

Microprocessor 4

Series Editor
Jean-Charles Pomerol

Microprocessor 4

Core Concepts – Software Aspects

Philippe Darche

First published 2020 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Ltd John Wiley & Sons, Inc.
27-37 St George’s Road 111 River Street
London SW19 4EU Hoboken, NJ 07030
UK USA

www.iste.co.uk www.wiley.com

© ISTE Ltd 2020
The rights of Philippe Darche to be identified as the author of this work have been asserted by him in
accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2020943937

British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN 978-1-78630-566-4

Contents

Quotation. ix

Preface . xi

Introduction . xv

Chapter 1. Coding and Addressing Modes . 1

1.1. Encoding and formatting an instruction . 1
1.1.1. Code compression . 8

1.2. Addressing modes . 8
1.2.1. Immediate addressing. 10
1.2.2. Register addressing . 11
1.2.3. Memory addressing modes . 12
1.2.4. Other addressing modes . 24
1.2.5. Summary on addressing . 31

1.3. Conclusion . 32

Chapter 2. Instruction Set and Class . 33

2.1. Definitions . 33
2.2. Transfer instructions . 35

2.2.1. Data transfer . 35
2.2.2. Address manipulation instructions . 37

2.3. Data processing instructions . 37
2.3.1. Arithmetic instructions for integers . 37
2.3.2. Bit manipulation instructions . 38

2.4. Control transfer instructions . 49
2.4.1. Branchings . 50
2.4.2. Conditional execution . 56

vi Microprocessor 4

2.4.3. Iteration control . 59
2.4.4. Subroutine call and return instructions . 62

2.5. Environmental instructions . 63
2.5.1. Interrupt request and interrupt return instructions 63
2.5.2. Stopping instructions . 63
2.5.3. Processor management . 64
2.5.4. Memory management. 64
2.5.5. Hardware detection . 65
2.5.6. Debugging . 66
2.5.7. Updating . 66
2.5.8. Verification . 66
2.5.9. Various . 66

2.6. Parallelism instructions . 66
2.6.1. Atomic instructions . 66
2.6.2. Synchronization instructions . 68

2.7. Extensions to instruction sets . 68
2.7.1. Multimedia extension . 68
2.7.2. Extension for signal processing . 71
2.7.3. Cryptography . 72
2.7.4. Randomization management . 72
2.7.5. Implications . 72

2.8. Various instructions . 72
2.8.1. Instructions for handling (strings of) characters 72
2.8.2. Input/output instructions . 73
2.8.3. High-level instructions . 73
2.8.4. Arithmetic instructions specific to a representation of particular numbers. 73
2.8.5. An unusual instruction . 75

2.9. Conclusion . 75

Chapter 3. Additional Concepts . 77

3.1. Concepts associated with the instruction set and programming 77
3.1.1. llegal, non-implemented, invalid, reserved and trusted instructions 77
3.1.2. Alignment or framing of instructions . 78
3.1.3. Orthogonality and symmetry . 80
3.1.4. Pure, re-entrant and relocatable codes and code for read-only memory . . 81
3.1.5. Levels of programming languages . 82

3.2. Concepts linked to execution . 83
3.2.1. Consequences for execution time and memory requirements 83
3.2.2. Execution modes . 84
3.2.3. Portability . 88
3.2.4. Virtualization . 88

3.3. Hardware and software compatibilities . 90

Contents vii

3.3.1. Hardware compatibility . 90
3.3.2. Software compatibility . 90
3.3.3. Upward and downward compatibilities . 91

3.4. Measuring processor performances . 93
3.4.1. Clock rate . 94
3.4.2. Number of instructions per cycle . 95
3.4.3. Execution time . 97
3.4.4. Benchmark suites . 97
3.4.5. Development of performances over time 101

3.5. Criteria for choosing . 102
3.6. Conclusion . 103

Chapter 4. Subroutine . 105

4.1. Stack memory . 105
4.2. Subroutine . 113

4.2.1. Nested calls . 115
4.2.2. Execution context . 116
4.2.3. Passing parameters and call conventions 116

4.3. Conclusion . 118

Chapter 5. Interrupt Mechanism . 119

5.1. Origin, definition and classification . 119
5.2. External causes . 121

5.2.1. Execution context . 125
5.2.2. Sources . 125
5.2.3. Masking . 127
5.2.4. Consideration and priority . 129
5.2.5. Interrupt controller . 132

5.3. Nested interrupts . 133
5.4. Internal causes . 135
5.5. Debugging . 138
5.6. Priority between internal and external interrupts 139
5.7. Identification of the source and vectorization 146
5.8. Nested and queued interrupts . 152
5.9. Uses . 153
5.10. Interrupts and execution modes . 154
5.11. Interrupts and advanced architectures . 155
5.12. Conclusion . 162

viii Microprocessor 4

Conclusion of Volume 4 . 163

Exercises . 165

Appendix . 171

Acronyms . 177

References . 197

Index . 211

Quotation

Every advantage has its disadvantages and vice versa.

Shadokian philosophy1

1 The Shadoks are the main characters from an experimental cartoon produced by the
Research Office of the Office de Radiodiffusion-Télévision Française (ORTF). The two-
minute-long episodes of this daily cult series were broadcast on ORTF’s first channel (the
only one at the time!) beginning in 1968. The birds were drawn simply and quickly using an
experimental device called an animograph.

The Shadoks are ridiculous, stupid and mean. Their intellectual capacities are completely
unusual. For example, they are known for bouncing up and down, but it is not clear why!
Their vocabulary consists of four words: GA, BU, ZO and MEU, which are also the four
digits in their number system (base 4) and the musical notes in their four-tone scale. Their
philosophy is comprised of famous mottos such as the one cited in this book.

Preface

Computer systems (hardware and software) are becoming increasingly complex,
embedded and transparent. It therefore is becoming difficult to delve into basic
concepts in order to fully understand how they work. In order to accomplish this,
one approach is to take an interest in the history of the domain. A second way is to
soak up technology by reading datasheets for electronic components and patents.
Last but not least is reading research articles. I have tried to follow all three paths
throughout the writing of this series of books, with the aim of explaining the
hardware and software operations of the microprocessor, the modern and integrated
form of the central unit.

About the book

This five-volume series deals with the general operating principles of the
microprocessor. It focuses in particular on the first two generations of this
programmable component, that is, those that handle integers in 4- and 8-bit formats.
In adopting a historical angle of study, this deliberate decision allows us to return to
its basic operation without the conceptual overload of current models. The more
advanced concepts, such as the mechanisms of virtual memories and cache memory
or the different forms of parallelism, will be detailed in a future book with the
presentation of subsequent generations, that is, 16-, 32- and 64-bit systems.

The first volume addresses the field’s introductory concepts. As in music theory,
we cannot understand the advent of the microprocessor without talking about the
history of computers and technologies, which is presented in the first chapter. The
second chapter deals with storage, the second function of the computer present in the
microprocessor. The concepts of computational models and computer architecture
will be the subject of the final chapter.

xii Microprocessor 4

The second volume is devoted to aspects of communication in digital systems
from the point of view of buses. Their main characteristics are presented, as well as
their communication, access arbitration, and transaction protocols, their interfaces
and their electrical characteristics. A classification is proposed and the main buses
are described.

The third volume deals with the hardware aspects of the microprocessor. It first
details the component’s external interface and then its internal organization. It then
presents the various commercial generations and certain specific families such as the
Digital Signal Processor (DSP) and the microcontroller. The volume ends with a
presentation of the datasheet.

The fourth volume deals with the software aspects of this component. The main
characteristics of the Instruction Set Architecture (ISA) of a generic component are
detailed. We then study the two ways to alter the execution flow with both classic
and interrupt function call mechanisms.

The final volume presents the hardware and software aspects of the development
chain for a digital system as well as the architectures of the first microcomputers in
the historical perspective.

Multi-level organization

This book gradually transitions from conceptual to physical implementation.
Pedagogy was my main concern, without neglecting formal aspects. Reading can
take place on several levels. Each reader will be presented with introductory
information before being asked to understand more difficult topics. Knowledge, with
a few exceptions, has been presented linearly and as comprehensively as possible.
Concrete examples drawn from former and current technologies illustrate the
theoretical concepts.

When necessary, exercises complete the learning process by examining certain
mechanisms in more depth. Each volume ends with bibliographic references
including research articles, works and patents at the origin of the concepts and more
recent ones reflecting the state of the art. These references allow the reader to find
additional and more theoretical information. There is also a list of acronyms used
and an index covering the entire work.

This series of books on computer architecture is the fruit of over 30 years of
travels in the electronic, microelectronic and computer worlds. I hope that it will
provide you with sufficient knowledge, both practical and theoretical, to then

Preface xiii

specialize in one of these fields. I wish you a pleasant stroll through these different
worlds.

IMPORTANT NOTES.− As this book presents an introduction to the field of
microprocessors, references to components from all periods are cited, as well as
references to computers from generations before this component appeared.

Original company names have been used, although some have merged. This will
allow readers to find specification sheets and original documentation for the
mentioned integrated circuits on the Internet and to study them in relation to this
work.

The concepts presented are based on the concepts studied in selected earlier
works (Darche 2000, 2002, 2003, 2004, 2012), which I recommend reading
beforehand.

Philippe DARCHE
August 2020

Introduction

This volume details how to program a microprocessor in five chapters. The first
two chapters demonstrate the three characteristics of ISA (Instruction Set Architecture,
cf. § V1-3.5), which are: instruction encoding, addressing modes and the instruction
set of a generic component. Then, additional notions linked to the instruction set and
execution are discussed in the third chapter. This primarily involves the notion of
illegal, invalid, reserved and trusted instructions, the notion of memory alignment,
orthogonality and the symmetry of the instruction set, as well as the notion of pure,
re-entrant and relocatable code. Then, the subjects of execution time, memory
requirements, execution modes, portability and virtualization will be discussed.
Finally, it ends with aspects that are very important in industry, their hardware and
software compatibilities, how to measure execution performances and the criteria for
choosing a microprocessor or MPU (MicroProcessor Unit). The last two chapters
study two ways of altering execution flow. These are the concepts of the sub-program
and interruption.

NOTE.– The choice has been made to write the names of registers in upper case in
the text and figures but in lower case in assembly language, since the norm (IEEE
1985) does not specify which case to use. The name of the instructions is in lower
case in the text and programs (MIPS (Microprocessor without Interlocked Pipeline
Stages) style), sometimes also in upper case (Motorola or Arm® style). Moreover,
the examples given refer to current and older microprocessors and computer
processors for the purposes of instruction. This chapter is not intended to be
exhaustive. It mainly presents the functions of the first MPUs. It will be completed
by the following two books. The instructions cited will be complemented by MPU
documentation or in a specialist work.

1

Coding and Addressing Modes

This chapter focuses on two important characteristics of Instruction Set
Architecture (ISA) (cf. § V1-3.5), which are instruction encoding and addressing
modes.

1.1. Encoding and formatting an instruction

The instruction1 is represented in a computer using a binary word in the format i
bits, a multiple of the format n of the data and, in general, a multiple of the byte. We
use the expression machine code to mean all those binary words representing the
instruction to be executed. Instruction encoding depends on the architecture of the
target processor. It is formed at least of an instruction code and, potentially, of one
or more operands as Figure 1.1 illustrates.

Figure 1.1. Breakdown of an instruction

1 In the context of a microprogrammed architecture (this will be covered in a future book by
the author on microprocessors), it is sometimes called a macro-instruction to differentiate it
from the micro-instruction, which is internal to the processor.

Microprocessor 4: Core Concepts – Software Aspects,
First Edition. Philippe Darche.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.

2 Microprocessor 4

This instruction can be broken down into fields2. The instruction code, also
called operation code (abridged to opcode), in format c, has one or more fields. The
essential one is the function code. It defines the operation to be executed. Its format
of f bits defines the maximum number of instructions F (= 2f) in the instruction set3.
Other fields can be added to this such as, for example, one that specifies the
addressing mode (the addressing mode field) of the operands to the format as Figure
1.2 illustrates (VAX4 approach from the Digital Equipment Corporation (DEC)).
The processor therefore has 2a addressing modes. Besides simplifying the encoding,
one benefit is to separate the encoding of the function from that of the address,
which makes it possible to make the instruction set symmetrical (cf. § 3.1.3). This
instruction code generally takes the format of the data n of the processor to optimize
access to primary memory. Since in our example n is fixed, the architect of the
microprocessor or MPU (MicroProcessor Unit) must therefore compromise between
the number of instructions and the number of addressing modes if the field exists.
One field may be favored to the detriment of the other.

Figure 1.2. An example of the structure of an operation code

If the instruction requires, the operation code is followed by one or more operand
fields (Figure 1.3), and their number is dependent on the operation (unary or binary)
and the architecture. This operand field in the format o bits makes it possible to
specify, depending on the addressing mode chosen, the value of the reference of the
location of the operand needed for calculation or, potentially, the result. An
operand’s storage location, which is imposed by the programmer, compiler or linker
or architecture, is a register or memory location. An instruction to one operand is

2 Although these fields exist, they cannot be documented or can only be documented
partially, as for MC6800 from Motorola.

3 We can choose not to code the instruction (an uncoded instruction). This means that one bit
is assigned to each of the possible operations. The gain lies in eliminating the logic of classic
decoding and the corresponding stage in a pipelined architecture (this will be covered in a
future book by the author on microprocessors). The immediate counterpart is an increase in its
format.

4 VAX for Virtual Addressed eXtended.

Coding and Addressing Modes 3

called a “monadic”, and one with two operands, “dyadic”. When there are two
operands, we speak of source and destination operands or sink operands or
sometimes simply left and right operands. We cite the VAX mini-computer with a
variable format as an example of encoding. The operation code included one to two
bytes. It was eventually followed by no more than six operand specifiers, mainly
address specifiers, making it possible to design the operand. The MPU MC6800
instruction format included one to three bytes, the first being an operation code
indicating the addressing mode.

Figure 1.3. Format of an instruction with two operands

Table 1.1 shows the different address combinations for IA-32 instruction set (IA
for Intel Architecture, also called i386). Combinations not indicated are not possible
either due to the architecture or to their incoherence. We cite impossible memory
(to) memory combinations in most architectures, as it is necessary to pass through a
register and an immediate-register or immediate-memory, which cannot be done
because of the impossibility of allocating a value to a constant.

Operands
Destination Source

Register Immediate

Memory Immediate

Register Register

Memory Register

Register Memory

Table 1.1. Possible address combinations in family IA-32

The identification field (ID) of the operand(s) specifies the format and
addressing mode (register or memory reference) as well as the direction of transfer
(Figure 1.4). In a RISC microprocessor (Reduced Instruction Set Computer, this will
be covered in a future book by the author on microprocessors), this field is included
in the instruction’s code through simplification and in view of the reduced number
of instructions and addressing modes.

4 Microprocessor 4

Figure 1.4. An instruction with several operands

By construction, the format of the instruction is fixed (fixed length), short or
long, or variable (variable length). The value of a fixed format is a multiple of the
byte in general. Its value will have a direct consequence for the incrementation value
of the Program Counter (PC, cf. § V3-3.1.3). The benefit is that it will be possible to
align the instructions (cf. § 3.1.2), thus accelerating memory reading or writing by
reducing the number of memory accesses. The division of the instruction into sub-
fields, for example, one for the instruction class (cf. Chapter 2), the second for the
function, the third for the type of operands and the last for the operands and a unique
format allowing simplification of the hardware, the counterpart being a larger
format. A variable format, a multiple of the MPU data format, complicates the Control
Unit (CU), and it has an impact on the number of machine cycles (cf. § V3-2.4.1)
needed for decoding. During this phase, the decoder should determine the size of the
instruction as quickly as possible. This information is needed, for example, for
debugging, to determine the instruction boundaries or limits in the machine code
(interruptible “at instruction boundaries”). On the other hand, it has the advantage
of obtaining programs that take up less memory. In fact, a simple instruction such as
nop (no operation, cf. § 2.8.5) will classically take up one byte compared to a
word with several bytes with a fixed format. The format’s variability makes it
difficult to use a pipeline or a superscalar execution (this will be covered in a future
book by the author on microprocessors). As an example of a fixed format, we cite
the format n = 32 bits for MIPS Technologies microprocessors. Even if the format is
fixed, the number of fields may vary as well as the format. Encoding uses three
types, which are Register (R-type), Immediate (I-type) and Jump (J-type) format
(Figure 1.5). The operation code, completed possibly by the function field, specifies
the instruction. For the first type, the second field is a specifier of the source register
(rs). The following specifies the target or destination register (rt or rd), which
receives the result or branching condition. The last field is an immediate value, a
jump or address displacement. For the J type, the operand is the jump address in a
26-bit format. For the last type, the third field is a destination register specifier (rd).
The penultimate field indicates the value of a possible shift (0 = no shift). Note the
conventions rt = rs + immediate and rd = rs + rt. This simple encoding should
be compared with that of the Arm® family, which can show as many as 21 types
(Arm 2000).

Coding and Addressing Modes 5

Figure 1.5. Three fixed formats for MIPS instructions

None of these different fields have been standardized and are dependent on the
manufacturer and the MPU family. For example, for Bayliss et al. (1981), an
instruction is formed of four fields, which are the function fields (opcode), reference
fields, and format and class fields. The class specifies the number of operands and
their types. The necessary format field if there is at least one operand indicates their
location (memory, register or pile, for example). The reference field gives their
location explicitly. Their operation code field specifies the operation to be executed.

Figure 1.6 shows the typical variable instruction of an existing microprocessor.
The instruction code has a format of 6 bits. The direction bit D indicates the
direction of transfer (0 = source specified by the field reg, 1 = destination specified
by the field). The bit W specifies the transfer format (0 = byte, 1 = word of 16 bits).
The 2rd byte is called a “post-byte”. The mode field indicates whether the transfer
involves only the registers or if the memory is involved, the two displacement fields
therefore indicate the length of the latter. We recognize the Little Endian byte order
(LE (Cohen 1981), cf. § 2.6.2 from Darche (2012)) typical of Intel architecture since
the Least Significant Byte (LSB) is first stored in the memory, in the order of the
increasing addresses. To finish, the R/M (Register/Memory) field, poorly named,
specifies the addressing mode, that is, the method of calculating the effective
address (cf. § 1.2). Another format exists where the instruction is coded on a single
byte. Thus, the format of these instructions can vary from 1 to 6 bytes. It is

6 Microprocessor 4

possible to add to these three types of prefix to modify the behavior of the
instruction.

Figure 1.6. Typical instruction format from 8086/88

The architecture can also add a field, before or after the operation code to code
the instruction class (called an extension of the operation code) or to specify a
variable format. One example is the central IBM System/370 computer with its first
2 bits. The encoding of one instruction of the i486 by Intel is a typical example of
the CISC approach (Complex Instruction Set Computer, this will be covered in a
future book by the author on microprocessors). This type of instruction has a size
ranging from 1 to 13 bytes. The word-code is therefore formed of one or two bytes
for the operational code, a modify Register or Memory (mod R/M) byte, a Scale-
Index-Base (SIB) byte, the bytes for displacement and the bytes for the immediate
values. The reg/operation code field specifies a register or makes it possible to add
information for the operation code. The R/M field specifies a register (23 at most) or,
if it is combined with the mode field, makes it possible to specify a mode of address
(24 maximum). The SIB byte makes it possible to specify the scale factor (0, 2, 4 or
8), an index register number and the base register number. In addition, one or more
prefix bytes (in any order except for REX, see below) can change how the following
instruction is interpreted. Figure 1.7 shows the instruction format for Intel IA-32 and
Intel 64 architectures, which has changed with the evolution of MPUs. For example,
the operation code for Pentium had a maximum size of two bytes. Today, the
maximum length of an instruction is 15 bytes. The format for the instructions has
not ceased growing.

Another example is Arm® architecture, which, to the left of the operation code,
adds a condition field (Figure 2.23). Today, there are sets of instructions in multiple
formats, a sort of compromise between fixed and variable formats with only two
formats, for example, 32 bits and another value such as 16 bits with 19 different
forms of encoding for Thumb® (Arm®) technology linked to the compression of
these instruction codes (cf. § 1.1.1).

Coding and Addressing Modes 7

Figure 1.7. Variable instruction format Intel IA-32
and Intel 64 (Intel 2016) architectures

Several technical solutions exist for retaining ascending binary compatibility
(cf. § 3.3.3). Intel has chosen the instruction prefix. It affects how the instruction is
interpreted. For example, a REX (Register Extension) prefix in 64-bit mode that
indicates that the instruction uses extended registers is a valid instruction (inc or
dec) in IA-32 mode. This solution had already been used by Z80 with four
non-assigned machine codes (hexadecimal values CB, DD, ED and FD as prefix) to
expand its compatible instruction set with 8080. Another solution was to add a
post-byte to distinguish between the sets of instructions. One recent example is the
VEX prefix for Vector Extensions, which makes it possible to encode the AVX
(Advanced Vector eXtensions, cf. § 2.7.1) extension from Intel.

The number of instructions, type of architecture (stack-based, register-based,
etc.), the number of addressable registers, the number of internal busses and the
type, format and location of the operands will have an influence on the format i of
an instruction. For access to primary memory, the memory organization, in
particular the exchange format (byte or word), byte order (remember the Endian
story! cf. § V1-2.2.1) and the alignment (cf. § 2.6.1 from Darche (2012)), will have
some influence. The ISA can be evaluated by the number of instructions F, their
complexity, their format i and the memory space they occupy. The designer’s choice
will depend on the function of the desired performances (execution time, memory
requirement, etc.), of the usage domains and the manufacturing cost. Complexity, if
it is not material, could affect the software, in particular the compiler as in the RISC
approach and in the programmer. The appendix shows the instruction encoding table
for MPU 6809E from Motorola. For information, the aspect of decoding an
instruction has been discussed in the previous volume.

8 Microprocessor 4

1.1.1. Code compression

In order to limit the programs’ memory footprint for reasons of cost, memory
size, performance or, in particular, power saving, one solution is to compress the
machine code at compilation and its decompression at execution, for example, when
it is loaded in the MPU cache memory (Wolfe and Chanin 1992). One benefit lies in
the fact that the compiler has not been modified. For implementation, the Huffman
(1952) (de)compression algorithm can be used, for example. Because of its
objectives, it is intended especially for embedded systems with an MPU/MCU5
RISC. Two industrial examples are Thumb® and Thumb-2 for which the 16-bit
instruction word is a compression of the classic version of Arm® processors, which
have a 32-bit format. RISC-V (Waterman 2016) has a compressed version of its
code suggested by (Waterman 2011). A comparison between MPUs can be made
using a measurement of the code density.

The principle can quite clearly be applied to data and to buses (cf. V2) for the
same aims.

1.2. Addressing modes

We recall that the address is a whole number that makes it possible to identify
(we also say locate or spot) a place in the memory (cf. § V1-2.1). This, generated by
an MPU, is termed “physical” (PA for Physical Address) since it is this that will be
carried by the address bus. This physical address can be positive (i.e. natural integer)
or also negative (i.e. relative integer) in the case of an address in Assembly
Language (AL) or machine language, for example, for a displacement relative to the
current value of the PC (Program Counter). Addressing is the mechanism for
accessing information (data and instructions) stored in MPU registers or in other
levels of the memory hierarchy (cf. § V1-2.3). The addressing or referencing mode
specifies how to reach the instruction (code addressing mode) and its operands
(operand addressing mode) during its execution. This distinction between the
addressing code and its operands, which may moreover be an instruction
classification (cf. § 2.1), may not exist (which is the most common scenario). One of
the difficulties of using the concept is that its designation and its semantics vary
depending on the architecture and on the designer of the CU (Control Unit). Thus, it
involves sometimes only the memory address (memory address calculation mode) or
it also covers the registers (operand addressing mode). The definition is taken in its
widest sense. It does not therefore only involve access to the primary memory. The
different addressing modes add to the wealth of a processor, and their number still
varies depending on the architectures and designers. Addressing modes are one of

5 For MicroController Unit, i.e. a microcontroller (cf. § V3-5.3).

Coding and Addressing Modes 9

the ISA specification points (cf. § V1-3.5). For example, the IBM System/360
mainframe computer only has three (immediate, register and memory), but the
Pentium microprocessor has nine. The more possibilities there are, the less the
assembly language programmer will have to write the lines of code to carry out the
desired operation. The argument refers today to the compiler designer, as assembly
language is used less and less, except for teaching purposes or to meet a specific need
in the use domain (cf. § V2-1.3). The other side of the coin is a more complex
control unit and a longer execution for the instruction using it. We will see what the
consequences of this will be covered in a future book by the author on
microprocessors, which studies, among others, the RISC approach. If necessary, it
specifies the means used to calculate the effective address (EA), also called the
target address. This address is the result of the evaluation of an address according to
its addressing mode. It will be applied on the address bus to reference the memory
location if there is no virtual address mechanism at work (a mechanism that will be
covered in a future book by the author on microprocessors). A synonym for EA
(Effective Address) is “physical address”. In the contrary scenario, the effective
address is a logical address that should then be translated into a physical address in
the case of the Virtual Memory (VM) mechanism. Depending on the manufacturers,
the name may also be different or there may be other nuances. To finish, some
microprocessors distinguish access to instructions and to their operands from access
to Input–Output (I/O) registers with specialized instructions (I/O addressing mode),
thus making it possible to address different Address Space (AS) (cf. § V3-2.1.1.1).
One example is shown in § 2.8.2.

We define four modes of basic (i.e. simple) addressing, which are immediate
addressing, implicit and explicit addressing and memory addressing. Memory
addressing is broken down into direct, relative, indirect, indexed and based
addressing. These modes indicate the way to fetch or store the operand. The storage
of one value can only be done in a register or memory location. There can then exist
combinations of these basic addressings, called complex addressings that can be
replaced using a sequence of instructions with simple addressing. The other modes
involve primary memory, the stack, the bit, the registers and those specific to a
particular MPU family. To illustrate these, we have chosen some instructions that
are representative of various MPUs. In these examples, all digital data will be
expressed on base 10 (implicit base) with the exception of indications in the form of
a character prefixing or post-fixing the value or of a number in subscript. To define
the operand, the rules of syntax inspired by those of the MC6809 microprocessor
will be the following:

#: immediate value

$: hexadecimal base

10 Microprocessor 4

%: binary base

The registers will be the following:

PC: Program Counter

A: accumulator

The conventions for the pseudo-code will be the following:

← or =: assignment of the right-hand value (similar to an rvalue) in the left
identifier (similar to an lvalue). The symbol used means “receives” or “takes the
value”. This left–right positional information avoids using parentheses, but it makes
use of them for the right-hand value; they mean “contained in”.

(): address access, of which the value is framed.

@: (calculation of) the two-point symbol address: concatenation

1.2.1. Immediate addressing

Immediate addressing mode, also called immediate data addressing mode, makes
it possible to initialize a register or a memory location with a constant value d,
which is specified after the instruction mnemonic (cf. § 2.1) (Figure 1.8), hence its
other name “literal addressing mode”. There is no effective address here since the
memory is not addressed, but (DEC 1983) called it “PC immediate mode with auto-
increment” as the PC (Program Counter) is used to address the value memorized
immediately after the instruction code. One example is LDA #%10101010 from
MC6802 from Motorola, which means that the accumulator A receives the
immediate binary value 10101010b (b for binary) in byte format.

Figure 1.8. Instruction with an operand field

It is one of the fastest addressing modes since the value is included in the
instruction and there is therefore no additional access to the main memory to fetch
the operand accessed by another addressing. But this value is a constant. In addition,
from the perspective of programming, the change of value means a modification in
the program since the value field cannot be a destination. The extent of the values
(in the sense of Chapter 2 of Darche (2000)) is limited by the number of bits

Coding and Addressing Modes 11

remaining after subtraction of those bits reserved for coding the operation itself (a
similar limitation for the address for direct and relative addressing). In its extended or
long version, the format is double that of a short format. The possibility of choosing
makes it possible to decrease the number of clock cycles to fetch the operand. An
alternative to this mode is register addressing, which contains a constant value, which
is materially fixed. This is the current practice with RISC microprocessors (this will
be covered in a future book by the author on microprocessors) such as Arm®, whose
register r0 contains the null value (cf. § V3-3.1), which can serve for initialization and
avoids time-consuming external access to the main memory.

1.2.2. Register addressing

The use of registers makes it possible not to slow the microprocessor down since
the registers are integrated. An instruction that uses them in addressing mode will
only require external access to fetch the instruction code. It is possible to address a
register in two ways, explicitly and implicitly.

1.2.2.1. Explicit addressing

The operand field operand(s) R specifies the registers used for execution. It is
sometimes called register (direct) addressing, the term “direct” indicating that the
referencing in the register is found in the instruction coding, as for the direct
memory address (Figure 1.9). These registers are accessible to the programmer.
There is no effective address since the memory is not addressed, hence a fast
execution of the instruction using it and a small instruction format. It is for this
reason that RISC microprocessors prefer to use this mode. For other architectures,
the number of registers accessible to the programmer is limited (order of size: about
20).

Figure 1.9. Execution of an instruction using register addressing from one register

The example below shows an addition in an Arm® microprocessor, which uses
three registers: r0, r1 and r2:

ADD r0,r1,r2; r0  r1 + r2

Note, a distinction can be made between Data Register Direct Addressing and
Address Register Direct Addressing as for MC68000 (cf. § V3-3.1.1).

12 Microprocessor 4

1.2.2.2. Implicit register addressing

To simplify the programming, some instructions use one or more registers in an
extended or implicit manner. In this addressing mode, also called implicit or implied
addressing mode, no operand is specified after the instruction mnemonic (cf. § 2.1).
Execution of the instruction involves the reference to operand that is not joined to
the operating code. One synonym is implication (Brooks 1962). The instruction
format is reduced by it. One example is the dex instruction from MCS6502, which
decrements its index register X. The name of this appears in the mnemonic to
facilitate programming. Sometimes when the accumulators are used, this mode is
called “accumulator addressing”. The example below applied to MC6809. The
accumulator B specified by the last letter of the mnemonic receives a value
expressed in hexadecimal base.

LDB #$FA; B  FA16

If the name of the registers does not appear in the mnemonic, then only a
detailed reading of the technical documentation can specify the name of these
registers. In the example below (MC6809), the instruction for multiplication mul
(without operands) implicitly uses both implicit accumulator registers A and B and
stores the concatenated result in these same registers, and the MSB (Most Significant
Byte) is found in accumulator A, which in pseudo-code gives: A:B  A × B.

Another example is the instruction from 8086 mul bl, which uses the implicit
register A as source and destination operands in the case of multiplication in 8-bit
format (ax  bl × al for this example).

To generalize, an instruction lacking one or more operands found in a register
(an accumulator for example) or in memory uses implicit addressing. We find this
mode in machines with a single address called an accumulator or in the extreme case of
zero-operand computers also called stack or pushdown-store machine (cf. § V1-2.7.1).
By broadening the definition to registers that are not accessible to the programmer,
any instruction for its execution uses the PC (Program Counter), which is therefore
implicit.

1.2.3. Memory addressing modes

It is possible to address the memory in a direct, relative, indirect, indexed or
based manner. Combinations of these modes are possible. Other specific modes are
then presented.

Coding and Addressing Modes 13

1.2.3.1. Direct addressing

Direct or absolute addressing is without doubt the most natural. It can access a
memory address location A defined (i.e. arranged immediately) after the instruction
code in the operand field (Figure 1.10). It can therefore be considered a constant.
The effective address EA is given by the following formula:

EA = A [1.1]

Figure 1.10. Instruction with direct addressing

It can be used by jump instruction to branch to a set location in the program. This
mode is in fact an indirect mode with auto-incrementation using the PC (Program
Counter) as an indirection register (cf. § 1.2.3.3 for indirection).

This mode allows for variations depending on the format of the address
provided, the benefit lies in reducing the instruction’s memory size. Some
manufacturers thus distinguish the short mode from the extended mode, known as
long mode, depending on the format of the address A, provided. In the short mode
(absolute short, page zero, also known direct at Motorola, a base page (IEEE 1985))
illustrated in Figure 1.11, the address is expressed in a smaller format than that of a
microprocessor. The address field may also be smaller than 3 bits, one example
being the 8021 microcontroller from Intel or, classically, 8 bits in 8-bit MPUs. Page
zero can be seen as a bank of registers (RF for Register File, cf. § V3-3.1.11.1). The
MIPS firm speaks of pseudo-direct addressing. Aside from a smaller format, the
second benefit lies in decreasing the number of memory accesses to fetch the
instruction code and the operand address. It is equivalent to a basic addressing +
displacement, as in the IBM System/370 architecture, with a null base address. One
example is the MC6802 microprocessor where the address is in byte format, while
the format of the MPU address bus is double. This then limits the address space to

14 Microprocessor 4

the interval [00, FF]16, hence the term “absolute short addressing” or “page zero”6 (if
the size of the memory page is 256 bytes). In the example below, the A register
receives the content of memory location 00.

04F0 96 04 LDA $00; A  (00)

Figure 1.11. Instruction with an address at page 0

The concept of page zero addressing has been improved with direct page
addressing. The direct page is now movable in a larger memory page. The start of
the page is addressed by a specialized register (cf. § V3-3.1.1). We cite MC6809 (a
page of 256 bytes in a space of 64 KiB, addressing capacity of the MPU itself, direct
page (DP) register), the 65CE02 from Commodore Semiconductor Group or CSG
(the same as before except that its addressing capacity is higher, base page register
B) and the 65816 from the firm Western Digital Corporation (WDC) with an address
over 16 bits in the direct page register D.

A direct addressing is limited in its extent for a given instruction format; there
are bits reserved for coding the instruction, which should be subtracted from the bits

6 The mini-computer PDP-8 for Programmable Data Processor from DEC introduced in 1965
used this term.

Coding and Addressing Modes 15

reserved for the addressing. This limitation can be lifted if the instruction format is
not limited (i.e. variable format). With extended addressing, the address belongs to
the microprocessor’s address space without restriction. The format is that of the
address bus. It should be noted that the absolute address can be implemented with a
basic address + displacement with a basic register with zero content base.

1.2.3.2. Relative addressing

Relative addressing, implied in PC (Program Counter-relative addressing),
makes it possible to access a memory location relating to the current position of the
program counter that, we recall, contains the address of the next instruction to be
executed (Figure 1.12) after the decoding stage. This mode is in fact an indexed
mode using the PC (cf. § 1.2.3.4 on indexing). With the following formula,
we see that the effective address of the data or instruction relates to the PC by a
value of d:

EA = PCfollowing instruction + d [1.2]

This is the favored mode for jump instructions, whether conditional or not
(PC-relative branch). The relative displacement d is expressed in a signed integer
representation, which is always the complement to 2n (two’s complement, cf. § II.2.5
from Darche (2000)). Depending on the size of the displacement, the extent of the
jump will be limited to (-2n-1, 2n-1 -1), with n being the format of the address field.
Depending on the value of n of the relative address, we will call it a short or long
jump. When the processor uses segmentation (this will be covered in a future book
by the author on memories), jumps can be made within a single segment (intra-
segment jump) or between two segments (extra-segment jump).

Figure 1.12. Execution of an instruction in relative addressing

The example below (x86) is a negative jump. The hexadecimal value F9
represents -7 in base 10. This means that the processor will connect 5 bytes higher
than the instruction address, the difference of two bytes arising from the fact that the

16 Microprocessor 4

PC has changed while the instruction was executed (incrementation of the size of
this instruction, here, two bytes):

73 F9 jnc loop; PC  PC + F916

Two particular cases should be cited: jmp 00, which jumps to the following
instruction since the program counter has been incremented during the decoding
phase of the execution cycle (cf. § V1-3.2 and V1-3.3.2) to direct the following
instruction and jump –n, where n is the instruction format (in words) underway,
which implements an infinite loop. This mode is linked to PC (PC with displacement
or Program Counter with Displacement for MC68000). It can be seen as an indexed
mode, the indexation register being the PC (cf. § 1.2.3.4).

This mode is useful for generating the independent code of implantation in
memory (position-independent code). We also speak of a translatable code
(relocatable code), a topic discussed in § 3.1.4. It is also at the root of implantation
of classic control structures of high-level languages (if_<condition>_then_else,
iterative structures (i.e. loops) such as while_<condition>_do,
repeat_until_<condition>, for_<condition>_do, etc.) in assembly language.

This mode can even be used to address an operand (Figure 1.13). We cite x86
64-bit architectures with addressing called RIP (Instruction Pointer Register)-
relative, ARMv8 with literal mode and MPU MC6809 with the program counter-
relative mode.

Figure 1.13. Seeking an operand in relative addressing

This mode can be seen as an indirect mode auto-incrementation using the PC
(Program Counter) as an indirection register (cf. § 1.2.3.3).

1.2.3.3. Indirect addressing

It is useful to dissociate addressing of the operand from that of the instruction
code. The address may thus vary without changing the reference indicated in the

Coding and Addressing Modes 17

instruction. This mode is used to implement the mechanism of the High-Level
(programming) Language (HLL) pointer. In assembly language, the square brackets
“[“ and “]” are generally used to employ this mode. Some constructors use
parentheses or the character @. A memory location or register contains the address
of the operand. In indirect mode or register deferred mode (register indirect or
register deferred addressing7) illustrated in Figure 1.14, the effective address EA is
given by the following formula:

EA = R [1.3]

Figure 1.14. Instruction with indirect register addressing

In memory indirect addressing illustrated in Figure 1.15, the final effective
address EA is given by formula [1.5]. Here, it is a double indirection:

EA’ = A [1.4]

EA = (A) = A’ [1.5]

Figure 1.15. Instruction with indirect memory addressing

7 Vocabulary from DEC (1983).

18 Microprocessor 4

This mode of addressing generally has a greater extent than direct addressing
since the addressing format m is the same as that of the data format n. It was
therefore useful for the first computers, which had a restricted addressing capacity
(in the case of mini-PDP-8 computers from the DEC firm of the NOVA series from
Data General, for example). Another advantage is the decrease in the instruction
format, thus increasing the instruction throughput. For MC6809, the constructor
speaks of “extended indirect addressing”. The compiler will doubtlessly use this
mode to implement the high-level language pointer mode such as C or Pascal by
putting the value of the pointer (i.e. an address) in the indirection register.

An auto-increment or auto-decrement can be suggested, which can be done
before (prefix “pre”) or after (prefix “post”) the instruction using it is executed. It
makes it possible to implement operators directly, such as ++ and -- in the language
C. This means that after execution of this operator, the value of the pointer that
contains the address of the object pointed to is incremented or decremented by a
value equal to the size of the pointed element. But in the MPU, the increment or
decrement value is fixed at programming in low-level language. More generally,
auto-increment or auto-decrement makes it possible to manage a memory index,
which is useful, for example, in displacement in a data structure such as an array.
Register indirect addressing with post- or pre-increment/decrement is adapted for
digital signal processing to address samples.

This mode is in fact the one that makes it possible to implement absolute
addressing mode using the PC (Program Counter) as an indirection register. It is for
this reason that DEC (1983) with PDP series, which used the PC as a General-
Purpose Register (GPR, cf. § V3-3.1), called it “PC absolute mode”, equivalent to an
immediate indirect addressing (immediate8 deferred mode or auto-increment
deferred mode). The term “immediate” means that the value immediately following
the instruction code addressed by the PC will be used to fetch the address of the
operand (EA = PC + 2 bytes in the case of the PDP-11 mini-computer) with,
afterwards, an update to the PC. This same manufacturer proposed a relative
deferred mode PC addressing, that is, indirect relative addressing, which uses the PC
added to a displacement to fetch the operand’s address (EA = (PCinstruction + 1 +
displacement) in the case of PDP-11).

1.2.3.4. Indexed and based addressing modes

Indexed addressing is characterized by using an Index Register (IR) that contains
a reference address, called a base or offset address, making it possible to access a

8 Here this means an immediate value following the instruction code that will serve as the
address.

Coding and Addressing Modes 19

memory location. The content of this register, here R, is added to a displacement A
specified with the instruction (Figure 1.16). The effective address EA is equal to:

EA = R + A [1.6]

Indexed addressing with null displacement is identical to register indirect
addressing. This mode is equivalent to relative addressing if the index register is
replaced by the PC (Program Counter). The index register may be implicit or
designed explicitly as an operand. It can be dedicated specifically to this usage or it
can be a GPR. In the former case, it is generally named X or Y (in the case of
MCS6502). From the perspective of execution complexity, it adds an operation
(addition) compared to the indirection. The @ symbol is generally used in assembly
language to indicate this mode.

Figure 1.16. Execution of an instruction in indexed
addressing with displacement (indexation “true”)

Cushman (1975) speaks of “true” and “false” indexing. Indexing is called “true”
when the index address is the operand, the case in Figure 1.16 and MPUs MCS6502
and 2650 (Signetics). In the second case, the index address is in the dedicated
register and the operand is the index, one example being the MC6802/MC6809
(Figure 1.17). The second field of the instruction word, called a “modifier” in
Simpson and Terrell (1987) has an 8-bit format, while the index register format has
16 bits. Some manufacturers such as Motorola consider the relative address as an
indexed mode, the indirection register being the PC (Program Counter, cf. § 1.2.3.3).

20 Microprocessor 4

Figure 1.17. Execution of an instruction in indexed
addressing with displacement (false indexing)

As for indirection with auto-increment or auto-decrement, auto-indexing can be
suggested with the addition of an integer A to the value of the register R. The
designer of M68HC12 speaks of pre-decrement and post-decrement indexed. At
each execution, we will have:

EA = R + A [1.7]

R = R + 1

Relative addressing is similar to an indexed addressing by the PC (Program
Counter). It is for this reason that DEC (1983) called it “PC-relative addressing
mode”.

Scaled indexed addressing mode makes it possible to multiply the content of the
index register by a constant 1, 2, 4 or 8, for example, for 80386. This facilitates
management of data structures in high-level languages as an array, a structure or
record.

Base (plus) offset addressing arises from the principle above except that the
index register is replaced by a base register (Figure 1.18), hence its other name: base
register addressing. Intel uses the BX and BP (Base Pointer) for x86, the first
addresses the data segment and the second addresses the stack. The IBM z System
mainframe computer uses 16 General-Purpose Registers (GPR) in 64-bit format as a
base register and the displacement is specific to the 12-bit format. At its origin, this
mode made it possible to extend the address space. Today, this is no longer
necessary.

Coding and Addressing Modes 21

Figure 1.18. Execution of an instruction in base addressing with displacement

The difference between these two modes is more semantic than applicable to
calculating the effective address. The index varies starting from a given index
address with the instruction, while the base address is constant (hence its name) and
an offset is provided with the instruction. Moreover, Intel uses the terms “base” and
“indexed” for base addressing. Moreover, if no offset is specified with the
instruction, Intel (1989) names the 8086 base and indexed addressing without offset
“indirect register addressing”. Often, in RISC microprocessors such as Arm®, the r0
register contains the constant 0, thus avoiding an immediate addressing using a main
memory access that takes a great deal of time. If it is used as a base register, the
addressing becomes absolute. The base mode is similar to segmented addressing
(this will be covered in a future book by the author on memories). Another means of
differentiating these two addressings is that there is no auto-increment with base
addressing.

Calculation of the effective addressing depends on the storage order or
endianness (cf. § V1-2.2.1) of the address’ bytes. Thus, MCS6502 with a little-
endian order is favored because the addition is carried out starting from the LSBs.

1.2.3.5. Combinations of addressing modes

It is possible to combine the addressing modes above. Some processors offer
indirect addressing with indexing. The associated terms “pre-indexing” and “post-
indexing” will qualify at what step of the address calculation the indexing will
apply. Pre-indexing means that indexing is carried out on the indirection address
(pre-indexed indirect addressing mode), hence the second name, “indexed indirect
addressing mode”.

We will have:

EA’ = A + R [1.8]

EA = (EA’)

22 Microprocessor 4

Figure 1.19 shows the mechanism. One example was MCS6502, which included
two registers called “index registers X and Y” even though X has already served for
indirection. Its designer calls this mode (indirect,X), which is justified by the
relationship [1.8]. It was also suggested by MC6809. DEC used the term “index
deferred addressing mode”.

Figure 1.19. Indirect indexed addressing or pre-indexing

Post-indexed indirect addressing mode or indirect indexed addressing mode
applies indexing after indirection, as illustrated in Figure 1.20. We will have:

EA’ = A [1.9]

EA = (A) + R [1.10]

Figure 1.20. Indirect indexed addressing or post-indexing

Coding and Addressing Modes 23

The peculiarity of MCS6502 is that it used zero-page addressing as the address
field was limited to 8 bits and the indexing occurred only on the lower part of the
address (Figure 1.21). Its designer calls this mode (indirect),Y, which is justified by
the relationship [1.10].

Figure 1.21. Indirect indexed zero-page addressing of MCS6502

A representative, penultimate example is MC6809, which offers 18 variations in
mode, combining indexed and indirect addressings with the possibility of automatic
post-increment or pre-decrement. This post-increment or pre-decrement is useful for
managing a stack’s pointer. Table 1.2 summarizes the possible combinations. R
represents one of the four registers that can be used for indexing, the classics X and
Y and the stack pointers user U and material S. Note the addressings using the
program counter at the end. The offset is expressed in complement to 2n
representation.

Indexed and based addressings with or without offset (based indexed plus
displacement addressing mode) can be combined, thus offering, for example, 17
possible variations in the case of microprocessor x86. One example of this use is
addressing an array of records, of a vector or of a structure, the base pointing the
start of the array and index, an element of the array and the displacement, a field of
the element.

24 Microprocessor 4

MC6809 assembly language
notation Description

,R Zero-offset indexed

[,R] Zero-offset indexed indirect

,R+
Zero-offset indexed post-increment of 1

(auto-increment R)

,R++
Zero-offset indexed post-increment of 2

(auto-increment R)

[,R++]
Zero-offset indexed post-increment of 2 indirect

(auto-increment R)

,-R
Zero-offset indexed pre-decrement of 1

(auto-decrement R)

,--R
Zero-offset indexed pre-decrement of 2

(auto-decrement R)

[,--R]
Zero-offset indexed pre-decrement of 2 indirect

(auto-decrement R)

n,R
Constant signed offset indexed
(5, 8 or 16 bits offset from R)

[n,R]
Constant signed offset indexed indirect

(5, 8 or 16 bits offset from R)

A,R Accumulator A signed offset from R indexed

[A,R] Accumulator A signed offset from R indexed indirect

B,R Accumulator B signed offset from R indexed

[B,R] Accumulator B signed offset from R indexed indirect

D,R Accumulator D signed offset from R indexed

[D,R] Accumulator D signed offset from R indexed indirect

n,PCR
Constant signed offset from PC indexed

(8 or 16 bits)

[n,PCR]
Constant signed offset from PC indexed indirect

(8 or 16 bits offset)

[n] Extended indirect

Table 1.2. Combined MC6809 addressing modes

1.2.4. Other addressing modes

Other modes have been introduced to provide a high-level functionality or to
adapt to a specific domain such as digital signal processing (cf. § V3-5.2), to a
specific mechanism of a processor or to a component such as an I/O controller

Coding and Addressing Modes 25

(cf. Chapter 3 of Darche (2003)) or a microcontroller (cf. § V3-5.3). Moreover, other
modes belong to high-level languages. To finish, some obsolete modes are
presented.

1.2.4.1. Memory-to-memory addressing

The memory-to-memory transfer functionality is possible in a von Neumann-
inspired MPU, but it should be seen as exceptional. This is the continuity of the
tendency of CISC processors to implement high-level functionalities in the material.
Intel calls this mode “string addressing” for its 8086. It involves addressing the
characters of a string, that is, of an array of characters by indirection using both its
pointer registers SI (Source Index) and DI (Destination Index). It makes it possible,
among other things, to read or write a character and, whether the repeat prefix is
conditional or not, to make a copy of it in the main memory. The search function in
a string is also available.

1.2.4.2. (Implicit) stack addressing

Operands are found implicitly (i.e. they are not named) on the stack which is, we
recall (cf. § 4.1), access to LIFO (Last-In/First-Out, push-in/pop-out or push-
down/pop-up memory) and implemented in primary memory in modern MPU. The
two primitives (i.e. functions) to access it are stacking() and unstacking(), translated
into instructions respectively by push() and pop(), for example, in x86
architecture. These instructions implement, internally, an indirect addressing
mechanism with the Stack Pointer register (SP), which memorizes the address at the
top of the stack. The stack is implemented in main memory, but it can be
implemented in the processor. The stacked element is specified with the operand.
There are also specific instructions to a register, such as pha/pla (push/pull
accumulator onto/from stack) from MC6800, which makes it possible to
stack/destack this MPU’s accumulator. MCS6502 uses php/plp (push/pull
processor status on/from stack) this time for the MPU’s context. By extension, stack
computers do not explicitly name the operands (zero-operand, one-operand or two-
operand addressing). For reading on this subject, see Koopman (1989).

The NS3200 (Hunter 1987) from National Semiconductor (NS) has broadened
access to the stack by offering a mode called top-of-stack, literally “stack top”,
which makes it possible to access the data of the so-called summit, since
modification of the pointer is not systematic (i.e. dependent on the operation). To
finish with this topic, MPUs such as the families Arm®, PowerPC or MC68000
make it possible to use General-Purpose Registers (GPR) as stack pointers. The
addressing mode is of indirect type with auto-increment/decrement.

26 Microprocessor 4

1.2.4.3. Bit addressing

The first GPPs (for General-Purpose Processor, cf. § V3-1.1) did not have
specialized instructions to manipulate (set at one/zero or extraction) or to test
individually the bits of an operand by conditional branching (cf. § 2.4.1). It is
generally microcontrollers that possess them as they have to read or modify binary
information in memory or at the input–output ports (cf. § 3.1 from Darche (2003)).
Thus, the microcontroller 68HC12 from the MC6800 family from Motorola has the
instructions bclr (bit clear) and bset (bit set) that initialize respectively at 0 or at
1 one position bit specified with the help of a binary mask (see exercise E2.4) in an
address word A. These instructions use this mode associated with pre-studied
conventional addressing modes. It should be noted that the addressing space is
limited compared to other modes. The example in Figure 1.22 shows a reset at 0 for
the MSb (Most Significant bit) of an I/O port in byte format implanted at the address
0F16.

Figure 1.22. Execution of an instruction in bit addressing

1.2.4.4. MMR addressing

One possibility is to manipulate I/O registers as conventional addresses (MMR for
Memory-Mapped Register, literally, registers projected into memory, cf. § V3-3.1.1
and V3-2.1.1.1) in reduced format (page zero addressing) with fast specialized
access instructions. One example is the Digital Signal Processor (DSP), reference
C5000 from Texas Instruments (TI).

Coding and Addressing Modes 27

1.2.4.5. Addressing modes specific to the digital signal processor

Other than indirect register addressing with post- or pre-increment/decrement,
two other modes are particularly adapted to digital signal processing, which justifies
their implementation in DSPs. This is circular addressing and (address) bit-reversed
addressing.

1.2.4.5.1. Circular addressing

Digital signal processing consists of digitizing samples xi (i ∈ [0, ∞]) of the
signal that are stored in memory, then carrying out a mathematical processing such
as filtering on them to then reconstruct the analog signal. To simplify the discourse,
memorization of coefficients needed for the calculation is not attempted. The sample
flow is of infinite length, and the calculation is only made on a limited number of
consecutive samples on the sampled sequence. This set is called a “window”. Linear
addressing of the buffer FIFO (First In, First Out) illustrated in Figure 1.23a is not
well adapted as it is necessary to test whether the pointers have reached the end.
Moreover, the size of the buffer is necessarily high. The circular buffer (ring or
cyclic buffer, circular queue), that Figure 1.23b shows, is a much better solution as it
makes it possible to decrease its size to that of the window of samples needed for the
calculation.

Figure 1.23. Window of five samples

Circular or modulo addressing makes it possible to implement a circular buffer
in a Random Access Memory (RAM). As shown in Figure 1.24, it is necessary to
have four pieces of information that are the size of the circular buffer L, the address
of the base of buffer B, the index pointer of the buffer I and increment (relative
integer) M. This addressing uses modular arithmetic where the extent of the values
is finite to calculate the pointer addresses. The benefit of using it lies in the fact that

28 Microprocessor 4

a block of L contiguous memory words is addressed by a pointer that uses a modulo
addressing L. This means that once a pointer arrives at the end of a buffer, it is
reinitialized to point the other end (more precisely, modulo addressing is the
capacity to memorize the buffer).

Figure 1.24. Circular buffer

This is conveyed in algorithmic form by:

0 < |M| ≤ L

I  I + M

if M > 0

then

if I ≥ B + L

then I  I - L; buffer overflow or overflow from above

end_if

otherwise

if I < B

then I  I + L; buffer overflow or overflow from below

end_if

end_if

Management logic detects a buffer overflow when there is a wraparound. It then
generates an interrupt request (see Chapter 5) to warn the handler. This automatic
management avoids a costly rearrangement of data by shifting them (Figure 1.25(a))

Coding and Addressing Modes 29

and a permanent monitoring of the pointer value to know whether it has reached an
end of the buffer in order to reinitialize it. It frees useful calculating power for
processing. For example, as soon as the top of the buffer is reached, the following
sample is stored at its start (Figure 1.25(b)).

Figure 1.25. Comparison between linear and
circular addressings (from Rao (2001))

The use domain is digital signal filtering carried out by a DSP where digital
values, the results of a quantification of an analog signal, are stored in a delay line
that can be implemented with a circular buffer in place of carrying out costly
temporal shifts. The DSP ADSP-210xx family from Analog Devices uses this mode.
One example of use is implementation of a Finite Impulse Response (FIR) described
in § V3-5.2.

1.2.4.5.2. Reverse bit order addressing

Bit-reversed addressing makes it possible to manipulate materially the address
without changing the source address. When the processor is set in this specific mode
by the positioning of a flag (cf. § V3-3.1.5) in a control register, the address
generator (AGU for Address Generation Unit, also called DAG for Data Address
Generator or ACU for Address Computation Unit) generates bit-reversed
addressing. This means that the LSbs (Least Significant bits) and MSb are
exchanged, position 1 and m-2 bits are exchanged and so on (change from little-
endian order to big-endian order or vice versa). This mode is used in implementation
of the Fast Fourier Transform (FFT) algorithm (Cooley and Tukey 1965), an
effective method for calculating a Discrete Fourier Transform (DFT), used for

30 Microprocessor 4

filtering or spectral analysis. Remember that the FFT makes it possible to change the
time domain to the frequency domain and vice versa. The problem is that the result
output order differs from that of the input or vice versa. This mode makes it possible
to preserve the initial order of the data by choosing out-of-order input samples to
keep the output order of the data results identical to that of the input. Figure 1.26
shows the details of the calculation of a DIT (Decimal-In-Time) FFT, which is
characterized by the inversion placed at the start, compared to calculation of a DIF
(Decimal-In-Frequency) FFT, where the inverter is at the end. Each node represents
a complex addition (in an imaginary sense). Without going into detail, note the value
of the sample indices before and after inverting the order of their binary digits.
is the twiddle factor, also called a Fourier coefficient or an nth root of unity. The
dsPIC® microcontroller family from Microchip, DSP32xx from AT&T and DSPs
from the SHARC® (DSP-21xxx) family from Analog Devices with the instruction
bitrev that reverse the content of a register are examples of components offering
it. The mac instruction was introduced into DSPs for this type of calculation
(cf. § 2.8.4.2).

Figure 1.26. Flow diagram of the algorithm of an 8-point FFT DIT in base 2

Coding and Addressing Modes 31

To carry out this inversion of the address bit order, Reverse-Carry Arithmetic
(RCA) is used. The sub-set managing the address or AGU (cf. § V3-3.4.4) reverses
the direction of the bits retained when an increment is added to the value of an
address register. Two processors that implement it are DSP32xx from AT&T and
DSP56000 (Motorola 1992). The AGU also implements linear and modulo
arithmetic.

1.2.4.5.3. Linear addressing

The DSP56000 uses a – perhaps poorly named – address modifier. It makes it
possible to jump address at each access with a stored constant memorization in a
register. The benefit is easy access to the elements of a complex data structure.

1.2.4.6. Modes specific to the assembler

The assembler can offer addressing modes that do not exist in the MPU. Each
instruction using them will be replaced by an equivalent logical sequence. One
example is symbolic addressing, which facilitates programming of a jump to a specific
location in the code marked by a symbolic name called a label (cf. § V5-1.3.3). This
mode belongs to assembly language (cf. § V5-1.3), unlike those seen previously in
this chapter which belong to machine language. It is used to make a jump to a
precise place in the code marked by this symbolic name. One example is MPU
MIPS R2000/R3000 (Kane 1988).

1.2.4.7. Obsolete modes

The modes studied so far are those that are currently available. Some modes
have been abandoned because they are complex or not useful. For example, page-
zero and direct paged modes (microprocessor IM6100 from Intersil) with current
memory sizes are no longer required. We also mention truncation, which consists of
deleting the most significant address bits to adapt to addressing capacity in the
storage hierarchy considered (Brooks 1962).

1.2.4.8. Note

Sequential execution of instructions in von Neumann architecture (cf. § V1-3.2.2)
can be seen as a sequential addressing mode (source: Wikipedia).

1.2.5. Summary on addressing

Addressing modes have evolved to meet needs in the software industry to
improve efficiency of programs and facilitate implementing functionalities of high-
level languages as their control structures. It is useful to class addressing modes
depending on their content, code or data. Simple code addressing modes are

32 Microprocessor 4

Program Counter (PC)-relative absolute addressings and indirect register
addressings. Sequential execution by nop instruction can be seen as an addressing
mode. Sample data addressing modes are immediate, (direct) register, implicit and
base plus offset modes. Mixed (code/data) modes are direct absolute and indexed,
base plus index modes with or without offset (base plus index plus offset), scaled
indexed modes, register indirect modes, indirect register modes with auto-increment,
indirect memory and PC-relative modes.

Making the programmer accessible to registers that are not conventional, such as
PC and SP, makes it possible to enrich addressing modes. Thus, some modes can be
implemented using others, such as, for example, absolute and relative modes with
respectively indirect and indexed modes.

The trend has been towards multiplying addressing modes, making it possible to
adapt to complex data structures such as those of high-level languages or application
domains such as digital signal processing with its operations such as convolution or
correlation. This wealth of modes facilitates the life of the assembly language
programmer and makes it possible for the code to be compact during compilation.
The counterpart is the complexity of the CU (Control Unit), one of the defects of the
CISC approach (this will be covered in a future book by the author on
microprocessors). The number of possibilities of machine codes depends on the
number of instructions and associated addressing modes. Therefore, MC6809 had 59
instructions and 1,464 machine codes (Motorola 1981, 1983). A reverse tendency
was that of reduced instruction set architectures (RISC, this will be covered in a
future book by the author on microprocessors).

1.3. Conclusion

The following chapter focuses on the instruction set for a generic microprocessor
by presenting the different instruction families and extensions in this set.

2

Instruction Set and Class

This chapter focuses on perhaps the most important characteristic of an ISA
(Instruction Set Architecture, cf. § V1-3.5), which is a processor’s instruction set.
We define and propose how to classify instructions, and then present the different
instruction families for a generic microprocessor as well as the possible extensions
for this set.

2.1. Definitions

Instructions differ depending on their designers in their number, name,
mnemonic, the number of operands and addressing modes and in their syntax. From
their designation (i.e. name and mnemonic), these characteristics depend on the type
of architecture and ISA (cf. § V1-3.5). We must distinguish the instruction name,
which always begins with an action verb indicating the operation to be executed
(e.g. move) from its symbolic or mnemonic name, which is either its abridged
instruction name (e.g. mov) or an acronym that always begins with the first letter of the
action verb according to IEEE standard (Std) 694-1985 (IEEE 1985) (cf. § V5-1.3.2).
One benefit of this choice is that the alphabetic order corresponds to the function,
with some exceptions. This facilitates a modern microprocessor’s (MPU for
MicroProcessor Unit) reading of several thousand pages of documents. Still
following the recommendations of this standard, it should not include any integrated
addressing mode specification, or integrated operand name. The execution
conditions are integrated. The type of operand specified in the suffix begins from a
point in the mnemonic or, in some cases, in the operand. There may be synonyms of
mnemonics for a single operation, one example being arithmetic and logical left
shifts (sal1 and shl from the x86 family). A processor’s instruction set is grouped
within the instructions or IS (Instruction Set), and a microprocessor that executes

1 Instruction shla (SHift Left Arithmetical) in the standard.

Microprocessor 4: Core Concepts – Software Aspects,
First Edition. Philippe Darche.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.

34 Microprocessor 4

instructions from a fixed IS is called an ISP (Instruction Set Processor). The
instruction set can be extended and complex, or, on the contrary, it may be reduced
and simple, hence the names for the respective microprocessor families CISC and
RISC (respectively Complex and Reduced Instruction Set Computer, this will be
covered in a future book by the author on microprocessors). Instructions that are
complex in their function, variable format, transfer type, etc., complicate the
compiler’s task because of the various cases to be taken into account. A
compromise, depending on the applications targeted and the complexity of the
control unit, should therefore be found when choosing instructions. To be
comprehensive, the Application-Specific Processor (ASP, cf. § V3-1.1) has a
specific instruction set, hence the acronym ASIP for Application-Specific
Instruction set Processor.

The process of classifying instructions generally relies on the locality of
execution or processing. We can thus classify instructions into three main families
or classes, one for data transfers, one for arithmetic processing instructions for
integers and logical instructions and one for control transfers (Figures 2.1a and b).

Figure 2.1a. Instruction classification in modern MPUs

A fourth class is that of system control, which Kaeli and Yew (2005) call “the
environmental instructions class”, that is, those executed in most cases in privileged
mode (if this exists) by the Operating System or SE (InTerruption (IT), management
of hardware resources, etc.) to control the MPU. Execution parallelism instructions
such as atomic instructions (cf. § 2.6.1) were introduced subsequently in
microprocessors. A final class is that of extensions to the instruction set for a
particular application such as multimedia application. Figure 2.1(b) completes this
classification.

Instruction Set and Class 35

Figure 2.1b. Classifying instructions in modern MPUs (continuation and end)

An instruction set can also be subdivided into several sub-sets depending on the
execution rights or modes, of which there are generally two, administrator and
simple user (cf. § 3.2.2). Another criteria for classification is the number of operands
(0, 1, 2, etc.). A component such as the microcontroller or Digital Signal Processor
(DSP) will add the bit manipulation instruction family.

We will now see the instructions for these classes in detail. To present them in a
readable and generic form, the Assembly Language (AL) mnemonics (cf. § V5-1.3)
used are those from IEEE Std 694-1985 (IEEE 1985) or those of industrial
components.

2.2. Transfer instructions

One of the three MPU functions, aside from their processing (i.e. calculation)
and storage, is data transfer. An additional function is manipulation of the address
itself.

2.2.1. Data transfer

Data transfer, also called “information-moving instructions”, can be made from
memory to register and vice versa (memory access instructions), as well as from
register to register, per word or per block of memory words. For the first two
forms, the reason linked to architecture comes from the basic operating cycle that
permits only a single access to the memory per cycle (the golden rule of access,
cf. § V1-3.3.3), for example, for accumulator architectures (single-bus structure,
cf. § V1-3.4). A register such as an accumulator should then be used as an
intermediary for transfer and exchange. It is also possible to load a literal in a
register or memory. Depending on the architectures and designers, there may be an
instruction for each type of transfer.

36 Microprocessor 4

We list, depending on the direction of transfer, ldx or ld <name_or_
reference_of_source_register> for loading in the processor and stx or
st <name_or_reference_of_destination_register> for loading
from the memory towards the processor, with x indicating a register. A single one
can also suffice, such as mov (x86) or move (MC68020) and, to transfer several
registers to the memory and vice versa, movem (MC68000). There may be an
exchange instruction between two operands such as xchg from 8086 or exchange
from MC68020 or between two parts of an operand such as swap from MC68020.
It should be noted that 8085 from Intel executes the exchange using two internal
registers, W and Z allowing temporary storage of operands.

Traditionally, the transfer instruction does not update the status register (cf.
§ V3-3.1.5), but there are counter-examples such as with the VAX (Virtual Addressed
eXtended) mini-computer from the Digital Equipment Corporation (DEC) whose
transfer instructions position the flags. Another example is the instruction move
from MC68020 that positions indicators N and Z depending on the value of the
operand, fixes C and V at zero and does not modify the flag X (eXtend flag).

Stack manipulation instructions are a special case. The stack, with LIFO (Last-
In/First-Out) memory access, is generated by two primitives that are, we recall
(cf. § 4.1), stack() and unstack(). On the contrary, Arm® uses two traditional transfer
instructions instead of the specialist instructions push and pop. We will explain in
detail how these operate in a future book by the author on microprocessors.

Advanced modes have been implemented, such as transfer between two memory
areas or regions, either of a whole word or a part of this word with the aid of a
logical mask or the transfer of several words (block transfer). These are character
manipulation instructions (Zilog family or Intel, for example) enabling transfer of a
block of bytes as well as a search for a binary pattern within it. The associated
instructions are described in § 2.8.1. Another example with P6 architecture, with
Pentium Pro as the first representative in 1995, introduced conditional transfer
depending on the state of one or more flags (instructions cmovcc, cc indicating the
condition).

Depending on the address spaces (cf. § V3-2.1.1.1), specialist instructions are
sometimes available for input–output (input/output) transfers (cf. § 2.8.2).

Moreover, to carry out transfers in a multiprocessor environment with shared
memory, some MPUs, such as the DSP TMS320C3x family, offer (inter-)locked
(un)loading instructions for integer and floating-point numbers respectively ldfi

Instruction Set and Class 37

(load floating-point value into a register, interlocked), ldii (load integer into a
register, interlocked), sigi (signal, interlocked), stfi (store floating-point value
to memory, interlocked) and stii (store integer to memory, interlocked), which are
linked to two signal synchronization hardwares XF[1:0].

2.2.2. Address manipulation instructions

Some processors have an instruction that can recover the effective address, as in
architectures x86 and IBM System/390 (mainframe, cf. § V1-1.2). With Intel, it is
called lea for Load Effective Address. One application is to decide the address
from the start of a data structure, for example, an array, to be able to pass it to a
function (passing by reference). Being able to manipulate the Effective Address
(EA, cf. § 1.2) makes it possible to implement a complex addressing mode such as
based indexed addressing with offset (cf. § 1.2.3.4), which makes it possible to add
two register values with one constant, which is useful for signal processing.

2.3. Data processing instructions

The main function of an MPU is to process information. (Data) processing
instructions are also called transformational instructions. For this sub-set, we need to
distinguish arithmetic instructions for integers and for bit manipulation.

2.3.1. Arithmetic instructions for integers

Arithmetic instructions, which were the first to be implemented in
microprocessors, involved integers with addition (add) and subtraction (sub).
Multiplication (mul) and division (div) appeared much later with MC6809 from
Motorola. Particular forms of addition and subtraction are respectively
incrementation operators (inc) and decrementation operators (dec) where the
implicit implement value is the unit. Exercises V3-E3.2 and V3-E3.3 suggest
studying their respective logic function. Addition and subtraction can take account
of a previous carry (in the x86 architecture, respectively addc - addition with
carry and sbb - subtract with borrow), useful in chained operations (RCA for
Ripple-Carry Addition). Moreover, the comparison (cmp) executes a subtraction
without giving a result that positions the indicators. It traditionally precedes a
conditional jump instruction (cf. § 2.4.1). It should be noted that instruction cmp2
from the 68,000 family makes it possible to test whether a value belongs to a range.

38 Microprocessor 4

The operations are carried out in the format n. This type of arithmetic is called
“modular” (modular arithmetic) or more rarely called wraparound arithmetic,
literally enveloping arithmetic (i.e. that loops). This means that if there is a format
overflow (in the case of a natural integer) or capacity overflow (in the case of a
relative integer), the result will be false but not blocking (i.e. execution continues).

All these operations can be signed or unsigned. The two representations of whole
numbers in a binary code that have been kept are respectively Natural Binary Code
(NBC) and two’s complement representation. The distinction for addition and
subtraction is made by coding the operands and reading the carry flags C and overflow
flags V for the validity of the result. The instruction neg (Negate) subtracts a zero-
operand to calculate its opposite in two’s complement representation. For
multiplication and division, distinct mnemonics are proposed for the unsigned version,
for example, respectively imul (Integer Multiply) and idiv (Integer Divide).

Some MPUs do not position the indicators by default. We cite the Arm® family
that requires suffixing the mnemonic by one S, which forces it to position the
indicators on the result. This avoids side effects (cf. § V3-3.1.12.1.).

Adjustment instructions make it possible to use these arithmetic instructions for
whole numbers coded in other representations such as BCD code (Binary-Coded
Decimal, cf. § II.1.2 from Darche (2000)). We take the example of the x86 architecture.
For compact BCD (format n = 2 digits, so one byte), there is daa (Decimal Adjust for
Addition) and das (Decimal Adjust for Subtraction). In the non-compacted version
(n = 1), there are the badly named2 aaa (ASCII Adjust for Addition) and aas (ASCII
Adjust for Subtraction). Correction consists of adding 6 to each invalid digit result
(cf. exercises E2.1 and E2.2). To conclude, we cite for non-compacted BCD (n = 1) only
aam (ASCII Adjust for Multiply) and aad (ASCII Adjust for Division).

Format extension instructions make it possible to extend the sign to higher
formats while nonetheless not modifying the indicators. We cite version x86 cbw
(Convert Byte to Word) and cwd (Convert Word to Doubleword).

2.3.2. Bit manipulation instructions

Figures 2.2(a) and (b) show the different operations for the bits in one word. We
recognize the classic base operators, those from basic combinatorial logic (i.e.
Boolean) as well as non-parallel operations, which are shifts and rotation. We call
the latter scale operators or, better, bitwise operators.

2 The acronym ASCII (American Standard Code for Information Interchange, cf. § III.3.4
from Darche (2000)) is deceptive here, since the underlying representation is BCD.

Instruction Set and Class 39

Figure 2.2a. Classification of the main bit manipulation operations

Today, with the integration of a vector unit in microprocessors, in particular for
multimedia3 applications, we must consider changed and advanced bit manipulation
instructions. These two adjectives are used to distinguish the complexity of
manipulations and the dates they appeared. Atomic instructions are studied in
§ 2.6.1.

Figure 2.2b. Classification of the main bit manipulation
operations (continuation and end)

Prior to presenting operations, it is necessary to define three terms relating to
binary data.

3 Multimedia covers several data representation modes, visual 2D and 3D (text, video, still or
moving graphic images) and audio (music, voice and sound) by linking them with interaction.

40 Microprocessor 4

2.3.2.1. Preliminary definitions

A superword is used to designate a vector. A bit field in a word in format n is a
contiguous sequence of bits in the format 1 ≤ n’ ≤ n. We can consider this field as a
data structure formed of any number n’ of consecutive bits (chain of consecutive
bits). A sub-word of a word in the format n is a word of length n’ = 2k with k natural
integer and n’ < n. It is this word’s unit of subdivision that has consequences on
alignments within it. Sub-word type data will be called “condensed or compacted
data4“ or packed. The word to which it belongs will be called “a word (broken
down) into packets”. This organization is adapted to multimedia data such as RGB
(for Red–Green–Blue) data with pixel attributes. The sub-word becomes the atomic
operand (i.e. unit of decomposition) for parallel calculation. This approach is called
“sub-word parallelism” or “MicroSIMD type parallelism” by Lee (1999) and will be
explained in a future book by the author on microprocessors.

2.3.2.2. Basic Boolean operators

The combinatorial logic base operators (cf. Chapter 2 of Darche (2002)), which
are and, or, exclusive or (xor5 or eor) and not, apply to each bitwise
operation. Equivalent operators in C language are respectively &, |, ^ and ~. Aside
from the last, these are Boolean operators with type 2-arity, that is, with two
operands. They are used in particular for masking and logical bit forcing to the state
“1” or “0” (cf. exercises E2.4 and E2.5 and § 2.2 from Darche (2002)).

The instruction test (x86) or bit (HC11 microcontroller family) is a logical
AND that does not provide the result but which positions the indicators. It should be
followed immediately by a conditional jump instruction, or, in any case, we should take
care that no instruction modifying the indicators is intercalated (cf. § 2.4.1).

Instead of programming a software masking solution, that is, depending on the
case, a logical AND or OR between the data and the mask, specialist instructions for
manipulating a bit have been implemented. As explained in § 1.2.4.3, these
instructions are reserved especially for microcontrollers as they make it possible to
manage more closely the I/O lines. They make it possible to set the bits of a word at
0 or 1 logic respectively bclr (clear bit(s) in memory) and bset (set bit(s) in
memory) for 68HC11 family do so in the memory, with an operand playing the role
of mask. They also offer the possibility of branching on a bit state. In the same
family, we cite brclr (branch if bit(s) clear) and brset (branch if bit(s) set). But
classic MPUs generally have instructions for setting binary indicators from the
status register (cf. § V3-3.1.5) at 1 or at 0. More particularly, the instructions set

4 To return to the vocabulary of BCD representation (Binary-Coded Decimal, cf. § II.1.2 from
Darche (2000)).

5 Note that the mnemonic violates the rule of naming a mnemonic from standard (cf. § 2.1).

Instruction Set and Class 41

and clr respectively force the specified operand to “1” and “0”. IEEE Std 694-1985
(IEEE 1985) proposes respectively suffixes -C and -V used with these two last
instructions (cf. § V5-1.3.2) and the instruction not to modify the value of the
binary indicators carry flag (CF) and (capacity) overflow flag (OF). Some MPUs
have specialized flag instructions. For example, we cite cli (Clear Interrupt Flag)
and sti (Set Interrupt Flag) which position the interrupt mask in x86 family to
respectively inhibit or authorize external interruption requests (cf. § 5.2). It should
be noted that some MPUs such as x86 family make it possible to test the value of a
particular bit of an operand and extract or initialize it (bt/btc/btr/bts, cf.
§ 2.6.1). In the same architecture, the instruction bzhi (for zero high bits starting
with specified bit position) makes it possible to copy the bits of the source operands
while still setting the most significant bits of the destination operand at zero
avoiding software masking.

For the record, mainframe computers of the 1960s offered a set of logical
combined instructions less refined than those of System-10 from DEC (Table 2.1).

No. Mnemonics Operations
0 setz 0

1 and ܣ ⋅ ܤ

2 andca ̅ܣ ⋅ ܤ

3 setm ܤ

4 andcm ܣ ⋅ തܤ

5 seta ܣ

6 xor ܣ ⊕ ܤ

7 ior ܣ + ܤ

8 andcb ̅ܣ ⋅ തܤ

9 eqv ܣ ⊕ തതതതതതതതതതܤ
10 setca ̅ܣ

11 orca ̅ܣ + ܤ

12 setcm ܤത

13 orcm ܣ + തܤ

14 orcb ̅ܣ + തܤ

15 seto 1

Table 2.1. Logical instructions from DEC System-10

42 Microprocessor 4

2.3.2.3. Basic non-parallel manipulations

Simple, non-parallel base operators are unitary operators, (open) shifts and
rotations. These last two operations can be made on the left and on the right. A
number of operations can be specified with the operand involved (so the right
operand).

Unitary operations are Boolean, but they consider a non-null word as a logical
“1” and the null value as a logical “0”. Their implementation gives, for example, the
operators && and || in C language.

In the shifts, we should distinguish logical and arithmetic variants. The logical
shift does not consider the leftmost bit as a sign bit but instead as an ordinary bit. A
zero (kill value, cf. § V3-3.3) is injected in the register. It takes the place of the
vacated bit. The outgoing bit goes in the status register carry flag. Equivalent
operators in C language for left shifts (lsl for Logical Shift Left or asl) and (lsr
for Logical Shift Right or shr) are respectively << and >>, the symbol chosen
suggesting the direction. Figure 2.3 illustrates our idea. In the x86 architecture (386
and above), left and right shift instructions, respectively shld and shrd (Bitwise
Double-Precision Shift), make it possible to carry out a shift between two operands
specified in the instruction without changing the source.

Figure 2.3. Logical left and right shifts

The arithmetic shift, when it is made to the right (sar for Shift Arithmetic
Right; Figure 2.4), duplicates the sign (i.e. the vacated bit takes the value of the
sign). This propagation of the sign makes it possible to preserve the operand’s
polarity. The outgoing bit is stored in the carry indicator (not proposed by the
standard). Shift Arithmetic Left (sal or shla) is equivalent to a logical shift in the
same direction (cf. Figure 2.3).

Figure 2.4. Shift arithmetic right

Instruction Set and Class 43

The shift function is generally used to multiply or divide a number (by 2), to
make a mantissa alignment6 or normalization (cf. § II.4.2.7.1 in Darche (2000)) in
floating-point representation or to insert or extract a field from a binary word. The
particular instance for this function is to isolate a bit in order to test it (cf. exercise
E2.5).

Rotation is a shift looped on itself, as Figure 2.5 illustrates, hence the rarely used
name “cyclic shift” compared to the open shift. The outgoing bit is re-injected at the
other end.

Figure 2.5. Left and right rotations

If required, a link bit can be inserted in the rotation loop. In most cases, this is
the carry flag, as Figure 2.6 illustrates. This makes it possible, for example, to make
a conditional jump onto the value.

Figure 2.6. Left and right rotations through carry

Figure 2.7 shows an example of shift and an example of rotation for s bits.

Figure 2.7. Generic examples of multiple shifts and rotation

6 This should not be confused with the alignment of information seen in § 3.1.2.

44 Microprocessor 4

Some processors can have particular shifts. 386 from Intel and the following
generations offer a double shift by linking one register with another or a memory
location with the instructions shrd (Shift Right Double) and shld (Shift Left
Double), thus doubling the format (Figure 2.8). Along the same lines, PDP-10
offered a double rotation by linking two consecutive registers.

Figure 2.8. Double shift with a 386

Another particular example is Z80, which offers a left or right rotation
(instructions rld and rrd – rotate left/right digit) in packed BCD representation in
number format (i.e. 4 bits).

2.3.2.4. Advanced bit manipulation instructions

Shifts and rotations can be made in the sub-words. We speak of a packed shift
and packed rotation. There is also the instruction rldimi from PowerPC
(Performance Optimization With Enhanced RISC Performance Computing), which
makes possible a rotation with insertion masking in a 64-bit format. The masking
can be carried out by inserting a bit field at a set position. Aside from shift and
rotation, other more advanced bit manipulation operations have been imagined.
These are extraction, field deposit and shuffle.

Figure 2.9 shows an example for the first two. Field extract consists of selecting
a bit field of arbitrary length from a source word and position, starting at position p
(pth + 1 bit) and storing it, right-justified, in a destination operand initially at zero
(sub-word extract). The equivalent operation with base operations is a masking to
select the field and a logical right shift of p bits applied to the source operand. The
equivalent expression in C language is the following:

dest = (src >> start) & (1 << (len-1)) [2.1]

Instruction Set and Class 45

The instruction bextr (Bit Field Extract) from the BMI 1 (Bit Manipulation
Instructions) extension from Intel is one example. In version 2 of this set (i.e. BMI 2),
Intel offers a “word” version with the instruction pextrw (Packed Extract Word) from
the SSE (Streaming SIMD Extensions) set. Another example is the instruction u/sbfx
((un)signed bit field extract) from the ARMv7 architecture or the instructions found in
the Arm® Cortex-M3 microcontroller that may or may not include the sign.

Field deposit is the symmetrical operation. It consists of selecting the l first bits
of a source operand and depositing them at position p in a destination operand
initially at zero (sub-word deposit). The equivalent operation with base operations is
masking to select the field and a logical left shift of p bits applied to the source
operand. One example is the instruction bfi (bit field insert) from the ARMv7 set.
Intel with the instruction pinsrw (Packed Insert Word) from the SSE set offers a
“word” version. We can also list the instructions bfins bfextu from MC68020.

Figure 2.9. Field extract and field deposit operations

Shuffle allows partial interleaving of sub-words from two source words in a
destination word. There are two kinds, left and right, as Figures 2.10 and 2.11
illustrate. Traditional sub-word formats are typically 8, 16 and 32 bits for a 64-bit
word but, generally, the format n’ of a sub-word from a word in n format is given by
the inequation 0 < n’ < n. It appeared with PA-RISC7 (Lee 1996) to accelerate
calculation of multimedia applications, it is also found in Itanium from Intel (Lee
et al. 2001). One example of shuffle is mix from the PA-RISC 2.0 architecture (Lee
and Huck 1996), which is found in the IA-64 architecture (Intel Architecture).
Another example is pshufw/pshufb from the SSE extension versions 1 and 3
(cf. § 2.6.1), versions for condensed floating numbers also exist in SSE2.

Reverse instructions also exist. Figure 2.12 shows instructions rev, rev16 and
rev32 from the Arm® and Thumb® family applied on a 64-bit word as an example. A
square represents a byte. They can apply only to one word, at least in double format.
There is also a bit-level version (complete reversal of the order of the word) with rbit.

7 PA for Precision Architecture.

46 Microprocessor 4

Figure 2.10. Left shuffle operation (interleaving)

Figure 2.11. Right shuffle operation (interleaving)

Figure 2.12. Reverse instructions from the Arm® and Thumb® family (n = 64)

Instruction Set and Class 47

To conclude, and for information, counting instructions makes it possible to
count the number of bits at 1 or 0 (lzcnt, tzcnt and popcnt with Intel).

2.3.2.5. Advanced bit manipulation instructions

There are three Advanced Bit Manipulation (ABM8) instructions. There are bit
gather, bit scatter and bit permutation operations (Figure 2.13).

Figure 2.13. Classifying advanced bit manipulations

The two previous advanced operations, which are field extract and field deposit,
may exist in multiple forms. The gathering of bits, also called parallel extract,
consists of making several extractions of groups (or fields) of bits and regrouping
them. The scattering of bits or parallel deposit consists of carrying out the reverse
operation, that is, extracting groups of bits and dispersing them. For these
operations, a stuffing of 0 is made if necessary (bit stuffing). Figure 2.14 illustrates
both these operations. Signaling using “1”s indicates respectively the bits to be
gathered or the locations that will receive the bits to be scattered. We also cite as
industrial examples respectively the instructions pext (Parallel Bits Extract) and
pdep (Parallel Bits Deposit) from the BMI 2 set from Intel.

Figure 2.14. Field extract and field deposit operations of parallel bits

8 This should not be confused with technology from AMD (see below).

48 Microprocessor 4

An example of the permutation instruction is permute from the PA-RISC 2.0
architecture (Lee and Huck 1996). One permutation at the bits (of one word) is an
arbitrary rearrangement of these in this word (cardinality = n!). This operation is
beneficial, for example, in the domain of cryptography. Any permutation in the
format n bits can be carried out, as Hilewitz and Lee (2006, 2008) have shown, by
passing only once through two units that carries out a butterfly permutation, a
normal (instruction butterfly or bfly) then an inverse butterfly or ibfly
instruction. The association of these units forms a Benes circuit (Benes 1964). To do
this in an n-bit format, we need log2(n) steps of n/2 switches (Figure 2.15a), each of
them formed of two two-input multiplexers (Figure 2.15b) (2:1 MUX), where the
information passes through as it is (E = 0, variables a and b underlined in the figure
on the right) or there is an exchange of inputs (variables a and b not underlined).

Figure 2.15. Normal butterfly circuit in n = 8 bits format (a)
and associated switch (b)

Figure 2.16 shows the symmetrical circuit from the previous one.

For these advanced families, manufacturers have suggested technology names to
indicate these additional specialized instruction sets. We cite ABM (Advanced Bit
Manipulation) and TBM (Trailing Bit Manipulation) for AMD and BMI 1 and 2
from Intel. These sets are specialized ISA extensions such as SSE at Intel.

Instruction Set and Class 49

Figure 2.16. Reverse butterfly circuit in n = 8 bits format

2.4. Control transfer instructions

In the Von Neumann architecture, the execution of instructions is sequential in
origin (cf. § V1-3.2). To be able to implement, among others, high-level language
control structures such as, for example, if_then_else, control-flow instructions are
needed, also called program control instructions or program transfer instructions.
They will alter the execution’s sequentiality, hence a final name, sequence breaking.
The rupture of flow control or of the execution sequence is simply obtained by
changing the value of the Program Counter (PC), which makes it possible to “break”
this sequentially of the execution model. It is necessary to distinguish conditional
and unconditional (de)branching instructions9 (of the execution sequence); the latter
includes subroutine call and return instructions and, to conclude, those for handling
(or processing) hardware and software interruptions with, among others, exceptions
(cf. § 5.4).

9 Some authors, as Etiemble (2016) and Clements (2014) explain, distinguish the jump (the
Program Counter (PC) receives an absolute address) from the branch (addition of a relative
address to the PC). This distinction will not be made in this book as the two names have an
identical meaning. The context will be enough to show whether it is a conditional operation or
not.

50 Microprocessor 4

2.4.1. Branchings

These instructions alter the sequentially of execution by making it possible to
jump to an instruction other than the following one. They play a fundamental role in
programming languages as it makes it possible in particular to achieve a branch-on-
condition. To do this, there are, in the MPU instruction set, specialized jump
instructions, also called jump or branch or test instructions, conditional or not, and
for which Figure 2.17 shows a classification. The three addressing modes currently
used are relative, direct modes or absolute and indirect modes. An indirect jump is
called an indirect or computed jump or branch. A register-indirect jump is also
possible.

Figure 2.17. Branching instructions

Any jump – backward or forward – can be made in the code (Figure 2.18). The
first sub-class of jump is the unconditional jump (instruction jmp from Intel). It
makes it possible to understand the branching mechanism in all the forms cited
previously. Executing it unconditionally initializes the program counter at the
calculated address, depending on the addressing mode. Thus, the next instruction to
be executed will be that of the specified address. The unconditional jump represents
30% of jumps made in programs (Cragon 1992).

One conditional branching instruction is similar to the high-level control
structure if <Boolean_condition> then <go_to target_address>. It makes it possible,
depending on the conditions, to perform an execution sequence branching. The
condition is called a predicate10. A predicate is the expression of a condition.
Figure 2.19 shows the different steps of executing if the condition is true.

10 This should not be confused with an assertion or proposition, which is a phrase to which it
is possible to attribute a truth value, that is, one that is either true or false.

Instruction Set and Class 51

Figure 2.18. Execution paths for a jump

Figure 2.19. Execution steps for a conditional jump

As Figure 2.20 illustrates, the execution path is divided by the branching
instruction (or node) into two paths, the fall-through path and the target path. If the
condition is true, then the control transfer is made at the instruction on the branch
target address (BTA for Branch Target Address). The microprocessor will execute
this targeted instruction known by the acronym BTI (Branch Target Instruction). We
say the branching is called “taken”. If the condition is a constant, then it is an
unconditional jump. If it is a Boolean variable, then it is a conditional jump. Where
there are several successive jumps, the branch path is the code between two
executed branchings. The number of instructions involved is, on average, three to
nine (Uht et al. 1997).

52 Microprocessor 4

Figure 2.20. Execution paths for a conditional jump

During its execution, the processor must carry out two tasks: they must evaluate
the condition associated with this jump and calculate the jump address (i.e. target
address). As for the unconditional version, the addressing modes traditionally used
are absolute mode and relative modes, in general to Program Counter (PC) relative.
Moreover, the jump address can only be known during execution. This is true, for
example, for a multiple branching control structure such as switch() from C
language. We speak of a computed branch whose address should be calculated
dynamically. The role of the condition register is fundamental as the jump is made
on the condition of its indicators (the case with x86). In this case, any conditional
jump should therefore be preceded by an instruction positioning the indicators. The
comparison instructions and conditional branching use the traditional four condition
code bits N, Z, O (or V) and C (NZVC flags). When the condition is not verified,
execution of the instruction is equivalent to a nop (cf. § 2.8.5). The first use is to
verify the validity of a result (i.e. its exactitude). A second is to compare two values,
digitally. Any comparison operator comp_op (<, >, =, LGE for Less, Greater and
Equal and combinations and complementation, which gives GT, GE, EQ, LT, LE,
NE, etc.) is reduced to a subtraction followed by the test compared to zero (formula
2.2). It justifies the presence of a status register and, in particular, of the ZF (Zero
Flag).

op1 comp_op op2 ⇔ op1 - op2 comp_op 0 [2.2]

The mnemonic of a conditional jump instruction takes the form jcc (jump on
condition code) or bcc (branch on condition code). This respects the naming
standards rule since the first character of the mnemonic should be that of the action

Instruction Set and Class 53

verb and it should contain the condition (role of cc). The test can be carried out
simply on an indicator. We list the five tested indicators from the x86 family, jc
(jump on carry) – jnc (jump on not carry), jo (jump on overflow) – jno (jump on
not overflow), jp (jump on parity) – jnp (jump on not parity), js (jump on sign) –
jns (jump on not sign) and jz (jump on zero) – jnz (jump on not zero). The test
can be complex, involving several indicators. This makes it possible to make digital
comparisons, but the digital representation should be considered. Table 2.2
summarizes them. Note the mnemonic synonyms for a single test. This means that
the corresponding machine codes will be identical. The two other jump possibilities
occur on the condition of testing a register’s value (the case with MIPS) and on
condition of exception.

Mnemonics Names

Tests
and digital

groups
involved

Conditions

ja
jnbe

Jump on above
jump on not below or equal

>, ℕ ܥ ⋅ ܼതതതതതത
jae
jnb

Jump on above or equal
jump on not below

≥, ℕ ̅ܥ

jb
jnae

Jump on below
jump on not above or equal

<, ℕ ܥ

jbe
jna

Jump on below or equal jump on
not above

≤, ℕ ܥ + ܼ

je
jz

Jump on equal
jump on zero

=, ℕ and ℤ ܼ

jne
jnz

Jump on not equal
jump on not zero

≠, ℕ and ℤ ܼ̅

jg
jnle

Jump on greater
jump on not less or equal

>, ℤ
(S⊕ O) + Zതതതതതതതതതതതതതതതത ൫(ܵ̅ ⋅ തܱ) + (ܵ ⋅ ܱ)൯തതതതതതതതതതതതതതതതതതതതതതത + ܼ̅

jge
jnl

Jump on greater or equal
jump on not less ≥, ℤ

S ⊕ Oതതതതതതതത (ܵ̅ ⋅ തܱ) + (ܵ ⋅ ܱ)
Jl

jnge
Jump on less

jump on not greater or equal
<, ℤ ܵ ⊕ ܱ

Jle
jng

Jump on less or equal
jump on not greater

≤, ℤ (ܵ ⊕ ܱ) + 	ܼ

Table 2.2. Conditional jump instructions for 8086 for whole numbers

A coprocessor can provide support to a jump mechanism. Therefore, the x87
coprocessor can carry out a comparison between two numbers represented in
floating point (instructions fcom, fcomp, fcompp, ftst, fucompp, ficom and

54 Microprocessor 4

ficomp, the difference influencing how the flags are handled). It makes the
comparison by positioning its indicators, which are then recopied in the master
processor’s status register (an old mechanism before the P6 microarchitecture from
Intel). The new form of execution (with the P6) directly positions the indicators of
the master processor’s status register (instructions fcomi, fcomip, fucomi and
fucomip). In both cases, it is always the latter that actually carries out the jump.

The control schema for the execution for an instruction, which is shown, is based
on updated binary indicators (i.e. NZVC flags, mainly) on a specialized register, the
status register. These indicators are then tested by a conditional branching
instruction. This well-established schema is called result state checking. The
advantage of a status register is that it factorizes the code for calculating the flags,
but it is adapted to a purely sequential execution model. It is a real and harmful side
effect of parallel execution, and it makes the instruction set non-orthogonal (cf.
§ 3.1.3). This schema is for mainframe computers (IBM System/360 and /370 for
example), PDP-11 and VAX mini-computers, the first CISC microprocessor
families (families x86 and MC68000, for example) and some RISC (families
RISC-II and RISC-II, SPARC11, PowerPC and Arm®, for example). For Arm®, the
mnemonics should be suffixed by the letter S to update the flags after execution.
Moreover, the instructions support conditional execution.

To accelerate execution, execution parallelism has been suggested with, for
example, ILP (Instruction-Level Parallelism, this will be covered in a future book by
the author on microprocessors) whose pipelined execution is a mechanism. With a
pipelined architecture, a conditional branching instruction will have to wait until the
instructions preceding it in the pipeline have been executed so that it can be
executed itself, which takes a great deal of time. In this implementation, it is
therefore necessary to avoid intercalating instructions between the test and the
conditional jump instruction, which is a constraint for the compiler. If there are a
small number of instructions involved, then a specialized software can determine
how to anticipate the state of the flags of the instructions that precede it. Hence,
positioning of indicators may be optional for arithmetic and logical instructions. In
this context, an alternative to state control implementation is the direct check
concept (Sima et al. 1997). No state is therefore saved in a status register during a
comparison. Blaauw and Brooks (1997) propose the concept of explicit and implicit
evaluations (Figure 2.21).

In case (a) of Figure 2.22, the arithmetic operation positions status flags after
calculation. The instruction that follows will be a jump on condition(s) of these
flags. In case (b) of the figure, the state result check follows the calculation
instruction. The test and branching are made either in a single instruction or in two.

11 SPARC for Scalable Processor ARChitecture.

Instruction Set and Class 55

A single instruction (test of the result then branching) in place of two separate
instructions makes it possible to optimize execution, in particular in current parallel
architectures.

Figure 2.21. Left: result state check; right: direct check

Figure 2.22. Schema for evaluating a calculation

The first form is that of the RISC AMD 29000 microprocessor. This test schema
always uses two instructions, one for comparison positioning a Boolean result (and
not the classic NZVC flags) in a GPR, which is then tested by a jump instruction (an
approach using two instructions). It should be noted that it offers a comparison
instruction assert, which traps12 if its result is false. The second type tests and
makes the jump in a single instruction (notion of atomic operation, cf. § 2.6.1).
Cragon (1992) calls this type TB for Test and Branch. It is the one used by

12 For the concept, cf. § 5.4.

56 Microprocessor 4

supercalculators CYBER/70 and Cray, mini-computers PDP-8 and PDP-10
(instructions skip) and microprocessor families RISC MIPS, HP PA (Precision
Architecture) and DEC Alpha. One drawback is that is uses many registers.

It should be noted that processors such as family SPARC from version 9 use
both control schemas. In addition, it should be noted that the microprocessor cannot
execute the code that follows the branch instruction as it is linked to its result. It is
called a branch effect, which has a prejudicial effect on a processor’s performance in
the context of parallelism (cf. § 2.6.1). For example, the pipeline should stall and,
eventually, purge itself if branching, limiting the execution parallelism. There will,
on the other hand, be techniques for reducing these effects or BERT for Branch
Effect Reduction Techniques. One example is IBM S/360 model 91, which, at the
moment of decoding, positions a 2-bit tag in the instruction’s code called cc for
condition code, which indicates at execution that the instructions already decoded
should not be executed before the conditional branching instruction (Anderson et al.
1967). These techniques will be developed in a future book by the author on
microprocessors.

2.4.2. Conditional execution

Conditional execution, also called guarded or predicated execution, makes it
possible to attribute a predicate to a traditional instruction according to the following
schema:

Predicated instruction <conditional expression > ? <instruction> [2.3]

The concept was suggested by Dijkstra (1975). Hsu (1986) and Hsu and
Davidson (1986) suggested the first application for ILP scalar processors
(Instruction-Level Parallelism, this will be covered in a future book by the author on
microprocessors) to get around the problems of branching, which slows the
operation of their superscalar and superpipelined architectures. It generalizes the
conditional control transfer mechanism (branch prediction). The condition affects
the value of the flags. Execution of a predicated instruction is effective when the
qualifying predicate is true. We say that the execution is gated by a qualifying
predicate. This happens after the flags have been updated by a specialized
instruction such as a comparison, instructions that have not updated these flags will
be able to intercalate with one another. If the condition is not verified, then the
instruction does not execute, no result is given (i.e. no writing), no flag is modified
and no interruption is lifted. The instruction is then equivalent to a nop. It should be
noted that predicting any instruction set complicates the Control Unit (CU).
Discussion of this mechanism will be covered in a future book by the author on
microprocessors.

Instruction Set and Class 57

In the Arm® architecture, each mnemonic can be suffixed by the condition. This
will correspond to a value of a quadruplet of flags (N, Z, C, V) called predicate
flags. This quadruplet is on the left of the predicated instruction code (most
significant digits of the 32-bit word). For the condition to be verified, the values
must be equal to those of the corresponding flags in the state PSR (Program Status
Register) updated following execution of the instruction involved. In assembly
language, the mnemonic is suffixed by an abbreviation that recalls the condition.
Table 2.3 summarizes these uses in this architecture.

Codes Suffixes Logical conditions Description Symbols

0000 EQ ܼ = = 1
(Z)

EQual =

0001 NE
ܼ = = 0

(ܼ̅)
Not equal ≠

0010 CS/HS ܥ = = 1
(C)

Carry set/unsigned higher or
same

Unsigned ≥

0011 CC/LO
ܥ = = 0

 (ܥ̅)
Carry clear/unsigned LOwer Unsigned <

0100 MI ܰ == 1
(N)

MInus/negative < 0

0101 PL
ܰ == 0

(ഥܰ)
PLus/positive or zero ≥ 0

0110 VS ܸ = = 1
(V)

Overflow –

0111 VC
ܸ = = 0

(തܸ)
No overflow –

1000 HI
ܥ) =	= 1) • (ܼ = = ܥ (0 • ܼ̅

Unsigned higher Unsigned >

1001 LS
ܥ) =	= 0) • (ܼ = = ܥ̅ (1 + ܼ

Unsigned lower
or same

Unsigned ≤

1010 GE
ܰ == ܸ ܰ ⊕ ܸതതതതതതതതതത Signed greater than or equal Signed ≥

1011 LT
ܰ ≠ ܸ ܰ ⊕ ܸ

Signed less than Signed <

1100 GT ܼ̅ 	 • 	 (ܰ ⊕ ܸതതതതതതതതതത) Signed greater than Signed >

1101 LE ܼ	 +	(ܰ ⊕ ܸ) Signed less than
or equal

Signed ≤

1110 AL 1
ALways

(flags ignored)
–

1111 NV/- 0 / − NeVera/unpredictable –

a. NV before version 3 of the architecture, otherwise unpredictable.

Table 2.3. Condition codes from the Arm® architecture

58 Microprocessor 4

One industrial use is that of the Arm® family that results in the instruction code
by a binary quadruplet (Figure 2.23). The value of the condition field is one of those
in the table above.

Figure 2.23. Condition field from MPU Arm® VL86C010

The aim of predicting instructions is to delete conditional branchings. The
guarded execution has the advantage of allowing for fewer dependencies. This
facilitates the work of the compiler. There is less prediction to be done, and there are
fewer poor predictions. In terms of limitations, guarded execution and extension to
the ISA and specific handling by the compiler, support for the execution by the ISA
may be full or partial. In fact, some instruction sets do not support conditional
execution for all instructions for reasons of complexity or performance. It was first
applied to conditional move. This was the case with SPARC V9 (conditional
transfer instructions for whole numbers MOVcc and floating point FMOVcc only),
from the Alpha processor or the ISA x86. The A64 set from ISA ARMv8 also offers
a reduced number of conditional branching instructions. In the case of a conditional
structure if_then_else with blocks of more than 10 instructions, the compiler can
operate the parallelism better but the classic conditional jump (i.e. not predicated) is
better in terms of execution time (addition of the time corresponding to the
execution of the two blocks). The number of instructions executed increases, as it
makes compatible the instructions of the path crossed as well as those that would not
have had to be executed in the classic approach. Additionally, not all MPUs offer
this. The IA-64 architecture (that of the MPU Itanium) from Intel is another
example of guarded execution similar to the Arm® architecture, except that is based
on the idea of a PR (Predicate Register), of which there are 64 (p[63:0]) which each
stores a condition test result. The instruction is written in the form:

(pi) instruction [2.4]

For information, predicated execution is also used in software for speculative
execution (this will be covered in a future book by the author on microprocessors).
Moreover, vector processors such as Cray-1 (Russel 1978) used a similar principle
with the notion of a vector mask that controlled execution of the instruction on the
elements of the vector. VLIW (Very Long Instruction Word) architectures such as
the Cydra-5 computer (Rau et al. 1989; Beck et al. 1993) have their entire set
predicated.

Instruction Set and Class 59

2.4.3. Iteration control

One particular case with the conditional jump is the loop-closing conditional
branch, which is a backward jump that is always made, except on the last iteration.
This conditional loop closure jump was initially a classic conditional branching
instruction with explicit handling of the loop counter. A specialized conditional
jump instruction may be available, such as jcxz in the x86 architecture.

So as not to lose time in handling, a simple technique called loop unrolling is
traditionally used in digital calculation. It consists of replacing a loop by repeating
its code as many times as necessary. Loop unrolling is useful for reducing control
but is prohibitive in terms of the number of lines of code.

To facilitate programming in assembly language and to decrease execution time,
the classic instruction set of a microprocessor has been completed with instructions
whose operation is similar to those of high-level languages (CISC approach). Those
placed at the end of the loop use either a specialist or general register as a counter,
which is decremented and tested to carry out a conditional jump at the start of the
loop. We cite as an example the instruction loop from the x86 family that makes it
possible to implement easily control structures such as the loop for var = i to
j do. An implicit register, CX or its format variants, is decremented and tested
compared to zero. Other existing versions also test the value of the ZF indicator,
called loope/loopz and loopne/loopnz. MC68000 offered an equivalent
instruction DBcc (Test Condition, Decrement and Branch), cc being the output
condition. As another industrial example, RISC PowerPC uses handling with three
specialized registers that serve to handle branchings. This is the CR (Condition
Register), CTR (CounT Register) and the LR (Link Register). CR serves as a loop
counter as CX previously, but it can also contain the target branching address for the
loop handling instruction Bcctrx (Branch Conditional to Count Register) just like
LR for the instruction Bclrx (Branch Conditional to Link Register). The HLL
(High-Level (programming) Language) compiler or the assembly language
programmer explicitly generates loop control instructions. Loop control instructions
can be seen as a jump instruction sub-family. Software management (i.e.
incrementation or decrementation of the counter, test of its value an eventual jump)
is carried out with a time penalty (i.e. with the addition of machine cycles) as the
corresponding instructions are executed. Moreover, it has a cost in terms of latency
in the case of a jump, since the processor must empty the pipeline by terminating the
remaining instructions. There is therefore an overhead with, in addition, requisition
of a register, dedicated or not. These additions of high-level instructions, which are
not without consequence on the complexity of the CU (Control Unit), are typical of
the CISC approach. Loop handling has a time penalty as well as an energy penalty
that must be taken into account.

60 Microprocessor 4

Moreover, digital signal processing, omnipresent in modern-day digital devices,
makes massive use of loops. Designers of specialized processors in this domain or
DSP (cf. § V3-5.2) have gone further by adding specialized functional blocks to loop
handling. The material approach makes it possible to remove the software
management overhead, hence the name zero-overhead hardware looping. This can
be done with no time penalty and transparently. In the case of nested loops, the first
approach is first-level hardware management (i.e. the most external), the internal
loops being handled by software. The second is complete management by the
hardware. An internal stack stores the loop handling parameters. Tsao et al. (2003)
shows an example. To do this, a buffer instruction internal to the processor, called a
hardware loop buffer, makes it possible to store instructions from the body of the
loop (i.e. to repeat), the loop’s execution time to avoid access to the external
memory costs time. It acts almost as a cache memory if the addressing mode is not
taken into account. Initialization of this local memory occurs at the first execution of
the loop body or before during the prefetch step. It is intercalated between the
instruction fetch unit and the decoding unit (Figure 2.24).

Figure 2.24. Instruction buffer

Three registers are needed: BRC, RSA and REA (Figure 2.25). BRC for Block
Repeat Counter contains the required number of repetitions of the loop body.
(Repeat Start Address registers and REA (Repeat End Address) store respectively

Instruction Set and Class 61

the address for the start and the end of the loop body. The associated instructions are
do m,n, where m is the number of instructions that follow to be executed in a loop
n times and break, which makes it possible to leave the loop abruptly. One
example of a component using this approach is TMS320c54x from Texas
Instruments.

Figure 2.25. Hardware management of a loop

Figure 2.26 shows a block diagram of a loop manager. The comparator at the
bottom of the figure compares the value of the program counter with the loop end
address. When the two values are equal, the BRC loop counter is decremented. If
this is not null (the role of the upper comparator), then the PC (Program Counter) is
initialized at the loop start address. A flag called BRAF for Block-Repeat-Active
Flag associated with loop handling authorizes this looping. If the BRC passes to
zero, the flag is deactivated.

As an industrial example, TMS320C80 from TI (Texas Instruments) has three
special registers. These are registers LC (Loop Counter) and LS (Loop Start), which
point the first instruction of the loop, and LE (Loop End), which points the last.
These registers take another name in TMS320C31 with respectively RC (Repeat
Counter), RS (Repeat Start Address register) and RE (Repeat End Address register).

Another handling method is that used by the DSP56000 family. Associated with
the two instructions do (Start Hardware Loop) and enddo (End Current DO Loop)
are two LA (end-of-Loop Address) registers and LC handle loops (test to 1 to leave).
This makes it possible to implement a control structure “for”. It should be noted that
a bit called LF (Loop Flag) in the SR (Status Register) indicates that a loop is being
executed. To implement a “while”, two other instructions have been introduced in
this same family. These are brkcc (Conditionally Break the current Hardware
Loop) equivalent to break in C language, and do_forever (Start Infinite
Hardware Loop). These instructions manipulate (i.e. backup and restore depending
on the case) the context which is formed here of registers LA, LC, SR and PC
(Program Counter).

62 Microprocessor 4

Figure 2.26. Functional block diagram showing a hardware
loop manager (from Tsao et al. (2003))

2.4.4. Subroutine call and return instructions

There is a possibility of factorizing the code in the form of a subroutine (cf.
Chapter 4). This subroutine makes it possible to implement a function or procedure,
code structuration primitives from high-level languages respectively C and Pascal.
Subroutine call and return instructions can be unconditional or conditional.

For execution of this subroutine to be transparent, it is necessary to save
information gathered during execution (cf. § 4.2.2). A call instruction to a subroutine
can be seen as a macro-instruction (Blaauw and Brooks 1997) as it behaves like a

Instruction Set and Class 63

normal instruction by making transparent the execution of the block of instructions
representing the subroutine. The minimal context needed, which is saved, is the
return address stacked on the stack (instruction call from the x86 family) or stored
in a register (the case of the instruction jal (jump-and-link instruction) from
MIPS). The execution context is important in the contexts of (quasi-) parallel
execution, memory handling and I/O handling. Thus, it is saved during a switching
of Heavy-Weight (i.e. classic) or Light-Weight (i.e. thread) Processes (HWP/LWP),
when the memory fails (page or segment, this will be covered in a future book by
the author on memories) or during an external or internal interrupt request
(i.e. exception and system call, cf. § 5.4).

Note that both these instructions can be seen as a particular instance of a jump as
in PowerPC or PA-RISC architectures where these instructions are distinguished by
the value of a bit (LK (LinK) bit). When its value is 1, then the processor has saved
the return address in a dedicated register called an LK register, which will be
resumed on return. This circumvents the need to use a stack (cf. § 4.1) in main
memory for which access is slower.

2.5. Environmental instructions

This section gathers the instructions that makes it possible to control a system in
a broad sense. These are instructions that handle interruptions, those that make it
possible to stop the MPU and those that are used for debugging.

2.5.1. Interrupt request and interrupt return instructions13

To manage I/O events, a particular form of subroutine called interrupt handler, or
ISR for Interrupt Service Routine, is known as a form of interrupt request. This
concept will be addressed in detail in Chapter 5.

2.5.2. Stopping instructions

The instruction break makes it possible to initialize an interruption sequence.
The instruction wai from MPU MC6802 suspends execution of the program in
expectation of an interrupt request. The processor state is stored on the stack, and the
PC (Program Counter) points the following instruction. On an external interruption,
the MPU restarts. It is used, for example, in operating systems. It is named hlt in
the x86 family or halt for Z80, and they have almost identical functions. For Z80,

13 This paragraph could be included in § 5.2.

64 Microprocessor 4

the component does not stop, but it executes nops to ensure that the memory is
correctly refreshed. This is because of its core, implemented in dynamic logic, the
consequence is therefore an absence of energy saving. The instruction stop from
MC68020 saves the associated operand in the status register and stops, awaiting a
classic interruption of trace or a RESET type. One logical condition can be added to
put it on hold with the instruction cwai from MC6809, which carries out a logical
AND with the status register.

These stopping instructions make it possible ensure synchronization with an
external component such as coprocessor or an I/O controller. We cite the instruction
wait, which puts the 8086 processor into an idle state waiting for the signal #TEST
to become active or until there is an external interrupt request. With architecture
development and the demand for lower energy consumption in autonomous
applications, for example, mobiles, the number of stopping possibilities has
increased. Microcontrollers (MCU for MicroController Unit) use these specialized
instructions in particular to handle dynamic consumption as well as possibly by
stopping the whole processor or some of its sub-components (cf. § V3-6.1.4).

2.5.3. Processor management

Some instructions make it possible to control the processor’s execution
environment by carrying out an operation on the control flags. The instructions
lmsw (Load Machine Status Word) and smsw (Store Machine Status Word) that
make it possible to access the content of the computer’s status register MSW
(Machine Status Word), called CR0 in the IA-32 architecture, from Intel, are one
example. By changing, for example, the stat of the PE (Protected Mode Enable) flag,
it is possible to move from real mode to protected mode.

2.5.4. Memory management

By memory, we should understand all memory integrate in the MPU. This means
the cache memory and the Translation Lookaside Buffer (TLB) of the virtual
addressing mechanism. Specialized handling instructions make it possible to take
the best of the operation of this type of memory, with which mid- and high-range
MPUs are equipped. These are clearly preferable instructions. Since the ways they
operate these memories are complex, they will be detailed in a future book by the
author on memories.

Instruction Set and Class 65

2.5.4.1. Cache management

These instructions make it possible to manage block allocation by initializing it
to zero, to load or flush a block, to write a block in main memory to synchronize it
(clwb for cache line write back) and to make reading or writing from/to the main
memory possible by short-circuiting the cache hierarchy. In the x86 architecture, the
instruction prefetch makes it possible to load the associated cache line to an
address in the way anticipated in the cache hierarchy. Instructions for invalidating a
block or the whole of a cache with (wbinvd) or without (invd) prior writing in
main memory (write back). To free space, the instructions clflush and
clflushoptw make it possible to invalidate a line at each level of the
corresponding cache hierarchy at a given linear address with a possible writing in
memory if it is marked as modified. To conclude, it is possible to access the main
memory (also called central or primary memory) transparently compared to caches
with register transfer instructions movnti, movntq, movntdq, movntps and
movntpd.

2.5.4.2. TLB management

Virtual addresses are translated using hardware. To avoid loss of time due to the
sequential reading of several table walks, a cache called TLB is used. This handling
is transparent to the programmer, but it is sometimes necessary for security reasons
or obligatory because the page table hierarchy has been updated, invalidating entries
in the cache corresponding to a given page. The instruction invlpg (invalidate
TLB entry) invalidates the TLB entry corresponding to a given page carries out a
flush operation.

2.5.5. Hardware detection

The instruction cpuid with Intel from 80486, if it can be executed (i.e.
modifiable ID flag of the status register, cf. § V3-3.1.5.6), can be seen as a function
whose entry parameter is passed in the EAX register, and this result is passed
through several registers. It makes it possible to recover (passing in registers) many
characteristics from the MPU base and to recover configuration information
(extended information). This may, for example, be the reference of the family to
which it belongs, the model, its series number (n = 96 bits) or information on the
cache hierarchy and TLB, on energy and addressing management. For more
information, see Intel (2012). Another approach to detecting a new function is to test
for the presence of a flag, or a register or to try to execute a new instruction. In case
of failure, an exception (cf. § 5.4) is generally raised.

66 Microprocessor 4

2.5.6. Debugging

In the program control instructions, we can cite the instructions for entering
unconditionally in debugging mode such as debug from DSP56000. The debugging
aspect is addressed in Chapter V5-2.

2.5.7. Updating

To correct possible bugs, a manufacturer can offer FirmWare (FW, i.e.
microcode) for updating, signed for security reasons. Intel offers this function from
P6. It is the BIOS (Basic Input/Output System, cf. § V5-3.5.3) that is responsible for
carrying out this operation.

2.5.8. Verification

Some processors provide a machine verification architecture. The MPUs
involved are, for example, Pentium 4, Intel Xeon, Intel Atom and those from the P6
microarchitecture.

2.5.9. Various

The instruction esc from 8086 makes it possible to pass an instruction to a
coprocessor (cf. § V3-5.4) such as 8087.

2.6. Parallelism instructions

This section summarizes the instructions that make it possible to manage parallel
execution of light-weight processes (threads) or heavy-weight processes. They will
be addressed in detail in future books by the author.

2.6.1. Atomic instructions

Instructions are executed atomically in essence, that is, they can be interrupted
(cf. execution cycle, § V1-3.2.2 and V1-3.3.2). On the contrary, with quasi-
parallelism and true parallelism (this will be covered in a future book by the author
on microprocessors), it is necessary to execute sequences of code atomically, for
example, to ensure mutual exclusion during multiple access to a resource. An initial
solution is to forbid an interrupt request (cf. Chapter 5). More recently, the
transactional memory mechanism (this will be covered in a future book by the

Instruction Set and Class 67

author on storage) and specialized instructions gathering a classical instruction set
but guaranteeing atomicity have been introduced into the instruction set.

At bit level, MPU 80386 offers specialized atomic logical instructions in testing
and modifying a bit. We cote bt (bit test), which makes it possible to extract a bit to
store it in the carry flag. The extraction can also be made by setting the bit at 0 or 1
or by bit complementation respectively done using the instructions btr (bit test and
reset), bts (bit test and set) and btc (bit test and complement). Moreover, a search
for a logical zero in one word from LSb or MSb (respectively Least and Most
Significant bit) thanks respectively to the instructions bsf (bit scan forward) and
bsr (bit scan reverse) makes it possible to detect a word or the first suite of
consecutive logical zeros from an end of this word with, as a result, the index of the
first logical 1.

At the level of a variable, MPU 80386 introduced conditional initialization of a
byte with instruction setcc (byte set on condition) at 1 from the destination if a
condition on a flag state (suffix cc) is verified (i.e. true) or else 0. MPUs MC68000
from Motorola and NS32000 from National Semiconductor (NS) with respectively
the instructions scc and scond offer, with only a few details’ difference, similar
functions. Thus, type of instruction is useful for implementing Boolean expressions
from a High-Level (programming) Language (HLL) such as Pascal.

In general, three atomic operations are needed to implement concurrent access
primitives from a resource or a synchronization. These are test-and-set,
atomic-swap and compare-and-swap. The instruction test-and-set
makes it possible within a processor cycle to carry out the operation of writing a 1 in
a memory variable and to return the former value. It is therefore an atomic
operation, that is, without interruption, at execution in privileged mode (cf. § 3.2.2).
Where there are two distinct operations, it would be possible for the associated
process to be interrupted by another, which could modify the value tested. This
instruction serves to implement the concept of semaphore in system programming to
protect memory area from concurrent access. The instruction atomic-swap
generalizes the previous instruction in the sense that it manipulates a value other
than 0 and 1. The instruction compare-and-swap generalizes the previous one
without changing the memory value in the memory so that there is no equality with
the comparison value. We find this operation in the x86 architecture from 80486
with cmpxchg (compare and exchange) prefixed by lock in an SMP (Symmetric
(shared memory) MultiProcessing) environment with MC68020 and higher versions
with the instructions cas (compare and swap) and cas2 (double cas). With an
atomic test-and-branching operation, the decision is implicit, unlike the “classic”
sequence with two separate instructions. To conclude, the instruction, similar to the
atomic operation xchg, that makes it possible to exchange two operands is bswap,
which makes it possible to reverse the byte order in a word. It makes it possible to

68 Microprocessor 4

pass little to big Endian memory storage orders (Little and Big Endian (LE and BE),
cf. § 2.6.2 in Darche (2012)).

2.6.2. Synchronization instructions

Synchronization can be done in relation to the external environment. One
example is the prefix instruction lock from 8086 from Intel, which makes it
possible, in a multiprocessor environment, to block access to a bus to ensure unique
guaranteed access to a critical section by activating its #LOCK signal. The add
instruction (add) with this prefix becomes an atomic operation that operates a fetch
and add (i.e. exclusively adds a constant to a memory variable) from useful
concurrent programming, for example, for a mutual exclusion lock (i.e. mutex lock).
The drawback with this instruction is that there can only be access to the main
memory and so no storage of the result in memory. The instruction xadd (exchange
and add) from MPU i486 has made this function possible.

There are other synchronization software solutions in multiprocessor
environments, such as the instruction pair Load-Link and Store-Conditional (LL/SC
or LLD-SCD), which makes it possible to operate an RMW atomic primitive (Read-
Modify-Write), which is offered by Alpha, PowerPC, MIPS (Microprocessor
without Interlocked Pipeline Stages) and Arm® architectures. These are explored in
a future book by the author focusing on parallelism.

2.7. Extensions to instruction sets

This section shows sub-sets of specialized instructions in an application domain.
They are added as the architecture evolves to meet a particular need. These
extensions help to raise performance (cf. § 3.4).

2.7.1. Multimedia extension

An extension to the instruction set can enable a processor to adapt better to the
application domain. Concerning (multi)media (signal) processing, the first
specialized set was MAX-1 (Multimedia Acceleration eXtensions) from Hewlett-
Packard for their PA-7100LC microprocessor, introduced in January 1994. It was
followed by VIS (Visual Instruction Set) from Sun, operated for the first time with
UltraSPARC from Sun (Kohn et al. 1995), then by Fujitsu with SPARC64 GP in
2000 (Song 1997) and described by Tremblay et al. (1996). The following version
from HP called MAX-2 (Lee 1996; Lee and Huck 1996) concerned the 64-bit ISA
PA-RISC 2.0 (Kane 1996), implemented, for example, in PA-8000 (Kumar 1997).

Instruction Set and Class 69

VIS 2.0 was implemented for the first time in UltraSPARC III (Horel and
Lauterbach 1999) and in successive versions as well as in SPARC64 (Williams et al.
1995). VIS 3.0 was implemented for the first time with SPARC T4 (Shah et al.
2012). VIS 4.0 was implemented for the first time with SPARC M7 (Aingaran et al.
2015; Li et al. 2015; Konstadinidis et al. 2016). At Intel, the MMX (MultiMedia
eXtensions) extension dedicated to multimedia was implemented for Pentium II in
January 1997. Details on this are given in Peleg and Weiser (1996) and Peleg et al.
(1997). Silicon Graphics, Inc. (SGI) and MIPS introduce their multimedia
technology, called MDMX™, for MIPS Digital Media eXtensions (nickname Mad
Max) in October 1996 with 32 media registers in 64-bit format and 19 new
specialized instructions (Gwennap 1996). Digital added to its Alpha (Sites 1992,
1993; McLellan 1993) architecture a minimal five-instruction extension called MVI
for Motion Video Instructions as well as condensed formats for integers (Rubinfeld
et al. 1996). The announcement was made in 1996 for its MPU 21164PC (Bannon
and Saito 1997) and 21264 (Kessler et al. 1998; Kessler 1999). Lee (1997) describes
using instructions belonging to these extensions.

It should be noted that this means, in the majority of cases, more an ISA
extension than just an addition to a sub-set of specialized instructions in a domain as
there are, for example, register additions as for MMX with eight registers in 64-bit
format MM[7:0]. The registers thus have a high format of 128 (SSEx, x ∈ [1, 4]),
256 (AVX for Advanced Vector eXtensions) or 512 bits. They contain data in the
classic 8-, 16-, 32- and 64-bit formats (Xi and Yi in Figure 2.27 with i ∈ [0, 3])
forming the components of a vector (X and Y in the same figure) on which the same
operation will be carried out in parallel. These are known as (packed) or condensed
numbers. This term must absolutely not be linked with “packed” in “BCD packed”
representation called, for example “packed-decimal format” at IBM. Here, this
means gathering several numbers from a single number set, in this case integers, and
the same representation in machine. We see that a single instruction can apply to
several components at the same time, hence a gain in execution speed, the other gain
being specialization of the instruction, which replaces a sequence of instructions
from the base. This architecture is called SIMD for Single Instruction
stream/Multiple Data stream in the parallel machine classification in (Flynn 1972).
But beware, unlike the packed format, the instructions for scalars are only executed
for the least significant pair of operands.

Instructions of this extension type are classed in sub-families, first according to
representation (whole, floating point and packed). These families include transfer,
arithmetic, Boolean and advanced instructions for comparison and conversion
between types. A final sub-family includes control instructions, mainly for the state
and cache. Arithmetic operations are basic and others are more complex, such as the
square root and its reverse (inverse square root) or the calculation of a format’s
minimal and maximal values.

70 Microprocessor 4

Figure 2.27. Distribution of operations in a vector instruction
in a SIMD structure

In particular, conversion instructions can be numerous, covering all possible
combinations. In the Intel 64 architecture, we cite the instructions
cvtpd2pi/cvtpd2ps/cvtpi2pd/cvtpi2ps/cvtps2dq/cvtps2pd/cv
tps2pi/cvtsd2si/cvtsd2ss/cvtsi2sd/cvtsi2ss/cvtss2sd/cvts
s2si/cvttpd2dq/cvttpd2pi/cvttps2dq/cvttps2pi/cvttsd2si/c
vttss2si with pi, pd and ps meaning respectively packed doubleword integer,
double-precision and simple precision floating-point; dq meaning packed double
word integer and si, sd and ss meaning respectively doubleword integer, scalar
double-precision and single-precision floating point. These same last names also
apply to basic arithmetic instructions (addsd/adds, etc.).

This first generation involved operations for integers. The second focused on
operations in representing FP (for Floating Point) for sub-words (packed or scalar).
From Intel, we cite the extension (I)SSE for (Internet) Streaming SIMD Extensions
(Thakkar and Huff 1999a, 1999b) introduced with Pentium III under the code name
Katmai New Instructions (KNI) and adding nearly 70 instructions. This is a simple
precision version. Eight additional registers called XMM[7:0] in 128-bit format and
accessible independently of the floating unit x87 are introduced for these numbers
and add to the eight registers MMX[7:0], which are in 64-bit format, from the
previous generation. The instructions offered for this packed format (Packed
Floating-Point) are classic arithmetic and logical operations, for comparison,
transfer and permutation (cf. § 2.3.2), summarized in Diefendorff (1999). Version
SSE2 was introduced in 2000 with the Pentium 4 (Willamette microarchitecture),
the first representative of Netburst microarchitecture. It extends FP representation to
double-precision packed format (i.e. two numbers in n = 64 bit format in a register).
The packed format for integers (packed integer) with four formats (byte, words of
16, 32 and 64 bits in a 128-bit vector) is also introduced. A total of 144 new
instructions are added for the user (packed addition, subtraction, multiplication,

Instruction Set and Class 71

division, compare, min, max and square root). The rival AMD with version 2 from
June 2000 from its 3DNow! technology adds 25 instructions. There follow versions
SSE3, codename Prescott New Instructions (PNI) with 13 new instructions, SSSE3
(Supplemental SSE3, codename: Tejas New Instructions or TNI), introduced with
the Prescott version from Pentium 4 and the Merom version from MPU Core 2
respectively in 2004 and 2006. The SSE4 version (Nehalem New Instructions or
NNI) with versions SSE4.1 (Penryn microarchitecture) announced in 2006 and
SSE4.2 (Nehalem microarchitecture) in 2008 introduced 54 additional instructions.
The SSE4.2 extension specializes in text and character chain processing (Intel
2007). It offers seven additional instructions. In particular, as the VAX mini-
computer proposed speeding up its calculations, it introduced an instruction for
Cyclic Redundancy Check (CRC, cf. § III.6.7 in Darche (2000)) called crc32
(accumulate CRC32 value) to facilitate detection (EDC for Error-Detecting
Circuit/Code) or, better, error correction (ECC for Error Checking and Correcting/
Error-Correcting Code). As for the IA-64 architecture (Lee et al. 2001), it describes
the multimedia instructions.

Additional and competing technologies to those of Intel were introduced by
AMD under the references SSE4a (MPU Phenom from K10 – 2007
microarchitecture) and SSE5 (AMD 2007) with varying degrees of success.

Competing but not compatible extensions are also AltiVec (Diefendorff et al.
2000) from PowerPC from Motorola (other designations: VMX for Vector
Multimedia Extension at IBM, Velocity Engine chez Apple) and the multimedia
instruction set from the IA-64 architecture from Intel-HP (Kane 1996).

2.7.2. Extension for signal processing

This section could have been included in the previous one. It involves detaching a
particular instruction, which is the association of two basic arithmetic instructions,
such as in multiplication/addition or FMA (Fused Multiply-Accumulate) initially
useful in signal processing (cf. § V3-5.2), multiplication/subtraction, three instructions
with multiplication/addition/subtraction or multiplication/subtraction/addition, or
indeed four. The FMA3 instruction group (3 being the number of operands) appeared
in extension AVX2 (Advanced Vector eXtensions) from Intel announced in June 2011
and integrated into the Haswell microarchitecture in 2013, continuing SSE4. The
instructions had the prefix VEX (cf. § 1.1). AMD had already offered this type of
instruction in 2007 with the SSE5 extension, splitted in 2009 with a new coding
schema in three XOP sub-sets (eXtended OPerations) and FMA4 (AMD 2009), then
F16C (or CVT (ConVerT) 16).

72 Microprocessor 4

2.7.3. Cryptography

A processor can offer a calculation unit that accelerates (de)cryption. So Intel
offered AES NI technology (AES NI for Advanced Encryption Standard New
Instructions) dating from 2010. These instructions, of which there are six, are
aesdec, aesdeclast, aesenc, aesenclast, aesimc and
aeskeygenassist, and the last two make it possible to manage the key.

2.7.4. Randomization management

The instructions rdrand (Read Random Number) and rdseed (read random
seed) form part of a technology whose code name given by Intel is “Bull Mountain”.
They make it possible to generate a number at random.

2.7.5. Implications

One extension to ISA involves, at the hardware level, an impact on the chip
surface and consequently extra current consumption, counterbalanced by an increase
in performance. One aspect that should not be neglected is the impact on software,
in particular on the SE. Adding registers, for example, may involve modifying how
the execution context is handled (cf. § 4.2.2). MMX and 3DNOW! technologies do
not add new status flags, unlike SSEx. State flags can also be added.

2.8. Various instructions

This section presents various instruction families. This may be a support for a
high-level language, useful instructions for debugging or instructions for managing
hardware.

2.8.1. Instructions for handling (strings of) characters

The 8086 microprocessor inaugurated an instruction set specialized in handling
character strings. A character is coded in alphanumeric codes ASCII and EBCDIC
(Extended Binary-Coded Decimal Interchange Code) respectively on 7 and 8 bits
(cf. § III.3 in Darche (2000)), so on at most one byte. UNICODE (UNIversal CODE)
and the ISO/IEC standard 10646 (ISO/IEC 2017) made it possible to move to coding
using 21 bits and 32 bits, which then, thanks to the UTF transformation formats
(UTF for Universal Character Set (UCS) or Unicode Transformation Format, cf.
§ III.3.9 in Darche (2000)), were transformed into a format handling respectively
8, 16 and 32 bits. The x86 family offers instructions adapted to transferring blocks

Instruction Set and Class 73

of words in these different formats. We cite instructions in byte format movsb and
stosb respectively for formats higher than 16 and 32 bit formats, movsw or
movsd and stosw or stosd. To iterate the operation, Intel offers the prefixes
rep, repe, repne, repz and repnz, which condition its execution with the CX
register serving as counter. As for the loop instruction, they complexify the CU
(Control Unit) and are typical of the CISC approach. It should be noted that this
instruction family is reminiscent of the block displacement instructions (i.e. from
memory copy) from Z80 (ldir, lddr, cpir and cpdr and for I/Os: inir,
indr, otir and otdr).

2.8.2. Input/output instructions

For Input/Outputs (I/O), some microprocessors, for example, those from Intel
and Zilog, have separate memory and I/O spaces (cf. § V3-2.1.1.1). The specific
instructions in for reading and out for writing enable these processors to address
this distinct I/O address space. At execution, a control signal is generated by the
microprocessor to select the corresponding addressing space. These instructions
such as ind and outd from Z80 can generate a pointer automatically to facilitate
handling in a data block.

MCUs (MicroController Units) have instructions developed to manage parallel
I/O ports. For example, those from the MCS-51 family (commonly called “8051
family” from the name of the reference circuit, hence the acronym for Micro
Computer Set) offer basic logical instructions (anl, orl and xrl), which are
executed on port P0 or P1 with an immediate value passed in operand.

2.8.3. High-level instructions

The MPU can provide high-level instructions such as enter, leave and
bound in the x86 architecture. The instruction enter creates a stack frame to pass
parameters of a given size. The symmetrical operation is leave, which frees up the
frame. The instruction bound determines whether a value belongs to a range. This
is enough to manage an array index.

2.8.4. Arithmetic instructions specific to a representation of particular
numbers

The representations considered are BCD representations and fixed and floating-
point representations.

74 Microprocessor 4

2.8.4.1. Representation in BCD

Most MPUs offer software support for representing natural integers in useful
BCD, in particular, for COBOL (COmmon Business Oriented Language) language
with its computational-3 data type, as well as for representations of real numbers
called “decimals”, that is, using the base 10 as a support to represent the digits in
machine for where there is a question of the exactitude of the coding. This
exactitude of representation may be an obligation of the application domain or a
legal obligation. We cite DXP (Decimal fixed-point) and DFP (Decimal Floating-
Point) representations, the latter being included in IEEE Std 754-2008 (IEEE 2008).
In addition to the adjustment instructions (cf. § 2.3.1), we cite the operations unpk
(unpacked BCD) for converting a packed BCD to the unpacked version (unpacked
BCD) and, conversely, pack from MPUs MC68020/30/40.

2.8.4.2. Representation for real numbers

For floating-point calculations, it was necessary first to use specialized software
libraries, which emulated these operations. Then, hardware implementations in the
form of an external component, the mathematical coprocessor (cf. § V3-5.4),
appeared in the 1980s. They only had a single function such as, for example, the
WTL 1064 multiplier or the adder WTL 1065 from WeiTek calculating in floating
point. It could calculate an elementary function (GP FPP for General-Purpose
Floating-Point Processor) such as 8087 from Intel, the first component of the x87
family. The latter was then integrated from a 486DX microprocessor from Intel.
Instructions in floating point now form part of the instruction set for the most
powerful components with a specialized integrated calculation unit. These units
provide a minimum, as for whole numbers, transfer instructions, basic arithmetic
operations, basic logical operations, comparison and conversion operations between
number formats. For the x86 architecture, the four basic arithmetic instructions
involve one number floating with another (fadd/faddp, fsubd/fsubp,
fmul/fmulp and fdiv/fdivp) or with an integer (fiadd/fisub/fimul/
fidiv). The latter will be converted into floating point before the operation. The
destination operand will always be an FPU (Floating-Point Unit, cf. § V3-5.4). More
particularly, the multiply-and-accumulate (mac) operation was introduced to carry
out simple operations such as multiplication or the scalar or complex product such
as digital filtering. It is suggested for integers and real numbers in floating or fixed
point representations. One example for integers is mac for DSP TMS 320Cxx from
TI. This operation is generally carried out by a specific unit called a MAC unit
(MAC for Multiply-and-Accumulate, cf. § V3-5.2 and, in particular, Figure V3-5.4)
for reasons of performance.

As indicated in the previous chapter/section § and in § 2.7.1, the floating-point
numbers can be coded in packed BCD. Processors therefore provide adapted
instructions. We cite as an example in Intel 64 and IA-32 architecture the

Instruction Set and Class 75

instructions addps/addpd and addsubps/addsubpd respectively for single
and double precision floating-point values whose numbers are expressed in packed
BCD (respectively suffixes ps and pd).

Other more complex instruction families make it possible to calculate basic
functions such as trigonometric or logarithmic functions (fyl2x, for example) or
exponentiation functions (f2xm1, for example). These calculations are generally
made using a LookUp Table (LUT), that is, with the aid of values stored in a read-
only memory or ROM (Read-Only Memory) which are interpolated.

2.8.5. An unusual instruction

To conclude, we cite the instruction nop for No Operation, which does nothing
but increments the PC (Program Counter). One example of use is to reserve a
memory area to make a patch14 from a program, hence the term “patch zone”.
During a jump in this zone, the processor will irremediably reach the patch zone
(NOP slide, sled or ramp). More subtly, the nop instruction code is generally
simple, that is, only one or a few bits have an identical value. By fixing these bits
electronically, by wiring or simply by leaving lines unconnected, on the data bus, an
electronic system with only one processor without memory and reading any address
would in fact recover the nop instruction code. The result was an address
increment, characteristic signals from counting if they were to be observed on the
screen of an oscilloscope (cf. exercise E2.6). (Very) long instruction word
processors ((V)LIW, this will be covered in a future book by the author on
microprocessors) use it to insert an execution delay in a pipeline. To conclude, it
should be noted that it is equivalent to a conditional jump instruction when the
logical condition is not verified (i.e. false).

2.9. Conclusion

This chapter studied a processor’s instruction set. After defining and suggesting
a classification for instructions in the form of classes, these different classes of a
generic microprocessor as well as the possible extensions of this set are presented.
Originally, this component only processed integers. Today, it is able to work with
advanced types such as Boolean, BCD (Binary-Coded Decimal), fixed and floating
point and character strings.

14 A patch replaces or adds to an existing binary code and makes it possible to avoid
complete generation of an application (i.e. compilation/linking), which takes a great deal of
time.

76 Microprocessor 4

The following chapter presents additional concepts associated with instruction
sets and execution. It will also deal with two subjects that are essential for actors in
this domain, which are hardware and software compatibilities as well as
performance measurement.

3

Additional Concepts

The present chapter completes the study of ISA (Instruction Set Architecture)
with additional concepts linked to the instruction set and to execution. The former
means the concepts of illegal, invalid, reserved and trusted instructions, instruction
alignment, the instruction set’s orthogonality and the symmetry and the concept of
pure, re-entrant and relocatable code. The subjects of execution time, memory
requirements, execution modes, portability and virtualization are then addressed. We
conclude with some important aspects, which are hardware and software
compatibilities, measuring execution performances and the criteria for choosing a
microprocessor or MPU (MicroProcessor Unit).

3.1. Concepts associated with the instruction set and programming

This section addressed additional concepts linked to instruction sets. It completes
§ V1-3.5.

3.1.1. llegal, non-implemented, invalid, reserved and trusted
instructions

An illegal instruction is an instruction that does not exist. It has not been
implemented by the designer. In general, it is the first word of the instruction that
does not correspond to the instruction set. For example, the MC6802 has 72
instructions of variable size and 192 valid machine codes out of 256, and so 59 are
illegal. Modern MPUs (MicroProcessor Unit) generally raise a trap (cf. § 5.4), which
will divert execution towards a routine for processing the exception (this is the case
with the Arm® family, for example). Some instructions can be considered illegal if a
coprocessor (cf. § V3-5.4) that should process them is not present.

Microprocessor 4: Core Concepts – Software Aspects,
First Edition. Philippe Darche.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.

78 Microprocessor 4

A non-implemented instruction is an instruction that may exist for one of a
family’s components but not for another. One example is an instruction from
MC68020 not implemented in its forerunner, the MC68000.

An invalid instruction is an instruction from the instruction set used in a poor
configuration. One example is a transfer of a register’s content to an immediate
value. The operation code is correct but not the rest of the instruction. In both cases,
it may be a generating error from an assembler or compiler.

Some machine codes are reserved by the designer. They are not documented but
it is possible to find unofficial information from reverse engineering. This involves,
for example, the 8085, the Z80 or the MC6502. They are not therefore guaranteed
by the designer. Another definition is to say that they are an instruction linked to an
execution mode (cf. § 3.2.2). If it is executed in a forbidden mode, then an exception
is thrown, as with the previous case.

A trusted instruction, a term used in the security domain, is an instruction that is
not malicious, which can therefore be executed at a privilege level equal to or less
than the one to which it belongs.

3.1.2. Alignment or framing of instructions

Data (i.e. instructions or information) alignment in main memory makes it
possible to simplify the microprocessors’ access to the data. A general case was
discussed in § 2.6.1 in Darche (2012). A binary word in format 2k × n (with k)
and address A is called aligned or framed in a memory in n format when the
following relationship is verified:

A mod 2k = 0 [3.1]

The format n is generally a multiple of the byte and is equal to:

n = 23 × k’, k’ [3.2]

One example of code alignment is the MIPS (Microprocessor without
Interlocked Pipeline Stages) microprocessor. The counterpart is a larger generated
code than in a version with misalignment as memory locations are used for the goal
of realignment. Misalignment of an operand during access may involve additional
execution time just as for, originally, the x86 family from Intel. Figure 3.1 shows
instruction storage in an aligned or non-aligned memory.

Additional Concepts 79

Figure 3.1. Instruction alignment in 32-bit format
(from Darche (2012) modified)

The word boundary is the division between two words. Considering that the
memory is divided into words, we speak of access to the word boundary when it is
not possible to have access with finer granularity. The architecture may not be
sensitive to this constraint. If the information is between two words, the MPU will
detect this. It will generate two consecutive addresses to access the complete
information, which it will reconstruct internally. The management logic will be
more complex than the two management logics that follow. If the alignment is
imposed, the software (i.e. the compiler) will guarantee the valid instruction codes
and the hardware will detect a misalignment and generally will generate a fault (cf.
§ 5.4). An intermediary solution is to use differentiated instructions in cases of
misalignment to fetch the information. One example is the Arm® architecture with

80 Microprocessor 4

instructions lwl and lwr (load word left/right) for reading and, for writing, swl
and swr (store word left/right). In case of accidental misalignment, an exception
will be raised. Another example is the Alpha with the instruction ldq_u (load
quadword unaligned) in addition to the instructions extll and extlh (extract
longword low/high).

3.1.3. Orthogonality and symmetry

The instruction set’s orthogonality and symmetry mainly characterize the
independence of the instructions compared to the data types and format, to storage
and to the addressing of the operands. They also express the fact that the instructions
do not show any specificity from the point of view of the registers, data formats or
the upgrading of flags (cf. § V3-3.1.5). These two characteristics are sometimes
interchangeable, and indeed confused, in the literature. Also, these are the precise
definitions from Hunter (1987) and Levy and Eckhouse, Jr. (1989) which will be
retained.

Orthogonality, also called completeness, characterizes the fact that each type of
data that can be processed by the processor hardware has a complete instruction set
(addition, subtraction, multiplication, division, logical operations, etc.). We also
speak about regularity. A data type is, for example, an integer in all its formats (8,
16, 32 bits, etc.), a real number in all its formats, a character, etc. Orthogonality has
a role in the compactness of the code and so in the generality of the code. The
programmer is also better able to understand the program. The principle of
orthogonality also applies to exceptions (cf. § 5.4). Orthogonality makes it possible
to simplify the hardware.

Symmetry refers to operand specification. It characterizes the fact that each
instruction can use any addressing mode to access the operands. Registers are
general purpose and interchangeable. A transfer instruction will be able to carry out
its operation in both directions. The code is made symmetrical by separating the
instruction code from the addressing mode. The absence of symmetry complicates
Assembly Language (AL) and code generation by translation tools such as
compilers or assemblers (cf. § V5-1.2) by multiplying specific cases.

In the world of MPUs, we cite the MC68000 family from Motorola and the
32000 series from National Semiconductor (NS), which introduced an orthogonal
and symmetrical architecture. It was possible to link any of its instructions with an
addressing mode and a data format (8, 16 and 32 bits). The instruction set of the
PDP-11 mini-computer from Digital Equipment Corporation (DEC), then that of the
VAX (Virtual Addressed eXtended) were a benchmark for symmetry. The
8080/8085 family was well known for its programming, complicated by the

Additional Concepts 81

asymmetry of the instruction set. The x86 family inherited this. One example is the
instruction stos, which uses specific indexing records and transfers in only one
direction. A microprocessor such as MC6800 had two transfer instructions for
(down)loading the accumulator.

3.1.4. Pure, re-entrant and relocatable codes and code for read-only
memory

A pure code is a code that contains only invariant (i.e. constant) instructions
data. In particular, it should not self-modify (this is the case, for example, for some
IT viruses called polymorphic). It allows re-entry.

A re-entrant code enables several tasks, from one or more users, to use it without
losing data coherence. To do this, the code should be invariant (pure code), and each
user has their own data zone. The x86 family with separate segments of code and
data enables that. For example, the TMS320C31 allows re-entry.

A relocatable code is position-independent. It is the opposite of an absolute code.
The benefit of a Position-Independent Code (PIC) or Position-Independent
Executable (PIE) code is that the program (i.e. instructions and data) can be stored in
any place in the memory. Managing the main memory, a task that falls to the
Operating System (OS), is simplified. To do this, the programmer should not use
absolute (i.e. fixed) addresses but relative addresses (cf. § 1.2.3.2) or symbolic
addresses that will be resolved during the assembling and link editing (cf. § V5-1.2).
Adapted addressing modes are based on relative addressing (i.e. at the Program
Counter). The manufacturer DEC used four addressing modes using the Program
Counter (PC immediate, absolute, relative and relative deferred addressing modes,
cf. § 1.2). The absence of an MMU (Memory Management Unit, this will be covered
in a future book by the author on memories) can be palliated by this approach, but it
is obsolete today as modern processors use the virtual address. Segmentation uses
them for the programmer in a transparent manner.

A “ROM-able” code is a program intended for implementation in read-only
memory1. This means that the instructions and constants will go to ROM (Read-
Only Memory) while the variables, which are therefore modifiable, will be stored in
volatile memory. This contrasts with the “von Neumann” arrangement that stored
everything in a single memory, called “unified”. This responds particularly to
demand from embedded systems. It justifies the concept of specialized sections in
programs in assembly language for instructions, data and constants.

1 This will therefore be FirmWare or FW (i.e. software stored in read-only memory).

82 Microprocessor 4

3.1.5. Levels of programming languages

The instructions the microprocessor executes present in the form of binary words
in a set, fixed or variable format. This is what we call machine language. Since it is not
easy to use them in this form for programming, since it is a natural binary, a symbolic
High-Level (programming) Language has been invented to move closer to natural
language. This is Assembly Language (AL). Formed mainly of mnemonics (cf. § 2.1),
that is, of symbolic instruction names, it comes close to human language. To each
mnemonic and, if this is applicable depending on the addressing mode of the
operand(s), there will correspond a binary instruction. The two major defects are a lack
of readability for a large programme and an absence of advanced control structures.
Also, to respond to these limitations, high-level or advanced languages have been
invented. To move from one language to another, it is necessary to use software tools
that translate such as the assembler or, at a higher level, the compiler. The assembler
moves from a symbolic language to machine language. Figure 3.2 illustrates the
hierarchy that exists between these different languages.

The linker makes it possible to add other object2 modules (or object codes), the
results of compiling a source program not necessarily written in the same language
as that of the direct chain and stored in a static library. It should be noted that the
editing of links also makes it possible to refer to object modules shared in a DLL
(for Dynamic Link Library in Windows®). Each instruction is, depending on its
architecture, either executed by a wired micromachine or interpreted internally by a
microprogrammed micromachine. This aspect will be developed in a future book by
the author on microprocessors.

Figure 3.2. Levels of programming language

2 Not to be confused with the object languages concept of the same name.

Additional Concepts 83

The development chain and, more particularly, assembly language are detailed in
the following volume.

3.2. Concepts linked to execution

This section develops some concepts linked to execution. These are variation of
execution and memory space, the concept of internal states, execution modes, code
portability and virtualization.

3.2.1. Consequences for execution time and memory requirements

Addressing modes and their possible combinations have consequences for the
number of machine cycles and the instruction format. Table 3.1 shows the details of
time costs and costs in memory space for the indexed addressing mode from
MC6809, which may be substantial.

Table 3.1. Additional cost in the number of cycles and memory clutter
for the MC6809 indexed addressing mode (Motorola 1981, 1983)

Table 3.2 specifies the calculation time for addressing modes for the 8086
microprocessor from Intel. Two clock cycles are added to the given value set during
a segment override. It should be noted that the complexity of the addressing modes
increases the machine’s number of cycles. This information is specified in each
instruction’s explanatory notes. For an instruction, there are a number of basic (i.e.
constant) cycles to which we must add a variable value depending on the complexity
of the addressing. In this table, DISP (DISPlacement) meaning offset is a value (in
bytes) to be added algebraically.

84 Microprocessor 4

Addressing modes Calculating the effective address Number of clock periods
Offset only PC 6

Based or index only (BX, BP, SI, DI) 5

(Based or index) + offset (BX, BP, SI, DI) + DISP 9

Based + index
BP + DI, BX + SI 7

BP + SI, BX + DI 8

Based + index + offset

BP + DI + DISP
11

BX + SI + DISP

BP + SI + DISP
12

BX + DI + DISP

Table 3.2. Effective address calculation time (8086)

Chow et al. (1987) have shown that a simple addressing mode, base register plus
offset, makes it possible to implement High-Level (programming) Language (HLL)
functionalities. By optimizing its calculation time, the implantation of other complex
modes can be considered and the Control Unit (CU) is thus simplified. This is one of
the reasons for the RISC (Reduced Instruction Set Computer) approach whose main
aim was to rationalize the instruction set to diminish its cardinality (this will be
covered in a future book by the author on microprocessors).

3.2.2. Execution modes

The notion of an execution mode has been introduced to ensure that the user’s, or
another user’s, programs can access unauthorized resources (processor, memories,
Input–Output (I/O), etc.). The number of execution modes is historically two for the
Cray Y-MP supercomputer. These are supervisor execution modes, called privileged
modes, administrator, system (root), kernel, protected or monitor, and user, also
called non-privileged mode, real or normal (Z8000). The user mode is the normal
mode for executing applications. The kernel of the operating system runs in
privileged mode. This number may be higher. An initial example is R4000, which
has three modes, user, supervisor and kernel. Kernel mode is comparable to the
supervisor mode in other microprocessors. The new mode called supervisor is an
intermediary mode for promoting the operation of systems organized in layers. Intel
microprocessors from the x86 family from i286 are a second example. They have a
hierarchy of four levels (hierarchical protection domains) generally represented by a
ring protection system as Figure 3.3 illustrates. Level 0 is reserved for the operating
system kernel. Level 1 is used for services offered to I/O controller pilots and to user
programs. Level 2 is assigned to pilots, and the final level is for user programs.

Additional Concepts 85

Figure 3.3. Hierarchy of protected execution modes
from the x86 family from Intel (from MPU 80286)

Modern operating systems require management of the virtual memory, which
offers a (logical) address space that is larger than the physical address space and
introduces memory protection and address translation. It also requires an execution
mode known as privileged mode compared to user mode and, in a multiprocessor
environment, synchronization primitives. The concept of execution mode reinforces
security. A program with protection level n can execute instructions at level n or
higher. Below this, a system call is needed in the form of a software interruption (i.e.
trap). The reverse occurs, either by a specialized instruction such as rte for
MC68010 or by manipulating a supervisor bit in a status register. An attempt at
executing a privileged instruction or one with particular privileges in a mode with
less privilege causes an exception (cf. § 5.4).

Another benefit of this hierarchization is that it creates grades of protection.
Thus, OS services such as I/O controller pilots and peripheral devices have an
intermediary privilege level. Those from Arm® decline the privileged mode into
system mode, supervisor mode, Interrupt ReQuest (IRQ) mode or Fast Interrupt (FIQ)
mode, undefined mode and abort mode, which brings the total to 7 (Table 3.3). System
mode is used by the OS to execute its tasks in privileged mode. Supervisor mode is a
protected mode in the OS. IRQ mode is the mode traditionally used by interrupt

86 Microprocessor 4

handlers. FIQ mode is used for fast response questions. Undefined mode involves
software emulation of hardware coprocessors. Abort mode is used by the virtual
memory mechanism for its internal management and memory protection.

Execution modes Source(s) Symbol Use

User – USR
Normal execution mode

for instructions

Fast IRQ FIQ FIQ Fast interrupt mode

IRQ IRQ IRQ Normal interrupt mode

Supervisor
SWI (SoftWare

Interrupt) and Reset
SVC

Protected OS execution
mode

Abort
Pre-fetch abort

data abort
(memory access failure)

ABT
Physical memory and

virtual memory
protection modes

Undefined Undefined instruction UND
Software emulation mode
for physical coprocessors

System – SYS
Privileged execution mode

for OS processes

Table 3.3. Arm® architecture execution modes

Flags can be assigned to indicate the mode as for the ARM11 family with binary
indicators (i.e. mode bit) M[4:0] from the CPSR (Current Program Status Register)
register. The mode’s indication can be in hardware form. MC68000 has three
outputs FCi (FC for Function Code, i ∈ [0, 2]) for external controllers that encode
the execution mode (supervisor or user) and the type of address space (program, data
and CPU or Central Processing Unit) during access to the main memory. It makes it
possible to, for example, control access. In x86 architecture, the level of privilege
for I/Os or IOPL (I/O Privilege Level) is stored in the status register. When access to
I/O is requested, the MPU compares this level to the CPL (Current Privilege Level)
of the task being executed. This should be less than or equal to the IOPL for
authorization to be granted.

With several execution modes, there should be multiple stacks. But beware, just
because it has two stack pointers, this does not mean that the MPU has two
execution modes, one example being the MC6809 (cf. § V3-3.1.8).

From the integration of virtualization technologies (cf. § 3.2.4) VT-x and AMD-V,
the designers respectively Intel and AMD have added an additional level, hypervisor
mode (= -1) to support virtualization of higher levels using hardware.

Additional Concepts 87

Figure 3.4 shows the different operating modes of a modern MPU. We must
distinguish real addressing modes, protected modes, virtual-8086 modes and system
management. Protection modes do not exist in real(-address) mode to be able, after
material initialization, to initialize protected mode. One curiosity with the 80286
was that once in protected mode; this MPU could only return to real mode via
initialization (reset). To enter System Management Mode (SMM), the interrupt pin
SMI# should be activated. The associated handler is executed in real mode. It is the
rsm (Resume from System Management Mode) instruction that takes the MPU out
of this mode. This mode is useful for low-level system management such as energy
and temperature management, and potentially, for debugging. These execution and
operating modes are needed to ensure security of execution but are not sufficient
with regard to new flaws like Spectre (Kocher et al. 2018) and Meltdown (Lipp
et al. 2018). Moreover, SMM mode may also become a security flaw (Embleton
et al. 2008).

Figure 3.4. Operating modes of an MPU from
IA-323 architecture from Intel® (Intel 2003)

Further technical details (hardware and software) are summarized in Intel (1984,
1986a, 1987a, 1987b) and, for information on protected mode, Shanley (1996, 2009)
also in a future book by the author on microprocessors.

3 IA for Intel Architecture.

88 Microprocessor 4

3.2.3. Portability

(Trans)portability is a system’s, product’s or component’s ability to be
transferred from one hardware or software environment to another (definition
adapted from (ISO/IEC/IEEE 2017)). At software level, portability represents its
ability to adapt to several execution environments. This adaptation may be more or
less easy to achieve depending on whether it is a real execution or an interpretation.
In the context of generating an executable, the associated terms “porting” or
“portage” refer at least to targeted operation of recompiling or editing links.

3.2.4. Virtualization

Modern machines use virtualization, an approach from the 1970s to 1980s
represented by IBM System/370 computers and IBM’s OS VM/370 (Creasy 1981)
and for languages, Smalltalk (Kay 1993). Virtualization was abandoned in the 1980s
in favor of the less costly environment offered by the microprocessor and
microcomputers. It was “rediscovered” in particular with virtualization in a server
environment at the start of the 2000s and with java language (Gosling et al. 2018;
Lindholm et al. 2018). Figure 3.5 shows the possibility of a virtual computer system
with virtualization of applications, also called hosted virtualization above a host OS.
It makes it possible to encapsulate a complete IT system (i.e. hardware, OS and
applications). To do this, the Virtual Machine Monitor (VMM) is a software layer
that emulates a computer’s hardware layer. Instead of virtualizing a system,
virtualization can be achieved during processes where it offers an execution above
the OS for a single application. JVM (Java Virtual Machine) is one example of this.
Virtualization encapsulates and isolates applications, in particular from faults.

Figure 3.5. Virtualization in an application

Additional Concepts 89

The hypervisor approach is another declension where a monitor between the
hardware and the OS makes it possible to manage the different virtual machines
(Figure 3.6). The current trend (2018) moves towards ever-greater factorization of
layers.

Figure 3.6. Hypervision of virtual machines

Containers (Figure 3.7(a)) and the “serverless” approach (Figure 3.7(b)) allow
for lighter applications by taking advantage of the number of cores in current MPUs.
Containers share a common OS. The “serverless” approach provides a standard
interface in the application.

Figure 3.7. Differences between container (a) and serverless (b)
(from Wong (2016, 2017) modified)

An excellent book on virtualization is Smith and Nair (2005).

90 Microprocessor 4

3.3. Hardware and software compatibilities

A system’s compatibility can be seen from two angles, which are interoperability
and coexistence (ISO/IEC 2014). Interoperability is the ability of two (or more)
systems, products or components to exchange information or to mutually use the
information exchanged. This aspect will not be addressed in this volume. The
second aspect is defined by the ability of two (or more) systems, products or
components to fulfill their function(s) while sharing the same hardware or software
environment. It can therefore be involved at any level in an IT system, either
software or hardware. A notion linked to this, which is portability, is then defined.

3.3.1. Hardware compatibility

Hardware compatibility for a component such as the MPU is made at electronic,
time and mechanical levels. At the interface, this involves signals. Electronic
compatibility depends on logic technology (cf. Chapter 2 from Darche (2004)). This
can also involve their time characteristics. The type and pinout of the component
package may also be identical.

Pushed too far, hardware compatibility may also result in conflict between
manufacturing competitors. One example is MCS6501, which was compatible with
the MC6800 at pinout level and the signals from the bus, which resulted for MOS
Technology in an industrial legal challenge from Motorola, which led to the
component being retired.

By extension, a system such as a computer or peripheral device can be declared
compatible according to a reference or a standard. There were, for example,
microcomputers compatible with the Personal Computer (PC) from IBM. They were
built in general around an MPU compatible with the 8088, but faster, such as the
8086 from Intel or an x86 compatible MPU. Printer interfaces compatible in the
1970s with the Centronics interface and named after the company (cf. § 8.1.1 in
Darche (2003)) or the society are another example.

3.3.2. Software compatibility

An MPU can have a sub-set of the instruction set, or indeed the whole set,
compatible with another component. One example is the 8085 microprocessor from
Intel that was 100% software compatible with the 8080A. From the same manufacturer,
it is the same with Pentium and the previous MPUs from the x86 family.

But the MPU is not only an IT system. Software portability with computer
architectures and operating systems is a growing demand from software developers

Additional Concepts 91

and computer manufacturers. It is motivated for technical and economic reasons to
improve the efficiency of software and hardware development. To do this, it is
necessary to ensure software compatibility at source code (or program), object code
and computer code level. Software compatibility requires an adaptation called
portage (cf. § 3.2.3) as a recompilation, re-assembly or a new edition of links. This
aspect is developed in § V5-1.2.

3.3.3. Upward and downward compatibilities

Generally speaking, backward compatibility is a digital system’s ability to
interact with an older system or, for software, to operate correctly in a more recent
environment. We also speak of upward4 compatibility (on this, cf. Leonard and
Kluth (1989)) or also downward compatibility. This is common in IT. It will be able,
for example, to execute an old program without modifying it (i.e. without
recompiling it) on a new version of OS for which it was developed or on more
recent hardware. This ability is used particularly, commercially, in video games.
Each new-generation MPU sees its instruction set enriched by new instructions to
meet, for example, a specific need in a domain such as multimedia. Instructions of
components from older generations are thus recognized. Each new generation is thus
backward compatible. The benefit lies in the fact that older software can be executed
by new microprocessors. There is thus binary compatibility in a family. The major
drawback is growing hardware complexity, which old instructions have to master.

An initial example is the x86 family where the instruction set is formed of a
hierarchy (Figure 3.8). It retains backward compatibility at each level. We must
distinguish between base, extended and system sets. The base set comprises the most
up-to-date instructions (arithmetic and logical calculations, data transfer, control and
I/O transfer). The extended set is suggested for a particular application domain such
as multimedia or a particular execution mode (186, 286, etc.). This latter type makes
it possible to control a sub-set such as managing and protecting memory. One of the
first extensions is the MMX set (cf. § 2.7.1) from Intel.

A second example is the ISA from the MIPS I processor (Kane 1988) which was
extended forwards four times, from MIPs II to MIPS V (Figure 3.9) to then end with
MIPS 32/64. Each extension is therefore backward compatible with the previous.
Therefore, an MIPS IV component can execute a binary program using the
instruction set of a previous ISA. Another example is the MC6809, which is upward
compatible with the MC6800 at the source code, that is, for the instruction set and

4 The corresponding pairs backward = downward and forward = upward can be found (see
Wikipedia article on compatibility) but will not be used in this book.

92 Microprocessor 4

addressing modes. It is therefore possible to assemble the MC6800 source using an
MC6809 assembler.

Figure 3.8. Hierarchization of the instruction set from x86 architecture

Figure 3.9. Backward compatibility of the instruction set architecture
by enriching the instruction set

At data level, there is upward compatibility between versions of a software if the
new version can use files created using the older version. One example is the most

Additional Concepts 93

recent version of Word text processing from Microsoft whose text file extension is
“.docx”, which can always read the old format “.doc”. A final example, from
hardware, is the USB 3.0 whose upward compatibility is ensured with plug
connectors.

Generally speaking, downward compatibility is a digital system’s ability to
interact with a more recent or future system or, for software, to operate correctly in
an older environment. This compatibility is important at data level. Since it is more
difficult to implement, it is encountered more rarely. One example is when a more
recent software can be executed using an older OS version for which it has been
developed or on older hardware. A degradation in performance is accepted. At data
level, there is downward compatibility between versions of a software if the files
created by the new version can equally be used by the older version. By returning to
the previous example of text processing, Word 2013 is capable of opening a “.docx”
file from the more recent generation but with reduced function. A converter is
generally used. For additional reading from the perspective of development, read
Ponomarenko and Rubanov (2012). We also speak of forward compatibility (cf. note
at the bottom of page no. 5) or of post-compatibility or downward compatibility.
Figure 3.10 summarizes the two types of compatibility.

Figure 3.10. Types of compatibility of a digital system

Compatibility exists at register level. A processor can manipulate the same data
register but with different formats. For example, Intel64 architecture uses its A
register in 16- and 8-bit (respectively called AX and AH/AL from 8086), 32-bit or
64-bit formats (respectively called EAX and RAX).

3.4. Measuring processor performances

Performance is a key characteristic of a microprocessor, as too may be its power
dissipation PD (cf. § V3-6.1.2) or its architecture. Methods for evaluating

94 Microprocessor 4

performances are divided into three areas, measurement, performance modeling,
analytics and simulation (Heidelberger and Lavenberg 1984); both models can be
summarized in a hybrid model. But how do we measure the performance of an
architecture, a mainframe computer or, in particular, a microprocessor or the
performance of a whole computer? The less complex the architecture of a
microprocessor, the easier it is to evaluate its calculating power. Today, with the
multiplication of operating units (this will be covered in a future book by the author
on microprocessors) and because they are combined, comparison becomes difficult.
In addition, performance measurement also involves other sub-sets such as those
belonging to the memory hierarchy (caches and main memory) with, for example,
evaluation of its bandwidth (cf. below).

3.4.1. Clock rate

Metrics involve calculating speed and, in addition, transfer speed. A
microprocessor in its most up-to-date version, that is, a synchronous microprocessor,
is timed using a clock signal (cf. § V3-2.4.1). The initial indicator is therefore the
clock rate fclock of the CU (Control Unit; clock rate or speed) in hertz. The equivalent
unit is the number of clock cycles per second. The higher its frequency, the faster
the component will calculate. Its period Tclock (s) is deduced by the relationship:

௖ܶ௟௢௖௞ = ଵ௙೎೗೚೎ೖ [3.3]

The frequency is a performance indicator for the microprocessor’s electronics
and organization (in the sense of § V1-3.1.4), and it is a design choice. For example,
the designers Alpha (Compaq) chose to increase frequency while Hewlett-Packard
(HP) with the PA-RISC (PA for Precision Architecture) optimized its
microarchitecture (Agarwal et al. 2000). This improvement has a direct impact on
energy consumption, especially on MOS (Metal-Oxide Semiconductor, cf. § 2.4 in
Darche (2004)) technology because of its dynamic power PD (cf. § V3-6.1.2 and
§ 3.7 in Darche (2004)) which depends on it. On the contrary, this indicator should
be handled with caution since, from one microprocessor to another, an instruction
with the same functionality (i.e. operation and addressing) can require a different
number of cycles for its execution. The causes of this are both internal (due to its
microarchitecture) and external. A program is only written with a single instruction,
and the addressing modes have an impact on an instruction’s execution. Moreover, a
microprocessor can also divide the internal clock rate (cf. § V3-2.4.1). An old
example is the MC6802 with a division factor of 4. The processor’s environment is
also involved, in particular the memory hierarchy with, in the first place, the
different cache levels and the I/O controllers. Today, these are (i.e. 2000) integrated
into the southbridge chipset (cf. § V5-3.3). Moreover, for technical reasons,

Additional Concepts 95

manufacturers have chosen to favor increasing the number of kernels to the
detriment of the clock rate (cf. § V3-2.4.1).

3.4.2. Number of instructions per cycle

A second indicator [is] the average number of Instructions (executed) Per Cycle or
IPC (Instructions Per Cycle). The IPC is generally calculated according to the formula
at program level [3.4] from the total number of instructions executed I and the number
of clock cycles C needed to execute them. The number of cycles considered here is the
number of instructions executed, that is, terminated, and it can include stall cycles
when the processor is stopped (the case with pipelined architecture). ܥܲܫ = ூ஼ [3.4]

This unit of measurement is generally used to evaluate the Instruction-Level
Parallelism or ILP (this will be covered in a future book by the author on
microprocessors). A value lower than the unit indicates parallelization of execution.
It is linked to the average number of (clock) Cycles Per Instruction (CPI) by the
relationship: ܫܲܥ = ଵூ௉஼ [3.5]

This indicator can be declined per instruction family i, whether arithmetic and
logic, transfer (loading-storing) and (de)branching instructions. For a given program,
it is then possible to calculate the CPI by considering the number of instructions Ci
of a class i and the usage frequency Fi (%) of n instruction families. It is equal to the
sum of the results of all classes taking account of their importance: ܫܲܥ = ∑ (஼௉ூ೔×஼೔)೙೔సభ ூ = ∑ ௜ܫܲܥ) × ௜)௡௜ୀଵܨ [3.6]

The number of Instructions Per Second or IPS is calculated from the average
number of cycles per instruction using the formula [3.7]. The influence of the clock
rate is perceptible directly in this equation since it acts on the cycle time. Increasing
it makes it possible to decrease the instruction execution time. This can be done by
improving or changing the technology or by intervening at the microarchitecture
level. For the CPI, it must act as before on the organization, the ISA and, to a lesser
degree measure, on the compiler and programming. Finally, to decrease the number
of instructions in a program, it must intervene at the level of the ISA, the compiler
and the programming. ܵܲܫ = ௙೎೗೚೎ೖ஼௉ூ = ௖݂௟௢௖௞ × [3.7] ܥܲܫ

96 Microprocessor 4

A current multiple is the MIPS or Million (106) IPS. If the processor includes
additional operating units such as the Floating-Point Unit (FPU) or a coprocessor, their
performance should be integrated. Figure 3.11 shows the evolution of the calculating
performance of the first MPUs from Intel expressed in this unit. The MIPS (Million
Instructions Per Second) does not take account of the instructions used. The value
obtained will therefore vary depending on the program used. An MPU manufacturer
could easily show a favorable result. The comparison becomes difficult with different
instruction sets. The same goes for MFLOPS, which is, also, dependant on the
program used. It can sometimes be distinguished between peak or sustained rates, to
emphasize the computing power of a particular sub-set such as a calculation unit. With
the emergence of RISC microprocessors, the MIPS is no longer sufficient to compare
different architectures. The instruction set is simplified so it can accelerate operation of
the CU (Control Unit), but the compilers generate more instructions.

Figure 3.11. Evolution of the calculating performance
(MIPS) of the first MPUs from Intel

For floating points, there is the number of floating-point operations per second and
its multiple, the MFLOPS5 or megaFLOPS (= Million FLoating point Operations Per
Second). For the Digital Signal Processor (DSP, cf. § V3-5.2), we measure the number
of multiplications-additions per second or MACS (Multiply-ACcumulates Per
Second), with MACs being the operations currently (but not solely) used in digital
filtering (cf. § V3-5.2).

5 For an evaluation, consult Giladi (1996).

Additional Concepts 97

3.4.3. Execution time

The program’s execution time texec formed of I instructions is given by the
formula [3.8] called “iron law” by Shen and Lipasti (2005). It depends on the
compiler, which generates low-level instructions and the ISA. CPI is a function of
the microarchitecture and its implementation. To conclude, the clock rate depends
on the micro-electronic technology and implementation: ݐ௘௫௘௖ = ܫ × ܫܲܥ × ௖ܶ௟௢௖௞ = ௜௡௦௧௥௨௖௧௜௢௡௦௣௥௢௚௥௔௠ × ௖௬௖௟௘௦௜௡௦௧௥௨௖௧௜௢௡ × ௦௘௖௢௡ௗ௦௖௬௖௟௘ [3.8]

A performance index P can be defined for a given program as follows: ܲ = ଵ௘௫௘௖௨௧௜௢௡	௧௜௠௘ = ூ௉஼×௙௥௘௤௨௘௡௖௬௡௨௠௕௘௥	௢௙	௜௡௦௧௥௨௖௧௜௢௡௦ [3.9]

A relative performance can then be defined by comparing the execution of a
given program on two computers A and B:

௥ܲ௘௟௔௧௜௩௘ = ௉ಲ௉ಳ = ௧೐ೣ೐೎	ಳ௧೐ೣ೐೎	ಲ [3.10]

Particular points of the architecture can then be evaluated, such as, for example,
the branching prediction failure rate (this will be covered in a future book by the
author on microprocessors). For the embedded systems domain where energy
autonomy is vital, the MIPS (Million Instructions Per Second)/mW ratio should be
preferred (cf. § V3-6.1.4 and Figure V3-6.6). The metrics at the MPU should consider
its immediate environment, that is, the top of the memory hierarchy and, more
particularly, the caches and main memory, as well as the compiler’s performances since
all these characteristics are intricated and difficult to dissociate from one another. So
performances at data cache and instruction levels (hit ratio), Virtual Address (VA)
translation performances with TLBs (Translation Lookaside Buffer), for example,
memory alignment (cf. § V1-2.2.2) as well as the main memory bandwidth will have
to be considered. The metrics of modern MPUs is complex. It should also consider its
software environment (Toong and Gupta 1982). As an example, Lua (1989) compares
the different performances of the first MPUs from the x86 family.

3.4.4. Benchmark suites

The metrics for a computer should consider the overall environment, both
hardware and software. Thus, it may be necessary to consider the performance of the

98 Microprocessor 4

chipset (cf. § V5-3.3) or that of the I/Os such as the secondary memory data rate, for
example. It is therefore necessary to use programs to evaluate performances.
According to Hennessy and Patterson (2003, 2003b), this may be the targeted
application, a suite of performance test programs ((synthetic) benchmark suites) as
part of a suite (kernel benchmark), for example, calculation of a Fast Fourier
Transform (FFT) or just a specific program to test, for example, only the floating-
point division (microbenchmark). We can also list the toy benchmark, a small
program of less than 100 lines of code such as QuickSort, the sieve of Eratosthenes
or the towers of Hanoi and real programs representative of a domain such as a game.

Benchmark suites are programs, most of the time written in high-level language,
representing an application domain (a database, for example) or which are
generalists or represent a family of computers (a microcomputer or server for
example) by making it possible to measure the CPU (Central Processing Unit) rate
or, based on this, by calculating an indicator (arithmetical average or weighted sum
of individual results), to evaluate the calculating power of a CPU (Central
Processing Unit) or a computer compared to a benchmark.

An initial category is the synthetic suite. In this category, we cite the Whetstone
and Dhrystone programs. The Whetstone program (Curnow and Wichman 1976)
bears the name of the firm that wrote an ALGOL (ALGOrithmic Language)
compiler (Randell and Russell 1964). It was written in 1972 in this language at the
National Physical Laboratory (NPL) in the UK, published in 1976 then translated
into FORTRAN (FORmula TRANslation). It is a simple or double precision
mathematical calculation in floating point. Its unit of measurement and multiple are
respectively the kWIPS (kiloWhetstone Instructions Per Second) and the million
Whetstone instructions per second (MWIPS). Dhrystone is a program written
originally in C by Reinhold Weicker in 1984 (Weicker 1984). Its name is a
wordplay on the name of the previous test program (w(h)and - d(h)ry). It is a
mathematical calculation for integers that gives the number of instructions executed
per second. The unit is the DMIPS (Dhrystone MIPS6).

Another category is the application suite currently used. One example is the
SPEC suite (for System Performance Evaluation Corporation7) (Dixit 1991) with
SPECint (int for integer) and SPECflop (SPEC floating point). The first SPEC suite,
SPECmark89, included 10 programs (4 for integers and 6 for numbers in floating-
point). After executing each program, it provided a number (SPECmark) that made

6 The MIPS should not be confused with a “classic” MIPS. A MIPS here means 1.75 DEC
VAX MIPS!

7 Non-profit society originally called System Performance Evaluation Cooperative, founded
by IT manufacturers.

Additional Concepts 99

it possible to compare the element being tested with a reference computer, as it
happens the VAX 11/780 (SPEC 1989). Suites SPEC92 (SPECint92 and
SPECfp92), SPEC95 (SPECint95 and SPECfp95) and SPEC CPU2000 (1999)
followed. Today, the SPEC2006 suite includes two programs for integers and 17
programs for numbers in floating-point. The influence of the language, its compiler
and runtime library is evident (Weicker 1990). For more information, see the site of
the non-profit SPEC society (URL: www.spec.org). Figure 3.12 shows the
development over time of performances of microprocessor systems measured in
SPECint.

Figure 3.12. Development of MPU systems’
performance over time (SPECint)

Two other categories are the toy benchmark, which is a set of small pieces of
code such as Hanoi Towers, and kernel benchmarks, which are extracts of real
application code. For the latter, LINPACK (Dongarra et al. 2003), an acronym for
LINear Algebra PACKage, and supplanted by LAPACK (Anderson et al. 1990), an
acronym for Linear Algebra PACKage, are suites of subroutine written respectively
originally in FORTRAN66 and FORTRAN90 to solve linear equation systems. The
first was used to classify the first 500 supercalculators (TOP500). Figure 3.13 shows
a comparative development of performances between supercalculators and
microprocessors, mainly the RISC type.

MPU manufacturers may have their own index. We cite iCOMP (Intel
COmparative Microprocessor Performance) (Intel 1996, 1999), which has had three
versions respectively released in 1990, 1992 and 1999. It involves a weighted

100 Microprocessor 4

average (Table 3.4) of several synthetic benchmark suites compared to a benchmark
MPU, 486SX/25, Pentium 120 and Pentium II and III respectively for versions 1.0,
2.0 and 3.0.

Figure 3.13. Comparison of uniprocessor performances between supercomputers
and microprocessor systems (from Culler and Singh (1998))

iCOMP iCOMP 2.0

Suites Weight (%) Suites Weight (%)

PC Bench 7.0.1 68 Norton SI32 15

SPECint92 25 CPUmark32 40

SPECfp92 5 SPECint_base95 20

Whetstone 2 SPECfp_base95 5

– – Intel Media Benchmark 20

Table 3.4. List of iCOMP benchmarks

To conclude, there are commercial benchmarks. As an example, we cite PCMark
from UL Benchmarks (e.g. Futuremark® Corporation) for measuring the
performance of a professional PC (Personal Computer) type microcomputer (office
or otherwise) or even, 3DMark for gaming PCs. Others are suggested by magazines,
for example, those suggested by PC Magazine.

Additional Concepts 101

3.4.5. Development of performances over time

Reducing the etching fineness has reduced transistor size. This has made it possible
to increase circuit density. This increase makes it possible implement more logic gates
and so more functional blocks. The consequence was a growing complexity in
microarchitectures. The pipeline is one example of this, multiplying stages by
decreasing levels of logic with each cycle. Moreover, the gate length makes it possible
to reduce transistor switching time and so its operating frequency increases. The
increase in functions and in the clock rate and the progress in compilation made it
possible to double performances every three years before 1986, which is a growth
factor of 1.26 per year, then every 1.5 years (52%) before stagnating finally (by
considering only a core) from 2006 after an increase of 20% as Figure 3.14 shows. It is
also useful to compare this first trace considering the MPU environment, in particular
that of the main memory. Two measures are latency and the bandwidth (or throughput),
definitions of which were recapped in § V1-2.1. These two characteristics apply to
three memory categories, main, secondary and tertiary, as well as to the I/O domain as
in network domains, as well as to the microprocessor. Its performance has only
developed by 7% per year for main memory. Another case study is MacGregor and
Rubinstein (1985), which compares the performances of MC68020-based systems.
McCalpin (1995) proposes the STREAM benchmark (URL: https://www.cs.virginia.
edu/stream/) to evaluate the sustained memory bandwidth for vector calculations.

Figure 3.14. Comparing (single-core) MPU performances with
DRAM8 performances (from Hennessy and Patterson (2011))

8 DRAM for Dynamic Random Access Memory.

102 Microprocessor 4

A final comparison is the performance of different categories of computer
(cf. § V1-1.2) as Figure 3.15 illustrates. It shows in particular the moment where
microprocessors “killed off” mini-computers (dotted circle in the figure) and, later,
mainframe computers when they became competitive (killer micro, cf. § V1-1.2).

Figure 3.15. Comparison of performances between
computer classes (from Hennessy and Jouppi (1991))

To summarize, a microprocessor’s performance will depend on the program, the
programming language used, the compiler, the ISA, the organization that
implements it, the clock rate and microelectronic manufacturing technology. It will
also be necessary to consider the operating system. Moreover, a performance
estimation can be made using a simulation model rather than a real component to
guide a design choice. The reason is economic, both the financial cost and the time
cost. For more information, see, for example, John and Eeckhout (2006). Evaluating
a microprocessor does not end with performance measurement. Criteria such as ease
of programming, hardware and software compatibilities (cf. § 3.3) or setup should
also be considered.

3.5. Criteria for choosing

Classic criteria for choosing a microprocessor are first of all classical technical
criteria such as the performances desired (i.e. calculating power, transfer rate, etc.)
and the characteristics of its ISA. This specifies the type of architecture (register-
oriented, stack-oriented, etc.), memory addressing characteristics (alignment or not,
storage order, access format, addressing capacity), the available addressing modes,

Additional Concepts 103

operand characteristics (number, type, format and representation (i.e. encoding) and,
of course, instructions (family, mnemonic, syntax, semantics, authorized addressing
modes and encoding) and, finally, data and address path formats. The application
domain makes it possible to make a preliminary selection by choosing an adapted
architecture. A DSP will be more appropriate for processing digital signals than a
GPP (General-Purpose Processor, cf. § V3-1.1). Economic criteria of course involve
the costs of the component and of peripheral components, software development
tools (compiler, assembler, linker and debugger) and hardware and hardware and
software testing tools among others. The code’s upward compatibility (cf. § 3.3.3) is
also important for a family of microprocessors as it limits future investments. There
are also criteria that are not non-technical but are nonetheless important, for
example, supply issues such as the availability and existence (strongly advised) of
secondary manufacturing sources.

3.6. Conclusion

This chapter focused on additional concepts linked to instruction sets and to
execution. It first explored what illegal, invalid, reserved and trusted instructions
are. It then introduced notions of memory alignment, orthogonality and the
symmetry of the instruction set and the concepts of pure, re-entrant and relocatable
code. Then, the subjects of execution time, memory requirements, modes of
execution, portability and virtualization were addressed. The important aspects of
hardware and software compatibilities, execution performance measurement and
criteria for choosing a microprocessor were completed this chapter.

The chapter that follows will focus on the concept of a subroutine.

4

Subroutine

After studying the principles of basic microprocessor operation and
programming in previous chapters, we present here the concept of the subroutine.
Thanks to the subroutine, it is possible to implement the concepts of function and
procedure of High-Level (programming) Language (HLL) such as C or PASCAL.
To be able to do this, a memory called a stack is required. Its operation, as well as
that of its subroutine, are studied. This concept has been derived from that of
interruption, invented to accelerate I/O (for Input/Output) handling and presented in
the chapter that follows for teaching purposes.

NB. The context of this study is a mono-processor unless otherwise indicated.

4.1. Stack memory

Stack memory simply means the stack as well as the LIFO (Last-In/First-Out)
buffer to indicate the order of data circulation. Figure 4.1 shows the graph symbol of
a stack S of a size s words.

Figure 4.1. Suggested visual representation of a stack S

The word “stack” is an analogy with a stack of plates where the last plate stacked
is later the first to be picked up. In our context, the information represents the stack.
The location that will be accessed is the top of the stack or TOS (Top-Of-Stack). For

Microprocessor 4: Core Concepts – Software Aspects,
First Edition. Philippe Darche.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.

106 Microprocessor 4

information, the data that precedes it takes the name NOS for Next-On-Stack. Two
primitives are needed to manage the stack: stack() and destack(). The place occupied
by this memory is zero or one word at initialization. The location is a writing action
on the stack, and the stack therefore increases in size. Unstacking is a reading action
on the stack, and the stack therefore reduces in size. Reading is destructive in the
sense that access to the data occurs only once but the information will persist in
memory at least until the next stacking action and if there have not been any other
unstacking actions between the two operations. These two primitives classically
translate for many microprocessors (MPU for MicroProcessor Unit) through
instructions respectively push and pop (or pul – pull data from stack from
MC6800, for example), hence its other names push-in/pop-out or push-down/pop-up
memory. But other MPUs such as the Arm® family offer two generalist transfer
instructions ldm and stm (load and store multiple registers). The processor, to
manage this memory, should have two to three pieces of data, which are the stack
start address, the address of the location stored in the stack pointer and, eventually,
the maximum size for detecting a possible overflow. A memory area of maximum
size can be reserved for it such as a segment (a concept explained in the next
volume). The stack pointer is implemented in the form of a specialized register
called, for example, SP (Stack Pointer) in the x86 family. Other registers can be
used as a stack pointer. We list, for example, the a7 (address register) from
MC68000, r13 for the Arm® family and GPR1 (General-Purpose Register) in
PowerPC (Performance Optimization With Enhanced RISC Performance
Computing) architecture with an adapted addressing mode such as auto-increment
and auto-decrement (cf. § 1.2.3). For Arm®, there are two synonyms, push and pop
respectively for instructions ldm and stm that specialize the transfer using the r13
register as a base register and by automatically managing its following access. The
benefit of using a general-purpose register1 makes it possible to access the stack at
random with, for example, an indexed addressing mode (cf. § 1.2.3.4), which is
useful for working with local variables or the parameters of a function/procedure.
The registers to be stacked or unstacked can be specified as an operand or are
implicit, one example being the instructions pusha (push all) and popa (pop all)
from IA-32 (IA for Intel Architecture) that manipulate all the General-Purpose
Registers (GPR). Instruction coding usually takes up one byte as there is no
specified address in the operand field since it is implicit.

At an implementation in main memory and by representing this with addresses
ascending upwards as in the case of Figure 4.5, there are two possibilities: either the
stack ascends towards the upper addresses or its ascent moves towards lower
addresses (which creates an image of the stack of plates being glued to the ceiling!),

1 Historic note: the PDP-11 mini-computer used a general-purpose register, R6, as a stack
pointer. The stack was managed with auto-decrement addressing modes with R6 for a
stacking and auto-increment, still with R6 for an unstacking.

Subroutine 107

hence the final name of push-down or push-down storage (JEDEC 2002, 2013). In
the first case, it is called an ascending stack, in the second, a descending stack. In
this last case, which is the most classical, a stacking action is linked to a decrement
and respectively an unstacking action is linked to an increment of the stack pointer.
Depending on the implementations, the action of stacking or unstacking can be
made before or after the increment/decrement of the stack pointer. When the stack
pointer points the last element stacked or the one that will be the first to be
unstacked, the stack is called full. In the case where it points the next free location
for a stack, it is called empty. There are therefore four possible solutions for
implementation, as listed in Table 4.1. It should be noted that Arm® architecture
offers these four possibilities.

Stack names Push Pop Examples of
implementation

FD for Full Descending Pre-decrement Post-increment MC6809, x86, Arm®

ED for Empty Descending Post-decrement Pre-increment MC6800, Arm®

FA for Full Ascending Pre-increment Post-decrement Arm®

EA for Empty Ascending Post-increment Pre-decrement Arm®

Table 4.1. Solutions for managing a stack in main memory

Figure 4.2 shows the pseudo-code of the two main stack manipulation
instructions for the x86 family. The stack pointer here points the last stacked
element or the next to be unstacked and the pile ascends downward from the
memory (full descending stack). The descent value here is 2 as the memory is
managed in byte format while the stack is managed in 16-bit word format (= 2
bytes) for reasons of alignment (cf. § 2.6.1 from Darche (2012)) in relation to the
processing format for integers of this MPU. It should be noted that, in rare cases, a
processor cannot offer this implicit management of the stack pointer. In contrast, one
benefit of an explicit management of the stack is choosing its ascent at the price of
software cost.

Figure 4.2. Pseudo-code for stacking (a) and unstacking (b)
in the format n = 16 bits for the x86 family (Intel)

The TMS320C31 runs the stack system in an upward direction! This means that
a push instruction carries out a pre-increment and, pop, a post-decrement of the

108 Microprocessor 4

stack pointer SP. We can also deduce from this that the SP points the last element
stacked. In contrast, the other stacks can be managed in two directions. Figure 4.3
summarizes these operations in a writing inspired by C language.

Figure 4.3. Operations of stacking and unstacking for TMS320C31

During operation, two errors can happen, stack overflow2 and stack underflow.
Over- and under-flow are caused respectively by excess stacking or unstacking. We
consider the pushup stack from Figure 4.4. To detect them, one possibility is to add
a stack boundary limit register. Registers B and L make it possible to define the
stack boundaries (shaded in the figure). Linked to the SP, they make it possible to
detect the errors in its management. The conditions are the following:

if SP > L then (over-)flow;

if SP < B then under-flow.

Figure 4.4. Managing an ascending stack

2 To be coherent with floating-point representation, it would have been good to choose the
terms “positive and negative overflows”.

Subroutine 109

The role of the stack is to store information temporarily. In addition to the return
address, the stack may contain other information on the subroutine, hence the name
of the execution or run-time stack. It classically contains the ingoing and outgoing
parameters also called input and output parameters respectively, as well as local
variables belonging to each function being executed (cf. § 4.2.3), as Figure 4.5
illustrates (no nested calls in the example). During execution, a (sub)routine can use
the stack to save temporarily the content of a register. To make (cf. § 3.1.4) a
subroutine re-entrant or for it to be callable recursively, an area for its local variables
is allocated to it on the stack each time it is called. This area is called the stack
frame, also called the call frame, activation record or activation frame. The stack frame
is dependent on the computer and the ABI (Application Binary Interface, cf. § V5-
1.1.4). To manage it, it is necessary to have a pointer on this area, local to the
subroutine, here the indirection register BP (Frame Base Pointer, cf. § 1.2.3.4) from
the 8086 microprocessor. It may be necessary to have other pointers of the same
type towards frames of higher lexical position in the case of nested calls. This
organization is explained in the following section.

Figure 4.5. Classical structure of an execution stack (x86 family from Intel)

110 Microprocessor 4

It may seem strange from the perspective of implementation to have an operation
of the stack “in reverse”, since the bottom of the stack is situated at the top of the
main memory and data stacking increases the stack from the top. But from the
perspective of managing the memory, there is none since the programs are stored at
the bottom and the stack at the top for optimal management of space, as Figure 4.6
illustrates. Its maximum size is set in programming in assembly language (i.e.
declaration of a stack segment3 in x86 architecture, for example) or automatically by
the compiler. For information and without going into detail, the other specialized
areas that appear in the figure are intended as dynamic and static allocations for, for
example, variables such as the BSS (Block Started by Symbol) area or for the
instructions.

Figure 4.6. Classic main memory mapping

A stack can be managed with software or hardware. With software management,
a Random Access Memory (RAM) area, for example, the main memory, is
transformed for each program into LIFO. Because it requires using a management
program, this solution is necessarily slower than in hardware management of
microprocessors. Implantation in a memory stack makes it possible to have a large
space, but the problem of protecting access in a multi-task environment is posed.
With segmented main memory, a segment is naturally given to it, which moreover
limits its maximum size to the size of the segment. The stack can also be
implemented in the form of a finite stack register inside the MPU (integrated stack).
We speak of a hardware stack, also called a stack cache or stack register file. Each
stack shifts the values in the registers, the last element being lost. During unstacking,
either the last element is doubled or the null value is injected. In

3 Concept linked to the concept of Virtual Memory (VM), both detailed in a future book by
the author on memories.

Subroutine 111

the second case, the accumulator communicates with the top of the stack. At each
stacking, the data registered is shifted downward, hence the two other names
“cascade stack” or “push-down stack”. This form is faster since it is integrated into
the MPU and does not require a stack pointer. In contrast, its number of registers is
limited and it shows the drawback of losing data when the structure is full. The
reading is then called destructive, unlike the same operation on a memory stack
where the data can remain, at least (i.e. if there are no other unstacking operations)
until the next stacking. One example is that of the 8087 coprocessor (cf. § V3-5.4)
for floating-point calculation, which integrates a stack in the form of 8 registers
ST[7:0] in the format n = 80 bits, these also playing the role of a flat register file. In
contrast, this component manages its registers in two ways (Figure 4.7). Access can
be made as for a stack or by random addressing with classic load (ld) and unload
(st) instructions. This mixed management provides suppleness of use.

Figure 4.7. Stack register of a mathematical
coprocessor in floating point from 8087 (Intel)

A bank of registers can be run as a stack. O’Connor and Tremblay (1997)
describe such a structure from the front of a processing unit in the context of a
hardware implementation of a virtual Java machine. This stack register file or stack
cache is run as a circular memory buffer.

A variant of implementation is a stack whose upper part is located in the
processor and the rest in main memory to obtain faster access as with the B5000
mainframe from Burroughs. A final variant, which is not very fast, is

112 Microprocessor 4

implementation with the help of Shift Registers (SR), as illustrated on Figure 4.8.
Each bit of the word is managed by an SR. A combinatorial circuit, aided by a
modulo maximum size counter, manages positive and negative overflows. It should
be noted that elements of the hardware stack shift and the top of the stack is fixed.
However, in a software stack, the opposite happens, that is, the elements are static,
and the stack pointer is dynamic.

Figure 4.8. Stack in shift-register version

Address alignment (cf. § 2.6.1 in Darche (2012)) at the stack may be necessary
for higher-generation 8-bit microprocessors when the memory is run in byte format.
This is the case with the Intel x86 family whose transfers are made only in 16- or
32-bit format depending on the component’s working format. Moreover, there is no
dynamic control of this alignment, but the assembler controls the operand format
during stacking or unstacking. The introduction of a misalignment would introduce
serious dysfunction in the system. For ascending compatibility (cf. § 3.3.3) in a
family of microprocessors, there may be an address-size attribute that specifies the
transfer format of 16, 32 or 64 bits.

Subroutine 113

4.2. Subroutine

This concept came from the EDSAC (Electronic Delay Storage Automatic
Calculator) project under the term “closed subroutine” (Wilkes et al. 1951). A
subroutine is a block of instructions that is executed following a call from a calling
subroutine. This block is a factorization of a fragment of code that can be used in
different places in the application. The call is made by a specialized instruction such
as call (x86), bsr (branch to subroutine) or jsr (jump to subroutine). In the
same way, the return is made using a specialized instruction such as ret (return,
x86) or rts (return from subroutine). This code is duplicated no more than
necessary, that is, it is present only once. Instead, it is the number of jumps that
is multiplied. The subroutine should not be confused with the macro-instruction (cf.
§ V5-1.3.4), possibly parametered, each of the expansions adding the corresponding
code. Figure 4.9 shows a processor’s single-task activity. Following a call and until
a return, the execution flow is passed to the subroutine instructions.

Figure 4.9. Unfolding execution of a program with a call to sub-program

Debranching can take place simply by initializing the Program Counter (PC)
with the subroutine start address. To return to the calling program, it is necessary to
have the return address. Its value is in fact the instruction address following the one
corresponding to the call, that is, the value of the PC after decoding the call
instruction but before its effective execution (cf. execution cycle, § V1-3.2.2.4 and
V1-3.3.2). It should be saved by the call instruction before initialization of the PC
with the branching address and restored on return by the return instruction. There are
several methods or places for saving this return address. The most current is the one
that uses the stack (Figure 4.10). The stack pointer is run automatically by the call
and return instructions, which involves a complex execution. Moreover, once the
stack is implanted in main memory (cf. § 4.1), the overhead is higher. The major
benefit is proper management of recursivity.

114 Microprocessor 4

Figure 4.10. Subroutine call and return and stack content (x86 architecture)

The second method is to use a specialized, and thus an implicit register. This
latter is called an LR (Link Register), for example, in Arm® and PowerPC
architectures, from the name of the operation and to make the execution address
correspond with the return address linking method. RISC (Reduced Instruction Set
Computer) MIPS (Microprocessor without Interlocked Pipeline Stages) architecture
uses the ra (return address) register, also called r31, with the subroutine call
instruction jal (jump and link). This solution is simple and fast as it does not
involve using the stack. It is useful when a subroutine does not call to another,
which is called a leaf (sub)routine. This configuration is generally detected by the
compilers. If the context is more complex (saving other registers with the PC or
Program Counter), then the additional handling uses software. Moreover, in case of
interruption, this can be problematic. The last solution is to use an explicit register
for saving. Still using MIPS architecture, the instruction jalr (jump and link
register) saves the return address in any register specified in the operand field.

To facilitate implementation of the compilers, high-level instructions can be
proposed, such as enter and leave from Intel. Motorola used the equivalent
instructions link and unlk for its MC68000. Moreover, it offers up to 10 stack
frame formats.

One subroutine call that is not classical is the CDP1802 (also called COSMAC
for Complementary Symmetry Monolithic Array Computer). It has its register bank
of 16 registers in 16-bit format, each of which could be a PC (Program Counter).
Register switching has made it possible to carry out branching to a block of
instructions such as a subroutine.

Subroutine 115

4.2.1. Nested calls

The mechanism is cascadable and potentially recursive, as Figure 4.11 illustrates.

Figure 4.11. Recursive calls and returns from a subroutine (nested calls)

At each call, the return address is saved on the stack. Figure 4.12 shows the state
of the stack at instant t. Unstacking, thanks to the LIFO access policy, is carried out
in the reverse direction to that of stacking. The call depth will be the number of
nested calls carried out. Knowing its maximum value makes it possible to dimension
the stack size. If the stack is poorly dimensioned, then there will be a stack overflow.
The condition for the recursivity to be passed correctly is that the subroutine’s code
should be re-entrant (cf. § 3.1.4). This means that it should not use global or static
variables, like a high-level programming language, such as C.

Figure 4.12. Recursive calls and returns from a subroutine (nested calls)

116 Microprocessor 4

4.2.2. Execution context

It is necessary to save on the stack a set of data needed to make the debranching
transparent, that is, to make it as if there had not been any break in the sequence
with which the caller is executed. To do this, this set, which is called the execution
context, will be restored on the return. It contains at least the return address
contained initially in the microprocessor’s program counter to make this
debranching transparent. Also, a call instruction from a subroutine can be seen as a
macro-instruction (Blaauw and Brooks 1997) as it behaves like a normal instruction
by making transparent the execution of the block of instructions representing the
subroutine. At most, this involves all the MPU’s registers. Work is distributed
between the caller and the called. The backup location is either internal within the
registers or external in main memory in a stack.

There are three approaches for carrying out this processor state
backup/restoration4. One is for this operation to be implicitly carried out by an
instruction. The call instruction and the return instruction save/restore the internal
state. One example is the complex instruction calls from the mini-computer’s
processor VAX (Virtual Addressed eXtended), which made it possible to choose the
registers to be saved. In another approach involving software, instructions are
explicitly responsible for carrying out the work. Only the return address is saved
automatically. The remainder of the context is the responsibility of the caller or the
called depending on the call convention (see the following section). The final
approach is an implicit hardware management, one example being register
windowing (cf. § V3-3.1.11.3) from the RISC SPARC family (Scalable Processor
ARChitecture).

4.2.3. Passing parameters and call conventions

To implement a function or procedure, it is necessary to pass parameters and
define who or what will manage them, the caller or the called. We recall that there
are ingoing and outgoing parameters, since the function can only have an outgoing
parameter, unlike the procedure in PASCAL language, for example. The type of
passing defines whether the parameter is passed by the value or by the address, by

4 Several types of state can be distinguished in an IT system. The state of the processor or
internal state refers to the content of registers that are or are not accessible (i.e. “architecture”,
cf. § V3-3.1). The external state is that of the system without the processor. It covers the state
of the memory hierarchy (for the concept, cf. § V1-2.3 and § 1.2 in Darche (2012)) with, in
particular, the caches and main and secondary memories. The state of a process refers to all
the information affecting it. It can cover the states of the processor and the operating system if
it is in the processing of being executed.

Subroutine 117

pointer or by reference5. The mode of passing defines the storage location of the
parameter: register, global variable or stack. The MPU 2650 from Signetics has an
interesting characteristic: it has two banks of three registers selectable by the RS
(Register Select) bit from the state register. These make it possible to pass
arguments easily from one process to another by switching the banks, since the
accumulator is common to both. The passing can be done explicitly using classical
data movement instructions (cf. § 2.2.1) or automatically while executing the call
instruction. One example is the MC68020, which, as well as the classic call
instruction to a subroutine, has two specialized instructions for modular
programming called callm and rtm.

RISC microprocessors have optimized the passing of registers using a
mechanism called register file windowing. The hardware implicitly manages the
passing of parameters. To do this, a Register File (RF, cf. § V3-3.1.11.1) is
subdivided into sub-sections called windows. A window is formed of three parts,
which are the block communicating with the lower level, the block for local
variables and the block communicating with the higher level. One example is
register windowing from the RISC SPARC family (Figure 4.13 (a)). This solution
was espoused for calls of low depth (i.e. < 4). The windows overlap at the
communication blocks (overlap registers or overlapping register-window). The
passage of outgoing and ingoing parameters between the caller and the called occurs
between the intermediary of the same registers, which coincide in the windows. In
particular, the return address is found in the outgoing parameter area. Only a single
window is active at any one time. By using only registers, this approach makes it
possible to avoid CPU (Central Processing Unit) time consuming access to the main
memory. Moreover, there is a non-windowed area reserved for general-purpose
registers. Figure 4.13 (b) shows a linear view of these same registers. This
mechanism will be detailed in a future book by the author on the RISC philosophy.

This set of rules defining, among other aspects, what is responsible for backup in
the execution context (apart from the PC or Program Counter), is called the calling
convention. It is possible to have two backup conventions, caller saving and callee
saving. Manufacturers provide a reference document. From Arm®, for example, we
list in any order AAPCS (Procedure Call Standard for the Arm® Architecture),
APCS (Arm® Procedure Call Standard), TPCS (Thumb® Procedure Call Standard)
and ATPCS (Arm® TPCS).

5 There is a fourth form of passing called “pass by name” where the name of the argument is
passed during the call as in ALGOL 60 (ALGOrithmic Language). This is an address on the
variable that is accessed via indirection. This type of passing was used in prefix machines (cf.
Meinadier (1971, 1988) on this subject).

118 Microprocessor 4

Figure 4.13. Windowing registers (from Scott (2016))

To summarize, we need to distinguish three types of call. The first is the
subroutine call where there is, as a minimum, only storage of the return address (in
fact, the address present in the PC or Program Counter before the jump) to win time
when changing the context. Other registers, depending on the instructions, can be
backed up. The second is the function call where two other things must be saved: the
parameters to be passed and the local variables. The last is the system call, which
occurs without interruption, and is the subject of the following chapter (cf. § 5.4 and
5.8).

4.3. Conclusion

After introducing how the stack and LIFO memory access operates, we studied
the concept of the subroutine. This makes it possible to implement a higher-level
language function or procedure. A similar mechanism is interruption, which is, like
the first mechanism, a re-routing of the execution flow, but one particular direct
towards I/O handling. It is studied in the following chapter.

5

Interrupt Mechanism

Execution flow (cf. § V1-3.1.2) can also be altered by an interrupt mechanism.
We will first introduce the basic mechanism used in the first microprocessors
(generations with 4 and 8 bits, cf. Chapter V3-1). Then, we will enrich our model
with the concept of exception, present in second-generation microprocessors. This
chapter enriches the section dedicated to this in Chapter 4 in Darche (2003) and
§ 3.2.2. It will be complemented in other books; processor architecture is becoming
increasingly complex. The study will be made using different associated aspects
such as nested requests, priority requests and vectorization to finish with execution
modes and advanced architectures.

5.1. Origin, definition and classification

The concept of software interrupt was implemented for the first time1 in the
UNIVAC (Universal Automatic Computer) 1103A (Rojas and Hashagen 2000) at
the start of the 1950s (1953 according to Mersel (1956)) to prevent potential
overflow (cf. § II-3.1.1. and II-3.3.3. in Darche (2000)) during an arithmetical
calculation (Hennessy and Patterson 1994). It was then used for the first time in I/O
(Input/Output) in the DYSEAC (Second Standards Electronic Automatic Computer)
(Leiner 54) from NBS (National Bureau of Standards) (Smotherman 1989a b). With
the development of 16-bit generation microprocessors and the start of the use of
Operating Systems (OS) in microcomputers, the concept of interrupt2 encapsulated
that of exception (Schlansker and Rau 2000). The interrupt sometimes takes the

1 Kuck (1978) dates the concept to Babbage’s analytical engine (cf. § V1-1.1), which stopped
by requesting human intervention using a bell (the routine!) when the wrong program card is
inserted.

2 In some works such as Dumas II (2006), Harris and Harris (2007) and Hamacher (2012), it
is the reverse.

Microprocessor 4: Core Concepts – Software Aspects,
First Edition. Philippe Darche.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.

120 Microprocessor 4

name of the sub-set that generated the interrupt request, for example, “I/O interrupt”
or it bears the name of the cause such as “page fault”.

The general term “interrupt” or IT refers to a class of low-level hardware
or software events that forces MicroProcessor Units (MPUs) to interrupt a
(sub-)program’s normal execution flow, as a jump instruction would do (cf. § 2.4),
to re-route to a routine called an interrupt handler (or Interrupt Service Routine,
giving the acronym ISR). For its protagonists, whatever generates the request (an
I/O controller, an instruction, etc.) is called the “the signaler” and the processing
routine is called “the processor”. The processor is responsible for processing the
event, ideally in a privileged mode in the case of a processor with several execution
levels (cf. § 3.2.2) to then return to a normal execution of the interrupted program or
to restart another if it is abandoned. The processing routine should be as fast as
possible so as not to slow the main processing or not to lose requests. As Figure 5.1
illustrates, interrupts can be classified by their cause, external or internal to the MPU
or linked to management of the memory. What distinguishes the two branches is
their (a)synchronous character. The external cause, and so the hardware origin, is
always the state of an electrical signal or its variation. It is necessary to distinguish
the hardware interrupt and the hardware exception triggered by a malfunction. The
internal cause is always linked to the execution of an instruction. For interrupts with
an internal cause, the request is always synchronous with the clock since it is linked
to the instruction’s execution cycle, which generates the request explicitly, and so
where it is wanted (software interrupt) or implicitly software exception. But beware,
they generally appear at random. The exception is an interrupt category. In this
volume3, it is an unprogrammed event, one that is abnormal, unusual and rare4,
linked perhaps to a breakdown or an execution error5 which will alter the sequential
execution flow. But beware, an error is an exception, but the reverse is not always
true. Exceptions the processor is able to detect are of two types, which are faults and
aborts. A special operating mode is the step-by-step mode (cf. § 5.5 and 5.6).
Inspired by the classification from Intel for its IA-64 (IA for Intel Architecture) and
OSs, it is necessary to distinguish four classes of interrupt6, which are distributed in
the proposed hierarchy. These are hardware and software interrupts (or trap) and the
exception that can be broken down in cases of faults and aborts in both the previous
classes.

Criteria other than the origin of the cause can be used to classify interrupts.
(Hennessy and Patterson 1990; Walker 1992) and thus suggest criteria that are

3 The meaning of this term varies depending on the authors and designers.

4 This name for an exceptional event is relative, quite clearly, to the context in which it is
situated.

5 An error indicates the part of a state that is not correct (Melliar-Smith and Randell 1977).

6 Intel calls this an “exception”.

Interrupt Mechanism 121

asynchronous/synchronous, voluntary/forced, masked/unmasked, between or internal
to the instruction, precise/imprecise or simple/multi-level, which Tables 5.12 (a) and
(b) show at the end of the chapter (cf. § 5.11) after they have been explained.

Figure 5.1. Origins of an interrupt request (Darche 2003)

5.2. External causes

The external interrupt originates in hardware and is asynchronous in nature. It is
therefore an unprogrammed event, that is, one not triggered by an instruction (i.e. an
unscheduled event). It is therefore more difficult to handle than internal requests,
and this is even more true in a multiprocessor environment. Interrupt requests
mainly provide I/O controllers, which thus signal a request or indicate an end to the
I/O. This is a predicted event. A hardware exception is caused by a hardware
malfunction external to the processor, generally coming from the memory, the bus
or the power supply, which leads for the most part to a system shutdown. This is an
unpredicted and catastrophic event such as an imminent power shutdown. It leads to
an abort of the execution, then to this major error, which originates in hardware.
Control of the memory or transfer sub-sets in a bus relies on logical parity (cf.
§ III.6.6 in Darche (2000) and § 2.6.4 in Darche (2012)) in the case of a simple
approach. It can also be a temporal error (no response in the time allotted for the
access cycle). Another example is the earliest possible detection of an imminent
power fault, which makes it possible to save the context. It should be noted that a
machine check that indicates a dysfunction is a type of abort. An MPU can have an
input for hardware exceptions of the fault type as with the 65C816 from MOS
Technology and the IT ABORTB that made it possible to signal a page fault or a
memory access violation.

The interrupt request is made via a binary electrical signal (Figure 5.2) applied on a
dedicated pin of the processor. The request can therefore be level-triggered on a logical
level (0 or 1) or on a (ascending/rising or descending/falling) signal edge (edge-
triggered). The type of trigger is either fixed by the hardware (the case of the
microprocessor) or programmable (in general, in the interrupt controller). The main

122 Microprocessor 4

fault with a level trigger is the risk of resetting if a later request is authorized, one
example being the management of IT from the ISA (Industry Standard Architecture, cf.
§ V2-4.5) bus. Hence, most signals are edge-triggered. The main defect with edge-
triggering is the risk of losing requests while an interrupt is processed. The source of
interrupt can be synchronous (i.e. periodical) or asynchronous.

Figure 5.2. Ideal forms of external interrupt request

As Figure 5.3 (a) shows, the interrupt request has not immediately been taken
into account. There is an interrupt latency (cf. the study by Macauley (1998) on the
MPU 8086) between the request and its consideration, that is, the launch of the
associated routine. This time corresponds at least to the end of the execution of the
instruction underway or it can be higher in the case where the request is masked. The
execution context is saved on the stack (Figure 5.3 (b)), and branching takes place.
Once supplied externally, for example, by an interrupt controller (cf. § 4.1.1 in
Darche (2003)), the jump address at the ISR is provided in the form of an interrupt
vector (cf. § 5.7). After execution of this routine, on execution of the interrupt return
instruction iret, the context is restored (stacking) to resume the execution of the
program earlier suspended at the instruction following the interrupt. This re-routing
is similar to a subroutine call (cf. § 4.2).

Figure 5.3. Call and return of a non-nested hardware interrupt

Interrupt Mechanism 123

By taking Figure 4.9 as a model, it is possible to describe the execution of an
interrupt with Figure 5.4. At the moment when it is considered, the mechanism
resembles the execution of a subroutine described in the previous chapter if an
instruction iret ends the execution of the interrupt routine. The fourth step requires
identification of the handler (i.e. their start address) and its launch. Re-launching the
interrupted program is achieved by restoring the context.

Figure 5.4. Execution flow of a program during
a hardware interrupt request

Therefore, we can define five steps in the handling of an interrupt request (Figure
5.5). They are its detection, its consideration, saving the context, execution of the
associated handler and re-launching the interrupted program7. When the IT is
recognized, a return-receipt in the form of an electrical signal can be re-sent to the
requester, generally the IT controller. The IT is called delivered when the
corresponding handling routine is executed; it is called terminated when the control
flow returns to the caller.

The interrupt storm is an expression to characterize the fact that an unusual
number of requests are made and that the system cannot satisfy them or can satisfy
them only poorly. We should remember the 1202 alarm from the on-board computer
(LGC for LEM (Lunar Excursion Module) Guidance Computer) on Apollo 11
during the first moon landing, indicating a processing overflow linked indirectly to
this problem. If requests occur too close together, there is then a risk of losing the
request as the request is made on an edge. In the case of a request on a level, the
problem no longer occurs, as it will be maintained so long as it is not considered.

7 In a multi-programming context, we would speak about a process or task.

124 Microprocessor 4

Moreover, in a multi-task environment and in real time, interrupt routines should
have a very short execution time so as not to monopolize the processor. As a last
remark, in a multi-task environment, the designer should ask the question of how to
determine the type of software processing appropriate to the interrupt. Does it
require a function (or a procedure), a task (i.e. heavy-weight process) or a thread (i.e.
light-weight process)?

Figure 5.5. Stages in handling an interrupt

Interrupt Mechanism 125

5.2.1. Execution context

We recall that the execution context is the data set needed to make the branching
transparent (cf. § 4.2.2). It comprises all or some of the registers internal to the
microprocessor. The minimal context is the program counter containing the address of
the next instruction to be executed and the status register. Depending on the
processors, only this minimal context is saved, such as the x86 architecture, or indeed
all the registers are saved. The choice can also be left to the programmer. So the
MC6809 microprocessor from Motorola had a hardware interrupt called FIRQ (Fast
IRQ) that saved only this minimal context, that is, the value of the PC (Program
Counter) at the moment when it was considered. Recall that the reason this IT exists is
that it is executed rapidly from context switching, to meet an external demand as
quickly as possible, hence its name. Its other interrupts, on the other hand, save all its
registers. This microprocessor’s state indicator (E for Entire flag) makes it possible to
know whether all the registers had been saved or not. The vector’s value (cf. § 5.7) is
either fixed once and for all in hardware or can be modified by the program, if the
vector is implanted in volatile memory, for example, in a table (cf. below).

The location options for saving the context are the two main ones cited for the
call function (cf. § 4.2.2), that is, the stack or the registers. Shadow registers make it
possible to have several sets from one, some or all of the registers; bank switching is
achieved by passing the flow of control. Arm® architecture has several execution
modes for interrupts (cf. Table 3.3). For FIQ (Fast Interrupt reQuest) mode, seven
registers (r8 to r14) are replicated compared to two (r13 and r14) for the other
modes. MC88100 and PIC32 use it. A third solution is to replicate the stacks (to
make shadow stacks); this means that a stack is substituted by a replicated register.
Its successive values are stacked there. MC88100 uses this mechanism under the
acronym PCS for Program Counter Stack (Grohoski 1990). Two other options cited
by Walker and Cragon (1995) are checkpointing hardware (Hwu and Patt 1987a,
1987b)) and the auxiliary processor that is responsible for processing the interrupt
(cf., for example, Keller (1975)).

It should be noted that if the saved context includes the status register and that if
this contains an IT (in)validation flag, the ITs will then be automatically restored on
return to the associated service routine thanks to a return instruction, such as iret.

5.2.2. Sources

The MPU in most cases has several interrupt request inputs (Figure 5.6 (a)). We
call these multi-level interrupts. This solution was costly for the first generations of
MPUs, as the number of DIP pins (Dual-In-Line (DIL) Package, cf. § 3.3 in Darche
(2004)) was limited at that time. If the number of sources exceeds the number of

126 Microprocessor 4

inputs, it is possible to share an input, as Figure 5.6 (b) shows, with the help of a
simple external element such as a logical OR (e.g. a wired OR based on a collector or
open drain from an output transistor) or more complex ones such as an interrupt
controller. These demands therefore involve only a single type of IT. This is an
interrupt called a “simple level” interrupt, and there is no priority if its input is shared.
Microcontrollers (cf. § V3-5.3), because of their application domains, offer many
interrupt possibilities. One example is the 16-bit microcontroller SAB-C167 from
Siemens (now Infineon) which has 56 sources of interrupt request.

Figure 5.6. Different sources of external interrupts

We cite the traditional names for a hardware interrupt, which are IRQ or INTR
(Interrupt Request) and its variant FIRQ (see above), NMI (Non-Maskable Interrupt)
or Reset (cf. the following section). NMI is generally reserved to avoid serious or
critical hardware error such as an error on a bus (cf. § V2-3.2), a memory error (cf.
§ 2.6.4 in Darche (2012)) as was originally the case with the PC (Personal Computer)
from IBM (1981) or to indicate an imminent power failure. The IRQ is generally used
by I/O controllers. We cite a final example, the #Halt signal from MPU (MC6809),
which required it to halt. This same component possesses the instruction cwai (Clear
CC bits and Wait for Interrupt), which alerts the latter to a possible interrupt. As these
requests are external, they are intrinsically asynchronous with the processor’s
operation, although it is possible to synchronize them with external electronics. It
should be noted that the INTR signal from 8086 should be kept active (latched) as the
interrupt is not served since the request is not stored internally. We again cite ABORT
from MPU WDC 65C816, which was an edge-triggered, unmaskable IT aimed at
hardware exceptions such as a page fault or memory access violation. The recovery
point after a return instruction (rti for return from interrupt as it happens) was the
original instruction and not the following one. For example, a virtual memory handler
or MMU (Memory Management Unit) such as the z8010 component from Zilog
generates an interrupt request via its output #SEGT (SEGment Trap request) when
there is an access or right violation (in writing).

A particular interrupt is a hardware reset of abort type. The hardware aspect was
addressed in § V3-6.2. The microprocessor, when it is switched on, is found in an
undetermined state. When the supply voltage is stabilized and is found in a value

Interrupt Mechanism 127

allowed by the electrical specifications, it is necessary to initialize the microprocessor
using hardware for its state to be known. This operation is carried out by activating a
pin of the microprocessor using a specialist control responsible for, among other tasks,
monitoring power supplied, or a “watch dog” (cf. § 3.3.1 in Darche (2003)). Clearly not
maskable and the highest priority, it is the only one to be considered within an
instruction’s execution cycle for a non-parallel MPU. It is level-triggered, but it is
blocked in the initialization state so long as the active level continues. It sets the
interrupt mask to prevent the maskable interrupts and disarm the unmaskable interrupts.
The user can trigger an initialization by relying on the dedicated button. Unlike other
interrupts, no specific instruction for processing is linked and the routine finishes
implicitly with continuation or, if it exists, by an explicit branching to a configuration or
boot program. The signal that is applied to the microprocessor is generally applied also
to the whole system including the I/O controllers. Finally, it should be noted that the
instruction restart from MC6809 makes it possible to reboot the system as during a
hardware initialization (i.e. reset) using the RESET vector.

5.2.3. Masking

Generally, routines that process interrupt requests of the same priority level
mutually forbid one another from being interrupted. So, the MC6800 microprocessor
of those from the x86 architecture, when considering an IRQ, masks requests from
input into the corresponding management routine. Two possible strategies are to
reinitialize the pending IT flip-flop either as early as possible or at the end.

Meinadier (1971, 1988) distinguishes seven states for a hardware interrupt
request handler. The first is the disarmed state. The logic cannot take any other
request into consideration. Once armed, the system is ready to accept a request. The
firing state means that a request has arrived, been stored and it is being processed.
This request can be forbidden, also called masked (4th state) or inhibited for a
postponement of treatment. The “authorized” state means that no other request from
a higher level has arrived and that it can be processed. The state before the last is to
wait for a state that accepts the control unit (to finish execution of an instruction in
general). The last, active state corresponds to execution of the associated processing
routine. A request can be lost if it is not seen by the system (a missing interrupt).
Figure 5.7 shows an IT processing logic.

If an input is shared by several sources, there may be an interrupt flag belonging
to a special register (individual masking) or a global flag that invalidates all the
maskable interrupt requests. These individual or global masking possibilities have a
role in an ISA’s (Instruction Set Architecture, cf. § V1-3.5) power. This generalist
decision chain will only have a single maskable IT input, while a microcontroller
may have several. Figure 5.8 provides an example of the COP8 microcontroller from

128 Microprocessor 4

National Semiconductor (NS). Another example of the same philosophy is the MPU
PACE (Fox and Reyling 1975) with an INT EN (master INTerrupt ENable)
validation flag and five IEi (i ∈ [1, 5], individual Interrupt Enable) flags belonging
to the classical status register and control flags.

Figure 5.7. Example of management logic
for IT requests (Meinadier 1971, 1988)

Figure 5.8. Processing chain for several sources of interrupt
sharing a single internal input (microcontroller COP8 from NS)

Interrupt Mechanism 129

Table 5.1 summarizes interrupts that are maskable and those that are not. Those
from an internal source are explained in § 5.4.

Sources
Interrupts

Unmaskable Maskable

External

Hardware interrupt (NMI) Hardware interrupts
 Classic (IRQ)

 Fast (FIRQ)
Hardware error (memory, bus, etc.)

Specific mode (reset)

Internal

Software interrupts
(instructions swi, trap, etc.)

- Software exception
(reserved instruction, cache fault, page

fault, etc.)

Table 5.1. Maskable and non-maskable interrupts

Specialist instructions such as cli (Clear Interrupt Mask) and sei (Set
Interrupt Mask) for the AVR microcontroller family make it possible, by
manipulating the IT, validation flag to mask these. It is necessary, on the other hand,
to take care that this masking does not last too long or the requests will be lost.
Moreover, when an IT processing routine is executed, it has generally masked the
ITs, which can be masked, and the previous remark on the duration, here applied to
processing, applies. It should be noted that the instruction iret from 8086
re-authorizes maskable IT (IF = 1).

5.2.4. Consideration and priority

In the von Neumann computer model, the processor executes instructions
sequentially. Before beginning an instruction, it verifies the absence of interrupt
requests (Figure 5.9). The hardware interrupt request therefore has priority over
execution of an instruction. We recall, on the other hand, that execution of an
instruction is atomic and cannot be interrupted except during a hardware
initialization reset. Interrupts are therefore interruptible instruction “at the boundary”
(cf. § 1.1 and 3.1.2). It should nonetheless be noted that a microarchitecture can
consider an IT request at the level of micro-instructions for speed of processing, one
example being the sliced microprocessor (cf. § V3-5.1).

130 Microprocessor 4

Figure 5.9. Simplified decision organigram
 for considering a hardware interrupt

In the context of multi-level interrupts, during simultaneous requests, it is
difficult to decide which request should be considered first. It is therefore necessary
to arbitrate. To a source of interrupt, there is therefore allocated a priority, generally
fixed for a microprocessor, which leads to a hierarchy of interrupts depending on
their priority (0 is generally the highest priority level). We speak of a prioritized
interrupt. Figure 5.10 shows the order for taking account of ITs from the MC6809
microprocessor. We note that after initialization, NMI takes priority, IRQ (which is
maskable) comes next. According to the implementations, when an NMI routine is
being executed, the input for this interrupt can be invalidated automatically during
its processing (the most common case, since it is preferable). Therefore, the 80386
does not manage nested NMIs. It waits for the first to be terminated before
considering the second. The software interrupt (cf. § 5.4) is the last to be considered,
as it is an instruction that should be decoded to know its function. For modern
microprocessors, interrupt classes that combine interrupts of the same priority have
then been created, then sub-classes that define priorities within a single class. On the

Interrupt Mechanism 131

contrary, the hardware interrupt RESET takes priority. It can interrupt the execution
cycle at any moment.

Figure 5.10. Execution organigram
of a simple MPU: the MC6802 (Motorola 1984)

132 Microprocessor 4

Figure 5.11 shows an example of pre-emption during execution of IT routines.

Figure 5.11. Pre-emptive execution in a system of hierarchized interrupts

An acknowledgment is generally sent to a requester when it is seen. One
example is MC6809, which indicates using the signals BA (Bus Available) and BS
(Bus Status) that reading of a hardware interrupt is underway.

5.2.5. Interrupt controller

The IT controller was initially an external logic or component (EIC for External
Interrupt Controller), one example being the 8259A from the 8086 family. This type
of component manages ITs in a vectorized manner. We thus speak of VIC for
Vectored Interrupt Controller in the Arm® family.

A complex I/O controller can have a dialogue with its processor. For example,
the 8086 in association with its external 8259A controller generates two consecutive
bus cycles via its INTA (INTerrupt Acknowledge) signal to signify recognition. The
first cycle accomplishes the acknowledgment. During the second cycle, the 8259
controller sends the number of the corresponding vector. In the inactive state, this
signal can alert the controller to its availability to receive a request. When a
controller does not respond during the acknowledgment stage, then the interrupt is
called a spurious interrupt and an internal exception is generally raised (case of the
MC68000, for example). Figure 5.12 shows the internal logic for considering the
request from this controller.

Interrupt Mechanism 133

Figure 5.12. Simplified processing logigram of an interrupt
from the IT 8259A controller (Intel 1988)

It was first integrated into the southbridge chipset (cf. Chapter 1 in Darche
(2003)) and now into advanced MPUs (IIC for Internal Interrupt Controller) as well
as in microcontrollers (AVR or PIC (Peripheral Interface Controller/Programmable
Intelligent Computer) family, for example). At Intel, it is called APIC for Advanced
Programmable Interrupt Controller (cf. § 5.11).

5.3. Nested interrupts

In the case where another request arrives during processing of an interrupt, the
same context saving and branching process will be executed. There is no state
incoherence since access to the stack is “Last-In, First-Out” (LIFO). The only
problem is the size of the stack that stores contexts (of limited depth) and the
coherence of the sub-program execution state (possible side-effect if the program
is not re-entrant). Interrupts are called nested interrupts or stacked interrupts.
Figure 5.13 illustrates an interrupt nesting.

134 Microprocessor 4

Figure 5.13. Mechanism of nested hardware interrupts

Nested calls should be avoided because of problems with reaction time and
starvation. They cumulate the handling times of the execution context (i.e.
saving/restoration) and, in the case of a blockage in one of the sub-programs, they
can cause starvation, that is, an indefinite waiting time. They complicate the
software, are a source of operating errors and do not, in general, improve
performances (cf. § 3.4). Fortunately, it is possible to forbid consideration of an IT
using the mask interrupt mechanism. Masking the request can delay its
acknowledgment. If interrupts are hierarchized, lower ranking requests are masked.
Masked does not necessarily mean lost. In the microprocessor status register, there is
an indicator (Interrupt Flag or IF) that controls its consideration using programming
(authorization or invalidation at state 1 according to implementations). The new
request is then registered, but the re-routing is reported until the flag is updated. The
interrupt is then called maskable. Internally, a flip-flop then registers the interrupt
request. If the sensitivity is of edge type, a loss of request can occur. On the other
hand, when the flag is re-initialized, the flip-flop re-enregisters the request that
follows. If the interrupt is not maskable, the designer automatically invalidates the
interrupt input with or without the possibility of modifying this behavior depending
on the implementation. The MPU can also lose an interrupt request if the processing
is not fast enough. On the contrary, a critical application in real time cannot accept
the loss of an interrupt without the penalty of serious problems in managing the
procedure, for example, the destruction of an embedded system such as a rocket.

Another way of processing requests is to queue interrupts. This technique is
addressed in § 5.8.

Interrupt Mechanism 135

5.4. Internal causes

Interrupt requests (Figure 5.1) originate in specialized instructions (trap), or they
come from an execution error (software exception). Hence, we speak respectively of
synchronous and exception interrupts. It should be noted that interrupts due to
internal causes can always be reproduced, which is not the case with external
interrupts, because of their nature.

A software interrupt or trap, occasionally called an internal interrupt, is an event
triggered explicitly by a specialized instruction (programmed interrupt). It is
therefore a deliberate act by the programmer, which wishes to raise a trap. An
instruction such as swi (microprocessor MC6809 (Motorola 1984)), as Figure 5.14
illustrates, explicitly requires a re-routing. This instruction masks IRQs during its
execution. There can be a passing of parameters such as the operand with the
instructions int (x86 architecture) and trap (MC68000). Interrupt return
instructions are the classical iret (interrupt return, x86 architecture, for example)
and eret (exception return, MIPS (Microprocessor without Interlocked Pipeline
Stages) architecture, for example). These specialized instructions are therefore well
adapted to call on an OS’ services (system or supervisor call) as the associated
routine will be executed in a privileged mode (cf. § 3.2.2) if the MPU offers it,
which was not the case with 8-bit generations of that era. It should be noted that
Arm® has an instruction swi whose operand format is formed of three bytes, so 224
ISR possible!

Figure 5.14. Call and return of a non-nested
software interrupt (example with MC6809)

We find the same concept of nesting requests for external IT (cf. § 5.2), as
Figure 5.15 illustrates.

136 Microprocessor 4

Figure 5.15. Call and return of nested software
interrupts (example with MC6809)

Figure 5.16 details the development of the stack following these nested requests.

Figure 5.16. Call and return of nested software interrupts
(example with MC6809)

A fault is an event that results from it being impossible to execute an instruction
(memory error, problem of execution protection, etc.). An attempt at writing in ROM
(Read-Only Memory), an absence of memory at this address (i.e. access in the void),
an illegal address or a page fault in physical memory are examples of memory error. It
is generally correctable and corrected, for example, by a re-execution of one or more
instructions (retries) in the case, for example, from an OS service. As this happens
during execution of an instruction, it is possible to define three sub-classes of fault
linked to the execution stages (cf. § V1-3.3.2). These are raised after an instruction

Interrupt Mechanism 137

fetch, at its decoding and at its execution. A software exception can fall into the “fault”
class (the most common) or the “abort” class. The abort results from a string of two
faults. Intel calls it a “double fault”. It announces a serious problem at the kernel.
Table 5.2 classes interrupts in three categories to decide whether there is a double fault
or not. It should be noted that the tendency towards integration has meant that external
requests that were hardware exceptions of the “abort” type are transformed into
software faults. One example is the abort called “coprocessor segment Overrun”,
uniquely for the 386, which then became a fault.

Categories no. Description

Benign exceptions

1 Step-by-step (debugging)

2 NMI

3 Breakpoint

4 Overflow (relative integer)

5 Boundary control

6 Invalid operation code

7 Coprocessor unavailable

16 Coprocessor error

Contributing exceptions

0 Division error

9 Coprocessor segment overflow

10 Invalid TSS

11 Segment not present

12 Stack exception

13 General protection

Page faults 14 Page fault

Table 5.2. Categories of interrupt to qualify a double fault
in 80386 (Intel 1986)

Table 5.3 allows us to decide if there is a double fault, considering the causality
of IT requests.

 Second exception

Benign
exception

Contributing
exception Page fault

First exception

Benign exception No No No

Contributing
exception No Double No

Page fault No Double Double

Table 5.3. Decision criteria for qualifying a double fault in 80386 (Intel 1986)

138 Microprocessor 4

A fault is automatically generated (we say it is raised) on an abnormal condition
during execution of an instruction. A fallible instruction is an instruction that causes
an exception. It can result from programming errors or abnormal conditions. It can
be a forbidden instruction, one that is impossible to execute or non-existent
(undefined operation code). One example is the page or segmentation fault, which is
an abnormal and unusual event caused by execution of an instruction. Resuming
consists of loading the faulty page or segment and re-executing the instruction.
Calculation exceptions involve whole and relative integers or fixed and floating-
point numbers. For integers, there is the overflow or division by zero. For example,
at Intel, overflow is a trap-raised by the instruction into (interrupt on overflow),
and so it is wanted by the programmer and is not a fault. For floating point, the
R4000 microprocessor has, for example, five exceptions, which are an invalid
operation, underflow, overflow, division by zero and inexact result (rounding-off
problem). It should be noted that a division by zero that calls an ISR raising the
same exception creates an infinite loop.

The difference between a trap and a fault lies at the point of recovery. For the
first, it lies in the instruction following the branching, while for the second, it will be
situated at the faulty instruction. A TLB failure (Translation Lookaside Buffer, this
will be covered in a future book by the author on memories) is a fault. An exception
on overflow is a trap. There is no resumption of the program, or the task follows an
abort since it involves a serious error.

5.5. Debugging

Debugging an ISR is difficult, since the insertion of a debugging code can
influence the system’s operation, by slowing it, for example. One particular software
interrupt is trace or step-by-step mode where a trap is raised at the end of each
execution of an instruction, which will launch a specific debugging routine. To do
this, it is necessary that the processor is in a particular execution mode (cf. § 3.2.2).
The routine is in fact the debugging program (cf. § V1-2.2.4), which makes it
possible among other things to visualize the different memory areas (instructions,
data, stack, etc.) and the registers. For 8086, as Figure 5.18 shows, the IF and TF
(Trap Flag) flags are set at zero during its execution. This means that it is executed
in normal mode and not in step-by-step mode. With this same processor, the
breakpoint uses the instruction int 3, which replaces the right instruction placed
after the one stopping the execution (patch) and is saved provisionally. The
associated routine should save the context, call the debugging program and, at the
end, execute the replaced instruction and restore the context to make this break
transparent. A hardware aide is often available, either an elementary one such as a
Light-Emitting Diode (LED) or a more elaborate one such as a JTAG (Joint Test
Action Group) hardware probe (cf. § V5-2.2.5), for example. A final function that

Interrupt Mechanism 139

the MIPS (Microprocessor without Interlocked Pipeline Stages) microprocessor
offers is its EPC register (for Exception Program Counter), which contains the
address of the instruction that generated the trap.

5.6. Priority between internal and external interrupts

It is desirable to be able to receive requests from different sources. It is necessary
to be able to serve them to define a priority between them. There is a priority
between hardware and software interrupts. Figure 5.17 shows the decision
organigram. The consideration is called “at the instruction boundary”. Hardware
interrupt requests are evaluated before the start of an instruction’s execution. They
are therefore a priority. The trap is evaluated during its execution. On the contrary,
we see here that a trap underway masks future maskable hardware interrupt requests.

Figure 5.17. Decision process from MC6809 (simplified organigram
without HALT and Reset modes in particular) from Motorola (1984)

140 Microprocessor 4

A counter-example is 8086 where software interrupts are priority. Raising them
means that the associated ISR is launched at the following cycle. Table 5.4 gives the
priorities for different interrupts.

Interrupts Order of priority
Division error, int, into From high

NMI

INTR

Step-by-step To low

Table 5.4. Priorities of different interrupts from 8086

Figure 5.18 shows the corresponding decision organigram. Each request
acceptance leads to invalidation of the maskable ITs (IF flag = 0) and of the step-by-
step execution mode (TF flag = 0). An additional test is inserted just before the
execution of the routine body, so as to know if there has been an NMI request (more
priority) since the first test. The variable TEMP makes it possible to save the state of
the execution mode, either normal or step-by-step.

The priority chosen for the MPU step-by-step mode leads to an unwanted effect
in IT processing that means that the debugging routine is called just before the first
instruction of the most prioritized routine. Figure 5.19 gives an example with the
processing of a non-maskable interrupt. It should be noted that the unstacking of the
CS and IP registers is symbolized in this figure by the word “return”. This side
effect can be inconvenient for development since an execution delay or worse, a
break, is introduced in the interrupt routine. Hence, in the following generation (i.e.
80286), Intel increased the priority of this mode just behind the division by zero
exception (cf. Table 5.5), so before the external interrupts. Processing routines
invalidating the step-by-step mode during re-routing are no longer disrupted in their
execution. The hardware thus guarantees that the step-by-step execution mode stops
when there is a hardware interrupt request so that the associated handling routine is
not executed in this mode. If this mode is necessary, it is then necessary to execute
an instruction int to execute the corresponding handler.

Figure 5.20 shows the instance of two simultaneous interrupt requests, one
internal and non-maskable, and the other external and maskable. This latter is
processed after the first and once the return to the main program is made. The
drawback cited in the previous case is applied to each interrupt routine.

Interrupt Mechanism 141

Figure 5.18. Processing sequence for interrupt
requests from 8086 (Intel 1989)

142 Microprocessor 4

Figure 5.19. Step-by-step execution modes
with NMI and normal (Intel 1989)

Interrupt Mechanism 143

Figure 5.20. Simultaneous software exception and maskable external interrupt
interacting with the step-by-step execution mode (Intel 1989)

One exception to all these priorities is the case of three simultaneous requests
(Figure 5.21). In this case, the step-by-step mode is not applied to unmaskable

144 Microprocessor 4

routines that are nested. It is applied as before to the routine of the maskable IT. It
should be noted that the unstacking of the CS and IP registers is symbolized in this
figure by the word “return”.

Figure 5.21. Simultaneous NMI, INTR and division by zero in interaction
with step-by-step execution mode (Intel 1989)

To summarize, Figure 5.22 shows an organigram for processing IT programs
representative of the first decades of MPUs, that is, the 8-bit generation, which is the
MC6809 from Motorola.

Fi
gu

re
 5

.2
2.

 P
ro

ce
ss

in
g

or
g

a
ni

gr
am

 fo
r

in
te

rr
up

ts
 fr

om
 M

C
68

0
9

(M
ot

or
ol

a
 1

98
1,

 1
98

3)

Interrupt Mechanism 145

5.7. Identification of the source and vectorization

One difficult case is identification of the interrupt source when the line of
requests is shared by several interrupt sources. We saw in § 4.1.1 from Darche
(2003) that identification could only be done by polling from possible interrupt
sources by reading the interrupt request register. It can also be done by hardware
polling or daisy chain, by diffusion or by multi-level interrupts.

Almost all modern microprocessors use the technique of vectorizing interrupts
that gather all automatic interrupt recognition techniques to be considered and
branching by indirection (indirect addressing, cf. § 1.2.3.3) at the routine. With
vectorization, the execution flow is directed towards a start address for each
interrupt except in the case of auto-vectorization (cf. § above for the latter case). The
vectorization mechanism relies on an indirection. Information, making it possible to
locate the interrupt routine, is sent to a vectorized interrupt request. It may be an IT
address or number. When it is an address (first case) provided in general by the
interrupt controller (cf. § 4.1.1 in Darche (2003)), the MPU loads it in the program
counter to execute the routine. It is a number (second case), an unsigned integer
(format n = 8 bits, for example, for x86 architecture) that serves as a cell index in a
table where the routine start address is stored. There are therefore two definitions of
a vector depending on the manufacturers or authors. A vector is either the processing
routine start address8 called an interrupt (address) vector or also an interrupt pointer,
or an unsigned integer that serves as an index in a table (Intel 2003b, 2005) called an
ISR lookup table. Each interrupt vector location (i.e. cell) is addressed by the IT
number. This vectorization can be internal or external. In the first case, which is rare,
this table is in the interior of the microprocessor and the content of the vector is
fixed. In the second case, it is found in the random access or read-only memory (i.e.
RAM or ROM) or in a specialized controller, and it is modifiable under some
conditions (i.e. access rights). As a vector corresponds to each interrupt, recognition
of the interrupt source is therefore more effective than sharing the line alone since
the mechanism is an integral part of the processor. On the other hand, the number of
inputs is limited by a hardware that is costly in the number of pins and this approach
is not flexible since the priority policy is fixed.

At consideration, after saving the context, the program counter is loaded with the
content of the interrupt vector that contains the start address of the associated
interrupt routine. Access to the routine is achieved by indirection. The interrupt
vector is consequently a pointer (Figure 5.23). This concept was operated for the
first time in the TX-2 computer from MIT Lincoln Labs (Clark 1957). 8-bit MPUs
that supported vectorization are the 8085 and the Z80. In the 16-bit version, we list

8 The definition was retained for this book.

146 Microprocessor 4

Interrupt Mechanism 147

the 80x86. Software interrupts from 8085 are vectorized. Among hardware interrupts
(trap, RST 5.5, 6.5 and 7.5), only INTR is not vectorized.

Figure 5.23. Vectorization of the interrupt

The address of the table is specific to each (family of) component(s). The
MC680x family has its table of four vectors placed at the top of its address space.
Table 5.5 shows the IVT (Interrupt Vector Table) from IA-32 architecture (i.e. x86
architecture in 32-bit version) situated in the memory area, the start address
0000:0000 (Intel 2003a). Each interrupt has a priority called a “type” and an
associated vector. The priority defines the order of processing. The table has been
completed as new generations appear. The 8086 (Intel 1989), for example,
designated vectors no. 5 to 31 as reserved. The 80286 adds seven new interrupts,
four for the 80386. Since this MPU’s memory is segmented and acts on the real
mode (i.e. unprotected), the size of a vector is 4 bytes, including two for the segment
(this will be covered in a future book by the author on memories) and two for offset.
It should be noted that the Reset vector does not appear in the table as it is placed for
most processors generally high in the memory space in a non-volatile memory with
start and initialization FirmWare (FW) (cf. § V5-3.5.3). A counter-example is
MicroBlaze from Xilinx, which is a “soft processor core” implanted in an FPGA
(Field-Programmable Gate Array, cf. § 4.3.2 in Darche (2004)).

148 Microprocessor 4

Type (vector no.) Designation Origins
0 Division by 0 8086/8088

1 Step-by-step mode (debugging) 8086/8088

2 NMI 8086/8088

3 Breakpoint exception 8086/8088

4 Overflow of a relative integer 8086/8088

5 Range limit exceeded 80286

6 Undefined operation code 80286

7 (Unavailable mathematical) coprocessor 80286

8 Double fault 80286

9
Reserved

(memory violation of 387 coprocessor)
80286

10 Invalid Task State Segment (TSS) 80386

11 Segment not present (in memory) 80386

12
Stack (segment) fault

(limit reached or segment absent in memory)
80386

13
General protection exception
(segment boundary exceeded)

80286

14 Page fault exception 80386

15 Reserved –

16 Floating-point calculation error (x87) 80286

17 Alignment-checking exception (memory) 80486

18 Computer control exception Pentium Pro

19
SIMD floating-point calculation error

(instructions SSE and SSE2)
IA-32

20–31 Reserved –

32–255 Available for the user 8086/8088

Table 5.5. Table of 256 interrupt vectors from IA-32 architecture

Note that for the first microprocessors or for some interrupts such as IntR,
automatic presentation of the IRQ vector happens via an external module (Figure 5.24),
the IT controller and not by reading the table of vectors, according to a defined
protocol.

Interrupt Mechanism 149

Figure 5.24. External vectorization

One variant is the presentation of an operational code instead of a vector. For
example, we cite the MPU Z80 from Zilog, which has three maskable IT management
modes for compatibility reasons and because of the possibilities offered. The first
(no. 0) is Intel 8080 mode where an external controller provides an instruction code of
one byte, generally rst (restart, that is, the equivalent of a call) making it possible
to branch at one of eight locations (8 bytes long) starting from the memory address
space (page 0) where the corresponding ISR is found. Mode no. 1 executes an
instruction rst with 0038h as a start address, which is equivalent to an NMI
processing but at a different address from the one normally linked to it (= 0066h). The
last, the most powerful mode, makes it possible to make an indirect call to a routine
placed anywhere in the memory space from a vector formed from 8 bits provided by
the controller (LSB for Least Significant Byte) and from the content of a register
named I (MSB for Most Significant Byte) that addresses a table’s cell in 16-bit format
containing the ISR address (starting location).

There is a table variant that does not contain the vector but contains the routine code
directly (PowerPC 9 and Arm® approaches). Since the available size is small (8 bytes for
the (MCU for MicroController Unit) 8051 microcontroller from Intel, RESET aside),
the cell generally only contains one jump instruction to an associated routine, since it is
constrained by memory space (size of one jump instruction or an instruction from the
routine itself). The table was called a jump table. One advantage is that the cell can
contain the instructions nop or a jump to the following cell, enabling a fall-through
approach. A second advantage is a faster handling since there is no indirection.

MC68000 has many useful functionalities such as auto-vectorization. This term
means that an IT controller too simple or old to provide a vector can benefit from
vectorization. To do this, the MPU itself generates a vector depending on the priority
of the given request on its inputs, called an Interrupt Priority Level or IPL[2:0], the

9 PowerPC for Performance Optimization With Enhanced RISC Performance Computing.

150 Microprocessor 4

number of the basic vector and their number fixed by the manufacturer (respectively
= 1916 and 8).

In the first microprocessors, which positioned indicators at the end of execution,
the state of these latter should be explicitly tested so as to be able to process the
exception. Others can raise the exception automatically.

One original approach is that of MIPS (Microprocessor without Interlocked
Pipeline Stages), which does not use vectorization. It stores the type of interrupt
pending in a cause register (Hennessy et al. 1982), speaking of the surprise register,
containing an identification code for the origin of the interrupt in the format n = 4
bits. Table 5.6 shows its different values for MPUs R2000, R3000, R4000 and
R6000. The benefit is that it makes handling of interrupts orthogonal to handling of
instructions. It becomes uniform regardless of its type. Requests can be processed by
a centralized routine, which can make the vector table useless. The drawback is that
the processing is slower than with the solution that uses a vector table. It should be
noted that this MPU’s status register does not have classical status flags (NZVC,
cf. § V3-3.1.5.1). A counter-example is the COP8 microcontroller (from NS), which
uses a general fixed address management routine (i.e. 00FFh), of which the first
instruction is vis (1-byte format). The latter determines the cause of the interrupt,
making it possible to address a cell from a 16-vector table, and then makes an
indirect jump to the corresponding management routine.

Number Mnemonic Description
0 Int External interrupt (i.e. hardware)

1 Mod TLB modification exception (cache)

2 TLBL
TLB reading failure exception

(reading or fetching an instruction)

3 TLBS TLB writing failure exception

4 AdEL
Address error exception

(reading or fetching an instruction)

5 AdES Address error exception (writing)

6 IBE Bus error exception for fetching an instruction

7 DBE Bus error exception for a data reading or writing

8 Syscall Call system exception

9 Bp Breakpoint exception

10 RI Reserved instruction exception

11 CpU Unusable coprocessor exception

12 Ov Arithmetical overflow exception

13 Tr Trap (R4000 and R6000 only)

Interrupt Mechanism 151

Number Mnemonic Description

14 NCD
LDCz/SDCz (writing/reading in/of the processor) towards an

un-cached address (R6000 only)

14 VCEI
Virtual coherence exception instruction

(R4000 only)

15 MC Computer control exception (R6000 only)

15 FPE Floating-point exception (R4000 only)

16–22 - Reserved for future use

23 WATCH
Reference to the address stored in the registers

WatchHi/WatchLo (R4000 only)

19–30 - Reserved for future use

31 VCED
Virtual coherence exception data

(R4000 only)

Table 5.6. List of exception codes (ExcCode) for MIPS architecture
(Kane 1988; Kane and Heinrich 1992)

Figure 5.25 shows two possible implantations of an IT system (vector table at the
start of the address space). The vectors in the table are initialized by initializing the
system in the case of storage in Random Access Memory (RAM). If the system has
a monitor (cf. § V5-2.2.4.1), the IT table will be with it.

Figure 5.25. Two typical implantations of different memory areas of an IT system

152 Microprocessor 4

5.8. Nested and queued interrupts

Simultaneous processing can generate many problems. One example is a division
by zero that triggers a routine that, itself, executes a division by zero, therefore
triggering an infinite loop. System programmers avoid having to process these cases
by raising the double fault exception for example, which will halt the program or the
faulty process, and by signaling the error. Externally, apart from critical hardware
exceptions that require halting the machine, requests are generally masked during an
IT processing. However, they should not be lost.

Simultaneous requests can be made using nested interrupts (cf. § 5.3). When the
number of IT sources is high, it becomes difficult to assign a vector and a routine to
each of them. Moreover, if requests are not processed fast enough, there is a risk that
requests will be lost. One solution is to put in place a message queue, each message
encapsulating a request (queued interrupts). It is useful to put requests in a queue as
it serializes requests and their associated processing. The drawback is that it is
impossible to raise another interrupt if one is being handled; it will be queued like
the others. As Figure 5.26 illustrates, the IT service routine manages the role of
transmitting messages and a process manages them.

Figure 5.26. Proposal for processing flow for many IT requests (Intel 1980)

This technique does not pose any problems as long as the source is external. There
is no causal link between them. In the case of internal ITs, the same is true if an
internal IT is underway and an external request arrives. In the two other cases, nested
management is obligatory. In fact, as the source is an instruction execution,
programmed interrupt or exception, it is necessary to process it before returning to the
previous one. Walker and Cragon (1995) summarized all the cases using Table 5.7.

Interrupt underway IT request to be processed Management options
External External Nesting, queueing

External Internal Nesting

Internal External Nesting, queueing

Internal interne Nesting

Table 5.7. Management options in the case of multiple IT processing

Interrupt Mechanism 153

5.9. Uses

Hardware interrupts were first used mainly for I/Os as they mean the
microprocessor does not lose time (i.e. active waiting) to detect possible external
events, for example, end of I/O transfer, using the polling technique (cf. § 4.2.1 in
Darche (2003)). It is the I/O controllers that generate these maskable requests, and
they are processed by OS drivers. But beware, the interrupt mechanism is not always
the best solution for handling I/Os. Polling or a hybrid solution can give better
performances (cf. Pajari 1989; Yang et al. 2012) studied this subject in the
framework respectively of a serial interface and of block mode transfers in the
(mass) storage domain. The interrupt is also used to indicate a major hardware error.
The MPU is generally put in halt mode while waiting for a hardware initialization
(reset).

Modern OSs make massive use of software interrupt request instructions to call
their services and exceptions to manage faults and aborts. Software interrupts are
usually encapsulated in a function of a High-Level programming Language (HLL).
Calls to operating system services are made by a trap, making it possible to change
from execution (user/supervisor) mode. Within the OS, the exceptions are
transformed into signals that are sent to processes, for example, by calling on the
“kill()” function in UNIX OSs. Task switching is triggered according to the rhythm
of the interrupt requests from the timer. We recall that this controller has a
(de)counter/timer that generates interrupt requests. For a presentation of the latter,
see § 3.3.1 in Darche (2003). The exceptions make it possible to detect execution
errors, in particular calculation errors (overflow, division by zero, etc.). Modern
MPUs detect illegal or invalid instructions (cf. § 3.1.1) and generally raise a trap that
will reroute the execution towards an exception handling routine (the case of the
Arm® family, for example). The MC68000 detects an instruction machine code that
has not been implemented by raising exceptions named line A and line F, the latter
being the hexadecimal figure corresponding to the binary words detected (first byte
of the operational code). Misuse involves setting a breakpoint (cf. § V5-2.2.2) and
emulating an instruction of an absent mathematical coprocessor. More details are
given in Clements (1997). Table 5.8 summarizes the resolution.

In microcomputers before 2010, interrupt management routines belonged to a
BIOS (Basic Input Output System, cf. § V5-3.5.3) that was stored in a read-only
memory (FirmWare or FW). The concept of interrupt is essential today in the
domain of embedded systems. In its absence, development of this type of application
would be excessively complex.

154 Microprocessor 4

Table 5.8. Table summarizing interrupts

5.10. Interrupts and execution modes

Microprocessors, since the 16-bit generation, have considered execution mode
(cf. § 3.2.2) in handling the interrupt request. Therefore, interrupts are executed
classically in three modes, privileged (or protected), user and real (address).
Table 3.3 shows execution modes from Arm® architecture. It integrates the classic
interrupt modes IRQ and fast FIQ as well as abort mode. There is in fact an
execution mode for a type of interrupt. On consideration, control transfer is effected
at the same priority level or at a higher level of privilege but never at a lower level.
An attempt at execution of a privileged instruction or one with a particular privilege
in a mode with less privilege causes an exception.

It is necessary to protect the IT Vector Table (IVT) since an interrupt can be
diverted from its processing routine by a malicious program such as a virus, for
example, as was possible, for example, with the 8086. At Intel, there is an IVT in
protected mode named Interrupt Descriptor Table (IDT) where each vector is
supplemented by flags. Unlike its counterpart, it can be implanted anywhere in the
address space thanks to the IDTR (IDT Register) that contains its start address that is
modifiable thanks to the lidt instruction (load interrupt descriptor table register).
Each input (8 bytes in IA-32 architecture) contains a gate descriptor, either of a task,
and interrupt or a trap.

Interrupt Mechanism 155

5.11. Interrupts and advanced architectures

Modern architectures, to improve execution time, integrate processing units that
operate in series (pipeline) and in parallel (superscalar architecture). These
microarchitectural approaches are described in detail in the second volume. Also,
this section is only an introduction, which will be completed later.

In a monoprocessor architecture without a pipeline, considering only internal
interrupts and supposing that the interrupt handlers (ISR) cannot generate interrupt
requests (i.e. fault-free handler), managing the context is simple and there is at most
only a single instruction to re-execute (in case of fault). Table 5.9 shows recovery
points for the classic ITs of a classic MPU. One serious error is a hardware
breakdown or an erroneous system table. There is therefore no recovery. Some
errors provide an error code, useful for a potential retry or for a debugging.

Interrupt names Classes IT
no.

Instructions
involved

Restart
points

Error on
the stack

Division by zero Fault 0 div, idiv
At the

instruction in
question

No

Step-by-step
Hardware

trap (!)
1 All

Following
instruction

No

NMI
IT

hardware
2 int 2, all

Following
instruction

No

Breakpoint Trap 3 int 3
Following
instruction

No

Overflow (integers) Trap 4 int 4, into
Following
instruction

No

Extent boundary
exceeded
(boundary control)

Fault 5 int 5, bound
At the

instruction in
question

No

Invalid operation code Fault 6 Undefined
At the

instruction in
question

No

MPU extension of
(coprocessor)
unavailable

Fault 7 esc, wait
At the

instruction in
question

No

Reserved (Intel) – 8–15 – – –

MPU extension error Fault 16 esc, wait – –

Reserved (Intel) – 17–31 – – –

Defined by the user
(i.e. available for)

Trap
32–
255

int
Following
instruction

–

Table 5.9. Interrupt recovery points for the 80286

156 Microprocessor 4

Table 5.10 shows the restart points in real mode for the same MPU.

Interrupt name Classes IT no. Instructions
involved Restart points

Limit of an interrupt table
that is too small

Abort 8 –
At the instruction

in question

Segment overflow from
the coprocessor

Fault 9
esc with a too high

operand address
At the following

instruction

Segment overflow Fault 13
With a too high
memory address

At the instruction
in question

Table 5.10. Recovery point for ITs for the 80286 (real mode)

Table 5.11, following the two previous tables, does this for protected mode. The
column called “restart” indicates whether the program/process can continue or
should be stopped.

Interrupt names Classes IT
no.

Possible
restart Restart points Error code on

the stack

Double fault Abort 8 No
At the

instruction in
question

Yes (= 0)

Segment overflow of
the coprocessor

Abort 9 No
Following
instruction

No

Invalid task state
segment

Fault 10 Yes
At the

instruction in
question

Yes

(= TSS at fault
or selector)

Segment not present Fault 11 Yes
At the

instruction in
question

Yes
(= descriptor

selector)

Stack segment
overflow or stack
segment not present

Fault 12 Yes
At the

instruction in
question

Yes
(= segment

selector or 0)

General protection Abort 13 No
At the

instruction in
question

Yes
(= descriptor

selector)

Table 5.11. Recovery point for ITs for the 80286 (protected mode)

Interrupt Mechanism 157

It is not the same with parallel architectures. Several instructions are issued in
parallel and can also be executed in parallel. First, it is necessary to define what
sequential and serial executions are. An execution is called sequential if each
instruction is executed completely before execution of the next is launched. This was
true for the first MPUs. A serial instruction execution is an execution that respects
their order of arrival. The MPU’s state change follows the same order. This is the
case with a pipeline processor. But such a processor does not carry out a sequential
execution.

Several interrupt requests can therefore be generated internally, to which several
external requests can be added. Except for an external interrupt and RESET aside,
consideration does not only occur at the instruction boundary but can be done
between the different sub-steps in the execution cycle. During interrupts, these
architectures generate additional execution time costs that may be prohibitive. For
example, in a pipeline, when an interrupt request is effective, it may be necessary to
terminate execution of instructions engaged in the pipeline to facilitate recovery of
the interrupted thread. Walker (1992) thus defines six stages in managing interrupts
for pipelined architectures. These are detection, termination of the instruction
underway, cancelation of the execution (pipelined architecture), saving the context,
execution of the handler and restarting of the interrupted process. It is then necessary
to define the concepts of precise and imprecise interrupts.

Interrupts as they were described previously, that is, for a single processor
without an accelerator mechanism, are called precise. For them to be so, three
conditions should be met for the execution to continue correctly (Smith and
Pleszkun 1988). First of all, all the instructions preceding the instruction being
executed at the moment of the interrupt request should be executed and they should
have modified the state of the process correctly. Those that should follow should not
be executed and should not modify the state of the process. To finish, if the interrupt
request is caused by an instruction, this should be executed completely, for example,
during an overflow, or it should not or cannot be executed at all (e.g. in the case of a
page fault). The state of the process before a precise interrupt is called serially
correct, that is, identical to a sequential execution (Walker and Cragon 1995). This
state can be the one before or after the execution in question. It will not be
sequentially correct during a precise interrupt. The precise interrupt is used if the
state of the processor should be rebuilt, for example, in the case where the software
should repair the error that caused the interrupt request and should allow recovery of
execution. If the cause is external, recovery is easy. For an internal cause, this may
be costly in terms of time in the case of a parallel hardware environment (pipeline
and superscalar architecture). But this type of interrupt is needed in mechanisms
such as the memory page fault (this will be covered in a future book by the author on
memory) or requested by the IEEE 754 standard (Hennessy and Patterson 2017) that
concerns calculation in floating point in base 2 (IEEE 1985, 2008) (for the

158 Microprocessor 4

associated representation, cf. § II.4.2 in Darche (2000)). Therefore, the interrupt
model for floating-point calculation units (FPU for Floating-Point Unit) is most of
the time of a precise type. A counter-example is the PowerPC family (Motorola
1996). With this family, the programmer can choose the exception mode from
among four for calculation in floating point. An imprecise interrupt means that the
instruction following the one that produced the exception may be terminated or in
the process of being executed. The state at this instant is fragmented but recoverable
(Grohoski 1990), that is, restorable albeit with a time cost. The choice of this type of
interrupt is therefore guided by a gain in performances. A microprocessor such as
Alpha from Digital Equipment Corporation (DEC) may have some precise interrupts
and others that are not precise (Compaq 2002). Samadzadeh and Garanabi (2001)
study five management strategies for this type of execution. For more information
on this subject, see also Moudgill and Vassiliadis (1996) and Rudd (1997).

The serialization of interrupt requests in parallel environment will consist of
ensuring that they are processed sequentially. This is one of the roles of the interrupt
controller (cf. § 4.1.1 in Darche (2003)).

In a superscalar architecture, the processor is capable of launching and
withdrawing (i.e. end of execution) several scalar instructions per cycle (multiple-
issue processor). The result is that they can be executed in parallel. Hence, they were
first called look-ahead processors (Rau and Fisher 1992, 1993), that is, a processor
with anticipated execution. The instructions are provided sequentially, and it is the
internal hardware that is responsible for their distribution on different functional
units. Other than the IT software already mentioned, the generation of requests and
consideration of exceptions can only be done during speculative execution of an
instruction. Consideration should therefore be deferred. One solution is to carry out
speculative execution only for instructions that do not raise an exception (safe
speculation). Another approach is boosting (Smith et al. 1992; Smith 1992), which
consists of labeling the instruction to “boost” with a bit called a reservation enabling
the MPU to decide whether an instruction should be re-executed. A state information
is saved until execution of another path. Another solution is the poison bit
(Hennessy et al. 1982). The schema of the poison bit consists of attaching the
aforementioned bit to the result register of destination register with the idea of
reporting an event. When a trap is raised following an execution, the poison bit of
the register is positioned, but the exception does not take place. On the contrary, if,
afterwards, an instruction reads this register, then this exception takes place. Walker
and Cragon (1995) study ITs in pipelined and superscalar environments.

To succeed to monoprocessor architecture and the classic 8259A controller from
Intel, in a multiprocessor environment, interrupt control functions were distributed
between the microprocessors and I/O controllers. In the case of Pentium, a
specialized bus called ICC (Interrupt Controller Communications) makes it possible

Interrupt Mechanism 159

to make different APIC (Advanced Programmable Interrupt Controller) controllers
communicate with one another. Each controller receives interrupt requests linked to
its node (LINT for Local INT) and, via the bus (APIC or ICC bus), transmits
and receives, in particular, requests from other UCs to be able to handle the IT
(Figure 5.27, and cf. § 4.1.1 in Darche (2003)). The local controller was integrated
for the first time in the Pentium P54C (1954). The architecture includes an external
controller called I/O APIC (IOAPIC) under the reference 82489DX. In this
architecture, it is necessary to distinguish two types of processor, which are the
starting microprocessor (BSP for BootStrap Processor) and the application processor
(AP). Other versions followed, such as 82093AA and the xAPIC architectures and
its extension, x2APIC respectively appeared with the Pentium 4 MPU
(microarchitecture NetBurst – 2000) and the Nehalem microarchitecture (2008).
Interrupts in a multicore environment will be studied in a future book by the author.

Figure 5.27. Organization of different APICs

160 Microprocessor 4

To summarize, Tables 5.12 (a) and (b) show a list of the most common interrupts
by specifying their properties. The term “voluntary” means choosing a programmer.
This is an explicit request by instruction, which is different from unwanted requests,
that is, constrained or submitted requests. An additional column would have been
one that indicated a program stop, or indeed a stopping of the machine or a
continuation or recovery, at the level of the instruction or the following one. The
term is terminate/restartable–resume–continue. Instances of breaks are cases of
serious problems such as, at hardware level, a major failure or an imminent power
cut, or at software level, a double fault or an undefined instruction. A final criterion
may also be whether the IT request can be nested (cf. § 5.3) and/or placed in a queue
(cf. § 5.8).

Types
External

(E)/internal
(I)

Synchronous
(S)

/asynchronous
(A)

Voluntary(V)
/constraint (C)

Between instructions
(E)

/internal to the
instruction (I)

Hardware
malfunction

E or I A C I

I/O request E A C E

Bus error E A C E

Memory error E A C E

Power failure E A C I

System call
(trap)

I S V E

Step-by-step
mode
(execution trace
mode)

I S V E

Breakpoint I S V E

Overflow
(integer number)

I S C I

Over- and
under-flow
(floating
number)

I S C I

Formatting error I S C I

Invalid
instruction

I S C I

Interrupt Mechanism 161

Types
External

(E)/internal
(I)

Synchronous
(S)

/asynchronous
(A)

Voluntary(V)
/constraint (C)

Between instructions
(E)

/internal to the
instruction (I)

Undefined
instruction

I S C I

Memory
protection
violation

I S C I

Misaligned
memory access

I S C I

Page fault I S C I

Segment fault I S C I

Privilege
violation

I S C I

Stack fault I S C I

Double fault I S C I

Table 5.12a. Suggestion for classification criteria according to
Hennessy and Patterson (1990) and Walker (1992)

The following table continues this presentation of classification criteria.

Types Precise (P)/
imprecise (I)

Simple level(S)
/multi-level (M)

Maskable (M)
or not (NM)

Hardware dysfunction I S NM

I/O request P M or S NM/M

Bus error I S NM

Memory error I S NM

Power failure I S NM

System call (trap) P M or S NM

Step-by-step mode
(execution trace mode)

P M or S M

Breakpoint P M or S M

Overflow (whole
number)

P or I M or S M

162 Microprocessor 4

Types Precise (P)/
imprecise (I)

Simple level(S)
/multi-level (M)

Maskable (M)
or not (NM)

Over- and under-flow
(floating number)

P/I M or S M

Formatting error I S NM

Invalid instruction P or I S NM

Undefined instruction I S NM

Memory protection
violation

I S NM

Unaligned memory
access

I S M

Page fault P M or S NM

Segmentation fault P M or S NM

Privilege violation I S NM

Stack fault I S NM

Double fault I S NM

Table 5.12b. Suggestion of classification criteria according
to Hennessy and Patterson (1990) and Walker (1992)

5.12. Conclusion

This chapter took the subject of interrupt mechanisms. It was first invented to
process an overflow problem. It was then used to optimally manage I/Os by
avoiding the polling technique.

Interrupts internal to the MPU are either requested explicitly by an instruction
(trap) or linked to a problem during the execution (exception). A classification was
suggested, and the operation of these hardware and software interrupts has been
detailed. The causes of internal then external interrupts have been detailed. The
study was pursued with the presentation of different associated aspects such as
nested requests, request priority and vectorization.

This chapter ended with execution modes and advanced architectures. In fact, the
interrupt mechanism is used in a general way in modern OSs and embedded
systems. Having first addressed instruction parallelism or ILP (Instruction-Level
Parallelism) and the virtual memory mechanism, this IT concept will be completed
in the following volumes by following the development of architectures.

Conclusion of Volume 4

The MicroProcessor Unit (MPU) lies at the heart of modern digital systems. This
programmable logic component executes instructions sequentially from a program
stored in the main memory. The previous volume presented the hardware aspects of
this component.

This fourth volume presented the software aspects of how a microprocessor
operates. The programmer will refer to Instruction Set Architecture (ISA, see
§ V1-3.5), which specifies the type of architecture (General-Purpose Registers (GPR),
stack, etc.), the memory addressing characteristics (alignment or not, storage order,
access format, addressing capacity), available address modes, operand characteristics
(number, type, format and representation (i.e. encoding) and, of course, instructions
(family, mnemonic, syntax, semantics, authorized and encoding address modes)) and,
finally, data and address path formats.

The first two chapters studied the three main characteristics of an ISA. We then
presented instruction coding and format, addressing modes and the instruction set in
the form of classes with, in particular, the multimedia extension to modern
microprocessors.

The third chapter focused on additional concepts associated with instruction sets
and execution. It first of all studied what illegal, invalid, reserved and trusted
instructions were. It then presented the concepts of memory alignment, the
orthogonality and symmetry of the instruction set and pure, relocatable and re-
entrant code. It then discussed the subjects of execution time, memory occupation,
execution modes, portability and virtualization. This chapter ended with the
important aspects of hardware and software compatibilities, execution performance
measurement and the criteria for choosing a microprocessor.

Microprocessor 4: Core Concepts – Software Aspects,
First Edition. Philippe Darche.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.

164 Microprocessor 4

Subroutine call mechanisms and interrupt mechanisms were then studied
respectively in the last two chapters. The first made it possible to implement a
function or procedure in high-level languages. The interrupt is a similar mechanism.
It was originally invented to process an overflow problem. It was then used to
manage Input/Output (I/O) in an optimized way by avoiding the polling technique.
A classification was proposed following the original request criteria, external or
internal, and the operation of these hardware and software interrupts was detailed.
The interrupt mechanism is used in a generalized way in modern Operating System
(OS) and embedded systems.

As we can therefore see with these last two volumes, the design of the
microprocessor requires the competency of multiple domains ranging from micro-
electronic technology to functional architecture via Boolean algebra and the design
of logic circuits. For the software designer in relation to the hardware aspect, an
equilibrium will exist between the different logical sub-sets depending on the
applications targeted. For scientific calculation applications, some mathematical
instructions could be used. For database applications, complex addressing modes
will be used. Two trends have therefore clashed, in design and manufacturing, from
the beginning of the 1980s. These are the CISC and RISC approaches (respectively
Complex/Reduced Instruction Set Computer, this will be covered in a future book
by the author on microprocessors). The CISC architecture favored complexity of the
instruction set and therefore of the Control Unit (CU), while the RISC architecture
favored registers and simplified the internal structure of the CU (Control Unit) and
the Integer Unit (IU).

For more information on this component, a special set of Proceedings of the
IEEE is dedicated to it (Patt 1995). See also IEEE (1996).

The following volume will present the software tools for low-level development,
as well as hardware and software aspects of debugging applications. It will end with
a study of the architectures of the first microcomputers.

NOTE.– The concepts presented in this book will be complemented as new ones are
introduced. The second book will focus on the modern aspects of processors from
1980 to 1990, in particular virtual memory and parallelism of execution. The third
book will focus on multicore parallelism.

Exercises

Here are some exercises that complement the concepts presented in this book.
Their numbering refers to the chapter with which they are associated.

Chapter 1. Exercises

E1.1. Recall the definition of a register.

Answer. A register is a memory with one-word capacity in the format n bits,
which operates at the speed of the component that integrates it. This means that a
microprocessor’s register does not slow down its operation when it is accessed.

E1.2. Cite some elements (logic components or logic sub-sets) that are involved
in the implicit addressing of a microprocessor.

Answer. The registers and the stack (so the main memory for modern
MicroProcessor Units (MPU)).

E1.3. Calculate the maximum number of Imax instructions if the function field of
the instruction word has a format f fixed at 5 bits.

Answer. Imax = 2format = 25 = 32 instructions.

E1.4. If the addressing mode field has a format a = 3 bits and the instruction set
is symmetrical (cf. § 3.1.3), calculate the number of possibilities for coding one
instruction, also taking the previous question into account.

Answer. There are 23 possible addressing modes. This makes 25 × 23 = 28
possibilities for coding one instruction.

Microprocessor 4: Core Concepts – Software Aspects,
First Edition. Philippe Darche.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.

166 Microprocessor 4

E1.5. Inverse problem. The MCS6502 MPU has 151 legal operation codes. What
is the minimal format c of this word of code?

Answer. You have to go through the logarithm function. This will give: ܿ௠௜௡ = 	 ۂlogଶሺ151ሻہ + 1 = 8

Chapter 2. Exercises

E2.1. Specify the correction algorithm for an addition in packed Binary-Coded
Decimal (BCD) and in ASCII.

Answer. The format n of a digit in packed BCD (cf. § II.1.2 in Darche (2000)) is
4 bits. With a binary addition of two digits in BCD, the result is false in this
representation when it is greater than 9. To correct the result, it is then necessary to
add the constant 01102 and move the carry to a higher order to obtain a fair result.
This is what we call a decimal adjust. Most MPUs have a specialized instruction that
should be executed behind a classic binary addition (instruction daa for Decimal
Adjust AL after Addition from 8086, for example, on a byte, i.e. two decimal
figures). The drawback is that it must carry out this operation after each addition.
One interesting peculiarity of the MCS6502 is that it is possible to configure the
adder so that it operates in binary or decimal mode (i.e. BCD mode) by setting the
decimal mode flag (patented concept, cf. § V3-3.1.5.2) using the instructions cld
and sed to respectively the clear and set decimal flag. One drawback is that it is
necessary to properly manage the positioning of this flag to avoid a calculation error.
In ASCII (i.e. a decimal figure coded on a byte with the least significant weight
quartet which is equal to 3), this is the instruction aaa (ASCII adjusted after
addition) from 8086 that must be used, which renders a result in a packed BCD. To
finish, the adjustment can be made on the three other arithmetical operations (i.e.
subtraction, multiplication and division) with the associated instructions.

E2.2. Specify the correction algorithm for a subtraction in packed BCD and
ASCII.

Answer. The step is identical to that in the previous exercise. With a binary
subtraction of two figures in BCD, the result is false in this representation when the
figure to be subtracted is smaller than the one that is subtracted. To correct the
result, it is then necessary to remove the constant 01102 and move the borrow to a
higher order to obtain a fair result. This is always a decimal adjust. Most MPUs have
a specialized instruction that should be executed behind a classic binary subtraction
(instruction das for Decimal Adjust AL after Subtraction from 8086, for example).

Exercises 167

The decimal mode from MCS6502 is controlled by positioning the corresponding
flag using the instructions cld and sed for respectively the clear and set decimal
flag. For the 8086, the correction in ASCII is made using the instruction aas
(ASCII adjusted after subtraction), which renders a result in unpacked BCD. To
finish, the adjustment can be made on three other arithmetical operations (i.e.
addition, multiplication and division) with associated instructions.

E2.3. Give the indicators that are involved during a test for superiority,
inferiority and equality.

Answer. Any comparison is first reduced to a subtraction that positions the
different binary indicators, then compared to zero (cf. exercise E2.2). This can be
confirmed by consulting the programming manual or the datasheet (cf. Chapter V3-
6) of a MPU. Table 2.2 gave the logical expressions corresponding to the desired
test operation, which is associated with the conditional jump instruction.

E2.4. Propose a method to initialize a bit at 1 or 0, whatever may be its value.

Answer. It is necessary to use the Boolean operators, in this case the presence of
a neutral element and an absorbent, and use a binary value called a mask. To set at
zero a bit of position i (0 ≤ i ≤ n-1) in a word in format n, the rank bit i of the mask
should be at 0 (absorbing element of logical AND), the others being at 1 (neutral
element of the logical AND), and it is necessary to make a logical AND between the
value and the mask. This is the same step for setting at 1 using the absorbing
element from logical OR, which is 1.

E2.5. Propose a method to isolate and test or extract the value of a bit.

Answer. To test or extract a bit of rank i, we must set all the other bits at 0 by
masking using the properties of the Boolean operators (see the previous exercise)
and test the value obtained compared to 0. It is not necessary to shift the bit being
tested to the Least Significant bit (LSb).

E2.6. Draw the signals of the address bus if the MPU is continuously reading a
set of instructions nop (cf. § 2.8.5).

Answer: The instruction nop for no operation does nothing operational other
than to increment the PC. Considering that the first is located at the address 0 and
that the size of its machine code amounts to a byte, execution of this set will lead to
the appearance of a modulo-2m count on the address bus, as Figure E2.28 illustrates.

168 Microprocessor 4

Fi
gu

re
 E

2.
28

. G
en

er
at

io
n

of
 a

dd
re

ss
 s

ig
n

al
s

co
rr

es
po

nd
in

g
to

 a
n

ex
ec

ut
io

n
of

 a
 s

et
 o

f i
ns

tr
uc

tio
ns

 n
op

Exercises 169

Chapter 5. Exercises

E5.1. What is an interruption vector?

Answer. An interruption vector is, depending on the definitions, the start address
of the IT management routine considered (ISR for Interrupt Service Routine), or a
natural integer serving as an index to a table containing these addresses (see the
following question); the former is the one used in this book series.

E5.2. What is an interrupt vector table?

Answer. A vector table is a data structure, in this case a table, linked to an
interrupt mechanism. Each post is indexed by an interrupt number, making it
possible to identify the source. Each post contains a vector that is the start address of
the corresponding IT management routine. Its address for implantation in memory is
fixed for MPU running in real(-address) mode (cf. § 3.2.2). An alternative is to order
the code in the ISR in one post of the table to avoid indirection.

Appendix

Tables for Encoding and
Decoding Instructions

The four documents are from Motorola (1984). The first table gives information
on the designer, the memory space occupied and the number of cycles of each
instruction depending on the addressing mode used. The other tables concern
instruction coding depending on the addressing mode chosen. We also find the same
information as in the first table. The last table concerns branching.

Microprocessor 4: Core Concepts – Software Aspects,
First Edition. Philippe Darche.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.

172 Microprocessor 4

Table A.1a. Hexadecimal values of machine codes

Appendix 173

Table A.1b. Hexadecimal values of machine codes (continued)

174 Microprocessor 4

Table A.2a. Programming aid

Appendix 175

Table A.2b. Programming aid (continued)

176 Microprocessor 4

Table A.2c. Programming aid (continued)

Acronyms

This section includes all of the acronyms used in this volume. They range across
chapters.

General

A

A Address

AAPCS Procedure Call Standard for the Arm® Architecture

AB Available Bus (MC6809)

ABI Application Binary Interface

ABM Advanced Bit Manipulation (AMD technology)

ABT ABorT

ACU Address Computation Unit (synonyms: AGU, DAG)

AES Advanced Encryption Standard

AES NI AES New Instructions

AGU Address Generation Unit (synonyms: ACU, DAG)

ALGOL ALGOrithmic Language

Microprocessor 4: Core Concepts – Software Aspects,
First Edition. Philippe Darche.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.

178 Microprocessor 4

AP Application Processor

APCS Arm® Procedure Call Standard

APIC Advanced PIC (Intel)

ASCII American Standard Code for Information Interchange

ASIP Application-Specific Instruction set Processor

ASL Arithmetic Shift Left

ASP Application-Specific Processor

ATPCS Arm® TPCS

AVX Advanced Vector eXtensions (Intel technology)

AXP Almost eXactly PRISM

B

b bit (cf.. BIT)

B Byte

BCD Binary-Coded Decimal

BE Big Endian

BERT Branch Effect Reduction Technique

BIOS Basic Input/Output System

BIT BInary digiT or Binary digIT

BMI Bit Manipulation Instructions (Intel technology)

BP Base Pointer (Intel)

BRAF Block-Repeat-Active Flag

BRC Block Repeat Counter

Acronyms 179

BS Bus Status (MC6809)

BSP BootStrap Processor

BSS Block Started by Symbol (UNIX)

BTA Branch Target Address

BTI Branch Target Instruction

C

cc condition code

CF Carry Flag

CISC Complex Instruction Set Computer

COBOL COmmon Business Oriented Language

COP Calculator-Oriented Processor (NS)

COPS Controller-Oriented Processor System (NS), formerly COP

COSMAC Complementary Symmetry Monolithic Array Computer

CPL Current Privilege Level

CPSR Current Program Status Register

CPU Central Processing Unit

CR Condition Register

CRC Cyclic Redundancy Check

CS Code Segment (Intel x86)

CTR CounT Register

CU Control Unit

CVT ConVerT (AMD and Intel)

180 Microprocessor 4

D

DAG Data Address Generator (synonyms: ACU, AGU)

DFP Decimal Floating-Point

DI Destination Index (Intel x86)

DIF Decimal-In-Frequency

DIL Dual-In-Line

DIP DIL Package

DISP DISPlacement (i.e. offset)

DIT Decimal-In-Time

DLL Dynamic Link Library

DP Direct Page

DRAM Dynamic RAM

DXP Decimal Fixed-Point

DYSEAC Second SEAC

E

EA Effective Address

EA Empty Ascending

EBCDIC Extended Binary-Coded Decimal Interchange Code (IBM)

ECC Error Checking and Correcting/ Error-Correcting Code

ED Empty Descending

EDC Error-Detecting Circuit/Code

EDSAC Electronic Delay Storage Automatic Calculator

Acronyms 181

EF Entire Flag (MC6809)

EIC External Interrupt Controller

EN ENable

EOR Exclusive OR (cf. EXOR and XOR)

EPC Exception Program Counter (MIPS)

EQ EQual

EXOR EXclusive OR (cf. EOR and XOR)

F

FA Full Ascending

FC Function Code (MC68000)

FD Full Descending

FFT Fast Fourier Transform

FIFO First In, First Out

FIQ Fast Interrupt reQuest mode (ARM)

FIR Finite Impulse Response

FIRQ Fast IRQ

FMA Fused Multiply-Accumulate

FORTRAN FORmula TRANslation

FP Floating Point

FPGA Field-Programmable Gate Array

FPP FP Processor

182 Microprocessor 4

FPU FP Unit

FW FirmWare

G

GE Greater than or Equal

GP FPP General-Purpose FPP

GPP General-Purpose Processor

GPR General-Purpose Register

GT Greater Than

H

HLL High-Level (programming) Language

HW HardWare

HWP Heavy-Weight Process

I

IA Intel Architecture

iAPX Intel Advanced Performance Architecture

ICC Interrupt Controller Communications

ID Identification

IDT Interrupt Descriptor Table (Intel)

IDTR IDT Register (Intel)

IE individual Interrupt Enable (PACE)

IF Interrupt enable Flag

Acronyms 183

IIC Internal Interrupt Controller

ILP Instruction-Level Parallelism

INT INTerrupt

INTA INTerrupt Acknowledge

INTR INTerrupt Request

I/O Input/Output

IO Input/Output (rarely used)

IOAPIC I/O APIC

IOPL I/O Privilege Level (flag)

IP Instruction Pointer (Intel) (cf. PC)

IPL Interrupt Priority Level (MC68000)

IR Index Register

IRQ Interrupt Request

IS Instruction Set

ISA IS Architecture

ISP Instruction Set Processor

ISR Interrupt Service Routine

ISSE Intel SSE (AMD)

ISSE Internet SSE (Intel)

IT InTerruption (cf. INT)

IVT Interrupt Vector Table

184 Microprocessor 4

J

JTAG Joint Test Action Group

JVM Java Virtual Machine

K

KNI Katmai New Instructions (Intel SSE1)

L

LA end-of-Loop Address

LAPACK Linear Algebra PACKage

LC Loop Counter

LE Less than or Equal/less or equal

LE Little Endian

LE Loop End

LED Light-Emitting Diode

LEM Lunar Excursion Module

LF Loop Flag

LGC LEM Guidance Computer

LGE Less, Greater and Equal

LIFO Last In, First Out

LINPACK LINear Algebra PACKage

LINT Local INT (APIC, Intel)

LIW Long Instruction Word

LK LinK (bit)

Acronyms 185

LR Link Register (ARM)

LS Loop Start

LSb Least Significant bit

LSB Least Significant Byte

LSL Logical Shift Left

LSR Logical Shift Right

LT Less Than

LUT LookUp Table

LWP Light-Weight Process

M

MAC Multiply-and-ACcumulate

MAX Multimedia Acceleration eXtensions (PA-RISC 2.0)

MCS Micro Computer Set (Intel)

MCU MicroComputer Unit

MCU MicroController Unit (preferable)

MDMX MIPS Digital Media eXtensions

MIPS Microprocessor without Interlocked Pipeline Stages from MIPS
Technologies (then called MIPS Computer Systems)

MMR Memory-Mapped Register

MMU Memory Management Unit

MMX MultiMedia eXtensions (Intel technology)

MOS Metal-Oxide Semiconductor

MP MultiProcesseur (MultiProcessor)

186 Microprocessor 4

MPU MicroProcessor Unit

MSb Most Significant bit

MSB Most Significant Byte

MSW Machine Status Word

MUX MUltipleXer

MVI Motion Video Instructions (DEC Alpha)

N

N Negative (flag)

NB Natural Binary (cf. NBC)

NBC Natural Binary Code (cf. NB)

NE Not Equal

NI New Instruction

NMI Non-Maskable Interrupt

NNI Nehalem New Instructions (Intel SSE4)

NOP No Operation

NOS Next-On-Stack

O

OF Overflow Flag

OS Operating System

Acronyms 187

P

PA Physical Address

PA Precision Architecture (HP)

PACE Processing And Control Element (NS)

PA-RISC Precision Architecture-RISC (HP)

PC Personal Computer

PC Program Counter (cf. IP)

PCR Program Counter Register (MC6809)

PCS Program Counter Stack

PDP Programmable Data Processor (DEC)

PE Protected Mode Enable

PIC Peripheral Interface Controller (General Instrument)

PIC Programmable Intelligent Computer (General Instrument)

PIC Position-Independent Code

PIC Programmable Interrupt Controller

PIE Position-Independent Executable

PNI Prescott New Instructions (Intel SSE3)

POWER Performance Optimization With Enhanced RISC

PowerPC POWER Performance Computing

PR Predicate Register

PRISM Parallel Reduced Instruction Set Machine (DEC Alpha AXP)

PSR Processor Status Register

188 Microprocessor 4

R

RAM Random Access Memory

RC Repeat Counter

RCA Reverse-Carry Arithmetic

RCL Rotate through Carry Left

RCR Rotate through Carry Right

RE Repeat End Address register

REA Repeat End Address

REX Register Extension (AMD, Intel)

RF Register File

RGB Red–Green–Blue

RIP Instruction Pointer Register (Intel x86-64)

RISC Reduced Instruction Set Computer

R/M Register/Memory

R/M modify Register or Memory

RMW Read-Modify-Write

ROL ROtate Left

ROLC Rotate left through (the) carry (flag) (IEEE Std 694-1985)

ROM Read-Only Memory

ROR ROtate Right

RORC Rotate right through (the) carry (flag) (IEEE Std 694-1985)

RS Register Select

RS Repeat Start Address register

Acronyms 189

RSA Repeat Start Address

RSM Resume from System Management Mode

RST ReSeT

S

SAL Shift Arithmetic Left

SAR Shift Arithmetic Right

SEAC Standards Electronic Automatic Computer

SEGT SEGment Trap (request)

SHL SHift arithmetic Left

SHLA SHift Left Arithmetical (IEEE Std 694-1985)

SHLD Shift Left Doublet

SHR SHift logical Right

SHRA SHift Right Arithmetical (IEEE Std 694-1985)

SHRD Shift Right Double

SI Source Index (Intel x86)

SIB Scale-Index-Base

SIMD Single Instruction stream/Multiple Data stream

SMI System Management Interrupt

SMM System Management Mode

SMP Symmetric (shared memory) MultiProcessing

SP Stack Pointer (x86 Intel)

SPARC Scalable Processor ARChitecture

190 Microprocessor 4

SR Shift Register

SR Status Register

SSE Streaming SIMD Extensions (Intel)

SSSE3 Supplemental SSE3 (Intel)

SVC SuperVisor Call

SW SoftWare

SWI SoftWare Interrupt

SYS SYStem

T

TB Test and Branch

TBM Trailing Bit Manipulation (AMD technology)

TF Trap Flag

TLB Translation Lookaside Buffer

TNI Tejas New Instructions (SSSE3)

TOS Top-Of-Stack

TPCS Thumb® Procedure Call Standard

TSS Task State Segment

U

UCS Universal Character Set

UND UNDefined

UNICODE UNIversal CODE

UNIVAC Universal Automatic Computer

Acronyms 191

URL Uniform Resource Locator

USB Universal Serial Bus

USR USeR

UTF Unicode (or UCS) Transformation Format

V

VAX Virtual Addressed eXtended (DEC)

VEX Vector EXtensions

VHDL VHSIC Hardware Description Language

VHSIC Very High-Speed Integrated Circuit

VIC Vectored Interrupt Controller (ARM)

VIS Visual Instruction Set

VLIW Very LIW

VM Virtual Machine

VM Virtual Memory

VMM Virtual Machine Monitor

VMX Vector Multimedia Extension

X

X eXtend bit (MC68000)

XOP eXtended OPerations

XOR eXclusive OR (cf. EOR and EXOR)

192 Microprocessor 4

Z

ZF Zero Flag

Miscellaneous

µC Microcontroller

µC Microcomputer

µP Microprocessor

2D or 2-D Two-dimensional

3D or 3-D Three-dimensional

Units of measurement or unit prefixes

CPI (clock) Cycles Per Instruction

DMIPS Dhrystone MIPS

FLOPS Floating-Point Operations Per Second

iCOMP Intel COmparative Microprocessor Performance

IPC Instructions Per Cycle

IPS Instructions Per Second

k kilo (= 1000)

kWIPS kiloWhetstone Instructions Per Second

M mega (= 106)

MACS Multiply-and-ACcumulates per Second

MFLOPS megaFLOPS = Million FLoating-point Operations Per Second

MIPS Million Instructions Per Second

MWIPS Millions of or Mega-Whetstone Instructions Per Second

Acronyms 193

SPECflop SPEC floating point

SPECfpxx System Performance Evaluation Corporation floating point, xx =
year

SPECintxx System Performance Evaluation Corporation integer, xx = year

Electrical characteristics

PD dissipated electrical power

Temporal characteristics

texec execution time

Tclock clock period

Business or body

ACM Association for Computing Machinery

AFISI Association Française d’Ingénierie des Systèmes d’Information
(French Association of Information Systems Engineering)

AIEE American Institute of Electrical Engineers

AMD Advanced Micro Devices, Inc.

ANSI American National Standards Institute

ARM Acorn RISC Machine (formerly Advanced RISC Machines)

AT&T American Telephone and Telegraph Company

CSG Commodore Semiconductor Group

DEC Digital Equipment Corporation

HP Hewlett-Packard

IBM International Business Machines Corporation

194 Microprocessor 4

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IRE Institute of Radio Engineers

ISO International Organization for Standardization

ISSCC IEEE International Solid-State Circuits Conference

JEDEC Joint Electron Device Engineering Council (Solid-State
Technology Association)

MIT Massachussets Institute of Technology

MPR Microprocessor Report

NBS National Bureau of Standards

NPL National Physical Laboratory

NS National Semiconductor

SGI Silicon Graphics, Inc.

SPEC Standard Performance Evaluation Corporation (formerly
Cooperative)

TI Texas Instruments

WDC Western Digital Corporation, Western Digital Center

WTL WeiTek Corporation

Trademark (™)

i486 Intel Corporation

Pentium Intel Corporation

WeiTek WeiTek Corporation

Acronyms 195

Registered trademark (®)

AMD AMD

AT&T AT&T

AVR Microchip

Intel Intel

Pentium Intel

PIC Microchip Technology

UNIX AT&T

Xeon Intel

References

For reasons of consistency in this domain, the references have been organized by
chapter.

Preface and conclusion

Darche, P. (2000). Architecture des ordinateurs – Représentation des nombres et codes –
Cours avec exercices corrigés. Éditions Gaëtan Morin.

Darche, P. (2002). Architecture des ordinateurs – Fonctions booléennes, logiques
combinatoire et séquentielle – Cours avec exercices et exemples en VHDL. Éditions
Vuibert.

Darche, P. (2003). Architecture des ordinateurs - Interfaces et périphériques - Cours avec
exercices corrigés. Éditions Vuibert.

Darche, P. (2004). Architecture des ordinateurs - Logique booléenne: implémentations et
technologies. Éditions Vuibert.

Darche, P. (2012). Mémoires à semi-conducteurs: principe de fonctionnement et organisation
interne des mémoires vives - Volume 1. Éditions Vuibert. Un des quatre ouvrages
sélectionnés pour le prix AFISI (Association Française d’Ingénierie des Systèmes
d’Information) du meilleur livre informatique 2012.

IEEE (1996). The microprocessor is 25. IEEE Micro, 16(2).

Patt, Y.N. (1995). Scanning the issue, special issue on microprocessors. Proceedings of the
IEEE, 83(12), 1599.

Microprocessor 4: Core Concepts – Software Aspects,
First Edition. Philippe Darche.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.

198 Microprocessor 4

Chapters 1 to 3

Agarwal, V., Hrishikesh, M.S., Keckler, S.W., and Burger, D. (2000). Clock rate versus IPC:
The end of the road for conventional microarchitectures. 27th Annual International
Symposium on Computer Architecture (ISCA ’00), 248–259. ACM SIGARCH Computer
Architecture News, 28(2).

Aingaran, K., Jairath, S., Konstadinidis, G., Leung, S., Loewenstein, P., McAllister, C.,
Phillips, S., Radovic, Z., Sivaramakrishnan, R., Smentek, D., and Wicki, T. (2015). M7:
Oracle’s next-generation sparc processor. IEEE Micro, 35(2), 36–45.

AMD (2007). AMD64 Technology. 128-Bit SSE5 Instruction Set. Revision 3.1. Advanced
Micro Devices, Inc.

AMD (2009). AMD64 Technology. AMD64 Architecture Programmer’s Manual. Volume 6:
128-Bit and 256-Bit XOP and FMA4 Instructions. Publication n° 43479. Revision 3.04.

Anderson, W., Sparacio, F.J., and Tomasulo, R.M. (1967). The IBM System/360 Model 91:
Machine philosophy and instruction-handling. IBM Journal of Research and
Development, 11(1), 8–24. Also in CD-ROM by (Shriver and Smith 1998).

Anderson, E., Bai, Z., Dongarra, J., Greenbaum, A., McKenney, A., Du Croz, J.,
Hammarling, S., Demmel, J., Bischof, C., and Sorensen, D. (1990). LAPACK: A portable
linear algebra library for high-performance computers. 1990 ACM/IEEE Conference on
Supercomputing (Supercomputing ’90), 2–11. November 12–16, 1990, New York, USA.

Arm (2000). Arm® Architecture Reference Manual. Arm® DDI 0100E. Arm® Limited 1996-
2000.

Bannon, P. and Saito, Y. (1997). The Alpha 21164PC Microprocessor. 42nd IEEE
International Computer Conference (COMPCON ’97), 20–27, February 23–26, 1997,
San Jose, California, USA.

Bayliss, J.A., Colley, S.R., Kravitz, R.H., McCormick, G.A., Richardson, W.S., Wilde, D.K.,
and Wittmer, L.L. (1981). The instruction decoding unit for the VLSI 432 General Data
Processor. IEEE Journal of Solid-State Circuits (JSSCC), SC-16(5), 531–537.

Beck, G.R., Yen, D.W.L., and Anderson, T.L. (1993). The Cydra 5 Minisupercomputer:
Architecture and implementation. The Journal of Supercomputing, 7(1/2) Special Issue on
Instruction-Level Parallelism, 143–180.

Benes, V.E. (1964). Optimal rearrangeable multistage connecting networks. The Bell System
Technical Journal, 43(4), 1641–1656.

Blaauw, G.A. and Brooks, Jr. F.P. (1997). Computer Architecture: Concepts and Evolution.
Addison-Wesley Professional.

Brooks, Jr. F.P. (1963). Advanced computer organization-addressing. 1962 International
Federation For Information Processing Congress (IFIP 62), 564–565. August 27–
September 1, 1962, Munich, Germany. North Holland Publishing Company.

References 199

Chow, F., Correll, S., Himelstein, M., Killian, E., and Weber, L. (1987). How many
addressing modes are enough? Second International Conference on Architectual Support
for Programming Languages and Operating Systems (ASPLOS II), 117–121. ACM
SIGARCH Computer Architecture News, 15(5), 117–121. ACM SIGOPS Operating
Systems Review, 21(4), 117–121. ACM SIGPLAN Notices, 22(10), 117–121.

Clements, A. (2014). Computer Organization and & Architecture: Themes and Variations.
CENGAGE Learning.

Cohen, D. (1981). On holy wars and a plea for peace. IEEE Computer, 14(10), 48–54.
October First published in: Internet Engineering Note (IEN) 137. USC/ISI (University of
Southern California/Information Sciences Institute), April 1, 1980.

Cooley, J.W. and Tukey, J.W. (1965). An algorithm for the machine calculation of complex
Fourier series. Mathematics of Computation, 19(90), 297–301.

Cragon, H.G. (1992). Branch Strategy Taxonomy and Performance Models. IEEE Computer
Society Press Monograph.

Creasy, R.J. (1981). The origin of the VM/370 time-sharing system. IBM Journal of Research
and Development, 25(5), 483–490. September 1981.

Culler, D.E. and Singh, J.P. with Gupta, A. (1998). Parallel Computer Architecture – A
Hardware/Software Approach. Mogan Kaufmann Publishers, Inc.

Curnow, H.J. and Wichman, B.A. (1976). A synthetic benchmark. Computer Journal, 19(1),
43–49. February 1976.

Cushman, R.H. (1975). 2-1/2-generation µP’s-$10 parts that perform like low-end mini’s.
EDN µP Design Series. EDN, p. 36-41. September 20, 1975.

Darche, P. (2000). Architecture des ordinateurs – Représentation des nombres et codes –
Cours avec exercices corrigés. Éditions Gaëtan Morin.

Darche, P. (2002). Architecture des ordinateurs – Fonctions booléennes, logiques
combinatoire et séquentielle – Cours avec exercices et exemples en VHDL. Éditions
Vuibert, 360 pages.

Darche, P. (2003). Architecture des ordinateurs – Interfaces et périphériques – Cours avec
exercices corrigés. Éditions Vuibert.

Darche, P. (2004). Architecture des ordinateurs – Logique booléenne: implémentations et
technologies. Éditions Vuibert.

Darche, P. (2012). Mémoires à semi-conducteurs: principe de fonctionnement et organisation
interne des mémoires vives – Volume 1. Éditions Vuibert, 556 pages. Un des quatre
ouvrages sélectionnés pour le prix AFISI (Association Française d’Ingénierie des
Systèmes d’Information) du meilleur livre informatique 2012.

DEC (1983). PDP-11 Architecture Handbook. Order Code: EB-23657-18. Digital Equipment
Corporation (DEC).

200 Microprocessor 4

Diefendorff, K. (1999). Pentium III = Pentium II + SSE – Internet SSE Architecture Boosts
Multimedia Performance. Microprocessor Report (MPR), 13(3), 7 pages.

Diefendorff, K., Dubey, P.K., Hochsprung, R., and Scales, H. (2000). AltiVec extension to
PowerPC accelerates media processing. IEEE Micro, 20(2), 85–95.

Dijkstra, E.W. (1975). Guarded commands, nondeterminacy and formal derivation of
programs. Communications of the ACM (CACM), 18(8), 453–457.

Dixit, K.M. (1991). The SPEC benchmarks. Parallel Computing, 17(10–11), 1195–1209.

Dongarra, J.J., Luszczek, P., and Petitet, A. (2003). The LINPACK benchmark: Past, present,
and future. Concurrency and Computation: Practice and Experience, 15(9), 803–820.

Embleton, S., Sparks, S., and Zou, C. (2008). SMM rootkits: A new breed of OS independent
malware. 4th International Conference on Security and Privacy in Communication
Networks (SecureComm ’08), 12 pages. September 22–25, 2008, Istanbul, Turkey.

Etiemble, D. (2016). Jeux d’instructions des processeurs. Article H1199. Techniques de
l’Ingénieur.

Flynn, M.J. (1972). Some computer organizations and their effectiveness. IEEE Transactions
on Computers, C-21(9), 948–960.

Giladi, R. (1996). Evaluating the Mflops measure. IEEE Micro, 16(4), 69–75.

Gosling, J., Joy, B., Steele, G., Bracha, G., Buckley, A., and Smith, D. (2018). The Java®
language specification. Java SE 10 edition. Oracle America, Inc.

Gwennap, L. (1996). Digital, MIPS add multimedia extensions. Microprocessor Report
(MPR), 10(15), 5 pages.

Heidelberger, P. and Lavenberg, S.S. (1984). Computer performance evaluation methodology.
IEEE Transactions on Computers, C-33(12), 1195–1220. In (Krishna 1996).

Hennessy, J.L. and Jouppi, N.P. (1991). Computer technology and architecture: An evolving
interaction. IEEE Computer, 24(9), 18–29.

Hennessy, J.L. and Patterson, D.A. (2003a). Computer Architecture. A Quantitative
Approach, 3rd edition. Morgan Kaufmann Publishers, Inc.

Hennessy, J.L. and Patterson, D.A. (2003b). Architecture des ordinateurs - une approche
quantitative, 3rd edition. Vuibert Informatique.

Hennessy, J.L. and Patterson, D.A. (2011). Computer Architecture. A Quantitative Approach,
5th edition. The Morgan Kaufmann Series in Computer Architecture and Design.

Hilewitz, Y. and Lee, R.B. (2006). Fast bit compression and expansion with parallel extract
and parallel deposit instructions. IEEE International Conference on Application-Specific
Systems, Architectures and Processors (ASAP ’06), 65–72, September 11–13, 2006.

Hilewitz, Y. and Lee, R.B. (2008). Fast bit gather, bit scatter and bit permutation instructions
for commodity microprocessors. Journal of Signal Processing Systems, 53(1–2), 145–
169.

References 201

Horel, T. and Lauterbach, G. (1999). UltraSPARC-III: Designing third-generation 64-bit
performance. IEEE Micro, 19(3), 73–85.

Hsu, P.Y.-T. (1986). Highly concurrent scalar processing. Doctoral Thesis, Coordinated
Science Laboratory, University of Illinois at Urbana-Champaign.

Hsu, P.Y.T. and Davidson, E.S. (1986). Highly concurrent scalar processing. 13th Annual
International Symposium on Computer Architecture (ISCA ’86), 386–395. June 2–5,
1986, Tokyo, Japan. ACM SIGARCH Computer Architecture News, 14(2), 386–395.

Huffman, D.A. (1952). A method for the construction of minimum-redundancy codes.
Proceedings of IRE, 40(9), 1098–1101.

Hunter, C. (1987). Series 32000 Programmer’s Reference Manual. Prentice-Hall, Inc.

IEEE (1985). IEEE Standard for Microprocessor Assembly Language. IEEE Std 694-1985.
The Institute of Electrical and Electronics Engineers (IEEE), New York, USA.

IEEE (2008). IEEE Standard for Floating-Point Arithmetic. IEEE Std 754™-2008. Revision
of IEEE Std 754-1985.

Intel (1984). iAPX 286 Programmer’s Reference Manual. Intel Corporation.

Intel (1986a). 80286 Operating Systems Writer’s Guide. Intel Corporation.

Intel (1987a). 80286 Hardware Reference Manual. Intel Corporation.

Intel (1987b). 80286 Programmer’s Reference Manual. Intel Corporation.

Intel (1989). 8086/8088 User’s Manual, Programmer’s and Hardware Reference. Intel
Corporation.

Intel (1996). iCOMP® Index 2.0 Performance Brief – A Simplified Measure of Relative
Microprocessor Performance. Order Number: 243127001. Intel Corporation.

Intel (1999). Intel® Pentium® II Processor Performance Brief. Order Number: 2433336-007.
Intel Corporation.

Intel (2003). IA-32 Intel® Architecture Software Developer’s Manual, Volume 3: System
Programming Guide. Intel Corporation.

Intel (2007). Intel® SSE4 Programming Reference, Reference Number: D91561-003. Intel
Corporation.

Intel (2012). Intel® Processor Identification and the CPUID Instruction. Application Note
485. Order Number: 241618-039. Intel Corporation.

Intel (2016). Intel® 64 and IA-32 Architectures Software Developer’s Manual (Basic
Architecture, Instruction Set Reference A-Z and System Programming Guide). Intel
Corporation.

ISO/IEC (2014). Standard ISO/IEC 25000:2014. Systems and Software Engineering –
Systems and Software Quality Requirements and Evaluation (SQuaRE) – Guide to
SQuaRE.

202 Microprocessor 4

ISO/IEC (2017). Information Technology – Universal Coded Character Set (UCS).
Technologies de l’information – Jeu universel de caractères codés (JUC). International
Standard ISO/IEC 10646:2017, 5th edition.

ISO/IEC/IEEE (2017). ISO/IEC/IEEE 24765-2017 – ISO/IEC/IEEE International Standard -
Systems and Software Engineering – Vocabulary. Revision of ISO/IEC/IEEE
24765:2010.

John, L.K. and Eeckhout, L. (eds) (2006). Performance Evaluation and Benchmarking.
Taylor & Francis Group, LLC.

Kaeli, D. and Yew, P.-C. (eds) (2005). Speculative Execution in High Performance Computer
Architectures. Chapman & Hall/ CRC Computer and Information Science Series.

Kane, G. (1988). MIPS RISC Architecture. Prentice-Hall, Inc.

Kane, G. (1996). PA-RISC 2.0 Architecture. Prentice-Hall, Inc.

Kay, A.C. (1993). The early history of Smalltalk. Second ACM SIGPLAN Conference on
History of Programming Languages (HOPL-II), 69–95. April 20–23, 1993, Cambridge,
Massachusetts, USA. Also in ACM SIGPLAN Notices, 28(3), 69–95.

Kessler, R.E. (1999). The Alpha 21264 microprocessor. IEEE Micro, 19(2), 24–36.

Kessler, R.E., McLellan, E.J., and Webb, D.A. (1998). The Alpha 21264 microprocessor
architecture. International Conference on Computer Design – VLSI in Computers and
Processors, 90–95, October 5–7, 1998, Austin, Texas, USA.

Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M.,
Mangard, S., Prescher, T., Schwarz, M., and Yarom, Y. (2018). Spectre Attacks: Exploiting
Speculative Execution [Online]. Available: https://spectreattack.com/spectre.pdf.

Kohn, L., Maturana, G., Tremblay, M., Prabhu, A., and Zyner, G. (1995). The visual
instruction set (VIS) in UltraSPARC. Compcon ’95. Technologies for the Information
Superhighway, 462–469, March 5–9, 1995.

Konstadinidis, G.K., Li, H.P., Schumacher, F., Krishnaswamy, V., Cho, H., Dash, S.,
Masleid, R.P., Zheng, C., Yuanjung, D.L., Loewenstein, P., Park, H., Srinivasan, V.,
Huang, D., Hwang, C., Hsu, W., McAllister, C., Brooks, J., Pham, H., Turullols, S.,
Yanggong, Y., Golla, R., Smith, A.P., and Vahidsafa, A. (2016). SPARC M7: A 20nm
32-Core 64 MB L3 Cache Processor. IEEE Journal of Solid-State Circuits (JSSCC),
51(1), 79–91.

Koopman, Jr., P.J. (1989). Stack Computers: The New Wave. Mountain View Press.

Krishna, C.M. (ed.) (1996). Performance Modeling for Computer Architects. IEEE Computer
Society Press.

Kuhn, R.H. and Padua, D.A. (eds) (1981). Tutorial on Parallel Processing. IEEE Press.

Kumar, A. (1997). The HP PA-8000 RISC CPU. IEEE Micro, 2(17), 27–32.

Lee, R.B. (1996). Subword parallelism with MAX-2. IEEE Micro, 16(4), 51–59.

References 203

Lee, R.B. (1997). Multimedia extensions for general-purpose processors. 1997 IEEE
Workshop on Signal Processing Systems (SiPS 97) – Design and Implementation
(formerly VLSI Signal Processing), 9–23. November 3–5, 1997, Leicester, UK.

Lee, R.B. (1999). Efficiency of MicroSIMD architectures and index-mapped data for media
processors. Proceedings of the SPIE (The International Society for pOptical Engineering),
3655 (Media Processors ’99), 34–46. 1999 IS&T/SPIE International Symposium on
Electronic Imaging, Science and Technology, January 28–29, 1999, San Jose, CA, USA.

Lee, R.B. and Huck, J. (1996). 64-bit and multimedia extensions in the PA-RISC 2.0
architecture. Forty-First IEEE Computer Society International Conference Technologies
for the Information Superhighway (Compcon ’96), 152–160, February 25–28, 1996, Santa
Clara, California, USA.

Lee, R.B., Fiskiran, A.M., and Bubshait, A. (2001). Multimedia instructions in IA-64. 2001
IEEE International Conference on Multimedia and Exposition (ICME ’01), 281–284,
August 22–25, 2001, Tokyo, Japan.

Leonard, J. and Kluth, E. (1989). Upward compatibility. IEEE Potential, 8(1), 35–36.

Levy, H.M. and Eckhouse, Jr., R.H. (1989). Computer Programming and Architecture: The
VAX, 2nd edition. Digital Equipment Corporation (DEC) 1980, 1989.

Li, P., Shin, J.L., Konstadinidis, G., Schumacher, F., Krishnaswamy, V., Cho, H., Dash, S.,
Masleid, R., Zheng, C., Yuanjung, D.L., Loewenstein, P., Park, H., Srinivasan, V., Huang,
D., Hwang, C., Hsu, W., and McAllister, C. (2015). 4.2 A 20nm 32-Core 64MB L3 Cache
SPARC M7 Processor. 2015 IEEE International SolidState Circuits Conference (ISSCC),
72–73 etc. February 22–26, 2015, San Francisco, CA, USA.

Lindholm, T., Yellin, F., Bracha, G., and Buckley, A. (2018). The Java® Virtual Machine
Specification, Java SE 10 Edition. Oracle America, Inc.

Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Mangard, S., Kocher, P., Genkin,
D., Yarom, Y., and Hamburg, M. (2018). Meltdown. arXiv.

Lua, K.T. (1989). Relative performance measurement of 80386, 80286 and 8088 Personal
Computer Systems. Microprocessing and Microprogramming, 26(2), 85–95.

MacGregor, D. and Rubinstein, J. (1985). A performance analysis of MC68020-based
systems. IEEE Micro, 5(6), 50–70.

McCalpin, J.D. (1995). Memory bandwidth and machine balance in current high performance
computers. IEEE Computer Society Technical Committee on Computer Architecture
(TCCA) Newsletter, 19–25.

McLellan, E. (1993). The Alpha AXP architecture and 21064 processor. IEEE Micro, 13(3),
36–47.

Motorola (1981, 1983). MC6809-MC6809E 8-Bit Microprocessor Programming Manual.
M6809PM (AD). Motorola Semiconductor Products Inc. March 1, 1981. Republished in
May 1983.

204 Microprocessor 4

Motorola (1992). DSP56000 Digital Signal Processor Family Manual. Motorola
Semiconductor Products Inc. Ref. DSP56KFAMUM/AD.

Peleg, A. and Weiser, U. (1996). MMX™ technology extension to the Intel architecture.
IEEE Micro, 16(4), 42–50.

Peleg, A., Wilkie, S., and Weiser, U. (1997). Intel MMX for multimedia PCs.
Communications of the ACM (CACM), 40(1), 24–38.

Ponomarenko, A. and Rubanov, V. (2012). Backward compatibility of software interfaces:
Steps towards automatic verification. Programming and Computing Software, 38(5), 257–
267.

Randell, B. and Russell, L.J. (1964). ALGOL 60 Implementation. Academic Press.

Rao, D. (2001). Circular buffering on TMS320C6000. Application Report SPRA645A. Texas
Instruments.

Rau, B.R., Yen, D.W.L., Yen, W., and Towle, R.A. (1989). The Cydra 5 departmental
supercomputer. Design philosophies, decisions, and trade-offs. IEEE Computer, 22(1),
12–35.

Rubinfeld, P., Rose, B., and McCallig, M. (1996). Motion video instruction extensions for
Alpha. White Paper. Digital Equipment Corporation.

Russel, R.M. (1978). The CRAY-1 computer system. Communications of the ACM (CACM),
21(1), 63–72. Republished in (Kuhn and Padua 1981, 26–35).

Shah, M., Golla, R., Grohoski, G., Jordan, P., Barreh, J., Brooks, J., Greenberg, M., Levinsky,
G., Luttrell, M., Olson, C., Samoail, Z., Smittle, M., and Ziaja, T. (2012). Sparc T4: A
dynamically threaded server-on-a-chip. IEEE Micro, 32(2), 8–19.

Shanley, T. (1996). Protected Mode Software Architecture. MindShare, Inc. Addison-Wesley
Developers Press.

Shanley, T. (2009). x86 Instruction Set Architecture. MindShare Technology Series.
1st edition. MindShare Press.

Shen, J.P. and Lipasti, M.H. (2005). Modern Processor Design: Fundamentals of Superscalar
Processors. McGraw-Hill Series in Electrical and Computer Engineering. McGraw Hill
Higher Education.

Shriver, B. and Smith, B. (1998). The Anatomy of a High-Performance Microprocessor: A
Systems Perspective. IEEE Press.

Sima, D., Fountain, T., and Kacsuk, P. (1997). Advanced Computer Architectures: A Design
Space Approach. Addison-Wesley Longman Limited.

Simpson, R.J. and Terrell, T.J. (1987). Introduction to 6800/6802 Microprocessor Systems
Hardware, Software and Experimentation. First published by Newnes Technical Books
Ltd 1982. Republished in 1985. First published by Heinemann Professional Publishing
Ltd.

References 205

Sites, R.L. (ed.) (1992). Alpha Architecture Reference Manual. Digital Equipment
Corporation. Digital Press.

Sites, R.L. (1993). Alpha AXP architecture. Communications of the ACM (CACM), 36(2),
33–44.

Smith, J.E. and Nair, R. (2005). Virtual Machines. Versatile Platforms for Systems and
Processes. Morgan Kaufmann Publishers. Elsevier Inc.

Song, P. (1997). Hal Packs Sparc64 onto single chip. Microprocessor Report (MPR), 11(16),
4 pages.

SPEC (1989). SPEC, SPEC benchmark suite release 1.0. SPEC (Standard Performance
Evaluation Corporation) Newsletter, 1(1), 5–9.

Thakkar, S.(T.) and Huff, T. (1999a). The Internet streaming SIMD extensions. Intel
Technology Journal, 3(2), Q2.

Thakkar, S.(T.) and Huff, T. (1999b). Internet streaming SIMD extensions. IEEE Computer,
32(12), 26–34.

Toong, H.D. and Gupta, A. (1982). Evaluation kernels for microprocessor performance
analyses. Performance Evaluation, 2(1), 1–8.

Tremblay, M., O’Connor, J.M., Narayanan, V., and He, L. (1996). VIS speeds new media
processing. IEEE Micro, 16(4), 10-20.

Tsao, Y.-L., Chen, W.-H., Cheng, W.-S., Lin, M.-C., and Jou, S.-J. (2003). Hardware nested
looping of parameterized and embedded DSP core. 2003 IEEE International SOC
Conference, 49–52, September 17–20, 2003, Portland, Oregon, USA.

Uht, A.K., Sindagi, V., and Somanathan, S. (1997). Branch effect reduction techniques. IEEE
Computer, 30(5), 71–81.

Waterman, A.S. (2011). Improving energy efficiency and reducing code size with RISC-V
compressed. Berkeley Technical Report N° UCB/EECS-2011-63. Department of Electrical
Engineering and Computer Sciences, University of California at Berkeley.

Waterman, A.S. (2016). Design of the RISC-V instruction set architecture. PhD Dissertation,
Technical Report N° UCB/EECS-2016-1, Electrical Engineering and Computer Sciences,
University of California at Berkeley.

Weicker, R.P. (1984). Dhrystone: A synthetic systems programming benchmark.
Communications of the ACM (CACM), 27(10), 1013–1030.

Weicker, R.P. (1990). An overview of common benchmarks. IEEE Computer, 23(12), 65–75.

Williams, T., Patkar, N., and Shen, G. (1995). SPARC64: A 64-b 64-Active-Instruction out-
of-order-execution MCM processor. IEEE Journal of Solid-State Circuits (JSSC), 30(11),
1215–1226.

Wolfe, A. and Chanin, A. (1992). Executing compressed programs on an embedded RISC
architecture. 25th Annual International Symposium on Microarchitecture, 81–91.

206 Microprocessor 4

William Wong (2016). What's the Difference Between Containers and Virtual Machines?
Electronic Design. July 15, 2016.

William Wong (2017). VM, Containers, and Serverless Programming for Embedded
Developers. Electronic Design. September 7, 2017.

Chapters 4 and 5

Blaauw, G.A. and Brooks, Jr., F.P. (1997). Computer Architecture: Concepts and Evolution.
Addison-Wesley Professional.

Clark, W.A. (1957). The Lincoln TX-2 computer development. Western Joint Computer
Conference: Techniques for Reliability (IRE-AIEE-ACM ’57), 143–145. February 26–28,
1957.

Clements, A. (1997). Microprocessor Systems Design: 68000 Hardware, Software, and
Interfacing, 3rd edition. PWS Publishing Company.

Compaq (2002). Alpha Architecture Reference Manual, 4th edition. Compaq Computer
Corporation.

Darche, P. (2000). Architecture des ordinateurs – Représentation des nombres et codes –
Cours avec exercices corrigés. Éditions Gaëtan Morin.

Darche, P. (2003). Architecture des ordinateurs - Interfaces et périphériques - Cours avec
exercices corrigés. Éditions Vuibert.

Darche, P. (2004). Architecture des ordinateurs - Logique booléenne: implémentations et
technologies. Éditions Vuibert.

Darche, P. (2012). Mémoires à semi-conducteurs: principe de fonctionnement et organisation
interne des mémoires vives - Volume 1. Éditions Vuibert. One of four books selected for
the AFISI (Association Française d’Ingénierie des Systèmes d’Information) prize for the
best computing book 2012.

Dumas II, J.D. (2006). Computer Architecture - Fundamentals and Principles of Computer
Design. CRC Press.

Fox, W.A. and Reyling, Jr., G.F. (1975). A single chip 16-bit microprocessor for general
application. Microelectronics Reliability, 14(4) Special Seminex ’75 edition, 389–397.

Grohoski, G.F. (1990). Machine organization of the IBM RISC System/6000 processor. IBM
Journal of Research and Development, 34(1), 37–58.

Hamacher, C., Vranesic, Z., Zaky, S., and Manjikian, N. (2012). Computer Organization and
Embedded Systems, 6th edition. McGraw-Hill.

Harris, D.M. and Harris, S.L. (2007). Digital Design and Computer Architecture. Elsevier
Inc.

References 207

Hennessy, J.L. and Patterson, D.A. (1990). Computer Architecture. A Quantitative Approach.
Morgan Kaufmann Publishers, Inc.

Hennessy, J.L. and Patterson, D.A. (1994). Architecture des ordinateurs - une approche
quantitative. EDISCIENCE International. Second edition published in International
Thomson Publishing (ITP) France. English version: (Hennessy and Patterson 1990).

Hennessy, J.L. and Patterson, D.A. (2017). Computer Architecture. A Quantitative Approach,
6th edition. Morgan Kaufmann Publishers, Inc.

Hennessy, J., Jouppi, N., Baskett, F., Gross, T., and Gill, J. (1982). Hardware/software
tradeoffs for increased performance. First International Symposium on Architectural
Support for Programming Languages and Operating Systems (ASPLOS I), 2–11. ACM
SIGARCH Computer Architecture News, 10(2), 2–11. ACM SIGPLAN Notices, 17(4),
2–11.

Hill, M.D., Jouppi, N.P., and Sohi, G.S. (eds) (2000). Readings in Computer Architecture.
Morgan Kaufmann Publishers.

Hwu, W.-M.W. and Patt, Y.N. (1987a). Checkpoint repair for high-performance out-of-order
execution machines. IEEE Transactions on Computers, C-36(12), 1496–1514.

Hwu, W.-M.W. and Patt, Y.N. (1987b). Checkpoint repair for out-of-order execution
machines. 14th Annual International Symposium on Computer Architecture (ISCA ’87),
18–26, June 2–5, 1987, Pittsburgh, PA, USA.

IEEE (1985). IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std 754-
1985. Republished in SIGPLAN Notices, 22(2), 9-25. February 1987.

IEEE (2008). IEEE Standard for Floating-Point Arithmetic. IEEE Std 754™-2008. Revision
of IEEE Std 754-1985. 70 pages.

Intel (1980). Intel Fair Applications Handbook. Intel Corporation.

Intel (1986). 80386 Programmer’s Reference Manual. Intel Corporation.

Intel (1988). 8259A Programamble Interrupt Controller (8259A/8259A-2). Intel Corporation.

Intel (1989). 8086/8088 User’s Manual, Programmer’s and Hardware Reference. Intel
Corporation.

Intel (2003a). System Programming Guide. Order Number 245472-012. Intel Corporation.

Intel (2003b). IA-32 Intel® Architecture Software Developer’s Manual, Volume 3: System
Programming Guide. Intel Corporation.

Intel (2005). IA-32 Intel® Architecture Software Developer’s Manual, Volume 3: System
Programming Guide. Intel Corporation.

JEDEC (2002). Terms, Definitions, and Letter Symbols for Microcomputers,
Microprocessors, and Memory Integrated Circuits. JEDEC Standard JESD100B.01
(Minor Revision of JESD100-B, December 1999).

208 Microprocessor 4

JEDEC (2013). Dictionary of Terms for Solid-State Technology. JEDEC Standard n° 88-E.
(JESD88E), 6th edition. JEDEC Solid State Technology Association.

Kane, G. (1988). MIPS RISC Architecture. Prentice-Hall, Inc.

Kane, G. and Heinrich, J. (1992). MIPS RISC Architecture, 2nd edition. Prentice-Hall.

Keller, R.M. (1975). Look-ahead processors. ACM Computing Surveys, 7(4), 177–195.

Kuck, D.J. (1978). The Structure of Computers and Computations. Vol. 1. John Wiley &
Sons, Inc.

Leiner, A.L. (1954). System specifications for the DYSEAC. Journal of the ACM, 1(2),
57–81.

Macauley, M.W.S. (1998). Interrupt latency in systems based on Intel 80x86 Processors.
Microprocessors and Microsystems, 22(2), 121–126. June 1998.

Meinadier, J.-P. (1971, 1988). Structure et Fonctionnement des Ordinateurs. Série
Informatique. Librairie Larousse, Paris.

Melliar-Smith, P.M. and Randell, B. (1977). Software reliability: The role of programmed
exception handling. Proceedings of an ACM Conference on Language Design for Reliable
Software, 95–100, March 28–30, 1977. Raleigh, North Carolina, USA. ACM SIGOPS
Operating Systems Review, 11(2) Proceedings of an ACM Conference on Language
Design for Reliable Software, 95–100. April 1977. ACM SIGPLAN Notices, 12(3)
Proceedings of an ACM Conference on Language Design for Reliable Software, 95–100.
March 1977. ACM SIGSOFT Software Engineering Notes, 2(2) Proceedings of an ACM
Conference on Language Design for Reliable Software, 95–100.

Mersel, J. (1956). Program interrupt on the Univac scientific computer. Joint ACM-AIEE-IRE
Western Computer Conference (AIEE-IRE ’56), 52–53, February 7–9, 1956, San
Francisco, California, USA.

Motorola (1981, 1983). MC6809-MC6809E 8-Bit Microprocessor Programming Manual.
M6809PM (AD). Motorola Semiconductor Products Inc. March 1, 1981. Republished in
May 1983.

Motorola (1984). MC6809E datasheet. DS9846-R2. Motorola Inc.

Motorola (1996). PowerPC™ Microprocessor Family: The Programming Environments. Rev
0.1. Motorola Inc.

Moudgill, M. and Vassiliadis, S. (1996). Precise interrupts. IEEE Micro, 16(1), 58–67. In CD-
ROM by (Shriver and Smith 1998).

O’Connor, J.M. and Tremblay, M. (1997). picoJava-I: The Java virtual machine in hardware.
IEEE Micro, 17(2), 45–53.

Pajari, G.E. (1989). Interrupts aren’t always best. Byte Magazine, 13(5), 261–264.

Rau, B.R. and Fisher, J.A. (1992). Instruction-level parallel processing: History, overview,
and perspective. Report HPL92-132. Computer Systems Laboratory, Hewlett Packard.

References 209

Rau, B.R. and Fisher, J.A. (1993). Instruction-level parallel processing: History, overview,
and perspective. The Journal of Supercomputing, 7(1–2) Special Issue on Instruction-
Level-Parallelism, 9–50. Republished in (Hill et al. 2000, p. 288–308).

Rojas, R. and Hashagen, U. (eds) (2000). The First Computers: History and Architectures.
MIT Press.

Rudd, K.W. (1997). Efficient exception handling techniques for high-performance processor
architectures. Technical Report CSLTR-97-732.

Samadzadeh, M.H. and Garanabi, L.E. (2001). Hardware/software cost analysis of interrupt
processing strategies. IEEE Micro, 21(3), 69–76.

Schlansker, M.S. and Rau, B.R. (2000). EPIC: Explicitly parallel instruction computing. IEEE
Computer, 33(2), 37–45.

Scott, M.L. (2016). Programming Language Pragmatics, 4th edition. Morgan Kaufmann.

Shriver, B. and Smith, B. (1998). The Anatomy of a High-Performance Microprocessor: A
Systems Perspective. IEEE Press.

Smith, M.D. (1992). Support for speculative execution in high-performance processors.
Technical Report CSL-TR-93-556. Computer Systems Laboratory, Stanford University,
Stanford, California, USA.

Smith, J.E. and Pleszkun, A.R. (1988). Implementing precise interrupts in pipelined
processors. IEEE Transactions on Computers, 37(5), 562–573.

Smith, M.D., Horowitz, M., and Lam, M.S. (1992). Efficient superscalar performance through
boosting. Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS V), 248–259, October 12–15, 1992, Boston,
Massachusetts, USA. ACM SIGPLAN Notices, 27(9), 248–259.

Smotherman, M. (1989a). A sequencing-based taxonomy of I/O systems and a review of
historical machines. ACM SIGARCH Computer Architecture News, 17(5), 5–15.

Smotherman, M. (1989b). A sequencing-based taxonomy of I/O systems and review of
historical machines. Paper 1 of Chapter 7 in (Hill et al. 2000). Originally published in
(Smotherman 1989a).

Walker, W.A. (1992). A taxonomy of interrupt processing strategies in pipelined
microprocessors. Master’s Thesis, Department of Computer Science, University of Texas
at Austin, USA.

Walker, W. and Cragon, H.G. (1995). Interrupt processing in concurrent processors. IEEE
Computer, 28(6), 36–46.

210 Microprocessor 4

Wilkes, M.V., Wheeler, D.J., and Gill, S. (1951). The Preparation of Programs for an
Electronic Digital Computer, with Special Reference to the EDSAC and the Use of a
Library of Subroutines. Addison-Wesley Press, Inc.

Yang, J., Minturn, D.B., and Frank Hady, F. (2012). When Poll is Better than Interrupt. 10th
USENIX Conference on File and Storage Technologies (Fast ’12), February 14–17, 2012,
San Jose, California, USA.

Index

3M and 5M, § V1-1.2

A

abacus, § V1-1.1
ABC, § V1-1.2 and computer model
ABI, cf. interface
access, § V3-2.4.2

multiple, § V3-2.1.1.4

read, § V3-2.4.2
read-modify-write, § V3-2.4.2
write, § V3-2.4.2

accumulator, cf. register
adding machine, § V1-1.1

Model K, § V1-1.2

addition, cf. arithmetic operation
address

effective (EA), § V3-3.1.6, V3-3.4.4,
V4-1.2, V4-2.2.2 and V4-3.2.1

format, § V4-1.2.1 and V4-1.2.3
physical (PA), § V4-1.2 and V5-1.2.1
translation, § V4-3.2.2
virtual (VA), § V1-1.4, V3-2.1.1.1,

V4-2.5.4, V4-3.2.2, V4-5.7 and
V5-1.2.1

addressing, § V4-1.2
bit-reversed, § V4-1.2.4.5.2
circular, § V4-1.2.4.5.1
geographical, § V2-1.5
linear, § V4-1.2.4.5.3
memory to memory, § V1-3.3.3,

V4-1.1 and V4-1.2.4.1
MMR, § V3-3.1.1 and V4-1.2.4.4
mode, § V4-1.2

random, § V1-2.1
space (AS), § V3-2.1.1.1

alignment, § V1-2.2.2
Arithmetic and Logic Unit (ALU), cf.

unit/integer processing
Antikythera mechanism, § V1-1.3
API, cf. interface
Apple II, cf. microcomputer
arbitration, cf. bus
architecture, § V1-3.1.4

according to storage location, §
V1-3.5.1

accumulator, § V1-3.4.1
memory-to-memory, § V1-3.5.1
stack, § V1-3.5.1
register-memory, § V1-3.5.1
register-register (load–store),

§ V1-3.5.1

This index covers all 5 volumes in this series of books.

Microprocessor 4: Core Concepts – Software Aspects,
First Edition. Philippe Darche.
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc.

212 Microprocessor 4

CISC, § V3-1.2, V4-1.1, V4-2.1,
V4-2.4 and V4-2.8.1

fault, § V4-1.2.5
classification of computers (definition),

§ V1-3.1.4
CRISC, § V1-3.4.3
EPIC, § V1-3.4.3 and V3-4.7
exo/endoarchitecture, § V1-3.1.4
General-Purpose Register (GPR),

§ V1-3.5.1
Harvard, § V1-3.3.2, V1-3.3.4,

V1-3.4.2, V3-2.1.1.1, V3-5.2 and
V3-5.3

microarchitecture, § V1-3.1.4,
V1-3.3.1.2, V4-3.4.2, V4-3.4.5
and V4-5.2.4

MISC, § V1-3.4.3.1
OISC/SISC/URISC, §

V1-3.4.3.1
ZISC, § V1-3.4.3.1

no or several addresses, § V1-3.5.1
one or several buses, § V1-3.4.1
RISC, § V1-1.2, V1-2.2.1,

V1-3.4.3.1, V1-3.5, V3-1.2,
V3-3.1.2, V3-3.1.11.3,
V3-3.1.12.6, V3-4.6, V3-5.3,
V4-1.1, V4-1.2, V4-2.1,
V4-2.4, V4-2.7.1 and V5-1.1.4

superscalar, § V1-3.3, V1-3.4.3.1,
V1-3.4.3, V3-4.6, V4-1.1, V4-2.4.2
and V5-1.3

TTA, § V1-3.4.3.1
very long instruction word (VLIW),

§ V1-3.4.3, V1-3.5.3, V3-4.6,
V3-4.7, V3-5.2, V4-2.4.2, V4-2.8.5
and V5-1.3

von Neumann, § V1-3.2.2, V1-3.3,
V3-5.3 and V4-1.2.4.8

x86, § V1-3.3.2, V1-3.4.2, V1-3.5.1,
V1-3.5.4, V3-3.1.9, V4-2.1,
V4-3.1, V4-3.2.2, V4-3.3, V4-4.1,
V4-5.2.1, V4-5.4, V4-5.7 and
V5-2.2.5

arithmetic operation, § V1-3.3.1.2.1,
V3-3.3 and V4-2.3.1
addition, § V1-1.1, V1-1.2, V1-3.2.2,

V1-3.3.1.2.1, V1-3.4.2, V1-3.5.3.1,
V3-3.1.5.1 and V4-2.3.1

complementation, § V1-1.1
divide-by-zero, § V4-5.4, V4-5.6 to

V4-5.9, V4-5.11 and V5-2.3
division, § V1-2.1, V1-3.3.1.2.1,

V3-5.4, V4-2.3.1 and V4-2.7.1
multiplication, § V3-3.1.1, V3-3.1.2,

V3-4.3, V3-5.2, V3-5.4, V4-
1.2.2.2, V4-2.7.1 and V4-2.7.2

subtraction, § V1-1.1, V1-3.5.1,
V3-3.1.5.1, V4-2.4.1, V4-2.7.2
and exercises V1-E1.1, V1-E3.2,
V4-E2.2 and V4-E2.3

arithmetic
integer, § V1-1.1, V3-1.2, V3-3.1.1,

V3-3.3, V4-2.3.1 and V4-2.7.2
floating-point, § V1-1.2, V1-3.3 and

V4-2.8.4.2
modular, § V3-5.2, V4-1.2.4.5.1 and

V4-2.3.1
saturation, § V3-5.2

ASIC, § V1-1.2 and V5-3.3.1
assembler, § V5-1.2.1 also cf.

development tool
MASM, § V5-1.3.3
SAP, § V5-1.3.3
SOAP, § V5-1.2.1

asynchronism, § V2-1.3 and V3-2.4.3
ATB, cf. bus/address

B

Babbage, § V1-1.1, V4-5.1 also cf.
mechanical computing machines

bandwidth, § V1-2.1, V1-3.1.4, V2-1.2,
V2-1.6, V2-4.1, V2-4.2.2, V2-4.2.6,
V2-4.2.9, V3-5.2 and V4-3.4

BCD, cf. representation/integer

Index 213

BCS, cf. file format
benchmark, cf. performance
Beowulf, cf. cluster
BINAC, cf. computer model
binding, § V5-1.2.2.
BIOS, cf. firmware
binary format, § V1-2.1 and V4-1.1

byte, § V1-2.1
nibble, § V1-2.1
superword, § V4-2.3.2.1
word, § V1-2.1

binary pattern, § V2-1.4, V3-5.3, V3-5.4,
V4-5.9, V5-2.2.2 and V5-3.5.3

bit rate, § V1-2.1 and V2-1.2
black box, § V1-3.1.4 and figures

V3-E3.2 and V3-E3.4
BNF, § V5-1.2.1
Boolean logic, § V1-1.1, V1-3.1.4,

V4-2.4.1 and V4-2.6.1
bottleneck, § V1-3.2.2.2, V1-3.3.4,

V1-3.4.2, V1-3.5.1 and V2-1.2
branching, § V1-3.1.2, V3-3.1.5, V3-5.2,

V4-1.1, V4-2.3.2.2, V4-2.4 and
V5-1.3
conditional, § V4-1.2.4.3 and

V4-2.4.1
test-and-branching, § V4-2.6.1
unconditional, § V1-3.3.4 and V4-2.4.1

break, § V4-2.5.2
bus

concepts, § V1-1.1 and V2-1.1
alignment, § V2-1.2 also cf. memory

(concepts)
arbitration (local/distributed),

§ V2-1.5, V2-1.6, V2-2.1,
V2-3.1, V2-3.2 and V2-4.2.9

bandwidth, § V2-1.2 and V2-4.2.9
characteristics, § V2-1.2
derivation, § V2-1.2 and V2-3.3.1
multi- § V2-4.1.3
MUX-based or multiplexed, §

V2-4.2.9
parallel, § V2-1.2

passive, § V2-1.2
serial, § V2-1.2
specialized (i.e. dedicated),

§ V2-1.2
starvation, § V2-1.6 and V4-5.3

computer, cf. computer bus
fieldbus, § V2-4.2.8
microprocessor, § V3-2.1

address, § V3-2.1
data, § V3-2.1
control, § V3-2.1
interface, § V3-3.5 and

V2-3.1
power, § V2-4.2.10
products, § V2-4.2

AGP, § V2-4.1.4, V2-4.2.4 and V5-
3.3.1

BSB, § V2-4.2.1 and V5-3.3.1
DIB, § V2-4.2.1 and V5-3.3.1
DMI, § V2-4.2.3 and V5-3.3.1
FSB, § V2-4.2.1, V3-2.4.1 and V5-

3.3.1
EISA, § V2-2.2.3, V2-4.2.4 and

V5-3.3.1
HyperTransport (HT/LDT), § V2-

4.2.3 and V5-3.3.1
ISA, § V2-2.2.1, V2-4.1.4,

V2-4.2.4, V5-3.2.1, V5-3.2.3
and V5-3.3.1

MCA, § V2-4.2.4
NuBus, § V2-4.2.7
PCI, § V2-1.1, V2-1.6, V2-2.2.3,

V2-3.2, V2-4.1.4, V2-4.2.4,
V3-2.1.1.1 and V5-3.3.1

PCI express (PCIe), § V2-1.2,
V2-4.2.4 and V2-4.2.7

PCI-X, § V2-4.2.4
QPI, § V2-4.2.3
Unibus™, § V2-1.3, V2-1.6 and

V2-4.3
VMEbus™, § V2-1.5, V2-1.6,

V2-3.2, V2-4.2.7 and
V2-4.3

214 Microprocessor 4

products for Multibus, § V2-1.3,
V2-3.2, V2-4.1, V2-4.2.5, V2-4.2.7
and V2-4.3

iLBX, § V2-4.1
iPSB, § V2-4.1
iSBX, § V2-4.1 and V2-4.5
iSSB, § V2-4.1

SoC bus, § V2-4.2.9
butterfly (circuit), § V4-2.3.2.5

C

cache, cf. memory/cache
capacity, cf. memory/characteristics
carry, § V4-2.3.1, exercise V4-E2.1 also

cf. code/condition
CDC, cf. computer model
CFSD, § V1-1.2
CGMT, cf. parallelism/ multithreading
circuit logic, cf. integrated circuit logic
checksum, § V3-5.3 and V5-3.5.3
chip set, § V5-3.3

CCAT, NEAT, POACH and SCAT, §
V5-3.3

definition, § V5-3.3.1
hub, § V2-4.2.1, V2-4.2.3 and V5-3.3.1
northbridge (GMCH), § V2-4.2.1
southbridge (ICH), § V2-4.2.1

CISC, cf. architecture
clock, § V3-2.4.1 and V3-3.4.2

circuit, § V3-1.2, V3-2.1, V3-2.4.1 and
V3-4.3

cycle, § V5-2.2.4.3
domain crossing (CDC), § V2-1.3,

V2-3.1 and V3-6.1.3
energy saving, § V3-6.1.4
frequency/period, § V1-1.2, V1-1.5,

V1-2.1, V1-3.4.3.2, V1-3.4.3.3,
V2-1.2, V3-1.2, V3-6.1, V4-3.4.1
and V4-3.4.5

signal, § V2-1.2, V2-1.3, V2-3.2,
V2-3.6, V3-3.4.2, V3-3.4.3.3,
V4-3.4.1 and V5-2.2.5

cloud, cf. cloud computing
cluster, § V1-1.2

definition, § V1-1.2
workstations (COW), § V1-1.2

CMOS, cf. electronic technology
CMP, cf. multicore
CMT, § V1-3.4.3.2 and V3-4.7
code

8b/10b, § V2-1.2
compression, § V4-1.1.1
condition, § V3-3.1.5, V3-3.1.12.1,

V4-2.4 cf. also register/status
Dual-Rail (DR), § V2-1.4 and exercise

V2-E1.1
instruction/operation, § V4-1.1
machine, cf. language/machine
Multi-Rail (MRn), § V2-1.4
pure, § V4-3.1.4
re-entrant, § V4-3.1.4, V4-4.2.1 and

V4-5.3
relocatable, § V4-3.1.4

COFF, cf. format
commands, § V5-1.2.2

assembly, § V5-1.3, V5-1.3.3 and
V5-1.3.4

preprocessor, § V5-2.2.1
communication, § V2-1.1

broadcast, § V2-1.1, V2-2.2, V2-3.3.6
and V4-5.7

cycle
bus, § V2-3.6 and V2-4.2.2

duplex, § V2-1.1
full, § V2-3.3.4, V2-3.3.6, V2-4.2.3

and V2-4.2.4
half-duplex, § V2-1.1
simplex, § V2-3.3.6

general points, § V2-1.1
protocol, § V2-1.5

Index 215

splitting the transaction, § V2-2.1.1
through bundles, § V2-4.2.2
transaction pipeline, § V2-2.1.1

comparison, cf. logical operation
compatibility, § V4-3.3

backward and forward, § V4-3.2.3
electromagnetic (EMC), § V2-3.3.2
hardware, § V4-3.2.1
software, § V4-3.2.2

Commercial Off-The-Shelf (COTS), §
V1-1.2 and V2-1.2

compiler, cf. development tool
computer

analog, § V1-1.3
classes, § V1-1.2

electromechanical, § V1-1.2
electronic, § V1-1.2

Mr Perret’s letter, § V1-1 (footnote)
stored program, § V1-3.2.3

computer bus
access arbitration, § V2-1.6
asynchronous/synchronous,

§ V2-1.3
backplane, § V1-1.2 and V2-4.2.7
bridge, § V2-4.1.4
centerplane, § V2-4.2.7
extension, § V2-4.2.4
hierarchical, § V2-4.1.2
I/O, § V2-4.2.6
local, § V2-4.2.1
mastering, § V2-2.2.3
memory (channel), § V2-1.2, V2-3.3.1,

V2-3-6 and V2-4.2.2
multiple, § V2-4.1.3
packet switching, § V2-3.6
protocol, § V2-1.5 and V3-2.4.2
standard, § V2-1.2
segmented, § V2-4.1.1
switch, § V2-3.3.6, V2-4.2.7 and

V2-4.2.9
computer categories, § V1-1.2

macrocomputer, cf. computer/
mainframe

microcomputer, § V1-1.2 also cf.
microcomputer

minicomputer, § V1-1.2
supercomputer, § V1-1.2

computer model
ABC, § V1-1.2
BINAC, § V1-1.2
Burroughs B5000, § V1-1.2
Colossus, § V1-1.2
Control Data Corporation (CDC), §

V1-1.4
CDC 6600, § V1-1.2 and V1-3.5.1
Cyber 205, § V1-1.4
Cray, § V1-1.2 and V4-2.4.1

Cray-1, § V4-2.4.1
Cray MPP, § V1-1.4
Cray X-MP, § V1-1.4
Cray Y-MP, § V4-3.2.2

DEC, § V1-3.5
EDSAC, § V1-1.2 and V5-1.1
EDVAC, § V1-1.2
ENIAC, § V1-1.2
Harvard Mark I, § V1-1.2
IAS Princeton, § V1-1.2
IBM, § V1-1.2

IBM 650, § V1-1.4 and V1-3.5.1
IBM 701, § V1-1.4, V1-3.2.2.3,

V1-3.5.3 and V3-2.1.1.1
IBM 3090, § V1-1.4
IBM stretch, cf. § V1-3.1.4

(footnote)
IBM System/360, § V1-1.2 and

V4-2.4.1
IBM System/370, § V4-1.1,

V4-1.2.3.1, V4-2.4.1 and
V4-3.2.4

Illiac IV, § V1-1.2, V3-2.4.3 and
V3-3.3

Manchester, § V1-1.2
Manchester Baby, § V1-1.2
Manchester Mark I, § V3-3.1.6

PDP, § V1-1.2

216 Microprocessor 4

PDP-11, § V1-2.2.1, V2-1.6 and
V3-3.1.3

SEAC, § V1-3.5.1
VAX, § V1-1.2, V1-2.1 and V1-2.2.1

VAX-11, § § V1-1.2 and V1-3.5.1
VAX-9000, § V1-1.4

UNIVAC I, § V1-1.2
Whilwind, § V1-1.2
Zuse Z1, Z2, Z3 and Z4, § V1-1.2

computation model, § V1-3.1.3
concurrent, § V1-3.1.3
control flow, § V1-3.1.3
declarative, § V1-3.1.3
object oriented, § V1-3.1.3
Turing, § V1-3.1.3
von Neumann, § V1-3.2.1

computing
cloud, § V1-1.2

IaaS, PaaS and SaaS, § V1-1.2
ubiquitous, § V1-1.2

control mechanism, § V1-3.1.2
control-driven (CO), § V1-3.1.2
data-driven (DA), § V1-3.1.2
demand-driven (DE), § V1-3.1.2
pattern-driven (PA), § V1-3.1.2

control structure, § V1-3.1.1, V1-3.3.4,
V3-3.1.5.7, V4-1.2.3.2, V4-1.2.5,
V4-2.4, V4-2.4.1, V4-2.4.3 and
V4-3.1.5
loop, § V1-3.1.1
if_then_else, § V1-3.1.1

co-processor, § V3-5.4
graphics, § V3-5.4
I/O, § V3-5.4
mathematical, § V3-5.4

core, cf. multicore
costs

bus, § V2-1.1, V2-1.2, V2-3.3.5 and
V2-4.2.7

computer, § V1-1.1
memory, § V1-2.1 and V1-2.1

counting stick, § V1-1.1
CPI, cf. performance/unit of measurement

Cray-1, cf. computer model
crossbar, cf. grid/crossbar matrix
cryptography, § V4-2.7.3
cycle

access, § V3-2.1.2
clock, cf. clock
CPU/processor, § V1-3.4.3
execution, § V1-3.2.2.4, V1-3.3.1.2.2,

V1-3.3.2 and V3-3.1.3
decoding, § V1-3.2.2, V1-3.3.1.2,

V3-3.4.3.2, V4-1.1 and
V4-1.2.3.2

fetch, § V3-3.1.4, V3-3.4.3.1
phase, § V3-3.4.3

life, § V1-1.2
machine, § V3-2.4
number, § V2-1.5 and V3-2.4.1
read, § V2-1.5
special, § V2-2.2
time, § V1-2.1 and V2-3.2.1
write, § V2-1.5

D

data mechanism, § V1-3.1.2
passing messages (ME), § V1-3.1.2
shared data (SH), § V1-3.1.2

datasheet, § V3-6
DDR, cf. semiconductor-based memory

(component)
debug monitor, cf. firmware
debugging hardware interface

BDM (Background Debug Mode), §
V5-2.2.5 and V5-2.2.7

ITP (In-Target Probe), § V5-2.2.5
JTAG, § V2-3.5, V3-2.2, V3-5.3,

V4-5.5, V5-2.2.2 and V5-2.2.5
TAP, § V5-2.2.5OnCE, § V5-2.2.5

decoding
address, § V2-2.1.1, V2-3.1,
V3-2.1.1.1, V3-2.1.1.2, V3-2.3 and
V5-3.3.1

Index 217

incomplete, § V2-3.1
instruction, cf. execution cycle

decrement/increment, § V4-1.2.3.3,
V4-1.2.3.5 and V4-1.2.4.5
automatic, § V3-3.1.6
pre- and post-, § V4-1.2.3.3

debugging, § V5-2.2
hardware, § V5-2.1
mode, § V5-2.2.7

ForeGround Debug Mode (F(G)DM,
§ V5-2.2.7

BackGround Debug Mode
(B(G)DM, § V5-2.2.7

remote, § V5-2.2.6
software, § V5-2.2.4

delay
time, § V2-1.2, V2-1.3, V3-2.4.1 and

V3-2.4.3
descriptor table, § V1-3.5.6

GDT, § V3-3.1.9
IDT, § V4-5.10
LDT, § V3-3.1.9

development/design stage, § V5-1.1.2
delayed/lazy linking, § V5-1.2.2
loader, § V5-1.2.3
(re-)assembly, § V4-3.1.4, V4-3.2.2,

V5-1.1, V5-1.2.1 and V5-1.3.3
(re-)compilation, § V4-3.2.2
static and dynamic link library, §

V4-3.2.2, V5-1.2.1, V5-1.2.2 and
V5-1.3.3

development/design chain/tools, cf.
development tool

Dhrystone. cf. performance/
benchmark/synthetic suite

diagram in Y, § V1-3.1.4
Direct Memory Access (DMA),

§ V1-3.3
disassembler, cf. development tool
division, cf. arithmetic operation
DSP, cf. processor
DTL, cf. electronic technology

E

EDSAC, cf. computer model
EDVAC, cf. computer model
EFI, cf. firmware
electrical overshooting, § V2-3.3.2
electromechanical relay, § V1-1.2
electronic board, § V1-1.2, V2-1.2 and

V5-2.1.1
dummy board (CRIMM), § V2-1.6
start, evaluation, development board, §

V5-2.1.1
motherboard, § V1-1.2, V2-1.2 and

V5-3.1
electronic logic

buffer, § V1-3.4, V2-3.3.4, V2-4.1.4,
V3-2.4.1, V4-3.1, V4-3.2.1 and
V4-3.3.1

driver, § V2-3.3.4
three-state, § V1-3.4, V2-1.3, V2-1.6,

V2-3.3.4 and V3-2.1
transceiver, § V2-3.3.4

electronic technology, § V1-1.2
BiCMOS, § V1-2.4, V2-3.3.7
CMOS, § V1-1.5, V1-2.4, V2-1.3,

V2-3.3.7, V3-1.1, V3-1.2, V3-2,
V3-4 and V3-6

DTL, § V1-1.2
ECL, § V2-3.3.7 and V3-5.1
(C)HMOS, § V3-4.3, V3-4.5, V3-4.6,

V3-5.3 and V4-3.3.1
GTL/GTLP, § V2-3.3.7
LVDS, § V2-3.3.7, V2-4.2.3 and

V4-3.3.1
MOS, § V3-1.2, V3-4.6 and V4-3.4.1
NMOS, § V3-1.2, V3-4.3 and V3-6.1.1
PMOS, § V3-1.1, V3-1.2, V3-4.2,

V3-4.3, V3-4.5, V3-5.3, V3-5.4
and V3-6.1.1

SLT, § V1-1.2
TTL, § V2-3.3.7, V3-4.3, V3-5.1,

V3-5.4, V5-3.1 and V5-3.2.1
electronic tube, cf. grid

218 Microprocessor 4

element
communication, § V2-4.2.9
processing (PE), § V2-4.2.9
router (RE), § V2-4.2.9
storage, § V1-3.3.1.2.1

ELF, cf. format
ELSI, cf. integration technology
emulator, cf. development tool
endian/endianness, cf. memory/order of

storage
energy savings, § V3-6.1.4
ENIAC, cf. computer model
error, § V1-2.1, V2-2.2.4, V2-3.2,

V2-4.1.4, V2-4.2.3 and V3-5.2
ASCII/BCD, § V4-2.3.1 and exercises

V4-E2.1 and E2.2
checking (ECC), § V2-4.1.4
CRC, § V2-3.2 and V4-2.7.1
detection (EDC), § V4-2.7.1 and

V5-3.2.1
evolution

of concepts, § V1-1.4
of integration, cf. law/Moore’s
of roles, § V1-1.4

exception, cf. interruption
execution

conditional, § V4-2.4.2
context, § V3-3.1.12.2 and V4-4.2.2
mode, § V1-3.5.5, V3-3.1.12.4, V4-

3.2.2, V4-5.9 and V4-5.10
real/protected, § V3-3.1.5.6,

V3-3.1.12.4, V3-4.5, V3-4.6,
V4-2.5.3, V4-3.2.2, V4-5.7, V4-
5.10 and V4-5.11

supervisor, § V1-3.5.5, V3-1.2, V3-
3.1.8, V4-3.2.2, V5-2.2.2 and
V5-2.2.4.1

user, § V1-3.5.5
sequential, § V4-1.2.5
stop, § V3-4.3, V3-6.1.4, V4-2.5.2,

V4-2.5.2, V4-5.2.2, V4-5.6,
V4-5.8, V4-5.11 and V5-2.2.7

breakpoint, § V3-3.1.5.6, V4-5.4,
V4-5.5, V4-5.7, V4-5.9,
V4-5.11, V5-2.2.2, V5-2.2.3,
V5-2.2.4 and V5-2.2.5

time, § V4-3.2.1, V4-3.4.3, V4-5.11
and V5-1.1.2

F

famine, cf. bus/concepts
faults

hardware/software, § V4-3.1.2,
V4-3.2.4, V4-5.1, V4-5.4, V4-5.7
to V4-5.9 and V4-5.11

tolerance, § V1-1.2, V2-1.6 and
V2-3.3.6

FFT (Fast Fourier Transform), cf. Fourier
transform/fast
flow graph, § V4-1.2.4.5.2

FGMT, cf. parallelism/ multithreading
field, § V4-1.1, V5-1.2.1 and V5-1.3.3

address, § V4-1.2.3.1
comment, § V5-1.3.3
condition, § V4-2.4.2
function, § V4-1.1
identification, § V4-1.1
instruction, § V5-1.3.3
label, § V5-1.3.3
operand, § V4-1.1, V4-1.2.2.1 and

V5-1.3.3
sub-field, § V4-1.1

file format
BCS, § V5-1.1.4
COFF, § V5-1.1.4 and V5-1.2.2
ELF, § V5-1.1.4 and V5-1.2.2
OMF, § V5-1.2.2

filtering/filter, § V2-3.3.4 and V3-5.2
Finite Impulse Response (FIR), §

V3-5.2
Infinite Impulse Response (IIR), §

V2-V3-5.2

Index 219

digital, § V4-1.2.4.5.1, V4-1.2.4.5.2,
V4-2.8.4.2 and V4-3.4.2

firmware, § V1-1.4, V2-3.1, V4-5.7 and
V5-3.5
BIOS, § V4-5.9 and V5-3.5.3
EFI, § V5-3.5.3
microcode, § V4-2.5.7
monitor, § V4-V4-5.7, V5-2.1.1, V5-

2.2.4, V5-2.2.5, V5-2.2.7, V5-3.1,
V5-3.2.1 and V5-3.5.1

open firmware, § V5-3.5.4
POST, § V5-2.2.1, V5-3.2.1, V5-3.2.2,

V5-3.5.3 and V5-3.5.4
UEFI, § V5-3.5.3

flag, cf. code/condition
flip-flop, § V1-1.2, V1-2.3, V1-3.1.4, V1-

3.3.1.2.1, V1-3.3.1.2.2, V2-1.3, V2-3.1,
V3-2.4.1, V3-3.1.1, V4-5.2.3, V4-5.3
and V5-2.2.5

flow, § V1-3.1.2 and V1-3.1.3, V2-1.5,
V3-3.1.5.1 and V4-5.2
control, § V1-3.1.2

exceptional (ECF), § V1-3.1.2
graph (CFG), § V1-3.1.2

data flow, § V1-3.1.2
form factor, § V1-1.2, V5-3.4.1 and V5-

3.4.2
AT, ATX, BTX, ITX, NLX, PC, WTX

and XT, V5-3.4.1
format

binary, cf. binary format
file, cf. file format
instruction, cf. instruction format

Fourier transform, § V3-5.2
discrete, § V4-1.2.4.5.2
fast, cf. § V3-5.2, V4-1.2.4.5.2 and V4-

3.4.4
FPGA, § V1-3.5.3, V2-4.2.10, V4-5.7

and V5-2.2.3
frame, cf. memory
FSM, cf. state/state machine
function, cf. subprogram

G

gate, cf. transistor/gate
glue logic, § V3-2.1.1.1, V3-2.3, V5-3.1

to V5-3.3 and V5-3.4.2
grid

crossbar matrix, § V2-3.3.6, V2-4.2.7
and V2-4.2.9

electronic tube, § V1-1.2
GSI, cf. integration technology

H

HAL (Hardware Abstraction Layer), §
V5-1.1.4

hardware development tool
development system, § V5-2.2.3 and

V5-2.2.7
emulator, § V5-2.2.3

hardware, § V5-2.2.3, V5-2.2.4.3
and V5-2.2.6

ICE, § V5-2.2.3 and V5-2.2.7
programmer, § V5-2.1.2

hardware interface
microprocessor, § V3-2.2
RS-232, § V2-1.3, V3-5.3, V5-2.1.1,

V5-2.1.2, V5-2.2.1 and V5-2.2.4.1
SCSI, § V2-1.2, V2-2.2.3, V2-4.2.6,

V2-4.3 and V5-3.3.1
HMT (Hardware MultiThreading), § V1-

3.4.3.2 and V3-4.7
hot plugging, § V2-3.1 and V5-1.1.4
HPC (High-Performance Computing), §

V1-1.2

I

I/O
isolated (IIO) or separated, §

V3-2.1.1.1

220 Microprocessor 4

memory-mapped interface (MMIO), §
V3-4.3 and V3-5.4

IAS Princeton, cf. computer model
IBI, § V5-3.5.3
iCOMP, cf. performance/benchmark
Illiac IV, cf. computer model
ILP, cf. parallelism/instructions
incrementation, cf. decrement
insertion-withdrawal under tension, § V2-

3.4
instruction format, cf. instruction
Instruction Set Architecture (ISA),

§ V1-3.5
extension, § V4-2.4.2
IA-32 (Intel), § V3-3.1.1
instruction set, § V1-3.5.3
properties

execution modes, § V1-3.5.5
memory model, § V1-3.5.4

storage elements, § V1-3.5
integrated circuit logic

combinational, § V1-1.2, V1-3.1.4, V1-
3.3.1.2.1, V3-3.3 and V4-4.1

family, § V1-1.2
sequential, § V1-3.3.1.2.1, V3-3.1

and V3-3.3
integrated circuit package

DIP, § V1-1.2, V3-1.1, V3-4.1, V4-
5.2.2, V5-3.1 and V5-3.2.2

LGA, § V3-6.3
PGA, § V3-4.5 and V3-6.3

instruction
advanced bit manipulation instructions,

§ V4-2.3.2.4 and V4-2.3.2.5
alignment, § V4-2.3.2.4 and V4-3.1.2
arithmetic, § V3-3.1.5.1, V3-3.1.5.7,

V4-2.3.1, V4-2.8.4, V4-2.4.1,
V4-2.7.1 and V4-2.7.2 cf. also
arithmetic operation

atomic, § V4-2.1, V4-2.3.2, V4-2.6.1
and V4-2.6.2

branching, § V3-5.2 and V4-2.4.1 to
V4-2.4.3

break, § V4-2.5.2
bundle - VLIW, § V3-2.1.2
character manipulation (chains), § V4-

2.8.1
class, § V4-2.1

control transfer, § V4-2.4
data processing, § V4-2.3
environmental, § V4-2.5
parallelism, § V4-2.6
transfer, § V4-2.2

code (op-code), § V4-1.1
coding, § V4-1.1 and appendix V4-1
control transfer, § V4-2.4
decoding, § V3-3.4.2 and appendix

V4-1
dyadic, § V1-3.4.1 and V4-1.1
environmental, § V4-2.5
extension to the set, § V4-2.7

cryptography, § V4-2.7.3
format, § V4-1.1 and V4-1.2
multimedia, § V4-2.3.2.4 and

V4-2.7.1
randomization management, §

V4-2.7.4
signal processing, § V4-2.7.2
variable, § V3-3.4.3.2

high-level, § V4-2.8.3
illegal, § V4-3.1.1
Input/Output (I/O), § V4-2.8.2
invalid, § V4-3.1.1
macro-instruction, § V4-2.4.3, V4-4.2,

V4-4.2.2, V5-1.1.2, V5-1.2.1,
V5-1.3.3 and V5-1.3.4

micro-, § V1-3.1.4, V3-3.4.1,
V3-3.4.3.2, V4-5.2.4 and V5-1.1.1

mnemonic, § V4-2.1, V4-3.1.5, V4-3.5
and V5-1.1

monadic, § V4-1.1
number per cycle/IPC, § V2-3.4.2
parallelism, § V4-2.6
per cycle (IPC), cf. performance/ unit

of measurement
prefix, § V4-1.1

Index 221

pseudo-instruction, § V5-1.3.3 and
V5-1.3.4

set (IS), § V1-3.5.3 and V4-2.1
properties, § V1-3.5.3.1
orthogonality/symmetry, §

V4-2.4.1
SIMD, § V4-2.3.2.4 and V4-2.7.1

micro, § V4-2.3.2.1
specific to digital representation, § V4-

2.8.4
integration technology, § V1-1.2, V1-1.4,

V1-1.5 and V1-3.1.4
ELSI, § V1-1.2
GSI, § V1-1.2
LSI, § V3-1.1, V3-4.2, V5-3.1 and V5-

3.3.1
MSI, § V1-1.2
SLSI, § V1-1.2
SSI, § V1-1.2
ULSI, § V2-4.2.10
VLSI, § V3-1.2, V5-2.3, V5-3.2.1, V5-

3.3 and V5-3.3.1
interruption, § V4-5

cause
external, § V4-5.2
internal, § V4-5.4

controller, § V4-5.2.5
debugging, § V4-5.5
definition, § V4-5.1
hardware, § V4-5.2
instruction, § V4-3.2.2 and V4-5.4
mask and maskable/non-maskable INT,

§ V3-2.1.3, V3-3.1.5.4, V3-3.1.5.6,
V3-3.1.5.7, V3-6.2, V4-5.2,
V4-5.3, V4-5.6, V4-5.7, V4-5.9
and V4-5.11

nested, § V4-5.3 and V4-5.8
orthogonal, § V4-5.7
software, § V4-5.4
vectorization, § V4-5.7

IP (Intellectual Property), § V3-1.2
register x86, cf. register

ISA, cf. instruction set architecture or
bus (products)

ISC, § V5-2.1.2
Ishango (incised bones of), § V1-1.1
ISP

bus, § V2-2.2.3
processor, § V1-3.1.4 and V4-2.1
programming, § V5-2.1.2

ITRS, § V1-1.4 and V1-1.5

J

JTAG, cf. test/interface

L

language
concepts, § V1-1.4
high-level (HLL), § V1-3.1.5,

V4-1.2.3.3, V4-2.4.3, V5-1.1.1,
V5-1.1.4, V5-1.3 and V5-1.3.4

layer of, § V5-1.1
level, § V5-1.1.1
machine, § V1-1.4, V1-3.3.4, V4-3.1.5,

V5-1.1, V5-1.1.1 and V5-1.3
programming, cf. programming

language
register transfer (RTL), cf. § V1-3.1.4,

V1-3.3.1.2.1 and V3-3.1.3
LAPACK, cf. performance/core
latch, § V1-3.3.1.2.1
launcher cf. development tool
law

iron, § V4-3.4.3
Moore’s, § V1-1.2, V1-1.5 and V3-1.2

library (development), § V4-3.1.5 and
V5-1.2.2
archiver, § V5-1.2.2
dynamic link (DLL) § V4-3.1.5
of macro-instructions, § V5-1.3.4
runtime, § V4-3.4.4

222 Microprocessor 4

standard, § V5-1.1.4
static, § V5-1.1.2

LINPACK, cf. performance/core
loading, cf. development tool
logic gate, § V1-1.2, V1-3.1.4, V2-3.3.4

and V2-4.1
logical operation, § V1-3.3.1.2.1,

V4-2.3.2.2 and V4-2.7.1
comparison, § V4-2.4.1
complementation, § V4-2.4.1, V4-2.6.1

and § V3-2.1.3 (footnote)
NOT AND (NAND), § V1-1.2
permutation, § V2-1.2 and V2-4.1.4

look up memory, § V3-3.4.3.2 and
V4-2.8.4.2

loom, § V1-1.1
loop

current, § V2-3.3.2
hardware, § V3-3.1.9 and V3-5.2
phased-locked (PLL), § V3-2.4.1
software, § V1-3.1.1, V1-3.3.2, V4-

1.2.3.2 and V4-2.4.3
LSI, cf. integration technology
LVDS, cf. electronic technology

M

MAC, § V3-5.2 and V4-2.8.4.2
MACS, § V4-3.4.2
MBR

register, § V3-3.1.1 and V3-3.5
sector, § V5-1.2.3 and V5-3.5.3

mask
binary/logical, § V3-3.3, V4-2.3.2.2,

V4-2.3.2.4 and exercise
V4-E2-5

interruption, cf. interruption
window, § V3-3.1.11.3

mass storage, § V1-1.2, V1-2.1, V1-2.3,
V1-2.4 and V1-3.2.2.1
interface, § V2-1.2 and V2-4.2.6
library of cartridges, § V1-2.3

mechanical computing machines, §
V1-1.1
analytical engine (Babbage), § V1-1.1
difference engine (Babbage), § V1-1.1
Pascaline, cf. exercise V1-E1.1
statistics machine, § V1-1.1

mechanism, § V1-3.1.2
control, cf. control mechanism
data, cf. data mechanism

memory
alignment, § V1-2.2.2, V1-3.5.4,

V2-1.2; V3-2.1.1.4 and V3-3.4.3.2
boundary, § V4-3.1.2
buffer

queue (FIFO), § V1-2.1, V2-1.6,
V2-3.1, V2-4.1.4, V4-1.2.4.5.1
and V5-2.3

stack (LIFO), § V1-3.5.1 and
V4-4.1

byte access, § V2-3.2 and V3-2.1.1.4
cache, § V1-2.3, V1-2.4, V2-2.2,

V2-2.2.5, V2-4.2.1, V3-3.1.9,
V4-2.5.4, V4-2.5.5, V4-3.4,
V4-5.7, V5-2.3 and V5-3.3.4

capacity/size, § V1-2.1
characteristics, § V1-2.1
classification, § V1-2.4
cycle communication, § V1-2.4
extension, § V3-2.1.1.3
hierarchy, § V1-2.3
interleaving, § V1-3.3.4 and V2-4.2.2
internal, § V3-3.2
look up, cf. look up memory
memory map, § V5-1.1.4
method or policy of access, § V1-2.1
model, § V2-3.5.4
modeling, § V1-2.3
multiport, § V3-3.1.11.1
order of storage (little/big endian,

bi-endian), § V1-2.2.1, V2-1.1 and
V2-1.2

organization, § V1-2.1 and V1-3.1.5
punched card, § V1-1.1 and V1-1.4

Index 223

random access, cf. random access
memory (RAM)

read-only, cf. read-only memory
(ROM)

semiconductor-based, § V1-2
technology, § V1-2.3 and V1-2.4
UMB, § V5-3.2.3
unified, § V1-3.3.1.2.2, V1-3.2.2.1,

V1-3.3.4, V1-3.4.2, V3-5.4,
V5-3.3.1 and exercise V1-E3.1

MEMS, § V1-1.2
microcontroller (MCU), § V3-1.1 and

V3-5.3
microcomputer, § V1-1.2 and V5-3

Apple II, § V5-3.1
IBM Personal Computer (PC)

IBM 5150, § V1-1.2 and V5-3.2.1
IBM 5160, § V5-3.2.2
IBM 5170, § V5-3.2.3

Micral N, § V1-1.2 and V3-1.2
microprocessor (MPU)

commercial, § V3-1.2
definition, § V3-1.1
digital signal processor (DSP), §

V3-5.2
family, § V3-4
generations, § V3-1.1 and V3-4
history, § V3-1.2
initialization, § V3-6.2 and V4-5.2.2
interfacing, § V3-2
single-bit, § V3-4.1

microprogramming, cf. logical
unit/control unit

MIPS, cf. performance/unit of
measurement

mixed language programming,
§ V5-1.1.3

MMX, cf. instruction/extension to the set
MOS, cf. electronic technology
MPP, cf. parallelism/processor
multiplication, cf. arithmetic operation
MSI, cf. integration technology

multicore, § V1-1.4, V1-3.3, V1-3.4.3.3,
V3-1.1, V4-3.4.1 and V3-4.7

multiprocessor, § V1-3.6, V2-2.2.5, V2-
4.2.9, V3-1.1, V4-3.2.2 and V4-3.6.2

N

NMOS, cf. electronic technology
NoC (Network-on-Chip), § V2-4.2.9
node

processing, § V1-1.2 and V1-3.6
technology, § V1-1.5

norms, cf. standard

O

object module, § V5-1.1.2, V5-1.1.3, V5-
1.2.1, V5-1.2.2, V5-1.2.4 and V5-1.3.4

Operating System (OS), § V1-1.2, V1-1.4
and V3-1.2
calls, § V2-2.2.1
debugging, § V5-2.2.2
flag, § V3-3.1.5.6
MS-DOS, § V5-3.2.1 and V5-3.2.3
protection, cf. execution/mode

organization
of a memory, cf. memory
of computers, § V1-3.1.4

overflow, § V3-5.2
buffer, § V4-1.2.4.5.1
capacity, § V4-2.3.1 and V4-2.3.2.2

overflow (positive/negative), §
V3-3.1.5.1, V3-3.1.5.3,
V3-3.1.5.4, V3-5.3, V4-5.1,
V4-5.4, V4-5.7, V4-5.11 and
exercise V3-E3.4

underflow, § V3-3.1.5.4 and
V4-5.4

format (unsigned), § V3-3.1.5.1,
V4-2.3.1, V4-2.3.2.2 and exercise
V3-E3.2

224 Microprocessor 4

register window, § V3-3.1.11.3
segment, § V4-5.4
stack, § V4-4.1, V4-4.2.1 and V4-5.1

P

parallelism, § V1-1.4 and V1-3.4.3
instruction-level (ILP), § V1-3.4.3.1
multicores, § V1-3.4.3.3
multithreading, § V1-3.4.3.2
processor, § V3-5.5
thread level, § V1-3.4.3

parameters
calling convention, § V4-4.2.3
passage, § V3-3.1.12.3 and

V4-4.2.3
path

control (CP), § V1-3.1.4 and
V1-3.3.1.2.2

data (DP), § V1-2.3, V1-3.1.4,
V1-3.2.2.1, V1-3.3.1.2.1, V1-3.3.3
and V5-3.3.1

definition, § V1-3.2.2.1
execution, § V1-3.1.2, V3-3.4.3, V4-

2.4.1 and V4-2.4.2
instruction (IP), § V1-3.2.2.1
scan/exam/access, § V5-2.2.5 and

V5-2.3
PC, cf. register/program counter
PCMark, cf. benchmark
PCMC, § V5-3.3.1
performance, § V4-3.4

core
LAPACK and LINPACK, §

V4-3.4.4
measurement, § V4-3.4
program performance, § V4-3.4.4
unit of measurement (metric), §

V4-3.4.4
Dhrystone, § V4-3.4.4
IPC, § V4-3.4.3.1

permutation, cf. logical operation/
permutation

Personal Computer (PC), cf.
microcomputer

PIC, cf. interruption/controller
pin, § V1-2.1, V2-1.2, V2-3.3.1, V2-3.6,

V3-6.3, V4-5.2.2, V4-5.7 and V3-4.1
pipeline, § V1-3.3.2, V1-3.4.3.2, V3-1.2,

V4-3.4.5, V4-5.11 also cf.
communication/transaction pipeline
stall cycle, § V2-2.1.1 and V4-2.4.1

PLL, cf. loop/phase locked
PMOS, cf. electronic technology
PMS, § V1-3.1.4
poison bit, § V4-5.11
portability, § V4-3.2.3
POST, § V5-3.5.3
post-fixed notation, Reverse Polish

Notation (RPN), § V1-3.5.1
power, § V3-6.1.2

dissipation, § V2-4.2.10
domain, § V3-6.1.3
dynamic, § V3-6.1.2
static, § V3-6.1.2
supply

consumption, § V3-6.1.2
profile, § V3-6.1.3
voltage, § V3-6.1.1

pre-decoding, § V3-3.4.3.2
predication, § V2-2.4.2
processor

bit slice, § V3-5.1
graphics, § V3-5.4
I/O, § V3-5.4
signal processing (DSP), cf.

microprocessor
program, § V1-3.1.1

definition, § V1-3.1.1
stored, cf. computer (concepts)

program counter (CO/PC/IP), cf. register
programmer, § V5-2.1.2 and V5-3.5.3
programming language, § V1-3.1.4

Index 225

assembly, § V1-1.4, V1-3.5.3, V4-1.2,
V4-2.1, V4-2.4.2, V4-2.4.3, V4-3.1.3
to V4-3.1.5, V5-1.1 and V5-1.3

BASIC, § V5-3.1, V5-3.2.1, V5-3.5.2
and V5-3.5.2.2

COBOL, § V1-1.4, V1-3.1.3,
V4-2.8.4.1 and V5-1.3

FORTRAN, § V1-1.4, V1-3.1.1,
V1-3.1.3 and V4-3.4.4

LISP, § V1-3.1.3 and V1-3.1.4
punched card, cf. memory

Q

quipu, § V1-1.1

R

Random-Access Memory (RAM)
DRAM, § V5-3.3.1
Rambus (D)RDRAM, § V5-3.3.1
SDRAM, § V2-3.6, V5-3.3.1 and
V5-3.4.2
SRAM, § V2-2.4 and V3-5.3
SRAM BBSRAM/NVSRAM, §
V5-3.3.1 (footnote)

randomization management, § V4-2.7.4
and V5-3.3.1

Read-Only Memory (ROM), § V1-2.3,
V1-2.4, V1-3.3.1.1 and V3-5.3
EPROM, § V5-2.1.2 and V5-3.5.3
EEPROM, § V5-3.5.3
flash EEPROM (FEEPROM), §

V5-2.2.4.3 and V5-3.5.3
MROM, § V1-2.4
PROM, § V1-2.4

register, § V3-3.1 and V3-3.1.1
accumulator § V1-3.2.2.1 to

V1-3.2.2.3, V1-3.4.1, V1-3.5.1,
V3-3.1.2, V4-1.2.2.2, V4-1.2.4.2
and V4-2.2.1

address (MAR), § V1-3.2.2.2 to
V1-3.2.2.4, V1-3.3.1.2.2, V1-3.4,
V3-3.1.1 to V3-3.5

bank, § V3-3.1.11.2
category, § V3-3.1
cause, cf. register/surprise
data (MBR/MDR), § V1-3.2.2.2,

V1-3.2.2.4, V1-3.3.1.2.2, V1-3.4,
V3-3.1.1 and V3-3.5

definition, § V3-3.1.1
encoding, § V3-3.1.12.6
file, § V3-3.1.11.1
floating point number, § V3-3.1.2 and

V3-3.1.5.4
format, § V3-3.1.1
general-purpose (GPR), § V1-3.5.1,

V3-3.1.3, V3-3.1.8, V4-2.4.1 and
V4-4.1

index, § V3-3.1.1, V3-3.1.6, V4-
1.2.2.2, V4-1.2.3.4 and V4-1.2.3.5

indirection, § V2-.1.7, V4-1.2.3 and
V4-4.1

instruction, § V3-3.1.1 and V3-3.4.3.1
Multiplier-Quotient (MQ), § V3-3.1.1
number, § V3-3.1.12.6 and V4-1.1
parallelism, § V3-3.1.12.5
Program Counter (PC), § V1-3.2.2.1 to

V1-3.2.2.3, V1-3.3.1.2, V1-3.3.2,
V3-2.1.1.1, V3-3.1.3, V4-1.1,
V4-1.2, V4-1.2.3.2, V4-1.2.3.5,
V4-2.4, V4-2.4.1, V4-2.4.3,
V4-4.2, V4-4.2.2, V4-5.2.1,
V4-5.7, V5-2.2.1, V5-2.2.3 and
V5-2.2.4.3

projected in memory, § V3-5.4,
V3-3.1.1, V4-1.2.4.4 and § V3-3.1
(footnote)

Shift Register (SR), cf. shift/register
and shifter

stack pointer (SP), § V3-3.1.1,
V3-3.1.8, V3-4.3, V4-1.2.4.2,
V4-4.1 and V4-4.2

226 Microprocessor 4

status (CCR)/of flags, § V1-3.3.1.2,
V1-3.3.1.2.2, V1-3.3.2, V1-3.5.1,
V3-3.1.5, V3-3.1.5.1, V3-3.1.5.4,
V3-3.1.5.7, V3-3.1.8, V3-3.3,
V3-3.4, V3-3.4.1, V3-3.4.3.3,
V4-2.2.1, V4-4.2.3, V4-5.2.1,
V4-2.2.4.3 and V5-2.2.5

surprise, § V4-5.7
test, § V3-3.1.9
windowing, § V3-3.1.11.3

relocatable, cf. code
representation of information

adjustment, § V4-2.3.1
ASCII, § V3-5.4 and V4-2.8.1
decimal number:

fixed-point, § V1-3.2.2.2,
V1-3.6, V3-3.1.5.3 and
V4-9.4

floating-point, § V3-3.1.5.4 and
V4-9.4

integer
2n’s complement (signed), §

V1-3.6, V3-3.1.5.1, V3-3.3,
V4-1.2.3.2, V4-2.3.1 and
exercise V1-E1-1

BCD, § V1-3.3, V1-3.5.2, V1-3.6,
V4-2.3.1, V3-3.1.5.1, V3-3.1.5.2
and V3-5.4

Unicode, § V4-2.8.1
reverse, § V4-1.2.4.5.2
RISC, cf. architecture
RNG, cf. random generator
rotation, § V3-3.3, V4-2.3.2 and

V4-2.3.2.4
routine, cf. subprogram
RTC, § V3-6.1.4 and V4-3.3.1
RTL, § V1-3.1.4

S

SBC, § V1-1.2
scalability, § V2-1.2 and V2-4.2.9

SDR, cf. semiconductor-based
(component)

(de)serialization, § V2-1.1
semantic gap, § V1-3.1.5
server, § V1-1.2

blade, § V1-1.2
SFF, § V1-2
shift, § V1-3.2.2.2, V1-3.3.1.2.1,

V3-3.1.1, V3-3.3, V4-1.1, V4-1.2.4.5.1,
V4-2.3.2 and V4-4.1
arithmetic, § V4-2.3.2.3
logical, § V4-2.3.2.3 and V4-2.3.2.4
register (SR), § V1-2.1, V1-3.2.2.2,

V3-3.4.2, V3-5.4, V4-4.1 and
V5-2.2.5

shifter
barrel, cf. exercises V3-E3.5 and

V3-E3.6
circular, § V3-3.3
funnel, § V3-3.3

side effect, § V3-3.1.12.1 and V4-2.4.1
signal

integrity of the, § V2-3.3.2
noise, § V2-1.2, V2-1.3, V2-1.6,

V2-3.3.4, V2-3.3.5, V2-4.1.1,
V2-4.2.8, V2-4.2.10, V3-2.4.3,
V3-5.2 and V3-6.3

simulator, cf. software debugging
SLSI, cf. integration technology
SLT, cf. electronic technology
(S)CMP, cf. multicore
SMP, cf. multicore
SMT

component, § V5-3.1 and V5-3.4.2
processor, § V1-3.4.3.2 and V3-4.7

SoC, § V1-1.2
software development tool, § V5-1.2

assembler, § V4-1.2.4.6
assembler-launcher, § V5-1.2.1
cross-assembler, § V5-1.2.1
high-level, § V5-1.2.1
inline, § V5-1.2.1
macro-assembler, § V5-1.3.4

Index 227

(multi)pass, § V5-1.2.1
patch, § V5-1.2.1 and V5-2.2.4.3

compiler, § V1-3.1.1, V1-3.1.4,
V1-3.4.3.1, V1-3.4.3.2, V1-3.5,
V3-3.1.5.7, V3-3.1.12.1,
V3-3.1.12.5, V3-4.6, V4-1.1,
V4-2.1, V4-3.2.3, V4-2.4.1 to V4-
2.4.3, V4-3.1, V4-4.2 and V5-1.1

cross-compiler, § V5-2.1.1
disassembler, § V5-1.2.4
loader, § V3-5.3, V4-1.1.2, V4-1.3 and

V5-1.2.3
monitor, § V5-2.2.4.1
static and dynamic link library, §

V4-3.2.3 and V5-1.2.2
profiler, § V5-2.2.4.3
(program) launcher, § V5-1.2.3
simulator, § V5-2.2.4.2

software interface
ABI (Application Binary Interface), §

V4-4.1 and V5-1.1.4
API (Application Programming

Interface), § V5-1.1.4 and
V5- 3.5.3

POSIX, § V5-1.1.4
software library, § V4-2.8.4.2
SPEC cf. performance/ benchmark/

application suite
SSE, cf. instruction/extension to the

instruction set
SSI, cf. integration technology
standard

BCS, cf. file format
CAN, cf. bus/fieldbus
component, § V1-1.2, V1-1.3, V2-1.2,

V2-3.3.5 and V2-3.3.7
IEEE Standard

IEEE Std 694-1985, § V4-1.3.2,
V4-1.3.3, V4-2.1 and
V4-2.3.2.2

IEEE Std 754, § V4-2.8.4
IEEE Std 1003.1, § V4-1.1.4

IEEE Std 1149.1, § V2-3.5,
V4-2.1.2 and V4-2.2.5

IEEE Std 1275, § V4-3.5.4
IEEE Std 1532, § V4-2.1.2
IEEE-ISTO Std 5001, § V4-2.2.2

ISA, cf. bus/extension
multibus, cf. bus/expansion
SEAC, cf. computer/SEAC
VESA, cf. bus/local

state
diagram, § V2-1.3, V3-3.4.1 and

V5-2.1.2
information, § V3-3.3.1.1, V3-3.4 and

V4-5.11
machine, § V1-3.3.1.2.2, V2-1.6,

V2-3.1, V3-1.1, V3-2.4.1,
V3-3.4.2, V3-3.4.3.2, V5-2.1.2 and
V5-2.2.5

Turing, § V1-3.1.2 and V1-3.1.3
static and dynamic link library, cf.

development tool
subprogram § V1-3.3.1.2.1 and V4-4

call/return, § V3-3.1.1, V3-3.1.5.7,
V3-3.1.8 and V4-2.4.3

definition, § V4-4.2
instruction, § V4-2.4.3
nested, § V4-4.2.1
open, § V5-1.3.4
passing parameters, § V3-3.1.12.3
sheet, § V4-4.2
standard passing parameters, §

V4-4.2.3
subtraction, cf. arithmetic operation
switching

circuit-, § V2-3.3.6 and V2-4.2.9
packet-, § V2-1.5, V2-2.2, V2-2.2.4,

V2-4.1.4 and V2-4.2.9
synchronism, § V2-1.3
system

embedded, § V1-1.2
logical, cf. unit

228 Microprocessor 4

T

technology
electronic, cf. electronic technology
integration, cf. integration technology

test, § V5-2.3
BIST, § V5-2.2.5
bus, § V2-3.5
instruction, cf. instruction/atomic,

instruction/branching
interface, cf. debugging hardware

interface
register, cf. register/test
self-test, § V3-5.3
test program, cf. performance/ program

and firmware/POST
time, § V1-1.4

access, § V1-1.2, V1-1.4, V1-2.1, V2-
1.2, V2-1.5, V3-2.4.2, V3-3.1.11.1
and V3-3.2

bus settling, § V2-1.2, V2-1.3, V2-1.5
and V2-3.1

execution, cf. execution/time
cycle, § V1-1.4, V1-2.1, V1-2.3, V1-2.4,

V3-1.2, V3-2.4.1 and V3-3.4.3.2
hold, § V2-1.5 and V2-3.1
reaction, § V4-5.3
starvation, § V4-5.3
switching, § V4-3.4.5
transfer, § V2-1.1 and V2-1.3

time (linked to software development)
assembly, § V5-1.1.2
compilation, § V5-1.1.2
loading, § V2-2.1.1

TLP (Thread-Level Parallelism), § V1-
3.4.3.2 and V3-4.7

transistor, § V1-1.2, V1-1.4 to V1-1.6,
V1-3.1.4, V2-2.2.1 and V2-3.3.4
bipolar junction (BJT), § V1-1.2
density, § V1-1.2
field effect (FET), § V1-1.2
gate, cf. § V1-1.5 and V4-3.4.5

TTL, cf. electronic technology

U

UEFI, cf. firmware
ULSI, cf. integration technology
UMA, cf. memory (concepts)/unified
UMB, cf. memory (concepts)
unit

central, cf. § V1-1.2 and V3-1.1
logical

AGU, § V3-3.4.4 and
V4-1.2.4.5.2

control unit, § V1-3.2.2.1,
V1-3.3.1.2, V1-3.3.1.2.2 and
V3-3.4

hardwired, § V1-3.2.3
microprogrammed, § V3-3.4,

V3-3.4.3.2 and V4-1.1
(footnote)

DPU, § V5-3.3.1
FMAC, § V3-5.2
functional, § V3-1.2
Integer Processing (IPU), §

V1-1.2, V1-3.3.1.2,
V1-3.3.1.2.1, V3-3.3, V3-5.1
and V3-5.2

MAC, § V4-2.8.4.2 and
V3-5.2

vector-based, § V1-1.2, V4-2.3.2
and V4-2.7.1

of measurement, § V1-1.2, V1-2.1 and
V4-3.4

processing, cf. element/processing unit
UNIVAC, cf. computer model

V

verification
cycle, § V3-5.3
exchange, § V2-1.3
machine, § V2-2.5.7
memory, § V5-2.2.4.3 and V5-2.2.5
result, § V2-2.4.1

Index 229

virtualization
debugging, § V5-2.2.6
MPU, § V3-3.1.5.6 and V4-3.2.4
server, § V1-1.2
virtual machine, § V1-1.4

VLIW, cf. architecture
VLSI, cf. integration technology
von Neumann machine, § V1-3.2

and V1-3.3
advantages and disadvantages,

§ V1-3.3.4

W

wall, § V1-1.5 and V3-1.2
fineness of etching, § V1-1.5
power, § V1-1.5, V3-1.1 and V3-6.1.2
red brick, § V1-1.5
speed, § V1-1.5

Whetstone, cf. performance/
benchmark/synthetic suite

Whilwind, cf. computer model
word (broken down) into packets,

§ V4-2.3.2.1
workstations, cf. cluster/workstations

Other titles from

in

Computer Engineering

2020
DUVAUT Patrick, DALLOZ Xavier, MENGA David, KOEHL François, CHRIQUI
Vidal, BRILL Joerg
Internet of Augmented Me, I.AM: Empowering Innovation for a New
Sustainable Future

LAFFLY Dominique
TORUS 1 – Toward an Open Resource Using Services: Cloud Computing
for Environmental Data
TORUS 2 – Toward an Open Resource Using Services: Cloud Computing
 for Environmental Data
TORUS 3 – Toward an Open Resource Using Services: Cloud Computing
 for Environmental Data

LAURENT Anne, LAURENT Dominique, MADERA Cédrine
Data Lakes
(Databases and Big Data Set – Volume 2)

OULHADJ Hamouche, DAACHI Boubaker, MENASRI Riad
Metaheuristics for Robotics
(Optimization Heuristics Set – Volume 2)

SADIQUI Ali
Computer Network Security

VENTRE Daniel
Artificial Intelligence, Cybersecurity and Cyber Defense

2019
BESBES Walid, DHOUIB Diala, WASSAN Niaz, MARREKCHI Emna
Solving Transport Problems: Towards Green Logistics

CLERC Maurice
Iterative Optimizers: Difficulty Measures and Benchmarks

GHLALA Riadh
Analytic SQL in SQL Server 2014/2016

TOUNSI Wiem
Cyber-Vigilance and Digital Trust: Cyber Security in the Era of Cloud
Computing and IoT

2018
ANDRO Mathieu
Digital Libraries and Crowdsourcing
(Digital Tools and Uses Set – Volume 5)

ARNALDI Bruno, GUITTON Pascal, MOREAU Guillaume
Virtual Reality and Augmented Reality: Myths and Realities

BERTHIER Thierry, TEBOUL Bruno
From Digital Traces to Algorithmic Projections

CARDON Alain
Beyond Artificial Intelligence: From Human Consciousness to Artificial
Consciousness

HOMAYOUNI S. Mahdi, FONTES Dalila B.M.M.
Metaheuristics for Maritime Operations
(Optimization Heuristics Set – Volume 1)

JEANSOULIN Robert
JavaScript and Open Data

PIVERT Olivier
NoSQL Data Models: Trends and Challenges
(Databases and Big Data Set – Volume 1)

SEDKAOUI Soraya
Data Analytics and Big Data

SALEH Imad, AMMI Mehdi, SZONIECKY Samuel
Challenges of the Internet of Things: Technology, Use, Ethics
(Digital Tools and Uses Set – Volume 7)

SZONIECKY Samuel
Ecosystems Knowledge: Modeling and Analysis Method for Information and
Communication
(Digital Tools and Uses Set – Volume 6)

2017
BENMAMMAR Badr
Concurrent, Real-Time and Distributed Programming in Java

HÉLIODORE Frédéric, NAKIB Amir, ISMAIL Boussaad, OUCHRAA Salma,
SCHMITT Laurent
Metaheuristics for Intelligent Electrical Networks
(Metaheuristics Set – Volume 10)

MA Haiping, SIMON Dan
Evolutionary Computation with Biogeography-based Optimization
(Metaheuristics Set – Volume 8)

PÉTROWSKI Alain, BEN-HAMIDA Sana
Evolutionary Algorithms
(Metaheuristics Set – Volume 9)

PAI G A Vijayalakshmi
Metaheuristics for Portfolio Optimization
(Metaheuristics Set – Volume 11)

2016
BLUM Christian, FESTA Paola
Metaheuristics for String Problems in Bio-informatics
(Metaheuristics Set – Volume 6)

DEROUSSI Laurent
Metaheuristics for Logistics
(Metaheuristics Set – Volume 4)

DHAENENS Clarisse and JOURDAN Laetitia
Metaheuristics for Big Data
(Metaheuristics Set – Volume 5)

LABADIE Nacima, PRINS Christian, PRODHON Caroline
Metaheuristics for Vehicle Routing Problems
(Metaheuristics Set – Volume 3)

LEROY Laure
Eyestrain Reduction in Stereoscopy

LUTTON Evelyne, PERROT Nathalie, TONDA Albert
Evolutionary Algorithms for Food Science and Technology
(Metaheuristics Set – Volume 7)

MAGOULÈS Frédéric, ZHAO Hai-Xiang
Data Mining and Machine Learning in Building Energy Analysis

RIGO Michel
Advanced Graph Theory and Combinatorics

2015
BARBIER Franck, RECOUSSINE Jean-Luc
COBOL Software Modernization: From Principles to Implementation with
the BLU AGE® Method

CHEN Ken
Performance Evaluation by Simulation and Analysis with Applications to
Computer Networks

CLERC Maurice
Guided Randomness in Optimization
(Metaheuristics Set – Volume 1)

DURAND Nicolas, GIANAZZA David, GOTTELAND Jean-Baptiste,
ALLIOT Jean-Marc
Metaheuristics for Air Traffic Management
(Metaheuristics Set – Volume 2)

MAGOULÈS Frédéric, ROUX François-Xavier, HOUZEAUX Guillaume
Parallel Scientific Computing

MUNEESAWANG Paisarn, YAMMEN Suchart
Visual Inspection Technology in the Hard Disk Drive Industry

2014
BOULANGER Jean-Louis
Formal Methods Applied to Industrial Complex Systems

BOULANGER Jean-Louis
Formal Methods Applied to Complex Systems:Implementation of the B
Method

GARDI Frédéric, BENOIST Thierry, DARLAY Julien, ESTELLON Bertrand,
MEGEL Romain
Mathematical Programming Solver based on Local Search

KRICHEN Saoussen, CHAOUACHI Jouhaina
Graph-related Optimization and Decision Support Systems

LARRIEU Nicolas, VARET Antoine
Rapid Prototyping of Software for Avionics Systems: Model-oriented
Approaches for Complex Systems Certification

OUSSALAH Mourad Chabane
Software Architecture 1
Software Architecture 2

PASCHOS Vangelis Th
Combinatorial Optimization – 3-volume series, 2nd Edition
Concepts of Combinatorial Optimization – Volume 1, 2nd Edition
Problems and New Approaches – Volume 2, 2nd Edition
Applications of Combinatorial Optimization – Volume 3, 2nd Edition

QUESNEL Flavien
Scheduling of Large-scale Virtualized Infrastructures: Toward Cooperative
Management

RIGO Michel
Formal Languages, Automata and Numeration Systems 1:
Introduction to Combinatorics on Words
Formal Languages, Automata and Numeration Systems 2:
Applications to Recognizability and Decidability

SAINT-DIZIER Patrick
Musical Rhetoric: Foundations and Annotation Schemes

TOUATI Sid, DE DINECHIN Benoit
Advanced Backend Optimization

2013
ANDRÉ Etienne, SOULAT Romain
The Inverse Method: Parametric Verification of Real-time Embedded
Systems

BOULANGER Jean-Louis
Safety Management for Software-based Equipment

DELAHAYE Daniel, PUECHMOREL Stéphane
Modeling and Optimization of Air Traffic

FRANCOPOULO Gil
LMF — Lexical Markup Framework

GHÉDIRA Khaled
Constraint Satisfaction Problems

ROCHANGE Christine, UHRIG Sascha, SAINRAT Pascal
Time-Predictable Architectures

WAHBI Mohamed
Algorithms and Ordering Heuristics for Distributed Constraint Satisfaction
Problems

ZELM Martin et al.
Enterprise Interoperability

2012
ARBOLEDA Hugo, ROYER Jean-Claude
Model-Driven and Software Product Line Engineering

BLANCHET Gérard, DUPOUY Bertrand
Computer Architecture

BOULANGER Jean-Louis
Industrial Use of Formal Methods: Formal Verification

BOULANGER Jean-Louis
Formal Method: Industrial Use from Model to the Code

CALVARY Gaëlle, DELOT Thierry, SÈDES Florence, TIGLI Jean-Yves
Computer Science and Ambient Intelligence

MAHOUT Vincent
Assembly Language Programming: ARM Cortex-M3 2.0: Organization,
Innovation and Territory

MARLET Renaud
Program Specialization

SOTO Maria, SEVAUX Marc, ROSSI André, LAURENT Johann
Memory Allocation Problems in Embedded Systems: Optimization Methods

2011
BICHOT Charles-Edmond, SIARRY Patrick
Graph Partitioning

BOULANGER Jean-Louis
Static Analysis of Software: The Abstract Interpretation

CAFERRA Ricardo
Logic for Computer Science and Artificial Intelligence

HOMES Bernard
Fundamentals of Software Testing

KORDON Fabrice, HADDAD Serge, PAUTET Laurent, PETRUCCI Laure
Distributed Systems: Design and Algorithms

KORDON Fabrice, HADDAD Serge, PAUTET Laurent, PETRUCCI Laure
Models and Analysis in Distributed Systems

LORCA Xavier
Tree-based Graph Partitioning Constraint

TRUCHET Charlotte, ASSAYAG Gerard
Constraint Programming in Music

VICAT-BLANC PRIMET Pascale et al.
Computing Networks: From Cluster to Cloud Computing

2010
AUDIBERT Pierre
Mathematics for Informatics and Computer Science

BABAU Jean-Philippe et al.
Model Driven Engineering for Distributed Real-Time Embedded Systems

BOULANGER Jean-Louis
Safety of Computer Architectures

MONMARCHE Nicolas et al.
Artificial Ants

PANETTO Hervé, BOUDJLIDA Nacer
Interoperability for Enterprise Software and Applications 2010

SIGAUD Olivier et al.
Markov Decision Processes in Artificial Intelligence

SOLNON Christine
Ant Colony Optimization and Constraint Programming

AUBRUN Christophe, SIMON Daniel, SONG Ye-Qiong et al.
Co-design Approaches for Dependable Networked Control Systems

2009
FOURNIER Jean-Claude
Graph Theory and Applications

GUEDON Jeanpierre
The Mojette Transform / Theory and Applications

JARD Claude, ROUX Olivier
Communicating Embedded Systems / Software and Design

LECOUTRE Christophe
Constraint Networks / Targeting Simplicity for Techniques and Algorithms

2008
BANÂTRE Michel, MARRÓN Pedro José, OLLERO Hannibal, WOLITZ Adam
Cooperating Embedded Systems and Wireless Sensor Networks

MERZ Stephan, NAVET Nicolas
Modeling and Verification of Real-time Systems

PASCHOS Vangelis Th
Combinatorial Optimization and Theoretical Computer Science: Interfaces
and Perspectives

WALDNER Jean-Baptiste
Nanocomputers and Swarm Intelligence

2007
BENHAMOU Frédéric, JUSSIEN Narendra, O’SULLIVAN Barry
Trends in Constraint Programming

JUSSIEN Narendra
A TO Z OF SUDOKU

2006
BABAU Jean-Philippe et al.
From MDD Concepts to Experiments and Illustrations – DRES 2006

HABRIAS Henri, FRAPPIER Marc
Software Specification Methods

MURAT Cecile, PASCHOS Vangelis Th
Probabilistic Combinatorial Optimization on Graphs

PANETTO Hervé, BOUDJLIDA Nacer
Interoperability for Enterprise Software and Applications 2006 / IFAC-IFIP
I-ESA’2006

2005
GÉRARD Sébastien et al.
Model Driven Engineering for Distributed Real Time Embedded Systems

PANETTO Hervé
Interoperability of Enterprise Software and Applications 2005

