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Quotation 

Every advantage has its disadvantages and vice versa. 

Shadokian philosophy1

                                 
1 The Shadoks are the main characters from an experimental cartoon produced by the 
Research Office of the Office de Radiodiffusion-Télévision Française (ORTF). The two-
minute-long episodes of this daily cult series were broadcast on ORTF’s first channel (the 
only one at the time!) beginning in 1968. The birds were drawn simply and quickly using an 
experimental device called an animograph. 
 
The Shadoks are ridiculous, stupid and mean. Their intellectual capacities are completely 
unusual. For example, they are known for bouncing up and down, but it is not clear why! 
Their vocabulary consists of four words: GA, BU, ZO and MEU, which are also the four 
digits in their number system (base 4) and the musical notes in their four-tone scale. Their 
philosophy is comprised of famous mottos such as the one cited in this book. 



 

Preface 

Computer systems (hardware and software) are becoming increasingly complex, 
embedded and transparent. It therefore is becoming difficult to delve into basic 
concepts in order to fully understand how they work. In order to accomplish this, 
one approach is to take an interest in the history of the domain. A second way is to 
soak up technology by reading datasheets for electronic components and patents. 
Last but not least is reading research articles. I have tried to follow all three paths 
throughout the writing of this series of books, with the aim of explaining the 
hardware and software operations of the microprocessor, the modern and integrated 
form of the central unit.  

About the book 

This five-volume series deals with the general operating principles of the 
microprocessor. It focuses in particular on the first two generations of this 
programmable component, that is, those that handle integers in 4- and 8-bit formats. 
In adopting a historical angle of study, this deliberate decision allows us to return to 
its basic operation without the conceptual overload of current models. The more 
advanced concepts, such as the mechanisms of virtual memories and cache memory 
or the different forms of parallelism, will be detailed in a future book with the 
presentation of subsequent generations, that is, 16-, 32- and 64-bit systems. 

The first volume addresses the field’s introductory concepts. As in music theory, 
we cannot understand the advent of the microprocessor without talking about the 
history of computers and technologies, which is presented in the first chapter. The 
second chapter deals with storage, the second function of the computer present in the 
microprocessor. The concepts of computational models and computer architecture 
will be the subject of the final chapter. 
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The second volume is devoted to aspects of communication in digital systems 
from the point of view of buses. Their main characteristics are presented, as well as 
their communication, access arbitration, and transaction protocols, their interfaces 
and their electrical characteristics. A classification is proposed and the main buses 
are described. 

The third volume deals with the hardware aspects of the microprocessor. It first 
details the component’s external interface and then its internal organization. It then 
presents the various commercial generations and certain specific families such as the 
Digital Signal Processor (DSP) and the microcontroller. The volume ends with a 
presentation of the datasheet. 

The fourth volume deals with the software aspects of this component. The main 
characteristics of the Instruction Set Architecture (ISA) of a generic component are 
detailed. We then study the two ways to alter the execution flow with both classic 
and interrupt function call mechanisms. 

The final volume presents the hardware and software aspects of the development 
chain for a digital system as well as the architectures of the first microcomputers in 
the historical perspective. 

Multi-level organization 

This book gradually transitions from conceptual to physical implementation. 
Pedagogy was my main concern, without neglecting formal aspects. Reading can 
take place on several levels. Each reader will be presented with introductory 
information before being asked to understand more difficult topics. Knowledge, with 
a few exceptions, has been presented linearly and as comprehensively as possible. 
Concrete examples drawn from former and current technologies illustrate the 
theoretical concepts. 

When necessary, exercises complete the learning process by examining certain 
mechanisms in more depth. Each volume ends with bibliographic references 
including research articles, works and patents at the origin of the concepts and more 
recent ones reflecting the state of the art. These references allow the reader to find 
additional and more theoretical information. There is also a list of acronyms used 
and an index covering the entire work. 

This series of books on computer architecture is the fruit of over 30 years of 
travels in the electronic, microelectronic and computer worlds. I hope that it will 
provide you with sufficient knowledge, both practical and theoretical, to then 
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specialize in one of these fields. I wish you a pleasant stroll through these different 
worlds. 

IMPORTANT NOTES.− As this book presents an introduction to the field of 
microprocessors, references to components from all periods are cited, as well as 
references to computers from generations before this component appeared. 

Original company names have been used, although some have merged. This will 
allow readers to find specification sheets and original documentation for the 
mentioned integrated circuits on the Internet and to study them in relation to this 
work. 

The concepts presented are based on the concepts studied in selected earlier 
works (Darche 2000, 2002, 2003, 2004, 2012), which I recommend reading 
beforehand. 

Philippe DARCHE 
August 2020



 

Introduction 

This volume details how to program a microprocessor in five chapters. The first 
two chapters demonstrate the three characteristics of ISA (Instruction Set Architecture, 
cf. § V1-3.5), which are: instruction encoding, addressing modes and the instruction 
set of a generic component. Then, additional notions linked to the instruction set and 
execution are discussed in the third chapter. This primarily involves the notion of 
illegal, invalid, reserved and trusted instructions, the notion of memory alignment, 
orthogonality and the symmetry of the instruction set, as well as the notion of pure,  
re-entrant and relocatable code. Then, the subjects of execution time, memory 
requirements, execution modes, portability and virtualization will be discussed. 
Finally, it ends with aspects that are very important in industry, their hardware and 
software compatibilities, how to measure execution performances and the criteria for 
choosing a microprocessor or MPU (MicroProcessor Unit). The last two chapters 
study two ways of altering execution flow. These are the concepts of the sub-program 
and interruption. 

NOTE.– The choice has been made to write the names of registers in upper case in 
the text and figures but in lower case in assembly language, since the norm (IEEE 
1985) does not specify which case to use. The name of the instructions is in lower 
case in the text and programs (MIPS (Microprocessor without Interlocked Pipeline 
Stages) style), sometimes also in upper case (Motorola or Arm® style). Moreover, 
the examples given refer to current and older microprocessors and computer 
processors for the purposes of instruction. This chapter is not intended to be 
exhaustive. It mainly presents the functions of the first MPUs. It will be completed 
by the following two books. The instructions cited will be complemented by MPU 
documentation or in a specialist work. 
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Coding and Addressing Modes 

This chapter focuses on two important characteristics of Instruction Set 
Architecture (ISA) (cf. § V1-3.5), which are instruction encoding and addressing 
modes.  

1.1. Encoding and formatting an instruction 

The instruction1 is represented in a computer using a binary word in the format i 
bits, a multiple of the format n of the data and, in general, a multiple of the byte. We 
use the expression machine code to mean all those binary words representing the 
instruction to be executed. Instruction encoding depends on the architecture of the 
target processor. It is formed at least of an instruction code and, potentially, of one 
or more operands as Figure 1.1 illustrates. 

 

Figure 1.1. Breakdown of an instruction 

                                 

1 In the context of a microprogrammed architecture (this will be covered in a future book by 
the author on microprocessors), it is sometimes called a macro-instruction to differentiate it 
from the micro-instruction, which is internal to the processor. 

Microprocessor 4: Core Concepts – Software Aspects, 
First Edition. Philippe Darche. 
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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This instruction can be broken down into fields2. The instruction code, also 
called operation code (abridged to opcode), in format c, has one or more fields. The 
essential one is the function code. It defines the operation to be executed. Its format 
of f bits defines the maximum number of instructions F (= 2f) in the instruction set3. 
Other fields can be added to this such as, for example, one that specifies the 
addressing mode (the addressing mode field) of the operands to the format as Figure 
1.2 illustrates (VAX4 approach from the Digital Equipment Corporation (DEC)). 
The processor therefore has 2a addressing modes. Besides simplifying the encoding, 
one benefit is to separate the encoding of the function from that of the address, 
which makes it possible to make the instruction set symmetrical (cf. § 3.1.3). This 
instruction code generally takes the format of the data n of the processor to optimize 
access to primary memory. Since in our example n is fixed, the architect of the 
microprocessor or MPU (MicroProcessor Unit) must therefore compromise between 
the number of instructions and the number of addressing modes if the field exists. 
One field may be favored to the detriment of the other. 

 

Figure 1.2. An example of the structure of an operation code 

If the instruction requires, the operation code is followed by one or more operand 
fields (Figure 1.3), and their number is dependent on the operation (unary or binary) 
and the architecture. This operand field in the format o bits makes it possible to 
specify, depending on the addressing mode chosen, the value of the reference of the 
location of the operand needed for calculation or, potentially, the result. An 
operand’s storage location, which is imposed by the programmer, compiler or linker 
or architecture, is a register or memory location. An instruction to one operand is  

                                 

2 Although these fields exist, they cannot be documented or can only be documented 
partially, as for MC6800 from Motorola. 

3 We can choose not to code the instruction (an uncoded instruction). This means that one bit 
is assigned to each of the possible operations. The gain lies in eliminating the logic of classic 
decoding and the corresponding stage in a pipelined architecture (this will be covered in a 
future book by the author on microprocessors). The immediate counterpart is an increase in its 
format. 

4 VAX for Virtual Addressed eXtended. 
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called a “monadic”, and one with two operands, “dyadic”. When there are two 
operands, we speak of source and destination operands or sink operands or 
sometimes simply left and right operands. We cite the VAX mini-computer with a 
variable format as an example of encoding. The operation code included one to two 
bytes. It was eventually followed by no more than six operand specifiers, mainly 
address specifiers, making it possible to design the operand. The MPU MC6800 
instruction format included one to three bytes, the first being an operation code 
indicating the addressing mode. 

 

Figure 1.3. Format of an instruction with two operands 

Table 1.1 shows the different address combinations for IA-32 instruction set (IA 
for Intel Architecture, also called i386). Combinations not indicated are not possible 
either due to the architecture or to their incoherence. We cite impossible memory 
(to) memory combinations in most architectures, as it is necessary to pass through a 
register and an immediate-register or immediate-memory, which cannot be done 
because of the impossibility of allocating a value to a constant. 

Operands 
Destination Source 

Register Immediate 

Memory Immediate 

Register Register 

Memory Register 

Register Memory 

Table 1.1. Possible address combinations in family IA-32 

The identification field (ID) of the operand(s) specifies the format and 
addressing mode (register or memory reference) as well as the direction of transfer 
(Figure 1.4). In a RISC microprocessor (Reduced Instruction Set Computer, this will 
be covered in a future book by the author on microprocessors), this field is included 
in the instruction’s code through simplification and in view of the reduced number 
of instructions and addressing modes. 
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Figure 1.4. An instruction with several operands 

By construction, the format of the instruction is fixed (fixed length), short or 
long, or variable (variable length). The value of a fixed format is a multiple of the 
byte in general. Its value will have a direct consequence for the incrementation value 
of the Program Counter (PC, cf. § V3-3.1.3). The benefit is that it will be possible to 
align the instructions (cf. § 3.1.2), thus accelerating memory reading or writing by 
reducing the number of memory accesses. The division of the instruction into sub-
fields, for example, one for the instruction class (cf. Chapter 2), the second for the 
function, the third for the type of operands and the last for the operands and a unique 
format allowing simplification of the hardware, the counterpart being a larger 
format. A variable format, a multiple of the MPU data format, complicates the Control 
Unit (CU), and it has an impact on the number of machine cycles (cf. § V3-2.4.1) 
needed for decoding. During this phase, the decoder should determine the size of the 
instruction as quickly as possible. This information is needed, for example, for 
debugging, to determine the instruction boundaries or limits in the machine code 
(interruptible “at instruction boundaries”). On the other hand, it has the advantage 
of obtaining programs that take up less memory. In fact, a simple instruction such as 
nop (no operation, cf. § 2.8.5) will classically take up one byte compared to a 
word with several bytes with a fixed format. The format’s variability makes it 
difficult to use a pipeline or a superscalar execution (this will be covered in a future 
book by the author on microprocessors). As an example of a fixed format, we cite 
the format n = 32 bits for MIPS Technologies microprocessors. Even if the format is 
fixed, the number of fields may vary as well as the format. Encoding uses three 
types, which are Register (R-type), Immediate (I-type) and Jump (J-type) format 
(Figure 1.5). The operation code, completed possibly by the function field, specifies 
the instruction. For the first type, the second field is a specifier of the source register 
(rs). The following specifies the target or destination register (rt or rd), which 
receives the result or branching condition. The last field is an immediate value, a 
jump or address displacement. For the J type, the operand is the jump address in a 
26-bit format. For the last type, the third field is a destination register specifier (rd). 
The penultimate field indicates the value of a possible shift (0 = no shift). Note the 
conventions rt = rs + immediate and rd = rs + rt. This simple encoding should  
be compared with that of the Arm® family, which can show as many as 21 types 
(Arm 2000). 
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Figure 1.5. Three fixed formats for MIPS instructions 

None of these different fields have been standardized and are dependent on the 
manufacturer and the MPU family. For example, for Bayliss et al. (1981), an 
instruction is formed of four fields, which are the function fields (opcode), reference 
fields, and format and class fields. The class specifies the number of operands and 
their types. The necessary format field if there is at least one operand indicates their 
location (memory, register or pile, for example). The reference field gives their 
location explicitly. Their operation code field specifies the operation to be executed. 

Figure 1.6 shows the typical variable instruction of an existing microprocessor. 
The instruction code has a format of 6 bits. The direction bit D indicates the 
direction of transfer (0 = source specified by the field reg, 1 = destination specified 
by the field). The bit W specifies the transfer format (0 = byte, 1 = word of 16 bits). 
The 2rd byte is called a “post-byte”. The mode field indicates whether the transfer 
involves only the registers or if the memory is involved, the two displacement fields 
therefore indicate the length of the latter. We recognize the Little Endian byte order 
(LE (Cohen 1981), cf. § 2.6.2 from Darche (2012)) typical of Intel architecture since 
the Least Significant Byte (LSB) is first stored in the memory, in the order of the 
increasing addresses. To finish, the R/M (Register/Memory) field, poorly named, 
specifies the addressing mode, that is, the method of calculating the effective 
address (cf. § 1.2). Another format exists where the instruction is coded on a single 
byte. Thus, the format of these instructions can vary from 1 to 6 bytes. It is  
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possible to add to these three types of prefix to modify the behavior of the 
instruction. 

 

Figure 1.6. Typical instruction format from 8086/88 

The architecture can also add a field, before or after the operation code to code 
the instruction class (called an extension of the operation code) or to specify a 
variable format. One example is the central IBM System/370 computer with its first 
2 bits. The encoding of one instruction of the i486 by Intel is a typical example of 
the CISC approach (Complex Instruction Set Computer, this will be covered in a 
future book by the author on microprocessors). This type of instruction has a size 
ranging from 1 to 13 bytes. The word-code is therefore formed of one or two bytes 
for the operational code, a modify Register or Memory (mod R/M) byte, a Scale-
Index-Base (SIB) byte, the bytes for displacement and the bytes for the immediate 
values. The reg/operation code field specifies a register or makes it possible to add 
information for the operation code. The R/M field specifies a register (23 at most) or, 
if it is combined with the mode field, makes it possible to specify a mode of address 
(24 maximum). The SIB byte makes it possible to specify the scale factor (0, 2, 4 or 
8), an index register number and the base register number. In addition, one or more 
prefix bytes (in any order except for REX, see below) can change how the following 
instruction is interpreted. Figure 1.7 shows the instruction format for Intel IA-32 and 
Intel 64 architectures, which has changed with the evolution of MPUs. For example, 
the operation code for Pentium had a maximum size of two bytes. Today, the 
maximum length of an instruction is 15 bytes. The format for the instructions has 
not ceased growing. 

Another example is Arm® architecture, which, to the left of the operation code, 
adds a condition field (Figure 2.23). Today, there are sets of instructions in multiple 
formats, a sort of compromise between fixed and variable formats with only two 
formats, for example, 32 bits and another value such as 16 bits with 19 different 
forms of encoding for Thumb® (Arm®) technology linked to the compression of 
these instruction codes (cf. § 1.1.1). 
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Figure 1.7. Variable instruction format Intel IA-32  
and Intel 64 (Intel 2016) architectures 

Several technical solutions exist for retaining ascending binary compatibility  
(cf. § 3.3.3). Intel has chosen the instruction prefix. It affects how the instruction is 
interpreted. For example, a REX (Register Extension) prefix in 64-bit mode that 
indicates that the instruction uses extended registers is a valid instruction (inc or 
dec) in IA-32 mode. This solution had already been used by Z80 with four  
non-assigned machine codes (hexadecimal values CB, DD, ED and FD as prefix) to 
expand its compatible instruction set with 8080. Another solution was to add a  
post-byte to distinguish between the sets of instructions. One recent example is the 
VEX prefix for Vector Extensions, which makes it possible to encode the AVX 
(Advanced Vector eXtensions, cf. § 2.7.1) extension from Intel. 

The number of instructions, type of architecture (stack-based, register-based, 
etc.), the number of addressable registers, the number of internal busses and the 
type, format and location of the operands will have an influence on the format i of 
an instruction. For access to primary memory, the memory organization, in 
particular the exchange format (byte or word), byte order (remember the Endian 
story! cf. § V1-2.2.1) and the alignment (cf. § 2.6.1 from Darche (2012)), will have 
some influence. The ISA can be evaluated by the number of instructions F, their 
complexity, their format i and the memory space they occupy. The designer’s choice 
will depend on the function of the desired performances (execution time, memory 
requirement, etc.), of the usage domains and the manufacturing cost. Complexity, if 
it is not material, could affect the software, in particular the compiler as in the RISC 
approach and in the programmer. The appendix shows the instruction encoding table 
for MPU 6809E from Motorola. For information, the aspect of decoding an 
instruction has been discussed in the previous volume. 
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1.1.1. Code compression 

In order to limit the programs’ memory footprint for reasons of cost, memory 
size, performance or, in particular, power saving, one solution is to compress the 
machine code at compilation and its decompression at execution, for example, when 
it is loaded in the MPU cache memory (Wolfe and Chanin 1992). One benefit lies in 
the fact that the compiler has not been modified. For implementation, the Huffman 
(1952) (de)compression algorithm can be used, for example. Because of its 
objectives, it is intended especially for embedded systems with an MPU/MCU5 
RISC. Two industrial examples are Thumb® and Thumb-2 for which the 16-bit 
instruction word is a compression of the classic version of Arm® processors, which 
have a 32-bit format. RISC-V (Waterman 2016) has a compressed version of its 
code suggested by (Waterman 2011). A comparison between MPUs can be made 
using a measurement of the code density. 

The principle can quite clearly be applied to data and to buses (cf. V2) for the 
same aims. 

1.2. Addressing modes 

We recall that the address is a whole number that makes it possible to identify 
(we also say locate or spot) a place in the memory (cf. § V1-2.1). This, generated by 
an MPU, is termed “physical” (PA for Physical Address) since it is this that will be 
carried by the address bus. This physical address can be positive (i.e. natural integer) 
or also negative (i.e. relative integer) in the case of an address in Assembly 
Language (AL) or machine language, for example, for a displacement relative to the 
current value of the PC (Program Counter). Addressing is the mechanism for 
accessing information (data and instructions) stored in MPU registers or in other 
levels of the memory hierarchy (cf. § V1-2.3). The addressing or referencing mode 
specifies how to reach the instruction (code addressing mode) and its operands 
(operand addressing mode) during its execution. This distinction between the 
addressing code and its operands, which may moreover be an instruction 
classification (cf. § 2.1), may not exist (which is the most common scenario). One of 
the difficulties of using the concept is that its designation and its semantics vary 
depending on the architecture and on the designer of the CU (Control Unit). Thus, it 
involves sometimes only the memory address (memory address calculation mode) or 
it also covers the registers (operand addressing mode). The definition is taken in its 
widest sense. It does not therefore only involve access to the primary memory. The 
different addressing modes add to the wealth of a processor, and their number still 
varies depending on the architectures and designers. Addressing modes are one of 

                                 

5 For MicroController Unit, i.e. a microcontroller (cf. § V3-5.3). 
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the ISA specification points (cf. § V1-3.5). For example, the IBM System/360 
mainframe computer only has three (immediate, register and memory), but the 
Pentium microprocessor has nine. The more possibilities there are, the less the 
assembly language programmer will have to write the lines of code to carry out the 
desired operation. The argument refers today to the compiler designer, as assembly 
language is used less and less, except for teaching purposes or to meet a specific need 
in the use domain (cf. § V2-1.3). The other side of the coin is a more complex 
control unit and a longer execution for the instruction using it. We will see what the 
consequences of this will be covered in a future book by the author on 
microprocessors, which studies, among others, the RISC approach. If necessary, it 
specifies the means used to calculate the effective address (EA), also called the 
target address. This address is the result of the evaluation of an address according to 
its addressing mode. It will be applied on the address bus to reference the memory 
location if there is no virtual address mechanism at work (a mechanism that will be 
covered in a future book by the author on microprocessors). A synonym for EA 
(Effective Address) is “physical address”. In the contrary scenario, the effective 
address is a logical address that should then be translated into a physical address in 
the case of the Virtual Memory (VM) mechanism. Depending on the manufacturers, 
the name may also be different or there may be other nuances. To finish, some 
microprocessors distinguish access to instructions and to their operands from access 
to Input–Output (I/O) registers with specialized instructions (I/O addressing mode), 
thus making it possible to address different Address Space (AS) (cf. § V3-2.1.1.1). 
One example is shown in § 2.8.2. 

We define four modes of basic (i.e. simple) addressing, which are immediate 
addressing, implicit and explicit addressing and memory addressing. Memory 
addressing is broken down into direct, relative, indirect, indexed and based 
addressing. These modes indicate the way to fetch or store the operand. The storage 
of one value can only be done in a register or memory location. There can then exist 
combinations of these basic addressings, called complex addressings that can be 
replaced using a sequence of instructions with simple addressing. The other modes 
involve primary memory, the stack, the bit, the registers and those specific to a 
particular MPU family. To illustrate these, we have chosen some instructions that 
are representative of various MPUs. In these examples, all digital data will be 
expressed on base 10 (implicit base) with the exception of indications in the form of 
a character prefixing or post-fixing the value or of a number in subscript. To define 
the operand, the rules of syntax inspired by those of the MC6809 microprocessor 
will be the following: 

#: immediate value 

$: hexadecimal base 
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%: binary base 

The registers will be the following: 

PC: Program Counter 

A: accumulator 

The conventions for the pseudo-code will be the following: 

← or =: assignment of the right-hand value (similar to an rvalue) in the left 
identifier (similar to an lvalue). The symbol used means “receives” or “takes the 
value”. This left–right positional information avoids using parentheses, but it makes 
use of them for the right-hand value; they mean “contained in”. 

(): address access, of which the value is framed. 

@: (calculation of) the two-point symbol address: concatenation 

1.2.1. Immediate addressing 

Immediate addressing mode, also called immediate data addressing mode, makes 
it possible to initialize a register or a memory location with a constant value d, 
which is specified after the instruction mnemonic (cf. § 2.1) (Figure 1.8), hence its 
other name “literal addressing mode”. There is no effective address here since the 
memory is not addressed, but (DEC 1983) called it “PC immediate mode with auto-
increment” as the PC (Program Counter) is used to address the value memorized 
immediately after the instruction code. One example is LDA #%10101010 from 
MC6802 from Motorola, which means that the accumulator A receives the 
immediate binary value 10101010b (b for binary) in byte format. 

 

Figure 1.8. Instruction with an operand field 

It is one of the fastest addressing modes since the value is included in the 
instruction and there is therefore no additional access to the main memory to fetch  
the operand accessed by another addressing. But this value is a constant. In addition, 
from the perspective of programming, the change of value means a modification in 
the program since the value field cannot be a destination. The extent of the values  
(in the sense of Chapter 2 of Darche (2000)) is limited by the number of bits 
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remaining after subtraction of those bits reserved for coding the operation itself (a  
similar limitation for the address for direct and relative addressing). In its extended or 
long version, the format is double that of a short format. The possibility of choosing 
makes it possible to decrease the number of clock cycles to fetch the operand. An 
alternative to this mode is register addressing, which contains a constant value, which 
is materially fixed. This is the current practice with RISC microprocessors (this will 
be covered in a future book by the author on microprocessors) such as Arm®, whose 
register r0 contains the null value (cf. § V3-3.1), which can serve for initialization and 
avoids time-consuming external access to the main memory. 

1.2.2. Register addressing 

The use of registers makes it possible not to slow the microprocessor down since 
the registers are integrated. An instruction that uses them in addressing mode will 
only require external access to fetch the instruction code. It is possible to address a 
register in two ways, explicitly and implicitly. 

1.2.2.1. Explicit addressing 

The operand field operand(s) R specifies the registers used for execution. It is 
sometimes called register (direct) addressing, the term “direct” indicating that the 
referencing in the register is found in the instruction coding, as for the direct 
memory address (Figure 1.9). These registers are accessible to the programmer. 
There is no effective address since the memory is not addressed, hence a fast 
execution of the instruction using it and a small instruction format. It is for this 
reason that RISC microprocessors prefer to use this mode. For other architectures, 
the number of registers accessible to the programmer is limited (order of size: about 
20). 

 

Figure 1.9. Execution of an instruction using register addressing from one register 

The example below shows an addition in an Arm® microprocessor, which uses 
three registers: r0, r1 and r2: 

ADD r0,r1,r2; r0  r1 + r2 

Note, a distinction can be made between Data Register Direct Addressing and 
Address Register Direct Addressing as for MC68000 (cf. § V3-3.1.1). 
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1.2.2.2. Implicit register addressing 

To simplify the programming, some instructions use one or more registers in an 
extended or implicit manner. In this addressing mode, also called implicit or implied 
addressing mode, no operand is specified after the instruction mnemonic (cf. § 2.1). 
Execution of the instruction involves the reference to operand that is not joined to 
the operating code. One synonym is implication (Brooks 1962). The instruction 
format is reduced by it. One example is the dex instruction from MCS6502, which 
decrements its index register X. The name of this appears in the mnemonic to 
facilitate programming. Sometimes when the accumulators are used, this mode is 
called “accumulator addressing”. The example below applied to MC6809. The 
accumulator B specified by the last letter of the mnemonic receives a value 
expressed in hexadecimal base. 

LDB #$FA; B  FA16 

If the name of the registers does not appear in the mnemonic, then only a 
detailed reading of the technical documentation can specify the name of these 
registers. In the example below (MC6809), the instruction for multiplication mul 
(without operands) implicitly uses both implicit accumulator registers A and B and 
stores the concatenated result in these same registers, and the MSB (Most Significant 
Byte) is found in accumulator A, which in pseudo-code gives: A:B  A × B. 

Another example is the instruction from 8086 mul bl, which uses the implicit 
register A as source and destination operands in the case of multiplication in 8-bit 
format (ax  bl × al for this example). 

To generalize, an instruction lacking one or more operands found in a register 
(an accumulator for example) or in memory uses implicit addressing. We find this 
mode in machines with a single address called an accumulator or in the extreme case of 
zero-operand computers also called stack or pushdown-store machine (cf. § V1-2.7.1). 
By broadening the definition to registers that are not accessible to the programmer, 
any instruction for its execution uses the PC (Program Counter), which is therefore 
implicit. 

1.2.3. Memory addressing modes 

It is possible to address the memory in a direct, relative, indirect, indexed or 
based manner. Combinations of these modes are possible. Other specific modes are 
then presented. 
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1.2.3.1. Direct addressing 

Direct or absolute addressing is without doubt the most natural. It can access a 
memory address location A defined (i.e. arranged immediately) after the instruction 
code in the operand field (Figure 1.10). It can therefore be considered a constant. 
The effective address EA is given by the following formula: 

EA = A [1.1] 

 

Figure 1.10. Instruction with direct addressing 

It can be used by jump instruction to branch to a set location in the program. This 
mode is in fact an indirect mode with auto-incrementation using the PC (Program 
Counter) as an indirection register (cf.  § 1.2.3.3 for indirection). 

This mode allows for variations depending on the format of the address 
provided, the benefit lies in reducing the instruction’s memory size. Some 
manufacturers thus distinguish the short mode from the extended mode, known as 
long mode, depending on the format of the address A, provided. In the short mode 
(absolute short, page zero, also known direct at Motorola, a base page (IEEE 1985)) 
illustrated in Figure 1.11, the address is expressed in a smaller format than that of a 
microprocessor. The address field may also be smaller than 3 bits, one example 
being the 8021 microcontroller from Intel or, classically, 8 bits in 8-bit MPUs. Page 
zero can be seen as a bank of registers (RF for Register File, cf. § V3-3.1.11.1). The 
MIPS firm speaks of pseudo-direct addressing. Aside from a smaller format, the 
second benefit lies in decreasing the number of memory accesses to fetch the 
instruction code and the operand address. It is equivalent to a basic addressing + 
displacement, as in the IBM System/370 architecture, with a null base address. One 
example is the MC6802 microprocessor where the address is in byte format, while 
the format of the MPU address bus is double. This then limits the address space to 
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the interval [00, FF]16, hence the term “absolute short addressing” or “page zero”6 (if 
the size of the memory page is 256 bytes). In the example below, the A register 
receives the content of memory location 00. 

04F0   96 04 LDA $00; A  (00) 

 

Figure 1.11. Instruction with an address at page 0 

The concept of page zero addressing has been improved with direct page 
addressing. The direct page is now movable in a larger memory page. The start of 
the page is addressed by a specialized register (cf. § V3-3.1.1). We cite MC6809 (a 
page of 256 bytes in a space of 64 KiB, addressing capacity of the MPU itself, direct 
page (DP) register), the 65CE02 from Commodore Semiconductor Group or CSG 
(the same as before except that its addressing capacity is higher, base page register 
B) and the 65816 from the firm Western Digital Corporation (WDC) with an address 
over 16 bits in the direct page register D. 

A direct addressing is limited in its extent for a given instruction format; there 
are bits reserved for coding the instruction, which should be subtracted from the bits 
                                 

6 The mini-computer PDP-8 for Programmable Data Processor from DEC introduced in 1965 
used this term. 
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reserved for the addressing. This limitation can be lifted if the instruction format is 
not limited (i.e. variable format). With extended addressing, the address belongs to 
the microprocessor’s address space without restriction. The format is that of the 
address bus. It should be noted that the absolute address can be implemented with a 
basic address + displacement with a basic register with zero content base. 

1.2.3.2. Relative addressing 

Relative addressing, implied in PC (Program Counter-relative addressing), 
makes it possible to access a memory location relating to the current position of the 
program counter that, we recall, contains the address of the next instruction to be 
executed (Figure 1.12) after the decoding stage. This mode is in fact an indexed 
mode using the PC (cf. § 1.2.3.4 on indexing). With the following formula,  
we see that the effective address of the data or instruction relates to the PC by a 
value of d: 

EA = PCfollowing instruction + d [1.2] 

This is the favored mode for jump instructions, whether conditional or not  
(PC-relative branch). The relative displacement d is expressed in a signed integer 
representation, which is always the complement to 2n (two’s complement, cf. § II.2.5 
from Darche (2000)). Depending on the size of the displacement, the extent of the 
jump will be limited to (-2n-1, 2n-1 -1), with n being the format of the address field. 
Depending on the value of n of the relative address, we will call it a short or long 
jump. When the processor uses segmentation (this will be covered in a future book 
by the author on memories), jumps can be made within a single segment (intra-
segment jump) or between two segments (extra-segment jump). 

 

Figure 1.12. Execution of an instruction in relative addressing 

The example below (x86) is a negative jump. The hexadecimal value F9 
represents -7 in base 10. This means that the processor will connect 5 bytes higher 
than the instruction address, the difference of two bytes arising from the fact that the  
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PC has changed while the instruction was executed (incrementation of the size of 
this instruction, here, two bytes): 

73 F9 jnc loop; PC  PC + F916 

Two particular cases should be cited: jmp 00, which jumps to the following 
instruction since the program counter has been incremented during the decoding 
phase of the execution cycle (cf. § V1-3.2 and V1-3.3.2) to direct the following 
instruction and jump –n, where n is the instruction format (in words) underway, 
which implements an infinite loop. This mode is linked to PC (PC with displacement 
or Program Counter with Displacement for MC68000). It can be seen as an indexed 
mode, the indexation register being the PC (cf. § 1.2.3.4). 

This mode is useful for generating the independent code of implantation in 
memory (position-independent code). We also speak of a translatable code 
(relocatable code), a topic discussed in § 3.1.4. It is also at the root of implantation 
of classic control structures of high-level languages (if_<condition>_then_else, 
iterative structures (i.e. loops) such as while_<condition>_do, 
repeat_until_<condition>, for_<condition>_do, etc.) in assembly language. 

This mode can even be used to address an operand (Figure 1.13). We cite x86 
64-bit architectures with addressing called RIP (Instruction Pointer Register)-
relative, ARMv8 with literal mode and MPU MC6809 with the program counter-
relative mode. 

 

Figure 1.13. Seeking an operand in relative addressing  

This mode can be seen as an indirect mode auto-incrementation using the PC 
(Program Counter) as an indirection register (cf. § 1.2.3.3). 

1.2.3.3. Indirect addressing 

It is useful to dissociate addressing of the operand from that of the instruction 
code. The address may thus vary without changing the reference indicated in the 
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instruction. This mode is used to implement the mechanism of the High-Level 
(programming) Language (HLL) pointer. In assembly language, the square brackets 
“[“ and “]” are generally used to employ this mode. Some constructors use 
parentheses or the character @. A memory location or register contains the address 
of the operand. In indirect mode or register deferred mode (register indirect or 
register deferred addressing7) illustrated in Figure 1.14, the effective address EA is 
given by the following formula: 

EA = R [1.3] 

 

Figure 1.14. Instruction with indirect register addressing 

In memory indirect addressing illustrated in Figure 1.15, the final effective 
address EA is given by formula [1.5]. Here, it is a double indirection: 

EA’ = A [1.4] 

EA = (A) = A’ [1.5] 

 

Figure 1.15. Instruction with indirect memory addressing 

                                 

7 Vocabulary from DEC (1983). 
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This mode of addressing generally has a greater extent than direct addressing 
since the addressing format m is the same as that of the data format n. It was 
therefore useful for the first computers, which had a restricted addressing capacity 
(in the case of mini-PDP-8 computers from the DEC firm of the NOVA series from 
Data General, for example). Another advantage is the decrease in the instruction 
format, thus increasing the instruction throughput. For MC6809, the constructor 
speaks of “extended indirect addressing”. The compiler will doubtlessly use this 
mode to implement the high-level language pointer mode such as C or Pascal by 
putting the value of the pointer (i.e. an address) in the indirection register. 

An auto-increment or auto-decrement can be suggested, which can be done 
before (prefix “pre”) or after (prefix “post”) the instruction using it is executed. It 
makes it possible to implement operators directly, such as ++ and -- in the language 
C. This means that after execution of this operator, the value of the pointer that 
contains the address of the object pointed to is incremented or decremented by a 
value equal to the size of the pointed element. But in the MPU, the increment or 
decrement value is fixed at programming in low-level language. More generally, 
auto-increment or auto-decrement makes it possible to manage a memory index, 
which is useful, for example, in displacement in a data structure such as an array. 
Register indirect addressing with post- or pre-increment/decrement is adapted for 
digital signal processing to address samples. 

This mode is in fact the one that makes it possible to implement absolute 
addressing mode using the PC (Program Counter) as an indirection register. It is for 
this reason that DEC (1983) with PDP series, which used the PC as a General-
Purpose Register (GPR, cf. § V3-3.1), called it “PC absolute mode”, equivalent to an 
immediate indirect addressing (immediate8 deferred mode or auto-increment 
deferred mode). The term “immediate” means that the value immediately following 
the instruction code addressed by the PC will be used to fetch the address of the 
operand (EA = PC + 2 bytes in the case of the PDP-11 mini-computer) with, 
afterwards, an update to the PC. This same manufacturer proposed a relative 
deferred mode PC addressing, that is, indirect relative addressing, which uses the PC 
added to a displacement to fetch the operand’s address (EA = (PCinstruction + 1 + 
displacement) in the case of PDP-11). 

1.2.3.4. Indexed and based addressing modes 

Indexed addressing is characterized by using an Index Register (IR) that contains 
a reference address, called a base or offset address, making it possible to access a  
 

                                 

8 Here this means an immediate value following the instruction code that will serve as the 
address. 
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memory location. The content of this register, here R, is added to a displacement A 
specified with the instruction (Figure 1.16). The effective address EA is equal to: 

EA = R + A [1.6] 

Indexed addressing with null displacement is identical to register indirect 
addressing. This mode is equivalent to relative addressing if the index register is 
replaced by the PC (Program Counter). The index register may be implicit or 
designed explicitly as an operand. It can be dedicated specifically to this usage or it 
can be a GPR. In the former case, it is generally named X or Y (in the case of 
MCS6502). From the perspective of execution complexity, it adds an operation 
(addition) compared to the indirection. The @ symbol is generally used in assembly 
language to indicate this mode. 

 

Figure 1.16. Execution of an instruction in indexed  
addressing with displacement (indexation “true”) 

Cushman (1975) speaks of “true” and “false” indexing. Indexing is called “true” 
when the index address is the operand, the case in Figure 1.16 and MPUs MCS6502 
and 2650 (Signetics). In the second case, the index address is in the dedicated 
register and the operand is the index, one example being the MC6802/MC6809 
(Figure 1.17). The second field of the instruction word, called a “modifier” in 
Simpson and Terrell (1987) has an 8-bit format, while the index register format has 
16 bits. Some manufacturers such as Motorola consider the relative address as an 
indexed mode, the indirection register being the PC (Program Counter, cf. § 1.2.3.3). 
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Figure 1.17. Execution of an instruction in indexed  
addressing with displacement (false indexing) 

As for indirection with auto-increment or auto-decrement, auto-indexing can be 
suggested with the addition of an integer A to the value of the register R. The 
designer of M68HC12 speaks of pre-decrement and post-decrement indexed. At 
each execution, we will have: 

EA = R + A [1.7] 

R = R + 1 

Relative addressing is similar to an indexed addressing by the PC (Program 
Counter). It is for this reason that DEC (1983) called it “PC-relative addressing 
mode”. 

Scaled indexed addressing mode makes it possible to multiply the content of the 
index register by a constant 1, 2, 4 or 8, for example, for 80386. This facilitates 
management of data structures in high-level languages as an array, a structure or 
record. 

Base (plus) offset addressing arises from the principle above except that the 
index register is replaced by a base register (Figure 1.18), hence its other name: base 
register addressing. Intel uses the BX and BP (Base Pointer) for x86, the first 
addresses the data segment and the second addresses the stack. The IBM z System 
mainframe computer uses 16 General-Purpose Registers (GPR) in 64-bit format as a 
base register and the displacement is specific to the 12-bit format. At its origin, this 
mode made it possible to extend the address space. Today, this is no longer 
necessary.  
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Figure 1.18. Execution of an instruction in base addressing with displacement 

The difference between these two modes is more semantic than applicable to 
calculating the effective address. The index varies starting from a given index 
address with the instruction, while the base address is constant (hence its name) and 
an offset is provided with the instruction. Moreover, Intel uses the terms “base” and 
“indexed” for base addressing. Moreover, if no offset is specified with the 
instruction, Intel (1989) names the 8086 base and indexed addressing without offset 
“indirect register addressing”. Often, in RISC microprocessors such as Arm®, the r0 
register contains the constant 0, thus avoiding an immediate addressing using a main 
memory access that takes a great deal of time. If it is used as a base register, the 
addressing becomes absolute. The base mode is similar to segmented addressing 
(this will be covered in a future book by the author on memories). Another means of 
differentiating these two addressings is that there is no auto-increment with base 
addressing. 

Calculation of the effective addressing depends on the storage order or 
endianness (cf. § V1-2.2.1) of the address’ bytes. Thus, MCS6502 with a little-
endian order is favored because the addition is carried out starting from the LSBs. 

1.2.3.5. Combinations of addressing modes 

It is possible to combine the addressing modes above. Some processors offer 
indirect addressing with indexing. The associated terms “pre-indexing” and “post-
indexing” will qualify at what step of the address calculation the indexing will 
apply. Pre-indexing means that indexing is carried out on the indirection address 
(pre-indexed indirect addressing mode), hence the second name, “indexed indirect 
addressing mode”. 

We will have: 

EA’ = A + R [1.8] 

EA = (EA’) 
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Figure 1.19 shows the mechanism. One example was MCS6502, which included 
two registers called “index registers X and Y” even though X has already served for 
indirection. Its designer calls this mode (indirect,X), which is justified by the 
relationship [1.8]. It was also suggested by MC6809. DEC used the term “index 
deferred addressing mode”. 

 

Figure 1.19. Indirect indexed addressing or pre-indexing 

Post-indexed indirect addressing mode or indirect indexed addressing mode 
applies indexing after indirection, as illustrated in Figure 1.20. We will have: 

EA’ = A [1.9] 

EA = (A) + R [1.10] 

 

Figure 1.20. Indirect indexed addressing or post-indexing 
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The peculiarity of MCS6502 is that it used zero-page addressing as the address 
field was limited to 8 bits and the indexing occurred only on the lower part of the 
address (Figure 1.21). Its designer calls this mode (indirect),Y, which is justified by 
the relationship [1.10]. 

 

Figure 1.21. Indirect indexed zero-page addressing of MCS6502 

A representative, penultimate example is MC6809, which offers 18 variations in 
mode, combining indexed and indirect addressings with the possibility of automatic 
post-increment or pre-decrement. This post-increment or pre-decrement is useful for 
managing a stack’s pointer. Table 1.2 summarizes the possible combinations. R 
represents one of the four registers that can be used for indexing, the classics X and 
Y and the stack pointers user U and material S. Note the addressings using the 
program counter at the end. The offset is expressed in complement to 2n 
representation. 

Indexed and based addressings with or without offset (based indexed plus 
displacement addressing mode) can be combined, thus offering, for example, 17 
possible variations in the case of microprocessor x86. One example of this use is 
addressing an array of records, of a vector or of a structure, the base pointing the 
start of the array and index, an element of the array and the displacement, a field of 
the element. 
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MC6809 assembly language 
notation Description 

,R Zero-offset indexed 

[,R] Zero-offset indexed indirect  

,R+ 
Zero-offset indexed post-increment of 1 

(auto-increment R) 

,R++ 
Zero-offset indexed post-increment of 2 

(auto-increment R) 

[,R++] 
Zero-offset indexed post-increment of 2 indirect 

(auto-increment R) 

,-R 
Zero-offset indexed pre-decrement of 1 

(auto-decrement R) 

,--R 
Zero-offset indexed pre-decrement of 2  

(auto-decrement R) 

[,--R] 
Zero-offset indexed pre-decrement of 2 indirect 

(auto-decrement R) 

n,R 
Constant signed offset indexed 
(5, 8 or 16 bits offset from R) 

[n,R] 
Constant signed offset indexed indirect 

(5, 8 or 16 bits offset from R) 

A,R Accumulator A signed offset from R indexed 

[A,R] Accumulator A signed offset from R indexed indirect 

B,R Accumulator B signed offset from R indexed 

[B,R] Accumulator B signed offset from R indexed indirect 

D,R Accumulator D signed offset from R indexed 

[D,R] Accumulator D signed offset from R indexed indirect 

n,PCR 
Constant signed offset from PC indexed  

(8 or 16 bits) 

[n,PCR] 
Constant signed offset from PC indexed indirect 

(8 or 16 bits offset) 

[n] Extended indirect 

Table 1.2. Combined MC6809 addressing modes 

1.2.4. Other addressing modes 

Other modes have been introduced to provide a high-level functionality or to 
adapt to a specific domain such as digital signal processing (cf. § V3-5.2), to a 
specific mechanism of a processor or to a component such as an I/O controller  
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(cf. Chapter 3 of Darche (2003)) or a microcontroller (cf. § V3-5.3). Moreover, other 
modes belong to high-level languages. To finish, some obsolete modes are 
presented. 

1.2.4.1. Memory-to-memory addressing 

The memory-to-memory transfer functionality is possible in a von Neumann-
inspired MPU, but it should be seen as exceptional. This is the continuity of the 
tendency of CISC processors to implement high-level functionalities in the material. 
Intel calls this mode “string addressing” for its 8086. It involves addressing the 
characters of a string, that is, of an array of characters by indirection using both its 
pointer registers SI (Source Index) and DI (Destination Index). It makes it possible, 
among other things, to read or write a character and, whether the repeat prefix is 
conditional or not, to make a copy of it in the main memory. The search function in 
a string is also available. 

1.2.4.2. (Implicit) stack addressing 

Operands are found implicitly (i.e. they are not named) on the stack which is, we 
recall (cf. § 4.1), access to LIFO (Last-In/First-Out, push-in/pop-out or push-
down/pop-up memory) and implemented in primary memory in modern MPU. The 
two primitives (i.e. functions) to access it are stacking() and unstacking(), translated 
into instructions respectively by push() and pop(), for example, in x86 
architecture. These instructions implement, internally, an indirect addressing 
mechanism with the Stack Pointer register (SP), which memorizes the address at the 
top of the stack. The stack is implemented in main memory, but it can be 
implemented in the processor. The stacked element is specified with the operand. 
There are also specific instructions to a register, such as pha/pla (push/pull 
accumulator onto/from stack) from MC6800, which makes it possible to 
stack/destack this MPU’s accumulator. MCS6502 uses php/plp (push/pull 
processor status on/from stack) this time for the MPU’s context. By extension, stack 
computers do not explicitly name the operands (zero-operand, one-operand or two-
operand addressing). For reading on this subject, see Koopman (1989). 

The NS3200 (Hunter 1987) from National Semiconductor (NS) has broadened 
access to the stack by offering a mode called top-of-stack, literally “stack top”, 
which makes it possible to access the data of the so-called summit, since 
modification of the pointer is not systematic (i.e. dependent on the operation). To 
finish with this topic, MPUs such as the families Arm®, PowerPC or MC68000 
make it possible to use General-Purpose Registers (GPR) as stack pointers. The 
addressing mode is of indirect type with auto-increment/decrement. 
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1.2.4.3. Bit addressing 

The first GPPs (for General-Purpose Processor, cf. § V3-1.1) did not have 
specialized instructions to manipulate (set at one/zero or extraction) or to test 
individually the bits of an operand by conditional branching (cf. § 2.4.1). It is 
generally microcontrollers that possess them as they have to read or modify binary 
information in memory or at the input–output ports (cf. § 3.1 from Darche (2003)). 
Thus, the microcontroller 68HC12 from the MC6800 family from Motorola has the 
instructions bclr (bit clear) and bset (bit set) that initialize respectively at 0 or at 
1 one position bit specified with the help of a binary mask (see exercise E2.4) in an 
address word A. These instructions use this mode associated with pre-studied 
conventional addressing modes. It should be noted that the addressing space is 
limited compared to other modes. The example in Figure 1.22 shows a reset at 0 for 
the MSb (Most Significant bit) of an I/O port in byte format implanted at the address 
0F16. 

 

Figure 1.22. Execution of an instruction in bit addressing 

1.2.4.4. MMR addressing 

One possibility is to manipulate I/O registers as conventional addresses (MMR for 
Memory-Mapped Register, literally, registers projected into memory, cf. § V3-3.1.1 
and V3-2.1.1.1) in reduced format (page zero addressing) with fast specialized 
access instructions. One example is the Digital Signal Processor (DSP), reference 
C5000 from Texas Instruments (TI). 
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1.2.4.5. Addressing modes specific to the digital signal processor 

Other than indirect register addressing with post- or pre-increment/decrement, 
two other modes are particularly adapted to digital signal processing, which justifies 
their implementation in DSPs. This is circular addressing and (address) bit-reversed 
addressing. 

1.2.4.5.1. Circular addressing 

Digital signal processing consists of digitizing samples xi (i ∈ [0, ∞]) of the 
signal that are stored in memory, then carrying out a mathematical processing such 
as filtering on them to then reconstruct the analog signal. To simplify the discourse, 
memorization of coefficients needed for the calculation is not attempted. The sample 
flow is of infinite length, and the calculation is only made on a limited number of 
consecutive samples on the sampled sequence. This set is called a “window”. Linear 
addressing of the buffer FIFO (First In, First Out) illustrated in Figure 1.23a is not 
well adapted as it is necessary to test whether the pointers have reached the end. 
Moreover, the size of the buffer is necessarily high. The circular buffer (ring or 
cyclic buffer, circular queue), that Figure 1.23b shows, is a much better solution as it 
makes it possible to decrease its size to that of the window of samples needed for the 
calculation. 

 

Figure 1.23. Window of five samples 

Circular or modulo addressing makes it possible to implement a circular buffer 
in a Random Access Memory (RAM). As shown in Figure 1.24, it is necessary to 
have four pieces of information that are the size of the circular buffer L, the address 
of the base of buffer B, the index pointer of the buffer I and increment (relative 
integer) M. This addressing uses modular arithmetic where the extent of the values 
is finite to calculate the pointer addresses. The benefit of using it lies in the fact that 
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a block of L contiguous memory words is addressed by a pointer that uses a modulo 
addressing L. This means that once a pointer arrives at the end of a buffer, it is 
reinitialized to point the other end (more precisely, modulo addressing is the 
capacity to memorize the buffer). 

 

Figure 1.24. Circular buffer 

This is conveyed in algorithmic form by: 

0 < |M| ≤ L 

I  I + M 

if M > 0 

then 

if I ≥ B + L 

then I  I - L; buffer overflow or overflow from above 

end_if 

otherwise 

if I < B 

then I  I + L; buffer overflow or overflow from below 

end_if 

end_if 

Management logic detects a buffer overflow when there is a wraparound. It then 
generates an interrupt request (see Chapter 5) to warn the handler. This automatic 
management avoids a costly rearrangement of data by shifting them (Figure 1.25(a)) 
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and a permanent monitoring of the pointer value to know whether it has reached an 
end of the buffer in order to reinitialize it. It frees useful calculating power for 
processing. For example, as soon as the top of the buffer is reached, the following 
sample is stored at its start (Figure 1.25(b)).  

 

Figure 1.25. Comparison between linear and  
circular addressings (from Rao (2001)) 

The use domain is digital signal filtering carried out by a DSP where digital 
values, the results of a quantification of an analog signal, are stored in a delay line 
that can be implemented with a circular buffer in place of carrying out costly 
temporal shifts. The DSP ADSP-210xx family from Analog Devices uses this mode. 
One example of use is implementation of a Finite Impulse Response (FIR) described 
in § V3-5.2. 

1.2.4.5.2. Reverse bit order addressing 

Bit-reversed addressing makes it possible to manipulate materially the address 
without changing the source address. When the processor is set in this specific mode 
by the positioning of a flag (cf. § V3-3.1.5) in a control register, the address 
generator (AGU for Address Generation Unit, also called DAG for Data Address 
Generator or ACU for Address Computation Unit) generates bit-reversed 
addressing. This means that the LSbs (Least Significant bits) and MSb are 
exchanged, position 1 and m-2 bits are exchanged and so on (change from little-
endian order to big-endian order or vice versa). This mode is used in implementation 
of the Fast Fourier Transform (FFT) algorithm (Cooley and Tukey 1965), an 
effective method for calculating a Discrete Fourier Transform (DFT), used for 
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filtering or spectral analysis. Remember that the FFT makes it possible to change the 
time domain to the frequency domain and vice versa. The problem is that the result 
output order differs from that of the input or vice versa. This mode makes it possible 
to preserve the initial order of the data by choosing out-of-order input samples to 
keep the output order of the data results identical to that of the input. Figure 1.26 
shows the details of the calculation of a DIT (Decimal-In-Time) FFT, which is 
characterized by the inversion placed at the start, compared to calculation of a DIF 
(Decimal-In-Frequency) FFT, where the inverter is at the end. Each node represents 
a complex addition (in an imaginary sense). Without going into detail, note the value 
of the sample indices before and after inverting the order of their binary digits.  
is the twiddle factor, also called a Fourier coefficient or an nth root of unity. The 
dsPIC® microcontroller family from Microchip, DSP32xx from AT&T and DSPs 
from the SHARC® (DSP-21xxx) family from Analog Devices with the instruction 
bitrev that reverse the content of a register are examples of components offering 
it. The mac instruction was introduced into DSPs for this type of calculation  
(cf. § 2.8.4.2). 

 

Figure 1.26. Flow diagram of the algorithm of an 8-point FFT DIT in base 2 
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To carry out this inversion of the address bit order, Reverse-Carry Arithmetic 
(RCA) is used. The sub-set managing the address or AGU (cf. § V3-3.4.4) reverses 
the direction of the bits retained when an increment is added to the value of an 
address register. Two processors that implement it are DSP32xx from AT&T and 
DSP56000 (Motorola 1992). The AGU also implements linear and modulo 
arithmetic. 

1.2.4.5.3. Linear addressing 

The DSP56000 uses a – perhaps poorly named – address modifier. It makes it 
possible to jump address at each access with a stored constant memorization in a 
register. The benefit is easy access to the elements of a complex data structure. 

1.2.4.6. Modes specific to the assembler 

The assembler can offer addressing modes that do not exist in the MPU. Each 
instruction using them will be replaced by an equivalent logical sequence. One 
example is symbolic addressing, which facilitates programming of a jump to a specific 
location in the code marked by a symbolic name called a label (cf. § V5-1.3.3). This 
mode belongs to assembly language (cf. § V5-1.3), unlike those seen previously in 
this chapter which belong to machine language. It is used to make a jump to a 
precise place in the code marked by this symbolic name. One example is MPU 
MIPS R2000/R3000 (Kane 1988). 

1.2.4.7. Obsolete modes  

The modes studied so far are those that are currently available. Some modes 
have been abandoned because they are complex or not useful. For example, page-
zero and direct paged modes (microprocessor IM6100 from Intersil) with current 
memory sizes are no longer required. We also mention truncation, which consists of 
deleting the most significant address bits to adapt to addressing capacity in the 
storage hierarchy considered (Brooks 1962). 

1.2.4.8. Note  

Sequential execution of instructions in von Neumann architecture (cf. § V1-3.2.2) 
can be seen as a sequential addressing mode (source: Wikipedia). 

1.2.5. Summary on addressing 

Addressing modes have evolved to meet needs in the software industry to 
improve efficiency of programs and facilitate implementing functionalities of high-
level languages as their control structures. It is useful to class addressing modes 
depending on their content, code or data. Simple code addressing modes are 
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Program Counter (PC)-relative absolute addressings and indirect register 
addressings. Sequential execution by nop instruction can be seen as an addressing 
mode. Sample data addressing modes are immediate, (direct) register, implicit and 
base plus offset modes. Mixed (code/data) modes are direct absolute and indexed, 
base plus index modes with or without offset (base plus index plus offset), scaled 
indexed modes, register indirect modes, indirect register modes with auto-increment, 
indirect memory and PC-relative modes. 

Making the programmer accessible to registers that are not conventional, such as 
PC and SP, makes it possible to enrich addressing modes. Thus, some modes can be 
implemented using others, such as, for example, absolute and relative modes with 
respectively indirect and indexed modes.  

The trend has been towards multiplying addressing modes, making it possible to 
adapt to complex data structures such as those of high-level languages or application 
domains such as digital signal processing with its operations such as convolution or 
correlation. This wealth of modes facilitates the life of the assembly language 
programmer and makes it possible for the code to be compact during compilation. 
The counterpart is the complexity of the CU (Control Unit), one of the defects of the 
CISC approach (this will be covered in a future book by the author on 
microprocessors). The number of possibilities of machine codes depends on the 
number of instructions and associated addressing modes. Therefore, MC6809 had 59 
instructions and 1,464 machine codes (Motorola 1981, 1983). A reverse tendency 
was that of reduced instruction set architectures (RISC, this will be covered in a 
future book by the author on microprocessors). 

1.3. Conclusion 

The following chapter focuses on the instruction set for a generic microprocessor 
by presenting the different instruction families and extensions in this set. 



2 

Instruction Set and Class 

This chapter focuses on perhaps the most important characteristic of an ISA 
(Instruction Set Architecture, cf. § V1-3.5), which is a processor’s instruction set. 
We define and propose how to classify instructions, and then present the different 
instruction families for a generic microprocessor as well as the possible extensions 
for this set. 

2.1. Definitions 

Instructions differ depending on their designers in their number, name, 
mnemonic, the number of operands and addressing modes and in their syntax. From 
their designation (i.e. name and mnemonic), these characteristics depend on the type 
of architecture and ISA (cf. § V1-3.5). We must distinguish the instruction name, 
which always begins with an action verb indicating the operation to be executed  
(e.g. move) from its symbolic or mnemonic name, which is either its abridged  
instruction name (e.g. mov) or an acronym that always begins with the first letter of the 
action verb according to IEEE standard (Std) 694-1985 (IEEE 1985) (cf. § V5-1.3.2). 
One benefit of this choice is that the alphabetic order corresponds to the function, 
with some exceptions. This facilitates a modern microprocessor’s (MPU for 
MicroProcessor Unit) reading of several thousand pages of documents. Still 
following the recommendations of this standard, it should not include any integrated 
addressing mode specification, or integrated operand name. The execution 
conditions are integrated. The type of operand specified in the suffix begins from a 
point in the mnemonic or, in some cases, in the operand. There may be synonyms of  
mnemonics for a single operation, one example being arithmetic and logical left  
shifts (sal1 and shl from the x86 family). A processor’s instruction set is grouped 
within the instructions or IS (Instruction Set), and a microprocessor that executes 

                                 

1 Instruction shla (SHift Left Arithmetical) in the standard. 

Microprocessor 4: Core Concepts – Software Aspects, 
First Edition. Philippe Darche. 
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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instructions from a fixed IS is called an ISP (Instruction Set Processor). The 
instruction set can be extended and complex, or, on the contrary, it may be reduced 
and simple, hence the names for the respective microprocessor families CISC and 
RISC (respectively Complex and Reduced Instruction Set Computer, this will be 
covered in a future book by the author on microprocessors). Instructions that are 
complex in their function, variable format, transfer type, etc., complicate the 
compiler’s task because of the various cases to be taken into account. A 
compromise, depending on the applications targeted and the complexity of the 
control unit, should therefore be found when choosing instructions. To be 
comprehensive, the Application-Specific Processor (ASP, cf. § V3-1.1) has a 
specific instruction set, hence the acronym ASIP for Application-Specific 
Instruction set Processor. 

The process of classifying instructions generally relies on the locality of 
execution or processing. We can thus classify instructions into three main families 
or classes, one for data transfers, one for arithmetic processing instructions for 
integers and logical instructions and one for control transfers (Figures 2.1a and b). 

 

Figure 2.1a. Instruction classification in modern MPUs 

A fourth class is that of system control, which Kaeli and Yew (2005) call “the 
environmental instructions class”, that is, those executed in most cases in privileged 
mode (if this exists) by the Operating System or SE (InTerruption (IT), management 
of hardware resources, etc.) to control the MPU. Execution parallelism instructions 
such as atomic instructions (cf. § 2.6.1) were introduced subsequently in 
microprocessors. A final class is that of extensions to the instruction set for a 
particular application such as multimedia application. Figure 2.1(b) completes this 
classification. 
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Figure 2.1b. Classifying instructions in modern MPUs (continuation and end) 

An instruction set can also be subdivided into several sub-sets depending on the 
execution rights or modes, of which there are generally two, administrator and 
simple user (cf. § 3.2.2). Another criteria for classification is the number of operands 
(0, 1, 2, etc.). A component such as the microcontroller or Digital Signal Processor 
(DSP) will add the bit manipulation instruction family. 

We will now see the instructions for these classes in detail. To present them in a 
readable and generic form, the Assembly Language (AL) mnemonics (cf. § V5-1.3) 
used are those from IEEE Std 694-1985 (IEEE 1985) or those of industrial 
components. 

2.2. Transfer instructions  

One of the three MPU functions, aside from their processing (i.e. calculation) 
and storage, is data transfer. An additional function is manipulation of the address 
itself. 

2.2.1. Data transfer 

Data transfer, also called “information-moving instructions”, can be made from 
memory to register and vice versa (memory access instructions), as well as from 
register to register, per word or per block of memory words. For the first two  
forms, the reason linked to architecture comes from the basic operating cycle that 
permits only a single access to the memory per cycle (the golden rule of access,  
cf. § V1-3.3.3), for example, for accumulator architectures (single-bus structure,  
cf. § V1-3.4). A register such as an accumulator should then be used as an 
intermediary for transfer and exchange. It is also possible to load a literal in a 
register or memory. Depending on the architectures and designers, there may be an 
instruction for each type of transfer. 
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We list, depending on the direction of transfer, ldx or ld <name_or_ 
reference_of_source_register> for loading in the processor and stx or 
st <name_or_reference_of_destination_register> for loading 
from the memory towards the processor, with x indicating a register. A single one 
can also suffice, such as mov (x86) or move (MC68020) and, to transfer several 
registers to the memory and vice versa, movem (MC68000). There may be an 
exchange instruction between two operands such as xchg from 8086 or exchange 
from MC68020 or between two parts of an operand such as swap from MC68020. 
It should be noted that 8085 from Intel executes the exchange using two internal 
registers, W and Z allowing temporary storage of operands. 

Traditionally, the transfer instruction does not update the status register (cf.  
§ V3-3.1.5), but there are counter-examples such as with the VAX (Virtual Addressed 
eXtended) mini-computer from the Digital Equipment Corporation (DEC) whose 
transfer instructions position the flags. Another example is the instruction move 
from MC68020 that positions indicators N and Z depending on the value of the 
operand, fixes C and V at zero and does not modify the flag X (eXtend flag). 

Stack manipulation instructions are a special case. The stack, with LIFO (Last-
In/First-Out) memory access, is generated by two primitives that are, we recall  
(cf. § 4.1), stack() and unstack(). On the contrary, Arm® uses two traditional transfer 
instructions instead of the specialist instructions push and pop. We will explain in 
detail how these operate in a future book by the author on microprocessors. 

Advanced modes have been implemented, such as transfer between two memory 
areas or regions, either of a whole word or a part of this word with the aid of a 
logical mask or the transfer of several words (block transfer). These are character 
manipulation instructions (Zilog family or Intel, for example) enabling transfer of a 
block of bytes as well as a search for a binary pattern within it. The associated 
instructions are described in § 2.8.1. Another example with P6 architecture, with 
Pentium Pro as the first representative in 1995, introduced conditional transfer 
depending on the state of one or more flags (instructions cmovcc, cc indicating the 
condition). 

Depending on the address spaces (cf. § V3-2.1.1.1), specialist instructions are 
sometimes available for input–output (input/output) transfers (cf. § 2.8.2). 

Moreover, to carry out transfers in a multiprocessor environment with shared 
memory, some MPUs, such as the DSP TMS320C3x family, offer (inter-)locked 
(un)loading instructions for integer and floating-point numbers respectively ldfi  
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(load floating-point value into a register, interlocked), ldii (load integer into a 
register, interlocked), sigi (signal, interlocked), stfi (store floating-point value 
to memory, interlocked) and stii (store integer to memory, interlocked), which are 
linked to two signal synchronization hardwares XF[1:0]. 

2.2.2. Address manipulation instructions 

Some processors have an instruction that can recover the effective address, as in 
architectures x86 and IBM System/390 (mainframe, cf. § V1-1.2). With Intel, it is 
called lea for Load Effective Address. One application is to decide the address 
from the start of a data structure, for example, an array, to be able to pass it to a 
function (passing by reference). Being able to manipulate the Effective Address 
(EA, cf. § 1.2) makes it possible to implement a complex addressing mode such as 
based indexed addressing with offset (cf. § 1.2.3.4), which makes it possible to add 
two register values with one constant, which is useful for signal processing. 

2.3. Data processing instructions  

The main function of an MPU is to process information. (Data) processing 
instructions are also called transformational instructions. For this sub-set, we need to 
distinguish arithmetic instructions for integers and for bit manipulation. 

2.3.1. Arithmetic instructions for integers 

Arithmetic instructions, which were the first to be implemented in 
microprocessors, involved integers with addition (add) and subtraction (sub). 
Multiplication (mul) and division (div) appeared much later with MC6809 from 
Motorola. Particular forms of addition and subtraction are respectively 
incrementation operators (inc) and decrementation operators (dec) where the 
implicit implement value is the unit. Exercises V3-E3.2 and V3-E3.3 suggest 
studying their respective logic function. Addition and subtraction can take account 
of a previous carry (in the x86 architecture, respectively addc - addition with 
carry and sbb - subtract with borrow), useful in chained operations (RCA for 
Ripple-Carry Addition). Moreover, the comparison (cmp) executes a subtraction 
without giving a result that positions the indicators. It traditionally precedes a 
conditional jump instruction (cf. § 2.4.1). It should be noted that instruction cmp2 
from the 68,000 family makes it possible to test whether a value belongs to a range. 
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The operations are carried out in the format n. This type of arithmetic is called 
“modular” (modular arithmetic) or more rarely called wraparound arithmetic, 
literally enveloping arithmetic (i.e. that loops). This means that if there is a format 
overflow (in the case of a natural integer) or capacity overflow (in the case of a 
relative integer), the result will be false but not blocking (i.e. execution continues). 

All these operations can be signed or unsigned. The two representations of whole 
numbers in a binary code that have been kept are respectively Natural Binary Code 
(NBC) and two’s complement representation. The distinction for addition and 
subtraction is made by coding the operands and reading the carry flags C and overflow 
flags V for the validity of the result. The instruction neg (Negate) subtracts a zero-
operand to calculate its opposite in two’s complement representation. For 
multiplication and division, distinct mnemonics are proposed for the unsigned version, 
for example, respectively imul (Integer Multiply) and idiv (Integer Divide). 

Some MPUs do not position the indicators by default. We cite the Arm® family 
that requires suffixing the mnemonic by one S, which forces it to position the 
indicators on the result. This avoids side effects (cf. § V3-3.1.12.1.). 

Adjustment instructions make it possible to use these arithmetic instructions for 
whole numbers coded in other representations such as BCD code (Binary-Coded 
Decimal, cf. § II.1.2 from Darche (2000)). We take the example of the x86 architecture. 
For compact BCD (format n = 2 digits, so one byte), there is daa (Decimal Adjust for 
Addition) and das (Decimal Adjust for Subtraction). In the non-compacted version  
(n = 1), there are the badly named2 aaa (ASCII Adjust for Addition) and aas (ASCII 
Adjust for Subtraction). Correction consists of adding 6 to each invalid digit result  
(cf. exercises E2.1 and E2.2). To conclude, we cite for non-compacted BCD (n = 1) only 
aam (ASCII Adjust for Multiply) and aad (ASCII Adjust for Division). 

Format extension instructions make it possible to extend the sign to higher 
formats while nonetheless not modifying the indicators. We cite version x86 cbw 
(Convert Byte to Word) and cwd (Convert Word to Doubleword). 

2.3.2. Bit manipulation instructions 

Figures 2.2(a) and (b) show the different operations for the bits in one word. We 
recognize the classic base operators, those from basic combinatorial logic (i.e. 
Boolean) as well as non-parallel operations, which are shifts and rotation. We call 
the latter scale operators or, better, bitwise operators. 

                                 

2 The acronym ASCII (American Standard Code for Information Interchange, cf. § III.3.4 
from Darche (2000)) is deceptive here, since the underlying representation is BCD. 
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Figure 2.2a. Classification of the main bit manipulation operations 

Today, with the integration of a vector unit in microprocessors, in particular for 
multimedia3 applications, we must consider changed and advanced bit manipulation 
instructions. These two adjectives are used to distinguish the complexity of 
manipulations and the dates they appeared. Atomic instructions are studied in  
§ 2.6.1. 

 

Figure 2.2b. Classification of the main bit manipulation  
operations (continuation and end) 

Prior to presenting operations, it is necessary to define three terms relating to 
binary data. 

                                 

3 Multimedia covers several data representation modes, visual 2D and 3D (text, video, still or 
moving graphic images) and audio (music, voice and sound) by linking them with interaction. 



40     Microprocessor 4 

2.3.2.1. Preliminary definitions  

A superword is used to designate a vector. A bit field in a word in format n is a 
contiguous sequence of bits in the format 1 ≤ n’ ≤ n. We can consider this field as a 
data structure formed of any number n’ of consecutive bits (chain of consecutive 
bits). A sub-word of a word in the format n is a word of length n’ = 2k with k natural 
integer and n’ < n. It is this word’s unit of subdivision that has consequences on 
alignments within it. Sub-word type data will be called “condensed or compacted 
data4“ or packed. The word to which it belongs will be called “a word (broken 
down) into packets”. This organization is adapted to multimedia data such as RGB 
(for Red–Green–Blue) data with pixel attributes. The sub-word becomes the atomic 
operand (i.e. unit of decomposition) for parallel calculation. This approach is called 
“sub-word parallelism” or “MicroSIMD type parallelism” by Lee (1999) and will be 
explained in a future book by the author on microprocessors. 

2.3.2.2. Basic Boolean operators 

The combinatorial logic base operators (cf. Chapter 2 of Darche (2002)), which 
are and, or, exclusive or (xor5 or eor) and not, apply to each bitwise 
operation. Equivalent operators in C language are respectively &, |, ^ and ~. Aside 
from the last, these are Boolean operators with type 2-arity, that is, with two 
operands. They are used in particular for masking and logical bit forcing to the state 
“1” or “0” (cf. exercises E2.4 and E2.5 and § 2.2 from Darche (2002)). 

The instruction test (x86) or bit (HC11 microcontroller family) is a logical 
AND that does not provide the result but which positions the indicators. It should be 
followed immediately by a conditional jump instruction, or, in any case, we should take 
care that no instruction modifying the indicators is intercalated (cf. § 2.4.1). 

Instead of programming a software masking solution, that is, depending on the 
case, a logical AND or OR between the data and the mask, specialist instructions for 
manipulating a bit have been implemented. As explained in § 1.2.4.3, these 
instructions are reserved especially for microcontrollers as they make it possible to 
manage more closely the I/O lines. They make it possible to set the bits of a word at 
0 or 1 logic respectively bclr (clear bit(s) in memory) and bset (set bit(s) in 
memory) for 68HC11 family do so in the memory, with an operand playing the role 
of mask. They also offer the possibility of branching on a bit state. In the same 
family, we cite brclr (branch if bit(s) clear) and brset (branch if bit(s) set). But 
classic MPUs generally have instructions for setting binary indicators from the 
status register (cf. § V3-3.1.5) at 1 or at 0. More particularly, the instructions set 

                                 

4 To return to the vocabulary of BCD representation (Binary-Coded Decimal, cf. § II.1.2 from 
Darche (2000)). 

5 Note that the mnemonic violates the rule of naming a mnemonic from standard (cf. § 2.1). 
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and clr respectively force the specified operand to “1” and “0”. IEEE Std 694-1985 
(IEEE 1985) proposes respectively suffixes -C and -V used with these two last 
instructions (cf. § V5-1.3.2) and the instruction not to modify the value of the 
binary indicators carry flag (CF) and (capacity) overflow flag (OF). Some MPUs 
have specialized flag instructions. For example, we cite cli (Clear Interrupt Flag) 
and sti (Set Interrupt Flag) which position the interrupt mask in x86 family to 
respectively inhibit or authorize external interruption requests (cf. § 5.2). It should 
be noted that some MPUs such as x86 family make it possible to test the value of a 
particular bit of an operand and extract or initialize it (bt/btc/btr/bts, cf.  
§ 2.6.1). In the same architecture, the instruction bzhi (for zero high bits starting 
with specified bit position) makes it possible to copy the bits of the source operands 
while still setting the most significant bits of the destination operand at zero 
avoiding software masking. 

For the record, mainframe computers of the 1960s offered a set of logical 
combined instructions less refined than those of System-10 from DEC (Table 2.1). 

No. Mnemonics Operations 
0 setz 0 

1 and ܣ ⋅  ܤ

2 andca ̅ܣ ⋅  ܤ

3 setm ܤ 

4 andcm ܣ ⋅ തܤ  

5 seta ܣ 

6 xor ܣ ⊕  ܤ

7 ior ܣ +  ܤ

8 andcb ̅ܣ ⋅ തܤ  

9 eqv ܣ ⊕  തതതതതതതതതതܤ
10 setca ̅ܣ 

11 orca ̅ܣ +  ܤ

12 setcm ܤത  

13 orcm ܣ + തܤ  

14 orcb ̅ܣ + തܤ  

15 seto 1 

Table 2.1. Logical instructions from DEC System-10 
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2.3.2.3. Basic non-parallel manipulations 

Simple, non-parallel base operators are unitary operators, (open) shifts and 
rotations. These last two operations can be made on the left and on the right. A 
number of operations can be specified with the operand involved (so the right 
operand). 

Unitary operations are Boolean, but they consider a non-null word as a logical 
“1” and the null value as a logical “0”. Their implementation gives, for example, the 
operators && and || in C language. 

In the shifts, we should distinguish logical and arithmetic variants. The logical 
shift does not consider the leftmost bit as a sign bit but instead as an ordinary bit. A 
zero (kill value, cf. § V3-3.3) is injected in the register. It takes the place of the 
vacated bit. The outgoing bit goes in the status register carry flag. Equivalent 
operators in C language for left shifts (lsl for Logical Shift Left or asl) and (lsr 
for Logical Shift Right or shr) are respectively << and >>, the symbol chosen 
suggesting the direction. Figure 2.3 illustrates our idea. In the x86 architecture (386 
and above), left and right shift instructions, respectively shld and shrd (Bitwise 
Double-Precision Shift), make it possible to carry out a shift between two operands 
specified in the instruction without changing the source. 

 

Figure 2.3. Logical left and right shifts 

The arithmetic shift, when it is made to the right (sar for Shift Arithmetic 
Right; Figure 2.4), duplicates the sign (i.e. the vacated bit takes the value of the 
sign). This propagation of the sign makes it possible to preserve the operand’s 
polarity. The outgoing bit is stored in the carry indicator (not proposed by the 
standard). Shift Arithmetic Left (sal or shla) is equivalent to a logical shift in the 
same direction (cf. Figure 2.3). 

 

Figure 2.4. Shift arithmetic right 
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The shift function is generally used to multiply or divide a number (by 2), to 
make a mantissa alignment6 or normalization (cf. § II.4.2.7.1 in Darche (2000)) in 
floating-point representation or to insert or extract a field from a binary word. The 
particular instance for this function is to isolate a bit in order to test it (cf. exercise 
E2.5). 

Rotation is a shift looped on itself, as Figure 2.5 illustrates, hence the rarely used 
name “cyclic shift” compared to the open shift. The outgoing bit is re-injected at the 
other end. 

 

Figure 2.5. Left and right rotations  

If required, a link bit can be inserted in the rotation loop. In most cases, this is 
the carry flag, as Figure 2.6 illustrates. This makes it possible, for example, to make 
a conditional jump onto the value. 

 

Figure 2.6. Left and right rotations through carry 

Figure 2.7 shows an example of shift and an example of rotation for s bits. 

 

Figure 2.7. Generic examples of multiple shifts and rotation 

                                 

6 This should not be confused with the alignment of information seen in § 3.1.2. 
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Some processors can have particular shifts. 386 from Intel and the following 
generations offer a double shift by linking one register with another or a memory 
location with the instructions shrd (Shift Right Double) and shld (Shift Left 
Double), thus doubling the format (Figure 2.8). Along the same lines, PDP-10 
offered a double rotation by linking two consecutive registers. 

 

Figure 2.8. Double shift with a 386 

Another particular example is Z80, which offers a left or right rotation 
(instructions rld and rrd – rotate left/right digit) in packed BCD representation in 
number format (i.e. 4 bits). 

2.3.2.4. Advanced bit manipulation instructions  

Shifts and rotations can be made in the sub-words. We speak of a packed shift 
and packed rotation. There is also the instruction rldimi from PowerPC 
(Performance Optimization With Enhanced RISC Performance Computing), which 
makes possible a rotation with insertion masking in a 64-bit format. The masking 
can be carried out by inserting a bit field at a set position. Aside from shift and 
rotation, other more advanced bit manipulation operations have been imagined. 
These are extraction, field deposit and shuffle. 

Figure 2.9 shows an example for the first two. Field extract consists of selecting 
a bit field of arbitrary length from a source word and position, starting at position p 
(pth + 1 bit) and storing it, right-justified, in a destination operand initially at zero 
(sub-word extract). The equivalent operation with base operations is a masking to 
select the field and a logical right shift of p bits applied to the source operand. The 
equivalent expression in C language is the following: 

dest = (src >> start) & (1 << (len-1)) [2.1] 
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The instruction bextr (Bit Field Extract) from the BMI 1 (Bit Manipulation 
Instructions) extension from Intel is one example. In version 2 of this set (i.e. BMI 2), 
Intel offers a “word” version with the instruction pextrw (Packed Extract Word) from 
the SSE (Streaming SIMD Extensions) set. Another example is the instruction u/sbfx 
((un)signed bit field extract) from the ARMv7 architecture or the instructions found in 
the Arm® Cortex-M3 microcontroller that may or may not include the sign.  

Field deposit is the symmetrical operation. It consists of selecting the l first bits 
of a source operand and depositing them at position p in a destination operand 
initially at zero (sub-word deposit). The equivalent operation with base operations is 
masking to select the field and a logical left shift of p bits applied to the source 
operand. One example is the instruction bfi (bit field insert) from the ARMv7 set. 
Intel with the instruction pinsrw (Packed Insert Word) from the SSE set offers a 
“word” version. We can also list the instructions bfins bfextu from MC68020. 

 

Figure 2.9. Field extract and field deposit operations 

Shuffle allows partial interleaving of sub-words from two source words in a 
destination word. There are two kinds, left and right, as Figures 2.10 and 2.11 
illustrate. Traditional sub-word formats are typically 8, 16 and 32 bits for a 64-bit 
word but, generally, the format n’ of a sub-word from a word in n format is given by 
the inequation 0 < n’ < n. It appeared with PA-RISC7 (Lee 1996) to accelerate 
calculation of multimedia applications, it is also found in Itanium from Intel (Lee  
et al. 2001). One example of shuffle is mix from the PA-RISC 2.0 architecture (Lee 
and Huck 1996), which is found in the IA-64 architecture (Intel Architecture). 
Another example is pshufw/pshufb from the SSE extension versions 1 and 3  
(cf. § 2.6.1), versions for condensed floating numbers also exist in SSE2. 

Reverse instructions also exist. Figure 2.12 shows instructions rev, rev16 and 
rev32 from the Arm® and Thumb® family applied on a 64-bit word as an example. A 
square represents a byte. They can apply only to one word, at least in double format. 
There is also a bit-level version (complete reversal of the order of the word) with rbit. 
                                 

7 PA for Precision Architecture. 
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Figure 2.10. Left shuffle operation (interleaving) 

 

Figure 2.11. Right shuffle operation (interleaving) 

 

Figure 2.12. Reverse instructions from the Arm® and Thumb® family (n = 64) 
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To conclude, and for information, counting instructions makes it possible to 
count the number of bits at 1 or 0 (lzcnt, tzcnt and popcnt with Intel). 

2.3.2.5. Advanced bit manipulation instructions  

There are three Advanced Bit Manipulation (ABM8) instructions. There are bit 
gather, bit scatter and bit permutation operations (Figure 2.13). 

 

Figure 2.13. Classifying advanced bit manipulations  

The two previous advanced operations, which are field extract and field deposit, 
may exist in multiple forms. The gathering of bits, also called parallel extract, 
consists of making several extractions of groups (or fields) of bits and regrouping 
them. The scattering of bits or parallel deposit consists of carrying out the reverse 
operation, that is, extracting groups of bits and dispersing them. For these 
operations, a stuffing of 0 is made if necessary (bit stuffing). Figure 2.14 illustrates 
both these operations. Signaling using “1”s indicates respectively the bits to be 
gathered or the locations that will receive the bits to be scattered. We also cite as 
industrial examples respectively the instructions pext (Parallel Bits Extract) and 
pdep (Parallel Bits Deposit) from the BMI 2 set from Intel. 

 

Figure 2.14. Field extract and field deposit operations of parallel bits  

                                 

8 This should not be confused with technology from AMD (see below). 
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An example of the permutation instruction is permute from the PA-RISC 2.0 
architecture (Lee and Huck 1996). One permutation at the bits (of one word) is an 
arbitrary rearrangement of these in this word (cardinality = n!). This operation is 
beneficial, for example, in the domain of cryptography. Any permutation in the 
format n bits can be carried out, as Hilewitz and Lee (2006, 2008) have shown, by 
passing only once through two units that carries out a butterfly permutation, a 
normal (instruction butterfly or bfly) then an inverse butterfly or ibfly 
instruction. The association of these units forms a Benes circuit (Benes 1964). To do 
this in an n-bit format, we need log2(n) steps of n/2 switches (Figure 2.15a), each of 
them formed of two two-input multiplexers (Figure 2.15b) (2:1 MUX), where the 
information passes through as it is (E = 0, variables a and b underlined in the figure 
on the right) or there is an exchange of inputs (variables a and b not underlined). 

 

Figure 2.15. Normal butterfly circuit in n = 8 bits format (a) 
and associated switch (b) 

Figure 2.16 shows the symmetrical circuit from the previous one. 

For these advanced families, manufacturers have suggested technology names to 
indicate these additional specialized instruction sets. We cite ABM (Advanced Bit 
Manipulation) and TBM (Trailing Bit Manipulation) for AMD and BMI 1 and 2 
from Intel. These sets are specialized ISA extensions such as SSE at Intel. 
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Figure 2.16. Reverse butterfly circuit in n = 8 bits format 

2.4. Control transfer instructions  

In the Von Neumann architecture, the execution of instructions is sequential in 
origin (cf. § V1-3.2). To be able to implement, among others, high-level language 
control structures such as, for example, if_then_else, control-flow instructions are 
needed, also called program control instructions or program transfer instructions. 
They will alter the execution’s sequentiality, hence a final name, sequence breaking. 
The rupture of flow control or of the execution sequence is simply obtained by 
changing the value of the Program Counter (PC), which makes it possible to “break” 
this sequentially of the execution model. It is necessary to distinguish conditional 
and unconditional (de)branching instructions9 (of the execution sequence); the latter 
includes subroutine call and return instructions and, to conclude, those for handling 
(or processing) hardware and software interruptions with, among others, exceptions 
(cf. § 5.4). 

                                 

9 Some authors, as Etiemble (2016) and Clements (2014) explain, distinguish the jump (the 
Program Counter (PC) receives an absolute address) from the branch (addition of a relative 
address to the PC). This distinction will not be made in this book as the two names have an 
identical meaning. The context will be enough to show whether it is a conditional operation or 
not. 
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2.4.1. Branchings 

These instructions alter the sequentially of execution by making it possible to 
jump to an instruction other than the following one. They play a fundamental role in 
programming languages as it makes it possible in particular to achieve a branch-on-
condition. To do this, there are, in the MPU instruction set, specialized jump 
instructions, also called jump or branch or test instructions, conditional or not, and 
for which Figure 2.17 shows a classification. The three addressing modes currently 
used are relative, direct modes or absolute and indirect modes. An indirect jump is 
called an indirect or computed jump or branch. A register-indirect jump is also 
possible. 

 

Figure 2.17. Branching instructions  

Any jump – backward or forward – can be made in the code (Figure 2.18). The 
first sub-class of jump is the unconditional jump (instruction jmp from Intel). It 
makes it possible to understand the branching mechanism in all the forms cited 
previously. Executing it unconditionally initializes the program counter at the 
calculated address, depending on the addressing mode. Thus, the next instruction to 
be executed will be that of the specified address. The unconditional jump represents 
30% of jumps made in programs (Cragon 1992). 

One conditional branching instruction is similar to the high-level control 
structure if <Boolean_condition> then <go_to target_address>. It makes it possible, 
depending on the conditions, to perform an execution sequence branching. The 
condition is called a predicate10. A predicate is the expression of a condition.  
Figure 2.19 shows the different steps of executing if the condition is true. 

                                 

10 This should not be confused with an assertion or proposition, which is a phrase to which it 
is possible to attribute a truth value, that is, one that is either true or false. 
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Figure 2.18. Execution paths for a jump 

 

Figure 2.19. Execution steps for a conditional jump 

As Figure 2.20 illustrates, the execution path is divided by the branching 
instruction (or node) into two paths, the fall-through path and the target path. If the 
condition is true, then the control transfer is made at the instruction on the branch 
target address (BTA for Branch Target Address). The microprocessor will execute 
this targeted instruction known by the acronym BTI (Branch Target Instruction). We 
say the branching is called “taken”. If the condition is a constant, then it is an 
unconditional jump. If it is a Boolean variable, then it is a conditional jump. Where 
there are several successive jumps, the branch path is the code between two 
executed branchings. The number of instructions involved is, on average, three to 
nine (Uht et al. 1997). 
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Figure 2.20. Execution paths for a conditional jump 

During its execution, the processor must carry out two tasks: they must evaluate 
the condition associated with this jump and calculate the jump address (i.e. target 
address). As for the unconditional version, the addressing modes traditionally used 
are absolute mode and relative modes, in general to Program Counter (PC) relative. 
Moreover, the jump address can only be known during execution. This is true, for 
example, for a multiple branching control structure such as switch() from C 
language. We speak of a computed branch whose address should be calculated 
dynamically. The role of the condition register is fundamental as the jump is made 
on the condition of its indicators (the case with x86). In this case, any conditional 
jump should therefore be preceded by an instruction positioning the indicators. The 
comparison instructions and conditional branching use the traditional four condition 
code bits N, Z, O (or V) and C (NZVC flags). When the condition is not verified, 
execution of the instruction is equivalent to a nop (cf. § 2.8.5). The first use is to 
verify the validity of a result (i.e. its exactitude). A second is to compare two values, 
digitally. Any comparison operator comp_op (<, >, =, LGE for Less, Greater and 
Equal and combinations and complementation, which gives GT, GE, EQ, LT, LE, 
NE, etc.) is reduced to a subtraction followed by the test compared to zero (formula 
2.2). It justifies the presence of a status register and, in particular, of the ZF (Zero 
Flag). 

op1 comp_op op2 ⇔ op1 - op2 comp_op 0 [2.2] 

The mnemonic of a conditional jump instruction takes the form jcc (jump on 
condition code) or bcc (branch on condition code). This respects the naming 
standards rule since the first character of the mnemonic should be that of the action 
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verb and it should contain the condition (role of cc). The test can be carried out 
simply on an indicator. We list the five tested indicators from the x86 family, jc 
(jump on carry) – jnc (jump on not carry), jo (jump on overflow) – jno (jump on 
not overflow), jp (jump on parity) – jnp (jump on not parity), js (jump on sign) – 
jns (jump on not sign) and jz (jump on zero) – jnz (jump on not zero). The test 
can be complex, involving several indicators. This makes it possible to make digital 
comparisons, but the digital representation should be considered. Table 2.2 
summarizes them. Note the mnemonic synonyms for a single test. This means that 
the corresponding machine codes will be identical. The two other jump possibilities 
occur on the condition of testing a register’s value (the case with MIPS) and on 
condition of exception. 

Mnemonics Names 

Tests  
and digital 

groups 
involved 

Conditions 

ja 
jnbe 

Jump on above 
jump on not below or equal 

>, ℕ ܥ ⋅ ܼതതതതതത 
jae 
jnb 

Jump on above or equal 
jump on not below 

≥, ℕ ̅ܥ 

jb 
jnae 

Jump on below 
jump on not above or equal 

<, ℕ ܥ 

jbe 
jna 

Jump on below or equal jump on 
not above 

≤, ℕ ܥ + ܼ 

je 
jz 

Jump on equal 
jump on zero 

=, ℕ and ℤ ܼ 

jne 
jnz 

Jump on not equal 
jump on not zero 

≠, ℕ and ℤ ܼ̅ 

jg 
jnle 

Jump on greater 
jump on not less or equal 

>, ℤ 
(S⊕ O) + Zതതതതതതതതതതതതതതതത ൫(ܵ̅ ⋅ തܱ) + (ܵ ⋅ ܱ)൯തതതതതതതതതതതതതതതതതതതതതതത + ܼ̅ 

jge 
jnl 

Jump on greater or equal 
jump on not less ≥, ℤ 

S ⊕ Oതതതതതതതത (ܵ̅ ⋅ തܱ) + (ܵ ⋅ ܱ) 
Jl 

jnge 
Jump on less 

jump on not greater or equal 
<, ℤ ܵ ⊕ ܱ 

Jle 
jng 

Jump on less or equal 
jump on not greater 

≤, ℤ (ܵ ⊕ ܱ) + 	ܼ 

Table 2.2. Conditional jump instructions for 8086 for whole numbers 

A coprocessor can provide support to a jump mechanism. Therefore, the x87 
coprocessor can carry out a comparison between two numbers represented in 
floating point (instructions fcom, fcomp, fcompp, ftst, fucompp, ficom and  
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ficomp, the difference influencing how the flags are handled). It makes the 
comparison by positioning its indicators, which are then recopied in the master 
processor’s status register (an old mechanism before the P6 microarchitecture from 
Intel). The new form of execution (with the P6) directly positions the indicators of 
the master processor’s status register (instructions fcomi, fcomip, fucomi and 
fucomip). In both cases, it is always the latter that actually carries out the jump. 

The control schema for the execution for an instruction, which is shown, is based 
on updated binary indicators (i.e. NZVC flags, mainly) on a specialized register, the 
status register. These indicators are then tested by a conditional branching 
instruction. This well-established schema is called result state checking. The 
advantage of a status register is that it factorizes the code for calculating the flags, 
but it is adapted to a purely sequential execution model. It is a real and harmful side 
effect of parallel execution, and it makes the instruction set non-orthogonal (cf.  
§ 3.1.3). This schema is for mainframe computers (IBM System/360 and /370 for 
example), PDP-11 and VAX mini-computers, the first CISC microprocessor 
families (families x86 and MC68000, for example) and some RISC (families  
RISC-II and RISC-II, SPARC11, PowerPC and Arm®, for example). For Arm®, the 
mnemonics should be suffixed by the letter S to update the flags after execution. 
Moreover, the instructions support conditional execution. 

To accelerate execution, execution parallelism has been suggested with, for 
example, ILP (Instruction-Level Parallelism, this will be covered in a future book by 
the author on microprocessors) whose pipelined execution is a mechanism. With a 
pipelined architecture, a conditional branching instruction will have to wait until the 
instructions preceding it in the pipeline have been executed so that it can be 
executed itself, which takes a great deal of time. In this implementation, it is 
therefore necessary to avoid intercalating instructions between the test and the 
conditional jump instruction, which is a constraint for the compiler. If there are a 
small number of instructions involved, then a specialized software can determine 
how to anticipate the state of the flags of the instructions that precede it. Hence, 
positioning of indicators may be optional for arithmetic and logical instructions. In 
this context, an alternative to state control implementation is the direct check 
concept (Sima et al. 1997). No state is therefore saved in a status register during a 
comparison. Blaauw and Brooks (1997) propose the concept of explicit and implicit 
evaluations (Figure 2.21). 

In case (a) of Figure 2.22, the arithmetic operation positions status flags after 
calculation. The instruction that follows will be a jump on condition(s) of these 
flags. In case (b) of the figure, the state result check follows the calculation 
instruction. The test and branching are made either in a single instruction or in two. 

                                 

11 SPARC for Scalable Processor ARChitecture. 
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A single instruction (test of the result then branching) in place of two separate 
instructions makes it possible to optimize execution, in particular in current parallel 
architectures. 

 

Figure 2.21. Left: result state check; right: direct check 

 

Figure 2.22. Schema for evaluating a calculation 

The first form is that of the RISC AMD 29000 microprocessor. This test schema 
always uses two instructions, one for comparison positioning a Boolean result (and 
not the classic NZVC flags) in a GPR, which is then tested by a jump instruction (an 
approach using two instructions). It should be noted that it offers a comparison 
instruction assert, which traps12 if its result is false. The second type tests and 
makes the jump in a single instruction (notion of atomic operation, cf. § 2.6.1). 
Cragon (1992) calls this type TB for Test and Branch. It is the one used by 
                                 

12 For the concept, cf. § 5.4. 
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supercalculators CYBER/70 and Cray, mini-computers PDP-8 and PDP-10 
(instructions skip) and microprocessor families RISC MIPS, HP PA (Precision 
Architecture) and DEC Alpha. One drawback is that is uses many registers. 

It should be noted that processors such as family SPARC from version 9 use 
both control schemas. In addition, it should be noted that the microprocessor cannot 
execute the code that follows the branch instruction as it is linked to its result. It is 
called a branch effect, which has a prejudicial effect on a processor’s performance in 
the context of parallelism (cf. § 2.6.1). For example, the pipeline should stall and, 
eventually, purge itself if branching, limiting the execution parallelism. There will, 
on the other hand, be techniques for reducing these effects or BERT for Branch 
Effect Reduction Techniques. One example is IBM S/360 model 91, which, at the 
moment of decoding, positions a 2-bit tag in the instruction’s code called cc for 
condition code, which indicates at execution that the instructions already decoded 
should not be executed before the conditional branching instruction (Anderson et al. 
1967). These techniques will be developed in a future book by the author on 
microprocessors. 

2.4.2. Conditional execution  

Conditional execution, also called guarded or predicated execution, makes it 
possible to attribute a predicate to a traditional instruction according to the following 
schema: 

Predicated instruction <conditional expression > ? <instruction> [2.3] 

The concept was suggested by Dijkstra (1975). Hsu (1986) and Hsu and 
Davidson (1986) suggested the first application for ILP scalar processors 
(Instruction-Level Parallelism, this will be covered in a future book by the author on 
microprocessors) to get around the problems of branching, which slows the 
operation of their superscalar and superpipelined architectures. It generalizes the 
conditional control transfer mechanism (branch prediction). The condition affects 
the value of the flags. Execution of a predicated instruction is effective when the 
qualifying predicate is true. We say that the execution is gated by a qualifying 
predicate. This happens after the flags have been updated by a specialized 
instruction such as a comparison, instructions that have not updated these flags will 
be able to intercalate with one another. If the condition is not verified, then the 
instruction does not execute, no result is given (i.e. no writing), no flag is modified 
and no interruption is lifted. The instruction is then equivalent to a nop. It should be 
noted that predicting any instruction set complicates the Control Unit (CU). 
Discussion of this mechanism will be covered in a future book by the author on 
microprocessors. 
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In the Arm® architecture, each mnemonic can be suffixed by the condition. This 
will correspond to a value of a quadruplet of flags (N, Z, C, V) called predicate 
flags. This quadruplet is on the left of the predicated instruction code (most 
significant digits of the 32-bit word). For the condition to be verified, the values 
must be equal to those of the corresponding flags in the state PSR (Program Status 
Register) updated following execution of the instruction involved. In assembly 
language, the mnemonic is suffixed by an abbreviation that recalls the condition. 
Table 2.3 summarizes these uses in this architecture. 

Codes Suffixes Logical conditions  Description Symbols 

0000 EQ ܼ = = 1  
(Z) 

EQual = 

0001 NE 
ܼ = = 0  

(ܼ̅) 
Not equal ≠ 

0010 CS/HS ܥ = = 1  
(C) 

Carry set/unsigned higher or 
same 

Unsigned ≥ 

0011 CC/LO 
ܥ = = 0  

 (ܥ̅)
Carry clear/unsigned LOwer Unsigned < 

0100 MI ܰ == 1  
(N) 

MInus/negative < 0 

0101 PL 
ܰ == 0  

( ഥܰ) 
PLus/positive or zero ≥ 0 

0110 VS ܸ = = 1  
(V) 

Overflow – 

0111 VC 
ܸ = = 0  

( തܸ) 
No overflow – 

1000 HI 
ܥ) =	= 1) • (ܼ = = ܥ (0 • ܼ̅ 

Unsigned higher Unsigned > 

1001 LS 
ܥ) =	= 0) • (ܼ = = ܥ̅ (1 + ܼ 

Unsigned lower  
or same 

Unsigned ≤ 

1010 GE 
ܰ == ܸ ܰ ⊕ ܸതതതതതതതതതത Signed greater than or equal Signed ≥ 

1011 LT 
ܰ ≠ ܸ ܰ ⊕ ܸ 

Signed less than Signed < 

1100 GT ܼ̅ 	 • 	 (ܰ ⊕ ܸതതതതതതതതതത) Signed greater than Signed > 

1101 LE ܼ	 +	(ܰ ⊕ ܸ) Signed less than  
or equal 

Signed ≤ 

1110 AL 1 
ALways  

(flags ignored) 
– 

1111 NV/- 0 / − NeVera/unpredictable – 

a. NV before version 3 of the architecture, otherwise unpredictable. 

Table 2.3. Condition codes from the Arm® architecture 
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One industrial use is that of the Arm® family that results in the instruction code 
by a binary quadruplet (Figure 2.23). The value of the condition field is one of those 
in the table above. 

 

Figure 2.23. Condition field from MPU Arm® VL86C010 

The aim of predicting instructions is to delete conditional branchings. The 
guarded execution has the advantage of allowing for fewer dependencies. This 
facilitates the work of the compiler. There is less prediction to be done, and there are 
fewer poor predictions. In terms of limitations, guarded execution and extension to 
the ISA and specific handling by the compiler, support for the execution by the ISA 
may be full or partial. In fact, some instruction sets do not support conditional 
execution for all instructions for reasons of complexity or performance. It was first 
applied to conditional move. This was the case with SPARC V9 (conditional 
transfer instructions for whole numbers MOVcc and floating point FMOVcc only), 
from the Alpha processor or the ISA x86. The A64 set from ISA ARMv8 also offers 
a reduced number of conditional branching instructions. In the case of a conditional 
structure if_then_else with blocks of more than 10 instructions, the compiler can 
operate the parallelism better but the classic conditional jump (i.e. not predicated) is 
better in terms of execution time (addition of the time corresponding to the 
execution of the two blocks). The number of instructions executed increases, as it 
makes compatible the instructions of the path crossed as well as those that would not 
have had to be executed in the classic approach. Additionally, not all MPUs offer 
this. The IA-64 architecture (that of the MPU Itanium) from Intel is another  
example of guarded execution similar to the Arm® architecture, except that is based 
on the idea of a PR (Predicate Register), of which there are 64 (p[63:0]) which each 
stores a condition test result. The instruction is written in the form: 

(pi) instruction [2.4] 

For information, predicated execution is also used in software for speculative 
execution (this will be covered in a future book by the author on microprocessors). 
Moreover, vector processors such as Cray-1 (Russel 1978) used a similar principle 
with the notion of a vector mask that controlled execution of the instruction on the 
elements of the vector. VLIW (Very Long Instruction Word) architectures such as 
the Cydra-5 computer (Rau et al. 1989; Beck et al. 1993) have their entire set 
predicated. 
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2.4.3. Iteration control 

One particular case with the conditional jump is the loop-closing conditional 
branch, which is a backward jump that is always made, except on the last iteration. 
This conditional loop closure jump was initially a classic conditional branching 
instruction with explicit handling of the loop counter. A specialized conditional 
jump instruction may be available, such as jcxz in the x86 architecture. 

So as not to lose time in handling, a simple technique called loop unrolling is 
traditionally used in digital calculation. It consists of replacing a loop by repeating 
its code as many times as necessary. Loop unrolling is useful for reducing control 
but is prohibitive in terms of the number of lines of code. 

To facilitate programming in assembly language and to decrease execution time, 
the classic instruction set of a microprocessor has been completed with instructions 
whose operation is similar to those of high-level languages (CISC approach). Those 
placed at the end of the loop use either a specialist or general register as a counter, 
which is decremented and tested to carry out a conditional jump at the start of the 
loop. We cite as an example the instruction loop from the x86 family that makes it 
possible to implement easily control structures such as the loop for var = i to 
j do. An implicit register, CX or its format variants, is decremented and tested 
compared to zero. Other existing versions also test the value of the ZF indicator, 
called loope/loopz and loopne/loopnz. MC68000 offered an equivalent 
instruction DBcc (Test Condition, Decrement and Branch), cc being the output 
condition. As another industrial example, RISC PowerPC uses handling with three 
specialized registers that serve to handle branchings. This is the CR (Condition 
Register), CTR (CounT Register) and the LR (Link Register). CR serves as a loop 
counter as CX previously, but it can also contain the target branching address for the 
loop handling instruction Bcctrx (Branch Conditional to Count Register) just like 
LR for the instruction Bclrx (Branch Conditional to Link Register). The HLL 
(High-Level (programming) Language) compiler or the assembly language 
programmer explicitly generates loop control instructions. Loop control instructions 
can be seen as a jump instruction sub-family. Software management (i.e. 
incrementation or decrementation of the counter, test of its value an eventual jump) 
is carried out with a time penalty (i.e. with the addition of machine cycles) as the 
corresponding instructions are executed. Moreover, it has a cost in terms of latency 
in the case of a jump, since the processor must empty the pipeline by terminating the 
remaining instructions. There is therefore an overhead with, in addition, requisition 
of a register, dedicated or not. These additions of high-level instructions, which are 
not without consequence on the complexity of the CU (Control Unit), are typical of 
the CISC approach. Loop handling has a time penalty as well as an energy penalty 
that must be taken into account. 
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Moreover, digital signal processing, omnipresent in modern-day digital devices, 
makes massive use of loops. Designers of specialized processors in this domain or 
DSP (cf. § V3-5.2) have gone further by adding specialized functional blocks to loop 
handling. The material approach makes it possible to remove the software 
management overhead, hence the name zero-overhead hardware looping. This can 
be done with no time penalty and transparently. In the case of nested loops, the first 
approach is first-level hardware management (i.e. the most external), the internal 
loops being handled by software. The second is complete management by the 
hardware. An internal stack stores the loop handling parameters. Tsao et al. (2003) 
shows an example. To do this, a buffer instruction internal to the processor, called a 
hardware loop buffer, makes it possible to store instructions from the body of the 
loop (i.e. to repeat), the loop’s execution time to avoid access to the external 
memory costs time. It acts almost as a cache memory if the addressing mode is not 
taken into account. Initialization of this local memory occurs at the first execution of 
the loop body or before during the prefetch step. It is intercalated between the 
instruction fetch unit and the decoding unit (Figure 2.24). 

 

Figure 2.24. Instruction buffer 

Three registers are needed: BRC, RSA and REA (Figure 2.25). BRC for Block 
Repeat Counter contains the required number of repetitions of the loop body. 
(Repeat Start Address registers and REA (Repeat End Address) store respectively 
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the address for the start and the end of the loop body. The associated instructions are 
do m,n, where m is the number of instructions that follow to be executed in a loop 
n times and break, which makes it possible to leave the loop abruptly. One 
example of a component using this approach is TMS320c54x from Texas 
Instruments. 

 

Figure 2.25. Hardware management of a loop 

Figure 2.26 shows a block diagram of a loop manager. The comparator at the 
bottom of the figure compares the value of the program counter with the loop end 
address. When the two values are equal, the BRC loop counter is decremented. If 
this is not null (the role of the upper comparator), then the PC (Program Counter) is 
initialized at the loop start address. A flag called BRAF for Block-Repeat-Active 
Flag associated with loop handling authorizes this looping. If the BRC passes to 
zero, the flag is deactivated. 

As an industrial example, TMS320C80 from TI (Texas Instruments) has three 
special registers. These are registers LC (Loop Counter) and LS (Loop Start), which 
point the first instruction of the loop, and LE (Loop End), which points the last. 
These registers take another name in TMS320C31 with respectively RC (Repeat 
Counter), RS (Repeat Start Address register) and RE (Repeat End Address register). 

Another handling method is that used by the DSP56000 family. Associated with 
the two instructions do (Start Hardware Loop) and enddo (End Current DO Loop) 
are two LA (end-of-Loop Address) registers and LC handle loops (test to 1 to leave). 
This makes it possible to implement a control structure “for”. It should be noted that 
a bit called LF (Loop Flag) in the SR (Status Register) indicates that a loop is being 
executed. To implement a “while”, two other instructions have been introduced in 
this same family. These are brkcc (Conditionally Break the current Hardware 
Loop) equivalent to break in C language, and do_forever (Start Infinite 
Hardware Loop). These instructions manipulate (i.e. backup and restore depending 
on the case) the context which is formed here of registers LA, LC, SR and PC 
(Program Counter). 
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Figure 2.26. Functional block diagram showing a hardware  
loop manager (from Tsao et al. (2003)) 

2.4.4. Subroutine call and return instructions 

There is a possibility of factorizing the code in the form of a subroutine (cf. 
Chapter 4). This subroutine makes it possible to implement a function or procedure, 
code structuration primitives from high-level languages respectively C and Pascal. 
Subroutine call and return instructions can be unconditional or conditional. 

For execution of this subroutine to be transparent, it is necessary to save 
information gathered during execution (cf. § 4.2.2). A call instruction to a subroutine 
can be seen as a macro-instruction (Blaauw and Brooks 1997) as it behaves like a 
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normal instruction by making transparent the execution of the block of instructions 
representing the subroutine. The minimal context needed, which is saved, is the 
return address stacked on the stack (instruction call from the x86 family) or stored 
in a register (the case of the instruction jal (jump-and-link instruction) from 
MIPS). The execution context is important in the contexts of (quasi-) parallel 
execution, memory handling and I/O handling. Thus, it is saved during a switching 
of Heavy-Weight (i.e. classic) or Light-Weight (i.e. thread) Processes (HWP/LWP), 
when the memory fails (page or segment, this will be covered in a future book by 
the author on memories) or during an external or internal interrupt request  
(i.e. exception and system call, cf. § 5.4). 

Note that both these instructions can be seen as a particular instance of a jump as 
in PowerPC or PA-RISC architectures where these instructions are distinguished by 
the value of a bit (LK (LinK) bit). When its value is 1, then the processor has saved 
the return address in a dedicated register called an LK register, which will be 
resumed on return. This circumvents the need to use a stack (cf. § 4.1) in main 
memory for which access is slower. 

2.5. Environmental instructions 

This section gathers the instructions that makes it possible to control a system in 
a broad sense. These are instructions that handle interruptions, those that make it 
possible to stop the MPU and those that are used for debugging. 

2.5.1. Interrupt request and interrupt return instructions13 

To manage I/O events, a particular form of subroutine called interrupt handler, or 
ISR for Interrupt Service Routine, is known as a form of interrupt request. This 
concept will be addressed in detail in Chapter 5. 

2.5.2. Stopping instructions 

The instruction break makes it possible to initialize an interruption sequence. 
The instruction wai from MPU MC6802 suspends execution of the program in 
expectation of an interrupt request. The processor state is stored on the stack, and the 
PC (Program Counter) points the following instruction. On an external interruption, 
the MPU restarts. It is used, for example, in operating systems. It is named hlt in 
the x86 family or halt for Z80, and they have almost identical functions. For Z80, 

                                 

13 This paragraph could be included in § 5.2. 
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the component does not stop, but it executes nops to ensure that the memory is 
correctly refreshed. This is because of its core, implemented in dynamic logic, the 
consequence is therefore an absence of energy saving. The instruction stop from 
MC68020 saves the associated operand in the status register and stops, awaiting a 
classic interruption of trace or a RESET type. One logical condition can be added to 
put it on hold with the instruction cwai from MC6809, which carries out a logical 
AND with the status register. 

These stopping instructions make it possible ensure synchronization with an 
external component such as coprocessor or an I/O controller. We cite the instruction 
wait, which puts the 8086 processor into an idle state waiting for the signal #TEST 
to become active or until there is an external interrupt request. With architecture 
development and the demand for lower energy consumption in autonomous 
applications, for example, mobiles, the number of stopping possibilities has 
increased. Microcontrollers (MCU for MicroController Unit) use these specialized 
instructions in particular to handle dynamic consumption as well as possibly by 
stopping the whole processor or some of its sub-components (cf. § V3-6.1.4). 

2.5.3. Processor management 

Some instructions make it possible to control the processor’s execution 
environment by carrying out an operation on the control flags. The instructions 
lmsw (Load Machine Status Word) and smsw (Store Machine Status Word) that 
make it possible to access the content of the computer’s status register MSW 
(Machine Status Word), called CR0 in the IA-32 architecture, from Intel, are one 
example. By changing, for example, the stat of the PE (Protected Mode Enable) flag, 
it is possible to move from real mode to protected mode. 

2.5.4. Memory management 

By memory, we should understand all memory integrate in the MPU. This means 
the cache memory and the Translation Lookaside Buffer (TLB) of the virtual 
addressing mechanism. Specialized handling instructions make it possible to take 
the best of the operation of this type of memory, with which mid- and high-range 
MPUs are equipped. These are clearly preferable instructions. Since the ways they 
operate these memories are complex, they will be detailed in a future book by the 
author on memories. 
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2.5.4.1. Cache management 

These instructions make it possible to manage block allocation by initializing it 
to zero, to load or flush a block, to write a block in main memory to synchronize it 
(clwb for cache line write back) and to make reading or writing from/to the main 
memory possible by short-circuiting the cache hierarchy. In the x86 architecture, the 
instruction prefetch makes it possible to load the associated cache line to an 
address in the way anticipated in the cache hierarchy. Instructions for invalidating a 
block or the whole of a cache with (wbinvd) or without (invd) prior writing in 
main memory (write back). To free space, the instructions clflush and 
clflushoptw make it possible to invalidate a line at each level of the 
corresponding cache hierarchy at a given linear address with a possible writing in 
memory if it is marked as modified. To conclude, it is possible to access the main 
memory (also called central or primary memory) transparently compared to caches 
with register transfer instructions movnti, movntq, movntdq, movntps and 
movntpd. 

2.5.4.2. TLB management 

Virtual addresses are translated using hardware. To avoid loss of time due to the 
sequential reading of several table walks, a cache called TLB is used. This handling 
is transparent to the programmer, but it is sometimes necessary for security reasons 
or obligatory because the page table hierarchy has been updated, invalidating entries 
in the cache corresponding to a given page. The instruction invlpg (invalidate 
TLB entry) invalidates the TLB entry corresponding to a given page carries out a 
flush operation. 

2.5.5. Hardware detection 

The instruction cpuid with Intel from 80486, if it can be executed (i.e. 
modifiable ID flag of the status register, cf. § V3-3.1.5.6), can be seen as a function 
whose entry parameter is passed in the EAX register, and this result is passed 
through several registers. It makes it possible to recover (passing in registers) many 
characteristics from the MPU base and to recover configuration information 
(extended information). This may, for example, be the reference of the family to 
which it belongs, the model, its series number (n = 96 bits) or information on the 
cache hierarchy and TLB, on energy and addressing management. For more 
information, see Intel (2012). Another approach to detecting a new function is to test 
for the presence of a flag, or a register or to try to execute a new instruction. In case 
of failure, an exception (cf. § 5.4) is generally raised. 
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2.5.6. Debugging 

In the program control instructions, we can cite the instructions for entering 
unconditionally in debugging mode such as debug from DSP56000. The debugging 
aspect is addressed in Chapter V5-2. 

2.5.7. Updating 

To correct possible bugs, a manufacturer can offer FirmWare (FW, i.e. 
microcode) for updating, signed for security reasons. Intel offers this function from 
P6. It is the BIOS (Basic Input/Output System, cf. § V5-3.5.3) that is responsible for 
carrying out this operation. 

2.5.8. Verification 

Some processors provide a machine verification architecture. The MPUs 
involved are, for example, Pentium 4, Intel Xeon, Intel Atom and those from the P6 
microarchitecture. 

2.5.9. Various 

The instruction esc from 8086 makes it possible to pass an instruction to a 
coprocessor (cf. § V3-5.4) such as 8087. 

2.6. Parallelism instructions  

This section summarizes the instructions that make it possible to manage parallel 
execution of light-weight processes (threads) or heavy-weight processes. They will 
be addressed in detail in future books by the author. 

2.6.1. Atomic instructions  

Instructions are executed atomically in essence, that is, they can be interrupted 
(cf. execution cycle, § V1-3.2.2 and V1-3.3.2). On the contrary, with quasi-
parallelism and true parallelism (this will be covered in a future book by the author 
on microprocessors), it is necessary to execute sequences of code atomically, for 
example, to ensure mutual exclusion during multiple access to a resource. An initial 
solution is to forbid an interrupt request (cf. Chapter 5). More recently, the 
transactional memory mechanism (this will be covered in a future book by the 
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author on storage) and specialized instructions gathering a classical instruction set 
but guaranteeing atomicity have been introduced into the instruction set. 

At bit level, MPU 80386 offers specialized atomic logical instructions in testing 
and modifying a bit. We cote bt (bit test), which makes it possible to extract a bit to 
store it in the carry flag. The extraction can also be made by setting the bit at 0 or 1 
or by bit complementation respectively done using the instructions btr (bit test and 
reset), bts (bit test and set) and btc (bit test and complement). Moreover, a search 
for a logical zero in one word from LSb or MSb (respectively Least and Most 
Significant bit) thanks respectively to the instructions bsf (bit scan forward) and 
bsr (bit scan reverse) makes it possible to detect a word or the first suite of 
consecutive logical zeros from an end of this word with, as a result, the index of the 
first logical 1. 

At the level of a variable, MPU 80386 introduced conditional initialization of a 
byte with instruction setcc (byte set on condition) at 1 from the destination if a 
condition on a flag state (suffix cc) is verified (i.e. true) or else 0. MPUs MC68000 
from Motorola and NS32000 from National Semiconductor (NS) with respectively 
the instructions scc and scond offer, with only a few details’ difference, similar 
functions. Thus, type of instruction is useful for implementing Boolean expressions 
from a High-Level (programming) Language (HLL) such as Pascal. 

In general, three atomic operations are needed to implement concurrent access 
primitives from a resource or a synchronization. These are test-and-set, 
atomic-swap and compare-and-swap. The instruction test-and-set 
makes it possible within a processor cycle to carry out the operation of writing a 1 in 
a memory variable and to return the former value. It is therefore an atomic 
operation, that is, without interruption, at execution in privileged mode (cf. § 3.2.2). 
Where there are two distinct operations, it would be possible for the associated 
process to be interrupted by another, which could modify the value tested. This 
instruction serves to implement the concept of semaphore in system programming to 
protect memory area from concurrent access. The instruction atomic-swap 
generalizes the previous instruction in the sense that it manipulates a value other 
than 0 and 1. The instruction compare-and-swap generalizes the previous one 
without changing the memory value in the memory so that there is no equality with 
the comparison value. We find this operation in the x86 architecture from 80486 
with cmpxchg (compare and exchange) prefixed by lock in an SMP (Symmetric 
(shared memory) MultiProcessing) environment with MC68020 and higher versions 
with the instructions cas (compare and swap) and cas2 (double cas). With an 
atomic test-and-branching operation, the decision is implicit, unlike the “classic” 
sequence with two separate instructions. To conclude, the instruction, similar to the 
atomic operation xchg, that makes it possible to exchange two operands is bswap, 
which makes it possible to reverse the byte order in a word. It makes it possible to 



68     Microprocessor 4 

pass little to big Endian memory storage orders (Little and Big Endian (LE and BE), 
cf. § 2.6.2 in Darche (2012)). 

2.6.2. Synchronization instructions 

Synchronization can be done in relation to the external environment. One 
example is the prefix instruction lock from 8086 from Intel, which makes it 
possible, in a multiprocessor environment, to block access to a bus to ensure unique 
guaranteed access to a critical section by activating its #LOCK signal. The add 
instruction (add) with this prefix becomes an atomic operation that operates a fetch 
and add (i.e. exclusively adds a constant to a memory variable) from useful 
concurrent programming, for example, for a mutual exclusion lock (i.e. mutex lock). 
The drawback with this instruction is that there can only be access to the main 
memory and so no storage of the result in memory. The instruction xadd (exchange 
and add) from MPU i486 has made this function possible. 

There are other synchronization software solutions in multiprocessor 
environments, such as the instruction pair Load-Link and Store-Conditional (LL/SC 
or LLD-SCD), which makes it possible to operate an RMW atomic primitive (Read-
Modify-Write), which is offered by Alpha, PowerPC, MIPS (Microprocessor 
without Interlocked Pipeline Stages) and Arm® architectures. These are explored in 
a future book by the author focusing on parallelism. 

2.7. Extensions to instruction sets 

This section shows sub-sets of specialized instructions in an application domain. 
They are added as the architecture evolves to meet a particular need. These 
extensions help to raise performance (cf. § 3.4). 

2.7.1. Multimedia extension 

An extension to the instruction set can enable a processor to adapt better to the 
application domain. Concerning (multi)media (signal) processing, the first 
specialized set was MAX-1 (Multimedia Acceleration eXtensions) from Hewlett-
Packard for their PA-7100LC microprocessor, introduced in January 1994. It was 
followed by VIS (Visual Instruction Set) from Sun, operated for the first time with 
UltraSPARC from Sun (Kohn et al. 1995), then by Fujitsu with SPARC64 GP in 
2000 (Song 1997) and described by Tremblay et al. (1996). The following version 
from HP called MAX-2 (Lee 1996; Lee and Huck 1996) concerned the 64-bit ISA 
PA-RISC 2.0 (Kane 1996), implemented, for example, in PA-8000 (Kumar 1997). 
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VIS 2.0 was implemented for the first time in UltraSPARC III (Horel and 
Lauterbach 1999) and in successive versions as well as in SPARC64 (Williams et al. 
1995). VIS 3.0 was implemented for the first time with SPARC T4 (Shah et al. 
2012). VIS 4.0 was implemented for the first time with SPARC M7 (Aingaran et al. 
2015; Li et al. 2015; Konstadinidis et al. 2016). At Intel, the MMX (MultiMedia 
eXtensions) extension dedicated to multimedia was implemented for Pentium II in 
January 1997. Details on this are given in Peleg and Weiser (1996) and Peleg et al. 
(1997). Silicon Graphics, Inc. (SGI) and MIPS introduce their multimedia 
technology, called MDMX™, for MIPS Digital Media eXtensions (nickname Mad 
Max) in October 1996 with 32 media registers in 64-bit format and 19 new 
specialized instructions (Gwennap 1996). Digital added to its Alpha (Sites 1992, 
1993; McLellan 1993) architecture a minimal five-instruction extension called MVI 
for Motion Video Instructions as well as condensed formats for integers (Rubinfeld 
et al. 1996). The announcement was made in 1996 for its MPU 21164PC (Bannon 
and Saito 1997) and 21264 (Kessler et al. 1998; Kessler 1999). Lee (1997) describes 
using instructions belonging to these extensions. 

It should be noted that this means, in the majority of cases, more an ISA 
extension than just an addition to a sub-set of specialized instructions in a domain as 
there are, for example, register additions as for MMX with eight registers in 64-bit 
format MM[7:0]. The registers thus have a high format of 128 (SSEx, x ∈ [1, 4]), 
256 (AVX for Advanced Vector eXtensions) or 512 bits. They contain data in the 
classic 8-, 16-, 32- and 64-bit formats (Xi and Yi in Figure 2.27 with i ∈ [0, 3]) 
forming the components of a vector (X and Y in the same figure) on which the same 
operation will be carried out in parallel. These are known as (packed) or condensed 
numbers. This term must absolutely not be linked with “packed” in “BCD packed” 
representation called, for example “packed-decimal format” at IBM. Here, this 
means gathering several numbers from a single number set, in this case integers, and 
the same representation in machine. We see that a single instruction can apply to 
several components at the same time, hence a gain in execution speed, the other gain 
being specialization of the instruction, which replaces a sequence of instructions 
from the base. This architecture is called SIMD for Single Instruction 
stream/Multiple Data stream in the parallel machine classification in (Flynn 1972). 
But beware, unlike the packed format, the instructions for scalars are only executed 
for the least significant pair of operands. 

Instructions of this extension type are classed in sub-families, first according to 
representation (whole, floating point and packed). These families include transfer, 
arithmetic, Boolean and advanced instructions for comparison and conversion 
between types. A final sub-family includes control instructions, mainly for the state 
and cache. Arithmetic operations are basic and others are more complex, such as the 
square root and its reverse (inverse square root) or the calculation of a format’s 
minimal and maximal values. 
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Figure 2.27. Distribution of operations in a vector instruction  
in a SIMD structure  

In particular, conversion instructions can be numerous, covering all possible 
combinations. In the Intel 64 architecture, we cite the instructions 
cvtpd2pi/cvtpd2ps/cvtpi2pd/cvtpi2ps/cvtps2dq/cvtps2pd/cv
tps2pi/cvtsd2si/cvtsd2ss/cvtsi2sd/cvtsi2ss/cvtss2sd/cvts
s2si/cvttpd2dq/cvttpd2pi/cvttps2dq/cvttps2pi/cvttsd2si/c
vttss2si with pi, pd and ps meaning respectively packed doubleword integer, 
double-precision and simple precision floating-point; dq meaning packed double 
word integer and si, sd and ss meaning respectively doubleword integer, scalar 
double-precision and single-precision floating point. These same last names also 
apply to basic arithmetic instructions (addsd/adds, etc.). 

This first generation involved operations for integers. The second focused on 
operations in representing FP (for Floating Point) for sub-words (packed or scalar). 
From Intel, we cite the extension (I)SSE for (Internet) Streaming SIMD Extensions 
(Thakkar and Huff 1999a, 1999b) introduced with Pentium III under the code name 
Katmai New Instructions (KNI) and adding nearly 70 instructions. This is a simple 
precision version. Eight additional registers called XMM[7:0] in 128-bit format and 
accessible independently of the floating unit x87 are introduced for these numbers 
and add to the eight registers MMX[7:0], which are in 64-bit format, from the 
previous generation. The instructions offered for this packed format (Packed 
Floating-Point) are classic arithmetic and logical operations, for comparison, 
transfer and permutation (cf. § 2.3.2), summarized in Diefendorff (1999). Version 
SSE2 was introduced in 2000 with the Pentium 4 (Willamette microarchitecture), 
the first representative of Netburst microarchitecture. It extends FP representation to 
double-precision packed format (i.e. two numbers in n = 64 bit format in a register). 
The packed format for integers (packed integer) with four formats (byte, words of 
16, 32 and 64 bits in a 128-bit vector) is also introduced. A total of 144 new 
instructions are added for the user (packed addition, subtraction, multiplication, 
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division, compare, min, max and square root). The rival AMD with version 2 from 
June 2000 from its 3DNow! technology adds 25 instructions. There follow versions 
SSE3, codename Prescott New Instructions (PNI) with 13 new instructions, SSSE3 
(Supplemental SSE3, codename: Tejas New Instructions or TNI), introduced with 
the Prescott version from Pentium 4 and the Merom version from MPU Core 2 
respectively in 2004 and 2006. The SSE4 version (Nehalem New Instructions or 
NNI) with versions SSE4.1 (Penryn microarchitecture) announced in 2006 and 
SSE4.2 (Nehalem microarchitecture) in 2008 introduced 54 additional instructions. 
The SSE4.2 extension specializes in text and character chain processing (Intel 
2007). It offers seven additional instructions. In particular, as the VAX mini-
computer proposed speeding up its calculations, it introduced an instruction for 
Cyclic Redundancy Check (CRC, cf. § III.6.7 in Darche (2000)) called crc32 
(accumulate CRC32 value) to facilitate detection (EDC for Error-Detecting 
Circuit/Code) or, better, error correction (ECC for Error Checking and Correcting/ 
Error-Correcting Code). As for the IA-64 architecture (Lee et al. 2001), it describes 
the multimedia instructions. 

Additional and competing technologies to those of Intel were introduced by 
AMD under the references SSE4a (MPU Phenom from K10 – 2007 
microarchitecture) and SSE5 (AMD 2007) with varying degrees of success. 

Competing but not compatible extensions are also AltiVec (Diefendorff et al. 
2000) from PowerPC from Motorola (other designations: VMX for Vector 
Multimedia Extension at IBM, Velocity Engine chez Apple) and the multimedia 
instruction set from the IA-64 architecture from Intel-HP (Kane 1996). 

2.7.2. Extension for signal processing 

This section could have been included in the previous one. It involves detaching a 
particular instruction, which is the association of two basic arithmetic instructions, 
such as in multiplication/addition or FMA (Fused Multiply-Accumulate) initially 
useful in signal processing (cf. § V3-5.2), multiplication/subtraction, three instructions 
with multiplication/addition/subtraction or multiplication/subtraction/addition, or 
indeed four. The FMA3 instruction group (3 being the number of operands) appeared 
in extension AVX2 (Advanced Vector eXtensions) from Intel announced in June 2011 
and integrated into the Haswell microarchitecture in 2013, continuing SSE4. The 
instructions had the prefix VEX (cf. § 1.1). AMD had already offered this type of 
instruction in 2007 with the SSE5 extension, splitted in 2009 with a new coding 
schema in three XOP sub-sets (eXtended OPerations) and FMA4 (AMD 2009), then 
F16C (or CVT (ConVerT) 16). 
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2.7.3. Cryptography 

A processor can offer a calculation unit that accelerates (de)cryption. So Intel 
offered AES NI technology (AES NI for Advanced Encryption Standard New 
Instructions) dating from 2010. These instructions, of which there are six, are 
aesdec, aesdeclast, aesenc, aesenclast, aesimc and 
aeskeygenassist, and the last two make it possible to manage the key. 

2.7.4. Randomization management 

The instructions rdrand (Read Random Number) and rdseed (read random 
seed) form part of a technology whose code name given by Intel is “Bull Mountain”. 
They make it possible to generate a number at random. 

2.7.5. Implications 

One extension to ISA involves, at the hardware level, an impact on the chip 
surface and consequently extra current consumption, counterbalanced by an increase 
in performance. One aspect that should not be neglected is the impact on software, 
in particular on the SE. Adding registers, for example, may involve modifying how 
the execution context is handled (cf. § 4.2.2). MMX and 3DNOW! technologies do 
not add new status flags, unlike SSEx. State flags can also be added.  

2.8. Various instructions  

This section presents various instruction families. This may be a support for a 
high-level language, useful instructions for debugging or instructions for managing 
hardware. 

2.8.1. Instructions for handling (strings of) characters 

The 8086 microprocessor inaugurated an instruction set specialized in handling 
character strings. A character is coded in alphanumeric codes ASCII and EBCDIC 
(Extended Binary-Coded Decimal Interchange Code) respectively on 7 and 8 bits 
(cf. § III.3 in Darche (2000)), so on at most one byte. UNICODE (UNIversal CODE) 
and the ISO/IEC standard 10646 (ISO/IEC 2017) made it possible to move to coding 
using 21 bits and 32 bits, which then, thanks to the UTF transformation formats 
(UTF for Universal Character Set (UCS) or Unicode Transformation Format, cf.  
§ III.3.9 in Darche (2000)), were transformed into a format handling respectively  
8, 16 and 32 bits. The x86 family offers instructions adapted to transferring blocks 
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of words in these different formats. We cite instructions in byte format movsb and 
stosb respectively for formats higher than 16 and 32 bit formats, movsw or 
movsd and stosw or stosd. To iterate the operation, Intel offers the prefixes 
rep, repe, repne, repz and repnz, which condition its execution with the CX 
register serving as counter. As for the loop instruction, they complexify the CU 
(Control Unit) and are typical of the CISC approach. It should be noted that this 
instruction family is reminiscent of the block displacement instructions (i.e. from 
memory copy) from Z80 (ldir, lddr, cpir and cpdr and for I/Os: inir, 
indr, otir and otdr). 

2.8.2. Input/output instructions  

For Input/Outputs (I/O), some microprocessors, for example, those from Intel 
and Zilog, have separate memory and I/O spaces (cf. § V3-2.1.1.1). The specific 
instructions in for reading and out for writing enable these processors to address 
this distinct I/O address space. At execution, a control signal is generated by the 
microprocessor to select the corresponding addressing space. These instructions 
such as ind and outd from Z80 can generate a pointer automatically to facilitate 
handling in a data block. 

MCUs (MicroController Units) have instructions developed to manage parallel 
I/O ports. For example, those from the MCS-51 family (commonly called “8051 
family” from the name of the reference circuit, hence the acronym for Micro 
Computer Set) offer basic logical instructions (anl, orl and xrl), which are 
executed on port P0 or P1 with an immediate value passed in operand. 

2.8.3. High-level instructions  

The MPU can provide high-level instructions such as enter, leave and 
bound in the x86 architecture. The instruction enter creates a stack frame to pass 
parameters of a given size. The symmetrical operation is leave, which frees up the 
frame. The instruction bound determines whether a value belongs to a range. This 
is enough to manage an array index. 

2.8.4. Arithmetic instructions specific to a representation of particular 
numbers  

The representations considered are BCD representations and fixed and floating-
point representations. 
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2.8.4.1. Representation in BCD 

Most MPUs offer software support for representing natural integers in useful 
BCD, in particular, for COBOL (COmmon Business Oriented Language) language 
with its computational-3 data type, as well as for representations of real numbers 
called “decimals”, that is, using the base 10 as a support to represent the digits in 
machine for where there is a question of the exactitude of the coding. This 
exactitude of representation may be an obligation of the application domain or a 
legal obligation. We cite DXP (Decimal fixed-point) and DFP (Decimal Floating-
Point) representations, the latter being included in IEEE Std 754-2008 (IEEE 2008). 
In addition to the adjustment instructions (cf. § 2.3.1), we cite the operations unpk 
(unpacked BCD) for converting a packed BCD to the unpacked version (unpacked 
BCD) and, conversely, pack from MPUs MC68020/30/40. 

2.8.4.2. Representation for real numbers 

For floating-point calculations, it was necessary first to use specialized software 
libraries, which emulated these operations. Then, hardware implementations in the 
form of an external component, the mathematical coprocessor (cf. § V3-5.4), 
appeared in the 1980s. They only had a single function such as, for example, the 
WTL 1064 multiplier or the adder WTL 1065 from WeiTek calculating in floating 
point. It could calculate an elementary function (GP FPP for General-Purpose 
Floating-Point Processor) such as 8087 from Intel, the first component of the x87 
family. The latter was then integrated from a 486DX microprocessor from Intel. 
Instructions in floating point now form part of the instruction set for the most 
powerful components with a specialized integrated calculation unit. These units 
provide a minimum, as for whole numbers, transfer instructions, basic arithmetic 
operations, basic logical operations, comparison and conversion operations between 
number formats. For the x86 architecture, the four basic arithmetic instructions 
involve one number floating with another (fadd/faddp, fsubd/fsubp, 
fmul/fmulp and fdiv/fdivp) or with an integer (fiadd/fisub/fimul/ 
fidiv). The latter will be converted into floating point before the operation. The 
destination operand will always be an FPU (Floating-Point Unit, cf. § V3-5.4). More 
particularly, the multiply-and-accumulate (mac) operation was introduced to carry 
out simple operations such as multiplication or the scalar or complex product such 
as digital filtering. It is suggested for integers and real numbers in floating or fixed 
point representations. One example for integers is mac for DSP TMS 320Cxx from 
TI. This operation is generally carried out by a specific unit called a MAC unit 
(MAC for Multiply-and-Accumulate, cf. § V3-5.2 and, in particular, Figure V3-5.4) 
for reasons of performance. 

As indicated in the previous chapter/section § and in § 2.7.1, the floating-point 
numbers can be coded in packed BCD. Processors therefore provide adapted 
instructions. We cite as an example in Intel 64 and IA-32 architecture the 
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instructions addps/addpd and addsubps/addsubpd respectively for single 
and double precision floating-point values whose numbers are expressed in packed 
BCD (respectively suffixes ps and pd). 

Other more complex instruction families make it possible to calculate basic 
functions such as trigonometric or logarithmic functions (fyl2x, for example) or 
exponentiation functions (f2xm1, for example). These calculations are generally 
made using a LookUp Table (LUT), that is, with the aid of values stored in a read-
only memory or ROM (Read-Only Memory) which are interpolated. 

2.8.5. An unusual instruction 

To conclude, we cite the instruction nop for No Operation, which does nothing 
but increments the PC (Program Counter). One example of use is to reserve a 
memory area to make a patch14 from a program, hence the term “patch zone”. 
During a jump in this zone, the processor will irremediably reach the patch zone 
(NOP slide, sled or ramp). More subtly, the nop instruction code is generally 
simple, that is, only one or a few bits have an identical value. By fixing these bits 
electronically, by wiring or simply by leaving lines unconnected, on the data bus, an 
electronic system with only one processor without memory and reading any address 
would in fact recover the nop instruction code. The result was an address 
increment, characteristic signals from counting if they were to be observed on the 
screen of an oscilloscope (cf. exercise E2.6). (Very) long instruction word 
processors ((V)LIW, this will be covered in a future book by the author on 
microprocessors) use it to insert an execution delay in a pipeline. To conclude, it 
should be noted that it is equivalent to a conditional jump instruction when the 
logical condition is not verified (i.e. false). 

2.9. Conclusion 

This chapter studied a processor’s instruction set. After defining and suggesting 
a classification for instructions in the form of classes, these different classes of a 
generic microprocessor as well as the possible extensions of this set are presented. 
Originally, this component only processed integers. Today, it is able to work with 
advanced types such as Boolean, BCD (Binary-Coded Decimal), fixed and floating 
point and character strings. 

                                 

14 A patch replaces or adds to an existing binary code and makes it possible to avoid 
complete generation of an application (i.e. compilation/linking), which takes a great deal of 
time. 
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The following chapter presents additional concepts associated with instruction 
sets and execution. It will also deal with two subjects that are essential for actors in 
this domain, which are hardware and software compatibilities as well as 
performance measurement. 



3 

Additional Concepts 

The present chapter completes the study of ISA (Instruction Set Architecture) 
with additional concepts linked to the instruction set and to execution. The former 
means the concepts of illegal, invalid, reserved and trusted instructions, instruction 
alignment, the instruction set’s orthogonality and the symmetry and the concept of 
pure, re-entrant and relocatable code. The subjects of execution time, memory 
requirements, execution modes, portability and virtualization are then addressed. We 
conclude with some important aspects, which are hardware and software 
compatibilities, measuring execution performances and the criteria for choosing a 
microprocessor or MPU (MicroProcessor Unit). 

3.1. Concepts associated with the instruction set and programming 

This section addressed additional concepts linked to instruction sets. It completes 
§ V1-3.5. 

3.1.1. llegal, non-implemented, invalid, reserved and trusted 
instructions 

An illegal instruction is an instruction that does not exist. It has not been 
implemented by the designer. In general, it is the first word of the instruction that 
does not correspond to the instruction set. For example, the MC6802 has 72 
instructions of variable size and 192 valid machine codes out of 256, and so 59 are 
illegal. Modern MPUs (MicroProcessor Unit) generally raise a trap (cf. § 5.4), which 
will divert execution towards a routine for processing the exception (this is the case 
with the Arm® family, for example). Some instructions can be considered illegal if a 
coprocessor (cf. § V3-5.4) that should process them is not present. 

Microprocessor 4: Core Concepts – Software Aspects, 
First Edition. Philippe Darche. 
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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A non-implemented instruction is an instruction that may exist for one of a 
family’s components but not for another. One example is an instruction from 
MC68020 not implemented in its forerunner, the MC68000. 

An invalid instruction is an instruction from the instruction set used in a poor 
configuration. One example is a transfer of a register’s content to an immediate 
value. The operation code is correct but not the rest of the instruction. In both cases, 
it may be a generating error from an assembler or compiler. 

Some machine codes are reserved by the designer. They are not documented but 
it is possible to find unofficial information from reverse engineering. This involves, 
for example, the 8085, the Z80 or the MC6502. They are not therefore guaranteed 
by the designer. Another definition is to say that they are an instruction linked to an 
execution mode (cf. § 3.2.2). If it is executed in a forbidden mode, then an exception 
is thrown, as with the previous case. 

A trusted instruction, a term used in the security domain, is an instruction that is 
not malicious, which can therefore be executed at a privilege level equal to or less 
than the one to which it belongs. 

3.1.2. Alignment or framing of instructions 

Data (i.e. instructions or information) alignment in main memory makes it 
possible to simplify the microprocessors’ access to the data. A general case was 
discussed in § 2.6.1 in Darche (2012). A binary word in format 2k × n (with k ) 
and address A is called aligned or framed in a memory in n format when the 
following relationship is verified: 

A mod 2k = 0 [3.1] 

The format n is generally a multiple of the byte and is equal to: 

n = 23 × k’, k’  [3.2] 

One example of code alignment is the MIPS (Microprocessor without 
Interlocked Pipeline Stages) microprocessor. The counterpart is a larger generated 
code than in a version with misalignment as memory locations are used for the goal 
of realignment. Misalignment of an operand during access may involve additional 
execution time just as for, originally, the x86 family from Intel. Figure 3.1 shows 
instruction storage in an aligned or non-aligned memory. 
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Figure 3.1. Instruction alignment in 32-bit format  
(from Darche (2012) modified) 

The word boundary is the division between two words. Considering that the 
memory is divided into words, we speak of access to the word boundary when it is 
not possible to have access with finer granularity. The architecture may not be 
sensitive to this constraint. If the information is between two words, the MPU will 
detect this. It will generate two consecutive addresses to access the complete 
information, which it will reconstruct internally. The management logic will be 
more complex than the two management logics that follow. If the alignment is 
imposed, the software (i.e. the compiler) will guarantee the valid instruction codes 
and the hardware will detect a misalignment and generally will generate a fault (cf.  
§ 5.4). An intermediary solution is to use differentiated instructions in cases of 
misalignment to fetch the information. One example is the Arm® architecture with 
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instructions lwl and lwr (load word left/right) for reading and, for writing, swl 
and swr (store word left/right). In case of accidental misalignment, an exception 
will be raised. Another example is the Alpha with the instruction ldq_u (load 
quadword unaligned) in addition to the instructions extll and extlh (extract 
longword low/high). 

3.1.3. Orthogonality and symmetry 

The instruction set’s orthogonality and symmetry mainly characterize the 
independence of the instructions compared to the data types and format, to storage 
and to the addressing of the operands. They also express the fact that the instructions 
do not show any specificity from the point of view of the registers, data formats or 
the upgrading of flags (cf. § V3-3.1.5). These two characteristics are sometimes 
interchangeable, and indeed confused, in the literature. Also, these are the precise 
definitions from Hunter (1987) and Levy and Eckhouse, Jr. (1989) which will be 
retained. 

Orthogonality, also called completeness, characterizes the fact that each type of 
data that can be processed by the processor hardware has a complete instruction set 
(addition, subtraction, multiplication, division, logical operations, etc.). We also 
speak about regularity. A data type is, for example, an integer in all its formats (8, 
16, 32 bits, etc.), a real number in all its formats, a character, etc. Orthogonality has 
a role in the compactness of the code and so in the generality of the code. The 
programmer is also better able to understand the program. The principle of 
orthogonality also applies to exceptions (cf. § 5.4). Orthogonality makes it possible 
to simplify the hardware. 

Symmetry refers to operand specification. It characterizes the fact that each 
instruction can use any addressing mode to access the operands. Registers are 
general purpose and interchangeable. A transfer instruction will be able to carry out 
its operation in both directions. The code is made symmetrical by separating the 
instruction code from the addressing mode. The absence of symmetry complicates 
Assembly Language (AL) and code generation by translation tools such as 
compilers or assemblers (cf. § V5-1.2) by multiplying specific cases. 

In the world of MPUs, we cite the MC68000 family from Motorola and the 
32000 series from National Semiconductor (NS), which introduced an orthogonal 
and symmetrical architecture. It was possible to link any of its instructions with an 
addressing mode and a data format (8, 16 and 32 bits). The instruction set of the 
PDP-11 mini-computer from Digital Equipment Corporation (DEC), then that of the 
VAX (Virtual Addressed eXtended) were a benchmark for symmetry. The 
8080/8085 family was well known for its programming, complicated by the 
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asymmetry of the instruction set. The x86 family inherited this. One example is the 
instruction stos, which uses specific indexing records and transfers in only one 
direction. A microprocessor such as MC6800 had two transfer instructions for 
(down)loading the accumulator. 

3.1.4. Pure, re-entrant and relocatable codes and code for read-only 
memory 

A pure code is a code that contains only invariant (i.e. constant) instructions 
data. In particular, it should not self-modify (this is the case, for example, for some 
IT viruses called polymorphic). It allows re-entry. 

A re-entrant code enables several tasks, from one or more users, to use it without 
losing data coherence. To do this, the code should be invariant (pure code), and each 
user has their own data zone. The x86 family with separate segments of code and 
data enables that. For example, the TMS320C31 allows re-entry. 

A relocatable code is position-independent. It is the opposite of an absolute code. 
The benefit of a Position-Independent Code (PIC) or Position-Independent 
Executable (PIE) code is that the program (i.e. instructions and data) can be stored in 
any place in the memory. Managing the main memory, a task that falls to the 
Operating System (OS), is simplified. To do this, the programmer should not use 
absolute (i.e. fixed) addresses but relative addresses (cf. § 1.2.3.2) or symbolic 
addresses that will be resolved during the assembling and link editing (cf. § V5-1.2). 
Adapted addressing modes are based on relative addressing (i.e. at the Program 
Counter). The manufacturer DEC used four addressing modes using the Program 
Counter (PC immediate, absolute, relative and relative deferred addressing modes, 
cf. § 1.2). The absence of an MMU (Memory Management Unit, this will be covered 
in a future book by the author on memories) can be palliated by this approach, but it 
is obsolete today as modern processors use the virtual address. Segmentation uses 
them for the programmer in a transparent manner. 

A “ROM-able” code is a program intended for implementation in read-only 
memory1. This means that the instructions and constants will go to ROM (Read-
Only Memory) while the variables, which are therefore modifiable, will be stored in 
volatile memory. This contrasts with the “von Neumann” arrangement that stored 
everything in a single memory, called “unified”. This responds particularly to 
demand from embedded systems. It justifies the concept of specialized sections in 
programs in assembly language for instructions, data and constants. 

                                 

1 This will therefore be FirmWare or FW (i.e. software stored in read-only memory). 
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3.1.5. Levels of programming languages 

The instructions the microprocessor executes present in the form of binary words 
in a set, fixed or variable format. This is what we call machine language. Since it is not 
easy to use them in this form for programming, since it is a natural binary, a symbolic 
High-Level (programming) Language has been invented to move closer to natural 
language. This is Assembly Language (AL). Formed mainly of mnemonics (cf. § 2.1), 
that is, of symbolic instruction names, it comes close to human language. To each 
mnemonic and, if this is applicable depending on the addressing mode of the 
operand(s), there will correspond a binary instruction. The two major defects are a lack 
of readability for a large programme and an absence of advanced control structures. 
Also, to respond to these limitations, high-level or advanced languages have been 
invented. To move from one language to another, it is necessary to use software tools 
that translate such as the assembler or, at a higher level, the compiler. The assembler 
moves from a symbolic language to machine language. Figure 3.2 illustrates the 
hierarchy that exists between these different languages. 

The linker makes it possible to add other object2 modules (or object codes), the 
results of compiling a source program not necessarily written in the same language 
as that of the direct chain and stored in a static library. It should be noted that the 
editing of links also makes it possible to refer to object modules shared in a DLL 
(for Dynamic Link Library in Windows®). Each instruction is, depending on its 
architecture, either executed by a wired micromachine or interpreted internally by a 
microprogrammed micromachine. This aspect will be developed in a future book by 
the author on microprocessors. 

 

Figure 3.2. Levels of programming language 
                                 

2 Not to be confused with the object languages concept of the same name. 
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The development chain and, more particularly, assembly language are detailed in 
the following volume. 

3.2. Concepts linked to execution 

This section develops some concepts linked to execution. These are variation of 
execution and memory space, the concept of internal states, execution modes, code 
portability and virtualization. 

3.2.1. Consequences for execution time and memory requirements 

Addressing modes and their possible combinations have consequences for the 
number of machine cycles and the instruction format. Table 3.1 shows the details of 
time costs and costs in memory space for the indexed addressing mode from 
MC6809, which may be substantial. 

 

Table 3.1. Additional cost in the number of cycles and memory clutter  
for the MC6809 indexed addressing mode (Motorola 1981, 1983) 

Table 3.2 specifies the calculation time for addressing modes for the 8086 
microprocessor from Intel. Two clock cycles are added to the given value set during 
a segment override. It should be noted that the complexity of the addressing modes 
increases the machine’s number of cycles. This information is specified in each 
instruction’s explanatory notes. For an instruction, there are a number of basic (i.e. 
constant) cycles to which we must add a variable value depending on the complexity 
of the addressing. In this table, DISP (DISPlacement) meaning offset is a value (in 
bytes) to be added algebraically. 
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Addressing modes Calculating the effective address Number of clock periods 
Offset only PC 6 

Based or index only (BX, BP, SI, DI) 5 

(Based or index) + offset (BX, BP, SI, DI) + DISP 9 

Based + index  
BP + DI, BX + SI 7 

BP + SI, BX + DI 8 

Based + index + offset 

BP + DI + DISP 
11 

BX + SI + DISP 

BP + SI + DISP 
12 

BX + DI + DISP 

Table 3.2. Effective address calculation time (8086) 

Chow et al. (1987) have shown that a simple addressing mode, base register plus 
offset, makes it possible to implement High-Level (programming) Language (HLL) 
functionalities. By optimizing its calculation time, the implantation of other complex 
modes can be considered and the Control Unit (CU) is thus simplified. This is one of 
the reasons for the RISC (Reduced Instruction Set Computer) approach whose main 
aim was to rationalize the instruction set to diminish its cardinality (this will be 
covered in a future book by the author on microprocessors). 

3.2.2. Execution modes 

The notion of an execution mode has been introduced to ensure that the user’s, or 
another user’s, programs can access unauthorized resources (processor, memories, 
Input–Output (I/O), etc.). The number of execution modes is historically two for the 
Cray Y-MP supercomputer. These are supervisor execution modes, called privileged 
modes, administrator, system (root), kernel, protected or monitor, and user, also 
called non-privileged mode, real or normal (Z8000). The user mode is the normal 
mode for executing applications. The kernel of the operating system runs in 
privileged mode. This number may be higher. An initial example is R4000, which 
has three modes, user, supervisor and kernel. Kernel mode is comparable to the 
supervisor mode in other microprocessors. The new mode called supervisor is an 
intermediary mode for promoting the operation of systems organized in layers. Intel 
microprocessors from the x86 family from i286 are a second example. They have a 
hierarchy of four levels (hierarchical protection domains) generally represented by a 
ring protection system as Figure 3.3 illustrates. Level 0 is reserved for the operating 
system kernel. Level 1 is used for services offered to I/O controller pilots and to user 
programs. Level 2 is assigned to pilots, and the final level is for user programs. 
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Figure 3.3. Hierarchy of protected execution modes  
from the x86 family from Intel (from MPU 80286) 

Modern operating systems require management of the virtual memory, which 
offers a (logical) address space that is larger than the physical address space and 
introduces memory protection and address translation. It also requires an execution 
mode known as privileged mode compared to user mode and, in a multiprocessor 
environment, synchronization primitives. The concept of execution mode reinforces 
security. A program with protection level n can execute instructions at level n or 
higher. Below this, a system call is needed in the form of a software interruption (i.e. 
trap). The reverse occurs, either by a specialized instruction such as rte for 
MC68010 or by manipulating a supervisor bit in a status register. An attempt at 
executing a privileged instruction or one with particular privileges in a mode with 
less privilege causes an exception (cf. § 5.4). 

Another benefit of this hierarchization is that it creates grades of protection. 
Thus, OS services such as I/O controller pilots and peripheral devices have an 
intermediary privilege level. Those from Arm® decline the privileged mode into 
system mode, supervisor mode, Interrupt ReQuest (IRQ) mode or Fast Interrupt (FIQ) 
mode, undefined mode and abort mode, which brings the total to 7 (Table 3.3). System 
mode is used by the OS to execute its tasks in privileged mode. Supervisor mode is a 
protected mode in the OS. IRQ mode is the mode traditionally used by interrupt 
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handlers. FIQ mode is used for fast response questions. Undefined mode involves 
software emulation of hardware coprocessors. Abort mode is used by the virtual 
memory mechanism for its internal management and memory protection. 

Execution modes Source(s) Symbol Use 

User – USR 
Normal execution mode  

for instructions 

Fast IRQ FIQ FIQ Fast interrupt mode 

IRQ IRQ IRQ Normal interrupt mode 

Supervisor 
SWI (SoftWare 

Interrupt) and Reset 
SVC 

Protected OS execution 
mode 

Abort 
Pre-fetch abort  

data abort  
(memory access failure)

ABT 
Physical memory and 

virtual memory  
protection modes 

Undefined Undefined instruction UND 
Software emulation mode 
for physical coprocessors 

System – SYS 
Privileged execution mode 

for OS processes 

Table 3.3. Arm® architecture execution modes 

Flags can be assigned to indicate the mode as for the ARM11 family with binary 
indicators (i.e. mode bit) M[4:0] from the CPSR (Current Program Status Register) 
register. The mode’s indication can be in hardware form. MC68000 has three 
outputs FCi (FC for Function Code, i ∈ [0, 2]) for external controllers that encode 
the execution mode (supervisor or user) and the type of address space (program, data 
and CPU or Central Processing Unit) during access to the main memory. It makes it 
possible to, for example, control access. In x86 architecture, the level of privilege 
for I/Os or IOPL (I/O Privilege Level) is stored in the status register. When access to 
I/O is requested, the MPU compares this level to the CPL (Current Privilege Level) 
of the task being executed. This should be less than or equal to the IOPL for 
authorization to be granted. 

With several execution modes, there should be multiple stacks. But beware, just 
because it has two stack pointers, this does not mean that the MPU has two 
execution modes, one example being the MC6809 (cf. § V3-3.1.8). 

From the integration of virtualization technologies (cf. § 3.2.4) VT-x and AMD-V, 
the designers respectively Intel and AMD have added an additional level, hypervisor 
mode (= -1) to support virtualization of higher levels using hardware. 
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Figure 3.4 shows the different operating modes of a modern MPU. We must 
distinguish real addressing modes, protected modes, virtual-8086 modes and system 
management. Protection modes do not exist in real(-address) mode to be able, after 
material initialization, to initialize protected mode. One curiosity with the 80286 
was that once in protected mode; this MPU could only return to real mode via 
initialization (reset). To enter System Management Mode (SMM), the interrupt pin 
SMI# should be activated. The associated handler is executed in real mode. It is the 
rsm (Resume from System Management Mode) instruction that takes the MPU out 
of this mode. This mode is useful for low-level system management such as energy 
and temperature management, and potentially, for debugging. These execution and 
operating modes are needed to ensure security of execution but are not sufficient 
with regard to new flaws like Spectre (Kocher et al. 2018) and Meltdown (Lipp  
et al. 2018). Moreover, SMM mode may also become a security flaw (Embleton  
et al. 2008). 

 

Figure 3.4. Operating modes of an MPU from  
IA-323 architecture from Intel® (Intel 2003) 

Further technical details (hardware and software) are summarized in Intel (1984, 
1986a, 1987a, 1987b) and, for information on protected mode, Shanley (1996, 2009) 
also in a future book by the author on microprocessors. 

                                 

3 IA for Intel Architecture. 
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3.2.3. Portability 

(Trans)portability is a system’s, product’s or component’s ability to be 
transferred from one hardware or software environment to another (definition 
adapted from (ISO/IEC/IEEE 2017)). At software level, portability represents its 
ability to adapt to several execution environments. This adaptation may be more or 
less easy to achieve depending on whether it is a real execution or an interpretation. 
In the context of generating an executable, the associated terms “porting” or 
“portage” refer at least to targeted operation of recompiling or editing links. 

3.2.4. Virtualization 

Modern machines use virtualization, an approach from the 1970s to 1980s 
represented by IBM System/370 computers and IBM’s OS VM/370 (Creasy 1981) 
and for languages, Smalltalk (Kay 1993). Virtualization was abandoned in the 1980s 
in favor of the less costly environment offered by the microprocessor and 
microcomputers. It was “rediscovered” in particular with virtualization in a server 
environment at the start of the 2000s and with java language (Gosling et al. 2018; 
Lindholm et al. 2018). Figure 3.5 shows the possibility of a virtual computer system 
with virtualization of applications, also called hosted virtualization above a host OS. 
It makes it possible to encapsulate a complete IT system (i.e. hardware, OS and 
applications). To do this, the Virtual Machine Monitor (VMM) is a software layer 
that emulates a computer’s hardware layer. Instead of virtualizing a system, 
virtualization can be achieved during processes where it offers an execution above 
the OS for a single application. JVM (Java Virtual Machine) is one example of this. 
Virtualization encapsulates and isolates applications, in particular from faults. 

 

Figure 3.5. Virtualization in an application 
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The hypervisor approach is another declension where a monitor between the 
hardware and the OS makes it possible to manage the different virtual machines 
(Figure 3.6). The current trend (2018) moves towards ever-greater factorization of 
layers. 

 

Figure 3.6. Hypervision of virtual machines 

Containers (Figure 3.7(a)) and the “serverless” approach (Figure 3.7(b)) allow 
for lighter applications by taking advantage of the number of cores in current MPUs. 
Containers share a common OS. The “serverless” approach provides a standard 
interface in the application. 

 

Figure 3.7. Differences between container (a) and serverless (b)  
(from Wong (2016, 2017) modified) 

An excellent book on virtualization is Smith and Nair (2005). 
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3.3. Hardware and software compatibilities 

A system’s compatibility can be seen from two angles, which are interoperability 
and coexistence (ISO/IEC 2014). Interoperability is the ability of two (or more) 
systems, products or components to exchange information or to mutually use the 
information exchanged. This aspect will not be addressed in this volume. The 
second aspect is defined by the ability of two (or more) systems, products or 
components to fulfill their function(s) while sharing the same hardware or software 
environment. It can therefore be involved at any level in an IT system, either 
software or hardware. A notion linked to this, which is portability, is then defined. 

3.3.1. Hardware compatibility 

Hardware compatibility for a component such as the MPU is made at electronic, 
time and mechanical levels. At the interface, this involves signals. Electronic 
compatibility depends on logic technology (cf. Chapter 2 from Darche (2004)). This 
can also involve their time characteristics. The type and pinout of the component 
package may also be identical. 

Pushed too far, hardware compatibility may also result in conflict between 
manufacturing competitors. One example is MCS6501, which was compatible with 
the MC6800 at pinout level and the signals from the bus, which resulted for MOS 
Technology in an industrial legal challenge from Motorola, which led to the 
component being retired. 

By extension, a system such as a computer or peripheral device can be declared 
compatible according to a reference or a standard. There were, for example, 
microcomputers compatible with the Personal Computer (PC) from IBM. They were 
built in general around an MPU compatible with the 8088, but faster, such as the 
8086 from Intel or an x86 compatible MPU. Printer interfaces compatible in the 
1970s with the Centronics interface and named after the company (cf. § 8.1.1 in 
Darche (2003)) or the society are another example. 

3.3.2. Software compatibility 

An MPU can have a sub-set of the instruction set, or indeed the whole set, 
compatible with another component. One example is the 8085 microprocessor from 
Intel that was 100% software compatible with the 8080A. From the same manufacturer, 
it is the same with Pentium and the previous MPUs from the x86 family. 

But the MPU is not only an IT system. Software portability with computer 
architectures and operating systems is a growing demand from software developers 
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and computer manufacturers. It is motivated for technical and economic reasons to 
improve the efficiency of software and hardware development. To do this, it is 
necessary to ensure software compatibility at source code (or program), object code 
and computer code level. Software compatibility requires an adaptation called 
portage (cf. § 3.2.3) as a recompilation, re-assembly or a new edition of links. This 
aspect is developed in § V5-1.2. 

3.3.3. Upward and downward compatibilities 

Generally speaking, backward compatibility is a digital system’s ability to 
interact with an older system or, for software, to operate correctly in a more recent 
environment. We also speak of upward4 compatibility (on this, cf. Leonard and 
Kluth (1989)) or also downward compatibility. This is common in IT. It will be able, 
for example, to execute an old program without modifying it (i.e. without 
recompiling it) on a new version of OS for which it was developed or on more 
recent hardware. This ability is used particularly, commercially, in video games. 
Each new-generation MPU sees its instruction set enriched by new instructions to 
meet, for example, a specific need in a domain such as multimedia. Instructions of 
components from older generations are thus recognized. Each new generation is thus 
backward compatible. The benefit lies in the fact that older software can be executed 
by new microprocessors. There is thus binary compatibility in a family. The major 
drawback is growing hardware complexity, which old instructions have to master. 

An initial example is the x86 family where the instruction set is formed of a 
hierarchy (Figure 3.8). It retains backward compatibility at each level. We must 
distinguish between base, extended and system sets. The base set comprises the most 
up-to-date instructions (arithmetic and logical calculations, data transfer, control and 
I/O transfer). The extended set is suggested for a particular application domain such 
as multimedia or a particular execution mode (186, 286, etc.). This latter type makes 
it possible to control a sub-set such as managing and protecting memory. One of the 
first extensions is the MMX set (cf. § 2.7.1) from Intel. 

A second example is the ISA from the MIPS I processor (Kane 1988) which was 
extended forwards four times, from MIPs II to MIPS V (Figure 3.9) to then end with 
MIPS 32/64. Each extension is therefore backward compatible with the previous. 
Therefore, an MIPS IV component can execute a binary program using the 
instruction set of a previous ISA. Another example is the MC6809, which is upward 
compatible with the MC6800 at the source code, that is, for the instruction set and 

                                 

4 The corresponding pairs backward = downward and forward = upward can be found (see 
Wikipedia article on compatibility) but will not be used in this book. 
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addressing modes. It is therefore possible to assemble the MC6800 source using an 
MC6809 assembler. 

 

Figure 3.8. Hierarchization of the instruction set from x86 architecture 

 

Figure 3.9. Backward compatibility of the instruction set architecture  
by enriching the instruction set 

At data level, there is upward compatibility between versions of a software if the 
new version can use files created using the older version. One example is the most 
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recent version of Word text processing from Microsoft whose text file extension is 
“.docx”, which can always read the old format “.doc”. A final example, from 
hardware, is the USB 3.0 whose upward compatibility is ensured with plug 
connectors. 

Generally speaking, downward compatibility is a digital system’s ability to 
interact with a more recent or future system or, for software, to operate correctly in 
an older environment. This compatibility is important at data level. Since it is more 
difficult to implement, it is encountered more rarely. One example is when a more 
recent software can be executed using an older OS version for which it has been 
developed or on older hardware. A degradation in performance is accepted. At data 
level, there is downward compatibility between versions of a software if the files 
created by the new version can equally be used by the older version. By returning to 
the previous example of text processing, Word 2013 is capable of opening a “.docx” 
file from the more recent generation but with reduced function. A converter is 
generally used. For additional reading from the perspective of development, read 
Ponomarenko and Rubanov (2012). We also speak of forward compatibility (cf. note 
at the bottom of page no. 5) or of post-compatibility or downward compatibility. 
Figure 3.10 summarizes the two types of compatibility. 

 

Figure 3.10. Types of compatibility of a digital system 

Compatibility exists at register level. A processor can manipulate the same data 
register but with different formats. For example, Intel64 architecture uses its A 
register in 16- and 8-bit (respectively called AX and AH/AL from 8086), 32-bit or 
64-bit formats (respectively called EAX and RAX). 

3.4. Measuring processor performances 

Performance is a key characteristic of a microprocessor, as too may be its power 
dissipation PD (cf. § V3-6.1.2) or its architecture. Methods for evaluating 
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performances are divided into three areas, measurement, performance modeling, 
analytics and simulation (Heidelberger and Lavenberg 1984); both models can be 
summarized in a hybrid model. But how do we measure the performance of an 
architecture, a mainframe computer or, in particular, a microprocessor or the 
performance of a whole computer? The less complex the architecture of a 
microprocessor, the easier it is to evaluate its calculating power. Today, with the 
multiplication of operating units (this will be covered in a future book by the author 
on microprocessors) and because they are combined, comparison becomes difficult. 
In addition, performance measurement also involves other sub-sets such as those 
belonging to the memory hierarchy (caches and main memory) with, for example, 
evaluation of its bandwidth (cf. below). 

3.4.1. Clock rate 

Metrics involve calculating speed and, in addition, transfer speed. A 
microprocessor in its most up-to-date version, that is, a synchronous microprocessor, 
is timed using a clock signal (cf. § V3-2.4.1). The initial indicator is therefore the 
clock rate fclock of the CU (Control Unit; clock rate or speed) in hertz. The equivalent 
unit is the number of clock cycles per second. The higher its frequency, the faster 
the component will calculate. Its period Tclock (s) is deduced by the relationship: 

௖ܶ௟௢௖௞ = ଵ௙೎೗೚೎ೖ [3.3] 

The frequency is a performance indicator for the microprocessor’s electronics 
and organization (in the sense of § V1-3.1.4), and it is a design choice. For example, 
the designers Alpha (Compaq) chose to increase frequency while Hewlett-Packard 
(HP) with the PA-RISC (PA for Precision Architecture) optimized its 
microarchitecture (Agarwal et al. 2000). This improvement has a direct impact on 
energy consumption, especially on MOS (Metal-Oxide Semiconductor, cf. § 2.4 in 
Darche (2004)) technology because of its dynamic power PD (cf. § V3-6.1.2 and  
§ 3.7 in Darche (2004)) which depends on it. On the contrary, this indicator should 
be handled with caution since, from one microprocessor to another, an instruction 
with the same functionality (i.e. operation and addressing) can require a different 
number of cycles for its execution. The causes of this are both internal (due to its 
microarchitecture) and external. A program is only written with a single instruction, 
and the addressing modes have an impact on an instruction’s execution. Moreover, a 
microprocessor can also divide the internal clock rate (cf. § V3-2.4.1). An old 
example is the MC6802 with a division factor of 4. The processor’s environment is 
also involved, in particular the memory hierarchy with, in the first place, the 
different cache levels and the I/O controllers. Today, these are (i.e. 2000) integrated 
into the southbridge chipset (cf. § V5-3.3). Moreover, for technical reasons, 
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manufacturers have chosen to favor increasing the number of kernels to the 
detriment of the clock rate (cf. § V3-2.4.1). 

3.4.2. Number of instructions per cycle 

A second indicator [is] the average number of Instructions (executed) Per Cycle or 
IPC (Instructions Per Cycle). The IPC is generally calculated according to the formula 
at program level [3.4] from the total number of instructions executed I and the number 
of clock cycles C needed to execute them. The number of cycles considered here is the 
number of instructions executed, that is, terminated, and it can include stall cycles 
when the processor is stopped (the case with pipelined architecture). ܥܲܫ = ூ஼ [3.4] 

This unit of measurement is generally used to evaluate the Instruction-Level 
Parallelism or ILP (this will be covered in a future book by the author on 
microprocessors). A value lower than the unit indicates parallelization of execution. 
It is linked to the average number of (clock) Cycles Per Instruction (CPI) by the 
relationship: ܫܲܥ = ଵூ௉஼ [3.5] 

This indicator can be declined per instruction family i, whether arithmetic and 
logic, transfer (loading-storing) and (de)branching instructions. For a given program, 
it is then possible to calculate the CPI by considering the number of instructions Ci 
of a class i and the usage frequency Fi (%) of n instruction families. It is equal to the 
sum of the results of all classes taking account of their importance: ܫܲܥ = ∑ (஼௉ூ೔×஼೔)೙೔సభ ூ = ∑ ௜ܫܲܥ) × ௜)௡௜ୀଵܨ  [3.6] 

The number of Instructions Per Second or IPS is calculated from the average 
number of cycles per instruction using the formula [3.7]. The influence of the clock 
rate is perceptible directly in this equation since it acts on the cycle time. Increasing 
it makes it possible to decrease the instruction execution time. This can be done by 
improving or changing the technology or by intervening at the microarchitecture 
level. For the CPI, it must act as before on the organization, the ISA and, to a lesser 
degree measure, on the compiler and programming. Finally, to decrease the number 
of instructions in a program, it must intervene at the level of the ISA, the compiler 
and the programming. ܵܲܫ = ௙೎೗೚೎ೖ஼௉ூ = ௖݂௟௢௖௞ ×  [3.7] ܥܲܫ
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A current multiple is the MIPS or Million (106) IPS. If the processor includes 
additional operating units such as the Floating-Point Unit (FPU) or a coprocessor, their 
performance should be integrated. Figure 3.11 shows the evolution of the calculating 
performance of the first MPUs from Intel expressed in this unit. The MIPS (Million 
Instructions Per Second) does not take account of the instructions used. The value 
obtained will therefore vary depending on the program used. An MPU manufacturer 
could easily show a favorable result. The comparison becomes difficult with different 
instruction sets. The same goes for MFLOPS, which is, also, dependant on the 
program used. It can sometimes be distinguished between peak or sustained rates, to 
emphasize the computing power of a particular sub-set such as a calculation unit. With 
the emergence of RISC microprocessors, the MIPS is no longer sufficient to compare 
different architectures. The instruction set is simplified so it can accelerate operation of 
the CU (Control Unit), but the compilers generate more instructions. 

 

Figure 3.11. Evolution of the calculating performance  
(MIPS) of the first MPUs from Intel 

For floating points, there is the number of floating-point operations per second and 
its multiple, the MFLOPS5 or megaFLOPS (= Million FLoating point Operations Per 
Second). For the Digital Signal Processor (DSP, cf. § V3-5.2), we measure the number 
of multiplications-additions per second or MACS (Multiply-ACcumulates Per 
Second), with MACs being the operations currently (but not solely) used in digital 
filtering (cf. § V3-5.2). 
                                 
5 For an evaluation, consult Giladi (1996). 
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3.4.3. Execution time 

The program’s execution time texec formed of I instructions is given by the 
formula [3.8] called “iron law” by Shen and Lipasti (2005). It depends on the 
compiler, which generates low-level instructions and the ISA. CPI is a function of 
the microarchitecture and its implementation. To conclude, the clock rate depends 
on the micro-electronic technology and implementation: ݐ௘௫௘௖ = ܫ × ܫܲܥ × ௖ܶ௟௢௖௞ = ௜௡௦௧௥௨௖௧௜௢௡௦௣௥௢௚௥௔௠ × ௖௬௖௟௘௦௜௡௦௧௥௨௖௧௜௢௡ × ௦௘௖௢௡ௗ௦௖௬௖௟௘  [3.8] 

A performance index P can be defined for a given program as follows: ܲ = ଵ௘௫௘௖௨௧௜௢௡	௧௜௠௘ = ூ௉஼×௙௥௘௤௨௘௡௖௬௡௨௠௕௘௥	௢௙	௜௡௦௧௥௨௖௧௜௢௡௦ [3.9] 

A relative performance can then be defined by comparing the execution of a 
given program on two computers A and B: 

௥ܲ௘௟௔௧௜௩௘ = ௉ಲ௉ಳ = ௧೐ೣ೐೎	ಳ௧೐ೣ೐೎	ಲ [3.10] 

Particular points of the architecture can then be evaluated, such as, for example,  
the branching prediction failure rate (this will be covered in a future book by the 
author on microprocessors). For the embedded systems domain where energy 
autonomy is vital, the MIPS (Million Instructions Per Second)/mW ratio should be 
preferred (cf. § V3-6.1.4 and Figure V3-6.6). The metrics at the MPU should consider 
its immediate environment, that is, the top of the memory hierarchy and, more 
particularly, the caches and main memory, as well as the compiler’s performances since 
all these characteristics are intricated and difficult to dissociate from one another. So 
performances at data cache and instruction levels (hit ratio), Virtual Address (VA) 
translation performances with TLBs (Translation Lookaside Buffer), for example, 
memory alignment (cf. § V1-2.2.2) as well as the main memory bandwidth will have 
to be considered. The metrics of modern MPUs is complex. It should also consider its 
software environment (Toong and Gupta 1982). As an example, Lua (1989) compares 
the different performances of the first MPUs from the x86 family. 

3.4.4. Benchmark suites 

The metrics for a computer should consider the overall environment, both 
hardware and software. Thus, it may be necessary to consider the performance of the  
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chipset (cf. § V5-3.3) or that of the I/Os such as the secondary memory data rate, for 
example. It is therefore necessary to use programs to evaluate performances. 
According to Hennessy and Patterson (2003, 2003b), this may be the targeted 
application, a suite of performance test programs ((synthetic) benchmark suites) as 
part of a suite (kernel benchmark), for example, calculation of a Fast Fourier 
Transform (FFT) or just a specific program to test, for example, only the floating-
point division (microbenchmark). We can also list the toy benchmark, a small 
program of less than 100 lines of code such as QuickSort, the sieve of Eratosthenes 
or the towers of Hanoi and real programs representative of a domain such as a game. 

Benchmark suites are programs, most of the time written in high-level language, 
representing an application domain (a database, for example) or which are 
generalists or represent a family of computers (a microcomputer or server for 
example) by making it possible to measure the CPU (Central Processing Unit) rate 
or, based on this, by calculating an indicator (arithmetical average or weighted sum 
of individual results), to evaluate the calculating power of a CPU (Central 
Processing Unit) or a computer compared to a benchmark. 

An initial category is the synthetic suite. In this category, we cite the Whetstone 
and Dhrystone programs. The Whetstone program (Curnow and Wichman 1976) 
bears the name of the firm that wrote an ALGOL (ALGOrithmic Language) 
compiler (Randell and Russell 1964). It was written in 1972 in this language at the 
National Physical Laboratory (NPL) in the UK, published in 1976 then translated 
into FORTRAN (FORmula TRANslation). It is a simple or double precision 
mathematical calculation in floating point. Its unit of measurement and multiple are 
respectively the kWIPS (kiloWhetstone Instructions Per Second) and the million 
Whetstone instructions per second (MWIPS). Dhrystone is a program written 
originally in C by Reinhold Weicker in 1984 (Weicker 1984). Its name is a 
wordplay on the name of the previous test program (w(h)and - d(h)ry). It is a 
mathematical calculation for integers that gives the number of instructions executed 
per second. The unit is the DMIPS (Dhrystone MIPS6). 

Another category is the application suite currently used. One example is the 
SPEC suite (for System Performance Evaluation Corporation7) (Dixit 1991) with 
SPECint (int for integer) and SPECflop (SPEC floating point). The first SPEC suite, 
SPECmark89, included 10 programs (4 for integers and 6 for numbers in floating-
point). After executing each program, it provided a number (SPECmark) that made  
 

                                 

6 The MIPS should not be confused with a “classic” MIPS. A MIPS here means 1.75 DEC 
VAX MIPS! 

7 Non-profit society originally called System Performance Evaluation Cooperative, founded 
by IT manufacturers. 
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it possible to compare the element being tested with a reference computer, as it 
happens the VAX 11/780 (SPEC 1989). Suites SPEC92 (SPECint92 and 
SPECfp92), SPEC95 (SPECint95 and SPECfp95) and SPEC CPU2000 (1999) 
followed. Today, the SPEC2006 suite includes two programs for integers and 17 
programs for numbers in floating-point. The influence of the language, its compiler 
and runtime library is evident (Weicker 1990). For more information, see the site of 
the non-profit SPEC society (URL: www.spec.org). Figure 3.12 shows the 
development over time of performances of microprocessor systems measured in 
SPECint.  

 

Figure 3.12. Development of MPU systems’  
performance over time (SPECint) 

Two other categories are the toy benchmark, which is a set of small pieces of 
code such as Hanoi Towers, and kernel benchmarks, which are extracts of real 
application code. For the latter, LINPACK (Dongarra et al. 2003), an acronym for 
LINear Algebra PACKage, and supplanted by LAPACK (Anderson et al. 1990), an 
acronym for Linear Algebra PACKage, are suites of subroutine written respectively 
originally in FORTRAN66 and FORTRAN90 to solve linear equation systems. The 
first was used to classify the first 500 supercalculators (TOP500). Figure 3.13 shows 
a comparative development of performances between supercalculators and 
microprocessors, mainly the RISC type. 

MPU manufacturers may have their own index. We cite iCOMP (Intel 
COmparative Microprocessor Performance) (Intel 1996, 1999), which has had three 
versions respectively released in 1990, 1992 and 1999. It involves a weighted 
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average (Table 3.4) of several synthetic benchmark suites compared to a benchmark 
MPU, 486SX/25, Pentium 120 and Pentium II and III respectively for versions 1.0, 
2.0 and 3.0. 

 

Figure 3.13. Comparison of uniprocessor performances between supercomputers  
and microprocessor systems (from Culler and Singh (1998)) 

iCOMP iCOMP 2.0 

Suites Weight (%) Suites Weight (%) 

PC Bench 7.0.1 68 Norton SI32 15 

SPECint92 25 CPUmark32 40 

SPECfp92 5 SPECint_base95 20 

Whetstone 2 SPECfp_base95 5 

– – Intel Media Benchmark 20 

Table 3.4. List of iCOMP benchmarks 

To conclude, there are commercial benchmarks. As an example, we cite PCMark 
from UL Benchmarks (e.g. Futuremark® Corporation) for measuring the 
performance of a professional PC (Personal Computer) type microcomputer (office 
or otherwise) or even, 3DMark for gaming PCs. Others are suggested by magazines, 
for example, those suggested by PC Magazine. 
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3.4.5. Development of performances over time 

Reducing the etching fineness has reduced transistor size. This has made it possible 
to increase circuit density. This increase makes it possible implement more logic gates 
and so more functional blocks. The consequence was a growing complexity in 
microarchitectures. The pipeline is one example of this, multiplying stages by 
decreasing levels of logic with each cycle. Moreover, the gate length makes it possible 
to reduce transistor switching time and so its operating frequency increases. The 
increase in functions and in the clock rate and the progress in compilation made it 
possible to double performances every three years before 1986, which is a growth 
factor of 1.26 per year, then every 1.5 years (52%) before stagnating finally (by 
considering only a core) from 2006 after an increase of 20% as Figure 3.14 shows. It is 
also useful to compare this first trace considering the MPU environment, in particular 
that of the main memory. Two measures are latency and the bandwidth (or throughput), 
definitions of which were recapped in § V1-2.1. These two characteristics apply to 
three memory categories, main, secondary and tertiary, as well as to the I/O domain as 
in network domains, as well as to the microprocessor. Its performance has only 
developed by 7% per year for main memory. Another case study is MacGregor and 
Rubinstein (1985), which compares the performances of MC68020-based systems. 
McCalpin (1995) proposes the STREAM benchmark (URL: https://www.cs.virginia. 
edu/stream/) to evaluate the sustained memory bandwidth for vector calculations. 

 

Figure 3.14. Comparing (single-core) MPU performances with  
DRAM8 performances (from Hennessy and Patterson (2011)) 

                                 

8 DRAM for Dynamic Random Access Memory. 
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A final comparison is the performance of different categories of computer  
(cf. § V1-1.2) as Figure 3.15 illustrates. It shows in particular the moment where 
microprocessors “killed off” mini-computers (dotted circle in the figure) and, later, 
mainframe computers when they became competitive (killer micro, cf. § V1-1.2). 

 

Figure 3.15. Comparison of performances between  
computer classes (from Hennessy and Jouppi (1991)) 

To summarize, a microprocessor’s performance will depend on the program, the 
programming language used, the compiler, the ISA, the organization that 
implements it, the clock rate and microelectronic manufacturing technology. It will 
also be necessary to consider the operating system. Moreover, a performance 
estimation can be made using a simulation model rather than a real component to 
guide a design choice. The reason is economic, both the financial cost and the time 
cost. For more information, see, for example, John and Eeckhout (2006). Evaluating 
a microprocessor does not end with performance measurement. Criteria such as ease 
of programming, hardware and software compatibilities (cf. § 3.3) or setup should 
also be considered. 

3.5. Criteria for choosing 

Classic criteria for choosing a microprocessor are first of all classical technical 
criteria such as the performances desired (i.e. calculating power, transfer rate, etc.) 
and the characteristics of its ISA. This specifies the type of architecture (register-
oriented, stack-oriented, etc.), memory addressing characteristics (alignment or not, 
storage order, access format, addressing capacity), the available addressing modes, 
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operand characteristics (number, type, format and representation (i.e. encoding) and, 
of course, instructions (family, mnemonic, syntax, semantics, authorized addressing 
modes and encoding) and, finally, data and address path formats. The application 
domain makes it possible to make a preliminary selection by choosing an adapted 
architecture. A DSP will be more appropriate for processing digital signals than a 
GPP (General-Purpose Processor, cf. § V3-1.1). Economic criteria of course involve 
the costs of the component and of peripheral components, software development 
tools (compiler, assembler, linker and debugger) and hardware and hardware and 
software testing tools among others. The code’s upward compatibility (cf. § 3.3.3) is 
also important for a family of microprocessors as it limits future investments. There 
are also criteria that are not non-technical but are nonetheless important, for 
example, supply issues such as the availability and existence (strongly advised) of 
secondary manufacturing sources. 

3.6. Conclusion 

This chapter focused on additional concepts linked to instruction sets and to 
execution. It first explored what illegal, invalid, reserved and trusted instructions 
are. It then introduced notions of memory alignment, orthogonality and the 
symmetry of the instruction set and the concepts of pure, re-entrant and relocatable 
code. Then, the subjects of execution time, memory requirements, modes of 
execution, portability and virtualization were addressed. The important aspects of 
hardware and software compatibilities, execution performance measurement and 
criteria for choosing a microprocessor were completed this chapter. 

The chapter that follows will focus on the concept of a subroutine. 



4 

Subroutine 

After studying the principles of basic microprocessor operation and 
programming in previous chapters, we present here the concept of the subroutine. 
Thanks to the subroutine, it is possible to implement the concepts of function and 
procedure of High-Level (programming) Language (HLL) such as C or PASCAL. 
To be able to do this, a memory called a stack is required. Its operation, as well as 
that of its subroutine, are studied. This concept has been derived from that of 
interruption, invented to accelerate I/O (for Input/Output) handling and presented in 
the chapter that follows for teaching purposes. 

NB. The context of this study is a mono-processor unless otherwise indicated. 

4.1. Stack memory 

Stack memory simply means the stack as well as the LIFO (Last-In/First-Out) 
buffer to indicate the order of data circulation. Figure 4.1 shows the graph symbol of 
a stack S of a size s words. 

 

Figure 4.1. Suggested visual representation of a stack S 

The word “stack” is an analogy with a stack of plates where the last plate stacked 
is later the first to be picked up. In our context, the information represents the stack. 
The location that will be accessed is the top of the stack or TOS (Top-Of-Stack). For 

Microprocessor 4: Core Concepts – Software Aspects, 
First Edition. Philippe Darche. 
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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information, the data that precedes it takes the name NOS for Next-On-Stack. Two 
primitives are needed to manage the stack: stack() and destack(). The place occupied 
by this memory is zero or one word at initialization. The location is a writing action 
on the stack, and the stack therefore increases in size. Unstacking is a reading action 
on the stack, and the stack therefore reduces in size. Reading is destructive in the 
sense that access to the data occurs only once but the information will persist in 
memory at least until the next stacking action and if there have not been any other 
unstacking actions between the two operations. These two primitives classically 
translate for many microprocessors (MPU for MicroProcessor Unit) through 
instructions respectively push and pop (or pul – pull data from stack from 
MC6800, for example), hence its other names push-in/pop-out or push-down/pop-up 
memory. But other MPUs such as the Arm® family offer two generalist transfer 
instructions ldm and stm (load and store multiple registers). The processor, to 
manage this memory, should have two to three pieces of data, which are the stack 
start address, the address of the location stored in the stack pointer and, eventually, 
the maximum size for detecting a possible overflow. A memory area of maximum 
size can be reserved for it such as a segment (a concept explained in the next 
volume). The stack pointer is implemented in the form of a specialized register 
called, for example, SP (Stack Pointer) in the x86 family. Other registers can be 
used as a stack pointer. We list, for example, the a7 (address register) from 
MC68000, r13 for the Arm® family and GPR1 (General-Purpose Register) in 
PowerPC (Performance Optimization With Enhanced RISC Performance 
Computing) architecture with an adapted addressing mode such as auto-increment 
and auto-decrement (cf. § 1.2.3). For Arm®, there are two synonyms, push and pop 
respectively for instructions ldm and stm that specialize the transfer using the r13 
register as a base register and by automatically managing its following access. The 
benefit of using a general-purpose register1 makes it possible to access the stack at 
random with, for example, an indexed addressing mode (cf. § 1.2.3.4), which is 
useful for working with local variables or the parameters of a function/procedure. 
The registers to be stacked or unstacked can be specified as an operand or are 
implicit, one example being the instructions pusha (push all) and popa (pop all) 
from IA-32 (IA for Intel Architecture) that manipulate all the General-Purpose 
Registers (GPR). Instruction coding usually takes up one byte as there is no 
specified address in the operand field since it is implicit. 

At an implementation in main memory and by representing this with addresses 
ascending upwards as in the case of Figure 4.5, there are two possibilities: either the 
stack ascends towards the upper addresses or its ascent moves towards lower 
addresses (which creates an image of the stack of plates being glued to the ceiling!), 

                                 

1 Historic note: the PDP-11 mini-computer used a general-purpose register, R6, as a stack 
pointer. The stack was managed with auto-decrement addressing modes with R6 for a 
stacking and auto-increment, still with R6 for an unstacking. 
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hence the final name of push-down or push-down storage (JEDEC 2002, 2013). In 
the first case, it is called an ascending stack, in the second, a descending stack. In 
this last case, which is the most classical, a stacking action is linked to a decrement 
and respectively an unstacking action is linked to an increment of the stack pointer. 
Depending on the implementations, the action of stacking or unstacking can be 
made before or after the increment/decrement of the stack pointer. When the stack 
pointer points the last element stacked or the one that will be the first to be 
unstacked, the stack is called full. In the case where it points the next free location 
for a stack, it is called empty. There are therefore four possible solutions for 
implementation, as listed in Table 4.1. It should be noted that Arm® architecture 
offers these four possibilities. 

Stack names Push Pop Examples of 
implementation 

FD for Full Descending Pre-decrement Post-increment MC6809, x86, Arm® 

ED for Empty Descending Post-decrement Pre-increment MC6800, Arm® 

FA for Full Ascending Pre-increment Post-decrement Arm® 

EA for Empty Ascending Post-increment Pre-decrement Arm® 

Table 4.1. Solutions for managing a stack in main memory 

Figure 4.2 shows the pseudo-code of the two main stack manipulation 
instructions for the x86 family. The stack pointer here points the last stacked 
element or the next to be unstacked and the pile ascends downward from the 
memory (full descending stack). The descent value here is 2 as the memory is 
managed in byte format while the stack is managed in 16-bit word format (= 2 
bytes) for reasons of alignment (cf. § 2.6.1 from Darche (2012)) in relation to the 
processing format for integers of this MPU. It should be noted that, in rare cases, a 
processor cannot offer this implicit management of the stack pointer. In contrast, one 
benefit of an explicit management of the stack is choosing its ascent at the price of 
software cost. 

 

Figure 4.2. Pseudo-code for stacking (a) and unstacking (b)  
in the format n = 16 bits for the x86 family (Intel) 

The TMS320C31 runs the stack system in an upward direction! This means that 
a push instruction carries out a pre-increment and, pop, a post-decrement of the 
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stack pointer SP. We can also deduce from this that the SP points the last element 
stacked. In contrast, the other stacks can be managed in two directions. Figure 4.3 
summarizes these operations in a writing inspired by C language. 

 

Figure 4.3. Operations of stacking and unstacking for TMS320C31 

During operation, two errors can happen, stack overflow2 and stack underflow. 
Over- and under-flow are caused respectively by excess stacking or unstacking. We 
consider the pushup stack from Figure 4.4. To detect them, one possibility is to add 
a stack boundary limit register. Registers B and L make it possible to define the 
stack boundaries (shaded in the figure). Linked to the SP, they make it possible to 
detect the errors in its management. The conditions are the following: 

if SP > L then (over-)flow; 

if SP < B then under-flow. 

 

Figure 4.4. Managing an ascending stack 
                                 

2 To be coherent with floating-point representation, it would have been good to choose the 
terms “positive and negative overflows”. 
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The role of the stack is to store information temporarily. In addition to the return 
address, the stack may contain other information on the subroutine, hence the name 
of the execution or run-time stack. It classically contains the ingoing and outgoing 
parameters also called input and output parameters respectively, as well as local 
variables belonging to each function being executed (cf. § 4.2.3), as Figure 4.5 
illustrates (no nested calls in the example). During execution, a (sub)routine can use 
the stack to save temporarily the content of a register. To make (cf. § 3.1.4) a 
subroutine re-entrant or for it to be callable recursively, an area for its local variables 
is allocated to it on the stack each time it is called. This area is called the stack 
frame, also called the call frame, activation record or activation frame. The stack frame 
is dependent on the computer and the ABI (Application Binary Interface, cf. § V5-
1.1.4). To manage it, it is necessary to have a pointer on this area, local to the 
subroutine, here the indirection register BP (Frame Base Pointer, cf. § 1.2.3.4) from 
the 8086 microprocessor. It may be necessary to have other pointers of the same 
type towards frames of higher lexical position in the case of nested calls. This 
organization is explained in the following section. 

 

Figure 4.5. Classical structure of an execution stack (x86 family from Intel) 
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It may seem strange from the perspective of implementation to have an operation 
of the stack “in reverse”, since the bottom of the stack is situated at the top of the 
main memory and data stacking increases the stack from the top. But from the 
perspective of managing the memory, there is none since the programs are stored at 
the bottom and the stack at the top for optimal management of space, as Figure 4.6 
illustrates. Its maximum size is set in programming in assembly language (i.e. 
declaration of a stack segment3 in x86 architecture, for example) or automatically by 
the compiler. For information and without going into detail, the other specialized 
areas that appear in the figure are intended as dynamic and static allocations for, for 
example, variables such as the BSS (Block Started by Symbol) area or for the 
instructions. 

 

Figure 4.6. Classic main memory mapping 

A stack can be managed with software or hardware. With software management, 
a Random Access Memory (RAM) area, for example, the main memory, is 
transformed for each program into LIFO. Because it requires using a management 
program, this solution is necessarily slower than in hardware management of 
microprocessors. Implantation in a memory stack makes it possible to have a large 
space, but the problem of protecting access in a multi-task environment is posed. 
With segmented main memory, a segment is naturally given to it, which moreover 
limits its maximum size to the size of the segment. The stack can also be 
implemented in the form of a finite stack register inside the MPU (integrated stack). 
We speak of a hardware stack, also called a stack cache or stack register file. Each 
stack shifts the values in the registers, the last element being lost. During unstacking, 
either the last element is doubled or the null value is injected. In  
 

                                 

3 Concept linked to the concept of Virtual Memory (VM), both detailed in a future book by 
the author on memories. 
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the second case, the accumulator communicates with the top of the stack. At each 
stacking, the data registered is shifted downward, hence the two other names 
“cascade stack” or “push-down stack”. This form is faster since it is integrated into 
the MPU and does not require a stack pointer. In contrast, its number of registers is 
limited and it shows the drawback of losing data when the structure is full. The 
reading is then called destructive, unlike the same operation on a memory stack 
where the data can remain, at least (i.e. if there are no other unstacking operations) 
until the next stacking. One example is that of the 8087 coprocessor (cf. § V3-5.4) 
for floating-point calculation, which integrates a stack in the form of 8 registers 
ST[7:0] in the format n = 80 bits, these also playing the role of a flat register file. In 
contrast, this component manages its registers in two ways (Figure 4.7). Access can 
be made as for a stack or by random addressing with classic load (ld) and unload 
(st) instructions. This mixed management provides suppleness of use. 

 

Figure 4.7. Stack register of a mathematical  
coprocessor in floating point from 8087 (Intel) 

A bank of registers can be run as a stack. O’Connor and Tremblay (1997) 
describe such a structure from the front of a processing unit in the context of a 
hardware implementation of a virtual Java machine. This stack register file or stack 
cache is run as a circular memory buffer. 

A variant of implementation is a stack whose upper part is located in the 
processor and the rest in main memory to obtain faster access as with the B5000 
mainframe from Burroughs. A final variant, which is not very fast, is  
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implementation with the help of Shift Registers (SR), as illustrated on Figure 4.8. 
Each bit of the word is managed by an SR. A combinatorial circuit, aided by a 
modulo maximum size counter, manages positive and negative overflows. It should 
be noted that elements of the hardware stack shift and the top of the stack is fixed. 
However, in a software stack, the opposite happens, that is, the elements are static, 
and the stack pointer is dynamic. 

 

Figure 4.8. Stack in shift-register version 

Address alignment (cf. § 2.6.1 in Darche (2012)) at the stack may be necessary 
for higher-generation 8-bit microprocessors when the memory is run in byte format. 
This is the case with the Intel x86 family whose transfers are made only in 16- or 
32-bit format depending on the component’s working format. Moreover, there is no 
dynamic control of this alignment, but the assembler controls the operand format 
during stacking or unstacking. The introduction of a misalignment would introduce 
serious dysfunction in the system. For ascending compatibility (cf. § 3.3.3) in a 
family of microprocessors, there may be an address-size attribute that specifies the 
transfer format of 16, 32 or 64 bits. 
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4.2. Subroutine 

This concept came from the EDSAC (Electronic Delay Storage Automatic 
Calculator) project under the term “closed subroutine” (Wilkes et al. 1951). A 
subroutine is a block of instructions that is executed following a call from a calling 
subroutine. This block is a factorization of a fragment of code that can be used in 
different places in the application. The call is made by a specialized instruction such 
as call (x86), bsr (branch to subroutine) or jsr (jump to subroutine). In the 
same way, the return is made using a specialized instruction such as ret (return, 
x86) or rts (return from subroutine). This code is duplicated no more than 
necessary, that is, it is present only once. Instead, it is the number of jumps that  
is multiplied. The subroutine should not be confused with the macro-instruction (cf. 
§ V5-1.3.4), possibly parametered, each of the expansions adding the corresponding 
code. Figure 4.9 shows a processor’s single-task activity. Following a call and until 
a return, the execution flow is passed to the subroutine instructions. 

 

Figure 4.9. Unfolding execution of a program with a call to sub-program 

Debranching can take place simply by initializing the Program Counter (PC) 
with the subroutine start address. To return to the calling program, it is necessary to 
have the return address. Its value is in fact the instruction address following the one 
corresponding to the call, that is, the value of the PC after decoding the call 
instruction but before its effective execution (cf. execution cycle, § V1-3.2.2.4 and 
V1-3.3.2). It should be saved by the call instruction before initialization of the PC 
with the branching address and restored on return by the return instruction. There are 
several methods or places for saving this return address. The most current is the one 
that uses the stack (Figure 4.10). The stack pointer is run automatically by the call 
and return instructions, which involves a complex execution. Moreover, once the 
stack is implanted in main memory (cf. § 4.1), the overhead is higher. The major 
benefit is proper management of recursivity. 
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Figure 4.10. Subroutine call and return and stack content (x86 architecture) 

The second method is to use a specialized, and thus an implicit register. This 
latter is called an LR (Link Register), for example, in Arm® and PowerPC 
architectures, from the name of the operation and to make the execution address 
correspond with the return address linking method. RISC (Reduced Instruction Set 
Computer) MIPS (Microprocessor without Interlocked Pipeline Stages) architecture 
uses the ra (return address) register, also called r31, with the subroutine call 
instruction jal (jump and link). This solution is simple and fast as it does not 
involve using the stack. It is useful when a subroutine does not call to another, 
which is called a leaf (sub)routine. This configuration is generally detected by the 
compilers. If the context is more complex (saving other registers with the PC or 
Program Counter), then the additional handling uses software. Moreover, in case of 
interruption, this can be problematic. The last solution is to use an explicit register 
for saving. Still using MIPS architecture, the instruction jalr (jump and link 
register) saves the return address in any register specified in the operand field. 

To facilitate implementation of the compilers, high-level instructions can be 
proposed, such as enter and leave from Intel. Motorola used the equivalent 
instructions link and unlk for its MC68000. Moreover, it offers up to 10 stack 
frame formats. 

One subroutine call that is not classical is the CDP1802 (also called COSMAC 
for Complementary Symmetry Monolithic Array Computer). It has its register bank 
of 16 registers in 16-bit format, each of which could be a PC (Program Counter). 
Register switching has made it possible to carry out branching to a block of 
instructions such as a subroutine. 
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4.2.1. Nested calls 

The mechanism is cascadable and potentially recursive, as Figure 4.11 illustrates. 

 

Figure 4.11. Recursive calls and returns from a subroutine (nested calls) 

At each call, the return address is saved on the stack. Figure 4.12 shows the state 
of the stack at instant t. Unstacking, thanks to the LIFO access policy, is carried out 
in the reverse direction to that of stacking. The call depth will be the number of 
nested calls carried out. Knowing its maximum value makes it possible to dimension 
the stack size. If the stack is poorly dimensioned, then there will be a stack overflow. 
The condition for the recursivity to be passed correctly is that the subroutine’s code 
should be re-entrant (cf. § 3.1.4). This means that it should not use global or static 
variables, like a high-level programming language, such as C. 

 

Figure 4.12. Recursive calls and returns from a subroutine (nested calls) 
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4.2.2. Execution context 

It is necessary to save on the stack a set of data needed to make the debranching 
transparent, that is, to make it as if there had not been any break in the sequence 
with which the caller is executed. To do this, this set, which is called the execution 
context, will be restored on the return. It contains at least the return address 
contained initially in the microprocessor’s program counter to make this 
debranching transparent. Also, a call instruction from a subroutine can be seen as a 
macro-instruction (Blaauw and Brooks 1997) as it behaves like a normal instruction 
by making transparent the execution of the block of instructions representing the 
subroutine. At most, this involves all the MPU’s registers. Work is distributed 
between the caller and the called. The backup location is either internal within the 
registers or external in main memory in a stack. 

There are three approaches for carrying out this processor state 
backup/restoration4. One is for this operation to be implicitly carried out by an 
instruction. The call instruction and the return instruction save/restore the internal 
state. One example is the complex instruction calls from the mini-computer’s 
processor VAX (Virtual Addressed eXtended), which made it possible to choose the 
registers to be saved. In another approach involving software, instructions are 
explicitly responsible for carrying out the work. Only the return address is saved 
automatically. The remainder of the context is the responsibility of the caller or the 
called depending on the call convention (see the following section). The final 
approach is an implicit hardware management, one example being register 
windowing (cf. § V3-3.1.11.3) from the RISC SPARC family (Scalable Processor 
ARChitecture). 

4.2.3. Passing parameters and call conventions 

To implement a function or procedure, it is necessary to pass parameters and 
define who or what will manage them, the caller or the called. We recall that there 
are ingoing and outgoing parameters, since the function can only have an outgoing 
parameter, unlike the procedure in PASCAL language, for example. The type of 
passing defines whether the parameter is passed by the value or by the address, by 

                                 

4 Several types of state can be distinguished in an IT system. The state of the processor or 
internal state refers to the content of registers that are or are not accessible (i.e. “architecture”, 
cf. § V3-3.1). The external state is that of the system without the processor. It covers the state 
of the memory hierarchy (for the concept, cf. § V1-2.3 and § 1.2 in Darche (2012)) with, in 
particular, the caches and main and secondary memories. The state of a process refers to all 
the information affecting it. It can cover the states of the processor and the operating system if 
it is in the processing of being executed. 
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pointer or by reference5. The mode of passing defines the storage location of the 
parameter: register, global variable or stack. The MPU 2650 from Signetics has an 
interesting characteristic: it has two banks of three registers selectable by the RS 
(Register Select) bit from the state register. These make it possible to pass 
arguments easily from one process to another by switching the banks, since the 
accumulator is common to both. The passing can be done explicitly using classical 
data movement instructions (cf. § 2.2.1) or automatically while executing the call 
instruction. One example is the MC68020, which, as well as the classic call 
instruction to a subroutine, has two specialized instructions for modular 
programming called callm and rtm.  

RISC microprocessors have optimized the passing of registers using a 
mechanism called register file windowing. The hardware implicitly manages the 
passing of parameters. To do this, a Register File (RF, cf. § V3-3.1.11.1) is 
subdivided into sub-sections called windows. A window is formed of three parts, 
which are the block communicating with the lower level, the block for local 
variables and the block communicating with the higher level. One example is 
register windowing from the RISC SPARC family (Figure 4.13 (a)). This solution 
was espoused for calls of low depth (i.e. < 4). The windows overlap at the 
communication blocks (overlap registers or overlapping register-window). The 
passage of outgoing and ingoing parameters between the caller and the called occurs 
between the intermediary of the same registers, which coincide in the windows. In 
particular, the return address is found in the outgoing parameter area. Only a single 
window is active at any one time. By using only registers, this approach makes it 
possible to avoid CPU (Central Processing Unit) time consuming access to the main 
memory. Moreover, there is a non-windowed area reserved for general-purpose 
registers. Figure 4.13 (b) shows a linear view of these same registers. This 
mechanism will be detailed in a future book by the author on the RISC philosophy. 

This set of rules defining, among other aspects, what is responsible for backup in 
the execution context (apart from the PC or Program Counter), is called the calling 
convention. It is possible to have two backup conventions, caller saving and callee 
saving. Manufacturers provide a reference document. From Arm®, for example, we 
list in any order AAPCS (Procedure Call Standard for the Arm® Architecture), 
APCS (Arm® Procedure Call Standard), TPCS (Thumb® Procedure Call Standard) 
and ATPCS (Arm® TPCS). 

 

                                 

5 There is a fourth form of passing called “pass by name” where the name of the argument is 
passed during the call as in ALGOL 60 (ALGOrithmic Language). This is an address on the 
variable that is accessed via indirection. This type of passing was used in prefix machines (cf. 
Meinadier (1971, 1988) on this subject). 
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Figure 4.13. Windowing registers (from Scott (2016)) 

To summarize, we need to distinguish three types of call. The first is the 
subroutine call where there is, as a minimum, only storage of the return address (in 
fact, the address present in the PC or Program Counter before the jump) to win time 
when changing the context. Other registers, depending on the instructions, can be 
backed up. The second is the function call where two other things must be saved: the 
parameters to be passed and the local variables. The last is the system call, which 
occurs without interruption, and is the subject of the following chapter (cf. § 5.4 and 
5.8). 

4.3. Conclusion 

After introducing how the stack and LIFO memory access operates, we studied 
the concept of the subroutine. This makes it possible to implement a higher-level 
language function or procedure. A similar mechanism is interruption, which is, like 
the first mechanism, a re-routing of the execution flow, but one particular direct 
towards I/O handling. It is studied in the following chapter. 



5 

Interrupt Mechanism 

Execution flow (cf. § V1-3.1.2) can also be altered by an interrupt mechanism. 
We will first introduce the basic mechanism used in the first microprocessors 
(generations with 4 and 8 bits, cf. Chapter V3-1). Then, we will enrich our model 
with the concept of exception, present in second-generation microprocessors. This 
chapter enriches the section dedicated to this in Chapter 4 in Darche (2003) and  
§ 3.2.2. It will be complemented in other books; processor architecture is becoming 
increasingly complex. The study will be made using different associated aspects 
such as nested requests, priority requests and vectorization to finish with execution 
modes and advanced architectures. 

5.1. Origin, definition and classification 

The concept of software interrupt was implemented for the first time1 in the 
UNIVAC (Universal Automatic Computer) 1103A (Rojas and Hashagen 2000) at 
the start of the 1950s (1953 according to Mersel (1956)) to prevent potential 
overflow (cf. § II-3.1.1. and II-3.3.3. in Darche (2000)) during an arithmetical 
calculation (Hennessy and Patterson 1994). It was then used for the first time in I/O 
(Input/Output) in the DYSEAC (Second Standards Electronic Automatic Computer) 
(Leiner 54) from NBS (National Bureau of Standards) (Smotherman 1989a b). With 
the development of 16-bit generation microprocessors and the start of the use of 
Operating Systems (OS) in microcomputers, the concept of interrupt2 encapsulated 
that of exception (Schlansker and Rau 2000). The interrupt sometimes takes the 

                                 

1 Kuck (1978) dates the concept to Babbage’s analytical engine (cf. § V1-1.1), which stopped 
by requesting human intervention using a bell (the routine!) when the wrong program card is 
inserted. 

2 In some works such as Dumas II (2006), Harris and Harris (2007) and Hamacher (2012), it 
is the reverse. 

Microprocessor 4: Core Concepts – Software Aspects, 
First Edition. Philippe Darche. 
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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name of the sub-set that generated the interrupt request, for example, “I/O interrupt” 
or it bears the name of the cause such as “page fault”. 

The general term “interrupt” or IT refers to a class of low-level hardware  
or software events that forces MicroProcessor Units (MPUs) to interrupt a  
(sub-)program’s normal execution flow, as a jump instruction would do (cf. § 2.4), 
to re-route to a routine called an interrupt handler (or Interrupt Service Routine, 
giving the acronym ISR). For its protagonists, whatever generates the request (an 
I/O controller, an instruction, etc.) is called the “the signaler” and the processing 
routine is called “the processor”. The processor is responsible for processing the 
event, ideally in a privileged mode in the case of a processor with several execution 
levels (cf. § 3.2.2) to then return to a normal execution of the interrupted program or 
to restart another if it is abandoned. The processing routine should be as fast as 
possible so as not to slow the main processing or not to lose requests. As Figure 5.1 
illustrates, interrupts can be classified by their cause, external or internal to the MPU 
or linked to management of the memory. What distinguishes the two branches is 
their (a)synchronous character. The external cause, and so the hardware origin, is 
always the state of an electrical signal or its variation. It is necessary to distinguish 
the hardware interrupt and the hardware exception triggered by a malfunction. The 
internal cause is always linked to the execution of an instruction. For interrupts with 
an internal cause, the request is always synchronous with the clock since it is linked 
to the instruction’s execution cycle, which generates the request explicitly, and so 
where it is wanted (software interrupt) or implicitly software exception. But beware, 
they generally appear at random. The exception is an interrupt category. In this 
volume3, it is an unprogrammed event, one that is abnormal, unusual and rare4, 
linked perhaps to a breakdown or an execution error5 which will alter the sequential 
execution flow. But beware, an error is an exception, but the reverse is not always 
true. Exceptions the processor is able to detect are of two types, which are faults and 
aborts. A special operating mode is the step-by-step mode (cf. § 5.5 and 5.6). 
Inspired by the classification from Intel for its IA-64 (IA for Intel Architecture) and 
OSs, it is necessary to distinguish four classes of interrupt6, which are distributed in 
the proposed hierarchy. These are hardware and software interrupts (or trap) and the 
exception that can be broken down in cases of faults and aborts in both the previous 
classes. 

Criteria other than the origin of the cause can be used to classify interrupts. 
(Hennessy and Patterson 1990; Walker 1992) and thus suggest criteria that are 

                                 

3 The meaning of this term varies depending on the authors and designers. 

4 This name for an exceptional event is relative, quite clearly, to the context in which it is 
situated. 

5 An error indicates the part of a state that is not correct (Melliar-Smith and Randell 1977). 

6 Intel calls this an “exception”. 
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asynchronous/synchronous, voluntary/forced, masked/unmasked, between or internal 
to the instruction, precise/imprecise or simple/multi-level, which Tables 5.12 (a) and 
(b) show at the end of the chapter (cf. § 5.11) after they have been explained. 

 

Figure 5.1. Origins of an interrupt request (Darche 2003) 

5.2. External causes 

The external interrupt originates in hardware and is asynchronous in nature. It is 
therefore an unprogrammed event, that is, one not triggered by an instruction (i.e. an 
unscheduled event). It is therefore more difficult to handle than internal requests, 
and this is even more true in a multiprocessor environment. Interrupt requests 
mainly provide I/O controllers, which thus signal a request or indicate an end to the 
I/O. This is a predicted event. A hardware exception is caused by a hardware 
malfunction external to the processor, generally coming from the memory, the bus 
or the power supply, which leads for the most part to a system shutdown. This is an 
unpredicted and catastrophic event such as an imminent power shutdown. It leads to 
an abort of the execution, then to this major error, which originates in hardware. 
Control of the memory or transfer sub-sets in a bus relies on logical parity (cf.  
§ III.6.6 in Darche (2000) and § 2.6.4 in Darche (2012)) in the case of a simple 
approach. It can also be a temporal error (no response in the time allotted for the 
access cycle). Another example is the earliest possible detection of an imminent 
power fault, which makes it possible to save the context. It should be noted that a 
machine check that indicates a dysfunction is a type of abort. An MPU can have an 
input for hardware exceptions of the fault type as with the 65C816 from MOS 
Technology and the IT ABORTB that made it possible to signal a page fault or a 
memory access violation. 

The interrupt request is made via a binary electrical signal (Figure 5.2) applied on a 
dedicated pin of the processor. The request can therefore be level-triggered on a logical 
level (0 or 1) or on a (ascending/rising or descending/falling) signal edge (edge-
triggered). The type of trigger is either fixed by the hardware (the case of the 
microprocessor) or programmable (in general, in the interrupt controller). The main 
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fault with a level trigger is the risk of resetting if a later request is authorized, one 
example being the management of IT from the ISA (Industry Standard Architecture, cf. 
§ V2-4.5) bus. Hence, most signals are edge-triggered. The main defect with edge-
triggering is the risk of losing requests while an interrupt is processed. The source of 
interrupt can be synchronous (i.e. periodical) or asynchronous. 

 

Figure 5.2. Ideal forms of external interrupt request 

As Figure 5.3 (a) shows, the interrupt request has not immediately been taken 
into account. There is an interrupt latency (cf. the study by Macauley (1998) on the 
MPU 8086) between the request and its consideration, that is, the launch of the 
associated routine. This time corresponds at least to the end of the execution of the 
instruction underway or it can be higher in the case where the request is masked. The 
execution context is saved on the stack (Figure 5.3 (b)), and branching takes place. 
Once supplied externally, for example, by an interrupt controller (cf. § 4.1.1 in 
Darche (2003)), the jump address at the ISR is provided in the form of an interrupt 
vector (cf. § 5.7). After execution of this routine, on execution of the interrupt return 
instruction iret, the context is restored (stacking) to resume the execution of the 
program earlier suspended at the instruction following the interrupt. This re-routing 
is similar to a subroutine call (cf. § 4.2). 

 

Figure 5.3. Call and return of a non-nested hardware interrupt 
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By taking Figure 4.9 as a model, it is possible to describe the execution of an 
interrupt with Figure 5.4. At the moment when it is considered, the mechanism 
resembles the execution of a subroutine described in the previous chapter if an 
instruction iret ends the execution of the interrupt routine. The fourth step requires 
identification of the handler (i.e. their start address) and its launch. Re-launching the 
interrupted program is achieved by restoring the context. 

 

Figure 5.4. Execution flow of a program during  
a hardware interrupt request 

Therefore, we can define five steps in the handling of an interrupt request (Figure 
5.5). They are its detection, its consideration, saving the context, execution of the 
associated handler and re-launching the interrupted program7. When the IT is 
recognized, a return-receipt in the form of an electrical signal can be re-sent to the 
requester, generally the IT controller. The IT is called delivered when the 
corresponding handling routine is executed; it is called terminated when the control 
flow returns to the caller. 

The interrupt storm is an expression to characterize the fact that an unusual 
number of requests are made and that the system cannot satisfy them or can satisfy 
them only poorly. We should remember the 1202 alarm from the on-board computer 
(LGC for LEM (Lunar Excursion Module) Guidance Computer) on Apollo 11 
during the first moon landing, indicating a processing overflow linked indirectly to 
this problem. If requests occur too close together, there is then a risk of losing the 
request as the request is made on an edge. In the case of a request on a level, the 
problem no longer occurs, as it will be maintained so long as it is not considered. 
                                 

7 In a multi-programming context, we would speak about a process or task. 
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Moreover, in a multi-task environment and in real time, interrupt routines should 
have a very short execution time so as not to monopolize the processor. As a last 
remark, in a multi-task environment, the designer should ask the question of how to 
determine the type of software processing appropriate to the interrupt. Does it 
require a function (or a procedure), a task (i.e. heavy-weight process) or a thread (i.e. 
light-weight process)? 

 

Figure 5.5. Stages in handling an interrupt 
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5.2.1. Execution context 

We recall that the execution context is the data set needed to make the branching 
transparent (cf. § 4.2.2). It comprises all or some of the registers internal to the 
microprocessor. The minimal context is the program counter containing the address of 
the next instruction to be executed and the status register. Depending on the 
processors, only this minimal context is saved, such as the x86 architecture, or indeed 
all the registers are saved. The choice can also be left to the programmer. So the 
MC6809 microprocessor from Motorola had a hardware interrupt called FIRQ (Fast 
IRQ) that saved only this minimal context, that is, the value of the PC (Program 
Counter) at the moment when it was considered. Recall that the reason this IT exists is 
that it is executed rapidly from context switching, to meet an external demand as 
quickly as possible, hence its name. Its other interrupts, on the other hand, save all its 
registers. This microprocessor’s state indicator (E for Entire flag) makes it possible to 
know whether all the registers had been saved or not. The vector’s value (cf. § 5.7) is 
either fixed once and for all in hardware or can be modified by the program, if the 
vector is implanted in volatile memory, for example, in a table (cf. below). 

The location options for saving the context are the two main ones cited for the 
call function (cf. § 4.2.2), that is, the stack or the registers. Shadow registers make it 
possible to have several sets from one, some or all of the registers; bank switching is 
achieved by passing the flow of control. Arm® architecture has several execution 
modes for interrupts (cf. Table 3.3). For FIQ (Fast Interrupt reQuest) mode, seven 
registers (r8 to r14) are replicated compared to two (r13 and r14) for the other 
modes. MC88100 and PIC32 use it. A third solution is to replicate the stacks (to 
make shadow stacks); this means that a stack is substituted by a replicated register. 
Its successive values are stacked there. MC88100 uses this mechanism under the 
acronym PCS for Program Counter Stack (Grohoski 1990). Two other options cited 
by Walker and Cragon (1995) are checkpointing hardware (Hwu and Patt 1987a, 
1987b)) and the auxiliary processor that is responsible for processing the interrupt 
(cf., for example, Keller (1975)). 

It should be noted that if the saved context includes the status register and that if 
this contains an IT (in)validation flag, the ITs will then be automatically restored on 
return to the associated service routine thanks to a return instruction, such as iret. 

5.2.2. Sources 

The MPU in most cases has several interrupt request inputs (Figure 5.6 (a)). We 
call these multi-level interrupts. This solution was costly for the first generations of 
MPUs, as the number of DIP pins (Dual-In-Line (DIL) Package, cf. § 3.3 in Darche 
(2004)) was limited at that time. If the number of sources exceeds the number of 
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inputs, it is possible to share an input, as Figure 5.6 (b) shows, with the help of a 
simple external element such as a logical OR (e.g. a wired OR based on a collector or 
open drain from an output transistor) or more complex ones such as an interrupt 
controller. These demands therefore involve only a single type of IT. This is an 
interrupt called a “simple level” interrupt, and there is no priority if its input is shared. 
Microcontrollers (cf. § V3-5.3), because of their application domains, offer many 
interrupt possibilities. One example is the 16-bit microcontroller SAB-C167 from 
Siemens (now Infineon) which has 56 sources of interrupt request. 

 

Figure 5.6. Different sources of external interrupts 

We cite the traditional names for a hardware interrupt, which are IRQ or INTR 
(Interrupt Request) and its variant FIRQ (see above), NMI (Non-Maskable Interrupt) 
or Reset (cf. the following section). NMI is generally reserved to avoid serious or 
critical hardware error such as an error on a bus (cf. § V2-3.2), a memory error (cf.  
§ 2.6.4 in Darche (2012)) as was originally the case with the PC (Personal Computer) 
from IBM (1981) or to indicate an imminent power failure. The IRQ is generally used 
by I/O controllers. We cite a final example, the #Halt signal from MPU (MC6809), 
which required it to halt. This same component possesses the instruction cwai (Clear 
CC bits and Wait for Interrupt), which alerts the latter to a possible interrupt. As these 
requests are external, they are intrinsically asynchronous with the processor’s 
operation, although it is possible to synchronize them with external electronics. It 
should be noted that the INTR signal from 8086 should be kept active (latched) as the 
interrupt is not served since the request is not stored internally. We again cite ABORT 
from MPU WDC 65C816, which was an edge-triggered, unmaskable IT aimed at 
hardware exceptions such as a page fault or memory access violation. The recovery 
point after a return instruction (rti for return from interrupt as it happens) was the 
original instruction and not the following one. For example, a virtual memory handler 
or MMU (Memory Management Unit) such as the z8010 component from Zilog 
generates an interrupt request via its output #SEGT (SEGment Trap request) when 
there is an access or right violation (in writing). 

A particular interrupt is a hardware reset of abort type. The hardware aspect was 
addressed in § V3-6.2. The microprocessor, when it is switched on, is found in an 
undetermined state. When the supply voltage is stabilized and is found in a value 
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allowed by the electrical specifications, it is necessary to initialize the microprocessor 
using hardware for its state to be known. This operation is carried out by activating a 
pin of the microprocessor using a specialist control responsible for, among other tasks, 
monitoring power supplied, or a “watch dog” (cf. § 3.3.1 in Darche (2003)). Clearly not 
maskable and the highest priority, it is the only one to be considered within an 
instruction’s execution cycle for a non-parallel MPU. It is level-triggered, but it is 
blocked in the initialization state so long as the active level continues. It sets the 
interrupt mask to prevent the maskable interrupts and disarm the unmaskable interrupts. 
The user can trigger an initialization by relying on the dedicated button. Unlike other 
interrupts, no specific instruction for processing is linked and the routine finishes 
implicitly with continuation or, if it exists, by an explicit branching to a configuration or 
boot program. The signal that is applied to the microprocessor is generally applied also 
to the whole system including the I/O controllers. Finally, it should be noted that the 
instruction restart from MC6809 makes it possible to reboot the system as during a 
hardware initialization (i.e. reset) using the RESET vector. 

5.2.3. Masking 

Generally, routines that process interrupt requests of the same priority level 
mutually forbid one another from being interrupted. So, the MC6800 microprocessor 
of those from the x86 architecture, when considering an IRQ, masks requests from 
input into the corresponding management routine. Two possible strategies are to 
reinitialize the pending IT flip-flop either as early as possible or at the end. 

Meinadier (1971, 1988) distinguishes seven states for a hardware interrupt 
request handler. The first is the disarmed state. The logic cannot take any other 
request into consideration. Once armed, the system is ready to accept a request. The 
firing state means that a request has arrived, been stored and it is being processed. 
This request can be forbidden, also called masked (4th state) or inhibited for a 
postponement of treatment. The “authorized” state means that no other request from 
a higher level has arrived and that it can be processed. The state before the last is to 
wait for a state that accepts the control unit (to finish execution of an instruction in 
general). The last, active state corresponds to execution of the associated processing 
routine. A request can be lost if it is not seen by the system (a missing interrupt). 
Figure 5.7 shows an IT processing logic. 

If an input is shared by several sources, there may be an interrupt flag belonging 
to a special register (individual masking) or a global flag that invalidates all the 
maskable interrupt requests. These individual or global masking possibilities have a 
role in an ISA’s (Instruction Set Architecture, cf. § V1-3.5) power. This generalist 
decision chain will only have a single maskable IT input, while a microcontroller 
may have several. Figure 5.8 provides an example of the COP8 microcontroller from 
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National Semiconductor (NS). Another example of the same philosophy is the MPU 
PACE (Fox and Reyling 1975) with an INT EN (master INTerrupt ENable) 
validation flag and five IEi (i ∈ [1, 5], individual Interrupt Enable) flags belonging 
to the classical status register and control flags.  

 

Figure 5.7. Example of management logic  
for IT requests (Meinadier 1971, 1988) 

 

Figure 5.8. Processing chain for several sources of interrupt  
sharing a single internal input (microcontroller COP8 from NS) 
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Table 5.1 summarizes interrupts that are maskable and those that are not. Those 
from an internal source are explained in § 5.4. 

Sources 
Interrupts 

Unmaskable Maskable 

External 

Hardware interrupt (NMI) Hardware interrupts 
       Classic (IRQ)  

     Fast (FIRQ) 
Hardware error (memory, bus, etc.) 

Specific mode (reset) 

Internal 

Software interrupts 
(instructions swi, trap, etc.) 

- Software exception 
(reserved instruction, cache fault, page 

fault, etc.) 

Table 5.1. Maskable and non-maskable interrupts 

Specialist instructions such as cli (Clear Interrupt Mask) and sei (Set 
Interrupt Mask) for the AVR microcontroller family make it possible, by 
manipulating the IT, validation flag to mask these. It is necessary, on the other hand, 
to take care that this masking does not last too long or the requests will be lost. 
Moreover, when an IT processing routine is executed, it has generally masked the 
ITs, which can be masked, and the previous remark on the duration, here applied to 
processing, applies. It should be noted that the instruction iret from 8086  
re-authorizes maskable IT (IF = 1). 

5.2.4. Consideration and priority 

In the von Neumann computer model, the processor executes instructions 
sequentially. Before beginning an instruction, it verifies the absence of interrupt 
requests (Figure 5.9). The hardware interrupt request therefore has priority over 
execution of an instruction. We recall, on the other hand, that execution of an 
instruction is atomic and cannot be interrupted except during a hardware 
initialization reset. Interrupts are therefore interruptible instruction “at the boundary” 
(cf. § 1.1 and 3.1.2). It should nonetheless be noted that a microarchitecture can 
consider an IT request at the level of micro-instructions for speed of processing, one 
example being the sliced microprocessor (cf. § V3-5.1). 
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Figure 5.9. Simplified decision organigram 
 for considering a hardware interrupt 

In the context of multi-level interrupts, during simultaneous requests, it is 
difficult to decide which request should be considered first. It is therefore necessary 
to arbitrate. To a source of interrupt, there is therefore allocated a priority, generally 
fixed for a microprocessor, which leads to a hierarchy of interrupts depending on 
their priority (0 is generally the highest priority level). We speak of a prioritized 
interrupt. Figure 5.10 shows the order for taking account of ITs from the MC6809 
microprocessor. We note that after initialization, NMI takes priority, IRQ (which is 
maskable) comes next. According to the implementations, when an NMI routine is 
being executed, the input for this interrupt can be invalidated automatically during 
its processing (the most common case, since it is preferable). Therefore, the 80386 
does not manage nested NMIs. It waits for the first to be terminated before 
considering the second. The software interrupt (cf. § 5.4) is the last to be considered, 
as it is an instruction that should be decoded to know its function. For modern 
microprocessors, interrupt classes that combine interrupts of the same priority have 
then been created, then sub-classes that define priorities within a single class. On the 
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contrary, the hardware interrupt RESET takes priority. It can interrupt the execution 
cycle at any moment. 

 

Figure 5.10. Execution organigram  
of a simple MPU: the MC6802 (Motorola 1984) 
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Figure 5.11 shows an example of pre-emption during execution of IT routines. 

 

Figure 5.11. Pre-emptive execution in a system of hierarchized interrupts 

An acknowledgment is generally sent to a requester when it is seen. One 
example is MC6809, which indicates using the signals BA (Bus Available) and BS 
(Bus Status) that reading of a hardware interrupt is underway. 

5.2.5. Interrupt controller 

The IT controller was initially an external logic or component (EIC for External 
Interrupt Controller), one example being the 8259A from the 8086 family. This type 
of component manages ITs in a vectorized manner. We thus speak of VIC for 
Vectored Interrupt Controller in the Arm® family. 

A complex I/O controller can have a dialogue with its processor. For example, 
the 8086 in association with its external 8259A controller generates two consecutive 
bus cycles via its INTA (INTerrupt Acknowledge) signal to signify recognition. The 
first cycle accomplishes the acknowledgment. During the second cycle, the 8259 
controller sends the number of the corresponding vector. In the inactive state, this 
signal can alert the controller to its availability to receive a request. When a 
controller does not respond during the acknowledgment stage, then the interrupt is 
called a spurious interrupt and an internal exception is generally raised (case of the 
MC68000, for example). Figure 5.12 shows the internal logic for considering the 
request from this controller. 
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Figure 5.12. Simplified processing logigram of an interrupt  
from the IT 8259A controller (Intel 1988) 

It was first integrated into the southbridge chipset (cf. Chapter 1 in Darche 
(2003)) and now into advanced MPUs (IIC for Internal Interrupt Controller) as well 
as in microcontrollers (AVR or PIC (Peripheral Interface Controller/Programmable 
Intelligent Computer) family, for example). At Intel, it is called APIC for Advanced 
Programmable Interrupt Controller (cf. § 5.11).  

5.3. Nested interrupts 

In the case where another request arrives during processing of an interrupt, the 
same context saving and branching process will be executed. There is no state 
incoherence since access to the stack is “Last-In, First-Out” (LIFO). The only 
problem is the size of the stack that stores contexts (of limited depth) and the 
coherence of the sub-program execution state (possible side-effect if the program  
is not re-entrant). Interrupts are called nested interrupts or stacked interrupts.  
Figure 5.13 illustrates an interrupt nesting. 
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Figure 5.13. Mechanism of nested hardware interrupts 

Nested calls should be avoided because of problems with reaction time and 
starvation. They cumulate the handling times of the execution context (i.e. 
saving/restoration) and, in the case of a blockage in one of the sub-programs, they 
can cause starvation, that is, an indefinite waiting time. They complicate the 
software, are a source of operating errors and do not, in general, improve 
performances (cf. § 3.4). Fortunately, it is possible to forbid consideration of an IT 
using the mask interrupt mechanism. Masking the request can delay its 
acknowledgment. If interrupts are hierarchized, lower ranking requests are masked. 
Masked does not necessarily mean lost. In the microprocessor status register, there is 
an indicator (Interrupt Flag or IF) that controls its consideration using programming 
(authorization or invalidation at state 1 according to implementations). The new 
request is then registered, but the re-routing is reported until the flag is updated. The 
interrupt is then called maskable. Internally, a flip-flop then registers the interrupt 
request. If the sensitivity is of edge type, a loss of request can occur. On the other 
hand, when the flag is re-initialized, the flip-flop re-enregisters the request that 
follows. If the interrupt is not maskable, the designer automatically invalidates the 
interrupt input with or without the possibility of modifying this behavior depending 
on the implementation. The MPU can also lose an interrupt request if the processing 
is not fast enough. On the contrary, a critical application in real time cannot accept 
the loss of an interrupt without the penalty of serious problems in managing the 
procedure, for example, the destruction of an embedded system such as a rocket. 

Another way of processing requests is to queue interrupts. This technique is 
addressed in § 5.8. 
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5.4. Internal causes 

Interrupt requests (Figure 5.1) originate in specialized instructions (trap), or they 
come from an execution error (software exception). Hence, we speak respectively of 
synchronous and exception interrupts. It should be noted that interrupts due to 
internal causes can always be reproduced, which is not the case with external 
interrupts, because of their nature. 

A software interrupt or trap, occasionally called an internal interrupt, is an event 
triggered explicitly by a specialized instruction (programmed interrupt). It is 
therefore a deliberate act by the programmer, which wishes to raise a trap. An 
instruction such as swi (microprocessor MC6809 (Motorola 1984)), as Figure 5.14 
illustrates, explicitly requires a re-routing. This instruction masks IRQs during its 
execution. There can be a passing of parameters such as the operand with the 
instructions int (x86 architecture) and trap (MC68000). Interrupt return 
instructions are the classical iret (interrupt return, x86 architecture, for example) 
and eret (exception return, MIPS (Microprocessor without Interlocked Pipeline 
Stages) architecture, for example). These specialized instructions are therefore well 
adapted to call on an OS’ services (system or supervisor call) as the associated 
routine will be executed in a privileged mode (cf. § 3.2.2) if the MPU offers it, 
which was not the case with 8-bit generations of that era. It should be noted that 
Arm® has an instruction swi whose operand format is formed of three bytes, so 224 
ISR possible! 

 

Figure 5.14. Call and return of a non-nested  
software interrupt (example with MC6809) 

We find the same concept of nesting requests for external IT (cf. § 5.2), as  
Figure 5.15 illustrates. 
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Figure 5.15. Call and return of nested software  
interrupts (example with MC6809) 

Figure 5.16 details the development of the stack following these nested requests. 

 

Figure 5.16. Call and return of nested software interrupts 
(example with MC6809) 

A fault is an event that results from it being impossible to execute an instruction 
(memory error, problem of execution protection, etc.). An attempt at writing in ROM 
(Read-Only Memory), an absence of memory at this address (i.e. access in the void), 
an illegal address or a page fault in physical memory are examples of memory error. It 
is generally correctable and corrected, for example, by a re-execution of one or more 
instructions (retries) in the case, for example, from an OS service. As this happens 
during execution of an instruction, it is possible to define three sub-classes of fault 
linked to the execution stages (cf. § V1-3.3.2). These are raised after an instruction 
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fetch, at its decoding and at its execution. A software exception can fall into the “fault” 
class (the most common) or the “abort” class. The abort results from a string of two 
faults. Intel calls it a “double fault”. It announces a serious problem at the kernel. 
Table 5.2 classes interrupts in three categories to decide whether there is a double fault 
or not. It should be noted that the tendency towards integration has meant that external 
requests that were hardware exceptions of the “abort” type are transformed into 
software faults. One example is the abort called “coprocessor segment Overrun”, 
uniquely for the 386, which then became a fault. 

Categories no. Description 

Benign exceptions 

1 Step-by-step (debugging) 

2 NMI 

3 Breakpoint 

4 Overflow (relative integer) 

5 Boundary control 

6 Invalid operation code 

7 Coprocessor unavailable 

16 Coprocessor error 

Contributing exceptions 

0 Division error 

9 Coprocessor segment overflow 

10 Invalid TSS 

11 Segment not present 

12 Stack exception 

13 General protection 

Page faults 14 Page fault 

Table 5.2. Categories of interrupt to qualify a double fault 
in 80386 (Intel 1986) 

Table 5.3 allows us to decide if there is a double fault, considering the causality 
of IT requests. 

  
 Second exception  

Benign 
exception 

Contributing 
exception Page fault 

First exception 

Benign exception No No No 

Contributing 
exception No Double No 

Page fault No Double Double 

Table 5.3. Decision criteria for qualifying a double fault in 80386 (Intel 1986) 
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A fault is automatically generated (we say it is raised) on an abnormal condition 
during execution of an instruction. A fallible instruction is an instruction that causes 
an exception. It can result from programming errors or abnormal conditions. It can 
be a forbidden instruction, one that is impossible to execute or non-existent 
(undefined operation code). One example is the page or segmentation fault, which is 
an abnormal and unusual event caused by execution of an instruction. Resuming 
consists of loading the faulty page or segment and re-executing the instruction. 
Calculation exceptions involve whole and relative integers or fixed and floating-
point numbers. For integers, there is the overflow or division by zero. For example, 
at Intel, overflow is a trap-raised by the instruction into (interrupt on overflow), 
and so it is wanted by the programmer and is not a fault. For floating point, the 
R4000 microprocessor has, for example, five exceptions, which are an invalid 
operation, underflow, overflow, division by zero and inexact result (rounding-off 
problem). It should be noted that a division by zero that calls an ISR raising the 
same exception creates an infinite loop. 

The difference between a trap and a fault lies at the point of recovery. For the 
first, it lies in the instruction following the branching, while for the second, it will be 
situated at the faulty instruction. A TLB failure (Translation Lookaside Buffer, this 
will be covered in a future book by the author on memories) is a fault. An exception 
on overflow is a trap. There is no resumption of the program, or the task follows an 
abort since it involves a serious error. 

5.5. Debugging 

Debugging an ISR is difficult, since the insertion of a debugging code can 
influence the system’s operation, by slowing it, for example. One particular software 
interrupt is trace or step-by-step mode where a trap is raised at the end of each 
execution of an instruction, which will launch a specific debugging routine. To do 
this, it is necessary that the processor is in a particular execution mode (cf. § 3.2.2). 
The routine is in fact the debugging program (cf. § V1-2.2.4), which makes it 
possible among other things to visualize the different memory areas (instructions, 
data, stack, etc.) and the registers. For 8086, as Figure 5.18 shows, the IF and TF 
(Trap Flag) flags are set at zero during its execution. This means that it is executed 
in normal mode and not in step-by-step mode. With this same processor, the 
breakpoint uses the instruction int 3, which replaces the right instruction placed 
after the one stopping the execution (patch) and is saved provisionally. The 
associated routine should save the context, call the debugging program and, at the 
end, execute the replaced instruction and restore the context to make this break 
transparent. A hardware aide is often available, either an elementary one such as a 
Light-Emitting Diode (LED) or a more elaborate one such as a JTAG (Joint Test 
Action Group) hardware probe (cf. § V5-2.2.5), for example. A final function that 
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the MIPS (Microprocessor without Interlocked Pipeline Stages) microprocessor 
offers is its EPC register (for Exception Program Counter), which contains the 
address of the instruction that generated the trap. 

5.6. Priority between internal and external interrupts 

It is desirable to be able to receive requests from different sources. It is necessary 
to be able to serve them to define a priority between them. There is a priority 
between hardware and software interrupts. Figure 5.17 shows the decision 
organigram. The consideration is called “at the instruction boundary”. Hardware 
interrupt requests are evaluated before the start of an instruction’s execution. They 
are therefore a priority. The trap is evaluated during its execution. On the contrary, 
we see here that a trap underway masks future maskable hardware interrupt requests. 

 

Figure 5.17. Decision process from MC6809 (simplified organigram  
without HALT and Reset modes in particular) from Motorola (1984) 
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A counter-example is 8086 where software interrupts are priority. Raising them 
means that the associated ISR is launched at the following cycle. Table 5.4 gives the 
priorities for different interrupts. 

Interrupts Order of priority 
Division error, int, into From high 

NMI  

INTR  

Step-by-step To low 

Table 5.4. Priorities of different interrupts from 8086 

Figure 5.18 shows the corresponding decision organigram. Each request 
acceptance leads to invalidation of the maskable ITs (IF flag = 0) and of the step-by-
step execution mode (TF flag = 0). An additional test is inserted just before the 
execution of the routine body, so as to know if there has been an NMI request (more 
priority) since the first test. The variable TEMP makes it possible to save the state of 
the execution mode, either normal or step-by-step. 

The priority chosen for the MPU step-by-step mode leads to an unwanted effect 
in IT processing that means that the debugging routine is called just before the first 
instruction of the most prioritized routine. Figure 5.19 gives an example with the 
processing of a non-maskable interrupt. It should be noted that the unstacking of the 
CS and IP registers is symbolized in this figure by the word “return”. This side 
effect can be inconvenient for development since an execution delay or worse, a 
break, is introduced in the interrupt routine. Hence, in the following generation (i.e. 
80286), Intel increased the priority of this mode just behind the division by zero 
exception (cf. Table 5.5), so before the external interrupts. Processing routines 
invalidating the step-by-step mode during re-routing are no longer disrupted in their 
execution. The hardware thus guarantees that the step-by-step execution mode stops 
when there is a hardware interrupt request so that the associated handling routine is 
not executed in this mode. If this mode is necessary, it is then necessary to execute 
an instruction int to execute the corresponding handler. 

Figure 5.20 shows the instance of two simultaneous interrupt requests, one 
internal and non-maskable, and the other external and maskable. This latter is 
processed after the first and once the return to the main program is made. The 
drawback cited in the previous case is applied to each interrupt routine. 
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Figure 5.18. Processing sequence for interrupt  
requests from 8086 (Intel 1989) 
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Figure 5.19. Step-by-step execution modes  
with NMI and normal (Intel 1989) 
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Figure 5.20. Simultaneous software exception and maskable external interrupt  
interacting with the step-by-step execution mode (Intel 1989) 

One exception to all these priorities is the case of three simultaneous requests 
(Figure 5.21). In this case, the step-by-step mode is not applied to unmaskable 
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routines that are nested. It is applied as before to the routine of the maskable IT. It 
should be noted that the unstacking of the CS and IP registers is symbolized in this 
figure by the word “return”. 

 

Figure 5.21. Simultaneous NMI, INTR and division by zero in interaction  
with step-by-step execution mode (Intel 1989) 

To summarize, Figure 5.22 shows an organigram for processing IT programs 
representative of the first decades of MPUs, that is, the 8-bit generation, which is the 
MC6809 from Motorola. 
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5.7. Identification of the source and vectorization 

One difficult case is identification of the interrupt source when the line of 
requests is shared by several interrupt sources. We saw in § 4.1.1 from Darche 
(2003) that identification could only be done by polling from possible interrupt 
sources by reading the interrupt request register. It can also be done by hardware 
polling or daisy chain, by diffusion or by multi-level interrupts. 

Almost all modern microprocessors use the technique of vectorizing interrupts 
that gather all automatic interrupt recognition techniques to be considered and 
branching by indirection (indirect addressing, cf. § 1.2.3.3) at the routine. With 
vectorization, the execution flow is directed towards a start address for each 
interrupt except in the case of auto-vectorization (cf. § above for the latter case). The 
vectorization mechanism relies on an indirection. Information, making it possible to 
locate the interrupt routine, is sent to a vectorized interrupt request. It may be an IT 
address or number. When it is an address (first case) provided in general by the 
interrupt controller (cf. § 4.1.1 in Darche (2003)), the MPU loads it in the program 
counter to execute the routine. It is a number (second case), an unsigned integer 
(format n = 8 bits, for example, for x86 architecture) that serves as a cell index in a 
table where the routine start address is stored. There are therefore two definitions of 
a vector depending on the manufacturers or authors. A vector is either the processing 
routine start address8 called an interrupt (address) vector or also an interrupt pointer, 
or an unsigned integer that serves as an index in a table (Intel 2003b, 2005) called an 
ISR lookup table. Each interrupt vector location (i.e. cell) is addressed by the IT 
number. This vectorization can be internal or external. In the first case, which is rare, 
this table is in the interior of the microprocessor and the content of the vector is 
fixed. In the second case, it is found in the random access or read-only memory (i.e. 
RAM or ROM) or in a specialized controller, and it is modifiable under some 
conditions (i.e. access rights). As a vector corresponds to each interrupt, recognition 
of the interrupt source is therefore more effective than sharing the line alone since 
the mechanism is an integral part of the processor. On the other hand, the number of 
inputs is limited by a hardware that is costly in the number of pins and this approach 
is not flexible since the priority policy is fixed. 

At consideration, after saving the context, the program counter is loaded with the 
content of the interrupt vector that contains the start address of the associated 
interrupt routine. Access to the routine is achieved by indirection. The interrupt 
vector is consequently a pointer (Figure 5.23). This concept was operated for the 
first time in the TX-2 computer from MIT Lincoln Labs (Clark 1957). 8-bit MPUs 
that supported vectorization are the 8085 and the Z80. In the 16-bit version, we list 

                                 

8 The definition was retained for this book. 
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the 80x86. Software interrupts from 8085 are vectorized. Among hardware interrupts 
(trap, RST 5.5, 6.5 and 7.5), only INTR is not vectorized. 

 

Figure 5.23. Vectorization of the interrupt 

The address of the table is specific to each (family of) component(s). The 
MC680x family has its table of four vectors placed at the top of its address space. 
Table 5.5 shows the IVT (Interrupt Vector Table) from IA-32 architecture (i.e. x86 
architecture in 32-bit version) situated in the memory area, the start address 
0000:0000 (Intel 2003a). Each interrupt has a priority called a “type” and an 
associated vector. The priority defines the order of processing. The table has been 
completed as new generations appear. The 8086 (Intel 1989), for example, 
designated vectors no. 5 to 31 as reserved. The 80286 adds seven new interrupts, 
four for the 80386. Since this MPU’s memory is segmented and acts on the real 
mode (i.e. unprotected), the size of a vector is 4 bytes, including two for the segment 
(this will be covered in a future book by the author on memories) and two for offset. 
It should be noted that the Reset vector does not appear in the table as it is placed for 
most processors generally high in the memory space in a non-volatile memory with 
start and initialization FirmWare (FW) (cf. § V5-3.5.3). A counter-example is 
MicroBlaze from Xilinx, which is a “soft processor core” implanted in an FPGA 
(Field-Programmable Gate Array, cf. § 4.3.2 in Darche (2004)). 
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Type (vector no.) Designation Origins 
0 Division by 0 8086/8088 

1 Step-by-step mode (debugging) 8086/8088 

2 NMI 8086/8088 

3 Breakpoint exception 8086/8088 

4 Overflow of a relative integer 8086/8088 

5 Range limit exceeded 80286 

6 Undefined operation code 80286 

7 (Unavailable mathematical) coprocessor 80286 

8 Double fault 80286 

9 
Reserved 

(memory violation of 387 coprocessor) 
80286 

10 Invalid Task State Segment (TSS) 80386 

11 Segment not present (in memory) 80386 

12 
Stack (segment) fault 

(limit reached or segment absent in memory)
80386 

13 
General protection exception  
(segment boundary exceeded) 

80286 

14 Page fault exception 80386 

15 Reserved – 

16 Floating-point calculation error (x87) 80286 

17 Alignment-checking exception (memory) 80486 

18 Computer control exception Pentium Pro 

19 
SIMD floating-point calculation error 

(instructions SSE and SSE2) 
IA-32 

20–31 Reserved – 

32–255 Available for the user 8086/8088 

Table 5.5. Table of 256 interrupt vectors from IA-32 architecture 

Note that for the first microprocessors or for some interrupts such as IntR, 
automatic presentation of the IRQ vector happens via an external module (Figure 5.24), 
the IT controller and not by reading the table of vectors, according to a defined 
protocol. 
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Figure 5.24. External vectorization 

One variant is the presentation of an operational code instead of a vector. For 
example, we cite the MPU Z80 from Zilog, which has three maskable IT management 
modes for compatibility reasons and because of the possibilities offered. The first  
(no. 0) is Intel 8080 mode where an external controller provides an instruction code of 
one byte, generally rst (restart, that is, the equivalent of a call) making it possible 
to branch at one of eight locations (8 bytes long) starting from the memory address 
space (page 0) where the corresponding ISR is found. Mode no. 1 executes an 
instruction rst with 0038h as a start address, which is equivalent to an NMI 
processing but at a different address from the one normally linked to it (= 0066h). The 
last, the most powerful mode, makes it possible to make an indirect call to a routine 
placed anywhere in the memory space from a vector formed from 8 bits provided by 
the controller (LSB for Least Significant Byte) and from the content of a register 
named I (MSB for Most Significant Byte) that addresses a table’s cell in 16-bit format 
containing the ISR address (starting location). 

There is a table variant that does not contain the vector but contains the routine code 
directly (PowerPC 9 and Arm® approaches). Since the available size is small (8 bytes for 
the (MCU for MicroController Unit) 8051 microcontroller from Intel, RESET aside), 
the cell generally only contains one jump instruction to an associated routine, since it is 
constrained by memory space (size of one jump instruction or an instruction from the 
routine itself). The table was called a jump table. One advantage is that the cell can 
contain the instructions nop or a jump to the following cell, enabling a fall-through 
approach. A second advantage is a faster handling since there is no indirection. 

MC68000 has many useful functionalities such as auto-vectorization. This term 
means that an IT controller too simple or old to provide a vector can benefit from 
vectorization. To do this, the MPU itself generates a vector depending on the priority 
of the given request on its inputs, called an Interrupt Priority Level or IPL[2:0], the 

                                 

9 PowerPC for Performance Optimization With Enhanced RISC Performance Computing. 
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number of the basic vector and their number fixed by the manufacturer (respectively 
= 1916 and 8). 

In the first microprocessors, which positioned indicators at the end of execution, 
the state of these latter should be explicitly tested so as to be able to process the 
exception. Others can raise the exception automatically. 

One original approach is that of MIPS (Microprocessor without Interlocked 
Pipeline Stages), which does not use vectorization. It stores the type of interrupt 
pending in a cause register (Hennessy et al. 1982), speaking of the surprise register, 
containing an identification code for the origin of the interrupt in the format n = 4 
bits. Table 5.6 shows its different values for MPUs R2000, R3000, R4000 and 
R6000. The benefit is that it makes handling of interrupts orthogonal to handling of 
instructions. It becomes uniform regardless of its type. Requests can be processed by 
a centralized routine, which can make the vector table useless. The drawback is that 
the processing is slower than with the solution that uses a vector table. It should be 
noted that this MPU’s status register does not have classical status flags (NZVC,  
cf. § V3-3.1.5.1). A counter-example is the COP8 microcontroller (from NS), which 
uses a general fixed address management routine (i.e. 00FFh), of which the first 
instruction is vis (1-byte format). The latter determines the cause of the interrupt, 
making it possible to address a cell from a 16-vector table, and then makes an 
indirect jump to the corresponding management routine. 

Number Mnemonic Description 
0 Int External interrupt (i.e. hardware) 

1 Mod TLB modification exception (cache) 

2 TLBL 
TLB reading failure exception  

(reading or fetching an instruction) 

3 TLBS TLB writing failure exception 

4 AdEL 
Address error exception  

(reading or fetching an instruction) 

5 AdES Address error exception (writing) 

6 IBE Bus error exception for fetching an instruction 

7 DBE Bus error exception for a data reading or writing 

8 Syscall Call system exception 

9 Bp Breakpoint exception 

10 RI Reserved instruction exception 

11 CpU Unusable coprocessor exception 

12 Ov Arithmetical overflow exception 

13 Tr Trap (R4000 and R6000 only) 
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Number Mnemonic Description 

14 NCD 
LDCz/SDCz (writing/reading in/of the processor) towards an 

un-cached address (R6000 only) 

14 VCEI 
Virtual coherence exception instruction  

(R4000 only) 

15 MC Computer control exception (R6000 only) 

15 FPE Floating-point exception (R4000 only) 

16–22 - Reserved for future use 

23 WATCH 
Reference to the address stored in the registers 

WatchHi/WatchLo (R4000 only) 

19–30 - Reserved for future use 

31 VCED 
Virtual coherence exception data  

(R4000 only) 

Table 5.6. List of exception codes (ExcCode) for MIPS architecture  
(Kane 1988; Kane and Heinrich 1992) 

Figure 5.25 shows two possible implantations of an IT system (vector table at the 
start of the address space). The vectors in the table are initialized by initializing the 
system in the case of storage in Random Access Memory (RAM). If the system has 
a monitor (cf. § V5-2.2.4.1), the IT table will be with it. 

 

Figure 5.25. Two typical implantations of different memory areas of an IT system 
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5.8. Nested and queued interrupts 

Simultaneous processing can generate many problems. One example is a division 
by zero that triggers a routine that, itself, executes a division by zero, therefore 
triggering an infinite loop. System programmers avoid having to process these cases 
by raising the double fault exception for example, which will halt the program or the 
faulty process, and by signaling the error. Externally, apart from critical hardware 
exceptions that require halting the machine, requests are generally masked during an 
IT processing. However, they should not be lost. 

Simultaneous requests can be made using nested interrupts (cf. § 5.3). When the 
number of IT sources is high, it becomes difficult to assign a vector and a routine to 
each of them. Moreover, if requests are not processed fast enough, there is a risk that 
requests will be lost. One solution is to put in place a message queue, each message 
encapsulating a request (queued interrupts). It is useful to put requests in a queue as 
it serializes requests and their associated processing. The drawback is that it is 
impossible to raise another interrupt if one is being handled; it will be queued like 
the others. As Figure 5.26 illustrates, the IT service routine manages the role of 
transmitting messages and a process manages them. 

 

Figure 5.26. Proposal for processing flow for many IT requests (Intel 1980) 

This technique does not pose any problems as long as the source is external. There 
is no causal link between them. In the case of internal ITs, the same is true if an 
internal IT is underway and an external request arrives. In the two other cases, nested 
management is obligatory. In fact, as the source is an instruction execution, 
programmed interrupt or exception, it is necessary to process it before returning to the 
previous one. Walker and Cragon (1995) summarized all the cases using Table 5.7. 

Interrupt underway IT request to be processed Management options 
External External Nesting, queueing 

External Internal Nesting 

Internal External Nesting, queueing 

Internal interne Nesting 

Table 5.7. Management options in the case of multiple IT processing 
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5.9. Uses 

Hardware interrupts were first used mainly for I/Os as they mean the 
microprocessor does not lose time (i.e. active waiting) to detect possible external 
events, for example, end of I/O transfer, using the polling technique (cf. § 4.2.1 in 
Darche (2003)). It is the I/O controllers that generate these maskable requests, and 
they are processed by OS drivers. But beware, the interrupt mechanism is not always 
the best solution for handling I/Os. Polling or a hybrid solution can give better 
performances (cf. Pajari 1989; Yang et al. 2012) studied this subject in the 
framework respectively of a serial interface and of block mode transfers in the 
(mass) storage domain. The interrupt is also used to indicate a major hardware error. 
The MPU is generally put in halt mode while waiting for a hardware initialization 
(reset). 

Modern OSs make massive use of software interrupt request instructions to call 
their services and exceptions to manage faults and aborts. Software interrupts are 
usually encapsulated in a function of a High-Level programming Language (HLL). 
Calls to operating system services are made by a trap, making it possible to change 
from execution (user/supervisor) mode. Within the OS, the exceptions are 
transformed into signals that are sent to processes, for example, by calling on the 
“kill()” function in UNIX OSs. Task switching is triggered according to the rhythm 
of the interrupt requests from the timer. We recall that this controller has a 
(de)counter/timer that generates interrupt requests. For a presentation of the latter, 
see § 3.3.1 in Darche (2003). The exceptions make it possible to detect execution 
errors, in particular calculation errors (overflow, division by zero, etc.). Modern 
MPUs detect illegal or invalid instructions (cf. § 3.1.1) and generally raise a trap that 
will reroute the execution towards an exception handling routine (the case of the 
Arm® family, for example). The MC68000 detects an instruction machine code that 
has not been implemented by raising exceptions named line A and line F, the latter 
being the hexadecimal figure corresponding to the binary words detected (first byte 
of the operational code). Misuse involves setting a breakpoint (cf. § V5-2.2.2) and 
emulating an instruction of an absent mathematical coprocessor. More details are 
given in Clements (1997). Table 5.8 summarizes the resolution. 

In microcomputers before 2010, interrupt management routines belonged to a 
BIOS (Basic Input Output System, cf. § V5-3.5.3) that was stored in a read-only 
memory (FirmWare or FW). The concept of interrupt is essential today in the 
domain of embedded systems. In its absence, development of this type of application 
would be excessively complex. 
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Table 5.8. Table summarizing interrupts 

5.10. Interrupts and execution modes 

Microprocessors, since the 16-bit generation, have considered execution mode 
(cf. § 3.2.2) in handling the interrupt request. Therefore, interrupts are executed 
classically in three modes, privileged (or protected), user and real (address).  
Table 3.3 shows execution modes from Arm® architecture. It integrates the classic 
interrupt modes IRQ and fast FIQ as well as abort mode. There is in fact an 
execution mode for a type of interrupt. On consideration, control transfer is effected 
at the same priority level or at a higher level of privilege but never at a lower level. 
An attempt at execution of a privileged instruction or one with a particular privilege 
in a mode with less privilege causes an exception. 

It is necessary to protect the IT Vector Table (IVT) since an interrupt can be 
diverted from its processing routine by a malicious program such as a virus, for 
example, as was possible, for example, with the 8086. At Intel, there is an IVT in 
protected mode named Interrupt Descriptor Table (IDT) where each vector is 
supplemented by flags. Unlike its counterpart, it can be implanted anywhere in the 
address space thanks to the IDTR (IDT Register) that contains its start address that is 
modifiable thanks to the lidt instruction (load interrupt descriptor table register). 
Each input (8 bytes in IA-32 architecture) contains a gate descriptor, either of a task, 
and interrupt or a trap. 
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5.11. Interrupts and advanced architectures 

Modern architectures, to improve execution time, integrate processing units that 
operate in series (pipeline) and in parallel (superscalar architecture). These 
microarchitectural approaches are described in detail in the second volume. Also, 
this section is only an introduction, which will be completed later. 

In a monoprocessor architecture without a pipeline, considering only internal 
interrupts and supposing that the interrupt handlers (ISR) cannot generate interrupt 
requests (i.e. fault-free handler), managing the context is simple and there is at most 
only a single instruction to re-execute (in case of fault). Table 5.9 shows recovery 
points for the classic ITs of a classic MPU. One serious error is a hardware 
breakdown or an erroneous system table. There is therefore no recovery. Some 
errors provide an error code, useful for a potential retry or for a debugging. 

Interrupt names Classes IT 
no.  

Instructions 
involved 

Restart 
points 

Error on 
the stack 

Division by zero Fault 0 div, idiv 
At the 

instruction in 
question 

No 

Step-by-step 
Hardware 

trap (!) 
1 All 

Following 
instruction 

No 

NMI 
IT 

hardware 
2 int 2, all 

Following 
instruction 

No 

Breakpoint Trap 3 int 3 
Following 
instruction 

No 

Overflow (integers) Trap 4 int 4, into 
Following 
instruction 

No 

Extent boundary 
exceeded  
(boundary control) 

Fault 5 int 5, bound 
At the 

instruction in 
question 

No 

Invalid operation code Fault 6 Undefined 
At the 

instruction in 
question 

No 

MPU extension of 
(coprocessor)  
unavailable 

Fault 7 esc, wait 
At the 

instruction in 
question 

No 

Reserved (Intel) – 8–15 – – – 

MPU extension error Fault 16 esc, wait – – 

Reserved (Intel) – 17–31 – – – 

Defined by the user  
(i.e. available for) 

Trap 
32–
255 

int 
Following 
instruction 

– 

Table 5.9. Interrupt recovery points for the 80286 
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Table 5.10 shows the restart points in real mode for the same MPU. 

Interrupt name Classes IT no. Instructions 
involved Restart points 

Limit of an interrupt table 
that is too small 

Abort 8 – 
At the instruction 

in question 

Segment overflow from 
the coprocessor 

Fault 9 
esc with a too high 

operand address 
At the following 

instruction 

Segment overflow Fault 13 
With a too high 
memory address 

At the instruction 
in question 

Table 5.10. Recovery point for ITs for the 80286 (real mode) 

Table 5.11, following the two previous tables, does this for protected mode. The 
column called “restart” indicates whether the program/process can continue or 
should be stopped. 

Interrupt names Classes IT 
no.  

Possible 
restart Restart points Error code on 

the stack 

Double fault Abort 8 No 
At the 

instruction in 
question 

Yes (= 0) 

Segment overflow of 
the coprocessor 

Abort 9 No 
Following 
instruction 

No 

Invalid task state 
segment 

Fault 10 Yes 
At the 

instruction in 
question 

Yes 

(= TSS at fault 
or selector) 

Segment not present Fault 11 Yes 
At the 

instruction in 
question 

Yes 
(= descriptor 

selector) 

Stack segment 
overflow or stack 
segment not present 

Fault 12 Yes 
At the 

instruction in 
question 

Yes 
(= segment 

selector or 0) 

General protection Abort 13 No 
At the 

instruction in 
question 

Yes 
(= descriptor 

selector) 

Table 5.11. Recovery point for ITs for the 80286 (protected mode) 
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It is not the same with parallel architectures. Several instructions are issued in 
parallel and can also be executed in parallel. First, it is necessary to define what 
sequential and serial executions are. An execution is called sequential if each 
instruction is executed completely before execution of the next is launched. This was 
true for the first MPUs. A serial instruction execution is an execution that respects 
their order of arrival. The MPU’s state change follows the same order. This is the 
case with a pipeline processor. But such a processor does not carry out a sequential 
execution. 

Several interrupt requests can therefore be generated internally, to which several 
external requests can be added. Except for an external interrupt and RESET aside, 
consideration does not only occur at the instruction boundary but can be done 
between the different sub-steps in the execution cycle. During interrupts, these 
architectures generate additional execution time costs that may be prohibitive. For 
example, in a pipeline, when an interrupt request is effective, it may be necessary to 
terminate execution of instructions engaged in the pipeline to facilitate recovery of 
the interrupted thread. Walker (1992) thus defines six stages in managing interrupts 
for pipelined architectures. These are detection, termination of the instruction 
underway, cancelation of the execution (pipelined architecture), saving the context, 
execution of the handler and restarting of the interrupted process. It is then necessary 
to define the concepts of precise and imprecise interrupts. 

Interrupts as they were described previously, that is, for a single processor 
without an accelerator mechanism, are called precise. For them to be so, three 
conditions should be met for the execution to continue correctly (Smith and 
Pleszkun 1988). First of all, all the instructions preceding the instruction being 
executed at the moment of the interrupt request should be executed and they should 
have modified the state of the process correctly. Those that should follow should not 
be executed and should not modify the state of the process. To finish, if the interrupt 
request is caused by an instruction, this should be executed completely, for example, 
during an overflow, or it should not or cannot be executed at all (e.g. in the case of a 
page fault). The state of the process before a precise interrupt is called serially 
correct, that is, identical to a sequential execution (Walker and Cragon 1995). This 
state can be the one before or after the execution in question. It will not be 
sequentially correct during a precise interrupt. The precise interrupt is used if the 
state of the processor should be rebuilt, for example, in the case where the software 
should repair the error that caused the interrupt request and should allow recovery of 
execution. If the cause is external, recovery is easy. For an internal cause, this may 
be costly in terms of time in the case of a parallel hardware environment (pipeline 
and superscalar architecture). But this type of interrupt is needed in mechanisms 
such as the memory page fault (this will be covered in a future book by the author on 
memory) or requested by the IEEE 754 standard (Hennessy and Patterson 2017) that 
concerns calculation in floating point in base 2 (IEEE 1985, 2008) (for the 
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associated representation, cf. § II.4.2 in Darche (2000)). Therefore, the interrupt 
model for floating-point calculation units (FPU for Floating-Point Unit) is most of 
the time of a precise type. A counter-example is the PowerPC family (Motorola 
1996). With this family, the programmer can choose the exception mode from 
among four for calculation in floating point. An imprecise interrupt means that the 
instruction following the one that produced the exception may be terminated or in 
the process of being executed. The state at this instant is fragmented but recoverable 
(Grohoski 1990), that is, restorable albeit with a time cost. The choice of this type of 
interrupt is therefore guided by a gain in performances. A microprocessor such as 
Alpha from Digital Equipment Corporation (DEC) may have some precise interrupts 
and others that are not precise (Compaq 2002). Samadzadeh and Garanabi (2001) 
study five management strategies for this type of execution. For more information 
on this subject, see also Moudgill and Vassiliadis (1996) and Rudd (1997). 

The serialization of interrupt requests in parallel environment will consist of 
ensuring that they are processed sequentially. This is one of the roles of the interrupt 
controller (cf. § 4.1.1 in Darche (2003)). 

In a superscalar architecture, the processor is capable of launching and 
withdrawing (i.e. end of execution) several scalar instructions per cycle (multiple-
issue processor). The result is that they can be executed in parallel. Hence, they were 
first called look-ahead processors (Rau and Fisher 1992, 1993), that is, a processor 
with anticipated execution. The instructions are provided sequentially, and it is the 
internal hardware that is responsible for their distribution on different functional 
units. Other than the IT software already mentioned, the generation of requests and 
consideration of exceptions can only be done during speculative execution of an 
instruction. Consideration should therefore be deferred. One solution is to carry out 
speculative execution only for instructions that do not raise an exception (safe 
speculation). Another approach is boosting (Smith et al. 1992; Smith 1992), which 
consists of labeling the instruction to “boost” with a bit called a reservation enabling 
the MPU to decide whether an instruction should be re-executed. A state information 
is saved until execution of another path. Another solution is the poison bit 
(Hennessy et al. 1982). The schema of the poison bit consists of attaching the 
aforementioned bit to the result register of destination register with the idea of 
reporting an event. When a trap is raised following an execution, the poison bit of 
the register is positioned, but the exception does not take place. On the contrary, if, 
afterwards, an instruction reads this register, then this exception takes place. Walker 
and Cragon (1995) study ITs in pipelined and superscalar environments. 

To succeed to monoprocessor architecture and the classic 8259A controller from 
Intel, in a multiprocessor environment, interrupt control functions were distributed 
between the microprocessors and I/O controllers. In the case of Pentium, a 
specialized bus called ICC (Interrupt Controller Communications) makes it possible 
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to make different APIC (Advanced Programmable Interrupt Controller) controllers 
communicate with one another. Each controller receives interrupt requests linked to 
its node (LINT for Local INT) and, via the bus (APIC or ICC bus), transmits  
and receives, in particular, requests from other UCs to be able to handle the IT 
(Figure 5.27, and cf. § 4.1.1 in Darche (2003)). The local controller was integrated 
for the first time in the Pentium P54C (1954). The architecture includes an external 
controller called I/O APIC (IOAPIC) under the reference 82489DX. In this 
architecture, it is necessary to distinguish two types of processor, which are the 
starting microprocessor (BSP for BootStrap Processor) and the application processor 
(AP). Other versions followed, such as 82093AA and the xAPIC architectures and 
its extension, x2APIC respectively appeared with the Pentium 4 MPU 
(microarchitecture NetBurst – 2000) and the Nehalem microarchitecture (2008). 
Interrupts in a multicore environment will be studied in a future book by the author. 

 

Figure 5.27. Organization of different APICs 



160     Microprocessor 4 

To summarize, Tables 5.12 (a) and (b) show a list of the most common interrupts 
by specifying their properties. The term “voluntary” means choosing a programmer. 
This is an explicit request by instruction, which is different from unwanted requests, 
that is, constrained or submitted requests. An additional column would have been 
one that indicated a program stop, or indeed a stopping of the machine or a 
continuation or recovery, at the level of the instruction or the following one. The 
term is terminate/restartable–resume–continue. Instances of breaks are cases of 
serious problems such as, at hardware level, a major failure or an imminent power 
cut, or at software level, a double fault or an undefined instruction. A final criterion 
may also be whether the IT request can be nested (cf. § 5.3) and/or placed in a queue 
(cf. § 5.8). 

Types 
External 

(E)/internal 
(I) 

Synchronous 
(S) 

/asynchronous 
(A) 

Voluntary(V)
/constraint (C)

Between instructions 
(E) 

/internal to the 
instruction (I) 

Hardware 
malfunction 

E or I A C I 

I/O request E A C E 

Bus error E A C E 

Memory error E A C E 

Power failure E A C I 

System call  
(trap) 

I S V E 

Step-by-step 
mode 
(execution trace 
mode) 

I S V E 

Breakpoint I S V E 

Overflow 
(integer number) 

I S C I 

Over- and  
under-flow 
(floating  
number) 

I S C I 

Formatting error I S C I 

Invalid 
instruction 

I S C I 
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Types 
External 

(E)/internal 
(I) 

Synchronous 
(S) 

/asynchronous 
(A) 

Voluntary(V)
/constraint (C)

Between instructions 
(E) 

/internal to the 
instruction (I) 

Undefined 
instruction 

I S C I 

Memory 
protection 
violation 

I S C I 

Misaligned 
memory access 

I S C I 

Page fault I S C I 

Segment fault I S C I 

Privilege 
violation 

I S C I 

Stack fault I S C I 

Double fault I S C I 

Table 5.12a. Suggestion for classification criteria according to  
Hennessy and Patterson (1990) and Walker (1992) 

The following table continues this presentation of classification criteria. 

Types Precise (P)/ 
imprecise (I) 

Simple level(S) 
/multi-level (M) 

Maskable (M)  
or not (NM) 

Hardware dysfunction I S NM 

I/O request P M or S NM/M 

Bus error I S NM 

Memory error I S NM 

Power failure I S NM 

System call (trap) P M or S NM 

Step-by-step mode 
(execution trace mode) 

P M or S M 

Breakpoint P M or S M 

Overflow (whole 
number) 

P or I M or S M 
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Types Precise (P)/ 
imprecise (I) 

Simple level(S) 
/multi-level (M) 

Maskable (M)  
or not (NM) 

Over- and under-flow 
(floating number) 

P/I M or S M 

Formatting error I S NM 

Invalid instruction P or I S NM 

Undefined instruction I S NM 

Memory protection 
violation 

I S NM 

Unaligned memory 
access 

I S M 

Page fault P M or S NM 

Segmentation fault P M or S NM 

Privilege violation I S NM 

Stack fault I S NM 

Double fault I S NM 

Table 5.12b. Suggestion of classification criteria according  
to Hennessy and Patterson (1990) and Walker (1992) 

5.12. Conclusion 

This chapter took the subject of interrupt mechanisms. It was first invented to 
process an overflow problem. It was then used to optimally manage I/Os by 
avoiding the polling technique. 

Interrupts internal to the MPU are either requested explicitly by an instruction 
(trap) or linked to a problem during the execution (exception). A classification was 
suggested, and the operation of these hardware and software interrupts has been 
detailed. The causes of internal then external interrupts have been detailed. The 
study was pursued with the presentation of different associated aspects such as 
nested requests, request priority and vectorization. 

This chapter ended with execution modes and advanced architectures. In fact, the 
interrupt mechanism is used in a general way in modern OSs and embedded 
systems. Having first addressed instruction parallelism or ILP (Instruction-Level 
Parallelism) and the virtual memory mechanism, this IT concept will be completed 
in the following volumes by following the development of architectures. 

 



 

Conclusion of Volume 4 

The MicroProcessor Unit (MPU) lies at the heart of modern digital systems. This 
programmable logic component executes instructions sequentially from a program 
stored in the main memory. The previous volume presented the hardware aspects of 
this component. 

This fourth volume presented the software aspects of how a microprocessor 
operates. The programmer will refer to Instruction Set Architecture (ISA, see  
§ V1-3.5), which specifies the type of architecture (General-Purpose Registers (GPR), 
stack, etc.), the memory addressing characteristics (alignment or not, storage order, 
access format, addressing capacity), available address modes, operand characteristics 
(number, type, format and representation (i.e. encoding) and, of course, instructions 
(family, mnemonic, syntax, semantics, authorized and encoding address modes)) and, 
finally, data and address path formats. 

The first two chapters studied the three main characteristics of an ISA. We then 
presented instruction coding and format, addressing modes and the instruction set in 
the form of classes with, in particular, the multimedia extension to modern 
microprocessors. 

The third chapter focused on additional concepts associated with instruction sets 
and execution. It first of all studied what illegal, invalid, reserved and trusted 
instructions were. It then presented the concepts of memory alignment, the 
orthogonality and symmetry of the instruction set and pure, relocatable and re-
entrant code. It then discussed the subjects of execution time, memory occupation, 
execution modes, portability and virtualization. This chapter ended with the 
important aspects of hardware and software compatibilities, execution performance 
measurement and the criteria for choosing a microprocessor. 

Microprocessor 4: Core Concepts – Software Aspects, 
First Edition. Philippe Darche. 
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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Subroutine call mechanisms and interrupt mechanisms were then studied 
respectively in the last two chapters. The first made it possible to implement a 
function or procedure in high-level languages. The interrupt is a similar mechanism. 
It was originally invented to process an overflow problem. It was then used to 
manage Input/Output (I/O) in an optimized way by avoiding the polling technique. 
A classification was proposed following the original request criteria, external or 
internal, and the operation of these hardware and software interrupts was detailed. 
The interrupt mechanism is used in a generalized way in modern Operating System 
(OS) and embedded systems. 

As we can therefore see with these last two volumes, the design of the 
microprocessor requires the competency of multiple domains ranging from micro-
electronic technology to functional architecture via Boolean algebra and the design 
of logic circuits. For the software designer in relation to the hardware aspect, an 
equilibrium will exist between the different logical sub-sets depending on the 
applications targeted. For scientific calculation applications, some mathematical 
instructions could be used. For database applications, complex addressing modes 
will be used. Two trends have therefore clashed, in design and manufacturing, from 
the beginning of the 1980s. These are the CISC and RISC approaches (respectively 
Complex/Reduced Instruction Set Computer, this will be covered in a future book 
by the author on microprocessors). The CISC architecture favored complexity of the 
instruction set and therefore of the Control Unit (CU), while the RISC architecture 
favored registers and simplified the internal structure of the CU (Control Unit) and 
the Integer Unit (IU). 

For more information on this component, a special set of Proceedings of the 
IEEE is dedicated to it (Patt 1995). See also IEEE (1996). 

The following volume will present the software tools for low-level development, 
as well as hardware and software aspects of debugging applications. It will end with 
a study of the architectures of the first microcomputers. 

NOTE.– The concepts presented in this book will be complemented as new ones are 
introduced. The second book will focus on the modern aspects of processors from 
1980 to 1990, in particular virtual memory and parallelism of execution. The third 
book will focus on multicore parallelism. 



 

Exercises 

Here are some exercises that complement the concepts presented in this book. 
Their numbering refers to the chapter with which they are associated. 

Chapter 1. Exercises 

E1.1. Recall the definition of a register. 

Answer. A register is a memory with one-word capacity in the format n bits, 
which operates at the speed of the component that integrates it. This means that a 
microprocessor’s register does not slow down its operation when it is accessed. 

E1.2. Cite some elements (logic components or logic sub-sets) that are involved 
in the implicit addressing of a microprocessor. 

Answer. The registers and the stack (so the main memory for modern 
MicroProcessor Units (MPU)). 

E1.3. Calculate the maximum number of Imax instructions if the function field of 
the instruction word has a format f fixed at 5 bits. 

Answer. Imax = 2format = 25 = 32 instructions. 

E1.4. If the addressing mode field has a format a = 3 bits and the instruction set 
is symmetrical (cf. § 3.1.3), calculate the number of possibilities for coding one 
instruction, also taking the previous question into account. 

Answer. There are 23 possible addressing modes. This makes 25 × 23 = 28 
possibilities for coding one instruction. 

Microprocessor 4: Core Concepts – Software Aspects, 
First Edition. Philippe Darche. 
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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E1.5. Inverse problem. The MCS6502 MPU has 151 legal operation codes. What 
is the minimal format c of this word of code? 

Answer. You have to go through the logarithm function. This will give: ܿ௠௜௡ = 	 ۂlogଶሺ151ሻہ + 1 = 8 

Chapter 2. Exercises 

E2.1. Specify the correction algorithm for an addition in packed Binary-Coded 
Decimal (BCD) and in ASCII. 

Answer. The format n of a digit in packed BCD (cf. § II.1.2 in Darche (2000)) is 
4 bits. With a binary addition of two digits in BCD, the result is false in this 
representation when it is greater than 9. To correct the result, it is then necessary to 
add the constant 01102 and move the carry to a higher order to obtain a fair result. 
This is what we call a decimal adjust. Most MPUs have a specialized instruction that 
should be executed behind a classic binary addition (instruction daa for Decimal 
Adjust AL after Addition from 8086, for example, on a byte, i.e. two decimal 
figures). The drawback is that it must carry out this operation after each addition. 
One interesting peculiarity of the MCS6502 is that it is possible to configure the 
adder so that it operates in binary or decimal mode (i.e. BCD mode) by setting the 
decimal mode flag (patented concept, cf. § V3-3.1.5.2) using the instructions cld 
and sed to respectively the clear and set decimal flag. One drawback is that it is 
necessary to properly manage the positioning of this flag to avoid a calculation error. 
In ASCII (i.e. a decimal figure coded on a byte with the least significant weight 
quartet which is equal to 3), this is the instruction aaa (ASCII adjusted after 
addition) from 8086 that must be used, which renders a result in a packed BCD. To 
finish, the adjustment can be made on the three other arithmetical operations (i.e. 
subtraction, multiplication and division) with the associated instructions. 

E2.2. Specify the correction algorithm for a subtraction in packed BCD and 
ASCII. 

Answer. The step is identical to that in the previous exercise. With a binary 
subtraction of two figures in BCD, the result is false in this representation when the 
figure to be subtracted is smaller than the one that is subtracted. To correct the 
result, it is then necessary to remove the constant 01102 and move the borrow to a 
higher order to obtain a fair result. This is always a decimal adjust. Most MPUs have 
a specialized instruction that should be executed behind a classic binary subtraction 
(instruction das for Decimal Adjust AL after Subtraction from 8086, for example).  
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The decimal mode from MCS6502 is controlled by positioning the corresponding 
flag using the instructions cld and sed for respectively the clear and set decimal 
flag. For the 8086, the correction in ASCII is made using the instruction aas 
(ASCII adjusted after subtraction), which renders a result in unpacked BCD. To 
finish, the adjustment can be made on three other arithmetical operations (i.e. 
addition, multiplication and division) with associated instructions. 

E2.3. Give the indicators that are involved during a test for superiority, 
inferiority and equality. 

Answer. Any comparison is first reduced to a subtraction that positions the 
different binary indicators, then compared to zero (cf. exercise E2.2). This can be 
confirmed by consulting the programming manual or the datasheet (cf. Chapter V3-
6) of a MPU. Table 2.2 gave the logical expressions corresponding to the desired 
test operation, which is associated with the conditional jump instruction. 

E2.4. Propose a method to initialize a bit at 1 or 0, whatever may be its value. 

Answer. It is necessary to use the Boolean operators, in this case the presence of 
a neutral element and an absorbent, and use a binary value called a mask. To set at 
zero a bit of position i (0 ≤ i ≤ n-1) in a word in format n, the rank bit i of the mask 
should be at 0 (absorbing element of logical AND), the others being at 1 (neutral 
element of the logical AND), and it is necessary to make a logical AND between the 
value and the mask. This is the same step for setting at 1 using the absorbing 
element from logical OR, which is 1.  

E2.5. Propose a method to isolate and test or extract the value of a bit. 

Answer. To test or extract a bit of rank i, we must set all the other bits at 0 by 
masking using the properties of the Boolean operators (see the previous exercise) 
and test the value obtained compared to 0. It is not necessary to shift the bit being 
tested to the Least Significant bit (LSb). 

E2.6. Draw the signals of the address bus if the MPU is continuously reading a 
set of instructions nop (cf. § 2.8.5). 

Answer: The instruction nop for no operation does nothing operational other 
than to increment the PC. Considering that the first is located at the address 0 and 
that the size of its machine code amounts to a byte, execution of this set will lead to 
the appearance of a modulo-2m count on the address bus, as Figure E2.28 illustrates. 
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Chapter 5. Exercises 

E5.1. What is an interruption vector? 

Answer. An interruption vector is, depending on the definitions, the start address 
of the IT management routine considered (ISR for Interrupt Service Routine), or a 
natural integer serving as an index to a table containing these addresses (see the 
following question); the former is the one used in this book series. 

E5.2. What is an interrupt vector table? 

Answer. A vector table is a data structure, in this case a table, linked to an 
interrupt mechanism. Each post is indexed by an interrupt number, making it 
possible to identify the source. Each post contains a vector that is the start address of 
the corresponding IT management routine. Its address for implantation in memory is 
fixed for MPU running in real(-address) mode (cf. § 3.2.2). An alternative is to order 
the code in the ISR in one post of the table to avoid indirection. 



Appendix 

Tables for Encoding and  
Decoding Instructions 

The four documents are from Motorola (1984). The first table gives information 
on the designer, the memory space occupied and the number of cycles of each 
instruction depending on the addressing mode used. The other tables concern 
instruction coding depending on the addressing mode chosen. We also find the same 
information as in the first table. The last table concerns branching. 

 

Microprocessor 4: Core Concepts – Software Aspects, 
First Edition. Philippe Darche. 
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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Table A.1a. Hexadecimal values of machine codes 
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Table A.1b. Hexadecimal values of machine codes (continued) 
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Table A.2a. Programming aid 
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Table A.2b. Programming aid (continued) 
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Table A.2c. Programming aid (continued) 

 



 

Acronyms 

This section includes all of the acronyms used in this volume. They range across 
chapters. 

General 

A 

A  Address 

AAPCS  Procedure Call Standard for the Arm® Architecture 

AB  Available Bus (MC6809) 

ABI  Application Binary Interface 

ABM  Advanced Bit Manipulation (AMD technology) 

ABT  ABorT 

ACU  Address Computation Unit (synonyms: AGU, DAG) 

AES  Advanced Encryption Standard 

AES NI  AES New Instructions 

AGU  Address Generation Unit (synonyms: ACU, DAG) 

ALGOL  ALGOrithmic Language 

Microprocessor 4: Core Concepts – Software Aspects, 
First Edition. Philippe Darche. 
© ISTE Ltd 2020. Published by ISTE Ltd and John Wiley & Sons, Inc. 
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AP  Application Processor 

APCS  Arm® Procedure Call Standard 

APIC  Advanced PIC (Intel) 

ASCII  American Standard Code for Information Interchange 

ASIP  Application-Specific Instruction set Processor 

ASL  Arithmetic Shift Left 

ASP  Application-Specific Processor 

ATPCS  Arm® TPCS 

AVX  Advanced Vector eXtensions (Intel technology) 

AXP  Almost eXactly PRISM 

B 

b  bit (cf.. BIT) 

B  Byte 

BCD  Binary-Coded Decimal 

BE  Big Endian 

BERT  Branch Effect Reduction Technique 

BIOS  Basic Input/Output System 

BIT  BInary digiT or Binary digIT 

BMI  Bit Manipulation Instructions (Intel technology) 

BP  Base Pointer (Intel) 

BRAF  Block-Repeat-Active Flag 

BRC  Block Repeat Counter 
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BS  Bus Status (MC6809) 

BSP  BootStrap Processor 

BSS  Block Started by Symbol (UNIX) 

BTA  Branch Target Address 

BTI  Branch Target Instruction 

C 

cc  condition code 

CF  Carry Flag 

CISC  Complex Instruction Set Computer 

COBOL  COmmon Business Oriented Language 

COP  Calculator-Oriented Processor (NS) 

COPS  Controller-Oriented Processor System (NS), formerly COP 

COSMAC Complementary Symmetry Monolithic Array Computer 

CPL  Current Privilege Level 

CPSR  Current Program Status Register 

CPU  Central Processing Unit 

CR  Condition Register 

CRC  Cyclic Redundancy Check 

CS  Code Segment (Intel x86) 

CTR  CounT Register 

CU  Control Unit 

CVT  ConVerT (AMD and Intel) 
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D 

DAG  Data Address Generator (synonyms: ACU, AGU) 

DFP  Decimal Floating-Point 

DI  Destination Index (Intel x86) 

DIF  Decimal-In-Frequency 

DIL  Dual-In-Line 

DIP  DIL Package 

DISP  DISPlacement (i.e. offset) 

DIT  Decimal-In-Time 

DLL  Dynamic Link Library 

DP  Direct Page 

DRAM  Dynamic RAM 

DXP  Decimal Fixed-Point 

DYSEAC Second SEAC 

E 

EA  Effective Address 

EA  Empty Ascending 

EBCDIC Extended Binary-Coded Decimal Interchange Code (IBM) 

ECC  Error Checking and Correcting/ Error-Correcting Code 

ED  Empty Descending 

EDC  Error-Detecting Circuit/Code 

EDSAC  Electronic Delay Storage Automatic Calculator 
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EF  Entire Flag (MC6809) 

EIC  External Interrupt Controller 

EN  ENable 

EOR  Exclusive OR (cf. EXOR and XOR) 

EPC  Exception Program Counter (MIPS) 

EQ  EQual 

EXOR  EXclusive OR (cf. EOR and XOR) 

F 

FA  Full Ascending 

FC  Function Code (MC68000) 

FD  Full Descending 

FFT  Fast Fourier Transform 

FIFO  First In, First Out 

FIQ  Fast Interrupt reQuest mode (ARM) 

FIR  Finite Impulse Response  

FIRQ  Fast IRQ 

FMA  Fused Multiply-Accumulate 

FORTRAN  FORmula TRANslation 

FP  Floating Point 

FPGA  Field-Programmable Gate Array 

FPP  FP Processor 
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FPU  FP Unit 

FW  FirmWare 

G 

GE  Greater than or Equal 

GP FPP  General-Purpose FPP 

GPP  General-Purpose Processor 

GPR  General-Purpose Register 

GT  Greater Than 

H 

HLL  High-Level (programming) Language 

HW  HardWare 

HWP  Heavy-Weight Process 

I 

IA  Intel Architecture 

iAPX  Intel Advanced Performance Architecture 

ICC  Interrupt Controller Communications 

ID  Identification 

IDT  Interrupt Descriptor Table (Intel) 

IDTR  IDT Register (Intel) 

IE  individual Interrupt Enable (PACE) 

IF  Interrupt enable Flag 
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IIC  Internal Interrupt Controller 

ILP  Instruction-Level Parallelism 

INT  INTerrupt 

INTA  INTerrupt Acknowledge 

INTR  INTerrupt Request 

I/O  Input/Output 

IO  Input/Output (rarely used) 

IOAPIC  I/O APIC 

IOPL  I/O Privilege Level (flag) 

IP  Instruction Pointer (Intel) (cf. PC) 

IPL  Interrupt Priority Level (MC68000) 

IR  Index Register 

IRQ  Interrupt Request 

IS  Instruction Set 

ISA  IS Architecture 

ISP  Instruction Set Processor 

ISR  Interrupt Service Routine 

ISSE  Intel SSE (AMD) 

ISSE  Internet SSE (Intel) 

IT  InTerruption (cf. INT) 

IVT  Interrupt Vector Table 
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J 

JTAG  Joint Test Action Group 

JVM  Java Virtual Machine 

K 

KNI  Katmai New Instructions (Intel SSE1) 

L 

LA  end-of-Loop Address 

LAPACK Linear Algebra PACKage 

LC  Loop Counter 

LE  Less than or Equal/less or equal 

LE  Little Endian 

LE  Loop End 

LED  Light-Emitting Diode  

LEM  Lunar Excursion Module 

LF  Loop Flag 

LGC  LEM Guidance Computer 

LGE  Less, Greater and Equal 

LIFO  Last In, First Out 

LINPACK LINear Algebra PACKage 

LINT  Local INT (APIC, Intel) 

LIW  Long Instruction Word 

LK  LinK (bit) 
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LR  Link Register (ARM) 

LS  Loop Start 

LSb  Least Significant bit 

LSB  Least Significant Byte 

LSL  Logical Shift Left 

LSR  Logical Shift Right 

LT  Less Than 

LUT  LookUp Table 

LWP  Light-Weight Process 

M 

MAC  Multiply-and-ACcumulate 

MAX  Multimedia Acceleration eXtensions (PA-RISC 2.0) 

MCS  Micro Computer Set (Intel) 

MCU  MicroComputer Unit 

MCU  MicroController Unit (preferable) 

MDMX  MIPS Digital Media eXtensions 

MIPS Microprocessor without Interlocked Pipeline Stages from MIPS 
Technologies (then called MIPS Computer Systems) 

MMR  Memory-Mapped Register 

MMU  Memory Management Unit 

MMX  MultiMedia eXtensions (Intel technology) 

MOS  Metal-Oxide Semiconductor 

MP  MultiProcesseur (MultiProcessor) 
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MPU  MicroProcessor Unit 

MSb  Most Significant bit 

MSB  Most Significant Byte 

MSW  Machine Status Word 

MUX  MUltipleXer 

MVI  Motion Video Instructions (DEC Alpha) 

N 

N  Negative (flag) 

NB  Natural Binary (cf. NBC) 

NBC  Natural Binary Code (cf. NB) 

NE  Not Equal 

NI  New Instruction 

NMI  Non-Maskable Interrupt 

NNI  Nehalem New Instructions (Intel SSE4) 

NOP  No Operation 

NOS  Next-On-Stack 

O 

OF  Overflow Flag 

OS  Operating System 
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P 

PA  Physical Address 

PA  Precision Architecture (HP) 

PACE  Processing And Control Element (NS) 

PA-RISC Precision Architecture-RISC (HP) 

PC  Personal Computer 

PC  Program Counter (cf. IP) 

PCR  Program Counter Register (MC6809) 

PCS  Program Counter Stack 

PDP  Programmable Data Processor (DEC) 

PE  Protected Mode Enable 

PIC  Peripheral Interface Controller (General Instrument) 

PIC  Programmable Intelligent Computer (General Instrument) 

PIC  Position-Independent Code 

PIC  Programmable Interrupt Controller 

PIE  Position-Independent Executable 

PNI  Prescott New Instructions (Intel SSE3) 

POWER  Performance Optimization With Enhanced RISC 

PowerPC POWER Performance Computing 

PR  Predicate Register 

PRISM  Parallel Reduced Instruction Set Machine (DEC Alpha AXP) 

PSR  Processor Status Register 
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R 

RAM  Random Access Memory 

RC  Repeat Counter 

RCA  Reverse-Carry Arithmetic 

RCL  Rotate through Carry Left 

RCR  Rotate through Carry Right 

RE  Repeat End Address register 

REA  Repeat End Address 

REX  Register Extension (AMD, Intel) 

RF  Register File 

RGB  Red–Green–Blue 

RIP  Instruction Pointer Register (Intel x86-64) 

RISC  Reduced Instruction Set Computer 

R/M  Register/Memory 

R/M  modify Register or Memory 

RMW  Read-Modify-Write 

ROL  ROtate Left 

ROLC  Rotate left through (the) carry (flag) (IEEE Std 694-1985) 

ROM  Read-Only Memory 

ROR  ROtate Right 

RORC  Rotate right through (the) carry (flag) (IEEE Std 694-1985) 

RS  Register Select 

RS  Repeat Start Address register 
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RSA  Repeat Start Address 

RSM  Resume from System Management Mode 

RST  ReSeT 

S 

SAL  Shift Arithmetic Left 

SAR  Shift Arithmetic Right 

SEAC  Standards Electronic Automatic Computer 

SEGT  SEGment Trap (request) 

SHL  SHift arithmetic Left 

SHLA  SHift Left Arithmetical (IEEE Std 694-1985) 

SHLD  Shift Left Doublet 

SHR  SHift logical Right 

SHRA  SHift Right Arithmetical (IEEE Std 694-1985) 

SHRD  Shift Right Double 

SI  Source Index (Intel x86) 

SIB  Scale-Index-Base 

SIMD  Single Instruction stream/Multiple Data stream 

SMI  System Management Interrupt 

SMM  System Management Mode 

SMP  Symmetric (shared memory) MultiProcessing 

SP  Stack Pointer (x86 Intel) 

SPARC  Scalable Processor ARChitecture 
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SR  Shift Register 

SR  Status Register 

SSE  Streaming SIMD Extensions (Intel) 

SSSE3  Supplemental SSE3 (Intel) 

SVC  SuperVisor Call 

SW  SoftWare 

SWI  SoftWare Interrupt 

SYS  SYStem 

T 

TB  Test and Branch 

TBM  Trailing Bit Manipulation (AMD technology) 

TF  Trap Flag 

TLB  Translation Lookaside Buffer 

TNI  Tejas New Instructions (SSSE3) 

TOS  Top-Of-Stack 

TPCS  Thumb® Procedure Call Standard 

TSS  Task State Segment 

U 

UCS  Universal Character Set 

UND  UNDefined 

UNICODE  UNIversal CODE 

UNIVAC Universal Automatic Computer 
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URL  Uniform Resource Locator 

USB  Universal Serial Bus 

USR  USeR 

UTF  Unicode (or UCS) Transformation Format 

V 

VAX  Virtual Addressed eXtended (DEC) 

VEX  Vector EXtensions 

VHDL  VHSIC Hardware Description Language 

VHSIC  Very High-Speed Integrated Circuit 

VIC  Vectored Interrupt Controller (ARM) 

VIS  Visual Instruction Set 

VLIW  Very LIW 

VM  Virtual Machine 

VM  Virtual Memory 

VMM  Virtual Machine Monitor 

VMX  Vector Multimedia Extension 

X 

X  eXtend bit (MC68000) 

XOP  eXtended OPerations 

XOR  eXclusive OR (cf. EOR and EXOR) 
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Z 

ZF  Zero Flag 

Miscellaneous 

µC  Microcontroller 

µC  Microcomputer 

µP  Microprocessor 

2D or 2-D Two-dimensional 

3D or 3-D Three-dimensional 

Units of measurement or unit prefixes 

CPI  (clock) Cycles Per Instruction 

DMIPS  Dhrystone MIPS 

FLOPS  Floating-Point Operations Per Second 

iCOMP  Intel COmparative Microprocessor Performance 

IPC  Instructions Per Cycle 

IPS  Instructions Per Second 

k  kilo (= 1000) 

kWIPS  kiloWhetstone Instructions Per Second 

M  mega (= 106) 

MACS  Multiply-and-ACcumulates per Second 

MFLOPS megaFLOPS = Million FLoating-point Operations Per Second 

MIPS  Million Instructions Per Second  

MWIPS  Millions of or Mega-Whetstone Instructions Per Second 
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SPECflop SPEC floating point 

SPECfpxx System Performance Evaluation Corporation floating point, xx = 
year 

SPECintxx  System Performance Evaluation Corporation integer, xx = year 

Electrical characteristics 

PD  dissipated electrical power 

Temporal characteristics 

texec  execution time 

Tclock  clock period 

Business or body 

ACM  Association for Computing Machinery 

AFISI Association Française d’Ingénierie des Systèmes d’Information 
(French Association of Information Systems Engineering) 

AIEE  American Institute of Electrical Engineers 

AMD  Advanced Micro Devices, Inc. 

ANSI  American National Standards Institute 

ARM  Acorn RISC Machine (formerly Advanced RISC Machines) 

AT&T  American Telephone and Telegraph Company 

CSG  Commodore Semiconductor Group 

DEC  Digital Equipment Corporation 

HP  Hewlett-Packard 

IBM  International Business Machines Corporation 
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IEC  International Electrotechnical Commission  

IEEE  Institute of Electrical and Electronics Engineers 

IRE  Institute of Radio Engineers 

ISO  International Organization for Standardization 

ISSCC  IEEE International Solid-State Circuits Conference 

JEDEC Joint Electron Device Engineering Council (Solid-State 
Technology Association) 

MIT  Massachussets Institute of Technology 

MPR  Microprocessor Report 

NBS  National Bureau of Standards 

NPL  National Physical Laboratory 

NS  National Semiconductor 

SGI  Silicon Graphics, Inc. 

SPEC Standard Performance Evaluation Corporation (formerly 
Cooperative) 

TI  Texas Instruments 

WDC  Western Digital Corporation, Western Digital Center 

WTL  WeiTek Corporation 

Trademark (™) 

i486  Intel Corporation 

Pentium  Intel Corporation 

WeiTek  WeiTek Corporation 
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Registered trademark (®) 

AMD  AMD 

AT&T  AT&T 

AVR  Microchip 

Intel  Intel 

Pentium  Intel 

PIC  Microchip Technology 

UNIX  AT&T 

Xeon  Intel 
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development tool 
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SOAP, § V5-1.2.1 
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Beowulf, cf. cluster 
BINAC, cf. computer model 
binding, § V5-1.2.2. 
BIOS, cf. firmware 
binary format, § V1-2.1 and V4-1.1 

byte, § V1-2.1 
nibble, § V1-2.1 
superword, § V4-2.3.2.1 
word, § V1-2.1 

binary pattern, § V2-1.4, V3-5.3, V3-5.4, 
V4-5.9, V5-2.2.2 and V5-3.5.3 

bit rate, § V1-2.1 and V2-1.2 
black box, § V1-3.1.4 and figures  

V3-E3.2 and V3-E3.4 
BNF, § V5-1.2.1 
Boolean logic, § V1-1.1, V1-3.1.4,  

V4-2.4.1 and V4-2.6.1 
bottleneck, § V1-3.2.2.2, V1-3.3.4,  

V1-3.4.2, V1-3.5.1 and V2-1.2 
branching, § V1-3.1.2, V3-3.1.5, V3-5.2, 

V4-1.1, V4-2.3.2.2, V4-2.4 and  
V5-1.3 
conditional, § V4-1.2.4.3 and  

V4-2.4.1 
test-and-branching, § V4-2.6.1 
unconditional, § V1-3.3.4 and V4-2.4.1 

break, § V4-2.5.2 
bus  

concepts, § V1-1.1 and V2-1.1 
alignment, § V2-1.2 also cf. memory 

(concepts) 
arbitration (local/distributed),  

§ V2-1.5, V2-1.6, V2-2.1,  
V2-3.1, V2-3.2 and V2-4.2.9 

bandwidth, § V2-1.2 and V2-4.2.9 
characteristics, § V2-1.2 
derivation, § V2-1.2 and V2-3.3.1 
multi- § V2-4.1.3 
MUX-based or multiplexed, §  

V2-4.2.9 
parallel, § V2-1.2 

passive, § V2-1.2 
serial, § V2-1.2 
specialized (i.e. dedicated),  

§ V2-1.2 
starvation, § V2-1.6 and V4-5.3 

computer, cf. computer bus 
fieldbus, § V2-4.2.8 
microprocessor, § V3-2.1 

address, § V3-2.1 
data, § V3-2.1 
control, § V3-2.1 
interface, § V3-3.5 and  

V2-3.1 
power, § V2-4.2.10 
products, § V2-4.2 

AGP, § V2-4.1.4, V2-4.2.4 and V5-
3.3.1 

BSB, § V2-4.2.1 and V5-3.3.1 
DIB, § V2-4.2.1 and V5-3.3.1 
DMI, § V2-4.2.3 and V5-3.3.1 
FSB, § V2-4.2.1, V3-2.4.1 and V5-

3.3.1 
EISA, § V2-2.2.3, V2-4.2.4 and  

V5-3.3.1 
HyperTransport (HT/LDT), § V2-

4.2.3 and V5-3.3.1 
ISA, § V2-2.2.1, V2-4.1.4,  

V2-4.2.4, V5-3.2.1, V5-3.2.3 
and V5-3.3.1 

MCA, § V2-4.2.4  
NuBus, § V2-4.2.7 
PCI, § V2-1.1, V2-1.6, V2-2.2.3, 

V2-3.2, V2-4.1.4, V2-4.2.4,  
V3-2.1.1.1 and V5-3.3.1 

PCI express (PCIe), § V2-1.2,  
V2-4.2.4 and V2-4.2.7 

PCI-X, § V2-4.2.4  
QPI, § V2-4.2.3 
Unibus™, § V2-1.3, V2-1.6 and  

V2-4.3 
VMEbus™, § V2-1.5, V2-1.6,  

V2-3.2, V2-4.2.7 and  
V2-4.3 



214     Microprocessor 4 

products for Multibus, § V2-1.3,  
V2-3.2, V2-4.1, V2-4.2.5, V2-4.2.7 
and V2-4.3 

iLBX, § V2-4.1 
iPSB, § V2-4.1 
iSBX, § V2-4.1 and V2-4.5 
iSSB, § V2-4.1 

SoC bus, § V2-4.2.9 
butterfly (circuit), § V4-2.3.2.5 

C 

cache, cf. memory/cache 
capacity, cf. memory/characteristics 
carry, § V4-2.3.1, exercise V4-E2.1 also 

cf. code/condition 
CDC, cf. computer model 
CFSD, § V1-1.2 
CGMT, cf. parallelism/ multithreading 
circuit logic, cf. integrated circuit logic 
checksum, § V3-5.3 and V5-3.5.3 
chip set, § V5-3.3 

CCAT, NEAT, POACH and SCAT, § 
V5-3.3 

definition, § V5-3.3.1 
hub, § V2-4.2.1, V2-4.2.3 and V5-3.3.1 
northbridge (GMCH), § V2-4.2.1 
southbridge (ICH), § V2-4.2.1 

CISC, cf. architecture 
clock, § V3-2.4.1 and V3-3.4.2 

circuit, § V3-1.2, V3-2.1, V3-2.4.1 and 
V3-4.3 

cycle, § V5-2.2.4.3 
domain crossing (CDC), § V2-1.3,  

V2-3.1 and V3-6.1.3 
energy saving, § V3-6.1.4 
frequency/period, § V1-1.2, V1-1.5, 

V1-2.1, V1-3.4.3.2, V1-3.4.3.3, 
V2-1.2, V3-1.2, V3-6.1, V4-3.4.1 
and V4-3.4.5 

signal, § V2-1.2, V2-1.3, V2-3.2,  
V2-3.6, V3-3.4.2, V3-3.4.3.3,  
V4-3.4.1 and V5-2.2.5 

cloud, cf. cloud computing 
cluster, § V1-1.2 

definition, § V1-1.2 
workstations (COW), § V1-1.2 

CMOS, cf. electronic technology 
CMP, cf. multicore 
CMT, § V1-3.4.3.2 and V3-4.7 
code 

8b/10b, § V2-1.2 
compression, § V4-1.1.1 
condition, § V3-3.1.5, V3-3.1.12.1,  

V4-2.4 cf. also register/status 
Dual-Rail (DR), § V2-1.4 and exercise 

V2-E1.1 
instruction/operation, § V4-1.1 
machine, cf. language/machine 
Multi-Rail (MRn), § V2-1.4 
pure, § V4-3.1.4 
re-entrant, § V4-3.1.4, V4-4.2.1 and 

V4-5.3 
relocatable, § V4-3.1.4 

COFF, cf. format 
commands, § V5-1.2.2 

assembly, § V5-1.3, V5-1.3.3 and  
V5-1.3.4 

preprocessor, § V5-2.2.1 
communication, § V2-1.1 

broadcast, § V2-1.1, V2-2.2, V2-3.3.6 
and V4-5.7 

cycle 
bus, § V2-3.6 and V2-4.2.2 

duplex, § V2-1.1 
full, § V2-3.3.4, V2-3.3.6, V2-4.2.3 

and V2-4.2.4 
half-duplex, § V2-1.1 
simplex, § V2-3.3.6 

general points, § V2-1.1 
protocol, § V2-1.5 
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splitting the transaction, § V2-2.1.1 
through bundles, § V2-4.2.2 
transaction pipeline, § V2-2.1.1 

comparison, cf. logical operation 
compatibility, § V4-3.3 

backward and forward, § V4-3.2.3 
electromagnetic (EMC), § V2-3.3.2 
hardware, § V4-3.2.1 
software, § V4-3.2.2 

Commercial Off-The-Shelf (COTS), § 
V1-1.2 and V2-1.2 

compiler, cf. development tool 
computer 

analog, § V1-1.3 
classes, § V1-1.2 

electromechanical, § V1-1.2 
electronic, § V1-1.2 

Mr Perret’s letter, § V1-1 (footnote) 
stored program, § V1-3.2.3 

computer bus 
access arbitration, § V2-1.6 
asynchronous/synchronous,  

§ V2-1.3 
backplane, § V1-1.2 and V2-4.2.7 
bridge, § V2-4.1.4 
centerplane, § V2-4.2.7 
extension, § V2-4.2.4 
hierarchical, § V2-4.1.2 
I/O, § V2-4.2.6 
local, § V2-4.2.1 
mastering, § V2-2.2.3 
memory (channel), § V2-1.2, V2-3.3.1, 

V2-3-6 and V2-4.2.2 
multiple, § V2-4.1.3 
packet switching, § V2-3.6 
protocol, § V2-1.5 and V3-2.4.2 
standard, § V2-1.2 
segmented, § V2-4.1.1 
switch, § V2-3.3.6, V2-4.2.7 and  

V2-4.2.9 
computer categories, § V1-1.2 

macrocomputer, cf. computer/ 
mainframe 

microcomputer, § V1-1.2 also cf. 
microcomputer 

minicomputer, § V1-1.2 
supercomputer, § V1-1.2 

computer model 
ABC, § V1-1.2 
BINAC, § V1-1.2 
Burroughs B5000, § V1-1.2 
Colossus, § V1-1.2 
Control Data Corporation (CDC), § 

V1-1.4 
CDC 6600, § V1-1.2 and V1-3.5.1 
Cyber 205, § V1-1.4 
Cray, § V1-1.2 and V4-2.4.1 

Cray-1, § V4-2.4.1 
Cray MPP, § V1-1.4 
Cray X-MP, § V1-1.4 
Cray Y-MP, § V4-3.2.2 

DEC, § V1-3.5 
EDSAC, § V1-1.2 and V5-1.1 
EDVAC, § V1-1.2 
ENIAC, § V1-1.2 
Harvard Mark I, § V1-1.2 
IAS Princeton, § V1-1.2 
IBM, § V1-1.2 

IBM 650, § V1-1.4 and V1-3.5.1 
IBM 701, § V1-1.4, V1-3.2.2.3,  

V1-3.5.3 and V3-2.1.1.1 
IBM 3090, § V1-1.4 
IBM stretch, cf. § V1-3.1.4 

(footnote) 
IBM System/360, § V1-1.2 and  

V4-2.4.1 
IBM System/370, § V4-1.1,  

V4-1.2.3.1, V4-2.4.1 and  
V4-3.2.4 

Illiac IV, § V1-1.2, V3-2.4.3 and  
V3-3.3 

Manchester, § V1-1.2 
Manchester Baby, § V1-1.2 
Manchester Mark I, § V3-3.1.6 

PDP, § V1-1.2 
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PDP-11, § V1-2.2.1, V2-1.6 and  
V3-3.1.3 

SEAC, § V1-3.5.1 
VAX, § V1-1.2, V1-2.1 and V1-2.2.1 

VAX-11, § § V1-1.2 and V1-3.5.1 
VAX-9000, § V1-1.4 

UNIVAC I, § V1-1.2 
Whilwind, § V1-1.2 
Zuse Z1, Z2, Z3 and Z4, § V1-1.2 

computation model, § V1-3.1.3 
concurrent, § V1-3.1.3 
control flow, § V1-3.1.3 
declarative, § V1-3.1.3 
object oriented, § V1-3.1.3 
Turing, § V1-3.1.3 
von Neumann, § V1-3.2.1 

computing 
cloud, § V1-1.2 

IaaS, PaaS and SaaS, § V1-1.2 
ubiquitous, § V1-1.2 

control mechanism, § V1-3.1.2 
control-driven (CO), § V1-3.1.2 
data-driven (DA), § V1-3.1.2 
demand-driven (DE), § V1-3.1.2 
pattern-driven (PA), § V1-3.1.2 

control structure, § V1-3.1.1, V1-3.3.4, 
V3-3.1.5.7, V4-1.2.3.2, V4-1.2.5,  
V4-2.4, V4-2.4.1, V4-2.4.3 and  
V4-3.1.5 
loop, § V1-3.1.1 
if_then_else, § V1-3.1.1 

co-processor, § V3-5.4 
graphics, § V3-5.4 
I/O, § V3-5.4 
mathematical, § V3-5.4 

core, cf. multicore 
costs 

bus, § V2-1.1, V2-1.2, V2-3.3.5 and 
V2-4.2.7 

computer, § V1-1.1 
memory, § V1-2.1 and V1-2.1 

counting stick, § V1-1.1 
CPI, cf. performance/unit of measurement 

Cray-1, cf. computer model 
crossbar, cf. grid/crossbar matrix 
cryptography, § V4-2.7.3 
cycle 

access, § V3-2.1.2 
clock, cf. clock 
CPU/processor, § V1-3.4.3 
execution, § V1-3.2.2.4, V1-3.3.1.2.2, 

V1-3.3.2 and V3-3.1.3 
decoding, § V1-3.2.2, V1-3.3.1.2, 

V3-3.4.3.2, V4-1.1 and  
V4-1.2.3.2 

fetch, § V3-3.1.4, V3-3.4.3.1 
phase, § V3-3.4.3 

life, § V1-1.2 
machine, § V3-2.4 
number, § V2-1.5 and V3-2.4.1 
read, § V2-1.5 
special, § V2-2.2 
time, § V1-2.1 and V2-3.2.1  
write, § V2-1.5 

D 

data mechanism, § V1-3.1.2 
passing messages (ME), § V1-3.1.2 
shared data (SH), § V1-3.1.2 

datasheet, § V3-6 
DDR, cf. semiconductor-based memory 

(component) 
debug monitor, cf. firmware 
debugging hardware interface 

BDM (Background Debug Mode), § 
V5-2.2.5 and V5-2.2.7 

ITP (In-Target Probe), § V5-2.2.5 
JTAG, § V2-3.5, V3-2.2, V3-5.3,  

V4-5.5, V5-2.2.2 and V5-2.2.5 
TAP, § V5-2.2.5OnCE, § V5-2.2.5 

decoding 
address, § V2-2.1.1, V2-3.1,  
V3-2.1.1.1, V3-2.1.1.2, V3-2.3 and  
V5-3.3.1 
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incomplete, § V2-3.1 
instruction, cf. execution cycle 

decrement/increment, § V4-1.2.3.3,  
V4-1.2.3.5 and V4-1.2.4.5 
automatic, § V3-3.1.6 
pre- and post-, § V4-1.2.3.3 

debugging, § V5-2.2 
hardware, § V5-2.1 
mode, § V5-2.2.7 

ForeGround Debug Mode (F(G)DM, 
§ V5-2.2.7 

BackGround Debug Mode 
(B(G)DM, § V5-2.2.7 

remote, § V5-2.2.6 
software, § V5-2.2.4 

delay 
time, § V2-1.2, V2-1.3, V3-2.4.1 and 

V3-2.4.3 
descriptor table, § V1-3.5.6 

GDT, § V3-3.1.9 
IDT, § V4-5.10 
LDT, § V3-3.1.9 

development/design stage, § V5-1.1.2  
delayed/lazy linking, § V5-1.2.2 
loader, § V5-1.2.3 
(re-)assembly, § V4-3.1.4, V4-3.2.2, 

V5-1.1, V5-1.2.1 and V5-1.3.3 
(re-)compilation, § V4-3.2.2 
static and dynamic link library, §  

V4-3.2.2, V5-1.2.1, V5-1.2.2 and 
V5-1.3.3 

development/design chain/tools, cf. 
development tool 

Dhrystone. cf. performance/ 
benchmark/synthetic suite 

diagram in Y, § V1-3.1.4 
Direct Memory Access (DMA),  

§ V1-3.3 
disassembler, cf. development tool 
division, cf. arithmetic operation 
DSP, cf. processor 
DTL, cf. electronic technology 

E 

EDSAC, cf. computer model 
EDVAC, cf. computer model 
EFI, cf. firmware 
electrical overshooting, § V2-3.3.2 
electromechanical relay, § V1-1.2 
electronic board, § V1-1.2, V2-1.2 and 

V5-2.1.1 
dummy board (CRIMM), § V2-1.6 
start, evaluation, development board, § 

V5-2.1.1 
motherboard, § V1-1.2, V2-1.2 and 

V5-3.1 
electronic logic 

buffer, § V1-3.4, V2-3.3.4, V2-4.1.4, 
V3-2.4.1, V4-3.1, V4-3.2.1 and 
V4-3.3.1 

driver, § V2-3.3.4 
three-state, § V1-3.4, V2-1.3, V2-1.6, 

V2-3.3.4 and V3-2.1 
transceiver, § V2-3.3.4 

electronic technology, § V1-1.2 
BiCMOS, § V1-2.4, V2-3.3.7 
CMOS, § V1-1.5, V1-2.4, V2-1.3,  

V2-3.3.7, V3-1.1, V3-1.2, V3-2, 
V3-4 and V3-6 

DTL, § V1-1.2 
ECL, § V2-3.3.7 and V3-5.1 
(C)HMOS, § V3-4.3, V3-4.5, V3-4.6, 

V3-5.3 and V4-3.3.1 
GTL/GTLP, § V2-3.3.7 
LVDS, § V2-3.3.7, V2-4.2.3 and  

V4-3.3.1 
MOS, § V3-1.2, V3-4.6 and V4-3.4.1 
NMOS, § V3-1.2, V3-4.3 and V3-6.1.1 
PMOS, § V3-1.1, V3-1.2, V3-4.2,  

V3-4.3, V3-4.5, V3-5.3, V3-5.4 
and V3-6.1.1 

SLT, § V1-1.2 
TTL, § V2-3.3.7, V3-4.3, V3-5.1,  

V3-5.4, V5-3.1 and V5-3.2.1 
electronic tube, cf. grid 
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element 
communication, § V2-4.2.9 
processing (PE), § V2-4.2.9 
router (RE), § V2-4.2.9 
storage, § V1-3.3.1.2.1 

ELF, cf. format 
ELSI, cf. integration technology 
emulator, cf. development tool 
endian/endianness, cf. memory/order of 

storage 
energy savings, § V3-6.1.4 
ENIAC, cf. computer model 
error, § V1-2.1, V2-2.2.4, V2-3.2,  

V2-4.1.4, V2-4.2.3 and V3-5.2 
ASCII/BCD, § V4-2.3.1 and exercises 

V4-E2.1 and E2.2 
checking (ECC), § V2-4.1.4 
CRC, § V2-3.2 and V4-2.7.1 
detection (EDC), § V4-2.7.1 and  

V5-3.2.1 
evolution 

of concepts, § V1-1.4 
of integration, cf. law/Moore’s 
of roles, § V1-1.4 

exception, cf. interruption 
execution  

conditional, § V4-2.4.2 
context, § V3-3.1.12.2 and V4-4.2.2 
mode, § V1-3.5.5, V3-3.1.12.4, V4-

3.2.2, V4-5.9 and V4-5.10 
real/protected, § V3-3.1.5.6,  

V3-3.1.12.4, V3-4.5, V3-4.6, 
V4-2.5.3, V4-3.2.2, V4-5.7, V4-
5.10 and V4-5.11 

supervisor, § V1-3.5.5, V3-1.2, V3-
3.1.8, V4-3.2.2, V5-2.2.2 and 
V5-2.2.4.1 

user, § V1-3.5.5 
sequential, § V4-1.2.5 
stop, § V3-4.3, V3-6.1.4, V4-2.5.2,  

V4-2.5.2, V4-5.2.2, V4-5.6,  
V4-5.8, V4-5.11 and V5-2.2.7 

breakpoint, § V3-3.1.5.6, V4-5.4, 
V4-5.5, V4-5.7, V4-5.9,  
V4-5.11, V5-2.2.2, V5-2.2.3, 
V5-2.2.4 and V5-2.2.5 

time, § V4-3.2.1, V4-3.4.3, V4-5.11 
and V5-1.1.2 

F 

famine, cf. bus/concepts 
faults 

hardware/software, § V4-3.1.2,  
V4-3.2.4, V4-5.1, V4-5.4, V4-5.7 
to V4-5.9 and V4-5.11 

tolerance, § V1-1.2, V2-1.6 and  
V2-3.3.6 

FFT (Fast Fourier Transform), cf. Fourier 
transform/fast 
flow graph, § V4-1.2.4.5.2 

FGMT, cf. parallelism/ multithreading 
field, § V4-1.1, V5-1.2.1 and V5-1.3.3 

address, § V4-1.2.3.1 
comment, § V5-1.3.3 
condition, § V4-2.4.2 
function, § V4-1.1 
identification, § V4-1.1 
instruction, § V5-1.3.3 
label, § V5-1.3.3 
operand, § V4-1.1, V4-1.2.2.1 and  

V5-1.3.3 
sub-field, § V4-1.1 

file format 
BCS, § V5-1.1.4 
COFF, § V5-1.1.4 and V5-1.2.2 
ELF, § V5-1.1.4 and V5-1.2.2 
OMF, § V5-1.2.2 

filtering/filter, § V2-3.3.4 and V3-5.2 
Finite Impulse Response (FIR), §  

V3-5.2 
Infinite Impulse Response (IIR), §  

V2-V3-5.2 



Index     219 

digital, § V4-1.2.4.5.1, V4-1.2.4.5.2, 
V4-2.8.4.2 and V4-3.4.2 

firmware, § V1-1.4, V2-3.1, V4-5.7 and 
V5-3.5 
BIOS, § V4-5.9 and V5-3.5.3 
EFI, § V5-3.5.3 
microcode, § V4-2.5.7 
monitor, § V4-V4-5.7, V5-2.1.1, V5-

2.2.4, V5-2.2.5, V5-2.2.7, V5-3.1, 
V5-3.2.1 and V5-3.5.1 

open firmware, § V5-3.5.4 
POST, § V5-2.2.1, V5-3.2.1, V5-3.2.2, 

V5-3.5.3 and V5-3.5.4 
UEFI, § V5-3.5.3 

flag, cf. code/condition 
flip-flop, § V1-1.2, V1-2.3, V1-3.1.4, V1-

3.3.1.2.1, V1-3.3.1.2.2, V2-1.3, V2-3.1, 
V3-2.4.1, V3-3.1.1, V4-5.2.3, V4-5.3 
and V5-2.2.5 

flow, § V1-3.1.2 and V1-3.1.3, V2-1.5, 
V3-3.1.5.1 and V4-5.2 
control, § V1-3.1.2 

exceptional (ECF), § V1-3.1.2 
graph (CFG), § V1-3.1.2 

data flow, § V1-3.1.2 
form factor, § V1-1.2, V5-3.4.1 and V5-

3.4.2 
AT, ATX, BTX, ITX, NLX, PC, WTX 

and XT, V5-3.4.1 
format 

binary, cf. binary format 
file, cf. file format 
instruction, cf. instruction format 

Fourier transform, § V3-5.2 
discrete, § V4-1.2.4.5.2 
fast, cf. § V3-5.2, V4-1.2.4.5.2 and V4-

3.4.4 
FPGA, § V1-3.5.3, V2-4.2.10, V4-5.7 

and V5-2.2.3 
frame, cf. memory 
FSM, cf. state/state machine 
function, cf. subprogram 

G 

gate, cf. transistor/gate 
glue logic, § V3-2.1.1.1, V3-2.3, V5-3.1 

to V5-3.3 and V5-3.4.2 
grid 

crossbar matrix, § V2-3.3.6, V2-4.2.7 
and V2-4.2.9 

electronic tube, § V1-1.2 
GSI, cf. integration technology 

H 

HAL (Hardware Abstraction Layer), § 
V5-1.1.4 

hardware development tool  
development system, § V5-2.2.3 and 

V5-2.2.7 
emulator, § V5-2.2.3 

hardware, § V5-2.2.3, V5-2.2.4.3 
and V5-2.2.6 

ICE, § V5-2.2.3 and V5-2.2.7 
programmer, § V5-2.1.2 

hardware interface 
microprocessor, § V3-2.2 
RS-232, § V2-1.3, V3-5.3, V5-2.1.1, 

V5-2.1.2, V5-2.2.1 and V5-2.2.4.1 
SCSI, § V2-1.2, V2-2.2.3, V2-4.2.6, 

V2-4.3 and V5-3.3.1 
HMT (Hardware MultiThreading), § V1-

3.4.3.2 and V3-4.7 
hot plugging, § V2-3.1 and V5-1.1.4 
HPC (High-Performance Computing), § 

V1-1.2 

I 

I/O 
isolated (IIO) or separated, §  

V3-2.1.1.1 
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memory-mapped interface (MMIO), § 
V3-4.3 and V3-5.4 

IAS Princeton, cf. computer model 
IBI, § V5-3.5.3 
iCOMP, cf. performance/benchmark 
Illiac IV, cf. computer model 
ILP, cf. parallelism/instructions 
incrementation, cf. decrement 
insertion-withdrawal under tension, § V2-

3.4 
instruction format, cf. instruction 
Instruction Set Architecture (ISA),  

§ V1-3.5 
extension, § V4-2.4.2 
IA-32 (Intel), § V3-3.1.1 
instruction set, § V1-3.5.3 
properties 

execution modes, § V1-3.5.5  
memory model, § V1-3.5.4 

storage elements, § V1-3.5 
integrated circuit logic 

combinational, § V1-1.2, V1-3.1.4, V1-
3.3.1.2.1, V3-3.3 and V4-4.1 

family, § V1-1.2 
sequential, § V1-3.3.1.2.1, V3-3.1 

and V3-3.3 
integrated circuit package 

DIP, § V1-1.2, V3-1.1, V3-4.1, V4-
5.2.2, V5-3.1 and V5-3.2.2 

LGA, § V3-6.3 
PGA, § V3-4.5 and V3-6.3 

instruction 
advanced bit manipulation instructions, 

§ V4-2.3.2.4 and V4-2.3.2.5 
alignment, § V4-2.3.2.4 and V4-3.1.2 
arithmetic, § V3-3.1.5.1, V3-3.1.5.7, 

V4-2.3.1, V4-2.8.4, V4-2.4.1,  
V4-2.7.1 and V4-2.7.2 cf. also 
arithmetic operation 

atomic, § V4-2.1, V4-2.3.2, V4-2.6.1 
and V4-2.6.2 

branching, § V3-5.2 and V4-2.4.1 to 
V4-2.4.3 

break, § V4-2.5.2 
bundle - VLIW, § V3-2.1.2 
character manipulation (chains), § V4-

2.8.1 
class, § V4-2.1 

control transfer, § V4-2.4 
data processing, § V4-2.3 
environmental, § V4-2.5 
parallelism, § V4-2.6 
transfer, § V4-2.2 

code (op-code), § V4-1.1 
coding, § V4-1.1 and appendix V4-1 
control transfer, § V4-2.4 
decoding, § V3-3.4.2 and appendix  

V4-1 
dyadic, § V1-3.4.1 and V4-1.1 
environmental, § V4-2.5 
extension to the set, § V4-2.7 

cryptography, § V4-2.7.3 
format, § V4-1.1 and V4-1.2 
multimedia, § V4-2.3.2.4 and  

V4-2.7.1 
randomization management, §  

V4-2.7.4 
signal processing, § V4-2.7.2 
variable, § V3-3.4.3.2 

high-level, § V4-2.8.3 
illegal, § V4-3.1.1 
Input/Output (I/O), § V4-2.8.2 
invalid, § V4-3.1.1 
macro-instruction, § V4-2.4.3, V4-4.2, 

V4-4.2.2, V5-1.1.2, V5-1.2.1,  
V5-1.3.3 and V5-1.3.4 

micro-, § V1-3.1.4, V3-3.4.1,  
V3-3.4.3.2, V4-5.2.4 and V5-1.1.1 

mnemonic, § V4-2.1, V4-3.1.5, V4-3.5 
and V5-1.1 

monadic, § V4-1.1 
number per cycle/IPC, § V2-3.4.2 
parallelism, § V4-2.6 
per cycle (IPC), cf. performance/ unit 

of measurement 
prefix, § V4-1.1 
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pseudo-instruction, § V5-1.3.3 and  
V5-1.3.4 

set (IS), § V1-3.5.3 and V4-2.1 
properties, § V1-3.5.3.1 
orthogonality/symmetry, §  

V4-2.4.1 
SIMD, § V4-2.3.2.4 and V4-2.7.1 

micro, § V4-2.3.2.1 
specific to digital representation, § V4-

2.8.4 
integration technology, § V1-1.2, V1-1.4, 

V1-1.5 and V1-3.1.4 
ELSI, § V1-1.2 
GSI, § V1-1.2 
LSI, § V3-1.1, V3-4.2, V5-3.1 and V5-

3.3.1 
MSI, § V1-1.2 
SLSI, § V1-1.2 
SSI, § V1-1.2 
ULSI, § V2-4.2.10 
VLSI, § V3-1.2, V5-2.3, V5-3.2.1, V5-

3.3 and V5-3.3.1 
interruption, § V4-5 

cause 
external, § V4-5.2 
internal, § V4-5.4 

controller, § V4-5.2.5 
debugging, § V4-5.5 
definition, § V4-5.1 
hardware, § V4-5.2 
instruction, § V4-3.2.2 and V4-5.4 
mask and maskable/non-maskable INT, 

§ V3-2.1.3, V3-3.1.5.4, V3-3.1.5.6, 
V3-3.1.5.7, V3-6.2, V4-5.2,  
V4-5.3, V4-5.6, V4-5.7, V4-5.9 
and V4-5.11 

nested, § V4-5.3 and V4-5.8 
orthogonal, § V4-5.7 
software, § V4-5.4 
vectorization, § V4-5.7 

IP (Intellectual Property), § V3-1.2 
register x86, cf. register 

ISA, cf. instruction set architecture or 
bus (products) 

ISC, § V5-2.1.2 
Ishango (incised bones of), § V1-1.1 
ISP 

bus, § V2-2.2.3 
processor, § V1-3.1.4 and V4-2.1 
programming, § V5-2.1.2 

ITRS, § V1-1.4 and V1-1.5 

J 

JTAG, cf. test/interface 

L 

language  
concepts, § V1-1.4 
high-level (HLL), § V1-3.1.5,  

V4-1.2.3.3, V4-2.4.3, V5-1.1.1, 
V5-1.1.4, V5-1.3 and V5-1.3.4 

layer of, § V5-1.1 
level, § V5-1.1.1 
machine, § V1-1.4, V1-3.3.4, V4-3.1.5, 

V5-1.1, V5-1.1.1 and V5-1.3 
programming, cf. programming 

language 
register transfer (RTL), cf. § V1-3.1.4, 

V1-3.3.1.2.1 and V3-3.1.3 
LAPACK, cf. performance/core 
latch, § V1-3.3.1.2.1 
launcher cf. development tool 
law 

iron, § V4-3.4.3 
Moore’s, § V1-1.2, V1-1.5 and V3-1.2 

library (development), § V4-3.1.5 and 
V5-1.2.2 
archiver, § V5-1.2.2 
dynamic link (DLL) § V4-3.1.5 
of macro-instructions, § V5-1.3.4 
runtime, § V4-3.4.4 
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standard, § V5-1.1.4 
static, § V5-1.1.2 

LINPACK, cf. performance/core 
loading, cf. development tool  
logic gate, § V1-1.2, V1-3.1.4, V2-3.3.4 

and V2-4.1 
logical operation, § V1-3.3.1.2.1,  

V4-2.3.2.2 and V4-2.7.1 
comparison, § V4-2.4.1 
complementation, § V4-2.4.1, V4-2.6.1 

and § V3-2.1.3 (footnote) 
NOT AND (NAND), § V1-1.2 
permutation, § V2-1.2 and V2-4.1.4 

look up memory, § V3-3.4.3.2 and  
V4-2.8.4.2 

loom, § V1-1.1 
loop 

current, § V2-3.3.2 
hardware, § V3-3.1.9 and V3-5.2 
phased-locked (PLL), § V3-2.4.1 
software, § V1-3.1.1, V1-3.3.2, V4-

1.2.3.2 and V4-2.4.3 
LSI, cf. integration technology 
LVDS, cf. electronic technology 

M 

MAC, § V3-5.2 and V4-2.8.4.2 
MACS, § V4-3.4.2 
MBR 

register, § V3-3.1.1 and V3-3.5 
sector, § V5-1.2.3 and V5-3.5.3 

mask 
binary/logical, § V3-3.3, V4-2.3.2.2, 

V4-2.3.2.4 and exercise  
V4-E2-5 

interruption, cf. interruption 
window, § V3-3.1.11.3 

mass storage, § V1-1.2, V1-2.1, V1-2.3, 
V1-2.4 and V1-3.2.2.1 
interface, § V2-1.2 and V2-4.2.6 
library of cartridges, § V1-2.3 

mechanical computing machines, §  
V1-1.1 
analytical engine (Babbage), § V1-1.1 
difference engine (Babbage), § V1-1.1 
Pascaline, cf. exercise V1-E1.1 
statistics machine, § V1-1.1 

mechanism, § V1-3.1.2 
control, cf. control mechanism 
data, cf. data mechanism 

memory 
alignment, § V1-2.2.2, V1-3.5.4,  

V2-1.2; V3-2.1.1.4 and V3-3.4.3.2 
boundary, § V4-3.1.2 
buffer 

queue (FIFO), § V1-2.1, V2-1.6, 
V2-3.1, V2-4.1.4, V4-1.2.4.5.1 
and V5-2.3 

stack (LIFO), § V1-3.5.1 and  
V4-4.1 

byte access, § V2-3.2 and V3-2.1.1.4 
cache, § V1-2.3, V1-2.4, V2-2.2,  

V2-2.2.5, V2-4.2.1, V3-3.1.9,  
V4-2.5.4, V4-2.5.5, V4-3.4,  
V4-5.7, V5-2.3 and V5-3.3.4 

capacity/size, § V1-2.1 
characteristics, § V1-2.1 
classification, § V1-2.4 
cycle communication, § V1-2.4 
extension, § V3-2.1.1.3 
hierarchy, § V1-2.3 
interleaving, § V1-3.3.4 and V2-4.2.2 
internal, § V3-3.2 
look up, cf. look up memory 
memory map, § V5-1.1.4 
method or policy of access, § V1-2.1 
model, § V2-3.5.4 
modeling, § V1-2.3 
multiport, § V3-3.1.11.1 
order of storage (little/big endian,  

bi-endian), § V1-2.2.1, V2-1.1 and 
V2-1.2 

organization, § V1-2.1 and V1-3.1.5 
punched card, § V1-1.1 and V1-1.4 
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random access, cf. random access 
memory (RAM) 

read-only, cf. read-only memory 
(ROM) 

semiconductor-based, § V1-2 
technology, § V1-2.3 and V1-2.4 
UMB, § V5-3.2.3 
unified, § V1-3.3.1.2.2, V1-3.2.2.1, 

V1-3.3.4, V1-3.4.2, V3-5.4,  
V5-3.3.1 and exercise V1-E3.1 

MEMS, § V1-1.2 
microcontroller (MCU), § V3-1.1 and 

V3-5.3 
microcomputer, § V1-1.2 and V5-3 

Apple II, § V5-3.1 
IBM Personal Computer (PC) 

IBM 5150, § V1-1.2 and V5-3.2.1 
IBM 5160, § V5-3.2.2 
IBM 5170, § V5-3.2.3 

Micral N, § V1-1.2 and V3-1.2 
microprocessor (MPU) 

commercial, § V3-1.2 
definition, § V3-1.1 
digital signal processor (DSP), §  

V3-5.2 
family, § V3-4 
generations, § V3-1.1 and V3-4 
history, § V3-1.2 
initialization, § V3-6.2 and V4-5.2.2 
interfacing, § V3-2 
single-bit, § V3-4.1 

microprogramming, cf. logical 
unit/control unit 

MIPS, cf. performance/unit of 
measurement 

mixed language programming,  
§ V5-1.1.3 

MMX, cf. instruction/extension to the set 
MOS, cf. electronic technology 
MPP, cf. parallelism/processor 
multiplication, cf. arithmetic operation 
MSI, cf. integration technology 

multicore, § V1-1.4, V1-3.3, V1-3.4.3.3, 
V3-1.1, V4-3.4.1 and V3-4.7 

multiprocessor, § V1-3.6, V2-2.2.5, V2-
4.2.9, V3-1.1, V4-3.2.2 and V4-3.6.2 

N 

NMOS, cf. electronic technology 
NoC (Network-on-Chip), § V2-4.2.9 
node 

processing, § V1-1.2 and V1-3.6 
technology, § V1-1.5 

norms, cf. standard 

O 

object module, § V5-1.1.2, V5-1.1.3, V5-
1.2.1, V5-1.2.2, V5-1.2.4 and V5-1.3.4 

Operating System (OS), § V1-1.2, V1-1.4 
and V3-1.2 
calls, § V2-2.2.1 
debugging, § V5-2.2.2 
flag, § V3-3.1.5.6 
MS-DOS, § V5-3.2.1 and V5-3.2.3 
protection, cf. execution/mode  

organization 
of a memory, cf. memory 
of computers, § V1-3.1.4 

overflow, § V3-5.2 
buffer, § V4-1.2.4.5.1 
capacity, § V4-2.3.1 and V4-2.3.2.2 

overflow (positive/negative), §  
V3-3.1.5.1, V3-3.1.5.3,  
V3-3.1.5.4, V3-5.3, V4-5.1,  
V4-5.4, V4-5.7, V4-5.11 and 
exercise V3-E3.4 

underflow, § V3-3.1.5.4 and  
V4-5.4 

format (unsigned), § V3-3.1.5.1,  
V4-2.3.1, V4-2.3.2.2 and exercise 
V3-E3.2 
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register window, § V3-3.1.11.3 
segment, § V4-5.4 
stack, § V4-4.1, V4-4.2.1 and V4-5.1 

P 

parallelism, § V1-1.4 and V1-3.4.3 
instruction-level (ILP), § V1-3.4.3.1 
multicores, § V1-3.4.3.3 
multithreading, § V1-3.4.3.2 
processor, § V3-5.5 
thread level, § V1-3.4.3 

parameters 
calling convention, § V4-4.2.3 
passage, § V3-3.1.12.3 and  

V4-4.2.3 
path 

control (CP), § V1-3.1.4 and  
V1-3.3.1.2.2 

data (DP), § V1-2.3, V1-3.1.4,  
V1-3.2.2.1, V1-3.3.1.2.1, V1-3.3.3 
and V5-3.3.1 

definition, § V1-3.2.2.1 
execution, § V1-3.1.2, V3-3.4.3, V4-

2.4.1 and V4-2.4.2 
instruction (IP), § V1-3.2.2.1 
scan/exam/access, § V5-2.2.5 and  

V5-2.3 
PC, cf. register/program counter 
PCMark, cf. benchmark 
PCMC, § V5-3.3.1 
performance, § V4-3.4 

core 
LAPACK and LINPACK, §  

V4-3.4.4 
measurement, § V4-3.4 
program performance, § V4-3.4.4 
unit of measurement (metric), §  

V4-3.4.4 
Dhrystone, § V4-3.4.4 
IPC, § V4-3.4.3.1 

permutation, cf. logical operation/ 
permutation 

Personal Computer (PC), cf. 
microcomputer 

PIC, cf. interruption/controller 
pin, § V1-2.1, V2-1.2, V2-3.3.1, V2-3.6, 

V3-6.3, V4-5.2.2, V4-5.7 and V3-4.1 
pipeline, § V1-3.3.2, V1-3.4.3.2, V3-1.2, 

V4-3.4.5, V4-5.11 also cf. 
communication/transaction pipeline 
stall cycle, § V2-2.1.1 and V4-2.4.1 

PLL, cf. loop/phase locked 
PMOS, cf. electronic technology 
PMS, § V1-3.1.4 
poison bit, § V4-5.11 
portability, § V4-3.2.3 
POST, § V5-3.5.3 
post-fixed notation, Reverse Polish 

Notation (RPN), § V1-3.5.1 
power, § V3-6.1.2 

dissipation, § V2-4.2.10 
domain, § V3-6.1.3 
dynamic, § V3-6.1.2 
static, § V3-6.1.2 
supply 

consumption, § V3-6.1.2 
profile, § V3-6.1.3 
voltage, § V3-6.1.1 

pre-decoding, § V3-3.4.3.2 
predication, § V2-2.4.2 
processor 

bit slice, § V3-5.1 
graphics, § V3-5.4 
I/O, § V3-5.4 
signal processing (DSP), cf. 

microprocessor 
program, § V1-3.1.1 

definition, § V1-3.1.1 
stored, cf. computer (concepts) 

program counter (CO/PC/IP), cf. register 
programmer, § V5-2.1.2 and V5-3.5.3 
programming language, § V1-3.1.4 
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assembly, § V1-1.4, V1-3.5.3, V4-1.2, 
V4-2.1, V4-2.4.2, V4-2.4.3, V4-3.1.3 
to V4-3.1.5, V5-1.1 and V5-1.3 

BASIC, § V5-3.1, V5-3.2.1, V5-3.5.2 
and V5-3.5.2.2 

COBOL, § V1-1.4, V1-3.1.3,  
V4-2.8.4.1 and V5-1.3 

FORTRAN, § V1-1.4, V1-3.1.1,  
V1-3.1.3 and V4-3.4.4 

LISP, § V1-3.1.3 and V1-3.1.4 
punched card, cf. memory 

Q 

quipu, § V1-1.1 

R 

Random-Access Memory (RAM) 
DRAM, § V5-3.3.1 
Rambus (D)RDRAM, § V5-3.3.1 
SDRAM, § V2-3.6, V5-3.3.1 and  
V5-3.4.2 
SRAM, § V2-2.4 and V3-5.3 
SRAM BBSRAM/NVSRAM, §  
V5-3.3.1 (footnote) 

randomization management, § V4-2.7.4 
and V5-3.3.1 

Read-Only Memory (ROM), § V1-2.3, 
V1-2.4, V1-3.3.1.1 and V3-5.3 
EPROM, § V5-2.1.2 and V5-3.5.3 
EEPROM, § V5-3.5.3 
flash EEPROM (FEEPROM), §  

V5-2.2.4.3 and V5-3.5.3 
MROM, § V1-2.4 
PROM, § V1-2.4 

register, § V3-3.1 and V3-3.1.1 
accumulator § V1-3.2.2.1 to  

V1-3.2.2.3, V1-3.4.1, V1-3.5.1, 
V3-3.1.2, V4-1.2.2.2, V4-1.2.4.2 
and V4-2.2.1 

address (MAR), § V1-3.2.2.2 to  
V1-3.2.2.4, V1-3.3.1.2.2, V1-3.4, 
V3-3.1.1 to V3-3.5 

bank, § V3-3.1.11.2 
category, § V3-3.1 
cause, cf. register/surprise 
data (MBR/MDR), § V1-3.2.2.2,  

V1-3.2.2.4, V1-3.3.1.2.2, V1-3.4, 
V3-3.1.1 and V3-3.5 

definition, § V3-3.1.1 
encoding, § V3-3.1.12.6 
file, § V3-3.1.11.1 
floating point number, § V3-3.1.2 and 

V3-3.1.5.4 
format, § V3-3.1.1 
general-purpose (GPR), § V1-3.5.1, 

V3-3.1.3, V3-3.1.8, V4-2.4.1 and 
V4-4.1 

index, § V3-3.1.1, V3-3.1.6, V4-
1.2.2.2, V4-1.2.3.4 and V4-1.2.3.5 

indirection, § V2-.1.7, V4-1.2.3 and 
V4-4.1 

instruction, § V3-3.1.1 and V3-3.4.3.1 
Multiplier-Quotient (MQ), § V3-3.1.1 
number, § V3-3.1.12.6 and V4-1.1 
parallelism, § V3-3.1.12.5 
Program Counter (PC), § V1-3.2.2.1 to 

V1-3.2.2.3, V1-3.3.1.2, V1-3.3.2, 
V3-2.1.1.1, V3-3.1.3, V4-1.1,  
V4-1.2, V4-1.2.3.2, V4-1.2.3.5, 
V4-2.4, V4-2.4.1, V4-2.4.3,  
V4-4.2, V4-4.2.2, V4-5.2.1,  
V4-5.7, V5-2.2.1, V5-2.2.3 and 
V5-2.2.4.3 

projected in memory, § V3-5.4,  
V3-3.1.1, V4-1.2.4.4 and § V3-3.1 
(footnote) 

Shift Register (SR), cf. shift/register 
and shifter 

stack pointer (SP), § V3-3.1.1,  
V3-3.1.8, V3-4.3, V4-1.2.4.2,  
V4-4.1 and V4-4.2 
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status (CCR)/of flags, § V1-3.3.1.2, 
V1-3.3.1.2.2, V1-3.3.2, V1-3.5.1, 
V3-3.1.5, V3-3.1.5.1, V3-3.1.5.4, 
V3-3.1.5.7, V3-3.1.8, V3-3.3,  
V3-3.4, V3-3.4.1, V3-3.4.3.3,  
V4-2.2.1, V4-4.2.3, V4-5.2.1,  
V4-2.2.4.3 and V5-2.2.5 

surprise, § V4-5.7 
test, § V3-3.1.9 
windowing, § V3-3.1.11.3 

relocatable, cf. code 
representation of information 

adjustment, § V4-2.3.1 
ASCII, § V3-5.4 and V4-2.8.1 
decimal number:  

fixed-point, § V1-3.2.2.2,  
V1-3.6, V3-3.1.5.3 and  
V4-9.4 

floating-point, § V3-3.1.5.4 and  
V4-9.4 

integer 
2n’s complement (signed), §  

V1-3.6, V3-3.1.5.1, V3-3.3,  
V4-1.2.3.2, V4-2.3.1 and 
exercise V1-E1-1 

BCD, § V1-3.3, V1-3.5.2, V1-3.6, 
V4-2.3.1, V3-3.1.5.1, V3-3.1.5.2 
and V3-5.4 

Unicode, § V4-2.8.1 
reverse, § V4-1.2.4.5.2 
RISC, cf. architecture 
RNG, cf. random generator 
rotation, § V3-3.3, V4-2.3.2 and  

V4-2.3.2.4 
routine, cf. subprogram 
RTC, § V3-6.1.4 and V4-3.3.1 
RTL, § V1-3.1.4 

S 

SBC, § V1-1.2 
scalability, § V2-1.2 and V2-4.2.9 

SDR, cf. semiconductor-based 
(component) 

(de)serialization, § V2-1.1 
semantic gap, § V1-3.1.5  
server, § V1-1.2 

blade, § V1-1.2 
SFF, § V1-2 
shift, § V1-3.2.2.2, V1-3.3.1.2.1,  

V3-3.1.1, V3-3.3, V4-1.1, V4-1.2.4.5.1, 
V4-2.3.2 and V4-4.1 
arithmetic, § V4-2.3.2.3 
logical, § V4-2.3.2.3 and V4-2.3.2.4 
register (SR), § V1-2.1, V1-3.2.2.2, 

V3-3.4.2, V3-5.4, V4-4.1 and  
V5-2.2.5 

shifter 
barrel, cf. exercises V3-E3.5 and  

V3-E3.6 
circular, § V3-3.3 
funnel, § V3-3.3 

side effect, § V3-3.1.12.1 and V4-2.4.1 
signal 

integrity of the, § V2-3.3.2 
noise, § V2-1.2, V2-1.3, V2-1.6,  

V2-3.3.4, V2-3.3.5, V2-4.1.1,  
V2-4.2.8, V2-4.2.10, V3-2.4.3,  
V3-5.2 and V3-6.3 

simulator, cf. software debugging 
SLSI, cf. integration technology 
SLT, cf. electronic technology 
(S)CMP, cf. multicore 
SMP, cf. multicore 
SMT 

component, § V5-3.1 and V5-3.4.2 
processor, § V1-3.4.3.2 and V3-4.7 

SoC, § V1-1.2 
software development tool, § V5-1.2 

assembler, § V4-1.2.4.6 
assembler-launcher, § V5-1.2.1 
cross-assembler, § V5-1.2.1 
high-level, § V5-1.2.1 
inline, § V5-1.2.1 
macro-assembler, § V5-1.3.4 
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(multi)pass, § V5-1.2.1 
patch, § V5-1.2.1 and V5-2.2.4.3 

compiler, § V1-3.1.1, V1-3.1.4,  
V1-3.4.3.1, V1-3.4.3.2, V1-3.5, 
V3-3.1.5.7, V3-3.1.12.1,  
V3-3.1.12.5, V3-4.6, V4-1.1,  
V4-2.1, V4-3.2.3, V4-2.4.1 to V4-
2.4.3, V4-3.1, V4-4.2 and V5-1.1 

cross-compiler, § V5-2.1.1 
disassembler, § V5-1.2.4 
loader, § V3-5.3, V4-1.1.2, V4-1.3 and 

V5-1.2.3 
monitor, § V5-2.2.4.1 
static and dynamic link library, §  

V4-3.2.3 and V5-1.2.2 
profiler, § V5-2.2.4.3 
(program) launcher, § V5-1.2.3 
simulator, § V5-2.2.4.2 

software interface 
ABI (Application Binary Interface), § 

V4-4.1 and V5-1.1.4 
API (Application Programming 

Interface), § V5-1.1.4 and  
V5- 3.5.3 

POSIX, § V5-1.1.4 
software library, § V4-2.8.4.2 
SPEC cf. performance/ benchmark/ 

application suite 
SSE, cf. instruction/extension to the 

instruction set 
SSI, cf. integration technology 
standard 

BCS, cf. file format 
CAN, cf. bus/fieldbus 
component, § V1-1.2, V1-1.3, V2-1.2, 

V2-3.3.5 and V2-3.3.7 
IEEE Standard 

IEEE Std 694-1985, § V4-1.3.2,  
V4-1.3.3, V4-2.1 and  
V4-2.3.2.2 

IEEE Std 754, § V4-2.8.4 
IEEE Std 1003.1, § V4-1.1.4 

IEEE Std 1149.1, § V2-3.5,  
V4-2.1.2 and V4-2.2.5 

IEEE Std 1275, § V4-3.5.4 
IEEE Std 1532, § V4-2.1.2 
IEEE-ISTO Std 5001, § V4-2.2.2 

ISA, cf. bus/extension 
multibus, cf. bus/expansion 
SEAC, cf. computer/SEAC 
VESA, cf. bus/local 

state 
diagram, § V2-1.3, V3-3.4.1 and  

V5-2.1.2 
information, § V3-3.3.1.1, V3-3.4 and 

V4-5.11 
machine, § V1-3.3.1.2.2, V2-1.6,  

V2-3.1, V3-1.1, V3-2.4.1,  
V3-3.4.2, V3-3.4.3.2, V5-2.1.2 and 
V5-2.2.5 

Turing, § V1-3.1.2 and V1-3.1.3 
static and dynamic link library, cf. 

development tool 
subprogram § V1-3.3.1.2.1 and V4-4 

call/return, § V3-3.1.1, V3-3.1.5.7,  
V3-3.1.8 and V4-2.4.3 

definition, § V4-4.2 
instruction, § V4-2.4.3 
nested, § V4-4.2.1 
open, § V5-1.3.4 
passing parameters, § V3-3.1.12.3 
sheet, § V4-4.2 
standard passing parameters, §  

V4-4.2.3 
subtraction, cf. arithmetic operation 
switching 

circuit-, § V2-3.3.6 and V2-4.2.9 
packet-, § V2-1.5, V2-2.2, V2-2.2.4, 

V2-4.1.4 and V2-4.2.9 
synchronism, § V2-1.3 
system 

embedded, § V1-1.2 
logical, cf. unit 
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T 

technology 
electronic, cf. electronic technology 
integration, cf. integration technology 

test, § V5-2.3 
BIST, § V5-2.2.5 
bus, § V2-3.5 
instruction, cf. instruction/atomic, 

instruction/branching 
interface, cf. debugging hardware 

interface 
register, cf. register/test 
self-test, § V3-5.3 
test program, cf. performance/ program 

and firmware/POST 
time, § V1-1.4 

access, § V1-1.2, V1-1.4, V1-2.1, V2-
1.2, V2-1.5, V3-2.4.2, V3-3.1.11.1 
and V3-3.2 

bus settling, § V2-1.2, V2-1.3, V2-1.5 
and V2-3.1 

execution, cf. execution/time 
cycle, § V1-1.4, V1-2.1, V1-2.3, V1-2.4, 

V3-1.2, V3-2.4.1 and V3-3.4.3.2 
hold, § V2-1.5 and V2-3.1 
reaction, § V4-5.3 
starvation, § V4-5.3 
switching, § V4-3.4.5 
transfer, § V2-1.1 and V2-1.3 

time (linked to software development) 
assembly, § V5-1.1.2 
compilation, § V5-1.1.2 
loading, § V2-2.1.1 

TLP (Thread-Level Parallelism), § V1-
3.4.3.2 and V3-4.7 

transistor, § V1-1.2, V1-1.4 to V1-1.6, 
V1-3.1.4, V2-2.2.1 and V2-3.3.4 
bipolar junction (BJT), § V1-1.2 
density, § V1-1.2 
field effect (FET), § V1-1.2 
gate, cf. § V1-1.5 and V4-3.4.5 

TTL, cf. electronic technology 

U  

UEFI, cf. firmware 
ULSI, cf. integration technology 
UMA, cf. memory (concepts)/unified 
UMB, cf. memory (concepts) 
unit 

central, cf. § V1-1.2 and V3-1.1 
logical 

AGU, § V3-3.4.4 and  
V4-1.2.4.5.2 

control unit, § V1-3.2.2.1,  
V1-3.3.1.2, V1-3.3.1.2.2 and 
V3-3.4 

hardwired, § V1-3.2.3 
microprogrammed, § V3-3.4,  

V3-3.4.3.2 and V4-1.1 
(footnote) 

DPU, § V5-3.3.1 
FMAC, § V3-5.2 
functional, § V3-1.2 
Integer Processing (IPU), §  

V1-1.2, V1-3.3.1.2,  
V1-3.3.1.2.1, V3-3.3, V3-5.1 
and V3-5.2 

MAC, § V4-2.8.4.2 and  
V3-5.2 

vector-based, § V1-1.2, V4-2.3.2 
and V4-2.7.1 

of measurement, § V1-1.2, V1-2.1 and 
V4-3.4 

processing, cf. element/processing unit 
UNIVAC, cf. computer model 

V 

verification 
cycle, § V3-5.3 
exchange, § V2-1.3 
machine, § V2-2.5.7 
memory, § V5-2.2.4.3 and V5-2.2.5 
result, § V2-2.4.1 
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virtualization 
debugging, § V5-2.2.6 
MPU, § V3-3.1.5.6 and V4-3.2.4 
server, § V1-1.2 
virtual machine, § V1-1.4 

VLIW, cf. architecture 
VLSI, cf. integration technology 
von Neumann machine, § V1-3.2  

and V1-3.3 
advantages and disadvantages,  

§ V1-3.3.4 

W 

wall, § V1-1.5 and V3-1.2 
fineness of etching, § V1-1.5 
power, § V1-1.5, V3-1.1 and V3-6.1.2 
red brick, § V1-1.5 
speed, § V1-1.5 

Whetstone, cf. performance/ 
benchmark/synthetic suite 

Whilwind, cf. computer model 
word (broken down) into packets,  

§ V4-2.3.2.1 
workstations, cf. cluster/workstations 
 



Other titles from  

 

in 

Computer Engineering 

2020 
DUVAUT Patrick, DALLOZ Xavier, MENGA David, KOEHL François, CHRIQUI 
Vidal, BRILL Joerg  
Internet of Augmented Me, I.AM: Empowering Innovation for a New 
Sustainable Future 

LAFFLY Dominique 
TORUS 1 – Toward an Open Resource Using Services: Cloud Computing 
for Environmental Data 
TORUS 2 – Toward an Open Resource Using Services: Cloud Computing 
 for Environmental Data 
TORUS 3 – Toward an Open Resource Using Services: Cloud Computing 
 for Environmental Data 

LAURENT Anne, LAURENT Dominique, MADERA Cédrine 
Data Lakes 
(Databases and Big Data Set – Volume 2) 

OULHADJ Hamouche, DAACHI Boubaker, MENASRI Riad 
Metaheuristics for Robotics 
(Optimization Heuristics Set – Volume 2)     



SADIQUI Ali 
Computer Network Security 

VENTRE Daniel 
Artificial Intelligence, Cybersecurity and Cyber Defense 

2019 
BESBES Walid, DHOUIB Diala, WASSAN Niaz, MARREKCHI Emna 
Solving Transport Problems: Towards Green Logistics   

CLERC Maurice 
Iterative Optimizers: Difficulty Measures and Benchmarks 

GHLALA Riadh 
Analytic SQL in SQL Server 2014/2016 

TOUNSI Wiem 
Cyber-Vigilance and Digital Trust: Cyber Security in the Era of Cloud 
Computing and IoT 

2018 
ANDRO Mathieu 
Digital Libraries and Crowdsourcing 
(Digital Tools and Uses Set – Volume 5) 

ARNALDI Bruno, GUITTON Pascal, MOREAU Guillaume 
Virtual Reality and Augmented Reality: Myths and Realities 

BERTHIER Thierry, TEBOUL Bruno 
From Digital Traces to Algorithmic Projections 

CARDON Alain  
Beyond Artificial Intelligence: From Human Consciousness to Artificial 
Consciousness 

HOMAYOUNI S. Mahdi, FONTES Dalila B.M.M. 
Metaheuristics for Maritime Operations 
(Optimization Heuristics Set – Volume 1) 



JEANSOULIN Robert 
JavaScript and Open Data 

PIVERT Olivier 
NoSQL Data Models: Trends and Challenges  
(Databases and Big Data Set – Volume 1) 

SEDKAOUI Soraya 
Data Analytics and Big Data 

SALEH Imad, AMMI Mehdi, SZONIECKY Samuel  
Challenges of the Internet of Things: Technology, Use, Ethics 
(Digital Tools and Uses Set – Volume 7) 

SZONIECKY Samuel 
Ecosystems Knowledge: Modeling and Analysis Method for Information and 
Communication 
(Digital Tools and Uses Set – Volume 6) 

2017 
BENMAMMAR Badr 
Concurrent, Real-Time and Distributed Programming in Java   

HÉLIODORE Frédéric, NAKIB Amir, ISMAIL Boussaad, OUCHRAA Salma, 
SCHMITT Laurent 
Metaheuristics for Intelligent Electrical Networks 
(Metaheuristics Set – Volume 10) 

MA Haiping, SIMON Dan  
Evolutionary Computation with Biogeography-based Optimization 
(Metaheuristics Set – Volume 8) 

PÉTROWSKI Alain, BEN-HAMIDA Sana 
Evolutionary Algorithms  
(Metaheuristics Set – Volume 9) 

PAI G A Vijayalakshmi 
Metaheuristics for Portfolio Optimization  
(Metaheuristics Set – Volume 11) 



2016 
BLUM Christian, FESTA Paola  
Metaheuristics for String Problems in Bio-informatics  
(Metaheuristics Set – Volume 6) 

DEROUSSI Laurent  
Metaheuristics for Logistics  
(Metaheuristics Set – Volume 4) 

DHAENENS Clarisse and JOURDAN Laetitia  
Metaheuristics for Big Data  
(Metaheuristics Set – Volume 5) 

LABADIE Nacima, PRINS Christian, PRODHON Caroline  
Metaheuristics for Vehicle Routing Problems  
(Metaheuristics Set – Volume 3) 

LEROY Laure  
Eyestrain Reduction in Stereoscopy 

LUTTON Evelyne, PERROT Nathalie, TONDA Albert 
Evolutionary Algorithms for Food Science and Technology  
(Metaheuristics Set – Volume 7) 

MAGOULÈS Frédéric, ZHAO Hai-Xiang 
Data Mining and Machine Learning in Building Energy Analysis  

RIGO Michel 
Advanced Graph Theory and Combinatorics 

2015 
BARBIER Franck, RECOUSSINE Jean-Luc  
COBOL Software Modernization: From Principles to Implementation with 
the BLU AGE® Method 

CHEN Ken 
Performance Evaluation by Simulation and Analysis with Applications to 
Computer Networks 



CLERC Maurice  
Guided Randomness in Optimization  
(Metaheuristics Set – Volume 1) 

DURAND Nicolas, GIANAZZA David, GOTTELAND Jean-Baptiste,  
ALLIOT Jean-Marc  
Metaheuristics for Air Traffic Management  
(Metaheuristics Set – Volume 2) 

MAGOULÈS Frédéric, ROUX François-Xavier, HOUZEAUX Guillaume  
Parallel Scientific Computing 

MUNEESAWANG Paisarn, YAMMEN Suchart  
Visual Inspection Technology in the Hard Disk Drive Industry 

2014 
BOULANGER Jean-Louis  
Formal Methods Applied to Industrial Complex Systems 

BOULANGER Jean-Louis  
Formal Methods Applied to Complex Systems:Implementation of the B 
Method 

GARDI Frédéric, BENOIST Thierry, DARLAY Julien, ESTELLON Bertrand, 
MEGEL Romain 
Mathematical Programming Solver based on Local Search 

KRICHEN Saoussen, CHAOUACHI Jouhaina 
Graph-related Optimization and Decision Support Systems 

LARRIEU Nicolas, VARET Antoine  
Rapid Prototyping of Software for Avionics Systems: Model-oriented 
Approaches for Complex Systems Certification 

OUSSALAH Mourad Chabane 
Software Architecture 1 
Software Architecture 2 



PASCHOS Vangelis Th 
Combinatorial Optimization – 3-volume series, 2nd Edition 
Concepts of Combinatorial Optimization – Volume 1, 2nd Edition 
Problems and New Approaches – Volume 2, 2nd Edition 
Applications of Combinatorial Optimization – Volume 3, 2nd Edition 

QUESNEL Flavien 
Scheduling of Large-scale Virtualized Infrastructures: Toward Cooperative 
Management 

RIGO Michel 
Formal Languages, Automata and Numeration Systems 1:  
Introduction to Combinatorics on Words 
Formal Languages, Automata and Numeration Systems 2:  
Applications to Recognizability and Decidability 

SAINT-DIZIER Patrick 
Musical Rhetoric: Foundations and Annotation Schemes 

TOUATI Sid, DE DINECHIN Benoit 
Advanced Backend Optimization 

2013 
ANDRÉ Etienne, SOULAT Romain 
The Inverse Method: Parametric Verification of Real-time Embedded 
Systems 

BOULANGER Jean-Louis 
Safety Management for Software-based Equipment 

DELAHAYE Daniel, PUECHMOREL Stéphane 
Modeling and Optimization of Air Traffic 

FRANCOPOULO Gil 
LMF — Lexical Markup Framework 

GHÉDIRA Khaled 
Constraint Satisfaction Problems 



ROCHANGE Christine, UHRIG Sascha, SAINRAT Pascal 
Time-Predictable Architectures 

WAHBI Mohamed 
Algorithms and Ordering Heuristics for Distributed Constraint Satisfaction 
Problems 

ZELM Martin et al. 
Enterprise Interoperability 

2012 
ARBOLEDA Hugo, ROYER Jean-Claude 
Model-Driven and Software Product Line Engineering 

BLANCHET Gérard, DUPOUY Bertrand 
Computer Architecture 

BOULANGER Jean-Louis 
Industrial Use of Formal Methods: Formal Verification 

BOULANGER Jean-Louis 
Formal Method: Industrial Use from Model to the Code 

CALVARY Gaëlle, DELOT Thierry, SÈDES Florence, TIGLI Jean-Yves 
Computer Science and Ambient Intelligence 

MAHOUT Vincent 
Assembly Language Programming: ARM Cortex-M3 2.0: Organization, 
Innovation and Territory 

MARLET Renaud 
Program Specialization 

SOTO Maria, SEVAUX Marc, ROSSI André, LAURENT Johann 
Memory Allocation Problems in Embedded Systems: Optimization Methods 

2011 
BICHOT Charles-Edmond, SIARRY Patrick 
Graph Partitioning 



BOULANGER Jean-Louis 
Static Analysis of Software: The Abstract Interpretation 

CAFERRA Ricardo 
Logic for Computer Science and Artificial Intelligence 

HOMES Bernard 
Fundamentals of Software Testing 

KORDON Fabrice, HADDAD Serge, PAUTET Laurent, PETRUCCI Laure 
Distributed Systems: Design and Algorithms 

KORDON Fabrice, HADDAD Serge, PAUTET Laurent, PETRUCCI Laure 
Models and Analysis in Distributed Systems 

LORCA Xavier 
Tree-based Graph Partitioning Constraint 

TRUCHET Charlotte, ASSAYAG Gerard 
Constraint Programming in Music 

VICAT-BLANC PRIMET Pascale et al. 
Computing Networks: From Cluster to Cloud Computing 

2010 
AUDIBERT Pierre 
Mathematics for Informatics and Computer Science 

BABAU Jean-Philippe et al. 
Model Driven Engineering for Distributed Real-Time Embedded Systems 

BOULANGER Jean-Louis 
Safety of Computer Architectures 

MONMARCHE Nicolas et al. 
Artificial Ants 

PANETTO Hervé, BOUDJLIDA Nacer 
Interoperability for Enterprise Software and Applications 2010 

SIGAUD Olivier et al. 
Markov Decision Processes in Artificial Intelligence 



SOLNON Christine 
Ant Colony Optimization and Constraint Programming 

AUBRUN Christophe, SIMON Daniel, SONG Ye-Qiong et al. 
Co-design Approaches for Dependable Networked Control Systems 

2009 
FOURNIER Jean-Claude 
Graph Theory and Applications 

GUEDON Jeanpierre 
The Mojette Transform / Theory and Applications 

JARD Claude, ROUX Olivier 
Communicating Embedded Systems / Software and Design 

LECOUTRE Christophe 
Constraint Networks / Targeting Simplicity for Techniques and Algorithms 

2008 
BANÂTRE Michel, MARRÓN Pedro José, OLLERO Hannibal, WOLITZ Adam 
Cooperating Embedded Systems and Wireless Sensor Networks 

MERZ Stephan, NAVET Nicolas 
Modeling and Verification of Real-time Systems 

PASCHOS Vangelis Th 
Combinatorial Optimization and Theoretical Computer Science: Interfaces 
and Perspectives 

WALDNER Jean-Baptiste 
Nanocomputers and Swarm Intelligence 

2007 
BENHAMOU Frédéric, JUSSIEN Narendra, O’SULLIVAN Barry 
Trends in Constraint Programming 



JUSSIEN Narendra  
A TO Z OF SUDOKU 

2006 
BABAU Jean-Philippe et al. 
From MDD Concepts to Experiments and Illustrations – DRES 2006 

HABRIAS Henri, FRAPPIER Marc 
Software Specification Methods 

MURAT Cecile, PASCHOS Vangelis Th 
Probabilistic Combinatorial Optimization on Graphs 

PANETTO Hervé, BOUDJLIDA Nacer 
Interoperability for Enterprise Software and Applications 2006 / IFAC-IFIP 
I-ESA’2006 

2005 
GÉRARD Sébastien et al. 
Model Driven Engineering for Distributed Real Time Embedded Systems 

PANETTO Hervé 
Interoperability of Enterprise Software and Applications 2005 

 

 

 

 

 


