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Preface

The ever-growing demand, the rising penetration level of renewable generation,
and the increasing complexity of electric power systems pose new challenges to
control, operation, management, and optimization of power grids. Conventional
centralized control structure requires a complex communication network with
two-way communication links and a powerful central controller to process a large
amount of data, which reduces overall system reliability and increases its sensitiv-
ity to failures; thus, it may not be able to operate under the increased number of
distributed renewable generation units. Distributed control strategy enables easier
scalability, simpler communication network, and faster distributed data process-
ing, which can facilitate highly efficient information sharing and decision making.
The distributed approach is a promising candidate to address the features of mod-
ern power grids by providing fast, flexible, reliable, and cost-effective solutions.

Considering the foreseeable large deployment of distributed renewable genera-
tion in electric power systems, a comprehensive technical source book is needed
for both academic and industrial fields. This book will be providing in-depth analy-
sis and discussion of fully distributed control approaches and their applications for
electric power systems. The book will cover a wide range of the topics, including
both large- (hours) and short- (seconds) time-scale-level coordination control and
optimization. The technical aspects in terms of control, operation management,
and optimization of electric power systems will be elaborated with the fundamen-
tal knowledge and advanced techniques.

This book focuses on fully distributed approaches for control, operation
management, and optimization of electrical power systems with high distributed
renewable generation penetration level. With the integration of more and more
controllable and dispatchable aggregator of distributed generation, energy storage
systems, elastic and inelastic loads, not only the power supply-demand should
be balanced in a timely manner but also the frequency and voltage must be
properly regulated to ensure efficient, safe, and reliable operation of power
systems. Conventionally, power systems are commonly managed via centralized
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control approaches because of the existing structure of the traditional bulk
power system. However, with the increasing number of highly intermittent
distributed renewable generation with a vast geographical span, distributed
control approaches have been proposed and thereafter been deployed in some
pilot projects. It is foreseeable that distributed control approaches for power
systems will be a promising and effective solution to advance the existing control
and energy management technologies for grid integration of renewable energy
sources.

In Chapter 1, an introduction on centralized and distributed solutions to
power management and several distributed algorithms are provided. Chapter 2
introduces the communication network topology configuration, the multi-agent
framework-based hardware-in-the-loop controller and setup of the real-time
digital simulation test-bed.

Chapter 3 discusses distributed active power control and optimization of power
systems. For a microgrid with a high level of renewable energy penetration
to operate autonomously, it must maintain the instantaneous supply-demand
balance of active power. A distributed sub-gradient-based solution to coordinate
the operations of different types of distributed renewable generators in a micro-
grid is developed for the primary and secondary frequency control. An effective
distributed tertiary control strategy based on distributed dynamic programming
algorithm is then proposed to optimally allocate the total power demand among
different generation units using asynchronous communication, which can lead
to simpler implementation and faster convergence speed. Finally, an improved
distributed gradient algorithmic-based approach, which can address both equality
and inequality constraints, is proposed to realize online power system control and
optimization.

In Chapter 4, to accommodate the increasing penetration level of distributed
generators in the power system, appropriate voltage and reactive power control
and optimization approaches are investigated to improve voltage profiles and
reduce the power loss and the opportunity cost of reactive power generation. Dis-
tributed model-free Q-learning-based algorithm, which is easy to carry out and is
adaptable in various operating conditions, is developed, and a sub-gradient-based
reactive power control algorithm is proposed to reduce the possibility of random
control updates and increase the rate of convergence.

In Chapter 5, a distributed demand response solution to maximize the overall
utility of users while meeting the requirement for load reduction requested by the
system operator is proposed in emerging smart grids is presented. The proposed
distributed dynamic programming algorithm is implemented via a distributed
framework, which can reduce the computation and communication burden and
protect users’ private information. As an important load in future smart grids,
the flexibility of PEV’s charging behavior can be beneficial to the power systems



�

� �

�

Preface xvii

by offering various ancillary services, such as load leveling, reserve provision,
frequency regulation, etc. It is important to design proper charging strategies so
as to satisfy the consumers in terms of the financial charging cost, charging time,
and state of charge, without violating operational constraints of the power system.

In Chapter 6, a distributed energy management approach that considers both
generation suppliers and load users is proposed to maximize the total social
welfare of the whole power system while satisfying various system constraints.
Furthermore, an online solution based on a multi-agent system framework is
developed to achieve better consumer participation and efficient supply-demand
balance with faster response than traditional centralized methods.

In Chapter 7, two approaches for distributed estimation approaches are
presented. The consensus algorithm-based distributed estimation is a two-loop
iteration architecture, which is developed for multi-area power systems. The inner
loop is used to discover the information of gain matrix and gradient vector by
applying the consensus confusion technique, and the outer loop is used to update
the estimation based on the second-order Newton’s method. The distributed
sub-gradient algorithm-based state estimation is a fully distributed integrated
solution for multi-area TI and SE solution, which can be implemented with MAS
framework. Numerical studies for variable scales of systems demonstrate that it
is adaptable, robust and is a promising option for the state estimation of large
interconnected power systems.

In Chapter 8, the steps to evaluate the algorithm are discussed. We start with
controller-hardware-in-the-loop simulation, then the power hardware-in-the-loop
simulation, and finally the hardware experimentation. Hardware experimentation
is necessary, which can tell us whether an algorithm will work in reality or not and
how to make it work and work better. In addition, it can also tell us the implemen-
tation requirement.

In Chapter 9, more issues and constraints in power system such as coupling
variables, non-convexity, and communication topology change are investigated.
Towards to more mature implementation of distributed control solution in real
world, many facets and technology details such as investment, reliability, optimal-
ity, feasibility, etc. need to be taken into consideration, and research efforts and
contributions from all around the world are more than welcome.

This book is written for power system engineers who are moving into the area
of renewable energy and distributed generation, smart grids, economic dispatch,
demand response, electric vehicle charging management, virtual power plant,
state estimation, etc., and researchers and practitioners working in these areas
who are enthusiastic to see what benefits and advantages distributed control and
optimization algorithms can bring. This book follows an evolutionary procedure.
Particularly, the founding technologies and background knowledge are system-
atically introduced first for each topic, and then the technical advances and the



�

� �

�

xviii Preface

specific and emerging technologies will be elaborated. Therefore, the readers
can get a clear picture of all the knowledge following a relatively fast learning
curve. Meanwhile, only the proven and feasible solutions will be introduced in
this book so that the applicability of the technical solutions can be guaranteed.
Most of the advanced control and optimization strategies presented in this book
are accompanied by extensive simulation and experimental results. Therefore,
this book is also very useful for practitioners in this area to see how distributed
control and optimization strategies could improve system performance and work
in practice. This book also provides a precious opportunity for graduate students
and researchers who work in the area to become familiar with the up-to-date
techniques. It can be adopted as a textbook for graduate programs on power
system engineering, microgrids, renewable energy integration, and smart grid.

Tsinghua-Berkeley Shenzhen Institute (TBSI)
Tsinghua Shenzhen International Graduate School
(Tsinghua SIGS), Tsinghua University, Shenzhen, China
Yinliang Xu
University of Central Florida, Orlando, USA
Wei Zhang
Lehigh University, Bethlehem, PA, USA
Wenxin Liu
Instituto Politécnico Nacional, Mexico City, Mexico
Wen Yu
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1

Background

1.1 Power Management

With the development of smart grids and the deep interconnection of multiple
large-scale regional power grids, power systems are considered as the largest
artificial networks that have ever been built. Power systems include coupled
primary/secondary power equipment and are supported by advanced con-
trol technology and efficient communication networks to form an intelligent
autonomous system. To meet the high-performance requirements from all
aspects, power management is of great importance in the smart grid. On the one
hand, with the increasing penetration level of distributed energy generators, the
dispatchable power generation will be relatively less as the renewable energy
generation has the characteristics of high uncertainty and intermittency. In
order to realize the real-time supply-demand balance between power generation
and consumption, effective power generation scheduling strategies should be
designed to accommodate the integration of distributed energy resources. On
the other hand, flexible and controllable loads can interact with the power grid
through the smart meter, which is an important link to ensure the real-time
balance between grid power generation and consumption. Thus, load-side power
management plays a more important role.

The power management in the smart grid is to optimize the energy utilization
efficiency by coordinating the various controllable units of the power grid through
efficient communication network and advanced control techniques to ensure the
safe, stable, reliable, and efficient operation of the entire power grid. Power man-
agement can be classified into multiple problems according to different objectives,
time scales, and control targets. Proper and effective control strategies are the key
to achieve safe, reliable, stable, efficient, and flexible operation of the power grid.

Distributed Energy Management of Electrical Power Systems, First Edition.
Yinliang Xu, Wei Zhang, Wenxin Liu, and Wen Yu.
© 2021 The Institute of Electrical and Electronics Engineers, Inc.
Published 2021 by John Wiley & Sons, Inc.
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In addition to the basic objectives of ensuring system stability, the power manage-
ment in the smart grid also includes the following objectives:

(1) Enable the proportional distribution of active/reactive power output of dis-
tributed energy resources;

(2) Ensure that the voltage amplitude and frequency are kept within the allowable
range and compensate for the fluctuations of the distributed energy generators
output and the dynamic load power demand;

(3) Reduction of the circulating current between distributed energy resources and
realize the desired power exchange with the external power grid;

(4) Be adaptive to the plug-and-play feature and the system topology changes;
(5) Participate in the regulation of the power market, realize the optimal schedul-

ing and coordinated power allocation, and provide various auxiliary services
when necessary; and

(6) Identify the topology of the smart grid promptly.

The above objectives require that the power grid, the distributed energy resources,
and the controllable loads within the system coordinate their respective control
decisions with each other to achieve this. To achieve the above objectives, many
scholars propose a hierarchical control structure. The primary control layer aims
to maintain the stability of the voltage, frequency, and output power according
to the control command of the system. Distributed energy resources should
select specific control strategies based on their characteristics and control mode.
When no frequency and voltage support is required, the distributed energy
resources operate in the constant power output mode. The existing coordina-
tion mechanisms of multiple distributed energy resources can be divided into
master–slave control and peer-to-peer control mode. In the master–slave mode,
the master-distributed energy resource with the largest generation capacity is
controlled with constant voltage and frequency mode to provide voltage and
frequency support to the power system. Other slave-distributed energy resources
are controlled under the constant power mode to maintain the active/reactive
power balance. In the peer-to-peer mode, the distributed energy resources are
all controlled based on the droop control to maintain the stability of the voltage,
frequency, and the active/reactive power balance in the power system by simu-
lating the active frequency characteristics and reactive voltage characteristics of
the conventional generator because droop control strategies can achieve power
sharing by adjusting the droop coefficient and do not require any information
exchange.
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The secondary control layer aims to realize the regulation of voltage and fre-
quency and focus to research on the first two aspects. Because the master dis-
tributed energy resource device in the master–slave control mode may not have
enough capacity to compensate for the power fluctuations, the droop control in the
peer-to-peer control mode essentially results in poor performance, the generation
or load change will cause the system voltage and frequency deviations. The accu-
mulated deviations of voltage and frequency may lead to the collapse of power sys-
tems, so it is necessary to adjust the distributed energy resources to eliminate the
deviations and improve the overall dynamic performance of the power system. In
addition, in the frequency droop control, the active power can be accurately shared
among multiple distributed energy resources. However, in the voltage droop con-
trol, the reactive power sharing usually leads to unreasonable distribution because
of the inconsistent output impedances of the inverters. Inaccurate reactive power
sharing affects energy efficiency and the life span of power electronic equipment
and causes current circulation, which will seriously impact the system reliability,
stability, and economy. Generally, conventional power systems adopt centralized
control strategies to achieve the secondary control target.

Recently, different control methods have been proposed for the implementation
of secondary frequency and voltage control. Because the frequency is a global vari-
able, it can either be controlled via a centralized or distributed method based on
direct or indirect access to the global information or a decentralized control based
on the local measurement. Although the voltage output of the inverter is a local
variable, in order to achieve the accurate reactive power sharing and voltage recov-
ery of the power system, the secondary voltage control is mainly centralized and
distributed depending on the system information interaction.

The tertiary control layer aims to optimize the power grid economic opera-
tion and energy management. The total operating cost of the power systems
is minimized, and the distributed energy resources utilization efficiency is
maximized while ensuring a stable and reliable operation. There exist plenty of
literature studies on tertiary energy management in terms of economic dispatch,
demand response, and loss minimization, which can be mainly divided into three
categories. The first category is the analytical methods, such as lambda iteration,
linear, and nonlinear programming. The second category is the heuristic methods
such as hybrid immune algorithm, particle swarm optimization, ant colony
optimization, etc. The third category is the distributed optimization approaches,
which only require information exchange through a sparse communication
network and can achieve optimal or near-optimal solutions while satisfying
various local and coupled constraints.



�

� �

�

4 1 Background

1.2 Traditional Centralized vs. Distributed Solutions
to Power Management

Traditionally, the stable and economic operation of power systems has been
achieved primarily through centralized or decentralized control with the little
involvement of the distributed coordinated control. The existing centralized
energy management requires each user and power generator to send the local
information to the control center. After collecting all the information, the control
center processes a huge amount of data and makes control decisions, and then
decisions are transmitted to the local users and the power generation units. The
centralized control structure has the advantages of simplicity, high convergence
accuracy, and fast convergence.

These centralized approaches have been effective so far for conventional power
systems. However, they may face severe challenges to manage future power sys-
tems with a high penetration level of distributed energy resources because of the
following reasons. First, the centralized approaches require sophisticated commu-
nication infrastructure between the central controller and every single unit in the
power network to collect information globally and a powerful central controller
to process huge amount of data and make complicated control decisions. Thus,
these solutions are computationally and communicationally expensive for imple-
mentation and highly rely on the capability and reliability of the control center,
so they are less robust to single-point failures. Second, different vectors need to
coordinate each other’s respective control decisions to achieve the global system
objective in the future power systems where participants may not be willing to
reveal private information such as their generation and utility cost functions and
power consumption patterns. Third, the operating conditions of the power systems
may change rapidly and frequently because of the unexpected supply-demand
imbalance and lowered inertia caused by the increasing penetration level of power
electronics-based control devices, and centralized control approaches may not be
able to respond in a timely manner.

In order to obtain the accurate state information of the power systems in
real-time, the deployment of measuring equipment in the smart grid will con-
tinue to increase, resulting in a sharp increase in the amount of data that the
control center needs to collect, and the limited communication resources, result-
ing in an increase in data transmission delay and a high communication cost. The
traditional centralized control methods usually subject to poor scalability and
cannot meet the requirements of accurate control of the smart grid with satisfying
dynamic performance in a real-time manner. With the expansion of power system
scale and the increasing number of controllable objects, distributed control
gradually shows its superiority in terms of robustness and low control cost.
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Compared with centralized control, distributed control has the following advan-
tages: (i) Global optimal or near-optimal system objective is achieved based on
a point-to-point sparse communication network, which reduces communication
burden, (ii) parallel data processing and calculation is done without the central
controller, which lower the computation cost significantly, (iii) the “plug and play”
function is supported, which also facilitates scalable application to large systems,
and (iv) control decision is made by a local control unit, which improves reliability.
Therefore, distributed energy management approaches are more suitable for the
cooperation of large-scale distributed intelligent equipment in vast geographical
areas to ensure safe, stable, and economic operation of the smart grid, which has
received extensive attention from worldwide researchers and scholars.

1.3 Existing Distributed Control Approaches

In recent years, distributed control and distributed optimization methods have
been widely applied to solve the control and optimization of power systems with
a high penetration level of distributed energy resources. Most of the existing
distributed control methods can be classified as the following three typical
approaches.

The first type of distributed energy management approach is based on dual
decomposition. The main idea is to decompose the optimization problem into
multiple suboptimization problems, which are coupled by a certain global
variable or a uniform Lagrangian multiplier corresponding to the energy balance
constraint, such as local marginal price. The control center interacts with all
distributed units and also the information exchange among multiple distributed
energy units is required to update global information. This type of energy man-
agement method does not need the control center to collect all the information
from all participants, and the participants can obtain essential and necessary
information about the power systems global state. Considering the economic
dispatch problem with multiple distributed energy resource units, the objective
of minimizing the total cost of power generation should be achieved while
satisfying the constraints of power supply and demand balance, the upper and
lower bounds of distributed energy resource generation output. Through the
dual-decomposition method, the power utility company calculates the global
Lagrangian multiplier, and each distributed generation unit solves the local
optimization problem and calculates the local output power according to the
dual-variable information broadcasted by the power utility company.

Next, a multiple time-scale energy dispatching problem with traditional power
generation units, controllable load units, distributed energy storage units, and
renewable power generation to minimize the energy transaction cost minus
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the load utility benefit function is considered. In order to solve this problem, a
distributed energy dispatch and demand response algorithm is designed based
on the dual-decomposition method and applied to electric vehicle charging
scenarios. The cost of traditional power generation is modeled as a quadratic
function, a penalty function is imposed to reduce renewable power generation
curtailment, and the user preferences are characterized by their willingness to
pay for services, which can be seen as benefit functions of users. Users with small
energy consumption need to broadcast their aggregated load to the power utility
company. The power utility company updates the electricity price based on the
deviation of the power generation and load demand. Last, DC-optimal power
flow problem considering the upper and lower bounds of generation units power
output, transmission line physical limits, power generation, and load demand
balance constraints to minimize the total cost of all power generation units is
investigated. Each unit updates its power supply or demand and broadcasts it to
neighboring units based on the Lagrangian multiplier estimates of the neighbor-
ing units’ net power. After receiving the transmission line congestion information
of the power system, each unit updates the local power supply or demand in
an average manner and then updates the Lagrangian multiplier associated with
the power supply and demand constraints. The drawback of this type of energy
management method is the requirement of a control center. Thus, these are
not the fully distributed protocols, and the robustness, privacy protection, and
scalability are relatively limited.

The second type of distributed energy management method is based on game
theory. The main idea is based on the potential energy game, which can guarantee
the existence of Nash equilibrium. Considering a large number of end users coop-
erate to decide the scheduling of household electrical equipment or load in the
next day, power utility company needs to adopt a fixed electricity pricing method
to provide guidance for the reasonable energy consumption and proper electricity
use time to achieve the Nash equilibrium with the minimum power generation
costs. However, this type of approach requires all users to know the power gener-
ation cost function information, and the user needs to update the energy schedule
asynchronously, so its algorithm is less scalable. Moreover, for the strategy-based
potential energy game method, there are special requirements for the network
topology, which only apply to fully connected networks, and has no advantage
in dealing with complex coupling constraints among units.

The third type of distributed energy management is based on the consensus
algorithm, which can achieve global goals through local information exchange.
Therefore, this type of distributed energy management has high flexibility, strong
robustness, and decent scalability and is fully distributed. As an important branch
of distributed computing with minimum communication, consensus algorithms
have been widely used in the economic dispatching, demand response, and
topology identification problems in smart grids. For the economic scheduling
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problem of multiple power generation units, the power generation and supply
equation constraints are described in the objective function according to the
Lagrangian multipliers, and the problem is decomposed into multiple suboptimal
problems. Multiple Lagrangian multipliers in the optimal objective function need
to converge to the same value, which can be regarded as the optimal marginal cost
of the power generation units. Each unit updates the Lagrangian multiplier based
on the estimation of the neighboring units’ power supply and demand deviation
using the consensus algorithm. The updated Lagrangian multiplier is then used
to calculate the desired local power generation or load demand.

The distributed energy management methods have the advantages of simplicity,
high convergence precision, strong robustness, and decent scalability. Consensus
algorithm-based energy management approaches proposed in recent literature are
more practical than traditional distributed algorithms. The convergence and the
optimality of the consensus algorithm-based energy management methods can be
rigorously proved. However, existing consensus algorithm-based energy manage-
ment methods still have shortcomings in problem modeling, robustness analysis
in communication nonideal situations, complex constraints handling, and so on.
Therefore, there are still many problems in the consensus algorithm-based energy
management methods that are challenging and worth studying.

As a combination of distributed control and artificial intelligence, the
multi-agent system (MAS) can decompose large and complex problems into
multiple small local problems and realize the local optimal control decision
making through the cooperative operations of each agent and other units.
Therefore, the MAS is fully applicable to the power systems’ collaborative
control with well-structured and complex operational objectives because of the
following merits: (i) The autonomy of the agent corresponds to the autonomous
decision-making ability of the distributed unit in the power systems; (ii) the
sociability and teamwork spirit of the agent corresponding to the communication
interaction between distributed energy resource units; and (iii) the initiative
and adaptability of the agent accommodates the topology change scenario of the
power systems with high level of distributed energy resources, such as plug and
play, reconfiguration, restoration, etc. As one of the most popular distributed
control approaches, a well-designed MAS is flexible, reliable, and less expensive to
implement, and it has a better chance of surviving single-point failures. Recently,
MAS-based approaches have been applied to various power system applications.
However, most of the existing methods are mainly rule-based and lack rigorous
stability analysis. The potential applications of MAS for the power grid need to
be further explored. Because consensus algorithm can provide the fundamental
support, therefore, a MAS-based approaches using consensus algorithm promis-
ing have promising applications to address various problems in smart grids with
a high penetration level of distributed energy resource units, which is the main
focus of this book.
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2

Algorithm Evaluation

Before the implementation of the control algorithm or solution, the off-line
evaluations are always required. In this chapter, we will discuss two aspects for
off-line algorithm evaluation. The first aspect we would like to discuss is the
communication network topology configuration for the distributed solution.
Then, we will present our existing ideas and experiences for the real-time digital
simulation regarding the algorithm evaluation.

2.1 Communication Network Topology Configuration

As for the typical distributed algorithm, the centralized processor or controller
is no longer required. The computational efforts are distributed among scattered
processors or controllers, which are commonly referred to as agents or intelligent
agents. In order to cooperate to achieve the predetermined goal or optimal strategy,
these agents need to exchange necessary information with each other. Therefore,
the communication network should be appropriately designed to fulfill the func-
tionality of essential information exchange, depending on the applications.

The design of the communication network for distributed control and optimiza-
tion is case to case. However, in this chapter, we will discuss the common issues
and matters that should be considered for distributed algorithms, and especially,
we will use the consensus algorithm for demonstration.

2.1.1 Communication Network Design for Distributed Applications

The communication topology of a network of n agents can be represented
using a directed graph G = (V ,E), with the set of nodes V = 𝑣1, 𝑣2,… 𝑣n
denoting the agents and edges E ⊆ V × V representing the communication
channels. The agents can communicate with an agent, say, agent i is defined
as the communication neighbors of this agent, and they are denoted by

Distributed Energy Management of Electrical Power Systems, First Edition.
Yinliang Xu, Wei Zhang, Wenxin Liu, and Wen Yu.
© 2021 The Institute of Electrical and Electronics Engineers, Inc.
Published 2021 by John Wiley & Sons, Inc.
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(a) (b)

Agent 1

Agent 2

Agent 3

e31

e13

e23

e21
e12

e32

v2

Figure 2.1 Communication
network graphs of two
scenarios: (a) Scenario 1 and
(b) Scenario 2.

Ni = {j ∈ V ∶ (i, j) ∈ E}. Figure 2.1a is an example of a three-agent system and its
corresponding communication network graph.

The adjacency matrix A is used to denote the connectivity of the communication
network, and the element of A, aij, is defined as:

aij =
{

1 if eij ≠ ∅
0 if eij = ∅

For most of the distributed applications, the common practice is that information
flow is bidirectional, that is to say, if eij ≠ ∅, then eji ≠ ∅, and vice versa. Therefore,
the element of the adjacency matrix satisfies:

aij = aji

Hence, A is symmetrical. This type of communication network graph is referred
to as balanced graph and more details can be found in [1]. In this book, we only
consider the balanced graph because the communication among agents is always
bidirectional for power system applications. Accordingly, the communication net-
work graph discussed here can be represented with an undirected graph. In the
following context, the communication network graph is assumed to be undirected
graph unless it is specially mentioned as a directed graph.

For the fixed communication network topology, if a specific agent in the system
needs to cooperate with another agent in a directed or undirected way, this agent
needs to comprehend certain kind of information of the other agents through a
communication network and vice versa. From another perspective, the informa-
tion regarding an agent, let us say agent i, needs to be spread to another agent,
say agent x, through the communication network. Figure 2.1b demonstrates the
information spreading process.

As shown in Figure 2.2, agent i and agent x cannot communicate with each other
directly. Yet, agent i can communicate with agent j, and through this communi-
cation, the agent j can obtain certain information that can represent the agent i.
Through this way, the information of agent actually spreads on the network, and
after n rounds of information exchange, it finally reaches agent x. Note that in
order to make this process work properly, there must exist a path that connects
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Figure 2.2 Information spreading process.
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agent i and agent x. Consequently, for any two agents in the system, there should
be a communication chain that makes the cooperation possible. The graph corre-
sponding to a communication network should be connected.

2.1.2 N −1 Rule for Communication Network Design

There are many ways to design a connected graph, hence the communication net-
work. For example, Figure 2.3a,b shows two graphs with six agents. As shown in
Figure 2.3a,b, both types of the graphs with six nodes have five edges. This kind of
connection is the simple tree structure, and obviously, it is connected. Note that if
any of the edges are missing, these graphs are no longer connected. Under this cir-
cumstance, a node is isolated from the other, which make the cooperation of this
node with other nodes impossible. It is not recommended to adopt a tree struc-
ture for the communication network configuration of the distributed algorithm or
optimization because a single communication channel failure will jeopardize the
entire process.

The N − 1 rule is usually enforced at the phase of communication network
design to improve the robustness of the communication network against single
communication channel failure. The N − 1 rule states that any two nodes of a
graph under consideration are still connected directly if any one of the edges of
this graph is disabled. To this end, the original graph must contain at least one
loop that connects all of the nodes in the graph. Because the tree graph is defined
as the graph without any loop, it surely does not satisfies the N − 1 rule. We can
modify the structures given in Figure 2.3a,b to make them satisfy the N − 1 rule,
and possible modifications are shown in Figure 2.4a,b. For the graphs illustrated

Figure 2.3 Two types of tree
graphs for six-agent-system: (a)
type 1 (b) type 2.
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Figure 2.4 Two types of graphs
satisfy the N − 1 rule: (a) type 1 (b)
type 2.
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Figure 2.5 Graph with three loops.

in Figure 2.4a, there is only one loop, which indeed contains all the nodes of the
system. Accordingly, the corresponding communication network design satisfies
the N − 1 rule. We redraw Figure 2.4b as Figure 2.5. It can be noticed that this
graph has three loops, l1, l2, and l3. Loops l1 and l2 contain only part of nodes of
the system, whereas loop l3 encircles all the nodes of the system. Therefore, the
corresponding communication network design of this graph also follows the N − 1
rule. One can verify that disabling any one of the edges of graphs in Figure 2.3a,b
will not isolate any of the nodes from the remaining nodes. In general, the
communication network satisfies the N − 1 rule if and only if the complete loop
matrix (CLM) of the corresponding graph satisfies the following condition.

max
i=1…nl

ne∑
j=1

Cij = n (2.1)

where nl and ne are the total number of loops and edges of the graph, respectively,
and n is the total number of nodes. Cij is the element of the CLM C and it is defined
as:

Cij =
{

1 if loop i contains edge j
0 otherwise

(2.2)
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The CLM of the graph given in Figure 2.5 is shown as follows.

e1 e2 e3 e4 e5 e6 e7
|| 7∑

j=1
Cij

C1 =
l1
l2
l3

⎛⎜⎜⎝
1 1 0 1 1 0 0
0 0 1 1 0 1 1
1 1 1 0 1 1 1

⎞⎟⎟⎠
|||||||
⎛⎜⎜⎝
4
4
6

⎞⎟⎟⎠
(2.3)

Because max
i=1…3

∑7
j=1 Cij = 6, which is the number of nodes in the network, the

communication network satisfies the N − 1 rule. If e3 is disabled, the CLM of the
graph is:

e1 e2 e3 e4 e5 e6 e7
|| 7∑

j=1
Cij

C2 = l3
(
1 1 1 1 1 1 1

) ||| (6)
(2.4)

Because
∑7

j=1,j∈l3
Cj = 6, the network still satisfies the N − 1 rule. However, if e5 is

disabled, the CLM of the graph becomes:

e1 e2 e3 e4 e5 e6 e7
|| 7∑

j=1
Cij

C3 = l2
(
0 0 1 1 0 1 1

) ||| (4)
(2.5)

Because
∑7

j=1,j∈l2
Cj = 4 < 6, the network no longer satisfies the N − 1 rule. Yet, it

is easy to verify that the graph is still connected.
If we design the communication network for distributed applications by follow-

ing the N − 1 rule, the malfunction of any one of the communication channels will
not cause the malfunction of the others, which can improve the robustness of the
overall system. The essence of the N − 1 rule is to design a loop that encircles all
nodes, which does not necessarily make the graph much denser. As can be seen
in Figure 2.4a, we merely add only one communication channel to acquire the
communication network satisfying the N − 1 rule. Yet, the density of the commu-
nication network does affect the performance of the distributed algorithm that is
implemented on it, and we can discuss this matter in the subsequential.

2.1.3 Convergence of Distributed Algorithms with Variant
Communication Network Typologies

As discussed before, the communication network of the distributed algorithm is
configured for information or knowledge spreading. Of course, a higher density of
the corresponding graph of the communication network indicates that the knowl-
edge can spread in a faster way. Thus, it is intuitive to the premise that the denser
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graph enables the distributed algorithms to converge faster. However, a graph with
higher density usually bounds to larger investment and communication cost, and
that is a trade-off which must be made during the design phase for the communi-
cation network.

Let us take a look at how the convergence of consensus algorithm is affected by
the density of the corresponding graph of the communication network. Discrete
form of the consensus algorithm can be written as:

x [k + 1] = Wx [k] (2.6)

Here, W is the weight matrix, which is defined as:

W = I − ΔtL (2.7)

where I is the identity matrix, and Δt is the sampling time of the discrete system.
L is known as the Graph Laplacian of the graph G [2], and its element is defined
as:

lij =
⎧⎪⎨⎪⎩
−1 j ∈ idxi
Ni j = i
0 else

(2.8)

where Ni is the degree of node i. According to the definition of L, W becomes
a Perron matrix, which has the following properties: (i) W is a doubly stochas-
tic matrix; (ii) All eigenvalues of W are in a unit circle if the sampling time
Δt < 1∕Δ, where Δ = max {lii}i = 1, 2 · · ·n. Based on the Perron–Frobenius
lemma given in [3]

lim
k→∞

Wk = 1
n

eeT = J (2.9)

According to Eqs. (2.6) and (2.9), the system will reach consensus as k approaches
infinity and is represented as

lim
k→∞

x[k] = lim
k→∞

Wkx[0] = eeT

n
x[0] (2.10)

As discussed in [4], the number of iterations needed for convergence of the con-
sensus algorithm is estimated as

K = −1

logE

(
1

𝜆2(W)

) (2.11)

where 𝜆2(W) is the second largest eigenvalue of W. As can be seen in Eq. (2.11),
the smaller 𝜆2(W) yields faster convergence of the consensus algorithm. Because
W is determined in Eq. (2.7), then

𝜆2(W) = 1 − Δt𝜆2(L) (2.12)

where Δt𝜆2 is the second smallest eigenvalue of L, which is also called Fiedler
eigenvalue of the graph. A well-known observation regarding the Fiedler
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eigenvalue of a graph is that for dense graphs, 𝜆2(L) is relatively large, whereas
for sparse graphs, 𝜆2(L) is relatively small [5] Accordingly, 𝜆2(L) is also defined as
the algebraic connectivity of graph [6]

Now, we can see that the convergence speed of the consensus algorithm depends
on the algebraic connectivity of the corresponding graph of the communication
network. Here, we provide an example with 16 agents to demonstrate how the
consensus algorithm responds to the algebraic connectivity. We initialize the X
with X0 = [1, 2, 3 .., 16]T , and set the W by using Eq. (2.7). Since the sampling time
should Δt < 1∕Δ, we set it as follows:

Δt = 1∕(Δ + 1) (2.13)

Six communication network graphs shown in Figure 2.6 are tested, and the test
results are provided in Figure 2.7. It can be observed that as the graph grows
denser, i.e. the algebraic connectivity grows larger, the number of iterations
needed for convergence decreases. Note that there is a sharp drop in the number
of iterations when we increase the number of edges to 32. This implies that the
performance of the distributed algorithm has increased significantly with a rea-
sonable increase in communication cost, which is the trade-off that we attempt to
achieve. In practice, we can always carry out off-line studies to find this trade-off
between achieving high performance and maintaining a low communication
cost [7]

(a) (b) (c)

(d) (e) (f)

Figure 2.6 Variable communication network configurations for 16-agent systems. (a)
Ne = 16, (b) Ne = 32, (c) Ne = 48, (d) Ne = 64, (e) Ne = 80, and (f) Ne = 96.
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2.2 Real-Time Digital Simulation

In this book, most of the introduced algorithms will be evaluated through
simulations. According to the concept of technology readiness level (TRL),
further steps should be technology development, technology demonstration,
system development, then system test, and field operation. In this chapter, the
MAS platform we developed for distributed applications is introduced, which is
suitable for MAS-based control technology development. By integrating the MAS
with the real-time digital simulator, a MAS-based real-time simulation platform
for testing distributed control solution is also introduced.

2.2.1 Develop MAS Platform Using JADE

We develop the MAS platform based on the platform known as JADE (Java Agent
Development), which is a software platform developed using JAVA that can pro-
vide basic middle-ware layer functionalities independent of the specific applica-
tion. JADE can provide programmers with ready-to-use and easy-to-customize
core functionalities.

Started by Telecom Italia in late 1998, JADE went open source in 2000 and was
distributed by Telecom Italia under the LGPL (Library Gnu Public License). It can
simplify the realization of distributed applications via the usage of the abstraction
called “agent.” Because the object-oriented language, JAVA, is used for the imple-
mentation of the JADE platform, it can provide simple and friendly application
programming interfaces (APIs).

The MAS developed using JADE has the following features [8]: (i) An agent is
autonomous and proactive: an agent makes its own decisions; each agent main-
tains its own thread of execution. This feature enables the easy plug-and-play
operation of the agent. (ii) The agents are loosely coupled: agents in a JADE-based
platform communicate with each other via an asynchronous communication
protocol. Temporal dependency between sender and receivers is avoided: a
receiver may be unavailable when the sender initiates sending a message. This
feature facilitates the handling of communication issues such as communication
delay, single-point failures, etc. (iii) The overall system consists of multiple agents
developed using JADE is Peer-to-Peer: each agent is identified by a globally
unique name, known as the agent identifier or AID. A specific agent can join
and leave a host platform anytime and can discover other agents via white-page
and yellow-page service. The main elements of a JADE platform are shown in
Figure 2.7. A JADE platform is composed of agent containers that are distributed
over networks. Agents, who live in containers, are the Java processes, providing
the JADE run-time and all the services needed for hosting and executing agents.
When the main container is launched, two special agents are automatically
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Figure 2.7 Test results of the consensus algorithm with variable communication
network graphs.

initiated and started by JADE: (i) The agent management system (AMS) is the
agent that supervises the entire platform. Every agent is required to register with
the AMS to receive a valid AID. (ii) The directory facilitator (DF) is the agent
that implements the yellow pages service, used by any agent wishing to register
its services or search for other available services. Multiple DFs can be started
concurrently to distribute the yellow pages service across several domains. Each
agent can provide services to other agents (no matter on the same platform or not)
with the help of DF. The agents can be created on different platforms, as shown in
Figure 2.8. A unique AID distinguishes each agent. The agent can be configured to
either send information to other agents or receive information from other agents,

Agents

Main container

AMS

DF

Agents

Main container

Agents

Container-2

Other agents

Other containers

Figure 2.8 Illustration of the JADE environment.
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which indicates that the virtual communication network among agents can be eas-
ily adjusted. Because of the outstanding features of the JADE, it is used to develop
MAS to evaluate the distributed solutions in this book. In the following, we
provide the test results with one of the types of distributed algorithms – consensus
algorithm to demonstrate the implementation of distributed solutions using MAS.

2.2.2 Test-Distributed Algorithms Using MAS

2.2.2.1 Three-Agent System on the Same Platform
We first deploy three agents on the same platform, which is built using book-size
PCs/NanoPCs (dual-core, 1.86 GHz). We choose this book-size PC because it is
configured with wireless communication functionality. Besides, the book-size
PC is relatively cheap and is more energy-saving compared with the traditional
PCs. Figure 2.9 shows the developed platform with logic agents being also
demonstrated.

Here, we test an example with consensus algorithm on this platform. Example:
x1 = 15, x2 = 20, and x3 = 35, and the communication network is designed the
same as in Figure 2.10, W is set according to Eq. (2.7) with Δt being set to 0.2,
and the weight matrix W is calculated as:

W =
⎡⎢⎢⎣
0.8 0.2 0
0.2 0.6 0.2
0 0.2 0.8

⎤⎥⎥⎦ (2.14)

Agents

Book-size PC

1 2 3

Figure 2.9 Platform with three-agent
system.

Agent 3

Agent 1

Agent 2

Figure 2.10 Communication topology
configuration of the three-agent system.
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Figure 2.11 Tests of consensus algorithm in JADE platform.

The test results of this example are shown in Figure 2.11. It can be seen that the
implemented consensus algorithm on this platform takes 30 ms for 36 iterations,
on an average, 0.84 ms for one iteration. Note that the time consumed for the
algorithm during the test is random to some extent and can vary depending on
the hardware used (different computers) and software implementation (coding
and compilers). However, considering all these variables, the test results here
still provide some insights into implementing the MAS-based distributed control
solutions.

2.2.2.2 Two-Agent System with Different Platforms
The two-agent system we used for the test is shown in Figure 2.12. Here, we deploy
these two logic agents on two different book-size computers. The communication
between these two computers is based on TCP/IP protocol through the internet
with a bandwidth of 100 Mb/s.

The update process of the consensus algorithm on a two-computer platform is
shown in Figure 2.13. The initial values of agent-1 and agent-2 are set to 10 and 30,
respectively. As can be seen in Figure 2.13, for 15 iterations, the implemented algo-
rithm takes about 40 ms, i.e., about 2.7 ms per iteration. Here, we should point out
that the test setup provided is just a special case. The performance of the algorithm

Figure 2.12 Two-agent system
configuration.
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Book-size Computer 1

1
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Figure 2.13 Convergence information of the two-agent system in JADE platform.

may vary if implemented with different computers, communication networks, or
protocols or with different communication traffics.

2.2.3 MAS-Based Real-Time Simulation Platform

To advance the system development of the distributed control solution to a
further step, we developed a MAS-based real-time simulation platform. This
platform consists of a host computer, a real-time digital simulator, and an MAS
implemented with multiple NanoPCs, as shown in Figure 2.14. The host computer

Java agent-1

Java agent-2

Java agent-3

C-code

Real-time simulator

RT-Lab

Simulink Model

Java agent-4

Host computer

Figure 2.14 Real-time simulation platform with MAS.
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Figure 2.15 Agent interactions among four-agent system.

is used for compiling the developed power system model into C-code and then
uploads the code to the real-time digital simulator for simulation. The host
computer is also used to monitor the states of the running model. The real-time
simulator is also called a target computer, which is manufactured by OPAL-RToR.
The MAS is implemented using NanoPcs. As can be seen in Figure 2.14,
agents interact with each other on the JADE platform, and the communica-
tion between the simulator and the agent is realized by our developed Java-C
interface.

Because the developed models to describe actual power systems are running
in real time in the simulator, this platform can be used to evaluate the control
procedures such as data sampling, communication, the act of control signal,
etc. The interactions among agents during this real-time simulation process are
demonstrated in Figure 2.15. It shows that the agent directly communicates with
the target to access operation data of the power system models that are running
in the simulator, which acts similarly to the data sampling in real power systems.
The algorithms for control and optimization are integrated into the interactions
process of agents. In this way, each agent is equivalent to the distributed controller
of actual power systems.

In this book, we will constantly use this MAS-based real-time simulation
platform to test our distributed control solutions, including the algorithm conver-
gences, communication performances, and robustness against abnormalities, etc.
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2 Doob, M., Cvetković, D.M., and Sachs, H. (1998). Spectra of Graphs: Theory and
Applications, 3rd Revised and Enlarged Edition. New York: Wiley.

3 Horn, R.A., Horn, R.A., and Johnson, C.R. (1990). Matrix Analysis. Cambridge
University Press.

4 Xu, Y. and Liu, W. (2011). Novel multiagent based load restoration algorithm for
microgrids. IEEE Transactions on Smart Grid 2 (1): 152–161.

5 Rota, G. C. (1976). Algebraic Graph Theory, Graduate Texts in Mathematics, vol.
20, 415. Springer.

6 Fiedler, M. (1973). Algebraic connectivity of graphs. Czechoslovak Mathematical
Journal 23: 298–305.

7 Olfati-Saber, R. and Murray, R.M. (2004). Consensus problems in networks of
agents with switching topology and time-delays. IEEE Transactions on Auto-
matic Control 49 (9): 1520–1533.

8 Bellifemine, F.L., Caire, G., and Greenwood, D. (2007). Developing Multi-Agent
Systems with JADE, vol. 7. Wiley.



�

� �

�

23

3

Distributed Active Power Control

Proper control of active power of the power system is crucial for frequency
stability. Although the frequency of the power system is generally considered to
be a global indicator of system performance, the active power of the entities of the
system all will impact this indicator. Because of the integration of the renewable
technologies such as distributed wind and solar generation, as well the variant
demand response programs, the number of active components in the power
system increases. Therefore, the control of active power of the power system
calls for new solutions for enhancement of reliability and improved cost-benefit
effectiveness. The distributed solution has many merits that nicely fit to these
demands, and it is investigated in this chapter. We will discuss three distributed
control methods/solutions for active power control, where the applications of
these solutions differ depending on the control targets, control objectives, and
available resources. The first control solution introduced is subgradient-based
active power sharing, which aims at maintaining the supply-demand balance in
a microgrid. The second control method is used for the economic dispatch (ED)
of the smart grids, which is not limited to the microgrid. The last control solution
aims at integrating the ED with the frequency control. From the perspective of
control implementation, all of these three methods can be implemented in a
distributed manner, which not only improve the reliability of the control system
but can also improve the frequency response performance of the power systems.

3.1 Subgradient-Based Active Power Sharing

For an autonomous microgrid with high penetration of renewable energy, the
supply-demand balance of active power bears vital significance. However, for the
maximum peak power tracking (MPPT) algorithm, which is rather popular, it may
cause a supply-demand imbalance when the power generation exceeds the load
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demand. At present, droop control is a widely used decentralized approach for
distributed generators (DGs) in active and reactive power sharing. Nevertheless,
the traditional droop control approaches suffer from some drawbacks, such
as slow dynamic response, oscillation, and steady-state deviations. To address
these issues, a fully distributed subgradient-based approach for an autonomous
microgrid is proposed in this chapter, which can realize coordinate operations
of multiple distributed renewable generators (RGs). By adjusting the utilization
level of distributed renewable energy generators, the dynamic performance of
the microgrid is considerably improved while maintaining the supply-demand
balance. The effectiveness of the proposed fully distributed subgradient-based
coordination approach is validated by simulation studies using a 6-bus microgrid.

3.1.1 Introduction

A microgrid has two operation modes, islanded and grid-connected, which is ser-
viced by a distribution system and composed of DGs, energy storage systems, and
different kinds of loads. A microgrid can be used for many different applications
such as the housing estates, commercial buildings, industrial factory, and munici-
pal regions [1]. The advantages of microgrid technology include improving system
flexibility and reliability, enhancing energy efficiency, and promoting the utiliza-
tion of renewable energy sources [2].

Wind power and photovoltaic (PV) is developing rapidly in recent years because
of their clean, pollution-free, and abundant nature. However, the intermittency
and volatility of renewable energy sources bring significant challenges to the
control and operation of the microgrid. For distributed renewable energy sources,
the power reference control under different load conditions is an important issue.
The most popular method to enhance the energy usage efficiency of renewable
energy sources is the MPPT-based algorithm [3, 4]. Nevertheless, for this method,
it may cause a supply-demand imbalance when the power generation exceeds the
load demand. The energy storage device is required to overcome this problem,
but the capacity may be insufficient, and the utilization of renewable energy
sources is also limited by the charging and discharging rate of energy storage
devices [5].

To maintain the supply-demand balance and regulate the system frequency, the
control issues for autonomous microgrid are very similar to the large-scale power
system. Thus, methods used in the traditional power system can be directly intro-
duced to the autonomous small-scale microgrids. Reference [6] proposed an inte-
grated control system of wind farms, which is based on two-level control schemes.
In this scheme, the active and reactive power set points for DGs are decided by the
supervisory control level, and the set points are ensured by the machine control
level. An optimal control strategy for wind power is presented in [7]. According to
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the requirement of the system’s central operator, the active and reactive power of
all doubly fed induction generators (DFIGs) is regulated automatically. In [8], the
author proposed a control method for wind farms, which can provide a sufficient
generation reserve according to the requirements of supervisors. A coordinated
control scheme for PV generation using fuzzy reasoning to generate the central
leveling generation commands is proposed in [9], which can reduce the frequency
deviation effectively.

All the methods discussed above are centralized, which requires a powerful cen-
tral controller to process a complex problem and collect complicated system infor-
mation [10]. Therefore, this kind of centralized approach is costly to implement
and require high data reliability. Besides, because of the intermittency and volatil-
ity of renewable energy sources, these centralized approaches may fail to respond
in a timely manner when the operating conditions of the system change rapidly.

Focusing on the self-contained, medium voltage, and small-scale microgrid,
which consists of multiple renewable energy sources, the purpose of this chapter
is to maintain the supply-demand balance of active and reactive power and
regulate the voltage magnitude and system frequency to the desired values.
The control approach for the DGs in a microgrid should be of high efficiency
and low cost because the DGs are always diverse and distributed. Because
of the fast, reliable, robust, and scalable characteristics of distributed control
approaches, they have a promising application value to be implemented in
microgrids [10].

Multi-agent systems (MASs) are also very popular in recent research, as in
[11–14]. MAS has been widely used in various problems of microgrid, such as the
active and reactive power management and dispatch [12, 13], distributed control,
and optimization [14]. However, the existing MAS are generally rule-based and
lack rigorous stability analysis. Recent literature focus on the development of
consensus and cooperative control to improve the stability and applicability of
MAS-based approaches, which have been implemented in practical systems, as
in [15–17]. In this chapter, a MAS-based fully distributed control approach for
renewable generators’ controller consisting of two control levels is proposed.
In the upper control level, by adjusting local utilization levels of renewable
energy according to the local frequency and available renewable energy predic-
tion, a subgradient-based optimization algorithm is implemented to maintain
the supply-demand balance of microgrid. In the lower control level, after the
utilization level is updated, the reference value of renewable energy generators
can be determined and deployed. Besides, the DGs can be controlled in the
reactive power control mode or voltage regulation mode according to oper-
ating conditions. The major contributions of this chapter are summarized as
follows:
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(1) The coordination of multiple renewable energy sources within a microgrid
is modeled as a convex optimization problem and solved by a distributed
subgradient-based algorithm introduced in [18–20].

(2) According to the near-optimal and stable coefficients setting algorithm
mentioned in [15] and [16], the convergence of the proposed fully distributed
MAS-based algorithm is analyzed and guaranteed.

(3) Using the control law according to system frequency dynamics in [21],
only predicted available renewable energy generation, local frequency mea-
surement, and neighboring DGs’ utilization levels are required under the
presented distributed subgradient-based coordination approach.

3.1.2 Preliminaries - Conventional Droop Control Approach

Microgrids have two operating modes: islanded and grid-connected. In
grid-connected mode, a microgrid can exchange power with the main grid.
In this scenario, the main grid can be assumed as the slack bus to maintain
the supply-demand balance of the system, and all of the renewable energy
generators can be controlled using MPPT algorithms. However, when a microgrid
is operated in an islanded mode, all of the components within the microgrid
should be operated coordinately to maintain the supply-demand power balance
autonomously.

To control the DGs in a microgrid, droop control approaches are applied coor-
dinately to determine the active power sharing originating from the control of
the synchronous generator (SG) in large-scale power systems [22–26]. For read-
ers’ convenience, the principle of a conventional droop control approach is briefly
introduced in the following statement.

The active power outputs of each renewable energy generator should be adjusted
to maintain the system frequency according to the P–f droop property predefined
in [27] as follows:

Pi = P0
i + kf ,i( f ∗ − fi) (3.1)

where fi and f * are the local and desired operating frequencies, respectively. kf ,i
is the frequency droop coefficient of renewable energy generator i. P0

i is the initial
active power that corresponds to f ∗ of renewable generator i, Pi is the output active
power generation reference value of renewable energy generator i.

In the same way, according to the predefined Q–V droop property, the reactive
power of each renewable energy generator can be adjusted as follows:

Qi = Q0
i + kV ,i(V∗

i − Vi) (3.2)
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where V∗
i and Vi are the measured and rated voltage magnitudes, respectively, and

kV ,i is the voltage droop coefficient of renewable generator i. Q0
i is the initial reac-

tive power that corresponds to V∗
i of renewable generator i. Qi is the output reactive

power reference value of renewable generator i.
Droop control has an advantage that it does not need to communicate with other

DGs in the microgrid. Nevertheless, for the conventional droop controller, it has
several shortcomings. For instance, there exists voltage and frequency deviations
and inaccurate active power sharing, as noticed in [24, 27–33]. kf ,i and kV ,i are
the predefined parameters, which cannot be adjusted online. For the microgrid
with small inertia and lack of grid support, because the maximum generations of
renewable generators change constantly, the updated P0

i may not be achievable,
causing inaccurate power sharing and reducing system stability. In summary, for
the droop control approach, on the positive side, it can eliminate the mismatch
of power supply and demand. On the negative side, it may cause frequency and
voltage deviations.

For microgrids, the system’s static stability and dynamic performance are very
critical because the operating conditions are always changing. Therefore, a fast,
reliable, robust, and scalable controller for a microgrid with high penetration of
intermittent and volatile renewable energy is desperately required.

3.1.3 Proposed Subgradient-Based Control Approach

In this section, a fully distributed algorithm used to achieve the system power
balance is proposed.

3.1.3.1 Introduction of Utilization Level-Based Coordination
PD is the overall active power demand of a microgrid, which can be expressed as
follows:

PD =
n∑

i=1
PL,i + PLoss (3.3)

where PD is the overall active power demand of a microgrid, PL,i is the load demand
of bus i, PLoss is the active power loss and n is the bus number of the microgrid.

In the same way, the overall available renewable energy generation can be
expressed as follows:

Pmax
G =

m∑
i=1

Pmax
G,i (3.4)

where Pmax
G is the maximum overall available renewable energy generation, Pmax

G,i is
the maximum available generation of renewable generator i, and m is the number
of renewable energy generators.
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For an autonomous microgrid, if PD is larger than Pmax
G , all of the renewable

generators will be operated in MPPT mode. Otherwise, if PD is less than Pmax
G ,

the MPPT method is invalid. An effective deloading strategy of sharing the load
demand among the renewable generators is to control the utilization levels of
renewable generators to a common value as follows:

u∗ = min
{

PD

Pmax
G

, 1
}

(3.5)

where u∗ is the common utilization level for all renewable generators.
Pref

G,i is the reference active power generation of renewable generator i calculated
as follows:

Pref
G,i = u∗ ⋅ Pmax

G,i (3.6)

Based on Eq. (3.5) and Eq. (3.6), it can be easily validated that the system power
balance can be maintained when the generation is larger than load demand, as:

m∑
i=1

Pref
G,i =

m∑
i=1

u∗ ⋅ Pmax
G,i =

PD

Pmax
G

m∑
i=1

Pmax
G,i = PD (3.7)

3.1.3.2 Fully Distributed Subgradient-Based Generation Coordination
Algorithm
For the autonomous microgrid, the supply-demand balance should be maintained
to guarantee the static stability. Thus, for multiple renewable generator coordina-
tion, the objective function is formulated as follows:

min H(ui[k]) =
1
2

( m∑
i=1

ui[k]Pmax
G,i − PD

)2

(3.8)

where ui[k] is the utilization level of renewable generator i at step k.
The problem formulated in Eq. (3.8), is a convex optimization problem and can

be solved by traditional distributed subgradient algorithms. ui[k] can be obtained
using the following equation according to [18, 24, 25].

ui[k + 1] =
m∑

j=1
aijuj[k] − di

𝜕H(ui[k])
𝜕ui[k]

(3.9)

where di is the step size during the iteration and aij is the communication coeffi-
cient between renewable generator i and j.

In Eq. (3.9), 𝜕H(ui[k])
𝜕ui[k]

can be formulated as follows:

𝜕H(ui[k])
𝜕ui[k]

= Pmax
G,i

( m∑
i=1

ui[k]Pmax
G,i − PD

)
(3.10)
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If every renewable generator is regarded as an independent agent, the
communication links in a microgrid form an undirected graph, i.e. aij = aji.
According to our previous research, aij can influence the converging speeds of
the distributed algorithm [15]. The mean metropolis algorithm presented in
Eq. (3.11) is a fully distributed algorithm and has the advantages of being adap-
tive to changes in communication network topology and providing satisfactory
converging speed. Thus, the mean metropolis algorithm is adopted in this chapter.

aij =
⎧⎪⎨⎪⎩

2∕(ni + nj + 1) j ∈ Ni
1 −

∑
j∈Ni

2∕(ni + nj + 1) i = j
0 otherwise

(3.11)

where Ni is the set of the agents, which have communication links with agent i.
ni and nj are the agents’ number that are connected to agent i and j, respectively.

According to Eqs. (3.10), (3.9) can be rewritten as follows:

ui[k + 1] =
m∑

j=1
aijuj[k] − Pmax

G,i di

( m∑
i=1

ui[k]Pmax
G,i − PD

)
(3.12)

Defining a communication coefficient matrix A of m dimensional, which is com-
posed of aij. Then, the Eq. (3.14) can be represented by the following matrix form:

U[k + 1] = A ⋅ U[k] −

( m∑
i=1

ui[k]Pmax
G,i − PD

)
⋅ D (3.13)

where U[k]=[u1[k], · · · ,ui[k], · · · ,um[k]]T , D=[Pmax
G,1 d1, · · · ,Pmax

G,i di, · · · ,Pmax
G,m dm]T

Using the mean metropolis algorithm, the communication coefficient matrix A
has the following properties, which is a doubly stochastic matrix.

(1) The eigenvalues of matrix A are less than or equal to 1.
(2) The following relationship is satisfied: A ∗ v = v, vT ∗ A = vT and vT ∗ v = 1,

where v = 1√
m

1, 1 = [1, ..., 1]T .
(3) Based on Perron–Frobenius theorem [34], the communication coefficient

matrix A satisfies the following relationship: lim
k→∞

Ak = v ∗ vT = 1
m

1 ⋅ 1T .

According to [19], a fully distributed subgradient algorithm can converge when
satisfies the following two conditions: (i) The communication coefficient matrix
A should satisfy: lim

k→∞
Ak = 1

m
1 ⋅ 1T . (ii) The iteration step sizes di should be suffi-

ciently small.
According to the above analysis, condition (i) is satisfied automatically. di should

be adjusted small enough for algorithm implementation to guarantee the conver-
gence of the proposed algorithm.
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For Eq. (3.13), the equilibrium point can be calculated by summing up Eq. (3.12).
Let ui[k + 1] = ui[k] = u∗

i , i ∈ [1, ...,m], then, the Eq. (3.12) can be represented by
the following matrix form:

m∑
i=1

u∗
i =

m∑
i=1

m∑
j=1

(aiju
∗
j ) −

( m∑
i=1

u∗
i Pmax

G,i − PD

) m∑
i=1

(Pmax
G,i di) (3.14)

Since matrix A is symmetrical and the summation of each column equals to 1.
For Eq. (3.14), the first term of right-hand side can be obtained as follows:

m∑
i=1

m∑
j=1

(aiju
∗
j ) =

m∑
i=1

m∑
j=1

(ajiu
∗
i ) =

m∑
i=1

(u∗
i

m∑
j=1

aji) =
m∑

i=1
u∗

i (3.15)

Because of
∑m

i=1Pmax
G,i di ≠ 0, therefore:

m∑
i=1

u∗
i Pmax

G,i − PD = 0 (3.16)

Since U[k + 1] = U[k] = U∗, according to Eqs. (3.16), (3.13) can be rewritten as
follows:

U∗ = AU∗ (3.17)

where U∗ = [u∗
1, ...,u∗

m]T
.

The solution of Eq. (3.17) has the following properties based on [35]:

U∗ = u∗ ⋅ 𝟏 (3.18)

Substituting Eq. (3.18) into Eq. (3.16), when the algorithm is converged to a
steady state, the utilization level u∗ is obtained as follows:

u∗ = PD

/ m∑
i=1

Pmax
G,i =

PD

Pmax
G

(3.19)

Thus, according to Eqs. (3.16) and (3.19), the system power supply-demand
balance can be guaranteed in a microgrid.

However, it is rather difficult to measure the overall load and estimate the
system power loss accurately. Because the system frequency can reflect the
supply-demand imbalance, it is convenient to use the system frequency deviation
to address these difficulties.

According to [21], the dynamic frequency response can be represented by the
following equation:

df
dt

=
f0

2𝜔kin0

( m∑
i=1

uiP
max
G,i − PD

)
(3.20)

where f0 is the reference system frequency and 𝜔kin0 is the rated kinetic energy of
the generator.
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Since df
dt

≈ f [k] − f [k − 1]
Δt

= Δf [k]
Δt

, Eq. (3.20) can be discretized as follows:

Δf [k] =
f0Δt

2𝜔kin0

( m∑
i=1

ui[k]Pmax
G,i − PD

)
(3.21)

Thus:
m∑

i=1
ui[k]Pmax

G,i − PD =
2𝜔kin0

f0Δt
Δf [k] (3.22)

Substitute Eq. (3.22) into Eq. (3.14), the updating law of utilization level ui can
be proposed as follows:

ui[k + 1] =
m∑

j=1
aijuj[k] − 𝛼iΔf [k] (3.23)

where 𝛼i =
2Pmax

G,i 𝜔kin0di

f0Δt
.

According to [21], 𝜔kin0 relies on the system capacity. Notice that because the
influence of𝜔kin0 and di is absorbed by 𝛼i,𝜔kin0 does not need to be estimated accu-
rately. Thus, only the value 2𝜔kin0di

f0Δt
should be confirmed and not every parameter

should be identified.
When all of the renewable generators are working at the rated condition, Pmax

G,i is
a constant and 2𝜔kin0di

f0Δt
can be obtained using the following trials. With the increas-

ing value of 𝛼i, the convergence speed will be increased, but it may cause system
instability and dynamic response oscillations. Firstly, 𝛼i is assigned by a small
value of 10−1 and increased by a small step size of 0.02 until the system dynamic
response diverges. Then, when the system dynamic response occurs continuous
oscillation, which is also called stability margin, 1/2 of the largest 𝛼i is selected
and the value of 2𝜔kin0di

f0Δt
can be obtained by 𝛼i

Pmax
G,i

.

3.1.3.3 Application of the Proposed Algorithm
The topology of the proposed control approach is presented in Figure 3.1, consist-
ing of renewable generators, synchronous generator, and loads. The number of
renewable generator is m and the number of load is n.

For every renewable generator agent, it should predict its maximum available
power generation, measure the frequency, and exchange its local information with
neighboring renewable generator agents. Notice that for a MAS, the information
communication network can be independent to the system topology. This means
that a complex system may correspond to a simple communication network based
on the agent location, operation cost, information communication convenience,
and so on. For each synchronous generator agent, a synchronous generator is
assigned. The synchronous generator agent is not involved in the utilization-level
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Figure 3.1 Proposed control approach topology in a microgrid.

iteration process. The synchronous generator agent will decide the control mode
of the synchronous generator corresponding to it. More details can be found in
Synchronous generator control approach.

For a specific renewable generator agent, the operation diagram is presented in
Figure 3.2. A two-level control approach is applied to each renewable generator
agent. In the upper cooperative-level control (CLC), the desired utilization level
and reference active power generation for each renewable generator agent are
obtained. For the upper CLC, it has the following modules: (i) system frequency
measurement module, (ii) maximum available renewable power generation
forecasting module, (iii) information communication module that can exchange
the utilization-level information with the neighboring renewable generator
agents, (iv) utilization-level updating module. According to the system frequency
deviation and utilization-level information of the last iteration, the utilization
level can be updated using Eq. (3.23) and the active power generation reference
can be obtained. In the lower machine-level control (MLC), active power tracking
is realized while considering the reactive power and terminal voltage regulation
requirements.

Using the proposed fully distributed algorithm, the global overall load condi-
tion and active power transmission loss information are not required. Because of
the fact that the power supply-demand imbalance will cause frequency deviation,
the utilization level of each renewable generator can be regulated based on the
measured system frequency deviation, as in Eq. (3.23). Thus, the amount of mea-
surements is considerably reduced. Besides, the complexity and communication
cost are also reduced.

According to the wind speed, the maximum available power generation of
DFIGs can be obtained [36]. In addition, based on the weather conditions such
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Figure 3.2 Operation diagram of the renewable generator agent.

as the solar radiation condition, the maximum available power generation of
PV generators can be obtained [37]. Besides, many kinds of MPPT forecasting
algorithms for wind power generators and PV generators, such as fuzzy logic
control and neural network, have been widely used, as in [3, 38].

However, there always exists a forecasting error for the MPPT forecasting algo-
rithm, which causes the forecasted maximum available power unachievable [39].
Thus, to make the forecasted maximum available power achievable, the renewable
generators can be controlled conservatively to generate power, which is less than
the MPPT forecasting. Thus, rather than controlling renewable generators in tradi-
tional MPPT mode, the authors decide to control the utilization level of renewable
generators in Eq. (3.5) less than 1.

3.1.4 Control of Multiple Distributed Generators

3.1.4.1 DFIG Control Approach
In the lower MLC, all DFIGs need to realize the active power tracking according
to the reference profile from the upper level. Besides, the reactive power terminal
voltage regulation and DC-link voltage regulation requirements should be consid-
ered. Thus, the lower MLC of each DFIG is composed of the mechanical control of
pitch angle and electrical control of two converters, as shown in Figure 3.3. A DFIG
model is applied in this chapter according to [40]. By adjusting the rotor speed or
tuning pitch angle, the active power generation of each DFIG can be regulated
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Figure 3.3 Diagram of lower machine-level control for DFIG.

[38]. This method has the following two advantages: (i) the rotor speed of DFIG is
controlled by the converter control using power electronics, which offers a faster
response speed than the mechanical pitch angle control and (ii) this kind of elec-
trical control method can reduce the wear and tear and increase the service life of
the equipment. Nevertheless, when the rotor speed reaches the upper limit, pitch
angle tuning needs to be activated. The detailed implementation of this method
can refer to [17].

3.1.4.2 Converter Control Approach
In this chapter, the DFIG is controlled by AC–DC–AC converters. According to
the decoupled control strategy given in [41], the active and reactive power of DFIG
can be controlled by the rotor-side converter. As presented in Figure 3.4, the active
power can be adjusted by controlling d-axis rotor current idr and the reactive power
can be adjusted by controlling q-axis rotor current iqr . For a specific DFIG, the
deviation between the reference power output Pref

G,i and actual active power output
PG,i is managed by a PI controller to generate a reference value of rotor current
i∗dr . Besides, using another PI controller, the difference between the actual rotor
current idr and reference rotor current i∗dr is used to regulate the voltage amplitude.

For reactive power control, there are two operation modes. One is the voltage
regulation mode and the another is the reactive power regulation mode. For
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Figure 3.4 Block diagram of the decoupled control strategy for rotor-side converter of
a DFIG.

reactive power regulation mode, the deviation between the reactive command
Qcmd and the power output Q

𝑤
is used to generate reference rotor current i∗qr

using a PI controller. For voltage regulation mode, iqr is used to reduce the voltage
fluctuation, as introduced in [64].

In this chapter, the grid-side converter (GSC) is used to maintain the stability of
the DC-link voltage. See more details in [23, 43].

3.1.4.3 Pitch Angle Control Approach
As presented in Figure 3.5, the pitch angle control approach is composed of a pitch
angle actuator and a PI controller. Set the threshold angular speed to 1.3 p.u and
𝛽min to 0. The maximum changing rate of pitch angle d𝛽

dt
has certain limits.
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3.1.4.4 PV Generation Control Approach
The PV power generation model presented in [44] is applied in this chapter.
The solar array current and voltage are represented by I and V , respectively. The
local bus voltage and current are represented by Vabc and Iabc, respectively. In
this chapter, the unit power factor mode is adopted for PV control. During the
application process, the maximum available power generation Pmax

G,i of PV can be
estimated off-line according to a look-up table [45]:

Pmax
G,i = PSTC

GING

GSTC
[1 + kp𝑣(Tc − Tr)] (3.24)

where PSTC is the module maximum power generation under standard test con-
ditions. GING and GSTC are the actual incident irradiance and standard incident
irradiance, respectively. Tc and Tr are the actual cell temperature and reference
temperature, respectively. kp𝑣 is the temperature coefficient.

To estimate the maximum available power generation Pmax
G,i , every PV generator

agent is allocated with radiation and temperature sensors. The reference PV
generation value is calculated according to utilization level ui and Pmax

G,i using
Eq. 3.19 After that, a PI controller is implemented to control the DC–AC converter
to output desired power generation, as presented in Figure 3.6.

3.1.4.5 Synchronous Generator Control Approach
The synchronous generator in a microgrid has the following functions. When the
renewable generation exceeds the load, the synchronous generator does not need
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Figure 3.6 Diagram of the control approach for PV system.
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Figure 3.7 Control diagram of synchronous generator.

to generate active power and only need voltage regulation. When the renewable
generation is less than the overall system load, the synchronous generator needs to
compensate for the active power vacancy apart from the voltage regulation. Notice
that the synchronous generator does not participate in utilization-level control. To
identify the control mode of a synchronous generator, it can regulate the instan-
taneous utilization level of a neighboring renewable generator using the control
mode selector presented in Figure 3.7.

When the system frequency deviation is less than 0 and the utilization level is
equal to 1, the synchronous generator is operated to generate active power to com-
pensate for the power vacancy. Otherwise, the synchronous generator only needs
to provide reactive power control to regulate the voltage output to the desired
value.

Moreover, the ramp rate of synchronous generator can be modeled by a rate
limiter (represented by dPm

dt
) and the governor system is modeled by a PI controller,

as shown in [46]. The excitation system adopts DC exciter as described in [47].

3.1.5 Simulation Analyses

A 6-bus microgrid model is formulated in the MATLAB/SIMULINK platform to
test the proposed fully distributed cooperative control approach. The simulation
system is composed of three DFIGs, two PVs, one SG, and six loads, as given in
Figure 3.8. According to the control mode presented in Synchronous generator
control approach, DFIG 1 is controlled in reactive power regulation mode and
DFIG 4 and 5 are controlled in voltage regulation mode. PV 2 and 3 are controlled
in unit power factor mode. The ramp constraint of the synchronous generator is
set to 400 kW/s. Besides, the topology of supporting the communication network
for the test system is presented in Figure 3.9.

Taking technical feasibility and system performance into account, the time step
size for utilization-level update is set to 0.1 seconds. Then, the proposed control
approach is implemented in two cases of different operating conditions. In case 1,
load and maximum available renewable generation are set to constant values.
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Figure 3.8 A 6-bus microgrid test system.
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RG agent 3

RG agent 4
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Figure 3.9 Topology of supporting communication network for the 6-bus microgrid.

In case 2, load and maximum available renewable generation are variable,
corresponding to realistic conditions.

3.1.5.1 Case 1 – Constant Maximum Available Renewable Generation
and Load
In case 1, the load demands are set to be a constant value and the renewable gen-
erations are set as follows. The wind speed of DFIGs 1, 4, and 5 are set to 11, 14,
and 14 m/s, respectively. The solar radiation of PV 2 and PV 3 are set to 900 and
1000 w/m2, respectively. The utilization-level updating profile of the five renew-
able generators is shown in Figure 3.10. The islanding event for microgrid occurs at
the 60 seconds. To test the performance of the proposed fully distributed control
algorithm before islanding, all generators are operated under MPPT mode. Syn-
chronous generator generates 2 MW active power to tackle disturbances. At the
moment of the islanding event, the maximum available renewable energy gen-
eration exceeds the system’s overall load demand, which causes the system fre-
quency to increase at this instant, as presented in Figure 3.12. The utilization level
is reduced using the proposed control approach to maintain the system power
supply-demand balance.

The dynamic performances of five renewable generators are shown in
Figure 3.11. Under the proposed control approach, after the islanding event, the
renewable generation of all the DGs converges to a value that is less than the
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Figure 3.10 Utilization-level updating profile of the five renewable generators (Case 1).
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Figure 3.11 Dynamic performance of five renewable generators. (a) DFIG-1 active power
output, (b) PV-2 active power output, (c) PV-3 active power output, (d) DFIG-4 active
power output, and (e) DFIG-5 active power output.
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maximum available power generation. At this time, the utilization levels of all
the renewable generators are the same with the ration of actual active power
output to the maximum available power generation. In this chapter, to illustrate
the superiority of the proposed approach, a traditional droop control approach
with automatic generation control (AGC) for secondary control is conducted for
comparison. The Droop-AGC approach adopted in this section is applied hier-
archically. Because of that, all of the maximum available renewable generations
are constant in this case, P0

i and kf ,i need to be identified off-line. All of the
DFIGs and PVs are controlled in a deloaded mode to realize the adopted droop
control approach. For a specific PV generator, the deload approach is achieved by
operating the converters’ current output and PV arrays’ voltage output [44]. For a
specific DFIG, the deload approach is achieved by operating the pitch angle and
rotor speed [17]. For the AGC, the interval is set to five seconds since the time
triggered and the interval of AGC in a microgrid is relatively small [48–55].

The system’s dynamic performance, including frequency response and termi-
nal voltage response using the proposed control approach and the droop-AGC
approach, is presented in Figures 3.12 and 3.13 respectively. Comparing the two
approaches, using the proposed control approach, the frequency response is con-
verged within six seconds and the overshoot is less than 0.19 Hz, which offers a
better frequency dynamic performance than the traditional droop-AGC approach
(the converge time is nearly 30 seconds and overshoot is about 0.32 Hz). Similarly,
the terminal voltage dynamic performance under the proposed control approach
is better than that under the traditional droop-AGC approach. Therefore, the pro-
posed approach offers a better frequency and voltage dynamic performance than
the droop-AGC approach. The proposed control approach regulates the renewable
generators automatically according to the system condition rather than P–f and
Q–V properties, which can greatly improve the system dynamic performance and
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Figure 3.12 System frequency and voltage dynamic performance under the proposed
control approach. (a) Frequency response and (b) Terminal voltages of DGs.
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Figure 3.13 System frequency and voltage dynamic performance under the droop-AGC
approach. (a) Frequency response and (b) Terminal voltages of DGs.

reduce the steady-state deviations. Note that when power generations of all the
renewable generators are assumed constant, renewable generators act like tradi-
tional synchronous generators. Thus, the proposed control approach can also be
implemented to coordinate multiple synchronous generators.

The simulation study of case 1 is unpractical because maximum generations of
renewable generators are assumed to be constant values. At this time, P0

i and Q0
i

or kf ,i and kV ,i in Eqs. (3.1) and (3.2) are possible to be identified off-line. Never-
theless, renewable energy sources have properties of unreliability, intermittency,
and volatility. It is hard to regulate these parameters automatically. Thus, the tra-
ditional droop-AGC approach is not used for comparative analysis.

3.1.5.2 Case 2 – Variable Maximum Available Renewable Generation
and Load
As presented in Figure 3.14, the wind speed for DFIGs and solar radiation for
PVs change continuously. In this case study, the initial active power output of the
synchronous generator is set to 4 MW. The islanding event of microgrid happens
at 60 seconds. At 150 seconds, 2 MW load is shed, and at 200 seconds, the 2 MW
load is restored. According to the previous analysis, we can conclude that the uti-
lization levels of renewable generators are coordinated to the same value under
constant wind speed and solar radiation. When the wind speed and solar radiation
change continually, the utilization level also changes, as shown in Figure 3.15. At
60 seconds, the microgrid changes to the islanded mode and the utilization-level
drop immediately, which causes the active power production of the synchronous
generator to decrease gradually from 4 to 0 MW. At 150 seconds, 2 MW load is
shed and the utilization-level drops so that the system power supply-demand bal-
ance is maintained. In addition, at 200 seconds, 2 MW load is restored and the
utilization-level rises. When the maximum available renewable generation is less
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Figure 3.15 Utilization-level variation profiles of five renewable generators (case 2).

than the load demand (228 seconds< t < 300 seconds), the utilization level reaches
the upper limit of 1. At this time, all of the renewable generators are controlled in
MPPT mode and the synchronous generator is operated to produce active power
to compensate active power shortage, as shown in Figures 3.17 and 3.19.

The maximum renewable power generation, utilization level, and system
overall load are presented together in Figure 3.16. Notice that the values of serial
RLC loads will oscillate because the load value is related to the system frequency
and terminal voltage fluctuations. The dynamic response of system frequency
and terminal voltage are shown in Figure 3.20.

Taking DFIG 4 as an example, the actual active power output, maximum
available renewable generation forecast, and utilization-level variation profile
of DFIG 4 are shown in Figure 3.17. When the maximum available renewable
generation is larger than the system load demand (60 seconds < t < 228 seconds),
DFIG 4 is controlled in deloading mode. When the maximum available renewable
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Figure 3.17 Active power tracking of DFIG 4.

generation is less than the system load demand (228 seconds < t <300 seconds),
DFIG 4 is controlled in MPPT mode. The pitch angle and rotor speed response
profile of DFIG 4 are presented in Figure 3.18. When the rotor speed is less
than the threshold value (1.3 p.u.), the pitch angle control remains at the lower
bound (𝛽min ). Otherwise, the pitch angle control is activated and controlled
automatically. The active and reactive power output of the synchronous generator
is shown in Figure 3.19. When the islanding event occurs (t=60 seconds), the
active power generation of synchronous generator is gradually decreased to 0
and the decreasing speed depends on the ramping rate of the generator. The
reason is that the available renewable generation is larger than the system’s
overall load demand at this time. In addition, when the renewable generation is
insufficient (228 seconds < t < 300 seconds), the utilization level ui is set to 1 and
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Figure 3.19 Active and reactive power output of the synchronous generator.

the synchronous generator is operated to produce active power to maintain the
power supply-demand balance.

The frequency and terminal voltage responses are rather important to the end
user. According to the IEEE standard, the frequency deviation should be con-
trolled within ±0.05 Hz and the terminal voltage deviation should be maintained
within ±0.1 p.u. [52]. From Figure 3.20, it can be indicated that the maximum fre-
quency deviation is 0.4Hz and the maximum voltage deviation is controlled within
±0.05 p.u., which can meet the IEEE standards. In the simulation analysis, the
DFIG 1, PV 2, and PV 3 are controlled in reactive power production mode while
DFIG 4 and DFIG 5 are controlled in voltage regulation mode. The former mode
is used to generate desired reactive power, so the corresponding terminal voltages
have some fluctuations. Thus, the voltage response performances of the former
mode are inferior to that of the latter mode.
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Figure 3.20 System dynamic frequency and terminal voltage responses of case 2.
(a) System frequency response and (b) Terminal voltages of DGs.

3.1.6 Conclusion

In this chapter, the coordination control of multiple renewable generators in an
autonomous microgrid is investigated. The motivation of our research is listed as
follows: Firstly, the traditional MPPT control approach may cause system active
power supply-demand imbalance when the generation exceeds the load demand.
Secondly, the precise foresting for MPPT control approach is difficult to achieve.
Controlling the utilization levels of renewable generation to a common value can
effectively mitigate the impact of imprecise renewable generation forecasting.
The proposed fully distributed control approach can effectively maintain the
supply-demand balance of an islanding microgrid in different situations. In
summary, the proposed method has the following four merits:

(1) The proposed MAS-based fully distributed approach is simple and reduces
the information exchange (IE) time, which offers a lower communication cost
than a traditional centralized approach.
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(2) The proposed approach does not need to measure the loading conditions
directly.

(3) The system dynamic performance is improved using the proposed control
approach compared with the traditional droop-AGC approach.

(4) Using the proposed control approach, multiple DGs (including DFIG, PV, and
synchronous generator) are operated coordinately within a microgrid, which
can maintain the system power supply-demand balance effectively with satis-
factory frequency and terminal voltage responses.

3.2 Distributed Dynamic Programming-Based
Approach for Economic Dispatch in Smart Grids

In this section, the discrete ED problem is formulated as a knapsack problem. To
allocate the total power demand optimally among different generation units, an
effective distributed strategy based on a distributed dynamic programming (DDP)
algorithm is proposed. In this algorithm, both the generation limits and ramping
rate limits are considered. Based on a MAS framework, the proposed distributed
strategy only requires local communication and computation among neighbor-
ing agents. As a result, the communication and computation burden is able to be
shared with distributed agents. Besides, simpler implementation and faster con-
vergence speed are obtained by implementing the proposed strategy with asyn-
chronous communication. Finally, two cases, including a four-generator system
and the IEEE 162-bus system, are simulated for the effective demonstration of this
distributed strategy.

3.2.1 Introduction

The power grid is becoming increasingly efficient, flexible, reliable, and adaptive
because of the integration of distributed generation (DG), advanced communi-
cation technology, and smart sensors and meters [56]. With the upgrading tradi-
tional power network, some new challenges in the electric grid emerge. Using the
upcoming smart grid framework, some fundamental problems such as ED are able
to be solved with better solutions [57]. ED is to find the most economical way to
allocate the total power demand among multiple generation units and satisfy the
component as well as system-level constraints at the same time, which is, there-
fore, an optimization problem. There are several traditional optimization methods
to solve the ED problems including interior point method [51], gradient search
[58], lambda iteration [59], Newton–Raphson method [60], etc. These methods,
however, lead to global optimal solutions only when the formulated cost func-
tions are convex and are sensitive to initial conditions. To solve ED problems with
nonlinear and non-convex cost functions and deal with more stringent constraints,
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many intelligent techniques such as evolutionary programming [61], genetic algo-
rithm [62], particle swarm optimization [63, 64], ant colony optimization [65], etc.,
have been explored.

The optimization methods tackling ED problem, despite the effectiveness and
excellent performance, are mostly applied in a centralized way. However, some
challenges in the existing smart grid applications cannot be ignored in centralized
strategies when addressing the distributed features. Firstly, communication
between every single component and the central controller in the system is
required in the conventional centralized approaches. The potent central con-
troller is used to manage the mass of data, while components are used to collect
information globally [10]. As a result, these solutions are not preferable because
of the expensive implementation cost and susceptibility to a single-point failure.
Secondly, considering the possible subjection of the electric grid and the related
communication network to topology variations in the future, the effectiveness of
the centralized approaches will probably degrade.

To better address the features of smart grids and satisfying real-time applica-
tion requirements, flexible, reliable, high-speed, and cost-effective distributed
solutions are becoming increasingly needed [66]. Using distributed strategies,
the sparse communication network can be exploited effectively to facilitate
the cooperation of components that are located in the system disparately [57].
Recently, there are two main categories of distributed strategies to solve the
ED problem. One strategy uses only local information and is called a fully
decentralized strategy. This type of control strategy includes the cost-based droop
scheme [67] and the frequency deviation based method [68]. It is less expensive
because no communication is required when utilizing the available information
locally. However, not all resources available in the network are utilized because
of the lack of broader available information, which results in ineffectiveness [69].
The other is the distributed strategy, requiring local computation and exchanging
information among several neighbor units by a local communication network
only [15, 16, 54, 57, 66, 70–73]. Through distributed strategy, the communication
and computation burden is able to be shared. Communication and computation
are made through multiple distributed controllers, which enable them to work
simultaneously. As a result, scalable, cheap, reliable, and flexible as the advan-
tages, well-designed distributed strategies are regarded as promising options for
the optimal control and management of smart grids.

Usually, the ED problem uses the incremental cost (IC), a Lagrangian multi-
plier, to characterize after formulating into a constrained problem. There are,
however, a variety of consensus-based approaches used to calculate the optimal
IC. The proposed consensus-based distributed strategies emphasize global equal-
ity constraints as well as local inequality constraints effectively [66]. They are
able to accommodate to plug-and-play operation [66] and robust to the variations
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of communication topology [70]. However, the formulated objective function
needs to be convex and continuous so that consensus-based approaches obtain
the global optimality property. Moreover, in recent literature, most distributed
approaches assume that information is updated and exchanged synchronously
through all agents in the network. Therefore, a global clock is required for
synchronization in these approaches, including distributed ED [54, 57, 66, 71,
72], smart microgrid control monitoring [73], supply/demand management [74],
consensus-based PEV charging management [75], distributed decision making
[76], and the consensus-based load management algorithm [15, 16]. Synchronous
communication-based approaches, however, could have a disadvantage, that is,
the significantly slowed down convergence speed because of the extra waiting
time for the slowest one during each iteration.

To tackle the issues involved in consensus-based strategies, this chapter
proposes a novel DDP-based strategy in which synchronous communication
is not required. Taking the generation limits as well as ramp rate limits into
consideration, this strategy is aimed at solving the discrete ED problem. There are
several steps for implementation. Firstly, the discrete ED problem is reconstructed
into a traditional knapsack problem, which could further be worked out by the
DDP algorithm. Secondly, the proposed DDP-based strategy is used based on a
MAS framework. In MAS, every generation unit in the system is entrusted with
such an agent that communicates with its neighbor agents only and updates its
local generation setting under fixed simple rules. This distributed approach is
adaptive, robust, effective, and scalable. These advantages of effectiveness and
scalability are verified by the simulation results of a four-generator system and
the IEEE 162-bus system, respectively. There are several contributions of this
proposed distributed approach:

● The reduced expense for supporting communication network compared with
centralized strategies. Because local communication exclusively among neigh-
bor agents are utilized in the MAS-based distributed approach.

● By reconstructing the discrete ED problem into a knapsack problem, this prob-
lem can further be worked out by implementing the DDP algorithm.

● Simpler implementation and faster convergence speed because synchronous
communication is not required in the DDP algorithm.

● The verified scalability of the DDP algorithm using the modified IEEE 162-bus
system.

The rest of this section is organized as follows. Section 3.2.2 presents the graph
theory and dynamic programming (DP) briefly. Section 3.2.5 formulates the
discrete ED problem as a knapsack problem. Section 3.2.8 gives an introduction
to the proposed DDP algorithm. Section 3.2.11 shows simulation results with
a four-generator system and the IEEE 162-bus system. Finally, Section 3.2.13.2
draws the conclusion.
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3.2.2 Preliminary

This section presents the basic graph theory as well as DP.

3.2.3 Graph Theory

G = (V ,E) refers to a graph consisted of a set of vertices V = 1, 2,… ,n and a set of
edges E ⊆ V × V . The unordered and distinct pair (i, j) ∈ E refers to an undirected
edge from i to j. Ni = {j ∈ V |(i, j) ∈ E} refers to the neighbor set of vertex i. When
a sequence of vertices is connected by a sequence of edges, paths are produced.
When the edges contain a path from i to j, two vertices are deemed to be connected.
If and only if a path between any two vertices exists, the graph is connected. In this
chapter, a vertex represents an agent in the power grid, and an edge represents the
undirected communication link between two agents.

3.2.4 Dynamic Programming

Bertsekas et al. [77, 78] first introduced the abstract framework for DP. S is used
to denote the state space and C to denote control space. x and u refer to states and
controls and denote the elements in S and C, respectively. F is assumed to be the
set of all extended real-valued functions J ∶ S → [−∞,+∞] on S. The following
notation is defined for arbitrary two functions J1, J2 ∈ F{

J1 = J2, if J1(x) = J2(x),∀x ∈ S
J1 ≤ J2, if J1(x) ≤ J2(x),∀x ∈ S

(3.25)

H ∶ S × C × F → [−∞,+∞] is assumed to be a mapping that is monotonic and for
any x ∈ S the equation below is guaranteed:

H(x,u, J1) ≤ H(x,u, J2),∀J1, J2 ∈ F with J1 ≤ J2 (3.26)

The goal of DP is obtaining a function J∗ ∈ F such that

J∗(x) = inf
x∈S

H(x, J∗), ∀x ∈ S (3.27)

The mapping T ∶ F → F defined by Eq. (3.28) is considered.

T(J)(x) = inf
x∈S

H(x, J)T(J)(x) = inf
x∈S

H(x, J) (3.28)

The DP problem is the same as finding the fixed point of T in F, such that

J∗ = T(J∗) (3.29)

3.2.5 Problem Formulation

In this section, the discrete form of the ED problem is reconstructed into a knap-
sack problem. In addition, the generation limits, as well as the ramping rate limits
in the ED problem, are analyzed.



�

� �

�

50 3 Distributed Active Power Control

3.2.6 Economic Dispatch Problem

Considering the objective function, which is minimizing the total cost of power
generation and constraints, including several equality and inequality constraints,
the ED problem is formulated as follows.

min
N∑

i=1
Ci(pi[t]) (3.30)

s.t. pmin
i ≤ pi[t] ≤ pmax

i (3.31)

−pramp
i ≤ pi[t] − pi[t − 1] ≤ pramp

i (3.32)
N∑

i=1
pi[t] = PL[t] (3.33)

In the equations, t represents the time slot, which is non-negative integers. pi[t]
and PL[t] represent the power produced by generator i and total load demand
during time slot t, respectively. pmin

i ∕pmax
i , and pramp

i are used to represent the min-
imum/maximum power produced by generator i and ramp rate limits of generator
i, respectively. The following quadratic equation is often used to approximate the
generation cost [54, 66, 71, 72, 79]:

Ci(pi[t]) = aip2
i [t] + bipi[t] + ci (3.34)

where ai, bi, and ci are the generation cost coefficients of generator i. The IC(ri) of
generator i is defined as follows. It is the partial derivative of Ci with respect to pi.

ri[t] = 2aipi[t] + bi (3.35)

The equal IC incremental cost criterion mentioned in [80] is a famous solution to
Eqs. (3.30)–(3.34). It is shown below.

⎧⎪⎨⎪⎩
2aipi[t] + bi = r∗[t], pmin

i < pi[t] < pmax
i

2aipi[t] + bi < r∗[t], pi[t] = pmax
i

2aipi[t] + bi > r∗[t], pi[t] = pmin
i

(3.36)

where r∗[t] stands for the optimal equal IC.

3.2.7 Discrete Economic Dispatch Problem

At time slot t + 1, there are adjustments for the power generated by all the gen-
erators in order to satisfy total load demand variation. The adjustment amount of
power generated by generator i is assumed to be multiples of its minimum discrete
incremental generation 𝛿pi either for increase or decrease.

pi[t + 1] = pi[t] + ki[t]Δpi (3.37)
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−Kmax
i ≤ ki[t] ≤ Kmax

i (3.38)

Kmax
i = pramp

i

/
Δpi (3.39)

N∑
i=1

ki[t]Δpi = PL[t + 1] − PL[t] (3.40)

For ensuring tiny enough discrete minimum incremental generation so that the
adjustment is achievable, this chapter assumes fast realization of generation
adjustment and a slight difference in the total load demand between time slot t
and time slot t + 1. After adjustment, the cost of the generator i for generating
power pi[t] + ki[t]Δpi is given by

Ci(ki[t]Δpi, pi[t]) = ai(pi[t] + ki[t]Δpi)2 + bi(pi[t] + ki[t]Δpi) + ci (3.41)

When selling the generation at price R (constant value), the benefit function of the
generator i is calculated as

Ji(ki[t]Δpi, pi[t]) = R(pi[t] + ki[t]Δpi) − Ci(ki[t]Δpi, pi[t]) (3.42)

where R is the generation price per unit.
The objective, maximizing the total benefit of every generator combined, is given
by

max
N∑

i=1
R(pi[t] + ki[t]Δpi) − Ci(ki[t]Δpi, pi[t]) (3.43)

s.t. (3.31) - (3.33).
After finding the optimal combination of all generators’ possible generation

adjustments, problem (3.43) can be reconstructed into a knapsack problem.
According to the introduction beforehand, every generator is assigned with
one agent that calculates the corresponding generator’s benefits of all available
adjustment choice. The calculation equations are as follows.

ΔJi(ki[t]Δpi, pi[t]) = Ji(ki[t]Δpi, pi[t]) − Ji((ki[t] − 1)Δpi, pi[t])
= (R − 2aipi[t] − bi)Δpi − ai(2ki[t] − 1)Δp2

i
for − Kmax

i ≤ ki[t] ≤ Kmax
i

(3.44)

Every agent keeps an inconsistently updated benefit table of available choice by
calculating Eq. (3.44). The objective can then be obtained through utilizing the
DDP algorithm that is presented in Section 3.2.8.

3.2.8 Proposed Distributed Dynamic Programming Algorithm

The discrete ED problem has been reconstructed into a knapsack problem. Next,
the DDP algorithm can be used to solve it. This section starts from the DDP algo-
rithm and then introduces its implementation. In DDP algorithm, only local infor-
mation and IE with neighbor agents are utilized by every agent.
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3.2.9 Distributed Dynamic Programming Algorithm

The DDP algorithm contains calculations working in parallel with high possibil-
ity, which enables distributed computation implementation [81]. Divide the state
space S into N sets (S1,… , SN ) that are disjoint and corresponding to N indepen-
dent agents in the state spaces. Connecting by one edge, two agents that are also
able to exchange information with each other are called neighbors.

In the DDP algorithm, every neighbor j ∈ Ni of agent i has two buffers: Jij and
xij to keep the latest estimation of the optimal solutions J∗ as well as the related
states from agent j. Besides, there are another two buffers: Jii and xii assigned to
agent i. The agent i’s estimation of the solutions J∗ as well as the related states is
stored in these two buffers.

During every iteration, the latest estimation of the optimal solutions, as well
as related states, is firstly acquired through the communication between agent i
and the neighbor agents. Then, the estimate of the optimal solution, as well as the
associated state, is updated by agent i. The rules for updating are given below.

Step 1: Exchange information with neighbor agents{
Jij(k + 1) = Jjj(k),
xij(k + 1) = xjj(k),

j ∈ Ni (3.45)

Step 2: Process local information

⎧⎪⎨⎪⎩
Jii(k + 1) = {inf

xi∈Si
H(Jii(k), Jij(k + 1), xi)}

xii(k + 1) = arg{inf
xi∈Si

H(Jii(k), Jij(k + 1), xi)}
(3.46)

In the equations above, the estimations of optimal solution estimates are repre-
sented by Jii and Jij. The related states that are obtained from agent i and the
neighbor agent j are represented by xii and xij.

As analyzed in [81], Eq. (3.47) is used to express the values of J∗ and x∗ after
convergence.{

lim
k→∞

Jij(k) = lim
k→∞

Jii(k) = J∗

lim
k→∞

xij(k) = lim
k→∞

xii(k) = x∗
(3.47)

According to the discussion in [81], DDP algorithm has to satisfy the following
three conditions for convergence:

1) The number of communication time between agent i and the neighbor agents
and the local information updating time are bigger than or equal to 1 during n
continuous iterations, where n is a positive finite integer.

2) High-level connectivity of the communication network graph.



�

� �

�

3.2 Distributed Dynamic Programming-Based Approach for Economic Dispatch in Smart Grids 53

3) Two functions J and J exist. Equations (3.48) and Eq. (3.49) are assured ∀J ∈ F
(J ≤ J ≤ J).

J ≥ T(J),T(J) ≥ J (3.48)

⎧⎪⎨⎪⎩
lim
k→∞

Tk(J)(x) = J∗(x)
lim
k→∞

Tk(J)(x) = J∗(x)
(3.49)

Condition 1 implies that synchronous iterations are not required for all agents
in the DDP algorithm. Because it is not necessarily waiting for the slowest agent
for the response, implementation becomes simpler and converging speed becomes
higher. By contrast, distributed algorithms requiring synchronous iterations con-
verge slower. Condition 2 implies the existence of at least one path for any two
agents, indicating that no agent is totally isolated. Condition 3 assures that there
exists an optimal solution.

3.2.10 Algorithm Implementation

The control algorithm is carried out through a MAS framework. The MAS
framework is developed in the Java Agent Development (JADE) platform, which
consists of agent containers, distributing over communication networks. Accom-
modating agents, containers are the Java processes. They provide the JADE with a
running time as well as services required in order to execute and host agents. The
agent identifier (AID) is given to every agent for distinguishing purposes because
AID is unique. Progressed by the Foundation for Intelligent Physical Agents
(FIPAs), asynchronous communication protocols are the ways for bidirectional
communications among agents after configuration. Based on the conditions of
the applications, the virtual communication network between agents could be
adjusted in an easy way.

The consensus-based algorithm mentioned in [16] is used to calculate the overall
load demand during every time slot. The communication network in this algo-
rithm enjoys equivalent to that in the DDP algorithm. To simplify the calculations,
all the study cases assume it to be known in this chapter. There are two main func-
tions for each agent: local information update (LIU) and IE with neighbor agents.

LIU calculates the benefit table and updates the state. The benefit table includes
available adjustment choice, which is gained using Eq. (3.44). In addition, the
update uses the benefit table and information gained from neighbor agents. Every
agent is entrusted to a Kmax

i -dimensional state vector xii. The definition of the vec-
tor is given below.

xii(ki) =
{

1, if the kith incremental Δpi is chosen
0, otherwise

(3.50)
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Table 3.1 Distributed dynamic programming algorithm.

For time slot t
Calculate the total load demand according to the algorithm introduced in [16].
Update the benefit table for all available adjustment options based on (3.44).

k = 1;
while k < K (% K is the maximum iteration number)

Each agent communicates with neighbor agents based on (3.45) and updates local
information based on (3.46).

k = k + 1;
end

Next control cycle, continue to time slot t + 1.

Using the state vector xii and Eq. 3.42 Jii can be calculated. IE is in charge of IE with
neighbor agents. Only if the designed communication graph has high-level con-
nectivity, the topology of the communication network for supporting purpose and
the power network could be either independent or identical. Table 3.1 summarizes
the working process of the DDP algorithm.

3.2.11 Simulation Studies

In this section, a four-generator system is simulated to verify the effectiveness
of the DDP algorithm under both synchronous and asynchronous communica-
tion circumstances. In addition, the modified IEEE 162-bus system is simulated to
examine the scalability.

3.2.12 Four-generator System: Synchronous Iteration

Table 3.2 lists the coefficients of generation expenses and generation limits.
Figure 3.21 shows the supporting communication topology.

Set the constant price R to be 10. 460 MW is the starting total load demand
assumption. 110, 175, 90, and 85 MW are the starting generation assumptions.
Initialization is nonoptimal because the associated IC of the four generators are
according to Eq. (3.2)., i.e. 7.20, 7.25, 7.00, and 7.40, respectively.

3.2.12.1 Minimum Generation Adjustment 𝚫pi = 2.5 MW
In the first time slot, the increment of total load demand is 30 MW. The benefit
table size for agent i is obtained according to Eq. (3.44). The benefit table of agent
i, containing all generation adjustments available, is obtained using Eq. (3.44).
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Table 3.2 Generators’ parameters.

Unit ai bi ci pramp
i

(MW) [pmin
i

, pmin
i

] (MW)

G1 0.010 5.0 100 15.0 [80, 200]
G2 0.015 2.0 150 12.5 [120, 250]
G3 0.025 2.5 90 10.0 [50, 150]
G4 0.020 4.0 75 10.0 [40, 140]

Figure 3.21 Four-generator system.

G1 G2

G4 G3

Table 3.3 Initialization (based on Eq. (3.44)).

G1 G2 G3 G4

ΔJi(Δpi, pi[0]) 6.9375 6.7813 7.3438 6.3750
ΔJi(2Δpi, pi[0]) 6.8125 6.5938 7.0313 6.1250
ΔJi(3Δpi, pi[0]) 6.6875 6.4063 6.7188 5.8750
ΔJi(4Δpi, pi[0]) 6.5625 6.2188 6.4063 5.6250
ΔJi(5Δpi, pi[0]) 6.4375 6.0313 — —
ΔJi(6Δpi, pi[0]) 6.3125 — — —

Table 3.3 shows it. Here, set the maximum number of iteration to be 30. Table
parameters are (R = 10, [p1[0], p2[0], p3[0], p4[0]] = [110, 175, 90, 85], and 𝛿pi =
2.5 MW)

As presented in Figures 3.22–3.24, the results converge in less than 15 itera-
tions using the DDP algorithm. Figure 3.23 shows that during every time slot after
convergence, the total generation and the load demand are met with each other.
Figure 4 shows the total generation benefit update and proves that the DDP algo-
rithm is monotonic.

IC, described in Eq. (3.2.6), is utilized to examine whether or not the DDP algo-
rithm is optimal. Figure 3.25 shows the convergence of the ICs of every generation
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Figure 3.23 Total supply-demand update
when Δpi = 2.5 MW.
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Figure 3.25 IC update when
Δpi = 2.5 MW.

combined at time slot 3, indicating that the optimal solution provided by the pro-
posed DDP algorithm is the same as that by the centralized equal incremental cost
(CEIC) algorithm. The result converges to the common optimal value. However,
if the solutions for formulated discrete ED problems are different from those for
continuous ED problems, this will not happen. In the first and the second time
slot, the IC of the generation does not converge to the optimal value because of
the discretization error. By decreasing the minimum generator adjustment Δpi,
the error can be reduced. The next test examines this generator adjustment.
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3.2.12.2 Minimum Generation Adjustment 𝚫pi = 1.25 MW
This case sets the minimum generation adjustment to be 1.25 MW. Table 3.4 shows
the doubled size of the benefits table because of the unchanged ramp rates of every
generator combined. For the increased available adjustment options, more itera-
tions are needed for the convergence of the DDP algorithm. This case assumes
the maximum iteration to be 40. Table parameters: (R = 10, [p1[0], p2[0], p3[0],
p4[0]] = [110, 175, 90, 85], 𝛿pi = 1.25 MW). Figure 3.26 shows that the DDP algo-
rithm converges in less than 30 iterations. The fast convergence shows that the
significant efficiency of DDP algorithm, when considering the large search space
(13 × 11 × 9 × 9 = 11538). Figure 3.27 shows that the total power generation sat-
isfies the total load demand for every time slot. Also, that the DDP algorithm is
monotonic is proved in Figure 3.28. Figure 3.29 shows that the convergence value,
which is optimal, is identical to that in the previous case at the third time slot. In

Table 3.4 Initialization (based on Eq. (3.44)).

G1 G2 G3 G4

ΔJi(Δpi, pi[0]) 3.4844 3.4141 3.7109 3.2188
ΔJi(2Δpi, pi[0]) 3.4531 3.3672 3.6328 3.1563
ΔJi(3Δpi, pi[0]) 3.4219 3.3203 3.5547 3.0938
ΔJi(4Δpi, pi[0]) 3.3906 3.2734 3.4766 3.0313
ΔJi(5Δpi, pi[0]) 3.3594 3.2266 3.3984 2.9688
ΔJi(6Δpi, pi[0]) 3.3281 3.1797 3.3203 2.9063
ΔJi(7Δpi, pi[0]) 3.2969 3.1328 3.2422 2.8438
ΔJi(8Δpi, pi[0]) 3.2656 3.0859 3.1641 2.7813
ΔJi(9Δpi, pi[0]) 3.2344 3.0391 — —
ΔJi(10Δpi, pi[0]) 3.2031 2.9922 — —
ΔJi(11Δpi, pi[0]) 3.1719 — — —
ΔJi(12Δpi, pi[0]) 3.1406 — — —

Figure 3.26 Generation update with Δpi
= 1.25 MW.
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Figure 3.27 Total supply-demand
update with Δpi = 1.25 MW.
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Δpi = 1.25 MW.
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addition, in the first and second time slot, there are slighter differences in the ICs
between this case and the previous one. It indicates that when using CEIC algo-
rithm, the difference with the optimal solution becomes smaller. For expedience,
Tables 3.5 and 3.6 compare the DDP algorithm and the CEIC algorithm in first and
second time slot, respectively. The results include the DDP algorithm when min-
imum generation adjustments are 2.5 MW and 1.25 MW and the CEIC algorithm
for continuous ED problem.

Tables 3.5 and 3.6 show that competent results can be obtained by implementing
the DDP algorithm. Results are in close proximity of the results from the CEIC
algorithm for continuous ED problem. By decreasing the minimum generation
adjustment, the small deviation from the optimal solution can be reduced at the
expense of becoming more time-consuming.



�

� �

�

3.2 Distributed Dynamic Programming-Based Approach for Economic Dispatch in Smart Grids 59

Table 3.5 Comparisons of the proposal DDP algorithm with different Δpi and the CEIC
algorithm at time slot 1.

𝚫pi = 2.5 MW 𝚫pi = 1.25 MW Continuous ED

pi (MW) ri pi (MW) ri pi (MW) ri

G1 122.50 7.450 122.50 7.450 122.73 7.455
G2 182.50 7.475 182.50 7.475 181.82 7.455
G3 100.00 7.500 98.75 7. 438 99.09 7.455
G4 85.00 7.400 86.25 7.450 86.36 7.455
Benefit 1873.344 1873.398 1873.409

Table 3.6 Comparisons of the proposal DDP algorithm with different Δpi and the CEIC
algorithm at time slot 2.

𝚫pi = 2.5 MW 𝚫pi = 1.25 MW Continuous ED

pi (MW) ri pi (MW) ri pi (MW) ri

G1 137.50 7.750 136.25 7.725 136.36 7.727
G2 190.00 7.700 191.25 7.475 190.91 7.727
G3 105.00 7.700 105.00 7.750 104.55 7.727
G4 92.50 7.700 92.50 7.700 93.18 7.727
Benefit 1957.688 1957.711 1957.727

3.2.13 Four-Generator System: Asynchronous Iteration

No requirement on synchronous iterations is one great benefit of the DDP algo-
rithm. Since there can be some iterations interspace for the estimation of optimal
solution and the update of associated state of several agents, requiring no syn-
chronous communication protocol makes it easier to implement. Based on two
different asynchronous communication circumstances, the performances of the
DDP algorithm is examined in this case.

3.2.13.1 Missing Communication with Probability
The simulation is performed based on the assumption that the probability of syn-
chronous IE between agent 3 and others is 0.4 at every iteration. Figure 3.30 shows
that the frequency of LIU by the agent 3 update is reduced when compared either
to other agents or to its own performance in Figure 3.25. The DDP algorithm
can still obtain the same optimal solution as in case Four-generator system: syn-
chronous iteration under asynchronous communication. This is verified by the
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Figure 3.31 Total supply-demand update
under intermittent communication.
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communication.

comparison of Figures 3.30–3.33 and Figures 3.22–3.25, respectively. The DDP
algorithm, therefore, is significantly advantageous through asynchronous imple-
mentation for the response, requiring no waiting for the slowest agent.

3.2.13.2 Gossip Communication
The assumption in this case is that at every iteration, the number of neighbor
agents that every agent can communicate with is less than 2. This is referred to as
the gossip communication protocol. The global clock synchronization constraint
is relieved in this protocol. Besides, it increases the robustness against packet loss.
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Figure 3.34 Generation update under
gossip communication.
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Figure 3.35 IC update under gossip
communication.

0 10 20 30 40
Iterations

Total generation supply
Total load demand

50 60 70 80 90

P
o
w

er
 (

M
W

)
480

460

500

520

540

560

This case assumes that every set of agents is one of the four combinations: 1 and
2, 2 and 3, 3 and 4, 4 and 1. In addition, they have the same probability of 0.25 to
communicate for one iteration. As presented in Figures 3.34 and 3.35, under gos-
sip communication protocol, the DDP algorithm converges to the same optimal
solution as case 3.2.12.1. Because only two agents communicate with each other
in every iteration, the average time consumed by one iteration can be reduced sig-
nificantly. Therefore, the total time needed for convergence is shortened, although
with more iterations to converge compared with case 3.2.12.1.

3.2.14 IEEE 162-Bus System

In this case, the modified IEEE 162-bus system, which has 17 generators, is
studied. The DDP algorithm is implemented in this case to examine its scalability
[82, 83]. The communication network and the physical bus connections can be
designed to be independent. It is assumed that the communication order between
an agent and the four adjacent neighbors follows the index number. The designed
communication graph has a high-level connectivity (34 edges in total). Also, there
are possibly 136 maximum edges in this system. After knowing the connecting
edges and maximum edges, the density of the graph [72] can be calculated:
34∕136 = 0.25.

Originally, the total load demand in system is 16 046 MW. Next, there is an
increase of 320.9, 237.8, and 320.2 MW, respectively, at 0, 150th, and 300th itera-
tion in the load demand of the system. The minimum incremental adjustments are
2–5 MW. The limits for ramp rate are restricted with the range of 20–50 MW, Every
agent has a benefit table with size 10. Figures 3.36-3.39 show that the convergence
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of the results obtained using the DDP algorithm happens in less than 120 itera-
tions. Besides, the solutions provided by the DDP algorithm and the CEIC algo-
rithm are similar. Table 3.7 provides with detailed comparisons. The graph density
of the communication network is then increased in this case to examine the impact
of communication network on how fast the DDP algorithm will converge. It is now
assumed that the communication order between every agent and the eight adja-
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Table 3.7 The DDP algorithm and the CEIC algorithm comparison.

DDP CEIC

ri Benefit ri Benefit

Time slot 1 [11.6634, 11.6891] 111680.48 11.6757 111690.24
Time slot 2 [11.7650, 11.7924] 112466.21 11.7780 112468.23
Time slot 3 [11.9048, 11.9267] 113469.14 11.9159 113478.22

Figure 3.40 IC update
with communication graph
density of 0.5.
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cent neighbors following index number i − 4, ..., i − 1 and i + 1, ..., i + 4, and the
communication graph has a high-level connectivity (68 edges). Thus, the graph
density is increased to 68∕136 = 0.5. As presented in Figure 3.40, 95 iterations are
needed for convergence while when the graph density is 0.25, 110 iterations are
required in previous case. In conclusion, by increasing the graph density, there will
be an increase in the convergence speed at the expense of higher communication.

3.2.15 Hardware Implementation

PCs (dual core, 1.86 GHz) have various advantages including energy saving, small
size, cheap price, and wireless communication features; therefore, they are used
to build hardware platform. Figure 3.41 shows the schematic diagram of the hard-
ware platform for this four-generator system. The following equation can calculate
the maximum required communication bandwidth [84]:

Bandwidth = Number of communication × Frequency × Message
consumed channels size

(3.51)

The number of successful communication times per second is used to define fre-
quency. In this case, information exchanging among agents are happened in the
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form of a vector. Vector sizes are minuscule: no more than several bytes. Generally,
the update interval of ED schedules is more than five minutes [66], and Figure 3.40
shows that probably several hundred iterations are required for convergence of
the algorithm as presented. Besides, the tests adopt 20 Hz for the IE frequency.
According to Eq. (3.51), the 162-bus system, which has 17 generators, consumes
the communication bandwidth maximally of approximately 100 kb/s and the con-
suming time is approximately 120∕20 = 6 seconds. The communication satisfies
the bandwidth requirement because the speed of the internet it relies on is 10 Mb/s
according to the TCP/IP protocol.

The difference in the use of hardware (computers) and software (coding, com-
pilers) results in the various consuming time for every iteration. Therefore, this
chapter uses the number of iterations to compare different communication proto-
cols instead of the time consumed for simplicity.

3.2.16 Conclusion

This chapter considers the constraints of generation as well as ramp rate limits
and proposes a DDP algorithm-based approach in order to solve the discrete ED
problem. The simulation results and results obtained using the CEIC algorithm are
similar, indicating that results from the DDP algorithm are competent. In addition,
reducing the minimum generation adjustment could further enhance the optimal-
ity. There are three main merits of the proposed algorithm. The first is the reduc-
tion in the expense of the supporting communication network when compared
with centralized strategies because it utilizes the sparsity property of the com-
munication network and requires local communications among neighbor agents
exclusively. The second is the feasible implementation with asynchronous com-
munication, leading to faster convergence speed, easier implementation, robust-
ness against packet loss, and increased flexibility. The third is that flexibility and
scalability make it possible for large-scale power system applications in the future.
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For the application of the DDP algorithm in practice, several practical issues,
such as the constraints of transmission lines, the loss during transmission, etc.,
need to be further elaborated. In the future, the authors hope to improve the DDP
algorithm further and publish state-of-the-art findings.

3.3 Constrained Distributed Optimal Active Power
Dispatch

In the traditional power systems, ED and generation control are separately
applied. Online generation adjustment is necessary to regulate generation refer-
ence for real-time control to realize the economic operation of power systems.
Because most economical dispatch solutions are centralized, they are usually
expensive to implement, susceptible to single-point failures, and inflexible.
To address the abovementioned problems, this paper proposed a MAS-based
distributed control solution that can realize optimal generation control. The
solution is designed based on an improved distributed gradient algorithm,
which can address both equality and inequality constraints. To improve the
reliability of the MAS, the N − 1 rule is introduced to design the communication
network topology. Compared with centralized solutions, the distributed control
solution can not only achieve comparable solutions but also respond timely
when the system experiences a change of operating conditions. MAS-based
real-time simulation results demonstrate the effectiveness of the proposed
solution.

3.3.1 Introduction

The significance of ED has always been addressed by the power society. ED allo-
cates the generation resource in the most economical way without violating the
constraints of the power system [85]. Current methods for solving the problem
for ED can be categorized into analytical algorithms (e.g. gradient search [59, 86]
and lambda iteration [87]) and heuristic algorithms (e.g. Monte-Carlo [88], genetic
algorithm [89], and particle swarm optimization [25, 90, 91]). The majority of the
aforementioned methods are centralized. However, it is hard to achieve real-time
optimal control by applying these centralized methods as they require to process
large amounts of data and also need to handle the significant delay due to com-
munication. The flexibility and stability of the power systems are limited with the
centralized method, and the expense of using these centralized method-based con-
trol schemes can also be quite high.

It is not surprising that there exists a gap between real-time generation control
and long time-scale ED, where the latter relies on the prediction of generation
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and load [49]. The prediction errors, operating condition variation, and optimiza-
tion and communication delays require for the real-time generation adjustments.
However, current methods by local frequency control and AGC do not consider
optimization in the adjustments, thus degrading the efficiency [52].

Renewable energy and distributed energy resources (DERs) pose new chal-
lenges for the power system operation [50, 92]. DERs include distributed
generation (DG), such as PV and wind, or from distributed storage (DS),
such as pumped storage and flywheels [93]. However, these new resources
are hard to control because of their intrinsic natures of intermittency and
uncertainty.

The aforementioned gap between ED and generation control can be bridged
by improving the solution speed of the ED problem. In addition, the difficulty of
accommodating the changes in load composition and operating conditions calls
for an upgrade of the solution speed.

Distributed control solutions can provide architectures that facilitate a much
faster solution speed because they can allocate the computationally expensive
task to multiple distributed controllers. By working in parallel, the solution speed
increases with higher flexibility, improved robustness, and lower cost. Moreover,
distributed control methods enable the integration of DERs and loads because
they are both “distributed” [94]. Therefore, distributed methods are promising for
optimal generation control.

There are some works on distributed optimal generation control. Current meth-
ods may cost a long time to achieve optimal dispatch [68, 95] or cause power mis-
match and oscillation during optimization. A consensus algorithm is used in [70,
96, 97], where the authors proposed a two-level scheme, i.e. leader and follower
level. However, the algorithm requires extra communication time as leaders need
to collect global information. In addition, the optimality is not guaranteed as the
power loss is not considered in this scheme.

In this chapter, we propose a fully distributed MAS-based optimal generation
control solution. Based on our design, each generator is represented by an
associated agent, and this agent can communicate with its neighboring agents
that are within this agent’s communication range. This structure requires no
centralized agent. Moreover, the communication network is designed by applying
the N − 1 rule, which improves the robustness of the system against communica-
tion failures. Furthermore, we design a distributed gradient-based algorithm for
online optimization of active power generation references, wherein the equality
and inequality constraints of the optimization problem are handled by adjusting
local generations and reconfiguring the virtual communication topology. At the
end of this chapter, we provide real-time simulation results to demonstrate the
performance of the proposed control solution.
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The highlights of this chapter are listed as follows:

● We design a distributed algorithm that can handle both equality and inequality
constraints.

● We utilize the N − 1 rule in designing the topology of the communication net-
work to improve reliability.

● We use a book-size PC-based MAS to achieve the proposed method and demon-
strate the method performance by the MAS-based real-time simulation.

3.3.2 Problem Formulation

The optimal generation control problem is formulated as follows:

min
Pi

n∑
i

fi(Pi) (3.52a)

subject to
n∑
i

fi(Pi) = Pd, (3.52b)

Pi ≤ Pi ≤ Pi, (3.52c)

where Pi represents the active power generation of the ith generator, n is the total
number of generators, fi(Pi) is the generation cost for the ith generator, Pd is the
total active power demand in the power system, and Pi and Pi are the lower and
upper bounds for generator i, respectively.

The control objective (3.52a) is to minimize the total generation costs. The gen-
eration cost of generator i, fi(Pi), can be approximated by a quadratic function [90]

fi(Pi) = ai2P2
i + ai1Pi + ai0. (3.53)

Equality constraints (3.52b) indicate that the supply and demand should be bal-
anced and inequality constraints (3.52c) denote that a generator’s output should be
controlled within its bounds. The Eq. (3.53) characterizes the input–output rela-
tionship of the generators [86], which can be obtained by the following methods:

● Experiments: The efficiency of the generating units.
● Data: Historic operation data of the generating units.
● Design: Design data from the manufacturer.

With different characteristics of production, different generators yield different
parameters. Generally, the generation cost function is convex because of the posi-
tive parameter a2. Therefore, the optimal generation control problem described in
(3.52) is actually a convex optimization problem, and we can solve this optimiza-
tion problem to obtain the optimal solution.
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3.3.3 Distributed Gradient Algorithm

The problem with current distributed gradient algorithms for solving the convex
optimization problem described in (3.52) is that they cannot handle problems with
both equality and inequality constraints. Usually, they consider only equality con-
straints (3.52b) [18] or only inequality constraints (3.52c) [19, 20, 98, 99]. In this
chapter, we propose an improved distributed gradient algorithm based on work
[18] to handle both two types of constraints. We first introduce the algorithm to
handle the equality constraint and we develop an improved algorithm that can
hold both equality and inequality constraints.

3.3.4 Distributed Gradient Algorithm

If inequality constraints in (3.52c) are neglected, the optimal generation control
problem (3.52) is simplified as

min
Pi

n∑
i

fi(Pi) (3.54a)

subject to
n∑
i

fi(Pi) = Pd, (3.54b)

In the following, let P = [P1,P2,P3, · · · ,P]T ∈ Rn denote the vector of power
generation, f (P) =

∑n
i fi(Pi) denote the objective function, and ∇f (P) =

[ḟ 1(P1), · · · , ḟ n(Pn)]T denote the gradient vector of the cost functions, where
ḟ i(Pi) denotes the derivative of fi(Pi) with respect to Pi. The convex problem (3.54)
has a unique optimal solution P∗ [18]. The conditions for optima are given as
follows.

𝟏TP∗ = Pd, ∇f (P∗) = 𝜆
∗𝟏, (3.55)

where 𝟏 is a column vector of ones and 𝜆
∗ is the unique optimal Lagrange multi-

plier.
The key to designing a distributed optimization algorithm is to find P∗ in a dis-

tributed way. The distributed gradient algorithm in [18] proposed that an agent
pertains to a generator obtains the gradient of its cost function and its neighbors
and then updates its own gradient by the weighted sum of the gradients in each
iteration. The local updating rule is given by

Pi[k + 1] = Pi[k] − Wii ḟ i(Pi[k]) −
∑
j∈ixi

Wij ḟ i(Pi[k]) (3.56)

where ixi is the indices of the neighboring agents of agent i, Wii is the self-weight
of agent i, and Wij( j ∈ ixi) is the weight of agent j. The updating rule in the matrix
form is given by

P[k + 1] = P[k] − W∇f (P[k]). (3.57)
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With W being predetermined, the algorithm can lead to a distributed solution
because each agent only requires local information to update its generation. The
determination of W is introduced in the following [18].

● During update, P[k] is always feasible for all k, i.e.

𝟏TP[k + 1] = 𝟏T(P[k] − W∇f (P[k])) = 𝟏TP[k] = Pd, (3.58)

which yields

𝟏TW∇f (P[k]) = 0. (3.59)

For any ∇f (P[k]), the above equation must hold. Consequently, we have 𝟏TW =
𝟎T , where 𝟎T is a column vector of zeros.

● The Lagrange multiplier method requires the following condition when the
algorithm converges.

∇f1(P1) = ∇f2(P2) = · · · ∇fi(Pi) = · · · = ∇fn(Pn) = 𝜆
∗
. (3.60)

By virtue of (3.57),

P∗ = P∗ − W∇f (P∗) = P∗ − 𝜆
∗W𝟏, (3.61)

which yields W𝟏 = 𝟎.

To summarize, W must have the following two properties:

𝟏TW = 𝟎T
, W𝟏 = 𝟎. (3.62)

Note that if W is set to symmetric, satisfying either of the conditions (3.62) will
satisfy the other. In this chapter, we design a dynamic weight matrix that changes
with the topology of the communication network. In the following, we denote this
dynamic weight matrix with W[k], instead of W. We use the improved Metropolis
method [15, 100] to W and its element, Wij[k], is calculated as follows:

Wij[k] =
⎧⎪⎨⎪⎩

−2
ni[k]+nj[k]

, j ∈ ixi[k], j ≠ i, ni ≠ 0

−
∑

j∈ixi[k]
Wij[k], j = i

0, otherwise

, (3.63)

where ixi[k] is the set of indices of agents that communicate with agent i, ni[k]
is the number of neighboring agents of agent i, and is decided by the topology of
communication network.

We can use an undirected graph with n nodes to represent the communication
network with n agents. The connectivity of the graph is described by an adjacency
matrix A[k]. The elements of A[k] are defined as

aij[k] =
{

1, if i and j are connected
0, otherwise

. (3.64)
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By virtue of (3.60), ni(k) in (3.59) can be determined as

ni[k] =
n∑

j=0
aij[k]. (3.65)

Note that the problem described in (3.54) only takes account of equality
constraints. Without considering inequality constraints, the results might become
infeasible for the original problem. In the following, techniques for addressing
inequality constraints are introduced to handle this problem.

3.3.5 Inequality Constraint Handling

To consider the inequality constraints, we modify the gradient algorithm as
follows:

Pi[k + 1] =

{
Pior Pi, i ∈ ixb[k] (a)
Pi[k] − 𝛼[k]

∑n
j=1Wij[k]ḟ j(Pj[k]), i, j ∈ ixb[k]c (b)

,

(3.66)

where Pi[k + 1] is the update of Pi[k], 𝛼[k] denotes the step size, ḟ j(Pj[k]) is the
derivative of the local generation cost, Pi and Pi are the lower and upper bounds
of the generation for generator i, respectively, i ∈ ixb[k] is the indices of the gener-
ators that reach the bounds, and ixb[k]c is the complement of ixb[k].

The modified algorithm is able to tackle both equality and inequality constraints.
If the power generation of a generator does not exceed the bounds, its update con-
tinues by using (3.66a). Otherwise, the value of generation is fixed and excluded
from further update. This operation can be realized by changing the values of the
weight matrix W[k]. Bacause the weight matrix is determined by the topology of
the communication network, changing the value of W[k] can be understood as the
“reconfiguration” of the topology.

Figure 3.42 shows the principle for reconfiguration of the virtual communica-
tion network. To consider the case of violating the bound, we consider a special
case where agent #1 violates the lower bound. The influenced links are labeled in
red related to agent #1 in Figure 3.42a. Next, the generation of agent #1 is fixed
and prohibited from the further update. Note that this does not influence the IE of
node #1. In Figure 3.42b, agent #1 still receives the data from a neighboring agent
and sends it directly to all other neighboring agents that are originally connected
with agent #1, as long as there is no direct communication link between these
two neighboring agents. Therefore, this operation is similar to the case where the
topology of a communication network is reconfigured, as shown in Figure 3.42c.
It should be noted that the agent #1 still checks the value of the weighted gra-
dients with the original weight matrix during the following update process. If the
weighted sum becomes negative, agent #1 can rejoin its generation adjustment and
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(a) (b)

(c)

5

3 1 4

2

Legend:

Unaffected communication link

Affected communication link

Reconfigured communication link

Equivalent virtual communication link

13 4

5

2

13 4

5

2

Figure 3.42 Construction of the virtual communication network. (a) Original
communication network, (b) Reconfigured communication network, and (c) Equivalent
virtual communication network.

the network topology is correspondingly restored. The case with an upper bound
violation is handled in a similar manner.

The operation for virtual communication network reconfiguration can be for-
mulated by updating aij associated with agent i, which is given by

aij[k + 1] =
⎧⎪⎨⎪⎩

0, i ∈ ixb[k] or j ∈ ixb[k]
aib[k] ςabj[k] | aij[k], b ∈ ixb[k] and i, j ∈ ixb[k]c

aij[k], otherwise
, (3.67)

where“&” and “|” are logic operators “and” and “or”, respectively.
During the bound violation, the boundary agent sends the indices of the neigh-

boring agents to its neighboring agents and its neighboring agents then update
their own aij, ni, and Wij consecutively based on (3.67), (3.65), and (3.63), respec-
tively. This reconfigured virtual communication topology enables the boundary
agent to transfer data for its neighboring agents that are not directly connected
as per the original communication network. In such a way, operations defined in
(3.67) can be realized, and thus, the inequality constraints can be handled in a
distributed manner.

Note that the techniques for handling inequality constraints proposed here are
applicable to algorithms introduced in [68, 70, 95–97]. Moreover, the cost function
does not necessarily have to be quadratic; it only requires them to be convex.
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3.3.6 Numerical Example

Here, we use a simple example to demonstrate the proposed approach. There
are three generators that participate in the optimization. Each generator has a
quadratic function in the form of (3.53). Table 3.8 shows the parameters for gen-
eration cost and boundary conditions. The total amount of demand is 40, which
is initialized to 13, 14, and 13 for the generating units, respectively. Figure 3.43a
portrays the original communication network. There are two test cases. Case 1 is
designed with equality constraints only, while case 2 is designed to handle both
equality and inequality constraints.

Note that although the parameters in the cost functions are not realistic data,
they are useful in demonstrating our proposed algorithm.

3.3.6.1 Case 1
The adjacency matrix A and weight matrix W associated with the the communi-
cation network are

Table 3.8 Parameters for the numerical example.

Cost function Bounds of generators

Generator a0 a1 a2 Case 1 Case 2

1 12 30 4 0 20 0 20
2 20 40 3 0 20 0 14
3 15 16 5 0 20 0 20

Generating cost function: fi = ai0 + ai1Pi + ai2P2
i ($∕h).

(a)

(b)

Agent #1 Agent #2 Agent #3

Agent #1 Agent #2 Agent #3

Figure 3.43 Topology of the designed communication network. (a) Original
communication topology and (b) Reconfigured communication topology.
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A =
⎡⎢⎢⎣
0 1 0
1 0 1
0 1 0

⎤⎥⎥⎦ → W =
⎡⎢⎢⎣

2∕3 −2∕3 0
−2∕3 4∕3 −2∕3

0 −2∕3 2∕3

⎤⎥⎥⎦ . (3.68)

For case 1, we use a step size of 𝛼 = 0.05. Figure 3.44 provides the optimization
results. As can be seen in the figure, none of the variables reach their bounds;
accordingly, W is not changed during the whole optimization process.

Table 3.9 demonstrates that the optimal values obtained with the distributed
algorithm obtain the same as that with the centralized method. Noted that none
of the inequality constraints are violated during optimization.

In this case, the converging speed can be improved by setting the step size to a
larger value. Figure 3.45 shows the optimization results with 𝛼[k] = 0.1. It shows
that only 10 iterations are needed to reach the optima. Compared with the previous
one of 14 iterations, the increase of step size does improve the convergence speed.
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Figure 3.44 Optimization results of case 1 (step size = 0.05).

Table 3.9 The optimization results of numerical examples.

Centralized Distributed

Case Cost ($∕h) Mismatch Cost ($∕hr) Mismatch

1 3298.6 −0.001 MW 𝛼 = 0.05, Iterations = 14 𝛼 = 0.10, Iterations = 6

3298.7 0.00 MW 3298.7 0.00 MW

2 3307.4 −0.001 MW 𝛼 = 0.0035, Iterations = 66 𝛼 = 0.01, Iterations = 31

3307.2 −0.019 MW 3297.0 −0.091 MW
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Figure 3.45 Optimization results of case 1 (step size = 0.1).
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Figure 3.46 Optimization results for case 2 (step size = 0.0035).

3.3.6.2 Case 2
Figure 3.46 provides the simulation results with 𝛼 = 0.0035 in case 2. Gen #2
reaches its upper bound at the 14th step; consequently, the original network is
reconfigured to form a virtual network at a 15th step, as shown in Figure 3.43b, and
the adjacency matrix and weight matrix are correspondingly updated as follows:

A(k + 1) =
⎡⎢⎢⎣
0 0 1
0 0 0
1 0 0

⎤⎥⎥⎦ → W(k + 1) =
⎡⎢⎢⎣

1 0 −1
0 0 0
−1 0 1

⎤⎥⎥⎦ . (3.69)

The optimization results for this case are shown in Table 3.9. Here, the typical
lambda iteration method introduced in [87] is utilized for comparison with the
centralized method. In case 1, the distributed algorithm yields the exactly optimal
solution because there is no boundary constraint violation. In case 2, the solu-
tion by a distributed algorithm with 𝛼[k] = 0.0035 is very close to that with the
centralized method even with boundary constraint violation. As can be seen from
Table 3.9, the solution with 𝛼[k] = 0.01 merely deviates slightly from the optimal
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values. Decreasing step size can decrease the gap between solutions of distributed
gradient and that of the centralized algorithms. However, a smaller step size usu-
ally means a slower convergence speed. One can always test the settings of the step
size through off-line studies to find the one that yields satisfactory performance.

Because the power system can be assumed to operate in a steady state or
quasi-steady state, the current output of the generators can be taken as the initial
conditions for them. Therefore, in the initialization, there is no need for the
exchange of global information. As for the optimization, each agent updates its
generation reference with information regarding current output and the gradients
of its neighboring agents, and no central coordinator is required. Therefore, we can
implement the proposed algorithm for optimization in a fully distributed manner.

In the following, we introduce the details on implementing the algorithm.

3.3.7 Control Implementation

Figure 3.47 demonstrates the architecture of the proposed control system. Each
generator in this power system is assigned with an intelligent agent, and this agent
can communicate with other agent(s) as per the topology of the designed com-
munication network. An agent is designed to have the following functionalities:
(i) acquiring the measurements of the corresponding generator; (ii) exchanging
local information with its neighboring agents; (iii) participating in the generation
reference optimization, and (iv) updating the generation reference for the gener-
ator. There is no direct connection between the design of the physical network
and that of the communication network. Instead, the communication network is
designed based on the N − 1 rule, which is illustrated in the following.

Physical connection

Agent 2

Agent 3

Agent 1

G2

G1

G3

P2

P1

P3

P1
ref

P3
ref

Information flow

Agent 2

Agent 3

Agent 1

G2

G1

G3

P2

P1

P3

P2
ref

P1
ref

P3
ref

Physical connection

Information flow

The rest of

the system

The rest of

the system

Figure 3.47 Control system architecture.
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3.3.8 Communication Network Design

We use a graph to represent the structure of the communication network. The
nodes in this graph represent the agents corresponding to generators, whereas
the edges of the graph represent the communication channels among the agents.
The reliability of the system is mainly determined by the edge connectivity of
the graph. Higher connectivity signifies the more reliable network [34, 101]. In
this chapter, the topology of the communication network of the control system is
designed to comply with the N − 1 rule introduced in Chapter 2. Following the
N − 1 rule in the communication network design can guarantee that the control
system works properly with any single-channel failure in the communication net-
work. This is important in the distributed optimization, which is illustrated in the
later simulation studies.

3.3.9 Generator Control Implementation

Figure 3.48 provides the control block diagram for the generators. The inputs of
agent i includes three parts: the output of the governor system ΔPi[k], gradients
of its neighboring agents ḟ (Pj[k + 1]), j ∈ ixi and local active power generation
Pi[k]. The output of agent i is the reference setting for the active power generation
Pi[k + 1]. We can denote the simplified governor control model as [102]

ΔPi[k] = −KPiΔf [k]. (3.70)

Note that the assumption behind this type of governor is that the increase of
power output brings about a frequency deviation at steady state [102].

By virtue of ΔPi[k], Eq. (3.66) can be rewritten as

Pi[k + 1] =

{
Pi or Pi, i ∈ ixb[k]

Pi[k] − 𝛼[k]
∑n

j=1Wij[k] ḟ j (Pj[k]) − KPiΔf [k], i, j ∈ ixb[k]c
,

(3.71)

Neighboring agent(s) j

Governor
system

Agent i

Pi[k]

Reference setting

Frequency deviation

Pi[k+1]

f(Pi[k])f(Pj[k])

ΔPi[k]Δf [k]
G

P
o
w

er
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y
st

em

Figure 3.48 Control block-diagram of the generator.
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The way to update the generation references by using (3.66) ensures that the total
generation is not changed during the generation adjustment in the optimization
process; in addition, it can satisfy both equality and inequality constraints in (3.52).
The update rule of Eq. (3.66) is feasible only when the overall demand does not
change. If the change of demand occurs, applying (3.66) will inevitably lead to the
supply-demand imbalance. Therefore, we replace the original update rule of (3.66)
with (3.71), by adding governor output term in it.

By using Eq. (3.71), the frequency deviation (supply-demand imbalance in
(3.70)) can lead to the timely adjustment of the generation. The value of Δf is
zero at steady state and tends to be nonzero where there is an operating condition
change. The governor system of a generator estimates the additional generation
adjustment that should be provided for this generator. In addition, by taking
the output of the governor system into account, the generator can dynamically
readjust its power output to maintain the balance between supply and demand
while still optimizes its generation setting.

Note that the term KPiΔf [k] acts as a role to make the physical system feedback
enter the optimization process. It should be noted that the power balance con-
straint may not strictly hold during the optimization. However, our proposed algo-
rithm drives the system toward the optimal point while keeping the constraints
being satisfied. Moreover, the load change ΔPL can result in a transient change
of frequency Δf . Therefore, including the term KPiΔf [k] in the control system can
signify the change of load conditions. Furthermore, the feasibility and optimally is
guaranteed by the term KPiΔf [k], which actually brings the physical system feed-
back to the optimization process.

Equation (3.71) shows that both generation cost reduction and supply-demand
balance require generation adjustment. In our proposed implementation, the two
operations are designed to act simultaneously instead of in serial to improve the
response speed. Because the optimization process is discrete and model-based, its
converging speed is not influenced by the response speed of the physical system,
and thus, it can be designed to be faster or slower by adjusting the step size 𝛼.
However, the governor control-related operation is nonadjustable because of the
physical constraint, and it dominates the overall response speed of the control sys-
tem. Consequently, the speed of the optimization operation should be adjusted to
match that of the governor system, which will be discussed in detail later.

3.3.10 Simulation Studies

In this section, we first introduce the real-time simulation platform we designed
for testing the distribution solutions, and then we use this platform to test the IEEE
30-bus test system to demonstrate the control solution proposed in this chapter.
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3.3.11 Real-Time Simulation Platform

Figure 3.49 portrays the simulation platform, which contains a MAS that is devel-
oped by using eight book-size PCs., a real-time digital simulator (also named the
target computer), and a host computer. The host computer is capable of com-
piling and uploading the power system model to the real-time digital simulator,
displaying real-time simulation results, and relaying communication between the
simulator and agents. The real-time simulator is manufactured by OPAL-RT® and
is also known as the target computer. The software package for running the agents
is developed by using JADE Framework [103]. The MAS can interact with run-
ning power system models in the target computer through the relay of the host
computer so as to realize the MAS-based real-time simulation.

3.3.12 IEEE 30-Bus System

The IEEE 30-bus system contains 6 generations and 30 buses. One can refer to
[104] for more information. The parameters for generation cost functions and
constraints of generators are displayed in Table 3.10. A turbine governor control
system is installed for each generator and its model can be found in [47]. Other
parameters regarding the generators and governor control system are provided in
Appendix 3.A.

Figure 3.50 shows the topology of the communication network, which has six
nodes (agents) and nine edges (communication channels). Obviously, this topol-
ogy design follows the N − 1 rule.

Figure 3.51 shows the implementation steps of the control method. The agents
iteratively update the generation references until the convergence criterion is

Host computer
IP: 192.168.0.254

Target computer
IP: 192.168.0.253

OPAL-RT®

Power system model

Agent 6
IP: 192.168.0.6

Agent 3
IP: 192.168.0.3

Agent 2
IP: 192.168.0.2

Agent 1
IP: 192.168.0.1

Figure 3.49 Developed real-time simulation platform for MAS.
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Table 3.10 Parameters of the cost functions and constraints.

Cost Function

Generator a b c Lower Bound (MW) Upper Bound (MW) Initial Output (MW)

1 1 0 2.0 0.00375 50 200 157.36

2 2 0 1.75 0.0175 20 80 60

3 5 0 1.0 0.0625 15 50 30

4 8 0 3.25 0.00834 10 35 20

5 11 0 3.0 0.025 10 30 13

6 13 0 3.0 0.025 12 40 15
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Figure 3.50 Communication network topology.
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Figure 3.51 Implementation of the proposed distributed solutions.

reached. In each update interval (0.1 seconds), the agents are supposed to sample
data, exchange data, calculate the reference, and update the control action.

We first test the performance of the developed MAS-based platform. Figure 3.52
shows that the distributed algorithm can converge with 20 iterations. With our
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Figure 3.52 Time consumed for 20 iterations with distributed gradient method.

developed platform, each iteration costs a time of 6 ms on an average. During
the experimentation process, the control setting is supposed to update five times
before being deployed for control action. Consequently, the control update interval
should be set larger than 30 ms.

Here, we set the interval for generation reference updates to 0.1 seconds. Test
results show that frequent updates can be achieved by applying a proper experi-
mental setup. Yet over frequent updates might degrade dynamic performance and
cause instability because the tracking abilities of the generators are constrained
by the capability of the physical system. Therefore, the updating interval should
be chosen carefully. For our test, we use an error method to decide the update
interval, and test results show that the value of 0.1 seconds can balance the con-
trol performance and technical feasibility, regardless of the constant or variable
loading conditions.

3.3.12.1 Constant Loading Conditions
We assume that the loads are constant during the simulation and the proposed
control solution is deployed at t = 10 seconds. The generation cost during simula-
tion is illustrated in Figure 3.53. The generation cost starts from 812.6 £∕h before
the control method is used, and it comes down to 804.9 £∕h when the optimization
process is finished. Note that the obtained optimized results are the same as those
obtained by using other centralized methods.

Figure 3.54 demonstrates the generators’ speed deviations during the simula-
tion. Note that when the loading condition is at a given constant value, updating
rule (3.56) may bring small frequency deviation because of the following reasons:
(i) small change of transmission loss brought by the reallocation of active power
generations among the generators. For example, in our case, the transmission
losses change 0.9 MW during the optimization, which comprises 0.3% of the total
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Figure 3.53 Generation cost with proposed control solution.
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Figure 3.54 Speed deviation of the generators with the distributed solution.

load (283.4 MW). Therefore, the frequency deviation caused by the transmission
loss is slight. (ii) Ideally, Eq. (3.56) can make sure that the supply and demand are
balanced during the optimization. However, the response speeds of generators
are not necessarily the same because the inertia constant, reactance, and other
parameters of the generators may not be the same. Therefore, the tracking perfor-
mance of the updated references varies, which leads to the slight supply-demand
imbalance, before reaching the steady state, thus causing frequency deviations.

Note that the frequency deviations caused by the two abovementioned reasons
are quite small. Figure 3.54 shows that the maximum frequency deviation reaches
only 0.0085 Hz during the optimization. In order to avoid the frequency oscilla-
tions, Δf from the nominal value (60 Hz) is fed into the governor control system,
which is denoted as −KPiΔf in (3.71). It should be pointed out that the proposed
control scheme can also ensure the generators to make timely adjustments against
load change during optimization, and this will be demonstrated in the following
test case.
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Figure 3.55 Voltages profiles of selected buses with the distributed solution.

Figure 3.55 displays the voltage of the chosen buses, which includes the bus
with a generator (bus #1), the highest voltage (bus #11), and the lowest voltage
(bus #28). As shown in the figure, the voltages only change slightly during
optimization because the reallocation of active power among generators will not
influence the voltages too much. Figure 3.53 to Figure 3.55 show that the optimal
generation control can be achieved with decent dynamic performance. As the
control update interval is 0.1 seconds, the deployed solution can respond in a
timely manner under operating condition changes. The perturbation during the
control update is also small because of the timely and incremental control update.

The active power outputs of the generators are provided in Figure 3.56.
Zoomed-in responses of generation of Gens #5 and #6 are shown in Figure 3.56b.
The output of Gen #5 and Gen #6 were clamped to 10 and 12 MW after con-
vergence, which are the generation lower bounds. Therefore, the boundary
constraints are not violated by applying the proposed control solution.

3.3.12.2 Variable Loading Conditions
Two load changes are utilized to test the proposed control method in this case. At
t = 10, the active power loads at bus #12 and bus #21 increase by 20 MW each.
At t = 20 seconds, these two loads decrease back to their previous values before
t = 10. Figure 3.57 shows that before the load changes, the optimized generation
cost is the same as that of case 1, which is 804.9 £∕h. Then, the generation cost
increases to 946.8 £∕h after the loads increase, which is lower than the cost without
optimal control ( 965.5 £∕h). The optimized generation cost drops back to 804.9
£∕h when the loads are recovered to their original values .

Figure 3.58 shows that the frequency deviates slightly and finally converges,
which indicates that our algorithm is fast and accurate. It is noted that only local
frequency is supposed to be measured by the generators. To prevent frequency
oscillation, dead band of controllers should be set properly. For example, it is
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Figure 3.57 Generation cost with proposed control solution.

recommended by NERC that the controller insensitivity of primary frequency
control should be ±36 mHz [105]. Moreover, the frequency oscillations can be
dampened by frequent IE between the agents. Figure 3.58 demonstrates that
there is only a small amount of 0.018 Hz frequency deviation when the change of
loads reaches as high as 40 MW.
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Figure 3.58 Speed deviation of the generators.

Figure 3.59 shows the active power outputs of generators. It can be seen that the
outputs of all generators fall within their bounds, indicating the obtained solution
is feasible. The output of generators #5 is at the lower bound of 10 MW and the
output of #6 is at the lower bound of 12 MW before load increases. Because of the
negativity of the weighted gradient sum, these two generators increase their output
and finally reaches a level of 14.26 MW. As long as the demands are restored back
to their original values, these two generators also decrease their output to their
original values, i.e. their lower bounds of 12 MW, which shows good consistency
of the optimization algorithm.

For our test, the system frequency can stabilize within 10 seconds, which is quite
fast. The proposed algorithm actually realizes optimal generation control online
by incorporating the primary control (governor system), secondary control (AGC),
and ED.

3.3.12.3 With Communication Channel Loss
The robustness of the algorithm is tested under the condition of loss of a commu-
nication channel (e5 in Figure 3.51), and the test results are shown in Figure 3.60.
Following the N − 1 rule for communication design ensures that losing any one
of the channels will not affect the control performance significantly. Figure 3.60
demonstrates that losing one channel does not degrade the overall control perfor-
mance dramatically. It is worth pointing out that generally, fewer communication
channels does lead to slower converging speed. Therefore, a comprise between
converging speed and cost of building the infrastructures of a communication net-
work is necessary during the design phase.

The proposed control solution can be used in other scenarios as well, such as
the coordination of virtual power plants (VPPs). VPPs aim at managing a large
number of micro/DGs and makes them act like conventional power plants [53].
As more DGs are integrated into the VPP, the proposed control scheme can also
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Figure 3.60 Optimization results with one communication channel loss.
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realize the real-time optimization by assigning intelligent agents to manage the
energy prosumption of VPPs [106].

Another promising application of the proposed control scheme is that we
can integrate it with the demand response application to realize the optimiza-
tion of both energy suppliers and users because demand response is growing
more and more active in modern power grids [107]. Demand response is now
greatly facilitated by the advanced metering infrastructure (AMI), emerging
energy-management controller (EMC) technology, and the concept of aggrega-
tor [108]. The aggregator includes energy users that participate in the demand
response and actually can be regarded as VPPs to take part in the optimal
generation dispatch as its aggregators combine these users into one purchas-
ing unit to trade with the transmission system operator (TSO), retailers, and
distributors [109].

The intelligent distributed load management and control system that discussed
in [110] can also be realized by integrating demand response with the proposed
control algorithm.

It is of significant importance to extend this control method considering the inte-
gration of emerging industry activities, e.g. DER, control for VPP, and aggregator.
The proposed distributed method only requires low complexity computation and
communication and obtains a more viable solution [54]. It can also be integrated
with the emerging just-in-time corrective action control such as special protec-
tion schemes (SPSs), remedial action schemes (RASs) to render fast control, and
optimization solutions for the power system under either normal or abnormal
operating conditions [111].

3.3.13 Conclusion and Discussion

In this chapter, we proposed a real-time distributed control solution method to
solve the online optimal generation control problem. The solution method is
designed based on the constrained gradient algorithm, which can handle both
equality and inequality constraints. The proposed solution is implemented based
on MAS architecture with the design of the topology of the communication
network following the N − 1 rule. The real-time simulation shows that the pro-
posed control solution is able to realize generation cost reduction in an optimal
way while yielding decent dynamic performances under a variety of operating
conditions.

3.A Appendix

The governor droop KPi is 20 for each generator. The inertia of speed governor and
turbine is 0.1 and 0.5 seconds, respectively.
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The parameters of generators:

● Generator #1: PB = 200 MW, H = 4.2 Seconds, xd = 1.81 p.u., xq = 1.76 p.u., x′d =
0.32 p.u., x′q = 0.35 p.u., T′

d0 = 6.51 Seconds, T′
q0 = 0.34 Seconds.

● Generator #2: PB = 80 MW, H = 3.6 Seconds, xd = 2.95 p.u., xq = 2.37 p.u., x′d =
0.69 p.u., x′q = 0.69 p.u., T′

d0 = 6.02 Seconds, T′
q0 = 0.37 Seconds.

● Generator #3: PB = 50 MW, H = 3.5 Seconds, xd = 2.95 p.u., xq = 2.92 p.u., x′d =
0.49 p.u., x′q = 0.52 p.u., T′

d0 = 5.66 Seconds, T′
q0 = 0.41 Seconds.

● Generator #4: PB = 35 MW, H = 3.5 Seconds, xd = 2.33 p.u., xq = 2.25 p.u., x′d =
0.57 p.u., x′q = 0.62 p.u., T′

d0 = 4.79 Seconds, T′
q0 = 1.96 Seconds.

● Generator #5: PB = 30 MW, H = 5.3 Seconds, xd = 6.71 p.u., xq = 6.72 p.u., x′d =
1.34 p.u., x′q = 1.32 p.u., T′

d0 = 5.46 Seconds, T′
q0 = 1.32 Seconds.

● Generator #6: PB = 40 MW, H = 4.9 Seconds, xd = 3.62 p.u., xq = 3.67 p.u., x′d =
0.49 p.u., x′q = 0.46 p.u., T′

d0 = 5.69 Seconds, T′
q0 = 1.50 Seconds.
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4

Distributed Reactive Power Control

As for the power system, long-distance reactive power transmission is not possi-
ble. Thus, the voltage-related reactive control should be naturally implemented
in a distributed manner. In this chapter, we will discuss two types of the reactive
power control methods. The first method is based on the well-known artificial
intelligence algorithm, Q-learning algorithm. The second method is based on the
distributed sub-gradient algorithm. The distributed implementation of control
solutions based on a multi-agent system (MAS) framework for these two methods
is also discussed in this chapter.

4.1 Q-Learning-Based Reactive Power Control

A reinforcement learning (RL) method based on a fully distributed multi-agent
framework for reactive power dispatch is proposed in this section. In this method,
two agents exchange information with each other only when their own buses are
electrically coupled. The global rewards of RL come from a consensus-based global
information collection algorithm. In addition, this algorithm is demonstrated to
be reliable and efficient. In order to reach the goal of minimizing the active power
loss and satisfy operational constraints at the same time, a distributed Q-learning
algorithm is implemented. The proposed method is able to learn from scratch
without an accurate system model. The results from the simulation of different
sizes of power systems show that the method has great computational efficiency
and gains nearly optimal solutions. Also, the results show that appropriate prior
knowledge can highly accelerate the learning algorithm and reduce the existence
of unnecessary disturbances. This method is a good potential candidate for online
implementation.

Distributed Energy Management of Electrical Power Systems, First Edition.
Yinliang Xu, Wei Zhang, Wenxin Liu, and Wen Yu.
© 2021 The Institute of Electrical and Electronics Engineers, Inc.
Published 2021 by John Wiley & Sons, Inc.
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4.1.1 Introduction

To decrease real power loss and improve the voltage profile of the power system
without violating certain operational constraints, optimal reactive power dispatch
(ORPD) is widely used. ORPD can be realized by appropriately changing control
circumstances such as generator bus voltage reference, transformer tap setting,
capacitor bank switching, etc. Although various kinds of traditional optimization
algorithms have been proposed to deal with ORPD problem, such as linear
programming [1], Newton method [2], and interior point (IP) method [3, 4], there
exist some shortcomings of these methods including sensitivity to initialization
and mathematical characteristics of objective functions, known as convexity,
differentiability, and continuity.

In recent years, intelligent optimization algorithms were applied to deal with the
weaknesses of the above traditional algorithms. These algorithms mimic certain
physical phenomena to reach ideal results. In this way, these algorithms have the
advantages of computational efficiency [5] and have the ability to avoid the calcu-
lation of derivatives. In [6, 7], algorithms based on ant colony and particle swarm
optimization were proposed for ORPD to reach the minimal real power loss with
constraints. These kinds of algorithms not only need global information but also
need to be implemented offline in a centralized way.

In order to collect global operating conditions and deal with the huge amount of
data, it is necessary for centralized control schemes to have complicated commu-
nication networks and a powerful central control system. Therefore, centralized
schemes appear expensive to implement and sensitive to failures of a single point,
while distributed schemes appear more flexible, low cost, and reliable to imple-
ment [8, 9]. Therefore, they are regarded as an ideal choice for next-generation
power systems.

MAS, one of the most popular distributed control solutions, has the advantages
of surviving single-point failures [10, 11] and decentralized data processing. Thus,
MAS can realize the efficient distribution of tasks, which finally accelerates the
operation and decision-making process [12]. In the area of artificial intelligence,
agent-based technology has been regarded as a promising paradigm for concep-
tualizing, designing,and implementing software systems. In recent years, many
scholars have applied MAS-based methods to deal with the problem of power sys-
tem reconfiguration and restoration [8, 9, 11]. However, there still remain some
problems with the existing algorithms. One of the most important shortcomings
is that most methods were only validated through simulations rather than rigor-
ous analysis so that the convergence and stability of these algorithms still remain
under-discussion.
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Known as one of the most complex systems around the world, the power
system holds incredible complexity, so that it is very difficult to propose a direct
model-based design for a power system. Thus, a desirable algorithm should avoid
the analysis of such complex models. RL, which iteratively learns the optimal act
from experiences in an unknown system, meets the above requirement. During
the learning process, the action of the system is updated based on a reward signal
which judges the performance of the system. Whereas in distributed RL, the
calculation and distribution of global reward signals, which are important for
autonomous agents’ learning process, still remain a difficult problem.

The implementation of an ideal ORPD solution should have some characteris-
tics, i.e. distributed, adaptive, optimal, online, and suitable. “Adaptive” represents
the algorithm that has the ability to adapt to various kinds of operating condi-
tions. “Optimal” represents that the result should gain optimal real-power loss
and voltage profile. In order to achieve the online implementation, the algorithm
should also have the advantage of computational efficiency. Algorithms holding
these characteristics are more likely to keep up with the developing tendency of
power systems [8–12].

To meet the needs of power systems and deal with the problems of the exist-
ing solutions, in this work, a multi-agent system-based reinforcement learning
(MASRL) is proposed. To reach the objective of minimizing real power loss with-
out violating certain operating constraints, an integration of two algorithms is
realized, which is called the MASRL algorithm. This new algorithm combines
average-consensus-based algorithms and distributed RL algorithms.

Because of the fully distributed MAS framework, the proposed solution not only
holds properties of centralized solutions but also holds properties of distributed
solutions. Further demonstration of the effectiveness of the proposed solution
comes from simulation studies.

4.1.2 Background

Through a discovery algorithm based on average consensus, the fully distributed
solution achieves not only the calculation of global information but also the dis-
tribution of global information. RL is used to deal with distributed optimization.
Some introductions about these two algorithms are presented below.

4.1.3 Algorithm Used to Collect Global Information

There are two reasons due to which discovering global information becomes a
challenging problem. The first one is that only local communications are useful.
The other one is that the power network is extremely complex. To deal with these
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problems, an average-consensus theorem-based global information collecting
algorithm is designed. In the average-consensus theorem, important information
is guaranteed to be shared in a distributed way by local information of each
agent [13]. Moreover, consensus algorithm has attracted great interests of many
scholars in different areas, and a survey is accessible in [14]. Considering the
global information collection algorithm, the process of updating information for
agent i can be presented as

xi,m+1 = xi,m +
n∑

j=1
ai,j(xj,m − xi,m) (4.1)

where xi,m and xj,m are the local information collected by agents i and j at iteration
m, while xi,m+1 have the same meaning at iteration m + 1. ai,j is the coefficient of
information communicated between agents i and j. Moreover, n is the number of
agents in the information collecting process. As shown in Eq. (4.2), by rigorous
stability analysis, it can be observed that only when the coefficients aijs meet
certain constraints [9, 15], will all xis converge to the same value based on rigorous
stability analysis.

xi,∞ = 1
n

n∑
i=1

xi,0, i = 1 ∼ n (4.2)

Based on the consensus theory, the whole information exchange process is
modeled as a linear system based on discrete time, as shown in Eq. (4.3).

Xm+1 = DXm (4.3)

Respectively, Xm and Xm+1 are the vectors of collected information at the mth
and (m + 1)th iterations, and D is a sparse iteration matrix. The time needed for
convergence is determined by Eq. (4.4) [13].

𝜏 = 1
logE(|𝜆2|) (4.4)

In the above equation, E(0 < E < 1) is a measurement of tolerance for error and
is predefined. |𝜆2| is the second largest eigenvalue of D.

From Eq. (4.4), it can be observed that the time needed for convergence
decreases asymptotically by a factor of E. While another factor |𝜆2| determines
the converging speed. Therefore, |𝜆2| can be regarded as the evaluation of the
speed of an information discovery algorithm. References [16, 17] show that
the convergence for any systems can be guaranteed through the information
discovery algorithm as long as the discovered global information can be expressed
as a summation of local information.
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4.1.4 Reinforcement Learning

RL is a subarea of machine learning. It mainly focuses on what an agent is sup-
posed to do in an unknown environment so that it can reach maximal cumulative
reward [18, 19]. RL learns how to take action in an optimal way based on its experi-
ence in the unknown environment [20]. Major advantages of RL include [21, 22]:

(i) Only need less accurate or even no environment model. This is a critical
advantage because, in very complex systems, the environment is too difficult
to be abstracted as a model.

(ii) The ability to learn from scratch and the online learning process.
(iii) A relatively clear and simple evaluation of the quality of a solution. While

other methods need complicated mathematical operations such as gradient
or inversion of a matrix, it only needs a clear reward function for evalua-
tion. This property largely reduces the computational complexity and relieves
some mathematical property restrictions imposed on the objective function.

(iv) It can avoid local optimum by following the probabilistic transition rules. In
recent years, RL algorithms are applied in various kinds of domains, including
traffic light control, robot games, resource management, etc. A survey of RL
application can be found in [23]. However, the distributed implementation
of the RL algorithm still remains a difficult problem. The major difficulty is
the calculation of global reward. This paper solves this problem through an
average-consensus-based global information discovery algorithm.

4.1.5 MAS-Based RL Algorithm for ORPD

In ORPD problems, there are three control variables. The first one is the gener-
ator bus voltage magnitude, the second one is the capacitor bank switching, and
the third one is the transformer tap setting. The former two variables can directly
change the injected reactive power, and the last one can make a difference to the
Y-bus matrix of the power system [15], which will indirectly make a difference to
power flow as

PGi − PLi − Vi −
n∑

j=1
VjYi,jcos(𝛿i − 𝛿j − 𝜃i,j) = 0 (4.5)

QGi + QCi − QLi − Vi

n∑
j=1

VjYi,jsin(𝛿i − 𝛿j − 𝜃i,j) = 0 (4.6)

In the above equations, n is the number of buses, PGi, Q − Gi are the active and
reactive power generation at bus i, PLi, QLi are the active and reactive power load
at bus i, QCi is the capacitor bank reactive power compensation at bus i, Yi,j, 𝜃i,j
are the Y-bus admittance matrix elements, Vi and Vj are the voltage magnitudes
at bus i and j, and 𝛿i and 𝛿j are the voltage phase angles at bus i and j, respectively.
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The definition of the global reward function of distributed RL-based optimiza-
tion is related to the objective and constrains of ORPD. Once the global reward is
defined, a distributed Q-learning algorithm can be applied to search the optimal
solution for ORPD.

4.1.6 RL Reward Function Definition

Before implementing RL, the reward function needs to be defined for the evalua-
tion of solution performance. Based on Eq. (4.1), the signal of global reward can
be calculated as a combination of local signals, as shown in Eq. (4.7).

rk = 1
n

n∑
i=1

rk
i,0 (4.7)

where rk
i,0 is the local reward based on local signals. Because ORPD aims to mini-

mize real power loss and satisfy certain constraints at the same time, the definition
of signals for the local reward needs to include two parts to address these two fac-
tors, as shown in Eq. (4.8).

rk
i,0 =

⎧⎪⎨⎪⎩
0, if constraints are violated(
1

K+Pk
i,loss

)
, otherwise (4.8)

As shown in (4.8), there are three constraints that need to be checked. The first
one is the magnitude of the local bus voltage, the second one is local injected reac-
tive power, and the third one is current through connected transmission lines. If
anyone of them is violated, it can be observed that the local reward signal becomes
zero. K is a constant used to decrease the sensitivity of rk

i,0 according to Pk
i,loss, while

Pk
i,loss is the local active power loss calculated based on Eq. (4.9). In this chapter, K

is set to be 5% of the total load divided by the number of transmission lines in the
system in the process of normal operating conditions.

Pk
i,loss =

Ni∑
j=1

gi jk
[
(V k

i )
2 + (V k

j )
2 − 2V k

i V k
j cos(𝛿k

i − 𝛿
k
j )
]

(4.9)

where Ni is the set of indexes of buses corresponding to bus i and gk
ij is the real part

of Y k
ij .

In Eq. (4.9), the local active power loss can be calculated by sharing the informa-
tion of voltage magnitude and phase angle between connected node agents (NAs).
It is also possible to directly calculate the loss by the measured active power at the
transmitting and receiving ends of the transmission line. After the calculation of
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local active power losses, the total loss of active power can be shown as:

Pk
Loss =

1
2

n∑
i=1

Pk
i,loss (4.10)

Because the definition of global reward is the summation of local rewards, the
global reward signal can be discovered by the above information collection algo-
rithm. The signal of global reward can be regarded as the evaluation of the perfor-
mance of a candidate solution, and even the total loss of active power defined as
Eq. (4.10) is indirectly calculated. Larger global reward indicates a better current
solution.

4.1.7 Distributed Q-Learning for ORPD

After discovering the global rewards through the NAs, implementing the dis-
tributed RL algorithm through RL agents becomes possible. It can be observed
that the number of RL agents and the number of reactive control devices are equal.

In this chapter, several types of reactive control devices are considered, including
capacitor banks, tap changing transformers, and PV generators.

Distributed Q-learning is applied in this chapter for optimization. Q-learning,
first introduced by Watkins in 1989 [24], aims to learn an action-value function
that represents the ideal utility of a series of actions taken in a given state. These
actions follow a fixed rule. Q-leaning is able to evaluate the ideal utility of actions
without a clear environment model.

Because each RL agent independently chooses its own action at every learning
step in the ORPD problem, the whole problem can be regarded as a single-stage
Q-learning problem. Single stage indicates that the agents directly implement the
transition from one control action to another. For every possible action, agents
have a Q value that represents an evaluation of the usefulness of this action. Then,
based on the reward received for the action, these values will be updated in every
step [25]. Equation (4.11) shows the traditional centralized Q-learning algorithm.

Qk+1(ak+1
1 , ⋅, ak+1

i , ⋅, ak+1
n ) ← (1 − 𝛼)Qk(ak

1, ⋅, ak
i , ⋅, ak

n) + ark (4.11)

where ai is the agent’s chosen action, rk is the global reward of step kth, 𝛼 is the
learning rate while 0 < 𝛼 < 1, and Qk(.) is the Q-value for the candidate solution.∏n

i=1 nai represents the size of the Q-table, where nai is the number of possible
actions taken by agent i and n is the number of RL agents. When the number of
agents and accessible actions increases, the size of the Q-table will geometrically
increase.

A distributed Q-learning algorithm proposed in [25, 26] is implemented in this
chapter. In this algorithm,

∑n
i=1 nai is the size of the Q-table, which requires less
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memory compared to the one in centralized Q-learning. The rule used for updating
the distributed Q-Learning is shown in Eq. (4.12).

Qk+1(ak+1
i ) ← (1 − 𝛼)Qk(ak

i ) + ark (4.12)

The balance between exploration and exploitation in the process of RL imple-
mentation is very important. Too much exploitation causes failure in finding the
global optimal solution, while pure exploration costs too much time degrading the
Q-learning algorithm’s performance. In this chapter, the transition from current
random action to the later optimal action with the highest Q value is defined based
on metropolis criterion [27] shown in Eq. (4.13)

ak
i =

{
ak

bi, exp
(Q(ak

ri)−Q(ak
bi)

Tk

)
< 𝜀

ak
ri, otherwise

(4.13)

where ak
i is agent is control action and 𝜀(0 < 𝜀 < 1) is set to be relatively small.

T adjusts the balance between exploration and exploitation. As exploitation sur-
passes exploration, the value of T decreases until reaching some lower limits. T can
be initialized as a large value, decreasing at each step based on Tk+1 = p × Tk with
0 < p < 1. Table 4.1 describes the flowing chart of the proposed MASRL algorithm.

4.1.8 MASRL Implementation for ORPD

The algorithms proposed previously are applied to the node and RL agent, respec-
tively. The number of NAs and the number of buses are equal, while the number
of RL agents equals to the number of reactive power control devices. Figure 4.1
gives an illustration of the function modules of each kind of agents and operation
in MASRL. It is shown in Figure 4.1 that local measurement of NA provides local

Table 4.1 MASRL for optimal reactive power dispatch.

1. Initialize 𝜀, T0, Qi(.) = 0 with i= 1,2…N
2. Repeat until the optimal Q-tables have been obtained

2.1 Each agent generates an action ak
ri based on the learned experience

2.2 Each agent selects its best action ak
bi based on the current Q-table

2.3 Choose ak
i = ak

bi, if exp[(Q(ak
ri) − Q(ak

bi))∕Tk] < 𝜀, otherwise ak
i = ak

ri

2.4 Evaluate the overall performance of distributed actions using global reward rk

obtained through global information discovery
2.5 Each agent updates its Q-table independently
2.6 Update Tk+1 according to the temperature-dropping criterion

3. Each agent chooses greedy-optimal action (a∗
i ), which maximizes the accumulated

reward
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Figure 4.1 Operation of MASRL for ORPD.

voltage and phase angle to both information exchange module and local reward
calculation module. Then, the local voltage and reward are exchanged between the
information exchange module and its neighboring agents. Also, necessary infor-
mation for the global reward discovery is provided by the information exchange
module.

When a consensus of the global reward is reached, RL agents will use it to update
their local Q-table. The updating process will continue until the table does not
change anymore. In that case, the learning process will be considered to be con-
vergent. In addition, the current Q-table will decide the optimal action for the
associated generator voltage regulating, transformer tap changing, or capacitor
bank. Only when the system operating condition changes, will the Q-tables be
updated again, such as under load fluctuation.

There are four steps in each iteration of optimization: implementation of the
updated control signal according to local Q-table, the measurements of local
signals for calculation of local reward, finding global reward, and the updating
process of the local Q-table. Because of the fact that measurements can only be
available after the convergence of system response and the convergence of the
global reward collecting process, most time is used for measurement of signal and
discovery of global reward. As a result, estimation of the optimization process can
be shown as (4.14)

Ki∑
i=1

(Tmi + Tdi) (4.14)
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where Ki is the iteration required for optimization and Tmi is time spent for mea-
surement at iteration i while Tdi is the time used for finding global reward at
iteration i.

However, there are three reasons that lead the above estimation to become inac-
curate: first, successful information delivery at the designated time is hard to be
guaranteed, considering the confusion of autonomous agents; second, because of
the operating conditions’ dependence on Ki, Tmi, and Tdi, estimating them accu-
rately is very hard; and finally, real-time simulation also relates to the implement-
ing methods of both software and hardware.

4.1.9 Simulation Results

Some simulation tests have been done to the proposed MASRL algorithm,
including the Ward–Hale 6-bus and system, the IEEE 30-bus system, and the
IEEE 162-bus system [28].

4.1.10 Ward–Hale 6-Bus System

In Figure 4.2, there are six buses, seven transmission lines, and five reactive power
control variables (|V2|,T3−4,T5−6,Qc4,Qc6) in the ward–Hale power system, where|V2| is the terminal voltage reference of the PV bus, T3−4 is the tap setting for chang-
ers between buses 3 and 4, the same as T5−6, and Qc4 is the reactive power demand
for the capacitor banks of buses 4, the same as Qc6. Each RL agent associates with
a reactive power controller. The tap changing transformers do not require addi-
tional NAs. Through monitoring information exchanging between node neigh-
boring agents b3–b4 along with agents b5–b6, the global reward signal can be
obtained, respectively. In this way, it becomes possible to decrease the number of

34

256

1

Figure 4.2 The
Ward–Hale 6-bus system.
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Node agent b1
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RL agent b2

Node agent c6

Figure 4.3 Implementation of MASRL for the Ward–Hale system.

NAs, which further reduces the implementation cost and increases the communi-
cation efficiency. Thus, as shown in Figure 4.3, there are only six nodes and five
RL agents in the system, which can be regarded as a demonstration of the “fully
distributed” characteristic of the designed solution.

The allowable range of voltage of the PV generator is (0.95, 1.05) with a step
size of 0.005. Changing by a step size of 0.01, the tap changing transformer is set
between 0.9 and 1.1. In addition, the capacitor banks give reactive power genera-
tions between (0, 0.30) with a step size of 0.01. Therefore, 213 × 312 = 8 899 821 is
the number of total possible solutions.

Considering the goal of minimizing real power loss and satisfying the opera-
tional constraints at the same time, there are two kinds of constraints included in
simulation studies. The first one is that the range of bus voltages are set among
0.95–1.05. The other one is that the range of the reactive power productions of two
generators should be limited between −0.2 and 0.5.

To accomplish the information updating process, seven branches and seven
independent coefficients need to be determined. Table 4.2 shows how these
coefficients are determined based on different algorithms. From (4.4), it can be
observed that there exists a negative correlation between the magnitude of the
second largest eigenvalue (||𝜆||) and the converging speed. Thus, through the
comparison of ||𝜆||s of the iteration matrices, the fastest converging speed belongs
to the Mean Metropolis method [13].

Table 4.2 Independent coefficients for information exchange.

a14 a16 a23 a25 a34 a46 a56 |𝝀2|

Uniform 1/6 1/6 1/6 1/6 1/6 1/6 1/6 0.83
Metropolis 1/4 1/4 1/3 1/3 1/4 1/4 1/4 0.74
Mean Metropolis 1/3 1/3 2/5 2/5 1/3 2/7 1/3 0.66
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There are two tests performed to the Ward–Hale system: the first is learning from
scratch while the other one is previous knowledge-based learning. The results and
analysis of these simulations are presented in later sections.

4.1.10.1 Learning from Scratch
Setting the five loads to rated values, the learning process is presented in
Figures 4.4 and 4.5. The process of learning from scratch needs about 2500
iterations to reach convergence. From the fact that the number of investigated
solution (2500) is far less than the number of possible solutions (8 899 821), it is
obvious that the algorithm is computationally efficient.

It can be observed that at some times, the converged value of the global reward
can be reached before the final convergence. Although, in this case, the algorithm
already gets an ideal solution. The agents do not know whether better solutions
can be reached or not. If the time is limited, the algorithm can just end when a
relatively good solution is found before convergence.

Because a current solution must first be deployed before evaluation, sometimes
there are voltage violations, as shown in Figure 4.5, and these bad candidate solu-
tions will create undesirable disturbances. To deal with this problem, there are two
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Figure 4.4 Updating process of average reward of the Ward-Hale system (learning from
scratch).
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Figure 4.5 Updating process of voltage magnitudes of the Ward–Hale system (learning
from scratch).
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Table 4.3 Normalized Q-Tables of the five RL agents.

Q-Table for —V2— Q-Tables for T3–4 and T5–6 Q-Tables for Qc4 and Qc6

Control —V2— Control T3–4 T5–6 Control Qc4 Qc6

0.95 24.6 0.9 51.9 65.4 0 19.4 37.6
0.955 23.3 0.91 55.8 67.3 0.01 21.3 34.3
0.96 22.8 0.92 57.8 70.3 0.02 23.7 42.1

0.965 31.8 0.93 67.3 72.5 0.03 33.7 42.5
0.97 45.7 0.94 65.2 75.4 0.04 48.1 43.8

0.975 42.1 0.95 67.5 80.2 0.05 45.8 46.9
0.98 46 0.96 70.3 85.3 0.06 53 48.7

0.985 45.3 0.97 68.3 100 0.07 52.8 45.7
0.99 65.2 0.98 79.5 85.2 0.08 45 28.8

0.995 70.1 0.99 82.4 83.5 0.09 34.6 36.7
1 69.7 1 85.4 80.6 0.1 49.4 38.6

1.005 57.2 1.01 89.3 83.9 0.11 31.5 51.8
1.01 54.8 1.02 100 82.8 0.12 64.1 44.9

1.015 63.1 1.03 80.4 70.5 0.13 53.6 35.7
1.02 62.6 1.04 68.9 72.6 0.14 48.1 50.8

1.025 65.2 1.05 62.3 78.2 0.15 66 58.4
1.03 68.5 1.06 64.1 63.9 0.16 69 37.5

1.035 76.2 1.07 53.3 60.2 0.17 66.9 59.5
1.04 75.2 1.08 49.2 55.3 0.18 67.9 62.5

1.045 80.7 1.09 47.2 49.5 0.19 64.4 77.6
1.05 100 1.1 40.1 44.7 0.2 69.9 70.8

0.21 67.2 74.8
0.22 64.3 74.4
0.23 64.5 75
0.24 70.8 82.5
0.25 73.8 83.7
0.26 79.8 87.4
0.27 82.3 80.8
0.28 85.6 83
0.29 87.5 85
0.3 100 100
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ways: the first one is pre-evaluating a current solution using some analysis based
on simple models or heuristic rules. Depending on the result of pre-evaluation,
a solution will be accepted or discarded. The second is collecting some initial
knowledge using offline learning. In this method, prior knowledge-based learning
can significantly reduce the learning time and lower the possibility of undesirable
disturbances.

Table 4.3 shows the converged Q-tables of the five RL agents. Normalization
has been done to the Q-values in each column of Table 4.3 (with a maximum
value of 100). Choosing the actions that gain maximum value to be the optimal
solution corresponding to the simulation, the optimal solution in Table 4.3 is
1.05, 1.02, 0.97, 0.30, and 0.30 for ||V2||, T3–4, T5–6, Qc4, and Qc6 respectively. In the
solution, 0.0899 is the value of active power loss.

An examination of the optimality of the solution from MASRL has been done.
The best solution given by a centralized discrete particle swarm optimization
(DPSO)-based method [29] is 1.05, 1.03, 0.98, 0.30, and 0.30, while the correspond-
ing active power loss is 0.0899. Through a comparison of results from DPSO and
MASRL, it can be concluded that MASRL can reach almost the same solutions
as the DPSO. Although large-scale systems may yield multiple solutions with
comparable performance, online applications only need to find a nearly global
best solution.

4.1.10.2 Experience-Based Learning
The goal of the test is to check the impact of prior knowledge to the performance of
the MASRL, randomly setting the loading levels to be either 15% larger or smaller
than rated values and initializing the Q-tables based on former test. Figures 4.6–4.8
show the simulation results.

In Figure 4.6, compared to the previous test, the speed of convergence of this
test is much faster. It only takes around 80 iterations while the previous test costs
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Figure 4.6 Updating process of average reward of the Ward–Hale system (learning
based on prior knowledge).
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Figure 4.7 Updating process of steady-state voltage magnitudes of the Ward–Hale
system (learning based on prior knowledge).

2500 iterations. Although the difference of loading level exists, prior knowledge is
able to significantly accelerate the learning process. In addition, it is reasonable to
make the prediction that if operating points remain the same as the one tested, the
algorithm will converge even faster.

In Figure 4.7, it can be observed that the steady-state voltage of non-generator
buses always stays within the range of 0.95–1.05. Besides, investigating the tran-
sient states is also necessary. Figure 4.8 shows the dynamic responses of bus volt-
age in the learning process.

In Figure 4.8, it can be observed that the system converges fast and the voltages
remain within the limit. It can be concluded that during the process of continuous
learning, undesirable disturbances and the violation of constraints all decrease.

Because of the fact that reward signal calculation can only be measured after the
system becomes stable, Figure 4.8 can be viewed as an estimation of the speed of
the MASRL algorithm. It only takes less than half a second for the bus voltage to
converge.

Because of the fact that Tdi is very smaller compared to Tmi, the overall time for
the learning process is estimated as 0.5 × 80= 40 seconds, and this estimation is

0.2 0.4 0.6 0.8 1
Time (s)

V
ol

ta
ge

 m
ag

ni
tu

de
 (

p.
u.

)

1.2 1.4 1.6 1.8 2 2.10
0.85

0.9

0.95

1

1.05

Bus 6Bus 5Bus 4Bus 3Bus 2Bus 1

Figure 4.8 Dynamic voltage response during learning of the Ward–Hale system
(learning based on prior knowledge).
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very conservative. Most of the times, there is no need to wait for half a second to
decide the performance of a potential solution.

4.1.10.3 IEEE 30-Bus System
In order to test the performance of the designed algorithm under the condition of
a larger searching space, this paper implements the MASRL algorithm to the IEEE
30-bus system. As shown in Table 4.4, there are eight control variables, one half
for tap changing transformer and the other half for capacitor banks.

In addition, every control variable for the tap changing transformers is set to be 1
of 21 possible values within [0.9, 1.1], while each control variable for the capacitor
banks is set within [0, 20]. Therefore, the overall number of possible solutions is
218 = 3.7823 × 1010. It is very challenging to find a good solution from all these
solutions.

As mentioned before, the MASRL algorithm goes through two different operat-
ing conditions. In the first one, the whole Q-tables are set to zero and the loads are
set to rated values. In the second, initial Q-tables come from the converged Q-tables
and loads are randomly generated, and Figures 4.9–4.12 show the simulation
results.

In Figures 4.4 and 4.9, it can be observed that it takes 4000 iterations for the
learning process to reach convergence, and the speed of the algorithm seems inde-
pendent of the size of searching space, which is an ideal characteristic.

Thus, the algorithm is computationally efficient under the condition of a huge
searching space. Figures 4.10 and 4.11 show the fact that not only the learning
process can be largely accelerated by prior knowledge but also the possibility of
constraint violations can be reduced by prior knowledge. In Figure 4.12, once
a candidate solution is deployed, the system’s response reaches stability within
around 1 second. Similarly, if previous experience is available, it only takes about
140 seconds for the optimization process to converge.
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Figure 4.9 Updating process of the average reward of the IEEE 30-bus system (learning
from scratch).
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Figure 4.10 Updating process of average reward of the IEEE 30-bus system (learning
based on prior knowledge).
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Figure 4.12 Dynamic voltage response during learning of the IEEE 30-bus system
(learning based on prior knowledge).

As shown in Table 4.4, there are some evaluations about the optimality
of the results from the MASRL algorithm. Compared to the solutions from
centralized DPSO and IP algorithm, the solution obtained from MASRL is
as good as the solution from DPSO and appear better than the solution from
IP algorithm.
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Table 4.4 Comparison of solutions obtained using MASRL, DPSO,
and IP (IEEE 30-bus system).

Variable MASRL DPSO IP

T4–12 1.05 1.05 0.932
T6–9 1.05 1.06 0.978
T6–10 0.9 0.9 0.969
T28–27 1 0.99 0.968
Qc7 0.18 0.15 0.16
Qc14 0.04 0.04 0.02
Qc16 0.1 0.07 0.1
Qc30 0.04 0.04 0.03

P1oss (MW) 17.94 17.93 18.15

4.1.10.4 IEEE 162-Bus System
In this test, the application scenario is a large-scale power system. The MASRL
algorithm need to deal with 20 control variables: 10 for reactive power dispatch,
6 for tap changing transformer, and 4 for capacitor banks. For the tap changing
transformers, variables are set to be 1 of the 21 possible values in the range of [0.90,
1.10]. For capacitor banks, the range is [0, 20]. As a result, the total number of pos-
sible solution is around 2110 = 1.6680 ∗ 1013. As shown in Figures 4.13 and 4.14,
MASRL is tested in the conditions with and without prior knowledge, respectively.
The same as before, the results show that the prior knowledge largely accelerates
the learning process. Table 4.5 shows that the performance of MASRL seems better
than the performance of IP and almost the same as that of DPSO
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Figure 4.13 Updating process of average reward of the IEEE 162-bus system (learning
from scratch).
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Figure 4.14 Updating process of average reward of the IEEE 162-bus system (learning
based on prior knowledge).

Table 4.5 Comparison of solutions obtained using MASRL, DPSO,
and IP (IEEE 162-Bus system).

Variable MASRL DPSO IP

T22–39 1.04 1.06 1.108
T52–118 1.09 1.09 1.043
T75–130 1 1 1.025
T94–109 1.04 1.1 1.025
T120–14 1 1 0.975
T144–141 1.1 1.08 1.025
Qc27 0.17 0.11 0.16
Qc52 0.03 0.2 0.05
Qc98 0.15 0.04 0.07
Qc147 0.13 0.11 0.14

P1oss (MW) 162.82 162.78 162.92

4.1.11 Conclusion

This paper proposes a novel, fully distributed MASRL solution for ORPD. MASRL
solution can not only avoid some problems of centralized algorithms but also gain
a high-quality result, which is comparable or even better than that of centralized
algorithms. These advantages come from the integration of two algorithms: one
is an information discovery algorithm based on consensus and the other one is a
distributed Q-learning algorithm.

The responsibility of the first algorithm is calculating the global rewards based
on local communications. It is proved that this information discovery process is
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stable for any size and any configuration of systems. Moreover, this algorithm
appears robust in different operating conditions.

For the second algorithm, there are many ideal advantages. First, this distributed
Q-learning algorithm needs less memory and appears more computationally effi-
cient compared to other algorithms. Second, although sometimes not converg-
ing to global optimum, this algorithm is able to provide nearly optimal solutions.
Third, this algorithm can work with a relatively less accurate system model, which
avoids model impreciseness. Finally, the efficiency of the algorithm can be further
improved through continuous online learning.

In order to decide which algorithm to choose (MASRL or centralized optimiza-
tion algorithms), one should balance the factors of cost, speed, reliability, and
flexibility. Future work should focus on implementing the proposed solution to
hardware agents and using real-time simulation to test the MAS.

4.2 Sub-gradient-Based Reactive Power Control

The development and utilization of renewable energy in the energy system show
strong vitality in realizing the sustainable development of human society and
nature. In the current context, an increasing number of devices of reactive power
control cooperate into the power distribution system, which calls for upgrading
the existing reactive power control solutions. This paper puts forward a fully
distributed MAS in terms of the optimal reactive power control (ORPC) solution
to ameliorate voltage profiles of the power grids while working with a higher
energy efficiency under various operating conditions. In the new scenario, only
data measured locally or get from the adjacent buses are required by the reactive
controller so as to update its control settings. Based on the moderate assumptions,
this paper derives the updated rules of the sub-gradient algorithm. The results
show that the stable-state performance of the proposed method is comparative
to that of the centralized optimization scheme. Because the structure of com-
munication topology is simple and the data amount addressed in the process
is cut down, this solution shows an advantage of timely response to changes in
operating conditions. The validity of the scheme is verified by simulation studies
of power systems weight disparate scales.

4.2.1 Introduction

Research studies on ORPC are front-burner issues in the electric system. The
major purpose of ORPC is composed of two different parts, reducing system active
losses and ameliorating voltage profiles, respectively [30]. Control variables in the
ORPC system are involved with voltage references of generator buses, reactive
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power generation of var sources, the tap ratios of transformers, and other OPRC
variables. The main constraints correspond to the limits of the generator and load
bus voltage, the tap ratios of transformers, the reactive power sources, and the
balance between supply and demand in the system [31].

Presently, the methods adopted by reactive power control are a three-level con-
trol pattern [32]. The primary reactive power control, as local control, takes charge
of controlling the voltage of a certain bus, mostly the generator bus. The reac-
tive power injection over a regional voltage zone is regulated by the secondary
reactive power control via a centralized control method to keep the voltages of
the pilot buses within normal ranges. Both the primary and secondary controls
here give up the reactive power injection optimization, in which the target is to
minimize power losses and improve voltage profiles. Thus, tertiary ORPC is con-
figured to realize the reactive power generation/distribution over the considered
power grid.

Scholars have developed variable optimization methods and techniques to
address the ORPC problem, such as gradient method [33], linear programming
[34, 35], IP method [3, 4], and computational intelligence-based algorithms
[36, 37]. The performances of the power generation grids can be improved to
some extent by applying these optimization approaches. Nonetheless, because
of the current centralized deployment philosophy, most reactive power control
solutions cannot realize optimal online control because of high-density data to be
processed and the latency intrinsic in complicated communication systems.

OPRC research studies are now facing new challenges as we are thriving to
build a smarter grid. Massive distributed generation (DG), equipped in smart grids,
makes the OPRC problem more complicated to solve. The integration of these DGs
demands more reactive power control equipment for voltage support, subject to
the frequent change of the operating conditions, which requires updating existing
OPRC solutions with the aim of increasing responsiveness.

Because response speed can be improved through computing technology,
researchers have developed the MAS architecture to solve the problem of ORPC
[38, 39]. Extant MAS-based methods developed for reactive power control
endeavor to split the primary optimal problems and then solve them by applying
distributed computing techniques [40–43]. Nevertheless, because the majority of
these methods still need specific agents to coordinate the operations of all other
agents, these methods are not fully distributed. Therefore, these methods are
not resilient and still suffer a single-point failure. Furthermore, constructing a
control center to manage significant amounts of reactive power control devices
that are geographically distributed is quite costly. In addition, considering the
intermittent nature of renewable resources, the conventional snapshot-based
optimal algorithms’ lack of adaptability restrain their deployment for online
applications, which require frequent update control settings.
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Xu et al. proposed a distributed solution method for ORPD in their paper [44].
This method is designed based on a global information discovery algorithm and
a distributed Q-learning algorithm. This learning-based solution circumvents the
dilemma to analyze complicated power system models. Additionally, it is easy to
implement and is adaptive to the change in operating conditions. However, it has
shortcomings. The first one lies in undesirable disturbances that are caused by the
learning process required for the Q-learning algorithm. The second one is that
the optimization process requires too many steps to converge, especially when
learning from scratch. To surmount these limitations, model-based analysis can
be applied to reduce the possibility of random control updates and increase the
rate of convergence.

The above analysis shows that for smart grids, an ideal OPRC solution ought
to be distributed, highly efficient in computation, and fit for online optimization.
In this section, we propose an MAS-based distributed solution for ORPC. The
solution, which is based on a distributed sub-gradient algorithm, is appropriate
for distributed computing. In addition, different from traditional solutions,
the proposed solution does not require a specialized agent to coordinate other
agents. Therefore, the solution can greatly reduce the chance of single-point
failure, which is prone to happen for the centralized or semi-distributed solutions
mentioned above. Moreover, the solution proposed here is flexible and scalable,
suitable for power systems, and has various sizes and tautologies. As shown
later, the proposed solution is robust to a specific type of failure. With a timely
response due to the reduced communication delays and updates of control action,
the MAS-based solution can make the online optimization of smart grids into
realization.

Because of the proposed fully distributed solution, there is no need to coordinate
with certain agents. Therefore, the probability of single-point failure can be dra-
matically reduced in either an integrated or the above mentioned semi-distributed
agent-based solutions. Furthermore, the presented solution can be implemented
in different topologies flexibly. Subsequently, it is demonstrated that the solution
is robust against certain failures. The MAS can realize online optimization of the
intelligent grid for control action updates and the reduction in communication
latency.

In this section, we will first introduce the problem formulation. Then, we will
briefly introduce the sub-gradient algorithm used for optimization. Following that,
we provide the derivation of equations for distributed sub-gradient calculations.
After discussing the issues related to the implementation, we present the sim-
ulation results for different sizes of power systems with the proposed solution.
Concluding remarks are provided at the end of this section.
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4.2.2 Problem Formulation

In this section, it is assumed that reactive power control devices such as capacitors
and load tap transformers have been equipped or deployed. The OPRC proposed is
designed to minimize actual power losses and improve the voltage profiles of the
grid by means of redistributing the reactive power.

The objective function of minimizing the active power loss is expressed as [45]:

min PL =
n∑

j=1

n∑
k=1

VjVkGjk cos(𝛿j − 𝛿k) (4.15)

where Vj is the voltage magnitude at bus j, 𝛿j is the phase angle at bus j, n is the
number of buses, and Gjk is the conductance component of Y-bus element Yjk.

On the purpose of improving voltage profiles of the system, the corresponding
objective function is defined as

D
𝑣
=

n∑
i=1

(Vi − V∗
i )

2 (4.16)

where Vi and V∗
i are the actual and required bus voltage magnitudes, respectively,

for bus i.
To achieve a good balance between obtaining an expected voltage pattern and

minimizing the active power losses [46], the function is defined as a weight sum
of PL and D

𝑣
:

f = W1PL + W2D
𝑣

(4.17)

where W1 and W2 refer to the weight coefficients for PL and D
𝑣
, respectively, which

can be determined by the operator of the system.
In this chapter, the control variables we considered for ORPC include capacitor

bank switching, voltage references of the generator buses, and transformer tap
settings, and these variables are denoted with the following vector:

u = [QC,VG,TLTC]T

= [Qc1,Qc2 · · · Qcl,Vg1,Vg2 · · · Vgp, tt1, tt2 · · · ttm]T (4.18)

where l, p, and m separately refer to the number of capacitor banks, generators,
and transformers contributing to ORPC; Qci is the injected reactive power of ith
capacitor bank; Vgi is the bus voltage reference of generator i; and tti is the tap
setting of transformer i.

The control variables should be bounded as [47]:⎧⎪⎨⎪⎩
Q

ci
≤ Qci ≤ Qci 1 ≤ i ≤ l

V gi ≤ Vgi ≤ V gi 1 ≤ i ≤ p
Tti ≤ Tti ≤ Tti 1 ≤ i ≤ m

(4.19)
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where “_” and “−;” represent the lower and upper bounds of the control variables,
respectively.

Additionally, supply and demand balance of the system should be maintained,
which can be formulated as constraints given in Eqs. (4.20) and (4.21) [45].

PGj − PLj − Vj

n∑
k=1

Vk(Gjk cos 𝛿jk + Bjk sin 𝛿jk) = 0 (4.20)

QGj + QCj − QLj − Vj

n∑
k=1

Vk(Gjk sin 𝛿jk − Bjk cos 𝛿jk) = 0 (4.21)

Here, PGj, QGj are the active and reactive power generations at bus j, PLj, QLj are the
active and reactive power load at bus j, QCj refers to the injected reactive power of
the capacitor bank at bus j, Gjk + jBjk = Yjk is the element of the admittance matrix
(Y-bus), corresponding to the branch connecting bus j and bus k, and 𝛿jk = 𝛿j − 𝛿k
is defined as the voltage phase angle difference between these two buses.

According to the above mentioned analysis, ORPC can be expressed as a
constrained optimization problem in which the objective function is given by
Eq. (4.17) and the constraints follow Eqs. (4.19)–(4.21).

The convexity of the active power loss function is demonstrated over a wide
range of operating conditions in [48]. Thus, in this section, we assume that the
objective function given in Eq. (4.15) is convex with respect to the control variables.
Besides, the convexity of D

𝑣
defined as Eq. (4.16) is obvious. Consequently, we can

draw a conclusion that the additive function f defined in Eq. (4.17) is convex, and
the overall ORPC problem is, thus, a constrained convex optimization problem.

The commonly used IP methods for convex optimization are centralized. Under
the context of accommodating increasing renewable energy, current control
philosophy is moving toward shifting from the conventional centralized paradigm
into a distributed control architecture [49]. Consequently, a distributed control
solution is much preferred to realize ORPC for the power system with large
amounts of reactive power control devices. Because the sub-gradient algorithm
can be easily implemented in a distributed manner, we apply it to solve the ORPC
problem here. Compared with the IP method, the sub-gradient-based solution
method takes less memory and computation and is suitable to solve large-scale
problems with decomposition techniques [50, 51].

4.2.3 Distributed Sub-gradient Algorithm

For convenience, we first give a brief introduction to the distributed sub-gradient
algorithm.

For a convex function f (u) ∶ Rn → R, the sub-gradient algorithm can be
expressed as [52, 53]:

uk+1 = uk − 𝛼k▽f k (4.22)
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where ▽f k is the sub-gradient of f at uk. The details on optimality, convergence
speed, and error analysis can be found in [53].

Notably, the above algorithm does not require that “▽f k” to align with the steep-
est descent direction.

Rewrite Eq. (4.22) into a distributed form:

uk+1
i = uk

i − 𝛼k▽if k (4.23)

where uk
i refers to the ith component of u(k). Note that the update of uk+1

i is only
decided by its preceding state uk

i and sub-gradient ▽if k. If it is possible to deter-
mine the sub-gradient in a distributed way, the algorithm will become a distributed
algorithm.

For ORPC problem solving, it is not easy to compute the sub-gradients in a dis-
tributed way because of the following reasons. The first reason lies in that PL is
a function of state variables (V and 𝜹) rather than control variables (u) because
it is difficult to express PL w.r.t. the control variables, which makes it difficult to
evaluate the performances of control combinations. Secondly, the power system is
actually a complicated and coupled nonlinear system, wherein the change in one
control variable will result in the changes of quite a lot of state variables. Relatively
accurate computation of sub-gradients requires to carryout sensitivity analysis [26,
54]. This technique needs to calculate the inverse of the global information-based
matrix and thus is not suitable for distributed control implementation for future
smart grids.

As mentioned earlier, there is no need to find the steepest descent direction for
the sub-gradient algorithm. Therefore, mild assumptions and approximations can
be utilized to develop the equations for sub-gradient calculation.

The method introduced in [49] numerically approximates the sub-gradient:

▽if (uk) =
f (uk) − f (uk−1)

uk
i − uk−1

i

(4.24)

According to the formula Eq. (4.24), both f (uk) and its previous value, f (uk−1)
are required for the calculation of the sub-gradient. The author in [49] finds the
global information, f (uk) using the so-called coupled oscillator first appeared in
[55, 56]. One problem with Eq. (4.24) is that it is difficult to choose the appropri-
ate time interval between two consecutive control updates, uk and uk−1. For one
thing, shorter time interval cannot guarantee the convergence of the coupled oscil-
lator algorithm. For another, the larger time interval may result in inaccuracies for
sub-gradient calculations, especially under the circumstances of severe operating
conditions changes. Researchers in [49] set the time interval as 1.2 minutes. The
entire optimization process may take more than 20 minutes to converge. Here, in
this chapter, in order to improve the convergence speed as well as the accuracy for
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sub-gradient calculation, we propose to calculate the sub-gradients based on the
current state of the power system based on the mild assumptions.

4.2.4 Sub-gradient Distribution Calculation

In this section, three assumptions are utilized for simplifying the design of dis-
tributed sub-gradients algorithms as follows:

Hypothesis 1: The change in reactive power at bus i (Qi) only leads to a change in
the voltage magnitude at bus i (Vi).

Hypothesis 2: The change in transformer tap setting (ti) only leads to the change in
power system loss (PL).

Hypothesis 3: The change in active power injection at bus i (Pi) only results in the
change of voltage phase angle at bus i (𝛿i).

Noticeably, there is no possibility of online analysis on the basis of elaborated
power system models for the complication of the power system. Hence, it is nec-
essary to apply suitable assumptions on online optimization for the sake of sim-
plification. During algorithm design, these assumptions exploit the P–𝛿 and Q–V
characteristics that are extensively used in studies of power systems such as the fast
decoupled load flow and decoupled active and reactive power controls. A simple
algorithm appropriate for online distributed computing can be obtained through
these assumptions.

The equations of distributed sub-gradient calculation can be derived as follows.
The sub-gradient vector ▽f (u) can be represented as:

▽f (u) =

[
𝜕f
𝜕Qc1

· · · ,
𝜕f
𝜕Qcl

,
𝜕f
𝜕Vg1

· · · ,
𝜕f
𝜕Vgp

,
𝜕f
𝜕tt1

· · · ,
𝜕f
𝜕ttm

]T

(4.25)

As shown in Eq. (4.27), the sub-gradients corresponding to three different control
variables are defined, namely, reactive power sub-gradient (𝜕f∕𝜕Qci) for capacitor
banks, voltage subgradient (𝜕f∕𝜕Vgi) for generators, and transformer subgradient
(𝜕f∕𝜕tti) for transformers, and the calculation of them will be introduced in the
following context.

4.2.4.1 Calculation of 𝝏f∕𝝏Qci for Capacitor Banks
The reactive power sub-gradient can be developed as:

𝜕f
𝜕Qci

= W1
𝜕PL

𝜕Qci
+ W2

𝜕D
𝑣

𝜕Qci
(4.26)

Because W1 and W2 are constants, we only need to calculate 𝜕PL
𝜕Qci

and 𝜕D
𝑣

𝜕Qci
.
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For the first term in Eq. (4.26), the active power loss PL can be expressed as:

PL =
n∑

j=1

n∑
k=1

VjVkGjk cos(𝛿j − 𝛿k) (4.27)

Provided the installation of a capacitor bank at bus i, 𝜕PL
𝜕Qci

= 𝜕PL
𝜕Qi

, and 𝜕D
𝑣

𝜕Qci
= 𝜕D

𝑣

𝜕Qi
.

According to the assumption 1, the derivative of PL w.r.t. Qi can be expressed as:

𝜕PL

𝜕Qi
=

n∑
j=1

n∑
k=1

Gjk cos(𝛿j − 𝛿k)
𝜕(VjVk)
𝜕Qi

(4.28)

For Eq. (4.28), the following results can be obtained with different combinations
of j, k, and i.

𝜕(VjVk)
𝜕Qi

=

⎧⎪⎪⎨⎪⎪⎩

2Vi
𝜕Vi
𝜕Qi

j = i, k = i
Vk

𝜕Vi
𝜕Qi

j = i, k ≠ i
Vj

𝜕Vi
𝜕Qi

j ≠ i, k = i
0 otherwise

(4.29)

Rewrite Eq. (4.28) as Eq. (4.32) using Eq. (4.31)

𝜕PL

𝜕Qi
=

n∑
j=1,j≠i

Gji cos(𝛿j − 𝛿i)Vj
𝜕Vi

𝜕Qi
+

n∑
k=1,k≠i

Gik cos(𝛿i − 𝛿k)Vk
𝜕Vi

𝜕Qi
+ 2GiiVi

𝜕Vi

𝜕Qi

=
n∑

j=1,j≠i
Gji cos(𝛿i − 𝛿j)Vj

𝜕Vi

𝜕Qi
+ GiiVi

𝜕Vi

𝜕Qi

+
n∑

j=1,j≠i
Gij cos(𝛿i − 𝛿j)Vj

𝜕Vi

𝜕Qi
+ GiiVi

𝜕Vi

𝜕Qi
= 2

𝜕Vi

𝜕Qi

n∑
j=1

GijVj cos(𝛿i − 𝛿j)

(4.30)

The reactive power injection at bus i can be expressed as:

Qi = Vi

n∑
j=1

Vj(Gij sin 𝛿ij − Bij cos 𝛿ij) (4.31)

Based on assumption 1, the derivative of Eq. (4.31) w.r.t Qi can be denoted as:
𝜕Vi

𝜕Qi
= 1

−ViBii +
∑n

j=1Vj(Gij sin 𝛿ij − Bij cos 𝛿ij)
(4.32)

The first term in Eq. (4.26) can be computed using Eqs. (4.32) and (4.34).
According to assumption 1, the second term of the reactive power sub-gradient

can be expressed as:
𝜕D

𝑣

𝜕Qi
= 2(Vi − V∗

i )
𝜕Vi

𝜕Qi
(4.33)

Now, the second term of Eq. (4.26) can be computed using Eqs. (4.32) and (4.33).
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4.2.4.2 Calculation of 𝝏f∕𝝏Vgi for a Generator
The voltage sub-gradient can be represented as:

𝜕f
𝜕Vgi

= W1
𝜕PL

𝜕Vgi
+ W2

𝜕D
𝑣

𝜕Vgi
(4.34)

For a generator connected at bus i, 𝜕PL
𝜕Vgi

= 𝜕PL
𝜕Vi

, and 𝜕D
𝑣

𝜕Vgi
= 𝜕D

𝑣

𝜕Vi
.

Changes at the terminal voltage of the generator lead to the changes of the
reactive power injection at the same bus. Thus, the first term of the voltage
sub-gradient given in Eq. (4.34) can be expressed as:

𝜕PL

𝜕Vgi
=

𝜕PL

𝜕Qi

𝜕Qi

𝜕Vi
(4.35)

Based on equation Eq. (4.30), the first term of the right side in Eq. (4.35) can
be calculated. Similarly, based on Eq. (4.32), the second term of the right side
of Eq. (4.35) can be calculated. Therefore, utilizing Eqs. (4.30), Eq. (4.32), and
Eq. (4.35), the first term of voltage sub-gradient can be calculated.

The second term of the voltage sub-gradient is expressed as:

𝜕D
𝑣

𝜕Vi
= 2(Vi − V∗

i ) (4.36)

4.2.4.3 Calculation of 𝝏f∕𝝏tti for a Transformer
By applying assumption 2, the transformer sub-gradient can be expressed as:

𝜕f
𝜕tti

= W1
𝜕PL

𝜕tti
+ W2

𝜕D
𝑣

𝜕tti
= W1

𝜕PL

𝜕tti
(4.37)

For convenience, in the following context, tjk is used to denote the transformer
tap setting, with j and k denoting indexes of buses that a transformer tti is con-
nected to.

For the transformer shown in Figure 4.15, the sub-gradient with respect of trans-
former tap is acquired based on [57]:

𝜕PL

𝜕tjk
=

𝜕PL

𝜕Pj

(
−
𝜕Pjk

𝜕tjk

)
+

𝜕PL

𝜕Qj

(
−
𝜕Qjk

𝜕tjk

)
+

𝜕PL

𝜕Pk

(
−
𝜕Pkj

𝜕tjk

)
+

𝜕PL

𝜕Qk

(
−
𝜕Qkj

𝜕tjk

)
(4.38)

Pj, Qj

yjk = –Yjk

Pk, Qk

j ktjk : 1
Figure 4.15 Transformer
representation.
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In light of Eq. (4.27), 𝜕PL∕𝜕Pj can be written as (27) by applying assumption 3.

𝜕PL

𝜕Pj
=

n∑
𝛼=1

n∑
𝛽=1

V
𝛼
V
𝛽
G
𝛼𝛽

𝜕 cos(𝛿
𝛼
− 𝛿

𝛽
)

𝜕Pj
(4.39)

For different combinations of 𝛼, 𝛽, and j, we can obtain:

𝜕 cos(𝛿
𝛼
− 𝛿

𝛽
)

𝜕Pj
=
⎧⎪⎨⎪⎩
− sin(𝛿j − 𝛿

𝛽
) 𝜕𝛿j

𝜕Pj
, 𝛼 = j, 𝛽 ≠ j

sin(𝛿
𝛼j − 𝛿j)

𝜕𝛿j

𝜕Pj
, 𝛼 ≠= j, 𝛽 = j

0, otherwise

According to Eqs. (4.40), Eq. (4.39) can be rewritten as follows:

𝝏PL
𝝏Pj

= Vj

n∑
𝛼=1

V
𝛼
G
𝛼j sin(𝛿

𝛼
− 𝛿j)

𝜕𝛿j

𝜕Pj
− Vj

n∑
𝛽=1

V
𝛽
Gj𝛽 sin(𝛿j − 𝛿

𝛼
)
𝜕𝛿j

𝜕Pj

= −Vj

n∑
𝛼=1

V
𝛼
Gj𝛼 sin(𝛿j − 𝛿

𝛼
)
𝜕𝛿j

𝜕Pj
− Vj

n∑
𝛼=1

V
𝛼
Gj𝛼 sin(𝛿j − 𝛿

𝛼
)
𝜕𝛿j

𝜕Pj

= −2Vj
𝜕𝛿j

𝜕Pj

n∑
𝛼=1

V
𝛼
Gj𝛼 sin(𝛿j − 𝛿

𝛼
) (4.40)

The active power injection for bus i can be expressed as:

Pj = Vj

n∑
𝛼=1

V
𝛼
(Gj𝛼 cos 𝛿j𝛼 + Bj𝛼 sin 𝛿j𝛼) (4.41)

Then we can calculate 𝜕𝛿j∕𝜕Pj with the help of assumption 1:

𝜕𝛿j

𝜕Pj
= 1

Vj
∑n

𝛼=1,𝛼≠jV𝛼
(Bj𝛼 cos 𝛿j𝛼 − Gj𝛼 sin 𝛿j𝛼)

(4.42)

𝜕Pj∕𝜕Pk in Eq. (4.38) can be calculated using Eq. (4.41), and 𝜕PL∕𝜕Qk there can
then be calculated using Eq. (4.30).

The power flow of a transformer branch can be calculated as follows:

Pjk = V 2
j gjk + tjkVjVk(−Gjk cos 𝛿jk − Bjk sin 𝛿jk)

Qjk = −V 2
j bjk + tjkVjVk(−Gjk sin 𝛿jk + Bjk cos 𝛿jk) (4.43)

Pkj = t2
jkV 2

k gjk + tjkVjVk(−Gjk cos 𝛿jk + Bjk sin 𝛿jk)

Qkj = −t2
jkV 2

k bjk + tjkVjVk(−Gjk sin 𝛿jk + Bjk cos 𝛿jk)

Here, 𝜕Pjk𝜕tjk, 𝜕Qjk𝜕tjk, 𝜕Pkj𝜕tjk, and 𝜕Qkj𝜕tjk above can be obtained as follows:

𝜕Pjk

𝜕tjk
= VjVk(−Gjk cos 𝛿jk − Bjk sin 𝛿jk) (4.44)
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𝜕Qjk

𝜕tjk
= VjVk(−Gjk sin 𝛿jk + Bjk cos 𝛿jk) (4.45)

𝜕Pkj

𝜕tjk
= 2tjkGjkVk + VjVk(−Gjk cos 𝛿jk + Bjk sin 𝛿jk) (4.46)

𝜕Qkj

𝜕tjk
= −2tjkVkBjk + VjVk(Gjk sin 𝛿jk + Bjk cos 𝛿jk) (4.47)

We are now able to calculate all the partial derivatives in Eq. (4.38).
Note that the method proposed here only needs the sub-gradients of the objec-

tive function related to the control variables, with no need of computing the objec-
tive function. In this way, the proposed control solution can adjust the control
settings based on the directions of the sub-gradients. The active power loss here
is expressed as the formula of bus admittance (Y-bus), and magnitudes (V) and
the phase angle of the bus voltages 𝛿. From the equations for sub-gradient cal-
culation, we can see that the value of the active power loss is not required to
calculate the sub-gradients. This indicates that updating local control settings do
not require any calculation or measurement of global active power loss. Further-
more, we can obtain all the information required for sub-gradient computation
locally or only from the adjacent buses, which then leads to the distributed calcu-
lation of sub-gradients.

It should be noted that there are three assumptions used for simplifying the cal-
culation of sub-gradients and then realizing distributed calculations. The simula-
tion results presented later demonstrate that the assumptions made for calculation
are reasonable and will not affect the optimality of the proposed control strategy.

4.2.5 Realization of Mas-Based Solution

The control diagram of the ORPC system is shown in Figure 4.16. Each bus is
assigned with a NA for acquiring local measurement data and exchanging infor-
mation with its neighboring NAs. In this chapter, the communication networks
of the MAS system are designed such that two NAs of the MAS system can com-
municate with each other only when their corresponding buses are electrically
connected. This kind of practice can facilitate the usage of power line communi-
cation, which can then reduce the cost of control implementation. Additionally,
this kind of communication topology design can easily realize the information
exchanges of voltage amplitudes and phase angles between adjacent buses, i.e.
neighboring agents. Yet, the communication topology can be devised to be differ-
ent from that of the power network. The features of distributed control solutions
based on MAS can be found in [16, 17].

As illustrated in Figure 4.16, each reactive power control device is installed with
an agent called reactive power control agent (RPCA). Given that the RPCA takes
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Figure 4.16 The control chart of the distributed OPRC system.

responsibility for generator voltage control or capacitor bank switching, it can
receive the information of the local NA. If an RPCA is responsible for transformer
tap changing, it is designed to receive information from both NAs of the buses that
this transformer is connected to. After obtaining all the necessary information,
RPCA will update the control settings by applying the distributed sub-gradient
algorithm.

The NAs and RPCAs, controllers similar to the ones described in [44], contains
three function modules, namely, data measurement, data processing, and com-
munication. Note that the functions of an agent can be designed case to case,
depending on the consideration of different developers and requirements of the
system integration. Based on the definition in [58], a basic agent can be a software
or hardware entity. In this chapter, an agent is defined as a functional module that
combines physical controllers and computing elements. According to our design,
the agent can adapt to changes in operating conditions by adjusting the control
settings of the related local reactive controller. The following section will discuss
issues about measurement and generator control.

4.2.5.1 Computation of Voltage Phase Angle Difference
All three types of calculations need voltage amplitudes and voltage phase angle dif-
ferences of two adjacent buses. Adjacent buses are connected to the bus physically
through power lines. Because each bus is installed with a NA, it is easy to measure
the voltage amplitude locally and share it through the distributed communication.
However, for most of the existing systems, voltage phase angle measurements are
not available if phasor measurement units (PMUs) are not deployed. The reason
lies in that a common synchronous frame is required to acquire the measurements
of bus voltage phase angles of the system.
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Figure 4.17 Voltage phase angle
difference measured by NAs.

Note that for our proposed method, the calculation of the sub-gradients only
requires the voltage phase angle difference of two adjacent buses rather than the
absolute value of the voltage phase angles of these two buses. According to the
design of the NA, it can easily measure the voltage phase angle difference between
two adjacent buses. Figure 4.17 shows the principle of calculating the voltage
phase angle difference of two adjacent buses by using the corresponding NAs
of them. In Figure 4.17, voltage waves Vj and Vk are recorded by NAj and NAk,
respectively, both of them being recorded with time stamps by using a common
clock.

The zero-crossing instants of Vj and Vk are denoted as tj and tk. Then, the voltage
phase angle difference between Vj and Vk can be calculated as follows:

𝛿jk = 2𝜋fM(tk − tj) (4.48)

where fM is the frequency of the power system measured by NAs.
During this process, the instant of voltage zero-crossing of a bus is recorded by

its corresponding agent and transmitted to its neighboring agents for calculating
phase angle difference. Therefore, the NAs are only required to share information
locally rather than getting involved in the coordination of the central controller,
which significantly reduces the amount of communication data as well as the time
consumed for communication.

4.2.5.2 Generation Control for ORPC
For the generator that participates in ORPC, an automatic voltage control system is
deployed for this generator’s voltage regulation. The reallocation of reactive power
will lead to a change of active power loss of the power system and thus change the
active power demand of the overall system. In order to keep an efficient balance
between supply and demand of active power, the active power/frequency control
system is adopted for the generator generally based on the droop control or PI
control. The active power/frequency control systems are typically realized on the
basis of droop control or PI control. The generation control scheme for ORPC
is illustrated in Figure 4.18. As shown in the control signal updating rule and
the formulae for sub-gradient calculation, an RPCA generates the local control
signal based on the measured voltage amplitudes and voltage phase angle differ-
ence from local and neighboring agents and bus admittance. Because instants of



�

� �

�

4.2 Sub-gradient-Based Reactive Power Control 129

G

RPCA

Active power / frequency
control system

Automatic voltage
Control system

NA

Grid

Vt

Vref

Vj,δj (δij)

Δf

Figure 4.18 OPRC generation control scheme.

zero-crossing will be utilized to compute the voltage phase angle difference of two
connected buses, it is necessary to synchronize them using a common clock signal
(for example, a GPS signal). Once all the required information has been obtained
through local measurement and communication, the RCPAs will update and then
deploy local control signals consecutively. This process will be repeated until the
optimal solution is found, or the change of the operating conditions triggers a new
round of optimization.

4.2.6 Simulation and Tests

We evaluate the presented control scheme with the 6-bus Ward-Hale system, the
IEEE 30-bus system, and the 1062-bus system in this part.

4.2.6.1 Test of the 6-Bus Ward–Hale System
There are six reactive power controllers in this 6-bus system [31] and their param-
eters are shown in Table 4.6. Based on the system, we devise two test scenarios.
The first test scenario only considers active power loss (W1 = 2 and W2 = 0) while
both the active power loss and voltage profiles (W1 = 2 and W2 = 1∕6) are con-
sidered in the second scenario. For comparison of the performance between the
centralized control solution and the distributed control solution, we implement
these two different solutions as in Figure 4.19. For the distributed control solution,

Table 4.6 Summary for reactive power controller.

Control variables Lower bound Upper bound

Qc4 0 0.15
Qc6 0 0.30
Vg2 1.1 1.15
T4−3 0.9 1.1
T6−5 0.9 1.1
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Figure 4.19 Realization of centralized and distributed control solutions.

the control settings are updated every two seconds (Td = 2s) until convergence.
Because this algorithm is quite simple for calculation and control update, two sec-
onds is enough for this distributed solution to finish one round of update. In order
to evaluate the optimality of the obtained solution, we also utilize the centralized
algorithm to acquire the global optimal solution. Because the centralized solution
often requires more time for data acquisition and processing, we set the update
interval for the controlled settings to four seconds (Tc = 4 seconds). Besides, these
two control solutions are both deployed at t= 4 seconds with a simulation duration
of 25 seconds.

To implement the proposed distributed sub-gradient algorithm, each agent only
needs to process a small amount of data in every step of updating. Therefore, using
inexpensive hardware, such as an Android device based on a cortex-A8 processor,
can easily implement this algorithm. In general, data acquisition and processing
can be completed in one cycle (16.67 ms for 60 Hz system). Our experiences with
MAS hardware implementation shows that information exchange between two
agents takes less than 5 ms with the actual control being completed within a frac-
tion of a millisecond. Therefore, a step of control update can be completed in less
than 0.1 seconds, regardless of the size or configuration of the power system. This
is due to the simplicity of the applied distributed algorithm, which consumed quite
a little time for communication and computation. In fact, we can set the time inter-
val between control updates to a very small value, even less than one seconds. For
our implementation here, this value is set to a range of 2–10 seconds, which can
be achieved without difficulty.

Test 1 (W1 = 2 and W2 = 0)
For this scenario W2 = 0, the control objective only aims at minimizing the active
power loss of the system. The simulation results of this scenario are provided in
Figures 4.20–4.25.

As can be seen from Figure 4.20, the converged values of the objective function
of the distributed and centralized solutions are the same, and they are remarkably
lower than the case without applying optimization.
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Figure 4.20 The evolution of objective function with different control solutions.
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Figure 4.21 Velocity misalignment with different control solutions.

Figure 4.21, shows the normalized speed deviations for generator #2 (the gener-
ator with maximum speed deviation) with different control schemes. For the dis-
tributed control, the maximum speed deviation is 0.012 Hz, which is much smaller
than that of the centralized scheme (0.050 Hz).

In the designed distributed control solution, we update the control settings in an
incremental way, enforcing a relatively small change for control variables. How-
ever, for the centralized control solution, the control settings are only updated after
global optima have been obtained, which enforces large change for the control set-
tings of control devices. Consequently, the overall response of the system under the
proposed distributed control is smoother and thus much preferred.

Figure 4.22 depicts the voltage profiles with the proposed distributed solution.
As shown in figure, in the absence of ORPC, the lowest bus voltage value is only
0.857 p.u. (at bus #4), while after implementing the proposed solution, the lowest
bus voltage increases to 0.942 p.u. (at bus #3). This shows that although the opti-
mization of this scenario only considers the active power loss, the voltage profiles
can still be improved to some extent.
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Figure 4.22 Voltage curve in distributed control solutions.
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Figure 4.24 The control sequences of generator voltage.

The updating of control settings for generator terminal voltages, capacitor
banks, and tap changing transformers are shown in Figures 4.23–4.25. Note that
the generator terminal voltage Vg2 reaches its upper bound at six seconds after
the convergence for this scenario, as shown in Figure 4.24.
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Figure 4.25 The control sequences of transformer tap setting.

Test 2 (W1 = 2 and W2 = 1∕6)
In the second test scenario, the preferred voltage amplitudes for the six buses are
set as 1.04, 1.15, 1.0, 1.0, 1.0, and 1.0 p.u., respectively (Figures 4.26 and 4.27). The
optimization results are illustrated in Figure 4.26. Because the voltage profiles are
considered in this scenario, the values of the objective function of this scenario are
much higher than the values of test 1.

Figure 4.27 shows the evolution of the voltage profiles during optimization.
Compared with test 1, the voltage profiles here are closer to the desired voltage
levels. Note that there may be cases that the voltage of the specified bus deviates
from the predefined value. The reason lies in that the optimization of this scenario
is a compromise between minimizing active power loss and keeping a satisfying
voltage level, which cannot ensure the voltage of a specific bus to be exactly the
same as the predetermined value.
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Figure 4.26 The evolution of the objection function value.
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Figure 4.27 Voltage profiles with distributed control solution.

4.2.6.2 Test of IEEE 30-Bus System
The parameters of the IEEE 30-bus system used for the test can be found in [59].
The system comprises 48 branches, 6 generator buses, and 22 load buses, with 5
generator buses being the PV buses and 1 generator bus being the swing bus. The
ORPC control variables we used for tests contain nine capacitor bank switches,
five generator (PV) bus voltage control settings, and four transformer tap settings.

Figure 4.28 shows the control implementation of the system of IEEE 30-bus.
Here, we also test two scenarios, in the first scenario considering the normal
operating conditions and in the second scenario considering abnormal operating
conditions such as data loss and controller failure. The comparison with the
centralized method is also provided.

In these two test scenarios, the expected voltage magnitudes for all load buses
are set to 1.0 p.u., and desired values for generators buses are set to 1.05 for bus #1,
at 1.02 for bus #2, at 1.01 for bus #5, at 1.01 for bus #8, at 1.05 for bus #11, and at
1.05 for bus #13 p.u., respectively.

Test Under Normal Operating Conditions
Both distributed and centralized solutions are deployed according to Figure 4.19.
Because the system is relatively large, we set Td to 4 seconds and Tc to 10 sec-
onds. In addition, in order to evaluate the performance of the proposed solution
under the system operating conditions change, two changes of operating condi-
tions are simulated. At t = 35 seconds, the active power load at bus 12 is increased
by 5 MW, while the reactive power load being increased by 5 Mvar simultaneously,
and the active power load at bus 21 is also increased by 5 MW at the same instant.
At t = 45 seconds, the previously increased load is decreased back to the original
value before before t = 35 seconds. In this test, we set the weight factors W1 and
W2 severally as 2 and 1/10. Both solutions are deployed at t = 10 seconds with a
simulation duration of 60 seconds.
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Figure 4.28 The deployment diagram of the IEEE 30-bus test system.
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Figure 4.29 Evolution of the objective function.

The changes in the objective function values with different control solutions are
shown in Figure 4.29. At the steady state, the proposed control solutions achieve
the same optimal performance as the solution for centralized control, whereas it
can respond in a timely manner to reach new optimal operating points under sud-
den changes (from 35 to 50 seconds).

Here, we set the update interval for updating control settings of the centralized
solution to 10 seconds. However, in practice, this interval is generally much greater
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Figure 4.30 Speed deviations with different control solutions.

because the centralized controller needs to collect a large amount of data via a com-
plex communication network and also to process them. Because of the simplicity
of distributed computing technology and communication networks, distributed
solutions, however, can respond in a timely manner. Consequently, when the sys-
tem operating conditions change continuously and unexpectedly, the distributed
solution can provide a better response. The speed deviations of generators with
different control schemes are shown in Figure 4.30. It can be seen that the maxi-
mum speed deviation for the distributed solution is only 0.0265 Hz (Gen#2), while
the centralized solution results in the maximum deviation of 0.0515 Hz at Gen#6.
Accordingly, the dynamic performance of the distributed control solution is more
preferred.

Figures 4.31–4.36 show the capacitor banks, generator terminal voltage, and
tap changer control settings. As shown in these figures, the rate of convergence
of the optimization process is relatively fast, and the convergence speed does
not increase dramatically as the size of the system increases. Therefore, the
model-based distributed ORPC algorithm proposed in this chapter can respond
faster than that in [44].

We also compare the presented control scheme with the multi-agent-based par-
ticle swarm optimization (MASPSO) method discussed in [42]. According to [42],
the agent size of MASPSO is set to 6 ∗ 6. The MASPSO control updating interval
is fixed at 4 seconds, which is the same as the proposed method. Based on our
test results, each iteration of MASPSO takes approximately 0.8 seconds. With the
control updating interval being set to 4 seconds, around five iterations can be com-
peleted for MASPSO scheme.By taking the underlying delays and uncertainties
into consideration, we conduct three iterations of optimization within 4 seconds.
As can be seen in Figure 4.34, the MASPSO converges at t = 50 seconds (after
approximate 30 iterations).
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Figure 4.34 Comparison with MASPSO.

For each iteration of the MASPSO method, the corresponding agent (particle)
needs to conduct power flow studies, calculate the fitness function, spread its infor-
mation to the whole environment, and then update the control references using
the predefined operators. Considering a large number of agents are involved in
operations for each iteration, with each agent being responsible for processing
a significant amount of data, the time consumed for each iteration of MASPSO
will be much longer than that of the proposed method. The proposed method
also converges in a much faster manner because its optimization is directed by
model-based analyses, which is much better than the random search-based PSO
technique.

Test with Data Loss and Controller Failure
In this part, two scenarios are simulated wherein the first scenario is the case
with data loss and the second scenario being the case with controller failure.
Figure 4.35 shows the simulation results under data loss. The data loss occurs
at t = 20 seconds because of the malfunction of the communication between the
agents associated with bus 27 and bus 29. Accordingly, the RPCA at branches
27–28 (transformer) and bus #29 (capacitor) are excluded for further control
updates. At t = 25 seconds, the compromised communication is restored, and the
influenced agent recovers their normal operations.

As shown in the simulation results, the data loss due to the malfunction of com-
munication slows down the overall converging speed. If the communication can
be recovered afterward, the overall optimization process will resume, and this case
will not degrade the optimality of the final obtained solution. Yet, the data loss does
slow the convergence speed slightly.

It should be pointed out that large communication latency also leads to the slow-
down of the converging speed. As mentioned earlier, it takes less than 22 ms to
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during optimization.

complete one step of the control update in the test setup. As 22 ms is the maximum
time that different iterations might require for our experimental setup, short com-
munication latency can be tolerated. Because the interval of control update is set
to four seconds, the communication latency less than four seconds has no effect
on the performance of the proposed control algorithm. However, if the commu-
nication latency is greater than the predefined control updating interval, i.e. four
seconds in this case, its impact on the optimization process can thence be treated
the same as the data loss.

For the control failure scenario, we assume that the agent associated with the
capacitor bank at bus #29 failed at 12 seconds. Figures 4.36 and 4.37 show the
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Figure 4.37 Optimization proceedings with and without agent loss.

corresponding test results with this controller failure. As shown in Figure 4.36,
after the failure of this control agent, then the output of the capacitor bank is held
fixed with the capacitor at this bus being excluded for further operation. Because
the rest of the system is still working after the occurrence of the failure, the remain-
ing agents continue to proceed with the optimization process. As can be seen from
Figure 4.37, the converged value of the objective function is slightly higher than
that without the controller failure. Thus, the controller failure does degrade the
optimality of the obtained solution.

Considering that the proposed control solution is fully distributed, the control
scheme does not require a central controller and a complex communication
network. Under the circumstances of the loss of agents or communication links
between agents, the remaining working agents can still interact with each other to
realize ORPC for the system. As demonstrated in Figure 4.37, the loss of the agent
may inevitably degrade the optimality of the obtained solution, and the loss of
the communication links may reduce the convergence speed of the optimization
process. Nevertheless, because of the merits of autonomously operating agents,
the distributed solution exhibits strong resistance against the abovementioned
abnormality. Additionally, it is less susceptible to a single-point failure compared
with the traditional centralized solution.

The results of simulation show that it takes six iterations to converge for the
five-reactive controller. Ward–Hale system also converges after 6 iterations for the
18-controller IEEE 30-bus system and 23 iterations. Note that the convergence rate
of the proposed distributed control solution does not increase significantly as the
system size and the number of reaction controllers increase for the studied cases.
Yet, future work should dedicate to investigate its performance with large-scale
systems.
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4.2.7 Conclusion

In this chapter, we investigate a fully distributed MAS-based solution for online
ORPC of power systems. This solution can be easily implemented by using MAS
with a relatively simple communication network configuration. Based on the mild
assumption, this chapter designs a sub-gradient-based supporting algorithm for
ORPC. Because the algorithm and underlying communication network are sim-
ple, the proposed solution enables online optimal reactive power control of future
smart grids.

The proposed fully distributed solution here does not need powerful centralized
controller and requires relative few computational resources. Furthermore,
considering the characteristics of distributed control, it is less susceptible to
single-point failure, hence more reliable.
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5

Distributed Demand-Side Management

Demand management and response are being recognized as important drivers
for active user participation in the energy market. It is an adjustment in the
power consumption of an electric utility customer to better match the demand for
power with the supply. Traditional application of demand response (DR) usually
requires a centralized powerful control center and a two-way communication
network between the system operators and energy end users. Yet, the increasing
user participation in smart grids may limit their applications. In this chapter, we
will investigate two methods that can realize the distributed DR or demand man-
agement. First, we discuss a distributed solution for incentive-based management
(LM) program. The LM problem for this method is formulated as a constrained
optimization problem aiming at maximizing the overall utility of users while
meeting the requirement for load reduction requested by the system operator
and is solved by using a distributed dynamic programming (DDP) algorithm. For
the second method, we focus on controlling of plug-in electric vehicles (PEVs)
that are connected to a gird to minimize the energy loss of the system. To this
end, the charging rates of PEVs are controlled in an optimized way. The optimal
control solution is based on a consensus algorithm, which aligns each PEV’s
interest with the system’s benefit. The control strategy can be implemented based
on a multi-agent system (MAS) framework, which only requires information
exchanges among neighboring agents. Both the methods introduced in this
chapter are distributed methods, and the corresponding control solutions also
exhibit the merits of other distributed control solutions. Different tests are also
designed for the evaluation of these two discussed methods.

Distributed Energy Management of Electrical Power Systems, First Edition.
Yinliang Xu, Wei Zhang, Wenxin Liu, and Wen Yu.
© 2021 The Institute of Electrical and Electronics Engineers, Inc.
Published 2021 by John Wiley & Sons, Inc.
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5.1 Distributed Dynamic Programming-Based Solution
for Load Management in Smart Grids

Because of the desire for economic and environmental benefits, a more intelligent,
effective, reliable, and flexible power grid is demanded by both energy providers
and users [1, 2]. The term “smart grid” has been used to address such a power
grid with enhanced functionalities. There are two remarkable advantages of
the smart grid. First, more renewable sources could be accommodated in such
a smart grid. Second, more active participants from energy end users will be
accepted in the smart grid. This active participation from the users is beneficial to
promote the efficiency of the power market through reducing power generation
cost, providing sufficient reserve margin, and facilitating to keep the stability of
the overall system [3].

The load management (LM) program, also known as DR, has attracted much
attention as one of the promising options for user participation. It functions to
adjust the electricity demand of the end users in response to the change in electric-
ity price over the time horizon or in response to the incentive payments or discount
rates that are designed to decrease or increase energy consumption when the sys-
tem capacity is insufficient or the reliability is compromised [4]. According to the
estimation of EPRI, if deployed, DR could reduce the peak demand of the country
by 45 000 MW [5]. Meanwhile, according to the suggestions from the Battle group,
DR could provide the benefits equivalent to as high as tens of millions of dollars
by carrying out simple price mechanisms [6]. A benefitcost analysis had been con-
ducted by the US Federal Energy Regulatory Commission, which indicates that the
incorporation of LM within the regional energy market would achieve more than
$60 financial benefits [7].

There are mainly two forms of LM programs, one is incentive-based programs
(IBP) and the other is price-based programs (PBP) [8]. For IBP, the participants are
rewarded with financial benefits or discount rates for their energy bills to reduce
their load demand when required by the program initiator, during peak demand,
or high electricity price periods. IBP has been operated by many utilities or
third-party organizations such as California-based PG&E and Pennsylvania-New
Jersey Maryland power market [9, 10]. PBP aims to alleviate the demand peak
and demand valley by providing dynamic electric prices to the customers. These
rates include critical peak pricing, extreme day pricing, real-time pricing, etc.
[11]. PBP has been adopted in the deregulated market by numerous utilities [12].

During the past decades, the ways of implementing LM had been enriched, and
potential market values have also been improved. However, reviews on the expe-
rience of LM vary [13]. In general, current LM programs are inept to some extent
and are not competent for continuous and repeated use of energy by the con-
sumers. There exist many problems with the practical implementation of LM, such
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as reliability drop resulting from frequent schedule readjustments, interruption of
communication, or sudden operating changes during the LM period. In addition,
the participants of the LM program may also be concerned about their comfort and
business continuity when they carry out their LM schedules. Thus, a more reliable
and automated LM solution is highly desired.

However, some opponents believe that owners who have LM capacity were
in unrelated business and the grid operator should not count on them. Yet, the
practice of large-scale LM has demonstrated its significance in enhancing the
system reliability and reducing the operation cost. The integration of intermit-
tent resources, such as the wind and solar, is more than ever, demanding the
utilization of LM as a top-tier dispatchable resource [14]. However, integrating
multiple LM resources into the system involves handling the various parallel
and multichannel communications among the LM components, which make the
control system of the current LM program even more complicated. Apparently,
with the vertical-based and central-controlled mechanism, the conventional LM
solution is unlikely to solve such onerous tasks properly.

There exist intolerable weaknesses in the centralized solutions – for instance,
the single-point failure and the inapplicability under particular conditions [15].
For the centralized LM solutions, the control center requires to collect all informa-
tion from energy users and to process huge amount of data [16]. Such an operation
mechanism could not generate effective commands in a very short time, particu-
larly during the peak demand period. Because of the lack of necessary knowledge
about the controllability of loads, the exploitation of LM in both residential and
industrial sectors [17] has been limited. For the current LM or DR programs that
apply the direct or interruptible load control, the equipment of participants is
required to be shut down or started by utilities within a relatively short interval
of time. For the energy users without remote control functionalities, they are not
entitled to the LM program even if they are willing to do so. Thus, these above men-
tioned limitations of the centralized LM approach cannot fully exploit the potential
of LM programs.

Various distributed solutions have been proposed to address the issues con-
fronted by current LM programs. A distributed LM algorithm is developed for
solving the PEV charging problem by utilizing a congestion price mechanism
[18]. However, such an algorithm requires to acquire the essential unified price
information through a centralized manner. A distributed LM strategy utilizing
an alternating direction method of multipliers is developed in [19], and this
method not only requires all energy users to report their information regarding
the load utilization to the system operator but also requires the system operator
to send the control signals back to all participants. This mechanism of two-way
communication requires a communication system of high bandwidth because the
number of energy users that participate in the LM can be quite large. Although
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the adoption of the so-called aggregators may alleviate the heavy burden of
communication, the operation of LM programs also requires to avoid the heavy
communication tasks between system operator/aggregator and energy users. To
this end, we need to develop a flexible and active LM solution with a distributed
framework and communication-efficient mechanism as well.

In this chapter, a distributed LM solution to reduce the peak load in smart grids
has been proposed. Here, the LM problem is formulated as an optimization prob-
lem that aims to maximize the total utility of all energy users. A DDP method
is applied to solve this problem to yield a distributed solution. In the proposed
solution, each energy end user is denoted by a load management agent (LMA).
An LMA could exchange information with its neighboring LMAs. During the LM
period, an LMA first receives information regarding the load settings and incen-
tive of this LM event that is broadcasted by the system operator. Then, the LMAs
cooperate with each other in a distributed manner, aiming at maximizing their
total utilities while meeting the criteria of load reduction.

The following sections of this chapter will be organized as follows: Section 5.1.1
and Section 5.1.2 will illustrate how the LM problems formulate under the pro-
posed LM system. Section 5.1.3 will propose a DDP algorithm to solve the LM prob-
lem. Section 5.1.4 will present case studies based on simulation, while Section 5.1.5
will present the conclusion.

5.1.1 System Description and Problem Formulation

Figure 5.1 presents the proposed LM system. An incentive-based mechanism is
adopted here because it can be used in both regulated and deregulated power mar-
kets. Each user is assigned an intelligent agent, i.e. LMA, to manage its load. The
load of a user can be the load of a single physical device or the virtual aggregated
“load” of several physical devices, via the so-called gateway introduced in [20].

When an LM event is triggered during the peak load period, the system operator
(utility) will first calculate the anticipated electricity demand for all participants

Transmission/distribution
system operator

Other agents

LMA n

LMA n–1

LMA 1

IcPG = PM – PR

LMA 2

LMA 3

Figure 5.1 Design of the proposed LM system. Source: Based on Zhang et al. [20].
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after the LM process is completed. We denote this demand with PG, and it is calcu-
lated according to the requirement for demand reduction, PR. PG is calculated as
PG = PM − PR, with PM being the current running load. Then, the system operator
broadcasts the information of PG and LM incentive, Ic, to all LMAs. Once this infor-
mation is received by the LMAs, they will cooperate with others autonomously
to realize the common LM objective, without a coordinator or a centralized con-
trol center. Each LMA is designed such that it can exchange information with its
neighboring agents and update its setting of load usage according to the rules given
by the DDP algorithm. The topology of the communication network that sup-
ports the information exchange among these distributed LMAs can be designed
to be the same as the topology of an electric network because the proposed LM
solution requires communication links among neighbors only. Such a communi-
cation design leads to a relatively small financial cost by utilizing some particular
communication technology, such as power line communication [21]. Neverthe-
less, other forms of topologies could also be used [16].

By adopting such a structure and mechanism for LM, these LMAs act as a coali-
tion, which aims at maximizing the overall utility while meeting the requirement
of load reduction. Consequently, this process can be transferred to solving an opti-
mization problem, which will be introduced in the next section.

5.1.2 Problem Formulation

Assume that there are n participants available for an LM program. Generally, the
system operator does not have access to the users’ devices because of the lack of
right of control. It is only in charge of broadcasting information about PG and
IC to all participants. As discussed previously, the LMAs cooperate with others
autonomously to maximize the utility of their coalition society with the demand
reduction required by system operator being also achieved.

Consider that an LM participant can shed a portion of its load. We denote the
status of a load with state variable xk

i as:

xk
i =

{
1 if the kth load sector is on
0 if the kth load sector is off

where i = 1, 2,… ,n, k = 1, 2,… ,ni. Here, ni refers to the number of load sectors of
participant i. Given that the LM could control all the ni load units of a participant
and there will be 2ni load reduction settings. Hence, a participant could adjust the
value of xk

i to signify the quantity of load shedding.
Let Pk

Li denote the kth load sector of participant i before an LM event. Therefore,
the utility of participant i during the LM event is then expressed as:

Ui =
ni∑

k=1
xk

i W k
i Pk

Li − Ic

ni∑
k=1

xk
i Pk

Li (5.1)
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Here, W k
i is the weight factor for kth load sector of user i, which is predefined.

Usually, such a factor is defined in terms of either the level of priority of the load
or the production of unit electricity consumption [22]. Note that the first term of
the right hand side of the above equation refers to the benefits of participant i
by consuming energy, while the second term refers to the loss of incentives if the
corresponding loads are still running during LM.

For the purpose of maximizing the entire utility of all the participants, i.e. the
utility of the LM coalition society, we have the following objective function:

max
n∑

i=1
Ui =

n∑
i=1

( ni∑
k=1

xk
i W k

i Pk
Li − Ic

ni∑
k=1

xk
i Pk

Li

)
(5.2)

The constraints to signify the requirement of load reduction given by the system
operator is:

n∑
i=1

ni∑
k=1

xk
i Pk

Li = PG (5.3)

Because
∑n

i=1 Ic
∑ni

k=1 xk
i Pk

Li = Ic ∗ PG, we formulate the LM problem as a con-
strained optimization problem as:

⎧⎪⎪⎨⎪⎪⎩

max
n∑

i=1

ni∑
k=1

xk
i W k

i Pk
Li

subject to
n∑

i=1

ni∑
k=1

xk
i Pk

Li = PG

(5.4)

The constrained optimization problem formulated in (5.2)–(5.4) can be used to
model the practical LM problems [23]. Note that such an optimization problem can
be considered as a 0-1 knapsack or bin-packing problem, which can be effectively
solved by utilizing dynamic programming (DP).

Traditional methods are not capable of yielding an autonomous solution for
LM because most of them are deployed in a centralized way. When the num-
ber of users participating in the LM program is small, the communication traffic
and low latency may be tolerable. Yet, when more and more users with multi-
ple electric devices (load sectors) are enrolled for LM, the communication traffic
or low-latency issue becomes a serious issue because the centralized controller
needs to collect all the data of the users (devices). Another method regarding the
centralized implementation is the control right of the users’ devices. Generally,
the energy users are not willing to grant the system operator the right of control to
access their electric devices because allowing this can lead to unbearable interrup-
tions of their energy usage. Accordingly, an autonomous solution with situation
awareness is urged for both the energy users and energy providers.
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To date, distributed intelligence is making headway in applications of smart
grids. By (i) building a sensor network covers our transmission, distribution, and
local premise of energy consumers and (ii) by integrating with communication
networks, intelligent electric devices, etc., the distributed control and optimization
solution will drive the current power gird to be a more reliable, more efficient, and
secure “smart grid” [24]. This motivates us to design a distributed algorithm that
can solve the LM problem in a distributed manner, thus rendering an autonomous
LM solution.

5.1.3 Distributed Dynamic Programming

5.1.3.1 Abstract Framework of Dynamic Programming (DP)
The framework of DP introduced in [25] will be utilized to elaborate the DDP here.
We use S to denote the set of feasible states, with its elements being defined as state
variable, x. F refers to the set of extended real-valued functions J ∶ S → [−∞,+∞]
on S. ∀ J1, J2 ∈ F, the following notation is used for convenience:{

J1 ≤ J2 if J1(x) ≤ J2(x) ∀x ∈ S
J1 = J2 if J1(x) = J2(x) ∀x ∈ S

(5.5)

Let H ∶ S × F → [−∞,+∞] be the mapping that is monotone in the sense that
for all x ∈ S

H(x, J1) ≤ H(x, J2), ∀J1, J2 ∈ F with J1 ≤ J2 (5.6)

The objective of DP is to find a function J∗ ∈ F such that:

J∗(x) = inf
x∈S

H(x, J∗), ∀x ∈ S (5.7)

We define the mapping T ∶ F → F as:

T(J)(x) = inf
x∈S

H(x, J) (5.8)

T( ) refers to a series of operation or calculation procedures that are collectively
defined as the operator to map the objective function to its optimum. This process
can be stated as equivalent to finding the fixed point of T within F such that

J∗ = T(J∗) (5.9)

The LM problem in (5.4) aims to find the optimal solution of maximizing the
entire participants’ utility provided that PG is greater than the entire generation.
Then, the DP process can accordingly be described as follows:

⎧⎪⎨⎪⎩
f ∗k = min {f ∗k−1 − xkWkPLk}, f ∗0 = 0
subject to

∑
i=1

xiWiPLi ≤ PG
(5.10)

where xk is the kth element of x, and k = 1, 2,… ,n.
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We defined H and J as follows:{
H(xk, J∗) = J∗(x1, ...xk−1) − xkWkPLk (5.11a)

J∗(x1, x2, ...xk−1) = f ∗k−1
(5.11b)

Thus, the mapping T is then defined as:

T(J)(x1,… , xk) = inf
x∈S

H(xk, J∗) (5.12)

Based on the definition stated above, the LM problem can obviously be
generalized as a DP problem. It should be pointed out that the original util-
ity maximization problem given in (5.4) is transformed to a minimization
problem given in (5.11a). Because of the nondecreasing feature of J and the
non-negative characteristics of xk,Wk, and PLk, H defined above would be
monotone.

5.1.3.2 Distributed Solution for Dynamic Programming Problem
For our proposed LM solution, each LM participant (load/user) is designated by
an agent for distributed computation. For a system with n agents, there are total
n state variables in the state space S. Each agent is in charge of calculating the
values of the solution function J∗ at xi. Agent j is defined as the neighboring agent
of i (j ≠ i) if there is the communication link between agent i and agent j.

We use N(i) to represent the set of agent i’s neighbors. Note that j is not con-
sidered as the neighbor of i if the value of J on xj does not influence the values if
T(J) on xi. Thus, to calculate T(J) on xi, agent i only needs to acquire information
regarding the values of J on xj, j ∈ N(i), and possibly on xi.

We propose a two-stage process for agents’ cooperation to obtain the optimal
solution of the LM problem, and the first stage is defined as the information discov-
ery stage, whereas the second stage is defined as the state update stage. Each agent
is designed to have two buffers per neighbor Jij, and these two buffers are denoted
with Jij and xij. Jij is used to store the latest estimates of the solution function J∗

from agent j, while xij is used to store the states corresponding to Jij. Additionally,
an agent, say agent i, is designed to have another two buffers to store its own esti-
mates of the solution function J∗ and corresponding states, which are denoted as
Jii and xii, respectively. For each iteration stage, agent i will first communicate with
its neighboring agents to acquire information of the latest estimates of the solution
function J∗ and the corresponding state variables during the information discov-
ery stage. Then, this agent calculates its new estimate of the optimal solution (J∗)
and states (x) in the state update stage.
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We summarize the update regulation for the DDP algorithm as follows:

Stage 1: Information discovery (ID){
Jij[t + 1] = Jjj[t]
xij[t + 1] = xjj[t]

(5.13)

Stage 2: State update (SU)

⎧⎪⎨⎪⎩
Jii[t + 1] = inf

xi∈S
H(Jii[t], Jij[t + 1], xi)

xii[t + 1] = arg{inf
x∈S

H(Jii[t], Jij[t + 1], xi)}
(5.14)

According to [26], the converged values of J∗ and x∗ can be written as:{
lim
t→∞

Jij[t] = Jii[t] = J∗

lim
t→∞

xij[t] = xii[t] = x∗ (5.15)

The conditions for convergence are as follows:

1. There exists a positive scalar P such that, for every agent, there is at least one
information stage for this agent to communicate with its neighboring agents
and also at least one SU stage of this agent, for every P steps of iterations;

2. There exist two functions J and J such that the set of all functions J ∈ F with
J ≤ J ≤ J belong to F, and

J ≥ T(J),T(J) ≥ J (5.16)

and {
lim
t→∞

Tt(J)(x) = J∗(x) (5.17a)
lim
t→∞

Tt(J)(x) = J∗(x)

(5.17b)

The first condition here implies that both the stages of ID and SU are mandatory
for the convergence. However, there is no other requirement for the timing and
sequence of these two stages during the iteration. Note that it is not necessary to
carry out SU stage after each ID stage. In other words, the SU stage can be carried
out after the execution of several ID stages. Hence, the algorithm can be imple-
mented by using asynchronous communication protocols. The second condition
ensures the existence of a fixed point for the LP problem [27]. It can be observed
that during the optimization, an agent exchanges data with its neighboring agents
at stage 1 only. The shared data includes two parts: (i) header information and
(ii) intermediary optimization data. The header information includes information
of agent ID and iteration number, which is a 32-bit data. The dimension of the
optimization data is determined by the dimension of state variables.
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Jij is the scalar number and xij is an n-dimensional vector with n representing
the number of load sectors. We use double-type data to store the optimization data.
Consequently, the size of the data for information exchange is 32 + (n + 1) × 2.
Note that the volume of data is linearly proportional to the size of the system here.

The number of iterations needed for the agents to reach their optimum can
be used to signify the complexity of the proposed DDP algorithm. As mentioned
above, the formulated LM problem in (5.4) is actually a 0-1 knapsack problem
that can also be translated into the shortest path problem. According to Dijkstra,
for centralized implementation of the DP algorithm, the computation complex-
ity is O(n). Here, n denotes the number of nodes (load sectors). For distributed
implementation, the complexity is scaled down by a factor of n because the compu-
tation effort is shared among agents, as shown in (5.13) and (5.14). Each agent will
exchange information with its neighboring agents in stage 1 and then update its
state in stage 2. If we use ne

max to denote an agent’s maximum number of neighbor-
ing agents, the maximum computation needed for these two stages are bounded by
ne

max . Consequently, the computation complexity of the proposed DDP algorithm
is O(n) rather than O(n2).

Theoretically, the solution function satisfying (5.16) exists and can be found.
Yet, it is not easy to provide the off-the-shell formula in practice. Nevertheless, the
DDP problem could still converge to a fixed point, which is at least a local optimal
solution because of the non-convexity of the LP problem.

In this chapter, we develop an index to evaluate the performance of the DDP
algorithm:

Ip =
f ∗d
f ∗g

×
tg

td
(5.18)

f ∗d and f ∗c refer to the values of the objective function obtained by the DDP and
global centralized algorithms, respectively. td and tc refer to the corresponding time
consumption of these two algorithms. A large value of Ip indicates the high per-
formance of the algorithm. In the simulation part, we will use the index defined
here to evaluate the proposed DDP-based solution.

During the period of an LM event, once the agent of a participant acquires the
information about total demand and incentive (Ic and PG), it will first initialize its
state variables with feasible load settings. Following that, the agent will commu-
nicate with its neighboring agents for exchanging the information regarding the
latest states and solution functions. This process follows the procedures of stage 1
given in (5.13). In stage 2, the agent determines its states by utilizing the knowl-
edge of up-to-date information obtained from stage 1, as shown in (5.14). These
two stages repeat until the convergence of the algorithm is achieved.

In the process of each iteration, an agent needs to only communicate with its
neighboring agents for information exchange and it updates its states locally.
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Through the proposed LM solution, the computation efforts are distributed
across multiple agents. Practically, a centralized controller and a complicated
communication structure will not be required for this implementation. The
following section will also demonstrate that our proposed distributed solution is
flexible and is adaptive to the operating condition changes.

5.1.4 Numerical Example

Here, we first provide a simple example of three energy users (agents) to demon-
strate the proposed distributed solution. In this example, the system operator
requires the energy users to reduce the demand by 30 MW for one hour with
the incentive being given as $0.5/kWh. The baseline of the load, in this case, is
90 MW, resulting in a total target load setting of 60 MW for the LM participants
aggregated by the aggregator. The load baselines for users No. 1, No. 2, and No. 3
are 20, 30 (10, 20), and 40 MW, and the weights of their load are set to 2, 3, and 4,
respectively. User No. 2 has two load levels, i.e. 10 and 20 MW. Figure 5.2 shows
the graph of the communication network for LMAs.

As for the LM process, each agent first initializes its load settings for optimiza-
tion with a feasible value (generally its load baseline will be proper).

We set the maximum number of iterations to 10 for this example. Notice that the
buffers xii or xij used to store the estimated states of agent i are vectors. Table 5.1
provides one of feasible options for agent initialization. Buffer x11 used to store the
states agent No. 1 is initialized with a vector [1 (0 0) 0], wherein agent No. 2 and

Agent 1 Agent 2 Agent 3

Figure 5.2 Topology of the communication network for agents.

Table 5.1 Initialization of agents.

Agent States (xii∖xij) Utility (Jii∖Jij)

1 x11 x12 — J11 J12 —
[1, (0 0), 0] [1, (0 0), 0] — 40 40 —

2 x21 x22 x23 J21 J22 J23

[0, (1 1), 0] [0, (1 1), 0] [0, (1 1), 0] 90 90 90
3 — x32 x33 — J32 J33

— [0, (0 0), 1] [0, (0 0), 1] — 160 160
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No. 3’s initial states are set “OFF” because their states remain unknown to agent
No. 1 before the start of the optimization process. Here, the state of agent No. 2 is
initialized as (0 0) because its corresponding user has two load sectors. The buffer
J11, which is used to store the estimated optimal utility of agent No. 1, is initialized
with 40, and this value is calculated according to the initial state, x11.

As shown in Figure 5.2, agent No. 1 has only one neighbor, i.e. agent No. 2.
The buffers x12 and J12 of agent No. 1 are then used to store the latest states and
corresponding estimated solution function of agent No. 2. In addition, these two
buffers are initialized as x12 = x11 and J12 = J11. Buffers for agents No. 2 and No. 3
are initialized in the same way.

Figure 5.3a presents the update of agents’ utilities in the process of optimization.
As can be observed, the values of utility functions for all the agents, J∗, are mono-
tonically increasing because of the feature of the DP algorithm. The converged
utility is 220, which is the maximum utility these agents can obtain considering
the constraint of the load reduction requirement of 30 MW.

Figure 5.3b,c presents the update of load settings in the process of optimization
for agent No. 1 and No. 2. To meet the requirement of minimum load reduction,
agent No. 2 had switched OFF its first load sector, with only the second one being
switched ON. Note that the converged solutions of all the agents are exactly the
same. We can easily verify that the second load sector of user No. 2 and load of
user No. 3 should be set ON to achieve the maximum utility of this LM coali-
tion. In this case, the converged solution is also the globally optimal LM solu-
tion, and corresponding payment for contributing the load reduction is increased
$0.5 ∗ 30 ∗ 103 = $15 000. Note that the algorithm takes only three iterations to
converge in this case.

5.1.5 Implementation of the LM System

Figure 5.4 provides the implementation of a typical LM system with a total of 14
agents. The information, (PG and Ic), will be broadcasted by the system operator
to all LMAs in the system via the communication network. Users can choose to
participate in the LM program, or not. If a user chooses not to participate, the
corresponding LMA of this user is set to the deactivated mode.

The communication network between the system operator and LMAs is built
by utilizing the technique called general packet radio services (GPRS), which is
a technique widely used for the data transmission service of mobile phones and
remote meter reading. Upon receiving the signal from the system operator, the
active LMAs start to search their neighboring agents to comprise the coalition for
the LM program.

The communications of neighboring agents for information exchange can be
realized by using the off-the-shell wireless communication protocol such as WiFi
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Figure 5.3 LM optimization process with a three-agent system. (a) Profiles of utility for
agents during optimization. (b) Update of load settings during optimization for agent No.
1. (c) Update of load settings during optimization for agent No. 2.

and Zigbee or wired communication such as fiber optic or power line communica-
tion techniques. The wireless communication techniques generally have relatively
short transmission ranges and are fitted for the household or community-level LM
programs. The wired communication techniques, on the other hand, have longer
ranges of transmission and can be used for industry-level programs. As for the
software-level implementation, the JADE (Java Agent Development Framework),
which is a software framework developed for MAS applications based on Java lan-
guage, can be utilized for customized design. This kind of JADE-based system can
be distributively implemented and the configuration can be easily controlled via a
remote GUI [28, 29].
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Figure 5.4 Implementation of the proposed LM system.

It should be pointed out that the system operator only broadcasts the signal of
LM demand and incentive to energy users. It does not require to collect the infor-
mation of the current usage of the load sectors or to access the control right of
loads. The agent of a specific energy user makes its decisions locally while cooper-
ating with other agents to fulfill the LM objective. In this process, the agent does
not need to send information to the system operator or to receive a control signal
from the system operator. Consequently, the problem of lack of control right of
load for the system operator is avoided.

5.1.6 Simulation Studies

This section will first utilize the IEEE 14-bus system to demonstrate the DDP algo-
rithm. Following this, a larger system with more agents will be used to evaluate
the performance of the proposed LM solution.

5.1.6.1 Test with IEEE 14-bus System
The parameters of loads of the IEEE 14-bus system can be found in [30], and we
assume that there is a user at each bus. The load reduction requirement given
by the system operator is 140 MW, with the incentive being $0.50/kWh for the
qualified users. Table 5.2 provides the load baseline for all users. User No. 4 and
user No. 11, respectively, have two and three load sectors, as shown in the table.
The total load of users before LM is 760 MW, leading to the load setting of 620 MW
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Table 5.2 Data of IEEE 14-bus system.

No. Neighbor Baseline Weights No. Neighbor Baseline Weights

1 2, 5 0 20 5 1, 2, 4, 6 60 10
2 1, 3, 4, 5 0 20 7 4, 8, 9 70 10
3 2, 4 0 20 12 6, 13 80 10
6 5, 11, 12, 13 0 20 13 6, 12, 14 90 10
8 7 0 20 10 9, 11 100 1
4 2, 3, 5, 7, 9 50(10, 15, 25) 20 11 6, 10 120(40, 80) 1
9 4, 7, 10, 14 150 20 14 9, 13 40 1

1

2

3

8

5

4

7

6

10

9

13

12

11

14

Figure 5.5 Network topology of IEEE 14-bus system.

for LM event. Figure 5.5 shows the graph of the communication network for agent
communication, which is the same as that of the topology of connection of the
physical power network.

Normal Operating Conditions Figure 5.6 shows the update of utility for agents dur-
ing optimization. The number of iterations for the algorithm to converge is only
14, with the final obtained utility being 7120.The earned incentive of this coalition
for fulfilling the load reduction is $0.5 ∗ 140 ∗ 103 = $70 000 for an hour. Table 5.3
presents the optimized states of loads (sectors). Figure 5.7a,b presents the updates
of load settings of selected loads (loads No. 4, No. 10, No. 11, and No. 14) at two
of chosen agents, i.e. agents No. 10 and agent No. 11. The optimized load settings
for users No. 4, No. 10, No. 11, and No. 14 are 50 MW, 0 MW, 120 MW, and 0 MW,
respectively. Note that the agent of a specific user initializes its own load setting
with its load baseline, with other the settings of other agents being zero. Yet, after
the algorithm is converged, the optimized states at agents are the same. Hence,
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Figure 5.6 Update of utility for agents during optimization.

Table 5.3 Optimized states of loads.

Load 1 2 3 4 5 6 7

Status ON ON ON (ON,ON,ON) ON ON ON
Load 8 9 10 11 12 13 14
Status ON ON OFF (ON,ON,ON) ON ON OFF

the proposed algorithm for DDP guarantees the consistency of optimal solutions
obtained by all the distributed agents.

Abnormal Operating Conditions Three abnormal operating conditions during the
process of optimization will be tested to evaluate the robustness of the proposed
LM solution. These conditions include the loss of communication link, the discon-
nection of load, and the loss of agent.

Loss of Communication Link For this scenario, we assume that communication links
between agents No. 9 and No. 14 and agents No. 12 and 13 stop working after the
fifth iteration. However, as shown in Figure 5.9, the graph of a communication
network with loss of communication is still a connected graph, and this indicates
that condition 1 for convergence introduced previously still holds.

Figure 5.8 shows the update of utility under this scenario. The final converged
utility is 7120, which is the same value of that without loss of communication links.
For this scenario, the algorithm takes 15 iterations to converge, and the number of
iterations only increases by 1. Figure 5.9 shows the update of load settings at agent
No. 14. It can be observed that with loss of communication links, the load setting
of agent No. 14 changes at the 14th iteration, while this change takes place at 13th
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Figure 5.7 Update of load settings during optimization. (a) Update of load settings at
agent No. 10. (b) Update of load settings at agent No. 11.

Figure 5.8 Update of utility for agents
with loss of communication links.
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Figure 5.9 Comparison of load settings
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iteration with the original communication settings. For this case, we can see that
the loss of the communication links only slows down the overall converging speed
slightly. In addition, we are still able to find the feasible and optimal solution as
long as the graph corresponding to the communication network is a connected
graph.
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Figure 5.10 Update of utility for agents
with disconnection of load.
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Figure 5.11 Update of load settings for
agents with disconnection of load. (a)
Load settings at agent No. 10. (b) Load
settings at agent No. 11.

Disconnection of Load It is assumed that the disconnection of load occurs at the
fifth iteration, with the load at bus No. 10 being disconnected.

Figure 5.10 presents the update of utility during this process. For this scenario,
the final converged utility reduces to 7000, compared to the value of 7120 for the
case without load disconnection. This is due to two causes. On the one hand, the
utility of the load at bus No. 10 is not applicable because it is disconnected. On
the other hand, the total load reduction increases to 160 MW (20 MW more than
the required), which also results in a decrease in the overall utility.

Figure 5.11a,b presents profiles of load setting of agents No. 10 and No. 11 during
optimization. As can be seen in the figure, the load setting for load No. 10 is fixed at
a virtual value of 100 MW after its disconnection, which indicates that load No. 10
is excluded from participating in LM response. After the algorithm is converged,
the load at No. 11 is optimized to shed 120 MW load to meet the requirement of
LM. It is worthy pointing out that the designed LM system can still work properly
with the occurrence of the load disconnection.

Loss of Agent Another abnormal scenario is the loss of the agent in the LM system.
Here, we assume that the agent No. 10 malfunctions after five times of iteration.

Because of the loss of agent No. 10, the communications between agent No. 10
and its neighboring agents are no longer available. As a consequence, agent No.
10 does not participate in the remaining optimization process with its load setting
set to be fixed at 100 MW after fifth iteration. The optimization process carries
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Figure 5.12 Update of utility for agents
with loss of agent.
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Figure 5.13 Update of load settings for
agents with loss of agent. (a) Load
settings at agent No. 10. (b) Load
settings at agent No. 11.
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on because all of the remaining agents still work properly. Note that the obtained
optimal solution for this scenario is similar to that with the disconnection of load,
as can be observed in Figures 11.12 and 11.13.

As can be observed from results with abnormal operating conditions, the pro-
posed LM system still yields the optimal solution with the loss of the communica-
tion network if the graph of the communication network is still a connected graph.
With load disconnection or loss of agent, the designed LM system can still obtain
the comprised optimal solution because the disconnected load or agent is excluded
for further optimization.

With Dynamic Incentives To evaluate the performance of the proposed LM
solution under consecutive LM events, a case with a dynamic incentive mech-
anism is tested here. We assume that the incentive mechanism is given by the
system operator as Ic = I∗c + 0.15 ∗ ΔP, and this setting is derived based on an
industrial DR program. Here, I∗c refers to the incentive trigger point, which is set
to $75∕MWh and ΔP denotes the part of shed load that is larger than 75 MW.
Figure 5.14a presents the load reduction command and incentives in a similar day
within five consecutive hours (10:00 a.m.–3:00 p.m.). The LM event will be broad-
casted by the operator to energy user every other hour. Figure 5.14b shows the cor-
responding utility and earned payment for this LM coalition. As can be seen in the
figures, with the increase of required load reduction, the earned payment for this
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Figure 5.14 LM events in a similar day. (a) Load reduction and incentive settings. (b)
Overall utility and earn payment of users.

coalition increases along with the decrease of the total utility. When participat-
ing in the LM program, the energy users can always allocate low-preference load
or non-vital load with low weights to earn payment while maximizing their total
utility. Figure 5.14b shows the earned payment of this coalition during the whole
period of LM response (12:00 p.m.–1:00 p.m.), and it can be seen that the payment
reaches as high as $18 750 considering that only 200 MW of load is shed for this
LM event.

5.1.6.2 Large Test Systems
Here, we test three systems with different sizes to evaluate the performance of the
proposed LM solution method. Table 5.4 summarizes the configuration of three
tested systems. Here, nc refers to the total number of communication links and ncp
denotes the number of average communication links per agents.

Figure 5.15 shows the converged utility of the tested system, with the corre-
sponding test results of them being summarized in Table 5.5. According to our
implementation, the average time for one round of agent communication based on
JADE platform is about 3 ms [31]. As for the centralized solution, there is only one
agent (centralized controller), the time for agent communication is not applicable
here. As can be seen from the test results, the converged utilities of the proposed
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Table 5.4 Configuration of test systems.

Test system nc ncp PG (MW) PR (MW) Ic ($∖MWh)

14-Agent 20 1.43 760 140 500
162-Agent 284 1.75 15387 1585 750
590-Agent 908 1.54 18707 1169 750
1062-Agent 1635 1.54 34053 1651 750
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Figure 5.15 Utility update process for agents with large test systems. (a) 162-Agent
system. (b) 590-Agent system. (c) 1062-Agent system.
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Table 5.5 Comparison between centralized and distributed solutions.

Time/Iter. (ms)

System Utility ID SU Iter. Total(ms) Ip

14-Agent Cen. 7120 — 31 1 31 1
Dis. 7120 3 <1 14 77 0.49

162-Agent Cen. 33768 — 7920 1 7920 1
Dis. 32663 3 <1 82 320 23.94

590-Agent Cen. 101700 — 34897 1 34897 1
Dis. 91950 3 2 640 3200 9.86

1062-Agent Cen. 203386 — 107874 1 107874 1
Dis. 191174 3 3 1 470 9050 11.23

distributed solution may be less than that of the centralized method. Yet, the max-
imum deviation is only less than 10%, which is acceptable for industrial practice.
It can also be observed that the time consumed by centralized solution increases
dramatically with the increase of the scale of the system as can be seen in Table 5.5
for a small-scale system with 14 agents, the distributed solution does not per-
form better than the centralized solution, with the performance index being only
0.49. However, for a large-scale system with 162 agents or more, the distributed
solution results in a high value of performance index (9.86 or higher). With the
distributed solution, no control center is needed to acquire the data from all dis-
tributed energy users; instead, the agents of energy users only communicate with
their neighboring agents to exchange necessary information, via an asynchronous
communication protocol. Consequently, the time needed for data acquisition is
reduced significantly. In addition, the DDP algorithm we used for implementation
distributes the computation efforts among all agents, which dramatically reduced
the time for computation. As demonstrated in the simulation, for the large sys-
tem such as the 1062-bus system, the algorithm can converge within 10 seconds,
whereas the centralized algorithm takes as long as 100 seconds even without tak-
ing the time used for data acquisition into consideration. Thus, it is safe to say that
our proposed LM system can respond in a timely manner.

5.1.6.3 Variable Renewable Generation
In this test case, we assume that the 1062-bus system is under stress condition
wherein the spinning reserve of the conventional generators has been depleted.
The system operator has to utilize the LM program to support the safe operation
of the system within a dispatch interval of 15 minutes. Before the trigger of the
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LM event, the power shortage is 15 707 MW. Wind power can compensate for the
part of the power shortage; however, it is not reliable because of its intermittency.
Figure 5.16a shows the profiles of power shortage as well as the wind power
during this period. Figure 5.16b shows the carried out load reduction profiles
of both centralized and distributed solution. It can be observed that the central-
ized method failed to respond in a timely way because it cannot track the power
shortage fast enough. As can be seen in Figure 5.16c, with the centralized scheme,
the system frequency nadir reaches to a value of 59.79 Hz, which falls in the under
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frequency zone while the frequency peak is reaching 60.16 Hz, being very close
to over frequency zone [32].

Compared with the centralized solution, the frequency fluctuation of the dis-
tributed solution always falls in the normal operating range (± 0.05 Hz) as the
proposed solution can reach the full deployment of the load reduction with 10 sec-
onds. Note that the convergence of the proposed solution will not be influenced
by the variation of the renewable generation, such as the wind power in this case.
However, faster change of these renewable resources calls for the system opera-
tor to trigger the LM event in a more frequent manner. Our proposed LM solution
track the LM demand in a very fast way, e.g. less than 10 seconds for the large-scale
system with 1062 buses, which can guarantee the decent frequency performance
of the overall power grid. Accordingly, the proposed LM solution can be applied
to the power grids that are prone to experience fast operating condition changes.

5.1.6.4 With Time Delay/Packet Loss
We continue to investigate the proposed DDP under the circumstance with packet
loss. Here, the simulation is done by assuming that the probability of packet
loss per iteration for each agent is 0.45. It is operated under the situation
with packet loss on all agents in each step of iteration under the probability
of 0.45. The simulation results of three test systems introduced previously are
shown in Figure 5.17. It can be seen that the algorithm still converges without
difficulties. This is because that the condition 1 for the convergence can still
hold with the packet loss occurs in a way that follows certain specific probability.
However, the occurrence of the packet loss does impact the converging speed.
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Figure 5.18 Converging time
of different scenarios with 1062-bus
system. (a) Original. (b) With time-delay.
(c) With packet loss.
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As the probability of packet loss increases, the number of iterations required
for convergence also increases. Another merit of the proposed algorithm is that it
does not require the graph corresponding to the communication network to be
always connected, which is helpful when the system undergoes abnormalities
regarding the communications, thus enables us to adopt the asynchronous
communication protocols during implementation.

Time delay of the communication also impacts the converging speed of the
algorithm in a similar way. Here, we provide the converging speed of the imple-
mented DDP algorithm with a 1062-bus system under different scenarios. As
shown in Figure 5.18, when there is no communication delay or packet loss,
the algorithm converges within 4500 ms, as shown in (a). With the average time
of communication delay of 0.5 ms, the convergence time increases to 5250 ms.
Meanwhile, it takes around 5350 ms for the algorithm to converge for the scenario
with the probability of packet loss of the agent per iteration being 0.45. Neverthe-
less, the proposed DPP algorithm is able to reach convergence without difficulties
under these scenarios with communication adversities.

5.1.7 Conclusion and Discussion

In this chapter, we discussed a distributed solution for energy users to participate
in the LM program of power grids. To better implement the proposed solution,
a DPP algorithm-based framework is designed. To the authors’ best knowledge,
it is the first time that the DPP algorithm is utilized in the LM problem. In our
implementation, the energy user is equipped with an intelligent agent, which is
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responsible for receiving the load reduction information and the LM incentives.
Agents of users only need to collect local information and communicate with
neighboring agents. There is no need to send information or control signal
back to the system operator. Therefore, the burden of building bidirectional
communication networks between the energy users and the system operator for
information exchange can be relieved. Additionally, the proposed solution enables
the distributed computation among the agents; hence, the central controller is not
required. The test results of all these cases demonstrate the excellent robustness
and decent performance of the proposed solution.

This work here concentrates on developing an LM solution. We will further
evaluate the performance of the LM solution with real-time simulation in
our future work. Through incorporating with various renewable energies, for
example, PVs and storage, LM can strengthen our energy supply in many ways.
As a consequence, to develop a distributed control approach to coordinate these
renewable resources is of great importance to ensure our sustainable and secure
energy supply.

Plug-in electric vehicles are a promising alternative to conventional fuel-based
automobiles. However, a large number of PEVs connected to the grid simultane-
ously with poor charging coordination may impose severe stress on the power
system. To allocate the available charging power, this chapter proposes an optimal
charging rate control of PEVs based on consensus algorithm, which aligns each
PEV’s interest with the system’s benefit. The proposed strategy is implemented
based on a MAS framework, which only requires information exchanges among
neighboring agents. The proposed distributed control solution enables the sharing
of computational and communication burden among distributed agents. Thus it is
robust, scalable, and convenient for a plug-and-play operation, which allows PEVs
to join and leave at arbitrary times. The effectiveness of the proposed algorithm is
validated through simulations.

5.2 Optimal Distributed Charging Rate Control
of Plug-in Electric Vehicles for Demand Management

The PEV technology has been acknowledged as a promising alternative to tackle
the problem of fossil fuel shortage and environmental issue [33]. Despite its
popularity, the high penetration of PEVs charging [34, 35] load brings significant
challenges to the power system including (i) system efficiency degradation, (ii)
worsening the power quality, and even (iii) lack of stability [36].

On the other hand, the flexibility of PEV’s charging behavior can be beneficial
to the power grid by offering various ancillary services, such as load leveling and
frequency regulation [37] if well coordinated. Additionally, because the charging
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strategies influence the process of charging in terms of the financial cost, the time
of charging, and the state of charge (SOC) of the battery of the PEV when the PEV
is leaving the charging station, it is important to design proper charging strate-
gies so as to satisfy the consumers. One of the major challenges of PEVs is how to
manage the electrical power demand. One effective solution is to properly design
an effective coordination control strategy, which could offer the optimal solution
with convergence guarantee. The goal is to maximize the benefit of a PEV driver
without operational constraints of the power system.

The existing literature introducing the control strategies of coordination for
the demand management of PEVs can be mainly divided into three categories,
which are control strategies in a centralized manner, fully decentralized manner,
and distributed manner. The centralized manner control strategies coordinate
all the PEVs by a central controller. Su et al. present a review of the central-
ized control strategies [38], which include linear programming [39], model
predictive control [40], dynamic programming [41, 42], particle swarm opti-
mization [43], etc. The common factor is that the bidirectional communication
between every PEV and central controller is essential, which may lead to a
heavy burden of a large amount of data collocation and computation. Thus,
these methods are considerably costly and susceptible to single-point failures.
The second type of control strategy, which is based on the fully decentralized
manner, can be achieved by using the local information solely, such as the
droop control-based strategy proposed in [44, 45], which is implemented on
the vehicle-to-grid (V2G) scheme. This method requires no communication
and thus is robust and of low cost. However, because of the broader available
information insufficiency [46], the optimal power sharing might be inaccurate
because droop control parameters, which are dynamically based on instanta-
neous operating conditions, need to be adjusted. The third strategy is based
on the distributed control strategy, which relies on the local communication
network for information exchanging among neighboring units. Because of the
diversity of PEV fleet in quantity and features, the corresponding control and
management strategies are expected to be convenient, efficient, and cost-effective.
A well-designed distributed strategy is a promising solution for the demand
management of the PEV fleet because of its flexibility, reliability, scalability, and
adaptivity.

The implementation of distributed control has captured wide attention. Recent
literature demonstrates that its implementation is potentially enabled by the
improvements in the distributed algorithm design, the technology advance-
ment of PEV chargers, and the enhancement in a communication network. A
method based on the noncooperative game is proposed to analyze the charg-
ing strategies of PEVs. Meanwhile, it is observed that there is a conceptual
similarity between the charging games for PEVs and the routing games in
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networks [47]. In this method, the PEVs are considered as rational agents that
tend to minimize the cost concerning the energy price by solving the local
optimization problems. The distributed control strategy is achieved by every
PEV user receiving data of power consumption from all other users at every
iteration, which mitigates the computation burden on the central controller
at the cost of a more complex communication network. The framework of
the MAS has been widely applied in the decentralized charging control strate-
gies [48, 49, 51], most of which are implemented in hierarchical architecture.
The local agent performs charging power regulation according to the exter-
nal signal, and the computation burden of the central controller is relieved.
However, the communication network that builds connection between cen-
tral and regional is also an indispensable factor for implementation, such as
aggregation agents in the divided regions [48], an auctioneer agent serving
for sending the price signal [49], and the agent act as a coordinator [50] or
aggregator [51] for sending the coordination signal or information to the agents
scattered at local areas. To tackle this problem, a peer-to-peer communication
network-based fully distributed cooperative algorithm is proposed in [52], which
aims to achieve the PEVs charging control and then maximize the SOC level
of PEVs at the end of the charging cycle. By approximating the formulated
objective functions, the proposed method can achieve a suboptimal solution.
It is still a great challenge to design a fully distributed approach that can find
the global optimal solution, which is comparable to those of the centralized
algorithms.

This section proposes a MAS-based optimal distributed charging rate control
strategy of PEV fleet. The proposed approach is aimed at mainly two goals.
The first is to meet the dynamic available charging power constraints and
the other is to minimize the total charging power loss incurred by the battery
internal resistance. It is assumed that all PEVs are at the same charging sta-
tion, while PEVs in a different charging station can be grouped into another
fleet, which can then be regulated independently by using the same control
approach. Each recharging socket is assigned with an agent, and each agent
makes a prediction about the optimal charging rate based on the SOC, the
required time of charging, and other relevant battery parameters. By using
a consensus algorithm-based method, which only needs local communica-
tion, the optimal charging power can be predicted and then the available
charging power can be obtained. Finally, by minimizing the aggregated devi-
ations of available charging power, the global optimal solution is obtained.
The proposed solution shows the effectiveness of the proposed method in
sharing the communication and computation burden among all the agents.
The convergence of the proposed approach is guaranteed by rigorous stability
analysis.
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5.2.1 Background

Consensus-based algorithms have gained popularity in various applications and
fields. A recent published research on this topic can be found in [53]. With only
the local information required, the consensus-based algorithm can achieve infor-
mation sharing in a distributed manner. This can be represented as:

xi[t + 1] =
n∑

j=1
dijxj[t] (5.19)

where n is the total number of agents, xj[t] is the state value of the agent i’s state
variable, which represents the local information exchanged with the agent j at the
iteration t, and dij

is the communication coefficient between agent i and agent j.
xi[t + 1] is the update of state variable. The matrix form of Eq. (5.19) can be rewrit-
ten as follows:

X[t + 1] = DX[t] (5.20)

where X[t] and X[t + 1] are the column vectors that represent the discovered infor-
mation at the iteration t and t + 1, respectively. D is the Laplacian matrix of the
network graph [53].

There are various approaches to determine dij
with different convergence

speeds. Mean metropolis algorithm is distributed, adaptive to communication
network topology changes, and able to guarantee the convergence with a nearly
optimal convergence speed [15]. This algorithm is adopted in this chapter.

dij
=
⎧⎪⎨⎪⎩

2∕(ni + nj + 1) j ∈ Ni
1 −

∑
j∈Ni

2∕(ni + nj + Δ) i = j

0 otherwise

(5.21)

where Ni represent the set of agents communicating with the agent i, Δ is a small
number, and ni and nj are the number of agents that communicate with the agents
i and j, respectively. The designed Laplacian matrix D can be verified to satisfy the
following two conditions:

1. The sum of elements in rows and columns are all equal to one.
2. The eigenvalues 𝜆s of D satisfy |𝜆i| ≤ 1, for i = 1,… ,n. Every xi will converge

to a common value as:

[xi[∞] = 1
n

n∑
i=1

xi[0], for i = 1,… ,n (5.22)

5.2.2 Problem Formulation of the Proposed Control Strategy

Suppose there are several PEVs plan to charge in a charging station, which then
negotiates with these PEVs to design their charging plans in the K time slots with a
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total length ΔT. It is assumed that the charging station process the information of
the available charging power during every time slot. PEVs are charging with a con-
stant charging rate and expected to reach desired SOCs before the departure time.

If the PEV charging process is fully controlled by the central controller, the indi-
vidual choice of the user might be overlooked, and it may also potentially pose a
hindrance to the adoption of the V2G technology. A properly designed algorithm,
which can better suit the users’ choice and the benefit of system in the fully dis-
tributed manner, satisfies the charging demand while reducing the charging cost
and maintaining the power supply–demand balance.

The users’ concerns are mainly focused on the charging service quality, i.e. the
battery SOC at the end of the charging cycle and the total charging cost. In this
chapter, first, the model and the charging process performance of the PEV battery
are investigated. The recent literature on the modeling of electric vehicle battery
can be categorized into two types:

1. Electrochemical models [54, 55] are mainly used for the battery design opti-
mization, health characterization, and health-conscious control.

2. Equivalent circuit models [41, 56, 57] are primarily applied to the online estima-
tion and power management. In this chapter, a simple equivalent circuit model
as shown in Figure 5.19 is adopted [41, 58]. The model consists of two parts,
the one is the constant voltage source and the other is a constant resistance.
The two parts are in the series. The discrete time form of this model is listed as
follows:

Vi(k) = Voc,i + RiIi(k) (5.23)

SOCi(k + 1) = SOCi(k) +
ΔT
Qi

Ii(k) (5.24)

SOCi(Ki) = SOCi(0) +
k=Ki∑
k=1

ΔT
Qi

Ii(k) (5.25)

where Vi, Ii, Ri, Voc,i, Qi, and SOCi are the terminal voltages, the charging cur-
rent, the battery equivalent internal resistance, the open-circuit voltage, the
charging capacity of the battery, and the battery SOC, respectively. ΔT is the
charging time with ki = Ti/ΔT, where Ti is the total charging time of PEV ,i.

Ri

Voc,i

Ii

Vi

Figure 5.19 PEV battery equivalent circuit model.
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The total consumed power PEV,i, i.e. the charging power, and the internal power
loss of the PEV ,i during the charging process are modeled as:

PEV,i(k) = Voc,iIi(k) + RiI2
i (k). (5.26)

From Eq. (5.26), the charging current can be obtained:

Ii(k) =
1

2Ri

(√
4RiPEV,i(k) + V 2

oc,i − Voc,i

)
(5.27)

The total charging power of all PEVs should be less than the total available power
of the charging station:

n∑
i=1

PEV,i(k) ≤ PC(k) (5.28)

where PC(k) is the total available power.
The charging price pi of PEV ,i is regulated as proportional to the average charging

rate to convince the PEV users to make the reasonable charging decisions. The pi
is calculated as follows:

pi = kp
SOC∗

i − SOCi(0)
Ti

Qi (5.29)

where SOCi is the PEV user’s desired SOC and kp is the price. From the PEV user’s
perspective, assume that the charging price is constant, then the objective is to
minimize the charging cost, i.e.

min pi ⋅
Ki∑

k=0
PEV,i(k)ΔT

s.t. 0 ≤ PEV,i(k) ≤ Pmax
EV,i

k=Ki∑
k=1

ΔT
Qi

Ii(k) = SOC∗
i − SOCi(0) (5.30)

From Eq. (5.26), it can be deduced that the total charging power of each PEV
can be decomposed into the two parts: the stored energy and the energy loss. The
former is stored in the battery and the latter is incurred because of the battery’s
internal resistance. Therefore, as long as the energy loss is minimized, the total
charging cost is also minimized. Then, the objective function can be rewritten as:

min
Ki∑

k=0
RiI2

i (k)𝛥T (5.31)

The property of function Eq. (5.31) is listed as follows:

k=Ki∑
k=0

RiI2
i (k)𝛥T ≥

RiΔT
2

[k=Ki∑
k=1

Ii(k)

]2

=
RiQ2

2ΔT
[SOCi(Ki)SOCi(0)]2 (5.32)
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During the whole process, if the charging current remains constant, the equality
holds.

Iref
i (k) =

[SOCi(Ki)SOCi(0)]Qi

Ki𝛥T
(5.33)

Therefore, in order to minimize the energy loss, PEVs tend to keep a constant
charging rate as shown in Eq. (5.33). Provided the power constraint in Eq. (5.28)
varying at different time slots, the constant current charging is left with the little
possibility to realize for all PEVs. Therefore, according to the left charging time
and the left uncharged capacity, the requested charging current at time slot k is
updated as:

Iref
i (k) =

[SOCi(Ki)SOCi(k)]Qi

(Ki − k)ΔT
(5.34)

For the charging rate control of PEVs, the goal is to minimize the deviations
between the charging current and the desired charging current while ensuring
that the system constraints are not violated

min L =
n∑

i=1
Li =

n∑
i=1

𝑤i(k)[Ii(k) − Iref
i (k)]2

=
N∑

i=1

{
PEV,i(k)

Ri
−

Voc,i + 2RiIref
i (k)

2R2
i

√
4RiPEV,i(k) + V 2

oc,i

+
V 2

oc,i

2R2
i

+
2Iref

i (k)Voc,i

Ri
+ Iref2

i (k)

}
𝑤i(k)

(5.35)

where 𝑤i(k) is a weight coefficient that represents the priority of the PEV ,i at time
slot k. It is based on the time left to complete the charging process and the remain-
ing charging capacity.

Since the last three terms in Eq. (5.35) are independent of PEV,i(k), thus, the
objective function can be simplified as:

n∑
i=1

𝑤i(k)

{
PEV,i(k)

Ri
−

Voc,i + 2RiIref
i (k)

2R2
i

√
4RiPEV,i(k) + V 2

oc,i

}
(5.36)

s.t.0 ≤ PEV,i(k) ≤ Pmax
EV,i

n∑
i=1

PEV,i(k) ≤ PC(k)

The PEV,i(k) is the second-order derivative of Li. It can be verified to be a convex
function as PEV,i(k) is positive, i.e.

𝜕
2Li

𝜕PEV,i(k)2 = 2𝑤i(k)(Voc,i + 2RiI
ref
i (k))(4RiPEV,i(k) + V 2

oc,i)
− 3

2 > 0 (5.37)
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Function in Eq. (5.37) is also convex because it consists of n convex functions.
Then, the constrained convex optimization problem is used to model the coordi-
nated charging rate control problem of PEVs. The incremental cost, which is also
the Lagrangian variable of the convex function, is obtained by taking the partial
derivative of Li with respect to the PEVi

ri =
𝜕Li

𝜕PEV,i
= 𝑤i(k)

⎛⎜⎜⎜⎝
1
Ri

−
(Voc,i + 2RiIref

i (k))

Ri

√
4RiPEV,i(k) + V 2

oc,i

⎞⎟⎟⎟⎠
(5.38)

The global optimal solution to Eq. (5.36), which is the equal incremental cost
criterion, is shown in [57]

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝜕Li
𝜕PEV,i

||||PEV,i=P∗
EV,i

= r∗, for Pmin
EV,i < P∗

EV,i < Pmax
EV,i

𝜕Li
𝜕PEV,i

||||PEV,i=P∗
EV,i

< r∗, P∗
EV,i = Pmax

EV,i

𝜕Li
𝜕PEV,i

||||PEV,i=P∗
EV,i

> r∗, P∗
EV,i = Pmin

EV,i

(5.39)

where r∗ is the optimal incremental cost. Then, the optimal charging rate for PEV ,i
can be obtained:

P∗
EV,i =

⎧⎪⎪⎨⎪⎪⎩

(Voc,i+2RiIref
i (k))2

4Ri(1−Rir∗∕𝑤i(k))2
−

V 2
oc,i

4Ri
, for Pmin

EV,i < P∗
EV,i < Pmax

EV,i

Pmax
EV,i ,

(Voc,i+2RiIref
i (k))2

4Ri(1−Rir∗∕𝑤i(k))2
−

V 2
oc,i

4Ri
> Pmax

EV,i

Pmin
EV,i ,

(Voc,i+2RiIref
i (k))2

4Ri(1−Rir∗∕𝑤i(k))2
−

V 2
oc,i

4Ri
< Pmin

EV,i

(5.40)

The solution in Eq. (5.40) can also be obtained by a centralized control strat-
egy whose performance highly depends on the capacity of the central controller
and the bandwidth of the communication network. It establishes a connection
between the central controller and all PEVs. First, the central controller gathers
the needed data, such as the users’ charging choices and the battery parameters
of PEV. Second, the central controller calculates the optimal incremental cost and
dispatches to all PEVs. However, the centralized control strategy can coordinate
the grid and PEVs. However, the data management issue, and the computation
and communication burden, may also be incurred by it. In contrast, a properly
designed distributed control strategy shows more flexibility, reliability, and scala-
bility and provides better accommodation to the plug-and-play technology com-
pared to a centralized strategy. The control strategy in the distributed manner has
shown a promising future in solving the charging management problem for PEVs.
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5.2.3 Proposed Cooperative Control Algorithm

5.2.3.1 MAS Framework
The connections between the PEVs and the charging station are established by the
charging sockets, which are assigned a corresponding agent. Agents enable the dis-
tributed control and can work round the clock. Only the local information, which
is acquired from neighboring agents using the consensus-based algorithm intro-
duced in this section, is required by the agent. As illustrated in Figure 5.20, agent
i exchange information with the adjacent agents in an ascending sequence, as i −
ni∕2,… , i − 1, i + 1,… and i + ni∕2. The adopted communication topology satis-
fies the “N − 1” redundant rule, i.e. the communication link failure, and thus, is
robust. However, the independence between the communication system and the
physical power network could exist, if carefully designed. Even for a large complex
system, the corresponding communication network can be simple and designed
based on the cost, the level of convenience, and geographical conditions.

5.2.3.2 Design and Analysis of Distributed Algorithm
Iteratively, the incremental cost of the proposed approach for PEVs can be discov-
ered by the following equations:

ri[t + 1] =
∑
j∈Ni

dijrj[t] − 𝜀 ⋅ PD[t] (5.41)

PEV,i[t + 1] =
(Voc,i + 2RiIref

i (k))2

4Ri(1 − Riri[t + 1]∕𝑤i(k))2 −
V 2

oc,i

4Ri
(5.42)

P′
D,i[t] = PD,i[t] + (PEV,i[t + 1] − PEV,i[t]) (5.43)

PD,i[t + 1] =
∑
j∈Ni

dijP′
D,j[t] (5.44)

1

n

2

n–1 n+1

i

Power line Communication link

Charging
Station 

Figure 5.20 The MAS based PEVs charging framework.
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where ri[t] represents the incremental cost during the charging process of PEV ,i at
iteration t, 𝜖 represent an adjustable step size that controls the convergence speed,
and PD,i[t] represent the local estimation of the global power mismatch. To carry
the relative analysis on the properties and convergence of the proposed approach,
Eqs. (5.41)–(5.44), which are the updating rules, are rewritten in the matrix form
as

R[t + 1] = D ⋅ R[t] − 𝜀 ⋅ PD[t] (5.45)

PEV[t + 1] = E ⋅ R[t + 1] (5.46)

PD[t + 1] = D ⋅ PD[t] + D ⋅ (PEV[t + 1] − PEV[t]) (5.47)

where PEV, R, and PD are the column vectors of PEV,i, ri, and PD,i, respectively, and
the E represent the projection operation of R to PEV.[

R[t + 1]
PD[t + 1]

]
2n×1

=
[

D −𝜀In
DĒ(D − In) D + 𝜀DĒ

]
2n×2n

⋅
[

R[t]
PD[t]

]
2n×1

(5.48)

Define two matrices as follows: M =
[

D 0
DĒ(D − In) D

]
and 𝚫 =

[
𝟎 −In
𝟎 DĒ

]
where

In is an identity matrix of n dimensions. By perturbing matrix M with 𝜖Δ, the
system matrix of Eq. (5.48) can be obtained. The eigenvalues of D and M are the
same. |𝜆I2n − M| = |𝜆In − D|2. D is a double stochastic matrix, which means it
satisfies D𝟏n = 𝟏n and (D − In)𝟏n = 𝟎n. The largest eigenvalue of D is 𝜆1 = 1.
It can be verified that the corresponding eigenvector to the eigenvalue 𝜆1 of
(M+𝜖 Δ) is [𝟏n, 𝟎n]T[

D −𝜀In
DĒ(D − In) D + 𝜀DĒ

]
2n×2n

[
𝟏n
𝟎n

]
=
[

D𝟏n
DĒ(D − In)𝟏n

]
=
[
𝟏n
𝟎n

]
(5.49)

The proof in [59] indicates that all the eigenvalues lie inside a unit disk, so
the system of equation (5.48) would converge as t approaches infinity to the span
[𝟏n, 𝟎n]T . Then, ri[t] converges to the common values r∗ and the optimality is guar-
anteed.

5.2.3.3 Algorithm Implementation
Assume that at the current time, only one agent, the agent No. 1, knows the
real-time available charging power of each charging station. The proposed
algorithm can be decomposed, as shown in Table 5.6.

Figure 5.21 demonstrates the operation of agents, whose module of measure-
ment and initialization calculate the desired charging current, as depicted in
Eq. (5.33). The estimation of the net power and the initialization of the local



�

� �

�

182 5 Distributed Demand-Side Management

Table 5.6 The Proposed Approach.

I. Initialization (Every ΔT minutes)
k = 1;
Ii

ref(k) = [SOCi(Ki)−SOCi(k)]Qi

(Ki−k)ΔT
, SOCi(Ki) = SOCi(k) +

ΔT
Qi

Ii(k)

PD,i[0] =

{
PC(k), i = 1
0, otherwise

,ri[0] =

{
0, k = 1

ri(k − 1), otherwise

II. Consensus coordination
t = 0
while
t ≤ NT (NT is the maximum iteration number)

Each agent communicates with neighboring agents based on the updating rule Eqs. (5.41)
and (5.44).
t = t + 1
End
P∗

EV,i is set according to Eq. (5.40).
k = k + 1

III. Go back to I

Communication

Measurement
and initialization

(5.33)&(5.50)

PEV agent i

Neighboring 
Agent j
j ∈ Ni

PEV i

Optimal incremental 
cost discovery
(5.41) & (5.44)

Local information
update (5.42) & (5.43)

ri [t],P'D,i [t]

P'D,j [t, ]rj [t]

PD,i[0]

ri [0], I(k)

ri [t]

ri [t+1] ri[0] PD,i[0]

rj [t],P'D,j [t]

P'D,j [t] P'D,i [t]

P*
EV,i ~

Figure 5.21 Illustration of agent operation.

incremental cost are as follows:⎧⎪⎪⎨⎪⎪⎩
PD,i[0] =

{
PC(k), i = 1
0, otherwise

ri[0] =
{

0, k = 1
ri(k − 1), otherwise

(5.50)
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The incremental cost and the estimation of power mismatch are exchanged
between an agent and its neighboring agents through the communication
module. Using Eqs. (5.41) and (5.44), the relevant information is updated by the
module of the optimal cost discovery. According to Eqs. (5.42) and (5.43), the PEV
charging power reference and power mismatch estimation are updated by the
local information update module, respectively. If PEV,i surpasses the lower/upper
limit, it would be set equal to the corresponding limit. This procedure is called
projection operation and is aimed to guarantee the convergence of the proposed
algorithm [59]. The projection operation can be included in Ē. Then, the PEV is
charged in accordance with the charging reference.

5.2.3.4 Simulation Studies
Case Study 1
In this section, some case studies on the 14-PEV system, as shown in Figure 5.22,
are performed to test the effectiveness of the proposed approach. In case study
1, the number of PEVs and the available power supply for the charging station
are all set as constant. In case study 2, the available power supply for the charging
station is time-changing. In case study 3, the extendability of the proposed method
is validated. In this case study, the charging period is 15 minutes and the available
power supply is set to 18 kW. Agents communicate with their neighboring agents
and update the data of local incremental cost, the charging power reference, and
the allocation of the total power. The update is performed every 0.1 seconds, and
the step-size 𝜖 is set to 0.01 seconds. For PEV ,i, the priority weight factor can be
obtained as follows:

𝑤i(k) =
1

SOCi(k)
1

(Ti − ΔT ⋅ k + 𝜀t)
(5.51)

Figure 5.22 Topology of communication
network of the 14-PEV scenario. 2
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Table 5.7 Parameters of the battery energy storge systems (BESSs).

Symbol unit R (𝜴) Voc (V) Q (A h) Imax
EV

(A) SOC (0) SOC (T) Time (h)

PEV 1 1.05 280.0 20 10 0.35 0.80 2.5
PEV 2 1.13 313.6 28 10 0.20 0.85 4.0
PEV 3 1.06 308.0 25 10 0.30 0.90 4.0
PEV 4 1.13 319.2 30 10 0.25 0.85 3.5
PEV 5 1.14 294.0 30 10 0.17 0.90 4.0
PEV 6 1.05 302.4 25 10 0.2 0.90 3.5
PEV 7 1.03 305.2 30 10 0.25 0.85 4.0
PEV 8 1.09 274.4 30 10 0.30 0.85 3.0
PEV 9 1.08 277.2 25 10 0.22 0.90 4.0
PEV 10 1.27 280.0 32 10 0.28 0.85 4.0
PEV 11 1.26 285.6 23 10 0.18 0.90 3.0
PEV 12 1.37 291.2 24 10 0.21 0.90 4.0
PEV 13 1.21 285.6 25 10 0.20 0.90 4.0
PEV 14 1.32 288.4 28 10 0.22 0.85 4.0
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Figure 5.23 The updating process of the
incremental cost of PEVs.

where 𝜖t is set to be positive so as to avoid the division by zero. In this case study,
𝜖t = 0.05.

In this case study, the number of adjacent agents of PEV ,i are four, whose indices
are i − 2, i − 1, i + 1, and i + 2, respectively. The topology of the communication
network consists of 28 edges and the maximum number of edges that the system
could possibly have is 91. Then, the graph density is 28/91 = 0.3077. The commu-
nication coefficients dij are obtained according to Eq. (3.21). The initial conditions
and the PEV parameters are listed in Table 5.7.

At the first charging stage, as shown in Figure 5.23, the incremental cost con-
verges to a common value within 10 seconds. Figure 5.24 shows that the power
allocation for each PEV converges after seven iterations. Figure 5.25 shows that
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Figure 5.24 The updating process of the
allocated power for PEVs.
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Figure 5.25 The updating process of the
supply–demand mismatch estimation for
PEVs.
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Figure 5.26 The updating process of the
total allocated power for PEVs.
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Figure 5.27 The updating process of
allocated power profiles for PEVs at the
charging process.
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the power mismatch estimation converges to zero while the optimal charging rate
of every PEV reaches optimality. Figure 5.26 shows that the total charging power
converges to 18 kW, which is the assumed total available charging power.

The allocated power of each PEV, the comparison between the desired and
actual charging current, the SOC profile of each PEV, and the total allocated
power are shown in Figures 5.27–5.30, respectively. As shown in Figure 5.27,
the PEV 1 completes its charging process within 2.5 hours, PEV 8 and PEV 11
reach the desired SOC levels within three hours, and that of PEV 4 and PEV 6 are
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Figure 5.28 The updating process of the
desired charging current and actual
charging current of PEVs.
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within 3.5 hours as expected. After the departure of PEV 1, the allocated power
of the rest of PEVs is increased. One of the major advantages of the proposed
approach is that it enables the plug-and-play function. The charging power will
drop to zero if a PEV is leaving the charging station. Figure 5.27 shows that with
the adaptability of plug-and-play when there are the departures of PEVs from the
charging station, the rest of the PEVs can still reach the consensus by exchanging
the information of the available charging power. Figure 5.28 illustrates that the
charging current that has been allocated and that is referred is very close to each
other when it is near the end of the charging cycle. This is because, as shown
in Figure 5.29, the priority factor increased when the PEV is near to finish the
charging process so that the PEV can be charged to the desired SOC before the
departure. Figure 5.30 shows that during the charging, there is a small deviation
of the total allocated power. The proposed approach has little impact on the
system in terms of frequency disturbances, indicating its promising applications
in the isolation system, namely, the autonomous microgrid.
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Case Study 2
In order to prove the effectiveness of the proposed approach, this case study uses
an isolation system under the condition of the time-varying supply and demand to
study its performance. Figure 5.31 shows that the system consists of a synchronous
generator, a load that is not a PEV type, and a PEV load. The system frequency
change rate can be approximated as [58]:

df
dt

=
f0

2HSb

(
PG − PNEV −

n∑
i=1

PEV,i

)
(5.52)

where H, Sb, f0, PG, and PNEV are the synchronous generator’s inertia constant r,
the MVA rating used in the system, the nominal value of the system frequency, the
generation output, and the non-PEV load, respectively. The key to minimizing
the influence on the stability of the system frequency is to keep the net power
of the system close to the zero. Therefore, a crucial goal is to use the total PEV
charging power to compensate the power mismatch between the generation and
the non-PEV loads. The sampling rate (SR) for the measurement of the available
charging power, which is set to be five minutes, is aimed to tackle the available
power that changes along with the time and to achieve more accurate control.
The generation output is set to be 40 kW. Figure 5.32 shows the demand profile of
the non-PEV load.

As shown in Figure 5.33, there is a decline in the allocated charging power along
with an increment in the non-PEV load 2.5 hours before the PEV leaves the charg-
ing station and vice versa. As shown in Figure 5.34, when it is at the end of its
charge cycle, the charging currents of PEVs 1, 8, and 11 are very close to their
charging current references. PEV 1 finishes the charging process in 2.5 hours, and
then PEVs 8 and 11 reach their desired SOC in three hours, as shown in Figure 5.35.

Figure 5.31 The utilization of a single
isolated synchronous generator.

Synchronous
generator

 

G
PNEV

PEV

Figure 5.32 The demand profile of
non-PEV load in the case 2 scenario.
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Figure 5.33 The updating profile of
allocated power with SR = 5 minutes.
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Figure 5.34 The updating profiles of
desired and actual charging current with SR
= 5 minutes.
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Figure 5.35 The updating profiles of
battery SOC with SR = 5 minutes.
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Figure 5.36 The updating profile of
available and total allocated charging power
with SR = 5 minutes.

Figure 5.36 shows the PEV’s profile of the total allocated charging power and the
available charging power. The mismatch ratio between the two terms is shown
in Figure 5.37. The mismatch ratio is within 2%. The mismatched power is cal-
culated under the assumption that the available charging power of each sample
period remains constant. Thus, it can be reduced by using a sampling cycle with a
shorter time.

Then, the setting of sample rate is changed from five to two minutes, and the mis-
match ratio is reduced to under 1% as shown in Figures 5.38 and 5.39. Therefore, by



�

� �

�

5.2 Optimal Distributed Charging Rate Control of Plug-in Electric Vehicles for Demand Management 189

Figure 5.37 The updating profile of
mismatch ratio of the available and the
total allocated power with SR = 5 minutes.
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Figure 5.38 The updating profile of
available and total allocated charging
power with SR = 2 minutes.
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Figure 5.39 The updating profile of
mismatch ratio between the available and
total allocated power with SR = 2
minutes.
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setting a proper sampling rate, the proposed approach can successfully reduce the
power mismatch of an isolated system under the condition of fast-changing supply
and demand. The simulation results show that the proposed approach has broad
application prospects in the autonomous microgrid with intermittent renewable
generations.

Case Study 3
In this case, by implementing the proposed approach on two different systems, the
50-PEV and 100-PEV systems, the scalability of the proposed approach is validated.
The supporting communication system of the 50-PEV system is similar to that of
case study 1. It is assumed that each agent exchange information with 10 neigh-
boring agents. Therefore, the topology of the communication network is formed
by the strong connection of 250 edges. Because the maximum number of edges
the system could possibly have is 4950, the graph density is 250/1225 = 0.2041. In
the 100-PEV system, the agents are assumed to have 20 neighboring agents, and
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Figure 5.40 The updating profile of
incremental cost for 50-PEV systems.
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Figure 5.41 The updating profile of
incremental cost for 100-PEV systems.

thus, the topology of the communication system is formed by the strong connec-
tion of 1000 edges. The graph density is 1000/4950 = 0.2020. The information is
updated every 0.1 seconds, and the PEV parameters are from the modification of
that in Table 5.7. The available charging power ratings of the 50-PEV and 100-PEV
system are set to 60 and 120 kW, respectively.

The proposed approach has been implemented on the 50-PEV and 100-PEV
systems. The results show that the convergence is reached within 30 seconds, as
shown in Figures 5.40 and 5.41. The simulation results indicated that the density
of communication connectivity is the main factor that determines the convergence
speed. Thus, despite the large scale of the system, the convergence speed can be
maintained or improved by building denser communication connectivity. Hence,
the trade-off between the cost of the communication network and the convergence
speed should be considered.

5.3 Conclusion

A distributed optimal charging rate control algorithm for PEVs is proposed in this
chapter. The proposed approach combines the goal of reducing energy loss and
satisfying system constraints. The proposed approach achieves the following four
main advantages. The first is to introduce a MAS-based framework in a fully dis-
tributed manner and a consensus algorithm that reduces the cost concerning the
communication network compared to a centralized algorithm. The second is to
consider the charging power loss incurred by the internal resistance of the battery.



�

� �

�

References 191

This indicates the significant potential to encourage user participation. The third is
global optimality. It is obtained without any approximation. The fourth is to verify
the feasibility of the proposed approach being applied to different scales of systems,
i.e. small systems and large systems. The effectiveness of the proposed approach
is validated by the simulation study. It demonstrates the promising applications in
the autonomous microgrids with the intermittent renewable generations.

In order to utilize the proposed approach in the field applications, a number of
practical issues need to be further elaborated:

1. Consider the influence of the charging terminal on the system frequency and
the voltage deviation as well as the power loss incurred by the power line.

2. A PEV battery model with more accuracy is needed.
3. Integrate the predictions and the forecasting technology into the MAS frame-

work so that the local agents could achieve better charging preference settings.
4. Considering the system frequency and the voltage changes, the proposed algo-

rithm is applied to the islanded microgrid system with the intermittent renew-
able power generation.
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6

Distributed Social Welfare Optimization

Traditionally, economic dispatch and demand response (DR) are considered
separately or implemented sequentially, which may degrade the energy efficiency
of the power grid. One important goal of optimal energy management is to
maximize social welfare through the coordination of the suppliers’ generations
and customers’ demands. Thus, it is desirable to consider the interactive operation
of the economic dispatch and DR and solve them in an integrated way. In this
chapter, a fully distributed online optimal energy management solution is pro-
posed for the smart grid. The proposed solution considers the economic dispatch of
the conventional generators, DR of users, and operating conditions of the renew-
able generators altogether. The proposed distributed solution is developed based
on the market-based self-interest motivation model. This model can realize the
global social welfare maximization among system participants. The proposed solu-
tion can be implemented with the multi-agent system (MAS), with each system
participant assigned an energy management agent (EMA). Based on the designed
distributed algorithms for price update and supply–demand mismatch discovery,
the optimal energy management among agents can be achieved in a distributed
way. Simulation results demonstrate the effectiveness of the proposed solution.

6.1 Introduction

One of the key challenges proposed by the increasing number of renewable
generators in the smart grid is related to the economic operation [1]. Because of
the existence of multiple traditional and renewable generators in power grids,
the smart grids’ economic operation requires the optimal management on both
demand and supply sides. However, conventional economic dispatch and DR are
operated, respectively.

The economic dispatch is implemented to distribute the power generation
among generators economically with consideration of the physical restrictions

Distributed Energy Management of Electrical Power Systems, First Edition.
Yinliang Xu, Wei Zhang, Wenxin Liu, and Wen Yu.
© 2021 The Institute of Electrical and Electronics Engineers, Inc.
Published 2021 by John Wiley & Sons, Inc.
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of the power system on the generation side [2]. Conventionally, the load
requirements are considered as constant. DR is now becoming an integral part of
both the power system and market operations on the demand side [3]. Through
the operation of DR, customers have the ability to make an acquainted decision
with a consideration of their energy consumption, which promotes the reduction
of the entire peak load, reconstruction of demand profiles, and the improvement
of grid sustainability. DR applications are currently implemented based on
presupposed load curves, schedules, or price patterns [4, 5].

On the one hand, the outputs of the traditional generators require to be
adjusted based on operating conditions, for instance, diversification of the
renewable generation. The specific approach of adjustment among them requires
to be re-dispatched in an economical manner. On the other hand, customers will
adjust their demands, responding to the variations in the market price for the
purpose of maximizing the profits [6]. The execution of economic dispatch or DR
will impact the other users because both of them participate in the energy market.
For example, the implementation of DR will reconstruct the load profiles. Thus,
the original optimal point acquired via economic dispatch will become less useful
because the generations will stray from it. Thus, the economic dispatch requires
to be operated again. The implementation of economic dispatch will influence
the market price and stimulate DR in turn. By and large, the implementation
of economic dispatch and DR should be coupled and designed simultaneously
while operating online energy management (OEM). Yet, the interactive process
will consume a fairly long time to converge on condition that the economic
dispatch and DR be operated independently and sequentially. As a consequence,
considering the interactive implementations of economic dispatch and DR, and
settle both of them integrally, is of great significance.

In general, the centralized solutions are stubborn, and the single-point failures
could influence the solutions easily [7–13]. To operate such methods under a
complex communication network, an effective central controller needs to collect
global information and to handle a large amount of data. Consequently, when
encountering a rigorous operating situation, such methods cannot satisfy the
response requirements in a timely manner, especially during the changes caused
by the intermittency and uncertainty of renewable energy resources. Therefore,
such methods require to be improved in terms of response speed.

For the purpose of addressing the above mentioned disadvantages of centralized
solutions, a variety of solutions have been proposed. Some scholars proposed DR
approaches on the basis of utility maximization [14]. These scholars designed
the bidding process in a distributed way, but these approaches need an alpha con-
troller to assemble the required information from all consumers on-demand side
in order to obtain the market price. To solve the economic dispatch in a distributed
manner, an incremental cost consensus algorithm-based method is suggested
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by some scholars. However, the DR was not considered by them [15]. For the
dispatch of the distributed generators in a smart grid, some scholars also proposed
a population dynamics approach, which also needs an auctioneer agent acting as
a centralized coordinator [16]. All of these proposed methods have not considered
the impact of intermittent renewable generation. As the power system needs the
integration of more renewable generators and more user participation into the
energy market, an advanced distributed algorithm with considerations of both
generators and energy users for the integrated optimal energy market is required.

In this chapter, a distributed solution for OEM is proposed to maximize the total
social welfare of the whole power system. Such a solution is applied with a MAS,
designing on the ground of the self-interest motivation market model. MAS has
been implemented to diversified problems, such as the active power and the reac-
tive power control [17–19]. Solution based on a well-designed MAS performs more
flexibly, reliably, and can be easily implemented. Moreover, such a solution has
advantages of robustness against single-point failures.

In terms of the proposed solution for OEM, we use one EMA to denote a single
unit in the power system. In order to achieve the market equilibrium, an EMA is
designed to communicate with its surrounding EMAs within its communication
range and participates in the price negotiation. Accordingly, for the OEM problem,
its optimal solution is the acquired market equilibrium. The main highlights of this
chapter are illustrated as follows:

1. An OEM problem is formulated by considering the interactive operation of eco-
nomic dispatch and DR. Both of the social welfare maximization models and
market-based self-interest motivation models are introduced in formulating the
problem. This chapter also discusses the relationship between these two mod-
els.

2. The OEM problem is solved by utilizing a distributed approach, and this
approach is designed on the basis of distributed price updating and
supply–demand mismatch discovery algorithm, with the market-based
self-interest motivation model being applied.

3. The designed OEM solution is implemented by using MAS architecture,
which simply requires the local information exchange among neighboring
agents. Therefore, such a solution overcomes the disadvantages of centralized
solutions.

The rest of the chapter is structured as follows. Section 6.2 proposes two OEM
optimization models and introduces relationships between these two models.
Section 6.3 introduces the specifics of the establishment and application of the
proposed distributed algorithms. Section 6.4 presents two cases with the 6-bus
power system and the IEEE 30-bus system.
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6.2 Formulation of OEM Problem

The renewable generation could not be assumed as dispatchable because of
its intermittent nature. Hypothetically, in this chapter, renewable generation is
unable to satisfy all loads. Thus, it is always consumed whenever available. The
conventional generation will accommodate the unserved load. The following
equation presents the active power balance constraints that should be satisfied in
a power system with nG conventional generators, nR renewable generators, and
nL loads:

nG∑
i=1

PG,i −
nL∑
j=1

PD,j +
nR∑

k=1
PR,k − Ploss = 0 (6.1)

where PG,i is the generation supply of the ith unit, while PD,i is the load demand of
the jth units. PR,k is the renewable generation of kth unit. The active power loss of
the network is Ploss. Typically, social welfare maximization cannot be considered
as self-interest maximization. However, in the situation established in this chapter,
social welfare maximization equals to the self-interest maximization, which will
be later discussed in detail.

6.2.1 Social Welfare Maximization Model

The OEM aims to minimize all generators’ production cost and maximize all users’
utility for the purpose of maximizing the social welfare [20]:

max

(
−

nG∑
i=1

Cs,i(PG,i) +
nL∑
j=1

Cu,j(PD,j)

)
(6.2)

The production cost of the supplier (generator) i is denoted with Cs,i, and the utility
of the user j is denoted by using Cu,j. In most countries, the renewable gener-
ation is currently consumed whenever available as per the policy and environ-
mental regulations. Therefore, here, the cost for the renewable generation could
be considered as zero. The following equations present the production cost for
generator i:

Cs,i(PG,i) =
1
2

aiP2
G.i + biPG.i + ci (6.3)

Pmin
G,i ≤ PG,i ≤ Pmax

G,i (6.4)

where ai, bi, and ci represent the generation cost coefficients of generator i. Pmin
G.i

and Pmax
G.i are the minimum and maximum output of the generation, respectively.

In this chapter, the utility of a user is defined as converged utilities for loads with
varying tasks instead of the utility of a personal device. It is rational to consider
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that the utility function is nondecreasing as more consumed power enables us to
accomplish more tasks. The form of the user’s utility cost is typically a quadratic
function. User js utility function is denoted as [21, 22]:

Cu,j(PD,j) =
1
2
𝛼iP2

D,j + 𝜔jPD,j (6.5)

The coefficients of the utility function are denoted as 𝛼i and 𝜔i. Typically, 𝛼i is
negative, while 𝜔i is positive. The loads can be divided based on the two classi-
fication criteria, i.e. the loads that are controllable and the must-run loads [22].
The loads that could be paused, regulated, or shifted are considered as control-
lable loads, e.g. airconditioners and PHEVs. In contrast, must-run loads could not
be adjusted; for instance, refrigerators are unable to react to price variations and
thus are must-run loads. The minimum power demand of a user is decided by its
must-run loads. Obviously, users’ demand is limited by its rating capacity.

Pmin
D,j ≤ PD,j ≤ Pmax

D,j (6.6)

Therefore, the entire OEM problem for social welfare maximization is
established as:

⎧⎪⎨⎪⎩
max (−

nG∑
i=1

Cs,i(PG,i) +
nL∑
j=1

Cu,i(PD,j))

subject to (6.1), (6.4) and (6.6)
(6.7)

The Lagrangian function to solve (6.7) is denoted as:

L = −
nG∑
i=1

Cs,i(PG,i) +
nL∑
j=1

Cu,j(PD,j)

+ 𝜆

( nG∑
i=1

PG,i −
nL∑
j=1

PD,i +
nR∑

k=1
PR,k − Ploss

)

+
nG∑
i=1

𝜇G,i(Pmax
G,i + PG,i) +

nG∑
i=1

𝜇
G,i
(PG,i − Pmax

G,i )

+
nL∑
j=1

𝜇D,j(Pmax
D,j − PD,j) +

nL∑
j=1

𝜇
D,j
(PD,j − Pmin

D,j )

(6.8)

where 𝜆 is the Lagrangian multiplier for constraint (6.1), 𝜇G,i, 𝜇
G,i

, and 𝜇D,j,
𝜇

D,j
are the non-negative Lagrangian multipliers for constraints (6.4) and (6.6),
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respectively. The following conditions determine the optimal solution of (6.7):

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Msi(PG,i) = 𝜆(1 − 𝛾i) − 𝜇G,i + 𝜇
G,i

Muj(PD,j) = 𝜆(1 + 𝛾j) + 𝜇D,j − 𝜇
D,j

nG∑
i=1

PG,i −
nL∑
j=1

PD,j +
nR∑

k=1
PR,k − Ploss = 0

𝜇G,i(Pmax
G,i − PG,i) = 0, 𝜇

G,i
(PG,i − Pmin

G,i ) = 0
𝜇D,j(Pmax

D,j − PD,j) = 0, 𝜇
D,j
(PD,j − Pmin

D,j ) = 0

(6.9)

The following equation defined 𝛾i and 𝛾j in (6.9), where 𝛾i is the coefficient of
generator i’s power loss, while 𝛾j is the coefficient of generator j’s power loss [23]:

𝛾i =
𝜕Ploss

𝜕PG,i
, 𝛾j =

𝜕Ploss

𝜕PD,j
(6.10)

The following equation defines Msi(PG,i) and Muj(PD,j), which represents sup-
plier i and user j’s marginal cost and utility:

Msi(PG,i) =
d(Cs,i(PG,i))

dPG,i
= aiPG,i + bi (6.11)

Mui(PD,j) =
d(Cu,j(PD,j))

dPD,j
= 𝛼jPD,j + 𝜔j (6.12)

Equation (6.9) could be solved by many centralized approaches [24, 25]. The
iterative way to acquire a solution of (6.9) by applying a gradient method could be
given as follows:

(Msi(PG,i) + 𝜇G,i − 𝜇
G,i
)∕(1 − 𝛾i) = 𝜆[t] (6.13)

(Muj(PD,j) − 𝜇D,j + 𝜇
D,j
)∕(1 + 𝛾j) = 𝜆[t] (6.14)

𝜆[t + 1] = 𝜆[t] − ΔP[t]𝜀 (6.15)

In (6.15), ΔP[t] is the supply–demand mismatch at the tth iteration. In fact, the
Lagrangian function’s gradient with respect to 𝜆 is ΔP[t], and 𝜀 is the stepsize.
ΔP[t] could be calculated according to (6.8):

ΔP[t] =
nG∑
i=1

PG,i[t] −
nL∑
j=1

PD,j[t] +
nR∑

k=1
PR,k[t] − Ploss[t] (6.16)

The power loss could be calculated as follows, considering the active power loss
resulted by the transmission of suppliers’ generation and users’ consummation:

Ploss[t] =
nG∑
i=1

𝛾iPG,i[t] +
nL∑
j=1

𝛾jPD,j[t] +
nR∑

k=1
𝛾kPR,k[t] (6.17)
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Here, 𝛾k denotes the power loss coefficient of the renewable generator. There-
fore, the supply–demand mismatch could be expressed as follows:

ΔP[t] =
nG∑
i=1

(1 − 𝛾i)PG,i[t] −
nL∑
j=1

(1 + 𝛾j)PD,j[t]

+
nR∑

k=1
(1 − 𝛾k)PR,k[t]

(6.18)

The unique optimal solution of (6.7) is bound to a particular unique Lagrange
multiplier 𝜆∗, which is the so-called system 𝜆 [26]. This particular 𝜆∗ is be obtained
when ΔP[t] approaches zero, namely, the supply and demand are balanced out.

6.2.2 Market-Based Self-interest Motivation Model

The self-interest motivated OEM problem is designed in a deregulated market.
In this chapter, the suppliers refer to the conventional generators and the users
refer to loads. The market equilibrium could be achieved through negotiation on
prices between suppliers and users. Because the cost of the renewable generator
is zero, it could be considered as selfless. However, as discussed above, renewable
generators could still influence the final market-clearing price. The supplier i’s
predicted profit function could be represented as follows based on a given selling
price ri:

Us,i = riPG,i(1 − 𝛾i) − Cs,i(PG,i) (6.19)

As provided in (6.3), Cs,i(PG,i) is the generation cost function, and the power loss
parameter 𝛾i is given in (6.10). Likewise, user j’s anticipated utility function can be
defined as:

Uu,j = Cu,j(PD,j) − rjPD,j(1 + 𝛾j) (6.20)

Here, user j’s bidding price is denoted as rj. As given in (6.5), user j’s utility
function is Cu,j(PD,j) and user j’s power loss coefficient 𝛾j is defined in (6.10).
Here, we assume that all suppliers are selfish. Thus, when marginal cost equals
the selling price, supplier i will accomplish the adjustment of its generation,
achieving the optimal strategy, on condition that the selling price ri is given. The
following equation presents the solution of maximizing the profit function:

dUs,i

dPG,i
= ri(1 − 𝛾i) − Msi(PG,i) = 0 (6.21)

To maximize the profit, a specific user tends to purchase until the marginal
utility reaches the bidding price:

dUu,j

dPD,j
= Muj(PD,j) − rj(1 + 𝛾j) = 0 (6.22)
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Here, Msi(PG,i) represents the marginal utility of user i, which is defined in
(6.12). By taking the constraints given in (6.4) and (6.6) into consideration, the
suppliers and users will determine their generation and load according to (6.23)
and (6.24), respectively:

PG,i =

⎧⎪⎪⎨⎪⎪⎩

Pmin
G,i if ri(1 − 𝛾i) < Msmin

i

Pmax
G,i if ri(1 − 𝛾i) > Msmax

i

ri(1−𝛾i)−bi
ai

otherwise

(6.23)

PD,j =

⎧⎪⎪⎨⎪⎪⎩

Pmin
D,j if rj(1 + 𝛾j) < Mumin

j

Pmax
D,j if rj(1 + 𝛾j) > Mumax

j

rj(1+𝛾j)−𝜔j

𝛼i
otherwise

(6.24)

where Msmin
i = Msi(Pmin

G,i ), Msmax
i = Msi(Pmax

G,i ), and Mumin
j = Muj(Pmin

D,j ), Mumax
j =

Muj(Pmax
D,j ).

The following equations show how the suppliers and users tend to change the
selling prices or the bidding prices based on the supply–demand mismatch in the
deregulated market.{

ri[t + 1] = ri[t] − ΔP[t]𝜀i
rj[t + 1] = rj[t] − ΔP[t]𝜀j

(6.25)

The supply–demand mismatch ΔP[t] here is calculated by using (6.16), and 𝜀i is
the incentive factor that inspire producer i to improve its generation to achieve
market equilibrium, whereas 𝜀j signifies user j’s willingness in improving its bid-
ding price to meet its demand.

Here, we considered that the market is comparatively stable and competitive,
which indicates that selling and bidding price can meet at a point where the market
is cleared. Thus, the equilibrium price is represented as follows:

ri = rj = r∗, for i = 1, 2,… ,nG, j = 1, 2,… ,nL (6.26)

The r∗ in (6.26) is the frequently mentioned market-clearing price, which clears
the market on condition where the supply–demand balance is achieved, as dis-
cussed in (6.1).

6.2.3 Relationship Between Two Models

By dropping the subscripts i, j in (6.25), the price updating formula can be written
in a simpler form:

r[t + 1] = r[t] − 𝜀ΔP[t] (6.27)



�

� �

�

6.2 Formulation of OEM Problem 205

By replacing r with 𝜆, one can easily find that (6.27) is precisely the same as
(6.15), which indicates that updating the rule of the market price is the same as
that of the system 𝜆. Such a situation demonstrates that both of them converge
when supply and demand reach a balance.

For the social welfare maximization model, one of the conditions for conver-
gence is that 𝜆[t + 1] = 𝜆[t] = 𝜆

∗. The supplier’s generation and the user’s demand
under this system 𝜆 can be determined by the following equations according to
(6.13) and (6.14):

Msi(PG,i) + 𝜇G,i − 𝜇
G,i

= 𝜆
∗(1 − 𝛾i) (6.28)

Muj(PD,j) − 𝜇D,i + 𝜇
D,j

= 𝜆
∗(1 + 𝛾j) (6.29)

The 𝜇G,i, 𝜇G,i
and 𝜇D,j, 𝜇D,j

are Lagrangian multipliers for constraints (6.4) and
(6.6), respectively. These multipliers are set to zero when the generator or load is
operating within its bounds. For instance, PG,i can be calculated as PG,i =

𝜆
∗(1−𝛾i)−bi

ai
using (6.11) on condition that the generator is operated within its bounds. If the
generator reaches its maximum limit, then PG,i = Pmax

G,i . Moreover, 𝜇G,i > 0, 𝜇
G,i

=
0, and Msmax

i + 𝜇G,i = 𝜆
∗(1 − 𝛾i) in this scenario, which yields 𝜆∗(1 − 𝛾i) > Msmax

i .
When a generator hits its lower bound, then PG,i = Pmin

G,i . Under this circumstance,
𝜇G,i = 0, 𝜇

G,i
and Msmin

i − 𝜇
G,i

= 𝜆
∗(1 − 𝛾i), accordingly 𝜆∗(1 − 𝛾i) < Msmin

i . There-
fore, the generation of the generator could be obtained by using the following
equations:

PG,i =

⎧⎪⎪⎨⎪⎪⎩

Pmin
G,i if 𝜆∗(1 − 𝛾i) < Msmin

i

Pmax
G,i if 𝜆∗(1 − 𝛾i) > Msmax

i

𝜆
∗(1−𝛾i)−bi

ai
otherwise

(6.30)

The demand of the user could be calculated according to the similar derivation:

PD,j =

⎧⎪⎪⎨⎪⎪⎩

Pmin
D,j if 𝜆∗(1 + 𝛾j) < Mumin

j

Pmax
D,j if 𝜆∗(1 + 𝛾j) > Mumax

j

𝜆
∗(1+𝛾j)−𝜔j

𝛼i
, otherwise

(6.31)

When the algorithm converges, ΔP = 0, that leads to:

ΔP(𝜆∗) =
nG∑
i=1

(1 − 𝛾i)PG,i(𝜆∗) −
nL∑
j=1

(1 + 𝛾j)PD,j(𝜆∗)

+
nR∑

k=1
(1 − 𝛾k)PR,k

(6.32)



�

� �

�

206 6 Distributed Social Welfare Optimization

Substituting (6.30) and (6.31) into (6.32), we can have:

ΔP(𝜆∗) =
∑
i∈BG

(1 − 𝛾i)PB
G,i + as𝜆

∗ − bs

−

(∑
j∈BD

(1 + 𝛾j)PB
D,j + 𝛼D𝜆

∗ − 𝜔D

)

+
nR∑

k=1
(1 − 𝛾k)PR,k = 0 (6.33)

where BG and BD represent generators that reach their limitations and users that
touch their demand bounds, respectively. as =

∑
i∉BG

(1−𝛾i)2

ai
, bs =

∑
i∉BG

bi(1−𝛾i)
ai

, 𝛼D =∑
i∉BD

(1+𝛾j)2

𝛼j
and 𝜔D =

∑
i∉BD

𝜔j(1+𝛾j)2

𝛼j
. Therefore, the converged system 𝜆

∗ can be
calculated as follows:

𝜆
∗ = 1

as − 𝛼D

(
bs − 𝜔D −

∑
i∈BG

(1 − 𝛾i)PB
G,i +

∑
j∈BD

(1 + 𝛾j)PB
D,j −

nR∑
k=1

(1 − 𝛾k)PR,k

)

(6.34)

As for the self-interest motivation model, the equilibrium price satisfies
ri = rj = r∗ when the market is cleared. Consequently, based on the equilibrium
price, suppliers’ generation and users’ demand can be calculated based on (6.23)
and (6.24), respectively. The equations given in (6.23) and (6.24) are the same as
(6.30) and (6.31) provided that r in (6.23) and (6.24) is replaced with 𝜆

∗. The price
that balances supply and demand is the market-clearing price. Consequently,
(6.33) still holds if one replaces 𝜆∗ with r∗. Then:

𝜆
∗ = r∗ = 1

as − 𝛼D

(
bs − 𝜔D −

∑
i∈BG

(1 − 𝛾i)PB
G,i

+
∑
j∈BD

(1 + 𝛾j)PB
D,j −

nR∑
k=1

(1 − 𝛾k)PR,k

) (6.35)

Here, we demonstrate that the converged Lagrangian multiplier for the social wel-
fare maximization model 𝜆∗ is, in fact, the market-clearing price for self-interest
model r∗. It proves that these two models yield the same solutions. At the
equilibrium of the market, one can acquire the maximum of the social welfare,
and this phenomenon has been discussed in the existing literature [20].

Solving the self-interest motivation model actually decomposes the original
social welfare maximization problem into multiple local optimization problems.
Thereby, it can accomplish the task of solving the OEM problem in a distributed
manner. The following section will introduce the details of distributively solving
the OEM for the optimal solution.
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6.3 Fully Distributed MAS-Based OEM Solution

Several problems need to be addressed for the purpose of solving the self-interest
motivation model-based OEM problem for a distributed solution. First, suppliers
and users require to figure out the supply–demand mismatch (ΔP) in order to
update the prices (selling or bidding). In the centralized market environment,
the system operators are in charge of providing the information regarding the
supply–demand mismatch ΔP, with an incentive factor 𝜀 being also provided
by them. However, for a distributed scheme, this information is expected to be
acquired in the distributed approach. In addition, for all the system participants,
the selling and bidding prices defined in (6.25) are expected to be adjusted in
a distributed manner for the purpose of achieving a balance of the market.
Accordingly, distributed algorithms are proposed in this section for solving the
OEM problem to yield a fully distributed solution.

6.3.1 Distributed Price Updating Algorithm

As discussed above, the process of obtaining the optimal generation/demand sets
can be viewed as a process of discovering the equilibrium for market clearing. As
the designed distributed OEM method, each unit, for instance, a supplier or a user,
has been allocated an EMA that takes charge of the price negotiation. Then, each
participant communicates with its surrounding EMAs within its communication
range to modify its settings regarding the price and generation/load during the
process of negotiation. The ith EMA resets its selling or bidding price according to
the following formula:

ri[t + 1] =
n∑

j=1
dijrj[t] − 𝜀iΔP[t] (6.36)

Here, ri[t] denotes the price of EMA i at step t, while ri[t + 1] denotes the price
for coming step. dij represents the weights related to agents i and j. n refers to
the amounts of EMAs. Similar to (6.25), 𝜀i denotes incentive factor. ΔP[t] is the
supply–demand mismatch with prices sta quo, whereas the 𝜀iΔP[t] is defined as
the power mismatch incentive. Here, we use i or j to denote the index of an EMA; it
can represent either a supplier or a user. As shown in (6.36), the formula for price
update includes two terms. The first term is used to estimate the market-clearing
price. In general, for a market with multiple sellers and users, the market-clearing
price always moves toward the mean price of all sellers and buyers. The second
term is used to drive the market toward the supply–demand balance.

In order to guarantee the information exchange among EMAs, the weights dijs
need to be set appropriately. In this chapter, we calculate dijs by applying the mean
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metropolis algorithm in [27] as it is thoroughly distributed and adaptive to alter-
ations in the communication network topology, and the weights are determined
as follows:

dij =

⎧⎪⎪⎨⎪⎪⎩

2
ni+nj

, j ∈ Ni

1 −
∑

j∈Ni

2
ni+nj

, i = j

0, otherwise

(6.37)

Here, ni refers to the amounts of EMAs that communicate with EMA i, and nj
is defined similarly. Ni denotes the indices of EMAs that can communicate with
EMA i for information exchange. According to the proposed method, for each
agent, it can only exchange information with the agents, which are permitted to
exchange information with, and these agents are also referred to as the neighbor-
ing agents of that agent. If two agents are not neighbored, they will not exchange
information. For example, the weight dij that denotes the weight between
agent i and j equals to zero implies that there is no communication between
agents i and j.

For convenience, we use the matrix form to represent the entire price updating
process in (6.36).

R[t + 1] = D ⋅ R[t] − ΔP[t] ⋅ E (6.38)

The weight matrix with the elements being dijs is denoted by D, while
R[t] = [r1[t], r2[t],… , rn[t]]T and E = [𝜀1, 𝜀2,… , 𝜀n]T . Letting t approach infin-
ity will result in ri[t + 1] = ri[t] = r∗, which is the equilibrium of the system
represented by (6.38). Moreover, adding both sides of (6.38) together yields:

n∑
i=1

r∗i =
n∑

i=1

n∑
j=1

dijr∗j − ΔP[∞]
n∑

i=1
𝜀i (6.39)

where r∗i = r∗j = r∗ and ΔP[t] = 0 when the market is cleared. Moreover, from
(6.37) we can have:

n∑
j=1

dij = 1 (6.40)

Additionally, from (6.39), we can also have
∑n

i=1 r∗i =
∑n

j=1 r∗j =
∑n

j=1(
∑n

i=1 dij)r∗j ,
which yields:

n∑
i=1

dij = 1 (6.41)

From (6.40) and (6.41), we can conclude that 1 is both the left and right eigen-
value of the weight matrix D. Note that both (6.40) and (6.41) are satisfied when
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the matrix D is set in the way presented by (6.35). Moreover, for the purpose of
simplifying the design of the matrix D, we also set it in a symmetric way such that:

⎧⎪⎨⎪⎩
dij = dji, for all i, j

n∑
j=1

dij =
n∑

i=1
dji = 1

(6.42)

Because D is symmetric, the summation of all rows or columns equals to 1,
hence,

∑n
j=1 dji = 1. Accordingly, we can have

n∑
i=1

n∑
j=1

dijr∗j =
n∑

i=1

n∑
j=1

djir∗i =
n∑

i=1

(
r∗i

n∑
j=1

dij

)
=

n∑
i=1

r∗i (6.43)

Since 𝜀i ≠ 0, therefore

ΔP[∞] = 0 (6.44)

Here, we show that the converged market price can ensure the balance between
supply and demand after the algorithm converges, as shown in (6.44).

With ri[t + 1] = ri[t], substituting (6.44) into (6.38) yields:

R∗ = DR∗ (6.45)

where R∗ = [r∗1 , r∗2 ,… , r∗n]T . According to [27], the solution to (6.45) has the fol-
lowing form:

R∗ = r∗ ⋅ 𝟏,with 𝟏 = [1, 1,… , 1]T (6.46)

Thus, the common market-clearing price could be acquired because all
providers and users will reach an agreement on this particular price, i.e.

ri[∞] = rj[∞] = r∗ (6.47)

As a consequence, when both (6.44) and (6.47) hold, the price negotiation pro-
cess also reaches the overall market equilibrium. Apparently, the designed market
price update method presented in (6.36) is not similar to the conventional scheme
given in (6.25). Nevertheless, both these two mechanisms can reach the unique
market equilibrium by driving the suppliers and users via price negotiation.

6.3.2 Distributed Supply–Demand Mismatch Discovery Algorithm

As shown in (6.36), in order to yield a thoroughly distributed price update
algorithm, the global supply–demand mismatch (ΔP) requires to be gained via
a distributed manner. The calculation of (ΔP[t]) requires the information of
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both suppliers and users, as shown in (6.16). We propose to discover ΔP[t] in a
distributed manner by applying the following iterative formula:

Pk+1
i [t] =

n∑
j=1

dijPk
j [t] (6.48)

The formula presented in (6.48) is the update rule of average-consensus algo-
rithm, and one can refer to [28] for more details. According to this algorithm, all
Pk

i s in Eq. (6.48) will converge to the same value as follows:

P∞
i [t] = 1

n

n∑
i=1

P0
i [t] for i = 1, 2,… ,n (6.49)

For EMA i, P0
i [t] is initialized as:

P0
i [t] = n × [(1 − 𝛾i)(PG,i[t] + PR,i[t]) − (1 + 𝛾i)PD,i[t]] (6.50)

PR,i[t] and PD,i[t] in (6.50) are set to zero if an EMA corresponds to a traditional
generator. Similarly, if an EMA relates to a load, PG,i[t] and PR,i[t] are set to zero
and the RG EMAs can set PG,i and PD,i in a similar manner.

Such rules are also adoptive to the renewable generator EMAs and loads. In
terms of Eqs. (6.48) and (6.49), we can obtain the following equations after the
algorithm converges:

P∞
i [t] = 1

n

n∑
i=1

n((1 − 𝛾i)(PG,i[t] + PR,i[t]) − (1 + 𝛾i)PD,i[t])

= ΔP[t]
(6.51)

It can be shown that the algorithm used here can obtain information regarding
the global supply–demand mismatch in a distributed manner and thus overcomes
the difficulties of developing a distributed solution method for OEM. It should be
pointed out that the convergence speed of the average-consensus algorithm can be
investigated by checking the characteristics of the matrix D. As discussed in [29]
and [27], the maximum number of iterations required for convergence K, can be
determined as:

K = −1

logE

(
1|𝜆2|
) (6.52)

Here, 𝜆2 is the second largest eigenvalue of D with the error tolerance being
denoted with E.

6.3.3 Implementation of MAS-Based OEM Solution

The implementation of the proposed OEM solution is shown in Figure 6.1. We
assign an EMA to each bus for OEM. Meanwhile, we design the communication
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Figure 6.1 MAS-based implementation of the distributed OEM solution.
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Figure 6.2 Block diagram of the energy management agent.

network topology of EMAs in accordance with the power system’s topology such
that each agent can communicate with each other if they have an electrical connec-
tion. Such a design enables us to use power line communication techniques [30].
However, the communication network can be designed differently with different
factors such as cost, convenience, etc., being taken into consideration.

In order to accomplish the task of OEM, each EMA is designed to have two func-
tions, i.e. price update and supply–demand mismatch discovery. Figure 6.2 shows
the implementation of an EMA during the price negotiation.

The following three steps show the overall process for distributed OEM.

1. Initialize P0
i [t] and calculate (ΔP[t]) in terms of (6.50) and (6.48);

2. Based on discovered ΔP[t], modify selling or bidding price ri in terms of (6.36);
3. Regulate generation or load in terms of (6.23) and (6.24), separately.

These three steps are operated consecutively until the market equilibrium
is obtained. Because the renewable generator keeps outputting its maximum
available power, it is unnecessary for the EMA of a renewable generator to adjust
the generation. However, the variation in the renewable generation leads to the
change in the traditional generation. Thus, it results in a variation in the final
market price.
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6.4 Simulation Studies

This section will first test the proposed solution with a 6-bus system, and then, the
IEEE 30-bus system will also be tested to verify the solution’s performance.

6.4.1 Tests with a 6-bus System

As shown in Figure 6.3, the 6-bus system include three loads (L1–L3), two tradi-
tional generators (CG4 and CG5), and one renewable generator (RG). CG4 and
CG5 could offer essential voltage/reactive power support for the system because
both of them are configured with a self-driven voltage regulation system. The
supply–demand mismatch during the price negotiation and other disturbances
can be compensated since CG4 is operating at the frequency regulation mode.
Table 6.1 lists the parameters of the traditional generators and loads, and Table 6.2
lists the parameters of the distribution lines.

Two scenarios, constant renewable generations and unstable renewable gener-
ation, are tested during simulations. Although the first scenario is not realistic, its

CG4

CG5

5 km

RG
2 km

3 km
3 km 1 km

3.5 km

L2

L1

L3

1

24

5

3

6

Figure 6.3 The 6-bus test system.

Table 6.1 Parameters of the five units.

Supplier ai bi ci Pmin
G,i

(MW) Pmax
G,i

(MW)

G4 0.0016 4.26 40 180 250
G5 0.0017 4.54 60 150 350
User 𝛼j 𝜔j Pmin

D, j (MW) Pmax
D, j (MW)

L1 −0.065 15.86 100 160
L2 −0.061 17.45 150 200
L3 −0.056 19.35 180 250
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Table 6.2 The line parameters of the 6-bus system.

From To Resistance (𝛀) Reactance (𝛀) Line length (km)

2 4 0.0636 1.9320 5.0000
2 3 0.0446 1.3524 3.5000
1 6 0.0255 0.7728 2.0000
1 2 0.0382 1.1592 3.0000
1 3 0.0382 1.1592 3.0000
3 5 0.0127 0.3864 1.0000

Table 6.3 The weights settings for agent communication.

Agent Neighboring agents ni nj dij s

1 2,3,6 3 3,2,1 d12 = 2
6
, d13 = 2

5
, d16 = 2

4
, d11 = − 7

30

2 1,3,4 3 3,2,1 d21 = 2
6
, d23 = 2

5
, d24 = 2

4
, d22 = − 7

30

3 2,5 2 3,1 d32 = 2
5
, d35 = 2

3
, d33 = − 1

15

4 2 1 3 d42 = 2
4
, d44 = 1

2

5 3 1 2 d53 = 2
3
, d55 = 1

3

6 1 1 3 d61 = 2
4
, d66 = 1

2

simulation results are useful for illustrating the proposed solution because of its
simplicity. The simulation of the latter scenario enables one to thoroughly compre-
hend how the designed method reacts under the change in operating condition.

The average-consensus algorithm is applied for discovering the supply–demand
mismatch ΔP[t]. In addition, here, we design the topology of the communication
network the same as the topology of the electrical network of the 6-bus system,
as shown in Figure 6.3. According to (6.37), the weights dijs can be computed
and the results are shown in Table 6.3. Figure 6.4 demonstrates an example of
a supply–demand mismatch discovery process for this 6-bus system.

The generations of CG4, CG5, and RG are set to be 200, 220, and 150 MW,
separately. The values of load are initialized with 160, 180, and 230 MW, separa-
tely. The initial values for CG4, CG5, RG, L1, L2, and L3 are 1200, 1320,
900, −960, 1080, and −1380 for ΔP[t] discovery on condition that all
𝛾is in (6.50) are set to zero. The obtained supply–demand mismatch is
(1200 + 1320 + 900 − 960 − 1080 − 1380)∕6 = 0 after the algorithm is con-
verged. As can be seen from Figure 6.4, the algorithm can converge within 40
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Figure 6.4 Supply–demand mismatch discovery for 6-bus system.
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Figure 6.5 Time frame of implementation for the proposed OEM solution.

iterations. With our designed MAS based on Java Agent Development (JADE)
framework, each iteration only requires around 6 ms [19]. Therefore, the total
time cost is about 250 ms for finishing the ΔP discovery process.

Figure 6.5 presents the time frame of the OEM solution’s operation. It should be
noted that the price update interval should be chosen by considering the param-
eters of power grids such as inertia of generators, the response time of users, and
etc., which is typically set 1–10 seconds.

6.4.1.1 Test Under the Constant Renewable Generation
In this test, the initial load demands of L1, L2, and L3 are set to be 160, 180, and
230 MW, respectively, while the initial generations of CG4 and CG5 are set to be
220 and 206 MW, separately. The output of RG is assumed to be a constant, i.e.
150 MW. The network power loss is 6 MW for this generation/load condition; thus,
the initial supply and demand are balanced for this initial condition. The power
loss coefficients (defined in (6.10)) for L1, L2, L3, CG4, CG5, and RG are 0.017,
0.022, 0.013, −0.025, 0.016, and 0.010, respectively.
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Figure 6.6 Updates of prices during negotiation.

The designed solution is activated at t = 10 seconds. The price update interval
for our test is set to three seconds. The process of updating prices via distributed
negotiation is presented in Figure 6.6. As can be seen from the figure, the gener-
ators (CG4 and CG5) hold comparatively higher margin costs before the deploy-
ment of the OEM solution. On the other hand, the loads (L1–L3) hold relatively
lower margin utilities under such a case. The deployed solution drives suppliers
and users to reach a new market equilibrium by dynamically regulating their sell-
ing or bidding prices. Figure 6.6 shows that the process merely takes approximately
60 seconds (20 iterations) to achieve the equilibrium. Figure 6.7 presents the gen-
eration/demand profiles during this process.

Because RG at bus #6 always outputs its maximum available power (150 MW),
it does not react to the market price during the negotiation process. The reference
and actual demand of #L1 gauged at bus #1 during dynamic optimization is pro-
vided in Figure 6.8a, while the reference and the actual output of CG#5 are shown
in Figure 6.8b. Note that within each update interval (three seconds), both gener-
ator and load can track their references generated by corresponding EMAs. It is
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Figure 6.7 Generation/demand adjustment in response to price update.
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Figure 6.8 Reference tracking for load#1 and generator#5. (a) The profiles of load#1. (b)
Power output of CG#5.

worthy to point out that we set the price update interval to a small value of three
seconds since the ΔP discovery can be accomplished within 0.25 seconds. How-
ever, excessively frequent updates are difficult for load or generator to track and
may even result in the instability of the system. Therefore, the price update inter-
val for deploying the proposed solution should be carefully chosen by taking into
the response speed of the system.

The change of benefits of a user (L1) and a provider (CG#5) during OEM are
shown in Figure 6.9a,b, respectively. As shown in the figures, during OEM, both
the supplier’s and user’s profits are increased. Figure 6.10 demonstrates that global
social welfare is maximized when all users and providers achieve their maximum
benefits. Such an interesting phenomenon verifies the previous analysis that the
maximum of social welfare can be achieved when the equilibrium is reached.

The system’s frequency and voltage responses during OEM are presented in
Figure 6.11a,b. As a consequence of the generation/demand adjustments, slight
frequency and voltage oscillations could be observed. The system frequency will
be stabilized at 60 Hz and the supply–demand mismatch ΔP approaches zero after
the algorithm converges because the active power redistribution has no signifi-
cant impact on the voltage. The change in bus voltage is relatively small during
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Figure 6.9 Trajectory of profits of load#1 and generator#5. (a) The change of profits of
load#1. (b) The change of profits of CG#5.
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Figure 6.10 Evolution of social welfare during OEM.
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Figure 6.11 Frequency and voltage response during OEM. (a) Frequency response
during OEM. (b) Voltage profiles of buses during OEM.

the generation/load regulation, as shown in Figure 6.11b. As can be seen from
Figures 6.8–6.11, the stable and optimal operation of the power grid can be secured
by deploying the proposed OEM solution.

6.4.1.2 Test Under Variable Renewable Generation
The performance of the proposed OEM solution is further tested via simulating
variable renewable generation. Initially, the system is operating at the optimal
point acquired after deploying the OEM solution of the previous test, wherein the
market-clearing price is 7.3416 $/MW/h. In this test case, the generation of RG is
assumed to be increased by 50 MW at t = 10 seconds, reaching 200 MW. The price
updates under this circumstance are shown in Figure 6.12, while the correspond-
ing generation and load settings during this process are provided in Figure 6.13. As
discussed before, the increase in renewable generation will cause a decrease in the
traditional generation. Thus, the overall market price since the cost of renewable
generation is zero. In addition, because of the decrease in price, the flexible load
demand (L1–L3) will correspondingly increase. Consequently, social welfare will
increase in this case because the decrease in average generation cost results in an
increase in renewable generation (Figure 6.14).
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Figure 6.14 Evolution of social welfare with renewable generation change.

6.4.2 Test with IEEE 30-bus System

The designed solution is also implemented on the IEEE 30-bus system to evalu-
ate its performance with larger scale systems. The configuration of the system and
network parameters can be found in [31]. There is a total of 30 buses and 6 gener-
ators in this IEEE 30-bus system. Here, we select six loads to participate in the DR.
Table 6.4 presents the parameters for generators’ outcome cost and users’ utility
functions.
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Table 6.4 Parameters for generators and users.

Generator # Bus # ai bi ci Pmin
G,i

Pmax
G,i

P0
G

1 1 0.0075 2.0 0 50 200 171.27
2 2 0.0350 1.75 0 20 80 53.75
3 5 0.1250 1.00 0 15 50 25.63
4 8 0.0167 3.25 0 10 35 23.87
5 11 0.0500 3.00 0 10 30 19.09
6 13 0.0500 3.00 0 12 40 23.32
User # Bus # 𝛼j 𝜔j — Pmin

D,j Pmax
D,j P0

D,j

1 4 −0.0550 5.7 — 22.00 44.00 44.00
2 7 −0.0595 6.20 — 23.51 47.02 47.02
3 10 −0.0487 5.10 — 20.00 40.00 40.00
4 12 −0.0800 6.15 — 20.00 40.00 40.00
5 15 −0.1370 7.25 — 16.50 33.00 33.00
6 30 −0.0912 5.25 — 12.50 25.00 25.00
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Figure 6.15 Supply–demand mismatch discovery for IEEE 30-bus system.

The designed solution is configured at t = 10 seconds. The price update interval
is deployed at three seconds. Figure 6.15 shows one round of supply–demand
mismatch discovery process with 30 bus (corresponding 30 agents). In this case, it
takes only 50 iterations for the algorithm to converge in the process of discovering
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Figure 6.17 Evolution of social welfare during OEM with IEEE 30-bus system.

the supply–demand mismatch, with 30 agents being involved. Apparently,
although the number of agents is increased, the algorithm’s convergence speed
does not increase exponentially.

The price update during the optimization is presented in Figure 6.16. During the
process, the profiles of the corresponding social welfare are shown in Figure 6.17.
At t = 80 seconds (about 23 iterations), the new market equilibrium will be
achieved with the entire social welfare being maximized.

The distributed OEM solutions for these two test systems are designed by
applying the market-based self-interest motivation model, which can obtain the
optimal solution by maximizing the system participants’ benefits. Notice that
the centralized social welfare maximization model can obtain the same optimal
solutions as well. However, it is difficult to implement them in a distributed
manner as they require centralized algorithms such as the lambda iteration
method introduced in [2].
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6.5 Conclusion

A fully distributed OEM solution for smart grids was presented in this chapter.
Both the economic dispatch of generators and DR of users can be considered
by using the proposed solution, which can maximize social welfare effectively
and support the online optimization as well. Deployed using MAS, the proposed
solution enables better consumer participation and efficient load curve shaping
with fast response. For the proposed solution, the utilization of a formidable cen-
tral controller handling a massive amount of data or a complex communication
network is avoided. Case studies verify the effectiveness of the proposed solution
and show that it is promising for the future optimal energy management for
smart grids.
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7

Distributed State Estimation

As the scale of the power system increases, the state estimation (SE) that covers the
entire system consisting of multiple areas becomes increasingly difficult because
of the traditional centralized or hierarchical architecture. To address this problem,
in this chapter, we will investigate two distributed state estimation approaches
that are suitable for multi-area power systems. The first one of distributed estima-
tion approaches is designed based on the consensus algorithm while the second
one is developed by using the distributed subgradient algorithm. The consensus
algorithm-based approach adopts a two-loop iteration architecture. The inner loop
is used to discover the information of gain matrix and gradient vector by applying
the consensus confusion technique and the outer loop is used to update the esti-
mation based upon the second-order Newton’s method. The distributed algorithm
is applied for the second approach to yield a fully distributed integrated solution
proposed for multi-area topology identification (TI) and SE problems of power sys-
tems. By applying statistical tests, the TI can identify network topology change
accurately. The SE estimates the actual states based on the identified network
topology. Both approaches investigated in this chapter can be used to implement
the distributed state estimation in a fully distributed way. Simulations with vari-
able scales of power systems are also provided for demonstration.

7.1 Distributed Approach for Multi-area State
Estimation Based on Consensus Algorithm

The electric power grid is a complex system consisting of multiple regional sub-
systems, each with its own transmission infrastructure spanning over a huge geo-
graphical area [1]. SE is the very basic and most powerful tool for the system
operators to use in a monitoring and control system. The goal of state estimation is

Distributed Energy Management of Electrical Power Systems, First Edition.
Yinliang Xu, Wei Zhang, Wenxin Liu, and Wen Yu.
© 2021 The Institute of Electrical and Electronics Engineers, Inc.
Published 2021 by John Wiley & Sons, Inc.
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to obtain a reliable and accurate estimate of the state variables, including bus volt-
ages and phase angles, etc. [2]. State estimation has been traditionally performed
at the regional control centers of the corresponding subsystems with limited inter-
action. However, because of the deregulation of energy markets, large amounts of
power are transferred over high-rate, long-distance lines spanning several control
regions [3]. As interconnections among regional subsystems become stronger, so
the state in a given region needs to be estimated considering the events or decisions
in other regions. A system-wide state estimation solution becomes necessary well
beyond the extent covered by each control center. Hence, the idea of multi-area
state estimation (MASE) methods is gaining renewed interest.

Two computer architectures have been proposed for the MASE problem: the
hierarchical and the distributed. In hierarchical MASE, a centralized processor
or a coordinator distributes the computation efforts among slave computers per-
forming local area SE and, consequently, coordinates the local estimates. In [4],
a distributed state estimation method is proposed for multi-area power systems,
wherein each area performs its own state estimation using local measurements
and exchanges border information at a coordination state estimator that computes
the system-wide state. By incorporating the framework of the convention SE, a
two-step hierarchical SE method is proposed in [5], and this method includes
two levels: the first local estimator level and the second substation level. The
distributed approaches of state estimation are usually based on decomposition
techniques or distributed optimization algorithms. Caro et al. proposed a dis-
tributed state estimation approach that relies on the decomposition techniques of
Lagrangian relaxation, and this method can also be applied to handle bad mea-
surement identification within regions and in border tie-lines [6]. Incorporating
the consensus algorithm and innovation approaches, a fully distributed state
estimation method is designed for a multi-area power system [7], and Kar et al.
also applied a similar design for state estimation as well as energy management
for smart grids with distributed generations [8]. The distributed algorithm used
in these two papers is actually a kind of variation of distributed subgradient
method introduced in [9]. Chavali and Nehorai proposed a distributed algorithm
for a power system state estimation with dependencies among the state vectors
of neighboring area state vectors at different times being modeled using a factor
graph and sum-product message passing algorithm being applying to this graph
[10]. The hierarchical architecture for state estimation inevitably needs a central-
ized controller or coordinator, which may further increase the cost for investment
as well as for operation and maintenance. Thus, the distributed architecture is a
more preferred solution for MASE. Yet, most of the existing distributed methods
are either based on the Lagrangian relaxation-based decomposition method [1, 6]
or the distributed subgradient method [7, 8], which on the one hand may face
the dilemma of incomplete observability and on the other hand may result in the
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degraded convergence speed or optimality. In this section, we will investigate a
distributed state estimation solution based on the consensus algorithm, which
finds a decent trade-off between reducing computational efforts and improving
the convergence speed.

7.1.1 Problem Formulation of Multi-area Power System State
Estimation

A power system with n buses is partitioned into r nonoverlapping control areas
(subsystems). Ai denotes the ith control area with ni buses and mi measurements.
The areas are connected by tie-lines or transformer branches, as depicted in
Figure 7.1 [4]. Each control area is responsible for the measurements in this
region and is capable of communicating with its immediate neighboring areas.

The measurement model of the MASE is formulated as

zi = hi(x) + eii = 1, 2,… , r (7.1)

where (zi)T = [z1, z2,… , zmi
], is mi × 1 vector of measurements in area Ai;

xT = [x1, x2,… , xn], state variable vector, usually including voltage magnitudes
and phase angles, n is the number of state variables of the whole system to
be estimated; (hi)T = [h1(x), h2(x),… , hmi

(x)]T , nonlinear vector function with
respect to state variables; (ei)T = [e1, e2,… , emi

]T – error vector corresponding
to measurements, which is usually modeled as a Gaussian random vector. The
aggregated measurement of all sensors is

z = h(x)x + e (7.2)

where z = [(z1)T
, (z2)T

,… , (zr)T]T , h(x) =
[
(h1(x))T (h2(x))T · · · (hr(x))T]Tand

e =
[
(e1)T (e2)T · · · (er)T]T . A centralized weighted least square (WLS) estimator

Area i

Area 1 Area 2

Area r

Boundary bus Tie-line Bus voltage measurement

Internal bus

Flow measurementInjection measurement

Figure 7.1 Power system with multiple areas. Source: Based on Korres [11].
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will minimize the following objective function [12]

J(x) = (z − h(x))TR−1(z − h(x)) (7.3)

where R = diag(R1
,R2

,… ,Rn) is the argument weight matrix. In addition,
the following assumptions are customarily made: (i) Error vector has a normal
distribution with zero mean, i.e. E(ei

j) = 0(i = 1, 2,… r; j = 1, 2 · · ·mi); (ii) Mea-
surement errors are independent, i.e. E(ei

je
i
k) = 0(i = 1, 2,… , r; j, k = 1, 2,… ,mi).

Hence, cov(ei) = E[ei(ei)T] = Ri = diag{𝜎i
1, 𝜎

i
2,… , 𝜎

i
mi
}.

In the centralized solution, the control center collecting all the information
required for state estimation needs a powerful communication network as well as
a processor. In this section, we proposed a distributed state estimation algorithm
based on the average consensus algorithm. The algorithm only requires each
area to be accessible to local measurements and be able to communicate to its
neighboring areas. The algorithm can significantly release the communication
burden as well as calculation efforts while still achieves the results comparable to
the centralized solution.

7.1.2 Distributed State Estimation Algorithm

To minimize the objective function described in Eq. (7.2), the first-order optimality
conditions will have to be satisfied. This can be expressed in the compact form as
follows:

g(x) = 𝜕J(x)
𝜕x

= −HT(x)R−1(z − h(x)) = 0 (7.4)

where H(x) =
[
𝜕h(x)
𝜕x

]
= [(H1(x))T

, (H2(x))T
,… , (Hr(x))T]T and Hi(x) = 𝜕hi(x)

𝜕x
.

Expanding the nonlinear function into its Taylor series around a state vector xk

yields

g(x) = g(xk) + G(xk)(x − xk) + · · · = 0 (7.5)

Neglecting the higher order terms leads to the Gauss–Newton method shown
below [1, 4]

xk+1 = xk − [G(xk)]−1 ⋅ g(xk) (7.6)

where k is the iteration index, Xk is the solution vector at iteration k, and

G(xk) =
𝜕g(xk)
𝜕x

= HT(xk) ⋅ R−1 ⋅ H(xk) (7.7)

g(xk) = −HT(xk) ⋅ R−1 ⋅ (z − h(xk)) (7.8)
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Assume that n ≤
∑r

i=1mi and matrix H is full rank. Equations (7.7) and (7.8) can
be rewritten in the following forms:

G(xk) =
r∑

i=1
(Hi(xk))T ⋅ (Ri)−1 ⋅ Hi(xk) (7.9)

g(xk) = −
∑

(Hi(xk))T ⋅ (Ri)−1 ⋅ (zi − hi(xk)) (7.10)

Notice that computation of the matrix G(xk) and vector g(xk) can be easily realized
in a distributed way based on the average consensus algorithm. Each area has
an agent that is responsible for distributed state estimation. For each agent,
define local gain matrix Gi

xk (t) ∈ Rn×n and local gradient vector gi
xk (t) ∈ Rn as

follows

Gi
xk (0) = (Hi(xk))T ⋅ (Ri)−1 ⋅ Hi(xk) (7.11)

gi
xk (0) = −(Hi(xk))T ⋅ (Ri)−1 ⋅ (zi − hi(xk)) (7.12)

and

Gi
xk (t + 1) = aii(t)Gi

xk (t) +
∑

j∈Ni(t)
aijG

j
xk (t) (7.13)

gi
xk (t + 1) = aii(t)gi

xk (t) +
∑

j∈Ni(t)
aijgi

xk (t) (7.14)

According to the consensus algorithm [13], following convergence results can be
obtained

lim
t→∞

Gi
xk (t) =

1
r

r∑
i=1

(Hi(xk))T ⋅ (Ri)−1 ⋅ Hi(xk) (7.15)

lim
t→∞

gi
xk (t) = −1

r

r∑
i=1

(Hi(xk))T ⋅ (Ri)−1 ⋅ (zi − hi(xk)) (7.16)

Thus, for each agent, the states can be estimated as

xk+1 = xk −
[

lim
t→∞

Gi
xk (t)

]−1
⋅ lim

t→∞
gi

xk (t) (7.17)

It shows that the overall iterative process is a two-layer nested loop. The inner loop
discovers the global information, H(xk), based on consensus algorithm while the
outer loop updates the estimated state, xk, through Gauss–Newton method. Dur-
ing the iteration process, the outer loop only updates its state information when the
inner loop has converged. The initialization of the gain matrix and gradient vector
in Eqs. (7.11) and (7.12) involves the calculation of the Jacobian matrix, which can
be developed according to the following development. The relationships between
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power flow Pki and Qki and the state variables V and 𝛿 are given in Eqs. (7.18) and
(7.19), respectively.

Pki = −V 2
k Gki + VkViGki cos 𝛿ki + VkViBki sin 𝛿ki (7.18)

Qki = V 2
k Bki + VkViGki sin 𝛿ki − VkViBki cos 𝛿ki + (Yki,s∕2)V 2

k (7.19)

where Gki + jBki = [Ybus]ki, Ybus is the admittance matrix and Yki,s is the shunt
admittance of the branch. Thus, we have
𝜕Pki

𝜕𝛿k
= −VkViGki sin 𝛿ki + VkViBki cos 𝛿ki,

𝜕Pki

𝜕𝛿i
= VkViGki sin 𝛿ki − VkViBki cos 𝛿ki

𝜕Pki

𝜕Vk
= 2VkGki + ViGki cos 𝛿ki + ViBki sin 𝛿ki,

𝜕Pki

𝜕Vi
= VkGki cos 𝛿ki + VkBki sin 𝛿ki

𝜕Qki

𝜕𝛿k
= VkViGki cos 𝛿ki + VkViBki sin 𝛿ki,

𝜕Qki

𝜕𝛿i
= −VkViGki cos 𝛿ki − VkViBki sin 𝛿ki

𝜕Qki

𝜕Vk
= 2VkBki + ViGki sin 𝛿ki − ViBki cos 𝛿ki + Yki,sVk,

𝜕Qki

𝜕Vi
= VkGki sin 𝛿ki − VkBki cos 𝛿ki

The relationships between bus injection Pk, Qk, and the state variables are given
in Eqs. (7.20) and (7.21), respectively.

Pk = Vk

n∑
i=1

Vi(Gki cos 𝛿ki + Bki sin 𝛿ki) (7.20)

Qk = Vk

n∑
i=1

Vi(Gki sin 𝛿ki − Bki cos 𝛿ki) (7.21)

Then, we have

𝜕Pk

𝜕𝛿i
=

{
VkVi(Gki sin 𝛿ki − Bki cos 𝛿ki) if i ≠ k

Vk
∑n

j=1,j≠kVj(−Gkj sin 𝛿kj + Bkj cos 𝛿kj) if i = k

𝜕Pk

𝜕Vi
=

{
Vi(Gki cos 𝛿ki + Bki sin 𝛿ki) if i ≠ k∑n

j=1,j≠kVj(Gkj cos 𝛿kj + Bkj sin 𝛿kj) + 2VkGkk if i = k

𝜕Qk

𝜕𝛿i
=

{
−VkVi(Gki cos 𝛿ki + Bki sin 𝛿ki) if i ≠ k

Vk
∑n

j=1,j≠kVj(Gkj cos 𝛿kj + Bkj sin 𝛿kj) if i = k

𝜕Qk

𝜕Vi
=

{
Vi(Gki sin 𝛿ki − Bki cos 𝛿ki) if i ≠ k∑n

j=1,j≠kVj(Gkj sin 𝛿kj − Bkj cos 𝛿kj) − 2VkBkk if i = k

For bus voltage magnitude,

Vk = Vk (7.22)

Obviously, we have 𝜕Vk
𝜕𝛿i

= 0 and 𝜕Vk
𝜕Vi

=
{

1 if i = k
0 if i ≠ k



�

� �

�

7.1 Distributed Approach for Multi-area State Estimation Based on Consensus Algorithm 231

If we arrange the measurements vector Z in the following way

z =

⎡⎢⎢⎢⎢⎢⎣

Pline
Pbus
Qline
Qbus
Vbus

⎤⎥⎥⎥⎥⎥⎦
(7.23)

and state variables are rearranged in Eq. (7.24)

x =
[
𝛿

V

]
(7.24)

the Jacobian matrix can be expressed in Eq. (7.25)

Hi(x) = 𝜕hi(xi)
𝜕xi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕Pi
line

𝜕δ
𝜕Pi

line

𝜕V
𝜕Pi

bus

𝜕δ
𝜕Pi

bus

𝜕V
𝜕Qi

line

𝜕δ
𝜕Qi

line

𝜕V
𝜕Qi

bus

𝜕δ
𝜕Qi

bus

𝜕V
𝜕Vi

bus

𝜕δ
𝜕Vi

bus

𝜕V

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.25)

However, for DC flow-based state estimation, usually referred to as the approx-
imate static state estimation model, hi(x) can be simplified to a linear function,
which can simplify the Jacobian matrix into a constant matrix. In the following
section, we will introduce this model and then perform comparison between the
results of the approximate and accurate model.

7.1.3 Approximate Static State Estimation Model

The approximate model is based on the following assumptions, which are the same
to the DC load flow analysis [14]: (i) For branch i, the reactance Xki is greater than
the resistance Rki, i.e. Xki∕Rki ≫ 1, thus Gki ≈ 0. (ii) Voltage magnitude Vk ≈ Vi ≈
1.0 and angle 𝛿k ≈ 𝛿i. (iii) Active power and reactive power are completely decou-
pled, i.e. P only relates to voltage angle and Q relates to voltage magnitude. Define
𝜉 = [Vk,Vi, 𝛿ik]. A truncated Taylor series expansion of Eq. (7.18) for a given 𝜉0
yields to Eq. (7.26)

Pki(𝜉) = Pki(𝜉)||𝜉=𝜉0
+
(

𝜕Pki(𝜉)
𝜕𝜉

||||𝜉=𝜉0

)T

(𝜉 − 𝜉0) (7.26)
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where 𝜕Pki(𝜉)
𝜕𝜉

is a vector of the partial derivative of Pki(𝜉) with respect to Vk, Vi, and
𝛿ik, respectively. For the power system, choose 𝜉0 = [110]T , then according to the
assumptions, Eq. (7.18) becomes (7.27)

Pki = Bki(𝛿k − 𝛿i) (7.27)

A similar expression can also be obtained for Qki, as shown in Eq. (7.28)

Qki = Bki(Vk − Vi) + Yki,sVk − Yki,s∕2 (7.28)

For bus injection,

Pk =
∑

i∈k,i≠k
Pki =

∑
i∈k,i≠k

Bki(𝛿k − 𝛿i) (7.29)

Qk =
∑

i∈k,i≠k
Qki =

∑
i∈k,i≠k

Bki(Vk − Vi) +
∑

i∈k,i≠k
Yki,sVk −

∑
i∈k,i≠k

Yki,s∕2 (7.30)

Notice that, in Eqs. (7.27) and (7.29), active power only relates to the phase angle;
thus, the measurement for active power is utilized to estimate the phase angles,
which follows matrix form as (7.31)

zp = Hpx
𝛿
+ ep (7.31)

where zp is the vector for measurement of active power (including line flow and
bus injection) and Hp is the corresponding matrix that relates to network param-
eters. Here, the function h(x) = Hpx

𝛿
is simplified to a linear function; thus, the

Jacobian matrix turns out to be Hp, which is a constant. Similarly, for the reactive
power, we have

zQ = HQx
𝑣
+ c + eQ (7.32)

where HQ is also a constant and c is a vector that relates to shunt admittance Yki,s.
For voltage magnitude measurement, we can easily obtain the following form

z
𝑣
= H

𝑣
x
𝑣
+ e

𝑣
(7.33)

Both Eqs. (7.32) and (7.33) are used to estimate the bus voltage; thus, they can be
rewritten in a formula given by Eq. (7.34)

zQ𝑣
= HQ𝑣

x
𝑣
+ e

𝑣
(7.34)

Equations (7.31) and (7.34) follow the general form (7.34)

z = Hx + e (7.35)

Therefore, Eq. (7.3) is simplified as

g(x) = 𝜕J(x)
𝜕x

= −HTR−1z + HTR−1Hx = 0 (7.36)
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Figure 7.2 Agent Architecture for Distributed State Estimation.

Redefine Gi(t), gi(t) as follows:

G(xk) =
r∑

i=1
(Hi)T ⋅ (Ri)−1 ⋅ Hi (7.37)

g(xk) = −
r∑

i=1
(Hi)T ⋅ (Ri)−1 ⋅ zi (7.38)

Thus, the estimate stated can be represented as

x = [ lim
t→∞

Gi(t)]−1 ⋅ lim
t→∞

gi(t) (7.39)

It shows that, for the approximate model, the outer loop iteration described in
Figure 7.2 is not necessary. This is because the approximate model is simplified
to a linear model. Hence, estimating the state is equivalent to solving the lin-
ear equation (7.35); thus, no iteration for an outer loop is needed. Note that the
algorithm proposed in [7, 15] is the special case of the algorithm developed in
this section. In addition, it also assumes that the function h(x) is a linear func-
tion, which is not applicable when a more accurate analysis is required. In the
simulation part, we will provide the test results with the approximate model for
comparison.

7.1.4 Regarding Implementation of Distributed State Estimation

Fast decoupled techniques for state estimation: For an accurate model, updating the
Jacobian matrix is time-consuming. One way to reduce the computation burden is
to maintain the constant Jacobian matrix. Similar to the fast decoupled power flow,
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we can divide the measurements into two categories; real power measurements
and reactive power measurements. Then, we estimate the voltage phase angles and
magnitudes alternatively. In addition, for phase angle estimation, ignore 𝜕Pline

𝜕V
and

𝜕Pbus
𝜕V

, and for voltage magnitude estimation, ignore 𝜕Qline
𝜕𝛿

and 𝜕Qbus
𝜕V

and then we
would have a constant Jacobian matrix. It is worthy to point out that in each step,
we need to update the currently estimated measurements according to the accu-
rate model rather than the approximate model.

Initialization of state variables: Proper setting of the initial values of state
variables can reduce the time needed for convergence. Simulations show that
for the decoupled state estimation, the voltage magnitude estimation converges
faster than the phase angle estimation because the initial values of the voltage
magnitudes are closer to the final solutions. Thus, we can predict the state
variables first and then use these predicted values as the initial conditions for
the current state estimation. This is the same principle as the dynamic state
estimation. One of the practical methods to implement a prediction is to use the
historical data or the previous state estimation results.

Discriminant handling of internal and boundary variables: Notice that the state
vector xi either in Eq. (7.7) or 7.28) relates to all buses distributed in all areas
because the areas are only connected through the limited number of tie-lines or
transmission lines. It is not necessary for a specified area to obtain all the other
information except the boundary information. Thus, through reducing the dimen-
sion of state vectors for each area, the calculation burden, as well as the commu-
nication burden of the whole system, can be significantly released.

7.1.5 Case Studies

In this subsection, two test cases are considered to evaluate the proposed dis-
tributed state estimation algorithm. The first test case involves constant operating
conditions, while the second considers the variable operating conditions. Both the
test cases are conducted on the IEEE 14-bus system [16], and the power system
topology and measurement placement configurations are shown in Figure 7.3a.
The topology of the communication network is shown in Figure 7.3b. The test
techniques adopted in [17] are also utilized. (i) Given the desired network and bus
powers, a conventional load flow is calculated to obtain the bus voltages, which
are set to be the true values. (ii) According to the measurement placements, types,
and accuracy, a set of measurements is simulated by adding errors from a random
number generator. (iii) Given the simulated measurement, the state estimations
are calculated using the proposed algorithms. (iv) Analyze the obtained results
in the sense of residual, errors, etc. The test system is configured to have four
control areas, as shown in Figure 7.3a – all the flow and injection measurements
meter, both the active and reactive power. Bus voltage measurements are only
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Figure 7.3 Configuration of the IEEE 14-bus system. (a) System topology and
measurement placement. (b) Communication topology.

responsible for metering voltage magnitudes. In addition, for PV buses, the bus
voltages are assumed to be the pseudo-measurements. All the measurements can
be found in Figure 7.3a, and they are assumed to subject to Gaussian distribution
with zero mean and equal variance of 𝜎

2 = 0.0001. R is set to diagonal, with
Rii = 𝜎

2. In both test cases, we use the same parameters for the distributed
optimization algorithm. The step size is set as a constant with 𝛼 = 5 ∗ 10−6 and
weight matrix A is set to according to the Metropolis [4].

A =

⎡⎢⎢⎢⎢⎣

1∕3 1∕3 1∕3 0
1∕3 1∕3 0 1∕3
1∕3 0 1∕3 1∕3

0 1∕3 1∕3 1∕3

⎤⎥⎥⎥⎥⎦

𝜆1 = −0.3333
𝜆2 = 0.3333
𝜆3 = 0.3333
𝜆4 = 1.0000

(7.40)

Instead of setting error for convergence, we use a fixed iteration setting of 1000 for
both cases.

7.1.5.1 With the Accurate Model
The voltage magnitudes and angles with the outer iteration loop during the
iteration are shown in Figures 7.4 and 7.5, respectively. The corresponding objec-
tive function values for each area are shown in Figure 7.6. Note that the algorithm
converges quickly, with the number of iterations being less than 10. The outer
iteration loop follows the update formula given in (7.6), which is actually the
Newton–Raphson method; thus, the order of convergence of the proposed method



�

� �

�

236 7 Distributed State Estimation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Iteration 

–0.3

–0.2

–0.1

0

0.1
δ2 δ3 δ4 δ5 δ6 δ7

δ8 δ9 δ10 δ11 δ12 δ13

δ14

V
ol

ta
ge

 ph
as

e
 an

gl
es

 (r
ad

)

Figure 7.4 The evolution of phase angles.

0.99
1 2 3 4

Number of iterations
5 6 7 8

1

1.01

V
o
lt

ag
e 

m
ag

n
it

u
d
es

 (
p
.u

.)

1.02

1.03

1.04

1.05

1.06

V12

V13

V14

V9

V10

V11

V4

V5

V7

Figure 7.5 The evolution of voltage magnitudes.

10

8

6

4

2

0

1 2 3 4 5 6 7 8 9
Number of iterations

O
b

je
ct

iv
e 

fu
n

ct
io

n
 v

al
u

e

× 104

Area 1
Area 2
Area 3
Area 4

Sum

Figure 7.6 The objective function value evolution.



�

� �

�

7.1 Distributed Approach for Multi-area State Estimation Based on Consensus Algorithm 237

× 107

0.5

G
ai

n 
m

at
ri

x 
no

rm
 ||

G
i  k

(t
)||

F
=2

 
x

1

1.5

2

2.5

3

0 1 2 3 4 5 6 7 8 9
Iterations

Area 1

Zoomed in

Area 2 Area 3 Area 4

Figure 7.7 Norms of the gain matrix.

is also from the perspective of outer loop iteration. It is worth pointing out here
that each outer loop iteration is carried out only when the inner loop consensus
algorithm has converged. We use the Frobenius norm [18] of the gain matrix
(with p = 2) as a tool to show the convergence characteristics of the inner loop
iteration. The norm of the gain matrix during the whole solution process is shown
in Figure 7.7, with one of the inner loop iteration processes provided in Figure 7.8.
It can be shown that in Figure 7.7, the outer loop is indeed initiated when the
inner loop iteration process has been completed, i.e. the consensus algorithm has
converged. Figure 7.8 shows that the inner loop consensus algorithm takes only
12 iterations to converge, which is also quite faster. Similar observations can also
be found in the case of gradient vector. Note that the whole solving process takes
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only 12 ∗ 9 = 108 iterations to converge. Considering that each iteration takes
5 ms, the entire solution process could finish within 0.1, which is sufficient to be
used in the MASE applications.

7.1.5.2 Comparisons Between Accurate Model and Approximate Model
With the approximate model, the estimations of voltage phase angles and voltage
magnitudes are decoupled and corresponding test results are shown in Figures 7.9
and 7.10, respectively. As can be seen in the figures, the approximate model can
obtain the estimations close to the true values. However, the accuracy may
not be tolerable for some applications that require accurate estimations, e.g.
security-constrained optimal power flow studies, stability analysis, etc. Notice
that the proposed approach with an accurate model can obtain the estimations
that are almost the same as the true value, especially for the estimation with
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voltage phase angles. Because the computation effort with the proposed approach
is not large, it can be further applied to any advanced application with accurate
estimation results for both voltage phase angles and magnitudes.

7.1.5.3 With Variable Loading Conditions
In order to evaluate the proposed algorithm, we also test the cases with different
load patterns. Figure 7.6 shows the load conditions with respect to time, and the
load during this period increases from the original level of 1.0 (0–10 minutes) to
1.45 (50–60 minutes). The test results are shown in Figures 7.11– 7.14. The errors
used to terminate the iterations are shown in Figure 7.11. Note that in the first
pattern, it takes nine iterations to converge, and the patterns follow the conver-
gence in four iterations. Here, for patterns 2–6, we use the pre-obtained solution
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Figure 7.11 Load levels with respect to time.
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of the previous pattern as the initial guess solution, which further increases the
convergence speed. The estimated voltage phase angles and magnitudes are shown
in Figures 7.15 and 7.16. As can be seen in the figures, the estimated voltage phases
for all the load patterns are almost the same as the true values, as discussed pre-
viously. We can also observe that the phase angles of nodes decrease as the load
increases because the heavier load level requires large power transfer between the
generation and the demand node. The estimated bus voltage magnitudes shown
in Figure 7.16 are also very close to the true values. However, the error between
them is larger than those in the phase angle cases. This is because in this trans-
mission system, the reactive power measurements have a relatively lower value,
which results in degraded estimations as the noise may dominate in a few mea-
surements. We can also see that the voltage profile of the system does not change
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a lot. This is because the PV bus node always maintains its bus magnitude as a
constant, which helps to keep the voltage profile within the reasonable range.

7.1.6 Conclusion and Discussion

In this section, we presented a distributed state estimation approach for a MASE.
By using the consensus algorithm, each area is able to access the information
regarding gain matrix and gradient vector of other areas. Through the coordination
of the areas in the system, the proposed approach, on the one hand, can con-
verge in a second order; on the other hand, it can obtain the estimations that are
decent enough for other advanced power system applications. In addition, the pro-
posed approach does not need a complex communication network to support its
implementation. The computational effort and the amount of data that needs to be
processed by one area are both significantly reduced. The case studies show that
the proposed approach is promising for the MASE.
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Appendix
Partial derivative for Taylor series expansion

Pki(𝜉) = Pki(𝜉)||𝜉=𝜉0
+
(

𝜕Pki(𝜉)
𝜕𝜉

||||𝜉=𝜉0

)T

(𝜉 − 𝜉0) (7.41)

Qki(𝜉) = Qki(𝜉)||𝜉=𝜉0
+
(

𝜕Qki(𝜉)
𝜕𝜉

||||𝜉=𝜉0

)T

(𝜉 − 𝜉0) (7.42)

With the assumption that
𝜉0 =

[
1 1 0

]Tand Gki ≈ 0, then we have Pki(𝜉)||𝜉=𝜉0
= 0, 𝜕Pki(𝜉)

𝜕𝜉

|||𝜉=𝜉0
=

⎡⎢⎢⎢⎢⎣

𝜕Pki
𝜕Vk

|||𝜉=𝜉0
𝜕Pki
𝜕Vi

|||𝜉=𝜉0
𝜕Pki
𝜕𝛿ik

|||𝜉=𝜉0

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎣

0
0

Bki

⎤⎥⎥⎦ and Qki(𝜉)||𝜉=𝜉0
= Yki,s∕2,

𝜕Qki(𝜉)
𝜕𝜉

|||𝜉=𝜉0
=

⎡⎢⎢⎢⎢⎣

𝜕Qki
𝜕Vk

|||𝜉=𝜉0
𝜕Qki
𝜕Vi

|||𝜉=𝜉0
𝜕Qki
𝜕𝛿ik

|||𝜉=𝜉0

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎣

Bki + Yki,s
−Bki

0

⎤⎥⎥⎦ 𝜉 − 𝜉0 =
⎡⎢⎢⎣
Vk − 1
Vi − 1
𝛿ki

⎤⎥⎥⎦ putting these expressions

into Eqs.(7.41) and (7.42) yields

Pki = Bki(𝛿k − 𝛿i) (7.43)

Qki = Bki(Vk − Vi) + Yki,sVk − Yki,s∕2 (7.44)

7.2 Multi-agent System-Based Integrated Solution
for Topology Identification and State Estimation

Power systems should be monitored continuously to maintain a normal and safe
operation. State estimation (SE) can provide accurate information for power sys-
tems, such as power injections, power flows, and voltage magnitudes. The concept
of SE was first introduced in the late 1960s and had achieved remarkable develop-
ment in the past few decades [19].

The implementation of SE is growing into a more challenging problem for the
two reasons. First, a large integration of distributed generations greatly increases
the complexity of the power system operation [20]. Second, the deregulation of
the power systems results in the creation of many local utilities and independent
system operators (ISOs), which usually operate independently and thus require
the local implementation of SE [11].

Current SE algorithms aim at enhancing the computational speed and accuracy.
Several techniques are proposed to increase the computational speed of the state
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estimators, such as the fast decoupled method and sparse matrix techniques [21].
There have also been extensive efforts on improving the convergence speed of the
SE algorithms such as Hachtel’s augmented matrix approach and the QR factor-
ization method [22]. Most of these SE algorithms are implemented in a centralized
manner, and they are not suitable for multi-area power systems with a large num-
ber of local utilities and ISOs because of a large scale of the power grid as well as
the difficulty in data acquisition [11].

Distributed SE algorithms are proposed for large-scale power systems. Different
decomposition techniques are utilized, such as the Lagrangian relaxation algo-
rithm [6] and the alternating direction method of multipliers [23]. Generally, the
performance of the distributed algorithms is dependent on the system structure.
For example, the decomposition algorithm proposed in [24] is based on the decom-
position of the gain matrix, wherein the off-diagonal elements are neglected. How-
ever, this algorithm is not suitable for areas with many interconnection branches.
A tie-line constrained distributed SE method is proposed in [25], where the devel-
oped solution requires appropriate splitting of the original system and selection of
tie-lines. In addition, two-level schemes are proposed [26, 27]. However, this struc-
ture normally has extra requirements for the systems. For example, the local states
from the lower level are supposed to be fully accessible by the higher level [26],
thereby depending on a sophisticated centralized communication network. For
the method proposed in [27] for SE, the original system is decomposed into several
nonoverlapping subsystems and an interconnection tie-line area, which requires
that the entire system and the subsystems are all observable.

The aforementioned distributed SE algorithms require the observability of the
subsystems, which normally leads to heavy measurement redundancy. Moreover,
a coordination level is required to collect measurement data from the local areas,
which increases the difficulty for implementation. In [15, 28], the methods that
are used to detect useless data and solve SE problems in a distributed manner are
introduced. These methods are developed based on the distributed 𝒰 algorithm.
However, these methods are only applicable to linear observation models.

Furthermore, existing TI and SE problems are studied independently. Their
implementations are both based on the assumption of a fixed and known power
network topology. However, this assumption no longer holds because of the
increasing integration of renewable and distributed generations. It may con-
stantly change the topology configuration of the power networks. Consequently,
an integrated solution for distributed TI and SE is highly desirable.

In this section, we develop an integrated method for solving the TI and SE
problems of multi-area power systems. Both TI and SE are modeled as WLS
problems and are solved in a distributed manner using the distributed subgra-
dient algorithm. We utilize the multi-agent system (MAS) framework for the
algorithm implementation, which renders a flexible, reliable, and cost-effective
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Figure 7.17 Power system with multiple areas.

solution. The proposed solution only requires a simple communication network
to realize information exchange. It is also capable of identifying the network
topology correctly and obtaining relatively accurate states that are comparable to
the centralized solutions.

7.2.1 Measurement Model of the Multi-area Power System

Let us assume that an interconnected power network, with a total of n buses, is
divided into r nonoverlapping subsystems or control areas. The ith control area
is denoted by Ai with mi measurements and ni buses. These subsystems are con-
nected via transformer branches or tie-lines, as portrayed in Figure 7.17 [11].

We use zi = [zi
1, zi

2,… , zi
mi
]⊤ to denote the vector of measurements in area Ai,

where mi is the dimension of measurements. Let us denote the global vector of
the system states as x = [x1, x2,… , xns

]⊤, which includes the magnitudes and phase
angles of the voltages. We denote the vector of nonlinear functions of state vari-
ables as hi = [hi

1(x), hi
2(x),… , hi

mi
(x)]⊤. Accordingly, the measurement model for

the multi-area TI and SE can be given as follows:

zi = hi(x) + ei
, i = 1, 2,… , r (7.45)

where ei = [ei
1, ei

2,… , ei
mi
]⊤ is the vector of measurement errors, which is typically

modeled by a Gaussian random vector.
We formulate both the TI and SE of multi-area power systems as an optimization

problem. Here, the WLS approach is adopted and the objective of the optimization
problem is given as:

J(x) =
r∑

i=1
(zi − hi(x))⊤(Ri)−1(zi − hi(x)) (7.46)

where Ri represents the weight matrix of the measurements in area Ai. Unless
otherwise specified, the following two assumptions are assumed to hold:

1. The measurement errors conform to a normal distribution with a zero mean,
i.e.

E(ei
j) = 0, i = 1, 2,… r, j = 1, 2,… ,mi (7.47)
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2. The distributions of measurement errors are independent, i.e.

E(ei
je

i
k) = 0, i = 1, 2,… , r; j, k = 1, 2,… ,mi; j ≠ k (7.48)

thereby

cov(ei) = E[ei(ei)⊤] = Ri = diag{𝜎i
1, 𝜎

i
2,… , 𝜎

i
mi
} (7.49)

In the centralized approach, a central controller collects all the information and
relies on a complicated communication network. Our proposed distributed inte-
grated algorithm, on the contrary, only requires an associated agent in each area
to collect the local measurements and communicate with the neighboring agents
only. The formulated TI and SE problems are solved by a distributed subgradient
algorithm, which we will introduce in the following subsection.

7.2.2 Distributed Subgradient Algorithm for MAS-Based
Optimization

The distributed subgradient algorithm was first introduced by Tsitsiklis and fur-
ther developed for distributed multi-agent optimization [29, 30]. Assuming that
there are r agents and ns variables in the system, the goal is to minimize a global
function, which is given by

f (x) =
r∑

i=1
f i(x), subject to x ∈ Rns (7.50)

where x = [x1, x2,… , xns
]T is the vector of optimization variables, f i(x) ∶ Rns → R

is the objective function of agent i, where f i(x) is only aware by agent i. Agent i
aims at minimizing f i(x) by communicating with other agents.

To solve (7.50), each agent obtains a local initial estimate of the global optimal
solution of (7.50), which is denoted by xi(0) [30]. At each iteration, each agent
obtains an update by exchanging information with its neighbors. The neighbors
of agent i are denoted by the set Ni. After acquiring the information x(k) of agents
j, the update of agent i follows the rule:

xi(k + 1) =
∑
j∈Ni

aijxj(k) + aiixi(k) − 𝛼
idi(k) (7.51)

where aij denotes the interinfluence weight of agent j on agent i, aii is the
self-influence weight of agent i and 𝛼

i denotes the step size. Interested readers
can refer to [29] for methods of deciding the weights and step sizes.

The subgradient of f i(x) at x = xi(k) is the vector di(k) in (7.51), which is shown
as follows:

di(k) =

[
𝜕f i(x)
𝜕x1

,
𝜕f i(x)
𝜕x2

,… ,
𝜕f i(x)
𝜕xns

]T
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Based on (7.51), an agent keeps a local guess for the global optimum and adjusts
its estimation based on its local subgradient and the up-to-date estimation of its
neighbors. When the algorithm converges, (7.51) satisfies the following two con-
ditions:

1. di(∞) = 0, ∀i. It is the “stopped” model discussed in [29].
2. x1(∞) = x2(∞) = · · · = xr(∞), ∀i.

The two conditions indicate that the optimal values obtained by the distributed
agents can approach the global optimum x∗.

Here, we briefly present the convergence analysis for the subgradient algorithm.
Let us define A(k) as a r × r matrix with elements aij, where ai(k) is the ith column
of A(k). The iterations in (7.51) show that ∀i, s, k; k ≥ s, we have that

xi[k + 1] =
r∑

j=1
[A(s)A(s + 1) · · ·A(k − 1)ai(k)]jxj(s)

−
r∑

j=1
[A(s + 1) · · ·A(k − 1)ai(k)]j𝛼

j(s)dj(s) − · · ·

−
r∑

j=1
[A(k − 1)ai(k)]j𝛼

j(k − 2)dj(k − 2)

−
r∑

j=1
[ai(k)]j𝛼

j(k − 1)dj(k − 1) − 𝛼
i(k)di(k) (7.52)

Define the transition matrix as 𝜱(k, s), which is shown as

𝜱(k, s) = A(s)A(s + 1) · · ·A(k − 1)A(k)

The ith column of 𝜱(k, s) is

[𝜱(k, s)]i = A(s)A(s + 1) · · ·A(k − 1)A(k − 1)ai(k)

where the element in the jth row, ith column is given by

[𝜱(k, s)]i
j = [A(s)A(s + 1) · · ·A(k − 1)A(k − 1)ai(k)]j

Let us assume that all agents share a common constant step size 𝛼. Let s = 0,
(7.52) can be rewritten as

xi[k + 1] =
r∑

j=1
[𝜱(k, 0)]i

jx
j(0) − 𝛼

k∑
l=1

r∑
j=1

[𝜱(k, l)]i
jd

j(l − 1) − 𝛼di(k) (7.53)

It is assumed by the stopped” model that agents stop to update dj(k) after some
k iterations, such that dj(k) = 0, for all j, k and k ≥ k.



�

� �

�

7.2 Multi-agent System-Based Integrated Solution for Topology Identification and State Estimation 247

Let xi(k), i = 1,… , r denote the estimations of agent i. Based on (7.53), for all i
we have,

xi(k) = xi(k), ∀k ≤ k

and when k > k,

xi(k) =
r∑

j=1
[𝜱(k − 1, 0)]i

jx
j(0) − 𝛼

k∑
l=1

r∑
j=1

[𝜱(k − 1, l)]i
jd

j(l − 1)

Let us define y(k) as lim k→∞xi(k) = y(k). By virtue of Proposition 2(a) in [29],
one can obtain

y(k) = 1
r

r∑
j=1

xj(0) − 𝛼

k∑
l=1

r∑
j=1

1
r

dj(l − 1) (7.54)

Since (7.54) holds for any k, we re-index k with k, which yields:

y(k + 1) = y(k) − 𝛼

r

r∑
j=1

dj(k) (7.55)

When the set of optimal values x∗ is nonempty, by virtue of Lemma 5 in [29], we
have

dist2(y(k + 1), x∗) ≤ dist2(y(k + 1), x∗)

+ 2𝛼
r

r∑
j=1

(∥dj(k)∥ + ∥ gj(k) ∥) ∥ y(k) − xj(k) ∥

− 2𝛼
r
[f (y(k)) − f ∗] + 𝛼

2

r2

r∑
j=1

∥ dj(k) ∥ (7.56)

where gj(k) denotes the subgradient of f j(⋅) at y(k).
Suppose that the agent j satisfies the following constraint:

max
1≤j≤r

∥ xj(0) ∥≤ 𝛼L

Based on Proposition 3(a) in [29], ∀i ∈ (1,… , r), the upper limit on ∥ y(k) −
xi(k) ∥ satisfies

∥ y(k) − xi(k) ∥≤ 2𝛼LC1, ∀k ≥ 0 C1 = 1 + r
1 − (1 − 𝜂B0 )1∕B0

⋅
1 + 𝜂

−B0

1 − 𝜂B0

(7.57)

where 𝜂 satisfies 0 < 𝜂 < 1 (Assumption 1(a) in [29]) and B0 = (r − 1)B, where B
is the communication interval limit (Assumption 3, Lemma 4(c) in [29]).
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Let us denote the average vectors to estimate the optimal solution as follows
[29, 31]:

‚y(k) = 1
k

k−1∑
h=0

y(h), x̂i(k) = 1
k

k−1∑
h=0

xi(h) (7.58)

By virtue of Proposition 3 of [29], the upper limits on the cost in the objective
f ( ‚y) and f ( ‚x) are approximated by

f ( ‚y(k)) ≤ f ∗ +
rdist2(y(0), x∗)

2𝛼k
+ 𝛼L2C

2

f (x̂i(k)) ≤ f ∗ +
rdist2(y(0), x∗)

2𝛼k
+ 𝛼L

(LC
2

+ 2rL̂1C1

)
(7.59)

where L̂1 is the upper limit of the subgradient of f j(⋅) at ‚x(k) and C = 1 + 8rC1.
It is revealed by (7.57) that the deviation between y(k) and xi(k) is confined by

a fixed value that is proportionate to 𝛼. Meanwhile, (7.56) suggests that the gap
between y(k) and x∗ is constrained. Consequently, the interval between xi(k) gen-
erated by (7.51) and x∗ is bounded. The upper limit on f (x̂i(k)) in 7.59 demonstrates
that the inaccuracy from the optimal point f ∗ includes two parts: one is inversely
related to the step size 𝛼 and reduces to zero at the rate of 1∕k and the other is
correlated to the step size 𝛼, L, C, and C1 [29,30]. As a result, from 7.58 and 7.59,
one can obtain that the distributed subgradient algorithm converges with a proper
choice of 𝛼 and 𝜱(k, s). Interested readers can refer to [29, 30] for detailed proofs.

In the following section, we introduce the distributed subgradient algorithm to
solve the TI and SE problems.

7.2.3 Distributed Topology Identification

TI identifies the changes in the topology by examining the estimated states based
on measurements, thereby serving as a preprocessing step for SE. The implemen-
tation of TI takes two steps. First, we apply the subgradient algorithm and solve
the least square problem to obtain the estimation of the state variables; second, we
identify the topology errors via the approach of the statistical test.

7.2.3.1 Measurement Modeling
The general form of the measurement model is given by (7.45). For both the TI
and SE problems, we need to derive the models that describe the relationships
between measurement and the state variables. In the TI problem, we adopt the
decoupled DC power flow model with only power measurements being used. The
measurements, as portrayed in Figure 7.18, include

1. the active power flows in lines k − l, Pkl and Plk;
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Pkl + jQk

k l

Pkl + jQkl

xPi + jxQi

Pkl + jQkl

Rkl + jXkl
Plk + jQlk

jYkl, s jYkl, s

Pi + jQi

Figure 7.18 𝜋-equivalent circuit of the branch k − l.

2. the reactive power flows in lines k − l, Qkl and Qlk;
3. the active power injections at nodes k and l, Pk and Pl;
4. the reactive power injections at nodes k and l, Qk and Ql.

The active and reactive power flows at one ending point of a branch are chosen as
the state variables (referred to as the sending end).

Active Power Measurement Modeling
If there is only one active power flow measurement for a branch, this measure-

ment is selected as the state variable corresponding to this branch. If there are
more than one measurement, the state variable is chosen from either end of the
branch active power flows. Let us denote the active power flow that is chosen as
the state variable as the sending end active power flow. The active flow that is not
chosen, on the contrary, is defined as the receiving end active power flow.

Assume that node k and node l are connected via a branch. We can represent
the sending and receiving ends of the active power flows as follows [32]:

Pkl = xPi + eP,kl, Plk = −xPi + PL,kl + eP,lk (7.60)

where xpi is the state variable associated with this branch and eP,kl and eP,lk repre-
sent the active power measurement errors of both ends.

Let PL,kl in (7.60) denote the active power loss of the line k − l, which is shown as

PL,kl = Gkl(V 2
k + V 2

l − 2VkVl cos(𝛿kl)) (7.61)

where Vk and VL are the voltage magnitudes of buses k and l, respectively,
𝛿kl = 𝛿k − 𝛿l represents the difference of the voltage angle on the branch k − l, 𝛿k
and 𝛿l are the phase angles of the voltage at buses k and l, respectively, and Gkl is
the serial conductance, which is calculated as Gkl = Rkl∕(R2

kl + X2
kl).

In the DC power flow model, 𝛿kl can be calculated as

𝛿kl ≈ XklPkl = XklxPi (7.62)
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Substituting (7.62) into (7.61), setting Vk = Vl = 1 yields

PL,kl ≈ 2Gkl(1 − cos(XklxPi)) (7.63)

Consequently, (7.60) can be rewritten as

Plk = −xPi + 2Gkl(1 − cos(XklxPi)) + eP,lk (7.64)

The injections of active powers at buses k and l are

Pk =
∑
l∈Nk

Pkl + eP,k, Pl =
∑
k∈Nl

Plk + eP,l (7.65)

Denote the state variables associated with active power flows with an
nb-dimensional vector xP, where nb is the number of branches. Denote the
active power measurements with an mP-dimensional vector zP, where mP is the
number of active power measurements. Therefore, the model for the active power
measurement can be written as

zP = hP(xP) + eP (7.66)

where eP is an mP-dimensional vector of random errors that has a zero mean and
a known covariance matrix RP = diag{𝜎2

P1, 𝜎
2
P2,… , 𝜎

2
PmP

}.
In the TI problem, the simplified DC power flow model performs quite well for

the majority of the operating conditions. In some special conditions, e.g. when a
branch power flow is extremely small, the DC power flow may imply a wrong TI.
Nevertheless, the following state estimation on the basis of the identified topology
is still adequate because the power flow is so trivial and can be omitted. In the
majority of the state estimation-based applications, this imprecision is acceptable.

Reactive Power Measurement Modeling
The select of the state variables is the same as that of the active power. When the

branch has a single reactive flow measurement, the state variable is chosen to asso-
ciate with this measurement. Otherwise, the state variable is defined to associate
with either end of the reactive power flows.

It is shown in Figure 7.18 that the reactive power on both ends of one branch
can be defined as [32]

Qkl = xQi + eQ,kl, Qlk = −xQi + QL,kl + eQ,lk (7.67)

where QL,kl is the loss of the reactive power on line k − l, which is shown as follows:

QL,kl = −Ykl,s(V 2
k + V 2

l ) = −Bkl(V 2
k + V 2

l − 2VkVl cos(𝛿kl)) (7.68)

where Bkl is the serial susceptance, i.e. Bkl = −Xkl∕(R2
kl + X2

kl).
Moreover, for the DC flow model (7.68) can be represented by

QL,kl = −2Ykl,s − 2Bkl(1 − cos(XklxPi)) (7.69)
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It should be pointed out that the loss of the reactive power (7.69) relies on xPi,
which can be estimated by using x̂Pi from the results of active power estimation.
Therefore, we can rewrite (7.69) as

Q̂L,kl = −2Ykl,s − 2Bkl(1 − cos(Xklx̂Pi)) (7.70)

Hence, (7.67) is rewritten as

Qkl = xQi + eQ,kl, Qlk = −xQi + Q̂L,kl + eQ,lk (7.71)

Because Q̂L,kl and the state variable xQi are independent, it can be obtained when
the estimation of the active power x̂Pi is obtained.

The injection of the reactive power at nodes k and l are shown as follows:

Qk =
∑
l∈Nk

Qkl + eQ,k, Ql =
∑
k∈Nl

Qlk + eQ,l (7.72)

We present the measurement model for the reactive power in the matrix form
as follows:

zQ = hQ(xQ) + eQ (7.73)

where zQ is the reactive power measurement vector, which has mQ dimensions
and mQ reactive power measurements, xQ is the state vector of reactive power
flows, which has nb dimensions, and eQ is the vector of random errors, which
has mQ dimensions, the mean of eQ is zero, and the corresponding covariance is
RQ = diag{𝜎2

Q1, 𝜎
2
Q2,… , 𝜎

2
QmQ

}.

7.2.3.2 Distributed Topology Identification
Because the models of both the active and reactive power given in (7.66) and (7.73)
have the same mathematical formulation, we drop the subscripts P and Q and
generalize the models as follows:

z = h(x) + e (7.74)

For multi-area TI, the measurement model has the same formulation as (7.45).
To obtain the estimation of the states (power flows on the lines), the local objective
function is given by

f i(x) = (zi − hi(x))⊤Ri−1(zi − hi(x)) (7.75)

For the TI problem that uses the measurements of both the active and reactive
flows, the overall objective function can be written as follows:

J(x) =
r∑

i=1
f i(x), subject to x ∈ Rnb (7.76)
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Because (7.76) has the same form as (7.50), the distributed subgradient algo-
rithm can be applied to render a distributed solution. The algorithm requires that
each agent initializes with an estimate of the global optimal state as follows:

xi(0) = xi
0, i = 1, 2,… , r (7.77)

It should be noticed that xi
0 can be initialized by the following methods, i.e. by a

zero vector or a vector of measurements. The algorithm converges for both meth-
ods. However, the second one renders better convergence and is used in our work.

In each iteration, each agent updates its estimate based on (7.51). The subgradi-
ent in (7.51) is calculated as

di(k) = −2
(
𝜕hi(xi)
𝜕xi | xi(k)

)⊤

(Ri)−1(zi − hi(xi(k))) (7.78)

It should be noted that for each agent, the subgradient only requires the local
measurements and current estimation of the agent’s states. Moreover, the observ-
ability of an area is not necessary as long as the entire system is observable. We
will illustrate this later.

7.2.3.3 Statistical Test for Topology Error Identification
Upon obtaining the estimates of the state variables x̂is, a robust statistical test [32]
is adopted for the subsystems to identify the topology configuration.

The basic idea of the robust statistical test is to compare the magnitude of the
estimation of the standardized flow in (7.79) to a given cutoff value M0:

Mi
j =

ẑi
j

ŝi
z,j

(7.79)

Here, ẑi
j represents the jth estimated power flow of ẑi at ith area with zi

j = hi
j(x̂

i).
ŝi

z,j is the square root of the jth diagonal entry of the covariance matrix cov(ẑi) of
ẑi, which is given by

cov(ẑi) = Hi(x̂)cov(x̂)Hi(x̂)⊤ (7.80)

cov(x̂) here is calculated as [33]:

cov(x̂) = ŝx(Hi(x̂)⊤(Ri)−1Hi(x̂))−1 (7.81)

where ŝx is a scale estimate. For Gaussian measurement errors, test results with
various scales of systems using Monte Carlo simulations show that ŝx = 1.2
exhibits decent performance [32]; accordingly, this setting is adopted for our
method.
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If the magnitude of the standardized flow is found to be smaller than M0, it
means that the standardized flow is so small that this line is most likely to be
disconnected. Therefore, the associated branch is regarded as disconnected.”
Otherwise, the corresponding branch is treated as connected.” Here, we set M0
as 2.0. The value of cutoff is designed upon the test experiences via numerous
test cases. Our test results show that this setting of 2.0 yields good performance
for TI.

It should be pointed out that one area only needs to carry out the statistical test
of the related lines in its own area. Therefore, this test can be accomplished in a
distributed manner.

7.2.4 Distributed State Estimation

SE focuses on the estimation of the voltage magnitudes and phase angles upon the
network configuration and measurements. For simplicity, we assume that the net-
work topology has been identified. The measurements are adopted for SE include
active and reactive power flows, active and reactive power injections, and nodal
voltage magnitudes.

Notice that the simplified DC-PF model is accurate enough for TI. Though we
can use the AC-PF model, it is much more complicated and time-consuming.
Therefore, to increase the response speed of TI, we adopt the DC-PF model.
Moreover, in order to obtain an accurate SE, the coupled AC-PF model is utilized
based on the TI results, which we will introduce, as follows.

Let us denote the vector of active power flow measurements as Pline, the
vector of active power injection measurements as Pbus, the vector of the reactive
power flow measurements as Qline, the vector of the reactive power injection
measurements as Qbus, and the vector of voltage magnitude measurements
as Vbus. For convenience of notation, the measurement vectors are denoted
as z = [P⊤

line,P
⊤

bus,Q
⊤

line,Q
⊤

bus,V
⊤

bus]
⊤. Rearrange the state variables as a vector

x = [𝛿⊤,V⊤]⊤, then the overall measurement model can be represented by (7.74)
and the objective for multi-area SE can be denoted by (7.76). Based on (7.51),
the distributed subgradient algorithm is utilized for solving (7.76). Each agent is
initialized with the so-called flat-start condition, which is given as follows:

xi(0) =
[
𝟎
𝟏

]
(7.82)

where 𝟎 and 𝟏 are the initial values for the bus-phase angles and voltage magni-
tudes, respectively.
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The subgradient in (7.78) is updated based on the up-to-date objective function,
its corresponding Jacobian is given as:

𝜕hi(xi)
𝜕xi =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

𝜕Pi
line

𝜕δ
𝜕Pi

line

𝜕V
𝜕Pi

bus

𝜕δ
𝜕Pi

bus

𝜕V
𝜕Qi

line
𝜕δ

𝜕Qi
line

𝜕V

𝜕Qi
bus

𝜕δ
𝜕Qi

bus

𝜕V
𝜕Vi

bus

𝜕δ
𝜕Vi

bus

𝜕V

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7.83)

It should be noted that the implementation of SE is similar to that of TI and
can be conducted in a distributed manner. Moreover, the distributed subgradient
algorithm only requires the convexity of the local objective functions and has no
requirement for the observability of each local area [29, 30]. Therefore, this split-
ting of areas is flexible. Moreover, we only consider nonoverlapping subsystems
in this chapter. The interconnection branch can belong to either of the connected
areas and treated the same as the other branches.

7.2.5 Implementation of the Integrated MAS-Based Solution for TI
and SE

For the proposed integrated solution, each area is associated with an intelligent
agent. The agent is in charge of data acquisition within its own subsystem and
communicating with its neighbors. The algorithm is implemented in the way that
it has the properties of an MAS [34], e.g. the local control function and the commu-
nication style. The MAS can be implemented on Java Agent Development (JADE)
Framework [35].

Figure 7.19 portrays the information stream and function units of an agent.
Notice that only the estimated states xi[k]s are interchanged between the subsys-
tems. Moreover, the volume of exchanged data is not affected by the configuration
of the network or the placement of the measurements.

The MAS-based algorithm can be implemented by using different frameworks,
e.g. JADE [35] or Presage2 [36]. Generally, JADE is a software platform that
can provide basic middle-ware layer functionalities regardless of the application.
The JADE-based applications are able to run various operating systems, such
as Android, Windows, or IOS. We had implemented the JADE framework on
windows-based NanoPCs and Android-based Tablets [37], and we also tested var-
ious distributed algorithms by using JADE. There are other hardware platforms



�

� �

�

7.2 Multi-agent System-Based Integrated Solution for Topology Identification and State Estimation 255

SE

TI

xj[k], j ∈ Ni

xi[k]

xj[k], j ∈ Ni

xi[k]

xj[k], j ∈ Ni

xi[k]

xj[k], j ∈ Ni

xi[k]

xi[k]

di[k]

xi[k]

di[k]

xi[0]

xi[0]
xi[0]

xi[0]

TI initializtion
Eq. (7.30)

State update
Eq. (7.4)

C
om

m
un

ic
at

io
n

SE initialization
Eq. (7.35)

State update
Eq. (7.4)

Subgradient calculation
Eq. (7.31)

Subgradient calculation
Eq. (7.31)

Updated network topology

Subgradient test
Eq. (7.34), (7.33) & (7.32)

D
at

a 
ac

qu
is

iti
on

Agent i

zi

zi

Neighboring
agent j

j ∈ Ni

Figure 7.19 Operation of an agent for TI and SE.

such as the ARM-based and DSP-based control boards, which can also be adopted
for implementation and algorithm evaluation.

In fact, the TI and SE are two function modules. Specifically, the outcome of
TI is used in SE, but SE will not affect TI. Our test results demonstrate that the
obtained phase angles deviate significantly from the real values if the changes in
the topology are not recognized correctly. Therefore, TI, as a preprocessing step for
SE, should be performed before SE because the communicational and computa-
tional mechanisms are the same for both TI and SE. It is not necessary to separate
these two modules. In fact, TI can be regarded as a tool to improve the accuracy of
results obtained from the SE. When the algorithm converges, only the estimated
states are of interest, yet, the identified topology can be treated as a by-product that
can be used for other advanced applications such as the contingency or security
analysis.

7.2.6 Simulation Studies

In this section, we use four test cases to evaluate the performance of the pro-
posed integrated TI and SE method. These four cases are an IEEE-14 bus system,
a 120-bus system, a 590-bus system, and a 1062-bus system.

7.2.6.1 IEEE 14-bus System
The IEEE 14-bus system is divided into four areas. Figure 7.20 portrays the
network topology and measurement locations. Power flow and injection sensors
measure both active and reactive flows and injections. There are a total of 52 mea-
surements, including 40 measurements of power flows on lines, 8 measurements
of nodal power injections, and 4 measurements of voltage magnitudes. Assume
that all measurements are corrupted by additive Gaussian noises with the same
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Figure 7.20 Algorithm implementation with IEEE 14-bus system.

variances of 𝜎2 = 0.0001. To test the proposed algorithm, line 4–5 is intentionally
set as disconnected. Because there are four areas, the four-agent system is devel-
oped to implement the proposed algorithm, and the communication network for
agent communication is provided in Figure 7.20.

Notice that the topology of the communication network can be designed to be
different as long as the graph corresponding to the communication network is
complete. In other words, the agents should be directly or indirectly linked [29].
In reality, the network topology should take both of the performances of the algo-
rithm, i.e. speed and reliability, and the implementation cost, into account. More-
over, the topology of the communication network here satisfies the N − 1 rule [37],
which indicates that the distributed algorithm can still work properly if anyone of
the communication links is lost.

Both the MAS-based integrated TI and SE methods are examined by numerical
studies. The benchmark is chosen as the centralized WLS state estimator [12].

1) Test of Topology Identification
For the TI test, only active and reactive power measurements (48) are used. The
actual state of the line 4–5 is “disconnected” and the goal of the TI to identify this
change of topology.

The dimension of the state vectors for TI using the active or reactive power mea-
surements is 20 because there are a total of 20 branches in the IEEE-14 bus system.
Thus, the exchanged data between the two agents for each step of the update is
a 20-dimensional vector. The volume of this exchanged data is relatively small,
considering that there are a total of 48 measurements being used here.

By applying the distributed TI algorithm, four estimation active power flows
P4−5, P7−8, P6−13, and P9−14 during the iteration process are shown in Figure 7.21.
For each area, the states associated with this area are initialized with measured
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Figure 7.22 Estimated power flows (P4−5) in all four areas.

flows while the other states relate to other areas are initiated with zeros. The figure
shows that the algorithm takes around 100 iterations to convergence, and the con-
verged values are comparable to that obtained with the centralized methods. The
active flows for line 4–5 during the iteration process for all the four subsystems
are shown in Figure 7.22. It can be observed that the flow (P4−5) in all the areas
achieves consensus at 100th iteration, which is one of the conditions for conver-
gence for the distributed subgradient algorithm. Moreover, the values of subgra-
dients for the local objective functions of all the areas converge to zeros, which
indicates that the values of objective functions of these four areas stop decreasing,
as shown in Figure 7.23. This is another convergence criterion for the distributed
subgradient algorithm, as introduced previously.

As shown in Figure 7.22, the estimation of the active power flows of the line
4–5 are 0.12 p.u. Recall that the actual state of the line 4–5 is “disconnected”; thus,
the active power flows on this line should be zero. This inaccuracy is due to occur
because we have carried out the state estimation by applying the outdated topology
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Figure 7.23 Evolution of objective function values. (a) Number of iterations. (b) Number
of iterations (zoomed-in).

information, wherein the line 4–5 is assumed to be “connected.” By applying the
statistical test introduced previously, we can identify this topology error correctly.
Tables 7.1 and 7.2 show the results of the statistical tests by using the measure-
ments from P and Q, respectively. Here, the cutoff value for the standardized flow
is set to 2.0, as discussed previously.

Because a branch (line) can transmit active or reactive power, so it is identified
as “disconnected” only if statistical tests using both active and reactive measure-
ments identify it as “disconnected.” Tables 7.1 and 7.2 demonstrate that the cases
for line 4–5 meet this condition. Therefore, branch 4–5 is identified as “discon-
nected,” which reveals the real network topology. The test results shown in the
tables also demonstrate that the distributed algorithm obtains the same network
topology results as the centralized methods.

2) Test of State Estimation
The SE are carried out based on the identified topology from TI, wherein the
branch 4–5 is disconnected. All the 52 measurements are used to improve the
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Table 7.1 Test results of TI using active power flow measurements.

Distributed Centralized

Area Branch P̂kl P̂kl∕ŝz,j Status P̂kl P̂kl∕ŝz,j Status

1 1–2 1.77 198.27 Connected 1.77 198.27 Connected
1–5 0.57 64.13 Connected 0.57 64.13 Connected
2–4 0.90 82.27 Connected 0.90 82.27 Connected
2–5 0.90 10.61 Connected 0.90 10.61 Connected
4–5 0.12 0.66 Disconnected 0.12 0.66 Disconnected

2 2–3 −0.08 98.32 Connected −0.08 98.32 Connected
3–4 0.01 8.98 Connected 0.01 8.98 Connected
4–7 0.19 17.32 Connected 0.19 17.32 Connected
4–9 0.09 8.16 Connected 0.09 8.16 Connected
7–8 0.60 0.49 Disconnected 0.60 0.49 Disconnected

3 5–6 0.19 54.34 Connected 0.19 54.34 Connected
6–11 0.10 17.03 Connected 0.10 17.03 Connected
6–13 0.23 10.67 Connected 0.23 10.67 Connected
6–12 0.01 21.44 Connected 0.01 21.44 Connected
12–13 0.18 4.52 Connected 0.18 4.52 Connected

4 7–9 −0.04 16.37 Connected −0.04 16.37 Connected
9–10 0.03 3.62 Connected 0.03 3.62 Connected
9–14 −0.14 3.86 Connected −0.14 3.86 Connected
10–11 0.04 12.75 Connected 0.04 12.75 Connected
13–14 0.11 12.53 Connected 0.11 12.53 Connected

accuracy of the estimation. We set the state variables as follows:

x⊤ = [𝛿2, 𝛿5,V2,V5, Area 1
𝛿3, 𝛿4, 𝛿7, 𝛿8,V3,V4,V7,V8, Area 2
𝛿6, 𝛿11, 𝛿12, 𝛿13,V6,V11,V12,V13, Area 3
𝛿9, 𝛿10, 𝛿14,V9,V10,V14] Area 4

(7.84)

The voltage phase angle of node #5, 𝛿5 is depicted in Figure 7.24. The figure
shows that the proposed solution for SE takes approximately 800 iterations till con-
vergence, which is more than the iterations of TI. This is because that AC-PF model
is used in this case with more measurements being also adopted for estimation.
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Table 7.2 Test results of TI using reactive power flow measurements.

Distributed Centralized

Area Branch Q̂kl Q̂kl∕ŝz,j Status Q̂kl Q̂kl∕ŝz,j Status

1 1–2 −0.27 29.27 Connected −0.27 29.27 Connected
1–5 0.06 6.17 Connected 0.06 6.17 Connected
2–4 0.03 6.16 Connected 0.03 6.16 Connected
2–5 −0.07 6.96 Connected −0.07 6.96 Connected
4–5 0.08 0.71 Disconnected 0.08 0.71 Disconnected

2 2–3 0.03 3.11 Connected 0.03 3.11 Connected
3–4 −0.01 3.83 Connected −0.01 3.83 Connected
4–7 −0.11 9.95 Connected −0.11 9.95 Connected
4–9 0.01 0.66 Disconnected 0.09 0.66 Disconnected
7–8 0.15 19.40 Connected 0.15 19.40 Connected

3 5–6 0.02 13.69 Connected 0.02 13.69 Connected
6–11 0.10 17.03 Connected 0.10 17.03 Connected
6–13 0.08 0.10 Disconnected 0.08 0.10 Disconnected
6–12 −0.21 7.68 Connected −0.21 7.68 Connected
12–13 0.09 1.39 Disconnected 0.09 1.39 Disconnected

4 7–9 0.07 7.86 Connected 0.07 7.86 Connected
9–10 0.05 6.74 Connected 0.05 6.74 Connected
9–14 0.01 5.65 Connected 0.01 5.65 Connected
10–11 −0.01 0.49 Disconnected −0.01 0.49 Disconnected
13–14 0.00 0.36 Disconnected 0.00 0.36 Disconnected
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Figure 7.24 Evolution of the bus voltage phase angle (𝛿5) and magnitude (V5).
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Table 7.3 Comparison of state estimate solutions.

Bus Voltage phase angle 𝜹̂i (∘) Voltage magnitude V̂ i (p.u.)

W/O TI With TI True value W/O TI With TI True value

1 0.00 0.00 0.00 1.060 1.060 1.060
2 −5.60 −5.72 −5.68 1.045 1.045 1.045
3 −11.34 −14.47 −15.18 1.010 1.010 1.010
4 −8.53 −13.24 −14.33 1.026 1.020 1.014
5 −7.07 −6.23 −6.52 1.028 1.025 1.024
6 −8.09 −13.65 −13.98 1.070 1.070 1.070
7 −10.34 −16.04 −16.31 1.053 1.055 1.057
8 −10.24 −15.92 −16.31 1.090 1.090 1.090
9 −11.41 −17.03 −17.35 1.042 1.047 1.048
10 −11.10 −16.69 −17.04 1.037 1.045 1.044
11 −9.58 −15.15 −15.65 1.047 1.048 1.052
12 −9.15 −14.69 −15.02 1.056 1.054 1.052
13 −9.28 −14.83 −15.29 1.050 1.049 1.049
14 −11.59 −17.16 −17.46 1.026 1.026 1.030

The estimated states using the integrated TI and SE method are provided in
Table 7.3. State estimation results without integrating TI are provided here for
comparison.

Table 7.3 shows that the estimated states obtained from the integrated TI & SE
solution are very close to true values. However, the estimated phase angles have
great deviations without TI being carried out first because the disconnection of
line 4–5 leads to the change of active power flows on the branches. Nevertheless,
the voltage magnitudes are still close to the true values even without TI. This is
because the reactive power flow of line 4–5 is so small that the connection of line
4–5 has an insignificant influence on the reactive power flows through this branch.

3) Observability Analysis
The observability of a subsystem is determined by the rank of the Jacobian matrix
corresponding to the local measurements, which is denoted by Hi [11]. An area Ai
is observable if and only if

rank(Hi) = ni
s − 1 (7.85)

where ni
s is the number of the states to be estimated in Ai.
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Based on the placements of the measurements shown in Figure 7.20, the ranks of
the Jacobian matrix corresponding to the local measurements, Hi, are as follows:{

rank(H1) = 3, rank(H2) = 5
rank(H3) = 6, rank(H4) = 5

(7.86)

According to the state variables defined in (7.84), we can verify that all of these
four areas are observable. Moreover, the rank of the overall Jacobian of the entire
system is 22 without the voltage magnitudes of the PV buses being excluded. Con-
sequently, the system is observable.

Moreover, if we exclude the active and reactive power flow measurements asso-
ciated with the line 6–11 the ranks of the local measurements Jacobian matrix
under these circumstances are then as follows:{

rank(H1) = 3, rank(H2) = 5
rank(H3) = 5, rank(H4) = 5

(7.87)

Here, we can observe that area A3 becomes locally unobservable. In fact, when
the measurements associated with line 6–11 are excluded, the states’ associate with
bus #11 (𝛿11,V11) are no longer observable in Area #3. Nevertheless, the observ-
ability of the overall system still holds as the rank of the system-wide measurement
Jacobian matrix is still 22. Figure 7.25 demonstrates that for the case when A3 is
not observable, the estimated state (𝛿11) is the same as that of the case without
the removal of measurements associated with line 6–11. Similar phenomena can
also be observed for other estimated states. In fact, for our proposed distributed
solution, the observability for the subsystems is not required, which allows for the
more adaptable decomposition of subsystems for the distributed solution of the SE
problems.

For our implementation, an agent shares its estimation with its neighbor-
ing agents only, thereby it can greatly reduce the amount of measured data
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Figure 7.25 Convergence of 𝛿11 with or W/O deletion of measurements.
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Table 7.4 Configuration of the test systems.

Test system nb nA nbp ntp

14-Bus 20 4 5 1
120-Bus 172 4 43 2
590-Bus 908 5 182 4
1062-Bus 1635 9 182 6

transmission. Moreover, the communication time can be greatly shortened with-
out gathering measurement data from multiple distant areas. Furthermore, the
algorithm does not need to calculate the inverse of the gain matrix (the majority
of the centralized methods do). This is helpful for reducing the computation time
and dealing with the situation with ill-conditioned gain matrices. Therefore, the
proposed distributed solution is robust and computation-efficient.

7.2.6.2 Large Test Systems
Here, we provide more test results of TI from three other systems to evaluate our
proposed distributed approach.

Table 7.4 summarizes the configurations of these three test systems, where
nb is the number of lines, nA is the number of areas, nbp is the average number
of branches (lines) per area, and ntp is the number of topology errors we aim to
identify.

The graph of the communication network for the agents’ communication is
shown in Figure 7.26.

We choose one of the state variables for each of these three system for demonstra-
tion, and the evolution of the corresponding variable during the iteration process
is shown in Figure 7.27. As can be seen in the figure, the algorithm takes 50 iter-
ations to converge for the 120-bus system, 120 iterations for the 590-bus system,
and 120 iterations for the 1062-bus system. The test results of these systems are
summarized in Table 7.5. It can be observed that the time consumed for a single
iteration is the same for the 590-bus and 1062-bus system. Moreover, the computa-
tion time is greatly shortened compared with the centralized algorithms because
the computational task is distributed to multiple agents instead of being taken only
by a central processor.

For the implementation of the distributed algorithm, we had tested the con-
figuration with the agents being implemented on a single computer as well as
multiple computers [37]. Current tests for the TI and SE are carried out with
a single computer. The message exchanged between two agents should contain
two parts, i.e. the header and the actual state vector. The header includes two
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Figure 7.26 Communication network configurations of the test systems. (a) 4-Area
14-bus system. (b) 4-Area 120-bus system. (c) 5-Area 590-bus system. (d) 9-Area
1062-bus system.

parts, namely the agent ID and the iteration number. The state vector includes
the voltage magnitudes and phase angles of all buses. For the tested IEEE 14-bus
system, the state vector has 14 × 2 = 28 elements. Each element is stored using
16-bit data. Therefore, the size of the message data is (2 + 28) × 16 = 512 bits.

The simulation results show that it takes 1000 iterations to converge for the
14-bus system because the mathematical operation of one iteration is so simple
that the time consumed by the computation can be neglected. If we expected the
algorithm to converge in three minutes, the minimum communication band-
width is only 512 × 1000∕180 = 2.84 kbit/s. Similarly, we can estimate bandwidth
requirement of other systems by considering the scale of the system (the size of
message data), convergence rate (the number of iterations), and the expected
outcome (time in seconds). It turns out that the minimum communication
bandwidth requirement is 21 kbit/s for the 120-bus system, 105.7 kbit/s for the
590-bus system, and 188 kbit/s for the 1062-bus system. We can see that the



�

� �

�

7.2 Multi-agent System-Based Integrated Solution for Topology Identification and State Estimation 265

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
0

0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16

Area 1
Area 2
Area 3
Area 4

 Number of iterations
(a)

–0.3

–0.25

–0.2

–0.15

–0.1

–0.05

0
Area 1 
Area 2
Area 3
Area 4
Area 5

(b)

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
 Number of iterations

–1.5

–1

–0.5

0
Area 1
Area 2
Area 3
Area 4
Area 5

Area 6
Area 7
Area 8
Area 9

(c)

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150
 Number of iterations

Figure 7.27 Convergence of a state variable for large test systems. (a) 120-Bus system.
(b) 590-Bus system. (c) 1062-Bus system.

proposed distributed control scheme here does not impose strict requirements on
communication.

In practice, we can integrate the proposed TI and SE solution in the energy
management system (EMS) as one of its function modules. The EMS in each area
coordinates with the Supervisory Control and Data Acquisition (SCADA) system
and communicate with its neighboring areas for information exchange via the
communication network.
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Table 7.5 Configuration of the test systems.

Test system Distributed (Local) Centralized (Global)

Iterations
Time per
iteration (ms) Iterations

Time per
iteration (ms)

14-Bus 20 0.1 80 1.51
120-Bus 50 4 80 86
590-Bus 120 69 100 3465
1062-Bus 120 72 85 10 990

Notice that the actual processing time of our designed state estimator is affected
by many factors including the scale of the power system, the structure and the
latency of the communication network, and the capability of the data processor
of the control center. Our experience indicates that the processing time of the
state estimator is not likely to exceed two minutes. For example, in the largest
1062-bus test system, the simulation conducted in Matlab takes about 1000
iterations till convergence, which takes 72 seconds in a Laptop with an Intel(R)
Core(TM) i7-4770 CPU and 8.0 GB RAM. If a communication network with
a speed of 10 MBs/s is adopted, the time for communication only costs three
seconds. Therefore, the state estimation can be completed within 75 seconds
under ideal conditions. If the algorithm is programmed in C, the time will be
further shortened. Notice that the state estimator is designed to work with the
SCADA system coordinately. Because the update interval of SCADA ranges from
3 to 10 minutes, our designed algorithm is fast enough to obtain the SE solution
within one update interval of the SCADA system.

The integration of the intermittent distributed generations, such as solar and
wind energies, greatly increases the uncertainty of the power grid. To handle
uncertainty, more precise and rapid SE methods that do not depend largely
upon computational burden are highly desirable. We can further integrate other
techniques, e.g. event-triggered mechanism [38], to improve the performance of
the proposed integrated TI and SE solution.

7.3 Conclusion and Discussion

In this chapter, we investigated two distributed algorithms for state estimation.
The first one the the consensus based algorithm, which discovers the gain matrix
information via the consensus fusion techniques. It still need the calculate
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the inverse of the gain matrix, yet it avoids of collecting global information.
Accordingly, we can see this method as distributed information gather with
centralized-like optimization.

The second one is the distributed subgradient based algorithm, which actually
decomposes the original optimization problem into multiple optimization prob-
lem. This algorithm can be implemented by following the rules of distributed infor-
mation gathering as well as distributed computation. In practice, one needs to
systematically consider the hardware, software as well as communication network
configuration to decide which one is better for deployment.
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Hardware-Based Algorithms Evaluation

8.1 Steps of Algorithm Evaluation

For engineering research, one should always bring real-world application
requirements in mind. Once an algorithm has been designed, it is always desir-
able to perform hardware experimentation to estimate its real-world performance.
For some highly application-oriented research areas, such as power electronics,
experimentation studies have already become a requirement for journal pub-
lications. The requirement for hardware experimentation is being extended to
other research areas, including microgrid control over the past years. Under
such a condition, we have been working hard to gain hardware experimentation
capability. With over one million USD funding from various sources, especially
two Defense University Research Instrumentation Program (DURIP) grants from
the US Department of Defense, our lab has developed an advance test-bed for
experimental study of algorithms on operation and control of power systems.
We have published a paper in IEEE Transactions on Industrial Informatics to
introduce our hardware development.

Developing a good test-bed for power system study is technically challenging
because of the big gaps among related research areas, including but not limited
to the theoretical control, analytical power systems, and experimental power
electrics. In addition to the technical challenges, hardware development also
requires significant investment for purchasing components and subsystems and
hiring persons with the right skills. With the fast development of power electron-
ics and communication techniques, it is possible to develop a suitable test-bed
based on the need of research and availability of resources. In this chapter, we
will introduce our effort with algorithm evaluation, from hardware-in-the-loop
(HIL) simulation to hardware experimentation, with an increase of technol-
ogy readiness level (TRL). We believe that the introduction can benefit other
researchers.

Distributed Energy Management of Electrical Power Systems, First Edition.
Yinliang Xu, Wei Zhang, Wenxin Liu, and Wen Yu.
© 2021 The Institute of Electrical and Electronics Engineers, Inc.
Published 2021 by John Wiley & Sons, Inc.
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During algorithm evaluation, one needs to evaluate an algorithm first through
model-based simulation. For complicated dynamic systems whose simulations
are unacceptably slow, real-time simulation has its advantages. The powerful
hardware and specialized software of the real-time simulator (RTS) can sim-
ulate a complex model in real time if the RTS is powerful enough and the
simulation is well implemented. However, RTS does not have any advantage
in terms of simulation speed when a model can be simulated faster than real
time. With the increasing speed of computers, more and more models can be
simulated faster than real time. Under such conditions, a reasonable question
one may ask is “Why should we use the expensive RTS?” As discussed below,
we believe the best use of RTS is with fast prototyping of algorithms and HIL
simulation.

HIL simulations can be classified into two types, controller-HIL (C-HIL) and
power-HIL (P-HIL) simulations. There are many different ways of performing HIL
simulations. Here, we will introduce our ways of HIL simulations. During C-HIL
simulation, the RTS simulates a power system model in real time and interacts
with external controllers (PC or DSP control board) that implement a control algo-
rithm. During P-HIL simulation, a controller (RTS or DSP control board) simulates
the dynamic model of equipment in real time and emulates the response of the
equipment through interaction with external power circuit. In our lab, we use
C-HIL simulation to test system- and equipment-level algorithms and P-HIL sim-
ulation to emulate equipment that we do not have, such as synchronous generator
(SG), large energy storage system (ESS), etc.

Even though HIL simulation is very useful, it can never replace hardware
experimentation. This is mainly because the model-based HIL simulation is
unable to evaluate the performance of an algorithm under model inaccuracy.
Thus, we have developed many power electronics-based equipment, including
multiple microgrid test-beds, modular multilevel converters, etc. After C-HIL
simulation, both equipment- and system-level control algorithms have been
implemented in a way similar to that with hardware experimentation, i.e.
equipment-level algorithm being implemented using DSP control board and
system-level algorithm being implemented using PC, respectively. After P-HIL
simulation, even the hard-to-obtain equipment becomes available. Finally, we
can integrate the developed subsystems as a multiple-bus power system test-bed
for hardware experimentation.

In this chapter, we will introduce our ways of algorithm evaluations that are
enabled through years of hardware and software development. Figure 8.1 intro-
duces the steps of algorithm evaluation, ranging from C-HIL simulation, P-HIL
simulation, until hardware experimentation. Details are given in the following
sections.
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1a: PC based C-HIL simulation (system level algorithm)

1b: DSP based C-HIL simulation (equipment level algorithm)
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Figure 8.1 Steps of algorithm evaluation, from simulation to hardware experimentation.

8.2 Controller Hardware-In-the-Loop Simulation

During C-HIL simulation, hardware controller can interact with power system
models simulated in real time through wireless or wired communications.
Through such study, both capability of controller hardware and performance
of control algorithms can be tested. We have performed two types of C-HIL
simulations with the RTS, which are PC-based and DSP control board-based,
respectively. It should be noted that the C-HIL simulations might require signif-
icant effort with hardware development and algorithm implementation. Before
we introduce the details of our C-HIL simulations, we will introduce the RTS that
we use.

Our eMEGAsim series RTS was made by OPAL-RT. It can provide high-fidelity
modeling, simulation, and HIL simulations. Our RTS has 5 out of 12 CPU cores (2
hexa-core CPUs) unlocked. This enables the system being able to simulate 100+
nodes power systems in sufficient details. The RTS has a number of advantages.
First, it uses the popular Matlab/Simulink software for modeling and algorithm
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implementations, which is a very attractive feature for control researcher. Second,
the RTS has sufficient analog and digital (A/D) input and output (I/O) ports. In
addition to the I/O cards provided by the manufacturer, our lab has designed cus-
tomized electrical-to-optical (E2O) conversion boards for reliable high-frequency
pulse width modulation (PWM) signal communications between RTS and power
converter.

8.2.1 PC-Based C-HIL Simulation

To implement the MAS-based algorithms, we choose to use the JADE (Java Agent
Development) framework. JADE is a software framework fully implemented in
Java. It simplifies the implementation of MAS through a middle-ware that com-
plies with the Foundation for Intelligent Physical Agents (FIPA) standard spec-
ifications and through a set of graphical tools that support the debugging and
deployment phases. A JADE-based system can be distributed across machines,
which do not even need to run the same operating system. JADE is completely
implemented in Java language and the minimal system requirement is the version
5 of Java (the run time environment or the JDK). Over the past years, we have suc-
cessfully implemented the MAS-based algorithms with devices running Windows,
Android, and Linux.

To meet the requirement, the C API provided by the manufacturer is used. The
two solutions that can realize such interactions are illustrated in Figure 8.2. As
illustrated in Figure 8.2a, the MAS is interacting with the host computer that
monitors and controls the power system model simulated with the RTS (target
computer). Because the interactions indirectly go through the host computer, the
solution has a one critical disadvantage. Because the host computer processes all
communicated data as a central hub, the communication speed is slow, and the
autonomous and asynchronous properties of the MAS are violated. In order to

Agent #1 Agent #2Java

API

Interface block Interface block

Power system model simulated in real-time Power system model simulated in real-time

C

Agent #n

Agent #1 Agent #2

(a) (b)

Java Agent #n

MAS

Host

computer

Target

computer

MAS

Target

computer

Figure 8.2 Modes of interaction between the MAS and the RTS. (a) Indirect
communication scheme. (b) Direct communication scheme.
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overcome this problem, we have realize direct interaction between the MAS and
the target computer through advanced programming, as illustrated in Figure 8.2b.

Thus, there is a hidden requirement for a common triggering signal for syn-
chronization, which could be from either the same internet time server or the GPS.
Because the microgrid is not grid-tied, we select one agent to generate the reference
signals for triggering system-wide control updates. This way of implementation
might violate the distributed or decentralized property of an algorithm. However,
this is necessary to maintain reliability operation of a distributed control system.

Figure 8.3 shows the block diagram for reliable implementation of a distributed
control algorithm. Because communication and calculation both take time to
complete, we intentionally add small delays between operations. The delays are
much smaller than the step size (updating interval) of the distributed algorithm,
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Figure 8.3 Reliably realizing a discrete-distributed algorithm.
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for example, 0.01 seconds vs. 0.5 seconds, to wait for the completion of previous
operations. This can make sure that the correct information can be received
and processed. The time step of 0.5 seconds is just an example, which should
work for traditional large-scale power system but might be too large for power
electronic-based microgrids because of their small inertia. One needs to carefully
decide the time step size based on application requirements.

In one of our previous projects, we implemented a proportional load sharing
algorithm for both medium-voltage AC (MVAC) shipboard power system (SPS)
and medium-voltage DC (MVDC) SPS. The control objective is to share the total
demand among multiple distributed generators (DGs) according to their genera-
tion capacities. Because of the similarities MVAC and MVDC SPS, we just need
to feed the same control algorithm xi(k + 1) = xi(k) −

∑ni
j=1[kij(xi(k) − xj(k)

)
] with

different inputs, i.e. active power generation for MVAC SPS and output current for
MVDC SPS, respectively. The algorithm implementation and interaction between
MAS and RTS are illustrated in Figure 8.4.

It should be noted that the way of implementation is still bottlenecked by the
single Asynethernet block (shown as interface block in Figure 8.2) in the target
computer. Because one real-time simulated model only allows one such block, the
communications between the MAS and the RTS are still handled in a centralized
way. This is an example showing that simulation cannot replace hardware experi-
mentation. To realize the ideal way of implementation of a distributed algorithm,
we need to establish direct communication links between the agents and the corre-
sponding subsystem controller. This is realized during hardware experimentation
and will be introduced later.

Medium-voltage shipboard power systems (SPS) simulated in real-time

MVDC SPS

RTDS real-time

simulator

OPAL-RT real-time

simulator

MVAC SPS

Cross-platform implementation of the load sharing algorithm

Unified multi-agent system based

distributed load-sharing algorithm:

For MVDC: xi is the output current of generator i For MVAC: xi is the active power generation of generator i

xi(k+1) = xi(k) – Σ    [kij (xi(k) – xj(k))]
n

i

j=1

Figure 8.4 An example interaction between the MAS and RTS.
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8.2.2 DSP-Based C-HIL Simulation

In addition to performing PC-based C-HIL simulation for evaluation of
system-level algorithms, we also performed DSP-based C-HIL simulation for
evaluation of equipment-level algorithms. This is because most modern power
electronic equipment are controlled by DSP control boards. Thus, implementing
the equipment-level control algorithms with DSP control boards is a necessary
step toward hardware experimentation.

The DSP control board shown in Figure 8.5 was developed based on a dual-core
(DSP+ARM) System on Chip (SoC), TI OAMP L138. The motivation was to
implement both component-level and system-level algorithms on one platform.
In addition to many A/D channels for sensor inputs and D/A channels for signal
visualization using oscilloscope, it also features a FPGA of CYCLONE IV for
PWM signal generation and communication channel extension. However, the
SoC (TI OMAP L138) that we selected has some limitations. The two cores
share a lot of resources together, including the 456 MHz clock speed and the
128 kB shared SRAM. When both cores are in use, the two core’s process-
ing speed will be significantly lowered. In our experimentation, it is used for
equipment-level algorithm implementation only, for which it has been proven very
reliable.

The DSP-based C-HIL simulation is illustrated in Figure 8.6. The DSP control
board implements converter control algorithm and generates the PWM signals
through the onboard FPGA. The gating signals are connected to the analog input
card (OP5340K1) of our RTS. The RTS simulates switch-level power electronic
systems with the real-time computer (OP5644) and the Virtex 7 FPGA processor
(OP5607). During implementation, OP5644 simulates power electronic system
and produces voltage and current measurements through its analog output
card (OP5330K1). OP5607 is used for mux and de-mux of multiple signals

Figure 8.5 DSP control board used for
test-bed development.
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Figure 8.7 Schematic of the distributed generator plant implemented in the CPU.

and block the gating signals once overcurrent or over/low-voltage faults is
detected.

During experimentation, a simple grid-connected PV system is simulated with
the RTS, and its control is implemented with a DSP control board. The topology
of the simulated system is shown in Figure 8.7, and the actual experimental
setup is shown in Figure 8.8. The time step for the real-time simulation is 12
microseconds. Off-line simulation result is shown in Figure 8.9a, and the C-HIL
simulation results captured with an oscilloscope are shown in Figure 8.9b.
Considering that the two plots match each other reasonably well, we can say that
the C-HIL simulation is effective. The subsequent hardware experimentation
will benefit from the C-HIL simulations. The C and Verilog codes will not
need significant modifications. If the real-time simulated model is accurate,
the hardware experimentation results will be very similar to the simulation
results.
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Figure 8.8 Prototype of the controller HIL simulation.
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Figure 8.9 Comparison of experimental and simulation results. (a) Off-line simulation
result. (b) Oscilloscope screenshot of C-HIL simulation.

8.3 Power Hardware-In-the-Loop Simulation

In power HIL simulation, a DSP controller interacts with an emulated power
circuit. In our lab, we use the technique to emulate equipment that is expen-
sive to obtain and operate, such as traditional SG and special ESS (flywheel and
ultra-capacitor). In the past, we had thought to purchase a 20 kW motor-generator
set to emulate a traditional SG. After knowing that it costs $30k USD, USD, weights
2000 lbs, and measures 6 ft long, we have to give up the idea. Because multiple SGs
are usually needed for experiment with a large-scale power system, the expense
will be beyond the capability of most research groups. It should be noted that
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using a motor-generator set for SG emulation is still model based and different
from a real SG.

There is another consideration for not buying the motor-generator set. Such spe-
cialized equipment lacks flexibility and can only be used for certain studies. Thus,
we decide to emulate such equipment through P-HIL simulation with modern
power electronics and control techniques. The idea is somewhat close to the vir-
tual SG technique for low-inertia microgrid control. Because we have a lot of pro-
grammable DC power supplies, modular power converters, DSP control boards,
and other necessary accessories, we can emulate many different types of equip-
ment that we do not have. As long as simulation of the equipment is not beyond
the capability of the DSP control board, we can emulate the equipment with rea-
sonable accuracy.

Figure 8.10 shows the experimental setup to study a control algorithm for pulsed
power load accommodation on a SPS. The circuit diagram of the experimental
setup shown in Figure 8.10 is illustrated by Figure 8.11. The P-HIL simulation
platform consisted of an emulated SG and a real supercapacitor. To emulate an
SG, two function modules, one for signal calculation and one for signal realiza-
tion, need to be implemented on a DSP control board. During signal calculation,
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Figure 8.10 A photo of the experimental setup for P-HIL simulation.
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Figure 8.11 Circuit diagram of the experimental setup for P-HIL simulation.
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a fifth-order SG model is simulated in real time using DSP. The calculated sig-
nals of terminal voltages are amplified using a three-phase inverter together with
a programmable DC power supply. The measured currents are then fed back to the
simulated models for next step calculation. In this way, the developed algorithms
can be tested in a way close to reality. In our lab, the P-HIL simulation can be
implemented either with the DSP control board or with the much more powerful
RTS. We can choose which one to be used based on the complexity of the model to
simulate.

8.4 Hardware Experimentation

Over the past decade, we have developed various equipment for different projects.
An introduction of our hardware development is presented in a journal paper.1
Most of the function modules in those equipment, such as power converter,
control boards, driver, and protection boards, power sand sensor boards, and
so on are all developed by ourselves. In this way, we not only can reduce the
development and maintenance costs but also can maximize the usability and
flexibility. For experimental studies of multiple-bus microgrids, we decided to
develop two new test-beds. One reason is that the existing test-bed is basically a
one-bus microgrid that has limited usage. The other reason is that the existing
equipment has good looking but is very difficult to modify. Instead of modifying
existing test-beds and recovering them in the future, we decided to develop two
new microgrid test-beds by practicing our idea of “LEGO-like development of
power electronic systems.” One test-bed is for three-phase AC microgrid study
and the other one for single-phase AC and DC microgrid study.

8.4.1 Test-bed Development

As shown in Figure 8.12, we have developed two modular DGs for a three-phase
three-line microgrid study. Each DG consisted of a 2.4 kW programmable DC
power supply (TDK Lambda GEN 150-16-LAN-3P208), an Intelligent Power
Module (Mitsubishi PM100RLA120A IPM), an LC-type output filter, a TI OMAP
L138SoC-based DSP control board, a driver and protection board, and many other
boards (voltage sensor, current sensor, low-voltage power supply, etc.). We have
successfully implemented all control loops of a voltage source converter and
realized P-HIL simulation for SG emulation. Thus, the modular DG can be used

1 W. Liu, J. Kim, C. Wang, W. Im, L. Liu, and H. Xu, “Power converters based advanced
experimental platform for integrated study of power and controls,” IEEE Transactions on
Industrial Informatics, vol. 14, no. 11, pp. 4940–4952, November 2018.
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(a) (b)

Figure 8.12 Two photos of the modular three-phase AC microgrid test-beds. (a) Front
view. (b) Back view. Source: Yinliang Xu.

to study both power converter-based three-phase AC microgrids and traditional
large-scale power systems. In the future, we can develop more of the DG modules.
Then, we can connect the DGs through emulated power lines. To emulate a linear
load, we can use large resistor as a constant load and use a programmable RLC
load bank as a variable load. To emulate a nonlinear load, we can use power diode
linked with a linear load or use our previously developed equipment.

Even though the IPM module (Mitsubishi PM100RLA120A) used in the above
three-phase AC microgrid can work in single-phase mode and we have verified
it through experimentation, controlling the three-phase test-bed as a single phase
requires a lot of time for hardware reconfiguration, DSP and FPGA programming,
and debugging. Thus, we decide to develop a separate microgrid test-bed that can
be used to test the control algorithms for both single-phase AC microgrid and DC
microgrid.

A photo of the new microgrid test-bed under development is shown in
Figure 8.13. The test-bed consisted of four DGs that are connected through
emulated distribution lines. Three DGs are connected as a ring and a fifth DG is
connected to the ring. Because the topology is a combination of radial and ring
structure, it can represent a general class of microgrid topologies. If needed, we
can develop more of the modular DGs. Because of the modular hardware design,
the effort for larger test-bed development is made easy. The modular DGs in this
test-bed share a lot of components with the modular DG in the three-phase AC
microgrid test-bed, including DSP control board, power supply board, and voltage
and current sensors boards.

The modular converter boards used in the test-bed was initially developed for
our modular multilevel converter. During design, we have already brought recon-
figuration capability into consideration. A photo of the modular converter board
is shown in Figure 8.14. The converter takes optical PWM signal from the DSP
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Figure 8.13 A photo of
the one-phase AC/DC
microgrid test-bed under
development. Source:
Yinliang Xu.
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Figure 8.14 Top view of the modular power converter. Source: Yinliang Xu.

control board. The converter board integrates driver circuits for the five IGBTs
(INFINEON IKW50N60T), DC link capacitors, and two voltage sensors. By sim-
ply connecting different terminals on the converter boards, i.e. HP2, HP1, FP2,
FP1, HN2, HN2, FN1, and FN2 in Figure 8.12, different topologies can be realized,
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Figure 8.16 Configuration of the converter module as a DC–AC inverter.

including half-bridge, full-bridge, and clamp double half-bridge. The converter
module can be configured as either a DC–DC converter or a DC–AC inverter as
shown in Figures 8.15 and 8.16, respectively.

8.4.2 Algorithm Implementation

Based on our previous study of MAS, we decide to use PC to implement distributed
system-level algorithms. This is because we need to use PC to program and debug
the DSP control board anyway. It will be convenient and cost efficient to use the
same PC for system-level algorithm implementation. Thus, we need to establish
communications between the system-level controller (PC) and equipment-level
controller (DSP control board). We decided to use the serial ports for information
exchange between the PC and DSP control board. Certainly, the speed of serial
communication is not very fast. However, we think that a good system-level
algorithm should not require communication speed higher than serial. To test a
distributed energy management algorithm through hardware experimentation,
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Figure 8.17 Block diagram of the distributed control solution for DC microgrid.

we need to implement a complete control solution with both system- and
equipment-level algorithms. For equipment-level control, we implemented the
well-established PI-based primary control algorithm. For system-level control,
we implemented a distributed consensus-based secondary control algorithm
represented in Eq. (8.1).The block diagram of the overall control solution is
illustrated in Figure 8.17.

ΔV̇ i(t) = −ki

N∑
j=1,j≠i

aij

(
Ii(t)
IMax

i

−
Ij(t)

IMax
j

)
(8.1)

After deciding to use serial communication between the PCs and DSP control
boards, we need to write Java and C code on the two sides, respectively, to realize
communications between the two control layers. Because the functions provided
by the DSP manufacturer can only realize sending and receiving of one byte ASCII
code, we need to code and decode the voltage and current information that is
float type to and from two ASCII bytes during sending and receiving, respectively.
Reliable communication is critical for closed-loop control. Thus, we also imple-
mented some functions that can check the validness of the received data. The
other issue is synchronization of distributed controllers. The need comes from
the unavoidable unmatched clocks of subsystem controllers. To synchronize dis-
tributed control activities, we choose one agent as system reference. The agent will
decide when to perform the next step of operation, which could be time based or
event triggered. After reliable communication and effective synchronization have
been established, we can start testing in steps toward hardware experimentation
as shown in Figure 8.18. The details of the four steps and some experimentation
results are given as follows.

Step1: Test the code for MAS only: In preparation for the following tests, we first
implemented the consensus-based secondary control algorithm using PCs.
Because we have realized C-HIL simulation in the past, this step is relatively
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Figure 8.18 Steps for algorithm testing. Source: Yinliang Xu.

easier. We used a top of the line wireless router (NETGEAR – Nighthawk
AX12 12-Stream AX6000 WiFi 6 Router) that can allow 12-Stream WiFi with
up to 1200 + 4800 Mbps for ultrafast wireless speeds. To avoid uncertainties
due to sudden internet traffic and hacker attack, the router is not connected
to the Internet. At this step, we only tested the reliability of the upgraded
MAS code. Each PC locally maintains a virtual operating data, which changes
from an initial value through interactions with neighboring agents. After the
MAS can reliably reach a consensus, we can move to the next step of the test.
During experimentation, we found that the Ethernet/IP-based communication
introduced significant delay and randomness. Communications between two
agents take an average of 10 ms. This is because Ethernet/IP was not designed
for real-time distributed control applications.

Step 2: Test the code for MAS and PC/DSP communication: In this test, we want
to test if the communications between the system- and equipment-level con-
trollers can reliably support system-level control. In this step, the DSP control
boards hold the virtual operating data that is updated by the MAS. For every
step, the DSP control board sends its local operating data through serial com-
munication to the agent. Afterward, the MAS will send the updated data to the
DSP control board. Then, the operating data locally maintained by DSP con-
trol board will be updated immediately for next step of operation. With the
D/A interface built in to our DSP control board, we can check the convergence
with oscilloscope. During experimentation, we found that the series commu-
nication, even though is slower in data rate, can provide much faster response
compared to Ethernet/IP, for example, 2 ms vs. 10 ms. This is because the serial
communication is fully under our control instead of going through all seven
open system interconnection (OSI) layers of Ethernet/IP. After optimizing the
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communication strategy and the C/Java code, we can reliably realize the control
update interval of 40 ms.

Step 3: Test of complete control hardware and software (without power circuit): Dur-
ing this test, the complete loops of primary control are included in test. However,
the input and output of the primary controller are not connected to external
power circuit. To close the control loop, the control input to the inverter is imme-
diately converted to bus voltage without considering the dynamics of output
filters and power lines by the four DGs. Because there is no actual power net-
work to link the DGs, we have to use a fifth DSP control board to model the
power network. During implementation, the bus voltages are sent to the fifth
DSP, which will calculate the output current of the four DGs and send the infor-
mation back. This test can check the robustness of the control algorithm against
the unavoidable delays with communications. If necessary, we need to adjust
control frequency and control gains of secondary control. This step is critical
and necessary before performing hardware experimentation with power circuit.
Some experimentation results are shown in Figure 8.19.
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Figure 8.19 Experimentation results with the distributed control solution (TS = 40 ms).
(a) Responses of utilization levels. (b) Responses of utilization levels (zoomed).
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Step 4: Test of the complete control system (with power circuit): Above tests nei-
ther involve real power circuit nor consider their dynamics. In reality, a power
converter-based DG, even though has very fast response speed, still has dynam-
ics associated with output filter and line dynamics. In addition, there are many
unavoidable imperfections in the real world. Because measurements go through
several stages of analog-to-analog and analog-to-digital conversion, a tiny devi-
ation of the component parameter will result in unmatched observation of the
same signal. In power electronic system, the voltage and current signals always
have certain degree of harmonics. The filtering impact of sensor will introduce
another degree of inaccuracy to measurements. In addition, the test-bed has
thousands of components, even just for the control board. It is impossible to
guarantee everything work perfectly before experiment. Any hardware problem
during experimentation could be very hard to locate and fix. Thus, experimen-
tal study is very technically challenging and time-consuming. After months of
hard work, we finally completed the hardware experimentation.

8.5 Future Work

Hardware experimentation can tell us whether an algorithm will work in reality or
not and how to make it work and work better. It can also tell us the implementation
requirements and inspire us of future research. Below we will discuss our plan on
future hardware development.

As introduced earlier, the Ethernet/IP communication is designed for
point-to-point communication of large amount of data. It is not specialized for
real-time distributed control. The large and random delays caused by Ethernet/IP
communication have very negative impact on the robustness of the system under
control. To overcome the problem, we plan to use EtherCAT (Ethernet for Control
Automation Technology) for deterministic, real-time communication between
the distributed controllers. EtherCAT can realize cycle times of 100 μs even
10 μs. It will be capable to implement any advanced control algorithms in the
future.

In addition to communication, we also want to improve the control board
design. Currently, the system-level algorithm was implemented using PC,
which is not very practical. It is desirable to implement both the distributed
system-level control algorithm and equipment-level control algorithm with the
same controller, i.e. DSP control board. Thus, we plan to develop a much more
powerful dual-core DSP-based control board with EtherCAT interfaces. Because
we probably will not use JADE for system-wide algorithm implementation, we
will write our own code for everything in C. This will require significant effort on
hardware and software developments.
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Impressed by our hardware development, we were encouraged by the funding
agency to develop a medium-voltage (5000 V DC and 4160 V AC) SPS test-bed
with the promising wide band gap devices, gallium nitride (GaN), and silicon car-
bide (SiC). Because most of our previous experiences are with lower switching
frequency silicon-based devices, developing high-performance power converters
using the new devices will be very challenging for us. Once all problems have
been overcome, we will publish another paper to share the experiences and lessons
learned during the new test-bed development.
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Discussion and Future Work

Different control problems require different control solutions. By and large, a
control problem can be formulated as an optimization problem with a control
objective function and corresponding constraints. Distributed control solutions
seek for distributed optimization algorithms to solve this optimization problem.
As for algorithms for distributed optimization, it mainly concerns two factors,
one is the optimality and feasibility and the other is convergences. A distributed
solution of an optimization problem always involves decomposing the original
problem, which leads the problem to the loss of optimality. Not all distributed
optimization algorithms can yield the same optimal optima (if exists) as the
original problem. For example, the generalized distributed subgradient algorithm
not only requires the original optimization problem to be convex but also requires
each decomposed optimization problem (sub-problem) to be convex [1]. For
example, for the following optimization problem:{

min f (x1, x2, x3) = x2
1 + x1x2 + x2

2 + x2x3 + x2
3

x = [x1, x2, x3]T
(9.1)

If we desire to solve it using a three-agent system, we can decompose the original
objective function into three parts, corresponding three objective functions of
three agents, as follows:

⎧⎪⎨⎪⎩
f 1(x) = x2

1 + x1x2 +
1
2

x2
2

f 2(x) = 1
4

x2
2

f 3(x) = 1
4

x2
2 + x2x3 + x2

3

(9.2)

By applying distributed subgradient algorithm, one can yield the optimal solution
of x∗ = [000]T , which is exactly the optimal solution of the original problem.
However, for decomposition given in Eq. (9.3), we cannot find the optimal

Distributed Energy Management of Electrical Power Systems, First Edition.
Yinliang Xu, Wei Zhang, Wenxin Liu, and Wen Yu.
© 2021 The Institute of Electrical and Electronics Engineers, Inc.
Published 2021 by John Wiley & Sons, Inc.
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solution for f 1(x) because it is not a convex function.

⎧⎪⎪⎨⎪⎪⎩

f 1(x) = x2
1 + x1x2

f 2(x) = 3
4

x2
2

f 3(x) = 1
4

x2
2 + x2x3 + x2

3

(9.3)

Thus, designing a proper decomposition technique is crucial for the distributed
optimization algorithm. Yet, in the real world, the “true” optima is not what we
really desire because the operating conditions of the system change from time to
time, notwithstanding the modeling error. In this case, the sub-optima is usually
acceptable as long as it improves the performance of the control solution to a
certain extent. As for the feasibility, the distributed optimization algorithm should
yield the solution that can be implemented in the practical control systems, which
means the physical constraints of the power system must not be violated. To
design a distributed optimization algorithm or control strategy, we dedicate most
of the time in handling the constraints to ensure the feasibility of the obtained
solutions. For example, to design the distributed algorithm to solve the optimal
active power dispatch problem (Section 3.3), we carefully set the weight matrix
W to ensure that the supply and demand of the power system are balanced out.
Furthermore, to avoid the violation of the inequality constraints of generators,
we even design a mechanism for virtual communication network configuration.
To obtain the congestion prices in solving the social welfare optimization problem
(Section 6.1), we resort to the consensus algorithm for discovering information of
other agents. Currently, most of our designed distributed algorithms exploit some
simplifications and assumptions. Yet, more constraints should be incorporated
in these algorithms to signify the real power system world. As for the power
system applications, the common state variables we constantly come across are
voltage and power. In the DC power flow model, we assume that the active
power of a component is a linear function of the voltage phase angle, and reactive
power is a linear function with respect to the voltage magnitude (Section 7.1).
By considering these assumptions, we do get good approximations of the states.
However, the error is inevitable. For the AC power network, if we consider the
node power injection equations given in Eq. (9.4):

⎧⎪⎨⎪⎩
Pi =

∑
j∈i
(GijViVj cos 𝜃ij + BijViVj sin 𝜃ij)

Qi =
∑
j∈i
(GijViVj sin 𝜃ij − BijViVj cos 𝜃ij)

(9.4)

where Pi and Qi are active and reactive power injections, Vi and Vj are voltage
magnitudes, and 𝜃ij is the voltage phase angle difference between node i and
node j. Gij + jBij = Yij is the element of the admittance matrix. Obviously, these
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two functions are far more complex than linear. Similarly, the line flow of a
branch in AC power networks is written as:{

Pij = GijV 2
i − GijViVj cos 𝜃ij − BijViVjc sin 𝜃ij

Qij = BijV 2
i − BijViVj cos 𝜃ij − GijViVjc sin 𝜃ij

(9.5)

which is also a complex, nonlinear, and non-convex function. The good side of
the applying assumptions and simplifications is obvious. We can theoretically
know if the solution we seek exists or not; if it does, we can at least get one.
Nevertheless, the good side is that we have to recognize that the loss of optimality
is inevitable, even worse than the loss of feasibility. Loss of optimality is tolerable
for most of the cases, but the the loss of feasibility is unacceptable under most of
the circumstances. Hence, for a distributed algorithm design, it is necessary to
design a fail-safe mechanism to ensure that the final control actions we enforce
on the physical systems are physically feasible. Here, we provide an example
to handle the non-convexity of Eqs. (9.4) and (9.5), which is the well-known
second-order cone program (SOCP) relaxation [2]. Define ui, 𝑣ij, 𝑤ij as:

⎧⎪⎪⎨⎪⎪⎩

ui = V 2
i

𝑣ij = ViVj cos 𝜃ij

𝑤ij = ViVj sin 𝜃ij

(9.6)

𝑣ij, 𝑤ij are not independent, they are correlated because of the triangle identity:

(cos 𝜃ij)2 + (sin 𝜃ij)2 = 1 (9.7)

Accordingly, we have

𝑣
2
ij +𝑤

2
ij = uiuj (9.8)

By further relaxing Eq. (9.8), we have:

𝑣
2
ij +𝑤

2
ij ≤ uiuj (9.9)

Accordingly, the original non-convex function transforms into the following
convex function plus an additional inequality constraint.⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Pi = Giiui +
∑

j∈i,j≠i
(Gij𝑣ij + Bij𝑤ij)

Qi = −Biiui +
∑

j∈i,j≠i
(Gij𝑤ij − Bij𝑣ij)

Pij = Gijui − Gij𝑣ij − Bij𝑤ij

Qij = Bijui − Bij𝑣ij − Gij𝑤ij

𝑣
2
ij +𝑤

2
ij ≤ uiuj

(9.10)
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Obviously, the above constraints are convex. By applying this transformation,
one can design a proper distributed algorithm based on convex decomposition
technique (such as the alternating direction method of multipliers, ADMM),
without loss of feasibility. This is beyond the scope of this book, details about
this method can be found in Refs [3–5]. Regarding the convergence, we have
demonstrated that the convergence of the distributed algorithm is greatly related
to the connectivity of the communication network. Generally, the problem
we aim to solve involve multiple variables, and the control objective need to
consider quite a lot of components as well. Because these components are an
inseparable part of the entire system, fully decoupling them is not possible.
Hence, a fully distributed control solution without information exchange among
distributed controllers is generally impractical. Information exchange among
controllers is crucial for coordination and optimization. Higher connectivity
of the communication network graph means not only the better convergence
performance but also more reliable of the overall control system. In Chapter
2, we discussed that to improve the robustness. It is recommended to comply
with the N − 1 rule during the communication network design. However, in
some applications, dynamic setting the parameters of a distributed algorithm can
still ensure the optimality as well as the feasibility of the obtained solution. By
designing a distributed algorithm that adapts to the communication network,
we can provide an even better control solution that is less dependent on the
communication network. Here, we provide an example of the consensus algo-
rithm with switching topology of the communication network graph. The initial
values of the agents are set as x0 = [10 20 30 40]T . The communication network
of four-agent system is shown in Figure 9.1. Note that the topology is no longer
fixed here. We assume that there are three phases, i.e. phase 1: steps [1, 20]; phase
2: steps [21, 40]; and phase 3: steps [41, 100]. The topology in phase 1 follows
Figure 9.1a, and it is changed to Figure 9.1b in phase 2 and finally restores to
Figure 9.1a in phase 3. The Laplacians of these two graphs are given in Eqs. (9.11)
and (9.12), respectively. We set Δt = 0.15 and calculate the weight matrix W of
these two graphs according to Eq. (2.7), which are given in Eqs. (9.13) and (9.14),
respectively.

2

3

4

1

2

(b)(b)

3

4

1 Figure 9.1 Communication
network graphs of two
scenarios: (a) Scenario 1. (b)
Scenario 2.
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La =

⎡⎢⎢⎢⎢⎣

1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

⎤⎥⎥⎥⎥⎦
(9.11)

Lb =

⎡⎢⎢⎢⎢⎣

1 −1 0 0
−1 1 0 0
0 0 1 −1
0 0 −1 1

⎤⎥⎥⎥⎥⎦
(9.12)

Wa =

⎡⎢⎢⎢⎢⎣

0.85 0.15 0 0
0.15 0.70 0.15 0

0 0.15 7.0 0.15
0 0 0.15 0.85

⎤⎥⎥⎥⎥⎦
(9.13)

Wb =

⎡⎢⎢⎢⎢⎣

0.85 0.15 0 0
0.15 0.85 0 0

0 0 0.85 0.15
0 0 0.15 0.85

⎤⎥⎥⎥⎥⎦
(9.14)

As can be seen in Figure 9.1b, there are two communication islands in the graph.
During phase 2 with this communication setting, it seems that the agents of one
of the islands (e.g. agent 2 and agent 3) are independent of the agents of the other
island. Nevertheless, the way to set the weight matrix W ensures that the conver-
gence features of the overall algorithm are not hindered. When the communica-
tion is restored to the original settings with a connected graph as Figure 9.1a, the
algorithm quickly converges. The iteration process is shown in Figure 9.2, indi-
cating that the final converged values are x100 = [24.99 25 0.0025 0.0025 0.01]T ,
which are the expected values. It should be noted that the loss of connectivity of
the graph does slowdown the convergence. Yet, it still obtains the solution without
loss of optimality and feasibility here. This kind of algorithm design with adaption
actually is the ideal design we desire for the control implementation in the real
world. In practice, convergence performance is merely one of the factors we con-
sider for control algorithm implementation. Aside from that, the investment, reli-
ability, optimality, and feasibility are all the factors we need to take into account.
A tradeoff must be made during the design because we cannot find a good-for-all
solution. As for the distributed control solution implementation, many facets and
technology details need to be investigated, and research efforts and contributions
from all around the world are more than welcome.
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