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Preface

This book contains five contributions on the complexity of continuous problems
and, at the same time, is a Festschrift for Henryk WoZniakowski.

A version of these contributions (except for the last one) were presented on
June 6, 2008, at the Friedrich Schiller University in Jena, when Henryk was
presented with an honorary doctoral degree by the University of Jena. It was for
us a very happy occasion, and it was an occasion for talks addressed to a wider
audience. We believe that these talks (and now papers) are a good introduction
and supplement to more technical research papers and books.

We briefly describe the contents:

* The account “Henryk WoZniakowski and the complexity of continuous prob-
lems” by EN describes some of the achievements of Henryk, and it contains
remarks about the history of information-based complexity (IBC). It also
contains the reports from Mathematical Reviews about the two main mono-
graphs on IBC, the two black books that appeared 1980 and 1988, respec-
tively. As an appendix, we list all publications of Henryk.

* The essay “Complexity as a new challenge for mathematicians” by HW
discusses the computational complexity of three problems: matrix multipli-
cation, multivariate integration of smooth periodic function, and multivariate
approximation of smooth functions. The first two problems are studied in
the worst case setting, whereas the third problem is studied in the average
case setting with the folded Wiener sheet measure. These three problems
serve as an illustration that computational complexity presents a new set of
questions, whose answers often require new proof techniques. That is why
even well studied mathematical problems need to be revisited when we want
to find sharp bounds on their complexity.

* The section “A brief history of information-based complexity” by JFT relates
how Henryk WozZniakowski first came to Carnegie Mellon University in
1973. It then flashes back to precursors of IBC as well as the beginning of
optimal iteration theory. The rest of the essay is devoted to the history of
IBC, from the early 70s and then follows IBC to the present.
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* The section “How high is high-dimensional?” by IHS describes the fascinat-
ing history of high-dimensional integration. This field changed dramatically
over the last 15 years, with much of that change driven by Henryk’s persistent
question: “What happens to the error as the dimension goes to infinity?’.

* The purpose of the last essay “What is information-based complexity?” by
HW is to introduce information-based complexity in an informal way. The
basic notions of IBC for the approximate solution of continuous mathemat-
ically posed problems are described there.

We thank the Friedrich Schiller University and the Gesellschaft der Freun-
de und Forderer der FSU Jena for their support. Joseph F. Traub and Henryk
Wozniakowski wish to thank the National Science Foundation for supporting their
work. Ian Sloan acknowledges the support of the Australian Research Council
under its Centres of Excellence program.

We thank Henryk for many suggestions, and even more importantly for a long
and deep friendship.
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Henryk Wozniakowski and the complexity of
continuous problems

Erich Novak

Introduction

Henryk Wozniakowski is a fascinating colleague and friend. This short paper can
only describe a very small part of what Henryk has done.

Henryk was born on August 31, 1946, in Lublin, Poland. Lublin is about 150
kilometers south east of Warsaw and today has about 350 000 inhabitants. His
family moved to Warsaw in 1950. Henryk studied mathematics and computer
science at the University of Warsaw and got his diploma in 1969, Ph.D. in 1972
and habilitation in 1976. From 1972 to 1977, he was assistant professor; in 1977
he became an associate professor in Warsaw.

In 1981, Henryk was elected chairman of the Department of Mathematics,
Computer Science and Mechanics. He was running as a Solidarity candidate.
In the same year, the Senate of the University of Warsaw decided that Henryk
should become full professor. However, he had to wait till 1988 that this decision
became a reality because of political reasons — Henryk WozZniakowski was for
many years one of the leaders of the Solidarno$¢ movement at the University of
Warsaw. In 1989, after political changes in Poland, Henryk was elected chairman
of Solidarity at the University of Warsaw and served two years. Even before, in
1984, Henryk got a position as a full professor at Columbia University in New
York. Since then, he has been teaching in both Warsaw and at Columbia.

Henryk received many prizes, such as the Stanistaw Mazur prize of the Polish
Mathematics Society in 1988. He had long stays in Berkeley (MSRI and ICSI),
at the MGU in Moscow, at Carnegie Mellon University, and at the University
of New South Wales in Sydney. In 2005 Henryk was awarded the Humboldt
Research Award and visited from November 2006 till July 2007 the University of
Jena. Henryk is a member of the Polish Academy of Sciences.

The University of Jena (FSU) is quite picky with respect to honorary doctoral
degrees. Although the FSU celebrated its 450th anniversary in 2008, only three
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colleagues have received an honorary degree because of their work in mathemat-
ics:

¢ Erna Weber, 1897-1988, for her work in statistics,
* Aleksander Petczynski, born 1932, for his work in functional analysis,

* Boris Trachtenbrot, born 1921, for his work in theoretical computer science.

After Aleksander Pelczyniski, Henryk is the second mathematician from War-
saw who is honored by the University of Jena. This is certainly a very good proof
of the high quality of Polish mathematics, as well as the good relations between
the Universities in Warsaw and Jena. I cite from the diploma:

In Anerkennung seiner grundlegenden Arbeiten zur Numerischen Mathe-
matik. Besonders hervorgehoben seien die tiefen Einsichten durch die neue
Disziplin “Information-Based Complexity” und die Arbeiten zum Fluch der
Dimension, mit deren Hilfe man erstmals versteht, welche hochdimensio-
nalen Probleme 16sbar sind.!

1 Early work

Henryk is an excellent mathematician with a great creative urge and power. His
first paper [36] appeared in 1969. Henryk was 23 years old and got his diploma
in the same year. During the next ten years Henryk published many papers about
the numerical solution of linear and nonlinear equations.

Several of these papers, as well as his Ph.D. dissertation, deal with the max-
imal order of methods for the solution of nonlinear equations. In particular,
Wozniakowski proved a conjecture of Traub and Kung concerning the maximal
order of multi-point iterations without memory, see WoZniakowski [37], [38],
[39], Traub and WoZniakowski [26], and the paper by Joseph Traub in this book.

Several of his papers about the numerical stability for solving equations ap-
peared in Numerische Mathematik and in BIT in the years 1977 and 1978. These
papers [7], [40], [41], [42] are still cited quite often.

Translation: In recognition of his fundamental work in numerical mathematics. We emphasize in
particular the deep insights by the new discipline “Information-Based Complexity” and the work on the
curse of dimensionality. With this work we understand for the first time which high-dimensional problems
are tractable.
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2 A general theory of optimal algorithms

Henryk was decisively involved with the creation of two big theories — the second
one is his own child, other colleagues collaborating only later.

Together with Joseph Traub, Henryk built a complexity theory for continuous
problems around 1977. The discrete world of the Turing machine is too narrow
for many applications. We want to understand efficient algorithms for numerical
integration, for the solution of differential equations, and for many other problems
that involve real- or complex-valued functions on intervals or more complicated
domains.

Of course there is a long tradition of studying algorithms for continuous prob-
lems and some of the algorithms even bear the name of their inventors, such
as Newton’s method, Gaussian quadrature formula, or Lagrange interpolation.
More recent algorithms include the Metropolis algorithm or the Jenkins—Traub
algorithm.

Also the complexity, i.e., the cost of optimal algorithms, was studied, some-
times for a restricted class of algorithms and always only for a specific problem.

Hence there existed something what could be called “pieces of the puzzle” and
itis fair to mention many fathers of the theory of optimal algorithms for continuous
problems, such as Babushka, Bakhvalov, Kolmogorov, Nikolskij, Smolyak and
Sobolev in the east and Golomb, Kiefer, Sard and Weinberger in the west. This
list is certainly far from complete!

But the flow of information between the west and the east was sometimes slow
and, more important, there only existed somewhat isolated results for specific
problems. These results became a part of a comprehensive theory only later.

Hence the “first black book” by Traub and WoZniakowski, A general theory of
optimal algorithms, was a sensation. It was published in 1980 by Academic Press.
This book described for the first time a comprehensive theory for continuous
problems. The book also contains, as Part C, a brief history of the field and a
long annotated bibliography. There the reader may find all the references that are
missing here.

Ko-Wei Lih writes in the Mathematical Reviews an excellent report that ends
with “. .. the authors should be congratulated on their magnificent product which
elevates the study of the approximate to a higher dimension.” Actually, this report
is still very informative and this is why it is reprinted here in full length:

This monograph is a report on work in progress in the theory of analytic
computational complexity which is the study of optimal algorithms for prob-
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lems solved approximately. Such a line of investigation had its inception
around 1950 with the work of Kiefer, Sard, and Nikolskij on optimal algo-
rithms for locating the maximum, for integration, for approximation, etc.
This stream of research generated mainly results concerning specific prob-
lems. In 1961 Traub initiated a second stream of research with the study of
solutions to nonlinear equations by iterative methods. The possibility of uni-
fication of these two streams into one general and necessarily more abstract
framework was first shown by the authors in two long reports [“General
theory of optimal error algorithms and analytic complexity”, parts A and
B; per bibl.]. This monograph includes extended and improved material
from these two reports. A central concern of the computer scientist is the
selection of the best algorithm for solving a problem. However, selection
of the best is subject to multivariate criteria such as time and space com-
plexity, ease of implementation, robustness, and stability. The authors only
deal with time complexity here. Nevertheless, conclusions could be easily
adjusted to work for space complexity. Also, the authors study only prob-
lems which cannot be solved exactly with finite complexity or problems
which one chooses to solve approximately for reasons of efficiency. The
final theory includes algebraic complexity as a special case. The generality
and simplicity achieved by this theory has its cornerstone on the notion of
information operator. Adversary arguments based on the information used
by an algorithm lead to lower bound theorems. This has its practical ap-
plication in the rationalization of the synthesis of algorithms. Traditional
ad hoc algorithms are revealed to be paying high penalty without the use
of optimal information. The authors propose 20 general questions to be
studied. The following is a sample of some of them. 1. What is a lower
bound on the error of any algorithm for solving a problem using given in-
formation? 2. In general is there an algorithm which gets arbitrarily close
to this lower bound? 3. What is the optimal information for solving a prob-
lem? 4. Given a specific problem, how do we characterize and construct an
optimal algorithm for its solution? 5. Can it be established that one prob-
lem is intrinsically harder than another? 6. Compare the power of adaptive
and non-adaptive algorithms. 7. Compare the power of linear and nonlinear
information operators. 8. What is the class of all problems which can be
solved by iteration using linear information?

This monograph is divided into three parts. Part A has ten chapters and deals
with a general information model. The basic concepts are first formalized.
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The notions of optimal error algorithm and optimal complexity algorithms
are introduced. Then a large portion is devoted to the study of linear prob-
lems using linear information. It is shown that adaptive information is not
more powerful than non-adaptive information for a linear problem. A linear
problem is also constructed to possess no linear optimal error algorithms.
However, natural problems are immune from such pathology. Algorithms
optimal in the sense of Sard and Nikolskij are shown to be optimal error al-
gorithms. There exist linear problems with essentially arbitrary complexity.
So there are no “gaps” in the complexity function.

In Chapter 6, the theory is applied to the solution of many different linear
problems including approximation, interpolation, integration, and the solu-
tion of linear partial differential equations. Finally, the theory of nonlinear
information is developed and applications given. In the general information
setting the class of nonlinear information operators is actually too powerful
to be of interest. In the last two chapters, a partial hierarchy of complexity
is presented and other models of computation are briefly discussed. Part B
consists of one chapter with 11 sections. It deals with the iterative informa-
tion model and is built on some 20 years of research on iterative complexity
initiated by Traub. The deepest question studied is: what problems can
be solved by iteration using iterative linear information? For one-point
stationary iterations using iterative linear information, it is shown that the
class of iterative algorithms is empty for a problem unless the “index” of the
problem is finite. A conjecture characterizing problems with finite index
is posed to the effect that a positive solution implies that only nonlinear
equations can be solved by iteration. Part C provides a brief history of
the theory of analytic computational complexity and an annotated bibliog-
raphy of over 300 papers and books covering both the eastern European
and the Western literature. The authors supply numerous conjectures and
open problems throughout the book. They also recommend eight tracks
for various readers with particular interests such as researchers interested in
open problems, researchers interested in the literature on history, theoretical
computer scientists, mathematicians, numerical analysts, scientists and en-
gineers. Some of these readers will definitely find that the study of this book
is a quite strenuous task. However, the authors should be congratulated on
their magnificent product which elevates the study of the approximate to a
higher dimension. [MR0584446 (84m:680410)]
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3 Information-based complexity

There are two more monographs, written jointly with Joseph Traub and Grzegorz
Wasilkowski. The third monograph, Information-based complexity, is certainly a
special highlight.

The first monograph did not discuss the average case setting and did not study
randomized algorithms. These are two major new subjects of the “second black
book”, that appeared again with Academic Press, see [24]. Of course the book
contains many more results, for example also a section on linear PDEs written
by Arthur Werschulz. Again I cite the complete report from the Mathematical
Reviews, written by M. 1. Dekhtyar.

There are two main branches of computational complexity theory. The first
is combinatorial complexity, which considers problems for which the infor-
mation is complete, exact, and free. The second, which deals with problems
for which the information is partial, noisy, and priced and for which solu-
tions are not exact, is called information-based complexity and is the subject
of the book under review. The authors summarize and present a number of
results that are concerned with various definitions of the cost and the error
of algorithms. The book may be viewed as a continuation and extension of
two previous books [Traub and Wozniakowski, A general theory of optimal
algorithms, Academic Press, New York, 1980; the authors, Information,
uncertainty, complexity, Addison-Wesley, Reading, MA, 1983].

The book consists of twelve chapters and two appendices. Chapter 1 is
an introduction. In Chapter 2, the basic concepts of information-based
complexity are illustrated by the example of continuous binary search.

In Chapter 3 an abstract formulation of an information-based theory is pre-
sented. A problem is defined as a solution operator S: F — G, where F is
aset and G is a normed linear space over the scalar field of real or complex
numbers. Elements f € F are called problem elements, and the S( /) are
called solution elements. Computation of an approximation U( f) of S(f)
consists of two steps. The first is to obtain information about f:

N(f) = [Ll(f)7L2(f;)’1)7-~~’Ln(f)(f;yh-~~’yn(f)—1)]’

where y; = L;(f;y1,...,Yi—1), and L; is a permissible information op-
eration. Information N is called non-adaptive if y; = L;(f). The second
step is to evaluate the approximation by N(f) — U(f) = @o(N(f)),
where ¢ is a mapping (algorithm): N(F) — G. Then the cost of comput-
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ing U(f) is given by cost(U, f) = cost(N, f) +cost(p, N(f)). The main
results presented in the book deal with the first item of this sum. Three
definitions of the error e(U) are considered: (i) the worst case setting:
e(U) = {sup||S(f) = U(f)|l : f € F}; (ii) the average case setting:
e(U) = ([ IS(f) = U(f)1e(dF))V/2; (iii) the probabilistic setting: let
§ €[0,1]; then e(U) = inf{{sup [|S(/)—U(/)Il : f € F—A}: u(A) <6}
In Chapter 4 theoretical results for the worst case setting are presented. The
radius of information is introduced; it is a sharp lower bound on the error
of any algorithm using this information. The minimal cardinality of infor-
mation with radius at most ¢ is denoted by m(g). If ¢ is the cost of one
information operation then ¢ - m(¢) is a lower bound on the e-complexity.
Conditions under which this bound is almost sharp are investigated. Special
attention is paid to the class of linear problems. It is shown that the use of
adaptive information does not decrease e-complexity for this class. Chap-
ter 5 contains examples of approximation problems to which the results of
Chapter 4 are applied to obtain complexity bounds and optimal algorithms.
They include integration, function approximation, optimization, etc. For
most of them only short sketches of the results are presented and the authors
direct the reader to the references cited for detailed analysis.

Chapters 6 and 7 deal with the average case setting. A Gaussian measure
is proposed as the probability measure on the set F'. The average radius
of information and the average minimal cardinality of error m®&(e) are
introduced. As in Chapter 4, ¢ - m*#(¢) is a lower bound on the average
e-complexity. It is shown that this bound is tight for linear problems. In
Chapter 7 three linear problems are considered and bounds on their average
g-complexity are established.

The probabilistic setting is considered in Chapter 8. The probabilistic radius
of information and the probabilistic (&, §)-cardinality number mP™® (e, §) are
defined in such a way that ¢ - mP™®(g, §) is a lower bound on probabilistic
complexity. Complexity of linear problems is analyzed. The probabilistic
complexity is compared with the average complexity and some relations are
developed.

Chapter 9 contains a comparison between different settings for four prob-
lems: the integration of smooth functions, the integration of smooth periodic
functions, the approximation of smooth periodic functions, and the approx-
imation of smooth non-periodic functions. For each problem a 5 x 3 table
is presented with formulas for the complexity under five error criteria (ab-
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solute error, normalized error, and three kinds of relative errors) in three
settings.

In Chapter 10 the asymptotic setting is studied. Two approaches to optimal
asymptotic algorithms are considered. Under one of them the best speed of
convergence is achieved by algorithms which are optimal in the worst case
setting. The other approach leads to a close relation between the asymptotic
and average case settings.

The main question investigated in Chapter 11 is the extent to which ran-
domization can lower the worst and the average case complexities. The
results presented here show that randomization does not help significantly
for linear problems.?> Some results concerning noisy information are given
in Chapter 12. Noisy information about f € F has the form

N(f,X)=[Li(f)+x1,....La(f521,. .., Zn—1) + Xal,

where X = [x1,...,Xy] is noise, n = n(f,x), and z; = L;(f;z1,...,
zij_1)+x; is the i th observed piece of information. The relationship between
adaptive information and non-adaptive information is discussed. These
areas are open for further investigation.

Two appendices contain the main definitions and facts concerning func-
tional analysis and measure theory. The extensive bibliography includes
more than 450 items. Almost all chapters and sections are followed by
notes and remarks that contain some additional results, comments and ref-
erences. The book is clearly written and may be used as a handbook by
specialists in information-based complexity; it may also be recommended
as a textbook for those who want to study this area of computer science.

[MR0958691 (90£:68085)]

4 Tractability of multivariate problems

Many results in numerical analysis and approximation theory concern the optimal
order of convergence for a problem and a class of functions. Also many results in
the two black books GTOA and IBC deal with this subject. There is a widespread

2Remark of the author: It is true that randomization does not help for some linear problems. There are
other problems, however, where randomization helps a lot; the most popular is the problem of numerical
integration.
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belief that we understand the complexity of a problem if we know the optimal
order. This belief is wrong; it was Henryk who first studied the following problem
seriously since about 1992:

Which multivariate problems can be efficiently solved in high dimensions?

First we formalize this question according to [45], [46]. Assume that we want
to solve a problem Sy for functions f € Fy, where Fj; is a class of d-variate
functions. An example would be the computation of

sah = feoax n

for f € F4, up to an error &. Assume that the cost of an optimal algorithm for
this problem is n(e, d). If

n(e,d) < C - %dP (2)

for certain C, a, B > 0 then the problem is called (polynomially) tractable. Ob-
serve that C is independent of d in the definition (2) of tractability. Therefore
the optimal order of convergence does not say much about tractability. We give
three examples. Only the first example uses known results about the order of
convergence to decide the tractability problem.

4.1 Integration of C*-functions

There is a basic result of Bakhvalov from the year 1959 that the optimal order of
convergence for the computation of the integral (1) for C*-functions is n =%/ . We
conclude that the problem is not (polynomially) tractable. Roughly speaking, the
cost is exponential in d, this is called the curse of dimensionality, after Bellman.

4.2 Integration of smooth periodic functions

‘We now consider the Korobov space F; , of complex functions from L ([0, 119),
where o > 1. This class is defined by controlling the sizes of Fourier coefficients
of functions. More precisely, for h = [hy, hs, ..., hg] with integers h;, consider
the Fourier coefficients

Fay=[ - pwemias,

s
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wherei = +—landh-x = Z;-i:l h;x;. Denote h; = max(1, |h;|). Then
Fig=1{f € Li(0,11%) | | f ()| < (hihy...hg) " forall h € Z4).

Again we consider the integration problem

Sd(f)=/ f(x)dx for f € Fj4.

(0,114

We consider algorithms A, that use n function values, the worst case error

eV (A;), the nth minimal worst case error e(n, d), and the minimal number
nwor(gv Sd’ Fd,oz)

of function values needed to approximate the integrals to within &.
The integration problem for the Korobov class F; , has been studied in a
number of papers and books. It is known that

e(n,d)=0m®) asn— oo, forall p < a.

For p = o we have
e(n,d) = O (n_“ (lnn)ﬁ(d’a))

where B(d, ) is of order d. Such errors can be obtained by lattice rules of rank 1,
i.e., by algorithms of the form

n—1
) = %;f({Jg})

wheren isprimeand z € {1,2,...,n— l}d is a well-chosen integer vector. Here,
{x} denotes the vector whose jth component is the fractional part of x;.

Hence, for large «, the optimal order of convergence is also large and roughly
equal to o independently of d. This is encouraging, but what can we say about
tractability?

The tractability of this integration problem was studied by Sloan and WoZnia-
kowski in [20], where it was proved that

e(n,dy=1 forn=0,1,...,2¢ -1,
which implies that
n“ (e, Sq. Fgq) > 2% foralle € (0,1).
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That is, even for arbitrarily large o, despite an excellent order of convergence,
this integration problem is not tractable. More about this problem can be found
in Henryk’s paper in this booklet.

4.3 The star-discrepancy

After two negative examples the reader may have the impression that all “interest-
ing” problems are intractable and the curse of dimension is “always” present. This
would be a wrong impression, since there are many tractable problems; actually
there are many multivariate problems that can be solved in very high dimension.

Discrepancy is a measure of the deviation from uniformity of a set of points.
It is desirable that a set of n points be chosen so that the discrepancy is as small
as possible. The notion of discrepancy appears in many fields of mathematics.

We begin with the definition of the star discrepancy. Let x = [x1,x2 ..., x4]
be from [0, 1]¢. By the box [0, x) we mean the set [0, x1) X [0, x2) X - - - x [0, xz),
whose (Lebesgue) measure is clearly x1 x5 ... xg. For given points ¢, 15, ... ,t, €
[0, 1]¢, we approximate the volume of [0, x) by the fraction of the points ; that
are in the box [0, x). The error of such an approximation is called the discrepancy
function, and is given by

, RS
disc(x) = x1x2... x4 — o 2; L10,x) (%),
i=
where 1[o x) is the indicator (characteristic) function, so that 1jg x)(#;) = 1 if
t; € [0,x) and 1y x)(#;) = 0 otherwise.
The star discrepancy of the points 1, . .., t, € [0, 1]¢ is defined by the Lo-
norm of the discrepancy function disc

n
disc(t1,t2,...,ty) = sup |xXixz...Xg — l Z Lio,x) (%)
xel0,1]4 n

The main problem associated with star discrepancy is that of finding points
t1,t2,...,t, that minimize disc, and to study how this minimum depends on d
and n.

We now show that the star discrepancy is intimately related to multivariate
integration. Let W! := Wl(l’l""’l)([O, 1]4) be the Sobolev space of functions de-
fined on [0, 1]¢ that are once differentiable in each variable and whose derivatives
have finite L;-norm. We consider first the subspace of functions that satisfy the
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boundary conditions f(x) = 0 if at least one component of x is 1, and define the
norm

/1 dx.

f
x Z f(x
‘. /[W -

Here, dx = 0x10x5...0x,4.
That is, we consider the class

F;j={f¢ w | f(x) =0if x; = 1 forsome j € [1,d], and || fl7, < 1}.

Consider the multivariate integration problem

Sd(f)=/ df(x)dx for f € FJ.

>

We approximate S; ( /) by quasi-Monte Carlo algorithms, which are of the form
1 n
Qun(f) == flty)
j=1

for some points ¢; € [0, 1]4. We stress that the points ¢ i are chosen non-adaptively
and deterministically. The name “quasi-Monte Carlo” is widely used, since these
algorithms are similar to the Monte Carlo algorithm which takes the same form
but for which the points #; are randomly chosen, usually as independent uniformly
distributed points over [0, 1]¢.

We also stress that we use especially simple coefficients n~!. This means that
if f(t1), f(t2),..., f(,) are already computed then the computation of Q4 ,(f)
requires just n — 1 additions and one division. Since the points 1,15, ...,, are
non-adaptive, Q4 , f can be evaluated very efficiently in parallel since each f(#;)
can be computed on a different processor. Obviously, Q4 , integrates constant
functions exactly, even though 1 ¢ F.

The quality of the algorithm O, 4 depends on the points ¢;. There is a deep
and beautiful theory about how the points #; should be chosen. We add that quasi-
Monte Carlo algorithms have been used very successfully for many applications,
including mathematical finance applications, for d equal 360 or even larger.

We now recall Hlawka and Zaremba’s identity, which states that for f € wi,
we have

[u]

0
Si()=QaalN = 3 DM [ diseln Dy f O v,

P#uc{1,2,....d} [0, 1]l
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Here, we use the following standard notation. For any subset u of {1,2,...,d}
and for any vector x € [0, 1]¢, we let x,; denote the vector from [0, 1]/, where
|u| is the cardinality of 11, whose components are those components of x whose
indices are in u. For example, for d = 5 and u = {2,4,5} we have x,, =
[x2, X4, x5]. Then dxy = [];¢, 0x; and dxy = [];¢, dx;. By (xu, 1) we
mean the vector from [0, 1]¢ with the same components as x for indices in u
and with the rest of components being replaced by 1. For our example, we have

(xu, 1) =[1,x2, 1, x4, x5]. Note that

disc(xy, 1) = l_[ X — — Z Lo.xw) (1)) -

keu

For f € F7, the boundary conditions imply that all terms in Hlawka and Zaremba
identity vanish except the term for u = {1,2,...,d}. Hence, for f € Fj we
have

d

. ad
Sa(f) = Qan(f) = (—1)d/ disc(x) =— f(x)dx.
[0,1] dx
Applying the Holder inequality, we obtain that the worst case error of O, 4 is

e (Qan) = sup |Sa(f)— Qan(f)| = disc(ti 12, ... 1),

feF]

which is the star discrepancy for the points #1,1,,...,#; that are used by the
quasi-Monte Carlo algorithm Q4 .
We now remove the boundary conditions and consider the class

={feW! |Ifllar <1},

where the norm is given by

flar= 3 /u.

uc{1,2,.

glul

3xu

S(xu, 1)

dxy.

The term for u = @ corresponds to | f(1)].

We return to the Hlawka and Zaremba identity and again apply the Holder
inequality, this time for integrals and sums, and conclude that the worst case error
again is

™ (Qan) = sup 1Sa(f) = Qan(f)| = disc(tr, 12, . ... 1n).
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The multivariate problem is properly scaled for both classes F; and Fy since the
initial error is 1. Then

n(e,d) = min{n | there are t1,1,,...,t, € [0, l]d with disc(t1,12,...,t,) < &}

is the same for both classes; this is just the inverse of the star-discrepancy.

Hence, tractability of multivariate problems depends on how the inverse of
the star discrepancy behaves as a function of ¢ and d. Based on many negative
results for classical spaces and on the fact that all variables play the same role
for the star discrepancy, it would be natural to expect an exponential dependence
on d, i.e., intractability. Therefore it was quite a surprise when a positive result
was proved in [5]. More precisely, let

disc(n,d) = inf disc(t1,t2,...,ty)
t1,t2,...,tn €[0,114
denote the minimal star discrepancy that can be achieved with n points in the
d-dimensional case. Then there exists a positive number C such that

disc(n,d) < Cd"?n="? foralln,d € N.

The proof of this bound follows directly from deep results of the theory of empir-
ical processes. The proof is unfortunately non-constructive, and we do not know
points for which this bound holds. The slightly worse upper bound

disc(n,d) < 23/2n (d In (IVW—‘ + 1) + lnz)

follows from Hoeffding’s inequality and is quite elementary. Also this proof is
non-constructive. However, using a probabilistic argument, it is easy to show
that many points #1, #2, . . . , t, satisfy both bounds modulo a multiplicative factor
greater than one, see [5] for details.

The upper bounds on disc(#, d) can be easily translated into upper bounds on
n(e,d). In particular, we have

1 2
n(e, d) < [Czd(;) —‘ foralle € (0,1) and d € N.

This means that we have polynomial tractability. Furthermore it was also shown
in [5] that there exists a positive number ¢ such that

n(e,d)>cdlne™! foralle € (0,1/64] andd € N.
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In fact, this lower bound holds not only for quasi-Monte Carlo algorithms, but
also in full generality for all algorithms.

The theory of tractability of multivariate problems was initiated by Henryk
and also mainly developed by Henryk — sometimes together with colleagues and
friends. The recent paper [47] of Henryk is an excellent survey and also describes
the history of this young field.

We now understand why certain multivariate problems are tractable or not. We
also know how intractable problems can be modified to obtain tractable problems.
But, again, with a new theory, there are also new problems. Actually, the recent
book [15] contains 30 Open Problems that, hopefully, are a challenge for many
mathematicians.’

5 Why is the work of Henryk so fascinating?

There are two reasons. First, the persistence of Henryk who attacks, from quite
different angles, similar questions again and again: How can we describe and
find good or even optimal algorithms for different continuous problems of mathe-
matics? What properties do those algorithms have? Henryk wants to understand
this by a comprehensive theory. This is visible already in Henryk’s early work and
gets even more prominent later when Henryk’s interests cover the whole range of
numerical mathematics, as well as other subjects, such as computational physics
and quantum computers.

Secondly, the strength and patience that are needed to study problems in their
detail: For this it was necessary to work in many different areas of mathematics.

It is not enough to develop a general theory. Also in mathematics a theory gets
thought-provoking only through laborious investigations of many single problems
that need many different skills and lots of energy. Henryk got a lot of deep
results by studying such problems and examples; he had to study many parts of
mathematics to obtain these results. In this way he influenced many fields, as can
be seen by studying the Mathematical Reviews.

Most of us publish papers in a relative small field, and probably are happy to
work a small amount in a second field. Henryk published results in numerical
analysis and in many other fields, such as computability, number theory, lin-

30pen Problems 18 and 25 of [15] have been already solved by Stefan Heinrich, and Open Problem 26
by Anargyros Papageorgiou and Iasonas Petras. Partial answers to Open Problems 2 and 5 were found by
Novak and WoZniakowski.
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ear algebra, measure theory, interpolation and approximation, Fourier analysis,
functional analysis, operator theory, probability theory and stochastic processes,
statistics and quantum theory.

There do not exist many other mathematicians with a similar versatility. All
these excursions into different parts of mathematics are still strongly related to the
main basic question that was always studied by Henryk: How can we construct
and understand optimal algorithms for numerical problems?

Today, Henryk is a main leader all over the world and is a great communicator
who works together with excellent colleagues in many countries.

6 Four of Henryk’s papers

It is difficult to select only four papers of Henryk. Probably it would be an
interesting game to select the four “most influential” or the four “best” papers.
To avoid this intractable problem I mention four papers that are cited most often
— as can be checked with the Mathematical Reviews.*

Average case complexity of multivariate integration [43], 1991. Henryk stud-
ies the average case complexity of multivariate integration for the class C ([0, 1]%)
equipped with the classical Wiener sheet measure. To derive the average case
complexity one needs to obtain optimal sample points. This design problem was
open for a long time. In this paper Henryk proves that the optimal design is
closely related to discrepancy theory. The respective L,-discrepancy problem
was solved by K. F. Roth (the lower and the upper bounds being published in
1954 and 1980, respectively) and by K. K. Frolov (who also proved the upper
bound), who showed that optimal sample points are given by shifted Hammersley
points z§,z5,...,z,. Henryk showed that 1 — z{,1 —zJ,...,1 — z; are the
optimal sample points for the quadrature problem, and that the e-complexity of
the problem is of the order ©(¢ ™' (Ing~1)@—1/2) 5

“4This kind of selection discriminates against older papers as well as very young papers. This is obvious
for very fresh papers. But also older papers have a disadvantage since most colleagues do not bother to cite
a paper from the early eighties if they can also cite the IBC book. Therefore all four papers were published
between 1991 and 2000.

>Observe that this paper studies the optimal order of convergence, not tractability. The tractability of
the L-discrepancy problem was studied later.
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Hence this paper is in the intersection of complexity theory, stochastic pro-
cesses, discrepancy theory, number theory and numerical analysis. In particular,
the paper proves that this intersection is non-empty.

Explicit cost bounds of algorithms for multivariate tensor product prob-
lems [29], with Grzegorz Wasilkowski, 1995. The authors study explicit error
bounds for the Smolyak algorithm in the worst case setting and in the average
case setting for multivariate tensor product problems.

In 1963, Smolyak introduced an algorithm for tensor product problems and
proved bounds of the form

n(e,d) < Cqge Prne)P2(d-1,

The interesting thing is that 81, the order of convergence, does not depend on d.
The constant Cy4 is, however, not known and therefore this is a typical classical
result about the order of convergence. The authors prove bounds of the form

—1\ B3(d-1)
Ine 3 —Ba
d—1 ’

where all the constants C, 81, B>, B3 and B4 are known and can be computed from
error bounds for d = 1.

ne.d) < c(ﬁl B

When are quasi-Monte Carlo algorithms efficient for high dimensional in-
tegrals? [21], with Ian Sloan, 1998°. This paper is of fundamental importance
for the understanding of high dimensional problems. It gives a partial answer to
why quasi-Monte Carlo algorithms are successful, even in huge dimension. The
authors define weighted spaces of functions using the idea that, for many applica-
tions, the number d of variables is huge, however, not all variables play the same
role and some variables are “less important” than others. The idea of weighted
spaces is central for the recent theory of tractability of multivariate problems.

Integration and approximation in arbitrary dimensions [6], with Fred Hick-
ernell, 2000. The authors study several multivariate integration and approxima-
tion problems. They consider algorithms for classes f € F; using function
values. Let n(e, d) be the minimal number of function values needed for a worst

OThis is the paper of Henryk that recently has been cited most often, according to Mathematical Reviews.
By the way, it is also the paper of Ian Sloan that is most often cited.
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case error ¢ in the dimension d for the class F;. The authors are mainly interested
in spaces and problems with the property

n(e,d)<Ceg?,

where C and p donotdepend on d. Problems with this property are called strongly
(polynomially) tractable. The authors prove that integration and approximation
are strongly tractable for certain weighted Korobov and Sobolev spaces.

For the approximation problem the authors also consider algorithms that use
arbitrary linear functionals instead of function values. The main result is that
(under some assumptions) this much more general information is “not much”
better, i.e., the e-exponents stay the same.

7 Other directions

Here I just mention very few other of Henryk’s research directions. Again my
choice is very selective.

* Linear optimization. Traub and WoZniakowski study in [27] the ellipsoid
algorithm and observe that, even if this algorithm is a polynomial-time algo-
rithm within the bit number model, it has unbounded cost in the real number
model. The authors conjecture that there does not exist a polynomial-time
algorithm for the linear inequalities problem. This problem is still open
today, in 2009.

¢ Computation of fixed points. It is known from work of Nemirovskii that
it is impossible to improve the efficiency of the simple iteration whenever
the dimension of the domain of contractive functions is large. However for
a modest dimension, Sikorski, Tsay and Wozniakowski [18] exhibit a fixed
point ellipsoid algorithm that is much more efficient than the simple itera-
tion for mildly contractive functions. This algorithm is based on Khachiyan’s
construction of minimal volume ellipsoids used for solving linear program-
ming.

 Testing operators. Together with David Lee, Henryk wrote several papers
about testing and verification of linear and nonlinear operators, see, e.g.,
[12]. For the testing problem, A is an implementation of a specification S,
both are mappings from a compact metric space F into a metric space G.
Given ¢ > 0, one is allowed to compute Af and S/ for a finite number of
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J and has to decide whether d(Af, Sf) < eforall f € F. It is shown
that asymptotically correct sequences of guesses can be arranged. Sharp
upper and lower bounds on the number of tests are given in terms of the
Kolmogorov entropy of F'. Probabilistic testing methods are developed and
analyzed.

¢ Tractability of path integration. In [30], Wasilkowski and WoZniakowski
analyze the complexity of computing integrals [, f(x) u(dx), where j is
a Gaussian measure on a Banach space X . For r times differentiable func-
tions on X, the integration problem is tractable for deterministic algorithms
iff the covariance operator is of finite rank. Hence for measures p with
infinite-dimensional covariance operator, Monte Carlo integration is supe-
rior to deterministic algorithms. For certain classes of entire functions on X,
it is shown that the problem becomes tractable in the deterministic setting.

Plaskota, Wasilkowski and WozZniakowski [17] suggest a new algorithm for
the computation of Feynman—Kac path integrals. This algorithm has a very
small cost, which gives a dramatic improvement of earlier results. However,
there is also a problem since the new algorithm needs a lot of precomputation
and therefore can (so far) only be used if the error requirements are moderate.

* Quantum computers. Henryk studied quantum computation and wrote
several papers about optimal numerical algorithms in the quantum setting.
Kwas and Wozniakowski [11] prove sharp error bounds for the Boolean
summation problem. Traub and WoZniakowski [28] study path integration
on a quantum computer.

* Weighted problems and finite-order weights. As already mentioned, the
work [21] by Sloan and WozZniakowski has been continued by many col-
leagues. Dick, Sloan, Wang and WozZniakowski [1] discuss general weights
in order to give recommendations for choosing the weights in practice. They
defined in [2] finite-order weights. Such weights seem to be appropriate for
many applications and they model functions of d variables that can be ex-
pressed as a sum of functions of k variables with k independent of d. The
authors also prove new lower and upper bounds for the tractability of quasi-
Monte Carlo algorithms for the computation of integrals for functions from
weighted Sobolev spaces. For finite-order weights, we usually have tractabil-
ity bounds depending polynomially on d#®) with B(k) linearly dependent
onk.

* Lower bounds. To determine the complexity of a problem, we also need
good lower bounds. This is straightforward for linear operators S: F — G
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between Hilbert spaces, if we consider algorithms that use arbitrary linear
functionals in the worst case setting. Then we have to study the singular
values of S. The proof of lower bounds is much more difficult in the ran-
domized setting and/or if we consider algorithms that use function values.
Many papers of Henryk deal with lower bounds, we mention [14], [20], [30].

Good lattice rules. By lattice rule algorithms we mean algorithms that are
based on function values at (sometimes shifted) lattice sample points. Such
algorithms can be used for integration and approximation and in different
settings. Some tractability results were first proved in a non-constructive
way and today can be proved (by the work of Kuo, Joe, Sloan and others)
in a constructive way, see also work of Cools and Nuyens. We mention [2],
[8]1, [9], [22], where the reader can find more references.

Smolyak algorithm and generalizations. The algorithm of Smolyak has
been generalized to the concept of weighted tensor product algorithms to
prove, in a constructive way, the tractability of many tensor product prob-
lems, see [31].

The power of standard information. Often we know upper bounds for
algorithms based on arbitrary linear information, based on estimates of sin-
gular values. It is then a challenge to prove similar upper bounds for algo-
rithms based on function values — or to prove that such algorithms do not
exist. Here we mention the paper [34], which deals with the randomized
setting, and the paper [10], which deals with the worst case setting.

Generalized tractability. In this short survey we discussed polynomial
tractability that is defined by the requirement

ne,d) < C-e%dP (3)

for certain C,«, 8 > Oand alle > 0 and d € N. There are different notions
of tractability, since one might be interested in different tractability domains
(for example, only d is large while ¢! is modest) and different tractability
functions, instead of polynomials. Then (3) is replaced by

n(e,d)<C-T@ 1, d),

for all (¢7!,d) € Q. This was studied by Henryk together with Gnewuch,
see [3], [15].

Quasilinear problems. Many IBC results have been proved for linear prob-
lems, for example for linear operator equations, where the solution u depends
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linearly on the right hand side f. Together with Arthur Werschulz, Henryk
studied the tractability of quasilinear problems. Many problems of mathe-
matical physics belong to this class of problems. The paper [34] is the first
paper in a series of papers.

Concluding remarks

I want to conclude with a few personal remarks. I have known Henryk since
1985, when Joseph Traub and Henryk invited me to a conference to New York.
We immediately started discussions — which have not ended so far. Our first joint
paper appeared in 1992. Henryk was always a good friend — actually, he is the
nicest guy you can imagine. I thank him for 1000 suggestions and also for his
sympathetic warmth.
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Complexity as a new challenge for mathematicians

Henryk WozZniakowski

1 Introduction

This paper is based on my presentation when I received an honorary doctoral
degree from the Friedrich Schiller University of Jena in June 2008. I wish to
begin with a few personal thoughts regarding the University of Jena and Jena’s
mathematicians.

In 1964 I started my mathematical study at the University of Warsaw. My
favorite subject was always analysis, and gradually I became more and more in-
terested in theoretical numerical analysis. We had many classes covering classical
and modern aspects of analysis. Many famous names of mathematicians were
mentioned as we studied their theorems. When functional analysis and function
spaces were covered, I learnt that the University of Jena is a famous place in
mathematics and the names of Professors Albrecht Pietsch and Hans Triebel, two
prominent mathematicians from University of Jena were often mentioned. I have
not then expected that after many years I would have a privilege to meet them in
Jena and listen to many of their talks.

In 1985, Joseph Traub and I organized a conference on approximately solved
problems at Columbia University in New York. During this conference, I first
met Erich Novak. It was obvious from the very beginning that we share many
common research interests with Erich. As a partial proof of this claim, I would like
to add that so far, I have published 13 papers with Erich, and that the first volume
of our book Tractability of Multivariate Problems has been recently published
by the European Mathematical Society. In 2001, Erich moved to the University
of Jena as Professor of Theoretical Numerics. I visited him in Jena a couple of
times before 2006. In 2006, I received a Humboldt Research Award and spent the
2006-2007 academic year at the University of Jena working with Erich on our
book. I am happy that Erich was asked to present the Laudatio of my honorary
doctoral degree.

I believe it was in 1987 when I met two young mathematicians, Stefan Heinrich
and Peter Mathé, who both had strong ties with the University of Jena. Stefan
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received his PhD degree in 1976 and his advisors were Professors Albrecht Pietsch
and M. I. Kadec from the Kharkov University. In 1980, Stefan got his habilitation
from the University of Jena, and in 1983-1985, he was a Visiting Professor at the
University of Jena. Peter got his PhD degree in 1981 from the University of Jena
and his advisor was Professor Werner Linde.

Today Erich, Stefan and Peter are my close friends, and we and our many
colleagues are working in information-based complexity, which addresses com-
putational complexity of continuous problems.

I wish to add a few words about the time I spent in Jena as a Humboldt fellow
in 2006-2007. It was a happy time for me and my wife. I got sabbatical leaves
from both Columbia University and the University of Warsaw, and I was without
any teaching or administrative duties. My time was fully devoted to research,
and more specifically to writing a book on tractability with Erich. This would
have been enough for a successful stay, but pretty soon we realized that there is
much more we would enjoy in Jena. We enjoyed the friendly atmosphere of the
Mathematisches Institut. I still remember nice lunches at the local mensa, and in
a Japanese restaurant close to the Institute, many dinners in excellent restaurants
of Jena after colloquia and seminars of many Jena visitors. My wife often also
took part in these evening events. We wish to thank all colleagues from Jena to
make our stay in Jena so nice.

I am very honored and feel privileged to receive an honorary doctoral degree
from the University of Jena. I wish to thank all my Jena colleagues who thought
about me as a possible candidate for the honorary degree and who organized such
a nice celebration of this event. I wish to add that Jena will be always a precious
place for me.

As a token of my appreciation, I would like to talk now about my favorite
mathematical subject, that is, about complexity. I want to address a general
audience of mathematicians who are not necessarily familiar with computational
complexity. My major message is not to burden my fellow mathematicians with
many new complexity results but to convince them that computational complexity
presents a new set of questions that are relatively new and whose answers probably
require new proof techniques. From this point of view, computational complexity
is a new challenge for mathematicians, and I would like to encourage as many
mathematicians as possible to get familiar with this new field and maybe to stay
in this field for a long time.

I wish to illustrate computational complexity by three examples. The first one
is the easiest to explain. We have two n x n matrices and we want to multiply
them. This looks like a trivial problem. Indeed, it is obvious that knowing all the
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coefficients of two matrices we can compute their product using ¢ (n3) multipli-
cations and additions. So, where is the problem? Well, the new and key question
is to ask whether we can do it better. Or more generally, we can ask what is the
computational complexity of matrix multiplication? That is, what is the minimal
number of multiplications and additions, or arithmetic operations, that is neces-
sary to multiply two arbitrary n x n matrices with real coefficients? Clearly, we
must perform at least of order n? operations since we have 2n? real coefficients
and the resulting matrix depends on all of them. But are @ (n?) arithmetic oper-
ations enough? We do not know. We also do not know the smallest § for which
O (nP) arithmetic operations are enough to compute matrix multiplication. We
only know that 8 € [2,2.388], with the upper bound on 8 due to Coppersmith
and Winograd [4]. Why is it so difficult to solve this problem that is so easy to
define? A possible answer is that we do not have a proper proof technique. This
complexity question was asked only about forty years ago, and apparently forty
years is not enough to develop proper tools and concepts needed for the solution.

Obviously, the ease of formulation of a problem has nothing to do with the
difficulty of its solving, and Fermat’s last theorem is probably the best example.
We needed to wait some 350 years for the solution of the Fermat problem. I hope
we do not have to wait so long for the solution of matrix multiplication, since I
would like to see the solution during my time.

The purpose of the second and third examples is to show that some multivariate
problems may have an excellent rate of convergence but still suffer from the
curse of dimensionality. More precisely, we will consider multivariate integration
and approximation defined over certain classes of functions. For multivariate
integration, as in [10], we choose a class of periodic and smooth functions f of d
variables. We approximate the integral of f by an algorithm that uses n function
values at optimally chosen sample points. We measure the error by the worst
performance of an algorithm. It turns out that the worst case error as a function
of n tends to zero like n~?, where p can be arbitrarily close to the smoothness
parameter « of the class. Hence, for large «, the exponent p is also large and we
enjoy an excellent rate of convergence. If we want to guarantee that the worst
case error is at most ¢ then

n= (9(8_1/"‘_5) forall § > 0.

So for large «, the exponent of ™! is small and the problem seems to be easy.
Usually the standard analysis finishes at this point with the claim of a positive
result that multivariate integration of periodic and smooth functions is easy.
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As the third example, we consider the space of r-times continuously differ-
entiable functions with respect to all d variables and equip the space with the
r-folded Wiener measure. We now approximate functions f by an algorithm that
uses n arbitrary linear continuous functionals and measure the error by an average
performance of an algorithm. Papageorgiou and Wasilkowski [8] proved that the
average case error of an optimal algorithm tends to zero like n ™7, where p can
be arbitrarily close to r 4+ 1/2. Hence, p is at least roughly 1/2 and p is large for
large r. So we enjoy an excellent rate of convergence for large r. Again, if we
want to guarantee that the average case error is at most ¢ then

n= (9(8_1/(r+1/2)_8) forall § > 0.

In this case, the exponent of ¢! is roughly at most 2 for r = 0 which corresponds
to the classical Wiener sheet measure. For large r, the exponent of ¢~! is much
smaller. Again, the problem seems to be easy and such a message is usually sent
by the standard analysis.

What is possibly missing in this line of thought? Well, all the good news is
based on the big @ notation. This means that we do not control the factors in this
notation. These factors, although independent of ¢~!, may depend on d. As long
as d is relatively small this is probably irrelevant. But what happens if d is large?
Problems with large d occur quite often in computational practice and there is
a fast growing interest in solving problems with large d, that is, in solving high
dimensional problems.

Let us then use the complexity approach and try to find the complexity of these
two problems as a function of two parameters ¢! and . It turns out that, modulo
some details, the complexity is equal to n (e, d), which is the minimal number of
information operations needed to solve the d -variate problem to within &. Here, by
one information operation we mean computing one function value for multivariate
integration, and one linear continuous functional for multivariate approximation.
For multivariate integration it is shown in [10] that

n(e,d) > 29 foralle < 1.

It should be added that n(e,d) = 0 for all ¢ > 1. Hence, we see that n(-,d) is a
discontinuous function at 1.

For multivariate approximation it is shown in [6] that for every non-negative
integer r there exists a number C, > 1 such that

n(e,d) > [C]%(1 —&?) foralle < 1.
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The essence of these two lower bounds is that complexity depends exponentially
on d. We have to wait exponentially long in d before we can make use of the
excellent convergence rate. For large d, this is really bad news. For example,
take d = 100, which is quite small by today’s standards. Then for multivariate
integration we have to compute at least 2'°° function values even if we want to
guarantee the error close to 1, say, 0.9999.

The exponential dependence on d is called the curse of dimensionality, after
Bellman who coined this phrase back in 1957. Hence our two problems suffer
from the curse of dimensionality, this holds independently of the smoothness pa-
rameters « and r. This curse holds even though asymptotically we have excellent
rates of convergence for large o and r.

This means that many standard positive results do not necessarily imply good
complexity bounds. We need a more thorough analysis if we want to establish tight
complexity bounds; this usually requires a new proof technique. Furthermore,
even for problems studied thoroughly in the past, we need to revisit them if we
want to find sharp bounds on their complexity.

It is natural to ask what to do if we establish that complexity is huge, or if
the multivariate problem suffers from the curse of dimensionality. Since this is a
complexity result it is impossible to find a better algorithm. The problem is simply
too difficult. The only way to vanquish the curse of dimensionality is either to
change the problem or to switch to a more lenient way of defining the error of
an algorithm. For instance, we may shrink the class of functions by assuming
additional properties of functions. In particular, we may have an application for
which functions of d variables may be well approximated by sums of functions
of only a few variables, or functions for which the dependence on successive
variables or groups of variables vary significantly. This leads to the study of
weighted spaces. The main point is to find necessary and sufficient conditions
on the weights to vanquish the curse of dimensionality and to guarantee that
complexity is, for instance, a polynomial function of e~! and d. This subject is
beyond the scope of this paper and we only illustrate one of the many aspects of
weighted spaces in the last section. The reader who is interested in how the curse
of dimensionality can be indeed vanquished is referred to our book Tractability
of Multivariate Problems [6].
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2 Matrix multiplication

Let A = (ai,j); j=, and B = (bi,j)?,]:l be two arbitrary n X n matrices with
real coefficients a;,; and b; ;. We want to compute

n
C = AB, sothat cl-,j=Zai,kbk,jfori,j,z1,2,...,n.
k=1

It is probably fair to say that matrix multiplication is not practically important per
se. However, it is known that matrix multiplication is equivalent to the problem of
solving linear equations Ax = b which, in turn, is a very important and practical
problem. So if we know how to quickly compute the matrix C then we also know
how to quickly compute x = A7 1h.

Let comp(n) denote the minimal number of arithmetic operations needed to
compute C for arbitrary n x n real matrices A and B. By arithmetic operations we
mean additions, subtractions, multiplications, division and comparisons of real
numbers. This point is important, since we now assume the real number model
which is usually used for solving continuous problems, and this is indeed the
case for practically all scientific and numerical computations. It is worth to stress
that in discrete complexity, the Turing model of computation is usually used, in
which we count operations on bits instead of operations on real numbers. So,
multiplication of two real numbers has unit cost in the real number model, but is
usually infeasible in the Turing machine model.

We also stress that complexity is defined as the minimal cost of a solution,
and not as a cost of a specific algorithm. This distinction is crucial since in many
cases, “complexity” is used by many people as a synonym of the word “cost”.
For us, complexity is a property of a problem and we are seeking an algorithm
whose cost is equal to the complexity or, more likely, whose cost is as close to
the complexity as possible.

From a mathematical point of view, to know the complexity of a problem means
that we can prove two bounds. First, we can prove that the cost of any possible
algorithm that solves the problem is bounded from below by the complexity.
Second, we know a specific algorithm that solves the problem whose cost is
bounded from above by the complexity. Not surprisingly, in most cases, we only
know lower and upper bounds on the complexity. If they are equal, we are done;
if they are sharp we are almost done. If the bounds are not sharp (the typical
case), we only have some ideas about complexity.
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Matrix multiplication is one such problem. As already mentioned in the in-
troduction, comp(n) must be at least equal to 72 since the matrix C depends on
2n? real inputs, and all of them are important. Since we are using operations
involving two arguments, if we perform k such operations we may use at most
2k inputs. Therefore 2k > 2n? and k > n2. So we have a trivial lower bound,

comp(n) > n>.

Interestingly enough, no one so far was able to prove that complexity depends on
a higher power of n. Hence the case that complexity is of order n2 has not been
ruled out.

What do we know about upper bounds on comp(n)? The first bound is trivial.
We just compute ¢; ; by n multiplications and n — 1 additions, and obtain the
whole matrix C at cost of (2n — 1)n? < 2n3. Hence

comp(n) < 2n>.

Up to 1969, many people believed that comp(n) is indeed proportional to n3. It
was a big surprise when Strassen [11] proved in 1969 that

comp(n) = @ (n'27) with log,7 ~ 2.81.

His algorithm is based on recursion, and the basic reduction comes from the fact
that he showed how to multiply two 2 x 2 matrices using only 7 multiplications.
The usual way requires 8 multiplications and leads to @ (n'°%28) = @ (n?) cost.

The title of Strassen’s paper is “Gaussian elimination is not optimal” and refers
to the fact that Gaussian elimination is the most often used algorithm for solving
Ax = b at cost O(n®). However, using Strassen’s algorithm, Ax = b can be
solved at cost 9 (n'°227).

Strassen’s paper is today regarded as the beginning of a new subfield of com-
plexity which is called algebraic complexity. Many people tried to improve
Strassen’s result. The first approach was to reduce 7 multiplications needed for
two 2 x 2 matrices. This failed, but other approaches came along. There is a long
trail of successive improvements of Strassen’s algorithm; the last step was done
some twenty years ago by Coppersmith and Winograd [4], who proved that

comp(n) = @ (n*>%%).

We wish to add that the factor in the last big O notation is enormous. This
means that the last bound is better than, say, the bound on3 only if n is very
large. Such large n do occur in computational practice but then the matrices
A and B have extra properties. For instance, they are sparse or generated by a
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few parameters; this additional structure allows us to usually find much better
algorithms. This is especially the case when we switch to the equivalent problem
of solving Ax = b. This is why, despite of the decrease of the exponent of n
from 3 to 2.388, Gaussian elimination is still used for solving Ax = b if n is
moderate, say, n < 100.

We stress that complexity is defined as the minimal cost, not as the minimal
exponent of n. Hence, if one day an algorithm with cost equal to the complexity
is found, then it cannot lose against Gaussian elimination for all n. Does this
mean that Gaussian elimination will be then abandoned? Not necessarily, since
we also need to match the stability property of Gaussian elimination. This is
because all algorithms run in the floating point arithmetic and there are subtle
differences between the real number model and floating point arithmetic. The
new algorithm must be resistant in a certain sense to rounding errors before it can
be recommended for computational use. So there seems to be still a long way to
go before we can forget about Gaussian elimination for moderate 7.

We stop here and recommend the readers interested in learning more on this
subject to turn to the books of Biirgisser, Clausen and Shokrollahi [3] on algebraic
complexity, and Pan [7], and Bini and Pan [2] on fast matrix multiplication.

3 Multivariate integration of smooth periodic functions

Consider periodic complex valued functions f defined on the d dimensional unit
cube [0, 1]¢. For a given real parameter & > 1, consider the class of functions
defined as

Faa={/:00.11" = C||f(h)] =14, max(1, |h; )~ forall h € Z¢}.

Here h = [hy, ha, ..., hg] with integers h;, and f (h) denotes the Fourier coeffi-
cient,

f(h) = / F(x) exp(=2mih-x)dx,
[0,1]4

withi = +/—1, and x = [x1.x2,...,x4] for x; € [0, 1], and the inner product
h-x=hix1 +hyxo+--+hgxy.

For functions in Fy , we control the decay of the Fourier coefficients. Since
a > 1, functions from Fy o are continuous. For large o, the class Fy 4 consists of
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smooth functions. Indeed, it is easy to check that if f € Fy, then f is k-times
differentiable with respect to all variables for all k < a — 1.
Multivariate integration is defined as approximation of

1a(f) :/[0 " f(x)dx forall f € Fgg.

We assume that we can compute function values at any point from [0, 1]¢, and
approximate /4 ( f) by algorithms A, 4 that use at most n function values,

Ana(f) = on(f(t1), f(t2)..... f(tn))

for some points #; and a scalar mapping ¢,,. The points ¢; can be chosen adaptively,
that is, #; can depend in an arbitrary way on the previously computed values

f(x1), f(x2),..., f(x;j—1); the mapping ¢, can also be arbitrary.
The error of the algorithm A, 4 is defined in the worst case setting as

e(Ang) = sup [La(f)— Ana ()l
f€Fq .«
Let e, 4 denote the minimal worst case error that can be achieved by using n
function values, i.e.,
enq = inf e(4,.q).
An.d

It turns out that the last infimum is attained for linear algorithms and for nonadap-
tive choice of points #;. That is, it is enough to consider algorithms A, 4 of the
form

Ana(f) =) a; f(t))
ji=1

for some complex numbers a; and some 1,15, ..., 1, chosen independently of
f. Then

epq = inf  sup ‘Id(f)—Zaj (t,)‘

a5l feFyq

Optimality of linear algorithms was proved by Smolyak in his PhD thesis in
1965, whereas optimality of non-adaption was proved by Bakhvalov in 1971.
Both results may be found in [1]. These results hold for more general spaces and
more general linear functionals. They were also generalized in many aspects.
The reader is referred to Chapter 4 of [6] for more information.
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From Niederreiter [5] and Sloan and Joe [9], we know that
eng =0n?) forall p <a.

Hence, for large o the rate of convergence is excellent.

It is natural to ask “How long do we have to wait to enjoy this excellent
rate of convergence?” A surprising negative result was proved in [10] using an
elementary argument. Namely, we have

eng =1 foralln =0,1,...,2¢ — 1. (1)

The proof thate, 4 = 11is short; we present it here to show the reader how such
a complexity result can be obtained. First of all, take the most trivial algorithm,
A, g = 0. Its worst case error is just

sup [Ig(f)l= sup [f(0)]=1.
f€F o f€Fq

Hence, e, 4 < 1 and we need to prove that as long as n < 24 all algorithms
behave as badly as the zero algorithm. Take an arbitrary algorithm A4, 4(f) =
On(f(t1), f(t2), ..., f(ty)) for some (perhaps non-linear) mapping ¢,, and some
(perhaps adaptively) chosen points #;. We will construct a function f € Fy o for
which

f@tj))=0 for j =12,....,n but [I;(f)| =1

More precisely, if points ¢; are given adaptively, we take the first point #; that
is independent of functions from Fj o, and construct f such that f(¢;) = 0.
This implies a choice of the second point #, for which we construct f for which
f(t1) = f(z) = 0, and so on. That is, knowing that f(¢;) = f(t2) = --- =
f(tx) = 0, the (k 4 1)st point ¢ 4 is chosen and we again construct f for which
additionally f(tx4+1) = 0. This is done fork = 1,2,...,n — 1.

We first choose a trigonometric polynomial of the form

G(X) Z ap eZT[ih-x
he{0,1}4

with another trigonometric polynomial 8 to be specified later, and complex coef-
ficients aj that are a non-trivial solution of the homogeneous linear system

Z ap eZJrih-tj =0.

he{0,1}¢
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Here, we need the assumption that n < 24, Indeed, we have 24 unknowns a h
and n homogeneous linear equations; hence forn < 24 anon-zero solution exists.
The non-zero solution ay can be normalized and we choose the normalization such
that
max |ap| = ap+ =1,
he{0,1}4

for some h* € {0,1}4. We now define 0(x) = e~ 27" Qur function f is

given as
f@=c ) aperm @O,
he{0,1}4
where ¢ = 1 if the real part of ¢(0,0, ..., 0) is non-positive, and ¢ = —1 if the

real part of ¢(0,0, ..., 0) is positive.
We now show that f belongs to Fy . Indeed, observe that f is a trigonometric
polynomial with

hj —h% e{-1,0,1} forall j =1,2,....d and h €{0,1}%.
This implies that max(1, |h; — h7[) = 1 and

d
[ [ max(1.|h; —hY)) =1 forallh € {0.1}%.
j=1
We have | £ (h — h*)| = |ap| < 1forall h € {0,139, and f(h — h*) = 0 for all
h ¢ {0, 1}, Hence, | f (h)| < ]_[d max(1,|h;[)™* forall h € 74 . This means

j=1
that f € Fy 4, as claimed.
Clearly, f(¢t;) =O0forall j = 1,2,...,n and therefore

An.a(f) = ¢(0,0,...,0).
Furthermore, I;(f) = £(0) = cap+ = ¢, and
11a(f) — An.a(f)] = |c — ¢(0,0,...,0)| > |c — Rp(0,0,...,0)| > [c| = 1.

Hence, the worst case error of A, 4 is at least 1, which completes the proof.

The essence of this result is that the zero algorithm is best if we use less than
2¢ function values. Hence, we have to wait exponentially long in d to see the
rate of convergence in action. Furthermore, for n = 2¢ we have

d
€rd g =< 20[—_1(1 + 0(1)) as o — OoQ.
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This means that for large o, nothing happens as long as n < 2¢ and the error stays
as 1, whereas for n = 2¢ the worst case error is exponentially small in o and is
suddenly almost zero. This is indeed very irregular behavior of the minimal worst
case errors.

We now turn to complexity, i.e., the minimal cost of solving multivariate
integration to within €. Obviously, for ¢ > 1 the problem is trivial, since it is
solved by the zero algorithm with cost zero. Without loss of generality we thus
assume that ¢ € (0, 1).

Since linear algorithms are optimal, it is clear that the minimal cost will be
achieved by taking the minimal n for which the worst case error is at most ¢ and
by computing n function values, and performing at most n multiplications and
n — 1 additions. Since the cost of computing one function value is usually much
larger then the cost of one multiplication or addition, we conclude that complexity
is roughly equal to the minimal number of function values needed to solve the
problem,

n(e,d) =min{n | e, 4 <e}.
From the bound (1) on e, ; we immediately conclude that
n(e,d)>2% foralle € (0,1).

So we have exponential dependence on d, and multivariate integration of periodic
and smooth functions suffers from the curse of dimensionality. Furthermore this
holds for all o, that is, even if « is arbitrarily large and when the rate of convergence
is excellent.

We finish this section by saying that there are more such examples where the
excellent rate of convergence is present only after an exponential delay in . That
is, there are sufficiently smooth problems that are asymptotically trivial although
their worst case complexity suffers from the curse of dimensionality. The reader
is referred to [6] for more such examples.

4 Multivariate approximation

Consider now the class

Fd,r _ C(;‘,r,...,r([o, l]d)
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of real functions defined on [0, 1]¢ that satisfy the boundary conditions and are r
times continuously differentiable with respect to all variables. The boundary
conditions mean that all derivatives up to order r are zero if the argument of a
function has at least one zero component. For example, if » = 0 then f(x) =0
if some component of x is zero. The space Fy , is equipped with the norm

||f||Fd_, = sup |f(’ar,--~,r)(x)
x€l0,1]4

’

where f *"++7) denotes the r times differentiation of f with respect to all vari-
ables.

Clearly, Fy , is a separable Banach space. We equip Fy , with the r-folded
Wiener sheet measure wy -, which is the classical Wiener sheet measure placed on
partial derivatives of order r. The measure wy , is a zero-mean Gaussian measure
whose covariance kernel Ky , is given by

T w0y

Y

Kasoy) =[] [ S0
j=170 '

For r = 0, we have K o(x,y) = ]_[;i=1
sheet measure.

Multivariate approximation is defined as approximation of an embedding
APP;: F;, — Ly = Ly([0, 1]%) given by

APP;(f) = f forall f € Fy,.

)l d
' du forall x,y € [0, 1]%.
r:

min(x;, y;), which is the usual Wiener

We assume that we can compute arbitrary linear continuous functionals L( f) for
L e F;’r. We approximate APP; (/) by algorithms A, 4: Fz, — L of the
form

An,a(f) = ¢n(L1(f), L2(f). ... Ln(f))

for some .L i €F j’ , and some mapping ¢,. As in the previous section we may
use adaption.
The error of the algorithm A, 4 is defined in the average case setting as

1/2
e(An,d)=[ [ ||APPd(f>—An,d<f>||izwd,r(df)] .

For simplicity we assume that A, 4 is measurable but this assumption can be
removed, see e.g., Chapter 4 of [6].
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Let ¢, 4 denote the minimal average case error that can be achieved by using
n linear continuous functionals, i.e.,

enq = inf e(4n.q).
An.a

It turns out, see the results of Wasilkowski [ 12] and Papageorgiou and Wasilkowski

[8], that
e 1/2
en.d =[ Z ld,j] ,

j=n+1

where A4, ; are the ordered eigenvalues of the compact operator Wy : Fy, — Fy ,
given by

Wa,f = /[ L Kar(0) f0dx forall & Fa,. @)
0,1

The eigenvalues A4 ; are asymptotically known and it allowed Papageorgiou and
Wasilkowski to show that

end =0Om?) forallp <r+1/2.

So the order of convergence is excellent, again for large r.

We now address average case complexity, working with the normalized error
criterion, see [6] pp. 58-62. More precisely, for n = 0 we know that the minimal
error is achieved by the zero algorithm and is equal to

wa=x0]” =[]

1/2
171, war @) |
d.r
1
[(r)2(2r + 1)(2r + 2)]4/2°

The quantity e 4 is called the initial error since it is determined by the definition
of the problem without sampling f. For the normalized error criterion we want
to reduce the initial error by a factor of €. Let

n(e,d) = min {n | en.d < €eoa }

be the minimal number of linear continuous functionals needed for solving the
problem. From general results for the average case setting, 1 (e, d) is practically
the same as the average case complexity. We obviously have

n(e.d) =min{n | Y52, 1 daj <Y 52 Aaj }.
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and
n(e, d) = (9(8_1/('+1/2)_8> forall § > 0.

Hence, the exponent of ¢! is roughly at most 2 for r = 0, whereas for large r,
it is small. Again, it is tempting to say that the problem is easy, especially for
large r.

However, note that e,,(; 4) < ¢4 and

00 n(e,d)
ey =D rdj— Y. haj=eqq—nle.d)hiq.
=1 i=1
This yields
ezd
n(e.d) > (1— %)=
Ad1

Since K4, is given as a product of univariate kernels, the eigenvalues of the
operator W, are products of univariate eigenvalues for the operator W;. Therefore

we have
(e ) d
2 d
€0.d = ( E /ll,j) and Ag1 = A7 ;.
Jj=1

Hence,

o0 A,l . d
ned) = (- (14 1)
Z A1
Jj=2
Since all eigenvalues A;,; are positive, we have an exponential lower bound on
n(e, d), and multivariate approximation suffers from the curse of dimensionality
independently on how large is r. This shows that also in the average case setting
we may have an excellent rate of convergence and the curse of dimensionality.

5 Weighted multivariate approximation

We briefly discuss how the curse of dimensionality of multivariate approximation
studied in the previous section can be vanquished by introducing weights.
Define the measure vg, = wd,,APPgl, where wy , and APP; are from
the previous section. Then vy , is a zero-mean Gaussian measure on the space
L> = L,([0, 1]%) whose covariance operator is the operator Wy r given by (2).
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As before, let {14, ;};ena be the sequence of the eigenvalues of the opera-
tor Wy . For j = [j1, j2..... ja] we have

d
Aa,j = l_[ Aji
k=1

for the univariate eigenvalues A;, = Ay, .
Let{n4,;};ena denote the sequence of the corresponding orthonormal eigen-
functions of Wy ,, so that

Warna,j = da jna,; forall j € N%.

We now consider a weight sequence y = {yz.,} for all d € N and subsets 1
of the index set [d] := {1,2,...,d}. We assume that y; , > 0, and that for each
d at least one y  is positive for a non-empty 1.

For j € N9, define u(j) = {k | jx > 2} and consider the weighted eigen-
values

My = Yauihrdy = Yaumi ] ") [T i
keu(y)

Weighted multivariate approximation is defined as before, the only change be-
ing that the correlation operator Wy ,, . of the measure v, , has now the eigenpairs

(/\d,y,j, nd,j)’ i.e.,
Way.iNd,j = Ad,y,jNa,; forall j € N¢,

By considering different weights y, ,;, we can model different a priori knowledge
about the distribution of

APP,;(f) = f = Z Li(f)na,j
jeNd

where L;(f) = (f, ’ld,f)Lz- Note that

/F Li(f)L;(f)wa (df) = Agy ;8 foralli,j e N
d.r

For instance, for finite-order weights, when y4 , = 0 for all [u| > @™ for some
integer w* independent of d, we know a priori that f is orthogonal (with prob-
ability 1) to all n4,; whenever |u(j)| > w*. This means that f is (again with
probability one) a linear combination of functions 74, ; that depend on at most w*
variables. Furthermore, for product weights, when yz , = [] jen Vd,; for some
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Yd,1 = Yd,2 = "'+ = Vd,d, the importance of successive variables is decreasing.
Obviously, if all y4,, = 1 then we have the unweighted case studied before.

It is now natural to ask what are necessary and sufficient conditions on the
weight sequence y for which the curse of dimensionality is not present. The
curse is certainly not present if we can prove that the average case complexity of
weighted multivariate approximation is polynomial in ! and d. For simplicity
we restrict ourselves to this case, referring the reader to [6] for a more general
situation.

It is easy to check that the initial error is now

2

— 1V a—iul (o= 5\
€o,y.d [ Z Ad,y,J] |: Z Yd.uhi (Z’\J) :| :
j=2

jeNd uc[d]
As always, the nth minimal average case error e, ,, 4 is given as the square root
of the sum of the eigenvalues A4 ,, ;, omitting the n largest. This means that we

have to order the eigenvalues {14y, ;};end-
Formally let {14,y k }ken = {Ad,y,j}jena be the ordered sequence

Adyr Z Adyp = Z Aayhe =+

Then
S 1/2
€n,y.d =[ Z ld,y,k] .
k=n+1

To estimate e, , 4 we need to know how the ordered eigenvalues A4, x behave.
One useful technical trick is to consider powers of the eigenvalues. More precisely,
for T > 0 we have

o0 o0

[u

o _ _ (d—lul)

Moo= Y A50= D0 Moy = 2 vau M (T H)
k=1 jeNd ucld] j=2

It is known that A; = @(;j ~20+V). This implies that for r > 1/(2(r + 1)) we
have M, < oo. For finite M, we use kA7 vk = M, which implies that

AIUT
Adyk < # forall k € N.

Since we have to sum up the eigenvalues A4 , x and their sum should be finite, we
must assume that T < 1. Hence, we can use t from the interval (1/(2(r + 1)), 1).
It turns out that this leads to sharp estimates on the e, ,, 4.
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More precisely, let n(e, y,d) be the minimal number of linear continuous
functionals needed to reduce the initial error by a factor ¢, i.e.,

n(e,y,d) = min{n | €n,yd = €€0,y,d }

We say that weighted multivariate approximation is polynomially tractable iff
there are non-negative numbers C, p and g such that

n(e,y,d) <Ce?d? foralle e (0,1), d € N.

If ¢ = 0 in the formula above, then we say that weighted multivariate approxima-
tion is strongly polynomially tractable and the infimum of p satisfying the formula
above with g = 0 is called the exponent of strong polynomial tractability.

We are ready to present part of Theorem 6.8 from [6], specialized to our case.
In what follows we let

a—i ﬁr and —;
© = A PA= 5Ty

j=2
and we use WMA as an abbreviation of weighted multivariate approximation.
Then

* WMA is polynomially tractable iff there exist g; > 0 and 7 € (p,, 1) such

that a1/
> g o)t

Cy = sup ( ucld] 7du tu) d N < . (3)

d D ncld] Vdm )

e If (3) holds then

t/(1-7)
n(e y,d) < (( G ) + 1) 491 7/0-1) ;—2t/(1-7)
- T

1—
foralle € (0,1] and d € N.
¢ If WMA is polynomially tractable, so that n(e,d) < C d &P for some
positive C and p with ¢ > 0, then p > 2/(2r + 1) and (3) holds for
te((1+2/p)~1. 1) withg, = gmax(1/7,2/p) and
1/t
C1 < (2€ +1+ (2640 7e(x(1 +2/p)VF)) .

* WMA is strongly polynomially tractable iff (3) holds with g; = 0. The
exponent of strong polynomial tractability is

piE = inf { f—_’r | T € (py, 1) and satisfies (3) withg; =0 }
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* For product weights y; ,, = ]_[jeu Yd,j Withyg j41 < yq,j for j € [d —1]
and sup, y4.1 < 0o, we have the following results:
— WMA is polynomially tractable iff there exists 7 € (p4, 1) such that
d
Zj:l Vé, j

li — < 00. 4
mawp =g s @

If (4) holds then for any

d
(2 >i=1Ya;
q>—(§ = )limsup—j Ly
T \ 4 A d—00 Ind
j=2
there exists a positive C such that

n(s,d) < Cd? t/(=0) (=20/(=0)  forq]] ¢ € (0,1]and d > 1.
— WMA is strongly polynomially tractable iff p,, < 1, where

py =inf {7 >0 limsupZ;lzly(;j <o00}.

d—o0

The exponent of strong tractability is

str-avg __ zmax(pl’pl’) )
l—max(p,x,py)

4

* For finite-order weights yz,, = 0 for [u| > @™, we have

— WMA is polynomially tractable. Then for any r € (p;, 1), we have
n(e.d) < C|{u | yau # 0}] e727/079,

al/r w* . t/(1—-1)
C = (( ‘ ) ) + 1.
o 1—1

Hence, for arbitrary finite-order weights we have

ne,d) <2Cd® ¢27/0-9,

where
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— WMA is strongly polynomially tractable iff there exists t € (py, 1)
such that

< 0. &)

T
(Zug[d], [u|<w* Vg u%t
sup =
d Zug[d],hIISw* Yd ulq

The exponent of strong polynomial tractability is

P = inf { 2= | 7 € (py, 1) and satisfies (5) }

1—-t

The essence of this theorem is that we can vanquish the curse of dimensionality
and even obtain polynomial or strongly polynomial tractability for sufficiently de-
caying weights. In particular, for product weights we obtain polynomial tractabil-
ity if the sum of some power of the weights grows no faster than In d, and obtain
strong polynomial tractability if this sum is uniformly bounded in d . For arbitrary
finite-order weights we always have polynomial tractability.

Such conditions on weights are typical for tractability of other multivariate
problems; they also hold in different settings, including the worst case setting,
see again [6]. In this way, the curse of dimensionality, which is often present for
the unweighted case, can be vanquished.
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A brief history of information-based complexity

Joseph F. Traub

This talk is titled a brief history of information-based complexity. Like all mem-
oirs it reflects my personal view of the history of the field. Furthermore, it has a
Carnegie Mellon and Columbia University slant. If one of my colleagues were to
write a history I am sure it would differ from this one. I do hope it captures the
essence of the field and I apologize to other researchers for any omissions.

I shall begin my history in 1972 when I was Head of the Computer Sci-
ence Department at Carnegie Mellon University. I received a registered package
containing a paper and a letter from someone named Henryk WoZniakowski in
Warsaw. I do notrecall the date because I did not realize it was to be the beginning
of a life transforming relation which has already lasted 36 years.

The paper, which was titled “Maximal Stationary Iterative Methods for the
Solution of Operator Equations” proved conjectures I had framed in the early
60s with a very important difference. My conjectures had been for scalar prob-
lems; Wozniakowski proved them for finite-dimensional and infinite-dimensional
operator equations.

In a flashback to 1959 I shall tell you why I was so excited by this paper. I had
justreceived my PhD and was working at the Mathematics Research Center at Bell
Laboratories. One day a colleague named Joseph Kruskal asked me for advice
on how to numerically approximate a zero of a function involving an integral.
Since the integral had to be approximated at each iterative step the function was
expensive to compute. I could think of a number of ways to solve this problem.
What was the optimal algorithm, that is, the method which would minimize the
required computational resources? To my surprise there was no theory of optimal
algorithms.

Indeed, the phrase computational complexity, which is the study of the minimal
computational resources required to solve problems, was not introduced until 1965
by Hartmanis and Stearns [1].

Ibecame fascinated with creating what might be called optimal iteration theory.
The initial problem was to solve the scalar nonlinear equation f(x) = 0. Assume
for simplicity that the zero is simple.
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The key insight was that the information used by an iteration determines the
maximal order and the most effective methods are iterations of maximal order.
The focus was on the information and not the particular algorithm that used the
information. Let me give you some concrete examples. You are all familiar
with Newton iteration. As you know, it requires the evaluation of f and its
first derivative at each step and its order of convergence is two. The order of
convergence is a measure of how fast the iteration converges. We can obtain an
iteration of order 3 which uses evaluations of f and its first and second derivatives.
Generally, there are known methods due to Euler and Chebyshev which use the
first s — 1 derivatives and are of order s [2, p. 81]. These are one-point iterations;
that is, all the evaluations are at one point. The question that interested me was
whether we could do better. Was it possible for there to exist a one-point iteration
of order s that did not require the evaluation of f and its first s — 1 derivatives?
The answer is no. I called this the fundamental theorem of one-point iterations
[2, p. 97]. Any one-point iteration of order s must evaluate f and its first s — 1
derivatives.

I do not have to look at the structure of the iteration, only at the information
it uses. To put it another way, the maximal order of any one-point iteration using
s — 1 derivatives is s. For later research on maximal order, see for example [3].

This is a huge simplification. The maximal order of convergence is determined
completely by the information available to the iteration, not by its particular form.
The significance of iterations of maximal order is that if the cost of information,
that is the evaluation of f and its derivatives, is sufficiently large one can neglect
the cost of combining the information and the best methods are iterations of
maximal order.

You are all familiar with the secant method. Where does it fit in? From an
information point of view the secant method evaluates f and reuses one previous
evaluation of f. Its order is the golden mean which, as you know, is about 1.62. A
method that uses a new evaluation of f and no previous evaluations is of order 1.
So the previous evaluation of the secant method adds .62 to the order. There is
a method which reuses 2 previous evaluations of f and is of order about 1.84.
There is a method which reuses three previous values whose order is about 1.92.
These iterations are examples of one point iterations with memory. This and other
data suggest that with any finite number of previous values the order will be less
than two. That is, the previous evaluations add less than one to the order.

Iterations that use new values of f are a special case. It is natural to consider
iterations which use new values of f and its first s — 1 derivatives at a point
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and reuse any number of previous values. I defined the class of interpolatory
iterations and proved that all the old information adds less than one to the order.
This is a theorem for interpolatory iteration. I conjectured that this was true for
any one-point iteration with memory. This was one of the topics covered in a
1964 monograph called “Iterative Methods for the Solution of Equations” [2]. 1
am pleased that it is been reissued by the American Mathematical Society and is
still in print.

That is the end of the flashback and I want to return to 1972 when I received
the paper from Henryk Wozniakowski. As I mentioned earlier, he attacked the
problem of maximal order for finite-dimensional and infinite-dimensional oper-
ator equations [4]. He proved the maximal order of interpolatory iteration in the
scalar case thus settling the conjecture about one-point iterations with memory.
He also proved that in the operator case any one-point iteration of order s requires
the evaluation of the first s — 1 derivatives.

I invited WoZniakowski to give a talk at a May 1973 Carnegie Mellon Uni-
versity Symposium. He could not obtain a passport in time to participate. He
finally arrived on October 16, 1973. He told me later what led to his paper. He
was attending a summer school in Gdansk. Stefan Paszkowki of the University of
Wroclaw asked if he had read my 1964 monograph. He had not but he obtained
a copy — the rest is history. Henryk continued to visit me and together with my
former PhD student, H. T. Kung, now a chaired professor at Harvard, we contin-
ued to work on optimal iteration theory. Then in 1976 there came an event that
changed the course of our research.

A PhD student named Arthur Werschulz, now a professor at Fordham Univer-
sity and part of our research group at Columbia, gave a seminar where he used
some of the techniques from nonlinear equations to attack the complexity of in-
tegration. Our reaction was that integration is inherently different from solving
nonlinear equations; one does not solve integration iteratively. Because these
problems are so different there must be a very general structure which underlies
this and many other problems. Henryk and I always maintained long lists of
research ideas. But we were so interested in this issue that we called it the S
problem which stood for Special problem.

Our search for the general structure led to the 1980 monograph “A General
Theory of Optimal Algorithms” [5]. We developed the theory over normed linear
spaces with applications to problems such as approximation and linear partial
differential equations. We confined ourselves to the worst case setting. That is
we guaranteed an approximation for all inputs in a class.
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We called the field analytic complexity. This was to differentiate it from al-
gebraic complexity which was a very active research area in the late 60s and 70s.
Algebraic complexity deals with problems such as the complexity of matrix mul-
tiplication which can be solved exactly while analytic complexity deals primarily
with problems from analysis which cannot be solved exactly.

Part B of our 1980 book deals with an iterative information model. It turns
out that this material is conceptually and technically more difficult. It was a
historical accident which I have told you about earlier that we started with the
study of nonlinear equations.

We also gave a brief history of the precursors to the general theory. I would
like to mention a few of the earlier results. These all dealt with specific problems
and did not attempt a general theory. The earliest paper which we discovered
only recently is by Richard von Mises [?] which was published in 1933 in the
Zeitschrift fiir Angewandte Mathematik und Mechanik. He considered univariate
integration with fixed nodes and found the best weights. Arthur Sard authored a
series of papers starting in 1949 and a monograph [7] in which he studied optimal
algorithms for univariate quadrature with fixed nodes. He discussed extending his
results to the approximation of linear functionals. Sard was apparently not familiar
with the paper of von Mises. In 1950, Sergei Nikolskij [8] independently studied
univariate integration but permitted the evaluation points to be optimally chosen.
Another 1950 paper on univariate integration was written by Hans Biickner [9].
In a series of remarkable papers starting in 1959 Nikolaj Bakhvalov [10] studied
optimal methods for multivariate integrals and obtained lower bounds on the error.

All these authors assume linear algorithms; that is, algorithms that are a linear
combination of the information. Then in 1965 Sergei Smolyak [11] proved that
for convex and balanced sets the optimal algorithm for the approximation of linear
functionals is linear. Therefore, the assumption of linear algorithm is often not
needed.

As you know the optimal strategy for approximating a zero of a continuous
scalar function with a sign change is bisection. What about approximating a
maximum of a unimodal function, that is a function which has only one maximum.
In a 1953 publication Jack Kiefer [12] proved that if function evaluations are
used then Fibonacci search is optimal. This was his 1948 MIT Master’s thesis
which was only published later with the encouragement of Jacob Wolfowitz. The
previous work on optimal algorithms was for linear problems such as integration
and approximation. To the best of my knowledge this was the first result for a
nonlinear problem.
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In 1983 Grzegorz Wasilkowski joined Henryk and me to write the monograph
“Complexity and Information” [13]. We showed that uncertainty could be mea-
sured without a norm or metric. We decided to rename the field e-complexity.

One day my wife, Pamela McCorduck, asked me why e-complexity. I ex-
plained that & denotes a small quantity. She did not seem impressed. Since
Pamela is the author of numerous books I took her lack of enthusiasm seriously
and started thinking about a new name. One day I was chatting with my friend,
Richard Karp, who as you know was a pioneer in the study of NP-completeness.
I mentioned to Richard that key concepts were information and complexity and
he suggested information-based complexity which we adopted as the name of the
field. For brevity I will often refer to the field as IBC.

The Journal of Complexity was born in 1985. To the best of my knowledge
it was the first journal with complexity as its title. In preparing for writing this
talk I took a look at Volume 1. There were thirteen people on the Editorial
Board. They included three Nobel Laureates (Kenneth Arrow, Gerard Debreu,
and Leonid Hurwicz, who is the most recent winner of the Economics Prize),
one Fields medalist (Steven Smale), two Turing Prize winners (Michael Rabin
and Richard Karp), the founder of Mathematica (Stephen Wolfram), one of the
pioneers of algebraic complexity (Shmuel Winograd), the current President of
Tel Aviv University (Zvi Galil), a chaired Harvard professor (H. T. Kung) and
the recipient of an honorary doctorate from the Friedrich Schiller University Jena
(Henryk Wozniakowski).

The first volume consisted of two issues containing 285 pages. All the papers
were from the Symposium on the Complexity of Approximately Solved Problems
held at Columbia in April 1985. Jumping forward to the present the Journal of
Complexity now publishes some 1000 pages annually in six issues.

In 1988 Erich Novak published “Deterministic and Stochastic Error Bounds
in Numerical Analysis” [14] based on his Habilitation thesis. He studies worst
case error bounds which he connects with Kolmogorov n-widths. He also studies
error bounds in the randomized and average case settings. The theory is applied
to problems such as approximation, optimization, and integration.

In 1988 Wasilkowski, WoZniakowski and I published “Information-Based
Complexity” [15]. It integrates the work of numerous researchers and reports
many new results. The theory is developed over abstract linear spaces, usually
Hilbert or Banach spaces. The worst, average, probabilistic, and asymptotic set-
tings are analyzed. Numerous applications are also presented; these are developed
over function spaces. Applications include function approximation, linear partial
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differential equations, integral equations, ordinary differential equations, large
linear systems, and ill-posed problems.

Information-based complexity is defined as the branch of computational com-
plexity that deals with the intrinsic difficulty of the approximate solution of prob-
lems for which information is partial, contaminated, and priced. To motivate this
characterization consider the numerical solution of a partial differential equation.
The coefficients and the initial or boundary values are specified by functions.
Since functions cannot be input to a digital computer we have to discretize them
by, for example, evaluating them at a finite number of points. Thus a function is
represented by a vector of numbers in the computer. There are usually an infinite
number of functions which are all represented by the same vector; the mapping is
many to one. We say the information about the mathematical input is partial. In
addition, there will be round-off errors in evaluating the function and so the infor-
mation is contaminated. If information is partial and contaminated the problem
can only be approximately solved. Finally we will be charged for evaluating the
functions. So the information is priced. Indeed for many problems the cost of the
information dominates the cost of combining the information to get an answer.

The next decade was one of rapid progress in IBC which I shall indicate by
briefly summarizing five monographs published during that period.

In 1991 Arthur Werschulz published “The Computational Complexity of Dif-
ferential and Integral Equations: An Information-Based Approach” [16]. Wer-
schulz studies algorithms and complexity of elliptic partial differential equations
in the worst case setting. He also studies Fredholm integral equations of the
second kind as well as ill-posed problems. In addition, there is a chapter on the
average case setting.

In 1996 Leszek Plaskota published “Noisy Information and Computational
Complexity” [17]. Plaskota studies both bounded and stochastic noise. Before
his work the study of noisy information had lagged due, at least in part, to the
technical difficulties.

1998 saw the publication of “Complexity and Information” [18] by Traub
and Werschulz. This monograph is a greatly expanded and updated version of
a series of lectures I gave in 1993 in Pisa at the invitation of the Accademia
Nazionale dei Lincee. It starts with an introduction to IBC and then moves to a
variety of topics including very high-dimensional integration and mathematical
finance, complexity of path integration, and assigning values to mathematical hy-
potheses. It concludes with a bibliography of over 400 papers and books published
since 1987.
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Klaus Ritter’s monograph on “Average-Case Analysis of Numerical Problems”
[19], which was based on his Habilitation thesis, appeared in 2000. The book
provides a survey of results that were mainly obtained in the last ten years as well
as many new results. Background material on reproducing kernel Hilbert spaces,
random fields, and measures on function spaces is included.

2001 saw the publication of “Optimal Solution of Nonlinear Equations” [20]
by Kris Sikorski. The monograph studies algorithms and complexity in the worst
case setting. Topics include nonlinear equations, fixed points of contractive and
noncontractive mappings, and topological degree.

I shall now return to 1991 when we held the first Schloss Dagstuhl Seminar
on Algorithms and Complexity for Continuous Problems. The Schloss Dagstuhl
Seminars are the computer science equivalent to the Oberwolfach meetings in
mathematics. In 2009 we will hold our ninth Seminar which may be a record.
The Seminars are limited to 40 participants. As the field has grown it has be-
come increasingly difficult for the Organizing Committees to issue only enough
invitations to have some 40 participants.

In 1991 Wozniakowski published a paper “Average Case Complexity of Mul-
tivariate Integration” [21] in the Bulletin of the American Mathematical Society
which was to be a rich source of new directions for IBC. He showed that the opti-
mal points were related to the low-discrepancy points which had been extensively
studied by number theorists including Fields Medalist Klaus Roth.

Quasi-Monte Carlo methods are deterministic methods based on low dis-
crepancy points. A Columbia student, Spassimir Paskov, found empirically that
Quasi-Monte Carlo was far superior to Monte Carlo for real-world problems in
computational finance [22]. In trying to understand why, Ian Sloan and Henryk
Wozniakowski introduced the idea of weighted spaces [23]. Discrepancy theory
itself has also been a rich source of IBC problems.

1994 saw the first MCQMC Conference organized by Harald Niederreiter.
This biennial conference is devoted to Monte Carlo and Quasi-Monte Carlo meth-
ods. Many IBC topics and researchers are represented in MCQMC. The 2008
conference will be in Montreal with Stefan Heinrich as Chair of the Steering
Committee. The 2010 conference will be in Warsaw with Henryk as the Chair.

1995 saw the first Conference on the Foundations of Computational Mathe-
matics. These triennial meetings always feature an IBC Workshop and an IBC
plenary speaker. The 2008 conference was in Hong Kong and the IBC plenary
speaker was Henryk.
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1996 saw the creation of the Best Paper Award of the Journal of Complexity
which carries a $3000 prize and a plaque. Roughly half the winning papers have
been in IBC. Incidentally, Erich Novak won in 2001 for a paper whose significance
I shall describe later. The only double winner is Stefan Heinrich, University of
Kaiserslautern. Heinrich was a co-winner in 1998 and won again in 2004.

Since I am on this topic I shall mention two more IBC Prizes. The Prize
for Achievement in Information-Based Complexity was created in 1999. The
winners of this annual prize have been Erich Novak; Sergei Pereverzev, Johann
Radon Institute for Computational and Applied Mathematics, Austrian Academy
of Science; Grzegorz Wasilkowski, University of Kentucky; Stefan Heinrich, Uni-
versity of Kaiserslautern; Arthur Werschulz, Fordham University; Peter Mathé,
Weierstrass Institute for Applied Analysis and Stochastics, Berlin; Ian Sloan, Uni-
versity of New South Wales; Leszek Plaskota, University of Warsaw; Klaus Ritter,
TU Darmstadt; and Anargyros Papageorgiou, Columbia University.

In 2003 we created a third annual prize, the Information-Based Complexity
Young Researcher Award for researchers who have not yet reached their 35th birth-
day [24]. The recipients to date have been Frances Kuo, University of New South
Wales; Christiane Lemieux, University of Calgary; Josef Dick, University of New
SouthWales; Friedrich Pillichshammer, University of Linz; Jakob Creutzig, TU
Darmstadt; Dirk Nuyens, Catholic University, Leuven; and Andreas Neuenkirch,
University of Frankfurt.

Another new direction for IBC was initiated by Erich Novak [25] with the
publication in 2001 of “Quantum Complexity of Integration”. Until this semi-
nal paper, only the complexity of discrete problems on quantum computers had
been studied. Novak studied multivariate integration over Holder classes. He
proved exponential quantum speedups over the classical worst case and quadratic
speedups over the classical randomized case.

Since then there has been much progress on IBC problems in the quantum
setting with many surprising results mostly due to Stefan Heinrich (see for example
[26]) and also due to Papageorgiou and WozZniakowski (see for example [27]).

This talk is titled “A Brief History of Information-Based Complexity”. I want
to end with the present and the future. The European Mathematical Society
recently published Volume I of “Tractability of Multivariate Problems” [28] by
Erich Novak and Henryk WoZniakowski. This volume is some 400 pages in
length. Volume II and III, of similar length, are in progress. There is a huge
literature on the complexity of problems in d variables. The complexity bounds
are usually sharp with respect to =1 where ¢ is the error threshold but have,
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unfortunately, unknown dependence on d. To determine if a problem is tractable
the dependence on both £ ™! and d must be determined. Tractability requires new
proof techniques to obtain sharp bounds on d. There are many surprising results.

Volume I lists 30 open problems which continues an IBC tradition. Dozens
of open questions have been listed in many IBC papers and books. Almost all
are still open. Many years ago I gave a talk at MIT which I concluded with half
a dozen open questions. Marvin Minsky was in the audience and told me he
always saves open questions for his students. I told him there were many more
open questions where these came from. Why are there so many open questions?
IBC is a relatively young field that covers a huge area of optimal algorithms and
complexity for continuous mathematics.

What are some of the future directions? I believe the three volume monograph
by Novak and WozZniakowski opens up a whole new area of investigation.

Another huge area for research is that of problems specified by nonlinear op-
erators. To date, much of IBC deals with linear operators and their applications
such as integration, approximation, integral equations and linear partial differen-
tial equations. Attacking problems defined by nonlinear operators will present us
with entirely new challenges.

We have come a long way starting with specific problems such as univariate
integration and the solution of scalar nonlinear equations and progressing to a
general abstract theory with applications ranging from discrepancy theory and
computational finance to quantum computing. I believe the next 50 years will see
even greater progress.
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How high is high-dimensional?

lan H. Sloan

1 Introduction

It is a pleasure for me to be able to join in the celebration of the achievements of
my good friend and colleague, Henryk WoZniakowski. Henryk’s achievements
are wide-ranging, but in this lecture I want to concentrate on just the problem of
high-dimensional integration.

Consider the problem of evaluating the d -dimensional integral

1 1
o 1 dyq..1 d _
1;(f) = /0 /0 fxt oo, x®)dxt .. dx /[0,1]d f(x)dx,

where f is a continuous function over the d-dimensional unit cube.

To take up immediately the question in the title, let us ask: how large can we
reasonably take d to be? Of course the answer depends critically on the nature
of f. But there was a time in the pre-computer era when, except for special
cases, even two-dimensional integrals seemed taxing. Then with the coming
of computers, as I well remember as a young PhD student solving electron-atom
scattering problems, one could contemplate numerical evaluation of integrals with
d = 4 oreven d = 5, but certainly not d = 10. The entry of number theorists
such as Hlawka, Korobov, Sobol’ into the subject in the 1950s and 1960s (an
intrusion not generally noticed at that time by the physics world) made it thinkable
to go perhaps as high as d = 15 or possibly even d = 20, but certainly not to d in
the hundreds. Yet now it is possible to contemplate numerical integration with d
in the hundreds or thousands or even more, if the problem is right.

Part of the change in attitude came from the experimental courage of Joe Traub
and Spassimir Paskov [13], who in 1995 surprised everybody by successfully
using low discrepancy sequences to value a parcel of mortgage backed securities,
with the problem expressed as a 360-dimensional integral.

At that time there seemed to be a fundamental barrier to understanding the
success of low-discrepancy sequences for d in the hundreds. That difficulty
was the Koksma—Hlawka inequality. This is an error bound for any quadrature
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approximation of the equal-weight (or quasi-Monte Carlo, or QMC) form
1 n
Qualf) ==~ fts). (1)
k=1

with#q,...,t, € [0,1]¢. The Koksma—Hlawka inequality states (see [11])

11a(f) = Qna(f)| < D*(t1,... . tA)V(S),

where D*(tq,...,t,) is the “star discrepancy”, which is a positive number that
depends on the points but is independent of f, while V( f) is a measure of the
variation of f (technically, it is the variation in the sense of Hardy and Krause),
which is independent of the choice of the points 1, ...,t, € [0,1]¢. For the
particular case of a Sobol’ sequence, or any other “low-discrepancy” sequence,
the star discrepancy is bounded by

1
D*(t1,....tn) < Ca—(logn)?™1,
n

with Cy; independent of n. For small values of d the logarithmic factor in the
Koksma—HIlawka inequality causes no concern, but it is a different matter when d
is in the hundreds: for the Koksma—Hlawka error bound has the disconcerting
property that the bound becomes worse as n increases with d fixed (that is, the
error bound gets progressively larger), until n &~ e?~!; a number that is truly
astronomical when d is in the hundreds.

But the Koksma—Hlawka inequality is an upper bound, not the error itself, and
by now we have other error bounds that tell a different story. In this presentation I
want to explain how Henryk and I came to be involved together in this story. It will
become clear that if over the past decade our understanding of high-dimensional
integration has advanced rather dramatically, then Henryk has played a very large
part in that advance.

Ifirst met Henryk in 1992, at an Oberwolfach conference devoted to Numerical
Integration. Henryk talked about “Numerical integration in various settings”,
touching among other things on his important work on numerical integration
in the average case setting. I talked about “lattice rules” for high-dimensional
integration, a topic I shall come back to later, and which by that time had already
been of interest to me for about a decade.

We found many points of common interest, so it was not long before I invited
Henryk to visit me in Australia, thereby starting a collaboration which for me has
been one of the finest in a long professional life. To me a good collaboration is
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one in which each person brings to the table something unique, something that
the other party could not provide. In my case the contribution was no doubt some
knowledge of lattice methods. Henryk brought many things, including his vast
knowledge of information-based complexity. But for me the truly special thing
brought by Henryk came in the form of a question: he kept asking “What happens
to the error as d goes to infinity?”.

It is a striking historical aspect of the work of both numerical analysts and
number theorists working in the area of multiple integration that the question of
what happens as d — oo seems almost never to arise. Until very recently d was
considered to be fixed, and the interest lay in what happens as n (the number of
quadrature points) goes to infinity. Even when asked, Henryk’s question of what
happens when d — oo cannot be easily answered, because the dependence on d
tends to be hidden in the “constant”. And of course the question has no meaning
until we specify the setting, since the function being integrated must change as
d — oo. But the value of a good question, such as Henryk’s, is incalculable.

During the first of Henryk’s many visits to Australia, in 1994, we talked very
often about the classical work of the number theorists on the use of “lattice” rules
for the numerical integration of periodic functions. Lattice rules are a particular
kind of quasi-Monte Carlo method which in the simplest “rank-1"" case are given
by the formula

Lnas(f) = %];f ({e=})- @)

Here z is an integer vector of length d, and the braces around kz/n mean that
each component of that d-vector is to be replaced by its fractional part in [0, 1).
A typical theorem of Korobov and Hlawka from around 1960 is the following
one. (For a proof and generalisation see [15], Section 4.5.) Here Ey is the set of
continuous 1-periodic functions on [0, 1]¢ whose Fourier coefficients

fh) = / F(x)exp(—2rih - x)dx
[0,114
decay at a prescribed rate: specifically, f € E; if

f) = 1f(hi,... ha)| < —

. 3
(hy...hg)? ©

where

h=1if h=0, h=|h|if h#0.
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Theorem 1. Assume n is prime. Then there exists z € Z¢ and Cz > 0 such that

n d
Id(f)—%Zf ({%D ' < C"(l(:l#)z forall f € Eg,
k=1

where Cg is independent of n.

You can see that the theorem is interesting and significant, but that in the form
stated it contains no information about what happens as d — co.

In Henryk’s own contribution to this booklet he has explained the result we
obtained in our first paper, namely that forn < 24 the error bound in the theorem
must be at least 1, since for all n < 29 and every choice of ¢4, ..., 1, we were
able to construct explicitly an f € E; such that /;(f) = 1 and O, 4(f) = 0.
Thus while the asymptotic rate of convergence might be very good, the asymptotic
rate is not observable until # is at least 2¢. (In that paper we also showed that
the number 2¢ is sharp, in the sense that a faster rate of decay of the Fourier
coefficients than we assumed in (3) really helps for n > 24 whereas for n < 24
extra smoothness of f* does not help at all.)

In technical language, the integration problem in that classical setting is in-
tractable. Nontechnically, since the difficulty of the problem increases exponen-
tially with d, it is clearly hopeless to seek an explanation for the success of the
Paskov and Traub experiments within that setting.

With a growing belief that the integration problem is intractable in all of the
classical settings, Henryk and I began to wonder if we could find a non-classical
setting in which the Paskov and Traub success could be explained. In the mortgage
backed security problem the early years of the mortgage are the most important,
because the product has longer to run. Perhaps, we pondered, it is always the
case for finance problems that some variables are more important than others?
That thought led us to introduce, in our 1998 paper [20], the concept of “weighted
spaces”. The notion of weighted spaces, which I shall explain in the next section,
turned out to be a fruitful one, with many generalisations and extensions. In time,
as [ shall explain, it led to the development of a constructive (or semi-constructive,
depending on your point of view) algorithm for constructing an integration rule
that is “good” in a well defined sense.

In the remainder of this paper I want to give a simple account of the weighted
space work that Henryk and I carried out, inspired by his question of what happens
as d — o0, and then give a brief account of the constructions that developed from
it. In the next section I introduce weighted spaces, informally but in essentially
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the way we did in that first paper, and indicate how we established (to the surprise
of both of us) a necessary and sufficient condition for “tractability”. I then show
in Section 3 how our existence results led to constructions. Finally, in the last
section I outline, for the sake of completeness, a number of generalisations and
further developments.

2 Weighted Sobolev spaces, tractability and existence

As already mentioned, the guiding idea in the 1998 paper with Henryk [20] was
that perhaps the reason why some problems can be successfully tackled by Sobol’
or other QMC integration rules is that the d variables are not equally important.
Of itself this was not a new idea: the suggestion that the “effective dimension” in
some finance applications might be small was promoted by Caflisch, Morokoff
and Owen in [1]. But our thought was that if some variables are more important
than others, then this should in some way be built into the function spaces in
which we work. This seems to have been a new idea.

Specifically, we decided to try to quantify the declining importance of the
variables (assuming that we have already labeled the variables in order of de-
clining importance) by introducing a non-increasing infinite sequence of positive
“weights” y = (y1,¥2,...). The first d of these weights we built into the norm
|| fla,y in our (Sobolev) space Hg ,, a Hilbert space of functions with square-
integrable mixed first derivatives. Precisely, for d = 1 we defined

df

1 1
— 24 -
=1+ [

2
- ()
X

while for d = 2 we took for the square of the norm

2 _ 2, b af
112, = /(1) +y1[0

(x
V1V2// axlaxz

and so on. The expression for the square of the norm for general d can be written
concisely as

1

af

T2 dx2
X

d+—

0

dxldxz;
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where the sumis overall subsetsuof {1, ..., d}. Here |u|is the cardinality of u, x
denotes the vector of length |u| consisting of the components x; of x with j € u,
and (x, 1) is the vector of length d in which the components of x with j ¢ u are
replaced by the particular number 1. Observe where the weights occur: the term
labeled by u has in the denominator the product of the weights y; for j € u.

The next step is to define the “worst case error”: the worst case error of the
quadrature rule (1) in the space Hy , is

en,d,y(Qn,d) = en,d,y(tl’ ) tn)

= s {14 =13 o] 11 hay = 1)
k=1

In words, the worst case error is the largest error of the rule (1) for functions f
whose H; ,, norm is no greater than 1. Of course we want to choose QMC rules
that make the worst case error small.

Note the role of the weights in the terms of (4): if the weights y; for j € u
are small then their product will be very small, and f can belong to the unit ball
in Hy , only if the corresponding mixed partial derivative of f in (4) is corre-
spondingly small. In simple terms, small weights imply small partial derivatives
for functions f in the unit ball of Hy ,,.

The central result of that 1998 paper is that the behavior of the integration
problem in the space H; , as d — oo depends crucially on whether or not the

infinite sum
Dy )

converges or diverges.

Theorem 2. If the sum (5) converges, then for each n > 1 there exists a choice
of OMC points t,...,t, such that

D
endy(ti,....ty) < =% fordlln,d, (6)
n

Ji

with Dy independent of d and n.
Ifthe sum (5) does not converge then for every choice of QOMC pointstq, ... ,t,
and every € € (0, 1) the number n of points required to ensure

endy(ti,....ty) <€egqy

increases with d faster than any polynomial.
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Here eq 4, is the worst case error with no quadrature points, that is

eody = sup{La(O: 1 fllay =1} = allay-

Technically, the integration problem in Hy , is “strongly QMC-tractable” if and
only if the sum in (5) is finite. I think we were both pleasantly surprised that we
were able to obtain a necessary and sufficient condition in this way. Note that the
sum in (5) is finite for y; = j 2, but is certainly not finite for the classical case
y; = lforall j.

A word about the proof of the theorem. The second part of the theorem (that
the integration problem is not strongly QMC tractable if (5) diverges) was proved
by obtaining an explicit lower bound for the worst case error in Hy ,,, a lower
bound that grows unboundedly as d — oo. For the classical unweighted case
(that is, with y; = 1 for all j) the lower bound obtained in [20] is

2 2 —0.05478d
en,d,y(Qn,d) z eO,d,y(l —e n)‘

It follows immediately that to ensure e, 4, < €eggq,, We must have n >
(1 — €2)e%054784  \which increases exponentially fast in ¢. While the rate of
exponential growth is quite slow, for the unweighted case we certainly have a
problem by the time d is in the hundreds.

The proof of the first part of the theorem, that there exists a set of QMC points
t1,...,t, such that (6) holds, has a quite different character. Here the need is
to prove the existence of a suitable set of QMC points, even when we are not
clever enough to know how to construct such a set. The proof (which is one we
borrowed from the number theory literature, and indeed similar to the technique
used to prove Theorem 1) is based on an averaging argument. In brief, we showed
that the average (i.e. integral) of erzl,d,y (t1,...,ty) overall choicesof t1,...,t,
is bounded above by the square of the right-hand side of (6). From that it follows
(using the wonderful principle that there is always one choice that is as good as

average) that there must be at least one choice of ¢4, . . ., £, for which
2
ez . (t t,) < —X foralln,d
n,d,y 1s---5tn = n B .

But that argument leaves us no closer to finding a good set of QMC points, if
we define “good” to mean one that achieves the error bound in (6). In the next
section I turn towards construction. Before that, however, I want first to note an
important result of Hickernell and WoZniakowski [8], one that improves upon the
upper bound (6), in that the rate of convergence is increased to almost O(1/n)
under a stronger condition on the weights.
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Theorem 3. Assume that the weights y1, Va2, . .. satisfy

o0
Yy} <o (7)
ji=1
Then foralld > 1 and all n > 1 there exist ty,...,t, € |0, l]d such that for all
8 > 0 we have
Cys
endy (1 oitn) S 25 (®)

with C,, s depending on § but independent of d and n.

The condition in the theorem is satisfied, for example, by y; = j —3. Whereas
in Theorem 2 the rate of convergence is no better than the well-known Monte
Carlo rate O(n~'/?), the convergence rate in Theorem 3 is arbitrarily close to
O(n™h).

3 From existence to construction

In a 2001 paper [21] Henryk and I took what I now see as a key step towards con-
struction, when we proved the next theorem. It asserts, under the same condition
(7) as in Theorem 3, that there exists a “shifted lattice rule” whose worst case error
achieves the error bound (8). A shifted lattice rule is a QMC rule whose points
are obtained by subjecting the points of a lattice rule to a collective displacement,
or shift, with the points that fall outside the half-open unit cube being wrapped
around to the other side. More precisely, the shifted lattice rule corresponding to
the lattice rule (2) is

Snaalf)i= > ({=+a}). ©)
k=1

with A € [0, 1]¢ being the “shift”.

Theorem 4. Assume that n is prime, and that the weights y1, ya, . .. satisfy

o0
Sy <ne
j=1
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Then for all d > 1 there exists a shifted lattice rule S, 4 ; A such that for all

8 > 0 we have c
v,
en,d,y(sn,d,z,A) = nl__(g’

with Cy, s depending on § but independent of d and n.

Essentially this is the same result as in Theorem 3 (though restricted to prime
values of ), but now the existence occurs within the much smaller class of ““shifted
lattice rules”.

I claim (I am not sure if Henryk agrees) that we discovered Theorem 4 by
accident. It came about this way. We had decided to study lattice rules not in
the space Hy ), but rather in a related Hilbert space of periodic functions, called,
whether appropriately or not, “Korobov spaces”. Periodic functions are easy to
analyse because all the tools of Fourier analysis are available. The main purpose
of our 2001 paper [21] was to show, under the same conditions as in Theorem 4,
that there exists a lattice rule for which the worst case error in the weighted
Korobov space satisfies the error bound in Theorem 4. Only when the paper was
essentially finished did we realise that we could infer a result for the non-periodic
space Hy , .

The argument goes like this: Hickernell and WoZniakowski had shown, in [8],
that the average of the squared worst case error ei d,y(Sn,d,z, A) for the shifted
lattice rule S, 4.z A, taken over all shifts A, is just the worst case error for the
lattice rule L, 4 ; in an appropriate weighted Korobov space. For the latter we
had already shown that the desired bound holds. That allowed us to use that
averaging argument yet again: in this case to say that there exists a shift A for
which the bound on the worst case error holds, if we keep the already selected
(better than average) value of the integer vector z.

Since the proof of that theorem in our 2001 paper relied once more on averaging
arguments (averaging first over z and then, as indicated, over A), it again does
not tell us how to find good choices of the parameters, in this case z and A.
Nevertheless, because the parameters that describe a shifted lattice rule are few
(and if we can leave aside the question of choosing A, because there are only
(n — 1)¢ choices of z to worry about, a number that is finite even if exponentially
large), it did encourage us to think about the possibility of construction.

For me the idea for construction started in 1999, at the Hong Kong Workshop
for the Complexity of Multivariate Problems. By the time of that Workshop
it was already accepted that weighted spaces gave a good setting for the non-
constructive proof of the existence of good QMC rules. Also, Henryk and I were
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about to submit the paper on the existence of good lattice rules that later appeared
as [21]. At that time nothing was known about construction, but I remember
that there was some vigorous discussion at the Workshop on the desirability of
constructive proofs. During a coffee break I sat down together with Stephen Joe
of the University of Waikato, and we said to each other something along these
lines: “Now that we know that a good lattice exists, is it thinkable that we can
construct such a thing one component at a time?” Fortunately, we had at that
moment forgotten the conventional wisdom for classical lattice rules, that it is
folly to attempt to construct a good lattice rule in d dimensions from one in d — 1
dimensions. I say fortunately, because in the context of weighted spaces it turns
out to be perfectly possible to build up good lattices one coordinate at a time.

The work that Stephen Joe and I did in that coffee break led in due course to
what is now called the “component-by-component” or CBC construction of good
lattice rules, see [16], [17], [18]. Here I shall describe not the original version, but
rather the version for a “randomly shifted lattice rule”, because this is at the same
time the simplest to describe, the easiest to implement, and the one that yields
the strongest theoretical results. A randomly shifted lattice rule is again given by
(9) but now with A, far from being deterministic, being chosen randomly from a
uniform distribution on [0, 1]¢. In practice we use (9) with 10 or 20 independent
samples of A, take their mean as the estimate of the integral, and use the spread
of results as a probabilistic estimate of the error, just as is done in the Monte Carlo
method. For more precise information see [17].

One advantage of the randomly shifted version of the CBC algorithm is that
the only quantity we need to specify is the integer vector z in (9). Here is the
entire algorithm for the particular case of our weighted space Hg .

Algorithm
Setz! = 1.
Ford =2.3,...,dna choose z¢ from {1,2,...,n — 1} so as to minimise
kz/ 1
B
=1j=1
End

In the algorithm B(x) := x?>—x + é is the Bernoulli polynomial of degree 2,
and m, g4, (z) is related in a simple way to the root-mean-square average of
€n,d,y(Sn.d,z,A) over the shifts, which happens to have a very simple explicit
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expression:
:lmsy(z) - ( / ndy(S dzA)dA)
[0.1]4
(110 ) ST [0 < D))
- ] y/ n 3
j=1 ==
d 1
— 1 Yi ?
= 1_[ + = 3 —{—mn,d,y(z) .
j=1
It follows that minimising Mpay(z',...,z%) is equivalent to minimising
ey (G2,

The cost of anaive implementation is O(n%d2,,), but a clever implementation
by Nuyens and Cools (see [ 12]) has since reduced the total cost to O (nlog(n)dmax),
making it now feasible to run the algorithm with dp,, in the thousands and n in
the millions.

Of course a construction is of no value unless we know that the result is of
good quality. The first result on the quality of the CBC construction, presented

along with the algorithm in [17], was the following:

Theorem 5. Let n be prime, and assume Z;’;l yj < 00. Ifz', ..., z% are given
by the algorithm above, then
D
TN Pt

B

where Dy is exactly as in Theorem 2.

The proof, naturally enough, is by induction, with that familiar averaging
argument being used in the inductive step to establish existence of a “good”
choice z¢ (good in the sense of having a worst case error no larger than the bound
in (6)). For if at the dth step the average of the squared worst case error over
all choices of z9 satisfies the error bound, then certainly there exists at least one
good choice of z%. Once we know that a good value of 29 exists, we know with
certainty that the value that minimises the worst-case error is a good one.

It is clear that we have already come a long way: we have now proved in a
constructive way the same result Henryk and I had established non-constructively
in our 1998 paper.
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On the other hand, we have seen in Theorem 4 an existence result with a
better rate of convergence, if the sequence of weights y satisfies the stronger
condition (7). The high point in the story of weighted spaces was reached when
Frances Kuo (at that time a PhD student of Stephen Joe at the University of
Waikato, and now my colleague at the Unversity of New South Wales) proved, in
[9], that the above algorithm, without any change, achieves the same essentially
optimal rate of convergence as in Theorem 4. Here is her wonderful result. (See
also [3].)

Theorem 6. Let n be prime, and let z*, 22, ..., z% be chosen by the CBC algo-
rithm above. Assume that the weights y1, Y2, . . . satisfy

o0
>y <o
j=1

Then for all d > 1 and all § > 0 we have
c,,

™S (Z d) < L

ndy

El

0'.»

n
with Cy, s depending on § but independent of d an

This result implies (by yet another appeal to the averaging argument) that there
exists a shift A such that

Cy
end,y(SndzA) < nl—js :

with z = (z',...,2z%). It does not give us the shift A, but that seems to be
of no practical consequence since in practice we think it better to choose shifts
randomly, as described above, rather than to try to find the “best” shift. The last
result thus completes the circle, with all of the non-constructive existence proofs
now supplemented by concrete constructions that achieve the same results.

The CBC construction also opens the way to applications, and in doing so opens
new questions, of which much the most urgent is: how, for a particular application,
should one choose the weights? Somehow the question of how to choose the
weights did not seem so pressing when we were merely proving academic results
on existence. It becomes very pressing when a practitioner wants to know the
best choice of parameters to feed into the CBC algorithm. Guiding the choice of
weights has become one of the most urgent tasks facing researchers in this area.
I personally believe that there is still much to be done in that direction.
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4 Consequences and conclusions

The simple idea of weighted spaces that Henryk and I began playing with a
dozen years ago has since extended in many different directions. Weights y; have
been replaced by weights y,4_;, see [23], allowing the weights to have explicit
dependence on the number of variables as well as on the particular coordinate,
and the weights have also been liberated (see [5]) from the condition arbitrarily
imposed in the original paper [20] that y; = 1. The product of the weights
I1 jeuVi used for the term labeled by u in (4) has been replaced (see [6]) by the
more general weight y,, which may be prescribed independently for each subset u.
There is now much interest (and some controversy) surrounding the special case
of “finite-order” weights (see [6], [14], [19], [24]), in which y, = O for |u| bigger
than some number ¢, with g a small number, say 2 or 3. The choice of function
space has been widened: nowadays the particular space Hy; ,, defined in this paper
is called the “anchored” Sobolev space (of smoothness parameter 1), with anchor
at 1, but there are many other choices, including general choices of anchor, see
[22]. Earlier Hickernell [7] had proposed anchoring at the mid-point % Others
see advantages in using “unanchored” Sobolev spaces [10], [22]. Finally, but
importantly, weighted Walsh spaces have been defined, and results analogous to
those above have been obtained in these spaces, with shifted lattice rules replaced
by digitally shifted digital nets, see [4].

Progress has also been made in the direction of having lattice rules available
for non-prime 7, and for a range of values of n. In particular, and impressively, in
the paper [2] good quality lattice rules obtained by a component-by-component
technique (and hence arbitrarily extensible in the dimension d) are presented for
all powers of 2 between 21° and 22°, and all integers in between (that is, for all
numbers n between roughly a thousand and a million).

So how high is high dimensional? If the problem is right, then there is now
surely no limit.
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What is information-based complexity?

Henryk WozZniakowski

The purpose of this short note is to informally introduce information-based com-
plexity (IBC). We describe the basic notions of IBC for the approximate solution
of continuous mathematically posed problems.

IBC is the branch of computational complexity that studies continuous math-
ematical problems. Typically, such problems are defined on spaces of functions
of d variables and often d is huge. Since one cannot enter a function of real or
complex variables into a digital computer, the available information is usually
given by finitely many function values at some prescribed sample points.! The
sample points can be chosen adaptively, that is, the choice of the j th point may be
a function of the already computed function values at the j — 1 previously used
points.

Such information is

partial, contaminated and priced.

It is partial since knowing finitely many function values, we cannot in general
recover the function exactly and we are unable to find the exact solution of a
continuous problem. It is contaminated since the function values are computed
with model, experimental, and/or rounding errors. It is also priced since we are
charged for each experiment leading to a function value or for each computation
needed to obtain a function value. Often, it is expensive to obtain a function
value. For example, some functions occurring in computational practice require
thousands or millions of arithmetic operations to compute one function value.

Continuous problems for which partial, contaminated and priced information
is available arise in many areas including numerical analysis, statistics, physics,
chemistry and many computational sciences. Such problems can only be solved
approximately to within some error threshold ¢.

The goal of IBC is to create a theory of computational complexity for such
problems. Intuitively, complexity is defined as the minimal cost of all possible
algorithms that compute the solution of a continuous problem to within error

'Sometimes we may use more general information consisting of finitely many linear functionals but,
for simplicity, we restrict ourselves in this note only to function values as available information.
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at most . For many problems, the minimal cost is determined by the minimal
number of function values needed for computing the solution to within &.

Depending on precisely how the error and the cost are defined we have various
settings. In the worst case setting, the error and cost of algorithms are defined by
their worst case performance. That is, the error is the supremum of the distance
between the exact solution and the approximation computed by the algorithm
for all functions from a given set. The distance may be defined by a norm, or
by a metric, and by a specific error criterion. For example, we may have the
absolute, relative or normalized error criterion. Similarly, the cost is defined as
the supremum of the costs of the algorithm for all functions from the same set of
functions. The cost for a single function is equal to the sum of information and
combinatory costs. The information cost is the number of function values times
the cost of computing one function value. The combinatory cost is the number
of all arithmetic operations needed to combine the already computed function
values. Here we assume for simplicity that the cost of one arithmetic operation
is taken as unity, and by arithmetic operations we mean such operations as addi-
tion, multiplication, subtraction, division and comparison of numbers. The set of
permissible arithmetic operations can be extended by permitting the computation
of special functions such as logarithms, exponential and trigonometric functions.
The sets of functions studied in IBC are usually unit balls or whole spaces, de-
pending on the error criterion. Typical spaces are Hilbert or Banach spaces of
infinite dimension.

In the average case setting, the error and the cost of algorithms are defined by
their average performance. That is, we assume a probability measure on a given
set of functions and we take the expectation of the errors and costs of the algorithm
for all functions from the given set with respect to this probability measure. The
probability measures studied in IBC in the average case setting are usually Gaus-
sian or truncated Gaussian measures defined on infinitely dimensional spaces.

In the probabilistic setting, the error and the cost of algorithms are defined as
in the worst case setting by taking the supremum over a given set of functions
modulo a subset of small measure. That is, we agree that the algorithms behave
properly on a set of measure at least, say, 1 — &, and we do not control their
behavior on a set of measure at most 8.

In the worst case, average case and probabilistic settings discussed so far, we
consider only deterministic algorithms. In the randomized setting, we also permit
randomization. That is, we use randomized algorithms that can compute function
values at randomized points, and can combine these values using also randomiza-
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tion. The randomized error and the randomized cost are defined analogously as
before by taking the expectation with respect to arandom element of the algorithm
and then the worst case, average case or probabilistic performance with respect
to functions from a given set.

Quite recently, one more setting of IBC has been added. This is the quantum
setting where computations are performed on a (still) hypothetical quantum com-
puter. This leads to different definitions of the error and the cost of algorithms,
and the quantum complexity is defined as the minimal cost needed to compute the
solution of a continuous problem to within error at most € with a given probability.

The model of computation used in IBC is the real number model which is con-
sistent with the fact that most continuous problems are solved today using floating
point arithmetic, usually with a fixed precision. The cost of operations in floating
point arithmetic does not depend on the size of the input and modulo rounding
errors is equivalent to the real number model. We simplify the IBC analysis by
not considering rounding errors. Surprisingly enough, for most algorithms whose
cost in the real number model is close to the complexity of a continuous problem
we can find numerically stable implementation of such algorithms. Then we ob-
tain essentially the same results in floating point arithmetic as in the real number
model when we assume that the problem is not too ill-conditioned and that ¢ is
related to the relative precision of floating point arithmetic.

Today we know rather tight bounds on the complexity of many continuous
problems, and this holds in all settings we mentioned above. There are many
multivariate problems whose complexity in the worst case, average case and ran-
domized settings is exponential in d. These IBC results may be contrasted with
discrete problems, such as factorization, where the exponential complexity is con-
jectured and not yet proved. Of course, for discrete problems we have complete
information and we cannot use powerful proof techniques for partial information
that essentially allow us to obtain lower bounds and prove intractability.

‘We now briefly explain how lower and upper bounds are obtained in IBC. For
simplicity, we assume that function values can be computed exactly. We start
with lower bounds since they are usually harder to obtain.

Lower bounds are possible to obtain by using so-called adversary arguments.
That is, we want to identify two functions that are indistinguishable with respect
to finitely many function values used by the algorithm, and with the most widely
separated solutions. That is, they have the same function values used by the
algorithm but with the maximal distance between solutions we are trying to ap-
proximate. Clearly, the algorithm cannot distinguish between these two functions
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and the best it can do is to take the mean of their two solutions. So no matter how
the algorithm is defined, there is no way to beat half of the distance between these
two solutions. Hence, the maximal distance between the solutions for indistin-
guishable functions gives us a lower bound on the error. This is usually expressed
as a function of n, where n is the number of function values used by algorithms.
We stress that in many cases, it is quite hard to find this function of », although
we may use a whole arsenal of mathematical tools to help us to find this function.
Today, there are many techniques for finding lower bounds. Just to name a few,
they are based on n-widths, especially Gelfand and Kolmogorov n-widths, on
decomposable reproducing kernels, on optimality of linear algorithms for linear
problems, on adaption versus non-adaption techniques etc.

Upper bounds can be obtained, for example, by using so-called interpola-
tory algorithms. Namely, when we have already computed, say n function values
f(xj)forj =1,2,...,n,wewanttofind afunction g belonging to the same set of
functions as f, and sharing the same function values as f. Thatis g(x;) = f(x;)
forall j = 1,2,...,n, so we interpolate the data. Then the interpolatory algo-
rithm takes the exact solution for g as the approximate solution for f. For given
information by n function values at x;, the error of the interpolatory algorithm
is almost minimal since it can differ from the lower bound only by a factor of at
most 2. Obviously, we still need to find optimal information, i.e., points x; for
which the error is minimal, and it is usually a hard nonlinear problem.

The cost of the interpolatory algorithm is, in general, more tricky. For some
spaces and solutions, it turns out that splines are interpolatory and we can use
vast knowledge about splines to compute them efficiently. For some spaces or
solutions, it may, however, happen that the cost of an interpolatory algorithm
is large. For some cases, we can use different algorithms. For example, for
many linear problems, it has been proved that the error is minimized by linear
algorithms. This is a vast simplification that helps enormously for the search of
easy to implement algorithms with almost minimal error. The first such result for
general linear functionals defined over balanced and convex sets of functions was
proved by S. Smolyak in 1965. There are many generalizations of this result for
linear operators but this is beyond this note.

‘We want to mention one more technique of obtaining upper bounds which uses
a randomization argument, although the original problem is studied, say, in the
worst case setting. It turns out that for Hilbert spaces and linear functionals, we can
explicitly compute the worst case error of any linear algorithm. This worst case
error obviously depends on the sample points used by the algorithm. So assume
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for a moment that the sample points are independent randomly chosen points. We
then compute the expected worst case error with respect to some distribution of
these points. It turns out that for many cases, the expectation is small. By the
mean value theorem, we know that there must be sample points for which the worst
case error is at least as small as the expectation. Furthermore, using Chebyshev’s
inequality, we know that the measure of sample points with error exceeding the
expectation by a factor larger than one is large. This proves non-constructively
that good linear algorithms exist. Obviously, we now face the problem of how to
construct them. There are a number of options but we want to mention only one of
them for multivariate integration of d -variate functions with d in the hundreds or
thousands. There is a beautiful algorithm, called the CBC algorithm, that permits
the construction of n sample points component by component (so the name CBC)
by using the fast Fourier transform (FFT) in time of order n In(n) d. The CBC
algorithm was designed by the Australian school of I. Sloan, S. Joe, F. Kuo and
J. Dick starting from 2001, and its fast implementation was proposed by R. Cools
and D. Nuyens in 2006. In this way, today we approximate integrals of functions
with even 9125 variables.

For many multivariate problems defined on spaces of d-variate functions, we
know that the worst case complexity of computing the solution to within ¢ is
®(e7P4). That is, lower and upper bounds are proportional to e~ #< with factors
in the ® notation independent of ¢~ ! but possibly dependent on d. Sometimes
such estimates hold modulo a power of In £~! which we omit for simplicity. The
exponent p, usually depends on the smoothness of the set of functions. If they
are r times differentiable then usually

d
Pa=—.
;

Note that for fixed r and varying d, we have an arbitrarily large power of ¢ 1. In

general, we cannot, however, claim that the complexity is exponential in d since
it also depends on how the factor in the upper bound in the ® notation depends
on d. For Lipschitz functions we have r = 1, and for multivariate integration it is
known due to A. Sukharev from 1979, who used the proof technique and results
of S. Bakhvalov mostly from 1959, that the complexity in the worst case setting
is roughly
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with e = exp(1). Hence, it depends exponentially on d. If the complexity of a
multivariate problem is exponential in d, we say that the problem is intractable,
or suffers from the curse of dimensionality following Bellman who coined this
phrase in 1957. One central issue of IBC research today is to determine for which
multivariate problems and for which settings we have tractability, that is, when
the complexity is not exponential in e~! and d. Depending on how we measure
the lack of exponential dependence, we have various notions of tractability such
as polynomial, strong polynomial and weak tractability. There is a huge literature
on the complexity of multivariate problems. However, most of these papers and
books have results which are sharp with respect to ¢! but have unfortunately
unknown dependence on d. To prove tractability we must establish also sharp
dependence on d. Therefore tractability requires new proof techniques to obtain
sharp bounds also on d. The second book in the list below is devoted to tractability
of multivariate problems.

We end this note with a list of IBC books, where the reader can find more
information, results and proofs on the complexity of continuous problems.

IBC Books

* E. Novak, Deterministic and stochastic error bounds in numerical analysis.
Lecture Notes in Math. 1349, Springer-Verlag, Berlin, 1988.

¢ E. Novak and H. WozZniakowski, Tractability of multivariate problems.
Volume I: Linear information, EMS Tracts Math. 6, European Mathematical
Society Publishing House, Ziirich, 2008.

L. Plaskota, Noisy information and computational complexity. Cambridge
University Press, Cambridge, UK, 1996.

» K. Ritter, Average-case analysis of numerical problems. Lecture Notes in
Math. 1733, Springer-Verlag, Berlin, 2000.

» K. Sikorski, Optimal solution of nonlinear equations. Oxford University
Press, 2000.

e J. F. Traub and H. WoZniakowski, A general theory of optimal algorithms.
Academic Press, New York, 1980.

e J. F. Traub, G. W. Wasilkowski, and H. WoZniakowski, Information, uncer-
tainty, complexity. Addison-Wesley, Reading, MA, 1983.
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¢ J. E Traub, G. W. Wasilkowski, and H. WoZniakowski, Information-based
complexity. Comput. Sci. Sci. Comput., Academic Press, New York, 1988.

e J. F. Traub and A. G. Werschulz, Complexity and information. Lezioni
Lincee, Cambridge University Press, Cambridge, UK, 1998.

* A. G. Werschulz, The computational complexity of differential and integral
equations: An information-based approach. Oxford Math. Monogr., Oxford
University Press, Oxford, 1991.

What happens to the error

as d goes to o7’




96




97



	Preface
	Contents
	Henryk Wozniakowski and the complexity of continuous problems
	Complexity as a new challenge for mathematicians
	A brief history of information-based complexity
	How high is high-dimensional?
	What is information-based complexity?



