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Preface 

Presenting the theory of the integral to non-specialists is an old and 

everlasting problem. At most universities the Riemann integral is taught 

in introductory courses, even to future mathematicians. The reason 

for this is that the Riemann integral has an intuitive appeal and basic 

theorems are easy to prove. This, however, is all that can be said in its 

favour. This theory is not powerful enough for applications and when 

it comes to deeper results they are not any easier to prove than the 

corresponding results in more modern theories. It is true that Riemann 

with his approach to integration advanced mathematics significantly but 

that was almost a century and a half ago. We feel the time is now ripe to 

start teaching more comprehensive theories of integration at all levels. 

The theory of integration employed by professional mathematicians 

was created by Henri Lebesgue at the beginning of the twentieth century. 

It could hardly be criticized and the mathematical community is happy 

with it. Unfortunately experience shows that, perhaps because of its 

abstract character, it is deemed to be difficult by beginners and non¬ 

mathematicians. It is not popular with physicists and engineers. The 

Lebesgue theory does not cover non-absolutely convergent integrals and 

there is a need then to consider improper integrals. It is an additional 

and important advantage of the theory expounded in this book that it 

includes all improper integrals. 

In 1957 Jaroslav Kurzweil gave a new definition of the integral, which 

in some respects is more general than Lebesgue’s. Ralph Henstock de- 

velopped the theory further and started to advocate its use at the el¬ 

ementary level. The Kurzweil-Henstock theory preserves the intuitive 

appeal of the Riemann definition but has the power of the Lebesgue the- 

ory. The aim of this book is to present the Kurzweil-Henstock theory. 

We wish to give this powerful tool to non-mathematicians and under- 

viii 



Preface IX 

graduates and we advocate the widest possible use of one integral at 

all levels. We believe that the desirability of teaching one integral at 

all levels was also part of the motivation for R. Henstock to develop the 

theory. 

Both authors have taught the Kurzweil-Henstock integral at various 

levels and various universities, first of all at our home institutions, the 

National Institute of Education in Singapore and University of Queens¬ 

land and also at Universitat Erlangen-Niirnberg, the University of Can¬ 

terbury, Northwest Normal University in Lanzhou and the University of 

the Philippines. We express our gratitude to the Mathematics Depart¬ 

ments of these institutions for their understanding of our desire to teach 

a ‘new’ integral and support of our research. Our experience is positive 

at all levels and in the introductory courses, once the students grasped 

the concept of 6-fine partitions, they found the theory as easy as, or 

perhaps one should say no more difficult than, the Riemann theory. 

Several books have appeared since the inception of the Kurzweil- 

Henstock theory. Most of these aim at the advanced or graduate level. 

This is so with the books which the inventors themselves wrote, [15], 

[16], [18] and [21]. Other books at the same level are Gordon’s [12], 

Pfeffer’s [37] and Lee’s [23]. The book by DePree and Swartz [8] does 

contain an introduction to Kurzweil-Henstock theory, but we in contrast 

cover more material and concentrate solely on integration. J. Mawhin s 

Introduction a LAnalyse [28] contains the Kurzweil-Henstock integral, 

obviously it is in French. The book by McLeod [30] is closest to us in its 

spirit but we use very different and more systematic notation, which we 

feel is important at the elementary level. We also consider some topics 

in greater detail, relate the KH-integral to other integrals and give a 

range of applications including Fourier series. 

We hope that our book will be useful at various levels. The first 

section of Chapter 1 and Chapter 2, with perhaps some omissions, can 

serve as a first (serious) course on integration. Later sections of Chapter 

1 contain a fairly complete account of the Riemann integral but require 

more mathematical maturity and are not intended for a beginner or a 

non-mathematician. To indicate that these sections are not meant foi 

the first reading they are typeset in a smaller font. We have expounded 

the Riemann theory to provide easily available comparison for someone 

who desires it. For instance, the non-integrable derivative of Example 

1.4.5 gives an opportunity to appreciate the Fundamental Theorem 2.6.2 

but it is far more difficult than the proof of the Fundamental Theorem 

itself. Chapters 3 and 6 together with some topics from Chapter 7 can 
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form the basis of a course which could be given instead of a first course 

in Lebesgue theory. Chapters 4 and 5 are not elementary; they give the 

most general convergence theorems for the Kurzweil-Henstock integral. 

Exercises are provided at the end of each Chapter. Exercises containing 

additional information which is worth reading even if one does not intend 

to work them out in detail are marked by ©; exercises which are not 

easy are marked by © . 

Finally we wish to acknowledge help when writing this book. We 

thank the editor of this series, John Loxton, for his friendly attitude and 

invaluable advice. We are grateful to David Tran ah and particularly to 

Roger Astley from CUP for the care and expertise with which they have 

published our work. In writing we had advice on computer typesetting 

and presentation from our friends and colleagues. We specifically men¬ 

tion Anthony Miller from CSIRO in Adelaide, Ding Chuan Song from 

the Northwest Normal University in China, Chew Tuan Seng from the 

National University of Singapore, and Peter Adams, Keith Matthews 

and Ken Smith from the University of Queensland. Peter Adams also 

produced all figures in this book. 

January 1999 Lee Peng Yee 

Rudolf Vyborny 
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1 

Introduction 

1.1 Historical remarks 

The history of the integral is both long and interesting. A monograph 

could easily be devoted to it. Here we make only a few remarks in 

order to set our topic into a proper historical perspective and refer the 

interested reader to several excellent books; see Hawkins [13], Medvedev 

[33], Pesin [36] and van Dalen and Monna [7] for instance. The roots of 

integration can be traced to Archimedes but the real story of integration 

starts with Newton and Leibniz. Even today, if F : [a, 6] h-> K and 

F'(x) = f(x) for every x E [a, b] we say that F(b) - F(a) is the definite 

Newton’s integral of / from a to 6, in symbols 

or briefly 

F{b) - F(a) = / /■ 

We also refer to the function F as the Newton indefinite integral of /. 

The Newton definition today looks much more solid than the Leibniz 

definition of an integral as a sum of infinitely many infinitesimal quan¬ 

tities. This is because the concept of derivative is firmly entrenched in 

our mind as a solidly defined mathematical entity. In Newton’s time, 

however, the concepts of limit and derivative were somewhat nebulous. 

Despite the logical shortcomings of the beginning of calculus the early 

masters of calculus, e.g. the Bernoulli brothers and Euler, were able to 

make wonderful discoveries with the new-found tool. Of all the vari¬ 

ous definitions that would survive a modern critical scrutiny, by far the 

simplest and most intuitive is that which was given at the beginning of 

1 



2 1 Introduction 

the modern era by Cauchy (1789-1857) and completed and fully investi¬ 

gated by Riemann (1826-1866). In fact, it is the Riemann theory that is 

still today taught at universities to physicists, engineers and others who 

need to know integration. A brief account of some finer points of Rie¬ 

mann integration is given in Sections 1.3—1.5. This we do because the 

main topic of this book is indebted to Riemann, and we wanted to give 

the reader an opportunity to compare results in Riemann integration 

with the theory expounded in this book. However, Sections 1.3—1.5 re¬ 

quire some mathematical maturity and are not intended for a student’s 

first reading of the book and are typeset in a smaller font. Apart from 

Section 1.2 containing notation, the rest of the book is independent of 

Chapter 1. 

Among non-specialists there is an almost universal identification of 

the integral with the Riemann integral and this is surprising for two rea¬ 

sons. Firstly the Riemann integral, despite its wide use and its intuitive 

appeal, has serious shortcomings, as we shall see later. Secondly over 

eighty years ago Lebesgue (1875-1941) gave another definition of what 

is now known as the Lebesgue integral. This integral turns out to be 

the correct one for almost all uses and is the one used almost exclusively 

by professional mathematicians. In 1914 O. Perron proposed yet an¬ 

other definition, which had an additional advantage over the Lebesgue 

definition: it included the Newton integral and all improper integrals 

as well. All indications are that the Lebesgue (or Perron) theory is not 

popular with non-mathematicians, the reason most likely being the level 

of mathematical sophistication required for understanding it. In 1957 

Kurzweil [20], in connection with research in differential equations, gave 

an elementary definition of the integral equivalent to the Perron one. 

For Kurzweil’s own presentation of the theory see [20]. Henstock later 

[14] independently rediscovered Kurzweil’s approach and advanced it 

further [15, 16, 18, 17]. The great advantages of the Kurzweil-Henstock 

theory are that it preserves the intuitive geometrical background of the 

Riemann theory, it is so simple that it can be presented in introduc¬ 

tory courses, and it has the power of the Lebesgue theory. A further 

essential contribution was made by McShane. He recaptured Lebesgue 

integration in the Kurzweil-Henstock framework and by doing so made 

it accessible to non-specialists (see [31], [32]). In the second chapter we 

strive for the most elementary presentation of the Kurzweil-Henstock 

theory, suitable as an introductory course replacing the usual one on 

Riemann integration. The third chapter could serve as a first course 



1.2 Notation and the Riemann definition 3 

on the theory of the integral. The rest of the book is devoted to more 

advanced topics and surrounding ideas. 

1.2 Notation and the Riemann definition 

The sets of integers, positive integers, rationals, reals and positive reals 

are denoted by Z, N, Q, R and R+, respectively. The positive or nega¬ 

tive part of a real number a will be denoted by a+ or a-, respectively; 

i.e. a+ = (|a| + a)/2, a~ = (|a| - a)/2. Unless something is specified 

to the contrary the word function means a real valued function. For a 

real valued function / then the meaning of f+ and /“is clear. Gen¬ 

erally speaking, operations with functions are understood pointwise, for 

instance f + g : x i—> f(x) + g(x), Max(/,g) : x i—> Max(/(x),g(x)) etc. 

Similarly with relations, / < g means f{x) < g(x) for every x from the 

common domain of definition of / and g. Likewise the inequality f < K 

means f(x) < K on the domain of /. The inverse functionf to / is de¬ 

noted by /_i. If 5 is a set then ls will denote the characteristic function 

of S, i.e. IsO) = 1 for x € S and ls(x) = 0 for x t S. The sequence 

nHc„;nGN will be abbreviated to {cn}, with a similar convention for 

sequences of functions. We use the term increasing (decreasing) in the 

wider sense, i.e. an increasing function might take the same value twice; 

an increasing (decreasing) function which is one-to-one will be called 

strictly increasing (decreasing). We shall use the symbol sup {/; M} for 

the supremumj of a function / over a set M and employ a similar no¬ 

tation for the infimum§. Sometimes we might write a defining relation 

for the set M instead of M itself, for instance sup{an; n > N} denotes 

snp{aN,aN+i,...}. An interval [a, b] will always be closed and (a,b) 

open. We shall use \I\ for the length of a bounded interval^ I. Impor¬ 

tant for our further development are the concepts of a division of an 

interval, and that of a partition of an interval. By a division D of a 

compact interval [a, b) we mean a set of intervals [:Xi, Xi+i] such that 

a = x0 < xx < x2 < ■ " < xn = b. (IT) 

The points xt are called the points of the division D. A function 

ip : [a, b] —> R 

f Many authors use the notation /-1; we reject that since / 1 could also legiti¬ 

mately denote 1//. 
■j- supremum of a set is its least upper bound. 

S greatest lower bound . 
f We accept as intervals also the sets [a, a], consisting of one point, and [a, a) W 

the empty set. For these so-called degenerate intervals I the length is zero, |/| = 0. 



4 1 Introduction 

is called a step function if there is a division (1.1) such that tp is constant 

on every interval (xi-i, Xi). A partition of a compact interval [a, b] is a 

set of couples (£*., Ik) such that the points fk G Ik, the closed intervals 

Ik are non-overlappingf and 

n 

\Jh = [a,b\. (1.2) 
l 

We shall call the point fk the tag of Ik- Often it will be convenient to 

have the intervals, Ik = [uk,Vk], ordered; hence for a partition 

= {(6, [wfc, vk}); k = 1,2,... , n] (1.3) 

we have 

a = «i < £i < vx = u2 < £2 < v2 < ■ ■ ■ < vn = b (1.4) 

The letters 7r and II (possibly with subscripts) will denote partitions. A 

partition 

{(&»[«<. «»]); * = 1,2,... , n] 

can be abbreviated to {(&, [ui: u,])} or even to {(^, [u, u])} if the range 

of subscripts i is clear from the context or is not particularly important. 

If 6 > 0 then a partition n for which 

ft - 6 < Ui < & < Vi < & + 6 (1.5) 

for all i with 1 < i < n is called a 5-fine partition of [a, b}. It is obvious 

that a partition 7r is 5-fine if and only if the length of the largest interval 

of 7r, which we denote by n(7r), is less than 25. Similarly as with n(n) 

we denote by n(D) the length of the largest interval of the division D. 

Given a function / : [a, 6] —► R then a partition (1.4) has an associated 
Riemann sum); 

n 

'52f = '52f(Zi)(vi-ui), (1.6) 
7T i= 1 

which we shall also abbreviate as ^ /(£)(« - u). If the partition a is 

given by (y^, </&) with k = 1,2,... , m, then, for the Riemann sum, we 

shall naturally use the notation 

m 

^2f = ^2f(yk) \Jk\ = Ylf(y)\J\- (1.7) 
O' k=1 a 

f i.e. they do not have any interior points in common, 
f See Figure 1.1. 



1.2 Notation and the Riemann definition 5 

We extend our shorthand to similar sums, e.g. we shall denote by 

Ett /(w> v)the sum ziu [/(«*) - 
The Riemann integral, f^ /, is dehned as the limit of Riemann sums. 

More precisely we define: 

DEFINITION 1.2.1 A number A is the Riemann integral of f from 

a to b (or on [a, b\) if for every positive e there is a positive number 8 

such that for every 8-fine partition 7r 

\Y.f-A\<e. (1.8) 

7T 

We denote the Riemann integral A as usual by f or by f(x)dx. 

If we wish to distinguish the integral from another integral, e.g. the 

Newton integral, or if we wish to emphasize that the integral is to be 

understood in the sense of Definition 1.2.1, then we write K fa f. We 

shall often abbreviate Riemann integral to R-integral and if there is no 

danger of confusion just to integral. The function / is called Riemann 

integrable, or briefly R-integrable, if the Riemann integral of / exists. 

It is a consequence of Definition 1.2.1 that an R-integrable function 

f must be bounded. We choose £ — 1 and find a corresponding 8 from 

Definition 1.2.1. We divide the interval into n equal intervals [u^ Vi\ with 

77,—i (fo — a,) < 8 and choose a number C > Max(|/(uJ)|, j = 1, 2, ... ,n). 

Let x e [a, b\ be arbitrary; it lies in some [ua, va\ and inequality (1.8) 
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for the partition (1.3) with = Uj (j ^ a) and = x yields 

n 

\f(x)(va -ua)\ < \A\ + 1 + \f(ui)\(vi-ui)’ 

and consequently 

< n[|/l| + l_+_C(6-a)l 

b — a 

Since x was arbitrary this shows / is bounded. Unless something is 

specified to the contrary we shall assume for the rest of this chapter 

that all functions appearing are bounded.f 

1.3 Basic theorems, upper and lower integrals 

For a division D as given in (1.1) we introduce the Darboux upper and lower 
sums S(D) and s(D) defined by 

n— 1 

S(D) = Mi(xi+i - Xi), (1.9) 
i=o 

n —1 

s(D) = ^2 m,i(xi+i - Xi), (1.10) 
i=0 

where Mi = sup{/, [a^Xi+i]} and nii = inf{/, [xi,Xi+i]}. Obviously there 
is a division Dn naturally associated with a partition 7r; in the spirit of our 
shorthand writing we shall denote the the upper Darboux sum by S(tt) or by 
S(Dn), in symbols 

S(7r) — S(Dn) = ^2 M{v - u) = ^2 Mi(vi - m), 
7T i=l 

where now M, stands for the supremum of / on [u^Ui]. Of course, we use the 
same convention for lower Darboux sums and other similar structured sums. 
A division D is a refinement of D if all the points of D are also points of D. 
Adding points to a division increases the lower sums and decreases the upper 
sums, 

S(D) > S(D) and s(D) < s(D). (1.11) 

We prove only the first of these inequalities and it is clearly sufficient to prove 

it if D has only one additional point c. (In the general case we can move from 

D to D by adding points one by one.) If c G (xi,Xi+1) then the contribution 

of the intervals [xi,c] and [c, xl+i] to S{D) is 

SUP{/) [Shj C]}(C — Xi) + SUp{/, [c, Xi+l]}(Xi+l — C) < Mi(xi+i — Xi), 

t The reader not interested in the Riemann theory can now start reading Chapter 2. 
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and the inequality S(D) > S(D) follows. By comparing an upper sum S(Di) 
and a lower sum s(D2) with their common refinement we obtain 

(1.12) S(Di) > s(D2). 

It is convenient to define the upper and lower Riemann integrals of / on [a, b} 

in symbols f*f and /Qb/, by 

(1.13) 

(1.14) sup{s(D) : D a division of [a, 6]}. 

In view of relation (1.12) the upper and lower integrals always existf and 

It follows easily that 

The connections between the upper, lower and Riemann integral are stated in 

the following theorem. 

THEOREM 1.3.1 The following statements are equivalent: 

(i) The function f is Riemann integrable on [a, b]. 

(ii) For every positive e there is a positive 6 such that 

(1.15) S(D)-s{D) < e, 

whenever n(D) < 6. 

(iii) For every positive e there is a division D such that inequality (1.15) 

holds. 

(iv) The upper and lower integrals of f are equal. 

Proof The implications (ii) =S> (iii) =» (iv) are fairly obvious. Since every 
Riemann sum f lies between the corresponding Darboux sums S(D,r) and 

s(Dit) it is clear that 

7T 

f According to the convention adopted / is bounded. 
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This shows (ii) => (i) with A = f^f. To prove (i)=*- (ii) we find a positive b 

such that for every partition 7r with n{tt) < 8 

\^2f(ti(v~u) ~A\ < J. 

On each interval [u, v] we choose £ so that 

m + 
e 

4(6 — a) 
> f (ti¬ 

lt follows that s(Ar) > A - e/2. Similarly S(Dn) < A + e/2 and inequality 
(1.15) follows. To complete the proof it suffices to show (iv) =4* (ii). This 
implication becomes obvious with the following lemma. • 

LEMMA 1.3.2 For every positive e there exists a positive 8 such that 

S(D) - / / < e, 
J a 

(1.16) 

fbf-s(D) <£, 
J_a 

(1.17) 

whenever 

n(D) < 8. (1.18) 

Proof Only (1.16) needs proof since (1.17) follows from (1.16) applied to —/. 
For the proof of (1.16) we denote by A the value of the upper integral and 
find a division De such that 

S(De)<A+E-. (1.19) 

Let N be the number of dividing points of De and /| < K. We show that 
the number e/4NK serves as the required 8. Let D be any division satisfying 
condition (1.18) and D a common refinement of De and D. By inequalities 
(1.11) and (1.19) 

S(D)<A+£-. (1.20) 

We now estimate S(D) — S(D). Every interval [u,v] which is common to D 
and D makes the same contribution to both S(D) and S(D). An interval 
[y,z] of D which is not an interval of D contains at least one point of De. 
Hence there are at most N intervals [y, z\. The part of difference S(D) - S(D) 
restricted to [y,z] is at most [M — (—M)](y — z) and that does not exceed 
2MS. Consequently S(D) - S(D) < N.2M8 = e/2. This together with (1.20) 
establishes (1.16). # 

Every upper Darboux sum S(D) dehnes a step function ipo such that 

S(D) = fa Fd and <pD > f. This step function can be modified into a contin¬ 
uous piecewise linear function H with a trapezoidal graph such that ipo < H 

an<^ fa H ~ S(D) < e. See Figure 1.2. The next lemma easily follows. 
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H 

LEMMA 1.3.3 For every positive e there exist continuous functions h, H 

such that h < f < H and 

h + £, 

H -e. 

(1.21) 

(1.22) 

The basic properties of the Riemann integral follow easily from Definition 1.2.1 
and Theorem 1.3.1. For ease of reference we state them here. 

Homogeneity If c > 0 then 

pb pb 
/ cf — c I f. (1-23) 

J a J cl 

The same equation holds for the lower integral and if / is integrable then it is 

valid for any c and for the R-integral. 

Preservation of inequalities If / < g then 

In particular, if m < f(x) < M for all x G [a, b} then 

m{b — a) < f f < M(b — a). 

(1.24) 

(1.25) 

Consequently, if |/| < K then 

< K(b — a). (1.26) 

All these inequalities hold with the upper integral replaced by the lower inte¬ 

gral and for an R-integrable / with /Qb substituted for f*. 
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Absolute value For any bounded / 

< / I/I, (1.27) 

with a similar inequality holding for the upper integral. If / is integrable then 
so is |/| and the above inequality holds with the lower integral replaced by the 
integral. 

Integral as an additive function of intervals For any bounded / we have 

rb 7c rb 

f= f+ f, (1-28) 
J a J a J c 

with the same relation holding for the lower integrals. It follows that a function 
/ is integrable on [a, b] if and only if it is integrable on [a, c] and [c, 6] with 

a < c < b and then equation (1-28) holds with Jq6 replaced by ff 

Additivity The upper integral is subadditive, the lower integral superadditive 
which means 

rb rb rb 

f+g > / (f + g), 
J a J a J a 

rb rb rb 

f+g < (f + g). 
J_a a J_a 

It follows that if / and g are integrable then so is f + g and 

rb rb rb 

/ (f + g)= f+ g■ 
'fa J a J a 

(1.29) 

(1.30) 

(1.31) 

1.4 Differentiability, continuity and integrability 

We are assuming that / is bounded; let |/| < K. The functions /X 

f, (1.32) 

C(x) - ff, 

L(x) = f f, (1.33) 
J_a 

which we shall call the indefinite integral, the indefinite upper integral and 
the indefinite lower integral, will play an important role in this section. By 
inequality (1.26) and similar inequalities for the integral and for the lower 
integral, and by using equation (1.28) for the additivity of the (upper, lower) 
integral, we see that F, U, L are Lipschitz continuousf with the constant K; 

f A function F is said to be Lipschitz continuous on the interval I with the constant 
L if |F(x) — F(y)| < L\x — y\ for x, y in /. Instead of Lipschitz continuous one 
often says just Lipschitz or merely L. 
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i.e. for a < x < y < b we have 

\F(y)-F(x)\<K(y-x), 

\U(y)-U(x)\<K(y-x), 

\L(y) — L{x)\ < K(y — x). 

(1.34) 

If / is continuous at x then it follows from the above inequalities that F, U, L 
are differentiable at x and F'(x) = U'(x) = L'(x) = f(x). Indeed, combining 
the inequalities (1.27), (1-34) and |/(a:) — f(t)| <ewe obtain 

f(t)dt - f(x)(y - x) [/(*) - fix)\dt 

\f(t) - f(x)\dt < e{y - x). 

This shows that the right-hand derivative U'+(x) = f(x). The proofs for 
the left-hand derivative and the function L are entirely similar. We have 
therefore established: For a function / continuous on all of [a, b] we have 
U\x) = L\x). Since also Yimx^aU(x) = limx-+aL{x) = 0, it follows that 
U = L. Consequently, / is integrable and F' = U' = f. We have proved 

THEOREM 1.4.1 If f is continuous on [a, b] then f is Riemann integrable 

there and 

F'(x) = f{x) 

for all x € [a, b\ 

A Riemann integrable function can clearly be discontinuous at some points. 
The nineteenth-century mathematicians were impressed by Riemann’s exam¬ 
ple of an integrable function which was discontinuous on a dense set. An 
example of such a function can be found in Exercise 1.10. The next theo¬ 
rem shows that a function is Riemann integrable if and only if the set of its 
discontinuities is in some sense ‘small . 

DEFINITION 1.4.2 A set S is said to be of measure zero if for every 
positive e there exists a countable system of open intervals {Ik . k — 1,2,...} 

such that 
OO 

SC Q 4 (1-35) 
fc=i 

and 
OO 

<L36> 

k= 1 

| At a or 6 the derivative is one-sided. 
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A countable union of sets of measure zero is itself of measure zero. In particular 

every countable set is of measure zero. However, a set of measure zero need 

not be countable, see Appendix Section A.l. If something happens except on 

a set of measure zero, we say that it happens almost everywhere, or for almost 

all points. For instance, if / is continuous at points of [a, b} not belonging to a 

set of measure zero then we would say that / is continuous almost everywhere 

on [a, 6]. Now we can state 

THEOREM 1.4.3 (Riemann integrability) A bounded function f is 
Riemann integrable on [a, b] if and only if it is continuous almost everywhere 
on [a, b\. 

Proof We start with the only if part, which is easier to prove. For natural n 
we denote by En the set of points c such that 

lim sup f(x) — lim inf f(x) > —. 
x—>c x *c Tl 

Since the set of discontinuities of / is the union of the sets En, it suffices to 

show that En is of measure zero for every natural n. By (iii) of the theorem 

on alternative definitions of integrability (Theorem 1.3.1) there is a division 

D of [a, b] such that 

S(D) - s(D) < ^. (1.37) 

If [u, u] is an interval of D which contains a point of En in its interior then the 

contribution of [u, v} to S(D) - s(D) must exceed (v - u)/2n. Consequently, 

if l is the total lengthf of all intervals of D containing a point of En in their 

interiors then l < e/2 by inequality (1.37). If we now cover the dividing points 

of D by a finite system of open intervals of total length less than e/2 then this 

system together with all intervals [u, i>] covers En. Obviously the total length 

of this cover of En by finitely many intervals is less than e. 
Using the Heine-Boreli covering theorem we now give a very simple proof 

of sufficiency (due to Gee [10]). Given e > 0 we find a countable system of 

open intervals J„, n = 1,2,... covering the set of discontinuities of / and such 

that Ur \Jn\ < £ For every point of continuity of / there is an open interval 
Kx containing x such§ that 

sup {/; Kx} - inf {/; Kx} < e. 

The intervals Jn and Kx cover [a, 6]. By the Borel theorem there exists a 

finite subcover of [a, 6], The endpoints of the intervals of the subcover, as 

long as they lie inside [a, 6], together with the points a,b define a division D 
of [a, 6], Each open subinterval of D is part of some Jn or some Kx. Hence 

OO 

S(D) - s(D) < (sup {/; [a, 6]} - inf {/; [a, b]})^ |Jn| +e(6-a). 

l 

f By this we mean the sum of lengths of all individual intervals. 

t Often referred to simply as the Borel theorem. See Exercise 2.2 and Appendix Sec¬ 
tion A.3. For a general version of the Borel theorem see [19] Chapter 5, especially 
Theorem 14. 

§ Kx denotes Kx together with its endpoints. 
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Consequently / is Riemann integrable by (iii) of Theorem 1.3.1. • 
The fact that F'(x) = f(x) for every x at which / is continuous combined 

with the characterization of integrability Theorem 1.4.3 leads immediately to 

THEOREM 1.4.4 If f is integrable and F is defined by equation (1-32) 

then F\x) — f(x) almost everywhere. 

Integrating / and then differentiating leads back to / (at least almost every¬ 
where). It is a weakness of the Riemann integral that it is generally not 
possible to recapture F from F' by R-integration. It was shown by Volterra 
as far back as 1881 that F' need not be R-integrable even if F' is bounded and 
exists everywhere on [a, 6], see [45]; his example is discussed in [/] on page 
107 and in [13] page 56. We give our own version of an example by Goffman 

[111- 

EXAMPLE 1.4.5 (Not Riemann integrable derivative) There exists 
a function L which has a derivative L\x) = f{x) for all x € [a, b} such that 
the function f is bounded but not Riemann integrable on [a, b}. 

Proof Let {In : n G N} be a system of open disjoint intervals such that 

In C [0,1], the set G = (J^ In is dense> its complement Z is without isolated 

points andf 

OO 

£H~I = |. (1-38) 

1 

Let Jn be a closed interval in the centre of In with | Jn| = |7nj2. We need the 
following property of Z: If K, K C [0,1], is an interval containing a point of 

Z then 

Y \JnC]K\<16\K\2. (1.39) 

JnnK^<A 

Indeed, first for K D In ^ 0 we have 

\K n 7n| > ^[|in| - \Jn\] > \{\D\ - \\In |] > \\D\ 

and then 

\K n Jn\ < \Jn\ = \In\2 < 16\K H Inf ■ 

Using 

\K n 7„|2 < ( Y \KFln\f <\K\2 
jnnK^Q jnc\K^<b 

t Such a system can be constructed as follows: Take a series of positive terms with 

a __ 1/2. Let 7i be an open interval of length ai situated in the middle ot 

[0 ll then let I2, I3 be open intervals located in the middle of each remaining 

interval and of total length o2 and so on. The set Z is a Cantor type set; the 

Cantor set is discussed in Section A.l and is a set of measure zero which is not 

countable. 
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J 

I 

Fig. 1.3. Graph of / above h 

gives inequality (1.39). First we define / and later we show that it is a deriva¬ 
tive. Let / be continuous on In, 1 at the centre of In, 0 on ZUlJf5(-fn\Jn) and 
always between 1 and 0. Since Z has no isolated points, any interval (a, P), 

with x\ € Z n (a, /?), contains another point of Z, say X2- The open interval 
with endpoints xi, X2 then contains /n for some n and therefore a point where 
/ has the value 1. This demonstrates the discontinuity of / on Z. It is easy 
to see from equation (1.38) (e.g. by use of the Borel covering theorem) that Z 
is not of measure zero, and consequently / is not R-integrable. Now we show 
that / is a derivative, i.e. there is a function L such that 

L'(x) = f(x) (1.40) 

for every x G [0,1], As our notation suggests, L is defined by equation (1.33). 
For x £ G equation (1.40) follows from the continuity of /. Assume that 
[u, v\ meets Z and let D = {[xi, Xi+i]} be a division of [u, u]. Let m, be the 
infimum of f on [x», x»+i]. If m, > 0 then [x», £i+i] does not contain a point 
of Z or In \ Jn. Therefore [x^, Xt+i] C Jn for some n. It follows from 
(1.39) that 

(1.41) 
Jnn[u, 41)7^0 

Consequently 0 < L(v) - L(u) < 16(u - u)2 and therefore L\x) = 0 = f(x) 
for x G Z. 

However, the problem of integrating the derivative within Riemann theory 
has a partially positive answer. 

THEOREM 1.4.6 If F is Lipschitz and has a Riemann integrable derivative 
on [a, b] then 

(1.42) 
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for a < x < b. 

REMARK 1.4.7 If F' exists everywhere on [a, b} then the assumption that 
F is Lipschitz is superfluous. The proof is easy and can be found in many 
calculus books (e.g. [40]). We prove equation (1-42) provided F' exists and is 
continuous almost everywhere on [a, b]. In this situation the assumption that 

F is Lipschitz is essential. 

Proof of Theorem 1.4.6 The integral J* F' exists; let us denote it by H(x). 

The function H is Lipschitz and by Theorem 1.4.4 = F' almost everywhere. 
The function z : x i—> H{x) — F(x) — F(a) is also Lipschitz and z! = 0 almost 
everywhere. The proof will be complete if we establish the following lemma.* 

LEMMA 1.4.8 If z is a Lipschitz function on [a, 6] and z < 0 almost 

everywhere then z(b) < z(a). 

Proof Let K > 0 be a Lipschitz constant for z. Given e > 0, there exists a 
countable system of open intervals Jn, n — 1,2,... covering the set where z! 
either does not exist or is positive and such that 

OO 

^,Jnl < 2K 
1 

Let E be the set of all x G [a, b\ such that 

z(x) — z(a) < 
e( x — a) 

2(b — a) 

OO 

-b ^ ] K | Jn n (a, x)| 
i 

(1.43) 

and S = sup E. It suffices to show that 5 = 6, whence it would follow that 
2(5) _ z(a) < e. Assume contrary to what we want to prove that S < b. If 
z'(S) < 0 then there are x G E withf x < S and v with b>v>S such that 

z(v) — z(x) < 
e(v — x) 

2(6 — a) 

Simple calculation now shows that inequality (1.43) holds with x replaced by 
v. This is impossible and consequently 5 G Jk for some k. By the definition 
of 5 there is number x G E n Jk withf x < S and for v > S we have 

z(v) - z(x) < K(v - x). 

This again leads to inequality (1.43) with x replaced by v. This final contra¬ 

diction completes the proof. * 

REMARK 1.4.9 An alternative and simple proof of Lemma 1.4.8 is outlined 

in Exercise 2.1. 

f The equality sign is to cover the possibility of S — a 
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1.5 Limit and R-integration 

In applications as well as in many problems in pure mathematics one needs to 
interchange limit and integration. However, theorems in the Riemann theory 
guaranteeing the formula 

b rb 

fn = lim fn (1-44) 
/ „ n—tOO J a 

are either not strong enough, like the next Theorem 1.5.1, or difficult to prove, 
like the Arzela Theorem 1.5.6 below}. The most basic is 

THEOREM 1.5.1 If fn are integrable and converge uniformly on [a, b] then 
the limit function f is also integrable and equation (1.44) holds. 

Proof First we use Theorem 1.3.1 on the characterization of integrability to 
show that the limit function is integrable. Given e > 0 there exists a natural 
N such that 

\lN~f | < 
£ 

2(6 — a) 

Let Sn{D) or sn(D) be the upper or lower sum of /w, respectively. By part 
(iii) of Theorem 1.3.1 on the characterization of integrability 

Sn(D)-sn(D) < |. 

Consequently} 

S(D)-5(Z)><£ + - 

and this in turn implies the R-integrability of /. Equation (1.44) follows from 
the inequality 

< (6 — a) sup {\fn -/|; [a, 6]}. 

REMARK 1.5.2 The assertion of the integrability of / is an important 
part of Theorem 1.5.1. The limit of R-integrable functions need not be R- 
integrable, as the next example shows. 

EXAMPLE 1.5.3 Let In be as in Example 1.4.5, hn be a continuous 
function, always ^between 0 and 1, equal 1 at the centre of In and 0 outside 
In- Let fn = Y11 hk- Obviously each fn is continuous throughout [0, 1] and 
/ = lim fn is not Riemann integrable. Perhaps it is worth noting that§ no 
change of / on a set of measure zero could make it R-integrable. 

f Another theorem on interchange of limit and integration is in Exercise 1.22. 

t Naturally S and s are defined as in (1.9) and (1.10). 

§ Since / is discontinuous on the complement of 1J In. 
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For the next lemma we need Dini’s theoremf which asserts that a monotonic 
sequence of continuous functions with a continuous limit must converge uni¬ 

formly. 

LEMMA 1.5.4 If fi is bounded, the sequence {fn} is decreasing and fn(x) —*• 

0 for every x E [a, b] then 

lim [ fn = 0. (1-45) 
Ja 

Proof By Lemma 1.3.3 for every e > 0 there is a continuous function gn 

such that gn < fn and 

/></>^' d-46) 

Since the above inequalities are not disturbed if gn is replaced by Max(0, gn) 
we can and shall assume that gn > 0. We now set hi = gi and hn — 
Mm(gn, hn-1) for n G N and n > 1. The inequality 

gn < hn + fn— 1 — hn—i (1-47) 

is easily checked, separately for the case when hn(x) = gn(x) and the case 
when hn(x) = hn-i(x). Using inequality (1.47) we prove by induction 

[ fn < f hn + ^2^k+2- (L48) 
Ja Ja fc=l 

This is clearly true for n = 1 and it follows from inequality (1.47) and the 

induction hypothesis that 

rb rb rb Ib fb e 
/ 9n< hn+ fn-1 — / hn-l < hn + 2_j Qk+2 ' C1'49) 

Ja Ja Ja Ja Ja 1 

Consequently 

By Dini’s theorem hn —*> 0 uniformly and therefore by Theorem 1.5.1 we can 

find N such that for n> N we have 

Using this and inequality (1-48) we obtain 

rb e n e 

/ fn < 2 4* ^ 2fc+2 < £' 
J_a * i 

f The proof of which can be found in Section A.2.1. 
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This lemma leads to a theorem which allows the interchange of limit and 
integration even if the limit function is not integrable. 

THEOREM 1.5.5 If {fn} is an increasing sequence of uniformly bounded 

integrable functions with f = lim fn then 
n—► oo 

Proof Applying Lemma 1.5.4 to f — fn, using inequality (1.30) with g = —fn 

and integrability of fn gives 

pb pb pb 

/ / - / fn < / (/ - fn) - 0. 
J_a J a J a 

We close this section with Arzela’s dominated convergence theorem. A lot 
of effort has been devoted to finding an elementary proof of it; for the history 
and discussion see [27]. A more recent elementary proof is in [26]. For a short 
proof see Bullen and Vyborny [5]. 

THEOREM 1.5.6 (Arzela) If a sequence of integrable functions {fn} 

• is uniformly bounded and 

• converges on [a, b} to a Riemann integrable function f 

then equation (1-44) holds. 

Proof Since | f* f - f* fn\ < /Qb \f - fn\ there is no loss of generality in 

assuming / = 0 and fn > 0. For each n <E N let Mn = sup{fn, fn+1,... }. 

Then, for every x G [a, b], the sequence {Mn(x)} is decreasing to zero, and 
consequently by Lemma 1.5.4 

0 < 

1.6 Exercises 

EXERCISE 1.1 Recall that a function f is Newton integrable on [a, 5] if 

there is a differentiable function F such that F'(x) = f(x) for all x e [a, 6], 
Give examples of functions which are Newton integrable and which are not. 
[Hint: f = a polynomial; f(x) = x/\x\.] 

EXERCISE 1.2 Give an example of a function which is Riemann integrable 

but not Newton integrable. Give an example of a function which is Newton 

integrable but not Riemann integrable. Is there a discontinuous function which 

is both Riemann and Newton integrable? [Hint: f(x) = sin(l/x), f(x) = 

V-s/R, f(x) = F'(x) where F(x) = x2sin(l/x).j 
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EXERCISE 1.3 Using the theorem on uniform continuity show (indepen¬ 
dently of Theorem 1.4.1) that a function continuous on [a, 6] is Riemann in¬ 
tegrate there. 

EXERCISE 1.4 Prove that a function continuous on [a, b} is Newton inte¬ 
grate there. [Hint: Do not work hard, use Theorem 1.4.1.] 

EXERCISE 1.5 Prove inequalities (1.24) to (1.30). 

EXERCISE 1.6 Prove: If f and g are Riemann integrate on [a, b\ then so 

are |/|, fg, yjf2 + g2, Max(f,g) and Min(f,g). [Hint: Use Theorem 1.4.3], 

EXERCISE 1.7 Consider a function c : M2 i—► E. Find a condition on c such 
that c(f, g) is Riemann integrate when both f and g are. [Hint: Continuity, 
Theorem 1.4.3, use the Weierstrass Theorem to prove boundedness.] 

EXERCISE 1.8 Prove: Iff is Riemann integrate on [a, b] and the function 
1 // is well defined and bounded on [a, b] then 1 // is Riemann integrate on 

[a, b}. [Hint: Use Theorem 1.4.3.] 

EXERCISE 1.9 0 Do the previous three exercises without using Theorem 

1.4.3. 

EXERCISE 1.10 © Let f(x) = 0 for irrational x and f(x) = 1/q for a 
rational x = p/q in the lowest terms. Prove that f is continuous at every 
irrational point and discontinuous at every rational point. Deduce that f is 

Riemann integrate on [0,1]. 

EXERCISE 1.11 © Continuing with the previous exercise show that f is 
not differentiable at any point. If g(x) = q~3 for rational x = p/q in the lowest 
terms and g(x) = 0 otherwise, show that g is differentiable at every irrational 

point c = rt y/r/s with r/s in the lowest terms. [Hint: for x — p/q we have 

g(x) - g(c) _ 1 1 = 1 x + c _ lB 

x-c q3 x-c q3 x2 — c2 q 

where 

_ ±y/rjs + p/q 

sp2 — rq2 

is bounded as x —* c.] 

EXERCISE 1.12 ©© Prove: No function is continuous at rational and 
discontinuous at irrational points. [Hint: This is best done with the help of 

the so-called Baire category theorem. See reference [4] p. 56.] 

EXERCISE 1.13 ©© A partition of [a, b] is said to be a refinement of 
another partition ir2 of [a, b] if every interval in tti is a subinterval of some 

interval in ir2. Prove: A function f is Riemann integrate with /a / = A if 
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and only if for every positive e there exists a partition ttq such that inequality 
(1.8) holds whenever ix is a refinement of txq. [Hint: If f is R-integrable then 
there exists 6 > 0 such that (1.8) holds whenever n(tt) < 8. Fix ix\ with 
n(7ri) < 6 and the condition is satisfied. Find m according to the condition 
and a division D satisfying (1.16) and (1.17). Form a partition it whose 
intervals are intersections of intervals of ni and D. Show S(tt) < A + e. 

s(tt) <A-e, /ab/ - IbJ < 2e.] 

EXERCISE 1.14 Prove some properties of the Riemann integral using the 
definition from the previous exercise. For example, prove relation (1.31) and 
the first inequality in (1.34). 

EXERCISE 1.15 ©0 Let f, g be Riemann integrable on [a, b] and c, k real 
numbers. Write F(x) = f* f(x) dx + c and G(x) = f* g(x) dx + k. Prove that 

f Fg = F(b)G(b) - F(a)G(a) - [“ Gf. 
J a J a 

[Hint: ForH(x) = F(x)G(x) — F(a)G(a) — f* (Fg + Gf) show that H'(x) = 0 

for all x G [a, 6] or almost everywhere and then use Lemma 1.4.8.] 

EXERCISE 1.16 Prove: If g is Riemann integrable on [a, b\ and g(x) > 0 

for all x G [a, b] then G(t) = f*g is strictly increasing on [a, b}. [Hint: It 

suffices to show G(a) < G(b). Use Theorem 1.4.3 and continuity of g to show 
that on some subinterval of [a, 6] the function g is bounded away from zero.] 

EXERCISE 1.17 Let D be the division (1.1) and G arbitrary points in 
[xi~\,xi]. Prove that 

n 

J2 \G(xi) - G(xi_i) - g(G)(xi - ®i_i)| < S(D) - s(D), 
i 

where S(D) and s(D) denote the upper sum and the lower sum of g, respec¬ 
tively. 

EXERCISE 1.18 ©0 Prove: If g > 0 is Riemann integrable on [a, b], 
the function G with G(t) = f][ g is strictly increasing and f is bounded on 
[G(a),G(6)] then 

(f°G).g, 

provided that either / or (/ o G).g is integrable on [G(a),G(6)j or [a, 6], re¬ 
spectively. [Hint: G provides a one-to-one correspondence between partitions 
of[G(a),G(b)] and [a, 6]. Use the previous exercise.] 

EXERCISE 1.19 Let {/n} be a sequence of functions converging uniformly 
on [a, b]. If each fn is continuous at c G [a, b] then f = lim fn is also 

continuous at c. Prove it. 
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EXERCISE 1.20 Use the previous exercise and Theorem 1.4.3 to prove 
that a uniform limit of a sequence of R-integrable functions is R-integrable. 
(An alternative proof of Theorem 1.5.1.) 

EXERCISE 1.21 Prove: A function f is Riemann integrable on [a, b] if and 
only if there are two sequences of step functions {4>n} and {V'n} such that 

4>n(x) < f(x) < ipn(x) for all x and all n, and — 4>n) —> 0 as n —> oo. 
rb rb rb 

Furthermore lim / = lim / (f>n — f ■ 
n—> oo 

EXERCISE 1.22 If the conditions in Exercise 1.21 hold with f and with f 
replaced by fTl where each fn is Riemann integrable on [a, b] then f is Riemann 

rb rb 

integrable on [a, b] and lim / fn — /• Prove it. 



2 

Basic Theory 

2.1 Introduction 

The aim of this chapter is to present the most elementary part of the 

Kurzweil-Henstock theory. Cousin’s lemma in Section 2.3 is needed 

to show that Definition 2.4.1 is logically sound. Subsection 2.3.1 gives 

some examples on the use of Cousin’s Lemma in elementary analysis 

but this subsection is not used anywhere in the rest of the book. The 

most important theorem in this chapter is the Fundamental Theorem 

2.6.2, which will however be superseded in Section 3.9 in the next chap¬ 

ter. Section 2.7 on applications of the Fundamental Theorem aims to 

convince the reader that the Kurzweil-Henstock integral has simple but 

important applications in calculus. Sections 2.8 and 2.9 show that the 

so-called improper integrals are included in the Kurzweil-Henstock the¬ 

ory. 

2.2 Motivation 

The definition of the Riemann integral is based on approximation of the 

anticipated value of the integral by Riemann sums. Generally speaking a 

function behaves differently in different parts of an interval. It is natural 

to expect that better approximation is achieved if some of the intervals 

of a partition are substantially smaller than others. 

EXAMPLE 2.2.1 Let [a,6] = [0,3], /(1) = 2 and /(2) = 10000 and 

f(x) = 1 otherwise. Since f(pc) is 1 except for x = 1, 2, geometric 

intuition tells us that JQ3 / = 3. The Riemann sum for a partition (1.4) 

differs from 3 only by contributions of intervals which have tags either 

22 
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1 or 2. There can be at most four such intervals, say 

[tX/c, U/c], [life-(_l, 1 ]? \u,pi Up], [^p+1 j ^p+l] 

with = ^k+i — 1 and £p = £p+i = 2. We can make 

^fc) T /(^fc+i)(^fc+i ^fc+i) T /(Cp)(w ^p) 

+ /(CP+i)K+i - «p+i) 

small, say less than e, by demanding 

Vk - Uk < 
£ 1 

4 2* 
(2.1) 

Vk+1 — ^fc+1 < 
£ 1 

4 2’ 
(2.2) 

Vp 'ti-p < 
£ 1 

4 10000’ 
(2.3) 

vp+1 ~~ ^■p+1 < 
£ 1 

410000' 
(24) 

There is a common pattern in these inequalities and they can all be 

subsumed in one compact condition. We define a function 6 : {1,2} i—> 

R+ by <5(£) = e/4/(£) and require 

Vj - Uj < 6(£j). (2.5) 

Then all inequalities (2.1)—(2.4) hold and 

|£/-3|<«- (2.6) 
7r 

Moreover, if only one tag is equal to 1 or 2 , condition (2.5) still ensures 

that inequality (2.6) is satisfied. We defined 6 only at the troublesome 

points 1 and 2. Generally we can expect that the function <5 might 

be needed at more points than two. The simplest way to deal with the 

domain of 6 is to define it on all of [o, b]. In our present example it would 

not matter if we required inequality (2.5) for all j = 1, 2,... , n as 

long as <5(£) >0 on [a, b]. 

This example suggests that it might be convenient to generalize the 

concept of a <5-fine partition to the case when 6 is a function. See Figure 

2.1. 

DEFINITION 2.2.2 Let 6 : [a, b] R+. A partition n = {(£, [u, v})} 

of [a, b} is said to be 6-fine if 

£-<$(£) <u<Z<v<t + 6(£). (2.7) 
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We shall write ir <C 8 to indicate that n is 8-fine. 

f - m f+««) 
—(-*—*-*—F 

u € V 

Fig. 2.1. <5-fine 

What was done in the last example can be criticized as unnecessarily 

complicated; after all inequality (2.6) can be guaranteed by simply de¬ 

manding that Vi-Ui < e/40000 for all* = 1, 2,... ,n. However, example 

2.2.1 was only preparatory. For an unbounded / the condition that some 

intervals of the partition are substantially smaller than others becomes 

essential. 

EXAMPLE 2.2.3 Let f(x) = 0 for x e [0,1], x ^ fc”1 and /(fc_1) = 

k2 for k G N. The anticipated value of the integral is clearly zero. We 

show that 

i£/i<£ <2-8) 
7r 

for every (5-fine partition with a suitably defined function 8. For every 

positive e choose 8(k~1) — 2~k~2k~2e for k £ N, and 8(x) = 1 otherwise. 

Let 7t be 5-fine. The number f equals to a sum of finitely many terms 

of the form /c2(nj—iq), each is less than e2_fc_1, and there are at most two 

terms for the same k. Clearly we have that f < 2er(l/22 -h • • ■ + l/2Ar) 

for some positive integer N, and inequality (2.8) follows. We could have 

taken any convergent series ^ a*,, where > 0, in place of W 2~k. Also 

we could have used another 8 defined for £ > 0 more compactly by 

2?+2(/(0 + l)' 

This formula shows rather clearly the dependence of 8 on / and £. 

With Example 2.2.3 we made some progress: we could feel comfortable 

defining an integral in exactly the same way as the Riemann integral 

but replacing the number 8 with a positive function 8 : [a, b] i—> R+. 

This definition would include the Riemann integral as a special case 

and would have the advantage that many unbounded functions would 

become integrable. However, such a definition would make no sense if 

inequality (2.7) were satisfied only vacuously for some 8. In other words 
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if there were no 5-fine partition of [a, 6]. To illustrate this point we 

mention that there need not be a 5-fine partition if 5 is zero at some 

point. For example there is no 5-fine partition of [—1, 1] if 6(x) = |x|. 

Indeed, if it existed then one interval, say [it, u], would contain zero and 

the inequality v — u < 5(£) would imply v — u < Max{|u|, u}, which is 

impossible. The existence of a 5-fine partition becomes an important 

issue to which we devote the next section. 

2.3 Cousin’s lemma 

We have seen in the last section that it is not immediately clear that 

given a function 5 there is a 5-fine partition. It might look a little 

surprising that a 5-fine partition always exists no matter ‘how badly’ 

the function 5 behaves. It is however important that 5 > 0 and the 

interval is compact. The discovery of the existence of a 5-fine partition 

for any positive 5 has been traced back to the nineteenth century and 

to the Belgian mathematician Cousin.f 

THEOREM 2.3.1 (Cousin’s lemma) If 5 : [a, b\ i—»■ M+ and a < 

c < d < b then there exists a 5-fine partition of [c, d\. 

COROLLARY 2.3.2 If a < c < b and 5 : [a, 5] t-+ R+ then there is 

a partition n of [a, 6] with n 5 and c as one of the endpoints of the 

intervals ofn. 

Proof of Theorem 2.3.1 It is indirect and based on the method of 

nested intervals. Assume, contrary to what we want to prove, that there 

is no 5-fine partition of [c, <fj. Then, either [c, (c + d)/2] or [(c + d)/2, d] 

has no 5-fine partition. Let us denote the half of [c, d] without a 5-fine 

partition by [ci,di]. Now continue this halving process indefinitely and 

obtain a sequence of nested intervals [cn, dn] with dn-cn = (d-c)2~n —► 
0. There exists a point C which lies in all [cn, dn\. Since 5(C) > 0 there 

exists a number N such that for n > N we have 

dn — cn < 5(C). 

This last inequality shows that if 7r = {cn = u\ < £ = C < v\ — dn} 

then 7T is a 5-fine partition of [cn, dn}. This contradicts the definition of 

[cn, dn\. 

t [6] P- 22 
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Theorem 2.3.6 in the next subsection states that Cousin’s lemma is 

equivalent to the least upper bound axiom. The existence of (5-fine par¬ 

titions can therefore be used as the fundamental principle in teaching 

elementary real analysis. For references as well as some proofs see [46]. 

The next subsection, containing applications of Cousin’s lemma, is not 

needed in the rest of the book and can be skipped over. 

2.3.1 Applications of Cousin’s lemma 

We begin with a proof of a classical theorem. 

EXAMPLE 2.3.3 (Weierstrass theorem) Let / be continuous on 

[a, b\. Then we want to prove that / attains its largest value on [a,b\. 

Assume the contrary. Then by continuity of / for every y e [a, b] there 

exist a number Y and a function <5 : [a, b} —> R+ such that 

/(f) < f(Y) for y-8 <t <y + 6 (2.9) 

and t in [a, b\. If {yk, [uk, Vk}} is now a 5-fine partition of [a, b] and f(Yp) 

the largest number among finitely many numbers /(!/), k = 1, 2,..., n 

then Yp lies in some interval [iq, u/ and consequently by (2.9) 

f(YP) < f(Y) < f(Yv), 

a contradiction. • 

EXAMPLE 2.3.4 Let S = {ci,C2,... } with Ci yf Cj for i yf j and 

F'{x) > 0 for x e [a, b] \ S. If F is continuous we wish to prove that 

F is increasing.f It is sufficient to prove F(b) — F(a) > 0. Given e > 0 

define <5(cn) > 0 by using continuity so that 

l*X«) - f Ml < ~ (2,io) 

for cn — 6(cn) < u < cn < v < c + 8(cn). The derivative can be defined 

as| 

F\x) = lim 1-^1— 
v — u 

f Recall that we use ‘increasing’ and ‘strictly increasing’ rather than ‘non-decreasing’ 

and ‘increasing’ and similar terminology for ‘decreasing.’ 

f For the proof see Lemma 2.6.1. 
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for (u,v) —» (x, x) with u^d and u < x < v. It follows that for x ^ 5 

there is a 6(x) > 0 such that if 

x — 6(x) <u<x<v<x + S(x) (2-11) 

we have 

F(v) — F(u) > —e(v — u). (2.12) 

For a 5-fine partition rr we obtain with the help of inequalities! (2.10) 

and (2.12) 

F(b)-F(a) = ^F(n,v) 

7r 

F(b) - F(a) 

= '^Tf(u,v) + ^2F(u,v) 

Ces 
oo 

> -£^2n -e^(u-u) 

> —e(l + b — a). 

Letting e —> 0 completes the proof. 

Our next example provides an alternative proof of sufficiency in The¬ 

orem 1.4.3 (Characterization of R-integrability) to the one given in Sec¬ 

tion 1.4. 

EXAMPLE 2.3.5 We wish to prove that if |/(x)| < M for all x in 

[a, b] and the set E = {x; / discontinuous at x} is of measure zero! then 

/ is R-integrable. For x £ E there is 6{x) > 0 such that inequality (2.11) 

implies 

sup {/; [u, u]} - inf {/; [u, v}} = M - m < ay (2-13) 

There exists a system of open disjoint intervals {In : n G N} covering E 

with 

< 4M' 
l 

(2,14) 

For every x £ E then there is a unique Im which contains it and there 

is a 5 > 0 such that [x - S(x), x + 5(x)] C Im. We now have a positive 

<5(:r) defined on all of [a, b]. Let 7r = {(x, [u, u])} be a 5-fine partition of 

f Recall that F(u, v) = F(v) - F(u). 
j Sets of measure zero were introduced in Section 1.4. 
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[a, b\. Then 

5(7r) - s(n) = ^(M - m)(v - u) + ^(M - m)(u - u). 

x(£E x(zE 

Using inequality (2.13) on the first sum and inequality (2.14) on the 

second, we have 

S(v)-s(n) < ^2(v - u) + 2M - u) 

X$lE xEE 

< 
£ 

2(6 — a) 
- a)+ 2M£ £(”““) 

1 X^In 

- + 2M \In\ < e. 

This shows that / is Riemann integrable by (iii) of Theorem 1.3.1. • 

The next theorem states that Cousin’s lemma is equivalent to the least 

upper bound axiom. Let us recall that an ordered held F is said to be 

complete if every set X C F which is non-empty and bounded above 

possesses a least upper bound. 

THEOREM 2.3.6 (Cousin and l.u.b.) Let F be an ordered field. 

Then F is complete if and only if for every closed bounded interval [a, 6] 

and every function 6 positive on [a, 6] there exists a 6-fine partition of 

[a, 6]. 

Proof The only if part is Cousin’s lemma. For the if part we proceed 

indirectly. Let M be a non-empty set bounded from above which has 

no least upper bound; take a £ M and 6 an upper bound for M. We 

now define 6 as follows: If £ £ [a, 6] and is not an upper bound for M 

then there exists x > £, x £ M. Let 6(£) = x - £ in this case. Note 

that this defines 6 at a. If £ £ (a, 6] and is an upper bound for M then 

there exists z < £, which is also an upper bound (since by assumption £ 

cannot be the least upper bound). Let 6(£) = £ — z. Let 

7T = {(£*, [ui, Vi]); i = 1,... ,n} 

be a 6-fine partition of [a, 6]. The partition 7r has the following properties: 

(n) if £j is not an upper bound neither is V{, i.e. if u; is an upper 

bound so is £j; 

(/r) if £j is an upper bound so is rq. 
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The tag is an upper bound by (u) and £1 is not an upper bound by 

(/Li). There is a smallest i for which £* is an upper bound; let us denote 

it by p. Clearly p > 2, consequently £p_i exists and is not an upper 

bound. By (u) the endpoint vp-\ is not an upper bound, on the other 

hand vp-\ = up is an upper bound by (u). • 

Further examples on the use of Cousin’s Lemma are in Exercises 2.1 

and 2.2. 

2.4 The definition 

The Kurzweil-Henstock integral, Jb f, is defined as the limit of Riemann 

sums, in very much the same way as the Riemann integral is, except that 

^-fineness is measured by a function <5. More precisely we define: 

DEFINITION 2.4.1 A number I is the Kurzweil-Henstock integral 

(or just integral) of f from a to b (or on [a,b}) if for every positive £ 

there is a function 5 : [a, b] ^ R+ such that for every 6-fine partition n 

\J2f~I\<e. (2.15) 

We denote the Kurzweil-Henstock integral I as usual by fa f or by 

/ab f(x)dx and refer to it as the KH-integral. If K = [a, b] then we also 

write L f for fb f. If we wish to distinguish the Kurzweil-Henstock 
J I\ J J CL J ^ 

integral from another integral we may denote it by JCH fa f. We shall 

often refer to functions which have an integral according to Definition 

2.4.1 as Kurzweil-Henstock integrable or as KH-integrable, and only 

when no confusion can arise as integrable. 

The KH-integral is well defined; this is the content of the next theorem. 

First we look at some examples. 

Examples 2.2.1 and 2.2.3 showed that JCTt f0 f = 3 and KTH, Jq / 0, 

respectively. A definition of the integral must be judged on the power 

and usefulness of the theory which can be built on it and not on examples 

of its direct application. However, we still give three more examples of 

integral evaluation directly from the definition to illustrate now 

• that the definition is easy to work with; 

• that the class of KH-integrable functions is richer than the class of 

Riemann integrable functions. 
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EXAMPLE 2.4.2 The formula 

pb p — a 

/ f(x)dx = / f(—x)dx 
Ja J-b 

holds whenever one of the integrals exists. If 

7T = {£, [U, V]} 

is a 5-fine partition of [a, b] then 

7T~ = {-£, [~V, -U]} 

is a 5-fine partition of of [—5, —a] and vice versa. Since 

E /(£)(« -u) = E - (-,y))> 

the assertion follows. 

EXAMPLE 2.4.3 ( An ‘improper’ integral) We wish to prove 

that 

[■A 

/ f{x)dx — 2 VA, (2.16) 
Jo 

where f(x) = for x ^ 0 and /(0) = 0. Define 6(x) = ex for x ^ 0 

and 5(0) = e2. Let | > e > 0 and ix = {(yi, [u{, n^])} be a 5-fine 

partition of [0, A]. Note that this choice of 5 implies y1 — 0 (if y\ > 0 

then y\ < v\ — v\ — u\ < 2eyi < yi). Since 

f(Ui)(vi Ui) < 2 

and 

for yi ^ 0, we have 

/Vi ,- 
- < vT+i 
Vi 

E f ^ - V^) = 2vWl + £ 
7T i= 1 

For an estimate from below note that 

(2.17) 
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for i > 2. Hence 

n 

Xf - 
7T 1=2 

n 

> 2\/l - eX(V^ ~ 0h) 
i=2 

= 2\/l - e(vC4 - v^) 

= 2vT^7(V^4-e). (2.18) 

Since £ is arbitrary equation (2.16) follows from inequalities (2.17) and 

(2.18). • 

REMARK 2.4.4 In this example it was convenient to choose 8 in 

such a way that for any 5-fine partition the tag of the first interval of 

the partition was 0. Generally any point c can be forced to become a 

tag of a 5-fine partition; if a < c < b and 8(x) < \x — c\ for x ^ c and 

5(c) > 0 arbitrary then for any 5-fine partition c tags the interval in 

which it lies. We shall refer to choosing 5 in such a way that c becomes 

a tag as anchoring the partition on c. It is easy to see that if S' is a finite 

set in [a, b] then there exists a positive function 5 such that every 5-fine 

partition is anchored on S. 

The next example will be superseded later but provides now an example 

of a function KH-integrable but not R-integrable. 

EXAMPLE 2.4.5 If S = {ci, c2, c3,... } with a ^ c3 for i / j and 

fix') = 0 for x (j S then / is integrable and /a& / = 0. The function / 

can be, for instance, the characteristic function of the rationals, which 

is often called Dirichlet ’s function. Define 

8(cn) — -t-—t-r and 8(x) = 1 for x S. 
2J+2(|/(cj)| + 1) 

Let 7i = {(&, [ui, «<]); i = 1,2,... ,n} be a 5-fine partition of [a,b]. 

Clearly 

n J/i€S 

Since the same Cj can be equal to x/i for two distinct i and because of 

the choice of 5 we have 

j/.es 
< 2Xl/(OI 2i+i(|/(cj)| + 1) 

3=1 

< e. 
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This proves that the function / is KH-integrable and J^ / = 0. • 

We still have to show that the definition is meaningful, namely that the 

value of the KH-integral is always uniquely determined. Note that the 

proof uses Cousin’s lemma. 

THEOREM 2.4.6 There is at most one number I satisfying the con¬ 

dition from Definition 2-4.1. 

Proof Assume that for every positive e there exists 8\ such that 

< £ 

whenever ix <C <5i and also that there exists 62 such that 

(2.19) 

< £ (2.20) 

whenever tt <C <52. Let 8 = Min(<5i, £2) and it be <5-fine. Then inequalities 

(2.19) and (2.20) hold and consequently 

\I-J\< 2e. 

By letting e^Owe obtain \I — J\ < 0, that is I = J. • 

2.5 Basic theorems 

The next few theorems have almost the same proofs as in the Riemann 

theory. For the sake of completeness we prove them here. 

THEOREM 2.5.1 (Homogeneity) 

c£R, then cf is integrable and 

If f is integrable on [a, b] and 

cf = c f. (2.21) 

Proof If c — 0 the theorem is trivial. Let c ^ 0, e > 0. There exists a 

positive function 8 such that 

whenever n < 5.It follows that 

r-6 

£o/^c/ 
it J a 

f < £ 



2.5 Basic theorems 33 

REMARK 2.5.2 It follows that if cf is integrable and c ^ 0 then / 

is also integrable and (2.21) holds. 

THEOREM 2.5.3 (Additivity) If f and g are integrable on [a, b\ 

then so is f + g and 

rb rb rb 

/ (f + g)= / + / Q' (2.22) 
J a J a J cl 

Proof For every positive e there exist positive functions <5i and 62 such 

that 

for 7r <C <5i, and 

(2.23) 

(2.24) 

for 7T <C 62. Define S(x) = Min^x), S2(x)). If n < 6 then inequalities 

(2.23) and (2.24) hold and since Ynif + 9) = Yn f + Yn 9 we have 

pb rb 

f~g 
J a J cl 

REMARK 2.5.4 It is an easy exercise to extend formula (2.22) to a 

sum of n functions. 

A set N is said to be negligible or a null set if every function h which 

is zero outside N is KH-integrable and h = 0 for every interval [a, 6]. 

Every finite set is null and by Example 2.4.5 every countable set is nullf 

Section A.l in the Appendix contains an example of a null set which is 

not countable. Obviously, the characteristic function of a null set is 

integrable and its integral is zero. It is interesting that in our theory the 

converse is also true. We have 

THEOREM 2.5.5 A set S is negligible if and only if the integral of 

its characteristic function I5 over any interval [a, b] is zero. 

f Section 2.11 contains the definition of sets of measure zero and the characterization 

of negligible sets as sets of measure zero. 
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Proof If S is negligible then by the very definition of a negligible set 

ls = 0. (2.25) 

If equation (2.25) holds then for every positive e there is 6n : [a, 6] —> M+ 

such that if nn <C 6n then 

1s(€k)(vk ~ uk) < —— • (2.26) 
Z 77/ 

7Tn 

Let / be an arbitrary function which is zero outside S and 

En = {x : n - 1 < \f(x)\ < n}. 

For x G En we define S(x) to be 6n(x). Let 7r = {(£&, [ufe, Vk]); k = 

1,... ,p} be a 5-fine partition and M an integer with |/(£*.) | < M for 

k = 1,... ,p. Then we have by (2.26) 

£/ 

M 

< ^2 n(Vk ~ 
n= 1 £k€En 

M oo 

= ~uk> <e- 
n= 1 7rn n=l 

THEOREM 2.5.6 Lef / 5e an integrable function on [a, b] and let g 

be a function which differs from f only at points of a null set. Then g 

is integrable and 

Proof Since g — f + (g — f) Theorem 2.5.6 is an immediate consequence 

of Theorem 2.5.3 and the definition of a null set. • 

REMARK 2.5.7 The last theorem can also be expressed as follows: 

Changing the definition of a function / at points of a null set affects 

neither the existence nor the value of Ja f. This is used very often. It 

also allows us to assign a meaning to the integral of a function which is 

dx is 
y/W\ 

defined except on a null set. For example, the meaning of j b 

clear: it is equal to f* f where f{x) = for x j- 0 and /(0) = 0 ( 

something else). 

or 
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THEOREM 2.5.8 (Preservation of inequalities) If f and g are 

integrable on [a, b] and f < g then 

(2.27) 

Proof For every positive e there exist functions <5i and 62 such that 

pb pb 

/ / - £ <5^/ < f + z, 
J a ^ J a 

(2.28) 

whenever 7r <§C <5i, and 

/*-«<£»< / 
J a „ J a 

g + e (2.29) 

whenever it < 62. Let 6 = Min(<5i, <52). If tt < 6 then inequalities (2.28) 

and (2.29) hold simultaneously. Since Y-n f — S7r 9> if follows that 

nb rb 

/ f-£< £ + £■ 
J a J cl 

By letting e-+0we obtain inequality (2.27). • 

COROLLARY 2.5.9 If f and g are integrable and f(x) < g(x) for 

all x e [a, b] except on a null set then inequality (2.27) still holds. 

COROLLARY 2.5.10 If f is integrable and f(x) < M for all x G 

[a, b] except on a null set then 

f < M(b a). 

Similarly, 

m(b - a) < /, 
J a 

for an integrable f satisfying f > m except on a null set. 

COROLLARY 2.5.11 If both the functions f and \ f\ are integrable 

then 
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Proof We have —1/| < / < |/| and therefore 

pb pb pb pb 

/ -I/I = - / \f\< f< I/I- 
Ja «7a J a J a 

Warning. Even if / is integrable, the function |/| need not be. This is 

shown by Example 2.6.7 in the next section. 

THEOREM 2.5.12 If f is integrable over [a, c] and [c, b] then f is 

integrable over [a, b] and 

(2.30) 

Proof For every positive e there exist positive functions 8 and 8 such 

that if 7r is a 5-fine partition of [a, c] and n is a 5-fine partition of [c, b} 

then 

£/- (2.31) 

and 

Let 

(2.32) 

8{x) = Min(5(x), ^(c-a;)) for a < x < c, 

8{x) = Min(%),^(x-c)) for c < x <b, 

8(c) = Min(5(c), 5(c)). 

, s, 

III 

H
H

 Ui]); i — 1,2,... ,n} and 7r <C 8 then 7r is anchored on c 

and hence c = £& for some k £ N. We now have 

fc-i 

J]/ = X]/(&)(*>» ~Ui) + /(&)(& -«fc) 
7T i = l 

fc-1 

+ (2.33) 
i=l 

Clearly 

/c —1 

= f(Ci)(vi ~ Ui) + /(£fc)(£fc — Wfc) 
1=1 

(2.34) 
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represents a Riemann sum for a 6-fine partition of [a, c], hence by in¬ 

equality (2.31) 

S (2.35) 

Denoting the last two terms in (2.33) by Shc we have for similar reasons 

(2.36) 

Combining inequalities (2.35), (2.36) shows that for any 5-fine partition 

of [a, b] we have 

< £. 

This proves / integrable on [a, 6] and equation (2.30). 

REMARK 2.5.13 In the proof of Theorem 2.5.12 we split the Rie¬ 

mann sum into two, one for the interval [a, c] and another for [c, b\. This 

was possible because we anchored the partition on c. This trick is very 

useful and we will use it without further explanation in future. 

On occasions like this when we split a Riemann sum into two, one cor¬ 

responding to the interval [a, c] and the other to [c, 6], we shall denote 

the first one as 

E if or E»/- 
7T 

and the second similarly as 

E if ” E if- 
7T 

We then have 

E/ = Eh = Es/+Ec/- 
7T 7T 7T 7T 

THEOREM 2.5.14 If f is KH-integrable on [a, b] then it is integrable 

on every [a, (3] C [a, b\. 
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REMARK 2.5.15 We shall give a two-line proof in the next chap- 

terf using the Cauchy principle for Riemann sums. The proof here is 

elementary but somewhat lengthy. 

Proof of Theorem 2.5.14 It is sufficient to consider the case when 

[a, 0\ — [a, c\. The argument is entirely similar for [a, p\ = [c, b] and 

the general case then follows. To every n <E N there exists a 6n such that 

£/- 
(2.37) 

whenever II is <5n-fme. Let 7Ti, tt2 be two <5n-fme partitions of [a, c]. If 

we join these with a fixed <5n-fme partition of [c, b] we obtain two <5n-fme 

partitions of [a, b], say IR, IR, and 

£/-£/ 
771 7T2 

£/-£/ 
iii n2 

(2.38) 

The right-hand side of equation (2.38) is less than 2n 1 by inequality 

(2.37). Hence 

It follows that the sets 

£/-£/ 
70 772 

(2.39) 

•?» = {£ /;7T a <5n-fme partition of [a, c]} 

7T 

are bounded and because we can assume Sn+i < 6n the sets Sn are also 

nested. Let [Un, Vn] be the smallest closed interval containing Sn, i.e. 

Un — sup Sn, Vn = inf Sn. By inequality (2.39) we have Vn — Un < 2n~1. 

Using the nested intervals theorem we find a number I which lies in all 

[Un, Vn]- Let £ > 0 and 2n~1 < e. Let n be a <5n-fme partition of [a, c]. 

Both numbers I and / lie in [Un, Vn], and consequently 

< Vn - Un < ~ < £. 
n 

A step function is a linear combination of characteristic functions of 

bounded intervals);. It follows from the last theorem and Theorems 

f Remark 3.1.2. 

t some of them possibly degenerating into one-point sets. We shall use this definition 
of a step function throughout this book. It is more general than the definition of 
a step function on page 4. Note that a step function is defined on all of R. 
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2.5.1—2.5.3 that step functions are KH-integrable on any interval. This 

together with the next theorem makes it easy to identify some important 

classes of KH-integrable functions. 

THEOREM 2.5.16 If for every positive e there exist KH-integrable 

functions h, H such that 

h{x) < /(x) < H(x), (2.40) 

for all x G [a, b} except a null set, and 

then f is KH-integrable on [a, b]. 

(2.41) 

Proof We can and shall assume for the proof that inequalities (2.40) 

hold everwhere on [o, 6]. Both 

[b 
sup{ / h : h < f,h integrable} 

and 

inf{ f H : H > f,H integrable} 
J a 

exist and are equal, say to I. We now choose h and H satisfying (2.41) 

and (2.40). Clearly 

h<I < H. 

There is a positive function 6 such that for every 6-fine partition it 

£*- 

X>- 

< e, 

< e. 

Since the Riemann sums for / are trapped between those for h and H 

we have for 7r<<5 

£/< 

£/> 

+ £ < I T 2£, 

- £>I- 2e. 
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REMARK 2.5.17 Since step functions are KH-integrable Theorem 

2.5.16 is often applied with h, H step functions.! 

COROLLARY 2.5.18 Iff is monotonic and bounded on [a, b] then 

it is KH-integrable. 

Proof For the sake of definiteness let / be increasing. Divide the inter¬ 

val [a, b\ into n intervals [«;, Vi] of equal length and let H(x) = f(vi), 

h(x) = f{ui) for x G [ui, v^. We have inequality (2.40) and 

0 < f H - f h = ±[f(Vi) - f(ui)](vi - = [/(&) - /(a)]~~~' # 
J a Ja 

COROLLARY 2.5.19 A function is KH-integrable on every closed 

and bounded interval on which it is continuous. 

Proof Let / be continuous on [a, b] and e > 0. For every £ G [a, b} 

there is a positive <5(£) such that 

/©-e</W </«)+£ (2.42) 

whenever £ — <5(£) < x < £ + <5(£). Let n = {(£, [u, u])} be ^-fine and 

h(x) = /(£) — e, H(x) — /(£) + e for x in [u, v). The functions h and 

H satisfy inequalities (2.40) and 

rb /»6 

H- h = 2e(b-a). • 
J a J a 

A function / is said to be regulated on [a, b} if for every positive e there 

is a step function <p such that 

\<p(x)~ f(x)\ <e (2.43) 

for all x in [a, b}. Obviously step functions are regulated. The proof of 

Corollary 2.5.19 shows that continuous functions are regulated. 

THEOREM 2.5.20 All regulated functions are KH-integrable. 

Proof We choose H — ip + e and h = ip — e and then apply Theorem 

2.5.16. ^ # 

f If h, H are step functions and inequalities (2.40) hold everywhere on [a, f>] then the 
function / becomes Riemann integrable. However, Theorem 2.5.16 can be applied 
e.g. if / is the Dirichlet function. 
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REMARK 2.5.21 What makes the last theorem more interesting is 

that functions having a limit both from the right and from the left at 

every point of [a, b] are regulated. Let e > 0 and denote by f{x+) and 

f(x—) the limits at x from right and left, respectively. There is a S(x) 

such that 

I/O) - /(*-)| < £ 

for t E (x — 5(x), x) n [a, b\ and 

I/O) - f{x+)| < £ 

for t e (x, x + 6(x))D[a, b]. Let {(x, [u, n])} be a 5-fine partition of [a, b] 

and 

( f(x-) if t e (u, x) ± 0 

<p(t) = < f(x+) if t <E (x, v) i- 0 

^ /(f) otherwise. 

is clearly a step function and (2.43) holds on [a, 6]. 

It follows that monotonic functions are regulated. 

In the KurzweiKHenstock theory the question whether the product of 

two functions is integrable is not as easy as for instance in the Riemann 

or the Lebesgue theory. However, Theorem 2.5.16 leads to some practical 

criteria. 

THEOREM 2.5.22 If on [a, b] 

• the function f is KH-integrable and bounded below 

• g is regulated 

then fg is KH-integrable. 

Proof It is sufficient to prove the theorem under the additional assump¬ 

tion that / is non-negative. The general case is obtained by considering 

f - C, where C is a lower bound for /. If / is integrable and tp a 

step function then ftp is obviously integrable (by Theorems 2.5.1, 2.5.3, 

2.5.12 and 2.5.14). Denote f = A. For a regulated g there is a step 

function p such that 

Consequently 

h(x) < f(x)g(x) < H(x) 



42 2 Basic Theory 

with 

H(x) = f(x)tp(x) + ^/(x), 

h{x) = f(x)ip(x) - 7tj/O), 

for x e [a, 6]. We can now apply Theorem 2.5.16. • 

COROLLARY 2.5.23 If on [a, 6] 

• the function f is KH-integrable and bounded below 

• g is either continuous or monotonic 

then fg is KH-integrable. 

REMARK 2.5.24 The assumption that g is either continuous or 

monotonic on the the closed interval is essential, as the example of f(x) — 

g{x) — x“2 and [a, b] = [0,1] shows. Also the assumption of / being 

bounded below (or above) is indispensable if g is continuous. Example 

2.7.2 provides a KH-integrable /, a continuous G and a non-integrable 

Gf. On the other hand if / is KH-integrable and g monotonic and 

bounded then fg is KH-integrable. This will be proved later in this 

book (see Corollary 3.7.7). It follows, however, easily from Theorem 

2.5.22 that if / and |/| are KH-integrable and g is regulated then fg is 

KH-integrable. Indeed, f+g and f~g are KH-integrable by the theorem 

and fg = f+g - f~g. 

THEOREM 2.5.25 (The first mean value theorem of integral 
calculus) If on [a, b} 

(0) / is non-negative and KH-integrable, 

(7) g is continuous 

then there is a c G [a, b] such that 

(2.44) 

REMARK 2.5.26 The special case of / = 1, when equation (2.44) 

reads 

(2.45) 

is also often called the mean value theorem. The geometrical meaning 

of (2.45) is evident from Figure 2.2. 
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Fig. 2.2. Mean Value Theorem 

Proof of Theorem 2.5.25 Let m = inf {g; [a, 6]}, M — sup {g; [a, b\}. 

We know that fg is KH-integrable and hence 

m I' f< f fg<M f f. (2.46) 
J a J a J cl 

If f*f = 0 then by inequality (2.46) fg = 0 and the conclusion of the 

theorem obviously holds with any c in [a, b]. If faf >0 then the value 

b = 
(2.47) 

lies between m and M and it must be taken by the continuous function 

9• 
The assumption of continuity of g can be weakened: one can assume 

the so-called intermediate value property instead. We say that a function 

g has the intermediate value property on [a, b] if g takes on [a, b} every 

value between g(a) and gib). It is obvious that a function can have the 

intermediate value property on every subinterval of an interval I and 

be discontinuous at some point of /, e.g. the function / with /(0) = 0, 

/(x) = sin(l/x) and / = [-1,1]. More interesting is an example of a 

function which has the intermediate property on everyf [ck, f3\ C [0, 1] 

and which is not continuous at any point of [0, 1] (see [4] p. 71). On 

the other hand a function which has the intermediate value property on 

every subinterval of [a, b] and takes each value exactly once is continuous 

and monotonic on [a, b] (see [9]). The stronger version of the mean value 

theorem reads: 

f No matter how small it is. 
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THEOREM 2.5.27 The assertion of Theorem 2.5.25 remains valid 

(0) f is non-negative and KH-integrable, 

(7i) 9 has the intermediate value property on every interval [a, j3] with 

[a, P] C [a, b], and 

(07) the product fg is KH-integrable. 

We postpone the proof of this theorem until Section 2.11. 

DEFINITION 2.5.28 (Extension of the definition) We define 

and if a > b 

The convenience of this definition can be seen in the following examples. 

If / is integrable on every subinterval of [a, 6] then the function 

with c G [a, b], is now defined for every x G (a, b). The formula 

which can be verified for a > 0 directly from the definition, now holds 

for any real a. 

Most of what we have said about the integral extends easily to the 

cases a = b or b < a. However, there are differences, e.g. if b < a, inequal¬ 

ity (2.27) in Theorem 2.5.8 is reversed and the inequality in Corollary 

2.5.11 is replaced by 

Usually common sense suffices for modifications (if any are needed) of 

theorems stated for a < b to include also the cases a = b and a > b. 
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THEOREM 2.5.29 (Continuity of the indefinite integral) If f 

is integrable on [a, b] then the function 

F(x) = f f (2.48) 
J a 

is continuous on [a, b]. 

Proof We prove only that F is continuous from the left at c with 

a < c < b. Continuity from the right at c, with a < c < b, follows 

by using the already proved part on the function x i—» f(—x) and the 

interval [—b, —a]. Let e > 0. There is a positive to such that 

|/(c)(c-f)|<| (2-49) 

whenever c — u <t < c and a positive function hi such that 

Y, f - iF(c> - F<a>] (2.50) 

whenever 7r is a 5i-fine partition of [a, c]. Define 5(c) = Min(5i(c),u) 

and choose t with c > t > c — 5(c). There exists a positive function 82 

such that if nt is a 52-fine partition of [a, t] then 

Let 

^f-[F(t)-F(a)] (2.51) 

5(f) = Min[5i(0, 52(01 for a<£<t, 

5(0 = 5i(0 for t<f<c. 

We now choose a partition tt consisting of a 5-fine partition 7q of [a, t] 

and a pair (c, [t, c]). The following identity is obvious: 

/ - [F(c) - F(a)] 

+ f(c)(c-t)-[F(c)-F(t)]. (2.52) 

Consequently 

IF(c) - F(t) | < J2f-[F(t)-F(a)\ 

Yf- iF(c> - F<a)i + |/(c)(c-t)|. (2.53) 
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Clearly 7r <C <5 and therefore by inequalities (2.53), (2.49), (2.50), (2.51) 

| F(c)-F(t)\<e, 

for any t with c — 8(c) < t < c. 

2.6 The Fundamental Theorem of calculus 

The Fundamental Theorem of calculus asserts that 

F(b) - F(a) = f F'. (2.54) 
J a 

Formula (2.54) is often called the Newton-Leibniz formula. It is perhaps 

not as much realized as it ought to be that the validity of this formula 

depends on the concept of the integral used. In in Section 1.4 (Differen¬ 

tiability, continuity and integrability) we discussed it in the framework 

of Riemann’s integration. The KurzweiRHenstock theory has the best 

theorem in this direction and we shall see that in the next chapter. The 

theorem which we prove now is still better than anything the Riemann 

theory can offer. First we need 

LEMMA 2.6.1 (Alternative definition of derivative) F has a 

derivative f (x) at x if and only if for every e > 0 there is a 6 > 0 such 

that if u v and 

x — 6<u<x<v<x + 6 (2.55) 

then 

|F(u) - F(u) - f(x)(y - u)| < e{v - u). (2.56) 

Proof In inequality (2.56) we choose u or v equal to x and have 

IF{v) - F(x) - f(x)(v - x)| < e{v - x), (2.57) 

\F(x) - F(u) - f(x)(x - w)| < e(x - u). (2.58) 

The if part is now evident. For the only if part we note that given e > 0 

there is a <5 > 0 such that inequalities (2.57) and (2.58) hold if u and v 

satisfy (2.55). It follows that 

|F(u) - F(u) - f{x)(v -u)| < e(v - x) + e(x - u). • 
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THEOREM 2.6.2 (Fundamental Theorem. First version) If 

F'(x) = f(x) for all x E (a, b) and F is continuous on [a, b] then f is 

KH-integrable and 

REMARK 2.6.3 We prove the theorem under the additional as¬ 

sumption that F'(b) exists. The more general case then follows by the 

already proved part of the theorem to the interval [a, c]f and to the 

function x i—* f{—x) and the interval [—6, —c]. Alternatively, one can 

give a similar argument for the point b as we give for the point a. 

REMARK 2.6.4 The function F is called the primitive of /. More 

precisely F is said to be a primitive of / on [a, b] if F is continuous on 

[a, b] and F'(x) = f(x) for all x in (a, b). The Fundamental Theorem 

can be now rephrased thus: If f has a primitive F on [a, b] then f is 

KH-integrable and equation (2.54) holds. 

Proof of Theorem 2.6.2 Let £ > 0. By the continuity of F at a there 

exists a positive ui\ such that a < v < a + lo\ implies that 

\F(v)-F(a)\ < E~. (2.59) 

Since lim f(a)(v - a) = 0 there exists a positive u2 such that 

\f{a)(v -a)| < | (2.60) 

whenever a < v < a + u>2- Since F'{x) — f(x) f°r x £ (ai b\ we can find 

a positive 77 = r)(x) such that 

|F(v) - F(u) - f(x)(v - u)\ < - u), (2.61) 

whenever x-rj(x) < u < x < v < x + v(x), by Lemma 2.6.1. Now define 

8 by 

5(a) = Min(wi,<x>2), 

6(x) = Min(x — a, r/(x)). (2.62) 

f a < c < b 
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For the rest of the proof, let 7r = {(£*, [rij, I**])} be 6-fine. Note that 

(.x — a) appears in equation (2.62) to anchor x\ at a = u\. Now we write 

n 

F(b) - F(a) = F(un, vn) 
i— 1 

and have by inequalities (2.59)—(2.61) 

F(b)-F(a)~Y,~Ui) 
i=1 

< |F(»,) - F(a)| 

l/(«)(«l - <01 + T, r-V‘) ~ Flu’) ~ /(£•)(»i - “.) 
i=2 

£ 

3 
+ 

£ 

3 

£ 

3(6 — a) 

n 

- Ui) < £. 

i=2 

REMARK 2.6.5 It is obvious that F may fail to have a derivative on 

a finite set of points and the Fundamental Theorem still hold, provided 

F remains continuous on [a, 6]. Moreover, provided F is continuous, 

the above proof can be extended by allowing a countable exceptional 

set S = {cn; n = 1,2,...} where F' does not exist or is not equal to 

/. Since we shall prove a more general theorem in the next chapter we 

shall not prove this generalization here. We only indicate how to define 

the function 6. We can assume without loss of generality that the end¬ 

points a, 6 are in S. For x ^ cn we define 6 as before: S(x) = rj(x). 

The function F is continuous on S. Hence there exists <5X : S —*• R+ 

such that |F(u) - F(u)| < £2~n~1 for cn - 61 < u < cn < v < cn + 61 

and there exists 62 : S —>• R+ such that |(u - u)f(cn)\ < e2_n_1 for 

Cn ~ 62 < u < cn < v < cn + 62; and one can take S = Min(6i, 62). 

EXAMPLE 2.6.6 We have 

Just apply the Newton-Leibniz formula. Note that y/x is not differ¬ 

entiable at zero. In this example we can see how convenient it was to 

assume in the theorem the existence of the derivative only in the open 

interval (a, 6). However, for the validity of the theorem it is essential 

that F is continuous on the closed interval [a, 6], 
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EXAMPLE 2.6.7 Let F be defined by F(x) = x2 cos(n/x2) for x 7^ 0 

and F(0) = 0. By Theorem 2.6.2 the function F' is integrable on [0,1] 

and L1 F' — — 1. However, I EM is not integrable. For an indirect proof 

assume it is and define fi to be \F'\ on (1 /yji + 1,1 /Vi) = {o>i,bi) and 

fi = 0 otherwise. Then 

F' 

mi)-F(ai)\ = \ + TF>JF 

For every n <E N and every x £ [0,1] we have 

n 

\F\x)\ >^fi(x). 
i—1 

Consequently 

" 2 

Since the right-hand side of this inequality diverges as n ^ 00 we have 

a contradiction. • 

Let / be integrable on [a, b] and continuous from the left at c, with 

a < c < b, and let 

F(x) = / /. 
J a 

Given e > 0 there is a positive 77 such that 

(2.63) 

/(c) - e < f(t) < f{c) +e 

for c - 77 < t < c. Hence \F(x) - F{c) - f{c){c - x)\ < e(c - x) for 

c - 77 < x < c. This shows that the left-hand derivative F'_ (c) exists 

and equals /(c). A similar argument shows that F|(c) = /(c) if / is 

continuous from the right at c and a < c < b. We have proved 

THEOREM 2.6.8 (Fundamental Theorem. Second version) If 

f is integrable on [a, 6] and F is defined by equation (2.63) then 

• F has a right-hand derivative at every c with a < c < b at which 

f is continuous from the right and then E_|_(c) — /(c), 

• F has a left-hand derivative at every c with a < c < b at which f 

is continuous from the left and then F_{c) — /(c). 
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COROLLARY 2.6.9 (Existence of a primitive) If f is continuous 

on [a, 6] then there exists a function G such that] G' = / on [a, b]. 

The first version of the fundamental theorem can be schematically stated 

if F\x) = f(x) then F(x) = F(a) + f /; (2.64) 
J a 

and the second version as 

if F(x) = F(a) + f f then F'(x) = /(x). (2.65) 
J a 

Implications (2.64) and (2.65) show that differentiation and integra¬ 

tion can be regarded as inverse processes. However, in the Kurzweil- 

Henstock theory the validity of equations (2.64) and (2.65) is ensured 

under different assumptions. For (2.64) we need the mere existence of 

F' whereas (2.65) requires continuity of / as well. Continuity is really 

needed^ as the following example shows. If f(x) = x/\x\ for x ^ 0 

and /(0) = anything then F fails to have a derivative at 0. A function 

/ can be KH-integrable and discontinuous at every point of [a, 5], e.g. 

the Dirichlet function from Example 2.4.5. This leaves the possibility 

open that F'{x) may fail to exist or to be equal to f(x) at every x 

in [a, 5]. Fortunately this is not so; in the next chapter we prove that 

F'(x) = /(x) except for a null set. 

2.7 Consequences of the Fundamental Theorem 

The Kurzweil-Henstock theory provides powerful theorems on substitu¬ 

tion and integration by parts as we shall see later in this book. Here 

we show that the Fundamental Theorem leads naturally and easily to 

reasonably good theorems, far better than the ones obtained for the 

Riemann integral. 

THEOREM 2.7.1 (Integration by parts) If F and G are continuous 

on [a, b], F' — f and G' = g on [a, 6] except on a finite set§ then 

(Fg + Gf) = F(b)G(b) - F(a)G(a). (2.66) 

f At a or b the derivative is one-sided. 

f Not only in KH-theory but in any reasonable theory of integration. 

§ If one is prepared to use Remark 2.6.5 to its full extent, this set can be countable. 
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Proof We have (FG)' = Fg + Gf except on a finite set, the function 

FG is continuous on [a, 6] and by the Fundamental Theorem equation 

(2.66) follows. • 

Provided that one of the integrals in equation (2.67) below exists we 

obtain the usual formula 

[b Fg = F(b)G(b) - F(a)G(a) - f fG. (2.67) 
J a J cl 

EXAMPLE 2.7.2 The assumptions of the theorem alone do not 

guarantee the existence of either integral in equation (2.67) as the fol¬ 

lowing example shows. For F(x) = x2 sinx-4, G(x) = x2cosx 4 for 

x j- 0 and F(0) = G(0) = 0 neither f* Fg nor Gf exists because 

F(x)g(x) - G(x)f(x) = 4a:-1. For F and G chosen as above, equation 

(2.66) holds but formula (2.67) does not make sense. Moreover this ex¬ 

ample also shows that the product of a KH-integrable function / and a 

continuous function G need not be integrable. 

REMARK 2.7.3 (The Taylor theorem) It is sometimes stated even 

in very good texts that the Lagrange and Cauchy forms of remainder are 

more general than the integral form. This is not so much a statement 

about the nature of the theorem as about the concept of the integral 

used in these formulae. When using the KH-integral the opposite is true 

as the following theorem shows. 

THEOREM 2.7.4 (Integral remainder) If f, f',■■■, f{n) are con¬ 

tinuous on [a, b\ and f(n+F exists except possibly on a finite set\, then 

the function t i-> f{n+1)(t)(b - t)n/n\ is KH-integrable and 

f(b) = /(a) + f'(a)(b - a) 4-f fn{a)- + Rn, (2.68) 

where 

f f(n+» (tjhzih*. (2.69) 

J a 

Proof By induction. For n = 0 the result is just the Fundamental Theo¬ 

rem. By equation (2.67) with F = /(n+1) and G(t) = (5-t)(n+1)/(n+1)! 

we have (the existence of the first integral is guaranteed by the induction 

| If one is prepared to use Remark 2.6.5 to its full extent, this set can be countable. 
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hypothesis) 

’bf(n+l)it)(±_jrdt = /<"+1>(a)()n 

(n+2) u\ (b - *) 

n! 

n+l 

+ / 
(n + 1)! 

dt. 

This means 

Rn = /(n+1)(a)() jrvr +H„+1. 
(n + l)! 

n+l 

Since the derivative need not exist everywhere on [a, b] the Lagrange 

(or Cauchy) remainder is not valid. Moreover the Lagrange (or Cauchy) 

remainder follows from the above theorem under the additional assump¬ 

tion that /(n+1) exists everywhere on [a,b]. Indeed, f(n+T has the 

intermediate value property! and the function 

fin+1)(t) 
(.b-t)n 

n! 

has a primitive. This follows by induction from 

£ 

dt 
f(n+1>(t) 

(b - t)n+1 

(n + 1)! 

By Theorem 2.5.27 

/<"+2)(*) 
(ib - t)n+1 

(n + 1)! 
- (t> 

(b - tr 
n\ 

R n /(n+1)(c) —■J^dt = /(n+1)(c) 
(b — a)(n+1) 

(n + 1)! 

Using equation (2.45) gives 

fi„=/(n+1+)^_+(!,-a), 
77/ • 

i.e. the Cauchy remainder. Other remainder forms can also be derived; 

for more details we refer to [43]. The point worth making is that with 

the use of the Kurzweib Henstock integral the increased validity of the 

integral form of the remainder makes this form preferable to the other 

ones. 

THEOREM 2.7.5 (Substitution I) If 

(i) the function 93 : [o, 5] i-> [A, B], 

(ii) (p is continuous on [a, b\, 

(iii) cp has a derivative on (a, b); 

f see e.g. [4] p. 122. 
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(iv) there is a function F, continuous on [A, B\ with F'(x) = f(x) 

for x E (A, B), 

then 

r<r{b) fb 

/ f(x)dx = / f(<p(t))<p'(t)dt (2.70) 
J ip(a) Ja 

REMARK 2.7.6 The theorem as stated suggests that a < b. How¬ 

ever, a moment’s reflection shows that, with obvious modifications of 

the assumptions, formula (2.70) is also valid for a > b. In the proof we 

assume a < b. 

Proof of Theorem 2.7.5 By the Fundamental Theorem the left-hand 

side of (2.70) is F(p(b))-F(p(a)). Noting that [F(p(t))]' = f(p(t))p'(t) 

for every t E (a, b) and applying the Fundamental Theorem to the inte¬ 

gral on the right-hand side of (2.70) proves the theorem. • 

REMARK 2.7.7 The strength of this theorem lies in the fact that no 

assumption is made concerning the monotonicity of p. It is applicable 

for instance with pit) = tsint-1, and we have 

[p(t)]2p'(t)dt — 0. 

Assumption (iv) is a little inconvenient. The most likely reason for 

using the formula is that we do not know F but then it might be diffi¬ 

cult to justify the use of (2.70).f The next theorem does not have this 

weakness. 

THEOREM 2.7.8 (Substitution II) If we assume (i)-(iii) of Theo¬ 

rem 2.7.5 and if p is strictly monotonic then formula (2.70) holds in the 

following sense: If one of the integrals appearing in (2.70) exists then so 

does the other and (2.70) is valid. 

Proof We shall consider the case of strictly increasing p. The function 

p associates with a partition 7r of [a, b] a partition pon of [p(a), p(b)]: if 

7r = {(t, [u, u])} then p o n = {(p(t), [p(u), a(v)])} = {(^ [Vi ZD)- ^lso 

every partition u = {(®, [y, *])} of [p(a), p(b)] is of the form p o n for 

some partition n of [a, b], namely! 

7T = {(p~i(x), [p-\(y), p-i(z)})}. 

f If / is continuous on [a, 6] then (iv) holds because of Corollary 2.6.9. 

% i denotes the inverse of tp. 



54 2 Basic Theory 

Given 

V ■ Ma), Tip)] -*• K+ 

it is possible using continuity of cp to find 

6V : [a, b] —> R+ 

such that 7r <C Sv implies p o it <C 77. Conversely, given <5 : [a, b] —> R+ 

there is a positive 775 such that ip o 77 <C 775 implies 7r <5, where 775 is 

given by 

775(f) = Min[</?(t) - <p(t - <5(t)), ip(t + 6(f)) - <p(f)]. 

The following lemma will facilitate the proof. 

LEMMA 2.7.9 For every e > 0 there is a A : [a, b] —* R+ such that 

/or every A-fine partition 7r 

X! /(*)(* - y) - X - m) 
a; 7r 

< G 

where u — <p o tv. 

(2.71) 

Proof of the lemma From the alternative definition of derivative 

(Lemma 2.6.1) there is a positive A(f) such that 

i*”) ~v{u) ~ 'p'{t){v ~41 < [1 + \ftmm - <0 ’ (272) 
whenever t — A(t) < u < t < v < t + A(t). If 7r <C A then inequality 

(2.71) follows. • 

We now finish proof of Theorem 2.7.8. If the integral on the 

right-hand side of equation (2.70) exists then given e > 0 there is a 

<5i : [a, b] —7 R+ such that if 7r -C <5i then 

7r 4a 
< £. (2.73) 

Set S = Min(f>i, A) and find the corresponding 775. If now u <C 775 then 

7T is both (5-fine and A-fine and by inequalities (2.71) and (2.73) 

X/OX*-?/) f{vip))v'{t)dt < 2s. (2.74) 
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This proves the existence of / and equation (2.70). If the integral 

on the left-hand side of equation (2.70) exists then there is rji such that 

YJf(x)(z-y) < e, (2.75) 

whenever u <C 971. Let 77 = Min (771, 77^). If n <C 8n then by inequalities 

(2.71) and (2.73) 

2.8 Improper integrals 

The function /, f(x) = logs, has a primitive F(x) = slogs — x on every 

interval [c, 1] with 0 < c, and by the Fundamental Theorem 

1 

log s dx = — 1 — c log c + c. 

It is not possible to apply the Fundamental Theorem directly to the 

interval [0,1], i.e. to set c = 0 in the above formula, because F is 

not defined at 0. This difficulty is however easily circumvented. The 

limit limcp) F(c) exists and if we extend the definition of F by defining 

F(0) = limc|o F(c) = 0 then F becomes continuous on the whole of [0,1] 

and we obtain log xdx = — 1. We calculated fQ f as limcj0 fcf. It is 

easily seen that this can always be done if the primitive F has a limit 

at 0. Naturally, one asks: is it always true that 

/ = lim f f ? (2.76) 
d® Jc 

Equation (2.76) can be interpreted in two different ways: 

• if the integral exists then so does the limit and equation (2.76) holds; 

• if the limit exists then so does the integral and equation (2.76) holds. 

The first interpretation is, indeed, true, by the the continuity of the in¬ 

definite integral (Theorem 2.5.29). This, however, is not of great help 

if we want to use equation (2.76) to evaluate the integral fa f because 

the existence of this integral may not be known. It is an advantage of 

the KH-theory that the second interpretation is also correct: as long as 

we can evaluate the right-hand side of (2.76) we also have the integral. 

In other theories of integration the second interpretation of equation 
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(2.76) could be false. For example 1Z fg log xdx does not exist because 

the the logarithm is not bounded on (0,1], but we have just seen that 

limc|0 J1 log xdx = — 1. In some theories of integration, e.g. in the Rie- 

mann theory, equation (2.76) is used to define the integral on the left- 

hand side. This is often referred to as the Cauchy extension of the 

integral; also the integral so defined is often referred to as an improper 

integral. Our statement above concerning the validity of the second in¬ 

terpretation of equation (2.76) can be rephrased by saying: There are 

no improper integrals in the KH-theory. Before we prove this we need 

LEMMA 2.8.1 Let e be positive, f integrable on [a, b] and <5 such that 

Tf-j f<e 
IT Ja 

whenever n <C 5. Then for every c, a < c < b, 

< 2e. 

(2.77) 

T.M-J f 
7T Jc 

J a 

< 2e. 

(2.78) 

(2.79) 

REMARK 2.8.2 This is a special case of Henstock’s lemma proved 

in the next chapter; this simpler version will suffice here. Henstock’s 

lemma marks the departure point from the most elementary part of 

the KH-theory and most of the important advanced theorems depend 

directly or indirectly on it. 

Proof of Lemma 2.8.1 If n is any partition with c as one of the 

dividing points then 

Since / is integrable on [a, c] there is a positive 8C such that 

(2.80) 

/ < £ (2.81) 

whenever the partition irc of [a, c] is <5c-fine. We now choose a partition 

of [a, b} consisting of a 5-fine partition of [c, b\ and a partition ttc of [a, c] 
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such that both 7rc <C 8C and 7rc <C 8. Then by inequalities (2.80), (2.77) 

and (2.81) 

(2.82) 

The inequality (2.79) can be proved similarly. 

THEOREM 2.8.3 Iff is integrable on [c, b] for every c with a < c < b 

and 

fb 
lim / f exists and equals A 
cl“ Jc 

(2.83) 

then f is integrable on [a, b] and jb f = A. 

REMARK 2.8.4 A similar theorem holds for limcTb /flc /. 

The above theorem and this remark are sometimes expressed by saying 

that the KH-integral is closed under the Cauchy extension. We have 

seen that the theorem is false if integrable is taken to mean Riemann 

integrable. The Riemann integral is not closed under the Cauchy exten¬ 

sion. 

Proof of Theorem 2.8.3 We can and shall assume without loss of 

generality that f(a) = 0. Take a strictly decreasing sequence {cn} with 

cn | a and Co = b. For every positive e there exists 8n such that if 7rn is 

a 6n-fine partition of [cn, cn_i] then 

(2.84) 

According to the hypothesis there exists r such that 

(2.85) 

whenever a < c < r. Now define 8 [a, b] 1 * Ky which has, for all n G N, 

the following properties.f 

8(x) < 8n(x) for x £ [cn, cn-1], 

[x - 6(x), x + 6(x)] C (Cn, Cn_l) for X £ (cn, cn_ 1), 

| The first inequality implies that fi(cn) k Min(^n(cn), <5n+i(cn))' 

(2.86) 
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(cn S(cn), cn -I- <5(cn)) C (cn_j_i, cn_i). 

In addition we also require that 

<5(a) a, 

(2.87) 

(2.88) 

(2.89) 
£(&) = 2^-Cl^ 

Let now 7r be a 5-fine partition of [a, 5], 

7T = {(®i, [u*, Vi]); i = 1,2,... ,p}. 

Relations (2.86) and (2.87) imply that aq = a and hence /(aq) = 0. 

The Riemann sum J2-* f starts with the term /(aq)(f2 — v2)- Let N 

be the first integer such that < v 1=1*2. As the next step we show 

that the Riemann sum J2* / over [a> divides! into smaller sums over 

[Cn) Cn—1]> I-®- 

(2-9°) 
7T 7T i= 1 7T 

Any cn with n < N must lie in some [iq, tq] with k > 2. Inclusions 

(2.86), (2.87) imply that neither cn < aq < iq nor tq < aq < cn. 

Consequently aq = cn and there is at most one Cj in any [iq, v*]. The 

partition 7r anchors on all cn with n < N and we have established formula 

(2.90). Now we estimate / — A by 

Y.S-* 
< 

rb pb 

E/- [ f + / s~A (291) 

By inequality (2.88) we have u2 = iq < r . Consequently the second 

term on the right-hand side of inequality (2.91) is less than e/2 by (2.85). 

For the estimate of the first term we write 

N-1 

E/ / 
'u2 

< E sr1/ 
r>CAT_l 

/ 
' U2 

+ E 
i=i 

Em- / • 

(2.92) 

Now we apply Lemma 2.8.1 with the roles of [a, b) and c played by 

[cv, cjv-i] and ix2 = tq, respectively. 

/■CAT-1 

Esr1/- / 
7T ^“2 

/ < 2 2^+! (2.93) 

f If U2 = cat -1 then the first sum on the right-hand side of the next equation is 
interpreted as 0. 
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For the remaining estimate we use inequality (2.84). 

N-1 

E 
i—1 

E2-1/ 
t'C-i— 1 

/ 
N-1 

< 
E«u- 
Z=1 

(2.94) 

Combining inequalities (2.91)—(2.94) we have 

Ef~A < £. 

Theorem 2.8.3 leads naturally to the following test of integrability. 

Integrability test If, for every c, a < c < b, f is KH-integrable on 

[c, b] and there are KH-integrable functions G, g such that 

g(x) < f(x) < G{x) 

for all x G [a, b] then f is KH-integrable on [a, b\. 

For every positive e there is a d such that 

r» < e and fG J a' J a' 

whenever a < a', a" < d. Consequently 

and the limit in (2.83) exists. 

An analogous test holds for c ] b if / is KH-integrable on [a, c]. For 

an application of the integrability test see Exercise 2.12. 

2.9 Integrals over unbounded intervals 

In applications one encounters the integral 

/ 
SIM 

X 
dx. 

In calculus or in the Riemannf theory of integration this integral is 

defined as a limit, i.e. 

sin a: def f 
-dx = lim 

X b—>oo J0 

sin x 
-dx. 

x 

In the Kurzweil-Henstock theory it is possible to recast Definition 2.4.1 

in such a way as to include in it also integrals over unbounded intervals 

f Even in the Lebesgue theory. 
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like the integral above. We have defined the KH-integral over closed 

intervals. Since the values of the function at two points do not influ¬ 

ence the existence or the value of the integral we could have used open 

intervals instead but we did not. For consistency we define the integral 

over unbounded intervals also over closed intervals but we have to in¬ 

troduce these first. Let us make the following definitions. We add two 

elements oo and — oo to the reals and denote the extended set by K, 

i.e. I = RU {00} U {-00}. Here 00 and -00 are not real numbers 

and are sometimes referred to as infinite numbers. Noting that intervals 

(A, B) are already well defined even if A or B is 00 or —00 we declare 

the sets [A, B]= (A, B) U {A} U {B} as closed intervals.f The use of 

capital letters is a matter of emphasis, and should alert the reader to 

the possibility that A or B could be 00 or —00. However, sometimes a 

closed interval in M will be denoted by [a, b\ or [u, v\. 

The geometric meaning behind the definition below is that for a non¬ 

negative function / on an unbounded interval [A, B\ the area under the 

graph of / is approximated by Riemann sums for <5-fine partitions of 

sufficiently large bounded intervals. 

DEFINITION 2.9.1 A number I is the Kurzweil-Henstock integral of 

f over [A, B) if for every positive e there are a function 6 : [A, B] —» M+ 

and a positive number A such that 

< £ (2.95) 

whenever n is a 6-fine partition of a bounded interval [a, b] with [a, b] D 

[A, B] n [-A, A], 

D Q 
The integral will be denoted as usual by fA f or fA f(x)dx or by other 

symbols used for the KH-integral. There is at most one number / sat¬ 

isfying the requirements of the definition, in other words the number 

I is well defined. The proof is rather similar to the proof of Theorem 

2.4.6 and is omitted. To see that for a closed bounded interval [A, B] 

the above definition agrees with the original one (Definition 2.4.1) it is 

sufficient to choose A > Max(|A|, |R|). 

EXAMPLE 2.9.2 We wish to show that x 2dx = 1. We choose 

6(x) = ex/3(l + e) and A > 3/e. Let n = (£, [u, u]) be a 5-ffne partition 

f This is, of course, consistent in case A or B is in E. 
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of [1, vn] with vn > A. Motivated by the Fundamental Theorem and by 

the fact that — = x~2 we shall approximate 

Firstly 

e 

1, \ i ii 
v — u) by-. 

1 > W--- 
' U V 

U V 

= 1 — > 1 
£ 

3’ 
(2.96) 

secondly 

v £ + $(£) £ 

1 s r e <1 + 5’ 

1 < 

This leads to 

< £ £ 

u " £ - <$(£) 

3(1 + £) < £ 
3 + 2£ 3 ‘ 

- 

v _ £ 

£ w 
< 

l l 

U V 

1 1 

U V 

uv 
-1 

< £(I-i 
3 \ u v 

1 1 

Using these estimates on the Riemann sum yields 

E —r(v — U) — ( — 

L£: U V 

<£WI_I 

Combining this inequality with (2.96) gives 

E^(n-u)-! 
£ f £ 

< 3 3 ‘ 

THEOREM 2.9.3 f is KH-integrable on [a, oo] if and only if 

lim f f 
b-^oo 

exists and then 

(2.97) 

REMARK 2.9.4 Similar theorems hold for J '^ / and for / = 

/°„/ + /o“/- 



62 2 Basic Theory 

Proof of Theorem 2.9.3 I. Assume that the integral exists and for 

e > 0 let 8 and A be as in Definition 2.9.1. Given b > A, we find 6i 

such that for every 61-fine partition n of [a, b] 

Define 62 

Ef- < £. (2.98) 

Min(6, 61) and let n be 62-fine. Then by (2.95) and (2.98) 

< 2e. 

This proves (2.97). 

II. Assume the limit in (2.97) exists and equals l. For e > 0 there is 

A > 0 such that 

(2.99) 

for b > A. Take a strictly increasing sequence n 1—> bn with b\ = a and 

limn^oo bn = 00. For e > 0 there is 6n : [6n, 6n+i] —> R+ such that 

£/- f 
£ 

2n+2 
(2.100) 

whenever nn is a 6n-fine partition of [bn, fen+i]. Let 6 : [a, 00] —> R+ be 

such that for all n 6 N 

<5(0 < 6n(0 if e e [6n, 6n+l], (2.101) 

K - <5(0)C + <5(0] c (bn, bn+l) if ^ G (6„, 6n+1). 

6;v < b < 6iv+i (2.102) 

and 7r <§C 6 then, for reasons similar to those given in the proof of The¬ 

orem 2.8.3, the partition 7r anchors on all bn with n < N and 

£‘/=£££;+,/ + £U 
7T 1 7T 7T 

According to (2.100) and (2.101) 

£ 

(2.103) 

< 
2n+2' 

(2.104) 
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Let b > A and N be as in (2.102). If n is a 5-fine partition of [a, b] then 

by (2.99), (2.103) and (2.104) 

e 6^1 

<2 + l^¥ + 
1 

XL/- f" i 
IT JbN 

The last term in this inequality is less than e/2N+2 by inequality (2.79) 

in Lemma 2.8.1 where the roles of [a, b] and c are played by [bjy, 6/v+i] 

and b, respectively. • 

EXAMPLE 2.9.5 (The Frullani integral) As an example we eval¬ 

uate the integral 

f(bx) - f(ax) 

x 
-dx, (2.105) 

by using Theorem 2.9.3. We make the following assumptions: 

(a) 0 < a < b, 

(b) / is continuous on [0,oo), 

(c) lim /(x) exists and we denote it by /(oo). 
x—>-oo 

We write 

fipx) - f (ax) 

x 
dx = lim 

c—>0 

f(bx) - /(ox) 
dx 

x 

Um f f(bx)-f(ax)dx 

C—►oo J1 X 

and evaluate the first limit; the second can be obtained similarly. Using 

substitution and the mean value theorem 2.5.25 we have 

f^x) - /(ax) 
dx = 

m 

x ' cb 

rmdt.rb 
Ja t Jca 

fP) 

dt — 

m r j + f° 
Jca ^ J a 

fit) 
dt 

dt = 
dt 

t Jca t 

with £ between ca and cb. Sending c J, 0 gives /(/) —> /(0). Applying 

similar arguments to the second limit in (2.106) leads to 

I°° f (bx) — /(ax) a ., ,, a 
/ ——-———-dx = /(0) log — — /(oo) log -. • 

Jo x b b 

Theorem 2.9.3 leads naturally to the following test of integrability. 

Integrability test If, for every c, a < c < oo, f is KH-integrable on 

[a, c} and there are KH-integrable functions G, g such that 

g(x) < fix) < G(x) 



64 2 Basic Theory 

for all x e [a, oo) then f is KH-integrable on [a, oo). 

The proof is very similar to the proof of the integrability test in Section 

2.8. For an application of this integrability test see Exercise 2.13. An 

analogous test holds for c —> —oo if / is KH-integrable on [c, b\. 

2.10 Alternative approach to integration over unbounded 

intervals 

In the previous section we introduced the set R and closed intervals in 

it. In this alternative approach open intervals in R are needed. First 

we systematically state the basic arithmetic rulesj in R and extend the 

order from R to R. For c € R we define: 

oo-t-c = c + oo = oofor any — oo < c. (2.107) 

(—oo) + c — c + (—oo) = —oo for any c < oo. (2.108) 

If c > 0 then c.oo = oo.c = oo and c.(—oo) = (—oo).c = —oo. (2.109) 

If c < 0 then c.oo = oo.c = —oo and c.(—oo) = (—oo).c = oo. (2.110) 

Note that oo + (—oo) and similar expressions are not defined. The 

following definition^ is a little surprising, but it is convenient and we 

shall adhere to it. 

O.oo = oo.O = 0 and also 0.(—oo) = (—oo).0 = 0. (2.111) 

We declare 

—oo < c < oo (2.112) 

for any real number c. For the closed intervals in R we now have [A, B] = 

{x-, A < x < B}, exactly as in R. With A,B in R we declare as open 

intervals in R all intervals (A, B) C R as well as R itself and the sets 

[—oo,5) = {x; x G R, x < B}, 

(A, oo] = {x; x e R, x > A}. 

The supremum of a set which is either not bounded above or contains oo 

is oo, similarly the infimum of a set which is either not bounded below 

or contains — oo is — oo. 

f Not all these rules are needed now but for sake of reference we keep them together, 

t One has to regard such definitions purely formally as a matter of convenience and 
devoid of any deep meaning. In particular one should divorce such definitions 
from rules of calculating limits of products. However, the definition oo.O = 0 is 
also often used in Lebesgue integration theory. 
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The concept of being 5-fine can be rephrased in a way which is suitable 

to generalization to infinite intervals. With 

6 : [a, 6] t—> R+ 

we can associate a map 5 from [a, b} into the set of open intervals in R 

by setting 

««) = «-,5(0, ?-««))• (2.113) 

A partition tv = {(£, [it, u])} is then 5-fine if and only if 

[«, v] C S(.0- (2.114) 

We use (2.114) for defining 5-fine for unbounded intervals. If now 5 

is defined as in (2.113) and moreover 5(oo) = (A, oo] and 5(—oo) = 

[—oo, - A) then a partition of any closed bounded interval [a, b] con¬ 

taining [A, B} n [-A, A] is 5-fine if and only if inclusion (2.114) holds. 

In future we shall call a map 7 from a closed interval [A, B] into the 

set of open intervals in 1 a gauge if £ G /(£) for every £ G [A, B] 

and /(£) is a bounded open interval for every £ G R fl [A, B]. A par¬ 

tition of a closed interval in R is, similarly as in Section 1.2, a set of 

pairs (£fc,/fc), k = 1,... ,n, such that the points £fc G h, and the 

closed intervals Ik are non-overlapping with (Ji h = [A B). We shall 

say that a partition tv = {(£fc,</fc)} of [A B] is 5-fine if 5 is a gauge 

defined on [A, B] and Jk C 5(£fc). It is worth noting that at most 

two intervals of a partition are unbounded and if 5 is a gauge the un¬ 

bounded intervals of a 5-fine partition are tagged by either 00 or -00. 

We need to extend Riemann sums to partitions of possibly unbounded 

intervals. If {{xk, Jk)} is such a partition then we shall include in the 

sum f = Dtt f(xk)\Jk\ only those terms for which Jk is a bounded 

interval. This can be achieved by simply postulating it or, as some 

authors prefer, by defining the length of an unbounded interval as 00, 

demanding that /(Too) = Of. If we adopt the definition (2.111) then 

/(arfc)|Jfc| = O.00 = 0 for unbounded Jk and f(xk)\Jk\ can be included 

into the Riemann sum without affecting it. We are now in a position to 

formulate the ‘all embracing’ definition of the KH-integral. 

DEFINITION 2.10.1 A number I is the Kurzweil-Henstock integral 

f The function / to be integrated usually comes undefined at 00 and —00 but there is 

no harm in making a convention that all integrands automatically satisfy /(Too) 

0. 
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(or just integral) of f from A to B (or on [A,B]) if for every positive e 

there is a gauge 6 such that for every 6-fine partition 7r 

I Jjf-I\<e. (2.115) 
7r 

The gauge definition of the KH-integral has the advantage that it 

reads word by word the same for a bounded or unbounded interval. 

Since mathematics is a deductive science it would have been preferable 

if we had started with one of the more general definitions 2.9.1 or 2.10.1. 

This would be also more economical because after the introduction of a 

more general definition one is obliged to prove all the theorems afresh. 

This we shall not do because the new proofs would be very similar to 

those already supplied. The reason why we integrated over bounded 

intervals first was methodological, we did not want to obscure the main 

ideas by technicalities involving the infinite numbers oo and — oo. In 

Chapter 4 (The SL-integral) we explain yet another approach to KH- 

integration and the definition there covers integrals over both bounded 

and unbounded intervals. 

2.11 Negligible sets 

The next two theorems provide a full characterization of null sets. Recall 

that in Section 1.4 we defined a set S to be of measure zero if for every 

positive e there was a countable system of intervals {Ij',j = 1, 2,... } 

covering S with 

OO 

El7il<£' (2.H6) 
3=1 

A set of measure zero can always be covered by a disjoint system of 

intervals {Ij} such that inequality (2.116) holds. However we shall not 

use this fact here. For the proof see Exercises 2.25 and 2.26. If, for every 

natural j, the set Sj is of measure zero then so is ur Sj. This can be 

proved by covering each Sj by a system IJk with JfkLi iHl < e2_J‘_1. In 

particular every countable set is of measure zero. If something happens 

except on a set of measure zero we say that it happens almost every¬ 

where. For example, if {x; f(x) < 0} is of measure zero we say that / is 

positive almost everywhere. The phrase almost everywhere will be often 

abbreviated to a.e. 

THEOREM 2.11.1 If S is of measure zero then it is null. 
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Proof Let e > 0. Cover S' by a system {Ij] j = 1,2,...} such that 

inequality (2.116) holds. Set Ej = Ij \ (Ii U • • • U Ij-i). The sets Ej are 

disjoint and S C (J^° Ej. If x G S there is a uniquely determined k for 

which x G Ek- Let 6(x) be positive and such that (x—S(x), x+S(x)) C Ik- 

If x £ S let 6(x) = 1. For a 6-fine partition 7r of an arbitrary interval 

[a, b] the total length of intervals of n in Ij is less than \Ij\ and therefore 

OO 

7T 1 

Consequently lg = 0. • 

THEOREM 2.11.2 If S is null then it is of measure zero. 

It is convenient for later purposes to prove without additional effort a 

more general result: 

THEOREM 2.11.3 If S C K and Is is integrable then for every 

positive e there is a system of open intervals Jn, n— 1,2,... such that 

OO 

S C (_P»> (2.117) 
1 

OO poo 

]T|J„| < / 1 s+e. (2118) 
J — OO 

For the proof we need a lemma. 

LEMMA 2.11.4 (Covering lemma}) If S is an arbitrary set, S C R, 

6 : 5 -> M+ 

then there exists a countable system of closed non-overlapping intervals 

{Ki\i = 1,2,...} such that for every Kj there exists Xi G S with 

KiC(xi-6(xi),Xi + 6(xi)) (2.119) 

and 

OO 

SclJ^i. (2.120) 
1 

j [30] page 143. 
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Proof of the lemma We construct the sequence {FQ} in steps. In the 

z-th step we divide the interval [—i, i] into 2i2l closed non-overlapping 

intervals Ja of equal length. If some Ja contains x E S with Ja C 

(x - 8(x),x + 8(x)) then we denote it by K, add it to the intervals 

previously selected, and number it and the point x accordingly. Now it 

remains to prove inclusion (2.120). For x £ S we find z 6 N so large that 

—i<x<i and 2~l < S(x). (2.121) 

If x lies in some interval selected before the z-th step there is nothing 

to prove, hence assume the contrary. There is an interval of the form 

\k2~'1, (k + l)2_l] which contains x and by (2.121) we have [k2~l, (k T 

l)2_l] C (x — 8(x),x + 8(x)). The interval [k2~l, (k + l)2~l] becomes 

selected as one of the K3 in the z-th step. • 

Proof of Theorem 2.11.3 It is sufficient to prove the theorem under 

the additional assumption! that S C [a, b] C M. Denote A = I5 = 

J^° I5 and take 77 > 0. By the definition of the KH-integral there exists 

a 8 : [a, b] 1—> JR+such that for every (5-fine partition 7r of [a, b] we have 

0<J21s<A + r]. (2.122) 
7T 

Let {Kn} and xn be as in Lemma 2.11.4 and N G N. The set 

[a, b} \ (J^ Ki consists of finitely many disjoint intervals. Therefore it is 

possible to find a 5-fine partition ni of [a, b] such that for all i < N the 

intervals K{ are intervals of zri. Consequently 

N 

^2 \K™\ <Y,1s<A+r], 
1 7Tl 

the last inequality holding because inequality (2.122) applies with 7r 

replaced by 7Ti. Sending IV —> 00 gives J2T \Kn\ <A + V- Let Jn be an 

open interval of length (1 + r?) \Kn\ and containing Kn. The intervals Jn 

are open, they cover S' and 

OO 

I Jn | S A + r](A +1 + 77). 

1 

The choice 77 = Min(l, ) gives (2.118). • 

THEOREM 2.11.5 If f > 0 and faf — 0 then f = 0 almost every¬ 
where. 

f See Exercise 2.15. 



2.12 Complex valued function 69 

Proof Let Sn = {x : f(x) > 1/n} and let ln be the characteristic 

function of Sn. Then ln < nf and consequently 

ln = 0. 

For every natural n the set Sn is of measure zero, and consequently so 

is the union (J^° Sn = {x : f(x) 7^ 0}. • 

Proof of Theorem 2.5.27 If / = 0 almost everywhere then both 

sides of equation (2.44) are zero and this equation holds with any c G 

(a, b). If / is not zero a.e. then f > 0 and equation (2.47) defines p 

and then 

[ f(g -n) = 0. 

if 

g(x) ^ p for every x G (a, b) (2.123) 

then because of the intermediate value property either g{x) > p or 

g(x) < p for all x G (a, 6). In either case f(x)(g(x) - p) = 0 almost 

everywhere, which is impossible. Consequently relation (2.123) is un¬ 

tenable. • 

2.12 Complex valued function 

We presume that the reader is familiar with complex numbers, but we 

review notation and some definitions for complex valued functions in 

this section. A complex number 2 is a number of the form z — x + jy 

with i,|/gK and j2 = -1. The real part of z is x, the imaginary part 

of 2 is y, in symbols x = Tz and y = %z. The absolute value of 2 is 

denoted by \z\, \z\ = y/x2 + y2. For every complex number z / 0 there 

exists a unique p with 0 < <p < 2tt such that 2 = |2|(cos^ + jsin<p). The 

set of all complex numbers is denoted by C. A complex valued function 

of a real variable is a rule which associates with every x from some set 

E, the domain of definition of /, a complex number f(x). Hence we 

have f(x) = fi(x) + j/2(x), where fx and /2 are real valued functions, 

f^x) = K/(x) and f2(x) = $Sf(x). Most concepts from real analysis are 

easily transferred to complex valued functions of a real variable either 

by mimicking the definition of the real valued situation or by applying 

the relevant definition to real and imaginary parts. We illustrate this 

duality in case of a limit. 
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Definition A function f : (a, b) i—> C has a limit L at c 6 (a, b) i/ and 

only if for every positive e there is a positive 8 such that | f(x) — L\ < £ 

whenever \x — c\ < 8. 

Characterization A function f : (a, b) i—> C has a limit L at c 6 (a, b) 

if and only if lim Rf(x) = RL and lim ?sf(x) — IsL. 
x—>c x—>c 

A similar situation exists with limit from the right, limit from the left, 

continuity and derivative. For the KH-integral we have 

Definition A complex number I is the Kurzweil-Henstock integral (KH- 

integral) of a function 

f : [A, B] C 

if and only if for every positive e there is a gauge 6 such that for every 

6-fine partition n the inequality (2.115) is satisfied. 

Characterization A complex number I is the Kurzweil-Henstock in¬ 

tegral (KH-integral) of a function f : [A, B] i—> C if and only if 

rB r*B 

KH Rf = RI and JCH 3/ = Of/. 
Ja J a 

Nearly all the theorems in this chapterf can be extended to complex 

valued functions by using either the definition or the characterization. 

For instance, the Fundamental Theorem holds for complex valued func¬ 

tions because Theorem 2.6.2 can be applied to both the real part and 

the imaginary part of the function. Corollary 2.5.11 needs a different 

proof but its validity is in no doubt since 

i£/l<£l/l- 
7r 7r 

Sometimes care is needed: Theorem 2.5.16 makes no sense for complex 

valued functions and, as the following example shows, the mean value 

theorem (Theorem 2.5.25) is false for complex valued functions. 

/ 3\ i 1 1 [x + jx )dx= - +]-. 

There is no c with c + jc3 = 1/2 + jl/4. We trust readers will be able 

to decide for themselves whether or not a particular theorem can be 

extended from real valued to the complex valued functions. 

f And in the rest of the book. 
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2.13 Exercises 

EXERCISE 2.1 ©Use Cousin’s lemma to prove Lemma 1.4.8. [Hint: 

Define .Jk as in the proof of Lemma 1.4.8. For f in some Jk let (J — 

<5(£),£ + <$(£)) C Jk■ For £ ^ U Jk use the same idea as in the proof of 

Example 2.3.4.] 

EXERCISE 2.2 ©Use Cousin’s lemma to prove the Heine-Borel the¬ 

orem in E. If F is a closed and bounded set F cK and for every x E F 

there is an open interval Ix with x E Ix then there exist finitely many 

intervals IXk, k = 1,.. .m such that F C UfcLi ^xk- [Hint: F C [a, b], let 

S(x) be such that the interval (x — S(x),x + <5(x)) does not intersect F 

if x ^ F and is included in Ix if x E F.] 

EXERCISE 2.3 Let f(x) = 1 when x is rational, and 0 when x is 

irrational. This is known as the Dirichlet function. It follows from Ex¬ 

ample 2.4.5 that the Dirichlet function is KH-integrable on any interval 

[a, b}. Prove directly that the Dirichlet function is KH-integrable on 

[0,1]. [Hint: For x = p/q in the lowest terms define 6(x) = 2~q~1q~1e.] 

EXERCISE 2.4 Prove that f, f(x) = l/x for x ^ 0 is not KH- 

integrable on [0,1]. Give your own example of a function f which is not 

KH-integrable on [a, 6]. 

EXERCISE 2.5 Let F(x) = x2sinx“2 when x ^ 0 and F(0) = 0. 

Prove by definition that the derivative F' of F is KH-integrable on [0,1]. 

EXERCISE 2.6 Recall from Section 1.1 that a function f is said to be 

Newton integrable on [a, b] if there is another function F such that the 

derivative F'(x) = f(x) for every x E [a, b\. Then F(a, b) = F(b) - F(a) 

is called the Newton integral of f on [a, 6]. Prove that if f is Newton 

integrable on [a, b) then it is KH-integrable there. Show by an example 

that the converse is not true. 

EXERCISE 2.7 ©Show that a function f is regulated on [a,b} if and 

only if f has one-sided limits at every point in [a, b}. 

EXERCISE 2.8 Determine whether the following functions are KH- 

integrable on [0,1]: (a) x"1 sinx'1 for x ± 0; (b) x~2 sinx~2 for x ± 0. 

[Hint: Differentiate xcosx~l and xcosx~2.] 
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EXERCISE 2.9 Continuing with the previous exercise, consider f (x) = 

x~p sin xrq for x ^ 0 and for positive integers p, q. Give values for p 

and q other than those above such that the function f is KH-integrable 

on [0,1] and further values of p and q such that f is not. 

EXERCISE 2.10 ©Let Jn, n = 1,2,... be a system of non-overlapping 

intervals with (J Jk C [a, b]. Show that the function f = Y.T °kAjk iS 

KH-integrable if and only if the series ck\-h\ converges and then 

fbaf = E?ck\jk\. 

EXERCISE 2.11 A function f is absolutely integrable if both f and 

|/| are integrable (see Section 3.4). Example 2.6.7 exhibited a function 

f which is KH-integrable but not absolutely integrable. Give your own 

example of such a function (preferably without the use of the Funda¬ 

mental Theorem). Show further that if f and g are KH-integrable then 

Max(/, g) may or may not be KH-integrable. 

EXERCISE 2.12 ©If / is continuous on the interval [c, b] with c > 0 

and lim xaf(x) = L for a < 1 then f is absolutely KH-integrable on 
xlO 

[0, b\. Prove this and show also that if L 7^ 0 and a > 1 then f is not 

absolutely KH-integrable on [0, b]. Give an example of a KH-integrable 

f for which I/O and a > 1. 

EXERCISE 2.13 ©Prove results analogous to those of the previous 

exercise but for [1, 00] and c j oc. [Hint: a > 1 for convergence.] 

EXERCISE 2.14 Theorem 2.5.14 says that if f is KH-integrable on 

[a, b} then the same holds on any subinterval [c, d] of [a, b\. A function f 

is said to be KH-integrable on a set S C [a, b] if /I5 is KH-integrable on 

[a, b}. Is it true that if f is KH-integrable on [a, b] then the same holds 

on any subset of [a, b] ? 

EXERCISE 2.15 ©Prove: If f is KH-integrable on [a, 00), cn f 00 

and Ci — a then /a°° / = Y1T fc,"' ^ ■ [Hint: Do not work hard, use 
Theorem 2.9.3.] 

EXERCISE 2.16 In order that f is KH-integrable on [a, 00], it is 

necessary and sufficient that the following conditions hold: there is a 

number I, and for every positive e there is 6 : [a, 00] —► R+, such that 

for any division D of [a, 00] given by a = xq < X\ < ... < xn < ... 
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with xn ”1" oo and such that G [xn-i,xn\ C (£n - <5(£n), + <5(£n)) the 
OO 

series ^ f{£n)(xn — £n-i) converges and 
71—1 

OO 

I ^ ^ f 2-n—l) -f| ^ 
n=1 

[Hints: Necessity. Take 6n : [a + n — 1, a + n] —> M+ such that for any 

6n-hne partition ir of[a + n — l^a + n] we have \ Y[n f ~ Ja+n-i /I < £/2n- 

Sufficiency. Take A such that for every xm > A we have 

OO 

I /(fn)(ffn -ICn-l)| < £ 

71=771+1 

and apply Definition 2.9.1.] 

EXERCISE 2.17 We define the Henstock variation of a point-interval 

function h(£, [u,v]) as follows: 

VH(h; [a, b\) = inf {^(<5); 6 : [a, ^t+} 

where 

F(h) = sup{J^ |h(£, [u,v])|; tt « <5}. 
7T 

(The infimum is over all positive functions 6, the supremum over all 6-fine 

partitions n of [a, b\.) Show that if V//(h; [a, b}) = 0 where h(£, [u, +]) = 

F(y)-F(u)-f it)(v-u), then f is KH-integrable on [a,b\ with primitive 

F. Show that the converse also holds. [Hint: Vn(h; [a, b}) = 0 means 

for every positive e there is 6 : [a, b] —* R+ such that for every 6-fine 

partition tt we have [w)'yDI < £-l 

EXERCISE 2.18 Given a function F defined on [a,b], we differenti¬ 

ate and then integrate. Given another function f defined on [a,b\, we 

integrate first then differentiate. Find condition on F or f such that we 

get back to the same function each time. 

EXERCISE 2.19 ©© We define the Kurzweil-Henstock-Stieltjes in¬ 

tegral as follows. A number I is the Stieltjes integral of f with respect 

to g on [a, b\ if for every positive £ there is a function 6 : [a, b] -»■ E+ 

such that for every 6-fine partition n = {(£, [u, n])} 

\^2f(0[9(v) -g(u)} -I\<e. 
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We write I = Jb fdg. Suppose either Jb fdg or fb gdf exists. Then both 

integrals exist and 

[ fdg + f gdf = f{b)g(b) - f(a)g(a) 
J a J a 

is true if and onlyifVn{h; [a, b]) = 0 where h(u,v) = [f(v) — f(u)][g(v) — 

g{u)] for all [u, v] C [a, 6]. 

EXERCISE 2.20 ©© Suppose jb fdG exists where G(x) = f* g for 

all x e [a, 6]. Show that if |/| < K then the integral fb fg exists and 

/«M? = Si fa- 
Exercises 2.21 to 2.24 come from a paper [25]. 

EXERCISE 2.21 ©© Given a function <5 : [0,1] —*■ K+, define a func¬ 

tion v mapping a closed interval I into a subset of I as follows: 

if (I) = {x G I : I C (x — 6(x),x + 5(x))}. 

Show that the function u satisfies the following conditions: 

(1) v(I) C / for each closed interval I C [0,1], 

(2) Ii C J2 implies u(I2) n I\ C 

(3) U/c[o,i](i/(^)n^0) = [0,1], where 1° denotes the interior of I, except 

that if I = [0, a] or [5,1], then 1° means [0, a) or (5,1] respectively. 

A function which satisfies the above three conditions is called a tag 

function. 

EXERCISE 2.22 ©© Show that if f is KH-integrable on [0,1] then 

for every positive e there exists a tag function v as defined in Exercise 

2.21 such that f is bounded on if (I) for each closed interval I C [0,1], 

EXERCISE 2.23 ©© Let if be a tag function dehned on the collection 

of closed subintervals of [0,1]. A partition D of [0,1] is said to be 

if-fine if if([u,v]) is non-empty for every [u,v] in D. Show that the 

following condition is necessary and sufficient for f to be KH-integrable 

to a number I on [0,1]: for every positive e there is a tag function if 

such that for any if-hne partition D of [0,1] we have 

~u) - I\ < e, 

where £ e v{[u,v\) for all [u,i>] e ir. 
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EXERCISE 2.24 ©0 Given a tag function n, we define an upper sum 

as follows: 

s 0, /) = sup /(£) 0 - u) 
TV 

7V 

where the supremum is taken over all u-fine partitions ir of [0,1] with 

£ 6 0|/u, 7j]) for all [u,v] £ n. Then the upper KH-integral of f is the 

infimum of all upper sums over u. Similarly, we define lower sums and 

the lower KH-integral. Show that f is KH-integrable on [0,1] if and only 

if the upper and lower integrals are equal. 

EXERCISE 2.25 Prove: IfRD G = (J£U h with Ik open intervals 

then there exists a countable system of disjoint intervals Jk such that 

G = UfcLi Jk- [Hint: For each x £ G there is a maximal Jx containing x 

and contained in G. Two Jx are either identical or disjoint. By selecting 

a rational in each Jx show that the system Jx is countable.] 

EXERCISE 2.26 Prove: If R D G = Ufcli 4 with lk open intervals 

and J2T=i \Jk\ < M then there exists a system of disjoint open intervals 

Jk such that G = (j£li Jk and 'ZkLi \Jk\< M- lHmt: Use the previous 
exercise. Replace each Jk by a closed interval Jk with the same endpoints 

and use the Heine-Borel theorem to show that Ylk=l \ Jk\ < M for N £ 

N.J 
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Development of the Theory 

3.1 Equivalent forms of the definition 

Our basic Definition 2.4.1 can be rephrased in several ways. Before we 

can state the appropriate theorems we need a few new concepts. We 

shall say that the Riemann sums are Cauchy] for / on [a, b] if for every 

positive £ there is a 6 : [a, 6] i—>- M+ such that for two 5-fine partitions 

7Ti and 7T2 we have 

£/-£/ 
7T2 7T1 

< €. 

A function M is said to be a major function to / on [a, 6], or simply a 

major function, if there exists a 8m '■ [a, b] —> M+ such that 

/(*) < 
M(v) — M(u) 

u 

for 

x - SM(x) < u < x < v < x + 8m(x) 

and [u, v] C [a, b\. A function m is a minor function to / on [a, 6], 

or simply a minor function, if — m is a major function to — /. If now 

7r “C 8m then f(xi)(vi — u*) < M(uj) — M{ui) and consequently 

- M(“0) = ^(6) - M(a). (3.1) 
7T 7T 

f The necessary and sufficient condition for the existence of a limit of a sequence, 
function etc. is known as the Cauchy convergence principle. It was known before 
Cauchy to a Czech Jesuit priest B. Bolzano living in Prague but writing in German. 
Some authors, as we do, prefer the term Bolzano—Cauchy condition, but the term 
Cauchy sequence is used exclusively and we have followed this custom for Riemann 
sums. 

76 
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Similarly if n -C 6m then 

/ > m(b) — m(a). (3-2) 
7r 

Using (3.1) and (3.2) for a subinterval [x, y] we obtain 

m(y) - m{x) <^yxf < M(y) - M(x), (3.3) 
7T 

i.e. M — m is always increasing (not necessarily strictly increasing). We 

can now state 

THEOREM 3.1.1 (Characterization of integrability) The follow¬ 

ing four conditions are equivalent 

(A) f is KH-integrable on [a, b} C R; 

(B) the Riemann sums are Cauchy; 

(C) for every positive £ there are major and minor functions M and 

m, respectively, such that 

M(b) — M(a) — [m(b) — m(a)] < e; 

(D) /or the following supremum and infimum 

/(/) = sup{ra(£>) — m(a) : m a minor function} (3.4) 

/(/) = inf{M(6) — M{a) : M a major function} (3.5) 

the relation 

-00 </(/) = /(/) < OO (3.6) 

holds. 

Proof The implications (A) (B) and (C) => (D) are obvious. To 

prove (D) (A) we find for e > 0 a minor m and a major M such that 

M(b) — M(a) < /(/) + £ (3-7) 

and 

m(b) — m(o) > 1(f) — £ = /(/) — £• (3-8) 

If (5 = Min(5ju, Sm) and ir is i5-fine then in view of (3.1), (3.2), (3.7) and 

(3,8) 

i/(/)-E/i<e- (3-9) 
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This shows (D) =>■ (A). We have also obtained: If relation (3.6) holds 

then 

1(f) =US) = ft- (3-10) 
J a 

It remains to prove (B) => (C). If ni and 7r2 are two partitions containing 

c as a dividing pointf and having the same dividing points and tags in 

[c, b] then 

= <3'n) 
7T2 7T i 7Ti 7T2 

According to (B) for e > 0 there is a positive 6 such that if tti and 7t2 

are 5-hne then 

£/-£/ 
7T 2 7T1 

and consequently 

£^/-e<£Lf <£y+e. (3i3) 
7T i 7T 2 7Ti 

These inequalities also hold with c replaced by x, a < x < b. We dehne 

Ms(x) = sup{^2%f : 7T <C <5} (3.14) 
7T 

and 

ms(x) = inf{J^ If : tt < 5}, (3.15) 
7T 

< £ (3.12) 

for x > a and mg (a) = Mg (a) = 0. It follows from (3.13) that Ms and 

m,5 are well defined and finite, and 

Ms(b) - e <ms{b). (3.16) 

If we prove that mg and Mg are minor and major functions, respectively, 

then inequality (3.16) establishes (C). Clearly 

+ f(x)(u~v) < Ms(v), (3.17) 
7r 

if 7T < (5, [u, v] C (a, b] and x - 6(x) <u < x <v <x + 6(x). By taking 

the supremum in (3.17) we obtain 

f(x)(v -u)< Mg(v) - Mg{u). 

f a < c < b 

(3.18) 
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The proof that 

f(x)(u - v) > m6{v) - ms(u) (3.19) 

is similar. Inequalities (3.18) and (3.19) hold also with u = a by the 

definition of Mg and mg. • 

REMARK 3.1.2 In the course of the proof we showed in (3.11)— 

(3.13) that if Riemann sums are Cauchy on [a, b\ and a < c < b then they 

are also Cauchy on [a, c]. This combined with the theorem proves that a 

function integrable on [a, b] is also integrable on [a, c] and consequently 

on any subinterval of [a, b}. We have obtained an easy proof of Theorem 

2.5.12. 

The fundamental theorem of calculus is an easy consequence of the 

Characterization of Integrability. If F is a primitive of /, i.e. F'(x) — 

f(x) for x G [a, b]f, then x —> F(x) + ex is a major function and x —> 

F(x) — ex is a minor function, hence 

/(/) = «/) = F(b) - F(a), 

and consequently by (3.10) 

f f = F(b)-F(a). 
J a 

The characterization of integrability opens a way to relate the KH- 

integral to other known integrals. If / : [a, b] —> M then Mp is called a 

P-major function of / on [a, b] if 

f{x) < DMp(x) for x e [a, b}. 

The function mp is called a P-minor function of / on [a, b] if 

f{x) > Dmp(x) for x G [a, b\. 

As usual, D and D denote the upper and the lower derivatives, i.e. 

Dh(x) 

Dh(x) 

lim sup 
t-> o 

lim inf 
t—>o 

h(x + t) — h(x) 

r~ 

h(x +1) — h(x) 

t ' 

| At a and b the derivatives are one-sided. 
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Once a function has a P-major function we can define the upper Perron 

integral, 

P f — inf{Mp(b) - Mp(a); Mp a P-major function}, 
J a 

and, provided there is a P-minor function, a lower Perron integral, 

b 
f = sup{mp{b) — mp(a) : mp a P-minor function}. 

If both exist it can be shown that 

-oo <P^ /< 

If the middle inequality turns into an equality then / is Perron inte¬ 

grate, or briefly P-integrable, and the common value of the upper Per¬ 

ron integral and the lower Perron integral is by definition the Perron 

integral (of / over [a, b]), denoted by V f. 

If M is a major function then it is also a P-major function, and if 

Mp is a P-major function then x —> Mp(x) + ex is a major function. A 

similar relation holds for minor and P-minor functions (with mp(x) — ex 

replacing Mp(x) + ex). Hence 

P f f < oo. (3.20) 

1(f) = P / /and 1(f) = P f f. 
J a J a 

We have proved 

THEOREM 3.1.3 A function f is KH-integrable on [a, b) if and only 

if it is Perron integrable on [a, b] and then 

A theorem in the theory of Perron integration states that / is Lebesgue 

integrable if and only if both / and |/| are P-integrable. Thus, in view of 

the equivalence of P-integration and KH-integration, this last statement 

is also true when P-integrable is replaced by KH-integrable. However, 

we shall look at the relation between Lebesgue and KH-integration in¬ 

dependently of the Perron theory later. 
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3.2 Henstock’s lemma 

For the more advanced theory of KH-integration the following lemma is 

critical, since the proofs of important theorems depend in various ways 

on it. Recall that a system of couples 

(Ofe, [uk, Vfc]); k = 1,2,... ,n} (3.21) 

such that [life, Vk] were not overlapping for k = 1,2,... , n and 

n 

U [uk,vk] = [A,B] (3.22) 

fc=l 

was said to be a partition of [A, B). We shall use the term tagged 

division for a partition. If condition (3.22) is not necessarily satisfied 

we shall call (3.21) a subpartition or tagged partial division (of [A, B]). 

Some authors use also the term system. If [A, B} is not bounded then 

by definition only bounded intervals are allowed in a subpartition. If S 

is a set and n is a tagged partial division with all its tags in S we say 

that 7r is a tagged partial division on S or that it is a partial division 

(subpartition) tagged in S. 

The concepts of Riemann sum and 5-fineness obviously extend to sub¬ 

partitions. Also we shall use the notation n, possibly with subscripts, 

for subpartitions and n <C 5 to indicate that a subpartition tt is 5-hne. 

THEOREM 3.2.1 (Henstock’s lemma) If f is integrable on K = 

[.A, B] then for every positive e there is a 6 : [A, B] t—»• R+ such that 

E < £ (3.23) 

whenever the tagged partial division it = {{xi, h)\i — 1, • • • ,n} is 6-fine. 

There are many applications of this lemma, for instance: 

If JQC/ = 0 for every c € [a, b] then by (3.23) we have |/| < £ 

and this implies jha |/| = 0. Consequently |/| = 0 almost everywhere by 

Theorem 2.11.5. 

Using this lemma it is easy to prove the continuity of the integral, 

namely Theorem 2.5.29. Let 

F(x) = f f. 
J a 

We wish to prove that F is continuous. Let a < c < b, £ > 0 and let 
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8 : [a, b] M+ be associated with £ by the definition of integrability of 

/. For 

the single pair (c, [c, x]) is a 5-fine subpartition and consequently 

Continuity from the left can be proved similarly. 

Inequality (3.23) may look a little surprising. On the other hand the 

proof is not difficult. It is obvious that the function 8 can be replaced 

by a gauge 6 without changing the meaning of Henstock’s lemma. It is 

in this version that we prove it, using the notation and convention of 

Section 2.10. 

Proof of Henstock’s lemma For a given positive e there is a gauge 

6 such that the inequality 

(3.24) 

holds for every 5-fine partition II. Let 

7r = {(xfc, Jfc); k = 1,2,... ,n} 

be a 5-fine tagged partial division on [A, B\. We first prove the inequal¬ 

ity 

(3.25) 

This is true if 7r is a partition of K. If the set K \ |J™ Ik is non-empty 

then it is a union of finitely many disjoint intervals; consequently there 

are closed intervals Ik, k = n + 1, n + 2,... , iV such that (jf Ik — K 

and all intervals Ik, k = 1,2,... , IV are non-overlapping. For a positive 

Tj and n < k < N we find 5fc(x) C 5(x) such that if nk is a 5fc-fine 

partition of Ik then 

(3.26) 

Now II — 7r U Ufe+1 nk is a partition of K and it is 5-fine; therefore we 
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have (3.24). Since 

N 

E/=£/+ E £/ 
7T fc = n+1 7Tfc n 

we have 

X] (/(^)l7il - fI f 

< 
N 

+ E 
fc=n+l 

£/-/./ 
TTfc /fc 

e . rj e 

- 2+(iV^n)F^ = 2+’'- 

By letting 77 —*• 0 we obtain (3.25). Let 7Ti and 7r2 be the partial divisions 

tagged by those Xi for which 

and 

/(®i)|/i|- / /> 0 

/(xOI/il- / / < 0, 

respectively. By what we have already proved 

and 

Hence 

E 
7Ti 

E 
7T2 

/(*i)|I<l“ / / 

- / / 

< - 
- 2 

< -. 
- 2 

E /(®i)|£ / 

= 5^ /(*i)u»i- [ f +Y1 fMW-J 
7T1 Jli 7T2 7 

/ < £. 

3.3 Functions of bounded variation 

In this section we shall study the smallest class of functions which con¬ 

tains all monotonic functions and which contains with Fi and F2 also 
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F\ — F2f. If D is a division (1.1) of [a, 6] and Fi, F2 are monotonic on 

[a, 6] and F — F\ — F2 then 

n 

Y IF(xi) - F(xi-i)\ < |Fi(6) - Fi(a)| + |F2(6) - F2(a)|. (3.27) 
1 

In other words the sum on the left-hand side of (3.27) is bounded by a 

number independent of the division D. We denote by Var^F the least 

upper bound of the numbers 

n 

Y Xi) I = Y \F(Xi) ~ F(xi-l)\ 

D 1 

for all possible divisions D of [a, b] and call it the variation of F on [a, b]. 

Since the above sum can only increase when adding another point to the 

division, we can assume when seeking the variation of F that a given 

point c, a < c < b, is a point of the division, say c — xp. Then we havej 

Ya\F(Xi-l, Xi) | =Y* lF(^-i, xi) I *i)l • 

D D D 

By passing to the least upper bounds we obtain successively 

Var^F > Var^F + Var bcF, 

Var baF < Var caF + Var bcF. 

Consequently 

Var baF = Var caF + Var bcF. (3.28) 

If Var^F < 00 then we say that F is of bounded variation. By (3.27) a 

difference of two increasing functions is of bounded variation. Conversely 

we have 

THEOREM 3.3.1 If F is of bounded variation on [a, b} then there 

are two functions F\ and F2 increasing on [a, b] such that F = Fi — F2. 

Proof We set Fi(x) = VarxaF for a < x < b, F1(a) = 0 and F2(x) = 

Fi(x) - F(x). Clearly Fi is increasing. To complete the proof it is 

sufficient to show that F2 is increasing. Let a < x < y < b. We have by 

(3.28) 

F2(y) = F1(y) - F(y) = F^x) + Var^F - F(y) 

f Or F1+F2. 

f For the notation see p. 5 and p. 37. 
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and therefore 

F2{y) - F2(x) = VaryxF - [F(y) - F(x)} >0. • 

If F is of bounded variation on [a, b] then F is bounded on [a, b\. 

Indeed \F(x)\ < |F(a)| + VarxaF < |F(a)| + VarbaF. 

THEOREM 3.3.2 If F and G are of bounded variation on [a, b] then 

so are the functions |F|, F ± G, FG, Max(F, G) and Min(F,G). If 

moreover 1/G is bounded then F/G is also of bounded variation. 

Proof Let K be such that |F| < K and |G| <ifon [a, b}. It is easy to 

check the following inequalities!: 

| |F(xi)\ - |F(xi_i)| | < |jP(xi_i, Xi) |, 
\(F{xi) ± G(Xi)) - (F(xi-!) ± G(xf-0)| 

< iF(xi-!, Xi)I + x*)|, 

|F(xi)G(xi) - F(x<_i)G(a;i_i)| 

= |F(xi)G(xi-i, Xi) + G{xi-i)F{xi-\, Xi)\ 

< K |G(xi_i, x^| + K |F(x»_i, Xi)|, 

|Max(F(xi), G(x{)) - Max (F(xi-x), G(x{-1))| 

< |F(ar*_i, Xi)| + |G(x*_i, x{)\, 

|Min (F(xi), G(xi)) - Min (F(x*_i), G(x*_i))| 

< |F(®i_i, Xi)| + |G(xj_i, Xi)\. 

If, in addition, |1/G| < L then 

1 _ 1 
G(xi) G(xi-1) 

It follows from (3.3) that 

IF(xi)G(xi) - Fixi-xMxi-x)| < KV&rbaF + iLVar^G, 

l 

which shows that FG is of bounded variation. The rest of the theorem 

follows similarly. • 

THEOREM 3.3.3 Let f be of bounded variation on [a, b] and c £ 

[a, b). Denote v(x) = Var£/, where x £ (a, b} and v(a) = 0. Then v 

is continuous from the right at c if and only if f is. Similarly for the 

continuity from the left if c £ (a, b\. 

G(xj-1, Xi) 

G(xi)G(xi^) 
< L2 |G(x*_i, Xi)| 

f F(u,v) stands for F(v) — F(u). 
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Proof Since \f(x) - /(c) | < v(x) - v(c) for c< x <b continuity of v at 

c from the right implies the same continuity for /. Going in the other 

direction we find, for every positive e, a partition 

c = Xq < X\ < X2 < ■ ■ ■ < xn — b 

such that 

- f(xk) I > Varc/ - | 
k=1 

and a positive <5 such that | f(x) - /(c)| < e/2 whenever c < x < c + 6. 

Then we have that, for c < x < Min(xi,c + 5), 

n 

VarbJ < |/(c) - f(x)\ + |/(:r) - f(x±)\ + \f(xk+i) ~ f(xk)\ + | 
k=2 

< Var^/ + e. 

Consequently 

0 < u(x) — u(c) < e. • 

3.4 Absolute integrability 

Recall that a function / is called absolutely integrable on [A, 5] if both 

/ and |/| are integrable there. The next theorem characterizes absolute 

integrability in terms of the primitive. 

THEOREM 3.4.1 (Criterion of absolute integrability) A func¬ 

tion f is absolutely integrable on [a, b]<Z R if and only if the function F, 

F(x) = K7i f* f, is of bounded variation and then 

VarbaF= f |/1. (3.29) 
J a 

Proof If / is absolutely integrable on [a, b], then for any division 

D = a = xq < x i < x2 ■ ■ • < xn = b 

we have 

Y,\F(Xi f 

(3.30) 
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This shows F is of bounded variation. For the proof of the converse let 

Var^F = V. For £ > 0 there exists a division D as in (3.30) such that 

V - e Xi)\ <V. (3.31) 
D 

Now we find a <5i such that any partition which is <5i-fine anchors on the 

points Xi, i.e. any Riemann sum f f°r a partition ix <C 6\ can be 

expressed as 

£/ = ££*;-/■ <3-32) 
7T 1=1 7T 

This equation shows that if ix is <5i-fine we can include all points Xj as 

dividing points of ix without altering the Riemann sum and we do this 

for the rest of the proof. Let 82 correspond to / and e by Henstock’s 

lemma and set 8 — Min(<5i, 82)- Then we have 

n 

YjYjZi-i\f(0(v ~u) - F(v>u)\ 
1 7T 

for any partition ix which is Ffine. Consequently 

\F(u,v)\ ~e<Yl | f(0(v - u) | < ^|F(u,n)| +£. (3.33) 
7T 7T 7T 

Since adding more dividing points to D can only increase the sum in 

(3.31) we obtain 

V — £ < v)| < V. 
7T 

Combining this with (3.33) gives 

m 

V-2e<J2\f(0\^-u)<V + £. 
1 

This means that 

f\f\ = v. 
J a 

COROLLARY 3.4.2 If f and g are integrable and |/| < g on [A, B]C 

E then f is absolutely integrable. In particular, a KH-integrable function 

is absolutely integrable over [a, 6]C M if it is bounded there. 
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Proof Indeed, if F(x) = f* f then 

n n »xi pb 

J2\F(xi-U Xi)\ < / 9< g < oo. 
i=1 i= i Ja 

Consequently / is absolutely integrable on any finite interval. The func¬ 

tion jh f* |/| is increasing and bounded, hence finite limits at A and 

B exist. By Theorem 2.9.3 and/or Theorem 2.8.3 the integral ff \f\ 

exists. • 

It is an immediate consequence of the corollary that fi ± /2 are ab¬ 

solutely integrable if /i and /2 are. The integrability of Min(/i, /2) and 

of Max(/i,/2) now follows immediately from the absolute integrability 

of /i and /2 because 

Max(/i,/2) = - [/i + /2 + |/i — /2I]) 

Min(/i,/2) = -[/1 + h ~ l/i _ /2I]- 

3.5 Limit and KH-integration 

The advantage of KH-theory is that it has powerful and easily proved 

theorems on the interchange of limit and integration. However, one 

cannot expect that the formula 

rb rb 
lim fn = lim / fn (3.34) 

holds without restriction, as the following example shows. 

EXAMPLE 3.5.1 If fn = nl^n-1) and a = 0, b = 1 then the 

left-hand side of (3.34) is 0 whereas the right-hand side is 1. 

As in the Riemann theory, uniform convergence of fn to / guarantees 

the validity of (3.34) for the KH-integral. However, on many occasions, 

the need for the uniform convergence is too restrictive. Moreover on an 

infinite interval the uniform limit need not be integrable and even if it 

is, equation (3.34) may fail. For instance if fn — ^l(nj2n) then 

roo /*oo 

/ /n = 1 / / lim fn = 0. 
Jo Jo 

The next theorem guaranteeing (3.34) is valid for infinite intervals and 

verification of the assumptions is often easier than proving uniform con¬ 

vergence. 
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THEOREM 3.5.2 (Monotone convergence theorem.) If 

(i) the sequence (/n(x)} is monotone for almost all x G [A, B] C R, 

(ii) the functions fn are KH-integrable and the sequence (Xf/n) is 

bounded, i.e. I A fn < K for some K all n G N, 

(iii) lim fn = f is finite a. e. 

then f is KH-integrable on [A, B] and 

f B 

f = lim / fn- (3.35) 

The theorem is restated and an alternative proof is also given in Sub¬ 

section 6.5.4 on page 224. 

Proof of the monotone convergence theorem Since the change 

of a function on a set of measure zero influences neither the existence nor 

the value of the integral we can and shall assume that the functions fn 

and / are defined and finite everywhere on [A, B\. By considering —fn 

or fn — fi instead of fn, if need be, we can achieve that the sequence {fn} 

is increasing and fn > 0. Since the sequence | fB fn j is monotonic and 

bounded the limit on the right-hand side of (3.35) exists; let us denote 

it by L. Given e we can find N such that 

fB £ 

L fN>L~r 
By the easy part of Theorem 2.9.3 or Remark 2.9.4 there exists a closed 

bounded interval [ojv,&jv] such that 

Next we find n{x) > N such that, for n > n(x), 

3^j+, — fn(x) > /(*)■ 
3 L + e 

(3.36) 

(3.37) 

If f(x) > 0 this is possible because the left-hand side of (3.37) has a 

limit strictly larger than the right-hand side; if f(x) = 0 we can take 

n(x) = N since equality holds in (3.37) for any n. By Henstock’s lemma 

there is 

6n ■ [A, B] i—>• R+ 
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such that 

E fn(x)(v - U) - / fn < 
3.2r 

(3.38) 

whenever the tagged partial division n <C 6n. We dehne 

^(x) ^n(x)(-^)- 

Let 7r be a partition of an interval containing [ajv, 6/v]> <5- The 

proof will be accomplished if we show that 

J2f(xi)(vi — Ui)-L < £. (3.39) 

The way from the Riemann sum of / to L goes through the sums 

/«(*«) - ui), 
7T 

(3.40) 

rvi 

'Yt / fn(xi) • 
7T ^ 

(3.41) 

It is easy to check that the first sum is close to the Riemann sum of / 

and the second to L. Indeed 

Y fn(xi){Xi)(Vi ~Ui) <Y f(X*)(Vi ~ Ui) 

3 L | 

— 2^ _|_ e fn{xj){xi){vi ~ ui) 1 (3.42) 

and 

Y / fn(xi) >Y fN> fN > ^ (3.43) 

Denoting by N the largest n(xi) we also have 

_ pvt _ pvi r-B 

Y1 / fn(xi) — / /iV — / /iV — T- In(xi) — 

7T “ “* 7T “ “* 

(3.44) 

It remains to estimate the difference between (3.40) and (3.41), i.e. 

E wi) / fn(ii) (3.45) 
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The n(xi) are not necessarily distinct; let - - - ih be the distinct 

i such that n(xi) — k. In (3.45) we group together the terms with the 

same n(xi) = k and estimate that sum using Henstock’s lemma (3.38): 

Consequently 

£ fn(xi) (^h) iVi Ui) 

£ 

3' 

Collecting (3.42), (3.43), (3.44) and (3.46) gives on one hand 

(3.46) 

YjjxMVi - Ui) > 

> 

and on the other 

3 L T £ 

3 (L + £) 
YjMiVi - Ui) 

< L n(xi + 
£ 

3 

^2fn(xi)(Xi)(Vi -Ui) 

7T 

7r 

3 L T £ 

The last four inequalities imply (3.39). 

REMARK 3.5.3 Since a countable union of sets of measure zero is 

of measure zero and since changing a function on a set of measure zero 

does not influence either the existence or the value of the integral it is 

irrelevant whether the limit in (iii) in Theorem 3.5.2 is required to exist 

everywhere or a.e. A similar situation will occur often in this book but 

we shall not comment on it in future. 

EXAMPLE 3.5.4 If G is an open setf G = Jn with pairwise 

disjoint Jn then 

/oo 00 

ic = Ei-7”i- (3 47) 
-OO 1 

j The reader who is not familiar with open and closed sets is advised to read Ap¬ 

pendix Section A.3. 
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provided the series on the right-hand side converges. The proof is im¬ 

mediate by the monotone convergence theorem with fn = 1 g„, Gn = 

U iJn. 

It is convenient to define fAf = ooif there exists an increasing se¬ 

quence of integrable functions fn converging to / such that lim f. fn = 
n—>oo 

oo. It is then true, by the monotone convergence theorem, that 

fB 
lim / gn = oo 

for any increasing sequence {gn} which converges to / almost every¬ 

where. The advantage of allowing the integral to have an infinite value 

is that many formulae hold with less restriction or without any restric¬ 

tion. e.g. the formula (3.47) always holds even if the series diverges. For 

the sake of reference let us state formally 

DEFINITION 3.5.5 If there exists an increasing sequence of inte¬ 

grable functions fn converging to f a.e. and such that 

lim JCH [ fn = oo then ICH 
n^°° Ja 

f = — oo. 

We define also 

ICH — —oo if ICH f (—/) = oo. 
Ja 

By accepting infinite values of integrals the phrases ‘/ is integrable’ and 

‘the integral of / exists’ cease to be equivalent: if J 4 f = oo or —oo then 

/ is not integrable. If JA f is finite we say that the integral converges. 

EXAMPLE 3.5.6 If fn > /n+1 > 0 and fn —>• 0 then /n —► 0 

a.e. For / = lim fn we have / > 0 and by the monotone convergence 
71—KX) 

Theorem J'^ f = 0. • 

EXAMPLE 3.5.7 One often associates with a function / a function 

fN which is obtained from / by truncating it from above by N and from 

below by —N. More precisely 

fN(x) 

N if f(x) > N 

f{x) if 1/0*01 < N 

—N if f(x) < —N. 

(3.48) 
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If / is absolutely integrable then so is the function fN since fN = 

Max (Min(/, TV), —N). If / is absolutely KH-integrable then 

(3.49) 

If / is non-negative (3.49) follows directly from the monotone conver¬ 

gence theorem; for general / one can apply the result for non-negative 

/ to /+ and / . 

It is interesting to observe that (3.49) may fail if / is not absolutely 

integrable. The idea when constructing a counterexample is to define / 

asymmetrically with respect to zero so that truncation from above has 

a bigger effect than truncation from below. Let us divide the interval 

[(i — 1 )/i, %/{i + 1)] by a point Xi in the ratio 1 : i, i.e. let 

which leads to 

Xi —  --—r -j-.-TTo • 
l + 1 (? + l)2 

i- 1 1 
--T + -- 

Now we define 

Then, for x G —:—,  -r 
i i + 1 

o i — 1 

Consequently 
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On the other hand 

N2 

= £ 
N+1 

N^ + l 

j iN’ = / /"a 
0 N-l 

N 

(i + l)2 (z + l)2_ 

N 

< --V — 
2 ^ z + 1 

N+l 

The right-hand side clearly diverges. This example is due to Lu Shipan. 

The next theorem shows that assumption (iii) in the monotone con¬ 

vergence theorem is superfluous, but we use the theorem itself to prove 

it. 

THEOREM 3.5.8 (Beppo Levi) If 

(i) the sequence {/n(x)} is monotone for almost all x € [A, B] C 

(ii) the functions fn are KH-integrable and the sequence j JA fn 

bounded, JA fn < K for all n € N, 

then lim fn(x) = f(x) 

is 

(a) is finite a. e. 

(b) is KH-integrable on [A, B] and 

(3.50) 

Proof It is sufficient to prove (a). As in the previous proof we assume 

that fn are defined everywhere and 0 < fn < fn+\. For a given x the 

limit of fn(x) can be infinite; denote Z = \ x : lim fn(x) = ooi. Let 
l n—mx) J 

gn = Min(i/n, 1). By the monotone convergence theorem 

K — lim gn is integrable and ff hi <\K. 
n—>oo 1 

If x (E Z then hi(x) = 1; if x ^ Z then i > f(x) for some i and 

consequently lim hi(x) = 0. This means that lim hAx) — lz. Another 
i—>oo i—>-oo 

application of the monotone convergence theorem gives 

nB pB pB 

/ lim hi — 1 z = lim / 
JA l-+°° JA i—+oo J a 

, K 
hi < lim — = 0. 

i—>oo i 
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COROLLARY 3.5.9 If wn are KH-integrable and non-negative and 

the series fA wn converges then wn converges a.e. and 

oo oo 

5Z / ^ J A J A y 

Proof Apply the Beppo Levi theorem to fn — YfJl'Wi- 

EXAMPLE 3.5.10 

“1 log(l — x 

Jo X ^Jo n ^n2 
(3.51) 

This sum is knownf to be 7t2/6. 

COROLLARY 3.5.11 If wn are absolutely KH-integrable and the 

series YlT J a lwnl converges then YJT wn converges a.e. and 

OO pB pB oo 

w™= 
J A JAi 

Proof Apply the previous corollary to wf and w~. • 

EXAMPLE 3.5.12 

f1 log(l + x) 

X dx = Yl 
-1 (-i) 

n — lrj.n — 1 

n dx = Yl 
(-1) 

n— 1 

Y\f 
(3.52) 

THEOREM 3.5.13 (Fatou’s lemma) If fn are KH-integrable and 

non-negative on [A, B] C R then 

( liminf fn < liminf [ fn. (3.53) 
JA n-*oo rwoo JA 

EXAMPLE 3.5.14 We illustrate the various possible situations before 

the proof; we take A — 0 and B — 1. If fn are as in Example 3.5.1 then 

strict inequality occurs in (3.53). If fn = rc2l(o,n-i) then the left-hand 

side of (3.53) is zero and the right-hand side is oo. If fn(x) = ar2l(n-i,i) 

then both sides are infinite. Finally if fn = l(o,i) ~ 2nl(0)n-1) the left- 

hand side is 1 and the right-hand side is -1: inequality (3.53) fails 

because fn are not non-negative. 

f For the proof see Exercise 7.21. 
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Proof of Fatou’s lemma Let gk = inf {fp, n < i < k}, hn = lim gk — 
k—>oo 

inf {/»; i > n). Since 0 < JA gk < f f fn all the functions hn are inte- 

grable by the monotone convergence theorem. Since fA hn < fA fn we 

have 

fB cB 

lim 
n—>-oo 

h„ < lim inf fn- (3.54) 

If the limit on the left-hand side is oo then both sides in (3.53) become 

infinitef, otherwise by the monotone convergence theorem 

fB rB fB 

/ lim inf fn= / lim hn— lim / hn. 
JA n— oo JA n—oo n^ooJA 

This together with (3.54) gives (3.53). 

REMARK 3.5.15 If the right-hand side of (3.53) is finite then Fatou’s 

lemma asserts the integrability of lim inf fn. This is often used in proving 

the integrability of a given function. The next example is typical in this 

regard. 

EXAMPLE 3.5.16 If / is increasing, bounded and has a derivative! 

a.e. on [a, b] C M then /' is KH-integrable on [a, b} and we have J^ /' < 

f(b) — f(a). First we extend / by setting f(x) — f(b) for x > b and then 

define 

gn(x) = n 

It is easily checked that 

f{x+ -)-f(x) 
n 

r 6+i 

gn=n f-n f < f(b) - /(a). 

By Fatou’s lemma 

rb nb 

/ f'= lim inf n 
Ja Ja n-to° 

f(x + -) - f(x) 
n 

< m - /(a). 

The assumption that / is increasing is essential; if f(x) — sin ~ then f 

is not integrable on [0, 1] because lim J1 /' does not exist. 
X—►() ' 

f The left-hand side because of the definition of an integral with value oo. 
| It is proved in Section 3.14 that an increasing function has a finite derivative a.e. 

and so this assumption can be omitted. 
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The next theorem is easy to apply and is probably the theorem most 

often used in integration. 

THEOREM 3.5.17 (Lebesgue dominated convergence theorem) 

If the functions fn, G and g are KH-integrable on [A, B\ C R, 

g<fn<G (3.55) 

for all n £ N and 

lim fn = f a.e. 
71—>00 

then f is KH-integrable and equation (3.35) holds. 

Proof We apply Fatou’s lemma to the sequences n t—> fn — g and 

n i—> G — fn and obtain successively 

/ (/ - g) < liminf [ (fn-g)< t {G - g), 
Ja n^°° Ja Ja 

rB rB 

f < liminf / fn, 
Ja n^°° Ja 

[ (G-g) < liminf [ (G - fn) < [ {G - /), 
Ja rwo° Ja Ja 

rB rB 

f > lim sup / /„. 
Ja n—>oo Ja 

(3.56) 

(3.57) 

Combining (3.56) and (3.57) proves that the right-hand side of (3.35) 

exists and equals to the left-hand side. 

COROLLARY 3.5.18 If the inequality (3.55) is replaced by 

\fn\ < G (3.58) 

then (3.35) holds and f is absolutely KH-integrable. 

COROLLARY 3.5.19 If [A, B] = [a, b] C R and there is C e R 

such that \fn(x)\ < C for almost all x G [A, B] then f is absolutely 

KH-integrable and (3.34) holds. 

The inequality 

g < f < G (3.59) 

alone is not sufficient to guarantee (3.35) as Example 3.5.1 shows. How¬ 

ever, it will follow from Theorems 3.11.6 and 3.11.2 that if inequality 
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(3.55) in Theorem 3.5.17 is replaced by inequality (3.59) then the asser¬ 

tion that / is integrable remains valid. 

EXAMPLE 3.5.20 The T function is defined for t > 0 by 

We wish to prove the formula 

n\ n1 

t(t + 1) • ■ • (t -j- ri) 

It is easy to show by straightforward calculus methods that 

Consequently it suffices to show 

Since 

we need only an integrable non-negative function G such that 0 < fn < 

G, where 

if x > n 

if 0 < x < n. 

Recalling the inequality log(l — x/n) < — x/n gives (1 — x/n)n < e~x 

for 0 < x < n. Consequently we can take G(x) = e~xxt~1. • 

The dominated convergence theorem is important not only for dealing 

with concrete problems but also as a tool for proving new theorems, this 

we shall see later in this book. Although fn and / need not be absolutely 

integrable the dominated convergence theorem is really a convergence 

theorem about absolutely integrable functions since G — f and G — fn 

are absolutely integrable. 

EXAMPLE 3.5.21 Let / be non-absolutely integrable and fn = f /n. 

Then (3.35) holds but there is no integrable G dominating all fn. Indeed, 
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if fn(x) < G(x) almost everywhere in [A, B] for all n then G > f + and 

G cannot be integrable. • 

Section 3.7 and several theorems in Chapter 5 deal with the interchange 

of limit and integration for non-absolutely integrable functions with no 

monotonicity condition or majorizing functions present. 

THEOREM 3.5.22 (Mean convergence, completeness) Let the 

functions fn, n = 1, 2,... be absolutely integrable and for every positive 

e let there be N such that 

fm | £ (3.60) 

forn,m>N. Then 

(i) there exists an almost everywhere convergent subsequence, 

lim fnk = f 
71 fc —>00 

(ii) lim [ | fn - f\ = 0, 
n~*°° Ja 

fb (iii) lim / 
n—>0° J a 

Proof By assumption for every k € N there is nk such that 

,b ^ 
2k' 

f Ifnk fn| < 
J a 

(3.61) 

for n > nfe and < nk+i- Since the series 

oo 

'y ^ / I fnk — fnk+1 I 
k=1 Ja 

converges, by Beppo Levi the series 

oo 

fn, + ^ fnk+i) 

k=1 

converges absolutely a.e. and this proves (i). 

Next we apply Fatou’s lemma to the sequence j t-» |/nfc if k-\-j | 

obtain from (3.61) 
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and this together with (3.61) gives 

rb 2 J |/n-/|<2fc, 

for n > rife. This establishes (ii). Condition (iii) is a direct consequence 

of (ii). • 

If (ii) holds then we say that the sequence {/n} is mean convergent to 

/ or that fn converges to f in the mean. Convergence in the mean allows 

interchange of limit and integration but a mean convergent sequence of 

absolutely integrable functions need not converge at any point. However, 

the theorem implies that a mean convergent sequence contains an almost 

everywhere convergent subsequence. 

EXAMPLE 3.5.23 Diminishing step travelling. Write n = 2l~1 + 

k — 1 where k = 1,2,... , 2l~1 and i — 1,2,.... Put fn(x) = 1 

when x G [(k — l)/2l_1, k/2l~1] and 0 elsewhere. In other words, 

the functions fn, n = 1,2,... take the value 1 on the intervals 

[0, 1], [0, 1/2], [1/2, 1], [0, 1/4], [1/4, 1/2], [1/2,3/4], [3/4,1], ... 

and 0 elsewhere. Then {fn} is mean convergent to zero but the sequence 

{fn (%)} diverges for every x in [0, 1]. 

The set of all absolutely KH-integrable functions is often denoted by C. 

The property of C stated in Theorem 3.5.22 is referred to as completeness 

of C. This is because, in the language of functional analysis, the space 

C with the distance d(f,g) defined by d(f,g) = JQh \f - g\ is complete 

by Theorem 3.5.22. 

3.6 Absolute continuity 

There is another characterization of absolute integrability which uses a 

subclass of functions of bounded variation, namely absolutely continuous 

functions. A function F is said to be absolutely continuous on [A, B] or 

briefly AC if for every e > 0 there is an rj such that for every partial 

division D with 

X](u ~u) <V 
D 

(3.62) 
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we have 

^F(u,w) 

D 

< £. 

Taking into account the obvious inequalities 

(3.63) 

J2f(u,v) <^\F(u,v)\ 

D D 

< tF(w> v)]+ + £ [F(u> u)r 
D D 

it is easy to see that the meaning of the definition of absolute continuity 

is not changed if the absolute value in inequality (3.63) is put inside the 

summation sign. It is also clear that a function which is AC on [A, B} 

is uniformly continuous there. The next example provides a function 

which is increasing and uniformly continuous on [0,1] but not AC. It is 

even possible to define a continuous strictly increasing function which is 

not AC. (See [42] pp. 198-200.) 

EXAMPLE 3.6.1 Devil’s stairs. First we let H(x) = 0 for x < 0 

and H(x) = 1 for x > 1. Then we set H(x) = \ in the interval (|, §), 

and generally if J C [0,1] is an interval of the complement of Cantor’s 

discontinuum C and z its mid-point then we define H{x) — z for x e J. 

Then we extend H by setting H(x) — sup {H(t)\ t < x,t ^ C}. The 

function H is clearly increasing and assumes all values of the form ^ 

with k, n non-negative integers and k < 2n. Consequently every sub¬ 

interval of [0,1] contains values of H and from this the continuity of 

H follows. Indeed if H were discontinuous at c, with 0 < c < 1, the 

interval [limx^cH(x), limxlcH(x)} would be free of any value of H. Let 

7r = {[u, u]} be the partial division of [0,1] which consists of the 2n 

closed intervals left in the n-th step of the construction of Cantor’s set. 

The total length of these intervals is (§)n and tends to zero with n -> oo. 

Since H is constant on the contiguous intervals = H( 1) - 

17(0) = 1 and H cannot be AC. 

THEOREM 3.6.2 If F is AC on a closed and bounded [a, b] then it 

is of bounded variation on [a, b]. 

Proof There exists a positive rj such that 

^2\F(u,v)\ < 1 

D 

(3.64) 
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whenever the intervals (u, v) satisfy (3.62). Let 

a = xo < x-i < ■ ■ ■ < xn = b 

be a division of [a, b] into subintervals of length smaller than r\. Then 

by equation (3.28) 

N 

VarjF • 
1 

The definition of AC has some similarity with the definition of bounded 

variation. It is therefore no coincidence that the statement and proof of 

the next theorem are very similar to those of Theorem 3.3.2. 

THEOREM 3.6.3 If F and G are AC on a closed bounded inter¬ 

val [a, b] then so are the functions |F|; F ± G, FG, Max.(F,G) and 

Min(F, G). If moreover 1 /G > 0 then F/G is also AC. 

Proof Since F and G are continuous we have |F| < K and |G| < K on 

[a, b] for some K. We rewrite the inequalities from the proof of Theorem 

3.3.2 thus: 

||F(t/)|-|F(u)|| < |F(u, v)|, 

\(F{v)±G(v))-(F(u)±G{v))\ 

< |F(u, u)| + |G(u, u)|, 

|F(u)G(u)-F(u)G(u)| ] 

= \F(v)G(u, v) + G(u)F(u, u)| V (3.65) 

<K\G(u,v)\+K\F(u,v)\, ) 

|Max(F(v), G(v)) — Max(F(u), G'(u))| 

< \F(u, u)| + |G(u, u)|, 

|Min(F(v), G(y)) -Mm(F{u), G(u))| 

< |F(w, u)| + |G(u, u)|. 

If now 

^|F(u,u)|<^ and ^ |G(w,w)| < ^ 
7T 7T 

then it follows from (3.65) that 

£ |F(»)G(v) - F(u)G(u)| < e. 
7T 

This proves the absolute continuity of the product. The rest of the proof 

follows similarly. # 
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THEOREM 3.6.4 (AC and absolute integrability) A KH-inte- 

grable f is absolutely integrable on [A, B] C M. if and only if the KH-pri- 

mitive F, F(x) = JCH f* f, is absolutely continuous on [A, B] and for 

every e > 0 there is K such that 

[ I/I < £ (3-66) 
J a 

for every bounded [a, b] satisfying [a, b] C [A, B\ and [a, b] n [-K, K) = 

0. 

COROLLARY 3.6.5 A KH-integrable f is absolutely integrable on 

[a, 6] C M. if and only if the KH-primitive F, F(x) = JCH f* f, is abso¬ 

lutely continuous on [a, b]. 

Combining Theorem 3.4.1 and the corollary we have 

COROLLARY 3.6.6 If f is KH-integrable on [a, b\ C R and its 

primitive F is of bounded variation, then F is absolutely continuous on 

[a,b]. 

Proof of Theorem 3.6.4 Let / be absolutely KH-integrable and £ > 0. 

By the dominated convergence theorem there is N G N such that 

For intervals (u, v) satisfying (3.62) we obtain 

fV fV fV 

/ I/I < / If-fN\ + / l/Nl. 
J u j u J u 

£ f l/l < \ + NV- 
D Ju 

This shows that F is AC. If / is absolutely integrable then condition 

(3.66) is satisfied because 

lim [ |/| and lim [ \f\ (3.67) 
b-Bjc 

exist. Conversely, if F is AC then it is of bounded variation on every 

compact interval in [A, B], and consequently / is absolutely integrable 

on every compact interval. Condition (3.66) guarantees the existence of 

the limits (3.67). Hence |/| is integrable on [A, B] by Theorem 2.9.3 

and Remark 2.9.4. • 

We return to AC and absolute integrability in Theorem 3.9.4. 
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3.7 Equiintegrability 

We begin with a definition. 

DEFINITION 3.7.1 A family $ of KH-integrable functions is said to 

be equiintegrable on [A, B] if for every positive e there exists a gauge 6 

such that for every / £ 5 and every 6-fine partition 7r 

£/- < £. (3.68) 

For every KH-integrable / there is a 6 such that (3.68) holds; for an 

equiintegrable family there is such a 6 common to all f. 

EXAMPLE 3.7.2 If $ is a family of functions with uniformly bounded 

variation on [a, b] C R, i.e. there is a constant C such that for every 

/ £ $ the variation Varbaf < C, then $ is equiintegrable on [a, b]. Let 

e > 0 be given, and choose 6 £ R+ such that 2C8 < e. If n <C 6 then in 

every interval [u, v) tagged by £ we choose 77 in such a way that 

sup {|/(0 - /(*)(; t £ [u, v]} < |/(0 - f(v)I + 2'^-a) 

and we have 

J^/( O(u-u) / 
_ J u 

7T 

EXAMPLE 3.7.3 If fn(x) = 0 for x 7^ 0 and /n(0) = n then the 

family fn is evidently not equiintegrable on [—1,1], 

EXAMPLE 3.7.4 If / is KH-integrable on [A, B] and 

( 0 if x < c 

HCtl(x) = < 7, 0 < 7 < 1 if x — c 

(l if x > c 

then the family of functions of the form Hcnf with c £ (A, B) and 

0 < 7 < 1 is equiintegrable. Given e > 0 there is > 0 such thatf if 

f Since / is integrable on [A, B} the function ff f is uniformly continuous on [A, B] 
even if [A, B] is infinite. 
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\x — y\ < 61 then 

/ 
£ 

< 4' 

There exists also a gauge 62 such that 

E f(£)(v-u)- / / 
<4 

(3.69) 

(3.70) 

for any ^2-fine subpartition a. Let 

6(x) C 52(x), |6(x)| < Min ( 61, 
8(1 + |/(x)|) 

and 

7T — {(<>i) [^i) ^i])> ^ 1) 2, ••• j U.)- 

be a 6-fine partition of [A, B); c E [Uk, Vk). Clearly 

I f(€k)(vk - uk)\ + 

rB 
- Hc,jf < 

J A 

rVk n 

I f + E 
i=fc-1-1 

f(Zi)(Vi-Ui)- f 

The first or last term on the right-hand side is to be omitted if A; = 1 or 

n, repectively. The terms on the right-hand side are less than e/4, the 

first and second by the definition of 6, the third by (3.69) and the last 

by (3.70). 

THEOREM 3.7.5 (Theorem on equiintegrability) If \un^frL(x) = 

f {x) for every x E [A, B] C K and the sequence {/n} is equiintegrable 

on [A, B] then f is integrable and (3.35) holds. 

Proof First we prove that lim ff fn exists and is finite. For e > 0 we 

find a gauge 6 such that for all n E N we have 

(3.71) 

whenever the partition 7r of [A, B] is 6-fine. We hx a 6-fine paitition 

7T = {(£i> [uit ^i])) i 1,2,... ,p} 
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and find N such that 

p p 

i= 1 i=l 

£ 
(3.72) 

This is possible since fn converges to / and there are only p, i.e. finitely 

many, The sequence j fn 1 is Cauchy since 

+ fn 

< 

+ 

fn-Tfn 

E/- 

The first and the last term are less than e/3 by (3.71), the middle term 

by (3.72). Let lim fn = L. 
n—>oo 

We now allow % to be any 6-fine partition. Sending n —> oo in (3.71) 

gives 

p 

— uf) — L 
i=1 

< e. 

This proves the integrability of / and that fA f = L. • 

As a first application of this theorem we give a one-line proof of the 

theorem stating that there are no improper integrals in KH-integration, 

namely Theorem 2.8.3. We choose cn > a, cn —» a and have 

l / = A“ / = J \imHc„,0f = J f. 

The interchange of limit and integration is justified, since by Example 

3.7.4, the family {HCnt0f] n = 1,2,...} is equiintegrable. 

The following properties of equiintegrability are immediate conse¬ 

quences of the definition. 

un Let fo, i — 1, 2 be the families of functions constituted by restric¬ 

tions of functions from £ to [A, C] and [C, B], respectively. If fo 

are equiintegrable for i — 1, 2 then 5 is equiintegrable on [A, B}. 

su If di and #2 are equiintegrable then so are U#2 and the family 

of functions of the form fx + f2 with fc e fo; 

m If K e R+ and 5 is equiintegrable then so is the family of func¬ 

tions of the form cf with / e 5 and |c| < K; 
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cx Let S) be a family of functions h with the following property: 

there exist positive numbers cq, i = 1,2,... ,n with Yli a* = 1 

and functions fi £ 5 such that h = Yfi &ifi- If ■& is equiintegrable 

then so is $). 

We also need 

cl Let ^ denote the set of all functions which can be uniformly 

approximated by functions from S- If ■& is equiintegrable on 

[.A, B] C 1 so is S- 

Proof Let e > 0 and / e S- There exists a gauge 8 such that 

/ < (3-73) 
3a 

whenever / G ^ an(i ^ is ^-fine. For n G N we find fn G 5 such that 

V-L 

| /„-/!<-. 
1 1 n 

(3.74) 

By Theorem 3.7.5 

aB aB 

lim / /„ = / /. (3-75) 
7a 7a 

For a d-fine partition 7r and any n £ N we have by (3.73) 

E/ /B/|<f + |EU'--M + (3.76) 

By (3.75) there exists n0 such that for n > n0 the second term in (3.76) 

is less than e/4 and then, by (3.74), we find n > n0 which will make the 

first term in (3.76) less than e/4. • 

THEOREM 3.7.6 If 

(i) K eR+ and f is KH-integrable on [A, B] C M, 

(ii) <5 is a family of increasingf functions with \g\ < K for g £ (5 

then the family of functions of the form gf, with g £ (J5, is equiintegrable 

on [A, B]. 

Proof The family {fg\ g£®, g(a) = g{B)} is obviously equiintegrable. 

By su we can assume that g(A) < g(B). We can further assume, because 

of su and m, that 

g(A) = 0 and g{B) = 1. (3.77) 

f Or decreasing. 
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We prove the theorem first with the additional assumption that the 

functions g are simple. Any such function can be represented as 

g — oqHCiai + a2HC2n2 + • ■ • + anHCrinn, (3.78) 

with ai > 0, ai = 1) 0 < Ji < K and 

A < ci < C2 < • • • < cn < B 

The equiintegrability now follows from Example 3.7.4, su and m. In view 

of cl the proof will be completed when we show that every increasing 

g satisfying (3.77) can be uniformly approximated by simple increasing 

functions. Let e > 0 and {[y, u>]} be an e-fine division of [0,1]. The 

set <7-1([y, w)) could be empty, a singleton or an interval. For x G 

y-1([?/, w)) let tp(x) = y and <p(x) = 1 for x G g~1({g(B)}). Then <p is 

increasing and has a finite range, and by construction 0 < f(x) — (p(x) < 

£ on [A, B}. • 

COROLLARY 3.7.7 Iff is KH-integrable on [A, B) and g monotonic 

and bounded then fg is KH-integrable on [A, B). 

EXAMPLE 3.7.8 The family of functions of the form 

f(x) = x~1e~kx sinx 

with k > 0 is equiintegrable on [0, oo] since /0°° x~x sinx da: is finite. By 

Theorem 3.7.5 

e~kx 
sinx 

x 
dx = 

smx 
-dx. 

x 

3.7.1 The second mean value theorem 

If the function / oscillates highly then the mean value theorem 2.5.27 

provides weak results in comparison with our next theorem, which fruit¬ 

fully uses the additional assumption that g is monotonic. Compare 

Example 3.7.10 below. 

THEOREM 3.7.9 (The second mean value theorem) If f is 

KH-integrable and g monotonic and bounded on [a, 6] C R then gf is 

KH-integrable and there exists £ G [a, b} such that 

rb j.b 

/ 9f = g(a)/ / + g(b) / /. 
Ja Ja j£ 

(3.79) 
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Prooff The theorem is true if g(a) = g{b). Hence we assume g(a) ^ 

g{b). It is a matter of simple calculation to verify that if a, (3 are real 

constants and (3.79) holds with g replaced by g then it also holds for 

any functions of the form g = a + (3g. It therefore suffices to prove the 

theorem for increasing functions g which satisfy g{a) = 0, g(b) = 1. First 

let g be a simple function with the representation (3.78), F(x) — f 

and M, m the maximum or minimum of F, respectively. Then fg is 

integrable and 

m< f fg = Y^ai[f^M- (3-80) 
J a | J Ci 

Consequently, by continuity of F, there is a £ such that 

fb gf = F(0 = f f = »(o) r / + 9(b) f /• (3.81) 
J a J £ J cl J t; 

For a general g there is a sequence of step functions gn converging uni¬ 

formly to g. Equation (3.81) holds with g and £ replaced by gn and £n, 

i.e. 

pb rb 

/ g„f= /• (3.82) 
J CL J 

Passing to the limit through a subsequence for which £nfc —► £ and 

using Theorems 3.7.6 and 3.7.5 to justify the interchange of limit and 

integration we obtain 

EXAMPLE 3.7.10 We show that /2°° sinx(logcc) 1 dx converges. For 

a > 2 we obtain by the second mean value theorem 

6 sinx , 
-dx 
logx 

< _A_ + < 4 
_ log a log b - log a 

fb 
Consequently lim / sinx(logx) dx exists and is finite. 

J2 

1 r • 
— / si 
log a Ja 

sin x dx 
log b 

sin x dx 

f This due to S. Schwabik (Czech lecture notes). 



no 3 Development of the Theory 

Using the first mean value theorem gives a poor result. We have 

and the integral on the right-hand side is ‘big’. 

3.8 Differentiation of integrals 

In this section the Henstock lemma finds an important application in 

the proof of Theorem 3.8.2 below. 

First we generalize the concept of length of an interval to sets which 

are finite unions of intervals. The length of S = |Ji Ij> denoted by 

£{S), is, by definition, the integral of the characteristic set of S. Clearly, 

if the intervals are non-overlapping then £(S) = 'fff \Ij | and always 

£(S) < \Ij\- If Si C S2 then £{S\) < £(62). For the proof of the next 

theorem we need the following lemma. 

LEMMA 3.8.1 (Austinf) Every finite family of intervals {/*.; k £ P} 

contains a disjoint subfamily {p', k £ Q C P} such that 

(3.83) 

Proof We may and shall assume without loss of generality that P — 

{1, 2,..., n) and 

*M>*(Ja) >*(/3) >■••>*(/«)• 

We construct Q from P by removing some elements from it. Firstly we 

put 1 £ Q. Then we discard all intervals which intersect p. In the next 

step we omit all intervals which intersect the largest interval left and so 

on. After a finite number of steps we obtain a disjoint subfamily, and 

since we keep at each step at least one third, the length of what is left 

must be at least one third of what we started with. • 

At the end of Section 2.6 we anticipated the following theorem. 

THEOREM 3.8.2 If f is KH-integrable on [a, b] and F is defined by 

t [3]. 

(3.84) 
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then 

F'(x) = f(x) (3.85) 

almost everywhere on [a, b\. 

Proof Let be the set of all x such that every neighbourhood of x 

contains an interval [u, u] with the property that 

x G (u, v) and ]F(v) — F(u) — f(x)(v — u)\ > fi(v — u). (3.86) 

Let E = \J Ei. If x <£ E then F has a derivative at x and equation 

(3.85) holds. Indeed, let r > 0 and choose n G N with 1/n < r. Since 

x 4. Ei there is a neighbourhood U of x such that for any interval 
n 

[u, v\(ZU with x G (u, v) we have 

|F(i>) — F(u) — f{x)(u — u)| < — {y — it). 

By continuity this inequality persists for v = x or it = x. Hence 

|F(v) — F(u) — f(x){v — u)| < t(v — it) 

for (it, v) C U. By Lemma 2.6.1 we have (3.85) for x ^ E. 

It now suffices to show that for every positive fj, the set is of 

measure zero. By the KH-integrability of / and by Henstock’s lemma 

there exists, for every positive e, a function 6 : [a, b} R+ such that 

^2\F(v) - F(u) - f(x)(v-u)\ (3-87) 
7T 

whenever n is a <5-fine subpartition of [a, b}. If E^ = 0 there is nothing 

to prove. Otherwise for every x G E^ choose an interval [it, n] such that 

inequality (3.86) holds and [it, v\ C (x - 8{x),x + 6(x)). To emphasize 

the dependence of [it, u] on x we write [ux,vx\. Now define <5i : E^ —>■ 

R+ with the property that [x — 6i(x),x + 6i(x)] C (ux,vx). By the 

covering lemma (Lemma 2.11.4) there is a countable system of closed 

non-overlapping intervals Kn with the following properties: 

OO 

C |J Kn 
l 

and each Kn contains a point xn G EM such that 

Kn C (xn - 6i(xn),x + 5i(*n)) C («*„, v*„). 
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Let 

OO N 

k = \Kn\ and k<2^^\Kn\. 
1 l 

From the system {[uXi, vXi] ;i = 1,2,... ,N} we find, by using Lemma 

3.8.1, a finite disjoint system 

{[uXi,vx.]; i e Q} (3.88) 

such that 

> ^(u^) <3-89) 
The intervals in (3.88) together with the points Xi form a <5-fine subpar¬ 

tition of [a, b] and by inequalities (3.87), (3.86) 

n- UXI) < Y, Iffe) - rw - /te)K -«.,)!< 
iGQ 7r 

(3.90) 

Combining inequalities (3.89) and (3.90) gives A: < e. • 

3.9 Characterization of the KH-integral 

In this section we prove the strongest version of the Fundamental Theo¬ 

rem, using the concept of negligible variation. We say that a function F 

defined on [a, b] is of negligible variation on a set S C [a, b] if for every 

positive e there is a 7 : 5 M+ such that 

^|F(u)-F(u)| <e (3.91) 
7T 

whenever it is a 7-fine partial division on S. If S is countable and F 

continuous on S then F is of negligible variation on S. Also if F is 

AC on [a, 6] C K and S is of measure zero then F is also of negligible 
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variation on S. The following theorem is the strongest version of the 

Fundamental Theorem!. 

THEOREM 3.9.1 (R. Bartle) If 

(i) F is continuous on [a, b], 

(ii) there exists S C [a, b] C 1R of measure zero and F is of negligible 

variation on S, 

(iii) F'(x) exists and is finite for x G [a, b) and x ^ S 

then F1 is if KH-integrable on [a, b} and 

F{x) - F(a) = KH [ F' (3.92) 
J a 

for every x G [a, b]. 

Proof Since F is continuous at a and b, it will remain of negligible 

variation on S' if a and b are included in S. Hence we may and shall 

assume that a,b G S. For every x G [a, b] \ S there is a S(x) such that 

|F(v) - F(u) - F'(x)(v - u)| < e(v - u) (3.93) 

whenever x — <5(x) <u<x<v<x + S(x). Let 7 be as above and 

define 6 on S by setting it equal to 7. Let f*(x) = F'(x) on S and 

f*(x) = 0 otherwise. If it is a tagged division of [a, b\ and 717 and 7t2 its 

parts tagged in [a, b] \ S and S, respectively, then by (3.91) and (3.93) 

F(b) - F(a) - f*(x)(v - u) 
7T 

J2[F(v)-F(u)-.r(x)(v-u)} 

< Y, [F(q - F(u) F'(x)(v — u)\ + ^ [F(v) - F(u)} 

< e(b — a) + e. 

This proves (3.92) with F' replaced by f*. 

THEOREM 3.9.2 If f is KH-integrable on [a, 6] and F(x) - f* f 

then F is of negligible variation on every set S of measure zero. 

Proof Let 

An = {x;n- 1 < \f(x)\ < n, n G N} . 

f We obtained this theorem in a private communication from Professor R. Bartle. 
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It suffices to show that F is of negligible variation on Zn = S n An for 

every n. Firstly we have the inequality 

Y \F(u>w)i < Y v) - /(oo> - u)\+Y i/(0(« - u)i (3-94) 
7T 7T 7T 

valid for any partial division 7r. By Henstock’s lemma, for every positive 

£ there is a 5 : [a, 6] 1—>• R+ such that 

Y lFKv) - /(0(w - u)| < | (3-95) 

whenever 7r is a 5-fine subpartition of [a, b\. There exists a countable 

system of open disjoint intervals Ij such that 

OO 

Zn C (J Ij and 

1 

OO 

For x € Ij we modify 6 obtained from the Henstock lemma in such a 

way that (x — 6(x), x +■ S(x)) C Ij. Let n be now a 5-fine tagged partial 

division on E. Then by (3.94) and by (3.95) we have 

OO 

Y\F(U’V)\ ^ \ +nY(v~u) < | +n^|Ji| < £. • 
7T 7T 1 

Combining Theorem 2.5.29, Theorem 3.8.2 and Theorem 3.9.2 we have 

THEOREM 3.9.3 Let f be KH-integrable on [a, b] and 

F(x) = KH f f. (3.96) 
J a 

Then conditions (i), (ii) and (iii) from Theorem 3.9.1 are satisfied. 

It is now easy to obtain an important characterization of absolute 

KH-integrability. 

THEOREM 3.9.4 A function f is absolutely KH-integrable on [a, b} 

if and only if there is an AC function F with F' = f almost everywhere 
on [a, 6], 

Proof Let / be absolutely KH-integrable and F(x) = f* f. The func¬ 

tion F is AC by Theorem 3.6.4. Next F' = f a.e. by Theorem 3.8.2. 

Conversely if F is AC then it is of negligible variation on every set 

of measure zero, and in particular on the set where F' ^ f. Hence 

F(x) — F(a) — Ja f by Theorem 3.9.1. Since F is AC it is of bounded 

variation and the function / is absolutely integrable by Theorem 3.4.I.# 
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3.10 Lebesgue points, approximation by step functions 

If / is integrable on [a, b] then x is said to be a Lebesgue point of / if 

Jim \ [ l/W - f(x)\dt = °- (3-97) 
h^° n Jx 

Equivalently x is a Lebesgue point of / if and only if for every positive 

e there is a S(x) such that 

\f(t) - f(x)\dt < (v- u)e (3.98) 

whenever x — 6(x) <u<x<v<x + 6(x). Obviously, if x is a 

Lebesgue point of / then the indefinite integral of / has a derivative 

f(x) at x. For the function /(f) = sinf-1 for t ^ 0 and /(0) = 0 the 

point x — 0 is not a Lebesgue point f but for F(t) = f_1 sinu-1 du we 

have F'(0) = 0 = /(0). However, the set of Lebesgue points and the set 

where the indefinite integral has a derivative equal to the value of the 

integrand are of the same ‘size’, as the next theorem shows. 

THEOREM 3.10.1 If f is absolutely KH-integrable on [a, b] then 

almost every point is a Lebesgue point. 

Proof We can and shall assume that / is defined everywhere on [a, b\. 

Let r be a rational number. By Theorem 3.8.2 

lim — 
h^O h 

i>x+h 

|/(t) - r\dt = \f(x)-r\ (3.99) 

for almost all x G [a, 6]. Let Mr be the set of those x for which (3.99) 

does not hold and M = (Jr Mr; then M is of measure zero. Now we 

choose x G (a,b)\M and a rational r such that |/(x) — r| < e/3. Then 

1 

h 
If(t) - f(x)\dt < 

rx+h 

\f(t)-r\dt 

Since x (£ Mr we have (3.99) and consequently there is a 6 > 0 such that 

1 

h 
\f(t)-r\dt < \f{x)-r\ + 

for 0 < \h\ < 6. Hence 

1 

h 

rX+h 

I f{t) - f(x)\dt < e, 

f Another simple example is in Exercise 3.12. 
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for 0 < \h\ < 8 and x G (a, b) \ M. 

THEOREM 3.10.2 If f is absolutely integrable on [A, B} then for 

every positive e there is a step function p such that 

\f~<P\ <£- (3.100) 

Proof Since we can always find a bounded interval [c, d] such that 

pB nd 

JA 1/1 _ Jc 1/1 < 
it clearly suffices to prove the theorem if [A, B] is a bounded interval. 

If x is a Lebesgue point there exists a 6(x) such that 

I/O) - f(x)\ < (v-u) 
2 {B-AY 

(3.101) 

whenever x - 8{x) < u < x < v < x + 8(x). The set N of points 

which are not Lebesgue points is of measure zero and therefore we can 

assume without loss of generality that / = 0 on N. By Theorem 3.9.2 

the indefinite integral of |/| is of negligible variation on N and there is 

<5 : iV i—► R_|_ 

such that 

?/>4 (3.102) 

whenever tt is (5-fine and tagged in N. Let 7r = {(x, [w, u])} be a .5-fine 

partition of [A, B] and 

Then 

<f(t) = f(x) for t G (w, v). 

J \f~T\<^2j \f(t)-<p(t)\dt 
7T U 

<E/ i/«-/(*)!*+ E f \nt)\<tt 
\T J U \ T IU 

< 
2 (B-A) 

x£N 

Consequently we have (3.100). 
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REMARK 3.10.3 Since 

\f ~<P\, 

Theorem 3.10.2 indicates that the integral of an absolutely KH-integrable 

function can be evaluated with arbitrary accuracy by the integral of a 

step function. The assumption that / is absolutely integrable in The¬ 

orem 3.10.2 is essential, since clearly integrability of \f — <p\ implies 

absolute integrability of /. Hence ‘if’ in Theorem 3.10.2 can be replaced 

by ’if and only if’ and the theorem remains valid. 

3.11 Measurable functions and sets 

A function may fail to be integrable for two reasons. It can be ‘too 

large’ like l(o,oo) or sinx on [0, oo], or it can be very irregular. In this 

section we shall study that aspect of regularity which makes functions 

integrable. It is interesting to note that it is not easy to find a bounded 

function which fails to be integrable over a bounded interval. We deal 

with this question in Subsection 3.11.1. 

DEFINITION 3.11.1 

(i) A function / : R ^ 1 is said to be measurable if there exists 

a sequence of continuous functions {g>n} converging a.e. to f; 

(ii) a set is measurable if and only if its characteristic function is 

measurable; 

(iii) a function / is called measurable on a set S C R if S is 

measurable and if f*, the function which equals f on S and zero 

outside S, is measurable. 

In future we shall slightly abuse the notation and denote the extension 

f* by fls even if / is not defined everywhwere. The term comes from 

the way measurable sets were originally introduced by Lebesgue.f Ob¬ 

viously, measurable functions are related to continuous functions. The 

so-called Luzin theorem (Theorem 3.11.17) describes precisely how much 

continuity is preserved in any measurable function. 

The following theorem is an obvious consequence of the dominated 

convergence theorem. Roughly speaking it says that a measurable func¬ 

tion is integrable if it is not ‘too large’. 

f An alternative approach to measure and measurability, closer to Lebesgue’s origi¬ 

nal ideas, is outlined in Section 3.13. 
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THEOREM 3.11.2 If f is measurable on (A, B) and there is a KH- 

integrable g such that \f\ < g on (A, B) then f is (absolutely) KH- 

integrable on [A, B], In particular, if f is bounded and measurable on 

a closed bounded interval [a, b], then it is (absolutely) KH-integrable on 

[a, b}. 

An immediate consequence of the definition and Theorem 3.8.2 is 

THEOREM 3.11.3 Iff is KH-integrable on [a, b] then it is measur¬ 

able on [a, b]. If f is KH-integrable on every bounded interval then it is 

measurable. 

The usual arithmetic and other frequently used operations preserve mea¬ 

surability. 

THEOREM 3.11.4 //$ : Rn i—>• R is continuous and fi,i = 1,2,... , n 

measurable on S then the composition $ o fif 

$° fi(x) = $(fi(x),f2(x),... ,fn(x)) 

is measurable on S. If f and g are measurable on S then so are the 

functions \f\, f±g, fg, Ma x(f,g), Min (f,g), f+, f~. 

Proof All assertions are obvious from the definition. • 

A consequence of the previous three theorems is: If / is KH-integrable 

on a bounded interval [a, b] and fN'M its truncation from below by M 

and from above by N then fN>M is absolutely KH-integrable. Also if / is 

absolutely KH-integrable on [A, B] C R and c measurable and bounded, 

|c(x)| < K then cf is measurable and majorized by an integrable func¬ 

tion, namely K\f\. Consequently it is absolutely KH-integrable. We 

state this as 

THEOREM 3.11.5 The product of an absolutely KH-integrable func¬ 

tion with a bounded and measurable function is absolutely KH-integrable. 

Measurability is preserved under the limit passage. 

THEOREM 3.11.6 If the functions fn, n = 1,2,... are measurable 

on S and lim fn = f exists almost everywhere then f is measurable on 
n—too 

s. 

Proof We can and shall assume that each fn is zero outside of S. Let 

$ : 11-> (0,1) be continuous and strictly increasing, 'L its inverse. <E>o fn 
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are measurable and bounded and hence KH-integrable on every bounded 

interval. By the Lebesgue dominated convergence theorem $ o / is KH- 

integrable on every bounded interval and therefore measurable. So is 

f = o <$> o f. • 

COROLLARY 3.11.7 If the functions fn, n = 1,2,... are measur¬ 

able then so are sup {/n; n £ N} and inf {/n; n £ N}. 

COROLLARY 3.11.8 A function f is measurable if and only if there 

exists a sequence of step functions or a sequence of integrable functions 

converging a.e. to f. 

Many properties of measurable sets follow simply from the already es¬ 

tablished properties of measurable functions. 

THEOREM 3.11.9 (Properties of measurable sets) 

(i) If A, B are measurable then so are AD B, All B and A \ B. 

(ii) Open sets and closed sets are measurable, in particular R and 0 

are measurable. 

(hi) If An are measurable for n = 1,2,... then so are P|^° An and 

ur^n. 

A consequence of (i) and (iii) is 

(iv) A set is measurable if and only if its intersections with bounded 

intervals are measurable. 

A simple function is defined as a function which has a finite range. In 

the theory of the integral simple functions are used extensively. Often 

something is proved for simple functions first and then a limit passage is 

used to extend the result to the general case. The next theorem describes 

measurability of functions in terms of simple functions and measurability 

of sets. It is also an approximation theorem. 

THEOREM 3.11.10 Let f : RhI. Then the following statements 

are equivalent. 

(I) f is measurable; 

(II) the set {x; f(x) > c} is measurable for every c £ R; 
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(III) all four sets 

S> = {x;f(x) > c} , 

S< = {x; f(x) < c} , 

S< = {x] f(x) < c} , 

S> = {x;f(x) > c}, 

(3.103) 

(3.104) 

(3.105) 

(3.106) 

are measurable for every c; 

(IV) there exists a sequence of simple measurable functions {fn} such 

that 

(i) lim fn(x) = f{x) for every x; 

(ii) if |/| < C then \fn\ < C for all n and the convergence is 

uniform; 

(iii) if f is non-negative then so are all fn and fn < fn+i ■ 

Proof (I)=^(II). Define 

Min(/(x), c + ^) — Min(/(x), c) 
dn{x) =-^-. 

n 

Then dn are measurable for every n and as n goes to infinity dn tends 

to the characteristic function of the set S'>. 

(11)=^(III). S< is the complement of 5> and hence is measurable. 

Replacing / by —/ and c by — c yields measurability of S< and S>. 

(Ill) ^(IV). The sets 

are measurable for all k E Z and n E N. Let fn{x) = k2~n for x G 

Ef.,n- The functions fn are measurable, simple and have all the required 

properties by construction. 

(IV)=r-(I). This follows from Theorem 3.11.6 . • 

The Lebesgue measure m{S) of a measurable set S C R. is by definition 

(3.107) 
— OO 

If the integral in (3.107) converges we call the set S integrable. In this 

book we shall call Lebesgue measure simply measure. Measure is a 

generalization of the concept of length of an interval to more general 

sets. We shall see later that in two or three dimensions measure is 

a generalization of area or volume, respectively. It is an interesting 

question whether or not one can generalize these concepts to all sets 
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in Rn in such a way that some fundamental properties of length, area 

and volume are preserved. The answers are surprising and depend on 

the dimension and on whether or not we include property (3.109) in 

Theorem 3.11.11 below among ‘fundamental properties’. We refer to 

[34] Chapter 3 §7 for discussion of these matters. 

Properties of measure follow simply from the already established prop¬ 

erties of the integral. 

THEOREM 3.11.11 (Properties of measure) 

(i) 0 < m(A) < oo for any measurable A; m(0) = 0, m(R) = oo. 

(ii) If A, B are measurable then m(AuB) — m(A)+m(B)—m(Ar\B); 

in particular, if A and B are disjoint then 

m(A U B) — m(A) + m(B). 

If A C B then m(A) < m(B). 

(iii) If An are measurable for n = 1,2,... then 

OO OO 

m([jAn) < ^ m(An) (3.108) 

1 n=1 

and if An are pairwise disjoint then 

OO OO 

m(|J An) = m(An). (3.109) 

1 n= 1 

The properties in (iii) are referred to as countable subadditivity and 

countable additivity, respectively. Mathematicians of the nineteenth cen¬ 

tury had difficulties in accepting countable additivity of measure for 

various reasons. One of them was that countable additivity was not 

compatible with Riemann theory. It was the success of Lebesgue the¬ 

ory and its rapid penetration into other branches of mathematics which 

made countable additivity a cornerstone of modern integration theories. 

The series in (3.108) and (3.109) are not ordinary series; some terms 

can be oo. We make the following definition: The sum an of a 

series of non-negative terms an is the limit (possibly infinite) of partial 

sums Yli a* if a11 K and is 00 when some ai = °°- The following 
theorem follows from the countable additivity of measure or even more 

easily from the monotone convergence theorem. 

THEOREM 3.11.12 If En are measurable and 

E\ C E2 C ••• C En C 
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then 

OO 

lim m(En) = m(I \En). 
n—>oo 

1 

If m(Ei) < oo and 

E1 D E2 D ■ ■ ■ D En D ■ ■ ■ 

then 

OO 

lim m(En) = m( f)En). 
71—► OO \ 1 1 / 

1 

(3.110) 

(3.111) 

REMARK 3.11.13 The assumption m(Ei) < oo is essential: if En — 

(n, oo) then the left side of (3.111) is oo and the right side is 0. 

If A and B are sets then the symmetric difference of these sets is (A \ 

B) U (B \ A) and is denoted by A&B. The characteristic function of 

AaB is | 1a — Is |• If Z is a measurable set then there exists a sequence 

of step functions zn converging to 1 z a.e.. By redefining each zn(x) to 

be 1 or 0 depending on whether zn{x) <1/2 or >1/2 we make each zn 

the characteristic function of a set Zn which is a finite union of intervals 

and |1 zn — lz\ —* 0 a.e. If Z is a part of a bounded interval K then we 

can take all Zn C K and it then follows from the Lebesgue dominated 

convergence theorem that m(Z/sZn) —► 0. Thus we have proved 

THEOREM 3.11.14 If Z cR is bounded and measurable then, for 

every positive e, there exists a finite union of intervalsf S such that 

m(ZAS) < e. (3.112) 

Now we take a finite union of closed intervals S for which (3.112) holds 

with e replaced by e/2. Using Theorem 2.11.3 we cover ZaS and all 

endpoints of intervals in S' by a system of open intervals Jn, Go = (J^° Jn 

with m(G0 \ (SaG0)) < e/2. Then, for F = S\G0 and G = S U G0, we 

have 

F is closed, F C Z, G is open, Z C G (3.113) 

m(G\F) < e. (3.114) 

The last relations completely characterize measurable sets. More pre¬ 

cisely we have 

f Closed or open or of any kind. 
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THEOREM 3.11.15 A set Z C R is measurable if and only if for 

every positive e there are sets F and G such that (3.113) and (3.Ilf) 

hold. 

Proof Let Z be measurable. We know that (3.113) and (3.114) hold 

if Z is bounded. Therefore there exist closed sets Fn and open sets Gn 

such that 

Fn C [-n, n\ D Z C Gn, 

m(Gn \ Fn) < —, 

for every n £ N. The set F = Fn contains all its limit points, hence 

it is closed. G = (J “ Gn is obviously open and we have 

FcZ C G 

G\F C 

OO 

U(G» \ F») 
1 

m(G \ F) < 

OO 1 

Z—j on 

Going in the opposite direction we choose a bounded interval K. By 

(iv) of Theorem 3.11.9 it suffices to show that Z fl K is integrable. The 

sets Fk = F fl K and Gk — G fl K are integrable, Gk \ Fk C G \ F 

and therefore m(G^ \Fk) < £■ The functions 1 qKi 1fk are integrable, 

1 Gk — > 1 Fk, 

and consequently Z n K is integrable by Theorem 2.5.16. • 

COROLLARY 3.11.16 If m(Z) < oo then there exist a compact 

set F and an open set G such that (3.114) holds. 

THEOREM 3.11.17 (Luzin’s theorem) Let S be a measurable 

set. The following statements are equivalent: 

(I) / is measurable on S; 

(II) for every positive e there exists an open set Oe with m(0£) < £ 

such that the restriction of f to S\0£ is continuous; 

(III) for every positive e there exists a closed set F with m(S \F) < e 

and a function f* : R —> R continuous on all of R such that 

f*(x) = f(x) for x £ F. 
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REMARK 3.11.18 The reader is advised to treat the continuity of 

the restriction with some caution. It means precisely this: for every 

x £ S and every sequence {xn} with xn £ S and xn —> x we have 

f(xn) —> f(x). For example the restriction of the characteristic function 

of the rationals to the rationals (or irrationals) is continuous although 

the function itself is everywhere discontinuous. 

REMARK 3.11.19 The Tietze theorem asserts that a function con¬ 

tinuous on a closed set can be extended to a function continuous on the 

whole of E. We need this theorem for proving (II)=>(III). The Tietze 

Theorem in R1 is easy to prove: one extends the function by making it 

linear on the contiguous intervals of the closed set. For a Tietze theorem 

in a general topological setting we refer to [39] or [19]. 

Proof of Theorem 3.11.17 We carry out the proof of (I)=>(II) in 

several steps. 

(i) If / is a characteristic function of a set Z C S then, by Theorem 

3.11.15, there are F and G satisfying (3.113) and (3.114). If 

Ge = G\ F then / is continuous on Ge because it is constant on 

F. 

It follows easily that (I)=>(II) holds for a function which is a 

linear combination of characteristic functions of measurable sets, 

i.e. for a simple measurable function. 

(ii) If |/| < 1 then for each function fn from Theorem 3.11.10 there 

is an open set On with m(On) < e/2~n and the restriction of fn 

to R \ On continuous. Let Ge — |J(° On. Since the restriction 

of fn to the complement of Ge is continuous and {/n} converges 

uniformly to /, we have proved the theorem in this case. 

(iii) We take a strictly increasing function $ which maps R onto 

(—1, 1) and denote its inverse by T. Applying (ii) to o / gives 

us Ge, m(Ge) < e with the restriction of this function to the com¬ 

plement of G£ continuous. / = T o $ o / has also this property. 

(II)=k(III). There exists an open set O, with m(0) < e/2, such that 

the restriction of / to S \ O is continuous. By Theorem 3.11.15 there 

are a closed set F and an open set G such that F C S \ O C G and 

m(G \ F) < e/2. Clearly the restriction of / to F is continuous and 

m(S \ F) < e since S\F C (S\0)U(G\F). Using the Tietze theorem 

the function / can be extended from the set F to a function continuous 

on all of E. 
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(III) —r* (I). Assuming (III) we obtain for every n G R a continuous 

function fn and a set Fn C S such that fn — f on Fn and m(S \ Fn) < 

2~n. We denote Zn = P|^° Fj, M = (J(° Zn. If x e Zn for some n then 

fn(x) —> fix), and consequently this convergence takes place for every 

x e M. It remains to show that S\M is of measure zero. The following 

set relations are fairly obvious: 

OO 

S\McS\(jZi 

1 
OO 

= f)(S\Zi)cS\Zn 
1 

OO OO 

-s\n*=u<s\*). 
n n 

Consequently 

oo i 1 

m(S\M) = —. 
n 

This shows 5 \ M to be of measure zero. • 

THEOREM 3.11.20 (Egoroff’s theorem) Let {fn} be a sequence 

of functions measurable on S, m(S) < oo. If fn(x) —> f(x) almost 

everywhere in S, then for every r/ > 0 there is an open set G with 

m(G) < r) such that fn converges to f uniformly on S\G. 

Proof Since a set of measure zero can be covered by an arbitrarily small 

open set, we may assume that fn{x) —> f(x) everywhere on S. Given x 

and e > 0, there is an integer N such that 

|fn(x) - f(x)\ < £ whenever n> N. 

Let XN denote the set of x such that the above inequality holds. Ob¬ 

viously, Xn depends on £, Xi C W+i and Xi = S. Consequently 

S \ Xi D S \ Xi+i and flf S \ = 0- Therefore we can, by Theorem 

3.11.12, choose an N such that m{S \ XN) is arbitrarily small. 

Take {ej decreasing to 0 and 77 > 0. Then by what we have proved 

above there exist Ni and Yi such that m(S \Y{) < ?72 and 

|/n(x) - f(x)\ < £i whenever n > W and x G Yi. 

Next, take Y = Then, obviously, S\Y = UH5 \ yi) and 

m(S \ Y) < 77 by Theorem 3.11.12. For every e > 0 we find e{ < e and 
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N£ = Ni such that 

| fn(x) — f(x)| < Ei < e for all x e Y whenever n > Ne. 

That is, fn converges to / uniformly on Y. We can choose an open set 

G D S \ Y such that m(G) < rj and the proof is complete. • 

REMARK 3.11.21 The assumption that m(S) < oo is essential as 

the example of S = R, fn = l(n)00) shows. 

REMARK 3.11.22 An example in [48] shows, perhaps surprisingly, 

that Egoroff’s theorem ceases to be true if the limit as n —> oo in Ego- 

roff’s theorem is replaced by the limit of a continuously changing vari¬ 

able. 

3.11.1 A non-measurable set 

If S' is a set and 

5a = {j: + a;xe5} 

then Sa is measurable if and only if S is and then m(S) = m(Sa). We 

denote by E {a} = {x;x — a £ Q, — 1 < x < 1}. It is easy to see that 

two sets E {a}, E {6} are either disjoint or identical. Now we make up a 

set S which is constituted by exactly one element from each set E{a}. 

Let ri, r2,... be a sequence which contains only rationals from [—2, 2] 

and each rational exactly once. We claim that 

OO 

[-1, 1] C U Srn C [-3, 3], (3.115) 
n=l 

for iyfj Srn. n Srn. - 0. (3.116) 

Since S contains an element from E {x} for every x 6 [—1, 1] there are 

s £ S and q 6 Q such that s — x = q, i.e. x € S-q. Since obviously 

M 5: 2, we have that — q = rn for some n. The second inclusion is 

obvious. It follows from (3.115) and (3.116) that 

OO 

2 < J]m(5rn) < 6. 
l 

This together with m(SVJ = m(S) leads to a contradiction. The as¬ 

sumption that S is measurable is not tenable — S is non-measurable. 

If S is not measurable and bounded then cannot be KH-integrable. 



3.12 The McShane integral 127 

The existence of a non-measurabale set provides an example of a bounded 

function which fails to be KH-integrable over a closed bounded interval. 

The sentence: Lwe make up a set which is constituted by exactly one 

element in each set E {a}.’ is not accepted by all mathematicians as a 

legitimate definition of a set. Its ultimate validity hinges on the following 

statement — the so-called axiom of choice. 

Axiom of choice If J is a family of sets then there exists a function 

9 : £ 1J S 

Sed 

such that g(S) E S for every S E 

Most mathematicians accept set theory as a foundation stone for all 

mathematics and the axiom of choice is one of the axioms of set theory. 

The reason why the axiom of choice is controversial is that it leads to 

some truly amazing, almost paradoxical, results; one such theorem, the 

so-called Hausdorff decomposition of a sphere, is discussed in [34]. In this 

book we accept the axiom of choice without hesitation, but we remark 

that an attempt has been made to build measure theory (without the 

axiom of choice) such that every set in R is measurable. 

3.12 The McShane integral 

The definition of the KH-integral is a small but very significant modi¬ 

fication of the definition of the Riemann integral. There is yet another 

variation of the Riemann definition similar in spirit to the Kurzweil- 

Henstock one which leads to an absolutely convergent integral. This 

development is due to McShane [31] and [32], In his theory the tags are 

allowed to float outside the intervals they tag. The theory is slightly 

simpler for a compact interval but we shall expand it to include infinite 

intervals as well. The reader should be familiar with the conventions 

regarding the infinite numbers oo and —oo we made in Section 2.10. 

Let us remind ourselves that we agreed to call a map 6 from a closed 

interval [A, B] into the set of open intervals in R a gauge if £ E <5(£) 

for every £ E [A, R] and <!)(£) was a bounded open interval for every 

£ <= R n [A, B). Similarly as in the definition of a partition in Section 

1.2, an M-partition of a closed interval in R is a set of pairs (£k,h), k = 

1,... ,n, such that the closed intervals Ik are non-overlapping with 

(J*ik = [A, B], but for an M-partition the points £fc are merely in 

[A, B].} Here £fc is still called the tag of Ik. In contrast to partitions, 

j- The reader should note that might be outside Ik- 
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where a point can be a tag of at most two intervals, for an M-partition 

a point can tag many intervals. The effect of this on a Riemann sum 

can be seen in Figure 3.1. Exactly as in Section 2.10 we shall say that 

a U2 V2 = Us Vs = U4 V4 — U5 V5 & 

Fig. 3.1. Riemann sum for an M-partition 

an M-partition n = {(£*,, J*,)} of [A, B] is 6-fine if 6 is a gauge defined 

on [A, B} and Jk C 6 (£*,). The geometrical meaning of 6-fine for an M- 

partition is indicated in Figure 3.2 where 6(£) = (£ —6(£), £ + 6(£)). We 

i - m e+m 
■(-11—1—)•• 

^ u v 

Fig. 3.2. 6-fine M-partition 

denote by n <C 6 that 7r is 6-fine. As before the unbounded intervals of a 

6-fine partition are tagged by either 00 or —00. We make the same con¬ 

vention as in Section 2.10, namely that every function to be integrated is 

automatically defined (redefined) at 00 and —00 as zero. The Riemann 

sum f — Y-n f(xk)\Jk\ for a partition n of a possibly unbounded 

interval [A, B) is always meaningful because f(xk)\Jk\ = O.00 = 0 for 

unbounded Jk. 
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DEFINITION 3.12.1 A number I is the McShane integral of f from 

A to B (or over [A, B\), in symbols M fA f, if for every positive e there 

is a gauge 6 such that for every 6-fine M-partition tt 

l£/-/|<e. (3.117) 
7T 

We may use other notation, like M. f or M. f(x)dx or M. fjf for 

the McShane integral. If the McShane integral of / exists then / is 

called McShane integrable or briefly M-integrable. Since every partition 

is also an M-partition every McShane integrable function / is also KH- 

integrable and 

ten J f — M 

The Cauchy convergence principle for the M-integral reads: 

fS 

/■ (3.118) 

THEOREM 3.12.2 (Bolzano-Cauchy condition for the McShane 

integral.) A function f is M-integrable if and only if for every positive 

e there is a gauge 6 such that 

£/-£/ 
7T1 7T 

< £ 

whenever the M-partitions -k\ and tt are 6-fine. 

(3.119) 

Proof If / is M-integrable then (3.119) clearly holds. Going in the 

other direction we denote by 

I6 = sup /; TT < 6} and I = inf {I6; 6 a gauge}. 

7T 

If 6 is chosen so that (3.119) holds with e/2 then 

£/-f<£/<£/4 
7T1 7T TTi 

Keeping 7Ti fixed and taking the supremum over all 7r with n < 6 we 

obtain 

irj tti 

7T X 7r 1 

Consequently 
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Since ni is an arbitrary 6-fine M-partition / is M-integrable and I is the 

M-integral of /. • 

Only minor changes are needed for many proofs of theorems for the 

KH-integral to become valid for the McShane integral. All theorems in 

Section 2.5 remain valid if the KH-integral is replaced by the McShane 

integral and the interval [a, b} by [A, B] C R. The concept of a sub¬ 

partition can be modified in an obvious way to M-subpartition and the 

Henstock lemma proved almost verbatim for the M-subpartitions and 

the McShane integral. Very importantly the monotone convergence the¬ 

orem, Fatou’s lemma and the Lebesgue dominated convergence theorem 

are valid for the M-integral. 

There are, however, important differences. For the M-integral the 

fundamental theorem does not hold as stated either in Theorem 2.6.2 

or in Theorem 3.9.1 but becomes valid with the additional assumption 

that F' is M-integrable. The second version of the fundamental theorem 

as stated in Theorem 2.6.8 is true and has the same proof for the M- 

integral. Theorems 2.8.3 and 2.9.3 are false for the M-integral. The 

integral M. f can be evaluated as a limit 

rb /*& /»c pb 

lim M f = M f or lim M f = M f 
cla Jc Ja Ab Ja Ja 

if / is integrable on [a, b}. However, / may fail to be M-integrable on 

[o, b] even if it is integrable e.g. on [c, b] for every c with a < c < b and 

the first limit above exists. All these comments will be obvious after 

we prove Theorem 3.12.5 which asserts the equivalence of absolute KH- 

integrability and M-integrability. One very important difference between 

KH and M-integration is the next lemma. 

LEMMA 3.12.3 (Absolute integrability lemma) If f is M-inte¬ 

grable then for every positive e there is a gauge 6 such that for two 6-fine 

M-partitions 

{(xkJk)] k = l,2...,s}, (3.120) 

j = (3.121) 

it is true that 

S t 

EE If(xk) - f(zj)| 14 DJjl < £. (3.122) 
fc=i j=i 

Proof For a given positive e let 6 be as in Theorem 3.12.2. Define 
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ffcj = %k and Ckj = Zj if f(xk) > f(zj), otherwise let = zk and 

Ckj = ajj. This choice causes 

l/M “ /(%)l = /(ffcj) - f(Ckj) (3.123) 

for k — 1,... ,s and j — 1,... , t. Both sets of pairsf 

> Ik C J j ) i ^ — 1, . . . , S, j — 1, . . . , f} , 

{ (Ckj) Ik H Jj )j k 1, . . . , S, j — 1) • • • j 

are <5-fine M-partitions, and consequently 

s t s t 

£ £ /(M14 n 41 - EE /(&,) 14 n J,| 
fc=lJ=1 fe=lj=l 

By (3.123) this implies (3.122). 

< £. 

COROLLARY 3.12.4 If f is M-integrable and L a function satisfying 

the inequality \L(y) - L{z)\ <\y — z\ on the the range of f then Lo f is 

M-integrable. 

Proof For the two partitions (3.120) and (3.121) we have 

±L(fM)h-±LU(n))h <EE \fM- f(zj)\\hr\ Jj\. 
k=1 3=1 k=lj=l 

By the Cauchy convergence principle L o f is M-integrable. • 

A catch phrase for Corollary 3.12.4 is: A Lipschitz function of an 

M-integrable function is M-integrable. 

A suitable choice of L in the above corollary yields important re¬ 

sults for M-integrability. For L(u) equal to |u| or u+ or u or L(u) = 

Max(u, N) for u > 0 and L(-u) = L(u) we obtain, for an M-integrable 

/, the integrability of |/| or /+ or /“ or fN. 

For the next theorem we need the concept of semicontinuity. A func¬ 

tion U : S i—> [—oo, oo) is said to be upper semicontinuous at a point x 

on a set S if for every c > U(x) there is a 6 such that U(y) < c whenever 

\x - y\ < S and y G S. A function L is lower semicontinuous at a point 

x on a set S if —L is upper semicontinuous at a; on S. A function is 

said to be upper (lower) semicontinuous on a set S if it is upper (lower) 

semicontinuous at every point of the set. A function is upper (lower) 

f Some of these sets may be empty and some intervals degenerate but that does not 

influence the argument. 
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semicontinuous if it is upper (lower) semicontinuous on R. The defini¬ 

tion of semicontinuity looks very much like the definition of continuity 

but only half of the crucial inequality is retained. Many theorems about 

continuity also hold for semicontinuity. We need the following facts: 

the sum of two upper (lower) semicontinuous function is upper (lower) 

semicontinuous, and the multiple of an upper (lower) semicontinuous 

function by a non-negative constant is upper (lower) semicontinuousf. 

Semicontinuous functions have some important properties which con¬ 

tinuous functions do not have: the characteristic function of an open 

set is lower semicontinuous, the characteristic function of a closed set is 

upper semicontinuous, the supremum of a set of lower semicontinuous 

functions is lower semicontinuous and the sum of a convergent series of 

non-negative lower semicontinuous functions is also lower semicontinu¬ 

ous. With this preparation we are ready for the theorem of this section. 

THEOREM 3.12.5 (Vitali—Caratheodory) The following three 

statements are equivalent 

(A) f is M-integrable on [A, B\; 

(B) f is absolutely KH-integrable on {A, B]; 

(C) for every positive e there are absolutely KH-integrable functions 

U and L such that U < f < L, U is upper semicontinuous 

and bounded above on [A, B] HR, L is lower semicontinuous and 

bounded below on [A, B\ D R, and 

KH f (L-U)<e. (3.124) 
Ja 

REMARK 3.12.6 The name Vitali-Caratheodory theorem is usually 

used for a similar theorem in Lebesgue theory. 

COROLLARY 3.12.7 After the theorem has been proved the KH- 

integral in (3.124) can be replaced by the M-integral and the theorem 

remains valid. 

Proof of Theorem 3.12.5 If / is M-integrable then so is |/| and hence 

(A)=KB). 
We prove the implication (B)=»(C) first for / > 0. By Theorem 

3.11.10 part (IV) there is a sequence of non-negative simple measurable 

functions {/n} converging everywhere increasingly to /. The difference 

f Obviously multiplication by a negative constant changes a lower semicontinuous 
function to a upper semicontinuous one. 
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fn ~ fn—i i being a simple non-negative measurable function, can be 

represented as kilE1 + A)21e2 + A:3l£3 + • • • + kp 1ep with ki > 0 and 

Ei measurable. Consequently there are measurable sets Sn and positive 

constants cn such that f(x) — cnlsn(x) for every x E [A, B] n R. 

/ is integrable and therefore 

oo „b 

V'cnm(5n)= / / < oo. (3.125) 
i J A 

Since Sn are integrable there are compact sets Kn and open sets Gn 

such that 

KncSnC Gn 

cnm(Gn\Kn)< n — 1,2,... (3.126) 

The series in (3.125) converges; hence we can find N such that 

OO 

£ c„m(S„) < (3.127) 

iV + 1 

Define 

N oo 

u = 5>n1^, l = y^cniGn. 

i i 

It is easy to see that U < f < L, U is upper semicontinuous and L is 

lower semicontinuous. We also have 

N oo 

J^CnlGn\Kn + Yl Cnl°n 

1 N+l 

oo oo 

5^cniGn\K„ + 5^ CnlSn. 
1 N+l 

This together with (3.126) and (3.127) implies (3.124). Since U is mea¬ 

surable and 0 < U < f the function U is absolutely KH-integrable and 

in view of (3.124) so is L. In the general case find U and L for /+ and f~ 

and call them U+ , L+ and U- , L_, respectively. Then U = U+ - L_ 

and L = L+-U- are well defined and finite a.e. It is easy to check that 

they have all the required properties. 

(C)=KA). We can and shall assume that f(A) = f{B) = 0. For given 

L-U = 

< 
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e > 0 we choose a strictly positive functionf £ such that JCTt fA £ < — ■ 
o 

There exists a gauge 6 with the following properties: 

(i) 6(x) C (A, B) for every x £ (A, B) and consequently the inter¬ 

vals of any 6-fine partition which contain A and B are tagged by 

A and B, respectively; 

(ii) 

[ (|CT| + |L|)<|, f (|C/| + |i|) < 
J6{a) 4 J6(b) d 

(iii) for every x £ [A, B] fl R and every t £ 6(x) 

U(t) < f(x) + £(x) and L(t) > f{x) — £{x). (3.128) 

Let {(ajj, Ii); i = 1, 2,... , n + m + p} be a 6-fine partition^ of [A, B] 

with Xi = A for i = n + 1,... ,n + m and xi — B for i = n + m + 

1,,.. ,n + m + p. Integrating inequalities (3.128) over Ik and summing 

gives 

n+m+p 

YKn f v--< Y fM\h\<Y™[ L 
1 ^ i JIk 

£ 

3' 

It follows from (ii) that 

n+m+p r 9 F n+m+p 

ICH / U —T < 0 and ]T Of / L + — >0 
n+1 JB n+1 n+1 JB 

Consequently 

eB 

Since 

pB n+m+p B 

ICH U — £ < V f{xk)\Ik\<KH L + e. 
J A 1 J A 

rB pB /*B 

ICH U <JCH f <ICH L, 
J A J A J A 

it follows that 

n+m+p B 

Y /(**)\h\-ICH f 
l J A 

< £. 

This proves M-integrability of / and equation (3.118). 

f If the interval [A, B} is finite it suffices to take £ constant equal to e3_1 (B - A)-1. 
A function like £ is often used instead of a constant e to modify proofs in order 
to make them valid for an infinite interval, 

t Keep in mind that a point might tag many intervals. 
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3.12.1 A short proof 

There is a very short proof of the equivalence of absolute KH-integrability 

and McShane integrability, which uses the results of Section 3.11 on mea¬ 

surability, the monotone convergence theorem and the dominated con¬ 

vergence theorem for the McShane integral. A proof with minimal pre¬ 

requisites is given in [47]. We proved Theorem 3.12.5 because part (C) is 

important in itself. Assume / is non-negative: otherwise we can consider 

f+ and instead of /. Let fn(x) — 0 if either x [—n, n\ or /n(x) > n. 

Otherwise let fn(x) — f(x). If / is absolutely KH-integrable then fn is 

bounded and measurable. By the dominated convergence theorem for 

the McShane integral it is M-integrable on [A, B] since the integration 

is effectively over a bounded interval. Hence M fA fn = hAH fA fn. 

Employing the monotone convergence theorem first for the KH-integral 

and then for the M-integral gives 

3.13 The Lebesgue integral 

The aim of this section is to give a brief exposition of Lebesgue integra¬ 

tion, not independently but by using our knowledge of KH-theory. The 

reader familiar with the Lebesgue integral and interested only in the 

relation between the KH and Lebesgue integrals can proceed directly to 

the closing Subsection 3.13.2. 

There are several ways introducing the Lebesgue integral. The tra¬ 

ditional one starts with measure theory, and this will be our approach 

here. The so-called Riesz definition is explained in Subsection 3.13.1. 

The outer Lebesgue measure of a set S' C M, denoted by pe(S), is 

defined as 

OO OO 

/ie(S) = inf (^2 lJfc|; h intervals, S C |J 4}. 

k=1 

It follows easily from the definition that 

tle(A)<Pe(B) if AcB. 

It is also clear from the definition that 

Pe(Sl U S2) < Pe(Sl) + heiSl) 

fc=l 

(3.129) 

(3.130) 
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and more generally 
OO OO 

<3131) 
i i 

The next step is to select a class of sets such that equality holds in 

(3.130) and (3.131) if the unions are disjoint. This class, which we shall 

temporarily call L-measurable, is defined as a class of sets S with the 

following property: for every positive e there is a closed set F and an 

open set G such that 

FcScG and fie(G\F)<e. (3.132) 

The set G \ F being open is a countable union of open intervals, and 

consequently 

He(G\F)=m(G\F). 

Hence by Theorem 3.11.15 a set is L-measurable if and only if it is 

measurable in the sense of Definition 3.11.1. Therefore we can use the 

properties of measurable sets stated in Theorem 3.11.9 for L-measurable 

sets. In fact there is no need any more to make a distinction between 

L-measurable and measurable sets. A Lebesgue measure p(S) of a mea¬ 

surable set S is by definition /x(S) = fae(S). At this stage, in a proper 

development of Lebesgue theory, one establishes those properties of the 

Lebesgue measure which for the measure generated by the KH-integral 

were stated in Theorem 3.11.11. We show instead that the Lebesgue 

measure and the measure generated by the KH-integral coincide. Let 

5 be a measurable set and Ik, k — 1,2,... a disjoint system of open 

intervals with S C G = (J^ \Ik\. Then 

m(S) = JCH 1 s<ICH 1G = T\h\. 
Jr i 

(3.133) 

Consequently m(S) < pLe(S) = p(S). For proving the reverse inequality 

we can assume m(S) < oo and choose G with the additional property 

that m(G) < m(S) + e. This is possible because of Theorem 3.11.15. It 

follows that p(S) = /ue (S') < m(S) + e and since e is arbitrary p(S) < 

m(S). Now that we have proved that Lebesgue measure and the measure 

generated by the KH-integral are identical we shall drop the notational 
distinction and denote measure simply by m. 

DEFINITION 3.13.1 We denote by f* the function which equals f 

on S and zero outside S. The KH-integral of a function f over a set S 
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is defined as K.H ff^f* and is denoted by K.TL Jsf. If the integral is 

finite then f is KH-integrable over S. 

If S is an interval this definition is consistent with the definitions stated 

earlier. Also if / is defined on [A, B] and s C [A, B] then Js f = 
JIW. If / is non-negative and measurable on a measurable set S 

then KTH. fsf always exists!. This follows from Theorem 3.11.10 and 

the monotone convergence theorem. 

The Lebesgue integral C fs f of a measurable function / over a mea¬ 

surable set S is defined in three steps. 

DEFINITION 3.13.2 

(i) If f is a non-negative simple function, f = Cjl^ with dis- 

joint\ Ei and positive Ci, then 

C [f = y>m(£i n S). (3.134) 
J s ^ 

(ii) If f is measurable and non-negative then 

C [ f d= sup{£ [ <p\ 0 < tp < f,p simple}. (3.135) 
Js Js 

(iii) If f is measurable then 

C f f = C f S* -C f r- (3-136) 
J s J S J s 

provided the right-hand side is defined. 

If the integral in (3.136) exists and is finite then we say that f is 

Lebesgue integrable on S. 

The main result of this section is 

THEOREM 3.13.3 The equality 

C J f = tCH f 

is valid if and only if one of the following conditions is satisfied. 

(a) the integral on the left exists; 

f Although it could be oo. . . 
+ The definition stays correct if the Et are not required to be disjoint but then one 

has to prove that the integral is independent of the way in which / is represented 

as a linear combination of characteristic functions. 
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(b) the integral on the right exists and one of the integrals KH fs f+, 

KH fgf~ is finite. 

Proof We go step by step through the definition of the Lebesgue inte¬ 

gral. 

(i) If / is simple and non-negative then the right-hand side of (3.134) 

is the KH-integral of /. 

(ii) Continuing with the second step we have first 

£ f <p = KH f < KH f f, 
S J S J s 

and by (3.135) 

£ [ f < KH f f. 
Js Js 

By Theorem 3.11.10 there exists an increasing sequence of simple 

non-negative measurable functions ipn converging a.e. to /. By 

(3.135) 

£ [ Tn = ICH [ <pn < C [ f. 
Js Js Js 

However, by the monotone convergence theorem for the KH- 

integral 

KH / pn = KH / 1 sTn KH 
J S J—oo 

Consequently 

KH [ f<C [ /. 
Js Js 

KH 

(iii) If £ fSf exists then by what we have just proved the KH-integrals 

of /+ and f~ exist and 

cLf=cLf+-cLr=mLf+-,cHLf-=KHIsf- 
(3.137) 

If one of the KH-integrals of /+ or / is finite and the KH-integral of 

/ exists then the validity of (3.137) is obtained by reading it from right 

to left. 
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3.13.1 F. Riesz’ definition 

Now we explain another way of introducing the Lebesgue integral; this 

approach is due to F. Riesz. We again give the definition in several steps. 

DEFINITION 3.13.4 

The integral is first defined for step functions, in the obvious way. 

Sets of measure zero (and the concept of almost everywhwere) are 

defined as in Section 2.11. 

A function f is said to belong to class £+ if there exists an in¬ 

creasing sequence of step functions {<pn} converging a.e. to f and 

such that the integrals of <pn are bounded. The FR-integralf of 

f G £+ is defined by 

F1Z f 
J a 

The class £ is the family of functions f which can be represented 

as f = fi - /2 with fi and f2 in £+. The integral of f E £ is 

TFL [b fd^rR. fb fi — F1Z f f2. 
J a J CL J CL 

It is immediate that / G £ is absolutely KH-integrable and 

F1Z f f = K.n f f. (3.139) 
J a J cl 

This means that the FR-integral is well defined, a fact which in Riesz’ 

approach must be established independently. In order to show that 

(3.139) holds if / is absolutely KH-integrable we choose, for every n E R, 

a step function ipn such that 

KHj |/-Vn|<^- 

This is possible by Theorem 3.10.2. Since 1CH fa \ipn — VVi-1| < 2 

the series \ f>n — 1| is convergent a.e. By Fatou s lemma if)n * f 

f This notation is used only in this subsection and is not found anywhere in the 

literature. FR comes from Frederic Riesz. 

r def ,. 
/ - hm Tr. (3.138) 

(i) 

(ii) 

(hi) 
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a.e. Let us define 
n 

Tn = $1 + - ^-l)+ ’ 

1 

n 

vl = +Y1 _ V't-1)~ • 
1 

Clearly /J = lim belongs to £+ for j = 1,2 and f — f\ — f2- We 
n—>oo 

have proved 

THEOREM 3.13.5 The integral J-1Z f^f exists if and only if f is 

absolutely KH-integrable and then equation (3.139) holds. 

3.13.2 Quick proofs 

Lebesgue integrability is characterized by the same conditions as abso¬ 

lute KH-integrability was either in Theorem 3.9.4 or in Theorem 3.12.5 

part (C). Consequently these concepts of integrability are equivalent. 

This fact can also be proved by the argument given in Subsection 3.12.1 

with the M-integral replaced by the Lebesgue integral. 

3.14 Differentiation almost everywhere 

At the end of the eighteenth and the beginning of the nineteenth century 

it was widely believed that a continuous function must be differentiable 

except possibly on a small set. This belief was shown to be completely 

false when the German mathematician K. Weierstrass produced an ex¬ 

ample of a function which is continuous everywhere but differentiable 

nowhere. The example is simple enough, namely the function is given 

by the formula 

OO 

f(x) = ^ bn cos(an7rx), 
n= 1 

with b < 1 and ab > 1 + 3n/2. However, the proof is not easy and many 

mathematicians have produced their own examples of non-differentiable 

continuous functions which have additional features (e.g. having a finite 

or infinite derivative neither from the left nor from the right anywhere) 

or for which the proofs are elegant. The simplest example is in [29]. 

However, the intuition that most functions we encounter in ‘real life’ are 

differentiable at many points has a sound basis: it is difficult to picture 
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a continuous function which is not monotonic on some interval of its 

domain of definition and on that interval the function is, according to a 

theorem proved by Lebesgue, differentiable except on a set of measure 

zero. Most of this section is devoted to the proof of Theorem 3.14.4, 

which asserts that a function of bounded variation is differentiable al¬ 

most everywhere. Quite a bit of preparation is needed for this theorem 

and we start with several lemmas. 

Let us recall the definition of the Dini derivates of a function F at x: 

D+F(x) = limsup 
F(x + h) — F(x) 

D F(x) = limsup 
/it o 

hiO h 

F{x + h)~ F(x) 

h 

r, w N V • £ F(x + h) - F{x) 
D+F(x) = hmmt--- 

hio h 

D-F(x) — liminf 
/ifO 

F{x + h) — F{x) 

h 

The Dini derivates always exist but one has to keep in mind that they 

might be infinite. A finite derivative of F exists at x if and only if 

-oo < D+F(x) < D^F{x) < D~F(x) < D+F(x) < D+F(x) < oo. 
(3.140) 

The third and fifth inequalities in this chain are always satisfied. The 

next two lemmas deal with the other inequalities. 

LEMMA 3.14.1 If F is of bounded variation on [a, b] then the set 

Eoo = {x- D+F{x) = oo or D+F(x) = -oo} 

is of measure zero. 

Proof For every positive e and every x G Ex, there is a positive hx 

such that 

\F(x + hx) — F(x)\ > M(e)hx, (3.141) 

where M (e) 
12Var baF By Lemma 2.11.4 there are countable systems 

£ 
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of points Xi and non-overlapping intervals Ki such that 

Xi e (3.142) 

Ki c tlxi > “I” ^Xi ) 
oo 

(3.143) 

Eoo C U K‘ 
2=1 

(3.144) 

for i = 1,2,... We choose N such that 

oo N 

J2\Ki\<2j2\Ki\. (3.145) 
2=1 i= 1 

By using Lemma 3.8.1 on the system (xi — hXi, Xi + hXi) with i = 

1,2 ... ,N and renumbering if necessary we find a finite disjoint subsys¬ 

tem of intervals (x* — hXi, X{ + hXi) with i= 1,... ,p such that 

N v 

<3 J2hXi. (3.146) 
2=1 2=1 

It follows that 

oo N p p 

E \K‘\ < 2 E l*<l £ 12 E ^ MU) E + M - ^01 < e. 

This shows that Eqo, being covered by Ki, is of measure zero. • 

LEMMA 3.14.2 If for every function F of bounded variation the 

inequality 

D+F{x) < D-F{x) (3.147) 

holds almost everywhere then every function of bounded variation has a 

finite derivative almost everywhere. 

Proof Since D~F{x) = -D-(-F)(x) and D+F(x) = -D+(-F)(x) 

we can apply inequality (3.147) to —F and have 

D~F(x) < D+F(x) a.e. (3.148) 

and inequalities (3.140) follow. • 

LEMMA 3.14.3 Let L be a continuous piecewise linear function on 

the interval [y, Y] and {Jk = 1,..., s} be a finite system of closed 
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disjoint intervals such that 

S 

L' < -a on (J Jk if L(y) < L(Y) (3.149) 

k=1 

and 

S 

L' > a on |^J Jk if L(y) > L(Y). (3.150) 

fc=l 

Then 

S 

Var^L> |L(y)-L(?/)|+2a^|Jfc|. (3.151) 

fe=i 

Proof It is sufficient to consider the case (3.149) because the assertion 

is not changed if L is replaced by — L. Clearly 

Var^L = f \L'\ > [ L' + [ (\L'\~L') 
Jy Jy i=1 J Jk 

P 

>L(Y)-L{y) + 2a^|Jfc|, 
i=l 

since L(V) > L(y) and |L'| — L' > 2a. • 

We are now ready for the main theorem of this section. 

THEOREM 3.14.4 (The Lebesgue differentiation theorem) If 

F is of bounded variation on [a, b] then F has a finite derivative a.e. on 

[a, 6]. 

Proof By Lemmas 3.14.1 and 3.14.2 it suffices to show that the inequal¬ 

ity (3.147) holds a.e. Hence we want to show that the set 

Efi = {x]D_F(x) < D+F(x)} 

is of measure zero. This set Ef is a countable union of sets of the form 

|x; D-F(x) <rn-l<rn + l< £>+^(z) j > 

where rn E Q and k £ N. The proof that each of these sets is of 

measure zero can be reduced to the case rn 0. Indeed by adding 

a suitable linear function to F the modified function will be still of 

bounded variation and will have rn = 0. 
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Let e and a be positive and 

Ea — {x; D_F(x) < —a < a < D+F(x)} . 

There is a division D given by D = a — yo < yi < ■ • ■ < ym — b such 

that 
m 

E lF(w) - F(Vi-i)\ + y > VarT (3.152) 
1=1 

We denote by Ed the set Ea \ {yo? 2/i5 • • • , ym}- For every x £ Ed there 

is an interval (ux, vx) such that x £ (ux, vx) C [yk, Vk+i] f°r some k 

and 

F(x) - F(ux) <-a(x - ux), (3.153) 

F{vx) - F(x) > a{vx - x). (3.154) 

If F(yk) < F(yk+i) we set Jx = [ux, x], and Jx = [vx, x\ if F(yk) > 

F(yk+1). We also denote \JX\ = hx. For the set Ed we now find similarly 

as in the proof of Lemma 3.14.1 the intervals Ki, points x, and numbers 

N and p such that (3.142), (3.143), (3.145) and (3.146) are satisfied and 

(3.144) holds with E^ replaced by Ed- Now we define a continuous 

piecewise linear function L which agrees with F at the points yk and 

at the endpoints of intervals JXn with n = 1,... ,p. Applying Lemma 

3.14.3 to each interval [yk-i, yk] and summing for k — 1,... , m we have 

m p 

Var^F > VarbaL > E \F(yi_1)-F{yl)\ + 2aj2hXi. (3.155) 

i= 1 i=l 

Combining this inequality with inequality (3.152) gives 

£ P 1 N 1 00 

j >EA»< ^ 3EA*. ^ gEi^i- <3156) 
i=1 i=1 i=1 

This means that Ed and consequently Ea is of measure zero. • 

The Lebesgue theorem on differentiability of functions of bounded 

variation is an important theorem, but it plays a far less central role in 

our approach to integration because we did not need it for the proof of 

Theorem 3.8.2. For the proof of the next theorem it is indispensable. 

THEOREM 3.14.5 A function F is AC on [a, b} if and only if there 

exists an absolutely KH-integrable function f such that 

F(x) = F(a) + JCH f f. 
J a 
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Proof The if part is covered by Theorem 3.6.4. If F is AC then it is of 

bounded variation and has a finite derivative F' a.e. By Theorem 3.9.1 

F(x) - F(a) = JCH I F'. • 
J a 

The next theorem shows that term by term differentiation of series is 

possible for series with monotonic terms. 

THEOREM 3.14.6 (Fubini’s differentiation theorem) If the se¬ 

ries Ei° hn(x) — s(x) converges for every x in [a, b] C R and for each 

n G N the function hn is increasing (or for each n decreasing) then 

(i) t(x) = h'n(x) converges a.e. on [a,b] 

(ii) s'(x) =t(x) a.e. on [a, b\. 

Proof The assertion involves only derivatives. We can therefore assume 

without loss of generality that for all n G N we have hn(a) — 0. Let 
n n 

sn(x) = M^) and tn^ = hn(x)- By the Lebesgue differentia- 
k=1 k=1 

tion theorem there is a set N of measure zero such that for x f N all 

the functions hn, sn, s, s — sn have finite non-negative derivatives and 

it follows that 

t(x) = lim s'n(x) < s’(x). (3.157) 
n—kx) 

This proves (i). Let us choose an increasing sequence of natural numbers 

nk such that s(b) - snk(b) < 2~k and hence 0 < s(z) - sUk(x) < 2~k for 

all x G [a, b\. The series YT=i(s(x) ~ snk(x)) converges everywhere on 

[a, b] and we can use the already established part (i) of the theorem to 

conclude that the series “ snfc(x)) converges a.e. on [a, 6]. 

Consequently lim s' (x) = s(x) a.e. on [a, 6]. This combined with 
fc—> <30 

(3.157) proves (ii). • 

3.15 Exercises 

EXERCISE 3.1 ©CD Suppose for every positive £ there exist functions 

MP and mP which satisfy the following conditions: 

(a) MP is continuous on [a, b] and f(x) < DMP{x) for nearly all x G 

[a, 6], i.e. for all x G [a, 6] except a countablejnumber of points, 

(b) mp is continuous on [a,b\ and f(x) > Dmp(x) for nearly all x G 
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(c) Mp(b) — Mp(a) — [,mp(b) — mp(a)] < e. 

Show that f is Perron integrable on [a, 6]. 

EXERCISE 3.2 Modify the construction of the Perron integral of f by 

considering only P-major and P-minor functions which are of bounded 

variation on [a, b}. Show that if (3.6) holds then the function f is abso¬ 

lutely integrable on [a, b}. 

EXERCISE 3.3 Let p and q be positive integers, for example, p = 

1, q — 1 or p = 1, q = 2. Show that 

1 xp 1dx 

1 + xq 

111 1 

[Hint: Let fn(x) — xp *(1 — xq + x2q — x3q 4-4- x^2n 2^q — x^2n 

and apply the monotone convergence theorem.] 

EXERCISE 3.4 Let F(x) = x2 sinx~2 when x ^ 0 and F(0) = 0. 

Show that F is not of bounded variation on [0,1]. Hence deduce F is 

not absolutely continuous on [0,1], 

EXERCISE 3.5 ©Show that if f is continuous and g is of bounded vari¬ 

ation on [a , 6] then the Stieltjes integral fb fdg exists and the integration- 

by-parts formula in Exercise 2.19 holds. 

EXERCISE 3.6 ©© Use Exercise 2.20 and Exercise 3.5 to show that 

if f is of bounded variation and g is KH-integrable on [a, 6] then the 

product fg is KH-integrable on [a, b}. 

EXERCISE 3.7 ©We know from Example 3.5.7 that if f is absolutely 

integrable on [a, b) then so is the truncated function fN and Jb fN —> 

la /» where fN(x) = f{x) when \f(x)\ < N, fN(x) = N when f(x) > N 

and fN(x) = — N when f(x) < —N. Show further that 

N.m{x e [a, b\; \f(x)\ > N} 0 as N -*• oo. 

EXERCISE 3.8 Fatou’s lemma is stated in Theorem 3.5.13. Do we 

have a similar result involving 

Explain. 
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EXERCISE 3.9 Show that Arzela’s theorem 1.5.6 is a consequence of 

the Lebesgue dominated convergence theorem. 

EXERCISE 3.10 Let fn, n = 1,2,... be KH-integrable on [a, b\. 

Show that if lim f |/m — fn\ — 0 then there is a subsequence { frik} 
m,n—>oo Ja 

which is dominated in the sense that g < fnk < G for all n and for some 

KH-integrable functions g and G. Give an example to show that we 

cannot prove that the sequence {/«,} itself is dominated. 

EXERCISE 3.11 Prove that a function F is the KH-primitive of a 

function of bounded variation on [a, 6] if and only if F satisfies the fol¬ 

lowing condition: 

F{xi+2) - F(xi+1) F(xi+1) - F(xi) 
i 

F(xn) - F(xn-i) 

Xi-\- 2 Xi-^-i Xi 
"T 

•Tn rn — i 

is bounded for all divisions a = xq < x\ < • • • < xn = b. Such a function 

is said to be of bounded slope variation. 

EXERCISE 3.12 Let /(0) = 0 and the graph of f on the interval 

[(n+1)”1, n~x] be formed by an isosceles triangle of height 2, the triangle 

pointing upwards if n is odd and downwards if n is even. Show that, 

for F(x) = /0X f, the derivative F'(0) = 0 and that 0 is not a Lebesgue 

point for f. [Hint: For h = p_1 with p £ N we have \F(h)\ < h2(l+h) 1 

and |/| = h. The required results follow now easily.] 

EXERCISE 3.13 ©0 Show that the following conditions are equiv¬ 

alent: (a) The function F is the indefinite integral of a function f 

which is McShane integrable on [a,b\; (b) for every positive e there 

exists a positive K such that for any partial division D of [a, b] we have 

\J2dF(u’v)\ - £ + KY,d \v ~ u\ where F{u,v) = F{ v) - F(u); (c) 
the function F is absolutely continuous on [a, b\. [Hint: To prove that 

(c) implies (a), we prove that every absolutely continuous function can 

be written as the difference of two increasing functions and use the fact 

that every increasing function is differentiable almost everywhere.] 

EXERCISE 3.14 Let f(x) = (-l)n+1 when x £ (^,£] for n = 

1,2,..., and /(0) = 0. Determine whether f is integrable on [0,1] and 

whether it is absolutely integrable on [0,1]. [Hint: compare Exercsise 

2.10.] 
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EXERCISE 3.15 Let f be KH-integrable on [a, b\. Let $ be the 

family of functions of the form f l[a,/3] with [a/5] C [a, b\. Prove that $ 

is equiintegrable. 

EXERCISE 3.16 (QDirichlet’s test. Let f be KH-integrable on [a, x] 

for every x > a and the function F(x) = f* f be bounded on [a, oo). 

If g is decreasing and lim g(x') = 0 show that fg is KH-integrable 
x—> OO 

on [a, oo]. [Hint: use the second mean value theorem similarly as in 

Example 3.7.10.] 

EXERCISE 3.17 ©Give an example of a bounded function f which is 

not KH-integrable on [0,1] although \ f\ is. [Hint: Use the existence of 

a non-measurable set.] 

EXERCISE 3.18 Prove by definition that a continuous function on 

[a, b} is McShane integrable there. 

EXERCISE 3.19 ©Let fn, n — 1,2,... be KH-integrable on [a, b} with 

the primitives Fn, n = 1,2,... , the sequence /n —► / almost everywhere 

in [a,b], and Fn(x) —> F(x) for every x 6 [a, b]. Then in order that 

f is KH-integrable on [a, b] with the primitive F, it is necessary and 

sufficient that for every positive £ there exists M : [a, b] N such that 

for infinitely many m(£) > M(£) there is 6 : [a, b] —>■ R+ such that for 

any 8-fine partition n of [a, b] we have 

I F™«i) v) - F(a,b)\ < e. 
7T 

This is known as the basic convergence theorem. [Hint: Define 8n : 

[a, 6] i R+ such that ^ \fn{Oiv ~ u) — Fn(u,v)\ < e2~n for all 8n- 

fine partitions n. Assume fn —> f everwhere. Choose M(f) such that 

l/m(o(0~/(0l < £ forallm(£) > M(£). Then put 6(£) = 6m(o(0* If f 

is KH-integrable then modify 8 so that Y] |f(£){v-u)-F(u,v)\ < £ for 

any 8-fine partition n and the required inequality follows. Conversely, 

rearrange the above inequalities.] 

EXERCISE 3.20 ©Prove the monotone convergence theorem 3.5.2 

using the proof of the basic convergence theorem (see Exercise 3.19). 

[Hint: Follow the hint of Exercise 3.19. Let q be the minimum of m(£) 

while (£, [u, u]) G n. Since the sequence {fn} is monotone we have 
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Fq(a, b) < '}Tn Fm/^) (u, v) < L, where L = lim Fn(a, b). We can choose 
n—+oo 

ra(£) sufficiently large so that L — Fq(a,b) < e. Hence the required 

inequality in Exercise 3.19 holds and the result follows. Note that this 

proof works for the KH-integral only whereas the proof of Theorem 3.5.2 

works for the McShane integral as well.] 

EXERCISE 3.21 ©© Show that a non-negative function f is inte- 

grable to I on [a, b] if and only if for every positive £ and positive rj there 

exist an open set G and a positive constant 6 such that the Lebesgue 

measure m(G) < rj and such that for any partition it — {(£, [it, ?_;])} with 

0 < v — u < 8 we have 

\^\f{0(v-u)-I\ < £, 
ir* 

where ir* is a tagged partial division obtained from it by omitting those 

pairs (£, [u, n]) for which £ E G. 

EXERCISE 3.22 Prove that if a function f is integrable on every 

measurable subset X of [a, b] then f is absolutely integrable on [a, b\. 

EXERCISE 3.23 ©Prove that a function f is absolutely integrable on 

[a, b] if and only if there exist real numbers c\, C2,. ■ • and subintervals 

ii, J2,... of [a, b] such that 

oo °o 

/ = almost everywhere, ^ |cj|m(p) converges. 

i=1 i= i 

The above holds true with intervals replaced by measurable sets Xl. 

EXERCISE 3.24 Let X C [a, b\. The characteristic function of X 

is integrable to I on [a, b] if and only if for every postive £ there exists 

6 : [a, b] —> R+ such that for any 6-fine M-partition it we have \Yj-k1x~ 

I\ < e. Use the above fact to give an alternative proof of Theorem 

3.11.15. 

EXERCISE 3.25 ©© Let fn, n = 1,2,... be integrable on [a,b\. 

Prove that if fn(x) T f(x) € E everywhere as n —>• oo and the sequence 

{fbfn} is bounded then the sequence {fn} is equiintegrable on [a, 6]. 

[Hint: Define 6 as in the hint of Exercise 3.19 with 6n+l < 6n for all n. 

For any 6-ffne partition it of [a, b], write m to be the part of it such that 

n < m(£) and it2 = it — it\. Then \ ^]7ri fn(0(v — u) ~ Fn(u, v)\ < e2 
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and 

\^2ifn(f)(v - U) - Fn(U,v)}\ < |J^[/n(0 ~ /m(0 (OKu “ u) I 
7T 2 773 

+1 X](0 (v - u) - Fm(?) (u, v)} \ + | ]T [Fm(c) (u, u) - Fn (u, «)] | 
7T 2 7T 2 

in which the last term is small by means of the hint of Exercise 3.20.] 

EXERCISE 3.26 Let fn, n — 1,2,... and g be integrable on [a, b\. 

Prove that if \fn\ < g and fn —> / everywhere as n —» oo, then the 

sequence {fn} is equiintegrable on [a,b]. [Hint: Follow the hint of Ex¬ 

ercise 3.25 except \^2[Fm{0(u,v) - Fn(u,v)}\ < \ J2^2[Fm(o(u^v) ~ 

F(tt, n)|] + | 2[F(u,v) — Fn(u,v)]| in which both terms are small by 

means of the basic convergence theorem (see Exercise 3.19) and the mean 

convergence theorem.] 

EXERCISE 3.27 Give an example of a sequence {fn} which is equi¬ 

integrable and which converges nowhere. [Hint: Take fn(x) = (—l)n for 

all x G [a, b\.] 

EXERCISE 3.28 Let fn(x) — n when x 6 for n — 1,2,... 

and 0 otherwise. Show that the sequence {fn} is mean convergent but 

not dominated by any integrable functions. 

EXERCISE 3.29 A function f is uniformly continuous on [a, b] if and 

only if for every xn, yn 6 [a, b], xn - yn -> 0 implies f(xn) - f(yn) -a 0. 

We define a function f to be uniformly if there exists a sequence {un} 

of tag functions (see Exercise 2.21) such that for any un-hne interval 

In we have u{f, vri{In)) —► 0 where u denotes the oscillation of f on 

Ki(Jn)- Prove that a uniformly continuous function on [a, b] is uniformly 

v-continuous there, but not conversely. 
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The SL-integral 

4.1 The strong Luzin condition 

In this chapter we offer an alternative development of the KH-integral. 

The definition is perhaps less natural but its advantage is that sets of 

measure zero are automatically neglected and some proofs become easier 

and shorter. 

The Russian mathematician N.N. Luzin recognized the importance the 

condition which now bears his name and is also referred to as condition 

N. A function F satisfies condition N on a set S if F(E) is of measure 

zerof for every E C S of measure zero. Most functions encountered in 

applications satisfy condition N. The function H from Example 3.6.1 is 

continuous and increasing but it maps Cantor’s discontinuum which is 

of measure zero onto a set which is obtained from [0,1] by removing a 

countable set. It is even possible to define a continuous strictly increasing 

function which does not satisfy the Luzin condition. (See [42] pp. 198- 

200.) We need a condition stronger than N. 

DEFINITION 4.1.1 (Definition of SL) A function F is said to 

satisfy the strong Luzin condition, or briefly SL, on a set S C R if 

for every set E C S of measure zero and every positive e there exists 

7 : S ->R+ such that if % = {(£, [u, u])} is any 7-fine partial division 

tagged in E\ 

\F(u,v)\ < e. (4.1) 

7T 

A function F is said to satisfy SL on an interval [A, B] C R if it satisfies 

f As usual F(E) = {y : y = F(x), x £ E}. 
f We use the notation F(u,v) = F(v) - F(u). This should not be confused with 

F([u, u]). 

151 
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SL on (A, B) and there are finite limits 

lim F(x) = F(A), lim F{x) = F(B). (4.2) 
x[A x}B 

A function F satisfies the strong Luzin condition on a set S C R if and 

only if it has a negligible variation on every set E of of measure zero, 

E C S. If F is AC on [a, tjcf then it is SL on [a, b}. 

REMARK 4.1.2 The definition of SL on [A, B] C R is motivated by 

the fact that if F is continuous on [a, b\ C R and satisfies SL on (a, b) 

then it satisfies SL on [a, 6]. 

REMARK 4.1.3 The meaning of the definition is not changed if 

inequality (4.1) is replaced by 

This follows from 

j2F(uiy) < £. 

Y^f(u,v) <j2\f(u,v)\ = j2f+(u’v)+^2f (u’v)- (4-3) 
7T 7T 7T 7T 

It is advantageous to make the following convention. If F is SL on 

(A, B), the values F(A), F(B) are not defined but the limits 

lim F(x), \imF(x) (4.4) 
x J, A, x "|" J3 

exist and are finite then we shall always agree to extend the definition 

of F at A or B by the respective limits (4.4), hence making F satisfy 

the SL condition on [A, B], 

The following properties follow easily from the definition: 

(S) If Fi and F2 satisfy SL so does F\ + F2. 

(M) If F satisfies SL and c is a constant then cF satisfies SL. 

(C) If F satisfies SL on [A, B\ then F is continuous on [A, B]. 

(U) If Sk,k = 1,2,..., are disjoint and F is SL on each then / 

is SL on UgljSfc. Since every countable union can be written 

as countable union of disjoint sets the assumption that Sk are 

disjoint becomes superfluous. 

REMARK 4.1.4 It is easy to see that F is SL on each set 

{x; n - 1 < \F'(x)\ < n, n E N}. 
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It follows from (U) that F is SL on every set where it has a finite 

derivative. 

THEOREM 4.1.5 If F satisfies SL on [a, b\ then it also satisfies N. 

Proof Given e positive and a set E of measure zero there exists a 

7 : [a, b] —> R+ such that 

\F(U’V')\ < (4-5) 
7T 

whenever 7r = {(£, [u, u])} is a 7-fine partial division! tagged in E. 

By Lemma 2.11.4 there is a countable system of closed non-overlapping 

intervals [a*, bf\ covering E and each of these intervals contains a point 

Ci e E such that (c*-7(ci), <7+7(0;)) D [a*, bi\. By Weierstrass’theorem 

there are intervals [a*,/?*] contained in [a*, bi\ such that 

sup (F; [oi, bi\} - inf {F; [a*, bi}} = \F(Pi) - -F(a;)| (4.6) 

We denote by A, B, C the sets of those positive integers i < N for which 

a-i <Ci < (3i} ai < Ci < a.i and Pi < Cj < bi. Since 

|F(A) - F(ai)| < 1 F{Pi) - F(ai)\ + \F{af) - F{pn)\ 

\F(Pi) — F(ap\ < iFiPP-FibPl + lFibp-FiaJl 

we have by (4.5) 

N 

i=1 

+ Y,\F(l3„a,)\ 
i£B 

+ ^|F(/3„6,)I 
iec 

By letting N —> 00 we obtain 

< Y.\F{~a"^\ 
ieA 

+ |F(a,i, a*) I 
i€B 

+ ^2\F(bi,ai)\ < e. 
iec 

]r^KA)i<£- 
1 

This proves F(E) is of measure zero. • 

This theorem makes it clear that the function from Example 3.6.1 

does not satisfy the strong Luzin condition on [0,1]. 

f For the definition of partial tagged divisions see Section 3.2. 
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REMARK 4.1.6 If a function F continuous and increasing on [a, b] 

satisfies condition N then it also satisfies condition SL. Let e be positive 

and N C [a, b} be of measure zero. Then, by assumption, F(N) is also 

of measure zero. There exists a system of open disjoint intervals Jk with 

k G N such that F(N) C IJ^0 Jk and \Jk\ < £■ If x G N then 

there is a unique kx such that F(x) G Jkx ■ Consequently, by continuity 

of F there is 8(x) > 0 with the property that F(t) G Jkx whenever 

t G (x — 8(x), x + 8(x)). If 7r = {(xi, [ui, v*])} is now a <5-fine tagged 

partial division on N then 

OO 

V*])| = ^|F(u,u)| < <e. • 

7T 7r k=1 

There is a much stronger theorem called the Banach-Zarecki theorem 

(see e.g. [34] p. 250) which states that if F is only of bounded variation 

and has the Luzin property then F is AC. 

For a function / we shall denote by Nf the set of zeros of /, i.e. 

Nf — {x-,f(x) = 0}. A function 8 whose range is [0,oo) will be called 

a tight gauge if Ns is of measure zero. We know that for a tight gauge 

8 there need not be a partition of [a, 6] which is 6-fine. However, for a 

tight gauge, 6-fine subpartitions always exist even if Ns 7^ 0. 

DEFINITION 4.1.7 (Definition of the SL-integral) A function 

f is said to be SL-integrable on [A, B] if there exists a function F which 

is SL and has the property that for every positive e there is a tight gauge 

8 such that 

\f(0(v ~ u) ~ F(u,v)\ < e (4.7) 
7r 

for every 8-fine tagged partial division of [A, B]. The number F(B) - 

F(A) is then the SL-integral of f and is denoted by SC f ^ f. The 

function F itself is called the SL-primitive of f, or simply the primitive. 

We show that the definition is meaningful by proving that the function 

F is uniquely determined up to an additive constant. 

LEMMA 4.1.8 Let f be SL-integrable on [.A, B}. If F\ and F2 are 

functions associated with f according to Definition 4.1.7 then F\{j3) — 

Fi(oi) = F2(P) - F2(a) for every [a,/3\ C (A, B). 

Proof Since F\ and F2 are SL so is F = F\—F2. Let 8 be the tight gauge 

associated with /, Fi,F2 as in the definition of the SX-integral. Let 7 be 
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associated with F according to the SL condition. Define A(x) = S(x) 

for x Ng and A(x) = j(x) for x E Ng. Let n be a A-fine partition of 

[<a, f3\ and and 7r2 subpartitions of 7r for which £ G Ng and £ Ns, 

respectively. Then 

< 

+ 

\F(I3)-F(a) | E (F(v) - F(u)) 

E (F(v) - F(u)) J2(Fi(v) - l'i (u) - /(()<" - Mji 
7T 2 

XI (/(0(u - w) - F2(v) - ^(u)) < 3e. 

Since e is arbitrary F(/3) — F(a) = 0. 

EXAMPLE 4.1.9 If / = 0 almost everywhere then 

sc [b f = 0. 

To prove this it is sufficient to choose F = 0 and S(x) — 0 for x ^ Nf. 

It is now clear that a change of a function on a set of measure zero affects 

neither the value nor the existence of the SL-integral. 

4.2 SL-integration 

The basic properties of the SL-integral follow easily from the definition. 

(M) If / is SL-integrable with primitive F and c is a constant then cf 

is SL-integrable with primitive cF. 

(A) If /i and f2 are SL-integrable with primitives L\ and F2 then 

fx _|_ f2 is SL-integrable with primitive L\ + F2. 

(I) If / and g are SL-integrable and f(x) < g{x) almost everywhere 

on [a, b] then 

SC I' f<SC [ g. 
J a J cl 

In particular if 

m < f(x) < M 
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almost evewhere on [a, b] then 

m(b — a) < SC f f < M{b — a). 

(S) A function / which is SX-integrable on [A, B] is also AL-integrable 

on any subinterval of [A, B\. 

(C) If f is AL-integrable and F(x) — SC f* f then F is continuous. 

Proofs for the SX-integral are sometimes almost verbatim repetition 

of the corresponding proofs for the KH-integral. Examples of this are 

Theorems 2.6.8 and 3.8.2. The use of a tight gauge enables us to neglect 

sets of measure zero with ease and therefore many proofs for the SL- 

integral are simpler than the ones for the KH-integral. Examples of this 

are the next three theorems. 

THEOREM 4.2.1 If — oo < a < c < B < oo, f is SL-integrable on 

[a, c] and 

lim«S£ / f exists and equals J A B Ja 

then f is SL-integrable on [a, B) and SC J'a f = J. 

Proof Set F(x) = SC /* f and F(B) = J. Clearly F is SL on [a, B\. 

Let n i—» cn be a strictly increasing sequence with xx = a and xn —► B. 

For every positive e there exists a tight gauge 8n such that 

5^(/(0(u ~ u) ~ F(u,v)) 

whenever nn is a <5n-fine tagged partial division of [xn, a;n+1]. By re- 

dehning 8n, if necessary, we can achieve that 

8n(-^n) = 8n(^xn-\-1) = 0 for n G hi, 

(*^ (2?) > X + 8n (x)) C (%n, 3?n+l) • 

Let 6(x) = 6n(x) if x G [xn, xn+1) and 6(B) =0. If tt = {(£, [u, v})} is 

a 5-fine partial division tagged in [a, B\ and 7rn that part of 7r which is 
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tagged in (xn, xn+1) then 

F{u,v)) < 
OO 

n=1 7rn 
OO 

77<— 1 

The Fundamental Theorem for the SL-integral is powerful and easy to 

prove. 

THEOREM 4.2.2 If F is SL and F' = / almost everywhere on 

[A, B} then 

rB 
sc f = F(B) - F(A). (4.8) 

J A 

Proof Given e > 0 we choose a positive function S : [A, B] —> K+ such 

thatf £ < e/2 and then a 80 : [A, B\ -»■ R+ such that for every 

^o-fine subpartition n we have 

J^5(0(v-w) <■£• (4-9) 
7T 

If F'(x) / /(x) or F'(x) does not exist set 6i(x) = 0. If F'(f) = /(£) 

find 6i(£) such that 

|/(0(w-u) -< £(0(«-u)> (4-10) 

for £ - <5i(0 <u<£<w<£+ <5i(0- Set s = Min(^o, ^i)- If tt is a 

6-fine tagged partial division of [A, B) then by (4.9) and (4.10) 

- u) - F(u,v)] < e. 

Since F is SL on every countable set on which it is continuous, we have 

by Remark 4.1.4: 

COROLLARY 4.2.3 If F' = f except on a countable set and F is 

continuous on [A, B} then (4.8) holds. 

REMARK 4.2.4 The condition that F is SL is essential. For F from 

Example 3.6.1 we have f* F' = 0 ^ F(l) - F{ 0) = 1. 

f e.g. £{x) = e/27r(l + x2). 
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THEOREM 4.2.5 (Integration by parts) If F and G are SL, 

F'(x) — f(x), G'{x) = g(x) a.e. on [A, B] then 

SC [ (Fg + Gf) = F(B)G(B) - F(A)G(A). (4.11) 
J A 

Proof The function FG is SL, as is easily seen from the identity 

FG(u, v) = F(v)G(u, v) + G(u)F(u, v) 

and the fact that both functions F, G are bounded. Now the theorem 

follows immediately from Theorem 4.2.2 because 

[F(x)G(x)}' = F(x)g(x) + G(x)f(x). • 

Since Theorem 3.8.2 is valid for the SX-integral also we have 

COROLLARY 4.2.6 If f, g are SL-integrable and F and G their 

corresponding SL-pnmitives then formula (4.11) holds. 

Remark 2.7.2 concerning the lack of integrability of Fg also applies here 

in full. Generally speaking one is not allowed to write (Fg + Gf) = 

Ja Fg + fl Gf in (4.11). 

EXAMPLE 4.2.7 Taking F(x) = sin a; and g(x) = x~1, and applying 

Theorem 4.2.5 together with the integrability of x~2cosx on [1, oo] we 

obtain the existence of 

sinx 
-ax. 

x 

We now turn our attention to the substitution formula 

rv(B) rB 

SC f = SC (/ o<p)<p'. (4.12) 
Jv{A) Ja 

If is one-to-one it is possible to show, similarly as in Theorem 2.7.8, 

that the existence of one integral in equation (4.12) implies the existence 

of the other and the equality of the two integrals. However there is a 

slight complication if / is not defined everywhere. For instance, if 

m = t~t j 
\x\ 

<p{t) = t + lt[, 

(A,B) = (-1,1), 

then the left-hand side of (4.12) is well defined and equals 2, but the 

right-hand side has no meaning since / o ip is not defined on [—1,0]. 
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However, if we redefine (/ o p)p'(t) to be zero on (—1, 0) then the right- 

hand side of (4.12) becomes 

0 dt + / 2 dt = 2 
'-1 

and the validity of (4.12) is restored. For the rest of this section we set 

(f°<p)<p\t) = 0 

whenever p'(t) = 0 (even if / o p(t) is not defined). 

Similarly as in the proof of Theorem 2.7.8 there is a correspondence 

between subpartitions of [A, B] and \p(A), p(B)\. If e.g. p is continuous 

and strictly increasing then we have tv and ip on given by 7r = {(t, [u, u])} 

and p o 7r = {(p{t), [p{u), <p(u)])} = {(x, [w, z])}, respectively. Also 

every subpartition uj of [<yo(A), ip(B)] is ip o n for some subpartition 7r of 

[A, B], namely 7r = p-\ o to. 

We begin our discussion of the monotonic case with a special case of 

formula (4.12) in which / = ljv, the characteristic function of a null set 

N. Formula (4.12) in this case reads 

rB 
SC / lN{<p(t))ip'(t)dt = 0. (4.13) 

J A 

This holds if and only if p' = 0 a.e. on p-i(N). We now state this 

special case as 

LEMMA 4.2.8 If p is differentiable almost everywhere and strictly 

increasing on [A, B], and if N C range of p is of measure zero then p 

is zero a.e. on p-i(N). 

Proof Let e > 0 and £ as in (4.9). For the proof of (4.13) we set 

S(t) = 0 if p is not differentiable at t. Otherwise find 6 such that 

|p(u,v) - p'{t)(v - u)| < £{t)(v - u), (4-14) 

for t - 6(t) <u<t <v <t + S(t). Since N is of measure zero there is a 

system of disjoint open intervals {Ik} such that 

OO 

Nc{Jh, (4-15) 
1 

OO 

53 M <e- (4,16) 
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If t £ (f-i(N) then tp(t) £ Ik for some k and we diminish 6(t), if neces¬ 

sary, to have tp(w) £ Ik for t — 6(t) < w < t + 8(t). If it is a <5-fine tagged 

partial division of [A, B} then 

0<J^1 N(<p(t))(p'(t)(y-u)= Y T'(t)(v-u) 

7T tp(t)€N 

oo 

£(t)(v — u) < Y Y <p(u’V)+£ 
<p(t)£N tt k=l<p(t)elk 

OO 

< Y \Jk\ + £ < 2e. • 
k=1 

THEOREM 4.2.9 (Integration by substitution) Let [A, B] C K, 

and let the function p be differentiable a.e., continuous, SL and strictly 

monotonic on [A, B). Then if one side of equation (4.12) exists then so 

does the other and the equality holds. 

Proof Let s 0 and £ be as in (4.9). Assume that f is integrable, let F 

be its SX-primitive and N be the set where F' does not exist or F' = ±oo 

or does not equal /. Set M = p_1(N). Let q : N —> R+ be such that if 

u) is a tagged partial division on N with ui <C rj then |F(w, z)\ < e. 

By continuity of ip there is, for every t £ M, a positive 6(t) such that 

|<p(r) — <p(t)\ < r/(ip(t)) for \t — t\ < 6(t). Consequently, if -km is a tagged 

partial division on M and tvm -C 5 then 

Y\(F °t)(u’v)\ < £- (4-17) 
7TM 

If t £ M and p'(t) > 0 or p'(t) does not exist let 5(f) = 0. By Lemma 

4.2.8 the set of zeros of 6 is of measure zero. For t £ (A, B) \ M there 

is a positive 5(f) such that 

|(F o <p)(u, v) - f(p{t))p'{t)(v -u)| < £(t)(v - u) (4.18) 

whenever f — 5(f) < u < t < v < t + 5(f). Let n be 5-fine, 7tm the largest 

partial division tagged in M with nM C 7r. Denote nc = 7r \ nM- Then 
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by inequalities (4.17) and (4.18) 

Y\ (Foip)(u,v) - f(<p{t))ip'(t)(v -u)| 
7T 

<^2\(F ° <p)(u,v) - f(ip(t))(p\t)(v - -n)[ + ^ \(F o <p)(u, v)| 

7T c 7TM 

< ^ £(f)(u — u) + s < 2e. 
TTc 

It is easy to see that F o ip is SL because both F and p> are SL and p 

is strictly increasing. That proves the change of variable formula Lfrom 

left to right’. 
Going in the other direction let H be the SL primitive of (/ o ip)<pr. 

Denote F = H o <^_1. If a; = ip o 7r is any tagged partial division of 

[<p(A), p(B)] then 

Y |F(iy, z) - f{x){w - z)\ < Y \H(uiv) - - u)\ 
UJ n 

+ 1 /(v>(*)Mu»v) - f(p{t))p'(t)(v - u)| • (4.19) 
7T 

There are tight gauges 8\ and 82 such that 

Y IH(u, v) - f{p(t))p\t)(v -u)| < | (4.20) 

771 

and 

Y i- u)i < 2 (^4'21') 
7T2 

whenever tti <C or tt2 <C <52, respectively. The existence of <5i is 

obvious from the fact that H is the NL-primitive. Next 82 is defined at 

every point of differentiability of p by requiring 

Mu,v)-<p'(t)(v-«)| < YTwMnfi (4'22) 

and setting 62 = 0 on the rest of [A, B]. Define A = Mm(81,82) and 

VA(x) = VA (*>(*)) = Min[p(t) - pit - A(t)), pit + A(*)) - ¥>(*)]■ 
(4.23) 

Since </? is strictly increasing and as an SL function satisfies condition 

N the function rjA is a tight gauge on \p{A), p(B)]. If u < t?a then by 
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(4.19), (4.20) and (4.21) 

Y lF(*C z) ~ f(x)(w ~ z)\<e- (4.24) 

To complete the proof it suffices to show that F is SL on [</?(A), <p{B)\. 

Let Z C [<p(A), <p(B)\ be of measure zero, T — <p_i(Z) and S C T 

where ip' = 0 and <5i > 0. The set T\S is of measure zero, hence there 

is 7 : T \ S —> M+ such that 

(4.25) 

whenever -kq is a 7-fine partial division tagged in T\S. For t £ S we 

can let 7(f) = <5i(t). Define r/7 by equation (4.23) with A replaced by 7. 

Clearly r/j > 0. If u> -C and u = tp o n then by (4.20) and (4.25) 

^|F(w,2)| = Y\h(u’v)\ 
U 7T 

= Y \H(yuiv)\ + Y\H^U’V^> ~ -u)\ <e + e. • 
t<=T\S 

REMARK 4.2.10 The condition that <p satisfies SL is essential: the 

theorem fails without it even if / = 1. In this case Theorem 4.2.9 reduces 

to the Fundamental Theorem and Remark 4.2.4 applies. 

4.3 Limit and SL-integration 

The theory for interchanging limit and SL-integration is very similar to 

that for KH-integration. However, in our presentation here we make the 

concept of SL-equiintegrability (defined below) our starting point and 

we deduce the other theorems, like the monotone convergence theorem, 

from it. The same path could have been taken with the KH-integral 

with equiintegrability playing the role of the foundation stone for the 

interchange of limit and integration. We hope that readers would be 

able if they so wished to adapt the presentation for the SL-integral below 

to the KH-integral. 

DEFINITION 4.3.1 A family of functions $ is said to satisfy the 

uniform strong Luzin condition, or briefly USL, on an interval [A, B]c 

R if the following conditions are satisfied: 

(a) for every positive e and for every set E of measure zero, E C 

(A, B), there exists 7 : (A, B) R+ such that inequality (4.1) 
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holds for all F G $ whenever n is a 7-fine partial division tagged 

in E; 

(b) the limits (4.2) exist uniformly for F G 

It is easy to see that if Fn{x) —> F(x) for every x G [A, B] and {Fn} is 

USL then F satisfies SL. Clearly there is a 7 such that 

^2\Fn{u,v)\ < | 
7T 

holds for all n G N if 7r is 7-fine and is tagged in E. Sending n —> 00 

shows that condition (4.1) holds. By (b) there is a such that for all 

n G N 

IFn(x) - Fn(y)| < £ 

whenever x and y are in (A, a). Letting n —+ 00 shows that the Cauchy 

condition for the existence of a limit of F at A is satisfied. The existence 

of lim F(x) follows similarly. 

DEFINITION 4.3.2 A family of SL-integrable functions f is said to 

be SL-equiintegrable on [A, B] if 

(i) the family $, consisting of functions which are SL-primitives to 

functions in satisfies USL on [A, B\; 

(ii) for every positive e there exists a tight gauge b such that inequality 

(4.7) holds for all f G f and their SL-pnmitives F whenever ir is 

a 6-fine tagged partial division of [A, B). 

The main theorem of this section is 

THEOREM 4.3.3 (SL-equiintegrability) If the sequence {/n} is 

SL-equiintegrable, Fn are the SL-primitives of fn and fn -» / almost 

everywhere on [A, B] then Fn(c,x), with c G (A, B), converge for every 

x G (A, B) to F(x). The function F is the SL-primitive of f on [A, B}. 

Proof For a given positive e we choose, similarly as in the proof of 

Theorem 4.2.2, functions S > Of and be such that 

££<i- <4-26> 

f This notation is kept throughout this section. 
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whenever 7r is a <5e-fine tagged partial division of [A, B]. Let M be the 

set where fn do not converge to /. If x ^ J\f then there is 777,(2) such 

that 

I fn(x) - fm(x)I < £(x) (4.27) 

for n,m > 777,(2). If tv\ = {(xi,[ui, 77])} is a <5e-fine tagged partial 

division and mo > m(xi) for all tags Xi then by (4.27) and (4.26) 

Y \fn(xi) ~ fm(Xi)\ (Vi ~ Ui) < £ (4.28) 

for n,m > mo- Let 6 be chosen according to condition (ii) in the Def¬ 

inition 4.3.2 with $ = {fn; n € N}. Let us denote, as usual, N$ = 

{2; 6(x) = 0}. Choose 7 according to condition (a) in Definition 4.3.1 

with E = J\f U Ns. Define A(x) = Min (6(x), 6e(x)) if x £ U U Ns and 

A(x) = 7(2) otherwise. Let tv be a A-fine partition of [c, x] (or [2, c]), 

7r0 that part of tv which is tagged in J\f U Ns and tti = tv \ tr0. For 

m,n > mo we have 

\Fm(c,x) - Fn(c, 2)| = | YiFm(u, y) - Fn(u,v)} 
7r 

- Y \Fm(u,v)\ + Y \Fn(u,v)\ (4.29) 

O
 

O
 

+ \Y (U> V) ~ /m fa) (V - U) 
7Tl 

(4.30) 

+ y^t-Fn^v) - fn(x)(v - it)] 
7T1 

(4.31) 

+ Y ~ fn(x)\(v - U). (4.32) 
7Tl 

The terms in (4.29) are less than £ by USL, the sums (4.30) and (4.31) 

by SL-equiintegrability and the last sum (4.32) by (4.28). Consequently 

the sequence (Fn(c,2)} is Cauchy and Fn(c, 2) -> F(2). Further F is 

SL because Fn are USL. We now redefine 6 by setting it zero on N. 

Then we have 

Y iFm («, V) ~ fm (2) (V - U)} < £ 
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for all to whenever 7r is a 5-fine tagged partial division of [A, B}. Sending 

to —> oo gives 

^2[F(u,v) - f (x)0 - u)] < e. 

THEOREM 4.3.4 (Monotone convergence theorem) If 

(i) the sequence {fn{x)} is monotonic for almost all x £ [A, B] C 1 

(ii) the functions fn are SL-integrable and the sequence j<S£ fA fr 

is bounded, 

(iii) lim fn = / is finite a.e. 
n—► oo 

then f is SL-integrable and 

<K, 

f = lim / fn, (4.33) 

for all x £ [A, B). 

Proof We show the SL-equiintegrability of the sequence {/„}. The 

assertion then follows from Theorem 4.3.3. By considering —fn or fn — fi 

instead of fn, if need be, we can achieve that the sequence {/n} is 

increasing and /n > 0. We denote 

Fn(x)=sc[ fn. 
Ja 

Clearly Fn(x) < Fn(B), the sequence {Fn(B)} is increasing and bounded, 

and hence the limit of Fn(x) exists for every x £ [A, B]\ let us denote it 

by F(x). Given e we can find no such that 

F(B) — Fn(B) < £-, (4.34) 

for n > n0. Next we denote by J\f the set where fn do not converge to 

/ and for x (f J\f find n(x) > no such that 

fix) - fn(x) < £{x), (4.35) 

for n > n{x). By the definition of the SL-integral there is a tight gauge 

8n such that 

^\Fn{u,v)-fn{x)(v-u)\<-£— (4.36) 
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whenever the tagged partial division 7r <C Sn. The functions 8n can be 

chosen to form a decreasing sequence and we assume that is done. We 

define 

6(x) = Min(8n(x)(x),6e(x)) if x £ J\f, 

and zero otherwise. We now complete the proof in three steps. 

Step 1. The family $ — {Fn; n > no} satisfies condition (a) in Defini¬ 

tion 4.3.1. 

Firstly we have 

Fn(u,v)| < \Fno(u,v)\ + |Fn(u,v) - Fno(u,v)\ . (4.37) 

Consequently for any tagged partial division n 

Y l^n(«,w)| 
7T 

Y\Fn(u,v)\ 

7r 

< Y \Fn0(uiv)\ + ^[Tn(u,u) - Fno(u,v)], 
7r 7r 

7T 

— y ] {T'no (u) ^)| + (4.38) 
7T 

There is a 7no from the SL-condition of Fno. By (4.38) this 7no can 

serve as the required 7 in condition (a) for the whole family $• 

Step 2. Condition (b) from Definition 4.3.1 is satisfied. It follows from 

inequality (4.37) that 

\Fn(u,v)\ < \Fno(u,v)\ + F(B) - Fno(B) < \Fno(u,v)\ + 

This however indicates that the Cauchy condition for the existence of 

a uniform limit at A or B is implied by the Cauchy condition for the 

existence of these limits for the function Fno. 

Step 3. Condition (ii) from Definition 4.3.2 is satisfied. For the rest 

of the proof we fix m, m e N, m > n0. Let nw = {(aq, [Ui, u;])} be a 

5-fine partial division of [A, B], and t: that part of nw which is tagged 

in the set where m > n(xi) and = nw\ n. Denote 

L Fm^lli, Vi). 

Since the sequence {5n} is decreasing 7r0 <C 8m and we have 

£*< < 
£*• £*• 

7T0 

< £*. + 
4.2r 

(4.39) 
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To estimate the right-hand side of (4.39) we interpose the following two 

sums: 

- Ui) and ^ Fn{xi)(ui,Vi). 

TV TV 

The idea is to show that the first one is close to the Riemann sum of fm 

and the second to the other term in the sum of (4.39). We then conclude 

the proof by proving that their difference is small. We have 

^ ''j [ fm {xi) foi ^i) F'm(Ui,Vi)\ 

TV 

^ y ' | fm(xi) ~ fn(xi){xi) \ (Vi ui) 

7T 

y ] \fn(xi){xi){vi ~~ ui) — Uj)] 

7T 

y ^ \_Fn(xi) {uii vi) — Fm(Ui, Ui)] 

+ 

For the sum in (4.40) we obtain by (4.35) 

0 E y ^ | fm (xi) fn(xi) (xi) | (Vi Uj) ^ y ^ £ 
£ 

< 

(4.40) 

(4.41) 

(4.42) 

(4.43) 

The sum in (4.42) is also easily estimated 

O^iFUu^-F^M] < [F(.ui’vi) — Fno(ui,vi)\ 

TV n 

< F(B) - Fno(B) < £. (4.44) 

It remains to estimate (4.41). The nfa) are not necessarily distinct; let 

,iK be the distinct i such that n(xi) = /-c, he. 

{i; n(xi) = k} = {*i, *2) • • • , *«;} • 

We group together the terms with the same n(xi) = k, and estimate the 

sum using condition (4.7) for the definition of the SL-integral of fK. 

[fk{xij )(Vij ~ uij ) Fk(utj , uq.)] 

i=1 

£ 

T2^' 

Consequently 

E /»(*<) (®0(ui 
TV 

<Ei^ 
1 

£ 

4' 
(4.45) 
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Collecting (4.43), (4.44) and (4.45) and applying them to (4.40),(4.41) 

and (4.42) gives 

^ ] [fm 'U'i) ■fm(Wj) ^i)] < £. 

THEOREM 4.3.5 If 

(i) the sequence {fn(%)} is monotonic for almost all x £ [A, B] C K, 

(ii) the functions fn are SL-integrable and the sequence JA fn j 
is bounded 

then lim fn = fis finite a.e. 
71—>00 

The proof of Theorem 3.5.8 given in Section 3.5 for the KH-integral 

applies verbatim here. 

REMARK 4.3.6 (Absolute integrability) Absolute integrability 

for the SL-integral can be treated similarly as for the KH-integral. Here 

we only mention that if /, g are absolutely SL-integrable then so are 

/ + 9, f - 9, Max(/, g) and Min(/, g). 

The monotone convergence theorem can be rephrased for series as was 

done for the KH-integral. We shall not pursue this here. In most theo¬ 

ries of the integral the dominated convergence theorem is an immediate 

consequence of the monotone convergence theorem. This is in particular 

true for the SL-integral. 

THEOREM 4.3.7 (Dominated convergence theorem) If the 

functions fn, g, G are SL-integrable and 

9 < fn<G 

on [A, B) for all n £ N then 

[ lim inf fn < lim inf [ /, 
JA n—>0° n—*°° Ja 

< lim sup / fn < 
n—too J A 

/ lim sup fn. 

IA n—+oo 

If moreover lim fn(x) exists a.e. then 

rB ,b 

/ lim fn = lim / fn. 
I A. TWO° n—>°° J A 

(4.46) 

(4.47) 

(4.48) 

(4.49) 
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Proof We prove only (4.47); inequality (4.48) can be proved similarly 

(or by considering —fn) and (4.49) then follows. 

Let gk = inf {/* - g; n < i < fc} + g = inf {/*; n < i < k}, 

hn = lim gk = inf {/<; i > n). 
k—>oo 

All the functions gk are integrable, and since JA g < Si 9* < SZ G =>1! 

the functions hn are integrable by the monotone convergence theorem. 
B B 

Obviously fA hn < fA fn and therefore 

r*B rB rB rB 

-oo < / g< lim / hn<liminf / fn < / G. (4.50) 
jA n—>°° JA n^°° Ja Ja 

Applying the monotone convergence theorem once more gives 

rB rB rB 

/ lim inf fn= / lim hn— lim / hn. 
JA Ja n^°° n~*°° J a 

This together with (4.50) gives (4.47). • 

4.4 Equivalence with the KH-integral 

Our goal in this final section is to establish the equivalence of SL- and 

KH-integration. We state this result as the next two theorems. 

THEOREM 4.4.1 If f is KH-integrable on [A, B] then it is SL- 

integrable and 

1C H [B f=sc r 
Ja Ja 

/• (4.51) 

Proof Denote F(x) = KH JA f. By Henstock’s lemma the function F 

satisfies the inequality (4.7) from the definition of the SL-integral. The 

limit relations 

lim F(c) = F(A) lim F(c) - F{B) 
c[A c\B 

hold by Theorem 2.8.3 and Remark 2.8.4 or by Theorem 2.9.3 and Re¬ 

mark 2.9.4. By (U) of Section 4.1 it suffices to show that F is SL on 

every bounded interval K C [A, B). On that part of K where F does 

not exist or is infinite F is of negligible variation by Theorem 3.9.2. On 

the rest of K it is SL by Remark 4.1.4. • 

THEOREM 4.4.2 If f is SL-integrable on [A, B} then it is KH- 

integrable and equation (4.51) holds. 
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Proof It is sufficient to prove the theorem if [A, B] = [a, b] C M; the 

general case then follows from Theorems 2.9.3 and Remark 2.9.4. Let 

£ > 0, and denote by Fsl the SL-primitive of /. We can find a tight 

gauge 61 such that 

J2\Fsl{u,v) -/(O(u-u)I < (4.52) 

7Ti 

for every tagged partial division tx\ on [a, b], <5i. Let Z — Ng1 

where Ns1 is the set of zeros of hi- Define /o = flz- This function is zero 

almost everywhere, and consequently KH-integrable with KTi J^ fo = 0. 

Hence there exists 62 : Z —> R+ such that for any partial division 1T2 

tagged in Z with 1x2 <K £>2 

^2fo(0(v-u) 

For the primitive Fsl there is a positive 7 such that 

^|F5L(u,u)| < 

(4.53) 

(4.54) 

whenever 1x2 <C 7 is a tagged partial division on Z. We define 

S(t) = ! 6l^ ift(£Z, 
\ Min(<52(t),7(£)) if teZ. 

If 7r = 7Ti U 7t2, where n2 is the largest part of tx tagged in Z and tx <C <5, 

then by (4.52), (4.53) and (4.54) 

FSL{a,b) - J^/(f)(u - v) Y {fsl(u,v) - /(£)(« - v)) 

< Y\(Fsl(u,v) - /(£)(« - u))| + Y \Fsl(u, u) + 
7Tl 7T2 

£ £ £ 
<3 + 3 + 3- 

Yf(0(u~v) 
1X2 

This shows that / is KH-integrable and KTi J* f = FSL(a, b). 

COROLLARY 4.4.3 If f is SL-integrable on [a, 6] and F(x) = f* f 

then F'(x) = f(x) a.e. on [a, b}. 

Combining this corollary with Theorem 4.2.2 we have 
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THEOREM 4.4.4 A function F is the SL-primitive on [a, b} of an¬ 

other function f if and only if F is SL on [a, b] and F' = f a.e. on 

[a, 6]. 

4.5 Exercises 

EXERCISE 4.1 ©Prove directly without use of Theorem 3.9.2 or The¬ 

orem 3.8.2 that the KH-primitive of a KH-integrable function f is SL. 

[Hint: Use (U) of section 4.1 to reduce the proof to the case of bounded 

f and then use Henstock’s lemma.] 

EXERCISE 4.2 Show that the SL condition in Theorem 4.4.4 cannot 

be replaced by the Luzin condition. More precisely, if F satisfies the 

Luzin condition and F' = f a.e. on [a, b] then F(b) — F(a) is not be 

uniquely determined. 

EXERCISE 4.3 Show that if f is SL-integrable on [a, b] then there 

is a sequence {/n} continuous functions such that fn ► f almost 

everywhere and Ja /n —> fafasn~^ °°‘ [Hint: Put fn(x) = n[F(x + 

1) - F(x)} where F is the primitive of f.] 

EXERCISE 4.4 Show that if {fn} is equiintegrable on [a, b] and if 

{fn} is uniformly bounded then their primitives Fx, F2, ■ ■ ■ satisfy the 

uniform strong Luzin condition on {a,b]. 

EXERCISE 4.5 Show that if {fn} is equiintegrable on [a, b] and fn -> 

/ everywhere then their primitives Fx, F2,... satisfy the uniform strong 

Luzin condition on [a, b}. [Hint: If E is of measure zero, so is its subset 

El where /n(x)| < i for all x G E% and all n. Then apply the proof of 

Exercise 4.4.] 

EXERCISE 4.6 Show that if {/n} is equiintegrable on ja, b] and fn 

/ everywhere then f is integrable on [a, b] and fa fn fa /• [Hint. Use 

Exercise 4.5 and the SL-integrability.] 

EXERCISE 4.7 If the pointwise convergence everywhere of fn m Ex¬ 

ercise 3.25 is replaced by almost everywhere, then the sequence {fnj 

is SL-equiintegrable on [a, 6]. Similarly for Exercise 3.26 we can prove 
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that the sequence {fn} is SL-equiintegrable on [a, b] if the pointwise 

convergence everywhere of fn is replaced by almost everywhere. 

EXERCISE 4,8 Let [ak, bp.] be a sequence of non-overlapping subinter¬ 

vals of [a, 6]. Give an example of a function f such that f is SL-integrable 

on each [ak,bk] but not on the union (Jfcli [afc> ^fc]- 

EXERCISE 4.9 Let [ak,bk] be a sequence of non-overlapping subin¬ 

tervals of[a,b], and f SL-integrable on each [ak, bk]. Write H(u,v) = 

Efcli J[afc,&fc]nK«] f ifit exists> and x the complement of\J™=1(ak,bk). 

Show that f is SL-integrable on the union UfcLi[afc>M with the prim¬ 

itive H if and only if the function H satisfies the following condition: 

for every e > 0 there is 6 : [a, b] —> M+ such that for any 8-fine partition 

7r of [a, b] we have ^7r, \H(u,v)\ < e, where n* is the part of 7r having 

tags in X. 

EXERCISE 4.10 Let f be defined as in Exercise 4.9, and fn(x) = f(x) 

for x £ [ak,bk], k = 1,2,... ,n and 0 otherwise. Show that if f is 

SL-integrable on the union UfcLi [afci bk] with the primitive H and if 

YlkLl M) is dnite then {fn} is equiintegrable on [a, b]. 

The following exercises come from [24], 

EXERCISE 4.11 Let II be a collection of partitions n of [a, b] and □ 

an order defined in II. We write 712 □ 7r± and say ir2 is finer than 7Ti. 

The pair (II, □) is called a directed set if (1) tt □ n for all n £ II; (2) if 

, tt2, tt3 £ II with 7Ti □ 7t2 and 7t2 □ 7T3 then xi □ 7r3; (3) if ni,n2 £ II 

with 7Ti □ 7r2 and tv2 □ ni then t\\ = 7r2; and (4) for every 7Ti,7r2 £ II 

there exists 7r3 £ II such that 7r3 □ 7Ti and 7r3 □ 7t2. We define 1r2 > 7Ti 

and say 7r2 is finer than ni in the Riemann sense if for each (77, [s,t]) £ 7t2 

we have [s, t\ C [u,v] for some (£, [w,n]) £ 7Ti and when [s,f] = [u,v\ we 

have q = £. Show that (II, >) is a directed set. 

EXERCISE 4.12 Let (II, >) be the directed set in Exercise 4.11 where 

7t2 > 7Ti means tt2 is finer than n1 in the Riemann sense. The family 

{Ett/} Tren of Riemann sums is called the generalized sequence. Show 

that the Riemann integral of f on [a, b] is the Moore-Smith limit of 

the generalized sequence {E^Eem that is, for every positive e there is 
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7Tq G II such that for any x > xq we have 

173 

<£- 

7r 

EXERCISE 4.13 Let II be the family of all 6-fine partitions n of [a, b\ 

for some positive function 6. For i\\, n2 G II, define n2 > 7Ti and say n2 

is finer than 7rx in the Henstock sense using 6 if for every (77, [s, t]) G n2 

we have [s, t\ C [u, it] for some (£, [it, u]) G tx\, and {£ : (£, [it, 1;]) £711} C 

{77 : (17, [s,t]) G 7t2}. Show that (II, >) is a directed set. The Hi-integral 

of f is defined to be the Moore-Smith limit of the generalized sequence 

(Ztt /Ken of Riemann sums using the above directed set II. More 

precisely, f is Hi-integrable on [a, 6] if there is a directed set (II, >) as 

defined above by using 6 and for every positive £ there is 7r0 G II such 

that for any 7r G II and tt > %o we have \ f — 11 < £• State and prove 

the corresponding Hi-equiintegrability theorem for the Hi-integral. (See 

Theorem 4.3.3.) 

EXERCISE 4.14 A function f is said to be Hi-integrable on X if fix 

is Hi-integrable on [a, 6]. Let Xi C X2 be closed subsets of [a, 6] and 

f be Hi-integrable on Xi using 61 and on X2 with f (x) = 0 outside 

X2. Show that if the primitive F of f on [a,b\ is absolutely continuous 

there then f is Hi-integrable on X2 using 6 where 6{x) = 6i(x) when 

x G Xi- [Hint: Assume f is Hi-integrable on X2 using S2 with S2 <61. 

Put 6(x) = 6i(x) when x G Xi and S3 otherwise where 63 < 62 and 

(X - 63(x),x + 63(2;)) nil = 0 when x Xx.] 

EXERCISE 4.15 Show that if f is continuous on [a, b] then f is Hi- 

integrable on every closed subset X of [a, b]. [Hint: Lise the Cauchy 

principle for the Hi-integral involving Riemann sums.] 

EXERCISE 4.16 Let f be Hi-integrable on each closed set Xn with 

primitive Fn. Show that if f is non-negative on [a, b] and Fn(a,b) -* I 

then f is Hi-integrable on the union X = Un=i Xn. [Hint: Assume 

Xn C Xn+1 and f is Hi-integrable on Xn using 6n such that for any 

6n-fine partition tx we have I/(OK — u) ~~ Fn{u,v)\ < 2 where 

7T* is the part of n with tags in Xn. Define 6(x) = 6n(x) when x G 

Xn - Xn_i for all n with X0 = 0 and arbitrary otherwise. Apply 

Exercise 4.14 if necessary. For e > 0 choose N so that I — Fx(a, b) < £ 

and y00 2~n < £. Then choose xn so that for any 6-fine x finer 
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than 7rtv in the Henstock sense we have 

1/(0^ ~u) - Fn(u,v)\ < e 
7T* 

where n* is the part of n with tags in X^. Using this as xq in 

Exercise 4.13 we prove that f is H\-integrable on X.] 

EXERCISE 4.17 Let f be non-negative on [a, 6]. Show that f is 

SL-integrable on [a, b\ if and only if there is an Hi-integrable function g 

such that f = g almost everywhere. [Hint: We can construct, by Luzin’s 

theorem (Theorem 3.10.17), a sequence {Xn} of closed sets such that 

f is continuous on each closed set Xn with rn([a, b] - lj^°=i Xn) — 0. 

Further the conditions in Exercise 4.16 hold and f is Hi-integrable on 

Ur=i Xn- The converse is trivial. (In fact, the result is also true without 

the condition that f is non-negative. We have to wait until after Chapter 

5.)] 



5 

Generalized AC Functions 

5.1 Prologue 

Classical integration theory often refers to two different ways of defin¬ 

ing an integral. One is called descriptive and the other constructive. 

For example, the Newton definition is descriptive whereas the Riemann 

definition is constructive. The Kurzweil-Henstock integral is also con¬ 

structive. A constructive definition usually begins with a function /, 

then by some process involving sums and limits arrives at fa /, the def¬ 

inite integral of /. If we write 

then F is the indefinite integral of /. A descriptive definition starts with 

a primitive function F satisfying certain condition or conditions and / 

is in some sense a derivative of F. For example, in the definition of 

the Newton integral F'(x) = f{x) for all x and there is no additional 

condition. However, generally speaking, the additional conditions are 

the most important part of a descriptive definition. For instance the 

Lebesgue indefinite integral of / can be defined as a function F such 

that 

(5.1) F'(x) = f{x) for almost all x, 

and F is absolutely continuous. By Theorem 3.9.1 the indefinite KH- 

integral of / can be defined as a continuous F for which (5.1) holds 

and which is of negligible variation on the set of non-differentiability. 

Example 3.6.1 shows that these two latter descriptive definitions be¬ 

come meaningless without the additional conditions. In this chapter, we 

shall give yet another descriptive definition of the Kurzweil-Henstock 

integral. First of all, we shall characterize the indefinite integral of 

175 
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a KH-integrable function by showing that it is generalized absolutely 

continuous in some sense. Later we shall use this characterization to 

formulate a convergence theorem, known as the controlled convergence 

theorem. 

In a sense, the KH-integral is a countable extension of the Riemann 

integral. We recall that a number / is the KH-integral of / on [a, b] if 

for every e > 0 there exists 8 : [a, b] —> R+ such that for every <5-hne 

partition 7r 

< £. 

Let {<5n} be a decreasing null sequence, and define 8* : [a, b] —> R+ as 

follows: 

8*(x) 81 when 6(x) > 8i, 

8n when 8n-1 > 8(x) > 8n, 

n — 2,3, • • •. Then / is also KH-integrable on [a, b] using 8* in place of 

8. In other words, we are using a countable number 81,82,... above in 

place of a single constant 8 as in the definition of the Riemann integral. 

Therefore we may regard the KH-integral as a 

countable extension of the Riemann integral. 

Again, we recall that if / is absolutely KH-integrable on [a, b] then its 

primitive F is absolutely continuous. Now, to characterize the primitive 

F of a KH-integrable function /, we seek for a countable extension of the 

concept of absolute continuity. We give two examples now to motivate 

and a formal definition will be given in Section 5.3. 

EXAMPLE 5.1.1 Let f(x) = F'(x) for x € [0,1] where F{0) = 0 

and F(x) = x2sinar2 when x ^ 0. Obviously, / is KH-integrable 

on [0,1] but F is not of bounded variation on [0,1] and therefore not 

absolutely continuous there. However, F has the following property: 

1] = (UJi+i> 7]) O {0} and F is absolutely continuous on [yyy, j] for 

each i. That is, F is ’generalized absolutely continuous’. We shall make 

precise the definition of this concept later. 

EXAMPLE 5.1.2 Let / be given as in Example 5.1.1 and fn(x) = 

f(x) when x e [^,1] and 0 otherwise. It is easy to verify that fn(x) -» 
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f(x) as n —> oo for every x £ [0,1] and 

/ fn(x)dx —> / f(x)dx as n —> oo. 
Jo Jo 

Yet none of the convergence theorems of Section 3.5 applies. The se¬ 

quence {/n} is not dominated by any KH-integrable function on [0,1]. 

However it is so on [^j, ^] for each n. In what follows, we shall give 

a countable extension of the dominated convergence theorem which will 

take care of situations such as the above. 

5.2 Uniformly AC functions 

The concept of absolute continuity is also useful for interchange of limit 

and integration. A family $ of functions is said to be uniformly abso¬ 

lutely continuous on [a, b\ if for every positive £ there is a positive 7? with 

the following property: if D is a partial division of [a, b] with 

~~ u) < V 
D 

then 

|F(u, u)| < £ (5-2) 

D 

holds for all FeJ. The next theorem uses uniform absolute continu¬ 

ity and Egoroff’s theorem (Theorem 3.11.20) which guarantees that a 

sequence of integrable functions converges uniformly except on an open 

set G of arbitrarily small measure. 

THEOREM 5.2.1 If the following conditions are satisfied: 

(i) fn(x) -> f(x) almost everywhere in [a,b} where each fn is KH- 

integrable on [a,b\, 

(ii) the primitives Fn of fn are uniformly absolutely continuous on 

[a,b\, 

then f is KH integrable on [a, b] and 

[ fn(x)dx -»• f f(x)dx as n -»■ 00. 
J a da 

Proof Since each fn is KH-integrable on [o, 6], Henstock’s lemma implies 

that for every e > 0 there exists 8n : [a, b\ —>• R+ such that for any <5n-fme 
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partition n 

y: I fn(x)(v - u) - Fn(u, u)| < e. 
7T 

By assumption Fn are uniformly absolutely continuous on [a, 6], that is, 

for every e > 0 there is 77 > 0, independent of n, such that for any partial 

division 7r of [a, 6] 

\v - u\ < r] implies Ei Fn(u,v)| < e. 
7T 7T 

Apply Egoroff’s theorem (Theorem 3.11.20) and there are an open set 

G, with m(G) < r7, and an integer N such that 

Ifn(x) - fm(x)| < £ whenever n,m> N and x £ [a, 6] - G. 

We may assume (f - <5n(£),£ + 6n(£)) C G when (£& Then for any 

division 7r of [a, 6] take a <5n-fme and <5m-fine partition 7Ti finer than 7r 

and write nx = U 7r3 in which the intervals of 7r2 are tagged outside 

G and the intervals of 7r3 in G. Then for n, m > N we have 

r. \Fn(u,V) - Fm(u,v) I < ^2 1 Fn(u,v) - fn(x)(y - u)| 
7T1 7T2 

+ £!/»(*) - fm(x)\(v ~ u) + \fm(x)(u,v) - Fm(u,v)| 
7T2 7T2 

+ ^2\Fn(u,v)\ + yy iFm(u,u)i 

7T3 7T3 

< 4s T s(b — a). 

This implies 

Varba{Fn - Fm) < e(4 + b - a). 

In view of Theorem 3.4.1 we obtain 

I fn(x) fm{x)\dx < s(4 T b a) for n,m> N. 

By the mean convergence theorem, the result follows. 

COROLLARY 5.2.2 If the conditions of Theorem 5.2.1 hold, then 

f is absolutely KH-integrable on [a, b] and 

n 00. 
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COROLLARY 5.2.3 If the conditions of Theorem 5.2.1 hold, then 

there are a function g, KH-integrable on [a, b\, and a subsequence {fn(i)} 

of {fn} such that \fnU){x)\ < g(x) for almost all x £ [a,b] and for all 

n{i). 

REMARK 5.2.4 In fact, according to Theorem 3.6.4 all the func¬ 

tions fi, f2, ■■ ■ in Theorem 5.2.1 are absolutely KH-integrable on [a, 6] 

since their primitives are absolutely continuous. The same comment also 

applies to the corollaries. 

REMARK 5.2.5 It is easy to see that if a sequence of KH-integrable 

functions {/n} is dominated, i.e. \fn(x)\ < g(x) for almost all x £ [a,b\ 

and for all n, then the primitives Fn of fn are uniformly absolutely 

continuous on [a,b\. A partial converse was given by Corollary 5.2.3. 

However, in general, the converse is not true, as seen from the following 

example. 

EXAMPLE 5.2.6 Let /„(x) = n when x £ [^, £] and 0 otherwise. 

It is easy to see that any function which dominates the sequence {/n} is 

not KH-integrable on [0,1]. The primitive Fn of fn is given by Fn(x) = 0 

when x £ [0, ^y], n(x-^py) when x £ [^y, and Fn(x) = yypy when 

x £ [^,1]. Again, it is easy to see that Fn are uniformly absolutely 

continuous on [0,1]. Note that the sequence {fn} has a subsequence 

which is dominated by a KH-integrable function on [0,1]. 

5.3 AC* and VB* on a set 

The key theorem in this section is Theorem 5.3.13 which is an extension 

of Theorem 3.4.1. The theorem relates the two properties AC* and VB* 

which respectively extend absolute continuity and bounded variation on 

an interval to those on a set. 

DEFINITION 5.3.1 Let X be a subset of [a, b]. A function F de¬ 

fined on [a, b] is said to be AC*(X) if for every e > 0 there exists g > 0 

such that for any partial division t: of [a, b] with u or v £ X 

^ \v - u\ < g implies ^ \F(u,v)\ < e. 

7r ^ 

Note that in the above definition we require only one endpoint of [u, v) 

to he in X. When X = [a, b], the above concept coincides with the usual 
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definition of absolute continuity. We recall that the oscillation u of F 

on E is defined to be 

lu(F; E) = sup{|F(:r) - F(y)|; x, y £ E}. 

LEMMA 5.3.2 Let F be continuous on [a, b\ and X a closed subset 

of [a,b]. Then F is AC*(X) if and only if for every e > 0 there exists 

rj > 0 such that for any partial division tv of [a, b] with u and v £ X 

^ \v — u\ < rj implies ^ u(F; [u, u]) < e. 
7T 7T 

Proof Suppose F is AC*(X). Since F is continuous on [a, 6], we have 

<j(F;[u,*]) = |-F(»)-F(t)| 

for some s,t £ [u,v\. Then 

ca(F; [u,v]) < \F(s) - F(u)\ + \F(t) - F(u)\ 

or, alternatively, 

w(F; [u,v]) < |F(v) - F(s)\ + \F(v) - F(t)|. 

Hence the condition follows from the definition of AC*(X). 

Conversely, suppose the condition holds. Since X is closed, we write 

(a, b)-X = Ur=iKA)- Choose an integer N such that J2^=n+i (bk~ 

ak) < rj. In view of the condition, we have 

OO 

y u(F‘, [ak, bk}) < e. (5.3) 

k=N+l 

Since F is continuous on [a, b], it is uniformly continuous there, i.e. there 

exists rji > 0 such that whenever \x — y\ < rji we have 

\F(x)-F(y)\<^. (5.4) 

Finally, choose rj2 = Min(rj,rji). 

Now take any partial division tv with u or v £ X and \v — u\ < rj2. 

Sort the intervals [u,v] in tv into three classes tv\,tv2 and 7t3 as follows: 

(i) both u, v £ X, 

(ii) u £ X and v £ (ak,bk) for k = 1,2,... ,JV, or v £ X and 

u £ (ak, bk) for k = 1,2,... , N. 

(iii) u £ X and v £ (ak, bk) for k > N, or v £ X and u £ (ak, bk) for 

k > N. 
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In cases (ii) and (iii), we may always assume u — or v = bk- Other¬ 

wise we partition [u, v] into [u, ak] U [ak,v] or [u, bk] U [bk,v] and have 

additional intervals (u, ak], [bk, u] with both endpoints in X falling under 

(0- 
Applying the condition, (5.4) and (5.3) respectively, we obtain 

J2\F(.ux)\ < 
7T 7T i 

+ ^2\F(u,v)\ + J2\F(UX)\ 
7T2 7T 3 

<C £ -f- —— • 2N T 2s = 5s. 
N 

The last two terms involve a factor 2 because for each k we may have 

two intervals from ir both intersecting [ak,bk\- Hence we have proved 

that F is AC*(X). • 

LEMMA 5.3.3 Let F be continuous on [a,b\ and X C [a,b]. If F is 

AC*{X) then F is AC*(X) where X is the closure of X. 

Proof Suppose F is AC*(X). Then for every e > 0 there exists rj > 0 

such that for any partial division 7r with u or v G X 

\v — u\ < r) implies ^ \F(u,v)\ < e. 

7T n 

Now take any partial division n with u or v G X and _ u\ < ’?• 

Consider a typical interval [u,v] in n and suppose u £ X. Since F is 

continuous at u, there is t G X such that 

\F(t)-F{u)\ < e/N 

where N is the number of intervals in 7r. Denote [t, v} by [u1, v'] and [u, t] 

or [t, u] by \u", v"]. It is possible that t = u, in which case [u', v'] = [u, v] 

and F{u",v") = 0. Similarly, suppose v £ X; we obtain [u',v'\ and 

\u",v"] such that one of u' and v' belongs to X and 

\F(u")-F(v")\<e/N. 

Since u or v £ X, we can choose F = {[u', n']} such that \v'-u'\ < rj. 

Therefore we can apply AC*(X) and obtain 

£|F(u,«)| < + 
7T 7T' 7T" 

< e+f-N = 2e. 
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Hence F is AC*(X). • 

DEFINITION 5.3.4 Let X be a subset of [a, b\. A function F de¬ 

fined on [a, b] is said to be AC(X) if for every e > 0 there exists rj > 0 

such that for any partial division 7r of [a, b] with u and v E X 

\v — u\ < r) implies 

where F(u,v) = F(v) — F(u). 

REMARK 5.3.5 When X = [a, b\, the two concepts AC*(X) and 

AC(X) coincide. In general, AC*(X) implies AC(X) though not vice 

versa. To proceed from AC{X) to AC*(X), we either relax the condition 

u and v e X in Definition 5.3.4 to at least one endpoint belonging to 

X, or impose a stronger requirement on F, namely, the oscillation of F 

on [u, v] in place of the difference F(v) — F(u) as in Lemma 5.3.2. Both 

approaches lead to the same definition of AC*(X) assuming that certain 

conditions hold, as we can see from Lemma 5.3.2. Since the approach 

using one endpoint and the difference is easier when proving theorems, 

we use it as the definition and regard the approach using the oscillation 

and two endpoints as a theorem. Although the definitions of AC(X) and 

AC*(X) look similar the concepts are very different. Whether a function 

F is AC(X) is determined solely by the behaviour of F on X whereas 

whether AC*(X) is influenced-)- by values of F on the smallest interval 

containing X. For example, if X = Q D [0, 1] then the characteristic 

function of the rationals is AC{X) but not AC*(X). 

The relationship between AC and AC* is also the topic of the next 

lemma. 

LEMMA 5.3.6 Let F be continuous on [a, b\ and X a closed subset 

of [a, b} with (a, b) — X = (JfcLi(afc; &fc)- Then F is AC*(X) if and only 

if F is AC(X) and 

OO 

k= 1 

where to denotes the oscillation of F on [ak,bk]. 

The proof mimics that of Lemma 5.3.2. 

f But not necessarily determined. 
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DEFINITION 5.3.7 A function F defined on [a, b] is said to be 

VB*(X) if 

sup \F(u, v) | < +oo 
7T 

where the supremum is taken over all partial divisions ir of [a, b] with u 

or v £ X. 

LEMMA 5.3.8 Let F be bounded on [a, 6] and X C [a, 6]. Then F 

is VB*(X) if and only if 

sup a>(F; [u, u]) < +oo 
7T 

where the supremum is taken over all partial divisions rr of [a, b] with u 

and v £ X. 

Proof Suppose F is VB*(X). Then there is M > 0 such that 

\F(u, v)\ < M 
7T 

whenever n is a partial division of [a, b] with u or v £ X. Take 7r to be 

any partial division 7r of [a, b] with u and v £ X. Let e > 0 and N be the 

number of intervals in 7r. Then for each [u, v\ in 7r there exist s, t G [u, u] 

such that 

u(F;[u,v]) < |E(s) — F(t)\ + — 

< \F{s) - F(u)\ + \F(t) - F(u)\ + 

Summing over 7r, we have 

[u,v]) <2M + £. 

7T 

Hence the condition holds. 
Conversely, suppose the condition holds. Then there is M > 0 such 

that 

j(E; [u,f]) < M 
7T 

for any partial division of [a, 6] with u and v G X. Now take any partial 

division tt of [a, 6] with u or v e X. Sort the intervals into two classes, 

one with the left endpoint in X and another with the right endpoint in 

X. Note that by assumption F is bounded and therefore |F(x)| < Mi 
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for all x and for some Mi. Denote the above left endpoints by a\ < a2 < 

...< an and the right endpoints by b\ < 62 < ... < bm. Thus we have 

n—1 

]T|T(u,u)| < X [dj, Uj-f-i]) 

7r i= 1 

m—1 

+ ^X w(F] [bi, 6i+i]) + 4Mi, 
i=l 

where 4Mx on the right side is to cover the last interval in the first 

class and the first interval in the second class, which were possibly not 

included in the previous two sums. Consequently, 

XI |F(u, w)| < 2M + 4Mi 
7r 

whenever tc is a partial division of [a,b] with u or v E X. Hence F is 

VB*{X). • 

LEMMA 5.3.9 Let F be bounded on [a, 6] and X C [a,fc]. If F is 

VB*(X) then F is VB*(X) where X is the closure of X. 

Proof Suppose F is VB*(X). Then there is M > 0 such that for any 

partial division 7r of [a, b] with u or v G X 

X] lF<db'y)l ^ M- 

7T 

Now take a partial division 7r of [a, b} with uoruG A". We can insert 

additional points of X into n to form a new division 7Ti of [a, b] such 

that each interval in has at least one endpoint belonging to X except 

perhaps the first or the last interval. Since F is bounded on [a, 6], we 

have |F(a;)| < M\ for all x and for some M\. Then 

Xi^mi - 5>mi - M+4^i 
7T 7T1 

and F is VB*(X). * 

REMARK 5.3.10 Note that in Lemmas 5.3.8 and 5.3.9 we assume 

F to be bounded whereas in the earlier lemmas involving AC* we as¬ 

sume continuity. Similarly, we can define VB(X) and prove a result like 

Lemma 5.3.6 with AC* or AC replaced by V B* or VB, respectively, 

and with F assumed to be bounded instead of continuous. 
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THEOREM 5.3.11 Let F be bounded on [a, b] and X C [a, 6] be 

closed. Then F is AC*(X) if and only if F is AC(X), VB*(X) and 

continuous on X. 

Proof Suppose F is AC*(X). It is easy to see that F is AC(X) and 

continuous on X. We shall show that F is VB*(X). 

Given e > 0 there is p > 0 such that for any partial division 7r of [a, 6] 

with u or v € X 

\v — u| < rj implies \F(u,v)\ < 1. 
7T 7T 

Since X is closed, we write (a, b) — X = Ufcli(afc! &fc)- Choose an integer 

N such that J2^LN+1{bk ~ ak) < V- Since F is bounded on [a,b\, there 

is M > 0 such that 

N 

[ak,bk]) < M. 

k=1 

Next, since X C [a, b] and is therefore bounded, there is an integer 

n such that nr] > b - a and there is a division ni of [a, b} such that an 

interval in tx\ is either one of [ak: bk], k — 1,2,..., N, or has length less 

than r]. Now take any partial division 7r of [a, b] with u or v G X. Insert 

additional points into n and obtain 7T2 which is finer than 7Ti. Then 

^2\F(u,v)\ <n + M. 

That is, F is VB*(X). 
The sufficiency follows from the proof of Lemma 5.3.2 or Lemma 5.3.6. 

REMARK 5.3.12 In general, F being AC*(X) does not imply that 

F is VB*(X), even if X is closed. Note that the boundedness condition 

was used in an essential way in the proof of Theorem 5.3.11. Lhis is 

also the case in the proof of Lemma 5.3.8 or Lemma 5.3.3. However, 

when F is defined on [o, b] and VB*(X) with X C [a, 6], then F must 

be bounded on [a, b). 

THEOREM 5.3.13 If f is KH-integrable on [a, b] and its primitive 

is VB*(X) where X C [a, b], then F is AC*{X). 
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Proof In view of Lemma 5.3.9, we assume that X is closed. We write 

OO 

(a,b)-X = (J (ck,dk), 

k= 1 

and put G(x) — F(x) when x E X, G(a) = F(a), G(b) = F(b) and 

linearly otherwise, i.e. 

G(x) = F(ck) + —ES?k\(x _ Cfe) when xE[ck,dk]. 
4 Cfc 

We shall show that G is absolutely continuous on [a, b}. If so, G is AC(X) 

and so is F. Then the result follows from Lemma 5.3.6 or Theorem 

5.3.11. 

Since / is KH-integrable on [a, 6], there is 6 : [a,b] —> R+ such that 

for any 5-fine partition n of [a, b] we have 

1/(00 ~u)~ F(u, v)\<e. (5.5) 
7T 

In view of the fact that F is VB*(X), we have 

OO 

[cfc,dfc]) < Too. 
fc=i 

Given e > 0, we can find an integer N such that 

OO 

w(F;[cfc,dfc]) < e. (5.6) 
k=N+1 

Next, we shall modify 5 as follows. When £ 6 (ck, dk), k = 1, 2,..., we 

put (£ - 5(0, £ + <5(0) C (cfc, 4). When £ £ [ck, dk] for fc = 1,2,... , N, 
put 

N 

O-^OO + OO) c (a, 5) - (J[cfc,4], 
fcsl 

When f = cfc, dk,k = 1,2,... , AT, put (f - 5(0, £ + 5(0) so that it 

contains no other points of ck,dk,k = 1,2,... , IV, except f itself. 

Further, put p(x) = /(x) when x E X and g(x) = G'(x) otherwise. 

Note that when x E (ck,dk) for some k, we have g(x) = F(ck,dk)/(dk — 

Cfc). Now we shall prove that g is KH-integrable on [a, b}. 

Take any 5-fine partition n of [a, 6], We write n = m U7r2U7r3 in which 

7Ti is a partition of the union of [ck, dk], k = 1,2,... ,N,iT2 contains those 
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(£, [u,v]) with £ G X and not in tt\, and 7r3 those in 7r but not in 7Ti or 

7T2- Then by 5.5 and 5.6 we obtain 

^>2g(0{v-u)-F(a,b) 
7r 

+ ^2\f(0(v ~u)~ F(u,v)| 
71*2 

7T3 7T3 

< £ T £ T £ — 3£. 

< -u) - G(u,v) 
7T1 

Note that F(ck,dk) = G(ck,dk) for all fc and the first sum above 

is 0. Hence g is KH-integrable on [a, b}. 

It is easy to see that G is of bounded variation on [a, 6]. Therefore, 

by Theorems 3.4.1 and 3.6.4 the function G is absolutely continuous on 

[a,b\. • 

Recalling Definition 3.13.1 which says that function / is KH-integrable 

on X if fix is KH-integrable on [a, b] we obtain an extension of Theorem 

3.4.1. 

THEOREM 5.3.14 Iff is KH-integrable on [a, b\ and its primitive 

is VB*(X) where X C [a,b\, then f is absolutely KH-integrable on X. 

5.4 ACG* functions 

In this section, we shall characterize the primitive of a KH-integrable 

function and give a descriptive definition of the KH-integral. As an 

application of the descriptive definition, we prove a convergence theorem. 

Other convergence theorems will be discussed in Section 5.5. 

DEFINITION 5.4.1 A function F is said to be ACG* on X if X 

is the union of Xi,i = 1,2,, such that F is AC (Xi) for each i. 

EXAMPLE 5.4.2 We shall show that a function F which is differ¬ 

entiable everywhere in [a, b] is ACG* on [a, b\. Let Xn denote the set of 

all points x £E [a, b\ such that 

|F(t) - F(x)| < n\t - x\ whenever \t - x\ < -. 
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Obviously, [a, b] is the union of Xn, n — 1,2,.... Given e > 0, choose 

r) > 0 such that r/ < 1/n and nr] < e. Then for any partial division n 

with u or v E Xn satisfying \v ~ u\ < V we have 

^ |F(v) — F{u) | < nr/ < e. 
7r 

That is, F is AC*(Xn). Consequently, F is ACG* on [a, b]. 

In particular, the example of F given in Example 5.1.1 is ACG* on 

[0,1] though not absolutely continuous there. 

Other concepts in Section 5.3 can be extended similarly, as shown 

below. 

DEFINITION 5.4.3 A function F is said to be ACG on X if X is 

the union of Xi,i = 1,2,..., such that F is AC(Xi) for each i. 

DEFINITION 5.4.4 A function F is said to be VBG* on X if X 

is the union of Xi: i = 1,2,..., such that F is VB*(Xi) for each i. 

THEOREM 5.4.5 A function F is ACG* on [a, 6] if and only if it 

is ACG, VBG* and continuous on [a,b]. 

Proof This follows from Theorem 5.3.11. • 

THEOREM 5.4.6 If f is KH-integrable on [a, b] and its primitive 

F is VBG* on [a,b\, then F is ACG* on [a, 6]. 

Proof This follows from Theorem 5.3.13. • 

THEOREM 5.4.7 If f is KH-integrable on [a,b], then its primitive 

F is VBG* on [a, b\. 

Proof By Henstock’s lemma, for every e > 0 there exists 6 : [a, b] —> 

R+ such that for any h-hne partition 7r 

Y2 I/0)0 -u) - F(u,v) | < £ 
TV 

where F is the primitive of / and F(u, v) = F(v) - F(u). Let X, denote 

the set of all x € [a, b] such that 

\f(x)\ < i and 6(x) > 1/i. 

Next, we partition X; into a finite number of subsets X^, k = 

1,2,... ,p, such that |X^| < 1/i for each k. Now take any partial 
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partition it with all tags x G Xik- Denote by tt\ the two intervals in 

7T at both ends and by 7T2 all other intervals. Note that F is continuous 

on [a, b] and therefore bounded, i.e. |F(x)| < M for all x G [a, b] and 

for some M. Also, each interval [u,v] in 7r2 satisfies |w — u\ < l/i and 

therefore is 6-fine. Hence we have 

^|F(u,u)| < ^\F(u,v)\+^2\F(u,v)-f{x){v-u)\ 
7T 7T i 7T2 

+ ^\f(x)(v ~u)\ 
'F 2 

< 4M + e + i(b — a). 

It follows that F is VB*(Xik) and consequently VBG* on [a,b}. ® 

LEMMA 5.4.8 If F is ACG* then it is SL. 

Proof It is sufficient to show that F is SL on a set on which it is AC*. 

This is very similar to the proof that F is SL if it is AC. • 

THEOREM 5.4.9 A function f is KH-integrable on [a, b} with the 

primitive F if and only if F is an ACG* function such that F (x) exists 

and F'(x) = f(x) for almost all x G [a, b\. 

Proof Suppose / is KH-integrable on [a, 6]. It follows from Theorems 

5.4.7 and 5.4.6 that its primitive F is ACG*. By Theorem 3.8.2, the 

derivative F'(x) exists and F'(x) = f(x) almost everywhere. 

Conversely, suppose F is ACG* on [a, b] and F'(x) = f(x) for x G 

[a, 5] — E where \E\ = 0. It is easy to see that if F is ACG on [a,b\ 

then it has the strong Luzin condition. Hence the KH-integrability of / 

on [a,b\ follows from Theorem 3.9.1. " • 

DEFINITION 5.4.10 A sequence {Fn} of functions defined on [a, 6] 

is said to be UAC*(X) where X C [a, b] if for every e > 0 there exists 

fj > 0, independent of n, such that for any partial division it of [a, b] 

with u or v G X 

^ \v — u\ < rj implies ^ \Fn(u,v)\ < £ 

7T 7r 

for all n. Further, {Fn} is UACG* if [a,b\ = (Ji=i Xi such that {Fn} 

is UAC* (Xi) for each i. 

THEOREM 5.4.11 If the following conditions are satisfied: 
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(i) fn(x) —> f(x) almost everywhere in [a, b] where each fn is KH- 

integrable on [a, b\, 

(ii) the primitives Fn of fn are UACG*, 

(iii) Fn converges to a function F uniformly on [a, b], 

then f is KH-integrable on [a,b] with the primitive F. Furthermore, 

Proof In view of (ii) and (iii), F is ACG* on [a, b]. By the previous 

theorem, it remains to prove that F'(x) — fix) almost everywhere. 

Since Fn are UACG*, we have [a, b} = UWi such that Fn are UAC* {Xf) 

for each i. We may also assume that each Xi is closed. 

Write X = Xi. Suppose Fn are UAC*{X) and X is closed. Define 

Gn(x) = Fn(x) when x E X, Gn(a) = Fn{a), Gn{b) = Fn{b) and 

linearly otherwise (as in the proof of Theorem 5.3.13). Further, define 

gn(x) = fn(x) when x E X and gn(x) = G'n(x) when x X. Note that 

Gn are uniformly absolutely continuous on [a, b] and G'n(x) = gn(x) 

almost everywhere. Similarly, define G(x) = F{x) when x E X, G(a) — 

F(a), G(b) = F(b), and linearly otherwise. Also, define g{x) = f{x) 

when x E X and g(x) = G'(x) when x £ X. Obviously, Gn{x) —> G(x) 

for all x and gn(x) —> g{x) for almost all x E [a, b\. 

Apply Theorem 5.2.1 and we obtain that g is KH-integrable on [a, b] 

and f(x) = g(x) = G'(x) = F'{x) for almost all x E X. Hence the 

theorem is proved. • 

REMARK 5.4.12 We see that the sequence {/n} in Example 5.1.2 

satisfies the conditions in Theorem 5.4.11, and therefore the theorem 

applies. We shall show in the next section that condition (iii) in Theorem 

5.4.11 is redundant. 

5.5 Controlled convergence 

First, we prove the Controlled Convergence Theorem (Theorem 5.5.2). 

Then we show that other convergence theorems follow. Making the 

Controlled Convergence Theorem a starting point is to a degree a matter 
of taste. 

LEMMA 5.5.1 If {Fn} is uniformly bounded and equicontinuous on 

[a,b] then it has a uniformly convergent subsequence on [a,b]. 
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Proof Since {Fn} is uniformly bounded on [a, 6], there is M > 0 

such that |Fn(x)| < M for x £ [a, b] and for all n. Consider the rational 

numbers in [a, b}. Since they are countable, we can write {ri, r2, r$,... }. 

We shall use the diagonal process to select a subsequence of {-Fn} which 

is convergent at each r%. 

First, the sequence {Fn(ri)} is bounded and every bounded sequence 

has a convergent subsequence. Then there is a subsequence {F'in(ri)} 

such that the subsequence converges. Next, consider {Finfa)} which 

is also bounded. Again, there is a convergent subsequence {T2n(r2)} of 

{Win(^2)}, and so on. Consequently, we have 

{-Pin}, {F2n}, {-P3n}, . . . 

each of which is a subsequence of the preceding sequence, and Fin(ri) 

converges as n —>• 00 for each i. Now choose {Fnn} which is a subse¬ 

quence of {Fn}, and indeed {Fnn}n>i is a subsequence of {Fin}n>i for 

each i. Consequently, {Fnn(x)} converges for every rational x. 

Next, {Fn} is equicontinuous on [a, 6], i.e., for every e > 0 there exists 

77 > 0 such that 

|Fn(x) - Fn(y)| < | whenever \x - y\ < r] 

and for all n. Take a division of [a, b] as follows: 

a = xq < Xi < X2 < ■ ■ ■ < xp < xp+i = b 

such that X\,X2, ■ ■ ■ , xp are rational and Xi-Xi-i < V for i = 1,... ,p+1- 

By what we have previously proved, there is an integer N such that 

|Fnn(xi) - Fmmixi)| < | whenever n,m>N 

and for i = 1, 2,... ,p. Take any x £ [a, b] and \x - Xi\ <77 for some i. 

Hence for n,m > N 

| Fnn(x) — Fmm(x)\ < | Fnn(x) — Fnn{xi)\ 

T| Fnn(Xi) Fmrn{Xi)\ + | Fmrn^Xi) Trn,7n(x) | 
£ £ £ 
- -j- - -f" - - & . 

3 3 3 

That is, {Fnn} converges uniformly on [a, b). • 

We remark that Lemma 5.5.1 is known as Ascoli’s theorem. The 

process of selecting the sequence {Fnn} is often referred to as a diagonal 

process. 
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THEOREM 5.5.2 (Controlled Convergence Theorem) If the fol¬ 

lowing conditions are satisfied: 

(i) fn(x) —> f(x) almost everywhere in [a, 6] where each fn is KH- 

integrable on [a,b], 

(ii) the primitives Fn of fn are UACG*, 

then f is KH-integrable on [a, b] and 

Proof By the definition of UACG*, the family {Fn; n — 1, 2,... } is 

equicontinuous on [a, b|. That is, for every e > 0 there exists 77 > 0 such 

that 

Fn(x) - Fn(y)\ < e whenever \x - y\ < 77 

and for all n. We may assume Fn(a) = 0 for all n. Take a division of 

a = x0 < xi < • • ■ < xm = b 

such that Xi — 1 < 77 for * = 1, 2,... , m. For any x G [a, b] and any 

n we have \x — Xi\ <77 for some i. Then 

Fn(x)\ < |Fn(x) - Fn(Xi)\ + \Fn{xk) - Fn(xk-i)\ 

k=1 

< e + is < (m + 1)e. 

Therefore {Fn; n = 1,2,... } is uniformly bounded on [a, 6], 

Now we apply Lemma 5.5.1 and obtain a subsequence {En(i)} of {Fn} 

such that the subsequence converges uniformly on [a, 6], Hence by The¬ 

orem 5.4.11 the function / is KH-integrable on [a, b] and 

00. 

Since every subsequence of {/n} has a sub-subsequence satisfying the 

above property, the sequence itself has the property. • 

The validity of the next corollary was established as a part of Theorem 

2.9.3. This time the proof is easy. 

COROLLARY 5.5.3 If f is KH-integrable on [x,b\ for every x G 
(a, b) and 
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then f is KH-integrable to A on [a, 6]. 

Proof Put fn(x) = 

apply Theorem 5.5.2. 

Proof Put fn(x) = f(x) when x G [a + and 0 otherwise, and 

COROLLARY 5.5.4 Let X be a closed set and the intervals (a*,, bk) 

pairwise disjoint with (a,b) — X = (JfcLi(afc> &fc)- U f KH-integrable 

on X and for F^, the primitives of f on [ak,bk], we have 

OO 

[ak,bk]) < Too 

k=l 

then f is KH-integrable on [a, b\ and 

rb r 00 ^ rbk 

/ f(x)dx = / f(x)dx + ^2 / f(x)dx. 
Jcl J X k=l ^ 

Proof Put /n(x) = /O) when x G A or when x G [afc,6fe] for k = 

1,2,... , n, and 0 otherwise. Again, we apply Theorem 5.5.2 and obtain 

the result. • 

THEOREM 5.5.5 If the following conditions are satisfied: 

(i) fn(x) —► /(x) almost everywhere in [a,b\ where each fn is KH- 

integrable on [a, b], 

(ii) there exist closed sets Xi with (Ji=1 X{ = [a, b\ and functions 

Gi, Hi being VB*(X i) for i = 1,2,... such that whenever u or 

v G Xi we have 

Gi{U,v) < Fn(u, v) < Hj(u, v) 

for all n, where Fn are the primitives of fn on [a, 6], 

(hi) for each i we have G[(x) < fn(x) — for almost all x in Xi 

and for all n, 

(iv) Fn converges uniformly on [a,b], 

then f is KH-integrable on [a, b} and 

fn{x)dx f(x)dx as n —> oo. 

Proof We shall prove that Fn are UACG* on [a, b]. If so, then the re 

suit follows from the Controlled Convergence Theorem (Theorem 5.5.2). 

Write X = Xi. Following the proof of Theorem 5.3.11, we can show 

that Fn are UAC*{X) if and only if Fn are UAC(X), UVB*{X) and 
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equicontinuous on X. In view of (ii), Fn are UVB* (X). The equicon- 

tinuity of {Fn} follows from (iv). Therefore it remains to show that Fn 

are UAC(X). Let (a, b) - X = (j£Li (<**,&*)• 

Since Fn are UVB*(X), we obtain that 

'^ijj(Fn; [a,k,bk]) converges uniformly in n 
k=l 

Applying Corollary 5.5.4, we obtain for any [u,v] C [a, b] with u,v G X 

fn(x)dx 
[u,u]nx 

oo « 

fn{x)dx + / 
7_1 J ft /c=l ^[tx,^]n[a,fc,6fc] 

fn(x)dx. 

In view of (iii), for every e > 0 there exists 771 > 0, independent of rc, 

such that whenever E C X and |X| < r/i we have 

|/n(x)|Gfo: < £. 

Choose an integer N such that 

OO 

5^ w(F; [ofc,6fc]) < £. 
fc=iV+l 

Put 77 < 771 and 77 < Min{6fe — a/-; fc = 1,2,... , X}. Then for any partial 

division 7r of [a, 6] with u,v E X and |u — u| < 77 we have 

£ = (Jhi>] and l-E1 n x| < |x| < 77. 

Consequently, 

\Fn(U’ V) < \fn(x)\dx 
1Enx 

00 

+ U(F' lakibk]) 
k=N+l 

< 2e. 

Hence Fn are UAC(X) and the proof is complete. • 

THEOREM 5.5.6 If the following conditions are satisfied: 

(i) fn{x) -> f(x) almost everywhere in [a, b] where each fn is KH- 

integrable on [a, b], 
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(ii) there exist closed sets X{ such that U^i — [a, b\ and for every 

i and e > 0 there is an integer N such that for any partial division 

7r of [a, b] with u or v 6 Xi 

\Fn(u, v) — Fm(u, u)| < e whenever n,m>N, 
7T 

(iii) Fn converges uniformly on [a,b\, 

then f is KH-integrable on [a, 5] and 

Proof It suffices to show that the conditions in Theorem 5.5.5 hold. 

Now suppose (ii) of the present theorem holds. We may assume that Fn 

is VB*(Xi). If not, we can write Xi = U^LiYk where each Yk is closed 

and then consider Yk in place of Xi. Take any partial division 7r of [a, b] 

with u or v E Xi and we have 

^2\Fn(u,v)\ < T: \Fn(u,v) - FN(u,v)| 

+ 5^I^7V(U,W)| 
7T 

< e + M 

for some M > 0 and for all n > N. Hence Fn,n = N,N + 1,..., 

and consequently Fn, n = 1,2,..., are UVB*(Xi) for each i. Therefore 

a subsequence of {Fn} satisfies condition (ii) of Theorem 5.5.5. For 

convenience, we may assume that the sequence {Fn} itself satisfies the 

condition. 
Next, put Gn{x) = Fn{x) when x E Xi, Gn(a) = Fn(a), Gn(b) = 

Fn(b), and linearly otherwise (as in the proof of Theorem 5.3.13). Write 

gn(x) = G'n(x) almost everywhere. Then it follows from (ii) and Theo¬ 

rem 3.4.1 that 

b 

There is a subsequence {gnj} °f {dn} such that 

OO 

h(x) = J2\9nj+Ax)~9nj(x)\ 

j=1 

is KH-integrable on [a, b]. Hence 

gni (x) - h(x) < gnj (x) < 9th (x) + Kx) 
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for almost all x £ [a, b\, or 

9m (x) - h(x) < fnj (a;) < gni 0) + h(x) 

for almost all x £ X; and for all nj. That is, condition (iii) of Theorem 

5.5.5 holds for the subsequence {/n.}. 

Now apply Theorem 5.5.5 and obtain that / is KH-integrable on [a, b] 

and 

fn.Ax)dx f(x)dx as rij oo. 

Since every subsequence of {fn} has a sub-subsequence satisfying the 

above property, the sequence {/n} itself satisfies the property. Hence 

the theorem is proved. • 

THEOREM 5.5.7 If conditions (ii) and (iii) of Theorem 5.5.6 hold, 

then there is a subsequence {gn} of {fn} such that gn(x) —> f(x) almost 

everywhere in [a, b]. Furthermore, f is KH-integrable on [a, b] and 

rb pb 

/ fn(x)dx —> / f{x)dx as n —■> oo. 
J a J a 

Proof Following the proof of Theorem 5.5.6, we obtain for each i that 

there is a subsequence {fin} of {fn} such that 

fin(x) —> f(x) as n —> oo 

for almost all x £ Xj. However, we may choose {/in} first, then choose 

{/2n} as a subsequence of {/m}, and so on. More precisely, we obtain 

{/in}) {/2n}) • ■ • 

each of which is a subsequence of the preceding sequence. Finally, we 

choose {fnn} which is the required sequence since 

fnn(x) —► f(x) as n oo 

for almost all x in [a, b\. The rest is a consequence of Theorem 5.5.5. • 

We remark that Corollary 5.5.3 is known as the Cauchy extension of 

the KH-integral, Corollary 5.5.4 is the Harnack extension. We call Theo¬ 

rem 5.5.5 the generalized dominated convergence theorem and Theorem 

5.5.6 the generalized mean convergence theorem. 

In fact, in condition (ii) of Theorem 5.5.5 it is enough to consider only 

5-fine partial partition 7r of E with tags in Xj. 

In the classical approach, one proves first the Cauchy extension and 

the Harnack extension. Then one uses these to prove the controlled 
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convergence theorem by means of the Baire category theorem.f However, 

here we have deduced the two extensions, perhaps in a more elementary 

fashion, as corollaries of the Controlled Convergence Theorem. 

EXAMPLE 5.5.8 Let Fn(x) — sm^n-nx when 0 < x < 1/n and 

0 elsewhere and fn(x) — F'n(x). Then the sequence {/n} satisfies the 

conditions in Theorem 5.5.5 but not those in Theorem 5.4.11 with f(x) = 

0 for all x. Note that Fn(x) —> 0 as n —> oo for every x € [0,1] but not 

uniformly on [0,1]. This example is due to Liao Kecheng. 

EXAMPLE 5.5.9 Consider the sequence {/n} in Example 5.1.1, i.e. 

fn{x) = F'{x) for 1/n < x < 1 and 0 elsewhere in [0,1], where F(0) = 0 

and 

F(x) = x2 sinx-2 when x ^ 0. 

Define H(x) = F(x) when F'{x) > 0 and 0 elsewhere in [0,1], and also 

G(x) = F(x) when F\x) < 0 and 0 elsewhere in [0,1]. Then conditions 

(i), (iii) and (iv) of Theorem 5.5.5 are satisfied with Hi = H and Gi = G 

for all i but not (ii). In other words, we must employ a countable number 

of functions Hi and G{ in (ii) if we wish to apply Theorem 5.5.5 in this 

case. 

5.6 Exercise 

EXERCISE 5.1 Show that if F is absolutely continuous on [a, b] then 

F is AG* (A) for every closed set X C [a, &]• Give an example of a 

function F which is AC(X) but not AC*(X) where X is a closed subset 

of [a, b}. 

EXERCISE 5.2 Show that F is absolutely continuous on [a, b\ if and 

only if for every e > 0 there exists r/ > 0 such that for every sequence 

{[ai, bi]} of non-overlapping intervals with \bz - at\ < p we have 

£~i|F(ai, bi)\ <e. 

EXERCISE 5.3 Is the continuity condition on F necessary in Lemma 

5.3.3? Similarly, is the boundedness condition on F necessary in Lemma 

5.3.9? 

f which can be found in [4] p. 51. 
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EXERCISE 5.4 ©Suppose for every positive e there exist functions 

Mp and mp which satisfy the following conditions: 

(a) Mp is ACG* on [a,b\ and f(x) < DMp(x) for almost all x £ [a, b\, 

(a) mp is ACG* on [a, b] and f(x) > Dmp(x) for almost all x £ [a, b\, 

(c) Mp(b) — Mp(a) — [mp{b) — mp(a)] < e. 

Show that f is Perron integrable on [a, b}. 

EXERCISE 5.5 It is known that each of the following conditions 

implies the next one: (a) f is absolutely continuous on [a, b]; (b) f 

is ACG* on [a, b\; (c) f is SL on [a,b\; and (d) f satisfies the Luzin 

condition (condition N). Show that each converse is not true. 

EXERCISE 5.6 State and prove a version of the controlled conver¬ 

gence theorem for an infinite interval [A, B\. 

EXERCISE 5.7 ©© A function f is KH-integrable on [a, 6] if and only 

if there is a sequence {<pn } of step functions such that Lpn —► / almost 

everywhere and the primitives 4>n of <pn are UACG*. This is known as 

the Riesz-type definition of the KH-integral. [Hint: Suppose the primi¬ 

tive F of f is AC*(Xi) for each i with Xt closed and their union [a, b]. 

Put Fn(x) = F(x) when x £ X\ U • • • U Xn and linearly otherwise (as 

in the proof of Theorem 5.3.13), and fn(x) = F[L(x) almost everywhere. 

Show that {fn} or a subsequence of it satisfies the conditions. Finally 

choose step functions <pn such that /ab \fn - p>n\ < 2~n and show that 

{p>n} satisfies the conditions.] 

EXERCISE 5.8 Show that if the conditions in Theorem 5.5.2 are 

satisfied then so is condition (ii) in Theorem 5.5.6. In words, it says 

roughly that controlled convergence implies generalized mean conver¬ 

gence. [Hint: Use the linearization technique in the proof of Theorem 

5.4.11 then apply Theorem 5.2.1.] 

EXERCISE 5.9 Prove Exercise 4.17 without the condition that f is 

non-negative. [Hint: Following the hint of Exercise 5.7 we construct a 

sequence {Xn} of closed sets such that fn = flXn is absolutely KH- 

integrable with primitive Fn and the primitives Fn are UACG*. Then 

Fn satisfies condition (ii) of Theorem 5.5.6 and there is an H} -integrable 

function gn such that fn = gn almost everywhere. Define 8 as in the hint 

of Exercise 4.16 and apply the generalized mean convergence theorem in 
place of I - FN(a, b) < e.] 
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EXERCISE 5.10 If f is KH-integrable on [a, b] then there is a sequence 

{Xn} of closed subsets of [a,b] such that Xn C Xn+i for all n, the 

complement [a, b] — (J^Li Xn is of measure zero, f is absolutely integrable 

on each Xn, and 

[Hint: Consider an = fA f and bn = fB^ f where An = {x : n — 1 < 

f(x) < n} and Bn = {x : —n < f(x) < —n + 1} for n = 1,2, • • • . If 

the integral of f is I, then we can arrange an and bn in such a way that 

their sum is conditionally convergent to I.] 

EXERCISE 5.11 ©© Let f be KH-integrable on each measurable set 

Xn with IX=1 = [a, b\ and 

lim [ f = I. 
Jxn 

Then f is KH-integrable to I on [a, b\ if and only if the following (LG) 

condition holds: for every positive e there is a positive integer N such 

that for any n > N there is 8n : [a, b] -> E+ satisfying the condition 

that for any 6n-fine partition n we have 

7T* 

where n* is the part of n having tags not in Xn. [Hint: Write In = fXn f ■ 

Then the (LG) condition follows from the inequality 

| Y, f\<\y^Jf — I\ + \^~^n\ + \In— f\- 
_. * 7T 7T — 7T* 
7T 7T 

A re-arrangement of the inequality gives the converse.] 

EXERCISE 5.12 If the following conditions are satisfied: 

fjj l'n ^ f almost everywhere and each fn is KH-integrable on [a,b], 

(ii) the primitives Fn of fn satisfy the conditions that [a, b] is the union 

of closed sets Xt, i = 1,2,... , and that for every i and for every e > 0 

there exists q > 0 (depending on i and e but independent of n) such 

that for any partial division it of [a, b) with u and v <E X% 

J2\v-u\<q implies E u(Fn-,[u,v})<6, 
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(Hi) Fn(x) converges to a continuous function F(x) for every x £ [a, b], 

then f is KH-integrable on [a, 6] with the primitive F. Furthermore, 

[Hint: Follow the proof of Theorem 5.4.11.] 

EXERCISE 5.13 If condition (in) in Exercise 5.12 is replaced by 

(iv) Fn(x) converges to F(x) nearly everywhere, i.e. everywhere except 

for a countable number of points, where the limit function F is contin¬ 

uous nearly eveywhere, and the series 

© l-F(z+) - f(z-)| + |f(o+) - F(a)| + \F(b) - F((,-)| 

xE(a,b) 

is Unite, then f is KH-integrable on [o, b] and for nearly all x £ [a, b] 

©Exercises 5.14 to 5.18 solve the multiplier problem for the KH- 

integral. A multiplier is defined in Exercise 5.18. 

EXERCISE 5.14 © Let an > 0 and sn = a\ + • • • + an for each n. 

i an is divergent, then so is ]T^°=1 an/sn (Abel and Dini 1867). 

[Hint: an+i/sn+i + ••• + an+k/sn+k > («n+i + ••■ + Qn+fc)/sn+fc = 

1 ~ sn/sn+k and sn/.sn+fc <1/2 for all n and for some large k depending 

on n.[ 

EXERCISE 5.15 © Show that if g is bounded but not of bounded 

variation on [o, b] then there exist a point c £ [a, b] and an increasing (or 

decreasing) sequence {xn} with the limit c such that i(Mn - mn) 

diverges, where 

Mn = sup {g(x); xn < x < xn+1} and mn = inf {g{x)- xn < x < xn+1}. 

EXERCISE 5.16 © Suppose g is bounded but not of bounded variation 

on [a, b] and {xn}, Afn and mn are defined as in the previous exercise. 

Let f(x) = pn when x £ Xn, f(x) = -pn when x £ Yn for n = 1,2,... 

and f(x) =0 elsewhere, where Xn, Yn, and pn satisfy the following 

conditions for each n: 

Xn, Yn c [xn,xn+i] and m(Xn) = m(Yn) = 6n > 0; 
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3 1 13 
g(x) > — Mn + -mn when x G Xn, g(x) < -Mn + -mn when x G Yn; 

n 

Pn = ~ 

2—1 

Show that | /1 < 2pn<5n when xn < u < xn+i, and 

rXn+i i ^ 
/ fg>-(Mn-mn)/2^(Mn-mn). 

J Xn 2—1 

EXERCISE 5.17 © Show that if fg is KH-integrable on [a, 6] for all 

absolutely KH-integrable functions f, then g is bounded almost every¬ 

where. 

EXERCISE 5.18 © Show that if fg is KH-integrable on [a, b] for all 

KH-integrable functions f, then g is almost everywhere equal to a func¬ 

tion of bounded variation on [a, b]. The above function g is sometimes 

called a multiplier. [Hint: Suppose g is bounded and not of bounded 

variation. Construct f as in the previous exercises and show that f is 

KH-integrable but fg is not.] 
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Integration in Several Dimensions 

6.1 Introduction 

In practice there is a need for integration in n dimensions. Since we live 

in a three-dimensional world there are more applications of two- and 

three-dimensional integrals than of one-dimensional ones. In generaliz¬ 

ing results from Chapters 2 and 3 we want to create a theory which also 

covers integration over infinite intervals and in doing so we have a choice 

between analogues of Definitions 2.9.1 and 2.10.1. We employ the latter. 

Most of the theory is very similar and we shall not repeat almost identical 

arguments, leaving it to the reader to make the necessary modifications, 

if any are needed. Naturally there are differences; the first one concerns 

the existence of d-fine partitions for possibly infinite intervals, which 

we prove in Section 6.2. The definition of the KH-integral in n dimen¬ 

sions and the immediate consequences of the definition are dealt with 

in Section 6.3. Theorems which are easily generalized to n dimensions 

are collected in Section 6.4 whereas theorems which need adjustment 

either in the formulation or in the proof are dealt with in Section 6.5. 

The main difference between integration in one and in several dimen¬ 

sions is the absence of a theorem like the Fundamental Theorem which 

allows direct systematic evaluation of integrals; in several dimensions we 

rely on successive repeated one-dimensional integrations. This topic is 

covered by the renowned theorems of Fubini and Tonelli in Section 6.6. 

There is an analogue of the Fundamental Theorem, namely the theo¬ 

rem in Exercise 6.6, but it offers little help for evaluation of integrals. 

Non-absolute convergence is a far more complex phenomenon in several 

dimensions than in one and absolute integrability becomes even more 

important. This comes to the foreground in Section 6.7 dealing with 

change of variables. 

202 
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6.1.1 Sets in Rn 

We start by reminding ourselves of some facts and notation from ele¬ 

mentary set theory. If A\, A 2 ■ ■. , An are sets of whatever kind then 

A\ x A2 x • • • x An is the set of n-tuples (ai, <2,2,. • • , an) with £ At for 

i = 1,2,... , n. The set A\ x A2 x • • • x An is called the cartesian product 

of the sets Ax, A2, ■ ■ ■ , An. If 0 7^ B\ x B2 x • • • x Bn C A\ x A2 x • • • x An 

then Bi C Ai for i = 1,... , n. It follows that the factors Ai are uniquely 

determined by the setf A\ x A2 x • • • x An. It is convenient to invent some 

shorthand writing: instead of Ax x A2 • • • x An we shall write A\ x ■ . 

We shall also abbreviate other expressions similarly, 

Bx C Au • 

standing for n inclusions or a1 + ■ for Ylk=1 ak > symbol ■ indi¬ 

cating summation from 1 to n. The cartesian product is obviously not 

commutative but it is not even associative. All the three sets 

AxBxC, (Ax B)xC, A x (B x C) (6.1) 

are, generally speaking^, distinct. The first set is a set of triplets, the 

second is a set of couples in which the first element is again a couple. 

Obviously the distinction between the sets in (6.1) is only formal. We 

shall ignore it and informally § regard all three sets (and similar sets 

with more factors) as equal. The cartesian product of n equal sets A is 

denoted An and we shall be dealing with Rn and R . A typical element 

x G Rn will be denoted by (x\x2,... ,xn) or (x\ ■) with components 

indicated by superscripts rather than subscripts, saving these for distin¬ 

guishing between individual elements in Rn. A point in R is finite if it 

belongs to Rn, and infinite if one of its components is 00 or -00. 

If / is a function defined on a subset of Rn then we shall use the 

notation f(x) and /(a:1,... ,xn) interchangeably. By /(c1,... ,c ,...) 

we denote the function (xk+1,... ,xn) 1-^ /(c1 ... , ck,xk+1,.. ■ ,xn). 

An interval J C S” is the cartesian product of n intervals in R, i.e. 

J = Jx x - (6-2) 

with one-dimensional intervals Ji C R, - - The interval J is degenerate 

if one of Jk is degenerate. The interval J is open if all Jk are open. 

An open interval can be degenerate only if it is empty. J is closed if 

all A are closed. As in one dimension, the closure of an interval is the 

j As long as this set is not empty, 

j The sets are equal if e.g. A = 0. 
§ This process can be made formally logically rigorous. 
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smallest closed interval containing it, and the interior of J is the largest 

open interval contained in J. The closure I of an interval IcR with 

(a, b) C / C [a, b} is [a, b], the interior 1° of I is (a, b). The closure or 

the interior of J is J\ x ■ or Jj5 x ■ , respectively. If A, B <= M. then 

we also denote 

[A1, B'\ x . = [4, B}. 

Two intervals are non-overlapping if their interiors are disjoint; intervals 

of a family are non-overlapping if they are pairwise non-overlapping. 

We shall denote by bJ the set (J \ J°) D Kn and call it the boundary 

of J. A set of the form Hc = |irl = c; x E Rn} is called a hyperplane. 

The boundary of J is the union of intersections of J with Hc where c 

is an endpoint of one of the Jk■ Obviously there are at most 2n such 

sets and they are called sides of J. For the interval J the numbers 

|Ji|, ■ are the edge-lengths. An interval which has all its edge-lengths 

positive, finite and equal is called a cube.f If a G Rn and h > 0 then by 

C(a, h) we denote the (open) cube (a1 - h, a1 + h) x ■ . For elements 

of Rn we introduce two norms, the maximum norm |x|u = Max(|a:1|, ■ ) 

and the Euclidean norm \x\2 = \J(x1)2 + ■ . For most of what we do 

either norm could be used but on occasion one or the other can be more 

convenient. For example C(a, h) = {x; \x - a|u < h}. The the content 

I J\ of the interval J is by definition the product of its edge-lengths, i.e 

\J\ = \ Ji\\J2\ ■ ■ - \Jn\- In one dimension the content of an interval is its 

length, in two dimensions it is its area. It is utterly obvious that length is 

additive, i.e. if an interval is a union of non-overlapping subintervals then 

its length is the sum of lengths of the subintervals. In several dimensions 

content is also additive but the fact is less obvious, see Figure 6.1. It is 

certainly unwise to rely on intuition in dimension more than three but 

even in two dimensions we feel that the additivity of content requires 

proof, which we supply in the next section. 

6.2 Divisions, partitions 

The concepts of a division and a partition in ®n are similar to those in 

R. A family of intervals 

{Ki; i = 1,... ,r} (6.3) 

f In two dimensions a cube is a square. 
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is a partial division of a closed interval J if Ki are closed, non-overlapping 

and Ki C J for i = 1,... , r. If moreover 

r 

U Ki = J (6.4) 

l 

then {Ki; i = 1,... ,r} is a division of J. A (sub)partition of J or a 

(partial) tagged division of J is a set of couples {(xi, Ki); i — 1,... ,r} 

such that the intervals Ki form a (partial) division of J and Xi E Ki. If 

there is no danger of misunderstanding we shall abbreviate the notation 

for a partition or subpartition to {(x,K)}. Phrases like tagged in S or 

tagged partial division on S have the same meaninig as in Section 3.2. 

If 7r = {(a;, K)} is a partition of J then by tt° we shall denote the part 

of 7r tagged in J°. More precisely 

ir° = {(x,Ky,xeJ°,(x,K)en}. (6.5) 

A brick layer division or bl-division for short is so called because the 

intervals of the division lie in layers like bricks in a wall. Not every 

division is a bl-division, see Figure 6.1. If {([uf, vf\, i — 1,... , s)} is a 

Fig. 6.1. A division in R2 

division of J2 and {{u}k , v}k], k = 1,... , rj is for each i a division of 

J1 then the set of n +-b rs intervals 

A, v)k] x [ul v?] for i = 1,... , s, k = 1, • • • , 

form a bl-division of J. In n dimensions the situation is similar, the role 

of J2 being played by Jn and of J\ by J\ x • • • x Jn-1- The bl-divisions 

just described have the layers mounting in the n-th direction, obviously 

there are bl-divisions in other directions as well. Other authors call a bl- 

division a compound division. A partition is a bl-partition if its intervals 
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Fig. 6.2. bl-partition 

form a bl-division and tags in each layer are at the same ‘height’. See 

Figure 6.2. More precisely, for the partition 

{((*ik>a&)> iuik, vlk\ x [«i, ^2])} 

to be a bl-partition it is necessary that xfk = ?/; for all k = 1,... , r% and 

some yi with i = 1,... s. Let J = Jx x ■ and {jk%k; ik = 1,... ,pk} be 

a division of Jk with 1 < k < n. The set of pi .. .pn intervals 

jiki x ■ (6-6) 

is a special division called a net of J. A net is a bl-division in every 

direction. See Figure 6.3. Now we prove the following lemma, which is 

Fig. 6.3. A net 

obvious in R. See Figure 6.4. 



6.2 Divisions, partitions 207 

LEMMA 6.2.1 If K\,... , Kr, J are closed intervals with Ki C J C R 

then there exists a net (6.6) of J such that the intervals jik1 x ■ which 

overlap with Ki form a net of Ki. 

J 

Fig. 6.4. Simultaneous net 

COROLLARY 6.2.2 There exists a division D of J such that the 

intervals Ki for i = 1,... , r are subintervals of D. 

Proof of Lemma 6.2.1 Let Ki = ku x ■ , J — J\ ■ and 

x\ < x\ < ... < Xpx, 

■ 

be the endpoints of ku ■ and J\ ■ .f Setting ju1 = [x^, xji+i] x ■ for 

ix = 1,... ,pi makes the net (6.6) the required one. • 

Adjusting the intervals a little, e.g. taking jrs = [xs, if xg_)_1 is 

not an endpoint of Js, we obtain 

LEMMA 6.2.3 Let Ki be as in Lemma 6.2.1. There exist disjoint 

intervals jk with k — 1,.. • ,p and p = P1P2 ■ ■ - Pn such that 

[Jjk = J 
fc=1 

and each jk Is a subset of some Ki. 

An interval function F on J is a mapping which associates with every 

closed interval K C J a real number F(K). An interval function on Rn 

t Writing each endpoint only once. 
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(or on Rn) is called simply an interval function. An interval function 

F on J is called additive if, for every pair of closed bounded and non¬ 

overlapping intervals K, L C J such that K U L is again an interval, the 

equation 

F(K) + F(L) = F(K U L) (6.7) 

is satisfied. Examples of additive functions of intervals in R are the 

length of the interval and the interval function F defined by F([a, fi]) = 

fa f provided / is KH-integrable. Content is an additive function, in¬ 

deed if K = K\ X ■ , L = Li x ■ and I = K U L is an interval then 

(Exercise 6.1) Ip = Kp U Lp for some p and Ki — Li for 1 < i ^ p < n. 

See Figure 6.5. Consequently 

K L 
L 

K 

Fig. 6.5. Union of intervals again an interval 

|/| = \K1\\K2\...\KpULp\...\Kn\ 

|ATi| • ■ • \-S-p\ ■ ■ ■ |-^-n| + |Ai|... \Lp\... \Kn\ 

= \K\ + \L\. 

The next lemma is fairly plausible but we need Lemma 6.2.1 to prove it. 

LEMMA 6.2.4 7/F is an additive interval function on a closed bounded 

interval J and Ki, i — 1,... , r form a division of J cl" then 

r 

F(J) = ^F(Ki). (6.8) 
7=1 

Proof Let (6.6) be a net of J. We prove first that 

Pl P2 Pn 

fw = EE-Ef&x ■)• 
1 2 n 

(6.9) 
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Equation (6.7) is easily extended from two to any number of intervals 

as long as the intervals form a ‘layer’ and then 

pi pi 

F((Jji*x J2x .) = ^F(jlfcxJ2x -)• (6-10) 
k=1 k=1 

For a fixed t the intervals 

jit x j2k x J3 x ■ ,P2 

constitute a net of jit x J2 x • and hence 

P2 

F(j'it x J2 x ■ ) = F(jit x j2k x J3 x ■ ). 
fc=i 

Substituting this into (6.10) and continuing in this fashion we obtain 

(6.9). The rest of the proof is easy: we choose intervals (6.6) according 

to Lemma 6.2.1 and then the sum E F0'iii x ■ ) extended over all those 

intervals which overlap with Ki equals F(Kf). Summation over i now 

leads to (6.8). • 

COROLLARY 6.2.5 

r 

i=1 

A gauge 6 on a set S C Rn is a mapping from S into a set of open 

n-dimensional intervals such that x G 6(x) for every x G S and 6(x) 

is a bounded interval if x G Mn- A tagged division t: = {(x, K)} of J 

is fine, in symbols n <C 6, if 6 is a gauge on J and K C 6(x). If J 

is a bounded closed interval then for a gauge 6 on J there is a 6-fine 

partition of J. This n-dimensional version of Cousin’s lemma can be 

as easily proved as in one dimension by a similar bisection argument, 

the difference being that at each step the interval is divided into 2n 

subintervals. In contrast to one dimension where there were only two 

infinite elements the transition to unbounded intervals is not immediate. 

LEMMA 6.2.6 (The Cousin lemma in Rn) If 6 is a gauge on an 

interval / cl" then there exists a 6-fine partition of I. 
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Proof We have just seen that the lemma holds if J is a compact interval. 

Let Q = [—1,1] x ■ and h : Rn i—»• Q where 

h% (x) = ———- if x1 E R, 
1 + |a:l| 

hl( oo) = 1, 

hl(—oo) = —1. 

The mapping h has the following properties 

(i) it is one-to-one; 

(ii) it preserves cartesian products; 

(iii) h and its inverse g map open intervals onto open intervals and 

closed intervals onto closed intervals. 

-71 

If J C R and 6 is a gauge on J then there exists an (h od)-fine partition 

of h(J) because h(J) is a bounded closed interval. If this partition is 

{{y,L)} then {(g(y), g(L))} is d-fine partition of J. • 

6.3 The definition 

Riemann sums are defined similarly as in R. If / is defined on a closed 

interval J and it = {(£*, LQ); i = 1,... , r} is a partition of J then 

r 

n i=l 

and it is understood that the term f(£j)\Kj\ is not included in the sum 

if Kj is an unbounded interval. This is the same as assuming / to be 

zero on R \R and, as in (2.111), interpreting f(£j)\Kj\ = O.oo = 0. 

The definition of the KH-integral in R" is an almost verbatim repetition 

of Definition 2.10.1. 

DEFINITION 6.3.1 A number I E R is the Kurzweil-Henstock inte¬ 

gral (or integral) of f over an interval J C (or on J) if for every 

positive e there is a gauge 6 such that for every 6-fine partition n of J 

7r 

The function f is then catted KH-integrable. 

(6.11) 
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Clearly I is uniquely determined; the proof is the same as in Theorem 

2.4.6. Any of the following symbols will be used for the integral: 

/= / f = 
Jk 

f 
K 

= [ f(x) dx = f ■ ■ [ f{x)dx 
Jk J J k 

(6.12) 

(6.13) 

f f(x1,...,xn)dx1...dxn= [■■ f f(x1,...,xn)dx1...dxn. 
Jk J J k 

(6.14) 

Similarly as in one dimension the notation in (6.12) is logically consistent 

(we integrate a function and not function values) whereas (6.14) is more 

convenient in concrete situations where the function values are given 

by some algebraic formula. Occasionally we may place the integration 

domain below the integral sign thus: 

J f(x) dx or J ■ • • J f(x1,... , xn) dx1 ... dxn 

K K 

We may also use the prefix KH with any of the symbols in (6.12) (6.14). 

Keeping to established notation we write 

/ rather than / 

if J = ]Rn. In two or three dimensions we write ff or ///, respec¬ 

tively, instead of /•••/. We call any of the integrals in (6.12)—(6.14) 

a multiple integral if we want to emphasize that the integration is over 

an n-dimensional interval. If n — 2 or n — 3 we use the term double 

integral or triple integral, respectively. If J = [a1, b1} x ■ then it is 

customary to write 

with [a, b} = [au 6i] x - . If / is KH-integrable on some interval J then 

on occasions we set for brevity 

F (K) = f 

for any interval K C J. 
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EXAMPLE 6.3.2 If J C Mn is a closed bounded interval and f(x) = c 

on J then 

J f = c 14 

This is very plausible and we are even spared the need to choose 6 since 

for any partition n = {(x, K)} of J we have 

j2f = cY,\K\ = c\j\. 
7T 7T 

However, it was necessary to employ Corollary 6.2.5 (and through it 

Lemma 6.2.1) on the additivity of content! 

EXAMPLE 6.3.3 If Rn D S = {ci, 02,03,...} with <ry 7^ Cj for i ^ j 

and f(x) = 0 for x £ S then / is KH-integrable on Rn and fRn f = 0. 

Choose hj so that 

{2hj) < 2d+-(|/(cy)| -h 1) • 

Define! 

S(cj) = C(cj, hj) and 6(x) = C(x, 1) for x eW1 \S. 

Let 7r = {(yi, Ki); i = 1,2,... , n} be a d-fine partition of J. Clearly 

n ViES 

Since the same Cj can tag 2n distinct intervals and because of the choice 

of 6 we have 

Vi €S 

This proves / is KH-integrable and fRn / = 0. • 

Similarly as in one dimension a set S is called negligible or a null set if 

for any / the function! fig is KH-integrable and 

[ fls = 0. 
J M" 

By the previous example a countable set is negligible. We rephrase 

Theorem 2.5.5 as 

f It does not matter how 6 is defined on Rn \ Rn. 

f By our convention from Section 3.11 /I5 is defined everywhere even if f is not. 

<2"^|/fe)| 
2-i+"(l/(c,)| + 1) 

< £. 
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THEOREM 6.3.4 A set S is negligible if and only if 

[ u = o. 
J R11 

The proof of Theorem 2.5.5 can easily be adapted to our more general 

situation. It follows easily that a subset of a negligible set is negligible 

and a countable union of null sets is null. In 1R it requires some effort 

to produce an uncountable null set (see Sections A.l and 2.11). In Mn 

such sets abound. A useful example is the following. 

EXAMPLE 6.3.5 (Piece of hyperplane negligible) We prove 

that the set S = [a1, b1} x ■ with a1 < bl ■ and of = 6* for some 

t G N, 1 < f < n is negligible. For x € S let 6{x) = C(x,e), for 

x e Rn \ Rn let 6(x) = Rn and for any other x let 6(x) — C(x, 1). If 
• n. 

{(Xi, Ki); i = 1,... , r} is a 6-fine partition of K then 

[J Ki C [a1 - e, b1 + e] x ■ 
Xi€S 

and therefore 

ls\Ki\ = ^ |ATj| < PJ(^1 - °f + 2e) = P(e). 
i= 1 XiES i=1 

Since a* = 6* the product P(e) —> 0 as e —» 0. • 

It follows that for an interval J C 1" the set bJ is negligible. 

EXAMPLE 6.3.6 In this example n = 2 and k € N. We denote by 

J or Jk the interval [0,1] x [0,1] or [^p, £] X [^, £], respectively. Let 

/(x) = (-l)fefc(fc + l)2 for x e Jk for all k 6 N. Otherwise let /(x) = 0. 

We wish to show that / is KH-integrablej and 

(-l)fc 
k 

For a partition 7rk of Jk let be the Par^ ^ tagged in Jk • Since 

t Anyone even briefly acquainted with Lebesgue theory sees immediately that / is 

not Lebesgue integrable. 
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and / = 0 on hJkl for every positive e there is gauge 6k such that for 

any 6-fine partition nk we have 

\k 
(6.15) 

k 2k+2 ‘ 

We now define 6 in five steps. 

6(0,0) — cmo), |), 

6(1,1) = <5i(l,l), 

6( xk) 6k(xk) fl 6k+i(xk) where xk = 

6(x) 6k(x) for x e Jk, x yl xk,xk+1, 

6(x) ' J \ Jfc for all remaining x. 
1 

Let 7t 6 and let N — 1 be the first k for which Jk i 

1 

k -I- 1 ’ k + 1 

of 7r tagged by (0, 0). Then 4 < Ne and 

(-i)N Em = iE/isiE/ 
1 £ 1 ^ £ 

N 1 + N ~ 2N+2 + N ~ 2' 

Finally we have 

E/-E (-i)' 
k=l 

e(e/-^ 
tel \ „• k 

E 
k=N 

(-i)' 
+ E1/1 

£ 1 £ 

<l+N + 2-E- * 

Contrast this example with Exercise 6.2 where a similarly defined / is 

not KH-integrable. 

Similarly as with previous definitions of an integral we have 

THEOREM 6.3.7 (Bolzano—Cauchy condition) A function f is 

KH-integrable on an interval J C K™ if and only if for every positive £ 

there is a gauge 6 on J such that 

E/-E/ 
7Tl 7T2 

< £ (6,16) 
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whenever tx\ <C 6 and 7r2 « 6. 

Proof Necessity is obvious. The proof of sufficiency is a verbatim rep¬ 

etition of the proof of Theorem 3.12.2 except M-integrable, M-partition 

and M-integral become KH-integrable, partition and KH-integral. • 

6.4 Basic theorems 

The theorems from Section 2.5 are easily adapted to n dimensions. All 

that is needed is to replace the interval [a, b} by an n-dimensional interval 

J and 5 — a by | J|, the content of J. Exceptions are statements involving 

monotonicity of functions, the intermediate value property and Theorem 

2.5.29 on the continuity of the indefinite integral, the analogue of which 

we discuss in the next section. If 5 is a set and / is defined on S then 

we define 

if the latter integral exists. Since for any interval J the boundary is 

negligible! it can easily be shown that Definition (6.17) is consistent 

with Definition 6.3.1 if S' is a non-degenerate interval. A consequence of 

(6.17) is that fj f = 0 if J is degenerate. However, we shall not attempt 

to extend the definition of the n-dimensional KH-integral as we did in 

one dimension in Definition 2.5.28. Sometimes we replace S with its 

defining relation, e.g. if 

S = {(x, y); x2 + y2 < 1} 

then we write 

f = f(x, y) dxdy. 

x2+y2< 1 

We now consider theorems on integrability on the union of intervals 

and on subintervals a little more carefully. Let K and L be intervals 

such that K U L is again an interval. If / is KH-integrable on K and L 

then / is KH-integrable on K U L. Moreover 

If- (618) 
K L KUL 

This can be proved similarly as in Theorem 2.5.12, but we prefer to state 

and prove a more general result. 

f Or empty. 
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THEOREM 6.4.1 If 

(i) J is an interval in IF*; 

(ii) {jKi] 2 = 1,... , r} is a division of J; 

(iii) f is KH-integrable on each Ki 

then f is KH-integrable on J and 

/• (6.19) 

Proof Since the values of a function on a negligible set do not affect 

either the existence or the value of the integral, we redefine / on bAi 

to be zero. Given e > 0 we find a gauge on Ki such that 

(6.20) 

for every 7q <C <£. If x G K° then we define 6(x) = 6i(x) D K°. If x 

belongs to several bKi, sayf x G bKi± D • • • D bKip and x Kj with 

j ik then let 6(x) = (x) fl ■ • • n Sip(x). Consider now tv = {(y,L)}, 
a <5-fine partition of J. The set 

{(x,L Pi Kt);x G Ki, (x, L) G tv) 

forms a 5,-fine partition of Ki and we have by (6.20) 

£/ = ££/ = ££/ 
7T 1 7T« 7 — 1 ir° 

£/-£ / S £ X'-L f 
£ 

< r~. 
r 

This proves / KH-integrable and equation (6.19). 

THEOREM 6.4.2 (Integrability on subintervals) If J, L are in¬ 

tervals, L C J and f is KH-integrable on J then f is KH-integrable on 
L. 

Proof By Theorem 6.3.7 for every positive e there exists a gauge <5 such 
that 

£/-£/ 
n' n" 

< £ 

f p = 1 is not excluded. 
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whenever II' <C 6, n" <C 6. By Corollary 6.2.2 there are intervals 

Li,... , Lp such that these together with L form a division of J. For 

each i there is a 6-bne partition of Li, say 7q. Let ir' and ix" be two 

6-fine partitions of L. We define 

IF = 7r' U 7T! U • ■ • U 7Tp, 

II" = it" U 7Ti U • • • U 7rp, 

and have 

n' n" 
E f-Ef < e. 

It now follows similarly as in Section 2.5 that step functions are KH- 

integrable on closed and bounded intervals, and by an analogue of The¬ 

orem 2.5.16 this extends to regulated functions including continuous 

functions. However, we still lack an effective means for evaluating n- 

dimensional integrals even for a very simple function like a polynomial. 

A partial solution to the problem of evaluation is our next topic. 

6.4.I Prelude to Fubini’s theorem 

We set n = 2 and write (x, y) instead of (x1,^2). The interval J = 

[a, b\ x [c, d] will be bounded. The functions /, g, $ defined on I will be 

respectively continuous, regulated and step. For x G [a, b] the integral 

Q(x) = /(*,•) 

exists and is a continuous function of x. Consequently fa Q exists and 

we denote it by 

J (fc f(x^y)dy)dx 
or simply 

f(xi y) dy 

and call it an iterated or repeated integral, ffj f also exists and we shall 

prove that 

/ / ' ldxL f{x,y) dy- 
d 

(6.21) 
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If this has been established then by symmetry also 

[[ f= f dy fd f(x,y)dx. 
1/ J 1/ a </ c 

Therefore 

f{xi u) dy dy / f(x,y)dx. 

The repeated integral can often be evaluated by using the Fundamental 

Theorem twice, e.g. 

dx xcos r (xy)dy = 
Jo 

sin x dx — 1. 

It is easily checked that the other repeated integral is also 1 but the 

calculation is less straightforward. Generally speaking the repeated in¬ 

tegrals are not equal, e.g. 

[ dx [ 
Jo Jo 

x 

(x2 + y2)' 
;dy -f 7r 

/V X 
-dx = — 

*ndx= 4 

l + y: 
*/=4 (x2 + y2)2 

We have just seen that the iterated integrals might or might not be equal; 

the other possibility that one exists and the other not can also occur. 

(See Exercise 6.5.) We shall prove in Section 6.6 that (6.21) holds not 

only for continuous / but for any KH-integrable function. Such a result 

is often referred to as Fubini’s Theorem which Fubini proved within the 

framework of Lebesgue theory. We have here a modest aim of proving 

(6.21) with / replaced by a regulated function g. We begin by noting 

that ff 1K = fa (fc 1 k(x,v) dy)dx if K C J is an interval. It is also 

clear that if (6.21) holds with / replaced by h for every h in some family 

H then it also holds for any linear combination of functions from 7i. It 

follows that 

(p(x,y)dy (6.22) 

for any step function (j). For a positive e we find a step function 0 such 

that | <7 — 0| < e and have 
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This combined with (6.22) gives 

[[ 9 - [ dx f g(x, y)dy < 2e\ J\. 
J J J J a J c 

Since e is arbitrary this proves the required equation 

9 = 

pb nd 

dx g(x, y) dy. 
'a J c 

(6.23) 

EXAMPLE 6.4.3 Let f{x, y) = xy for 0 < x < 1 and 0 < a < y < b. 

The function / is continuous and the repeated integrals are equal. Let 

us try first 

xy dxdy 

0<i<1 
a<y<b 

log x 
dx. 

This looks hopeless so we integrate in the other order 

This example shows not only that one iterated integral can be evaluated 

easily and the other not but also demonstrate the possibility of finding 

a simple integral by a detour to an intelligently chosen double integral. 

EXAMPLE 6.4.4 Let D = {(x,y)]\x\ <1,1 -x2 <y< 4(1 -x2)} 

and / be a function continuous on R2 and equal to zero outside D. Then 

we have 

1 4(1—x2) 

i = IJf = Id* J f(x,y) dy, 

D -1 1—x2 

1 -%/!-?/ 

I = J dy J f(x,y) dx 

0 -yfi-y/4 

\/i-y/4 

+ / dy 

-y/l-y/i 

1 \/l—y/4 

f(x,y)dx + J dy J f{x,y)dx. 

0 V1 -v 

In this subsection we have become familiar with iterated integrals and 

their use in evaluation of multiple integrals. However, more general 
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results are needed. For the function / defined by 

f(x, y) = —. for 0 < x < 1 and 0 < y < 1 
y'x2 + Ay 

the double and both repeated integrals exist and are equal, but /, despite 

its simplicity, is not regulated. Moreover we need theorems on evalua¬ 

tion of multiple integrals over unbounded intervals or for unbounded 

functions. This will be discussed in Section 6.6. See also Exercises 6.11 

to 6.18. 

6.5 Other theorems in Rn 

6.5.1 Negligible sets 

The covering lemma (Lemma 2.11.4) holds in Rn as stated for R, except 

that the inclusion 5cR has to be replaced by S C Rn and inclusion 

(2.119) is to be interpreted as Kz C C(xi,6(xi)). The new covering 

lemma can be used to prove analogues of Theorems 2.11.1 to 2.11.3. 

This means that a set S C Rn is negligible if and only if it is of measure 

zero, i.e. can be covered by a countable family of open intervals Jk with 

k € N such that S C (J^° Jk- All that is needed to adjust Theorem 

2.11.3 is to replace R by Rn and equation (2.118) by 

Changes like these are easy to recognize and easy to make. We have 

stated them explicitly in this first subsection but in future we leave 

them to the reader. 

6.5.2 Henstock’s lemma 

Only obvious changes are needed to transfer Henstock’s lemma and its 

proof to R . It is even more important for multiple integrals and as in 

one dimension it is crucial for any advancement of the theory. We refor¬ 

mulate two important consequences of Henstock’s Lemma from Section 
3.2. 

If Ik f = 0 for any interval K C J then / = 0 a.e. on J. 

If / is integrable on J then the interval function F(K) = J f with 

K C J is called the primitive of /. We may also define a corresponding 

point function as follows. Write J = [a, b\ and x G J. Define F(x) = 0 
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when Xj = dj for at least one j and F(x) = F([a, x]). If / is KH- 

integrable on J then its primitive point function obviously exists and 

Henstock’s lemma can be used to prove that it is continuous. Conversely 

given a point function F defined on J we may define a corresponding 

interval function F as follows. Let K = [a, ft with a = (a1, ■) and 

(3 = (ft, ■ ). Write k — (/c1, ■) where = o? or ft. Denote by n(/c) 

the number of terms in k for which = aJ and let 

F([a, 0\) = ^(-1)»WF(K) 

where the summation is over all the vertices k. For example, when n = 2, 

F([q, ft) = F(ft, ft) - F(a\ ft) + F(a\ a2) - F(ft, a2). 

Also, when n = 3 

F([a, ft) = F((3\ft,ft)-F(a\ft,ft) + F(a\a2,ft) 

—F(ft, a2, ft) + F(ft, a2, a3) - F{ft, ft, a3) 

+F(a\ft, a3) -F(a\ a2, a3). 

Note that given a primitive point function, we may recover the primi¬ 

tive interval function as described above. They are mutually convertible. 

An important consequence is this: If / is KH-integrable on J and 

h > 0 then the point function 

Fh(x) = J 1 jf 

C(x,h) 

is a continuous function of x on J. We shall need this observation when 

we consider measurabilty of KH-integrable functions. 

6.5.3 Absolute integrability 

The n-dimensional version of Theorem 3.4.1 reads 

THEOREM 6.5.1 (Criterion of absolute integrability) A func¬ 

tion KH-integrable on J is absolutely integrable there if and only if 

V ft) = suplj] |F(A")I’> K G D, D a division of J) < oo. (6.24) 

D 

REMARK 6.5.2 The proof can be modelled on the proof of Theorem 

3.4.1 but in Rn we prefer to employ Example 6.3.5. 
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Proof of Theorem 6.5.1 The aim is to show that 

J i/I = v(f). (6.25) 

Given e > 0 there is a division {Ki; i = 1,... ,p} such that 

V(f)-e<J2\HKi)\<V(f). 
D 

(6.26) 

We write B = (J^ bKi. Since B is negligible it is possible to 

gauge 6b in such a way that 

define a 

T: |/(x)||L < e if nb <C 6b and tagged in B, 

Kb 
(6.27) 

^ |F(L)| < 2e if nb <C 6b and tagged in B. 
7Th 

(6.28) 

By the definition of the KH-integral and by Henstock’s lemma there is 

a gauge 6i such that if 7r* C 6i then 

El/W|i|-F(i)l<e. 
7T? 

(6.29) 

t 

6i(x) C K° if X e K°. (6.30) 

It follows that 

E i/miiu -£ < E iF(L)i < E i/miw+£ (6.31) 

If x belongs to several bKi, sayf x £ bKn n ... n hKlp, and x £ Kj 

with j ± ik then let 6(x) = 6b(x) n 6h (x) D ... D 6lp (x). If x £ K° then 

let 6(x) — 6i(x). Let now n be a 6-fine partition of J. Then 

TXi = {(a, L n Ki); (x, L) £ tt, L n K? ^ 0, x £ Ki} 

is a 6j-fine partition of Ki for which 

< = {(x, L)\ (x, L) £ TT, X £ K°} . 

We have by (6.28) 

2e + ElF(£)l>|F(Xi)l>ElF(i)l- 
K 

Using (6.31) this leads to 

+ E l/MIW > |F(^)I > E l/WIW - e. 
ir° _o 

t p = 1 is not excluded. 
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Summing over i and taking into account (6.27) gives 

3p£ + £l/(a:)l|£| >E|F(«i)l>El/(x)Hi|-P£-£' 
7T 1 7T 

Combining this with (6.26) leads to 

(3p + l)e + J2 l/Wllil > v(f) > 5] l/WIVI - (p + 1)£. 
7T 7T 

Since e is arbitrary this shows (6.25). • 

The theorem we have just proved has the same consequences as The¬ 

orem 3.4.1, namely if / is KH-integrable and |/| < g for some abso¬ 

lutely KH-integrable g then / is absolutely KH-integrable. In particu¬ 

lar, if /i and /2 are absolutely integrable then so are Max(/i,/2) and 

Min(/i,/2). The functions f+ and are KH-integrable if / is abso¬ 

lutely KH-integrable. 

6.5.4 Convergence, measurability, AC 

The monotone convergence theorem (Theorem 3.5.2) and its proof can 

be adjusted to 1" but we prefer to give an alternative proof. We begin 

with 

LEMMA 6.5.3 For every positive e there exists a positive function £ 

and a gauge 6e such that 

Y^£<£ (6-32) 
7r 

for any partial division 1r ofMJ1 such that 7r 6e. 

Proof We set 

e(x) 

F e(K) 

n 

= exp(~y^ |^|), 
i= 1 

It is obvious that Fe is an additive interval function and if K is a bounded 

closed interval there exists y G K such that 

Fe{K) = e(y)\K\. (6.33) 
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We also have 

J — OO — oo 

OO 

e{x) dxn = 2n. (6.34) 

We choose positive h(x) such that 

e(x)-e{y)\ < ^e(x) (6.35) 

for y e C(x,h(x)). If 6e(x) = C(x,h{x)) and 7r 6e then by (6.32), 

(6.33) and (6.35) 

0<£e(s)|jr|<2£F e(K) < 2n+1. 
7r 

To obtain (6.32) it suffices to define £(x) = e2~n~1e(x). • 

THEOREM 6.5.4 (Monotone convergence theorem) If 

(i) the sequence {fk(x)} is monotonic for almost all x e J C Rn, 

(ii) the functions fk are KH-integrable and the sequence {fjfk} is 

bounded, i.e. \Jj fk\ < K for some K all k e N, 

(iii) lim fk = f is finite a.e. 

then f is KH-integrable on J and 

(6.36) 

Proof For reasons outlined at the beginning of the proof of Theorem 

3.5.2 we can and shall assume that {fk} is increasing, fk > 0 and fk T 

/ < oo everywhere. The sequence j fk j is monotonic and bounded. 

Hence the limit on the right-hand side of (6.36) exists; let us denote it 

by L. Given e we can find N such that 

Next we find k{x) > N such that, for k > k{x), 

f(x) ~ < fk{x) < f(x). (6.37) 

By Henstock’s lemma there is a gauge 6n on Rn such that 

(6.38) 
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whenever the tagged partial division 7r = {(xi, Ki);i — 1,... , r} is 6- 

fine. We define 

6(x) = 6k/x)(x) n 6e(x) for x € J. 

Let 7T be a 6-partition of J. The proof will be accomplished if we show 

that 

YJf(xi)\Ki\-L\<e. (6.39) 

The way from the Riemann sum of / to L goes through the sums 

]>>(*,)(*.) I-K.l, (6.40) 
7r 

7T JKi 

It is easy to check that the first sum is close to the Riemann sum of / 

and the second to L. Indeed by (6.37) and (6.32) 

^fk(xi)(xi)\Ki\ <^2fk(xi)(xi)\Ki\ + (6.42) 
7r 7T 7r 

and 

E L fN = j Sn>l-\ («3) 
7T JKi 7T JKi 

Denoting by N the largest k(xi) we also have 

E / fN<jh<^ (6-44) 

It remains to estimate the difference between (6.40) and (6.41), i.e. 

'y ^ [/fc(xi) O^i)\^i \ j fk(xi) 
*- J Ki 

(6.45) 

The k(xi) are not necessarily distinct; let Ok be the distinct 

i such that k(xi) = k. In (6.45) we group together the terms with the 

same k(xi) = k and estimate that sum using (6.38): 

j=i 

e 

T2"' 
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Consequently 

Collecting (6.42), (6.43), (6.44) and (6.46) gives on one hand 

f(xi)\Ki\ > ^ fk{xi)(xi)\Ki 

> 

7r 

and on the other 

f(Xi)\Ki\ — fk(xi) (xi)\Ki\ + g / fk(xi) + 2- < L + £. 
7r 7T 

The last chains of inequalities imply (6.39). • 

Infinite values for the KH-integral can now be admitted as in Defini¬ 

tion 3.5.5. 

No specific properties of the the real line were used in deducing the 

Beppo Levi theorem, Fatou’s lemma and the Lebesgue dominated con¬ 

vergence theorem: all these theorems are pure logical consequences of 

the monotone convergence theorem. We can safely and with confidence 

use them in Kn. Equiintegrability of a family of functions is defined the 

same way as in R: there is a gauge from the definition the integral which 

is common to all members of the family. Theorem 3.7.5 on interchange 

of limit and integration for an everywhere convergent and equiintegrable 

sequence then remains valid. When we move on to measurabilty we need 

to show that a KH-integrable function is almost everywhere the limit of 

a sequence of continuous functions. In R we used Theorem 3.8.2; this 

theorem however is not easily translatable to ]Rn. We start by observing 

that Austin’s Lemma 3.8.1 remains valid in Rn if the intervals Ik are 

cubes and § is replaced by 3~n in inclusion (3.83). Naturally £(S) now 

denotes the content of S. The following theorem yields the measurability 

of KH-integrable functions. 

THEOREM 6.5.5 If f is KH-integrable on J and 

(6.47) 

C(x,h) 
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where C(x, h) = {y; \x — y\u < h} then 

limEMz) = f(x) 
hi 0 

(6.48) 

for almost all x € J. 

The proof follows similar lines to the proof of Theorem 3.8.2, using 

the n-dimensional version of Austin’s lemma mentioned above. The n- 

dimensional version of the theorem on differentiation of the indefinite in¬ 

tegral is weaker: only the existence of a symmetric derivative is asserted. 

However, the measurability of / obviously follows. With this done the 

whole Section 3.11 can be translated to an n-dimensional version of it, 

including Theorem 3.11.10 and Luzin’s and Egoroff’s theorems. The 

Vitali-Caratheodory Theorem does not need reformulation but can be 

restated independently of the McShane integral as equivalence of state¬ 

ments (B) and (C). The proof does not need much adjustment, since the 

proof of the implication (C)=>-(A) can be used almost verbatim to show 

(C)=KB). 

The analogue of Theorem 2.8.3 is valid in Rn, see Exercise 6.4. How¬ 

ever, the following theorem is more useful. 

THEOREM 6.5.6 If f is absolutely KH-integrable on each measurable 

set Si, for i 6 N, and the sets Si are disjoint then f is KH-integrable on 

s = (J£i & ifand only */ 
OO p 

ST |/| < oo (6-49) 
^ ^ Sn 

and then 

Jf-tJ f (6.50) 

Proof If / is absolutely KH-integrable on S then the partial sums of 

the series in (6.49) are bounded by Js \f\. 

Going in the opposite direction write Em LJi fm / 

on Em and fm = 0 otherwise. Then (6.50) with / replaced by /+ follows 

by the monotone convergence theorem. Repeating the argument with 

f~ yields (6.50). * 

COROLLARY 6.5.7 If the sets Ei are measurable, the function f is 

absolutely KH-integrable on each Ei and 

Ex C E2 C E3 C • • • 
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with E = U?°^i Ei then 

(6.51) 

if and only if the sequence j JE. \ f\ r is bounded. 

COROLLARY 6.5.8 If the sets E{ are measurable, the function f is 

absolutely KH-integrable on each Ei and 

Ei D E2 D E3 D • • • 

with E = Ei then (6.51) holds. 

To prove this corollary it is sufficient to aply the previous corollary with 

Ei replaced by Ei \ Ei and note that (Ei \ Ei) = Ex \ P|^° Ei. 

The relations of the KH-integral to the McShane integral and to the 

Lebesgue integral remain as described in Sections 3.12 and 3.13. 

In Section 3.6 on absolute continuity we used properties of the real 

line, mainly for two reasons: to avoid the concept of measurability at 

that stage of development and to investigate the relation of AC functions 

to functions of bounded variation. We shall call a function of sets, say 

H, absolutely continuous on a measurable set S if for every positive e 

there is a number g such that for every measurable subset E C S with 

m(E) < g the inequality 

H(E) < £ 

is satisfied. Measure in 1R'1 depends on n, we shall therefore denote it 

by mn. If / is KH-integrable on an interval J then F(E) = / / is ab¬ 

solutely continuous. This is clearly so since by the Lebesgue dominated 

convergence theorem there is N such thatf 

and 

t fN is defined in Example 3.5.7 equation (3.48). 
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6.6 The Fubini theorem 

In this section J will be an interval in ffif with J — H x K, and the 

intervals H and K will belong to Rl and M™, n = l + m. For a point z 6 

Rn we write z = (x,y) with x G m! and i/eR". Similarly for a function 

/ on Rn we write /(z) = f(x, y) and for a function hx defined by hx(y) — 

f(x,y) we use the notation hx — f(x,.) introduced in Subsection 6.1.1. 

The z-dimensional measure of a set S C M* is denoted by mi(S). For 

this section the function / will be KH-integrable on J and 

Q(x) = [ f(x,.) . (6.52) 
JK 

In Subsection 6.4.1 (Prelude to Fubini’s theorem) we proved for a regu¬ 

lated / that 

IIf = LQ’ <6'53) 

j 

or equivalently 

JJ f = J (J f(x,y)dySj dx. (6.54) 

If f is merely KH-integrable then, for a particular x, Q{x) need not be 

defined. Worse, if NH C H is an arbitrary set of measure zero in Rl, i.e. 

mi(NH) = 0, then mn{NH x K) = 0 and / can be changed at will on 

Nh x K without its integrability being affected. Consequently Q may 

fail to be defined on Nh- Fortunately this is the worst possible scenario. 

We have 

LEMMA 6.6.1 If f is KH-integrable on J and S C H is the set of x 

for which the integral Q(x) is well defined then we have, for N = H\S, 

that mi(N) = 0. 

Proof We employ the negation of the Bolzano-Cauchy condition for 

exploiting the non-integrability of f{x,.). A point x G N if and only if 

there is £q(x) such that for every 7 on K there exist two partitions of K 

a = 
_/ 
a = 

{(is, Ki)-,i=l,... ,a}, ff«7 

m,Kl)-.i = 1,•••,«'} CT'«T 
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with the property that 

> £o{x). (6.55) 

i=l i=l 

The partitions o and o' depend, of course, on x so in the sequel we write 

Ki(x), rj\(x) and K[(x). Let 

iVM = {x; x e H, e0(x) > y,} . 

Obviously N = (J^Li -Wa and if suffices to show that m/(iVM) = 0 for 

every fj, > 0. By Henstock’s lemma for every positive e there exists a 

gauge 6 on J such that 

E \f(zk)\Jk\ - / (6.56) 

for 7T < 6. Write 6(x,y) = 6H(x,y) x 6K(x,y) with 6h C Rl and 
—vn 

Sk C R . Choose 7(y) = 6x(x,y) and find partitions 0 and o' such 

that (6.55) holds with £q(x) replaced by fi. For x E N define 

A(x) = P| SH(x,rii(x)) C p| 6H(x,r]'i(x)). 

i=1 i=l 

For x E S let A — 6h- If tth = {(£, H(£))} is a A-fine partition of H 
then 

E1"- = E1«.K)lffK)l 
7TH 7Th 

E ^(o)itf(oiraoi • 
1=1 

(6.57) 

Since 

a a' 

U H({) x Ki(() = |J H(() x K[(Q = H(0 x K, 

*=1 1=1 

we have 

E // / E // /« II /• (6.58) 

1 H(OxK 
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The intervals H(£) x Ki(t,) form a 6-fine partial division of J. By (6.56) 

and (6.58) 

E |E/«.’*(0)iff(oii*i(«)i- f[f 
7T jj A-1 ^ ^ 

- H(£)xK 

Similarly 

E |E/«,^({))i«(oiK(oi-// / 
«6NM *=1 

Combining these inequalities with(6.57) leads to 

lEny^-'tf+ f). 
7T 

(6.59) 

(6.60) 

This means fH ljv^ = 0. 

During the proof we almost established 

LEMMA 6.6.2 If 

(i) 6 is a gauge on J; 

(ii) 6(x,y) = 6H{x,y) x 6K(x,y) with SH(x,y) C R and6K(x,y)c 

Mm for (x,y) € J; 

(iii) the partition a(x) = {(77^(0:), Ki(x))\ i = 1,... ,a} is 6K-fine for 

every x € H 

then there exists A, a gauge on H, with the property that a bl-partition 

of J is 6-fine whenever tth = {(£1 R^)} a A-fine partition of H. 

Proof It is sufficient to set 
a 

a(x)=n 5(x»^(*))- • 
i=i 

With all the necessary preparation done we have now 

THEOREM 6.6.3 (The Fubini theorem) Suppose f is integrable 

on J = H x K. Then 

(i) Q(x) = fK /(x,.) exists and is finite for almost all x £ H; 

(ii) Q is KH-integrable on H and the multiple integral of f is equal 

to the iterated integral as in (6.53). 
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By symmetry we have 

COROLLARY 6.6.4 

IJ f = Jh (^I^ f(x, V) dy'j dx = Ik (fH /(*> V)dx^j dV- (6-61) 
j 

Proof of Fubini’s theorem Assertion (i) was proved in lemma 6.6.1. 

We keep the notation for N and S from that lemma and put M — N xK. 

This set is negligible, fj 1m f = 0 and consequently, for every positive e 

there is a gauge 50 such that 

£ l/l < | (6-62) 
7r 

whenever 7r -C 5o and is tagged in M. For ease of writing we set 

m = Jj. 

By Henstock’s lemma there is a gauge <5i such that 

£|/(z)|£|-F(£)|<g (6,63) 
7T 

for a 61-fine partition n = {(z,L)}. Let 6{z) = 60(z) D 61(z) for z £ J. 

Combining (6.62) and (6.63) shows that 

£|F(L)|<|. (6.64) 
7T 

if 7r is 5-fine and tagged in M. We choose, by Lemma 6.5.3, a gauge A0 
on H and a function £ : H i—> R+ such that 

££<| (6-65) 
*0 

for every A0-fine partition 7r0 of H. For x £ S let a(x) be a 5^-fine 

partition for which 

IQ(z) - X^(x’-)l < £- (6-66) 
a(x) 

For x £ N let a(x) be a 5^-fine partition. Let A and 
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be according to Lemma 6.6.2. If necessary we diminish A so that A C 

A0 and have by (6.62)—(6.66) 

X)Q(f)|ff{|-F(J) < 11^1 “ 5Z/(€>Vi«))l^i(OI 
ff(0 7TH 1XH 

+1 - f (He x k,(o) | 

< E£+1 + E + E x *‘«))l 
■KH t£N 
£ £ £ £ 

<6 + 6 + 6 + 3' 

teN 

We return the example from the end of Section 6.4. The function / 
oc 

with f(x,y) = — -is clearly measurable and bounded and hence 

integrable. By the Fubini theorem 

f [ X dxdy = [ (y/l-f 4 y + 2^/y)dy — -(5\/5 + 7). 
J J \Jx1 + Ay Jo D 

0<x< 1 

0<y<l 

The Fubini theorem can be also used to prove that / is not integrable 

on J. To do that it is sufficient to find a subintervai of Jf on which the 

repeated integrais are not equal. There is a difficulty in applying the 

Fubini theorem: we need to establish the integrability of / on J. Apart 

from the case when / is bounded and measurable this can be a difficult 

matter. It is therefore important that Fubini’s theorem can be used 

when one of the repeated integrals of the absolute value of / is finite. 

More generaily we have 

THEOREM 6.6.5 (The Tonelli theorem) If 

(i) f is measurable on J 

(ii) there is a function g such that \ f\ < g on J and either 

Ai = J g(x>y)dvj dx<oo 

or 

a2 = f (^J g(x,y)dx^J dy<oo 

then f is KH-integrable on J and (6.53) is satisfied. 

f This could, of course, be J itself. 
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Taking for g = \ f\ gives 

COROLLARY 6.6.6 If f is measurable and either 

\f(x,y)\dy) dx < oo 
H \JK 

or 

' K 
[ \f(x,y)\ 
JH 

dx dy < oo 

then (6.53) holds. 

In particular 

COROLLARY 6.6.7 If f is measurable and non-negative then 

JJ f = Jh (fK/(x>y)dv^j dx = jR (^Jh f(x,y)dx) dy (6.67) 

provided that at least one of the three integrals exists and is finite. 

Proof of Tonelli’s theorem It is sufficient to prove integrability of 

/; the rest then follows from the Fubini theorem. For the sake of def¬ 

initeness assume that A\ < oo. Let hn be the characteristic function 

of the cube {(x,y)- |(x,y)|u < n} and fn = Min(/+, uhn). Then fn is 

measurable and bounded by an integrable function nhn. It is therefore 

itself integrable and by the Fubini theorem 

fn{x,y) dy dx < A\. 

By the monotone convergence theorem /+ is KH-integrable on J. Sim¬ 
ilarly /“ is integrable. # 

EXAMPLE 6.6.8 Let J = [0, oo] x [0, a] and f(x,y) = e kx cos xy 

with k > 0. In this case we choose g(x, y) = e~kx and have 

f f = [°°d* F e~kX cosxydy= re~kxS^dx, J o Jo Jo x 

[ f _ fa k a 
J — / —7 dy = arctan —. 

Jj Jo k2 + y2 k 

Taking the limit as k > oo and using Example 3.7.8 gives (for a > 0) 

sin ax 

o x 
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EXAMPLE 6.6.9 (The Laplace integral) We wish to evaluate the 

Laplace integral A = J0°° e~x dx. Let us consider 

poo poo 

Jo Jo 

2 2 -x -y dxdy. 

The integrand is continuous and non-negative. We use Corollary 6.6.7 

and have 

B = 

oo poo 

0 Jo 
•oo 

poo 9 poo 2 
e ~ w dxdy = / (e_a;2 / e-3/ dy) dx = A2 < oo 

2 2 “2/ 

/o /o 

B — [I e x~ dx e 1 x x dt) = 
•OO roo /*oo 

(i+t )x xdxdt 

L 
oo , r oo 

(i+t )x x dx^j dt 

Jo Jo 

r°° dt 7T 

/0 v 70 

Consequently A = \[B = 

2(1 +12) 4' 

REMARK 6.6.10 In several dimensions there is a much greater need 

to integrate over sets that are not intervals than in one dimension. In 

order to apply Fubini’s theorem or Tonneli’s theorem to Jsf = fRn /Is 

the measurability of S is required. In most cases in practice this is 

easily done by inspection, e.g. S might be open or closed or some other 

set whose measurability is obvious. The following observation is useful in 

more difficult situations. Let M be measurable as a subset of R*.f Write 

(x,y) e Rn with x € W1^1 and y eR1. If / is a function measurable in 

M then all the sets 

51 = {(x,y);x e M, y < f(x)} , 

52 = {(x,y)-,x e M,y> f(x)}, 

53 = {(x,y)-,x e M, y = f(x)} 

are measurable. See also Exercise 6.10. 

EXAMPLE 6.6.11 Let us calculate 

where 

A dxdydz 
D 

D = j(x,y,*); z > °’ “2 + % + z2 < L} 

t In our previous discussions the dimension of the space was fixed It is necessary 

to realize now that the concept of measurability defends on the dimension. 
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Integrating with respect to z first and splitting the double integral into 

two integrals, the first with respect to y, leads to 

A 

There is another way to evaluate the integral, integrating with respect 

to z last and not splitting the inner double integral: 

o Dz 

where Dz = {(x,y)-,x2 + y2 < a2( 1 — z2)}. The double integral is clearly 
the area of the circle Dz and consequently 

6.7 Change of variables 

The theorem on substitution in multiple integrals is naturally more com¬ 

plicated than the corresponding theorems in one dimension. The proof 

is not very difficult but it is long and contains technical details. It is 

made in several steps, by induction on the dimension and by moving suc¬ 

cessively from less complicated sets and functions to more complicated 

ones. We have already changed variables in multiple integrals, more 

precisely in repeated integrals, but we changed only one variable at a 

time. This method is also used in the general case but the substitution 

must be represented as a composition of two substitutions each of which 
leaves all but one variable unchanged. 

A new aspect in the multidimensional case is that the change of vari¬ 

able is often made not to simplify the integrated function but the domain 

of integration. To obtain some ideas of what is involved we look at some 
simple examples first. 

6.7.1 Introductory examples 

The simplest transformation is a linear one. This is our first example. 
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EXAMPLE 6.7.1 We use the linear transformation 

on the integral 

x = a\\u + ai2V, 

y = a21u + a22v, 

f{x, y) dxdy. 

(6.68) 

(6.69) 

y>l 

We assume that / is integrable and decompose the transformation (6.68), 

(6.69) as follows: 

x 

y 

021012 \ O12 
on-)u H y, 

022 ' O22 

V, 

U — u, 

y = a2\u + a22v. 

For the substitutions in the repeated integrals we need the assump¬ 

tions that Ja = (011O22 — 021O12) 7^ 0 and a22 7^ 0- The case that JA < 0 

and <222 > 0 is more revealing. Hence we assume this, and havef 

f(x,y) dxdy dy I /(•Jao221'o + a\2a22y, y)\dA\a22 du 

y> 1 

du J f(JAa22u + a12a2^y,y)\JA\a22 dy 

/oo coo 

du / /(oil'W + Oi2f, O21U + 022^)1 Ja| dv, 
-00 J Ot(u) 

• —00 

roo 

' a(u) 

where we have abbreviated a (it) = (1 — a2iu)a22 ■ Now we wish to 

convert the last repeated integral into a double integral over the set 

G = {(it, v); u G M, u > a (it)} • 

In order to use Fubini’s theorem we assume that the function appear¬ 

ing in the last repeated integral is integrable on G. Abbreviating the 

transformation (6.68), (6.69) as (x,y) = A(u,v) and noting that 

{(x,y); x 6 R, y > 1} = A(G) 

we finally obtain 

f(x,y)dxdy= (f o A)(u,v)\Ja\dudv (6.70) 

MG) 

t The absolute values in these calculations appear because we need to keep the upper 

limits of integration greater than the lower limits. 
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or denoting A(G) by S we have 

f{x, y) dxdy = // (/o A)(u,v)\JA\dudv. (6.71) 

5 A_!(5) 

These formulae are already very similar to the general formula for change 

of variables. The factor |J^| is important; we note that 

dx dx 
du dv 

chi 
du dv 

The determinant on the right-hand side is called the Jacobian of the 

transformation. If A(u,v) is not linear, as it was in our example, is 

a function of u and v but formulae (6.70) and (6.71) remain the same, 

as we shall see later. The assumption that |J^| / 0 appears also in 

the general theorem. The assumption that both integrals in (6.70) exist 

seems reasonable. Since in practice one integral is obtained by means of 

the other, it is desirable to have a theorem which not only asserts the 

equality of the integrals but also guarantees the existence of the former 

from the latter. In order to obtain such a theorem we strengthen our 

assumption in Theorem 6.7.7 below to absolute integrability. 

It can indeed happen that one integral exists and the other does not. 

To see this we consider the transformation 

(x,y) = A(u, v) X = 72 (U~V) 

y = ^u + v) 

and the integral J'J'a(.d) / where / is the function from Exercise 6.3 and 

A(D) = {ixi y) > x2 + y2 < 4}. The function / is KH-integrable on A{D) 

since it is KH-integrable on [0,1] x [0,1] and is zero outside this interval. 

So the integral ffA(D) f exists and is finite. On the other hand 

J J f (A(u, v)) dudv 

D 

cannot exist becausef K = [0,1] x [0, -1] C D and 

JJ f (A(u, v)) dudv — ^ — = oc. 

K 

f Note that D = A(D) and JA = 1. 
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EXAMPLE 6.7.2 We consider polar coordinates 

x — r cos p 

y = r sin p. 

The Jacobian of this transformation is 

dx dx 
dr dip 
dy dy 
dr dip 

= r. 

This leads to the integrals 

// f(x,y)dxdy and 
J JR2 

f(r cos p, r sin p)r dr dip. (6.72) 

“f <^<f 
0<r<oo 

We assume that both integrals exist and are finite. Then by the Fubini 

theorem and by the substitution theorem for one-dimensional integrals 

[f f(x,y)dxdy— ( dx f f(x,y)dy+ ( dx f f(x,y)dy, 
J JM2 J—oo J— oo do J — oo 

r°° r°° xdip 
/ dx f(x, y) dy = / dx f(x, x tan ip) 

Jo J-oo Jo J-f 

/■°° rf r00 
J J f(r cos <p, r sin <p)r dr dip = J dp J f(x,xtantp) 

cos2 p 

cos2 p 

Consequently 

poo poo r°° rf 

/ / f(x, y) dxdy = / / f{r cos p, r sm p)r dr dp. (6.73) 

Jo J-oo Jo J-f 

A similar argument can be given for the set {(x, y); x < 0}. Hence we 

have established that the integrals in (6.72) are equal. 

In this example it was necessary to split the domain of integration into 

two, since we were unable to decompose, on all of R2, the transformation 

by polar coordinates into two transformations each of which changed 

only one variable. We shall encounter a similar situation in the general 

change of variables in a more complicated form. It will be necessary to 

split the domain of integration into a finite number of smaller domains 

and use our method on each of them separately. 

EXAMPLE 6.7.3 (Viviani’s problem) The problem consists in 

finding the (three-dimensional) measure of the set V described by the 
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inequalities 

x2 + y2 + z2 < a2, x2 + y2 < ax. 

The set is clearly an intersection of a ball and a cylinder. The existence 

of all multiple integrals in the following calculations is obvious. First we 

have 

y/a2-X2-l 

m2,{V) — J J ( J dz^j dxdy = 2 Jj \J a2 — x2 — y2 dxdy. 

x2+y2<ax a2_x2 _y2 x2+y2<ax 

Now we employ polar coordinates and have 

m3(V) 

~2 Cl COS tp 

7T 
2 

1 - sin3 <p) d<f =l(3n~ 4)- 

o 

6.7.2 Notation, lemmas 

From now on until the end of this chapter G will denote an open set. 

Partial derivatives will be denoted by subscripts and commas like this 

<P,i = Dup = 

d(p 

dxi' 

For the change of variables theorem we need a number of lemmas. The 

first is 

LEMMA 6.7.4 If <p has continuous partial derivatives in G and 

P,n(a) 0 then there exist numbers h and a function ip defined on 

K(a) = (a1 - h, a1 + h) x • • • x (a”"1 - h, an~l + h) 

x (<p(a) - h, (p(a) + h) 

with the following properties : 

(i) for every (x1,^2,... ,xn) e K(a) we have 

xn = p(x\x2,... ,xn~1,i>(x1t... ,xn)); 

(ii) ip has continuous partial derivatives in K(a). 
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We postpone the proof to the appendix. 

LEMMA 6.7.5 If J is a compact interval and Li with i £ N, i < m 

are open intervals covering J then there exist disjoint intervals jk with 

k G N, k < p such that each jk is contained in some Lk and J = (Jfc+i jk- 

Proof The intervals Li define a gauge 6 on J; indeed every x £ J lies 

in some Lj and one can set S(x) — Li. Let {(x, K)} be a 6-fine partition 

of J. Now applying Lemma 6.2.3 to J and the K's yields the intervals 

jk- * 

A map g) : O i-> Mn, <p(x) = (^(x), ■ ) is called regular in O if 

r; (i) O is an open set in 

(ii) the partial derivatives are continuous in O 

(iii) the Jacobian of the mapping 

T’pO) <p]2(x) ••• <p]n(x) 

7>2l(X) 7>22<» ••• L>2n{x) 

J^(x) = 

<Lni(x) ^x) Vnn(X) 

0 (6.74) 

for every x G O. 

In the rest of this chapter we reserve the letter for a map which is 

regular in G. It can be shown that for a regular map the set ip{G) is 

open, but rather than get involved in a long proof we just make it an 

additional assumption which we keep for the rest of this chapter. 

LEMMA 6.7.6 If tp is a regular map in G then for every x G G there 

is an index i such that 7^ 0. 

This lemma is obvious; if </?(■ = 0 for alii, 1 < i < n then Jlfi(x) — 0. 

6.7.3 The theorem 

We already encountered the formula for change of variables in equation 

(6.71). For a map ip and an n-dimensional integral it takes the form 

f ... f f(x) dx = J ■ ■ ■ J{f o p)(u)\Jv(u)| du 

s J v-i (S) 
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or briefly 

f f (x) dx = j (/ o p)(u)\Jip(u)\du (6.75) 

S ¥>-i (S) 

with x = (x1, ■ ) and u = (it1, ■ ). Our main theorem reads 

THEOREM 6.7.7 (Main theorem) Assume that 

(i) the regular map ip is one-to-one on G; 

(ii) the function f is absolutely KH-integrable on a measurable set 

S C p{G). 

Then the function (/otp)|J¥,| is absolutely KH-integrable on p^\(S) and 

formula (6.75) holds. 

It is desirable to have also a theorem which allows us to go from right 

to left in the formula. We return to this after we have dealt with this 

theorem first. 

We have already seen that the assumption of absolute integrability is 

essential. Since absolute integrability is equivalent to Lebesgue integra¬ 

bility, Theorem 6.7.7 is essentially a change of variable theorem for the 

Lebesgue integral. The proof is always long, but the reader might like 

to see another proof. Change of variables theorems in Lebesgue theory 

which do not require anything more than what we already know can be 

found in [41] and [2], We prove the theorem by several lemmas, each 

of which is is again proved in a number of steps. Fortunately many of 

these steps are easy. The main idea of the proof is to start with simple 

sets and functions and move successively to more complicated ones. 

LEMMA 6.7.8 The main theorem is valid if f =1, the set S C p(G) 

is a bounded interval and p merely interchanges two variables. 

Proof It follows from elementary rules of evaluation of determinants 

that = ±1, since p in this simple case carries intervals into intervals 

of the same content there is nothing more to prove. • 

LEMMA 6.7.9 The main theorem is valid if f = 1, the set S is a 

bounded interval, S C p(G) and n— 1. 

Proof Let S = [a, b] with a = p(a) and b = p(/3). It is obvious that 
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The derivative Lp' is continuous so it is either positive or negative for all 

x e S. If it is positive then 

<c—l ([“>&]) 

and if it is negative then 

<p'(u) du 
~ / |<p'(u)| du . 

The proof now proceeds by induction and we may assume that the the¬ 

orem holds for n - 1 if S = I is a bounded interval I C ip(G) and / = 1. 

In this particular case equation (6.75) reads 

mn(J) = J | J^|- (6-76) 

LEMMA 6.7.10 If the map p leaves one variable unchanged then 

(6.76) holds. 

Proof In view of Lemma 6.7.8 we can assume that the first variable 

remains unchanged, i.e. <p is of the form 

u1 = 

u = y>2(ar, ar,... , xn), 

u" = p ... ,xn). 

Let I = h x - , / = h x • • • x In and 

Px\x2,... ,xn) = ,xn),... ,pn(x\... ,xn)). 

It is obvious that 3^ = 3-xi and also 

mn(J) = Jdx = J dxl J dx2---dxn- 
I hi 

In the (n — l)-dimensional integral we are allowed to change the variables 

and have 
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The formula 

<P-i(I) = h 

becomes obvious when one thinks what it means. It remains to show 

that the following conversion of the repeated integral into a multiple 

integral is valid: 

7l ¥>-l(-0 

This follows from Fubini’s theorem as soon as the measurability of the set 

is established. If I is an open interval then since <p is continuous 

<p_i(/) is open and hence measurable. If I is any bounded interval then 

it is easy to see that there is a sequence of bounded open intervals {Oj} 

such that / = f|“i Oi. Consequently <p_i(!) = D^i and is 

measurable. • 

The next lemma could be of some independent interest, so we call it 

a theorem. 

THEOREM 6.7.11 Assume that 

(i) the map is regular in G; 

(ii) there is a continuous non-negative function A with the property 

that 

mn(I) = / A (u)du 
Jip-i (7) 

for every bounded interval I with / C g>(G); 

(iii) the function f is absolutely KH-integrable on <p{G). 

Then 

(a) the function (/ o <p)A is absolutely KH-integrable on G and 

/ f(x)dx= (fo<p)(u)A(u)dui (6.77) 

<P(G) G 

(b) if N is of measure zero and N C ip(G) then mn(<p_1(A)) = 0. 

REMARK 6.7.12 Condition (iii) is satisfied with A = | J^l if <p leaves 

one variable unchanged. 
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Proof of Theorem 6.7.11 It suffices to prove the theorem for non¬ 

negative /. We denote by d the set of measurable functions / which 

are defined and non-negative everywhere in <p(G) and for which (6.77) 

is true. We need the following implications: 

I. If /i and /2 are in ^ then so is fi + f2- 

II. If c > 0 and / G ^ then cf E d- 

III. If fi form an increasing sequence for every x E S or a decreasing 

sequence for every x E S and fi E $ for every i E N then 

lim fi Ed- 
l—>-oo 

Statements I and II are obvious. To prove III we write 

JJ fi(x) dx — JJ (fiO(p)(u)A{u)du. 

Now we pass to the limit as i —> oo.f If the sequence is increasing we use 

the monotone convergence theorem and if it is decreasing the Lebesgue 

dominated convergence Theorem, the majorant being fi or (/i o ip)A, 

respectively. 

Now we prove the theorem in eight steps. 

Step 1. For every interval / there is an increasing sequence of bounded 

intervals Ik such that lim 1 jfc = 1/. For each Ik (6.77) holds by as- 
k—>oo 

sumption, and consequently 1/ E d by III. 

Step 2. If O C p(G) is open then 1Q E d- The open set O is a union 
OO 

of a sequence of disjoint intervals); O = \J h- Clearly 
i=k 

lo = lim (l/i + l/2 d-^ i/fc) 
k—>00 

and the proof is complete by appealing to III. 

Step 3. We say that a set S is Gs if it is the intersection of a sequence 

{Ok} of open sets. If necessary this sequence can always be made de¬ 

creasing. If S is bounded then S is a subset of an open interval /, if it 

is Gs the sets I D p(G) D Ok £Lre open, and by step 2 their characteristic 

functions are in d- By III for a decreasing sequence we have I5 E d- If 

S is any Gs then the characteristic functions of Sk = S Fl C(0, k) are in 

f It is here that we need the functions fi to be defined everywhere on tp{G) in order 

to assert the convergence of the sequence {fi o ip} everywhere on </3-i(S). 

t By the covering lemma O is the union of a sequence of non-overlapping closed 

intervals. Changing these to half open half closed intervals one obtains a disjoint 

sequence. 
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$ by what we have already proved. We can apply III to the increasing 

sequence lsfc to obtain Is G S' for a G§ set S. 

Step 4■ Let N C ip(G) be of measure zero. There are open sets Ok 

containing N with mn(Ok) < 1 /k. The intersection of all these sets S 

is a Gs set of measure zero and by step 3 its characteristic function is 

in S, which means that 

0 

s G 

Since A > 0 this implies that ls°F is zero almost everywhere. Obviously 

ljv ° is also zero a.e. in G. Consequently 

J(ljv ° <p)A = 0 = mn(N) 

G 

and ljv £ S Moreover 1^ ° <p = 1V3_1(tv) and it follows that 

mn(<p-i(N)) = 0. 

We have now proved part (b) of the theorem. 

Step 5. Let S be measurable, S C <p{G). Using the n-dimensional 

version of Theorem 3.11.15 we find a Gg set E D S such that mn(E\S) = 

0. By steps 3 and 4 the characteristic functions of E and E \ S are in 

5. So is their non-negative difference l# — 1.e\s = Is- 

Step 6. Let f > 0 be simple, finite and measurable in tp(G). Then / is 

a linear combination with positive coefficients of characteristic functions 

of measurable sets and belongs to 5 by step 5 and I and II. 

Step 7. Let / > 0 be measurable in (p(G). By Theorem 3.11.10 

there exists an increasing sequence of simple non-negative measurable 

functions converging everywhere to /. It follows from step 6 and III that 

fed- 

Step 8. If / is measurable and the set N where it is negative or 

not defined is of measure zero then redefining / to be zero on N does 

not change the integral on the left-hand side of (6.77). The integral on 

the right-hand side is not changed either because the function / o <p is 

changed only on the set <p-i{N) = 0 and by step 3 this set is of measure 

zero. 

LEMMA 6.7.13 For every a in p(G) there is an open interval K(a) 

such that for every interval I C K(a) equation (6.76) holds. 
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Proof By Lemma 6.7.6 one of the partial derivatives of ipn is not zero. 

In view of Lemma 6.7.8 we can assume that (p™n(a) ± 0. Let K(a) and 

ip = ipn be as in Lemma 6.7.4 with the role of p being played by ipn. 

We define maps ip and a by 

V’O1,... ,Xn~1,Xn) = (x1,... , £n_ 1, 1pn {x1, . ■ ■ ,Xn)) 

and a = ip o ip. Denoting by 4/ the inverse of ip we have 

4/(y,... ,xn) = (x1,... , xn~x, ipn (x1,... , xn)) 

and p> — a o 4>. A theorem on Jacobians of composite mappings states 

that 

J* = = j *<p"n. (6-78) 

In this particular instance it can easily be verified. Obviously f 4/^ = <5j 

if j < n and 4>fn = ipfn. Using the chain rule we obtain for j <n 

<p\j = (<?* °V),j = aJ 0 V + 

and 

This shows and Ja have the same columns except that the last column 

of is the last column of Ja multiplied by ipnn, hence we have (6.78). 

It follows that cr and 4> are regular and by Lemma 6.7.10 

mn(I) = 

a-l(I) 

The mapping 4/ leaves one variable unchanged, so by Remark 6.7.12 

assumption (ii) in Theorem 6./. 11 is satisfied with ip~i replaced by ip. 

Applying Theorem 6.7.11 to / = 1 a-i(i) 

and denoting ip(a-i{I)) by T we have 

mn(I) = Lcr_i(7)lJCT J J = 

Jo-1, abbreviating K(a) to K 

(i<r_i(/) ° "JOI-UH J'i'l 

K 

— / — i ■ 

<P-x(D 

LEMMA 6.7.14 For every bounded interval I with I C <p{G) equation 

(6.76) holds. 

f 8k is the Kronecker delta, i.e. 8k = 0 if j 7^ k and — 1. 



248 6 Integration in Several Dimensions 

Proof For every a G I we find the interval K(a) according to the 

previous lemma. By Borel’s theorem finitely many of these intervals, 

say K(a\),... ,K(ap), cover I. Let jk be the intervals according to 

Lemma 6.7.5; then the intervals j'k = jk D/ are disjoint and cover I and 

mn(j'k) = J(u)| du. 

v-iO'fe) 

Adding for k = 1,... ,p gives (6.76). • 

We are now ready to give a short proof of the main result of this 

chapter. 

Proof of Theorem 6.7.7 By the last lemma assumption (ii) of The¬ 

orem 6.7.11 is satisfied with A = | |, hence 

/ f[x) dx — / (/ o </?)(u)|J¥,| du. 

v{G) G 

Applying this to 1 sf in place of / we obtain (6.75). • 

The inverse mapping theorem states that ip(G) is open and if the 

regular map ip is one-to-one then 0, the map inverse to <p, is also reg¬ 

ular, moreover = 1. This has important consequences. It makes 

the blanket assumption we made about <p(G) superfluous. More impor¬ 

tantly: If / > 0 and the integral on the right-hand side of (6.75) exists 

and is finite then making the substitution u = in this integral 

proves this equation. Consequently we have 

COROLLARY 6.7.15 (to the main theorem) If assumption (i) 

of Theorem 6.7.7 is satisfied end either f is absolutely integrable on a 

measurable set S or (/ o p)\ is absolutely integrable on a measurable 

set ip-i(S) then both integrals in equation 6.75 exist and this equation 

holds. 

6.8 Exercises 

EXERCISE 6.1 ©Let A = Ax x - , B = Bx x - , C = C1 x - and 

C = A U B. Prove that if A ± 0 and B ^ 0 then there is a subscript k 

such that Ck = Ak U B*. and for 1 < j 7^ k < n we have Aj = Bj = Cj. 

EXERCISE 6.2 © Let Jk and Jk be the intervals (nr, £) x (0, t4t) 

and (0,m) x (^j, ^), respectively. If f = (k + l)2 on Jk and f = 
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(—1 )(k + l)2 on Jfc and f = 0 otherwise show that f is not integrable 

on [0,1] x [0,1]. 

EXERCISE 6.3 0 Let 

Tn = S (x,y)\ 
n + 1 

< x < -, 
n n + 1 

< y < x 

If f(x, y) = n(n + l)2 for (x, y) e Tn, n G N and f(x, y) = -/(y, x) and 

f(x,y) = 0 otherwise show that f is KH-integrable on [0,1] x [0,1]. 

EXERCISE 6.4 ©© Prove: If S(x,y) = [0,1] x [0,1] \ (0,x) x (0, y) 

and f is KH-integrable on S(x. y) for every x > 0 and every y > 0 then 

f is integrable on S(0, 0) if and only if 

lim [ f 
0,y)-K 0,0) J 

S(x,y) 

exists and then fs^0 0) / is equal to this limit. [Hint: Use Henstock’s 

lemma and the method of the proof of Theorem 2.8.3.] 

EXERCISE 6.5 ©Give an example of a function f for which 

dx / f(x, y) dy 
'-l 

exists but the other repeated integral does not. [Hint: f(x,y) = y/x.\ 

EXERCISE 6.6 Let / : J^t and H be an additive interval function 

on J. Assume that for every positive e there is a gauge 6 such that 

H(K) 

\K\ 
f (x) < £ 

whenever K C S(x). Prove that f is KH-integrable and H(J) = fj f. 

EXERCISE 6.7 ©© Approximation by step functions. Prove that if 

f is absolutely KH-integrable on J then for every positive £ there exists 

a step function ip such that fj\f-ip\<£. [Hint: Use Theorem 3.11.10 

and Theorem 3.11.14.] 

EXERCISE 6.8 ©0 Prove: If f is absolutely KH-integrable on J 

then there exist two absolutely KH-integrable functions fi, f2 and two 

sequences of step functions and {ip2>n} such that 
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(i) / = fi ~ h a-e- 

(ii) both sequences {g>i,n(x)} and {<P2,n(x)} are increasing for every 

x £ J; 

(iii) lim <pi n = fi a.e. for i = 1,2. 
n—>oo 

[Hint: Use the previous exercise and the method of Subsection 3.13.1], 

EXERCISE 6.9 Show that 

Al=l = \Z8(a4^)V/a+^a2+^ 

A2 = e~ax2 sin fix2 dx = sgnp \j^ V'~a + V®2 +P2- 

[Hint: Use the result and the same method as in Example 6.6.9. It is 

convenient to use complex valued functions and to consider A\ + jA?.] 

EXERCISE 6.10 ©0 Let S be a measurable subset of Mn-1 and f a 

function defined and non-negative on S. Show that the set 

E = {(z,y);X e S, 0 <y < f(x)} 

is measurable if and only if fs f exists and then mn(E) = J f, where 

mn denotes measure in Kn. [Hint: Use Fubini’s theorem.] 

©The following exercises outline a different approach to Fubini’s the¬ 

orem. It is less demanding on the reader; however, it establishes the 

Fubini theorem under the additional assumption that the function is 

absolutely integrable. 

EXERCISE 6.11 Let IF be a set of non-negative KH-integrable func¬ 

tions on lRn for which formula (6.53) holds with J = E'\ Note that 

cf £ T if c el and f £ T. Show that if f,ge.lF then f + g £ T. If 

moreover g < f then f - g £ T also. 

EXERCISE 6.12 Show that the limit of an increasing sequence of 

functions from T is in J~, provided the sequence of integrals is bounded. 

EXERCISE 6.13 Show that the characteristic function of an open set 
of finite measure is in T. 

EXERCISE 6.14 A set is called Gg if it is the intersection of a count¬ 

able number of open sets. Use Theorem 3.11.15 to show that for every 
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measurable set S there is a Gg set M such that S C M and M\S is of 

measure zero. 

EXERCISE 6.15 Show that the characteristic function of a Gg set S 

with mn(S) < oo is in T. 

EXERCISE 6.16 Show that the characteristic function of a set of 

measure zero is in T. 

EXERCISE 6.17 Use Exercises 6.14 to 6.16 to show that the charac¬ 

teristic function of a measurable set of Unite measure is in T. 

EXERCISE 6.18 Use part (IV) of Theorem 3.11.10 to prove that 

f G T for any non-negative f which is KH-integrable on R . 
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Some Applications 

7.1 Introduction 

In this last chapter we want to indicate some applications of the ideas 

presented in previous chapters. Applications of KH-integration are var¬ 

ied and many, and we just consider a few which are appropriate at our 

level of presentation. The origin and most important applications of 

the KH-integral lie in ordinary differential equations. We refer to the 

excellent monograph by Schwabik [38] and shall not deal with ordinary 

differential equations in this book. 

In Section 7.2 we give the definition and basic properties of the so- 

called line integral of a function F : G i-> M71, G C IT, along a curve 

<P (we say path). This integral in physics describes the work of the 

field given by F when a particle moves along p. In Theorem 7.2.8 we 

establish the existence of a function U with dU — F{x)dx provided the 

integrability condition (7.23) is satisfied. 

Section 7.3 deals with differentiation of series. The main theorem there 

is more general than the one usually given in analysis courses and has a 

simple proof. We could have proved it in Section 2.7 on applications of 

the Fundamental Theorem of calculus; the reason for this order is that 

we need it in the Section 7.4. 

In Section 7.4 we solve the Dirichlet problem for the Laplace equation 

on a circle. This in itsell is an important topic but we present it mainly 

as a motivation for Abel’s summability of Fourier series considered in 

the following section 7.5. 

The concluding section shows that a 2vr-periodic function such that 

Jo f exists can always be represented by its Fourier series in a 

well defined sense which is described in that section. Also the important 

Riesz-Fisher Theorem is proved there. 

252 
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7.2 A line integral 

In this section the letter G will stand for an open set in Rn with n > 2. 

A generic point in Mn will be denoted by x or (x1 ,x2,... ,xn), and the 

norm \x\2 is the usual Euclidean norm. For a mapping F : G* Rn we 

have F = (FX,F2,... ,Fn) with Fl : G t—> M1. Partial derivatives will 

be denoted by subscripts with commas, for instance 

dFj/dxi = Fji. (7.1) 

The word path will be used for a continuous map of bounded variation 

from an interval in M into Mn. That is if 

ip : [a, b] i—► Mn (7-2) 

then ip is a path if it is continuous on [a, b} and there exists a constant 

K such that for any division D 

^2'\ip{v) - ip(u)\ < K. (7.3) 

D 

The supremum of the sums in (7.3) over all divisions of [a, b] will be 

denoted by Varbatp and is the length of the geometrical image of p, i.e. 

of the set {p(t)\t G [a, 6]}. We shall denote this set by [p\. Similarly as 

in (3.28) we have, for a < c < 6, 

Ydxhap = Var^ + Var^. 

A path (7.2) is closed if <p(a) = ip(b). Two paths 

p : [a, b] Mn and ip ’■ [c; A ^ (?-4) 

are, by definition, equivalentff if there exists a continuous strictly incieas¬ 

ing function 6 mapping [a, b} onto [c, d\ such that 

p(s) = ip(6(s)) for every s G [a, b}. (7.5) 

The path ip is said to be a part of <p, in symbols ip C <p, if [c, d\ C [a, b\. 

By a line integral j F we understand the Kurzweil—Henstock limit of 

the Riemann sums 

EE FfaitkMv'ivk) - (7-6) 
k i=1 

+ It is easily seen that for two paths the relation of being equivalent is reflexive, 

symmetric and transitive and therefore is a well defined equivalence. 
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More precisely the number F is the line integral of F along ip (as in 

(7.2)) if for every positive e there exists 8 : [a, b] i—► K+ such that 

N n 

Fl(F^k)){^(vk) - pl(uk)) 

k=li=1 
< e, 

for every <5-fine partition 

7T = {(a, [uk, Vk])-k = 1,2,... ,N} (7.7) 

of [a, b\. Sometimes we shall denote the sum in (7.6) briefly asf 

7T 

We shall also denote the line integral F by J F(x) dx and in concrete 

situations by J Fl{x)dxl. The line integral has the same value along 

two paths with the same geometrical image traversed it in the same 

direction. More precisely we have 

THEOREM 7.2.1 If ip and if are two equivalent paths then 

j F(x)dx = j F(x)dx 
J ip J tjj 

as long as one of the above integrals exists. 

This can be proved using the fact that the one-to-one correspondence 

between [a, 6] and [c, d] by 6 induces a one-to-one correspondence be¬ 

tween Riemann sums of type (7.6). The usual theory of line integrals, 

given in advanced calculus courses, can be developed from this defini¬ 

tion. However, just as the KH-integral has better properties than the 

Riemann integral so has ‘our’ line integral in comparison with the usual 

calculus line integral.J We specifically mention the following elementary 

properties of the line integral: 

c / F(x)dx = / cF(x)dx, (7.8) 
J ip J (f 

F(x)dx+ / G(x)dx = f (F(x) + G(x)) dx, (7.9) 

t The expression following the summation sign is to be understood as scalar product 
of two n-dimensional vectors. 

t e.g. a modified version of the dominated convergence theorem is available for ‘our’ 

line integral; however, we shall not pursue this here. 
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If \F\ < M then F(x) dx < MVar|>. (7.10) 

If p and 0 are as in (7.4) and p{b) = 0(c) then p ® 0 is dehned on 

[a, b + d — c] by 

(<p©0)(i) = 
if t G [a, 5] 

0(t + c — 6) if t £ [5, 6 + d — c]. 

The path — p is defined by 

(-p)(t) = p(b — t + a)) for te[a,b}. 

It follows easily that 

f F(x) dx = / F(x)dx+ / F(x)dx, 

F{x)dx = - / F{x)dx. 
' ~r> 

(7.11) 

(7.12) 

(7.13) 

(7.14) 

The Cauchy convergence principle applies to the line integral as well: 

The integral / F exists if and only if for every positive £ there is a 6 

such that 

| J]F(p(£))(p(v) - p(u)) - 5^T((/0?7))(<p(s) - <p(f))| < e (7.15) 

77 i 

whenever n\ S nnd. 712 <5. It is left to Exercise 7.7 to show thnt if 

F o p is continuous and p a path then F exists. By the same method 

by which we prove the Fundamental Theorem of calculus it can be shown 

that 

I F(x)dx = K7H I {Fop)(t)p'{t)dt, (7.16) 
J tp J a 

provided that the integral on the right-handf side exists, pl are contin¬ 

uous and the derivatives of p1 exist except on a countable set4 

LEMMA 7.2.2 If F is constant and p closed then J^F — 0. 

Proof This is obvious from the definition of the line integral. • 

f (F o ip)(t)ip'(t) is to be undersood as a scalar product of two vectors (Fop)(t) and 

ip'(t). 
X The weaker assumptions that are SL (or AC) and the derivatives exist a.e. on 

[a, 6] are also sufficient. 
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LEMMA 7.2.3 If p is closed and there is a constant k such that 

\F(x) — k\ < M then f F < MV&rbap. 

Proof This follows from the previous lemma and (7.10). • 

We call a path as in (7.2) polygonal if there is a division D of [a, b] 

such that p is linear on every subinterval of D. 

THEOREM 7.2.4 (Approximation by a polygonal path) Let p 

be as in (7.2) and F continuous on an open set G containing [p\. Then 

for every positive e there exists a positive constant 6 such that for every 

division 

■K = a = to<ti<---<tn = b 

with n(D) < S the polygonal path defined by 

V’W = ~ / </?(4) + * ~ — <p{tk+i) for t E [4,4+1) (7.17) 
1 £k £fc+1 tfe 

and ij)(b) = tp(b) satisfies 

| / F- [ F\<e. (7.18) 
J ip J 'Ip 

Proof Let e = 2e0Var^. Since [ip] is compact there is a positive r such 

that the set K of points whose distance from (p\ does not exceed r is a 

part of G. Evidently K is compact. There exists a positive p such that 

1^0) ~F(y)\ < £0 (7.19) 

for \x — y\ < rj and x, y E K. Having obtained p we find 8 such that 

\v(t) - p(t)\ < p, (7.20) 

for 11- t\ < 8. Let n{D) < 8 and f) be defined by (7.17). Let pk be 

the closed path formed by the restrictions of p and -ip to [4,4+1]. For 

every x E [yfc] and y = tk we have (7.19) and by Lemma 7.2.3 we have 

and since 

< 2£0Var^+V 

F, 

inequality (7.18) follows. 
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THEOREM 7.2.5 If there exists a function U : G i—» K. differentiable 

in G with Uj = F1 and the path ip lies in G, i.e. [ip] C G, then 

U(v(b)) - %(»)). 

In particular if ip is dosed then 

(7.21) 

F(x)dx — 0. 

Proof For every positive e and every £ G [a, b] there exists by continuity 

of ip and differentiability of U a positive <5(£) such that 

£%>(»)) - £/<¥>(?)) 
i=l 

¥>*(0) <e\<p(w)~ v?(0l 

(7.22) 

whenever \w — £| < <5(£). Let 7T = {(£*;, w])} be a <5-fine partition of 

[a, 6]. It follows from (7.22) that 

n 

U{ip{vk)) - [%(£*)) - Y Fl(^kW(vk) - ¥><(&)] 

< e |(p(ufc) - ¥?(£fc)|, 
n 

E%(£fc)) - U{ip{uk)) - Y F\v^k))Yp\tk) - 
i=1 

< £ |<p(£fc) - V?MI • 

Writing U(<p(b)) — U((p(a)) as 

Y/ [(U{ip{vk)) ~ U(ip{fk))) + (U(ip(£k)) ~ U(ip(uk)))] 

7T 

and replacing ipl(vk) - <pl(uk) by 

ipl{vk) — </?*(£fc) + ^(dk) ~ {fl{uk) 

in (7.6) we obtain 

n 

U(tp(b)) -U{ip(a)) - EE - <pl{uk)) | 
k i=l 

< e]T [|<^(i;fc) - ¥>(&)l + |v>(&) - </>K)|] < eVaxJyj. 
7T 

The last inequality is a consequence of the definition of VarJ(</?. 
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It is an elementary result that if F has continuous partial derivatives 

in an n-dimensional interval K and 

F'U) = (7.23) 

for all x E K there exists a function U with UA(x) = Ft(x) for all 

x G I\ and the line integral is independent of the path. Moreover U is 

obtained by choosing an arbitrary point x0 in K and integrating F from 

xQ to a variable point x along any path in K. Our aim is to reduce the 

assumption of continuous derivatives to mere differentiability of F. We 

shall also allow more general sets than intervals. 

In the proof of the next theorem we shall integrate over sides of tri¬ 

angles. To this end we need to make our terminology unambiguous and 

to say something about orientation of segments and triangles. If a and 

b are distinct points in then the set 

ab = {a + t{b — a); 0 < t < 1} 

is a segment and the points a, b are the endpoints of ab. An oriented 

segment ab is the equivalence class of all paths equivalent to 

<p : t a + (6 - a)t, f G [0,1]. 

For the oriented segment ab, a is the initial point and b is the endpoint. 

The point a + (b — a)t with t G [0,1] is also called a point of ab and 

if 0 < t < 1 it is an interior point. Naturally, we regard J F(x) dx = 

ab 

hp F(x) dx with (p as above and to simplify the notation we shall denote 

F(x) dx = I F(x) dx. (7.24) 

aS 

Clearly ab = ba whereas ab = —ba and 

F(x)dx = F(x) dx. 

If cd C ab we say thah^ cd is consistently oriented with ab if c G ad. 

ItMs easy to see that cd is consistently oriented with ab if and only if 

cd C ab. We say that cd has the opposite orientation to ah if d G ac. 

In this situation 

F(x) dx+ F(x) dx = 
cd pb 

F(x) dx + / F(x) dx. (7.25) 
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A line is a set of the form {a + t(b — a); t £ K}. If the points a, 5, c do 

not lie on the same line then the set of all points x of the form 

x = \axa + \bxb + \cxc, (7.26) 

K: + = 1 (7.27) 

constitutes a plane. If moreover all A are non-negative then the set of 

all x satisfying (7.26) and (7.27) becomes a triangle Aabc. The points 

a, b, c are the vertices of A abc, and the segments ab, be, ca are the sides 

of A abc. A point x £ Aafec is an interior point of A abc if all A in 

(7.26) are positive. Two triangles belonging to the same plane are called 

non-overlapping if they have no interior point in common. 

The orientation of a triangle is determined by an ordered triplet of 

its vertices and is the set of all ordered triplets which can be obtained 

from the determining triplet by cyclic permutations. Hence for a triangle 

A abc, there are two distinct orientations 

{[a, 6, c], [c, a, b], [5, c, a]} 

and 

{[a, c, b], [c, b, o], [b, a, c].} 

These orientations are opposite one to the other. A triangle to which one 

of its orientations has been assigned becomes an oriented triangle; the 

triangle A abc together with the orientation described by [a, b, c\ is an 

oriented triangle and we shall denote it by abc. The oriented boundary 

dabc of abc is the path 

ab © be © ca. (7.28) 

Intuitively we can think that the oriented boundary of a triangle de¬ 

scribes a positive direction of moving around the triangle, for instance 

moving from d = \{a + c) to b through a is moving ‘positively’ within 

dabc. See Figure 7.1. 

For the line integral over dabc we have 

F{x) dx= F(x) dx+ F{x) dx+ F{x) dx. 
' dabc 

Obviously 

/ F= 
F. 
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c 

Fig. 7.1. An oriented triangle 

We say that xyz is similarly oriented to abc, in symbols xyz ~ abc, if 

Ab 

K 
K 
K Ab \% 

K 
K > o. 

It is only a matter of simple linear algebraf show that 

abc abc. 

If xyz ~ abc then abc ~ xyz. 

If xyz ~ abc and abc ~ pqr then xyz • pqr. 

(7.29) 

(7.30) 

(7.31) 

This means that the relation of being similarly oriented is reflexive, sym¬ 

metric and transitive. Consequently all oriented triangles in the same 

plane belong to one and only one of the two distinct equivalence classes 

of similarly oriented triangles. It is easily checked that if x G A abc but 

x ab then abc ~ abx. In M2 the triangles similarly oriented to the 

triangle art) with o = (0, 0), x = (1, 0) and y = (0,1) are usually called 

positively oriented. Intuitively the oriented boundary doxy describes an 

anticlockwise movement around Aoxy and this is also true for all posi¬ 

tively oriented triangles. Another intuitive way of describing it is to say 

that one moves along an oriented boundary of a positively oriented tri¬ 

angle in such a manner that the triangle stays on the left. Rather than 

rely on intuition, as most authors on our level of presentation do, we 

preferred to give a mathematically sound treatment of orientation of tri¬ 

angles and did not define orientation by means of a clock. If wzc ~ wzr 

then these triangles have a common interior point, indeed, e.g. 

x = (--e)w + (--e)Z + 2ec 

f The theorem on multiplication of determinants is needed for the proof. 
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Fig. 7.2. Division by similar triangles. 

for sufficiently smallj positive e. Let abc and pqr be two similarly ori¬ 

ented triangles with A abc and A pqr non-overlapping, pq n ab = wz and 

w £ az. We are going to show that zw C pq. Assume contrary to what 

we want to prove that w £ pz. Then 

abc ~ pqr ~ wzr wzc ~ 

and the triangles A wzc, A wzr have a common interior point contrary to 

the assumption that A abc and A pqr are non-overlapping. Consequently 

wz is consistently oriented with ab but has the opposite orientation to 

pq. Similarly as in (7.25) the integration over the common segment wz 

in the sum 

(7.32) 

is cancelled. 
We shall need the following generalization of Cousin’s lemma: If 

Ter is a triangle and Tk, k = 1,..., r are non-overlapping triangles 

with \J\ Tk = T, points yk belong to Tk and 6 : T i-> (0, oo) then we say 

that the set {(yk, Tfc); k = 1, • ■ •, r} is a 6-fine partition of the triangle 

T if d(Tk) <8(yk). 

LEMMA 7.2.6 (Cousin for triangles) For a triangle T C Kn there 

always exists a 8-fine partition consisting of triangles similar to T. 

See Figure 7.2. An indirect proof can be given which follows the usual 

pattern of the one-dimensional bisection argument in the proof of Theo¬ 

rem 2.3.1, except that now T would be divided into four similar triangles 

defined by the mid-points of sides of T. 

t Note that > 0, so it is sufficient to have e < Min(l/4, (|A™| + |A*| + A^)"1). 
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We shall say that assumption V is satisfied in G if F is continuous in 

G and there exists a countable set M such that F is differentiable and 

satisfies (7.23) in G \ M. 

THEOREM 7.2.7 If V is satisfied in G, the triangle T is oriented 

and T C G then 

F(x)dx = 0. (7.33) 

Proof For this proof we denote by d(T), A(T) and p(T) the diameter, 

two-dimensional area and perimeter of a triangle T. The elements of M 

can be enumerated and for wm £ M and for arbitrary e > 0 there exists 

a 5 : T i—► M+ such that 

\F(x) - F(wm)| < (7.34) 

whenever \x - wm\ < 6(wm). For y £ S\M there is a 8 > 0 such that 

for * = 1, 2,..., n 

Fi(x)-Fi(y)-YJF‘j(y)(xi 

3=1 

< e\y - x (7.35) 

whenever \x - y\ < 6(y). Let {yk,Tk} be a 5-fine partition of T with 

triangles similar to T. We give T a definite orientation and then we 

make the orientation of each Tk similar to T. In the sum 

[ F{x)dx 

k=i JdT* 

integration over segments which are on common sides of adjacent tri¬ 

angles Tk cancels and only integration over segments which lie on the 

boundary remains. A moment’s reflection reveals that these segments 

are consistently oriented with segments which form the oriented bound¬ 

ary dT. It follows that 

/ F(x)dx = ^ f 
JdT rT hri 

F(x)dx. 

k=l JdT« 

If Vk G M then yk = wm for some m and we obtain from (7.34) 

(7.36) 

'dTk 
F(x)dx < fip(Tk) < fiv(T). (7.37) 
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If j/fe ^ M then because of (7.23) 

'dTk 
E F’(»)+E f:m)F - vL) dx> = o- (7.38) 

2=1 3=1 

This can be seen most easily by noting that the integrand in (7.38) has 

a ‘primitive’ U, where 

U(x) = ^F\yk)xl + - Fj(yk)(xJ -yJk)(xl-yl), 
2=1 i,j=1 

and using Theorem 7.2.5. For j/t ^ M we get from (7.35)f and (7.38) 

that 

'dTk 
F(x)dx < £d(Tk)p{Tk). (7.39) 

Fig. 7.3. Star-shaped set 

The triangles Tk are similar to T, therefore there exists a constant 

C depending only on T and independent of k such that d{Tk)p(Tk) < 

CA(Tk) for all k. Consequently (7.39) becomes 

'dTk 

F{x)dx < CeA(Tk). (7.40) 

Finally by (7.36), (7.37) and (7.40) 

F(x)dx 
' dT 

< e(CA(T) +p(T)). 

f With y = yfc. 
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A set S C Rn is said to be star-shaped if there exists a point c £ S 

(the centre of the star) such that for every x E S the whole segment 

joining x with c lies in S. See Figure 7.3. 

THEOREM 7.2.8 (Path independence. Existence of a prim¬ 

itive) If assumption V is satisfied in a star-shaped open set S then 

there is a differentiable function U : S i—> R such that 

dU(x) = J^F\x)dxl 

i=1 

for all x in S. 

If Lp : [a, b\ i—» S is a path lying in S then 

(7.41) 

F(x)dx = U{ip{b)) — U(<p(a)). (7.42) 

Proof It suffices to prove (7.41); equation (7.42) then follows from 

Theorem 7.2.5. Let c be the centre of S and e > 0. Given x E S we find 

V > 0 such that for \h\2 < y the point x + h G S and for t 6 [0,1] 

|F(x + th) - F(x)\ < e. 

We denote 

(7.43) 

U(x) = / F(z)dz. 

It follows from Theorem 7.2.7 that 

U(x + h) — U(x) 
/•x+h 

F(z)dz. 7.44) 

By combining (7.43) and (7.44) and using (7.10) we obtain 

U(x + h) -U(x) -J2 F\x)hl 

"X+h 

[F(z) — F(x)} dz < £ I 

EXAMPLE 7.2.9 In R2 let us write x, y instead of x1, x2, respectively. 

If ip(t) = (cos t, sin t) with t € [0, 27r] then 

—ydx 

x2 + y2 
+ 

xdy 
= 2tt. 

x‘ 
(7.45) 

Theorem 7.2.8 is not applicable with S — IR2 \ {(0,0)} because this set 

is not star-shaped nor it is applicable to R2 because F is not continuous 

at (0, 0). 
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The line integral does not change its value when the path is contin¬ 

uously deformed. This is the content of the next theorem. First we 

give a precise meaning to the phrase ‘continuously deformed’ by using a 

function H below. We assume that the two paths ip and <f> for which we 

want to prove the formula F — F are defined on [0,1]; this can be 

always achieved by passing to an equivalent path. We also assume that 

either the paths start and end at the same point, i.e. </?(0) = $(0) = a 

and <p(l) = $(1) = 5, or both paths are closed. Let Q = [0,1] x [0,1] 

and Ft a function! continuous on fl with the following properties: 

H(s,t) G G for every (s,t) G (7-46) 

H(0,t) — (pit) and H(l,t) — T(t) for every t G [0,1]; (7.47) 

H{s, 0) = a and H{s, 1) = b for every s G [0,1]; (7.48) 

or 

H(s, 0) = H{s, 1) for every s G [0,1]. (7.49) 

THEOREM 7.2.10 If 

• G C Rn is open, 

• assumption T> is satisfied in G, 

• there exists a continuous function H with properties (7.46), (7.47) 

and (7.48) or with properties (7.46), (7.47) and (7.49) 

then 

f F = [ F. (7.50) 

Proof Since H{Q) is compact there exists a positive r such that the ball 

B[s,t), centred at H(s,t) and of radius r, lies in G for every (s,t) G £1. 

The function H is uniformly continuous on Q, so there is a positive 8 

such that 

\H(s, t) — H{s\ t')\ < r 

whenever |s - s'| + \t — t'\ < 8. Let n G N with n8 < 1. In this proof we 

shall integrate along a polygonal path tpk joining </?(0) with <p( 1) through 

the points #(£, i) for j = 1,..., n - L More precisely we set 

Fk„ At) = H(£>i) + (nt- (hi)l forte [hTl- 
Fk = Fk,0 © Fk,l © ‘ ' • © Fk,n-1- 

f Commonly referred to as a homotopy. 
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We also denote 

<M‘) = (s. i) + («* - *0 [«(A1 A) - H (s. j)l 
See Figure 7.4. First we note that f F = f F. This is 

° J (p o J p 

for t e . In5 n J 

because the line 

Fig. 7.4. Homotopy 

segment joining 77(0, £) with 77(0, *±i) and the corresponding part of 

V? he in a ball in which the integral is independent of its path. Similarly 

Jlfn F — J^F. We now complete the proof by showing 

F for k = 0,... ,n — 1. 
V’fc+i 

The integral along any closed path in B(J, £) is zero, consequently 

Finally we have 

F = 0. 

If (7.48) holds the last two integrals are zero because ijj'k 0 = ip'k — 0; 

if (7.49) holds then V’fc.n = and the last two integrals are equal. • 
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7.2.1 Green’s theorem 

267 

The material presented so far in this section is intimately connected 

with the so-called Green-Stokes theorem. We restrict our attention to 

R2 and in this special case it is simply called Green’s theorem after 

the British mathematician G. Green. The theorem, however was known 

before Green to C.F. Gauss and J.L. Lagrange. Green’s theorem estab¬ 

lishes the formula 

P(x,y) dx + Q(x, y) dy (Qx{x,y) - Py{x,y)) dxdy. (7.51) 

In this formula 0 is a positively oriented path and i\(0) is the domain 

enclosed by 0. The formula is often given a slightly different form 

P(x,y) dx + Q(x,y) dy 
ik 

(Qx(x,y) - Py(x,y))dxdy. (7.52) 

Here K is a set in M2 and dK is its positively oriented boundary. 

In general there are considerable difficulties in proving or even rigor¬ 

ously stating the theorem. In equation (7.51) the problem lies in the 

phrase ‘domain enclosed by’, in equation (7.52) in the phrase ‘positively 

oriented boundary’. To indicate what these difficulties are we offer the 

following examples. In Figure 7.5 the set K is the unit circle without a 

Fig. 7.5. 

segment in the middle. In Figure 7.6 Ln is the segment joining the point 

(n-1,0) with (n_1,xn) where xn -> 1 and K = [0,1] x [0,1] \ Ui Ln- 

In either case it is not clear what the positively oriented boundary of 

K should be. Moreover, in the second example, the ‘length’ ofMhe 

boundary cannot be finite since the length of part of the comb Ui 
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Fig. 7.6. 

Fig. 7.7. Jordan curve 

is N - 1 + 2~N. The simple closed path [<p] in Figure 7.7 is so compli¬ 

cated that it is not clear whether or not it encloses a domain and even 

admitting that it does it is difficult to decide what its interior is; if a fly 

(point) lands somewhere in the maze it is hard to say whether or not it is 

inside [<p]. These difficulties are easily overcome in special cases needed 

in applications, e.g. [<p] is a circle or K is a rectangle. In this case the 

boundary is clearly a geometric image of a path, and the positive direc¬ 

tion is the anticlockwise one, which can be explicitly described without 

any reference to a clock. We trust that it is clear what is meant by the 
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positively oriented boundary dK of a rectangle K. See Figure 7.8. Let 

us prove the theorem for a rectangle first. 

y 

d 

c 

0 

dK 

dK 

dK 

dK 

a b 
x 

Fig. 7.8. Oriented boundary of K 

THEOREM 7.2.11 Let dK be the positively oriented boundary of 

K = [a, b\ x [c, d) 

and K° its interior, i.e. K° = (a, b) x (c, d). If 

(i) P, Q are continuous on K, 

(ii) the set S C K is countable, the functions P, Q are differentiable 

in K° \ S, 

(iii) the function Qx — Py is absolutely KH-integrable on K 

then (7.52) is valid. 

Proof We prove the theorem first under the additional assumption that 

P and Q are differentiable in an open set containing K\S. Since the 

values of a function on a countable set influence neither the existence nor 

the value of the integral, we shall, during the proof, regard the expression 

qx _ py at the points of S as if it were zero. Let e > 0. There is a 
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positive <5i such that 

\P(x,y) - P(Z,rj) - Px(£, v)(x ~ £) - Py(£, rj){y - rj)\ 

e[\v-Z\ + \y-v\], (7-53) 

\Q{x,y) -Q(£,ri) - Qx(£, p)(x - £) - <2y (£, 77)(y ~ v)I 

£[ \x-Z\ + \y-rj\ ], (7.54) 

for 

\x-£\ + \y~ri\<6i (7-55) 

and (£, 77) £ K\S. The elements of S' can be ordered in a sequence and 

if (€kiVk) is the fc-th element of this sequence then there exists hi such 

that 

\P(x,y) - P{£k,rik)\ + \Q{x,y) - Q(£k,rik)\ < (7.56) 

for (x,y) satisfying (7.55). Finally there is a positive 6 < 61 such that 

for every h-hne partition of K the Riemann sum for Qx - Py differs by 

less than £ from the double integral in (7.52). Denote p = 2(b-a + d-c) 

and A = (b — a)/(d — c). Let {((£, 77), /)} be a <5-hne partition of K with 

each I similar to K. It is fairly obvious that the integral 

/ P dx + Qdy 
* Jdl 

is an additive function of intervals I and we have by Lemma 6.2.4 

/ Pdx + Qdy = / P dx + Q dy. 
JdK ^ Jdl 

If (£,77) £ S then by (7.56) 

<dl 
P dx P Q dy < 

ep 

2*’ 

for some natural k. If (£,77) £ S then by (7.53) and (7.54) 

{Pdx + Q dy) - [Qx (£, 77) - Py (£, V)} 11 
' dl A 

Combining (7.58) and (7.59) with the definition of <5 we have 

(7.57) 

(7.58) 

< ^ + — |/|e. (7.59) 

P(x,y) dx + Q(x,y)dy 
' K 

(Qx(x,y) - Py(x,y)) dxdy 

< ep + e 
(1 + A); 

A 
\K\ + e. 
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Since e is arbitrary this establishes the theorem under the additional 

assumption. In the general case we apply the already proved part to the 

rectangle [a + h, b — h] x [c+ h, d — h] and pass to the limit as h j 0. The 

limit passage in the line integral is easy because P and Q are continuous; 

the limit passage in the double integral follows from absolute continuity.* 

We shall call a set a Green domain if the Green theorem can be ap¬ 

plied to it. More precisely, we say that a compact set K C R2 with 

a non-empty interior K° is a Green domain if there exists a path dK 

with [dK] = K \ K° such that formula (7.52) holds for every pair of 

functions P,Q satisfying conditions (i), (ii) and (iii) of Theorem 7.2.11. 

The Lebesgue two-dimensional measure of a path is zero (see Exercise 

7.9) and consequently K can be replaced by K° in equation (7.52). So 

far we know only one type of Green domain, namely a rectangle. The 

next theorem widens the class of Green domains considerably. 

THEOREM 7.2.12 Let 0 ± K° C K C O C R2, with K compact 

and O open. If 

(i) H = (H1,!!2) is a one-to-one mapping of K onto H(K); 

(ii) H1 and H2 have second order partial derivatives continuous in 

O; 

(iii) H\H% - H\H2X > 0 in K°; 

then H(K) is a Green domain if K is. 

Proof The first order derivatives of H are bounded in K, i.e. there is 

a constant C such that \Hj(x1,x2)\ < C for i,j = 1,2 and all (x1,^ ) 

in K. For brevity we denote ip = dK and ip = H op. It is clear that 

^ is a path. The set H(K) being a continuous image of a compact set 

is compact. It follows from the inverse mapping theorem that H(K)° = 

H(K°) and consequently 

H{K) \ H(K)° = H(K \ K°) = H{[ip]) = [ip]. 

It remains to be shown that the Green formula can be applied to ip and 

H(K). The idea of the proof is to transform the line integral first, then 

use the Green theorem on the domain K and conclude the argument 

by change of variables in the double integral. In order to save some 

cumbersome writing we denote derivatives by commas as in (7.1) and 

write F1 and F2 instead of P and Q. We need 
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LEMMA 7.2.13 

<V2)dyz 

2 2 

/ E E **(#V,*2), H\x\x2))W0 dxK 
.7 = 1 i=l 

(7.60) 

Proof of the lemma Let 5 be a positive number and 7r = {(£, [r, s])} 

a 5-fine partition of [a, 5]. Denote by tpt the restriction of <p to [r, s\ and 

e(6) = sup {|F o H o Lp(t2) - F o H o <p(ti)\; \t2 - h\ < 6} . 

Denote 

2 

7T i—1 

Using Theorem 7.2.5 we have 

V{s) - ij)x(r) 

and consequently 

a = E 
,22 

/ EEF‘ 
Vt 1=1 j'=l 

O H(ip(t))H\dxj. 

The integral on the right-hand side of (7.60) exists. Let us denote it by 

A. For brevity set W^®1,®2) = Fl oH{xl,x2). Then 

,22 

'4-ff = E/ EE ([W*(®\*2) - o ff^*))]^®1,*2)) d®>\ 
7T ^ ft i=l j = l 

Using the boundedness of derivatives of H, the estimate (7.10) and the 

definition of e(5) we have 

\A — a\ < 2Ce(8)Vaiba<p. 

This completes the proof of the lemma, since it shows that the integral 

on the left of (7.60) exists and equals A. t 
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Continuing with the proof of the theorem we havef 

EXAMPLE 7.2.14 We are going to show that a domain D character¬ 

ized by the inequalities 

a < x1 < b, cpl(x*) <x2< p2(xx), 

(or a domain characterized by similar inequalities with the roles of x1 

and x2 interchanged) is a Green domain if ip1(x1) < <p2(xx) on [a, b], 

and the second derivatives of <p\ i = 1,2 are continuous in (a, b) with 

continuous extensions to [a, b\. Indeed, the domain D is an image of the 

rectangle [a, 6] x [0,1] under the mapping 

Hl(x\x2) = x1, 

H2(x\x2) = (1 -x2)(p1(x1) + x2<p2(x1); 

and H satisfies the assumptions of Theorem 7.2.12. This can be further 

generalized: it suffices to require that there is a division a uq <C u\ <1 

... <Un = b and ip1 and tp2 satisfy the above assumptions only on each 

[v,i,Ui+1] for i — 0,... , n - 1. By a limit passage it is possible to allow 

yd (a) = ip2(a) or ^(6) = p>2(b). It now follows easily that a disc, an 

ellipse, a triangle or a convex polygon is a Green domain. 

Theorem 7.2.12 widens the class of Green domains sufficiently for 

applications within and outside mathematics. We now wish to make a 

few comments about even more general results. A path as in (7.2) is 

said to be simple if <p(G) ^ <p(t2) for fi < G with the possible exception 

of ti = a and t2 = b. A simple closed path ip is by defintion positively 

f Omitting the arguments x\x2 in F\ H\- etc. and leaving some routine calcula¬ 

tions to the reader. 
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oriented if 

/ — ydx + xdy > 0. (7-61) 
J ip 

Since f —yodx + xqdy = 0 for any (xo,yo) the path ip is positively 

oriented if for some (x0,y0) the expression —{y — yo)dx 4- (x — x0)dy 

is positive on [p). This happens if (x0,y0) is the centre of a circle or 

of a rectangle and p is travelled anticlockwise. We see that defining 

‘positively oriented’ by (7.61) is in accord with what our intuition tells 

us is ‘anticlockwise’. A simple closed path p divides the plane into two 

open and connected sets, one of which is bounded and called the interior 

of [p], while the other is unbounded and is called the exterior of [p]. The 

common boundary! of the exterior and the interior of [p] is [p] itself. 

This intuitively obvious statement is called the Jordan curve theorem 

after the French mathematician C. Jordan who was the first to realize 

that the statement requires proof. Despite its plausibility the Jordan 

curve theorem is a deep theorem with a difficult proof. A relatively 

simple proof for a piecewise smooth curve can be found in [35]. We shall 

neither prove nor use the Jordan curve theorem. The Green theorem 

can be proved for a simple closed path in the form (7.51); the domain 

enclosed by [p] is simply the interior of [p\. A proof of the Green theorem 

for a simple closed path within the framework of Riemann integration 

can be found in [1] but this proof can be extended to ‘our’ integrals as 

well. 

REMARK 7.2.15 Assumption (iii) in Theorem 7.2.11 is general 

enough but it is desirable to remove it altogether. The situation here is 

similar to that of the Fundamental Theorem where the integrability of f 

is part of the assertion. Unfortunately in this higher-dimensional case 

the KH-integration process is not good enough and yet another integral 

is needed for a Green-type theorem in which the integrability of Qx - Py 

is asserted. This theme is a topic of current research and we refer to [22] 

and the bibliography there. 

7.2.2 The Cauchy theorem 

Theorems 7.2.8 and 7.2.10 contain as special cases the famous theorems 

of complex analysis, namely the Cauchy theorem and its homotopy ver¬ 

sion. In this special case it is however simpler to prove these results 

t In the topological sense, the topological boundary of a set S C K2 is Sn (M2 \ S). 
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directly. The set of complex numbers is denoted by C. For z G C we 

write z = x + jy, i.e. x — Rz and y = $sz. Functions in this sub¬ 

section are complex valued, if T C € and F : T i—>■ C then we write 

F(z) = U(x,y) + jV(x,y). A path is similarly as before a continuous 

map of bounded variation from an interval in M1 into C. Equivalence 

of paths is defined as in (7.4) and (7.5) with W1 replaced by C. The 

opposite path —tp and <p®if are defined exactly as in (7.12) and (7.11), 

respectively. The number f F(z) dz isf the line integral of F along <p 

if for every positive e there exists 6 : [a,b\ i—> R+ such that if (7.7) is a 

(5-hne partition of [a, b] then 

N 

Y^F{(p(^k))((p(vk) ~ fp(uk)) ~ / F(z)dz 
k—1 

< £. (7.62) 

This complex valued integral has the properties (7.8) to (7.10), (7.13) 

and (7.14); moreover Theorem 7.2.1 holds. It is also easily checked that 

/ F{z)dz= / U(x,y)dx-V(x,y)dy + j / V(x,y) dx + U{x,y) dy. 
Jcp Jtp dip 

For a continuous F the integral always exists along a path. If exists 

on [a, b} except on a countable set the integral can be evaluated by the 

formula 

[ F{z)dz = JCH f (F o ip)(t) dt. (7.63) 

We rephrase and strengthen Theorem 7.2.5 as 

THEOREM 7.2.16 Let M CT C C and let T be an open set. If 

(i) there exists a function P continuous in T and such that P (~) 

F(z) for all z E T \ M, 

(ii) (p is a path with [p\ C T 

(iii) <p-i(M) is countableJ 

then 

f F(z) dz = P(<p(b)) — P((p(a)). (7.64) 
J c,p 

In particular if p> is closed 

F(z) dz = 0. 
iip 

(7.65) 

f With F(z) G C and [<p] C C. 
X As usual tp-i(M) = {t]<p(t) G M}. 
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REMARK 7.2.17 If M is countable then assumption (hi) is satisfied 

if ip'(t) 7^ 0 for every t £ [a, b\. (See Exercise 7.10.) It is also satisfied if 

<p is a polygonal path. Generally speaking, however, <p_i(M) need not 

be countable even if M is. 

Proof of Theorem 7.2.16 Let <p_i(M) = {£i,t2)■•• } with tr ^ tj for 

i 7^ j. Since both Po ip and <p are continuous at tk there exists 8(tk) > 0 

such that 

|P(<p(u)) - P(v?(w)) - F((p(tk))(<p(v) - <p(u))\ < ^ (7.66) 

whenever tk - 8(tk) <u<tk<v<tk + 6(tk). For t (£ there is 

a positive 6(t) such that 

|P(<p(u)) - P((p(u)) - F((p(t))(ip(v) - <p(«))| < r]\(p(v) - <p(u)| (7.67) 

whenever t - 8(t) < u <t < v < t + 8(t). If 

{(rfc, [wfc, vk]); k- 1,2,... ,1V} 

is a 5-fine partition then 

P((p(b)) - P(cp(a)) - F(<p(rk)(<p(vk) - ip(uk)) 

N 

< 
N 

E 
N 

'M®) - P(V>(«*)) - F(P(Tk)(p(vk) - yj(Wfc)) 

N 

- ^E^fc +rl'l2\F(vk) - p{uk)\ <ri + rjVaiba<p, 

by inequalities (7.66) and (7.67). If e > 0 is given it suffices to choose 

V > 0 such that (1 + Var^r? < £ to show that (7.62) is satisfied with 

/ F(z) dz = P(tp(b)) — P((p(a)). 
J cp 

THEOREM 7.2.18 (The Cauchy theorem) If f is continuous in 

an open star-shaped set S C C and there is a countable set E such that f 

is differentiable in S\E then there exists a function F with F'(z) = f(z) 

for every z £ S. If ip : [a, 6] S is a path then 

[ f = F(p(b)) - F(<p(a)). 
J <p> 
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In particular, if ip is closed 

f = 0. (7.68) 
J ip 

Proof The proof follows similar lines to the proofs of Theorems 7.2.7 

and 7.2.8. The points of E can be enumerated, E — {z±, Z2, ■ ■ ■}, and 

for every positive e there is a 8(zk) such that 

I/O) - /Ok)l < (7-69) 

for \z — Zk\ < 8(zk). For ( E S \ E there is a 8(() such that 

l/0)-/(C)-/'(C)0-C)l<£0-CI (7.70) 

for \z — C| < <5(0- Let T C S be a triangle, and A(T), p(t) and d(T) 

its area, perimeter and diameter, in that order. We denote by dT the 

(positively) oriented boundary of T and by {(£*, Ti)} a 8-fine partition 

of T into triangles similar to T (see Lemma 7.2.6). By inequality (7.69) 

(7.71) 

Using Theorem 7.2.16 we have 

dTi 

and consequently by inequality (7.70) 

IS Jf 
Ci^Egrp. 

< ed(Ti)p(Ti). (7.72) 

The triangles Tz are similar to T, therefore there exists a constant C de¬ 

pending only on T and independent of i such that d(T))p(T)) <C CA(Ti) 

for all i. Consequently 

J f{z) dz = eJ f{z) dz < p(T)e + A(T)e. 

8T i dTi 

This proves equation (7.68) in case ip is the oriented boundary of a 

triangle. Let c be the centre of 5 and F(z) = ^ /(C) d(. If the segment 

joining z with z + h lies in S and \f(z + th) — f{z) \ < £ for 0 < t < 1 
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then by what we have already provedf 

\F(z + h)-F(z)\ 

z-\-h 

/(C) 0?C <e\h\2. 

We now turn our attention to the homotopy version of the Cauchy 

theorem. Similarly as before we denote by Q the square [0,1] x [0,1] and 

by id a function continuous on fl with the following properties: 

H(s,t) G T C C for every (s,t) G fi; (7.73) 

H(0,t) = ip(t) and H(l, t) = $(f) for every t G [0,1]; (7.74) 

H(s, 0) = a and H(s, 1) = b for every s G [0,1]; (7-75) 

or 

H(s, 0) = H(s, 1) for every s G [0,1], (7.76) 

The homotopy version of the Cauchy Theorem reads: 

THEOREM 7.2.19 (The Cauchy theorem. Homotopy) If 

(i) TcC is open, 

(ii) f'(z) exists for every zgT 

(iii) there exists a continuous function H satisfying conditions (7.73), 

(7.74) and (7.75) or conditions (7.73), (7.74) and (7.76) 

then 

J f(z) dz = J f(z) dz. 

The proof of this theorem follows from Theorem 7.2.18 in the same 

fashion as Theorem 7.2.10 followed from Theorem 7.2.8. 

There is a very simple proof of Theorem 7.2.19 under the additional 

assumption that H has continuous partial derivatives of the second or¬ 

der. In this case 

J f(z) dz-j f{z) dz = J[f(H(s,t))Hs{s,t)ds + f(H(s,t))Ht(s,t)dt]. 

$ ‘fi an 

(7.77) 

Since 

d(fHs) 

dt 
f'HtHs + fHS)t = f'HsHt + fHtiS d(fHt) 

f We use the same notation as in equation (7.24). 

ds 
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the Green theorem is applicable and the right-hand side of (7.77) is 

zero. It is possible to obtain the full strength of the homotopy version of 

the Cauchy theorem by this proof, one has to employ an approximation 

argument to move from a twice continuously differentiable H to just a 

continuous one. 

7.3 Differentiation of series 

One cannot expect term by term differentiation of sequences (or series) 

to be permissible without some assumptions on the convergence of the 

sequence of derivatives, as the example of Fn(x) = n~l sinna; shows. 

The sequence Fn is uniformly convergent on E yet the sequence {Ff(0)} 

is divergent. Exercise 7.12 provides an even more dramatic failure of 

term by term differentiation. 

Differentiation and integration are inverse processes: under very gen¬ 

eral assumptions one cancels the other. It is therefore no surprise that 

theorems on integration of series lead naturally to theorems on differen¬ 

tiation of series. 

THEOREM 7.3.1 Let us assume that 

(A) For every n G N the functions Fn are SL and the derivatives Ff 

exist almost everwhere on (a,b); 

(B) for some c G (a, b), the sequence n i-> Fn(c) converges, say to 

F(c); 

(C) the sequence n F'n converges uniformly almost everywheref to 

g, say. 

Then the sequence n ^ Fn converges uniformly on (a, b) and the limit 

function F is differentiable at every xo for which lim^En(xo) exists and 

then 

F'{x 0) = g(x 0). (7.78) 

Proof Firstly 

Fn(x) = Fn(c) + / F'n. (7.79) 
J C 

By the almost uniform convergence of F'n 

F(x) = F(c) + J g. (7.80) 

f i.e. there is a set S of measure zero and F'n converges uniformly outside S. 
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Moreover the convergence of Fn to F is clearly uniform. Assume now 

the existence of 

lim Ff(xo). 
n—>-oo 

For a positive e there is a natural n such that Ff(xo) exists and 

\K(xo) ~ g(x0)\ < £ and 

r-X0+h 

h 
(gif) - Kf))dt 

'x0 

< £. 

Since 

F(x0 + h) - F(x0) 1 

-h-9(lo) = h 

rx0+h 

(g(f - Kf))dt 
fX0 

Fn(x0 + h) - Fn(x0) 

we obtain 

F(x0 + h) - F(x0) 

h 

h 

- g(xo) < 2e + 

- KM + K(xo) -g(xo), 

Fn(x0 + h) - Fn(x0) 

h 
-KM 

By the choice of x0 and n there is a positive 6 such that the last term is 

less than e for 0 < \h\ <8. Consequently 

F(x0 + h) - F(x0) 

h 
- g(x0) < 3e 

REMARK 7.3.2 Assumption (A) is satisfied if F^(x) exists for every 

x G (a, b). 

COROLLARY 7.3.3 If 

(Al) For every n G N the derivative Ff exists everywhere on (a,b); 

(B) for some c G (a, b), the sequence n i—► Fn(c) converges, say to 

F{e); 

(Cl) the sequence n i—> F'n converges uniformly everywhere on (a, b) to 

g, say. 

then the function F is differentiable everywhere on (a, b) and (7.78) holds 

for every xq G (a, b). 

COROLLARY 7.3.4 If the series h'n converges uniformly on 

(a, 6) and the series hn(c) converges for some c G (a, b) then 
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for every x G (a, b). 

Assumption (C) in Theorem 7.3.1 is indispensable but is very restrictive. 

We therefore state the next theorem although it is an almost trivial 

consequence of Theorem 3.5.17. 

A KH-integrable function is said to be C-continuous at x if 

The more standard notation is ((7, 1) but we have no need for writing the 

additional 1. Recall that Theorem 2.6.8 asserts that / is C-continuous 

at every point at which it is continuous and that Theorem 3.8.2 says 

that a KH-integrable function is C-continuous a.e. 

THEOREM 7.3.5 Let us assume that 

(A) For every n G M the functions Fn are SL and the derivatives F'n 

exist almost everywhere on (a, 6); 

(B) for some c G (a, b), the sequence n Fn(c) converges, say to 

F(c); 

(C2) the sequence n ^ Ff converges almost everywhere to g, say; 

(D) there are KH-integrable functions h, H such that for all n G N 

the inequalities h{x) < Ff(x) < H[x) hold almost everywhere on 

(a, 6). 

Then the sequence n Fn converges on (a,b), the limit function F 

is differentiable at every xq at which g is C-continuous, and equation 

(7.78) holds. 

Proof We clearly have (7.79) and (7.80) and consequently 

F(x o + h) — F(x o) 

~1T 
9-9{xq). 

Equation (7.78) follows by the definition of (7-continuity. • 

COROLLARY 7.3.6 If assumptions (A), (B), ((72) and (D) are 

satisfied then F is differentiable a.e. and (7.78) holds for almost all x0. 

REMARK 7.3.7 Assumption (D) can be replaced in Theorem 7.3.5 

or Corollary 7.3.6 by any other assumption which guarantees the inter¬ 

change of limit and integration. 
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7.4 Dirichlet’s problem and the Poisson integral 

In hydrodynamics, electromagnetic theory, heat conduction and in many 

other applications as well as in pure mathematics one encounters the 

Laplace equation: 

d2U n 
-y = 0. 
dxi2 

Continuous solutions to this equation are called harmonic functions. An 

important boundary value problem, the so-called Dirichlet problem, is 

formulated as follows: Given a bounded, open and connected set Gel™ 
and a function f defined on bG. the boundary of G, find a function 

U satisfying the Laplace equation in G and equal to f on bG. An 

additional condition is required in the formulation of this problem: there 

is a need to connect the values of U on bG with the values of U inside 

G. Otherwise any function constant in G and equal to / on bG solves 

the problem. In the classical formulation of the Dirichlet problem it 

is required that U is continuous on G, the closure of G. In this book 

we are not concerned with the theory of partial differential equations 

but as a motivation for the next section we prove the existence of a 

solution of the Dirichlet problem in its classical formulation when G is 

a two-dimensional discf. Without loss of generality we assume this disc 

to be G = {(x,y); x2 + y2 < l}. The boundary function / becomes 

a continuous 27r-periodic function of the polar angle ip. We seek the 

solution, at the first attempt purely formally, as an infinite series of 

harmonic functions. In elementary complex analysis it is shown, and 

is also easily directly verified (see Exercise 7.15), that functions wn : 

(x,y) (->■ + jy)n with n E N are harmonic in G. So we try); 

OO 

U(x, y) = Y + J2 ^ - jK){x + ]y)n], (7.81) 
i 

i.e. we seek U as the real part of a power series. We set x+jy = r(cos ip+ 

2 sm tp) and observe that owing to the factor rn the series obtained by 

differentiating the right-hand side of (7.81) converges uniformly in any 

disc {0 < r < a < 1}. Consequently§ U is harmonic. The boundary 

f Uniqueness is proved in the Appendix. 

f Denoting the coefficients by ao/2 and an — jbn is for convenience only, and has no 
material significance. 

§ We allow a slight abuse of notation by writing U or U(x, y) or U(r, ip) interchange¬ 
ably. 
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condition U(l,p) = f(p) becomes 

OO 

/(<p) = — + cosnP + bn sinnp). (7.82) 
l 

Our problem from partial differential equations leads naturally to an¬ 

other problem in mathematical analysis, to represent a given 27r-periodic 

function as a trigonometric series. Clearly this is in itself a question of 

significance for applications, for in science there are many situations 

when we would like to decompose a periodic phenomenon such as vibra¬ 

tion (represented by /) into simple harmonic phenomena (represented 

by the terms of the series in (7.82)). It remains to determine an and 

bn. If / were a trigonometric polynomial! then multiplying (7.82) by 

sin kip or cos kp, integrating from —n to n, and taking into account the 

formulae 

would give 

b n 

sin kip cos mp dp = 0, (7.83) 

sin2 np dp — / cos2 np dp — n, 
J —7r 

(7.84) 

cos kp cos np dp — 0 for fc^n, (7.85) 

sin kp sin np dp = 0 for k ^ n (7.86) 

1 f (p) cos np dp for n = 0,1, 2 ... 
— 7T 

(7.87) 

1 f (p) sin np dp for n = 1,2... (7.88) 
— TV 

As long as they exist an and bn determined by (7.87) and (7.88) are 

called the Fourier coefficients of / and the series 

a o 

T 

OO 

^^(an cos nt + bn sin nt) 

l 

f i.e. / would be equal to the right-hand side of (7.82) but with only a finite number 

of an and bn distinct from zero. 



284 7 Some Applications 

with coefficients given by (7.87) and (7.88) is called the Fourier series 

associated with /. It now seems natural to try as a solution 

U(r, <p) — — + rn(an cos rup + bn sin mp), (7.89) 
l 

with an and bn given by (7.87) and (7.88) for n = 0,1,... However, 

an unpleasant surprise is waiting for us here: it was discovered already 

in the ninetennth century that for a continuous function its associated 

Fourier series can divergef, which means that the series in (7.89) might 

diverge for r = 1. Nevertheless we are going to show that for r < 1 equa¬ 

tion (7.89) does represent the solution of the Dirichlet problem. In order 

to show this we give the right-hand side a more compact form. Substi¬ 

tuting from (7.87) and (7.88) into (7.89) and interchanging integration 

and summation, which is clearly permissible for r < 1, we obtain 

/C0) ^1 + 2^rncosn(V’ — <f)^ dijj. (7.90) 

Denoting ip — ip = ui and summing a geometric series leads to: 

!+2E rn cos nu — 1 + 2& 

= & 
1 + re1 

1 — re1 
1 — r* 

1 — 2r coscn + r2 

Finally we have 

U(r,ip) = — P(r,ip-ip)f(ip)<Up (7.91) 

27T 
P{r^) [/(t5 + w) + /(t5 — w)] du, (7.92) 

with 

1 - r2 00 
P(r, cn) = ----- = 1 + 2 rn cos nu>. 

1 — 2r cos a; + 
l 

(7.93) 

t An example of such an / is given on page 405 of the book by Bela Sz.-Nagy [42], 
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The function P is called the Poisson kernel and has the following prop¬ 

erties: 

P(r, u) du = 7r; 

P(r, u) >0 for 0 < r < 1, 0 < u < 7r; 

if r G (0,1) then h : u * P(r,u) is decreasing on (0,7r). 

(7.94) 

(7.95) 

(7.96) 

These properties are easily verified from either the fraction form or the 

infinite series form of P. 

We now show that for U given by (7.92) 

lim U(r,ip) — f(ipo). (7.97) 

In view of (7.94) it is sufficient to show: for every positive e there are p 

and <5 such that 

P(r, u) [f(ip + u) + f(tp -u)- 2/((p0)] du < 7re (7.98) 

whenever p < r < 1 and |<p — </?o| < <5. We choose such 6 that \t — <po| < 2,8 

implies | f(t) - f(<fio)\ < e/4, take \<p - y?0| < 8 and estimate 

r,uj) [f{p + u) + f(<p u) - 2f((po)\ du) 

<2I/ p(r't)dt~Y (7-99) 

and 

P(r,u) [f((p + u) + f(<p - u>) - 2f((fi0)} du 

< 47rP(r, 8) sup {/; [0,7r]}. 

The right-hand side of the last inequality tends to zero as r -> 1, conse¬ 

quently there exists p such that 

P(r,u) [f{<p + u) + f(<P -u) - 2/(po)] du 
1 

<2™ 
(7.100) 

for r > p. Combining (7.99) and (7.100) proves (7.98). We summarize 

our result as 
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THEOREM 7.4.1 (Dirichlet’s problem for a disc) If f is con¬ 

tinuous 2n-periodic and 

U(r,?) 

U( l,v) 

then 

~ J P(r,(p-it)f(iJ))dij> 

f(<p) for 0 < (p < 2?r, 

for 0 < r < 1, 0 < <p < 2ir, 

(i) U is continuous for 0 < r < 1; 

(ii) U is harmonic for 0 < r < 1. 

As a byproduct and a bonus we obtain easily the following classical 

theorem. 

THEOREM 7.4.2 (Weierstrass’ approximation theorem) If f is 

continuous 2ir -periodic then for every positive £ there is a trigonometric 

polynomial T such that 

\f(<p) -T0)l < £ 

for all (/j6R. 

Proof By (i) of the previous theorem there is r < 1 such that 

\f(<p) -U(r,(p) | < |. 

Using the infinite series form of U we find N such that 

N 

IU(r,ip) - — rn(an cos mp + bn sinn<p))\ < -. • 

7.5 Summability of Fourier series 

It was mentioned in the previous section that the Fourier series associ¬ 

ated with a continuous function may diverge at some points. Neverthe¬ 

less we shall show in this section that the Fourier series associated with 

a merely KH-integrable function represents this function in some well 

defined way. In order to describe this we need to attach rationally a 

‘sum’ to an infinite series which need not be convergent. An infinite se- 

ries an is said to be Abel summable if the function S(r) = J2T anTn 

has a limit as r | 1. The Abel sum (A) an of the series an is 

OO 

(A) an = limS'(r). 
, rfl 



287 7.5 Summability of Fourier series 

For example the series 1-1 + 1-is divergent but S(r) = 1/(1 + r), 

limr|i S'(r) = 1/2, and consequently (A) l)n = 1/2. The Abel 

sum of a series shares some basic properties with sums of convergent 

series. 

oo oo oo 

(A) ^ an + (A) ^ bn — (A) ^ (an + bn), 
i l l 

OO oo 

c(A) y ' an (A) ^ ^ can, 
l l 

oo k oo 

(a) ^ ' an y ^ o,n + (a) y ^ o,n. 

1 1 fe+1 

We also have the important consistency property: 

if a series YT an is convergent then it is Abel summable and an — 

(A) YT On- 

Consistency of the Abel summation method is a consequence of the Abel 

theorem proved as Theorem A.5.2. 

Theorem 7.4.1 of the previous section contains the following: 

THEOREM 7.5.1 The Fourier series of a continuous and 2-k-periodic 

function f is Abel summable to f(x) for every x. 

Recall that a KH-integrable function is C-continuous at x if 

i rx-\-h 

hm T / / = /0), 
0 h Jx 

while Theorem 3.8.2 says that a KH-integrable function is C-continuous 

a.e. The main theorem of this section is 

THEOREM 7.5.2 The Fourier series of a KH-integrable function f 

is Abel summable to f(x) at every point of C-continuity of f. 

The next two corollaries are immediate consequences of this theorem. 

COROLLARY 7.5.3 The Fourier series of a KH-integrable function 

f is Abel summable a.e. to f. 

COROLLARY 7.5.4 If the Fourier series of a KH-integrable function 

f is convergent a.e. then it converges to f(x) a.e. 
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Proof of Theorem 7.5.2 It suffices to show (see (7.89), (7.92) and 

(7.93)) that 

lim 
Ci , 

P(r,t)[f(t + x) + f(t - x) - 2f(x)\dt = 0 (7.101) 

at every point x where / is C-continuous. At such a point x for every 

positive e there is a positive 6 such that 

rt 

[f(s + x)- f(s -x)- 2f(x)] ds < te 

for 0 < t < 5. Denoting Fx(t) — /^[/(s + x) + f(s — x) — 2f(x)] ds we 

rewrite the last inequality as |.F.E(t)| < te. In the following integration 

by parts and estimates we employ the property of the Poisson kernel 

expressed in (7.94)—(7.96). 

[ P(r,t)[f(t + x) + f(t-x)-2f(x)]dt 

= P(r, 6)FX(6) + / (-Pt(r, u))Fx(u) du, 

\P(r,6)Fx(6)\<6eP(r,6), 

(7.102) 

(7.103) 

{-Pt(r, u))Fx(u) du < £ (—Pt(r,u))udu (7.104) 

-SeP(r,8)+£ f P{r,s) ds < -6£P(r,6) + en. (7.105) 
Jo 

Combining (7.102)—(7.105) we have 

^ P(r,t)[f(t + x) + f(t-x)-2f(x)]dt 
o 

The function P is decreasing in t on [5,7r], and 

< 7T£. (7.106) 

lim P(r, t) — 0 
r|l 

for every t G [6,7r]. Theorems 3.7.5 and 3.7.6 are applicable to 

p(P t)[f(t + x) + f(t -x)- 2f{x)} dt = 0. (7.107) 

Combining (7.106) and (7.107) gives 

lim / 
Ci Js 

lim sup 
rfl 

[ P(r,t)[f(t + x) + f(t-x) ~2f(x)} 
Jo 

dt < £7T 
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and since e is arbitrary we have (7.101). • 

We finish this section with a very important theorem, the so-called 

theorem on the completeness of the system of trigonometric functions. 

It is an immediate consequence of Theorem 7.5.2. 

THEOREM 7.5.5 If the Fourier coefficients of a KH-integrable func¬ 

tion f are all zero then f(x) = 0 a.e. 

7.6 Fourier series and the space C2 

The set of all measurable functions / for which the integral 

is called C2. We denote 

If il / - 9 11= 0 then / = g almost everywhere. In this section we shall 

identify functions which differ only on a set of measure zero. This really 

means that we are not working with individual functions but classes of 

functions, each class consisting of functions equal one another a.e. With 

a slight abuse of language we shall call these classes functions and the 

reader is welcome to think of them as functions defined up to a set of 

measure zero. We then have || / ||= 0 if and only if / = 0. 

The definition of the space C2 makes sense also for an infinite [a, b\, 

but in this book we shall restrict our attention to the case where the 

underlying interval [a, b] is bounded. We also write C2[a, b] to indicate 

that the domain of definition of functions in C2 is [a, b). If / G £2 

and g G C2 then the function \fg\ (and consequently fg itself) is KH- 

integrable. This follows from the inequality 

\fg\ < \(f + 92)- 

Taking g = 1 shows that every / G C? is absolutely KH-integrable. We 

denote fb fg = (/, g) and call it the scalar product of / and g. One can 

think of (/, g) as a generalization of the scalar product of two vectors in 

Rn. By the definition of the KH-integral (f,g) can be approximated by 

)Ci f(0g(0(.v - It), i.e. by a scalar product of two finite dimensional 
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vectors. The Cauchy-Schwartz inequality for vectors 

(j2g2iO{v~u) 

implies the Cauchy-Schwartz inequality for integrals 

, 2 

fg < [ f [ 
J a J a 

or equivalently 

\(f,g)\ <11 / III] g II • 

For g = 1 this gives 

[ |/| < Vb - a || / || . 
J a 

(7.108) 

We also have the triangle inequality 

II f + g ll<ll / II + II 9 II • (7.109) 

It is proved as follows: 

II / + 9 II2 = (/ + g, f + g) 

HI / II2 +2(/,s)+ || g ||2 < II / f +2 II / HU 9 II + II J II2 
<(11/II+ 11 <7 II)2- 

A sequence {/n} is said to be £2-Cauchy if for every positive e there is 

a natural N such that 

II fn ~ fm ||< £ 

for n, m > N. A function / is said to be the £2-norm limitf of {/n} if 

II fn / || * 0. 

The £2-norm limit is obviously uniquely determined. We might say 

briefly norm limit or £2-limit instead of £2-norm limit. If / is the £2- 

norm limit of {/n} then lim fn(x) need not exist for any x € fa, 61. This 

shows Example 3.5.23. The concept of £2-norm limit, or as we may also 

say £2-convergence, is far more important in analysis than pointwise 

convergence or pointwise convergence a.e. The following lemma is easy 
to prove. 

f The term fn is mean convergent to / is also often used. 
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LEMMA 7.6.1 If {fn} is C2-Cauchy and there exists a subsequence 

{frii} which has a jC2-norm limit f then the sequence {fn} itself has a 

C2 -norm limit f. 

THEOREM 7.6.2 (Riesz—Fisher) If {fn} is C2-Cauchy then there 

exists f e C2 such that 

(i) there exists a subsequence {fUi} convergent a.e. to f; 

(ii) / is C2 -norm limit of the sequence {fn}- 

Proof To prove (i) we choose ni such that 

fni fn (7.110) 

for m > ni. We also choose these nj increasing, n* < ni+By inequality 

(7.108) 

< 
a 

and the series 

fn i + y~^(/n i+1 
i=1 

fn J 

is absolutely convergent a.e. on [a, b] by Beppo Levi’s theorem. Let 

/ = lim fni. 
2—KX) 

For the proof of (ii) it is sufficient to show, by Lemma 7.6.1, that 

lim || fni - / ||= 0. (7-111) 
2—KX) 

Let us denote hj = \fni - fni+j \ and estimate || hj || by using (7.110). 

i+j-1 2. 

II hj ||< II fnk — fnk+1 ||< 2i-l ' 

k=i 

We obtain successively by using Fatou’s lemma on the sequence {hj} 

firstly 

fm - f € £2 

then / e C2 and finally (7.111). • 

Two functions / and g are said to be orthogonal if (f,g) = 0. A 

sequence of functions Wi with % G N is orthonormal or forms an or¬ 

thonormal system in C2 if Wi are mutually orthogonal, i.e. (Wi,Wj) 0 
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for i 7^ j and || W{ ||= 1 for i G N. A fairly simplef orthonormal system 

is Ui = 2^ on [2“(n+1), 2~n] and zero otherwise. We know from (7.85) 

to (7.84) that the system of trigonometric functions 

1 cos x sin x cos 2x sin 2x 
(7.112) 

v^F’ ^ ’ A ’ A ’ ’••• 

is orthonormal. 

An orthonormal system Wi, i — 1,2,.. . is said to be complete in 

C2 if the only function orthogonal to all W{ is zero. We know from 

Theorem 7.5.5 that the system of trigonometric functions is complete. 

The sequence {a;i} is not complete since the function / = 1 [1/2,3/4] — 

1 [3/4,1] is orthogonal to all u>i- 

The space C2 is a natural generalization of the n-dimensional Eu¬ 

clidean space Rn but it is infinite dimensional. A complete orthonormal 

sequence plays in C2 similar role as an orthonormal basis plays in Rn. 

(See also equation (7.117).) 

EXAMPLE 7.6.3 An interesting example of a complete orthonormal 

system in £2[0,1] is the so-called Haar sequence. We define hi = 1 (0,1]- 

Every n G N, n > 2 can be uniquely represented as n = 2k + p with 

k,p € Z, k > 0 and 1 < p < 2k. For n > 2 we define hu as follows: 

hn(^) = \   yj2fc 

: 0 

if 

if %Tr S ^ < 

otherwise. 

2p - 1 

2k+l 
P_ 
2k 

Two hn with same k and distinct p are orthogonal because their product 

is zero on [0,1]- If k are distinct then the product is either also zero 

or is up to a constant factor equal to the hn with the smaller n. The 

orthogonality then follows from f* hn = 0. Let (g, hn) = 0 for all natural 

n and G(t) = /J g. If we show that 

G(^)=0 f°r fc = 0>1>2>--- i P = 0,1,... ,2fc, (7.113) 

then completeness of the Haar sequence is established, since by conti¬ 

nuity G = 0 on [0,1] and consequently g = 0 a.e. For k = 0 equations 

(7.113) follow from (g, hi). We also have 

0,M = c(|)-G(p_T + 2 G 
2p - 1 

2fc+1 
= 0. 

f And practically useless. 



293 7.6 Fourier series and the space C2 

From this (7.113) follows by induction on k. • 

If / G £2[a, b] and u>i, i = 1,2,... is an orthonormal sequence then the 

numbers cz = (f,Wi) are called the Fourier coefficients of f with respect 

to the sequence {lOj} and, if no confusion can arise, simply the Fourier 

coefficients of /. The series 

OO 

(7.114) 

2=1 

is called the Fourier series associated with f with respect to the sequence 

{wi} or simply the Fourier series of /. The Fourier coefficients have the 

following minimizing property. 

THEOREM 7.6.4 If f G C2 and {w{} is an orthonormal sequence 

of elements in C2 then among all functions of the form JT=1 aiwi the 

minimum of 

n 

ii / -$>,* ii2 

2—1 

is attained for cq = cz, i — 1,2,... ,n. Moreover 

X>?<ll/I|2' (7.115) 
i=1 

This inequality is called Bessel’s inequality. 

Proof The following calculations are fairly straightforward. 

n n n 

o<ll/-£ OiiWi (/ aiWi’ f- aiWi) 
i=1 i=1 i=1 

f II2 -2'f'aiCi + J2a2i = ll/l|2+E(“'-^2-E4- 
i= 1 i=1 i=l i=1 

The minimum of the right-hand side is clearly achieved for cx.i — Ci. If 

this holds then Bessel’s inequality is obvious from the above calculations. 

COROLLARY 7.6.5 If f G C2 and {wz} is an orthonormal sequence 

in C? then the series 
OO OO 

i—l i= 1 

converges. 
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The main theorem of this section is 

THEOREM 7.6.6 Let f £ C2 and let {wi} be an orthonormal se¬ 

quence in C2, crn = The following statements are equiv¬ 

alent: 

(i) For every f £ C2 the Fourier series of f is £2-norm convergent 

to f, i.e. 

lim || <rn - / ||= 0. (7.116) 
71—^00 

(ii) For every f in £2the following Parseval’s equation holds: 

OO 

||/||2= (7.117) 
i=l 

(iii) The sequence {u>i} is complete. 

Proof (i) => (ii). Firstly we have 

n 

(/,£*«,,) - (/»/) 
1=1 

and consequently 

n oo 

II / H2= lim (/,£><) = 
n—>oo ‘ ^ ^ 

i=l i=l 

(ii) =^(iii) is obvious. 

(iii) =»(i). By Corollary 7.6.5 the sequence {an} is £2-Cauchy and by 

the Riesz-Fisher theorem (Theorem 7.6.2) there is a g £ C2 such that 

II an ~ 9 ||—*► 0. Further 

I(9,Wi) - (an,Wi)| <|| g - an || 

and therefore 

{g,Wi) = lim (an,wl) = 
71—>00 

The function f — g has all Fourier coefficients zero, and by (iii) we have 

f-9 = 0. • 

Since we know that the system (7.112) of trigonometric functions is 

complete by Theorem 7.5.5 we have 

COROLLARY 7.6.7 If f £ C2\—7T, 7t] then the Fourier series asso¬ 

ciated with f with respect to the orthonormal sequence of trigonometric 

functions is C2-norm convergent to f. 
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We also have 

COROLLARY 7.6.8 If f e C2[0,1] then the Fourier series associated 

with f with respect to the Haar sequence is C2-norm convergent to f. 

We conclude this section with some general remarks about Fourier se¬ 

ries. They form an important branch of mathematics; both set theory 

and functional analysis have their roots in the theory of convergence 

of Fourier series. It was in the nineteenth century that the German 

mathematician du Bois-Reymond produced a continuous periodic func¬ 

tion whose Fourier series did not converge everywhere. The Hungarian 

mathematician Fejer much later produced a simpler example, which can 

be found in reference [42]. In 1926 the Russian mathematician Kol- 

mogoroff created an absolutely KH-integrable function which had an 

everywhere divergent Fourier series. The question whether or not the 

Fourier series of a continuous function can diverge on a set of positive 

measure remained unsolved until 1966 when the Swedish mathematician 

Carleson proved that the Fourier series of a function /g£2 converges 

a.e. to /. (Our Corollary 7.6.7 combined with the Riesz-Fisher theorem 

gives the much weaker result that a subsequence of the partial sums 

converges a.e. to /.) 

7.7 Exercises 

EXERCISE 7.1 Prove relation (7.16). 

EXERCISE 7.2 Let o = (0, 0), a = (1,0), b = (1,2), c = (0, 2). Eval¬ 

uate the following line integral in R2: frp xydx - x3dy if (1) ip = ob, 

(2) ip = oa © ab, (3) p = oc © cb, (4) <p(t) = (t, 2t2), t G [0,1]. 

EXERCISE 7.3 Evaluate the following line integral in R2: 

xdx + ydy 

x2 + y2 
ip(t) — (cos3 t, sin6 t), t G [0, 27t] . 

EXERCISE 7.4 Iff is continuous show that the integral f^f(x + y + 

1 ){dx + dy) is path independent. 

EXERCISE 7.5 Evaluate the following line integral in R3: fip(y - 
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z)dx + (z — x)dy + (x — y)dz, <p — (cos t, sin t, t), t £ [0, 2ix] (the screw 

line) and along the oriented segment joining the origin with (0, 0, 27r). 

EXERCISE 7.6 Prove the Cauchy convergence principle for line inte¬ 

grals. (See (7.15).) 

EXERCISE 7.7 Prove that if F is continuous and <p a path then j_ F 

exists. 

EXERCISE 7.8 ©© If ip is a path and <p' exists except on a countable 

set then Varyp = fa y/\p>'\2. Prove this formula for the arclength. 

EXERCISE 7.9 Prove: If p is a path, p> : [a, b] R2 then 7712 ([<£>]) = 0 

where m2 denotes the two-dimensional Lebesgue measure. [Hint: Given 

e let D = a — ti < t2 ■■■< tn — b be a division of [a, 6] such that 

\p(U+i) - p(ti)I < £ for i = 1,... ,n - 1. The set S = {J” B(ip(ti),e) 

covers [p] and m2(S) < nne2 < 7reVarbaip.] 

EXERCISE 7.10 Prove the statements from Remark 7.2.17. [Hint: 

Show that for Z}. <G M and t £ there is an open interval It 

containing t such that It D </?_i (zk) = 0.J 

EXERCISE 7.11 Prove the Green formula under assumptions different 

from those in Theorem 7.2.11, namely that P, Q are continuous in G and 
80 dP 

each function —- and — is KH-integrable on G. 
dx dy 

EXERCISE 7.12 ©Let Fn(x) = sin nan Show that Fn converges 

uniformly on R and F[L(x) diverges for every x £ M. [Hint: For n £ N 

either cos nx > | or cos 2nx > ] 

EXERCISE 7.13 Let Fn(x) = nx2 for x £ [0,^], Fn(x) = 2x for 

x > n> Fn(x) = —x2 for a; £ [—^,0) and Fn(x) = 4x for x < What 

is the relevance of this example for Theorems 7.3.1, 7.3.5 and 3.14.6? 

EXERCISE 7.14 Let Fn(x) = nx2 exp(-n|x|). What is the relevance 

of this example for Theorems 7.3.1 and 7.3.5? 

EXERCISE 7.15 Show directly without any use of complex analysis 

that the functions wn with wn = ff(x + jy)n are harmonic in R2 for any 

n £ N. [Hint: Use the Binomial Theorem.] 
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EXERCISE 7.16 Solve the Dirichlet problem if U(l,cp) = 1 for 0 < 

<p < it and U(l,<p) = 0 for n < ip < 2ir. 

EXERCISE 7.17 Prove the mean value theorem for harmonic func¬ 

tions. Namely: If U is harmonic in an open set G C M2 and the disc 

centred at (xq, y0) and of radius r lies in G then 

1 f2x 
U{x0,y0) = — / U(x0 + r cosip, y0 + r sirup) dip. 

Jo 
[ Hint: Use formula (7.91).] 

EXERCISE 7.18 Find the Abel sum of the series 

1-2+3-4+5- 

oo oo 

EXERCISE 7.19 ©Prove: If (A) an = a and (A) ^ bn = b then 

n=0 n=0 

oo 

(A) ^ ^(opbn + 1 + • ' • + anbo) = ab- 

n—0 

EXERCISE 7.20 ©© Prove Tauber’s theorem. If 

OO 

(A) an — s and lim na„ = 0 
v ^ n—>• oo 

1 

then the series an converges and JfT = s- see Section 

1.23.] 

EXERCISE 7.21 ©Find the Fourier series of the following functions 

which are defined on (—7r,7r) as (a) x; (b) |x|; (c) x2. Use the result of 

(b) to prove 

l 
6 

EXERCISE 7.22 ©Prove: Iff' £ £2 and f is a continuous 2n-periodic 

function then the Fourier series of f converges uniformly to f. 

EXERCISE 7.23 Let {ien} be a orthonormal sequence in C2. Prove 

that for a given f £ C2 equation (7.116) holds if and only if (7.117) is 

valid. 
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EXERCISE 7.24 ©It follows immediately from Corollary 7.6.8 that for 

every f G £2[a, b\ there exists a sequence of step functions converging in 

£2[a, b] to f. Give a direct proof without the use of the Haar sequence. 

[Hint: Use Theorem 3.10.2 to find a step function ip such that || fN — 

p ||< e and \<p\ < N, where fN is as in (3.48).] 

The next four exercises aim to establish Corollary 7.6.7 independently 

of Theorem 7.5.2 its corollaries and of Theorem 7.5.5. 

EXERCISE 7.25 ©Prove: Let s(x) — ao/2+^2]°(ancosnx+l3nsmnx) 

and sn(x) — a0/2 + cosnx + (3n sinmr). If there exists an C2- 

function G such that |sat(x)| < G(x) for all N G N and all x G [0,27t] 

then an = an, /3n = bn and ||sjv — s|| —*■ 0 as N —»• oo. 

EXERCISE 7.26 ©Prove that 

°° 1 1 E — sinna: = -lx — x) 
n 2v ; 

n= 1 
for x e (0, 27t), that the partial sums are uniformly bounded and that 

the series converges in C?. [Hint: See reference [44] Section 1.75; for the 

C2-convergence use the previous exercise.] 

EXERCISE 7.27 ©Use the previous exercise to show that the Fourier 

series of a characteristic function of an interval in (0, 2n) converges in 

£2[0,27r] to it. 

EXERCISE 7.28 ©Combine the results of the previous three exercises 

to prove Corollary 7.6.7. 



Appendix 

Supplements 

A.l The Cantor set 

A. 1.1 An uncountable set 

We denote by D the set of sequences whose terms are zeros and ones 

only. A typical element of D is x = {£i,£2, • • •} with & = 0 or 1. A 

sequence of elements from D is then 

xn with xn = {fi,£2 > • • • }• (A-1) 

We show indirectly that D is not countable. If it were then there would 

be a sequence as in (A.l) containing all elements of D. Let r]k = 1 if 

= 0 and rjk = 0 if = 1. Clearly {r]k} e D but {r?fc} is not equal to 

xn for any n £ N. • 

The set D has the same cardinality as R. This is usually shown in 

elementary set theory. 

A. 1.2 Cantor’s discontinuum 

Cantor’s set, sometimes also called Cantor’s discontinuum, is a set of 

measure zero and is not countable. We construct it from the interval 

[0,1], denoted by F0, as follows: Firstly we remove from F0 the middle 

third, more precisely the open interval (|, 3), and denote the remaining 

set Fi, i.e. F\ = [0, |] U [§, 1]. Then we remove from each interval of F\ 

the middle third, denote the remaining set F2 and continue this process. 

In the n-th step we obtain the set Fn which consists of 2 closed intervals 

of length (|)n. The Cantor set C is (by definition) f)™ pn- Tt is clearly 

of measure zero because it is covered by Fn and the total length of all 

299 



300 Appendix: Supplements 

intervals! °f Fn is (|)n. To show that C is not countable we put it into 

one-to-one correspondence with D. If x £ C then x is in every Fn and 

we define a sequence {£n} as follows. If x lies in the left third of an 

interval of Fn_ i then = 0, if it is in the right third of an interval of 

Fn-i then = 1. Now x —> {£n} is a map of C onto D and since the 

length of the intervals of Fn tends to zero it is one-to-one. 

REMARK A. 1.1 Many counterexamples in analysis use Cantor-like 

sets. These sets are constructed the same way as the Cantor sets, except 

the length of the removed middle intervals is smaller, e.g. in the n-th 

step it could be taken to be (^)n. The resulting Cantor like set is closed 

and bounded, its complement is dense and the set itself is not of measure 

zero. We used such a set in Example 1.4.5 of a derivative which was not 

Riemann integrable. 

A.2 Dini’s Theorem 

The importance of uniform convergence stems from the theorem which 

asserts that a uniform limit of a sequence of continuous functions is 

continuous. Dini’s Theorem is a partial converse. 

THEOREM A.2.1 (Dini) If, for every x £ [a, b], the functions {fn} 

are continuous, the sequence {/n(x)} Is monotonic and lim fn(x) = 
n—► oo 

f(x) is continuous then {fn} converges uniformly on [a, b}. 

Proof For the proof we assume that the sequence is decreasing. If need 

be we replace fn by fn — f and can therefore further assume that / = 0. 

Given e > 0 there exists, for every x £ [a, 6], a natural number N(x) such 

that fn(x) < e. Using continuity we find an open interval J(x) contain¬ 

ing x such that fn(t) < e for all t £ J(x). Applying the Heine-Borel cov¬ 

ering theorem we find a finite number of intervals J(xi), i = 1,2,... ,s 

with [a, b] c Ui J(xi)- Let N = Max(N(xl),N(x2),... ,N(xs)). If 

n > N and t £ [a, 6] then t £ J{xi) for some i and consequently 

0 < fn(t) <£. • 

It is important that the underlying interval is closed and bounded; 

neither {xn} nor {x — n + \x - n\} converges uniformly on (0,1) or R+, 

respectively. 

t The intervals are closed and in the definition of a set of measure zero the covering 

intervals were open, but this difference is irrelevant. See the end of the proof of 

Theorem 2.11.3, where Kn are replaced by Jn. 
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A.3 Sets in Mn 

In this section we review notation and summarize some rudiments of 

point sets in W1. A point x is an interior point of a set S if there exists 

a bounded open interval J such that x G J C S. A set is open if all 

its point are interior points. The set S° of all interior points of S is the 

largest open set contained in S. The union of any system of open sets 

is open, the intersection of finitely many open sets is also open. Every 

open set in M is a disjoint union of open intervals. A point x is a limit 

point of S if every open interval containing x has at least one point of 

S distinct from x. A set is closed if it contains all its limit points. The 

smallest closed set containing S is called the closure of S and denoted 

S. The intersection of any system of closed sets is closed, the union of 

finitely many closed sets is also closed. A set is closed if and only if its 

complement is open. A set is bounded if it is contained in a bounded 

interval. If a set is closed and bounded it is compact, which means that 

the following assertion holds. 

THEOREM A.3.1 (The Borel Theorem) If S CK" is closed and 

bounded and G\ with A G A is a system of open sets such that 

Sc{jGx 
AeA 

then there are finitely many Ai, A2, • • • , Am such that 

m 

Sc\jGXl. 
i= 1 

For more about this topic see e.g. [4], [39] and [19]. 

A.4 Uniqueness of the Dirichlet problem 

The so-called maximum principle plays an important role in the theory 

of elliptic and parabolic partial differential equations. Here we prove a 

simple version valid for harmonic functions. This simple version implies 

the uniqueness of the Dirichlet problem. 

THEOREM A.4.1 (Maximum principle) If U is harmonic in a 

bounded open set G, continuous on the closure of G and U(x,y) < M 

on the boundary of G then 

U(x, y) < M for every (x, y) G G. 
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Proof of uniqueness If U\ and U2 are solutions then both U\ - U2 and 

U2 - U\ are non-positive on the boundary, by the maximum principle 

U\ — U2 and U2 — U\ are non-positive everywhere in G, hence we have 

U\ = U2. • 

Proof of the maximum principle Assume contrary to what we want 

to prove that at some point (a, b) E G and for some positive k 

U(a,b) = M + k. 

We denote by R the diameter of G and define an auxiliary function 

, . . , , {x - a)2 + {y - b)2 
v(x,y) = U(x, y) + k--. 

v assumes its maximum at some point (x,y). This point is not on the 

boundary of G since there v(x, y) < M + k/2 and v(a, b) — M + k. At 

fay) 

This implies 

d2v 

dx2 

d2v 

dy2 

<0, 

< 0. 

d2U 

dx2 

d2U 

dy2 

<0, 

< 0. 

U does not satisfy the Laplace equation. 

A.5 Abel’s theorem 

For the proof we need the following lemma: 

LEMMA A.5.1 For real numbers ait fa with i = 0,1,... ,p and Sk = 
k 

OL{ the following identity holds: 

i=0 

v p-i 

'y^J aiPi = Si(Pi — Pi+l) + PpSp. 

i=0 1 

Proof An easy proof by induction is left to the reader. It is also possible 

to derive the lemma by writing an = Si - Si-1 (with g_i = 0), and 

rearranging the sum Eo(5» ~ Si-i)fa. • 
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THEOREM A.5.2 (Abel’s theorem) If the series an converges 

then 
OO 

(i) the series aiX1 converges uniformly on [0,1] 

Proof It suffices to prove (i). By the Cauchy convergence principle for 

every positive e there is N such that for n > N and natural p 

v 

(l-n+i 

i=0 

For n > N and a natural p we have by the lemma 

p 
( 1 \ 

X>n+ixn+l 
i=0 

p 

E 
*=o 

^ 'an+k | (xn+i - xn+i+1) + 

i=0 

n+p—l 

<e J2 (xi ~ xi+1) + exn+p = e(xn - xn+p) + exn+p < e. • 

i=n 

< e. (A.2) 

A.6 Proof of Lemma 6.7.4 

We choose H > 0 such that <p has continuous partial derivatives and 

<ptn ^ 0 on [a1 - H, a1 + H] x ■ . For sake of definiteness let tp>n > 0. 

The function F with F(y) = ^(a1,... ,an~1,y) is strictly increasing on 

[an — H, an + H] and therefore 

97(a) < (^(a1,... , an 1, an + H), 

ip(a) > ^(a1,... , an 1,an — H). 

By continuity of ip there is h, 0 < h < H such that 

y < ^(x1,... , xn_1, an + H), 

y>ip(x\... ,xn-\an-H) 

for \x{ - | < h with 1 < i < n and \y - ip(a)\ < h. By continuity of 

there exists t £ [an — H, an + H] such that y = ^(x1,... , xn”\ t). This 

t is unique since ip>n > 0. Setting ip(xl,... ,xn 1, y) — t proves (i). 

Before proving differentiability of ip we need to have continuity first. 
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Let us assume, contrary to what we want to prove, that there is a se¬ 

quence {(£*., ■ )} with x\ —> bl but ip(x\, ■ ) —> c ^ ipib1, ■ ). Then 

<p(4,... -*■ ,6n_1,c). 

However 

p(xl,... ,x% 1,ip(x1k,... ,x£)) 

By uniqueness of ip it follows that c = ip(b1, ■ 

We have by differentiability of 

= xnk^bn. 

) - a contradiction. 

p(xl + A1, ■ ) - ip(xl, ■ ) = A*(A\ " )A*> (A-3) 
i=1 

where Ai are continuous at (0, ■ ) and Aj(0, ■ ) = ip^x1, ■ ). We set 

xn = ip(x1,... ,a:n_1,y), 

An = ^(x1 + A1,... ,/-1 + A"-1,!/ + t)-^1,... ,xn~\y). (A.4) 

Substituting this into (A.3) leads to 

xp(x1 + A1,... ,xn~l + An“x 

_ _ A^A1,... , An) 

^ An(Ai,... , An) 

,y + t) -^(x1,...,xn 

Al + An(A1,... , An)i- 

,v) 

It is understood that An here is given by (A.4). By the theorem on 

continuity of the composite function Ai/An and 1/An are continuous. 

This proves the differentiability of ip and the formulae ipyi = —<p,i/<p,n, 

for i < n and ip}U = 1 /<p,n- The continuity of the derivatives of ip follows. 
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Abel 
sum, 286 
summable, 286 
theorem, 302 

absolute continuity, 100, 228 
absolute integrability, 86, 168 

criterion, 86, 221 

absolute integrability lemma, 130 
absolutely continuous, 228 
AC, 100 
AC*, 179 
AC*(X), 179 
AC(X), 182 
ACG, 188 
ACG*, 187 

ACG* and SL, 189 
additive 

interval function, 208 
approximation 

by polygonal path, 256 
theorem, 119 

approximation theorem 
Weierstrass, 286 

Arzela theorem, 18 
Austin lemma, 110 
axiom of choice, 127 

Banach, 154 

Banach-Zarecki theorem, 154 
Bartle, 113 

Beppo Levi theorem, 94 

Bessel’s inequality, 293 
bl-division, 205 

bl-partition, 205 
Bolzano, 76 

Bolzano-Cauchy condition, 76, 129, 214 
Borel theorem, 12, 301 

bounded slope variation, see function 
bounded variation, see function 

Cantor 
discontinuum, 299 
set, 299 

Caratheodory, see theorem 
Cauchy, 2 
Cauchy extension, 57 
Cauchy theorem, 274, 276 

homotopy, 278 
characteristic function of a set, 3 
characterization 

integrability, 77 
KH-integral, 112 
Riemann integrability, 12 

completeness, 99 
compound division, 205 
condition 

Bolzano-Cauchy, 214 
Luzin, 151 
N, 151 
strong Luzin, 151 
strong Luzin uniform, 162 

continuity 
absolute, 100 

controlled convergence, 190 
controlled convergence theorem, 192 
convergence 

in the mean, 100 
mean, 99 

Cousin 
l.u.b., 28 

lemma, 25, 71, 209 
lemma for triangles, 261 

covering lemma, 67, 111, 220 

Darboux 
lower sum, 6 
upper sum, 6 

definition 

constructive, 175 
descriptive, 175 
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Kurzweil-Henstock integral, 22, 29, 
59, 60, 65, 210 

complex valued function, 70 
of SL, 151 
of SL-integral, 154 

6-fine see partitionderivative 
not R-integrable, 13 

Devil’s stairs, 101 
Dini theorem, 17, 300 
Dirichlet’s problem, 282 

for a disc, 286 
division, 3, 205 

partial tagged, 81, 205 
tagged, 81, 205 

division of an interval, 3, 204-205 

Egoroff’s theorem, 125 
equiintegrability, 104 
equivalent paths, 253 
extension 

countable, 176 

family 
equiintegrable, 104, 148, 149 
SL-equiintegrable, 163 

Fatou’s lemma, 95, 96 
Fourier coefficients, 283, 293 
Fourier series, 284, 293 
Frullani integral, 63 
Fubini 

differentiation theorem, 145 
Fubini theorem, 217, 218, 229, 231 
function, <S£-integrablel54 

AC, 100 
absolutely continuous, 100 
bounded slope variation, 147 
bounded variation, 83 
complex valued, 69 
KH-integrable, 29 
Kurzweil-Henstock integrable, 29 

Lebesgue integrable, 137 

major, 76 
measurable, 117 
minor, 76 
P-major, 79 
P-minor, 79 
regulated, 40 
Riemann integrable, 5 

simple, 119 
uniformly ^-continuous, 150 

Fundamental Theorem, 46, 49, 157, 255 

gauge, 65, 209 
Gee, 12 
Goffman, 13 
Green domain, 271 
Green’s theorem, 267 

Hausdorff decomposition, 127 
Hawkins, 1 
Heine-Borel theorem, 12, 71 
Henstock 

lemma, 56, 81, 220 
variation, 73 

homotopy, 265, 274 
Cauchy theorem, 278 

imaginary part 
complex number, 69 

indefinite integral 
continuity of, 45 

infimum 
infinite, 64 

integrability 
on subintervals, 216 

integrable, see function 
integrable set, 120 
integral 

complex valued function, 70 
Frullani, 63 
improper, 55, 56 
iterated, 217 
KH lower, 75 
KH upper, 75 
Kurzweil-Henstock, 29, 59, 60, 65, 

210 
Kurzweil-Henstock-Stieltjes, 73 

line, 252 
lower Riemann, 7 
Newton indefinite, 1 
Newton’s, 1 
repeated, 217 
Riemann, 5 
SL, 151 
unbounded interval, 59 
upper Riemann, 7 

integration 
by parts, 50, 158 

for the Kurzweil-Henstock-Stieltjes 

integral, 74 
by substitution, 52, 53, 160 

interchange 
limit and integration, 21 

interval 
closed in_K, 60, 64 
open in R, 64 

interval function, 207 
additive, 208 

Jordan 
curve theorem, 274 

Jordan C., 274 

KH-integrable, see function, 210 

KH-integral 
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lower, 75 
upper, 75 

Kurzweil, 2 
Kurzweil-Henstock integrable, see 

function 
Kurzweil-Henstock integral, see 

definition 
Kurzweil-Henstock-Stieltjes integral, 73 

Lebesgue, 2 
differentiation theorem, 143 
dominated convergence theorem, 97, 

168, 226 
integral, 135, 137 
measure, 120, 136 
outer measure, 135 
point, 115 

Lebesgue integrable, see function 
Leibniz, 1 

definition of integral, 1 
lemma 

absolute integrability, 130 
Austin, 110 
Cousin, 25, 71, 209 

for triangles, 261 
covering, 67 
Fatou, 95 
Henstock, 56, 81, 220 

Levi, see Beppo Levi theorem 
line integral, 252 
Lipschitz 

constant, 10 
continuous, 10 

lower integral, see integral 
Perron, 80 

lower KH-integral, 75 
lower sum, 6 
Luzin condition 

strong, 151 
Luzin N.N, 151 
Luzin’s condition, 151 
Luzin’s theorem, 123 

M-integrable, 129 
major function, 76 
map 

regular, 241 

maximum principle, 301 
McShane integral, 127, 129 
mean convergence, 99 
mean convergent, 100 
Mean Value Theorem, 43 
mean value theorem 

first, 42 

second, 108 
measurable function, 117 
measurable set, 117 

measure, 120 
measure zero, 11, 66, 220 
Medvedev, 1 
minor function, 76 
Monna, 1 
monotone convergence theorem, 89, 165, 

224 

N and SL, 153 
negative part of a real number, 3 
negligible set, 33, 212, 213 
negligible variation, 112, 152 
net, 206 
Newton, 1 
Newton definition 

of the integral, 1 
Newton integrable, 18 
Newton’s integral, 1 
Newton-Leibniz formula, 46, 48 
null 

set, 212 
null set, 33 

ordered field 
complete, 28 

orientation, 258 
of a triangle, 259 

oriented segment, 258 
outer measure, 135 

Parseval’s equation, 294 
partial division, 205 
partial tagged division, 205 
partition, 3, 205 

6-fine, 4, 23, 65, 128, 209 
path, 253 

closed, 253 
independence, 264 

Perron, 2 
integral, 80 
lower integral, 80 
tipper integral, 80 

Perron integrable, 80 
Pesin, 1 
Poisson integral, 282 

positive part of a real number, 3 
property 

intermediate, 43 

R-integrable, see function Riemann 
integrable 

real part 

complex number, 69 
refinement 

of a division, 6 
of a partition, 19 

regular map, 241 



Index 311 

regulated function, 40 
integrable, 40 

Riemann, 2 
lower integral, 7 
upper integral, 7 

Riemann integrability, 12 
Riemann integral, 2 

definition of, 5 
Riemann sum, 4 

notation, 4 
Riesz 

definition, 139, 198 
Riesz F, 139 
Riesz-Fisher theorem, 291 

sequence equiintegrable, 105 
series Abel summable, 286 
set 

closed, 301 
integrable, 120 
measurable, 117, 119 
negligible, 33, 66, 212, 213 
non-measurable, 126 
null, 33, 66, 212 
of measure zero, 11, 66, 220 

open, 301 
star-shaped, 264 

SL and N, 153 
SL-equiintegrability 

theorem, 163 
SL-equiintegrable, see family 
SL-integrable, see function 
SL-integral, 151, 154 
SL-integration, 155 
star-shaped, 264 
step function, 4, 38 
strong Luzin condition, 151 
subpartition, 81, 205 
summability, 286 
supremum 

infinite, 64 
symmetric difference, 122 

tag, 4, 127 
tag function, 74 
tagged division, 81, 205 
tagged partial division, 81 

Taylor theorem, 51 
theorem 

Abel, 302 
Arzela, 18 
Banach-Zarecki, 154 

Bartle, 113 
Beppo Levi, 94 

Borel, 12 
Cauchy, 274, 276 
controlled convergence, 192 

Dini, 17, 300 
dominated convergence, 97, 168, 226 
Egoroff, 125 
equiintegrability, 105 
Fubini, 217, 218, 229, 231 
fundamental, 46 
Green, 267 
Heine-Borel, 12, 71 
homotopy Cauchy, 278 
Lebesgue dominated convergence, 97, 

168, 226 
Luzin, 123 
mean value, 42 
monotone convergence, 89, 165, 224 
Riesz-Fisher, 291 
second mean value, 108 
SL-equiintegrability, 163 
Taylor, 51 
Tietze, 124 
Vitali-Caratheodory, 132 
Weierstrass, 26 
Weierstrass approximation , 286 

Tietze theorem, 124 

uniform 
strong Luzin condition, 162 

uniformly iv-continuous, see function 
uniformly absolutely continuous , 177 
upper integral, see integral 
upper KH-integral, 75 
upper sum, 6, 75 

variation 
bounded, see function 
Henstock, 73 
slope bounded, see function 

VB*, 179 
VB*(X), 183 
Vitali, see theorem 
Volterra, 13 

Weierstrass, 140 
example, 140 
theorem, 26 

Weierstrass’ approximation theorem, 
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Zarecki, 154 
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