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Editorial

The task of preparing a volume to honor Professor Katsikadelis on the occasion of
his 72nd birthday was for me a great challenge and honor. This volume is a small
tribute to the man who guided me into academics and who has been a supervisor
and a friend to me for the last 28 years. This task indirectly brought me back to
1982, when I first met the professor of the course in Dynamic Analysis of Structures,
J.T. Katsikadelis, Lecturer at that time at the Institute of Structural Analysis and
Aseismic Research of the National Technical University of Athens. His assistance
in my efforts to achieve a deeper understanding of the subject of Dynamic Analysis
of Structures and his rigorous scientific training were the sparks that ignited our
collaboration for the next 25 years. Writing my diploma thesis in 1984 and my
doctoral dissertation in 1986-1990 under his supervision were the best opportunity
for years of guidance along the paths of research, where Professor Katsikadelis’s
indisputable qualities of rectitude, consistency, tenacity, patience, untiring effort
and strict discipline were to become principles for my later academic evolution,
and his scientific sobriety constituted a challenge of the path I had just embarked
upon. But also after 1996 when I was first elected Lecturer at the School of Civil
Engineering at the NTUA, his continuing advice and encouragement were of
invaluable assistance as I took my first academic steps.
     The boundary element community is well aware of many outstanding
contributions by Prof. Katsikadelis to the areas of linear and nonlinear, static and
dynamic analysis of structures (beams, plates, shells, membranes, cables), shape
optimization of structures, stability of structures, response to nonconservative loads,
flutter instability, inverse problems, numerical solution of fractional differential
equations and study of the response of structures under fractional type inertia and
damping forces, and viscoelastic response of structures, just to mention a few. One
of his important contributions to computational mechanics is the introduction of
the Concept of the Analog Equation, which combined with integral techniques has
given the AEM and the MAEM, two methods that render the BEM and the RBFs
Meshless Methods efficient and versatile computational tools for solving problems
in engineering, mechanics and mathematical physics described by difficult and
complicated equations. From his research work have emerged 2 doctoral
dissertations, more than 220 original technical articles published in reputable
international journals and conference proceedings. He is the author of 14 books



and 7 invited chapters and original papers in books, while the English version of
his book “Boundary Elements: Theory and Applications” (Elsevier 2002) has been
translated in Japanese (2004), Russian (2007) and will also appear in Serbian soon.
He is also the editor of 7 conference proceedings and guest editor of 5 special
issues of international journals. He has received numerous prestigious honors and
distinctions, both national and international. On May 25, 2009 he was elected Doctor
Honoris Causa (Honorary Doctor) of the University of Nis, Serbia "for his
exceptional contribution to the advancement of scientific thought, improvement of
science, technics and technology”, which is the highest position a foreign professor
can hold in Serbia.
     The book comprises 26 contributions by more that 60 leading researchers in
Boundary Element Methods (BEM) and other Mesh Reduction Methods (MRM).
All contributors are well-known scientists from all over the world. The volume,
besides a review chapter by Professor Brebbia on the career and the scientific work
of Professor Katsikadelis, is essentially a collection of original articles covering a
variety of research topics in the areas of solid mechanics, fluid mechanics, potential
theory, inhomogeneous or composite materials, fracture mechanics, damage
mechanics, plasticity, heat transfer, dynamics and vibrations, soil-structure
interaction. The chapters contained in this volume appear in alphabetical order by
first author and most of them are relevant to and reflect the research interests of
Professor Katsikadelis.
      In closing, I would like to take this opportunity to express my sincere thanks to
the authors who have contributed to this volume for their prompt cooperation and
their willingness to respond to my requests. Moreover, I am indebted to the Senate
and the School of Civil Engineering of the National Technical University of Athens
and to the Attiko Metro S.A. for their support to publish this book.
     I should like to express my sincere gratitude and best wishes for many more
creative, productive and enjoyable years, full of health, prosperity and happiness
to Professor J.T. Katsikadelis and I am sure that I am conveying the sentiments of
all contributors to this volume, as well as of his former students and colleagues.

Evangelos J. Sapountzakis,
2010
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John (Ioannis) T. Katsikadelis was born in Piraeus, Greece on December 15, 
1937. He attended the elite Ionidios model high school of Piraeus. After 
graduation he participated in the nation-wide entrance examinations separately 
for: (1) The School of Civil Engineering of the National Technical University of 
Athens ranking third among all the candidates for the year 1957. (2) The School 
of Chemistry of the University of Athens ranking first among all the candidates 
for that year and (3) The School of Mathematics of the University of Athens 
ranking among the first of all the candidates for that year.  
     He attended the School of Civil Engineering (1957-1962) and received the 
degree of Diploma Civil Engineer in 1962. In 1970, after 8 years of intense 
professional activity as licensed civil engineer, he jointed the chair of Structural 
Analysis at the School of Civil Engineering as research and teaching assistant 
and after completing his doctoral work he received the degree of Doctor 
Engineer of NTUA in 1973.  
     In 1974 he was awarded a scholarship by the Polytechnic University of New 
York, where he continued his graduate studies in the Department of Applied 
Mechanics of the School of Aerospace. These studies ended with an MSc degree 



 

and a new PhD in the field of Applied Mechanics (majored in continuum 
mechanics, applied mathematics and advanced dynamics). During the 1972 and 
1973 he attended courses of his interest at the School of Mathematics of the 
University of Athens. He has also attended CISM courses on Finite Elements and 
Boundary Elements at Udine in 1983 and 1986. Besides Greek, he knows, 
English, German and French. His hobbies are skiing, mountain hiking and 
cycling. 

Personal information 

Married to Paraskevi- Eftychia Katsikadeli born Buyuka. He has one daughter Christi-
na Katsikadeli, married to Stefan Nussbaumer, and a granddaughter Katharina-Felicia 
Nussbaumer. 

Address 

Institute of Structural Analysis and Aseismic Research, School of Civil Engi-
neering, National Technical University of Athens (NTUA), Zografou Campus, 
Athens 15773, Greece. E-mail: jkats@central.ntua.gr. Website: 
http://users.ntua.gr/jkats 

Academic career and positions held 

1970-1982 Scientific Assistant and Senior Lecturer of Structural 
Analysis at the School of Civil Engineering, NTUA. 

1982-2004 Assistant Professor, Associate Professor and Full Profes-
sor of Structural Analysis at the School of Civil Engineer-
ing, NTUA.

2004- Emeritus Professor. He teaches graduate courses at the 
School of Civil Engineering, NTUA.

1976-2008 Professor of Structural Analysis at the School of Engi-
neers of the Hellenic Army.

1988-1990 & 
1993-1995 

Head of the Structural Engineering Department of NTUA. 

1984-2004 Director of the Institute of Structural Analysis and Aseis-
mic Research of NTUA. 

1989-1992 Director of the Earthquake Planning and Protection Or-
ganization of Greece (EPPO). 

1989-1992 Director of European Center on Prevention and Forecast-
ing of Earthquake (ECPFE) of the Council of Europe. 
 



 

1989-1992 Permanent Correspondent of Greece in the Open Partial 
Agreement (OPA) of the Council of Europe for the “Pro-
tection Against and Relief of Major Natural and Technol-
ogical Disasters”. 

1991-1992 Representative of Greece in the Permanent Network of 
National Correspondents for Civil Protection of EU. 

As the Director of ECPFE, EPPO, and Permanent Correspondent in OPA he 
took the initiative and worked for the establishment of the European Code of 
Ethics for scientists in the case of Earthquake Predictions and the European 
Advisory and Evaluation Committee for Earthquake Predictions. He has also 
been used by EU as an expert in topics of Civil Protection and Seismic 
Hazard Research. 

Professional Activities 

Registered professional civil engineer in Greece. Experience in the design and 
construction of concrete and steel projects. 

Teaching Experience 

He has taught over 14 different courses in Structural Analysis and Applied 
Mechanics at undergraduate and graduate level. Among them Statically De-
terminate and Indeterminate Structures, Matrix Structural Analysis, Theory of 
Plates, Theory of Shells, Plane Elasticity and Analysis of Shear Walls, Boun-
dary Elements, Dynamics of Structures, Advanced Structural Dynamics, 
Continuum Mechanics, Theory of Elasticity and Elastodynamics, Buckling of 
Beams, Plates and Shells. He introduced, developed and updated several 
courses at Structural Department. In the beginning of 90’s, he introduced the 
BEM at the School of Civil Engineering as formal undergraduate and gradu-
ate course. 

Honours 

Doctor Honoris Causa of the University of Nis, Serbia. Elected on May 25, 2009. 
Member of the European Academy of Sciences and Arts, 2009. 
Member of the International Academy of Engineering, 2010. 
President of the Hellenic Society of Theoretical and Applied Mechanics (HSTAM), 

2007-2010. 
President of the Greek Association for Computational Mechanics (GRACM), 

affiliated to IACM (International Association for Computational 
Mechanics), 1997-2000 (twice elected). 

Honorary member of the Serbian Society of Mechanics (2007). 



 

Fellow of the Wessex Institute, UK (for “his outstanding contribution to the 
development of the Boundary Elements”). 

General Secretary of the Office of Theoretical and Applied Mechanics of the 
Academy of Athens. 

Award plaque honoris causa by the General Staff of the Hellenic Army for 
“his ten year contribution as a professor to the School of Engineers”, 
1986. 

Award plaque honoris causa by the General Staff of the Hellenic Army “for 
his contribution as a professor to the School of Engineers” in Special 
ceremony on the occasion of his retirement, February 18, 2009. 

Member of the ECCOMAS Committee on Computational and Applied 
Mathematics. 

Thomaidio Award (2008) of NTUA for the paper: A BEM Based Meshless 
Variational Method for Solving Linear and Nonlinear Plate Problems. 
Proc. of First Serbian (26th YU) Congress on Theoretical and Applied 
Mechanics, Kopaonik, Serbia, April 10-13, 2007, pp. 463-474. 

Award plaque of the Hellenic Army on the 180th Anniversary 
Commemoration of the establishment of the Corps of Engineers for “his 
contribution as a professor to the School of Engineers”, 18 November 
2009. 

Distinctions 

Editorial board member of: 
Engineering Analysis with Boundary Elements 
Technica Chronica 
Boundary Element Communications 
Facta Universitatis of the University of Nis, Series Architecture and Civil 

Engineering 
The Open Mechanics Journal 
International Journal for Engineering Analysis and Design 
Journal of the Serbian Society for Computational Mechanics 

Editorial board member of the international Series: Boundary Element Series, 
Computational Mechanics Publications, WIT Transactions on Modelling and 
Simulation, WIT press 

Guest editor of the special issues of the Journals: 
Engineering Analysis with Boundary Elements, Special Issue on Plates, 

Vol 17 (2), pp. 91-181, 1996, 
Engineering Analysis with Boundary Elements, Special Issue on 

Nonlinear BEM, Vol 23, (5-6), pp. 363-525, 1999. 
Engineering Analysis with Boundary Elements, Special Issue on 

BEM/MRM for inhomogeneous Solids, Vol. 32 (12), pp. 995-174 
(2008). 



 

Archive of Applied Mechanics, Special Issue on the 5th German-Greek-
Polish Symposium on Advances on Mechanics, Vol. 74(11-12) pp. 
729-898 (2005). 

Archive of Applied Mechanics, Special Issue on the 6th German-Greek-
Polish Symposium on Advances on Mechanics, (Vol. 79(6-7), pp. 
479-677, (2009). 

Fulbright Research Scholar for One-Year Visit as Postdoctoral Research Fellow 
at the Polytechnic University Of New York (1974-75). 

Chairman or Co-chairman of the Conferences and Symposia: He has acted as 
chairman or co-chairman of many conferences and symposia. 

PhD Thesis advisor after invitation of the King Mongut’s University of 
Technology Bangkok, Thailand. 

Member of the "P.S. Theocaris" Foundation, Treasurer, (2005-2007). 
Founding Member of the ESDEP (European Steel Design Programme) and 

Member of WG 8 
Member of the Technical Council of the Academy of Athens (2000-present). 
Member of the Executive Council of Institute of Engineering Seismology and 

Earthquake Engineering (ITSAK) (1989-1992). 
Member of the international committee of the Council of Europe for the 

preparation of the European Code of Ethics in Earthquake Prediction 
(1990-91). 

Member of the EU Committee of specialists for the Multilingual Lexicon of 
Civil Protection (1991). 

Member of the General Council of the International Association for 
Computational Mechanics (IACM). 

Member of the General Assembly of IUTAM and Representative of HSTAM 
in IUTAM. 

Societies 

Member of the Hellenic Society for Theoretical and Applied Mechanics 
(HSTAM), affiliated to IUTAM, Treasurer (1986-2000), Vice President 
(2000-2007) and President 2007-2010. 

Member of the Greek Association for Computational Mechanics 
(GRACM), affiliated to IACM. President 1997-2000. Founding member 
and member of the Administrative Council until present. 

Fellow of the Wessex Institute, UK. 
Honorary Member of the Serbian Society of Mechanics 2007. 
Founding Member of the International Society for Computational Engi-

neering and Sciences (ISCES), 
Member of the Steering Committee of International Society of Boundary 

Elements (ISBE). 
Member of the New York Academy of Sciences. 



 

Member of the Greek Society for Earthquake Engineering. 
Founding Member of the Hellenic Society for Steel Structures Research. 
Member of the Technical Chamber of Greece. 
Member of the Greek Society of Civil Engineers. 
Member of the American Society of Civil Engineers (ASCE). 
Member of Alumni Association of the Poly (Polytechnic University of New 

York). 
Member of the Scientific Research Society Sigma Xi 

Other scientific activities 

He has participated in 76 national and international conferences and sympo-
sia, where he has presented over 125 papers. He has organized as chairman, 
co-chairman or member of organizing committee 21 international confe-
rences and symposia and he has acted as a member of scientific advisory 
committee of 43 international conferences. He has also chaired many ses-
sions. He has reviewed papers for many international journals and he has 
been a member of the editorial board of international journals and book se-
ries. He has given 12 distinguished and keynote plenary lectures as well as 
many invited lectures at international conferences and universities abroad. 

Research work 

He maintains research interests in Computational Mechanics, especially in 
the area of boundary element methods (BEM) as it is applied to linear and 
non linear analysis of structures under static and dynamic loads (beams, 
plates, shells, membranes and general 2D and 3D inhomogeneous anisotropic 
bodies). The response of structures to nonconservative loads as well as shape 
optimization of beams and plate thickness and inverse problems are also in-
cluded in his research interests. He has introduced the Concept of the Analog 
Equation and developed the Analog Equation Method (AEM), which in con-
junction with integral techniques renders the BEM a powerful and versatile 
computational tool for solving complicated linear and non linear ordinary and 
partial differential equations describing the realistic response of physical sys-
tems. The AEM was extended to meshless methods as MAEM, a method that 
circumvents the drawbacks of the classical multi-quadric radial basis func-
tions method. He recently used the AEM to develop a numerical solution for 
linear and non linear ordinary and partial differential equations providing 
thus an efficient computational tool for the analysis of structures under visco-
inertia forces such as viscoelastic response of membranes, plates, wave-
diffusion equation in inhomogeneous anisotropic viscoelastic bodies de-
scribed with fractional derivative models. Given below is a detailed account 
of his published work. 
 
 



 

Thesis research activity and doctoral students 

1. EJ Sapountzakis, “Contribution to the Solution of Static and Dynamic Be-
havior of Plates Using the Boundary Element Method”, NTUA, 1991; 
Present Position: Associate Professor, School of Civil Engineering, NTUA. 

2. MS Nerantzaki, “Nonlinear Analysis of Plates by the Boundary Element 
Method”, NTUA, 1992; Present Position: Assistant Professor, School of 
Civil Engineering, NTUA. 

3. FT Kokkinos, “Three-Dimensional Layerwise Modeling of Layered Media 
with Boundary Integral Equations”, Virginia Polytechnic Institute and State 
University, USA, 1995; Present Position: Assistant Professor, Department 
of Civil and Infrastructure Engineering, Technological Educational Institute 
of Athens, Greece 

4. CB Kandilas “Solving the Finite Elasticity Problem by the Analog Equation 
Method. Application to two-dimensional Problems”, NTUA, 2000; Present 
Position: Department of Applied Mechanics and Marine Materials, Hellenic 
Naval Academy, Greece. 

5. AJ Yiotis, “Nonlinear Static and Dynamic Analysis of General Shells Using 
the Analog Equation Method”, NTUA, 2003; Present Position: Research 
Associate, Institute of Structural Analysis and Aseismic Research, School 
of Civil Engineering, NTUA; Civil Engineer in the Region of Peloponnese 
Greece. 

6. GC Tsiatas, G.C. “Nonlinear Analysis of Space Membranes by the Boun-
dary Element Method”, NTUA, 2003; Present Position: Assistant Professor, 
Department of Civil Engineering, Technological and Educational Institute 
of Piraeus, Greece; Research Associate, Institute of Structural Analysis and 
Aseismic Research, School of Civil Engineering, NTUA; Public Servant in 
the Hellenic Ministry of Infrastructure, Transport and Network. 

7. B Chinnaboon, “A BEM-based Meshless Method for Plates on Biparame-
tric Elastic Foundation with Internal Supports”, King Mongut’s University 
of Technology, Bangkok, Thailand, 2008; Present Position: Post-Doctoral 
Fellowship, King Mongkut's University of Technology, Bangkok, Thailand 

8. N Babouskos, “Linear and Nonlinear Thickness Optimization Problems of 
Elastic and Viscoelastic Plates”, NTUA, in progress. 

Supervisor of numerous Diploma and MSc theses, co-advisor and member of the 
examination committees of many PhD theses at the National Technical University of 
Athens. Two of the supervised theses won the first and second “award for the best 
thesis” nationwide in Greece. 

Publication record 

His publication record includes 14 books, 5 guest edited journal special issues (3 
of Engineering Analysis with Boundary Elements and 2 of Archive of Applied 
Mechanics), 7 invited chapters and original papers in books, 7 edited Conference 
Proceedings, 2 Doctoral Dissertations and 217 original papers in the most re-
puted international journals and international conference proceedings. His text 



 

book on the BEM (Elsevier 2002) has been translated into Japanese (Asakura, 
Tokyo 2004) and Russian (Publishing House of Russian Civil Engineering Uni-
versities, Moscow 2007). A translation in Serbian will be soon published.  191 of 
his 217 publications are devoted to BEM and in general to integral equation me-
thods as well as to other mesh reduction methods. His published work has re-
ceived over 850 citations. 

Books 
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pages), NTUA, 2009. 

(b) Published by International Publishing Companies 
11. Katsikadelis, JT, “Boundary Elements: Theory and Applications”, El-

sevier, London, 2002. 
12. .カチカデーリス Ｊ.Ｔ．著 (2004), 境界要素法―基本と応用 原書名  

 Asakura, Tokyo, Japan, 2004. (Translation in Japanese of “Boundary 
Elements: Theory and Applications”, Elsevier, 2002), 

13. Кацикаделис  Дж. Т. (2007) “Граничные элементы. Теория и 
приложения,”, Publishing House of Russian Civil Engineering Universi-
ties, Moscow, 2007. (Translation in Russian of “”Boundary Elements: 
Theory and Applications, Elsevier, 2002) 
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pear. (Translation in Serbian of “Boundary Elements: Theory and Appli-
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Editor of conference proceedings 

1. Aravas, N and Katsikadelis, JT “Proceedings of the 3rd National Congress 
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3. Beskos, DE, Katsikadelis, JT, Manolis, GD and Brebbia, CA, “Boundary 
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“Proceedings of 8th International Congress on Mechanics of HSTAM”, 
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6. Katsikadelis, JT, “Recent Advances in Mechanics”, Proceedings of the 6th 
German-Greek-Polish Symposium, September 17-21, Alexandroupolis, 
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7. Atanackovic, TM and Katsikadelis, JT, “Recent Advances in Mechanics”, 
Proceedings of the 3rd Serbian-Greek Symposium, September 15-17, No-
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Invited chapters and original papers in books 

1. Katsikadelis, JT and Vayas, I, “Unstiffened plates”, ESDEP Lecture No 4, 
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2. Katsikadelis, JT, Sedlacek, G and Ungermann, D, “Basis Introduction to 
Plate Behavior”, ESDEP, Lecture No 1WG 8, Plates and Shells, 1990. 

3. Katsikadelis, J.T, “Special Methods for Plate Analysis”. In: “Boundary 
Element Analysis for Plates and Shells”, (ed. DE Beskos), pp. 221-311, 
Springer-Verlag, Berlin, 1991. 

4. Katsikadelis JT, “A New Time Step Integration Scheme for Structural 
Dynamics Based on the Analog Equation Method”. In: “Collection of Pa-
pers Dedicated to Prof. P.S. Theocaris”, pp. 80-100, National Technical 
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5. Nerantzaki, MS and Katsikadelis, JT, “Analysis of Plates with Variable 
Thickness. An Analog Equation Solution”. In: “Plate Bending Analysis 
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In praise of John Katsikadelis 

A well-deserved eulogy 

Carlos A. Brebbia 
Wessex Institute of Technology, UK. 
 
 
It is always a difficult task for any scientist to review and comment on the career 
of a friend and colleague, particularly one who has been so creative and 
productive as John Katsikadelis. It is thus with trepidation that I write this eulogy 
of John’s achievements trying to focus on what I consider to be the most original 
aspects of his work and apologising at the outset for any omissions undoubtedly 
due to the great quantity of material that John has contributed to engineering 
sciences and, in particular, to the development of advanced computational 
techniques including, but by no means exclusively, boundary elements. 

The magnitude of my task can be judged by the over 200 high-quality papers 
published by John, many of them on boundary elements, integral equations and 
other mesh reduction methods. 

John introduced, at an early stage, the study of boundary elements to the 
School of Civil Engineering at the National University of Athens in the form of 
graduate and undergraduate courses, as well as setting up a research group that 
has achieved international recognition. His efforts in this regard, culminating in 
the publication of his book Boundary Elements, Theory and Applications [1], 
which has been published not only in Greek and English but also in Japanese 
(2004) and Russian (2007), and reaching in this manner a vast audience and 
establishing his group amongst the most active boundary element method (BEM) 
research centres in the world. 

John’s early training as a Civil Engineer at the National Technical University 
of Athens (NTUA) and in mathematics at the University of Athens was followed 
by two PhD degrees, one at NTUA and the other at the renowned Polytechnic 
University of New York at Brooklyn (majored in Continuum Mechanics, 
Applied Mathematics and Advanced Dynamics); both of them were excellent 
preparation for a life dedicated to education and research. 



2  Recent Developments in Boundary Element Methods 

His firm grasp of the more theoretical aspects of engineering has not 
detracted from his emphasis on solving practical applications – a fact reinforced 
by the period that he spent (for an academic) working as a professional civil 
engineer, specialising in structural design. This crucial period in between his two 
PhD degrees reflects in the focus of his research in solving real, rather than 
academic, engineering problems. 

There are many honours and distinctions that John has accumulated in 
his intensive professional and academic life; he has served on important 
committees, has been a member of the Editorial Board of prestigious journals, 
has been a Committee Member or Chairman of important conferences and has 
served the community and science in numerous other ways. Those activities 
include some in which I have participated, such as being a member of the 
Editorial Board of the International Journal of Engineering Analysis with 
Boundary Elements and Chairman of several international Boundary Element 
Conferences. His involvement in all those activities has been, as is always the 
case with John, most thorough and included, among others, being Editor of 
Several Conference Proceedings [2,3] and three times Guest Editor of special 
issues prepared for the Engineering Analysis with Boundary Elements Journal 
[4–6]. 

It is my intention, in these few pages, to concentrate on the originality of 
John’s output which covers topics related to computational mechanics, in the 
area of BEM and meshless methods applied to solving linear and non-linear 
problems, under static and dynamic loads. He has made significant contributions 
in the fields of plate bending, structural shape optimisation, stability of 
structures, inverse problems and response of structures to non-conservative 
loads. More recently, he has been investigating the numerical solution of 
fractional differential equations and studying the response of structures under 
fractional-type inertia and damping forces; topics which serve to indicate the 
continuous and uninterrupted evolution of John’s scientific thoughts. 

His interest in boundary elements started when reading a paper that was 
seminal to the development of several groups that were to contribute to the 
development of the method. This was the paper by M. Jaswon and R. Ponter on 
Integral Equation Solutions of Torsion Problems [7], where the basis of the 
direct BIEM formulation for potential problems was first established. Maurice 
Jaswon’s interpretation of Green’s formulae for those cases later led to the 
development of the direct boundary integral formulations in terms of 
Somigliana’s identity for the stress analysis case. A few people around the world 
– including our own UK school and another in the USA – realised the 
importance of this work and it does John great credit that he also understood that 
the basis had been set up for a promising computational method. John applied 
the new ideas to the solution of the biharmonic equation for stress functions in 
plane elastostatic problems in preference to the more popular Muskhelisvili’s 
complex variable formulation. This resulted in his early (1977) paper in 
Mechanics Research Communications [8]. In this paper, he presented for the first 
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time the derivation and use of the integral representation of the normal derivative 
in the form of a boundary integral equation. 

The formulation was later on applied by different authors after John’s 
pioneering development. This was at a time when the interest in finite elements 
precluded further research or rested importance to any work done on other types 
of numerical methods. 

John, nevertheless, saw the potential of boundary integral formulations and 
continued to develop his ideas further in his second Doctoral dissertation 
submitted at Brooklyn Polytechnic [9]. In this thesis, he presented the boundary 
integral equation method for plates on Winkler’s Foundation, deriving the 
corresponding fundamental solution and obtaining accurate numerical results. 

As boundary elements became better known, John’s work on plate bending 
started to receive the recognition that it was due. His Brooklyn thesis produced 
two important papers, one dealing with clamped plate analysis on elastic 
formulations, published in ASME Transactions [10], and the other on plates with 
different boundary conditions published in the ASCE Journal of Engineering 
Mechanics [11]. During that period, those journals were the most prominent 
publications for mechanical sciences. 

These early papers were followed by others dealing with the applications of 
boundary integral equations to plates resting on other types of elastic subgrade. 
He derived the fundamental solution for the case of two parameter soil model as 
well as the corresponding boundary integral solution, resulting in another two 
important papers [12,13]. 

John’s continuous interest in plate bending led to him proposing new 
formulations, including one based on the use of Reissner’s plate model [14,15]. 
The solution in this case was expressed in terms of two potentials, one 
biharmonic and the other, Bessel’s, resulting in an original approach which 
produced accurate numerical results. It also demonstrated that Reissner’s theory 
could be applied for a wide range of plate thicknesses, ranging from very small 
values to large ones without apparent loss of accuracy. 

John contributed to the solution of many other plate bending problems. For 
instance, he published the first integral equations paper dealing with large 
deformation analysis of plates of uniform thickness with arbitrary geometry and 
boundary conditions [16, 17]. 

A complete review of John’s work on plate bending would require considerable 
space as his work in this field has been most productive. His contribution is 
described in more detail in the Chapter on “Special Methods for Plate Bending” 
that has been published in reference [18]. This plate-bending work precludes some 
of his more recent highly original contributions to be shortly described. John’s 
contribution to our current understanding of boundary integral solutions for plate 
bending needs to be stressed and given proper recognition. 

In the years that followed, John applied the BEM to solve a variety of 
problems, static and dynamic, whose fundamental solution could not be easily 
established (such as is the case of governing equations with variable coefficients); 
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problems for which that solution may have been difficult to compute (such as 
dynamic problems) or others for which no solution existed (most non-linear cases). 
John’s approach was to use a simple fundamental solution in all cases, i.e., Laplace 
for second-order equations and that of the biharmonic operator for fourth-order 
equations. 

I met John for the first time in a series of lectures organised at Centre for the 
Study of Mechanical Sciences (CISM) in Udine in 1983 and there we discussed 
the importance of using simple fundamental solutions at the same time as 
allowing for all domain terms to be taken to the boundary, without the need to 
carry out domain integrations. This idea was the basis of the dual reciprocity 
method (DRM) which I published in 1982 [19]. John promptly realised the need 
to use simple fundamental solutions if we were to extend the range of 
applications of BEM and, in his characteristic manner, he went a step further and 
developed a more general version of the idea. 

To better understand the importance of John’s contribution, I will briefly 
explain the fundamentals of the DRM. The method has two important steps, 
the first of which is the splitting of the governing equations of the problem into 
two parts, one of which represents the terms for which a fundamental solution 
can be postulated, while the other groups those terms that are not part of that 
solution. Those terms represent fictitious boundary effects or domain sources 
and may result from non-linear or time-dependent effects which cannot be 
dealt with by the fundamental solution. The second important step of the DRM 
is to express those terms approximately, expanding them in terms of localised 
functions. The localised functions can be interpreted as defining the non-
homogeneous terms of the same known (and usually simple) operators used in 
the first step. This results in the possibility of finding a series of localised 
particular solutions through which the domain sources can be taken to the 
boundary using the same integral identities applied when dealing with the 
fundamental solution used for the first step. 

The DRM is quite general and produces boundary-only solutions for those 
cases for which a linear operator with a well-known fundamental solution could 
be extracted for the full governing equations. This, John realised, is not always 
possible, say for the case of partial differential equations with variable 
coefficients for instance. 

Hence, John developed the concept of the analogue equation according to 
which a problem governed by linear or non-linear differential equations of any 
type (elliptic, parabolic or hyperbolic) can be converted into an analogue 
problem described by an equivalent linear equation with a simple known 
fundamental solution of the same order as the original equation subjected to 
fictitious sources, unknown in the first instance. The value of these sources can 
be established using BEM. By applying this idea, coupled linear or non-linear 
equations can be converted into uncoupled linear ones for instance. The analogue 
equation method (AEM) only requires that the derivatives in the new equations 
are of the same degree as the original equations. If the higher derivatives are 
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fourth order as in the case of plate bending, the same degree ought to apply to the 
proposed equation in the AEM. John’s idea which was truly original has a wide 
range of important applications. 

At first, John applied the AEM without reference to the possibilities of using 
the localised interpolation functions described in Step 2 of the DRM. Because of 
that, fictitious terms needed to be computed in the domain, using either the 
standard finite element method (FEM) technique or the domain-type cells 
appearing in some forms of classical BEM. 

John’s AEM idea was published for the first time in the 1993 Boundary 
Element Conference [20] and fully developed in his keynote address at the next 
meeting – 1994 – in that series of conferences [21]. AEM was then fully 
explained and I cannot do better than quote his words from that seminal paper: 

The unknown source density function is established numerically by adhering to 
the following steps. 

a. The integral representation of the field function is established from the 
equivalent fictitious linear problem which involves the unknown source 
density in the domain integral. 

b. Direct differentiation of this integral representation yields the derivatives 
involved in the operator of the real problem. 

c. Use of BEM technique for the boundary integrals and FEM technique for 
the domain integrals yields the discretized expressions for the field 
function and its derivatives. 

d. Collocation of the field function at the boundary and domain nodal 
points, collocation of the derivatives at the domain nodal points and 
elimination of the boundary quantities making use of the boundary 
conditions, yield the nodal values of the field function and its derivatives 
in terms of the values of the fictitious source density function at the nodal 
points inside the domain. 

e. Application of the governing equation of the real problem at the nodal 
points inside the domain and substitution of the relevant values of the field 
function and its derivatives yields a system of algebraic equations (linear 
or non-linear, depending on the operator of the real problem) from which 
the nodal values of the fictitious source density function are established. 

f. The field function and its derivative at any point inside the domain are 
obtained from their integral representation of the fictitious problem. 

In differentiating the integral representation of the field function singular and 
hypersingular domain integrals arise which are evaluated efficiently by converting 
them to regular boundary integrals. 

The method has the best features of the established computational methods, 
finite difference method (FDM), FEM, BEM and DRM. It combines their merits 
and circumvents their drawbacks [22]. 
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The concept of the analogue equation in conjunction with integral techniques 
rendered the BEM a more efficient and versatile computational tool for solving 
different linear and non-linear engineering problems using simple and well-
known fundamental solutions. 

An interesting application of the method was first presented in reference [23] 
in which the AEM was employed for system identification. In this case, AEM 
was used to identify constitutive material laws, including constant or varying 
parameters, i.e. those depending non-linearly on the unknown field functions 
and its derivatives. The examples presented in the paper included temperature 
distribution problems in non-homogeneous bodies, cases of temperature-dependent 
thermal conductivity as well as non-linear steady-state Burger’s equation type 
flow. This application of the AEM may prove to have important implications, 
because it opens the way to formulate mathematically, i.e. to establish the 
governing differential equations (deterministically or stochastically), the response 
of physical systems that are described by unknown physical principles and 
constitutive laws (e.g., composite materials [24], air pollution, wave propagation 
in bodies with unknown physical structure such as seismic waves) or systems that 
are not governed by physical laws at all (e.g., economic or other social sciences). 
We all know that during the last three centuries the effort was given to solve the 
differential equations resulting from rather simplified physical laws. Efficient 
solution methods of the established equations have been already developed. 
However, a question arises: “Do these equations approximate the actual response 
of the physical system reliably and realistically?” Therefore, the problem of 
establishing the actual differential operator that models a system is apropos and a 
subject for future research. The AEM can give an answer to this problem. 

Another provocative rather but interesting application of the AEM is the 
solution of “Equationless Problems Using Only Boundary data” [25, 26], that is 
problems whose equation is unknown but all boundary data are known, imposed 
and resulting from the response, that is both Dirichlet and Neumann BCs at each 
point on the boundary. 

An important special issue dealing with Plate Analysis, edited by John, was 
published in 1996 in the Engineering Analysis with Boundary Elements Journal. 
There he has a paper extending the AEM to the dynamic analysis of plates with 
variable thickness [27]. He demonstrated that the fourth-order partial differential 
equation with variable coefficients giving the dynamic response of the plate 
could be substituted by an equivalent quasi-static plate bending problem with 
constant thickness subjected to a fictitious time-dependent load. In this case, 
singular and hypersingular integrals ought to be evaluated on internal cells; but 
John simplified the problem by transforming the domain singular integrals into 
regular integrals on the boundary of each cell using Green’s reciprocal identity. 

In 1997, John extended his AEM to solve a case previously never attempted, 
using BEM, i.e., the buckling of a plate with variable thickness [28]. The original 
eigenvalue problem for the differential buckling equation was substituted by a 
classical linear eigenvalue problem with discrete value of the fictitious load, 
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from which the buckling loads were established numerically. Furthermore, also 
in 1997, the AEM was applied to study vibrations of plates with variable 
thickness subjected to in-plane force, giving also excellent results [29]. 

Until then, the domain integrals in AEM were computed using either finite 
elements or the domain cells of classical BEM. In 1998 [30], John presented the 
first paper in which the use of the radial basis functions (RBFs) of DRM were 
applied in his method together with the concept of localised particular solutions. 
These concepts have been described in a general way in 1992 [31] but without 
reporting the wide range of application that were offered by the AEM. John was 
the first to combine the AEM with the use of localised particular solutions. The 
methodology was generalised in a subsequent paper that appeared in the special 
issue on non-linear BEM that he edited in 1999 for the Engineering Analysis 
with Boundary Elements Journal [32]. 

In this work, the distribution of the fictitious domain sources of AEM was 
approximated by the type of radial basis functions used in DRM. The solution of 
the analogue equation was obtained as the sum of the homogenous and a 
particular solution. Then the non-homogeneous terms, i.e., the field function and 
its derivatives were expanded in terms of unknown series coefficients which 
were found by collocating the equation at a series of discrete points in the 
domain. The AEM, hence, became a truly boundary-only method in the sense 
that only boundary discretisations are required. 

This latest version of AEM has been successfully applied by John to solving 
several complex engineering problems, such as static and dynamic large 
deflection analysis of non-homogeneous anisotropic membranes [33, 34], non-
linear dynamic analysis of heterogeneous orthotropic membranes [35], space 
membranes [36], membranes subjected to ponding loads free [37] and floating in 
a liquid [38], static and dynamic analysis of rib-reinforced plates [39–41], the 
optimum design of structures subjected to follower loads [42] and other equally 
novel applications, including papers on linear and non-linear flutter instability of 
damped plates [43, 44], plate thickness optimisation problems [45] and a 
generalised Ritz Method in domains of arbitrary shape using global shape 
functions [46] (Table 1). 

The importance of the AEM is its generality and that it opens up new 
possibilities and a better understanding of how to apply numerical methods. It 
also reveals a touch of genius in John’s work. 

To understand its implications, nothing is more appropriate than to revisit the 
basic principles and, in particular, the work of another famous Greek author, 
Aristotle, who can be regarded as the originator of the idea of virtual work. In his 
renowned book, Physics, the philosopher stated that the behaviour of physical 
systems could be expressed in terms of ‘potentialities’ and ‘actualities’. In other 
words, he set up the basis of the principle of virtual ‘potentialities’ or what 
we now call principle of virtual work. While the ‘actual’ field functions are to 
satisfy the equations governing the problem; the ‘virtual’ function can be much 
 



Table 1: Comparison of the different methods can be presented in tabular form following a classification suggested by John [22]. 

 FDM AEM 
Collocation of the equation at 
domain nodal points 

Requires regular mesh No regular mesh 

Substitution of the derivatives Numerical differentiation reducing accuracy. 
Only values in the neighborhood of the 
collocation point contribute to the derivative.  

Analytic differentiation of the integral 
representation provides a stable and smoothing 
process. Very good approximation. All domain 
and boundary values contribute to the derivative 

Application of boundary 
conditions 

Difficult task or practically impossible for 
irregular boundaries 

It applies to boundaries of arbitrary shape 

The solution and its derivatives 
are evaluated 

Only at nodal points At any point using the integral representation of 
the solution  

 
 FEM AEM 
Domain discretisation is used  To approximate the continuum. Inter-element 

continuity is required. 
Only required to approximate domain integrals, in 
case they are not transformed into boundary 
integral. Inter-element continuity relaxed 

Solution  Only the solution is evaluated at nodal points. Both the solution and its derivatives can be 
evaluated at any point using the integral 
representation of the solution  

Linear and non-linear, static, 
dynamic and diffusion problems 

Applies to all problems Applies to all problems 

Fractional Differential equations Has not been applied as yet  It applies 



 BEM AEM 
Applicability Applies, in principle, only to linear problems 

with known fundamental solution 
Applies to linear and non-linear problems 

Dynamic and diffusion 
problems 

Employs the fundamental solution of the 
hyperbolic equation and parabolic equation, 
respectively 

Employs the simple static fundamental solution for all 
problems 

Problem dependency It is problem dependant  
Each problem requires special numerical 
solution and computer programming 

It depends only on the order of the equation 
The numerical solution and the computer program is the 
same for elliptic, hyperbolic and parabolic problems, linear 
or non-linear, for differential equations of the same degree 

 
 DRM AEM 
Applicability  Applies to linear and non-linear problems Applies to linear and non-linear problems 
Dynamic and diffusion 
problems 

Can use simple static fundamental solution Can use simple static fundamental solution 

Problem dependency Applies if a dominant linear operator with 
known fundamental solution can be extracted 
from the governing operator 
It is problem dependant  
Each problem requires special numerical 
solution and computer programming 

No limitations 
It depends only on the order of the equation 
The numerical solution and the computer program is the 
same for elliptic, hyperbolic and parabolic problems linear or 
non-linear for differential equations of the same degree 
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more general. Usually, we assume that they also satisfy the same equations as the 
actual field, or in the case of DRM, some reduced version of these equations. 
John instead stated that they do not need to necessarily satisfy the same type of 
governing equations as the actual problem, provided they have the necessary 
degree of continuity (say order fourth for plate bending, etc). 

More recently, John has extended his AEM idea by using the Multiquadraic 
(MQ) type of functions proposed by Kansa [47, 48], but using them in a DRM 
type formulation. This avoids the primary disadvantage of the classical MQ 
scheme, i.e., that of being a global method and hence resulting in full coefficient 
matrices which suffer from ill-conditioning, particularly as their rank increases. 
This is a serious disadvantage that complicates the implementation of the MQ 
Method. Moreover, the performance of the classical MQ Method depends on the 
shape parameter of those functions which are chosen empirically, a process that 
makes the technique problem dependent. 

Instead, John uses the MQ function in the same way as classical radial basis 
functions are applied in AEM and DRM. He called the new technique Meshless 
AEM (MAEM), which exhibits key advantages over other RBFs collocation 
methods in that the method is highly accurate and the matrix of the resulting 
system of equations is always invertible. The new RBFs resulting from the 
integration of MQs permit a strong formulation of the solution. Furthermore, it 
has a further advantage over Kansa’s Method in that the derivatives of the 
equation after collocation are at most MQs. The accuracy is increased when 
using optimal values of the shape parameters of the multiquadrics. 

This optimisation is possible by minimising the functional that produces 
the partial differential equations governing the problem [49–51]. In theory, the 
optimisation could include the position of the collocation points as well but this 
is seldom necessary and would give rise to lengthier calculations. 

The advantages of the MAEM Method as summarised by John are: 

• Since the method allows the control of the condition number, an invertible 
coefficient matrix for the evaluation of the new RBFs expansion 
coefficients can always be established. 

• The method gives good results, because the new type of RBF resulting 
from the integration of the MQ function approximates accurately not only 
the solution itself, but also its derivatives. 

• Optimum values of the shape parameter can be established when 
minimising a functional that yields the particular differential equations 
governing the problem (the position of the collocation points could also 
be optimised, if necessary). Therefore, the uncertainty of choice of shape 
parameter is eliminated. 

• As in the case of AEM, the MAEM Method depends only on satisfying the 
order of the differential operators and not on the operator for the specific 
problem. 



Recent Developments in Boundary Element Methods  11 

The method can be employed for the solution of other types of problems 
as well as those already presented for the AEM. The method has been already 
employed for the solution of several problems described by second- and fourth-
order partial differential equations, such as 3D analysis of thick shells [52], 
3D elastostatic problem for inhomogeneous anisotropic bodies [53] and plate 
problems [54]. 

John’s ever-active mind is currently interested in the role of fractional 
derivatives in mechanics, and their importance in order to describe realistically 
the response of emerging materials and processes. The use of such concepts 
leads to fractional partial differential equations, which after discretising the 
continuum provides ordinary differential equations with fractional derivatives. 
John has developed a numerical method for solving linear and non-linear multi-
term fractional differential equations by extending the AEM in conjunction with 
a novel integral equation solution [55]. 

He has applied the method to solve a whole range of problems, including 
the fractional wave-diffusion equations [56]; the post buckling response of 
viscoelastic plates; the non-linear vibrations of viscoelastic membranes [57]; the 
non-linear vibrations and resonance of viscoelastic plates [58]. In all these cases, 
the viscoelastic method is described using a fractional derivative model. This 
pioneering work opens the way for solving a whole range of new problems. 

In summary, the range of interests and novel ideas developed by John over 
his scientific and academic career is truly outstanding and has secured him a 
place among the main computational mechanics scientists in the world. He is 
particularly prominent among those researchers who have been actively involved 
in finding new methods to replace the classical mesh-dependent techniques, most 
frequently used in engineering practice, such as FDM and FEM. This led to his 
early interest in BEM and more recently to his work on other mesh reduction and 
meshless methods. 

John’s other great virtue has been his intellectual generosity in sharing his 
knowledge with colleagues and researchers, contributing to creating a unique 
School of Computational Mechanics in Greece. His group is now recognised 
throughout the world for the excellence of their work, and this is the best legacy 
that John could give to his country and the world. 
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Abstract 
 
In this paper, a BEM-based meshless method is developed for the analysis of 
moderately thick plates modelled by Mindlin’s theory which permits the 
satisfaction of three boundary conditions. The presented method is achieved 
using the concept of the analogue equation method (AEM) of Katsikadelis. 
According to this concept, the original governing differential equations are 
replaced by three uncoupled Poisson’s equations with fictitious sources under the 
same boundary conditions. The fictitious sources are established using a 
technique based on BEM and approximated by radial basis functions series. The 
solution of the actual problem is obtained from the known integral representation 
of the potential problem. Thus, the kernels of the boundary integral equations 
are conveniently established and evaluated. The presented method has all the 
advantages of the pure BEM since the discretisation and integration are 
performed only on the boundary. To illustrate the effectiveness, applicability as 
well as accuracy of the method, numerical results of various example problems 
are presented. 

Keywords: Boundary element method, Meshless, Analogue equation, Thick 
plates, Mindlin, Radial basis functions. 

1 Introduction 

Although classical plate theory (Kirchhoff’s theory) yields sufficiently accurate 
results for thin plates, its accuracy decreases with growing thickness of the plate 
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because the effect of transverse shear deformation is neglected. A more refined 
theory that allows for the effect of shear deformation was proposed by Reissner 
[1]. The theory was later extended by Mindlin [2] to include rotary inertia for 
vibrating plates. These theories lead to sixth-order differential equations and 
therefore it is possible to satisfy three boundary conditions. Many research works 
have been done on the application of the boundary element method (BEM) to 
bending analysis of thick plates, most of them using the Reissner’s model. 
Barcellos and Silva [3] proposed what seems to be one of the first BEM 
approach genuinely based on the Mindlin’s plate theory. Most of the works of 
this field have been relying on the use of the complicated fundamental solutions. 
This leads to an increase of the computational time and effort for the evaluation 
of integrals. 

In this work, a BEM-based meshless method is developed for the analysis of 
moderately thick plates modelled by Mindlin’s theory. The presented method is 
based on the concept of the analogue equation method (AEM) of Katsikadelis 
[4]. According to this concept, the original governing differential equations are 
replaced by three uncoupled Poisson’s equations with fictitious sources under the 
same boundary conditions. The proposed solution is a boundary-only method 
since the domain integrals containing fictitious sources are converted to the 
boundary ones by employing a domain meshless technique based on global 
approximation by radial basis function series. Then the solution of the original 
problem is obtained from the known integral representation of the potential 
problem. Thus, the kernels of the boundary integral equations are conveniently 
established and evaluated. The applicability and the accuracy of the method are 
demonstrated by considering several numerical examples of Mindlin plates with 
various shapes and boundary conditions. The obtained numerical results are 
compared with those available from analytical solutions. 

2 Formulation of the boundary value problem 

Consider a thick elastic plate of a uniform thickness h  occupying the two-
dimensional multiply connected domain Ω  of the xy -plane with the boundary 

0
i K
i i
=
=Γ Γ∪  (Figure 1). The curves iΓ  ( 0, 1, 2, ,i K= … ) may be piecewise 

smooth, that is, the boundary may have a finite number of corners. 
The most widely used displacement-based theory for moderately thick plates 

was developed by Mindlin [2]. The Mindlin plate theory is known as the first-
order shear deformation theory, and it is based on the displacement field 
 
 ( , , ) ( , ),xu x y z z x yφ=  (1a) 
 ( , , ) ( , ),yv x y z z x yφ=  (1b) 
 ( , , ) ( , ),w x y z w x y=  (1c) 
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where ( , , )u v w  are the displacement components along the ( , , )x y z  coordinate 
directions, respectively, and xφ  and yφ  denote rotations about the y  and x  
axes, respectively. 

The equilibrium equations of a plate subjected to a distributed transverse load 
( , )g x y  can be expressed in terms of displacements ( , , )x yw φ φ  as follows: 

 

 2
s ( , ),yxK Gh w g x y

x y
φφ ∂⎛ ⎞∂

− ∇ + + =⎜ ⎟∂ ∂⎝ ⎠
 (2a) 

 2
s(1 )( ) (1 ) 0,

2
yx

x x
D wK Gh

x x y x
φφ

ν φ ν φ
⎡ ∂ ⎤⎛ ⎞∂∂ ∂⎛ ⎞− − ∇ + + + + + =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎣ ⎦

 (2b) 

 2
s(1 )( ) (1 ) 0,

2
yx

y y
D wK Gh

y x y y
φφ

ν φ ν φ
⎡ ∂ ⎤⎛ ⎞ ⎛ ⎞∂∂ ∂

− − ∇ + + + + + =⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎣ ⎦
 (2c) 

where 3 212(1 )D Eh ν= −  is the flexural rigidity of the plate having a modulus 
of elasticity E  and Poisson’s ratio ν ; 2(1 )G E ν= +  is a shear modulus and 

sK  is the shear correction factor that has been introduced to modify the shear 
stresses to match the actual parabolic distribution through the plate thickness. 
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Figure 1:  Plate geometry and notation. 
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Furthermore, the deflection w  must satisfy the following boundary 
conditions on the boundary 0

i K
i i
=
=Γ Γ∪ : 

 
 1 2 3 ,nw Qα α α+ =  (3a) 
 1 2 3 ,n nMβ φ β β+ =  (3b) 
 1 2 3 ,t ntMγ φ γ γ+ =  (3c) 
 
where ( )i i zα α= , ( )i i zβ β= , ( )i i zγ γ= , ( ), ( 1,2,3)z x y i∈Γ =  are given 
functions specified on the boundary Γ ; nQ , nM  and ntM  represent the shear 
force, the bending moment and the twisting moment along the boundary and the 
angles nφ  and tφ  represent at the midplane of the plate with respect to the axes t  
and n , respectively (see Figure 1). The boundary conditions (eqns (3a–c)) are 
the most general linear boundary conditions for the moderately thick plate 
problem, including also transverse and rotational elastic supports. All types 
of conventional boundary can be derived from eqns (3a–c) by specifying 
appropriately the function iα , iβ  and iγ . 

The boundary stress resultants nQ , nM  and ntM  appearing in eqns (3a–c) 
are defined in terms of the deflection w  and the rotations nφ  and tφ  as follows: 

 s ,n n
wQ K Gh
n

φ ∂⎛ ⎞= +⎜ ⎟∂⎝ ⎠
 (4a) 

 (1 ), .
2

n t n t
n nt

DM D M
n t t n
φ φ φ φνν
∂ ∂ ∂ ∂−⎛ ⎞ ⎛ ⎞= + = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (4b, c) 

Finally, the stress resultants at a point inside the domain Ω  in the Mindlin plate 
theory are given as 

 s s, ,x x y y
w wQ K Gh Q K Gh
x y

φ φ
⎛ ⎞∂ ∂⎛ ⎞= + = +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (5a, b) 

 , ,y yx x
x yM D M D

x y y x
φ φφ φ

ν ν
∂ ∂⎛ ⎞ ⎛ ⎞∂ ∂

= + = +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (5c, d) 

 (1 ) .
2

yx
xy

DM
y x

φφν ∂⎛ ⎞∂−
= +⎜ ⎟∂ ∂⎝ ⎠

 (5e) 

3 The AEM solution as a boundary-only method 

The boundary value problem described by eqns (2) and (3) is solved using the 
AEM. This method is applied to the problem at hand as follows. 
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Let ( , ), ( , ) and ( , )x x y yw w x y x y x yφ φ φ φ= = = be the sought solution of 
eqns (2) and (3). These functions are twice differentiable in the domain Ω . 
Thus, if the Laplacian operator is applied to them, we have 
 
 2 (1) 2 (2) 2 (3)( , ), ( , ), ( , ).x yw b x y b x y b x yφ φ∇ = ∇ = ∇ =  (6a,b,c) 
 
Eqns (6a–c), which henceforth will be referred to as the analogue equations of 
the problem at hand, indicate that the solution of eqns (2a–c) could be 
established by solving these Poisson’s equations under the boundary conditions 
(eqns (3a–c)), if the fictitious sources ( ) ( , ) ( 1, 2,3)lb x y l =  were known. They 
can be solved by using the BEM. Thus, the solution is obtained in integral 
forms as 
 
 ( ) ( )(1)

, ,( ) d d ,
n n

w p u w u w s u bε ∗ ∗ ∗

Γ Ω
= − − + Ω∫ ∫  (7) 

 ( ) ( )(2)
, ,( ) d d ,x x xn n

p u u s u bεφ φ φ∗ ∗ ∗

Γ Ω
= − − + Ω∫ ∫  (8) 

 ( ) ( )(3)
, ,( ) d d ,y y ynn

p u u s u bεφ φ φ∗ ∗ ∗

Γ Ω
= − − + Ω∫ ∫  (9) 

 
where ln 2u r π∗ =  is the fundamental solution of the Laplace equation and ,n

u∗  

is its derivative normal to the boundary at the field point q  with r q p= −  (see 
Figure 1); ε  is a constant which takes the value 1ε =  if p∈Ω  and 2ε α π=  
if p∈Γ ; α  is the interior angle between the tangents of the boundary at point 
p . Note that 1 2ε =  for points where the boundary is smooth. 

Eqns (7)–(9) are domain-boundary integral equations. In order that the method 
maintains its pure boundary character, the domain integrals in eqns (7)–(9) are 
converted to boundary line integrals as follows. 

The fictitious sources are established using the BEM. They are approximated 
by a radial basis function series. Thus, we have 

 ( ) ( )

1

, 1, 2,3
M

l l
j j

j
b a f l

=

= =∑  (10) 

where ( )j jf f r=  are M radial-basis approximation functions and ( )l
ja  are 3M 

coefficients to be determined. Note that ji i jr r p p≡ = −  is the distance between 

the collocation point ( ),j j jp x y  and any point ( ),i i ip x y ∈Ω∪Γ  (Figure 2). 



22  Recent Developments in Boundary Element Methods 

By substituting eqn (10) into eqns (7)–(9), the solution of eqns (6a–c) can be 
rewritten in the integral form as 

 ( ) ( ){ }(1)
, ,

1

( ) d d ,
M

j jn n
j

w p u w u w s a u fε ∗ ∗ ∗

Γ Ω
=

= − − + Ω∑∫ ∫  (11) 

 ( ) ( ){ }(2)
, ,

1

( ) d d ,
M

x x x j jn n
j

p u u s a u fεφ φ φ∗ ∗ ∗

Γ Ω
=

= − − + Ω∑∫ ∫  (12) 

 ( ) ( ){ }(3)
, ,

1

( ) d d .
M

y y y j jnn
j

p u u s a u fεφ φ φ∗ ∗ ∗

Γ Ω
=

= − − + Ω∑∫ ∫  (13) 

If we define the function ( ) ( )ˆ ˆ ˆ ,j j ij ju u r u x y= =  as a particular solution of 

 2 ˆ ,j ju f∇ =  (14) 

and use the Green’s second identity, we obtain 

 
( )
( ) ( )

2

2
, ,

ˆd d

ˆ ˆ ˆd d ,

j j

j j jn n

u f u u

u u u u u u s

∗ ∗

Ω Ω

∗ ∗ ∗

Ω Γ

Ω = ∇ Ω

= ∇ Ω+ −

∫ ∫
∫ ∫

 (15) 

which is substituted in eqns (11)–(13) to yield 

pi (xi,yi)

qk(xk,yk)pj(xj,yj)

qk-1

qk+1

rik=|qk-pi|

rkj=|qj-pk|

x

y

rij=|pj-pi|

source point

collocation point

field point

Figure 2: Discretisation of the problem: source point pi (xi, yi),
field point qk (xk, yk) and collocation point pj (xj, yj).
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 ( ) ( ){ }(1)
, , , ,

1

ˆ ˆ ˆ( ) d ( ) d ,
M

j j j jn n n n
j

w p u w u w s a u p u u u u sε ε∗ ∗ ∗ ∗

Γ Γ
=

= − − + + −∑∫ ∫  (16)

 ( ) ( ){ }(2)
, , , ,

1

ˆ ˆ ˆ( ) d ( ) d ,
M

x x x j j j jn n n n
j

p u u s a u p u u u u sεφ φ φ ε∗ ∗ ∗ ∗

Γ Γ
=

= − − + + −∑∫ ∫  (17) 

 ( ) ( ){ }(3)
, , ,,

1

ˆ ˆ ˆ( ) d ( ) d .
M

y y y j j j jn n nn
j

p u u s a u p u u u u sεφ φ φ ε∗ ∗ ∗ ∗

Γ Γ
=

= − − + + −∑∫ ∫  (18) 

A particular solution of eqn (14), ˆ ju , can be always established if jf  is 
specified. 

Differentiation of eqns (17) and (18) with respect to the tangential direction 

{ },
T

x yτ τ τ= at the source point ( ),p pp x y  (see Figure 1) yields 

( ) ( ){ }(2)
, , , , , , , ,

1

ˆ ˆ ˆ( ) d ( ) d ,
M

x x x j j j jn n n n
j

p u u s a u p u u u u s
τ τ τ τ τ τ

εφ φ φ ε∗ ∗ ∗ ∗

Γ Γ
=

= − − + + −∑∫ ∫ (19) 

( ) ( ){ }(3)
, , , , , , , ,

1

ˆ ˆ ˆ( ) d ( ) d .
M

y y y j j j jn n nn
j

p u u s a u p u u u u s
τ τ τ τ τ τ

εφ φ φ ε∗ ∗ ∗ ∗

Γ Γ
=

= − − + + −∑∫ ∫ (20) 

The derivatives of the deflection w , rotations xφ  and yφ  inside the domain Ω  
are obtained by direct differentiation of eqns (16)–(18), respectively. Thus, for 
the sake of conciseness we can write the integral representation of the deflection 
w , rotations xφ  and yφ , and their derivatives up to second order as 

( ) ( ){ }(1)
, , , , , , ,,

1

ˆ ˆ ˆ( ) d ( ) d ,
M

j j j jg g n n g g g n gn
j

w P u w u w s a u P u u u u s
υ υ υ υ υ υ

∗ ∗ ∗ ∗

Γ Γ
=

= − − + + −∑∫ ∫  (21) 

( ) ( ){ }(2)
, , , , , , , ,

1

ˆ ˆ ˆ( ) d ( ) d ,
M

x x x j j j jng g n g g g n n g
j

P u u s a u P u u u u s
υ υ υ υ υ υ

φ φ φ∗ ∗ ∗ ∗

Γ Γ
=

= − − + + −∑∫ ∫  (22) 

( ) ( ){ }(3)
, , , , , , , ,

1

ˆ ˆ ˆ( ) d ( ) d ,
M

y y y j j j jg n g g g n n gg n
j

P u u s a u P u u u u s
υ υ υ υ υυ

φ φ φ∗ ∗ ∗ ∗

Γ Γ
=

= − − + + −∑∫ ∫  (23) 

where , 0gυ = , x, y and point P∈Ω . 
Because eqns (16)–(23) involve the boundary quantities w , xφ  and yφ , 

a further manipulation is required to express the boundary stress resultants nQ , 

nM  and ntM , and displacements nφ  and tφ  appearing in eqns (3a–c) in terms of 
the deflection w  and the rotations xφ , yφ  as follows. 

 ,n x x y yn nφ φ φ= +  (24) 
 ,t y x x yn nφ φ φ= − +  (25) 
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 ( )s ,n x x y y
wQ K Gh n n
n

φ φ ∂⎛ ⎞= + +⎜ ⎟∂⎝ ⎠
 (26) 

 ,y yx x
n x yM D n n

n t n t
φ φφ φ

ν ν
⎡ ∂ ∂ ⎤⎛ ⎞ ⎛ ⎞∂ ∂

= + + −⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 (27) 

 ( )1
,

2
y yx x

nt x y

D
M n n

t n t n
φ φν φ φ⎡ ∂ ∂ ⎤− ⎛ ⎞ ⎛ ⎞∂ ∂

= + + −⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
 (28) 

where cosxn θ=  and sinyn θ= ; the angle θ  is measured from x  to n  axis. 
Consider the boundary value problem described by eqns (2) and (3). There 

are eight variables on the boundary that are , , , , ,, , , , , , ,x x x y y yn n t n t
w w φ φ φ φ φ φ . 

We have five boundary integral eqns (16)–(20) and three eqns from 
the prescribed boundary conditions (eqns 3a–c). Thus, we can solve this 
problem. 

The final step of the AEM is to apply eqns (2a–c) to the M  collocation points 
and replace the involved values of the deflection w , rotations xφ  and yφ , and their 

derivatives using eqns (21)–(23), and the fictitious sources ( ) ( , ) ( 1, 2,3)lb x y l =  
using eqn (10) which can be solved to yield the coefficients ( )l

ja . In next section, 
the numerical implementation of this method will be presented in detail. 

4 Numerical implementation 

The BEM with constant elements is used to approximate the boundary integrals 
in eqns (16)–(23). Let N  and M  be the number of the boundary nodal points 
and domain collocation points, respectively (see Figure 2). The boundary 
integral eqns (16)–(20) together with the boundary conditions (3a–c) are used to 
evaluate the boundary quantities. After collocating at the boundary nodes, the 
boundary integral eqns (16)–(20) as well as the boundary conditions (eqns 3a–c) 
can be expressed in the matrix form as 

 [ ]{ } { } [ ]{ },jA x B C a= +  (29) 

where x  is a 8 1N ×  vector of the total boundary quantities comprised of 
, , , , ,, , , , , , ,x x x y y yn n t n t

w w φ φ φ φ φ φ ; ja  is a 3 1M ×  vector of the unknown 

coefficients ( )l
ja  defined in eqn (10); A  is a 8 8N N×  known matrix originating 

from the boundary conditions and the integration of the kernels on the boundary 
elements; B  is a 8 1N ×  vector of 3α , 3β , 3γ  defined in eqns (3a–c); C  is 
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a 8 3N M×  coefficient matrix of ja . Eqn (29) is used to expressed the total 
boundary quantities x  in terms of the vector ja  as 
 
 1{ } [ ] ({ } [ ]{ }).jx A B C a−= +  (30) 
 
And after applying eqns (21)–(23) at the interior nodes M  points, we obtain 
 
 { } { } { }1 1 (1)

, , 1 , ,jg g g
w D x C a

υ υ υ
⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦  (31) 

 { } { } { }2 2 (2)
, , 2 , ,x jg g g

D x C a
υ υ υ

φ ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦  (32) 

 { } { } { }3 3 (3)
, , 3 , ,y jg g g

D x C a
υ υ υ

φ ⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦  (33) 

 
in which ,υg

w , x,υg
φ , y,υg

φ  are 1M ×  vectors of the involved derivatives of the 

deflection w , rotations xφ  and yφ  inside the domain Ω , respectively; 1
,υg

D , 
2
,υg

D , 3
,υg

D  are 2M N×  known matrices originating from the integration of the 

kernels on the boundary elements in eqns (21)–(23), respectively; 1x , 2x , 3x  are 

2 1N ×  vectors of the boundary quantities comprised of ,,
T

n
w w⎡ ⎤⎣ ⎦ , 

,,
T

x x n
φ φ⎡ ⎤⎣ ⎦ and ,,

T

y y n
φ φ⎡ ⎤⎣ ⎦ , respectively; 1

,υg
C , 2

,υg
C , 3

,υg
C  are M M×  

coefficient matrices of (1)
j

a , (2)
j

a  and (3)
j

a , respectively. 

Finally, by applying eqns (2a–c) to the M  collocation points inside the 
domain Ω  and replacing the involved values of the deflection w , rotations xφ  
and yφ  and their derivatives using eqns (31)–(33), we obtain the following set of 

3M  simultaneous linear equations for the coefficients ( )l
ja , namely 

 ( )( ) ( ) 0 1, 2, , 1, 2,3l l
j jF a j M l= = =…  (34) 

which can be solved numerically to evaluate the 3M  coefficients ( )l
ja . Then the 

values of the deflection w , rotations xφ  and yφ  and their derivatives inside the 
domain Ω  are determined from eqns (31)–(33). The obtained values are used 
in eqns (5a)–(5e) to evaluate the stress resultants. The boundary unknowns 
are established from eqn (30). For point P  not coinciding with the collocation 
domain points, the respective quantities can be established from the discretised 
counterparts of eqns (31)–(33). 
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5 Numerical examples and results 

In order to demonstrate the accuracy, reliability and applicability of the present 
methodology, a MATLAB code has been developed and used to analyse Mindlin 
plates. The accuracy of the developed technique is evaluated by comparing 
the obtained results with available analytical solutions [5,6]. In this paper, the 
employed radial basis functions jf  are thin plate splines (TPSs), which are 
defined as 

 2 ln .jf r r=  (35) 

In this section, Mindlin plates with various shapes and boundary conditions 
subjected to a uniform load q  are investigated. In all examples, Poisson’s ratio 
ν and the shear correction factor sK  are 0.3 and 5/6, respectively. The solution 
has been obtained using 200N =  constant boundary elements and 289M =  
randomly distributed domain nodal points. The non-dimensionalised deflection 
and bending moment are presented as follows: 
 
 4 2, ,w wD qa M M qa= =  (36) 
 
where a  is a side length of a rectangular plate or a radius of a circular plate. 

Table 1 contains the deflection w  and bending moments xx yyM M=  at the 

centre of simply supported square plates ( )a a×  for different thickness h . For 
thick Levy plates (Figure 3), Table 2 presents the deflection w  for SFSF square 
plates and Table 3 shows the deflection w  and the bending moments xxM , yyM  
for SCSC square plates. Finally, the deflection w  and the bending moments 

rrM , Mθθ  at the centre for clamped and simply supported circular plates with 
radius a  are tabulated in Tables 4 and 5, respectively. 

Table 1:  Central deflection w  and bending moments ,xx yyM M  
of uniformly loaded SSSS square Mindlin plates. 

w  xx yyM M=  h
a

 
Analytical [5] Present Analytical [5] Present 

0.05 
0.10 
0.15 
0.20 

4.11498E-03 
4.27284E-03 
4.53595E-03 
4.90431E-03 

4.09842E-03 
4.27057E-03 
4.53562E-03 
4.90443E-03 

4.78864E-02 
4.78864E-02 
4.78864E-02 
4.78864E-02 

4.77318E-02 
4.78432E-02 
4.78583E-02 
4.78645E-02 
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Table 2:  Deflection w  of uniformly loaded SFSF square Mindlin plates. 

At the centre of the plate At mid-span of free edge h
a

 
Analytical [6] Present Analytical [6] Present 

0.10 
0.15 
0.20 
0.25 

0.01346 
0.01391 
0.01454 
0.01535 

0.01341 
0.01387 
0.01449 
0.01530 

0.01560 
0.01616 
0.01690 
0.01781 

0.01551 
0.01607 
0.01680 
0.01771 

 
 
 

 
 
 

Table 3:  Deflection w  and bending moments ,xx yyM M  of 
uniformly loaded SCSC square Mindlin plates. 

0.1h a =  0.2h a =  
,x y

a a
⎛ ⎞
⎜ ⎟
⎝ ⎠

 Resultant 
Analytical [6] Present Analytical [6] Present 

( )0.5,0.0  xxM  0.0258 0.0258 0.0292 0.0292 

( )0.5,0.0  yyM  0.0333 0.0332 0.0331 0.0331 

( )0.5,0.5  yyM  0.0680 0.0681 0.0627 0.0628 

( )0.5,0.0  w  0.00221 0.002209 0.003021 0.003027 

x

y

a

b/2

b/2

Figure 3: Levy plate and coordinate system.
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Table 4:  Deflection w  and bending moments ,rrM Mθθ  of 
uniformly loaded clamped circular Mindlin plates. 

w  rrM Mθθ=  h
a

 
Analytical [5] Present Analytical [5] Present 

0.20 
0.25 
0.30 
0.35 
0.40 

1.84821E-02 
1.02857E-02 
6.53439E-03 
4.54810E-03 
3.38170E-03 

1.84868E-02 
1.02859E-02 
6.53366E-02 
4.54722E-03 
3.38087E-03 

8.12500E-02 
8.12500E-02 
8.12500E-02 
8.12500E-02 
8.12500E-02 

8.12744E-02 
8.12635E-02 
8.12571E-02 
8.12529E-02 
8.12500E-02 

 
Table 5:  Deflection w  and bending moments ,rrM Mθθ  of uniformly 

loaded simply supported circular Mindlin plates. 

w  rrM Mθθ=  h
a

 
Analytical [5] Present Analytical [5] Present 

0.20 
0.25 
0.30 
0.35 
0.40 

6.65591E-02 
3.49011E-02 
2.07794E-02 
1.35187E-02 
9.39131E-03 

6.68705E-02 
3.50025E-02 
2.08196E-02 
1.35369E-02 
9.40034E-03 

2.06250E-01 
2.06250E-01 
2.06250E-01 
2.06250E-01 
2.06250E-01 

2.07133E-01 
2.06868E-01 
2.06676E-01 
2.06577E-01 
2.06510E-01 

 
As can be seen from Tables 1–5, it is clear that the obtained results are in 

very good agreement with the analytical solutions, thus confirming the validity 
and applicability of the proposed method. 

6 Conclusions 

In this paper, a BEM-based meshless method has been developed for the analysis 
of Mindlin plates. The presented method is based on the concept of the analogue 
equation, in which the original governing differential equations are replaced 
by three uncoupled Poisson’s equations with fictitious sources under the same 
boundary conditions. The formulation has no limitations on plate shapes and 
boundary conditions. The following conclusions can be drawn from this study: 
1. As the method is boundary-only, it has all the advantages of the pure BEM, 

i.e., the discretisation and integration are performed only on the boundary. 
2. The known fundamental solution of the Laplace equation is employed to 

derive the integral representation of the solution. Thus, the kernels of the 
boundary integral equations are conveniently established and evaluated. 

3. Accurate numerical results for the displacements and the stress resultants are 
obtained using TPSs as radial basis functions. Therefore, no parameter is 
required to obtain the solution. 
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4. The concept of the analogue equation in conjunction with radial-basis-
functions approximation of the fictitious sources renders the BEM a 
versatile computational method for solving difficult engineering problems. It 
depends only on the order of the differential equation and not on the specific 
differential operator which governs the problem under consideration. 
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The singular function boundary integral 
method for a 3-D Laplacian problem  
with an edge singularity 

Miltiades Elliotis, Evgenia Christodoulou, Georgios Georgiou & 
Christos Xenophontos 
Department of Mathematics and Statistics, University of Cyprus, Cyprus. 

Abstract 
 
We developed the singular function boundary integral method for solving a 3-D 
Laplacian problem with an edge singularity. As in the case of 2-D problems, the 
solution is approximated by the leading terms of the local asymptotic solution 
expansion which are also used to weigh the governing equation in the Galerkin 
sense. The resulting discretised equations are reduced to boundary integrals by 
means of the divergence theorem. The Dirichlet boundary conditions are then 
weakly enforced by means of Lagrange multipliers. The values of the latter are 
calculated together with the so-called edge flux intensity functions, which appear 
in the local asymptotic solution. Our preliminary numerical results compare 
favourably with available post-processed finite element results for the same 
model problem. 

Keywords: Laplace equation, Edge singularity, Edge flux intensity functions, 
Singular function boundary integral method, Lagrange multipliers. 

1 Introduction 

We consider a Laplacian boundary value problem in a 3-D domain as a model for 
an elastic cylindrical body, with a V-notch, made of an isotropic material which 
obeys Hooke’s Law and which is subjected to certain physical conditions. The 
solution will contain an edge singularity which is characterised by the presence 
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of certain eigenpairs (arising from the 2-D problem) and the so-called edge flux 
intensity functions (EFIFs) [1], which are defined below. 

The interest in such a problem is motivated by the need to compute 
generalised stress intensity functions for V-notched solids loaded by static loads, 
in which the assumption of plane stress or plane strain condition is not valid. 
For the solution of this class of 3-D problems, few methods have been proposed 
so far, such as the J-integral method [2], the B- and H-integral methods [3], and 
more recently the methods by Costabel et al. [4] and Yosibash et al. [1], in which 
the EFIFs are computed by means of a post-processing procedure in a p-version 
finite element scheme. 

It was shown in [4] and [1] that the solution u of the 3-D Laplace equation 
in a domain with an edge singularity may be written in terms of cylindrical 
coordinates (r, θ, z) as 

( ) ( ) ( )( )
2

2
( ) ( )

2
11 1

1
4( , , ) , .

( )
k k k

i
i

i
a a a

k k i i
n kk i

r
u r z r a A z A z

z n a n
θ φ θ

∞ ∞

== =

⎧ ⎫⎛ ⎞⎛ ⎞⎪ ⎪⎜ ⎟−⎜ ⎟∂⎪ ⎪⎝ ⎠⎜ ⎟= +⎨ ⎬⎜ ⎟∂ ∏ +⎪ ⎪⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∑ ∑  (1) 

In the above expansion, ka ∈\  and ( , )kaϕ θ  are the known eigenvalues and 
eigenfunctions of the two-dimensional Laplace operator. The functions ( , )kaϕ θ  

are analytic in θ. The functions ( ) ( )kaA z  are the EFIFs; these are the primary 
unknowns in a large class of problems. 

In this paper, the singular function boundary integral method (SFBIM) is 
presented for the solution of a 3-D Laplace equation defined in a domain with an 
edge singularity. The SFBIM has proven to be quite successful for the solution 
of two-dimensional Laplacian and biharmonic problems with boundary singularities 
[5–7]. In the SFBIM, the solution is approximated by the leading terms of the 
asymptotic expansion (eqn (1)) which are also used to discretise the governing 
differential equation in the Galerkin sense. The discretised equations are reduced 
to boundary integrals by means of the Gauss divergence theorem. A particular 
feature of the SFBIM is that Dirichlet conditions are weakly enforced by means 
of Lagrange multipliers. In two-dimensional problems, the coefficients of the 
asymptotic expansion, known as the generalised stress intensity factors are constants; 
these are calculated directly by the SFBIM. In three-dimensional problems, the 
EFIFs are functions of the axial direction. Therefore, these are approximated by 
polynomials, the coefficients of which are primary unknowns of the method. 

The outline of the rest of this chapter is as follows: in Section 2, we present a 
3-D Laplacian problem with an edge singularity and its asymptotic local solution 
expansion. In Section 3, the formulation of the SFBIM is presented. Numerical 
results are given in Section 4, where comparisons with the results of Yosibash 
et al. [1] are also made. Finally, our conclusions are summarised in Section 5. 
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2 Governing equation and asymptotic solution 

The geometry and the boundary conditions of the model Laplacian problem are 
illustrated in Figure 1. The domain Ω is bounded by a cylindrical surface SC 
around the z-axis, a circular sector SD lying on the xy-plane, a flat circular 
sector SE perpendicular to the z-axis and at a distance L from SD and two flat 
planes (one parallel to the xz plane and the other parallel to yz plane) 
intersecting vertically on the z-axis and thus creating a V-notch, i.e. an edge 
singularity. Obviously, this singularity is created due to a sudden change in the 
geometry. 

We consider the following problem suggested by Yosibash et al. [1]: Find u 
such that 

 2 0u∇ =

 

in Ω, (2) 

 
 

 

  

Figure 1: Geometry and boundary conditions of the 3-D Laplacian model 
problem. 
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A

B

C C

0 D

L E

0, on

0, on
,

, on
, on
, on

u S
n
u S
n

u g S
u g S
u g S

∂ ⎫= ⎪∂ ⎪
∂ ⎪= ⎪∂ ⎬

⎪=
⎪= ⎪
⎪= ⎭

 (3) 

where 

2/ 3 8/ 3
C 2

4 /3 10/3
2

1 3( , ) cos(2 / 3) cos(2 / 3)
52 2

1 3cos(4 / 3) cos(4 / 3),
72 2

zg z R R
z

z R R
z

θ θ θ

θ θ

+⎛ ⎞= −⎜ ⎟+⎝ ⎠
+⎛ ⎞+ −⎜ ⎟+⎝ ⎠

 
2 /3 8/ 3

0

4/ 3 10/3

3( , ) cos(2 / 3) cos(2 / 3)
5

3  cos(4 / 3) cos(4 / 3),
7

g r r r

r r

θ θ θ

θ θ

= −

+ −
 

and 
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θ θ θ
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We may, alternatively, impose flux boundary conditions on SD and SE as 

( )
D

0 L( , ) ( , ) / ( , )
S

u g r g r L f r L
n

θ θ θ∂
= − +

∂
, 

( )
E

L 0( , ) ( , ) / ( , ) ,
S

u g r g r L f r L
n

θ θ θ∂
= − +

∂
 

where L=2 and 2/3 4/3( , ) 2 cos(2 / 3) 2 cos(4 / 3).f r r rθ θ θ= +
 

However, as 
suggested by Yosibash et al. [1], the points O and D, which introduce vertex 
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singularities in the problem, must be avoided. Thus, the following transformation 
is adopted: 

 0 L1 ( , ) ( , ) 1 ( , ).z z z zv u g r g r f r
L L L L

θ θ θ⎛ ⎞ ⎛ ⎞= − − − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (4) 

Obviously, the new function v satisfies the 3-D Laplace equation. The 
boundary conditions take the following form: 
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B
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n
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n

v g S
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n

∂ ⎫= ⎪∂ ⎪
∂ ⎪= ⎪∂

⎪= ⎬
⎪∂ ⎪=

∂ ⎪
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 (5) 

where 

* 2
C C 0 L( , ) ( , ) 1 ( , ) ( , ) 1 ( , ).z z z zg z g z g R g R L f R

L L L L
θ θ θ θ θ⎛ ⎞ ⎛ ⎞= − − − + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

The solution v of the problem ∇2v = 0 in Ω, such that the boundary conditions 
(eqn (5)) hold, is given by 

( ) ( )
( )2

2 ( )
2

1 1 1

( )
( , , ) ( , ) ( , ),

k
k k k

ai
a i a a

ki k k k ki
k i k

A z
v r z c r a A z r a

z
θ θ θ

∞ ∞ ∞
+

= = =

∂
= Φ + Φ

∂∑∑ ∑
 (6) 

where the constants kic  are given by 

1

( 1 / 4) ,
( )

i

ki i
m k

c
m a m=

−
=
Π +

 

and the eigenfunctions, Φk, and eigenvalues, αk, by 

 ( , ) cos( ), / , 1, 2,...k k k ka a a k kθ θ π ωΦ = = =  (7) 

where ω is the external angle defined by the flat boundaries ODEA and ODCB as 
shown in Figure 1; in the present problem, ω = 3π/2. Moreover, due to the choice 



36  Recent Developments in Boundary Element Methods 

of boundary conditions, the EFIFs can be computed analytically as 

 

( )
2

( ) 1 /2 2 if 1 or 2
0 otherwise

ka z z kA z
⎧ + + =⎪=⎨
⎪⎩

 

(8) 

Remark: The problem is selected in a way that the exact solution is known and 
given by a (finite) sum. Moreover, the only two non-zero EFIFs are polynomials, 
hence the accuracy of the EFIFs computed by our method can be measured 
by simply comparing the polynomial coefficients of the true and approximate 
EFIFs. In general, however, the true EFIFs will not be polynomials and the 
accuracy of the EFIFs computed by the numerical method would need to be 
measured using some appropriate function norm. We do not wish to dwell on 
this issue here, since the present work is a preliminary report on the extension of 
the SFBIM to 3-D. The selection of an appropriate norm and the assessment of 
our method in general will be studied in a future work. 

3 The singular function boundary integral method 

In the SFBIM, the solution of the problem is approximated by the leading terms 
of the local solution expansion given by eqn (6). Thus, we employ the first aN  
terms in eqn (6) and we approximate the EFIFs by polynomials of degree pN : 

 
( ) 2

,1 ,2 ,3 , 1SFBIM ( ) ... pk
p

Na
k k k k NA z a a z a z a z+= + + + +  (9) 

where ,k ja  are unknown coefficients. Then the approximate solution is written 
as follows: 
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1 2 1 2
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∑ ∑ ∑  (10) 

where N is an additional parameter that allows us to ensure that v  satisfies 
the 3-D Laplace equation, by selecting it so that 2 1pN N≤ + . We note that, in 
principle, N could be taken to be infinity, since, after all, the sum would 
terminate after a finite number of terms due to the fact that we are differentiating 
a polynomial of degree pN . 

Following the notation used in previous applications of the SFBIM [5–7], the 
above expansion is written as follows: 
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,
1 1
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a PN N

j
k j k
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=∑∑  (11) 
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In the above expression, the coefficients ,k ja  will be referred to as singular 

coefficients. The functions j
kW  are the so-called singular functions, which in the 

present case take the form 

 )cos()(
1

2121 θk
a

N

i

iji
zki

jj
k arrzczW k

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∂+= ∑

=

−−  (12) 

It is easy to verify that 2 0j
kW∇ =  in Ω and that the singular functions j

kW  
satisfy the boundary conditions on SA and SB, i.e. on the boundaries causing the 
edge singularity. 

The first step in the SFBIM is to weigh the governing equation by the singular 
functions j

kW  in the Galerkin sense. This gives the following ( 1)p aN N+  
discretised equations: 

 2 d 0, 1,2, , , 1, 2, , 1j
a pkvW V k N j N

Ω
∇ = = = +∫ … …  (13) 

Recalling that 2 0j
kW∇ = , Gauss’ divergence theorem gives 
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− = = = +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

∫ … …

 

(14) 

where A B C D ES S S S S∂Ω = ∪ ∪ ∪ ∪ . Since the singular functions j
kW  satisfy 

exactly the boundary conditions along SA and SB, the boundary integral in 
eqn (14) is identically zero along those boundaries. By considering, also, the 
boundary conditions (eqn (5)), we can see that the above integral also vanishes 
on SD and SE. Hence, the discretised equations become 
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∫ … … . (15) 

The Dirichlet condition on the cylindrical boundary SC, which is away from the 
singularity, is imposed by means of a Lagrange multiplier function λC, which is 
expanded in terms of standard bilinear basis functions ( , )iM zθ : 

 
C C
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i i
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λ λ
=

∂
= =
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where 
C

Nλ is the number of the discrete Lagrange multipliers C
iλ  along SC. The 

nodal values of λC appear as additional unknowns in the problem. The additional 
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C
Nλ required equations are obtained by weighing the Dirichlet boundary 
condition on SC by the basis functions Mi in the Galerkin sense. Thus, the 
following linear system of 

C
( 1)p aN N Nλ+ +  discretised equations is obtained: 

 

C
C
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d 0, 1,2, , , 1,2, , 1,

j
j k

a pkS
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∫ … …  (17) 
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*
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S S
vM S g M S i Nλ= =∫ ∫ …  (18) 

It should be noted that the integrands in the above equations are non-singular 
and that all integrations are carried out far from the boundaries SA and SB causing 
the edge singularity. The surface integrals in eqns (17) and (18) are estimated 
using standard techniques, such as Gauss–Legendre quadrature. The above 
system of discretised linear equations can be written in block form as follows: 

 ,Ax b=  (19) 

 
T

C C

0
or ,

0
CP Q

FQ
⎡ ⎤ ⎡ ⎤⎡ ⎤

=⎢ ⎥ ⎢ ⎥⎢ ⎥ Λ⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 (20) 

where the vector C contains the unknown coefficients ,k ja of the approximation 
to the EFIFs and the vector ΛC contains the unknown (discrete) Lagrange 
multipliers C

iλ . Clearly, the stiffness matrix A is symmetric. As in the case of 2-
D problems [5–7], the number ( 1)p aN N+  of the unknown coefficients ,k ja  

should be larger than the number of Lagrange multipliers Nλ , since the matrix A 
becomes singular when ( 1)p aN N Nλ+ < . 

4 Numerical experiments 

In order to implement the SFBIM, the boundary part SC is subdivided into 
standard 2-D elements. Specifically, E = zN N Nθ×  elements are employed, over 
which the Lagrange multiplier function is approximated bilinearly. The bilinear 
basis functions are also used to enforce the Dirichlet conditions on SC. The total 
number of Lagrange multipliers is 

C
( 1)( 1)zN N N Nλ λ θ≡ = + + . The surface 

integrals are estimated using a 9-point Gaussian quadrature rule over each 
element. In this section, recent preliminary calculations are presented. 

For all computations presented, we take Np = 3 in eqn (9), i.e. we will 
approximate the EFIFS by cubic polynomials. Since the exact EFIFs are 
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quadratic polynomials (see eqn (8)) we expect that the coefficients in our 
approximation will match those of the exact EFIFs, with the coefficient of the 
cubic term to be (approximately) zero. With this choice for Np, the parameter N 
in eqn (10) is determined to be 1; choosing >1N  will not yield any additional 
terms in eqn (10). Systematic runs have been carried out for the model problem 
in order to study the effects of Na and Nλ (and of the other parameters) on the 
numerical results. The runs for different values of R included various 
combinations between Na and Nλ in our attempt to find the ‘ideal’ combination 
of these parameters, for which the method converges. Calculations were made 
with different combinations of Nz and Nθ but the pair of =3zN  and =3Nθ  
indicated (in combination with suitable values of Na and Nλ) convergence of the 
method. Table 1 contains the values of the first four singular coefficients (i.e. 
of a1,1, a1,2, a1,3 and a1,4) obtained with Nλ=16, R=0.2 and for different values 
of Na. Note that since +1=3+1=4pN , the step increment for ( )1p

a p aN N N≡ +  
in our trials is equal to 4. One may immediately observe very high rate of 
convergence with respect to Na and great accuracy in the values obtained, 
even up to the 13th decimal digit. Also, Table 2 shows the values of the first 
two EFIFs at the points z = 0.5 and 1, respectively, (i.e. of 1( )

SFBIM (0.5)aA  and 
2( )

SFBIM (1)aA ) calculated for the same values of Nλ and R (i.e. for Nλ=16 and 
R=0.2) and for various values of Na. The values of z were selected so that we 
can compare our method with those found in [1]. We may observe, again, very 
fast convergence with respect to Na and high accuracy in the values obtained. 
Tables 1 and 2 indicate convergence for the ‘optimal’ combination 6aN = , 

( )1p
a pN N= + 24aN = and 16aN = , for a radius R = 0.2. 
Table 3 contains the converged values of the singular coefficients for R = 0.2 

and the ‘optimal’ combination of Na and Nλ. Finally, Table 4 compares the values 
obtained by the SFBIM for R = 0.2 and z = 0.5 with the results of the energy 
projection and Richardson’s extrapolation methods [1]. Clearly, the SFBIM 
gives more accurate results than these two methods. 

Table 1: Convergence of the leading singular coefficients ,i kα  with ( +1) ;p aN N  

=16;Nλ  =3; =0.2pN R . 

p
aN  a1,1 a1,2 a1,3 a1,4 

16 
20 
24 

0.99999999999999967 
1.00000000000000020 
1.00000000000000000 

0.50000000000000222 
0.49999999999999151 
0.49999999999999789 

1.9999999999999951 
2.0000000000000075 
2.0000000000000027 

0.0000000 
0.0000000 
0.0000000 

28 
32 

1.09156848083415390 
1.09408456032190720 

0.55704458873911022 
0.55389570974937652 

2.0108806891151279 
2.0109227906627867 

−0027704 
−0017576 
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Table 2: Convergence of the first two EFIFs 1( )
SFBIM ( )aA z and 2( )

SFBIM ( )aA z at z = 0.5 
and z = 1.0, with respect to (Np+1)Na for Nλ = 16; R = 0.2. 

p
aN  1( )

SFBIM (0.5)aA  2( )
SFBIM (1)aA  

16 
20 
24 

1.75000000000000 
1.75000000000000 
1.75000000000000 

3.50000000000000 
3.50000000000000 
3.50000000000000 

28 
30 

1.87246464498172 
1.87354341373678 

3.50000000000000 
3.64611793615660 

Table 3: Converged values of the leading singular coefficients ai,k for R = 0.2 
and the ‘optimal’ combination ( +1) =24; =16; =3; =1p a pN N N N Nλ . 

i k ai,k 
1 
1 
1 
1 
2 
2 
2 
2 

1 
2 
3 
4 
1 
2 
3 
4 

1.0000000000000000 
0.4999999999999979 
2.0000000000000027 
−0.0000000000000008 
1.0000000000000002 
0.4999999999999975 
2.0000000000000036 
−0.0000000000000013 

Table 4: Comparison between the values obtained by the SFBIM and the energy 
projection method [1] and the EM for R = 0.2 and z = 0.5, for the first 
two EFIFs. 

 

i ( )
SFBIM

iaA  
( ) ( )
EX SFBIM| |i ia aA A−  ( )

[8]
iaA  ( ) ( )

EX [8]| |i ia aA A−  ( )
Rich

iaA  ( ) ( )
EX Rich| |i ia aA A−  ( )

EX
iaA  

1 
2 

1.7500 
1.7500 

0.0000 
0.0000 

1.7290 
1.7350 

0.0210 
0.0150 

1.7494 
1.7499 

0.0006 
0.0001 

1.7500 
1.7500 

5 Conclusions 

The SFBIM has been formulated for a 3-D Laplacian problem with a boundary 
edge singularity. With this method, the EFIFs are approximated by polynomials, 
the coefficients of which are primary unknowns in the formulation, i.e. they are 
calculated directly and not by post-processing of the solution. The SFBIM has 
been applied to a model 3-D problem, yielding highly accurate results for the 
EFIFs and exhibiting fast convergence, as in two-dimensional applications [5–7]. 
The numerical results compare favourably with those of Yosibash et al. [1]. 
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We are currently investigating a particular version of the method in which the 
EFIFs are approximated locally by low-degree polynomials. This approach has 
the advantage that the inner sum in eqn (9) vanishes identically. 
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Abstract 

Two-dimensional dual boundary element method is developed in this work for 
quasi-static analysis of concrete and reinforced concrete beams. The discrete 
crack propagation is considered by means of the linear elastic fracture mechanics 
approach, along with the cohesive cracks method. The steel–concrete interaction 
is taken into account by a simplified bond slip model. A nonlinear, non-iterative 
approach, called ‘event-to-event’ technique, is employed, which puts some 
restrictions on the model. A few examples are solved, analysed and compared 
with the known experimental studies in order to reveal the specific features of 
the theory and to evaluate the potential of the numerical method, nonlinear 
technique and constitutive modelling employed. 

Keywords: Dual boundary elements, Concrete beams, Reinforced concrete 
beams. 

1 Introduction 

Structural elements, made of quasi-brittle material like concrete, are prone to 
develop discrete cracks due to their little tensile strength. The experimental and 
numerical studies of the crack propagation and behaviour are of vital 
importance to assess the load carrying capacity of such structures [1–3]. As far 
as the numerical simulations are concerned there are two available theories. In 
the first approach – the conventional fracture mechanics approach – the main 
goal is the derivation of a crack growth mechanism and evaluation of the 
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mixed mode fracture parameters [4–7]. In the second approach, the constitutive 
relationships of the fracture (damaged) zone are studied and derived in 
the form of a relationship between normal stresses and crack opening 
displacements (COD). This constitutes the basis of the cohesive crack or 
fictitious crack method [8–11]. 

Two principal numerical methods are employed for the linear and nonlinear 
analysis of concrete and reinforced concrete beams, namely finite and boundary 
element methods (FEM and BEM) [3,12]. The direct application of the BEM 
for 2D domain with edge or internal discrete cracks is not possible as the 
coincidence of the crack surfaces gives rise to a singular system of algebraic 
equations. A few techniques such as the sub-region method, the displacement 
discontinuity method, the dual boundary element method (DBEM) and others 
have been devised to overcome this difficulty. On the one hand, it seems that 
the DBEM is the most promising one, demonstrating many advantages. On the 
other hand, the method is very complex and requires unconditional application 
of discontinuous boundary elements and analytical treatment of the singular 
finite part integrals. In this study, we use the DBEM for linear, double node 
discontinuous boundary elements, developed by the authors [7,13,14]. In fact, 
the original idea of implementing the DBEM for solving potential theory 
problems dates back to 1970's, but the method was refined by Aliabadi and 
others for the theory of elasticity, fracture mechanics applications, as well as for 
the first applications to analysis of concrete and R/C beams [2–4]. 

The first objective of this study is to develop a DBEM-based numerical 
procedure by means of the linear elastic fracture mechanics (LEFM) for solving 
the problem of multiple cracks propagation of concrete beams. The successful 
implementation of the methods of the LEFM for crack initiation and propagation 
involves a definition and application of certain criteria and requires very accurate 
calculation of the stress intensity factors (SIF) for tensile mode I and shear 
mode II. We employ a variant of the two-step singularity subtraction technique 
(TSSST), presented in paper [5], where a single crack in mode I was considered 
by means of the sub-region decomposition technique. 

Second, the DBEM is reformulated in order to handle the nonlinear cohesive 
discrete crack development [13]. The usual iterative procedures for minimizing 
out-of-balance forces are not applied in the present work. An assumption is 
made that the constitutive law is approximated by a number of linear chords 
introducing single, double and multi-linear models. In that respect, the so-called 
event-to-event nonlinear algorithm is developed, thus avoiding the heavy and 
sometimes not easily converged iteration process. It seems that the later 
approach is ideally suited to the nature of coefficient matrix obtained by the 
DBEM [13]. It should be emphasised that it is based on another physical 
assumption: a crack closure is not allowed during the deformational process, 
which can be considered as a drawback of the model. 

A simple but effective constitutive model by Ruiz [11], accounting for the 
bond slip behaviour is worked out, with little amendment, in the present 
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modelling. It took into account the concrete cohesive properties as well as the 
relative slip between the single reinforcement layer and the cohesive matrix. The 
shear stresses, transferred between the steel and concrete, were presented as a 
function of relative slip and their resultant force was applied at a certain point 
inside the cohesive matrix [14]. 

2 The dual boundary element method and discrete cracks 

The term dual for this variant of the boundary element method stems from the 
fact that displacement boundary integral equations are used on the one crack 
surface, whereas the traction equations are applied on the other. In this way, by 
avoiding the singular set of algebraic equations, we can simply treat a domain 
containing several edge as well as internal cracks as a single one. 

In Figure 1, a single plane domain is shown, representing a beam with three 
edge cracks. The boundary discretisation of the crack faces, modelled by double-
node discontinuous elements, is also shown together with the element itself 
and its shape functions. On the regular part of the boundary Γ either continuous 
and/or discontinuous boundary elements could be employed. Also, there are 
no restrictions on the type of integral equations, displacement or traction, 
used. Operating on one of the crack surfaces, boundary cΓ Γ⊂ , two principal 
restrictions are to be met: (1) the dual system of integral equations must be used, 
namely displacement equations on one side, and traction equations on the other; 
(2) only discontinuous boundary elements must be employed on both crack 
faces. The above conditions are necessary for the existence of principal value 
integrals, assumed for the derivation of dual integral equations [3,13]. 

Omitting details, which can be found in [3,13], the complete system of the 
dual boundary integral equations for a crack point located on a smooth boundary 

F/2F/2

F

N1(x ) = – x + 1/2

L/4 L/2 L/4
n. 1 n. 2

N2(x ) = – x + 1/2

u 2
=

1

n. 1 n. 2

u 1
=

1

JI

JI displacement BIE

displacement BIE

traction BIE

boundary Γc

boundary Γc

Figure 1: Contour discretisation using discontinuous boundary elements. 
Utilisation of the dual integral equations.
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is written in the following form: 

* *
0 0 0 0

* *
0 0 0 0 0 0

1 1( ) ( ) ( , ) ( )d ( ) ( , ) ( )d ( ),
2 2
1 1( ) ( ) ( ) ( , ) ( )d ( ) ( ) ( , ) ( )d ( ).
2 2

j j ij i ij i

j j i kij k i kij k

u x u x u x x t x x t x x u x x

t x t x n x d x x t x x n x s x x u x x

′ ″ ′ ′
Γ Γ

′ ″ ′ ′ ′ ′
Γ Γ

+ = Γ − Γ

− = Γ − Γ

∫ ∫

∫ ∫
 (1) 

In eqn (1) the indices i  and j  refer to the Cartesian coordinate directions; 

ju ( x )  and jt ( x ) are displacement and traction functions on Γ, respectively; *
iju  

and *
ijt  represent the Kelvin displacement and traction fundamental solutions at a 

boundary point x ; *
kijd and *

kijs  are third-order fundamental tensors, derived as 

linear combinations of derivatives of Kelvin’s tensors; 0in ( x )′  denotes the i -th 
coordinate of the unit normal to the boundary at point 0x′ , whereas with 0x′′  we 
denote the coincident to 0x′ nodal point on the opposite crack surface. 

The first integral equation in eqn (1) is the usual displacement integral 
equation, while the second one is the traction equation. There is another specific 
feature of eqn (1): when the collocation point 0x′  is on the crack surface (say 

0( )ju x′  in the displacement equation or 0( )jt x′  in the traction equation), an 

additional jump term 0( )ju x″  or 0( )jt x″  appears, due to the coincident node 

0x″ on the other crack surface [3,13]. The discrete form of boundary integral 
equation (BIE) (eqn (1)) and the numerical derivation of the G and H boundary 
element matrices will not be commented here, see [13]. 

3 The model of linear elastic fracture mechanics 

3.1 Mixed-mode fracture and LEFM for crack initiation and propagation 

In the case of mixed-mode crack propagation, the maximum circumferential 
stress criterion constitutes that the fracture initiation starts in a direction in which 
the circumferential stress near the crack tip is maximum [1]. The direction of 
crack propagation angle crθ  is the solution of the following equation 

 I cr II crsin (3cos 1) 0,K Kθ θ+ − =  (2) 

where IK  and IIK  are the SIFs, calculated at the corresponding instant so the 
angle crθ  can be found if the ratio of the two SIFs is known. 

The crack initiation begins if the SIFs and propagation angle crθ satisfy the 
inequality (3), (see reference [1]) 
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 3 2cr cr cr
I II Icos 3 cos sin ,

2 2 2 cK K Kθ θ θ
− ≥  (3) 

 2
I f .cK EG=  (4) 

where IcK is the fracture toughness for fracture mode I, which in the case of 
plane stress can be derived from the fracture energy parameter fG  and modulus 
of elasticity E  using the relationship (4). 

3.2 TSSST for calculation of SIFs of multiple, multi-linear cracks 

Most techniques for numerical calculation of SIFs are oriented to more accurate 
representation of stress and displacement singular fields near the crack tip. The 
TSSST uses another option: an elimination of the singular fields in the numerical 
solution, [2,5]. As a result, the solution of a regular problem is reached, but with 
modified boundary conditions. The variant of TSSST proposed in [5] does not 
require the use of additional integral equations as worked out in [2]. Due to the 
inability to formulate the BIE on both surfaces of the crack the SIFs are 
calculated by the sub-domain method, which limits the scope of application. The 
present formulation of TSSST, developed by the DBEM, will differ in form from 
that given in [5], but the basic idea is the same and it is based on the classic 
version of the singularity subtraction approach. 

Due to the limited space, we skip the derivation of the developed variant of 
the TSSST. The details can be found in the author's paper, reference [7]. 

3.3 Numerical example 

As an example, a case of mixed-mode fracture in a single notched concrete 
beam, tested by Arrea and Ingraffea and very well documented in paper [9], 
was numerically solved and discussed. This experiment is considered as a 
benchmark case and was numerically analysed by a number of researchers, [6,9]. 
In Figure 2(a), the geometrical configuration and material parameters of the 
beam are given. In the experiment, a displacement control was used in order to 
obtain the descending branch of the load–displacement relationship. The initial 
vertical crack is 82 mm long and plane stress condition was assumed. 

For this numerical test, the DBEM plus TSSST were performed and a crack 
length increment of 20 mm was chosen. In Figure 2(b), a picture of the 
experimental scatter for the crack growth is given along with the present 
numerical prediction. A good fitting between the experimental and numerical 
data is observed. Starting with the calculation of SIFs for the initial crack, the 
procedure for finding the direction of the new crack segment is performed by 
using eqn (2). The next step requires correction of the reference load to be used 
in the static DBEM solution, by means of eqn (3), followed by stress and 
displacement field update. 
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Adding the new linear crack segment and updating the geometry and 
boundary element mesh, the next static solution is performed with the 
reference (unit) load. The above procedure is repeated until the final stage is 
reached. The calculation process is made interactive, so that the user is able to 
run, stop, correct data and continue the program execution. For this example, 
13 crack length increments have been realised. The load–crack mouth sliding 
displacement (CMSD) and load–deflection curves obtained by LEFM 
principles are given in Figure 7 below. 

4 The cohesive cracks model for concrete and R/C beams 

In this section, a general model for analysis of concrete beams, extended to 
longitudinally, lightly reinforced concrete beams, is described, [14]. A nonlinear 
fracture mechanics model is developed, such as cohesive cracks approach, based 
on the crack path determined in advance by means of LEFM. As far as the crack 
path is known, it is convenient to explore the final model mesh which includes the 
full-length crack in order to avoid any new remeshing. In the following sections, 
we briefly describe the constitutive models for concrete, steel and the bond slip 
interaction model, and finally – the combined (steel plus concrete) model for the 
crack points belonging to both materials. We emphasise on the common feature of 
the constitutive models: they all have a multi-linear shape which is a strong 
requirement of the developed analytical and numerical methodology. 

4.1 The constitutive models 

4.1.1 Concrete modelling 
The fracture process zone of concrete is represented by means of the cohesive (or 
fictitious) crack model, [13,14]. The cohesive crack opens when the normal 

F 0.13F

E=24.8 GPa,v=0.18
KIC=1.65MPa m1/2

thickness=0.152 m

458 mm458 mm

30
6

82

61

61(a) (b)

numerical
experimental

Figure 2: Four-point single edge-notched shear beam: (a) Geometrical, material
data, loading and boundary supports; (b) experimental envelope and
numerical prediction of the crack path.
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stress reaches the tensile strength ft of the concrete and a descending branch of 
the constitutive relationship follows. With that end in view, three different 
softening laws are adopted, Figure 3(a). The linear and bilinear constitutive laws 
are well known from the literature [1,2,9]. In addition, a stress–COD ∆ucr curve 
with three straight lines is implemented, which is closest to the exponential 
softening function, as shown in Figure 3(a). 

4.1.2 Steel reinforcement and bond slip modelling 
The present bond slip model developed is presented in papers [11,15], starting 
with a simple bilinear approximation for the steel stress–strain law, with 
yield stress σy and displacement wy corresponding to it. In order to comply with 
the requirement of multi-linearity of the respective function, a four-line 
approximation is suggested here for the nonlinear part of the steel force-opening 
displacement diagram, Figure 3(b). We refer to the reference [14], where the 
model is fully explained and all notations from Figure 3(b) are given. 

4.1.3 Combined model 
The combined constitutive model concerns the boundary nodal points on the 
crack faces which are common for both materials:steel and concrete. It is shown 
in Figure 4(a), where the three cases are indicated: concrete, reinforcement 
and the combine relationship. The last one is simply obtained as a sum of the 
concrete (linear) and reinforcement (four lines) approximations. The concrete 
contribution is clearly seen over the steel hardening multi-linear stress–
elongation relationship. Figure 4(b) presents the corresponding picture of the 
boundary nodes on both crack faces. The distribution of cohesive forces is shown 
for a few nodal points of the crack having different status. In the same figure, the 
following notations are used: cru∆ is the COD which in this model is assumed to 
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Figure 3: (a) Concrete (s−∆ucr) softening constitutive relationship; (b) Axial
force Fr-COD (or steel elongation wr) diagram for the reinforcement.
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be equal to steel elongation ;rw λ  is the length of the boundary element over 
which the steel stress resultant Fr is distributed as equivalent traction; b is the 
beam thickness. 

4.2 Modification of the dual boundary integral equations for a given 
traction-crack opening displacement linear relationship (t-∆ucr) 

The intensity of cohesive forces depends on the COD, so both the displacements 
and tractions of the nodes in the fracture zone are not known. Neither of the 
discrete values can be found via the boundary conditions, but the relationship 
between tractions t and CODs cru∆  could be presented in a general form by the 
following equation 

 t k u= ⋅∆  (5) 

where k is a constant (usually a known stiffness coefficient) and could be either 
positive or negative. 

In paper [13], a modification of the dual boundary integral equations and 
consequently the linear algebraic equations is presented in order to model the 
fracture and undamaged crack zones when the crack path is known in advance. 
When the crack is traction free the numerical modelling is simple and 
straightforward, so this case will not be discussed. 

It is convenient to consider a part of the damaged zone of the crack path, 
namely the two coincident linear boundary elements i and j, Figure 5. It is also 
instructive to note the discrete values and positive signs for displacement and 
traction degrees of freedom for the respective four nodal points – these are 2i−1, 
2i, 2j−1 and 2j. In this case, both the displacements and tractions are unknown, 
but a relationship between them exists, which is a multi-linear function known in 
advance via the constitutive model. 
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Figure 4: (a) Concrete plus steel combined constitutive model; 
(b) Mixed modelling on the crack faces.
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Presuming that the basic unknowns are the displacements, we rearrange the 
general constitutive relationship (5) with respect to tractions for i and j boundary 
elements by the following equations, see [13] for details: 

4 1 4 3 4 3 4 1

4 4 2 4 2 4

4 3 4 1 4 1 4 3

4 2 4 4 4 2

( ) ( )
( ) ( )

= , = ,
( ) ( )
( ) ( )

j i j i

j i j ii i j j

j i j i

j i j i

k u u k u u
k u u k u u

k k
k u u k u u
k u u k u u

− − − −

− −

− − − −

− −

− − −⎧ ⎫ ⎧ ⎫
⎪ ⎪ ⎪ ⎪− − −⎪ ⎪ ⎪ ⎪= ∆ = − ∆⎨ ⎬ ⎨ ⎬− − −⎪ ⎪ ⎪ ⎪
⎪ ⎪ ⎪ ⎪− − −⎩ ⎭ ⎩ ⎭

t u t u  (6) 

where ,u ti i are the displacement and traction vectors for the i-th element; ∆ui 
and ∆uj are the COD vectors, respectively. 

Referring to paper [13] again, we shall mention that the above terms, related 
to the coincident elements, are cancelled out as far as the right hand side of the 
BIE (1) is concerned. That is why the modification on the left-hand side of the 
dual boundary integral equations is given below. It was found that the change is 
only in the traction equations for the collocation point of the crack contour. 
Suppose the collocation point is on the left contour c, Figure 5, then by 
introducing angle α, both traction equations have the following left-hand side 
final presentation: 

2 2

col.point col.point

2 2

col.point col.point

1 1 sin sin sin cos sin cos ,
2 2

1 1 sin cos sin cos cos cos .
2 2

− = α ⋅ − α ⋅ − α α ⋅ + α α ⋅

− = − α α ⋅ + α α ⋅ + α ⋅ − α ⋅

x x x x y y

y y x x y y

t t k u k u k u k u

t t k u k u k u k u
 (7) 

Concerning the undamaged zone, a similar modification was made. When the 
crack path is determined in advance and the final meshing is done, the stresses 
in the undamaged zone are smaller than the tensile strength of the material. 
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Figure 5: Crack path in arbitrary direction. Displacements and tractions for
coincident elements i and j at the corresponding nodal points.
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Therefore, both crack faces must remain closed and eqn (8), written below, are 
valid. The layout of the traction and displacement components is according to 
Figure 5. There must be two unknown and two known discrete parameters for 
each node of the model. The known values cannot be found via the boundary 
conditions but a relationship between the four unknowns of both crack faces 
exists. It is assumed in this case, that the basic unknowns are displacements on 
the left crack side (contour c) and tractions on the right (contour c ). Therefore, 
the left tractions could be expressed by those on the right, displacements on the 
right are equal to those on the left, so finally the relations, written in global 
coordinates, are as follows [13] 

 unknown unknown

unknown unknown

,

.

n n t t x x y y

n n t t x x y y

u u u u u u u u

t t t t t t t t

= = = =

= − = − = − = −

, , ,

, , ,
 (8) 

4.3 The ‘event-to-event’ nonlinear algorithm 

A graphical representation of the nonlinear ‘event-to-event’ approach is given in 
Figure 6. For simplicity, a bi-linear constitutive model is chosen, so the shown 
points should be considered as ‘state’ points, where the current incremental 
solution begins or stops. In the context of the suggested name, an ‘event’ is 
happening when a particular ‘state’ point reaches a corner point of the 
constitutive model – that is, the point where the slope k gets another value. It 
should be pointed out that the movement of the state points is always from left to 
right, which implies the assumption that the crack is always growing. The crack 
begins to propagate (to open) when the normal stress at the mathematical crack 
tip exceeds the maximum tensile strength of the material. The crack propagation 

Figure 6: Graphical representation of the ‘event-to-event’ solution algorithm.

(A) state point from calculated load

reference load

calculated load

(1) state point fromreference load 
(2)

∆ucr

ft

0.8Gf / ft 3.6Gf / ft

3

ft

k1

k2

∆uc

(1)

(A) 

(B) 
(3)

(C)
(4)

s



Recent Developments in Boundary Element Methods  53 

can be controlled incrementally by increasing the crack length as a monotonic 
increasing function. In such a case, it is arrived at the somehow reverse problem: 
the global unknowns of the problem are the load for the given new crack length 
increment and the calculated traction at the nodal points. The present incremental 
procedure works like this: in the first sub-step of the first incremental step, 
a reference load with unit value is applied and the system behaves in a linear 
elastic manner. 

Having this solution available and using a simple linear approximation, 
we can obtain the necessary increment of load (called calculated load) in order to 
get traction equal to the tensile strength. Then in the second sub-step of the 
first step, the calculated load is applied and the state point gets into position (A) 
of Figure 6. The first ‘event’ is happening and the current results are saved. After 
that, the considered state point falls into the fracture zone, so the relationship 
between traction and opening displacement is 1t ui ik= − ∆ already. In the first 
sub-step of the second step, the reference unit load is applied again and the new 
state point obtained is shown in eqn (2). The necessary load increment can be 
obtained so that the considered state point reaches the new corner position (B). 
As the state point position (B) is again in the fracture zone, for the next step the 
stress-displacement law is 2

i ik= − ∆t u  using the new slope (−k2). The obtained 
results are added to these from the first step and saved again. The above 
procedure is repeated and the state point is consecutively in positions (3) and 
(C), respectively. Finally, the point into consideration falls in the real crack zone 
(position (4)) and it is traction free. 

Practically, many nodal points from the boundary elements located to the 
crack faces are in the undamaged or fracture zones, so the above checking 
procedure must be performed for every single point. The smallest calculated load 
is taken as authoritative. Therefore, this load is applied at the end of each step 
and only one state point is located at a corner point of the constitutive graphics. 
The crack growing procedure continues until the whole crack path, obtained 
by the user in advance, becomes traction free, or alternatively, until the steel 
yielding capacity is reached. 

4.4 Numerical examples 

The aim of the first numerical example is to demonstrate the potentials of 
the cohesive crack model employed. The concrete beam from Section 3.3 and 
Figure 2 (a) is analysed for the crack path determined in advance, which is 
presented in Figure 2(b). 

The diagrams, Figure 7(a), show the load–CMSD relationship. The 
experimental envelope for the extreme values of the fracture energy parameter 
(Gf = 0.55–0.100 N/mm) is taken from reference [9]. The LEFM numerical 
prediction (for Gf = 0.100 N/mm) and the results with the present cohesive crack 
approach for the case of one, two and three-linear stress-displacement softening 



54  Recent Developments in Boundary Element Methods 

models are depicted. Apparently, the peak load is better simulated if the cohesive 
model is employed. 

Some interesting results are plotted in Figure 7(b), where the load–vertical 
deflection responses are given. The snap-back phenomenon, reported in the 
experiment, could be successfully captured by the LEFM approach and cohesive 
cracks, since the crack length increments are used as a controlling parameter. 
Again a comparison is made with the present cohesive cracks modelling. 

The second example is a classical reinforced concrete beam subjected to three-
point bending, Figure 8. This beam is analysed in order to compare the results, 
obtained by means of the DBEM and the implemented bond slip model, against 
experimental results. The beam dimensions, material properties and experimental 
curves were taken from [15]. The tested concrete beams were of a height of 75, 
150 and 300 mm and a width of 50 mm with proportional dimensions. 

The experimental envelopes from the multiple testing are plotted in Figure 9 
in order to estimate how the numerical solutions fit to the experimental results. 

Figure 7: (a) Load–crackmouth sliding displacement response;
(b) Load–vertical deflection response.
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The peak loads (maximum cracking loads) are simulated very well and decrease 
with the beam size as expected. It is interesting to note that their values are close 
for the cases of smooth and ribbed bars in spite of an almost double difference 
of the bond shear strength parameter cτ . However, in the post-critical zone, the 
beams reinforced with ribbed wires are stronger than those reinforced with 
smooth wires and that leads to a faster approach to the steel yielding. In general, 
the shape of the numerical simulation curves follows the experimental trend. 

5 Conclusions 
On the basis of the above numerical solutions, comparisons and analyses of the 
results, the following conclusions may be written: 

♦ The DBEM combined with the two-step subtraction singularity technique 
constitutes a good, accurate and reliable numerical procedure for finding the 
real crack path trajectories for beams made of plain concrete; 

♦ A non-iterative nonlinear technique called ‘event-to-event’ is implemented 
and suitable modification of the DBEM is developed in order to implement 

Figure 9: Experimental verifications of load–displacement curves.
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the cohesive crack model. The results from the numerical simulations show 
good fitting to those obtained from the experiments; 

♦ The cohesive type modelling was extended to the case of longitudinally 
reinforced concrete beams by the application of a simple bond slip model, 
taken from the literature. The obtained results show excellent agreement with 
the experiments, especially in the case of ‘lightly reinforced’ concrete beams 
(where reinforcement ratio ρ is between 0 and 0.3%), which seem to be very 
sensitive to fracture in tension. 
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An implementation of the method of 
fundamental solutions for cracks in  
Reissner’s plates 
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Abstract 
 
The application of the method of fundamental solutions, a mesh-free technique, to 
solve cracked Reissner’s plates is discussed in this paper. Here, the numerical 
Green’s function previously developed by the authors is used as the fundamental 
solution required by the method. Stress intensity factors (SIFs) or the related force 
intensity factors are obtained using the generalised crack openings at a single  
point near the tip, computed through a summation of the fundamental generalised 
openings at that point weighted by their influence factors. Despite the ill-
conditioning of the equations system, which may require appropriate handling to 
solve (such as the singular value decomposition method), examples show good 
results for problems with embedded cracks. The method can be a good option to 
evaluate SIFs of given problems due to its simple and intuitive implementation.  

Keywords: Method Fundamental Solutions, Reissner, crack, Numerical Green’s 
Function. 

1 Introduction 

The method of fundamental solutions (MFS), introduced by Kupradze and 
Aleksidze [1], is a simple and efficient technique to numerically approximate the 
solutions of engineering problems governed by partial differential equations. 
Also, there have been comparative studies linking the MFS and some of the 
Trefftz methods [2], i.e. the indirect Trefftz formulation. The application of the 
MFS to stress analysis and elasticity was found by Oliveira [3] and Petterson and 
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Sheikh [4]; the latter developed what is called the ‘modified Trefftz method’, 
adopted here. A good overview of such methods can be found in reference [5]. In 
spite of this, there are not many applications of the MFS to plate bending 
problems and the recent implementation of Wen et al. [6], who applied the MFS 
to Mindlin plates subjected to dynamic loads with dumping, is worth noticing. 

In addition, there are just a few works on modelling linear elastic fracture 
mechanics problems using the MFS. Among these, a recent publication by Alves 
and Leitao [7], where the sub-domain technique is used to model the crack 
surface, and another one by Zhang et al. [8] are a few examples. The present work 
proposes the use of the numerical Green’s function (NGF) formulation, first 
presented by Castor and co-workers [9], to be used as the fundamental solution to 
the MFS method for stress intensity factor (SIF) computations. Though the 
application here proposed only involves Reissner’s plate, the technique could 
readily be extended to other 2-D or 3-D crack problems as well. The paper is 
organised so as to present first a brief explanation of the NGF technique, followed 
by the MFS adopted and extended to compute the SIFs. A brief discussion on the 
main issues of the implementation is followed by the examples to validate the 
application of this rather simple and straight forward procedure. 

2 The computation of the crack-embedded fundamental 
solution 

Consider Reissner’s plate problems, governed by the corresponding Navier 
equation and fixed boundary conditions, 

 1 2 1 2( ) ( ) 0,  ( ) ( ) , ,ij j i j ju x b x u x p x′∆ + = ∈ Γ ∧ ∈ Γ ∀Γ = Γ ∪ Γ  (1) 

where ij′∆  is the well-known Navier operator, ju  represents the generalised j 
direction displacements (two rotations and one deflexion) and ib  represents the 
body force components. The symbol x stands for any point of the domain Ω or 
boundary Γ of the problem. Let the fundamental solution to this problem, 

* ( , )kju xξ , satisfy the equation 

 * *( , ) ( , ) 0,ij kj kiu x b xξ ξ′∆ + =  (2) 

where *
iju  corresponds to the generalised displacement in the j direction of the 

field point x on an infinite Reissner’s plate subjected to a unit point load in k 
direction at the source point ξ. Therefore, *

kib  represents a discrete singularity in 
each generalised direction at ξ; i.e. ( , ) ( , )ki kib x xξ δ ξ δ= , where ( , )xδ ξ  is the 
Dirac delta function for a singular point ξ and a field point x and kiδ  is the 
known Kroneker delta symbol.  
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The Vander Weeën [10] fundamental solution to this problem, * ( , )kju xξ , and 

its corresponding surface tractions * ( , )kjp xξ , are given, as in references [10,11], 
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in which, Greek symbol indexes, α, β and γ, vary from 1 to 2, 3 212(1 )D Eh υ= −  
is the flexural rigidity of the plate, E the Young’s modulus, n and nα indicate the 
direction of the outward boundary normal vector at x and its respective 
components. The functions 0 1( ) ( ) 2 / ( ( ) 1 / )A z K z z K z z= + −  and 

0 1( ) ( ) 1 / ( ( ) 1 / )B z K z z K z z= + −  are dependent on modified Bessel’s functions 

of the second kind, 0 ( )K z  and 1( )K z ; where z rλ= , 10hλ =  is the Reissner 

constant and h the thickness of the plate. Furthermore, r r rα α= ⋅  is the known 
distance from points x and ξ, with components ( ) ( )r x x xα α α ξ= − ; the derivatives 
of r are , ( , ) ( )r r x x x r rα α αξ= ∂ ∂ =  and , ,( , ) ( ) .nr r x n x r nα αξ= ∂ ∂ =  

Consider now that a crack is embedded in the medium of the fundamental 
problem governed by eqn (2). Let the new corresponding fundamental solution, 
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the Green’s function, be now denominated ( , )G
kju xξ  and its derivative functions 

for tractions, ( , )G
kjp xξ , be obtained through a superposition as follows [12], 

 *( , , , ,G C
ij ij iju x u x u xξ ξ ξ) = ( ) + ( )  (10) 

 *( , , , ,G C
ij ij ijp x p x p xξ ξ ξ) = ( ) + ( )  (11) 

where ( , )C
kju xξ  and ( , )C

kjp xξ  represent the solutions to the complementary 
problem, i.e. a cracked surface embedded in an infinite medium and subject to the 
fundamental tractions computed along the virtual crack position ( fΓ ) of the 
uncracked fundamental problem with opposite signs, i.e. * , ,f f f

ijp ζ ξ ζ− ( ) ∀ ∈ Γ . 
This procedure automatically embeds a traction-free crack in eqn (2), consistent with 
the usage of eqns (10) and (11) to define the fundamental solution.  

The complementary functions can be numerically computed using the 
boundary element method (BEM) technique if one notices that the displacement 
and traction boundary element equations applied over the upper and lower crack 
boundaries of the complementary problem, f + −Γ = Γ ∪ Γ , may be expressed 
only in terms of −Γ , as follows [12], 

 *( , ) ( , ) ( , )d ( ),C
ij jk iku x p x cξ ζ ξ ζ ζ−Γ

= Γ∫  (12) 

 *( , ) ( , ) ( , )d ( ),C
ij jk ikp x P x cξ ζ ξ ζ ζ−Γ

= Γ∫  (13) 

where ( , ) ( , ) ( , )ik ik ikc u uξ ζ ξ ζ ξ ζ+ −= −  is the generalised fundamental crack 

opening, i.e. the discontinuities in rotations and deflections at ,ζ ζ −∀ ∈ Γ , for a 

unit load applied in i direction at the source point ξ. *( , )ijP x ζ  is properly 
obtained as a function of the source derivatives of the standard traction 
fundamental solution, * ( , )kjp xξ , as required for the definition of the traction 
boundary element formulation, as described in references [9,11,12]. Its 
components are given below, 
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where m and mα represent, respectively, the direction of the outward boundary 
normal vector at ξ and its components, and , ,( , ) ( )mr r x m x r mα αξ= ∂ ∂ = − . 

Notice that, in eqns (12) and (13), ( )x x −∉ Γ  is the source point to the 
complementary problem. If ( , )ikc ξ ζ  is known, eqns (12) and (13) can be solved 
numerically using any appropriate procedure. A Gaussian quadrature is adopted 
by the authors to produce the NGF, 

 * *

1
( , ) ( , ) ( , ) ( , ) ,

N
G
ij ij jk n ik n n n

n
u x u x p x c J Wξ ξ ζ ξ ζ

=
= + ∑  (18) 

 * *

1
( , ) ( , ) ( , ) ( , ) ,

N
G
ij ij jk n ik n n n

n
p x p x P x c J Wξ ξ ζ ξ ζ

=
= + ∑  (19) 

where nJ  is the Jacobian of the transformation to the standard quadrature interval, 
nW  is the corresponding weight factor at the Gauss station n, N is the total number 

of integration points and nζ  is the nth Gauss point over the crack surface. 

The computation of ( , )ikc ξ ζ  is performed by letting x −→ Γ  in eqn (13) 

and, if this source point at the crack surface is denoted as ζ , by applying the 

known boundary condition *( , ) ( , )C
ij ijp pξ ζ ξ ζ= −  to produce the following 

boundary integral equation,  

 * *( , ) ( , ) ( , )d ( ).ij jk ikp P cξ ζ ζ ζ ξ ζ ζ
−Γ

− = = Γ∫  (20) 

Here, the symbol =∫ stands for Hadamard’s finite part integral. The authors 
adopted a point collocation technique and the Gauss quadrature procedure to 
numerically solve the hypersingular eqn (20). To this end, a correcting term is 
introduced to deal with the singularities, as thoroughly described in references 
[9,12]. Choosing the same Gauss stations to be used in eqns (18) and (19) as the 
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collocation points in eqn (20), the following matrix form equation is generated,  

 *( ) ( ),ξ ξ⋅ = −i iS c p  (21) 

where vectors ( )ξic  and *( )ξ− ip  include, respectively, the unknown generalised 
displacement discontinuities and the values of the standard Reissner fundamental 
solution at the crack lines, for any numbers of embedded cracks, in three generalised 
directions, i , as a result of the unit applied load at ξ. Matrix S  is square of dimension 
3N, computed only once for the complete analysis since it is only a function of the 
crack geometry and is independent of the position of ξ. Therefore, matrix S in  
eqn (21) once computed is just subjected to repeated back substitutions for all the 
independent vectors *( )ξ− ip , functions only of the general point ξ positions. 

3 The method of fundamental solutions 

Consider a Reissner’s plate problem governed by eqn (1) and subjected to mixed 
boundary conditions. Since the fundamental solution is a solution to the Navier 
equation, one can seek an approximation of the solution to eqn (1) by the 
following superposition: 

 *

1
( ) ( , ) ( ),

N

j ij n i n
n

u x u x aξ ξ
=

= ∑�  (22) 

 *

1
( ) ( , ) ( ),

N

j ij n i n
n

p x p x aξ ξ
=

= ∑�  (23) 

where N is the number of discrete points ξ, the sources, usually chosen to be 
positioned far from the boundaries to avoid singularities and ( )i na ξ  is a constant 
weight parameter associated to the discrete point ξn in the direction i. Note that 
in eqns (22) and (23) the authors have chosen to omit body forces since these are 
not to be dealt with here; its introduction into MFS is a matter of summing a 
particular solution to the equations, as explained in reference [13]. The 
convergence of ( )ju x�  to the actual solution, ( )ju x , would mainly depend on the 
amount and distribution of the influence points ξn to properly model the solution 
to the proposed problem. Since the correlated bending moments, transverse stress 
forces and tractions at a domain point x are functions of ( )ju x  derivatives, they 
are also weighted by the same parameter ( )i na ξ . 

To compute the weighting parameters, the field point x is taken to the boundary 
Γ(X) in eqns (22) and (23). In each direction of every boundary point X, either the 
generalised displacement or traction is prescribed, i.e. 1( )ju X ∈ Γ  and 2( )jp X ∈ Γ , 

1 2∀Γ = Γ ∪ Γ . Therefore, considering M chosen points over Γ, the following set of 
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equations is produced, eqn (24) or eqn (25), not both at each boundary point 

 *
1

1
( ) ( , ) ( ), =1, ,

N

j m ij n m i n
n

u X u X a X m Mξ ξ
=

= ∀ ∈ Γ∑ … ,  (24) 

 *
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1
( ) ( , ) ( ) =1, , .
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j m ij n m i n
n

p X p X a X m Mξ ξ
=

= ∀ ∈ Γ∑ …  (25) 

Eqns (24) and (25) can now be solved for the weighting parameters ( )i na ξ . 
Eqns (22) and (23) are written for discrete points Xm belonging to the boundary Γ 
and a set of points ξ which, in principle, are not correlated to any surface in 
special. Nevertheless, in most of the applications, ξ is chosen to belong to a 
fictitious boundary surrounding the actual one, usually far enough from Γ to 
avoid near-singularities. 

Now let the Green’s function of eqns (18) and (19) be used as the fundamental 
solution in eqn (22) through eqn (25). The actual generalised openings of the crack, 

( )jc ζ , can be computed as a sum of the fundamental generalised openings ( , )ijc ξ ζ  
already obtained as the solution of eqn (21). This is easily demonstrated if one 
computes ( )ju x�  over the upper and lower surfaces of the crack line, as follows, 

 
1

( ) ( ) [ ( , ) ( , )] ( ),
N

G G
j j ij n ij n i n

n
u u u u aζ ζ ξ ζ ξ ζ ξ+ − + −

=
− = −∑� �  (26) 

which leads to the approximated ( )jc ζ  as, 

 
1

( ) ( , ) ( ).
N

j ij n i n
n

c c aζ ξ ζ ξ
=

= ∑�  (27) 

Eqn (27) provides a simple and direct way to compute crack openings at 
any point over the crack line if the Green’s function is used as the fundamental 
solution for actual cracked plates. The Gauss station points used in eqns (18) 
and (19), coinciding with the collocation ones, are the natural choice for ζ in 
eqn (27) since the fundamental generalised crack openings are already 
computed there. Note that the computation of the SIF requires the generalised 
opening only at the nodal points nearest to the crack tip, for each influence 
weight at ξ; computation of the complete crack openings is therefore not 
needed. 

4 The stress intensity factors computation 

The SIFs and the correlated force intensity factors (FIF) are calculated directly at 
the first or second Gauss point closer to the crack tip, using the expressions 
below [14], 
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where ( ) ( =1,2,3)j jc c jζ=  represents the existing rotations and deflexion 
discontinuities of the crack line to be computed by eqn (27), r′ is the distance 
from the crack tip to the point where ci is calculated, E is the Young’s modulus 
and h is the thickness of the plate; K1, K2 and K3 are, respectively, the torsion, 
bending and shear FIFs and, KI, KII and KIII are the corresponding SIFs. 

5 Numerical examples 

The following examples illustrate the applicability of the procedure. The 
common features associated to the geometry modelling of the examples are 
stated below (Figure 1). 

When computing the Green’s function, eqns (18) to (20), the collocation 
points coincide with the Gauss stations and integration is performed subdividing 
the crack line into 12 segments with 6 Gauss points each, as in Guimaraes and 
Telles [12]. The segment length adjacent to the tips is set to be 0.01a where six 
Gauss points are enough to model the numerical stress/FIF limit as r′→0. The 
stress or FIFs of eqn (28) or (29) are calculated directly at the second Gauss 
point nearest the tip. 

In the MFS procedure, eqns (24) and (25), M=N is adopted for all examples. 
The points X over the actual boundary Γ of the problem are uniformly distributed 
since no advantage has been identified from concentrating points over boundary 

T
M=Q.y

ν.Q.y

QM

Figure 1: Remotely loaded cracked plate, under uniformly distributed bending
moment (M ), torsion (T ) and shear loadings (Q), shown, respectively,
from left to right; 1000a wide square plates with a 2a crack embedded
and centred.
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sectors presenting high solution gradients. The source points ξ are also 
uniformly distributed over a circular fictitious outer boundary enclosing the 
actual Γ, usually with a radius rf between 10 and 100 times half the largest 
dimension of the plate. The optimum radii range for this fictitious boundary 
has been found to strongly depend on the relation of the plate width, 2L, per 
crack length, 2a, i.e. L/a. Alternative shapes for the fictitious boundary were 
also tested without further improvement, agreeing with Medeiros et al. [13] 
and Bogomolny [15]. 

The system of equations generated by the assemblage of the eqns (24) and 
(25) is not always well conditioned. In this case, the truncated singular-value 
decomposition technique (TSVD) [16,17] is used to compute the weight 
parameters, ( )i na ξ . 

The bending moment, torsion and shear uniformly distributed applied loads 
are designated as M, T and Q in the examples. The SIFs are normalised 
accordingly, and therefore units are omitted. 

5.1 Crack in infinite medium 

The purpose of this example is to cover all the range of FIF computations for a 
varying Poisson’s ratio ν and plate thickness h, in the cracked infinite plate of 
Figure 2. The dimension of the plate is taken as 1000a wide with an embedded 
crack 2a long. In these examples, the dimensionless plate thickness, 

/ ( 10)h aε = , varies from 0.02 to 1.0, and Poisson’s ratio is chosen to be 0.0, 
0.25 and 0.5, like in Wang [18,19]. For the majority of the examples, 12 
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Murthy et al.

MFS L/a=1.5

L/a=2

L/a=3

L/a=100

L/a=4

Figure 2: Normalised moment intensity factor K1/K0 = K1Ω(M√
⎯
a) in a square

plate subjected to bending moment on the boundaries parallel to the
crack, for varying ratios of plate width L/a, thickness per crack length
h/a and n = 0.3, using 24 collocation points.



68  Recent Developments in Boundary Element Methods 

collocation points are enough to provide good results for K3 but not for K2 which 
needs 20 points to provide good results for both K2 and K3. Consequently, 
because of the wide range of plate thicknesses displayed, 36 collocation points 
uniformly distributed are adopted throughout.  

Because the crack is away from the boundary, the fictitious boundary radius 
influence on the FIF is almost negligible. Radius of 1 to 5 times the width 2L of 
the plate have been tested producing the same results (less than 0.002% 
difference); such behaviour is not observed in all problems.  

The normalised FIF, K1, K2 and K3 are plotted in Tables 1–5. The results compare 
well with those presented by Wang [18,19] for bending and torsion loadings. 

The MFS-computed FIF for the shear loading problem of Figure 2, K2 and K3 
are listed in Table 5 and left as reference since no available comparison was 
found in the literature. 

5.2 Finite square plate subjected to bending moment 

This example consists of a finite square plate, with sides equal to 2L, with a 
central horizontal crack, of length 2a, subjected to uniform bending moments 
along its horizontal boundaries. The 24 collocation points were uniformly 
distributed over the external boundary and Poisson’s ratio is 0.3. 

Even though the number of collocation points seems small, 24 points were 
found to be enough to model all examples with L/a varying from 1.5 to 100 and 
plate thickness-to-crack length ratio range between 0.05 ≤ h/a ≤ 4.0 (for 
L/a=100, this range was enhanced to 0.005 ≤ h/a ≤ 4.0). The preliminary study 
using h/a = 1, shown in Table 6, indicates that a very large  rf  is not favourable 
for L/a < 4. Since the range of h/a is wide, the fictitious radius has been chosen 
as 10L for L/a < 4 and 100L for / 4L a ≥ . Small  rf  choices can also be found in 
Wen et al. [6] and Alves and Leitão [7]. 

Table 1: Normalised moment intensity factor, 1 0 1/ ( )K K K M a= , and % 
difference related to Wang [18], for the bending problem, varying 
plate thickness ε and ν = 0.0, 0.25 and 0.50. 

 MFS Wang % Difference 
ε ν = 0.5 ν = 0.25 ν = 0 ν = 0.5 ν = 0.25 ν = 0 ν = 0.5 ν = 0.25 ν = 0 

0.02 0.6638 0.6286 0.5848 0.6662 0.6314 0.5881 −0.36 −0.44 −0.56 
0.05 0.6843 0.6501 0.6072 0.6825 0.6486 0.6061 0.26 0.23 0.18 
0.1 0.7070 0.6737 0.6317 0.7032 0.6701 0.6281 0.54 0.54 0.57 
0.2 0.7419 0.7102 0.6694 0.7375 0.7059 0.6654 0.59 0.60 0.59 
0.5 0.8184 0.7914 0.7552 0.8131 0.7862 0.7502 0.66 0.67 0.66 

1 0.8937 0.87474 0.8482 0.8873 0.8683 0.8416 0.72 0.75 0.78 
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The normalised moment intensity factors (MIF) are plotted in Figure 9 and 
compared with Murthy et al. [20]. Note that a crack of size a = L/1.5, i.e. two-third 
the width of the plate, is not really within the practical range of application. 
However, the MFS gives results not far from the reference almost until h/a = 1.5, 
after which the results get unstable. Figure 9 also shows that the procedure allows 
for a consistent MIF evaluation, for small values of h/a, not present in the reference. 

6 Conclusion 

The application of the MFS to solve cracked Reissner’s plates is discussed in this 
paper. Here, the NGF [9] is used as the fundamental solution required by the 

Table 2: The MFS normalised torsion intensity factor, 2 0 2/ ( )K K K T a= , 
and % difference compared with reference, Wang [19], for the 
torsion problem, varying plate thickness ε and ν = 0.0, 0.25 and 
0.50. 

 MFS Wang % Difference 

ε ν = 0.5 ν = 0.25 ν = 0 ν = 0.5 ν = 0.25 ν = 0 ν = 0.5 ν = 0.25 ν = 0 
0.02 0.0983 0.0901 0.0812 0.1006 0.0924 0.0833 −2.33 −2.44 −2.49 
0.05 0.1806 0.1645 0.1469 0.1807 0.1647 0.1471 −0.03 −0.12 −0.12 
0.1 0.2850 0.2594 0.2311 0.2837 0.2582 0.2300 0.46 0.46 0.50 
0.2 0.4361 0.4005 0.3596 0.4336 0.3983 0.3576 0.57 0.54 0.56 
0.5 0.6779 0.6402 0.5925 0.6738 0.6362 0.5888 0.61 0.62 0.63 

1 0.8371 0.8108 0.7748 0.8313 0.8050 0.7692 0.69 0.72 0.72 

Table 3: The MFS normalised shear intensity factor, 3 0 3
10/

(1 )
T aK K K
h ν

=
+

, 

compared with Wang [19] for torsion problem, varying plate 
thickness ε and ν=0.0, 0.25 and 0.50. 

 MFS Wang [19] % Difference 

ε ν = 0.5 ν = 0.25 ν = 0 ν = 0.5 ν = 0.25 ν = 0 ν = 0.5 ν = 0.25 ν = 0 
0.02 0.1218 0.1006 0.0794 0.1168 0.0966 0.0763 4.28 4.18 4.02 
0.05 0.1593 0.1333 0.1067 0.1567 0.1312 0.1051 1.67 1.62 1.55 
0.1 0.1754 0.1495 0.1221 0.1737 0.1481 0.1209 1.00 0.96 0.97 
0.2 0.1587 0.1393 0.1176 0.1575 0.1382 0.1167 0.75 0.79 0.73 
0.5 0.0829 0.0768 0.0691 0.0824 0.0763 0.0687 0.63 0.64 0.63 

1 0.0312 0.0300 0.0284 0.0310 0.0299 0.0282 0.52 0.49 0.49 
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method. Either the SIFs or the related FIFs are obtained through the summation 
of the fundamental generalised openings at one single point near the tip. 

Since the MFS does not implicate in computing boundary integrals but only 
plain sums, it considerably lowers the implementation effort. The NGF 
procedure, necessary to obtain the Green’s function for cracked bodies, implies 
in the usage of some numerical integral operations. These operations, on the one 

Table 4: The MFS normalised torsion intensity factor and shear intensity 

factor, 2 0 2
10/

(1 )
Qa aK K K
h ν

=
+

, 3 0 3
10/

(1 )
Q aK K K
h ν

=
+

, for 

shear problem, varying plate thickness ε and ν. 

2 0/K K  3 0/K K  
ε ν = 0.5 ν = 0.25 ν = 0 ν = 0.5 ν = 0.25 ν = 0 

0.02 0.0085 0.0067 0.0050 0.3776 0.3328 0.2845
0.05 0.0164 0.0129 0.0095 0.3838 0.3289 0.2721
0.1 0.0281 0.0223 0.0166 0.4636 0.3922 0.3198
0.2 0.0451 0.0361 0.0274 0.6233 0.5227 0.4216
0.3 0.0555 0.0449 0.0344 0.7756 0.6483 0.5208
0.5 0.0653 0.0534 0.0417 1.0707 0.8930 0.7153

0.75 0.0680 0.0560 0.0441 1.4334 1.1948 0.9562
1 0.0668 0.0553 0.0438 1.7946 1.4957 1.1966

 

Table 5: Percent error in computation of K1/K0 for L/a = 4 and L/a = 2; 
h/a = 1 and 24 collocation points uniformly distributed. 

rf/L L/a = 4 L/a = 2 
3 2.11602 1.94975 
5 1.49848 1.72756 

7.5 1.44959 0.87493 
10 1.38398 0.82239 
15 1.40327 0.00587 
20 1.40456 0.18428 
30 1.40842 0.18537 
40 0.99029 −2.333134 
50 0.8745 −2.336418 

100 0.14246 −2.964677 
150 0.14246 −5.86408 
300 0.215205 −7.050547 
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hand, are restricted to a small part of the implementation if compared to standard 
BEM. On the other hand, the actual opening in one single point near the tip can 
be computed, in a straight forward manner, applying the sum of eqn (27), and 
using eqn (28) to compute de SIF, whereas the entire crack opening is required to 
get the same actual opening in standard BEM.  

Other important feature of the method is that it reaches convergence with a 
reduced number of collocation points. Increasing the number of collocation points 
N improves the result only up to a certain limit, from which the number of effective 
terms is kept constant after the TSVD procedure. For this reason, there is no need 
to give too much attention to the best N in each application, or the condition 
number, since the TSVD technique automatically does this job more efficiently.  

The radius of the fictitious boundary is better if fixed between 5 and 100 times 
half the width of the plate. The larger the crack, the smaller the radius should be 
to better evaluate SIF. It should be emphasised though that the authors so far have 
not modelled edge crack problems using the MFS with NGF satisfactorily. 

In conclusion, the method is an easy option to quickly evaluate SIFs of 
embedded crack plate problems, even though ill-conditioning of the equations 
system is generated, tending to increase the computer process time to solve. 
Nevertheless, the number of collocation points is smaller than the usual to 
achieve the same accuracy with BEM/NGF procedure [12]. In addition, no 
integration scheme is required by the main process, resulting in reduced 
computer effort to assemble the equations system. 
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Abstract  

To predict the vibro-acoustic behaviour of structures, both a structural problem 
and an acoustic problem have to be solved. For thin structures immersed in water 
a strong interaction between the structural domain and fluid domain occurs. This 
significantly alters the resonance frequencies. In this paper, the structure is 
modelled by the finite element method. The exterior acoustic problem is solved 
by a fast boundary element method employing hierarchical matrices. A FE-BE 
formulation is presented, which allows the solution of the coupled eigenvalue 
problem and thus the prediction of the coupled eigen frequencies and mode 
shapes. It is based on a Schur complement formulation of the FE-BE system 
yielding a generalised eigenvalue problem. A Krylov–Schur solver is applied for 
its efficient solution. Hereby, the compressibility of the fluid is neglected. The 
applicability of the proposed formulation is demonstrated on a ship-like 
cylindrical test structure.  

1 Introduction 

The numerical simulation of the vibro-acoustic behaviour of ship-like structures 
requires dealing with fluid–structure interaction [1]. Since water is a dense fluid 
and the hull of the ship is comparably thin, the feedback of the acoustic pressure 
onto the structure is not negligible. Thus, a fully coupled formulation has to be 
applied. For geometrically simple structures, analytical solution of the coupled 
problem exists [2]. For more complex systems, discretisation methods are 
commonly applied. Here, both the structural domain and the fluid domain are 
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approximated by discrete elements. For the structural domain, the finite element 
method (FEM) is widely used due to its high flexibility and its applicability to 
large-scale models [3]. For the treatment of the (semi) infinite fluid domain, the 
boundary element method (BEM) is well suited. In case of the BEM, the 
Sommerfeld radiation condition is intrinsically fulfilled for this exterior acoustic 
problem by the choice of the fundamental solution [4]. However, classical BE 
formulations lead to fully populated system matrices. Setting up and storing 
them has a numerical complexity of order 2

f( )NO , where fN  stands for the 
number of pressure degrees of freedoms (DOFs). To overcome this drawback, 
fast BE methods exist, such as the fast multipole method or using hierarchical 
matrices [5–7]. A comparison of these fast BE methods in terms of memory 
consumption and computation time is found in [8]. While the hierarchical 
matrices provide a faster matrix-vector product, the multipole method requires 
less set-up time. The fully coupled system behaviour is then solved by 
combining the FE and BE system yielding a FE-BE coupled formulation. The 
monographs of Nishimura and Amini [9,10] provide a good overview on this 
field. The fast multipole method in combination with FE-BE coupled problems is 
applied in [11,12]. Different solution strategies for multifield problems are 
compared in [13], where a Schur complement formulation working on the 
pressure DOFs turned out to be robust and fast. An extension of the above-
mentioned fast BE methods to partly immersed bodies is discussed in [14].  

One major application of FE-BE coupled formulations is the prediction of the 
vibro-acoustic behaviour of ship-like structures totally submerged or partly 
immersed in water. Cabos and Ihlenburg [15] investigate the vibrational 
behaviour of ships using classical BE formulations. In contrast, fast BE 
formulations are applied in [16]. Wilken et al. [17] draw the focus to the effect of 
underwater sound radiation of ships. FE-FE formulations in the context of ship 
vibrations are found in [18].  

The previously mentioned publications yield results for the time-harmonic 
behaviour at given frequencies that depend on a certain load case. In contrast, the 
eigen solution is a system property and provides information of the eigen 
frequencies and mode shapes of a certain system. Eigenvalue problems arise in 
many engineering applications and are typically cast to a standard eigenvalue 
problem (EVP) or a generalised eigenvalue problem (GEVP). Bai et al. [19] 
discuss effective solution strategies for dense and sparse EVPs and GEVPs. A 
purely structural mechanical system discretised with a Galerkin FEM yields a 
Hermitian EVP. Adequate solution strategies are found, for example, in [3,20]. The 
FE-BE formulation does not necessarily yield a Hermitian EVP. A modified 
formulation for the hydromass operator is presented in [21], leading to a symmetric 
formulation. In this work, a solution strategy for a non-Hermitian FE-BE coupled 
EVP is presented. This allows the use of BE methods without modifications.  

The paper is organised as follows: In the next section, the FE-BE coupled 
formulation is reviewed. Then, the fluid-structure coupled EVP is derived and a 
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solution strategy based on a Schur complement formulation in combination with 
fast BE methods is presented. In the fourth section, the applicability to large-
scale problems is demonstrated on behalf of a ship-like cylindrical test structure. 
The influence of the different numerical parameters is investigated and a 
physical interpretation of the numerical results is provided. These results are then 
used in Section 5 for fast frequency computation using the ideas of model-order 
reduction. In the last section, the computation time and memory consumption of 
the presented methods are investigated.  

2 Fully coupled FE-BE formulation 

In this section the fully coupled FE-BE formulation is derived. Therefore, the FE-
formulation of the structural domain is outlined and the boundary element 
formulation of an incompressible fluid is briefly discussed. The last subsection then 
combines the representation of both domains to form the fully coupled formulation.  

2.1 FE formulation of structural domain 

Due to its simplicity, the FEM is predominantly chosen for simulating linear 
elastodynamic systems. The finite element formulation of the structural domain 

sΩ  (Figure 1) reads in frequency domain  

 2
s s FE s( )ω− + = − + ,M K u C p f  (1) 

where sK  and sM  denote the global stiffness matrix and global mass matrix, 
respectively. A time-harmonic behaviour ei tω  is assumed with the imaginary 
unit i and the circular frequency ω . The nodal force vector is given by sf  and 

Γi

tf

tp

Ωs

Ωa
n

p = 0

r

r'

xy

x'
→

→

→

Figure 1: Domains of the coupled halfspace problem. The exterior acoustic
domain Ωa is in contact with the structure Ωs on the fluid–structure
interface Γi. The stress vectors are denoted by t f and tp.

→ →



76  Recent Developments in Boundary Element Methods 

the global displacement vector by u . Depending on the element type, u  may 
contain both translational and rotational DOFs. The acoustic pressure vector p  
influences the structure via the coupling matrix FEC . It is given by  

 (e)
i

T
FE

(e)
du pΓ= ∫ Γ,∑C N nN  (2) 

where 
(e)∑  denotes the assembly operator applied to all FE elements on the 

fluid–-structure interface iΓ  (cf. Figure 1). The matrices uN  and pN  denote the 
shape functions of the structural displacements and the acoustic pressure, 
respectively. Here, a lumped force loading is applied, which neglects moments. 
The normal on (e)

iΓ  is denoted by n . Please note that not all structural nodes are 
in contact with water. Thus, FEC  contains zero entries for the corresponding 
DOFs. Damping may be incorporated in the model for a more realistic system 
behaviour. Using Rayleigh damping  

 s s sα β= + ,D M K  (3) 

where the damping coefficients α  and β  preserve real modes. Plugging (3) into 
(1) leads to the FE formulation  

 2
s s s FE s( i )ω ω− + + = − + .M D K u C p f  (4) 

The mass matrix sM  and stiffness matrix sK  need to be computed only 
once for a given model, since they are frequency independent. To obtain a high 
flexibility, the commercial finite element package ANSYS is used to set up sK  
and sM . For further information see the documentation [22].  

2.2 Boundary element formulation for the fluid domain 

Below, the boundary integral equations for the fluid are derived in the frequency 
domain for the exterior acoustic problem as depicted in Figure 1. The normal on 
the boundary is assumed to point into the fluid. On the interface iΓ , the acoustic 
domain aΩ  is in contact with the vibrating structural domain sΩ . Since water is 
nearly incompressible, the fluid formulation is based on the Laplace 
equation [18]:  

 a( ) 0 forp x x∆ = ∈Ω ,  (5) 

where p denotes the fluid pressure and the Laplacian is given by 2∆ = ∇ . The 
influence of compressibility is remarkable only at high frequencies and can be 
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incorporated by the Helmholtz equation [23]. The Laplace equation is valid for 
the pressure p at an arbitrary point x  within the exterior acoustic domain aΩ . A 
weak form of the Laplace equation is obtained by weighting with the 
fundamental solution  

 1 1( )
4 4

P x y
r rπ π

∗ , = − ,
′

 (6) 

where r x y=| − |  denotes the distance between the field and the load point. The 
second term in eqn (6) accounts for the pressure-free boundary condition of the 
water surface [14,24,25]. Therefore, x  is mirrored on the water surface (see 
Figure 1). The distance between the mirrored point x′  and the point y  is given 
by r x y′ ′=| − | . Applying Green’s second theorem to a weighted residual of eqn 
(5) yields the representation formula  

 i i a
( ) ( )( ) ( ) d ( )d fory y

y y

p y P x yp x P x y s p y s x
n n

∗
∗

Γ Γ
∂ ∂ ,

= − ∫ , + ∫ ∈Ω ,
∂ ∂

 (7) 

which is valid for x  within the acoustic domain. The hypersingular boundary 
integral equation is obtained by shifting x  onto the smooth boundary and taking 
the derivative with respect to the normal xn   

 i i i

( )( ) ( )( )

( ) ( )1 ( ) ( )d ( )d for
2

y y
x x y

K q x Dp x

P x y P x yq x q y s p y s x
n n n

∗ ∗

Γ Γ

′ −

∂ , ∂ ,∂= − ∫ + ∫ ∈ Γ ,
∂ ∂ ∂

 (8) 

where K ′  denotes the adjoint double layer potential and D is the hypersingular 
operator. The variable q represents the acoustic flux, which is defined on iΓ  as 

( )( )
x

p x
n

q x ∂
∂:= . To obtain an algebraic system of equations from eqn (8), the 

boundary iΓ  is discretised with triangular elements and the Galerkin method is 
applied [6]. Linear test and shape functions are used for the acoustic pressure p. 
Constant shape functions are used for the acoustic flux q. The BE-formulation 
for the acoustic fluid then reads  

 

BE

BE
1( ) 0
2

′− − = .

C

K p I K q  (9) 

Hereby, the matrices BEK  and ′K  correspond to the hypersingular operator 
and the adjoint double layer potential, respectively. As stated before, a drawback 
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of classical BE methods lies in the quadratic expense for setting up and storing 
the resulting fully populated matrices. Hierarchical matrices (H -matrices) 
approximate sub-partitions of the BE matrices by matrices of low rank saving a 
considerable amount of memory consumption and computation time and are 
therefore applied in this work [7,6,23].  

2.3 FE-BE coupling 

To couple the structural and the fluid domain a relation between the acoustic flux 
( )q y  and the particle displacement f ( )yu  is established using Euler’s equation. 

In the following, only rigid surfaces are investigated. Thus, the acoustic flux q is 
substituted by the structural displacements u  using  

 ( ) 2
f i( ) ( ) forq y u y n y yω= ⋅ ∈Γ ,�  (10) 

where f�  denotes the density of the fluid. Assuming a constant flux q on the 
elements e, the acoustic flux is expressed by a weighted average  

 ( ) 2
f

1
3

e k
n

k e
q uω

∈
= .∑�  (11) 

The transformation is written in matrix notation as 2
qω=q T u , where q  

denotes the vector with the flux on the elements. The column matrix qT  selects 
only displacements of translational DOFs which are located on the fluid–
structure interface. With eqn (9), the resulting BE system is formulated as  

 2
BE BE 0qω+ = .K p C T u  (12) 

Combining eqns (12) and (4) and neglecting structural damping ( s 0=D ) 
yields a coupled system of linear equations  

 s s sFE2

BE BE

0
0 0 0q

ω
⎡ ⎤⎛ ⎞

⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + = ,⎜ ⎟ ⎜ ⎟⎜ ⎟− ⎝ ⎠ ⎝ ⎠⎝ ⎠

M K C u f
C T K p

 (13) 

with the vector of unknowns ( )TT Tu p .  

3 Coupled eigenvalue problem 

Starting from the FE-BE coupled formulation (13), a coupled EVP is derived and 
an efficient solution strategy is presented in this section.  
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3.1 FE-BE coupled eigenvalue problem 

To obtain the FE-BE coupled EVP the right-hand side in eqn (13) is set to zero 
( s 0=f ). A Schur complement formulation is then obtained by solving the linear 
set of equations of the lower block in eqn (13) for the unknown pressure p   

 2 1
BE BE qω −= ,p K C T u  (14) 

and plugging this into the upper block  

 
BE

2 1
c s FE BE BE s cs cs0 for 1i q i i … nω φ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎛ ⎞
⎜ ⎟− + + = = , , .
⎜ ⎟
⎝ ⎠

M

M

M C K C T K  (15) 

The variables c cs{ }i iω φ,  stand for the coupled eigen pair, consisting of the 
coupled eigen frequency and eigenvector. Typically, only a small number of 
eigenvectors csn  are computed. The coupled generalised EVP (15) (GEVP) differs 
from the purely structural GEVP by the additional term BEM . Since this is 
equivalent to adding an additional mass, it is often referred to as hydromass operator. 
For its evaluation the inverse of the matrix BEK  is required, which it is not 
computed explicitly. Instead, the solution of the BE system is iteratively computed 
for every right-hand side vector. Thus, the matrix entries of BEM  and consequently 
of M  are not known explicitly. Only a matrix-vector product is available. This fact 
is important for the appropriate selection of the solution strategy. Furthermore, the 
solution strategy depends on the properties of the three matrices sM , BEM  and sK : 
The matrices sM  and sK  are symmetric, if the Galerkin method is applied for the 
FE formulation. The symmetry of the matrix BEM  depends on the discretisation, 
since the continuous operator itself is self-adjoint. With some manipulations 
symmetry of the discretised hydromass operator can be preserved [21]. However, in 
this work no symmetry is assumed. Thus, the GEVP (13) is a generalised non-
Hermitian eigenvalue problem (GNHEVP).  

3.2 Solution strategy 

As stated above, each matrix-vector product of M  involves the solution of the 
uncoupled BE problem ( 1

BE
−K x ). In this work, it is computed by a GMRES, 

which is preconditioned by a simple diagonal scaling [23]. The BE matrices 
BEK  and BEC  are approximated by H -matrices. A Krylov–Schur solver is used 

to solve the EVP (15) [26]. The Krylov–Schur solver requires a standard EVP 
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(and not a generalised EVP). Therefore, eqn (15) is transformed via a shift-and-
invert spectral transformation to yield  

 ( ) 1 22
cs c cs css for 1i i i i … nφ θ φσ

−
= = , , ,− MK M  (16) 

with the shift 2σ  and  

 2 2
c 2

c

1
i

i
ω σ

θ
= + .  (17) 

Typically, a non-zero value for 2σ  is used to focus on eigenvalues around 
2σ  or to circumvent the inversion of the singular matrix sK  in case of rigid 

body modes. However, for a numerical efficient implementation of the FE-BE 
coupled EVP, 2σ  is required to be zero for two reasons: First, since M  
involves the solution of the BE system, the frequent application of M  is 
expensive and the numerical effort is minimised by setting 2 0σ = . Second, no 
sparse LU or LDL T  factorisations of ( )2

s σ−K M  exist (since M  is not known 
explicitly), which is essential for a high performance.  

The Krylov–Schur solver solves for the eigenvalues 2
ciθ  with the largest 

magnitudes. According to (17), it will consequently solve for the values of 2
ciω  

with the smallest magnitudes by setting 2 0σ = . Computing the eigen pairs 
of (15) around an arbitrarily chosen value of 2σ  is possible, yet expensive.  

The ship-like structure which will be investigated below is free-floating. 
Thus, sK  does not have full rank. Since 2σ  is required to be zero, the Moore-
Penrose pseudoinverse of sK  is applied to obtain a numerically stable 
factorisation [27]. A LU-decomposition is computed using the implementation of 
UMFPACK [28]. In summary, the Krylov–Schur solver operates on the system  

 ( )1 2
s c cs 0i iθ φ− − = .K M I  (18) 

For a better convergence, a block version of the Krylov–Schur solver (block 
Krylov–Schur solver, BKS) is applied based on the implementation available in 
the Anasazi package of the Trilinos project [29,30].  

4 Numerical example 

In this section, the numerical applicability of the proposed method is 
demonstrated on a cylindrical test structure. The physical interpretation of the 
coupled eigen solution is then discussed.  



Recent Developments in Boundary Element Methods  81 

4.1 Ship-like test structure 

The ship-like structure depicted in Figure 2 (left) consists of a 20 m long 
cylinder with a diameter of 2 m and spherical endcaps on both sides. Circular 
stiffeners are mounted every 0.8 m as shown in Figure 2 (right). The structure is 
additionally strutted by stiffeners in longitudinal direction and by an intermediate 
bottom. The shell thickness of all elements is 1.5 cm. All parts are made out of 
steel (E=207 GPa, ν =0.3, sρ =7669 kg/m3). The structure is immersed into the 
water with drafts of 0.5 m, 1.0 m and 1.5 m. If not specified otherwise, the draft 
is 1.0 m. The FE model consists in total of 31,129 FE Elements (SHELL63) with 
186,774 DOFs. For a draft of 1.0 m, the BE model has 6431 nodes and 
6276 elements.  

4.2 Numerical results 

Various numerical parameters influence the convergence behaviour of the 
proposed solution strategy, such as the block size, the solution tolerance of the 
BE problem and the approximation error of the H -matrices. In this work, the 
focus is on a physical interpretation of the fluid-structure coupled modes for the 
immersed cylindrical shell structure. They are often referred as ‘wet modes’.  

The four pictures in Figure 3 show the contour plots of the wet mode shapes, 
when the cylindrical test structure has a draft of 1 m (i.e. 50% are immersed). To 
see the internal behaviour of the structure, the cylindrical hull is not shown. 
Modes 3 and 4 in Figures 3(a)and 3(b) are bending modes with the largest 
deflection in the y-direction and x-direction, respectively. Mode 5 in Figure 3(c)? 
is a torsional mode shape. Mode 22 shows large deflections on the inner 
horizontal bottom plate (cf. Figure 3(d)).  
 The strength of the fluid–structure interaction varies for the different modes. It 
alters both the eigen frequency and the shape and is investigated in what follows. 
For a comparison between the uncoupled and coupled modes, the coupled modes 

z

y

x

Figure 2: Cylindrical test structure. The structure is partly immersed in water
(dark-colored elements, left).
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are matched to the uncoupled ones by the largest value of the modal assurance 
criterion (MAC value) which is computed using the uncoupled mass matrix sM . 
Denoting the uncoupled eigen pair by s s{ }i iφ ω, , the MAC values reads  

 
T 2
s s cs

T T
s s s cs s cs

( )
MAC

( )( )
i j

ij
i i j j

φ φ
φ φ φ φ

= .
M

M M
 (19) 

The four modes of the Figure 3 have in common that their deflections are not 
significantly altered compared to the deflections of the uncoupled mode shapes. 
All MAC values are above 0.98. In contrast, the frequency shift changes for the 
different modes. For mode 3, the frequency shift is −24.1%, while the frequency 
shift of the corresponding bending mode 4 is only −17.3%. This difference in the 
frequency shift is explained by the fact, that the largest deflections for mode 4 
are mainly parallel to the water surface and thus the fluid-structure interaction is 
lower than for mode 3, whose largest deflections are perpendicular to the water 
surface. The eigen frequency of the torsional mode (mode 5) is not altered, since 
hardly any fluid structure interaction occurs. The same holds for mode 22. Since 
its largest deflections are in the inner part of the cylindrical test structure and its 
deflections on the water surface are small, only a small frequency shift is 
observed. For higher frequencies, the similarity between the uncoupled and 
coupled modes decreases if a strong fluid structure coupling occurs. The same 
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(a) fc3 = 40.8 Hz
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(b) fc4 = 48.7 Hz
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(c) fc5 = 61.7 Hz
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(d) fc22 = 117.7 Hz

Figure 3: Contour plot of the coupled mode shapes of the structure with a draft
of 1m.
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holds if the draft is increased. The results demonstrate, that the strength of the 
hydromass effect strongly depends on the draft level and the mode shape and 
cannot be estimated easily, which necessitates the solution of the coupled EVP. 
This is efficiently done with the presented solution strategy.  

5 Conclusion 

In this paper, a numerical strategy for the solution of the fluid-structure coupled 
EVP for ship-like structures is presented. The structural part is modelled by the 
FEM and the surrounding fluid by the BEM accelerated by hierarchical matrices. 
A block Krylov–Schur solver is used applying a Schur complement formulation 
for the solution of the coupled EVP. Here, the influence of the fluid is 
represented by an additional mass operator, the so-called hydromass operator. 
Numerical results for a ship-like cylindrical test structure demonstrate that this 
solution strategy is capable to solve large-scale models. All coupled eigen 
frequencies are lowered, when comparing the coupled eigen solution to the 
uncoupled one. However, this frequency shift turned out to strongly depend on 
the mode shape and thus the strength of the mutual fluid-structure coupling.  
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Abstract 

The boundary element method (BEM) requires only a surface mesh to solve a 
wide variety of problems arising in engineering analysis. However, analysis of 
non-homogeneous media using the BEM poses many challenges. In this chapter, 
we discuss some techniques that are useful in the context of heat conduction in 
non-homogeneous media using a generalised BEM and the concept of iterative 
domain decomposition as a useful and effective means of treating piecewise non-
homogeneous media in the context of thermoelasticity and heat conduction. 

Keywords: Non-homogeneous media, Domain decomposition, Thermoelasticity, 
Parallel computation, Boundary element method. 

1 Introduction 

Many modern industrial materials, for instance, functionally gradient materials 
[1,2], exhibit thermophysical property heterogeneities that can be tailored by 
careful design of their microstructure, see Koizumi and Niino [2], to meet ever-
increasing demands placed on materials by modern technologies such as the single 
stage to orbit plane, ceramic engines and advanced turbomachinery components. 
There are also many naturally occurring materials such as sedimentary rock and 
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wood that exhibit material heterogeneity. Practical issues related to analysis of 
non-homogeneous media via the so-called ‘homogenisation’ or effective statistical 
macroscopic description of thermal conductivity is reviewed in [3]. The boundary 
element method (BEM) [4–6] relies on the availability of the Green’s free-space 
solution, and for such a class of problems, the BEM solution can be expressed in 
terms of boundary integrals only. 

For heterogeneous media, the BEM formally leads to domain integrals. 
However, in certain cases, such as layered media, the material property can be 
modelled as constant in certain zones of the medium. In such cases, the domain 
is divided into multiple zones of constant material property, and interface 
continuity of the field variable and its derivative are enforced to couple each 
zone [7] and the resulting system is solved using block solvers [8–11]. 

In certain cases, Green’s free space solutions can be found; for example, for 
potential problems in two- and three-dimensional heterogeneous media whose 
material properties vary one-dimensionally with position [12–15]. Another 
approach utilises a fundamental solution that is a locally radially symmetric 
response to a non-symmetric forcing functions and leads to a boundary-only 
formulation that can be extended to transient problems using the DRM [16–19]. 
Moreover, the concept of domain decomposition proves a powerful approach to 
piecewise non-homogeneous BEM modelling when coupled with an iterative 
solver for heat conduction and thermoelasticity [20,21]. 

2 Generalised BEM for heat conduction in non-homogeneous 
media 

Steady-state heat conduction in isotropic heterogeneous media is governed by 
 [ ( ) ( )] 0,k x T x∇⋅ ∇ =  (1) 

where k(x) is the spatially varying thermal conductivity and T(x) is the 
temperature. The above variable coefficient partial differential equation is now 
converted to an integral equation using the fundamental solution, E, to the adjoint 
operator perturbed by a singular forcing function, ( , )D x ξ , acting at the source 
point ξ, defined by 
 [ ]( ) ( , ) ( , )k x E x D xξ ξ∇ ⋅ ∇ = −  (2) 

that obeys the following properties: 
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the amplification factor, ( )A ξ , is using the Gauss-divergence theorem 

 ( ) ( ) ( ) dΓ( )EA k x x x
n

ξ
Γ

∂⎡ ⎤= − ⎢ ⎥∂⎣ ⎦∫v  (4) 

The amplification factor explicitly depends on the solution of the adjoint 
equation, E, and the thermal conductivity. It can be shown that in 2D 

 2

0

d( , , )
( , , , )d

i i

i i

rE r x y
r k r x y

π
θ θ

= −∫
∫

 (5) 

and in 3D 
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( , , , , , ) sin d d

i i i

i i i
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π π
θ φ θ θ φ

= −∫
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 (6) 

referring to a local polar/spherical coordinate system centered at the source point. 
Furthermore, ( , )D x ξ  reveals that it is actually comprised of two parts: a Dirac 
Delta function, δ, plus a non-symmetric dipole-like function, Dd (Figure 1). 

Invoking the sampling property of D, and upon substitution into eqn (3), the 
desired boundary integral equation for the temperature is obtained as 

 
Γ

Γ

( ) ( ) ( ) ( ) ( ) ( ) dΓ( )

( ) ( ) ( , ) dΓ( ).

TA T E x k x x x
n

ET x k x x x
n

ξ ξ ε ξ ξ

ξ

∂⎡ ⎤+ = ,⎢ ⎥∂⎣ ⎦
∂⎡ ⎤− ⎢ ⎥∂⎣ ⎦

∫

∫

v

v
 (7) 

This integral equation can be expressed in terms of contour integrals utilising 
radial basis functions to evaluate ε(ξ) and can be discretised following standard 
BEM procedure to lead to the following set of equations 

 
1 1

ˆ( ) ( ) ( ) , 1,2, ,
N N

i i i ij j ij j
j j

A T H T G q i Nξ ξ ε ξ
= =

+ + = =∑ ∑ …  (8) 

Figure 1: Plot of the dipole like Dd component in proximity of a source point ξ.
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leading to the standard BEM form 

 
1 1

,
N N

i
ij j ij j

j j
H T G qε

= =
+ =∑ ∑  (9) 

where the components of the influence matrix [H] are ˆ ( )ij ij ij iH H Aδ ξ= + . The 
influence coefficients are evaluated numerically by Gauss-type quadratures. 
Once the boundary conditions are introduced, the algebraic system is solved for 
the unknowns. 

The transient problem is governed by 

 [ ( ) ( , )] ,Tk x T x t c
t

ρ ∂
∇ ⋅ ∇ =

∂
 (10) 

where ρ is the density and c is the specific heat. Using the dual reciprocity 
method, the right-hand side of above equation is expanded in series as, 

 
1

[ ( ) ],
N L

k k
k

Tc k x u
t

ρ α
+

=

∂
= ∇ ⋅ ∇

∂ ∑  (11) 

where N is the number of boundary nodes, L is the number of internal dual 
reciprocity points and uk are dual reciprocity expansion functions, leading to, 

 
1

[ ( ) ( , )] [ ( ) ].
N L

k k
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Utilising results from the steady case leads to 
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where, 

 
ˆ( ) [ ( ) ( )]

ˆ( ) [ ( ) ( )]
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k k
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 (14) 

Here, n̂  is the outward-drawn normal to the boundary Γ. After discretisation into 
N boundary elements eqn (13) can be expressed in matrix form as, 

 { }
1

,
N L

k k k
k

Gq HT Gp Huα
+

=
− = −∑� �
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 (15) 
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where H�  is the modified influence coefficient matrix. Following standard 
DRM, a capacitance matrix is defined as 

 { } 1.C c GP HU Fρ −= − − �  (16) 

Here, C  is a capacitance matrix, and the matrices U and P  are obtained by 
evaluating the expansion functions uk and its normal derivatives pk at every dual 
reciprocity point respectively. Applying a first-order finite difference in time, 
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,
∆

p pT THT Gq C
t

+⎛ ⎞−
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⎝ ⎠
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 (17) 

where p is the time-stepping parameter. Using Newmark parameters θt and θq to 
position the temperature vector, T

�
, and the flux vector, q

�
, between the time 

steps p and p+1, we find 
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�
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 (18) 

where the right-hand side is known from the previous time step. The solution of 
then follows standard boundary element treatment for the computation of the 
influence coefficient matrices and the imposition of boundary conditions. 

3 Iterative domain decomposition for thermoelasticity in 
non-homogeneous media 

The thermoelastic-coupled problem can formally be solved entirely using a 
boundary discretisation. This type of problem is encountered when a solid is 
subjected to heating conditions that give rise to a temperature distribution 
throughout its volume. This temperature distribution produces thermal expansions 
in the object under consideration. In an isotropic material, at a uniform reference 
temperature, Tref,  a small uniform increase in temperature can produce a pure 
volumetric expansion if the object is not constrained against such movement. This 
expansion can be expressed as the so-called thermal strain ( T

ije ), according to the 
equation: 

 ref( ),T
ij ij ije T T Tδ α δ α= ∆ = −  (19) 

where α is the thermal expansion coefficient. The expression above reveals that 
this thermal expansion can occur with absolutely no stresses present in the solid. 
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In the standard BEM, the coefficient matrix is full and practical issues of storage 
and computation arise in large-scale modelling, particularly in 3D. Domain 
decomposition with explicit solution of the banded coefficient matrix and 
multipole methods have been used to successfully mitigate these problems.  
We utilise an effective and efficient domain decomposition, or artificial  
sub-sectioning technique, along with a region-by-region iteration algorithm 
particularly tailored for parallel computation. The domain decomposition 
effectively reduces the condition numbers of the resulting algebraic systems, 
while increasing the solution process efficiency and decreasing the memory 
requirements. The iterative process converges very efficiently while offering 
substantial savings in memory and much promising for efficient solution of 3D 
thermoelasticity problems using the BEM and it is ideally suited for parallel 
computation. Moreover, the approach lends itself ideally to treating piecewise 
non-homogeneous composite media. 

The BEM can be utilised to resolve tractions, displacements and stresses on 
the boundary Γ and in the internal points of a domain Ω, based on a displacement 
boundary integral formulation for thermoelasticity. The thermoelastic problem is 
governed by the equilibrium equation: 

 ij
i

j
b

x
σ∂

= −
∂

 (20) 

and Hook’s constitutive relation, (2 / (1 ))ij ij ii ije eσ µν ν δ µ= − + , linearly 

relating the stress tensor, σij, to the strain tensor, 
1/ 2(( / ) ( / ))ij i j j ie u x u x= ∂ ∂ + ∂ ∂ , both of which are expressed in terms of the 

displacement vector, ui, the Kronecker delta, δij, the shear modulus, µ, and the 
Poisson ratio, v. The body force vector is bi. Combining the above yields 
Navier’s equation: 

 
(1 2 )

ji
i

j j i j

uu
b

x x x x
µµ
ν

∂∂
+ = −

∂ ∂ − ∂ ∂
 (21) 

On each part of the boundary, Γ, either the displacement i iu u=  on boundary Γu 
or the traction i it t=  on boundary Γt is prescribed in a well-posed problem, so 
that t uΓ = Γ ∪Γ  is the boundary of the domain Ω. Using the Somigliana 

identity, an integral relation between the displacements p
iu  in a collocation point 

‘p’ and the displacements ui and the tractions ti on all boundary Γ is readily 
obtained with the body forces bi appearing formally as a domain integral: 

 
Γ Γ Ω

dΓ dΓ dΩ,p p
ij i ij i ij i ij ic u H u G t G b+ = +∫ ∫ ∫v v v  (22) 
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where Gij and Hij are fundamental solutions in terms of displacement and 
traction, respectively, and i ij jt nσ=  is the traction vector and nj is the 
boundary outward normal vector. For thermoelasticity, the field stresses are 
comprised of two terms, e T

ij ijσ σ σ= + , where the first term e
ijσ  represents  

the contribution to the stress components due to the actual straining of the 
material, while the last term T

ijσ  represents the thermal expansion effect. The 

latter is given by: ref( )T
ij ijm T Tσ δ= − − . Therefore, the body forces in the 

Navier’s equation is given by ( / )i ib m T x= − ∂ ∂ . Here, the thermoelastic 
constant (2 (1 )) / (1 2 )m µα ν ν= + − . The domain integral is expanded using 
Green’s second identity and other transformations to finally obtain: 

 
ref

dΓ
dΓ dΓ ,
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jp p
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E qmc u H u G t
k F T T
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⎢ ⎥+ = +
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∫
∫ ∫

∫
v

v v v
 (23) 

where k is the material thermal conductivity. Moreover, assuming thermal 
equilibrium, 2 / 0i iT x x∂ ∂ ∂ = , the temperature at the collocation point p can also 
be related to the temperature and heat flux at the boundary by means of the 
following boundary integral equation: 

 dΓ dΓ,p p
T Tc T G q H T

Γ Γ
+ =∫ ∫v v  (24) 

where pc  is a geometrical constant that possesses similar properties as p
ijc , and 

GT and HT are the fundamental solutions for temperature and heat flux. The 
normal heat flux is defined as: ( / )i iq k T x n= − ∂ ∂ . Additionally, one can obtain a 
BIE that relates the stresses to boundary displacements, tractions, temperatures 
and heat fluxes as: 

 refΓ

ref

dΓ dΓ

dΓ ( )dΓ

( ) ,

pp
ij ijk i ijk iik

jk jk

p p
jk

c S u D t

m A q B T T
k

c m T T

σ
Γ Γ

Γ

+ =

⎡ ⎤+ − −⎣ ⎦

− −

∫ ∫

∫ ∫

v v
v v  (25) 

where Sijk and Dijk are the fundamental solutions of stresses. The coefficients Ej, 
Fj, Ajk and Bjk can be derived directly of the fundamental solution Gij, and 
detailed expressions for these can be found in [21]. The discretised displacement 
BIE can be formulated as: 
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 (26) 

where NE is the number of elements and NN is the number of degrees of freedom 
of the field variables in each element. For all examples presented in this paper, 
we utilise discontinuous quadratic elements with three (NN = 3) independent 
nodes for the field variables in each element with Mn(η) denoting the respective 
quadratic shape functions. Also, η denotes the homogeneous parameterisation 
variable(s) of the element geometry, and Jl(η) is the Jacobian of the element ∆Γl. 
To form an algebraic system, the point p is located at each of the NN nodes of all 
the elements NE. This generates independent equations: 

 [ ]{ } [ ]{ } { }.H u G t s= +  (27) 

The matrices [H] and [G] have dimensions N×N where N d NE NN= × ×  and 
d is the number of spatial dimensions (2 or 3). The vector {s} contains the 
integrated information of the thermal effects on the elastic field. Finally, the 
boundary conditions it  or iu  are introduced in this algebraic system to arrive 
at the standard from: [ ]{ } { }A x b= , where the unknown vector {x} contains the 
strains and tractions that they were not specified as boundary conditions. 
Once the system is solved, all the field variables at the boundary are known 
and can be employed to determine strains and internal stresses using the 
appropriate boundary integral equations. The same procedure is initially used 
to determine the temperature and heat fields using the temperature boundary 
integral equation. 

To determine the iterative domain efficiency, it is necessary first to indicate 
the requirements of memory for the resolution of the domain problem Ω in a 
single region, see Figure 2, with the corresponding boundary conditions and  
the characteristic discretisation of the BEM. If a discretisation of NE elements 
with NN independent nodes per each element is generated in a single region, the 
resulting algebraic system has dimensions N×N, where N d NE NN= × ×  and d 
is the number of spatial dimensions (2 or 3), so that 1 1Ω [ ] { } { }NxN Nx NxA x b⇒ = , 
where the vector {x} represents the unknown values of the tractions and 
displacements around the boundary. In this case, the number of floating point 
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operations required to arrive at the algebraic system mentioned above is 
proportional to N2; similarly, direct memory allocation is also proportional to N2. 
The solution of the algebraic system can be performed using a direct solution 
method such as LU decomposition requiring floating point operations 
proportional to N3 or an indirect method such as bi-conjugate gradient or 
generalised minimum residual, which, in general, requires floating point 
operations proportional to N2 to achieve convergence. However, if a multi-region 
solution process is adopted instead, the original domain Ω is divided into K  
sub-domains 1, ,l l KΩ ∴ = …  separated by interfaces artificially created, and 
each one is independently discretised, as shown in the Figure 3 for the case 
where K = 4. Successively, the solution in each sub-domain can be obtained 
independently through a standard process, as long as the boundary conditions in 
the artificial interfaces between the sub-domains are imposed. For example, the 
first sub-domain Ω1 in Figure 2 is independently analysed. The application of the 
BEM in this sub-domain is used to generate an algebraic reduced algebraic 
system, 1 1[ ] { } { }nxn nx nxA x b= , where the dimension n d ne NN= × ×  is obviously 
a fraction of the original dimension N as thoroughly explained in [20,21]. 

Naturally, the boundary conditions at the artificial interfaces between the 
sub-domains are originally unknown, and, therefore a scheme must be devised to 
guarantee the continuity and equilibrium of the field variables between the sub-
domains, namely, that: 

 and ,a b a b
i i i iu u t t= = −  (28) 

Figure 2: BEM single region discretisation.
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where the superscripts a and b indicate each side of the interface at issue. In order to 
guarantee these conditions at each iteration, including at the initial guess, a 
preliminary discretisation of very low resolution is carried out providing a simplified 
model for the problem. This is solved by BEM to generate physically meaningful 
initial values at the interfaces. The latter are updated utilising a refined discretisation 
until a solution is achieved that satisfies the interfacial equilibrium and continuity 
conditions within a set tolerance. The progression of the iterative process involves 
two stages. In the first stage, each interface is individually imposed with conditions 
of the first kind prescribing displacements iu  and the tractions ti, which are solved 
using the standard BEM in each sub-domain. These intermediate computed tractions 
do not agree on each side of the interfaces; thus, it is necessary to alter these tractions 
to force them to satisfy the equilibrium conditions, and this is accomplished using the 
following anti-symmetric averaging: 

 and
2 2

a b a b
a a b bi i i i

i i i i
t t t t

t t t t
+ +

= − = −  (29) 

This guarantees that the updated tractions, a
it  and b

it , have the same magnitude 
but opposite signs satisfying the equilibrium condition. Once these tractions are 
updated, the second stage of the iterative procedure utilises these tractions as the 
imposed interfaces conditions for each sub-domain. A new displacement field in 
the interfaces is obtained, and, again, the displacements do not agree on both 
sides of each interface. They are updated by a simple average to ensure 
continuous displacement, so that 

 and .
2 2

a b a b
a bi i i i
i i

u u u u
u u

+ +
= =  (30) 

An iterative norm is defined as the root mean square of the difference between 
the updated interfacial displacements and those at the previous step. The iteration 
is stopped when ε reaches a preset value. A similar approach is utilised to solve 
the heat conduction problem, where the temperature and heat flux are the 
interfacial quantities [20]. 

If a direct approach such as LU factorisation is employed for all sub-
domains, the LU factors of the coefficient matrices for all sub-domains can be 
computed only once at the first iteration and stored on disk or in RAM for later 
use during the iteration process. Subsequently, only a forward and a backward 
substitution will be required. This feature provides a significant reduction in the 
computational burden for the overall BEM solution. The domain decomposition 
BEM formulation detailed is ideally suited to parallel computing [20,22]. A 
static load-balancing routine can be utilised to optimally distribute the 
computation over the nodes. This optimisation is performed using a discrete 
genetic algorithm, as described in [20]. A key step in the domain decomposition 
is to keep each sub-domain discretisation to a number of elements that allows the 
problem to be stored in available RAM memory to avoid disk paging. 
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4 Example 

An example is taken of a composite analysis provided from a bioengineering problem 
of modelling the diaphysis section of a cortical bone with a fixation element (Schanz 
screw). The cortical bone is considered a transversally isotropic material. The shear 
modulus 11.9GPaµ = , the Poisson ratio is set to v = 0.31 and the thermal 
conductivity is 0.535W/mKk = . The thermal expansion coefficient is 

7 19.15 10 Kα − −= ⋅ . The cortical bone geometry as seen in Figure 4 was obtained 
from a tomography of an actual patient, and it is discretised with 83 quadratic 
isoparametric discontinuous elements. The fixation element dimensions are height 

34 10 mh −= ⋅  and length 0.2mL = , and it is discretised with 32 quadratic 
isoparametric discontinuous elements. The bone is imposed with a temperature 

311KT =  from its periphery while the Schanz screw is imposed a temperature 
293KT =  on its end to simulate the effects of a colder fixation element being heated 

by the bone. A bending moment 9.8 N mmM = ⋅  is also applied to the end of the 
Schanz screw to simulate the fixation adjustment procedure. The thermal conductivity, 
thermal expansion coefficient, shear modulus and Poisson ratio for the Schanz screw 
are k = 14.9 W/mK, α = 13.106 K-1, µ =60 GPa, and v = 0.3. The analysis was carried 
out with elastic and thermoelastic conditions, and converged results to an iterative 
norm of 105 were obtained in just a few iterations. Plots of the stress field for the 
elastic and thermoelastic cases are shown in Figures 5(a) and (b), respectively, and the 
displacement fields are shown in Figures 5(c) and (d). Note the strong influence of the 
thermal field over the elastic field when the coupled thermoelastic model is analysed. 

Using the same model, a small 1.8 mm fracture is introduced in the cortical 
bone region to illustrate the stress dissipation effects of the fixation element. The 
fracture mechanics analysis on the crack is performed using the dual BEM 
approach, where independent equations are generated on each side of the crack 
by evaluating the displacement boundary integral equation on one side and the 

φ 0.004

Schanz Screw
Diaphysis
section of

cortical bone

M

Figure 4: Bone model boundary conditions.
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traction boundary integral equation on the other. It is important to emphasise that 
since discontinuous boundary elements are used throughout the discretisation, 
singularities at the fracture tip are always avoided. Plots of the stress fields for 
the elastic and thermoelastic analyses with the fracture are shown in Figures 6(a) 
and (b) with details in Figures 6(c) and (d). Plots of the displacement fields for 
the elastic and thermoelastic analyses with the fracture are shown in Figures 6(e) 
and (f) with details in Figures 6(g) and (h). Note how the fixation element 
absorbs most of the stress away from the small fracture. 

5 Conclusions 

We reviewed the generalised BEM for heat conduction in non-homogeneous 
media and presented an effective iterative domain decomposition algorithm for 
thermoelastic problems in composite non-homogeneous media. The approach 
 

SVM: 6.5E+04 2.7E+05 4.8E+05 6.9E+05 9.0E+05 SVM: 6.5E+04 1.0E+07 20E+07. 3.0E+07 4.0E+07

(a) (b)

|U|: 2.5E-09 7.0E-08 1.4E-07 2.1E-07 2.7E-07 |U|: 2.5E-09 1.1E-06 2.2E-06 3.3E-06 4.3E-06

(c) (d)

Figure 5: Diaphysis section of cortical bone under load: (a) stresses
from elastic analysis, (b) stresses from thermoelastic analysis,
(c) displacement from elastic analysis, and (d) displacements
from thermoelastic analysis.
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(e) (f)
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Figure 6: Diaphysis section of cortical bone under mechanical load and under
                combined and thermal load with a fracture located below the Schanz

screw: (a) contour plots of the stresses for elastic analysis with fracture, 
(b) contour plots of the stresses for thermoelastic analysis with fracture,
(c) fracture detail for elastic analysis (stress contours), (d) fracture detail
for thermoelastic analysis (stress contours), (e) contour plots of the
displacements for the elastic analysis with fracture, (f) contour plots
of the displacements for the thermoelasticity analysis with fracture,
(g) fracture detail for elastic analysis (displacement contours) and
(h) fracture detail for thermoelastic analysis (displacement contours).
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permits analysis of large-scale problems as the original domain is decomposed 
into a number of sub-domains, each of which can be solved on separate 
processors. The technique is well suited for parallel computation, converging 
efficiently and offering substantial savings in memory and computational time. 
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Abstract 

A new solution technique is presented for a pure three-dimensional analysis of 
thick plates through the evaluation of contour-only integrals. It combines the 
advantages of the finite element method and the boundary element method 
(BEM), along with a new powerful and versatile method developed by J.T. 
Katsikadelis, the analogue equation method (AEM), which eliminates the 
inherent weaknesses of the other two methods. The problem of a thick plate is 
formulated by means of a total potential energy formulation and by assuming a 
piecewise continuous distribution of the three displacement components through 
the plate’s thickness. The system, through its thickness, is analysed by 
introducing numerical layers and developing a one-dimensional finite element 
model. In each of these layers, the corresponding two-dimensional Euler–
Lagrange equations and accompanying boundary conditions are derived. The 
resulting boundary value problem is discretised according to the BEM and, 
eventually, is solved using the AEM. The latter offers the choice of simple and 
easy-to-use fundamental solutions instead of deriving problem-depended and 
complicated singular expressions and guarantees the boundary-only character of 
the solution. The governing equations of the single layer are replaced by Poisson 
type equations subjected to fictitious loads under the same boundary conditions. 
These fictitious sources are established through BEM. The developed numerical 
model, although reduced to contour integrals, maintains all the advantages and 
salient features of a pure three-dimensional model. The thick plate is discretised 
through its thickness into one-dimensional finite elements (layers) and each 
layer’s in-plane boundary is discretised into one-dimensional boundary elements. 



104  Recent Developments in Boundary Element Methods 

Keywords: Thick plates, Three-dimensional stress analysis, Laminated thick plates, 
Finite element method, Boundary element method, Analogue equation method. 

1 Introduction 

The classical plate theory (Kirchhoff’s theory or thin plate theory) yields 
sufficiently accurate results [1] for many technical applications. There are, 
however, important problems for which the results are unacceptable. The 
accuracy of the classical plate theory decreases and its validity is lost with 
growing thickness, with increasing rate of change of the loading with respect to 
the coordinates and with increasing Poisson’s ratio. It may also result in serious 
errors regarding the distribution of the internal stresses, especially in the edge 
zone as well as in the magnitude of the reactions. Also, in classical plate theory 
transverse shear deformation is neglected. The imperfections of the classical 
plate theory prompted various authors to develop more accurate theories which 
take into consideration the shear deformation [2,3]. Apparently, it would be even 
more realistic and accurate to analyse thick plates as three-dimensional structures 
which may have complicated geometry, multiple inclusions, arbitrary loading 
and type of support conditions, either on the boundary or in the interior. 

Three-dimensional structures are governed by the Navier equations of 
equilibrium and can be analysed numerically either by domain methods (e.g. finite 
difference method and finite element method) or by the boundary element method 
(BEM). The latter is more economical than the domain methods, because it 
requires only boundary discretisation and reduces the spatial dimensions of the 
problem by one. Furthermore, the BEM is more accurate, because the boundary 
displacement and traction vectors are calculated with the same degree of accuracy, 
and once the solution on the boundary has been obtained, displacements, stresses 
and strains are computed at any point of the domain as accurately as the boundary 
quantities (continuous functions of the position). 

For three-dimensional analysis of plates, a typical application of BEM 
requires discretisation of the top, bottom and side surfaces, and then evaluation 
of double integrals over each element. The fundamental solution in this case is 
the well-known Kelvin’s solution in three dimensions. The problem dimensions 
can be further reduced by producing a fundamental solution that reflects the 
geometry of the plate, or assuming a priori piecewise continuous distribution 
of the dependent variables of the problem through the plate thickness [4]. The 
review of the pertinent research [5] reveals that it is rather cumbersome to 
evaluate analytically the corresponding fundamental solutions and, in some 
cases, cannot be readily and efficiently applied to the analysis of plates. 

In the present work, the three-dimensional stress analysis of plates is performed 
in two phases. In the first phase, the displacement field is approximated through 
the thickness of the plate using predefined Lagrange polynomials, whose degree 
depends on the required accuracy of the solution, the thickness, the type of loading 
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and the complexity of the contour geometry [5]. A total potential energy 
formulation based on these displacements produces the new governing equations 
and boundary conditions of the plate problem, which are expressed now in terms of 
the two in-plane independent variables [4]. Through this energy formulation, the 
plate is discretised through its thickness into numerical planes (i.e. each point on 
the middle plane of the plate is associated to a set of nodal points through the 
thickness) and the residual (error) related to the displacement approximation is 
weighed evenly over the domain of the problem. In the second phase, the two-
dimensional boundary value problem is solved using AEM of J.T. Katsikadelis. 
According to this method [6], the governing equations are replaced by equivalent 
non-homogeneous ones which have known and simple-to-use fundamental 
solutions. For the problem at hand, these are Poisson’s equations. The solution of 
each substitute equation is obtained as a sum of the corresponding homogeneous 
solution and a particular one. The non-homogeneous term, which is an unknown 
fictitious domain source distribution, can be approximated by series of radial 
basis functions. Applying subsequently the BEM, the displacements and their 
derivatives involved in the discrete governing equations are expressed in terms 
of the unknown series coefficients. These coefficients are then established through 
collocation of the equations at discrete points in the interior of the domain. It is 
worth pointing out that, if the degree of the Lagrange polynomials which 
approximate the displacement field through the thickness is n , then there will 
be ( )3 1m n= +  differential equations, and consequently, m  different sets of 
coefficients for each numerical layer. 

The proposed method results in expressions for the displacements which 
involve only contour integrals. Thus, it is a boundary-only method requiring 
discretisation only on the plate’s mid-plane boundary. The additional collocation 
points inside the domain do not spoil the pure boundary character of the method. 
The derived integral solution for the displacement components is then used 
to obtain explicit boundary integral expressions for the stress and strain 
components at any point in the three-dimensional structure. Numerical results for a 
wide range of thickness values validate the effectiveness and the accuracy of the 
method. The proposed hybrid technique, although reduced to contour integrals, 
provides a simple, efficient and versatile methodology for the three-dimensional 
analysis of thick elastic plates. The problems of anisotropic composite plates and 
laminates, plates resting on elastic foundations, delaminations, thermal stresses, 
vibrations or stability are treatable in an analogous manner. 

2 Statement of the problem 

Consider a thick plate of arbitrary shape having total thickness H . It occupies 
the domain V  in the three-dimensional space and it is bounded by a surface S . 
It may contain a finite number of inclusions and holes, which need not extend 
through the whole thickness of the plate (Figure 1). The total potential energy for 
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the system is given as 

 1
2

ˆ( ) d d d ,i ij ij i i i i
V V S

u V f u V t u Sσ εΠ = − −∫ ∫ ∫  (1) 

where if  denotes the applied body forces per unit volume and ît  the externally 
applied tractions on the boundary. In eqn (1) and in the remaining part of this 
chapter, summation on repeated indices is implied, unless otherwise stated. 

The strain–displacement relations for geometrically linear behaviour and the 
constitutive relations for isotropic materials are 

 1 ,
2

ji
ij

j i

uu
x x

ε
⎛ ⎞∂∂= +⎜ ⎟∂ ∂⎝ ⎠

 (2) 

 2 ,ij ij kk ijσ λδ ε µε= +  (3) 

respectively, where , , 1, 2,3i j k =  and λ  and µ  are the Lamé constants. 
The total potential energy principle is used to derive the governing equations 

and boundary conditions of the problem. The principle states that ( ) 0iuδΠ =  
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Figure 1: Thick-layered plate discretised through its thickness into numerical 
layers. 
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and substituting eqn (1) it may be written as 
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ˆd d 0,

jk i i i
V k i j j i

i i i i
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δ δ
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− − =

∫

∫ ∫  (4) 

which is also called weak form of the differential equations of the problem [5], 
namely, the Navier equations. 

3 Layerwise governing differential equations 

3.1 Single-layer model 

The thick plate must be divided through its thickness and in the plane into 
homogeneous and simply connected sub-systems. Since a discretisation of the 
continuum multi-layered system is inevitable, and the closed-form solution for 
a single layer is very complex and not efficiently applicable to the case of 
multiple layers [4], the most suitable approach is to subdivide the structure into 
a number of layers through its thickness (Figure 2), which can be viewed as 
numerical layers with elastic constants and geometry in the 1 2x x -plane 
identical to that of the plate, but with different thickness. According to the 
layerwise theory of Reddy [7], the displacements are expanded within each 
layer using the Lagrange family of interpolation functions [8]. The nodal 
values through the thickness are functions of the in-plane coordinates 1x , 2x  
(Figure 3) and the i -th displacement component of each numerical layer is 
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Figure 2: Typical numerical layer with N  nodes in the transverse direction. 
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expressed as 

 1 2 3 1 2 3
1

( , , ) ( , ) ( ) ( 1, 2,3),
N

n
i i n

n
u x x x v x x x iφ

=
= =∑  (5) 

where ( 1)N −  is the number of subdivisions through the thickness of a layer and 
3( )n xφ  are known functions through the thickness. It is assumed that each numerical 

layer has thickness 2h  and consists of N  nodal points along the 3x  direction, each 
of which corresponds to a plane nS  ( 1,2, ,n N= … ) as shown in Figure 2. 

The approximations of eqn (5) are substituted into the weak form given 
by eqn (4) and, then, integration by parts in such a way that 1 2( , )p

iv x xδ  are 
relieved of any differentiation and application of the fundamental lemma of 
calculus of variations result in the differential equations (Euler–Lagrange 
equations) of the typical numerical layer [5] 
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Figure 3: Displacement approximation through the thickness of the typical 
numerical layer. 
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and the associated boundary conditions 
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where the indices , 1, 2, ,n p N= …  represent the element nodes, the subscripts 
, 1, 2I J =  denote the directions 1x  and 2x , respectively, and all quantities and 

interpolation functions in eqns (6) and (7) are defined over a typical element. 
In the weak form, integrals over the thickness of the typical numerical layer 

are applied only on the shape functions 3( )n xφ  and their derivatives, since these 
are the only continuous functions of 3x . Integrals with respect to 3x  of products 
between the shape functions and their derivatives are the entries of element 
matrices associated with the one-dimensional finite element model through the 
thickness of the problem. These matrices are defined in the following way: 
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where 1 2ˆ ( , , )it x x h−  and 1 2ˆ ( , , )it x x h  are distributed tractions on the two faces of 
the typical numerical layer (planes 1S  and NS ), while tractions ît  in the integral 
of ˆ p

iQ  are distributed on the side surface sideS  of the layer (Figure 2). For a single-
layer model, the traction components on the top and bottom planes are prescribed, 
while the boundary tractions ˆ p

iQ  on the contour boundaries Γ  are known only if 
the corresponding displacement components are not prescribed at the same point. 

3.2 Multi-layered model 

Equations (6) are the 3N  layerwise governing differential equations for the 
thick plate problem. They refer to a single layer whose displacement field has 
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been approximated through the thickness with Lagrange interpolation functions 
of order ( 1)N − . In case of a multi-layered thick plate (Figure 1) divided into L  
layers through the thickness, either physical or numerical, appropriate conditions 
should hold at the interface between adjacent layers to ensure the displacement 
continuity and traction equilibrium [5]. Denoting by e  the typical layer, these 
conditions are expressed as 

 , 1, 1
1 2 1 2 1 2( , ) ( , ), ( , ) ,N e e

i iv x x v x x x x+= ∈ Ω  (10a) 

 1 1
1 2 1 2 1 1 2ˆ( , , ) ( , , ) ( , ),e e e

i e i e it x x h t x x h t x x+ +
++ − =  (10b) 

where 1, 2, , ( 1)e L= −…  and 1,2,3i = . The components 1
1 2ˆ ( , )e

it x x+  denote the 
externally applied loads at the interface between the numerical layers e  and 
( 1)e + , while the components 1 2( , , )e

i et x x h  are tractions developed at the upper 

surface of the e -th layer and 1
1 2 1( , , )e

i et x x h+
+−  at the lower surface of the 

( )1e + -th layer (Figure 4). 
The differential equations (6) of the typical layer are combined through 

the above continuity conditions (10) at points in the domain Ω  to yield the 
[ 3( 1) 3N L− + ] coupled differential equations which describe the thick multi-
layered plate. In a similar way, the boundary conditions of the multi-layered 
system are produced from those of the single layer, eqns (9), through the 
following continuity conditions 

 , 1, 1
1 2 1 2 1 2( , ) ( , ), ( , ) ,N e e

i iv x x v x x x x+= ∈ Γ  (11a) 

 1 1
1 2 1 2 1 1 2ˆ( , , ) ( , , ) ( , ),e e e

i e i e iQ x x h Q x x h Q x x+ +
++ − =  (11b) 

where 1, 2, , ( 1)e L= −…  and 1, 2,3i = . The components 1
1 2ˆ ( , )e

iQ x x+  denote 
externally applied loads on the contour boundary Γ  of the interface between the 
numerical layers e  and ( 1)e + , while 1 2( , , )e

i eQ x x h  and 1
1 2 1( , , )e

i eQ x x h+
+−  are 

the components of the boundary tractions developed on the upper contour 
boundary of the e -th layer and the lower contour boundary of the ( )1e + -th 
layer, respectively (Figure 4). 

4 The analog equation method for thick plates 

The boundary value problem for a single layer is described by eqns (6) and (7). 
The multi-layered system is governed by the system of coupled differential 
equations which is formed by assembling eqns (6) according to conditions (10), 
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along with the assembled boundary conditions produced by introducing eqns (7) 
into eqns (11). Both these problems are solved by means of the AEM, which has 
been developed by J.T. Katsikadelis. Detailed description of the AEM may be 
found  in many of his papers [6,9]; however, for completeness of the present 
work, the method is concisely described here for the case of a single layer, 
although it is exactly the same for the multi-layered model. 

According to the analogue equation concept, eqns (6) are replaced by 3N  
Poisson’s equations 

 2 ( 1,2, ,3 ),i iV b i N∇ = = …  (12) 

in which 1 2( , )i ib b x x=  are the functions of fictitious sources acting in the 
three directions on the N  planes. The vector 1 2( , )iV x x  represents the three 
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displacement components at all the N  nodes and more specifically it is 

 ( ) ( )3 1 2 1 2, , ( 1,2, , ; 1, 2,3).p
p k kV x x v x x p N k+ = = =…  (13) 

The fictitious sources are established using the BEM. For this purpose, ib  is 
approximated as 

 ( )

1
( 1, 2, ,3 ),

M
i

i jj
j

b a g i N
=

= =∑ …  (14) 

where 1 2( , )jg x x  are approximating radial basis functions and ( )i
ja  are 3N M×  

coefficients to be determined. The solution is sought as a sum of the 
homogeneous solution iV  and a particular solution p

iV , 

 ( )

1

ˆ, ,
M

p p i
i i ji i j

j
V V V V a V

=
= + = ∑  (15) 

where ˆ jV  is a particular solution of 

 2 ˆ .j jV g∇ =  (16) 

The homogenous solution is obtained from the boundary value problem 

 2 0 in ,iV∇ = Ω  (17a) 

 ( )

1

ˆ on ,
M

i
i i jj

j
V V a V

=
= − Γ∑�  (17b) 

where iV�  ( 1,2, ,3 )i N= …  are prescribed boundary displacements. The domain 
Ω  and the corresponding boundary Γ  are assumed to be the same for all the N  
nodes (see Figures 2 and 5). 

The integral representation of the solution for the differential eqn (17a) is 

 , ,( )d ( 1, 2, ,3 ),i i n i ncV V V V V s i N∗ ∗

Γ
= − − =∫ …  (18) 

in which 2V nr π∗ = /A  with | |r P Q= − , and Q ∈ Γ  represents the fundamental 
solution of the Laplace equation, while 1, 1/ 2, 0c =  depending on whether 
P ∈ Ω , P ∈ Γ , P ∉ Ω ∪ Γ , respectively. The comma denotes differentiation with 
respect to the subscript that follows, which is n , the normal direction to the 
boundary Γ . By means of eqns (15) and (18), the solution of eqn (12) for points 



Recent Developments in Boundary Element Methods  113 

inside Ω  ( 1c = ) may  be written as 

 ( )
, ,

1

ˆ( )d ( 1,2, ,3 ).
M

i
i i n i n jj

j
V V V V V s a V i N∗ ∗

Γ =
= − − + =∑∫ …  (19) 

The first and second derivatives for points inside Ω  are obtained by direct 
differentiation of eqn (19), 

 ( )
, , , , ,

1

ˆ( )d ,
M

i
i i n i n jj

j
V V V V V s a Vα α α α

∗ ∗

Γ =
= − − + ∑∫  (20) 

where 1, 2, ,3i N= …  and the subscript α  takes the values 1 or 2 for the first 
derivatives, or 11, 22, 12 for the second derivatives. 
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Figure 5: Boundary discretisation and domain collocation points. 
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Using the BEM with bN  constant boundary elements, discretising accordingly 
eqn (18) and applying  it to the bN  boundary nodal points (Figure 5) yields 

 , ( 1,2, ,3 ),i i i n i N= − =CV HV GV …  (21) 

C  being a b bN N×  diagonal matrix of the coefficients c  at the bN  boundary 
nodal points and H , G  are b bN N×  matrices originating from the integration 
of the kernels on the boundary elements. Equations (19) and (20) are 
subsequently applied to M  collocation points inside the domain ( 1c = ) as 
shown in Figures 5 and 6. This yields after eliminating V  and nV  by virtue of 
the boundary conditions (17b) and eqn (21). 

 ( ) ,i
i i= +V Da EV�  (22) 

 ( )
, ,i

i iα α α= +V D a E V�  (23) 

where D , E , αD , αE  ( 1,2α =  or 11, 22,12 ) are known matrices and ( )ia  is 
the vector of the unknown coefficients. 

The final step of the AEM is to apply eqns (6) at the M  collocation points in 
Ω  and replace iV  and its derivatives from eqns (21) and (22). The solution of 
the 3N M×  algebraic equations gives the vectors ( ) ( =1,2, ,3 )i i Na … , which 
are then substituted into eqns (21) and (22) to yield the nodal displacements and 
their derivatives. The three-dimensional displacement field in the thick plate is 
computed from eqn (5), the stresses from eqn (3) and the unknown boundary 
nodal tractions from eqn (7). 

5 Numerical applications 

The numerical technique presented in the previous sections of this chapter has 
been programmed and numerical results for thick or multi-layered plates have 
been obtained. These results illustrate the applicability, effectiveness and 
accuracy of the method. The employed approximation functions 1 2( , )jg x x  of 
eqn (14) are the multiquadrics, which are defined as 

 2 2 2 2 2
1 2 1 1 2 2( , ) ( ) ( ) ,j j jg x x r c x x x x c= + = − + − +  (24) 

where 1, 2, ,j M= … , c  is an arbitrary constant and 1 2( , )j jx x  are the 
coordinates of the collocation points inside the plane domain Ω . 

A square clamped plate of side 5ma =  has been analysed using 100bN =  
constant boundary elements, 49M =  domain collocation points and 8L =  
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linear ( 2N = ) numerical layers through its thickness H . The material constants 
are 5 210 kN/mE =  and 0.30ν = , while the uniformly applied load at the top 

surface of the plate is 210 kN/mq = . The origin of the coordinate system is 
located at the centre of the body, the axes x  and y  are parallel to the sides of 
the plate and the z -axis is perpendicular to its mid-plane. 
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Figure 7: Influence of thickness ratio /H a  on the central deflection. 

Table 1: Central deflection of a uniformly loaded square plate. 

( )2 4
310 (0,0,0) /w u qa D− =  

/H a  Classical 
theory [1] 

Reissner’s 
theory [10] 

3-D 
Layerwise 

BEM–AEM 

3-D [11] 

0.01 0.1265 0.1274 0.1200  
0.05  0.1324 0.1267  
0.10  0.1481 0.1442  
0.20  0.2107 0.2080  
0.30  0.3151 0.3077 0.3189 
0.40  0.4613 0.4404 0.4444 
0.50  0.6493 0.6025 0.6100 
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Figure 8: Variation of deflection w  along the x -axis ( 1.5mH = ). 
 

The solution obtained by the proposed three-dimensional layerwise BEM–
AEM model is compared with other existing solutions in Table 1. This table 
gives the non-dimensionalised central deflection of the plate w  for different 
thickness-to-side ratios, 

  
2 3

3
4 2

10 (0,0,0) , ,
12 (1 )

u E Hw D
qa D ν

= =
−

 (25) 

which refers to the node on the mid-plane of the multi-layered system and they 
are also depicted graphically in Figure 7. 
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The variation of the deflection w  along the x -direction of the top and 
bottom surface of the plate is plotted in Figure 8. In this case, the thickness of the 
thick plate is 1.5mH =  and it has been discretised into 16 numerical layers. 
Finally, Figure 9 shows the deflection w  at the 17 nodal points through the 
thickness which are located on the z -axis, while Figure 10 depicts the deformed 
configuration in the x -direction of a transverse line segment passing through 
point ( 10/7,0,0)−  of the mid-plane Ω . Excellent results were also achieved by 
adopting higher order displacements approximations through the thickness 
(quadratic up to quartic). 

The hybrid method developed in this chapter may be applied in its present 
form to any three-dimensional body with cross-section in the xy -plane constant 
along the z -axis and independently of its dimension in the z direction. 
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Abstract 

The present paper demonstrates the use of a developed software package called 
the PLPAK for modelling of structural concrete slabs. Practical building floor is 
demonstrated and results are compared with those obtained based on the finite 
element method. 

Keywords: Boundary element method, Plate bending, The PLPAK software, 
Building slabs, Structural analysis. 

1 Introduction 

Boundary element applications to plate bending problems started several years 
ago. Some researchers such as Stern [1], Bezine [2] and Tottenham [3] used the 
classical plate bending theory (the Kirchhoff theory [4]) in their formulations. 
Others employed the shear deformable plate bending theory (the Reissner theory 
[5]). It is believed among the authors that employing the latter in a boundary 
element formulation is much better for the following reasons: 

1- The simplification, made by Kirchhoff, of ignoring the shear 
deformation led to extra differentiation in the governing differential 
equation to eliminate shear forces. This appeared in the corresponding 
boundary integral formulation in extra need for additional integral 
equation for the slope; which is hyper-singular. Consequently, it needs 
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special numerical treatments (higher order elements and difficulty of 
modelling curved boundaries). 

2- Condensation of shear forces in the governing equations leads to 
unreliable shear values, especially in zones of stress concentrations (e.g. 
near columns) 

3- It was proven [6] that the Reissner plate bending theory (as a refined 
plate bending theory) is capable of modelling both thin and thick plates. 

4- The use of the Reissner plate bending theory is more suitable in 
modelling building raft foundations or pile caps [7]. 

A few researchers have applied their formulations to model building slabs in 
real practical applications. Among them are de Paiva and Venturini [8,9], de 
Paiva and co-workers [10,11], Hartly and Abdel-Akher [12] and Hartmann 
[13]. All of the trials (with no exception) conducted by them use the thin plate 
bending theory. 

Other researchers like van der Weeën [14] have used the plate bending theory 
according to Reissner [5] in a boundary integral formulation. Rashed [15] 
extended the formulation of van der Weeën [14] to model slab over columns. 
Hence, the formulations in [7] and [15] are implemented into a software package 
called the PLPAK. 

The purpose of this paper is to demonstrate the components of the PLPAK. 
Critical notes on modelling of concrete floors using this software are 
discussed. Finally, a practical concrete building slab is modelled. Results are 
discussed and compared with corresponding values obtained from finite 
element analysis. 

2 The PLPAK software 

The PLPAK software is an integrated development environment that helps the 
user to generate his model using the PLGen module. It allows the user to view 
or/and edit the used boundary element model via the PLView module, so that the 
user can solve it using the PLCoreMan module. The PLPost module serves as a 
post-processing module for the obtained results. The package could be linked to 

Figure 1: Operation diagram for the PLPAK.
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other packages such as the PTPAK which provide the capability of adding post-
tensioned cables to the model. Figure 1 demonstrates the operation diagram for 
the PLPAK different modules. 

2.1 The PLGen module 

The PLGen module stands for the virtual model generator or the pre-processor 
of the PLPAK. It mainly changes any structural drawing to what is called the 
“virtual model”. Modeller can import structural drawings from DXF CAD files 
or can draw them directly using the CAD capabilities of the PLGen. The 
virtual model looks very similar to the original structural drawing. The PLGen 
mainly defines the structure using series of objects. These objects are classified 
into one of three categories: the geometrical objects (single slab and openings), 
the loading objects (column load, wall load, load patch and load assembly) and 
the supporting objects (column, wall, wall assembly, soil support and beam). 
Using such objects, the modeller can define all elements in the building slab. It 
has to be noted that the virtual model represents the actual slab shape (not like 
the centre-line model of the finite element method). Columns and walls are 
represented by the actual cross-section shape. The PLGen can also input the 
numerical models of each object such as the number of boundary elements for 
each segments, the discretisation of the beam–slab contact areas, etc. Load 
cases only (i.e. no load combinations) are defined in the PLGen module. 
Material properties are also defined herein. Figure 2 demonstrates the graphical 
user interface of the PLGen module. 

Figure 2: The PLGen module interface.
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2.2 The PLView module 

The PLView module is an MDI (multiple document interface) graphical 
environment that allows the modeller to view or/and to edit the boundary 
element numerical model of the considered problem. Boundary element 
discretisation and internal loading or supporting patches are viewed. The 
PLView could be launched directly from the PLGen module. Practical engineers 
or beginners can skip this module. It has to be noted that the expert modellers 
can write their own input text file for the considered numerical model and input 
it directly to the PLView model without passing through the PLGen module. 
Figure 3 demonstrates the graphical user interface of the PLView module. 

2.3 The PLCoreMan module 

The PLCoreMan module serves as a link between all the PLPAK modules.  
It allows solution for multiple load cases. It also allows adding any additional 
loading (such as pre-stressing loading) or sophisticated supporting elements 
(such as any substructure). It also acts as solution tracer. Figure 4 demonstrates 
the graphical user interface of the PLCoreMan module. 

2.4 The PLPost module 

The PLPost module allows the user to display the results in forms of strips, 
contours and colour patches. It has to be noted that all results obtained in the 

Figure 3: The PLView module interface
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PLPost environment are computed using analytical integral equations. In other 
words, no approximation is involved. Load combinations are defined herein. 
Results of any form could be exported easily to text files or to spreadsheets 
programs. Figure 5 demonstrates the graphical user interface of the PLPost 
module. 

Figure 5: The PLPost module interface.

Figure 4: The PLCore MAN module interface.
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2.5 The PTPAK module 

The PTPAK is an additional package that allows adding pre-stressing cables to 
slab or to beams. The description of this package is out of the scope of this 
paper. 

2.6 Other modules 

Many other modules could work with the PLPAK. Some of these modules are 
basics and others are added by the user. Among the basic modules is the 
“Column head” module, which computes the stiffness matrix in case of having 
tapered columns. The PLCTRL module or the PL Controls allow the user to print 
any intermediate matrices in the boundary element solution. 

3 Structural modelling aspects 

The following section summarises some of the numerical modelling aspects. 
Most of these aspects are based on the authors’ personal experiences. 

3.1 Discretisation 

- Usually, boundary element solution requires very small number of 
boundary elements to obtain a fairly accurate solution. Four to six 
elements (quadratic elements) could be used on the longest sides and one 
element could be used along internal opening sides. In some cases, where 
stress resultant gradient is high, additional elements could be used. 

- Beam discretisation could start from three per beam for the shortest 
beam. Hence, other beams discretisation could be obtained rationally. 
Additional discretisation is recommended for beams with high stress 
resultant gradients.  

- It is very important that the user has to carry out simple adaptive analysis 
to check that results will not be affected by changing the number of used 
boundary elements or the beam or/and support discretisations. 

3.2 Gauss points 

- The solution for the boundary values are done mainly with Four Gauss 
points. This is usually defined in the PLGen module. 

- Internal solutions (in the PLPost module) could be carried out using 
two Gauss points. However, in few cases it needs at least four points. 
Again, it is recommended that the user has to carry out simple 
adaptive analysis to check that results will not be affected by changing 
Gauss points. 
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3.3 Beam-end conditions 

- The beams in the PLPAK can be modelled using the actual contact 
area to the slab. Such a capability allows modelling the actual beam 
shapes. Also, beams connected to columns as hinged supports could 
be modelled by releasing the column stiffness and embedding the 
beam by a distance equal to one-tenth of the beam width. This will 
simulate the partial hinge condition. This is usually recommended by 
the building codes [16]. 

- Intersecting beams could be placed without intersecting node. 

3.4 Notes on results 

- Results could be obtained easily anywhere in the domain. Straining 
actions, especially shear forces, show some disturbances near the 
boundaries. In such cases, additional boundary elements or/and 
increasing the number of Gauss integration points is recommended. 

- If oscillations appeared in beam straining actions, additional beam 
discretisation is recommended. 

4 PLPAK unique capabilities  

The following are some unique capabilities offered by the PLPAK: 

- The PLPAK provides a possible way to check the obtained finite 
element results in companies. 

- The easy drawing capabilities of the PLPAK make life simple for 
practical engineers, especially in case of having changes. Moreover, the 
boundary-only discretisation minimise the errors generated by engineer 
in the numerical models. 

- The PLPAK multiple DXF import and the multiple pre-stressing cable 
imports allow engineers to work in parallel in a single project.  

- The PLPAK has the capability of zooming in for local result details. 
- The PLPAK can generalise soiled stress map to check the bearing 

capacity violation under rafts. 
- The PLPAK models beams with its actual interaction area to the slab 

which make it unique in case of modelling slab–beam type bridges. 
- Unlike the centre-line modelling of finite elements, the PLPAK considers 

the actual slab geometry. This makes the PLPAK more suitable for  
design and detailing software. Moreover, it will be a perfect numerical 
environment for what is called the Building Information Modelling (such 
as REVIT) [17]. 
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5 Practical building slab 

The slab shown in Figure 6 is considered under its own weight and an additional 
live load of 0.5 t/m2. The slab thickness is 0.3 m and is made of concrete having 
E = 2,210,000 t/m2 and v = 0.2. The column IDs are shown in Figure 7. The used 
boundary element mesh is presented in Figure 8. 

Slab bending moments are plotted along two strips as shown in Figure 9. 
The results of the bending moment along strip 1 are compared, in Figure 10, 
with those obtained from finite element analysis based on two models. The 
first model treats columns as single frame elements and the second one treats 
columns as 3-D solid elements. In both models, core is modelled using the 
shell element. It can be seen from Figure 10 that the present boundary element 
model agrees with those obtained from finite element analyses, especially with 
the second finite element model in the vicinity of column. 

Figure 6: The considered practical slab.
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Table 1 demonstrates a comparison of some of the support reactions 
(bending moments in the two directions and the vertical axial load) between 
the present boundary element model and the finite element first model; 
agreement between the results can be found. It has to be noted that some of the 
column bending moments are a bit different from the finite element analysis. 
This is mainly due to the consideration of the column actual shape in the 
boundary element analysis. This confirms results obtained by the first author in 
Ref. [15]. 

6 Conclusions 

In this paper, an integrated development environment called the PLPAK is 
presented. This package employs the Reissner plate bending theory to solve 
practical building applications. The components of the package are discussed. 
Finally, a practical example considering building slab is solved using the 
PLPAK. 

Figure 7: Column IDs in the considered practical slab.
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Figure 8: The used boundary and internal discretisations.

Figure 9: Bending moment results along two strips.
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Table 1: Column reactions. 

Column 
ID 

Dimensions 
(cm) 

PLPAK 
(Mx) 

FEM 
(Mx) 

PLPAK 
(My) 

FEM 
(My) 

PLPAK 
(Fz) 

FEM 
(Fz) 

1 R40 0.4731 0.3151 1.0215 1.0551 7.2977 7.2102 

2 R40 0.2020 0.0640 −0.9292 −0.7205 6.7193 6.30967 

7 25×60 Released Released 2.5895 2.1191 

9 25×60 Released Released 9.0573 9.8034 

12 25×60 Released Released 10.646 11.0526 

14 R50 2.3264 1.6647 −0.4901 0.0027 23.0264 23.6250 

16 R50 2.8201 2.0584 −0.2586 −0.0522 29.8819 29.0735 

18 30×70 Released Released 24.8946 24.8839 

22 30×70 Released Released 10.7382 10.9005 

24 30×70 Released Released 22.7654 22.8700 

26 30×70 Released Released 14.2964 14.2938 

28 30×70 Released Released 17.0624 17.6735 

30 30×80 5.1960 4.1734 0.3168 0.47201 22.8358 25.2738 

32 30×80 2.5666 1.6111 0.65072 1.4577 16.0294 13.1125 

35 40×75 6.4739 4.1052 −6.0012 −3.3603 38.2936 38.7679 

Core −4.4500 −0.8488 −17.3800 −9.6653 25.4000 26.6520 
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Figure 10: The bending moment results along strip 1 for different numerical models.
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The AEM for static analysis of plane 
inhomogeneous anisotropic viscoelastic bodies 
with fractional derivative models 

M.S. Nerantzaki & N.G. Babouskos 
School of Civil Engineering, National Technical University of Athens, 
Greece. 

Abstract 

Analysis of plane inhomogeneous anisotropic bodies made of linear viscoelastic 
materials is performed. These materials exhibit both viscous and elastic 
behaviour. The employed viscoelastic material is described with fractional order 
derivatives. The governing equations, which are derived by considering the 
equilibrium of the plane body element, are two coupled second-order linear 
fractional evolution partial differential equations in terms of the displacement 
components. Using the AEM these equations are transformed into a system of 
two-term ordinary fractional differential equations (FDEs), which are solved 
using a numerical method for FDEs developed recently by Katsikadelis. 
Numerical examples are presented, which not only demonstrate the efficiency of 
the solution procedure and validate its accuracy but also give a better insight into 
this complicated but very interesting structural plane body response. 

Keywords: Viscoelastic plane bodies, Fractional derivatives, Analogue equation 
method, Boundary elements, Linear fractional differential equations. 

1 Introduction 

Plane bodies of high-performance viscoelastic materials are extensively used in 
modern engineering applications due to their light weight and high strength. 
These materials exhibit both viscous and elastic behaviour and various models 
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have been proposed in order to describe their mechanical behaviour (e.g. 
Maxwell, Voigt, Kelvin, Zener). Recently, many researchers have shown that 
viscoelastic models with fractional derivatives are in better agreement with the 
experimental results than the integer derivative models [1–4]. Adolfsson et al. [4] 
proved that complicated multi-parameter integer viscoelastic models converge to 
fractional models with one single parameter. 

The response of viscoelastic isotropic or anisotropic bodies that use constitutive 
equations in hereditary integral form or in differential form, with integer 
derivatives, has been examined by many investigators [5–9]. Zocher et al. [5] 
analysed three-dimensional thermoviscoelastic orthotropic bodies. The constitutive 
equations are expressed in integral form while the equations of the problem are 
transformed into incremental form and solved with the FEM. Gramoll et al. [6] 
presented a numerical method for nonlinear viscoelastic orthotropic panels where 
the viscoelastic response is described by a Prony series which includes nonlinear 
stress effects. Mesquita and Coda [7] used the BEM to analyse viscoelastic 
homogeneous isotropic bodies with integer derivative models. However, the 
literature is rather limited on viscoelastic bodies of fractional type derivative.  
The reason is that the response of such bodies is described by a system of linear or 
nonlinear fractional partial differential equations. Schmidt and Gaul [10] analysed 
viscoelastic bodies of fractional order using the FEM. They used the Grünwald 
definition of fractional derivative and approximated the infinite sum by a 
numerical scheme. Atanackovic and Stankovic [11] have developed analytical 
methods for the analysis of linear response of viscoelastic beams with fractional 
derivatives. Recently, Katsikadelis has developed the AEM for solving linear and 
nonlinear fractional differential equations (FDEs) [12]. This method is general and 
has been already used to solve the linear fractional diffusion-wave equation in 
bounded inhomogeneous anisotropic bodies [13], the nonlinear dynamic response 
of viscoelastic plates and membranes [14,15] and the postbuckling analysis of 
viscoelastic plates [16]. In this paper, this method is employed for the analysis  
of plane inhomogeneous anisotropic bodies made of linear viscoelastic materials of 
fractional derivative type. 

Without excluding other models, the employed herein viscoelastic material is 
described by the generalised Voigt model with fractional order derivative, which 
for an inhomogeneous anisotropic plane body can be written as [17] 

 
11 12 13

21 22 23

31 32 33

,

a
x c xx

a
y y c y

a
xy xy c xy

DC C C
C C C D
C C C D

ε η εσ
σ ε η ε

τ γ η γ

⎧ ⎫⎧ ⎫ +⎡ ⎤ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥= +⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎢ ⎥⎣ ⎦ +⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

 (1) 

where ijC  are the position-dependent coefficients of the constitutive matrix, 

, ,x y xyσ σ τ  and , ,x y xyε ε γ  are the stress and strain components, respectively,  
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η  is the viscous parameter and cDα  is the Caputo fractional derivative of order 
α  defined as [18] 
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∫
 (2) 

where m  is a positive integer. In this case, it is 0 1α< ≤ . The advantage of this 
definition of the fractional derivative over other definitions (e.g. Riemann–
Liouville and Grünwald–Letnikov) is that it permits the assignment of initial 
conditions which have direct physical significance [18]. Apparently, the classical 
derivatives result for integer values of α . This two parameter model can 
describe more complicated models, e.g. Zener, for appropriate values of the two 
parameters [4,10], besides its simplicity to formulate the equations of structural 
viscoelastic systems. 

2 Problem statement and governing equations 

We consider an inhomogeneous anisotropic plane body of uniform thickness h  
made of linear viscoelastic material occupying the two-dimensional, in general 
multiply connected, domain Ω  with boundary 

0
K

kk=
Γ = Γ∪  in xy  plane 

(Figure 1). The equations governing the elastostatic response of the body are: 

 Equilibrium equations   ˆ ,T + =f 0∇ σ  (3a) 

 Constitutive relations    ( ),cDαη= +Cσ ε ε  (3b) 

 Kinematic relations       ˆ ,= uε ∇  (3c) 
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Figure 1: Domain Ω and boundary Γ = ∪K
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Γk 



136  Recent Developments in Boundary Element Methods 

where 
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v
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f  (4) 

are the displacement, the stress, the strain and the body force vectors, 
respectively. Moreover, ∇̂  is the differential operator defined as 

 
, 0 ,ˆ ,
0 , ,

T
x y

y x

∂ ∂⎡ ⎤
= ⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦
∇  (5) 

where the notation , / , , /x yx y∂ = ∂ ∂ ∂ = ∂ ∂  has been employed.  
Since the body is inhomogeneous, the constitutive matrix is position 

dependent, hence ( , )x y=C C . Further, it is T=C C and det( ) 0≠C .  
Introducing eqn (3b) into (3a) and using (3c), we obtain the equilibrium 

equations in terms of the displacements 

 11 12 11 12( ) ( ) ( ) ( ) 0,c c xL u L v D L u D L v fα αη η+ + + + =  (6a) 

 21 22 21 22( ) ( ) ( ) ( ) 0,c c yL u L v D L u D L v fα αη η+ + + + =  (6b) 

where 

 11 11 13 33

11 13 13 33

, 2 , ,

( , , ) , ( , , ) ,
xx xy yy

x y x x y y

L C C C

C C C C

= ∂ + ∂ + ∂

+ + ∂ + + ∂
 (7a) 

 12 13 12 33 23

13 33 12 23

, ( ) , ,

( , , ) , ( , , ) ,
xx xy yy

x y x x y y

L C C C C

C C C C

= ∂ + + ∂ + ∂

+ + ∂ + + ∂
 (7b) 

 21 13 12 33 23

13 12 33 23

, ( ) , ,

+( , , ) , ( , , ) ,
xx xy yy

x y x x y y

L C C C C

C C C C

= ∂ + + ∂ + ∂

+ ∂ + + ∂
 (7c) 

 22 33 23 22

33 23 23 22

, 2 , ,
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xx xy yy
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subject to the boundary conditions 

 (i)   , ,u u v v= =  (8a) 
 (ii)   , ,y yu u t t= =  (8b) 

 (iii)  , ,x xt t v v= =  (8c) 
 (iv)  , ,x x y yt t t t= =  (8d) 
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and the initial conditions 

 1( ,0) ( )u g=x x , 2( ,0) ( )v g=x x , { },x y= ∈Ωx . (9a,b) 

Attention should be paid to boundary condition case (iv). In this case, the 
boundary tractions can not be prescribed arbitrarily, but they must ensure overall 
equilibrium of the body, namely, 

 d d 0x xf t s
Ω Γ

Ω+ =∫ ∫ , d d 0,y yf t s
Ω Γ

Ω + =∫ ∫  (10a,b) 

 ( )d ( )d 0.y x y xxf yf xt yt s
Ω Γ

− Ω + − =∫ ∫  (10c) 

For this type of boundary conditions, the solution of the eqns (6) is not uniquely 
determined as it contains an arbitrary rigid body motion. Therefore, the rigid 
body motion should be restrained in order to obtain the solution [19]. The 
expressions of the traction components are obtained using eqns (3b) and (3c) as 
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 (11b) 

where ( , )x yn nn  is the unit vector normal to the boundary. In the above 
equations, ,x yΓ Γ  are the parts of the boundary on which the tractions ,x yt t  are 
prescribed. Note that in general it is x yΓ ≠ Γ . In this investigation, the time-
dependent terms of the boundary conditions are neglected.  

If the body is orthotropic, the constitutive matrix for plane stress 
( 0z xz yzσ τ τ= = = ) may be written using technical constants, i.e. moduli of 
elasticity and Poisson’s ratios, as 
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with the constraint 21 1 12 2E Eν ν= . For an isotropic body it is 1 2E E E= =  and 

21 12ν ν ν= = . 
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3 The AEM solution 

Since eqns (6) are of the second order with regard to the spatial derivatives, the 
analogue equations will be 

 2 2
1 2( , ), ( , ) :{ , } ,u b t v b t x y∇ = ∇ = ∈Ωx x x  (13a,b) 

where ( , ), 1,2ib t i =x  represent unknown time-dependent fictitious sources. The 
solution of eqn (13a) is given in integral form [19] 

 1( , ) d ( )d ,u t u b u q q u sε ∗ ∗ ∗
Ω Γ

= Ω− − ∈Ω∪Γ∫ ∫x x  (14) 

in which ,nq u= ; / 2u nr π∗ = A  is the fundamental solution of eqn (13a) and 
,nq u∗ ∗=  its derivative normal to the boundary with r = − xξ , ∈Ω∪Γx  and 

∈Γξ ; ε  is the free term coefficient ( 1 ifε = ∈Ωx , / 2 ifaε π= ∈Γx  and 
0 ifε = ∉Ω∪Γx ; a  is the interior angle between the tangents of boundary at 

point x ; 1 / 2ε =  for points where the boundary is smooth). Equation (14) is 
solved numerically using the BEM. The boundary integrals are approximated 
using N  constant boundary elements, whereas the domain integrals are 
approximated using M  linear triangular elements. The domain discretisation is 
performed automatically using the Delaunay triangulation. Since the fictitious 
source is not defined on the boundary, the nodal points of the triangles adjacent 
to the boundary are placed on their sides (Figure 2). Thus, after discretisation and 
application of the boundary integral eqn (14) at the N  boundary nodal points we 
obtain [20] 
 (1) ,n+ =Hu Ab Gu  (15) 

where  and H G are N N×  known coefficient matrices originating from the 
integration of the kernel functions on the boundary elements, A  is an N M×  
coefficient matrix originating from the integration of the kernel function on the 

Figure 2: Boundary and domain discretisation.
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domain elements,  and nu u  are the vectors of the nodal displacements and 

normal derivatives and (1)b  the nodal values of the fictitious source at the M  
domain nodal points. 

Following the same procedure for eqn (12b) we finally obtain 

 (2) .n+ =Hv Ab Gv  (16) 

In order to solve the problem with the AEM, we have to express the boundary 
normal derivatives ,nu , ,nv  in eqns (15)–(16) in terms of the specified boundary 
quantities, i.e. the boundary displacements ,u v  and the boundary tractions ,x yt t . 
Therefore, we express the derivatives , , , , , , ,x y x yu u v v  in eqns (11) in terms of 
normal and tangential derivatives of displacements ,u v  on the boundary 

 , , ,x n x t yu u n u n= −    , , , ,y n y t xu u n u n= +  (17a,b) 

 , , ,x n x t yv v n v n= −    , , , .y n y t xv v n v n= +  (17c,d) 

The tangential derivatives in the above equations are approximated with a finite 
difference scheme. Further, using eqns (11) and (17), we obtain the normal 
derivatives ,nu , ,nv  in terms of the specified boundary values ,u v  and ,x yt t . 
The boundary integral eqns (15)–(16) become 

 (1)
1 1 1 1 0,x y+ + + + =B u C v G t D t Ab  (18a) 

 (2)
2 2 2 2 0,x y+ + + + =B u C v G t D t Ab  (18b) 

where , , , , ( 1, 2)i i i i i =B C D G  are N N×  known matrices. 
Thus, the boundary conditions eqns (8), when applied at the N  boundary 

nodal points yield the set of equations 
 1 2 3 1 2 3 ,x y+ = + =u t c v c t cα α α  (19a,b) 

where 1 2 3 1 2 3, , , ,  and c c cα α α  are known coefficient matrices. 
Equations (18) and (19) can be combined and solved for the boundary quantities 

, ,  and x yu v t t  in terms of the fictitious loads (1) (2)and b b . Subsequently, these 
expressions are used to eliminate the boundary quantities from the discretised 
counterpart of eqn (14). Thus, we obtain the following representation for the 
displacement u  in Ω  ( 1ε = ) 
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where ∈Ωx , , 0, ,p q x y= . 
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Similarly, we obtain for the displacement v  
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where (1) ( )kU x , (2) ( )kU x , (1) ( )kV x , (2) ( )kV x , 0 ( )U x  and 0 ( )V x  are known 

functions. The terms 0U  and 0V  result from the nonhomogeneous boundary 
conditions. 

Applying now eqns (6) at the M  domain nodal points and substituting the 
involved derivatives from eqns (20a,b), we finally obtain 

 ( ) ( )( , ) { } , ( 1, 2)i i T
k c x yD f f iα = − =F b b  and 1,2, , 2 ,k M= …  (21) 

where the functions kF  depend linearly on the elements of the vector arguments.  

The initial conditions eqns (9) for (1) (2)and b b  become  

 ( )
1 2(0) { } , ( 1,2),i T

i i i= + =b S g g P  (22) 

where 1 2and S S  are 2M M× known matrices and 1 2and P P  known vectors. 
Equations (21) constitute a system of 2M two-term linear FDEs, which are 
solved using a time step numerical procedure developed by Katsikadelis [12]. 

4 Examples 

4.1 Example 1 

The viscoelastic plane body of uniform thickness 0.1mh =  of Figure 3 is 
investigated. The geometry, the load and the boundary conditions are shown  
in Figure 3(a). The data employed are 0.8mL = , 0.1mb =  and 5000kPaP = . 
The material parameters are 611 10 kPaE = × , 0.0ν = , 45.4545η = . The results 
were obtained using 280N =  boundary elements and 152M =  internal points 
resulting from 222 triangular cells (Figure 3(b)). This is a benchmark example, 
very often used to validate viscoelastic formulations [7]. The solution of the 
plane stress problem can be compared to the one-dimensional solution of a 
simple viscoelastic bar subjected to a longitudinal load. Its analytic solution  
for the generalised Voigt model is , 1( , ) ( / ) /u x t t PxE tα α

α α η η+= − Ε , where 
, ( )E zα β  is the two-parameter Mittag–Leffler function. Figure 4(a) presents the 

time history of the displacement u  at point A for various values of the order of 
the fractional derivative α . Figure 4(b) presents the elastic part, the viscous part 
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and the total value of the stress xσ  as compared with the one-dimensional exact 
solution ( 1α = ). 

4.2 Example 2 

The square plane body of nonhomogeneous orthotropic viscoelastic material  
of Figure 5(a) is subjected to a uniaxial tension in x direction ( 1mL = ).  

A

L
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Nn = Nt = 0

un = 0
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P×b×h
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Figure 3: (a) Plane body of example 1 and its one-dimensional simplified
model and (b) boundary and domain discretisation in example 1.
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Figure 4: (a) Displacement u at point A for various values of a and
(b) elastic, viscous and total stress σx at point B for a = 1

(         AEM,            exact).
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The material parameters are C11 = 6.14(1+x)2, C12 = 2.14(1+x)2, C22 = 5.96(1+x)2, 
C33 = 1.64(1+x)2, and 3η = . The results were obtained using 200N =  boundary 
elements and 129M =  internal points resulting from 214 triangular cells. Figure 
5(d) presents the displacement u  at point A for various values of the order α  of 
the fractional derivative. The accuracy of the solution procedure has been 
attested by solving the problem for a very small value of the order α  of the 
fractional derivative and comparing it with the elastic solution with material 
parameters (1 )ij ijC Cη∗ = + . Apparently, from eqn (2), we deduce that 

0
lim ( ) ( )cD u t u tα

α→
= , therefore, on the basis of eqns (1) the material becomes 

elastic with substitute elastic material parameters (1 )ij ijC Cη∗ = + . Figure 6 shows 

the elastic part e
xσ and the viscous part v

xσ  of stress xσ  at the centre of the plane 
body for various values of the order α . 

4.3 Example 3 

The square plane body with a circular hole in the centre, made of homogeneous 
orthotropic viscoelastic material, is subjected to a uniaxial tension in y direction 
as shown in Figure 7(a). Because of symmetry, only the quarter of the plane 
body is analysed. In this case, the load and the boundary conditions are shown in 
Figure 7(b) ( 10mL = ). The material parameters are 1 12GPaE = , 2 6GPaE = , 

12 0.7GPaG = , 12 0.071ν =  and 10η = . The results were obtained using 
336N =  boundary elements and 136M =  internal points resulting from 214 

triangular cells (Figure 8(a)). The time history of the displacement v  at point A 
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Figure 5: (a) Geometry and boundary conditions in example 2 and (b) time
history of the displacement u at point A for various values of a and
comparison with the elastic solution with parameters C*

ij = (1+η)Cij.
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and the stress yσ  at point B are shown in Figures 8(b) and 9 for various values 

of the order α  of the fractional derivative. The total value of the stress yσ  at 

point B is 588.7 KPayσ =  ( 571.4 KPayσ =  [21]). 

5 Conclusions 

The static analysis of plane inhomogeneous anisotropic viscoelastic bodies of 
fractional derivative model has been investigated. The plane body has an 
arbitrary shape and is subjected to any type of boundary conditions and loads. 
The solution is achieved using the AEM, which converts the coupled linear 
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Figure 7: (a) Plane body of example 3 and (b) load and boundary conditions of
the quarter of the plane body.
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Figure 6: Time history of the elastic part σex (a) and viscous part σvx and (b) of
the stress σx at the centre of the plane body of example 2 for various
values of the order.
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Figure 8: (a) Boundary and domain discretisation and (b) displacement v at point
A for various values of the order α in example 3.  

 
 
 
fractional PDEs, describing the response of the plane body, into two uncoupled 
linear fractional PDEs that can be solved by the BEM. The initial value problem 
of the resulting semi-discretised equations is efficiently solved using a time step 
integration method for FDEs, developed recently by Katsikadelis. Several 
inhomogeneous anisotropic plane bodies have been analysed and the influence of 
the viscoelastic character of the material has been discussed. The herein 
employed viscoelastic model is the generalised Voigt model with fractional order 
derivative, which for appropriate value of the order 0 1α≤ <  gives results closer 
to experimental findings. 
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Abstract 

This work presents closed form solutions for point force generated motions in a 
continuously inhomogeneous half-plane, which represent a complete elastic 
wave-train in the interior domain obeying traction-free boundary conditions at 
the horizontal surface. A special type of material inhomogeneity is studied, 
where both shear modulus and material density vary quadratically with respect to 
the depth coordinate. Furthermore, Poisson’s ratio remains fixed at one-quarter. 
Next, numerical results serve to validate the aforementioned model, and to show 
the differences in the wave motion patterns developing in the presence of a 
free surface for media that are inhomogeneous as compared to a reference 
homogeneous background. These singular solutions are useful within the context 
of boundary element formulations for the numerical solution of problems 
involving non-homogeneous continua, which find applications in fields as 
diverse as composite materials, geophysical prospecting, oil exploration and 
earthquake engineering. 

Keywords: Inhomogeneous media, Elastic waves, Fourier transforms, Singular 
solutions. 

1 Introduction 

Detailed knowledge of wave motions produced by point forces in the elastic 
half-plane [1] are of paramount importance in mechanics, since they form the 
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backbone of any integral equation formulation whose numerical treatment yields 
boundary element method (BEM) solutions to a wide range of boundary-value 
problems in elastodynamics [2]. More specifically, let Ox  be the Cartesian 
coordinate system in 2R  shown in Figure 1 and denote the lower half-plane as 

2
1 2 2{( , ) : 0}R x x x− = < . Consider the following boundary-value problem defined 

in the frequency domain, where all variables have an exp( )i tω  dependence: 

 ( ) 2
, ,

( ) ( )a
jkpq ip q ik ikj

L G C G G xρω δ ξ ε≡ − = − −  (1) 

 2 , 2( ) 0, on 0a
j pq ip qT G C G x≡ = = , (2) 

 20, forG x→ → −∞ , (3) 

We have that Green’s tensor G  satisfies the Sommerfeld radiation condition 
along lines parallel to 2{ 0}x = , i.e., 1 2 1{( , ), }x x x → ±∞ . In the above, 2,x Rξ −∈  

and 1 2 1 2( , ), ( , )x x x ξ ξ ξ= =  are the source (S) and receiver (R) points in the 

continuum; 0
2( )jkpq jkpqC h x C=  is the elasticity tensor; 2 0( )h xρ ρ=  is the 

material density and 2
2 2( ) ( 1)h x ax= + , 0a ≤  is the material profile indicating  a 

quadratic-type variation with respect to the depth coordinate. 

Figure 1: Elastic half-plane with quadratically varying material properties in the
depth coordinate as described by profile function h(x).
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In terms of quantities defined for the corresponding homogeneous material 
background, we have that 0

0 ( )jkpq jk pq jp kq jq kpC µ δ δ δ δ δ δ= + + , where 0 0µ >  

is the shear modulus, jkδ  is the Kronecker’s delta, 0 0ρ > , and frequency 

0ω > . Furthermore, δ  is Dirac’s delta function, ikε ε=  is the unit tensor, 
commas denote partial differentiation with respect to the spatial coordinates and 
summation is implied over repeated indices. 

In elastodynamics, the problem defined by eqns (1)–(3) models an isotropic 
medium in 2R−  with a point force at ξ  and traction-free boundary conditions. 
Poisson’s ratio is fixed at a value of 0.25ν = , while the shear modulus µ  and 
the density ρ  depend in the same manner on depth coordinate 2x . A 
fundamental solution to eqn (1) of this problem was derived in Manolis and 
Shaw [3] for 0a ≠ , while a solution of eqns (1)–(3) defining a Green’s function 
for the homogeneous half-plane, i.e., 0a = , has been obtained by Kinoshita [4] 
(see also Kobayashi [5]). A corresponding Green’s function in the Laplace 
domain for a homogeneous half-plane can be found in Guan et al. [6], while an 
approximate such function using image sources across the free surface was 
derived earlier by Kontoni et al. [7]. Finally, the transient Green’s function due 
to a suddenly applied load in the homogeneous half-plane, namely Lamb’s 
problem, can be found in the book on Compiled fundamental solutions of 
elastodynamics by Kausel [8]. 

2 Solution outline 

By following the procedure as outlined in the references given above, we will 
now derive the unique solution to eqns (1)–(3), which corresponds to a Green’s 
function G  for the inhomogeneous half-plane. Let matrix-valued function u  be 
a fundamental solution to eqn (1), i.e. 

 2
_( ) ( ) , where ,aL u x x Rδ ξ ε ξ= − − ∈ , (4) 

and w  is smooth matrix-valued function such that 

 2
_( ) 0, ,aL w x Rξ= ∈ , (5) 

 2( ) ( ), on 0a aT w T u x= − = , (6) 

where superscript a in the operators corresponds to the degree of inhomogeneity. 
Then, by using superposition, the complete Green’s function is G u w= + . 

Fundamental solution u  can be expressed in the form [3] 

 1/ 2 1/ 2
2 2( , , ) ( ) ( , , ) ( ),u x h U x h xξ ω ξ ξ ω− −=  (7) 
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where U  is a fundamental solution for the corresponding homogeneous case, i.e. 

 0 2
_( ) ( ) , with , .L U x x Rδ ξ ε ξ= − − ∈ , (8) 

Finally, the traction matrix corresponding to displacements u  on free surface 
2 0x =  is 

 
1/ 2

1 0 2 1 1 ,2 2 ,1

1/ 2
2 0 2 2 1 ,1 2 ,2

( ) ( )( ),

( ) ( )( 3 3 ).

a
k k k k

a
k k k k

T u h aU U U

T u h aU U U

µ ξ

µ ξ

−

−

= − + +

= − + +
 (9) 

The homogeneous matrix-valued function U  in 2R can be found in Eringen 
and Suhubi [9] as 

 ( )(1) (1) (1)2
2 2 10 0 02

0 2

1( ) ( ) ( )
4jk jk jk

iU H k r H k r H k r
k

δ
µ

⎡ ⎤
= + ∂ −⎢ ⎥

⎢ ⎥⎣ ⎦
 (10) 

In the above equation, the two wave numbers corresponding to pressure and 
shear body waves are 1 0 03k ρ µ ω=  and 2 0 0k ρ µ ω= , respectively, while 

the radial distance between source and receiver is 2 2
1 1 2 2( ) ( )r x xξ ξ= − + −  

and (1)
0 ( )H z  is the Bessel function of third kind (or Hankel function), zero order 

(see Gradshteyn and Ryzhik [10]). 
In order to simplify the calculations, we fix the source point along the vertical 

axis as 2 2(0, ), 0ξ ξ ξ= < . As will be shown later on, Green’s function G  
actually depends on 1 1x ξ−  and separately on 2 2,x ξ  due to the fact that the 
corresponding profile function h  is independent of coordinate 1x , which implies 
that assumption 1 0ξ =  is not restrictive. 

3 Solution methodology 

The first step is to recover a general solution w  to eqn (5) in the form 

 1/ 2
2( , , ) ( ) ( , , ).w x h x W xξ ω ξ ω−=  (11) 

Then, the two corresponding differential operators are related as 

 1/ 2 0
2( ) ( ) ( )aL w h x L W= , (12) 

1/ 2 1 1/ 2 1/ 2 1/ 2 2 1/ 2
, , , , , ,

1/ 2 2 1/ 2 0
, 0

( ) (

( ).

a a
jkpq ip qk j ip q q ik j qk ip ij

jkpq ip qk ij

L w h C W h h W h W h W h W

h C W W h L W

ρω

ρ ω

− − −⎡ ⎤= + − − +⎣ ⎦
⎡ ⎤= + =⎣ ⎦
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Thus, if W  solves eqn (5) with 0a = , then w  also solves eqn (5) for 0a <  and 
we seek a solution { }jkW W=  in the general Rayleigh form [1,11] as 

 1
1 e d ,

2
i x

jk jk
R

W S η η
π

= ∫  (13) 

where kernel function jkS  depends on 2exp( ), , ,x aβ η ω  and parameter β  is 
found as solution of an algebraic system of equations to be developed in what 
follows. 

Remark 1: It is not possible to proceed for the inhomogeneous case, as in 
Kinoshita [4], for a homogeneous material. The algebraic transformation 
produces a function 1/ 2 1/ 2

2 2( , , ) ( ) ( , , ) ( )u x h U x h xξ ω ξ ξ ω− −= −  that is not well 
defined for all 2 0ξ <  and is infinite if 2( ) 0h ξ− = , corresponding to a value 

2 1 , 0a aξ = < . Thus, we cannot use superposition as ( , , ) ( , , )u x u xξ ω ξ ω+ , 
for which 11 220, 0T T= = on 2 0x = , but can only use ( , , )u x ξ ω and then add a 
Rayleigh form to satisfy the boundary conditions. 

In order to find { }jkS S= , we use the Fourier transform ℑ  with respect to 

the 1x  coordinate, defined for the direct and inverse transformations as 

 1
12 1 2 1( , ) { } ( , )e d ,i x

x
R

f x f f x x xη
ηη −

→= ℑ = ∫  (14a) 

 1
1

1
1 2 2

1( , ) { } ( , )e d ,
2

i x
x

R
f x x f f x η

η η η
π

+−
→= ℑ = ∫  (14b) 

where η  is the transform parameter. Applying the Fourier transform toW , eqn 
(5) with 0a =  becomes 

 
1

0 ( ( )) 0,xL Wη→ℑ =  (15) 

which in matrix form reads as 

 2
0 2( ( , ) ) 0.M I Sη β ρ ω+ =  (16) 

In the above equation, 2I  is the 2×2 unit matrix and 

 
2 2 2

0 0 0 0
2 2 2

0 0 0 0

3 2
( , ) .

2 3

i
M

i

µ η µ β ρ ω µ ηβ
η β

µ ηβ µ η µ β ρ ω

⎛ ⎞− + +
⎜ ⎟=
⎜ ⎟− + +⎝ ⎠

 (17) 
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For every fixed value of η , a non-zero solution of eqn (16) exists if 

{ }det ( , ) 0M η β = , which gives the following quartic equation for parameter β : 

 2 4 2 2 2 2 4 2 4 2 2
0 0 0 0 0 0 0 03 2 (3 2 ) 3 4 0µ β µ µ η ρ ω β ρ ω µ η µ η ρ ω− − + + − =  (18) 

By denoting 2 2 2
j jkγ η= − , eqn (18) simplifies to 

 4 2 2 2 2 2
1 2 1 2( ) 0,β γ γ β γ γ− + + =  (19) 

and the solutions are 2 2
j jβ γ= ± . In order to satisfy the radiation condition of eqn 

(3), the positive root is retained: 

 2 2 .j j jkβ γ η= = −  (20) 

Since ( , ) 1j jr k M η β =  (i.e. the rank of the matrix ( , )jM η β  for 1, 2j =  is 
one), there are two eigenvectors, namely, 

 21 2

1
,

i
v v

i
η β
β η

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

, (21) 

and every solution to eqn (16) has the standard form 

 2

2

1

{ } e .m xk m
jk m j

m

S S C v β

=

= =∑  (22) 

Recapitulating, the matrix form of eqn (11) using indicial notation is 

 1/ 2
2( , , ) ( ) ( , , )jk jkw x h x W xξ ω ξ ω−=  (23) 

and the remaining step is to determine functions 2( , , )k
mC aη ξ  such that the 

boundary condition for zero tractions in eqn (6) is satisfied. The traction field 
corresponding to displacement field w  on 2 0x =  is 

 
1

1

2 2
1 0 1 1 2 2 2 1

2 2
2 0 1 2 1 2 2 1

1( ) ( 2 ) ( 2 ) e d ,
2
1( ) (3 2 ) ( 3 2 ) e d .

2

i xa k k
k

R

i xa k k
k

R

T w a C i a k C x

T w i a k C a C x

η

η

µ η β β η
π

µ β η η β
π

⎡ ⎤= − + + − + −⎣ ⎦

⎡ ⎤= − + + − +⎣ ⎦

∫
∫

 (24) 

In order to determine the traction field corresponding to displacement field u  
on 2 0x = , we use the representation of (1)

0H  based on a Fourier transform with 
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respect to 1x  (see Gradshteyn and Ryzhik [10]; formulas 6.677 3&4; also 
Section 8.42): 

 2 2 1( )(1)
0

1( ) e e d .
2

jx i x
j

R j

iH rk ξ β η η
π β

−= ∫  (25) 

Employing eqns (7) and (10) for u  and U , respectively, we obtain 

 1
1( ) e d ,

2
i xa

jk jk
R

T u D η η
π

= ∫  (26) 

where matrix components ijD  are given below:  

 

2 2 2 1

2 2 2 1

2 2 2 1

1/ 2
2 2 22

11 2 22
12

1/ 2
2 22

21 1 2 1 22
2 1

1/ 2
2 22

12 2 2 2 12
2 2

1/ 2
22

22 2
2

( ) ( 2 )e ( 2)e ,
2

( ) ( 3 2 )e (3 2 )e ,
2

( ) ( 2 )e ( 2 )e ,
2

( ) (
2

h aD a k
k

i hD a a k
k

i hD a k a
k

hD
k

ξ β ξ β

ξ β ξ β

ξ β ξ β

ξ
β η η

β

η ξ
β β β η

β

η ξ
β η β β

β

ξ
η

−

−

−

−

⎡ ⎤
= − − + + +⎢ ⎥

⎣ ⎦

⎡ ⎤= − − + + −⎣ ⎦

⎡ ⎤= − − + + +⎣ ⎦

= 2 2 2 12 2
1 2

2

3 2)e ( 3 2 )e .a a kξ β ξ ββ η
β

⎡ ⎤
+ + − − +⎢ ⎥

⎣ ⎦

 (27) 

By combining eqns (24) and (26), a system of two linear equations is recovered 
for 1 2,m mC C  that appear as kernels of integral equations when substituted in the 
boundary condition of eqn (6). The determinant of this system is 

 
2 22

1 2 20
2 2 2

1 2 2

( 2 ) ( 2 )
,

4 (3 2 ) ( 3 2 )
a a i a k

i a k a

η β β ηµ
π β η η β

− + − + −
∆ =

− + − +
 (28) 

and is computed as 

 
2

2 2 2 2 00
1 2 1 2 2 12 3( ) (( ) ) ,

4
a a k a

µ
η β β β β η β

π
⎡ ⎤∆ = − − + + − ∆⎣ ⎦  (29) 

where 0 2 2 2 2
1 2 24 (2 )kη β β η∆ = − −  is a Rayleigh function [5]. 

Functions 1 2,m mC C  are unique solutions of eqn (6), since for every 

, 0,R aη ∈ <  0 00, 0, 0ω ρ µ> > > , the condition 0a∆ ≠  holds true. Possible 
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combinations of values of parameter η  as compared to the two wave numbers 

1 2,k k  yield the following cases: 

2 2
1 1 2 2 1If , then Im ( ) 0,ak k aη β β η β⎡ ⎤< ∆ = − + + >⎣ ⎦  

2 2 2 2
1 2 2 2If , then Im (2 ) 0,ak k a kη β η⎡ ⎤= ∆ = − + − >⎣ ⎦  

2 2 2 2 2 2
1 2 1 2 2If , then Re 3 ( ) (2 ) 0,ak k a k a kη η β η η< ≤ ∆ = − + + − >  

0
2If , then 0.ak η< ∆ > ∆ >  

Applying Kramer’s rule yields matrix functions 1 2,m mC C  as 

 ,k a a
m mkC = ∆ ∆  (30) 

where the sub-determinants a
mk∆  are given below: 

2 2
0 1 1111 0 2 2

11 21 2 2
21 0 2 0 1 2 21

2 2
0 1 12 12 0 2 2

12 222 2
0 1 2 22 22 0 2

( 2 )( 2 ) , ,
( 3 2 ) (3 2 )

( 2 ) ( 2 ), .
(3 2 ) ( 3 2 )

a a

a a

a DD i a k
D a i a k D

a D D i a k
i a k D D a

µ η βµ β η
µ η β µ β η

µ η β µ β η
µ β η µ η β

− + −− − + −
∆ = ∆ =

− − + − + −

− + − − − + −
∆ = ∆ =

− + − − − +

 (31) 

Finally, the radiation boundary condition in eqn (3) holds because of the 
presence of multiplier 1/ 2

2( )h x−  for u  and ( )1/ 2
2 2( ) exph x x β−  under the 

integral on η  for w  in eqn (13). 

Remark 2: The above method can be applied for complex wave numbers, i.e. 
, 0, 0j jR jI jR jIk k ik k k= + > > , and the structure of Green’s function remains 

the same. This is because the representations for the fundamental solution of eqn 
(10) and for the Bessel function, eqn (25) are valid for complex numbers as well. 
However, the proof that 0a∆ ≠  in this case is more complicated. 

Remark 3:  The same method can be applied to obtain a transient Green’s 
function in the inhomogeneous half-plane for the equations of motion defined in 
the time domain as 

 ( ), ,,
( ) ( ) ( ) ,a

jkpq ip q ik tt ikj
L G C G G f t xρ δ ξ ε≡ − = − −  (32) 

where 1 1
loc( ) ( )f t L R∈ , with 1

locL i.e., the localised elastodynamic operator and 
0f =  for 0t < . More specifically, ( ) ( ) ( )f t H t F t= , with ( )H t  the Heaviside 
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function and ( ) ctF t Ae≤  for t →∞ . The transient Green’s function is obtained 
by applying Laplace transform to eqn (32) and using a Kelvin function 
representation of the type ( ) (1)

0 0( ) 2 ( )K z i H izπ= . Formally, the Green’s 
function in the Laplace domain is obtained by replacing frequency ω  with the 
Laplace transform parameter s written as a purely imaginary number is  and then 
applying the inverse Laplace transform. This path was followed for the 
homogeneous case, i.e. 0a =  and with ( ) 1F t = , by Guan et al. [6]. 

Remark 4: Green’s function ( , , ; )G x aξ ω  converges in the weak sense to 

( , , ;0)G x ξ ω  for 0a → , i.e. for every 2
0( ) ( )C Rϕ ξ ∞

−∈ , the following holds true: 

2 2
( , , ; ) ( )d ( , , ;0) ( )d , for 0.

R R
G x a G x aξ ω ϕ ξ ξ ξ ω ϕ ξ ξ→ →∫ ∫  (i) 

Also, Green’s function ( , , ; )G x aξ ω  converges in the weak sense to ( , ,0; )G x aξ  

for 0ω → , i.e. for every 2
0( ) ( )C Rϕ ξ ∞

−∈ , the following holds true: 

 
2 2

( , , ; ) ( )d ( , ,0; ) ( )d , for 0.
R R

G x a G x aξ ω ϕ ξ ξ ξ ϕ ξ ξ ω→ →∫ ∫  (ii) 

3.1 Recovery of the homogeneous case 

In order to check that it is possible to recover the homogeneous half-plane 
solution by setting the inhomogeneity parameter 0a =  (and, correspondingly, 

2 2( ) ( ) 1h x h ξ= =  for the profile function) in the solution derived above, we start 
with the results presented in Kobayashi [5]. In that case, eqn (24) reads as 

 
1

1

0 2 2
1 0 1 1 2 2 1

0 2 2
2 0 2 1 2 2 1

1( ) 2 (2 ) e d ,
2
1( ) ( 2 ) 2 e d .

2

i xk k
k

R

i xk k
k

R

T w C i k C x

T w i k C C x

η

η

µ ηβ η
π

µ η ηβ
π

⎡ ⎤= + −⎣ ⎦

⎡ ⎤= − + +⎣ ⎦

∫
∫

 (33) 

Also, in place of 1 2 2( , )u x x ξ−  we use 1 2 2 1 2 2( , ) ( , )u x x u x xξ ξ− + + , where 

1 2 2( , )u x x ξ+  is a smooth in 2R−  matrix-valued function defined in reference to 
eqn (10) as 

 (1) (1) (1)2
1 2 2 2 2 10 0 02

0 2

1( , ) ( ) ( ( ) ( )) ,
4jk jk jk

iu x x H k r H k r H k r
k

ξ δ
µ

⎡ ⎤
+ = + ∂ −⎢ ⎥

⎢ ⎥⎣ ⎦
 (34) 
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with 2 2
1 2 2( )r x x ξ= + +  the radial distance between source and receiver. 

Furthermore, corresponding to eqn (25), the integral representation for the 
Hankel function is 

 2 2 1( )(1)
0

1( ) e e d .
2

jx i x
j

R j

iH rk ξ β η η
π β

+= ∫  (35) 

Finally, the traction vector on the free surface 2 0x =  for the complete 
displacement field u u+  that replaces eqn (26) is 

 10 1( ) e d ,
2

i x
jk jk

R
T u u D η η

π
+ = ∫  (36) 

with the following new definitions: 

 

2 2 2 1

2 2 2 1

2 2
11 21 1 2 22

2 1

2 2
12 2 1 2 222

2 2

0, 2 e (2 )e ,
2

(2 )e 2 e , 0.
2

iD D k
k

iD k D
k

ξ β ξ β

ξ β ξ β

η β β η
β

η η β β
β

⎡ ⎤= = − + −⎣ ⎦

⎡ ⎤= − − + =⎣ ⎦

 (37) 

The new sub-determinants 0
mk∆  are now 

 

2 2
0 10 00 2

11 21 2 2
21 0 2 0 2 21

2 2
0 1 120 012 0 2

12 22 2 2
0 2 0 2

2 00 (2 ) , ,
2 (2 )

2(2 ) , ,
0 2 (2 ) 0

i k
D i k D

DD i k
i k

µ ηβµ η
µ ηβ µ η

µ ηβµ η
µ ηβ µ η

−
∆ = ∆ =

− − − −

−− −
∆ = ∆ =

− −

 (38) 

and the solution for the matrix functions is 

 0 0k
m mkC = ∆ ∆ . (39) 

Finally, reconstruction of the complete Green’s function that replaces eqn (22) is 

 2

2

1

{ } e ,m xk m
jk m j

m

S S C v β

=

= =∑  (40) 
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whose components are now written explicitly below as 

 

2 2 2 1

2 2 2 1

2 2 2 1

2 2 2 1

2 20
11 2 1 2 21

0

2 2 21 0
21 2 21

0

2 2 22 0
12 2 12

0

2 20
22 1 2 2 21

0

(2 )e 2 e ,

(2 )e 2 e ,

2 (2 ) ,

2 e (2 )e .

x x

x x

x x

x x

i
S k D

S k D

S e k e D

i
S k D

β β

β β

β β

β β

ηµ
η β β

β µ
η η

β µ
η η

ηµ
β β η

⎡ ⎤= − −⎣ ⎦∆

⎡ ⎤= − −⎣ ⎦∆

⎡ ⎤= − + −⎣ ⎦∆

⎡ ⎤= − + −⎣ ⎦∆

 (41) 

Remark 5: The half-plane Green’s function derived above can be used for 
solving general types of boundary-value problems in the half-plane enclosing 
singularities such as cracks, holes, cavities, etc. This can be done using BEM 
formulations [12] and the advantage now is that free surface (line 2 0x = ) 
discretisation is unnecessary. 

4 Numerical example 

As an example, we consider the lower part of an original full-plane, keeping in 
mind that in the upper half-plane the material function h  has a line of 
degeneracy (see Figure 1). Some results will be given here for the 
inhomogeneous half-plane Green’s functions derived herein, for the following 
source/receiver configuration: 

 1 2 1 2( , ) (0.0, 300.0 m); ( 30.0m, 0.0).x xξ ξ = − = =  (42) 

The background homogeneous material corresponds to relatively firm soil and 
has the following values for the pressure (P) and shear (S) wave speeds and for 
the density: 

 1 2621.0m / sec, 359.0m / sec, 2100.0kgmc c ρ= = = . (43) 

The inhomogeneity parameter is assigned the value of 0.0005 (1/ m)α = − , 
which implies that the ( )h ξ profile at the source depth is stiffer by a factor 
of 1.32 (i.e. about 30%) compared with the reference value 

6 2
0 270.0 10 / mNµ = × at the free surface level. The travel time for the S-wave 

to reach the receiver starting from the source is 2 2/ 301/ 359 0.84sect r c= = =  
in the reference homogeneous background material, and the frequency scale is 
set up according to a total time duration of the disturbance phenomenon of 

2.0secT = . This gives a frequency value 1.0 / 0.50Hzf T= = , which is 
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rounded off to 0.64 Hz so that it corresponds to 4.0 rad / secΩ = , swept in 40 
increments of 0.1rad / secω∆ =  starting from zero where the static solution 

( , ,0; )G x aξ  is used (see Remark 4 above). 
In reference to the one-sided Fourier transform of eqn (14), this is performed 

numerically using the fast Fourier transform (FFT) [13]. More specifically, we 
use the positive side of the horizontal axis going up to 40.0mX = . For 

1024N =  data points, the wave number spectrum is set up according to the 
following formulas: 

 
2 / 0.078125 (m), 2 / 0.07854 (1/ m)

/ 40.124 (1/ )
x X N N x

x m
η π

η π
∆ = = ∆ = ∆ =

= ∆ =
 (44) 

We note in passing that it is possible to introduce viscoelastic material behaviour 
using the Kelvin model with complex values for the material parameters [14], 
which is compatible with the static solution at zero frequency. 

Figure 2(a) plots the amplitude of the Green’s function component  
11 11 11( , , ) ( , , ) ( , , )G x u x w xξ ω ξ ω ξ ω= + , where both full-plane 11( , , )u x ξ ω  and 

correction 11( , , )w x ξ ω  parts are separately plotted as functions of the 
inhomogeneity parameter a , with the latter part restoring traction-free 
conditions at the free surface of the half-plane. Similarly, Figure 2(b) plots 
component 12 ( , , )G x ξ ω . For a value of 0a = , 1h =  and the equivalent 
homogeneous material Green’s functions can be obtained. 

We observe that the Rayleigh integral yields a low frequency correction, 
which is very pronounced in the horizontal direction compared with the vertical 
one. Also, because the displacements are plotted at the free surface, the effect of 
inhomogeneity is rather small in the uij part and of the order of about 5–10% less 
(the homogeneous material is softer), since the inhomogeneity function 

( )h ξ becomes active with increasing depth from surface. Thus, corresponding 
plots are not shown here in the interest of brevity. We note in passing that 
approximate solutions using an image source [7] lead to a doubling of selected 
components of the displacement field in order to erase their corresponding 
traction components from the free surface, but it is never possible to completely 
reproduce traction-free conditions for all components simultaneously, unless 
additional sources (dipoles, etc.) are added. 

5 Conclusions 

In this work, a new point-force solution was derived for the continuously 
inhomogeneous half-plane with quadratic-type variation of all material 
parameters in terms of the depth coordinate. The solution represents a complete 
elastic wave-train propagating outwards from the loaded area and satisfies 
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traction-free boundary conditions along the horizontal surface. As such, solutions 
of this type are useful as kernel functions in BEM formulations for problems of 
engineering importance in elastodynamics and other fields of mechanics. 
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Abstract 

Different formulations may be found in the literature for the numerical 
simulation of layered soils. Among these options, the boundary element method 
(BEM) detaches because it requires only the boundary discretisation of the 
infinite domains involved. The classical way of simulating infinite layered solids 
with the BEM is by imposing equilibrium and displacements compatibility along 
the contacts. There is, however, an alternative technique which is more accurate 
because it does not impose these conditions along the interfaces. In this 
alternative technique, the regions displacement fundamental solutions are related 
and for each equation all domains are considered as a unique solid. In this 
chapter, it is demonstrated that this alternative formulation is suited for the 
simulation of layered soil problems, representing such media as an infinite solid 
composed of different homogeneous, isotropic and elastic linear domains in 
contact. In the end of the chapter, this formulation is employed in a three-
dimensional problem, comparing the results with the classical technique and with 
an analytical solution. 

Keywords: Boundary element method, Layered soil, Alternative multi-region 
technique, Static. 

1 Introduction 

In the literature, many works are dedicated to the simulation of layered soil 
problems. In such works, when a structure is considered interacting with the soil, 
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one may observe that the mathematical models employed for the structures are 
closer to reality than the ones used for the soil. This discrepancy is due to the 
type of materials involved in each case. While structural materials, such as 
concrete and steel, are produced with some type of technological control, the soil 
materials are formed due to various conditions of weathering in rocks. The result 
is a chaotic media where the characteristics are difficult to be numerically 
modelled, including discontinuities, heterogeneity and anisotropy. 

Due to these factors, it is necessary to assume simplifications in order to 
make possible a numerical simulation of layered soil problems with reasonable 
time processing. In this chapter, the main simplifications adopted are: 

•Representing the soil as an infinite domain in radial directions; 
•Considering the soil as a composition of homogeneous, isotropic, and linear 

elastic domains; 
•Considering only the static case. 

In this case, the problem comes down to the static analysis of infinite multi-
region domains. Focusing this theme, many formulations are available in the 
literature and each one of them implies on advantages and disadvantages. 
However, depending on the problem to be solved, one technique may become 
more attractive than the others. 

When it is possible, a good choice is to employ analytical solutions. When 
correctly programmed, they give trustful results in little processing time. In 
reference [1], for example, an analytical expression is deduced for a circular load 
applied to the surface of a two-layer infinite domain. The main disadvantage of 
these solutions is that they are not versatile, suiting only specific situations. 

If analytical solutions can not be used, then a numerical approach may become 
attractive. Although the finite element method (FEM) is popular, it has some 
disadvantages compared with other options such as the boundary element method 
(BEM). The FEM requires the discretisation of the infinite domain, implying on a 
high number of elements and leading to a large and, sometimes, impracticable 
processing time. In order to reduce these inconveniences, some authors use infinite 
elements together with finite elements, as done in reference [2]. 

The main advantage of the BEM is that only the boundaries of the domains 
involved require discretisation. This allows reducing the problem dimension, 
implying on less processing time. This advantage is explored in several works, 
and more developments are turning the BEM even more attractive to future 
applications. One of them is using infinite boundary elements, as performed in 
reference [3]. 

To consider two or more domains in contact with the BEM, several 
techniques may be employed. The most popular one, which may be consulted in 
reference [4], is based on imposing equilibrium and compatibility conditions for 
all interface points between every pair of domains in contact. Using these 
relations, the matrices obtained for each domain applying the BEM formulation 
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are coupled and all the unknown boundary values may be obtained by solving 
the same system of equations. In spite of its simplicity, one disadvantage of this 
formulation is that the final system of equations has blocks of zeros. These 
blocks can become numerous depending on the number of domains considered, 
increasing the size of the system and consequently the processing time. In 
addition to that, the conditions imposed on the contacts do not represent 
satisfactorily the media continuum, what may cause inaccuracies on the results. 

The multi-region method presented in reference [5] for two-dimensional 
elastic and potential problems eliminates the need of equilibrium and 
compatibility conditions among the interfaces. This approach improves the 
media continuity compared with the classical formulation, leading to more 
accurate results. This technique is modified in reference [6] for bending plate 
analysis with the BEM, latter used for bending moments calculation in [7] and 
finally adapted for three-dimensional elastic problems in reference [8].  

The aim of this chapter is to present this alternative multi-region BEM 
technique, which is suitable for layered soil problems. The soil is represented as 
a multi-region media, similar to the Gibson soil approach. In such a way, the 
domain is modelled with variable elasticity module and a constant Poisson ratio, 
which may be considered a disadvantage in certain cases. Nevertheless, by 
testing this formulation in problems with different Poisson ratios, one may verify 
that the error introduced by an average Poisson ratio consideration may be 
considered of little relevance for displacement calculation. In the end, it is viable 
to employ this formulation in more general problems. 

2 Alternative multi-region formulation 

In Figure 1, a homogeneous, isotropic and linear elastic domain Ω  is presented. 
The boundary is denoted by Γ , E  is the elasticity module and ν  is the Poisson 

Figure 1: Problem with one region.
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ratio. Point x  is called ‘field point’, and represents a general point of Γ . Point 
y  is called ‘source point’, and can be placed in any point inside Ω , outside Ω  

or at the boundary Γ . Versor η  is normal to Γ  at x , and r  is the distance 
between points x  and y . 

The equilibrium of this solid body can be represented by a boundary integral 
equation called Somigliana identity, which for homogeneous, isotropic and 
linear-elastic domains is: 

 * *( ) ( ) ( , ) ( )d ( ) ( , ) ( )d ( ).ij j ij j ij jc y u y p x y u x x u x y p x x
Γ Γ

+ Γ = Γ∫ ∫  (1) 

This equation is written for the source point y , where the displacement is 
( )ju y . The constant ijc  depends on the Poisson ratio and on the position of y . 

The field point x  goes through all boundary Γ , where displacements are ( )ju x  

and tractions are ( )jp x . The integral kernels * ( , )iju x y  and * ( , )ijp x y  are Kelvin 
three-dimensional fundamental solutions for displacements and tractions, 
respectively, and may be written as follows: 

 [ ]*
, ,

1 (3 4) ,
16 (1 )

ij ij i ju r r
r

ν δ
πµ ν

= − +
−

 (2) 

 [ ]*
, , , ,2

1 (1 2 ) 3 (1 2 )( ) .
8 (1 )

ij ij i j i j j i
rp r r r r

r
ν δ ν η η

π ν η
⎡ ⎤− ∂= − + + − −⎢ ⎥− ∂⎣ ⎦

 (3) 

In eqns (2) and (3), ijδ  is unitary for i j=  and zero for all other cases, η  is 
the normal versor at point x  (see Figure 1) and µ  is given by: 

 
( )

.
2 1

Eµ
ν

=
+

 (4) 

The objective is to obtain an integral equation similar to eqn (1), but valid for an 
arbitrary number of domains in contact. In such a way, a demonstration will be 
held for the most simple case, with only two regions as illustrated in Figure 2, and 
the resulting expression will then be extended for an arbitrary number of domains. 

In Figure 2, the regions have the same Poisson ratio ν  and different 
elasticity modules, 1E  for region 1Ω  and 2E  for region 2Ω . The boundary 1Γ  

of region 1Ω  is divided into two parts, 12Γ  and 1Γ . The part of 1Γ  which is in 
contact with region 2Ω  is denoted by 12Γ  and the rest of it is named 1Γ . 
Analogously, for region 2Ω , the boundary 2Γ  is divided into 21Γ  for the contact 
and 2Γ  for the free surface. Consequently: 

 1 1 12 2 2 21, .Γ = Γ + Γ Γ = Γ + Γ  (5) 
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Kelvin displacement fundamental solutions for regions 1Ω  and 2Ω  may be 
written as: 

 [ ]*
1 , ,

1

1 (3 4) ,
16 (1 )

ij ij i ju r r
r

ν δ
πµ ν

= − +
−

 (6) 

 [ ]*
2 , ,

2

1 (3 4) ,
16 (1 )

ij ij i ju r r
r

ν δ
πµ ν

= − +
−

 (7) 

where 

 1 2
1 2, .

2(1 ) 2(1 )
E Eµ µ
ν ν

= =
+ +

 (8) 

In such a way, the fundamental solutions may be related as follows: 

 1 21* * * * *
2 1 2 1 2

2 1
,ij ij ij ij ij

E Eu u u u u
E E

∆= ⇒ = +  (9) 

where 

 .ij i jE E E∆ = −  (10) 

One may observe in eqn (3) that the traction fundamental solution does not 
depend on the elasticity module, except when it is the same for domains 1Ω  and 

2Ω . Thus, Kelvin traction fundamental solution may be represented as *
ijp  for 

both domains. Considering region 1Ω  as a reference, the deduction is started by 
writing the Somigliana identity, represented in eqn (1). In order to reduce the 
expressions, the variables in parenthesis will be suppressed. In such a way: 

 
1 1

* *
1 1 1 1d d .ij j ij j ij jc u p u u p

Γ Γ
+ Γ = Γ∫ ∫  (11) 

Note that if the source point is outside 1Ω , then the free-term 1ijc  is zero; if it is 
inside, 1 1ijc =  and if it is on the boundary, then 1ijc  may be determined using 
standard BEM techniques. Considering eqn (5), the integrals of eqn (11) may be 
divided into two parts as shown below: 

 
1 12 1 12

* * * *
1 1 12 1 1 1 12d d d d .ij j ij j ij j ij j ij jc u p u p u u p u p

Γ Γ Γ Γ
+ Γ + Γ = Γ + Γ∫ ∫ ∫ ∫  (12) 

An analogous equation may be written for region 2Ω : 

 
2 21 2 21

* * * *
2 2 21 2 2 2 21d d d d .ij j ij j ij j ij j ij jc u p u p u u p u p

Γ Γ Γ Γ
+ Γ + Γ = Γ + Γ∫ ∫ ∫ ∫  (13) 
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When eqns (12) and (13) are added, a single equation which considers both 
regions is obtained for the point: 

( )
1 12 2 21

1 12 2 21

* * * *
1 2 1 12 2 21

* * * *
1 1 1 12 2 2 2 21

d d d d

d d d .

ij ij j ij j ij j ij j ij j

ij j ij j ij j ij j

c c u p u p u p u p u

u p d u p u p u p
Γ Γ Γ Γ

Γ Γ Γ Γ

+ + Γ + Γ + Γ + Γ

= Γ + Γ + Γ + Γ

∫ ∫ ∫ ∫
∫ ∫ ∫ ∫

 (14) 

Some terms of eqn (14) may be related. Starting with the left side, the integral 
over 12Γ  is equal to the one over 21Γ  with an inverted signal. This occurs 
because the exactly same functions are being integrated only by inverting the 
integration direction. Thus: 

 
12 21

* *
12 21d d 0.ij j ij jp u p u

Γ Γ
Γ + Γ =∫ ∫  (15) 

Analysing now the right side of eqn (14) and considering eqn (9), the following 
arrangement is made: 

 ( )
12 21 12

21 12 21

21 21

* * *
1 12 2 21 1 12

12* * * *
1 2 21 1 12 1 21

1

12 12* *
2 21 2 21

1 1

d d d

d d d

d d .

ij j ij j ij j

ij ij j ij j ij j

ij j ij j

u p u p u p

Eu u p u p u p
E
E Eu p u p
E E

Γ Γ Γ

Γ Γ Γ

Γ Γ

Γ + Γ = Γ

∆⎛ ⎞+ + Γ = Γ + Γ⎜ ⎟
⎝ ⎠

∆ ∆+ Γ = Γ

∫ ∫ ∫

∫ ∫ ∫

∫ ∫

 (16) 

The two integrals added inside the parenthesis are equal to zero for the same 
reason that eqn (15) is zero. One more simplification is possible on the right side 
of eqn (14) by substituting eqn (9) in one more term, as shown below: 

 
2 2 2

2

12* * * *
2 2 1 2 2 1 2

1

12 *
2 2

1

d d d

d .

ij j ij ij j ij j

ij j

Eu p u u p u p
E

E u p
E

Γ Γ Γ

Γ

∆⎛ ⎞Γ = + Γ = Γ⎜ ⎟
⎝ ⎠

∆+ Γ
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∫
 (17) 

After these deductions, eqns (15)–(17) are substituted in eqn (14). The result is 

( )
1 2 1

2 2 21

* * *
1 2 1 2 1 1

12 12* * *
1 2 2 2 2 21

1 1

d d d

d d d .

ij ij j ij j ij j ij j

ij j ij j ij j

c c u p u p u u p

E Eu p u p u p
E E

Γ Γ Γ

Γ Γ Γ

+ + Γ + Γ = Γ

∆ ∆+ Γ + Γ + Γ

∫ ∫ ∫

∫ ∫ ∫
 (18) 

Reorganising the terms, the following equation is obtained: 

 
( )

( )
1 2 1

2 2 21

* * *
1 2 1 2 1 1

12* * *
1 2 2 2 2 21

1

d d d

d d d .

ij ij j ij j ij j ij j

ij j ij j ij j

c c u p u p u u p

Eu p u p u p
E

Γ Γ Γ

Γ Γ Γ

+ + Γ + Γ = Γ

∆+ Γ + Γ + Γ

∫ ∫ ∫

∫ ∫ ∫
 (19) 
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The terms inside the parenthesis are functions of the boundary tractions; 
however, it is necessary to transform them into functions of the boundary 
displacements. This transformation is possible using eqn (13), isolating one of its 
integrals for further substitution in eqn (19). In such a way: 

 
2 2 21 21

* * * *
2 2 2 2 21 2 21d d d d .ij j ij j ij j ij j ij ju p c u p u p u u p

Γ Γ Γ Γ
Γ = + Γ + Γ − Γ∫ ∫ ∫ ∫  (20) 

Substituting eqn (20) into eqn (19) and combining the integrals inside the 
parenthesis, the subsequent equation is obtained: 

 
( )

( )
1 2 1

2 2 21

* * *
1 2 1 2 1 1

12* * *
1 2 2 2 21

1

d d d

d d d .

ij ij j ij j ij j ij j

ij j ij ij j ij j

c c u p u p u u p

Eu p c p u p u
E

Γ Γ Γ

Γ Γ Γ

+ + Γ + Γ = Γ

∆+ Γ + + Γ + Γ

∫ ∫ ∫

∫ ∫ ∫
 (21) 

 
( )

2 21

1 2 1 2

12 12 * *
1 2 2 21

1 1

* * * *
1 2 1 1 1 2

1 d d

d d d d .

ij ij j ij j ij j

ij j ij j ij j ij j

E Ec c u p u p u
E E

p u p u u p u p

Γ Γ

Γ Γ Γ Γ

∆ ∆⎡ ⎛ ⎞ ⎤+ − − Γ + Γ⎜ ⎟⎢ ⎥⎣ ⎝ ⎠ ⎦

+ Γ + Γ = Γ + Γ

∫ ∫

∫ ∫ ∫ ∫
 (22) 

Note that two integrals on the left side can still be combined as follows: 

 
2 2 2

2

12 12* * *
2 2 2

1 1

2 *
2

1

d d 1 d

d .

ij j ij j ij j

ij j

E Ep u p u p u
E E

E p u
E

Γ Γ Γ

Γ

∆ ∆⎛ ⎞Γ − Γ = − Γ⎜ ⎟
⎝ ⎠

= Γ

∫ ∫ ∫

∫
 (23) 

The result of eqn (23) substitution into eqn (22) is: 

 1 2 21

1 2

2 2 12* * *
1 2 1 2 21

1 1 1

* *
1 1 1 2

d d d

d d .

ij ij j ij j ij j ij j

ij j ij j

E E Ec c u p u p u p u
E E E

u p u p

Γ Γ Γ

Γ Γ

∆⎡ ⎤+ + Γ + Γ − Γ⎢ ⎥⎣ ⎦

= Γ + Γ

∫ ∫ ∫

∫ ∫
 (24) 

Equation (24) is only valid for two domains. Extending it to an arbitrary number 
of domains, it becomes: 

* *

1 1 11 1 1

*
1

1

d d

d .

e mn

e

nd ne nc
s e mn

ijs j ij j e ij j mn
s e c

ne

ij j e
e

E E Ec u p u p u
E E E

u p

Γ Γ= = =

Γ=

⎧ ⎫ ∆⎡ ⎤ ⎡ ⎤ ⎡ ⎤+ Γ + Γ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭

⎡ ⎤= Γ⎣ ⎦

∑ ∑ ∑∫ ∫

∑ ∫
 (25) 

In eqn (25), the second summation signal is positive because the integration 
direction was changed from nmΓ  to mnΓ . The total number of domains is nd , 
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the number of contact boundaries is nc  and the number of external boundaries 
is ne . The first summation represents the coefficient ( )ijc y  of eqn (1). Before 
calculating it, all coefficients ijsc , one for each domain, must be known. 
Considering all boundaries smooth in Figure 2, Table 1 presents some examples 
for this summation calculation. 

Equation (1) is used as a starting point to obtain the BEM system of 
equations which solution leads to the unknowns of the problem. If the same steps 
are repeated for eqn (25), valid for multi-regions, a similar system of equations is 
obtained. The unknowns of this new system are the non-prescribed boundary 
values plus the interface displacements. The total number of unknowns is 
reduced compared with the classic multi-region technique, once the interface 
tractions are not included in this case. This justifies why the alternative 
formulation leads to less time processing. A better interface continuity is also 
guaranteed, once all regions are modelled as a unique solid. 

3 Results 

This example aims to analyse an infinite multi-region domain problem with the 
alternative BEM technique. The domain considered is composed by two layers 
of different elasticity module, as illustrated in Figure 3. 

Layer 1 has a 29000 kN m  elasticity module, a 0.5 Poisson ratio and 15m  of 

thickness. Layer 2 has a 2900kN m  elasticity module, a 0.5 Poisson ratio and 
infinite thickness. Both layers are infinite in radial directions. A vertical circular 

22kN m  uniform loading with a 7.5m  diameter is applied at the top layer surface. 
This problem was simulated using a 153 node and 288 boundary element 

mesh, which may be visualised in Figure 4. It is composed by triangular 
elements with linear shape functions. 

Figure 4(a) presents a general view of the mesh and Figure 4(b) presents a 
detail of the central area. This mesh is employed at the surface and at the 
layers contact, extending to a distance from which the displacements and 
tractions could be considered negligible. For the nodes positioned at this 

Table 1: Examples of ijc . 

Point position 1ijc  2ijc  ijc  
Outside 1Ω  and 2Ω  0  0  0  

Inside 1Ω  1  0  1  
Over boundary 2Γ  0  1 2  ( )11 2E  
Over boundary 12Γ  1 2  1 2  11 2 1 2 E+  
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limits, the boundary values are imposed to be zero to better simulate their far 
field behaviour. Hence, it was considered not necessary to close the 
boundary at the limits. 

As commented in the introduction of this chapter, in reference [1], an 
analytical solution is deduced for a circular load applied to the surface of a 
two-layer infinite domain. Using the values adopted in this example and 
applying the solution given in reference [1], a 25000×10−3 m vertical 
displacement is obtained for the central point of the circle. Considering this 
same point, a 25010×10−3 m displacement was obtained using the classical 
formulation with the mesh of Figure 4. Employing the alternative technique 
and the same mesh, a 25033×10−3 m vertical displacement was obtained. Both 

Figure 3: Problem to be analysed.

Figure 4: Mesh employed.
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values numerically calculated may be considered very close to the analytical 
one, leading to the conclusion that both formulations achieved accurate results 
in this example. 

4 Conclusions 

In this chapter, an alternative BEM formulation suited for layered soil problems 
was presented. Electing one domain as a reference and establishing relations 
between its displacement fundamental solution and the ones of the other regions 
allows integrating all domains as a unique solid. This approach eliminates the 
need of equilibrium and compatibility relations between the different media, 
guaranteeing a better continuity along the interfaces. This reduces possible 
inaccuracies that may occur due to traction approximations along the contacts. 

A numerical example was presented, in which a two-layer half space was 
simulated employing the classical and the alternative formulations. The values 
obtained were compared with an analytical expression. The numerical results 
were very close to the analytical one, meaning that both techniques were 
accurate. These low errors were expected, once the problem analysed may be 
considered simple. 
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Nonlinear nonuniform torsional vibrations  
of shear deformable bars – application to 
torsional postbuckling configurations and 
primary resonance excitations 
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Abstract 

In this chapter, the nonuniform torsional vibration problem of bars of arbitrary 
doubly symmetric constant cross-section is analysed, taking into account the 
effects of geometrical nonlinearity (finite displacement – small strain theory) and 
secondary twisting moment deformation. The resulting coupling effect between 
twisting and axial displacement components is taken into account and a constant 
along the bar compressive axial force is induced so as to investigate the dynamic 
response at torsional postbuckling configurations. A coupled nonlinear initial 
boundary value problem with respect to the angle of twist and to an independent 
warping parameter is formulated. The problem is numerically solved employing 
the analogue equation method, a boundary element method (BEM)-based 
method, leading to a system of nonlinear differential–algebraic equations. The 
main purpose of the present contribution is twofold: (i) comparison of both the 
governing equations and the numerical results of linear or nonlinear free or 
forced vibrations of bars ignoring or taking into account the secondary twisting 
moment deformation effect and (ii) numerical investigation of nontrivial 
nonlinear phenomena arising in primary resonance excitations and nonlinear free 
vibrations of bars at torsional postbuckling configurations. Numerical results are 
worked out to illustrate the method, demonstrate its efficiency and, wherever 
possible, its accuracy. 
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Keywords: Shear deformation, Secondary twisting moment deformation, Bar, 
Boundary element method, Nonuniform torsion, Nonlinear vibrations, Postbuckling, 
Primary resonance. 

1 Introduction 

When arbitrary torsional boundary conditions are applied either at the edges or at 
any other interior point of a bar, this bar under the action of general twisting 
loading is led to nonuniform torsion. In this case, apart from the well-known 
primary (St. Venant) shear stress distribution, normal and secondary (warping) 
shear stresses arise formulating the warping moment (bimoment) and secondary 
twisting moment (bishear), respectively [1–2]. Warping shear stresses can be 
estimated by formulating a boundary value problem with respect to a secondary 
warping function [1,3] or by studying the equilibrium equations of a small 
segment of an elementary slice of the bar [4]. However, the aforementioned 
techniques do not achieve to include the warping shear stresses in the global 
equilibrium of the bar and to perform an accurate analysis of bars of closed-
shaped cross-sections [5], that is to account for the secondary twisting moment 
deformation effect (STMDE). This effect generally necessitates the introduction 
of an independent warping parameter in the kinematical components of the bar 
(along with the angle of twist), increasing the difficulty of the problem at hand. 

Besides, since weight saving is of paramount importance in many engineering 
fields, frequently used thin-walled open sections have low torsional stiffness and 
their torsional deformations can be of such magnitudes that it is not adequate to 
treat the angles of cross-section rotation as small. In these cases, the study of 
nonlinear effects on these members becomes essential, where this non-linearity 
results from retaining the nonlinear terms in the strain–displacement relations 
(finite displacement – small strain theory).  

During the past few years, the linear or the nonlinear nonuniform torsional 
dynamic analysis of bars has received a good amount of attention in the literature. 
However, in these research efforts, the analysed cross-sections are thin-walled 
ones, forced vibrations are not investigated, geometrical nonlinearities are 
considered only for static initial stresses and deformations and the angle of  
twist per unit length is considered as a warping parameter, with the exception of 
Simo and Vu-Quoc [2] who presented a FEM solution to a fully nonlinear  
(small or large strains, hyperelastic material) three-dimensional rod model based 
on a geometrically exact description of the kinematics of deformation. However,  
in [2], a static postbuckling analysis of a framed structure is presented, thus the 
nonlinear torsional vibration problem is not discussed. 

In this chapter, a boundary element method (BEM) is developed for the 
nonuniform torsional vibration problem of bars of arbitrary doubly symmetric 
constant cross-section, taking into account the effects of geometrical nonlinearity 
and secondary twisting moment deformation. The bar is subjected to arbitrarily 
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distributed or concentrated conservative dynamic twisting and warping moments 
along its length, while its edges are subjected to the most general axial and 
torsional (twisting and warping) boundary conditions. The essential features and 
novel aspects of the present formulation compared with previous ones are 
summarised as follows: 

i. The cross-section is an arbitrarily shaped doubly symmetric thin or thick 
walled one. The formulation does not stand on the assumptions of a thin-
walled structure and therefore the cross section’s torsional and warping 
rigidities are evaluated ‘exactly’ in a numerical sense. 

ii. The present investigation focuses on torsional vibrations and provides a 
unified framework for the theoretical statement and numerical comparison 
between shear deformable and shear undeformable bars undergoing linear or 
nonlinear, free of forced vibrations. 

iii. Nonlinear free vibrations at torsional postbuckling configurations and 
primary resonance excitations are numerically examined revealing several 
aspects of nontrivial nonlinear phenomena. 

iv. The proposed method employs a BEM approach resulting in line or parabolic 
elements instead of area elements of the FEM solutions. 

2 Statement of the problem 

2.1  Displacements, strains and stresses 

Let us consider a prismatic bar of length l , of constant arbitrary doubly 
symmetric cross-section of area A . The homogeneous isotropic and linearly 
elastic material of the bar’s cross-section, with modulus of elasticity E , shear 
modulus G  and mass density ρ  occupies the two-dimensional multiply 
connected region Ω  of the ,y z  plane and is bounded by the ( )1, 2,...,j j KΓ =  
boundary curves, which are piecewise smooth, i.e. they may have a finite 
number of corners. A principal bending coordinate system Syz  passing through 
the cross-section’s shear centre S  is employed ( S  coincides with the centroid 
C  of the bar since the cross-section is doubly symmetric). The bar is subjected 
to the combined action of the arbitrarily distributed or concentrated time-
dependent conservative axial load ( ),n x t  and twisting ( ),t tm m x t=  and 
warping ( ),w wm m x t=  moments acting in the longitudinal x  direction. 

Under the aforementioned loading, the displacement field of the bar 
accounting for large twisting rotations is assumed to be given as 
 ( , , , ) ( , ) ( , ) ( , ),P

m x Su x y z t u x t x t y zη φ= +  (1a) 
 ( , , , ) sin ( , ) (1 cos ( , )),x xv x y z t z x t y x tθ θ= − − −  (1b) 
 ( , , , ) sin ( , ) (1 cos ( , )),x xw x y z t y x t z x tθ θ= − −  (1c) 
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where u , v  and w  are the axial and transverse bar displacement components 
with respect to the Syz  system of axes; ( ),x x tθ  is the angle of twist; P

Sφ  is the 
primary warping function with respect to the shear centre S [1]; ( ),x x tη  and 

( ),mu x t  denote an independent warping parameter and an “average” axial 
displacement of the bar’s cross-section, respectively, that will be later discussed. 

Employing the strain–displacement relations of the three-dimensional elasticity, 
exploiting the assumptions of moderate displacements 2(( ) ,u x u x∂ ∂ ∂ ∂  
( )( ) ,u x u y v x u y∂ ∂ ∂ ∂ ∂ ∂ + ∂ ∂  ( )( ) )u x u z w x u z∂ ∂ ∂ ∂ ∂ ∂ + ∂ ∂  and 
employing eqns (1), the nonvanishing strain resultants are obtained as 

 2 2 21 ( )( ) ,
2

P
xx m x S xu y zε η φ θ′ ′ ′= + + +  (2a) 

 , .
P P
S S

xy x x xz x xz y
y z
φ φγ η θ γ η θ∂ ∂′ ′ ′ ′= − = +
∂ ∂

 (2b,c) 

Considering strains to be small and employing the second Piola–Kirchhoff 
stress tensor, the work contributing stress components are defined in terms of the 
strain ones as 

 , , ,xx xx xy xy xz xzS E S G S Gε γ γ∗= = =  (3a,b,c) 

where *E  is obtained from Hooke’s stress-strain law as (1 ) /E E ν∗ = −  

[ ](1 )(1 2 )ν ν+ − . E  is frequently considered instead of *E  ( E E∗ ≈ ) in beam 
formulations [4] and is adopted in the present contribution as well. Substituting 
eqns (2) into eqns (3), the stress resultants are obtained as 

 2 2 21 ( )( ) , , ,
2

P P S P S
xx m x S x xy xy xy xz xz xzS E u y z S S S S S Sη φ θ⎡ ⎤′ ′ ′= + + + = + = +⎢ ⎥⎣ ⎦

 (4a,b,c) 

where 

 ,
P P
S SP P

xy x xz xS G z S G y
y z
φ φθ θ⎛ ⎞ ⎛ ⎞∂ ∂′ ′= − = +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

 (5a,b) 

denote the well-known primary (St. Venant) shear stress distribution accounting 
for uniform torsion [1] and 

 ( ) , ( )
P P
S SS S

xy x x xz x xS G S G
y z
φ φη θ η θ∂ ∂′ ′= − = −
∂ ∂

 (6a,b) 

denote the secondary (warping) shear stress distribution accounting for 
nonuniform torsion. 
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2.2 Primary warping function P
Sφ , ‘average’ axial displacement mu  

The primary warping function is evaluated independently by exploiting local 
equilibrium considerations along the longitudinal x  axis from the solution of the 
following boundary value problem [1] 

 2 0 in , on ,
P
SP

S y z jzn yn
n
φφ ∂∇ = Ω = − Γ
∂

 (7a,b) 

where 2 2 2 2 2/ /y z∇ = ∂ ∂ + ∂ ∂  is the Laplace operator and / n∂ ∂  denotes the 
directional derivative normal to the boundary Γ . Since the problem at hand has 
Neumann type boundary condition, the evaluated warping function contains an 
integration constant, which is resolved by inducing the constraint d 0P

Sφ
Ω

Ω =∫  

leading to the fact that the primary warping function does not influence the axial 
stress resultant and that mu  represents an average axial displacement of the bar’s 
cross-section. 

2.3 Warping shear stress distribution, independent warping parameter xη  

By substituting eqns (5–7) on the differential equation describing local 
equilibrium along the longitudinal axis x  and the associated boundary condition 
[6], it is easily concluded that these equations cannot be satisfied. Moreover, 
a warping shear stress distribution including a secondary warping function S

Sφ  
has been proved not to violate both the aforementioned equilibrium equation and 
the associated boundary condition, as proposed in [3]. Therefore, employing 
eqns (6) to obtain accurate values of warping shear stresses is of doubtful 
validity, especially near the boundary of the cross-section. Nevertheless, the 
present formulation makes it possible to accurately analyse bars of either closed- 
or open-shaped cross-sections. It can also account for warping shear stresses in 
global equilibrium, which has not been achieved in previous research efforts [3]. 

2.4 Equations of global equilibrium 

To establish global equilibrium equations, the principle of virtual work 

 
( )

( )

( )d d

d

xx xx xy xy xz xz
V V

x y z
F

S S S V u u v v w w V

t u t v t w F

δε δγ δγ ρ δ δ δ

δ δ δ

+ + + + +

= + +

∫ ∫

∫
 (8) 

under a total Lagrangian formulation is employed. In the above equations, ( )δ ⋅  
denotes virtual quantities, ( )  denotes differentiation with respect to time, 
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 and V F  are the volume and the surface of the bar, respectively, at the initial 
configuration and ,   and x y zt t t  are the components of the traction vector with 
respect to the undeformed surface of the bar. 

Performing the decomposition of shear strains into primary and secondary 
parts, as it is described for shear stresses in eqns (4b,c, 5, 6), the contribution of 
shear stresses in the virtual work of internal forces can be written after some 
algebraic manipulations as 

 1
0
[ ( )]d ,

l P S
t x t x x

x
I M M xδθ δη δθ

=
′ ′= − −∫  (9) 

where P
tM  and S

tM  are the primary and secondary twisting moments, 
respectively [1], defined here as 

 d ,
P P
S SP P P

t xy xzM S z S y
y z
φ φ

Ω

⎡ ⎛ ⎞ ⎤⎛ ⎞∂ ∂= − + + Ω⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠⎣ ⎝ ⎠ ⎦
∫  (10a) 

 d .
P P
S SS S S

t xy xzM S S
y z
φ φ

Ω

⎛ ⎞∂ ∂= − + Ω⎜ ⎟∂ ∂⎝ ⎠
∫  (10b) 

Substituting eqns (5–6) into eqns (10), the above stress resultants are given (with 
respect to the kinematical components) as 

 , ( ),P S S
t t x t t x xM GI M GIθ η θ′ ′= = − −  (11a,b) 

where tI  and S
tI  are the primary (St. Venant) [1] and secondary [5] torsion 

constants, respectively, given as 

2 2 d , d ,
P P P P
S S S SS

t tI y z y z I A y z
z y z y

θ
φ φ φ φ

Ω Ω

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂= + + − Ω = − + Ω⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠∫ ∫  (12a,b) 

with Aθ  defined as the ‘effective shear area due to the restrained torsional 
warping’. Throughout the present work it is assumed, unless otherwise stated, 
that 1Aθ = , which evidently leads to the relation S

t P tI I I= −  ( PI  is the polar 
moment of inertia [6]). 

It is also convenient to define stress resultants arising from normal stresses as 

 d , d ,P
xx w xx SN S M S φ

Ω Ω
= Ω = − Ω∫ ∫  (13a,b) 

where N  and wM  are the axial stress resultant and the warping moment, 
respectively. Substituting eqns (4a) into eqns (13), the aforementioned stress 
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resultants are written as 

 21 ( ) , ,
2

P
m x w S x

IN EA u M EC
A

θ η⎡ ⎤′ ′ ′= + = −⎢ ⎥⎣ ⎦
 (14a,b) 

where SC  is the warping constant with respect to the shear center S  [1]. 
Substituting the stress resultants given in eqns (4), the strain ones given in 

eqns (2) and the displacement components given in eqns (1) to the principle of 
virtual work (eqn (8)), the governing partial differential equations of the initial 
boundary value problem of the bar are obtained after some algebra such as 

 ( , ),m m P x xAu EAu EI n x tρ θ θ′′ ′ ′′− − =  (15a) 

23( ) ( )
2

( , ),

S S
P x t t x t x PP x x P m x P m x

t

I G I I GI EI EI u EI u

m x t

ρ θ θ η θ θ θ θ′′ ′ ′ ′′ ′ ′′ ′′ ′− + + − − −

=
 (15b) 

 ( ) ( , )S
S x S x t x x wC EC GI m x tρ η η η θ′′ ′− + − = −  (15c) 

subjected to the initial conditions ( (0, l)x∈ ) 

 0 0( ,0) ( ), ( ,0) ( ),m m m mu x u x u x u x= =  (16a,b) 

 0 0( ,0) ( ), ( ,0) ( ),x x x xx x x xθ θ θ θ= =  (16c,d) 
 0 0( ,0) ( ), ( ,0) ( ),x x x xx x x xη η η η= =  (16e,f) 

together with the boundary conditions at the bar ends 0,lx =  

 1 2 3 1 2 3 1 2 3, , ,m t x w xa N u M Mα α β β θ β β β η β+ = + = + =    (17a,b,c) 

where N , tM  and wM  are the axial force, twisting and warping moments at the 
bar ends, respectively, given as 

 21 ( )
2

m P xN EAu EI θ′ ′= +  (18a) 

31( ) ( ) , ,
2

S S
t t t x t x P m x PP x w S xM G I I GI EI u EI M ECθ η θ θ η′ ′ ′ ′ ′= + − + + =  (18b,c) 

while ia , iβ , iβ  ( 1,2,3)i =  are time-dependent functions specified at the 
boundary of the bar and PPI , appearing in eqns (15b), (18b), is a geometric 

cross-sectional property given as 
22 2( ) dPPI y z

Ω
= + Ω∫ . The boundary 

conditions (17) are the most general boundary conditions for the problem at 
hand, including also the elastic support. It is worth here noting that the 
expressions of the externally applied loads with respect to the components of the 
traction vector can be easily deduced by virtue of the right-hand side of eqn (8). 
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It is pointed out that all the relations established so far are completely 
analogous to those of the Timoshenko beam theory, modelling the shear- 
bending loading conditions of bars. The established initial boundary value 
problem is a coupled and nonlinear one. A significant reduction on the set  
of differential equations can be achieved by neglecting the axial inertia term 

mAuρ  of eqn (15a), a common assumption among dynamic beam formulations. 
Ignoring this term, two partial differential equations with respect to two 
unknown displacement components ( ( , ), ( , ))x xx t x tθ η  can be obtained. The  
two equations can be further combined by performing similar algebraic 
manipulations with those presented in [7], leading the initial boundary value 
problem to a single partial differential equation with respect to ( , )x x tθ . After 

neglecting the higher-order term P
S xS

t

IC
GI
ρρ θ , this equation is written for the 

case of constant along the bar axial load ( (0, ) 0, ( , ) ( , ))mu t N l t N l t= =  as 
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 (19) 

where nI  is a nonnegative geometric cross-sectional property related to the 
geometrical nonlinearity, given as 2

n PP PI I I A= − . Equation (19) must satisfy 
the pertinent initial conditions (16c,d) and boundary conditions (17b,c), where 
the independent warping parameter xη  and the twisting and warping moments 

tM , wM  are given (at the bar ends 0,lx = ) as 
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In the above equations, κ  is an auxiliary geometric constant related to the 
STMDE given as ( )S S

t t tI I Iκ = + . 
Comparing the formulated reduced initial boundary value problem and the 

one presented in [6] where the STMDE is not taken into account, it is concluded 
that this effect alters the expressions of warping inertia, warping stiffness and 
external loading and induces higher order nonlinear inertia and stiffness terms in 
the governing partial differential equation. Some nonlinear stiffness terms are 
also induced in the kinematical and stress components at the bar ends. 

3 Integral representations – numerical solution 

According to the precedent analysis, the nonlinear nonuniform torsional 
vibration problem of shear deformable bars reduces to establishing the 
displacement component ( , )x x tθ , satisfying the nonlinear initial boundary value 
problem described by the governing eqn (20), the initial conditions (16c,d) along 
the bar and the boundary conditions (17b,c) at the bar ends 0,lx = . This 
problem is solved employing the analogue equation method [8,9]. 

4 Numerical examples 

4.1 Example 1 – open-shaped cross-section 

In the first example, an open thin-walled I-shaped cross-section bar (E = 2.1 × 
108 kN/m2, G = 8.1 × 107 kN/m2, ρ = 8.002 kN sec2/m4) of length l = 4.0m, having 
flange and web width tf = tw = 0.01m, total height and total width h = b = 0.20m,  
has been studied. The geometric constants of the bar are computed as 
A = 5.800 × 10-3 m2, IP = 5.434 × 10-5 m4, In = 1.631 × 10-7 m6, IPP = 6.722 × 10-7 m6, 
It = 2.080 × 10-7 m4, 4 45.413 10 mS

tI −= × , CS = 1.200 × 10-7 m6. The bar’s ends are 
simply supported according to its torsional boundary conditions, while the left end is 
immovable and the right end is subjected to a compressive axial load according to its 
axial boundary conditions. 

In Figure 1(a), the load–frequency relations given in [10] of the bar 
undergoing small amplitude torsional vibrations both in the pre- and 
postbuckling region are presented along with pairs of values ( fω , N ) 
obtained from the proposed method by employing the linear fundamental 
modeshape of the angle of twist as initial twisting rotations 0 ( )x xθ  (along  

with zero initial twisting velocities 0 ( )x xθ ) [6] and by ignoring the STMDE. 
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From Figure 1(a), the validity of the proposed method is concluded. Moreover, 
in Figure 1(b), the obtained time history of the angle of twist ( / 2, )x l tθ  at the 
midpoint of the bar for a postbuckling ( 5000kNN = − ) axial loading is 
presented, demonstrating that the buckled bar undergoes multifrequency 
vibrations. For comparison purposes, in Figure 1(b), the time history of 

( / 2, )x l tθ  employing the nonlinear fundamental modeshape of the angle of 
twist as initial twisting rotations 0 ( )x xθ  (along with zero initial twisting 

velocities 0 ( )x xθ ) is also included ( 5000N kN= − ), showing that the initiation 
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of free vibrations with the nonlinear modeshape does not induce higher 
harmonics in the response of the bar.  

In Figure 2, the variation of the torsional fundamental natural frequency fω  
with respect to the initial midpoint angle of twist amplitude 0 ( / 2)x lθ  of the bar 
is presented, demonstrating the effect of geometrical nonlinearity on the dynamic 
characteristics of the bar under examination at a post-buckled state with 

5500kNN = −  ( cr,| | | |N N θ> ), ignoring the STMDE. Finally, the forced 
vibrations of the examined bar at a pre-buckled state ( 0N = ) are investigated to 
determine the effects of geometrical nonlinearity and secondary twisting moment 
deformation. More specifically, the primary resonance of the bar is studied  
by applying a concentrated twisting moment ,exttM  at its midpoint given as 

( ),ext 0 ,lin( ) sint t fM t M tω= , where 0 5kNmtM =  and 1
,lin 214.23secfω −=  

(initial conditions 0 ( ) 0x xθ = , 0 ( ) 0x xθ = ). ,linfω  is the fundamental natural 
frequency of the bar undergoing linear torsional vibrations, ignoring STMDE 
and is numerically evaluated by following the methodology presented in [6].  
In Figure 3, the time history of the angle of twist ( / 2, )x l tθ  at the midpoint  
of the bar is presented (with or without STMDE) considering the geometrical 
nonlinearity. The beating phenomenon observed is explained from the fact  
that large twisting rotations increase the bar’s fundamental natural frequency fω  
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Figure 2: Variation of the torsional fundamental natural frequency wf with
respect to the initial midpoint angle of twist amplitude
(N = –5500kN). 
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(by increasing the stiffness of the bar), thereby causing a detuning of fω  with 
the frequency of the external loading ( ,linfω ). After the angle of twist reaches  
its maximum value, the amplitude of twisting deformations decreases, leading to 
the reversal of the previously mentioned effects. 

4.2 Example 2 – closed-shaped cross-section 

In the second example, the (geometrically) linear response of a bar 
( 8 22.1 10 kN/mE = × , 7 28.1 10 kN/mG = × , 2 48.002kNsec / mρ = , 5.0ml = ) 
of a closed box-shaped cross-section is studied. The cross-section is of total 
height 1.64mh = , total width 1.05mb = , horizontal walls thickness 

0.04mht =  and vertical walls thickness 0.05mvt =  [5]. Throughout this 
numerical example the geometric constants of the bar are assumed to take the 
values presented in [5] ( 20.240 mA = , 40.089824 mtI = , 40.001107 mS

tI = , 
60.000193mSC = ). The bar’s left end is clamped, while its right end is free and 

subjected to vanishing axial load, warping moment and twisting moment. The 
resonance of the examined bar is studied by applying a distributed twisting 
moment ,exttm  at 0 5(m)x< <  given as ( ),ext 0 ,lin( , ) sint t fm x t m tω= , where 

0 5kNm/mtm =  and 1
,lin 835.793 secfω −=  (vanishing initial conditions 
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0 ( ) 0x xθ = , 0 ( ) 0x xθ = ). ,linfω  is the fundamental natural frequency of the bar 
undergoing linear torsional vibrations, ignoring STMDE and is numerically 
evaluated by following the methodology presented in [6]. In Figure 4, the time 
histories of the secondary twisting moment (0, )S

tM t  and of the warping moment 
(0, )wM t  at the bar’s left end taking into account or ignoring (scaled quantity 

( )0, 0.1S
tM t × ) the STMDE are presented demonstrating the decisive influence 

of the aforementioned effect to these stress resultants. It is worth here noting that 
the significance of STMDE in linear static analysis of bars of closed-shaped 
cross-sections has been already reported in the literature [5]. 

5 Concluding remarks 

The main conclusions that can be drawn from this investigation are 

a. The geometrical nonlinearity leads to coupling between the torsional and 
axial equilibrium equations and alters the modeshapes of vibration. 

b. Large twisting rotations have a profound effect on the fundamental natural 
frequency of buckled bars undergoing large amplitude free vibrations. 

c. Geometrical nonlinearity bounds the (twisting) deformations of bars at a  
pre-buckled state subjected to primary resonance excitations. A beating 
phenomenon is observed in the time histories of kinematical components. 

d. The secondary twisting moment deformation affects the kinematical 
components of bars of closed-shaped cross-sections undergoing linear 
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vibrations. Its effect is much more pronounced on stress components, 
concluding that it cannot be neglected in linear dynamic analysis of bars of 
such cross-sections. 
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Abstract 

A hybrid scheme that combines the boundary element method (BEM) and the 
local boundary integral equation method (LBIEM) is proposed. The method is 
used for both frequency domain and transient elastodynamic problems, where  
a part of the structure is treated via the BEM and the rest with the LBIEM.  
The proposed BEM/LBIEM scheme can be used for the solution of dynamic 
problems that combine linear, isotropic and homogeneous elastic substructures 
interacting with non-linear, anisotropic or non-homogeneous ones. 

1. Introduction 

The boundary element method (BEM) is a well-known and robust numerical 
tool, successfully used to solve various types of dynamic elastic problems  
[1–5]. The main advantage offered by the BEM compared with the finite 
element method (FEM) is the reduction of the dimensionality of the problem 
by one, which means that two- and three-dimensional problems are accurately 
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solved by discretising only the boundaries surrounding the domain of interest. 
Thus, BEM is ideal for the solution of problems dealing with structures where 
the volume to external surface ratio is very high. Nevertheless, the requirement 
of using the fundamental solution of the differential equation, which describes 
the problem of interest, renders the BEM less attractive than the FEM  
when non-linear, non-homogeneous and anisotropic elastic problems are 
considered. Moreover, the final system of linear equations resulting in a BEM 
formulation leads to unsymmetrical and fully populated matrices requiring  
a computationally expensive numerical treatment. A solution to the 
aforementioned problems is the use of hybrid BEM/FEM schemes, where the 
advantages of the two methods are properly combined and their deficiencies 
minimised. The main problem here is the combination of the dissimilar FEM 
and BEM final sets of equations since FEM deals with a force-displacement 
equation system, while BEM deals with a system of equations relating nodal 
displacements and nodal tractions. 

Ten years ago, Atluri and co-workers proposed a meshless methodology 
called local boundary integral equation method (LBIEM) [6–8] that seems to 
circumvent many problems associated with BEM and FEM/BEM formulations. 
Their method is characterised as ‘truly meshless’ since no background cells  
are required for the numerical evaluation of the involved domain integrals. 
Properly distributed nodal points, without any connectivity requirement, 
covering the domain of interest as well as the surrounding global boundary are 
employed instead of any boundary or finite element discretisation. All nodal 
points belong to regular sub-domains (e.g. circles for two-dimensional 
problems) centered at the corresponding collocation points. The fields at the 
local and global boundaries as well as in the interior of the sub-domains are 
usually approximated by a moving least squares (MLS) approximation scheme. 
Owing to the regular shapes of the sub-domains, both surface and volume 
integrals are easily evaluated. The local nature of the sub-domains leads to a 
final linear system of equations with a sparse and not fully populated 
coefficient matrix. 

In 2003, Sellountos and Polyzos [9] proposed a new LBIEM for the solution 
of frequency domain elastodynamic problems. The new elements of this method 
as compared to previous LBIEM formulations are: (i) it employs either the static 
or the frequency domain elastic fundamental solution, (ii) displacements and 
tractions defined on the global boundary are treated as independent variables, 
thus avoiding the calculation of the derivatives of the MLS approximation 
functions [10], (iii) the essential boundary conditions are imposed directly on the 
fictitious nodal displacements and tractions, (iv) the surface and volume integrals 
are evaluated accurately with the aid of some practical and accurate techniques 
and (v) the strongly singular integrals are computed directly with high accuracy 
by employing the Guiggiani and Casalini [11] expansion technique. Recalling 
the fact that any BEM formulation results in a linear system of algebraic 
equations with unknowns, the nodal values of displacements and tractions, it is 
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apparent that features (ii) and (iii) render the above LBIEM ideal to be combined 
with BEM [12]. The main problem with [9] is the use of relatively uniform 
distribution of nodal points so that, in the global boundary, the MLS 
interpolation scheme to posses the δ  property [13] and the essential boundary 
conditions to be imposed directly on the fictitious nodal displacements and 
tractions. Thus, although accurate, the requirement for relatively uniform 
distribution of nodal points confines the use of the method to structures with 
regular shapes. An answer to this problem has been given very recently by 
Sellountos et al. [14], where an effective radial basis functions (RBF) scheme 
[15,16], instead of MLS, is utilised for the interpolation of displacements 
throughout the analysed domain. 

The present work proposes a hybrid BEM/LBIE scheme, which can be  
used for the solution of dynamic problems that combine linear, isotropic  
and homogeneous elastic substructures with non-linear, anisotropic or non-
homogeneous ones. The method is demonstrated in elastodynamic frequency 
domain and transient problems, where a part of the structure is treated via a 
BEM code, as explained in [17], and the rest with the LBIEM/RBF scheme, as 
illustrated in [14]. The paper is organised as follows: in Section 2, the standard 
BEM formulation for 2-D frequency domain elastodynamic problems, as it  
is described in [17], is presented in brief. The LBIEM/RBF method [14] is 
reported in Section 3. Section 4 explains the coupling between the BEM  
and LBIEM. Finally, in Section 5, two representative examples dealing with 
transient and frequency domain elastodynamic problems are provided to 
illustrate the proposed hybrid scheme and demonstrate its accuracy. 

2. BEM formulation 

In this section, the BEM as it is applied for the solution of 2-D frequency domain 
elastodynamic problems is described in brief. More details can be found in [17]. 
Consider a two-dimensional linear elastic domain V surrounded by a surface S 
part of which is subjected to an exterior harmonic excitation. The developed 
displacement field satisfies the Navier-Cauchy differential equation 

 2 2( ) 0,µ λ µ ρω∇ + + ∇∇⋅ + =u u u  (1) 

where λ and µ stand for the Lamé constants and ρ for the mass density, ∇ is the 
gradient operator and ω the excitation frequency. Considering the fundamental 
solution of the above differential equation and employing the well-known Betti’s 
reciprocal identity, one can obtain the integral equation 

 ( ) ( ) ( )d ( , ) ( )d ,y yS S
S Sα ∗ ∗+ , ⋅ = ⋅∫ ∫u x t x y u y u x y t y  (2) 

where ∗u  and ∗t  are the dynamic fundamental displacement and the 
corresponding traction tensor, respectively, and α is a jump coefficient taking the 
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value 1 for interior field points x and the value 1/2 when boundary points are 
considered. 

In order to solve numerically eqn (2) in the framework of the BEM, the 
boundary S is discretised into parametric quadratic line elements. For smooth 
boundaries, full continuous elements are employed, while a combination of 
continuous–discontinuous or partially discontinuous elements are used in  
order to treat boundaries with corners and discontinuous boundary conditions. 
Collocating the discretised integral eqn (2) at each node, one obtains a system of 
linear algebraic equations having the form 

 [ ] { } [ ] { },⋅ = ⋅H u G t  (3) 

where the vectors {u}, {t} contain all the nodal components of the displacements 
and traction vectors, respectively, and [H], [G] are full populated matrices with 
complex elements each of which is a function of frequency, material properties 
and structure’s geometry. Matrix [G] comes from integrations involving the 
kernel ∗u , whereas matrix [H] contains integrals involving kernels ∗t . Thus, the 
diagonal elements of matrices [G] and [H] are integrals that contain weakly 
singular and strongly singular integrals, respectively. The integration of the 
weakly singular integrals can be easily accomplished with the aid of a 
logarithmic Gaussian integration scheme. For the strongly singular integrals of 
matrix [H], the advanced direct integration technique proposed by Guiggiani and 
Casalini [11] is used. 

The solution of corresponding transient problems is accomplished by 
converting the problem to the frequency domain via the fast fourier transform 
(FFT) and then applying the inverse FFT to the obtained frequency domain results. 
In order to minimise aliasing phenomena, the exponential window method 
proposed by Kausel and Roësset [18] is utilised, where complex frequencies with a 
small imaginary part are used. 

3. LBIEM formulation 

Consider the 2-D linear and isotropic elastic domain of the previous section 
covered by randomly distributed points without any connectivity requirement. 
Any point x is considered to be the centre of a local circular domain Ωs (with 
boundary ∂Ωs) called support domain of x as illustrated in Figure 1. 

Employing the elastostatic fundamental solution of eqn (1) [17] and 
exploiting Betti’s reciprocal identity, one obtains the following LBIE for the 
support domain of any interior or boundary point x (Figure 1) 
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when the support domain is interior to V and 
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when the support domain intersects the global boundary on s s SΓ ≡ ∂Ω ∩ . The 

coefficient α is the same with the corresponding one of eqn (2) and su , st  
represent the elastostatic fundamental displacement and traction tensors, 
respectively, given in [17]. 

In order to get rid of traction vectors appearing in integrals defined on ∂Ωs, 
the use of the companion solution uc is made [7]. Thus, the LBIEs (4) and (5) 
obtain the form, 
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Figure 1: Local domains and boundaries used for the LBIE representation of
displacements at point Xk.
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c

rπ ν ν
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− −
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where | |r = −y x , ⊗ indicates vector product defined as ˆ ˆi j i ja b⊗ = ⊗a b x x , 

, 1, 2i j =  with 1 2ˆ ˆ,x x  being unit vectors of a Cartesian coordinate system, I is the 
unit tensor and r0 is the radius of the support domain Ωs. 

By Replacing ( , ) ( , )s c−t x y t x y  and ( , ) ( , )s c−u x y u x y  by ( , )∗U x y  and 

( , )∗T x y , respectively, eqns (8) and (9) are written as 

 2( ) ( , ) ( )d ( ) ( )d
s s

y yS ρω∗ ∗
∂Ω Ω

+ ⋅ = , ⋅ Ω∫ ∫u x T x y u y U x y u y  (10) 

and 
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( , ) ( )d .
s s s

s

y y

y

S Sα

ρω

∗ ∗
∂Ω ∪Γ Γ

∗

Ω

+ ⋅ = ⋅

⋅ Ω

∫ ∫

∫

u x T x y u y U x y t y

U x y u y
 (11) 

The integral eqns (10) and (11) represent the LBIE of any interior and boundary 
point of the analysed domain. Interpolating internal displacements via the  
RBF scheme explained in [14] as well as boundary displacements and tractions 
through conventional quadratic line elements and combining the LBIES of all 
points, one obtains the following linear system of algebraic equations: 

 [ ] { } [ ] { } {0},⋅ + ⋅ =K u R t  (12) 

where the vectors {u} and {t} contain all the nodal components of displacements 
and boundary tractions, respectively, matrix [K] contains surface and volume 
integrals with kernels ∗T  and ∗U , and matrix [R] comes from surface integrals 
with kernel ∗U . The main difference between the matrices [K] and [R] and the 
corresponding [H] and [G] of eqn (3) is that [K] and [R] are sparse and not fully 
populated as [H] and [G]. More details can be found in [14]. 

4. BEM/LBIEM hybrid scheme 

The elastic domain V considered in the two previous sections is subdivided into 
two regions V1 and V2. The external boundary S1 and the interfacial surface Si  
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of the region V1 are discretised into quadratic line elements, while the region V2 
as well as the external boundary S2 and the interfacial surface Si are covered  
by a cloud of properly distributed points, as shown in Figure 2. The region V1  
is treated by the standard BEM and according to the eqn (3), one obtains the 
following linear system of algebraic equations 

 
1 1

1 12 1 12
12 1

,
⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎡ ⎤ ⎡ ⎤⋅ = ⋅⎨ ⎬ ⎨ ⎬⎣ ⎦ ⎣ ⎦⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

u t
H H G G

u t
 (13) 

where (u1,t1) and (u12,t12) are displacements and tractions defined at the nodes of 
the external boundary S1 and the interfacial surface S12, respectively. In the 
sequel, applying the LBIEM, as explained in Section 2, to the region V2, one 
obtains a final system of linear algebraic equations that according to eqn (12) can 
be written in the form 

 

2
2

2 21 2 2121
21

0,i

i

⎧ ⎫
⎪ ⎪ ⎧ ⎫⎪ ⎪⎪ ⎪ ⎪ ⎪
⎨ ⎬ ⎨ ⎬
⎪ ⎪ ⎪ ⎪

⎩ ⎭⎪ ⎪
⎪ ⎪⎩ ⎭

⎡ ⎤ ⎡ ⎤⋅ + ⋅ =⎣ ⎦ ⎣ ⎦

u
t

uK K K R R
t

u
 (14) 

where the vectors u2,t2 and u21,t21 represent displacement and traction nodal 
values defined at the external boundary S2 and the interfacial surface Si, 
respectively, while the vector ui comprises all the components of the fictitious 
displacement vectors defined through the RBF scheme at the interior nodes. At 
the interfacial surface Si, the continuity conditions 

 
12 21

12 21

=

=−

u u
t t

 (15) 

should be satisfied, where u21 and t21 are the interfacial displacement and traction 
nodal vector, respectively. 

Si

S1

V1

S2

V2

Figure 2: Division of the domain in a BEM region and in a LBIEM region.
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Finally, by applying the boundary conditions of the problem, satisfying the 
continuity conditions (15) and rearranging the matrix coefficients, one obtains a 
final system of algebraic equations of the form 

 [ ] { } { },⋅ =A x b  (16) 

where the vectors {x} and {b} contain all the unknown and known parameters  
of the problem, respectively. The system (16) is solved with the aid of a typical 
LU-decomposition solver and unknown displacements and boundary tractions 
are calculated. 

5. Numerical examples 

In this section, two representative numerical examples are solved to illustrate the 
proposed method and demonstrate its accuracy. The first example deals with a 
long elastic strip under uniform step tension, as shown in Figure 3. The length of 
the strip is L = 10 m and its height H = 2 m. The material properties are, Young 
modulus E = 10,000 N/m2, Poisson ratio v = 0.2 and mass density ρ = 1 Kg/m3, 
while the load P = 10 N/m2 is suddenly applied. The strip is discretised in two 
BEM domains and one LBIEM domain as shown in Figure 4. The considered 
timeframe is 0.7 seconds divided into 128 FFT points. 

Figure 5 depicts the history of axial displacements in the middle of the strip 
(L/2, H/2) and compares it to the numerical results obtained by Sladek et al. [19] 
with the aid of the BIE method. Figure 6 shows the time history of the axial 
traction in the middle of the clamped side (0, H/2) and compares it with the 
numerical results given in [19]. 

H

L x

y

P

Figure 3: Long strip under sudden tension.

Figure 4:  Discretized long strip in 2 BEM domains and 1 LBIE domain. The
circlere presents the local support domain of each point.
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The second example concerns a cylinder under internal harmonic pressure. The 
internal and external radii of the cylinder are a = 1 m and b = 2 m, respectively 
(Figure 7). The amplitude of the internal pressure is P = 1 N/m2. The Young 
modulus is E = 1,000 N/m2, the Poisson ratio is v = 0.2 and the mass density is 
ρ = 1 Kg/m3. One quarter of the cylinder is discretised by both the BEM and the 
LBIEM, as shown in Figure 8. The problem is studied in the angular frequency 
range 2–400 rad/seconds. The radial displacement and the angular traction at the 
point (1.569, 0) versus frequency are depicted in Figures 9 and 10. The obtained 
numerical results are compared to the analytical ones provided in [17]. As it is 
apparent, the agreement of the two kinds of results is excellent. 

Figure 5: Axial displacements in the middle of the strip.

Figure 6: Axial tractions in the middle of the clamped side.
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6. Conclusions 

A hybrid BEM/LBIEM scheme for solving 2-D elastodynamic problems has 
been proposed and demonstrated for the cases of transient and frequency domain 
elastodynamics. The method combines effectively the conventional BEM with a 
LBIEM, recently proposed in [14]. Since both methods result in a final system  
of linear algebraic equations expressed in terms of nodal displacements and 
tractions, their combination is accomplished directly with no considerations of 
 
 

a

b

x

y

P

Figure 7: Cylinder under internal pressure.

Figure 8: Cylinder under internal pressure, discretized in one BEM domain
and in one LBIE domain. The circle represents the local support
domain of each point.
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transition regions or further transformations, as it happens with FEM/BEM 
formulations. This feature, in conjunction with the fact that both methods are 
integral equation methods, offers obvious advantages and flexibility in the 
BEM/LBIEM scheme over the FEM/BEM coupling. The achieved accuracy is 
demonstrated with one transient and one harmonic elastodynamic example that 
have been solved with the aid of the proposed BEM/LBIEM hybrid scheme.  
The proposed hybrid scheme has been used here only for linear elastodynamic 
analysis. Its application to dynamic problems involving non-linearities, anisotropy 
and non-homogeneity is expected to demonstrate more advantages over other 
schemes, whether hybrid or not. 

Figure 9: Radial displacement ur at the point (1.569, 0).

Figure 10: Angular traction tq at the point (1.569, 0).
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Boundary elements and non-linear contact 
mechanics 

A.P.S. Selvadurai 
Department of Civil Engineering and Applied Mechanics, McGill 
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Abstract 

The paper presents the application of boundary element techniques to a class of 
problems where non-linear effects manifest at the contact surfaces. The boundary 
element technique is an ideal computational scheme for examining this class of 
problems since the surfaces on which the non-linear processes materialise are 
pre-determined. The paper discusses the application of incremental boundary 
element techniques to some typical problems in fracture mechanics where the 
surfaces in contact exhibit non-linear phenomena. 

Keywords: Boundary element methods, Contact mechanics, Non-linear interfaces, 
Mechanics of cracks, Frictional effects. 

1 Introduction 

The mechanics of interfaces is characterised by non-linear phenomena. The 
description of the contact conditions can significantly influence the mode of 
load transfer between the surfaces. Applications of contact mechanics in the 
engineering sciences can range from the modelling of material interfaces, 
contact at geomaterial interfaces, biomechanical applications involving 
implants, tactile sensors in electronics applications, tribology of machine 
components, etc. [1–4]. The study of the mechanics of contact between 
deformable bodies is quite extensive and no attempt is made to provide a 
comprehensive review here. In traditional applications of contact between 
deformable bodies, the contact is generally assumed to be smooth and 
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stationary. The classical studies by Boussinesq [5] and Hertz [6] fall into this 
category and extensive treatises of the subject covering both engineering and 
applied mathematics are given by Galin [7], Ufliand [8], de Pater and Kalker 
[9], Sneddon [10], Selvadurai [11], Gladwell [12] and Johnson [13]. Further, 
treatments of contact mechanics that focus on functional analysis aspects, with 
particular reference to contact problems, are given by Duvaut and Lions [14] 
and Panagiotopoulos [15]. Recent contributions to the subject are also given by 
Willner [16], Aleynikov [17] and Selvadurai [18]. The application of boundary 
elements to contact problems have been investigated by Andersson and  
Allan-Persson [19], Paris and Garrido [20], Mendelsohn and Doong [21], 
Katsikadelis and Kokkinos [22] and Aliabadi and Brebbia [23]. Extensive 
applications of boundary element techniques to the study of problems of 
interest to fracture mechanics and contact mechanics are given in the following 
studies by Selvadurai and co-workers related to (i) interface geomechanics 
[24–26], (ii) fracture evolution during contact [27,28], (iii) frictional and 
dilatant interfaces [29–33], (iv) plane cracks with frictional surfaces [34–36], 
(v) axisymmetric problems of crack extension and fracture mechanics [37–42] 
and (vi) crack problems with flaw bridging [43–48]. 

This paper presents the application of the incremental boundary element 
technique to a class of fracture mechanics problems where the contact conditions 
at interfaces have a significant influence on the stress intensity factors that are 
associated with fracture generation. 

2 Boundary element methods 

Attention is restricted to the equilibrium of isotropic elastic materials that satisfy 
the linear elastic stress–strain relations and the Navier equations 

 { }( ) ( ) ( )
, , ,ij ij k k i j j iu G u uα α α

α ασ λ δ= + +  (1) 

and 

 2 ( ) ( )
,( ) 0,i k kiG u G uα α

α α αλ∇ + + =  (2) 

where Gα  and αλ  are Lamé’s constants and the subscript or superscript ' 'α  refers 
to region 1 or region 2; iu  and ijσ are, respectively, the displacement component 

and the Cauchy stress tensor; 2 / (1 2 )Gα α α αλ ν ν= − ; αν are Poisson’s ratios; 2∇  
is Laplace’s operator and ijδ is Kronecker’s delta function. The Greek indices and 
superscripts refer to quantities pertaining to two material regions. 

The boundary integral equation for an elastic domain can be written as [49] 

 { }( ) *( ) ( ) *( ) ( ) d 0,lk k lk k lk kC U P U U P
α

α α α α α
Γ+ − Γ =∫  (3) 
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where lkC are constants, *( )
lkP α and *( )

lkU α are the traction and displacement 
fundamental solutions which are given in [49]. Discretising the boundaries αΓ  
into boundary elements, the boundary integral eqn (3) can be replaced by its 
discretised equivalent. For an isoparametric boundary element, the discretised 
geometric and traction variations can be given in the form 

 { }( ) [ ( )]i i ix N x N xβ β

β
ξ ξ= =∑  (4) 

and 

 [ ] [ ] { }; ( ) ; ,i i i iU P N U Pξ ⎡ ⎤= ⎣ ⎦  (5) 

where β can be up to 3 for a quadratic element and 

 1 2 2 3( ) ( 1) / 2; ( ) (1 ); ( ) ( 1) / 2,N N Nξ ξ ξ ξ ξ ξ ξ ξ= − = − = +  (6) 

with 1 1ξ− ≤ ≤ . The boundary integral eqn (3) can now be written as 

 
{ }

{ }

1( ) *( ) ( )
1

1 *( ) ( )
1

[ ( )] | | d

[ ( )] d

e

lk k lk k
e

e

lk k
e

C U P N J U

U N J P

α α α

α α

ξ ξ

ξ ξ

−

−

+ ∑ ∫

= ∑ ∫
, (7) 

where e  is the element number and | |J  is the boundary Jacobian: i.e. 

 
2 2

| | .x yJ
ξ ξ

⎛ ⎞ ⎛ ⎞∂ ∂
= +⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (8) 

After performing the integrations and the summations indicated, the eqn (7) can 
be written in the general form 

 
( ) ( )

( ) ( ) ( ) ( )
I I( ) ( )

I I

,
α α

α α α α
α α

⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪⎡ ⎤ ⎡ ⎤=⎨ ⎬ ⎨ ⎬⎣ ⎦ ⎣ ⎦⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭

U P
H H M M

U P
 (9) 

where ( )
I
αU  and ( )

I
αP are, respectively, the displacement and tractions at the 

interface. For complete bonding at the interfaces 

 (1) (2) (1) (2)
I I I I I I; .= = = − =U U U P P P  (10) 

Using these constraints, the boundary element matrix eqn (9) can be written as 

 

(1) (1)
(1) (1) (1) (1)

I I
I I(2) (2) (2) (2)

(2) (2)I I

0 0
,

0 0

⎧ ⎫ ⎧ ⎫
⎡ ⎤ ⎡ ⎤⎪ ⎪ ⎪ ⎪

=⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥
−⎣ ⎦ ⎣ ⎦⎪ ⎪ ⎪ ⎪

⎩ ⎭ ⎩ ⎭

U P
H H M M

U P
H H M M

U P
 (11) 
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which is the governing bi-material boundary element matrix equation. The two 
regions can be subjected to the following types of boundary conditions: 

(i) Prescribed displacement boundary 1( )S  

 ; ( , ),i iU U i x y= =  (12) 

where (.) represents incremental values. 
(ii) Prescribed traction boundary 2( )S  

 ; ( , ).i iP P i x y= =  (13) 

(iii) Contact between two elastic media 3( )S  

 (ep) (2) (1)( ),i ij j jP k U U= −  (14) 

where ( )ep
ijk  is an elasto-plastic stiffness to be defined later. 

3 Non-linear interface behaviour 

We assume that the contact between the two elastic media can be described by an 
elastic plastic model. The elasto-plastic behaviour can be described in relation to 
the incremental displacement discontinuity at the interface defined by 

 (2) (1) ; ( , ),i i iR U U i x y= − =  (15) 

where (1)
iU  and (2)

iU  are now the incremental displacements at the contacting 
surfaces. The incremental displacement discontinuity can be considered as 
consisting of elastic (e) and plastic (p) components: i.e. 

 (e) (p)
i i iR R R= +  (16) 

The elastic relative displacements can be related to the boundary tractions by a 
linear constitutive law of the form 

 (e) ,i ij jP k R=  (17) 

where iP  are the incremental traction vectors on the contacting surfaces, ijk  are 
the linear elastic stiffness coefficients of the interface response. In order to 
describe the plasticity effects, we define the yield limit of the interface by 

 2( ) ,x yF P Pµ= +  (18) 
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where xP  and yP  are, respectively, the shear and normal tractions on the 
contacting surfaces, µ is the coefficient of contact friction. The relative slip can 
be obtained by a flow rule of the type 

 (p) ,i
i

R f
P
∂Φ

=
∂

 (19) 

where f is a plastic multiplier and Φ  is the slip potential given by 

 2( ) .xPΦ =  (20) 

Considering eqns (19), (16) and (17) and the normality of ( / )iF P∂ ∂  and iP , we 

can obtain f  and the elasto-plastic constitutive relationship can be written as 

 (ep) .i ij jP k R=  (21) 

The elasto-plastic stiffness coefficients at the interface are given by 

 (ep) 1 ; .ij ij il mj lm
l m l m

F Fk k k k k
P P P P

ψ
ψ

∂Φ ∂ ∂ ∂Φ
= − =

∂ ∂ ∂ ∂
 (22) 

Considering the yield function (18) and the plastic potential (20), we have 

 0; ; sign( ).x
y y x x

F F P
P P P P

µ∂Φ ∂ ∂Φ ∂
= = = =

∂ ∂ ∂ ∂
 (23) 

For the special case where 

 ; ; 0 ( ),xx s yy n ijk k k k k i j= = = ≠  (24) 

we have 

 2 (ep) 0 sign( )
( ) ; .

0
n x

s x ij
n

k P
k P k

k
µ

ψ
−⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

 (25) 

The boundary conditions on an interface are given by 

 

(2) (1)

(2) (1)

(2) (1)

( ) 0 or 0
,

sign( )( ) 0

( ); , .

s x x
x

n x y y

y n y y

k U U F F
P

k P U U F F

P k U U F F

µ
⎧ − < <⎪= ⎨− − = =⎪⎩

= − ∀

 (26) 

Also, the values of iP  obtained from eqn (14) and the second equation of eqn (26) 

are referred to as (1)
iP  and the values for (2)

iP  are obtained from (2) (1)
i iP P= − . 
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4 Stress intensity factors 

In this paper, we apply the boundary element approach to examine the role of 
interface friction on the mechanics of cracks that contain zones of frictional 
contact. In particular, the focus of the study is to assess the influence of 
friction on the stress intensity factors at the crack tips subjected to generalised 
loadings. The stress singularity at the crack tip in a single material region is of 
the 1/ r -type. In general, the displacement field near the crack tip can be 
expressed in the forms 

 

{ }

{ }

{ }

{ }

I

II

I

II

4
(5 8 )cos( / 2) cos(3 / 2)

/ 2
(9 8 )sin( / 2) sin(3 / 2) ,

4
(7 8 )sin( / 2) sin(3 / 2)

/ 2
(3 8 )cos( / 2) cos(3 / 2) ,

x

x

Gu
K

r
K

Gu
K

r
K

ν θ θ
π

ν θ θ

ν θ θ
π

ν θ θ

= − −

+ − +

= − −

− − +

 (27) 

where ( , )r θ  are the local polar coordinates at the crack tip; IK  and IIK are, 
respectively, the crack opening and crack shearing mode stress intensity factors. 
In the boundary element modelling, the stress intensity factors are calculated 
using the displacement correlation method by selecting the points that are located 
on either crack face (Aliabadi [50]): e.g. 

 
[ ]{ }

{ }

I

II

4 ( ) ( ) ( ) ( ) ,
(1 ) 2

4 ( ) ( ) ( ) ( ) ,
(1 ) 2

x x x x

y y y y

GK u B u D u E u A
l

GK u B u D u E u A
l

π
ν

π
ν

= − + −
−

⎡ ⎤= − + −⎣ ⎦−

 (28) 

where l  is the length of the crack-tip element and A, B, C, D and E are the nodes 
of two crack tip elements on either side of the crack. 

5 Solution scheme 

Applying boundary conditions of the types 1S  and 2S  to the boundary element 
system eqn (11), we obtain the generalised result 

 
11 12 13 13 1

31
21 22 23 23 2

32
31 32 33 33 3

,
g h h g B

ut
g h h g B

tu
g h h g B

λ
− −⎡ ⎤ ⎡ ⎤ ⎧ ⎫

⎧ ⎫ ⎧ ⎫ ⎪ ⎪⎢ ⎥ ⎢ ⎥− + − =⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎩ ⎭⎩ ⎭ ⎪ ⎪⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎩ ⎭

 (29) 
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where λ  is the load factor; { }B is the vector from the prescribed boundary 
values; [ ]ijh s and [ ]ijg s are the coefficients matrices from [ ]H  and [ ]M , 
respectively. The boundary condition on 3S  has not been applied to eqn (29) 
since it has to be determined during the incremental procedure. The solution 
technique developed by Selvadurai and Au [30] is applied so that the boundary 
values on 1S  and 2S are eliminated and it results in a single relationship on 3S . 
i.e. we use 

 { } [ ]{ } { }3 3 33 3 3h u g t Bλ⎡ ⎤ − =⎣ ⎦  (30) 

together with one of the results given by eqn (26). An incremental iterative 
analysis is carried out to determine the locations necessary to implement eqn 
(26). This allows the iteration for the conditions on 3S  to be performed locally 
and the BEM global matrix is eliminated only once for any number of 
increments and iterations. 

6 A frictionally constrained inclined crack 

The boundary element technique is applied to examine the problem of an 
inclined plane crack that is located in an elastic infinite plane. The inclined crack 
of length 2b  contains a centrally placed frictional zone of length 2a , which 
exhibits Coulomb friction, characterised by µ . The region is subjected to an 
isotropic compression 0σ . It is assumed that no frictional processes are present in 
the closed zone during the application of this isotropic stress state. The region is 
now subjected to an axial stress, which is applied in an incremental fashion ( )σ . 
The inclination of the crack is specified by β . The details of the problem 
examined are shown in Figure 1. 

Figure 1: The axial loading of an inclined crack with a frictionally constrained
segment.
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The boundary element discretisation of the overall region as well as the 
details of the boundary element discretisation at the crack tip region are shown  
in Figure 2. The dimensions of the region in relation to the crack are such that  
it can be considered as an infinite plane. The accuracy of the boundary element 
modelling can be assessed by comparing the results with analytical results for 
two limiting cases involving two limiting values for the coefficient of friction. In 
the limiting case when the coefficient of friction is zero, we obtain the problem 
of a single inclined crack in a uniaxial compressive stress field. 

The corresponding incremental values for the stress intensity factors at the 
crack tip are given by 

 2
I II( ) sin ; ( ) sin cos .K b K bβ σ π β β σ π β β= =  (31) 

As the coefficient of friction increases, the relative displacements at the frictionally 
constrained region are suppressed and, in the limit of infinite friction, the problem 
corresponds to an infinite plane containing two collinear cracks of identical length. 
The stress intensity factors applicable to the problem are given by 

 

21 1
I 2

1

1 1
II 2

1

1 [ ( ) / ( )] sin ,
1

1 [ ( ) / ( )] sin cos ,
1

E m K mK b
m

E m K mK b
m

σ π β

σ π β β

⎛ ⎞−⎜ ⎟=
⎜ ⎟−⎝ ⎠
⎛ ⎞−⎜ ⎟=
⎜ ⎟−⎝ ⎠

 (32) 

where 1( )K m  and 1( )E m are, respectively, the complete elliptic integrals of the 

1st- and 2nd-kind and 2
1 ( / )m a b= . It should be noted that when the incremental 

axial stress is applied in a compressive fashion, it is assumed that the crack tip 
does not experience closure, thereby ensuring the conventional definition of a 
stress intensity factor to be applicable. 

Figure 2: The boundary element discretisation of the elastic plate and the
frictionally constrained inclined crack.
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The computational results for the total value of the mode I and mode II stress 
intensity factors for a frictionally constrained crack inclined at 30° to the axis  
of the incremental load σ  are shown in Figures 3 and 4, respectively. For the 
purposes of the numerical computations, the relevant non-dimensional 
parameters are assigned the following values: 

 ( / ) 0.8a b = ; 0( / ) 0.1Gσ = ; 3( / ) 0.5 10sk G = × ; 3( / ) 10nk G = .  

The dimensions of sk  and nk are chosen to ensure that they have units of a 
modulus. 

7 Concluding remarks 

The boundary element method is ideally suited for analysing problems in contact 
mechanics due to the pre-defined nature of the surface on which the contact 
processes take place. This paper examines the mechanics of contact between the 
faces of a crack, a segment of which exhibits Coulomb friction. This restricts the 
iteration analysis solely to determining the regions of the contact zone that 
experience either slip or no relative movement. It is shown that the boundary 

Figure 3: The total value of the mode I stress intensity factor for the
frictionally constrained crack under the action of axial stress
s (b = 300). 
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element technique can examine this class of frictional contact problem with 
considerable efficiency and accuracy. The extensive range of problems that have 
been examined in current literature point to the utility of the computational 
methodology in examining frictional contact involving not only Coulomb 
friction but also other types of contact laws derived from micromechanical 
considerations. 
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Abstract 

A time-dependent accurate boundary-domain integral method for the prediction of 
two-dimensional unsteady fluid flows is presented in this article. The velocity–
vorticity formulation of the time-dependent set of equations is employed, where 
the kinematics is given with Poisson velocity vector equation, while the kinetics  
is represented with the vorticity transport equation. The method makes use of  
the domain decomposition strategy to increase the applicability of the BEM 
numerical model. The numerical algorithm is applied to the calculation of the 
time-dependent and chaotic flows at high Reynolds (Re) or Rayleigh (Ra) number 
values flows in cavities. The cases considered are the lid-driven cavity problem 
and the buoyant flow in differentially heated cavities. Accurate results are 
obtained for the lid-driven cavity ranging from Re = 1,000 to 20,000, indicating 
that the steady flow bifurcates to a periodic regime for a Reynolds number value 
in the range Re = 7,500-10,000, and to chaotic for greater Re number values. The 
results for a differentially heated enclosures are presented for a Prandtl number 
value equal to Pr = 0.71, with values of the Rayleigh number values Ra = 1.108, 
2.108, 4.108 and 1.109, indicating again the flow development from the steady 
state, periodic and toward the chaotic flow regime. 

Keywords: Boundary element method, Viscous fluid flow, Lid-driven cavity, 
Natural convection, Steady, unsteady, oscillatory and chaotic flow. 

1. Introduction 

The accurate prediction of the time-dependent fluid flow circumstances of 
engineering relevance often requires a large number of nodal points, with 
appropriate clustering in regions where the field variables exhibit large gradients. 
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Traditional single-domain boundary-domain integral method has a strong 
tendency to become too expensive when the number of domain nodal points 
becomes very large [1]. The domain decomposition or macro-element technique 
drastically decreases the computing time and memory demands [2]. The basic 
idea behind the domain decomposition strategy is to use a collocation scheme for 
each macro element separately and by applying the restriction conditions, i.e. 
equilibrium and compatibility conditions, on interfaces between individual 
macro elements. 

Lid-driven square cavity flow computational experiment ranging from 
Re = 1,000 to 20,000 are conducted [3–7]. Although the problem geometry is 
simple, very unexpected and complicated long-term dynamic behaviour exists. The 
flow solution domain is the unit square cavity, and the viscous incompressible fluid 
flow is driven by the upper wall, see Figure 1. 

An unexpected balance of inertial and viscous forces, expressed by the 
Reynolds number value, makes the fluid turn in the cavity. Based on the 
properties of these forces, depending upon the Reynolds number value, a 
hierarchy of vortices develops. The large clockwise-rotating primary vortex (1), 
whose location lies toward the geometric centre of the cavity and several small 
vortices such as the counter clockwise-rotating secondary vortices (2), the 
clockwise-rotating tertiary vortices (3), the counter clockwise-rotating quaternary 
vortices (4), etc., whose locations lie at the three relevant corners appear 
hierarchically at the inclined ellipses. The primary vortex stays put, and the  

→g

vx = 1

T = 1 T = 1

q = 0

q = 0

→v = 0

Figure 1: (a) The lid-driven square cavity fluid flow. Main vortices are sketched
with ellipses and points, where oscillatory and chaotic behaviour is
studied, are shown with crosses. The locations of the crosses are
(0.127, 0.127), (0.127, 0.873), (0.03, 0.97), (0.873, 0.127). (b) Natural
convection in a cavity. The temperature difference between the hot
(left) and cold (right) wall drives natural convection.
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long-term dynamic behaviour of the small vortices determines the nature of the 
solutions. For low Re number values, the solution is stationary; for moderate Re 
number values, it is time periodic; and for high Re number values, the solution is 
chaotic. Of the small vortices, the merging and the splitting, the appearance and 
disappearance, and, sometimes, dragging away from one corner to another and 
the impending of the merging, all these mark the route to chaos [7]. 

The pure buoyancy-driven natural convection is considered next. The problem 
has been proposed by De Vahl Davis et al. [8] as a standard example for 
comparing the accuracy and efficiency of different numerical models [1,4,5,9–13]. 
Due to the buoyancy force, the transport equations for momentum and energy are 
coupled; therefore, the non-linearity of the governing equations is more severe 
compared with pure force lid-driven problem. Buoyant flows in differentially 
heated square cavity are simulated ranging from Ra = 1.108 to 1.109, and Pr = 0.71. 
The problem is sketched on Figure 1. It is a square enclosure with top and  
bottom walls adiabatic, isothermal vertical surfaces and with the left hot wall  
at temperature Th and the right cold wall at temperature Tc, with h cT T T∆ = −  as 
the temperature scale. The reference temperature ( ) / 2o h cT T T= +  is chosen as the 
mean temperature. The values chosen for Ra number correspond to steady, 
periodic and chaotic solutions, respectively. One large clockwise-rotating vortex 
exists for 510Ra < . At greater Ra number values, two vortices clockwise- and 
counter clockwise-rotating vortices appear. The solution becomes unsteady 
periodic for Ra number values closer to 2.108, and chaotic around Ra = 109. 

2. Mathematical formulation 

The analytical description of the motion of a continuous viscous incompressible 
fluid is based on the conservation of mass, momentum and energy with 
associated rheological models and equations of state. The present development  
is focussed on the flow of incompressible isotropic fluid in solution region Ω 
bounded by boundary Γ. The Boussinesq approximation is applied, i.e. the fluid 
is characterised by constant thermophysical properties, with the exception of the 
mass density in the buoyancy term. Therefore, the field functions of interest are 
velocity vector field ( , )i jv r t , scalar pressure field ( , )jp r t  and the temperature 

field ( , )jT r t . By introducing vorticity vector ( , ) rot( ( , ))i j i jr t v r tω = , we may 
write the governing equations in velocity–vorticity form as kinematics equations, 
vorticity transport equation and energy equation. By applying the curl operator to 
vorticity definition and by using the incompressibility constraint, the following 
vector elliptic Poisson equation for the velocity vector is obtained 
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The kinematics deals with the relationship between the velocity field at any 
given instant of time and the vorticity field at the same instant [14]. 

The kinetic aspect of the fluid motion is governed by the vorticity transport 
equation describing the redistribution of the vorticity in the fluid domain. For the 
two-dimensional plane flow, the vorticity vector ( , )jr tω  has just one component 
perpendicular to the plane of the flow and there is a reduction of the vector 
vorticity equation to a scalar one for vorticity ω 

 
2 1 .i

o ij
j j o j

gD e
Dt x x x

ρω ων
ρ

∂∂
= −

∂ ∂ ∂
 (2) 

The energy equation is 

 
2

,o
j j

DT Ta
Dt x x

∂
=

∂ ∂
 (3) 

where /o o oν η ρ=  and /o o oa k c=  represent the material properties of the fluid, 
e.g. kinematic viscosity and heat diffusivity, respectively. 

3. Boundary-domain integral equations 

The unique property and advantage of the boundary element method originates 
from the application of the Green fundamental solutions as particular weighting 
functions [15–17]. Since the fundamental solutions consider only the linear 
transport phenomenon, an appropriate selection of a linear differential operator  
is of main importance in establishing a stable and accurate singular integral 
representation corresponding to the original differential conservation equation. 

3.1. Integral representation of flow kinematics 

The singular boundary-domain integral representation for the velocity vector can 
be formulated by employing the elliptic Laplace differential operator and by using 
the Green theorems for scalar functions or weighting residuals technique [2,16]. 
The kinematics of plane motion is given by two scalar equations as follows 
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where u* stands for the elliptic Laplace fundamental solution and q* is its 
normal derivative, e.g. /q u n q n∗ ∗ ∗= ∂ ∂ = ⋅ , while the vector flux variable is 

defined as /i iq u x∗ ∗= ∂ ∂ . The most important issue in numerical modelling of 
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incompressible fluid flow circumstances is to obtain a divergence-free final 
solution for the velocity and vorticity vector field functions. Thus, the proper 
kinematic integral representation should preserve the compatibility and 
restriction conditions for the velocity and vorticity field functions. Accounting 
for the additional compatibility and restriction conditions for velocity and 
vorticity fields, e.g. rot vω =  and div 0v = , the following boundary integral 
representation for the general flow situation can be stated for the two-
dimensional plane flow kinematic case as follows 

 ( ) ( ) dΓ dΓ di i ij j t ij jc v v q e v q e qξ ξ ω∗ ∗
Γ Γ Ω

+ = − Ω.∫ ∫ ∫  (5) 

As it was mentioned, the boundary vorticity values are expressed in the integral 
form within the domain integral, excluding a need for use of an appropriate 
approximate formula determining the local vorticity values on the boundary, 
which would bring some additional error in the numerical scheme employed. 
Using this unique feature of global integral representation for boundary vorticity 
values, the vector eqn (5) has to be written in its tangential form in order to 
obtain an appropriate non-singular implicit system of equations for unknown 
boundary vorticity or tangential velocity component values to the boundary. 
When the normal velocity component values to the boundary are unknown, the 
normal form of the mentioned equation has to be employed. These equations 
basically represent the application of the boundary velocity conditions given for 
the normal and tangent velocity component to the boundary [14,16]. 

3.2. Integral representation of plane flow kinetics 

Considering the kinetics in an integral representation, one has to take into account 
the parabolic diffusion character of the vorticity transport eqn (2). With the use of 
the linear parabolic diffusion differential operator, the vorticity equation can be 
formulated as a scalar non-homogeneous parabolic diffusion equation as follows 
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where a constant variation of all field functions within the individual time 
increment 1F Ft t t −∆ = −  is assumed [17], e.g. the values at Ft t=  are considered 
for each time step, where vn and gt are the normal velocity and the tangential 
gravity, respectively, e.g. nv v n= ⋅ , t ij i jg g t e g n= ⋅ = − . 
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The boundary integrals describe the total vorticity flux on the boundary due 
to molecular diffusion, convection and vorticity generation by a tangential force. 
The first domain integral gives the influence of force and natural convection, 
while the last domain integral is due to initial vorticity distribution effect on the 
development of the vorticity field in subsequent time interval. 

3.3. Integral representation of heat energy kinetics 

The integral representation of the heat energy diffusion–convection transport 
equation is derived considering the linear parabolic diffusion differential operator 
and therefore eqn (3) may be rewritten in the form 

 

1 1

1( ) ( , ) dΓ dΓ

1 dΩ dΩ,

F o o n
o

o j j F F
o

Tc T t TQ k c v T U
k n

c v TQ T u
k

ξ ξ ∗ ∗
Γ Γ

∗ ∗
− −Ω Ω

∂⎛ ⎞+ = −⎜ ⎟∂⎝ ⎠

+ +

∫ ∫

∫ ∫
 (7) 

where a constant variation of all field functions within the individual time 
increment 1F Ft t t −∆ = −  is assumed. The boundary integrals describe the total 
heat flux on the boundary due to molecular diffusion and convection. The first 
domain integral gives the influence of the convection and the non-linear 
diffusion flux, the second domain integral includes the non-linear material 
effects, while the last one is due to the initial temperature distribution effect on 
the development of the temperature field in subsequent time interval. 

4. Numerical algorithm 

The non-linear system of partial differential equation described in the previous 
section is solved by a combination of two BEM techniques. The wavelet 
compressed BEM (Ravnik et al. [18]) is used to calculate boundary values of 
vorticity, whereas a macro element BEM governed is used to solve other 
equations. The algorithm is presented in detail below: 

•  calculate integrals that depend on the mesh geometry, time step and diffusivity 
•  use wavelet compression on matrices of integrals 
•  begin time step loop. 
         –  begin global non-linear loop 
                  *  begin local kinematic–vorticity kinetic loop 
                           ⋅   KINEMATICS 
                           ⋅  calculate boundary values by solving the kinematics equation 

by wavelet-compressed single domain BEM 
                           ⋅  calculate domain velocity values by solving the kinematics 

equation by subdomain BEM 
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                           ⋅  VORTICITY KINETICS 
                           ⋅  solve vorticity transport equation by subdomain BEM using 

the boundary vorticity values from single domain BEM 
calculation 

                          ⋅ check convergence – repeat steps in the local loop until 
convergence is achieved 

                  *  end local kinematic–vorticity loop 
                  *  ENERGY KINETICS 
                  *  solve temperature transport equation by subdomain BEM 
         –  end global non-linear loop 
•  end time step loop 
•  output results 

With the aim of decreasing storage and CPU time requirements of the single 
domain BEM, we employ the multi-domain or macro element approach. The 
idea is to use a collocation scheme for each macro element separately [2]. Since 
every domain cell neighbours only to a few cells, we end up with a sparse system 
of equations. In this paper, we use quadrilateral macro-elements with 13 nodes, 
which enable continuous quadratic interpolation of all field functions and 
constant discontinuous interpolation for fluxes. The collocation point is placed 
into all function and flux nodes of each macro-element. Since neighbouring 
macro-elements share nodes, compatibility and equilibrium interface conditions 
between subdomains are used and the resulting systems of linear equations are 
over-determined [6]. After taking into account the boundary conditions, the 
solution is obtained by using least-squares iterative solver. 

5. Computational experiments 

The flow in the lid-driven cavity was computed on a 80 80×  element mesh for 
unknown velocity and vorticity fields. The total number of unknowns was 77,763. 
Flow was simulated for Reynolds number values between Re = 1,000 and 
Re = 20,000. The solution was found to be steady for Re = 1,000 and Re = 5,000, 
while for higher Reynolds number values, the flow field is oscillatory and in the 
Re = 20,000 case, transition to chaotic movement can be observed. 

Figure 2 compares velocity profiles through the centre of the cavity for 
Re = 1,000, 5,000, 7,500 and 10,000 with the benchmark results of Ghia et al. 
[3]. Although the flow field is unsteady for Re = 7,500 and Re = 10,000, the 
unsteadiness is concentrated in the corners of the cavity, leaving the main 
vortex almost steady. Since we compare profiles through the main vortex, it is 
possible to give comparison to the steady results of Ghia. Good agreement is 
observed. 

The existence of the main, secondary and tertiary vortices is revealed in 
Figure 3. In the Re = 1,000 case, secondary vortices are formed in the lower 
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left and lower right corners of the cavity. The increase of Reynolds number  
to Re = 5,000 results in an additional secondary vortex formed in the top  
left corner and a tertiary vortex in the bottom right corner. The Re = 7,500  
case exhibits the same vortices. For Re = 10,000 and Re = 20,000, we show 
streamlines for three time instants. We observe reshaping of vortices, 
formation of tertiary vortices and their disappearance. The main vortex remains 
stable; oscillations’ shape, size and position change only for secondary and 
tertiary vortices. 

In order to examine the time-dependent behaviour of vortical structures in the 
corner of the cavity, we chose four monitoring points in the corners of the cavity. 
There we examined time traces of the velocity field. The locations of monitoring 
points are shown in Figure 1. Figure 4 shows velocity time traces and velocity 
phase portraits in (0.127, 0.873) for Re = 20,000. 

The buoyancy-driven flow in a differentially heated square cavity, as a result of 
the temperature difference of the vertical walls, is examined. The lower and upper 
wall of the cavity are insulated. This coupled momentum energy flow case is 
frequently considered as exercise for incompressible flow by numerical models 
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Figure 2: Velocity profiles through the centre of the cavity for Re = 1,000,
(a), Re = 5,000 (b), Re =7,500 (c) and Re = 10,000 (d) compared with
benchmark results of Ghia et al. [3].
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with Boussinesq approximation, [1,8], in which a series of reference numerical 
solutions for Rayleigh number values in the range 3 810 10Ra< <  are presented. 
In the present work, high Ra number values cases are considered, which lead to 
time-dependent fluid flow circumstances. Temperature contours and corresponding 
streamlines for 810Ra = , 82 10Ra = ⋅  and 84 10Ra = ⋅  are shown in Figure 5. 
Time-dependent oscillatory behaviour is found in the 910Ra =  case. Temperature, 
horizontal velocity and vorticity fields are plotted in Figure 6 at a specific time 
instant t=0.115. The average Nusselt number values are not affected very much  
by the unsteadiness of the flow: at Ra = 108: Nu = 30.2, at Ra = 2.108: Nu = 36.1, at 
Ra = 4.108: Nu=43.2 and at Ra=109: Nu=54.2. 

Figure 3: Top row: Streamlines for Re = 1,000 (left), Re = 5,000 (centre),
Re = 7,500 (right). Middle row: Streamlines for Re = 10000 for three
time instants. Bottom row: Streamlines for Re = 20,000 for three
time instants.
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6. Conclusions 

In this work, the boundary element integral approach to the solution of 
incompressible viscous fluid motion in thermally and lid-driven cavities is 
presented. The derived numerical model is characterised by decomposition of flow 
into its kinematics and kinetics, a result of the velocity–vorticity formulation of the 
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Figure 4: Time traces of velocity components and velocity phase portrait at
(0.127, 0.873) for Re = 20,000.

Figure 5: Temperature contours (top row) and streamlines (bottom row) for
Ra = 108, Ra = 2.108 and Ra = 4.108.
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Navier–Stokes equation for an incompressible fluid. The described numerical 
scheme leads to strong coupling between velocity and vorticity field functions, 
resulting in a stable numerical scheme. The application of the elliptic Laplace  
and parabolic diffusion fundamental solutions in the derivation of final integral 
representations ensures an accurate computation of the flow field variables. 

The computed test examples confirm the applicability of BEM-based 
numerical scheme also for a highly non-linear transport phenomena characterised 
with high Re or Ra number values, respectively. The computed BEM results for 
different field functions agree very well with the benchmark solutions. 
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Abstract 

The paper presents a systematic derivation of various integral equation 
formulations for solution of boundary value problems in potential theory 
with continuously variable material coefficients. Besides the standard global 
boundary integral equations, the local integral equations and various numerical 
implementations of such formulations are also discussed with pointing out the 
advantages and disadvantages of particular approaches. Finally, a great attention 
is devoted to overcome the handicap of numerical implementations based on 
mesh-free approximations consisting in computational inefficiency due to 
awkward evaluation of shape functions. 

Keywords: Boundary integral equations, Fundamental solutions, Local integral 
equations, Mesh-free approximations, Analytical integration, accuracy, 
Computational efficiency. 

1 Introduction 

The boundary integral equation (BIE) methods belong to mesh reduction method 
because of the dimensionality reduction of the problem since the unknowns are 
localised only on the boundary of the analysed domain. Despite this reduction, 
mesh generation is still required either owing to the modelling of the geometry 
of the global boundary or to the approximation of the relevant boundary 
quantities. Moreover, pure boundary integral formulations are available only 
if the fundamental solution of the governing operator is known. Basically, the 
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fundamental solutions are available in closed forms and can be expressed in 
terms of elementary functions only for linear operators (linear problems) with 
constant coefficients (homogeneous continuous media). Owing to the attractive 
property of the dimensional reduction, a great effort has been devoted to the 
derivation of fundamental solutions for problems in non-homogeneous media. 
Even if certain fundamental solutions have been derived for special material 
coefficients variations, the numerical implementations of such BIE formulations 
become too cumbersome. Another approach based on the analogue equation 
method has been developed by Katsikadelis [1]. 

A great attention has been devoted to the development of various mesh-free 
formulations in recent literature. Many of them utilise mesh-free approximations 
but the background mesh is still required for modelling the geometry and/or 
integration inherent for variational formulations. Atluri and his co-workers 
remarked that local character of the formulations known as meshless local 
Petrov–Galerkin method gives rise to the development of truly meshless 
formulations (see e.g. [2] from the huge list of literature about MLPG).  

In this paper, we present the derivation of various integral equation 
formulations for solution of boundary value problems in the potential theory  
with allowing continuous variations of material coefficients. The advantages  
and disadvantages of various formulations are pointed out. It is revealed that  
the local integral equation (LIE) formulations enable to develop numerical 
implementations based on truly mesh-free approximation. To increase the 
computational efficiency of the mesh-free implementation of the LIE 
formulation, analytical integration is developed. The achieved computational 
efficiency is comparable with that of strong formulation. Thus, the handicap of 
mesh-free implementations is overcome. 

2 Potential problems in continuously non-homogeneous 
media. Governing equations 

The general physical balance principles of a continuum theory take the form of 
integral equations. The governing equations or field equations take the form of 
differential equations which can be derived from these integral equations by 
taking into account that they hold for all arbitrary but small material domains. 
The governing equation for potential problems in anisotropic and continuously 
non-homogeneous media is given by the following partial differential equation 
(PDE) with variable coefficients [3] 

 ,, ( ) in( ( ) ( )) iik k Quλ = − Ωxx x , (1) 

where ( )u x is the unknown potential field, ( )Q x  is the known density of  
body sources and ( )ikλ x  describe the spatially dependent material coefficients. 
Various physical meanings can be adopted for the scalar potential field  
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(e.g. temperature, hydraulic head, electrostatic scalar potential, electric potential 
and magnetic potential) and correspondingly for the material coefficients 
(thermal conductivity, permeability, electric permittivity, electric current 
resistance and magnetic permeability). In each physical problem (e.g. heat 
conduction, ground water flow, electrostatics of dielectrics, electric conduction 
and magnetostatics), the governing equation in differential form can be derived 
from a physical balance principle which takes an integral form in a continuum 
theory. Thus, the left-hand side in eqn (1) is the divergence of the adequate flux 
vector density (heat flux, velocity flow, electric induction, electric current and 
magnetic induction). 

 ,( ) ( ) ( ).i ik kq uλ= −x x x  (2) 

Eventually, the prescribed boundary conditions (b.c.) of the problem can be of 
the following types:  

Dirichlet b.c.: ( ) ( ) at ,Du u= ∈∂Ωη η η  
 Neumann b.c.: ( ) ( ) ( ) at ,i i Nn q q= ∈∂Ωη η η η  (3) 

Robin b.c.: ( ) ( ) ( ) 0 at ,, ,i i Ru n q Rα β α β+ = ∈∂Ω ∈η η η η  

where D N R∂Ω = ∂Ω ∪∂Ω ∪∂Ω , ( )in η is the unit outward normal vector to the 
boundary,α and β are real constants, and an over bar denotes the prescribed 
quantities. 

3 Boundary integral equation formulation 

The essential feature of each pure boundary formulation for solution of 
boundary value problems in the classical field theory is the knowledge of 
fundamental solution of the governing operator (see e.g. [3–5]). Obviously, the 
fundamental solution is not available in closed form in the case of PDEs with 
variable coefficients, in general. Even though the fundamental solutions are 
available for some particular functionally graded materials, they are expressed 
only in terms of transcendental functions and/or very complex integrals which 
are not suitable for an easy numerical implementation and hence make the 
boundary integral equation method (BIEM) more cumbersome. The use of 
fundamental solutions for simplified operators results in the boundary–domain 
formulations. 

Owing to the lack of the fundamental solution for the governing differential 
operator with generally variable coefficients, it is appropriate to rewrite 
eqn (1) as 

 , ,( ) ( ) ( ),( ) ( )c
ij ij iij ju Quλ λ+ = −x xx x�  (4) 
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where ( ) ( ) c
ij ij ijλ λ λ= −x x�  is a fluctuation of the material coefficients around 

certain average values c
ijλ  inside the analysed domain, e.g. 

 /( )d ( ) d ( ).c
ij ijλ λΩ Ω= Ω Ω∫ ∫x x x  

Let ( )G −x y be the fundamental solution of the governing equation with 
constant coefficients in an infinite space, i.e. 

 , ( ) ( ).c
ij ijGλ δ− = − −x y x y  (5) 

According to Chang et al. [7], eqn (5) has the following solution in 2-D case 

 ( ) 11
( ) ln

2
( ), , ,

| |c
ij i j i i i

cG R R r r r x y
π

λ −− = −
Λ

= = −x y  (6) 

where | |cΛ  denotes the determinant of the matrix cΛ  whose elements are 

given by c
ijλ . 

Starting from the integral identity 

 ,, d ( ) ( )d ( )( )( ( ) ( )) ( )iij j QG u Gλ
Ω Ω

Ω = − Ω− −∫ ∫x x xx y x x x y  (7) 

and making use of the Gauss divergence theorem twice, one arrives at the 
integral representation of the potential field [6] 

 
, ,

, ,

( ) d ( )

d ( )

[ ( ) ( ) ( ) ( ) ( ) ( ) ( )]

[ ( ) ( ) ( ) ( ) ( )]

c
ij j i ij j i

ij j i

u u n G u n G

Q G u G

λ λ

λ
∂Ω

Ω

= Γ

+ Ω

− − −

− − −

∫
∫

y η

x

η η η η y η η η y

x x y x x x y�
 (8) 

at an interior point y  in terms of the boundary densities of the potential ( )u η  
and the flux ( )q η  as well as the gradients of the potential field in the interior of 
the analysed domain Ω . Some of the boundary densities are prescribed by b.c.s, 
while the unknown boundary densities are to be calculated. For this purpose, 
certain integral relationships can be derived from eqn (8) by approaching y  to a 
boundary point ζ . Essential simplification occurs in the case of homogeneous 

media ( 0ijλ ≡� , ( ) constij ij
c
ijλ λ λ= ==x ), when such a BIE is sufficient for 

solution of the boundary value problem. In general, owing to the domain integral 
of unknown potential gradients, the BIE alone is not sufficient for solution of  
the boundary value problem. The domain integrals can be treated by using the 
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domain cells in addition to boundary elements employed for interpolation  
of densities on global boundary∂Ω . Then, the BIE are to be supplemented  
with certain relationship for evaluation of potential gradients (see e.g. [7,8]). 
Alternatively, the domain integrals can be converted to boundary integrals in 
dual reciprocity method utilising the radial basis function approximation of the 
field variable within the domain [9]. The simultaneous use of the boundary 
elements and domain-type approximation (either domain cells or radial basis 
functions) is inherently inconsistent [10]. Another possibility consists in 
utilisation of the multiple reciprocity method [11], which requires, however, the 
knowledge of higher order fundamental solutions at least. 

Summarising, one can conclude that the global integral equation 
formulations are restricted to the use of singular fundamental solutions and the 
system matrix is fully populated. Although the problem of singularities has 
been resolved, there are some special procedures required [8,12] which make 
the programming inconvenient and the engineering applications of the BIEM 
or BEM more difficult. Nevertheless, excellent results have been reported by 
using the pure BEM formulations to problems in FGMs with some particular 
variations of material coefficients [13–16]. It should be stressed that correct 
treatment of singularities improves conditioning of the system of discretised 
BIEs. 

4 Local integral equation formulation 

The inherent inconsistency mentioned in the previous section can be removed  
by using a domain-type approximation for primary field (potential field) 
instead of combining the boundary elements with domain-type approximations.  
Hence, differentiating the approximation of the primary field, one can  
also obtain the approximation of gradients of the potential field. Then, the 
numerical implementation of prescribed b.c.s is available too. Without going 
into details, remember several domain-type approximations. The most familiar 
are the finite elements [17]. Recently, a renaissance and development of many 
mesh-free approximations appeared in literature. We name only two of them, 
namely the point interpolation method and the moving least square (MLS) 
approximation (see e.g. [18–20]). Anyway, the discrete degrees of freedom  
are associated with nodal points which are spread both in the interior of the 
analysed domain and on its boundary. To obey physically meaningful 
interaction among the discrete depth of field and satisfy spreading of the 
influence throughout the body, correct coupling relationships for nodal 
unknowns should be derived. 

Since the governing equations are to be satisfied at each point and/or balance 
equations on an arbitrary sub-domain of the whole body, one can utilise them in 
the derivation of certain integral relationships on arbitrary finite parts of the body 
in contrast to the global integral formulation considered in previous section. 
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4.1 Local integral equations with singular fundamental solution 

It is well known that the existence and the uniqueness of solutions of boundary 
value problems are satisfied when the integral equations utilising singular 
fundamental solutions are employed. Starting from the governing equation on an 
arbitrary sub-domain cΩ ⊂ Ω , one can consider the integral identity 

 ,, d ( ) ( )d ( ).( )( ( ) ( )) ( )c ci
c c

ij j QG u Gλ
Ω Ω

Ω = − Ω− −∫ ∫x x xx y x x x y  (9) 

Hence, making use of the Gauss divergence theorem, we arrive at the integral 
relationship 

 
,, ,( ) ( ) ( )d ( ) ( ) ( )d ( )

( ) ( )d ( ),

( ) ( )c c

c

c c
i i

c

ij j ij jn G G

G

u u

Q

λ λ
∂Ω Ω

Ω

− Γ − − Ω

= − − Ω

∫ ∫
∫

η η η y η x x y x

x x y x

η x
 (10) 

in which c c∈Ωy . This integral equation is physically meaningful (mathematically 
modified governing equations) and can be used as a coupling equation for the 
evaluation of unknown nodal values when a domain-type approximation is employed 
for the field variable. It will be referred to as the LIE of the 1st kind. Strictly 
speaking, eqn (10) is an integro-differential equation for the unknown potential field. 

Splitting ijλ  as c
ij ij ijλ λ λ= + �  in the second integral term of eqn (10), 

applying the Gauss divergence theorem to the term involving c
ijλ , and invoking 

eqn (5), we may write 

 
, , , ,

,

( ) ( )d ( ) ( ) ( )d ( )( ) ( )

( ) ( ) ( )d ( ) ( ).

c c

c

c c
j i j iij ij

c c c
ij j i

u G u G

u n G u

λ λ

λ
Ω Ω

∂Ω

− Ω = − Ω

+ − Γ +

∫ ∫
∫

x x y x x x y xx x

η η η y η y

�
 (11) 

From eqns (10) and (11), we can obtain the following LIE of the 2nd kind 

 , ,

, ,

( ) d ( )

d ( ).

[ ( ) ( ) ( ) ( ) ( ) ( ) ( )]

( ) ( ) ( ) ( ) ( )

c

c

c c c c
ij j i ij j i

c c
ij j i

u u n G u n G

Q G u G

λ λ

λ
∂Ω

Ω

= Γ

+ Ω

− − −

− − −

∫

∫

y η

x

η η η η y η η η y

x x y x x x y�
 (12) 

Recall that now, it is reasonable to consider ( )c c
ij ijλ λ= x , and ( ) ( ) c

ij ij ijλ λ λ= −x x�  

is a fluctuation of the material coefficients inside a sub-domain cΩ surrounding the 
point cx . 
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Note here that eqn (12) is an integral representation of the potential at an 
interior point cy  in terms of the boundary densities of the potential ( )u η  and the 
flux ( )q η  as well as the gradients of the potential field in the interior of the  

sub-domain cΩ ⊂ Ω . Some of the boundary densities can be prescribed by b.c.s 
when c∂Ω ∩ ∂Ω ≠ ∅ . 

Now, in contrast to the global BIEM formulations, the collocation point 
cy never lies on the boundary c∂Ω and the domain integrals involving gradients 

of the fundamental solution exist in the ordinary sense. The treatment of singular 
kernels is much easier since it is sufficient to transform the global integration 
coordinates to polar and/or spherical coordinates depending on the dimensionality 
of the problem considered. 

4.2 Local integral equations – integral form of balance equations 

Recall that eqn (1) is the differential form (strong form) of the energy balance 
and can be deduced from its integral form 

 ( ) ( )d ( ) ( )d ( ),c ci in q Q∂Ω Ω=Γ Ω∫ ∫x x x x x  (13) 

holding for all arbitrary but small material domains cΩ ⊂ Ω . In view of eqn (2), 
we can rewrite eqn (13) as 

 ,( ) ( ) ( )d ( ) ( )d ( ),c ci ik kn u Qλ∂Ω Ω= −Γ Ω∫ ∫x x x x x x  (14) 

which is the local weak form of the governing equations. Note that eqn (14) is  
a physically admissible constraint that can be used as a coupling equation in  
the computation of unknown degrees of freedom of the discretised problem. 
Recall that the LIEs (14) are non-singular, since there are no singular 
fundamental solutions involved in contrast to the singular integral equations 
discussed previously. This is a great simplification compared with the standard 
BIE method applied in the global sense. Moreover, the integration of unknown 
(approximated) field variables is constraint to the boundary of local sub-domains 
even in the case of non-homogeneous media. This can be effectively utilised by 
decreasing the amount of integration points compared with the formulations 
involving domain integrals, and is discussed in previous sections. As regards the 
computational time, it is independent on the fact if the medium is homogeneous 
or non-homogeneous. 

Since the shape and size of the local sub-domains are arbitrary, one is not 
constraint to discretisation of the global analysed domain. It is sufficient to 
spread the nodal points inside and on the boundary of the analysed domain with 
assuming the approximation of the unknown fields at a certain point being 
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influenced by nodal unknowns at several nodes. The physically meaningful 
coupling among nodal unknowns is satisfied by collocating the prescribed b.c.s 
at boundary nodes and considering the LIEs (integral form of balance equation – 
IFBE) at interior nodes. Thus, the local weak (integral) formulation of the 
boundary value problems enables one to develop numerical implementation 
based on completely (truly) mesh-free approximations. The importance of  
mesh-free approximations is justified especially in problems with moving 
boundaries and/or in separable media where re-meshing is required in mesh-
based approaches. The most criticism against mesh-free approximations has its 
origin in computational inefficiency due to relatively complicated and tedious 
evaluation of shape functions. Nevertheless, mesh-free approximations have 
become popular in recent publications. Despite the fact that the standard finite 
element interpolation is applicable also to LIE formulation [6,21–23], it is 
natural to improve the computational efficiency of mesh-free approximations and 
to overcome such a handicap in comparison with the approximations based on 
utilisation of polynomial interpolations. 

5 Moving least squares approximation 

Without going into details [19], we shortly recall the standard moving least 
squares (MLS)-approximation of the primary field (potential field) 

 
1

ˆ( ) ( )
tN

a a

a

u uφ
=

≈ ∑x x  (15) 

in terms of the nodal unknowns ˆau and the shape functions ( )aφ x . The 
evaluation of shape function values in terms of polynomials and weight functions 

is a procedure. The weight function for each node 1, 2, ,( )a
ta N=x …  is 

chosen as a function with a compact support, and the non-vanishing weights 
select the nodes contributing to the approximation at x . In this paper, we shall 
consider Gaussian weight functions. Recall that the shape functions do not 

satisfy the Kronecker delta property ( )a b
abφ δ≠x , in general, and the expansion 

coefficients ˆau are fictitious nodal values. These nodal unknowns are discrete 
degrees of freedom in the discretised formulation. 

Besides the standard MLS-approximation, we shall consider also the central 

approximation node (CAN) concept [24,25]. Let qx  be the CAN for the 
approximation at a point x . Then, the amount of nodes involved into the 
approximation at x  is reduced a priori from tN  to qN , where qN  is the 

number of nodes supporting the approximation at the CAN qx , i.e. the amount 
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of nodes in the set { }
1

; ( ) 0
tNa a q

a

q
w

=
∀ >= x x�M . Then, instead of the 

approximation given by eqn (15), we shall use 

 ( , )

1

( , )ˆ( ) ( ),
qN

n qn qu u α

α

α φ
=

= ∑x x  (16) 

where ( , )n q α is the global number of the α -th local node from q�M . In this 

paper, we shall specify the CAN qx  as the nearest node to the approximation 
point x . 

The gradients of the potential field can be approximated as gradients of the 
approximated potential by 

 , ,
1

( , )
, ,

1

( , )ˆ( ) ( ) ˆ( ) ( ), .
t

qN
a

j j
a

N
n q

j j
a n qu u u u α

α

αφ φ
= =

≈ ≈∑ ∑x x x x  (17) 

Note that calculation of gradients of the shape functions is rather complex 
procedure. The higher order derivatives can be obtained in a similar way with 
increasing complexity of the evaluation. 

Besides the standard differentiation (referred as sdif), we can express the 
higher order derivatives of the potential field in terms of the first-order derivatives 
of the shape functions ( , )

, ( )c a c
k

ca
kF φ= x  and the nodal values ( , )ˆn cu α  as [25] 

 ( , ) ( , )
,

1 1 1
( , )

ˆ ˆ( ) ,
c v cN N

n v bca vb ca m c a
ij j i ij

a b a
v n c a

M
cu F F u F u

= = =
=

= =∑ ∑ ∑x  (18) 

 
1

( , ) ( , )
,

1 1 1
( , ) ( , )

ˆˆ( ) ,
cc v w

ca
ijk

a

N N N K
n w dca vb wd k c a

ijk k j i
a b d

v n c a w n v b

c F uu F F F u
== = =

= =

= = ∑∑ ∑ ∑x  etc. (19) 

These approaches will be referred as modified differentiation (mdif). 
In view of these approximations, one can collocate the prescribed b.c.s at 

boundary nodes and the governing equations 

 ( ) ( ) ( ) ( ) ( ),, , ,
c c c c cu u Qik ki ik i kλ λ+ = −x x x x x  (20) 

at interior nodal points cx . The numerical results achieved by this approach will 
be referred as collocation of PDE (CPDE). 
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Substituting the approximations of potential gradients into eqn (14), one 
obtains the discretised local weak formulation. In order to reduce the amount 
of points at which the shape function gradients are to be evaluated, we try  
to accomplish the integration in a closed form. For this purpose, we shall 
assume the circular sub-domains centred at nodes cx . Furthermore, the radius 
of the circle or  is taken sufficiently small, in order to justify the Taylor series 
expansion of the material coefficients as well as gradients of the shape 
functions within the sub-domain. If the material coefficients are prescribed  
by analytical functions, there is no basic problem to calculate their derivatives 
at nodal points. Expecting failure of accuracy of higher order derivatives of  
the shape functions, the size of the radius of sub-domains should guarantee  
fast convergence of the Taylor series expansion. For the sake of simplicity,  
we shall consider isotropic medium ij ijλ δ λ= . Assuming the Taylor series 

expansions up to 6th and 4th orders for ( )λ x  and , ( )iφ x , respectively, and 

neglecting the terms 8( )oO r , one obtains 
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Note that in the discretised form, the weak formulation given by eqn (21) 
converges to the strong formulation (eqn (20)) in the limit o 0r → . Moreover, 
the strong formulation corresponds to the lowest expansion terms in the weak 
formulation when the material coefficients and the shape functions gradients are 
expanded into Taylor series. Hence, one can expect better accuracy by the weak 
formulation than by the CPDE approach, especially for problems in considerably 
graded materials. 
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6 Numerical illustration results [26] 

Let us consider the square domain L L×  with prescribed temperatures on the 
bottom and top of domain as ou and Lu , respectively, and thermally insulated 
lateral sides. The material medium is assumed to be isotropic with exponentially 
graded heat conduction coefficient as 2( ) exp( / )o n x Lλ λ δ=x  with 2n =  and 

1δ = . The benchmark solution is given by the exact solution of this 1-D problem 

 2
2

/( )
e 1

(e 1).L o
o n

n x Lu u
u x u

δ
δ

−
−−

= +
−

−  

Before investigating the accuracy and efficiency of various mesh-free 
implementations of LIE and/or PDE, we summarise shortly the accuracy of 
approximations for derivatives of the potential field. The first-order derivative  
is acceptable within the whole domain, while the accuracy for the second 
derivatives fails near the boundary. The sdif approach fails completely even in 
the case of the third derivative, while the mdif approach works well at points far 
from the boundary. 

As a characteristic for density of nodal points, we have used the h  parameter, 
which is the distance of two nearest nodes in uniform distributions of nodes. 

From Figure 1, one can see that the LIE approach combined with numerical 
integration yields the worst accuracy as well as the convergence rate in 
comparison with the CPDE and the LIE+analytical integration approaches. 

Figure 1: Convergence study for various techniques: CPDE, LIE+numer.
integration, LIE+analyt. integr.
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As regards the LIE+analytical integration approaches, the best accuracy is 
achieved by the sdif + ( 2sfdo = , 2nd-order derivatives of shape f) technique 
and comparable results are obtained by the ( 3)mdif sfdo+ =  technique. 

The efficiency of various mesh-free computational techniques can be 
assessed by studying the CPU-times needed for creation of the system matrix 
( mt ) and for complete solution ( ft ), where f m st t t= + and st is time needed 
for solution of the system of algebraic equations. 

Figure 2 shows a comparison of efficiencies achieved by various mesh-free 
computational techniques. It has confirmed the expectation that the LIE approach 
with numerical integration is less effective than CPDE in creation of the system 
matrix. It can be seen that for nodal point distributions with low density, mt  is a 
substantial part of ft , while for high densities mt is a negligible part of ft  
for CPDE in contrast to the LIE+num. integr. approach. The computational 
efficiency of the LIE+analyt. integr. approach is comparable with that of CPDE. 

Finally, Figure 3 shows the dependence of time needed for creation of the 
system matrix by various mesh-free computational techniques. 

7 Conclusions 

The paper presents the development of integral equation formulations starting 
from the standard global BIEs to LIEs enabling numerical implementation based 

Figure 2: Variations of the time ratio tm/tf with h parameter for various mesh
free computational techniques.
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on truly mesh-free approximations. Mutual comparisons of particular integral 
formulations are made during their development. 

Finally, we demonstrate the computational efficiency of recently developed 
mesh-free technique based on the LIE and analytical integration with effective 
computation of derivatives of shape functions. The efficiency in creation of the 
system matrix of discretised equations is comparable with that of the strong 
formulation based on the CPDE at nodal points, but the new proposed technique 
yields better accuracy as well as the convergence rate. 
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Abstract 

Modelling of unilateral contact behaviour along the sides of cracks by means of 
boundary element techniques is considered in this contribution. The elastostatic 
analysis problem is written with the help of appropriate boundary integral 
equations in connection with contact mechanics tools. After the discretisation of 
the boundary integral equations with use of the dual boundary element method, 
one has a linear complementarity problem. The theoretical formulation of this 
techniques and comparisons with a more traditional approach, which is based on 
the two-region (classical) boundary element method, are presented in the paper. 

Keywords: Unilateral crack, Boundary integral equation, Dual boundary element 
method, Multi-region formulation, Complementarity problem. 

1 Introduction 

Unilateral contact effects, without or with friction, along the sides of cracks 
can influence the mechanical behaviour and, consequently, a number of related 
applications (stress intensity factors, wave propagation in a cracked medium, 
crack identification, etc). The name ‘breathing crack’ is given to a crack with 
opening and closing, thus unilateral, behaviour. These effects are usually not 
taken into account in the majority of publications. Two techniques are outlined in 
this contribution for the study of unilateral cracks with boundary element 
methods (BEM). 
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The first approach is based on an extension of the classical multi-region 
approach in order to include the unilateral behaviour along the cracks. For one 
crack, two regions are required. Since the unilateral behaviour introduces 
inequality and complementarity relations in the mechanical problem, the name 
linear complementarity problem–BEM (LCP-BEM) has been used for this 
approach [1]. A more refined approach is based on dual boundary element 
method (DBEM), combined with contact mechanics rules. It leads to a LCP, thus 
it is called here a LCP–DBEM method [2]. 

In both approaches, the elastostatic analysis problem is written with the help 
of appropriate boundary integral equations in connection with contact mechanics 
tools. The boundary integral equations are discretised by the DBEM. The 
theoretical formulation of these techniques, which is outlined here, is based on 
previous work of Stavroulakis and his team and can be found in [3]. Besides, 
some results are presented in [4]. 

Contact inequalities (no-penetration and compression-only requirements) and 
complementarity relations (either contact is realised or separation takes place) 
are presented in this paper. They constitute a typical application from the area of 
inequalities or nonsmooth mechanics [5]. The mathematical problems which 
arise in this context are variational inequalities, complementarity and nonsmooth 
optimisation problems. Mathematical programming and optimisation techniques 
have already found their place in the computational mechanics literature and they 
are used for the solution of everyday practical applications (see among 
others, [5–8]). The stick-slip effects of friction are similarly modelled with 
complementarity relations. 

Here, the unilateral crack problem along the crack boundaries is formulated 
as a LCP. The solution of the unilateral contact problem is based either on 
iterative techniques or on mathematical programming methods. Applications of 
the methods outlined here are given in the cited publications of the authors. 

2 Boundary integral equations with cracks in elastostatics 

2.1 Basic relations 

We consider an elastic body that occupies a volume V . We assume that 
displacements of body points and their gradients are small, so its stress–strain 
state is described by the linear equations of the theory of elasticity. We relate 
every point of the body with a point of the space which is occupied by the body. 
The displacements and deformations of the body are described by a displacement 
vector ( )iu x  and a strain tensor ( )ijε x . They are connected by the Cauchy 
relations 

1( ) ( ( ) ( )).
2ij j i i ju uε = ∂ + ∂x x x                                (1) 
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The body stress state is described by a stress tensor ( )ijσ x , which satisfies the 
equation of equilibrium in the form 

( ) ( ) 0, .j ij ib Vσ∂ + = ∀ ∈x x x                                (2) 

The summation convention applies to repeated indices. 
The stress-strain linear relations (Hooke's law) read 

( ) ( ).ij ijkl klcσ ε=x x                                          (3) 

Let us introduce the following notations: i ix∂ = ∂ ∂  is an operator of the 
derivative with respect to the space coordinate ix , ( )ib x  is a body force, ijklc  are 
the components of the elastic module, which for an isotropic body has the form 

( ).ijkl ij kl ik jl il jkc λδ δ µ δ δ δ δ= + +  

Here, λ  and µ  are the Lame constants and ijδ  is Kronecker’s symbol. 
Substituting eqns (1) and (3) into eqn (2), we obtain the differential equations of 
the theory of elasticity in the form of displacements: 

( ) ( ) 0, .ij j iA u b V+ = ∀ ∈x x x                                (4) 

The differential operator ijA  for an anisotropic body has the form 

,ij ijkl k lA c= ∂ ∂  

and for an isotropic case 

( ) .ij ij k l i jA λδ λ µ= ∂ ∂ + + ∂ ∂  

For eqn (4), we will consider the following boundary conditions 

( ) ( ), ,i i uu Vϕ= ∀ ∈∂x x x                                      (5) 

( ) [( )] ( ), ,i ij i i pp P u Vψ= = ∀ ∈∂x x x x                            (6) 

where u pV V V∂ = ∂ + ∂ . The differential operator ijP  has the form 

ij iklj k lP c n= ∂  

for an anisotropic body, and 

( )ij i j ij n j iP n nλ µ δ= ∂ + ∂ + ∂  

for an isotropic body, respectively. Here, in  are the components of the unit 
normal vector and n i in∂ = ∂  is the normal derivative operator. 
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2.2 Classical boundary integral equations  

We introduce a bilinear form for the strain tensors, which corresponds to two 
different fields of displacement vector ( )iu x  and ( )iu′ x in the form 

( , ) ( ) ( ).ijkl kl ija c ε ε′ ′=u u u u                                     (7) 

Let us integrate this equation over the body volume. Applying the Gauss–
Ostrogradsky theorem, we obtain 

( , )d ( ) ( )d d d .ij ij i ij j i j ijV V V V
a V V u n S u Vσ ε σ σ

∂
′ ′ ′ ′= = + ∂∫ ∫ ∫ ∫u u u u  

Taking into account that j ij ij jA uσ∂ = (see eqns (2) and (4)) and 
[ ]ij j i ij in p P uσ = = , we get the first Betti theorem in the form 

d ( , )d [ ]d .i ij j i ij iV V V
u A u V a V u P u S

∂
′ ′ ′= −∫ ∫ ∫u u                          (8) 

Due to symmetry of the form (7), ( , ) ( , )a a′ ′=u u u u  and from eqn (8), we obtain 
the second Betti theorem in the form 

( )d ( [ ] [ ])d .i ij j j ij i i ij i i ij iV V
u A u u A u V u P u u P u S′ ′ ′ ′

∂
− = −∫ ∫  

Considering the differential equations of the theory of elasticity (eqn 4) and 
boundary conditions (5) and (6), we obtain Betti`s reciprocal theorem 

( )d ( )d .i i i i i i i iV V
u b u b V u p u p S′ ′ ′

∂
′− = −∫ ∫                              (9) 

This is a fundamental direct boundary integral equation. 
Let us now assume ( )i ijb δ δ′ = − −x y  and consider the differential equations 

of elasticity in displacements (eqn (4)) in the two-dimensional Euclidean space 

2( , ) ( ), , .ij jk ijA U Rδ δ= − ∀ ∈x y x y x y  

The function ( , )i jku U′ = x y  is a fundamental solution for 2-D elastostatics (e.g. [9]). 
The application of the differential operator ijP  in eqn (6) to the function 

( , )jkU x y  gives us the function ( , )i ijp W′ = x y  which is the second fundamental 

tensor for 2-D elastostatics ([9]). Substituting functions ( )i ijb δ δ′ = − −x y , 

( , )i jku U′ = x y  and ( , )i ijp W′ = x y  in eqn (9) as result we obtain an equation 
which is the Somigliana elastostatic theorem 
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2

( ) [ ( ) ( , ) ( ) ( , )]d

( ) ( , )d , / .

j i ji i jiV

i jiV

u p U u W S

b U V R V
∂

= −

+ ∀ ∈ ∂

∫
∫

y x x y x x y

x x y y
                   (10) 

The kernels in this integral representation of the displacement vector have 
singularities at →x y  [10]. In 2-D case ( , ) ln(1 )ijU r→x y  and ( , ) 1ijW r→x y . 

On the smooth parts of the boundary we have 1 2jk jkc δ= . Therefore, we can 
transform the Somigliana eqn (10) into boundary integral equation for the points 
of the external boundary 

1 ( ) ( ) ( , ) ( ) ( , )d
2

( ) ( , )d , .

j i ji i jiV

i ji
V

u p U u W S

b U V V

∂
= −

+ ∀ ∈∂

∫
∫

y x x y x x y

x x y y
                 (11) 

This equation does not take into account the cracks in the body. 

2.3 Introduction of cracks 

Let us assume that the body contains K  arbitrary-oriented cracks, which are 
described by their surfaces k k

+ −Ω Ω∪ , where k
+Ω  and k

−Ω  are the opposite edges. 

For simplicity, we designate
1

K

k
k

+ +

=

Ω = Ω∪  and 
1

K

k
k

− −

=

Ω = Ω∪ . The distance between 

surfaces +Ω  and −Ω  is small in comparison with the linear sizes of the cracks. 
Following [9], we identify the opposite surfaces +Ω  and −Ω  and distinguish 
them only by the direction of an external normal vector, i.e. + −Ω = Ω = Ω  and 

i i in n n+ −= = . The load on the crack edges satisfies the relationships 
( ) ( ) ( )i ij jp nσ+ += −x x x  and ( ) ( ) ( )i ij jp nσ− −= −x x x . Then, the load on the crack 

edges is represented in the form 

( ) ( ) ( ), .i i ip p p+ −= − = ∀ ∈Ωx x x x  

The mutual displacement of the crack surfaces is characterised by the 
displacement discontinuity vector 

( ) ( ) ( ), .i i iu u u+ −∆ = − ∀ ∈Ωx x x x  

The fundamental solutions for the differential equations of elastostatics (or 
kernels) on the crack edges satisfy the relationships 
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lim ( ( , )) lim ( ( , )),

lim ( ( , )) lim ( ( , )).

ij ij

ij ij

U U

W W

+ −

+ −

+ −

→Ω →Ω

+ −

→Ω →Ω

=

= −
y y

y y

x y x y

x y x y
 

Now, we can rewrite the Somigliana integral representation (eqn (10)) with 
cracks in the form 

2

( ) [ ( ) ( , ) ( ) ( , )]d

( ) ( , )d

( ) ( , )d , \ ( ).

j i ji i jiV

i ji

i jiV

u p U u W S

u W

b U V R V

∂

Ω

= −

− ∆ Ω

+ ∀ ∈ ∂ Ω

∫
∫
∫

y x x y x x y

x x y

x x y y ∪

              (12) 

When V→∂y , we have the Somigliana integral equations on the body 
boundary in the form (see eqn (11)) 

1 ( ) [ ( ) ( , ) ( ) ( , )]d
2

( ) ( , )d

( ) ( , )d , .

j i ji i jiV

i ji

i jiV

u p U u W S

u W

b U V V

∂

Ω

= −

− ∆ Ω

+ ∀ ∈∂

∫
∫
∫

y x x y x x y

x x y

x x y y

                   (13) 

After substituting the boundary conditions (5) and (6), we obtain the required 
boundary integral equations. 

Unfortunately, the Somigliana integral representation (eqn (12)) cannot be 
used for the creation of the boundary integral equations on the crack edges, 
because it does not contain information about load on the crack edges. The only 
possibility to use such boundary integral equations for cracked bodies is to use 
the so-called two-region method [1], i.e. to consider two parts of the structure. 
For each part of the body the BEM is applied. Frictionless unilateral contact 
conditions for that part of the interface where the crack exists are taken into 
account. Another approach is that, we apply the differential operator to eqn (12). 
It gives the integral equations for 2 \ ( ).R V∈ ∂ Ωy ∪  The expressions for the 
kernels in this integral representation are given, e.g. in [9]. We can transform the 
Somigliana integral representation into the boundary integral equations of the 
boundary of body. When V→∂y , we have integral equations on the body 
boundary in the form 

1 ( ) ( ) ( , ) ( ) ( , ) d
2

( ) ( , )d

( ) ( , )d , .

j i ji i jiV

i ji

i jiV

p p K u F S

u F

b K V V

∂

Ω

⎡ ⎤= −⎣ ⎦

− ∆ Ω

+ ∀ ∈∂

∫
∫
∫

y x x y x x y

x x y

x x y y

                    (14) 
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When →Ωy  we obtain 

( ) [ ( ) ( , ) ( ) ( , )]d

( ) ( , )d

( ) ( , )d , .

j i ji i jiV

i ji

i jiV

p p K u F S

u F

b K V

∂

Ω

= −

− ∆ Ω

+ ∀ ∈Ω

∫
∫
∫

y x x y x x y

x x y

x x y y

                   (15) 

In 2-D case, ( , ) 1ijK r→x y  and 2( , ) 1ijF r→x y . 
The contour integral with kernel ( , )ijK x y  is a singular and should be treated 

as the Cauchy principal value integral. The contour integral with kernel ( , )ijF x y  
is a hypersingular and it should be treated as the finite part value integral, 
according to Hadamard [11]. 

Now we have three types of the boundary integral eqns (13–15). On the body 
boundary, we can use both eqn (13) and eqn (14) integral equations, but on the 
cracks only the eqn (15) can be used. Here, we use the boundary integral eqn 
(13) for the body boundary and the boundary integral eqn (15) for the cracks. 
Substituting boundary conditions (5) and (6) into these equations, we obtain 

1 ( ) ( ) ( , )d ( ) ( , )d
2

( ) ( , )d ( ), ,
p

u

j i ji i jiV

i ji jV

u u W S u W

p U S V

∂ Ω

∂

+ + ∆ Ω

− = Φ ∀ ∈∂

∫ ∫
∫

y x x y x x y

x x y y y
 

( ) ( , )d ( ) ( , )d

( ) ( , )d ( ) ( ), .

u p
i ji i jiV V

c

i ji j j

p K S u F S

u F p

∂ ∂

Ω

− +

+ ∆ Ω = Ψ − ∀ ∈Ω

∫ ∫

∫

x x y x x y

x x y y y y
                      (16) 

( ) ( ) ( , )d ( ) ( , )d

( ) ( , )d ,
p u

j i ji i jiV V

i jiV

U S W S

b U V

ψ ϕ
∂ ∂

Φ = −

+

∫ ∫
∫

y x x y x x y

x x y
 

( ) ( ) ( , )d ( ) ( , )d

( ) ( , )d ,
p u

j i ji i jiV V

i jiV

K S F S

b K V

ψ ϕ
∂ ∂

Ψ = −

+

∫ ∫
∫

y x x y x x y

x x y
 

where ( )
c

jp y is a load on the crack edges. If the contact interaction does not 

account, then ( ) 0
c

jp =y . 
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2.4 Unilateral contact effects 

In order to account crack edges contact interaction, the boundary integral 
equations (13) and (15) must be considered together with one-sided restrictions 
and friction, which can be written in the form 

0 0( ) ( ), ( ) 0, ( ( ) ( )) ( ) 0, ,n n n nu h q u h q∆ ≥ ≥ ∆ − = ∀ ∈Ωx x x x x x y                              
( ) ( ) ( ) 0,r r n t rk q≤ → ∂ ∆ =q x x u x  

| ( ) | ( ) ( ) ( ),r r n t r r rk q λ= → ∂ ∆ =q x x u x q x                          (17) 

where ( ), ( ), ( )n r nq u∆x q x x  and ( )r∆u x  are the normal and tangential 
components of the contact forces and the displacement discontinuity vectors, 

0 ( )h x  is the initial opening of cracks, rk  and rλ  are coefficients which depend 
on the properties of the contacting surfaces. 

3 Discretised, dual boundary element problem 

An analytical solution of the boundary integral equations for bodies with 
unilateral cracks is not possible due to its nonlinearity. Therefore, a numerical 
approach has to be used. We outline here a numerical approximation of the 
boundary integral equation (16) with the conditions (17). The first step of the 
method consists in discretisation of the body boundary and crack surface into 
boundary elements using piecewise polynomial approximations for prescribed 
and for unknown boundary values as well as for the boundary geometry. 

Let us divide the body boundary V∂  into N  elements and crack surface Ω  
into M  elements, respectively, 

1 1

, , , for .
N M

n n k m m k
n m

V V V V m k
= =

∂ = ∂ ∂ ∂ = ∅ Ω = Ω Ω Ω = ∅ ≠∩ ∩∪ ∪  

The nodal points Q  have to be chosen on each element nV∂  and mΩ  and the 
system of basis functions are introduced. Then, the vectors of displacements and 
tractions on the boundary and crack surfaces can be approximately presented in 
the form 

1 1

1 1

1 1

( ) ( ) ( ), ,

( ) ( ) ( ), ,

( ) ( ) ( ), .

QN
n

i i q nq
n q

QN
n

i i q nq
n q

QN
m

i i q mq
n q

u x u V

p x p V

u x u k

ω

χ

= =

= =

= =

= ∀ ∈∂

= ∀ ∈∂

∆ = ∆ ∀ ∈Ω

∑∑

∑∑

∑∑

x x x

x x x

x x x
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Then the boundary integrals in eqns (13) and (15) can be presented in the form 

1 1

. . ( ) ( , )d ( ) ( , ) ( ) | ( ) | d ,
n

QN
n

i ji i q ji nqV V
n q

W S p U S p U Gς χ ζ ζ ζ
∂ ∂

= =

=∑∑∫ ∫x x y x y

1 1
. . ( ) ( , )d ( ) ( , ) ( ) | ( ) | d ,

n

QN
n

i ji i q ji nqV V
n q

PV u W S u W Gζ ϖ ζ ζ ζ
∂ ∂

= =

= ∑∑∫ ∫x x y x y  

1 1
. . ( ) ( , )d ( ) ( , ) ( ) | ( ) | d ,

m

QM
m

i ji i q ji mqV
m q

PV u W S u W Gζ κ ζ ζ ζ
∂ Ω

= =

∆ = ∆∑∑∫ ∫x x y x y

1 1

. . ( ) ( , )d ( ) ( , ) ( ) | ( ) | d ,
n

QN
n

i ji i q ji nqV V
n q

PV p K S p K Gζ χ ζ ζ ζ
∂ ∂

= =

= ∑∑∫ ∫x x y x y

1 1
. . ( ) ( , )d ( ) ( , ) ( ) | ( ) | d ,

n

QN
n

i ji i q ji nqV V
n q

F P u F S u F Gζ ϖ ζ ζ ζ
∂ ∂

= =

= ∑∑∫ ∫x x y x y  

1 1
. . ( ) ( , )d ( ) ( , ) ( ) | ( ) | d .

m

QM
m

i ji i q ji mq
m q

F P u F u F Gζ κ ζ ζ ζ
Ω Ω

= =

∆ Ω = ∆∑∑∫ ∫x x y x y  

Here, the W.S. integrals must be considered as improper. The singular integrals 
P.V. must be considered in the sense of the Cauchy. The hypersingular integrals 
F.P. must be considered in the sense of the Hadamard. Further, 1 2( , )ζ ζ ζ=  are 

local coordinates and 
1 2 1 2 1 2d ( ) d | ( , ) | d dS Gζ ζζ ζ ζ ζ ζ ζ∂ ∂

∂ ∂= × = ×r r . 

In 2-D case, ( ) ( )1 2
2 2d dd ( )

d d d( ) x xSG ζ
ζ ζ ζζ = = + . It is necessary to mention that 

singularities arise when nV∈∂y  or m∈Ωy . 
After the discretisation of the boundary integral equations (13) and (15), one 

gets the following system of equations: 

0
.oo oc oo

c c
co cc co

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤
= ⎢ ⎥ + ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ −∆ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

p bH H Gu
H H G Iu p b

                 (18) 

Here, subscript o denotes the quantities defined on the external part of the 
boundary and c denotes the quantities on the crack boundary. Moreover, ∆u  is 
the relative displacement of the crack (crack opening and sliding) in the general 

orthogonal coordinate system Oxy and 
c
p  is the crack traction (contact and 

friction in global coordinate system). Furthermore, I  denotes the unity matrix 
and the other matrices and vectors here are obtained after discretisation of 
eqns (13) and (15) and grouping the terms with iu , iu∆ , ip , jp and ib . The 
matrices ooH , ocH , coH , ocH  and ccH  have dimensions 0 0Q Q× , 0 cQ Q× , 

0cQ Q×  and c cQ Q× , respectively. 
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One should note that the system of eqns (18) is undetermined, because one 

out of the two vectors (i.e. crack opening or sliding ∆u  and crack traction 
c
p ) 

must be known. At this point, the contact mechanics’ inequalities and 
complementarity relations help us make the system solvable. 

The number of equations in eqn (18) depends on the number of points where 
the discretised boundary integral equation of displacements and traction is 
evaluated multiplied by the dimensionality of the problem. For example, if we 
use linear interpolation for the external boundary for which the nodes are at the 
extremes or ends of the elements, then the values of u  and p  at any point on the 
element can be defined in terms of the nodal values and two linear interpolation 
functions are used. Therefore, 0Q N= . For the crack surfaces mΩ  if we apply 
constant boundary elements, i.e. unknown values of ∆u  are assumed to be 
constant over each element and equal to the value at the middle of the element, 
then cQ N= . The dimension of ooH , ocH , coH , ccH and ooC , coC  will be 
2 2 N× × . 

Notice that 1
oQ  values of u  on uV∂  and 2

oQ  values of p  on pV∂  are known 

( 1 2
0o oQ Q Q+ = ), in virtue of the boundary conditions (5) and (6) and 2

oQ  values 
of u  and 1

oQ  values of p  are unknown. Therefore, supposing that the load on the 

crack edges 
c
p  is known and using the boundary conditions (5) and (6), we can 

rearrange the system (18) leaving the columns with the unknowns on the left-
hand side. Then, one can write 

,=Ax B                                                      (19) 

where x is a vector of unknowns u ’s and p ’s boundary values. 

Let us consider the normal n  and tangential τ  components of the crack 

opening vector ∆u  and of the crack traction vector 
c
p , i.e. vectors n∆u , 

c

np  and 

τ∆u , 
c

τp , respectively. We study the frictionless contact case. There is no 
penetration between the adjacent crack sides. The requirement that the only 
compressive contact traction arises and the complementarity requirement that 
either the crack at the considered point is open with zero contact traction or it is 
closed take the form: 

0, 0, 0.
c c

n nn n∆ ≥ ≥ ∆ =u p u p                                 (20) 

The frictionless crack condition simply reads: 

0.
c

τ =p                                                        (21) 
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The frictionless unilateral crack problem takes the form of a LCP, which is 
composed of the system of eqns (19) and the unilateral contact conditions (20) 
and (21). This system is called LCP–DBEM problem. For the frictional case, the 
development is analogous to the ones used in the two-region BEM case. The 
technical details can be found in [12]. 

Two algorithms have been tested for the solution of the direct mechanical 
problem. The first approach is an iterative approach which is based on the 

solution of the system of eqns (19) and updates iteratively the crack tractions 
c
p  

by taking into account the relations (20) and (21). The second approach is based 
on the direct solution of the previously mentioned LCP. 

4 Numerical results and conclusions 

Details on the numerical approximation of the outlined approaches and 
representative results can be found in the original publications of the authors. 
Among them are regularisation techniques and boundary elements for 
hypersingular integrals in [13], stress intensity factors for unilateral cracks in [14], 
wave propagation and interaction with unilateral cracks [12,15] and inverse, crack 
identification problems [1,16]. Further development of fast and reliable modelling 
techniques will allow for the solution of more demanding problems, like 
homogenisation in media with many, possibly unilaterally, working cracks. 
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Boundary element formulations for composite 
laminated plates 

S. Syngellakis 
School of Engineering Sciences, University of Southampton, U.K. 

Abstract 

Laminates, comprising plies stacked in various orientations relative to their 
principal material frames of reference generally exhibit coupling between their  
in-plane displacements and transverse deflection under any loading conditions. The 
main theme of this paper is the development of integral equations for the non-
linear analysis of laminates taking into account this coupling. The formulation  
of the extensional problem is based on the stress function concept, which results  
in constitutive relations and field equation mathematically equivalent to those  
of the plate bending problem. This has the advantage of using the same form of 
fundamental solution, similar boundary and domain modelling as well as the 
development of common algorithms for the solution of the two coupled problems. 
The implementation and reliability of the general formulation is demonstrated  
in the case on linear and non-linear buckling of balanced laminates. Modelling 
approaches for dealing with irreducible domain integrals are discussed. 

Keywords: Laminates, Bending-extension coupling, Buckling, Boundary elements. 

1 Introduction 

The design of structural components made of composites can be tailored to meet 
the specific demands of a particular application by making optimum use of 
available materials. The mechanical behaviour of flat laminates, in particular, 
depends on ply orientation, number of plies in a given direction, thickness of 
individual plies, type of ply and the ply stacking sequence. The latter generally 
causes coupling between the transverse deflection and the in-plane displacements 
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of a laminate. This coupling is absent only in the special case of ‘balanced’ 
laminates in which plies are symmetrically arranged with respect to the middle 
plane of the plate. 

The complexities in the mechanical behaviour of composite materials 
demanded the development of advanced analytical and numerical techniques for 
their analysis. The boundary element method (BEM) is one such numerical tool 
through which the dimensionality of the problem reduces by one and mesh 
generation becomes comparatively easy. The macroscopic BEM approach 
adopted in the present paper predicts the coupled anisotropic laminate behaviour, 
as represented by the classical lamination theory. 

Existing BEM formulations are based on the generalised Rayleigh–Green 
identity for anisotropic plates. Such analyses predict the linear flexural response 
of balanced laminates with any plan form and a number of corner points along 
their boundary. An early attempt at an indirect BEM solution of the anisotropic 
plate flexure problem [1] relied on a single fundamental solution and a number 
of fictitious point sources outside the plate domain. An alternative indirect 
formulation [2] was restricted to a particular type of orthotropy allowing the 
transformation of the problem to an equivalent isotropic one. The first direct 
formulation for orthotropic plates [3] was developed using the methodology 
applied earlier to the bending of isotropic plates. That analysis was extended to 
plates of general anisotropy [4]; expressions for all boundary integral kernels 
were provided and the developed algorithm was validated through a range of 
benchmark problems. The same direct BEM approach was applied to both  
in-plane and flexural analysis of balanced laminates using the Airy’s stress 
function and the deflection as field variables [5]. The latter formulation was 
subsequently extended to the solution of the linear and non-linear buckling 
problems [6,7]. 

In this paper, the theory is further developed to address the general, non-
linear, coupled extensional–flexural behaviour of laminates. The formulation 
uses the fundamental solution for the linear, uncoupled extension or flexure 
problem. The resulting integral equations contain irreducible domain integrals 
depending on terms arising from the geometric non-linearity as well as 
extension–flexure coupling. The general theory is then specialised to the linear 
and non-linear buckling analysis of balanced laminates and some relevant 
published results are reviewed. The paper concludes with a discussion on 
possible techniques for modelling and evaluation of irreducible domain integrals. 

2 Laminate theory 

According to the classical lamination theory, the plate is assumed to consist  
of an arbitrary number of discrete layers, each individual layer being 
homogeneous through its thickness and in a state of plane stress. The laminate 
is also assumed to deform according to Kirchhoff’s bending theory of thin 
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plates; as a consequence, in-plane forces Nαβ and bending moments Mαβ are 
related to mid-plane strains εαβ and curvatures καβ by 

 = + ,N A Bαβ αβγδ γδ αβγδ γδε κ  (1) 

 ,M B Dαβ αβγδ γδ αβγδ γδε κ= +  (2) 

where Aαβγδ and Dαβγδ are, respectively, the extensional and flexural rigidities, 
Bαβγδ are extensional–flexural coupling coefficients, the Greek indices range 
from 1 to 2 indicating components relative to a Cartesian, x1–x2 frame of 
reference and repeated indices mean summation over their range. Strains and 
curvatures are related to mid-plane displacements uα and deflection w, 
respectively, by 

 , , , ,
1 ˆ ˆ( , , ),
2

i iu u w w w wαβ α β β α α β α βε = + + −  (3) 

 , ,wαβ αβκ = −  (4) 

where a comma followed by a lower index indicates differentiation with respect 
to the corresponding co-ordinate. The plate is assumed to have an initial 
imperfection represented by wi(xα), so that the total deflection is given by 

 ˆ .iw w w= +  (5) 

The strains satisfy the compatibility equation 

 , ,
1 ˆ ˆ[( ) ( ) ]
2

i iL L w w L w wαβ αβ αβ αβ αβ αβε = −  (6) 

with the operator Lαβ defined by 

 2
, .wL w wαβ αβ αβδ= ∇ −  (7) 

The membrane stresses Nαβ and bending moments Mαβ should also satisfy the 
equations of equilibrium 

 , 0,N fαβ β α+ =  (8) 

 , , ,ˆ( ) 0,M N w qαβ αβ αβ α β+ + =  (9) 

where the body force fα is assumed to be derivable from a potential function Φ 
according to 

 ,fα α= −Φ  (10) 

and q is the lateral pressure. 
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A schematic view of a plate is shown in Figure 1. Its domain is represented 
by Ω and its boundary by contour Γ, which is smooth apart from a finite number 
K of corner points; the normal and tangent unit vectors to Γ are represented by n 
and s, respectively. Along the smooth portions of Γ, the field variables should 
satisfy the conditions 

 or ,p p u uα α α α= =  (11) 

 ,ˆ or = ,V p w V w wα α+ =  (12) 

 or ;n n n nM M θ θ= =  (13) 

while, at any corner point j, 

 or ,j j j jC C w w= =  (14) 

where , , , , ,n nu w p V Mα αθ and jC are, respectively, the prescribed values of in-
plane displacements, deflection, normal slope, in-plane traction, shear force, 
bending moment and corner force, while pα, V, Mn are given by 

 ,p n Nα β αβ=   

 , ,nsM
V n M

sα αβ β
∂

= +
∂

  

 nM n n Mα β αβ=   

Figure 1: Plate schematic with relevant notation.
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and C =[ ]j ns jM  represents the discontinuity jump of the twisting moment Mns: 

 = .nsM s n Mα β αβ   

The problem can be re-formulated in terms of a stress function F such that 

 Φ ,N L Fαβ αβ αβδ= +  (15) 

where δαβ  is the Kronecker delta. Using expressions (15) and referring to 
Figure 1, it is possible to show that, at any point 1 2( , )Q x x along the boundary, 

 1 1 2 2 2 1[( ) ( ) ]dΓ,
Q

O
F x x p x x p= − − −∫   (16) 

 1 1 2 2( ) dΓ ( ) dΓ,
Q Q

O O

F s Q p s Q p
n

∂
= − −

∂ ∫ ∫  (17) 

where O is an arbitrarily located origin for the path variable along Γ. According 
to eqn (16), F can be physically interpreted as the resultant moment about Q of 
the traction over OQ. Similarly, eqn (17) describes the normal derivative of F as 
the component of the resultant traction over OQ in the direction −s at Q. 

In-plane equilibrium is identically satisfied by the stresses given by 
expressions (15), which also need to satisfy compatibility. Constitutive eqns (1) 
and (2) are thus re-arranged by defining 1Aαβγδ

−  as the inverse of the extensional 
rigidity tensor Aαβγδ: 

 1 ,A Aαβγδ γδλµ αλ βµδ δ− =  (18) 

so that 

 1
, , Φ,A F B w Aαβ αβγδ γδ αβγδ γδ αβκκε −= + +  (19) 

 , ,
ˆ ,M B F D w Bαβ γδαβ γδ αβγδ γδ κκαβ= − + Φ  (20) 

where 

 

1 1

1

1

,

,
ˆ

and

A A A

B A B

B B B

D D B A B

αβγδ αβκκ γδ αβγδ

αβγδ αβλµ λµγδ

αβγδ κκγδ αβ αβγδ

αβγδ αβγδ αβλµ λµνξ ϑξγδ

δ

δ

− −

−

−

= −

=

= −

= −

 (21) 

is the reduced flexural stiffness tensor. 
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Substitution of the new constitutive eqns (19) and (20) into the compatibility 
eqn (6) and equilibrium eqn (9) leads to the differential field equations 

 
, ,

ˆ ˆ, ,

1 ˆ ˆ, [L ( ) L ( ) ].
2

i i

A F B w

A w w w w

αβγδ αβγδ αβγδ αβγδ

κκαβ αβ αβ αβ αβ αβ

+

= − Φ − −
 (22) 

 , , ,

, , ,

B̂
ˆ ˆ( ) ,

F D w q B

L F w w
γδαβ αβγδ αβγδ αβγδ κκαβ αβ

αβ αβ αβ α αδ

− + = + Φ

+ + Φ + Φ
 (23) 

where 
 1 1 1 1ˆ .A A A A Aαβγδ κκλλ αβ γδ αβκκ γδ κκγδ αβ αβγδδ δ δ δ− − − −= − − +  (24) 

3 Linear uncoupled problem 

For a perfectly flat, balanced laminate undergoing small deformations in the 
absence of body forces, the governing eqns (22) and (23) reduce to 

 ˆ , 0,A Fαβγδ αβγδ =  (25) 

 ,D w qαβγδ αβγδ =  (26) 

and the constitutive relations (19) and (20) become 

 , ,A Fαβ αβγδ γδε =  (27) 
 , .M D wαβ αβγδ γδ= −  (28) 

The two uncoupled problems can be solved by a common BEM approach 
based on the Rayleigh–Green identity for the linear symmetric operator 

 , .Cu C uαβγδ αβγδΛ =  (29) 

The derivation of the formulation relies on the relation 

 
,Ω Ω

Γ
1

, dΩ ( ) dΩ

[( ) ( ) ]dΓ ( ) ,

C

K
C C C

n n ns jj

C u v v u

V v u M v u M v u

αβγδ αβ γδ

θ
=

= Λ

+ − +

∫ ∫

∑∫
 (30) 

which is obtained applying integration by parts, Green’s theorem and the 
definition of the operators 

 ,n
uu
n

θ ∂
=

∂
 (31) 

 , ,C
nM u C n n uαβγδ α β γδ= −  (32) 
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 , ,C
nsM u C n s uαβγδ α β γδ= −  (33) 

 , .
C

C nsM u
V u C n u

sαβγδ α βγδ
∂

= − +
∂

 (34) 

It should be noted that relation (30) is valid even if ΛC is not symmetric with 
respect to the pair of indices (αβ) and (γδ). The fundamental solutions of ΛC(u) 
satisfy 
 *

, ( ); 1, 2,C uαβγδ λ αβγδ λδ λ= − =x ξ  (35) 

where δλ is related to the Dirac delta function δ according to 

 1( ) ( ),δ δ− = −x xξ ξ  (36) 
 2 ( ) ( ) / ( )mδ δ ξ− = ∂ − ∂x xξ ξ  (37) 

and m represents an arbitrary direction through the source point as shown in 
Figure 1. The complete BEM solution of both extensional and flexural linear 
problems has been implemented and validated [5]. 

4 Integral equations 

The symmetry of Âαβγδ  with respect to the pairs of indices (αβ) and (γδ) leads to 
the reciprocity relation 

 , , , ,Ω Ω
ˆ ˆdΩ dΩ.A F F A F Fαβγδ αβ λ γδ αβγδ αβ λ γδ

∗ ∗=∫ ∫  (38) 

Using relation (30), with ˆC Aαβγδ αβγδ=  and the pairs of functions F, Fλ
∗  or Fλ

∗ , 
F replacing u, v, eqn (38) is transformed to 

 
Ω

Γ

1

[( ) ( ) ]dΩ

[( ) ( )( ) ( ) ( )( )]dΓ

( ) ( ) 0.

A A

A A A A
n n n n

K
A A
ns ns jj

F F F F

V F F M F F V F F M F F

M F F M F F

λ λ

λ λ λ λ

λ λ

θ θ

∗ ∗

∗ ∗ ∗ ∗

∗ ∗

=

Λ − Λ

+ − − +

+ − =

∫
∫

∑

 (39) 

Relation (30) is also applied with Cαβγδ = B̂αβγδ , u = Fλ
∗  and v = w to give 

 –

, ,Ω Ω

Γ

1

ˆ dΩ ( ) dΩ

[( ) ( )( )]dΓ

( ) 0.

B

B B
n n

K
B
ns jj

B F w w F

V w F M w F

M w F

αβγδ λ αβ γδ λ

λ λ

λ

θ

∗ ∗

∗ ∗

∗

=

+ Λ

+ −

+ =

∫ ∫
∫

∑

 (40) 
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Taking into account constitutive relations (19) with the body force terms 
neglected, it is possible to show that 

 , ,A B
n ssV F V w u+ =   

 ,= ,A B
n n ss s sM F M w uε+ = − −   

 .A B
ns ns nsM F M w ε+ =   

Combining eqns (39) and (40) as well as taking into account eqns (22) and (35) gives 

 
* *

, , ,Ω Ω

( ) ( , ) ( , ) ( , )
ˆ( ) dΩ Φ dΩ,

b d
A A FkF I F F J F F I w F

B w F A F
λ λ λ λ

αβγδ γδ λ αβ κκαβ αβ λ

∗

∗ ∗

= + −

− −∫ ∫
ξ

 (41) 

where k = 1, F1 = F and F2 = F,m or k = 0.5, F1 = F and F2 = F,n depending on 
whether P is in the domain or on a smooth portion of the boundary, respectively, 
and 

 *
,Γ

( , ) [ ( ) ( ) ( )( )]dΓ,b A A
A n ss ss n n n nI F F u F F V F F M F Fλ λ λ λ λε θ θ∗ ∗ ∗ ∗= + + −∫  (42) 

 *

1
( , ) = ( ) ,

K
A

A ns ns jj
J F F F M F Fλ λ λε ∗ ∗

=
+∑  (43) 

 , ,Ω

1 ˆ ˆ( , ) [( ) ( ) ] dΩ.
2

d i i
FI w F L w w L w w Fλ αβ αβ αβ αβ λ

∗ ∗= −∫  (44) 

In the case of the bending problem, Dαβγδ  replaces Âαβγδ  and the pairs of 

functions w, wλ
∗  replace F, Fλ

∗  in the reciprocity relation (38); then, the 
application of relation (30) with C Dαβγδ αβγδ=  leads to 

 
Ω

Γ

1

[( ) ( ) ]dΩ

[( ) ( )( ) ( ) ( )( )]dΓ

( ) ( ) 0.

D D

D D D D
n n n n

K
D D
ns ns jj

w w w w

V w w M w w V w w M w w

M w w M w w

λ λ

λ λ λ λ

λ λ

θ θ

∗ ∗

∗ ∗ ∗ ∗

∗ ∗

=

Λ − Λ

+ − − +

+ − =

∫
∫

∑

 (45) 

Relation (30) is again applied with ˆC Bαβγδ γδαβ= , u wλ
∗=  and v = F to give 

 

, ,Ω Ω

Γ

1

ˆ dΩ ( ) dΩ

[( ) ( )( )]dΓ

( ) 0,

B

B B
n n

K
B
ns jj

B w F F w

V F w M F w

M F w

γδαβ λ αβ γδ λ

λ λ

λ

θ

∗ ∗
′

′ ′∗ ∗

′ ∗

=

− Λ
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− =

∫ ∫
∫

∑

 (46) 
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where B′ indicates the transpose of B. Taking into account constitutive relations 
(20) with the body forces neglected, it is possible to show that 

 ,B DV F V w V′− + =   
 ,B D

n n nM F M w M′− + =   

 .B D
ns ns nsM F M w M′− + =   

Combining eqns (45) and (46) as well as accounting for eqns (20) and (35) gives 

 ( ) ( , ) ( , ) ( , , ),b d
D D wkw I w w J w w I F w wλ λ λ λ

∗ ∗ ∗= + +ξ   

 , , , , ,Ω Ω
ˆˆ( Φ Φ ) dΩ dΩ,q B w w B w Fκκαβ αβ α α λ γδαβ λ αβ γδ

∗ ∗+ + +∫ ∫  (47) 

where w1 = w and w2 = w,m or w2 = w,n depending on whether P is in the domain 
or on smooth portion of the boundary, respectively, and 

 
Γ

( , ) [ ( ) ( ) ( )( )]dΓ,b D D
D n n nI w w Vw M w V w w M w wλ λ λ λ λθ θ∗ ∗ ∗ ∗ ∗= − + −∫  (48) 

 
1

( , ) ( ) ,
K

D
D ns ns jj

J w w M w M w wλ λ λ
∗ ∗ ∗

=

= −∑  (49) 

 ,Ω Ω
ˆ ˆ( , , ) ( Φ) dΩ , dΩ.d

wI F w w L F w w N w wλ αβ αβ αβ λ αβ αβ λδ∗ ∗ ∗= + =∫ ∫  (50) 

Various schemes have been developed for dealing with irreducible domain 
integrals such as those appearing in integral eqns (41) and (47). This is 
demonstrated here in the case of buckling of balanced laminates for which the 
extensional–flexural coupling coefficients Bαβγδ vanish. 

5 Linear buckling 

Buckling is due to the action of in-plane tractions λpα where pα is some reference 
load causing in-plane forces Nab. Thus, all terms involving lateral pressure q and 
in-plane body force potential Φ can be removed from the integral equations. The 
plate is assumed perfectly flat, i.e. wi = 0 and it buckles for a critical value load 
factor λc. It is evident that eqn (41) reduces to a true boundary integral equation, 
which can be solved by the same process as that employed in the case of  
the plate bending problem [5]. An irreducible domain integral depending on the 
in-plane force and curvature distributions still remains on the right-hand side of 
eqn (47). Integration by parts converts this integral to 

 , , ,Ω Γ
dΩ ( )dΓd

wI N w w p w w w wαβ λ αβ α α λ λ αλ λ∗ ∗ ∗= + −∫ ∫  (51) 

i.e. a domain integral depending on deflections and a boundary integral.  
The boundary element formulation for the plate bending problem is here 
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complemented by a deflection model and the use of eqn (47) with the source 
point placed on all domain nodes. Thus, a consistent discrete system of equations 
is generated, which can be formulated as an eigenvalue problem yielding directly 
the buckling mode as well as λc as the smallest eigenvalue [6]. 

The analysis was implemented using linear discontinuous boundary elements 
and triangular domain cells. Analytical integration was applied over boundary 
elements containing the source point. Special approximations schemes were 
adopted for the calculation of the corner jump terms. Results were obtained  
for rectangular plates under various loading and support conditions. Typical 
examples are shown in Figure 2. The material constants, represented by their 
compact matrix notation, were given the following values: 

 11 22

12 66

1,818.1MN / m, 103.46MN / m,
28.969MN / m, 71.7 MN / m,

A A
A A

= =
= =

  

 11 22

12 66

15,151Nm, 862.181Nm,
241.41Nm, 597.5 Nm

D D
D D

= =
= =

  

The non-uniform distribution of in-plane plane forces in both examples of 
Figure 2 was accurately predicted by the respective BEM scheme. This was 
confirmed by parallel finite element analyses. The load factor λ was related to a 
reference component of traction pref by 

 3
ref 2 ,

D
p

a
λ=  (52) 

where 3 12 662D D D= +  and a the x1-dimension of the plate as indicated in Figure 2. 

Figure 2: Orthotropic plates in buckling analyses.
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Table 1: Critical load factor λc for the plates of Figure 2 (a = b). 

Figure 2 Boundary 
conditions 

pref Loading BEM FEM 

(a) SS p1 p1=p2, c=a/2, d=b/2 94.376 93.555 
(a) SS p1 p2=0, c=a/2, d=b/2 160.705 157.971 
(a) SS p2 p1=0, c=a/2, d=b/2 111.319 110.123 
(a) CL p1 p1=p2, c=a/2, d=b/2 230.769 227.832 
(a) CL p1 p2=0, c=a/2, d=b/2 527.909 517.715 
(a) CL p2 p1=0, c=a/2, d=b/2 259.392 257.451 
(b) SS p  75.816 75.570 
(b) CL p  178.535 173.851 

Note: SS, simply supported; CL, clamped. 
 

The critical load factor λc, the loading as well as the definition of pref for each 
case analysed are given in Table 1, which shows that the agreement between 
BEM and FEM results, obtained using meshes of comparable densities, is quite 
satisfactory. 

6 Non-linear buckling 

An imperfect plate subjected to edge tractions pa undergoes coupled in-plane and 
flexural deformation, which becomes strongly non-linear at a critical level of the 
applied load. An incremental procedure [7] solves the field equations for the 
variables δF and δw, which can be deduced from eqns (22) and (23) as 

 , , ,
1ˆ ˆ( ) ( ) ,
2

A F L w w L w wαβγδ αβγδ αβ αβ αβ αβδ δ δ δ= − + ) (53) 

 , , , ,ˆ( ) ( ) ( ) .D w L w F L F w L F wαβγδ αβγδ αβ αβ αβ αβ αβ αβδ δ δ δ δ= + +  (54) 

Balanced laminates were again considered, in-plane body forces ignored and no 
lateral pressure was applied so that terms involving Bαβγδ, Φ and q were removed 
from the field and integral equations. The boundary conditions satisfied by the 
incremental variables are also easily deduced from eqns (11)–(14), (16) and (17). 

The irreducible domain integrals of this problem take the form 

 ,Ω

1ˆ δ δ dΩ,
2

d
FI L w L w w Fαβ αβ αβ λ

∗⎛ ⎞= −⎜ ⎟
⎝ ⎠∫  (55) 

 , ,Ω
ˆ[ ( ) ] dΩ.d

wI L w F L F F w wαβ αβ αβ αβ λ
∗= δ + + δ δ∫  (56) 

They, therefore, depend on the current and incremental values of the in-plane 
forces and curvatures, respectively represented by the second-order partial 
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derivatives of the stress function and deflection. The latter can be calculated 
using the integral equations 

  
* *

, , ,

*
, , ,

( ) ( , ) ( , )

( , , ),

b
A A

d
F

F I F F J F F

I w w F
γδ γδ γδ

αβ αβ γδ

δ δ

δ

δ = +

−

ξ
 (57) 
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( , , , , )
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D D

d
w

w I w w J w w

I F F w w w
γδ γδ γδ

αβ αβ αβ αβ γδ

δ δ δ

δ δ

= +

+
 (58) 

obtained from the original integral equations for δF and δw but with the source 
point placed in the domain. 

Quadratic discontinuous elements were employed in the boundary element 
implementation of this analysis [7], while the domain was discretised into linear 
discontinuous cells as in the previous linear buckling analysis. All incremental 
values were assumed zero at the beginning of each solution step. At the first 
step and first iteration, an assumed pattern of very small initial imperfection  
wi was set equal to the total domain deflection ŵ . The integral equations 
governing δF were solved for an increment of edge traction δpα with the 
domain integral (55) set equal to zero. The incremental in-plane forces δNαβ at 
cell nodes were obtained using eqn (57). The integral equations governing δw 
were then solved with the domain integrals (56) evaluated using the previously 
obtained δNαβ. The incremental deflections and curvatures at domain cell nodes 
were obtained from the respective integral equations. Replacing the incremental 
values of in-plane forces and curvatures by the new values, the procedure was 
repeated in an iterative manner until the specified convergence criteria were 
satisfied. The final incremental values from the last iteration in the previous 
step were added to the total values of in-plane forces, deflections and curvatures 
for the next step. The solution procedure was carried out in a similar manner at 
each subsequent step. 

The post-buckling analysis was applied to a simply-supported square plate 
with each side 1 m long and thickness 10 mm under uni-axial, uniformly 
distributed compression along the stiffer direction. Its extensional stiffness 
coefficients and flexural rigidities were: 

 11 22

12 66

2,003.13MN / m, 50.0782 MN / m,
12.5196 MN / m, 30MN / m,

A A
A A

= =
= =

  

 11 22

66 12

16692.7 Nm, 417.319 Nm,
250.0 Nm, 417.319 Nm.

D D
D D

= =
= =

  

Two cases of initial imperfections were considered corresponding to 
maximum wi values of 0.5 mm and 5 mm. The results are presented in Figure 3, 
together with a solution based on double Fourier series for the transverse 
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deflection as well as the stress function [8]. The present method relies heavily on 
iterations and its performance depends upon various factors like step size, the 
degree of non-linearity, the convergence criteria and the rate change of slope of 
load–deflection curve. Further parametric studies can be performed to optimise 
the performance of the solution. 

7 Discussion 

The numerical solution of integral eqns (41) and (47) largely depends on the 
possibility of extending the usual BE methodology to the modelling of domain 
variables and evaluation of domain integrals. Special schemes for achieving this 
were developed and successfully applied in the cases of linear and non-linear 
buckling. The domain integrals in these cases were the consequence of non-
linearity. The next step in the numerical implementation of the general formulation 
would be to examine the possibility of applying similar schemes for the evaluation 
of the domain integrals arising from extensional–flexural mode coupling, namely 

 , , , ,Ω Ω
ˆ ˆ( ) dΩ and dΩB w F B w Fαβγδ γδ λ αβ γδαβ λ αβ γδ

∗ ∗∫ ∫   

On the one hand, the above integrals depend on the second partial derivatives of 
both variables and fundamental solutions; therefore, the strategy of converting 
them into integrals depending on the variables themselves would not be 
effective. On the other hand, the generation of integral equations for the in-plane 
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forces and curvatures by differentiating twice the integral expressions for the 
stress function and the deflection would lead to hyper-singular domain integrals, 
which may not be easily evaluated. 

An alternative scheme, which has been tested in the case of isotropic plates 
[9], is to adopt non-linear interpolation model for the stress function and the 
deflection, from which nodal in-plane forces and curvatures can be directly 
related to stress function and deflection by differentiation. Additional systems  
of equations can be obtained by applying eqns (41) and (47) with 1k λ= = , i.e. 
with the source point placed on the domain nodes. In-plane forces and curvatures 
can be eliminated from the final system of equations, which would contain only 
the stress function and the deflection as well as the associated boundary variables 
as unknowns. This approach can also be attempted with a meshless modelling 
strategy and possibly combined with dual reciprocity schemes to provide a true 
BEM formulation. 
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Abstract 

Sound wave propagation in 2D enclosed spaces containing a fluid-filled thin 
barrier is modelled in the frequency domain using a combination of three 
techniques: the boundary element method (BEM), the traction boundary element 
method (TBEM) and the method of fundamental solutions (MFS). In this 
formulation the body of the barrier is modelled with a mixed BEM/TBEM 
approach to cope with the thin body difficulty while the boundary of the host 
medium is modelled with an MFS technique. The MFS calculates the sound 
reflection from the boundary, as a linear combination of 2D virtual sources. These 
N virtual sources are located outside the domain on an imaginary boundary, to 
avoid singularities. The BEM/TBEM and MFS formulations are coupled by 
assuming that the absorption of the host medium boundary is obtained imposing an 
impedance boundary condition, while along the fluid-filled thin barrier boundary 
the continuity of pressure and pressure gradients is established. 

Keywords: Acoustic wave propagation, TBEM/MFS coupling, (TBEM+BEM)/ 
MFS coupling, Acoustic barriers. 

1 Introduction 

Different techniques have been applied over the years in order to understand 
how waves propagate and radiate in acoustic media. The analytical solutions 
that have been developed can only be used for problems where the geometry 
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and materials are relatively simple. If the conditions are more complex, such as 
in regular layered media for example, then the superposition of Green's 
functions is a useful approach. But numerical techniques are the only way of 
solving the integral expressions yielded for irregular geometries, and in 
general, they require a great computational effort. Among the numerical 
methods developed to model the kind of acoustic vibration problems 
encountered in engineering practice are the thin layer method (TLM) [1], the 
boundary element method (BEM) [2], the finite element method (FEM) [3], the 
finite difference method [4] and the ray tracing technique [5]. 

Unbounded homogeneous systems are best tackled with the BEM if they 
have irregular interfaces and inclusions. The BEM automatically satisfies the far 
field conditions and so discretisation is only required for the boundaries of the 
interfaces and inclusions. However, this method does assume prior knowledge of 
fundamental solutions (Green’s functions), and its efficiency depends on the 
correct integration of the singular and hypersingular integrals. In addition, the 
excitation frequency determines the number of boundary elements that are 
needed. The higher the frequency the greater the number of elements, leading to 
high computational costs. 

A further problem is that the BEM tends to fail when applied to cracks and 
very thin heterogeneities [6]. The traction boundary element method (TBEM) 
[7] is one numerical method that solves the thin-body complexity. However, 
in these formulations hypersingular integrals need to be solved [8–10]. 
Prosper and Kausel [11] simulated the behaviour of a 2D horizontal crack 
using that technique. This work was then extended by Amado Mendes and 
Tadeu [12] who simulated the elastic wave propagation around 2D irregular 
empty cracks, excited by a 3D source, in an unbounded medium. Later, a 
technique based on a dual BEM/TBEM formulation was developed and 
applied to the cases of fluid-filled thin inclusions placed in an unbounded 
medium [13] and the elastic scattering produced by thin rigid inclusions [14]. 
The resulting hypersingular integrals were computed analytically by defining 
the dynamic equilibrium of semi-cylinders above the boundary elements that 
discretised the heterogeneity. 

Another approach is to formulate the problem using finite elements. 
However, the FEM requires the full discretisation of the medium leading to 
large-scale models, which makes it computationally impracticable for most 
computers. 

Meshfree or meshless methods are another class of numerical simulation 
algorithms that have become more popular in recent years since they do not 
require the discretisation of either the domain or the boundary. The method of 
fundamental solutions has been employed in the study of wave propagation 
[15]. This technique overcomes some of the mathematical intricacies of the 
BEM and it gives adequate solutions with much less computer effort. The MFS 
proved to be very efficient to simulate propagation of acoustic waves in a fluid 
medium [16]. It has also been used to study acoustic and elastic wave 
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propagation around thin heterogeneities by means of a domain decomposition 
technique [17]. However, it is less successful at modelling thin inclusions with 
sinuous boundaries. 

The authors have devised a coupled formulation that combines the 
BEM/TBEM and MFS techniques. This coupled approach addresses some of 
the disadvantages exhibited by each method on its own in the analysis of 
acoustic wave propagation problems, in domains which contain one or more 
inclusions with varying boundary conditions [18]. The proposed method 
involves subdividing the domain and modelling each sub-domain with the 
BEM/TBEM and MFS, imposing the required boundary conditions. 

This work takes the coupled formulation technique described in [18] further. 
The three numerical techniques are coupled for the transient analysis of sound 
wave propagation within an enclosed 2D acoustic medium in which there is  
a thin barrier. In the example used here, the boundary of the host medium is 
assumed to be sound absorbent by prescribing an impedance boundary condition 
for it. These boundary conditions are prescribed for a set of collocation points 
along the boundary. The continuity of pressures and pressure gradients is set 
along the boundary of the barrier. The results using the coupled BEM/TBEM+ 
MFS approach are compared with those given by a formulation that does not 
include the sound absorption [18]. The next section sets out the problem and 
afterwards the application is presented. 

2 Problem formulation 

Pressure ( p ) at any point of the spatial 2D acoustic domain, for frequency (ω ) 
domain analysis can be calculated with the Helmholtz equation: 

 2 2( , , ) ( ) ( , , ) 0p x y k p x yαω ω∇ + = , (1) 

where 
2 2

2
2 2x y

⎛ ⎞∂ ∂
∇ = +⎜ ⎟∂ ∂⎝ ⎠

. 

The host medium comprises a homogeneous fluid bounded by a surface 2S  
and contains a thin fluid barrier which is itself bounded by a surface 1S . This 
barrier is subjected to an incident pressure field given by incp . 

The barrier is modelled as a closed surface. As the opposite collocation 
points are very close, the BEM formulation degenerates and is no longer valid. 

The BEM and TBEM formulations can be combined on opposite collocation 
points. Part of the boundary surface of the inclusion is loaded with monopole 
loads (BEM formulation), while the remaining part is loaded with dipoles 
(TBEM formulation). 
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The MFS simulates the scattered response generated by the host medium 
boundary. It is obtained as a linear combination of the fundamental solutions  
that simulate the pressure field generated by a set of NS  virtual sources. The 
virtual sources have unknown amplitudes _n exta . To avoid singularities they are 
placed at distance δ  from that boundary towards the exterior of the host medium 
(line C  Figure 1). 

The pressure field generated by the host medium boundary can be seen as an 
incident pressure field that reaches the thin barrier. The continuity of pressures 
and pressure gradients is prescribed along the boundary of the barrier. Thus, the 
integral equations when monopole loads are applied to the boundary of the 
barrier can be expressed by: 

(a) along the exterior domain of the barrier 
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Figure 1: Layout of the problem.
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(b) along the interior domain of the barrier 

 1

1

(2) (2) (2)
0 0 1 0 0

(2) (2)
1 0 0
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n

n
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n
 (3) 

in which the superscript 1 corresponds to the host medium and the superscript 2 
corresponds to the inner medium of the barrier; 1nn  is the unit outward normal 
along the boundary 1S ; ( )

0 0( , , , , )ωmG x y x y  and ( )
1 0 0( , , , , , )mH x y x y ωnn  are, 

respectively, the fundamental solutions (Green’s functions) for the pressure ( p ) 
and pressure gradient ( q ) at ( , )x y  caused by a point pressure load at the loaded 
element 0 0( , )x y  in medium m. incp  is the pressure incident field at 0 0( , )x y , 
when the point pressure source is located at ( , )s sx y . The factor c  is a constant 
defined by the shape of the boundary, taking the value 1/ 2  if 0 0 1( , )x y S∈  and 

1S  are smooth. 
(1)

_ _( , , , , )n ext n extG x y x y ω is the fundamental solution which represents the 
pressures at points ( , )x y  in medium 1 generated by virtual pressure sources 

acting at positions _ _( , )n ext n extx y . _n ext  are the subscripts that denote the load 

order number placed along line C . 
The two-dimensional Green’s functions required for pressure and 

pressure gradients in Cartesian co-ordinates are those for an unbounded solid 
medium, 
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in which 2 2( ) ( )k kr x x y y= − + − . 
When the boundary of the barrier is loaded with dipoles (dynamic doublets) 

the required integral equations can be expressed as: 
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The coefficient a  is zero for piecewise straight boundary elements [19] and 
the factor c  is a constant defined as above. 

These equations are solved by discretising the boundary surface ( 1S ) into N  
straight boundary elements, with one nodal point in the middle of each element. 
The required two-dimensional Green’s functions are now defined as: 
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(7) 

where kn  and nn  are the unit outward normal for the boundary segments 
being, respectively, loaded and integrated. In equation (5) the incident field is 
computed as 

 1inc
1 1

i( , , , , , ) ( )
2

s s
s s

x x y yA x yp x y x y k H k r
r rα αω

⎛ ⎞− −∂ ∂
= +⎜ ⎟∂ ∂⎝ ⎠

k
k k

n
n n

. (8) 

The amplitudes of the unknown virtual pressure loads _n exta  can only be 

determined once the required boundary conditions are imposed at interface 2S , 
the boundary of the host medium, along NS  collocation points col col( , )x y . The 
scattered field generated at the barrier must be taken into account. The prescribed 
boundary condition assumes a relation between the pressure and the velocity at 
each collocation point. This can be viewed as a Robin boundary condition 
(impedance boundary condition) on acoustic pressure, that is, 

 1i
Z( )

p pωρ
ω

∂
= −

∂n
. (9) 
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The equation below is thus defined for each collocation point of the host 
medium boundary 
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where Z  is the impedance of the boundary of the host medium. The impedance 
is given by the ratio between the pressure and the velocity and can be expressed 
using the absorption coefficient α , 
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where inc 0
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 are, respectively, the 

incident pressure and velocity. 
In these equations, 2nn  is the unit outward normal along the boundary 2S  and 
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3 Pressure in time-space 

Given that the computations are performed in the frequency domain, time 
responses in the space domain are computed by applying an inverse (Fast) 
Fourier Transform in ω , using a Ricker pulse as the dynamic excitation source, 
with temporal variation given by: 

 
22( ) (1 2 )e ,u A ττ τ −= −  (13) 

where A  represents the amplitude; and 0( ) /st t tτ = − , with t  being the time, st  
the time when the wavelet takes its maximum value and 0tπ  the characteristic 
(dominant) period of the Ricker wavelet. 

The application of a Fourier transformation to this function leads to: 

 
2i 2

0( ) 2 e e ,stU A t ωω π − −Ω⎡ ⎤= Ω⎣ ⎦  (14) 

with 0 / 2tωΩ = . 
The Fourier transformation is computed by adding together a finite number 

of terms. This process corresponds to summing equally spaced sources with time 
intervals of 2T π ω= ∆ . In these expressions the frequency increment is defined 
by ω∆ . It is essential that ω∆  is small enough to avoid contaminating the 
response in the time domain (aliasing phenomena). This is almost eliminated by 
the introduction of complex frequencies with a small imaginary part of the form 

icω ω η= −  (with 0.7η ω= ∆ ). 

4 Application 

The proposed coupling algorithm described above is used to simulate the 2D 
wave field generated by a pressure source in an underground train station in  
the presence of a thin barrier that is modelled as a fluid-filled thin inclusion 
(Figure 2). The computations were performed in the frequency domain for 
frequencies ranging from 4 to 2048 Hz, with a frequency increment of 4 Hz. The 
total time frame for the analysis was thus 0.25 s. 

The wave velocity in the host medium and its density were assumed 
constant and equal to 340 m/s and 1.22 kg/m3, respectively. The impedance of 
the host medium’s boundary was calculated so as to consider a constant sound 
absorption coefficient of 0.7 at all frequencies. For the purpose of the 
impedance calculation the wave incidence was considered normal to the 

boundary 1∂
=

∂
r
n

. 
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A flat inclusion 0.02 m thick and with curved edges (defined by semi-
circumferences) is filled with a fluid of density 0.18 kg/m3 allowing a wave 
velocity of 360.0 m/s. 

The TBEM formulation discretises one side of the inclusion’s surface while the 
other is discretised by the BEM. The boundary of the metro station is modelled 
using the MFS. The virtual sources are placed 0.32 m from the station boundary. 
The number of virtual sources/collocation points was established from the relation 
between the wavelength and distance between successive virtual sources/ 
collocation points. This relation was set at 6 for each computation frequency. The 
number of boundary elements was chosen by setting the relation between the 
wavelength and the length of the boundary elements at 6. A minimum of 700 
collocation points/virtual sources and 240 boundary elements were used to 
discretise the metro station boundary and the acoustic barrier, respectively. 

The pressure wave field is computed in the frequency domain at a semicircular 
grid of 4867 equally spaced receivers. The time domain results were computed 
after applying an inverse Fourier Transform, with a source taken to be modelled as 
a Ricker wavelet and having a characteristic frequency of 400 Hz. The results are 
in the right-hand column of Figure 3, and these are compared with those calculated 
for a high-reflecting boundary (left-hand column of Figure 3). 

Snapshots of the pressure wave field for the grid of receivers at different 
instants are presented in Figure 3. The pressure amplitude is displayed using a 
gray scale, ranging from black to white, as the amplitude increases. 

In Figure 3(a) (at 8.30 mst = ) the pressure wave is propagating away from 
the source towards the fluid-filled inclusion. When it strikes the inclusion some 
of the energy is reflected back and the rest passes through the thin barrier. The 
snapshots also show the reflection at the ground and diffracted waves at the 
bottom of the barrier. 
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Figure 2: Geometry of a thin acoustic barrier in an underground train station and
position of the source.
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The part of the wave that has passed through the inclusion combines with the 
waves diffracted at the top and bottom of the barrier, as can be observed in 
Figure 3(b) at 16.60 mst = . 

Reflecting boundary Absorbent boundary

(a)

(b)

(c)

(d)

Figure 3: Thin acoustic barrier between two railway tracks in a metro station.
(a) Pressure field at t = 8.30 ms; (b) pressure field at t = 16.60 ms;
(c) pressure field at t = 33.20 ms and (d) pressure field at t = 66.41 ms.
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Eventually all the energy is dissipated as these dynamic steps are repeated, 
with waves being reflected from, and diffracted and refracted by, the boundaries 
of the barrier and the station walls (see Figures 3(c)–(d)). 

The right-hand column of Figure 3, with the absorbent boundary of the host 
medium, shows that the wave amplitude becomes weaker and weaker each time 
the waves reach it. 

5 Conclusions 

The work proposes the use of a 2D approach consisting of a mixed BEM/TBEM 
technique and an MFS formulation to model the acoustic wave propagation around 
a thin barrier embedded in an enclosed acoustic space. The coupling algorithm 
described is able to cope with the limitations posed by the individual methods.  
It gives sufficiently accurate results and is less costly in terms of computer effort. 
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Abstract 

Crack onset and growth in composite materials at micro and macro scale is 
studied. A linear elastic-brittle constitutive law, also called weak or imperfect 
interface model, is used. In this constitutive law the normal and tangential 
stresses across the undamaged interface are proportional to the relative normal 
and tangential displacements, respectively. Interface crack propagation is 
modelled by successive breaking of the continuous distribution of linear elastic 
springs used to discretise the interface. This model is implemented in a boundary 
integral equation formulation. Two applications of the 2D boundary element 
method code developed to fibre-reinforced composite materials at micro and 
macro level are presented. First, the debond onset and growth at the fibre–matrix 
interface under transversal biaxial load is studied. Then, some results of an 
analysis of the interlaminar fracture toughness test of an adhesively bonded joint 
are introduced. 

Keywords: Crack, BEM, Adhesive layer, Weak interface, Imperfect interface, 
Composites, Fibre–matrix interface, Interlaminar fracture toughness. 

1 Introduction 

A practical way to describe the behaviour of adhesive joints is by modelling the 
adhesive layer as a continuous distribution of linear elastic springs [1–3] with 
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appropriate stiffness parameters. This model is usually called linear elastic 
interface, weak interface or imperfect interface. The above-mentioned model has 
been enhanced herein, resulting in a linear elastic-brittle constitutive law that 
takes into account the variation of the fracture toughness with the mixity of the 
fracture modes [4]. This interface model has been implemented in a 2D boundary 
element method (BEM) [5,6] code, whose original version [7] allowed 
anisotropic plane and isotropic axisymmetric problems to be modelled, including 
multiple solids with perfectly bonded interfaces or contact zones between them. 
As a result of the present work the code has the possibility of defining also linear 
elastic–brittle interfaces between the elastic solids. Another feature of the code is 
that the equilibrium and compatibility conditions, along interfaces and contact 
zones, are imposed in a weak form allowing an easy use of non-conforming 
discretisations [7,8]. 

In the present work the linear elastic–brittle interface model is used to study 
crack onset and growth in composite materials at micro scale (between fibre and 
matrix) and macro scale (adhesively bonded joints). It is important to mention 
that, although strictly speaking there is no material between fibre and matrix (no 
thin adhesive layer exists) at a micro scale, it will be shown that this interface 
model simulates reasonably well the behaviour at this scale also. 

Composite unidirectional laminates usually exhibit a failure mechanism 
called matrix failure or interlaminar failure when they are subjected to 
transversal loads. This failure mechanism is characterised by the debonding of 
some fibres when the tension loads are driving the failure process. The 
connection between the initial debonds and the final macro crack has several 
steps: the onset and growth of the debonds (as fibre–matrix interface cracks), the 
kinking of some of these cracks into the matrix and the final coalescence of the 
cracks kinked from different fibre–matrix interfaces [9]. 

At the macro level, a satisfactory and representative model for the adhesive 
layer is necessary to determine the quality of an adhesively bonded joint, and in 
particular, to determine the parameters that characterise its resistance to fracture 
and failure. Experimentally, the interlaminar fracture toughness test is usually 
performed to evaluate the quality of an adhesive joint. An estimation of the 
interlaminar fracture energy (GIc) is obtained through this test. Some 
experimental and numerical studies of this test by the BEM were carried out by 
the present authors and their co-workers (see [10,11] and references therein). 

2 Linear elastic–brittle interface 

The linear elastic–brittle interface model implies the absence of stress 
singularities at the crack tip. Following Lenci’s approach [3], this interface 
model is considered as the connection of two surfaces bonded by a thin adhesive 
layer. In the present work, damage and/or rupture of this layer has been modelled 
as an abrupt free separation of both surfaces when a threshold normal stress, σc, 
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is achieved in the layer. Thus, the continuous spring distribution that models the 
adhesive layer is governed by the following simple linear elastic–brittle law, 
shown also in Figure 1:  
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where *
n ( )xδ  is the maximum normal relative displacement achieved at each 

interface point at the considered instant of the problem evolution, σ(x) and τ(x) 
are, respectively, the normal and tangential stresses, and δn(x) and δt(x) are, 
respectively, the normal and tangential relative displacements between opposite 
interface points. δn(x) and δt(x) are sometimes referred to as the value of the 
opening and sliding between the interface sides. kn and kt denote the normal  
and tangential stiffnesses of the spring distribution [4]. Finally, σc(τc) and δnc(δτc) 
are the critical normal (tangential) tension and critical opening (sliding) 
displacement, respectively, reached by σ(τ) and δn(δτ) when the spring breaks. At 
this instant both normal and tangential stiffnesses are set to zero. As failure is 
controlled by σc and δnc, different values of τc and δτc may be obtained at each 
point, depending on the angle Gψ defined in the following. 

The interface failure criterion, proposed here, is based on the energy release 
rate (ERR) concept. The ERR is defined as the stored energy per unit length in 
the unbroken interface element situated at the crack tip as shown in [3] and 
recently, in an independent way, also in [12]. Thus, the ERR of a crack growing 
along the interface is defined as: 
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Figure 1: Normal and tangential linear elastic-brittle law.

δnδnc

GIc

0

σc

σ

δt

τ

0

τc(ψG)

GIIc (ψG)

ktkn

δtc(ψG)



284  Recent Developments in Boundary Element Methods 

where σ and τ denote stresses at the crack tip, and δn and δt denote relative 
displacements at the crack tip. This spring breaks when the crack propagates 
across it. The total ERR of a crack growing in mixed mode can be defined as: 
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The angle Gψ  defines the ERR-based fracture mode mixity, and the angle 

σψ  the stress-based fracture mode mixity, tan / .σψ τ σ= Thus, =0°Gψ  
defines a pure fracture mode I (opening mode), and 90°Gψ =  defines a pure 
fracture mode II (shear mode) [13]. In the present work, it is assumed that a 
crack propagates when the ERR associated to mode I, GI, reaches the mode I 
fracture energy, that is: 
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Writing the crack propagation criteria along the interface as c= ( )GG G ψ  and 
making use of eqns (3) and (4), the following expression of the fracture energy 
(representing the fracture toughness) as function of the angle Gψ is obtained: 

 2
c Ic IIc Ic (1+tan ).GG G G G ψ= + =  (5) 

This expression recalls the fracture toughness law at interfaces studied in [14] 
although it has been used in a different framework. 

3 Cylindrical inclusion under uniaxial transversal tension 

3.1 Description of the problem 

The problem of an elastic cylindrical inclusion inside an elastic matrix with and 
without a partial debond along its interface subjected to a remote constant 
tension perpendicular to the debond has been studied in depth by many 
researchers, see references in [9,15,16]. 

In the present study an infinitely long cylindrical inclusion is considered, 
with circular section of radius a, inside an infinite matrix, Figure 2. The 
inclusion is bonded to the matrix along its lateral surface through a continuum 
distribution of springs that behave according to the linear elastic–brittle interface 
model introduced in the previous section. Although strictly speaking there is no 
material between the fibre and matrix, the above interface model can still be used 
to simulate the behaviour of this system. An important feature of this model is, 
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as will be shown, the possibility of studying not only the interface crack 
propagation but also the interface crack onset. 

Both the inclusion and the matrix are considered as linear isotropic materials. 
Let (x, y, z) and (r, θ, z) be the cartesian and cylindrical coordinates, the z-axis 
being the longitudinal axis of the inclusion, and, in the present section, the x-axis 
the one parallel to the direction of the load. A uniform load 0xσ ∞ >  is applied, 

yσ ∞
 being equal to 0 in this section. A plain strain state is assumed in the system. 

3.2 Numerical solution and parametric studies 

3.2.1 BEM model 
A typical bi-material system among composite materials is chosen for this study: 
glass fibre and epoxy matrix. The elastic properties of these materials, the 
Dundurs’ bi-material parameters, α and β, and the harmonic mean of the effective 
elasticity moduli E*, defined, for example, in [15], are detailed in Table 1. 

The BEM model represents a cylindrical inclusion with a 7.5 µm radius 
inside a square matrix with a 1mm side. 1472 continuous linear boundary 
elements are used: 32 for the external boundary of the matrix and two uniform 
meshes of 720 elements to model the fibre–matrix interface (polar angle of each 
element = 0.5º). 

Table 1: Isotropic bi-material constants (1, epoxy matrix; 2, glass fibre). 

Mat. Poisson ratio Young modulus α β E* 

1 νm = 0.33 Em = 2.79 GPa 

2 νf = 0.22 Ef = 70.8 GPa 
0.919 0.229 6.01 GPa 
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Figure 2: General inclusion problem configuration under remote transversal load
with and without a debond.
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3.2.2 Parametric study of the problem 
Due to the absence of a widely accepted value of the fibre–matrix interface 
fracture toughness in mode I, GIc and of the critical tension of this interface, σc, a 
parametric study has been carried out. The problem is solved for different 
combinations of the estimations of their maximum and minimum values found in 
the literature, see Table 2. 

A bimaterial characteristic length * 2
0 Ic c/a G E σ=  and the governing 

dimensionless structural parameter characterising the interface brittleness, 

0 /a aγ = , introduced in [15], have been included in Table 2. The constant 
relation between kn and kt (kt = kn/2.66) requires an explanation. This value is 
obtained assuming a fictitious material, a very thin layer between the fibre and 
matrix, modelled by the present interface model whose Poisson ratio is 
somewhat arbitrarily defined as �=0.25. It is assumed that the value of kn is 
directly related to the effective interface Young’s modulus in plane strain, E´, 
and inversely proportional to the (fictitious) thickness of the interface, h [4,17], 
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The value of kt is related to the shear modulus of the interface, µ, 
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ν´ = 0.33 being the effective Poisson ratio of the interface in plane strain. Thus, 
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Finally, the adopted relation between kn and kt is obtained from eqns (7)–(9):  

 .
2.66 2.66

n
t

kEk
h h
µ ′

= = =  (11) 

Table 2: Considered combinations of the fibre–matrix interface properties. 
Nº GIc (J/m2) σc (MPa) kn (MPa/µm) kt (MPa/µm) a0(µm) γ  
1 2 60 900 338.3 3.34 0.67 
2 10 60 180 67.67 16.7 1.5 
3 2 90 2025 761.3 1.48 0.44 
4 10 90 405 152.3 7.42 0.99 
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In Figure 3(a), the applied remote stress, xσ ∞ , is plotted as a function of the 
normal relative displacement (opening), δn, obtained at point A (a,0) as defined 
in Figure 2(a). The minimum stress value that is needed to initiate crack growth 
(in simple terms, the stress that is needed to break the first point, first spring, in 
the present interface discrete model) is called critical stress, cσ

∞ , and 
corresponds to the local maximum of the functions shown in Figure 3(a). 

In Figure 3(b) the (minimum) remote stress, xσ ∞ , needed to cause crack 
growth is plotted versus the half-angle of the crack θd (defined in Figure 2(b)). It 
should be noted that from Figure 3(b) it is possible to obtain an estimation of the 
value, θc, reached by the half-angle after the initial unstable crack growth, and 
also of the load, cσ

∞ , which produced the growth. As expected (from the values 
of γ calculated), combination 3, which has the highest kn value and the lowest 
fracture toughness, presents the most brittle behaviour (the lowest γ value), thus 
resulting in the highest value of θc and the lowest value of c c/σ σ∞  of all the 
combinations. A summary of the numerical results obtained is shown in Table 3. 
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Figure 3: (a) Applied stress with respect to normal relative displacements
at point A and (b) applied stress with respect to crack half-angle. 

Table 3: Crack half-angle with unstable growing and critical stress. 

Combination defined in Table 2 θc (º) cσ
∞  (MPa) c c/σ σ∞  γ  

1 53.75 47.0 0.783 0.67 
2 40.00 82.7 1.378 1.5 
3 57.75 64.5 0.716 0.44 
4 47.25 86.2 0.958 0.99 
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A second study determines the influence of the size of the inclusion on the 
onset and growth of the debond crack, as discussed in [15]. For this study the 
properties defined previously for combination 3 (GIc = 2 J/m2 and σc = 90 MPa) 
are assumed. These values correspond to the combination which presented 
the most brittle interface behaviour, making the hypothesis of the present 
interface model appropriately represent a possible real composite material 
behaviour. 

The applied remote stress, xσ ∞ , is plotted in Figure 4 as a function of the 
normal relative displacement (opening), obtained at point A, and as a function of 
the half-angle of the crack θd for different values of the inclusion radius, a. Table 4 
summarises the results of this study. The results obtained are very similar to those 
obtained in a different way in [15]: as the value of inclusion radius, a, becomes 
lower and the value of the critical stress cσ

∞ becomes higher. It can also be seen 
that the value of the critical half-angle θc decreases when the radius of the inclusion 
becomes smaller. Further analyses carried out by the authors regarding the 
parameters involved in the present problem can be found in [17]. 
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Figure 4: Size effect shown in the plots of (a) applied stress with respect to
normal relative displacements at point A, and (b) applied stress with respect to 
crack half-angle.

Table 4: Crack half-angle with unstable growth and critical stress. 

a (µm) θc (º) cσ
∞  (MPa) cσ

∞ / cσ  γ  

0.375 34.75 177.9 1.977 1.99 
0.75 40.75 116.4 1.293 1.4 
3.75 54.25 69.2 0.769 0.62 
7.5 57.75 64.5 0.716 0.44 
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4 Cylindrical inclusion under biaxial transversal loads 

4.1 Description of the problem 

The problem of an elastic cylindrical inclusion inside an elastic matrix studied in 
the previous section is extended to study the behaviour under a biaxial uniform 
load with 0xσ ∞ >  and x y xσ σ σ∞ ∞ ∞− ≤ ≤  applied perpendicularly to the direction 
of the inclusion. The material properties taken are GIc= 2 J/m2 and σc= 90 MPa. 

An estimation of the half-angle, θc, reached by the crack after the initial 
unstable growth, and also of the load that produces that growth, cσ

∞ , can be 
obtained from Figure 6, for different combinations of tension–tension and 
tension–compression biaxial loads. A dominant tension in the x direction is 
considered while in the y direction the load was varied to obtain the desired 
combinations. It was observed that, when a higher compression load is 
applied in the y direction, a lower tension in x direction is needed to initiate 
the crack growth (compression in y direction makes the crack onset easier). 
In the same way the initial debonded angle is lower when the compression 
increases. 

If a tensile (compressive) load is applied in the y direction, the load 
needed in the x direction to initiate the debonding increases (decreases), and 
also the debonding angle increases (decreases) if the load in the y direction 
increases, cf. [16]. In the cases with higher tension in the y direction even a 
fully unstable debonding of the fibre can be obtained. 

The analysis was repeated for the following material properties: σc=60 
MPa and GIc=2 J/m2 (i.e. only σc was changed), obtaining for the two cases 
considered the failure curves shown in Figure 7. These failure curves 
separate the safe and failure zones for the combinations of properties studied. 
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5 Interlaminar fracture toughness test 

5.1. Laboratory test description 

The tests used in the aeronautical industry to evaluate the interlaminar 
fracture toughness in composite–composite joints are performed by well-
known standard procedures (AITM, ISO, ASTM) [18,19]. The specimen used 
is the Double Cantilever Beam (DCB). The DCB specimen is formed by  
two laminates joined by a thin adhesive layer. The laminates are processed 
according to EN 2565 standard, and the specimens are cut after the panel has 
been cured. The load (P) and the relative displacement (d) of the wedge grips 
are continuously registered during crack propagation. 
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In a study of the experimental results obtained from GIc tests, using 
different kinds of adhesive, it was observed that some adhesives like FM 
300K0.5 and EA 9695 K.05 presented jumps (non-smooth behaviour) in the 
experimental load–displacement curve. This behaviour seems to be explained 
by the presence of a polyester support in these adhesives [4,10,11]. 

5.2 Numerical results 

In the present numerical study, a plane strain model has been employed using the 
BEM formulation described above, assuming the hypothesis of small strains and 
modelling of the adhesive layer as a linear elastic–brittle interface. The laminate 
considered is an 8552/AS4 carbon fibre-epoxy composite (having only 0º plies), 
with the following orthotropic properties: Ex=135 GPa, Ey=10 GPa, Ez=10 GPa, 
Gxy=5 GPa, Gxz=5 GPa, νxy=0.3, νyz=0.4 and νxz=0.3. The adhesive used is EA 
9695 K.05, an epoxy adhesive with a polyester mesh support. The estimated 
properties of the adhesive spring model are kn=1.5 GPa/m, σc =1.5 MPa and δc=1 
mm (GIc = 750 J/m2) [4]. Due to the symmetry of the problem, pure mode I 
failure is obtained during the test. 

A maximum opening displacement of 25 mm was progressively applied 
(in the direction normal to the specimen boundary) 15 mm away from the 
extreme of the specimen where the initial crack is situated. 

As can be observed in Figure 8, the numerical results obtained provide a 
satisfactory approximation of the experimental results. Therefore, the use of the 
present interface formulation seems to be a promising approach to model composite 
adhesive joints. It is important to mention that an unloading and a reloading are 
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done in the experimental curve because the laboratory standard required them. This 
behaviour was not simulated in the model due to its irrelevant effect. 

From laboratory tests and fractographic analysis it seems that the jumps 
appearing in the experimental load–displacement curve shown in Figure 8 
are caused by the polyester support of the adhesive resin. This behaviour was 
obtained in the BEM model by breaking at each load step a fixed number of 
interface elements (related to the size of polyester support mesh) [4].  

6 Conclusions 

As shown by the numerical results presented, the linear elastic–brittle interface 
formulation modelled by a continuous spring distribution correctly describes the 
behaviour of some interfaces in composites used in the aeronautical industry, at 
both micro and macro scale. 

At a micro level, although strictly speaking there is no material (no thin 
adhesive layer) between fibre and matrix, the linear elastic–brittle interface 
model seems to be a good alternative to study the behaviour of the fibre–matrix 
system subjected to transversal loads. 

It has been observed that the failure criterion, c Ic= ( )GG G ψ , proposed 
provides reasonable results. By using this criterion a failure curve for a 
cylindrical inclusion under biaxial loads has been obtained. 

At a macro level, it has been proved that the real behaviour of an adhesive layer 
with a polyester support that joins two unidirectional laminates can be approximated 
very well by means of BEM and a linear elastic–brittle interface (modelled as a 
continuous distribution of springs), by adjusting the parameters of the discrete 
model (kn, σc and the number of interface elements broken in a load step). 
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A microstructure-dependent orthotropic plate 
model based on a modified couple stress theory 

G.C. Tsiatas & A.J. Yiotis 
Institute of Structural Analysis, School of Civil Engineering, National 
Technical University of Athens, Greece. 

Abstract 

In this paper, a modified couple stress model containing only one material length 
scale parameter is developed for the static analysis of orthotropic micro-plates 
with arbitrary shape. The proposed model is capable of handling plates with 
complex geometries and boundary conditions. From a variational procedure, the 
governing equilibrium equation of the micro-plate and most of the general 
boundary conditions are derived, in terms of the deflection, using the principle of 
minimum potential energy. The resulting boundary value problem is of the 
fourth order (instead of existing gradient theories which is of the sixth order) and 
it is solved using the analogue equation method. Several plates of various shapes, 
aspect and Poisson’s ratios are analysed to illustrate the applicability of the 
developed micro-plate model and to reveal the differences between the current 
model and the classical plate model. Moreover, useful conclusions are drawn 
from the micron-scale response of this new orthotropic plate model. 

Keywords: Couple stress elasticity, Gradient elasticity, Orthotropic plate, Analogue 
equation method, Meshless methods. 

1 Introduction 

Since the classical continuum theory is inadequate to predict the behaviour of 
micron-scaled structures, which has been proven experimentally to be size 
dependent, the utilisation of strain gradient (higher order) theories is inevitable. 
Although these general theories encounter the physical problem, they contain 



296  Recent Developments in Boundary Element Methods 

additional constants which are difficult to determine even in their simplified 
form of only two constants. Thus, gradient elasticity theories involving only one 
additional material constant are very attractive. The couple stress theory is a 
special case of these higher-order theories in which the effects of the dilatation 
gradient and the deviatoric stretch gradient are assumed to be negligible. An 
analytic presentation of the aforementioned theories can be found in [1–3]. 

The work that has been reported on the subject is restricted only to the vibration 
and buckling problems of orthotropic nano-plates of graphene sheet. More 
specifically, Sakhaee-Pour [4] studied the elastic buckling problem of single-
layered graphene sheet by an atomistic modelling approach, while Pradhan and 
Phadikar [5] carried out the vibration analysis of embedded multi-layered graphene 
sheets and Murmu and Pradhan [6] solved the buckling problem of single-layered 
graphene sheet employing the nonlocal elasticity theory of Eringen [7]. 

In this work, the simplified couple stress theory of Yang et al. [8] is developed 
for the static solution of orthotropic Kirchhoff micro-plates with arbitrary shape. 
Yang et al., modifying the classical couple stress theory, proposed a couple stress 
model in which only one material length parameter is needed to capture the size 
effect. This simplified couple stress theory is based on an additional equilibrium 
relation, which forces the couple stress tensor to be symmetric. So far, it has been 
developed for the static bending [9] and free vibration [10] problems of a 
Bernoulli-Euler beam, for the static bending and free vibration problems of a 
Timoshenko beam [11] and for the solution of a simple shear problem [12] after 
the derivation of the boundary conditions and the governing differential equation 
of the theory in terms of the displacement. Moreover, Tsiatas [13] studied the static 
bending problem of Kirchhoff plates and Tsiatas and Katsikadelis [14] the Saint-
Venant torsion problem of micro-bars. 

The proposed model is capable to handle plates with complex geometries and 
boundary conditions. To the authors’ knowledge, publications on the solution of 
the particular problem have not been reported in literature. The rest of the paper 
is organised as follows. In Section 2, the governing equilibrium equation, 
together with the pertinent boundary conditions in terms of the deflection is 
derived in its most general form, including elastic support or restraint. The 
resulting boundary value problem of the micro-plate is of the fourth order and it 
is solved using the analogue equation method (AEM) in Section 3. Rectangular 
and elliptical plates of various aspect and Poisson’s ratios are analysed in Section 
4 to illustrate the developed orthotropic micro-plate model and to reveal the 
differences between the current model and the classical plate model. Finally, a 
summary of conclusions is given in Section 5. 

2 Problem formulation 

Consider an initially flat thin elastic plate of thickness h consisting of 
homogeneous orthotropic linearly elastic material occupying the two-dimensional 
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multiply connected domain Ω of arbitrary shape in the x,y plane bounded by the 
K+1 curves 0 1 2, , , , KΓ Γ Γ … Γ . The curves ( 0,1, 2, , )i i KΓ = …  may be piece-
wise smooth, i.e. they may have a finite number of corners. The plate is bending 
under the combined action of the distributed transverse load ( , )q x y , the edge 

moment nnM  and the edge force nV  producing a three-dimensional deformation 
state, including the transverse deflection ( , )w x y  and the in-plane displacements, 
which in the absence of in-plane forces are given as [13] 
 ,( , , ) , , ( , , ) .x yu x y z zw v x y z zw= − = −  (1a,b) 

Subsequently, the displacement and rotation vectors of the micro-plate become [13] 
 , 1 , 2 3 ,x yzw zw w= − − +u e e e  (2) 

 , 1 , 2 ,y xw w= −θ e e  (3) 

and the nonzero components of the strain and curvature tensor take the form [13] 
 , , ,, , 2 ,x xx y yy xy xyε zw ε zw zwγ= − = − = −  (4a,b,c) 

 , , , ,
1, , ( ).
2

x xy y xy xy yy xxw w w wχ χ χ= = − = −  (5a,b,c) 

The components of the bending moment tensor [15] and the couple moment 
tensor [13] are given as  
 11 , 12 , 22 , 12 ,, ,x xx yy y yy xxM D w D w M D w D w= − − = − −  (6a,b) 

 66 ,2 ,xy xyM D w=  (6c) 

 , , , ,2 , 2 , ( ),l l l
x xy y xy xy yy xxY D w Y D w Y D w w= = − = −  (7a,b,c) 

respectively, where D11, D12, D22 and D66 are the orthotropic plate rigidities and 
Dl is the contribution of rotation gradients to the bending rigidity. 
Using the minimum potential energy principle, the governing equilibrium 
equation is obtained as [13] 

 , , ,( ) (2 ) ( ) 0x xy xx xy x y xy y xy yyM Y M Y Y M Y q+ − + − + − + =  (8) 

in Ω, together with the boundary conditions 

 * *2 2 , or
2

n nt nt n t
n nt s n

M M Y Y Y Q M V w w
n s n s

∂ ∂ ∂ ∂ −⎛ ⎞− + − = − = =⎜ ⎟
⎝ ⎠∂ ∂ ∂ ∂

 (9a) 

 *
, ,orn nt nn nn n nM Y M M w w+ = = =  (9b) 
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on Γ  and 

 * 0 or
2

n t
nt nt k kkkk k

Y YM M w w−⎡ ⎤ ⎡ ⎤+ = = =⎣ ⎦⎢ ⎥⎣ ⎦∑ ∑  (10) 

at the k-th corner, where 

 

* ( ) cos
2

( ) sin ,
2

x y
n x xy xy

x y
y xy xy

Y YQ M Y M a
x y

Y YM Y M a
y x

−⎡ ⎤∂ ∂ ⎛ ⎞= + − +⎜ ⎟⎢ ⎥⎝ ⎠∂ ∂⎣ ⎦

−⎡ ⎤∂ ∂ ⎛ ⎞+ − − +⎜ ⎟⎢ ⎥⎝ ⎠∂ ∂⎣ ⎦

 (11) 

 

* 2 2( )cos ( )sin

2 cos sin ,
2

nn x xy y xy

x y
xy

M M Y a M Y a

Y YM a a

= + + −

−⎛ ⎞− +⎜ ⎟
⎝ ⎠

 (12) 

 
* 2 2(cos sin )

2
( 2 )cos sin

x y
nt xy

x y xy

Y YM M a a

M M Y a a

−⎛ ⎞= + −⎜ ⎟
⎝ ⎠

+ − +

 (13) 

are the stress resultants and ,a x= n . In eqns (8–10) n,t denote the directions 
normal and tangent to the plate boundary and s its arc length (intrinsic 
coordinates [16]). Using eqns (6) and (7) the above relations become 

 *
1 , 2 , 3 , 4 , ,n xxx xxy xyy yyyQ f w f w f w f w= + + +  (14) 

 *
1 , 2 , 3 , ,nn xx xy yyM g w g w g w= + +  (15) 

 *
1 , 2 , 3 , ,nt xx xy yyM h w h w h w= + +  (16) 

where 

 1 11 2 12 66( )cos , ( )sin 2( )sin ,l l lf D D a f D D a D D a= − + = − − − +  (17a,b) 

 3 12 66 4 22( )cos 2( )cos , ( )sin ,l l lf D D a D D a f D D a= − − − + = − +  (17c,d) 

 2 2
1 11 12( )cos ( )sin ,l lg D D a D D a= − + − −  (18a) 

 2 664( )cos sin ,lg D D a a= − +  (18b) 

 2 2
3 12 22( )cos ( )sin ,l lg D D a D D a= − − − +  (18c) 
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 1 11 12( 2 )cos sin ,lh D D D a a= − + −  (19a) 

 2 2
2 662( )(cos sin ),lh D D a a= + −  (19b) 

 3 12 22( 2 )cos sin .lh D D D a a= − + +  (19c) 

Substituting eqns (6) and (7) into eqn (8) yields the governing equation of the 
micro-plate in terms of the deflection 

 11 , 12 66 , 22 ,( ) 2( 2 ) ( )l l l
xxxx xxyy yyyyD D w D D D w D D w q+ + + + + + =  (20) 

in Ω. The boundary conditions (9a,b) can be rewritten in the most general form, 
including elastic support or restraint, as 

 * *
1 2 3 1 2 3, , ,n n nnw V w Mβ β β γ γ γ+ = + =  (21a,b) 

where βi, γi are functions specified on Γ and 

 *
1 , 2 , 3 , 4 ,n xxx xxy xyy yyyV f w f w f w f w= + + +  (22) 

is the effective shear force, with 

 2 2
1 11 12( )cos (1 sin ) ( )cos sin ,l lf D D a a D D a a= − + + + −  (23a) 

 
2

2 12

3 2
66 11

( )sin (1 cos )

4( )sin ( )cos sin ,

l

l l

f D D a a

D D a D D a a

= − − +

− + + +
 (23b) 

 
2

3 12

3 2
66 22

( )cos (1 sin )

4( )cos ( )sin cos ,

l

l l

f D D a a

D D a D D a a

= − − +

− + + +
 (23c) 

 2 2
4 22 12( )sin (1 cos ) ( )sin cos .l lf D D a a D D a a= − + + + −  (23d) 

Note that all conventional boundary conditions can be derived from eqns (21) by 
specifying appropriately the βi and γi functions. When the boundary Γ is non-
smooth, the following corner condition must be added to eqns (21) 

 *
1 2 3 2, 0,k k k nt k kk

a w a M a a⎡ ⎤+ = ≠⎣ ⎦  (24) 

in which aik are constants specified at the k-th corner. One can observe that for 
0ll D= =  eqns (20), (21) and (24) yield the governing equation and the general 

boundary conditions of the orthotropic Kirchhoff plate theory [15]. 
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Finally, the transformed (including the influence of the rotation gradients) 
stress resultants at a point inside Ω are given as 

 *
11 , 12 ,( ) ( ) ,l l

x xx yyM D D w D D w= − + − −  (25a) 

 * *
12 , 22 , 66 ,( ) ( ) , 2( ) ,l l l

y xx yy xy xyM D D w D D w M D D w= − − − + = +  (25b,c) 

 *
11 , 12 66 ,( ) ( 2 ) ,l l

x xxx xyyQ D D w D D D w= − + − + +  (25d) 

 *
22 , 12 66 ,( ) ( 2 ) .l l

y yyy xxyQ D D w D D D w= − + − + +  (25e) 

The above stress resultants consist of two components. The first component is 
due to plate bending and the second one is due to the microstructure plate 
bending effect.  

3 The AEM solution 

The boundary value problem described by eqns (20) and (21) is solved using  
the AEM. Let w be the sought solution of eqn (20). This function is four times 
continuously differentiable with respect to the spatial co-ordinates x, y in Ω  
and three times differentiable on its boundary Γ. According to the concept of the 
analogue equation of Katsikadelis, as it was developed for the complete fourth-
order plate equation [17], eqn (20) can be replaced by the biharmonic equation 

 4 ( , ),w b x y∇ =  (26) 

where ( , )b x y  is the unknown fictitious source, which is approximated as [18] 

 
1

,
M

j j
j

b fα
=

= ∑  (27) 

where ( , )jf f x y=  is a set of approximation functions and aj are M unknown 

coefficients. We look for solution of the form pw w+ , where w  is the 
homogeneous and pw  a particular solution. The particular solution is obtained as 

 
1

ˆ
M

p
j j

j
w wα

=
= ∑  (28) 

where ˆ jw  is a particular solution of the equation 

 4 ˆ j jw f∇ =  (29) 

The particular solution to eqn (29) can always be determined, if fj is specified. 
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The homogeneous solution is obtained from the boundary value problem 

 4 0 in ,w∇ = Ω  (30) 

 * *
1 2 3 1 2

1 1
ˆ ˆ( ) ( ) ( ) ,

M M

n j j j n j
j j

w V w w V wβ β β β α β α
= =

⎡ ⎤
+ = − +⎢ ⎥

⎣ ⎦
∑ ∑  (31a) 

 * *
1 2 3 1 2

1 1
ˆ ˆ, ( ) ( ), ( ) ,

M M

n nn j j n j nn j
j j

w M w w M wγ γ γ γ α γ α
= =

⎡ ⎤
+ = − +⎢ ⎥

⎣ ⎦
∑ ∑  (31b) 

on Γ. 
Thus, the solution of eqn (26), for points x∈Ω , is written in integral form as 

 

* * * *
, ,

1

( ) ( ) ( ) ( ) ( ) d

ˆ ( ).

n n n nn n nn

M

j j
j

w wV v vV w v M w w M v s

a w

Γ

=

⎡ ⎤= − − + −⎣ ⎦

+

∫

∑

x

x
 (32) 

For points ∈Γx  where the boundary is smooth, the two boundary integral 
equations for the deflection and its normal derivative are given as [18] 

 

* * * *
, ,

1

1 ( ) ( ) ( ) ( ) ( ) d
2

ˆ ( ),

n n n nn n nn

M

j j
j

w wV v vV w v M w w M v s

a w

Γ

=

⎡ ⎤= − − + −⎣ ⎦

+

∫

∑

x

x
 (33) 

 

* * * *
, , , , , ,

,
1

1 ( ) ( ) ( ) ( ) ( ) d
2

ˆ ( ) .

n n n nn n nn

M

j j
j

w wV v v V w v M w w M v s

a w

ν ν ν ν ν

ν

Γ

=

⎡ ⎤= − − + −⎣ ⎦

+

∫

∑

x

x
 (34) 

The subscript v in eqn (34) indicates that the normal derivative is taken with 
respect to point x ∈Γ . Moreover, the kernels v, v,n, * ( )nnM v , * ( )nV v  and ,vν , 

, nvν , *
,( )nnM vν , *

,( )nV vν  in the above relations can be readily found using the 
Rayleigh–Green identity with the help of eqns (9–13) as in [19]. 

The first and second derivatives of the displacements for points inside Ω are 
obtained by direct differentiation of eqn (32). Thus, for the sake of conciseness, 
we can write the integral representations of the deflections and its derivatives up 
to the third order 

 
* *

, ,
, ,

* * 1,

( ) ( )
ˆ( ) d ( ) ,

( ) , ( , )

Mn pqr pqr n
pqr j j pqr

jnpqr nn n nn pqr

wV v v V w
w s a w

v M w w M vΓ =

⎡ ⎤− +
= − +⎢ ⎥

⎢ ⎥−⎣ ⎦
∑∫x x  (35) 

where , , 0, ,p q r x y= . 



302  Recent Developments in Boundary Element Methods 

The final step of AEM is to apply eqn (20) to the M points inside Ω and 
replace the involved values of the deflection and its derivatives using eqns (32) 
and (35) after the elimination of the boundary quantities w , *

nV  ,nw  and *
nnM  

with the help of the boundary conditions (31). Thus, we obtain the following set 
of M linear algebraic equations [18] 

 ,α =F g  (36) 

where F is a known M M×  matrix, g  is also a known 1M ×  vector and α is 
the vector of the M coefficients to be determined. Once α is determined, the 
solution to the problem function w and its derivatives are evaluated from eqns 
(32) and (35).  

4 Numerical examples 

On the basis of the numerical procedure presented in the previous section, a 
FORTRAN code has been written and numerical results for certain micro-plates 
have been obtained, which illustrate the applicability, effectiveness and accuracy of 
the proposed model. The employed approximation functions are the multiquadrics, 
which are defined as 

 2 2 ,jf r c= +  (37) 

where c is an arbitrary constant. Using these radial base functions, a particular 
solution of eqn (29) is obtained as 

( ) ( )2 2 2 3 2 2 5 2 2 2

5 3 2 4 2 2 2 2 5/2 2 2 2 3/2

1 7ˆ ln ( ) ln
12 60

1 1 7 1 2( ) ( ) .
12 12 60 225 45

jw c r c c c r c c c r c c

c c r c r c r c c r c

= − + + + + + +

− + − + + + + +
 (38) 

4.1 Rectangular micro-plate 

A rectangular simply supported micro-plate with various aspect ratios, subjected 
to a uniform load, has been analysed (N=80, M=225). First, a square orthotropic 
plate ( 0ll D= = ) was investigated in order to compare the results with those 
obtained by previous investigators [15,20–22]. The rigidities are given as 

 
2 3 3 3
1 1 2 12

11 22 12 22 662 2
1 2 1 2

, , , ,
12( ) 12( ) 12

E h E E h G hD D D D D
E E E E

ν
ν ν

= = = =
− −

 

where the employed data are: E1 = 206800, 2 1 / 15E E= , v=0.30, G12 = 605.5 
and 10a b= = , 0.01h = , 1q = . In Table 1, results for the deflection and 
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bending moments at the centre of the plate are presented, which are in very good 
agreement compared with those obtained from the analytic solution of 
Lekhnitskii [22]. 

Afterwards, the response of the same plate was investigated taking into account 
the microstructural effect, as measured by the material length scale parameter l 
( 2

12
lD l G h= ). In order to examine the influence of the micro-plate shape on the 

deflection, three different aspect ratios were chosen ( / 1.2,1.0,0.8a b = ) keeping 
fixed the volume of the material 1V abh= = . In Figure 1, the normalised central 
deflection / cw w w=  versus the square of the non-dimensional material length 
scale parameter l/h is depicted for the aforementioned aspect ratios and for three 
different Poisson’s ratios ( 0.25,0.30,0.35ν = ). From Figure 1, it can be pointed 
out that the rate of decrease of the normalised central deflection of the orthotropic 
micro-plate depends on the aspect and Poisson’s ratio in contrast to the isotropic 

Table 1: Deflection and bending moments at the centre of the square simply 
supported orthotropic plate. 

 w  ( 310−× ) xM   yM   
Wu & Altiero [15] 8.210 13.858 0.824 

Rajamohan and Raamachandran [20] 8.207 13.670 0.883 
Albuquerque et al. [21] 8.078 - - 
Lekhnitskii [22] (exact) 8.120 13.732 0.864 

Tsiatas and Yiotis  8.127 13.720 0.888 

Figure 1: Normalised deflection at the centre of rectangular simply supported
micro-plate for three different aspect ratios.
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one which depends only on the Poisson’s ratio [13]. Moreover, for a given aspect 
ratio, the rate of decrease of the normalised central deflection is totally independent 
of the Poisson’s ratio. From the presented results, it can be also concluded that the 
deflection is decreased, in general, nonlinearly with the increase of l/h. However, 
for the examined orthotropic material, the nonlinearity increases with the decrease 
of the aspect ratio. From the same figure, it is also observed that the deflection of 
the micro-plates decreases with the increase of the aspect ratio. 

4.2 Elliptical micro-plate 

In order to investigate the micron-scale response of a single-layered graphene 
sheet, an orthotropic elliptical nano-plate with clamped boundary has been 
studied (N=250, M=241). The rigidities in this case are given as [6] 

 
3 3 3

1 2 12
11 22 12 12 22 66

12 21 12 21
, , , ,

12(1 ) 12(1 ) 12
E h E h G hD D D D Dν
ν ν ν ν

= = = =
− −

 

where the employed data are: E1=1765 GPa, E2=1588 GPa, v12=0.30, v21 = 0.27, 
12 1 12/ 2(1 )G E ν= +  and 30nma = , 10nmb = , 0.01nmh = , 21N/mq = . In 

Figure 2, the normalised deflection / cw w w=  and bending moments 
* * /x x xM M M= , * * /y y yM M M=  at the centre of the elliptical nano-plate versus 

the square of the non-dimensional material length scale parameter l/h are 
depicted. From the presented results, it can be concluded that the bending 
moments are also decreased, in general, nonlinearly with the increase of l/h. 

Figure 2: Normalised deflection and bending moments at the centre of the
elliptical clamped nano-plate.
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However, the rate of decrease of the normalised quantity *
xM  is greater 

compared with that of w  and *
yM . 

5 Conclusions 

In this paper, a new plate model was developed for the static analysis of 
orthotropic micro-plates with arbitrary shape containing only one internal 
material length scale parameter which can capture the size effect. The governing 
equilibrium equation and the most general boundary conditions of the micro-
plate are derived in terms of the deflection, using the principle of minimum 
potential energy. The resulting boundary value problem is of the fourth order and 
it is solved using the AEM. The main conclusions that can be drawn from this 
investigation are summarised as: 

The present model is alleviated from the drawback of existing micro-plate 
models, the analytic solutions of which are restricted only to micro-plates with 
simple geometric shapes. 

The rate of decrease of the deflection of a simply supported orthotropic micro-
plate depends on the aspect and Poisson’s ratio, in contrast to the isotropic one 
which depends only on the Poisson’s ratio. Moreover, for a given aspect ratio, the 
rate of decrease of the deflection is totally independent of the Poisson’s ratio. 

For the same examined orthotropic rectangular micro-plate with fixed material 
volume, it is proved that the smaller the aspect ratio the smaller the deflection.  

In the orthotropic elliptical nano-plate with clamped boundary, the deflection 
as well as the bending moments is also decreased, in general, nonlinearly with 
the increase of l/h. However, the rate of decrease is different for the normalised 
deflection and bending moments. 
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Abstract 

The paper presents a hybrid finite element approach with fundamental solution 
(HFS-FEM) as trial functions for analysing non-linear minimal surface 
problems. The analogue equation method is first used to convert the original 
non-linear governing equation into an equivalent linear one, and then an iterative 
algorithm is established for this equivalent linear system by combining the 
proposed hybrid finite element method with radial basis functions (RBF). In the 
present approach, the use of analogue equation approach avoids the difficulty of 
treating non-linear terms appearing in the soap bubble equation, and global  
RBF and HFS-FEM are employed to construct the corresponding homogeneous 
and inhomogeneous terms, respectively. Finally, numerical experiments are 
implemented to verify the efficiency of this method.   

Keywords: Minimal surface problems, Hybrid finite element method, Analogue 
equation method, Fundamental solution, Radial basis function. 

1 Introduction 

Minimal surface problems, also named as soap bubble problems or Plateau’s 
problems, are defined when the mean curvature is identically zero at any point  
on a smooth surface [1]. For the case of simple configurations, an analytical 
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solution may be obtained by means of the separation of variables and soap 
bubble film simulation. However, in some complicated configurations, exact 
solutions are difficult to be analytically derived due to the high non-linearity of 
the governing equation. Fortunately, quite a few numerical methods can be used 
to analyse this category of non-linear problems. 

The first attempt was, perhaps, that of Douglas [2], who used a finite difference 
method to produce a numerical approximation. Tsuchiya [3] gave an existence 
and convergence proof for discrete minimal surfaces to a continuous solution in 
the H1-norm. Lee and Milner [4] proposed a mixed finite element method (FEM) 
based on the combination of the h and p version to analyse strongly non-linear, 
second-order elliptic problems and gave numerical implementations for minimal 
surface problems. Dziuk [5] used the mean curvature flow of surface to compute 
stable minimal surfaces by FEM, and later Dziuk and Hutchinson [6] also 
presented a general finite element procedure for approximating minimal surfaces, 
including unstable ones, by means of finding stationary points for the Dirichlet 
energy within the class of discrete harmonic maps from the discrete unit disc. 
Additionally, the hybrid Trefftz FEM (HT-FEM) was also established to analyse 
this type of problems by Wang et al. [7], who integrated the analogue equation 
method (AEM) [8–10], radial basis functions (RBF) interpolation [11–13] and 
the HT-FEM [14,15]. 

As the boundary-type numerical methods, the boundary element method based 
on the discretisation of the boundary of the solution domain under consideration 
has also been developed to obtain approximate solutions of such non-linear 
minimal problems. Wilson [16] proposed a boundary element method using the 
Douglas integral for the computation of Plateau’s problems. Recently, a 
boundary element solution coupled with the AEM was proposed by Katsikadelis 
to solve soap bubble problems [8]. 

Recently, a novel hybrid finite element approach using fundamental solutions 
as trial functions (briefly known as HFS-FEM), instead of T-complete functions, 
was proposed by constructing independent intra-element field within the element 
and auxiliary frame field on the element boundary, as well as the corresponding 
variational functional [17]. This newly developed method inherits the advantages 
of the HT-FEM over the conventional FEM and BEM. 

In this paper, the formulation by combining HFS-FEM with the AEM and RBF 
is used to analyse non-linear minimal surface problems. The AEM is first used to 
convert the original non-linear governing equation into an equivalent linear system, 
and then the homogeneous and particular solutions of the equivalent system are, 
respectively, derived by the proposed hybrid finite element formulation and RBF. 
Finally, an iterative procedure is designed to solve the problem. 

The paper is arranged as follows. A review of the statement of non-linear 
minimal surface problems is given in Section 2. Then, in Section 3, a detailed 
hybrid Trefftz finite element formulation is derived for analysing soap bubble 
problems. Based on the AEM, the effective combination of hybrid finite element 
formulations of Laplacian problems with RBF approximation significantly 
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simplifies the complicated variation procedure of standard FEM and, more 
importantly, all integrals are computed along the boundary of elements only, 
instead of being domain integral, thereby avoiding direct estimation of fictitious 
body force terms. Finally, numerical examples are considered to demonstrate the 
convergence and stability of the proposed method in Section 4. Some 
conclusions are drawn in the last section. 

2 Governing equation for minimal surface problems 

In a two-dimensional Cartesian rectangular co-ordinates 1 2( , )X X , the minimal 
surface problem is defined to find a twice continuous differentiable potential 
function in a region Ω  constrained by bounding contours which minimise the 
surface area functional 

 2 2
,1 ,21 d ,A u u

Ω
= + + Ω∫  (1) 

where a comma followed by subscripts represents one or higher order space 
differentiation, i.e. , /i iu u X= ∂ ∂ , 2

, /ij i ju u X X= ∂ ∂ ∂ . 
The differential equation of this surface area problem is obtained using the 

Euler–Lagrange condition for minimisation of the above functional. This yields 
the following non-linear boundary value problem (BVP) [1] 

 ( ) ( )2 2
,2 ,11 ,1 ,2 ,12 ,1 ,221 2 1 0 inu u u u u u u+ − + + = Ω  (2) 

for the determination of minimal surface in the domain Ω  with the following 
Dirichlet boundary conditions given on the boundary Γ = ∂Ω  

           on u u= Γ  (3) 

Specially, when the slopes of the surface are sufficient small, i.e. the 
derivatives ,iu are so small that their squares and products can be neglected, the 
governing eqn (2) can reduce to the classical Laplace equation 

 2
,11 ,22 0u u u∇ = + =  (4) 

which is the linearised equation of the unloaded membrane, and 2∇  denotes the 
Laplacian operator. 

3 Solution procedure 

Generally, evaluation of non-linear terms appeared in the minimal surface 
problems involves the domain integral in the proposed HFS-FEM. To remove 
the domain integral from HFS-FEM and to make it contain boundary integral 
only, the AEM and RBF are integrated into the HFS-FEM in this work. 
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3.1 The analogue equation method 

Suppose that 1 2( , )u X X  is the sought solution to the BVP described by eqns (2) 
and (3), which is twice continuously differentiable in the domain. In the presence 
of non-linear terms, if a linear Laplacian operator is applied to this function, i.e. 

 2
1 2 1 2( , ) ( , ),u X X b X X∇ =  (5) 

an unknown fictitious right term 1 2( , )b X X  is inevitably introduced. Although 
the sought field 1 2( , )u X X  is still unknown after this conversion, we can see that 
eqn (5) implies that a linear equivalent system to the original non-linear equation 
(2) is produced. The solution of the original system consisting of eqns (2) and (3) 
can be established by solving this linear equation (5) under the same boundary 
conditions (3).  

Obviously, the fictitious source distribution 1 2( , )b X X  is related to the 
unknown function u  and an indirect process is described as follows to deal with 
this obstacle. 

The linearity of eqn (5) means we can divide the solution 1 2( , )u X X  into two 
parts, a homogeneous solution hu  and a particular solution pu  

 h pu u u= +  (6) 

with the following relations 

 
2

2

0h

p

u

u b

⎧∇ =⎪
⎨
∇ =⎪⎩

 (7) 

If the particular solution is given, a new homogeneous system with modified 
boundary conditions are obtained to determine the homogeneous solution hu  

 
2 0            in 

       on 
h

h p

u

u u u

⎧∇ = Ω⎪
⎨

= − Γ⎪⎩
 (8) 

3.2 Radial basis function approximation for particular solution 

In order to deal with the particular solution, the RBFs are first used to 
approximate the induced fictitious function b , i.e. 

 1 2 1 2
1

( , ) ( , ) { }{ },
L

k k
k

b X X X Xα ϕ
=

= =∑ φ α  (9) 
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where L  denotes the number of interpolating points in the domain of interest, kα  
be unknown coefficient, 1 2( , )k X Xϕ  be RBF centred at the point 1 2( , )k kX X , and 

 { } { } { } { }T
1 2 1 2,   L Lϕ ϕ ϕ α α α= =φ α   

are basis vector and coefficient vector, respectively. 
RBFs, usually, are expressed in terms of the Euclidian distance so that  

they can work well in any dimensional space and does not increase the 
computational difficulty. In most numerical analyses, the commonly used 
RBFs include linear polynomial, thin plate spline (TPS) and multiquadric 
(MQ). Among them, the linear polynomial and TPS are piecewise smooth in 
the space, whereas the MQ is infinitely smooth. Due to the high sensitivity to 
shape parameter c, MQ is not suggested to be used in the paper, although it can 
achieve good accuracy in some cases. 

For the case of TPS basis, the interpolation kernel has the expression as  

 2
1 2( , ) ln ,k X X r rϕ =  (10) 

where r  represents the Euclidean distance of the given point 1 2( , )X X  from a 

fixed point 1 2( , )k kX X  in the domain of interest 

 ( ) ( )2 2
1 1 2 2

k kr X X X X= − + −  (11) 

At the same time, it is reasonable to assume that the particular solution is also 
written by a similar form to eqn (9) 

 1 2 1 2
1

( , ) ( , ) { }{ },
L

p k k
k

u X X X Xα ψ
=

= =∑ ψ α  (12) 

if a relationship between the basis kϕ  and the particular kernel kψ  

 2
1 2 1 2( , ) ( , )k kX X X Xψ ϕ∇ =  (13) 

exists, where { }1 2{ } Lψ ψ ψ=ψ . 
For the TPS basis, the corresponding particular kernel kψ  is [18] 

 
4 4ln
16 32

k
r r rψ = −  (14) 

Since the fictitious source distribution b  is undetermined, the particular 
solution cannot be directly evaluated using the formulation in this section. 
However, these formulations still contribute to constructing the approximated 
expression of the unknown field u . 
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3.3 Fundamental solution-based hybrid finite element formulation 

Due to the use of fundamental solution as trial function, the hybrid finite 
element approach proposed by Wang and Qin [17] is effective for treating the 
homogeneous linear system (8) by dividing the domain under consideration 
into finite cells or elements. 

For a particular element e, measured in a local co-ordinates 1 2( , )x x , we 
introduce two independent fields: 

(a) Intra-element field defined within an element. Within the element e, the 
combination of fundamental solutions with various source points is used to 
construct the homogeneous field 

 *
1 2 1 2

1
( , ) ( , ) { }{ },

sN

h i i e e
i

u x x c u x x
=

= =∑ N c  (15) 

where sN  is the number of source points 1 2( , )i i
s sx x  locating outside the element 

domain, and ic  represents unknown coefficient. *
1 2( , )iu x x  is the fundamental 

solution related to the Laplace equation 

 ( ) ( )2 2*
1 2 1 1 2 2

1( , ) ln
2

i i
i s su x x x x x x

π
= − − + −  (16) 

and 

 { } { } { } { }T* * *
1 2 1 2,   s se N e Nu u u c c c= =N c   

Usually, the singularities used in eqn (15) can be generated by the following 
expression 

 ( ) 1 , 1, 2i
sj j j cj sx x x x i N jγ= + − = → =  (17) 

where γ  means the dimensionless parameter and 1 2( , )c cx x  the centroid of the 
element. 

(b) Frame field defined on the element boundary. In order to enforce the 
conformity of the homogeneous field, i.e. he hfu u=  on the interface of any two 
neighbouring elements e  and f , an auxiliary frame field hu  is introduced and 
is usually expressed in terms of nodal degree of freedom of the element. For 
instance, for the element e with five edges and ten nodes (Figure 1), when the 
point 1 2( , )x x  locates in the second edge of the element, we have 

 1 2( , ) { }{ },h e eu x x = N d  (18) 
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in which the shape function vector { }eN  and the nodal vector { }ed  are given by 

 
{ }
{ }

1 2 3

T
1 2 3 4 5 6 7 8 9 10

{ } 0 0 0 0 0 0 0

{ }

e

e

N N N

d d d d d d d d d d

=

=

N

d
 (19) 

with ( 1,2,3)iN i =  stands for conventional shape functions used in the FEM 
and BEM, and are expressed in terms of local natural co-ordinate ξ  as 

 2
1 2 3

(1 ) (1 ), 1 , .
2 2

N N Nξ ξ ξ ξξ− +
= − = − =  (20) 

In order to establish a linkage between the two independent fields introduced 
above, a reduced hybrid variational functional is required [17] 

 ( ), ,
1 d d
2 e e

me h i h i h h hu u q u u
Ω Γ

Π = Ω + − Γ∫ ∫  (21) 

where /hq u n= ∂ ∂  denotes boundary normal derivative of the homogeneous 
field hu . 

Using the divergence theorem 

 2
, , ,d d di i i if h hf n h f

Ω Γ Ω
Ω = Γ − ∇ Ω∫ ∫ ∫  (22) 

Figure 1: Intra-element field and frame field in a particular element in
HFS-FEM.
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for any smooth functions f  and h  in the domain, we have 

 1 d d .
2 e e

me h h h hq u q u
Γ Γ

Π = − Γ + Γ∫ ∫  (23) 

The substitution of the fields (15)and (18) into eqn (23) yields 

 T T1{ } [ ]{ } { } [ ]{ },
2

me e e e e e eΠ = − +c H c c G d  (24) 

in which 

 

T

T

[ ] { } { }d ,

[ ] { } { }d

e

e

e e e

e e e

Γ

Γ

= Γ

= Γ

∫

∫

H Q N

G Q N
 (25) 

with 

 { } 1
1 2

2

{ }
{ }{ } .

{ }

e

e
e

e

xn n
n

x

∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥= =
∂∂ ⎢ ⎥

⎢ ⎥∂⎣ ⎦

N
NQ

N
 (26) 

The minimisation of the functional meΠ  yields 

 
T

T
T

[ ]{ } [ ]{ } ,
{ }

[ ] { } ,
{ }

me
e e e e

e

me
e e

e

∂Π = − =
∂

∂Π = =
∂

G d H c 0
c

G c 0
d

 (27) 

from which the optional relationship between { }ec  and { }ed , and the stiffness 
equation can be produced 

 1{ } [ ] [ ]{ }e e e e
−c = H G d  (28) 

and 

 [ ]{ } ,e eK d = 0  (29) 

whose singularity can be removed by introducing specified Dirichlet boundary 
conditions. 

Finally, since the fundamental solution doesn’t involve any rigid-body motion, 
the missing rigid-body motion should be recovered for completeness.  
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In the scale field analysis with HFS-FEM, the full field can be expressed by 
adding a constant rigid-body motion 0c  [14] 

 0{ }{ } ,he e eu c= +N c  (30) 

in which the undetermined rigid-body motion parameter can be calculated using 
the least square matching of heu  and heu  at elementary nodes 

 2
node 

1
( ) min

n

he he i
i

u u
=

− =∑  (31) 

which finally yields 

 0 node 
1

1 ( { }{ }) ,
n

he e e i
i

c u
n =

= −∑ N c  (32) 

where n  is the number of element nodes. 

3.4 Iteration algorithm 

For convenience, the original governing eqn (2) can be rewritten as 

 2 2
,11 ,22 ,2 ,11 ,1 ,2 ,12 ,1 ,222 .u u u u u u u u u+ = − + −  (33) 

As a result, the expression of the introduced fictitious source function 1 2( , )b X X  
can be given by 

 2 2
1 2 ,2 ,11 ,1 ,2 ,12 ,1 ,22( , ) 2 .b X X u u u u u u u= − + −  (34) 

With the initial guess about the fictitious source function, for example, let 
(0) 0b = , during an arbitrary m iteration step, we have 

 ( )( )( ) 2 2
1 2 ,2 ,11 ,1 ,2 ,12 ,1 ,22( , ) 2 .

mmb X X u u u u u u u= − + −  (35) 

Then, the interpolating coefficient ( ){ } mα  and the particular solution ( )k
pu  are 

evaluated in turn by 

 ( ) ( ){ }{ } ,m mb=φ α  (36) 

 ( ) ( ){ }{ } ,m m
pu = ψ α  (37) 

which is used to modify the specified boundary conditions 

 ( ) ( ) .k k
phu u u= −  (38) 
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By means of the present HFS-FEM formulation with the modified Dirichlet 
boundary conditions (38), the corresponding homogeneous solutions can be 
achieved; then, the full solutions of the problem are 

 ( ) ( ) ( ) ,m m m
phu u u= +  (39) 

which is used to regenerate the new source function ( 1)mb +  for next iteration. 
The convergent criterion is set to make the expression less than or equal to a 

given tolerance ε , ( 610ε −=  in our analysis) 

 ( ) ( ) ( )2 2
,2 ,11 ,1 ,2 ,12 ,1 ,221 2 1 .

m
u u u u u u u ε+ − + + ≤  (40) 

4 Numerical verification 

To demonstrate the proposed numerical model, one numerical example is 
considered in this section. Because of the feature of boundary integral of the 
algorithm, the arbitrary shaped element can be used in the algorithm; however, 
for simplicity, only eight-node parabolic quadrilateral element is involved, and in 
each element, eight interior points are chosen to perform RBF interpolation. 

Let us consider a minimal surface problem defined in a unit square. The 
Dirichlet boundary condition is applied by the exact solution 

 2
1 2

1

cos( 0.5)( , ) ln ,
cos( 0.5)

Xu X X
X

−
=

−
 (41) 

which can also be used to scale numerical results obtained by the proposed 
approach. 

Besides, a percentage normalised error given by 

 HFS-FEM exact

exact
nerr( ) 100,

max( )
u u

u
u
−

= ×  (42) 

is used to study the accuracy and convergent performance of the presented 
algorithm, where HFS-FEMu  and exactu  denote the numerical and exact results  
of u. 

In the practical computation, 3 by 3 meshes are used to model the entire 
domain, and the total number of nodes is 40. After seven iterations, we obtain 
convergent results. Figure 2 displays the normalised error distribution defined 
in eqn (42) and the complete distribution of u in the domain is given in 
Figure 3. From the results in Figures 2 and 3, we can conclude that the 
proposed numerical method provides very accurate numerical results for the 
minimal surface problem. 
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 Figure 2: The isotherms of the percentage normalised error in the field u in the
domain.

Figure 3: The space distribution of numerical results of the field u in the domain.
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5 Conclusion 

In this paper, the applicability of the fundamental solution-based finite element 
model with RBF approximation and AEM to plane non-linear minimal surface 
problems has been demonstrated. In particular, the AEM is first used to convert 
the original non-linear governing equation to the equivalent linear system, and 
then the RBF and the HFS-FEM are formulated to derive the particular solution 
and homogeneous solutions, respectively. With the elaborate iteration algorithm, 
highly accurate results with small number of iterations are obtained compared 
with the exact solutions for the test problems considered. 
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Abstract 

Boundary element method for a shear deformable plate resting on an elastic 
foundation subjected to dynamic load is described. Formulations for both 
Winkler and Pasternak foundations are presented. Numerical examples are 
presented to demonstrate the accuracy of the boundary element formulation and 
the comparisons are made with other numerical techniques. 

Keywords: Mindlin plate, Elastic foundation, Laplace transformation. 

1 Introduction 

There are two widely used theories for plates. The first plate theory was 
developed by Kirchhoff [1] and is commonly referred to as the ‘classical’ theory; 
the other was developed Bu Reissner [2], and is known as the ‘shear deformable’ 
theory. The application of BEM to classical ‘thin plate theory’ was first proposed 
by Jaswon & Maiti [3]. One of the early applications of the BEM to thin plates 
resting on Pasternak foundation was given by Balas et al. [4]. Katsikadelis and 
Kellirokas [5] developed a formulation for thin plates resting on biparametric 
elastic foundation. They achieved the new formulation by converting the 
governing boundary value problem to an equivalent problem consisting of  
five coupled boundary equations. Sapountzakis and Katsikadelis [6] developed  
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a formulation for plates with variable thickness. In their work [6], both Winkler 
and Pasternak models were considered. 

The application of the BEM for analysis of Reissner plate was presented by 
Vander Weeën [7]. The extension of the thick plate formulation to Winker and 
Pasternak foundations were presented by Rashed et al. [8,9]. 

For dynamic loads, the direct boundary element formulation for Reissner/ 
Mindlin’s plate bending and fundamental displacement and traction solutions in 
Laplace domain were presented by Wen and Aliabadi [10,11]. In their work, the 
behaviour of three flexural waves, i.e. slow flexural, fast flexural and thickness 
shear waves, were studied comprehensively. Other application of BEM plate 
theory subjected to dynamic loading can be found in the works of Alburquerque 
et al. [11] and Nerantzaki and Katsikadelis [12]. 

In this paper, the boundary element method (BEM) for a shear deformable 
plate (Reissner/Mindline’s theories) resting on an elastic foundation subjected to 
dynamic loads developed by Wen and Aliabadi [13] is described. Formulations 
for both Winkler and Pasternak foundations are presented. Numerical examples 
are presented to demonstrate the accuracy of the BEM and the comparisons are 
made with other numerical techniques. 

Other recent development of the BEM for large deformation and buckling 
of plates, stiffened panels and non-linear analysis can be found in references 
[13–18]. 

2 Boundary integral formulations 

Assuming small motion, the governing equations for deflection and rotations for 
moderately thick plate resting on Pasternak foundation can be expressed as 

 

3 2
2

, 3, 2

2
32 2

3 , 3 3 2

[(1 ) (1 ) ] ( )
2 12

( ) ( ) ,f f

hD ww w C w w
t

wC w w G w k w q t h
t

α
α β βα α α

α α

ρν ν

ρ

∂− ∇ + + − + =
∂

∂∇ + + ∇ − + =
∂

 (1) 

where q(t) is the pressure load in the domain and wα  (see Figure 1) denotes 
rotations respective to axis xα  and 3w  is the out-of-plane deflection, where 
Greek indices vary from 1 to 2. ( )C hκµ=  is the shear stiffness, in which κ  

denotes the shear coefficient ( 2 / 12κ π= for Mindlin’s theory and 5 / 6κ =  for 
Reissner’s theory), the bending stiffness of the plate 3 2/ 12(1 )D Eh ν= − , the 
shear modulus / 2(1 )Eµ ν= +  and h denotes the thickness of the plate, ρ  is the 
density of the plate, E and ν  are elastic constants. For the soil foundation, 
constants fk  and fG  are modulus of sub-grade reaction and the shear modulus, 
respectively. The resultants of moment Mαβ  and shear force resultant Qα can be 
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written, in terms of displacements, as 

 
, , ,
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α α α

ν ν δ
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= +
 (2) 

in which αβδ  denotes the Kronecker delta function. Considering the Laplace 
transform of a function ( , )f tx  

 
0

[ ( , )] ( , ) ( , )e d ,ptL f t f p f t t
∞ −= = ∫x x x  (3) 

where p is the parameter of the Laplace transformation, the Laplace transform of 
the governing eqns (1) can be written as 
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 (4) 

In order to establish the boundary integral equations for a Mindlin plate resting 
on the Pasternak foundation, we need to evaluate the total tractions at boundary 
point by 

 3 3, 3 3,, f n f np M n t p Q n G w t G wα αβ β α β β= = = + = +  (5) 

for the real case and total tractions 

 3 3 3,,i i i f i nP T P T G Uα α α= = +  (6) 

for point force case, where kt  denotes the traction boundary condition of the plate. 

x3 x2

M12

Q1

M11

M21

M22

Q2

w2

w1

q, w3

x1

Figure 1: Sign convention of displacement and internal forces.
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The displacement at an interior point ′X  in the domain Ω can be written as 
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The fundamental solutions ijP  and ijU  can be found in [19]. Substituting eqn (5) 
into (6) results 
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Where and ′∈ Γ ∈Ωx X , X  (source point). Taking the limit form of above 
equation if X′ approaches the boundary at the position x′ gives 
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where ijc  is the jump term which is the geometry function at the boundary point 

for static case, and ∫ denotes the Cauchy principal value integral. For a smooth 

boundary, 0.5ij ijc δ= . The resultant components of moment and shear force are 
obtained by differentiation of eqn (8) with respect to the coordinate of source 
point. Using the relationship in eqn (2), we have 
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where kernels  and i j i jS Dβ β  are linear combinations of the first derivative of 

fundamental solutions andij ijU T  (all fundamental solutions are presented 
in [19]). 

3 Numerical implementation 

The gradient of deflection to the normal 3,nw  is involved in the boundary 
integral eqns (8)–(11). Considering the relationship in eqn (2), we have 

 3
3, .n

tw w n
C

α α= −  (12) 

Using the relationship in eqn (35), boundary integral eqn (20) can be rearranged 
as 
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where /f fG G C= . In this paper, the quadratic continuous boundary elements 
for smooth boundary and semi-continuous boundary elements for the boundary 
with corners are used to discretise the boundary and to approximate the variables 
along the boundary. 

4 Numerical examples 

4.1 A free square plate on Winkler’s foundation 

A free square plate of width 2a subjected to a uniform distributed pressure 
0 ( )q H t  in the whole domain Ω is considered in this example, where H(t)  

is Heaviside function. The exact transformed solutions are 0wα =  and 
2

3 0 / ( )fw q k hpρ= +  (where 0 0 /q q p= ) and the resultants of moment and 
shear forces are zero. In the numerical process, the Poisson’s ratio is taken  
as 0.25, h/a = 0.1 and the two free parameters 05 / tω =  and 020T t= , where 

0 2/t a c=  (unit of time). The boundary is discretised into eight continuous 
quadratic elements and eight semi-continuous elements. The number of the 
sample point in the Laplace domain L = 50. In the time domain, the exact 
solution in the time domain can be found analytically and the normalised 
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deflection can be presented as 

 

3
3 4 4

0

2

ˆ ( ) 1 cos

1 1 cos .
6(1 )

f

f

f

f

kw D Dw t t
q a k a h

kh c t
k a a

ρ

ν

⎛ ⎞
= = −⎜ ⎟

⎝ ⎠

⎛ ⎡ ⎤ ⎞
= −⎜ ⎟⎢ ⎥⎜ ⎟−⎢ ⎥⎝ ⎣ ⎦ ⎠

 (14) 

Two cases are considered in this example, i.e. case (I): 4 / 200,f fk k a D= =  

0fG =  and case (II): 4 / 400,f fk k a D= = 0.fG =  Normalised deflections 
4

3 0( ) /w t D q a  at the centre of plate against normalised time 2 /c t a  are plotted in 
Figure 2 which show good agreement with the analytical solutions.  

4.2  Simply supported and clamped plate subjected to uniform load 

A simply supported square plate of width 2a with a uniform distributed 
pressure 0 ( )q H t  in the domain Ω is considered in this example. The Poisson’s 
ratio is taken as 0.25, h/a = 0.1 and two free parameters are selected as in the 
previous example. Total number of boundary elements is 16 and the number of 
sample in the Laplace domain L = 100. Figures 3 and 4 show the variation of 
the normalised deflection 4

3 0( ) /w t D q a  and resultant of moment 2
11 0( ) /M t q a  

at centre of plate against the normalised time 2 /t c t a= . The dashed lines in 
these figures represent two solutions for the static case, respectively. Results 
are presented for the Pasternak model with two sets of foundation parameters: 
(I): 4200 / ,fk D a=  220 /fG D a=  and (II): 4400 / ,fk D a=  240 /fG D a= . 
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Figure 2: Normalised deflection of a free square plate on Winkler’s foundation
with Heaviside pressure load q0 H (t) versus normalised time c2t/a.
Comparison is made with exact solutions.
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It is worth to notice that for a small value of time, the deflection 3ˆ ( )w t  can be 
written, by Taylor series expansion from eqn (42), as 

 
2 22

03 2
3 34 2

0
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12(1 ) 2
q tw D h c tw t w t

q a a a hν ρ
⎛ ⎞= = =⎜ ⎟
⎝ ⎠−

 (15) 

For a clamped square plate, the normalised deflection and moment at the central 
point are presented in the Figures 5 and 6. We find that the influence by the 
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Figure 3: Normalised deflection of a simply supported square plate on
Pasternak’s foundation subjected to Heaviside pressure load q0 H (t)
versus normalised time c2t/a.
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Figure 4: Normalised moment of a simply supported square plate on Pasternak’s
foundation subjected to Heaviside pressure load q0 H (t) vs normalised
time c2t/a.
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boundary condition of constrain is significant. It is reasonable that the frequency 
for the clamped plate is higher than that for the simply supported plate with the 
same foundation parameters. It is apparent that the plate starts to vibrate about 
the static equilibrium position denoted by dashed line. 

5 Conclusions 

In this paper, the fundamental solutions for the Mindlin plate resting on the 
Pasternak foundation were presented in the Laplace transform domain and  
the boundary integral formulations were established for dynamic problems.  

Figure 5: Normalised deflection of a clamped square plate on Pasternak’s
foundation subjected to Heaviside pressure load q0 H (t) vs normalised
time c2t/a.
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Figure 6: Normalised moment of a clamped square plate on Pasternak’s
foundation subjected to Heaviside pressure load q0 H (t) vs normalised
time c2t/a.
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The accuracy of BEM was examined and compared with exact solution. 
Excellent agreements with the method of fundamental solution were achieved. 
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Appendix A. Displacement and traction fundamental solutions 

Considering the property of Bessel function derivation, the displacement 
fundamental solutions in eqn (12) can be arranged as 
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Then, the traction fundamental solutions are obtained from the relationships in 

eqn (2) 
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Abstract 

This paper presents a hypersingular time-domain boundary element method  
for transient dynamic crack analysis in two-dimensional (2-D), homogeneous 
and linear piezoelectric solids. Stationary cracks in infinite and finite 
piezoelectric solids under impact loading are considered. A combination of the 
strongly singular displacement boundary integral equations (BIEs) and the 
hypersingular traction BIEs is used in the present analysis. A Galerkin method 
is implemented for the spatial discretisation, while a collocation method is 
applied for the temporal discretisation. An explicit time-stepping scheme  
is obtained to compute the unknown boundary data, including the generalised 
crack-opening-displacements, numerically. An iterative solution algorithm is 
developed to consider the non-linear, semi-permeable electrical crack-face 
boundary condition. Furthermore, an additional iteration scheme for crack-face 
contact analysis is implemented at time-steps where physically meaningless 
crack-face intersection occurs. Numerical examples are presented and discussed  
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to show the effects of the electrical crack-face boundary conditions on the 
dynamic intensity factors. 

Keywords: Piezoelectric solids, Electrically permeable, impermeable and semi-
permeable cracks, Dynamic crack analysis, Time-domain BEM, Dynamic intensity 
factors. 

1 Introduction 

Due to their inherent coupling effects between mechanical and electrical fields, 
piezoelectric materials are receiving increasing attention in modern technical 
applications such as smart devices and structures like transducers, actuators  
and sensors. Dynamic crack analysis in piezoelectric solids is of considerable 
importance to fracture and damage mechanics, design and optimisation as well 
as non-destructive material testing of piezoelectric structures. Since analytical 
solutions are available only for very simple crack geometries and loading 
conditions, efficient numerical methods are needed to solve general problems. 
Among many available numerical methods, the boundary element method 
(BEM) is very attractive for transient dynamic analysis of piezoelectric solids 
(e.g. [1–3]). 

The formulation of the mechanical and the electrical boundary conditions on 
the crack-faces plays an important role in the crack analysis of piezoelectric 
materials. The mechanical boundary conditions are usually defined as traction-
free or self-equilibrated stresses and, consequently, physically meaningless 
intersection of both crack-faces cannot appear. Besides the mechanical crack-
face boundary conditions, several electrical crack-face boundary conditions  
are proposed in the literature. Since the electrical permittivity of a medium inside 
the crack is usually very small, the crack-face boundary condition is defined 
often as electrically impermeable. This model is mathematically exact for an 
electrical permittivity of zero. On the other side, the crack can be defined as 
electrically permeable, which is accurate for closed cracks or if the electrical 
permittivity is infinite. A more realistic non-linear crack-face boundary condition 
was introduced by Hao and Shen [4], where a limited electrical permittivity 
(electrically semi-permeable) of a medium inside the crack is considered. Several 
iterative solution algorithms have been developed for static crack analysis using 
the FEM [5–9] and the BEM [10] to take into account this semi-permeable 
crack-face boundary condition. Generally more complicated and of advanced 
technical interest is the dynamic analysis of electrically semi-permeable cracks, 
since additional transient effects induced by the dynamic loading and the 
scattered wave fields may influence the behaviour of the dynamic intensity 
factors (IFs) significantly. Dynamic crack analysis of electrically semi-permeable 
cracks using the FEM has been presented by Enderlein et al. [11]. 

In this paper, the initial-boundary value problem of transient dynamic crack 
analysis in piezoelectric solids is formulated and a hypersingular time-domain 
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BEM is developed. The cracked piezoelectric solid is subjected either to an 
electrical impact, or a mechanical impact, or a combination of both electrical and 
mechanical impact loadings. A combination of the strongly singular displacement 
boundary integral equations (BIEs) and the hypersingular traction BIEs is used.  
To solve the time-domain BIEs numerically, the temporal discretisation is 
performed by a collocation method, while the spatial discretisation is carried out by 
a Galerkin method. 2-D time-domain piezoelectric fundamental solutions [12] are 
implemented in the present time-domain BEM. To describe the local behaviour of 
the generalised crack-opening-displacements (CODs) at the crack-tips correctly, 
crack-tip elements are applied near the crack-tips. Time integration is performed 
analytically and special analytical techniques are developed to evaluate the 
strongly singular and the hypersingular boundary integrals. An explicit time-
stepping scheme is used to compute the unknown CODs and the dynamic IFs. For 
electrically semi-permeable cracks, an iterative solution procedure is developed. 
An additional iterative solution procedure for crack-face contact analysis is 
implemented to avoid a physically meaningless intersection of both crack-faces. To 
show the effects of the electrical crack-face boundary conditions on the dynamic 
IFs, numerical examples are presented and discussed. 

2 Problem statement 

We consider a 2D, homogeneous, generally anisotropic and linear piezoelectric 
solid with a crack of arbitrary shape as shown in Figure 1. 

In the absence of body forces and electrical charges, and using the quasi-
electrostatic assumption, the cracked solid satisfies the generalised equations of 
motion 

 ,
, , 1, 2

( , ) ( , ),
0,
JK

iJ i JK K JK
J K

t u t
otherwise

δ
σ ρδ δ∗ ∗ =⎧= = ⎨

⎩
x x , (1) 

Figure 1: A cracked piezoelectric solid.
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and the generalised constitutive equations 

 ,( , ) ( , ),iJ iJKl K lt C u tσ =x x  (2) 

where ρ is the mass density, *
JKδ  is the generalised Kronecker delta and uI 

represents the generalised displacements 
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in which ui and ϕ are the displacements and the electrical potential. Furthermore, 
σiJ are the generalised stresses 
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with σij and Di being the stresses and the electric displacements, and CiJKl 
denotes the generalised elasticity tensor 
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In eqn (5), cijkl is the elasticity tensor, eijk is the piezoelectric tensor and εil is the 
dielectric permittivity.  

Throughout the analysis, a comma after a quantity designates spatial 
derivatives, while superscript dots stand for temporal derivatives of the quantity. 
Lower case Latin indices take the values 1 and 2 (elastic), while capital Latin 
indices take the values 1, 2 (elastic) and 4 (electric). Unless otherwise stated, the 
conventional summation rule over repeated indices is implied. 

Taking into account the notation of eqns (3)–(5), the cracked solid Ω 
satisfies the initial conditions 

 ( , ) ( , ) 0 for 0I Iu t u t t= = ≤x x  (6) 

and the boundary conditions 

 ( , ) ( , ), ,I I tt t t t= ∈Γx x x  (7) 

 ( , ) ( , ), ,I I uu t u t= ∈Γx x x  (8) 

with tI being the generalised traction vector defined by 

 ( , ) ( , ) ( ).I jI jt t t eσ=x x x  (9) 
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In eqns (7)–(9), ej is the outward unit normal vector, Гt is the external boundary 
where the generalised tractions tI are prescribed and Гu is the external boundary 
where the generalised displacements uI are given. On the upper and the lower 
crack-face c+Γ  and c−Γ  self-equilibrated generalised tractions are considered. In 
order to avoid a physically meaningless material interpenetration between both 
crack-faces, the following constraint condition is introduced on the crack: 

 2 ( , ) 0,cu t+∆ ∈Γ ≥x  (10) 

where ∆u2(x,t) is the normal component of the generalised CODs defined by 

 ( , ) ( , ) ( , ).I I Ic cu t u t u t+ −∆ = ∈Γ − ∈Γx x x  (11) 

Besides the mechanical crack-face boundary conditions, three different electrical 
crack-face boundary conditions are applied. The impermeable electrical crack-
face boundary condition 

 ( , ) ( , ) 0i ic cD t D t+ −∈ Γ = ∈Γ =x x  (12) 

means that both crack-faces are physically free of electrical displacements. In 
contrast, the permeable electrical crack-face boundary condition 

 ( , ) ( , ), ( , ) ( , ) 0i ic c c cD t D t t tϕ ϕ+ − + −∈ Γ = ∈Γ ∈Γ − ∈Γ =x x x x  (13) 

implies identical potentials at both crack-faces. For semi-permeable cracks, the 
boundary conditions are 

 + -
+

+ -

c c
cc
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u ( , t) u ( , t)
i ic cD t D t+ −
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i

x x
x x x

x x
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where both opposite crack-faces are considered as a set of corresponding parallel 
capacitors and κc is the electrical permittivity inside the crack. 

3 Time-domain BIEs and fundamental solutions 

In the present paper, the initial-boundary value problem is solved by a time-
domain BEM. In the sense of a weighted residual formulation in space, the time-
domain Galerkin BIEs are defined by 

 
ψ( ) ( , )d ψ( ) ( , , ) ( , ) ( , , ) ( , ) d d

ψ( ) ( , , ) ( , ) d d ,

b b b

b c

G G
J x IJ I IJ I y x

G
IJ I y x

u t u t t t t t u t

t t u t
+

Γ Γ Γ

Γ Γ

⎡ ⎤Γ = ∗ − ∗ Γ Γ⎣ ⎦

+ ∗ ∆ Γ Γ

∫ ∫ ∫

∫ ∫

x x x x y y x y y

x x y y
 (15) 

where ( , , )G
IJu x y t  and ( , , )G

IJt x y t  are the displacement and the traction 
fundamental solutions. Furthermore, Гb=Гu+Гt and an asterisk ‘*’ denotes the 



340  Recent Developments in Boundary Element Methods 

Riemann convolution which is defined by 

 
0

( , ) ( , ) ( , ) ( , )d .
t

g t h t g t hτ τ τ∗ = −∫x x x x  (16) 

The traction fundamental solutions ( , , )G
IJt x y t  are obtained by the substitution of 

the displacement fundamental solutions into the constitutive eqn (2) as 

 ,( , , ) ( ) ( , , ).G G
IJ qIKr q KJ rt t C e u t=x y y x y  (17) 

The time-domain traction BIEs are derived by substituting eqn (15) into eqns (2) 
and (9). Taking into account the boundary conditions (7) and (8), the resulting 
BIEs are applied on the upper crack-face Гc+ to yield a complete set of equations 
for the displacements and the tractions on Гb and the CODs on Гc 
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Γ Γ Γ

Γ Γ

⎡ ⎤Γ = ∗ − ∗ Γ Γ ∂⎣ ⎦

+ ∗ ∆ Γ Γ

∫ ∫ ∫

∫ ∫

x x x x y y x y y

x x y y

 (18) 

where ( , , )G
IJv x y t  and ( , , )G

IJw x y t  are the traction and the higher-order traction 
fundamental solutions, which are defined by 

 ,( , , ) ( ) ( , , ),G G
IJ pIKs p KJ sv t C e u t= −x y x x y  (19) 

 ,( , , ) ( ) ( ) ( , , ).G G
IJ pIKs p qJLr q KL srw t C e C e u t= −x y x y x y  (20) 

The displacement Galerkin-BIEs (15) are applied to the external boundary of  
the cracked solid, while the traction Galerkin-BIEs (18) are used on the crack-
faces in the present time-domain BEM. The weighting function ψ(x) is chosen as 
the spatial shape function employed for the interpolation of the boundary values. 
It should be mentioned that the displacement BIEs (15) are strongly singular, 
while the tractions BIEs (18) involve a hypersingularity at x=y. 

The time-domain dynamic fundamental solutions for homogeneous, anisotropic 
and linear piezoelectric solids are not available in explicit forms. Here, the 
fundamental solutions derived by Wang and Zhang [12] using the Radon 
transform technique are implemented. They can be expressed in the 2-D case by 
a line-integral over a unit circle as 

 2 | | 1 1

( ) 1( , , ) d ,
4 ( )

M m
IJG

IJ
m m m

H t Pu t
c c tπ ρ= =

=
+ ⋅ −∑∫n

x y n
n y x

 (21) 

where H(t), n, cm and m
IJP   denote the Heaviside step function, the wave 

propagation vector, the phase velocities of the elastic waves and the projection 
operator, respectively [12]. Integrating eqn (21) by parts with respect to the time 
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and applying the properties of convolution integrals, the time-domain 
fundamental solutions can be divided into a singular static plus a regular 
dynamic part as 

 ( , , ) ( ) ( , ) ( ) ( , , ) ( ),G S R
IJ IJ IJu t f t u f t u t f t∗ = + ∗x y x y x y  (22) 

where the superscripts S and R stand for the static and the dynamic parts, 
respectively. The singular static part can be reduced to an explicit expression while 
the regular dynamic part can be given only as a line-integral over a unit circle. 

4 Numerical solution procedure 

To solve the strongly singular displacement BIEs (15) and the hypersingular 
traction BIEs (18), a Galerkin method is applied for the spatial discretisation [3]. 
The external boundary and the crack-faces are discretised by linear elements. At 
the crack-tips, square-root shape-functions are used to describe the local behaviour 
of the generalised CODs properly. This ensures an accurate and direct calculation 
of the dynamic IFs from the numerically computed generalised CODs. Strongly 
singular and hypersingular boundary integrals are computed analytically by  
special techniques [3,13]. The temporal discretisation is performed by a collocation 
method. By using linear temporal shape-functions, time integrations can also be 
performed analytically. The line-integrals over a unit circle arising in the dynamic 
fundamental solutions are computed numerically by using standard Gaussian 
quadrature formula. 

After temporal and spatial discretisations and invoking the initial conditions 
and boundary conditions, the following time-stepping scheme can be obtained 
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1 1 1 1 1

1
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− − + − +

=
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= + −⎢ ⎥

⎣ ⎦
∑x C D y B t A u  (23) 

in which xK represents the vector with the unknown boundary data, while yK 
denotes the vector with the prescribed boundary data. Eqn (23) is an explicit 
time-stepping scheme for computing the unknown boundary data, including the 
generalised CODs time-step by time-step. 

An efficient solution for non-linear crack-face boundary conditions is one of 
the significant advantages of the BEM since the generalised tractions and 
displacements are primary variables in the BIEs. In the investigated initial-
boundary value problem, there are two different non-linear crack-face boundary 
conditions. At time-step where a crack-face intersection occurs, an iterative 
crack-face contact analysis [14,15] is performed to take into account eqn (10) in 
the numerical algorithm. Furthermore, an additional iterative solution procedure 
is developed to solve the non-linear semi-permeable electrical crack-face 
boundary condition (14) at time-step where the crack is open.  
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5 Numerical examples 

In this section, numerical examples are presented and discussed to show the 
effects of the different crack-face boundary conditions on the dynamic IFs. For 
convenience, the following normalised dynamic IFs [3] are introduced 

 I II IV22* * *
I II IV 0 0

0 0 22 0

( ) ( ) ( )( ) , ( ) , ( ) , .K t K t K teK t K t K t K a
K K K

σ π
ε

= = = =  (24) 

To measure the intensity of the electrical impact, the following loading 
parameter is introduced 

 22 0

22 0
,e Dχ

ε σ
=  (25) 

where σ0 and D0 are the loading amplitudes. 

5.1 A crack in an infinite piezoelectric plate under an impact tensile loading 

In the first example, as shown in Figure 2, a finite crack of length 2a in an 
infinite and linear piezoelectric solid subjected to an impact tensile loading 
σ(t)=σ0H(t) is investigated, where H(t) denotes the Heaviside step function and σ0 
is the loading amplitude. 

As piezoelectric material BaTiO3 is chosen, which has the material constants 

 

11 12 22 66

2 2 2
21 22 16

11 22

150.0GPa, 146.0GPa, 44.0GPa, 66.0GPa,

4.35C/m , 17.5C/m , 11.4C/m ,

9.87C/(GVm), 11.2C/(GVm).

C C C C

e e e

ε ε

= = = =

= − = =

= =

 (26) 

and the mass density ρ = 5,800 kg/m3. The crack is divided into 20 elements 
and a normalised time-step of cL∆t/a = 0.05 is used. Plain strain condition is 

Figure 2: A crack in an infinite linear piezoelectric plate under an impact
loading.
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assumed in the numerical calculations. A comparison of the normalised 
dynamic IFs obtained by the present time-domain BEM using different 
electrical crack-face boundary conditions given in eqns (12)–(14) is presented 
in Figure 3. 

The normalised mode-I dynamic IFs are very similar without a significant 
difference for all investigated electrical crack-face boundary conditions and 
permittivities κc. Since no shear stress components are induced by the 
investigated loading, poling direction is normal to the crack-face and a 
transversal isotropic material behaviour occurs and the mode-II dynamic IF 
vanishes. In contrast to the mode-I IFs, the electrical permittivity κc has a 
significant influence on the normalised mode-IV dynamic Ifs, which can be 
clearly seen in Figure 3. For a permeable crack, the non-existence of the crack in 
the electrical field results in the curve of the mode-IV IF, which has a similar 
behaviour as that for mode-I. In contrast, the impermeable crack-face boundary 
condition leads to the strongest electrical crack-tip field and therefore the mode-
IV IF depends only weakly on the time. As well expected, the results of the 
semi-permeable cracks are between the bounds given by the impermeable and 
permeable electrical crack-face boundary conditions. 

5.2 A central crack in a rectangular piezoelectric plate 

In the second example, we consider a homogeneous and linear piezoelectric 
rectangular plate containing a central crack of length 2a, as shown in 
Figure 4. The cracked plate is subjected to a combined impact tensile loading 
σ(t)=σ0H(t) and impact electrical loading D(t)=D0H(t). The geometrical  
data h = 20.0 mm, 2w=h and 2a = 4.8 mm are assumed in the numerical 

Figure 3: Normalised dynamic IFs for different electrical
permittivity kc.
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calculations. The piezoelectric material PZT-5H with the mass density 
ρ = 7,500 kg/m3 and the material constants 
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 (27) 

is considered. The external boundary is divided into uniformly distributed 
elements with the length of 1.0 mm and the crack is discretised by 12 elements. 
A normalised time-step of cL∆t/h = 0.04 is chosen and plane strain condition is 
assumed. A comparison of the numerical results obtained by the present time-
domain BEM and the FEM using ANSYS for χ = 1 and electrical impermeable 
and permeable crack-face boundary conditions, given in eqns (12) and (13),  
are shown in Figure 5. The computations are performed with and without the 
consideration of the crack-face contact. The element type PLANE223 is used  
in the FEM calculations. Quarter-point elements are implemented to describe  
the local r1/2-behaviour of the generalised CODs at the crack-tips properly. The 
dynamic IFs are computed directly by the generalised CODs as in the time-
domain BEM. 

The normalised mode-I and mode-IV dynamic IFs of the present time-
domain BEM and ANSYS show a very good agreement. The mode-II 
dynamic IF vanishes, since no shear stress components are induced by the 
investigated loading and transversally isotropic material behaviour. Since a 
combined electrical and mechanical impact loading is applied, the normalised 
dynamic IFs start from a non-zero value due to the quasi-electrostatic 
assumption for the electrical field. This implies that the cracked plate is 
immediately subjected to the electrical impact. It can be clearly seen that  
the investigated electrical impact loading leads to a physically meaningless 

Figure 4: A piezoelectric plate with a central crack subjected to impact loading.
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material interpenetration from cLt/h = 0 until cLt/h = 1.1 and therefore a crack-
face contact analysis is required in this time interval. It should be mentioned 
that the computation is without friction because the slip component ∆u1(t) of 
the CODs is zero. The elastic waves induced by the impact tensile loading 
reach the crack-tips near cLt/h = 1.0 and thereafter the dynamic IFs increase 
rapidly until their maximum peaks. 

To illustrate the influence of the electrical permittivity κc on the dynamic  
Ifs, several computations have been carried out using semi-permeable electrical 
crack-face boundary condition (14) and contact conditions (10). The numerical 
results of the present time-domain BEM for a combined dynamic loading χ = 1 
are presented in Figure 6. To point out the influence of the scattered wave fields 
on the dynamic IFs, the corresponding static results are given in Table 1. 

Figure 5: Comparison of the normalised dynamic IFs for different crack-face
boundary conditions.

Figure 6: Normalised dynamic IFs for different electrical permittivity kc.
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As in the previous example, a variation of the electrical permittivity κc has a 
significant influence on the normalised static and dynamic mode-IV IFs. The 
difference between the mode-IV IFs for permeable and impermeable crack-face 
boundary conditions is more pronounced for dynamic loading, which is induced 
by the scattered wave fields. According to the geometry of the cracked plate and 
the applied loading, the dynamic IFs for both crack-tips are identical. 

6 Conclusions 

This paper presents a hypersingular time-domain BEM for 2-D transient 
dynamic crack analysis in homogenous and linear piezoelectric solids with 
non-linear mechanical and electrical boundary conditions. A Galerkin method 
is used for the spatial discretisation while a collocation method is adopted for 
the temporal discretisation. The dynamic time-domain fundamental solutions 
for homogenous, anisotropic and linear piezoelectric solids are implemented. 
The spatial discretisation is performed with linear elements away from the 
crack-tips. Adjacent to the crack-tips, square-root elements are implemented 
which ensures a direct and accurate calculation of the dynamic IFs from the 
numerically computed generalised CODs. In contrast, a collocation method 
using linear shape function is applied for the temporal discretisation. With the 
exception of the line-integrals over a unit circle arising in the time-domain 
fundamental solutions, the temporal and the spatial integrations can be 
performed analytically. This feature makes the present time-domain BEM 
particularly attractive and efficient. After temporal and spatial discretisation, 
an explicit time-stepping scheme is obtained for computing the unknown 
boundary data including the CODs. An iterative solution algorithm is 
developed to handle the non-linear semi-permeable electrical crack-face 
boundary condition. In order to avoid the possible crack-face contact, a second 
iterative solution procedure is implemented. Numerical examples are presented 
and discussed to investigate the influences of the electrical and the mechanical 
impact loadings, different electrical crack-face boundary conditions and the 

Table 1: Normalised static IFs for different electrical permittivity κc. 

cκ  IK ∗  IIK ∗  IVK ∗  
0.0  (imperm.) 1.05  0.00  1.05  

0.5  1.05  0.00  0.95  
2.0  1.05  0.00  0.87  
5.0  1.05  0.00  0.84  

10.0  1.05  0.00  0.82  
∞  (perm.) 1.05  0.00  0.81 
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crack-face contact on the dynamic IFs. The obtained numerical results show a 
good agreement with those of the FEM and a significant influence of the 
electrical permeability on the mode-IV dynamic IF. 
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Abstract 

We discuss a variational approach that leads to a symmetric boundary element 
formulation suitable for multi-material and crack interface problems in 
heterogeneous domains arranged as assemblies of homogeneous sub-domains. 
The variational principle is based on a Lagrangian functional comprising the 
system’s potential energy augmented by the side imposition of the classical 
integral representation of the interior solution within each homogeneous sub-
domain. Any applied boundary tractions and all interface traction continuity 
conditions are automatically satisfied by the variational principle. Following a 
single condensation of the sub-domain boundary tractions and the Lagrange 
multipliers, the boundary and interface displacements are left as the only 
unknowns. Upon discretisation, there results a block-sparse system, with each 
block representing a single homogeneous sub-domain (or part thereof). We 
validate the variational approach via numerical experiments entailing cracks at 
single and bi-material interfaces. 

Keywords: Multi-material interfaces, Cracks, Domain decomposition, Boundary 
integral equations, Symmetric boundary element method. 
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1. Introduction 

The mixed boundary element method (MBEM) discussed herein is a 
methodology that combines the direct and indirect boundary element methods 
together with domain decomposition ideas to arrive at a fairly flexible approach 
for handling a variety of interface problems in engineering, while bypassing the 
need to resolve hyper-singular operators. The method discussed herein is drawn 
from earlier work by Bielak and his collaborators [1–5]. 

2. Variational principle 

2.1 Statement of problem 

Consider a multiply connected region Ω bounded by Γ (Figure 1(a)). Let Ω 
consist of N homogeneous sub-domains Ωi, i.e. Ω= Ωi∪ , 1, ,i N= … . Each of 
the homogeneous sub-domains is occupied by a linear isotropic elastic solid 
characterised by the Lamé parameters λi and µi. The entire assembly is 
constrained along the Γu part of the boundary, and is subjected to tractions on  
the Γt part of its boundary (Figure 1(b)), with 0u tΓ ∩Γ =  and u tΓ ∪Γ = Γ . Let 

ui denotes the displacement vector within the i-th sub-domain, and Û  and T̂  the 
prescribed boundary displacements and tractions on Γu and Γt, respectively. 
Then, the boundary-value problem consists of finding ui (∀i) such that 

 ( ) ( ) 0 in Ω ,i i
i i i iµ λ µ∇ ⋅∇ + + ∇ ∇ ⋅ =u u  (1) 

 ˆ on ,i
i t= Γ ∩Γt T  (2) 

Γ

Γt

Ω

Γu

(a) Multiply-connected
domain Ω

ni

ni

Γi

Ωi

ni

ni

(b) Typical subdomain Ωi

Figure 1: Domain and subdomain notation.
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 ˆ on ,i
i u= Γ ∩Γu U  (3) 

 on ,i j
i j= Γ ∩Γu u  (4) 

 on ,i j
i j= − Γ ∩Γt t  (5) 

where subscripts (and superscripts) i and j denote the i-th and j-th sub-domain, 
respectively, and ti is the traction vector, defined as: 

 ,i i
iσ=t n  (6) 

with σi denoting the stress tensor within each sub-domain. The following 
constitutive law and kinematic condition also hold: 

 tr( ) 2 ,i i i
i iσ λ µ= +I E E  (7) 

 1 ( ) ,
2

i i i T⎡ ⎤
⎢ ⎥⎣ ⎦

= ∇ + ∇u uE  (8) 

where εi is the strain tensor within each sub-domain, and ni denotes the normal 
outward vector on the sub-domain’s boundary. In other words, eqn (1) is the 
Navier equation within each sub-domain, eqns (2) and (3) are the i-th sub-
domain’s boundary conditions, and eqns (4) and (5) are interface continuity 
conditions. 

2.2. Variational formulation 

We now proceed to establish the variational form of the problem. We construct 
first an appropriate functional, and then proceed to show that the vanishing of its 
first variation recovers eqns (1)–(5). We start with the total potential energy of 
the elastic system: 

 { }2 2

1 1

1 ˆ( ) 2 ( ) d d .
2 i i

N N
i i i

i i i i
i i

λ µ
Ω Γ

= =
Π = ∇ ⋅ + ∇ Ω − ⋅ Γ∑ ∑∫ ∫u u u T  (9) 

In the following section, the Dirichlet condition (eqn 3) will be imposed 
explicitly. Integrating eqn (9) by parts, yields: 

 

{ }

{ }
1

1

1

1 [( ) ] [ ( )] d
2

[( ) ] [ ( )] d

ˆ d

i

i

i

N
i i i i

i i i
i

N
i i i i

i i
i
N

i
i

i

λ λ

µ

Ω
=

Ω
=

Γ
=

Π = ∇ ⋅ ∇ ⋅ − ∇ ∇ ⋅ ⋅ Ω

+ ∇ ⋅ ∇ ⋅ − ∇ ⋅ ∇ ⋅ Ω

− ⋅ Γ .

∑∫

∑∫

∑∫

u u u u

u u u u

u T

 (10) 
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Using the divergence theorem, Π becomes: 

 1

1 1

1 ( ) 2 d
2

1 ˆ[ ( ) 2 ] d
2

i

i i

N
i i i i

i i i
i

N N
i i i i

i i
i i

λ µ

λ µ

Γ
=

Ω Γ
= =

⎡ ⎤Π = ∇ ⋅ + ⋅ ⋅ Γ⎣ ⎦

− ∇ ∇⋅ + ∇ ⋅ ⋅ Ω − ⋅ .

∑∫

∑ ∑∫ ∫

u u u n

u u u T

E

E

 (11) 

For the time being, let us assume that the governing eqn (1) is satisfied; then, eqn 
(11) reduces to:  

 
1 1

1 ˆd d .
2 i i

N n
i i i

i i
i i

Γ Γ
= =

Π = ⋅ Γ − ⋅ Γ∑ ∑∫ ∫t u u T  (12) 

To actually ensure that eqn (1) holds, we make use of the following direct 
representation:  

 ( ) [ ]( ) [ ]( ) in 1,2, ,i i i
i i i i N= − , Ω = …u x t x u xS D  (13) 

where x is a point interior to Ωi, and iS  and iD  represent single and double 
layers, respectively:  

 
1

[ ]( ) ( , ) ( )d ( ),
j

N
i T j

i ij j
j

Γ
=

= ⋅ Γ∑∫t x x y t y yS U  (14) 

 1

1

( , )
[ ]( ) ( )d ( )

( ) ( )d ( ).

j

j

TN
iji j

i j
j

N
T j

ij j
j

Γ
=

Γ
=

∂
= ⋅ Γ

∂

= , ⋅ Γ

∑∫

∑∫

y

x y
u x u y y

n

x y u y y

U
D

T

 (15) 

In the above equation, ijU  is the Green’s function corresponding to eqn (1). For 
two-dimensional problems, it can be written as:  

 1 2 2( , ) ln ,i j
ij ij

r r
C C r

r
δ

⋅⎛ ⎞
= −⎜ ⎟

⎝ ⎠
x yU  (16) 

with the corresponding ijT :  

 3
4 42 2

2
( ) ( ) .i j

ij j i i j ij i i
r rC

C n r n r C r n
r r

δ
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎛ ⎞⎛ ⎞, = − + +⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

x yT  (17) 
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In the above equation, the coefficients C1 through C4 are given as: 

 1 2 3 4
1 1, 3 4 , , 1 2 .

8 (1 ) 4 (1 )
C C C Cν ν

πµ ν π ν
= − = − = − = −

− −
  

Similarly, for three-dimensional problems: 

 1 2 2
1( , ) ,i j

ij ij
r r

C C
r r

δ
⋅⎛ ⎞

= +⎜ ⎟
⎝ ⎠

x yU  (18) 

 3
4 42 2

3
( , ) j i i j i j i i

ij ij
n r n r r rC r n

C C
r r rr r

δ
⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞= − + +⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
x yT  (19) 

with 

 1 2 3 4
1 1, 3 4 , , 1 2 .

16 (1 ) 8 (1 )
C C C Cν ν

πµ ν π ν
= − = − = − = −

− −
  

In eqns (16)–(19), , 1, ,i j d= … , where d is the problem’s dimensionality, and ni 
denotes the normal vector’s component along the i-th cartesian direction. In 
addition,  

 2, , 1, , .i i i i ir i d= − = ⋅ = …r x y r r   

When x is on the boundary Γi, one has the following well-known jump relations 
on Γi for smooth Γi ( 1, ,i N= … ):  

 ±[ ] ( ) [ ]( ),i iφ φ=x S xS  (20) 

 ± 1[ ] ( ) ( ) [ ]( ),
2i iφ φ φ= +x x D x∓D  (21) 

 ± 1[ ] ( ) ( ) [ ]( ),
2i i

xn
φ φ φ∂

= ± +
∂

x x N xS  (22) 

where the superscript on a layer such as Si denotes the limit as x approaches a 
point on Γi from the interior. The Si, Di and Ni are integral operators on Γi 
satisfying the following symmetry relations: 

 [ ]( ) ( )d [ ]( ) ( )d ,
i i

i i i iφ ψ ψ φ
Γ Γ

Γ = Γ∫ ∫S x x S x x  (23) 

 [ ]( ) ( )d [ ]( ) ( )d .
i i

i i i iφ ψ ψ φ
Γ Γ

Γ = Γ∫ ∫D x x N x x  (24) 
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That is, Si is self-adjoint, and Di and ni are adjoint. Moreover, Si has a weak 
singularity, Di is continuous in R2, and has an integrable singularity in R3. From 
eqns (13) and (20)–(22) it follows that:  

 1 ( ) [ ]( ) [ ]( ) on .
2

i i i
i i i= − Γu x S t x D u x  (25) 

The satisfaction of eqn (25) ensures that eqn (1) holds automatically. Thus, next, 
we modify the functional Π  of eqn (12) by introducing eqn (25) as a side 
condition with the aid of Lagrange multipliers φi. There results,  

 
1

1 ˆd d
2 .

1 1 [ ] [ ] d
2 2

i i

i

i i i
i iN

i i i ii
i i iφ

Γ Γ

=
Γ

⎧ ⎫⋅ Γ − ⋅ Γ⎪ ⎪⎪ ⎪Π = ⎨ ⎬
⎛ ⎞⎪ ⎪+ − + ⋅ Γ⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

∫ ∫
∑

∫

t u u T

u S t D u
 (26) 

As discussed below, the Lagrange multiplier φi represents the density of the 
single-layer for the i-th sub-domain. Equation (26) serves as the basis of 
variational principle for the elasticity problem defined by eqns (1)–(5). The first 
variation of the functional Π  can be written as follows:  

 

( )
1

1

1

1 [ ] d
2

1 1 [ ] [ ] d
2 2

1 1 ˆ[ ] d .
2 2

i

i

i

N
i i i

i i
i

N
i i i i

i i i
i
N

i i i i
i i

i

δ φ δ

δφ

φ φ δ

Γ
=

Γ
=

Γ
=

Π = − ⋅ Γ

⎛ ⎞+ − + ⋅ Γ⎜ ⎟
⎝ ⎠

⎧ ⎫⎛ ⎞+ + + − ⋅ Γ⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

∑ ∫

∑ ∫

∑∫

u S t

u S t D u

t N T u

 (27) 

Equation (27) was written with the help of the self-adjointness of Si. 
Up to now, no requirements have been imposed on the admissibility of ui, ti and 

φi. We will now require that the continuity of u throughout Ω be imposed as an 
essential condition, and that eqn (3) be satisfied explicitly. This means that, by 
construction, ui will be equal to uj (and hence i jδ δ=u u ) on i jΓ ∩Γ , and it will be 

equal to Û  on u iΓ ∩Γ . However, ti and φi will remain unconstrained, and thus ti, tj, 
φi and φj can be varied independently. Hence, by setting δΠ to zero for arbitrary δui, 
δti and δφi subject to the constraint i jδ δ=u u  on i jΓ ∩Γ , eqn (27) yields: 

 [ ], on ,i i
i iφ= Γu S  (28) 

 1 [ ] [ ] 0, on ,
2

i i i
i i i− + = Γu S t D u  (29) 
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 1 1[ ] [ ] 0, on ,
2 2

i i i j j j
i j i jφ φ φ φ+ + + + + = Γ ∩Γt N t N  (30) 

 1 1 ˆ[ ] 0, on .
2 2

i i i
i iφ φ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

+ + − = Γ ∩Γt N T  (31) 

Equation (28) suggests that the displacement ui within the sub-domain Ωi can be 
expressed in terms of a single-layer φi, i.e. 

 [ ], in Ω .i i
i iφ=u S  (32) 

Then, one can prove that 

 1( ) ( ) [ ]( ), on .
2

i i i
i iφ φ= + Γt x x N x  (33) 

Therefore, one has 

 ˆ, on , , on .i j i j i i= − Γ ∩Γ = Γ ∩Γt t t T  (34) 

With this, we have shown that if the first variation δΠ of Π vanishes, then eqns 
(1)–(5) are satisfied. That the converse is also true can be shown from eqn (26) 
using the integral representation (eqn (29)). Thus, we have the following 
principle: 

Variational principle: ui is a solution of the boundary value problem defined 
by eqns (1)–(5) if and only if ui, ti and φi are such that the variation δΠ of the 
functional Π defined by eqn (26) vanishes for arbitrary variations δui, δti and δφi 
subjected to i jδ δ=u u  on i jΓ ∩Γ . The displacement ui in Ωi can be obtained 

either from eqn (28) in terms of φi, or from eqn (13) in terms of ui and ti on Γi. 
Remarks: (i) The variational principle is valid for all sub-domains. It is, 

therefore, clear that the idea of decomposing Ω into sub-domains is what allows 
this method to deal with heterogeneous, but piecewise homogeneous domains. 

(ii) Upon discretisation of the unknowns ui, ti and φi, the resulting system of 
algebraic equations will be automatically symmetric, since the formulation is 
fully variational in terms of a trilinear functional. 

(iii) The present formulation uses simultaneously the quantities ui, ti and φi as 
independent unknowns. The boundary integral equation method based on single- 
(or double-) layer potentials such as eqn (25) is called indirect in the literature 
since the auxiliary variable φi does not arise naturally in the formulation, and 
physical quantities of interest, such as displacements and tractions, are obtained 
in terms of the auxiliary variable. In the present situation, however, φi was 
introduced merely as a Lagrange multiplier to enforce the representation of 
eqn (1) as a side condition. Upon taking the first variation of the resulting 
functional, we found that the Lagrange multiplier can be given an interesting 
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physical interpretation, i.e. it represents the density of a single layer in the 
indirect formulation of the elasticity problem. Thus, there is a duality between  
ui, ti and φi. Because our formulation embodies the physical quantities ui and ti  
and the auxiliary function φi as unknowns, one may view it as a direct–indirect 
boundary integral equation method. 

(iv) It is important to point out that the interface condition in eqn (5) and 
boundary condition (2) are satisfied naturally by the variational principle. This 
means that when we use approximations, there are no restrictions that need to be 
imposed on the approximants of the interfacial tractions. This implies that each  
ti is coupled to ui only within each sub-domain. Since each φi is also coupled to 
ui only within each sub-domain, ti and φi may be condensed, leaving ui as the 
only unknown. It is of practical interest that the condensation be done separately 
for ti and φi since both are coupled to ui but not to each other. In fact, it is 
straightforward to verify that only one condensation need actually be performed 
explicitly, since the second one is given by the transpose of the first. 

(v) Upon discretisation, there results a block-sparse system, with each block 
representing a single sub-domain. We note that each sub-domain can itself be 
divided into smaller sub-domains, thereby introducing additional sparsity to  
the final algebraic system. Thus, the formulation can also be seen as a domain 
decomposition method. 

3. Discrete forms 

We discuss next the discretisation of the variational principle (eqn (27)). To this 
end, we use standard isoparametric elements to approximate the displacements, 
the tractions and the Lagrange multipliers or layer densities. Figures 2(a) and 
2(b) depict typical discretisations of a 2-D and a 3-D boundary element, 
respectively. 

Figure 2: Typical isoparametric elements.
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On an element e, we approximate the displacements i
eu , the tractions i

et  and 

the layer densities i
eφ  by: 

 , , ,i T i T i T
e e e e e e e e eφ= Ψ = Ψ = Ψ Φu U t T  (35) 

where Ψe is a vector of element shape functions, and Ue, Te and Φe are vectors  
of unknown nodal displacements, tractions and layer densities, respectively. 
Substitution of eqn (35) into eqn (26) leads to: 

 
1 1

1 ˆΨΨ dΓ ΨΨ dΓ
2

1 1Φ ΨΨ dΓ Ψ dΓ Φ ,
4 2
1Φ Ψ dΓ
2

i

T T T T
e e e e ee e

NN
T T T T
e e e e s e ee e

i e

T T
e e d e e

= =

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥Π = + −⎢ ⎥
⎢ ⎥
⎢ ⎥+ ∫
⎢ ⎥⎣ ⎦

∫ ∫

∑∑ ∫ ∫

T U T U

U T H

H U

 (36) 

where Hs and Hd represent discrete forms of the single and double layers, 
respectively. Using the definitions: 

 
1 1 1

ΨΨ dΓ , Ψ dΓ , = Ψ dΓ ,
i i iN N N

T S T D T
i e i s e i d ee e e

e e e= = =

= =∑ ∑ ∑∫ ∫ ∫G G H G H  (37) 

eqn (36) can be rewritten as: 

 
1

1 1ˆ2 .
2 2

N
T T T T S T D
i i i i i i i i i i i i i i

i=

⎡ ⎤Π = − + Φ − Φ +Φ⎢ ⎥⎣ ⎦
∑ T G U T G U G U T G G U  (38) 

By taking the variation Π and requiring that it vanishes for arbitrary variations 
δU, δT and δΦ, there result the following equations valid within the i-th sub-
domain: 

 Φ =0,S
i i i i−G U G  (39) 

 
1 1

, with ,
N N

i i
i i= =

= = , =∑ ∑u K PK P K P  (40) 

 1 1 1ˆ Φ ( ) Φ 0,
2 4 2

T T D T
i i i i i i i− + + =G T G T G G  (41) 

or, equivalently, for the entire domain Ω: 
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1
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1 ˆ0 ( ) 2 .
2

0
1( ) 0
2

S
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T D T T T

i
i

S T D

i

=

⎧ ⎫⎡ ⎤
⎪ ⎪⎢ ⎥−⎪ ⎪⎢ ⎥ ⎡ ⎤⎡ ⎤⎪ ⎪⎢ ⎥ ⎢ ⎥⎪ ⎪⎡ ⎤ ⎢ ⎥+ =⎨ ⎬⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎪ ⎪⎢ ⎥ ⎢ ⎥⎢ ⎥Φ⎣ ⎦ ⎣ ⎦⎪ ⎪⎢ ⎥⎛ ⎞− +⎪ ⎪⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦⎪ ⎪⎩ ⎭

∑

G G
T

G G G U G T

G G G

 (42) 

The system of eqns (42) may be solved by taking advantage of sparsity and the 
presence of the various zero-block sub-matrices. In three dimensions, the system 
has 24n degrees of freedom, where n is the number of boundary elements in  
a sub-domain. Since Ti and Φi are uncoupled between sub-domains, and S

iG  is a 
nonsingular matrix, we can reduce the number of unknowns to 9 6n +  using 
condensation. Specifically, Φi and Ti can be expressed at the sub-domain level in 
terms of ui using eqns (39) and (40). There results: 

 1 1( ) , ( ) .
2

S S T D
i i i i i i i i iφ − − ⎡ ⎤= = +⎢ ⎥⎣ ⎦

G G U T G G G U  (43) 

Substitution of eqn (43) into eqn (42) yields the discrete problem characterised 
by the following system of algebraic equations: 

 
1 1

, with ,
N N

i i
i i= =

= = , =∑ ∑u K PK P K P  (44) 

where 

 11 1( ) ( ) ( ) ,
2 2

T S T D D T T S
i i i i i i i i i

⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

= + + +K G G G G G G G G  (45) 

 ˆ2 .T
i i=P G T  (46) 

The summations in the above equations denote assembly of the corresponding 
individual terms at the sub-domain level. Equation (44) is essentially the 
discretised version of condition (31) expressing the continuity of tractions across 
all interfaces. Moreover, note that Ki in eqn (45) is symmetric, since T

i i=K K . 
After solving for U, the tractions T and the layer densities Φ  can be readily 
obtained from eqn (43).  

4. Numerical results 

Next, we discuss a subset of our numerical experiments using the described 
approach. Specifically, we focus on four crack problems, three involving  
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two-dimensional domains, and one in three-dimensions. In these problems, 
the conventional application of BEM has involved the use of various crack tip 
and singularity elements [7]. In the following section, we show that by using 
the described MBEM, no special treatment is needed to resolve fracture 
problems. Figure 3(a) shows the geometry of an elastic plate with a central 
crack under uniaxial tension (top), together with the nodal arrangement and 
the deformed configuration (bottom). A semi-analytical solution of the  
stress intensity factor KI accurate to 1% has been provided by Bowie [6]; 
specifically, Bowie computed KI to be 2.830. It is desirable that the computed 
values of the mode I stress intensity factor KI not be very sensitive to the 
mesh size near the crack tips. We carried out a series of numerical 
experiments to examine the sensitivity of KI to a/l ranging from 0.05 to 2.85, 
where a is the half length of the crack and l is the nodal separation near  
the crack tips. Our computed values are presented in relative error form, 
where relative error [ ( ) (Bowie)] / (Bowie)

IK I I IE K K K= −MBEM , in per cent. 
In Figure 3(b), open circles are the results of the MBEM, the straight line 
represents the semi-analytical solution of [6], and stars denote the results from 
[7], where quarter point singularity elements were used. The results from 
MBEM stay within an error margin of 1% as long as the mesh size l is less 
than the crack size a. Also, it is noteworthy that KI converges monotonically 
as the mesh is refined. However, mesh refinement does not improve the 
results calculated using singularity elements, as can be seen from the dashed-
starred line in Figure 3(b). Similar to Figure 3, Figure 4 shows the geometry and 
the results pertaining to a plate with two edge cracks under uniaxial tension. In 
this case, the semi-analytical solution [6] for KI is 2.737. 
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Figure 3: Two-dimensional plate with a central crack.
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The third problem examined the application of MBEM to a problem in  
which the bond between two regions occupied by dissimilar elastic materials  
is weakened by cracks. The problem represents idealisation of two dissimilar 
metallic materials welded together with flaws or cracks developed along the 
original weld line owing, for example, to faulty joining techniques. The problem 
has been solved analytically for two semi-infinite elastic bodies joined along a 
straight-line segment [8]. Here, we used two finite plates (2b × 2c), instead of 
two half-planes (Figure 5(a)). The interfacial crack of fixed length 2a was 
subjected to uniform pressure p, and is assumed to be free of shear stresses. The 
origin of the coordinate system is at the centre of the crack and the x axis 
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coincides with the interface. The upper plate is copper with shear modulus 
45.6 GPa and Poisson’s ratio 0.35; it is bonded to a lower aluminum plate with 
shear modulus 27.0 GPa and Poisson’s ratio 0.34. Figure 5(b) depicts the 
comparison of the displacements along the upper and lower edges between the 
present method and the analytical solution of [8], showing excellent agreement. 
To verify that the MBEM result will converge to the theoretical solution as the 
plate dimensions become unbounded, the plate dimensions were varied and the 
results are shown in Table 1. 

Finally, the three-dimensional problem is drawn from a problem described by 
Sinclair [9] for a cracked cylinder along its centreline. Here, the stress field is 
prescribed ahead, behind, and on the crack face using the expressions derived in 
[9]. Next, the resulting displacement field is computed everywhere (details can 
be found in [10]): Figure 6 depicts the geometry, mesh and a comparison of the 
displacement field between the MBEM and the solution in [9]. 

5. Conclusions 

We presented a variational principle suitable for integral equation formulations 
in two- and three-dimensional elastostatics. The principle hinges on the side 
imposition of an integral equation, but, through condensation, leads to a discrete 

Table 1: Comparison of displacements (1011) along the crack interface for 
different dimensions of the rectangular plate. 

Plate 
dimensions 

Upper edge Lower edge x/a 

2b × 2c v/pa u/pa v/pa u/pa 
2.5a × 4a -0.0242 1.661 -0.0334 -2.687 
5a × 8a -0.0197 1.475 -0.0282 -2.482 

10a × 16a -0.0188 1.447 -0.0271 -2.436 
20a × 32a -0.0185 1.432 -0.0268 -2.436 

0.05 

unbounded -0.0182 1.420 -0.0266 -2.436 
2.5a × 4a -0.2197 1.442 -0.2991 -2.400 
5a × 8a -0.1784 1.320 -0.2520 -2.217 

10a × 16a -0.1670 1.294 -0.2422 -2.177 
20a × 32a -0.1662 1.287 -0.2404 -2.177 

0.45 

unbounded -0.1650 1.270 -0.2376 -2.177 
2.5a × 4a -0.4276 0.766 -0.5483 -1.408 
5a × 8a -0.3472 0.781 -0.4590 -1.301 

10a × 16a -0.3311 0.766 -0.4469 -1.287 
20a × 32a -0.3284 0.757 -0.4451 -1.286 

0.85 

unbounded -0.3213 0.748 -0.4432 -1.283 
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displacement-only problem. The formulation is capable of handling multi-
material and multi-domain interface problems. We discussed numerical 
experiments, drawing from fracture mechanics, which validated the approach. 
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