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visual-only speech and speaker recognition systems. Audio-visual corpora are described and a number 
of speech and speaker recognition systems are reviewed. Finally, we discuss various open issues about 
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There has been signiicant work on investigating the relationship between articulatory movements and 
vocal tract shape and speech acoustics (Fant, 1960; Flanagan, 1965; Narayanan & Alwan, 2000; Schroeter 
& Sondhi, 1994). It has been shown that there exists a strong correlation between face motion, and vocal 
tract shape and speech acoustics (Grant & Braida, 1991; Massaro & Stork, 1998; Summerield, 1979, 
1987, 1992; Williams & Katsaggelos, 2002; Yehia, Rubin, & Vatikiotis-Bateson, 1998). In particular, 
dynamic lip information conveys not only correlated but also complimentary information to the acoustic 
speech information. Its integration into an automatic speech recognition (ASR) system, resulting in an 
audio-visual (AV) system, can potentially increase the system’s performance. Although visual speech 
information is usually used together with acoustic information, there are applications where visual-only 
(V-only) ASR systems can be employed achieving high recognition rates. Such include small vocabulary 
ASR (digits, small number of commands, etc.) and ASR in the presence of adverse acoustic conditions. 
The choice and accurate extraction of visual features strongly affect the performance of AV and V-only 
ASR systems. The establishment of lip features for speech recognition is a relatively new research topic. 
Although a number of approaches can be used for extracting and representing visual lip information, 
unfortunately, limited work exists in the literature in comparing the relative performance of different 
features. In this chapter, we will describe various approaches for extracting and representing important 
visual features, review existing systems, evaluate their relative performance in terms of speech and 
speaker recognition rates, and discuss future research and development directions in this area.
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Lip segmentation is the irst step of any audio-visual speech reading system. The accuracy of this seg-
mentation has a major inluence on the performances of the global system. But this is a very dificult task. 
First of all, lip shape can undergo strong deformations during a speech sequence. As many other image 
processing algorithms, the segmentation task is also inluenced by the illumination conditions and by 
the orientation of the object to be segmented. In this chapter, we present an overview about lip modeling 
and lip segmentation (region-based and contour-based methods). We limit our study to the problem of 
lip segmentation in frontal faces. Section 1 gives an overview about the chrominance information that 
is used for lip segmentation and a comparison between different chrominance cues is proposed. Section 
2 presents region-based approaches and training steps. Section 3 focuses on contour-based approaches 
and parametric lip models. Section 4 inventories methods for lip segmentation accuracy evaluation. 
Some speciic applications are briely presented in section 5.

Chapter IV
Visual Speech and Gesture Coding Using the MPEG-4 Face and Body Animation Standard ........... 128
 Eric Petajan, VectorMAX Corporation, USA

Automatic Speech Recognition (ASR) is the most natural input modality from humans to machines. 
When the hands are busy or a full keyboard is not available speech input is especially in demand. Since 



the most compelling application scenarios for ASR include noisy environments (mobile phones, public 
kiosks, cars), visual speech processing must be incorporated to provide robust performance. This chap-
ter motivates and describes the MPEG-4 Face and Body Animation (FBA) standard for representing 
visual speech data as part of a whole virtual human speciication. The super low bit-rate FBA codec 
included with the standard enables thin clients to access processing and communication services over 
any network including enhanced visual communication, animated entertainment, man-machine dialog, 
and audio/visual speech recognition.

Section II
Lip Modeling, Segmentation, and Feature Extraction
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As the irst step of many visual speech recognition and visual speaker authentication systems, robust and 
accurate lip region segmentation is of vital importance for lip image analysis. However, most of the cur-
rent techniques break down when dealing with lip images with complex and inhomogeneous background 
region such as mustaches and beards. In order to solve this problem, a Multi-class, Shape-guided FCM 
(MS-FCM) clustering algorithm is proposed in this chapter. In the proposed approach, one cluster is set 
for the lip region and a combination of multiple clusters for the background which generally includes the 
skin region, lip shadow or beards. With the spatial distribution of the lip cluster, a spatial penalty term 
considering the spatial location information is introduced and incorporated into the objective function 
such that pixels having similar color but located in different regions can be differentiated. Experimental 
results show that the proposed algorithm provides accurate lip-background partition even for the images 
with complex background features.
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An algorithm for lip contour extraction is presented in this chapter. A colour video sequence of a speaker’s 
face is acquired under natural lighting conditions without any particular set-up, make-up, or markers. The 
irst step is to perform a logarithmic colour transform from RGB to HI colour space. Next, a segmenta-
tion algorithm extracts the lip area by combining motion with red hue information into a spatio-temporal 
neighbourhood. The lip’s region of interest, semantic information, and relevant boundaries points are 
then automatically extracted. A good estimate of mouth corners sets active contour initialisation close 
to the boundaries to extract. Finally, a set of adapted active contours use an open form with curvature 



discontinuities along the mouth corners for the outer lip contours, a line-type open active contour when 
the mouth is closed, and closed active contours with lip shape constrained pressure balloon forces when 
the mouth is open. They are initialised with the results of the pre-processing stage. An accurate lip shape 
with inner and outer borders is then obtained with reliable quality results for various speakers under 
different acquisition conditions. 

Chapter VII
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 Alfonso Gastelum, The University of Auckland, New Zealand, & Image Analysis 
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This chapter describes a new user-speciic 2D to 3D lip animation technique. 2D lip contour position 
and corresponding motion information are provided from a 2D lip contour extraction algorithm. Static 
face measurements are obtained from 3D scanners or stereovision systems. The data is combined to 
generate an initial subject-dependent 3D lip surface. The 3D lips are then modelled as a set of particles 
whose dynamic behaviour is governed by Smooth Particles Hydrodynamics. A set of forces derived from 
ellipsoid muscle encircling the lips simulates the muscles controlling the lips motion. The 3D lip model 
is comprised of more than 300 surface voxels and more than 1300 internal particles. The advantage 
of the particle system is the possibility of creating a more complex system than previously introduced 
surface models. 

Chapter VIII
How to Use Manual Labelers in the Evaluation of Lip Analysis Systems? ....................................... 239
 Shaiq ur Réhman, Umeå University, Sweden
 Li Liu, Umeå University, Sweden
 Haibo Li, Umeå University, Sweden

The purpose of this chapter is not to describe any lip analysis algorithms but rather to discuss some 
of the issues involved in evaluating and calibrating labeled lip features from human operators. In the 
chapter we question the common practice in the ield: using manual lip labels directly as the ground truth 
for the evaluation of lip analysis algorithms. Our empirical results using an Expectation-Maximization 
procedure show that subjective noise in manual labelers can be quite signiicant in terms of quantifying 
both human and  algorithm extraction performance. To train and evaluate a lip analysis system one can 
measure the performance of human operators and infer the “ground truth” from the manual labelers, 
simultaneously.



Section III
Visual Speech Recognition

Chapter IX
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 Constantine Kotropoulos, Aristotle University of Thessaloniki, Greece
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This chapter addresses both low and high level problems in visual speech processing and recognition. 
In particular, mouth region segmentation and lip contour extraction are addressed irst. Next, visual 
speech recognition with parallel support vector machines and temporal Viterbi lattices is demonstrated 
on a small vocabulary task.  

Chapter X
Visual Speech Recognition Across Multiple Views ............................................................................ 294
 Patrick Lucey, Queensland University of Technology, Australia
 Gerasimos Potamianos, IBM T. J. Watson Research Center, USA
 Sridha Sridharan, Queensland University of Technology, Australia

It is well known that visual speech information extracted from video of the speaker’s mouth region can 
improve performance of automatic speech recognizers, especially their robustness to acoustic degrada-
tion. However, the vast majority of research in this area has focused on the use of frontal videos of the 
speaker’s face, a clearly restrictive assumption that limits the applicability of audio-visual automatic 
speech recognition (AVASR) technology in realistic human-computer interaction. In this chapter, we 
advance beyond the single-camera, frontal-view AVASR paradigm, investigating various important as-
pects of the visual speech recognition problem across multiple camera views of the speaker, expanding 
on our recent work. We base our study on an audio-visual database that contains synchronous frontal and 
proile views of multiple speakers, uttering connected digit strings. We irst develop an appearance-based 
visual front-end that extracts features for frontal and proile videos in a similar fashion. Subsequently, we 
focus on three key areas concerning speech recognition based on the extracted features: (a) Comparing 
frontal and proile visual speech recognition performance to quantify any degradation across views; (b) 
Fusing the available synchronous camera views for improved recognition in scenarios where multiple 
views can be used; and (c) Recognizing visual speech using a single pose-invariant statistical model, 
regardless of camera view. In particular, for the latter, a feature normalization approach between poses 
is investigated. Experiments on the available database are reported in all above areas. To our knowledge, 
the chapter constitutes the irst comprehensive study on the subject of visual speech recognition across 
multiple views.

Chapter XI
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 Say Wei Foo, Nanyang Technological University, Singapore
 Liang Dong, National University of Singapore, Singapore



Visual speech recognition is able to supplement the information of speech sound to improve the accuracy 
of speech recognition. A viseme, which describes the facial and oral movements that occur alongside the 
voicing of a particular phoneme, is a supposed basic unit of speech in the visual domain. As in phonemes, 
there are variations for the same viseme expressed by different persons or even by the same person. A 
classiier must be robust to this kind of variation. In this chapter, we describe the Adaptively Boosted 
(AdaBoost) Hidden Markov Model (HMM) technique (Foo, 2004; Foo, 2003; Dong, 2002). By apply-
ing the AdaBoost technique to HMM modeling, a multi-HMM classiier that improves the robustness of 
HMM is obtained. The method is applied to identify context-independent and context-dependent visual 
speech units. Experimental results indicate that higher recognition accuracy can be attained using the 
AdaBoost HMM than that using conventional HMM. 

Chapter XII
Hidden Markov Model Based Visemes Recognition, Part II: Discriminative Approaches  ............... 356
 Say Wei Foo, Nanyang Technological University, Singapore
 Liang Dong, National University of Singapore, Singapore

The basic building blocks of visual speech are the visemes. Unlike phonemes, the visemes are, however, 
confusable and easily distorted by the contexts in which they appear. Classiiers capable of distinguish-
ing the minute difference among the different categories are desirable. In this chapter, we describe two 
Hidden Markov Model based techniques using the discriminative approach to increase the accuracy of 
visual speech recognition. The approaches investigated include Maximum Separable Distance (MSD) 
training strategy (Dong, 2005) and Two-channel training approach (Dong, 2005; Foo, 2003; Foo, 2002) 
The MSD training strategy and the Two-channel training approach adopt a proposed criterion function 
called separable distance to improve the discriminative power of an HMM. The methods are applied 
to identify confusable visemes. Experimental results indicate that higher recognition accuracy can be 
attained using these approaches than that using conventional HMM. 

Chapter XIII
Motion Features for Visual Speech Recognition ................................................................................ 388
 Wai Chee Yau, RMIT University, Australia
 Dinesh Kant Kumar, RMIT University, Australia
 Hans Weghorn, BA University of Cooperative Education Stuttgart, Germany

The performance of a visual speech recognition technique is greatly inluenced by the choice of visual 
speech features. Speech information in the visual domain can be generally categorized into static (mouth 
appearance) and motion (mouth movement) features. This chapter reviews a number of computer-based 
lip-reading approaches using motion features. The motion-based visual speech recognition techniques can 
be broadly categorized into two types of algorithms: optical-low and image subtraction. Image subtrac-
tion techniques have been demonstrated to outperform optical-low based methods in lip-reading. The 
problem with image subtraction-based method using difference of frames (DOF) is that these features 
capture the changes in the images over time but do not indicate the direction of the mouth movement. 
New motion features to overcome the limitation of the conventional image subtraction-based techniques 



in visual speech recognition are presented in this chapter. The proposed approach extracts features by 
applying motion segmentation on image sequences. Video data are represented in a 2-D space using 
grayscale images named as motion history images (MHI). MHIs are spatio-temporal templates that 
implicitly encode the temporal component of mouth movement. Zernike moments are computed from 
MHIs as image descriptors and classiied using support vector machines (SVMs). Experimental results 
demonstrate that the proposed technique yield a high accuracy in a phoneme classiication task. The 
results suggest that dynamic information is important for visual speech recognition.

Chapter XIV
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Features?  ............................................................................................................................................ 416
 Marion Dohen, GIPSA-lab, France
 Hélène Lœvenbruck, GIPSA-lab, France
 Harold Hill, ATR Cognitive Information Science Labs, Japan, & University of 
      Wollongong, Australia

The aim of this chapter is to examine the possibility of extracting prosodic information from lip features. 
We used two lip feature measurement techniques in order to evaluate the “lip pattern” of prosodic focus 
in French. Two corpora with Subject-Verb-Object (SVO) sentences were designed. Four focus condi-
tions (S, V, O or neutral) were elicited in a natural dialogue situation. In the irst set of experiments, we 
recorded two speakers of French with front and proile video cameras. The speakers wore blue lipstick 
and facial markers. In the second set we recorded ive speakers with a 3D optical tracker. An analysis of 
the lip features showed that visible articulatory lip correlates of focus exist for all speakers. Two types of 
patterns were observed: absolute and differential. A potential outcome of this study is to provide criteria 
for automatic visual detection of prosodic focus from lip data.

Chapter XV
Visual Speech Perception, Optical Phonetics, and Synthetic Speech  ................................................ 439
 Lynne E. Bernstein, House Ear Institute, Los Angeles, USA
 Jintao Jiang, House Ear Institute, Los Angeles, USA

The information in optical speech signals is phonetically impoverished compared to the information in 
acoustic speech signals that are presented under good listening conditions. But high lipreading scores 
among prelingually deaf adults inform us that optical speech signals are in fact rich in phonetic infor-
mation. Hearing lipreaders are not as accurate as deaf lipreaders, but they too demonstrate perception 
of detailed optical phonetic information. This chapter briely sketches the historical context of and 
impediments to knowledge about optical phonetics and visual speech perception (lipreading). We re-
view indings on deaf and hearing lipreaders. Then we review recent results on relationships between 
optical speech signals and visual speech perception. We extend the discussion of these relationships to 
the development of visual speech synthesis. We advocate for a close relationship between visual speech 
perception research and development of synthetic visible speech.
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We present a multimodal speaker identiication system that integrates audio, lip texture and lip motion 
modalities, and we propose to use the “explicit” lip motion information that best represent the modality 
for the given problem. Our work is presented in two stages: First, we consider several lip motion feature 
candidates such as dense motion features on the lip region, motion features on the outer lip contour, 
and lip shape features. Meanwhile, we introduce our main contribution, which is a novel two-stage, 
spatial-temporal discrimination analysis framework designed to obtain the best lip motion features. In 
speech recognition, the best lip motion features provide the highest phoneme/word/phrase recognition 
rate, whereas for speaker identiication, they result in the highest discrimination among speakers. Next, 
we investigate the beneits of the inclusion of the best lip motion features for multimodal recognition. 
Audio, lip texture, and lip motion modalities are fused by the reliability weighted summation (RWS) 
decision rule, and hidden Markov model (HMM)-based modeling is performed for both unimodal and 
multimodal recognition. Experimental results indicate that discriminative grid-based lip motion features 
are proved to be more valuable and provide additional performance gains in speaker identiication.
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Lip Motion Features for Biometric Person Recognition  .................................................................... 495
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The present chapter reports on the use of lip motion as a stand alone biometric modality as well as a 
modality integrated with audio speech for identity recognition using digit recognition as a support. First, 
we estimate motion vectors from images of lip movements. The motion is modeled as the distribution 
of apparent line velocities in the movement of brightness patterns in an image. Then, we construct com-
pact lip-motion features from the regional statistics of the local velocities. These can be used as alone 
or merged with audio features to recognize identity or the uttered digit. We present person recognition 
results using the XM2VTS database representing the video and audio data of 295 people. Furthermore, 
we present results on digit recognition when it is used in a text prompted mode to verify the liveness of 
the user.  Such user challenges have the intention to reduce replay attack risks of the audio system.
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Foreword

It is my great pleasure to introduce this timely and comprehensive reference book for researchers inter-
ested in the emerging ield of visual speech recognition. 

It is well known from psychological studies that speech perception is multimodal - we use visual 
information from the lip of the speaker in addition to acoustic information for speech perception. As the 
technology matures, this physiological study of speech can ind exciting real world applications such as 
audiovisual speech recognizers in moving vehicles or factory loors, mobile communication involving 
speech and video of the speakers, and even access control which makes use of the biometric information 
in both the acoustic and visual signal.

This book is a major edited monograph since the 1996 manuscript edited by Stork and Hennecke 
on “Speechreading by Humans and Machines: Models, Systems, and Applications”.  It represents a 
state-of-the-art coverage of research in the area of visual speech recognition. Contributors to this book 
include many renowned pioneers and active researchers in the ield and their contributions collectively 
provide a comprehensive and up-to-date treatment of the discipline.  In particular, the book contains 
chapters that treat lip modeling and segmentation, feature extraction, classiier design, training, valida-
tion, application in visual speech/speaker recognition, as well as chapters that deal with the emotional 
and phonetic/linguistic aspects of visual lipreading.  

I am conident that this book will serve as an invaluable resource for all current researchers seek-
ing further insight into the cutting edge advances on visual speech recognition.  Furthermore, it should 
interest new comers to join in on this emerging and exciting ield of research.

S.Y. Kung
Professor of Electrical Engineering
Princeton University
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Preface

It has been widely accepted that speech perception is a multimodal process and involves information 
from more than one sensory modality. The famous McGurk effect [McGurk and MacDonald, Nature 
264(5588): 746–748, 1976] shows that visual articulatory information is integrated into our perception 
of speech automatically and unconsciously. For example, a visual /ga/ combined with an auditory /ba/ 
is often heard as /da/. This effect is shown to be very robust and knowledge about it seems to have very 
little effect on one’s perception of it.  

Interest in machine lip reading starts to emerge in the mid-1980s (Petajan was probably the irst to 
investigate the problem of machine lipreading (E.D. Petajan 1984), ,when it was shown that visual lip 
information extracted from the speaker’s lip can enhance the performance of automatic speech recog-
nition system, especially in noisy environment. Recently, it has also been shown that dynamics of the 
speaker’s lip during speech articulation provides useful biometric information for speaker recognition. 

Machine lip reading or visual speaker recognition, generally involves three major steps: lip segmenta-
tion, feature extraction, and classiier design. Although signiicant research effort and many technological 
advances have been made recently, machine lip reading is still far from practical deployment. Unlike 
the relatively mature ield of automatic speech recognition, there are still many unsolved theoretical and 
algorithmic issues in machine lip reading. For example, the problems of lighting, shadow, pose, facial 
hair, camera resolution, and so forth, make reliable segmentation and extraction of lip feature a difi-
cult task. The problem is further compounded by the dificult and variable environment visual speech 
recognition systems tend to operate in. There is also relatively little theoretical study on the amount of 
phonetic/ linguistic information that can be extracted from the speaker’s lip for speech perception. 

In this book, we introduce the readers to the various aspects of this fascinating research area, which 
include lip segmentation from video sequence, lip feature extraction and modeling, feature fusion, and 
classiier design for visual speech recognition and speaker veriication. This book collects together 
recent state-of-the-art research in these areas. There are altogether 17 chapters, from 44 authors in 14 
countries & regions (Australia, Canada, China, France, Germany, Greece, Hong Kong, Japan, Mexico, 
New Zealand, Singapore, Sweden, Turkey, and the United States). Many of the contributing authors are 
well-known researchers in the ield. This book would be of great interest to researchers and graduate 
students working in the ields of audiovisual speech and speaker recognition. 

The 17 chapters in the book are organized into four sections: Section I: Introduction & Survey, Section 
II: Lip Modeling, Segmentation,  and Feature Extraction, Section III: Visual Speech Recognition, and 
Section IV: Visual Speaker Recognition. Section I contains four survey/tutorial type chapters (Chapter I 
to IV) that describe recent progress in the ield. They serve to introduce readers to this emerging ield of 
research and summarize the state-of-the-art techniques that are available today. Section II contains four 
chapters (chapter V to VIII), that deal with lip segmentation, modeling, and feature extraction. Section 
III (Chapter IX to XV) contains chapters that look at issues related speciically to visual speech recog-
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nition. For example, chapter X investigates the use of multiple views of the speaker for visual speech 
recognition, chapter XI and XII concentrates on classiier design and training, chapter XIV looks at the 
possibility of obtaining prosodic information from the lip, and chapter XV discusses perceptual studies 
that quantify the information content in visible speech. Section IV contains two chapters (chapter XVI 
and XVII) that describe the use of visual lip feature for biometric applications. Below we give a brief 
description of each chapter.

Chapter I, “Audio-Visual and Visual-only Speech and Speaker Recognition- issues about theory, sys-
tem design, and implementation” provides a tutorial coverage of the research in audio-visual speech and 
speaker recognition. It describes the major research issues and techniques in feature extraction, feature 
fusion, classiier design, and performance evaluation, and lists the major audiovisual speech databases 
used for performance evaluation. The authors survey several current audiovisual speaker/speech recog-
nition systems and discussed challenges and future research directions. 

Chapter II, “Lip Feature Extraction and Feature Evaluation in the Context of Speech and Speaker 
Recognition” surveys the different dynamic lip features and their use in visual speech and speaker rec-
ognition. In this chapter, the focus is more on the approaches for detection and tracking of important 
visual lip features. Together, the two survey chapters serve to introduce readers to the exciting ield of 
audiovisual speech and speaker recognition.

Chapter III, “Lip modeling and segmentation” is a detailed survey of state-of-the-art in lip modeling 
and segmentation. The authors discussed about the different color spaces that provide good separation 
of lip and non-lip region. They describe the two major approaches for lip segmentation, that is, contour-
based and region-based. Within each category, they further categorize the methods as deterministic, 
statistical, supervised, or un-supervised. Different techniques to extract the lip, such as active shape 
model, snake, parametric model, deformable template, as well as their optimization, are discussed. The 
chapter further discusses different performance evaluation techniques and concludes by discussing some 
possible applications that would beneit from advances in lip segmentation.

Chapter IV “Visual Speech and Gesture Coding using the MPEG-4 Face and Body Animation Stan-
dard” introduces the MPEG-4 Face and Body Animation (FBA) standard for representing visual speech 
data as part of a whole virtual human speciication. The super low bit-rate FBA codec included with the 
standard enables thin clients to access processing and communication services over any network includ-
ing enhanced visual communication, animated entertainment, man-machine dialog, and audio/visual 
speech recognition. In the chapter, the author described the deployment of the MPEG-4 FBA standard 
in face animation, body animation, and visual speech processing. The computing architectures that sup-
port various applications are also outlined. This chapter would be of great interest to readers interested 
in the topic of Human Computer Interaction.

Chapter V “Lip Region Segmentation with Complex Background” describes a lip segmentation 
method that is able to handle complex non-lip region such as the presence of beard or shadow. The 
method employs a Multi-class, Shape-guided FCM (MS-FCM) clustering algorithm to separate the lip 
pixels from the non-lip pixels. A spatial penalty term, based on the lip shape information is introduced 
in the clustering algorithm, which boosts the lip membership for pixels inside the lip region while penal-
izes the value for pixels outside the lip region. With the spatial penalty term, lip and non-lip pixels with 
similar color but located in different regions can be differentiated.

Chapter VI “Lip Contour Extraction from Video Sequences under Natural Lighting Conditions” 
presents an algorithm for lip contour tracking under natural lighting conditions. The algorithm extracts 
the inner and outer lip borders from color video sequences. To extract the lip contour, the video images 
are processed in three steps. In step one the mouth area is segmented using color and movement infor-
mation from the face skin. In step two, the mouth corners are detected. The mouth corners are used to 
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initialize the active contours. Step three extracts the lip contour using active contours. The chapter gives 
detail description about the logarithmic hue-like color space transformation that are used to separate the 
lip and non-lip pixels, the hierarchical spatiotemporal color segmentation algorithm integrating hue and 
motion information, and inally, the theoretical derivation used in the optimization of the active contour. 
The algorithm has been successfully applied to several video sequences with no speciic model of the 
speaker and variable illumination conditions.

Chapter VII “3D Lip Shape SPH Based Evolution Using Prior 2D Dynamic Lip Features Extraction 
and Static 3D Lip Measurements” describes a 3D lip modeling and animation technique whose dynamic 
behavior is governed by Smooth Particles Hydrodynamics. The 3D lip model is constructed from facial 
data acquired by a 3D scanner and 2D lip contours extracted from video-sequences of the subject. The 
inluence of muscle contraction around the lip is considered in the model. The authors described in 
detail the 3D model construction and the derivation of the controlling forces that drive the model, and 
presented some simulation results to show the feasibility of their approach.

Chapter VIII “How to Use Manual Labelers in the Evaluation of Lip Analysis Systems?” examines 
the issues involved in evaluating and calibrating labeled lip features which serve as ground truth from 
human operators. The authors showed that subjective error in manual labeling can be quite signiicant, 
and this can adversely affect the validity of an algorithm’s performance evaluation and comparative stud-
ies between algorithms. The chapter describes an iterative method based on Expectation-Maximization 
to statistically infer the ground truth from manually labeled data.

Chapter IX “Visual Speech Processing and Recognition” describes an algorithm that performs limited 
vocabulary recognition of the irst four digits in English based on visual speech features. Three aspects 
of visual speech processing and recognition, namely, mouth region segmentation, lip contour extraction, 
and visual speech recognition are dealt with. For the mouth region segmentation, a modiied Fuzzy C-
means method with the addition of spatial constraints is introduced. For the lip contour extraction, the 
image gradient information is used to create a color map of edge magnitude and edge direction. Edge 
following is then applied on the color map to extract the lip contour. For the visual speech recognition, 
a SVM dynamic network is proposed. SVM classiiers are used to obtain the posterior probabilities and 
the SVMs are then integrated into a Viterbi decoding lattice for each visemic word. The authors showed 
that the SVM dynamic network has superior performance compared to some existing techniques.

Chapter X “Visual Speech Recognition across Multiple Views” investigates the use of multiple views 
of the speaker for visual speech recognition of connected digit strings. Most works on visual speech 
recognition assume that the speaker’s face is captured in a frontal pose. However, in many applications, 
this assumption is not realistic. In this chapter, the authors considered the frontal and the proile views 
captured synchronously in a multi-camera setting. An appearance-based visual front-end that extracts 
features for frontal and proile videos is irst developed. The extracted features then undergo normal-
ization across views to achieve feature-space invariance. This normalization allows recognizing visual 
speech using a single pose-invariant statistical model, regardless of camera view.

Chapter XI “Hidden Markov Model Based Visemes Recognition. Part I: AdaBoost Approach” de-
scribes an AdaBoost-HMM classiier for visemes recognition. The authors applied AdaBoost technique 
to HMM modeling to construct a multi-HMM classiier that improves the recognition rate. Whereas 
conventional single HMM identiies the ideal samples with good accuracy but fail to handle the hard 
or outlier samples, Adaboosting allows new HMMs in a multi-HMM classiier to bias towards the hard 
samples, thus ensuring coverage of the hard samples with a more complex decision boundary. The method 
is applied to identify context-independent and context-dependent visual speech units. The technique was 
compared to conventional HMM for visemes recognition and has shown improved performance.
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Chapter XII “Hidden Markov Model Based Visemes Recognition. Part II: Discriminative Approaches” 
describes an alternative approach to classiier training for visemes recognition. The focus is on emphasizing 
the minor differences between pairs of confusable training samples during HMM classiier training. The 
authors proposed two training approaches to maximize discrimination: Maximum Separable Distance 
(MSD) training and Two-channel HMM training. Both training approaches adopt a criterion function 
called separable distance to improve the discriminative power of an HMM classiier. The methods are 
applied to identify confusable visemes and their results indicate that higher recognition accuracy can be 
attained using these approaches than using conventional HMM.

Chapter XIII “Motion Features for Visual Speech Recognition” studies the motion features that are 
effective for visual speech recognition. A review of two motion feature extraction techniques, namely, 
optical low method and image subtraction method is given. The authors then present their recent work 
on the motion history image (MHI) technique. The MHI method captures the lip dynamics through 
temporal integration of image sequence into a 2-D spatio-temporal template. Feature vectors based on 
DCT coeficients or Zernike moments are then computed from the MHI image and are used for visual 
speech recognition.

Chapter XIV “Recognizing Prosody from the Lips: Is it Possible to Extract Prosodic Focus from 
Lip Features?” This chapter investigates the feasibility of extracting prosodic information from visual 
lip features. Prosodic information plays a critical role in spoken communication, and relects not only 
the emotional state of the speaker, but also carries crucial linguistic information, such as whether an 
utterance is a statement, a question, or a command, or whether there is an emphasis, contrast or focus. 
The authors used two lip feature measurement techniques to evaluate the lip pattern of prosodic focus in 
French. Lip opening and spreading and lip protrusion gestures are tracked and the lip features analyzed 
for prosodic focus in a natural dialogue situation.

Chapter XV “Visual Speech Perception, Optical Phonetics, and Synthetic Speech” reviews perceptual 
studies that quantify the information content in visible speech, demonstrating that visible speech is a rich 
and detailed source of phonetic information. The authors discussed the relations between optical phonetic 
signals and phonetic perception and demonstrated the existence of a strong second-order isomorphism 
between optical signals and visual perception. They further discussed how this second-order isomorphism 
of perceptual dissimilarities and optical dissimilarities can be exploited beneicially in the development 
of a visual speech synthesizer, and suggested that the perceptually relevant phonetic details in visible 
speech should be synthesized in order to create meaningful synthetic visual speech.

Chapter XVI “Multimodal Speaker Identiication using Discriminative Lip Motion Features” describes 
a multimodal speaker identiication system that integrates audio, lip texture, and lip motion modalities. 
The authors proposed a two-stage, spatial-temporal discrimination analysis framework that involves the 
spatial Bayesian feature selection and the temporal LDA to obtain the best lip motion feature representa-
tion for speaker identiication. Two types of lip motion features, that is grid-based image motion features 
and lip shape features, are examined and compared. A multimodality recognition system involving audio, 
lip texture, and lip motion information is demonstrated to be feasible.

Chapter XVII “Lip Motion Features for Biometric Person Recognition” describes the use of lip 
motion as a single biometric modality as well as a modality integrated with audio speech for speaker 
identity recognition and digit recognition. The lip motion is modeled as the distribution of apparent line 
velocities in the movement of brightness patterns in an image. The authors described in detail how the 
lip motion features can be extracted reliably from a video sequence. Speaker recognition results based on 
single digit recognition using the XM2VTS database containing the video and audio data of 295 people 
are presented. They also described how the system can be used in a text prompted mode to verify the 
liveness of the user utilizing digit recognition.
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Visual speech/speaker recognition is an emerging ield of research that has many interesting applica-
tions in human computer interaction, security, and digital entertainment. This book provides a timely 
collection of latest research in this area. We believe that the chapters provide an extensive coverage of 
the ield and would prove to be a valuable reference to current and future researchers working in this 
fascinating area.

Editors
Alan Wee-Chung LIEW
Shilin WANG
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ABSTRACT

The information imbedded in the visual dynamics of speech has the potential to improve the performance 
of speech and speaker recognition systems. The information carried in the visual speech signal compli-
ments the information in the acoustic speech signal, which is particularly beneicial in adverse acoustic 
environments. Non-invasive methods using low-cost sensors can be used to obtain acoustic and visual 
biometric signals, such as a person’s voice and lip movement, with little user cooperation. These types of 
unobtrusive biometric systems are warranted to promote widespread adoption of biometric technology 
in today’s society. In this chapter, the authors describe the main components and theory of audio-visual 
and visual-only speech and speaker recognition systems. Audio-visual corpora are described and a 
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number of speech and speaker recognition systems are reviewed. Finally, various open issues about 
the system design and implementation, and present future research and development directions in this 
area are discussed.

InTRodu CTIon To Aud Io-V ISuAl  ReCogn ITIon SySTemS

Modern audio-only speech and speaker recognition systems lack the robustness needed for wide scale 
deployment. Among the factors negatively affecting such audio-only systems are variations in microphone 
sensitivity, acoustic environment, channel noise and the recognition scenario (i.e., limited vs. unlimited 
domains). Even at typical acoustic background signal-to-noise ratio (SNR) levels (-10dB to 15dB), their 
performance can signiicantly degrade. However, it has been well established in the literature that the 
incorporation of additional modalities, such as video, can improve system performance. The reader is 
directed to the suggested readings at the end of this chapter for comprehensive coverage of these multi-
modal systems. It is well known that face visibility can improve speech perception because the visual 
signal is both correlated to the acoustic speech signal and contains complementary information to it 
(Aleksic & Katsaggelos, 2004; Barbosa & Yehia, 2001; Barker & Berthommier, 1999; Jiang, Alwan, 
Keating, E. T. Auer, & Bernstein, 2002; Yehia, Kuratate, & Vatikiotis-Bateson, 1999; Yehia, Rubin, 
& Vatikiotis-Bateson, 1998). Although the potential for improvement in speech recognition is greater 
in poor acoustic conditions, multiple experiments have shown that modeling visual speech dynamics, 
can improve speech and speaker recognition performance even in noise-free environments (Aleksic & 
Katsaggelos, 2003a; Chaudhari, Ramaswamy, Potamianos, & Neti, 2003; Fox, Gross, de Chazal, Cohn, 
& Reilly, 2003).

The integration of information from audio and visual modalities is fundamental to the design of AV 
speech and speaker recognition systems. Fusion strategies must properly combine information from 

Figure 1. Block diagram of an audio-visual speech and speaker recognition system
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these modalities in such a way that it improves performance of the system in all settings. Additionally, 
the performance gains must be large enough to justify the complexity and cost of incorporating the 
visual modality into a person recognition system. Figure 1 shows the general process of performing AV 
recognition. While signiicant advances in AV and V-only speech and speaker recognition have been 
made over recent years, the ields of speech and speaker recognition still hold many exciting opportunities 
for future research and development. Many of these open issues on theory, design, and implementation 
and opportunities are described in the following.

Audio-visual and V-only speech and speaker recognition systems currently lack the resources to 
systematically evaluate performance across a wide range of recognition scenarios and conditions. One 
of the most important steps towards alleviating this problem is the creation of publicly available multi-
modal corpora that better relect realistic conditions, such as acoustic noise and shadows. A number 
of existing AV corpora are introduced and suggestions are given for the creation of new corpora to be 
used as reference points. 

It is also important to remember statistical signiicance when reporting results.  Statistics such as the 
mean and variance should to be used to compare the relative performance across recognition systems 
(Bengio & Mariethoz, 2004). The use of these statistical measures will be helpful in deining criteria 
for reporting system performance.

Continued advances in visual feature tracking robustness and feature representation such as 2.5D or 
3D face information, will be essential to the eventual incorporation of speech and speaker recognition 
systems in everyday life (Blanz, Grother, Phillips, & Vetter, 2005; Bowyer, Chang, & Flynn, 2006; 
Sanderson, Bengio, & Gao, 2006). Development of improved AV integration algorithms with the abil-
ity to asynchronously model multiple modalities with stream conidence estimates will expedite this 
process. The most limiting factor to widespread adoption of recognition technology is the ability to 
perform robustly given the enormous variability found in the environment and recognition systems.

These issues are addressed throughout this chapter. The theory behind speech and speaker recog-
nition along with system design is summarized and a selection of AV and V-only speech and speaker 
recognition implementations are described. Finally, we describe the design and implementation of our 
real-time visual-only speech and speaker recognition system and evaluate its performance, and describe 
future research and development directions.

Aud Io-V ISuAl  Spee Ch pRo CeSSIng meThod S And Theo Ry

The Importance of Visual Information in Speech and Speaker Recognition

It has long been known that human perception of speech is not invariant to speaker head pose and lip 
articulation suggesting that visual information plays a signiicant role in speech recognition (Lippmann, 
1997; Neely, 1956; Summerield, 1992). However until recent years, automatic speech recognition systems 
(ASR) were limited to the acoustic modality. Consider the fact that hearing-impaired persons are able 
to demonstrate surprising understanding of speech despite their disability. This observation suggests a 
major motivation to include visual information in the ASR problem.

It is clear that visual information has the potential to augment audio-only ASR (A-ASR) especially 
in noisy acoustic situations. Visual and acoustic modalities contain correlated and complementary sig-
nals, but independent noise. For example, if an audio speech signal is corrupted by acoustic noise (i.e. 
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car engine, background speech, plane turbine, loud music, etc.) the corresponding visual information 
is likely to remain unaffected and consequently valuable for recognition. Similarly, noise in the visual 
domain is not likely to affect the audio speech signal. The next challenge is to optimally and dynami-
cally combine the audio and visual information. This section will briely review various methods of 
integrating audio and visual features and associated issues.

The following section describes typical speech and speaker recognition systems. Although the goals 
for speech and speaker recognition are not the same, the fundamental problem is very similar. The 
purpose of automatic speech recognition systems is to identify isolated or continuous words, whereas 
speaker recognition systems attempt to identify an individual.

Audio-Visual Speech and Speaker Recognition System description

Audio-visual recognition systems consist of three main steps: preprocessing, feature extraction, and AV 
fusion. Figure 1 depicts a complete AV system highlighting these three parts. While the application may 
vary, speech and speaker recognition systems are, in general, component-wise identical. These systems 
are mainly differentiated by how they are trained as well as what features are chosen.

Preprocessing occurs in parallel for both the audio and visual streams. On the audio side, techniques 
such as signal enhancement and environment snifing help prepare the incoming audio stream for the 
feature extraction step (Rabiner & Juang, 1993). Video preprocessing, which has traditionally been a 
major challenge, consists of face detection and tracking and, subsequently, the tracking of regions of 
interests (ROIs). In some cases, these ROIs will undergo further processing such as histogram equal-
ization or photo-normalization. The speciic techniques will vary from system to system and their 
choice is governed not only by properties of the expected inputs, but also by the choice of features to 
be extracted.

Audio feature extraction has been an active ield of research for many years. Many results have been 
reported in the literature regarding the extraction of audio features for clean and noisy speech conditions 
(Rabiner & Juang, 1993). Mel-frequency cepstral coeficients (MFCCs) and linear prediction coeficients 
(LPCs) represent the most commonly used acoustic features. Additional research is ongoing in the ield 
of noise robust acoustic features. After acoustic feature extraction, irst and second derivatives of the 
data are usually concatenated with the original data to form the inal feature vector. The original data is 
also known as the “static coeficients” while the irst and second derivatives are also known as “delta” 
and “delta-delta” or “acceleration” coeficients. 

Visual feature extraction is a relatively recent research topic, and many approaches to visual fea-
ture extraction and audio-visual feature fusion currently exist in the literature. Visual features can be 
grouped into three general categories: shape-based, appearance-based, and combinational approaches. 
All three types require the localization and tracking of ROIs, but when some shape-based features are 
used the method of localization and tracking during preprocessing may be chosen to directly output the 
shape-based features. Active Appearance Models (AAMs) and Active Shape Models (ASMs) are among 
the techniques that combine tracking and feature extraction (T. Cootes, Edwards, & Taylor, 1998, 2001; 
Gross, Matthews, & Baker, 2006; Matthews & Baker, 2004; Xiao, Baker, Matthews, & Kanade, 2004). 
For non-interdependent techniques, the features are extracted directly from the ROI and delta and delta-
delta coeficients concatenated with the static coeficients to produce the inal feature vector.

Shape-based visual features include the inner and outer lip contours, teeth and tongue information, 
and descriptions of other facial features such as the jaw (Aleksic & Katsaggelos, 2004). Shape informa-
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tion can be represented as a series of landmark points, parametrically as deined by some model, or in 
functional representations.

Appearance-based features are usually based off of transforms such as the discrete cosine transform 
(DCT), discrete wavelet transform (DWT), principal component analysis (PCA), and appearance modes 
from AAMs (Potamianos, Neti, Luettin, & Matthews, 2004). These transforms produce high dimen-
sional data, but the transforms also compact the input signal’s energy. This convenient property leads 
to the use of dimensionality reduction techniques such as PCA or linear discriminant analysis (LDA) 
to produce the static features. 

Combinational approaches utilize both shape and appearance based features to create the inal feature 
vector. The feature vector may be some concatenation of geometric and appearance based features, or, 
as in the case of AAMs, may be a parametric representation using a joint shape-appearance model.

Audio-visual fusion integrates acoustic and visual information to increase performance over single-
modality systems. As shown in Figure 1, if fusion does not occur, audio-only or video-only systems 
result. However, fusing the audio and visual data results in more robust systems due to the diversity 
of the data acquisition. Various fusion techniques exist, as described later in this section. Some fusion 
techniques require equal audio and visual frame rates, but these rates are typically different. Acoustic 
frames are usually sampled at 100 Hz, while video frame rates are usually between 25 and 30 frames 
per second (50-60 interlaced ields per second). Normally, the video is up-sampled using interpolation 
to achieve equal frame rates.

Analysis of Visual Features

Choosing appropriate visual features remains an open research topic for audio-visual systems, and many 
considerations must go into the choice of features. While each feature extraction algorithm has its own 
positive and negative attributes, this section focuses on the general considerations that one must weigh 
such as robustness to video quality, robustness to visual environment, and computational complexity. 
Generally, visual feature extraction algorithms are divided into appearance-based and shape-based 
features, which then may be subdivided as shown in Figure 2.

Video quality affects the visual region of interest (ROI) localization and tracking as well as the extracted 
features themselves. Video artifacts, such as blocking and noise, along with poor video resolution may 
affect the localization and tracking algorithms and produce incorrect tracking results. Some techniques that 
use parametric models, such as facial animation parameters (FAPs), or statistical models, such as active 
appearance models (AAMs), may be more robust to these sorts of problems, while individual landmark 
tracking may be signiicantly affected. Other more robust approaches include the Viola and Jones object 
recognizer (Viola & Jones, 2001), the “bag of features” method (Yuan, Wu, & Yang, 2007), and other 
methods that focus on more global features or exploit the relationships between landmark points. Once 
the features are located, video artifacts can adversely affect the extracted features. Appearance-based 
features are especially susceptible to these corruptions as they perform operations directly on the pixel 
values. When using discrete cosine transform (DCT) based features, for example, blocking artifacts will 
signiicantly alter the DCT coeficients, but the DCT may not be as adversely affected by video noise. 
Shape-based feature extraction usually utilizes similar techniques to the ROI localization and tracking 
procedure, and has basically the same issues. In these ways, it is important to note the expected video 
quality and level of robustness needed when choosing visual front-end components.
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Visual environment plays a large role in accurate and useful feature extraction. In much the same 
way that video artifacts affect the visual front end, so do environmental factors such as lighting and the 
subject’s distance from the camera. Appearance-based features are strongly altered by static lighting 
differences and dynamic lighting changes, such as shadows, while shape-based features can be robust 
to these problems if the underlying detection methods are also robust. Occlusions, however, present a 
major problem to both appearance and shape-based features. Appearance-based features provide almost 
no resiliency to occlusions, but certain levels of occlusions can be taken into account with model-based 
geometric feature extractors.

Computationally, appearance based feature extraction is naturally less expensive than shape-based 
methods due to the use of simple matrix-based transforms versus more complex techniques. Furthermore, 
appearance based features can perform at signiicantly faster speeds due to the availability of hardware 
digital signal processing (DSP) chips speciically designed to perform the DCT or other transforms. 
Additionally, shape-based feature extraction has yet to be ofloaded directly onto hardware, but pro-
cessing speed can be increased through the clever use of graphic processing units (GPUs). It should be 
said that this does not reduce the inherent complexity, nor does the speed rival DSP implementations 
of appearance-based extraction.

Figure 2. Illustrating the shape-based feature extraction process in (Aleksic, Williams, Wu, & Katsag-
gelos, 2002)
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Audio-Visual Speech and Speaker Recognition process

Speech Recognition

The goal of speech recognition systems is to correctly identify spoken language from features describing 
the speech production process. While acoustic features such as MFCCs or LPCs are good measures of 
the speech production process and may help achieve high recognition performance in some systems, 
there are non-ideal environments where there may be too much noise for these single modal systems to 
perform adequately. In these cases, multi-modal systems incorporating other measures of the spoken 
words can signiicantly improve recognition. We will not cover the details of A-ASR systems as they 
have been covered extensively in previous literature (J. P. Campbell, 1997). We discuss the process of 
AV-ASR and the integration of the audio and visual modalities. These bi-modal systems should ideally 
outperform their audio-only counterparts across all acoustic SNRs, especially for situations with high 
acoustic noise. Since hidden Markov models (HMMs) represent the standard tool for speech and speaker 
recognition, in the remaining part of this section we briely describe the mathematical formulation of 
single- and multi-stream HMMs.

Hidden Markov models represent a doubly stochastic process in which one process, the “hidden”, 
or unobservable process, progresses through a discrete state space while a second observable process 
takes on distinct stochastic properties dependent upon the hidden state. In this context, unobservable 
implies that the process itself does not emit any information that one may directly gather; therefore it is 
hidden from the observer. One, however, may infer information about this hidden process by gathering 
information produced by the directly observable process due to its dependence on the hidden process. 
This inference lies at the heart of HMMs. 

Table 1 summarizes the notation used when working with hidden Markov models. The three primary 
issues facing HMMs are described in  (Rabiner & Juang, 1993):

1. Evaluation - How does one evaluate the probability of an observed sequence given the model 
parameters?

Table 1. Notation reference for hidden markov models. Recreated from Aleksic 2003.
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2. Hidden state recovery - How can the hidden state sequence be determined from an observation 
sequence given the model parameters?

3. Model updating - How can one determine the parameters of an HMM from multiple observa-
tions?

While we address HMMs in the context of speech recognition, they also ind great use in a variety 
of disciplines including normality/abnormality detection, DNA sequencing, detection of ECG events, 
economics, and among many others.

If single stream HMMs are to be employed for speech recognition, audio and visual features must 
be combined into a single observation vector, ot, consisting of the audio observation vector, v

to , con-
catenated with the visual observation vector, a

to , i.e.,
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Most commonly, Gaussian mixture models (GMMs) are used to model the state emission probability 
distributions, which can be expressed as
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Figure 3. A diagram depicting a left-to-right single-stream HMM showing transition probabilities (aij), 
emission probabilities (bj), and showing the observations mapped to states
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In Eqn. 2, bj refers to the emission distribution for state j in a context-dependent HMM as in Figure 
3. The Gaussian mixtures weights are denoted by cjm, for all M Gaussion mixtures, and N stands for a 
multivariate Gaussian with mean, ujm, and covariance matrix, Σjm. The sum of all mixtures weights, cjm, 
should be 1. Now recognition occurs by summing the joint probability of a set of observations and state 
sequences over all possible state sequences for each model, that is, 

( ) ( ) ( )∑∀=
Q

iii QPQOPQOP
ii

|,|maxarg|,maxarg      (3)

In Eqn. 3 λi stands for the ith word model, Q represents all combinations of state sequences, and we 
are summing over all possible state sequences for the given model. More speciically, given a series 
of observations O = [o1, o2,…oT], state-transition likelihoods, 

tt qqa
1− , state-emission probabilities, bj(ot) 

and the probability of starting in a state πq for each model, the word with the highest probability of 
having generated O can be determined by summing over all possible state sequences, Q = [q1, q2,…qT] 
as shown in Eqn. 4. 

( ) ( ) ( ) ( ) ( )∑∑ −=
∀ T

TTT
qqq

Tqqqqqqqq
Q

ii obaobaobQPQOP



,,

21
21

122111
|,| .   (4)

So the recognized word will have a certain state sequence with a higher probability of generating the 
observation vector, O, than any other word model. It is worth noting that the modeled objects could also 
be phonemes, visemes, or speakers. It is clear that the brute force method for computing probabilities for 
all models and combinations of state sequences becomes infeasible even for relatively small vocabularies. 
This has lead to more eficient algorithms for training model parameters and evaluating log-likelihoods 
such as Baum-Welch re-estimation, which relies on the expectation maximization (EM) algorithm, and 
the Viterbi algorithm which takes advantage of dynamic programming (Deller, Proakis, & Hansen, 1993; 
S. Young et al., 2005). For additional details on the theory of HMMs, the reader is encouraged to see 
Rabiner and Juang’s introduction to HMMs (Rabiner & Juang, 1993).  The Hidden Markov Modeling 
Tool Kit (HTK) and the Application Tool Kit for HTK (ATK) are excellent frameworks for HMM based 
modeling and evaluation, and are freely available online (see suggested readings).

When multiple modalities are present, multi-stream HMMs, stream weights are commonly used to 
integrate stream information as part of the evaluation process. The state-topology of a typical multi-
stream HMM is shown in Figure 4. In the case of audio-visual speech or speaker recognition, audio 
and visual stream weights are applied as exponential factors to each modality in calculating the state 
emission probability, that is,
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The index, s, indicates either the audio or visual modality, and the exponential weight, γs, relects 
the importance of the audio or stream weight in the recognition process. It is often assumed that the 
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stream weights sum to one, γa + γv = 1. Multi-stream HMMs have been extensively applied to audio-
visual speech and speaker recognition systems (Pitsikalis, Katsamanis, Papandreou, & Maragos, 2006; 
Potamianos, Neti, Gravier, Garg, & Senior, 2003; Tamura, Iwano, & Furui, 2005).

Product HMMs (PHMMs) are an extension to the standard and multi-stream HMMs, which have 
seen success in multi-modal speech and speaker recognition (Aleksic & Katsaggelos, 2003b; Movel-
lan, 1995; Neian, Liang, Pi, Liu, & Murphy, 2002). PHMMs have the advantage that they allow asyn-
chrony between the audio and visual modalities within a phoneme during log-likelihood recombination 
(Nakamura, 2001; Neti et al., 2000). Figure 5 shows a diagram of the state-topology of a PHMM. The 
audio-visual emission probabilities for PHMMs are described in (Nakamura, 2001). In Figure 5, the 
PHMM audio stream emission probabilities are tied along the same column while visual stream emis-
sion distributions are tied in along the same row.

Figure 4. HMM state topology for a 3-state, multi- stream HMM. Shaded states are non-emitting

Figure 5. A product HMM with 9 states. Shaded states are non-emitting
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Other methods utilizing classiiers such as artiicial neural networks (ANNs), genetic algorithms, and 
support vector machines (SVMs) have also been applied to the problem of speech and speaker recogni-
tion, however with less success than the HMM and its variants (Movellan, 1995; Neian et al., 2002).

Speaker Veri.cation and Identi.cation

The speaker recognition process closely parallels the modeling approach to speech recognition, but 
instead of recognizing words or phonemes, the objective is to determine whether a person is part of an 
authorized group (veriication) and possibly the identity of the person (identiication). The acoustic and 
visual features used for speaker recognition are the same as in speech recognition. Similar statistical 
methods are used to model and evaluate a speaker’s dynamic speech characteristics. During the recog-
nition phase, speakers are identiied by computing the posterior probability of each speaker generating 
the observations. The objective function for speaker recognition can be written similarly to Eqn. 3 as

( ) { }fvasOcPc
Cc

ts ,,,|maxargˆ , ∈=
∈ .       (6)

In Eqn. 6, ĉ  is the recognized class (speaker) from the set of all classes (speakers), C, and P(c|Os,t) is 
the posterior probability of class, c, conditioned on the observations, Os,t. In Eqn. 6, a static frontal face 
modality, f, representing static frontal face features is allowed in addition to the audio, a, and visual, v, 
modalities. Utilizing only the maximum a posteriori criterion across authorized users, classiication will 
force a user outside the authorized users set to be identiied as one of the possible enrolled persons.

A world class modeling arbitrary users outside the authorized client set is typically implemented to 
overcome this forced classiication. In speaker veriication systems there are two classes. One class cor-
responds to all enrolled or authorized users and the other class is the aforementioned general population, 
or world, model representing all other users (imposters). Authorization is determined by a similarity 
measure, D, which indicates whether biometric observations were more likely to come from the world 
(imposter) model or the authorized users model, that is,

( ) ( )tsts OwPOcPD ,, |log|log −= .        (7)

In Eqn. 7, we have represented the world class as w. If the difference, D, is above or below some 
threshold the decision is made about whether the observations were generated by an authorized user or 
an imposter. The speaker identiication, or recognition, process operates similarly to speech recognition. 
The speaker recognition problem is to determine the exact identity of the user from the set of authorized 
users and an imposter class. The maximum posterior probability is calculated for each class as it is for 
word models in speech recognition. One difference between speaker recognition and speech recognition 
is that the class priors are often modeled by GMMs, that is,

( ) ( )∑=
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In Eqn. 8, the conditional probability, ( )jts cOP |, , of seeing a set of observations, Os,t, for the jth 
class, cj, is expressed as a mixture of normal Gaussians with weights, wjsm, similarly to Eqn. 2. This 
means that the GMM is being utilized to model the general speech dynamics over an entire utterance. 
However, speaker recognition may also use HMMs to capture the dynamics of speech in the exact same 
way as speech recognition. In either case, the experiments may be text-dependent or text-independent. 
Text-dependent experiments require all users to utter a speciic phrase also used to train the recognition 
system. This type of biometrics system is vulnerable to imposters who may have a recording of the user 
saying the phrase. In order to overcome this limitation, text-independent systems have been proposed 
which attempt to capture general dynamic audio and visual speech characteristics of the authorized us-
ers, independent of the training data so that recognition systems can validate or identify the user based 
on a randomly chosen phrase.

Experiment Protocols and Analysis

Speech and speaker recognition experiments are most often characterized by their recognition rates 
and error rates or rank-N rates, meaning the correct result is in the top N recognition results. However, 
many times a deeper analysis of experimental results is desired. When the experiment is designed so 
that the result is binary, as in speaker veriication systems, false-acceptance rates (FAR), false-rejec-
tion rates (FRR), and equal-error rates (EER) become important performance measures. In veriication 
experiments, the FAR is deined as the number of imposter attacks accepted, Ia, over the total number of 
imposter attacks attempted, I. The FRR is deined as the number of authorized users incorrectly identi-
ied by the system as imposters, CR, divided by the total number of authorized user claims, C.

I
IFAR a=   

C
CFRR R=           (9)

There is always a tradeoff between the FAR and FRR, and the rate at which they are equal is known 
as the EER. For instance, if security is of primary concern, it may be necessary to minimize the number 
of false acceptances at the expense of increasing the false rejections. Conversely, if ease of use is more 
important clients may not be willing to tolerate a large number of false rejections. Often, the receiver 
operator curve (ROC) or detection cost function (DCF) are generated to characterize the tradeoff be-
tween FAR and FRR for a system. More details are described in (Aleksic & Katsaggelos, 2006; Bengio, 
Mariethoz, & Keller, 2005).

The statistical signiicance of results should also be carefully analyzed. The mean and variance of the 
recognition rates over a number of trials should be considered when comparing recognition systems with 
the same setup. In order to exclude outlier effects (due to tracking errors, poor transcriptions, unusual or 
missing data, etc.), researchers should report the percent of speakers whose recognition rates were above 
a certain recognition threshold.  For example, a researcher might report that the speech recognition rate 
was greater than 90% for 95% of the speakers. Standards for evaluating and comparing results could 
deine testing conigurations to provide statistically signiicant performance measures. For example, it 
is unfair to compare isolated digit recognition rates on a database of 10 subjects against rates obtained 
on a database consisting of 100 subjects. The design of performance measures should therefore take 
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into account the size of the testing database.  The statistical signiicance of results can also be improved 
using cross-validation or leave-one-out testing protocols.  In these methods, a certain percentage of 
the speakers are used for training, while the remaining speakers are used for testing.  The training and 
testing data sets can be shifted to obtain multiple recognition results which when averaged should give 
a better overall recognition rate than a single speaker independent result.

Audio-Visual Fusion methods and databases

In this section we review some of the most commonly used information fusion methods, and discuss 
various issues related to their use for the fusion of acoustic and visual information. We briely review 
AV corpora commonly used for AV research and illustrate various desirable characteristics, such as, 
adequate number of subjects and size of vocabulary and utterances, realistic variability, and recom-
mended experiment protocols. 

Information fusion plays a vital role in audio-visual systems governing how the audio and visual 
data interact and affect recognition. Generally, information fusion techniques can be grouped into three 
categories indicating when the multi-modal integration takes place (Potamianos et al., 2003).

Early Integration implies the audio-visual data is combined before the information reaches the 
recognizer and, thus, the fusion takes place at either sensor (raw-data) level or at the feature level. A 
variety of methods exist performing the integration itself, including using a weighted summation of 
the data and simple data concatenation. While an intuitive fusion technique, data concatenation tends 
to introduce dimensionality related problems.

Intermediate Integration occurs during the recognition process and usually involves varying param-
eters of the recognizer itself. In the case of multi-Stream HMMs, for instance, a stream weight associated 
with each modality may be adjusted to increase or decrease the modality’s inluence. This technique 
allows for adjusting the modality’s inluence on a variety of time scales ranging from the state level to 
the phone level up to the word or sentence level. Unfortunately, the tradeoff for this level of control is 
that one becomes limited in the choice of the recognizer’s HMM structure.

Late Integration combines the outputs of independent recognizers for each modality resulting in a 
single system output. This type of integration usually takes place at either the score-level or decision 
level. In decision fusion, methods for computing the inal result include majority voting, N-best lists, 
and Boolean operations. Score-level fusion usually utilizes weighted summations/products or other 
machine learning classiiers. While late integration allows more freedom in information fusion methods, 
intermediate integration supports fusion at various time-scales.

In order to help the reader quickly peruse relevant AV databases we have summarized a number of 
popular AV speech corpora in Table 2. This table describes the number and breakdown of speakers, the 
audio-visual dialogue content, recording conditions, and audio-visual data acquisition characteristics 
for each database. Planning audio-visual speech experiments requires careful database selection to 
guarantee suficient training and testing data for a given experiment, whether it is continuous AV-ASR, 
isolated visual-only digit recognition, text-dependent dynamic AV speaker recognition, or some other 
AV experiment. 

Typically no single database is likely to contain all of the desired qualities for an AV speech corpus 
(number of speakers, audio or visual conditions, vocabulary, etc.), and a byproduct of this variability 
is that comparing AV speech or speaker recognition results on different databases becomes dificult. 
Consequently, there is an obvious need for new AV databases and standards on AV speech database 
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content and acquisition to allow for fairer comparisons in AV speech and speaker recognition results 
across differing databases. AV speech corpora should better simulate realistic non-ideal conditions, and 
standardize evaluation protocols to avoid biased results. This requires speech corpora large enough and 
with enough variability to avoid database dependent results. For example, it is naïve to perform speaker 
independent speech recognition experiments on a database consisting of only 10 speakers, and then to 
make general claims about the system recognition performance on a general level. Even if the database 
is large, the results may be speciic to the speakers in the database. Unfortunately, it is often extremely 

Table 2. A list of popular audio-visual speech corpora and short descriptions of each. All databases are 
publicly available (may require a fee) with the exception of the IBM ViaVoice database.
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time consuming to collect large speech corpora (especially with video) due to the human element and 
database size considerations. As it becomes more feasible to store and transport large amounts of data, 
the database sizes should increase, however, database collection methods must also be considered to 
prevent artiicial effects due to codec compression or other data processing artifacts. In a later section, 
we discuss challenges facing development of AV speech and speaker recognition systems.

Table 2. A list of popular audio-visual speech corpora and short descriptions of each. All databases are 
publicly available (may require a fee) with the exception of the IBM ViaVoice database. (continued)
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A BRIeF SuRVey  o F Aud Io-V ISuAl  ReCogn ITIon SySTemS

Many various AV speech recognition and biometrics systems have been reported in the literature. These 
systems are typically dificult to compare because each may use different visual features, AV databases, 
visual feature extraction methods, AV integration techniques, and evaluation procedures. Nonetheless, 
we present various AV and V-only dynamic speech and speaker recognition systems found in the lit-
erature, provide comparisons, and show experimental results.

Audio-Visual Biometrics Systems

In (Luettin, Thacker, & Beet, 1996), a dynamic visual-only speaker identiication system was proposed, 
which focused solely on information present in the mouth region. They used the Tulips database (Movel-
lan, 1995) to perform text-dependent (TD) and text-independent (TI) experiments utilizing HMMs for 
recognition. They reported TD speaker recognition rates of 72.9%, 89.6%, and 91.7% for shape-based, 
appearance-based, and hybrid (concatenated combination) visual features, respectively. They achieved 
TI recognition rates of 83.3%, 95.8%, and 97.9% utilizing the same shape-based, appearance-based, 
and joint visual features as in the TD experiments. Overall, they achieved better recognition rates using 
appearance-based over shape-based visual features, although the hybrid (shape and appearance) visual 
features showed further improvement.

Audio-visual speaker recognition systems utilizing static visual features have also been reported in 
the literature. In (Chibelushi, Deravi, & Mason, 1993), an audio-visual speaker identiication system is 
proposed, which combines acoustic information with visual information obtained from speaker face 
proiles. Utilizing speech information, static visual information, and combined audio-visual informa-
tion, they report EERs of 3.4%, 3.0%, and 1.5%, respectively, highlighting the usefulness of multiple 
modalities for recognition tasks.

In (Brunelli & Falavigna, 1995), the proposed, TI, AV biometrics system based on audio-only speaker 
identiication and face recognition was able to identify speakers with recognition rates of 98%, 91%, 
and 88% utilizing integrated AV features, audio-only features and face recognition, respectively. In 
these experiments, the speech classiiers corresponded to static and dynamic acoustic features obtained 
from the short time spectral analysis of the audio signal. Audio-based speaker recognition was then 
determined using vector quantization (VQ). The face recognition used visual classiiers corresponding to 
image features extracted around the eyes, nose, and mouth. Again the integrated system’s performance 
surpasses the audio-only speaker recognition and face recognition systems individually.

In another system (Ben-Yacoub, Abdeljaoued, & Mayoraz, 1999; Messer, Matas, Kittler, Luettin, & 
Maitre, 1999), TD and TI speaker veriication experiments were performed on the XM2VTS database. 
This system made use of elastic graph matching to obtain face similarity scores. In the experiments, 
SVMs, Bayesian methods, Fisher’s linear discriminant, decision trees, and multilayer perceptrons (MLP) 
were used for post-classiication opinion fusion. They reported the highest veriication rates utilizing 
SVM and Bayesian classiiers for fusion. In these cases, integrating information from multiple modali-
ties outperformed single modality results.

The TI speaker veriication system proposed in (Sanderson & Paliwal, 2004) utilized features of a 
person’s speech and facial appearance. They used static visual features obtained by principle component 
analysis (PCA) on the face image area containing a speaker’s eyes and nose. Mel frequency cepstral 
coeficients (MFCC) along with their delta and acceleration values were used as the audio features. Si-
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lence and background noise were removed using a voice-activity-detector (VAD), and Gaussian mixture 
models (GMM) were trained as experts to obtain opinions based on acoustic features. Sanderson and 
Paliwal performed an extensive investigation of non-adaptive and adaptive information fusion methods 
and analyzed the results in clean and noisy conditions. More speciically, they tested fusion techniques 
based on non-adaptive and adaptive weighted summation, SVMs, concatenation, piece-wise linear post-
classiiers, and Bayesian classiiers. These fusion techniques were examined across a range of SNRs 
(12, 8, 4, 0, -4, -8 dB) on the VidTimit database. The best result achieved at 12 dB SNR had a total error 
rate (deined as the sum of FAR and FRR) near 5% using a Bayesian fusion method. The best total error 
rate achieved at -8 dB SNR was approximately 7% using a piece-wise linear post-classiier.

In (Jourlin, Luettin, Genoud, & Wassner, 1997), a TD AV speaker veriication system was described 
utilizing dynamic audio and visual features. Acoustic features were LPC coeficients along with their 
irst and second order derivatives. Visual features included lip shape parameters, intensity parameters, 
and the scale. In all, there were 39 acoustic features and 25 visual features, which were used to train 
HMMs for evaluation on the M2VTS database. The authors demonstrated an improved false acceptance 
rate (FAR) of 0.5%, utilizing a weighted combination of the audio and visual scores, over 2.3% realized 
by the audio-only system.

A speaker recognition and veriication system utilizing multi-stream HMMs is presented in (Un-
known, 1999; Wark, Sridharan, & Chandran, 1999, 2000). Acoustic features in this system were MF-
CCs, and visual features were found from the lip contours using PCA and LDA. Their integrated AV 
system showed signiicant improvement over the audio-only system at low SNRs, and even surpassed 
the visual-only systems in these noisy acoustic conditions while demonstrating competitive rates at high 
SNRs compared to the audio-only system.

In (Aleksic & Katsaggelos, 2003a, 2004) an AV speaker recognition system based on MFCCs (plus 
irst and second order derivatives) and MPEG-4 compliant facial animation parameters (FAPs) was 
presented. FAPs are shape based visual features which represent the motion of facial components. In 
this work, PCA was performed on the FAPs corresponding to the outer-lip contour, and the three highest 
energy PCA projection coeficients, along with their irst- and second-order derivatives, were used as 
visual features. In order to extract FAPs, a novel method based on curve itting and snake contour itting 
was developed to estimate the outer-lip contour from the video in the AMP/CMU database (Aleksic et 

Table 3. Speaker recognition and veriication results reported in (Aleksic & Katsaggelos, 2003a). Note the 
improvement of the integrated AV systems over the audio-only (AO) system at low audio SNRs (Adapted 
from Aleksic & Katsaggelos, 2003a).
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al., 2002). Using these features and single stream HMMs, they performed speaker identiication and 
veriication experiments across audio SNRs of 0 to 30 dB. Their results are summarized in Table 3.

The AV speaker identiication and veriication system proposed in (Chaudhari & Ramaswamy, 
2003), dynamically modeled the audio and visual information reliability with time-varying parameters 
dependent on the context created by local behavior of the AV data stream. Their system extracted 23 
MFCC coeficients and 24 DCT coeficients from the normalized mouth region as the audio and visual 
parameters, respectively. GMMs were chosen to model the speakers and time-dependent parameters 
in order to estimate the stream reliability. System performance was evaluated on the IBM ViaVoice 
database, and EERs of 1.04%, 1.71%, 1.51%, and 1.22% were obtained for the adaptive integrated AV, 
audio-only, video-only, and static AV systems, respectively.

An Audio-Visual dynamic Biometrics Implementation

In (Shiell et al., 2007) a dynamic video-only biometrics system was implemented with a robust and auto-
matic method for tracking speakers’ faces despite most of the adverse conditions mentioned previously. 
The overall system is shown in Figure 6 with the visual front-end expanded to show the sub-components 
of the visual feature extraction process. The system relied on Viola and Jones based face detection 

Figure 7. The automatic visual biometrics system proposed by (Shiell, Terry, Aleksic, & Katsaggelos, 
2007). The visual front-end of the system consists of four main components: face detection, face track-
ing, visual feature normalization/extraction, and recognition.

Figure 6. Three examples of Haar features used to build classiiers in Viola and Jones face detection
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(Viola & Jones, 2001) for initialization, and active appearance models (AAMs) for face tracking and 
normalization as well as feature location. These visual detection and tracking methods represent robust 
and eficient algorithms, which allow the system to operate in real-time on a wide variety of speakers 
in most environments with little user cooperation required.

The AAM itting algorithm used to track a speaker’s face in this system was initialized near the 
speaker’s face in the frame. The face region detected by the Viola and Jones face detection algorithm 
was used as the initial location for AAM itting. Many variations on the Viola and Jones face detection 
algorithm exist, but in general these algorithms multiply simple (Haar) features, shown in Figure 7, 
over many positions and scales and across many training face images to train weak classiiers using 
Adaboost techniques. These weak classiiers can be cascaded to form a single strong face classiier. 
The iltering can be computed very quickly using the integral image, which reduces the simple feature 
multiplications to additions and subtractions. Aligning the weak classiiers in a cascade allows the 
ilter to rapidly validate possible object locations by immediately discarding non-object locations in 
the early stages of classiier cascade. See (Barczak, 2004; Lienhart & Maydt, 2002) for more details 
and variations on the Viola and Jones face detection algorithm. The OpenCV C++ library was used 
in this system, and is freely available online (see suggested readings). The face detector implemented 
in (Shiell et al., 2007), detected only frontal faces; however, this is ideal for speaker recognition tasks 
since frontal views of the face and mouth are desired anyway. The result of the face detection was a 
bounding box containing the face region, which was consequently used to initialize the AAM location 
and scale as illustrated in Figure 8.

Face tracking was accomplished using an AAM tracker similar to (Potamianos et al., 2004). In general, 
AAMs attempt to solve the problem of aligning a generic object model to a novel object instance in an 
image. The end result is that the object location is deined by a number of control points, or landmarks, 
which can then be used to segment the object, such as lips or face, from the image. AAMs represent a 

Figure 8. Example result of Viola and Jones face detection
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statistical model of shape and texture variation of a deformable object. Combining these shape and tex-
ture modes linearly, as in Figure 9, the AAM can then generate novel examples of the modeled object, 
M(W(x,p)), or can be it to an existing object instance. 

The process for training an AAM can be complex and many variations to the algorithm exist. Here we 
briely discuss the steps involved and suggest additional sources for more detailed information regarding 
the theory of AAMs. The irst step in training an AAM is to acquire landmark point data. Typically, 
speciic points on the object to be modeled are marked by hand on many example images of the object. 
For example, in Figure 9, the vertices in the face mesh represent the landmark points. The landmark 
points are then aligned with respect to scale, in-plane rotation, and translation using a technique such 
as Procrustes analysis. The shape model is derived from performing PCA on the aligned landmarks and 
retaining the top few modes of variation, si. The texture model is obtained through a similar process. 
All pixels, x, in the image lying within the object mesh (deined by the control points) are warped by 
piecewise linear warp functions, W(x,p), depending on the shape parameters, p, to the mean shape, so, 
to provide pixel correspondence across all the training images. This allows the mean texture, Ao, to 
be calculated, and the texture modes, Ai, to be determined by PCA of the rastered pixels. Fitting the 
AAM is then an optimization problem seeking to minimize the squared error between the model and 
the image textures with respect to the shape and texture parameters. For a more in depth discussion on 
implementing an AAM itting algorithm see (Neti et al., 2000). 

In this system, a frontal face AAM was trained by labeling 75 points on each of 300 training im-
ages, consisting of 24 different speakers under different lighting conditions, from the VALID database 

Figure 9. Diagram illustrating the concept of AAM’s. A linear combination of texture and shape modes 
form a novel model instance.
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(Fox, O’Mullane, & Reilly, 2005). In order to achieve a fast, stable algorithm speed and avoid model 
divergence, 5 model updates were computed for each frame. The system used a novel method using a 
least mean squares (LMS) adaptive ilter to update the AAM appearance parameters at each iteration 
(Haykin, 2002). In the algorithm formulation proposed in (T. Cootes et al., 2001), the model update is 
estimated using multivariate linear regression. However, Matthews and Baker (2004) note that linear 
regression does not always lead to the correct parameter update. If the texture and shape models are 
kept independent, then an elegant analytical solution exists to determine the model update using the 
Hessian matrix and steepest descent images (Matthews & Baker, 2004). Using the inverse compositional 
optical low framework, this algorithm is very eficient because it avoids recalculating the Hessian 
matrix at each iteration by optimizing the parameter update with respect to the average model texture 
instead of the extracted image texture which would require re-computing the Hessian every iteration. 
See (Baker, Gross, & Matthews, 2003a, 2003b; Baker & Matthews, 2004), for more information on 
the inverse compositional optical low framework as well as other optical low tracking methods. In 
addition, developers and researchers should be aware that Mikkel B. Stegmann and Tim Cootes have 
released AAM modeling tools that are publicly available online (see suggested readings).

An important and often overlooked real-time tracking issue is that of detecting tracking failure. The 
automated visual biometrics system described here used a simple reset mechanism based on the scale 
of the tracked face in the AAM rigid transform. The scale was found by calculating the norm of the 
scale factors in the AAM rigid transformation matrix. The system reinitialized at the face detection 
stage if the scale of the AAM is outside predeined bounds. In other words, if the AAM model became 
too small or too large the system reset. Generally, this reset mechanism worked since the AAM scale 
parameter typically exploded towards ininity or diminished to an extremely small scale very quickly 
in poor tracking conditions.

In the literature, AAMs are typically itted iteratively until a convergence criterion is satisied. This 
may be as simple as checking the itted model error at the end of each model itting, and resetting if 
the model does not converge after a certain number of iterations or converges with a large texture er-
ror. There is an opportunity here to improve tracking performance using outlier estimation to identify 
and correct for poor model itting before the system tracking fails completely. The problem of visual 
feature extraction is greatly reduced given the results of the AAM itting. The AAM explicitly deines 
landmarks on the face typically corresponding to important facial features, so extracting visual features 
only requires extracting the image region around some speciied model landmarks. Shiell et al. extracted  
the center of the mouth region by determining the centroid of the mouth points. A region-of-interest 
(ROI) around the mouth was extracted using the scale and rotation information from the AAM rigid 
transform. The mouth region was rotated around the center of the mouth to match the average face shape. 
The extracted ROI was a square whose side length was chosen such that the ratio of the rigid transform 
scale to the ROI side length was equivalent to extracting a ROI with a side length of 40 pixels in the 
average face shape (scale = 1.0). In this way, scaling variation was reduced by consistently extracting a 
ROI of the same face scale to ROI side length ratio. Additionally, the in-plane rotation of the face was 
corrected for, by rotating the model back to horizontal utilizing the AAM rigid transformation matrix.  
This process is made clear in Figure 10.

After extracting and normalizing the ROI with respect to scale and in-plane rotation, Shiell et al. 
performed the 2D discrete cosine transform (DCT) keeping the irst N DCT coeficients, taken in a 
zigzag pattern, for visual features, as in Figure 11.
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In order to test the effect of automated tracking on the speaker recognition task, Shiell et al. compared 
their automated visual-only biometrics system against the same system using visual features extracted 
using hand labeled landmarks. They performed speaker recognition experiments using the VALID 
database (Fox et al., 2005). A subset of 43 speakers was used in the speaker recognition experiments. 
For each script, every speaker was acoustically and visually recorded uttering the corresponding phrase 
in 5 different ofice environments, which varied widely in lighting conditions and background clutter. 
The reported speaker recognition experiments used the script “Joe took father’s green shoe bench out,” 

Figure 10. Illustrating the process of visual feature extraction (Shiell et al., 2007) ©2007 IEEE. Used 
with permission.

Figure 11. The pattern used to select DCT coeficients taken in a zigzag pattern
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(though only the video was used) and the video sequences 2-5 because they were recorded in non-ideal 
environments. Experiments used shifted training and testing sets (i.e. train on videos 2,3,4 and test 
on video 5; train on videos 2,3,5 and test on video 4; etc.) and were done using 20, 40, 60, 80, and 100 
zero-mean static DCT coeficients plus delta and acceleration coeficients. Left-to-right hidden Markov 
models (HMM) were tested with 1, 2, and 3 emitting states and 1, 2, 3, 4, and 5 Gaussian mixtures on 
the emission distributions.

Shiell et al. reported an optimal speaker recognition rate of 59.3% realized by the automatic visual 
biometrics system (60 DCT coeficients, 4 mixtures, 1 state) compared to an optimal recognition rate 
of 52.3% utilizing the manually labeled tracking data (100 DCT coeficients, 3 mixtures, 1 state). In 
both cases, the optimal number of HMM states was one, which reduces to a Gaussian mixture model 
(GMM). Surprisingly, the automatic biometrics system showed a 7% increase in speaker recognition 
rates, which the authors attributed to the interpolation required for the manually labeled tracking data. 
Interpolation was required to locate facial feature landmarks for the manually labeled data because the 
labeled data supplied with the database was done every tenth frame to make hand labeling feasible. It 
is easy to see the interpolated tracking positions may lag the actual scale, rotation, and/or position if 
a person moved quickly while speaking. This problem is illustrated in Figure 12, and exempliies the 
need for automated tracking in visual or audio-visual speech experiments.

For convenience, the key characteristics of the AV and V-only biometrics systems reported in this 
section are summarized in Table 4.

Audio-Visual Speech Recognition Systems

Audio-Visual Automatic Speech Recognition (AV-ASR) and visual-only ASR (V-ASR) systems in-
corporate numerous parameter and design choices many of which are highly similar to AV speaker 
recognition and biometrics systems. Here we review several AV-and V-only ASR systems. As with 
AV biometrics systems, the primary design decisions include the choice of audio-visual features, pre-
processing techniques, recognizer architecture, and fusion methods. Additionally, performance varies 

Figure 12. Extracted ROIs using manually labeled tracking showing the scale, rotation, and position 
variations due to interpolation. (Adapted from (Fox et al., 2005).
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Table 4. An overview of the visual features, fusion type, recognition methods, and databases used for 
the speaker recognition systems summarized. TD/TI = Text-Dependent/ Text-Independent, EGM = 
Elastic Graph Matching, ∆ = 1st order derivative feature coeficients, ∆∆ = 2nd order derivative feature 
coeficients.
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between databases and vocabularies, and experiments can be speaker dependent, speaker adaptive, or 
preferably, speaker independent.

Potamianos et al. reported results using both AV-ASR and V-ASR on the IBM ViaVoiceTM database 
with a hidden Markov model (HMM) based recognizer (Potamianos et al., 2004). Audio features were 
chosen as MFCCs and remain constant throughout the reported experiments. By conducting V-ASR 
tests, the authors identiied DCT based visual features as most promising for recognition tasks. These 
DCT based features outperform discrete wavelet transform (DWT), PCA, and AAM based features 
with word error rates (WER) of 58.1%, 58.8%, 59.4%, and 64.0%, for the aforementioned parameters 
respectively. The authors used DCT based visual features and MFCC based audio features in various 
fusion situations with babble-noise corrupted audio to analyze the performance of various audio-visual 
fusion techniques. Through these experiments, the authors showed that a multi-stream decision fusion 
technique performed as much as 7dB greater than audio alone for the large vocabulary continuous speech 
recognition (LVSCR) case, as shown in Figure 13 (left). In Figure 13 (right), the same systems were 
tested but in a continuous digits recognition case and the multi-stream decision fusion outperformed 
audio only by up to 7.5dB.

Aleksic and Katsaggelos developed an audio-visual ASR system that employed both shape- and ap-
pearance-based visual features, obtained by PCA performed on FAPs of the outer and inner lip contours 
or mouth appearance(Aleksic, Potamianos, & Katsaggelos, 2005; Aleksic et al., 2002). They utilized 
both early (EI) and late (LI) integration approaches and single- and multi-stream HMMs to integrate 
dynamic acoustic and visual information. Approximately 80% of the data was used for training, 18% 

Figure 13. Speech recognition results reported in (Potamianos et al., 2004) over a range of SNRs for 
LVCSR (left) and digits (right) using various fusion techniques (Enhanced, Concat, HiLDA, MS-Joint). 
(© 2004, MIT Press. Used with permission.).
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for testing, and 2% as a development set for obtaining roughly optimized stream weights, word insertion 
penalty and the grammar scale factor. A bi-gram language model was created based on the transcriptions 
of the training data set. Recognition was performed using the Viterbi decoding algorithm, with the bi-
gram language model. Large vocabulary (~1000 words) audio-only ASR experiments were performed 
on the Bernstein lipreading corpus over a range of acoustic SNR conditions (~10 dB to 30dB), which 
were simulated by adding Gaussian noise (Bernstein, 1991). The audio-visual systems outperformed 
the audio-only system at all SNRs, but showed the most signiicant gains at ~10 dB with WERs around 
54% compared to a NER of ~88% for the audio-only system. At 30 dB, the audio visual system showed 
0-3% improvement in WER over the audio-only system.

In an extension to the work in (Bifiger, 2005), we demonstrated a 77.7% visual-only isolated digit 
recognition rate using zero mean DCT coeficients along with their delta and acceleration derivatives. 
Digits one through ten were uttered ten times for each of the ten speakers in the CMU database and 
visual-only, speaker-independent speech recognition experiments were done using the leave-one-out 
method. Optimal digit recognition results were obtained using 17 DCT coeficients, 10 HMM states (8 
emitting states), and 3 Gaussian mixtures for the state emission probability distributions.

While most AV-ASR systems utilize the same HMM-based architecture, Neian et al. explored a 
variety of HMM architectures (Neian et al., 2002). Using DCT based visual features and MFCC based 
audio features for isolated digit recognition, the authors compared MSHMMs, independent stream HMMs 
(IHMMs), PHMMs, factorial HMMs (FHMMs), and coupled HMMs (CHMMs). Table 5 displays the 
authors’ results reinforcing the advantages of the MSHMM and CHMM.

Marcheret et al. leveraged the multi-stream HMM in conjunction with audio and video reliability 
features to signiicantly improve AV-ASR performance for LVCSR by adapting the stream weights dy-
namically (Marcheret, Libal, & Potamianos, 2007). These results are shown in Figure 14. The authors 
showed that most of the increase in performance comes from the audio reliability measure. Dynamic 
Stream Weighting continues to be an active area of research and future research should continue to 
improve upon these results.

Table 5. Speech recognition rates at various SNR levels comparing the effect of various HMM recogni-
tion architectures (Adapted from Neian et al., 2002)
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Figure 14. WER vs SNR using static and dynamic HMM stream weights for the LVCSR system proposed 
in (Marcheret et al., 2007). Dynamic stream weighting shows improvement over all SNRs.(© 2007, 
IEEE. Used with permission.)

For convenience, the key characteristics of the AV and V-only ASR systems reported in this section 
are summarized in Table 6.

o pen ChAllenge S In Aud Io-V ISuAl  pRo CeSSIng And ReCogn ITIon

Despite the increasing interest and research on AV recognition systems, there are still many obstacles to 
the design, implementation, and evaluation of these systems. These issues include robust visual feature 
location and extraction, joint audio-visual processing, and real-time implementation issues in non-ideal 
environments. Additionally the lack of availability and conformity across AV speech databases makes 
it dificult to compare results of different AV recognition systems.

A fundamental obstacle in performing AV-ASR or V-ASR experiments is the extraction of visual 
features, especially under adverse conditions such as shadows, occlusions, speaker orientation, and 
speaker variability. Every AV recognition system requires some method of extracting visual features 
from a video sequence. In order to perform more meaningful experiments, large AV corpora should be 
used. However, it can be extremely time-consuming, if not totally infeasible, to manually label visual 
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features in each frame of a video for all video sequences in large AV corpora. Even labeling visual fea-
tures every ten frames—less than half a second at 30 fps—can lead to interpolation errors, which can 
degrade overall performance. Furthermore, many automatic visual feature extraction systems described 
in the literature are tailored for the conditions in a speciic database (size and position of speaker heads, 
colors, image quality, etc.) and may not function on a less ideal database. Additionally, virtually all 
AV recognition experiments reported in the literature train and test on the same database. Robust AV 
recognition systems should perform well on any audio-visual input.

Audio-visual feature integration also remains an open-ended problem. Now that AV speech and 
speaker recognition systems are maturing, more researchers are investigating methods to dynamically 
adapt the weight of the audio or visual features depending on real-time acoustic and visual feature 
reliability and consistency estimates. The AV system of Maracheret et al. described earlier reports 
encouraging results in this area. Other authors have reported similar results using various adaptive 
stream weights in MSHMMs (Marcheret et al., 2007; Pitsikalis et al., 2006), however, these systems 
typically rely primarily on audio reliability measures for adapting stream weights without incorporating 
the reliability of the visual modality.

Before AV speech and speaker recognition systems can become mainstream consumer applications 
there are signiicant challenges to overcome regarding real-time implementation. Firstly, the practicality 
of an AV recognition system depends on its processing time. The eficiency of the algorithm quickly 
becomes a priority for very large AV corpora consisting of millions of video frames or real-time opera-

Table 6. An overview of the audio-visual features, integration methods, recognition tasks, recognition 
methods, and databases used for the AV and V-only ASR recognition systems summarized.  ∆ = 1st order 
derivative feature coeficients, ∆∆ = 2nd order derivative feature coeficients.
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tion. Second of all, the robustness of the visual feature tracking and extraction must be robust to all 
kinds of visual conditions. It is a considerable challenge to satisfy the robustness and eficiency criterion 
simultaneously. It can also be assumed that face tracking will fail eventually, and in these cases a robust 
system should be able to detect tracking failure and reset. Current AV recognition systems typically do 
not address these types of implementation issues.

SummARy

This chapter has discussed the primary components of audio-visual recognition systems: audio and 
visual feature tracking and extraction, audio-visual information fusion, and the evaluation process for 
speech and speaker recognition. Particular attention has been paid to the fusion problem and evalu-
ation processes, and the implementation of a complete audio-visual system has been discussed. The 
overall system justifying the importance of the visual information to audio-visual recognition systems 
was introduced, and typical acoustic and visual features such as FAPs or DCT coeficients. Lip region 
tracking and feature extraction techniques were briely reviewed followed by an analysis of the speech 
and speaker recognition process and evaluation. Early, intermediate, and late audio-visual integration 
techniques were described, and a detailed list of AV speech corpora was presented. A number of AV 
speech and speaker recognition systems found in the literature were surveyed to serve as a starting 
point for building AV recognition systems. Current issues in the ield of AV speech recognition were 
addressed in order to identify possible areas of interest for aspiring researchers. The following section 
concludes with suggestions for future research in the area of audio-visual speech and speaker recogni-
tion, and points out general themes in the latest research related to AV recognition systems. Researchers 
are encouraged to look at the suggested readings section for helpful references related to audio-visual 
speech and speaker recognition.

FuTuRe ReSeARCh dIReCTIon

Audio-visual and visual-only speech and speaker recognition is a ield still in its relative infancy and has 
a bright and exciting future lies ahead for its research and applications. Current and future work needs 
to address such varied and multi-disciplinary issues as robust real-time visual tracking in real-world 
situations, optimal feature selection and extraction to capture linguistically salient attributes, audio-
visual information fusion, system architectures to handle linguistic speech transforms such as accents 
and word reductions, among many other issues.

One of the irst steps towards enabling the future research necessary is the compilation of relevant 
and complete audio-visual databases. Much work is taking place in identifying what attributes are 
needed in these databases, such as visual quality, environment, speech vocabulary, native-ness of the 
speakers, etc. Audio only corpora have addressed many of the linguistic issues and future audio-visual 
database collection must do so as well. The current trends in audio-visual corpora are converging on 
large databases recorded in real-world scenarios, such as ofice environments and automobiles that con-
sist of native, as well as non-native, speakers. The content of these corpora are also advancing beyond 
the simple phonetically balanced TIMIT sentences to utterances that offer linguistic challenges such as 
those presented in conversational speech. It will be essential for emerging AV and V-only speech cor-
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pora to supply ground truth visual annotations of key facial features for evaluation benchmarking and 
experiment comparison. By having available databases with advanced content in real-world scenarios, 
improved audio-visual speech and speaker recognition systems can be researched and implemented.

As real-world audio-visual databases are produced, robust visual tracking methods are being devel-
oped. Unlike most traditional computer vision tracking applications, tracking for audio-visual speech 
and speaker recognition requires extreme levels of accuracy. To accomplish this, current research is 
turning towards 3D monocular methods that utilize motion to extract 3D parameters, as well as utiliz-
ing infrared cameras in conjunction with 2.5D methods. New facial representations have also been 
proposed including multi-linear models and even more advanced methods leveraging the power of 
tensor mathematics. 

Coupled with the advancements in robust tracking, visual feature selection has moved into new 
areas such as 3D feature information. Currently used shape- and appearance-based features are also 
being combined in new and inventive ways. Much work is also beginning on selecting features that 
are inherently robust to rotation, translation, scale, lighting, speaker, and other physical parameters. 
Simultaneously, a focus is being put on designing and analyzing features that capture important lin-
guistic information.

The fusion of audio and visual information continues to be a very active ield with many new trends 
developing. As more research goes into current integration techniques, intermediate and late integration 
emerge as the best of the current breed. The focus has now turned to dynamically fusing the audio and 
visual information based on audio and visual environmental conditions. As important research is being 
undertaken on determining the modality’s reliability, researchers must now learn how to best utilize 
this new information. Among the current approaches, two have recently come to the forefront. Firstly, 
statistical or functional mappings between reliability measures and fusion weights are being explored. 
Secondly, new hidden Markov model (HMM) based recognizer architectures are being explored. These 
new architectures attempt to implicitly include reliability information into the models and to allow for 
statistically based fusion techniques.

In order for automatic speech and speaker recognition systems to approach human capabilities, 
the ability to deal with speech variations must be factored in. Dealing with accented speech has led 
to advances in feature selection and speech modeling, but with limited overall beneit. Accounting 
for other linguistic affects such as the changes in speech in a conversational atmosphere have also 
been approached, but also with limited results. New efforts have begun in designing complete system 
architectures to handle these sorts of issues. Approaches include training multiple versions of system 
components under varied conditions in order to “switch” between system parts when certain conditions 
are detected and designing HMM systems with higher levels of abstraction to statistically incorporate 
more variation into the models.

Add ITIon Al  ReAdIng

For the beneit of interested researchers we have compiled a list of suggested readings and resources in 
various areas related to audio-visual speech and speaker recognition.

Human Perception of Visual Speech - (R. Campbell, Dodd, & Burnham, 1998; Flanagan, 1965; Gold-
schen, Garcia, & Petajan, 1996; Lippmann, 1997; McGurk & MacDonald, 1976; Neely, 1956; Sum-
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merield, 1979, 1987, 1992)

Feature Detection/Tracking/Extraction - (Baker et al., 2003a, 2003b; Baker & Matthews, 2004; Barczak, 
2004; Chang, Bowyer, & Flynn, 2005; T. Cootes et al., 1998, 2001; Duda, Hart, & Stork, 2001; Gross, 
Matthews, & Baker, 2004; Gross et al., 2006; Hjelmas & Low, 2001; Hu et al., 2004; Hua & Y.Wu, 2006; 
Kass, Witkin, & Terzopoulos, 1988; Kaucic, Dalton, & Blake, 1996; Kong, Heo, Abidi, Paik, & Abidi, 
2005; Koterba et al., 2005; Lienhart & Maydt, 2002; Matthews & Baker, 2004; Viola & Jones, 2001; 
Wu, Aleksic, & Katsaggelos, 2002, 2004; Xiao et al., 2004; Yang, Kriegman, & Ahuja, 2002; Yuille, 
Hallinan, & Cohen, 1992; Zhao, Chellappa, Phillips, & Rosenfeld, 2003)

Audio-Visual Speech Recognition - (Aleksic et al., 2005; Aleksic et al., 2002; Chen, 2001; Chibelushi, 
Deravi, & Mason, 2002; Dupont & Luettin, 2000; Gordan, Kotropoulos, & Pitas, 2002; Gravier, Pota-
mianos, & Neti, 2002; Luettin, 1997; Movellan, 1995; Neian et al., 2002; Neti et al., 2000; Petajan, 
1985; Potamianos et al., 2003; Potamianos et al., 2004; Rabiner & Juang, 1993)

Audio-Visual Biometrics - (Aleksic & Katsaggelos, 2006; Ben-Yacoub et al., 1999; J. P. Campbell, 1997; 
Chang et al., 2005; Chibelushi, Deravi, & Mason, 1997; Jain, Ross, & Prabhakar, 2004; Luettin et al., 
1996; Sanderson et al., 2006; Sanderson & Paliwal, 2003, 2004; Sargin, Erzin, Yemez, & Tekalp, 2006; 
Shiell et al., 2007)

Multimodal Information Integration - (Aleksic et al., 2005; Ben-Yacoub et al., 1999; Chibelushi et al., 
1993, 1997; Gravier et al., 2002; Hong & Jain, 1998; Ross & Jain, 2003; Williams, Rutledge, Garstecki, 
& Katsaggelos, 1998)

Audio-Visual Speech Corpora - (Bernstein, 1991; Chaudhari & Ramaswamy, 2003; Chen, 2001; Chibe-
lushi, Gandon, Mason, Deravi, & Johnston, 1996; Fox et al., 2005; Hazen, Saenko, La, & Glass, 2004; 
Lee et al., 2004; Messer et al., 1999; Movellan, 1995; Patterson, Gurbuz, Tufekci, & Gowdy, 2002; Pigeon 
& Vandendorpe, 1997; Popovici et al., 2003; Sanderson & Paliwal, 2003)

Speech and Face Modeling Tools  - (“The AAM-API,” 2008; Tim Cootes, 2008; “HTK Speech Recog-
nition Toolkit,” 2008; “Open Computer Vision Library,” 2008; Steve Young, 2008)
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ABSTRACT

There has been signiicant work on investigating the relationship between articulatory movements and vo-
cal tract shape and speech acoustics (Fant, 1960; Flanagan, 1965; Narayanan & Alwan, 2000; Schroeter 
& Sondhi, 1994). It has been shown that there exists a strong correlation between face motion, and vocal 
tract shape and speech acoustics (Grant & Braida, 1991; Massaro & Stork, 1998; Summerield, 1979, 
1987, 1992; Williams & Katsaggelos, 2002; Yehia, Rubin, & Vatikiotis-Bateson, 1998). In particular, 
dynamic lip information conveys not only correlated but also complimentary information to the acoustic 
speech information. Its integration into an automatic speech recognition (ASR) system, resulting in an 
audio-visual (AV) system, can potentially increase the system’s performance. Although visual speech 
information is usually used together with acoustic information, there are applications where visual-only 
(V-only) ASR systems can be employed achieving high recognition rates. Such include small vocabulary 
ASR (digits, small number of commands, etc.) and ASR in the presence of adverse acoustic conditions. 
The choice and accurate extraction of visual features strongly affect the performance of AV and V-only 
ASR systems. The establishment of lip features for speech recognition is a relatively new research topic. 
Although a number of approaches can be used for extracting and representing visual lip information, 
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unfortunately, limited work exists in the literature in comparing the relative performance of different 
features. In this chapter, the authors describe various approaches for extracting and representing im-
portant visual features, review existing systems, evaluate their relative performance in terms of speech 
and speaker recognition rates, and discuss future research and development directions in this area.

InTRodu CTIon

Signiicant interest and effort has been focused over the past decades on exploiting the visual modal-
ity in order to improve human-computer interaction (HCI), but also on the automatic recognition of 
visual speech (video sequences of the face or mouth area), also known as automatic lipreading, and its 
integration with traditional audio-only systems, giving rise to AV ASR (Aleksic, Potamianos, & Katsag-
gelos, 2005; Aleksic, Williams, Wu, & Katsaggelos, 2002; Chen, 2001; Chen & Rao, 1998; Chibelushi, 
Deravi, & Mason, 2002; Dupont & Luettin, 2000; Oviatt, et al., 2000; Petajan, 1985; Potamianos, Neti, 
Gravier, Garg, & Senior, 2003; Potamianos, Neti, Luettin, & Matthews, 2004; Schroeter, et al., 2000; 
Stork & Hennecke, 1996). The successes in these areas form another basis for exploiting the visual 
information in the speaker recognition problem (J. P. Campbell, 1997; Jain, Ross, & Prabhakar, 2004; 
Jain & Uludag, 2003; Ratha, Senior, & Bolle, 2001; Unknown, 2005), thus giving rise to AV speaker 
recognition (Abdeljaoued, 1999; Aleksic & Katsaggelos, 2003, 2006; Basu, et al., 1999; Ben-Yacoub, 
Abdeljaoued, & Mayoraz, 1999; Bengio, 2003, 2004; Bigun, Bigun, Duc, & Fisher, 1997; Brunelli & 
Falavigna, 1995; Brunelli, Falavigna, Poggio, & Stringa, 1995; Chaudhari & Ramaswamy, 2003; Chaud-
hari, Ramaswamy, Potamianos, & Neti, 2003; Chibelushi, Deravi, & Mason, 1993, 1997; Dieckmann, 
Plankensteiner, & Wagner, 1997; Erzin, Yemez, & Tekalp, 2005; Fox, Gross, Cohn, & Reilly, 2005; 
Fox, Gross, de Chazal, Cohn, & Reilly, 2003; Fox & Reilly, 2003; Frischolz & Dieckmann, 2000; T. J. 
Hazen, Weinstein, Kabir, Park, & Heisele, 2003; Hong & Jain, 1998; Jourlin, Luettin, Genoud, & Was-
sner, 1997a, 1997b; Kanak, Erzin, Yemez, & Tekalp, 2003; Kittler, Hatef, Duin, & Matas, 1998; Kittler, 
Matas, Johnsson, & Ramos-Sanchez, 1997; Kittler & Messer, 2002; Luettin, 1997; Radova & Psutka, 
1997; Ross & Jain, 2003; Sanderson & Paliwal, 2003, 2004; Sargin, Erzin, Yemez, & Tekalp, 2006; 
Wark, Sridharan, & Chandran, 1999a, 1999b, 2000; Yemez, Kanak, Erzin, & Tekalp, 2003). Humans 
easily accomplish complex communication tasks by utilizing additional sources of information whenever 
required, especially visual information (Lippmann, 1997). Face visibility beneits speech perception 
due to the fact that the visual signal is both correlated to the produced audio signal (Aleksic & Katsag-
gelos, 2004b; Barbosa & Yehia, 2001; Barker & Berthommier, 1999; Jiang, Alwan, Keating, E. T. Auer, 
& Bernstein, 2002; Yehia, Kuratate, & Vatikiotis-Bateson, 1999; Yehia, et al., 1998) and also contains 
complementary information to it (Grant & Braida, 1991; Massaro & Stork, 1998; Summerield, 1979, 
1987, 1992; Williams & Katsaggelos, 2002; Yehia, et al., 1998). Hearing impaired individuals utilize 
lipreading in order to improve their speech perception. In addition, normal hearing persons also use 
lipreading (Grant & Braida, 1991; Massaro & Stork, 1998; Summerield, 1979, 1987, 1992; Williams & 
Katsaggelos, 2002; Yehia, et al., 1998) to a certain extent, especially in acoustically noisy environments. 
With respect to the type of information they use, ASR systems can be classiied into audio-only, visual-
only, and audio-visual. In AV ASR systems, acoustic information is utilized together with visual speech 
information in order to improve recognition performance (see Fig. 1). Visual-only, and audio-visual 
systems utilize dynamics of temporal changes of visual features, especially the features extracted from 
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the mouth region. Although AV-ASR systems are usually used, there are applications where V-only ASR 
systems can be employed achieving high recognition rates. Such include small vocabulary ASR (digits, 
small number of commands, etc.) and ASR in the presence of adverse acoustic conditions.

Audio-only ASR systems are sensitive to microphone types (headset, desktop, telephone, etc.), acoustic 
environment (car, plane, factory, babble, etc.), channel noise (telephone lines, VoIP, etc.), or complexity 
of the scenario (speech under stress, Lombard speech, whispered speech). Audio-only ASR systems 
can perform poorly even at typical acoustic background SNR levels (-10dB to 15dB). It has been well 
established in the literature (Aleksic & Katsaggelos, 2006) that the incorporation of additional modali-
ties can alleviate problems characteristic of a single modality and improve system performance. The 
use of visual information in addition to audio, improves ASR performance even in noise-free environ-
ments (Aleksic & Katsaggelos, 2003; Chaudhari, et al., 2003; Fox, et al., 2003). The potential for such 
improvements is greater in acoustically noisy environments, since visual speech information is typically 
much less affected by acoustic noise than the acoustic speech information. It is true, however, that there 
is an equivalent to the acoustic Lombard  effect in the visual domain, although it has been shown that 
it does not affect the visual speech recognition as much as the acoustic Lombard effect affects acoustic 
speech recognition (Huang & Chen, 2001).

Speaker recognition can also beneit from visual modality, by utilizing static (visual features obtained 
from a single face image) or dynamic visual information in addition to acoustic information (see Fig. 1). 
Utilizing dynamic visual information also signiicantly reduces chances of impostor attacks (spooing). 
Audio-only and static-image-based (face recognition) speaker recognition systems are susceptible to 
impostor attacks if the impostor possesses a photograph and/or speech recordings of the client. It is con-
siderably more dificult for an impostor to impersonate both acoustic and dynamical visual information 
simultaneously. Audio-visual speaker recognition holds promise for wider adoption due to the low cost 
of audio and video sensors and the ease of acquiring audio and video signals (even without assistance 
from the client) (Woodward, 1997).

The performance of both speech and speaker recognition systems strongly depends on the choice and 
accurate extraction of the visual features. Visual features are usually extracted from 2D or 3D images, 
in the visible or infrared part of the spectrum. The various sets of visual facial features proposed in the 
literature are generally grouped into three categories (Hennecke, Stork, & Prasad, 1996): appearance-

Figure 1. Audio-visual recognition system
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based features, such as transformed vectors of the face or mouth region pixel intensities; shape-based 
features, such as geometric or model-based representations of the face or lip contours; and features that 
are a combination of both appearance and shape features.

With shape-based features it is assumed that most of the information is contained in face contours 
or the shape of the speaker’s lips. Therefore, such features achieve a compact representation of facial 
images and visual speech using low-dimensional vectors, and are invariant to head pose and lighting. 
However, their extraction requires robust algorithms, which is often dificult and computationally 
intensive in realistic scenarios. The advantage of the appearance-based features is that they, unlike 
shape-based features, do not require sophisticated extraction methods. In addition, appearance-based 
visual features contain information that cannot be captured by shape-based visual features. Their dis-
advantage is that they are generally sensitive to lighting and rotation changes. The dimensionality of 
the appearance-based visual features is also usually much higher than that of the shape-based visual 
features, which affects reliable training.

In summary, a number of approaches can be used for extracting and representing visual informa-
tion utilized for speech and speaker recognition. Unfortunately, limited work exists in the literature in 
comparing the relative performance of visual speech features. Thus, the question of what are the most 
appropriate and robust visual speech features remains to a large extent unresolved. Clearly, the char-
acteristics of the particular application and factors such as computational requirements, video quality, 
and the visual environment, have to be considered in addressing this question.

The remainder of the chapter is organized as follows: The importance of dynamic lip features for 
speech and speaker recognition is irst described. Then, the structure of a speech and speaker recogni-
tion systems is presented. In the following section, classiication and various approaches for detection 
and tracking of important visual features are reviewed. Subsequently, lip feature extraction methods are 
reviewed, and a description of some of the speech and speaker recognition systems, utilizing dynamic 
visual information, that appeared in the literature is provided. Finally, the chapter is concluded with an 
assessment of the topic, and description of some of the open problems.

The Impo RTAnCe o F dyn AmIC lI p FeATuReS Fo R Spee Ch And 
Spe Ake R ReCogn ITIon

Face visibility beneits speech perception due to the fact that the visual signal is both correlated to the 
produced audio signal (Aleksic & Katsaggelos, 2004b; Barbosa & Yehia, 2001; Barker & Berthommier, 
1999; Jiang, et al., 2002; Yehia, et al., 1998) and also contains complementary information to it (Grant & 
Braida, 1991; Massaro & Stork, 1998; Summerield, 1979, 1987, 1992; Williams & Katsaggelos, 2002; 
Yehia, et al., 1998). There has been signiicant work on investigating the relationship between articula-
tory movements and vocal tract shape and speech acoustics (Fant, 1960; Flanagan, 1965; Narayanan & 
Alwan, 2000; Schroeter & Sondhi, 1994). It has also been shown that there exists a strong correlation 
among face motion, vocal tract shape, and speech acoustics (Grant & Braida, 1991; Massaro & Stork, 
1998; Summerield, 1979, 1987, 1992; Williams & Katsaggelos, 2002; Yehia, et al., 1998).

Yehia et al. (Yehia, et al., 1998) investigated the degrees of this correlation. They measured the 
motion of markers, placed on the face and in the vocal-tract. Their results show that 91% of the total 
variance observed in the facial motion could be determined from the vocal tract motion, using simple 
linear estimators. In addition, looking at the reverse problem, they determined that 80% of the total 
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variance observed in the vocal tract can be estimated from face motion. Regarding speech acoustics, 
linear estimators were suficient to determine between 72% and 85% (depending on subject and utter-
ance) of the variance observed in the root mean squared amplitude and line-spectrum pair parametric 
representation of the spectral envelope from face motion. They also showed that even the tongue motion 
can be reasonably well recovered from the face motion, since it frequently displays similar motion as 
the jaw during speech articualtion.

The correlation among external face movements, tongue movements, and speech acoustics for con-
sonant-vowel (CV) syllables and sentences, was also investigated by Jiang et al. (Jiang, et al., 2002). 
They used multilinear regression to predict face movements from speech acoustics for short speech 
segments, such as CV syllables. The prediction was the best for chin movements, followed by lips and 
cheeks movements. They also showed, like the authors of (Yehia, et al., 1998), that there is high cor-
relation between tongue and face movements.  

It is well known that hearing impaired individuals utilize lipreading and speechreading in order to 
improve their speech perception. In addition, normal hearing persons also use lipreading and speechread-
ing to a certain extent, especially in acoustically noisy environments (Grant & Braida, 1991; Massaro 
& Stork, 1998; Summerield, 1979, 1987, 1992; Williams & Katsaggelos, 2002; Yehia, et al., 1998). 
Lipreading represents the perception of speech based only on talker’s articulatory gestures, while 
speechreading represents understanding of speech by observing the talker’s articulation, facial and 
manual gestures, and audition (Summerield, 1979). Summerield’s (Summerield, 1992) experiments 
showed that sentence recognition accuracy in noisy conditions can improve by 43% by speechreading 
and 31% by audio-visual speech perception compared to audio-only scenario. It has also been shown in 
(Grant & Braida, 1991) that most hearing impaired listeners achieve higher level of speech recognition 
when the acoustic information is augmented by visual information, such as mouth shapes. The bimodal 
integration of audio and visual information in perceiving speech has been demonstrated by the McGurk 
effect (McGurk & MacDonald, 1976). According to it, when, for example, the video of a person utter-
ing the sound /ba/ is dubbed with a sound recording of a person uttering the sound /ga/, most people 
perceive the sound /da/ as being uttered.

Dynamic lip features can also be used to improve speaker recognition performance, when utilized 
in addition to acoustic information (Aleksic & Katsaggelos, 2003; Chaudhari & Ramaswamy, 2003; 
Dieckmann, et al., 1997; Jourlin, et al., 1997b; Wark, et al., 1999a, 1999b, 2000). Exploiting dynamic 
visual information for speaker recognition signiicantly reduces chances of impostor attacks (spoof-
ing). Audio-only and audio-visual systems that utilize only a single video frame (face recognition) are 
susceptible to impostor attacks, if the impostor possesses a photograph and/or speech recordings of 
the client. It is considerably more dificult for an impostor to impersonate both acoustic and dynamical 
visual information simultaneously.

Acoustic and Visual Speech

The phoneme represents the basic acoustically distinguishably unit that describes how speech conveys 
linguistic information. The number of phonemes varies for different languages. For American English, 
there exist approximately 42 phonemes (Deller, Proakis, & Hansen, 1993), generated by speciic posi-
tions or movements of the vocal tract articulators. Similarly, the viseme represents the basic visually 
distinguishably unit (R. Campbell, Dodd, & Burnham, 1998; Massaro & Stork, 1998; Stork & Hennecke, 
1996). The number of visemes is much smaller than that of phonemes. Phonemes capture the manner 
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of articulation, while visemes capture the place of articulation (Massaro & Stork, 1998; Summerield, 
1987), i.e., they describe where the constriction occurs in the mouth, and how mouth parts, such as 
the lips, teeth, tongue, and palate, move during speech articulation. Many consonant phonemes with 
identical manner of articulation, which are dificult to distinguish based on acoustic information alone, 
may have different place of articulation, and therefore, are easier to distinguish visually than acousti-
cally. For example, the two nasals /m/ (a bilabial) and /n/ (an alveolar). In contrast, certain phonemes 
are easier to perceive acoustically than visually, since they have identical place of articulation, but differ 
in the manner of articulation (e.g. the bilabials /m/ and /p/). Various mappings between phonemes and 
visemes have been described in the literature (Young, et al., 2005). They are usually derived by human 
speechreading studies, but they can also be generated using statistical clustering techniques (Goldschen, 
Garcia, & Petajan, 1996). There is no general agreement about the exact grouping of phonemes into 
visemes, however, some clusters are well-deined. For example, phonemes /p/, /b/, and /m/ (bilabial 
group) are articulated at the same place (lips), thus appearing visually the same.

Aud Io-V ISuAl  Spee Ch And Spe Ake R ReCogn ITIon SySTem

The block diagram of a speech/speaker recognition system is shown in Fig. 2. It consists of preprocess-
ing, feature extraction, and AV fusion blocks. Preprocessing and feature extraction are performed in 
parallel for the two modalities. The preprocessing of the audio signal under noisy conditions includes 
signal enhancement, tracking environmental and channel noise, feature estimation, and smoothing 
(Rabiner & Juang, 1993). The pre-processing of the video signal typically consists of the challenging 
problems of detecting and tracking of the face and the important facial features.

The preprocessing is usually coupled with the choice and extraction of acoustic and visual features 
as depicted by the dashed lines in Fig. 2. Acoustic features are chosen based on their robustness to 
channel and background noise (Akbacak & Hansen, 2003; Kim, Lee, & Kil, 1999; Paliwal, 1998). The 

Figure 2. Block diagram of a speech/speaker recognition system
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most commonly utilized acoustic features are mel-frequency cepstral coeficients (MFCCs) and linear 
prediction coeficients (LPCs). Acoustic features are usually augmented by their irst- and second-order 
derivatives (delta and delta-delta coeficients) (Rabiner & Juang, 1993). The extraction of visual features 
for speaker recognition is a relatively newer research topic. Various face detection and tracking and 
facial feature extraction approaches (Hjelmas & Low, 2001; Rowley, Baluja, & Kanade, 1998; Senior, 
1999; Sung & Poggio, 1998; Yang, Kriegman, & Ahuja, 2002; Zhao, Chellappa, Phillips, & Rosenfeld, 
2003) that have been proposed in the literature will be discussed in more detail in the following sec-
tions. The dynamics of the visual speech are captured, similarly to acoustic features, by augmenting 
the “static” (frame-based) visual feature vector by its irst- and second-order time derivatives, which are 
computed over a short temporal window centered at the current video frame (Young, et al., 2005). Mean 
normalization of the visual feature vectors can also be utilized to reduce variability due to illumination 
(Potamianos, Graf, & Cosatto, 1998).

The choice of classiiers and audio-visual fusion algorithms are clearly central to the design of a 
system. Statistical approaches, such as hidden Markov models (HMMs), Gaussian mixture models 
(GMMs), support vector machines (SVMs) (Gordan, Kotropoulos, & Pitas, 2002), artiicial neural 
networks (ANNs), etc., are commonly used as classiiers. In order to achieve higher performance than 
both audio-only and visual-only systems, audio-visual fusion is utilized. If no fusion of the acoustic 
and visual information takes place, then audio-only and visual-only ASR systems result (see Fig. 2). 
There exist various fusion approaches, which weight the contribution of different modalities based on 
their discrimination ability and reliability. Fusion approaches are usually classiied into three categories, 
pre-mapping fusion, midst-mapping fusion, and post-mapping fusion (Aleksic & Katsaggelos, 2006; 
Hall & Llinas, 2001; Ho, Hull, & Srihari, 1994; Luo & Kay, 1995; Sanderson & Paliwal, 2004). These 
are also referred to in the literature as early integration, intermediate integration, and late integration, 

Figure 3. Mouth appearance and shape tracking for visual feature extraction: (a) Commonly detected 
facial features; (b) Two corresponding mouth ROIs of different sizes; (c) Lip contour estimation using 
a gradient vector ield snake (upper: the snake’s external force ield is depicted) and two parabolas 
(lower) (Aleksic, et al., 2002)

   

               (a)                        (b)                   (c) 
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respectively (Potamianos, et al., 2003). In the pre-mapping fusion audio and visual information are 
combined before the classiication process. In the midst-mapping fusion, audio and visual information 
are combined during the mapping from sensor data or feature space into opinion or decision space. 
Finally, in the post-mapping fusion, information is combined after the mapping from sensor data or 
feature space into opinion or decision space. 

The rates of the acoustic and visual features are in general different. The rate of acoustic features 
is usually 100 Hz (Young, et al., 2005), while video frame rates can be up to 25 frames per second (50 
ields per second) for PAL or 30 frames per second (60 ields per second) for NTSC. For fusion methods 
that require the same rate for both modalities, the video is typically up-sampled using an interpolation 
technique in order to achieve AV feature synchrony at the audio rate. Finally, adaptation of the person’s 
models is usually performed when the environment or the speaker’s voice characteristics change, or 
when the person’s appearance changes, due for example, to pose or illumination changes, facial hair, 
glasses or aging (Potamianos, et al., 2003).

Cl ASSIFICATIon, deTeCTIon, And TRACk Ing o F VISuAl  FeATuReS

Visual features are usually extracted from 2D or 3D images (Blanz, Grother, Phillips, & Vetter, 2005; 
Bowyer, Chang, & Flynn, 2006; Sanderson, Bengio, & Gao, 2006), in the visible or infrared part of the 
spectrum (Kong, Heo, Abidi, Paik, & Abidi, 2005). Facial visual features can be classiied into global or 
local, depending on whether the face is represented by only one or multiple feature vectors. Each local 
feature vector represents information contained in small image patches of the face or speciic regions 
of the face (e.g., eyes, nose, mouth, etc.). Visual features can also be either static (a single face image 
is used) or dynamic (a video sequence of only the mouth region, the visual-labial features, or the whole 
face is used).  Static visual features are commonly used for face recognition (Belhumeur, Hespanha, 
& Kriegman, 1997; Hjelmas & Low, 2001; Kirby & Sirovich, 1990; Rowley, et al., 1998; Senior, 1999; 
Sung & Poggio, 1998; Turk & Pentland, 1991; Yang, et al., 2002; Zhao, et al., 2003), and dynamic 
visual features for speaker recognition, since they contain additional important temporal information 
that captures the dynamics of facial feature changes, especially the changes in the mouth region (visual 
speech). The various sets of visual facial features proposed in the literature are generally grouped into 
three categories (Hennecke, et al., 1996): (a): appearance-based features, such as transformed vectors 
of the face or mouth region pixel intensities using, for example, image compression techniques (Aleksic 
& Katsaggelos, 2004a; Aleksic, et al., 2005; Chaudhari, et al., 2003; Chen, 2001; Dupont & Luettin, 
2000; Potamianos, et al., 2003; Potamianos, et al., 2004); (b): shape-based features, such as geometric 
or model-based representations of the face or lip contours (Aleksic, et al., 2005; Aleksic, et al., 2002; 
Chen, 2001; Dupont & Luettin, 2000; Potamianos, et al., 2003; Potamianos, et al., 2004); and (c): features 
that are a combination of both appearance and shape features in (a) and (b) (Dupont & Luettin, 2000; 
Matthews, Potamianos, Neti, & Luettin, 2001; Potamianos, et al., 2003; Potamianos, et al., 2004).

The algorithms utilized for detecting and tracking the face, mouth, or lips are chosen based on the 
visual features that will be used for recognition, quality of the video data, and the resource constraints. 
Only a rough detection of the face or mouth region is needed to obtain appearance-based visual features, 
requiring only the tracking of the face and the two mouth corners. In contrast, a computationally more 
expensive lip extraction and tracking algorithm is required for obtaining shape-based features.  
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detection, and Tracking of Visual Features

In general, face detection constitutes a dificult problem, especially in cases where the background, head 
pose, and lighting are varying. There have been a number of systems reported in the literature (Graf, 
Cosatto, & Potamianos, 1997; Hjelmas & Low, 2001; Rowley, et al., 1998; Senior, 1999; Sung & Poggio, 
1998; Viola & Jones, 2001; Yang, et al., 2002). Some systems use traditional image processing techniques, 
such as edge detection, image thresholding, template matching, color segmentation, or motion information 
in image sequences (Graf, et al., 1997), taking advantage of the fact that many local facial sub-features 
contain strong edges and are approximately rigid. Nevertheless, the most widely used techniques follow 
a statistical modeling of the face appearance to obtain a classiication of image regions into face and non- 
face classes. Such regions are typically represented as vectors of grayscale or color image pixel intensities 
over normalized rectangles of a pre-determined size. They are often projected onto lower dimensional 
spaces, and are deined over a “pyramid” of possible locations, scales, and orientations in the image 
(Senior, 1999). These regions are usually classiied, using one or more techniques, such as neural net-
works, clustering algorithms along with distance metrics from the face or non-face spaces, simple linear 
discriminants, support vector machines (SVMs) (Gordan, et al., 2002), and Gaussian mixture models 
(GMMs) (Rowley, et al., 1998; Senior, 1999; Sung & Poggio, 1998). An alternative popular approach 
uses a cascade of weak classiiers instead, that are trained using the AdaBoost technique and operate 
on local appearance features within these regions (Viola & Jones, 2001). If color information is avail-
able, image regions that do not contain suficient number of skin-tone like pixels can be determined 
(for example, utilizing hue and saturation) (Chan, Zhang, & Huang, 1998; Chetty & Wagner, 2004; 
Summerield, 1979) and eliminated from the search. Typically face detection is coupled with tracking 
in which the temporal correlation is taken into account (tracking can be performed at the face or facial 
feature level). 

Figure 4. Various visual speech feature representation approaches discussed in this section: appearance-
based (upper) and shape-based features (lower) that may utilize lip geometry, parametric, or statistical 
lip models (Bernstein, 1991)
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Following successful face detection, an appearance-based representation of the face can be obtained 
from the face image. Additional techniques can be used at this point to detect mouth corners, eyes, 
nostrils, and chin, by utilizing prior knowledge of their relative position on the face in order to simplify 
the search. In addition, if color information is available, hue and saturation information can be utilized 
in order to directly detect and extract certain facial features (especially lips) or constrain the search 
area and enable more accurate feature extraction (Chan, et al., 1998; Chetty & Wagner, 2004). These 
features can be used to extract and normalize the mouth region-of-interest (ROI), containing useful 
visual speech information. The normalization is usually performed with respect to head-pose informa-
tion and lighting (Figs. 3a and 3b). The appearance-based features are extracted from the ROI using 
image transforms.

Shape-based visual mouth features (divided into geometric, parametric, and statistical, as in Fig. 
4) are extracted from the ROI utilizing techniques such as, snakes (Kass, Witkin, & Terzopoulos, 
1988), templates (Yuille, Hallinan, & Cohen, 1992), and active shape and appearance models (Cootes, 
Edwards, & Taylor, 1998). A snake is an elastic curve represented by a set of control points, and it is 
used to detect important visual features, such as lines, edges, or contours. The snake control point 
coordinates are iteratively updated, converging towards a minimum of the energy function, deined 
on the basis of curve smoothness constraints and a matching criterion to desired features of the image 
(Kass, et al., 1988). Templates are parametric curves that are itted to the desired shape by minimizing 
an energy function, deined similarly to snakes. Examples of lip contour estimation using a gradient 
vector ield (GVF) snake and two parabolic templates are depicted in Fig. 3c (Aleksic, et al., 2002).  
Examples of statistical models are active shape models (ASMs) and active appearance models (AAMs) 
(Cootes, Edwards, & Taylor, 2001). The former are obtained by applying principal component analysis 
(PCA) (Duda, Hart, & Stork, 2001) to training vectors containing the coordinates of a set of points that 
lie on the shapes of interest, such as the lip inner and outer contours. These vectors are projected onto 

Figure 5. The shape-based visual feature extraction system of (Aleksic, et al., 2002), depicted sche-
matically in parallel with the audio front end, as used for audio-visual speaker and speech recognition 
experiments (Aleksic & Katsaggelos, 2003, 2006)
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a lower dimensional space deined by the eigenvectors corresponding to the largest PCA eigenvalues, 
representing the axes of shape variation.  The latter are extensions of ASMs that, in addition, capture 
the appearance variation of the region around the desired shape. AAMs remove the redundancy due 
to shape and appearance correlation, and create a single model that describes both shape and the cor-
responding appearance deformation. 

lI p FeATuReS exTRACTIon

In appearance-based approaches to visual feature representation, the pixel-values of the face or mouth 
ROI are utilized. The extracted ROI is typically a rectangle containing the mouth, possibly including 
larger parts of the lower face, such as the jaw and cheeks (Potamianos, et al., 2003) or could even be 
the entire face (Matthews, et al., 2001) (see Figs. 3b and 4). It can also be extended into a three-dimen-
sional rectangle, containing adjacent frame ROIs, thus capturing dynamic visual speech information. 
Alternatively, the mouth ROI can be obtained from a number of image proiles vertical to the estimated 
lip contour as in (Dupont & Luettin, 2000), or from a disc around the mouth center (Maison, Neti, & 
Senior, 1999). A feature vector xt (see Fig. 4) is created by ordering the grayscale pixel values inside 
the ROI. The dimension d of this vector typically becomes prohibitively large for successful statistical 
modeling of the classes of interest, and thus a lower-dimensional transformation of it is used instead. 
It is obtained utilizing a D × d dimensional linear transform matrix R, such that the transformed data 
vector yt = R · xt contains most speechreading information in its D < d elements (see Fig. 4). Matrix R 
is often obtained based on a number of training ROI grayscale pixel value vectors utilizing transforms 
such as, PCA, generating “eigenlips” (or “eigenfaces” if applied to face images for face recognition) 
(Chan, et al., 1998; Chetty & Wagner, 2004; Summerield, 1979), the discrete cosine transform (DCT) 
(Duchnowski, Meier, & Waibel, 1994; Potamianos, et al., 1998), the discrete wavelet transform (DWT) 
(Duchnowski, et al., 1994; Potamianos, et al., 1998), linear discriminant analysis (LDA) (Aleksic, et al., 
2005; Potamianos, et al., 2003; Wark, et al., 1999b), Fisher linear discriminant (FLD), and the maximum 
likelihood linear transform (MLLT) (Chaudhari, et al., 2003; Potamianos, et al., 2003). PCA provides 
low-dimensional representation optimal in the mean-squared error sense, while LDA and FLD provide 
most discriminant features, that is, features that offer a clear separation between the pattern classes. 
Often, these transforms are applied in series (Potamianos, et al., 2003; Wark, et al., 1999b) in order to 
cope with the “curse of dimensionality” problem. 

With shape-based features it is assumed that most of the information is contained in face contours 
or the shape of the speaker’s lips (Aleksic & Katsaggelos, 2004a, 2005; Aleksic, et al., 2005; Matthews, 
et al., 2001; Williams & Katsaggelos, 2002). Such features achieve a compact representation of facial 
images and visual speech using low-dimensional vectors, and are invariant to head pose and lighting. 
However, their extraction requires robust algorithms, which is often dificult and computationally inten-
sive in realistic scenarios. Geometric features, such as the height, width, perimeter of the mouth, etc., are 
meaningful to humans and can be readily extracted from the mouth images. Geometric mouth features 
have been used for visual speech recognition (Goldschen, et al., 1996; Zhang, Broun, Mersereau, & Cle-
ments, 2002) and speaker recognition (Zhang, et al., 2002). Alternatively, model-based visual features 
are typically obtained in conjunction with a parametric or statistical facial feature extraction algorithm. 
With model-based approaches the model parameters are directly used as visual speech features (Aleksic, 
et al., 2002; Cootes, et al., 2001; Dupont & Luettin, 2000).
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An example of model based visual features is represented by the facial animation parameters (FAPs) of 
the outer- and inner-lip contours (Aleksic & Katsaggelos, 2003, 2004a; Aleksic, et al., 2002; Chibelushi, 
Deravi, & Mason, 1996).  FAPs describe facial movement, and are used in the MPEG-4 audio-visual 
object-based video representation standard to control facial animation, together with the so-called facial 
deinition parameters (FDPs) that describe the shape of the face. The FAPs extraction system described 
in (Aleksic, et al., 2002) is shown in Fig. 5. The system irst employs a template matching algorithm to 
locate the person’s nostrils by searching the central area of the face in the irst frame of each sequence. 
Tracking is performed by centering the search area in the next frame at the location of the nostrils in the 
previous frame. The nostril location is used to determine the approximate mouth location. Subsequently, 
the outer lip contour is determined by using a combination of a GVF snake and a parabolic template (see 
also Fig. 3c). Following the outer lip contour detection and tracking, ten FAPs describing the outer-lip 
shape (“group 8” FAPs (Aleksic, et al., 2002)) are extracted from the resulting lip contour (see also Figs. 
3 and 4). These are placed into a feature vector, which is subsequently projected by means of PCA onto 
a 3-dimensional space (Aleksic, et al., 2002), since the irst three eigenvectors described 86% of the 
variance described by all 10 eigenvectors. The resulting visual features (eigenFAPs) are augmented by 
their irst- and second-order derivatives providing a 9-dimensional dynamic visual speech vector.

Since appearance- and shape-based visual features contain respectively low- and high-level informa-
tion about the person’s face and lip movements, their combination has been utilized in the expectation of 
improving the performance of the recognition system. Features of each type are usually just concatenated 
(Dupont & Luettin, 2000), or a single model of face shape and appearance is created (Cootes, et al., 
2001; Matthews, et al., 2001).  For example, PCA appearance features are combined with snake-based 
features or ASMs, or a single model of face shape and appearance is created using AAMs (Cootes, et 
al., 2001).  PCA can further be applied to this single model vector (Matthews, et al., 2001).

As discussed above, a number of approaches can be used for extracting and representing visual in-
formation utilized for speech and speaker recognition. However, limited work exists in the literature in 
comparing the relative performance of visual speech features. The advantage of the appearance-based 
features is that they, unlike shape-based features, do not require sophisticated extraction methods. In 
addition, they contain information that cannot be captured by shape-based visual features. Their disad-
vantage is sensitivity to lighting and rotation changes. Their dimensionality is also usually much higher 
than that of the shape-based visual features, therefore requiring much larger amount of data for reliable 
training. Hence, in applications in which the amount of training data is limited, or there are signiicant 
lighting and rotation changes, shape-based approaches should be used, provided that lip features can be 
accurately extracted. Most comparisons of visual features are made for features within the same category 
(appearance- or shape-based) in the context of AV or V-only speech or speaker recognition (Aleksic & 
Katsaggelos, 2005; Duchnowski, et al., 1994; Matthews, et al., 2001; Potamianos, et al., 1998). Features 
across categories have also been compared, but in most cases with inconclusive results  (Aleksic & Kat-
saggelos, 2004a; Duchnowski, et al., 1994; Matthews, et al., 2001) (see also Fig. 6). In conclusion, the 
choice of the most appropriate and robust visual speech features depends on the particular application 
and factors such as computational requirements, video quality, and the visual environment. 

In order to evaluate visual features with respect to speech and speaker recognition systems per-
formance, we need to irst evaluate the quality of feature extraction algorithms, and then evaluate the 
performances of recognition systems that utilize these visual features. For the irst task, the ground 
truth visual features need to be provided through labeling of the evaluation data set, and compared to 
the extracted features. In case of shape-based features the measurement of the quality of the feature 
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extraction algorithms can be the percentage of the overlapping area of the ground truth and extracted 
lip contours. Similarly, for appearance-based approaches, the percentage of the overlapping area of ROIs 
can be used as a measure. Labeling process is time intensive and costly and a large amount of labeled 
data is needed in order to evaluate quality of a particular feature extraction approach. In addition, for 
applications such as speech and speaker recognition, it is arguably more important to preserve dynam-
ics of the visual features, rather than their absolute values. Therefore, the ultimate evaluation of visual 
features is performed by evaluating their effect on performance of speech and speaker recognition 
systems. We present various such systems in the following section.

AV And V-onl y Spee Ch And Spe Ake R ReCogn ITIon SySTemS

In this section, we review evaluation measures, and databases commonly used for AV speech and speaker 
recognition and present examples of speciic systems found in the literature and their performance.

performance evaluation measures 

The performance of speech recognition systems is usually measured in terms of word error rate (WER), 
or recognition accuracy. Speaker recognition systems can be classiied into speaker identiication and 
speaker veriication (authentication) systems. Speaker identiication is the problem of determining the 
identity of a speaker from a closed set of candidates, while speaker veriication refers to the problem 
of determining whether a speaker is who s/he claims to be. Speaker recognition systems can also be 
classiied into text-dependent and text-independent, based on the text used in the testing phase. The 
identiication error or rank-N correct identiication rate is usually used to report the performance of 
identiication systems. It is deined as the probability that the correct match of the unknown person’s 
biometric data is in the top N similarity scores (this scenario corresponds to the identiication system 
which is not fully automated, needing human intervention or additional identiication systems applied 
in cascade).

Two commonly used error measures for veriication performance are the false acceptance rate (FAR) 
-- an impostor is accepted -- and the false rejection rate (FRR) -- a client is rejected. They are deined 
by

%100FRR%100FAR ×=×=
C

C
I

I RA
,         (1)

where IA denotes the number of accepted impostors, I  the number of impostor claims, CR the number of 
rejected clients, and C the number of client claims. There is a trade-off between FAR and FRR, which 
is controlled by an a priori chosen veriication threshold. The receiver operator curve (ROC) or the 
detection error trade-off (DET) curve can be used to graphically represent the trade-off between FAR 
and FRR (Cardinaux, Sanderson, & Bengio, 2006). DET and ROC depict FRR as a function of FAR in 
a log, and linear scale, respectively. The detection cost function (DCF) is a measure derived from FAR 
and FRR according to

FAR)()(FRR)()(DCF ⋅⋅+⋅⋅= impostorPFACostclientPFRCost      (2)
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where P(client) and P(impostor) are the prior probabilities that a client or an impostor will use the sys-
tem, respectively, while Cost(FA) and Cost(FR) represent respectively the costs of false acceptance and 
false rejection. Half total error rate (HTER) (Cardinaux, et al., 2006; Doddington, Przybycki, Martin, 
& Reynolds, 2000) is a special case of DCF when the prior probabilities are equal to 0.5 and the costs 
equal to 1, resulting in

FAR)(FRR
2
1HTER += . 

Veriication system performance is often reported using a single measure either by choosing the threshold 
for which FAR and FRR are equal, resulting in the equal error rate (EER), or by choosing the thresh-
old that minimizes DCF (or HTER). The appropriate threshold can be found either using the test set 
(providing biased results) or a separate validation set (Bengio, Mariethoz, & Keller, 2005). Expected 
performance curves (EPCs) are proposed as a veriication measure in (Bengio & Mariethoz, 2004a; 
Bengio, et al., 2005). They provide unbiased expected system performance analysis using a validation 
set to compute thresholds corresponding to various criteria related to real-life applications.

Audio-Visual databases

Although there is abundance of audio-only databases, there exist only a small number of databases suit-
able for audio-visual speech and speaker recognition research. This is due to the ield being relatively 
young, but also to the fact that AV corpora pose additional challenges concerning database collection, 
storage, distribution, and privacy. Commonly used audio-visual databases in the literature were collected 
with limited resources, usually contain a small number of subjects, and have relatively short duration. 
They usually vary greatly in the number of speakers, vocabulary size, number of sessions, non-ideal 
acoustic and visual conditions, and evaluation measures. This makes the comparison of different visual 
features and fusion methods, with respect to the overall performance of an AV system dificult. Some of 
the currently publicly available AV databases which have been used in the published literature are the 
M2VTS (multi modal veriication for teleservices and security applications) (Pigeon & Vandendorpe, 
1997) and XM2VTS (extended M2VTS) (Messer, Matas, Kittler, Luettin, & Maitre, 1999), BANCA 
(biometric access control for networked and e-commerce applications) (Bailly-Bailliere, et al., 2003), 
VidTIMIT (Sanderson & Paliwal, 2003) (video recordings of people reciting sentences from the TIMIT 
corpus), DAVID (Chibelushi, et al., 1996), VALID (Fox, O’Mullane, & Reilly, 2005), and AVICAR 
(audio-visual speech corpus in a car environment) (Lee, et al., 2004) databases. We provide next a short 
description for each of them.

The M2VTS (Pigeon & Vandendorpe, 1997) database consists of audio recordings and video se-
quences of 37 subjects uttering digits 0 through 9 in ive sessions spaced apart by at least one week. 
The subjects were also asked to rotate their heads to the left and then to the right in each session in 
order to obtain a head rotation sequence that can provide 3-D face features to be used for face recog-
nition purposes. The main drawbacks of this database are its small size and limited vocabulary. The 
extended M2VTS database (Messer, et al., 1999) consists of audio recordings and video sequences of 
295 subjects uttering three ixed phrases, two 10-digit sequences and one 7-word sentence, with two 
utterances of each phrase, in four sessions. The main drawback of this database is its limitation to the 
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development of text-dependent systems. Both M2VTS and XM2VTS databases have been frequently 
used in the literature (see Table 2).

The BANCA database consists of audio recordings and video sequences of 208 subjects (104 male, 
104 female) recorded in three different scenarios, controlled, degraded and adverse, over 12 different 
sessions spanning three months. The subjects were asked to say a random 12-digit number, their name, 
their address and date of birth, during each of the recordings. The BANCA database was captured in 
four European languages. Both high- and low-quality microphones and cameras were used for record-
ing. This database provides realistic and challenging conditions and allows for comparison of different 
systems with respect to their robustness.

The VidTIMIT database consists of audio recordings and video sequences of 43 subjects (19 female 
and 24 male), reciting short sentences from the test section of the NTIMIT corpus (Sanderson & Paliwal, 
2003) in 3 sessions with average delay of a week between sessions, allowing for appearance and mood 
changes. Each person utters 10 sentences. The irst two sentences are the same for all subjects, while 
the remaining eight are generally different for each person. All sessions contain phonetically balanced 
sentences. In addition to the sentences, the subjects were asked to move their heads left, right, up, then 
down, in order to obtain head rotation sequence. The AV biometric systems that utilize the VidTIMIT 
corpora are described in (Sanderson & Paliwal, 2004).

The DAVID database consists of audio and video recordings (frontal and proile views) of more than 
100 speakers including 30 subjects recorded in ive sessions over a period of several months. The ut-
terances include digit set, alphabet set, vowel-consonant-vowel syllables, and phrases. The challenging 
visual conditions include illumination changes and variable scene background complexity.

The VALID database consists of ive recordings of 106 subjects (77 male, 29 female) over a period 
of one month. Four of the sessions were recorded in ofice environment in the presence of visual noise 
(illumination changes) and acoustic noise (background noise). In addition, one session was recorded 
in the studio environment containing a head rotation sequence, where the subjects were asked to face 
four targets, placed above, below, left and right of the camera. The database consists of recordings of 
the same utterances as those recorded in the XM2VTS database, therefore enabling comparison of the 
performance of different systems and investigation of the effect of challenging visual environments on 
the performance of algorithms developed with the XM2VTS database.

The AVICAR database (Lee, et al., 2004) consists of audio recordings and video sequences of 100 
speakers (50 male and 50 female) uttering isolated digits, isolated letters, phone numbers, and TIMIT 
sentences with various language backgrounds (60% native American English speakers) inside a car. 
Audio recordings are obtained using a visor-mounted array composed of eight microphones under 5 
different car noise conditions (car idle, 35 and 55mph with all windows rolled up or just front windows 
rolled down). Video sequences are obtained using dashboard-mounted array of four video cameras. 
This database provides different challenges for tracking and extraction of visual features and can be 
utilized for analysis of the effect of non-ideal acoustic and visual conditions on AV speaker recognition 
performance.

Additional databases for AV research are the CUAVE (Clemson University AV Experiments) cor-
pus containing connected digit strings (Patterson, Gurbuz, Tufekci, & Gowdy, 2002), the AMP/CMU 
database of 78 isolated words (Chen, 2001), the Tulips1 set of four isolated digits (Movellan, 1995), the 
IBM AV database (Chaudhari & Ramaswamy, 2003), and the AV-TIMIT audio-visual corpus (Timothy 
J. Hazen, Saenko, La, & Glass, 2004).
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The existing AV databases do not have all desirable characteristics, such as, adequate number of 
subjects and size of vocabulary and utterances, realistic variability (representing for example speaker 
identiication on a mobile hand-held device, or taking into account other non-ideal acoustic and visual 
conditions), recommended experiment protocols, and ability to utilize them for text-independent as well 
as text-dependent veriication systems. Hence, there is a great need for new, standardized databases that 
would enable fair comparison of different systems and represent realistic non-ideal conditions. Experi-
ment protocols should also be deined in a way that avoids biased results and allows for fair comparison 
of different speaker recognition systems.

Audio-Visual Speech and Speaker Recognition Systems

Although, as mentioned above, AV speaker recognition systems can combine acoustic and only visual 
static (face recognition) information (Ben-Yacoub, et al., 1999; Brunelli & Falavigna, 1995; Chibelushi, 
et al., 1993; Timothy J. Hazen, et al., 2004; Sanderson & Paliwal, 2004) we focus here on speech and 
speaker recognition systems utilizing dynamic visual information. 

The choice and accurate extraction of the acoustic and visual features, and the AV fusion approach 
utilized, strongly affect the performance of AV systems. A number of researchers have developed audio-
visual systems (Abdeljaoued, 1999; Aleksic & Katsaggelos, 2003, 2006; Basu, et al., 1999; Ben-Yacoub, 
et al., 1999; Bengio, 2003, 2004; Bigun, et al., 1997; Brunelli & Falavigna, 1995; Brunelli, et al., 1995; 
Chaudhari & Ramaswamy, 2003; Chaudhari, et al., 2003; Chibelushi, et al., 1993, 1997; Dieckmann, 
et al., 1997; Erzin, et al., 2005; Fox, Gross, et al., 2005; Fox, et al., 2003; Fox & Reilly, 2003; Frischolz 
& Dieckmann, 2000; T. J. Hazen, et al., 2003; Hong & Jain, 1998; Jourlin, et al., 1997a, 1997b; Kanak, 
et al., 2003; Kittler, et al., 1998; Kittler, et al., 1997; Kittler & Messer, 2002; Luettin, 1997; Radova & 
Psutka, 1997; Ross & Jain, 2003; Sanderson & Paliwal, 2003, 2004; Sargin, et al., 2006; Wark, et al., 
1999a, 1999b, 2000; Yemez, et al., 2003). These systems differ in visual features, fusion methods, AV 
databases, and evaluation procedures. Because of these differences, it is usually very dificult to com-
pare systems. In this section, we present various visual-only, audio-visual- systems and provide some 
comparisons. An overview of various AV systems found in the literature is shown in Table 2. Several 
of those systems are discussed in more detail in the remainder of this section.

Identiication Error [%] Veriication Error (EER) [%]
SNR AU AV AU AV
30 5.13 5.13 2.56 1.71
20 19.51 7.69 3.99 2.28
10 38.03 10.26 4.99 2.71
0 53.10 12.82 8.26 3.13

Table 1. Speaker recognition performance obtained for various SNRs utilizing the audio-only and the au-
dio-visual systems in (Aleksic & Katsaggelos, 2003) tested on the AMP/CMU database (Chen, 2001)
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Speaker Recognition Systems

Luettin et al. (Luettin, Thacker, & Beet, 1996) developed a visual-only speaker identiication system by 
utilizing only the dynamic visual information present in the video recordings of the mouth area. They 
utilized the Tulips1 database (Movellan, 1995), consisting of recordings of 12 speakers uttering irst 
four English digits. They performed both text-dependent and text-independent experiments utilizing 
shape- and appearance- based visual features. In text-dependent experiments, their person identiica-
tion system, based on HMMs, achieved 72.9%, 89.6%, and 91.7% recognition rates when shape-based, 
appearance-based, and joint (concatenation fusion) visual features were utilized, respectively. In text-
independent experiments, their system achieved 83.3%, 95.8%, and 97.9% recognition rates when shape, 
in text-dependent experiments -based, appearance-based, and joint (concatenation) visual features 
were utilized, respectively. In summary, they achieved better results with appearance-based, than with 
shape-based visual features, and the identiication performance improved further when joint features 
were utilized.

Wark et al. (Maison, et al., 1999; Wark, et al., 1999a, 1999b, 2000) developed a text-independent 
AV speaker veriication and identiication systems, utilizing multi-stream HMMs, and tested it on the 
M2VTS database. The MFCCs were used as acoustic features and lip contour information obtained after 
applying PCA and LDA, as visual features. The system was trained in clean conditions and tested in 
degraded acoustic conditions. At low SNRs, the AV system achieved signiicant performance improve-
ment over the audio-only system and also outperformed the visual-only system, while at high SNRs the 
performance was similar to the performance of the audio-only system. 

Jourlin et al. (Jourlin, et al., 1997b; Wu, Aleksic, & Katsaggelos, 2004) developed a text-dependent 
AV speaker veriication system that utilizes both acoustic and visual dynamic information, and tested 
it on the M2VTS database. Their 39-dimensional acoustic features consist of LPC coeficients and 
their irst and second order derivatives. They use 14 lip shape parameters, 10 intensity parameters and 
the scale as visual features, resulting in a 25-dimensional visual feature vector. They utilize HMMs to 
perform audio-only, visual-only, and audio-visual experiments. The audio-visual score is computed as 
a weighted sum of the audio and visual scores. Their results demonstrate a reduction of FAR from 2.3% 
when the audio-only system is used to 0.5% when the multimodal system is used.

Aleksic and Katsaggelos (Aleksic & Katsaggelos, 2003) developed an AV speaker recognition system 
with the AMP/CMU database (Chen, 2001) utilizing 13 MFCC coeficients and their irst and second 
order derivatives as acoustic features (Aleksic & Katsaggelos, 2003). A visual shape-based feature 
vector consisting of ten FAPs, which describe the movement of the outer-lip contour (Aleksic, et al., 
2002), extracted using the systems discussed in previous sections, was projected by means of PCA 
onto a three-dimensional space (see Fig 5). The resulting visual features were augmented with irst and 
second order derivatives providing nine-dimensional dynamic visual feature vectors. Feature fusion 
integration approach and single-stream HMMs were used to integrate dynamic acoustic and visual 
information. Speaker veriication and identiication experiments were performed using audio-only and 
audio-visual information, under both clean and noisy audio conditions at SNRs ranging from 0 dB to 
30 dB.  The data, consisting of each speaker uttering the same digit sequence 10 times, is divided into 
training, evaluation and testing part. The irst six utterances of each speaker were used for training, one 
for evaluation, and the remaining three for testing. The same training, and testing procedures were used 
for both audio-only and audio-visual experiments. The obtained results for both speaker identiication 
and veriication experiments, expressed in terms of the identiication error and EER, are shown in Table 
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System
Features

Database
Non-ideal 

Conditions Expert AV Fusion 
Method

Recognition 
Mode*Acoustic Visual

Automatic Speaker Recognition Systems

(Luettin, et al., 
1996) none

shape- and 
appearance-
based, 
and joint 
(concatenation) 

Tulips1 none HMMs
GMMs none TD+TI/ID

(Koterba, 
et al., 2005; 
Wark, et al., 
1999a, 1999b, 
2000)

MFCCs shape-based 
(PCA and LDA) M2VTS

white noise 
at different 
SNRs

GMMs late 
integration TI/ID+VER

(Jourlin, et al., 
1997b) LPCs+Δ+ΔΔ

appearance- and 
shape-based 
features

M2VTS none HMMs late 
integration TD/VER

(Aleksic & 
Katsaggelos, 
2003)

MFCCs+Δ+ΔΔ
shape-based
(PCA applied on 
lip-contours)

AMP/CMU 
white noise 
at different 
SNRs

HMMs early 
integration TD/ID+VER

(Chaudhari & 
Ramaswamy, 
2003)

MFCCs
appearance-based 
(DCT applied on 
ROI)

IBM none GMMs early and late 
integration TI/ID+VER

(Bengio, 2003, 
2004) MFCCs+Δ shape-based and 

appearance-based M2VTS
white noise 
at different 
SNRs

asynchronous
HMMs

intermediate 
integration TD /VER

(Fox, et al., 
2003; Fox & 
Reilly, 2003) 

MFCCs+ Δ appearance-based
(DCT) XM2VTS

white noise 
at different 
SNRs

HMMs early and late 
integration TD/ID

(Neian, 
Liang, Fu, & 
Liu, 2003)

MFCCs+Δ+ΔΔ
appearance-based
(PCA+LDA) XM2VTS

white noise 
at different 
SNRs

coupled 
HMMs
embedded 
HMMs

intemediate 
and late 
integration

TD/ID

(Kanak, et al., 
2003) MFCCs+Δ+ΔΔ appearance-based

(PCA)

38 speakers
(Kanak, et al., 
2003)

white noise 
at different 
SNRs

HMMs early and late 
integration TD/ID

Automatic Speech Recognition Systems

(Petajan, 
1985) none shape-based

4 speakers
letter and digit 
recognition 
(Petajan, 
1985)

none dynamic time 
warping none

(Aleksic, et 
al., 2005; 
Aleksic, et al., 
2002)

MFCCs+Δ+ΔΔ

shape- and 
appearance-based 
(PCA applied on 
lip-contours and 
mouth images)

(Bernstein, 
1991)

white noise 
at different 
SNRs

HMMs early and late 
integration

(Aleksic, et 
al., 2005; 
Potamianos, et 
al., 2003)

MFCCs + LDA appearance-based 
(DCT and LDA)

IBM 
(Potamianos, 
et al., 2003)

white noise HMMs
early and late 
integration, 
hybrid fusion

(Dupont & 
Luettin, 2000)

PLP (RASTA-
PLP)+Δ+ΔΔ

shape- and 
appearance-based M2VTS white noise HMMs early and late 

integration

Table 2.  Sample audio-visual speaker and speech recognition systems

* TD: text-dependent; TI: text-independent, VER: veriication; ID: identiication; ** Δ – irst derivative, ΔΔ 
– second derivative
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1. Signiicant improvement in performance over the audio-only (AU) speaker recognition system was 
achieved, especially under noisy acoustic conditions. For instance, the identiication error was reduced 
from 53.1%, when audio-only information was utilized, to 12.82%, when AV information was employed 
at 0 dB SNR. 

Chaudhari et al. (Chaudhari & Ramaswamy, 2003) developed an AV speaker identiication and 
veriication system which modeled the reliability of the audio and video information streams with time-
varying and context dependent parameters. The acoustic features consisted of 23 MFCC coeficients, 
while the visual features consisted of 24 DCT coeficients from the transformed ROI. They utilized 
GMMs to model speakers, and parameters that depended on time, modality, and speaker to model stream 
reliability. The system was tested on the IBM database (Chaudhari & Ramaswamy, 2003) achieving an 
EER of 1.04%, compared to 1.71%, 1.51%, and 1.22%, of the audio-only, video-only, and AV (feature 
fusion) systems, respectively.

Dieckmann et al. (Dieckmann, et al., 1997) developed a system which used visual features obtained 
from all three modalities, face, voice, and lip movement. Their fusion scheme utilized majority voting 
and opinion fusion. Two of the three experts had to agree on the opinion, and the combined opinion had 
to exceed the predeined threshold. The identiication error decreased to 7% when all three modalities 
were used, compared to 10.4%, 11%, and 18.7%, when voice, lip movements, and face visual features 
were used individually.

Speech Recognition Systems

Petajan (Petajan, 1985) developed the irst audio-visual automatic speech recognition system. He used 
image thresholding to obtain binary mouth images from the input video. They were analyzed to derive 
mouth height, width, perimeter, and area, which were used as visual features in speech recognition experi-
ments. He reported visual-only speech recognition results performing isolated word speech recognition 
on a 100-word vocabulary, using dynamic time warping. He combined in serial fashion acoustic and 
visual speech recognizers. The visual speech recognition system is used to rescore several irst choice 
words, obtained by the audio speech recognition system, and make a inal decision. 

Aleksic and Katsaggelos (Aleksic, et al., 2005; Aleksic, et al., 2002) developed an audio-visual ASR 
system that employs both shape- and appearance-based visual features, obtained by PCA performed on 
FAPs of the outer and inner lip contours (Aleksic, et al., 2005; Aleksic, et al., 2002), or mouth images 
(eigenlips). They utilized both early (EI) and late (LI) integration approaches and single- and multi-
stream HMMs to integrate dynamic acoustic and visual information. Approximately 80% of the data 
was used for training, 18% for testing, and 2% as a development set for obtaining roughly optimized 
stream weights, word insertion penalty and the grammar scale factor. A bi-gram language model was 
created based on the transcriptions of the training data set. Recognition was performed using the Vit-
erbi decoding algorithm, with the bi-gram language model. The same training and testing procedure 
was used for both audio-only and audio-visual ASR experiments. A summary of large-vocabulary (1k 
words) recognition experiments using the Bernstein lipreading corpus (Bernstein, 1991) is depicted in 
Fig. 6. There, audio-only WER is compared to audio-visual ASR performance over a wide range of 
acoustic SNR conditions (-10 – 30 dB), obtained by corrupting the original signal with white Gaussian 
noise. It can be clearly seen in Fig. 6 that considerable ASR improvement is achieved, compared to the 
audio-only performance, for all noise levels tested when visual speech information is utilized. 
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Potamianos et al. (Potamianos, et al., 2003) developed an AV ASR system that utilizes appearance-
based visual features. They obtain a 41-dimensional visual feature vector by performing DCT and 
LDA on a normalized 64x64-pixel greyscale ROI centered at the mouth area. The visual features are 
synchronized with 60-dimensional MFCC-based acoustic features. They performed experiments on a 
speaker-independent, large vocabulary (10k words) continuous speech audio-visual database (Potamia-
nos, et al., 2003). They used three fusion techniques for audio-visual ASR over a wide range of acoustic 
SNR conditions. They used early integration, late integration, as well as hybrid fusion approach which 
combines audio features with fused audio-visual discriminant features The hybrid fusion approach 
produced the best performance achieving, for example, an 8 dB “effective SNR” performance gain at 
10 dB (Aleksic, et al., 2005; Potamianos, et al., 2003).

�� � � � �� �� �� �� ��

��

��

��

��

��

��

��

��

��

3 .2 �D" 	

7
%

2
�

�
	

!UDIOONLY            
!6 & !0 S % )            
!6 & !0 S ,)            
!6 & !0 S ,)0 RODUCT(--S
!6 % IGENLIPS ,)       

 9 dB 
7 dB 

 

Figure 6. Audio-visual speech recognition system described in (Aleksic, et al., 2005). The results cor-
respond to early (EI) and late integration (LI) information fusion approaches utilizing shape-based 
(FAPs) or appearance-based (eigenlips) visual features
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Dupont and Luettin (Dupont & Luettin, 2000) developed an AV ASR system utilizing a large multi-
speaker database of continuously spoken digits (M2VTS). They use both appearance- and shape-based 
visual features. Lip contour information and grey-level information of the mouth area are used as visual 
features. Acoustic features are obtained utilizing perceptual linear prediction (PLP) or the noise-robust 
RASTA-PLP (relative spectra) methods. They employed HMMs in both early and late integration ap-
proaches for the fusion of acoustic and visual information. The experiments are performed under various 
acoustic SNRs (5-30dB) obtained by corrupting original signal by stationary Gaussian white noise. For 
example, at 15dB SNR their audio-only system using PLP or J-RASTA-PLP features, achieves 56.3% 
and 7.2% WER, respectively, while their audio-visual system that also utilizes lip features in addition 
achieves 2.5% WER.

dISCuSSIon/Con Clu SIon S

This chapter describes various methods for extraction of visual features, generated by a talking person. 
These features can provide valuable information that beneits AV speech and speaker recognition ap-
plications. We irst describe visual signals and various ways of representing and extracting information 
available in them. Several speech and speaker recognition systems that have appeared in the literature are 
reviewed and some experimental results presented. The results demonstrated the importance of utilizing 
visual information for speech and speaker recognition, especially in the presence of acoustic noise. 

Although there are already a number of accomplishments in the ield of AV and V-only speech and 
speaker recognition, there exist exciting opportunities for further research and development. Some of 
these open issues and opportunities are the following: 

There is a need for publicly available multi-modal databases that better relect realistic conditions, 
such as acoustic noise and lighting changes that would help in investigating robustness of AV and V-only 
systems. They can serve as a reference point for development, as well as, evaluation and comparison of 
various systems.  Baseline algorithms and systems could also be designed and made available in order to 
facilitate separate investigation of the effects that various factors, such as, the choice of visual features, 
the information fusion approach, or the classiication algorithms, have on system performance.

 Employing 2.5D or 3D face information (Blanz, et al., 2005; Bowyer, et al., 2006; Sanderson, et al., 
2006) in order to design a truly high-performing visual feature representation system with improved 
robustness to the visual environment needs to be further investigated.

The development of improved AV integration algorithms that will allow unconstrained AV asyn-
chrony modeling and robust, localized reliability estimation of the signal information content, due for 
example, to occlusion, illumination change, or pose, are also needed.

Finally, the statistical signiicance of the results needs to be determined (Bengio & Mariethoz, 2004b; 
Rowley, et al., 1998) when speaker recognition systems are evaluated and compared. It is not suficient 
to simply report that one system achieved a lower error rate than another one (and therefore it is better 
than the other one) using the same experiment setup. The mean and the variance of a particular error 
measure can assist in determining the relative performance of systems.  In addition, standard experiment 
protocols and evaluation procedures should be deined in order to enable fair comparison of different 
systems. Experiment protocols could include a number of different conigurations in which available 
subjects are randomly divided into enrolled subjects and impostors, therefore providing performance 
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measures obtained for each of the conigurations. These measures can be used to determine statistical 
signiicance of the results. 

Robustness represents the biggest challenge in the practical deployment of the AV technology. 
However, there are few applications where the environment and the data acquisition mechanism can 
be carefully controlled enabling employment of current AV systems. For example, in the case of AV 
speaker recognition, the technology is already available for most day-to-day applications that have the 
following characteristics (Poh & Korczak, 2003):

1. Low security and highly user friendly, e.g., access to desktop using AV speaker recognition log-
in

2. High security but user can tolerate the inconvenience of being falsely rejected, e.g., access to 
military, police property; a user, if rejected, would then be processed in series with another, more 
accurate and less user friendly biometric system

3. Low security and convenience is the prime factor (more than any other factors such as cost), e.g., 
time-stamping in a factory setting

The widespread use of the AV technology requires methods for handling variability in the visual en-
vironment, data acquisition devices, and degradations due to data and channel encoding. The technology 
is not yet available for robust, highly user-friendly and highly secured applications (such as banking). 
Further research and development is therefore required for AV speech and speaker recognition systems 
to become widespread in practice.
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ABSTRACT

Lip segmentation is the irst step of any audio-visual speech reading system. The accuracy of this seg-
mentation has a major inluence on the performances of the global system. But this is a very dificult task. 
First of all, lip shape can undergo strong deformations during a speech sequence. As many other image 
processing algorithms, the segmentation task is also inluenced by the illumination conditions and by 
the orientation of the object to be segmented. In this chapter, we present an overview about lip modeling 
and lip segmentation (region-based and contour-based methods). We limit our study to the problem of 
lip segmentation in frontal faces. Section I gives an overview about the chrominance information that is 
used for lip segmentation and a comparison between different chrominance cues is proposed. Section II 
presents region-based approaches and training steps. Section III focuses on contour-based approaches 
and parametric lip models. Section IV inventories methods for lip segmentation accuracy evaluation. 
Some speciic applications are briely presented in section V.
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WhICh IS The BeST Colo R SpACe?

The main issue is to determine the most appropriate color space to make the difference between skin 
pixels and lip pixels. The problem of skin or non skin pixels characterization has been extensively studied 
in the context of face detection. But the point here is to be able to distinguish skin pixels from lip pixels 
(all these pixels belonging to a face). Concerning region based lip segmentation algorithms, the optimal 
color space is the one in which skin pixels and lip pixels are represented by two compact and distinct 
groups of pixels (low intra-class variances and high inter class variance). Regarding contour based lip 
segmentation algorithms, the optimal color space is a space in which the gradient information between 
lip and skin pixels is accentuated.

We propose a summary of the different color spaces that have been used for lip and skin pixels separa-
tion. We irst focus on current color spaces such as RGB, HSV, and YCbCr which appear not completely 
eficient. Then we describe some speciic color information that has been specially introduced in order 
to increase the difference between skin and lip pixels. We try to demonstrate the discriminative power 
of each considered color space by comparing the repartition of some skin pixel samples and some lip 
pixel samples. A speciic database of skin and lip pixel samples has been built. All these samples have 
been manually extracted from a database of 150 frames representing 20 subjects acquired with the same 
camera and with the same conditions of illumination. For the purpose of comparison the dynamic of 
all the chromatic measures has been normalized to the range [0, 1] and the intra-class and inter-class 
variances have been computed.

In a second step, we present a set of speciic luminance and/or chrominance cues that have been 
developed in order to accentuate lip boundaries gradient.

Current Color Spaces

RGB Color Space

We propose to study the RGB color space relevance for lip segmentation using our database of skin and 
lip pixel samples. In Figure 1, we give the histograms of the lip and skin pixel samples for the 3 color 
components R, G and B and the pixels repartition in the subspaces (R,G), (G,B) and (R,B). The intra-
class and inter-class variances are also given in Table 1. 

It is obvious that the color distributions of skin and lip pixel samples overlap each other for each R, G 
and B color component. We can also see the overlapping of the pixel repartition in the RGB subspaces. 
On Table 1, the inter-class variances are particularly low which also displays a strong overlapping.  

We show in Figure 2 an example of the RGB components for a given mouth image. Visually it is 
very dificult to interpret the image. On the input image the lips seem to have more red color than the 
skin, but on the R component the values corresponding to the skin seem higher than those for the lips. 
Despite the fact that the RGB color space is very often used for displaying images and for computer 
graphics applications, it is not easy to interpret how the chromatic and luminance information is mixed 
in the RGB components. As we can see R, G, B channels cannot be used directly for lip segmentation 
because of the strong correlation between light and color information. 
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YCbCr Color Space

The YCbCr color space is derived from the RGB space (Ford, 1998) and resolves one of the main draw-
backs of the RGB by decoupling the chromatic channels from the luminance one. The advantage of the 
YCbCr color space is that it is a linear and bijective transformation from the RGB space. 

Figure 1. Lip and skin pixel histograms and projections in RGB. The irst row gives the histograms of 
the lip (dashed line) and skin (solid line) pixel distribution for the 3 colors components. The second 
row gives the pixel repartition in the (R, G), (G,B) and (R,B) subspaces respectively (area surrounds by 
dashed line corresponds to lip pixels and area surrounds by solid line to skin pixels)

Table 1. Intra-class and inter-class variances of lip and skin pixel samples

Lip pixels variance Skin pixels variance Inter-class
variance

R component 0.026 0.016 6.10-4

G component 0.01 0.01 3.8.10-3

B component 0.016 0.01 4.10-4
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We can see in Figure 2e that the Cb channel is absolutely not distinguishing for lip description. It is 
very noisy and uniform for the entire face. The Cr channel (see Figure 2f) seems more suitable. In Figure 
3 we present the histograms of the Cb and Cr components and the projection in the (Cb, Cr) subspace 
of the lip and skin pixels of our database. A strong overlapping between both pixels distributions can 
be noticed. The analysis of Table 2 conirms the overlapping between both classes but the intra-class 
variance for each distribution is lower than for the RGB components. The conclusion of our study is that 
the YCbCr color space is not very suitable for lip segmentation when dealing with different subjects.

Figure 2. First line: a) R channel b) G channel c) B channel. Second line: d) Y channel, e) Cb channel, 
f) Cr channel

Table 2. Intra-class and inter-class variances of the lips and skin pixels for Cb and Cr components

Lips pixel variance Skin pixel variance Inter-class
variance

Cb component 2 10-4 2 10-4 1 10-4

Cr component 1.3 10-3 5 10-4 3 10-4
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HSI, HSV, HSL Color Spaces

Color spaces with luminance and chrominance separation such as HSV (Hue, Saturation and Value), 
HSI (Hue, Saturation and Intensity), and HSL (Hue, Saturation and Lightness) (Ford, 1998) have also 
been used for lip segmentation especially in order to work with the hue information. Despite the fact 
that the transformation formulas are different for every space, the different chromatic components 
describe similar information.

In (Zhang, 2000) the authors compare the discriminative power of the RGB, HSV and YCbCr color 
spaces for lip segmentation. After studying the histograms of various video sequences with different 
test conditions, Zhang et al. (2000) state that H, from the HSV color space gives a better separation 
between lip and skin pixels. (Coianiz, 1996) also uses the H information. The authors state that the hue 
is enough robust to light variations and that the contours of the lips are well deined in H space but the 
study with our database gives slightly different results.

We compute the normalized histograms of the H component using our database of skin and lip pixels 
(Figure 4-left). Since H values are homogenous to angle and since values related to the red color are 
located near the 2π value, the histogram has been shifted in order to have red hue in the middle of the 

Figure 3. On the irst row the Cb and Cr lip (dashed line) and skin pixels (solid line) histograms are 
given. On the second row skin and lip pixels are projected in the (Cb, Cr) subspace. Area surrounds by 
the dashed line represents the lips pixel cloud, the area surrounds by the solid line represents the skin 
pixels cloud.
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window. We can see that the repartition of lip pixels on the one hand and of skin pixels on the other hand 
is compact so that the hue is almost uniform for each distribution (the intra class variance is 4x10-4 for 
lip pixels and is 5x10-4 for skin pixels). But the problem is that both distributions overlap (the inter-class 
variance is 5x10-4). In Figure 5a we give an illustration of the H channel on a mouth image.

Figure 4. From left to right: H histogram; pseudo-hue histogram; Û Histogram 

Figure 5. a) H channel, b) pseudo-hue channel, c) Û channel
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Speci.c Color Information for l ip pixels Segmentation

None of the current color spaces being really eficient for skin and lip pixels separation, several authors 
have proposed new color transformations such as pseudo-hue (Poggio, 1998) and LUX transform (Liévin, 
2004) specially designed to maximize the contrast between skin and lip pixels. 

The Pseudo-Hue Ĥ

Ĥ tends to enhance the fact that the difference between R and G is greater for lip pixels than for skin 
pixels. Eveno et al. (2003) propose to use Ĥ to separate the lips from the skin. Indeed Ĥ has higher val-
ues for the lips than for the skin and is robust for lips and skin pixels discrimination even when dealing 
with different subjects. Ĥ is computed as follows:

GR
RH +=ˆ                                                                       (1)

In Figure 4-middle, we give the histogram of the pseudo-hue. The results for Ĥ on our database are 
similar to those obtained with the hue. Ĥ is almost uniform for both classes (the intra-class variance is 
8x10-4 for lip pixels and is 5x10-4 for skin pixels) but the overlapping is less important (the inter-class 
variance is 1.2x10-3). Ĥ shows also a lower noise level in the dark areas (Figure 5b). This is an important 
property in case of open mouth segmentation where pixels inside the mouth can have small luminance 
values. As a conclusion, the pseudo-hue achieves good results for lip and skin separation.

The Û Channel of the LUX Color Space

Liévin et al. (2004) proposes another computation of the hue channel deined by:
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This transformation is a simpliication of the LUX color space introduced in (Liévin, 2004). This 
formulation has been inspired by biological considerations and logarithmic image processing (LIP) 
(Deng, 1993) in order to maximize the contrast for face analysis problems. In Figure 4-right, we give 
the Û histograms for our pixels samples. The intra-class variance for the lip pixels class is 4.6x10-3 and 
is 3.2x10-3 for skin pixels class with inter-class variance of 7.5x10-3. We can see that the color distribu-
tions are well separated using Û. We can also see on (Figure 5c) that it gives better result for dark areas: 
the area inside the mouth (the teeth) which has a similar hue than the skin on Ĥ has different hue on Û. 
Consequently Û seems to be very suitable for lip color characterization.

We can also mention the Q=R/G channel used by Chiou (1997) to locate the mouth. Q gives similar 
results as the Û channel except that there is no condition on the ratio R/G when G=0. With Û the ratio 
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is only computed when R>G. Hsu et al. (2002) also propose a color transformation: The Cr/Cb-Cr² color 
information is computed in order to maximize the difference between lip and skin pixels. The authors 
claim that mouth region contains strong red component and weak blue component.

l ip Boundaries enhancement

When dealing with the problem of lip contour extraction, the main issue is the enhancement of a gradient’s 
information between lips and the other face features such as skin and the interior of the mouth. In order 
to have a strong gradient, the representation space of the image information has to give high variation 
values between skin and lip regions. 

Intensity-Based Gradient

The most extensively used gradient for lip contour extraction is the intensity gradient (Hennecke, 1994; 
Radeva, 1995; Pardas, 2001; Delmas, 2002; Seyedarabi, 2006; Werda, 2007). Indeed, in the case of outer 
lip contour detection, the mouth area is characterized by illumination changes between skin and lips. 
For example, if the light source comes from above, the upper boundary of the upper lip is in a bright 
area whereas the upper lip itself is in a dark area. In the same manner, the lower boundary of the lower 
lip is in a dark area whereas the lower lip itself is in a bright area. The intensity gradient also allows 
the inner lip edges to be highlighted in the case of closed mouths (because this boundary is a dark line) 
and in the case of open mouths because the interior of the mouth is composed of bright areas (teeth) 
and dark areas (oral cavity). 

The gradient information is composed of horizontal and vertical components, but frequently, only 
the vertical component is processed because mouth contours are predominantly horizontal (Hennecke, 
1994). In addition, according to the sign of the gradient, the highlighted contour is either for a bright 
area above a dark area or a bright area below a dark area (see Figure 6b and c).

The intensity gradient emphasizes the outer and inner lip contours, but other non desired contours 
could be exhibited too. The problem concerns essentially the lower lip which can present shadow and 
over-exposed areas. In Figure 6, a shadow on the lower lip due to the upper lip gives a high gradient (see 

Figure 6. a) intensity image b) positive vertical gradient c) negative vertical gradient
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Figure 6c). Another point noted in (Radeva, 1995) is the fact that, generally, the lower outer lip contour 
has a weaker gradient and is more dificult to extract. 

Regarding the interior of the mouth, the visibility of teeth, oral cavity, gum or tongue may create 
strong intensity gradients on their boundaries in addition to the intensity gradient coming from the 
inner lip contours. The extraction algorithm must be able to choose the right contours among all the 
possibilities. 

Color-Based Gradients

Eveno et al. (2004) propose two speciic color gradients for the outer lip contour extraction. The gradi-
ent Rtop is used for characterizing the upper boundary and the gradient Rbottom is used for the lower one 
(Figure 7b and c). They are computed as follows where I is the luminance:
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The ratio R/G (Chiou, 1997) increases the difference of contrast between the skin and the lips (see 
Figure 7a). The gradients have been built with the hypotheses that lip pixels have a higher ratio R/G 
than skin pixels and skin pixels above the upper lip have a higher luminance.

In the same way, Beaumesnil et al. (2006) deine a color gradient as a combination of the color 
information Û (see equation (1)) and the luminance (but the gradient expression is not speciied in the 
article).

In (Stillittano, 2008), two gradients are proposed for the inner lip contour extraction. The gradient 
G1 is used for characterizing the upper inner boundary and the gradient G2 for the lower one. They are 
computed as follows, where R is the red component of the RGB color space, I is the luminance Ĥ is the 
pseudo-hue (see equation (3)) and u is a component of the color space CIELuv:
  

  

Figure 7. a) R/G image b) Rtop c) Rbottom
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These 2 gradients have been considered for the following reasons:

• I and Ĥ are generally higher for the lips than for the pixels inside the mouth (in particular for the 
pixels of the oral cavity, where I and Ĥ are close to zero),

• u is higher for the lip pixels than for teeth pixels (indeed u is close to zero for teeth pixels)
• In other cases, R can be lower for lip pixels than for pixels inside the mouth.

Figure 8a gives an illustration of the gradient G1 which truly highlights the upper inner boundary. 
Figure 8b gives an illustration of the gradient G2 which truly enhances the lower inner contour. 

Gradients Computed from a Probability Map

In (Vogt, 1996; Liévin, 2004), mouth edges are extracted by a contour detector applied on a probability 
map which shows the probability of a pixel to belong to the lips. In (Vogt, 1996) the probability map is 
computed by a 2D look up table algorithm applied on the H and S components of the HIS color space. 
The resulting image gives higher values for the pixels having a high probability to be a lip pixel. Liévin 
et al. (2004) build the probability map with a Markov Random Field model combining Û and motion 
information. The MRF model gives a labeled image map with gray levels coding the hue clusters, where 
the lips represent a particular cluster. 

Consequently, the contrast between lip and skin is improved by computing the probability of a pixel 
to be a lip pixel (Vogt, 1996) or to belong to a pixel cluster (Liévin, 2004). The edge extraction depends 
on the probability computational eficiency.

Figure 8. a) G1 b) G2
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Gradients Computed from a Binary Image

In order to prevent the possibility to have parasitic strong gradients around the lip contours, the gradi-
ent is computed on a mouth binary image in (Wark, 1998 and Yokogawa, 2007). Therefore, only the 
contours belonging to the lips are detected but the major dificulty is the production of an accurate 
binary mouth area.

Reg Ion- BASed AppRo AChe S Fo R l Ip Segmen TATIon

Three main categories can be proposed for lip region-based segmentation methods: the deterministic 
approaches based on color distribution modeling and thresholding operations, the supervised or non-
supervised classiication methods which consider lip segmentation as a pixel classiication problem 
(generally classiication between skin pixels and lip pixels) and the statistical methods based on the 
learning of mouth shape and appearance. As all these methods are region-based, a high accuracy of lip 
segmentation around the lip contours is not always guaranteed.

deterministic Approaches

These methods regroup low level region based algorithms with no prior knowledge and no prior mod-
els about the statistics of the lip and skin color distributions. Lip segmentation mainly results from a 
thresholding step on luminance or particular chromatic component.

The simplest and most eficient segmentation method based on thresholding uses chroma keying. 
The lips are made up with blue lipstick which color is high contrasted with skin color. The lips are then 
easily segmented by applying a threshold on H (Chibelushi, 1997; Brandt, 2001). This leads to very 
accurate lip segmentation but such artiices are absolutely not compatible with current life applications 
for obvious ergonomic reasons. 

Chiou (1997) proposes the thresholding of the Q ratio to segment the lips. Given an image focused 
on the mouth area, the idea is to compute a binary mask by thresholding pixels with high red values 
and with Q values in a given range. Wark et al. (1998) use the same approach for a corpus with different 
speakers with empirically chosen values for the upper and lower thresholds on Q. Coianiz et al. (1996) 
use a ixed threshold on H to segment the lips. In (Zhang, 2000) the authors apply ixed thresholds on 
H and S for all subjects to extract a binary mask of the lips. 

The major limitation of these techniques is the automatic computation of robust thresholds. Fixed 
thresholds cannot be generalized as a slight change in environment conditions or with the subject im-
poses to reset the values. As a consequence, thresholds are generally set in an ad-hoc way by a human 
expert.

Classiication Methods

If we make the hypothesis that the input image is focused on the lip area, the problem of lip region 
segmentation can be seen as a classiication problem with two classes: the lip class and the skin class. 
When considering a classiication problem, we have to deine the considered classes, the attributes char-
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acterizing each class and the classiication method. Classiication techniques or clustering techniques are 
widely used in face analysis for various problems including lip modeling and segmentation. The problem 
is to regroup pixels in homogenous sets with speciic properties. We can distinguish mainly 2 kinds 
of approach, the supervised classiication approaches and the unsupervised classiication approaches. 
The most frequently used methods for classiication in face analysis are based on statistical techniques 
(Estimation theory, Bayesian decision theory, Markov random ield), neural networks, support vector 
machine (SVM), C-means, and more recently fuzzy C-means. In the following paragraphs we will 
introduce some representative works about classiication algorithms used for lip segmentation. 

Supervised Methods

The supervised methods imply that prior knowledge is available on the different classes. The idea is to 
use knowledge learned from a set of samples and to generalize it in order to classify the pixels. The irst 
step of a supervised classiication algorithm is the compiling of a database. The database must cover a 
wide range of cases and environmental conditions. The construction of the database is a critical step. 

Figure 9. Manually segmented lips from (Gacon, 2005)

Figure 10. Lip segmentation example from (Gacon, 2005), from left to right, input image, classiied 
pixels, classiied pixels after noise reduction
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Statistical Approaches

A current scheme for statistical classiication approach is to estimate the distribution of the lip and skin 
pixels from the learning database.

Gacon et al. (2005) use a Gaussian mixture model of the lips trained on a database of manually 
segmented mouth images (Figure 9). Ĥ is computed (cf. equation (3)). A Gaussian mixture model which 
corresponds to the color distribution is then estimated by EM, Expectation Maximization. The optimum 
number of Gaussians for each class is given by the MDL Minimum Description Length principle (1 
Gaussian distribution for every class in the case of Gacon’s database). The Ĥ values of an unknown 
image are classiied by inding the cluster ci that maximizes the belonging probability p(Ĥ| ci ) (Figure 
10). To be classiied the probability of a pixel is constrained, p(Ĥ| ci )>p0, p0 corresponds to the minimum 
value of p(Ĥ| ci ) to be classiied and is ixed empirically. Morphological closing and opening are then 
performed to reduce errors of classiication. 

In (Sadeghi, 2002) the approach also estimates the Gaussian mixture of areas included in the mouth 
bounding box to classify lip pixels and non-lip pixels. The authors work with normalized RGB components. 
The Gaussian distributions of lip and non-lip pixels are estimated on a semi-automatically segmented 
database in order to have prior knowledge about both classes of pixels. Then for an unknown mouth 
image the goal is to estimate the Gaussian mixture with an optimal number of Gaussians to describe the 
color of the mouth area. The two normalized chromatic channels (r,g) are then considered for the data 
mixture estimation. To ind the optimal number of Gaussians, the authors compute 2 probabilities: 

∫==
W
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x is a vector of the (r,g) values of a pixel, pemp is the empirical probability, ppred the predicted probability 
computed using the current Gaussian mixture, W is a randomly generated window and k(W) is the 

Figure 11. Lips segmentation from (Patterson, 2002) a) Estimated distributions of non-face, face, lips 
pixels in RGB space b) Example of lip segmentation

a)          b)  
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number of data points in the window and N is the total number of pixels of the mouth area. The opti-
mal number of Gaussians is found by an optimization procedure. Randomly generated windows W are 
computed and the initial number of Gaussians in the mixture is set to 1. Gaussians are added until the 
least square error between pemp and ppred over the window W is minimized. 

As the number of Gaussians in the estimated mixture cannot be predicted, a merging step is done 
using the distributions of the lip and non-lip pixels computed from the training database. The errors 
between the mean of the Gaussians from the unknown image and the mean of the classes given by the 
prior model are computed to classify the unknown Gaussians as lip or non-lip model. The pixel clas-
siication is done using a Bayes classiier. In (Lucey, 2002) the approach is similar.

(Patterson, 2002) also uses manually segmented images to estimate the Gaussians distribution for 
the non-face, face and lip pixels in the RGB color space (see Figure 11a). In this work, the authors use 
images from the CUAVE database (Cuavebase) where the image’s speakers include the shoulders. The 
classiication is done using Bayesian decision rule (see Figure 11b).

Instead of estimating a model of the color distributions of lip and skin pixels, some authors try to use 
the statistics computed on the lip and skin samples to estimate a transformation that will maximize the 
inter-class variance between both classes and minimize the intra-class variances. In (Chan, 1998) the 
authors train a linear model to maximize the contrast between lips and skin using manually segmented 
images. The optimal parameters α, β, δ are used to compute a composite channel C=αR+βG+δB us-
ing the RGB components. Finally the authors apply a threshold on C to classify the skin and lip pixels. 
Neian (2002) uses a similar approach. Linear discriminant analysis (LDA) is run on the learning data 
in order to ind the optimal transformation from RGB color space to a one dimension space where the 
contrast is maximized between lip and skin pixels. The classiication is performed by thresholding the 
component computed by LDA to compute a binary mask of the lips.

We can also mention the work of Seyedarabi (2006). In this study a knowledge based system trained 
on several examples is used to estimate the initial mouth position with a bounding box.

Neural Networks Approach

Neural network have also been used for supervised classiication of lip and skin pixels. The feed forward 
network can be used for that purpose. A multi-layer perceptron applies decision boundary in the input 
data space. This can be applied to separate lip and skin pixels. In (Wojdel, 2001) the authors develop 
a lip segmentation algorithm with a learning step. At the irst image the speaker is asked to manually 
segment his/her lips in order to train a multi-layer perceptron to distinguish lip and skin pixels. The 
network is composed of 3 layers, with 3 neurons on the irst layer, 5 on the second layer and 1 on the 
third layer. The 3 inputs of the neural network are the RGB values of the pixels. The output is set to 0 
for lip pixels and 1 for skin pixels.

Daubias et al. (2002) have also study multi-layer perceptrons in order to classify lips pixel, skin 
pixels and pixels inside the mouth. The general architecture is a network with 3 layers with 3 neurons 
on the last layer, one output for the lips pixels, one for the skin pixels and one for the pixels inside the 
mouth. To classify a pixel, an nxn neighborhood is considered. Thus the input layer has 3n2 nodes, 1 
node for the RGB components of each pixel in the neighborhood. The blocs are computed from a manu-
ally segmented database.
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SVM Approach

The approach using the SVM also consists in computing decision boundaries between the lip pixels 
class and the skin pixels class. Castañeda et al. (2005) use SVM to detect face and lips in face images. 
A database of 10x20 images of the features of interest (lips, eyes, eyebrows,…) from 13 subjects has 
been built. A classiier is designed speciically for lips detection. After the training step, the number of 
support vectors is 2261 for the lips. The authors then perform an optimization procedure to reduce the 
number of support vectors.

Unsupervised Methods

We mentioned in the previous part that the building of the learning database for supervised methods 
is a critical step. In (Yang, 1996) the authors study color rendering of camera in controlled conditions. 
They show that a camera change introduces strong differences in color rendering. This underlines the 
challenge in compiling a database. In case of uncontrolled environments the model trained has to deal 
with unpredictable conditions such as lighting variations, different scales, different subjects, with dif-
ferent characteristics and different acquisition systems (for example mono CCD camera, 3-CCD camera 
…). This leads to the development of unsupervised classiication methods in order to avoid the dificult 
problem of building a learning database.

Unsupervised classiication techniques do not require any training step. This means that no prior 
knowledge about skin and lip pixel statistics is taken into account. 

Statistical Approaches

In (Bouvier, 2007) a mixed color-gradient approach is developed to perform unsupervised lip segmen-
tation. The hypothesis is that the color distribution of mouth area can be approximated by a Gaussian 
mixture model. First Û is computed (cf. equation (2)). Using Expectation maximization the Gaussian 
mixture describing the mouth hue area is estimated. The Gaussian with the highest weight is associated 

Figure 12. Lip segmentation from (Bouvier, 2007) a) Input image, b) Membership map, c) Segmented 
lips
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to the skin. It is supposed that most of the considered pixels belong to the skin class as the image is 
focused on the lower half of the face. A lip membership map M is computed as follows (Figure 12b):
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A threshold must be computed on the membership map to segment the lips. The gradient informa-
tion used for that purpose is Rtop and Rbottom (cf. equation (3)). The threshold and the lip binary mask are 
found at the same time by maximizing the mean gradient lows Rtop and Rbottom through the contour of 
the binary mask (Figure 12c). Tian et al. (2000) use as well a Gaussian mixture model giving the lip 
color distribution and therefore, the mouth area.

(Liévin, 2004) proposes an unsupervised hierarchical algorithm to segment n=N clusters based on a 
Markov Random Field approach. The idea in this work is to combine the color information extracted from 
the simpliied Û channel of the LUX color space and movement information. For example, lip motion can 
be used to improve the color segmentation in video sequence. The algorithm starts with n=1 cluster and 
computes the Û channel and the frame difference fd(x,y)=|It(x,y)-It-1(x,y)|. The algorithm then performs 
the classiication. If it remains unclassiied pixels, a cluster is added and a new classiication is run.

At pass n the irst step is to estimate the mean μn and the standard deviation σn of the main mode on 
the hue Û histogram of the unclassiied pixels. The irst and second derivatives of the histogram are used 
to ind those parameters. Using the estimated mean and standard deviation (μn , σn ) of the hue cluster 
and fd(x,y), an initial label set L(x,y) = (n,k) is computed by thresholding. Initial pixels associated to the 
cluster n are computed by thresholding the iltered hue channel hn(x,y).
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Figure 13. Lip segmentation results from (Liévin, 2004)
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x and y are spatial coordinates, n∈[0…N] corresponds to a hue cluster and k∈[0,1] corresponds to a 
moving region. 

For moving pixels k is set to 1 (0 if static). Those states are obtained by entropic thresholding on fd. 
A Markov random ields (MRF) approach is then used for label ield optimization. For lip segmenta-
tion N is set to 2, there is one class for the lip pixels and one class for the skin pixels. The irst pass 
corresponds to the skin segmentation as the considered images are focused on the lower part of the 
face. The second pass then segments the lips with the constraint that μ2< μ1. Segmentation results are 
proposed in (Figure 13).

K-Means and Fuzzy C-Means Approaches

K-means and fuzzy C-means (or fuzzy K-means) are also well used algorithms for classiication problem. 
In (Liew, 2003) a Fuzzy C-means based algorithm is used in order to segment the lips. Fuzzy C-means 
is a method of clustering where the data can belong to more than one cluster with membership degree 
included in [0, 1] instead of being a binary state (0 or 1). The fuzzy C-partition is obtained by minimizing 
an objective function. Liew et al. (2003) used that approach to segment lips with a number of clusters 
K=2 and a speciic dissimilarity measure. In this work the pixels of the input image are described by a 
feature vector xr,s ( with r,s the spatial coordinates) which corresponds to the CIE L*u*v* and CIE L*a*b* 
values of those pixels (Wyszecki, 1982). The dissimilarity measure is deined on a 3x3 neighborhood of 
a pixel. Its effect is to smooth the distance ||xr,s - vi||2 with the 8 neighbors distances ||xr+l1,s+l2 - vi||2, with 
vi the centroid of cluster i and (l1,l2)∈[-1,1] in order to include spatial constraint in the dissimilarity 
measure, here spatial homogeneity of the pixel cluster. See (Liew, 2003) for detailed expressions of the 
dissimilarity measure and the expression of the optimization loop. After Fuzzy C-mean clustering the 

Figure 14. Lips segmentation from (Liew, 2003). From upper left to lower right, input image, lip mem-
bership map, map after morphological operations, map after symmetry-luminance-shape processing, 
map after Gaussian iltering and inal segmentation
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authors perform several post processing treatments in order to prevent false classiication (morphologi-
cal opening and closing, symmetry constraint, Gaussian iltering). A ixed threshold is applied on the 
iltered partition to segment the lips (Figure 14).  

In classical Fuzzy C-means algorithm the dissimilarity measure is often the l2 distance. The idea 
in (Liew, 2003) was to add spatial constraints on the clustering. This lead to a dissimilarity measure 
that smoothes the distance of the current pixel feature vector to the cluster centroid with the neighbors 
distances to the cluster centroïd.

In (Leung, 2004) a similar approach is used to classify lip pixels and skin-pixels by adding spatial 
constraints on the dissimilarity measure Di,r,s. The hypothesis is that the spatial distribution of the lip 
pixels is approximately elliptic. Wang et al. (2007) also propose a Fuzzy C-means algorithm with spatial 
constraint added to the dissimilarity measure Di,r,s. the constraint here is that the spatial distribution of 
the lips pixel is supposed to be elliptical.

K-means algorithm has also been used in order to ind to mouth area. In (Beaumesnil, 2006), a K-
means classiication algorithm based on Û is used to obtain three classes (lip, face and background). 
Then, a mouth boundary box is extracted by a simple scan of the connected component lip-hue area.

Statistical Shape models

Statistical methods are supervised techniques: a learning database must be compiled. The difference with 
supervised classiication methods is that the models are trained to describe lip main shape or appearance 
variation axes and not to estimate lip color distributions. The goal is to use this prior knowledge for 
lip segmentation in an unknown image. Active Shape Models ASM were irst introduced for lip shape 
variations study. Active Appearance Models AAM have been thereafter introduced to add texture or 
appearance information. 

Figure 15. Left, example of mouth shape model. (1,2) Outer lip contours, (3,4) Inner lip contours, (5,6) 
Teeth contours. Right, 4 main variation modes of a mouth ASM
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Active Shape Model

ASM are derived from the Point Distribution Model PDM introduced in (Cootes, 1992; Cootes, 1995). 
The PDM is built using a training set of manually annotated examples (see Figure 15-Left). This gives 
a vector xi of the N contour points coordinates for each image in the database. A Principal Component 
Analysis (PCA) is performed on X=[x1,x2,…xM]  (M the number of annotated images) to compute the 
variation modes. Given the matrix Ps=[p1,p2,…,pt] of the orthogonal variation modes and a vector 
bs=[b1,b2,…,bt]

T of parameters, any shape x can be described by the following relation ssbPxx +=  with 
x  the mean shape (see Figure 15-Right). Usually 95% of the total variance of data is kept. This leads to 
an important dimensionality reduction. A shape can then be described by a smaller set of parameters.
In order to segment lips in an unknown image, the parameters bs which minimize a cost function is 
estimated. The goal of the cost function is to quantify the distance between the shape given by the 
statistical model and the unknown shape.   

In (Cootes, 2004) the author proposes a coarse-to-ine method to it a face shape model, the approach 
being the same with an image focused on the lips. For each image in the database, a Gaussian pyramid 
is built and for each point of the annotated contour at each level in the pyramid, the gradient distribu-
tions along the normal to the contour are estimated. The number of pixels in the proiles is the same at 
each scale. The itting procedure starts at the coarsest level with the mean model. Then it searches the 
best position of each point of the contour using the gradient proile models. The new shape parameters 
bs’ are computed from the new positions of contour points

x’: ( )xxPb s −= − '' 1             (8) 

The procedure is repeated until convergence. When convergence is achieved at level L, the shape 
model itting is restarted at level L-1 with the shape parameters found at level L until L=0, L=0 cor-
responds to the full resolution.

(Zhang, 2003) uses a similar algorithm with a constraint shape model for the face, the eyes and the 
mouth. The difference is that for the contour points, the response of 40 Gabor ilters for different scales 
and orientations are used instead of some gray level proiles.

In (Jang, 2006) the algorithm uses an ASM to extract the inner and outer lips contour from mouth 
image. Using manually annotated mouth images, a mouth statistical shape model is trained. Models of 
normalized gray level proiles are also trained for each landmark. The shape parameters for all the im-
ages of the database are computed. The distribution of the parameters is then estimated using a Gauss-
ian mixture model with 2 components. At each step of the itting procedure, a shape is generated using 
the ASM. New landmark positions are found by searching for points in a neighborhood with gray level 
proiles that minimize the Mahalanobis distance with respect to the learned gray level proile. After 
the landmark optimization step, the new shape parameters vector bs’ is calculated using the formula 
of equation (10). Using the distribution model of the parameters, the parameters of the new shape are 
rescaled if their probabilities are too small.

Li et al. (2006) also use an ASM to segment the lips. The difference with (Cootes, 2004) and (Jang, 
2006) is that the local texture around each landmark is modeled using Adaboost classiier based on 2-D 
Haar-like rectangle features. 24x24 intensity patches centered inside a 3x3 region with its center at the 
ground-truth landmark are collected for every landmark and for the entire database. They are considered 
as positive examples. 24x24 intensity patches centered inside a 12x12 region outside the previous 3x3 



  89

Lip Modelling and Segmentation

neighborhood with its center at the ground-truth landmark are collected for every landmark and for 
the entire database. They are considered as negative examples. The Real AdaBoost classiier is trained 
on those data. When searching for the new position of a landmark, the position that gives the strongest 
conidence is selected.

Active Appearance Model

The Active Appearance Models AAM have also been proposed by (Cootes, 1998; Cootes, 2000; Cootes, 
2001) to describe the appearance of the lips. The goal is to compute a Statistical Shape Model and the 
associate Statistical Appearance Model and to combine both as appearance and shape variations are 
somehow correlated. Using some annotated lip images, the gray-level texture of each example is warped 
so that the contour points match the mean shape and the texture is sampled (see Figure 16-Left). The 
vector containing the texture samples for each example is normalized to cancel light variations. A PCA 
is run to compute the main variation modes of the appearance. The appearance g of any lip image can 
then be approached by a linear transformation ggbPgg +=  where g  is the mean appearance model, 
Pg is the matrix of the orthogonal appearance variation modes and bg is the vector of the appearance 
parameters (Figure 16-Right):

The shape x and the appearance g of a feature can be described by a vector d:

( )
( ) 
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Figure 16. Left, example of mesh generated from a mouth ASM to sample the texture; Right, examples 
of the 6 main variation modes of the mouth AAM (Gacon, 2006)
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Where Ws is a diagonal matrix composed of unit normalization coeficients. By applying another PCA 
on the vectors d for each example, a model combining appearance and shape is computed: 

d = Qc             (10)

Q is the matrix with the main variation modes given by the PCA of the combined parameters; c is 
a vector of parameters which controls the shape and the appearance. Detailed presentation of the AAM 
is available in (Cootes, 2004).

The itting procedure to ind the optimal parameters of the AAM for an unknown image is similar 
as the itting procedure to ind the optimal parameters of the ASM. It is treated as an optimization 
process where the algorithm has to minimize the distance between the generated appearance and the 
input image.

Gacon et al. (2005) develop a multi-speaker AAM for mouth segmentation. In this work the database 
is composed of YCbCr mouth pictures from various subjects. First the authors compute the ASM of the 
mouth and associate to the contour points the 9 responses of the ilters G, Gx and Gy for the 3 components 
of YCbCr. G is a Gaussian ilter; Gx and Gy are respectively the horizontal and vertical gradients of the 
iltered image. Then an AAM is computed. Figure 17gives examples of lip segmentation results.

In (Matthews, 1998) AAM has also been applied to segment the lips but with a different itting 
procedure. During the training of the statistical model of appearance, the appearance parameters are 
computed for the entire database. The procedure to ind the optimal AAM parameters for an unknown 
image is treated as an optimization process. The goal is to minimize the error δE between the appear-
ance of the input image and the appearance generated by the statistical model. Given the parameters c 
for all the images in the database, a linear transformation A between the error δE and the error δc on the 
model parameter is estimated. Random errors are added to the vector c and the transformation matrix 
is approximated by linear regression. Given A, the optimization loop is:

• Compute error δE between the current AAM and the input image
• Then compute the error δc using A : δc= A δE
• Subtracts the error to the current parameter c’=c- δc
• Compute the new appearance with c’

Figure 17. Examples of lip segmentation (Gacon, 2005)
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• Repeat until the error is below a desired threshold.

In (Matthews, 2003) the authors propose a gradient descent algorithm for itting AAM based on the 
inverse compositional algorithm applied on independent AAM and ASM in order to resolve the non-lin-
ear optimization problem whereas in (Matthews, 1998) the hypothesis is that there is a constant linear 
relationship between δE and δc. In this work the shape and appearance parameters are not combined by 
a PCA. With this hypothesis, the authors apply the inverse compositional to it irst the shape and then 
to compute directly the optimal values of the appearance parameters.

The main advantage of lip segmentation methods based on ASM and AAM is that they always give 
a coherent result as the shape and appearance have been learned on real examples. However, like su-
pervised methods, the dificulty is the deinition of a representative database. This means that one has 
to manually put landmarks on hundreds of images. And as stated in (Yang, 1996), any camera change 
even in controlled environment, can introduce important variations on the image properties (PSNR, 
color rendering). Another problem is that the cost functions used for the itting step often consider the 
problem to be linear, which is deinitely not the case. For example, except in (Gacon, 2005), the link 
between shape and appearance parameters is supposed to be modeled with a linear transformation which 
is not obvious. Thus convergence to a global minimum of cost functions or to the optimum parameters 
is not guaranteed. The performances of the algorithm depend on the distance between the initialization 
and the desired result.

Con Tou R-BASed AppRo AChe S Fo R l Ip Segmen TATIon

In the context of contour-based approaches, algorithms are mainly based on deformable models. A de-
formable model consists in choosing and placing an appropriate mathematical model of the contour (a 
spline or a parametric curve for example) into the data space and in deforming it to lock onto the edges 
of the object of interest. The deformation of the initial contour is obtained by minimizing a model energy 
composed of an internal term, related to the curve geometric properties, and an external term, computed 
from the image data. The deformable models are divided into two main categories: active contours and 
parametric models. Active contours extract edges from an initial chained contour by modifying one by 
one the position of the model points. They are free-form algorithms: no a priori information about the 
global shape of the object to be extracted is taken into account. Parametric models deine a parameter-
ized description of the object of interest by integrating a priori knowledge about its global shape and 
reach an admissible form by modifying the model parameters.

Active Contours or Snakes

Active contours, irst introduced by Kass et al. (1987), are usually called snakes because of the way the 
contours slither like a snake during deformations. Snake models are composed of a set of moving points 
located on a 2D curve. According to the application, the curve can be closed or not, with ixed extremi-
ties or not. Snakes evolve iteratively from an initial position up to a inal position which is related to the 
closest local minimum of an energy function. The energy-minimizing algorithm is guided by different 
constraints and is controlled by the image data.



92  

Lip Modelling and Segmentation

In the context of lip segmentation, the active contours are often used because they can provide high 
deformability with a inal representation of the lip contours which seems natural. They also offer a simple 
implementation and fast convergence that could be very interesting in lip tracking application.

Snake Deinition and Properties

A snake is parametrically represented by a curve ν (where ν(s)=(x(s), y(s)) and s is the curvilinear ab-
scissa) and its energy functional is deined by the following equation:

( )int( ) ( ( )) ( ( ))extE s E s ds= +∫             (11)

The internal energy Eint corresponds to the curve mechanical properties and allows regularization 
during the deformations. The internal forces of the snake impose relatively weak constraints on the 
global shape obtained after convergence, because they act locally around each point. The external 
energy Eext is linked to the data and deforms the curve according to the salient image features, such as 
lines or edges. 

• Because of the high lexibility of the free-form models, the internal constraints have to be strong. 
In the case of active contours, the internal energy is globally deined as:

 ( )2 2
int

1( ) ( ) ( ) ( ) ( )
2

E s s s s ds′ ′′= +∫                                         (12)

 where ν’(s) et ν’’(s) denote the irst and second derivatives of ν(s). α(s) is the elasticity coeficient 
and represents the tension. It has an inluence on the length of the curve. A high value of α leads 
to large tension constraints, whereas the curve can have discontinuities when α = 0.  β(s) is the 
rigidity coeficient and represents the curvature. When β=0, the curve can present a high convex-
ity, whereas the curve is smooth when β is high.

• The external energy of the snake is computed from the image features. Generally, the external 
energy rests on gradient information (for edges) and intensity image (for bright and dark areas).

The initial curve is iteratively deformed in order to minimize the energy function. This is an opti-
mization issue of a functional with several variables, which are the snake points. 

Active contours are largely used for contour extraction applications because of their capacity to inte-
grate the two steps of edge extraction and chining in a single operation. Moreover, snakes can be used as 
well to detect open contours, as closed contours or contours with ixed extremities. Active contours are 
fast and simple to implement in 2D and transform a complex problem of minimization in the iteration 
of a linear matrix system. Another asset is the numerical stability facing internal constraints.

However the use of active contours presents several drawbacks. The initialization is the main dif-
iculty and could lead to bad convergence. Indeed, the snake is a free-form algorithm and is blindly 
attracted by the closest local minimum of the energy function. Moreover, the parameters of the snake 
are dificult to tune and are often heuristically chosen. Three additional problems can be cited: the dif-
iculty to converge to boundary concavities, the instability facing external constraints (the snake can 
cross the contour if the snake parameters are too large) and the fact that topology changes of an object 
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are not managed. Many studies have been proposed to overcome these drawbacks, we can notably cite 
the balloon snake approach (Cohen, 1991), the Gradient Vector Flow (Xu, 1998) and genetic snakes 
(Ballerini, 1999). 

Active contours have been extensively used for the extraction of lips. The process is always the 
same involving the extraction of a local minimum with successive displacements of an initial curve. We 
give here a summary of the works developed in that ield. They are classiied according to the type of 
active contour, the proposed method for snake’s initialization and the considered internal and external 
constraints. 

Different Kinds of Active Contour for Lip Segmentation

Since the introduction of active contours (Kass, 1987), different modiied snake models have been 
proposed to reduce the initialization dependence or to improve the convergence force. 

Wu et al. (2002) introduce a GVF snake using the Gradient Vector Flow (Xu, 1998). GVF is com-
puted as a diffusion of the gradient vectors of a grey-level or binary edge map derived from the image. 
The resultant ield allows the snake to be initialized far away from the object and can attract the snake 
to move into concave regions. But the diffusion process time is important and can be too penalizing 
for real-time applications.

Seguier et al. (2003) use genetic snakes. They associate genetic algorithms with active contours to 
overcome initialization dificulty and to prevent being trapped by a non-desired local minimum. The 
genetic algorithm inds the optimal snake among a population of several snakes.

Shinchi et al. (1998) propose a Sampled Active Contour Model (SACM) to extract the outer lip con-
tour. The classical active contour converges with an energy-minimizing algorithm, whereas the SACM 
is operated by forces that are applied on the contour points. This modiied snake makes the extraction 
of the lip contour faster.

In addition, realization of snakes using B-splines was developed in (Blake, 1995). B-snakes use 
B-splines which are closed curves deined by several control points. They are able to represent a large 
variety of curves and have interesting continuity properties. Indeed, the B-snake points are linked by 
polynomial functions including intrinsically regularity properties. As a consequence it is possible to 
only consider the external forces for the curve deformation. Moreover, they have a lower computational 
cost than classical snakes. B-snakes are used for lip contour extraction in (Wakasugi, 2004) and (Kaucic, 
1998).

Active Contour Initialization and Snake Initial Model

In order to prevent the snake locking onto a non-desired local minimum, the curve has to be initialized 
close to the mouth contours. Since the snake tends naturally to shrink, it has to be initialized outside the 
mouth. The parameters of the snake result from a compromise: not too small to be able to pass through 
parasite contours but not too large to avoid jumping over the searched contour. Several approaches have 
been proposed for the snake initialization in case of lip segmentation, which are based on inding the 
mouth area and on choosing and positioning the initial snake curve. 
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Mouth Region of Interest (ROI) Extraction

At this stage, the goal is to obtain a mouth bounding box in order to initialize the snake. Two mouth 
localization methods are presented: some methods are based on intensity or gradient intensity projec-
tions and some methods are based on color information analysis.

In (Radeva, 1995; Delmas 1999; Delmas, 2002; Kuo, 2005), projections of the image gradients or 
the intensity image are used to locate the mouth. Indeed, lips are characterized by a strong projection 
value of the derivatives along the normal to their edges. In (Radeva, 1995), the mouth position is found 
by analyzing the horizontal and vertical projections of the intensity image with some symmetrical 
constraints. In the same way, in (Delmas, 1999; Delmas, 2002; Kuo, 2005), the vertical mouth position 
is found by a vertical accumulation of the darkest pixels of each image column (Figure 18a). Then, the 
lip corners are extracted by making a chaining of the pixels with minimum luminance starting from 
the mouth center and by detecting the irst jump of the chain. The vertical projection of the intensity 
gradient gives the top and low bounds of the mouth (Figure 18b). 

The region-based approaches are also widely used to initiate snakes. For example, the lips area can 
be found by computing a lip mask or using statistical methods in order to estimate the position of the 
mouth. The mask contour or the mouth position can then be used for the snake initialization. See Sec-
tion 2) for a detailed presentation of region-based techniques.

Snake Initial Model

When the mouth region is localized, the snake initial curves are placed close to the lip contours. The 
positions are chosen using the mouth boundary box, the mouth ROI or mouth key points. Different 
methods have been developed and differ whether the process is done on one single image (static meth-
ods) or on video sequences (dynamic methods and lip tracking).

In the case of static algorithms, the initial active contour is placed directly on the mouth bounding 
box in (Seo, 2003; Kuo, 2005). In (Delmas, 1999), the initial snake point positions for the inner and 
outer contour detection lie on the mouth edges. They are found with the lip corners positions and by 
reducing the number of edges of the mouth ROI.

Figure 18. Localization of the mouth by vertical projections in (Delmas, 1999)
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However, to be near the searched contour, the initialization can use a model composed of curves 
located with respect to the mouth area characteristics, like in (Chiou, 1997; Delmas, 2002). Chiou et 
al. (1997) place a small circle at the centroïd of the mouth region. Several points are regularly spaced 
on the circle and their positions evolve by varying the lengths of radial vectors. In (Delmas, 2002), the 
preliminary extraction of mouth vertical extrema points and mouth corners allows the positioning of 
an initial model composed of quartics, which is sampled to give the snake points. 

Some studies extract the inner and outer lip contours and use the position of the outer snake to ini-
tialize the inner snake (Beaumesnil, 2006; Seyedarabi, 2006). In (Beaumesnil, 2006), the outer snake 
is initialized on two cubic curves computed from the mouth bounding box and from the lip corner posi-
tion, whereas the initial inner active contour is found shrinking the convergence result of a irst snake 
by a non isotropic scaling with regard to the mouth center and taking into account the actual thickness 
of lips. In the same way, an oval shape around the lip area is used as initial outer snake and the initial 
inner snake is given by the convergence of the irst active contour in (Seyedarabi, 2006).

When the main goal is lip contour tracking, the initialization of the snake in the current image is 
done by using information about the lip shape in the previous image. The position of the active contour 
on the previous frame is directly used as initialization in (Seyedarabi, 2006) whereas a dilation of 20% 
is done in (Kuo, 2005). 

In addition, the initial active contour is found by the tracking of some key points from frame to frame 
(Delmas, 2002; Beaumesnil, 2006), or by template matching (Barnard, 2002; Wu, 2002; Seo, 2003). 

In the irst image of the sequence, either the contours are assumed to be known (Pardas, 2001) or the 
mouth is considered to be closed (Beaumesnil, 2006; Seyedarabi, 2006) to assure a good initialization 
for the irst image.

Active Contour Energy Constraints

Once the position of the initial snake is given, the energy-minimization algorithm allows deforming 
the snake points to lock onto the lip contours. The convergence is achieved when the snake energy is 
minimal. The choice of the total energy is an essential feature of the active contour and different deini-
tions have been proposed in the speciic case of lip segmentation. Besides the Eint and Eext, additional 
forces linked to the application or to the choice of the snake model can complete the active contour 
energy deinition.

Regularization Constraints and Internal Energy

As described in the theory, the internal energy acts on the local constraints of the curve and controls 
the snake smoothness by two terms; α adjusts the tension and β controls the curvature. α and β are 
constant and ixed heuristically.

Active contours are free-form algorithms so that they have little information on the possible shape 
of the object. In the case of lips, it is possible to take into account the speciicities of lip shape to de-
ine internal constraints. For example, a dificulty highlighted in several studies concerns the snake 
convergence around the lip corners. Lip corners are in blurred areas with weak gradients and they are 
located on concave edges. Since the limitations of active contour convergence to high curvature corners 
have been demonstrated, speciic expressions of the internal energy have been proposed and suggest 
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modifying the spacing of snake points or the value of α and β along the curve with different values near 
the mouth corners.

In (Seyedarabi, 2006), the initial snake points are equally spaced except around the lip corners. The 
same aspect is developed in (Delmas, 1999) where the snake points are reorganized to be equally spaced 
during the deformation phase and after a certain number of iterations. Pardas et al. (2001) introduce a 
term in the internal energy deinition which forces the snake nodes to preserve the distance between them 
from one frame to the next one; the energy increases proportionally when the distance is altered. 

In (Delmas, 1999; Pardas, 2001; Seguier, 2003), the rigidity coeficient β is not constant along the 
curve. It is higher in the middle of the mouth and is null on the points corresponding to the mouth cor-
ners. This choice is motivated by the fact that the curvature is minimal at the middle of the mouth and 
maximal around the lip corners. The same idea is exploited in (Kuo, 2005), where α and β are reduced 
near the corners. 

Radeva et al. (1995) impose symmetrical constraints with respect to the vertical line passing through 
the middle of the mouth during the deformations.

To compensate the blind convergence of active contours and to reduce the inluence of α and β, some 
studies use lip templates to regularize the curve. Wu et al. (2002) propose to use a template composed of 
two parabolas placed on the edges found by a Canny’s detector. The two parabolas itting result is blurred 
and an additional constraint is obtained by a gradient operator. In the same manner, the use of a curve 
model based on B-splines avoids the use of any internal energy in (Kaucic, 1998; Wakasugi, 2004).

Data Image and External Energy 

The image forces, which are the external energy linked to the data, lead the snake towards interesting 
image features respecting contour extraction. Classical features are the lines and edges of the image. 
The simplest energy deinition for the lines is the intensity image, which forces the snake to align on the 
darkest or lightest nearby contour depending on the sign of the energy functional. Whereas the inten-
sity gradient attracts the snake towards strong or weak edges depending on the sign of the expression, 
Seyedarabi et al. (2006) deine the external energy as the sum of the intensity image and the intensity 
gradient.

In current schemes the intensity gradient is generally used in the expression of the external energy, 
but certain parts of the lip contours sometimes have no particularly strong intensity gradient or parasitic 
intensity gradient block the convergence. For example in (Radeva, 1995), it is shown that the snake 
convergence for the lower lip contour is more dificult because, depending of the illumination condi-
tions, the lower lip may be seen as a dark area, a bright area or composed of both dark and bright areas. 
To solve the problem, three snakes are deined with three different intensity gradients corresponding to 
the three cases (no further information is speciied in the article) and the snake associated to the lowest 
energy estimation after convergence is chosen as the right snake for the lower lip contour. In (Wu, 2002), 
the external force is a GVF, increasing the capture range of the active contour. However to compensate 
this weakness, a weight coeficient is often assigned to the intensity gradient term and a second term 
is added to the expression of the external constraints. In (Pardas, 2001), the second term considers the 
compensation error obtained in a motion estimation process using block matching technique. Therefore, 
the external energy is low when the texture is similar to the one around the snake point position found 
in the previous image. 
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Otherwise, instead of using the intensity gradient, an edge map could be computed from a color space. 
Beaumesnil et al. (2006) propose to compute the gradient from a combination of hue and luminance, 
which is a much more appropriated space describing the lip contours than the intensity component.

The use of color information is also a usual way to formulate the external energy functional. In Seo 
et al. (2003), each snake node has “inside” and “outside” color patches. The patches are described by 
Gaussian distributions using red and green components in the case of skin pixels. In the case of mouth 
pixels, the “inside” component is the lip color and the “outside” component is the skin color (but the 
colors deinition is not speciied in the study). The nodes evolve with an external force which takes 
into account the difference between the patches and the original image. Kaucic et al. (1998) highlight 
the contrast between skin and lips by the projection of the color intensity onto an axis determined by 
Fisher discriminant analysis. This method is more effective for lips enhancement than transformation 
onto the hue. 

Different higher level external energy functions have been developed in the case of mouth contour 
detection. For example, several studies propose different methods operating on binary images. Chiou 
et al. (1997) use a binary image obtained by thresholding the ratio R/G. The main external energy is 
computed on each pixel of the binary image using a block of neighboring binary pixels. The value of a 
pixel’s energy depends on how many binary pixels are close to the current pixel. Seguier et al. (2003) 
deine two external forces from binary images of both inside mouth and lips. The irst term considers 
the number of pixels N belonging to the interior of the mouth (irst binary image) and is computed as the 
ratio 1/N. The second term takes into account the sum of the intensity values of the pixels belonging to 
the lips and its complement (the sum for non lip pixels). This term allows the two snakes surrounding 
the lips. 

In (Shinchi, 1998), the external constraints are composed of three forces. A pressure force and an 
attraction force make the snake contracting and guiding each snake point towards the contour. When a 
point meets the lip contour, a repulsion force acts on the opposite direction of the two precedent forces to 
counterbalance their effect and to extract the edges (Figure 19). Finally, to help the snake to escape from 
noise, a vibration factor is added. This factor works perpendicularly to the force attracting the snake to 

Figure 19. The three external forces used in (Shinchi, 1998)
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the contour. The direction of the vibration force reverses at each iteration and this zigzag move improves 
the ability to overpass the noise. In (Barnard, 2002), a combination of an active contour model and a 2D 
template matching technique is used to extract the outer mouth edges. The energy minimization of the 
snake is driven by a pattern matching which deines the external energy as the 2D correlation between 
patches taken from the image and the expected template for the speciied snake point. 

Additional External Forces

The previous external energy is deined to push the snake towards salient features of the image, but 
different local minima can be emphasized. In consequence, additional external constraints taking into 
account the application can be used to put the snake on the desired local minimum. 

For example, in case of contour lip extraction, the mouth corners area is a weak gradient region and 
an active contour can be attracted away from their positions. Some studies propose to detect the lip 
corners before the snake convergence and then, other forces are added to guide the snake towards the 
corners during the deformation, or the lip corners are considered as ixed snake points (Liévin, 2004; 
Kuo, 2005).

Due to the shape coniguration of the mouth, outer lip contour and inner lip contour, when the mouth 
is open, are initialized with a closed curve. Therefore, the balloon force introduced by (Cohen, 1991) 
is often added in the total energy deinition. The balloon force inlates or delates a closed curve like a 
balloon; this operation allows going through non-desired local minimum. The classical deinition is used 
to inlate an initial active contour located inside the mouth in (Chiou, 1997) or compensate the snake 
tendency to shrink in (Delmas, 1999). Seyedarabi et al. (2006) use balloon energy for contour delation 
in order to obtain the upper lip boundary from an initial active contour placed around the mouth. Then 
only the lower part of the previous active contour estimation evolves and locks onto the lower lip bound-
ary by using balloon energy for inlation. In (Kuo, 2005), a modiied balloon force is proposed using a 
pressure equation depending on color similarity. The parameters of an adaptive Gaussian color model 
are adjusted by analyzing the hue proile on the vertical passing through the middle of the mouth. In 
the expression of the balloon force, a coeficient controls the inlation or delation power using the color 
similarity based on the Gaussian model. In other words, the hue regions which are statistically similar 
give positive pressure while the other regions give negative pressure. Finally, the additional force allows 
the delation of an initial contour placed on a mouth bounding box. In (Beaumesnil, 2006), the active 
contour is forced to delate and to converge towards the gravity center of the mouth area.

Discussion

The main dificulty of active contours is the initialization step. Concerning lip extraction applications, 
this problem is the most important because the coniguration of the mouth can create several gradient 
extremums. When the mouth is closed, according to the origin of the illumination source, shadows around 
the lips or bright areas on lips give parasitic intensity gradients. In addition, a moustache, a beard or 
wrinkles are particular features which lead to the same result. Generally, the lower outer lip contour is 
the most dificult boundary to extract because the light comes from above in most of the cases.

It has to be noticed that the extraction of the outer contour has been studied more intensively than 
those of the inner one. Indeed, inner lip segmentation is a much more dificult task due to the non-
linear appearance variations inside the mouth. When the mouth is open, the area between lips could 
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take different conigurations. The apparition of teeth, oral cavity, gum or tongue creates many gradient 
extremums.

Another drawback linked to the speciicity of the mouth shape is the convergence around the lip cor-
ners. The lip corners are concave regions associated to weak gradient areas. Consequently, the external 
forces of the snake are, in general, too weak to compensate the elasticity of the active contour. The inal 
contour could be too round around the mouth sides and does not exactly coincide with the lip corners. 

However, active contours can be a good solution to cope with the high deformability of lip shape 
because of their large deformation freedom. Moreover, snake implementation is simple and fast, which 
is interesting for lip tracking in video sequences.

parametric models

Parametric models have some similarities with snakes; these models are deformed and itted to the 
contours of the object by an energy-minimizing algorithm. The energy is the sum of an internal term 
and an external term. But the main difference is that an explicit assumption about the global shape of 
the contour to be extracted is made.

Description and Properties

Parametric models, introduced by Yuille et al. (1992), describe a shape with parameterized templates, 
generally composed of a set of different curves (circles, ellipses, parabolas, cubic curves...). The template 
interacts dynamically with the data through an energy cost function. The convergence is obtained when 
the position and the deformations of the model reach the best it, which corresponds to the minimum of 
the energy function. Such as active contours, the cost function of the parametric models is the sum of 
an internal energy, representing the geometrical constraints of the model (distances, symmetry...) and 
an external energy, which is deined from the image data. The internal energy of a snake imposes lo-
cal constraints only whereas the internal energy of the parametric models explicitly limits the possible 
deformations of the template by integrating global information about the expected shape of the object. 
The freedom of the model deformation is limited because the energy is not minimized in relation to 
the points of the model, as done with the snakes, but in relation with the parameter vector. This global 
parameterization allows being robust to partial occlusions.

Specifying a parametric model requires the deinition of a template associated to some speciic 
constraints with respect to the shape of the object of interest. The choice of a model is a compromise 
between the deformability and the algorithmic complexity.

The main advantage of parametric models is the geometric constraint which imposes a set of possible 
shapes for the segmentation result. This prevents from erratic deformations and the contour obtained 
after convergence is consistent with the predeined template. However, the limited deformability can 
make the model too rigid and not adequate to high deformable features. As the snakes, parametric 
models require good initialization because of the energy minimization step (the energy function is not 
necessarily convex).

Parametric model-based algorithms for lip segmentation require the deinition of three main steps: 
the choice of the best template model for lip a priori description, the model initialization and the model 
optimization with the minimization of an energy function taking into account appropriate information 
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coming from the image. In the following sections, several works are discussed according to these three 
steps.

 
Mouth’s Shape Modeling

The mouth is a high deformable feature and the irst step is to deine the right model for lip contour 
description. Lips can take several conigurations with very different shapes (a closed mouth or a largely 
open mouth, a grimace … see Figure 20). The chosen model should it the global shape of mouth, but 
has also to be lexible enough to allow important variations. 

Several lip models have been proposed since the irst study of Yuille et al. (1992). They are generally 
composed of parabolas (second order polynomial with three parameters), cubics (third order polynomial 
with four parameters) or quartics (fourth order polynomial with ive parameters) depending on the de-
sired result accuracy or the desired model complexity. The curve or set of curves is not necessarily the 
same for the upper boundary and the lower one. Indeed, the model of the upper contour can be more 
complex because of the presence of the Cupidon’s bow (the “V” form located on the middle of the upper 
lip). Moreover, the goal of a mouth contour detection algorithm can be the outer lip segmentation, the 
inner lip segmentation or both the inner and outer boundaries detection. The models can be different 
according to the mouth state (closed or open) (Zhang, 1997; Yin, 2002; Stillittano, 2008) or according 
to the mouth shape (for example, “open”, “relatively closed” and “tightly closed” (Tian, 2000)). Con-
sequently, we irstly present some models representing the inner lip contour and secondly different 
models for outer lip contour.

Inner Lip Models

Two aspects have to be considered: can a same model be used to describe open and closed mouths? Has 
the chosen model to go up to the mouth corners (which could be linking points to an outer model for 
example) or does the inner model end to what we could call “inner” mouth corners?

The most used inner lip model is made of parabolas. The coordinates (x, y) of a parabola could be 
computed by the equation (11), where h is the height of the curve and w is the width.

Figure 20. Different deformations of the mouth shape. The images come from the AR Database (Mar-
tinez, 1998)
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Figure 21. a) Two-parabolas inner lip model b) and c) with the use of lip corners d) and e) with the use 
or “inner” lip corners

Figure 22. a) One-parabola inner lip model b) and c) examples of the model convergence
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In (Yuille, 1992), the model links the two mouth corners with two parabolas which are joined if the 
mouth is closed (Figure 21). This model imposes a vertical symmetrical constraint which is not always 
veriied (Figure 21c). There are 5 parameters to tune, which are the coordinates (xc, yc) of the center, the 
inclination angle θ, the mouth width w3+w4 (with w3 = w4), the upper inner contour height h3 and the 
lower inner contour height h4. The same inner model is also used in (Hennecke, 1994; Coianiz, 1996; 
Zhiming, 2002) but the outer and inner lip contours are not linked by the mouth corners (Figure 21d and 
e)). In (Zhang, 1997; Yin, 2002), a closed-model with a single parabola (Figure 22) and an open-model 
with two parabolas, the same as in (Yuille, 1992) are proposed. In (Wu, 2002), the authors propose for 
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inner lip modeling a two parabolas model controlled by four parameters, which are the left, right, top 
and bottom distances between the outer and inner contours.

In (Chen, 2006), the upper inner contour is represented by two parabolas (giving a possible asym-
metric form) and the lower one by a single one, whereas Pantic et al. (2001) add also a parabola for the 
lower contour, which makes the inal inner model composed of four parabolas. This model is asymmetric 
because each side of the mouth is processed separately to better represent the inner lip boundaries, while 
keeping the simplicity (6 parameters which are the same ive parameters than in (Yuille, 1992) plus the 
width w4, taking a different value than w3). As in (Hennecke, 1994; Coianiz, 1996; Zhiming, 2002), w3 
and w4 represent the dimensions of the interior of the mouth (model linked to the “inner” lip corners).

Cubic curves are used in (Stillittano, 2008) where two inner lip models for open and closed mouth 
are proposed. The open mouth model is composed of four cubics linking the mouth corners (Figure 
22a). Each curve needs 5 point positions to be computed with the least squares approximation method, 
one of the two corners and a middle mouth point (one on the inner upper edge or one on the inner lower 
edge) to give the limits and three points near the middle one to give the curve shape. The closed mouth 
model is composed of two cubics and a broken line (Figure 22a). The two cubics have the same com-
plexity as for the open mouth model, but they are linked with a new point and a broken line to describe 
the distortion due to the Cupidon’s bow. Indeed, the authors show that some closed mouth shapes can 
not be represent by one or two parabolas because the “V” form of the Cupidon’s bow is visible on the 
inner contour (Figure 23b and c). The models are linked to the mouth corners.

Vogt (1996) and Malciu et al. (2000) propose inner lip models based on nodes. In (Vogt, 1996), the 
inner contour is only computed when the mouth is closed and it is described with a Bezier curve com-
posed of six points. In (Malciu, 2000), two B-splines represent the upper and lower contours and each 
B-spline has 5 nodes. 

Figure 23. a) Closed-mouth and open-mouth inner lip models used in (Stillittano, 2008) b) and c) examples 
of the closed-mouth model convergence d) and e) examples of the open-mouth model convergence
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Outer Lip Contour Models

With regard to the outer lip contour extraction, the model has to be different between the upper and 
lower contours, due to the presence of the Cupidon’s bow.

The irst parametric model was proposed by Yuille et al. (1992). The coordinates (x, y) of a quartic 
could be computed by the equation (12), where h is the height of the curve, w is the width and the pa-
rameter q determines how far the quartic deviates from a parabola.
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This template is made of three quartics with a symmetrical constraint (Figure 24). There are 8 
parameters to tune, which are the coordinates (xc, yc) of the center, the inclination angle θ, the mouth 
width w1+w2 (with w1 = w2 = the same value as w3 of the inner model), the upper outer contour height 
h1, the lower outer contour height h2, the offset a_off of the quartics center and the parameter q of the 
equation (12). The complete model (inner and outer contours) has 11 parameters. As in the case of inner 
contour, a symmetrical model is not recommended for outer lip modeling (Figure 24c). This model is 
also used in (Hennecke, 1994; Zhiming, 2002) (with different values between the outer mouth width 
(2*w1) and the inner mouth width (2*w3), which gives 12 parameters for the complete model (inner 
and outer contours)), and slightly modiied in (Yokogawa, 2007) by using two quartics for the lower 
outer contour. 

Many studies use parabolas for a priori outer lip modeling (Rao, 1995; Zhang, 1997; Tian, 2000; 
Yin, 2002) (Figure 25a). There are 6 parameters to estimate, which are the coordinates (xc, yc) of the 
center, the inclination angle θ, the mouth width w1+w2 (with w1 = w2), the upper outer contour height 
h1 and the lower outer contour height h2. Figure 25c shows that the model symmetry can give a rough 
outer contour extraction.

Figure 24. a) Three-quartics outer lip model; b) and c) examples of the model convergence
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In (Liew, 2000; Werda, 2007) the two parabola models are improved by applying two transforma-
tions, a global torsion and a lattening, which make the model more accurate. In (Pantic 2001), four 
parabolas describe the outer mouth contours. This model is asymmetric because each side of the mouth 
is processed separately (model with 7 parameters: xc, yc, θ, w1, w2, h1, h2). The complete model has 
11 parameters. Nevertheless, the Cupidon’s bow is not correctly described because the authors suppose 
that the points, where the parabola derivatives are null, are on the same axis. 

In (Coianiz, 1996), the authors propose also to describe the upper contour with two parabolas, but their 
center are offset by the parameter aoff (Figure 26). This solution leads to a better representation of the 
Cupidon’s bow. Yokogawa et al. (2007) use the same model with two parabolas for the lower contour. 

These parabola-based templates are interesting to determine some mouth features because the sim-
plicity of the models. However, this kind of templates is either symmetric or too rough to accurately 
segment the mouth. 

Figure 25. a) Two-parabolas outer lip model b) and c) examples of the model convergence

Figure 26. Three parabolas outer lip model; b) and c) examples of the model convergence
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In (Eveno 2004), the authors use four cubic curves and one broken line linking ive key points to 
represent the outer lip contour (Figure 27). Each cubic needs ive point positions to be computed with 
the least squares approximation method, one of the two corners and a middle mouth point (one on the 
outer upper edge or one on the outer lower edge) to give the limits and three points near the middle one 
to give the curve shape. The model is lexible enough to describe a high variability of mouth shapes 
and the broken line is chosen to correctly follow the Cupidon’s bow. 

Bouvier et al. (2007) use the same model, excepted for the lower contour for which the two cubic 
curves are replaced by two Bezier curves.

The outer lip contour is described with two Bezier curves, composed of seven points for the upper 
lip and six points for the lower lip in (Vogt, 1996) and by B-splines in (Malciu, 2000) (Figure 28). 

Figure 27. a) The outer model proposed in (Eveno, 2004) b) and c) examples of the model conver-
gence

Figure 28. a) Bezier curves model (© 1996 Stork. Used with permission.) b) B-splines model (Malciu, 
2000)
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Model Initialization

Once the parametric model describing the mouth is chosen, it has to be initialized. A mouth state detec-
tion stage could be the irst step to choose between two models in the case of inner lip segmentation. 
Then, the model has to be put into the image (initial localization) and the curves have to evolve to lock 
onto the contours (model optimization).

Open Mouth or Closed Mouth Model Selection

Some studies exploit two different models for the inner lip contours extraction (Zhang, 1997; Yin, 2002; 
Stillittano, 2008). A irst model is built to deal with closed mouths and a second one to deal with open 
mouths. Consequently, during the initialization, a mouth state detection is necessary to decide which 
model is adequate.

The state “open or closed” of the mouth can be ind with different techniques consisting in intensity 
gradient analysis (Zhang, 1997), integral projections (Pantic, 2001; Yin, 2002), color treatments (Chen, 
2004) or classiication method (Vogt, 1996).

In (Zhang, 1997), a mouth region of interest is extracted from the distance between the mouth cor-
ners. The contours within the mouth area are extracted on the Y component (from YCbCr space) by a 
morphological edge detector, following by binarizing and thinning operations. The intersections between 
these contours and a line perpendicular to the one linking the corners give the number of possible lip 
contours. The decision between open and closed mouth is taken considering the number of candidates 
above and below the line linking the mouth corners. If the number of candidates is higher than two for 
each category, the mouth is assumed to be open, otherwise the mouth is considered to be closed. 

Pantic et al. (2001) transform the hue component into a red domain to obtain a mouth area. The trans-
formation is a hue iltering operation (Gong, 1995). The vertical projection of the red domain component 
applied on two vertical strips gives the state of the mouth and the thickness of the lips.

In (Yin, 2002), the integral projection of the hue component inside a strip passing through the middle 
of the mouth gives a proile with two peaks. If the width of the valley is beyond two pixels, the mouth 
is assumed to be open, otherwise the mouth is closed. 

Chen et al. (2004) carry out multiple threshold operations on the RGB color space taking into ac-
count the skin color range and the dark range. The result is a binary image of the dark-black area located 
between the upper and the lower lips. Morphological treatments (erosion) allow the dark-black area 
contours inside the mouth to be detected. Finally, three lines crossing the mouth (a vertical and two 
diagonal lines) give six points, which are the intersections between the lines and the dark-black area 
contours. Comparing the values of the distances between the points with threshold values, it is possible 
to decide if the mouth is open or closed.

In (Vogt, 96), a neural network is trained with hue and intensity reference values to discriminate 
ive classes, which are closed mouth, open mouth (without teeth), open mouth with only teeth inside 
the mouth, open mouth with upper and lower teeth separated by a dark area and open mouth with only 
the upper teeth.
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Initial Model Parameter Estimation

The model convergence is made in two steps. Before the optimization and the extraction of the contour, 
the template has to be approximately placed into the image. This initial position can be found by detect-
ing a mouth region of interest or by extracting some key points.

For mouth ROI detection, the most popular technique to ind the mouth area is thresholding and 
morphological treatments (See section 2.1.). In addition, high-level methods could be used to segment 
the mouth ROI. In (Rao, 1995), lips and non-lips regions are found with an Hidden Markov Model in a 
mouth bounding box, manually placed in the irst frame. Zhiming et al. (2002) detect a bounding box 
around the mouth from the previous frame and the mouth contours are highlighted by computing the 
Fisher transfer in the mouth area. 

In (Coianiz, 1996), six features points are extracted from the mouth area, two points where the lower 
and upper external boundaries of the mouth meet (the mouth corners) and four points where the vertical 
symmetry axis of the mouth intersects the external and internal boundaries of the upper and lower lip. 
The two feature points are detected with color analysis and the four points are found by using luminance 
information. The initial amplitudes and positions of the parabolas of the parametric model are initial-
ized from these six points. In (Pantic, 2001), a curve itting algorithm is used to extract the outer mouth 
contours. The lowest mouth area pixel is chosen as the starting point algorithm and the contours are 
found by adding points with a chaining algorithm. The mouth corners are detected when the contour 
points change their directions. Four other key points (the vertical extrema) are initialized by integral 
vertical projections. Zhiming et al. (2002) use horizontal and vertical projections of the mouth area to 
extract the lip corners positions and a mouth bounding box very close to the lip contours to initialize 
the lip templates (Figure 29). In (Werda, 2007), in a mouth bounding box, projections of the saturation 
component allows the mouth corners to be detected. 

As we have seen, Zhang et al. (1997) estimate several candidates on a vertical middle mouth line. 
Then, the mouth corners are detected with a template matching technique. Each candidate is a key point 
used to initialize the possible parabolas linking these points and the lip corners. For each parabola, three 
points are available.

Figure 29. (Zhiming, 2002) a) Horizontal and vertical projections on the mouth area b) Key point and 
mouth bounding box detection
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Some works use an active contour model to initialize the parametric model. The deformable template, 
by using some key points of the snake, smoothes the active contour result and, if the model is carefully 
chosen, extracts a large range of different shapes. Finally, active contours help to overcome the main 
drawback of the deformable template method which is the limited freedom of deformations. 

In (Eveno, 2004), a set of points on the upper lip contour and three key points are extracted by the 
convergence of a “jumping snake”. Unlike classic snakes, jumping snake can be initialized relatively 
far from the inal contour and the adjustment of the parameters is easy and intuitive.

 
Model Parameter Optimization

We give some examples illustrating the possible optimizations used for parametric models in the context 
of lip segmentation. Like active contours, the parameters of the parametric models evolve iteratively by 
minimizing a cost function with 2 energy terms.

Internal Energy for the Model Regularization

The internal energy sets a priori constraints on the variability of the template model. In (Yuille, 1992), 
the internal energy gives preferential treatments to certain properties such as the upper lip symmetry, 
the centering of the mouth between the lip corners, a constant proportional coeficient between the 
thickness of the upper and lower lips and a cohesion by preventing too large vertical movements of the 
upper lip. Hennecke et al. (1994) simplify the internal energy proposed in (Yuille, 1992) by integrating 
the notions of symmetry and centering directly into the construction of the model. A temporal continu-
ity constraint on the thickness of the lips is also introduced in the internal energy expression. In the 
same way, Coianiz et al. (1996) deine penalty constraints which embody the admissible lip shapes, 
like forcing the outer lip width and height to have higher values than the inner ones. In (Mirhosseini, 
1997), a potential is deined to control the mouth shape model by measuring differences between some 
lip distances. Vogt (1996) proposes internal energies which stabilize the distance between three con-
nected nodes model and control the tensions between two connected nodes model. In the same manner, 
in (Malciu, 2000), the internal energy is a combination of elastic and symmetry local constraints, like 
stabilizing the distance between the model points for example.

External Energy Computed from the Image Data

In many studies using deformable templates, the geometric constraints given by the model curves are 
suficient and the model parameters evolve with the external energy only. The external energy estab-
lishes interaction constraints in order to maintain the consistency between the model geometry and 
salient image features. The image information used in the expression of the external energy could take 
different forms.

The simplest features are the intensity image and the intensity gradients. In (Yuille, 1992), the ex-
ternal energy is composed of three energetic ields, the contour ield obtained by a gradient operator 
on the intensity image, the valley ield of the dark areas and the peak ield of the bright areas. These 
three ields correspond to the image features: dark, bright and transition areas and the ield’s combina-
tion deine the external energy. Mirhosseini et al. (1997) deine a valley energy term and an intensity 
gradient term. The same information is exploited in (Malciu, 2000). The peak and valley information 
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is incorporated in a single potential function by applying the connection cost operator to the original 
and negated image. The intensity gradient enhances the mouth outer boundaries and the valley-peak 
potential highlights the inner mouth composed of dark areas (valley potential) and bright areas (peak 
potential). Hennecke et al. (1994) use only the vertical component of the intensity gradient, because the 
mouth contours are predominantly horizontal. The Prewitt algorithm gives “positive” and “negative” 
gradient if the intensity is higher above or below the edge. The adequate gradient is applied according 
to the four lip edge (the two upper inner and outer contours and the two lower inner and outer contours). 
The gradient image is also used in (Werda, 2007). 

The intensity gradient is essentially used for the outer lip detection, but it can be weak on certain 
mouth areas (the lower lip boundary for example) and it can depend on the illumination conditions. 
The use of color gradient can be a good information. In (Bouvier, 2007), the gradient is a combination 
of the pseudo-hue and the luminance component for the upper outer lip contour and the gradient of the 
pseudo-hue for the lower one. Stillittano et al. (2008) propose two different gradients to highlight the 
upper and lower inner lip contour. These gradients are a combination of color spaces that give different 
values for the inner mouth (teeth, tongue, oral cavity) and the lips (see section 1.). 

In (Vogt, 1996), the gradient is computed on a probability map which enhances the lips. The map 
is found with a 2D look up table algorithm applied on the hue and saturation (from HSI color space). 
This gradient is used in the case of open mouth. Otherwise it is replaced by an intensity gradient for 
the inner lip contours detection. Yokogawa et al. (2007) use the mouth area found with hue thresholding 
to compute a value threshold (from HSV color space). A second area is obtained by value thresholding 
and a binary image is created by an AND operation between the two areas. Then, a differential opera-
tor gives the edge map. The external energy is a measure of the difference between the template model 
and the contour pixels of the edge map.

The lip model allows different regions, like the skin, the lips and the inner mouth to be separated. 
Different criteria based on color information have been created to be minimal when the regions are 
well separated and to guide the model curves displacements (Coianiz, 1996; Zhang, 1997; Pantic, 
2001; Yin, 2002; Wu, 2002). In (Coianiz, 1996), three areas are deined, the interior of the mouth, the 
lips and an area of constant thickness surrounding the outer lip model. The external energy takes into 
account a measure of the red chrominance information in the three regions and the maximization (or 
minimization depending on the sign of the energy functional) of the energy allows the red regions of 
the image to be restricted to the lip area. The same kind of method with the same color information is 
used in (Pantic, 2001). In (Zhang, 1997), two cost functions are proposed, one for the closed model and 
one for the open model. They are deined with the intensity gradient image and weighted by the means 
and the variances of the Cr component from YCbCr space of the areas deined by the model (the upper 
lip, the lower lip and if the mouth is open, the interior of the mouth). The same models and regions are 
used in (Yin, 2002), but the criterion is built from the hue component by considering the fact that small 
intra-variance and large inter-variance of hue exist between the three regions (the criterion is the sum 
of mean and standard-deviation of the hue in each area). In (Wu, 2002), the outer lip contour is known 
after the convergence of an active contour and the inner lip contour has to be extracted with a model 
template. Therefore, two regions have to be distinguished, the lips and the interior of the mouth. The 
histogram of lip and of the inside mouth areas are learnt with a database. Then, a function estimates 
the similarity of a region Reg with the lip and inside mouth reference areas based on the value of the 
histogram of the region Reg.
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Others methods use the color information to build probability map of the lip color (which is an image 
representing the probability for each pixel of the image to be a lip pixel) (Rao, 1995; Liew 2000). The 
criterion has a high value when the region enclosed by the lip model has the highest possible probability. 
The criterion has a small value for the region outside. In (Liew 2000), assuming that the probability as-
sociated with each pixel is independent of the probability of other pixels the optimum partition is found 
when the joint probability of the lip and non-lip region is maximized.

Optimization Method

The classical energy-minimizing algorithm is the downhill simplex (Yuille, 1992; Hennecke, 1994; 
Malciu, 2000). The downhill simplex is an algorithm which starts with an initial position of the model 
and makes iteratively move this position towards a local minimum by following the strongest slope. The 
slope of the function of several variables is the gradient. The main drawbacks of this method are the 
convergence time which increases rapidly with the number of the function variables (in our case, each 
new internal or external constraint brings a new variable) and the fact that the solution is not necessar-
ily a global minimum, depending on the model initialization. Yuille et al. (1992) combine the downhill 
simplex with a sequential and looped “coarse to ine” optimization algorithm. Firstly the general posi-
tion of the model (centering of the mouth, computation of the width and the orientation) is adjusted. 
Secondly, the downhill gradient gives a iner position of the mouth boundaries. This two-step process 
is done until the convergence. 

In (Vogt, 1996), a point-based model is used and the nodes move into a randomly proposed direction 
at each optimization iteration. If the new position gives a better solution (only the model parts affected 
by the current nodes are taken into account) it is conserved, otherwise it is rejected.

A non-deterministic minimization algorithm is used in (Coianiz, 1996) and the conjugate gradient, 
which is a faster iterative algorithm than the downhill simplex, is chosen in (Liew, 2000). 

Another technique is to compute different possible positions and to choose the best with an optimal 
criterion. In (Zhang, 1997), the parabolas for each lip contour candidate are computed and the adequate 
cost function allows the best solution (see previous part “External energy computed from the image 
data”) to be determined. In (Wu, 2002), the variations of four distances between the known outer lip 
contour and the searched inner contour allow different positions of two parabolas to be computed. The 
best position is chosen with the criterion presented in the previous part “External energy computed 
from the image data”.

In (Eveno, 2004; Bouvier, 2007), the curves itting and the mouth corners detection are done at the 
same time. For each side of the mouth, a inite-number of possible lip corner positions is tested. Several 
curves are computed with the considered corner position and several points are found on the outer lip 
contour by a snake. The best solution is found by maximizing the gradient mean low along the curves. 
In (Werda, 2007), all the possible model positions in the mouth bounding box are computed and the 
maximization of the gradient mean low allows to choose the best position.

Some studies use directly the position of several key points to obtain the inal lip contours. The main 
advantage is the faster convergence, because these algorithms are not iterative. The least square ap-
proximation algorithm used in (Wark, 1998; Stillittano, 2008) is the most current technique. In (Wark, 
1998), the contours of the mouth ROI are found with a standard-edge detector and are sampled to give 
several points on the outer lip boundary. The least squares approximation algorithm is used to it the 
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model. In (Stillittano, 2008), several points on the upper and lower inner contours and the position of 
the mouth corners allow the inner lip model to be optimized. 

Tian et al. (2000) track the position of four key points (the two mouth corners and the two vertical 
outer extrema) with the Lucas-Kanade algorithm (Tomasi, 1991). With the three extrema points on the 
upper lip contour and the three others on the lower contour, the two parabolas of the model are com-
pletely deined. Chen et al. (2006) detect the edges of the mouth ROI with the Laplacian of Gaussian 
algorithm, which extracts contour by inding the zero-crossings in the second derivatives gray image. 
Finally, several points on the inner contours are detected and a curve itting algorithm, called Nearest-
Neighbour Interpolation, is applied on the edge map and places the model composed of three parabolas 
on the inner edges.

 
Discussion 

As for the snakes, the main dificulty of the parametric models convergence is the possibility to lock 
onto a local minimum. As a consequence, the initialization is very important and often dependent of 
the accurate mouth area or key point extraction.

In addition, the model choice has to make a compromise between low complexity, which gives a 
fast convergence but appreciative contours, and a high complexity, which gives accurate contours but 
a long optimization time. To give a realistic result, the upper outer model has to be composed of high 
order curves or by a set of several different curves, because of the presence of the Cupidon’s bow. It is 
also important to propose a possible non symmetric model. In general, the inner model is simpler and 
the hypothesis of linking the outer and inner models with the lip corners is often made. Consequently, 
the inner contour result can be appreciative around the corners, especially when the mouth is partially 
closed. 

Contrary to the active contours, the parametric models introduce a notion of a priori knowledge 
about the global lip shape. Therefore, the inal contour obtained after the optimization is an expected 
form. The inluence of local perturbations is reduced by the minimization of a global energy. Thus, a 
parametric model can be used to smooth the contours found with a snake convergence and the most 
eficient algorithms often mix active contours for coarse estimation and parametric models for reining 
and regularization.

Segmen TATIon ReSul TS eVAlu ATIon

The number of algorithms that have been proposed for lip area segmentation or for lip contour extraction 
is very signiicant. Each author a priori claims that his/her algorithm is the best but it is very dificult to 
appreciate without a deined benchmark of test images and without a uniied protocol for quantitative 
results evaluation. In this section, we describe irst the databases that have been commonly used and 
then we make a list of the methods used for lip segmentation results evaluation.

l ip Image databases

To our knowledge, only two databases have been built for the purpose of lip segmentation and lip read-
ing methods evaluation:



112  

Lip Modelling and Segmentation

• The CUAVE (Cuavebase) database has been developed for audio-visual speech processing. It con-
tains audio video sequences from 36 individuals (17 female and 19 male speakers). For information 
on obtaining CUAVE visit the webpage http://ece.clemson.edu/speech.

• The LIUM database (Daubias, 2003) was recorded without artiicial lighting. It contains sequences 
with both natural and blue lips. The fact is that this database is almost never used by authors in 
order to test and evaluate their lip segmentation algorithm. The LIUM database is available freely 
for academic organizations at http://www-lium.univ-lemans.fr/lium/avs-database/.

We can also mention the following databases that have been used for lip segmentation algorithm 
evaluation though they have been initially developed for face identiication algorithms:

• The FERET database (Philipps, 2000; Feret) contains a huge number of face images of frontal faces, 
quarter left or right faces, faces with different illumination, faces with different expressions... More 
precisely, the database contains 1564 sets of images for a total of 14,126 images that includes 1199 
individuals. As a result, only a subset of the Feret database is used for lip segmentation evaluation. 
As an example, this database has been used in (Xin, 2005). The FERET database is not freely 
distributed. To obtain the FERET database visit the webpage http://face.nist.gov/colorferet/.

• The AR database (Martinez, 1998; ARbase) contains over 4,000 color images corresponding to 
126 people's faces (70 men and 56 women). Images feature frontal view faces with different facial 
expressions, illumination conditions, and occlusions (sun glasses and scarf). This database has 
been used for lip contour segmentation evaluation in (Liew, 2003; Stillittano, 2008; Xin, 2005). 
The AR face database is publicly available and free for researchers for algorithm evaluation. It 
can be obtained at http://cobweb.ecn.purdue.edu/~aleix/aleix_face_DB.html. 

• The M2VTS database (Pigeon 1997; M2VTS base) is made up from 37 different faces and pro-
vides 5 shots for each person. These shots were taken at one week intervals or when drastic face 
changes occurred in the meantime. This database has been used for lip segmentation evaluation 
in (Lucey 2000; Gordan 2001; Pardas 2001; Seguier, 2003; Wark, 1998). The M2VTS database is 
publicly available for non-commercial purpose. For information on obtaining the database visit 
http://www.tele.ucl.ac.be/PROJECTS/M2VTS/m2fdb.html.

• The XM2VTS database is an extension of the previous database (XM2VTS base; Messer, 1999). 
It has been used for lip segmentation evaluation in (Kuo, 2005; Liew, 2003; Sadeghi 2002). This 
database is not free. More information can be found at http://www.ee.surrey.ac.uk/CVSSP/xm-
2vtsdb/.

• The Cohn-Kanade AU Coded-Facial Expression Database (Kanade, 2000) consists in approximately 
500 image sequences from 100 subjects. Accompanying meta-data include annotation of FACS 
action units and emotion-speciied expression. Initially built for the purpose of facial expressions 
recognition, this database has been also used for lip segmentation evaluation in (Pardas, 2001; 
Seyedarabi, 2006; Tian, 2000). This database is publicly available for free. More information 
regarding the procedure to obtain the database can be found at http://vasc.ri.cmu.edu/idb/html/
face/facial_expression/index.html.

To sum up, it is obvious that there is no consensus about the database to be used for lip segmenta-
tion performances evaluation. That is the reason why many authors also use their own database for the 
evaluation purpose. For example, in (Wu, 2002), a sequence of 126 frames of the Bernstein Lip-reading 
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Corpus is used; in (Wakasugi, 2004), 200 color images of 10 persons that have been collected by the 
authors; in (Barnard, 2002), the image database consists in 6 sequences of 6 persons, which pronounced 
the sequence of numerals from “one” to “ten” without any pause between the numerals. Each sequence 
has over 200 images that have been acquired by the authors…

performance evaluations

The evaluation and the comparison of lip segmentation algorithms are two very dificult tasks. Con-
cerning performances evaluation, three kinds of methods have been proposed: subjective evaluation, 
quantitative evaluation and evaluation with respect to a given application. The purpose of algorithms 
comparison has not been really broached. In our opinion, several reasons are responsible for this lack 
of algorithms comparison. No reference database has been exhibited for lip segmentation purpose. And 
no accurate and approved protocol for the comparison has been proposed for the moment.

Subjective Evaluation

The irst common way to evaluate the performances of lip segmentation algorithm is a subjective evalu-
ation where a human expert visually determines if the segmentation is good or not. For example, in 
(Barnard, 2002; Liévin, 2004; Liew, 2003; Zhang, 2000), the authors explain that the method has been 
tested on several images and that it is successful, some segmented images are presented in the papers 
in order to illustrate the performances. 

In (Kuo, 2005), a more sophisticated subjective evaluation is used: a grading system is deined. The 
system grades the itting into 5 different grades: “perfect”, “good”, “fair”, “poor” and “wrong”, depend-
ing on the general appearance of the estimated contour and on the itting of 4 benchmark points (left, 
right, top and bottom corners of lips). Figure 30 gives an illustration of some of the considered grades. 
If both the global estimated contour and the position of lips corners are accurate, the segmentation is 
labeled as “perfect”. When the accuracy of the global contour or when the accuracy of the lip corner 
decreases, the segmentation is labeled with the other grades.

Of course, the major limitation of the subjective method for the evaluation of the segmentation ac-
curacy is that it depends on the human expert and it is not obvious that the performances will be esti-

Figure 30. from left to right, “perfect”, “good”, “fair” and “poor” labeled segmentation (Kuo, 
2005)



114  

Lip Modelling and Segmentation

mated in the same way if the human expert changes. For example, in (Kuo, 2005), the authors do not 
say anything about the number of human experts who labeled the different lip segmentations.

Quantitative Evaluation

The quantitative evaluation may concern either the whole contour either only some speciic points of 
the contour (generally the mouth corners positions).

In (Eveno, 2004), the mouth contour is associated to six key points Qi (Figure 31) and the perfor-
mances of the proposed mouth contour extraction algorithm are evaluated by estimating the accuracy 
of these six estimated keypoints. More precisely, the key points of 300 images (extracted from 11 se-
quences) have been manually marked several times by different human operators. For each point, the 
ground-truth position is computed as the mean of all the hand checked positions. Then for each point 
the difference between the ground truth position and the estimated position is computed. Table 3 reports 
the quantitative performances.

The same six key points are considered in (Yokogawa, 2007) where the relative error is computed 
as the sum of the distances between the manually extracted points and the estimated points normalized 
by the distance between both mouth corners. As outlined by the authors themselves, one limitation of 
the method is that errors can occur when the expert establishes the ground truth by manually clicking 
the key points on an important series of images.

When the quantitative evaluation is focused on the whole contour, a reference global contour or a 
ground truth global contour is needed. The reference contour can be either manually extracted or auto-
matically extracted with another segmentation method. Whatever the method for the reference contour, 
a perfect contour is not always guaranteed since errors can occur in the building of the ground truth. 
This limitation is brought out by all the authors proceeding to such a quantitative evaluation.

Figure 31. Performances evaluation based on the accuracy of the Qi keypoints

Q1 Q2 Q3 Q4 Q5 Q6

Error (%) 4 2.4 1.8 1.9 3.3 3.6

Table 3. Key points accuracy in (Eveno, 2004)
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In (Wu, 2002), the lip contours are hand-labeled and compared to the estimated results by computing 
an error ratio. If a pixel does not belong to both the hand-labeled mouth area and the mouth area esti-
mated by the algorithm, the pixel is evaluated as an error pixel. The error ratio is computed by the ratio 
between the number of error pixels (NEP) and the total number of pixels of the hand-labeled mouth area. 
In (Wu, 2002), this method has been used in order to evaluate the lip contour extraction on a sequence 
of 126 frames. The same method has been used in (Stillittano, 2008) on a set of 507 images coming 
from the AR face database corresponding to two particular mouth shapes (“scream” and “smile”) and 
on a set of 94 images coming from a database acquired by the authors with a head mounted camera 
pointing the mouth area (see Figure 32) for image examples and extracted contours with the method 
proposed in (Stillittano, 2008)).

The limitation of this quantitative method based on the whole lip contour is that the ratio criterion 
is related to the number of pixels inside the hand-labeled mouth area so that for a same number of error 
pixels, the ratio is lower for “scream” images (high number of pixels inside the mouth area) than for 
“smile” images (low number of pixels inside the mouth area).

Similar approach is proposed in (Liew, 2003). To have a ground truth, the authors manually it a 
parametric lip model on 70 images randomly extracted from their database. For the performances evalu-
ation, two measures are computed: the percentage of overlap between the segmented and the ground 
truth lip areas and a segmentation error measure which is the ratio between the miss-classiied pixels 
and the number of lips pixels in ground truth.

In (Wakasugi, 2004), the segmentation accuracy is evaluated by computing the factor Fc = Sdiff/Lc² 
where Sdiff is the area between the real outer lip contour (hand-labeled ground truth) and the extracted 
contour and Lc is the length of the real contour. Both contours are supposed to be similar if Fc is below 
a threshold ixed to 0.04 which means that an admissible difference between both contours is about 4 
pixels if Lc is 100 pixels.

In (Gacon, 2005) and (Bouvier, 2007) the objective evaluation is done by computing the distances 
between the contour points given by the ground truth and the corresponding points given by the author’s 
algorithm. The distances are normalized by the width of the mouth.

Performances Evaluation with Respect to the Considered Application

When the lip segmentation algorithm has been developed for a speciic application (lip reading or facial 
animation for example), the performances of the lip segmentation algorithm are evaluated in regards to 
the performances of the considered application. In such a case, the segmentation will be considered as 

Figure 32. On the left, “smile” and “scream” examples from the AR database and on the right, author’s 
database examples
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good if the corresponding application works well. This does not necessarily mean that the accuracy of 
the lip segmentation is very good.

In (Brand, 2001), the goal is to study the biometric potential of the lips for speaker recognition and 
the evaluation is done by computing the speaker recognition rates.

In (Chan, 1998; Chan, 2001; Chiou, 1997; Neian, 2002), the purpose is lip reading and speech 
recognition. As a consequence, the accuracy of lip segmentation is evaluated through the recognition 
rates of the considered sentences. In (Seguier, 2003), the temporal evolution of height and the width of a 
speaking mouth are studied since these parameters are of high importance for automatic lip reading.

In (Gacon, 2005), a subjective evaluation related to the application of lip reading is done by testing 
the intelligibility improvement by adding the synthetic visual information in case of a subject telling 
phone numbers with different level of noise. Using the original video of the speaker telling phone num-
bers, the proposed algorithm based on Active Appearance Model is used to construct a video of the 
synthetic mouth telling the phone numbers. Then the audio channel is superposed to study intelligibility 
improvement and compared with the intelligibility of the original video with the audio.

In (Hsu, 2002), the authors develop a face detection algorithm for color image using a skin-tone color 
model and facial features. The goal is to develop a system that extracts faces from images with multiple 
subjects and then to compute features (eyes, lips) for subject identiication. To evaluate the algorithm 
the face detection rate is calculated. The face is considered as “well detected” when the face ellipse, the 
eye and the mouth bounding boxes are found correctly. Thus they evaluate the performances of their 
algorithm for mouth segmentation.

In (Yin, 2002; Wu, 2002), the performances of lip segmentation algorithm are evaluated in the 
case of face synthesis and facial animation. The aim of evaluation is to see if the synthesized mouth 
movements have a realistic behavior or not. A visual comparison between the synthesized video and 
the original one is done. In (Wu, 2004), the evaluation is even done more objectively by comparing 
the Facial Animation Parameters generated from a hand-labeled lip contours and from the lip contours 
automatically extracted.

In (Seyedarabi, 2006), the authors are interested in facial Action Units automatic classiication. The 
extracted lip feature points are used to extract some geometric features to form a feature vector which 
is used to classify lip images into AUs, using Probabilistic Neural Networks. Experimental results 
display the robustness of the lip edge detection since a reasonable classiication with an average AUs 
recognition rate of 85.98% in image sequences is achieved.

Appl ICATIon S o F l Ip Segmen TATIon

Lip segmentation is a low level processing that is generally integrated to a higher level interpretation 
application. Though perfect lip segmentation would be the best case, the required accuracy of segmented 
lips could be different from an application to another. For example, less accuracy is needed for only 
visual evaluation based applications (facial animation for example) than for numerical parameters based 
applications (automatic lip reading for example). Here we are focusing on two particular applications 
that involve lip segmentation as a pre-processing step: lip reading and facial animation or synthesis. In 
the last section, we will mention some atypical applications.
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l ip Reading

Lip reading application is probably the irst application in computer vision that has required lip seg-
mentation. The problem of lip reading has been studied irst of all in the context of audio-visual speech 
recognition. Indeed, human speech perception is bimodal: we combine audio and visual information. 
An automatic visual speech recognition system is a signiicant complement to an audio speech recogni-
tion system when the audio system is used in a noisy environment. The reader can refer to the reference 
(Potamianos, 2004) for a complete overview about audio-visual automatic speech recognition. Our pur-
pose here is not to make a comparison between the performances of the different audio-visual speech 
recognition system that have been developed. We aim at explaining how the segmented lip contours are 
used in the context of lip reading application.

The link between lip and oral message is included in the shape and the motion of the lips. So it is 
necessary irst to extract the contours of the lips and second to characterize the lip shape with an efi-
cient set of parameters. The irst step for an automatic lip reading system being lip segmentation, many 
lip segmentation algorithms have been developed for that purpose. Lip segmentation in the context of 
speech reading is a very dificult task because: 

• High accuracy is mandatory. Indeed speech reading is based on the analysis of measures computed 
from the estimated lip contours so that any error on lip contour extraction will have an immediate 
repercussion on the global speech recognition rate. 

• Lip deformations and motions are numerous during speech sequence.

In (Sugahara, 2000), a particular set of parameters coming from the outer lip contour and made of 
the distances from the centre of the contour to 12 points of the contour equally spaced out and the devia-
tions of these distances computed on the previous frames. As a result, the speech recognition process is 
based on 24 measures coming from the lip contour. In (Shinchi, 1998), the same 12 points are considered 
but the recognition is based on the analysis of the surface of the triangular areas deined by the lines 
coming from the centre point of the lip contour to the 12 edges points.

Most of the time, the features that are extracted from lip contour in order to characterize lip shape 
in the context of lip reading are based on mouth dimensions. In (Chan, 1998), (Barnard, 2002), the 
length and the width of the outer lips only are computed from the segmented lip. In (Seguier, 2003), in 
addition to the height and the width (H, L) of the outer lip contour, their temporal derivatives (δH, δL) 
and the percentage of light %W and dark pixels %B in the mouth area are considered. A more complete 
set of geometric features taking information from outer and inner lip contours is proposed in (Zhang, 
2002). Figure 33 describes the geometric features that are computed from the extracted lip contours. 
The speech recognition results show that the global set of geometric features outperforms the case when 
only outer lip features are taken into account.

But as explained in (Rosenblum, 1996; Summerield, 1989; Summerield, 1992), not only the mouth 
dimensions are necessary but also the presence of teeth or tongue during speech is a very important 
visual cue. The methods developed in (Chan, 2001; Gacon, 2005; Zhang, 2002) give such additional 
information. The six geometric parameters and the information about the presence of teeth/tongue 
have been used for lip reading in (Chang 2001; Zhang 2002) and it has been shown that the recognition 
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rates are higher than when only a partial set of this information is used. In (Aleksic, 2002), this idea of 
integrating lip deformations and information about teeth and tongue is also defended. The MPEG-4 
Facial Action Parameters associated to the mouth, teeth and tongue are extracted from the lip contours 
and are used for the purpose of speech recognition.

As a conclusion, it is obvious that all the considered methods use numerical information about the 
lip shape and that the lip reading recognition rates are directly related to the accuracy of the lip seg-
mentation. For the moment, the problem of lip reading for continuous speech with different speakers 
has not been solved partly due to the fact that an ideal lip contour is not yet achievable for any kind of 
speech sequences.

Virtual Face Animation 

The second application which extensively uses lip segmentation is virtual face animation (Beaumesnil 
2006; Kuo 2005; Yin 2002; Wu 2002)… The purpose is the building of a virtual face with realistic lip 
deformations and motion. We are not going to make an exhaustive comparison between the proposed 
methods for face animation but we prefer to focus on some examples in order to exhibit the way the 
different authors integrate lip segmentation results in their animation process.

In (Wu 2002; Wu 2004), the MPEG-4 Facial Action Parameters associated to the inner lip contour 
and to the outer lip contour are extracted from the segmented lip and are used in order to be the inputs 
of a facial animation MPEG-4 player. Figure 34 gives an example of generated virtual face. 

In (Kuo, 2005), extracted lip contours are used to animate real faces. The animation in the mouth 
region consists in one Action Unit operation consisting in pulling the lip corner in order to generate 
smiling faces (see Figure 35 for an illustration). 

In (Yin 2002), lip segmentation and tracking are presented for the purpose of realistic facial expres-
sion generation. Once the mouth contours have been extracted, the mouth feature vertices of a global 
3D face model are itted on some mouth point’s contour.

Figure 33. Deinition of the geometric features for lip reading application



  119

Lip Modelling and Segmentation

Biometric Applications

In (Brand, 2001; Chibelushi, 1997; Hsu, 2002; Luettin, 1997; Wark, 1998; Wark, 1998b), lip segmentation 
is used for the purpose of speaker or subject identiication. This tends to exploit the biometric potential of 
the lips and is based on geometrical and appearance based features computed on the segmented lips. 
In (Hammal, 2006; Hammal, 2007), ive geometric distances are computed on a face skeleton includ-
ing lip, eyes and brows contours (Figure 36). These ive distances are then used in a facial expression 
classiication process. 

In the same way, geometric features are computed from the lip contours in (Seyedarabi, 2006) and 
are used to classify lip images into Action Units.

Figure 34. Examples of MPEG-4 facial animation (Wu, 2004)

Figure 35. Example of animated face based on lip segmentation (Kuo, 2005)
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Finally, in (Yokogawa, 2007), the precise lip contour is used as a help for the treatment of cleft lip 
patients in order to plan the plastic surgery procedure. It is also used for dental treatments.

Con Clu SIon

Lip modeling and lip segmentation have been extensively studied. Concerning the modeling of lip 
shape or lip pixels color distribution, different models have been proposed and none of them is really 
predominant in the literature. Concerning lip segmentation, region-based approaches and contour-based 
approaches have been proposed. Contour-based approaches lead to more accurate contours but suffer 
from dificulties for contour initialization. Region-based approaches do not depend on the initialization 
process but produce only rough accuracy around the contours. As a consequence, the current tendency 
is the combination of both approaches. 

However that may be, the problem of lip segmentation is still open and will still be largely studied 
given the amount of industrial applications that would beneit from accurate lip contours.
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ABSTRACT

Automatic Speech Recognition (ASR) is the most natural input modality from humans to machines. 
When the hands are busy or a full keyboard is not available, speech input is especially in demand. Since 
the most compelling application scenarios for ASR include noisy environments (mobile phones, public 
kiosks, cars), visual speech processing must be incorporated to provide robust performance. This chap-
ter motivates and describes the MPEG-4 Face and Body Animation (FBA) standard for representing 
visual speech data as part of a whole virtual human speciication. The super low bit-rate FBA codec 
included with the standard enables thin clients to access processing and communication services over 
any network including enhanced visual communication, animated entertainment, man-machine dialog, 
and audio/visual speech recognition.

InTRodu CTIon

In recent years the number of people accessing the internet or using digital devices has exploded. In 
parallel the mobile revolution is allowing consumers to access the internet on relatively powerful hand-
held devices. While the transmission and display of information is eficiently handled by maturing ixed 
and wireless data networks and terminal devices, the input of information from the user to the target 
system is often impeded by the lack of a keyboard, low typing skills, or busy hands and eyes.  The last 
barrier to eficient man-machine communication is the lack of accurate speech recognition in real-world 
environments. Given the importance of mobile communication and computing, and the ubiquitous 
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internetworking of all terminal devices, the optimal system architecture calls for compute-intensive 
processes to be performed across the network. Support for thin mobile clients with limited memory, 
clock speed, battery life, and connection speeds requires that visual speech and gesture information 
captured from the user be transformed into a representation that is both compact and computable on 
the terminal device.

The low of audio/video data across a network is subject to a variety of bottlenecks that require lossy 
compression; introducing artifacts and distortion that degrade the accuracy of scene analysis. Video 
with suficient quality for facial capture must be either stored locally or analyzed in real time.  Real-time 
video processing should be implemented close to the camera to avoid transmission costs and delays, and 
to more easily protect the user’s visual privacy.  The recognition of the human face and body in a video 
stream results in a set of descriptors that ideally occur at the video frame rate.  The human behavior 
descriptors should contain all information needed for the Human-Computer Interaction (HCI) system to 
understand the user’s presence, pose, facial expression, gestures, and visual speech.  This data is highly 
compressible and can be used in a communication system when standardized.  The MPEG-4 Face and 
Body Animation (FBA) standard1,2 provides a complete set of Face and Body Animation Parameters 
(FAPs and BAPs) and a codec for super low bit-rate communication. This chapter describes the key 
features of the MPEG-4 FBA speciication, its application to visual speech and gesture recognition, 
and architectural implications.

The control of a computer by a human incorporating the visual mode is best implemented by the 
processing of video into features and descriptors that are accurate and compact.  These descriptors 
should only be as abstract as required by network, storage capacity, and processing limitations.  The 
MPEG-4 FBA standard provides a level of description of human facial movements and skeleton joint 
angles that is both highly detailed and compressible to 2 kilobits per second for the face and 5-10 kilo-
bits per second for the body.  The MPEG-4 FBA stream can be transmitted over any network and can 
be used for visual speech recognition, identity veriication, emotion recognition, gesture recognition, 
and visual communication with the option of an alternate appearance.  The conversion of video into an 
MPEG-4 FBA stream is a computationally intensive process which may require dedicated hardware 
and HD video to fully accomplish.  The performance of recognition tasks on the FBA stream can be 
performed anywhere on the network without risking the violation of the users visual privacy when video 
is transmitted.  When coupled with voice recognition, FBA recognition should provide the robustness 
needed for effective HCI. As shown in Figure 1, the very low bit-rate FBA stream enables the separation 
of the HCI from higher level recognition systems, applications and databases that tend to consume more 
processing and storage than is available in a personal device.  This client-server architecture supports 
all application domains including human-human communication, human-machine interaction, and local 
HCI (non-networked). While the Humanoid Player Client exists today on mobile phones, a mobile Face 
and Gesture Capture Client is still a few years away. 

MPEG-4 FBA streaming is commercially deployed today for delivery of animation to mobile phones 
in Europe within the AniTonesTM application. Content is eficiently created using facial capture from 
ordinary video and combined with animated backgrounds and bodies. FAP and BAP data (including 
both body and background object animation) are compressed into one small package for delivery over 
any mobile IP network.  The  AniTonesTM player maintains a frame-rate of ifteen frames per second 
with synchronized audio on a 109 MHz processor.
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FACe AnImATIon 

MPEG-4 contains a comprehensive set of tools for representing and compressing content objects and 
the animation of those objects.  Virtual humans (faces and bodies) are treated as a special type of object 
in MPEG-4 with anatomically speciic locations and associated animation parameters.  While virtual 
humans can be treated as generic graphical objects, there are particular advantages to representing them 
with the Face and Body Animation (FBA) Coding speciication.  

As shown in Figure 2, Face Deinition Parameter (FDP) feature points have been deined and lo-
cated on the face. Some of these points only serve to help deine the shape of the face. Those remaining 
are animated or displaced by FAPs, which are listed in Table 1. FAPs 1 and 2 are special sets of high 
level descriptors for visemes and expressions respectively, as described in Tables 2 and 3. Viseme and 
expression labels are a form of metadata that is subject to interpretation. The remaining FAPs (except 
for the rotation FAPs) are normalized in order to describe the motion of the face independently from 
the size, proportions, or geometry of a particular face. Normalization is achieved by measuring local 
facial dimensions on the source and destination faces and expressing FAPs in units that are relative to 
the local dimensions. Each FAP speciies either a normalized linear displacement in one axis aligned 
dimension (relative to the head) or one rotation. A given displacement FAP value is expressed as a 
fraction of the neutral face mouth width, mouth-nose distance, eye separation, iris diameter, or eye-
nose distance. Another important feature of the FBA standard is the FAP interpolation policy that, for 
example, allows the transmission of FAPs for only one side of the face followed by copying to the other 
side before animation; reducing both data-rate and computation in the client.

Most FAPs are displacements of the feature points from their neutral face position. Neutral position 
is deined as mouth closed, eyelids tangent to the iris, gaze and head orientation straight ahead, teeth 

Figure 1. FBA enabled client-server architecture
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touching, and tongue touching the front teeth contact point. The head orientation FAPs are applied af-
ter all other FAPs have been applied within the face. In other words, all but the head orientation FAPs 
refer to the local face coordinate system. If the head is animated with a body, the head orientation FAPs 
express rotations relative to the top-most vertebrae (the connection point between the head and body 
is FDP 7.1 in Figure 2).

FAPs and BAPs are speciied at a given frame rate that is typically equal to that of the captured facial 
video. FAPs that are not transmitted for a given frame may be interpolated by the decoder. For example, 
if the inner lip but not the outer lip FAPs are transmitted, the decoder is free to synthesize the motion of 
the outer lips. Since the outer lip motion closely follows the motion of the inner lips, a simple copying 
operation is suficient for most applications.  While the behavior of face models can vary in response to 
FAPs, lip and eyelid closure are guaranteed. Lip closure is mandated in the neutral face and is deined 
during animation when the corresponding upper and lower lip FAPs sum to zero. Eyelids are open and 
tangent to the iris in the neutral face. Since the eyelid FAPS are expressed in units of iris diameter, the 
eyelids will be closed during animation when the upper and lower eyelid FAPS sum to the iris diameter. 
Thus, lip and eyelid closure are known regardless of the vertical contact position.

FAPs are normalized to be proportional to one of the key facial dimensions listed in Table 4. The 
third column of Table 1 indicates the Facial Animation Parameter Units (FAPU) used for each FAP.  The 
normalization of the FAPs gives the face model designer  freedom to create characters with any facial 
proportions  regardless  of the source of the FAPs.  The mouth and eyelids will close as expected, mouth 
opening will be proportional to the face, etc.  FAP normalization also allows face models to be designed 
without the need to transmit the face model.  MPEG-4 compliant  face models can be embedded into 
decoders, stored on portable media (e.g. CDROM), downloaded as an executable  from a website, or 
built into a web browser. From the user’s perspective,  MPEG-4 face models can be freely exchanged  at  
any  time, and FAP streams which are broadcast  can be  decoded as soon as the next I-frame is received 
within the compressed FBA stream.  More advanced face models will allow the user to radically deform 
the model during the animation while maintaining  proper  facial movements. FAP normalization also 
enables visual speech recognition independent of the speaker and anywhere on the network.

Body  AnImATIon

The joints of the humanoid skeleton are named in the MPEG-4 FBA standard and these names are com-
mon with the H-Anim4 standard. Body Animation Parameters (BAPs) are Euler angles for each joint. 
The irst 10 BAPs out of 186 are shown in Table 5. The connection between the skull and the upper-
most vertebrae is FDP 7.1; the center of rotation for the head rotation FAPS. Spinal BAPs are speciied 
with a level of detail in order to support low power FBA players. BAPs can be captured with varying 
levels of accuracy and numbers of joints using body motion capture equipment, while purely passive or 
video-based body motion capture results are limited. BAPs can be synthesized or measured from any 
animated 3D character. Ultimately, virtual humans5 will be fully synthesized and conversant with real 
humans with the help of this common language for representing human face and body behavior.
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Figure 2. FDP Feature Points. Note that illed points are subject to displacement and/or rotation by 
FAPs
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# FAP name FAP description units Uni-
orBidir

Positive 

motion

Group F D P  
s u b g r p 
num

1 viseme Set of values determining the 
mixture of two visemes for this 
frame (e.g. pbm, fv, th)

na na na 1 na

2 expression A set of values determining the 
mixture of two facial expression 

na na na 1 na

3 open_jaw Vertical jaw displacement (does 
not affect mouth opening)

MNS U down 2 1

4 lower_t_midlip Vertical top middle inner lip 
displacement

MNS B down 2 2

5 raise_b_midlip Vertical  bottom middle inner lip 
displacement

MNS B up 2 3

6 stretch_l_cornerlip Horizontal displacement of left 
inner lip corner

MW B left 2 4

7 stretch_r_cornerlip Horizontal displacement of right 
inner lip corner

MW B right 2 5

8 lower_t_lip_lm Vertical  displacement of 
midpoint between left corner 
and middle of top inner lip

MNS B down 2 6

9 lower_t_lip_rm Vertical  displacement of 
midpoint between right corner 
and middle of top inner lip

MNS B down 2 7

10 raise_b_lip_lm Vertical  displacement of 
midpoint between left corner 
and middle of bottom inner lip

MNS B up 2 8

11 raise_b_lip_rm Vertical  displacement of 
midpoint between right corner 
and middle of bottom inner lip

MNS B up 2 9

12 raise_l_cornerlip Vertical  displacement of left 
inner lip corner

MNS B up 2 4

13 raise_r_cornerlip Vertical  displacement of right 
inner lip corner

MNS B up 2 5

14 thrust_jaw Depth displacement of jaw MNS U forward 2 1
15 shift_jaw Side to side displacement of jaw MW B right 2 1
16 push_b_lip Depth displacement of bottom 

middle lip
MNS B forward 2 3

17 push_t_lip Depth displacement of top 
middle lip

MNS B forward 2 2

18 depress_chin Upward and compressing 
movement of the chin 
(like in sadness)

MNS B up 2 10

19 close_t_l_eyelid Vertical displacement of top left 
eyelid

IRISD B down 3 1

20 close_t_r_eyelid Vertical displacement of top 
right eyelid

IRISD B down 3 2

Table 1. Complete FAP list
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# FAP name FAP description units Uni-
orBidir

Positive 

motion

Group F D P  
s u b g r p 
num

21 close_b_l_eyelid Vertical displacement of bottom 
left eyelid

IRISD B up 3 3

22 close_b_r_eyelid Vertical displacement of bottom 
right eyelid

IRISD B up 3 4

23 yaw_l_eyeball Horizontal orientation of left 
eyeball

AU B left 3 na

24 yaw_r_eyeball Horizontal orientation of right 
eyeball

AU B left 3 na

25 pitch_l_eyeball   Vertical orientation of left 
eyeball

AU B down 3 na

26 pitch_r_eyeball   Vertical orientation of right 
eyeball

AU B down 3 na

27 thrust_l_eyeball   Depth displacement of left 
eyeball

ES B forward 3 na

28 thrust_r_eyeball  Depth displacement of right 
eyeball

ES B forward 3 na

29 dilate_l_pupil   Dilation of left pupil IRISD B growing 3 5
30 dilate_r_pupil Dilation of right pupil IRISD B growing 3 6
31 raise_l_i_eyebrow Vertical displacement of left 

inner eyebrow
ENS B up 4 1

32 raise_r_i_eyebrow Vertical displacement of right 
inner eyebrow

ENS B up 4 2

33 raise_l_m_eyebrow Vertical displacement of left 
middle eyebrow

ENS B up 4 3

34 raise_r_m_eyebrow Vertical displacement of right 
middle eyebrow

ENS B up 4 4

35 raise_l_o_eyebrow Vertical displacement of left 
outer eyebrow

ENS B up 4 5

36 raise_r_o_eyebrow Vertical displacement of right 
outer eyebrow

ENS B up 4 6

37 squeeze_l_eyebrow Horizontal displacement of left 
eyebrow

ES B right 4 1

38 squeeze_r_eyebrow Horizontal displacement of right 
eyebrow

ES B left 4 2

39 puff_l_cheek         Horizontal displacement of  left 
cheeck

ES B left 5 1

40 puff_r_cheek         Horizontal displacement of right 
cheeck

ES B right 5 2

41 lift_l_cheek        Vertical displacement of left 
cheek

ENS U up 5 3

42 lift_r_cheek        Vertical displacement of right 
cheek

ENS U up 5 4

43 shift_tongue_tip    Horizontal displacement of 
tongue tip

MW B right 6 1

Table 1. Complete FAP list (continued)
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# FAP name FAP description units Uni-
orBidir

Positive 

motion

Group F D P  
s u b g r p 
num

44 raise_tongue_tip    Vertical displacement of tongue 
tip

MNS B up 6 1

45 thrust_tongue_tip    Depth displacement of tongue 
tip

MW B forward 6 1

46 raise_tongue     Vertical displacement of tongue MNS B up 6 2
47 tongue_roll Rolling of the tongue into U 

shape
AU U concave 

upward
6 3, 4

48 head_pitch Head pitch angle from top of 
spine

AU B down 7 na

49 head_yaw Head yaw angle from top of 
spine

AU B left 7 na

50 head_roll Head roll angle from top of 
spine

AU B right 7 na

51 lower_t_midlip _o Vertical top middle outer lip 
displacement

MNS B down 8 1

52 raise_b_midlip_o Vertical  bottom middle outer lip 
displacement

MNS B up 8 2

53 stretch_l_cornerlip_
o

Horizontal displacement of left 
outer lip corner

MW B left 8 3

54 stretch_r_cornerlip_
o

Horizontal displacement of right 
outer lip corner

MW B right 8 4

55 lower_t_lip_lm _o Vertical  displacement of 
midpoint between left corner 
and middle of top outer lip

MNS B down 8 5

56 lower_t_lip_rm _o Vertical  displacement of 
midpoint between right corner 
and middle of top outer lip

MNS B down 8 6

57 raise_b_lip_lm_o Vertical  displacement of 
midpoint between left corner 
and middle of bottom outer lip

MNS B up 8 7

58 raise_b_lip_rm_o Vertical  displacement of 
midpoint between right corner 
and middle of bottom outer lip

MNS B up 8 8

59 raise_l_cornerlip_o Vertical  displacement of left 
outer lip corner

MNS B up 8 3

60 raise_r_cornerlip _o Vertical  displacement of right 
outer lip corner

MNS B up 8 4

61 stretch_l_nose Horizontal displacement of left 
side of nose

ENS B left 9 1

62 stretch_r_nose Horizontal displacement of right 
side of nose

ENS B right 9 2

63 raise_nose Vertical displacement of nose tip ENS B up 9 3
64 bend_nose Horizontal displacement of nose 

tip
ENS B right 9 3

Table 1. Complete FAP list (continued)
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# FAP name FAP description units Uni-
orBidir

Positive 

motion

Group F D P  
s u b g r p 
num

65 raise_l_ear     Vertical displacement of left ear ENS B up 10 1
66 raise_r_ear     Vertical displacement of right 

ear
ENS B up 10 2

67 pull_l_ear   Horizontal displacement of left 
ear

ENS B left 10 3

68 pull_r_ear   Horizontal displacement of right 
ear

ENS B right 10 4

Table 1. Complete FAP list (continued)

Table 2. Values for viseme_select

visemeselect phonemes example

0 none na

1 p, b, m put, bed, mill

2 f, v far, voice
3 T,D think, that

4 t, d tip, doll

5 k, g call, gas

6 tS, dZ, S chair, join, she
7 s, z sir, zeal

8 n, l lot, not

9 r red
10 A: car
11 e bed
12 I tip
13 Q top
14 U book
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VISuAl  Spee Ch pRo CeSSIng

FAPs were designed to satisfy a wide range of applications including visual speech processing for 
Automatic Speech Recognition (ASR)5-17 and Text-To-Speech (TTS). The explicit timing information 

Table 3. Values for expression_select

e x p r e s s i o n _
select

express ion 
name

textual description

0 na na
1 joy The eyebrows are relaxed. The mouth is open and the mouth corners pulled 

back toward the ears.
2 sadness The inner eyebrows are bent upward. The eyes are slightly closed. The 

mouth is relaxed.

3 anger              The inner eyebrows are pulled downward and together. The eyes are wide 
open. The lips are pressed against each other or opened to expose the 
teeth.   

4 fear        The eyebrows are raised and pulled together. The inner eyebrows are bent 
upward. The eyes are tense and alert.

5 disgust       The eyebrows and eyelids are relaxed. The upper lip is raised and curled, 
often asymmetrically.

6 surprise         The eyebrows are raised. The upper eyelids are wide open, the lower 
relaxed. The jaw is opened. 

Table 4. Facial animation parameter units

IRISD0 Iris diameter (equal to the distance 
between upper ad lower eyelid)

IRISD = 

IRISD0 / 1024
ES0 Eye separation ES = ES0 / 1024

ENS0 Eye - nose separation ENS = ENS0 / 1024
MNS0 Mouth - nose separation MNS = MNS0 / 1024

MW0 Mouth width MW0 / 1024

AU Angle Unit 10-5 rad
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provided with  FAP data and the normalization of  FAPs enables direct correlation of visual speech with voice 
features during audio/visual speech analysis and synthesis18.  Figure 3 shows four frames from a video sequence 
that was processed using a commercial facial capture application called alterEGO. The inner lip contour, nostril 
centers, eyelid, pupil, and eyebrows are marked with a graphic overlay. Nostril and mouth tracking windows are 
also shown. Note that the inner lip contour is well estimated even when the mouth is nearly closed (second frame), 
and when teeth and tongue are visible (third and fourth frames). Complete mouth closure is properly identiied 
in the irst frame as indicated by the lack of bottom lip contour (green overlay). FAP data is output from this ap-
plication after adaptive spatio-temporal iltering.

Figure 4 shows a screen shot from a commercial application for editing FAP data call FAPeditor. The 
upper left window is used to to select particular FAPs for editing, the lower left window shows a real-
time preview of the FAP data on a particular face model while selected FAPS are shown as a function 
of frame number with a time aligned audio waveform. FAPs 4 and 5 (top and bottom midlip vertical 
displacement) are shown with the voice waveform for the utterance “Welcome my darling to your wire-
less daily horoscope. I am Madam Zora. Please tell me your astrological sign. I will wait. Ah, you are 
a Scorpio am I right?” Note that the framerate is 30 Hz and about 450 frames are shown. The bottom 
lip movement is positive in the up direction (shown in orange) and the top lip movement is positive in 
the down direction.  Bilabial closure is occurring when FAPs 4 and 5 sum to zero as seen during the 
Ms and Ps in the utterance.  Inspection of the timeline shows the closures centered at frames 48, 129, 
158, 168, 211, 246, 412, and 421. Note that Ms and Ns are clearly distinguished from each other as are 
Ps and Ts. While lip closure is the most important visual speech feature, the remaining inner  lip FAPs 
comprise a complete but compact set of visual speech features. If bilateral symmetry and a front view 
is assumed, only seven FAPs (3,4,5,6,8,10,12) need to be processed for visual speech analysis. 

Table 5. The irst 10 (of 186) body animation parameters

BAP

ID BAP NAME DESCRIPTION
 1 sacroiliac_tilt Forward-backward motion of the pelvis in the sagittal plane

 2 sacroiliac_torsion Rotation of the pelvis along the body  vertical axis 
 3 sacroiliac_roll Side to side swinging of the pelvis in the coronal plane 

 4 l_hip_lexion Forward-backward rotation in the sagittal plane
 5 r_hip_lexion Forward-backward rotation in the sagittal plane
 6 l_hip_abduct  Sideward opening in the coronal plane 
 7 r_hip_abduct  Sideward opening in the coronal plane 
 8 l_hip_twisting Rotation along the thigh axis

 9 r_hip_twisting Rotation along the thigh axis
 10 l_knee_lexion Flexion-extension of the leg in the sagittal plane
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Figure 3. Facial capture results showing inner lip contour

Figure 4. FAPs 4 and 5 with voice waveform
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FBA Cl Ien T-SeRVeR ARChITeCTuRe

A client-server system architecture is needed for the delivery of high quality animated virtual humans or 
characters to thin clients over any digital network. Figure 5 shows the architecture for the Audio/Visual 
Facial Capture Client and Figure 6 shows the FBA Player. While wired and wireless network speeds 
continue to rise, the availability of ubiquitous broadband internet connectivity is still many years away.  
Furthermore, the need for low latency communication for interactive applications (e.g. VoIP, multiplayer 
games, and dialog systems) places additional demands on networks that may be dificult or costly to 
achieve.  The addition of visual communication to a dialog system places heavy demands on the network 
if video streaming is used. A more practical alternative is to present talking animated faces that are 
driven by low bit-rate  animation streams. In many applications animation is more appealing than live 
video and acceptable levels of animated face model quality are available today. The evolution of facial 
capture and animation will eventually provide photo-realistic visual communication indistinguishable 
from natural video. The MPEG-4 FBA standard provides a comprehensive representation of human-
oids and characters and very low bit-rate  compression of Face and Body Animation Parameters. The 
MPEG-4 FBA standard also provides independence between a given face model and the source of the 
FAP data that drives it by normalizing the facial movements. This enables face models to be replaced 
by the user for entertainment purposes, or updated over the network during a session. Currently, 3D 
graphics APIs are provided with acceleration in a growing number of phones. The use of MPEG-4 FBA 
will also encourage hardware acceleration and embedding of computation intensive modules such as 
video-to-FAP processing in consumer devices.

Audio/Visual Facial Capture Client

User input to a dialog system could ultimately be a combination of tactile input (keyboard and mouse), 
voice, face and body gestures, and visual speech. When a real-time implementation of the facial capture 
client is available, a full duplex A/V dialog system could be realized across any network by performing 
computation intensive recognition tasks on compute servers anywhere on the network. The MPEG-4 
FBA stream is designed to enable direct visual speech and emotional state recognition. 

Current PCs have enough processing  capacity to support its implementation. Consumer video 
camera technology continues to improve while being commoditized. The growth of HDTV in the US 
and other parts of  the world has encouraged consumer electronics manufacturers to provide cheap HD 
video cameras using the 720P HD video scanning format (1280Hx720V progressive). The HDV video 
format uses the MPEG-2 Transport Stream format at 25 Megabits/second over Firewire to transmit 
lightly compressed HD video from the camera to the PC for further processing. IP HD cameras are also 
available for connection over 100 Mbit Ethernet or Wii.  Video capture is also supported by a growing 
number of graphics cards with associated processing capability while the rapid deployment of PCI-Ex-
press bus technology eliminates the bus-memory bandwidth bottleneck that was impeding HD video 
capture on commodity PC hardware.  In a few years, mobile phones will have enough processing power 
to handle both the player and capture clients simultaneously. The architecture of these next-generation 
mobile devices will probably integrate the video processing with the image sensor to conserve power 
and save the application processor for utility applications like Personal Information Managers (PIM), 
Web browsing, and games.
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A variety of Video-to-FAP systems have been developed during the last decade19-21 but video cameras 
and PC processing power have only recently become economical enough to support full facial capture in 
real time. The FBA encoder does not require signiicant processor resources while voice encoding and 
processing is lightweight and accelerated on a typical PC sound card. The FBA stream contains timing 
information which supports synchronization with any voice bitstream. RTP can be easily be adapted to 
carry FBA streams with associated voice or audio streams over IP networks. 

FBA player Client

The FBA player is designed to be extremely light weight and to use as many standard/embedded APIs 
as possible. When implemented on a mobile phone, these include OpenGL-ES, JSR-184 and JSR-135 for 
mobile 3D and audio/video decoding. The talking animated character or virtual human can be composited 
onto a 2D scene or positioned in a 3D scene with other animated graphics, textual information or other 
animated characters. The low complexity of the FBA player makes it ideal for multiplayer networked 
games and 3D social environments. Current PCs are capable of supporting several concurrent FBA 
players driving a characters in a shared scene. A variety of MPEG-4 FBA compliant face models have 
been developed ranging from the simple 300 triangle mesh shown in Figure 4 to bones rigged mesh 
models with thousands of triangles22-25.

Figure 5. Audio/visual facial capture client
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Appl ICATIon  To VISuAl  Spee Ch And ge STuReS pRo CeSSIng

The compressed FBA stream driving a face typically occupies less than 2kilobits/sec of bitrate and can 
therefore be transmitted over any network that can support coded natural voice.  As MPEG-4 FBA 
players proliferate in web browsers and wireless terminals, FBA streams will irst be produced for 
server-based streaming to drive animated characters on websites. E-commerce and call center applica-
tions should beneit from the increased novelty and humanization associated with high quality animated 
characters.  When real-time facial capture is deployed to consumers, speech and gesture recognition 
algorithms operating on FBA and audio streams could be used to search content databases for speech 
content, facial gestures and expressions of emotion associated with consumer dialog with operators, 
IVR systems or other consumers.

A reference architecture for network-based applications of FBA streaming is shown in Figure 7. A 
variety of sources and receivers of FBA streams are shown in this distributed architecture. Voice and 
FBA streams low through application servers residing anywhere on the network while TTS gener-
ates FBA and voice from text and A/V speech recognition and speaker veriication26,27 are performed 
on captured FBA and voice streams. FAPs can also be derived from voice28 to supplement or replace 
missing FAP data from video. All sources of FAP data can be combined in the FAP Uniication and 
Interpolation module for delivery as one stream to client FBA players. The extremely low bit-rate of 
FBA streams enables this distributed architecture regardless of network capacity. If a given network 
can support VoIP then it can support the addition of FBA streams.

Figure 6. Simple FBA player client
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The perception of human speech incorporates both acoustic and visual communication modalities.  
Automatic speech recognition (ASR) systems have traditionally processed only the acoustic signal. 
While video cameras and video acquisition systems have become economical, the use of automatic 
lipreading to enhance speech recognition performance is an ongoing and fruitful research topic. Dur-
ing the last 20 years a variety of research systems have been developed which demonstrate that visual 
speech information enhances overall recognition accuracy, especially in the presence of acoustic noise. 
The client-server architecture proposed above should enable earlier deployment of audio-visual speech 
recognition on mobile devices by performing the recognition processing on the FBA stream on the 
server side of the network.  

Con Clu SIon S

The greatest barrier to deployment of A/V speech recognition is the cost of high quality video cameras 
and processing power.  Fortunately, the increasing commoditization of consumer HD video equipment 

Figure 7. FBA networked application architecture
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is driving down camera costs and providing cost effective format and interconnect standards to PCs. 
Commoditization of mobile phone hardware and embedded software occurs even more rapidly than 
PCs given the higher turnover rate and huge numbers of users. But mobile devices suffer from limited 
battery capacity and limited internet bandwidth. The solution calls for new standards-based APIs sup-
ported by embedded processing of video with FBA streaming across the network. FBA streaming is 
currently being used to deliver entertainment to mobile phones (see Anitones); paving the way to full 
duplex FBA streaming in a dialog system29. Finally, mobile facial capture will likely be deployed as an 
extension of video conferencing on handheld devices with a variety of network connections. 

While ASR has had a dificult time competing with the querty keyboard, it could eventually be the 
best solution for interacting with machines while driving, walking, or anytime a querty keyboard is not 
available. Of course, these environments are generally noisy and wearing a close talking microphone is 
likely to be problematic. In addition, the speaker may need to talk softly to avoid disturbing others or 
being overheard. These conditions call for the incorporation of visual speech into mobile and handheld 
ASR systems to enhance robustness to noise, vocal interference, and poor voice SNR. 

Eventually, the PC as we know it  today will be replaced by networked portable UI devices that are 
physically just displays with small embedded sensors, processors, radios, and battery.  These UI appli-
ances will also be found at retail businesses, in public transportation systems, and ofice buildings for 
inancial transactions, information retrieval, and identity veriication without requiring typing skills 
or physical contact with a terminal. A/V ASR will be an essential part of UI evolution and widespread 
use of the MPEG-4 FBA standard will accelerate its deployment.
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ABSTRACT

As the irst step of many visual speech recognition and visual speaker authentication systems, robust 
and accurate lip region segmentation is of vital importance for lip image analysis. However, most of 
the current techniques break down when dealing with lip images with complex and inhomogeneous 
background region such as mustaches and beards. In order to solve this problem, a Multi-class, Shape-
guided FCM (MS-FCM) clustering algorithm is proposed in this chapter. In the proposed approach, 
one cluster is set for the lip region and a combination of multiple clusters for the background which 
generally includes the skin region, lip shadow or beards. With the spatial distribution of the lip cluster, 
a spatial penalty term considering the spatial location information is introduced and incorporated into 
the objective function such that pixels having similar color but located in different regions can be dif-
ferentiated. Experimental results show that the proposed algorithm provides accurate lip-background 
partition even for the images with complex background features.
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InTRodu CTIon

Visual speech recognition has aroused the interest of many researchers (Chan 2001, Kaynak et al. 
2001, Zhang et al 2001). The visual information of lip movement can help enhancing the accuracy of 
automatic speech recognition systems especially in noisy environments (Petajan 1985, Bregler et al. 
1993). Accurate and robust lip region segmentation, as the irst step of most lip extraction systems, is 
of key importance for subsequent processing. 

Lip region segmentation aims to classify all the pixels in an image into two categories: the lip pixels 
and the background (non-lip) ones, and various techniques have been proposed to address this problem. 
In recent years, segmentation of color lip images has gained more popularity than segmentation from 
gray-scale images due to the availability of low-cost hardware and increasing computing power. Color 
can provide additional information that is not available in gray-scale images and thus it enhances the 
robustness of the lip segmentation algorithm. In addition, it is also easier for detecting the teeth and 
tongue, which are important for extracting the lip region accurately.

Various lip image segmentation methods have been proposed in the literature. Color space analyses 
such as preset color iltering (Wark et al. 1998) and color transformation (Eveno et al. 2001) have been 
used to enlarge the color difference between the lip and skin. Nevertheless, this kind of methods will 
result in large segmentation error if the color distribution of lip region overlaps with that of background 
region. Edge detection algorithms (Hennecke et al 1994, Caplier 2001) can produce accurate result if 
prominent and consistent intensity changes around the boundary exist. However, this condition may 
not be easily satisied for people with low color contrast between the lip and skin. Spatial continuity has 
also been exploited in Markov random ield based techniques to improve the robustness of segmentation 
(Lieven and Luthon 1999, Zhang and Mersereau 2000). These algorithms can reduce the segmentation 
error caused by “pepper” noise. Fuzzy c-means (FCM) clustering is another kind of widely used image 
segmentation techniques (Bezdek 1981). In FCM-based methods, neither prior assumption about the 
underlying feature distribution nor training is needed.

The methods mentioned above all produce satisfactory results to a certain extent for lip image without 
mustache or beards. However, most of them fail to provide accurate lip segmentation for lip images with 
beards. We have previously proposed a fuzzy clustering based algorithm that takes into consideration 
the lip shape, i.e., fuzzy c-means with shape function (FCMS) (Leung et al 2004), to segment the lip 
region. The FCMS exploits both the shape information and the color information to provide accurate 
segmentation results even for lip images with low contrast. However, it still fails for image with a com-
plex background due to the insuficient background modeling.

In this chapter, a new fuzzy clustering based algorithm is proposed to solve the problem. The three 
distinctive features of the proposed lip segmentation algorithms are: (i) prior information of lip shape 
is seamlessly incorporated in the object function which can effectively differentiate pixels of similar 
color but located in different regions; (ii) multiple spheroidal-shaped clusters are employed to model the 
inhomogeneous background region and the proper number of clusters is determined automatically; (iii) 
with the information of probable lip location, inner mouth features such as teeth and oral cavity can be 
detected more accurately and thus the robustness of the lip segmentation result is improved.

The chapter is organized as follows. An example of lip image with complex background is illustrated 
and the major dificulties of accurate lip region segmentation are examined. Then we describe in detail 
the state-of-the-art fuzzy clustering based algorithm: the Multi-class, Shape-guided FCM (MS-FCM) 
clustering method (Wang et al. 2007) and elaborate the underlying mechanism of why the proposed 
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algorithm is effective dealing with the lip images with complex background region. From the experi-
mental results, we show that our method is able to provide accurate and robust lip region segmentation 
result even when the background region is complex.

pRo Blem S en Coun Ted In l Ip Segmen TATIon WITh Complex 
BACkg Round

Segmenting lip images with mustaches and beards surrounding the lip region remains an open question 
for most existing lip segmentation techniques (Lievin and Luthon 1999). Fig. 1 illustrates an example 

Figure 1. (a) original lip image, (b) color distribution of (a) in CIELAB color space, (c)-(e) color dis-
tribution projection on the L-a, b-a, L-b plane, respectively, (f) the edge map of the hue image, (g) the 
edge map of the luminance image

  (a)    (b)    (c)

  
    (d)        (e)
 

    (f)       (g)
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of lip image and its corresponding color distribution of the lip and non-lip pixels in CIE-1976 CIELAB 
color space, where * and + represent the lip and background (or non-lip) pixels, respectively. The hue 
image, with the hue deinition given in (Zhang and Mersereau 2000), and the edge map are also shown 
in Fig. 1.

Three major observations can be drawn from these igures. Firstly, the lip and background pixels 
overlap in the color space as shown from Fig. 1(b) to (e) and this will bring unsolvable troubles to those 
segmentation methods solely based on color information. Although MRF has been used to exploit the 
local spatial information to enhance the robustness, patches outside and holes inside the lip region are 
usually found if a large number of pixels of similar color are aggregated. Mislabeled pixels due to the 
color similarity will lead to undesirable disturbances to both membership map and color centroids for the 
conventional FCM algorithm. Secondly, the presence of beards causes many luminance and hue edges 
in the background region and the use of edge information to infer the lip boundary becomes unreliable. 
As a result, methods that solely or partially depend on the edge information will not deliver satisfactory 
performance. Finally, the traditional two-class partitioning methods are utterly not appropriate for lip 
images with beards since the background region is too complex and inhomogeneous. Due to these three 
major dificulties, most of the lip segmentation algorithms reported in the literatures cannot provide 
satisfactory segmentation results for lip images with beards. The dificulties in lip segmentation for 
the traditional methods can be briely summarized in Table 1.

mul TI-Cl ASS, ShApe-gu Ided FCm (mS-FCm) Clu STeRIng meThod

o bjective and g eneral description

In order to overcome the dificulties mentioned above, a fuzzy-clustering based lip segmentation ap-
proach, the Multi-class Shape-guided FCM (MS-FCM) method is proposed. 

Since it is an unsupervised learning method for which neither prior assumption about the underlying 
feature distribution nor training is required, fuzzy-clustering based algorithm is capable of handling lip 
and skin color variation caused by make-up. For feature selection in our algorithm, the color information 
of each pixel is adopted as the discriminative feature. 

Since the lip and background pixels overlap in the color space, the color information alone cannot 
provide accurate segmentation results. As the lip pixels are usually aggregated to form a large patch, 
their physical distances towards the lip center provide supportive information for the lip-background 

Lip segmentation approaches Major dificulties
Color-based approaches (color iltering) Similarity and overlap in the color space

Edge-detection approaches Too many false-boundary edges
MRF-based approaches Patches and holes can be usually found

Table 1. Major dificulties for the traditional lip segmentation approaches
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differentiation. In MS-FCM, such spatial information is obtained from the prior lip shape and is seam-
lessly incorporated into the objective function to discriminate the non-lip pixels that have similar color 
but located at a distance away from the lip. As a result, the “Shape-guided” feature of our algorithm 
aims to exploit the prior lip shape information to better handle the color overlap problem between the 
lip and background.

In the fuzzy clustering, as Euclidean distance function is adopted to describe the difference between 
features, the clusters obtained are usually of spheroidal shapes. However, as observed from the Fig.1 
(b)-(e), the color information of the background region has a multimodal distribution due to background 
inhomogeneity. Hence, one single cluster is not suficient to model such complex background distribu-
tion and thus incur large segmentation error. In order to improve the modeling suficiency, multiple 
clusters are employed to describe the complex background region as in Gaussian mixture modeling. 
The “Multi-class” feature of our algorithm helps to reduce the misclassiication caused by inadequate 
background modeling.

The “Multi-class” and the “Shape-guided” features are the two key novelties of our algorithm and 
they work together to overcome the dificulties of segmenting lip images with complex background. Fig. 
2 illustrates the typical segmentation results obtained from both the conventional FCM and the MS-
FCM algorithm using different numbers of background clusters (where C is the total number of clusters). 
It is observed that the conventional FCM is unable to segment the lip region accurately for an image 
with multiple background features even with different setting of C; whereas MS-FCM is able to clearly 
segment the lip region for C larger than 2 since it requires at least 2 clusters to represent background 
region which contains two distinguishing parts, the beards and the skin. It is clear from the results that 
the use of prior shape information and multiple-background-cluster are both necessary. Without using 
multiple-background-cluster, large segmentation error occurs due to insuficient background model-

Figure 2. (a) Original lip image; lip-segmentation result obtained by the conventional FCM with (b) 
C=2, (c) C=3, (d) C=4; lip-segmentation result obtained by MS-FCM with (e) C=2, (f) C=3, (g) C=4

    (a)        (b)            (c)   (d)
  

            (e)   (f)       (g)
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ing even if the shape information is considered (Fig. 2(f)). Without the prior shape information, poor 
segmentation result is obtained even if multiple background clusters are employed (Fig. 2(c)(d)(e)).

 
details of the mS-FCm Algorithm

Objective Function of MS-FCM

Let’s consider an image I of size N by M. X={x1,1 , … , xr,s , … , xN,M } denotes the set of feature vectors 
where xr,s∈Rq is a q-dimensional color vector for pixel located at (r,s). The Euclidean distance between 
the color feature vector xr,s and the color centroid vi of the ith cluster (i = 0 for the lip cluster and i ≠ 0 for 
the background clusters) is represented by di,r,s. The objective function of MS-FCM is formulated as:
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where the N×M×C matrix U ∈ Mfc is a fuzzy c-partition of X, V={v0,v1,…vC-1}∈ Rcq with vi∈Rq is the set 
of fuzzy cluster centroids, m∈(1,∞) deines the fuzziness of the clustering, and ui,r,s is the membership 
value of the (r,s)-th pixel in cluster Ci.

The irst and second terms in (1) are the color penalty terms for the lip (i = 0) and background classes 
(i ≠ 0), respectively, which penalize the membership value of a certain cluster for a pixel whose color is 
dissimilar to the color centroid of the cluster. The color penalty terms result in a single spheroidal-shaped 
distribution for the lip region (only one cluster is assigned to the lip) and a mixture of spheroidal-shaped 
distributions for the background region which provides a better description of the background.

The third and fourth terms in (1) are the spatial penalty terms which help incorporate the prior lip 
shape information. The spatial penalty terms for the object (i.e. lip) cluster and the background clusters 
are the product of f(u) and g(r,s), where f(u) is proportional to the membership u and g(r,s) is only related 
to the spatial location (r,s) of the pixel. We note that any form of f and g is appropriate as long as the 
spatial penalty term satisies: (i) For pixels inside the lip region, JSPA,OBJ is small while JSPA,BKG is large 
which penalizes the background membership in this region. Moreover, the closer to the lip center, the 
larger JSPA,BKG should be. (ii) For pixels near the lip boundary, both JSPA,OBJ and JSPA,BKG are small as pixels 
in this region have similar probability to be lip or background pixels. Spatial information in this region 
can hardly help differentiate between lip and background. (iii) For pixels faraway from the lip region, 
JSPA,OBJ is large while JSPA,BKG is small which penalizes the lip membership in this region. Moreover, the 
farther away from the lip center, the larger JSPA,OBJ should be. (iv) For different background cluster, the 
spatial penalty term Ji,SPA,BKG should be the same since no prior spatial distribution of any background 
cluster is available.
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Since the shape of the outer lip contour resembles an ellipse, the spatial location information is naturally 
deined as the elliptic distance of a pixel to the lip center. The elliptic distance can be described with the 
parameter set p = {xc, yc, w, h, θ} in which (xc, yc) is the center of the ellipse, w and h are respectively the 
semi-major axis and the semi-minor axis, and θ is the inclination angle about (xc,yc). For a pixel located 
at (r,s), the elliptic distance dist is formulated as

( ) ( )( ) ( ) ( )( )
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and thus g(r,s) can be directly expressed as g(dist). In our algorithm, f(u) is set to um for simplicity and 
gOBJ and gi,BKG are in the sigmoidal form, i.e., 
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where pOBJ and pBKG are the maximum penalty, mOBJ and mBKG are the mean values and σOBJ and σBKG 
control the steepness of the sigmoid curve. 

The objective function J is now given by,
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Parameter Updating Formulae

Since the optimal solution for 
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is the stationary point of the objective function, Picard iteration is used to solve for the optimum point 
(U*, V*, p*). The derivation of the parameter updating formulae in each iteration is described in the 
following.

Let ( ) ( )pVUU ,,,: JRM fc =→  with cqR∈V  and 5R∈p  remain unchanged. Taking the 
partial derivative of )(U  with respect to U subject to the constraint (2), the updated membership value 
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Similarly, let ( ) ( )pVUV ,,,: JRRcq =→  with fcM∈U  and 5R∈p  remain unchanged. 
The partial derivative of )(V  with respect to V is given by:
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Since JSPA,OBJ and JSPA,BKG are constants when fcM∈U  and 5R∈p  are ixed, the second term on 
the right hand side of (8) vanishes and the derivative 

Vd
d

 

is identical to that of the FCM. Following the derivation in (Bezdek 1980), the updated centroid can be 
computed as follows:
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Finally, the partial derivative of J(U, V, p) with respect to p is given by
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The irst term on the right hand side of (10) vanishes since JCLR is a function of the color features and 
is independent of the spatial parameter set p. By setting the partial derivative in (10) to zero, 
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Since direct solving p+ with (11) is complex, the Conjugate Gradient (CG) method is adopted instead 
to solve p+ numerically for its fast convergence.

Equations (6) and (9) together with p+ obtained via CG form a Picard iteration to ind the optimal 
solution (U*, V*, p*). The iterative sequence converges to a local minimum since the objective function 
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J is a continuous function of (U, V, p), and J is positive and ever decreasing in each updating process of 
(U, V, p), and xr,s is bounded by Rq.

The computational cost for updating the spatial parameter vector p is quite expensive as it requires an 
iterative procedure. From the experimental results, it was observed that the optimized ellipse obtained 
by the CG method always lies close to the boundary of the lip cluster. Hence, the best-it ellipse (Liew 
et al. 2002) for the lip cluster is a good approximation of p+ which requires less computation to obtain. 
For a given U, the parameters of the best-it ellipse are computed as follows:
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In order to reduce the effect of noise to the calculation of the best-it ellipse, the membership map 

of each cluster is irst smoothed by a 3 by 3 Gaussian low-pass ilter. 
By using p+ obtained via the best-it ellipse approach to perform the segmentation, it is observed 

that the convergence property of the Picard iteration has not been affected and the segmentation result 
is very close to that of using the p+ obtained via the CG method.

Determining the Number of Background Clusters

Since the MS-FCM algorithm uses multiple clusters to represent the background region, the number 
of clusters used will affect both the processing time and segmentation quality. Setting an inadequate 
number of clusters may result in segmentation errors due to misclassifying some nearby background 
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pixels as lip pixels since their color information is closer to that of the lip than other background features. 
Nevertheless, this kind of misclassifying error can be reduced by increasing the number of clusters at 
the expense of increasing processing time. To determine an adequate number of background clusters, 
the following method is used:

1. Set the initial number of clusters C=2.
2. Perform the MS-FCM segmentation algorithm with C -1 background cluster(s).
3. Calculate index-I of the fuzzy distribution. 
4. Repeat step 2 with C increased by 1 if current index-I is greater than that of the previous iteration, 

otherwise stop. 
5. The proper number of clusters is set to C-1.

In step 3, index-I is the cluster validity index to evaluate the partitioning by different number of 
clusters and is deined as follows (Maulik and Bandyopadhyay 2002):
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where C is the number of clusters and 
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Implementation Procedure

The lip images used in our experiments are in 24-bit RGB format. However, it is known that the RGB 
color space is not visually uniform (CIE 1986, Hunt 1991, Sharma 1998), it is preferred to transform 
the images to another color space such that the color distance between two pixels is proportional to 
their perceived color difference. The two approximately uniform color spaces, CIE-1976 CIELAB 
and CIELUV, are suitable color transformations for the purpose. With the reference white set equal to 
{R=G=B=255}, the color transformation procedure is described in (Hunt 1991) and the color vector {L*, 
a*, b*, u*, v*} is used to represent the color information of the pixels.

The presence of teeth pixels in the lip image is of concern for the proposed algorithm. Its presence 
will disturb the membership distribution by biasing the cluster centroids. According to (Liew et al. 2003), 
the teeth pixels are observed with low value of chromaticity information a* and u* compared to that 
of skin and lip pixels. However, due to the complex background with beards, robust estimation of the 
chromaticity information of the skin and lip pixels is not an easy task. Since the approximate boundary 
is estimated and described by p in each iteration, the teeth masking method in (Liew et al. 2003) can be 
modiied as follows: (i) the mean and standard deviation of the chromaticity a* and u* of all the pixels 
inside the approximate boundary are calculated and denoted by µa, σa and µu, σu, respectively; (ii) the 
threshold of a* and u* are given by 
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otherwise
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(iii) possible teeth pixels, i.e., pixels inside the approximate boundary with a* ≤ ta or u* ≤ tu, or with 
L*<35% of the reference white (which are possibly oral cavity pixels) are masked out from subsequent 
clustering process.

The procedures of the MS-FCM segmentation algorithm with C clusters are summarized as fol-
lows:

1. Initialize the values of the color centroids V.
2. Ignoring the spatial penalty term, compute the initial membership distribution U via (6) and (7).
3. Update V via (8) and compute the spatial parameter set p using the CG method or the approximate 

method.
4. With the approximate boundary described by p, detect and mask the teeth and oral cavity pixels 

by the method mentioned above.
5. Calculate the spatial penalty term and update U via (6) and (7).
6. Repeat steps 3 to 5 for k=1, 2, 3, … until 

 
T

kk UU <− ∞
+ )1(  or 

  k ≥ kmax, where εT is a small threshold and kmax is the maximum number of iterations.
7. Smooth the membership of each cluster using a 3x3 Gaussian low-pass ilter and then apply a 

hard classiication process by assigning each pixel to the cluster having the highest membership 
value.

To estimate the initial color centroids for step 1, the irst frame of the lip sequence is analyzed by the 
conventional FCM. The color centroid of the cluster located at the center portion of the image is assigned 
as the lip cluster and the others as the background clusters. For subsequent frames, the centroids of the 
previous frame can be directly used as the initial centroids for the current frame.

physical Interpretation of the Spatial penalty Term

In order to elaborate the function of the spatial penalty term, we divide the entire lip image into ive 
different regions as shown in Fig.3. The approximate lip-background boundary is denoted by a dashed-
line ellipse shown in region III. And the spatial parameter set p is adopted to describe the boundary 
ellipse. 
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• Far inside the boundary (Region I): For pixels in this region, they are of high probability to be lip 
pixels. The spatial distance between any pixel in this region and the lip center is very small and 
thus gOBJ is much smaller while gBKG is much larger compared to the color distance 2

,, srid , i.e.:
 

),(),( 2
,, srgdsrg BKGsriOBJ <<<<         (20)

 According to (6) and (7), the updated membership values are given by

 )0(0,1 ,,,,0 ≠≈≈ ++ iuu srisr         (21)
 

From (21), it is observed that the spatial penalty term force the pixels in this region to be lip pix-
els.

• Far outside the lip region (Region V): Pixels in this region are not likely to be lip pixels since they 
are too far away from the lip region. The spatial distance between any pixel in this region and the 
lip center is very large and thus gBKG is much smaller while gOBJ is much larger compared to the 
color distance 2

,, srid , i.e.:

 ),(),( 2
,, srgdsrg OBJsriBKG <<<<         (22)
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Figure 3. The ive elliptic regions of a lip image
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 From (23), it is observed that the spatial penalty term force the pixels in this region to be non-lip 
pixels. In addition, the formula of (23) is identical to that of the FCM without considering the lip 
cluster and thus the spatial penalty term has no effect on the color centroids of the background 
clusters.

• Boundary region (Region III): Pixels in this region can either be lip pixels or non-lip ones. Spatial 
distance of any pixel in this region is around one and is far less compared with the color dissimi-
larity, i.e.,

 2
,,),( sriOBJ dsrg << , 

2
,,),( sriBKG dsrg <<        (24)

 The updated membership value is then given by:
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 From (25), it can be observed that in the boundary region, the spatial penalty term is disappeared 

and the membership value of a pixel in this region is solely based on its color information. Although 
the approximate boundary is described in an elliptic form, the proposed algorithm is suitable for 
various lip shapes segmentation since the elliptic function is a good approximation to most lip 
shapes.

• Inside the boundary (Region II): Pixels in this region are more likely to be lip pixels rather than 
non-lip ones. The spatial distance of any pixel is small in this region and thus gBKG is comparable 
to the color distances 2

,, srid  and gOBJ is negligible, i.e.:
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 The updated membership value is then given by:
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 The spatial penalty term aims to increase the membership values inside Region II.
• Outside the boundary (Region IV): Pixels in this region are more likely to be background pixels 

rather than the lip ones. The spatial distance is large and thus gOBJ is comparable to the color dis-
tances 2

,, srid  and gBKG  is negligible, i.e.:
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OBJBKG gg << , 2
,, sriBKG dg <<         (28)

 The updated membership value is then given by:
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 The spatial penalty term aims to decrease the membership values inside Region II.

Regions I to V will expand, shrink or even disappear with different parameter settings of the sigmoid 
function gOBJ and gBKG. It should be noted that gOBJ and gBKG in the spatial penalty term can be of other 
forms rather than the sigmoid function. Fig. 4 illustrates two different forms of spatial functions gOBJ 
and gBKG. For the irst case, sigmoid functions with pOBJ = pBKG =200, mOBJ =1.5, mBKG =0.75, σOBJ =1 and 
σBKG =0.5 are adopted. For the second case, polynomial functions are adopted:

2)( distCoefdistgOBJ ×=  and 2)( −×= distCoefdistgBKG      (30)

where Coef is set to 40/3.
To avoid very large values of gBKG, thresholding is performed on gBKG with the threshold set to 

10*Coef. 
For the contour maps in Fig.4, the darker color represents smaller value of the spatial function and 

vice versa. From Fig.4, the following conclusions may be drawn: i) the two forms of spatial functions 
are both able to enhance the performance of clustering by introducing the spatial information. Both of 
them enhance the membership value of the lip cluster for pixels inside the lip boundary while reduce 
the membership values for pixels outside the boundary. ii) Compared with the polynomial function of 
gOBJ, the sigmoid function has the following property: in the inner boundary region, the spatial func-
tion is always of a very small value while around the boundary region, the spatial function increases 
very fast and reaches a very large value (ive times the average color distance) when the spatial distance 
exceed two times the boundary distance. From the experiments, the sigmoid function with the above 
parameter setting can provide more accurate segmentation results than the polynomial function and 
thus such setting is adopted in our experiments. 

expe RImen TAl  ReSul TS

In order to test the performance of our MS-FCM algorithm, a database containing over 5000 lip images 
is built. Among them, 5000 lip images are collected from more than twenty individuals in our laboratory 
to test the proposed algorithm for images without beards. In addition, 500 lip images with beards also 
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Figure 4. Function of gOBJ and gBKG in the spatial penalty term compared with the average color distance 
for (a) sigmoid function, (b) polynomial function; the contour map of gOBJ for (c) sigmoid function, (d) 
polynomial function; the contour map of gBKG for (e) sigmoid function, (f) polynomial function

   (a)      (b)
 

   (c)      (d)
 

   (e)      (f)
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have been taken from the “AR Face Database” (Martinez and Benavente 1998) to test the performance 
of the proposed algorithm.

In Fig. 5, three lip images are used to compare the performance of the proposed algorithm with other 
methods including the conventional FCM, Lievin and Luthon’s method (Lievin’s for short) (Lievin and 
Luthon 1999), and Zhang and Mercereau’s method (Zhang’s for short) (Zhang and Mercereau 2000). 
The three original images are shown in Fig. 5(a1), 5(a2) and 5(a3). Fig. 5(b1), 5(b2) and 5(b3) are the 
corresponding segmentation results obtained via FCM. It can be seen that the conventional FCM can 
deliver acceptable results if the lip and the background are well differentiated (see Fig. 5(b1) with 3 
clusters). However, when the lip color and part of the background color are close, the conventional FCM 
is unable to produce good segmentation even with more clusters (see Fig. 5(b3) with 5 clusters).

Fig. 5(c1)(c2)(c3) and 5(d1)(d2)(d3) show the segmentation results obtained from Lievin’s and Zhang’s 
methods, respectively. Lievin’s and Zhang’s methods basically use 2 clusters to segment the image 
from the hue information. When the hue for the lip region and the background are close, the two-class 
assumption becomes inappropriate. Zhang’s method further makes use of the edge map information 
to aid the segmentation. It produces large segmentation errors since the edge map is quite noisy for lip 
image with beards.

Finally, Fig. 5(e1)(e2)(e3) show the segmentations obtained from the proposed algorithm with 3 
clusters. It is seen that our algorithm outperforms the other 3 methods for lip images with mustaches 
and beards.

For quantitative comparison, the boundary of the lip region is manually drawn and compared with 
the segmented lip region. A quantitative index, Segmentation Error (SE) as deined in (Lee et al. 1990) 
and given in (23), is used to evaluate the performance of the proposed algorithm.

)|()()|()( BOPBPOBPOPSE ⋅+⋅=        (31)

where P(B|O) is the probability of classifying background as object, P(O|B) is the probability of classify-
ing object as background. P(O) and P(B) are the a priori probabilities of the object and the background 
of an image, respectively. The segmentation error as well as the two misclassifying probability of the 
four algorithms are tabulated in Table 2.

Table 2. The P{B|O}, P{O|B} and SE of the conventional FCM, Lievin’s, Zhang’s and MS-FCM for the 
three lip images shown in Figure 5

Fig. 5(a1) Fig. 5(a2) Fig. 5(a3)
P(B|O) P(O|B) SE(%) P(B|O) P(O|B) SE(%) P(B|O) P(O|B) SE(%)

FCM 0.125 0.033 5.40 1.683 0.080 26.77 2.214 0.032 19.15
Lievin’s 0.847 0.046 23.10 1.400 0.013 17.53 1.601 0.005 12.18
Zhang’s 0.538 0 12.51 3.119 0 36.56 7.026 0 51.40

MS-
FCM

0.162 0.015 4.87 0.014 0.03 2.81 0.031 0.008 0.95
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Figure 5. (a1),(a2),(a3) Original lip images. Segmentation results obtained from: (b1),(b2),(b3) con-
ventional FCM, (c1),(c2),(c3) Lievin’s method, (d1),(d2),(d3) Zhang’s method, and (e1),(e2),(e3) MS-
FCM

  (a1)        (a2)        (a3)

 
  
  (b1)        (b2)        (b3)

  
  (c1)        (c2)        (c3)

  
  (d1)       (d2)       (d3)
  

  (e1)       (e2)        (e3)



  167

Lip Region Segmentation with Complex Background

From Table 2, it is observed that the segmentation error of MS-FCM is much smaller than that of 
the other algorithms. More segmentation results for images with or without beards produced by MS-
FCM are given in Fig. 6. The average segmentation error for the 500 lip images selected from the “AR 
Face Database” is around 3%. These results demonstrate that the segmented lip region obtained by our 
algorithm its well to the lip.

   
   

Figure 6. More segmentation results obtained by MS-FCM with the segmented lip region shown in 
white
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FuTuRe Wo Rk S

From the experimental results shown in the previous section, the proposed MS-FCM algorithm can 
achieve the lip region accurately. However, for some special cases (less than 5% of all the lip images we 
tested), the MS-FCM algorithm still cannot provide accurate segmentation results. Fig.7 demonstrates 
some of such lip images and it can be observed that the lip corners are classiied as non-lip pixels be-
cause these pixels are of dark color which is similar to that of beard-pixels. Moreover, their location is 
close to the approximate boundary so that the prior lip shape cannot provide useful assistance. Such 
drawback in segmenting dark lip corners can be overcome by some lip modeling approaches with lip 
shape validation since the major part of lip region is correctly identiied. 

For the last igure in Fig.7, the lower part of the lip region is segmented as non-lip since its color is 
close to that of the skin region due to the stress of the lip. And the inal segmentation result is also a 
valid lip shape which cannot be rectiied by the lip modeling approaches. In order to solve the problem, 
we are now working on a new lip segmentation scheme which takes both the information from current 
lip image and it from the previous lip sequences into account. In addition to the spatial penalty term, the 
time penalty term is also introduced which penalized the incoherence in the time domain. We believe 
such kind of approach may be a possible direction to follow.

Con Clu SIon S

As the irst step of many visual speech recognition and visual speaker authentication systems, accu-
rate lip region segmentation is of vital importance. However, when the various color and distribution of 
beards and moustaches appear around the lip region, the background becomes complex and the accurate 
lip region cannot be obtained by most of current lip segmentation methods. In this chapter, a fuzzy 

Figure 7. Segmentation results obtained by MS-FCM with different kind of segmentation error (the 
segmented lip region is shown in white)
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clustering based lip segmentation method, the Multi-class, Shape-guided FCM (MS-FCM) clustering 
algorithm, is proposed to solve this problem. A spatial penalty term based on the lip shape information 
is introduced in the dissimilarity measure which encourages the lip cluster membership value for pixels 
inside the lip region while penalizes them for those outside the lip region. With the spatial penalty term, 
pixels with similar color while located in different regions can be differentiated. From the experimen-
tal results, it is observed that our approach consistently produce superior results compared with some 
existing techniques. In our future work, a general scheme considering all the color, spatial and time 
consistence information will be our research focus.
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ABSTRACT

An algorithm for lip contour extraction is presented in this chapter. A colour video sequence of a 
speaker’s face is acquired under natural lighting conditions without any particular set-up, make-up, 
or markers. The irst step is to perform a logarithmic colour transform from RGB to HI colour space. 
Next, a segmentation algorithm extracts the lip area by combining motion with red hue information 
into a spatio-temporal neighbourhood. The lip’s region of interest, semantic information, and relevant 
boundaries points are then automatically extracted. A good estimate of mouth corners sets active contour 
initialisation close to the boundaries to extract. Finally, a set of adapted active contours use an open 
form with curvature discontinuities along the mouth corners for the outer lip contours, a line-type open 
active contour when the mouth is closed, and closed active contours with lip shape constrained pres-
sure balloon forces when the mouth is open. They are initialised with the results of the pre-processing 
stage. An accurate lip shape with inner and outer borders is then obtained with reliable quality results 
for various speakers under different acquisition conditions. 
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InTRodu CTIon

In this chapter we present an algorithm for lip contour tracking under natural lighting conditions. Our 
algorithm accurately extracts the inner and outer lip borders from a colour video sequence of a subject’s 
face. No predeined set-up, make-up, or markers are necessary. The only requirement is that the whole 
mouth region remains in the ield of view at all times. The output is a set of adapted active contours 
that model the lip boundaries. 

An image or sequences of images is captured using a digital still or video camera. These images 
are then processed in three steps. In step one the mouth area is segmented using colour and movement 
information from the face skin. The second step detects the mouth corners that will be used to initialise 
the active contours. The third step extracts lip contours using adapted active contours.

Our algorithm offers a very low bit-rate coding of lip contour dynamics and could be readily imple-
mented in  applications such as automatic speech recognition, videoconferencing, and face synthesis 
under natural lighting conditions with few assumptions. 

BACkg Round

The mouth is a highly changeable (in morphology, topology, colour and texture) 3D object. It is composed 
of more than two hundred distinct muscles displaying different behaviour patterns depending on the 
language spoken. Fast and accurate tracking of lip movements has been a goal of the computer vision 
community for at least 30 years. Initially, most research focussed on multimodal speech analysis, where 
visual and audio information are processed together to improve speech and/or speaker recognition. More 
recently, there has been rapid growth in the number and diversity of multimedia applications requiring 
accurate lip movement parameters for modelling and animation. 

One of the irst lip-tracking systems was developed by Petajan in the mid 1980s. A camera ixed 
with respect to the head looks upward facilitating, via a binary thresholding of the image, the detection 
of nostrils (as the darkest blobs on the face). Anthropometric heuristics (regarding distances between 
eyes, nose, mouth and eyes) then help delineate the mouth area. Another thresholding process segments 
the aperture between the lips (as the darkest blob in the vicinity of the mouth region) and associated 
parameters (lip aperture, protrusion, stretching and jaw aperture) correlated to speech generation. 
Opening parameters of the mouth (surface, perimeter, height and aperture area) were combined with the 
output of a speech recognition module to recognise isolated letters (Petajan, 1985). A modiied version 
saw the binary masks used to build a mouth shape database for viseme recognition (Petajan, Bischoff, 
Bodoff, & Brooke, 1988).

The irst attempts to integrate video into speech analysis systems were made to resolve cases of 
greatly degraded speech, such as situations where “cocktail party” effects dominate or the signal to noise 
ratio is too low. Often the goal was to help increase the recognition rate of speech processing systems 
by detecting the utterance of separated letters (using closure of mouth detection) such as the so-called 
VCV (vowel-consonant-vowel) sequences.

The 1990s saw the advent of face tracking and recognition techniques based on colour, contour 
points, geometrical models (Yuille, Hallinan, & Cohen, 1992), and classiication techniques. For most 
of these applications, the mouth region was the prime area of study as it carries most of the informa-
tion conveyed by a talking face. Amongst others, algorithms can be classiied as `̀ template matching’’ 
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by temporal warping (Pentland & Mase, 1989), neural networks (Bregler & Konig, 1994), or  Hidden 
Markov Models (Goldschen, Garcia & Petajan, 1994; Silsbee,1994; Guiard-Marigny, Tsingos, Adjoudani, 
Benoît, & Gascuel, 1996). Systems then evolved towards a more global approach of the face, integrat-
ing colours (Petajan & Graf, 1996; Vogt in Stork & M. Hennecke, 1996), and more speciically hue for 
face and lip detection and tracking (Hennecke, Prasad, & Stork, 1996; Lievin & Luthon, 1998; Coianiz 
in Stork & Hennecke, 1996).

Another application saw warping techniques used to normalise speech processing sequences processed 
via template matching algorithms (Petajan & Graf, 1996). Using the same visual analysis principles 
Goldstein, Garcia, & Petajan (1996) and Stork & Hennecke (1996) demonstrated that integrating varia-
tions of labial parameters (through the lip opening (co-articulation) parameters and their derivatives) 
improved the recognition scores of purely audio systems. Subsequently most recognition systems reined 
these fundamental principles to improve their recognition scores or to derive new applications.  

The mouth area was sometimes tracked using markers (Basu, Oliver, & Pentland, 1998) or make-up 
(Abry & Lallouache, 1991). While such artefacts are not suitable outside research lab facilities, they 
allowed reliable real-time acquisition of the mouth area parameters. Higher level information was pro-
gressively introduced to track/detect lip contours, integrating techniques such as Deformable Templates 
(Yuille, Hallinan, & Cohen, 1992), Active Contours (Leroy, Herlin, & Cohen, 1996), Active Shape 
Models (Luettin, Thacker, & Beet, 1996), and Active Appearance Models (Stegmann, 2000).  

While primarily designed to support speech recognition tasks, visual parameter tracking systems have 
progressively been oriented towards applications including, but not limited to, the synthesis of human 
face, creation of 3D avatars (Akimoto, Suenaga, & Wallace, 1993; Azarbayejani, Starner, Horowitz, & 
Pentland, 1993; Eisert & Girod, 1998),  enhanced visiophony (Zhang, 1997; Bailly, Reveret, Borel, & 
Badin, 2000), teleconferencing, (Valente & Dugelay, 2000) and more generally, navigation and interac-
tivity in virtual reality (Gratch, Wang, Okhmatovskaia, Lamothe, Morales, Van der Werf, & Morency, 
2007). Integration of a predeined set of talking face 3D points in the MPEG4 coding standard recognised 
the importance of visual cues for multi-media applications and allowed straightforward positioning of 
communicant avatars in virtual environments.

l Ip Con Tou R ex TRACTIon  Algo RIThm

We consider a RGB video sequence that contains as a minimum the region of the face spanning from 
chin to nostrils, but may include the whole face.

The processing is conducted in three steps: 

• Step One: Lip Segmentation.
o Logarithmic colour-space transform: RGB to HI. 
o Segmentation of the mouth area.

• Step Two: Determine Mouth Characteristics. 
o Mouth corner detection.

• Step Three: Evaluate Lip Contours. 
o Snake initialisation from mouth corners. 
o Convergence of automatic snake (outer) and balloon snake (inner). 
o Convergence validation, reinitialisation, and inal convergence.
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Step o ne: l ip Segmentation

Detection of face features is often luminance dependent. Because of unreliable viewing conditions and 
the wide variety of application environments, several approaches have been proposed in the literature. 
The irst category uses only the luminance of the image (e.g. Luettin in Stork & Hennecke, 1996). In 
this case, applications are sensitive to lighting conditions and analysis of the mouth must be restricted 
to a small area. The second category computes the hue for a suitable colour space. These approaches 
attempt to gain independence from viewing conditions (e.g. Coianiz in Stork & Hennecke, 1996). It 
appears that colour processing is eficient enough to provide robust information for further processing 
such as dynamic contours (e.g. Dalton in Stork & Hennecke, 1996). The latest research has been focus-
sing on providing skin segmentation under adverse conditions, e.g. facial hair (Wang, Lau, Liew, & 
Leung, 2007). The complexity of real world examples often requires the inclusion of a training stage 
(Petajan, Bischoff, Bodoff, & Brooke, 1998). Our approach is intended to be robust to real-world view-
ing conditions.

Logarithmic Colour Transform

To gain independence from lighting conditions, we compute a logarithmic colour transform. Angular 
transforms are known to give poor results in noisy environments, e.g. indoor or cloudy conditions. There-
fore, a logarithmic hue transform is deined using the G and B channels from RGB colour space. 

We compute the hue in a mathematical framework based on a logarithmic image processing model 
(Leroy, Herlin, & Cohen, 1996). The intensity I of an image is represented by its associated grey tone 
function 

0

= (1 )IM
I

−i . 

This model satisies the saturation characteristics of the human visual system and should not be confused 
with the normalised colour space, rgb. The difference between the logarithmic tone of the channels G 
and R corresponds to the logarithmic hue tone h. With few assumptions (I0 close to the maximum value 
of white M), the logarithmic difference becomes a ratio between the G and R components. This ratio is 
simple enough to enable real-time implementation on portable systems and reliable enough to provide 
very good discrepancy in face and lip hue. Finally, from the RGB colour space, a HI logarithmic colour 
space is deined (Equation 1) and displayed in Figure 1.

= 256  and =
3

G R G BH I
R

+ +×
        (1)

Hue and Motion Observations

As the red hue can saturate and lose its discrepancy, motion is used to bring additional and complemen-
tary information. The irst step combines motion with hue information. From the HI colour space, two 
observations o are derived (Equation 2). The hue observation h(s) consists of iltering the hue value H(s) 
at pixel s with a parabola centred on the mean value of lip hue Hlip with a standard deviation of the hue 
value ΔH. Avoiding the standard Gaussian deinition allows the segmentation process to converge in a 
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few iterations. The motion observation fd(s) is deined as the unsigned difference between the luminance 
of two consecutive images. I(s) represents the intensity (or luminance) at pixel s.
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The notation 1condition denotes a binary function that takes the value 1 if the condition is true or 0 
otherwise.

Parameter Estimation

The hue observation needs three parameters to be estimated: Hlip, ΔH, θh. For this purpose, the hue 
histogram is a useful representation of the hue distribution over the image. Two main hue modes can 
be detected; the irst for the lip and face skin, the second for the background. In natural conditions, the 
lip mode and the skin mode overlap (Figure 2).

In order to estimate Hlip accurately we use the following steps:

Figure 1. HI Colour transforms. Top: typical colour images for the lower face; Bottom: the correspond-
ing hue images
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• Estimate the main mode that corresponds to the hue skin Hskin from the global hue distribution 
computed over the whole image (Left of Figure 2). 

• Cluster all pixels respecting the condition given in Equation 2 with Hskin instead of Hlip (Middle of 
Figure 2). 

• Evaluate Hlip from the hue distribution after discarding all pixels belonging to skin mode. Only 
the lip (black in Figure 2) and background modes remain. 

The threshold hue ield is then deined by h > θh.
The algorithm requires an appropriate threshold θfd to suppress the camera noise without causing 

signiicant temporal changes. We compute the entropy Efd(S) over an image. The threshold motion ield 
is then deined by fd > θfd with ( )

( ) = 2
E fd

fd
S

S .

The ields after thresholding appear non-homogeneous and noisy. We need an additional relaxation 
process to segment the lips more accurately.

The Segmentation Algorithm

Observations and Labels are in a Markov Random Field (MRF) Framework. From the motion and hue 
observations four initial labels (a0, a1, b0, b1), are introduced to code four distinct pixel classes. Pixels 
with (1) or without (0) motion, belonging (a) or not belonging (b) to red hue areas. The label ield follows 
the main MRF () property related to a spatiotemporal neighbourhood structure (Figure 3), i.e. the label 
ls of the current pixel s depends only on the labels of its spatiotemporal neighbours n.

Maximizing the A-Posteriori probability (MAP criterion) of the label ield is equivalent to minimiz-
ing a global energy function (Geman, & Geman, 1984): 

Figure 2.  Lips and skin hue mode. From left to right: histogram of hue image (In black: overlap between 
lip and skin distribution); the corresponding segmentation of skin hue (In black); histogram of hue im-
age when the skin mode is discarded (In black: the lip mode)
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where Uo and Um respectively represent the attachment energies (expressing the link between labels 
and observations, (Equation 4) and the model energy (corresponding to spatial and temporal a priori 
constraints) (Equation 5) over the image S, with α a weighting coeficient between the two energies. 
Uo is given as:
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where ψo is an attachment function, deined as the mean value of the observation o over S, and 2
o  

is the corresponding variance. Both are estimated on a local neighbourhood, typically a 9 by 9 pixel 
window. The a priori model energy is deined as the sum of interaction potential functions over the 
neighbourhood: 

)],([=)(
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snst
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Figure 3. Left: Spatiotemporal neighbourhood structure η with binary cliques c = (s, n). s is the current 
pixel (in black), n is any spatiotemporal neighbour of s (in grey);  Right: corresponding elementary 
cube Cxyt
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The spatiotemporal potential function Vst is deined as the inverse of the Euclidian distance between 
two neighbours. The distance integrates two elementary potentials βs and βt as scale factors:

( ) 22222 ),(4),(
),(),(=),(

tsnsyxsnt

sntsns
snst

llll
llllllV ++

      (6)

where 

( ) ),,(=, tyxns  and δ∈{–1;0;1}.

The elementary potentials βs and βt are deined within the range {-1,+1} to constrain the model respec-
tive to spatial homogeneity of labels and temporal homogeneity of hue when no motion is detected.

An iterative deterministic algorithm (Iterated Conditional Modes) is implemented to compute the 
minimum energy at each site, starting from the initial label coniguration 0

tL . At each pixel site, all 
values corresponding to all possible combinations of labels are evaluated. The coniguration that mini-
mizes the local energy is taken. After a few iterations (typically around 10) on the label ield, a local 
minimum is reached. Homogeneous red hue and motion lip ields are obtained.

Red Hue Labels and Region of Interest

From the inal label ields red hue relevant labels are extracted (a0 and a1, middle-bottom images of 
Figure 4). Those results are shown with a Region of Interest (ROI). The computation of the ROI follows 
a very simple rule: a cost function representing the ratio between the number of lip labels and the ROI 
area is maximized. 

Typical sequences have been tested, some with a soft natural red make-up, others with very poor 
lighting conditions without any make-up. The results demonstrate the robustness of the algorithm to 
the variability of the lighting conditions.

Summary of the Lip Segmentation Step of the Lip Contour Extraction Algorithm

At the pre-processing stage, the lip segmentation results remain robust across a range of lighting condi-
tions and provide:

• ROI Automatic mouth location (e.g. see Figure 5). 
• Unsupervised segmentation of the mouth shape.
• Semantic information: open/close detection. 

Results are accurate and reliable but the mouth borders sometimes appear irregular when tongue or 
gum areas are segmented with the lips (e.g. see Figure 5 bottom row, second image). The segmentation 
is also imprecise when close to the mouth corners (e.g. see Figure5 top row); the inner contour is not 
segmented when the mouth is not clearly open (e.g. see Figure 5). To improve these results we need a 
higher level lip contour extraction algorithm such as adapted active contours. 
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Step Two: mouth Corner detection

Location of characteristic points (commissures and vertical extrema of the mouth) is a mandatory step 
in accurate contour extraction methods (Fua, & Brechbühler, 1996). Characteristic points of the face are 
the primary way to anchor face analysis on the right area of the image. An absence of pre-determined 

Figure 4. Lip mask extraction. From top to bottom: sequence of luminance images; initial labels; label 
ields after relaxation: the 4 labels are shown in grey levels (from white to black: b1, a1, b0, a0); sequence 
of hue relevant label images (a0 and a1), inal masks

Figure 5. Two sequences of inal lip hue ields with ROI superposed on the corresponding luminance
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anchor points for lip models has often been the reason for failure (including but not limited to Deform-
able Templates (Yuille et al., 1992), Active Shape Models (Luettin et al., 1996), and Active Contours 
(Leroy et al., 1996)) to properly extract lip contours. Characteristic points of the face have traditionally 
been located by segmenting the darkest blobs of the image (Petajan, 1985), the darkest line for the lips 
separation when mouth is closed, or the extremas of the image rows respective to column projection 
(Radeva, Serrat, & Marti, 1995; Delmas, Coulon, & Fristot, 1999) of the lips vertical extremas (Figure 
6 left and middle). There has been a revival of such techniques (Xie, Cai, & Zhao, 2004), associated 
with very straightforward differential or morphological operators, to determine face feature locations, 
but these attempts often fail when there is no prior knowledge/segmentation of the face features and 
their locations. The vertical extrema of the inner and outer lip contours are readily available with the 
masks computed during our lip segmentation step, but the mouth corners must be obtained separately 
by combining several approaches integrating different image information and heuristics. 

Irrespective of natural or artiicial illumination, areas of darkness usually occur at the inner border 
of lips on horizontal mouth transitions (i.e.: upper lips and teeth, teeth and mouth interior, teeth and 
lower lips) when the mouth is closed. Once the image area investigated is limited to the close vicinity 
of the mouth, the study of vertical minima of the image can help locate mouth corners. 

The mouth corners are estimated with the following steps: 

• The location of the grey level minima over image columns are found; 
• Their vertical distribution is computed using a centred weighted distribution: 

224(1 )
= colN

j

j e
−−

          (7)

where Ncol is the number of columns of the image, j is the current column. The weighting coeficient 
ζ j varies from 0 to 1, from the border to the centre of the image taking into account the position and 
orientation of the mouth as obtained from the lip masks. As a heuristic it uses the largest width whether 
it be the width of the image or twice the width of the lip mask bounding box. 

An accumulation vector VROI, is the sum of the weighted projection of the minima previously ex-
tracted. Let’s suppose, for a given column j, that the luminance minima lie on the ith row. Then, the ith 
component of vector VROI is incremented by ζ j which correspond to the weighted score for column j. 
VROI extrema usually gives the position of the mouth’s horizontal symmetry axis. 

• Lip corners are extracted by following the line of minima, from the centre of the image to the left 
and right. 

• Finally, a good estimate of the width of the mouth can be found.

When the mouth is open and under bright illumination conditions (or when relection of the light on 
the teeth generates bright or saturated regions) this scheme may fail. This usually results in the mouth 
corners being wrongly detected inside the mouth region. This is usually due to the line of minima being 
broken before reaching the actual position of the mouth corner. In such cases, a multi-scale curvature-
based (e.g. looking for curvature extremas) corner detector (Moktharian, 1998) processes the pixels in 
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the vicinity of the bounding box obtained from step one (see Figure 5). Only corners in the regions de-
lineated by the central horizontal tier and outer vertical tiers of the bounding box are considered. Using 
the symmetry of the mouth and proximity to the line of minimas, a pair of corners is selected (Figure 
7). Once detected in a given frame the mouth corners can be tracked on consecutive frames using a 
modiied Kanade-Lucas feature tracking algorithm (Delmas, Eveno, & Lievin (2002)).

Step Three: evaluate l ip Contours

The inal step in the algorithm is to produce a set of adapted active contours that accurately represent 
the inner and outer boundaries of the lips.

In this section we will deine the mathematical concepts behind the active contours formalism. We 

Figure 6. Mouth corner detection. From left to right: vertical minima (minima in grey, extrema in white) 
on a grey level image; the corresponding counting per row; mouth corner position for an open mouth

Figure 7. Mouth corner detection for various speaker and illumination conditions
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will then provide a non-exhaustive list of energy functionals introduced in the literature that will sup-
port lip contour extraction under varying initial conditions. The active contours numerical derivation 
from a continuous formal problem to its matricial form will be given. The equation for the snake rigidity 
matrix will be developed for constant active contours’ internal energy parameters. Appendix A will for 
the irst time further derive the unique literal inversion of the snake rigidity matrix. 

Background

Active contours or snakes appeared in the mid 1980s following joint work by Kass, Witkin, and Terzo-
poulos (1987) on physically-constrained models as solutions to variational problems in Image Processing 
and Computer Vision. Snakes rapidly met success thanks to their ability to integrate both edge detection 
and contour point chaining into a single process. Their adaptable framework made them suitable for a 
wide range of applications from Medical Imaging (McInerney & Terzopoulos, 1997) to object track-
ing (Sundaramoorthi, Yezzi, Mennucci, & Sapiro, 2007). They were the irst global contour extraction 
technique, soon followed by the likes of Deformable Templates (Yuille, Hallinan, & Cohen, 1992), 
Hybrid Active Shape Models (Luettin et al., 1996), Active Appearance Models (Stegmann, 2000) and 
derived variations. 

Active contours search for chained curves, under an energy-based minimisation paradigm. They 
evolve from a pre-deined initial shape towards the desired features of an image, following steepest 
gradient descent formalism under internal constraints. Active contours’ energy minimisation lets them 
evolve under constrained geometry (as allowed by their internal energy) towards image features speci-
ied by their external energy. Their external energy is deined by a combination of terms each taking 
its minimal values at the desired points of interest. 

Active Contours Theoretical Derivation

Active contours are deformable curves which evolve to minimize their associated energy φ(v). They 
deform to minimize their attached energy from their initial position towards a inal position which de-
pends on the respective inluence of the considered energy terms. The snake total energy is grouped in 
two separate categories, conventionally named internal and external energy. Internal energy comprises 
the regularisation terms as well as any additional shape constraint terms. The external energy term 
comprises “adequation to data” terms and any other terms (e.g. balloon forces (Cohen, 1992)) which 
may drive the active contours towards desired features using image information.

Active Contour Energies

Let C be a deformable curve over time t and space s. The overall length of the curve is usually normal-
ized to 1 when s represents the curvilinear abscissa. Let v(s, t) be the position of a curve point, x and y 
its associated Cartesian coordinates. By deinition: 

( , ) = ( ( , ), ( , )),  ( , )  [0,1] [0, [v s t x s t y s t s t∀ × ∞       (8)

The snake functional energy is given by:
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The internal energy takes into account tension and curvature deformation via coeficients α and β.
 ( )1 2 2

0
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where v' and v'' are the irst and second derivatives of v with respect to s. Energy derived in Equation 
10 corresponds to Tikhonov stabilisers up to order 2 (Tikhonov, 1974). The snake energy model was 
also introduced (Kass et al., 1987) as a thin plate-membrane model. 

External energy takes into account information related to the image and can be of explicit or implicit 
nature. The explicit form must approach the known features targeted for extraction while respecting 
smoothing constraints. This is often performed with least square operator type (e.g. 2( ( )f x x dxΩ −∫ ) , 
f(x) regularised form of data x) functions. However Active contours use an implicit form for the exter-
nal energy functional. They will converge towards the minimum of this function; minima which are 
not known a-priori. Most introduced functions usually drive active contours towards regions of high 
gradients, high luminosity contrast, or connected patches (often through colour distribution statistics). 
The external energy can be deined as: 

ext v  C(s,t)
E = P(v(s,t))dv∫           (11)

where P, external potential, refers to its physics equivalent which has extrema in the regions of interest 
e.g. convergence. The associated derived force is given by: 

))((=)( vPvFext ∇−          (12)

where 
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 is the gradient operator: 
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Active contours converge towards the minima of the external energy functional under regularising 
constraints as deined in the internal energy functional. Introducing new energy functionals allows us to 
modify the behaviour (both internally and externally) of active contours. Constraints on active contour 
deformation, introduction of new physical properties, or modiications of the image features used to 
extract lip contours are further described below. 

Internal Energy

Dificulty in determining the optimal snake energy functional (for the extraction of speciic features) led 
some authors to remove one of the internal energy terms. This simpliied addressing the respective inlu-
ence of the remaining internal term and the external energy term (Bossart, David, Dinten, & Chassery, 
1997; Fua & Leclerc, 1990). However this also leads to the degradation of the active contour’s shape 
evolution and convergence appearance. Forcing α to 0 suppresses tension constraints which ensure the 
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even distribution of points during evolution. It also generates accumulation points close to high gradient 
values area. Forcing β to 0 suppresses shape contour curvature smoothing and allows irregular shapes 
(Fu, Erdem, & Tekalp, 1998; , Fua & Brechbhler, 1996; Ip & Yu, 1996).

Forces and External Energy Potential

External energy terms drive the snake towards the desired features. Their choices strongly inluence 
the snake convergence behaviour.

Gradient

Widely used to directly relate snake convergence and contour detection, the image gradient functional 
is given by: 

dCyxIE
Cedge

2|),(|= ∇− ∫
 

Fua and Leclerc (1990) established that, on the condition of weak curve curvature, the minimisation 
of the above functional was driving the curve C points towards contours. To reduce gradient inherent 
noise and discretisation effects, a low-pass iltering of the original image is often performed irst. The 
derived potential and associated force are written as:
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where gI  is the Gaussian (with standard deviation σ) iltered version of the original image. 

Line

This potential allows active contour convergence towards darker or lighter areas of the image:
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A good example of a potential application is shown in (Kass, Witkin, & Terzopoulos, 1987) where 
it is used to extract growth rings in sliced trunk images. This force is particularly useful when the ex-
pected inal features lie along a unique line (e.g. closed lips separation line). 

Balloon Force

To counter active contour’s tendency to evolve slowly (literally snake their way through the image) in 
regions where the external potential have weak values, several solutions were tried. One of the irst 
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attempts was to derive a pressure force pushing the snake towards regions of interest (Cohen, 1992; 
Cohen & Cohen, 1993). This force is applied perpendicularly to the snake points: 

)(=)( 2 snksFballon           (15)

where ( )n s  is the unit vector normal to the curve at point v(s) of curvilinear abscissa s . The associated 
potential can be seen as the minimisation/maximisation of the surface A contained within the active 
contour’s curve: 

∫− 1

02= dAkEballon           (16)

where k2 is a signed constant. A combination of k2, positive, respectively negative, and an increase of 
the surface A generates a force normal to the contour (Cohen, 1990). To further stabilize the snake 
evolution process, Cohen normalised the external forces:
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This works only when the gradient vector ield does not have “hot” points within the regions of 
interest or presents gradients of roughly equal strength.

Close to equilibrium, the balloon force ought to balance the remaining external forces related to the 
features to extract. To achieve this, the value of k2 is chosen close to, but smaller than k1 to make sure a 
contour point is locally able to stop the active contour’s evolution. When k2 is of opposite sign (contrac-
tion), the balloon force contracts, thus accelerating the active contour’s natural tendency to shrink. This 
helps avoid being trapped around spurious/isolated edges. Further, the normalisation of the external 
forces vector ield implies that the only gradient inluence is angular. Therefore, the above balloon force 
only works when the features of interest are roughly located along circular patterns. We will introduce 
later on, a modiied balloon force suited to inner lip contour detection.

We have described a few examples of the active contour’s great adaptability to problems through the 
diversity of internal and external energy driving their evolution dynamics and inal state. However, the 
introduced external energy functionals are often non convex. It follows that active contours will often 
converge towards a local minimum of their energy functional depending on the active contours initial 
conditions (Cohen & Gorre, 1995).

Euler-Lagrange: From Functional System to Differential Equations

An active contour can be seen as a physical object with elastic hybrid properties (thin layer, membrane), 
v (Terzopoulos, Witkin, & Kass, 1988), of given mass density µ, evolving in a viscous medium (with 
given viscosity coeficient γ) and deforming itself through time (at a rate controlled by parameter v) 
under the inluence of forces f(v) which are related to the evolving medium model (in our case the im-
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age and its derivatives). The energy functionals E(v) describing this model are Spline functions with 
controlled continuity (Terzopoulos, 1986). The Lagrangian equations governing the physical object 
evolution are: 

)(=/)(/)/(/ vfvvEtvtvt ∂∂+∂∂+∂∂∂∂        (18)

The right most term of the left side of Equation 18 is the variational derivative of the elastic defor-
mation model, usually known as internal energy. Using the deformation energy previously introduced 
in Equation 10, one can rewrite Equation18 as: 

ngravitatioextsss FFvsvstvtvt ++−∂∂+∂∂∂∂ =))(())((/)/(/    (19)

where vs and vss are the irst and second derivatives of vector v with respect to s.
We derive the evolving scheme of active contours, from the differential scheme to the matricial 

scheme as irst briely introduced by the active contours creators (Kass, Witkin, & Terzopoulos, 1988). 
Equation 19  can be obtained through the Euler-Lagrange theorem by minimisation. Let φ  be the func-
tion deined as: 

dsvvvsfvvvs nssnss ),,,,(=),,,,(
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For v  to minimise Equation 21, f must verify the following Euler equation: 
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where is
v  represents the ith derivative of v with respect to s ( ii

is
svv ∂∂ /= ). The active contour’s energy 

functional integrates derivatives of v up to order 2: 

2 2 2 2/ ( ( / )) / ( ( / ) / = 0exts v v s v v E v′ ′ ′′ ′′−∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ + ∂ ∂      (22)

The Euler-Lagrange variational formulation only provides the solution to the static problem. We will 
irst derive the static problem. The above equation transforms into: 

))((=))()(())()(( svFsvssvs extsss +−       (23)

The active contour’s internal parameters α(s) and β(s), are supposed to be able to vary along the 
curvilinear abscissa s and through time. From now on, α(s) and β(s) will refer to varying coeficients 
while α and β will refer to constant parameters. Equation 23 transforms into: 

))((=)()('2)()()()()()(')()( (3)(2)(2)(4)(2) svFsvssvssvssvssvs ext+++′−−  (24)
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For parameters α and β constant, equation 24 transforms into the classic elliptical differential equa-
tion (Kass, Witkin, & Terzopoulos, 1988) characterising the active contour’s behaviour: 

))((=)()( (4) svFsvsv ext+′′−         (25)

Note that when there is no inluence from external forces the differential equation can be directly 
solved (Cohen, 1992). If β = 0, v(s) = as + b, which is the equation of a line. If α = 0, ss beaesv +−=)(  
which is the parametric equation of a spline. When there is no external force applied, it can be seen 
experimentally that active contours slowly shrink to a unique point as expected by considering their 
associated energy minimisation principles (Chassery & Elomary, 1993).

Numerical Implementation

The above differential equations are directly resolved only when there are no external forces to account 
for. A discretisation scheme is necessary to transform the elliptic differential equations system into a 
linear matricial system.

Finite Difference Discretisation Scheme

Considering a constant sampling step h between consecutive points along a given curve, the curve 
derivatives can be written as: 
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Assuming that the following simpliications apply for all i:  
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Considering irst the variable structural functions α(s) and β(s): 
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Using equation 23 and applying a inite difference discretisation scheme, one obtains: 
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Introducing i = i
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Constant Coef. cients

While there are equations (Cohen L.D., 1992) allowing variable constraint coeficients α(s) and β(s) for 
each control point of the snake, it has not been shown yet how they may improve convergence. In most 
published work, active contours’ conformal parameters α and β are spatially constant. Equations 23 and 
30 demonstrate that rigidity and curvature terms (e.g. involving α and β) can be regrouped in a unique 
matrix. Using Equation 30 for constant coeficients and with i varying from 0 to N – 1, the static active 
contour linear equations are given by: 

)(=))4()6(2)4( 2112 iextiiiii vFvvvvv ++−− +++++−     (31)

which can be written in matricial form as: 

extFAV =            (32)

A, is known as the rigidity matrix of the active contours, referring to their elastic properties. V is 
the snake control points (or snaxels) vector and Fext represents the external forces vector: 
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Closed Snake

In the case of a closed form, v(N) = v(0) up to vi(N) = vi(0), for all i integer up to N. A takes the form of 
a symmetric Toeplitz matrix of band width 5 (or quasi-pentadiagonal): 
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Open Snakes with Fixed Extremities

Here extremity points V(0) and V(N-1) are ixed (e.g. both spatially and through time). Matrix A is 
now of dimension (N – 2). Starting again from Equation (30) one can deine (Berger, 1991) the curve 
derivatives in v(1) and v(N-1). The active contours are now described through the matricial system AV 
= F + Vix with: 
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The vector Vix integrates the relations between the ixed points (v(0) and v(N – 1)), and their two 
closed  neighbours (v(1) and v(N – 2)) in the computation of irst and second order derivatives:
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Comparing open and closed snake rigidity matrices, one sees that a discontinuity in curvature or tension 
on a single point leads to the modiication of six or nine matrix coeficients respectively, irrespective 
of its size.

Dynamic Scheme

For closed snakes, the rigidity matrix is ill-conditioned (Berger, 1991) and cannot be inverted. A mini-
mization process of the gradient descent type is introduced via a irst order temporal term and associated 
parameter. The latter controls the temporal evolution step of the active contours. While a constant is 
often chosen it may be set variable; larger in areas with no gradient information, smaller when reaching 
regions with contours points (Fua & Lecler, 1990).

Recalling Equation 18, the differential equation presented in Equation 19 can be transformed into 
the following dynamic matricial scheme: 

1))((=)(2

2 −++ tVFtAV
dt
dV

dt
Vd

                    (35)

where τ is the snake evolution temporal step (γ = 1/τ). μ is the system mass previously introduced. For both 
coeficient constant using backward temporal discrete schemes, the above equation transforms into: 

1))((=)(1)()(2))(1)(2)(( −+−−+−+−− tVFtAVtVtVtVtVtV    (36)

and:  
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( )1))((2)(1)()2())((=)( 1 −+−−−+++ − tVFtVtVIAtV     (37)

The classic snake evolution formula is obtained for a zero mass system: 

1)))((1)(()(=)( 1 −+−+ − tVFtVIAtV        (38)

An explicit formulation of the above equation is sometimes applied to avoid inverting the dynamic 
rigidity matrix ((A + γI)): 

1)))((1)()((=)( −+−− tVFtVIAtV        (39)

However this scheme has been shown to be unstable (Leymarie & Levine, 1993). A new direct inver-
sion of the dynamic rigidity matrix is fully derived in Appendix A. 

Snake Performance

The active contour’s behaviour is strongly dependent on the parameters α, β and γ. Information about these 
coeficients’ behaviour is often overlooked in the available bibliography. Understanding this behaviour 
is useful in properly calibrating the active contour’s evolution process. Through these coeficients, the 
matricial system behaviour depends on its conditioning and eigenvalues. 

Eigenvalues

All eigenvalues must be positive to avoid large oscillations during convergence as demonstrated by 
(Berger, 1991). Eigenvalues for A  are given as: 

)sin(4sin4= 222
4 h

N
k

N
k

hk +
       (40)

For all k between 0 and N-1, It can be seen that one eigenvalue is equal to zero while the others have 
values between 0 and 4(4β + h2α). This demonstrates that A is ill-conditioned, i.e. the static problem is 
unstable and requires the introduction of a dynamic scheme with associated parameter γ. Eigenvalues 
for M = (I + Aγ)–1 are: 

k
k +1

1=

          (41)
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γ and λk set the dynamic rigidity matrix eigenvalues. They will directly inluence the conditioning of 
the matricial system (Berger, 1991) as well as the dynamic behaviour of the active contours. 

Setting γ

1/γ controls the gradient descent process. It can vary during the active contours’ temporal evolution to 
accelerate or slow down their inal convergence. Fua & Leclerc (1990) linked γ to the variation of the 
gradient information in the vicinity of the active contour’s control points. In practise, after every few 
iterations (approximately 10), γ is updated through:  

v
EN

∂
∂

∆
2=

           (42)

where Δ is the initial spatial step value and E the snake total energy. An increase in the snake total en-
ergy over the course of p iterations translates in an increase of γ, hence a decrease of τ, snake temporal 
evolution. The snake evolution is slowed on the presence of high gradient values (e.g. likely contour 
points). If the active contours progress through an image area with weak gradients, using Equation 42 
γ decreases over time thus increasing the snake’s evolution time step. 

While this method offers a better control of the snake evolution, it is not able to assess its “satisfac-
tory” convergence as it generates snakes oscillations when close to convergence. A speciic convergence 
indicator, further detailed below, is usually required.

Active Contours Experimental Implementation

Three major problems are classically encountered when using snakes. They are: initialization, parameter 
estimation, and convergence. The initialization is often performed manually using close approximations 
to the desired features to provide fast convergence. 

The snake evolution depends on its parameter values, which are usually evaluated heuristically. The 
lip segmentation step and mouth corner detection step provide case-speciic (e.g. mouth closed or open) 
active contour initialisation points close to the desired lip contours. Irrespective of semantic information, 
both inner and outer active contours have ixed control points at the mouth corners. The outer active 
contour is always a closed form 

When the mouth is closed, the inner active contour is initialised as a single line open snake. When 
the mouth is open the inner active contour is initialised as a closed form. 

Hue Based Statistics for Inner and Outer Snake Convergence

The major problems encountered when extracting lip contours centre around detection of the outer-lower 
lip and  inner lip contours. The outer-upper lip contour is always well detected thanks to a clear edge 
and texture transition between the skin and the upper-lip. Usually, outside the lip corner area (where 
shadows complicate the image), the hue, derived from the HS space, is a good estimator of the lip region. 
A lip colour statistic can be derived from the study of the pixels situated:  
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• on a few lines under the upper-outer lip contour (as the upper lip is thin).
• on 2/3 of the columns under the lip boundary (to avoid the colourless corners area). 

The mean (mlip) and variance (σlip) of the hue over the previously deined area is computed. Assuming 
the distribution of hue values over the lip area follows a Gaussian law, the probability of a pixel p(x, y) 
belonging to the lip area is given by Pmσ(p(x, y)) ≥ η with:

( )2

, 2

( , )1( ( , )) exp
22

lip
m

p x y m
P p x y

 − − =   
        (43)

Equilibrium is reached when a criterion, based either on quadratic distance of consecutive re-sampled 
snake curves or on gradient values inside a narrow band along the active contour, is satisied. This can 
be combined with the re-initialisation criterion developed in Equation 43 to ensure that the active con-
tours converge towards the desired features. Figure 8 shows a case-study where the active contours were 
intentionally initialised inside the lips. Upon convergence, the above criterion (Equation 43) separates 
lip and non-lip pixels (Figure 8 middle). A good convergence will be achieved when the contours lie in 
or near transitions between lip and non-lip labelled pixels. A simple majority count of the central snake 
points is performed. If convergence is not ensured, the inner active contour points are re-initialised on 
the irst pixels marked as “not belonging to the lip region”, encountered inwards from the outer active 
contours. The process is repeated until convergence is reached.

ReSul TS

Our algorithm was tested on a database designed to cover a wide range of mouth shapes and deforma-
tions including verbal and non-verbal lip movements. Speakers were asked to utter sentences including 
French VCVCV stimuli (“c’est pas VCVCV”) where V ∈ {a, i, y} and C ∈ {b, v, r, l, z}) under varying 
illumination conditions. The data was gathered from several ixed or head-mounted video acquisition 
systems. The database contains approximately 1200 colour (RGB, 8 bits/pixel/colour) images (stills or 
short videos) of 17 different subjects (15 males and 2 females). Video-sequences (up to 150 frames or 
6 seconds) were gathered from two different generations of head-mounted cameras with attached LED 
lighting (Bailly et al., 2000). Sequences were acquired in QCIF and CIF format video. An additional 
set of short sequences (typically 50 consecutive frames at 25fps) and still-frames displaying full face 
regions with mouths and lips in various states of extreme mouth movement and sidewise motion of 
the jaw were acquired with a ixed Pan-tilt-zoom Sony EVi-D70 video camera (resolution 768 by 494 
pixels). The head-mounted video sequences feature a 200 by 100 pixel close-up view of the mouth region. 
They are mostly used to demonstrate the validity of our accurate lip contour extraction. The shorter 
video-sequences and stills display full faces and demonstrate the validity of our face to mouth region 
extraction framework. An additional set of sequences, referred to as the ATR recording set (Reveret, 
1999), were acquired for benchmarking. A speciic setup (NTSC-RGB input from a Tri CCD camera 
and two 100W light sources) was used to acquire the same VCVCV stimuli sequences from one subject. 
For bench-marking, a speech processing expert manually delineated the inner and outer lip contours 
of the images corresponding to the VCVCV stimuli. Video-sequences of the database can be obtained 
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freely by emailing the second author of this chapter.
The results presented here, include various speakers with different lip shapes and pilosity (Figure 9) 

showing a closed or open mouth. Some of the images have been acquired via a camera-mounted with 
respect to the head (Figure 10, Figure 11, Figure 12), others have been obtained with the widely used 
Sony EVI-D100 camera or unspeciied web-cameras. 

Figure 9 demonstrates the robustness of our hierarchical scheme. Such images do not respect any 
of the heuristics (whether it be minimal or maximal values, etc...) usually associated with face feature 
extraction methods (Radeva et al., 1995; Brunelli & Poggio, 1995; Goecke et al., 2007). Our lip segmen-
tation step localises the mouth region. From there the search for mouth corners and the initial points for 
active contours is greatly simpliied. 

Figure 10 shows the ability of our method to extract asymmetric contours. Note that the asymmetric 
opening of the mouth is a typical feature encountered with most speakers. The lower-outer lip contours 
for the second image is deinitely out of position. This is due to very fast jaw opening. The interlaced 
frames (odd-even lines) display a different position resulting in two edge lines for the lower lip contour. 
A frame rate above 60fps would be necessary to catch such fast lip opening movements. 

Figure 8. Outer snake re-initialisation. From left to right: snake initialisation, unsatisfactory conver-
gence, lips/non-lips labelling; re-initialisation, inal convergence

Figure 9. Lip contours extracted from a user with beard displaying horizontal sidewise jaw move-
ments
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Figure 11 shows a complete video sequence of lips opening and closing. The lips’ contours are well 
tracked in all images. Note that in the last inner lip contours detected, the open snake had some dif-
iculties converging and does not show a perfectly correct mouth line. Increasing both α and β for inner 
active contours when the mouth is closed would probably solve this problem by further binding the 
points and restricting changes in curvature. 

Figure 12 shows some of the problems that may be encountered when mouth corners are erroneously 
detected away from their actual positions.  The binding forces pull the active contours in such a way 
that weak edges (often describing the lip-skin boundaries close to the commissures) are not able to re-
tain active contours points. This can be solved by allowing the active contours to move from the mouth 
corners. The closed form outer active contours with ixed V(0) and V(N/2) are not attached directly to 
the mouth corners but to springs anchored to the mouth corners.   

Figure 13 shows extracted lip contours on two of the APR benchmark images acquired under asym-
metric lighting conditions. The contours have been delineated by a speech processing expert for the 
sake of comparison. Although the maximum vertical distance between both (manually delineated and 
obtained with our algorithm) contours never exceed ive pixels, it was found inadequate for speech-
from-image applications by speech processing experts. Close scrutiny of the lip contours manually 
extracted by the speech processing expert reveals that the extracted inner contours rely more on inside 
knowledge of the spoken sequence than image processing information such as edges, clustered areas, 
and region consistency. It does not however invalidate the potential of lip contours extraction for all 
other multi-media applications. 

A subset of 300 images containing meaningful lip movements were selected for performance test-
ing. The subset included sequences with poorly illuminated lip regions to test the algorithm in adverse 
conditions. Step one was able to locate the mouth area in 85% of the images. The algorithm failed when 
the scene was very poorly illuminated. Step two extracted the mouth corners in 97% of the images 
successfully segmented in step one. Corners were missed in images with very poor illumination. Step 
three extracted satisfactory outer active contours in most cases (see Table 1, 2nd colum, third row). In-

Figure 10. Lip contours extraction from seven consecutive frames. Top: outer lip contour initialisation 
points; Middle: inner lip contour initialisation points; Bottom: inal lip contours
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ner contours were always detected when the mouth was closed. The detection of inner lip contours was 
complicated where tongue and gum tissue appeared in the image, and under very poor illumination. 
Overall, the framework performance over a range of subjects is satisfactory. 

Figure 11. Final lip contours on consecutives images extracted from a video sequence
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Figure 12. Head mounted consecutive frames and extracted lip contours

An accuracy test was performed on a subset of the manually benchmarked APR video sequences. 
The average contour point location error (between extracted and benchmarked lip contours) was 0.53 
pixels with a standard deviation of 0.08 for outer lip contours. Average error was computed at 0.88 pixels 
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(stddev at 0.11) for inner lip contours. No error of more than seven pixels was recorded with more than 
85% of the extracted lip contours located less than 2 pixels away from the benchmark pixels.

Con Clu SIon S

In this chapter, the theory behind the logarithmic hue-like colour space has been briely developed. A 
hierarchical spatiotemporal colour segmentation algorithm integrating hue and motion information has 
been successfully applied to several video sequences with no speciic model of the speaker and variable 
illumination conditions. Mouth commissures of the lips are detected by combining corner detectors 
and between-lips lines of minima. Some improvements of active contours theory, applied to lip contour 
extraction, have enhanced the robustness of the results. Comparison between the results expected by 

Figure 13. Lip contours extracted by our algorithm and manually delineated by a speech processing 
expert (Reveret, 1999). From left to right: Mouth area under asymmetric illumination; lip contours 
delineated by the expert; lip contours extracted by our algorithm; ground truth and extracted contours 
superimposed

Table 1. Closed/Open lips convergence performance

Outer contour Inner contour
Lip status Open/Closed Closed Open

Successful convergence 93% 100% 68%
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a speech processing expert and our results partially demonstrated the inadequacy of image processing 
based methods for audio-visual recognition applications. However, it does not reduce the relevance of the 
proposed method for other applications in need of lip contour parameters such as 3D mouth animation 
for face synthesis and low-bit rate coding videoconferencing. Real-time processing can be achieved on 
a high-end personal computer for a whole face analysis. The lip segmentation, mouth corner detection, 
and active contour evolution steps are processed at 15 frames per second. We still have dificulty ac-
curately detecting inner lip contours when gum and tongue appear, as these two features have the same 
hue, motion, and texture information as the lips. This is probably due to the fact that inner lip contours 
have no physical existence but are determined by the appearance of the lips when speaking. The ap-
plication developed in this book’s chapter (Gastelum et al., 2008) is an attempt at accurately animating 
lips without a need for inner lip contours detection. 

FuTuRe dIReCTIon S

The current algorithm has excellent potential for 3D lip tracking which is of increasing importance in a 
wide range of multi-media applications. Reducing the search region to the near vicinity of the lips makes 
stereo matching a potential solution for 3D lip contours extraction. This is even true for real time appli-
cations with passive illumination, as the matching algorithm performs well for face features (Leclercq, 
Liu, Woodward, & Delmas, 2004). After extensive studies of webcam based stereovision systems we 
concluded that satisfactory rectiication could not be achieved because of the poor/inconsistent quality 
of the equipment. We are currently looking at higher quality irewire cameras and external triggering 
for synchronisation of the video streams. Custom made stereo systems are available on the market but 
they are both too expensive for widespread applications and currently provide inadequate resolution 
for accurate results on the important parts of the face. While still in development, preliminary results 
on direct extraction of lip contours from textured 3D face surfaces using a new technique inspired by 
Geodesic Active Contours for surfaces algorithm (Krueger, Delmas, & Gimel’farb, 2007) show promis-
ing results. We believe the future of visual lip tracking lies with high resolution 3D data.

Table 2. Distance errors between inal active contours and contours delineated by the expert

Error in pixels 0 1 2 3 4 5 6 >6
% of the overall outer 
contour pixels count

80.0 10.4 1.6 1.3 1.2 1.1 4.2 0

% of the overall inner
 contour pixels count

72     7     6     3     3     2     6 0
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Append Ix A 

Active Contours Stiffness matrix Inverse Computation

An internal energy of Tikhonov stabilizer of order up to N can be written as: 
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Using a backward inite difference scheme when the number of discrete points is larger than the 
order of the Tikhonov stabilizer gives: 
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We show that the snake stiffness inverse matrix is a symmetrical Toeplitz matrix having, dimension 
parity depending on, 

2
1+N

 (odd case) or 1
2

+N
 (even case) 

distinct values. The computation of the inverse matrix used M crossing matrices P and its diagonal 
matrix ΔM. The matrix M = I + Aγ can be written (Berger, 1991) as the following sum cI + bJ + aJ2 + 
aJn–2 + bJn–1 where J, unitary matrix is deined as: 
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Let’s deine P, the crossing matrix of J, hence of M, and ∆J its diagonal matrix in the eigenvector 
reference frame. This leads to:
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It can easily be demonstrated that, J has its eigenvalues equal to wk, k varying from 0 to N – 1 and 
w equal to 

2 j
Ne . 

Straightforwardly, the eigenvector associated with the eigenvalue wi, is equal to (1, wi, w2i,..., wi(N–2), 
wi(N–1))T. 

Eigenvalues

Noticing that M and J have the same eigenvectors we can compute the eigenvalues µk of M as:
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Therefore, P is a Vandermonde matrix of rank N with a general element ω, Nth root of the unit. It is 
deined as:
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P–1 is given as: 
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where – denotes the complex conjugate.
and the inverse of M as: 

1 1 1= MM P P− − −∆           (51)
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where ∆ is the diagonal matrix of the eigenvalues μk of the matrix M. Deining 2( , ) [1, ]
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m′   as the general 

element of M–1, one reads: 
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The inverse (if it exists) of a symmetric matrix is symmetric which leads to ijm′
 real:
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Looking at eq. (52) one sees that same diagonal elements are equal. It is then straightforward to 
demonstrate that the matrix M–1 bears 
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distinct elements. For N even: let’s deine 
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and since (52):
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It can be easily demonstrated that in the odd case it is equal to: 
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with ml element of the diagonal l, l ≥ 1, given as: 

)sin(4sin4

1

1)1)(2(
1=

222
4

1= h
N
k

N
k

h

N
klcos

N
m

N

k
l ++




 −−
∑       (58)



  213

Chapter VII
3D Lip Shape SPH Based 
Evolution Using Prior 2D 

Dynamic Lip 
Features Extraction and Static 

3D Lip Measurements
Alfonso Gastelum

The University of Auckland, New Zealand, & Image Analysis Visualization Laboratory, 
CCADET-UNAM, Mexico

Patrice Delmas
The University of Auckland, New Zealand

Jorge Marquez
Image Analysis Visualization Laboratory, CCADET-UNAM, Mexico

Alexander Woodward
The University of Auckland, New Zealand

Jason James
The University of Auckland, New Zealand

Marc Lievin
Avid Technology Inc., Canada

Georgy Gimel’farb
The University of Auckland, New Zealand

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

ABSTRACT

This chapter describes a new user-speciic 2D to 3D lip animation technique. 2D lip contour position 
and corresponding motion information are provided from a 2D lip contour extraction algorithm. Static 
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face measurements are obtained from 3D scanners or stereovision systems. The data is combined to 
generate an initial subject-dependent 3D lip surface. The 3D lips are then modelled as a set of particles 
whose dynamic behaviour is governed by Smooth Particles Hydrodynamics. A set of forces derived from 
ellipsoid muscle encircling the lips simulates the muscles controlling the lips motion. The 3D lip model 
is comprised of more than 300 surface voxels and more than 1300 internal particles. The advantage 
of the particle system is the possibility of creating a more complex system than previously introduced 
surface models. 

InTRodu CTIon

It has been shown that the lip area carries more than half of the speaking face’s visual information in 
both the English (McGrath, 1985; Summerield et al., 1989) and French (Benoit, Lallouache, Mohamadi 
& Abry, 1992) languages. There is strong evidence (Benoit et al., 1992) that 3-Dimensional (3D) face 
representation carries more information than its 2-Dimensional (2D) equivalent in the understanding of 
speech. Experiments (Benoit, 1996) have shown that speech intelligibility (under audio-visual stimuli) 
steadily increases when presenting a listener with audio stimuli, visual displays of 3D synthetic lips 
alone and a 3D synthetic representation of the face area (Guiard-Marigny, Tsingos, Adjoudani, Benoît 
& Gascuel, 1995). There is a growing need for interactive communication devices that facilitate com-
munication between both humans (using realistic 3D face models), and computers (using avatars). Gen-
erating a fast and realistically animated 3D talking face that accurately conveys visual lip information 
is an important research area. 

BACkg Round

There has been a wealth of research and publications dealing with static and dynamic 2D lip-region 
study, extraction and analysis over the last three decades, but there are only a limited set of publications 
dealing with direct (without any a-priori assumptions about the expected surfaces) 3D lip information 
extraction. Research is concentrated on dynamic 2D lip parameter extraction for model-based 3D ani-
mation or static 3D lip-information extraction.

Recently, the movie industry has developed cumbersome dynamic systems to, partially or fully, 
recover ine (both in resolution and accuracy) 3D information from the face. These systems are essen-
tially marker based and use pattern projection, infra-red sensitive dyes, or a combination of both. Data 
acquisition is via massively parallel multiple cameras. The data is extensively processed for Computer 
Graphics reconstruction. This requires specialist hardware and has no practical applications outside 
character generation and animation for motion pictures.  

Ahlberg (2001) used the front and side images of a face, and a generic 3D face mesh model (based on 
the original Candide face model) assuming cylindrical geometry. After a planar projection, a subset of 
3D model meshes and corresponding image face features were manually mapped, allowing a complete 
registration of the 2D face texture onto the 3D face model. Speciically designed models for 3D lips were 
derived by Basu, S., Oliver, N., & Pentland, A. (1998). First a limited set of 3D lip surface points (painted 
on the mouth as black dots) were manually extracted from video-sequences. Next, the 3D lips surface 
deformation manifold was restricted to statistically learned shapes via Principal Component Analysis 
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(PCA). Reveret, Borel, & Badin (2000) used 3D lip surfaces interpolated from manually delineated 2D 
lip contours projected on a 3D torus. The allowed motion was restricted to deformations statistically 
learned (again using PCA) from a group of 23 French visemes.     

Zhang, Liu, Adler, Cohen, Hanson, & Shan (2004) used a calibrated web-camera and structure from 
motion principles to semi-automatically (the user must manually select a small set of face feature points 
in two consecutive frames) create a low resolution textured 3D model of the human subject detected in 
the scene. Readers seriously interested in 3D face modelling analysis and synthesis should read Wen 
and Huang’s book (2004).

A large number of 3D face animation techniques have been developed; many have been focused on 
the mouth region. The use of computer technology to produce 3D static and animated human faces began 
in the early 1970s. Parke (1972) created the irst animation of a 3D face by hand digitizing expressions 
and facial geometry and then deining key positions. Animation of the face resulted from interpolation 
between the key frames. To overcome the model complexity he later developed a parametric facial 
model based on empirical and traditional hand-drawn animation methods (Parke, 1974). The parameters 
deine a linear interpolation between two extremes and are divided into conformation parameters and 
expression parameters. The conformation parameters deine the shape of the face and the expression 
parameters are used to create the animation. It uses the previous work of Ekman (1972), which describes 
facial expressions as the result of activities of speciic facial muscles. Montgomery (1980) augmented 
earlier work with the addition of nonlinear interpolation between frames, as well as forward and back-
ward co-articulation approximation, thus integrating lip-reading ability. Terzopoulos (1990) developed 
a physics-based 3D face model taking into account the anatomy of the face with the representation of 
several layers (bones, muscles and skin). Essa (1994) “solved” the associated inverse problem: given a 
sequence of images describing a facial expression, ind which group of muscles caused the motion and 
then deduce the expression using previous knowledge about facial expressions and the corresponding 
pattern motion using optical lows. An excellent example of the realistic animation potential of physics 
driven facial muscle models can be found in Sifakis, Selle, Robinson-Mosher, and Fedkiw (2006). It 
requires 8 high-speed synchronised cameras, 250 markers on the subjects face to acquire data and 7 
minutes (on a high-end 3.4 GhZ PC) to generate an accurate representation of a single motion-capture 
frame. While the hardware requirements make it unrealistic at the time of writing it probably represents 
the future of visually and phonetically correct 3D face and lips animation.

Despite a large amount of work in the ield, there is still no passive system using off-the-shelf cameras 
and PC hardware able to perform full 3D face analysis at a processing speed close to real-time, and then 
reproduce a dynamic facsimile (3D clone) of the subject’s face or lips at a remote location. 

There are a variety of different techniques that can be used for facial animation. These range from 
simple methods suitable for real-time applications to complex ones that produce a high level of physical 
accuracy. There are also different methods for representing the data comprising a face (e.g. geometri-
cally deined meshes or volumetric objects). The most appropriate reference for an overview of such 
techniques is (Neumann & Noh, 1998). 

With the advent of higher-performance hardware, a renaissance in advanced and physically accurate 
techniques for facial animation is taking place. Realistic 3D human faces have found application in 
many situations. The easily recognisable human face provides an emotive bridge that personalises many 
human-computer interactions in today’s society. Face models based on real people are widely sought 
after. Facial animation is used in a wide range of applications. These include the gaming and cinema 
industries where there is convergence between expected 3D realism and customer experience (via lifelike 
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and believable characters which greatly enhance the immersion and emotional content), medicine (e.g. 
realistic surgery training, simulation of facial tissue for skin incisions and wound closure, and aesthetical 
impact of planned orthodontic surgery), social agents and avatars (used in places such as kiosks; their 
main purpose is to humanise and communicate information), and teleconferencing methods to reduce 
communication overheads (e.g. using computer vision to extract facial properties and transmit only the 
parameters to control a 3D face model over the network). 

As readily available dynamic 3D face information is not available at the current stage of research, we 
introduce a 2D to 3D lip animation scheme. User-dependent information on the lips is obtained from:

• Dynamic 2D lip contours
• Static 3D lip surfaces

2D lip contours are obtained using an algorithm that combines mouth region segmentation with hue 
and motion observations, followed by a set of lip shape adapted active contours. 3D lip surfaces are 
manually delineated and extracted from face surfaces. 

We present a 2D to 3D lip rendering algorithm. Firstly, a user-speciic animated 3D lip model (inte-
grating Smooth Particle Hydrodynamics (SPH) theory and a virtual muscular system) is generated using 
3D data obtained from a 3D scanner or very precise stereovision system. Secondly, 2D lip contours are 
obtained from live or ofline video sequences using a hierarchical approach combining Hidden Markov 
Model segmentation and active contours. The extracted 2D outer lip contour points are then mapped to 
an animated 3D lip model. This produces a realistic 3D lip animation using only 2D lip motion and 3D 
static data. The main contribution of this chapter is the design and animation of the SPH-based 3D lip 
model. For more details on 3D face acquisition the reader should refer to Woodward et al. (2006) and 
Chan, Delmas, Gimel’farb & Leclercq (2005). For more details on 2D lip tracking, the reader should 
refer to this book’s chapter (Lievin and Delmas, 2008).

dATA ACQuISITIon  

3d Static data Acquisition

Facial data is represented as a set of points in 3D space. This data can be derived from real world models 
or humans (i.e. as a computer vision and image processing task), or from a modelling package (an artistic 
approach). There are several techniques for creating 3D facial models using 2D images. Leclerc & Fua 
(1996) use a rectiied stereo pair of images to ind pixel correspondence and generate a disparity map. A 
depth map can then be constructed. Another approach is to calibrate a pair of cameras and obtain the 3D 
world coordinates of each pair of pixels in the images by using triangulation. Finding correspondence 
between the stereo pairs can be performed via automatic pattern localisation or by manually inding 
similarities. A third approach, using only one camera, is orthogonal views (Yin & Ip, 1996). Two images 
are taken; one from the front and the other from the side. The front-view image provides the X- and 
Y-coordinates, while the side-view provides the Z-coordinate of the pixel corresponding to the same 
feature in both images. (Arai & Kurihara, 1991) detect facial features from colour images and apply 
the orthogonal views technique to obtain their 3D positional values. Photometric stereo (Woodham, 
1980) is based on the way images of 3D objects are formed. Objects can be seen because they relect 
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light. The surface normal and other characteristics of the surface (e.g. depth) can be obtained using 
prior knowledge of the scene illumination geometry and the nature of surface relection. Stereo-vision 
matching and registration of 3D information using structured lighting are by far the most active research 
avenues and common commercial solutions for the retrieval of 3D face data.

In our experiments the volume representing the lips is constructed using 3D face data retrieved on 
location at our photogrammetry laboratory. We used a Solutionix Rexcan 400 3D scanner (with sub-mm 
accuracy in all directions) or a rectiied stereovision system comprised of Canon EOS 30D cameras 
coupled with active illumination (in our case, Gray code stripe patterns). The Rexcan system provides 
high density data (300,000 points) in a short time (0.7 sec) and scans the important regions of the face 
with minimal movements from the subjects. The scanner uses structured light technology associated 
with a 640 by 480 pixel camera. The halogen light source projects multiple striped patterns to recover 
the object’s shape. We used the scanner at a standoff scan distance to the target of approximately 600 
to 700 mm, and with a ield of view of 400 by 300 mm. The resolution is 0.625mm both horizontally 
and vertically and the depth accuracy is 0.5 mm. Advantages over classic laser scanners are safety and 
fast acquisition with 24 bit colour texture. A cheaper alternative to the 3D scanner is to use an active 
or passive acquisition system with one or more coupled cameras. Using a framework and test bench for 
passive and active 3D acquisition systems using three different approaches (binocular stereo, photomet-
ric stereo and structured lighting) and twelve algorithms we proved that an active acquisition system 
consisting of high resolution stereo cameras in epipolar position coupled with a Gray code pattern was 
able to produce the same accuracy as obtained by the Rexcan scanner (Woodward et al. 2006). This 
offers a higher resolution (both for texture and depth) of about 4 Mpixels for the face and a cheaper 
alternative. 

2d l ip Contour extraction

We obtain the 2D lip contour information using an algorithm described by Delmas and Lievin (2008). 
The algorithm accurately extracts the inner and outer lip borders from an image of a subject’s face. No 
predeined set-up, make-up, or markers are necessary and normal illumination (natural or from ceiling 
lights) is expected. The only requirement is that the whole mouth region remains in the ield of view at 
all times. The output is a set of adapted active contours that model the lip boundaries. The algorithm 
comprises three distinct steps:

Step One: Lip Segmentation:

• Logarithmic colour-space transform:  RGB to HI (Figure 1.  left; irst and second rows). 
 We work with a nonlinear colour space based on a logarithmic transform robust to lighting condi-

tions. It is a logarithmic image processing model inspired by biological considerations that yields 
good contrast enhancement (Lievin & Luthon, 2004).

• Segmentation of the mouth area:
 A coarse-to-ine approach for face feature identiication is deined. A hierarchical iterated algorithm 

for segmenting N face features is used. To detect face regions, motion information is combined 
with red hue information in a statistical Markov Random Field framework (Figure 1 right). Lip 
contour extraction is achieved by applying the algorithm with 2-pass segmentation, the irst pass 
corresponds to the face tracking implementation, and the second pass segments the lips. 
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Step Two: Determine Mouth Characteristics:

• Mouth corner detection: 
 Mouth corners (anchor points for the active contour extremities) are detected by combining heu-

ristics, initial curve itting using the mask obtained in step one, and several classic corner detec-
tors. 

Step Three: Evaluate Lip Contours:

• Snake initialisation from mouth corners:
 Mask boundaries extracted from step one are discretised and combined with mouth corner points 

obtained in step two to provide a snake initialisation close to the desired solution (as seen in Figure 
2 irst two rows).

Figure 1. Step 1 algorithm description. The mouth area is extracted using the steps described (right) 
and the corresponding results from a sequence of mouth region images are given (left)
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• Convergence of automatic snake (outer) and balloon snake (inner): 
 The pace of outer active contours evolution is controlled with a varying energy-based time step 

coeficient. Inner snakes’ convergence is helped by a speciically designed balloon force which 
takes into account the expected shape of the lips. 

• Convergence validation, reinitialisation, and inal convergence:
 Convergence is attained when the overall active contours’ energy over several iterations does not 

vary above a given threshold. Good convergence is tested using statistical analysis of the internal 
area adjacent to the contour boundary. Final convergence is attained when both the above criterion 
are satisied. 

3d l ip model Construction

Our dynamic 3D system needs a closed 3D surface of the mouth region as an input. These models can 
be created using CAD modelling programs or acquired directly from live subjects using 3D acquisition 
systems.

There are various approaches to representing face data and building surfaces that are topologically 
equivalent to a human face. Our model is based on a face surface obtained from our 3D acquisition 
system (as described in the data acquisition section). The initial cloud of 3D data points (representing 
the face surface) is tessellated to form a mesh of polygons. We then delineate surface of the lips. Using 

Figure 2. Step 2 and 3 algorithm results on a video sequence of lips. From top to bottom: outer (top) 
and inner (middle) lip contour (including mouth corners) initialisation for active contours; inal active 
contours (bottom)
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correspondences between the face surface and texture obtained with our 3D acquisition system, we 
ind pixels on the lip boundaries and their corresponding nearest face surface mesh triangles. We then 
build the visible external lip mesh (as in Figure 3 right image).  

Next we apply the Ray-Triangle Intersection algorithm to build the volumetric set of points which 
will describe the 3D lips. The Ray-Triangle Intersection algorithm requires a closed surface as input. 
As the input surface obtained from the Rexcan scanner is not closed, we implemented a surface closing 

Figure 3. 3D lip surface acquisition. Left: 3D face surface; middle: corresponding triangle representa-
tion of the mouth region surface; right: close-up of the simpliied lip mesh

Figure 4. Surface closing procedure: a) Schematic procedure showing the Boolean intersection operation 
between two surfaces. b) Resulting closed surface lip after application of the Boolean operation

(a)    (b)
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procedure using simple Boolean intersection operations between the upper and lower lips and a 3D box  
(as shown in Figure 4). We use this inal surface as the initial input to our SPH particle model. 

Our mechanical model is based on a particle system. Our irst step is to obtain the position of the 
initial particles that conform to the 3D lip model. The Ray-Triangle Intersection algorithm tests whether 
a point is located inside or outside the closed surface of the 3D lips. The set of points tested are distrib-
uted isotropically within a discrete cubic ield. All points inside the boundaries of the tested surfaces 
will be included in the lips’ particle system (as shown in Figure 5). 

Figure 5 shows the process applied to obtain the set of internal particles necessary for the deinition 
of the SPH model. As SPH depends on the object discretisation, the interior particles must accurately 
describe the object’s mechanical properties. 

At the end of this step we have two representations of the lips: the triangle mesh surface and the 
volume of particles. The mesh is only used for visualisation purpose while the particles model the me-
chanical behaviour of the lips (as in Figure 6)

The lip comprises the skin on the outside and the oral mucosa supported by skeletal muscle on the 
inside (Figure 7). The vermilion border (Figure 7a) forms the transition between the external epidermis 
and the oral mucosa on the inside. Each layer exhibits speciic mechanical properties which reinforce 
the concept of a multilayer model with properties depending on density and elastic constraints.

Figure 5. a) Schematic view in 2D of the test to verify if a particle is inside a surface. b) Schematic view 
in 3D showing the classiication of a discrete ield of points, gray outside the surface and black inside. 
c) Algorithm results from different particles resolutions

(a)              (b)       (c)
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The Finite Element Method (FEM) is commonly used to simulate deformable object (such as lips) 
behaviour and nonlinear elastic deformation, due to external and internal forces (Cheung & Leung, 
1991). 

We use the Smoothed Particles Hydrodynamics, mesh-free method (Liu & Liu, 2003). SPH systems 
employ a model formed by a set of individual particles with speciic material properties and govern-
ing conservation equations that deine their behaviour. SPH systems have been used to describe solids 
(Jansson & Vergeest, 2002). 

To model the muscular system, and the anatomical and physiological properties of the muscles 
(Gray, 2000) that control mouth movements, we obtain the spatial mouth position and then deine a 
constitutive model. Utilising the advantages of the smoothed particles model we build a particle ield 
system representing the mouth muscles, with one side of the muscle particle system connected to the 
particles forming the lip model. This ield provides the external forces which control the movements 
of the lip particles.

Figure 6. 3D lip model composed of a surface triangle mesh and a volumetric particle system. Dots 
represent the surface mesh nodes and the internal particle points.

Figure 7. Lip tissue section; a) Vermillion border. b) Skin. c) Mucosa. d) Gland

 a) 
b) 

c) 

d) 
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description of the Smooth particle System

The particle system constructed in the previous section follows the governing laws of Continuum Me-
chanics and the equations are solved using SPH. SPH follow a Lagrangian approach and has been used 
to solve problems in luid mechanics and astronomy. SPH has also recently been extended to model the 
deformation of solid objects (Jansson & Vergeest, 2002). 

In our model the solid is deined by a set of n particles. We use the letter i to deine the particle of 
interest and V(i) to deine the set of particles within the vicinity of i. Each particle has an associated 
mass mj and density ρj with j deining a particle element in V(i). The continuous integral representation 
of the equation to solve the continuum volume of the solid is replaced by a discrete summation over all 
the neighbouring particles j of the discrete volume deined around i.

( , )j
i j i j

j j

A
A m W r r h= −∑

         (1)

where Ai is the function value in the ri position and W(ri – rj, h) is a smoothing kernel. h is the support 
radius and is referred to as the smoothing length. ri – rj is the distance between the particle i and a 
neighbourhood particle j. The value of A at the location rj is denoted by Aj (Monaghan, 2005). The sup-
port radius is the maximum distances between interacting particles. The smoothing kernel establishes 
how the distance between particles affects their interaction. We use the smoothing kernel speciically 
deined for elastic materials (Solenthaler, 2007):
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where c is a normalization factor equal to:

4
2

8 168
3

c
h

=  − +  
The gradient of the function iA∇  of the function Ai of the particle i is deined as:

1 ( ) ( , )i j j i i j
ji

A m A A W r r h∇ = − ∇ −∑
       (3)

In their initial state, all particles are considered to be in a resting (zero stress) state. The initial mass 
properties for each particle is set using an appropriate density value for lip tissues, ρ = 1000.0 kg/m3, 
deined by Duck (1990).

The density variations over time depend on the particle coniguration, where density is deined as:
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( , )i j i j
j

m W r r h= −∑
         (4)

The continuity of the system and the accuracy of the solution are ensured by constructing a neigh-
bourhood with an adequate number of particles for each particle i. The number of particles that are 
neighbours of i is determined using the smoothing length where two particles are neighbours if:

*ij ijD scale h<            (5)

Dij is the distances between particles and hij is given by:

2
i j

ij

h h
h

+=
           

(6)

where hi, hj are the smoothing length of particles i and j. The scale factor adjusts the number of neigh-
bouring particles. In our case the minimum number of particles in each neighbourhood was set at 20. 
The neighbourhood search is made using an octree algorithm. The same octree algorithm will be used 
later in the collision calculations. 

 

a) 

b) 

Figure 8. a) Smoothing kernel values for smoothing length h=1. b) Gradient of the smoothing kernel
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In order to obtain a fast computational solution we implemented a modiied octree-space search 
algorithm (described in Figure 9) We used the initial space neighbours to classify groups of particles, 
then built a branch of the tree containing the particles that are neighbours in space (this vicinity is 
different from the one used for SPH). This helps organise the neighbour data and accelerates the SPH 
computation process.

Each branch of the octree contains the particles situated in a speciic volume region (in our case 
a cube). The number of particles and the total volume depends on the scale-level of the branch, each 
branch is a new discrete volume representation (considered as a particle at the current scale), with an 
associated mass equal to the sum of all the particles’ mass contained in the branch. The object’s volume 
is represented here as a discrete approximation (as in Figure 9); the higher the scale-level the less ac-
curate the approximation. The associated discrete volume has a new smooth kernel and vicinity which 
is computed using only branches at the same scale-level. 

Figure 9 describes how the object volume is divided using the octree algorithm. The irst image 
(from left to right) shows the irst space, encompassing the object’s volume in continuous representa-
tion, divided into 8 cubes. The second image is the result of zooming into one of the irst image’s cubes 
and the subsequent division of this cube into 8 smaller cubes. Again, the next image shows a view of 
the approximation of one of the previous image’s cubes. Upon reaching particle resolution, the diagram 

Figure 9. Octree sub-division. From left to right: multi-scale representation of a multi-particle object. 
The right image shows the last stage of the octree division where cubes contain either a unique particle 
or none



226  

3D Lip Shape SPH Based Evolution

shows the discrete approximation instead of the continuous surface representation. At the last octree 
stage, each cube contains only one particle or is empty. 

model Behaviour

Following the rules of Continuum Mechanics, particle acceleration is described by:

i
i i

Dv Fi Fe
Dt

= +
          (7)

Equation 7 deines the conservation of momentum where Fii and Fei are the internal and external 
forces for each particle. 

Internal Forces

The internal forces reduce to the elastic constraints between particles. This force is derived from the 
strain energy (potential energy store in each particle) for a given particle as:

1 ( )
2i i i iU V= 

          (8)

where Ui is the strain energy for particle i, εi its strain, σi its stress and Vi its equivalent volume calcu-
lated with the density value deined in equation 6. The relation between strain and stress for an elastic 

Figure 10. Multi-resolution voxel-particles representation. Left: surface model; middle left: Each voxel 
is represented by a particle, this is the lowest resolution of the octree search; middle right: Each par-
ticle is now grouping a set of voxels; right: Highest level of the octree; the voxels forming the particle 
is increased.
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material is given by Hooke’s law:

C=            (9)

The relation between stress and strain is modiied to take into account the behaviour of soft tissues. 
Equation 9 is rewritten as:

2 ( ) ( )r ij rT T= + + + 
                   (10)

where μ and λ are the Lame constants and Tγ the relaxation time of the material.
Using the Green Saint Venant strain tensor (Müller 2004), the strain is given as:

T Tu u u u= ∇ + ∇ + ∇ ∇          (11)

where u∇ is the gradient of the vector displacement with respect to the original position of the particle 
in the reference shape (original shape in equilibrium).

The force exerted over the particle j by i is deined as:

ji j i i i j iF u U V u= −∇ = − ∇
2 ( )T i

ji i i i
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u

∂∇= − + ∇ ∂                      (12)

We can express this equation using SPH laws (Equations 1 and 3):
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                    (13)

and
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u V W r r h
u

∂∇ = ∇ −∂                      (14)

External Forces

Equation 7 requires the deinition of the external forces acting on the particle system in order to fully 
describe the system. Two types of external force act on the 3D lip model. The irst force takes into 
account the collisions between particles. The second force is generated by the muscles governing the 
lips’ movements. 
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The irst external force considered is the interaction between particles Fec. Collision only relates 
to particles which belong to different neighbourhoods. The collisions occur between two particles at a 
time and the inal velocity is a sum over all the pairs for each particle.

( )
( )

1 2

1 2
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i i j j

j i j i j
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                   (15)

where νi and νj is the inal velocity after the collision and υi y υj the velocity before, Ni contains the 
number of individual collisions for the particle i and Nj contains the number of collisions for j. The 
instant force after a collision is:

c i i
i iFe m

dt
− =                          (16)

Another type of interaction occurs when the smoothing kernels of two particles are interacting in a 
resting contact.  A new acceleration that opposes the one being produced in the particles is introduced 
to avoid penetration.

c
i i iFe m a= −            (17)

where ai is the acceleration of the particle i.
The acceleration caused by the muscles can be expressed such that for a particle i, the force due to a 

muscle is simply the sum of all the forces generated by all the muscles in contact with that particle:

rm m
i k

k
Fe Fe= ∑

          (18)

Each muscle is connected to the lips’ particle system at one end and is ixed at the other. Each muscle 
is considered to be an independent object, but where two or more muscles, or the muscle and the lips, 
intersect, we consider those particles to belong to all the objects in the intersection, and to be affected 
by the internal forces of all objects.

The acceleration of the muscle and how it affects the lips is solved in the SPH implementation. We 
introduce a new external force mFe ′

 for each muscle. This force acts in the particles of the muscle that 
belong to the insertion area. The force is computed together with the internal force of the muscle particle 
system mFi ′ so we obtain the total Fem acting on the particles of the lips:
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m m mFe Fi Fe′ ′= +            (19)

As the particles of the muscles and lips interconnect in the area of insertion, the inal acceleration 
of the muscle is also affected by the resistance from the lips and other muscles.

 

Orbicularis oris 

Figure 11. Top: arrangement of ibres for the Orbicularis Oris muscles (Yamashita & Kubota, 2001); 
bottom: force ield representation of the muscles driving the particle system model (in grey)

Figure 12. Schematic representation of the connection between the muscle (dark particles) and the tissue 
(white particles), the grey particles show the connection between both systems
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ReSul TS

The correspondence between the initial lip tracking and the inal model is given by the points obtained 
from the lip tracking system (Figure 13, left images). Using lip contours extracted from consecutive 
images, we compute the acceleration and velocity of the contour points which we directly relate to a 
resulting force value for each 3D contour point. The force is then placed in the corresponding position 
in the particle ield model (total sum) and related to the particle system for the respective contour. 

The muscle description obtained from a lip tracking video is only a general measurement for mod-
elling lip movement differences between persons. It helps explore the limit values using the following 
evolution law formulas:

t
va

maF

∂
∂=

=
           (20)

Figure 13. 2D lip contours and associated 3D lips surfaces. Left: Delineation of 2D lip boundaries 
(contours and active contours initialisation points); right: 3D lip model evolution (front and side)
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The mass is again related to the particle property. We can therefore relate the range of lip movement 
to the particle system properties. Extreme lip movements can be used as calibration points (see Figure 
15).

Figure 14 shows a particular representation of the collision between two planar surfaces. The colli-
sion is calculated using the octree algorithm. As the collision is calculated using particles, we use the 
conservation of momentum law after a collision. The resulting force and momentum start the internal 
deformation in both surfaces. Overlapping surfaces increase internal particle deformation.

The use of an octree improves the computational time, and allows the possibility of running the 
model at different resolutions (in particle components) so it can be adapted to a range of conditions. The 

Figure 14. Representation of a dynamic collision between two horizontal objects moving towards each 
other. Top: initial stage, two objects (black and white particles); middle: The objects are colliding; bot-
tom: Last stage of the initial collision
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system anticipates collisions of particles, irst computing the collisions between branches (containing 
a set of particles and a deined volume). If there is a collision, the algorithm further searches down the 
affected branches to see if there is a collision between the component particles. This eliminates the need 
for particle-by-particle computations.

Collision detection needs some further improvement as we obtained some particle penetration after 
a collision (See Figure 14). This needs to be avoided as it produces an incorrect graphical representation 
with some mesh triangles overlapping. 

Con Clu SIon S

3D facial data, acquired by 3D acquisition systems, and 2D lip contours extracted from video-sequences 
of the same subject are processed to build a 3D lip model comprised of more than 300 surface voxels 
and more than 1300 internal particles. The model dynamics are governed by Smooth Particles Hydro-
dynamics. The lip muscles behaviour is similarly modelled.

Figure 15. Different 2D lip level of opening and corresponding 3D particle model



  233

3D Lip Shape SPH Based Evolution

The motion and acceleration data obtained from the lip tracking algorithm are used as calibration 
input to describe the group of forces necessary to produce a gesture. The set of forces is arranged to 
resemble the anatomical position of the muscles in the face. The particles model maintains the lips’ 
anatomical properties while allowing complex collision scenarios. 

The advantage of the particle system is the possibility of creating a more complex system than previ-
ously introduced surface models. Instead of the current three layer model, we could deine additional 
layers and assign different particles density according to the tissue properties.

An interesting challenge would be to compare the results obtained from the particles model with the 
ones obtained from a multi-layer mass-spring face model controlled by physics-based muscles. 

Some lip deformations may require a more complex muscular structure, but the advantage of us-
ing ields representing vector forces is clear: we can add more ields and sum the resulting force over 
a set of particles. The SPH model and the constitutive modelling technique will readily determine the 
resulting internal response to the force and the changes in the triangular mesh shape associated with 
the particle system.

FuTuRe dIReCTIon S

One of our future research directions is to extend the amount of muscular system integrated into our 
model. An increased set of muscles will improve the reality of the computed motion while allowing 
more complex results. There is however an obvious computational time/complexity trade-off which 
needs to be taken into account.

Currently we use a particles system that uses a unique constant density value for all particles. We 
are working on a more complex system allowing the particles’ density to vary depending on the tissue 
modelled (e.g. surface or depth speciic). This will beneit from new data we will gather in late 2008 
using Magnetic Resonance Elastography. This will allow us, to map a different density value for each 
voxel of the volume acquired. The obvious advantage of this new system is to obtain a better description 
of the tissue and a more realistic solution of the constitutive model.

We are currently investigating several ways to improve both the quality of data gathered and the 
model properties and behaviour. Preliminary results on the extraction of 3D contours from implicit 
surfaces (Krueger, Delmas, & Gimel’farb, 2007) show that extracting the 3D lip surfaces may be done 
automatically. Using synchronised video cameras, placed along converging axis, for lip tracking, may 
help obtain more accurate peripheral lip contours (i.e. closer to the lip corners) that would improve the 
particles system’s force computation. Long term we hope to model the particles system with data gath-
ered through dynamic 3D lip contour tracking using synchronised video camera systems (Woodward, 
Delmas, & Gimel’farb, 2007), accurate 3D face surface generation (Gimel’farb, Delmas, Morris, & 
Shorin, 2007) and 3D contour extraction (Krueger et al. 2007).
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ABSTRACT

The purpose of this chapter is not to describe any lip analysis algorithms but rather to discuss some 
of the issues involved in evaluating and calibrating labeled lip features from human operators. In the 
chapter we question the common practice in the ield: using manual lip labels directly as the ground 
truth for the evaluation of lip analysis algorithms. Our empirical results using an Expectation-Maxi-
mization procedure show that subjective noise in manual labelers can be quite signiicant in terms of 
quantifying both human and  algorithm extraction performance. To train and evaluate a lip analysis 
system one can measure the performance of human operators and infer the “ground truth” from the 
manual labelers, simultaneously.

InTRodu CTIon

Lip image analysis (lip detection, localization and segmentation) plays an important role in many real 
world tasks, particularly in visual speech analysis/synthesis applications (e.g. application area mentioned 
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by Mathew et al., 2002; Daubias et al., 2002; Potamianos et al., 2004; Cetingul et al., 2005; Wark et al., 
1998; Chan et al., 1999; Chetty et al., 2004; Wang et al., 2004; Tian et al., 2000; Luthon et al., 2006, 
Réhman et al., 2007). Although impressive achievement has been made in the ield (Wang et al., 2007; 
Caplier et al., 2008) (e.g. it is reported that the maximum mean lip tracking error has been reached to 4% 
of the mouth width (Eveno et al., 2004)); from an engineering viewpoint, automatic lip analysis today 
still presents a signiicant challenge to current capabilities in computer vision and pattern recognition. 
An important research problem is how to boost the technology development of lip analysis to achieve 
an order-of-magnitude improvement? An order-of-magnitude improvement in the performance of lip 
analysis will reach usual mean human performance: lip tracking with an accuracy of one-pixel for CIF 
lip images (position error around 0.5% of the mouth width).

Researchers from lip image analysis (especially lip-tracking and localization) should consider les-
sons from the work of face recognition vendor test (FRVT) (Phillips et al., 2000), which is a series of 
U.S. Government sponsored face recognition technology evaluations. Under its impressive effort in 
thirteen years, face recognition performance has improved by two orders of magnitude. To expect a 
similar order-of-magnitude improvement with lip analysis technologies, an urgent issue is to establish 
performance benchmarks for lip analysis, assess the advancement in the state-of-the-art in the technol-
ogy, and identify the most promising approaches for further development.

Currently positive activities in the establishment of common test databases are in progress. Examples 
of publicly available databases include e.g. TULIPS 1.0 (Movellan, 1995), BioID (Jesorsky et al., 2001), 
(X) M2VTS (Messer et al., 1999), BANCA (Bailly-Bailliere et al., 2003), and JAFFE (Lyons et al., 
1999). However, the evaluation criteria are not agreed on common ground yet. Lack of well accepted 
evaluation protocols makes it impossible even for experts in the ield to have a clear picture of the state 
of the art lip analysis technology.

A common practice in the (quantitative) evaluation of a lip analysis technology is to collect reference 
examples with manual labeling by having the human operators examine a lip image on the computer 
screen and then use a mouse to indicate where they think the lips or the key points are. These manual 
labeling-marks of the lip area are used as the “ground truth” for the training and evaluation of lip 
analysis systems.

A critical question is: Can the manual labelers be served as the ground truth?
We suggest that one should not directly use the manual labelers for evaluation because:

• There can be considerable ambiguity in lip labeling: for the same lip image, individual operators 
can produce different labels, and even the same person can produce different labels over time.

• Ignoring subjective uncertainty in human lip labeling can lead to signiicant overconidence in 
terms of performance estimation for both humans and computers.

• Most lip analysis algorithms are learning based and heavily relied on the training data (reference). 
Inherent ambiguity in lip labelers will signiicantly lower the performance of the trained algo-
rithms.

We further question a common implication in the evaluation that human will perform (much) better 
than the algorithms. In fact, it has been shown in the FRVT 2006 (Phillips et al., 2006) that it is not al-
ways human outperforms better than image analysis algorithms, and it was the irst time that measuring 
human face recognition capability was integrated into evaluation. From experiments, it has found that 
algorithms are capable of human performance levels, and that at false accept rates in the range of 0.05, 
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the algorithms even can out-perform humans (Phillips et al., 2006). Similar claims can be found in lip 
analysis literatures that some algorithms are comparable to human performance (Eveno et al., 2004) or 
even better than human in the detection of certain feature points (Goecke et al., 2000).

In this chapter we introduce a new way of using manual labeling to evaluate lip analysis systems. 
The key points are

• Measure the quality of human operators as well as manual labels;
• Infer the “ground truth” from the manual labels weighted by the quality;
• Replace manual labels with the inferred ground truth for the training and evaluation of lip analysis 

algorithms.

In present work BioID database (Jesorsky et al., 2001) is used as a show case of our new evaluation 
paradigm. We demonstrate how to generate a consensus ground truth for assessment of how well hu-
man operators are performing based on the fact that they cannot label the lip features with 100% cor-
rection. Our empirical results by an Expectation-Maximization procedure show that subjective noise 
from manual labelers can be quite signiicant in terms of quantifying both human and algorithm lip 
detection performance. Measuring the quality of human operators and manual labeling is a key step to 
achieve an unbiased evaluation.

mAnu Al  l Ip l ABell Ing

Typically, manual lip labeling, used in the evaluation of lip analysis algorithms is performed by asking 
human operators (more often, students or researchers) to mark some semantic feature points around 
the mouth, e.g., left and right corners of the mouth, middle points of upper and lower lips. The spatial 
positions of the marked feature points are used directly as the “ground truth” for the evaluation of 
algorithms. One can see some problems here, irst the deinition of the feature points itself may be 
fuzzy and quite often no distinct positions exist in images. Depending on the quality of lip images, 
performance of the operators will be varying (this is called intra-person variation); second the labeling 
is person dependent, which will generate so-called inter-person variation. Therefore, it is necessary to 
handle both intra- and inter-person variations. To do so, we have to measure the performance (quality) 
of individual operators.

To measure the performance of each operator, we have to know the ground truth of the feature 
points. Although physical or digital phantoms of the lips can provide a level of known “ground truth”, 
as noted in Warield et al. (2004); they have so far been unable to reproduce the full range of imaging 
characteristics. One alternative is to infer the “ground truth” from manual labelers. In the medical image 
segmentation area Warield et al. developed a technique to simultaneously estimate both ground true 
of image segmentation and operator quality based on an EM algorithm (Warield et al., 2004). Here we 
reformulate the lip localization problem into a segmentation problem so that the algorithm proposed 
by Warield et al. can be applied. More speciically, when feature points are marked, a closed contour 
is formed from the feature points. The contours from feature points labeled by 4 operators around the 
mouth of a sample lip image are shown in Fig.1

One can see that the four human labelers performed differently. The mouth area can be segmented by 
taking interior of the closed lip contour. Here we assume that the quality of segmentation of the mouth 



242  

How to Use Manual Labelers in the Evaluation of Lip Analysis Systems?

is a measure of the quality of the feature points. If the ground truth of the mouth region is known, the 
performance of individual operators can be assessed by measuring the quality of their segmentation.

Following (Warield et al., 2004), the performance of operators is speciied by two terms: sensitivity 
and speciicity. The sensitivity is deined as how well the operator marked the true area under consid-
eration, and speciicity is how well the operator differentiated the rest of the image area from the true 
mouth area. The performance parameter p represents the “true negative fraction” or speciicity, and q 
represents the “true positive fraction” or sensitivity. This is summarized in table I 

These two parameters are the classiication probabilities {p, q} and are assumed to be person speciic. 
For any segmentation D and the ground true T, {p, q} can be calculated as (see Fig. 2)

T
DTq

T
TDDp





=

−=

Figure 1. Sample example of human labeling given on the BioID face database. One can see that lips 
drawn from manual labeling from 4 human operators vary. ©2008 Shaiq ur Réhman.  Used with per-
mission.

D/T 0 (non-mouth) 1 (mouth)
0 (non-mouth) p 1-q

1 (mouth) 1-p q
Marginal Total 1 1

Table 1



  243

How to Use Manual Labelers in the Evaluation of Lip Analysis Systems?

The key is how to get the ground truth T and further assess performance of individual operator 
given the segmentation D.

InFeRRIng gR ound TRuTh FRom humAn dATA

Since the “ground truth” of segmentation is not known (or missing) we have to igure out how to estimate 
the “ground truth” from the segmentation made by the operators. One solution is to use the Expecta-
tion-Maximization (EM) technique to infer the ground truth (Dempster et al., 1977). For our purpose, 
we extend the algorithm STAPLE developed by Warield et. al. (2004) so that it could handle annotated 
images from a database.

Formally, let D be the N × M × J matrix representing the binary decisions of J operators on M mouth 
areas. The number of pixels in a lip image is N. T be the N × M matrix representing M binary “truth” 
mouth regions in which 1’s are for mouth-pixels and 0’s for non-mouth pixels. Let (D; T) be the complete 
data and the probability mass function of the complete data is given as f(D, T/Θ) where the performance 
parameters are θj = (pj, q j), j = J. The log likelihood function of the complete data is expressed as

ln Lcomplete Θ = ln f(D, T/Θ)

In theory the operator parameters Θ = {θ1, θ2...}
T

 could be estimated by maximizing the log likeli-
hood function of the complete data; i.e.

)/,(lnmaxarg Θ=Θ
Θ

TDf


Unfortunately it doesn’t work here simply because the “ground truth” of the mouth region is unknown. 
One strategy to overcome the dificulty is to compute the conditional expectation of the complete-data 
log-likelihood function instead,

Figure 2. Segmentation D and ground truth T
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( ){ }DTDfET ||,lnˆ maxarg Θ=Θ
Θ

The Expectation-Maximization (EM) algorithm can be applied to estimate the operator performance 
parameters Θ. The conditional expectation of log likelihood function can be further written as

( ){ }
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Since the ground true T is independent of the performance parameters 

)()(),( Θ=Θ fTfTf . 

Hence we have

( )[ ]DTfTDfET |)(,|lnˆ maxarg Θ=Θ
Θ       (1)

Omitting T, we have

( )[ ]DTDfET |,|lnˆ maxarg Θ=Θ
Θ       (2)

Let Θ˚ be initial value for parameter Θ and assuming the operator decisions are conditionally inde-
pendent given operator performance parameters and the ground truth. The E-Step calculates

( ) ( ){ }( ) ( )∑ ΘΘ=
ΘΘ≡ΘΘ

T

T

TDfDTf
DTDfEQ

,|ln,|
,|,|ln|





and M-step requires the maximization of Q(Θ | Θ˚) over the parameter space of Θ; i.e. choosing Θ1 such 
that Q(Θ1 | Θ˚) ≥ Q(Θ | Θ˚). For each iteration k, the current estimate of Θk and segmentation decision D 
are used to calculate the conditional expectation of the complete-data log-likelihood function and then 
the estimate of Θk+1, which is found by the maximization of Q(Θ | Θk).

The E- and M- steps are iterated until convergence. Local convergence is guaranteed when likeli-
hood has an upper bound.

The ground truth and performance parameters can be estimated iteratively:
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estimation of the g round Truth given o perator performance parameters

The ground truth can be estimated by

( ) ( )( )( ) ( )( ) ( )∑ Θ
Θ=

Θ
Θ=Θ

T
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k

k
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TfTDf
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where f(T) is the priori probability of the ground true T. 

estimation of the performance parameters of the o perators

Given Dr
ij decision of the jth-operator for rth-image and ground truth Ti

r, the operator performance 
parameters {pj, q j} sensitivity and speciicity are

;)0|0(,)1|1( ∑∑ ==Ψ===Ψ=
ir
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ijj

ir

r
i

r
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Where Ψ is the conditional probability of the segmentation when the ground truth is known.
It is assumed that segmentation decisions are all conditionally independent given the “ground truth” 

(i.e. r
jT ) and the performance parameter pj, q j ∈ [0,1], i.e.
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An expe RImen T on CompARIng humAn And Algo RIThm 
peRFo RmAnCe

To demonstrate the concept proposed in this chapter we select the database BioID (Jesorsky et al., 2001) 
as a case study. The BioID Face Database is used within the FGnet project of the European Working 
Group on face and gesture recognition (FGnet-IST-2000). The BioID Face Database has been recorded 
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and was published to give all researchers working in the area of face detection the possibility to com-
pare the quality of their face detection algorithms with others. During the recording special emphasis 
has been laid on “real world” conditions. Therefore, the test set features a large variety of illumination, 
background and face size. The dataset consists of 1521 gray level images with a resolution of 384 x 286 
pixels. Each one shows the frontal view of a face of one out of 23 different test persons. For comparison 
purposes the set contains manually set facial features points. Two PhD students from the department of 
Imaging Science and Biomedical Engineering at the University of Manchester marked up the images 
from the BioID Face Database. They selected important feature points (as shown in Fig. 3-a), which are 
very useful for facial analysis and gesture recognition. Four points around the mouth are marked:

Figure 3. a) Example of human labeling points given on the BioID database. b)  Four feature p around 
the mouth.  ©2008 Shaiq ur Réhman.  Used with permission.

Figure 4. A lip spline, mouth image and segmented mouth area after the EM algorithm based on per-
formance parameters.  ©2008 Shaiq ur Réhman.  Used with permission.
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• No. 2 = right mouth corner
• No. 3 = left mouth corner
• No. 17 = center point on outer edge of upper lip
• No. 18 = center point on outer edge of lower lip

To compare the quality of different face detection algorithms on the test set, the following distance 
based quality measure is suggested: Estimate the facial feature (eye or lip) positions with the test al-
gorithm and calculate the absolute pixel distance from the manually set positions so that two distance 
values will be received. The distances will be used to measure the performance of the algorithm. 

The current results challenge the way of directly using the manual annotation as the “ground truth” 
for evaluation of algorithms. We do by estimating of the quality of the annotation. We invited three 
students from our university to mark the four points around the mouth for all face images (as shown in 
Fig. 3-b). To form a nice mouth region, two additional points are interpolated from the corner and center 

Figure 5. Sample lip area marked by operator 1,2,3,4 respectively.  ©2008 Shaiq ur Réhman.  Used 
with permission.

Figure 6. a) Sensitivity of human operators after iterations. b) Speciicity of human operator after com-
plete convergence
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points for all lips. In this way we have total six points and a closed lip contour can be formed by spline 
curves. We overlay lip contours over face images as shown in Fig. 4). One can see that the decision on 
mouth regions varies from person to person (Fig. 5).

To quantitatively assess the performance of individual operators we calculate the performance pa-
rameters. The interior of the lip contour is segmented and used for estimation of ground truth. The initial 
values of performance parameters were set to 0.9 and initialization probabilities of being mouth pixel 
and non-mouth pixel were 0.5;  pj = qj = 0.9 and Pr(Ti = 1) = Pr(Ti = 0) = 0.5. The algorithm converges 
quite fast as shown in Fig. 6. The converged result is listed in table II. It can be seen from table II that 
the performance parameters, sensitivity and speciicity differ from person to person. It is very interest-
ing to notice that the annotation provided with the BioID face database don’t do the top job. They are 
just ranked No. 3. It is questionable to use a bad annotation which has been known a prior to judge the 
performance of computer algorithms. One can see also that there is a space to improve the quality of 
manual annotation for evaluation. It is worth mentioning that in our formulae we show how to estimate 
the ground true for mouth segmentation but not how to estimate the ground true of the feature points

Con Clud Ing RemARk S

To speed up the development of human lip analysis technology, it is extremely important to have a fair 
and objective evaluation protocol. The purpose of this chapter is not to come up with such evaluation 
protocols. Instead, it is a discussion of the problem of how to use manual labelers as the ground truth. 
Our intention is to remind researchers particular the researchers new in the ield of 1) being aware of 
subjective noise existing in manual labelers and there are ways to reduce the noise; 2) recognizing 
that technical progress has made computer programs close to and even better than human for some lip 
analysis tasks. Very soon it might be no longer valid to use the results from human to validate computer 
programs. It is important from now to think about how to build a common and fair evaluation platform 
where both program and human can be treated equally.

OPERATOR P q
1 0.9583509 0.9778526
2 0.939260 0.9910173
3 0.9740195 0.9775210

4 0.9463833 0.9545102

Table 2. The computed sensitivity and speciicity of four operators
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FuRThe R ReAdIng S

We highly recommend the work done in the following research areas to the readers who want to learn 
more about the topic 

1.  Face Recognition Vendor Test (FRVT) (Phillips et al., 2000, 2000b, 2005, 2006; O’Toole et al., 
2007), which is a series of U.S. Government sponsored face recognition technology evaluations. 
One can see how “standardization” or evaluation process to boost signiicantly technical prog-
ress.

2. Automatic Eye Detection and Validation (Jesorsky et al., 2001; Wang et al., 2005; Asteriadis 
et al., 2006; Cristinacce et al., 2004). Technically this is quite similar to the problem of automatic 
lip localization. Noticeably, kind of standard databases, XM2VTS (Messer et al. 1999) and BioID 
(Jesorsky et al., 2001) have been widely used in the area and the ROC curve over the databases is 
commonly adopted; which greatly facilities the comparison between different techniques. However, 
as in the lip analysis area, manual labelers are used as the ground true. The problem of subjective 
noise in manual labelers has not been addressed.

3. Evaluation in Medical Image Analysis (Warield et al., 2002, 2004, and 2008): The work of 
Warield et al. on evaluation in the medical image segmentation area is very inspired. One can see 
how manual labelers given by medical experts are treated and evaluated.
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Append Ix I

Here we extended the STAPLE algorithm (Warield et al., 2002) to estimate both human performance 
parameters and ground true from a marked face database.

e-Step: estimation of g round Truth

The E-step drives the estimation for unobserved true segmentation based of following steps:

1) Compute the conditional probability density function of the true segmentation for each pixel based 
on observed segmentation (i.e. expert decisions) and previous estimate of the expert performance 
parameters.

2) Then label each pixel respectively.

If  f (T) is the priori probability of ‘T’ , then true segmentation is estimated 
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Considering the true segmentation as the binary random variable, if the estimate of probability of the true 
segmentation at each pixel ‘i’ in image ‘r’ 1=r

iT ; then probability that 0=r
iT  is ),|1(1 1−Θ=− kr

i
r

i DTf
. As pj is the sensitivity i.e. “true positive fraction” and q j is speciicity i.e.  “true negative fraction” of 
j-th expert, then from equation (4)
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Similarly,
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Where j:Dij = 1 represents the set of indices for which expert ‘j’ marked pixel ‘i’ as 1; where j:Dij = 0 
represents the set of indices for which expert ‘j’ valued pixel ‘i’ as 0. After estimation of the prior-prob-
ability labeling of the probability map of all the pixels for the r-th image is done using the r

iW ;
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Equation 7 represents the normalized prior probability of Ti = 1, and 
 [ ] 1−kr

iW
 is the probability of 

the true segmentation for rth-image at pixel ‘i’ being equal to one; for complete E-step. The expression 
for the conditional expectation of the complete-data log-likelihood function mentioned in equation 1 is 
needed. The complete-data log-likelihood function is derived in M-Step.

m-Step: estimation of performance parameters

Considering the conditional probability of the true segmentation for each rth-image calculated from 
equation 7, pk, qk are derived which maximize the conditional expectation of complete-data log-likeli-
hood function. Considering the equation 3, for each expert ‘j’ :
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Here at maximum the irst derivative with respect to pj of the above expression will become zero. 
Similarly, differentiating Q(Θ/Θk) w. r. t. pj and setting it zero yields the values of the expert parameters 
that maximizes the expectation of the log likelihood function as
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Similarly
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where ‘r’  is total no of image in the data-set. Each iteration provides the belief in estimated true 
segmentation. The STAPLE algorithm estimates true best segmentation which is based on the expert 
performance parameters iteratively. In irst step the true best segmentation is estimated from equation 
7 and the expert quality parameters from equation 8+9. The true best segmentation is achieved when 
the algorithm is converged. The algorithm convergences, when 1−= k

j
k

j pp ; for jth-expert.
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ABSTRACT 

This chapter addresses both low- and high-level problems in visual speech processing and recognition 
In particular, mouth region segmentation and lip contour extraction are addressed irst. Next, visual 
speech recognition with parallel support vector machines and temporal Viterbi lattices is demonstrated 
on a small vocabulary task.  

InTRodu CTIon 

Audio-visual speech recognition is an emerging research ield, where multi-modal signal processing 
is required. The motivation for using the visual information in performing speech recognition lays on 
the fact that the human speech production is bimodal by its nature (Campbell, 1998; Massaro, 1987; 
Reisberg, 1987; Sumby, 1954; Summerield, 1987). Although human speech is produced by the vibra-
tion of the vocal cords, it depends also on articulators that are partly visible, such as the tongue, the 
teeth, and the lips. Furthermore, the muscles that generate the facial expressions are also employed in 
speech production. Consequently, speech can be partially recognized from the information of the visible 
articulators involved in its production and in particular the image region comprising the mouth (Benoît, 
1992; Chen, 1998; Chen, 2001). 

Undoubtedly, the acoustic signal carries the most useful information for speech recognition. However, 
when speech is degraded by noise, integrating the visual information with the acoustic one reduces 
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signiicantly the word error rate (Lombard, 1911; McGurk, 1976). Indeed, under noisy conditions, it has 
been proved that the use of both modalities in speech recognition offers an equivalent gain of 12 dB to 
the signal-to-noise ratio of the acoustic signal (Chen, 2001). For large vocabulary speech recognition 
tasks, the visual signal can yield a performance gain, when it is integrated with the acoustic signal, 
even for clean acoustic speech (Neti, 2001). It is worth noting that lipreading cannot replace the normal 
auditory function, because its largest weakness is the dificulty of interpreting voicing, prosody, and 
the manner of production of consonants (Ebrahimi, 1991).

Despite the variety of existing methods in visual speech processing and recognition (Stork, 1996; 
Neti 2002; Potamianos, 2003; Aleksic, 2006) there is still ongoing research attempting to: 1) ind the 
most suitable features and classiication techniques to discriminate effectively between the different 
mouth shapes, while preserving the mouth shapes produced by different individuals that correspond to 
one phone in the same class; 2) require minimal processing of the mouth image, to allow for a real time 
implementation of mouth detection, lip contour extraction, and mouth shape classiier; and 3) facilitate 
the easy integration of audio and video speech recognition modules. This chapter addresses both low 
and high level problems in visual speech processing and recognition summarizing and extending past 
results (Gordan 2001; Gordan 2002a; Gordan 2002b) and contributing to just-mentioned points 1) and 
2). Mouth region segmentation is described irst.  Next, lip contour extraction is discussed. Finally, an 
SVM-based approach to visual speech recognition with a dynamic network is studied.

BACkg Round

Fuzzy C-means algorithm is one of the most successful algorithms for segmenting an image into ho-
mogeneous regions. It has been successfully applied to medical image analysis, soil structure analysis, 
satellite imagery, and color lip image segmentation (Crane, 1999; Palm, 1999; Thitimajshima, 2000; 
Liew, 2003). Whenever only the gray level uniformity is examined, the standard fuzzy C-means yields 
spatially discontinuous regions. Although variants of fuzzy C-means exist, which incorporate geomet-
ric constraints, such as the geometric properties of the pixels in 3×3 neighborhoods, in order to update 
the fuzzy partition, still the results are not satisfactory, because the variants resort to the gray levels 
(or color component intensities) of the pixels only (Nordam, 2000; Pham, 2001; Tolias, 1998). The just 
described observations motivated us to modify the fuzzy C-means algorithm in order to ensure spatially 
continuous regions. The approach discussed in this chapter includes explicitly the information about the 
spatial position of the pixels in addition to their gray level values. For the time being, we use the easiest 
way to include the spatial information. That is, each pixel is represented by its luminance, its x and y 
coordinates. For small-size images, this approach allows us to obtain very good segmentation results, 
superior to those obtained by the standard fuzzy C-means and the spatially constrained fuzzy C-means 
(Pham, 2001; Tolias, 1998) without requiring any manually marked contour points.

A relatively large class of lipreading algorithms resort to lip contour extraction in the irst frame 
of an audio-visual image sequence and lip contour tracking in the subsequent frames (Kaucic, 1996; 
Luettin, 1996; Matthews, 1998). While well-performing automatic lip contour tracking algorithms ex-
ist whenever a good initial estimate of the mouth contour is provided, such an estimate is not always 
available due to the lack of a-priori information for the position, size, and approximate shape of the 
mouth. Several approaches were proposed in order to extract a good lip contour initially. For example, 
region-based image segmentation and edge detection were found to work quite well in proile images as 
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well as frontal images, whenever speakers’ lips were marked by either lipstick or relective markers. The 
above-mentioned approaches unfortunately fail without lip marking. Lip contour extraction becomes 
even harder in the gray-level images, where the chromatic information differentiating between the lips 
and the skin cannot be exploited. Gray-level images of the mouth region usually exhibit a low contrast, 
so region-based segmentation and edge detection algorithms fail (Kaucic, 1996; Luettin, 1996). In such 
cases, several points are manually marked on the lip contour and the lip contour can be found by either 
interpolation assuming a particular geometric model or manually drawing it. Typical lip contour track-
ing algorithms (Luettin, 1996; Sanchez, 1997) resort to a large number of points (approximately 50-100) 
marked on the lip contour. Such markers  can be used without any further preprocessing to represent the 
lip contour in lipreading based on active shape models (Luettin, 1997) and active appearance models 
(Matthews, 1998). Alternatively, an interpolation (e.g. B-splines) can be applied in order to obtain the 
entire lip contour (Sanchez, 1997). When a small number of points (e.g. 6 points) are marked on the lip 
contour, these markers are used to derive the parameters of lip contour models, such as the widely used 
ellipsoidal model (Hennecke, 1994) or the parabolic one (Tian, 2000). In the latter case, the accuracy 
of lip contour extraction is limited by the itness of the model to the real lip contour. For example, in 
the case of an asymmetric mouth image (say due to a displacement of the video camera), the derived 
model-based lip contour representation might be different than the real lip contour. Such an example 
from the Tulips1 database (Movellan, 1995) is depicted in Figure 1.  

In this chapter, we present an approach for lip contour extraction in gray level images, which is 
based on edge detection using gradient masks and edge following. The motivation for the solution being 
proposed is the following: Since we know that mouth images have, typically, a low contrast in the lip-
to-skin area, and accordingly false edges can appear in this area, we do not resort to edge magnitude in 
lip contour detection, but we exploit the edge direction in contour following. Indeed, it is well known 
that the edge direction on the lip contours is approximately piecewise constant and follows a given 
pattern in all mouth images, while the “false edges” inside the lip and skin areas are random and omni-
directional. Taking this observation into account, we develop a piecewise edge following algorithm that 
builds on the constancy of the edge direction as the following criterion. The experimental results have 
demonstrated the successful performance of the proposed algorithm. However, the manual demarca-

Figure 1. Example of an asymmetric mouth from Tulips 1 database
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tion of the start and end point of the lip contour in each mouth region of interest is still required by 
the algorithm developed. Best results are obtained when the points are marked directly on a color map 
used for representing the edge directions. Although not completely automatic, the proposed algorithm 
has the advantage of providing a reliable lip contour without any geometric model assumption, while 
requiring a small number of points (6 to 12) to be manually demarcated.

Visual speech recognition refers to the recognition of spoken words based only on the visual examina-
tion of speaker’s face. Visual speech recognition is also known as lipreading, since the most important 
visible part of the face examined for information extraction during speech is the mouth area. Different 
shapes of the mouth (i.e., different mouth openings, different position of the teeth and tongue) realized 
during speech cause the production of different sounds. One can establish a correspondence between 
the mouth shape and the phone produced, even if this correspondence is not one-to-one, but one-to-
many, due to invisible articulators are involved in speech production as well. For small vocabulary 
word recognition tasks, we can perform good quality speech recognition using the visual information 
conveyed by the mouth shape only. Several methods have been proposed for visual speech recognition. 
They vary widely with respect to: 1) the feature types, 2) the classiier used, and 3) the class deinition. 
For example, Bregler and Omohundro used time delayed neural networks (TDNN) for classiication 
and the outer lip contour coordinates as features (Bregler, 1995). Luettin and Thacker used active shape 
models to represent the different mouth shapes and gray level distribution proiles (GLDPs) around the 
outer and/or inner lip contours as feature vectors, and inally built whole-word Hidden Markov Model 
(HMM) classiiers for visual speech recognition (Luettin, 1997). Movellan employed also HMMs to 
build the visual word models, but he used directly the gray levels of the mouth images as features after 
simple preprocessing to exploit the vertical symmetry of the mouth (Movellan, 1995). Very good results 
were reported, when partially observable stochastic differential equations (SDE) were integrated in a 
network instead of HMMs (Movellan, 2001). A comparative study for a series of different features based 
on Principal Component Analysis (PCA) and Independent Component Analysis (ICA) in an HMM-
based visual speech recognizer was presented (Gray, 2001). The suitability of support vector machines 
(SVMs) for visual speech recognition is studied. SVMs have been proved powerful classiiers in various 
pattern recognition applications, such as face detection (Buciu, 2001; Fazekas, 2001; Kotropoulos, 2001), 
face veriication/recognition, (Li, 2000; Terrillon, 2000; Tefas, 2001), etc. Very good results in audio 
speech recognition using SVMs were reported as well (Ganapathiraju, 2000). SVMs are not popular in 
automatic speech recognition partially due to the fact that SVMs are static classiiers, while speech is 
a dynamic process, where the temporal information is essential for recognition. This drawback can be 
alleviated by a combination of HMMs with SVMs (Ganapathiraju, 2000).  We shall use Viterbi lattices 
to create dynamically visual word models.

SpATIAll y Con STRAIned Fuzzy  C-meAnS Algo RIThm Appl Ied To 
mou Th Reg Ion Segmen TATIon 

Figure 2 (b) demonstrates the segmentation obtained when the standard fuzzy C-means algorithm is 
applied to mouth regions of interest from four typical grayscale images, namely, “Girl”, “Lena”, “Lisa”, 
and “Anthony” from Tulips1 (Movellan, 1995). The latter is split into four sub-regions shown in the 
rightmost image of Figure 2 (a).  Clearly, the standard fuzzy C-means algorithm does not yield compact 
regions, meaning that the separation of lip and skin regions is not accurate.  That is, the information of 
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pixel gray levels is not enough to differentiate between the lips and the skin due to the low contrast of 
the images. As a consequence, many outliers are present in both regions, which can not be iltered out. 
Since both lip and skin areas are spatially continuous regions, a plausible solution to circumvent this 
deiciency is to keep in the same region neighboring pixels having similar gray levels by taking into 
account both the spatial distance as well as the gray level distance between the resulting regions. The 
most straightforward approach is to consider that each pixel is represented by its spatial coordinates 
x and y as well as its gray level ℓ. Let W, H, and Lmax denote the image width, height, and maximum 
gray level (e.g. 256), respectively. The ith pixel of the mouth image, i = 1,2,...,WH, is represented by an 
integer-valued three-dimensional (3-D) feature vector qi in a 3-D space:

( )T
i i i ix y=q            (1)

where xi ∈ [1, 2,...,W], yi ∈ [1, 2,...,H], and ℓi ∈ [0,1,..., Lmax – 1]. All the three components of the fea-
ture vector admit integer values. Although, mouth image segmentation should result into two classes, 
namely the skin and the lips, sometimes it is more advantageous to partition the skin into two convex 
regions, which leads to C = 3 classes instead of 2. Let U = [uij] be the C × WH partition matrix, which 
contains the membership degrees to the C classes, and vj = (vxj, vyj, vℓj)

T, j = 1, 2,...,C be the class centers 
derived by the fuzzy C-means algorithm. The partition matrix should satisfy the same constraints as 
in the standard fuzzy C-means. If we assume a Euclidean distance between qi and vj, the cost function 
to be minimized becomes:
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The steps of the spatially constrained fuzzy C-means algorithm are the following:
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 (c) Update the fuzzy partition:
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 (d) Go to Step 3.
Step 5. Set the inal partition matrix as U = Uk and the inal class centers as V = Vk. Upon convergence, 

the ith pixel is assigned to class j, if

 
arg max  .ic

c
j u=

          (5)

The inal step of the proposed segmentation approach eliminates the outliers inside each region. A 
pixel in the segmented image is treated as outlier, if the majority of pixels within a 3 × 3 neighborhood 
centered on it have been assigned to a different class than that of it. In this case, the pixel is marked as 
an outlier and will be moved toward the class to which most of its neighbors belong to. By doing so, 
smooth compact image regions result.

The spatially constrained fuzzy C-means algorithm was tested for mouth image segmentation on 
the objective to improve lip contour extraction afterwards. Having segmented a mouth image, lip con-
tour extraction can be easily conducted using edge detection between image regions. When C = 3, an 
extra-boundary between the 2 skin regions or inside the lip region emerges, that does not represent a 
lip boundary. The false boundaries can be easily identiied with respect to their shape, the area they 
enclose, or the fact that they do not form a closed contour, as lip contour must be. 

As has already been stated, the critical factor is the low contrast of gray-level mouth images. In the 
following, we differentiate between two mouth image categories, where two different approaches are 
described. In the case of medium or low contrast gray level mouth images with slightly variable illumi-
nation, the entire mouth image can be processed at once, but due to the variation of illumination within 
the mouth image and the non-convexity of the skin region, segmentation to C = 3 classes is recom-
mended.  The irst class represents then the lips and the remaining other two classes represent the skin 
areas. In the case of very-low contrast gray level mouth images with variable illumination, the variant 
of fuzzy C-means algorithm described fails when it is applied to   the entire mouth image. A remedy is 
to divide the mouth image into four sub-images, namely the upper-left, the upper-right, the lower-left 
and the lower-right ones. After having segmented each sub-image and extracting the lip contour in each 
segmented sub-image, a piecewise approximation of the full lip contour is obtained and the lip contour 
segments can be inally joined with interpolation. It is worth noticing that mouth sub-images can easily 
be segmented into C = 2 classes, because the skin region is convex.  An example of such mouth image 
splitting into 4 sub-images is given in Figure 2 (a).

Let us conine our discussion to lip contour extraction in images depicting a closed mouth. For open- 
mouth images, the number of classes will increase in order to create separate regions for the teeth, the 
tongue, etc. The assessment of the results has been done by visual examination of the segmentation and 
the extracted lip contour overlaid on the original mouth image for a set of different gray level mouth 
images. Two sets of mouth images have been considered: (i) manually deined rectangular regions of 
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interest with medium or low contrast from gray level images “Lena”, “Lisa” and “Girl” depicted in the 
irst three images in Figure 2 (a); (ii) rectangular regions of interest with very low contrast from the 
audio-visual database Tulips1 (Movellan, 1995), such as closed-mouth images of the subjects Anthony, 
Ben, Candace, and George. The latter images were split into four sub-images prior to segmentation as 
shown for the region of interest deined on the mouth image of subject Anthony (last image in Figure 2 
(a)). The segmentation obtained by the developed segmentation algorithm (Figure 2 (c)) is compared to 
that obtained by the standard fuzzy C-means algorithm (Figure 2 (b)), and the one derived by the rule-
based neighborhood enhancement (RB-NE) fuzzy C-means (Tolias, 1998) (Figure 2 (d)). The visual 
inspection of Figure 2 veriies that the developed algorithm performs better than the standard fuzzy C-
means algorithm and the RB-NE fuzzy C-means in all the cases but one. Indeed the described algorithm 
fails in the lower half of the mouth image from Tulips 1 database like the other algorithms.   

The lip boundaries extracted after having segmented several mouth images into regions by the de-
scribed algorithm are shown overlaid on the original mouth image/sub-images in Figure 3. 

Figure 2. From left to right: mouth images from “Girl”, “Lena”, “Lisa” and the subject “Anthony” in 
Tulips1. (a) Original mouth images; (b) Segmentations obtained by the standard fuzzy C-means algorithm; 
(c) Segmentations obtained by the described fuzzy C-means algorithm; (d) Segmentations obtained by 
the RB-NE fuzzy C-means algorithm
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lI p Con Tou R deTeCTIon BASed on edge dIReCTIon pATTeRnS 

The outer lip contour extraction resorts to the edge property of each pixel in the mouth image. Since the 
quality of the extracted lip contour depends mainly on the edge follower applied in a later step, the edge 
detector can be very simple, e.g. the two Sobel convolution masks for horizontal and vertical edges:

   
1 2 1 1 0 1
0 0 0 2 0 2
1 2 1 1 0 1

x yh h
−      = = −      − − − −           (6) 

The edge gradient at each pixel is denoted by | | gieg , where the edge (gradient) magnitude |g|, and 
the edge (gradient) direction αg are given by 

2 2
x yg g= +g            (7)

arctan( ),     y
g g

x

g
g

= − ≤ <
        (8)

with gx obtained at each pixel by convolving the mouth image with the horizontal Sobel mask hx and gy 
obtained at each pixel by convolving the mouth image with the vertical Sobel mask hy. When the edges 
are being represented by their magnitude, as is usually done in image processing, a gray level image 
is suficient to visualize the edges. However, if one wants to represent visually the edge direction, one 
additional image component besides the luminance is needed. The most straightforward solution is to 
map the edge property of every pixel to a 3-component color. Accordingly, the edge image is visualized 
as a color image. Since the edge direction is an angular measure, for a good edge magnitude-direction 
mapping in the color domain, we choose the Hue Luminance Saturation (HLS) color space, where the hue 
H is angle and the luminance L is equal to the edge magnitude. The third component, the saturation,S, 
is set a-priori to its maximum permissible value, i.e., pure and saturated colors are considered. The edge 
measures to color mapping is explicitly given by

Figure 3. Examples of lip region boundaries extracted after having applied the described fuzzy C-means 
algorithm variant. From left to right: mouth images of “Lena”, “Lisa”, and “Anthony” (Tulips1)
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To improve the color representation of edge images, an enhancement of the edge magnitude is needed 
as a preprocessing step. The block diagram of the edge detection and color mapping process is shown in 
Figure 4. The original mouth image X, its edge magnitude image, and the resulting color map E of the 
edge magnitude and edge direction for one frame from Tulips1 database are shown in Figure 5.

Examining Figure 5, it is rather easy to verify that although the edge magnitude image is too poor to 
allow the detection of the lip contour, the color map of the edge magnitude and edge direction facilitates 
the extraction of 6 outer lip contour segments that are differentiable by their hue. One may also notice 
that the manual demarcation of the start and end point of each lip contour segment is easily done based 
on the color attribute. Figure 5 (d) shows an example of such a manual demarcation. 

In the following, the outer lip contour extraction algorithm is detailed. The extraction of the inner 
lip contour can be performed similarly by checking edge direction patterns in the inner mouth area. To 
extract a good outer lip contour, the algorithm starts with the computation of the edge magnitude and 
edge direction.  After the manual demarcation of 6 point pairs, representing the start and end points 
of 6 mouth segments, the lip contour extraction is performed within each mouth region yielding a 
piecewise lip contour approximation and inally a linear contour interpolation is performed in order to 
close the lip contour. Although the proposed algorithm still needs user intervention, the latter is kept 
to a minimum and is facilitated a lot since the end points are easily located on the artiicially created 
color map that visualizes the edge information. The edge following algorithm is based on the heuristic 
search technique described in (Pitas, 2000). In particular, the edge direction information is exploited 

Figure 4. Block diagram of the visual representation of edge magnitude and edge direction by a color 
map
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in the cost function of the heuristic edge following algorithm.  That is, the cost function of the heuristic 
edge following algorithm for a path connecting the start point q1 to the end point qN is a weighted sum 
of the individual costs of all the pixels in the path given by:

1 2
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( , ,..., ) | ( ) ( ) |
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N gmed k g k
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Figure 5. (a) Original mouth image;  (b) Edge magnitude image;  (c) Color map for edge magnitude 
and edge direction; (d)  Manually marked points are shown overlaid, which deine 6 non-overlapping 
lip contour segments
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In (10), the absolute difference between the mean direction of all the pixels found so far in the path 
and the direction of the next candidate pixel is used. Accordingly, the probability that the following 
algorithm takes a (spurious) wrong direction is reduced. Furthermore, instead of using a 3 × 3 search 
neighborhood centered on each pixel within the 6 mouth image sub-regions, a priori knowledge regard-
ing the allowable lip-contour directions is exploited. Accordingly, only the 2 × 2 search neighborhoods 
for each lip contour segment, shown in Figure 6, are considered. The overall algorithm for lip contour 
extraction based on the edge following can be described algorithmically by the following steps:

For each region/segment r = 1, 2,..., 6 do:
Step 1. Read the starting point 

1 1 1
( , )r r rx y=q  and the end point ( , )

N N Nr r rx y=q . 
Step 2. Select the 2 × 2 search neighborhood, denoted by Mr, to be used in the edge following algo-

rithm.
Step 3. Apply the heuristic edge following:

 
( )1 2

( )1

1
C , ,..., , ,  2arg min ,3, ,

k
j Mr r

k

k

jr r r rr k N
∈ −

−= =
q

q q q q q 
 

Figure 6. The six 2×2 search neighborhoods. From left to right: NE neighborhood; SE neighborhood; 
NE neighborhood; SE neighborhood; SW neighborhood; NW neighborhood
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 Obtain the closed lip contour by linear interpolation between either ( , )
N N Nr r rx y=q  and 

1 1 1( 1) ( 1) ( 1)( , )r r rx y+ + +=q , for r = 1, 2,..5 or 6 6( , )
N N

x y  and (x1, y1).

To test the performance of the proposed lip contour extraction algorithm, mouth images from two  
databases frequently employed in speechreading experiments were used, namely the Tulips1 database 
(Movellan, 1995) and the M2VTS database (Pigeon, 1997). The quality of the results is assessed visu-
ally. 

In the case of mouth images from the Tulips1 database, three different mouth images (frames) were 
used for the subject Anthony, while only one mouth image per subject was used for subjects Ben, Can-

Figure 7. Three outer lip contour extraction examples for 3 subjects from the Tulips1 database. (a) 
Subject Anthony. (b) Subject Candace. (c) Subject Cynthia. From left to right: Original mouth image 
and extracted outer lip contour shown overlaid on the mouth image. (a) Subject Anthony. (b) Subject 
Candace. (c) Subject Cynthia
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dace, Cynthea, Regina, George, and Oliver.  The latter image was chosen to exhibit the largest variation 
with respect to the degree of mouth opening, the asymmetry of mouth image, the mouth shape, and 
the lip-to-skin contrast. In all cases, the lip contour extracted was qualiied to be good and sometimes 
very good. Some results for the Tulips 1 database are depicted in Figure 7. In mouth images from the 
Tulips1 database, the contrast between lips and skin regions is lower than that in mouth images from 
the M2VTS database. Accordingly, the correct extraction of the lip contour in images from the Tulips1 
database is more dificult than in images from the M2VTS database. 

In the case of images from M2VTS database, a rectangular region of interest containing the mouth 
was selected manually irst. Then, the lip contour extraction algorithm was applied to the selected 
region of interest. The results were compared to the similar ones reported in (Ramos, 2000). Results 
from M2VTS database are demonstrated in Figure 8. Although there are some differences in the shape 
obtained, the extracted lip contour by the described algorithm can be qualiied to be good. 

VISuAl  Spee Ch ReCogn ITIon WITh A Suppo RT VeCTo R 
mAChIne- BASed dyn AmIC neTWo Rk  

Two classes of approaches to build word models can be found, namely those, where whole word models 
are developed (Movellan, 1995; Luettin, 1997; Ganapathiraju, 2000) and others, where viseme-ori-
ented word models are derived (Goldschen, 1993; Goldschen, 1996; Rogozan, 1999). In this section, 
we adopt the latter approach, because it is more suitable for an SVM implementation. Furthermore, it 
maintains the dictionary of basic visual models, needed for word modeling, into a reasonable limit, and 
generalizes easily to large vocabulary word recognition tasks without a signiicant increase in storage 
requirements.

The word recognition rate (WRR) obtained is at the level of the best previously reported rates, 
although the state transition probabilities are not learned. When very simple features (i.e., pixels) are 
used, the achieved word recognition rate is higher than the ones reported in the literature. Accordingly 

Figure 8. Outer lip contour extraction for subject sv from M2VTS database. From left to right: the 
original mouth image; the extracted outer lip contour by the described algorithm; the outer lip contour 
tracked with B-splines
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SVMs offer a promising alternative to visual speech recognition.  It is well known that the Morton-Mas-
saro law (MML) holds when humans integrate audio and visual speech (Movellan, 2001). Experiments 
have demonstrated that MML holds also for audio-visual speech recognition systems. That is, the audio 
and visual speech signals may be treated as if they were conditionally independent without signiicant 
information loss about speech categories. This observation supports the independent treatment of au-
dio and visual speech and yields an easy integration of the visual speech recognition module with the 
acoustic speech recognition module.

The section is organized as follows. SVM classiiers are briely reviewed. The concepts of visemes 
and phonemes are described next. The SVM-based approach to visual speech recognition is discussed 
then. Experimental results for a small vocabulary visual speech recognition task (i.e., the visual rec-
ognition of the irst four digits in English) are reported and compared to other results published in the 
literature.

Support Vector machines o verview

SVMs constitute a principled technique to train classiiers that stems from statistical learning theory 
(Vapnik, 1998; Cristianini; 2000).  Their root is the optimal hyperplane algorithm. They minimize a 
bound on the empirical error and the complexity of the classiier at the same time. Accordingly, they 
are capable of learning in sparse high-dimensional spaces with relatively few training examples. Let 
{qi, li}, i = 1, 2,..., N, denote N training examples where qi comprises an M-dimensional pattern and 
li be its class label. Without any loss of generality we shall conine ourselves to the two-class pattern 
recognition problem. That is, li ∈ {–1, 1}. We agree that li = 1 is assigned to positive examples, whereas 
li = –1 is assigned to counterexamples.

The data to be classiied by the SVM might be linearly separable in their original domain or not. If 
they are separable, then a simple linear SVM can be used for their classiication. However, the power 
of SVMs is demonstrated better in the nonseparable case, when the data cannot be separated by a hy-
perplane in their original domain. In the latter case, we can project the data into a higher dimensional 
Hilbert space and attempt to linearly separate them in the higher dimensional space using kernel func-
tions. Let Φ denote a nonlinear map : ,M HΦ →  where H is a higher-dimensional Hilbert space. 
SVMs construct the optimal separating hyperplane in H. Therefore, their decision boundary is of the 
form: 

1

s( ) i gn , ) (
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        (12)

where K(q1, q2) is a kernel function that deines the dot product between Φ(q1) and Φ(q2) in H, and αi 
are the nonnegative Lagrange multipliers associated with the quadratic optimization problem that aims 
to maximize the distance between the two classes measured in H subject to the constraints
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where w and β are the parameters of the optimal separating hyperplane in H. That is, w is the normal 
vector to the hyperplane,

| |
|| ||w

is the perpendicular distance from the hyperplane to the origin, and ||w|| denotes the Euclidean norm 
of vector w. 

The use of kernel functions eliminates the need for an explicit deinition of the nonlinear mapping 
Φ, because the data appear only as dot products of their mappings in the training algorithm of SVM. 
Frequently used kernel functions are the polynomial kernel, K(qi, q j) = mqi

Tq j + n)k and the Radial Basis 
Function (RBF) kernel, K(qi, q j) = exp{–g|qi – q j |

2}. In the following, we will omit the sign function 
from the decision boundary (12) that simply makes the optimal separating hyperplane an indicator 
function.

To enable the use of SVM classiiers in visual speech recognition when we model the speech as a 
temporal sequence of symbols corresponding to the different phones, we shall employ the SVMs as 
nodes in a Viterbi lattice. But the nodes of such a Viterbi lattice should generate the posterior probabili-
ties for the corresponding symbols to be emitted (Young, 1999), and the standard SVMs do not provide 
such probabilities as output. Several solutions are proposed in the literature to map the SVM output 
to probabilities: the cosine decomposition proposed in (Vapnik, 1998), the probabilistic approximation 
by applying the evidence framework to SVMs (Kwok, 1999), and the sigmoidal approximation (Platt, 
1999). In this chapter, the sigmoidal approximation is adopted, since it is a simple solution, which was 
already used in a similar application of SVMs to audio speech recognition (Ganapathiraju, 2000). 

The solution proposed by Platt shows that having a trained SVM, we can convert its output to prob-
ability by training the parameters a1 and a2 of a sigmoidal mapping function so that it produces a good 
mapping from SVM margins to probability. In general, the class-conditional densities on either side of 
the SVM hyperplane are exponential. Accordingly, the Bayes’ rule (Hastie, 1998) applied to 2 expo-
nentials suggests the use of the following parametric form of a sigmoidal function

1 2

1( 1| ( ))
1 exp( ( ) )

P l f
a f a

= + = + +q
q        (14)

where l is the label of q, given by the sign of f(q), that is l = +1, iff f(q) > 0; f(q) is the output of an SVM 
classiier at the feature vector q to be classiied; a1 and a2 are the sigmoidal mapping parameters to be 
derived for the currently trained SVM with a1 < 0. P(l = –1 | f(q)) can be deined similarly. However, 
since each SVM represents only one data category (i.e., the positive examples), we are interested only 
in the probability given by (14). Equation (14) gives directly the posterior probability to be used in a 
Viterbi lattice. The parameters a1 and a2 are derived from a training set (qi, li), i = 1, 2,...,N by creating 
the new set ( f(qi), ti), i = 1, 2,...,N, where ti are the target probabilities deined as follows. When a posi-
tive example (i.e., li = 1) is observed at a value f(qi), we assume that this example is probably in the class 
represented by the SVM, but there is still a small inite probability ∈+ for getting the opposite label at 
the same f(qi) for some out-of-sample data. Thus, ti = t+ = 1 – ∈+. When a negative example (i.e., li = 
–1) is observed at a value f(qi), we assume that this example is not probably in the class represented by 



276  

Visual Speech Processing and Recognition

the SVM, but there is still a small inite probability ∈– for getting the opposite label at the same f(qi) 
for some out-of-sample data. Thus, ti = t– = ∈–. Let us denote by N+ and N– the number of positive and 
negative examples in the training set, respectively. We set 

1
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N
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+= +  
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1
2

t
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−
= + . 

The parameters a1 and a2 are found by minimizing the negative log likelihood of the training data, which 
is a cross-entropy error function given by
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In Eqs. (15) and (17), pi, i = 1, 2,...,N, is the value of the sigmoidal mapping for the training example 
qi and f(qi) is the real valued output of the SVM at this training example. Due to the negative sign of a1, 
pi tends to 1 if f(qi) > 0 and to 0 otherwise.

Visemes and phonemes 

The basic units of the acoustic speech are the phones. Roughly speaking, a phone is an acoustic real-
ization of a phoneme, a theoretical unit for describing how speech conveys linguistic meaning. The 
acoustic realization of a phoneme depends on the speaker’s characteristics, the word context, etc. The 
variations in the pronunciation of the same phoneme are called allophones. In the technical literature, 
a clear distinction between phones and phonemes is seldom made.
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In this section, we are dealing with speech recognition in English, so we shall focus on this particular 
case. The number of phones in the English language varies in the literature (Deller, 1993; Rabiner, 1993).  
Usually there are about 10-15 vowels or vowel-like phones and 20-25 consonants. The most commonly 
used computer-based phonetic alphabet in American English is ARPABET, which consists of 48 phones 
(Chen, 1998). To convert the orthographic transcription of a word in English to its phonetic transcription, 
one can use the publicly available CMU pronunciation dictionary (CMUdict). The CMU pronunciation 
dictionary uses a subset of the ARPABET consisting of 39 phones. For example, the CMU phonetic 
transcription of the word “one” is “W-AH-N”. 

Similarly to the acoustic domain, we can deine the basic unit of speech in the visual domain, the 
viseme. In general, in the visual domain, we observe the image region of the speaker’s face that con-
tains the mouth. Therefore, the concept of viseme is usually deined related to the mouth shape and 
the mouth movements. An example where the concept of viseme is related to the mouth dynamics is 
the viseme OW, which represents the movement of the mouth from a position close to O to a position 
close to W (Chen, 1998). In such a case, to represent a viseme, we would need to use a video sequence, 
a fact that would complicate the processing of the visual speech to some extent. However, fortunately, 
most of the visemes can be approximately represented by stationary mouth images. Two examples of 
visemes deined in relationship to the mouth shape during the production of the corresponding phones 
are given in Figure 9.

To be able to perform visual speech recognition, ideally we would like to deine for each phoneme 
its corresponding viseme. In this way, each word could be unambiguously described according to its 
pronunciation in the visual domain. Unfortunately, invisible articulatory organs are also involved in 
speech production. Accordingly, the mapping of phonemes to visemes is many-to-one. Thus, there are 
phonemes that cannot be distinguished in the visual domain. For example, the phonemes /P/, /B/, and /M/ 
are all produced with a closed mouth and are visually indistinguishable, so they will be represented by 
the same viseme. We also have to consider the dual aspect corresponding to the concept of allophones 
in the acoustic domain. The same viseme can have different realizations represented by different mouth 
shapes due to the speaker variability and the context.

Unlike the phonemes, in the case of visemes there are no commonly accepted viseme tables by all 
researchers (Chen, 2001), although several attempts toward this direction have been undertaken. For 

Figure 9. From left to right: mouth shape during the realization of phone /O/ and phone /F/ by subject 
Anthony in the Tulips1 database (Movellan, 1995)
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example, it is commonly agreed that the visemes of the English consonants can be grouped into 9 distinct 
groups, as in Table 1 (Chen, 2001). To obtain the viseme groupings the confusions in stimulus-response 
matrices measured on an experimental basis are analyzed. In such experiments, subjects are asked to 
visually identify syllables in a given context, such as vowel-consonant-vowel (V-C-V) words. Then the 
stimulus-response matrices are tabulated and the visemes are identiied as those clusters of phonemes 
in which at least 75 % of all responses are correct. This strategy will lead to a systematic, application-
independent, mapping of phonemes to visemes. Average linkage hierarchical clustering (Goldschen, 
1993) and self-organizing maps (Rogozan, 1999) were employed to group visually similar phonemes 
based on geometric features. Similar techniques could be applied for raw images from mouth regions 
as well.

However, in this chapter we do not resort to such strategies, because the main goal is to evaluate the 
proposed visual speech recognition method. Thus, only the visemes, that are strictly needed to repre-
sent the visual realization of the small vocabulary used in the application, are deined and the training 
images are manually classiied to a number of predeined visemes.

The proposed Approach to Visual Speech Recognition  

Each visual word model can be represented afterwards as a temporal sequence of visemes. Thus, the struc-
ture of the visual word modeling and recognition system can be regarded as a two-level structure: 

1. At the irst level, viseme classes are built so that one class of mouth images is deined for each 
viseme. Accordingly, mouth shape recognition problem is treated as a pattern recognition problem. 
In particular, the classiication of mouth shapes to viseme classes is formulated as a two-class 
(binary) pattern recognition problem, where there is one SVM dedicated for each viseme class.

Table 1. The most used viseme groupings for the English consonants (Chen, 2001)

Viseme group 
index

Corresponding consonants

1 /F/; /V/
2 /TH/; /DH/
3 /S/; /Z/
4 /SH/; /ZH/
5 /P/; /B/; /M/
6 /W/
7 /R/
8 /G/; /K/; /N/; /T/; /D/; /Y/
9 /L/
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2. At the second level, the abstract visual word models are built, that are described as temporal 
sequences of visemes. The visual word models are implemented by means of the Viterbi lattices, 
where each node generates the emission probability of a certain viseme at one particular time 
instant.

One may notice that the aforementioned two-level approach is very similar to some techniques 
employed for acoustic speech recognition (Ganapathiraju, 2000), justifying thus our expectation that 
the proposed method will ensure an easy integration of the visual speech recognition subsystem with 
a similar acoustic speech recognition subsystem.

In this section, we will focus on the irst level of the proposed algorithm for visual speech model-
ing and recognition. The second level involves the development of the visual symbolic sequential word 
models using the Viterbi lattices. The latter level is discussed only in principle.

Let us irst treat the discrimination between different mouth shapes during speech production as a 
pattern recognition problem. The set of patterns comprises the feature vectors {qi}, i = 1, 2,...,P, where 
each of them represents a mouth image. For example, a feature vector could be the collection of the 
gray levels from a rectangular image region containing the mouth, some parameters quantifying mouth 
geometry (i.e., mouth width, height, perimeter, etc.) or the coeficients of a linear transformation of 
the mouth image. Let us assume that all feature vectors M

i ∈q  . Let us denote the pattern classes 
by , 1, 2, ,j j Q= … , where Q is the total number of classes. Each class j  is a group of patterns that 
represent mouth shapes corresponding to one viseme.

A network of Q parallel SVMs is designed where each SVM is trained to classify test patterns in 
class j  or its complement C

j .  We will slightly deviate from the notation introduced in Section 2.2, 
because a test pattern qk could be assigned to more than one classes. It is convenient to represent the class 
label of a test pattern qk by a (Q × 1) vector lk whose jth element lkj admits the value 1 if k j∈q   and 
-1 otherwise. More than one elements of lk may have the value 1 if fj(qk) > 0, where fj(qk) is the decision 
function of the jth SVM. To derive an unambiguous classiication, we will use SVMs with probabilistic 
outputs. That is, the output of the jth SVM classiier will be the posterior probability for the test pattern 
qk to belong to the class j , P(lj = 1 |  fj(qk)), given by (14). This pattern recognition problem can be ap-
plied to visual speech recognition in the following way: Each unknown pattern represents the image of 
the speaker’s face at a certain time instant; Each class label represents one viseme. Accordingly, we shall 
identify what is the probability of a viseme to be produced at any time instant in the spoken sequence. 
This gives the solution required at the irst level of the proposed visual speech recognition system, to 
be passed to the second level. The network of Q parallel SVMs is shown in Figure 10.

The phonetic transcription represents each word by a left-to-right sequence of phonemes. Moreover, 
the visemic model corresponding to the phonetic model of a word can be easily derived using a pho-
neme-to-viseme mapping. However, the aforementioned representation shows only which visemes are 
present in the pronunciation of the word, not the duration of each viseme. Let Ti, i = 1, 2,...,S denote the 
duration of the ith viseme in a word model of S visemes. Let T be the duration of the video sequence 
that results from the pronunciation of this word. In order to align the video sequence of duration T with 
the symbolic visemic model of S visemes, we can create a temporal Viterbi lattice containing as many 
states as the frames in the video sequence. Such a Viterbi lattice that corresponds to the pronunciation 
of the word “one” is depicted in Figure 11. In this example, the visemes present in the word pronuncia-
tion have been denoted with the same symbols as the underlying phones.
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Figure 10. Illustration of the parallel network of binary classiiers for viseme recognition  

Figure 11. A temporal Viterbi lattice for the pronunciation of the word “one” in a video sequence of 5 
frames
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Let D be the total number of visemic models deined for the words in the vocabulary. Each visemic 
model, wd, d = 1, 2,...,D has its own Viterbi lattice. For example, in the lattice of Figure 11, each node 
is responsible for the generation of one observation that belongs to a certain class at each time instant. 
Let lk = 1, 2,...,Q be the class label where the observation ok generated at time instant k belongs to. Let us 
denote the emission probability of that observation by ( ). 

kl kb o  Each solid line between any two nodes 
in the lattice represents a transition probability between two states. Let us denote by alk, lk+1

 the transition 
probability from the node corresponding to the class lk at time instant k to the node corresponding to 
the class lk+1 at time instant k + 1. The class labels lk and lk+1 may be different or not.

Having a video sequence of T frames for a word and a Viterbi lattice for each visemic word model, 
wd, d = 1, 2,...,D we can compute the probability that the visemic word model wd is realized following 
a path ℘ in the Viterbi lattice as
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The probability that the visemic word model wd is realized can be computed by

          (19)

where   is the number of all possible paths in the lattice. Among the words that can be realized follow-
ing any possible path in any of the D Viterbi lattices, the word described by the model whose probability 
pd, d = 1, 2,...,D, is maximum. That is, the most probable word is inally recognized.

In the visual speech recognition approach discussed, the emission probability ( ) 
kl kb o  is given by the 

corresponding SVM, SVMlk
. To a irst approximation, we assume equal transition probabilities alk, lk+1 

between any two states. Accordingly, it is suficient to take into account only the ( ),  1, 2, , ,
kl kb o k T= …  

in the computation of the path probabilities ,dp ℘ which yields the simpliied equation 
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Of course, learning the probabilities alk, lk+1 
from word models would yield a more reined modeling. 

This could be a topic of future work.

experimental Results  

To evaluate the recognition performance of the proposed SVM-based visual speech recognizer, we 
choose to deal with the recognition of the irst four digits in English. Towards this end we used the small 
audiovisual database Tulips1 (Movellan, 1995), frequently used in similar visual speech recognition 
experiments. While the number of the words is small, this database is challenging due to the differences 
in illumination conditions, ethnicity and gender of the subjects. Also we must mention that, despite the 
small number of words pronounced in the Tulips1 database compared to vocabularies for real-world 
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applications, the portion of phonemes in English covered by these four words is large enough: 10 out of 
48 appearing in the ARPABET table, i.e., approximately 20%. Since we use viseme-oriented models, 
and the visemes are actually just representations of phonemes in the visual domain, we can consider 
the results described in this section as signiicant.

Solving the proposed task requires irst the design of a particular visual speech recognizer. The 
design involves the following steps: (1) to deine the phoneme to viseme mapping; (2) to build the 

Table 2. Viseme classes deined for the four words of the Tulips1 database (Movellan, 1995)

Viseme group 
index

Symbolic 
notation

Viseme description

1 (W) small rounded open mouth state
2 (AO) larger rounded open mouth state
3 (WAO) medium rounded open mouth state
4 (AH) medium ellipsoidal mouth state
5 (N) medium open, not rounded, mouth state; teeth visible
6 (T) medium open, not rounded, mouth state; teeth and tongue visible
7 (TH) medium open, not rounded
8 (IY) longitudinal open mouth state
9 (F) almost closed mouth position; upper teeth visible; lower lip moved 

inside

Table 3. Phoneme-to-viseme mapping in the experiments conducted on the Tulips1 database (Movellan, 
1995)

Viseme group index Corresponding phonemes
1, 2, or 3

(depending on speaker’s pronunciation)
/W/, /UW/, /AO/

1 or 3
(depending on speaker’s pronunciation)

/R/

4 /AH/
5 /N/
6 /T/
7 /TH/

4 or 8
(depending on speaker’s pronunciation)

/IY/

9 /F/
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SVM network; (3) to train the SVMs for viseme classiication; (4) to generate and implement the word 
models as Viterbi lattices. The trained visual speech recognizer is used then to assess its recognition 
performance in test video sequences.

Let us start with the deinition of the viseme classes for the irst four digits in English. First, the 
phonetic transcriptions of the irst four digits in English are obtained using the CMU pronunciation 
dictionary (CMU): “one”→“W-AH-N”; “two”→“T-UW”; “three”→“TH-R-IY”; “four”→“F-AO-R”. 

Next, the viseme classes are deined so that each viseme class includes as few phonemes as possible 
and as few different visual realizations of the same viseme as possible. The deinition of viseme classes 
was done based on the visual examination of the video part from the Tulips1 database. The clustering 
of the different mouth images into viseme classes was done manually based on the visual similarity of 
these images. By this procedure we obtained the viseme classes described in Table 2 and the phoneme-
to-viseme mapping given in Table 3. 

One SVM has to be deined and trained for each viseme. To employ SVMs, one should deine the 
features to be used to represent each mouth image and select the kernel function to be used. Since the 
recognition and generalization performance of each SVM is strongly inluenced by the selection of 
the kernel function and the kernel parameters, we devoted much attention to these issues. We trained 
each SVM using as kernel function the linear, the polynomial, and the RBF one. In the case of the 
polynomial kernel, the degree of the polynomial k was varied between 2 and 6. For each trained SVM, 
we compared the predicted error, precision, and recall on the training set, as computed by SVMLight 
(Joachims, 1999), for the different kernels and kernel parameters, and inally the simplest kernel is se-
lected that yields the best values for these estimates. That kernel was the polynomial kernel of degree 
k = 3. The RBF kernel gave the same performance estimates with the polynomial kernel of degree k = 
3 on the training set, but at the cost of a larger number of support vectors. A simple choice of a feature 
vector such as the collection of the gray levels from a rectangular region of ixed size containing the 
mouth, scanned row by row, is proved suitable whenever SVMs have been used for visual classiication 
tasks (Buciu, 2001). 

More speciically, we used two types of features to conduct the visual speech recognition experi-
ments: (i) The irst type comprised the gray levels of a rectangular region of interest around the mouth, 
down-sampled to the size 16 × 16. Each mouth image is represented by a feature vector of length 256. 
(ii) The second type represented each mouth image frame at the time Tf by a vector of double size (i.e., 
512) that comprised the gray levels of the rectangular region of interest around the mouth down-sampled 
to the size 16 × 16, as previously, and the temporal derivatives of the gray levels normalized to the range 
[0, Lmax – 1], where Lmax is the maximum gray level value in mouth image. The temporal derivatives are 
simply the pixel by pixel gray level differences between the frames Tf and Tf–1. These differences are 
the so-called delta features.

Some preprocessing of the mouth images was needed before training and testing the visual speech 
recognition system. It concerns the normalization of the mouth in scale, rotation, and position inside the 
image. Such a preprocessing is needed due to the fact that the mouth has different scale, position in the 
image, and orientation toward the horizontal axis from utterance to utterance, depending on the subject 
and on its position in front of the camera. To compensate for these variations we applied the normaliza-
tion procedure of mouth images with respect to scale, translation and rotation (Luettin, 1997).

The visual speech recognizer was tested for speaker-independent recognition using the leave-one-
out testing strategy for the 12 subjects in the Tulips1 database. This implies training the visual speech 
recognizer 12 times, each time using 11 subjects for training and leaving the 12th out for testing. In 
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each case, we trained irst the SVMs, and then the sigmoidal mappings for converting the SVMs output 
to probabilities. The training set for each SVM is selected manually. Only the video sequences of the 
so-called Set 1 in the Tulips1 database were used for training. The labeling of all the frames from Set 1 
(a total of 48 video sequences) was done manually by visual examination of each frame. We examined 
the video only in order to label all the frames according to Table 3. Finally, we compared the similar-
ity of the frames corresponding to the same viseme and different subjects, and decided if the classes 
could be merged. The disadvantage of this approach is the large time needed for labeling, which would 
not be needed if HMMs were used for segmentation. A compromise solution for labeling could be the 
use of an automatic solution for phoneme-level segmentation of the audio sequence and the use of this 
segmentation on the aligned video sequence also.

Once the labeling was completed, only the unambiguous positive viseme examples and the unambigu-
ous negative viseme examples were included in the training sets. The feature vectors used in the training 
sets of all SVMs were the same. Only their labeling as positive or negative examples differs from one 
SVM to another. This leads to an unbalanced training set in the sense that the negative examples are 
frequently more than the positive ones.

The coniguration of the Viterbi lattice depends on the length of the test sequence through the number 
of frames Ttst of the sequence (as illustrated in Fig. 11), and it was generated automatically at runtime 
for each test sequence. The number of Viterbi lattices can be determined in advance, because it is equal 
to the total number of visemic word models. Thus, taking into account the phonetic descriptions for 
the four words of the vocabulary and the phoneme-to-viseme mappings in Table 3, we have 3 visemic 
word models for the word “one”, 3 models for “two”, 4 models for “three”, and 6 models for “four”. The 
multiple visemic models per word are due to the variability in speakers’ pronunciation.

In each of the 12 leave-one-out tests, we have as test sequences the video sequences corresponding 
to the pronunciation of the four words and there are two pronunciations available for each word and 
speaker. This leads to a sub-total of 8 test sequences per system coniguration, and a total of 12 × 8 = 
96 test sequences for the visual speech recognizer.

Two visual speech recognizers were implemented, trained, and tested. They differ in the type of 
features used. The irst system (without delta features) did not include temporal derivatives in the feature 
vector, while the second (with delta features) included also temporal derivatives between two frames 
in the feature vector.

Next, experimental results are presented that were obtained by the proposed system with and with-
out delta features.. Moreover, we compare these results to others reported in the literature for the same 
experiment on the Tulips1 database.  The WRRs have been averaged over the 96 tests obtained by 
applying the leave-one-out principle. Five objective measures are employed: (1) The WRR per subject 
obtained by the proposed method when delta features are used is shown in Table 4 and compared to 
that in (Luettin, 1997); (2) The overall WRR for all subjects and pronunciations with and without delta 
features is reported in Table 5 and compared to that obtained in (Luettin, 1997; Movellan, 1995; Gray, 
2001; Movellan, 2001); (3) The 95% conidence intervals (CI) for the WRRs of the several systems 
included in the comparisons, which provide an estimate of the performance of the systems for a much 
larger number of subjects. (4) The confusion matrix between the words actually presented to the classi-
ier and the words recognized is shown in Table 6 and compared to the average human confusion matrix 
(Table 7) in percentage, that is cited in (Movellan, 1995) ; (4) The accuracy of the viseme segmentations 
resulting from the Viterbi lattices.
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We would like to note that normal hearing subjects untrained in lipreading achieved under similar 
experimental conditions a WRR of 89.93% whereas the hearing impaired had an average performance 
of 95.49% (Movellan, 1995). From the examination of Table 5, it can be seen that the reported WRR is 

Table 4. WRR for each subject in Tulips1, using (a) SVM dynamic network with delta features; (b) AAM 
for inner and outer lip contours and HMM with delta features (Luettin, 1997)

Subject 1 2 3 4 5 6 7 8 9 10 11 12
Accuracy [%] 
(SVM-based 
dynamic 
network)

100 75 100 100 87.5 100 87.5 100 100 62.5 87.5 87.5

Accuracy 
[%] (AAM & 
HMM)

100 87.5 87.5 75 100 100 75 100 100 75 100 87.5

Table 5. The overall WRR and its 95% conidence interval of the SVM dynamic network compared to 
those of other techniques

Method SVM-based 
dynamic 
network 
without delta 
features

SVM-
based 
dynamic 
network 
with delta 
features

AAM and 
HMM shape 
+ intensity 
inner + outer 
lip contour 
without delta 
features 
(Luettin, 1997)

AAM and 
HMM shape + 
intensity inner 
+ outer lip 
contour with 
delta features 
(Luettin, 1997)

HMMs 
without delta 
features 
(Movellan, 
1995)

HMMs 
with delta 
features 
(Movellan, 
1995)

WRR 
[%]

76 90.6 87.5 90.6 60 89.93

CI [%] [66.6, 83.5] [83.1, 
94.7]

[79.4, 92.7] [83.1, 94.7] [49.9, 69.2] [82.3, 94.5]

Method Global PCA 
and HMMs 
(Gray, 2001) 

Global 
ICA and 
HMMs 
(Gray, 
2001)  

Blocked ilter 
bank PCA/
local ICA 
(Gray, 2001)

Unblocked 
ilter bank 
PCA/local ICA  
(Gray, 2001)

Diffusion network
shape + intensity
(Movellan, 2001)

WRR 
[%]

79.2 74 85.4 91.7 91.7

CI [%] [70.0, 86.1] [64.4, 
81.7]

[76.9, 91.1] [84.4, 95.7] [84.4, 95.7]
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equal to the best one in (Luettin, 1997) and just 1.1% below the reported rates in (Gray, 2001; Movel-
lan, 2001). However the features used in the proposed method are simpler than those used with HMMs 
to obtain the same or higher WRRs. For the shape + intensity models (Luettin, 1997) the gray levels 
should be sampled in the exact subregion of the mouth image containing the lips, around the inner 
and outer lip contours, and should exclude the skin areas. Accordingly, the method in (Luettin, 1997) 
requires the tracking of the lip contour in each frame, which increases the processing time of visual 
speech recognition. For the method in (Gray, 2001), a large amount of local processing is needed, by 
the use of a bank of linear shift invariant ilters with unblocked selection whose response ilters are ICA 
or PCA kernels of very small size (12 × 12 pixels). The obtained WRR is higher than those reported 
in (Movellan, 1995), where similar features are used, namely the gray levels of the region of interest 
comprising the mouth, after some simple preprocessing steps. The preprocessing in (Movellan, 1995) 
was vertical symmetry enforcement of the mouth image by averaging, followed by low pass iltering, 
sub-sampling, and thresholding.

To assess the statistical signiicance of the rates observed, we model the ensemble {test patterns, 
recognition algorithm} as a source of binary events, 1 for  correct recognition  and 0 for an error, with 
probability p of drawing a 1 and (1 – p) of drawing a 0.  These events can be described by Bernoulli tri-
als. Let us denote by p̂  the estimate of p. The exact ∈ conidence interval of p is the segment between 
the two roots of the quadratic equation (Papoulis, 1991):

2
(1 )/22ˆ( ) (1  )

z
p p p p

K
+− = −

         (21)

where zu is the u-percentile of the standard Gaussian distribution having zero mean and unit variance, 
and K = 96 is the total number of tests conducted. We computed the 95% conidence intervals (∈ = 0.95) 
for the WRR of the proposed approach and the WRRs reported in  (Luettin, 1997; Movellan, 1995; Gray, 
2001; Movellan, 2001), as summarized in Table 5. 

Another measure of the performance assessment is given by comparing the confusion matrix of the 
proposed system (Table 6) with the average human confusion matrix (Table 7) provided in (Movellan, 
1995). The accuracy of the viseme segmentation that results from the best Viterbi lattices was computed 

Table 6. Confusion matrix for visual word recognition by the dynamic network of SVMs with delta 
features

Digit 
presented

Digit recognized 
one two Three four

One 95.83% 0% 0% 4.17%
Two 0% 95.83% 4.17% 0%
Three 16.66% 12.5% 70.83% 0%
Four 0% 0% 0% 100%
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using as reference the manually performed segmentation of frames into the viseme classes (Table 3)  
as a percentage of the correctly classiied frames. We obtained an accuracy of 89.33%, which is just 
1.27% lower than the WRR.

The results obtained demonstrate that the SVM-based dynamic network is a very promising alterna-
tive to the existing methods for visual speech recognition. An improvement of the WRR is expected 
when training of the transition probabilities is implemented and the trained transition probabilities are 
incorporated in the Viterbi decoding lattices.

The complexity of the SVM structure can be estimated by the number of SVMs needed for the clas-
siication of each word, as a function of the number of frames T in the current word pronunciation. For 
the experiments reported here, if we take into account the total number of symbolic word models, that 
is 16, and the number of possible states as a function of the frame index, we get: 6 SVMs for the clas-
siication of the irst frame, 7 for the second frame, 8 for the before-last frame, 6 for the last frame, and 9 
SVMs for all remaining frames. This yields a total of 9 × T – 9 SVMs. As it can be seen, the number of 
SVM outputs to be estimated at each time instant is not large. Therefore the recognition could be done 
in real-time, since the number of frames per word is small (on the order of 10) in general. Of course, 
when scaling the system to an LVCSR application, a signiicantly larger number of context dependent 
viseme SVMs will be required, thus affecting both training and recognition complexity. 

Con Clu SIon S

In this chapter, starting from the well known fuzzy C-means algorithm, a modiication has been in-
troduced that includes pixel spatial coordinates in the feature vectors. This algorithm enables fully 
automated mouth region segmentation.  

Next, a solution to the problem of lip contour extraction in gray-level images based on image gradi-
ent information was proposed.  Compared to other similar algorithms, this solution has the advantage 
of providing a reliable lip contour without any geometric model assumption, while requiring a small 
number of points (6 to 12) to be manually demarcated.  

Third, a method for visual speech recognition that employs SVMs has been described. The SVM 
classiiers have been integrated into a Viterbi decoding lattice. Each SVM output was converted to a 

Table 7. Average human confusion matrix (Movellan, 1995)

Digit 
presented

Digit recognized 
one Two three four

one 89.36% 0.46% 8.33% 1.85%
two 1.39% 98.61% 0% 0%
three 9.25% 3.24% 85.64% 1.87%
four 4.17% 0.46% 1.85% 93.52%
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posterior probability, and then the SVMs with probabilistic outputs were integrated into Viterbi lattices 
as nodes. We have tested the method on a small visual speech recognition task, namely the recognition 
of the irst four digits in English. The used features were the simplest possible, that is, the raw gray level 
values of the mouth image and their temporal derivatives. Under these circumstances, we obtained a 
word recognition rate that competes with that of the state-of-the-art methods. Accordingly, SVMs are 
found to be promising classiiers for visual speech recognition tasks. The existing relationship between 
the phonetic and visemic models can also lead to an easy integration of the visual speech recognizer 
with its audio counterpart. 

FuTuRe ReSeARCh dIReCTIon S

The fuzzy C-means algorithm can be further enhanced by examining the inclusion of texture features in 
the feature vector as well as the use of more elaborated distance measures from Riemannian geometry 
(Jost, 1995) than the Euclidean distance. Moreover, the algorithm can be tested on color images and its 
performance can be assessed against the methods in (Oliver, 1997; Sadeghi, 2001), because the color 
information can signiicantly improve the eficiency and robustness of lip feature extraction (Zhang, 
2000).

As a feature work, the edge following algorithm can be made completely automatic by learning the 
directional patterns from a set of training mouth images and using the learned patterns to initialize the 
cost function. 

The performance of visual speech recognizer can be improved by training the state transition prob-
abilities of the Viterbi decoding lattice. Another topic of interest would be the integration of this type 
of visual recognizer with an SVM-based audio recognizer, to perform audio-visual speech recognition. 
Another line of research could be the use of one-class SVMs instead of two-class SVMs within the 
dynamic network and the assessment of their performance compared to that of two-class SVMs. One-
class SVMs (Manevitz, 2001) have been less-studied than two-class SVMs, but have recently attracted 
the interest of the research community. The treatment of large vocabulary visual speech recognition 
problems using databases such as CUAVE (Patterson, 2002), and the Bernstein Lipreading Corpus 
(Bernstein, 1991) is another topic of future research.

Viseme clustering is frequently employed in visual speech synthesis and computer graphics anima-
tion (Bregler, 1997; Ezzat, 1998; Jones, 1997). Several past works (Lavagetto, 1995; Williams, 1998) 
are devoted to the systematic derivation of viseme clusters, a topic that deserves a systematic treatment. 
Viseme clusterings can be further validated by employing visuphones. A visuphone is the extension of 
the notion of viseme (Vignoli, 2000). It encompasses a set of speech, video, and 3-D articulatory gesture 
measurements related to the trajectory and the dynamics of visible articulators during the production 
of the corresponding phone. 
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ABSTRACT

It is well known that visual speech information extracted from video of the speaker’s mouth region can 
improve performance of automatic speech recognizers, especially their robustness to acoustic degrada-
tion. However, the vast majority of research in this area has focused on the use of frontal videos of the 
speaker’s face, a clearly restrictive assumption that limits the applicability of audio-visual automatic 
speech recognition (AVASR) technology in realistic human-computer interaction. In this chapter, the 
authors advance beyond the single-camera, frontal-view AVASR paradigm, investigating various im-
portant aspects of the visual speech recognition problem across multiple camera views of the speaker, 
expanding on their recent work. The authors base their study on an audio-visual database that contains 
synchronous frontal and proile views of multiple speakers, uttering connected digit strings. They irst 
develop an appearance-based visual front-end that extracts features for frontal and proile videos in a 
similar fashion. Subsequently, the authors focus on three key areas concerning speech recognition based 
on the extracted features: (a) Comparing frontal and proile visual speech recognition performance to 
quantify any degradation across views; (b) Fusing the available synchronous camera views for improved 
recognition in scenarios where multiple views can be used; and (c) Recognizing visual speech using a 
single pose-invariant statistical model, regardless of camera view. In particular, for the latter, a feature 
normalization approach between poses is investigated. Experiments on the available database are re-
ported in all above areas. This chapter constitutes the irst comprehensive study on the subject of visual 
speech recognition across multiple views.
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InTRodu CTIon

Recent algorithmic advances in the ield of automatic speech recognition (ASR) together with progress 
in technologies such as speech synthesis, natural language understanding, and dialog modeling have al-
lowed deployment of many automatic systems for human-computer interaction. Of course, these systems 
require highly accurate ASR to achieve successful task completion and user satisfaction. Although this 
in general is attainable in relatively quiet environments and for low- to medium-complexity recogni-
tion tasks, ASR performance degrades signiicantly in noisy acoustic environments, especially under 
conditions mismatched to training data (Junqua, 2000).

One possible avenue proposed for improving ASR robustness to noise is to incorporate visual speech 
information extracted from a speaker’s face into the speech recognition process – thus giving rise to 
audio-visual ASR (AVASR) systems. Indeed, over the past two decades, signiicant progress has been 
achieved in this ield, and many researchers have been able to demonstrate dramatic gains in bimodal 
ASR accuracy, in line with expectations from human speech perception studies (Sumby and Pollack, 
1954).  Overviews of such efforts can be found in Chibelushi et al. (2002) and Potamianos et al. (2003), 
among others. In spite however of this progress, practical deployments of AVASR systems have yet 
to emerge. This we believe is mainly due to the fact that most research in this ield has neglected ad-
dressing robustness of the AVASR visual front-end component to realistic video data. One of the most 
critical overseen issues is speaker head pose variation, or in other words the camera view-point of the 
speaker’s face.

Indeed, with a few exceptions reviewed in the Background section, nearly all work in the literature 
has concentrated on the case where the speaker’s face is captured in a fully frontal pose – a rather 
restrictive human-computer interaction scenario, a fact also made clear in Figure 1. For example, one 
potential AVASR application is speech recognition using mobile devices such as cell phones. Device 
placement with respect to the head does not allow frontal AVASR in this case. Another interesting 
scenario is that of in-vehicle AVASR. Due to frequent driver head movement, a frontal pose cannot be 
guaranteed, regardless of camera placement – for example at the rear-view mirror, the cabin driver-side 
column, or the instrument console. Other possibilities include the design of an audio-visual headset, 
where a miniature camera is placed next to the microphone in the wearable boom. Requiring frontal 
views of the speaker mouth means that the device may be designed to protrude unnecessarily in front 
of the mouth, creating headset instability and usability issues (Gagne et al., 2001; Huang et al., 2004).  
In contrast, placing the camera to the side of the face would allow a signiicantly shorter boom, hence 
resulting in a lighter and easier to use headset. Finally, an interesting scenario is this of AVASR during 
meetings and lectures inside smart rooms. There, pan-tilt-zoom (PTZ) cameras can track the meeting 
speaker(s) providing high resolution views. However, due to the camera ixed placements in space, 
frontal speaker views cannot be guaranteed. This latter scenario motivates our work. It is discussed 
in more detail later on in this book chapter, together with the audio-visual database collected in this 
domain to drive our research.

Motivated by the above, in this chapter, we advance beyond the single-camera, frontal-view AVASR 
paradigm that has hindered progress in the ield. Since the subject of non-frontal AVASR is still at its 
infancy, we focus on a simpliied version of the problem, by considering two ixed views: the traditional 
frontal view and an extreme case, namely that of proile views. To allow a comprehensive study of the 
relevant issues, we consider the case where data are available synchronously from both views via a 
multi-camera setting (see also Figure 2). In addition, in this study we bypass the problem of head-pose 
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estimation, assuming that in the resulting data the view-point (frontal or proile) is a-priori known. Fur-
thermore, we concentrate entirely on the problem of visual speech recognition (also known as automatic 
speechreading or lipreading). Such focus prevents our comparative results from being skewed by the 
audio modality and the audio-visual fusion component used. Finally, to allow meaningful speechread-
ing results (in terms of recognition accuracies achieved and their “spread”) and to keep data collection 
size requirements manageable, we focus our study on a small-vocabulary recognition task, namely that 
of connected-digit strings.

We irst develop an appearance-based visual front-end that extracts features for frontal and proile 
videos in a similar fashion. The adopted algorithmic approach shares common components across 
views, without favoring one over the other, and allows easy generalization to additional views in the 
future. In more detail, it is based on AdaBoost statistical classiiers of faces and facial features (Viola 
and Jones, 2001) that are used to track rectangular region-of-interests containing the mouth with the 
same resolution across views. Visual features are then extracted using the identical procedure for both 
views. It should be noted that the problem is signiicantly more challenging in the proile case, due to 
the more limited area where the facial features are contained and the fact that some are occluded, hence 
removing redundancy and symmetries present in the frontal case – see also Figure 2. Nevertheless, our 
proposed approach results in satisfactory tracking performance. 

Following visual feature extraction, the remainder of the chapter focuses on three key issues with 
respect to automatic speechreading across the two views of interest:

a.  Comparing frontal and proile visual speech recognition to quantify the performance degrada-
tion; 

b.  Fusing the available synchronous camera views for improved recognition in scenarios where both 
views are available for use; and

c.  Recognizing visual speech using a single pose-invariant statistical model, regardless of which of 
the two camera views the test data belongs to. 

Figure 1. Examples of practical scenarios where frontal AVASR is inadequate: (a) Driver data inside 
an automobile; (b) Mouth region data from a specially designed audio-visual headset; (c) Data from a 
lecturer captured by a pan-tilt-zoom camera inside a smart-room. 
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Speciically, for the latter, a feature normalization approach between poses is investigated. This 
approach, based on a linear regression technique, is analyzed in more detail later on.  Following this 
analysis, a description of the basic visual speech recognition system employed in this work, including 
a brief description of the fusion of the two camera views is given. The latter part of this book chapter 
describes our experiments and provides results concerning system performance investigating points 
(a)–(c) above. We then conclude the chapter with a brief summary and hypothesize possible avenues 
for future work, respectively. 

BACkg Round

Although nearly all audio-visual speech research focuses on frontal data of the speaker’s face or mouth 
region, there exists some work that discusses non-frontal views. Following on from the early work of 
Sumby and Pollack (1954), Neely (1956) conducted some human perception studies that found the when 
the angle from the frontal view was increased, there was a decrease in speech intelligibility. Similarly, 
Jordan & Thomas (2001) found that human identiication of visual speech becomes more dificult as the 
angle (from frontal to proile view) increases – a rather intuitive inding. Proile views have also been 
used in visual speech synthesis, often in conjunction with frontal views, or as part of a 3D head model 
(Morishima et al., 1989; Lavagetto, 1995; Hovden & Ling, 2003). Finally, with respect to automatic 
speechreading and AVASR, only three research groups – to our knowledge – have focused on the use 
of non-frontal data. A brief overview of their work follows.

The irst group has considered proile-only AVASR, in work reported by Yoshinaga et al. (2003, 
2004) and Iwano et al. (2007). In these papers, the authors extract up to four-dimensional visual speech 
features from proile videos of the mouth region of Japanese speakers uttering connected digit strings, 
and then fuse them with the audio channel, resulting in improved ASR performance. The visual features 
are geometric-based (proile lip angle and its irst derivative) and/or appearance-based (optical low). 

Figure 2. Synchronous (a) frontal and (b) proile views of a subject recorded in the IBM smart-room. In 
the latter case, visible facial features are “compacted” within approximately half the area compared to 
the frontal face case, thus increasing tracking dificulty. 
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They conducted these experiments on a database which consisted of 38 male speakers who uttered 
50 sequences of 4 connected Japanese digits.  No visual-only recognition results are reported, and no 
comparison with frontal AVASR is made. Thus, none of the three focal issues (a)–(c) of our study are 
addressed. 

The second group (Kumar et al., 2007) has conducted frontal and proile speechreading and AVASR 
comparisons on a speaker-dependent isolated word set. The authors employ low-dimensional geometric 
visual features in these comparisons and conclude that proile speechreading is better than frontal. This 
inding seems rather counter-intuitive as the proile view has a reduced amount of visible articulators 
available as noted previously (see Figure 2). However, this result is plausible considering the database (10 
speakers, each uttering 150 words 10 times, captured in easy conditions with a chroma keyed uniform 
background), as well as the simple geometric feature extraction technique used. This is because the lip 
edges and corners would be easily extracted from the proile view compared to the frontal view, due 
to their contrast to the background. It would be expected however, that if state-of-the-art appearance-
based features were used, this would no longer be the case, due to their ability to capture more than 
just corner and edge information. In summary, the study does examines (a) and (b), albeit in a primitive 
way. It does not however discuss issue (c). 

An additional effort is reported by Kumatani & Stiefelhagen (2007). There, the authors consider 
AVASR on a large-vocabulary continuous speech database with three available synchronized camera 
views of the speaker (frontal, proile, and at 45 degrees), using appearance-based visual features. Their 
database consists of 39 male and 5 female speakers, uttering sentences from the TIMIT database. In 
the paper, the authors compare AVASR performance between the frontal and 45-degree views, an in-
vestigation similar to issue (a) of this chapter, but they do not discuss the other two topics of interest 
in our study.  

Other than these three bodies of work, no other attempt has been made to address the problem 
of non-frontal AVASR. Clearly therefore, this chapter advances the state-of-the-art in the ield by 
comprehensively discussing all three issues, (a)–(c), within the same experimental framework. It also 
constitutes a natural continuation of our earlier research reported in Lucey & Potamianos (2006) and 
Lucey et al. (2007) that separately treated issues (a, b) and (c), respectively. In particular, this chapter 
for the irst time introduces a visual front-end that extracts features for frontal and proile videos in a 
similar fashion, without favoring one over the other, thus providing truly unbiased results in our study. 
Furthermore, the feature normalization approach across poses, irst introduced in Lucey et al. (2007), is 
discussed in great detail, accompanied by a large number of experiments later on in this book chapter 
to quantify its effectiveness with respect to feature vector size, test data distribution across views, and 
the introduction of a third view.

The  IBm SmART-Room  dATABASe

As discussed in the Introduction, the scenario of interest that has been the driving force of our work 
is that of meetings or lectures inside smart rooms (Pentland, 1998; Gatica-Perez et al., 2005; CHIL). 
These rooms are equipped with a number of audio-visual sensors, including microphone arrays, ixed 
and pan-tilt-zoom (PTZ) cameras. This scenario has been of central interest in the recently concluded 
“Computers in the Human Interaction Loop” (CHIL) integrated project, funded by the European Union. 
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A schematic diagram of one of the smart rooms developed for this project, in particular the one located 
at IBM Research, is depicted in Figure 3(a).

Clearly, audio-visual speech technologies, such as speech activity detection, source separation, and 
speech recognition, are of prime interest in this scenario, due to overlapping and noisy speech, typical 
in multi-person interaction, captured by far-ield microphones. Data from the smart room ixed cameras 
are of insuficient quality to be used for this purpose, as they typically capture the participants’ faces in 
low resolution – see also Figure 3(b).  On the other hand, video captured by the PTZ cameras can provide 
high resolution data, assuming that successful active camera control is employed, based on tracking the 
person(s) of interest (Zhang et al., 2007). Nevertheless, since the PTZ cameras are ixed in space, they 
cannot necessarily obtain frontal views of the speaker. It is therefore apparent that speechreading from 
non-frontal views is required in this scenario, as well as fusion of multiple camera views, if available. 
This scenario is the prime focus in the book chapter.

Figure 3. (a) A schematic diagram of the IBM smart-room developed for the purpose of the CHIL proj-
ect. Notice the ixed and PTZ cameras, as well as the far-ield table-top and array microphones. (b) 
Examples of image views captured by the IBM smart-room cameras. In contrast to the four cameras 
(two upper rows), the two PTZ cameras (lower row) provide closer views of the lecturer, albeit not 
necessarily frontal. 
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To facilitate our investigation into automatic speechreading across multiple views, we have collected an 
audio-visual database in this smart room under the constrained conditions described in the Introduction. 
We refer to the resulting corpus as the IBM smart-room database (which due to proprietary constraints 
is currently not publicly available). In particular, a total of 38 subjects uttering connected-digit strings 
have been recorded, using two microphones and three PTZ cameras. Of the two microphones, one is 
head-mounted (close-talking channel – see also Figure 4), and the other is omni-directional, located on 
a wall close to the recorded subject (far-ield channel). The three PTZ cameras record frontal and two 
side views of the subject, and feed a single video channel into a laptop via a quad-splitter and an S-
video-to-DV converter. As a result, two synchronous audio streams at 22 kHz and three visual streams 
at 30 Hz and 368 x 240-pixel frames are available. Among these available streams, two video views 
are employed in this work, namely the frontal and right proile (which is the one “closest” to the proile 
pose – see Figure 4). A total of 1661 utterances from this database are used in the chapter experiments, 
partitioned using a multi-speaker paradigm into 1198 sequences for training (1 hr 51 min in duration), 
242 for testing (23 min), and 221 sequences (15 min) that are allocated to a held-out set. 

VISuAl  FRon T-end  Fo R FRon TAl  And  pRo FIle  VIeWS

For this book chapter, we use the AdaBoost framework of Viola & Jones (2001), later extended by 
Leinhart & Maydt (2002), to perform the mouth region-of-interest (ROI) localization and extraction. 
This framework allows us to generate face and facial feature localizers speciic for each view-point, 
but nevertheless using a consistent approach across both views. These classiiers are trained using the 
OpenCV libraries (OpenCV), and their application requires that the speaker pose is irst determined 
(an issue that is overlooked in this chapter). Following this step, ROIs are obtained for each view at the 
same resolution (32 x 32 pixels), and visual feature vectors extracted using the same approach for both 
views. The following subsections detail the speciic tracking process for each view-point, followed by 
the visual feature extraction stage.

Figure 4. Examples of synchronous frontal and proile video frames of four subjects from the audio-
visual database used in this chapter.
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Frontal Ro I l ocalization and Tracking

The positive examples used for training the AdaBoost classiiers were obtained from a set of 847 train-
ing frontal images, chosen at random from the training set sequences of the database discussed in the 
previous section, and each manually annotated with 17 facial points. Among these points, it was deemed 
that nine were suficient to assist in extracting the frontal mouth ROI. These points were the left and 
right eyes, nose, the left and right mouth corners, top and bottom of the mouth, the mouth center and 
chin – see also Figure 5.

The resulting 847 positive examples for the face were further augmented by including rotations in the 
image plane by ±5 and ± 10 degrees, as well as mirroring the images, providing a total of 5082 positive 
examples. All were normalized to 16 x 16 pixels, based on an inter-eye distance of 6 pixels. The nega-
tive face examples consisted of a random collection of approximately 5000 images that did not contain 
any faces. Some of them were of the frame background, as well as random objects.

In contrast to the face examples, since a number of facial features were located so close to each 
other (a matter of pixels in some cases), it was decided not to include rotations to the set of 847 positive 
examples of each of the nine facial features. In terms of template size, the eye classiiers were trained 
using image templates of size 20 x 20, the nose and chin employed a template size of 15 x 15, and the 
right, top, left and bottom mouth templates were chosen to be 10 x 10. Finally, the mouth center tem-
plates were of size 24 x 24.

In particular, the latter classiier was used to ind a coarse ROI, so that further reinement could take 
place, hence the larger template size. Notice that all these templates were obtained from normalized face 
images of size 64 x 64, based on an inter-eye distance of 32 pixels. As the face localization step limits 
the facial feature search space, the negative examples for the various facial features only consisted of 

Figure 5. Nine points used for facial feature localization on frontal faces: (a) right eye, (b) left eye, (c) 
nose, (d) right mouth corner, (e) top mouth, (f) left mouth corner, (g) bottom mouth, (h) mouth center, 
and (i) chin
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images of other facial features. This was done to alleviate confusions that might have occurred due to 
various facial features looking alike, for example an open mouth could appear like an eye under certain 
illumination conditions.

To validate the approach and determine which features could be reliably employed for ROI local-
ization, all classiiers were tested on a small set of 37 frontal images. The detection accuracy results 
of the nine facial feature classiiers are depicted in Table 1. There, a feature is considered accurately 
detected when the distance between its estimated position and annotated location is less than 10% of 
the inter-eye distance in the frame – similarly to the work of Jesorsky et al. (2001). As it can be seen 
from Table 1, most of the facial features were located at a pretty high rate, except the chin and top and 
bottom mouth. Since the inal extracted mouth ROI needed to be normalized for scale and rotation to 
enforce alignment across all ROI images, two geometrically aligned points had to be found for this to 
happen. In the literature, normally eye locations are used for such an alignment. However, it was found 
heuristically that this metric was not ideal for scaling the mouth, as there is a great deal of variability in 
mouth shape and size, which is not highly correlated to the inter-eye distance. As such, it was determined 
that the left and right mouth corners be used instead, since these gave much better reference points for 
scale and rotation normalization.

The frontal mouth localizer and tracker used to extract the mouth ROI for the frontal pose was as 
follows. Given the video of a spoken utterance, face localization was irst applied to estimate the position 
of the speaker’s face. Once the face was located, the eyes were searched for over speciic face regions 
(based on training data statistics). Once the eyes were localized, a general mouth search region was 
speciied. The mouth center classiier was then used to reine this search region. The resulting mouth 
region was subsequently used as the search region to locate the right and left mouth corners. Once 
these two points were found, the extracted mouth ROI was rotated so that these two points were aligned 
horizontally and scaled to be 20 pixels apart to yield a inal 32 x 32 pixel ROI. Notice that the ROI was 

Facial
Feature

Localization
Accuracy (%)

Right Eye
Left Eye
Nose
Right Mouth
Top Mouth
Left Mouth
Bottom Mouth
Center Mouth
Chin

91.08
89.47
89.47
91.08
81.08
89.47
83.78
89.47
67.57

Table 1. Facial feature detection for frontal head pose. The four features considered for ROI normaliza-
tion are depicted in bold. 
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downsampled from much higher resolution (approximately 80 x 80 pixels on average). Such downsam-
pling keeps dimensionality low without adversely affecting lipreading performance, as reported in the 
work of Jordan & Sergeant (1998). Notice also that the inal ROI contained most of the lower part of the 
face, which is known to beneit lipreading by both machines (Potamianos & Neti, 2001) and humans 
(Summerield, 1989).

Following ROI localization, the ROI is tracked over consecutive frames. If the detected ROI is 
too far away compared to a previous frame, then this is regarded as a detection failure, and the previ-
ous ROI location is used. A mean ilter is then employed to smooth tracking. Due to the speed of the 
Viola-Jones algorithm, this process is performed at every frame. Prior to the start of the full process, 
an initialization phase is executed to obtain a irst “lock” on the location of the various facial features. 
Figure 6 depicts face and facial feature localization examples from the visual front-end and the inal 
extracted mouth ROIs.

Proile ROI Localization and Tracking

The ROI localization and tracking for the proile view was developed in a similar manner to its fron-
tal counterpart. Due to the compactness of the facial features in the proile view, only seven of the 17 
manually annotated facial features were used. These were the left eye, nose, the top, center, and bottom 
of the mouth, the left mouth corner, and the chin, as depicted in Figure 7. Similarly to the frontal data, 
a set of 847 images were available for training and 37 images for validation purposes.  This provided 
847 positive examples for each of the seven facial feature classiiers. The resulting face training set also 

Figure 6. Mouth ROI extraction examples. The upper rows show examples of the localized face, eyes, 
mouth region, and mouth corners. The lower row shows the corresponding normalized mouth ROIs (32 
x 32 pixels).
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included rotations in the image plane by ±5 and ±10 degrees, providing 4235 positive examples. A similar 
amount of negative examples of the background were also employed in training. Approximately 5000 
negative examples were used for each facial feature, consisting of images of the other facial features 
that surrounded its location, since these were the most likely to cause false alarms.

One dificulty experienced was selecting appropriate facial feature points to use for the training 
image normalization (scaling and rotation). In the frontal face scenario, eyes are predominately used 
for this purpose, but in the proile-view case a pair of geometrically aligned features does not exist. 
Instead, the nose and the chin were chosen, with a normalized constant distance of 64 pixels between 

Figure 7. Points used for facial feature localization on the proile pose: (a) left eye, (b) nose, (c) top 
mouth, (d) mouth center, (e) bottom mouth, (f) left mouth corner, and (g) chin. The center of the depicted 
bounding box around the left eye deines the actual feature location. 

Table 2. Facial feature detection for proile head pose. The two features considered for ROI normaliza-
tion are depicted in bold. 

Facial 
Feature

Localization
Accuracy (%)

Left Eye
Nose
Top Mouth
Center Mouth
Bottom Mouth
Left Mouth Corner
Chin

86.49
81.08
78.37
81.08
72.97
86.49
62.16
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them. This choice was dictated by the head pose variation within the dataset that had less of an effect 
on the chosen metric, compared to other possibilities (such as eye-to-nose distance, etc.). Based on the 
resulting normalized training faces, the left mouth corner and the top, center, and bottom mouth clas-
siiers were trained on templates of size 10 x 10 pixels. Both nose and chin classiiers were trained on 
templates of size 15 x 15 pixels, whereas the eye template was slightly larger, at 20 x 20 pixels.

The localization results of the various facial features from this validation set provided an indication 
of what particular features would give the best chance of reliably tracking the ROI. These results are 
shown in Table 2, where a feature is considered incorrectly localized if the location error is larger than 
10% of the annotated nose-to-chin distance. From these localization results, it can be seen that along 
with the left eye, the left mouth corner yielded the best performance. This shows the usefulness of em-
ploying a corner for facial feature localization, as it provides a unique shape within the face which is 
hard to get confused with other objects. As the left eye and left mouth corner yielded the best results, 
it was decided to use these two points for scale normalization. The only difference between using the 
left eye and left mouth corner, compared to the nose and chin was changing the scaling factor from 64 
to 45 pixels.

The whole procedure of ROI localization and tracking was similar to that for the frontal pose. Given 
the video of a spoken utterance, face localization was irst applied to estimate the location of the speaker’s 
face. Once the face was located, the left eye and nose were searched over speciic regions of the face 
(based on training data statistics). From these locations, a generalized mouth region was estimated, and 

Figure 8. Examples of accurate (a-d) and inaccurate (e,f) results of the localization and tracking system. 
In (f), it can be seen that the subject exhibits a somewhat more frontal pose compared to the proile view 
of the other subjects. 
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from this the left mouth corner was located. The next step was to deine a scaling metric, so that all 
ROI images would be normalized to the same size. As mentioned previously, the ratio of the vertical 
distance between the left eye and left mouth corner over the normalization constant of 45 pixels was 
used to achieve this. A 48 x 48 normalized ROI based on the left mouth corner was then extracted. The 
ROI was subsequently downsampled to 32 x 32 pixels, for use in the lipreading system.  Following ROI 
localization, the ROI was tracked like in the frontal scenario. Overall, the accuracy of the proile visual 
front-end was very good. Examples of the extracted proile ROIs are shown in Figure 8. A major fac-
tor affecting performance was random head movement and some head pose variability, where subjects 
exhibit a somewhat more frontal pose than the majority – see also Figure 8(f).

Visual Feature extraction

For both frontal and proile view-points, the same visual feature extraction process was applied. Fol-
lowing ROI extraction, the mean ROI over the utterance was removed. This approach is very similar 
to cepstral mean subtraction (CMS) in the audio domain and is known as feature mean normalization 
(FMN). Our implementation is similar to that of Potamianos et al. (2003), however in our approach 
we performed normalization in the image domain instead of the feature domain. A two-dimensional, 
separable, discrete cosine transform (DCT) was then applied on the resulting mean-removed ROI, 
with the M = 100 top DCT coeficients retained, according to a zig-zag pattern. An intra-frame linear 
discriminate analysis (LDA) step was then used to project the features down to N = 30 dimensions, 
resulting in a “static” visual feature vector. 

Subsequently, in order to incorporate dynamic speech information, ive of these neighboring static 
feature vectors over ± J adjacent frames were concatenated, and were projected via an inter-frame LDA 
step to yield a “dynamic” visual feature vector, extracted at the video frame rate of 30 Hz.  For the 
experiments in the next section, dynamic features of dimensionality P ranging from 10 to 70 will be 
analyzed, in order to examine the effect on the transformation approach introduced in the next section. 
The classes used for LDA matrix calculation were the hidden Markov model (HMM) states, based on 
forced alignment employing an audio-only HMM on the far-ield audio channel of the database.

VISuAl  FeATuRe no RmAl IzATIon  ACRo SS VIeWS

Visual features extracted using the techniques discussed above contain important speech information. 
This can be exploited, when the features are fed into an automatic speechreading system, as discussed 
in the next section. However, although their extraction follows the same approach for both frontal and 
proile views, one expects the feature spaces to “differ” signiicantly across the two views. Feature 
mismatch is known to pose challenges to ASR. Therefore, in the case of automatic speechreading, the 
use of view-dependent visual speech models may be required, an approach that does not scale well if 
a continuum of possible views is expected. However, if some sort of feature-space invariance could be 
determined, then the use of a view-independent visual speech model becomes viable. This latter method 
has the advantage that it removes the need of training and keeping multiple models active, when the 
camera-speaker view-point may vary.

Seeking feature invariance to reduce train/test mismatch for improved classiication is an active 
research topic. For example, in acoustic-only ASR, cepstral mean subtraction (CMS) and RASTA 
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processing (Mammone et al., 1996; Hermansky & Morgan, 1994) are known approaches, aiming to 
reduce mismatch caused by channel conditions and noise. In the visual domain, techniques such as 
linear regression have been used in face recognition, as a means to project undesired non-frontal face 
images into frontal ones. Blanz et al. (2005) cite that the advantage of doing so is due to the fact that 
most state-of-the-art face recognition systems are optimized for frontal faces, with their performance 
degrading signiicantly when presented with non-frontal faces. Interestingly, linear regression has also 
been investigated in the audio-visual speech literature for speech enhancement, namely as a means to 
estimate clean audio features from a noisy audio-visual feature vector (Girin et al., 2001; Goecke et 
al., 2002).  

Motivated by these works, this section introduces a linear regression based approach that normalizes 
visual speech features into the feature space of a desired view-point, allowing speech modeling by a 
single statistical model. The approach is summarized in the following two subsections, further delving 
into implementation details. 

l inear Regression for View-Invariance

Blanz et al. (2005) cite two possible ways of performing view-invariant face recognition, either via 
a view-point transform or a coeficient-based approach. The view-point transform approach acts in a 
pre-processing manner to transform/warp a face representation (i.e. image or feature vector) of an un-
desired view into the desired one – a one-to-one mapping. Coeficient-based recognition on the other 
hand attempts to estimate the face representation under all views given a single one (i.e., given just one 
view of the face, all other potential views are estimated such as right proile, 45o right, frontal, 45o left, 
left proile etc.), otherwise called the lightield of the face (Gross et al., 2004) – a one-to-many map-
ping process. Although it is not clear which approach is superior, the view-point transform approach 
is employed in this chapter as only one view is required. The reason behind this choice is the fact that 
almost all automatic speechreading systems to date have been optimized for frontal views and using 
the view with the most visible articulators present seems like a viable approach. This is similar to the 
motivation cited by Blanz et al. (2005) for their face recognition system.

The most common way to perform this approach is to estimate a linear regression (transformation) 
matrix W between a training set consisting of N examples of the undesirable viewpoint X, and their 
synchronized target examples in the preferred viewpoint T (Bishop, 2006). Matrix W is then computed 
by minimizing

][)]()[( WWXWTXWT TT trtr ⋅+−− ,       (1)

where X = {x1, …, xN}, T = {[t1,1]T, …,[tN,1]
T} and xn and tn are synchronous data vectors. A unit bias has 

been added to T to allow for any ixed offset in the data. In addition, regularization term λ has been 
introduced into (1) as a means to avoid over-itting, a common issue in linear regression that is further 
discussed in the next subsection. Based on (1), the solution for W becomes (Bishop, 2006)

1)( −+= XXTXW TT
.         (2)
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Figure 9.  Schematic of visual feature normalization for view-invariance: Features xn extracted from an 
undesired view (e.g. proile) are transformed into features tn in the target view space (e.g. frontal) via 
a linear regression matrix W. The matrix is calculated ofline based on synchronized visual features T 
and X from the two views. 

Figure 10. Quality of proile ROI projection into the desirable frontal view, based on the regression 
training set size and the value of the regularization parameter. 
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In our AVASR experiments described at the end of the chapter, transformation matrix W was es-
timated using the input visual speech features of a particular viewpoint, X, obtained in parallel with 
synchronized features extracted from the desirable viewpoint, T. This was deemed preferable to trans-
forming the entire raw image patch of mouth data (ROI), as it reduced vector dimensionality (P varies 
from 10 to 70, compared to the mouth ROI vector that has a dimensionality of 32 x 32 = 1024). Matrix 
W, therefore, was used to project visual speech features (xn) of an unwanted viewpoint into estimates 
of desirable viewpoint features ( nt̂ ). This process is depicted in Figure 9.

Importance of the Regularization Term (λ)

The regularization term, λ, was introduced in the previous subsection to control the problem of overit-
ting. Overitting refers to the situation where a model has too many parameters compared to the amount 
of available training data, as a result perfectly itting to that data, but unsuitable to model unseen events. 
In the context of the linear regression in (1), λ allows a complex model to be produced, by weighting 
values not supported by the training data towards zero. In the practical application of (1), the following 
issues are of interest:

• What value of λ should be used?
• What impact does the amount of training data have on the value of λ?

To help address these issues, we proceed to a demonstration of the effectiveness of linear regression 
over various values of λ and across a different number of training images. In this experiment, matrix 
W was trained from whole frontal and proile grayscale ROI images (32 x 32 pixels), instead of their 
corresponding visual features. Different Ws were calculated for λ = {10-2, 100, 102} and for three sizes 
of the training image set, namely 1k, 10k, and 75k. These training images were randomly selected from 
the entire training set (~ 200k images). The resulting regression matrices were then used to project a 
previously unseen undesirable proile ROI image into the desired frontal view. The process is depicted 
in Figure 10.  

As can be seen from Figure 10, the resemblance of the actual frontal ROI image and the projected 
proile ROI varies according to the number of training images used and the value of λ. For example, 
when only 1k training images were used and λ = 10-2, the projected proile ROI looks like a noisy ghost-
like ROI, a far-cry from the original frontal one, due to overitting. In comparison, when the value of 
λ was increased to 100 and 102 using 1k training images, the respective projected proile ROIs looked a 
lot more like the original. Once however the number of training images used is increased (10k and 75k), 
the value of λ has little to no observable difference on the projected proile ROI quality.

This experiment highlights the importance of the regularization term λ as it alleviates the problem 
of overitting, when the number of training examples is limited. However, when there is an abundance 
of training examples, the value of the regularization term is insigniicant, as the large amount of train-
ing data ensures that a model which generalizes well across the data can be obtained. As such, for the 
experiments conducted at the end of the Chapter, the value of λ was set to 100, even though it was not 
important as the number of training frames was close to 200k.
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VISuAl  Spee Ch ReCogn ITIon  And  STReAm InTeg RATIon

In the previous two sections we discussed how to extract visual speech features for the frontal and 
proile views and how to transform them across views. As already mentioned, such features can be fed 
into an automatic speechreading system to yield an estimate of the spoken word sequence. In this work, 
we employ a hidden Markov model (HMM) based ASR system for this purpose. In particular, for the 
connected-digit recognition task considered here, eleven nine-state, left-to-right, whole-word models are 
used, one for each digit (both “oh” and “zero” are included), with seven Gaussian mixtures per state. A 
silence and short-pause model are also employed. All models are bootstrapped from a segmentation of 
the audio channel of the database, obtained by an audio-only HMM with identical topology, and trained 

Figure 11. The various automatic speechreading modeling scenarios considered in this chapter: (a) 
Single-view modeling for dedicated frontal or proile camera views. (b) Fused multi-view system using 
two synchronous cameras capturing both frontal and proile views. (c) Single-camera, view-independent 
system, possibly using view-normalized visual features. 
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by the expectation-maximization algorithm. For testing, Viterbi decoding is used with no grammar or 
language model present (i.e., no constraints are imposed on the digit string length). The HTK toolkit is 
utilized for both system training and testing (Young et al., 2002).

As discussed in our Introduction, we are interested in three particular aspects of the problem of 
visual speech recognition concerning the two available views, also depicted in Figure 11. The irst (see 
Figure 11(a)) concerns the automatic speechreading of videos at a consistent view (frontal or proile), 
using a dedicated HMM for the particular view in question. These HMMs are of course trained on visual 
speech features of the corresponding view. Experiments concerning this approach are reported in the 
irst part of the next section and are of interest in addressing the question of how proile speechreading 
compares to the traditional frontal one.

The second scenario of interest is the “multi-view” one, where the speaker’s head is captured by 
multiple synchronized cameras, each viewing the face at a ixed view. In the simpliied investigation of 
this chapter, the scenario translates into combining (fusing) the frontal and proile view feature streams, 
aiming at improved recognition compared to either single-view system alone (Figure 11(b)). Such com-
bination can be achieved using the feature or decision fusion strategies (Potamianos et al., 2003). In 
the former, visual features extracted from the two streams are concatenated, and the resulting features 
projected by LDA to a lower-dimensional space (for example, equaling that of the initial streams), in 
order to avoid the curse of dimensionality. Due to the fact that LDA is also used in the single-stream 
visual feature extraction, this process is referred to by Potamianos et al. (2003) as hierarchical LDA 
(HiLDA). 

In contrast, in decision based fusion, the concatenated features are considered generated by a 
multi-stream HMM (MSHMM) – in our case, a two-stream one. This HMM arises by combining 
two single-stream HMMs of identical topology (states and transitions), one modeling the frontal- and 
one the proile-view visual features. The state-conditional observation log-likelihood of the resulting 
HMM is a linear combination of the ones of its two single-stream HMM components. In the multi-view 
experiments reported in the next section, the multi-view MSHMM parameters are obtained using the 
expectation-maximization algorithm (Young et al., 2002). The weights used in the linear combination 
of the two log-likelihoods are estimated at the end of the training procedure, by minimizing the word 
error rate on the held-out data set (see database and multi-view experiment descriptions).

The third scenario of interest is the one that a single camera captures a subject in a view that may 
vary within a set of pre-deined views. In our simpliied study, this set contains two “extreme” views 
(frontal and proile), with each utterance being available at the frontal or proile view, known a-priori, 
with no signiicant view variation over its duration (see also Figure 11(c)). For automatic speechreading 
in this scenario, one can consider a system that has both frontal and proile HMMs available, using the 
appropriate view-dependent model. This approach however requires training and storing both HMMs 
– a situation that does not scale well as the number of possible views increases. A much more desir-
able alternative is to use a single HMM that can generalize well over both views. This can be achieved 
based on the feature normalization technique discussed in the previous section. Use of such features, 
for example, allows a single-stream frontal HMM to be applied to proile views. Of course, this requires 
training and storing feature regression matrices, but both requirements are signiicantly less than those 
for training and storing HMMs. The technique is investigated in the view-invariant speechreading ex-
periments, and it is compared against the alternative modeling approach of using a single-stream HMM 
trained on all available data (i.e., on both frontal and proile views). 
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expe RImen TS

We now proceed to our experiments, with the irst three experiments investigating issues (a), (b), and 
(c), as stated in the Introduction and depicted in Figure 11. Particular emphasis is placed on (c), namely 
single-camera, view-independent speechreading, with two additional sessions devoted to it. One ana-
lyzes performance with respect to test data distribution across views (for both frontal and right proile 
data), and another discusses the scenario where a third view is introduced (frontal, right proile and left 
proile data).

Frontal vs. Proile Speechreading

Visual-only ASR performance for both frontal and proile views is depicted in Figure 12. There, vari-
ous values of J (one-side temporal window) and P (inal visual feature dimensionality – see also the 
Visual Feature Extraction section) are considered. As it can be observed in Figure 12(a), performance 
of frontal features improves when the temporal window J is increased from 1 to 2, which highlights 
the importance of incorporating temporal information into the feature set. When however J increases 
past 2, performance levels off with no real improvement gained. It must also be noted that there is no 
real difference between P = 30 to 60 features for J ≥ 2. In summary, the lowest word error rate (WER) 

Figure 12. Comparison of the automatic speechreading performance in word error rate (WER), %, 
between: (a) frontal and (b) proile views, using dedicated HMMs trained on the particular view. Perfor-
mance is depicted as a function of feature dimensionality, P, and of one-side length of temporal window, 
J, used to incorporate dynamic speech information. 
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attained is 27.66%, achieved for J = 2 and P = 40. For the proile features (see Figure 12(b)), a similar 
trend to the frontal view can be observed. The best performance is obtained for P = 40 features and J 
= 2, resulting in a WER of 38.88%. This corresponds to an absolute degradation of 11.22% in WER, or 
a 40% relative WER increase, compared to the frontal-view system.

The degradation from frontal to proile speechreading can be attributed to the visible articulators 
that the system has available in the respective views. For example, in the frontal scenario, the teeth, 
lips, tongue, and jaw may be visible. In the proile view however, only the lips and jaw are available. 
An additional dificulty with the proile view lies in the background. In the frontal scenario, a small 
localization/tracking error may cause slight only appearance changes, due to the somewhat uniform 
background around the lips (i.e., speaker skin). In contrast, poor localization/tracking in the proile 
view may capture an excessive amount of non-facial background, causing signiicant ROI appearance 
changes. To counteract this, a face contour algorithm could be applied. However, this can introduce er-
rors into the system due to poor detection, while also being computationally expensive (see Potamianos 
et al. (2003) for details). 

Considering the dificulties in extracting visual speech from the proile view, the 38.88% WER 
achieved is still extremely useful, and much better than pure chance. This becomes apparent when the 
proile visual stream is fused with the audio channel. Although the combined audio-visual scenario is 
outside the scope of this book chapter, it is worth mentioning that Lucey et al. (2006) report substantial 
ASR gains over audio-only results.

multi-View Speechreading

Although proile automatic speechreading is signiicantly inferior to using frontal data, there may still 
exist useful information in proile data not captured in the frontal view. Under this hypothesis, fusing 
visual speech representations from both views may be advantageous, assuming that synchronous data 
streams are available from both. Following the presentation in the Visual Speech Recognition and 
Stream Integration section, we employ both feature fusion (HiLDA) and decision-based integration 
(using MSHMMs) for combining frontal and proile visual features. Based on the results of the previ-
ous subsection, 40-dimensional features are extracted from each view and concatenated. Under HiLDA 
fusion, the resulting 80-dimensional vectors are projected to 40 dimensions by means of LDA. In the 
MSHMM implementation, two systems are considered: One that employs all 40 dimensions from each 
of the two streams, and a second one that uses the top 20 only features from each view (thus resulting 
to a 40-dimensional concatenated vector). In both cases, MSHMM integration weights are estimated to 
0.8 and 0.2 for the frontal and proile streams, based on minimizing the WER on the held-out set.  

The results of the above experiments are depicted in Table 3. There, it can be observed that combining 
the two views is beneicial, reducing WER in all cases, compared to single-view speechreading. The 
best performance is achieved by the MSHMM that uses 20 features per stream. The resulting 25.36% 
WER represents a 2.3% absolute WER reduction (8% relative) over the frontal view. This demonstrates 
that there indeed exists speech information in the proile view, not captured in frontal data. This is pos-
sibly due to lip protrusion visibility in proile views.  In terms of the fusion approach employed, Table 
3 suggests that MSHMM-based decision fusion is superior to plain feature combination. This may be 
due to the explicit modeling of the reliability / information content of the two feature streams, possible 
in the MSHMM formulation via the use of combination weights. This fact becomes even more impor-
tant, when there exists inter- or even intra-utterance variation in the quality of the two feature streams 
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– due to poor tracking, or other sources of visual degradation, for example. Such variation cannot be 
explicitly modeled in the feature fusion framework (Potamianos et al., 2003).

View-Invariant Speechreading

We now proceed to the third aspect of our investigation, namely that of employing a single statistical 
model to recognize visual features from multiple views. To simplify our discussion, we denote by F a 
set containing frontal data only, by R a set containing proile data (recall from the database description 
that we used the right-proile view of our data), and by (Fa , Rb) a set containing a% of frontal and b% 
of right proile data, where of course a + b = 100. In addition, we denote projected data (in the visual 
feature space) using the linear regression approach by ● ;́ for example F΄ denotes frontal features pro-
jected onto the proile feature space, and R΄ stands for proile ones projected to the frontal-view feature 
space. In general, we are interested in the performance of single-view HMMs (trained on either F or R 
data), as well as of HMMs trained on multi-view data (i.e., combination of F and R data – similarly to 
“multi-style” training in the ASR literature), when presented with various test sets containing F and/or 
R data. This means that the feature normalization approach introduced will only be considered at test-
ing, but not during training. 

In particular, in this section we consider three systems, developed on training set data:
 

• F, i.e., all 1198 frontal videos;
• R, namely, their synchronous 1198 proile videos; and
• (F50, R50), i.e., trained on 599 frontal and 599 proile videos, chosen by a random split of the 1198 

training set videos among the two available views.

The systems are evaluated on sets F, R, and (F50, R50) of the database test set. Similarly to the training 
set split, the latter is made up by 121 frontal and 121 proile test video sequences, obtained by a random 
selection of the 242 test videos among the two views. In addition to the above, test sets F (́projected 
frontal features into proile), R΄ (proile into frontal), (F 5́0, R50) and (F50, R΄50) are also considered.

Table 3. Multi-view automatic speechreading performance in WER, %, using both feature fusion (HiLDA) 
and decision fusion (MSHMM) based systems. Frontal- and proile-view system performance is also 
shown.  

View Features WER, %
Frontal
Proile

40
40

27.66
38.88

Multi-view
Multi-view
Multi-view

HiLDA – 40
MSHMM (20 + 20)
MSHMM (40 + 40)

27.50
25.36
26.19
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An additional goal of these experiments is to investigate the effect of the feature dimensionality on 
the effectiveness of the regression approach. For this purpose, all systems are trained and tested using 
features of dimensions ranging from P = 10 to 60. It is also worth mentioning that all transformation 
matrices are calculated ofline by means of (2). For example, transformation matrix WR, which projects 
proile features into the frontal view, is calculated employing the full set of training frontal features (F) 
as the target variable T, and the full set of training proile features (R) as the input variable X. Similarly, 
transformation matrix WF, which projects the frontal features into the proile view, is estimated using 
the opposite coniguration.

A irst set of experiments is summarized in Figure 13. There, the three trained systems (i), (ii), and 
(iii), shown left-to-right, are evaluated on test sets F, R, F ,́ and R .́ The irst observation to make is 
that the best performance achieved on sets F and R is under matched training and testing conditions, 
namely by the frontal-view system tested on F and by the proile-view system tested on R. The best 
such numbers have already been reported in the frontal vs proile speechreading experiments (see also 
Figure 12 and Table 2), as 27.66% and 38.88% WERs respectively, both for P = 40.        

As expected, when each system is tested on features of the other view, the features are essentially 
recognized as noise, due to the extreme train/test mismatch. In both cases (frontal-view system tested 
on R, or proile-view one tested on F), the WER reaches approximately 87%. Such mismatch can be 
effectively reduced by the projection approach: For example, the frontal-view system (i) exhibits dra-

Figure 13. Visual-only WER, %, of three automatic speechreading systems: (i) trained on frontal data; 
(ii) trained on proile views; and (iii) multi-style trained, 50% on frontal and 50% on proile views. All 
systems are tested on frontal and proile views. In addition, systems (i) and (ii) are tested on view-nor-
malized features to reduce training/test mismatch, when presented with the opposite view. Results are 
depicted as a function of visual feature dimensionality, P, ranging from 10 to 60. 
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matic WER improvement from 87.07% (when tested on R) to 54.85% (on R΄).   Similarly, the WER of 
proile-view system (ii) on frontal data gets reduced from 87.45% (when tested on F) to 42.97% (on F΄). 
These results are reported for feature dimensionality P = 20 that yields the highest improvements. When 
the number of features however is increased, the projection approach gradually looses its effectiveness, 
with WER increasing from 54.85% (when P = 20) to 74.78% (for P = 60) for the frontal system tested 
on R΄ data, and from 42.97% (when P = 20) to 67.97% (for P = 60) for the proile system tested on F .́ 
In a sense, the effective number of model parameters in (1) are adapted automatically to the training 
set data size (Bishop, 2006).

Another interesting observation concerns the performance of system (iii), trained on multi-view 
data (F50, R50), compared to the two single-view systems. As already mentioned, the single-view models 
are superior when tested on matched data. However, even after feature normalization, they lag behind 
the multi-view system (iii), when tested on mismatched views. More precisely, multi-view system (iii) 
achieves 47.39% WER on proile test data R, well below the 54.85% WER that the frontal-view system 
(i) reaches on mismatched proile test data after feature normalization (i.e., when tested on R΄). Simi-
larly, it achieves 36.41% WER on frontal test set F, which is better than the 42.97% that the proile-view 
system (ii) reaches on normalized data F .́

The above results are reported for feature dimensionality P = 20, and are summarized at the left side 
of Table 4, together with other corresponding results of Figure 13. In addition, Table 4 depicts results 
of the three trained systems (i)–(iii) on three additional test sets that contain 50% frontal-view video 
sequences and 50% proile-view ones. The irst of these test sets is unnormalized, (F50, R50), whereas the 
other two are normalized, one towards the frontal view (F50, R 5́0), and one towards the proile, (F 5́0, R50). 
It is interesting to note that the best WERs of all three systems in this combined test set are close to each 
other: 42.02% WER for the frontal-view models, 42.24% for the proile-view system (both following test 
set normalization), and 41.73% for the multi-view trained system. The latter exhibits a somewhat lower 
WER, which becomes even better if the optimal number of features are used (40.83% for P = 30).

In summary, the above experiments clearly demonstrate the fact that a single statistical model can 
successfully recognize visual speech data from multiple views. This can be achieved by using models 

Table 4. Visual-only WER, %, of three trained systems considered, evaluated on a variety of test sets, 
all reported for feature dimensionality P = 20. 

system trained on system tested on
F R R΄ F΄ (F50, R50 ) (F50, R΄50 ) (F΄50, R50 )

(i):   F 29.18 87.07 54.85 - 58.03 42.02 -
(ii):  R 87.45 39.88 - 42.97 63.93 - 42.24
(iii): (F50, R50 ) 36.41 47.39 - - 41.73 - -
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trained on either of the two available views, but in conjunction with appropriate feature normalization 
of test views mismatched to the training view, or by employing a model trained on data from both 
views. The experiments in this section show that the second approach is preferable, when data from 
both views are equally likely. In the next section, we investigate what happens when the latter assump-
tion is violated.

View-Invariant Speechreading Biased Towards Frontal View

In a practical speechreading application it may occur that one view is more frequent than another. We 
are then interested to investigate how the single-model systems of the previous section compare to each 
other. We therefore consider a hypothetical test case, where the frontal view is dominant, at let’s say 80% 
of the time, with the proile view occurring at 20%. Three automatic speechreading systems are then 
investigated: System (i) used in the previous subsection, trained on 100% frontal-view videos, system 
(iii) used in previous subsection, built on training set (F50, R50), and a new one, system (iv), estimated 
on training set (F80, R20), consisting of 80% of the frontal data (958 utterances) and 20% of the proile 
data (240 sequences), i.e., matching the composition of the testing scenario. Note that the proile-view 
system is not tested, since these experiments are now biased towards the frontal view.

All three systems are evaluated on a set consisting of 80% of the frontal-view sequences of the test 
set (194 sequences) and 20% of proile-view ones (48 videos). In addition to the resulting (F80, R20) test 
set composition, the feature-normalized version (F80, R΄20) is also considered. Results are depicted in 
Table 5, reported for feature dimensionality P = 20. It is clear that the best performance is achieved by 
system (i), trained on frontal-view data, reaching a WER of 33.90%. This result is of course reported 
on set (F80, R΄20), i.e., after regression-based feature normalization of the proile data; without it, WER 
degrades to 40.09% on (F80, R20). It is interesting to note that this result is signiicantly better to both 
multi-view trained systems (iii) and (iv), even for the system trained on the same 80% – 20% data ratio 
among the two views as the test set.

These results demonstrate the merit of the feature normalization approach introduced. Evidently, 
when the models are biased towards one particular view, such as the frontal one here, it is advantageous 

Table 5. Visual-only WER, %, in a scenario where the frontal view dominates the test set. The best per-
formance is achieved by system (i), trained on frontal-view data, of course after the necessary regres-
sion-based normalization of the test set proile views. All results are reported for feature dimensionality 
P = 20.

training-set
composition

test-set
composition

WER
(%)

  (i):      F    (F80, R΄20) 33.90
  (iii):  (F50, R50)    (F80, R20) 39.61
  (iv):  (F80, R20)    (F80, R20) 37.33
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to normalize all views into the better trained one, when testing. It would also be expected that when the 
number of non-dominant views increases, the result will be even more dramatic, as these non-dominant 
views increase data variation. This scenario is the focus of the experiments reported next.

View-Invariant Speechreading Including an Additional pose

In the previous section, it is hypothesized that if the number of views increased, the beneit of feature 
normalization across views would become even more pronounced. To investigate this, a left proile 
view is introduced. Therefore, the speechreading paradigm shifts from the one depicted in Figure 11(c) 
to that of Figure 14. In addition to systems (i) and (iv) discussed earlier, a new speechreading system 
– denoted by (v) – is introduced to accommodate the additional view. This is trained on data dominated 
by the frontal view. For this purpose, a (F80, R10, L10) training set data composition is employed, where 
L denotes the left proile view.  In particular, among the 1198 sequences of the training set, 958 frontal-
view videos, 120 right-proile, and 120 left-proile ones are picked at random.

The systems are evaluated on test sets consisting of frontal-view data (F), right-proile data (R), 
compositions (F80, R20), (F80, R10, L10), and appropriately normalized versions of most above sets towards 
the frontal-view feature space. Notice that test set (F80, R10, L10) consists of 194 frontal sequences and 
24 for each of the two proile views.  For these experiments, the left proile data set is constructed by 
horizontally mirroring the right proile ROI images. Once these ROIs are obtained, the visual feature 
extraction step is performed as described previously. Since the left proile ROIs are just the mirrored 

Figure 14. The automatic speechreading systems considered now recognizes visual speech from frontal, 
right- and left-proile view videos using a single model.
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right proile images, this means that the features are effectively the same due to the DCT step in the 
visual feature extraction process. As the DCT is a laterally symmetrical function (Potamianos and 
Scanlon, 2005), the only difference between left and right proile features is that the odd frequency 
components have opposite polarity, which in turn results in essentially the same visual feature vec-
tors being obtained for both the proile poses (after the LDA step). As such, visual-only recognition 
results using each of these views are identical. Table 6 shows the results of the experiments for visual 
feature dimensionality P = 20. From these, it can be seen that when data of another view is added, the 
beneit from view normalization, used in conjunction with the frontal-view trained system, is more 
substantial, compared to training multi-view systems. Indeed, when only two views are used,   system 
(iv) performance on the (F80, R20) set reaches 37.33% WER, compared to 33.90% of system (i) on set 
(F80, R΄20). However, when all three views are present, i.e. for test set (F80, R10, L10), system (v) obtains a 
worse WER of 39.96%, which is a degradation of around 2.6%, while system (i) performance remains 
approximately steady at 33.81%. 

Similarly to the previous experiments, this can be attributed to the lack of classiication power the 
system possesses to accurately model features across the different views. In comparison, projecting 
the features into a uniform view does not alter speechreading performance. It is expected that further 
degradation would occur to the combined systems when more views are included into the system (i.e., 
±30o, ±45o, ±60o, etc.). However, by utilizing the view-normalizing step, degradation to the overall 
speechreading performance can be minimized.

Con Clu SIon S

Over the past twenty years, literally hundreds of articles have been dedicated to illustrating the beneit 
of using the visual speech information from a speaker’s mouth in addition to the audio signal for the 
task of speech recognition.  Even though all these works have shown that including the visual channel to 
the speech recognition system greatly improves the recognition performance in the presence of acoustic 

system 
trained on

system tested on
F R R΄ (F80, R20 ) (F80, R΄20 ) (F80, R10, L10 ) (F80, R΄10, L΄10 )

(i):   F 29.18 87.07 54.85 40.09 33.90 40.07 33.81

(iii): (F80, R20) 32.46 62.55 57.98 37.33 36.61 41.23 40.76

(v): (F80, R10, L10 )  32.51 69.74 58.02 38.19 37.31 39.96 36.82

Table 6.  Automatic speechreading results in WER, %, showing the effect that an additional pose has 
on performance for P = 20. 
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noise, no deployed AVASR systems exist to date. A major reason for this is that nearly all research in 
the ield has failed to focus on undesirable visual data variability, such as head pose. In an attempt to 
remedy this situation, the work in this book chapter has concentrated on researching and developing 
methods to recognize visual speech across multiple views.    

Within this broad problem, the following three objectives set out in the Introduction were 
achieved:

• The automatic speechreading performance of the proile view was compared to its synchronous 
counterpart in the frontal view. Reasonable speechreading performance was obtained from the 
proile view, albeit, degraded when compared to the frontal view (38.88% vs. 27.66% WER). 

• A novel system which fuses both frontal and proile synchronous features was described, referred to 
as a multi-view visual speech recognition system. It was shown that there does exist complimentary 
information in the proile view, which in turn improved the overall speechreading performance 
(multi-view WER was 25.36%, compared to the frontal WER of 27.66%).

• A uniied approach to automatic speechreading was presented, by normalizing all views to a single 
uniform view. Given only one camera, this view-invariant visual speech recognition system used 
a transformation matrix based on linear regression to project the features of the undesired view 
(proile) into a preferable view (frontal). These experiments were performed for the stationary 
scenario, where the speaker was ixed in one view (i.e. frontal or proile) for the entire utterance, 
known a-priori. This view-normalization step was shown to lessen the train/test mismatch between 
the two views and was shown to be of particular beneit when the speaker was in one view more 
than the other (i.e. frontal over proile). When more non-dominant views were included (such as 
the other proile view), the normalizing step also proved to be of beneit.

FuTuRe ReSeARCh dIReCTIon S

In this book chapter, the irst steps towards inding solutions for the problem of visual speech recogni-
tion from multiple views were investigated, with results from a multitude of experiments involving 
non-frontal views presented for the small-vocabulary task of connected-digit recognition. Experiments 
in this book chapter have focused on the situation where the speaker’s head is constant in one pose 
throughout the entire utterance, which is a slightly unrealistic scenario.

To make this more realistic, there are a couple of scenarios which should be looked at. The irst one 
would be to conduct automatic speechreading experiments on the situation where the speaker head moves 
during the utterance. A further progression on this would be to look at instances where the speaker is 
out of view for a particular camera for a portion of the time, or one particular view may be partially or 
fully occluded by some object such as a speaker’s hand. This particular problem highlights the beneit 
of the multi-view approach as there would be more of a chance that the speaker’s mouth would be in at 
least one of the camera views. Future work in terms of the multi-view visual speech recognition system 
would need to be conducted on dynamically adapting the weights for the various visual streams and 
audio streams. Similar work can be done for single camera systems as well.

In addition to these scenarios, visual variability such as illumination, appearance, speaking style, 
image alignment (registration) and speaker emotion and expression need to be investigated as well. A 
much more robust AVASR system could be obtained if research into speechreading across these variables 
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were investigated. But it must be noted that speaker movement and varying visual environments are 
the most pressing issues facing visual speech recognition and AVASR in general, as very accurate face 
localization and tracking is required, which is an extremely dificult endeavor. However, success in this 
area is imperative if this technology is going to be viable for commercial use in the near future.

Future research on robustness to visual channel variabilities also needs to be conducted on large-
vocabulary data. To facilitate these types of research endeavors, databases which contain such data 
need to become available which can be problematic due to the cost involved in collecting such data as 
well as proprietary issues.
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ABSTRACT

Visual speech recognition is able to supplement the information of speech sound to improve the accuracy 
of speech recognition. A viseme, which describes the facial and oral movements that occur alongside 
the voicing of a particular phoneme, is a supposed basic unit of speech in the visual domain. As in 
phonemes, there are variations for the same viseme expressed by different persons or even by the same 
person. A classiier must be robust to this kind of variation. In this chapter, the author’s describe the 
Adaptively Boosted (AdaBoost) Hidden Markov Model (HMM) technique (Foo, 2004; Foo, 2003; Dong, 
2002). By applying the AdaBoost technique to HMM modeling, a multi-HMM classiier that improves 
the robustness of HMM is obtained. The method is applied to identify context-independent and context-
dependent visual speech units. Experimental results indicate that higher recognition accuracy can be 
attained using the AdaBoost HMM than that using conventional HMM. 

InTRodu CTIon

Brief Review of Research in l ip-Reading

The technique of retrieving speech content from visual clues such as the movement of the lips, tongue 
and teeth is commonly known as automatic lip-reading. 
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It has long been observed that the presence of visual cues such as the movement of lips, facial muscles, 
teeth and tongue may enhance human speech perception (Sumby, 1954). It has also been shown (Petajan, 
1984; Morishima, 2002; Adjoudani, 1996; Silsbee, 1996; Tomlinson, 1996; Chen, 1998; Finn, 1988) that 
the performance of a purely acoustic based speech recognition system will improve with additional 
input from the visual speech elements, especially when the speech sound is swarmed by environmental 
noise. Visual speech processing can also be applied to areas such as speaker veriication, multimedia 
telephony for the hearing impaired, cartoon animation and video games.

In 1984, Petajan developed probably the irst visual speech processor. In this system, the distance of 
geometric measures among different mouth shapes was computed for identifying the visual representa-
tions of word productions. In 1993, Goldschen extended Petajan’s design by using Hidden Markov Model 
as the visual classiier. Subsequent researches on implementing visual speech processing/visual-audio 
integration include Neural Network (Yuhas, 1989), time-delayed Neural Network (TDNN) (Stork, 1992; 
Bregler, 1995), fuzzy logics (Silsbee, 1996) and Boltzmann zippers (Stork, 1996). 

Among the various techniques for visual speech processing studied so far, Hidden Markov Model 
(HMM) holds the greatest promise due to its capabilities in modeling and analyzing temporal processes. 
In Goldschen’s system, HMM classiiers were explored for recognizing a closed set of TIMIT sentences 
based on speech sounds (Goldschen, 1994). In 1990, Welch et al explored audio-to-visual mapping using 
HMM for building speech-driven models. Silsbee and Bovik (1993) applied HMM to identify isolated 
words based on sounds alone. Tomlinson et al (1996) suggested a cross-product HMM topology, which 
allows asynchronous processing of visual signals and acoustic signals. Luettin et al (1996) used HMMs 
with an early integration strategy for both isolated digit recognition and connected digit recognition. In 
recent years, coupled HMM, product HMM and factorial HMM are explored for audio-visual integra-
tion (Zhang, 2002; Gravier, 2002; Neian, 2002; Dupont, 2000). 

Other studies relating to lip-reading include: the psychology of lip-reading (Dodd and Campbell, 
1987); lip tracking by Yuille et al (1992), Coianiz et al (1996), Hennecke et al (1994), Eveno et al (2004), 
speaker identiication by Cetingul et al (2006) and visual contribution to the perception of consonants 
by Binnie et al (1974).

Visemes and Viseme Classiiers

The most conspicuous element in visual speech perception is the oral movement. The sequence of move-
ment of the lips for a phonetic sound is regarded as the most representative feature of a viseme (Owens, 
1985). It indicates a short period of lip movement repeatable for the same sound. Like phonemes, which 
are the basic building blocks of sound of a language, visemes are the basic constituents for the visual 
representations of spoken words. A visual speech recognition system may be designed to recognize words 
by recognizing the visemes that constitute the words.  For notational convenience, we shall identify the 
visemes by the names of the phonemes they represent. As our focus is on oral movement, we shall refer 
to the movement of mouth when voicing a particular phoneme as a viseme.  

However, the relationship between phonemes and visemes is not a one-to-one but a many-to-one 
mapping. For example, although phonemes /b/, /m/, /p/ are acoustically distinguishable sounds, they are 
grouped into one viseme category as they are visually confusable. An early viseme grouping was sug-
gested by Binnied et al (1974) and was applied to some identiication experiments (Greenwood, 1997). 
Viseme groupings suggested by Owens et al (1985) are obtained by analyzing the stimulus-response 
matrices of the perceived visual signals. The MPEG-4 multimedia standard adopted the same viseme 
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grouping strategy for face animation, in which fourteen viseme groups are included (Tekalp, 2000). This 
grouping is shown in Table 1. However, different groupings are adopted by different research groups to 
fulill speciic requirements (Morishima, 2002). 

For each viseme category in Table 1, there are only subtle differences in change of lips between dif-
ferent phoneme productions, e.g. /tS/, /dZ/ and /S/. A classiier with good discriminative power is thus 
required to distinguish the productions within a viseme category.

A viseme may be represented by a time sequence of lip shapes. Selected frames of the sequence of 
images of the mouth uttering the word ‘hot’ are given in Fig.1. However, when extracted from spoken 
sentences, the same phonetic sound may have slightly different sets of lip shapes as they are affected 
by the adjoining sounds/visemes. For example, the visual representations of the vowel /ai/ are very dif-
ferent when extracted from the words hide and right. Thus visemes demonstrate polymorphism under 
various contexts. For some visemes, there is a wide spread of features for the same viseme.  This calls 
for a classiier that is also robust to the variation.

A classiier that is both discriminative and robust is thus required to distinguish the subtle difference 
between certain groups of visemes while at the same time able to cope with the variation of visemes 
of the same group. The traditional single-HMM classiier (Rabiner, 1993), e.g. the Maximum Likeli-
hood (ML) model trained with the Baum-Welch method, is most of the time not able to provide these 
discriminative power and robustness required for viseme recognition. In this chapter, we describe the 

Table 1. Viseme table adopted in MPEG-4

Viseme
Number

Corresponding
phonemes

Examples

0 none (silence and relax)
1 p, b, m push, bike, milk
2 f, v ind, voice
3 T, D think, that
4 t, d teach, dog
5 k, g call, guess
6 tS, dZ, S check, join, shrine
7 s, z set, zeal
8 n, l note, lose
9 r read

10 A: jar
11 e bed
12 I tip
13 Q shock
14 U good



  329

Hidden Markov Model Based Visemes Recognition, Part I

AdaBoost HMM classiier that is capable of improving robustness. Two discriminative approaches are 
presented in the next chapter.

Most of the HMM-based visual-only systems reported in literature take an individual word as the 
basic recognition unit and an HMM is trained to model it. Such an approach works well with limited 
vocabulary such as digit set (Luettin, 1996; Chen, 2001) or a small number of AVletters (Matthews, 
2002), isolated words or nonsense words, but it is dificult to extend such methods to cover a large vo-
cabulary because a great number of samples have to be collected to train all the possible word models 
that may appear in the speech. 

A text-independent speech recognition system, on the other hand, not only is able to identify words 
within its vocabulary, but is also able to recognize new words. To make a visual speech recognition 
system text-independent, one approach is to use basic visual speech units such as visemes. By modeling 
and recognizing visemes, the system may be further trained to recognize words by breaking them into 
a sequence of visemes. Words and connected-visemes may then be identiied by constructing HMM 
chains using exhaustive means such as level building (Rabiner, 1993). 

databases of Visemes

In the acoustic speech processing domain, a number of speech databases, e.g. TIMIT, DARPA, YOHO, 
etc. have been developed. These databases are widely used in speech recognition and become the 
benchmark for measuring the performance of a certain speech recognizer. In visual speech processing, 
although some audio-visual speech databases (Chibelushi, 1996; Potamianos, 1997) have been proposed 

Figure 1.  Selected frames of the sequence of images in the pronunciation of the word ‘hot’ and the cor-
responding speech signal
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in recent years, they are not widely accepted by multimedia community. The data used in most visual 
speech experiments are independently recorded.

 For experiments conducted for the methods proposed, different sets of visemes are used for different 
experiments. Details of the data for the experiments are described in the respective sections. However, 
the treatment of the recordings to extract the lip shape and position is the same. 

 The samples of visemes for our experiments are obtained in two ways. 1) The speakers are asked 
to produce an isolated viseme, starting with closed mouth and ending also with closed mouth. This 
category of samples is referred to as context-independent viseme samples because the temporal features 
of a viseme are not affected by the context. 2) The speakers are asked to utter a few selected words that 
contain the target viseme. The video clips of the viseme are segmented from the word productions us-
ing the image sequences and the corresponding acoustic waveform, which is exempliied in Fig.1. The 
samples obtained in this way are referred to as context-dependent viseme samples because the adjoining 
sounds/visemes may greatly affect the temporal features of the viseme. 

Each frame of the video clip reveals the lip area of the speaker during articulation (Fig.1). To elimi-
nate the effect caused by changes in the brightness, the RGB (red, green, blue) components of the image 
are converted into HSV (hue, saturation, value) components. The RGB to HSV conversion algorithm 
proposed in (Potamianos, 1997) is adopted in our experiments. As illustrated in the histograms of 
distribution of hue component shown in Fig.2, the hue factors of the lip region and the remaining lip-
excluded image occupy different regions of the histogram. A threshold may be manually selected to 
segment the lip region from the entire image as shown in Fig. 2a. This threshold usually corresponds 

Figure 2. Isolation of the lip region from the entire image using hue distribution. (a) Histogram of the 
hue component for the entire image.  (b) Histogram of the hue component for the actual lip region. (c) 
Histogram of the hue component for the actual lip-excluded image.
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to a local minimum point (valley) in the histogram. Note that for different speakers and lighting condi-
tions, the threshold may be different. 

 The boundaries of the lips are tracked using a geometric template with dynamic contours to it an 
elastic object (Bregler, 1995; Adjoudani, 1996). As the contours of the lips are simple, the requirement 
on the selection of the dynamic contours that build the template is thus not stringent. Results of lip 
tracking experiments show that Bezier curves can well it the shape of the lip (Stork, 1996). To extract 
the feature of the lips and mouth, we make use of a template consisting of ten Bezier curves as shown 
in Fig.3d. Eight of which characterize the lip contours and two curves describe the tongue when it is 
visible. The template is controlled by points marked as small circles in Fig.3d. Lip tracking is carried 
out by itting the template to minimize certain energy function. The energy function comprises the 
following four terms:

         (1a)

   (1b)

       (1c)

         (1d)

where R1, R2, R3, C1 and C2 are areas and contours as illustrated in Fig. 3d. H(x) is a function of the hue 
of a given pixel; H+(x) is the hue function of the closest right-hand side pixel and H-(x) is that of the 
closest left-hand side pixel. Γt+1 and Γt are the matched templates at time t+1 and t. ||Γt+1-Γt || indicates the 
Euclidean distance between the two templates (further details may be found in (Adjoudani, 1996)). The 
overall energy of the template E is the linear combination of the components as given by 

      (2)

While tracking the boundaries of the lips from the image sequence, the parameters of the template 
are updated to minimize E in a number of epochs. A detailed discussion is given in (Bregler, 1995; 
Silsbee, 1996; Adjoudani, 1996). The matched template and the actual lip boundary are pictured in 
Fig.3d and Fig.3e, respectively. It can be seen that the matched template is symmetric and smooth, and 
is therefore easy to process. 

Ten geometric parameters as shown in Fig.3f are then extracted to form a feature vector from the 
matched template. These features indicate the thickness of various parts of the lips, the positions of 
some key points and the curvatures of the lips. They are chosen as they uniquely determine the shape 
of the lips and they best characterize the movement of the lips. 
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For each viseme listed in Table 1, 70 context-independent samples and 100 context-dependent samples 
from each of one male English speaker (Speaker M) and one female English speaker (Speaker F) are 
recorded. Thus 140 context-independent samples and 200 context-dependent samples are collected for 
training and testing the viseme classiiers. The features of these visemes are extracted and Principal 
Components Analysis (PCA) is carried out to reduce the dimension of the feature vectors from ten to 
seven.  The resulting feature vectors are clustered into groups using K-means algorithm. In the experi-
ments conducted, 128 clusters are created for the vector database. The means of the 128 clusters form 
the symbol set O128=(O1,O2, …, O128) of the HMM. This set of data is used in training and testing the 
conventional HMM system mentioned in Section 2 and the AdaBoost HMM in Section 4.

o rganization of the Chapter

The organization of the chapter is as follows. Following this introductory section is a brief review of 
the HMM principles and the performance of conventional HMM in lip-reading. A review of adaptive 
boosting is presented in Section 3. Detailed description of the AdaBoost HMM is given in Section 4. In 
Section 5, the application of the AdaBoost HMM classiier to viseme recognition and its performance 

Figure 3.(a) original image,  (b) lip localization, (c) segmented lip area, (d) parameterized lip template, 
(e) actual lip shape, (f) geometric measures extracted from matched lip shape: 1:thickness of the upper 
bow, 2:thickness of the lower bow, 3:thickness of the lip corner, 4:position of the lip corner, 5:position 
of the upper lip, 6:position of the lower bow, 7:curvature of the upper-exterior boundary, 8:curvature 
of the lower-exterior boundary, 9:curvature of the upper-interior boundary, and 10:curvature of the 
lower-interior boundary.
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are discussed. The issue on computational load of AdaBoost HMM is addressed in Section 6 followed 
by the concluding remark in Section 7. 

Con Ven TIon Al  hmm

Review of hidden markov models (hmms)

The block diagram of a conventional HMM classiier is shown in Fig.4. In a system of identifying K 
visemes, K classiiers are included. The input to the system is the T-length vector sequence of an unknown 
viseme production, denoted by xT. In the traditional approach, each sub-classiier is a single HMM that 
is trained with the samples of a speciic viseme. Each HMM determines the probability of occurrence of 
the unknown viseme. By comparing the probabilities P1, P2, … PK, a decision is made about the identity 
of the unknown viseme. Traditional approaches for optimizing the viseme classiier focuses mainly on 
improving the performance of the individual HMM, e.g. setting proper HMM parameters, maximizing 
the probabilities of the given samples, minimizing the cross-entropy and so on.

Hidden Markov Model (HMM) is essentially a division of a process into a number of discrete states. 
While using an HMM to analyze a stochastic process, the observation sequence, say oT=(o1,o2,…,ot,…,oT) 
where ot is the t-th symbol appeared in the sequence, is assumed to be emitted from a sequence of hid-
den states sT=(s1,s2,…,sT), where si∈SN and SN =(S1,S2,…,SN) is the set of states of the HMM. Each state 
maintains a probability function or probability density function to indicate the likelihood of emitting 
certain symbols. The states are interconnected with each other through state transition probability, which 
indicate the likelihood of a state repeating itself or transiting to another state. 

Figure 4. Block diagram of the conventional HMM recognition system
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The relationship between the explicit process (observations), the hidden process (states) and the 
HMM is depicted in Fig.5, where P(Sj|Si) (i,j = 1,2,…N) is the likelihood of transition from Si to Sj and 
P(ot|Si) (t=1,2,…T) is the likelihood of emitting ot in state Si. If the output of an HMM takes discrete 
and inite values, e.g. from a inite symbol set OM =(O1,O2,…,OM), the HMM is called discrete; if the 
output takes ininite continuous values, the HMM is called continuous. For ease of subsequent discus-
sion on other HMM based systems, the mathematical model of discrete HMMs is summarized in the 
following paragraphs.

The beauty of HMM is that it is able to reveal the underlying process of signal generation even 
though the properties of the signal source remain unknown. Assume that OM =(O1,O2,…,OM) is the set of 
discrete symbol alphabet and SN =(S1,S2,…,SN) is the set of states. An N-state-M-symbol HMM θ(π,A,B) 
is determined with the following three components:

1. The probabilities of the initial states , where s1 is the 
irst state in the state chain.

2. The state transition matrix , where st+1 
and st are the t+1-th and the t-th states respectively. 

3. The symbol emission matrix .

In a K-class identiication problem, assume that xT=(x1,x2,…,xT) is a sample of a particular class, say 
Class di. The probability of occurrence of the sample xT given the HMM θ(π,A,B), denoted by P(xT|θ),  

Figure 5. The relation between the observation sequence and the state sequence of an HMM with N 
states
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is computed using either the forward or backward process. The optimal hidden state chain is revealed 
using Viterbi matching (Rabiner, 1993). Training of the HMM is the process of determining the param-
eters set θ(π,A,B) to fulill certain criterion function such as P(xT|θ) or the mutual information (Bahl, 
1986). For training of the HMM, the Baum-Welch training algorithm is popularly adopted, which leads 
to Maximum Likelihood (ML) estimation θML that maximizes the probability P(xT|θ). Mathematically,

         (3)

The Baum-Welch training can be realized at relatively high speed as the Expectation-Maximization 
(EM) estimation is adopted in the training process. However, the parameters of the HMM are solely 
determined by the correct samples while the relationship between the correct samples and incorrect 
ones is not taken into consideration. The method, in its original form, is thus not developed for ine 
recognition. If another sample yT of Class dj ( j≠i) is similar to xT, the scored probability P(yT|θ) may be 
close to P(xT|θ), and θML may not be able to distinguish xT and yT. One solution to this problem is to adopt 
a training strategy that maximizes the mutual information IM(θ,xT) deined as 

      (4)

 This method is referred to as maximum mutual information (MMI) estimation (Bahl, 1986). It in-
creases the a posteriori probability of the model corresponding to the training data, and thus the overall 
discriminative power of the HMM obtained is guaranteed. However, analytical solutions to Eqn.(4) are 
dificult to realize and implementation of MMI estimation is tedious. Computationally less intensive 
metric and approach are desirable.

Coniguration of the hidden markov model for Viseme

The movement of the lips can be partitioned into three phases during the production of a text-indepen-
dent viseme.  The initial phase begins with a closed mouth and ends with the start of sound production. 
The intermediate phase is the articulation phase, which is the period when sound is produced. The third 
phase is the end phase when the mouth restores to the relaxed state. Fig.6 illustrates the change of the 
lips in the three phases and the corresponding acoustic waveform when the phoneme /u/ is uttered.

To associate the HMM with the physical process of viseme production, three-state left-right HMM 
structure as shown in Fig.7 is adopted. 

Using this structure, the state transition matrix A has the form

, 
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where the 4th state is a null state that indicates the end of viseme production. The initial values of the 
coeficients in Matrices A and B are set according to the statistics of the three phases. Given a viseme 
sample, the approximate initial phase, articulation phase and end phase are manually segmented from 
the image sequence and the acoustic signal, and the duration of each phase is counted. The coeficients 
ai,i and ai,i+1 are initialized with these durations. For example, if the duration of State Si is Ti, the initial 
value of ai,i is set to be 

 

and the initial value of ai,i+1 is set to be 

 

Figure 6.  The three phases of viseme production. (a) Initial phase, (b) Articulation phase and (c) End 
phase

Figure 7. Three-state left-right viseme model
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as they maximize . Matrix B is initialized in a similar manner. If symbol Oj appears T(Oj) times 
in State Si, the initial value of bij is set to be 

. 

For such arrangement, the states of the HMM are aligned with the three phases of viseme production. 

performance of Conventional hmm in Viseme Recognition 

For the purpose of comparison, the performance of the conventional HMM method is evaluated. For 
the experiments, the visemes from the database mentioned in Section 1.3 are used. For each viseme, 
its samples are divided into two groups: 40 context independent samples and 100 context-dependent 
samples are training samples, respectively, and the remaining 100 context independent samples and 100 
context-dependent samples are testing samples, respectively. 

For each viseme, single-HMM classiier is conigured as in Section 2.2 and trained using the Baum-
Welch algorithm and training samples. For the context-independent samples, the average classiication 
accuracy is above 80%, especially for the vowels, where the accuracy is more than 90%.

In the second experiment, context-dependent samples are used for training and validation. The 
recognition rates of the HMMs are also given in Table 2. It is observed that the recognition rates of 

Table 2. Recognition rates of viseme samples using conventional HMM 

Viseme 
Number

context-independent context-dependent
Speaker 1 Speaker 2 Speaker 1 Speaker 2

1    p, b, m 87% 63% 80% 29%
2    f, v 96% 72% 73% 32%
3    T, D 89% 81% 66% 35%
4    t, d 85% 66% 50% 10%
5    k, g 85% 60% 83% 10%
6    tS, dZ, S 90% 75% 79% 25%
7    s, z 96% 81% 55% 51%
8    n, l 81% 46% 21% 32%
9    r 82% 36% 44% 14%
10  A: 99% 78% 78% 70%
11  e 92% 70% 66% 48%
12  I 99% 90% 90% 66%
13  Q 93% 89% 65% 62%
14  U 93% 93% 91% 69%
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identifying context-dependent samples are much lower than those of the context-independent samples. 
For the vowels, the average accuracy is in the region of 60%. For the consonants, the accuracy is much 
lower.

ReVIeW o F AdApTIVe Boo STIng
 
The procedures of Adaptive Boosting are presented as a low chart in Fig. 8. Assume that in the two-
class identiication problem (Class 1 vs. Class 2), the training set is comprised of R samples {y1,d1}, 
{y2,d2},…, {yR,dR}. yi is the observed data and di={-1,+1} is the label identiier where di=-1 denotes 
Class 1 and di=+1 denotes Class 2. The process of Adaptive Boosting involves of a series of rounds 
(t=1,2,…,T) of weight-adjusting and classiier-training (Schapire, 1999). Let Dt(i) stand for the weight 
that is assigned to the i-th training sample in the t-th Boosting round and Dt denote the set of the weights 
{Dt(1),Dt(2),…Dt(R)}. The steps of Adaptive Boosting are presented below:

1.  Initially, assign the weight Dt(i)=1/R (i=1,2,…R) to the R training samples {y1,d1}, {y2,d2},…, {yR,dR}. 
Note that D1(i)=1/R (i=1,2,…R) follows a uniform distribution.

2.  Train the t-th classiier θt in the t-th Boosting round using the distribution Dt, starting with t=1.
3.  Formulate the hypothesis, ht(yi)→{-1,+1} (i=1,2,…R) and calculate the error  

for θt.
4.  Calculate 

 , 

 which weights the importance of the classiier θt.
5.  Update the distribution using the following expression.

        (5)

 where Zt is a normalization factor to make Dt+1 a distribution.
 
Step 2 to Step 5 are repeated until the error rate of the classiier exceeds 0.5 or after a given number 

of training epochs. A series of classiiers θ1,θ2,…θT and weights w1,w2,…wT are obtained at the end of 
the above procedures. In this chapter, the T sub-classiiers, together with the weights assigned to them, 
are looked as an integral entity and are referred to as an AdaBoost-classiier. For an unknown input y, 
the sub-decisions made by the T composite classiiers are synthesized using 

. 
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If  H(y)<0, y∈Class 1, otherwise y∈Class 2. 
The objective of boosting is to minimize the training error 

of the inal hypothesis. Schapire and Singer (1998) proved that ε(H) is bounded as follows. 

Figure 8. Steps of Adaptive Boosting algorithm
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         (6)

where

. 

By unraveling the recursive deinition of Dt, we have 

         (7)

where

        (8)

Eqn.(6) suggests that the training error can be reduced most rapidly by choosing wt and ht at each 
round to minimize Zt. In the case of binary hypotheses, this leads to the choice of wt in the expression 
below, which is adopted in Step 4 of the above mentioned boosting steps (Schapire, 1998).

          (9)

If the training error of θt (the classiier obtained at the t-th Boosting round) is less than 0.5, say

, 

it is also proved in (Freund, 1997) that the training error is bounded as in the inequality below.

     (10)

The above inequality shows that if only the individual classiier has a classiication error less than 
0.5 (or equivalently a classiication rate greater than 0.5), the overall error rate should decrease exponen-
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tially. The boosted classiier may generate a hypothesis with an arbitrary low rate of error as boosting 
continues. 

AdABoo ST hmm Cl ASSIFIeR

Base Training Algorithm

For a K-class identiication problem, there are K sub-classiiers. The block diagram of the structure of a 
typical sub-classiier of the AdaBoost HMM is shown in Fig. 9. It is expected that by synthesizing the 
decisions made by the multiple HMMs, a more complex decision boundary can be obtained to cover 
the relevant clusters of data.

Boosting is carried out during the training phase of the composite HMMs. For the K class identi-
ication problem, the purpose of HMM AdaBoosting is to train a set of HMMs that represent or span 
the distribution of the training samples. In the application of AdaBoosting strategy to the construction 
of a multi-HMM classiier, the following two important issues arise: 1) The choice of base training 
algorithm and 2) the measurement of classiication error. 1) is discussed in this section and 2) in the 
following section.

It is known that the Baum-Welch estimation can be implemented eficiently by repeating the Ex-
pectation-Maximization (EM) iterations. The resulting HMM is a good model to the target process but 
is not good at differentiating similar samples. The Maximum Mutual Information (MMI) estimation, 

Figure 9.  Block diagram of adaptively boosted HMM classiier as a sub-classiier
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on the other hand, may ensure good discrimination power but its implementation is complicated and 
time-consuming. 

Adaptive Boosting has loose requirements on the selection of base classiiers. As long as the train-
ing error of the individual classiier is less than 0.5, the training error of the AdaBoost-classiier will 
drop. The same requirements apply to HMMs. If the training error of the composite HMMs is forced 
to be less than 0.5, the error rate of the AdaBoost-HMM classiier will also decrease as boosting con-
tinues. Besides this, since each of the multiple HMMs has to be individually trained, reduction of the 
computational load per HMM is also an important consideration. Considering these two factors, the 
Baum-Welch algorithm, which is less computationally intensive, is adopted.

Assume that  are Rk training samples (sequences) of Class dk, where 
(l=1,2,…Rk) is a Tl-length observation sequence and  (i=1,2,…Tl) 

is the i-th symbol appeared in the sequence. For the N-state-M-symbol HMM θ(π,A,B), we de-
fine the forward variables   and backward variables 

 for , the parameters of the HMM are then estimated 
through the following Expectation-Maximization (EM) recursion. 

                  (11a)

                   (11b)

where Om is the m-th symbol in the symbol set and . In Eqn.(11.b), 

 

is the sum of the products of the forward and backward variables when the t-th observed symbol  
i.e. . In the above mentioned strategy, all the samples 
are treated equally. If weight Dl is assigned to the l-th sample , then Eqn.(11) becomes,
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                 (12a)

                  (12b)

For the above equations, Arslan and Hansen (1999) proved that weighting of the training samples 
does not violate the convergence property of the maximum likelihood training. A local maximum 
point of P(Xk|θ) will be attained after a suficient number of training epochs. Since different samples 
are treated differently in estimating the parameters, Eqn.(12) have the potential to be applied to HMM 
AdaBoosting. In this chapter, the above mentioned training strategy shall be referred to as the biased 
Baum-Welch estimation.

Cross-Validation for error estimation

Unlike Neural Network or other classiiers, HMM gives a probabilistic measure rather than a deinite 
Boolean result. The decision about the identity of the input is usually obtained by comparing the prob-
abilities measured of all HMMs. 

Assume that at a certain Boosting round, Class dl (l=1,2,…K) has Ll sub-classiiers (HMMs) 
– . For a given training sample , the probabilities of , given all the 
HMMs, are computed and compared with one another. The HMM that gives the maximum likelihood 
is chosen as the identity of .

      (13)

The decision made in this way is a one vs. the rest classiication. If the correct model scores greater 
likelihood than the others, the result is correct; otherwise, an error occurs. As a result, the following 
hypothesis is made upon an HMM classiier in dk, e.g. :

  (14)

The training error of  is estimated by summarizing the weighted hypotheses over all the training 
samples in Xk. 
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      (15)

From Eqns.(14) and (15), it can be seen that the error rate not only depends on the classiier itself 
but also relates to the other classiiers. The HMM obtained at Boosting round t, e.g. , will therefore 
inluence the error rate of all the HMMs trained at the previous Boosting rounds, e.g.  ( j=1,2,…K, 
τ<t). AdaBoosting requires that the composite classiiers have an error rate less than 0.5. As a result, 
not only the recently boosted HMM but also all the existing HMMs have to be validated. Clearly the 
computations involved in calculating and comparing the probabilities are intensive. In our system, the 
following measures are taken to facilitate the processing.

As illustrated in Fig. 10, each class, say dk, maintains a maximum probability array. The elements in 
the array are the Rk greatest probabilities of the training samples },,{ 21

k
R

kk
k k

xxxX =  that are scored by 
the HMMs of Class )( kjd j ≠∀ . These maximum probabilities are denoted as )|( 1max

kxP , )|( 2max
kxP

,… )|(max
k
Rk

xP  in the igure, where  denotes any HMM of the class other than dk.
At Boosting round Lk+1, after a new HMM of Class dk is trained, say k

Lk 1+ , the probabilities of all 
the training samples of Classes d1, d2, … dK, given k

Lk 1+  are computed. For Class dl as an example, if 
)|()|( max11

l
i

k
L

l
i xPxP >+  (i=1,2,…Rl), )|(max

l
ixP  is replaced with )|( 1

k
L

l
i k

xP + . The following hy-
pothesis, which is concluded from (10), is made for a training sample of Class dk, say k

ix . 

otherwise
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Figure 10. Data structure for implementing error estimation
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The training error of k
Lk 1+  is then computed using Eqn.(15). In this way, the training error of any 

composite HMM, say l
t  (t=1,2,…Ll), can be easily obtained by comparing )|( l

t
l
ixP  (i=1,2,…Rl) with 

the corresponding value in its maximum likelihood array – )|(max
l
ixP .

If the error rates of k
Lk 1+  and the existing HMMs are all less than 0.5, k

Lk 1+  is retained as a quali-
ied boosted classiier; otherwise, k

Lk 1+  is discarded. The above mentioned strategy provides an easily 
programmable approach for evaluating and computing the training error of the AdaBoost-HMM clas-
siiers. Because the error rates are computed by comparing the probabilities scored by the individual 
HMMs, the above mentioned procedure shall be referred to as cross-validation.  

Step-by-Step procedures

The step-by-step procedures of HMM AdaBoosting for a K-class problem are given below. 

Step 1. For training set of Class dk with RK samples },,{ 21
k
R

kk
k k

xxxX = , initially, assign a uniform 
distribution k

k
j RxD /1)(1 = , ),...,2,1;,...,2,1( kRjKk ==∀  to k

R
kk

k
xxx ,, 21 .  The boosting token k 

is initialized to be equal to 1.
Step 2. Train a new HMM for the k-th class k

t  using the biased Baum-Welch algorithm with the dis-
tribution )( k

jt xD .
Step 3. Formulate the binary hypothesis }1,1{)( +−→k

j
k
t xh  for k

t  according to the following equa-
tion.

 


−=
,1

,1
)( k

j
k
t xh

 otherwise
LqkjxxPif j

k
q

k
i

k
p

k
i ,...2,1,),|()|( =≠∀>

     (17)

 The error rate of k
t , k

t , and the error rates of all the existing HMMs of other classes j
l ,

)2,1,,,2,1( jRlkjKj  =≠=  are estimated and veriied using the cross-validation and the fol-
lowing equation. 
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 If the new model is valid, go on to Step 4; otherwise, the boosting token is passed to the next 

class 

 Kkif
Kkifk

k =
<


 +=
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 and then Step 2 is repeated.
Step 4. Calculate 
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 for k
t , where k

t  is the error rate. If the error rate of some existing HMM, say j
l , changes, the 

corresponding 

 
 

)1ln(
2
1

j
l

j
lj

lw −=
 

 is also recomputed.
Step 5. Update the distribution: 
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 ( 1)( =k
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k
t xh or -1), where Zt is the normalization factor. 

The procedure terminates when boosting for all the classes are completed. Assume that Θk is the 
AdaBoost-HMM classiier for Class dk (k=1,2,…K) that has been “boosted” for Lk rounds. Then Θk 
consists of Lk HMMs - k

L
kk

k
,, 21  and Lk weights - k

L
kk

k
www ,, 21 . The normalized log likelihood of 

an observed sequence xT given Θk is deined below. 
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=Θ kL
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T xPw
L

xP
1

)]|(log[1)|(
        (19)

The inal decision is made by comparing the )|( k
TxP Θ  for all the classes (k=1,2,…K). The one that 

gives the maximum probability is chosen as the identity of xT.

)1()|(maxarg)( KkxPxID k
T

k

T ≤≤Θ=
       (20)

Conceptual Interpretation of hmm AdaBoosting 

The improvement of the performance of the AdaBoost-HMM classiiers can be interpreted conceptu-
ally as follows. Given enough training samples (the number of samples does not have to be very large 
but they should cover the entire sample space), the boosted HMMs can be trained to cover the widely 
spread samples. Assume that },,{ 21

k
R

kk
k k

xxxX =  are training samples of Class dk. In the irst round 
of boosting, the samples are treated equally ( k

k
j RxD /1)(1 =   kRjKk  2,1,2,1 ==∀ ) and the HMM 

obtained k
1  is a normal ML model. Most of the samples, say },,{ ,,

2
,

1, ,

idealk
R

idealkidealk
idealk idealk

xxxX = , where 
kidealk XX ⊂,  and Rk,ideal is the number of the samples in Xk,ideal, have greater likelihood values such 

that )|()|( 1
,

1
, jidealk

i
kidealk

i xPxP >  ),2,1,,,2,1( ,idealkRikjKj  =≠=∀ . These samples are referred 
to as the ideal samples because the normal ML model is able to identify them correctly. However, the 
likelihood values of some other samples },,{ ,,

2
,

1, ,

hardk
R

hardkhardk
hardk hardk

xxxX = , where khardk XX ⊂,  and 
Rk,hard is the number of the samples in Xk,hard, determined by k

1  – )|( 1
, khardk

ixP (i=1,2,…Rk,hard) may be 
smaller than that determined by incorrect HMMs. These samples are called hard samples because the 
ML model is not able to identify them correctly. 
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As boosting continues, new HMMs k
L

kk
k

,, 32  tend to bias towards these hard samples. For example, 
if k

t  is obtained at Round t, the scored likelihood of a certain group of hard samples )|( , k
t

hardk
ixP  

increases as t increases. The cost is that the likelihood of some ideal samples will normally decrease. 
By synthesizing the likelihood according to Eqn.(19), the decision boundaries formed will properly 
cover both the ideal samples and hard samples. Fig. 11 gives conceptual illustrations of the difference 
between a single HMM classiier and an AdaBoost-HMM classiier. A single HMM may identify the 
ideal samples with good accuracy but may be unable to take into consideration the hard or outlier 
samples as well. After boosting, a more complex decision boundary is formed. The hard samples can 
then be classiied with good credibility.  

For different classes, the number of rounds the boosted HMM can pass cross-validation are differ-
ent and hence different classes may have different number of HMMs. However, the unequal number of 
HMMs for different classes does not affect the inal decision because )|( k

TxP Θ  in Eqn.(19) is normal-
ized with the number of HMMs in a class. 

Another aspect of the proposed strategy that should be stressed is that the error rate computed by 
Eqn.(15) only accounts for part of the classiication error. It indicates the samples in Xk being misclas-
siied into some wrong category dj ( j≠k). This kind of error is normally referred to as False Rejection 
Rate (FRR) or Type II error. Another source of the error indicates the samples of other classes Xj ( j≠k) 
are erroneously accepted by Θk. This portion of error is referred to as False Acceptance Rate (FAR) or 
Type I error. However, FAR is not considered in the proposed HMM AdaBoosting algorithm because it 
cannot work with the biased Baum-Welch estimation. As illustrated in Eqn.(12), the biased Baum-Welch 
algorithm only uses the correct training samples for parameter estimation. An erroneously accepted 
sample cannot be applied to train the parameters of the HMMs. FRR can weight the correct training 

Figure 11. A conceptual illustration: the decision boundaries formed by a single HMM (left) and an 
AdaBoost-HMM (right)
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samples in Eqn.(12) as it is an indicator of the goodness-of-it of the correct samples, while FAR, which 
is a statistical measure for the incorrect samples (irrelevant to the correct samples), cannot be applied 
for the proposed method. This is why FAR is not computed in the boosting steps given in Section 4.3. 

Appl ICATIon o F The AdABoo ST-hmm Cl ASSIFIeR To VISeme 
ReCogn ITIon
 
Experiments are carried out to assess the performance of the AdaBoost-HMM in recognition of visemes. 
Comparison is also made with the performance of the single HMM classiiers. 

The same set of data for assessing the conventional HMM mentioned in Section 2 are used. The 140 
vector sequences for context-independent visemes are divided into two groups: 40 of them are used 
as the training samples and the other 100 are used as the testing samples. For each isolated viseme, an 
AdaBoost-HMM classiier that consists of 15 to 20 HMMs is trained with the proposed strategy given 
in Section 4.3. 

According to Eqn.(20), for a testing sample xT
 of Class dk, a correct classiication is made if ID(xT)=dk. 

The classiication error (FRR) of the AdaBoost-HMM classiier Θk is then computed using the expres-
sion below.

Table 3. Classiication errors in recognition of context-independent visemes

Viseme
Categories

Classiication Error (FRR)
Single-HMM

Classiier
AdaBoost-HMM

Classiier
1    p, b, m 13% 8%
2    f, v 4% 5%
3    T, D 11% 4%
4    t, d 35% 17%
5    k, g 24% 9%
6    tS, dZ, S 10% 10%

7    s, z 4% 4%
8    n, l 19% 20%
9    r 18% 7%
10  A: 1% 4%
11  e 8% 11%
12  I 1% 4%
13  Q 7% 10%
14  U 7% 9%
Average 11.6% 8.7%
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k

k
k dofsamplestestingtheallofnumber

dofsamplesclassifiedcorrectlyofnumberFRR −=Θ 1)(
     (21)

The classiication errors of the AdaBoost viseme classiiers are listed in Table 3. A single-HMM 
classiier is also trained for each isolated viseme using the same 40 training samples. The single-HMM 
classiier is an ML HMM as mentioned in Section 2. The classiication errors of the single-HMM clas-
siiers are computed using Eqn.(21) and are also listed in Table 3 for comparison. 

From Table 3, it can be seen that both the single-HMM classiiers and AdaBoost-HMM classiiers can 
identify the context-independent visemes with reasonable accuracy. An average classiication error below 
20% is obtained with either approach. The classiication error is lower for the vowels as the movement 

Figure 12. Rate of training error vs. boosting round – Viseme classiiers of (a) /e/,  (b) /s, z/, (c) /T, D/, 
and (d) /t, d/
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of the lips is more. The performance of the AdaBoost-HMM classiiers and that of the single-HMM 
classiiers are not signiicantly different. The samples obtained for the context-independent visemes 
demonstrate good homogeneity as they are independently produced. 

In the second experiment, the 200 samples of context-dependent visemes are used. 100 samples are 
used for training and the other 100 for testing. The corresponding vector sequences are then determined 
from the images and a series of boosted HMMs is trained for each viseme with the proposed strategy. 

As mentioned in Section 4.3, the training error of an AdaBoost-HMM classiier shows tendency of 
decreasing as boosting continues. To illustrate such change, the training errors of four AdaBoost-HMM 
classiiers and the t-th HMM (the HMM trained in the t-th Boosting round) of the classiiers are presented 
in Fig.12. Take Fig.12a as an example, the training error of the AdaBoost-HMM classiier decreases from 
0.27 to 0.13 for the 20 rounds while the training error of the t-th HMM increases from 0.27 to 0.45. This 
is so as the composite HMM biases more and more to the outlier samples as boosting continues.

For the experiments carried out, the boosted sub-classiier for each viseme consists of 12 to 20 HMMs. 
The training errors and classiication errors (FRR) of the testing samples are listed in Table 4 together 
with the corresponding errors using the single-HMM classiiers. It is observed that the accuracy of 
recognition is signiicantly improved (smaller error rate) using AdaBoost-HMM classiier. 

Compared with the classiication errors listed in Table 3, the classiication accuracy of the single-
HMM classiiers decreases dramatically in identifying context-dependent visemes. The classiication 

Table 4. Training and classiication errors (FRR) in recognition of context-dependent visemes

Viseme
Categories

Single-HMM
Classiier

AdaBoost-HMM
Classiier

Training 
Error

Classiication
Error

Training
Error

Classiication
Error

1    p, b, m 14% 20% 6% 15%
2    f, v 15% 27% 11% 25%
3    T, D 24% 34% 10% 18%
4    t, d 39% 50% 17% 19%
5    k, g 17% 17% 16% 16%
6    tS, dZ, S 17% 21% 5% 9%
7    s, z 39% 45% 13% 17%
8    n, l 40% 79% 22% 33%
9    r 21% 54% 22% 37%
10  A: 14% 18% 5% 5%
11  e 27% 33% 13% 7%
12  I 9% 10% 0% 2%
13  Q 10% 35% 4% 11%
14  U 4% 9% 1% 7%
Average 21% 32% 10% 16%
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rates of some consonants are even less than 50%. The reason underlying the high identiication error is 
the distribution of the samples. As the samples of a context-dependent viseme are extracted from various 
words (contexts), the “shapes” of the samples of even the same viseme are different. In statistics jargon, 
the samples of a context-dependent viseme demonstrate a spread-out distribution. The single-HMM clas-
siiers cannot cover such a distribution well. However, the classiication accuracy can be greatly improved 
with the application of AdaBoost-HMM classiiers. As illustrated in Table 4, although the classiication 
errors are larger compared with those listed in Table 3, an average recognition accuracy of 70%~80% 
is still attainable, which is about 16% better than the single-HMM classiiers. The improvement can be 
attributed to the fact that a more complex decision boundary is formulated using the AdaBoost-HMM 
classiier than using the single-HMM classiier. Therefore, the AdaBoost-HMM classiiers can better 
cover the spread-out distribution for both the testing samples and the training samples. This is validated 
by the experimental results. If the context-dependent visemes are looked as isolated visemes distorted 
by adjoining visemes, it is concluded that the AdaBoost-HMM classiiers provide better robustness on 
identifying visemes than single-HMM classiiers.

Compu TATIon Al  l o Ad o F AdABoo ST hmm

The computations involved in HMM AdaBoosting are estimated as follows. For the 3-state-128-symbol 
discrete HMM applied in the experiments, with 100 training samples ranging from 15~50 frames for 
each viseme, about 106 computations (computations include multiply and division) are required to train an 
HMM with the biased Baum-Welch estimation. Most of the computations are for calculating the forward 
variables and backward variables. For example, if the length of a training sample is 30 frames (average 
length), about 1200 multiplies are required to build a probability trellis to compute the forward variables 
and backward variables (Rabiner, 1993). Assume that all the 100 training samples have the same length 
of 30 frames, about 1.2×105 computations are required to compute these variables. The forward variables 
and backward variables have to be computed more than once because expectation-maximization (EM) 
iterations are taken in the Baum-Welch estimation. If ten iterations are used (in our experiments, the 
probability scored for the training samples becomes stable after about 10 iterations), 1.2×106  computa-
tions are required. The number of computations involved in estimating the state transition coeficients 
and symbol emission probabilities is small compared with this quantity. As a result, it is reasonable to 
conclude that computations of the order of 106 are required to train a single-HMM classiier.

For AdaBoost-HMM classiier comprising 20 HMMs, approximately 2×107 computations are required 
for training the classiier. The additional number of computations including error estimation using cross-
validation and calculation of weights is small compared with the number of computations required for 
the Baum-Welch estimation. The total number of computations is thus approximately 2×107 This is a 
modest amount of computations for the modern computers or signal processor chips. 

The computational load in the recognition phase is far less than that in the training phase. For the 
single-HMM classiiers, the likelihood of an input sequence is computed using the forward process. If 
the input sequence is 30-frame in length, about 1200 multiplies are performed. As the identity of the 
input sequence is determined out of fourteen viseme categories, the total number of computations will 
be approximately 1.7×104. For AdaBoost-HMM classiiers, the input sequence is evaluated by a total 
of 280 (20×14) HMMs, where about 3.4×105 multiplies are carried out. The number of computations 
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involved in probability synthesis is small compared with this quantity. Thus about 3.4×105 computations 
are required for recognition by AdaBoost-HMM classiiers. 

 

Con Clu SIon  

The basic units of visual speech are the visemes, the most conspicuous component of the visual speech 
is the oral movement.  However, many basic sounds have the same sequence of movement of the lips. 
The mapping between phonemes and visemes is not one-to-one but many-to-one. Also, the visemes for 
the same phoneme appearing in different words (contexts) may be different.  

A classiier of visemes must be discriminative to distinguish the subtle difference between certain 
groups of visemes. It must also be robust to cope with the variation of visemes of the same group. 

To improve the robustness of the HMM to cope with context-dependent visemes which have a spread-
out distribution, Adaptively Boosted HMM is proposed. Results show that signiicant improvement over 
the conventional HMM can be achieved at the cost of additional computational load. 
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ABSTRACT

The basic building blocks of visual speech are the visemes. Unlike phonemes, the visemes are, however, 
confusable and easily distorted by the contexts in which they appear. Classiiers capable of distinguish-
ing the minute difference among the different categories are desirable. In this chapter, we describe two 
Hidden Markov Model based techniques using the discriminative approach to increase the accuracy of 
visual speech recognition. The approaches investigated include Maximum Separable Distance (MSD) 
training strategy (Dong, 2005) and Two-channel training approach (Dong, 2005; Foo, 2003; Foo, 2002) 
The MSD training strategy and the Two-channel training approach adopt a proposed criterion function 
called separable distance to improve the discriminative power of an HMM. The methods are applied 
to identify confusable visemes. Experimental results indicate that higher recognition accuracy can be 
attained using these approaches than that using conventional HMM. 

InTRodu CTIon

Viseme Classiiers for Fine Discrimination

In the previous chapter, we have described an AdaBoost-HMM classiier to deal with the variations of a 
particular viseme appearing in different contexts. However, the method does not speciically deal with 
the ine discrimination of different phonemes which may be confusable. 
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In MPEG-4 multimedia standard the relationship between phonemes and visemes is a many-to-
one mapping (Tekalp, 2000). For example, there are only subtle differences in change of mouth shape 
between phoneme productions of /f/ and /v/, and thus they are clustered into one viseme category. If 
there is a classiier that is able to distinguish the small difference between them, the accuracy of visual 
speech recognition will be greatly improved.

For training of the single-HMM classiier, the Baum-Welch training algorithm making use of Maxi-
mum Likelihood (ML) model (Rabiner, 1993) is popularly adopted. However, the parameters of the 
HMM are solely determined by the correct samples while the relationship between the correct samples 
and incorrect ones is not taken into consideration. The method, in its original form, is thus not devel-
oped for ine recognition. One solution to this problem is to adopt a training strategy that maximizes 
the mutual information. The method is referred to as Maximum Mutual Information (MMI) estimation 
(Bahl, 1986). It increases the a posteriori probability of the model corresponding to the training data, 
and thus the overall discriminative power of the HMM obtained is guaranteed. However, it is dificult 
to realize such a strategy and implementation of MMI estimation is tedious. A computationally less 
intensive metric and approach are desirable.

In this chapter, we describe two Hidden Markov Model based techniques to increase the discrimi-
native power of visual speech recognition. We name the two techniques as the Maximum Separable 
Distance (MSD) training strategy (Dong, 2005), and the Two-channel training approach (Dong, 2005; 
Foo, 2003; Foo, 2002).

Table 1. Viseme table adopted in MPEG-4

Viseme
Number

Corresponding
phonemes

Examples

0 none (silence and relax)
1 p, b, m push, bike, milk
2 f, v ind, voice
3 T, D think, that
4 t, d teach, dog
5 k, g call, guess
6 tS, dZ, S check, join, shrine
7 s, z set, zeal
8 n, l note, lose
9 r read

10 A: jar
11 e bed
12 I tip
13 Q shock
14 U good
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o rganization of the Chapter

The organization of the chapter is as follows. The proposed new metric Maximum Separable Distance 
(MSD) is described in Section 2. The MSD HMM and the Two-channel HMM are presented in Sec-
tions 3 and 4 respectively. The concluding remark is given in Section 5. Some suggestions for future 
work are outlined in Section 6. 

SepARABle  dISTAnCe Fun CTIon

Deinition and Estimation of Parameters

In this section, a new metric to measure the difference between two observation sequences is described. 
We shall name the metric ‘separable distance’. 

Let an HMM be represented by θ(π,A,B), where  π denotes the probabilities of the initial states, 
A denotes the state transition matrix and B denotes the symbol emission matrix. In addition, let OM 
=(O1,O2,…,OM) be the set of discrete symbol alphabet and SN =(S1,S2,…,SN) be the set of states. 

Assume that in a two-class identiication problem, {xT:d1} and {yT:d1} are a pair of training samples, 
where xT and yT are observation sequences of length T and d1 and d2 are the class labels. Assume that 

),,,( 21
T
T

TTT xxxx =  is a true sample while ),,,( 21
T
T

TTT yyyy =  is a false sample. The observed 
symbols in xT and yT are from the symbol set OM. P(xT|θ) and P(yT|θ) are the scored probabilities for xT 
and yT given HMM θ, respectively. The pair of training samples xT and yT must be of the same length so 
that their probabilities P(xT|θ) and P(yT|θ) can be suitably compared. Such comparison is meaningless 
if the samples are of different lengths; the shorter sequence may give larger probability than the longer 
one even if it is not the true sample of θ. 

 Deine a new function I(xT,yT,θ), called the separable-distance function, as follows. 

)|(log)|(log),,( TTTT yPxPyxI −=        (1)

A large value of I(xT,yT,θ) would mean that xT and yT are more distinct and separable. The strategy 
then is to determine the HMM θMSD (MSD for maximum separable-distance) that maximizes I(xT,yT,θ). 
Mathematically, 

)],,([maxarg TT
MSD yxI=

         (2)

As the irst step towards the maximization of the separable-distance function I(xT,yT,θ), a Lagrangian 
F(xT,yT,θ,λ) involving I(xT,yT,θ) and the parameters of B is deined as below,

∑∑ ==
−+= M

j
ij

N

i
i

TTTT byxIyxF
11

)1(),,(),,,(       (3)

where λi is the Lagrange multiplier for the i-th state and 
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1
1

=∑=

M

j
ijb

(i= 1,2,…N). By maximizing F(xT,yT,θ,λ), I(xT,yT,θ) is also maximized. Differentiating F(xT,yT,θ,λ) with 
respect to bij and setting the result to 0, we have,

i
ij

T

ij

T

b
yP

b
xP =∂

∂−∂
∂ )|(log)|(log

        (4)

Since λi is positive, the optimum value obtained for I(xT,yT,θ) is the maximum as solutions for bij must 
be positive. In Eqn.(2), log P(xT|θ) and log P(yT|θ) may be computed by summing up all the probabilities 
over time T.
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       (5)

Note that the state transition coeficients aij do not appear explicitly in Eqn.(5), they are included in 
the term )( i

T SsP = . 
The two partial derivatives in Eqn.(4) may be evaluated separately as follows,
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By deining 

∑=
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j

T
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1
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TT
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TT
ij yOSExOSEyxD −=       (9)

Eqn.(4) can be written as, 
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By making use of the fact that 

1
1

=∑=
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it can be shown that
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The set {bij} (i= 1,2,…N, j= 1,2,…M) so obtained gives the maximum value of I(xT,yT,θ). However, 
bij may not be estimated by applying Eqn.(11) alone, other considerations shall be taken into account 
such as when Dij(x

T,yT,θ) is less than or equal to 0. Further discussion on the determination of values of 
bij is given in Section 2.2.

Convergence of the mSd estimation

Eqn.(11) suggests an iterative approach to maximize I(xT,yT,θ). The convergence of the method is proved 
by using the standard Expectation-Maximization (EM) optimization techniques (McLanchlan, 1997). 
By considering xT and yT as the observed data and the state sequence ),,,( 21

T
T

TTT ssss =  as the hidden 
or unobserved data, the estimation of ],,|)~|,,([)( TTTTT yxsyxIEIE =  from incomplete data xT 
and yT is then given by 
   

)|,,()~|,,()( ∑
∈

=
Ss

TTTTTT
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syxPsyxIIE

)|,,()]~|,(log)~|,([log∑
∈

−=
Ss

TTTTTTT

T

syxPsyPsxP
    (12)

where θ and ~ are the HMM before training and the HMM after training respectively, and S denotes all 
the state combinations with length T.  The estimation converges if only the updated values of bij increase 
Eθ(I) (McLanchlan, 1997; Tanner, 1996). This can be proven by applying the Baum’s auxiliary function 
(Q function) (Baum, 1967). Using the auxiliary function ),~(xQ  given by

)|,()~|,(log),~( TT

Ss

TT
x sxPsxPQ

T
∑

∈
=        (13)

Eqn.(12) can then be written as
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),|(),~(),|(),~()( TT
y

TT
x sxPQsyPQIE −=      (14)

),~(xQ  and ),~(yQ  may be further analyzed by breaking up the probability )~|,( TT sxP  as in 
Eqn.(15) below, 

∏= −= T

sss
TT xbassxP

1
,0 )(~~)(~)~|,(

1

        (15)

where ~, a~ and b~ are the parameters of ~. Here, we assume that the initial distribution starts at τ=0 
instead of τ=1 for notational convenience. The Q function then becomes,
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    (16)

),~(yQ  is decomposed in a similar manner. The parameters to be optimized are now separated 
into three independent terms. 

From Eqns.(14) and (16), Eθ(I) can also be divided into the following three terms,

),~(),~(),~()( IbEIaEIEIE ++=         (17)

where 

0)]|,,()|,,([)(~log),~( 0 =−= ∑
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              (18a)
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              (18b)

)|,,(])(~log)(~log[),~(
1 1
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syxPybxbIbE
T
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∈ = =
−=                (18c)

),~( IE  and ),~( IaE  are associated with the hidden state sequence sT. It is assumed that xT and 
yT are drawn independently and emitted from the same state sequence sT,  hence both ),~( IE  and 

),~( IaE  become 0. ),~( IbE , on the other hand, is associated with the symbols in xT and yT. It is not 
equal to 0 if  xT and yT are different. By enumerating all the state combinations, we have, 
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is arranged according to the order of appearance of the symbols (Oj) within xT and yT, we have,  
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Eqn.(20) can be written as
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In the M-step of the EM estimation, ijb~  is adjusted to maximize ),~( IbE  or Eθ(I). Since 

1~

1
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and Eqn.(21) has the form ∑=

M

j
jj vwK

1

log
, 

which attains a global maximum at the point 
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( j= 1,2,…M), the re-estimated value of ijb~  of ~ that lead to the maximum Eθ(I) is given by
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The same conclusion is reached as in Eqn.(11). The above derivations strictly observe the standard 
optimization strategy (McLanchlan, 1997), where the expectation of the value of the separable-distance 
function, Eθ(I), is computed in the E-step and the coeficients bij are adjusted to maximize Eθ(I) in the 
M-step. The convergence of the method is therefore guaranteed. 

 It is also clear from Eqns.(18.a) and (18.b) that modiication to πi  and aij will not increase the value of  
Eθ(I) explicitly. As a result, although changes to πi and aij may lead to different values of )~|,,( TTT syxI
, they cannot be adjusted toward a larger value of )~|,,( TTT syxI  using the EM estimation. This is the 
reason why only bij is adjusted in the MSD estimation.

mSd hmm Cl ASSIFIeR

The mSd Training Strategy

The MSD training strategy is the process of increasing the separable-distance between two confusable 
classes. For the true sample {xT: d1} and false sample {yT: d2} mentioned in Section 2.1, the separable-
distance measure between xT and yT is given below by using the deinition given in Eqn.(1), 

)|(log)|(log),,( TTTT yPxPyxI −=        (23)

where θ is the HMM for discriminating Class d1 and d2, x
T
 is the true sample and yT is the false sample 

of θ.  I(xT, yT, θ) can be maximized by changing the elements of Matrix B of the HMM as given in 
Eqn.(22).    

Although Eqn.(22) indicates that bij can be estimated by computing the expectations E(Si,Oj|θ,xT)  and 
E(Si,Oj|θ,yT), it cannot be applied to parameter training directly because Dij(x

T,yT,θ) may be less than 0 while 
bij cannot be negative values. As a result, some additional processing has to be carried out in the training 
strategy. These considerations are taken into account in the following steps of MSD estimation.  

Step 1: Parameter Initialization

For the discrete HMM discussed in this chapter, the selection of the initial values is relatively easy. 
Parameters in Matrix A can take arbitrary or uniform values provided that the probability constraints
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∑ = =N

n mna
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1
 

and amn≥0  (m,n= 1,2,…N) are met.  The initial values of the elements in Matrix B can also take arbitrary 
or uniform values. In speciic identiication task, however, the parameters of an HMM should be set 
according to the statistical/temporal features of the training samples. 

Step 2: Compute the Expectations

The expectations E(Si,Oj|θ,xT) and E(Si,Oj|θ,yT) are computed in this step. For xT, the forward variable )(ix
t  

and backward variable )(ix
t  at time t (1≤ t <1), given θ, are deined as )|,,,()( 111

2
1
1 itt

x
t SsoooPi ==  , 
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1
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x
t SsoooPi == ++   and are computed by building a probability trellis with N×T nodes 

(Rabiner, 1993). Using )(ix
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t , the following probability is computed. 
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Let ),( j
x
t Oi  denote )(ix

t  with the t-th observed symbol j
x
t Oo = . By counting the number of 

),( j
x
t Oi  over time T, we have,
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ji OixOSE
1

1 ),(),|,(         (25)

For y
T, )(iy

t  and E(Si,Oj|θ,yT) are computed in the same manner and Dij(x
T,yT,θ) is then computed. 

Step 3: Parameter Modiication

It is seen from Eqn.(22) that to maximize I(xT,yT,θ), bij should be set proportional to Dij(x
T,yT,θ). How-

ever, for certain symbol, e.g. Op, the expectation Dip(x
T,yT,θ) may be less than 0. In this case, a small 

value ε, e.g. ε =10-3, is assigned to the corresponding bi(Op). As a result, if there are L occurrences of 
Dip(x

T,yT,θ)≤0, i.e.

0),,( ≤= TT
ip yxDofnumberL  Mp ,2,1=        (26)

ijb~  is estimated according to the following expression 


 −Σ= − )1)(,,(~ 1 LyxDb
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ijD

ij

 otherwise
yxDif TT
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where ΣD is the sum of Dij(x
T,yT,θ) provided that Dij(x

T,yT,θ)>0.
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Step 4: State Duration Validation

The proposed MSD estimation requires that the values of the training pair xT
 and yT

 are fairly similar 
such that their state durations are comparable. If the durations of State Si, say E(Si|θ,xT) and E(Si|θ,yT), 
differ too much, Dij(x

T,yT,θ) becomes meaningless. For example, if E(Si|θ,xT)<< E(Si|θ,yT), even the sym-
bol Oj takes much greater portion in E(Si|θ,xT) than in E(Si|θ,yT), the computed Dij(x

T,yT,θ) may also be 
less than 0. The consequence is that bi(Oj) is always set to be equal to ε rather than adjusted to increase 
I(xT,yT,θ). As a result, the state durations of xT and yT should be validated after each training cycle. Using 
the forward and backward variables, the state duration of 1x̂  is computed as follows.
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E(Si|θ,yT) is computed in the same manner. Training continues if E(Si|θ,xT)≈ E(Si|θ,yT) (not necessary 
to be the same), e.g. 

8.0),|(/),|(2.1 >> T
i

T
i ySExSE  Ni ,,2,1 =        (30)

otherwise training stops even I(xT,yT,θ) shows trend of increasing.

Step 5: Termination

Step 2 and Step 3 are repeated in each training cycle. After each cycle, Step 4 is implemented to verify 
the state durations. The procedures are repeated until either premature termination occurs, i.e. E(Si|θ,xT) 
and E(Si|θ,yT) differ too much, or the difference of I(xT,yT,θ) between consecutive training cycles is smaller 
than a predeined threshold, or the speciied number of training cycles is met.

extensions to the mSd estimation

In Eqn.(22), both training samples xT
 and yT have the same length T. This condition is necessary in order 

to compare on the same basis the probabilities scored for two sequences. Otherwise, the shorter sequence 
tends to score greater likelihood even it is not the true sample. However, the MSD estimation can be 
extended to training samples of different lengths in the following manner. Assume that the length of the 
training pair ),,( 1

1

111
21

T
T

TTT xxxx =  and ),,( 2

2

222
21

T
T

TTT yyyy =  are T1 and T2, respectively. By carrying 
out linear adjustment, it is easy to prove that ijb

~  can be estimated via the following equation. 
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In Step 4 of the MSD training strategy, the duration of state Si for 1Tx , ),|( 1T
i xSE ,  is then com-

pared with 21 /),|( 2 TySET T
i . 

 The MSD estimation can also be extended to the case of multiple training samples. Assume that 
the training pair are two labeled sample sets: }:,,{ 1

)()2()1( 1 dxxxX R=  denote the true samples and 
}:,,{ 2

)()2()1( 2 dyyyY R=  denote the false samples, where x(i) and y(i) indicate the i-th training samples 
of Class d1 and Class d2, respectively, and R1 is the number of samples of Class d1, R2 is the number of 
samples of Class d2. The separable distance is computed using the expression below.
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If all the training samples in X and Y have the same length, it is concluded that ijb~  should be esti-
mated as follows.
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While validating the state durations, the term 
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is computed and compared with 
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the training cycle is repeated; otherwise, the training terminates. In a more complex situation where 
the training samples in X and Y have different lengths, they can be linearly scaled irst as in Eqn.(31), 
and then clustered as in Eqn.(33). 
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decision Strategy

In the two-class problem, with Class d1 vs. Class d2, let θi,j (i, j = 1, 2) be the MSD estimation of the 
HMM (abbreviated as MSD HMM) with the samples of Class di being the true training samples and 
the samples of Class dj being the false training samples. The identity of an unknown input zT can be 
determined using the following equation.


=

2

1)(
d
d

zID T

  otherwise
zPzPif TT )|()|( 1,22,1 >

       (34)

 In multi-class cases, say with Classes d1, d2, …, dK,   (K-1) number of MSD HMMs are trained for 
each class to separate its true samples out of those of a speciic class. For Class di as an example, K-1 
HMMs– θi,1, , θi,2, … θi,j, … θi,K (i,j = 1,2,… K, i≠j) are trained using the MSD estimation, where θi,j 
denotes the MSD HMM with the samples of Class di being the true training samples and the samples 
of Class dj being the false training samples. For the K classes, there are totally K(K-1) MSD HMMs 
involved. For an unknown observation sequence zT that belongs to one of the K classes, the identity of 
zT is determined in the following steps. 

1. 2K MSD HMMs θ1,2, θ2,1, θ2,3, θ3,2, θ3,4, θ4,3, … θK,1, θ1,K are put into K groups with each of them 
consisting of two HMMs. The probabilities P(zT|θi,j) and P(zT|θj,i) are computed (denoted as Pi,j in 
Fig. 1) . 

Figure 1. The process for determining the identity of the input sample in multi-class identiication
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2. If P(zT|θi,j)> P(zT|θj,i), Class di is more likely to be the identity of zT than Class dj and Class di is selected 
as the winning class in this group. The MSD HMMs of the winning classes are regrouped.

 
The decision strategy mentioned above employs elimination series to determine the identity of zT. 

The number of winning classes halves after each decision round as depicted in Fig. 1. Steps 1 and 2 
are repeated until only one winning class remains. Using this approach, it is usually unnecessary to 
compute all the probabilities that are scored by the K(K-1) MSD HMMs.

Application of mSd hmm to the Recognition of Confusable Visemes

Data Selection and Model Training

The proposed MSD HMM is applied to recognize and distinguish confusable context-independent vise-
mes. Its performance is compared with that of the ML estimation of HMM (abbreviated as ML HMM) 
trained using the Baum-Welch method. To highlight the discriminative power of the MSD HMM, 18 
phonemes listed in Table 2 are chosen as some of them bear close similarity to another. According to 
the phoneme-viseme mapping given in Table 1, these phonemes are clustered into 6 viseme categories 
as shown in Table 2. Here, for notational convenience, we still use the term “viseme” to indicate the 
visual representation of each selected phoneme. 

A professional English speaker is asked to produce each viseme 100 times. The video clips of these 
visemes are manually truncated/stretched such that all the visemes have uniform duration of 1 second, 
or equivalently 25 frames. Among these 100 samples (video clips), 50 are applied for training while the 
remaining 50 are for testing. 

To associate the HMM with the physical process of viseme production, three-state left-right struc-
ture consisting of initial state, articulation state and end state, is used (see Section 2.2, Chapter XI). 
Given a viseme sample, the approximate initial phase, articulation phase and end phase are manually 
segmented from the image sequence and the acoustic signal, and the duration of each phase is counted. 
The coeficients ai,i and ai,i+1 of Matrix A are initialized with these durations. For example, if the dura-
tion of State Si is Ti, the initial value of ai,i is set to be 

Table 2. Visemes selected for the MSD and ML HMM classiiers

Viseme 
Category* Viseme 1 Viseme 2 Viseme 3 Viseme 4

1 /p/ /m/ /b/
6 /th/ /sh/ /tZ/ /dZ/
10 /a:/ /ai/ /æ/
12 /ei/ /i/ /j/ /ie/
13 /o/ /oi/
14 /eu/ /au/

(* The viseme categories are numbered according to MPEG-4)
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1+i

i

T
T

 

and the initial value of ai,i+1 is set to be 

1
1
+iT  

as they maximize 1,, +ii
T

ii aa i . For Matrix B, uniform values are assigned to bij. The HMM initialized in 
this way is put through the Baum-Welch estimation to obtain ML HMM, and MSD estimation to obtain 
MSD HMMs, respectively. 

For each viseme category, a number of MSD HMMs are trained to differentiate the confusable 
visemes in the category. In Category 1, for example, there are 6 MSD HMMs named θ1,2, θ1,3,θ2,1, θ2,3, 
θ3,1, and θ3,2, where θ1,2 is the MSD HMM with the training samples of /p/ being the true samples and 
the training samples of /m/ being the false samples.

Experimental Results

The average separable distance, which is computed using Eqn.(32), changes during the MSD estimation. 
In most cases, the separable distance increases rapidly at irst and then slowly with increasing training 
cycles. Early termination may happen when the state duration condition mentioned in Step 4 (Section 
3.1) is violated. These phenomena will be discussed later in Section 4.4.2.

The separable distances measured for the testing samples of Category 1 by the ML HMMs and the 
corresponding MSD HMMs are depicted in Table 3. Note that “/p/ vs /m/” indicates that the ML HMM 
is trained using the samples of /p/, and the MSD HMM is trained using both the samples of /p/ (as true 
samples) and those of /m/ (as false samples). It is seen that the separable distances obtained by the MSD 
HMMs are much larger than those scored by the ML HMMs. Thus the MSD HMMs is better able to 
tell apart the true viseme out of the confusable false visemes than the ML HMMs. 

For each viseme category, the MSD HMMs are paired as in Fig. 1 and the decision strategy described 
in Section 3.3 is adopted. The labeled testing samples of each viseme are identiied by ML HMMs and 
MSD HMMs, respectively. As an example, 50×3=150 testing samples in Category 1 are recognized within 
a closed set of 3 visemes. For the ML HMMs, a correct classiication is made for a labeled sample if its 
corresponding HMM scores higher probability than other HMMs; and for the MSD HMMs, a correct 
classiication is made if the inal winning class matches the label of the sample. The classiication rates 
computed in this way are illustrated in Table 4.

It can be observed from Table 4 that the MSD HMMs can better classify the selected visemes than 
the ML HMMs. The average improvement on classiication rate is approximately 20%. Based on this 
signiicant difference in classiication rate, it may be concluded that the MSD estimation is able to im-
prove the discriminative ability of HMM in identifying confusable visemes. 
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TWo -ChAnnel  hmm Cl ASSIFIeR

Structure

The MSD training method mentioned in Section 3 may guarantee a good separable distance between 
true samples and false samples. However, the scored probability for a true sample, say P(xT|θ), may 
be small. This is due to the fact that maximization of P(xT|θ) is not considered in the training process 
given in Section 3.1. To apply the separable distance criterion function to ensure good discriminative 
power and at the same time, to guarantee a high probability of the true sample given the target HMM, 
a Two-channel HMM structure and training method are proposed in this section. 

The block diagram of the Two-channel HMM is given in Fig. 2. It consists of a static-channel HMM 
and a dynamic-channel HMM. For the static-channel, a parameter-smoothed ML HMM is used and kept 
unchanged during the training process. For the dynamic-channel HMM, to maintain synchronization of 
the duration and transition of states, the same set of values for π and A as derived for the static-channel 
HMM is used, only the parameters of Matrix B of this channel are adjusted to maximize the separable 
distance as according to Eqn.(22).

The elements (bij) of Matrix B of the Two-channel HMM are decomposed into two parts as  

       (35)

Table 3. The separable distances between viseme samples of viseme category 1

Separable distance (true samples vs false samples)

/p/ vs /m/  /p/ vs /b / /m/ vs /p/ /m/ vs /b/ /b/ vs /p/ /b/ vs /m/
ML HMM 2.55 2.10 0.89 1.06 1.32 2.44

MSD HMM 7.12 4.47 2.11 3. 07 4.01 4.32

Table 4. Classiication rates of the viseme samples of the 6 categories

Category 1 Category 6 Category 10  Category 12 Category 13 Category 14 
ML 

HMMs 41% 34% 49% 54% 78% 75%

MSD 
HMMs 62% 63% 68% 80% 88% 85%
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s
ijb  for the static-channel and d

ijb for the dynamic-channel. The dynamic-channel coeficients d
ijb  are 

the key source of the discriminative power. 
s
ijb s are computed using parameter-smoothed ML HMM and 

weighted. As long as bij computed from Eqn.(22) to maximize separable distance is greater than s
ijb , d

ijb  
is determined as the difference between bij and s

ijb  according to Eqn.(35), otherwise d
ijb  is set to be 0. 

To avoid the occurrence of zero or negative probability, ),,2,1,,,2,1( MjNib s
ij  =∀=∀  should 

be kept greater than 0 in the training procedure and at the same time, the dynamic-channel coef-

Figure 2.  Block diagram of a Two-channel HMM

Figure 3.  The two-channel structure of the i-th state of a left-right HMM
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icient ),,2,1,,,2,1( MjNibd
ij  =∀=∀ should be non-negative. Thus the probability constraint 

0>≥+= s
ij

d
ij

s
ijij bbbb  is met. 

In addition, the relative weightage of the static-channel and the dynamic-channel may be controlled 
by the credibility weighing factor ωi (i=1,2,… N) (different states may have different values). If the 
weightage of the dynamic-channel is set to be ωi by scaling of the coeficients,  

       (36)

then the weightage of the static-channel has to be set as follows.

       (37)

Training of the Two-Channel hmm 

Step 1: Parameter Initialization

For the Two-channel HMM, a base HMM is constructed using the parameter-smoothed ML HMM of 
xT, x

ML
~ , which is trained using the Baum-Welch estimation. The static-channel HMM is derived from 

the base HMM after applying the scaling factor. Parameter smoothing is carried out for x
ML

~  to prevent 
the occurrence of zero probability. Parameter smoothing is the simple management that bij is set to some 
minimum value, e.g. ε=10-3, if the estimated conditional probability 0~ =ijb  (Rabiner, 1989, Rabiner, 
1993). As a result, even though symbol Oj never appears in the training set, there is still a non-zero prob-
ability of its occurrence in x

ML
~ . Parameter smoothing is a post-training adjustment to decrease error 

rate because the training set, which is usually limited by its size, may not cover erratic samples.
Before carrying out discriminative training, ωi (credibility weighing factor of the i-th state), s

ijb  
(static-channel coeficients) and d

ijb  (dynamic-channel coeficients) are initialized. 
 The static-channel coeficients s

ijb  are given by  

}~~~){1(}{ 2121 iMiii
s
iM

s
i

s
i bbbbbb  −=  10,1 <≤≤≤ iNi       (38)

where ijb~  is the symbol emission probability of  x
ML

~ . 
As for the dynamic-channel coeficients d

ijb , a random or uniform initial distribution usually works 
well. In the experiments conducted in this paper, uniform values equal to ωi/M are assigned to d

ijb s as 
initial values.

The selection of ωi is lexible and largely problem-dependent. A large value of ωi means large weight-
age is assigned to the dynamic-channel and the discriminative power is enhanced. However, as we adjust 

d
ijb  toward the direction of increasing I(xT,yT,θ), the probability of the correct observation P(xT|θ) will 

normally decrease. This situation is undesirable because the Two-channel HMM obtained is unlikely 
to generate even the correct samples. 

A guideline for the determination of the value of ωi is as follows. If the training pairs are very similar 
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to each other such that )~|()~|( x
ML

Tx
ML

T yPxP ≈ , ωi should be set to a large value to guarantee good 
discrimination; on the other hand, if )~|()~|( x

ML
Tx

ML
T yPxP >> , ωi should be set to a small value to 

make P(xT|θ) reasonably large. In addition, different values shall be used for different states because 
they contribute differently to the scored probabilities. However, the values of ωi for the different states 
should not differ greatly. 

Based on the above considerations, the following procedures are taken to determine ωi. Given the 
base HMM x

ML
~  and the training pair xT and yT, the optimal state chains are searched using the Viterbi 

algorithm. Let )~|,( x
ML

TT sxP  denote the probability of generating the optimal state chain sT and the 
training sample xT. If x

ML
~  is a left-right model and the expected (optimal) duration of the i-th state 

(i=1,2,…,N) of xT is from ti to ti+τi, )~|,( x
ML

TT sxP  can then be written as the product of the segments 
of the state chain as follows.  
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NNN +++=   (39)

)~|,( x
ML

TT syP  is decomposed in the same way. 
Let )~|,,,()~|,( x

MLi
T
t

T
t

x
MLi

T
dur SxxPSxP

iii +=  , which indicates the probability of generating a 
segment of observation symbols within the duration [ti, ti+τi] and the state being Si. This probability 
may be computed as follows.  
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)~|,( x
MLi

T
dur SxP  may also be computed using the forward variables 
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x

MLi
T

tt
T

tt
T
t

x
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or/and the backward variables 

)~,|,,()( 11
x

MLi
T
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T
t

T
tt

x
t SsxxPi

iiii
== +++++  .

However, if  x
ML

~  is not a left-right model but an ergodic model, the expected duration of a state will 
consist of a number of separated time slices, for example, k slices such as ti1 to ti1+τi1 , ti2 to ti1+τi2 and 
tik to tik+τik. )~|,( x

MLi
T

dur SxP  is then computed by multiplying them together as shown in the equation 
below.
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The value of ω
i
 is derived by comparing the corresponding )~|,( x

MLi
T

dur SxP  and )~|,( x
MLi

T
dur SyP . 

If )~|,()~|,( x
MLi

T
dur

x
MLi

T
dur SyPSxP >> , this indicates that the coef. cients of the i-th state of the base 

model are good enough for discrimination, ω
i
 should be set to a small value to preserve the original 

ML conigurations. If )~|,()~|,( x
MLi

T
dur

x
MLi

T
dur SyPSxP <  or )~|,()~|,( x

MLi
T

dur
x

MLi
T

dur SyPSxP ≈
, this indicates that State S

i
 is not able to distinguish between xT and yT, ω

i
 must be set to a value large 

enough to ensure )~|,()~|,( i
T

duri
T

dur SyPSxP > , where 
~

 is the two channel HMM. In practice, ω
i
 

can be manually selected according to the conditions mentioned above, or they can be computed using 
the following expression.

Di Cv+=
1

1
           (42)

where 

)~|,(
)~|,(

x
MLi

T
dur

x
MLi

T
dur

SyP
SxPv =

. 

C (C >0) and D are constants that jointly control the smoothness of ω
i
 with respect to v. Since C >0 and 

v >0, ω
i 
<1, by using suitable values of C and D, a set of credibility factors ω

i
 are computed for the states 

of the target HMM. For example, if the range of v is 10-3~105, a typical setting is C =1.0 and D =0.1. 
Once the values of ω

i 
(i = 1, 2,...,N) are determined, they shall not be changed in the training pro-

cess. 

Step 2: Partition of the Observation Symbol Set

Let θ denote the HMM with the above initial conigurations, the coeficients of the dynamic-channel 
are adjusted according to the following procedures. First, E(S

i
,O

j
|θ,xT) and E(S

i
,O

j
|θ,yT) are computed 

through the counting process as described in Section 3.1, Step 2. 
It is shown in Eqn.(22) that to maximize I(xT,yT,θ), b

ij
 should be set proportional to D

ij
(xT,yT,θ). However, 

for certain symbols, e.g. O
p
, the expectation D

ip
(xT,yT,θ) may be less than 0. Since the symbol emission 

coeficients cannot take negative values, these symbols have to be specially treated. For this reason, the 
symbol set OM ={O

1
,O

2
,…,O

M
} is partitioned into the subset V ={V

1
,V

2
,…,V

K
} and its complement set U 

={U
1
,U

2
,…,U

M-K
} (OM =U V) according to the following criterion.
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       (43)

where η is the threshold with a typical value of 1.  η  shall be set to a larger value if it is required that the 
set V shall contain fewer dominant symbols. With η≥1, E(S

i
,V

j
|θ,xT)- E(S

i
,V

j
|θ,yT)>0. As an illustration, 

the distributions of the values of E(S
i
,V

j
|θ,xT) and E(S

i
,V

j
|θ,yT) for different symbol labels are shown in 

Fig. 4a. The iltered symbols in set V when η is set l are shown in Fig. 4b.
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Step 3: Modiication to the Dynamic-Channel

For each state, the symbol set is partitioned according to the procedures described in the previous sec-
tion. As an example, consider the i-th state, for symbols in the set U, the symbol emission coeficient 
bi(Uj) (Uj∈U) should be set as small as possible. Let 0)( =j

d
i Ub , and so )()( j

s
iji UbUb = . For symbols 

in the set V, the corresponding dynamic-channel coeficient )( k
d
i Vb  is computed according to the fol-

lowing expression, which is derived from Eqn.(22). 
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However, some coeficients obtained may still be negative, e.g. 0)( <l
d
i Vb  because of large value of 

)( l
s
i Vb . In which case, it indicates that )( l

s
i Vb  alone is large enough for separation. To prevent negative 

Figure 4.  (a) Distributions of E(Si,Vj|θ,xT) and E(Si,Vj|θ,yT) for all symbols. (b) Distribution of E(Si,Vj|θ,xT) 
for the symbols in V
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values appearing in the dynamic-channel, the symbol Vl is transferred from V to U and )( l
d
i Vb  is set 

to 0. The coeficients of the remaining symbols in V are re-estimated using Eqn.(44) until all )( k
d
i Vb s 

are greater than 0. This situation (some 0)( <l
d
i Vb ) usually happens at the irst few epochs of training 

and it is not conducive to convergence because there is steep jump in the surface of I(xT,yT,θ). To relieve 
this problem, a larger value of η in Eqn.(43) shall be used. 

Step 4: Termination

Optimization is done through iteratively calling of the training epoch of Step 2 and Step 3 mentioned 
above. After each epoch, the separable-distance )~,,( TT yxI  of the HMM ~  obtained, is calculated and 
compared with that obtained in the last epoch. If )~,,( TT yxI  does not change more than a predeined 
value, training is terminated and the target Two-channel HMM is established.

properties of the Two-Channel Training Strategy

The Two-channel HMM is a bit more complicated than the MSD HMM in terms of the model structure 
and training implementations, and in turn brings additional computations. However, the Two-channel 
method has some advantages over the MSD method. First, it enables weighing of static channel, dynamic 
channel, and even the individual states, which allows much lexibility of tuning between discriminative 
power and modeling accuracy of an HMM. Second, the adjustment of symbol output coeficients can be 
conined to a few dominant distinguishable features or be extended to a wider range of non-dominant 
distinguishable features (see Step 2 in Section 4.2). Such management may balance the computation 
load and the goodness of the modeling of the distinguishable features.

State Alignment 

Similar to MSD training as mentioned in Section 3.1 (Step 4), the Two-channel training strategy also 
requires the state durations of the training pair, say xT and yT, are comparable. For this purpose, the state 
durations, E(Si|θ,xT) and E(Si|θ,yT) are irst computed as in Eqn.(29). Based on which, the training process 
has to terminate prematurely if the condition given in Eqn.(30) is not met. In this case, If )~,,( TT yxI  
of the inal HMM ~  does not meet certain discriminative requirement, e.g. )~,,( TT yxI  is less than a 
desired value, a new base HMM or smaller ωi should be used instead.

Speed of Convergence 

As discussed in the Section 2.2, the convergence of the parameter-estimation strategy proposed in 
Eqn.(22) is guaranteed according to the EM optimization principles. In the implementation of discrimi-
native training, only some of the symbol emission coeficients in the dynamic-channel are modiied 
according to Eqn.(22) while the others remain unchanged. However, the convergence is still assured 
because irstly the surface of I(xT,yT,θ) with respect to bij is continuous, and also adjusting the dynamic-
channel elements according to the Two-channel training strategy leads to increased Eθ(I). A conceptual 
illustration is given in Fig.5 on how bij is modiied when the symbol set is divided into subsets V and 
U. For ease of explanation, we assume that the symbol set contains only three symbols O1, O2 and O3 
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with O1,O2∈V and O3∈U  for State Si. Let θt denote the HMM trained at the t-th round and θt+1 denote 
the HMM obtained at the t+1-th round. The surface of the separable-distance (I surface) is denoted as 
I’=I(xT,yT,θt+1) for θt+1 and I=I(xT,yT,θt) for θt. Clearly I’>I. The I surface is mapped to bi1-bi2 plane (Fig.5a) 
and bi1-bi3 plane (Fig.5b). In the training phase, bi1 and bi2 are modiied along the line i

d
i

d
i bb =+ 21  to 

reach a better estimation θt+1, which is shown in Fig.5a.  In the bi1-bi3 plane, bi3 is set to the constant s
ib 3  

while bi1 is modiied along the line s
ii bb 33 =  with the direction d


 as shown in Fig.5b. The direction of 

parameter adjustment given by Eqn.(22) is denoted by 'd


. In the Two-channel approach, since only bi1 
and bi2 are modiied according to Eqn.(22) while bi3 remains unchanged, d


 may lead to lower speed of 

convergence than 'd


 does.

Measure of Improvement of the Discriminative Power

The improvement to the discriminative power may be estimated as follows. Assume that ~  is the Two-
channel HMM obtained. The lower bound of the probability )~|( TyP  is given by 

)~|()1()~|( max
x

ML
TTT yPyP −≥         (45)

where ωmax=max(ω1,ω2,…ωN). 
Because the base HMM is the parameter-smoothed ML HMM of xT, it is reasonable to assume that 

)~|()~|( Tx
ML

T xPxP ≥ . The upper bound of the separable-distance is given by the following expres-
sion

Figure 5. The surface of I and the direction of parameter adjustment
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In practice, the gain of )~,,( TT yxI  is much smaller than the theoretical upper bound. It depends on 
the resemblance between xT and yT, and the setting of ωi.

Extensions of the Two-Channel Training Algorithm

The Two-channel training strategy is ready to be extended to the cases where the training samples are 
of different lengths. Similar to the MSD training extensions mentioned in Section 3.2, linear adjustment 
as given in Eqn.(31) can be carried out. For multiple training samples, the clustered separable distance 
may be computed via Eqn.(32) and the probability coeficients are estimated using Eqn.(33). 

Application of Two-Channel hmm to Viseme Recognition

The 18 visemes described in Section3.4.1 are used to validate the performance of the Two-channel 
HMMs. As stated earlier, some visemes are so similar with each other that they are clustered into one 
viseme category in MPEG-4. Therefore, they are good for verifying the discriminative power of the 
viseme classiiers. Besides, the visemes of different viseme categories are different and can be identiied 
by traditional means, say ML HMMs. This well its the structure of the viseme classiier and decision 
strategy that to be discussed in the following section.

Viseme Classiier

The block diagram of a hierarchical viseme classiier is given in Fig.6. In Layer 1, ML HMMs are used 
for coarse classiication and Two-channel HMMs are employed in Layer 2 for ine classiication, two 
visemes at a time. For visemes that are too similar to be separated by the normal ML HMMs, they are 
clustered into one macro class. In the igure, θMac1, θMac2, …, θMacR are the R number of ML HMMs for 
the R macro classes. The similarity between the visemes is measured as follows. 

Assume that }:,,,{ 21 i
i
l

ii
i dxxxX

i
=  is the training samples of viseme di (i=1,2,…, N, as N visemes 

are involved), where i
jx  is the j-th training sample and li is the number of the samples. An ML HMM is 

trained for each of the N visemes using the Baum-Welch estimation. Let θ1, θ2,…, θN denote the N number 
of ML HMMs. For }:,,,{ 21 i

i
l

ii dxxx
i

 , the joint probability scored by θj is computed as follows.
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nji xPXP
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A viseme model θi is able to separate visemes di and dj if the following condition applies, 

≥− )|(log)|(log jiii XPXP  1,2, , ,j N j i∀ = ≠       (48)
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where ρ is a positive constant that is set according to the length of the training samples. For long train-
ing samples, large value of ρ is desired. For the 25-length samples adopted in our experiments, ρ is set 
to be equal to 2. If the condition stated in Eqn.(48) is not met, visemes di and dj are categorized into the 
same macro class. The training samples of di and dj are jointly used to train the ML HMM of the macro 
class. θMac1, θMac2, …, θMacR are obtained in this way. 

For an input viseme zT to be identiied, the probabilities P(zT|θMac1), P(zT|θMac2),…, P(zT|θMacR) are com-
puted and compared with one another. The macro identity of zT is determined by the HMM that gives 
the largest probability.

A macro class may consist of several similar visemes. Fine recognition within a macro class is carried 
out at the second layer using Two-channel HMMs. Assume that Macro Class i comprises L visemes: 
V1, V2,…, VL. L(L-1) number of Two-channel HMMs are trained to separate each pair of the visemes. 
We shall denote these Two-channel HMMs by θj,k ( j,k=1,2,…,L, j≠k) as shown in Fig.6. Take θ1,2 as an 
example, the parameter-smoothed ML HMM of V1 is adopted as the base HMM for θ1,2 ; the samples 
of V1 being the true class and the samples of V2 being the false class. 

Figure 6.  Flow chart of the hierarchical viseme classiier
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For an input viseme zT to be identiied, the following hypothesis is made,


=
0,
i

H ji
 otherwise

zPzPif ij
T

ji
T >− )|(log)|(log ,,

      (49)

Where ρ is the positive constant as deined in Eqn.(48) and ρ=2 here. Hi,j=i indicates a vote for Vi. The 
decision about the identity of zT is made by majority vote of all the Two-channel HMMs. The viseme 
class that has the maximum number of votes is chosen as the identity of zT, denoted by ID(zT).  Math-
ematically, 

][max)( , iHofNumberzID jii

T ==   jiLji ≠=∀ ,,2,1,   
    (50)

If two viseme classes, say Vi and Vj, receive the same number of votes, the decision about the identity 
of zT is made by comparing P(zT|θi,j) and P(zT|θj,i). Mathematically, 
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The decision is based on pairwise comparisons of the hypotheses. The proposed hierarchical struc-
ture greatly reduces the computational load and increases the accuracy of recognition because pairwise 
comparisons are carried out within each macro class, which comprises much fewer candidate classes 
than the entire set. If coarse identiication is not performed, the number of classes increases and the 
number of pairwise comparisons goes up rapidly. 

The Two-channel HMMs act as the boundary functions for the viseme they represent. Each of them 
serves to separate the correct samples from the samples of another viseme. A conceptual illustration 
is given in Fig. 7 where the macro class comprises ive visemes V1, V2, …, V5. θ1,2, θ1,3, …, θ1,5 build the 
decision boundaries for V1 to delimit it from the similar visemes.

The proposed Two-channel HMM model is specially tailored for the target viseme and its “sur-
roundings”. As a result, it is more accurate than the traditional modeling method that uses single ML 
HMM.

Performance of the System

As for experiments described in Section 3.4.1, of the 100 samples of a viseme, 50 are used for training 
and the remaining 50 for testing. By computing and comparing the probabilities scored by different 
viseme models using Eqns.(47) and (48), the visemes are clustered into 6 macro classes as presented in 
Table 8. Note that the clustering is the same as the MPEG-4 categorization in Table 2.

The results of ine recognition of some confusable visemes are listed in Table 6. Each row in Table 6 
shows the two similar visemes that belong to the same macro class. The irst viseme label (in boldface) 
is the target viseme and is denoted by x. The second viseme is the incorrect viseme and is denoted by 
y. x

ML
~  denotes the parameter-smoothed ML HMMs that are trained with the samples of x. With x

ML
~   
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being the base HMM, two Two-channel HMMs: θ1 and θ2 are trained with the samples of x being the 
target training samples and the samples of y being the incorrect training samples. Different sets of the 
credibility factors (ω1, ω2, ω3 for the three states) are used for θ1 and θ2. P  is the average log probability 
scored for the testing samples and is computed as in Eqn.(52) below.

∑=
= l

i
ixP

l
P

1

)|(log1

          (52)

where xi is the i-th testing sample of viseme x and l is the number of the testing samples. The average 
separable-distance is deined as follows.
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The value of I  gives an indication of the discriminative power, the larger the value of I , the higher 
the discriminative power. 

For all settings of (ω1, ω2, ω3), the Two-channel HMMs give a much larger separable-distance than 
the ML HMMs. It shows that better discrimination capabilities are attained using the Two-channel 

Figure 7.  Viseme boundaries formed by the Two-channel HMMs

Table 5. The macro classes for coarse identiication

Macro
class Visemes Macro

class Visemes

1 /a:/, /ai/, /æ/ 4 /o/, /oi/
2 /ei/, /i/, /j/, /ie/ 5 /th/, /sh/, /tZ/, /dZ/
3 /eu/, /au/ 6 /p/, /m/, /b/
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viseme classiiers than using the ML HMM classiiers. In addition, different levels of capabilities can 
be attained by adjusting the credibility factors. However, the Two-channel HMM gives smaller average 
probability for the target samples than the normal ML HMM. It indicates that the Two-channel HMMs 
perform well at discriminating confusable visemes but are not good at modeling the visemes.

The change of I(x,y,θ) with respect to the training epochs in the Two-channel training is depicted in 
Fig.8. For the three-state left-right HMMs and 25-length training samples adopted in the experiment, 
the separable-distance becomes stable after ten to twenty epochs. Such speed of convergence shows that 
the Two-channel training is not computationally intensive for viseme recognition. It is also observed 
that I(x,y,θ) may drop at the irst few training epochs. This phenomenon can be attributed to the fact that 
some symbols in subset V are transferred to U while training the dynamic-channel coeficients. Fig.8d 
illustrates the situation of early termination. The training process stops even though I(x,y,θ) still shows 
the tendency of increasing. As explained in Section 4.3.1, if the state durations of the target training 
samples and incorrect training samples differ greatly, i.e. the state alignment condition is violated, the 
Two-channel training should terminate immediately. As for the MSD HMM mentioned in Section 3.4.2, 
the separable distance shows the same trend of increasing and early termination as shown in Fig.8.

The performance of the proposed hierarchical system is compared with that of the conventional 
recognition system where ML HMMs (parameter-smoothed) are used as the viseme classiiers. The 
False Rejection Error rates (FRR) or Type II error of the two types of viseme classiiers are computed 
for the 50 testing samples of each of the 18 visemes. It is found that 6 of the 18 visemes can be accu-
rately identiied by both the ML HMMs with FRRs less than 10%. The improvement resulting from 
the Two-channel training approach is not prominent for these visemes. As a result, only the FRRs of 
the remaining 12 confusable visemes are listed in Table 7. 

Table 6.  The average values of probability P and separable-distance I 

Viseme pair ML HMM x
ML

~ Two-channel HMM θ1   Two-channel HMM θ2 

x y  P I   P I P I ω1 ω2 ω3

/a:/ /ai/ -14.1 1.196 -17.1 5.571 -18.3 6.589 0.5 0.5 0.5

/ei/ /i/  -14.7 2.162 -19.3 5.977 -20.9 7.008 0.6 0.8 0.6

/au/ /eu/ -15.6 2.990 -18.1 5.872 -18.5 6.555 0.6 0.5 0.6

/o/ /oi/ -13.9 0.830 -17.5 2.508 -18.7 3.296 0.5 0.5 0.5

/th/ /sh/ -15.7 0.602 -19.0 2.809 -18.5 2.732 0.4 0.4 0.4

/p/ /m/ -16.3 1.144 -19.0 3.102 -17.1 2.233 0.4 0.5 0.4

(For θ1, ω1, ω2 and ω3 are set according to Eqn.(42), with C =1.0 and D =0.1. For θ2, ω1, ω2 and ω3 are 
manually selected.)
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Figure 8. Change of  I(x, y, θ) during the training process

Table 7. Classiication errors ε1 of the ML HMM and ε2 of the Two-channel HMM

Viseme ε1 ε2 Viseme ε1 ε2

/a:/ 64% 12% /o/ 46% 28%
/ai/ 60% 40% /oi/ 36% 8%
/ei/ 46% 22% /th/ 18% 16%
/i/ 52% 32% /sh/ 20% 12%

/au/ 30% 18% /p/ 36% 12%
/eu/ 26% 16% /m/ 32% 32%

Compared with the conventional ML HMM classiier, the classiication error of the proposed hier-
archical viseme classiier is reduced by about 20%. Thus the Two-channel training algorithm is able to 
increase the discriminative ability of HMM signiicantly for identifying confusing visemes. 

   
Con Clu SIon

In this chapter, two HMM based methods are presented. The MSD estimation and Two-channel train-
ing strategy proposed are both discriminative training methods of HMM as they amplify the minor 
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difference between a pair of confusable training samples. Experimental results indicate that by using 
these methods, the classiication accuracy of confusable visemes is improved by about 20% over the 
traditional method. 

For the implementation of the two training strategies, the Two-channel HMM employs a ML HMM 
as its static channel to guarantee a high probability of the true samples, and updates its dynamic chan-
nel for higher separable distance for better discrimination. The MSD HMM, on the other hand, can 
be more easily implemented as the requirement on the base model is not stringent, and the parameter 
estimation is based on some simple manipulations to the criterion function. 

The MSD HMM and Two-channel HMM are specially designed for discerning minor difference 
between two classes. As a result, they are not good at dealing with variations of a class. That is why 
they are not it for identifying context-dependent visemes. In applications, both classiiers should be 
used within a closed set of a few confusable classes, or in conjunction with other classiiers for ine 
recognition after coarse recognition is done. To cope with the variations of the classes, and especially 
the context-dependent samples of the same visemes, another training method such as AdaBoost HMM 
described in the previous chapter may be adopted. 

FuTuRe ReSeARCh dIReCTIon

Ventriloquists can speak with the mouth virtually closed. Some speakers do not have conspicuous 
mouth movement, especially for the consonant sounds. So it is a challenge to have a speaker dependent 
lip-reading system. 

The speech information conveyed by the movement of the lips is far less than that of the acoustic 
signals. As a result, it is not feasible to develop a reliable speech recognition system based solely on 
this visual aspect of speech. Incorporation of audio recognition engine to the visual speech processing 
system is necessary for accurate speech recognition. Development of good techniques to integrate audio 
and visual aspects of speech in speech recognition systems is an important research direction. The ap-
plication of phonetic, lexical and semantic rules to HMM modeling may also be explored.
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ABSTRACT

The performance of a visual speech recognition technique is greatly inluenced by the choice of visual 
speech features. Speech information in the visual domain can be generally categorized into static (mouth 
appearance) and motion (mouth movement) features. This chapter reviews a number of computer-based 
lip-reading approaches using motion features. The motion-based visual speech recognition techniques 
can be broadly categorized into two types of algorithms: optical-low and image subtraction. Image 
subtraction techniques have been demonstrated to outperform optical-low based methods in lip-read-
ing. The problem with image subtraction-based method using difference of frames (DOF) is that these 
features capture the changes in the images over time, but do not indicate the direction of the mouth 
movement. New motion features to overcome the limitation of the conventional image subtraction-based 
techniques in visual speech recognition are presented in this chapter. The proposed approach extracts 
features by applying motion segmentation on image sequences. Video data are represented in a 2-D space 
using grayscale images named as motion history images (MHI). MHIs are spatio-temporal templates 
that implicitly encode the temporal component of mouth movement. Zernike moments are computed from 
MHIs as image descriptors and classiied using support vector machines (SVMs). Experimental results 
demonstrate that the proposed technique yield a high accuracy in a phoneme classiication task. The 
results suggest that dynamic information is important for visual speech recognition.
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InTRodu CTIon

Speech recognition technologies provide the lexibility for users to control computer through speech.  
The dificulty of speech recognition systems based on acoustic signals is the sensitivity of such systems 
to variations in acoustic conditions. The performance of audio speech recognizers degrades drastically 
when the acoustic signal strength is low, or in situations with high ambient noise levels. To overcome 
this limitation, there is an increasing trend in applying non-acoustic modalities in speech recognition. 
A number of alternatives have been proposed, such as visual (Petajan, 1984), recording of vocal cords 
movements through electroglottograph (EGG) (Dikshit, 1995) and recording of facial muscle activity 
(Arjunan, 2007). Vision-based techniques are non intrusive and do not require the placement of sensors 
on a speaker’s face and hence are the more desirable options.  

The use of visual signals in computer speech recognition is consistent with the way human perceive 
speech. Human speech perception consists of audio and visual modalities which are demonstrated by 
McGurk effect.  McGurk effect occurs in situations when normal hearing adults are presented with 
conlicting visual and audio speech signals, the perception of sound is changed (McGurk & MacDonald, 
1976). An example is when a listener hears a sound of /ba/ and sees a lip movement of /ga/, the sound 
/da/ is perceived. This indicates that substantial amount of speech information is encoded in visual 
signals. Visual speech information has been demonstrated to improve robustness of audio-only speech 
recognition systems (Stork & Hennecke 1996; Potamianos, Neti, Gravier, Garg, & Senior, 2004; Aleksic 
& Katsaggelos, 2005). 

The visual cues contain far less classiication power for speech as compared to audio data and hence 
it is to be expected that the visual-only speech recognition would support only a small vocabulary. 
High accuracies are achievable for small vocabulary, speaker-dependent visual-only speech recogni-
tion problems as reported in (Neian, Liang, Pi, Liu & Murphy, 2002; Zhang, Mersereau, Clements & 
Broun, 2002; Foo & Dong, 2002). An increase in the number of speakers and size of the vocabulary 
would result in degradation of the accuracy of visual speech recognition.  This is demonstrated by the 
high error rates reported by Potamianos et al. (2003) and Hazen (2006) in large vocabulary visual-only 
speech recognition task, with errors of the order of 90%. Further, these errors are also attributed to the 
large inter-subject variations caused by the differences in lip movements for the same utterance spoken 
by different speakers. The use of visual speech information for speaker recognition (Luettin, Thacker 
& Beet, 1996; Faraj & Bigun 2007) indicates the large variations that exit between the speaking styles 
of different people. This difference is even greater if we transgress across the geographic and cultural 
boundaries. 

A typical visual speech recognition technique consists of three phases, (i) recording and preprocessing 
of video data, (ii) extraction of visual speech features and (iii) classiication. One of the main challenges 
in visual speech recognition is the selection of features to represent lip dynamics. Visual speech features 
contain information on the visible movement of speech articulators such as lips, teeth and jaw. Various 
visual speech features have been proposed in the literature. These features can be broadly categorized 
into shape-based (model-based), appearance-based and motion features. Shape-based features rely on 
the geometric shape of lips. 

Visual speech recognition was irst proposed by Petajan (1984) using shape-based features such as 
height and width of the mouth. Researchers have reported the use of artiicial markers on user’s mouth 
to extract lip contours (Kaynak, Qi, Cheok, Sengupta, & Chung, 2001). The use of artiicial markers 
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is not natural and hence not suitable for practical speech-controlled applications. Stork & Hennecke 
(1996) have investigated the use of deformable templates to extract lip contours for lip-reading applica-
tions. Wang, Lau, Liew & Leung (2006) proposed a lip segmentation method that utilises colour and 
spatial information obtained from colour images. Active shape models (ASM) have been applied in 
visual speech recognition to extract model-based features (Perez, Frangi, Solano &. Lukas, 2005). ASM 
obtains the lip shape information by itting a statistical shape model of the lip to the video frames. An 
extension to the ASM technique is active appearance model (AAM) that combines a shape model with 
a statistical model of the grey levels in the mouth region. The performance of AAM is demonstrated to 
outperform ASM in lip tracking (Matthews, Cootes, Cox, Harvey, Bangham, 1998). While such top-
down approaches are less sensitive to image noise and illumination variations, these techniques use lip 
contours information only and omit information of other speech articulators movement.

Appearance-based features assume that the pixel values within the region of interest (ROI) contain 
important speech information (Potamianos et al., 2003).  Such features are extracted directly from the 
pixel values of the mouth image. The raw image intensity values in the ROI result in high dimension 
data. To reduce the size of the feature vector, feature extraction and transform techniques such as Prin-
cipal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Discrete Cosine Transform 
(DCT) have been proposed (Potamianos et al., 2004;  Hazen, 2006; Liang, Liu, Zhao, Pi, & Neian, 
2002). Appearance-based features can represent visual information of the lips, within the mouth cav-
ity and surrounding face region (Potamianos et al, 2003). As opposed to shape-based approach, these 
techniques do not explicitly extract lip feature points. One of the disadvantages of appearance-based 
features is the sensitivity of such features to varying imaging conditions such as illumination and view 
angle of the camera. 

In both, shape-based and appearance-based techniques, features are extracted from the static frames 
and these can be considered as static features. To implicitly include the dynamic information to capture 
visual speech dynamics, one technique proposed by Potamianos et al is to augment these DCT coeficients 
by the irst and second-order derivatives computed over multiple frames ( Potamianos et al., 2004).

One advantage of using motion features is that these are independent of the static image and back-
ground and directly represent mouth movement. Few researchers have focused on applying motion 
features for visual speech recognition. Important information in lip-reading lies in the temporal change 
of lip positions and not solely on the absolute lip shape (Bregler & Konig, 1991). This chapter reviews 
number of different visual speech recognition techniques using motion features. 

Motion history image (MHI) is a spatio-temporal template created by temporal integration of the 
video data and assigning greater weights to more recent movement (Bobick & Davis, 2001). The re-
sultant MHI is a 2-D grayscale image that is suitable for representing short duration actions such as 
facial movement. This chapter presents a study of different features of MHI of the mouth movement 
during utterance of the phones. This chapter is organised as follows: the second section outlines the 
background on the importance of motion information for visual speech perception by human. The third 
section presents the state of the art lipreading techniques using motion features by computers and the 
available visual speech databases for evaluation. The fourth section presents the MHI based technique 
developed by the authors. The ifth section describes experiments conducted to evaluate this approach 
and the results. The last section concludes the chapter and future recommendations related to possible 
improvements and possible applications of visual speech recognition systems are given.
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Visual speech information can be described in terms of the static and dynamic components (Rosenblum 
& Saldaa, 1998). Features extracted from static mouth images are static (pictorial) features. These features 
characterise the appearance or shape of the mouth in these frames. Motion features directly represent 
mouth movement without regards to the underlying static mouth appearance and shape. 

Signiicance of Motion Information for Visual Speech perception 

A number of studies has demonstrated the signiicance of time-varying information for visual speech 
perception. While static features describe the underlying static poses of the mouth such as the lip shape 
and visibility of teeth and tongue, time-varying features represent the dynamics of articulation that 
correspond to facial movements.

An investigation using computer-generated faces demonstrated that subjects were able to distin-
guish vowels based on time-varying features extracted from the lips and jaw movements (Brooke & 
Summerield, 1983). Experiments using point-light displays by Rosenblum & Saldaa (1998) obtained 
similar results that validated the signiicance of time-varying information in visual speech perception. 
The point-light display method is a method to measure time-varying information and this is achieved by 
applying small lights to different key facial feature points of a darkened speaker’s face. Three different 
conigurations for the point light displays were studied by Rosenblum and Saldaa (1998). It was observed 
that the point-light display coniguration with lights attached to the lips, tongue and teeth provides the 
highest classiication rate. The lowest accuracy was produced using the coniguration with the most 
number of point light displays attached to the face (points on the mouth, cheeks and chin).

These experiments demonstrate that dynamic features characterizing the speech articulators’ 
movements are salient features for speechreading. Humans’ cognitive abilities in speech perception 
encompass multiple modalities with different temporal, spatial and sensing characteristics. The insights 
gained from studies of human visual speech perception provide clues that suggest which visual aspects 
of speech events are important for computer lip-reading. Results from human perceptual experiments 
demonstrate that the dynamic features extracted from facial movements contain signiicant cues use-
ful for recognition of visual speech. Movements in the lower face region of the speaker which encloses 
the mouth, lips, teeth, tongue and jaw are found to be most informative for identifying utterances by 
humans. The region of interest for lip-reading systems should contain the lower face region for eficient 
decoding of visual speech.

 

STATe o F The ART mAChIne- BASed l IpReAdIng TeChn IQue S uSIng 
moTIon FeATuReS 

The high sensitivity of human vision to motion tracking and dynamic information of visual speech 
suggest that motion features are useful for visual speech recognition. The motivation for using motion 
features is because signiicant visual speech information is relected by the temporal change of lip posi-
tions and not solely on the absolute lip shape (Bregler & Konig, 1994). Another reason in favour of using 
temporal image data is the psychophysical evidence suggesting that biological visual systems are well 
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adapted to process temporal information. The results from human perceptual studies by Rosenblum & 
Saldaa (1998) have validated that time-varying information is important for visual speech perception.

Research on machine lip-reading conducted by Goldschen et al. (1994) demonstrated that motion 
features are more discriminative as compared to static features. In their experiments, seven static fea-
tures from the oral cavity such as the perimeter along the edge of the oral cavity, width and height of 
the oral cavity are used. They had extracted motion features as a combination of the irst and second 
derivative of the static features and analysed the motion and static features using PCA. The results of 
their analysis indicate that most of the motion features are more informative than the static features. 
Despite the signiicance of speech dynamics in utterance recognition, few studies have focused on ap-
plying motion features for computer lip-reading as compared to static features.

The signiicance of lip motion in visual speech recognition is investigated by Cetingül et. al. (2006) 
for speaker and speech recognition. Their work compared different feature sets that consist of the lip 
motion, lip texture and audio information. The audio information is represented using the Mel-frequency 
cepstral coeficients (MFCC) and the irst and second derivatives of MFCC. Lip texture is represented 
using the 2D-DCT coeficients of the luminance component within a bounding box around the region of 
interest (ROI) whereas the lip motion is extracted through discriminative analysis of the dense motion 
vectors within the ROI. Their results indicate that by including the lip motion features, the performance 
of the speech recognition system is improves as compared to fusion of audio and lip texture alone. 

The techniques used to extract motion features reported in literature can be broadly classiied into 
two: optical-low and image subtraction. This chapter discusses these two techniques and looks at the 
different dynamic features associated with each of these. The chapter also discusses methods used to 
classify these motion features to identify speech from visual data. 

o ptical Flow-Based motion Features 

Optical-low is a motion estimation technique for visual data. Optical-low can be deined as the distri-
bution of apparent velocities associated with the changes in spatial location of brightness patterns in an 
image. Different optical low estimation techniques have been proposed in the literature and two of the 
widely used algorithms are reported by Horn & Schunck (1981) and Lucas & Kanade (1981).  

In the Horn-Schunck technique, the image brightness at any coordinate (x, y) at time t is denoted by 
E(x, y, t). Assuming that brightness of each point is constant during a movement for a very short period, 
the following equation is obtained:

0dE E dx E dy E
dt x dt y dt t

∂ ∂ ∂= + + =∂ ∂ ∂         (1)

Let the vectors u denote the apparent horizontal velocity and v denote the apparent vertical velocity 
of brightness constrained by this equation. 

;dx dyu v
dt dt

= =
           (2)
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A single linear equation deined as

0x y tE u E v E⋅ + ⋅ + =           (3)

The optical low velocity (u, v) cannot be determined only by using Eq. (3). Hence, an additional 
constraint, named as the smoothness constraint is used. This constraint minimizes the square magnitude 
of the gradient of the optical-low velocity and is given by:

2 22 2

,u u v v
x y x y

   ∂ ∂ ∂ ∂   + +      ∂ ∂ ∂ ∂               (4)
 

Solving Eq. (3) and (4), an optical low pattern can be obtained, provided that the apparent velocity 
of the brightness pattern changes smoothly in the image. The low velocity of each point is iteratively 
computed using the average of low velocities estimated from neighbouring pixels in the image.

Based on the Horn & Schunck (1981) algorithm, an optical-low based visual speech recognition 
technique was proposed by Mase & Pentland (1991) to estimate the velocity of lip motions measured 
from optical-low data as motion features. These features were extracted from optical-low of four 
windows around the edges of the mouth (each window represents one of four designated facial muscles 
is activated during speech). The performance of their system is comparable to the speech perception 
ability of human in an English digit recognition task. 

A different optical low estimation technique using 3-D structure method that applies eigenvalue 
analysis of multidimensional structure tensor is reported in (Bigun, Granlund, & Wiklund, 1991). The 
3-D tensor structure method was applied in 2-D subspaces of the 3-D spatiotemporal space to estimate 
the lip contour motion for digit and speaker recognition applications in (Faraj & Bigun 2007).

Carboneras et. al. (2007) have compared the performance of low-dimensional motion features (ex-
tracted using optical low algorithm) with the commonly used appearance-based, static features, 2D-DCT 
coeficients, in a digit recognition task. The motion feature vectors consisted of only three values, i.e., 
the vertical and horizontal relative movement, and the average luminance of the center of the mouth. 
These motion features are from the differences between the optical low vectors computed on different 
regions of the speaker’s mouth. The low-dimensional motion features are demonstrated to outperform 
the DCT-based features when tested using hidden Markov models (HMM) trained with both feature 
fusion and with decision fusion. The use of low-dimensional features requires only a small training 
data set and increases the training and testing speed of the system.  

Iwano et. al. (2007) have investigated the performance of static and motion features for audio-vi-
sual speech recognition using side-face images. They have examined the lip-contour geometric (static) 
features and lip-motion features extracted using optical low algorithm. The motion features are found 
to be useful for onset prediction and the static features are demonstrated to be effective for increasing 
the phoneme discrimination capacity. Combining the static and motion features can increase the noise 
robustness of the proposed visual speech recognition technique. The experimental results also show 
that for small vocabulary speech recognition, the noise robustness of the proposed method is increased 
by combining this visual information with audio information.
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Image Subtraction-Based motion Features

Image subtraction is a commonly used in motion detection and recognition. Image subtraction process 
involves the computation of the difference between adjacent frames and produces a delta image, also 
known as Difference of Frames (DOF). DOF is produced by subtracting the intensity values between 
successive frames of the image sequence. The intensity values of the DOF at pixel location with coor-
dinates (x, y) of the tth frame is deined as

|),(),(|),( 1 yxIyxIyxDOF ttt −−=       (5)

It (x, y) represents the intensity values of the tth frame. One of the key advantages of the image 
subtraction method is the computational simplicity of the algorithm. Figure 1 shows two consecutive 
mouth images and the corresponding DOF.

Image subtraction was applied to extract motion features for visual speech recognition by Scanlon, 
Reilly & De Chazal (2003). They have suggested that the temporal difference between two adjacent frames 
is relatively small and does not provide signiicant temporal information. Hence, they have proposed 
the use of DOF between current frame and a frame much further back in the image sequence (multiple-
frame DOF) as motion features. Multiple-frame DOFs are computed for cth and (c-k)th frame by 

 ( , ) | ( , ) ( , ) |t t t kDOF x y I x y I x y−= −       (6)

For k=1, N/3, N/2, N*2/3, N*5/6 and N-1 with N being the total number of frames. They compared 
the motion features with static features computed using discrete cosine, Haar and Hadamard transform 
and demonstrated that motion features yield three times higher accuracies than static features. Image 
subtraction method for visual speech recognition has also been reported by Le et al (Lee, Lee & Lee, 
2005). Lee et al coupled it with principal component analysis (PCA) and independent component analysis 
(ICA). They tested motion features obtained from both- single-frame and multiple-frame DOFs. 

A comparison between image subtraction and optical-low based motion features are reported in 
(Gray, Movella & Sejnowski, 1996). Motion features extracted from DOFs were demonstrated to out-
perform features extracted from optical-low techniques. Gray et. al. (2006) have evaluated ive type of 
motion features using:  (i) pixel values of low pass iltered gray scale image (named as form) and DOF, 
(ii) form and PCA of DOFs,  (iii) optical low ields,  (iv) optical low information and acceleration ( the 
difference between subsequent optical low ields) (v) form and optical-low. The accuracies of technique 
(i) using low pass iltered image and DOFs features produced the highest accuracies among the various 
dynamic techniques tested. The technique that combines DOF and grayscale image pixels yield 15% 
higher recognition rate as compared to the approach using optical low ields and image pixels.  

One of the possible reasons for the poorer performance of the optical-low algorithm is due to the 
presence of noise in the resultant optical low ield. Another possible reason argued by Gray et. al 
(1996) is that the optical low algorithm evaluated assumes rigidity of the objects (lips) and small pixel 
movement of features between frames. These assumptions do not hold for mouth images since the lips 
are non rigid and large pixel movement may occur for utterance spoken in high velocity. Moreover, 
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the optical low approaches become unstable if there are less than two directions (texture) in the local 
patch due to the aperture problem. When applying the optical-low techniques to the lip images, the 
aperture-problem is a signiicant source of noise that affects the performance of optical low for visual 
speech recognition. (Faraj & Bigun 2007).

Nevertheless, Scanlon et al. (2003) have pointed out that one of the drawbacks using image subtrac-
tion method based on single-frame DOF in visual speech recognition is the limited dynamic information 
between two adjacent frames. If multiple-frame DOFs are used as motion features, part of the move-
ment information between the current frame, c and (c-k)th frames may have been lost. The selection of 
a suitable k value is not straight forward and may vary depending on the speed of utterance. Another 
issue related to the use of DOF is that these images capture information about the changes in the mouth 
image over time but do not indicate the direction of the mouth movement. 

To overcome these limitations, this chapter investigates the use of a different segmentation algorithm 
to capture lip dynamics through temporal integration of image sequence into a 2-D spatio-temporal 
template named motion history image (MHI) technique (Bobick & Davis, 2001).  MHI contain informa-
tion on the spatial location and temporal information (history) of mouth movement. 

mo TIon hISTo Ry ImAge S Fo R mou Th moVemen T Segmen TATIon

MHI technique is a motion segmentation approach proposed by (Bobick & Davis, 2001). This technique 
can be viewed as an extension of the image subtraction method.  This chapter presents a novel visual 
speech recognition method using motion features extracted from motion history images (MHI). 

MHI is a grayscale image computed by applying accumulative image differencing on the video data. 
MHI is a spatial-temporal template that shows where and when the movements of speech articulators 
(lips, teeth, jaw, facial muscles and tongue) occur in an image sequence (Yau, Kumar & Weghorn, 2007). 
The pixel intensity of a MHI corresponds to a function of the temporal history of motion at that pixel 
location. The gray levels of a MHI are the temporal descriptors of the motion. 

The pixels in the region of movement have higher intensity compared with the pixels where there is 
no movement. Thus motion segmentation is performed based on identifying regions that have intensity 
greater than a threshold. Thresholding is performed on the DOFs to produce binary images, Bt(x, y). The 
threshold value may be dynamically selected based on the statistical properties of the DOF or selected 
empirically. This chapter reports a ixed threshold value, a selected empirically. Bt (x, y) is deined as  

otherwise
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At any instant of time t, the intensity value of the MHI at pixel location (x, y) of the tth frame is 
given by
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N is the total number of frames used to capture the facial movements. The delimiters for the start 
and stop of the motion are manually inserted into the image sequence of every utterance.

In Eq. (8), the binary images have been multiplied with a linear ramp function of time to implicitly 
encode the temporal information of the facial movements into the MHI.  The maximum value obtained 
from the union of the multiplication of Bt(x, y) and t is the pixel value of the MHIt(x, y). By computing 
the MHI values for all pixels values of the image sequence using Eq. (8) produces a grayscale image 
(MHI) where the brightness of the pixels indicates the recency of motion in the image sequence. MHI 
contains pixels corresponding to spatial location of more recent facial movements brighter with larger 
intensity values. Figure 1 shows the three steps process (based on Eq 5-8) in calculating MHI from 
video data. 

The motivation of using MHI in visual speech recognition is the static elements of the images are 
not present in the MHI and only the short duration (facial) movements are preserved. MHI is invariant 
within limits to the skin colour of the speakers due to the image subtraction process involved in the 
generation of MHI . Another advantage of using MHI is the low computational complexity of this mo-
tion segmentation approach. 

The speed of phonation of the speaker might vary for each pronunciation of a phone and might 
be different for each recording. The variations in the speed of utterance result in the variations of the 
overall duration and there maybe variations in the micro phases of the utterances. The details of such 
variations are dificult to model due to the large inter-subject and inter-experiment variations. Our 
proposed approach approximates the variations in speed of speech by normalizing the overall duration 
of utterance. This is achieved by normalizing the intensity values of MHI to [0…1] to minimize the 
differences in MHIs of a same utterance pronounced with different velocity. MHI is a view-sensitive, 

Figure 1. Example of DOFs and MHI computed from an image sequence with twelve frames (from left 
to right showing frame 1 to frame 12)
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motion representation technique. MHI generated from the sequence of images is dependent on factors 
such as position, orientation and distance of the speaker’s face from the camera. Another factor that can 
affect the motion representation of MHI is the illumination variations. 

Intensity values of MHIs in the spatial domain are not suitable to be used as features to represent 
the mouth movement due to the large dimension of image data. Further, the pixel values are dependent 
upon the local variation of the image intensity. The pixel values of MHIs vary with changes such as 
the tilt of speaker’s mouth, or when there is a relative shift of the camera and mouth. To represent MHI 
with a smaller set of descriptors, suitable features need to be extracted.

FeATuRe de SCRIpTo RS

The gray level of each pixel in a MHI indicates the temporal characteristics of facial movement at that 
particular location. The pixel values of MHI contain spatial and temporal information of movement. For 
such images, global region-based feature descriptors are useful in characterizing the intensity distribu-
tion of MHIs as opposed to boundary-based features. Image descriptors evaluated in this chapter are 
Zernike moments and discrete cosine transform (DCT) coeficients.

zernike moment 

Zernike moments (ZM) are a type of orthogonal image moments (Teague, 1980). One of the motiva-
tions for using ZM is due to the simple rotational properties of ZM. ZM has been adopted in MPEG-7 
standard as a region-based shape descriptor (Zhang & Lu, 2004; Jeannin, 2000). ZM are demonstrated 
to outperform other image moments such as geometric moments, Legendre moments and complex 
moments in terms of sensitivity to image noise, information redundancy and image representation 
capability (The & Chin, 1988). 

ZM is computed by projecting image function f(x, y) onto the orthogonal Zernike polynomial, Vnl. 
ZM is deined within a unit circle (i.e.: x2 + y2 ≤1). Zernike moments Znl of order n and repetition l is 
given by

∫ ∫∞


 += 2

0 0

),(1 ddVnZ nlnl

        (9)

|l| ≤ n and (n − |l|) is even. f(ρ, θ) is the intensity distribution of MHI mapped to a unit circle of radius 
ρ and angle θ where x = ρcos θ and ρ. Zernike polynomial, Vnl is deined as

1ˆ           )(),( ˆ −== − jeRV lj
nlnl       (10)

where Rnl is the real-valued radial polynomial deined as
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ZM are independent features due to the orthogonality of the Zernike polynomial Vnl ( Teague, 
1980).

For ZM to be orthogonal, MHIs have to be scaled and bounded to be within a unit circle centered 
at the origin before computing ZM from MHIs. MHIs are bounded by the unit circle. The center of the 
image is taken as the origin and the pixel coordinates are mapped to the range of the unit circle i.e.: x2 
+ y2 ≤ 1. Figure 2 illustrates the square-to-circular transformation that maps the square image function 
(f(x, y)) to a circular image function (f(ρ, θ)  )in terms of i-j axes. The entire MHI is enclosed within the 
circular i-j coordinates to ensure that no information is lost in the square-to-circular transformation.

To illustrate the rotational characteristics of Zernike moments, consider β as the angle of rotation of 
the image. The resulting rotated Zernike moment is

jl
nlnl eZZ −=′           (12)

   
Znl is the Zernike moment of the original image. Equation (12) demonstrates that rotation of an im-

age results in a phase shift on the Zernike moments (Khontazad & Hon, 1990). The absolute value of 

Figure 2. Square-to-circular transformation of the image functions for computation of Zernike mo-
ments
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Zernike moments are rotation invariant. Zernike moments are not scale and translation invariant. To 
ensure scale and translation invariance, the image is irst subjected to a normalization process using its 
regular moments before computing the Zernike moments from the normalized image. 

This chapter adopts the absolute value of the Zernike moments, |Znl| as motion features to represent 
MHI. By including higher order moments, more image information is represented but this will increase 
the feature size and results in the features being more prone to noise. An optimum number of Zernike 
moments should be selected to ensure a balance trade-off between the feature dimensionality and the 
image information represented. The number of moments required is determined empirically by addi-
tive method. 64 ZM that comprise of 0th order up to 14th order moments have been used as features to 
represent each MHI of size 72x72 (a total of 5184 pixels).  Table 1 lists the 64 Zernike moments used 
in our proposed approach.

 
discrete Cosine Transform 

2-D discrete cosine transform (DCT) is a linear transform technique widely used in image compression. 
DCT produces a compact energy representation of an image. DCT combines related frequencies into a 
value and focuses energy into top left corner of the resultant image. DCT is closely related to discrete 
Fourier transform. The 2-D DCT resultant image, Dpq where 0 ≤ p ≤ M −1 and 0 ≤ q ≤N −1 of an input 
image, B with M rows and N columns are be deined as

Table 1. List of the 64 Zernike Moments from 0th to 12th Order

Order Moments
0 Z00
1 Z11
2 Z20Z22
3 Z31Z33
4 Z40Z42Z44
5 Z51Z53Z55
6 Z60Z62Z64Z66
7 Z71Z73Z75Z77
8 Z80Z82Z84Z86Z88
8 Z91Z93Z95Z97Z99
9 Z91Z93Z95Z97Z99
10 Z10,0Z10,2Z10,4Z10,6Z10,8Z10,10
11 Z11,1Z11,3Z11,5Z11,7Z11,9Z1,11
12 Z12,0Z12,2Z12,4Z12,6Z12,8Z12,10Z12,12
13 Z13,1Z13,3Z13,5Z13,7Z13,9Z13,11Z13,13
14 Z14,0Z14,2Z14,4Z14,6Z14,8Z14,10 Z14,12Z14,14
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2-D separable DCT coeficients have been as feature descriptors in visual speech recognition by 
a number of researchers (Potamianos et al., 2004; Heckmann, Kroschel, Savariaux, & Berthommier, 
2002; Hong, Yao, Wan & Chen, 2006).  DCT features can be extracted from images by applying (i) 
DCT on the entire image or (ii) applying DCT on small blocks (e.g. 8 x 8 blocks) of an image. Hong 
et al. (2006) has demonstrated that DCT features extracted using method (i) and method (ii) produced 
similar results for visual speech recognition (VSR). Potamianos, Verma, Neti, Iyengar & Basu (2000) 
have demonstrated that DCT features that are selected based on maximum energy criteria outperforms 
discrete wavelet transform (DWT) and principal component analysis (PCA) in VSR applications.  

The experiments described in this chapter evaluate DCT features obtained by applying 2-D DCT on 
MHI. For the purpose of comparison of DCT and ZM features, the number of DCT coeficients extracted 
from each image has been kept the same as ZM, i.e., 64 values. DCT coeficients on the top left corner 
of the resultant image after applying 2-D DCT are used as features. Triangles with side lengths of 8 are 
taken from the top left of DCT images and ‘lattened’ into features vectors with length of 64 values. 

peRFo RmAnCe eVAlu ATIon

Experiments were conducted to evaluate the performance of the proposed visual speech recognition 
approach. The experiments were approved by the Human Experiments Ethics Committee of RMIT 
University.

The experiments were tested on a vocabulary consisting of fourteen English visemes. Visemes are 
the smallest visually distinguishable facial movements when articulating a phoneme. The motivation 
of using viseme as the recognition unit is because visemes can be concatenated to form words and 
sentences, thus providing the lexibility to extend the vocabulary. 

The total number of visemes is much less than phonemes because speech is only partially visible 
(Hazen, 2006). While the video of the speaker’s face shows the movement of the lips and jaw, the move-
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ments of other articulators such as tongue and vocal cords are often not visible. Hence, each viseme can 
correspond to more than one phoneme, resulting in a many-to-one mapping of phonemes-to-visemes.

There is no deinite consensus about how the sets of visemes in English are constituted (Hazen, 
2006). The number of visemes for English varies depending on factors such as the geographical loca-

Table 2. Fourteen visemes deined in MPEG-4

Viseme
number Corresponding phonemes Vowel/

consonant

1 /p/, /b/ , /m/ consonant
2 /f/,/v/ consonant
3 /th/, /dh/ consonant
4 /t/, /d/ consonant
5 /k/, /g/ consonant
6 /ch/,/sh/,/jh/ consonant
7 /s/, /z/ consonant
8 /n/,/l/ consonant
9 /r/ consonant
10 A vowel
11 E vowel
12 I vowel
13 O vowel
14 U vowel

Table 3. Audio visual speech databases

Database Number of speakers Recording conditions

CUAVE 36 Subjects moving

AVOZES 20 Studio
IBM AV 290 Studio
XM2VTS 295 Studio
M2VTS 37 Studio
VidTIMIT 43 Noisy ofice
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tion, culture, education background and age of the speaker. The geographic differences in English are 
most obvious where the sets of phonemes and visemes changes for different countries and even for 
areas within the same country. It is dificult to determine an optimal and universal viseme set that is 
suitable for all speakers. 

These experiments used visemes deined in the Facial Animation Parameters (FAP) of MPEG-4 
standard. MPEG-4 deines a face model using Facial Animation Parameters (FAP) and Facial Deinition 
Parameters (FDP). Visemes are one of the high level parameter of FAP (Kshirsagar, Escher, Sannier 
& Magnenat-Thalmann, 1999). Table 2 shows the fourteen visemes deined in MPEG-4 standard (The 
visemes chosen for experiments for highlighted in bold fonts).

Visual Speech databases

The number of publicly available audio visual speech databases is less than audio speech databases. 
A number of the visual speech databases are recorded in ideal studio environments with controlled 
lighting. Table 3 lists some of the available visual speech databases and the different characteristics of 
these databases.

To evaluate the performance of the approach in a real world environment, video data was recorded 
using an inexpensive web camera in a typical ofice environment. This was done towards having a 
practical voiceless communication system using low resolution video recordings. The camera focused 
on the mouth region of the speaker and was kept stationary throughout the experiment. The following 
factors were kept the same during the recording of videos: window size and view angle of the camera, 
background and illumination. 2800 utterances (20 repetitions of each viseme) were recorded from ten 
subjects (5 males and 5 females) and stored as AVI iles. Due to the large inter-speaker variations, the 
experiments were conducted for a speaker dependent task. Histogram equalization was applied on the 
images before computing the MHI to minimize the effects of uniform illumination variations. 

One MHI of size 240 x 240 was generated for each phoneme and down sampled to 72 x 72. Fourteen 
visemes (highlighted in bold fonts in Table 2) were evaluated in the experiments. MHIs for 14 visemes 
of Subject 1 and Subject 2 are shown in Figure 3 and Figure 4. MHIs of the two subjects are different 
which is expected due to the large inter-subject variations. 

Two types of image descriptors evaluated in the experiments were Zernike moments (ZM) and discrete 
cosine transform (DCT) coeficients. The optimum number of ZM features required for classiication 
of the fourteen visemes was determined empirically. The number of features for DCT coeficients was 
kept the same as ZM to compare the image representation ability of these two image descriptors.

Classiication

Zernike moments and discrete cosine transform (DCT) features were fed into support vector machines 
(SVMs) classiier as input vectors. SVMs are discriminative classiiers that are trained based on statisti-
cal learning theory. SVMs can be designed to classify linearly and non-linearly separable data. One of 
the strength of SVM is the good generalization achieved by regulating the trade-off between structural 
complexity of the classiier and empirical error. SVM is capable of inding the optimal separating hy-
perplane between classes in sparse high-dimensional spaces with relatively few training data. SVMs 
were selected due to the ability of SVMs to ind a globally optimum decision function to separate the 
different classes of data. Unlike HMM, training of SVM is not susceptible to local maximas. SVM is 
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Fig 3. MHI of fourteen visemes of Subject 1

Fig 4. MHI of fourteen visemes of Subject 2
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demonstrated to be a stable classiier by (Buciu, 2006). LIBSVM toolbox (Chang & Lin, 2001) was used 
in the experiment to design the c-SVMs. The one-vs.-all multi-class SVM technique is adopted in the 
training of SVM classiier. One SVM was created to learn each viseme. The gamma parameter and the 
error term penalty parameter, c of the kernel function were optimized using ive-fold cross validation 
on the data. The SVM kernel function used was radial basis function (RBF). The classiication perfor-
mance of SVM was tested using the leave-one-out method. The SVMs were trained with 266 training 
samples and were tested using the 14 remaining samples (1 sample from each viseme) for each speaker. 
This process was repeated 20 times using different sets of train and test data.

Selecting the o ptimum number of Features 

The accuracies of different number of ZM features were compared to determine a suitable number of 
ZM features needed for classifying the fourteen visemes. 280 MHI from fourteen classes of a randomly 
selected participant were used to select the number of features required. These features are classiied 
using SVM with RBF kernel. Classiication accuracies of four to 81 ZM of (0th up to 16th order) were 
evaluated. Table 4 shows the number of ZM for different moment orders.

Figure 5 shows the recognition rates for different number of ZM features. These features were clas-
siied using SVM. It was observed that the accuracies increased from 4 features up to 64 features. 64 
ZM features were found to be the optimum feature dimension for classiication of fourteen visemes. It 
is important to point out that by increasing the number of ZM feature from 64 to 81, no improvement 
in recognition rates was observed. Based on this analysis, 64 ZM and DCT features were selected as 
two sets of feature vectors computed from MHI for phoneme classiication.

Table 4. Number of Zernike moments for different moment order

Number of Zernike moments Moment order

4 0th to 2nd

9 0th  to 4th
16 0th to 6th
25 0th to 8th
36 0th to 10th
49 0th to 12th
64 0th to 14th
81 0th to 16th
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Statistical Analysis of Features

Multivariate analysis of variance (MANOVA) was applied on the Zernike moments (ZM) and discrete 
cosine transform (DCT) features in the experiments to analyse the data. MANOVA is an extension of 
One-Way Analysis of Variance (ANOVA) that can be applied to analyse multiple variable.  MANOVA 
analyses the means of variables and determine whether the mean of these variables differ signiicantly 
between groups. In multivariate analysis of variance, canonical analysis was performed to ind the 
linear combination of the original variables that has the largest separation between groups. Canonical 
variables are linear combinations of the mean-centred original variables. A grouped scatter plot of the 
irst two canonical variables showed more separation between groups then a grouped scatter plot of 
any pair of original variables of ZM and DCT. Figure 6 and 7 shows the grouped scatter plot of ZM 
and DCT for Subject 1. 

From Figure 6 and 7 we can clearly observe that there is overlapping between classes of ZM and DCT 
features, as indicated by the regions enclosed in dashed lines.  The results of MANOVA analysis applied 
ZM and DCT features indicate that the fourteen classes may not be linearly separable. This reconirms 
the choice of using non-linear support vector machines (SVM) to classify the features. 

Rotational Sensitivity Analysis

The second part of the experiments was to test the sensitivity of DCT and ZM features to changes of 
mouth orientation in the images. Mouth orientation of a user may not always be the same with respect to 
the camera axis. Variations in mouth orientation will results in rotational changes of mouth in images. 
To investigate the rotational sensitivity of DCT and ZM features, 280 MHIs (from Subject 3) generated 

Figure 5. Recognition rates for different number of Zernike moments
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Figure 6. Grouped scatter plot of irst two canonical variables computed from fourteen visemes ZM 
features for Subject 1

Figure 7. Grouped scatter plot of irst two canonical variables computed from fourteen visemes of DCT 
features for Subject 1
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in the previous steps were rotated 20 degrees anticlockwise. Figure 8 shows an example of the rotated 
MHI of vowel /A/. 64 Zernike moments (ZM) and 64 DCT coeficients were computed from MHIs. The 
rotation factor was selected based on the maximum expected during experiments. The performance of 
the image descriptors in representing rotated mouth images was compared. 

Support vector machines (SVMs) were trained using ZM and DCT features extracted from 280 
MHIs before rotation. 280 rotated MHIs were used as testing samples. ZM and DCT features computed 
from rotated MHIs were presented to the trained SVMs to evaluate the sensitivity of the features to 
rotational changes. 

ReSul TS And dISCuSSIon

The irst part of the experiments investigates the performance of Zernike moments (ZM) and discrete 
cosine transform (DCT) features in classifying MHIs of 14 phonemes. The mean SVM classiication 
rates of ZM and DCT features are comparable, i.e., 97.4%and 99% respectively. The accuracies of each 
viseme are shown in Table 5 below. 

It is observed that the error rates for all visemes are less than 5% using DCT and ZM features. The 
results indicate a high level of accuracy for the proposed technique in identifying phonemes from video 
data when there is no relative shift between the camera and the mouth.

One of the factors for misclassiications is the occlusion of articulators’ movement. The investigated 
approach using MHI is a movement-based technique hence it is dependent on the distinctness of mouth 
movement patterns and is sensitive to motion occlusion. For example, motion occlusion occurs during 
the pronunciation of consonant /n/ which has the highest error rate based on Table 5. The movement 
of the tongue within the mouth cavity is not visible (occluded by the teeth) in the video data when pro-
nouncing /n/. Therefore the tongue movement is not encoded in the resultant MHI. The movement of 

Figure 8. (left to right ) MHI of vowel /A/ and MHI of /A/ rotated anticlockwise with an angle of 20 
degrees 
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the tongue tip touching the alveolar ridge (back of the front teeth) is not visible in the video of /n/. This 
reduces the amount of visual speech information represented in the MT of /n/. 

The second part of the experiment evaluated the sensitivity of ZM and DCT features to rotational 
changes between camera and mouth. Table 6 shows the average classiication rates using ZM and DCT 
features extracted from (i) original (non rotated) MHIs and (ii) rotated MHIs. ZM features demonstrated 
to have better tolerance to rotational changes of images as compared to DCT-based method. 

The recognition rate of ZM features is approximately twice as good as the recognition rate of DCT 
feature in representing rotated images. DCT features are observed to be highly sensitive to rotational 

Table 5. Mean SVM classiication accuracies for Zernike moments and DCT features

Viseme Recognition Rates (%)

Zernike moments DCT coeficients

A 97.5 99.0
E 98.5 99.5
I 96.5 99.0
O 98.0 99.0
U 98.5 99.5
/m/ 98.0 100.0
/v/ 98.0 99.5
/th/ 96.0 98.5
/t/ 97.0 98.0
/g/ 97.5 99.0
/ch/ 96.0 99.0
/s/ 98.5 98.5
/n/ 96.8 98.5
/r/ 98.0 99.5

Table 6. Average classiication accuracies of Zernike moments DCT features

Features Accuracies of original 
image

Accuracies of rotated 
image

Zernike moments 97.4% 84.6%
DCT coeficients 99.0% 36.8%
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changes. The accuracies of ZM and DCT features were reduced to 84.6% and 36.8% when the mouth 
was rotated in the images. In the process of rotating the images, a small part of MHIs may have been 
cropped to ensure that the rotated images have the same size as original images (72 x 72). This may 
results in lost of information of MHIs and resulted in misclassiications of rotated MHIs using ZM and 
DCT features. The results suggest that DCT features require accurate normalization of mouth orienta-
tion. ZM is more resilient to rotational changes as compared to DCT features. Our results validate the 
good rotational property of ZM reported in the literature (Khontazad & Hon, 1990). 

To compare the results of the proposed approach with other related work is inappropriate due to the 
different video corpus and recognition tasks used. Researchers who worked on a similar visual-only 
speech recognition task has reported approximately 10% higher error rate using shape-based features 
(geometric measures of the lip) extracted from static images (Foo & Dong, 2002). The encouraging 
results obtained in the experiments indicate that the proposed motion features is suitable for phoneme 
identiication based on mouth movement, without regard to the static shape of mouth. 

Con Clu SIon

This chapter presents an overview of motion features for visual speech recognition. A brief comparison 
of different techniques has been provided and a technique based on motion history image (MHI) that 
overcomes some of the limitations is also presented. The study has made a comparison of the important 
global features, i.e., Zernike moments (ZM) and discrete cosine transform (DCT) coeficients used to 
represent and classify the MHI. The results indicate that the proposed technique can produce high suc-
cess rates of 99% and 97% using DCT and ZM features when there is no relative shift between mouth 
and camera. ZM features were demonstrated to be more resilient to rotational changes as compared 
to DCT features. The results indicate that the reliability of such a system using ZM and DCT features 
drops by approximately 10% and 40% respectively when there is a relative rotation of the camera by 20 
degrees. The results demonstrate that the proposed technique can reliably identify English phonemes. 

FuTuRe ReSeARCh dIReCTIon S

Dynamic visual speech information is important for visual speech recognition. Human perceptual 
studies indicate that time-varying speech information is essential in speechreading (lip-reading). The 
number visual speech recognition techniques using motion features proposed in the literature is much 
less than appearance-based and model-based features extracted from static frames. These static visual 
speech features have been demonstrated to be useful for visual speech recognition. Nevertheless, the 
use of motion segmentation techniques to extract visual speech features provides a new paradigm to 
capture lip dynamics. Such approaches may provide valuable insights in machine recognition of visual 
speech.

Motion features extracted using techniques such as image subtraction, optical-low and motion his-
tory image (MHI) in visual speech recognition can be seen as analogous to the delta features commonly 
used in audio speech recognizers. A few issues related to research on motion features for visual speech 
recognition that may be interesting and worthwhile to examine are: (i) Is complementary visual speech 
information exists in between motion features and static features? (ii) If time-varying and time-inde-
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pendent visual speech information is complementary, what would be the suitable framework for fusing 
the static and dynamic features? (iii) Is motion-based features important for speech activity detection 
and temporal segmentation of utterances? 
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ABSTRACT

The aim of this chapter is to examine the possibility of extracting prosodic information from lip fea-
tures. The authors used two lip feature measurement techniques in order to evaluate the “lip pattern” 
of prosodic focus in French. Two corpora with Subject-Verb-Object (SVO) sentences were designed. 
Four focus conditions (S, V, O or neutral) were elicited in a natural dialogue situation. In the irst set of 
experiments, they recorded two speakers of French with front and proile video cameras. The speakers 
wore blue lipstick and facial markers. In the second set, the authors recorded ive speakers with a 3D 
optical tracker. An analysis of the lip features showed that visible articulatory lip correlates of focus exist 
for all speakers. Two types of patterns were observed: absolute and differential. A potential outcome of 
this study is to provide criteria for automatic visual detection of prosodic focus from lip data.
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InTRodu CTIon

For a spoken message to be understood (be it by machine or human being), the segmental information 
(phones, phonemes, syllables, words) needs to be extracted. Supra-segmental information, however, 
is also crucial. For instance, two utterances with exactly the same segmental content can have very 
different meanings if the supra-segmental information (conveyed by prosody) differs, as Lynne Truss 
(2003) nicely demonstrates:

A woman, without her man, is nothing.
A woman: without her, man is nothing.

Prosodic information has indeed been shown to play a critical role in spoken communication. Pro-
sodic cues are crucial in identifying speech acts and turn-taking, in segmenting the speech low into 
structured units, in detecting “important” words and phrases, in spotting and processing disluencies, 
in identifying speakers and languages, or for detecting speaker emotions and attitudes. The fact that 
listeners use prosodic cues in the processing of speech has led some researchers to try to draw infor-
mation from prosodic features to enhance automatic speech recognition (see e.g. Pagel, 1999; Waibel, 
1988; Yousi & Meziane, 2006).

Prosodic information involves acoustic parameters, such as intensity, fundamental frequency (F0) 
and duration. But prosodic information is not just acoustic, it is also articulatory, and in particular it 
involves visible lip movements. Although prosodic focus typically involves acoustic parameters, several 
studies have suggested that articulatory modiications—and more speciically visible lip and jaw mo-
tion—are also involved (e.g., Cho, 2005; Dohen et al., 2004, 2006; Erickson, 2002; Erickson et al., 2000; 
Harrington et al., 1995; Vatikiotis-Bateson & Kelso, 1993; Kelso et al., 1985; Lœvenbruck, 1999, 2000; 
Summers, 1987;  De Jong, 1995). More speciically, correlates of prosodic focus have been reported on 
the lips, as will be outlined below. If visual cues are associated with prosodic focus, then one can expect 
that prosodic focus should be detectable visually.

Despite these facts, the addition of dynamic lip information to improve automatic speech recognition 
robustness has been limited to the segmental aspects of speech: lip information is generally used to help 
phoneme (or word) categorization. Yet visual information about the lips does not only carry segmental 
information but also prosodic information. The question addressed in this chapter is whether there are 
potentially extractable visual lip cues to prosodic information. If a visual speech recognition system is 
able to detect prosodic focus, it will better identify the information put forward by the speaker, a func-
tion which can be crucial in a number of applications.

BACkg Round

A review of speech perception studies suggests that the extraction of prosodic information from visual 
lip features may be possible. These studies have mostly examined the perception of “prosodic focus”, or 
“emphasis”, the aim of which is to highlight a constituent in an utterance, without change to its segmental 
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content. It consists for the speaker in putting forward the part of the utterance he/she wants to com-
municate as being the most informative (see e.g., Birch & Clifton, 1995; Gussenhoven, 1983; Halliday, 
1967; Ladd, 1996; Nølke, 1994; Selkirk, 1984). Focus attracts the listener’s attention to one particular 
constituent of the utterance and is very often used in speech communication. Among the different 
types of focus, contrastive focus is particularly interesting because it has clear acoustic consequences 
(for discussions on the distinction between different focus types, see e.g., Bartels & Kingston, 1994; Di 
Cristo, 2000; Pierrehumbert & Hirshberg, 1990; Touati, 1987). Contrastive focus consists in selecting 
a constituent in the paradigmatic dimension. It is used to contrast one piece of information relative to 
another, as in the answer to the question from the following example (capital letters indicate focus):

1. Did Carol eat the apple?
2. No, SARAH ate the apple.

Descriptions of prosodic focus in several languages have shown that the highlighted constituent 
bears a recognizable intonational contour (see Di Cristo, 2000; Morel & Danon-Boileau, 1998; Rossi, 
1999; Touati, 1989; Touratier, 2000 for instance, for French). Focus also has durational correlates such as 
lengthening of the focused constituent. These cues (intonational and durational) are in fact well identiied 
by listeners. Quite a number of studies have explored the auditory perception of prosodic contrastive 
focus in several languages (French: Dahan & Bernard, 1996; English: Baum et al., 1982; Bryan, 1989; 
Gussenhoven, 1983; Weintraub et al., 1981; Italian: D’Imperio, 2001; Swedish: Brådvik et al., 1991). They 
have shown that, for all these languages, focus is very well perceived from the auditory modality.

As mentioned above, although prosodic focus typically involves acoustic parameters, several studies 
have suggested that articulatory – and more speciically visible lip and jaw motion – modiications are 
also involved (e.g. Cho, 2005; De Jong, 1995; Erickson, 2002; Erickson et al., 2000; Harrington et al., 
1995; Kelso et al., 1985; Lœvenbruck, 1999, 2000; Summers, 1987; Vatikiotis-Bateson & Kelso, 1993). 
That these cues exist suggests that prosodic focus should be detectable visually.

Several studies on English, Swedish and reiterant French showed that visual perception of prosodic 
focus, even though not perfect, is possible (Bernstein et al., 1989; Dohen et al., 2004; Keating et al., 
2003; Risberg & Agelfors, 1978; Risberg & Lubker, 1978; Thompson, 1934). Adding the visual modality 
also improves overall auditory-visual perception of prosodic focus when the acoustic prosodic infor-
mation is degraded in whispered speech for example (Dohen & Lœvenbruck, In Press). These studies 
suggest that visual information and, typically, lip dynamics convey crucial prosodic information that 
can improve lip reading in conversational situations.

In order to examine the possibility of extracting prosodic information from visual lip features, we 
have used several measurement techniques enabling automatic lip feature extraction. We have chosen 
to use very accurate measurement methods, which provide detailed precise data but which are unpracti-
cal for technical applications. The aim was to identify what the “lip pattern” of prosodic focus consists 
of, taking into account inter-speaker variability. The indings presented here will provide criteria for 
automatic prosodic focus detection from lip data in French which can be implemented in automatic 
lip feature extraction systems and which will complement the segmental information already used in 
most systems. 
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mAIn ThRuST: ex TRACTIon  o F pRo Sod IC InFo RmATIon  FRom l Ip 
FeATuReS

experimental procedures

Corpora

Two different corpora were used consisting of sentences with a subject-verb-object (S, V, O) structure 
and CV syllables. Sonorants were favored in order to facilitate F0 tracking. Corpus 1 consisted of 8 
sentences and corpus 2 of 13 sentences. Corpus 2 was designed as an improvement of corpus 1 (through 
the addition of protruded vowels – please see later) after recording a irst speaker. Below is an example 
of one of the sentences used (the reader may refer to appendices 1 & 2 for the detailed corpora). 

[Lou]S [ramena]V [Manu.]O (‘Lou gave a lift back to Manu.’)

Prosodic Focus Elicitation

For all the recordings described below, four focus conditions were elicited: subject-, verb- and object-
focus (narrow focus) and a neutral version (broad focus) thereafter respectively referred to as SF, VF, 
OF and BF. In order to trigger focus in a natural way, the speakers were asked to perform a correction 
task thereby focusing a phrase which had been mispronounced in an audio prompt. The recording went 
as follows (where capital letters indicate focus):

Audio prompt: S1: Lou ramena Manu. (‘Lou gave a lift back to Manu.’)
   S2: S1 a dit : Paul ramena Manu ? (‘S1 said: Paul gave a lift back to Manu?’)
Speaker utters:  LOU ramena Manu. (‘LOU gave a lift back to Manu.’)

The speakers were given no indication on how to produce focus (e.g. which syllables to focus, which 
intonational contour or which articulatory pattern to produce). Two repetitions of each utterance (one 
sentence spoken in one focus condition) were recorded.

Visual Lip Feature Selection

Together they satisfactorily describe French vowels (Carton, 1974; Straka, 1965). They were thus chosen 
as the lip features to be extracted from the articulatory data.
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Data Analysis

Preliminary Acoustic Validation

After the recordings, a irst step consisted in acoustically validating the data i.e. checking whether fo-
cus had actually been produced acoustically. On the one hand, we checked that the focused utterances 
displayed the typical focus intonation as described in Dohen & Lœvenbruck (2004) for example. On 
the other hand, an informal auditory perception test was conducted in order to check whether focus 
could be perceived auditorily.

Pre-Shaping of the Lip Features 

The area under the curve of variation of the amplitude of each feature over time was automatically de-
tected for each phrase (S, V and O) and then divided by the duration of the phrase. Thus this parameter 
represents the mean amplitude of the feature considered over the phrase. The procedure is illustrated 
in Fig. 1. This provides a total of three values per utterance for each feature.

Isolating Supra-Segmental Variations from Segmental Varying Material

Our aim was to be able to isolate and compare lip features relecting supra-segmental variations (prosody). 
The problem was that, for the sake of naturalness and reproducibility as well as for studying variability, 
we used real speech (vs. reiterant speech) i.e. segmentally varying material. In order to isolate the lip 
features resulting solely from supra-segmental variations, and not from segmental variations (/a/ is 
produced with more open lips than /m/, for instance) we adopted a normalization technique. This irst 
consisted in calculating, for each constituent (S, V, O), the mean of the areas for the neutral versions 
(BF) of the sentence (as described in the Data Analysis section) i.e. two values for each constituent (two 
repetitions of the same utterance consisting of three constituents). Then all the area values corresponding 
to the same constituent in the same sentence uttered in the different focus conditions (obtained using the 
method described in the Data Analysis section) – i.e. 6 values: 3 focus conditions, 2 repetitions – were 
divided by this neutral mean. After this normalization, a value of 1 corresponds to no variation of the 
considered feature when the constituent considered is under focus compared to a BF case, a value above 
1 corresponds to an increase and a value below 1 to a decrease.

Figure 1. Illustration of the data pre-shaping: computation of the area under the curve corresponding 
to each constituent (here shown in red for the verb) 
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Complementary Durational Measurements

For all the experiments described below, complementary durational measurements were conducted 
since duration is an important aspect of prosodic focus (see e.g. Dohen & Lœvenbruck, 2004: focal syl-
lables are lengthened and sometimes the pre-focus syllable is also lengthened as part of an anticipatory 
strategy) and can also be detected/processed visually. The durations of all the syllables were computed 
from acoustic labels assigned using Praat (Boersma & Weenink, 2005) and normalized according to 
the method described in The Data Analysis section in order to isolate variability due to supra-segmental 
variations.

Presentation of the Results

The results will all be presented using the same convention. Several graphs (such as those in Fig. 3) will 
be provided for each speaker, summarizing the results for all the features measured (both durational 
and lip features). In these graphs, the means of a speciic feature over all the utterances produced by 
the speaker are represented for three types of within utterance locations. The ‘foc’ item represents the 
mean of all the data corresponding to all the focused constituents (i.e. the focused phrase within the 
utterance, being either the subject, the verb or the object). The ‘pre-foc’ item represents the mean of the 
data corresponding to pre-focus constituents i.e. the subject in the case of verb focus or the subject + 
verb in the case of object focus. The ‘post-foc’ item represents the mean of all the data corresponding 
to post-focus constituents i.e. the verb + object in the subject focus case and the object in the verb focus 
case. In this representation, a value above 1 represents an increase compared to the neutral version of 
the same utterance.

Statistical Analyses

For the sake of clarity and comparability, the same statistical analysis protocol was used for all the 
analyses described below. After the pre-shaping of the data described above, one value was available 
for each constituent (S, V, O) for each utterance. The statistical analyses were conducted for all the data 
corresponding to focus cases (SF, VF and OF) since the normalization procedure (see Data Analysis 
section) used the neutral case as the basis for normalization. 

The irst analysis aimed at testing intra-utterance contrasts i.e. contrasts within the utterance. 
The question was: is there a signiicant difference between the focused constituent and the rest of the 
utterance? This led to the analysis of two within-subject factors. The irst one was a two-level factor 
called Congruency. The congruent cases correspond to S and subject focus (S&SF), V and verb focus 
(V&VF) and O and object focus (O&OF). The incongruent cases correspond to V and O for subject 
focus (V&SF, O&SF), S and O for verb focus (S&VF, O&VF) and S and V for object focus (S&OF, 
V&OF). The second within-subject factor was a three-level factor corresponding to Focus Type (SF, VF 
or OF). For each lip and durational feature, a two-way multivariate analysis of variance (MANOVA; 
see Howell, 2004) was conducted with the aforementioned within-subject factors (i.e. Congruency and 
Focus Type). The sphericity of the data was tested using Mauchly’s sphericity test. When the test was 
signiicant we used a Huynh-Feldt correction on the degrees of freedom (the results presented below 
include these corrections but, for clarity, the “true” numbers of degrees of freedom are in fact reported 
when the F values are presented). 
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The second analysis aimed at testing inter-utterance contrasts in order to answer the following 
question: is there a signiicant difference between a constituent in the focused version of the utterance 
and in the neutral version of the utterance? This was tested using t-tests (Howell, 2004) comparing the 
values corresponding to a speciic constituent in the focused case to 1 (after normalization the neutral 
case corresponds to 1). The following tests were conducted: 

• test 1: comparison of the values corresponding to the focused constituents to 1
• test 2: comparison of the values corresponding to the pre-focus constituents (S in the VF and OF 

cases and V in the OF case) to 1
• test 3: comparison of the values corresponding to the post-focus constituents (V and O for SF cases 

and O for VF cases). 

The results of all these tests are summarized in tables such as Table 1.

method 1: l ip Tracking from Video data

Lip Feature Extraction

A irst set of measurements was collected using a lip tracking device designed at the former Institut de la 
Communication Parlée (now Speech & Cognition Department, GIPSA-lab) (Audouy, 2000; Lallouache, 
1991). This device consists in using blue lipstick, a blue marker on the chin and front and proile blue 
references (front: on the eyeglasses; proile: vertical ruler ixed on the eyeglasses). The speaker is ilmed 
using front and proile cameras (digital; 25 fps). Fig. 2 provides an example of the images recorded.

Figure 2. Lip tracking device: a. (left) example of a recorded image; b. (right) extracted features
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A software program automatically extracts the lip contour from the sequence of digitalized video 
frames and derives parameters describing inter-lip area (LA) and upper-lip protrusion. Inter-lip area 
accounts for both lip opening and lip spreading making it possible to study the variations of both these 
features using one parameter. We analyzed these parameters as well as LA’s irst derivative using the 
procedures described in the Data Analysis section.

Recordings

Corpus 1 was recorded for one native speaker of French (speaker A). Due to the fact that these data 
were recorded for parallel studies as well, the corpus was mainly designed to test lip opening and lip 
spreading and contained very few protruded vowels. Therefore for speaker A, only inter-lip area was 
extracted from the video. Corpus 2 was adapted to additionally make lip protrusion analysis possible 
and was recorded for another native speaker of French (speaker B). Therefore for speaker B, both inter-
lip area and upper-lip protrusion were extracted from the video.

Results

The results from the lip feature extraction are provided in Fig. 3 for both speakers. Table 1 provides 
the results of the statistical analyses conducted using the procedure described in the Data analysis sec-
tion. A number of articulatory and durational correlates to prosodic focus can be extracted from these 
measurements for each speaker. 

First, for the intra-utterance comparisons, Table 1 shows that Congruency has a signiicant effect 
for both speakers on duration, inter-lip area, inter-lip area’s irst derivative (SA only) and upper-lip pro-
trusion (SB only). This means that when a constituent is focused, its duration, inter-lip area, inter-lip 
area’s irst derivative (SA only) and upper-lip protrusion (SB only) are signiicantly greater than those 
corresponding to the other constituents in the same utterance (intra-utterance contrast). Focus Type has 
a signiicant effect on duration (SA only) and inter-lip area (SB only). The effect on duration for speaker 
A is due to the fact that all the syllables of the utterance were longer when the verb was focused. The 
effect on inter-lip area for speaker B is due to the fact that this feature was always greater when the verb 
or the object were focused than when the subject was focused. There is a signiicant interaction between 
Congruency and Focus Type for duration for SA only. This is due to the fact that intra-utterance contrasts 
for duration were much greater for the focused verbs than for the focused subjects and objects. This is 
an artefact of the corpus for SA, in which there were many occurrences of monosyllabic verbs: when 
the focused constituent is mono-syllabic, the mean syllabic correlates of focus are increased.

Secondly, for the inter-utterance comparisons, Table 1 shows that test 1 is signiicant for duration, 
inter-lip area (SA only), inter-lip area’s irst derivative and upper-lip protrusion (SB only). This shows 
that overall, when a constituent is focused, it is lengthened and hyper-articulated (larger and “faster” 
inter-lip area and upper-lip protrusion) compared with the same constituent in a neutral version of the 
utterance. Fig. 3 illustrates this (values above 1). Test 2 is signiicant for all features for SA and for 
duration for SB. For speaker A, lip features were not only enhanced for the focused constituent but also 
for the pre-focus constituent (see Fig. 3: values above 1). This corresponds to an anticipatory strategy 
described in Dohen et al. (2004). For speaker B, the duration of the pre-focus constituent was signii-
cantly reduced compared with the neutral rendition (see Fig. 3: value below 1). Test 3 is signiicant for 
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Table 1. Results of the statistical analyses for the lip-tracking data for speakers A and B, using the sta-
tistical analysis protocol described in the Data Analysis section. The F values correspond to the F-test 
statistic. The t-values correspond to the T-test statistic. The p values correspond to the signiicance level. 
An effect was considered as signiicant when p < .01 (bold characters signal signiicant effects).

Figure 3. Lip tracking: durational measurements and lip features for speakers A and B: normalized 
values corresponding to the pre-focus, focus and post-focus sequences (the dark horizontal lines cor-
respond to the neutral case).
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inter-lip area and upper-lip protrusion for speaker B. This shows that for speaker B, inter-lip area and 
upper-lip protrusion are decreased on the post-focus constituent compared to the same constituent in 
the neutral version (see Fig. 3: values below 1).

The strategies of both speakers are summarized below:

• Speaker A – focal lengthening; focal increase of lip feature amplitudes (inter-lip area and its irst 
derivative); largest contrast for inter-lip area features.

• Speaker B – focal lengthening; focal increase of lip feature amplitudes (inter-lip area and its irst 
derivative and upper-lip protrusion); largest contrast for upper-lip protrusion.

These indings suggest that, for speaker A, values of normalized duration, normalized inter-lip area 
and its irst derivative above 1.2 may characterize a focused constituent. For speaker B, the pattern is a 
little more complex: the graph suggests that a focused constituent may be detected when all parameters 
are above 1 for the given constituent and below one for the following constituent. This latter result is in 
line with the post-focus deaccenting phenomenon that has been described acoustically (see e.g., Dohen 
& Lœvenbruck, 2004).

method 2: o ptotrak

Recordings

Five native speakers of French (B, C, D, E and F) were recorded using corpus 2 (see Corpora section) 
and the procedure described in the Prosodic Focus Elicitation section. Speaker B was the same as the 
speaker B recorded using method 1 (see section describing the lip tracking study). The recordings were 

Figure 4. Optotrak measurement device: experimental setup
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conducted using a 3D optical tracking system: Optotrak. The system consists of three infrared (IR) 
cameras which track the positions of infrared emitting diodes (IREDs) glued to the speaker’s face (there-
after referred to as markers). The 3D coordinates of each IRED were automatically detected over time. 
For this experiment, we used two Optotraks in order to compensate for missing data, corresponding to 
momentary hiding of markers when the speaker moves (head turns, for example). Data were corrected 
for head motion using 4 markers placed on a head rig as shown on Fig. 4 and Fig. 5 (markers 1-4). IRED 
positions were sampled at 60Hz and low-pass iltered. The acoustic signals were recorded simultaneously 
and sampled at 22kHz. Fig. 4 gives an idea of the experimental setup and Fig. 5 provides a schematic 
view of the marker locations. Only the measurements corresponding to the markers located on the lips 
of the speakers (see Fig. 5: markers 8-10 and 12-16) will be discussed here since the purpose of this 
analysis was to study lip features. The other facial and head movement markers were used for another 
study and for the sake of clarity and conciseness, they will not be discussed here. After the recordings, 

Figure 5. Map of the locations of the IRED diodes referred to as “markers”
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an acoustic validation was conducted using the procedure described in the Data Analysis section. It 
showed that, from an acoustic point of view, all the speakers had correctly produced focus.

Lip Feature Extraction

Various lip features were computed from the 3D coordinates of the IREDs: 

• Lip opening was computed as the difference between the z coordinates of the upper and lower 
middle lip markers (see Fig. 5: markers 8 and 15). 

• Lip spreading corresponded to the difference between the y coordinates of the two lip corner 
markers (see Fig. 5: markers 13 and 10).

• Upper lip protrusion was assimilated to the x coordinate of the middle upper lip marker (see Fig. 
5: marker 15). 

In addition, vertical jaw movements (z coordinate of the chin marker, i.e. marker 5) were also ana-
lyzed but the results will not be discussed here, as they were intended for a different study.

Results

The results for all speakers are provided in Fig. 6 and summarized thereafter. The jaw parameter was 
collected for a different study. Only results on the lips are reported here. For the sake of clarity, we will 
only give a general overview of the statistical results in the text. The aim is to put forward trends which 
are consistent from one speaker to another. The detailed results of the statistical analyses are however 
provided in Table 2.

First, for the intra-utterance comparisons, Table 2 shows that, for all speakers, Congruency has 
a signiicant effect on duration, lip opening and upper-lip protrusion and no signiicant effect on lip 
spreading (except for SE). This shows that, when a constituent is focused, it is signiicantly lengthened 
and hyper-articulated (larger lip opening, greater upper-lip protrusion) compared to the other constituents 
of the same utterance. There is a signiicant intra-utterance contrast between the visual lip features cor-
responding to the focused constituent and the visual lip features corresponding to the other constituents 
of the utterance. For duration, Focus Type also has a signiicant effect, illustrating the fact that when the 
verb is focused, all the syllables of the utterance are lengthened. There is also a signiicant interaction 
between congruency and focus type for duration for all speakers. This is due to the fact that, when the 
verb is focused, the intra-utterance contrast for duration is signiicantly stronger.

Secondly, for the inter-utterance comparisons, Table 2 shows that test 1 is signiicant for all speakers 
for duration, lip opening and upper-lip protrusion. This shows that, overall, when a constituent is focused, 
it is lengthened and hyper-articulated (larger lip opening and greater upper-lip protrusion) compared 
with the same constituent in a neutral version of the utterance. It is also the case for lip spreading for 
three of the ive speakers. Fig. 6 illustrates this (values above 1). For SC, SD, SE and SF, this corresponds 
to a signiicant lengthening of the pre-focus constituent compared to the same constituent in a neutral 
version of the utterance (see Fig. 6: values above 1). For SB, it corresponds to a signiicant reduction of 
the duration of this constituent (see Fig. 6: values below 1). Test 2 is also signiicant for SC and SD for 
lip opening (see Fig. 6: values above 1). This corresponds to an increase in lip opening for the pre-focus 
constituent. These results (for test 2) suggest that some speakers use an anticipatory strategy to signal 
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focus by starting to lengthen and hyper-articulate before focus. Test 3 is signiicant for SB, SD and SE 
for lip opening, for SB for lip spreading and for SE and SF for upper-lip protrusion. In all these cases 
(except for SF for upper-lip protrusion), this corresponds to a decrease on the post-focus constituent 
compared to the same constituent in the neutral version (see Fig. 6: value below 1). This suggests that, 
after focus, some speakers tend to shorten and articulate less.

The strategies of all the speakers are summarized below:

• Speaker B – focal lengthening; focal increase of lip feature amplitudes (except for lip spreading); 
post-focus decrease of lip feature amplitudes of all the parameters; largest contrast for protrusion 
and duration. Since speaker B was recorded using both methods (see section describing the lip 
tracking study), the results can be compared. It appears that the trends are the same for the two 
methods with the same ranges except for protrusion. It is dificult to accurately measure lip protru-
sion, as it is very sensitive to the reference used. This could explain the range difference.

• Speaker C – focal lengthening; focal increase of lip feature amplitudes; slight post-focus decrease 
of lip opening amplitudes; largest contrast for protrusion and duration.

Figure 6. Optotrak: durational measurements and lip features for speakers B to F: normalized values 
corresponding to the pre-focus, focus and post-focus sequences (the horizontal line corresponds to the 
neutral case)
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Table 2. Results of the statistical analyses for the Optotrak data for speakers B to F using the statistical 
analysis protocol described in the Data Analysis section. The F values correspond to the F-test statistic. 
The t-values correspond to the T-test statistic. The p values correspond to the signiicance level. An effect 
was considered as signiicant when p <.01 (bold characters signal signiicant effects).
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• Speaker D – focal lengthening; focal increase of lip feature amplitudes (except lip spreading); post-
focus decrease of lip opening and protrusion amplitudes; largest contrast for protrusion; smallest 
contrast for lip spreading.

• Speaker E – focal lengthening; focal increase of lip feature amplitudes; post-focus decrease of lip 
feature amplitudes; largest contrast for protrusion; smallest contrast for lip opening and spread-
ing.

• Speaker F – focal lengthening; focal increase of lip feature amplitudes; largest contrast for protru-
sion; smallest contrast for lip opening.

The results suggest that when the normalized values of duration, lip opening, lip spreading and up-
per-lip protrusion are above 1 for a given constituent and decrease for the following constituent, the irst 
constituent might bear focus. Furthermore, when the normalized values are only slightly above 1 for a 
given constituent, the fact that the values for the next constituent are below one is a further indication 
that the irst constituent was focused.

Con Clu SIon : l Ip FeATuRe CRITeRIA Fo R The  de TeCTIon  o F 
pRo Sod IC Fo CuS

The results described above suggest that it is possible to extract information from lip features about an 
important phenomenon in conversational situations, namely prosodic focus. One of the main conclusions 
that can be drawn is the fact that focus affects the lip features of the whole utterance and not only that of 
the speciic focused constituent. Another important observation is that there is inter-speaker variability. 
However, after examining the productions of six different speakers, two main lip feature patterns can 
be extracted corresponding to prosodic focus production:

Figure 7. Schematic representation of a. (left) the absolute contrast pattern and b. (right) the differential 
contrast pattern
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• Absolute contrast pattern: the focused constituent is lengthened and the features describing lip 
shape (inter-lip area, lip opening, lip spreading, upper-lip protrusion) are increased to a large extent. 
The peak velocities of the evolution of these features over time are also increased. This pattern is 
illustrated in Fig. 7.a.

• Differential contrast pattern: in this case, the focal constituent is also lengthened and the fea-
tures describing lip shape are also increased but to a smaller extent. Additionally, the lip features 
corresponding to the post-focus sequence are decreased. An important contrast is thus created 
inside the utterance: the focal increase is not made very strong but is reinforced by the post-focus 
decrease. Fig. 7.b illustrates this pattern.

Therefore although inter-speaker variability exists, consistent strategies can be described. Further-
more, the differential contrast strategy seems to be the most used (4 speakers out of 6). This strategy 
seems the most economical in terms of articulatory effort while preserving a good contrast within the 
utterance and allowing correct focus detection. These production strategies provide good criteria for 
focus detection. An absolute contrast or a differential contrast on a given constituent in the utterance 
seem to be a good criterion for detecting the presence of focus.

We found that whatever the pattern observed, the lip feature with the highest variations under focus 
was upper-lip protrusion. This is consistent with the inding that lip protrusion is the most visible lip 
feature (Benoît et al., 1994).

We note also that the results obtained with the second method are consistent with those found with 
the irst method. Inter-lip area was used in the irst method, where internal lip contour was easily deriv-
able from video data. Lip opening + lip spreading were used in the second method, where the positions 
of speciic markers were easily obtainable and could provide these distances. The consistency in the 
results suggest that any of these two parameter sets (inter-lip area or lip spreading + lip opening) can 
be used to detect prosodic focus. 

These indings therefore enabled us to sketch a model for the production of visual features corre-
sponding to prosodic focus in French obtained with very accurate and detailed measurement techniques. 
This model covers the different strategies used by different speakers. The consistency in the indings 
using two different measurement methods suggests that other lip feature extraction techniques could 
be used to automatically detect prosodic focus. The proposed model could now be used on visual data 
extracted using other (more practical) methods that extract lip parameters such as lip protrusion and 
lip opening or inter-lip area.

FuTuRe ReSeARCh dIReCTIon S: VISuAl  Spee Ch ReCogn ITIon

The two studies described in this chapter suggest that it is possible to extract prosodic information from 
lip information. The measurements and analyses described enabled us to design a model characterizing 
lip features typically associated with prosodic focus in French. The lip features concerned are vertical 
lip opening, horizontal lip spreading and upper-lip protrusion. Inter-lip area is a feature which combines 
lip opening and lip spreading and can be used instead. What this model mainly shows is that prosodic 
focus results in a marked enhancement of the lip features corresponding to the focused constituent 
compared to that of the other constituents of the same utterance. These indings can potentially be used 
for the detection of prosodic focus in automatic visual speech recognition in the following way: the 
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contrast criteria described above can be applied to the pattern of lip features automatically extracted 
from the utterance. 

In the studies described here, we used two lip feature extraction devices which cannot easily be used 
for commercial applications because of heavy and sophisticated setups, both from the equipment and 
the speaker point of view. We used these devices because of their very good accuracy, since precision 
was important to establish a reliable model. We used two different devices in order to evaluate many 
different lip parameters and test whether the observations were the same from one device to another. 
However, now that the model is established, it seems feasible to use other more “portable” lip feature 
extraction devices which could potentially be integrated into practical applications. We suggest that 
crucial prosodic information, that might improve lip reading in conversational situations, can potentially 
be detected using our model.
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Append Ix 1 – Co Rpu S AV1

The number next to S/V/O is the number of syllables of the constituent.

(s1) [Jean]S1 [veut ménager]V4 [nos jolis nouveaux navets]O7
 ‘Jean wants to spare our ine new turnips.’
(s2) [Romain]S2 [ranima]V3 [la jolie maman]O5
 ‘Romain revived the good-looking mother.’
(s3) [Mélanie]S3 [vit]V1 [les mauvais loups malheureux]O7
 ‘Mélanie saw the unhappy bad wolves.’
(s4) [Véroniqua]S4 [mangeait]V2 [les mauvais melons]O5
 ‘Véroniqua was eating the bad melons.’
(s5) [Les mauvais loups]S4 [mangeront]V3 [Jean]O1
 ‘The bad wolves will eat Jean.’
(s6) [Mon mari]S3 [veut ranimer]V4 [Romain]O2
 ‘My husband wants to revive Romain.’
(s7) [Les loups]S2 [suivaient]V2 [Marilou]O3
 ‘The wolves were following Marilou.’
(s8) [Le beau marin]S4 [vit]V1 [Véroniqua]O4 
 ‘The good-looking sailor saw Véroniqua.’

Append Ix 2 – Co Rpu S AV2

The four irst sentences of corpus AV2 are (s2), (s4), (s6) and (s7) from corpus AV1. The nine other 
sentences are given below (the number next to S/V/O is the number of syllables of the constituent).

(s9) [La nounou]S3 [mariera]V3 [Li]O1
 ‘The nanny will marry Li.’
(s10) [La lama lent]S4 [lu]V1 [Marinella]O4
 ‘The slow lama read Marinella.’
(s11) [Marinella]S4 [va laminer]V4 [Numu]O2
 ‘Marinella will laminate Numu.’
(s12) [Lou]S1 [mima]V2 [le lama]O3
 ‘Lou mimed the lama.’
(s13) [Le nominé]S4 [lu]V1 [les longs mots.]O3
 ‘The nominee read the long words.’
(s14) [La nounou]S3 [vit]V1 [Lou]O1
 ‘The nanny saw Lou.’
(s15) [Les loups]S2 [mimaient]V2 [Marilou]O3
 ‘The wolves mimed Marilou.’
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(s16) [Lou]S1 [ramena]V3 [Manu]O2 
 ‘Lou gave a lift back to Manu.’
(s17) [Li]S1 [ralluma]V3 [les moulinets]O4 
 ‘Li lit the wheels again.’
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ABSTRACT

The information in optical speech signals is phonetically impoverished compared to the information in 
acoustic speech signals that are presented under good listening conditions. But high lipreading scores 
among prelingually deaf adults inform us that optical speech signals are in fact rich in phonetic infor-
mation. Hearing lipreaders are not as accurate as deaf lipreaders, but they too demonstrate perception 
of detailed optical phonetic information. This chapter briely sketches the historical context of and im-
pediments to knowledge about optical phonetics and visual speech perception (lipreading). The authors 
review indings on deaf and hearing lipreaders. Then we review recent results on relationships between 
optical speech signals and visual speech perception. We extend the discussion of these relationships to 
the development of visual speech synthesis. We advocate for a close relationship between visual speech 
perception research and development of synthetic visible speech.

InTRodu CTIon

Modern research on auditory speech perception was initiated towards the middle of the twentieth century. 
A primary item on its agenda was to discover relationships between acoustic phonetic cues in speech 
signals and their perceptual effects, with particular attention to the cues in consonant and vowel seg-
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ments. The research could not have proceeded successfully without contemporaneous developments in 
acoustic signal analysis and speech synthesis. Today, much is known about acoustic phonetic structure 
(Stevens, 1998), acoustic speech synthesis by rule and/or by concatenation methods (Klatt, 1987; van 
Santen, Sproat, Olive, & Hirschberg, 1997), auditory perception of acoustic phonetic cues (for reviews 
see Pisoni & Remez, 2005), and neural bases of auditory speech processing (Scott & Johnsrude, 2003). 
Notwithstanding ongoing current research, our knowledge about optical phonetic signals, visual speech 
perception, and visual speech synthesis remains behind the comparable work involving acoustic speech 
signals. 

In this chapter, we irst review some long-standing impediments to knowledge about the visual as-
pects of speech. One important impediment has been the view that visible speech is not actually very 
informative on its own. We review perceptual studies that contradict that view. Those studies have 
revealed much about visual phonetic perception. We then discuss recent indings on relations between 
optical phonetic signals and phonetic perception. We argue that the link between phonetic signals and 
phonetic perception should be exploited in developing a visual speech synthesizer. In the last section of 
this chapter, we report an approach that we have taken to exploit the link.

Imped Imen TS To k no Wledge ABou T o pTICAl  phone TICS And VISuAl  
Spee Ch peRCep TIon

One impediment to knowledge about visible speech is the presupposition that, “A relatively small propor-
tion of the information in speech is visually available” (Kuhl & Meltzoff, 1988, p. 240). We would not 
be surprised if researchers were not drawn to study a signal with little intrinsic information value: The 
impoverished visual speech stimulus might not deserve the same rigorous approach as that which has 
been applied to the acoustic speech signal. Indeed, in general, visible speech signals afford inherently 
fewer phonetic cues than audible signals, particularly, when listening conditions are favorable. Many 
of the activities of the vocal tract (Catford, 1977) that contribute to the acoustic speech signal (Stevens, 
1998) are hidden from view. Paradoxically, the listener has greater access to vocal tract shape and activity 
than does the viewer, because the acoustic waveform is affected by all of the vocal tract settings. 

For example, the hidden actions of the velum are critical to the control of nasality (e.g., the distinc-
tion between /b/ with the velum raised versus /m/ with the velum lowered). The hidden actions of the 
glottis contribute to voicing distinctions (e.g., in pre-vocalic /b/, for which glottal vibration is initiated 
earlier, versus /p/). The degree to which the tongue causes air low restriction is only partly visible and 
affects manner of articulation (e.g., glide consonants, such as /w/, have less restricted air low versus 
stop consonants, such as /b/). The position and shape of the tongue are also responsible for the differ-
ent vowels (Catford, 1977). Nevertheless, research has shown that the talking face is a rich source for 
phonetic information.

Another apparent impediment to acquiring knowledge about visible speech was an early conclusion 
from studies on lipreading in children. Lipreading research, carried out almost throughout the twentieth 
century, was important in the context of hearing loss and deaf education (for a review of early lipread-
ing/speechreading research see Jeffers & Barley, 1971). The research had as one of its goals to improve 
the education of deaf children, because prior to modern hearing aids and cochlear implants, lipreading 
skill was viewed to be critical in determining a deaf child’s educational success. However, researchers 
concluded that lipreading was a skill more determined by inborn talent than by education. Summer-
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ield (1991), relecting on the literature, concluded that, “Indeed, it is to be lamented that excellence 
in lipreading is not related to the need to perform well, because in formal laboratory tests …, the best 
totally deaf and hearing-impaired subjects often perform only as well as the best subjects with normal 
hearing” (p. 123). Perhaps, less enthusiasm can be generated for research on a skill that is hardwired 
at birth than one that can be affected by training or practice. However, below, we present results that 
show experience is a critical factor in lipreading skill.

Another impediment to knowledge was early theorizing that speech perception is special, and that its 
specialness is tied to the auditory perceptual modality (Liberman, 1982). Early auditory speech perception 
researchers noted the remarkable rate with which acoustic speech signals are encoded and decoded, rates 
far faster than can be processed by humans listening to arbitrary combinations of non-speech sounds, 
such as tones (Liberman, 1982). The researchers also noted the non-invariance of speech signals across 
different phonetic contexts. Co-articulation, the overlapping gestures of vowel and consonant produc-
tions in running speech, is now known to be greatly responsible for the remarkable acoustic phonetic 
processing rates. While researchers focused their energies almost exclusively on trying to understand 
such attributes of acoustic speech signals and adopted the view that the specialness of speech is tied 
to the auditory modality, the optical speech signal received no attention in most research programs. 
This impediment was substantially lowered by results on audiovisual speech perception, as suggested 
below. Although the talking face blocks the view of speech articulation in the vocal tract, the external 
talking face and glimpses into the mouth are rich sources of phonetic information. Reliance on visible 
speech by deaf individuals has helped to disclose the extent of phonetic information in the signal, as well 
as the ability to gain a high level of perceptual accuracy.  Notably, the specialness of auditory speech 
perception has had to yield to evidence about visual and audiovisual speech perception (Liberman & 
Mattingly, 1985). 

An initial research study on audiovisual speech perception was carried out by Sumby and Pollack 
(1954). Speech in various levels of acoustic noise was presented with and without view of the talker. The 
study results showed that being able to see the talker functionally improved the signal-to-noise (SNR) 
of the acoustic speech signal, although not as much as is sometimes cited.1 That is, the study showed 
that functionally important phonetic information is available through visual perception. Although the 
study is now viewed as seminal, in fact, it did not inspire much additional research in the decades im-
mediately following its publication. 

The single research study that most inspired the shift towards accepting visible speech as a stimulus 
worthy of theory and empirical study was reported in 1976 by McGurk and McDonald. Their indings 
became known as the “McGurk effect.” They discovered that a visual stimulus such as “ga” paired with 
an auditory stimulus “ba” could induce the percept “da,” thus demonstrating that what was heard could 
be inluenced by what was seen. This inding was appreciated by many in the speech perception research 
community, and subsequently, many researchers incorporated the visible aspect of spoken language in 
their theories and research programs (e.g., Liberman & Mattingly, 1985; Massaro, 1987; Summerield, 
1987). Nevertheless, the focus of research is frequently audiovisual phenomena and not visible speech. In 
the balance of this chapter, we focus on visual speech perception and optical phonetic signals per se.
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VISuAl  Spee Ch peRCep TIon

Historically, some of the applied research involving visual speech perception undertaken in the early 
1980s was a side-effect of the irst surgical insertion of cochlear implants, which directly stimulate the 
auditory nerve in order to ameliorate profound hearing loss (for reviews see Zeng, Popper, & Fay, 2004). 
The early cochlear implants provided a very impoverished speech stimulus, and users of the devices 
had to rely on integration of their electrical hearing with lipreading. 

An issue debated at the time was the ethics of cochlear implantations in young children (Lane, 
1995). As the early cochlear implants were not exceptionally effective, and their long-term effects 
were in question, some researchers sought to develop less invasive technological approaches to aiding 
lipreading. Many studies were undertaken to determine whether a vibrotactile device could serve the 
same purpose as a cochlear implant (for reviews see Summers, 1992). Some of the research involved 
adults whose lipreading with and without a vibrotactile device was compared (e.g., Auer, Bernstein, & 
Coulter, 1998; Bernstein, Demorest, Coulter, & O’Connell, 1991; Eberhardt, Bernstein, Demorest, & 
Goldstein, 1990; Waldstein & Boothroyd, 1995). This research led the irst author (LEB) of this chapter 
to studies of prelingually deaf adults at Gallaudet University (GU), a university whose undergraduate 
student qualiications included hearing loss. While studying the use of vibrotactile devices to enhance 
lipreading, a population of  deaf adults was revealed whose lipreading performance appeared to far 
surpass reports in the literature (Conrad, 1977; Kuhl & Meltzoff, 1988; Summerield, 1991). This led to 
a large normative study of lipreading.

Visual Speech perception (l ipreading) in deaf and hearing Adults

In order to determine the range of lipreading abilities in deaf and hearing populations, Bernstein, De-
morest, and Tucker (2000) carried out a visual speech perception study with 96 hearing undergraduates 
and 72 undergraduates with hearing loss at GU. To qualify for the study, the GU students were required 
to have English as a irst language and to have sensorineural hearing impairments greater than 60 dB 
HL average in the better ear across the frequencies .5, 1, and 2 kHz. In the participant sample, 71% had 
profound hearing impairments (90 dB HL or greater, better pure tone average), and 62.5% had hear-
ing impairment by 6 months of age. We refer to all the students with hearing loss from this sample as 
deaf.

Design of the Study

The lipreading test materials were video recorded nonsense syllables, isolated words, and isolated sen-
tences (Bernstein & Eberhardt, 1986a, 1986b). The nonsense syllables were of the form consonant-vowel 
(CV), each with one of the 22 initial consonants of English followed by the vowel /a/. Each syllable was 
spoken by a male and a female talker. Participants labeled CV syllables in a 22-alternative forced-choice 
perceptual identiication task. The monosyllabic word stimuli were spoken by the male talker. Sentences 
were spoken by the male and female talkers. 

The participants were tested on isolated words using an open-set word identiication paradigm, for 
which the task was to type all the words or parts of words that were perceived. The sentences that were 



  443

Visual Speech Perception, Optical Phonetics, and Synthetic Speech

tested were lists of the CID Everyday Sentences (Davis & Silverman, 1970) and another more dificult 
set of sentences (Bernstein & Eberhardt, 1986a, 1986b). The sentences were tested in an open-set iden-
tiication paradigm.

Results of the Study 

Results were analyzed in terms of (1) phonemes correct in nonsense syllables, (2) whole words and pho-
nemes correct for isolated monosyllabic words, and (3) whole words and phonemes correct for sentences. 
A sequence comparator (Bernstein, Demorest, & Eberhardt, 1994) was used to align the open-set sentence 
responses with the stimuli and extract the correct and incorrect phonemes. The phonemes correct in 
sentences were also submitted to an information analysis (phoneme substitution uncertainty). 

Deaf undergraduates’ mean performance levels exceeded those of the hearing students on every 
measure (statistically signiicant). The upper quartiles of the deaf students’ scores were used to estimate 
the achievable upper extremes of perceptual accuracy. The proportion nonsense syllables correct upper 
quartile range for the deaf participants was .35 to .50. The comparable range for the hearing participants 
was .33 to .46. This demonstrated moderate phoneme identiication accuracy for even the best deaf and 
hearing lipreaders. 

The proportion phonemes correct in monosyllabic words in the upper quartiles was .59 to .73 for deaf 
participants and .47 to .58 for hearing participants. This demonstrated the sizeable lipreading advantage 
among the deaf lipreaders. But it also showed that hearing lipreaders can perceive good levels of the 
visible phonetic information in speech. Notably, the monosyllabic words were all ones that rhyme with 
multiple words, rendering the stimuli potentially highly confusable.

Generally, the upper quartiles of words correct and phonemes correct scores for the sentence stimuli 
demonstrated extreme differences between the deaf and hearing participants. For example, the deaf 
participants’ upper quartile scores on CID sentences (female talker), scored in terms of phonemes correct 
were .73 to .88, in contrast with hearing participants’ upper quartile scores of .44 to .69. To be noted, 
however, although the most able deaf lipreaders surpassed the most able hearing lipreaders, the perfor-
mance levels of the latter indicated good perception of the information in the visible speech stimulus. 
Also, both groups included very poor lipreaders.

Other results showed that the transmitted information (Wang & Bilger, 1973) for nonsense syllable 
identiication was systematically higher for deaf than for hearing participants. That is, phoneme errors 
by deaf adults were far more systematic than by hearing adults. Also, an analysis of the phoneme sub-
stitution uncertainty in sentence responses showed that uncertainty was always higher in the hearing 
group. That is, when deaf participants made errors in sentences, their errors were more systematic than 
the errors of hearing participants. 

Finally, phoneme identiication and monosyllabic word identiication were both correlated with 
individual participants’ scores on the sentence lipreading materials. Regression analyses showed, how-
ever, that the best predictors of sentence scores were the group membership (deaf or hearing) and the 
isolated monosyllabic word scores. The multiple R, ranged between .88 and .90. As was pointed out 
in Bernstein et al. (2000), these results do not mean that phonetic perception of nonsense syllables is 
not reliable for predicting sentence lipreading. Rather, word identiication measures accounted for the 
same statistical variance as nonsense syllable scores and additional variance not accounted for by the 
nonsense syllable scores. 
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Implications

A question addressed with these results was whether high levels of visual speech perception skill are 
associated with prelingual deafness (i.e., deafness before the age of 2-3 years), a question thought 
already to have been answered in the negative (Mogford, 1987; Rönnberg, 1995; Summerield, 1991). 
Examination of the deaf participants who contributed scores in the upper quartile of the distributions 
identiied four individuals who had profound, congenital hearing impairments. Each had audiometric 
pure tone thresholds that exceeded 100 dB HL. They could not identify words by listening under condi-
tions of ampliication. These individuals are existence proofs for the acquisition of speech perception 
at a high level of accuracy without auditory experience. That is, visible speech had been the basis for 
their acquiring a spoken language and for very accurate visual speech perception.

In order to equate visual and auditory speech perception, Bernstein et al. (2000) compared the results 
of their study with the auditory speech perception performance curve reported in Miller, Heise, and 
Lichten (1951) for ive-word sentences presented in a range of signal-to-noise (SNR) conditions. Across 
all of the sentence sets, the range of lipreading scores for the upper quartile deaf participants was ap-
proximately equal to the acoustic SNRs of  -4 dB to +5 dB. That is, visual speech perception in highly 
skilled deaf lipreaders is similar in accuracy to auditory speech perception under somewhat dificult to 
somewhat favorable listening conditions. 

Using the same metrics from Miller et al. (1951), the scores for the hearing participants in the upper 
quartile were characterized as similar to performance in the acoustic range of -8 dB to 0 dB SNR. That 
is, lipreading in the most skilled hearing lipreaders is similar in accuracy to auditory speech perception 
under dificult to somewhat dificult listening conditions. 

Follow-Up Studies

Subsequent studies have sought to conirm the reliability of the Bernstein et al. (2000) indings. One 
question was whether the deaf participants were simply more comfortable at lipreading, and therefore,  
outperformed the hearing participants. A study with good deaf and hearing lipreaders, in which both 
were given extensive practice, showed small improvements in both groups but reliable advantages on 
the part of the deaf participants (Bernstein, Auer, & Tucker, 2001). 

In the literature, a study of deaf British English lipreaders also showed a lipreading advantage for 
deaf adults (Mohammed et al., 2005). A Swedish study did so also for one deaf adult (Andersson & 
Lidestam, 2005). 

Recently, Auer and Bernstein (2007) examined lipreading screening scores in a new sample of 112 
deaf and 220 hearing adults. They conirmed that lipreading accuracy was highest in the deaf population. 
An analysis of effect size (Cohen’s d)(Cohen, 1988) and the 95% conidence interval for the difference 
in the lipreading ability of deaf and hearing participants showed an effect size of 1.69, suggesting that 
the average prelingually deaf lipreader would score above 95% of hearing lipreaders. On the basis of 
Cohen’s rule of thumb, the three studies—Auer and Bernstein (2007), Bernstein et al. (2000), and Mo-
hammed et al. (2005)—support the conclusion that prelingual deafness has a large effect on lipreading 
ability. That is, the necessity to rely on visible phonetic information coupled with profound hearing loss 
results in higher levels of skill.

Importantly, all of these studies (Andersson & Lidestam, 2005; Auer & Bernstein, 2007; Bernstein, 
Demorest, & Tucker, 2000; Mohammed, Campbell, MacSweeney, Milne, Hansen, & Coleman, 2005) 
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are evidence that the optical speech signal affords phonetic information roughly comparable to the 
acoustic phonetic information available under SNR conditions centered on 0 dB. 

One important implication of these studies is that, if a researcher is interested in estimating and/or 
synthesizing the phonetic information in visual speech stimuli, subjects who are excellent lipreaders 
should be recruited in studies. Random sampling of hearing lipreaders could easily result in low estimates 
of the information in visible speech stimuli, because many hearing lipreaders are not very sensitive to 
the information in visible speech stimuli. In our research, we regularly screen lipreaders so that we can 
sensitively relate our perceptual data to the caliber of our perceivers and the caliber of our stimuli. 

Contributions of the Lexicon to the Intelligibility of Visual Speech

An important part of the explanation for the success of visible speech has come from other studies on 
the contribution of the lexicon to accurate lipreading. The distribution of phoneme patterns in the words 
of the English language reduces the ambiguities of visible spoken words (Auer, 2002; Auer & Bernstein, 
1997; Iverson, Bernstein, & Auer, 1998; MacEachern, 2000; Mattys, Bernstein, & Auer, 2002). Accu-
rate identiication of words can be achieved without access to complete phonetic information, because 
various potentially ambiguous alternative phoneme patterns are simply not words in the language (see 
Auer, this volume). In addition, the semantic context of sentences likely contributes to disambiguating 
words in running speech. Good lipreaders can identify similar alternative words, when the alternatives 
are limited by the context (Bernstein, 2006).

Summary

The contemporary literature on lipreading shows that the visible aspect of spoken language is phoneti-
cally impoverished relative to audible speech that is heard under good listening conditions. But there 
are individuals with normal hearing and with profound hearing loss who obtain relatively high levels 
of phonetic information from visual speech stimuli. The lipreading advantage among prelingually deaf 
adults shows that life-long reliance on visible speech, coupled with deafness, can enhance lipreading 
skill. The performance levels of deaf lipreaders can provide an upper boundary estimate for the avail-
ability of visible phonetic information. The performance levels of hearing lipreaders are not as high but 
also show the availability and perception of visible phonetic information.

Rel ATIon ShIp o F The o pTICAl  SIgn Al S To VISuAl  Spee Ch 
peRCep TIon

We suggested above that research on auditory speech perception, acoustic phonetic signal analysis, and 
acoustic speech synthesis have proceeded synergistically. Less synergy has occurred in the comparable 
domain of visible speech. In particular, relatively little is known about the optical phonetic signal in rela-
tionship to its perceptual effects. Visual speech synthesis has generally not been used to study phonetic 
perception (c.f., Benoit, Guiard-Marigny, Le Goff, & Adjoudani, 1996; Walden, Montgomery, & Prosek, 
1987), and visual speech synthesis is currently based on limited knowledge of optical phonetics.

Very frequently, researchers who use visual speech stimuli in audiovisual experiments record natural 
talkers and describe their stimuli in terms of factors such as the recording conditions, the gender and 
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language of the talker, and the linguistic content of the speech. In contrast acoustic speech can be pre-
cisely described in terms of formant frequencies, fundamental frequencies, formant bandwidths, etc., 
while comparable technical descriptions are not used for specifying visible speech stimuli. Only a few 
studies have attempted to relate optical speech measures directly to visual speech perception. Quantitative 
measures have been selected mostly at the level of facial features, such as lip opening height/width. 

We do not attempt here to review all the existing research involving measures of visible speech. Two 
early quantitative studies examined vowels (Jackson, Montgomery, & Binnie, 1976; Montgomery & 
Jackson, 1983). Jackson et al. (1976) measured the horizontal lip-spreading, lip-rounding, and lip-open-
ing area for a set of 15 vowels spoken by four female talkers. Perceivers rated the similarities among 
pairs of vowel stimuli. Correlations were modest between the physical measures and the component 
positions in perceptual space of the vowel. Subsequently, Montgomery and Jackson (1983) conducted 
additional analyses with 10 of the vowels. They obtained a perceptual space with dimensions labeled 
as “lip spreading/rounding” and “tongue height.” Direct measures of lip height, lip width, lip aperture 
area, acoustic duration, and visual duration were made on the vowels. Physical stimulus difference 
scores computed between pairs of stimuli were used as perception predictors in multiple regression 
models. Variance accounted for by the regression models ranged between 24% and 68% as a function 
of the talker, and the signiicant variables in the models differed across talkers. The large differences 
in variance accounted for across talkers suggest that the direct measures of the stimuli failed to capture 
adequately the representations that perceivers used to recognize the vowels. A serious pitfall in directly 
correlating signal measures with perceptual measures (e.g., choosing a few face features) is that there 
are potentially ininitely many physical measures that could be perceptually relevant. How can the cor-
rect ones be eficiently discovered? Furthermore, direct correlations do not take into account how the 
perceptual system warps the input signal.

These issues are not unique to the perception of visible speech. They extend to any complex percep-
tual stimulus. Shepard and Chipman (1970) considered the problem of establishing the isomorphism 
between physical stimuli and internal (perceptual or neural) representations. They noted that internal 
representations are unlikely to be structurally isomorphic with stimuli in the sense that the internal 
representation of a square is not likely to be square. In order to approach the problem of establishing 
relationships between complex physical stimuli and internal/perceptual/neural representations, they 
argued that an “isomorphism should be sought – not in the irst-order relation between (a) an individual 
object, and (b) its corresponding internal representation – but in the second-order relation between (a) 
the relations among alternative external objects, and (b) the relations among their corresponding inter-
nal representations. Thus, although the internal representation for a square need not itself be square, 
it should (whatever it is) at least have a closer functional relation to the internal representation for a 
rectangle than to that, say, for a green lash or the taste of a persimmon” (p. 2). That is, in the absence of 
a theoretically (or empirically) motivated list of optical phonetic cues, the researcher would be advised 
irst to seek isomorphism between physical dissimilarities and perceptual dissimilarities.

Quantiied Second-Order Isomorphism between Signals and Perception

Jiang et al. (2007) adopted this approach in a study of relationships between perception of phonemes 
in video recorded nonsense syllables and three-dimensional (3-D) optical data obtained by recording 
positions of retro-relectors (recorded simultaneously with the video) (see Figure 1). In the Jiang-et-al 
study, subjects visually identiied the 23 initial consonants of English in consonant-vowel (CV) non-
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sense syllables. Each consonant was followed by the vowels /a/, /i/, or /u/. Four talkers (two males: M1 
and M2; two females: F1 and F2) who varied in visual intelligibility produced two tokens of each of the 
nonsense syllables. In all, there were 522 stimuli. Six participants performed a 23-alternative forced 
choice perceptual identiication task. They identiied each stimulus 10 times. 

Talkers differed signiicantly in the information they produced. The perceptual results showed 
differences in perceptual identiication accuracy across the talkers, across the vowels, and across the 
individual perceivers. The consonants followed by the vowel /a/ were more accurately identiied than 
the ones followed by the vowels /i/ and/u/, which did not differ. 

Given the high level of variation across talkers, perceivers, vowel contexts, and also the individual 
consonants, the identiication data were considered a challenging set for attempting to relate percep-
tion to the optical signals. Following the logic of the argument concerning the search for second-order 
isomorphism, the perceptual data were transformed into perceptual spaces via multidimensional scaling 
(Kruskal & Wish, 1978). Then Euclidean distances were computed between all pairs of phonemes in 
perceptual space. That is, the perceptual dissimilarity of the nonsense syllables was quantiied in terms 
of their Euclidean distances in multidimensional space. 

The next step was to obtain physical distance estimates for the 3-D optical recordings that had been 
made simultaneously with the video recordings of the nonsense syllables. The method involved analysis 
of 17 retro-relector markers on the talker’s face (see Jiang et al., 2007 for a complete description). The 
3-D data over a 280-msec window were analyzed. Euclidean distances were computed irst marker by 
marker (i.e., channel by channel) and then across frames. This resulted in the physical distances with 
51 dimensions/channels (17 retro-relectors in 3-D space) and 253 phoneme pairs (all of the pairs among 

Figure 1. Placement of optical face retro-relectors
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23 consonants). In order to establish relationships between Euclidean distances in perceptual space and 
multidimensional distances in optical space, least-squares linear estimation was applied (Kailath, Sayed, 
& Hassibi, 2000). The least squares estimation solutions provided a set of optimal weights (scalars) for 
transforming the physical measures into perceptual space. Half the perceptual data were used for the 
estimations, and half were subsequently used for evaluating the correlations between perception and 
the perceptually weighted distances: The second-order isomorphism between perceptual dissimilarities 
and optical dissimilarities was operationalized by linearly warping the physical dimensions and then 
comparing the physical dissimilarities to the perceptual dissimilarities. 

A very robust second-order isomorphic relationship was obtained using the scaled dissimilarities 
among the sparse 3-D optical point representations of visible speech and the perceptual dissimilarities 
among the video recorded consonants (see Figure 2). The variance accounted for in the perceptual dis-
similarity measures by the physical dissimilarities ranged between 36% and 72% across talkers and 
vowels (see Jiang, Auer, Alwan, Keating, & Bernstein, 2007, for details). In other words, the visual 
perceptual structure was preserved in the sparse 3-dimensional optical data. 

The mean Pearson correlations between perceptual and physical dissimilarities across vowels with 
the complete set of face points were .76, .68, .81, and .75 for the four talkers. When the correlations 
were performed on the whole versus subparts of the face, they were .75 for the whole face, .64 for the 
lips, .53 for the chin, and .46 for the cheeks. When the data were subdivided as a function of vowel, the 

Figure 2. Scatterplots of weighted physical distances versus perceptual distances (modeled with 6-D 
multidimensional scaling; x-axis) for data pooled across all participants with each vowel ( /a /, /i/, /u/) 
and talker (M1, M2, F1, F2). Adapted from Jiang et al. (2007) with additional data.
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mean Pearson correlations were .70 for syllables with /a/, .75 for syllables with /i/, and .80 for syllables 
with /u/. 

Summary

Second-order isomorphism between perceptual dissimilarities and physical signal dissimilarities resulted 
in good-to-high levels of correlations across a very large data set of nonsense syllables. An implication 
of the Jiang et al. (2007) study is that synthetic speech should preserve second-order isomorphism. That 
is, the dissimilarity relationships in perception based on natural video speech should be represented in 
synthetic video speech. In the inal section of this chapter, we discuss an approach to research on visual 
speech synthesis that followed from the demonstration of second-order isomorphism.

Second-o rder Isomorphism in development of Synthetic Video Speech

Computer speech facial animation research was initiated in the early 1970s and has steadily expanded 
in scope and activity. An automated optical speech synthesizer could potentially allow for generating 
new, spontaneous, and quantitatively controlled speech materials for commercial, research, and clinical 
applications. Our interest in a synthesized talker is primarily for perceptual and neural research, and 
for clinical or educational applications. A synthetic talker would allow precise control over stimulus 
attributes, a fundamental requirement for human perception and neural research.

Currently, talking face animations are available, but their speech information remains inadequate 
for our purposes. Perhaps, this is because optical speech synthesis has not taken full advantage of the 
approach that greatly beneited development of acoustic speech synthesis for research. Acoustic speech 
synthesis was developed in the context of numerous careful acoustic measurements and perceptual 
experiments that were carried out over many years (Klatt, 1987). For example, early work on acoustic 
speech perception employed the pattern playback device, which synthesized a schematic representation 
of the speech signal (Cooper, Delattre, Liberman, Borst, & Gerstman, 1952). This device was critical, 
for example, in discovering relationships between auditory segmental perception and formant frequen-
cies.

The development of optical speech synthesis would beneit from being an iterative process, with 
eficient perceptual testing providing detailed quantitative results for synthesis reinement. The synthe-
sizer we envision would be capable of preserving the phonetically relevant differences among spoken 
consonants and vowels. Our goal is to be able to generate stimuli that can be lipread accurately without 
auditory cues. This speciication is more demanding than merely improving the intelligibility of acoustic 
speech in noise. Fairly gross visual information appears adequate for improving detection of acoustic 
speech signals (cf., Bernstein, Auer, & Takayanagi, 2004; Grant & Seitz, 2000). For example, auditory 
intelligibility for speech in noise can be improved by viewing a synthetic talker’s head motion (Munhall, 
Jones, Callan, Kuratate, & Vatikiotis-Bateson, 2004), and detection of speech in noise can be assisted 
by a non-speech visual object, such as a rectangle (Bernstein, Auer, & Takayanagi, 2004). 

Current evaluation methods for visual speech synthesizers are generally not designed for evaluation 
of ine phonetic detail needed for visual-only lipreading but instead for evaluation of the general ap-
pearance of naturalness, the boost in intelligibility obtained under noisy audiovisual conditions, and/or 
identiication within broad viseme classes (Benoit, Guiard-Marigny, Le Goff, & Adjoudani, 1996; Ma, 
Cole, Pellom, Ward, & Wise, 2006; Massaro, 1998). 
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There are challenges to perceptual testing of synthetic speech because of its natural phonetic impov-
erishment. A method is needed that obtains useful responses to stimuli for which open-set identiication 
typically produces errors. We sought to apply an approach informed by the second-order isomorphism 
concept introduced above. The similarity structure for optical synthesis was compared against that for 
natural visible speech. Establishing a similarity structure requires errorful responses. Subsequently, 
for those pairs of stimuli whose perceptual similarities are different from the computed or predicted 
similarities, a pair-wise tuning of the synthesizer can be performed. 

A methodological advantage in seeking second-order isomorphism in the stimulus-response data is 
that well-deined computational procedures exist for representations in terms of similarities/dissimi-
larities. Furthermore, such an approach makes possible the use of prior knowledge on visual speech 
perception, including distance metrics (Bernstein, Demorest, & Eberhardt, 1994). Results in the section 
above showed that the relatively sparse 3-D representations of the physical stimuli were effective in 
accounting for the similarity structure of visual speech perception, suggesting that quantitative adjust-
ments in synthesis parameters that perturb similarity should have direct effects on perception. The 
evaluation method suggested below should provide an objective and systematic incorporation of human 
perceptual responses into the synthesis development cycle and contribute to knowledge in psychophys-
ics in visual speech perception.

Visual Speech Synthesis 

A variety of approaches have been actualized for visual speech synthesis (Bailly, 2002; Parke & Waters, 
1996), falling roughly into three categories, wireframe, muscle-based, and image-based. Furthermore, 
a visual speech synthesizer can be driven with rule-based, concatenative, acoustics-driven, or direct-
physical-measures-driven methods (Bailly, 2002). In wireframe models, the surface geometry of the 
face is deined by a set of 3-D polygonal meshes. The model is controlled by moving the vertices of the 
mesh, using simple geometric operations such as rotation or translation. Muscle models use polygonal 
meshes simulating muscle activities that are directly controlled by muscle  activations. These muscle 
activations could be simulated from physical models or recorded using biomechanical measures (Lucero 
& Munhall, 1999). Image-based methods reproduce speech movements by morphing and interpolating 
existing speech images. Muscle models could produce very natural speech, were the required control 
characteristics well understood. Wireframe models have received more attention and are generally 
preferred due to their computational advantages. That is, wireframe models allow precise control over 
individual face points or regions. 

Recently, a wireframe face animation model was realized for studying visual speech perception and 
developing realistic visible phonetic stimuli. We focused on studying the perceptual effects of synthetic 
speech driven directly from 3-D optical recordings. The model incorporates a mesh of 3-D polygons 
that deine the head and its parts (Xue, Borgstrom, Jiang, Bernstein, & Alwan, 2006). The original 3-D 
face model was obtained from www.digimation.com. This model was later edited (addition, deletion, 
and modiication of some vertices, polygons, and textures) to have 1915 vertices and 1944 polygons. 
These polygons were separated into different regions for different textures: teeth, lips, hair, eyebrows, 
pupil, iris, etc. Additionally, these polygons were divided into different groups based on their motion 
characteristics,  non-moving and moving groups. The moving groups included several sub-regions (e.g., 
upper lip, lower lip, chin, etc.). An algorithmic layer allows the mesh to be deformed for performing 
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facial actions, as well as preventing errors (such as incursion of the lower lip into the volume of the 
upper lip). 

To drive the face animation model, face motion was captured with a Qualisys™ optical motion 
capture system using three infrared emitting-receiving cameras and 33 optical retro-relectors (see 
Figures 1 and 3). Video was recorded simultaneously with a production quality Sony digital camera 
and video recorder. An experienced American-English talker with relatively high visual intelligibility 
spoke the stimuli out loud inside a sound-treated booth. Reconstructed 3-D motion data were processed 
to remove head and eyebrow motion, recover missing data, remove noise, normalize the head-size, and 
smooth the motion. 

Optical trajectories were registered onto key points on the face model, and these key points were 
used to deform the rest of the face vertices with modiied radial basis functions (Xue, Borgstrom, Jiang, 
Bernstein, & Alwan, 2006). Radial basis functions have been shown to be effective in deforming the local 
motion of non-key points (points without data) in relationship to key points (recorded points) in visual 
speech synthesis (Ma, Cole, Pellom, Ward, & Wise, 2006). Speciically, a radial basis function is used 
to deine the displacement of a vertex based on its distance from the key point and the displacement of 
the key point. For the current synthesizer, Gaussian radial basis functions were used (Xue, Borgstrom, 
Jiang, Bernstein, & Alwan, 2006). Texture was then re-mapped onto the deformed face that is then 
rendered and animated with appropriate lighting and background color using the openGL graphics ap-
plication-programming interface. The synthetic face was scaled and shifted to have the same position 
and size as the natural face (see Figure 3). 

Perceptual Evaluation of the Visual Speech Synthesizer 

A recent perceptual study (Jiang, Aronoff, & Bernstein, 2008) used a discrimination task in order to 
operationalize the concept of second-order isomorphism.  Words, instead of phonemes or consonant-
vowel syllables, were used, because approximating contextual information (coarticulation) is a critical 

Figure 3. Synthesis: (a) face motions tracked using 33 retro-relectors; (b) reconstructed and smoothed 
motion trajectories compensated for head and eyebrow motion and missing data; (c) motion data nor-
malized and registered to key face points; and (d) whole face deformed frame-by-frame using key face 
points
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aspect of visual speech synthesis (Massaro, 1998). Thirty-two words were selected and for each one, 
four words were chosen that varied in  perceptual distance at four levels—same, near, medium, and far 
in perceptual distance from each of the initially selected words. The distances were computed using 
segmental perceptual data (Auer & Bernstein, 1997). 

In the experiment, eight participants with normal hearing with above-average lipreading ability (Auer 
& Bernstein, 2007) were presented with word pairs in a same-different (AX) discrimination task. The 
task was to view a pair of words and label them as same or different in terms of their lexical identity. 
The word pairs comprised either two natural video tokens (AXV) or one synthetic token paired with 
one natural video token (AXS). For AXV, the same pairs comprised different tokens of the same words; 
for AXS, the same pairs comprised the synthetic stimulus and the natural video token that was recorded 
along with the 3-D optical recording. The different pairs comprised the 32 words and the associated near, 
medium, and far words. So word pairs for which one token was natural and the other synthetic but both 
with the same lexical identity would be labeled same. Likewise natural speech with different tokens of 
the same word was to be labeled same. Same and different pairs were pseudo-randomly ordered during 
the discrimination task. All tokens were presented without audio.

The experiment was designed to produce several types of results. If the predicted perceptual dis-
similarity relationships were obtained with the natural (video-video) word pairs, the use of segmental 
measures to predict word-level dissimilarity would be validated. If the predicted dissimilarity relation-
ships were also obtained with video-synthetic word pairs, the sparse 3-D optical data would be shown to 
preserve dissimilarity relationships at the word level. Deviations from the natural dissimilarity structure 
would point to areas for improvement in the synthesis. Subsequent research could focus on manipulation 
of the sparse 3-D data so as to achieve more accurate dissimilarity relationships as evaluated using the 
discrimination paradigm. For those word pairs whose perceptual dissimilarities were different from the 
predicted dissimilarities, a pair-wise tuning on the synthesizer could be performed.

In order to perform accurately in the condition in which discrimination of words involved view-
ing irst the synthetic video and then the natural video, participants would need to be able to extract 
the relevant phonetic information from the stimuli that varied greatly on other dimensions, including 
naturalness and facial details. Importantly, the natural video showed tongue motion when the talker’s 
mouth was open, and the synthetic video did not have a tongue model. A two-way [Dissimilarity (same, 
near, medium, far) x Media (synthetic, natural)] repeated measures ANOVA was conducted based on 
the percentage of different responses with regard to word pairs. Overall, the results were as predicted. 
The main effect of dissimilarity was signiicant [F (1.38,42.68) = 287.3, p <.001; Huynh-Feldt adjustment 
used to correct for the violation of the sphericity assumption]: Word pairs predicted to differ across a 
range of perceptual dissimilarity values were shown to be discriminated as a function of those quanti-
ied dissimilarities (see Figure 4a). This was true for video-video word pairs and for the synthetic-video 
word pairs. The main effect of Media was reliable [F (1,31)=6.2, p <.02], and the Dissimilarity x Media 
interaction was signiicant [F (2.07,64.07)=24.8, p <.001]. That is, the differences were more pronounced 
for the video-synthetic pairs, because participants were very accurate for far and medium perceptual 
distances with natural stimuli. 

In Figure 4(b), percent different scores for AXS were correlated with those for AXV  [R2 = .78, 
F(1,126) = 446.2, p = .000], conirming the effectiveness of the synthetic speech in approximating visual 
natural speech in terms of perception. However, several stimulus pairs were far from the diagonal. This 
implies that the synthesizer did not accurately produce the relevant differentiating information for these 
pairs. In the future, we can focus on these outlier word pairs to ine-tune the synthesizer. 
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To apply prior results in visual speech perception, proportion different scores for near, medium, or 
far pairs in AXS and AXV were submitted to linear regression analyses using as the predictors the 
pre-computed natural log-transformed dissimilarity measures (Jiang, Aronoff, & Bernstein, 2008). 
The analysis demonstrated that the dissimilarity scores accounted for a signiicant portion of the vari-
ance in the percent different responses for AXS [R2 = .53, F(1,94) = 107.0, p < .001] and for AXV [R2 
= .31, F(1,94) = 44.0, p < .001] (Figure 5). Some pairs (e.g., needs-case, best-space, and sent-tax) were 
far from the regression line for AXS. However, these pairs were close to the regression line for AXV. 
This implies that the synthesizer did not  accurately produce the relevant differentiating information for 
words in these pairs. Modeling the tongue and teeth should improve the visual speech synthesizer. We 
can focus on the phonetic details that are not modeled adequately to ine-tune the synthesizer. In addi-
tion, discrimination can be used with perceivers of varying lipreading ability to improve the phonetic 
details of a visual speech synthesizer. Expert deaf lipreaders can be expected to be more sensitive to 
deiciencies in the phonetic detail and also more sensitive to subtle information.

Con Clu SIonS

In this chapter, we reviewed some history of and impediments to knowledge about the visual aspects 
of speech. We reviewed perceptual studies that quantify the information content in visible speech, 

Figure 4. (a) Boxplots of percent different responses for the words analyses. The ive bars in each boxplot 
indicate the 4th quartile (upper whisker), the 3rd quartile (box top), median (thick), the 2nd quartile 
(box bottom), and the 1st quartile (lower whisker). Outlier trials are also plotted. (b) Percent different 
scores for AXS were plotted against those for AXV
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demonstrating that visible speech is a rich detailed source of phonetic information. We discussed recent 
indings on relations between optical phonetic signals and phonetic perception. Those indings dem-
onstrate second-order isomorphism between optical signals and visual perception. We argued that the 
link between phonetic signals and phonetic perception can be exploited in developing a visual speech 
synthesizer. We reported on an approach that we have taken to exploit that link. We suggest that the 
goal for visual speech synthesis be synthesizers that produce visually intelligible speech that can be 
lipread. In order to do this, the perceptually relevant phonetic details in visible speech must be syn-
thesized. Because current knowledge is limited concerning how to quantify the relationship between 
optical quantities per se and visual perception, we advocate an approach that uses the second-order 
isomorphism of perceptual dissimilarities in relation to optical dissimilarities. 

FuTuRe ReSeARCh dIReCTIon S

The perceptual study of synthetic visual speech stimuli demonstrated that relatively sparse 3-D repre-
sentations of face motion can be used to synthesize visual speech that perceptually approximates visual 
natural speech. We suggest that synthesizer development and psychophysics can mutually beneit each 
other when the goals are aligned. Our goal is to develop a synthesizer that affords information that ap-
proximates that which is available when a natural intelligible individual produces speech for lipreading. 

Figure 5. Percent different scores for each word pair in AXS (left) and AXV (right) were plotted against 
distance estimates that were pre-computed using the perception-based cost matrix
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In order to realize this goal, a necessary synthesizer enhancement is the addition of a visible tongue. 
Research on lipreading natural speech stimuli shows that glimpses into the mouth provide important 
information that must be related to the posture and motions of the tongue. Using the same methods 
reported here, we plan to show enhanced performance with our more accurate, enhanced synthesizer. 
That synthesizer will in turn afford better stimuli for experiments on perception and its neural under-
pinnings. 
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1 The careful reader can note in Sumby and Pollack (1954) that beyond approximately -12 dB SNR, 
the curve showing the enhancement obtained with visible speech is essentially lat. This suggests 
that beyond -12 dB SNR, the performance levels are essentially due to the visual signal alone. Thus, 
citing the enhancement obtained with visible speech as greater than -12 dB SNR is misleading.
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ABSTRACT

This chapter presents a multimodal speaker identiication system that integrates audio, lip texture, and 
lip motion modalities, and the authors propose to use the “explicit” lip motion information that best 
represent the modality for the given problem. The work is presented in two stages: First, they consider 
several lip motion feature candidates such as dense motion features on the lip region, motion features 
on the outer lip contour, and lip shape features. Meanwhile, the authors introduce their main contri-
bution, which is a novel two-stage, spatial-temporal discrimination analysis framework designed to 
obtain the best lip motion features. For speaker identiication, the best lip motion features result in the 
highest discrimination among speakers. Next, they investigate the beneits of the inclusion of the best 
lip motion features for multimodal recognition. Audio, lip texture, and lip motion modalities are fused 
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by the reliability weighted summation (RWS) decision rule, and hidden Markov model (HMM)-based 
modeling is performed for both unimodal and multimodal recognition. Experimental results indicate 
that discriminative grid-based lip motion features are proved to be more valuable and provide additional 
performance gains in speaker identiication.

InTRodu CTIon

Audio is probably the most natural modality to recognize the speech content and a valuable source to 
identify a speaker. However, especially under noisy conditions, audio-only speaker/speech recognition 
systems are far from being perfect. Video also contains important biometric information such as face/
lip appearance, lip shape, and lip movement that is correlated with audio. Due to this correlation, it is 
natural to expect that speech content can be partially revealed through lip reading; and lip movement 
patterns also contain information about the identity of a speaker. Nevertheless, performance problems 
are also observed in video-only speaker/speech recognition systems, where poor picture quality, changes 
in pose and lighting conditions, and varying facial expressions may have detrimental effects (Turk & 
Pentland, 1991; Zhang, 1997). Hence robust solutions should employ multiple modalities, i.e., audio and 
various lip modalities, in a uniied scheme.

Indeed in speaker/speech recognition, state-of-the art systems employ both audio and lip information 
in a uniied framework (see Chen (2001) and references therein). However, most of the audio-visual bio-
metric systems combine a simple visual modality with a sophisticated audio modality. Systems employing 
enhanced visual information are quite limited due to several reasons. On one hand, lip feature extrac-
tion and tracking are complex tasks, as it has been shown by few studies in the literature (see Çetingül 
(2006b) and references therein). On the other hand, the exploitation of this cue has been limited to the 
use of three alternative representations for lip information: i) lip texture, ii) lip shape (geometry), and iii) 
lip motion features. The irst represents the lip movement implicitly along with appearance information 
that might sometimes carry useful discrimination information; but in some other cases the appearance 
may degrade the recognition performance since it is sensitive to acquisition conditions. The second, 
i.e., lip shape, usually requires tracking the lip contour and itting contour model parameters and/or 
computing geometric features such as horizontal/vertical openings, contour perimeter, lip area, etc. This 
option seems as the most powerful one to model the lip movement, especially for lip reading, since it is 
easier to match mouth openings-closings with the corresponding phonemes. However, lip tracking and 
contour itting are challenging tasks since contour tracking algorithms are sensitive to lighting condi-
tions and image quality. The last option is the use of explicit lip motion, which are potentially easy to 
compute and robust to lighting variations.

Following the generation of different audio-visual modalities, the design of a multimodal recogni-
tion system requires addressing three basic issues: i) which modalities to fuse, ii) how to represent each 
modality with a discriminative and low-dimensional set of features, and iii) how to fuse existing modali-
ties. For the irst issue, speech content and voice can be interpreted as two different though correlated 
information existing in audio signals. Likewise, video signal can be split into different modalities, such 
as face/lip texture, lip geometry, and lip motion. The second issue, feature selection, also includes model-
ing of the classiiers through which each class is represented with a statistical model or a representative 
feature set. Curse of dimensionality, computational eficiency, robustness, invariance and discrimination 
capability are the most important criteria in the selection of the feature set and the recognition methodol-
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ogy for each modality. For the inal issue, modality fusion, there exist different strategies: in the early 
integration, modalities are fused at data or feature level, whereas in the late integration, decisions (or 
scores) resulting from each expert are combined to give the inal conclusion. Multimodal decision fu-
sion can also be viewed from a broader perspective as a way of combining classiiers, where the main 
motivation is to compensate possible misclassiication errors of a certain classiier with other available 
classiiers and to end up with a more reliable overall decision. A comprehensive survey and discussion 
on classiier combination techniques can be found in Kittler (1998).

Nevertheless, the success of a recognition system eventually depends on how eficiently the extracted 
lip information is represented in a relatively low-dimensional feature vector. For speech recognition, the 
general approach has been to extract the principal components of the lip movement in order to establish 
a one-to-one correspondence between phonemes of speech and visemes of lip shape. For the speaker 
identiication problem, however, the use of lip motion requires more sophisticated processing, which 
has not been addressed in the literature. The main reason for this is that the principal components of 
the lip movement are not usually suficient to well discriminate the biometric properties of a speaker. 
High frequency or non-principal components of the motion should also be valuable especially when 

Figure 1. Multimodal recognition system
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the objective is to model the characteristic lip movements of an individual rather than what is uttered. 
In order words, discrimination among speakers should be emphasized and selected features should 
minimize the recognition error rather than the reconstruction error. Although numerous methods have 
been proposed for the integration of the lip modalities to speaker identiication solutions, there is no 
framework in the literature to optimally select the most discriminative lip motion features.

Hence the objectives of our work are to develop a framework for the determination and usage of 
the best, i.e., the most discriminative lip motion features, and to build a multimodal system that fuses 
these motion features with audio and/or and lip texture for speaker identiication. Figure 1 depicts the 
multimodal recognition system with the feature extraction and analysis stages. There are several issues 
addressed in this chapter to build such a multimodal recognition system:

• Accurate lip motion estimation: In order to obtain pure, i.e. accurate, lip motion information, 
elimination of natural head motion during the speaking act is a must.

• Feature extraction: Several lip feature candidates are considered to investigate whether the explicit 
lip motion, instead of or in addition to lip texture and/or shape, is useful.

• Discriminative feature selection: A spatial-temporal discrimination analysis framework is needed 
to select the most discriminative lip motion features.

• Modality fusion: The task is to intelligently fuse the audio-visual modalities in such a way that 
the most reliable modality has the largest effect on the overall decision.

• Recognition: We consider a probabilistic framework such as HMMs for speaker identiication.

pRIo R Wo Rk

Although we focus on speaker identiication, for the sake of completeness, we present the prior work 
by considering the use of lip information in speech recognition, speaker identiication, and multimodal 
systems, respectively.

Speech Recognition

State-of-the-art speech recognition systems have been jointly using lip information with audio (Chi-
belushi, 2002; Matthews, 2002; Perez, 2005; Potamianos, 2003; Zhang, 2002a) since the need to build 
robust recognition systems urges the use of visual cues. One such a cue is the lip texture, i.e. intensity, 
which is the easiest hence widely used lip representation. Since the length of the (intensity) image vector 
is the number of pixels, a dimensionality reduction step is usually preferred. For instance, in Bregler 
& Konig (1994) and Tomlinson (1996), principal component analysis (PCA) has been applied to reduce 
the dimension and the resulting low-dimensional vector, i.e., coeficients of the principal components, is 
used as the visual feature. Potamianos et al. (2003) use the discrete cosine transform (DCT) coeficients 
of the grayscale lip image as intermediate features, and apply the linear discriminant analysis (LDA) to 
the inal feature vector formed by concatenating a number of consecutive intermediate feature vectors 
to capture the dynamics of speech information. However, it is worth noting that the lip texture features 
are very sensitive to intensity variations between the training and test data sets. 

Visual lip cue can be also represented by encoding the shape and geometry of the mouth area. The 
geometric features have been employed in speech reading (Chen, 2001; Da Silveira, 2003; Foo, 2004; 
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Kaynak, 2004; Wang, 2004b; Zhang, 2002a), since it is easier to match mouth openings-closings with the 
corresponding phonemes. Deformable templates (Chen, 2001; Foo, 2004), active shape models (ASMs) 
(Lucey, 2000; Matthews, 2002; Perez, 2005; Wang, 2004b), and active contours (Aleksic, 2002; Wakasugi, 
2004) have been used to obtain different geometric lip features; however, they all suffer from complex 
feature extraction and training procedures. In Chen (2001), Gaussian mixture models (GMMs) are used 
to model both the lip and the non-lip region, and lip tracking is performed by deformable templates. A 
number of horizontal and vertical distances representing the lip openings are then selected as features. 
Kaynak et al. (2004) also use horizontal/vertical distances along with the orientation angle to represent 
the lip shape. In fact, most of the techniques in the speech reading literature utilize a combination of 
lip texture and primitive geometric lip features. In Dupont & Luettin (2000), the lip feature vector is 
formed by concatenating the Karhunen-Loève transformed inner-outer lip contour points with the texture 
information which is represented in a similar way as in the eigenlip technique (Bregler & Konig, 1994). 
In Matthews (2002), the geometric information extracted by the active shape models is used along with 
the gray-level appearance features and they are fused with audio for speech recognition. Perez et al. 
(2005) utilize a set of geometric features extracted by the ASMs together with the DCT coeficients of 
the intensity information. 

There is only a limited amount of work in which explicit lip motion information is used for speech 
reading. Aleksic et al. (2002) use gradient vector low (GVF) snakes to extract outer lip contour, and 
calculate the lip movement at ten predeined points by point-wise coordinates difference. They then 
reduce the feature dimension by PCA, and use the lip features together with other facial animation 
features. However, the selection of the best lip motion features, i.e. the ones that contribute the most 
to the recognition, has not been addressed within a principled framework, and still remains an open 
problem.

Speaker Identiication

For speaker identiication, unlike speech recognition, lip information has been only employed in a few 
works. In Erzin (2004) and Fox (2004), the DCT coeficients of the grayscale lip images are considered as 
the lip features. It is relatively easy to obtain this feature, but it again suffers from illumination variation 
between the training and test data sets. Lip geometry is used in Broun (2002), where lip segmentation 
is carried out by forming an accumulated difference image and considering moving parts of that image. 
Then a number of predeined horizontal and vertical distances are taken as geometric lip features. Mok 
et al. (2004) ind the outer lip contour by the ASMs, and form a feature vector using both the model 
parameters and some additional distances representing the lip shape. In the audio-visual fusion system 
presented in Wark & Sridharan (2001), the lip contour is irst tracked, and each contour pixel is associ-
ated with the chromatic features that constitute the initial feature vector. The dimension of the feature 
vector is then reduced via PCA followed by LDA. However, the initial step of PCA reduction ilters 
out some useful discriminative information valuable to biometric speaker identiication, and temporal 
correlations in lip motion are not taken into account in discrimination analysis. The lip feature vector 
proposed in Jourlin (1997) for speaker veriication is composed of lip geometry parameters concatenated 
with intensity values along the lip contour. The feature dimension is then reduced by PCA with no 
discrimination analysis at all. In the speaker identiication literature, there are only two reported works 
employing explicit lip motion as lip features. In Froba (2000), following the computation of the optical 
low between two consecutive lip frames, the power spectrum of the 3-D motion ield is calculated and 
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used as lip motion features. In Frischholz & Dieckmann (2000), the lip motion is represented by a full 
set of the DCT coeficients of the dense optical low vectors computed within rectangular lip frames 
and it is fused with face texture and acoustic features for multimodal speaker identiication. However 
no discrimination analysis is performed and no speciic attention is paid to optimize the unimodal per-
formance of the lip motion modality. In our recent studies (Çetingül, 2004; Çetingül, 2005, Çetingül, 
2006b), we observed that speaker identiication systems can beneit from discriminative lip motion 
feature extraction.

multimodal Solutions

When more than one modality is available, the fusion of information from different modalities can reduce 
the overall uncertainty and increase the robustness of a classiication system. As mentioned before, in 
the early integration, the modalities are fused at data/feature level, whereas in the late integration, the 
decisions from each expert are combined to give the inal decision. The speaker recognition schemes 
proposed in Brunelli & Falavigna (1995), Frischholz & Dieckmann (2000), Jourlin (1997), Sanderson 
& Paliwal (2003), and Wark & Sridharan (2001) are basically opinion fusion techniques that combine 
multiple expert decisions through adaptive or non-adaptive weighted summation of scores, whereas in 
Chaudhari (2003) and Civanlar & Chen (1996), fusion is carried out at feature level by concatenating 
the individual feature vectors so as to exploit the temporal correlations between audio and video signals. 
In audio-visual speech recognition, Bregler & Konig (1994) concatenate audio and lip data, while in 
Zhang (2000), unimodal recognition rates are combined. Furthermore, recent works show the success 
of multi-stream HMMs in speech recognition (Dupont & Luettin, 2000; Perez, 2005; Potamianos, 2003; 
Zhang, 2002a). In our recent studies (Çetingül, 2006a), we also observed an improvement in recognition 
performance due to modality fusion.

ReCogn ITIon : Theo Ry And  Fo Rmul ATIon

Recognition task can be formulated as either veriication or identiication problem. The latter can be 
further classiied as open-set or closed-set identiication. In the closed-set identiication problem, a reject 
scenario is not deined hence an unknown observation is classiied as belonging to one of the R registered 
pattern classes. In the open-set problem, given the observation from an unknown pattern, the objective 
is to ind whether it belongs to a pattern class registered in the database or not; the system identiies the 
pattern if there is a match and rejects otherwise. Hence, the problem can be thought of as an R+1 class 
identiication problem including a reject class. Open-set identiication has a variety of applications such 
as the authorized access control for computer and communication systems, where a registered user can 
log onto the system with her/his personalized proile and access rights. In this work, we formulate the 
speaker recognition problem in an open-set identiication framework, which is a more challenging and 
realistic way of addressing the problem as compared to closed-set speaker identiication and veriication. 
Note that veriication is a special case of the general open-set identiication problem. From this point, 
we interchangeably use the phrases “recognition” and “identiication” to avoid any confusion.

The speaker identiication problem can further be classiied as text-dependent or text-independent. 
In the text-independent case, identiication is performed over a content free utterance of the speakers, 
whereas in the text-dependent case, each speaker is expected to utter a personalized secret phrase for 
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the identiication task. The hidden Markov models (HMMs) are known to be effective to model the 
temporal behavior of speech signals, and thus are widely used for both audio-based speaker identiica-
tion and speech recognition applications. In particular, the state-of-the-art speaker identiication systems 
use HMMs for text-dependent case and Gaussian mixture models (GMMs) for text-independent case 
(Reynolds, 1995). HMM-based techniques are preferred in text-dependent scenarios since they can suc-
cessfully exploit the temporal correlations of a speech signal. Since lip motion is strongly coupled with 
audio utterance, HMMs can also be employed for the temporal characterization of visual features.

In this work we address the speaker identiication problem under text-dependent scenario as an open-
set identiication problem. Our publicly available database, MVGL-AVD (Erzin, 2004; MVGL, 2008), 
consists of audio-visual data collected from a population of 50 speakers. We use word-level continu-
ous-density HMM structures for the temporal characterization of the lip features. Each speaker in the 
database is modeled using a separate HMM that is trained over some repetitions of the lip motion streams 
of the corresponding class. In the recognition process, given a test feature set, each HMM structure as-
sociated with a speaker produces a likelihood. A “world” HMM model representing the impostor class 
is also trained over the whole training data of the population. The log-ratios of the speaker likelihoods 
to the world class likelihood result in a stream of log-likelihood ratios that are used to identify or reject 
a speaker. In the following subsections, we provide the formulation details of the speaker identiication 
problem, and give the basics of building multimodal recognition systems.

Speaker Identiication

The speaker identiication problem is often formalized by using a probabilistic approach: Given a feature 
vector f  representing the sample data of an unknown individual, compute the a posteriori probability 
P( | )r f  for each class r , r = 1, 2,…, R, i.e. for each speaker’s model. The sample feature vector is 
then assigned to the class *  that maximizes the a posteriori probability:

{ } 1

* arg max  P( | ).
R

r r

r
=

= f

          (1)

In practice, it is usually dificult to compute P( | )r f ; hence one can rewrite it in terms of the class 
conditional probabilities using the Bayes’ rule, i.e.,

P( | )P( )P( | ) .
P( )

r r
r = f

f
f          (2)

Due to the class independence of P( f ) and assuming equally likely class distribution, i.e. P( ) 1r R=   
the expression in (1) is equivalent to

{ } 1

* arg max  P( | ).
R

r r

r
=

= f
          (3)
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Computation of the class conditional probabilities needs a prior modeling step through which the 
probability density function of the feature vectors is estimated for each class by using available train-
ing data.

In the open-set identiication problem, an imposter class 1R+  is introduced as the (R+1)-th class. A 
common and effective approach to model the impostor class is to use a universal background model, 
which is estimated by using all available training data regardless of which class they belong to. We 
then employ the following formulation, which includes a reject strategy through the deinition of the 
likelihood ratio

1
1

P( | )log log P( | ) log P( | ).
P( | )

r
r R

R
++

= − f
f f

f       (4)

The decision strategy of the open-set identiication is implemented in two steps. First, one determines 
the most likely class by

{ } 1

arg max ( ),
R

r r

r
=

′ =
          (5)

and then

if ( )    accept;
otherwise      reject,

′ ≥
          (6)

τ being the optimal threshold, which is experimentally determined to achieve the desired equal error 
rate.

The performance of a speaker identiication system is often measured using the equal error rate (EER) 
igure. The EER is calculated as the operating point at which false accept rate (FAR) equals false reject 
rate (FRR). In the open-set identiication, the false accept and false reject rates can be deined as,

FAR 100   and  FRR 100 ,A R

c i c

F F
C C C

= × = ×+        (7)

where F
A
 and F

R
 are the number of false accepts and rejects, and C

c
 and C

i
 are the total number of trials 

for the true and imposter clients in the testing, respectively.

multimodal Recognition Framework

In this subsection, we present the basics of the decision fusion along with the estimation of the reli-
abilities of the modalities for the reliability weighted summation rule.
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Multimodal Decision Fusion

Suppose that H different classiiers, which are employing maximum likelihood (ML) solution using 
the class conditional probabilities P( | )rhf , are available for each of the H modalities { } 1

H
h h=f , and 

for each of the R classes { } 1r
R
r= . Equivalently, each classiier, say the h-th classiier, produces a set of 

R log-likelihood values ( ) log P( | )r rh h f , r = 1, 2, …, R. The problem then reduces to compute a 
single set of joint log-likelihood values 1 2( ), ( ),..., ( )R  for these H modalities. In the Bayesian 
framework, assuming that  f

1
, f

2
,…, f

H
 are statistically independent, the joint log-likelihood is given by 

the sum of the individual log-likelihoods:

1 2
1

( ) log P( | ) P( | ) ... P( | ) ( ),
H

r r r r rH h
h=

  = × × × = ∑f f f
     (8)

which is equivalent to the product rule in Kittler (1998). In practice, there are a couple of problems with 
the optimality of this rule. First, “partial” decisions of different classiiers may be correlated. Second, due 
to modeling errors and/or measurement noise, the estimated distribution model of the training features, 
i.e., P( | )rhf , may not always comply with the actual distribution of the test features. As a result, the 
log-likelihood values coming from separate classiiers should each be considered as an opinion or likeli-
hood score rather than a probabilistic value. The statistics and the numerical range of these likelihood 
scores mostly vary from one classiier to another, and thus using sigmoid and variance normalization 
as described in Erzin (2005), they are normalized into [0,1] interval before the fusion.

In order to cope with the above problems, various approximation approaches have been proposed in 
the literature as alternatives to the product rule, i.e., the sum rule in log domain, such as max rule, min 
rule and reliability weighted summation. In fact, the most generic way of computing the joint ratios (or 
scores) can be expressed as a weighted summation:

1
( ) ( ), 1,2,..., ,

H

r rh h
h

r R
=

= =∑
        (9)

where ω
h
 denotes the weighting coeficient for the h-th modality such that 

1hh
=∑ . 

Then, the fusion problem becomes inding the optimal weight coeficients. Note that when ω
h
 = 1/H, { }1,2,...,h H∀ ∈ , the expression in (9) is equivalent to the product rule. Since the ω

h
 values can be re-

garded as the reliability values of the classiiers, we referred to this combination method as the reliability 
weighted summation (RWS) rule in Erzin (2005). The reliability values ω

h
 can be set to some ixed 

values using some a priori knowledge about the performance of each classiier or they can be adaptively 
estimated for each decision instant via various methods such as those in Erzin (2005), Sanderson & 
Paliwal (2003), and Wark & Sridharan (2001). Among them, we favor the one proposed in Erzin (2005), 
since it is better suited to the open-set speaker identiication by assessing both accept and reject deci-
sions of a classiier, and it can be easily deined for the closed-set identiication.
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Reliability Estimation for the RWS Rule

The RWS rule combines the likelihood ratio values of the H modalities using their reliability values ω
h
. 

The reliability value ω
h
 of the h-th modality is estimated based on the difference of the likelihood ratios 

of the best two candidate classes λ' and λ'', that is, ( ) ( )h h h′ ′′∆ = − . In the absence of a reject class, 
which is for closed-set identiication, the likelihood difference of the best two candidates, Δ

h
, can be used 

as the reliability value. However, in the presence of a reject class, one would expect a high likelihood 
ratio ρh(λ') and a high Δ

h
 value for true accept decisions, and a low likelihood ratio ρh(λ') and a low Δ

h
 

value for true reject decisions. Hence, a normalized reliability measure ω
h
 can be estimated by,

1 ,h h
ii

= ∑            (10)

where

( ( ) ) ( ( ) )
  for closed-set identification,

for open-set identification.(e 1) (e 1)h h h h

h
h +∆ − −∆′ ′


∆= − + −     (11)

The irst and second terms for open-set identiication in γh are associated with the true accept and 
true reject, respectively. The symbol κ stands for an experimentally determined factor to reach the best 
compromise between accept and reject scenarios. The κ value is set to 0.65 as it is found to be optimal 
for open-set speaker identiication task in Erzin (2005). The value of the factor sets some bias to weight 
true accept decisions slightly more than true reject decisions, which is expected from the nature of the 
product rule that normally favors true accepts.

ex TRACTIon  o F l Ip moTIon  FeATuReS

The lip motion feature extraction and analysis system is depicted in Figure 2. It consists of a prepro-
cessing module, a lip motion estimation module, a Bayesian discrimination module, and a temporal 
discrimination module.

preprocessing

The purpose of the preprocessing module is to eliminate natural head motion during the speaking act 
to obtain pure lip movement. For this purpose, each frame of each talking face is aligned with the irst 
frame using a 2-D parametric motion estimator. For every two consecutive frames, global head motion 
parameters are calculated using hierarchical Gaussian image pyramids and the 12-parameter quadratic 
motion model speciied in Odobez & Bouthemy (1995). The frames are successively warped using the 
calculated parameters. Thus by only hand-labeling the mid-point of the lip region in the irst frame, we 
automatically extract the lip region in the whole sequence.
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The quadratic transform provides an exact description of the 3-D rotation, translation and scaling 
of an object with a parabolic surface under parallel projection (Yemez, 2000). Hence, it is successful 
in modeling rigid motion of the head between consecutive frames, where the movement is not very 
abrupt.

Figure 2. Feature extraction system with two-stage discrimination analysis
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extraction of g rid-Based motion Features

We irst consider dense motion estimation over a uniform grid of size gx×gy on the extracted lip region 
image. We use hierarchical block matching to estimate the lip motion with quarter-pel accuracy by in-
terpolating the original lip image using the 6-tap Wiener and bilinear ilters speciied in H.264/MPEG-4 
AVC (Puri, 2004). The motion estimation procedure yields two matrices Vx and Vy of size gx×gy, contain-
ing the x- and y- components of the motion vectors at grid points, respectively. Then the motion matrices 
are separately transformed via 2-D DCT. The irst M  DCT coeficients along the zig-zag scan order, 
both for x and y directions, are combined to form the feature vector f of dimension 2M as depicted in 
Figure 3. This feature vector representing the dense grid motion is denoted by f

GRD
.

Transforming the motion data into the DCT domain has two advantages. First, it serves as a tool to 
reduce the feature dimension by iltering out the high frequency components of the motion signal. These 
high frequency components are mostly due to noise and irrelevant to our analysis since it is unnatural 
to have very abrupt motion changes between neighboring pixels of the lip region, where the motion 
signal is expected to have some smoothness. Second, DCT decorrelates the feature vector so that the 
discriminative power of each feature component can be independently analyzed.

Figure 3. Extraction of grid-based lip motion features
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extraction of Contour-Based motion Features

Outer Lip Contour Extraction

The accuracy and robustness of the lip contour extraction method are crucial for a recognition system that 
uses lip shape information. There exist many techniques in the literature, which attempt to solve the lip 
segmentation/tracking problem (Aleksic, 2002; Eveno, 2004; Leung, 2004; Neian, 2002; Sadeghi, 2002; 
Wakasugi, 2004; Wang, 2004a; Zhang, 2002b). The performance of these techniques usually depends 
on acquisition speciications such as image quality, resolution, head pose and illumination conditions. 
In region-based lip segmentation techniques, color information is often used as an important cue to 
differentiate the “lip” pixels from those of the skin. In order to achieve this, the state-of-the-art tech-
niques use Markov random ields (Zhang, 2002b), linear discriminant analysis (Neian, 2002), adaptive 
Gaussian mixture models (Sadeghi, 2002) or fuzzy clustering methods as in Leung (2004) and Wang 
(2004a). There are also a number of boundary-based techniques to represent and extract the lip contour, 
such as splines, active shape models, snakes, and parametric models, which use color gradient and/or 
edge information. The ASMs (Luettin, 1996; Wang, 2004b) impose prior information about possible 
lip movements to avoid unrealistic lip models; however they require a large training set of registered 
lip images that are acquired under predeined face orientation and lighting. Classical active contours 
(Wakasugi, 2004) and their extensions suffer from complex parameter tuning and inability to perfectly 
it to certain characteristic lip parts such as Cupid’s bow.

In order to extract the outer lip contour, we employ the quasi-automatic technique proposed in 
Eveno (2004). The technique is based on six designated key points detected on the lip contour. The 

Figure 4. Extraction of the outer lip contour: (a) The 6 key points and parametric models itted on the 
outer contour, (b) The 8 lip shape features, (c) Extracted outer lip contours
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manual selection of a point above the mouth serves as the initialization of a snake-like algorithm. This 
step locates the points {P

2
,P

3
,P

4
} on the upper lip boundary and computes two line segments between 

them. Pseudo-hue gradient information is then used to locate the other points {P
1
,P

5
,P

6
}. Least-squares 

optimization is used to it four cubic polynomials using ive of the key points as junctions. All the key 
points are then tracked in consecutive frames and the curve itting steps are repeated. Figure 4(a) shows 
the 6 key points and the itted parametric model on a sample lip image; whereas Figure 4(c) displays 
examples of the lip contours extracted from various lip images of our database.

Contour-Based Motion Features

In the contour-based lip motion representation, the motion vectors computed on the pixels along the 
extracted lip contour are taken into account. In this case, the two sequences of x and y motion compo-

Figure 5. Extraction of the contour-based motion features and the lip shape [dashed lines show the 
optional path for feature level fusion of the lip shape and contour-based lip motion]
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nents on the contour pixels are separately transformed using 1-D DCT. It is worth noting that the length 
of the resulting sequence of motion components on each direction may vary from one frame to another 
according to varying lip shape. In order to obtain a feature vector of ixed length in each frame, before 
computing 1-D DCT, the length of the sequence is normalized to a ixed number using linear interpo-
lation. This number, Mmax, is the maximum number of contour points achieved in any lip frame of all 
available sequences. The DCT coeficients computed separately for x and y directions are concatenated 
to form the feature vector denoted by f

CTR
. Figure 5 depicts this feature extraction procedure.

Lip Shape Features

The contour-based lip motion feature vector f
CTR

 can further be fused with the lip shape features to 
improve the representation. We denote the lip shape feature vector by f

SHP
. Recall that we parameterize 

the lip shape with four cubic polynomial and two line segments. Polynomial segments can be speciied 
by sampling four points on each whereas a pair of end-points is suficient to represent a line segment. 
Since the lip contour is composed of these 6 segments articulated at their end-points, a minimum num-
ber of 14 points are necessary to uniquely represent the parameterized lip shape, which corresponds 
to a feature vector of 28 point coordinates in x and y directions. These points should be appropriately 
sampled on the lip contour. In order to assure translation and rotation invariance, we represent the lip 
shape in terms of horizontal and vertical distances between the sampled points. A possible such feature 
vector is composed of 8 simple parameters: the maximum horizontal distance, L

1
, and the 7 vertical 

distances from the Cupid’s bow and from the equidistant upper lip points to the lower lip boundary { }8
2

Li i=  depicted in Figure 4(b). The vertical lines are selected to be perpendicular to the line joining the 
two corners of the lip. The concatenation of lip shape parameters with contour-based motion informa-
tion is illustrated in Figure 5.

dISCRImInATIVe FeATuRe Sele CTIon

There are various subspace representation techniques that can be used for the reduction of dimensionality 
of the feature vectors in recognition systems. The linear discriminant analysis (LDA) is a well-known 
dimensionality reduction and feature extraction method to achieve discrimination among multiple classes 
(Chibelushi, 1993; Potamianos, 2003; Wark, 1998). In this work, we propose a novel approach for reduc-
ing feature dimension, where we select the most discriminative lip motion features in two successive 
stages, i.e., the Bayesian and temporal discrimination stages. In the Bayesian discrimination stage, we 
use a probabilistic measure that maximizes the ratio of intra-class and inter-class probabilities. The 
temporal stage uses the LDA. The details of these stages are discussed in the following subsections.

Bayesian discriminative Feature Selection

Let  f
k
 denote the k-th component of a feature vector f. Given an observation f

k
, the maximum a poste-

riori (MAP) estimator selects the class λi with the maximum posterior probability P(λi | fk), which can 
be written in terms of class conditional probability distributions, i.e.,
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The MAP estimator becomes the maximum mutual information estimator (MMIE) (Huang, 2001) 
by maximizing the ratio ( | )i kf , which is deined as

P( | )P( )( | ) log .
P( | )P( )

i ik
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j jkj i

ff
f≠

    ∑

        (13)

This can be interpreted as the ratio of intra-class and inter-class probabilities, and when maximized, 
it can serve as a measure of discrimination between class λi and all other classes for the corresponding 
feature component  f

k
.

 When the class conditional probability distributions are available for any K-dimensional feature 
vector [ f

1
, f

2
,…, f

K ]
T, and if the components are statistically independent, one can compute the dis-

criminative power of the independent feature i
kf  that belongs to class λi using ( | )i

i kf . The larger 
the ratio ( | )i

i kf , the more discriminative is the feature; that is, the class conditional probability for 
its own class is high and the average of the class conditional probabilities over all other classes is low. 
The class probability P(λi) is assumed to be equally likely. The class conditional probability distribu-
tions are generally computed over some training data using the expectation-maximization (EM) type 
algorithms, assuming an underlying probability distribution. Let us refer to this training data as { }ikf , 
that is a collection of observations of the k-th feature component from the i-th class, which is available 
for all feature components and for all classes. We propose the following discrimination measure, 
d( f

k ), to estimate the discriminative power of each feature f
k 
:

1

0

1d( ) ( | ( )),
Z

i
ik k

i z
f f z

Z

−
=
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                    (14)

where Z is the number of observations in each class λi.

Discriminative Feature Ranking

The proposed discrimination measure, when computed for each independent feature, creates an ordering  { }nkf  among the components of the feature vector such that

1 2
d( ) d( ) ... d( ).

Kk k kf f f≥ ≥ ≥                     (15)
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This ordering can be used to select the most N discriminative features, or similarly to eliminate the 
least K–N discriminative features from the full set of features. Then the reduced discriminative feature 
vector can be written as,

1 2

T, ,..., .
N

N
k k kf f f   f

          (16)

This selection strategy makes sense whenever the joint discrimination measure of any two features 
is less than the sum of their individual discriminative powers. A suficient condition for this is to have 
statistically independent features. In this case, the proposed ordering is a valid ordering with respect 
to feature discriminative power.

We considered two alternative feature vectors f
GRD

 and f
CTR

 to represent the lip motion. Both in-
volve the DCT coeficients of the motion vectors computed either on a 2-D rectangular grid covering 
the lip region or along the 1-D lip boundary pixels. Under the Gaussian distribution assumption, the 
DCT transformation decorrelates the observation vectors so that each feature approximately becomes 
independent from the rest of the features. After applying the DCT, traditionally, the low indexed N 
coeficients, which we refer as FirstN, are used as the representative features since they yield the best 
reconstruction for the original observations. Following the notation introduced in this section, this 
feature vector can be expressed as f N = [ f

1
, f

2
,…, f

N ]
T. The discriminative set of features, Nf ,  will be 

referred to as DiscrimN. Note that they are selected according to the discriminative power ordering. The 
class conditional probability distribution of each transform domain coeficient is estimated so that the 
discrimination measure for each coeficient can be calculated using (14). The Gaussian mixture models 
(GMMs) are used to represent the class conditional probability density functions. For GMM estimation, 
the expectation-maximization (EM) algorithm is employed using diagonal covariance matrices, since 
feature components are assumed to be independent of each other.

Total Discrimination Measure

The proposed discrimination analysis also offers a means to assess and compare the expected iden-
tiication performances of different lip feature sets. Note that the measure d( f ) is an estimate of the 
discrimination power of each component in the feature vector. Thus, the discriminative power of the N 
selected features, i.e., the reduced feature vector, can be estimated by the total discrimination measure, 
D

N 
( f ), which is deined as

1
D ( ) d( ).

n

N

N k
n

f
=∑f

          (17)

Note that the Bayesian discrimination analysis cannot be applied to the lip shape vector  f
SHP

 since 
the lip shape parameters are not, in general, statistically independent of each other.
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Temporal discriminative Feature Selection using the ld A

The Bayesian MMIE-based discriminative feature selection does not model and exploit the temporal 
correlations between successive lip frames. Following the work of Potamianos et al. (2003), we use the 
LDA for temporal discrimination analysis, where we successively concatenate the Bayesian-reduced lip 
feature vectors through a window of ixed duration so as to capture dynamic visual speech information, 
and obtain a new sequence of higher dimensional feature vectors. Then, each of these feature vectors is 
projected to a lower dimensional discriminative feature space using the LDA (see Figure 2).

The LDA maps a given high dimensional feature vector to a subspace of reduced dimension that 
best describes the discrimination among classes. This is achieved using two statistical measures, the 
within-class scatter matrix Sw and the between-class scatter matrix Sb (Martinez & Kak, 2001). The goal 
is to maximize the between-class scattering while minimizing the within-class variations. Hence, the 
LDA seeks for a projection matrix W which maximizes the function E(W) = det(WTSbW)/det(WTSwW) 
provided that Sw is nonsingular. The function E(W) is maximized when the column vectors of the 
projection matrix W are the eigenvectors of 1

w b
−S S . The LDA has two important limitations: i) The 

matrix 1
w b
−S S  has nonzero eigenvalues at most one less than the total number of classes, which puts an 

upper bound on the reduced dimension, and ii) At least K+R training samples are needed to guarantee 
the existence of the inverse matrix 1

w
−S , where K denotes the initial feature vector dimension. Thus, 

the common practice is, prior to LDA, to use an intermediate dimension reduction technique such as 
PCA that does not involve a discrimination analysis. This intermediate reduction is also preferable to 
reduce the computational complexity of the LDA analysis. In this regard, the Bayesian MMIE-based 
analysis can also serve as an intermediate dimension reduction method that selects a discriminative set 
of features from a larger set of the DCT coeficients including some non-principal, i.e., minor, feature 
components at each time instant.

As shown in Figure 2, the MMIE-based discrimination analysis results in a feature vector ( )tf  for 
each time instant t. Prior to concatenation within a window, the feature vector ( )tf  is linearly inter-
polated in time by some factor whose value depends on the frame rate. In the interpolated temporal 
domain, each feature vector at time instant t is concatenated with the previous and the next T feature 
vectors to form a new higher dimensional feature vector denoted by F(t):

( ) ( ); ( 1);...; ( );...; ( 1); ( ) .t t T t T t t T t T  = − − + + − +    F f f f f f                 (18)

The LDA is then performed on this concatenated vector of dimension (2T+1)N×1. The dimension 
of the resulting discriminative feature space is bounded above by R–1, that is one less than the total 
number of classes. Figure 2 illustrates the formation of the inal feature vector, that we denote by LDA 
( ( )tf ), via the spatial-temporal discrimination analysis.

expe RImen TAl  ReSul TS

Speaker identiication experiments are conducted using the MVGL-AVD database (Erzin, 2004; MVGL, 
2008), which contains audio-visual data collected from a population of 50 speakers, i.e., R = 50. The 
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visual data set has video frames of size 720×576 pixels at a rate of 15 fps, each containing the frontal 
view of a speaker’s head. Figure 6 shows images of selected subjects from the MVGL-AVD database.

We consider two distinct scenarios, each represented with a different data set: the secret phrase (Ds) 
and the public phrase (Dp) data sets. In the secret phrase scenario, each subject utters ten repetitions of 
her/his name and surname. A set of impostor data is also collected with each subject in the population 
uttering ive different names from the population. In the public phrase scenario, each subject utters ten 
repetitions of a ixed digit password “348-572”.

In the experiments, an initial lip region of size 128×80 is irst segmented from each video frame, 
following the registration of successive face regions by head motion compensation. For grid-based mo-
tion analysis, a rectangular grid of size gx×gy = 64×40 is used for each lip segment. Following motion 
estimation and 2-D DCT, a feature vector of length 2M  is obtained by interlacing M features from x and 
y directions, respectively, where M = 50. Then the FirstN features, GRD

Nf , are extracted by eliminating 
some high-indexed DCT coeficients to obtain a vector of size N, where N ≤ 2M. For contour-based motion 
analysis, we follow a similar procedure. First, we extract the lip contour in each frame. Following motion 
estimation and 1-D DCT on the lip contour pixel locations, a feature vector of size 2M, is obtained, where 
M is set to 50, i.e., the same number as in grid-based motion analysis. The low-indexed DCT coeficients 
then provide us with the contour-based FirstN features, i.e. CTR

Nf . The third lip feature representation 
is obtained by concatenating the contour-based motion features with the 8 lip shape parameters, that 

Figure 6. Selected sample images from the MVGL-AVD database
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is CTR SHP
N +f f . After feature extraction, we employ two-stage discrimination framework; f N and Nf  

stand for the FirstN and DiscrimN features respectively, whereas LDA( f N) and LDA( Nf ) denote the 
features obtained by applying the temporal LDA using T = 6 as the temporal window parameter. We 
then perform unimodal recognition using HMM-based probabilistic modeling.

For multimodal implementation, we consider audio, lip texture and lip motion as different modali-
ties. The audio is represented with the mel-frequency cepstral coeficients (MFCCs), as they yield good 
discrimination of speech signal. The audio stream is processed over 10 msec frames centered on 25 
msec Hamming window for 16 kHz sampled audio signal. Each analysis frame is irst multiplied with 
a Hamming window and transformed to frequency domain using fast Fourier transform (FFT). Mel-
scaled triangular ilter bank energies are calculated over the square magnitude of the spectrum and 
represented in logarithmic scale. The resulting MFCC features are derived using the DCT over log-scaled 
ilter bank energies (Rabiner & Juang, 1993). The audio feature vector f

A
 is formed as a collection of 

MFCC vector along with the irst and second Δ-MFCCs. Second, the features for the lip texture modal-
ity are 2-D DCT coeficients of the luminance component of a rectangular region of interest around 
the lip. Following the DCT, we perform the Bayesian feature selection and form the feature vector,  tLf
, by concatenating the 50 most discriminative features. The features for the lip motion modality,

 mLf , 
are irst determined by analyzing the unimodal recognition performance, and selected to be the most 
successful ones. We inally perform multimodal recognition with HMM-based framework by fusing 
modalities with RWS rule.

The audio recordings are perturbed with varying levels of additive noise during the testing sessions to 
simulate adverse environmental conditions. The additive acoustic noise is picked to be a mixture of ofice 
and babble noise. Abbreviations for the modalities and the fusion techniques are given in Table 1.

We irst address the secret and public phrase scenarios in speaker identiication, respectively and for 
each scenario we provide the performances of the three lip motion feature representations, GRD

Nf ,
 CTR

Nf , and CTR SHP
N +f f . We also show the recognition results of the discriminative lip motion features, 

Nf and LDA( Nf ), as well as the performance of the multimodal systems for each scenario.

Table 1. Abbreviations for the modalities and the fusion techniques
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Speaker Identiication: Secret Phrase Scenario

In the secret phrase scenario, the Ds database is partitioned into two disjoint sets, Ds1
 and Ds2

, each hav-
ing ive repetitions from each subject in the database. The subsets Ds1

 and Ds2
 are used for training and 

testing respectively. Since there are 50 subjects and ive repetitions for each true and imposter client 
tests, the total number of trials for the true accepts and true rejects is Cc = Ci = 250.

Figure 7. Speaker identiication under secret phrase (NAME) scenario: EER results for grid-based mo-
tion GRD

Nf , contour-based motion CTR
Nf , and contour-based motion with shape CTR SHP

N +f f

Figure 8. Speaker identiication under secret phrase (NAME) scenario: EER results for GRD
Nf (FirstN),  

GRD
Nf (DiscrimN), and LDA( GRD

Nf ) features with varying vector dimension N
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The three lip motion feature representations, GRD
Nf , CTR

Nf , and CTR SHP
N +f f , are tested on the data-

base. Figure 7 displays the EER performances with varying feature dimension N. We observe that the 
grid-based motion features, GRD

Nf , achieve 6.8% EER, and outperform the contour-based features, CTR
Nf

. We also observe that the addition of lip shape features to the contour-based features, i.e., CTR SHP
N +f f  

results in additional performance gain.
In order to test the effect of the discrimination analysis, we take the most successful lip motion 

features, i.e., grid-based features  GRD
Nf , and perform the two-stage discrimination. Figure 8 plots the 

performances of the grid-based FirstN features, DiscrimN features and DiscrimN features with LDA 
at varying dimensions (10 to 50) for the secret phrase scenario. We observe that: i) DiscrimN achieves 
better performance (6.5% compared to 6.8%) by selecting a discriminative subset of coeficients, which 
are not necessarily the principal components, ii) As the feature vector dimension N increases, the per-
formance saturates, iii) The use of the LDA in addition to Bayesian discrimination brings additional 
EER gain (5.2% compared to 6.5%).

We also present, in Table 2, the EER performance of the unimodal system with audio, lip texture 
or lip motion as well as the multimodal system employing fusion of the modalities. Notice that the 
unimodal system with the lip motion (Lm) employs the most successful features in terms of recognition 
(LDA( GRD

Nf )). The EER performances of the lip texture and lip motion modalities are 5.6% and 5.2%, 
which are close to each other and better than the audio modality at 15 dB SNR and below. When either 
the product rule or the RWS rule is applied for fusion, the EER performance increases signiicantly. The 
RWS rule is observed to perform better than product rule, especially under noisy conditions. The best 
EER performance is achieved with the fusion of all three modalities at 15 dB SNR and below. Above 
15 dB SNR, the best performance is achieved with the fusion of lip texture and audio modalities.

Table 2. Speaker identiication under secret phrase (NAME) scenario: EER results at varying noise 
levels for different modalities and multimodal fusion structures
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Speaker Identiication: Public Phrase Scenario

In the public phrase scenario, the Dp database is partitioned into two disjoint sets, Dp1
 and Dp2

, each hav-
ing ive repetitions of the same 6-digit number from each subject in the database. The subsets Dp1

 and 
Dp2

 are respectively used for training and testing. Note that, in the public phrase scenario, no imposter 
recordings are performed since every subject utters the same 6-digit number. The imposter clients are 

Figure 9. Speaker identiication under public phrase (DIGIT) scenario: EER results for grid-based mo-
tion GRD

Nf , contour-based motion CTR
Nf , and contour-based motion with shape CTR SHP

N +f f

Figure 10. Speaker identiication under public phrase (DIGIT) scenario: EER results for GRD
Nf (FirstN), 

GRD
Nf (DiscrimN), and LDA( GRD

Nf ) features with varying vector dimension N
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generated by the leave-one-out scheme, where each subject becomes the imposter of the remaining R–1 
subjects in the population. Having R = 50 subjects and ive testing repetitions, the resulting total number 
of trials for the true accepts and true rejects (imposters) becomes respectively Cc = 250 and Ci = 250.

Figure 9 displays the EER performances for different lip motion representations with varying feature 
dimension N. We observe that the grid-based motion features, GRD

Nf , and the contour-based motion with 
shape features, CTR SHP

N +f f , achieve the same minimum 12.8% EER, and outperform the contour-based 
only features CTR

Nf . Note that the EER performance of speaker identiication under the secret phrase 
scenario is signiicantly better than that of the public phrase scenario. This is expected since in the 
secret phrase scenario each speaker in the database utters a different person-speciic phrase, making 
the identiication task easier.

Figure 10 plots the performances of the grid-based FirstN features, DiscrimN features and DiscrimN 
features with LDA at varying dimensions (10 to 50) for the public phrase scenario. Similar to the secret 
phrase scenario, we observe that DiscrimN achieves better performance than FirstN with EER of 12.2%, 
and the LDA in addition to Bayesian discrimination signiicantly improves the recognition performance 
from 12.2% to 5.2%.

Table 3 presents the EER performance of the unimodal system with audio, lip texture or lip motion 
as well as the multimodal system employing fusion of the modalities. Notice that the unimodal system 
with the lip motion (Lm) employs the most successful features in terms of recognition (LDA( GRD

Nf )). 
The EER performances of the lip texture and lip motion modalities are 1.74% and 5.2%. Since every 
subject utters the same password in the public phrase scenario, the audio modality suffers and the lip 
texture modality beneits with respect to the secret phrase scenario. When either the product rule or the 
RWS rule is applied for fusion, the EER performance signiicantly increases. The RWS rule is observed 

Table 3. Speaker identiication under public phrase (DIGIT) scenario: EER results at varying noise 
levels for different modalities and multimodal fusion structures
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to perform better than product rule at all SNR conditions. The best EER performance is achieved with 
the fusion of all three modalities at all SNR levels.

Con Clu SIon S

Biometric person identiication technologies focus on voice, face, iris and retina scans, signature strokes, 
ingerprint, palm print, and hand geometry as distinguishing source of personal information. However, 
state-of-the-art audio-visual speech recognition systems usually employ two critical sources: Speech 
signal and lip information. The lip motion information, which is highly correlated with the speech sig-
nal, has been extensively utilized in speech recognition. Despite the general belief that the lip motion 
possesses valuable biometric information, there have been few studies investigating this modality in 
speaker identiication. More speciically, almost all of the existing systems employ the lip texture and/or 
geometry to model the lip motion. The use of the explicit lip motion, which is in fact what is meant by 
the lip information, is relatively rare. This has been the irst issue in the speech/speaker recognition 
literature that motivates us to investigate the lip motion modality. The second point open to debate is 
the optimal feature representation for the lip motion information. Determination of the best lip motion 
features has been the primary objective of this work. By obtaining the best lip motion features, i.e., 
the most discriminative features among classes, it is possible to maximize the unimodal recognition 
performance. However, no matter how successful the modality is, robustness has always been an issue 
for unimodal systems. More reliable and robust recognition systems should be built by fusing individual 
modalities. This directs us towards integrating visual features with audio, which would provide more 
information about the identity of the speaker.

Taking the outlined issues into account, we present a multimodal recognition system that integrates 
audio with several lip modalities. We propose to use explicit lip motion information that best represents 
the lip dynamics for speaker identiication. First, we eliminate the corruptive effect of head motion dur-
ing natural speaking act to obtain pure lip articulation. A comparative study between several lip motion 
features including the grid-based dense motion features and the contour-based lip motion features is 
performed. Firstly we compute the grid-based motion features within a bounding box around the lip 
region and thus, take the motion of the non-lip, i.e. skin region into account. Secondly we calculate 
the contour-based motion features on the outer lip contour and discard the effect to the surrounding 
area. In addition to the explicit motion features on the outer contour, simple lip shape features are also 
extracted and concatenated with the contour-based motion features to see the contribution of geometric 
lip information. 

In our experiments, we show that the grid-based dense lip motion features are superior and more robust 
compared to the contour-based lip motion features. This shows the importance of the skin region even 
if some erroneous vectors show up. Recall that before applying the two-stage discrimination analysis, 
we irst transform the motion data into DCT domain. This transformation has two advantages: First, it 
serves as a tool to reduce the feature dimension by iltering out the high frequency components of the 
motion signal. These high frequency components are mostly due to noise and irrelevant to our analysis 
since it is unnatural to have very abrupt motion changes between neighboring pixels of the lip region 
where the motion signal is expected to have some smoothness. Second, DCT decorrelates the feature 
vector so that the discriminative power of each feature component can be independently analyzed.
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For optimal lip motion feature representation, we introduce a novel two-stage discrimination analysis 
technique that involves the spatial Bayesian feature selection and the temporal LDA. The experimental 
results reveal that the Bayesian discrimination analysis improves the performance. It is interesting to see 
that after spatial Bayesian discrimination, a small set of DCT features that possess more discriminative 
power is formed regardless of their energy or coeficient index. The Bayesian discriminative feature 
selection also serves as an intermediate dimensionality reduction step prior to the temporal LDA, by 
successfully selecting the lip features that are tailored for the speciic problem. The temporal LDA is 
beneicial especially under the public phrase scenario. The LDA maps a given high dimensional feature 
vector to a subspace of reduced dimension that best describes the discrimination among classes. We 
achieve high discrimination among classes, i.e., different speakers, using the LDA.

Apart from the efforts to maximize the unimodal performance of the explicit lip motion modality, 
we have fused the lip motion features with audio and lip texture to build a reliable and robust system 
that is able to cope with the real-life problems. The audio features are composed of the MFCCs along 
with the irst and second derivatives whereas the lip texture features are the 2-D DCT coeficients of the 
grayscale lip images. Since the reliability of each independent source of information (audio, lip texture, 
and lip motion) may vary under different acoustic and lighting conditions, our multimodal decision fusion 
strategy signiicantly improves the overall performance. The RWS decision fusion rule with the given 
reliability measures provides improved results than the product rule as it introduces a priori information 
on the modality reliability. It is worth noting that a successful system is built for speaker identiication 
without using the face modality, which is usually considered as indispensable in this problem.

FuTuRe ReSeARCh dIReCTIon S

In any recognition problem, if one can extract the best, possibly the most sophisticated, features achiev-
able from available data, then it is possible to attain good recognition performance even with simple 
classiiers. Hence the proposed two-stage spatial-temporal discrimination analysis framework, although 
structurally complex, is vital in extracting the best motion-based features for speaker identiication. 
Furthermore, having obtained low-dimensional representations for any modality will reduce compu-
tational complexity. 

In speaker identiication, in addition to working in the motion-based feature space, one should not 
ignore the appearance information, which is indispensable in building robust systems in biometrics and 
security/surveillance. Another detail worth mentioning is the multimodal fusion. When using modalities 
such as face/lip appearance, lip shape, lip articulation, etc., feature-level fusion is usually infeasible since 
it is not trivial to merge different feature spaces. Thus decision fusion schemes that rely on the uniied 
decisions of different classiiers, i.e., experts, should be the way to integrate several modalities.

There are further issues to be addressed: The lip region should be detected in a fully automatic way 
to allow real-time implementations. There exist a number of ways to detect and segment the lip region 
however they usually suffer from afine pose changes. The main concern behind the lip segmentation 
problem is to extract the lip from the mouth image. When lip motion analysis is the primary issue, the 
lip images should be registered and carefully extracted using a static reference point, for instance the 
center point in the image. Otherwise, the lip motion analysis cannot be carried out correctly.
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Another point worth mentioning is the extraction of 3-D visual features, which needs to employ 
stereo cameras to acquire 3-D data. Aside from generating similar recognition frameworks, this will 
provide a way to learn facial motion parameters for 3-D animations and realistic synthesis. A differ-
ent perspective to synthesize lip articulation is to assume that lip features are the measurements of a 
linear dynamical system, and system parameters are identiied to perform recognition and synthesis. 
Furthermore, correlation between audio and lip articulation should be solved so as to realize accurate 
audio-visual synchronization.

We have already mentioned that biometric person identiication technologies mostly focus on voice, 
face, iris and retina scans, signature strokes, ingerprint, palm print, and hand geometry, whereas gait is 
effective in surveillance applications. In particular, for speaker identiication from talking faces, sources 
such as face appearance and iris can be integrated to build more robust multimodal implementations. 
Future research directions to improve recognition systems include reining the statistical methods for 
the underlying biometric and measurement system, developing systems to code and store biometric data, 
and using sources of information for multi-biometric systems. The reader is referred to the additional 
materials to investigate the aforementioned research directions.
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ABSTRACT

The present chapter reports on the use of lip motion as a stand alone biometric modality as well as 
a modality integrated with audio speech for identity recognition using digit recognition as a support. 
First, the auhtors estimate motion vectors from images of lip movements. The motion is modeled as the 
distribution of apparent line velocities in the movement of brightness patterns in an image. Then, they 
construct compact lip-motion features from the regional statistics of the local velocities. These can be 
used as alone or merged with audio features to recognize identity or the uttered digit. The author’s 
present person recognition results using the XM2VTS database representing the video and audio data 
of 295 people. Furthermore, we present results on digit recognition when it is used in a text prompted 
mode to verify the liveness of the user.  Such user challenges have the intention to reduce replay attack 
risks of the audio system.

InTRodu CTIon

The performance of multimodal systems using audio and visual information in biometrics is superior 
to those of the acoustic and visual subsystems (Brunelli and Falavigna (1995)), (Tang and Li (2001)), 
(Bigun et al. (1997b)), and (Ortega-Garcia et al. (2004)) because these systems have a high potential for 
delivering noise robust biometric recognition systems compared to the corresponding single modalities. 
This is the general motivation for why there has been increased interest in multimodal biometric iden-
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tity recognition.  For example in audio based person recognition, phoneme sounds can be acoustically 
very similar between certain individuals and therefore hard to differentiate. By adding information on 
lip-motion, the discrimination of identities can be improved. 

Speaker recognition using visual information in addition to acoustic features is particularly advanta-
geous for other reasons too. It enables interactive person recognition which can be used to reduce impostor 
attacks that rely on prerecorded data. Raising antispooing barriers, known as liveness detection, e.g. to 
determine if the biometric information being captured is an actual measurement from the live person 
who is present at the time of capture, for biometric systems is becoming increasingly necessary. 

In this chapter extraction of lip-motion features that takes advantage of the spatiotemporal information 
in an image sequence containing lip-motion is discussed. Motion features are suggested for recognition 
of human identities and word (digit) recognition which can be used for liveness detection. The discussions 
include iltering, feature extraction, feature reduction, feature fusion and classiication techniques.

Section 2 presents a review of some previous studies relevant to the chapter. The emphasis is on 
audio-visual systems rather than the massive research body existing in the individual recognition tech-
nologies.  In particular, lip features suggested previously are discussed in greater detail. 

Section 3 presents the theory of three different concepts of motion estimation which is directly rel-
evant to this chapter. The motion estimation techniques based on texture translations and line transla-
tions are explicitly contrasted against each other. A further quantiication of the speed accuracy of the 
used motion estimation that assumes moving lines or edges is given. How motion is exploited in other 
audio-visual recognition studies is also discussed. 

In Section 4 we present a discussion on how one can use estimated velocities to produce compact 
feature vectors for identity recognition and liveness detection by uttered digits. A technique for quan-
tization and dimension reduction is presented to reduce the amount of extracted features. The section 
also presents the audio and visual features concatenated at the feature level allowing, the integration 
of different audio and video sampling rates. The visual frames come at one fourth pace of the audio 
frames do, but contain more data. Yet the inal concatenated feature vector must come at the same pace 
and contain approximately the same amount of data each, to avoid favoring one   over the other. The 
section also presents the performance of visual information as an audio complement feature in speaker 
recognition and speech recognition using the XM2VTS database. We present a single and multimodal 
biometric identity recognition system based on the lip-motion features using a Gaussian Mixture Model 
(GMM) and a Support Vector Machine (SVM) as model builders. Furthermore, we present the experi-
mental test using only one word (digit) to recognize the speaker identity. A discussion on related studies 
exploiting different techniques for audio-visual recognition is also included. 

Section 5 discusses the conclusions of the chapter and presents directions for future work.

ReVIeW

In speech recognition, two widely used terms are phoneme and viseme. The irst is the basic linguistic 
unit and the later is the visually distinguishable speech unit (Luettin (1979)).1 Whereas the use of visemes 
has been prompted by machine recognition studies, and hence it is in its start stage, the idea of phonemes 
is old.  The science of Phonetics has for example been playing a major role in human language studies. 
The consonant letters complemented with vocals are approximations of phonemes and the alphabet 
belongs to greatest inventions of humanity.   
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Early work from (Petajan (1984)) and (Mase and Pentland (1991)) introduced visual information by 
the use of lip information as an important aid for speech recognition. (Yamamoto et al. (1998)) proposed 
visual information semi automatically mapped to lip movements through the aid of sensors put around 
the mouth to highlight the lips. The experimental results showed that signiicant performance could be 
achieved even by only using visual information. (Kittler et al. (1997)) presented a study using geometric 
features of the lip shapes from model based lip boundary tracking conirming the importance of lip 
information in identity recognition. 

(Luettin et al. (1996)) presented a speaker identiication system based only on dynamic visual infor-
mation from video sequences containing the lip region. The geometrical features of the lips contained 
information about the shape and intensity information of the lips. The experiments were carried out 
by 12 speakers uttering digits and were later extended to the M2VTS database (37 speakers) by (Jour-
lin et al. (1997)). The person identiication system based on Hidden Markov Model (HMM) achieved 
72.2% using labial information and 100% using merged acoustic and visual features. They achieved 
good performance with joint systems utilizing a score fusion (late integration) method. They used 14 
lip shape parameters, 10 intensity parameters, and the scale as visual features, resulting in a 25 dimen-
sional visual feature vector. The speaker veriication system score is computed as a weighted sum of 
the audio and visual scores. 

(Brunelli and Falavigna (1995)) developed a text-independent speaker identiication system exploiting 
acoustical information in combination with visual information from static face images. The system is 
based on several experts: two acoustic modalities (static and dynamic), containing derived features from 
short time spectral analysis of the speech signal, and three visual experts containing information from 
the eyes, nose and mouth. By using weighted function to classify the experts, the system performed well 
on approximately 90 speakers. Other studies using static visual information in recognition systems are 
(Tistarelli and Grosso (2000)) utilizing morphological iltering for a facial/eye localization followed by 
a simple matching algorithm for identity veriication, (Duc et al. (1997) and Ben-Yacoub et al. (1999)) 
using Gabor ilter responses on sparse graphs on faces but in the context of an audio-visual speaker 
veriication system, (Sanderson and Paliwal (2004)) using Principal Component Analysis (PCA) for face 
feature extraction for identity veriication and (Hazen et al. (2003)) using visual information from the 
different components in the face in a speaker identiication system.

(Wark and Sridharan (1998)) developed a speaker veriication system based on dynamic lip contour 
features extracted by Linear Discriminant Analysis (LDA) in combination with principal component 
analysis, yielding favorable results. This study was extended to merge audio-visual information by late 
integration using mixed densities of Gaussians, (Wark et al. (1999)). 

(Dieckmann et al. (1997)), proposed a system using multimodal visual information from a video 
sequence. The modalities, face, voice and lip movement, were fused utilizing voting and opinion fusion. 
A minimum of two experts had to agree on the opinion and the combined opinion had to exceed the 
predeined threshold. Other related work has exploited dynamic visual information for speaker recogni-
tion (Frischholz and Dieckmann (2000)) and (Kittler et al. (1997)), and used multimodal information 
for speaker identiication (Bigun et al. (1997a) and Bigun et al. (1997b)).

(Nakamura (2001)) proposed a method based on HMMs to integrate multimodal information 
considering synchronization and weights for different modalities. He built compound HMMs, each 
including a large number of states, incorporating states in an audio HMM and a visual HMM for all 
possible combinations. The system showed improved performance of speech recognition when using 
multimodal information. 
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By utilizing the lip contour, such as the contour height, width and area, (Chen 2001)) presented a 
speech recognition system based on these features with real-time tracking using the multi-stream HMM 
without automatic weight optimization.

Biometric Recognition Framework
 
The generic framework describing biometric recognition systems is useful to understand the present 
work. We describe it in Fig. 1 and it consists of three main blocks that of capturing, processing (feature 
extraction and feature fusion) and classiication. In the case of ofline recognition one does not need 
to take into account the capturing methods. This chapter falls under the category of processing block, 
proposing novel methods mainly for visual feature extraction. The classiication block, also known as 
matching, is based on already developed systems such as GMM (using HTK toolkit) and SVM using 
SVM library. Below, we outline the existing methods used for feature extraction and feature fusion.

Visual Feature extraction
 
The main beneit, in speech recognition, of using visual cues is that they are complementary to the 
acoustic signal: some phonemes that are dificult to understand acoustically in noisy environments can 
be easier to distinguish visually, and vice versa. 

We distinguish two challenges in lip features processing, Fig. 2, i) detection of face/mouth/lips and 
ii) extraction of features. The irst problem amounts to inding and tracking a speciic facial part (mouth, 

Figure 1. The igure illustrates a block diagram of audio-visual biometric system used for speech and 
speaker recognition studies of this chapter
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Figure 2. The igure illustrates visual feature representation approaches

Figure 3. The igure illustrates the stages of information extraction in a biometric recognition system 
utilizing lip features.   The video stream is irst processed by a tracking and detection technique and 
in the second block the lip features are extracted from the tracked object (mouth region, lip contours, 
lips, etc.) 
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lips, lip contours etc.)  whereas the second problem comprises the extraction of the visual information 
in terms of a small number of informative variables or  measurement entities. 

Successful mouth tracking is still challenging in cases where the background, head pose and lighting 
vary greatly, (Iyengar and Neti (2001)).  After successful face detection, the region is processed further 
to obtain lip features. Though not very detailed in terms of lip motion description,  even the bounding 
boxes of lip regions can reveal useful lip features if they are estimated for every frame independently 
because such rectangles  reveal the dynamic evolvement of the height and width (Zhang et al. (2002)) 
and (Luettin et al. (1996)) during speech  production. However, the lip information within the mouth 
region is most commonly extracted. Visual features are then extracted either from single frames (static) 
or from a set of consecutive   images (dynamic).  The visual features can be categorized into two groups: 
pixel based approaches and model based approaches, Fig. 3, regardless of whether they model the static 
or dynamic information.

• Pixel based approach: Each pixel in the image participates into computations of features such 
as Fourier transform, discrete cosine transformation, optical low, etc. The features are directly 
pixel driven without form constraints between pixels which are to be contrasted to for example 
lip contour models. However, even pixel driven techniques presuppose the extraction of at least a 
suficiently narrow region containing the mouth. The extracted lip region is often processed further 
with normalization techniques in an attempt to improve resilience against disturbances caused 
by head pose and lighting information. The pixels of the found mouth region can be mapped to 
a different space for lip features extraction. A popular mapping is projection to an image basis 
obtained by PCA. Such methods model static information in single image frames explicitly, even 
though they implicitly can represent the dynamic information between the frames, such as motion. 
Motion estimation (optical low) which can capture the lip velocity and acceleration information in 
each pixel over time is by contrast an approach that explicitly models motion information. (Chan 
(2001)) presented a combined geometric lip features utilizing the PCA projection. The PCA are 
determined by a subset of pixels contained within the mouth. (Chiou and Hwang (1997)) on the 
other hand, presented combination of a number of snake lip contour vectors with PCA features 
from the color pixel values of a rectangle mouth region of interest. Furthermore, (Neti et al. (2000)) 
and (Matthews et al. (2001)) uses joined model of PCA techniques for estimating dimensionalities 
of shape models and appearance vectors. In this chapter we pursue the motion modeling approach 
to extract lip-motion features. The features are undoubtedly pixel driven, yet it describes but the 
allowable motions are restricted in direction to conform to what can be expected from a lip-mo-
tion. Using the motion estimation technique, requirements for accurate mouth state or lip contour 
extraction may be eased since a rough detection of the mouth region is suficient to obtain visual 
features.

• Model based approach: Geometric and shape based methods represent the dynamic visual lip 
images by lip contour information and shape information of lips (Chan (2001)) and (Chiou and 
Hwang (1997)). These features are normally extracted from the region-of-interest equipped with 
a lip tracking preprocessing algorithm. Excluding the preprocessing part (lip contour tracking), 
these methods require less computation since they only work with a few control points. However, 
lip contour detection can be computationally demanding and prone to errors.       
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Next, we will present three mouth region features, proposed by (Jourlin et al. (1997)), (Dieckmann 
(1997)) and (Liang et al. (2002)) as they represent well the two categories outlined above.

Lip Feature Representation Approaches
 

Jourlin et al. (1997)

The lip feature extraction proposed by (Luettin et al. (1996)) is model based and assumes that most 
relevant information is contained in the shape (contours) of the speaker’s lips. 

The approach consists of a combination of lip contour information and the gray level distribution 
around the mouth area. During speech production the lip shape varies. For each speaker a spatiotemporal 
model that describes the mouth shape of the speaker and its temporal change is built.

They use a shape model that describes the outer and inner lip contour and a deformable gray level 
model to describe intensity values around the lip contours. Active shape models are used to locate, track 
and parameterize the lips over an image sequence. The principal modes of deformation are obtained by 
performing PCA on a labeled training set. A shape model is then approximated by a linear combination 
of the irst few principal modes of deviation from the average lip curve. 

Gray levels representing the intensities perpendicular to the contour at each control point of the model 
are concatenated to form a proile vector.  The proile vectors of speakers in a training set are subjected 
to PCA to capture the proile variation modes. A proile is then represented as a linear combination 
of deviation modes (PCA basis) from the average gray proiles. The concatenated vectors of all model 
points represent a proile model for a speaker. PCA is performed on all proiles to obtain the principal 
modes of the proile variation.

In a lip sequence unseen by the system, the proile model is used to enable tracking whereby the 
curve parameters (weights, or basis coeficients) corresponding to the curves deined by the tracked 
control points are subsequently computed.  The found contour and proile parameters are used as lip 
features for speaker recognition.

Dieckmann et al. (1997)

(Dieckmann et al. (1997)) presented a speaker recognition system (SESAM) using lip features that are 
pixel based. Beside the lip information, facial information from the speaker was added.

Their approach is based on the optical low analysis using the (Horn and Schunck (1981)) method 
applied to mouth sequences. The Horn and Schunck method is a differential motion estimation method 
based on two frame differences. The main difference between Horn and Schunck technique and Lukas 
and Kanade technique is the weighting function to enforce the spatial continuity of the estimated optical 
low. If we set the weighting function to zero we will have the method suggested by Lucas and Kanade, 
which we will discuss in detail in Section Performance measurement.

The lip movement estimation of the SESAM system calculates a vector ield representing the lo-
cal movement of each two consecutive frames in the video sequence. An averaging is used to reduce 
the amount of velocity vectors to 16 (one fourth of the original size), representing velocities in 16 sub 
regions. 3D fast Fourier transforms are applied on the velocity vectors to represent the movement of 
identiiable points from frame to frame.
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Zhang et al. (2002)

Automatic speech reading as well as speaker recognition by visual speech has been studied by (Zhang 
et al. (2002)). In this pixel based work, the authors suggest a primarily color driven algorithm for auto-
matically locating the equivalents of 3 bounding boxes for the i) mouth region, outer lip contour, inner 
lip contour. Though this is not part of the features, motion is also modeled but after that the points of the 
bounding boxes have been identiied.  The used fusion is a decision fusion consisting of averaging the 
audio and lip expert scores. The study presents visual feature performance comparisons and conirms 
that the visual information is highly effective for improving recognition performance over a variety of 
acoustic noise levels.

Liang et al. (2002)

The technique proposed by (Liang et al. (2002)) is categorized as pixel based because its features are 
extracted using all pixels without an explicit constraint on the shape of the lips. 

The visual observation vector is extracted from the mouth region using basically two algorithms in 
cascade. The gray pixels in the mouth region are mapped to a 32 dimensional eigenvectors produced 
from a PCA decomposition of gray value deviations from the average mouth region. This is computed 
from a set of approximately 200000 mouth region images. Temporally, the feature are up sampled and 
normalized to match the acoustic sample rate. The visual observation vectors are concatenated and 
projected on a 13 class linear discriminant space, using Linear Discriminant analysis (LDA). By this 
the visual features are reduced to a new set of dimension 13.

Other Relevant Studies

PCA has been used by (Luettin et al. (1996)), (Potamianos et al. (1998)) and (Sanderson and Paliwal 
(2004)) to represent mouth movements in speaker and speech recognition systems. The PCA data pro-
jection achieves optimal information compression in the sense of minimum square error between the 
original vector and its reconstruction based on its projection. The achieved dimension reduction serves 
to reduce the massive image data. Here, however, it serves an even more important purpose, to prevent 
the intra class covariance matrix, needed at the next stage (LDA), from being singular. This is because 
there is typically never enough data to compute a reliable estimation of the intra class covariance matrix 
for a high dimensional dataset, as is the case in a mouth region image  (which has approximately 40000 
gray values, and there are  a couple of hundreds of frames available per class/person, typically). LDA 
transform maps the feature space to a new space for improved classiication, i.e. features that offer a 
clear separation between the pattern classes. In image pattern classiication, it is common that LDA is 
applied in a cascade following the PCA projection of a single image frames.      

Integration of Audio and Visual Information

Feature fusion is used here fuse different information sources with the ultimate goal of achieving supe-
rior recognition results. Fusion techniques are divided into three categories: feature fusion, intermediate 
fusion and decision fusion, (Sanderson and Paliwal (2004)) and (Aleksic and Katsaggelos (2006)). 
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• Feature fusion: Because it occurs early in the information processing chain leading to the decision, 
feature fusion can intuitively be perceived as the simplest fusion method as it can be implemented 
by concatenation. Though used in other ields frequently, there are few studies using feature fusion 
in audio-visual pattern recognition, (Liang et al. (2002)), essentially because of increased dimension 
and different data rates and types, causing modeling dificulties if carried out in a straight forward 
manner. There are even fewer studies reporting results on large, publicly available audio-visual 
databases. Other studies using feature fusion is (Chaudhari et al. (2003)) and (Fox et al. (2007)). 

• Decision fusion: Some form of recognition is performed separately for each modality and these 
results are fused at the decision level.  When there are more than 2 machine experts, ranked lists 
can be utilized (Brunelli and Falavigna (1995)), (Kittler et al. (1997)), (Wark et al. (1999)), (Luettin 
and Thacker (1997)) and (Chibelushi et al.  (2002)). This is relevant even in multiple algorithms or 
multiple classiier decision making strategies too. The latter strategy has been speciically used 
here, when we identiied people and the digits they uttered, where numerous 2-class SVM are 
combined to obtain a decision on n-class (persons or digit identities) problems. The majority vot-
ing and combined voting are commonly utilized techniques in decision fusion. Majority voting 
refers to that the inal decision is made by taking the (common) decision of most sub classiiers. 
For ranked lists, each sub classiier provides a ranked list that is combined with other classiiers’ 
lists in the inal stage. The method requires less computation but can be more complex to grip and 
implement because some combinations will not work for some users and an automatic selection 
and combination rules will be needed.  

• Intermediate fusion: Information from audio and visual streams is processed during the proce-
dure of mapping from feature space into opinion/decision space. In a decision fusion process this 
mapping for audio and video streams would run in parallel and without inluence on each other.  
In intermediate fusion HMMs are used often to couple and extend these two processing strands 
ending in a common decision (Liang et al. (2002)), (Aleksic and Paliwal (2002)), (Chaudhari et al.  
(2003)), (Bengio (2003)) and (Fox et al. (2007)). Complex intermediate fusion schemes promise to 
take into account for the different reliability of the two streams dynamically, and even for different 
temporal sampling rates.

 
Decision fusion can be complex quickly if it is user adaptive. This is because for large number of 

classes (users), a large amount of training is needed. 
Many biometric systems support multiple experts even within one modality as they apply decision 

fusion. However, with increased number of machine experts, the complexity of the classiier increases 
because in addition to training individual experts the training of supervisors will be mandatory as the 
experts will differ in their recognition skills (performance).  Accordingly, it is not self evident that de-
cision fusion will yield a more eficient decision making as compared to feature fusion with increased 
number of independent experts. Feature fusion might have a higher computational entry cost  in terms 
of implementation because modality speciic issues need to be tackled e.g. the audio and video feature 
rates as well as the amount of data are signiicantly different between audio and video. On the other 
hand, feature fusion gives a better opportunity to design an effective synergy between the audio and 
video signals reducing the need for more complex decision making rules later.
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databases

There exist only few databases suitable for recognition systems using audio-visual information. Data-
bases usually vary in the number of speakers, vocabulary size, number of sessions, scenarios, evaluation 
measures or protocols. The way of collection of databases can inluence the methods or scenarios for 
which they can be useful.  For example, the database could have been collected with a speciic scenario 
in mind whereas the real scenario for which a biometric system needs to be developed could be very 
different from this scenario. This makes the comparison of different visual features and fusion methods, 
with respect to the overall performance of a biometric system dificult. Here, we present an overview 
of some of the datasets that are currently publicly available and have been utilized in several published 
literatures aiming audio-visual biometric systems.

• M2VTS and XM2VTS database: The M2VTS (Multimodal Veriication for Teleservices and Se-
curity Applications) database consists of audio and video recording of 37 subjects uttering digits in 
different occasions, (Pigeon and Vandendorpe (1997)). Because it has a small set of different users 
the work was extended to 295 subjects (Messer et al. (1999)). The resulting XM2VTS (extended 
M2VTS) database is actually a different database  that offers three ixed phrases, two ten digit 
sequences and one seven word sentence and a side view images of the subjects. All recordings 
were performed in a studio in four sessions, separated by a lapse of approximately 6 weeks, dur-
ing a period of ive months. The database is intended for researches in areas related to biometric 
multimodal recognition systems and have been frequently used in the literature. (Teferi and Bigun 
(2007)) presented recently the DXM2VTS (Damascened XM2VTS) by replacing the background 
of the speakers in the XM2VTS database with videos of different real scenes. Furthermore, the 
merged images are offered with appropriate test protocols and different levels of disturbances 
including motion blur, (translation, rotation, zooming), and noise (e.g. Gaussian and salt/pepper 
noise) to measure the performance of biometric systems at different scenarios.

• BANCA database: The BANCA (Biometric Access Control for Networked and e-Commerce 
Applications) database consists of audio and video recordings of 208 subjects recorded by three 
different scenarios, (Bailly et al.  (2003)). The subjects were recorded while they were saying a 
random 12 digit number, name, address and date of birth. The BANCA database contains four 
different language recordings. It is aimed for realistic and challenging conditions for real time 
applications, though there are very few studies which have published results on it.  

• AV-TIMIT: The database consists of 223 subjects, (Sanderson (2002)), and its main properties are 
continuous phonetically balanced speech, multiple speakers, controlled ofice environment and 
high resolution video. Speakers were video recorded while reciting sentences from the TIMIT 
corpus. Each speaker was asked to read 20 to 21 sentences. The irst sentence of each round was 
identical for all speakers and the rest of the sentences were random for each speaker.

Additional datasets, (Potamianos et al. (2003)), are DAVID, containing 100 speakers uttering digits, 
the alphabet, syllables and phrases, VALID which consists of 106 speakers recording the same sen-
tences as recorded in the XM2VTS database with some additional environment and acoustical noise, 
and AVICAR (AV speech corpus in a car environment) which consists of 100 subjects uttering isolated 
digits, isolated letters and phone numbers inside a car.
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Our experiments have been performed on XM2VTS because a large number of biometric recognition 
studies are based on it using standard protocols.  A major reason for its popularity is that it is publicly 
available and that it contains biometric data of a large number of individuals in several modalities across 
time, allowing for both impostor and client tests.

performance measurement

In general, the performance of a biometric recognition system is evaluated by its error rates at various 
situations. The performance of identiication systems is normally reported in terms of identiication 
error, deined as the probability that the correct match of the unknown person’s biometric data is cor-
related to one of the speaker subjects in the dataset. In practice this translates often to give a list of 10 
(or any other practicable number) best matches sorted in resemblance order. Such systems could also 
be equipped with an option to reject to provide a “10 best” list on various valid grounds, e.g. because 
data quality is too poor, or the likelihood that the queried identity is in the database of clients is below 
a preset threshold.

For veriication systems, two commonly used error measures are the false acceptance rate (FAR)—
that is an impostor is accepted—and false rejection rate (FRR)—where a client is rejected. These error 
rates are deined by

FAR = IMA / IM
FRR = CLR / CL

where IMA and IM denote the number of accepted impostors and the number of impostor claims and 
CLR and CL represent the number of rejected clients and the number of client claims, respectively. FAR 
and FRR curves of a biometric system decrease, respective increase as a function of the threshold (as-
suming 0 means the identity claim is false, an impostor, and 1 means it is true, a client). Veriication 
systems also present the performance by choosing a threshold where FAR is equal to FRR, called the 
equal error rate (EER).

In the Lausanne protocol, (Luettin and Maitre (1998)), the system performance is tested at two levels 
after the training. Although there is a fully functional system at hand at the end of the training, one has 
yet to set a threshold to make it operational. The evaluation test presents the performance of the system 
by plotting FAR and FRR curves for all possible thresholds (in practice a discrete set of  thresholds) by 
using  images that the recognition system has not seen during the training (evaluation set). The FAR 
and FRR in all our experiments are obtained on the evaluation set of the Lausanne protocol.  How-
ever, a system owner is yet to decide at which point (or points) on the ROC curve the system should 
be operated, and determine the corresponding threshold. In our publications we reported the (correct) 
veriication rate (VR) which is 

VR = (1 – (FAR + FRR))

to represent the successful or correct decision rate.
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mo TIon eSTImATIon TeChn IQue S

A fundamental problem in image sequence processing is the measurement of optical low (or image 
velocity). The aim is to determine (approximate) the 2D motion ield from spatiotemporal patterns of 
image intensity. The computed measurements of the image sequence are used, here, providing a close 
approximation to the lip motion in the 2D ield. 

Several methods for computing optical low have been proposed (Barron et al. (1992)). Here, we will 
give an overview of the differential method proposed by (Lucas and Kanade (1981)) and the structure 
tensor based technique proposed by (Bigun et al. (1991)) in addition to our proposed method.  Next we 
present the motion of two image patches that contain fundamentally different patterns.

point and l ine motion

We can study motion in image sequences by making assumptions on the contents of the (local) 2D 
image patches on the move. Although patch types are many and therefore dificult to enlist, two types, 
the motion of lines and the motion of points, are particularly important for motion estimation. When 
an image patch consisting of points translates (the dots move in a group) relative to a ixed camera, the 
image plane of the camera registers continuously images of the motion which can be stacked to generate 
the 3D volume.  The interest in this motion has been uncertain in image analysis community mainly 
because it is possible to establish automatically by “walking” along a ixed direction (the direction of 
the parallel bunch of lines in the igure) in the stack of images.  Because every point in the original 
patch can be tracked without ambiguity in the next frame, it is this type of motion that is used to “track” 
patches and even real objects in image sequences.  The (common) direction of the lines generated by 
the moving dots represents the velocity of the 2D patch in motion, which is known as the Brightness 
Constancy Constraint (BCC).

However, images are also full of other patches (local images) that do not contain points and they 
too move. A particularly important class of patches is those that contain lines, edges and other patterns 
that have a common direction patches that possess linear symmetry, (Bigun and Granlund (1988)). 
When such a patch translates, this motion generates a tilted plane (or several parallel planes if there 
are parallel lines in the patch. Here the motion does not generate a bunch of lines that can be utilized 
to establish correspondence between points belonging two different image frames any more. One can 
track lines between image frames but not the individual points (of the lines) since it is not possible to 
observe a difference between a line that translates perpendicular to its direction, and the same line 
when  it  translates along its direction in addition to the  translation it performs in the perpendicular 
direction2. This non uniqueness (at point level) in tracking is generally not desirable in image analysis 
applications and is therefore called as the aperture problem with emphasis on “problem”. When opti-
cal low is computed patches containing directions (linear symmetries) are typically avoided whereas 
patches containing points (texture) are promoted.  There is a BCC assumption even in this scenario but 
the brightness constancy is now at the line level.

The question is whether the motion of lines, normally not desirable in image sequence analysis, can 
be useful for lip-motion quantiication. This is signiicant from resource utilization point of view because 
the moving patches that contain lines outnumber greatly those that contain dots3 in lip sequences. Before 
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discussing how to proceed to obtain lip-motion, we outline two methods, (Lucas and Kanade (1981)) and 
(Bigun et al. (1991)) that represent the distinction between point-motion and line-motion well.

motion estimation by differentials
 
The motion direction of a contour is ambiguous, because the motion component parallel to the line 
cannot be inferred based on the visual input. This means that a variety of contours of different orien-
tations moving at different speeds can cause identical responses in a motion sensitive neuron in the 
visual system.

Differential techniques, (Lucas and Kanade (1981)) and (Horn and Schunck (1981)) compute the 
optical low from spatial derivatives of the image intensity and the temporal difference between a pair 
of frames in an image sequence Fig. 4.  The approach assumes that the studied patch contains points 
and that the patch undergoes a translational motion,  to be precise  the image observed a time instant t 
later is obtainable from the original patch at t = 0 by translation, as follows 

)0,(),( tItI vxx −=           (1)

Here I represents the local image with the spatial vector x, and v = (vx,vy)
T is the velocity to be es-

timated. A differential expression for the brightness change constraint equation can be obtained if the 

Figure 4. The igure illustrates a lip sequence for a speaker uttering digits zero to nine. The vertical and 
horizontal cross section indicates the existing lip movements. 
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mathematical concept of total differential is utilized. It amounts to that the gray value change of the 
same point, i.e. the total differential, is nil as represented by the following equation

0=
dt
dI

            (2)

This, when the chain rule of multivariable functions is utilized,

0=++=
dt
dt

dt
dI

dt
dy

dy
dI

dt
dx

dx
dI

dt
dI

        (3)

yields the desired differential expression for BCC.

,0),(),( =+⋅∇ tItI ts xvx          (4)

Here, It(x,t) denotes the partial time derivative of  I(x, t)  and T
yxs tItItI )),(),,((),( xxx =∇  is the 

spatial gradient.  The irst component of this equation is  a projection of the velocity vector on the gradi-
ent. If the local patch is a line (violating the underlying assumption of translating points),   the velocity 
components that are parallel to this line will be orthogonal to the gradient (which is orthogonal to  the 
line in the patch)  and will produce zero after the projection. This means that any velocity parallel to 
the line direction will not be recoverable from equation (4), which is another way of telling that there 
is an aperture problem.   

However, as it stands this equation cannot be solved even if the patch contains only points because 
there is one equation and two unknowns, (vx,vy). To obtain  the velocity components, the equation is 
applied to every point in the patch and new equations are obtained for different  points, in practice for 
all points of the patch. Because the patch pattern consists of dots (and not lines) and all dots move with 
the same translational velocity, the common velocity components can be obtained in the least squares 
error sense as below. 

g = – Gv                (5)

where v is unknown 
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The equation (6) contains the irst order partial derivatives coming from all points in the observed 
image patch (N in total) and can be estimated by convolutions eficiently. Suggested by (Lucas and 
Kanade (1981)), this is a linear regression problem for optical low estimation. The standard solution of 
such a system of equation is given by mean square estimate, obtained by multiplying the equation with 
GT and solving the 2x2 system of equations for the unknown v

GTg = – GTGv                       (7)

For a discrete 2D neighborhood I(xk, yk, t0), a unique solution exists if the matrix 
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However, S is the structure tensor for the 2D discrete image I(xk, yk, t0),
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with “< >” representing the average over the pixels (K is the number of pixels) in the 2D neighborhood. 
If the structure tensor S has en eigenvalue that equals to zero (singular S) then no unique velocity can 
be estimated from the image measurements. This is explained by the fact that then the pattern in the 
patch consists of lines. The tensor can be singular no matter how many points participate into the regres-
sion of velocities, because the 2D pattern can consist of long (possibly parallel) lines. Accordingly, this 
situation represents the aperture problem. In this case the structure tensor is not invertible, which the 
method in (Lucas and Kanade (1981)) chooses to avoid by not calculating it. Alternatively the optical 
low estimations for such patches are down weighted (Horn and Schunck (1981)) since they otherwise 
would cause severe discontinuities.

motion estimation by the 3d Structure Tensor

This method can estimate both the velocity both in the translating points, and the translating lines sce-
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narios, as it can provide a measure of conidence as to which type of scenario is most likely prevailing 
in the investigated patch.

Assume that the local intensity function f represents the intensity (gray value) of a local image in a 
3D spatiotemporal image (continuously stacked patches) and that the local intensity function f consists 
of parallel planes. This corresponds to parallel planes in 3D which is the same as that the energy is con-
centrated along an axis through the origin in the 3D Fourier transform of f. Thus, the problem of inding 
a representative velocity for the local image corresponds to inding the inclination angle of the parallel 
planes, which in turn can be solved by itting an axis through the origin of the local image’s Fourier 
representation (Bigun (2006)). Fitting an axis is classically performed by the minimization problem, in 
the total least square error (LSE) sense. The solution is obtained by an eigenvalue analysis of the 3x3 
matrix, also known as the 3D structure tensor of the local intensity function. This 3x3 tensor can, how-
ever, be obtained directly in the spatial domain thanks to the conservation of the scalar product between 
the spatial and Fourier (frequency) domains. It can be written as follows in the spatial domain

J = trace(A)I –A                      (11)

with
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correspond to partial derivatives of the image in x, y and t coordinate directions and trace(A) is the sum 
of the diagonal elements of A, which also equals to the sum of all eigenvalues of A. The matrix A can 
be estimated by a discrete approximation:

∑ ∇∇≅
j

T
jj ff ))((A

                    (12)

where )( jf∇ is the gradient at a speciic discrete image position j wherewith j running over all positions 
(in all 3 directions x, y and t in the three dimensional neighborhood). The least square error corresponds 
to the least eigenvalue of J with its corresponding eigenvector representing the optimal plane it. Find-
ing the eigenvector corresponding to the least eigenvalue of J is the same as inding the eigenvector 
corresponding to the largest eigenvalue of A. By investigating the errors of the it (the eigenvalues), an 
approximation of the quality of the it to the local image can be estimated along with the plane it, the 
normal of which encodes the normal velocity in f. 

The gradient image )( jf∇  can be estimated through convolutions with partial derivative ilters of 
three dimensional Gaussians. After that, the above mentioned outer products and the three dimensional 
smoothing corresponding to the triple integral equation (12) is carried out. 

It turns out that even motion of points case reduces to the same eigenvalue problem as above. The 
difference is that the multiplicity of the smallest eigenvalue is 1 and this smallest eigenvalue is zero, (close 
to zero in practice) whereas for motion of lines case the multiplicity of the smallest eigenvalue is 2. 

Figure 5. The graph shows the geometry used to derive the 2D velocity vector from the 3D normal vector 
along with the plane generated by a translating line
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However, this method requires multiple image frames although it simultaneously derives the velocity 
of moving points and lines. Accordingly, the computations can be excessive for applications that only 
need line motion features. Assuming that line motion is the most relevant motion type in lip images 
the computations can instead be carried out in 2D subspaces of the 3D spatiotemporal space.  This is 
described next.

motion estimation by l ine Translation, Normal Optical Flow

Assume that f(x,y,t) is generated by a line translated in its normal direction with a certain velocity. The 
local image containing a moving line in the xy manifold will generate a plane in the (spatiotemporal) xyt 
space, Fig. 5. The normal of the plane, k = (kx, ky, kt)

T with || k || = 1 , is directly related to the observable 
normal velocity. Thus this velocity is encoded by the orientation of the spatiotemporal plane in the xyt 
space.  Let the normal velocity, v = (vx, vy)

T, be encoded as v = va with v as the absolute speed and a 
as the direction of the velocity which also represents the normal of the line. Being a normal vector, the 
length of a is ixed to 1, i.e. ||a|| = 1. Because the local image f is assumed to consist of a moving line, 
it can then be expressed as

TT yxvtg ),()( =− s         ,sa                            (13)

for some 1D function )(g , where s represents a spatial point in the image plane and t is the time. 
Deining now k~  and r as

),,(,),,(~ tyxvaa T
yx =−= r        k                (14)

in equation (13), we have a (linearly symmetric) function f that has iso-curves that are parallel planes 
i.e. 

)~(),,( rk Tgtyxf =
Here 1||~|| ≠k  because 

( ) 122 =+ yx aa

is required by the deinition of k~  (equation (14)). Given f, the problem of inding the best k itting the 
hypothesis

1||||with)(),,( == k    rkTgtyxf

in the total LSE sense is given by the most signiicant eigenvector of A. Calling this vector k, and as-
suming that it is already computed using A, k~  is simply obtained by normalizing k with respect to its 
irst two components as follows
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In agreement with the deinition of k~ , equation (14), we will have a (2D direction of the velocity in 
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so that the velocity components are given by
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As discussed above, k can be estimated by the most signiicant eigenvector of 3D tensor A, (Bigun 
et al. (1991)), if computational resources would not be an issue. 

Forming the 3D matrix A via triple integrals and solving for its eigenvectors and eigenvalues may 
be avoided all together if only normal low is needed for the application at hand. From equations (18)-
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(20), the velocity and direction can be estimated by determining the tilts ( )tx kk  and ( )ty kk . The 
tilts can in turn be estimated by local orientation estimation of the intersection of our original motion 
plane with the tx and ty planes, (Isaac-Faraj and Bigun (2006)) and (Kollreider et al. (2005)). This 2D 
orientation estimation can be done by itting a line to the 2D spectrum in the total least square error 
sense. This is discussed next.

A local 2D image with ideal local orientation is characterized by the fact that the gray values do 
not change along one direction. Since the gray values are constant along lines, local orientation is also 
denoted as linear symmetry orientation. Generally, an image is linearly symmetric if the iso-gray val-
ues are represented by parallel hyperplanes. A linearly symmetric 2D image in particular consists of 
parallel lines in 2D, and has a Fourier transform concentrated along a line through the origin. Detecting 
linearly symmetric local images is consequently the same as checking the existence of energy concen-
tration along a line in the Fourier domain, which corresponds to the minimization problem of solving 
the inertia matrix in 2D. By analyzing the local image this time as a 2D image, f, the structure tensor 
can be represented as follows for the tx plane:
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Note that this structure tensor has double integrals as opposed to its 3D counter part in equation 
(11). Eigenvalue analysis in 2D yields a particularly simple form by using complex numbers (Bigun 
and Granlund (1987))
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The argument of I20, a complex number in the t- and x-manifold, represents the double angle of the 
itting orientation if linear symmetry exists. In consequence, this provides an approximation of a tilt 
angle via
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Using this idea both in the tx and ty manifolds and labeling the corresponding complex moments as 
txI20 , and tyI20  the two tilt estimations and in turn velocity components are obtained as follows:
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The tx and ty manifolds are shown in Fig. 5 along with the angles 1 and 2 . The tyI20  corresponds 
to equation (21) but applied to the ty manifold.

Feature Quantization and Reduction: l ip motion Features

We need to perform additional processing to extract lip-motion speciic and discriminative information 
for speech and speaker recognition applications.  To this end we proceed as follows.

1. In each pixel of the lip region image we have a motion estimation, given by the horizontal and 
vertical components of the velocity, (vx, vy).

 
)(|||| 22
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         (25) 

Figure 6. The igure illustrates the quantization and reduction technique. (Left) Only a limited free degree 
of the velocity component is allowed, e.g. direction restraints. (Right)  The amount of features is reduced 
by applying 10x10 block wise averaging. 
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2. The image is divided into six regions, which are physically meaningful in the case of lip move-
ments, e.g. mid of upper lip, left of lower lip, etc. The regions are used to quantize the angle of 
the velocity estimation. The angle α is computed for every pixel and is represented as –1, 0 or 1. 
These values represent the motion direction relative to the predetermined line directions  of each 
region 
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       (26)

 We only allow 3 orientations (0 ,̊ 45 ,̊ –45˚) as marked with the 6 solid lines in the 6 regions, (Fig. 
6 – left). The 1D scalars at all pixels take the signs + or – depending on which direction they move 
relative to their expected spatial orientations (solid lines).

3. Due to the large dimension of the data, using velocities, v at each pixel is not a realistic option for 
applications. We found that direction and speed quantization are signiicant to reduce the impact 
of noise on the motion information around the lip area. The quantized speeds are obtained from 
the data by calculating the mean value in the boxes shown in Fig. 6 – right as follows,4
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 Here, (p, q) = 0 … (N – 1), and (l, k) = 0 … (M – 1), where N = 10 and M = 12 represent the window 
size of the boxes and the number of boxes, respectively. 

Implementation

The proposed motion estimation technique is a fast and robust alternative to its more time consuming 
variant discussed earlier. We will present the implementation steps to determine the optical low com-
ponents (vx, vy), according to the scheme illustrated in Fig. 7. The Gaussian ilter derivative, known for 
its separable ilters, are represented here by wz , where z represents an arbitrary axis x, y and t. Given a 
spatiotemporal image of four { f} frames the following steps are performed:

Step 1. The images of the video sequence are cropped to the lip area with size 128x128 pixels and fur-
thermore converted to a grayscale image by 0.21*R + 0.72*G + 0.07*B. 

Step 2. The sequence is extracted and the orthogonal cross sections {tx} and {ty} are generated from 
the permuted xyt space. 

Step 3. The {tx} and {ty} space time manifolds are determined by computation of the orientation ac-
cording to equation (22) and its analogue for {ty}. For each {tx} plane and {ty} plane calculate its 
gradient by iltering with Gaussian derivative ilters wx, wy and wt, yielding a set of images with 
complex values representing the linear symmetry.
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Step 4. Every calculated linear symmetry slice enables us to estimate the normal image velocities in 
the lip images from equation (23)-(24). In that, only the processing along two planes embedded in 
the 3D spatiotemporal images is needed. 

Step 5. The motion features are quantized and reduced by the mean method.

Using the quantization and reduction the feature vector is represented by 144 dimensions (free vari-
ables) instead of the original 128x128x2 = 32768 (free variables) dimensions that describe the motion 
at all pixels of the mouth region. It is worth noting that the local lip motions are not completely free but 
must follow physical constraints. It is possible to conclude from related studies and our early published 
work that the articulation of the lips progresses in a constrained manner during lip movement, i.e. mo-
tion in lip image sequences is very symmetrical.

Figure 7. The igure illustrates the processing steps to obtain quantized and dimension reduced lip-mo-
tion features 
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Iden TITy ReCogn ITIon And l IVene SS de TeCTIon By uTTeRed dIg ITS 

Acoustic Feature Vector

In our experiments, the data stream comes from the audio part of the XM2VTS database and the Mel 
Frequency Cepstral Coeficient (MFCC) vectors are generated by the Hidden Markov Model Toolkit 
(HTK) (Young et al. (2000)), where the vectors originate from 25 ms frames (overlapping time periods), 
streaming out every 10 ms. For each frame, the audio feature vector contains a total of 39 real scalars–12 
cepstral coeficients plus normalized log energy, 13 delta (velocity) coeficients, and 13 delta-delta (ac-
celeration) coeficients.

Visual Feature Vector

The image sequences used for our experiments are based on the video part of the XM2VTS database. 
The video was captured with 720x576 pixel frames. In order to reduce the computational complexity, 
the image frames, before computing the lip-motion features, were automatically cropped to the lip area 
(128x128) by the technique presented in (Kollreider et al. (2007)). This method suggest quantized angle 
features (“quangles”) designed to reduce the impact of illumination variation. This is achieved by using 
both the gradient direction and the double angle direction (the angle provided by the 2D structure ten-
sor, (Bigun and Granlund (1988))), and by ignoring the magnitude of the gradient. Boosting techniques 
are applied in a quantized feature space to detect the mouth. However, by visual inspection, we veriied 
that the cropping functioned as intended to eliminate the impact of localization errors on the errors that 
can be attributed to the suggested lip-motion features. Furthermore, the color images are transformed 
to grayscale.  After the motion estimation, the features were quantized and the dimension is reduced to 
represent the relevant mouth movement information automatically.

Feature Fusion: Association and Concatenation 

Images come at 4 times slower pace than the audio features. If a classiier is to model the audio and 
video information at a certain time, somehow the rates of audio and video features must be equalized 
while keeping as much information as possible from both. For simplicity, this rate equalization problem 
is called synchronization, which is a term also used by several audio-video compression studies, here. 
The vectors will be merged to a single vector because we wanted to develop synergetic (joint) modeling 
of the data as opposed to merging decisions in a late stage of the classiication process.

Synchronization is carried out by irst extracting the reduced motion features discussed earlier.  This 
amounts to a 144 feature vector. The lip image is divided into 4 sub quarters so that each sub quarter is 
represented by 36 scalars of the total 144, Fig. 8. Second, each one of the obtained sub quarter feature 
vectors is  concatenated with one of the four audio vectors available at the time support of the lip image 
(the audio features come at 4 times faster rate than image frames). There are different possibilities to do 
this concatenation given that the four visual vectors can be associated with 4 audio vectors in different 
combinatorics. However, it turns out that, the particular order does not impact the recognition perfor-
mance signiicantly, (Isaac-Faraj and Bigun (2007)). Even using only one of the lip sub quarter motion 
features in the mentioned concatenation (i.e. repeating it 4 times) will yield almost as good recognition 
results. Experimental results on this will be presented in Section Experimental setup and tests.



  519

Lip Motion Features for Biometric Person Recognition

Throughout this work, we assumed that motion in lip images is reasonably symmetric. Because of 
this and that the motion vectors are both quantized and compactly represented as 1D scalars, we as-
sumed that the order of associating  the four visual sub quarters of lips with speech has not a signiicant 
impact on the performance.  In next section we present experiment where this assumption is tried out. 
In the experiment we have merged audio visual feature vectors by only using 1 sub quarter of the visual 
frame and repeating it 4 times, Fig. 8.

 
experimental Setup and Tests

The XM2VTS Database

In all the experiments, one sequence (“0 1 2 3 4 5 6 7 8 9”) was used from the XM2VTS database for 
every speaker. The database contains 295 speakers (speech with faces) (Messer et al. (1999)). In each 

Visual frame 

V-F 1                          V-F 2

V-F 3                         V-F 4 

Audio frame 

A-F 1       A-F 2 

        A-F 3         A-F 4 

  Audio visual feature vector 

Frame 1:                              A-F1    V-F 1 

Frame 2:  A-F2    V-F 1 

Frame 3:  A-F3    V-F 1

Frame 4:   A-F4    V-F 1 

…..
….
….
…
..
..
..

Figure 8. The igure illustrates the joint audio-video information utilizing only 1 sub quarter of the 
visual information 
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session, the subject is asked to pronounce three sentences when recording the video sequence. Because 
of the different purposes, one extra protocol is presented for digit recognition in addition to the well 
known Lausanne protocol used for identity recognition. The database needed to be segmented for the 
digit recognition experiment, which was performed nearly 100% automatically. The “continuous” pro-
nunciation of “0 1 2 3 4 5 6 7 8 9” was divided into single digit subsequences 0 to 9 using the methods 
presented in (Teferi and Bigun (2007)). Furthermore, the segmentation was manually veriied and cor-
rected so as to eliminate the impact of database segmentation errors. 

Protocol 1: Fig. 9(left), this is the Lausanne protocol (Coniguration I) deined by the M2VTS con-
sortium standardizing person recognition experiments conducted on XM2VTS. It splits the database 
into training, evaluation, and test groups (Luettin and Maitre (1998)). This protocol is used in person 
veriication and person identiication experiments below. For the XM2VTS database, the Lausanne pro-
tocol is commonly used as a standard protocol for speaker identity experiments. However, no protocol 
is proposed for speech recognition by the M2VTS consortium which conceived the database. 

Protocol 2: Fig. 9(right), illustrates this protocol wherein 10 words (digits from zero to nine) are 
spoken by 295 speakers, each with 8 pronunciations. For the training group, sessions 1 and 2 are used 
and sessions 3 and 4 are used for the test set. The training samples we used were completely disjoint 
from the test samples. We used a total of 4 pronunciations for training and another 4 for testing. 

Classiication: Speaker Veriication
 
Speaker veriication is carried out in the following steps and is implemented in the HTK software en-
vironment (Young et al. (2000)) and (Veeravalli et al. (2005)).

Figure 9. The igure illustrates protocol 1 (left) used for identity recognition and protocol 2 (right) used 
for digit recognition 
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Step 1. Partition the database for training, evaluation, and testing according to protocol 1.
Step 2. Use single left-to-right state constellation using 5 HMM states and a GMM comprised of 3 

Gaussians at  each state
Step 3. Perform training process by using Baum-Welch re-estimation. In the training, a model for each 

client is built. Additionally a world model (average impostor), is also built, λW. This world model 
is common for all clients and is built by aggregating the entire training set speciied by the Lau-
sanne protocol.

Step 4. Verify using the Viterbi decoding giving a score L which is obtained as the difference between 
the client probability and the world probabilities log(L) = log(P(O| λi) – log(P(O| λW) ) given a 
word sequence O.5 Here, the score L is compared to a threshold T obtained from the FAR and 
FRR curves.6 Using the threshold T, the decision L is made according to the rule: if L > T accept 
the speaker else reject her/him. The reported veriication rates are 1 – (FAR+FRR).

Classiication: Speaker Identiication

The following steps are conducted in our speaker identiication system and are implemented by using 
an SVM:

Step 1. Partition the database for training, evaluation, and testing according to protocol 1.
Step 2. Train the SVM for an utterance so that the classiication score, L, is positive for the user and 

negative for impostors. 
a. Identify the speaker from a group of speakers

i.  We construct a classiier for each person in the group to separate the user from other 
users in the training data. The training data is deined by protocol 1 (Lausanne Pro-
tocol). 

ii.  The speaker identity is determined by the classiier that yields the largest score.

Classiication: Digit Recognition for Liveness Detection
 
The following steps are conducted in our digit recognition system for the purpose of liveness detection 
and are implemented by using an SVM (Chang and Lin (2001)):

Step 1. Partition the database for training, evaluation, and testing according to protocol. Audio-visual 
feature vectors of dimension 75 (39 audio and 36 video) for each digit utterance were extracted. 
Each digit had thus several feature vectors coming from the same digit. Furthermore the feature 
vectors of all speakers of uttering the same digit were given the same digit label to obtain a person 
independent digit recognizer.

Step 2. We constructed simple SVM classiiers to separate the feature vectors of one digit (75 dimen-
sional each) from those of every other digit pair wise, i.e. we solved a two-class problem 45 times 
(10 choose 2 combinations). The responses of these classiiers, Lij were binary, i, or j.  After the 
training there were thus a ixed hyperplane associated with each classiier such that one could 
classify an unknown feature vector (of dimension 75) into one of the two digit labels i or j. 

Step 3. The feature vectors of the unknown digit were extracted. We note that the utterance of a digit 
normally has many feature vectors because the duration of utterances of digits are completely free, 
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i.e. they vary with the digit, the person, as well as the mood of the person, whereas each feature 
vector has a ixed time support of 25 ms. For each vector we obtained 45 decisions from the SVM 
classiiers Lij, obtained via training. These responses were digit labels i or j such that they could 
be used as a vote for one of the 10 digit labels, “Zero”, … , “Nine”.  A voting was thus carried out 
involving each feature vector (each casting 45 votes “Zero”, … , “Nine”). The digit label receiving 
most votes was output as the recognized digit label. 

experimental Results and discussion

The experiments were performed for speaker veriication using GMM (states in an HMM setup within 
HTK), speaker identiication using SVM and digit recognition for liveness detection using SVM. The 
systems were tested using joint audio-visual and single modalities, respectively. The tests used the XM-
2VTS with all 295 subjects uttering the sentence 0 to 9. The protocol 2 setup was introduced for digit 
recognition because the XM2VTS Lausanne protocol is mainly proposed for identity recognition.

Table 1 shows the results utilizing protocol 1 for the experiments. The veriication performance is 
approximately 77% for a speaker veriication system based on only visual information. Speaker veri-
ication based on a bimodal system gives approximately 98% correct veriication, which is better than 
the single modality system based on the audio or the visual information.

In this experiment the merged audio-visual feature vectors are presented according to Fig. 10. The 
features are put into HMM system (with GMM at each state) for audio-visual speaker veriication. The 
ROC curves in Fig. 10 illustrate the audio-visual speaker veriication performance for the evaluation 
set. System 1(red) represents the feature fusion technique by associating four audio features with four 
different sub quarters of the video (as in the experiments above). The system 2 (blue) uses by contrast 
the motion features of one of the image sub quarters and repeats it for 4 consecutive audio frames dur-
ing the concatenation. The blue line across the igure represents the EER line, i.e. its intersections with 
the ROC curves yield the EER of the corresponding systems.  

We can see that using the EER threshold computed on the evaluation set, the veriication rates (1 
– TER, i.e. equation (2.5)) are 98% and 97% for System 1 and System 2, respectively. The results sup-
port our hypothesis, that the lip-motion of an individual is highly symmetric. Accordingly, it would 
be possible to reduce the video computations with a factor of 4, with little degradation of recognition 
performance, Fig. 10. For demonstration purposes, we have chosen to use all the estimated velocities 
rather than repeating one sub quarter. However, if done in a real system, this extra computation can be 

Table 1. The table presents the results for acoustic, visual, and merged bimodal audio-visual speaker 
veriication systems using protocol 1 in a GMM model

Set / System Evaluation Test
Audio
Visual

Audio-Visual

96%
81%
99%

94%
77%
98%
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viewed as a way  to increase the robustness against noise (including asymmetric lighting,  imperfect 
detection of lip area, etc.) as the feature vectors of the same (repeated) sub quarter contain noise that is 
more dependent on each other than those using estimations from 4 different sub quarters. It can also 
occur that for certain individuals the prevailing symmetry is less pronounced and can be discriminative 
information in identity recognition.

We also used SVM classiiers with a Radial Basis Function (RBF) kernel to perform speaker identi-
ication using a single word. The reason for using a single word is that SVM has a tendency to become 
computationally exhaustive for large feature vectors. The performance obtained using bimodal recog-
nition (100%) compares favorably with the classical single modality recognition system based only on 
the speech signal (92%) or only on the visual signal (80%). 
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Figure 10. The igure illustrates the ROC curve of veriication performance for audio visual speaker 
veriication systems using the evaluation set. System 1 represents the feature fusion technique obtained 
by association of four audio frames with one visual frame(4 sub quarters) and System 2 represents the 
feature fusion obtained by repeating one sub quarter of lips, Fig. 8. The straight line represents the 
threshold for FA=FR. 
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Fig. 11 presents the results for SVM digit recognition for the purpose of liveness detection using 
protocol 2.  Varying between 50-100% for individual digits, the system performed best for digits 1, 6 
and 7. The average of the digit recognition over all digits was 68% and 90% for the visual and audio 
systems in isolation, respectively. Digit recognition using combined audio and video varied between 
83% and 100%. The amount of visual information for some of the digits is very little for many people 
and digit utterances, which is not surprising because the XM2VTS database was collected for identity 
recognition. As a consequence the speech and the video were recordings of continuous speech without 
speciic emphasis on utterance length or quality. The lack of suficient visual data for certain digits 
has negatively inluenced the results. However, the uneven results are attributable to the simple SVM 
classiier we used. The classiier is fast but it does not model the time relationships of the features. A 
classiier achieving a better and more even digit recognition performance is possible by employing time 
modeling (at the cost of making the classiier more complex), e.g. HMM or SVM with time modeling. 
However, it is worth noting that for our main purpose, which is to show that our features are informative 
in an application targeting digit recognition for liveness assessment, the performance of this classiier 
is suficient. This is because we can demand from the user to utter the digits at which the recognizer 
is good, e.g. any combination of 1, 6 and 7 at any length, when the identity of the person is completely 
unknown. If the liveness detection is implemented after the identity recognition module, we have then 
even a possibility to pull out the digits at which the digit recognizer performance is good for the pre-
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Figure 11. The graph presents multimodal and single modal digit recognition system rates for digits 0 
to 9 using protocol 2 in an SVM classiier. 
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tended identity and increase the arsenal of digits to be uttered and decrease the length of the sequence 
to be uttered.  

To evaluate our suggested lip features we had to implement audio-visual speech and speaker recogni-
tion systems demanding purposive setups of classiier constellations, protocols and databases in addition 
to implementing compact features, fusing these with appropriate rate conciliation. Each implemented 
system has a unique difference, in the hope that it will help to evaluate the feature extraction.

Experimental Comparison 

We present in this section various audio-visual bi-modal and single modal systems and provide some 
comparisons related to our work, when possible.

• (Luettin et al. (1996)) developed a visual only speaker identiication system using only the lip 
contour information by extracting model and pixel based features. These features were extracted 
by calculating the lip contours and then shape deformations of the contours were modeled tempo-
rally by a classiier (HMM). They used the Tulips database, consisting of 12 speakers evaluated 
by the identiication on the speaker models (48 models for each speaker) of the spoken word. The 
identiication system based on HMMs, achieved approximately 73%, 90% and 92% recognition 
rates when using shape based, pixel based and joint features. This experiment was extended by 
(Jourlin et al. (1997)) using the M2VTS database consisting of 37 speakers, utilizing audio-visual 
information in an identity veriication system. The acoustic features were based on the Linear 
Prediction cepstral coeficients with irst and second order derivatives. The visual feature repre-
sentation was based on the shape and intensity information according to (Luettin et al. (1996)) 
technique. They utilized HMMs to perform audio only, visual only and audio-visual experiments. 
The audio-visual score is computed as a weighted sum from the audio and visual classiier. They 
achieved approximately 97%, approximately72% and approximately 100% veriication for audio 
only, visual only and audio-visual information. The discussed system is comparable to our system 
except that i) the video features modeled by the classiier were intra frame, and ii) it is a decision 
fusion system. Comparing the video only experimental results conirm that our features perform 
better (approximately 6 percentage points) and yet they are complementary because our video 
features are inter frame based. Their decision fusion has improved the recognition performance 
by 2 percentage points over the best performing expert (audio) in identiication mode and 3% in 
the veriication mode. Our feature fusion  has improved the recognition performance by  8 per-
centage points and 4 percentage points over the best expert (audio) in the (signiicantly larger) 
tests corresponding to identiication and veriication. This indicates that even our feature fusion 
contributes to performance improvement.

• (Wark and Sridharan (1998)) and (Wark et al. (1999)) presented a system using multi-stream HMMs 
to develop audio-visual speaker veriication and identiication systems tested on the M2VTS data-
base. By utilizing decision fusion on the acoustic (based on MFCC) and visual information (based 
on lip contours and applying PCA and LDA on them), they outperformed the system using only 
acoustic information. The veriication experiments were performed using GMMs on the M2VTS 
database.

• (Fox et al. (2007)) developed an audio-video person identiication system using HMMs as classiier. 
The experimental tests were performed on the XM2VTS database, using the experts consisting of 
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acoustic information, dynamic mouth information and static face information. The audio features 
used are MFCC and their irst derivatives. The visual mouth features were derived from pixels to 
represent the visual information based on the discrete cosine transform. The face features were 
derived by the PCA technique using the FaceIt software. The 3 experts were fused by a cascade of 
fusion where expert 1 and 2, decisions were merged in parallel with expert 2 and 3. The resulting 
two decisions were then merged to yield the inal decision. The results highlight the complementary 
nature of the mouth and face experts under clean and noisy tests.         

• (Dieckmann et al. (1997)) and (Frischholz and Dieckmann (2000)) developed a system using 
three experts acoustic, facial information and lip movements. The acoustic information is based 
on cepstral coeficients, and facial information is derived to be invariant to rotation and illumina-
tion. The optical low of the lip movement is determined using the traditional method by Horn and 
Schunk. These three experts are combined by opinion threshold to perform person identiication. 
The experiments were performed on a staff recording of 66 members, achieving best performance 
approximately 93% when all three modalities were used.

• (Neian et al. (2002)) demonstrated accurate improvements of speech recognition using audio-
visual information. The extracted visual features based on Discrete cosine transform (DCT) 
and then LDA are combined with acoustic features (MFCC). These features are combined in an 
intermediate fusion sense, using coupled HMM. The tests were extended by (Liang et al. (2002)), 
using the XM2VTS database for speech recognition. An extension of visual extraction was also 
presented based on PCA and LDA and DCT and LDA. They performed in clean SNR environment 
approximately 99% correct digit recognition using XM2VTS database. 

• (Dupont and Luettin (2000)) present a speech recognition system based on bi-modal (audio-visual) 
information. The visual information is extracted according to (Luettin et al. (1996)) technique by 
shape and intensity information that generates models for a speciic person. The audio information 
is based on perceptual linear predictive coeficients plus the irst derivative and the energy. The 
features are combined in an intermediate fusion sense, by multi-stream HMMs which were possible 
by up sampling the visual features, performing approximately 99% correct word recognition.   

Other related work using static information are (Brunelli and Falavigna (1995)), (Ben-Yacoub et al. 
(1999))}, (Sanderson and Paliwal (2004)) and (Hazen et al. (2003)). They developed speaker recognition 
systems based on audio-visual static information. The visual information was based on static images 
from the face in combination or without combination of acoustic information. Vector quantization, 
HMM, GMM and SVM were used to perform different identiication and veriication tests. In all of 
these reports decision fusion are used to reconcile the individual decisions.

Applying SVMs to speech recognition can perform better than HMMs (Wan and Carmichael (2005)) 
in some cases by the use of an appropriate kernel function that can encode temporal information. An 
SVM will be more accurate than HMMs if the quantity of training data is limited, (Wan and Carmichael 
(2005)). The latter work exploited the fact that SVMs generalize well to sparse datasets and SVMs were 
applied on isolated word identiication tasks. However, results on small vocabulary tests with suficient 
data the accuracy of HMMs and SVMs will asymptote. In this case the HMM is favored because it is 
more eficient in terms of speed (Wan and Carmichael (2005)). In our case we exploited SVM classi-
ier to limit the scope of the study while obtaining a quick indication on the usefulness of the features, 
without introducing time variation models for features vectors.
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Con Clu SIon

Biometric recognition is a popular subject in today’s research and has been shown to be an important 
tool for identity establishment. Using visual information as an adjunct to speech information improves 
accuracy for not only identity recognition but also speech recognition. 

In this chapter, we have described lip-motion features for dynamic lip image sequences to be used in 
different recognition systems. The technique exploits information from a set of 2D space time signals in 
the 3D space time image that yields the normal of an optimal motion plane and allows the estimation of 
velocities. The visual lip features are extracted without iterative algorithms or assuming successful lip 
contour tracking, which is a computationally eficient alternative to the available lip dynamics estima-
tions. The experimental tests were performed on the XM2VTS database. The database, representing 
hundreds of thousands of images and hours of speech, was segmented with respect to digit boundaries 
automatically and veriied manually to be able to test the digit recognition systems for the purpose of 
liveness detection. The addition of visual data to the systems conirms that it is possible to do feature 
level fusion in such massive data and obtain beneits for biometric recognition systems. 

The experimental performance of the proposed biometric systems, yielding approximately 80% 
video only identiication and 100% audio visual identiication (for the word 7) of person identities, sup-
ports the conclusion that the proposed lip-motion features contain signiicant information for person 
authentication. Furthermore, the average digit recognition rate is approximately 70% using only visual 
information, is suitable for liveness detection system using simple classiier. Our technique for early 
audio-video feature integration results in an improved speaker veriication performance (approximately 
98%) and speaker identiication performance (approximately 100%), on top of the already high veriica-
tion rate achievable by speech only. 

The results of the digit recognition system are different for the 10 digits. Our examination of the 
results indicates that once the visual feature extraction is performed on a suficient amount of visual 
speech data, the available modeling for recognition tasks is highly successful. Accordingly, the validation 
in the digit recognition with respect to digits can be explained with the lack of visual data. One obvious 
consequence is to use lip reading word selectively or by using weights in future designs. 

In all cases, no attempt was made to improve the recognition performance by optimizing the classiier. 
We used what was available to us and in largest diversity of classiication constellation, as a signiicant 
goal has been to show that the same basic features contained suficiently rich information for purposes 
of identity as well as message recognition, regardless what classiication method has been used.  

 
discussion

The system proposed by (Liang et al. (2002)) showing experimental results on XM2VTS database, 
can not be studied in conjunction with our results in depth primarily because the experimental details 
of their tests were not mentioned in the publication. The classiication/fusion technique they used is 
an advanced HMM permitting synchronization of the different strands (audio and video) of the data.  
However, temporal up sampling of video is used to achieve synchronization between the two sampling 
rates of the audio and video. Their experimental tests report word error rates for a single word/number 
i.e. 0123456789, since this is the only word that was tested.  Because the temporal segmentation of the 
XM2VTS audio-video was not undertaken in the study, it is not clear how the performance will be 
affected if the digits are uttered in a different order. Part of this criticism is valid even to our system 
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despite segmentation because a digit’s utterance is inluenced by the pre and post digit utterances in 
the continuous speech. However, we argue that this inluence is more dificult to “abuse”  by  a simple 
classiier (our system) as compared to giving the full content of the pre and post digits to an advanced 
classiier, (the system of (Liang et al. (2002))). Even though a digit sequence is recognized from always 
the same 0-9 sequence uttered by different and same speakers at different times, no information on 
where in the uttered digit sequence the recognized digits are to be found is available in the reported 
experiments.  Accordingly, with which digits there is greatest confusion can not be evaluated.

The work of (Jourlin et al. (1997)) presented a speaker veriication system using features originating 
from the work of (Luettin et al. (1996)). The main difference of this feature set and our features is that 
their model based features demand more from the pre processing step which both need. Whereas we 
need initially an approximately correct localization of the mouth region only, they would additional need 
a correct detection of the lip boundaries. Our results (undertaken on the XM2VTS database which is 9 
times larger than what was available to them at the time) suggest that one can obtain the same descriptive 
information even without precise boundary tracking while achieving as good as, or better recognition 
performance. Furthermore, we think that using a crude pre processing step has a signiicant importance 
for robustness since non satisfaction of higher pre processing demands will manifest a higher risk of 
system failure in practice. 

We reached favorable results for person recognition by feature fusion strategy. In the future one could 
quantify how much feature fusion has brought as compared to decision fusion. This would require to 
implement 3 classiiers (1 audio, 1 audio, and 1 for decision fusion) with their corresponding training. 
We refrained from doing this, because i) the qualitative comparisons with the studies of (Luettin et al. 
(1996)) and (Jourlin et al. (1997)) indicated that there was a gain in feature fusion, ii) this would be a sub 
optimal solution from computational, implementation, and maintenance view point (3 classiiers must 
be trained and maintained as opposed to 1), and iii) we had to limit the scope of our study.
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endno TeS

1 Several phonemes can correspond to the same visual coniguration. In fact, in most cases, visemes 
are not uniquely associated with a single phoneme.

2 We assume that the direction of a line is either of the two normals of the line
3 It is worth noting that there is a patch type whose motion can not be observed at all,  the patches 

consisting of a constant gray value.
4 4 pixels width boundary are removed in the lip region.
5 The output from the Viterbi decoder is logarithmic, and we used this for convenience.
6 According to Lausanne protocol, the evaluation set is selected to produce client and impostor access 

scores, thereby to produce FAR and FRR curves. From these certain operation points (thresholds) 
are selected to be used latter on as thresholds on the test set for recognition.
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