with a step can be
seen as an integral which in turn cancels the derivative out, the result is a one-
dimensional Gaussian pulse, whose amplitude distribution ultimately determines
the pdf of the gradient of the image. The probability of a quantized (using trunca-
tion) Gaussian pulse is analytically obtained as follows.

5Notice that the fact that the KLD to a Benford random variable decreases does not necessarily imply
that the KLD of the Leading Digits is reduced.
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Let h(x) = α exp(−x2/(2σ2
K)) be the Gaussian pulse.6 The probability that

h(x) is truncated to integer m > 0 (assuming that values in x are taken uniformly)
is proportional to um such that

m+ 1 = α exp

(
− (xm + um)2

2σ2
K

)
, 0 < m < α− 1, (19.29)

where xm is given by the negative7 solution to

m = α exp

(
− x2

m

2σ2
K

)
, 0 < m < α− 1. (19.30)

It is easy to invert the equations above to find

um = σK

√
2

(√
log

( α

m

)
−
√
log

(
α

m+ 1

))
. (19.31)

After some approximations, Jolion argues that

um ≈ σK√
2 logα

· 1

m
, (19.32)

so the probability distribution of the gradient follows a 1/x-law and hence the Lead-
ing Digits obey Benford’s law (cf. Section 4.3).

The problem with Jolion’s derivation is that some approximations are valid for
small m while others make sense only if m is close to α. In Figure 19.7 we plot
the true distribution in (19.31) and Jolion’s approximation (19.32). We remark that
while the true distribution is U-shaped, the proposed approximation is monotonic.
In fact, it can be shown that the true distribution achieves the minimum for some
m ∈ [α/

√
e− 2, α/

√
e+ 1].

Moreover, the approximate distribution at which Jolion arrives is discrete (i.e., a
probability mass function) and not continuous, so even if it were of the form 1/m,
the upper limit α would need to be quite large for the Leading Digit to approxi-
mately conform to Benford’s law.

To avoid discretizing the gradient amplitude and later matching the resulting dis-
tribution to a continuous pdf, we have derived a closed-form expression for the
pdf of the continuous amplitude starting with the same assumptions as Jolion. We
stress here the fact that the process of obtaining the Leading Digit distribution in-
trinsically includes a truncation, so quantizing the amplitude prior to computing the
Leading Digit is redundant.

Consider then a uniform random variable X with support [−a, a). This random
variable is mapped onto Y using a Gaussian transformation:

Y = h(X) = αe−X2/2σ2
K , −a ≤ X < a. (19.33)

6Notice that h(x) is not a pdf, so there is no constraint on the value of α.
7Without loss of generality, we assume that the solution is negative, as the other case follows simi-

larly.
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Figure 19.7 Distribution of m and Jolion’s approximation for different values of α.

The pdf of Y is8

fY (y) =
σ2
K/a

αh−1(y)e−(h−1(y))2/2σ2
K

=
σK/a

y(−2 log(y/α))1/2
, h(a) ≤ y < α. (19.34)

So we see that in addition to the factor 1/y, there is another which will be sig-
nificant for values of y close to α, and which Jolion’s approximations neglect.

Now consider the variable Z = logY (we use natural logarithms here for conve-
nience, without affecting the general conclusions). Recall that when Z is reduced
modulo 1 we should expect a uniform-like behavior for Y to follow Benford’s law.
The pdf of this new variable is

fZ(z) =
σK/a

(−2 log(ez/α))1/2
(19.35)

=
σK/a√

2(−z + logα)
, log(h(a)) ≤ z < logα. (19.36)

The function fZ(z) is monotonically increasing within its support; this has the
important implication that the modulo 1 reduced variable can never be uniform and,
furthermore, that Benford’s law does not hold in a strict sense for a random variable
with the distribution in (19.34). Moreover, it can be shown that the magnitudes of
the Benford–Fourier coefficients |an| only decrease as 1/

√
n, making less plausible

an approximation like (19.11).
For the bidimensional case, the gradient has horizontal and vertical compo-

nents, and the response to an edge with orientation θP radians produces two pro-
jected components having the form α cos(θP ) exp(−m2/(2σ2

K)) and α sin(θP )

8Although the equation x = h−1(y) has two solutions, we consider only the positive one, as both
give identical results; hence, we multiply the numerator of (19.34) by 2 to account for this fact.
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Figure 19.8 The “grid” image.

exp(−m2/(2σ2
K)) so that the magnitude of the vector with these two components

is again α exp(−m2/(2σ2
K)), thus recovering the response (and the distribution it

induces) for a one-dimensional edge.
To test the validity of the claims made regarding the magnitude of the gradient,

we have computed its histogram for images containing periodic patterns and simple
edges. The “grid” image shown in Figure 19.8 is one such example.

The resulting histogram corresponding to the magnitude of the gradient for a
Gaussian kernel with σK = 1 is represented in Figure 19.9, where the U shape from
(19.31) is apparent. Notice that since the histogram computes the total number of
occurrences in each interval of the gradient magnitude, it is reasonable to compare
it with the probabilities for the uniform intervals um given by (19.31).

Obviously, a real-world image is not only composed of edges, but also noise and
fine structure (e.g., textures). The gradient response to these features is modeled by
a Rayleigh distribution; in any event, Jolion claims that since the contribution of
noise/fine structure is low (except for noise/highly textured images), then the pdf
is dominated by the pdf corresponding to edges. Unfortunately, were this the case,
our analysis above would show that gradient magnitude of images does not follow
Benford’s law or our generalization. This is not consistent with Jolion’s and our
own observations (see results for the UCID database later in this section). We must
then disregard a justification based solely on the gradient response to simple edges,
all having the same height.

A more plausible explanation follows from our observation that both the horizon-
tal and vertical components of the gradient can be reasonably modeled by a GGD.
In Figure 19.10 we represent the transformed histogram of the gradient components
of the image “Man” after performing the mapping u �→ −(log |βu|)1/c using the
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Figure 19.9 Histogram of the gradient magnitude corresponding to the “grid” obtained for
a Gaussian gradient kernel with σK = 2.

values of σ and c obtained by means of maximum-likelihood estimation and then
substituting in (19.5) to compute β. The estimated values are cx = 0.55, cy = 0.56,
σx = 0.0301 and σy = 0.0262, where the subindices x, y stand for the horizontal
and vertical directions, respectively. The transformed histograms in Figure 19.10
have been normalized so that their peak value is zero. In interpreting the plots, no-
tice that a true GGD with the given parameters would appear as two straight lines
with slopes ±β. Those are also plotted in the figure for reference. The closeness of
the transformed histogram to such lines, except for those bins which correspond to
unlikely values, allows us to conclude that the GGD is a reasonable model for the
gradient components.

We can recover now a result from [GoAPA], where it is shown in the context
of Gabor coefficients that if their real and imaginary parts are GGD with the same
c and σ parameters, its magnitude can be modeled by a β-Rayleigh distribution,
which is a generalization of a Rayleigh using a shaping factor c so that the latter
corresponds to c = 2. This distribution has the form

fX(x) = Axc/2e−|βx|
c

, x > 0, (19.37)

where β is defined as in (19.5) and now

A =
cβ(c+2)/2

Γ
(
2+c
2c

) . (19.38)

It is interesting now to compute the Benford–Fourier coefficients for the distribu-
tion in (19.37). To this end, we can repeat the derivation in Section 19.4 to show
that

an =
A

βc
ej(2πn log β)/ log 10Γ

(−j4πn+ log 10(c+ 2)

2c log 10

)
. (19.39)



APPLICATION OF BENFORDʼS LAW TO IMAGES 359

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−120

−100

−80

−60

−40

−20

0

x

(−
lo

g 
f(

x)
)1/

c

Horizontal gradient, empirical
Vertical gradient, empirical
Horizontal gradient, GGD
Vertical gradient, GGD

Figure 19.10 Transformed histogram (400 bins) of the gradient components (Gaussian ker-
nel with σK = 0.8) for the image “Man” and transformed analytical pdf’s.

The squared magnitude of the coefficients is in this case

|an|2 = βc
∞∏
k=0

(
1 +

(2πn)2

log2(10)(ck + c+2
2 )2

)−1

, (19.40)

where we can readily see that now the magnitude is no longer independent of the
standard deviation σ. However, the rate of decay for the magnitude of the coef-
ficients is identical to those corresponding to the DCT, so the same reasoning for
keeping only the first coefficient of the series also holds.

Experimentally, we have applied a Gaussian gradient kernel with σK = 0.8 on
the images from the UCID database, and we have found the results summarized in
Table 19.4.

KLD (mean) KLD (std) χ2 (mean) χ2 (std)
Benford 0.0166 0.032 0.0308 0.0979

Generalized Benford 0.0056 0.0273 0.0108 0.0562

Table 19.4 Goodness of fit for Benford’s law and the proposed generalization for the gradi-
ent magnitude of images (UCID database).

We can see that even though the proposed generalization produces a consider-
able improvement in predicting the Leading Digit distribution with respect to Ben-
ford’s law, neither matches the excellent fit achieved with the DCT coefficients.
We conjecture that the reason for this behavior is that while in the DCT case we are
averaging the Benford–Fourier coefficients coming from a number of GGDs with
different parameters (cf. Figure 19.6), and thus having different phases, in the case
of the gradient such averaging does not take place.
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These conclusions are confirmed by the corresponding Pearson’s hypothesis test
(cf. Section 19.4.1) which gives the following values when the observed Leading
Digit are compared with Benford’s law: the mean statistic is 6.06·103 with standard
deviation of 1.93 · 104. For a 5% significance level, we reject 1335 out of the 1338
images in the UCID database. If the generalized law is considered instead, the
mean statistic becomes 2.12 · 103 with standard deviation 1.10 · 104, and still 1175
images are rejected.

Interestingly enough, the same arguments employed here can also be applied to
the magnitude of Gabor coefficients [GoAPA], which find widespread use in fa-
cial recognition applications. Preliminary experiments performed on face image
databases show that the magnitude of those coefficients also follows our general-
ized law.

19.7 IMAGE FORENSICS

Benford’s law has been successfully applied to detect fraud in tax data [Cars, Nig5].
The test is based on the assumption that real data follow Benford’s law on the ba-
sis that they come from many independent sources with different scales (much the
same as data in a newspaper, which also approximately satisfies the law). Another
application in forensics is to detect data manipulation in scientific data. Diekmann
[Die] showed that the first digits of regression coefficients from sociological analy-
ses closely approximate the Benford distribution. Diekmann went on to conduct an
experiment in which he asked students in a statistics course to fabricate regression
coefficients; while the hypothesis of the Leading Digit from the fabricated data not
following Benford’s law could not be rejected, this was not the case when the sec-
ond most significant digit was considered, with a statistically significant difference.
Schaefer et al. [ScSMG] investigated the use of Benford’s law to analyze data from
surveys, where there is always the risk that the interviewers fabricate the data. They
focused on data from the German Socio-Economic Panel which contained proven
fakes, detected after a second wave of the survey. Once again, Benford’s law served
to spot those interviewers who had cheated: by analyzing the full set of answers to
specific questions known to conform to Benford’s law (such as net-income or tax
data), it was possible to easily detect fabrications.

In view of the above applications, it is natural to ask whether Benford’s law may
find any use in image forensics. Here we focus on image compression detection
and image steganography. In the first application, we are interested in knowing
whether a given image has been lossy-compressed in the DCT domain and then
converted back to the pixel domain. Detecting this compression is thus important
for knowing whether an image someone is buying has the maximum possible qual-
ity or instead has lost some features along the compression process. On the other
hand, the purpose of steganography is to detect the existence of a message hidden
in an image. Next, we show how the Benford–Fourier coefficients can be used in
both forensic applications.
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19.7.1 Image Compression

Detecting whether an image has been compressed is important to both forensic
analysis and commercial applications. Our goal is to determine whether a given
bitmap image has been JPEG compressed. JPEG compression is a popular and
widely used image compression standard [Wall]. The major steps in JPEG com-
pression are as follows. An image is first transformed using a block-based DCT.
The block size is typically 8×8. The DCT coefficients for each block are then quan-
tized using a quantization table based on the quality of the compression. Higher
quality uses less quantization and preserves more details of the original image.
Lower quality drives many of the coefficients toward zero. The last step uses en-
tropy encoding to efficiently store the quantized coefficients. The quantized coeffi-
cients are referred to as JPEG coefficients. Fu et al. [FuSS] proposed to detect JPEG
compressed images using a generalized Benford law describing the probability of
the Leading Digit d as

p(d) = N log10

(
1 +

1

s+ dq

)
, (19.41)

where N is a normalization factor which makes p(d) a probability distribution, s
and q are model parameters for different images and JPEG compression factors. If
s = 0 and q = 1, the distribution becomes the Benford distribution.

It was observed that the JPEG coefficients of compressed images with quality
factor of 100 follow this generalized law. However, for images that have been
double compressed, i.e., a JPEG image is JPEG compressed again, the first digit
distribution of the JPEG coefficients deviates from the generalized law. Therefore,
to detect whether an image has been compressed, the candidate image is JPEG
compressed with quality factor 100. For compressed images, this process results in
double compression and Fu et al.’s generalized law is violated. On the other hand,
for uncompressed images, the distribution of the JPEG coefficients should follow
the generalized law.

In a similar spirit, we use our generalized Benford law to detect compressed
images. Our image set consists of 1000 uncompressed gray-level images from the
UCID database. For each uncompressed image, we generate two JPEG compressed
images using quality factors 75 and 95. For each image (both compressed and un-
compressed), we compute |an|. We randomly choose half of the uncompressed
images and the corresponding compressed images for training a Gaussian kernel
Support Vector Machine (SVM) classifier [Joa] and the other half are used for
testing. SVM is a pattern recognition algorithm which learns to classify patterns
from trained data. In general, SVM relies on kernels to separate data into linearly
separable regions for classification. Typical kernels include linear, polynomial and
Gaussian. Some kernels require user-supplied parameters. In the case of the Gaus-
sian kernel, σK is required. The choice of these parameters can significantly affect
the performance of classification. As such, it is typical that these parameters are
optimized by searching the parameter space for values that result in the best clas-
sification performance. The danger here is that the resulting classifier is highly
dependent on the data used in training and testing. The optimized parameters may
not hold in a more general case and the achieved accuracy may be overly optimistic.
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Figure 19.11 The ROC curve of the Benford-based JPEG compression detector using only
|a1| and |a2| as features for two different JPEG quality factors 75 and 95.

To avoid this pitfall, we use the default kernel parameter σK = 1.
The performance of a compression detector is measured using its Receiver Op-

erating Characteristic (ROC) curve. This is a plot of the correct detection prob-
ability versus the false positive probability. The correct detection probability is
the number of detected compressed images over the total number of compressed
images, and the false positive probability is the number of uncompressed images
classified as compressed over the total number of uncompressed images.

In Figure 19.11, we plot the ROC curve of our compression detector using two
features: |a1| and |a2|. For concreteness, we calculate the average probability of
error:

pe =
1

2
(pFP + pFN) , (19.42)

where pFP is the false positive probability and pFN is the false negative probability.
The best average probabilities of error are 0.049 and 0.083 for JPEG quality factors
75 and 95, respectively. The result matches our intuition that heavily compressed
images are more detectable. The performance of our compression detector can
be improved by using more Benford–Fourier coefficients |an| as features. In fact,
using five coefficients, the average probabilities of error become zero for both JPEG
quality factors.

For comparison, we repeated the same experiment using the method proposed
by Fu et al. [FuSS]. Ideally, we would like to use the same set of images and SVM
parameters. Since we do not know the SVM parameters used in [FuSS], we use
the default parameters to match our previous experiment. The ROC curve is shown
in Figure 19.12. The best average probabilities of errors are 0.005 and 0.097 for
JPEG quality factors 75 and 95, respectively. We conclude that our compression
detector performs significantly better using fewer features (five in our case vs. the
nine Leading Digits in Fu et al.’s detector).
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Figure 19.12 The ROC curve of the compression detector proposed by Fu et al. for two
different JPEG quality factors 75 and 95.

19.7.2 Image Steganography

Steganography is the art of communicating covertly using innocuous looking cover
objects. Steganography has a rich and long history. In 499 BC, Histiaeus shaved the
head of his slave and tattooed a message on his head. Once his hair grew back, he
was sent to deliver the message to Aristagoras, who shaved the slave’s head again
to read the message, which instructed Aristagoras to revolt against the Persians.
Other examples of steganography include wax tablet, invisible ink and microdots.

It must be emphasized that steganography differs from cryptography as the latter
is only concerned with protecting the content and not its presence. In cryptography,
an observer is fully aware of the fact that secret messages are being exchanged
between the involved parties. This may be sufficient for the observer to take action.
In steganography, the messages are concealed in such a way as not to arouse the
suspicion of an unintended observer.

Steganography is related to another data-hiding technique called watermarking
(see Chapter 10 of [CozMil] for more on these two subjects). However, their goals
are different. Watermarking aims to be robust against distortions and is subject to
removal attacks. The presence of a watermark is generally easy to detect. In most
cases, the use of watermarking is known.

In modern steganography, multimedia cover objects are often used to hide mes-
sages. Digital images, in particular, are widely used due to their popularity and
accessibility. In digital image steganography, hidden messages are embedded into
cover images to produce stego images. Perhaps due to a false sense of security, the
most popular embedding method is least-significant bit (LSB) replacement, where
some the LSBs of the cover image are replaced by the message bits. By using only
the LSBs, the stego image is visually imperceptible.

Detecting the presence of steganographic content is called steganalysis. The
premise of steganalysis is based on the fact that embedding changes the cover im-
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Figure 19.13 The ROC curve of the Benford-based steganalysis detector. The payload is 1
bpp.

age leaving traces of evidence that can be used to detect the presence of a hidden
message. This is easily seen when a forensic analyst has access to the cover image.
If an analyst receives another image that looks like the cover image, she can simply
tell whether the image has been modified by comparing the two images. In prac-
tice, the cover images are typically not available to an analyst. This complicates
the situation and turns steganalysis into a difficult problem.

Virtually all modern steganalysis detectors rely on some features derived from
known cover images and stego images and pattern recognition algorithms to detect
steganographic contents. These features can be viewed as a compressed represen-
tation of all cover and stego images. Pattern recognition algorithms can then use
this compressed representation to learn to classify cover and stego images. As a
consequence, the most critical task in steganalysis is to identify the right features
to use for classification. This process is largely an art. In some cases, knowledge
of the embedding algorithm can help guide the process.

The performance of a steganalysis detector, or rather, of the features, is mea-
sured using the Receiver Operating Characteristic (ROC). The ROC shows the
performance of the detector by comparing its false positive probability versus its
detection probability. The detection probability is the number of correctly identified
stego images over the total number of stego images. The false positive probability
is the number of cover images classified as stego over the total number of cover
images.

Our goal is to demonstrate that Benford’s law can be used for steganalysis. We do
not aim to create a state-of-the-art steganalyzer as that would not be possible with
the current scheme. Rather, we only attempt to add to a growing list of forensic
applications based on Benford’s law.

Our image set consists of 1000 uncompressed gray-level images from the UCID
database. For each image, we generate a stego image using LSB replacement and a
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payload of 1 bit per pixel (bpp). The payload quantifies the size of the message. For
an image of size 512-by-512, with a payload of 1 bpp, the total number of message
bits is 262,144. Half of the cover images and their corresponding stego images
are used for training and the other half are used for testing. We use a Gaussian
kernel SVM with σK = 1, a widely used algorithm in state-of-the-art steganalysis
detectors, as our pattern recognition algorithm. The features we use are |a1| through
|a50|.

In Figure 19.13, we plot the ROC curve of our steganalysis detector. It is clear
that the Benford-based detector can detect steganographic content better than pure
guessing, which would result in a straight 45 degree line. The best average prob-
ability of error using (19.41) for the Benford-based steganalysis detector is pe =
0.359. This is an interesting result and it suggests that some of the statistical dif-
ferences between cover and stego images are indeed captured by the generalized
Benford law.

19.8 SUMMARY

The gradual and inevitable advance toward an all-digital world has brought about
the undesirable feature of expediting the manipulation or even the fabrication of
digital assets. There is then an increasing need for simple tools that allow us to
identify those misuses as a first step to a more detailed and costly analysis. Ben-
ford’s law is an excellent candidate which, in fact, is already being used in some
commercial software packages for the analysis of financial fraud. Here we have
shown how a generalization of Benford’s law can be employed for forensic pur-
poses in images, that is, for detecting whether a certain natural image contains
a hidden message, and for determining when a given image has been previously
compressed. We have done so by proving that GGDs follow a generalized form
of Benford’s law and, furthermore, that this extends to combinations of GGDs,
opening the gate to video forensic applications.

Our generalization of Benford’s law heavily relies on a Fourier series expansion
of the data pdf in the Benford domain. This expansion had been previously used
to justify convergence of an infinite product of random variables to the Benford
distribution [Boy], but to the best of our knowledge, it has been applied, for the
first time here, to improve the predictive value of Benford’s law. Given the fact
that an exponential distribution can be seen as a particular instance of a one-sided
Generalized Gaussian, our results immediately extend to this case. In fact, as half-
life decays of radioactive particles are known to follow an exponential distribution,
it is clear that Benford’s law alone is not sufficient to predict the distribution of the
Leading Digit. Other phenomena following exponential distributions, such as the
arrival time between packets on the Internet, can be accurately predicted by our
proposed generalization.

There are several extensions to our work that are worth mentioning. On the one
hand, our theoretical analysis can be adapted to include the so-called Generalized
Gamma distributions, which offer slightly better image modeling capabilities. The
approximation in (19.11) is still valid for this case. Another extension concerns
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other domains: for instance, it has been observed that the output of the Discrete
Wavelet Transform (DWT) can also be modeled by Generalized Gaussian Distri-
butions; hence it is reasonable to expect that our generalization of the Benford dis-
tribution is also applicable in this domain. Preliminary experiments carried out by
the authors clearly indicate that this is the case (with a third-order symlet filter, the
chi-square-based test rejects Benford’s law for 1199 images of the UCID database
as opposed to only 223 for the generalized law). Other experimental results, not
reported here, lead to the conclusion that our generalization also applies to speech
and music signals, thus paving the way for forensic applications dealing with these
kinds of sources.

19.9 APPENDIX

We wish to bound

bn =

∞∏
k=0

(
1 +

α2
n

(ck + 1)2

)−1

, αn =
2πn

log 10
.
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< 1 then below we show that
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We have

bn =

∞∏
k=0

(
(ck + 1)2 + α2

n

(ck + 1)2

)−1

=

∞∏
k=0

(ck + 1)2

(ck + 1)2 + α2
n

=
1

1 + α2
n

∞∏
k=1

(
1− α2

n

(ck + 1)2 + α2
n

)
,

log bn = − log(1 + α2
n) +

∞∑
k=1

log

(
1− α2

n

(ck + 1)2 + α2
n

)
. (19.43)

Using

log(1− u) = −
∞∑
�=1

u�

�
, (19.44)

we find

log bn = − log(1 + α2
n)−

∞∑
k=1

∞∑
�=1

1

�

(
α2
n

(ck + 1)2 + α2
n

)�

. (19.45)

Thus we obtain an upper bound for log bn (and hence an upper bound for bn) by
keeping only the � = 1 term above (each summand is positive, but is hit by a
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negative sign). Thus

log bn ≤ − log(1 + α2
n)−

∞∑
k=1

α2
n

(ck + 1)2 + α2
n

. (19.46)

A better estimate is obtainable by using the Euler–MacLaurin formula. We have
∞∑
k=1

α2
n

(ck + 1)2 + α2
n

≥
∫ ∞

x=1

α2
ndx

(cx+ 1)2 + α2
n

; (19.47)

the reason for this is that the integrand is monotonically decreasing, and the sum
is basically the upper sum approximation. Because of the minus sign, we thus
increase the bound on log bn if we replace the sum by this integral. We find

log bn ≤ − log(1 + α2
n)−

∫ ∞

x=1

α2
ndx

(cx + 1)2 + α2
n

= − log(1 + α2
n)−

∫ ∞

x=1

dx

1 +
(

cx+1
αn

)2 . (19.48)

We change variables. Let u = (cx + 1)/αn (so dx = αn

c du). Thus

log bn ≤ − log(1 + α2
n)−

αn

c

∫ ∞

c+1
αn

du

1 + u2
. (19.49)

As the antiderivative of (1 + u2)−1 is arctan(u) and arctan(∞) = π/2, we find

log bn ≤ − log(1 + α2
n)−

αn

c

(
arctan(∞)− arctan

(
c+ 1

αn

))
= − log(1 + α2

n)−
αnπ

2c
+

αn

c
arctan

(
c+ 1

αn

)
. (19.50)

Thus we are left with estimating the remaining arc-tangent. The Taylor series of
arc-tangent is

arctan(x) =

∞∑
�=0

(−1)�x2�+1

2�+ 1
. (19.51)

We assume from now on that c+1
αn

< 1. As we are only concerned with n ≥ 2,
this is a weak condition, and holds whenever c < 4.45. Using 0 < x < 1 implies
0 < arctan(x) < x (this follows because we have an alternating sum of terms
which decrease in absolute value), so we have

log bn ≤ − log(1 + α2
n)−

αnπ

2c
+

c+ 1

c
. (19.52)

Exponentiating yields

bn ≤ 1

1 + α2
n

· exp
(
−αnπ

2c

)
· exp

(
c+ 1

c

)
. (19.53)

Plugging in the value for αn yields

bn ≤ log2 10

log2 10 + (2πn)2
· exp

(
c+ 1

c

)
· exp

(
− π2n

c log 10

)
. (19.54)
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The Cauchy–Schwarz inequality states that

∣∣∣∣∣
∞∑
n=2

cnγn

∣∣∣∣∣ ≤
√√√√ ∞∑

n=2

c2n

√√√√ ∞∑
n=2

γ2
n. (19.55)

For us,

cn =
log2 10

log2 10 + (2πn)2
, γn = exp

(
− π2n

c log 10

)
. (19.56)

Lemma 19.9.1. We have

∞∑
n=2

c2n ≤ log 10

8π

(
π − 2 arctan

(
2π

log 10

)
− sin

(
2 arctan

(
2π

log 10

)))
≈ 0.00177749,

∞∑
n=2

γ2
n = exp

(
− 4π2

c log 10

)
·
[
1− exp

(
− 2π2

c log 10

)]−1

. (19.57)

Proof. We have

∞∑
n=2

c2n =

∞∑
n=2

⎛⎜⎝ 1

1 +
(

2πn
log 10

)2

⎞⎟⎠
2

=

(
1 +

(
2 · 2π
log 10

)2
)−2

+
∞∑
n=3

⎛⎜⎝ 1

1 +
(

2πn
log 10

)2

⎞⎟⎠
2

≤
(
1 +

(
2 · 2π
log 10

)2
)−2

+

∫ ∞

2

(
1 +

(
2πx

log 10

)2
)−2

dx (19.58)

(as the integrand is monotonically decreasing, thus we only increase the integral by
starting at 2 instead of 3). We first change variables by letting y = 2πx/ log 10,
and find

∞∑
n=3

c2n ≤ log 10

2π

∫ ∞

4π/ log 10

dy

(1 + y2)2
. (19.59)
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We now change variables by letting y = tan θ, so dy = sec2 θ dθ:
∞∑

n=3

c2n ≤ log 10

2π

∫ π/2

arctan(4π/ log 10)

sec2 θ dθ

(1 + tan2 θ)2

=
log 10

2π

∫ π/2

arctan(4π/ log 10)

sec2 θ dθ

sec4 θ

=
log 10

2π

∫ π/2

arctan(4π/ log 10)

cos2 θ dθ

=
log 10

2π

[
θ

2
+

sin(2θ)

4

]π/2
θ=arctan(4π/ log 10)

=
log 10

8π

(
π − 2 arctan

(
4π

log 10

)
− sin

(
2 arctan

(
4π

log 10

)))
≈ 0.00072228. (19.60)

Thus

∞∑
n=2

c2n ≤
(
1 +

(
4π

log 10

)2
)−2

+
log 10

8π

(
π − 2 arctan

(
4π

log 10

)
− sin

(
2 arctan

(
4π

log 10

)))
≈ 0.00177749. (19.61)

If instead we numerically evaluate the sum, we get approximately 0.00140459 (we
could easily get closer to this result by keeping more terms). In particular, we see
our estimation is quite good (we are off by about 26%).

We now turn to the sum of γ2
n:

∞∑
n=2

γ2
n =

∞∑
n=2

exp

(
− 2π2n

c log 10

)

= exp

(
− 4π2

c log 10

) ∞∑
�=0

(
exp

(
− 2π2

c log 10

))�

= exp

(
− 4π2

c log 10

)
·
[
1− exp

(
− 2π2

c log 10

)]−1

, (19.62)

where the last line follows by the geometric series formula. �

Lemma 19.9.2. We have
∞∑

n=2

bn ≤ 0.0422·exp
(
c+ 1

c

)
·exp

(
− 2π2

c log 10

)
·
[
1− exp

(
− 2π2

c log 10

)]−1/2

.

(19.63)

Proof. This follows immediately from the previous lemma and the Cauchy–Schwarz
inequality. �
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We can now give some good estimates on
∑

n≥2 bn for various values of c.
Instead of using our exact bound of about 0.001777 for the sum of c2n we instead
use the numerical bound of about 0.001405. We have

∞∑
n=2

bn ≤ g(c), (19.64)

where

g(c) = 0.0422 ·exp
(
c+ 1

c

)
·exp

(
− 2π2

c log 10

)
·
[
1− exp

(
− 2π2

c log 10

)]−1/2

.

(19.65)
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Chapter Twenty

Exercises

20.1 A QUICK INTRODUCTION TO BENFORD’S LAW

A couple of important points.

• There are many problems that would fit in multiple chapters. To help both
the instructors and the readers, we have decided to collect them here. Thus,
some of the exercises in this chapter will be far more accessible after reading
later parts of the book.

• In Mathematica, if you define the following function you can then use it to
find the first digit:

firstdigit[x_] := Floor[10^Mod[Log[10,x],1]]

(a similar function is definable in other languages, but the syntax will differ
slightly).

Exercise 20.1.1. If X is Benford base 10, find the probability that its significand
starts 2.789.

Exercise 20.1.2. If X is Benford base 10, find the probability that its significand
starts with 7.5 (in other words, its significand is in [7.5, 7.6)).

Exercise 20.1.3. If X is Benford base 10, find the probability that its significand
has no 7s in the first k digits (thus a significand of 1.701 would have no 7 in its first
digit, but it would have a 7 in its first two digits.

Exercise 20.1.4. Consider αn for various α and various ranges of n; for example,
take α ∈ {2, 3, 5, 10,√2,

√
5,
√
10, π, e, γ} (here γ is the Euler–Mascheroni con-

stant; see
http://en.wikipedia.org/wiki/Euler-Mascheroni constant
for a description and properties), and let n go from 1 to N , where N ∈ {103, 105,
107}. Which of these data sets do you expect to be Benford? Why or why not? Read
up about chi-square goodness of fit tests (see for example
http://en.wikipedia.org/wiki/Pearson chi square) and
compare the observed frequencies with the Benford probabilities.

http://en.wikipedia.org/wiki/Euler-Mascheroni_constant
http://en.wikipedia.org/wiki/Pearson_chi_square
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Exercise 20.1.5. Revisit the previous problem with more values ofN . The problem
is that there we looked at three snapshots of the behavior; it is far more interesting
to plot the chi-square values as a function ofN , forN ranging from say 100 to 107

or more. You will see especially interesting behavior if you look at the first digits of
πn.

Exercise 20.1.6. We have seen that the Benford behavior of a sequence is related
to equidistribution of its logarithm. Thus, in the previous problem it may be useful
to look at a log-log plot. Thus instead of plotting the chi-square value against the
upper boundN , plot the logarithm of the chi-square value against logN .

Exercise 20.1.7. Frequently taking logarithms helps illuminate relationships. For
example, Kepler’s third law (see http://www.physicsclassroom.com/class

/circles/Lesson-4/Kepler-s-Three-Laws) says that the square of the time it
takes a planet to orbit a sun is proportional to the cube of the semimajor axis.
Find data for these quantities for the eight planets in our system (or nine if you
count Pluto!) and plot them, and then do a log-log plot. A huge advantage of
log-log plots is that linear relations are easy to observe and estimate; try to find
the best fit line here, and note that the slope of the line should be close to 1.5 (if
T is the period and L is the length of the semimajor axis, Kepler’s third law is
that there is a constant C such that T 2 = CL3, or equivalently T = CL3/2, or
logT = 3

2 logL + logC). Revisit the original plot, and try to see that it supports
T 2 is proportional to L3!

Exercise 20.1.8. Prove the log-laws: if logb xi = yi and r > 0 then

• logb b = 1 and logb 1 = 0 (note logb x = y means x = by);

• logb(x
r) = r logb x;

• logb(x1x2) = logb x1 + logb x2 (the logarithm of a product is the sum of the
logarithms);

• logb(x1/x2) = logb x1−logb x2 (the logarithm of a quotient is the difference
of the logarithms; this follows directly from the previous two log-laws);

• logc x = logb x/ logb c (this is the change of base formula).

Exercise 20.1.9. The last log-law (the change of base formula) is often forgotten,
but is especially important. It tells us that if we can compute logarithms in one
base then we can compute them in any base. In other words, it suffices to create
just one table of logarithms, so we only need to find one base where we can easily
compute logarithms. What base do you think that is, and how would you compute
logarithms of arbitrary positive real numbers?

Exercise 20.1.10. The previous problem is similar to issues that arise in probabil-
ity textbooks. These books only provide tables of probabilities of random variables
drawn from a normal distribution,1 as one can convert from such a table to proba-
bilities for any other random variable. One such table is online here:

1The random variable X is normally distributed with mean μ and variance σ2 if its probability
density function is f(x;μ, σ) = exp

(−(x− μ)2/(2σ2)
)
/
√
2πσ2 .

http://www.physicsclassroom.com/class/circles/Lesson-4/Kepler-s-Three-Laws
http://www.physicsclassroom.com/class/circles/Lesson-4/Kepler-s-Three-Laws
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http://www.

mathsisfun.com/data/standard-normal-distribution-table.html . Use a stan-
dard table to determine the probability that a normal random variable with mean
μ = 5 and variance σ2 = 16 (so the standard deviation is σ = 4) takes on a
value between−3 and 7. Thus, similarly to the change of base formula, there is an
enormous computational saving as we only need to compute probabilities for one
normal distribution.

Exercise 20.1.11. Prove d
dx logb x = 1

x log b . Hint: First do this when b = e, the

base of the natural logarithms; use elog x = x and the chain rule.

Exercise 20.1.12. Revisit the first two problems, but now consider some other se-
quences, such as n!, cos(n) (in radians of course as otherwise the sequence is
periodic), n2, n3, nlogn, nlog logn, nlog log logn, nn. In some situations log4 does
not mean the logarithm base 4, but rather four iterations of the logarithm function.
It might be interesting to investigating nlogf(n) n under this definition for various
integer-valued functions f .

Exercise 20.1.13. Revisit the previous problem but for some recurrence relations.
For example, try the Fibonacci numbers (Fn+2 = Fn+1 + Fn with F0 = 0 and
F1 = 1) and some other relations, such as the following.

• Catalan numbers: Cn = 1
n+1

(
2n
n

)
; these satisfy a more involved recurrence

(see
http://en.wikipedia.org/wiki/Catalan number).

• Squaring Fibonaccis: Gn+2 = G2
n+1 +G2

n with G0 = 0 and G1 = 1.

• Fp where p is a prime (i.e., only look at the Fibonaccis at a prime index).

• The logistic map: xn+1 = rxn(1−xn) for various choices of r and starting
values x0 (see http://en.wikipedia.org/wiki/Recurrence relation).

• Newton’s method for the difference between the nth prediction and the true
value. For example, to find the square root of α we use xn+1 = 1

2

(
xn+

α
xn

)
,

and thus we would study the distribution of leading digits of |√α−xn|. One
could also look at other roots, other numbers, or more complicated functions.
For more on Newton’smethod, see http://mathworld.wolfram.com
/NewtonsMethod.html.

• The 3x + 1 Map: xn+1 = 3xn + 1 if xn is odd and xn/2 if xn is even
(though some authors use a slightly different definition, where for xn even,
one instead lets xn+1 = xn/2

d, where d is the highest power of 2 dividing
xn). It is conjectured that no matter what positive starting seed x0 you take,
eventually xn cycles among 4, 2, and 1 for n sufficiently large (or is identi-
cally 1 from some point onward if we use the second definition). We return to
this problem in Chapter 3.

http://www.mathsisfun.com/data/standard-normal-distribution-table.html
http://en.wikipedia.org/wiki/Catalan_number
http://en.wikipedia.org/wiki/Recurrence_relation
http://mathworld.wolfram.com/NewtonsMethod.html.
http://www.mathsisfun.com/data/standard-normal-distribution-table.html
http://mathworld.wolfram.com/NewtonsMethod.html.
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For the remaining problems, whenever a data set satisfies Benford’s Law we
mean the strong version of the law. This means the cumulative distribution function
of the significand is FX(s) = log10(s) for s ∈ [1, 10), which implies that the
probability of a first digit of d is log10(1 + 1/d).

Exercise 20.1.14. If a data set satisfies (the strong version of) Benford’s Law base
10, what are the probabilities of all pairs of leading digits? In other words, what is
the probability the first two digits are d1d2 (in that order)? What if instead our set
were Benford base b?

Exercise 20.1.15. LetX be a random variable that satisfies (the strong version of)
Benford’s Law. What is the probability that the second digit is d? Note here that
the possible values of d range from 0 to 9.

Exercise 20.1.16. Building on the previous problem, compute the probability that
a random variable satisfying the strong version of Benford’s Law has its kth digit
equal to d. If we denote these probabilities by pk(d), what is limk→∞ pk(d)? Prove
your claim.

Exercise 20.1.17. Find a data set that is spread over several orders of magnitude,
and investigate its Benfordness (for example, stock prices or volume traded on a
company that has been around for decades).

Exercise 20.1.18. Look at some of the data sets from the previous exercises that
were not Benford, and see what happens if you multiply them together. For example,
consider n2 ·cos(n) (in radians), or n2

√
10

n
cos(n), or even larger products. Does

this support the claim in the chapter that products of random variables tend to
converge to Benford behavior?

Exercise 20.1.19. Let μk;b denote the mean of significands of k digits of random
variables perfectly satisfying Benford’s Law, and let μb denote the mean of the
significands of random variables perfectly following Benford’s Law. What is μk;b

for k ∈ 1, 2, 3? Does μk;b converge to μb? If yes, bound |μk;b − μb| as a function
of k.

Exercise 20.1.20. Benford’s Law can be viewed as the distribution on significands
arising from the density p(x) = 1

x log(10) on [1, 10) (and 0 otherwise). More gen-
erally, consider densities pr(x) = Cr/x

r for x ∈ [1, 10) and 0 otherwise with
r ∈ (−∞,∞), where Cr is a normalization constant so that the density integrates
to 1. For each r, calculate the probability of observing a first digit of d, and calcu-
late the expected value of the first digit.

20.2 A SHORT INTRODUCTION TO THE MATHEMATICAL THEORY

OF BENFORD’S LAW

For a more detailed development of this material, see An Introduction to Benford’s
Law [BerH5] by Berger and Hill.
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20.3 FOURIER ANALYSIS AND BENFORD’S LAW

20.3.1 Problems from Introduction to Fourier Analysis

The following exercises are from the chapter “An Introduction to Fourier Analysis,”
from the bookAn Invitation to Modern Number Theory (Princeton University Press,
Steven J. Miller and Ramin Takloo-Bighash). This chapter is available online on
the web page for this book (go to the links for Chapter 3).

Exercise 20.3.1. Prove ex converges for all x ∈ R (even better, for all x ∈ C).
Show the series for ex also equals

lim
n→∞

(
1 +

x

n

)n

, (20.1)

which you may remember from compound interest problems.

Exercise 20.3.2. Prove, using the series definition, that ex+y = exey and calculate
the derivative of ex.

Exercise 20.3.3. Let f , g, and h be continuous functions on [0, 1], and a, b ∈ C.
Prove

1. 〈f, f〉 ≥ 0, and equals 0 if and only if f is identically zero;

2. 〈f, g〉 = 〈g, f〉;
3. 〈af + bg, h〉 = a〈f, h〉+ b〈g, h〉.

Exercise 20.3.4. Find a vector �v =
(

v1
v2

)
∈ C2 such that v21 + v22 = 0, but

〈�v,�v〉 �= 0.

Exercise 20.3.5. Prove xn and xm are not perpendicular on [0, 1]. Find a c ∈ R
such that xn − cxm is perpendicular to xm; c is related to the projection of xn in
the direction of xm.

Exercise 20.3.6 (Important). Show form,n ∈ Z that

〈em(x), en(x)〉 =

{
1 if m = n,

0 otherwise.
(20.2)

Exercise 20.3.7. Let f and g be periodic functions with period a. Prove αf(x) +
βg(x) is periodic with period a.

Exercise 20.3.8. Prove any function can be written as the sum of an even and an
odd function.

Exercise 20.3.9. Show

〈f(x)− f̂(n)en(x), en(x)〉 = 0. (20.3)

This agrees with our intuition: after removing the projection in a certain direction,
what is left is perpendicular to that direction.
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Exercise 20.3.10. Prove

1. 〈f(x)− SN (x), en(x)〉 = 0 if |n| ≤ N ;

2. |f̂(n)| ≤ ∫ 1

0
|f(x)|dx;

3. Bessel’s Inequality: if 〈f, f〉 < ∞ then
∑∞

n=−∞ |f̂(n)|2 ≤ 〈f, f〉;

4. Riemann–Lebesgue Lemma: if 〈f, f〉 < ∞ then lim|n|→∞ f̂(n) = 0 (this

holds for more general f ; it suffices that
∫ 1

0
|f(x)|dx < ∞);

5. Assume f is differentiable k times; integrating by parts, show |f̂(n)| � 1
nk

and the constant depends only on f and its first k derivatives.

Exercise 20.3.11. Let h(x) = f(x) + g(x). Does ĥ(n) = f̂(n) + ĝ(n)? Let
k(x) = f(x)g(x). Does k̂(n) = f̂(n)ĝ(n)?

Exercise 20.3.12. If 〈f, f〉, 〈g, g〉 < ∞ then the dot product of f and g exists:
〈f, g〉 < ∞ (see Remark 11.2.4 of [MiT-B]). Do there exist f, g : [0, 1] → C such
that

∫ 1

0 |f(x)|dx, ∫ 1

0 |g(x)|dx < ∞ but
∫ 1

0 f(x)g(x)dx = ∞? Is f ∈ L2([0, 1]) a
stronger or an equivalent assumption to f ∈ L1([0, 1])?

Exercise 20.3.13. Define

AN (x) =

{
N for |x| ≤ 1

N ,

0 otherwise.
(20.4)

Prove AN is an approximation to the identity on [− 1
2 ,

1
2 ]. If f is continuously

differentiable and periodic with period 1, calculate

lim
N→∞

∫ 1
2

− 1
2

f(x)AN (x)dx. (20.5)

Exercise 20.3.14. LetA(x) be a non-negative function with
∫
R
A(x)dx = 1. Prove

AN (x) = N · A(Nx) is an approximation to the identity on R.

Exercise 20.3.15 (Important). Let AN (x) be an approximation to the identity on
[− 1

2 ,
1
2 ]. Let f(x) be a continuous function on [− 1

2 ,
1
2 ]. Prove

lim
N→∞

∫ 1
2

− 1
2

f(x)AN (x)dx = f(0). (20.6)

Exercise 20.3.16. Prove the two formulas above. The geometric series formula
will be helpful:

M∑
n=N

rn =
rN − rM+1

1− r
. (20.7)

Exercise 20.3.17. Show that the Dirichlet kernels are not an approximation to the
identity. How large are

∫ 1

0
|DN(x)|dx and ∫ 1

0
DN(x)2dx?
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Exercise 20.3.18. Prove the Weierstrass Approximation Theorem implies the orig-
inal version of the Weierstrass Theorem.

Exercise 20.3.19. Let f(x) be periodic function with period 1. Show

SN (x0) =

∫ 1
2

− 1
2

f(x)DN (x− x0)dx =

∫ 1
2

− 1
2

f(x0 − x)DN (x)dx. (20.8)

Exercise 20.3.20. Let f̂(n) = 1
2|n| . Does

∑∞
−∞ f̂(n)en(x) converge to a continu-

ous, differentiable function? If so, is there a simple expression for that function?

Exercise 20.3.21. Fill in the details for the above proof. Prove the result for all f
satisfying

∫ 1

0
|f(x)|2dx < ∞.

Exercise 20.3.22. If
∫ 1

0
|f(x)|2dx < ∞, show Bessel’s Inequality implies there

exists a B such that |f̂(n)| ≤ B for all n.

Exercise 20.3.23. Though we used |a+ b|2 ≤ 4|a|2+4|b|2, any bound of the form
c|a|2 + c|b|2 would suffice. What is the smallest c that works for all a, b ∈ C?

Exercise 20.3.24. Let f(x) = 1
2 − |x| on [− 1

2 ,
1
2 ]. Calculate

∑∞
n=0

1
(2n+1)2 . Use

this to deduce the value of
∑∞

n=1
1
n2 . This is often denoted ζ(2) (see Exercise 3.1.7

of [MiT-B]). See [BoPo]2 for connections with continued fractions, and [Kar]3 for
connections with quadratic reciprocity.

Exercise 20.3.25. Let f(x) = x on [0, 1]. Evaluate
∑∞

n=1
1
n2 .

Exercise 20.3.26. Let f(x) = x on [− 1
2 ,

1
2 ]. Prove π

4 =
∑∞

n=1
(−1)n+1

(2n−1)2 . See

also Exercise 3.3.29, and see Chapter 11 of [BorB]4 or [Schum]5 for a history of
calculations of π.

Exercise 20.3.27. Find a function to determine
∑∞

n=1
1
n4 .

Exercise 20.3.28. Show the Gaussian f(x) = 1√
2πσ2

e−(x−μ)2/2σ2

is in S(R) for
any μ, σ ∈ R.

Exercise 20.3.29. Let f(x) be a Schwartz function with compact support contained
in [−σ, σ] and denote its Fourier transform by f̂(y). Prove for any integer A > 0

that |f̂(y)| ≤ cfy
−A, where the constant cf depends only on f , its derivatives

and σ. As such a bound is useless at y = 0, one often derives bounds of the form
|f̂(y)| ≤ c̃f

(1+|y|)A .

2E. Bombieri and A. van der Poorten, Continued fractions of algebraic numbers. Pages 137–152
in Computational Algebra and Number Theory (Sydney, 1992), Mathematical Applications, Vol. 325,
Kluwer Academic, Dordrecht, 1995.

3A. Karlsson, Applications of heat kernels on Abelian groups: ζ(2n), quadratic reciprocity, Bessel
integral, preprint.

4J. Borwein and P. Borwein, Pi and the AGM: A Study in Analytic Number Theory and Computational
Complexity, John Wiley and Sons, New York, 1987.

5P. Schumer, Mathematical Journeys, Wiley-Interscience, John Wiley & Sons, New York, 2004.
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Exercise 20.3.30. Consider

f(x) =

{
n6

(
1
n4 − |n− x|) if |x− n| ≤ 1

n4 for some n ∈ Z,

0 otherwise.
(20.9)

Show f(x) is continuous but F (0) is undefined. Show F (x) converges and is well
defined for any x �∈ Z.

Exercise 20.3.31. If g(x) decays like x−(1+η) for some η > 0, thenG(x) =
∑

n∈Z
g(x+ n) converges for all x, and is continuous.

Exercise 20.3.32. For what weaker assumptions on f, f ′, f ′′ does
∑

n∈Z f(n) =∑
n∈Z f̂(n)?

Exercise 20.3.33. One cannot always interchange orders of integration. For sim-
plicity, we give a sequence amn such that

∑
m(

∑
n am,n) �=

∑
n(
∑

m am,n). For
m,n ≥ 0 let

am,n =

⎧⎪⎨⎪⎩
1 if n = m,

−1 if n = m+ 1,

0 otherwise.

(20.10)

Show that the two different orders of summation yield different answers (the reason
for this is that the sum of the absolute value of the terms diverges).

Exercise 20.3.34. Find a family of functions fn(x) such that

lim
n→∞

∫ ∞

−∞
fn(x)dx �=

∫ ∞

−∞
lim
n→∞

fn(x)dx (20.11)

and each fn(x) and f(x) is continuous and |fn(x)|, |f(x)| ≤ M for someM and
all x.

Exercise 20.3.35. Let f, g be continuous functions on I = [0, 1] or I = R. Show if
〈f, f〉, 〈g, g〉 < ∞ then h = f ∗g exists. Hint: Use the Cauchy–Schwarz inequality.
Show further that ĥ(n) = f̂(n)ĝ(n) if I = [0, 1] or if I = R. Thus the Fourier
transform converts convolution to multiplication.

Exercise 20.3.36. Let X1, X2 be independent random variables with density p.
Prove

Prob(X1 +X2 ∈ [a, b]) =

∫ b

a

(p ∗ p)(z)dz. (20.12)

Exercise 20.3.37 (Important). If for all i = 1, 2, . . . we have 〈fi, fi〉 < ∞, prove
for all i and j that 〈fi ∗ fj , fi ∗ fj〉 < ∞. What about f1 ∗ (f2 ∗ f3) (and so on)?
Prove f1 ∗ (f2 ∗ f3) = (f1 ∗ f2) ∗ f3. Therefore convolution is associative, and we
may write f1 ∗ · · · ∗ fN for the convolution ofN functions.

Exercise 20.3.38. SupposeX1, . . . , XN are i.i.d.r.v. from a probability distribution
p on R. Determine the probability that X1 + · · · + XN ∈ [a, b]. What must be
assumed about p for the integrals to converge?
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Exercise 20.3.39. One useful property of the Fourier transform is that the deriva-
tive of ĝ is the Fourier transform of 2πixg(x); thus, differentiation (hard) is con-
verted to multiplication (easy). Explicitly, show

ĝ′(y) =

∫ ∞

−∞
2πix · g(x)e−2πixydx. (20.13)

If g is a probability density, note ĝ′(0) = −2πiE[x] and ĝ′′(0) = −4π2E[x2].

Exercise 20.3.40. If B(x) = A(cx) for some fixed c �= 0, show B̂(y) = 1
c Â

(
y
c

)
.

Exercise 20.3.41. Show that if the probability density of X1 + · · · + XN = x is
(p ∗ · · · ∗ p)(x) (i.e., the distribution of the sum is given by p ∗ · · · ∗ p), then the
probability density of X1+···+XN√

N
= x is (

√
Np ∗ · · · ∗ √Np)(x

√
N). By Exercise

20.3.40, show

FT
[
(
√
Np ∗ · · · ∗

√
Np)(x

√
N)

]
(y) =

[
p̂

(
y√
N

)]N
. (20.14)

Exercise 20.3.42. Show for any fixed y that

lim
N→∞

[
1− 2π2y2

N
+O

(
y3

N3/2

)]N
= e−2π2y2

. (20.15)

Exercise 20.3.43. Show that the Fourier transform of e−2π2y2

at x is 1√
2π

e−x2/2.
Hint: This problem requires contour integration from complex analysis.

Exercise 20.3.44. Modify the proof to deal with the case of p having mean μ and
variance σ2.

Exercise 20.3.45. For reasonable assumptions on p, estimate the rate of conver-
gence to the Gaussian.

Exercise 20.3.46. Let p1, p2 be two probability densities satisfying∫ ∞

−∞
xpi(x)dx = 0,

∫ ∞

−∞
x2pi(x)dx = 1,

∫ ∞

−∞
|x|3pi(x)dx < ∞. (20.16)

Consider SN = X1+ · · ·+XN , where for each i,X1 is equally likely to be drawn
randomly from p1 or p2. Show the Central Limit Theorem is still true in this case.
What if we instead had a fixed, finite number of such distributions p1, . . . , pk, and
for each i we drawXi from pj with probability qj (of course, q1 + · · ·+ qk = 1)?

Exercise 20.3.47 (Gibbs Phenomenon). Define a periodic with period 1 function
by

f(x) =

{
−1 if − 1

2 ≤ x < 0,

1 if 0 ≤ x < 1
2 .

(20.17)

Prove that the Fourier coefficients are

f̂(n) =

{
0 if n is even,
4

nπi if n is odd.
(20.18)
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Show that theN th partial Fourier series SN (x) converges pointwise to f(x) wher-
ever f is continuous, but overshoots and undershoots for x near 0. Hint: Express
the series expansion forSN (x) as a sum of sines. Note sin(2mπx)

2mπ =
∫ x

0 cos(2mπt)dt.
Express this as the real part of a geometric series of complex exponentials, and use
the geometric series formula. This will lead to

S2N−1(x) = 8

∫ x

0

�
(

1

2i

e4nπit − 1

sin(2πt)

)
dt = 4

∫ x

0

sin(4nπt)

sin(2πt)
dt, (20.19)

which is about 1.179 (or an overshoot of about 18%) when x = 1
4nπ . What can

you say about the Fejér series TN (x) for x near 0?

Exercise 20.3.48 (Nowhere Differentiable Function). Weierstrass constructed a
continuous but nowhere differentiable function! We give a modified example and
sketch the proof. Consider

f(x) =

∞∑
n=0

an cos(2n · 2πx), 1

2
< a < 1. (20.20)

Show f is continuous but nowhere differentiable. Hint: First show |a| < 1 implies
f is continuous. Our claim on f follows from noting that if a periodic continuous
function g is differentiable at x0 and ĝ(n) = 0 unless n = ±2m, then there exists
C such that for all n, |ĝ(n)| ≤ Cn2−n. To see this, it suffices to consider x0 = 0
and g(0) = 0. Our assumptions imply that (g, em) = 0 if 2n−1 < m < 2n+1 and
m �= 2n. We have ĝ(2n) = (g, e2nF2n−1(x)) where FN is the Fejér kernel. The
claim follows from bounding the integral (g, e2nF2n−1(x)). In fact, more is true:
Baire showed that, in a certain sense, “most” continuous functions are nowhere
differentiable! See, for example, [Fol].6

Exercise 20.3.49 (Isoperimetric Inequality). Let γ(t) = (x(t), y(t)) be a smooth
closed curve in the plane; we may assume it is parametrized by arc length and has
length 1. Prove the enclosed area A is largest when γ(t) is a circle. Hint: By
Green’s Theorem ∮

γ

xdy − ydx = 2Area(A). (20.21)

The assumptions on γ(t) imply x(t), y(t) are periodic functions with Fourier series

expansions and
(
dx
dt

)2
+

(
dy
dt

)2
= 1. Integrate this equality from t = 0 to t =

1 to obtain a relation among the Fourier coefficients of dx
dt and dx

dt (which are
related to those of x(t) and y(t)); (20.21) gives another relation among the Fourier
coefficients. These relations imply 4πArea(A) ≤ 1 with strict inequality unless the
Fourier coefficients vanish for |n| > 1. After some algebra, one finds this implies
we have a strict inequality unless γ is a circle.

Exercise 20.3.50 (Applications to Differential Equations). One reason for the in-
troduction of Fourier series was to solve differential equations. Consider the vi-
brating string problem: a unit string with endpoints fixed is stretched into some

6G. Folland, Real Analysis: Modern Techniques and Their Applications, 2nd edition, Pure and Ap-
plied Mathematics, Wiley-Interscience, New York, 1999.



EXERCISES 383

initial position and then released; describe its motion as time passes. Let u(x, t)
denote the vertical displacement from the rest position x units from the left end-
point at time t. For all t we have u(0, t) = u(1, t) = 0 as the endpoints are fixed.
Ignoring gravity and friction, for small displacements Newton’s laws imply

∂2u(x, t)

∂x2
= c2

∂2u(x, t)

∂t2
, (20.22)

where c depends on the tension and density of the string. Guessing a solution of the
form

u(x, t) =
∞∑
n=1

an(t) sin(nπx), (20.23)

solve for an(t).
One can also study problems on R by using the Fourier transform. Its use stems

from the fact that it converts multiplication to differentiation, and vice versa: if

g(x) = f ′(x) and h(x) = xf(x), prove that ĝ(y) = 2πiyf̂(y) and df̂(y)
dy =

−2πiĥ(y). This and Fourier inversion allow us to solve problems such as the heat
equation

∂u(x, t)

∂t
=

∂2u(x, t)

∂x2
, x ∈ R, t > 0 (20.24)

with initial conditions u(x, 0) = f(x).

20.3.2 Problems from Chapter 1: Revisited

Many of the problems from Chapter 1 are appropriate here as well. In addition to
reexamining those problems, consider the following.

Exercise 20.3.51. Is the sequence an = nlogn Benford?

Exercise 20.3.52. In some situations log4 does not mean the logarithm base 4, but
rather four iterations of the logarithm function. Investigate nlogf(n) n under this
definition for various integer-valued functions f .

20.3.3 Problems from Chapter 3

Exercise 20.3.53. Assume an infinite sequence of real numbers {xn} has its log-
arithms modulo 1, {yn = log10 xn mod 1}, satisfying the following property: as
n → ∞ the proportion of yn in any interval [a, b] ⊂ [0, 1] converges to b − a if
b− a > 1/2. Prove or disprove that {xn} is Benford.
Exercise 20.3.54. As

√
2 is irrational, the sequence {xn = n

√
2} is uniformly

distributed modulo 1. Is the sequence {x2
n} uniformly distributed modulo 1?

Exercise 20.3.55. Does there exist an irrational α such that α is a root of a
quadratic polynomial with integer coefficients and the sequence {αn}∞n=1 is Ben-
ford base 10?
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Exercise 20.3.56. We showed a geometric Brownian motion is a Benford-good
process; is the sum of two independent geometric Brownian motions Benford-good?

The next few questions are related to a map we now describe. We showed that,
suitably viewed, the 3x + 1 map leads to Benford behavior (or is close to Ben-
ford for almost all large starting seeds). Consider the following map. Let R(x) be
the number formed by writing the digits of x in reverse order. If R(x) = x we
say x is palindromic. If x is not a palindromic number set P (x) = x + R(x),
and if x is palindromic let P (x) = x. For a given starting seed x0 consider
the sequence where xn+1 = P (x). It is not known whether there are any x0

such that the resulting sequence diverges to infinity, though it is believed that al-
most all such numbers do. The first candidate to escape is 196; for more see
http://en.wikipedia.org/wiki/Lychrel number (this process is also
called “reverse-and-add,” and the candidates are called Lychrel numbers).

Exercise 20.3.57. Consider the reverse-and-add map described above applied to
a large starting seed. Find as good of a lower bound as you can for the number of
seeds between 10n and 10n+1 such that the resulting sequence stabilizes (i.e., we
eventually hit a palindrome).

Exercise 20.3.58. Come up with a model to estimate the probability a given start-
ing seed in 10n and 10n+1 has its iterates under the reverse-and-add map diverge
to infinity. Hint: x plus R(x) is a palindrome if and only if there are no carries
when we add; thus you must estimate the probability of having no carries.

Exercise 20.3.59. Investigate the Benfordness of sequences arising from the reverse-
and-add map for various starting seeds. Of course the calculation is complicated
by our lack of knowledge about this map, specifically we don’t know even one start-
ing seed that diverges! Look at what happens with various Lychrel numbers. For
each N can you find a starting seed x0 such that it iterates to a palindrome after
N or more steps?

Exercise 20.3.60. Redo the previous three problems in different bases. Your answer
will depend now on the base; for example, much more is known base 2 (there we
can give specific starting seeds that iterate to infinity).

Exercise 20.3.61. Use the Erdös–Turan Inequality to calculate upper bounds for
the discrepancy for various sequences, and use those results to prove Benford be-
havior. Note you need to find a sequence where you can do the resulting compu-
tation. For example, earlier we investigated an = nlogn; are you able to do the
summation for this case?

Exercise 20.3.62. Consider the analysis of products of random variables. Fix a
probability p (maybe p = 1/2), and independent identically distributed random
variables X1, . . . , Xn. Assume as n → ∞ the product of the Xi’s becomes Ben-
ford. What if now we let X̃n be the random variable where we toss n independent
coins, each with probability p, and if the ith toss is a head thenXi is in the product
(if the product is empty we use the standard convention that it is then 1). Is this
process Benford?

http://en.wikipedia.org/wiki/Lychrel_number
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Exercise 20.3.63. Redo the previous problem, but drop the assumption that the
random variables are identically distributed.

Exercise 20.3.64. Redo the previous two problems, but now allow the probability
that the ith toss is a head to depend on i.

Exercise 20.3.65. Consider

φm =

{
m if |x− 1

8 | ≤ 1
2m ,

0 otherwise;
(20.25)

this is the function from Example 3.3.5 and led to non-Benford behavior for the
product. Can you write down the density for the product?

Exercise 20.3.66. In the spirit of the previous problem, find other random variables
where the product is not Benford.

Exercise 20.3.67. Consider a Weibull random variable with a scale parameter α
of 1 and translation parameter β of 0; so f(x; γ) = xγ−1 exp(xγ) for x ≥ 0 and
is zero otherwise. Investigate the Benfordness of chaining random variables here,
where the shape parameter γ is the output of the previous step.

Exercise 20.3.68. The methods of [JaKKKM] led to good bounds for chaining
exponential and uniform random variables. Can you obtain good, explicit bounds
in other cases? For example, consider a binomial process with fixed parameter p.

Exercise 20.3.69. Apply the methods of Cuff, Lewis, and Miller (for the Weibull
distribution) to other random variables. Consider the generalized Gamma distri-
bution (see

http://en.wikipedia.org/wiki/Generalized gamma distribution

for more information), where the density is

f(x; a, d, p) =
p/da

Γ(d/p)
xd−1 exp (−(x/a)p)

for x > 0 and 0 otherwise, where a, d, p are positive parameters.

For the next few problems, let fr(x)− 1/(1 + |x|r) with r > 1.

Exercise 20.3.70. Show that for r > 1,
∫∞
−∞ fr (x) dx is finite, and

∫∞
−∞ fr (x) dx

= 2π
r csc

(
π
r

)
.

Exercise 20.3.71. Verify the Fourier transform identity used in our analysis:

pr
(
eb+y

)
eb+y =

1

2
sin

(π
r

)
e2πiby csc

(π
r
(1− 2πiy)

)
,

where b ∈ [0, 1].

http://en.wikipedia.org/wiki/Generalized_gamma_distribution
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20.4 BENFORD’S LAW GEOMETRY

Exercise 20.4.1. Perform a chi-square goodness-of-fit test on the data values in
Table 4.1.

Exercise 20.4.2. Let the random variable X have the Benford distribution as de-
fined in this chapter. Find E[X ]. Next, generate one million Benford random vari-
ates and compute their sample mean. Perform this Monte Carlo experiment several
times to ensure that the sample means are near E[X ].

Exercise 20.4.3. Let T ∼ exponential(1). Find the probability mass function of
the leading digit to three-digit accuracy. Compare your results to those in Table
4.2.

Exercise 20.4.4. Redo the previous exercise, but instead of finding the probability
mass function of the leading digit, find the cumulative distribution function of the
significand (i.e., find the probability of observing a significand of at most s).

Exercise 20.4.5. Determine the set of conditions on a, b, and c associated with
W ∼ triangular(a, b, c) which result in T = 10W following Benford’s Law.

Exercise 20.4.6. Use R to confirm that the cumulative distribution functionFx(x) =
Prob(X ≤ x) = log10(x+ 1) results in a probability mass function that gives the
distribution specified in Benford’s Law. What is the range of x?

Exercise 20.4.7. Use R to determine whether the cumulative distribution function
Fx(x) = Prob(X ≤ x) = x2 (for some range for x) results in a probability mass
function that gives the distribution specified in Benford’s Law. If yes, what is the
range for x?

Exercise 20.4.8. Which of the following distributions ofW follow Benford’s Law?

• fW (w) ∼ U(0, 3.5).

• fW (w) ∼ U(17, 117).

• fW (w) = w3−w2+w for 0 ≤ w ≤ 1, and 1−w3+w2−w for 1 ≤ w ≤ 2.

• fW (w) =
√
w for 0 ≤ w ≤ 1, and 1−√

w − 1 for 1 ≤ w ≤ 2.

Exercise 20.4.9. Let b1 and b2 be two different integers exceeding 1. Is there a
probability density p on an interval I such that if a random variable X has p for
its probability density function then X is Benford in both base b1 and b2? What if
the two bases are allowed to be real numbers exceeding 1? Prove your claims.

20.5 EXPLICIT ERROR BOUNDS VIA TOTAL VARIATION

Exercise 20.5.1. Find TV(sin(x), [−π, π]).

Exercise 20.5.2. Confirm that TV(h, J) = TV+(h, J) + TV−(h, J).
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Exercise 20.5.3. Let Yo and Z be independent random variables such that Yo has
a density fo with TV(fo) < ∞ and Z has distribution π. Verify that Y := Yo + Z
has density f(y) =

∫
fo(y − z)π(dz) with TV(f) ≤ TV(fo).

Exercise 20.5.4. Show that an absolutely continuous probability density f on R
satisfies

TV(f)2 ≤
∫

f ′(x)2

f(x)
dx.

Exercise 20.5.5. Let γa,σ be the density of the Gamma distributionGamma(a, σ)
with shape parameter a > 0 and scale parameter σ > 0, i.e.,

γa,σ(x) = σ−axa−1 exp(−x/σ)/Γ(a)

for x > 0, and γa,σ = 0 on (−∞, 0].

1. Show that for a ≥ 1,

TV(γa,σ) = σ−1 TV(γa,1) and TV(γa,1) = 2((a− 1)/e)a−1/Γ(a).

2. It is well known that Γ(t+1) = (t/e)t
√
2πt(1+o(1)) as t → ∞ (this is Stir-

ling’s formula). What does this imply forTV(γa,1)? Show thatTV(γa,σ) →
0 as

√
a σ → ∞ and a ≥ 1.

Exercise 20.5.6. Let X be a strictly positive random variable with density h on
(0,∞). Verify that Y := logB(X) has density f given by f(y) = log(B)Byh(By)
for y ∈ R.

Exercise 20.5.7. Let X be a random variable with distribution Gamma(a, σ) for
some a, σ > 0; see Exercise 20.5.5.

1. Determine the density fa,σ of Y := logB(X). Here you should realize that
fa,σ(y) = fa,1(y − logB(σ)). Show then that

TV(fa,σ) = 2 log(B)(a/e)a/Γ(a).

What happens as a → ∞?

2. To understand why the leading digits of X are far from Benford’s Law for
large a, verify thatX = σ(a+

√
aZa) for a random variable Za with mean

zero and variance one. (Indeed, the density of Za converges uniformly to the
standard Gaussian density as a → ∞.) Now investigate the distribution of
Y = logB(X) as a → ∞.

20.6 LÉVY PROCESSES AND BENFORD’S LAW

Exercise 20.6.1. Provide an example of a non-continuous cadlag function.

Exercise 20.6.2. Prove that a Weiner process is also a Lévy process.

Exercise 20.6.3. Prove that a Poisson process is also a Lévy process.
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Exercise 20.6.4. Prove that the exponential Lévy process {exp(Xt)} (t ∈ R) is a
martingale with respect to (Ft) := σ{Xs : s ≤ t} if and only if E[exp(Xt)] = 1.

Exercise 20.6.5. Let f(t) = E[exp(itξ)], g(t) = E[exp(itη)] (t ∈ R) be the
characteristic functions of (real-) valued random variables ξ, η (i =

√−1). Recall
that exp(it) = cos t+ i sin t (t ∈ R) and E[exp(itξ)] := E[cos(tξ)] + iE[sin(tξ)]
(t ∈ R). Finally, a+ ib := a − ib (a, b ∈ R) denotes the complex conjugate of
a+ ib. Note that |f |2(t) = f(t) · f̄(t). Show the following.

1. f is continuous, f(0) = 1, and |f(t)| ≤ 1, t ∈ R.

2. f̄ is a characteristic function.

3. f · g is a characteristic function. Hence, |f |2is a characteristic function.
4. Let h1, h2, . . . be characteristic functions. If a1 ≥ 0, a2 ≥ 0, . . . are real

numbers such that a1+a2+· · · = 1, then a1h1+a2h2+· · · is a characteristic
function.

5. Show that every characteristic function h is non-negative definite, i.e., for all
n ≥ 2, real t1, . . . , tn, and complex a1, . . . , an we have that

n∑
j=1

n∑
k=1

h(tj − tk)aj āk ≥ 0.

Exercise 20.6.6. Show that, for each real number p > 0, f(z) := cos(2πpz) (z ∈
R) is a characteristic function. Deduce that g(z) := (cos(2πpz))2 (z ∈ R) is a
characteristic function.

Exercise 20.6.7. (This exercise gives an example of a characteristic function which
“wildly fluctuates.”) It follows from Exercises 20.6.6 and 20.6.5(4) that

h(z) :=

∞∑
k=1

2−k(cos(2π7kz))2, z ∈ R

is a characteristic function. Show that h is of infinite total variation over each
non-degenerate interval [a, b], i.e.,

sup

{
n∑

k=1

|h(zk+1)− h(zk)|
}

= ∞,

the supremum taken over all n ≥ 1 and real numbers a ≤ z1 < z2 < · · · <
zn+1 ≤ b.

Hint: It suffices to prove the claim for intervals [r + 7−N , r + 2 · 7−N ] (being
convenient for calculations!) where N ≥ 1 is an integer and r ≥ 0 a real number.
Let k ≥ N+1 and denote by I(k) the set of integers j such that 1+(r+7−N)7k <
j ≤ ((r+2·7−N)7k). For j ∈ I(k) put t2j−1(k) = (j−1/4)7−k, t2j(k) = j ·7−k.
Show, by using the inequalities |a + b| ≥ |a| − |b| and |(cos b)2 − (cos a)2| ≤
2|b− a| (a, b ∈ R) that∑

j∈I(k)
|h(t2j(k))− h(t2j−1(k))| ≥ 2(1− π/5)7−N(7/2)k + const.
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Exercise 20.6.8. 1. Try to guess how the integral
∫ b

a f(z) exp(itz)dz behaves
as t → ∞ if f : [a, b] → R is a step function of the form f(t) =

∑m
j=1 cjI[bj−1,bj)(t)

where a ≤ b0 < b1 < · · · < bm ≤ b.

2. Verify your guess when f is an indicator function of an interval.

3. How does the above integral behave when f is continuous on [a, b]?

Exercise 20.6.9. Show that a Lévy measure Q satisfies Q(R r (−α, α)) < ∞ for
all α > 0.

Exercise 20.6.10. LetX be a Lévy process having Lévy measureQ. Show that, for
fixed c > 0 and s ≥ 0, the process X∗ given by X∗

t = Xct+s − Xs (t ≥ 0) is a
Lévy process having Lévy measure Q∗ = cQ.

Exercise 20.6.11. Let N = (Nt) (t ≥ 0) be a Poisson process with parameter
λ > 0.

1. Verify that the generating triple of N is given by (λ, 0, Q∗) where Q∗ has
total mass λ concentrated on {1}.

2. Verify (6.15) directly forX = N , i.e.,

Q∗(A) = c−1E[#{s < t ≤ s+ c : ΔNt ∈ A r {0}}]
holds for all c > 0, s ≥ 0, and every Borel set A ⊂ R.

Exercise 20.6.12. Let Tt =
∑Nt

j=1 ζj (t ≥ 0) denote the compound Poisson pro-
cess of Example 6.1.21. (Here, (Nt) is a Poisson process with parameter λ >
0; ζ1, ζ2, . . . are independent random variables with a common distribution Q1

such that Q1({0}) = 0. Furthermore, the processes (ζn) and (Nt) are indepen-
dent of each other.)

1. Show that the characteristic function gt of Tt (t ≥ 0) is given by

gt(z) = exp

[
λt

∫
R

(eizx − 1)Q1(dx)

]
for all z ∈ R and t ≥ 0.

2. It can be shown (see the reference in Example 6.1.21) that (Tt) is a Lévy
process. Determine its generating triple (β, σ2, Q).

Exercise 20.6.13. Let W be a (standard) Brownian motion (BM). Show that, for
each c > 0,W ∗ = (cWt/c2) is a BM (scaling property).

Exercise 20.6.14. Let ξ ∼ N(μ, σ2) where μ ∈ R and σ > 0.

1. Deduce from (6.26) that the characteristic function of ξ is given by

E[exp(izξ)] = exp(iμz − σ2z2/2), z ∈ R.
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2. Deduce from the result in (1) that, for all μ, z ∈ R and σ > 0,∫ ∞

−∞
cos(zx) exp(−(x−μ)2/(2σ2))dx =

√
2πσ2 cos(μz) exp(−σ2z2/2)

and∫ ∞

−∞
sin(zx) exp(−(x−μ)2/(2σ2))dx =

√
2πσ2 sin(μz) exp(−σ2z2/2).

Exercise 20.6.15. LetW = (Wt) be a BM. Put

St,u := sup
0≤s≤u

|Wt+s −Wt|, t ≥ 0, u > 0.

1. Show that St,u is a random variable. (This requires a little argument since
the definition of St,u involves uncountably many random variables!)
Hint: Recall that all sample paths ofW are continuous.

2. Show thatWn/n → 0 (n → ∞) a.s.

3. Since, for each fixed t ≥ 0, (Wu+t −Wt) (u ≥ 0) is a BM, it follows that

for each t > 0, St,1 has the same distribution as S0,1. (∗)

Furthermore, we have that

P (S0,1 ≥ a) ≤ 2 exp(−a2/2), a ≥ 0 (∗∗)

(see, e.g., [KaSh]). Use (2) as well as (∗) and (∗∗) to show that
Wt/t → 0 (t → ∞) a.s.

Hint: Use the Borel–Cantelli Lemma.

Exercise 20.6.16. Let ξ1, ξ2, . . . be independent random variables defined on some
probability space (Ω,F , P ), which have a common distribution given by P (ξn =
+1) = p, P (ξn = −1) = 1 − p =: q (n ≥ 1), where 0 < p < 1. Put Sn :=
ξ1 + · · · + ξn, n ≥ 0 (S0 = 0), and let (Fn) (n ≥ 0) be the filtration generated
by (ξn). (Note that F0 = {∅,Ω}.)

1. Show that Yn := (q/p)Sn (n ≥ 0) is an (Fn)-martingale.

2. Put c(α) := E[exp(αξ1)] = p exp(α) + q exp(−α) (α ∈ R). Show that, for
every fixed α ∈ R,

Zn := exp(αSn)/(c(α))
n (n ≥ 0)

is an (Fn)-martingale.

Exercise 20.6.17. Let ξ1, ξ2, . . . be independent random variables defined on the
same probability space, which have a common distribution given by P (ξn = +1) =
P (ξn = −1) = 1/2. Put S0 = 0 and Sn = ξ1 + · · · + ξn (n ≥ 1) which means
that (Sn) is a simple symmetric random walk on Z, starting at 0. Let (Fn) be
the filtration generated by (ξn). Show that following two sequences are (Fn)-
martingales:
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1. (S3
n − 3nSn).

2. (S4
n − 6nS2

n + 3n2 + 2n).

Hint: Note that E[ξn|Fn−1] = E[ξn] = 0 a.s. (since ξn is independent of Fn−1),
and thatE[S2

n−1ξn|Fn−1] = S2
n−1E[ξn] = 0 a.s. (since Sn−1 isFn−1-measurable).

Note that Sn = Sn−1 + ξn.

Exercise 20.6.18. Let (Ω,F , P ) be a probability space and let (Fn) (n ≥ 0) be
any filtration on (Ω,F). In the sequel let Z = (Zn) (n ≥ 0) andH = (Hn) (n ≥
1) be sequences of random variables defined on (Ω,F) such that Z is adapted and
H is predictable which means that, for all n ≥ 1, Hn is Fn−1-measurable. The
sequenceH • Z given by

(H • Z)n :=

n∑
j=1

Hj(Zj − Zj−1), n ≥ 0 ((H • Z)0 = 0)

is called theH-transform ofZ or the (discrete) stochastic integral ofH with respect
toZ . Now letZ be an (Fn)-martingale and assume thatHj(Zj−Zj−1) ∈ L1, j =
1, 2, . . . . Show thatH • Z is an (Fn)-martingale.
Hint: Use the iteration property of conditional expectations (see Example 6.1.29).

Exercise 20.6.19. LetW = (Wt) be a BM and let (Ft) be the filtration generated
byW . Show that the following processes are (Ft)-martingales:

1. (Wt).

2. (W 2
t − t).

3. (W 4
t − 6tW 2

t + 3t2).

Hint: Note thatWt −Ws is independent of Fs (0 ≤ s ≤ t).

Exercise 20.6.20. Let (Nt) be a Poisson process with parameter λ > 0, and put
Mt = Nt − λt (t ≥ 0). Let (Ft) be the filtration generated by (Nt).

1. Show that (Mt) is an (Ft)-martingale.
Hint: Nt −Ns is independent of Fs (0 ≤ s < t).

2. Show that (M2
t − λt) is an (Ft)-martingale.

Hint: WriteM2
t −M2

s = (Mt −Ms)
2 + 2Ms(Mt −Ms) (0 ≤ s < t).

Exercise 20.6.21. Let (Nt) be a Poisson process with parameter λ > 0, and let
c > 0 be any constant.

1. Determine the constant μ(c) such that the process (exp(cNt + μ(c)t)) (t ≥
0) is a martingale with respect to the filtration (Ft) generated by (Nt).
Hint: Use Theorem 6.1.30 and Exercise 20.6.11.

2. Verify directly that the process obtained in (1) is an (Ft)-martingale.
Hint: Use that E[exp(c(Nt − Ns))|Fs] = E[exp(c(Nt − Ns))] a.s. (0 ≤
s < t) since Nt −Ns is independent of Fs.
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Exercise 20.6.22. Let ξ have a binomial distribution with parameters n ≥ 1 and
0 ≤ p ≤ 1, i.e.,

P (ξ = k) =

(
n

k

)
pk(1− p)n−k, k = 0, 1, . . . , n.

1. Use Azuma’s inequality (Theorem 6.3.1) to prove the following inequality
which is due to H. Chernoff (Ann. Math. Statist. 23 (1952), 493–507):

P (|ξ − np| ≥ t) ≤ 2 exp(−2t2/n), t ≥ 0, n ≥ 1. (∗)

Hint: ξ has the same distribution as a sum of suitable 0–1 random variables
ξ1, . . . , ξn.

2. Verify (∗) directly for n = 1.

Exercise 20.6.23. Prove (6.147).
Hint: First note that |g(z)| =: exp(I(z)), where

I(z) :=

∫ z

0

cosx− 1

x

(
log

( z
x

))r

dx, z ≥ 0, r > 0.

Then (6.147) says that

I(z) ≤ 1

2(r + 1)

(
1− (log(2z/(3π)))

r+1
)
, z ≥ 4π, r > 0. (∗)

In order to prove (∗) note that the cosine is ≤ 0 on the intervals J(k) := [(2k −
1)π − π/2, (2k − 1)π + π/2], and that

J(k) ⊂ [0, z] iff 1 ≤ k ≤ k(z) := �z/(2π) + 1/4	. (∗∗)

Hence

I(z) ≤ −
k(z)−1∑
k=1

∫
J(k)

1

x

(
log

( z
x

))r

dx.

Using (∗∗) and comparing with a certain Riemann integral finally yields (∗).
Exercise 20.6.24. A process Zt = Z0 exp(Xt), t ≥ 0 (Z0 > 0) is observed at
time points t = 0, 1, 2, . . . , T , where (Xt) is a Lévy process of jump-diffusion type
as in Example 6.5.2. Let H0(2) denote the null hypothesis which says that there
exist α ∈ R, c ≥ 2, λ ≥ 0 and a distribution Q1 on R satisfying Q1({0}) = 0
such that (Xt) is associated with α, c, λ, and Q1. (Note that H0(2) has a mean-
ing different from that at the beginning of Section 6.5!) Let H0(2) be rejected if
|L̃T /T − p10(1)| ≥ 0.1 (see (6.100) and (6.150)). Let the level of significance be
0.1. (Note that the rejection of H0(2) entails the rejection of the null hypothesis
that (Zt) is a Black–Scholes process having volatility ≥ 2; see (6.27).) How large
has T to be? (Answer: T ≥ 1715.)

Exercise 20.6.25. A process Zt = Z0 exp(Xt), t ≥ 0 (Z0 > 0) is observed at the
time points t = 0, 1, 2, . . . , T , where (Xt) = αt+Tt, t ≥ 0. Here, α ∈ R; (Tt) is a
compoundPoisson (or CP-)process associated with λ > 0 andQ1 = N(μ, σ2) (see
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Example 6.1.21). Suppose that the null hypothesis H0(λ
∗, σ∗) (λ∗ > 0, σ∗ > 0)

is to be tested, which says that there exist α ∈ R, μ ∈ R, λ ≥ λ∗, and σ ≥ σ∗

such that Xt = αt + Tt (t ≥ 0), and (Tt) is a CP-process associated with λ and
Q1. Verify that the test outlined in Exercise 20.6.24, which rejects H0(λ

∗, σ∗) if
|L̃T /T − p10(1)| ≥ 0.1, is not applicable no matter how the level of significance
0 < p0 < 1 is chosen.
Hint: Show that there does not exist any (finite) constant Σ∗ satisfying (6.153)
(g being the characteristic function of X1, (Xt) being an arbitrary Lévy process
satisfyingH0(λ

∗, σ∗)). Use Exercise 20.6.14(2).

Exercise 20.6.26. Suppose we observe a process Zt = Z0 exp(μt + cXt), t ≥
0 (Z0 > 0) at time points t = 0, 1, . . . , T . Let (Xt) be a gamma process
with parameters α and Δ, and consider (as in Example 6.5.5) the null hypothe-
sis H0(c

∗, α∗,Δ∗) where B = 10, c∗ = α∗ = 1,Δ∗ = 2, p0 = v = 0.1,m =
1, d1 = 1, and λ(10) = (2π/ log 10)2 (recall that log is the natural logarithm).

1. Show that in this special case we can choose Σ∗ = (log 10)2/24.

2. How large has the time horizon T to be? (Answer: T ≥ 2129 (instead of
T ≥ 2582 as in Example 6.5.5!).)

Exercise 20.6.27. Prove the following elementary result (Lemma 6.6.7): Let a1, a2, · · ·
be real numbers such that 0 ≤ an < 1 (n ≥ 1) and

∑∞
n=1 an < ∞. Then

∞∑
n=1

atn → 0 (t → ∞).

Exercise 20.6.28. Prove the claim in Example 6.1.28.

Exercise 20.6.29. Prove the iteration property of conditional expectations (see Ex-
ample 6.1.29).

Exercise 20.6.30. Prove Lemma 6.2.1.

20.7 BENFORD’S LAW AS A BRIDGE BETWEEN STATISTICS AND AC-

COUNTING

An auditor decides to run a Benford’s Law test on a data set that consists of 1000
legitimate expense records from a business, plus a number of fraudulent transac-
tions that an employee is making to a front for a business set up in a relative’s
name. Because the employees of the business have to obtain special approval for
expenditures over $10,000, the fraudulent transactions are all for amounts between
$9000 and $9999. For the 1000 legitimate expenditures, we have this data:
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First Digit Observed
1 314
2 178
3 111
4 92
5 88
6 59
7 56
8 56
9 46

Exercise 20.7.1. Using the Benford Law test at

http://web.williams.edu/Mathematics/sjmiller/public html/benford

/chapter01/MillerNigrini ExcelBenfordTester Ver401.xlsx

(or any other suitable software), verify that the data conforms reasonably well to
Benford’s Law.

Exercise 20.7.2. Use trial and error (or some more clever approach) to determine
how many fraudulent transactions with first digit 9 would need to be added to the
1000 legitimate observations above in order for the hypothesis that the data follows
Benford’s Law to be rejected at a five percent significance level. Does this seem
plausible?

Exercise 20.7.3. What is the role of sample size in the sensitivity of Benford’s Law?
Suppose there are 10,000 legitimate observations instead of 1000, but the ratios for
legitimate observations remains the same, i.e., the number of observations for each
digit is multiplied by 10. Try the problem again. What changes?

Exercise 20.7.4. In which of the following situations is an auditor most likely to
use Benford’s Law?

• An analysis of a fast food franchise’s inventory of hamburgers.

• An audit of a Fortune 500 company’s monthly total revenue over the fiscal
year.

• An analysis of a multibillion dollar technology company’s significant assets.

Exercise 20.7.5. Give an additional example of a way that including Benford’s
Law in an introductory-level statistics class will meet the four goals of the GAISE
report of 2005.

Exercise 20.7.6. Determine whether the following situations are Type I errors,
Type II errors, or neither.

• An auditor uses Benford’s Law to analyze the values of canceled checks by
a business in the past fiscal year. The auditor finds that there are significant
spikes in the data set, with 23 and 37 appearing as the first two digits more
often than expected. After further investigation, it was found that there were
valid non-fraudulent explanations for the variations in the first digits.

http://web.williams.edu/Mathematics/sjmiller/public_html/benford/chapter01/MillerNigrini_ExcelBenfordTester_Ver401.xlsx
http://web.williams.edu/Mathematics/sjmiller/public_html/benford/chapter01/MillerNigrini_ExcelBenfordTester_Ver401.xlsx
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• An auditor finds that a company’s reported revenue does not follow Benford’s
Law. Further investigation is taken, and it is found that a manager has been
rounding up her weekly sales to the nearest thousand to earn an incentive
based on a weekly sales benchmark. The manager claims that the inflated
sales were an accounting error.

• An owner of a business has falsely claimed to give his employees bonuses
on each paycheck based on their monthly sales in order to lower his income
taxes. An auditor examines the data, but is unable to confidently claim that
the data does not follow Benford’s Law. Rather than waste funds on a costly
investigation, the auditor chooses not to investigate the owner.

Exercise 20.7.7. What are the negative effects of a Type I error in an audit? A Type
II error? In what situations might one be more dangerous than the other?

Exercise 20.7.8. What are some of the reasons listed in the chapter that might
explain why a data set should not be expected to follow Benford’s Law?

Exercise 20.7.9. Give an example of a reason other than fraud that explains why
a data set that is expected to conform to Benford’s Law does not.

20.8 DETECTING FRAUD AND ERRORS USING BENFORD’S LAW

Exercise 20.8.1. Do the following data sets meet the requirements described by
Nigrini in order to be expected to follow Benford’s Law? Explain why or why not.

• The 4-digit PIN numbers chosen by clients of a local bank.

• The annual salaries of graduates from a public university.

• Numeric student ID numbers assigned by a school.

• The distances in miles between Washington, DC and the 500 most populated
cities in the United States (excluding Washington, DC).

• Results to a survey of 1000 students asked to provide a number in between 1
and 1,000,000.

• The number of tickets bought for all events held in a particular stadium over
the past five years.

Exercise 20.8.2. Take a company which has been at the heart of a scandal (for
example, Enron) and investigate some of its publicly available data.

Exercise 20.8.3. An audit of a small company reveals a large number of transac-
tions starting with a 5. Come up with some explanations other than fraud. Hint:
There are two cases: it is the same amount to the same source each time, and it
isn’t.
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20.9 CAN VOTE COUNTS’ DIGITS AND BENFORD’S LAW DIAGNOSE

ELECTIONS?

Exercise 20.9.1. If X satisfies Benford’s Law, then the mean of its second digit is
4.187. What is the mean of the kth digit?

Exercise 20.9.2. IfX satisfies Benford’s Law, multiply by an appropriate power of
10 so that it has k integer digits. What is the probability the last digit is d? What
is the probability the last two digits are equal? What is the probability the last two
digits differ by 1?

Exercise 20.9.3. Find some recent voting data (say city or precinct totals) and
investigate the distribution of the first and second digits.

20.10 COMPLEMENTING BENFORD’S LAW FOR SMALL N : A LOCAL

BOOTSTRAP

Exercise 20.10.1. Do you agree with the assessment that Nigrini’s conditions for
applying Benford’s Law are mostly satisfied? Why or why not?

Exercise 20.10.2. Why does having a large σ(log10 xi) and a large σ(log10 wi,j)
ensure that the vi,j first-digit distribution approaches Benford’s Law?

Exercise 20.10.3. What does it mean for bootstrap methods to be considered “con-
servative”? Identify some of the ways in which bootstrap methods are conservative.

Exercise 20.10.4. There are many conservative statistics. Look up the Bonferroni
adjustment for multiple comparisons, as well as alternatives to that.

Exercise 20.10.5. How would a local bootstrap realization change if the value of
Δ were changed?

Exercise 20.10.6. Confirm that if cbK7 > 99.924%, then ceK7 > 99.99960%.

20.11 MEASURING THE QUALITY OF EUROPEAN STATISTICS

Exercise 20.11.1. In which of the following two scenarios would χ2 be larger?

• The first-digit frequencies are mostly identical to the expected Benford dis-
tribution, but the digit 1 appears 31.1% of the time and the digit 2 ap-
pears 16.6% of the time (compared with the expected values of approximately
30.1% and 17.6%, respectively).

• The first-digit frequencies are mostly identical to the expected Benford dis-
tribution, but the digit 8 appears 6.12% of the time and the digit 2 ap-
pears 3.58% of the time (compared with the expected values of approximately
5.12% and 4.58%, respectively).
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Exercise 20.11.2. What is μb, the value of the mean of the Benford distribution of
first digits base b?

Exercise 20.11.3. What is the value of a∗ if μe = 3.5?

Exercise 20.11.4. Using Figure 11.1, confirm the values of χ2, χ2/n, and d∗ for
the distribution of first digits for Greek social statistics in the year 2004.

Exercise 20.11.5. Using Figure 11.1 and the formula for distance measure a∗ used
by Judge and Schechter, calculate the value of the mean of the data set (μe) in the

year 2004. Confirm this value by using the formula μe =
Σ9

i=1nProb(D1=i)
n .

The final problem uses data on two fictitious countries, which is available online

http://web.williams.edu/Mathematics/sjmiller/public html
/benford/chapter11/

(some of the additional readings on that web page may be useful as well).

Exercise 20.11.6. Calculate the values χ2, χ2/n, d∗, and a∗ and compare the
results for both countries. Which one of these two countries should be examined
closer? Are the outcomes consistent?

20.12 BENFORD’S LAW AND FRAUD IN ECONOMIC RESEARCH

Exercise 20.12.1. Use (12.1) to find f(6) and F (6) for Benford’s Law.

Exercise 20.12.2. If X is a Benford variable defined on [1, 10), then what is the
probability that the second digit is 5 given that the first digit is also 5?

Exercise 20.12.3. Use (12.4) to confirm that when using Benford’s Law for Rounded
Figures, Prob(D1 = 8) = 0.054.

Exercise 20.12.4. IfX is a Benford variable defined on [1, 10), given that the first
digit is 8, what is the probability that the second digit is 0 when rounding to two
significant digits? What is the probability that the second digit is 2?

Exercise 20.12.5. Using Benford’s Law for Rounded Figures as the frequencies of
first digits for a data set of 300 observed values, calculate Q1, Q2, M1, and M2

using (12.6) and (12.7).

Exercise 20.12.6. Should the Q1 test or the M1 test be used for attempting to detect
variations in Benford’s Law?

• What if the data set in question has a mean of 3.44?

• Which test should be used for detecting variations in the Generalized Benford
Law?

http://web.williams.edu/Mathematics/sjmiller/public_html/benford/chapter11/
http://web.williams.edu/Mathematics/sjmiller/public_html/benford/chapter11/
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Exercise 20.12.7. The Federal Tax Office (FTO) knows that Ω = 10% of tax dec-
larations of small and medium enterprises are falsified. The FTO checks the first
digits using Benford’s Law. Random samples of tax declarations are drawn and the
null hypothesis (Ho) “Conformity to Benford’s Law” is tested at the α = 5% level
of significance.

• Using (12.9), what rejection rate ofHo(θ) would you expect if the probability
of a Type II error β lies in the interval [0.05, 0.75]?

• The FTO obtained the rejection rate θ = 0.12. Use (12.9) to calculate the
probability β of a Type II error.

• The FTO arranges for an audit at the taxable enterprise if the Benford test
rejects Ho for a certain tax declaration at the α = 5% level. What is the
probability that such an audit will be provoked erroneously? And what is the
probability to forbear an audit erroneously?

Exercise 20.12.8. A sample of scientific articles is taken, and 17% are found to
have regression coefficients with a doubtful distribution of first digits. Use (12.10)
to calculate Ω̂.

20.13 TESTING FORSTRATEGICMANIPULATIONOFECONOMICAND

FINANCIAL DATA

Exercise 20.13.1. What are some of the potential reasons given in Section 13.1 for
why data sets that are expected to follow Benford’s Law fail to do so?

Exercise 20.13.2. Did Benford’s Law prove financial misreporting during the fi-
nancial crisis? Justify your assertion.

Exercise 20.13.3. What are some of the potential motives that banks have for ma-
nipulating VAR data?

20.14 PSYCHOLOGY AND BENFORD’S LAW

Exercise 20.14.1. Using (11.1) in Section 11.3, find χ2 for the elaborated and
unelaborated data from Scott, Barnard, and May’s study found in Table 14.1.

Exercise 20.14.2. What distribution of leading digits would you expect if people
were asked to randomly give an integer from 1 to N? How does your answer
depend onN? Try an experiment with some of your friends and family.
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20.15 MANAGING RISK IN NUMBERS GAMES: BENFORD’S LAW AND

THE SMALL-NUMBER PHENOMENON

Exercise 20.15.1. What are the risks associated with a high liability limit in a
fixed-odds lottery game? What if the limit is too small?

Exercise 20.15.2. From the data obtained in Table 15.1, determine the probability
that a given number on a ticket for the UK powerball game is a single digit.

Exercise 20.15.3. Figure 15.1 shows the proportion of tickets in a Pennsylvania
Pick-3 game with a given first digit. Explain why there are several outliers larger
than the mean proportion and no outliers smaller than the mean proportion.

Exercise 20.15.4. What is the probability that a Type I player chooses the number
345 in a Pick-3 game?

Exercise 20.15.5. Let Alice be a Type II player in a Pick-3 game who bets on a
number with three significant digits 80% of the time, a number with two significant
digits 15% of the time, and a number with one significant digit 5% of the time.
What is the probability that Alice bets on the number 345? The number 45? The
number 5?

Exercise 20.15.6. In the Pennsylvania Pick-3 game, the least square model indi-
cates that 60.42% of the players are Type I players and 39.58% of the players are
Type II players. Based on this model, use (15.4) to calculate the expected propor-
tion of the betting volume on a three-digit number with first significant digit 4.

Exercise 20.15.7. Let Bob be a Type II player in a Pick-3 game who bets on a num-
ber with three significant digits 80% of the time, but also has a tendency to exhibit
switching behavior; that is, he will switch later digits with probability 0.9105, and
switch the digit to 0 with probability 0.1054. What is the probability that Bob bets
on the number 345?

Exercise 20.15.8. Use (15.5) to calculate the probability that Bob chooses a three-
digit number in between 520 and 529 inclusive.

Exercise 20.15.9. Calculate the variance using the equation in Section 15.4.1 un-
der the scenario that all players randomly select a three-digit number.

20.16 BENFORD’S LAW IN THE NATURAL SCIENCES

Exercise 20.16.1. Demonstrate that (16.3) holds for α = 2.

Exercise 20.16.2. Rewrite the log-normal distribution density function (16.5) as
the log-normal density function (16.6).

Exercise 20.16.3. Show that as σ grows larger, the log-normal density function
approaches the power law p(x) = Cσx

−1, where Cσ is a constant depending on
σ.
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Exercise 20.16.4. Provide examples not mentioned in the chapter of scientific data
sets that are not effectively scale invariant.

Exercise 20.16.5. Explain the intuition behind why the following distributions are
approximately Benford:

• The Boltzman–Gibbs distribution (16.8).

• The Fermi–Dirac distribution (16.9).

• The Bose–Einstein distribution (16.10).

Exercise 20.16.6. Obtain a physics textbook (or a CRC handbook, or. . . ) and find
a list of physical constants. Perform a chi-square test to determine whether the list
of constants follows Benford’s Law as expected.

Exercise 20.16.7. Sandon found agreement between Benford’s Law and population
and surface area data for the countries of the world. Find a source that provides the
population density of each country. Then determine if population density follows
Benford’s Law. This can be done using a chi-square test. In general, should the
ratio of two Benford random variables be Benford?

20.17 GENERALIZING BENFORD’S LAW: AREEXAMINATIONOF FAL-

SIFIED CLINICAL DATA

Exercise 20.17.1. Use (17.1) to calculate the average frequency of first digits in
Stigler’s distribution of first significant digits. Check to see that the distribution
matches the values displayed in Table 17.1.

Exercise 20.17.2. Verify (17.3), (17.5), and (17.6). Then verify that the sum of the
three subsets matches (17.7).

Exercise 20.17.3. Calculate the mean of the Stigler FSD distribution and Benford
FSD distribution to confirm that they are equivalent to 3.55 and 3.44, respectively.

Exercise 20.17.4. For the Estimated Maximum Entropy FSD distribution for data
with an FSD mean of 3.44 shown in Table 17.3, find H(p) and ensure that the
criteria from (17.13) and (17.14) are reached.

• If the Estimated Maximum Entropy FSD distribution is accurate, then the
listed probabilities will maximize H(p). First, determine whether replacing
p̂1 with 0.231 and p̂2 with 0.2 still allows (17.13) and (17.14) to hold. Now
findH(p). IsH(p) larger or smaller than before?

Exercise 20.17.5. If the FSD mean is 5, what will be the estimated maximum en-
tropy FSD distribution? What is Var(d) according to (17.18)?

Exercise 20.17.6. Examining the Poehlman data in Table 17.4, calculate the dif-
ference for each digit FSD distribution given by Benford’s Law.
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Exercise 20.17.7. The estimated empirical likelihood distributions given an FSD
mean will maximize

∑9
i=1 pi. To test this, ensure that the product of the pi’s from

Table 17.5 are greater than the empirical data found in Table 17.4.

Exercise 20.17.8. A researcher is trying to decide whether a data set follows Ben-
ford’s Law or Stigler’s Law. What values of the mean of the leading digit suggest
Benford over Stigler? What values suggest Stigler over Benford?

20.18 PARTIALVOLUMEMODELINGOFMEDICAL IMAGING SYSTEMS

USING THE BENFORD DISTRIBUTION

Exercise 20.18.1. What is the PV effect? What implications does the PV effect
have for medical imaging?

Exercise 20.18.2. Prove Corollary 18.3.4.

Exercise 20.18.3. What advantages are there to describing the PV effect using
matrices as in (18.11)?

Exercise 20.18.4. What are the differences between a Rician noise model described
by (18.12) and a Gaussian noise model described in (18.13)?

Exercise 20.18.5. Use (18.22) to calculate p(α) for α = 0.50, where α has two
digits of precision.

Exercise 20.18.6. How is the contrast to noise ratio (CNR) affected if both the
distance between the signal levels of two components and the standard deviation of
each class is doubled?

20.19 APPLICATION OF BENFORD’S LAW TO IMAGES

Exercise 20.19.1. In (19.9) one of the factors is Γ
(
−j2πn+log 10

c log 10

)
, where j =√−1. Estimate how rapidly this tends to zero as |n| → ∞ as a function of c (if you

wish, choose some values of c to get a feel of the behavior).

Exercise 20.19.2. In (19.19) we find that |an(c, σ)| ≤ |an(c+)| for all n; investi-
gate how close these can be for various choices of c and σ.

Exercise 20.19.3. In Example 19.5.3 we found four zero-mean Gaussians with
shaping parameter c = 1 with four different standard deviations and a1 = 0. Can
you find six zero-mean Gaussians with shaping parameter c = 1 and six different
standard deviations with a1 = 0? What about eight? More generally, can you find
2m such Gaussians form a positive integer?
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