///
/ |
| | Olivier Boissier
i / Rafael H. Bordini
‘ ' /~Jomi F. Hubner
>© v UL D / Alessandro Ricci
ALY
¢ | %
\

LT 5/

— |

Multi-Agent Oriented Programming

Intelligent Robotics and Autonomous Agents

Edited by Ronald C. Arkin

A complete list of the books in the Intelligent Robotics and Autonomous Agents
series appears at the back of this book.

Multi-Agent Oriented Programming

Programming Multi-Agent Systems Using JaCaMo

Olivier Boissier, Rafael H. Bordini, Jomi F. Hiibner, Alessandro Ricci

The MIT Press
Cambridge, Massachusetts
London, England

© 2020 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any electronic or
mechanical means (including photocopying, recording, or information storage and retrieval)
without permission in writing from the publisher.

This book was set in Garamond by the authors using ISIEX.
Library of Congress Cataloging-in-Publication Data

Names: Boissier, Olivier, author. | Bordini, Rafael H., author. | Hiibner,
Jomi Fred, author. | Ricci, Alessandro, 1984- author.

Title: Programming collective autonomous systems : multi-agent oriented
programming using JaCaMo / Olivier Boissier, Rafael H. Bordini, Jomi F.
Hiibner, and Alessandro Ricci.

Description: Cambridge, Massachusetts : The MIT Press, [2020] | Series:
Intelligent robotics and autonomous agents series | Includes
bibliographical references and index.

Identifiers: LCCN 2019059143 | ISBN 9780262044578 (hardcover)

Subjects: LCSH: Multiagent systems. | Intelligent agents (Computer
software)

Classification: LCC QA76.76.158 B67 2020 | DDC 006.3/0285436—dc23

LC record available at https://lccn.loc.gov /2019059143

https://lccn.loc.gov/2019059143

To Marie Dominique, Noémie, Mathilde, and Guillemette
— OB

To Ismael, Kyra, Thor, and Maggi
—RB

To Ilze, Morgana, and Thales
—JH

To Sara, Sofia, Leonardo, Eugenio, and Gregorio
— AR

Contents

List of Figures

List of Research Corners

List of Technology Corners

Acknowledgments
1 Introduction
1.1 Objectives
1.2 Challenges
1.3 Approach
14 Intended Readership
1.5 Book Structure and Reading Guide
2 An Overview of Multi-Agent Oriented Programming
2.1 Multi-Agent Systems
2.2 Multi-Agent Oriented Programming
2.3 Main Abstractions
24 Integrated View
2.5 Overcoming Challenges
2.6 Wrap-Up
2.7 Bibliographical Notes
3 Getting Started
3.1 Single-Agent Hello-World
3.2 Multi-Agent Hello-World
3.3 Hello-World Environment
3.4 Hello-World Organization
3.5 Bibliographical Notes

Exercises

xi
Xiv
Xiv

XV

O O U1 U =~ N DN~

N N = = =
W N 0 O = DN

W W W N DNNDNDDN
N O 0N O QO

viii

4 The Agent Dimension

4.1 Overview

42 Agent Abstractions

4.3 Agent Execution

4.4 Bibliographical Notes
Exercises

5 The Environment Dimension

5.1 Overview

5.2 Environment Abstractions

5.3 Environment Execution

5.4 Bibliographical Notes
Exercises

6 Programming an Agent and Its Environment

6.1
6.2
6.3
6.4
6.5

Programming a Proactive Smart Room
Adding Reactivity to the Smart Room
Adding Fault Tolerance to the Smart Room
Making the Smart Room Adaptive

What We Have Learned

Exercises

7 Programming Multiple Agents Interacting in an Environment

7.1
7.2
7.3
74
7.5

Programming a Smart Room with Multiple Agents
Decentralizing the Coordination with Interaction Protocols
Environment-Mediated Coordination

From Decentralization to Distribution

What We Have Learned

Exercises

8 The Organization Dimension

8.1
8.2
8.3
8.4

Overview

Organization Abstractions
Organization Execution
Bibliographical Notes
Exercises

9 Programming Organizations of Situated Agents

9.1

Programming an Organized Smart Room

Contents

37
37
39
45
49
50

51
51
53
66
68
69

71
71
81
84
85
89
89

91
91
98
103
110
116
117

119
119
125
133
141
142

143
143

Contents

10

11

9.2
9.3
94
9.5

Changing the Organization

Agents Deploying Their Organization
Agents Reasoning about Their Organization
What We Have Learned

Exercises

Integration with Other Technologies

10.1 Libraries, Frameworks, and Platforms

10.2 Mainstream Application Domains and Technologies
10.3 Integration with Other Multi-Agent System Platforms

Wrap-Up and Perspectives

11.1 The MAOP Viewpoint—Wrap-Up
11.2 MAOP and Artificial Intelligence
11.3 MAOP and Software Engineering
11.4 The Road Ahead

Solutions to Exercises

References

Index

ix

156
158
160
163
163

165
165
174
185

189
189
191
197
203

205
219
235

List of Figures

1.1
21

22

2.3
24
2.5

3.1
3.2
3.3
34

3.5

4.1
4.2
4.3
5.1
5.2
5.3

5.4

Graphical symbols used in the book.

A representation of multi-agent systems inspired by Jennings
(2001).

Analogy between MAS and human system (a bakery workshop
scenario).

Dimensions of Multi-Agent Oriented Programming.
Dimensions and main concepts for MAOP.

Dynamic relations among instances of concepts of the MAOP
dimensions.

Single-agent Hello-World configuration.
Coordination by communication.
Coordination using the environment.

Coordination by organization: Hello-World organization
specification.

Coordination by organization: Entities of the Hello-World
organization.

Main concepts in the agent dimension.

Concepts in the agent dimension.

Reasoning cycle—runtime concepts in the agent dimension.
Agents and artifacts in the bakery workshop scenario.
Main concepts in the environment dimension.

Zooming environment concepts map and their relationships with the
agent dimension.

A simple Counter artifact example.

10

10
13
15

17
26
28
29

31

35
38
39
45
52
53

54
54

xii

5.5
5.6
5.7
6.1

6.2
6.3
71
7.2
7.3
7.4
7.5
8.1
8.2

8.3
8.4
8.5

8.6
8.7

8.8
8.9

8.10
9.1
9.2
9.3
9.4

9.5

10.1

List of Figures

Agents using and observing an artifact.
Linking artifacts.
Overview of distributed environments.

The room_controller agent acting on and perceiving the hvac artifact
in the room workspace.

Statechart diagram of the hvac artifact.

Smart room execution.

Fair room multi-agent system.

The voting interaction protocol.

The votingMachine artifact to implement the voting protocol.
Smart house workspaces distributed on different hosts.
Mounting the hallway workspace.

Organization in the bakery workshop scenario.

General view of the XML organization specification for the bakery use
case.

Main concepts in the organization dimension.
Example of a simple structural specification.

Group entities enacted from the structural specification defined in
figure 8.4.

Example of a simple functional specification.

Social scheme entities entities enacted from the functional
specification.

Example of a simple normative specification.

Life cycle of (A) a goal in a scheme entity and (B) a norm in a normative
entity.

Agent plans to achieve organizational goals.
Organization specification for the organized smart room.
Organization entity and group entity r1.

Organization entity and social scheme entity temp_r1.

Interaction of the personal_assistant agent with the other elements
of the system.

Organization specification to set the target temperature to the average
preference.

Architectural levels of an Android app based on JaCaMo.

59
62
64

72
73
80
99
100
104
113
115
121

124
125
126

128
129

131
131

137
139
144
148
154

155

157
175

List of Figures

10.2
10.3
10.4
11.1
11.2

An agent tracking SMS messages on JaCa-Android.

Artifact used by the agent to interact with the user.
Customized agent architecture to integrate ROS.
MAOQOP dimensions.

Knowledge and social levels, after Jennings (2000).

Xiii

177
177
184
190
201

Xiv

List of Research and Technical Corners

List of Research Corners

O U= WIN

Research Corner Example

MAS Paradigm vs. Existing Paradigms

A Basic Taxonomy of Artifacts

Speech Acts

Partial Specifications of an Organization
Situating Organization in an Environment
MAOP and the Web of Things

Ontologies and Agents

List of Technology Corners

O 0 IO Ul WO -

—_
o

11
12
13
14
15
16
17

Technology Corner Example

Declarative vs. Procedural Use of Achievement Goals
Predefined Artifacts
Modularity—Encapsulation—Reusability

Artifacts vs. Objects and Monitors

Good Practice for Designing Agents and Artifacts
Theoretical vs. Practical Reasoning

Programming Reactive and Proactive Behavior
Interacting with the User by Means of Artifacts
Adapting the Behavior by Dynamically Changing the Plan
Library

Performative Verbs

Performative Verbs in Interaction Protocols
Implementing More Complex Coordination Artifacts
Dealing with Distributed Systems Complexity
Organization Management in JaCaMo

Agent Internal Actions vs. Artifacts Actions
Integration Using the Environment Interface Standard

11
56
92
132
140
182
186

41
60
63
67
73
77
81
83

88

93
102
108
116
151
169
173

Acknowledgments

We dedicated much time to the research, development, and writing leading to this
book, particularly in the last few years. However, this book would not have been
possible without the help and inspiration from many people whom we acknowl-
edge individually here. Before we do so, we would like to make some joint acknowl-
edgments.

The collaboration undertaken to define the Multi-Agent Oriented Programming
(MAOP) approach and JaCaMo platform would not have been possible without
the Dagstuhl Seminars. We would like to thank the organizers and the people from
Schloss Dagstuhl for providing such a stimulating environment, which creates op-
portunities for sharing knowledge and initiating fruitful collaborations.

We would also like to thank the Autonomous Agents and Multi-Agent Systems
(AAMAS) community for feedback, discussions during the conferences, work-
shops, and the tutorials we had the pleasure to give at various venues. We thank
in particular the European Agent Systems Summer School (EASSS) and the Work-
shop and School on Agents, Environments, and Applications (WESAAC) partici-
pants and organizers for the tutorials we had the pleasure to give, which were all
opportunities to discuss and share ideas on MAOP. We thank the users and con-
tributors of Jason, CArtAgO, Moisg, and JaCaMo for feedback, bug fixes, and ideas
developed under the principles of free and open-source software.

OB would like to thank Mines Saint-Etienne, including its master and PhD pro-
gram in computer science. He is very grateful to many people for the always stimu-
lating and never-ending discussions and collaborations, including Yves Demazeau,
Jaime Simao Sichman, Cristiano Castelfranchi, Antonio Carlos da Rocha Costa,
and the French research community on artificial intelligence and multi-agent sys-
tems. He would like to thank the members of the Computer Science and Intelligent
Systems department and of the Connected Intelligence team; and the collabora-
tors who participated directly or indirectly to the discussions; and to the devel-
opments of the ideas, models, and tools for the engineering of decentralized and

xvi Acknowledgments

open intelligent systems, in particular Fabien Badeig, Flavien Balbo, Matteo Bal-
doni, Cristina Baroglio, Philippe Beaune, Carlos Carrascosas, Agnes Crepet, Ad-
ina Florea, Catherine Garbay, Maxime Lefrancois, Roberto Micalizio, Gauthier Pi-
card, Fano Ramparany, Claudette Sayettat, Laurent Vercouter, and Antoine Zim-
mermann. He is very grateful to the master and PhD students he had the plea-
sure to advise and/or to collaborate with. In particular, he would like to thank
those who contributed directly or indirectly to the different MAOP dimensions:
Mohamad Allouche, Mahdi Hannoun, Hubert Proton, Thibault Caron, Mihnea
Bratu, Cosmin Carabelea, Oana Bucur, Benjamin Gateau, Grégoire Danoy, Luciano
Coutinho, Camille Person, Andrei Ciortea, Alessandru Sorici, Réda Yaich, Amro
Najjar, Andrea Santi, Michele Piunti, Maiquel De Brito, Maicon Zatelli, Daniella
Maria Uez, Rosine Kitio, Lauren Thevin, Nicolas Cointe, Katherine May, Stefano
Tedeschi, and Iago Felipe Trentin. He also wishes to acknowledge the support of
the UFSC in Brazil for the visiting academic position; the USP COFECUB 98-04 and
International Cooperation and Mobility Rhone-Alpes (CMIRA) 2012 Région Rhone
Alpes; the ForTrust and ETHICs and Autonomous Agents (ETHICAA) Agents Au-
tonomes et Ethique (ANR) projects; and Orange Labs for enabling the funding of
visits, post-docs; and PhD students that contributed directly or indirectly to parts
of the MAOP work presented in the book.

RB would like to thank the University of Liverpool, the University of Durham,
the Universidade Federal do Rio Grande do Sul (UFRGS), and Pontificia Univer-
sidade Catdlica do Rio Grande do Sul (PUCRS), including the postgraduate pro-
gram in computer science), institutions with which he was affiliated throughout
the period of development of Jason, later leading to JaCaMo. He also would like
to thank the University of Genoa and the University of Oxford for the visiting aca-
demic positions over his sabbatical period, during which the book was finalized.
The work in this book is based on Jason, which is a joint work with JH and has
been a source of dedication throughout his career. Although this research career
was influenced by a large number of people, he would like to first of all thank An-
tonio Carlos Rocha Costa for being a source of inspiration not only to him but to
the entire Al community in Brazil, where he was a pioneer of Al research, and for
being a role model for academics in his ethical and dedicated commitment to high
standards in scientific research and teaching. RB is also very grateful to his PhD
supervisor, Professor John A. Campbell (in memoriam), and all his collaborators
over the years as well as colleagues from the AAMAS and more particularly the
engineering multi-agent systems (EMAS) research communities, including Renata
Vieira, Antonio Carlos da Rocha Costa, Alvaro Moreira, Viviana Mascardi, Davide
Ancona, Michael Wooldridge, Michael Fisher, Willem Visser, Brian Logan, Natasha
Alechina, Jiirgen Dix, Amal El Fallah Seghrouchni, Peter McBurney, Simon Parsons,

Acknowledgments xvii

Louise Dennis, Berndt Farwer, Ana Bazzan, Luis Silva, Diana Adamatti, Jodo Leite,
Paolo Torroni, Lars Braubach, Alexander Pokahr, Moser Fagundes, Sandro Fiorini,
Marcia Campos, Dejan Mitrovic, Stefan Sarkadi, Yves Lesperance, Munindar Singh,
Jorgen Villadsen, Francisco Grimaldo, Wojtek Jamroga, Mateo Baldoni, Cristina
Baroglio, Rem Collier, Sebastian Sardina, and many others. He is very grateful to all
the students he has supervised over the years, who contributed immensely to his
research, and in particular, recently to the SMART research group, including Fabio
Okuyama, Rodrigo Machado, Patricia Shaw, Thomas Klapiscak, Rafael Cardoso,
Alison Panisson, Tulio Basegio, Giovani Farias, Tabajara Krausburg, Debora En-
gelmann, Jodo Brezolin, Artur Freitas, Daniela Schmidt, Lucas Hilgert, Alexandre
Zamberlan, Vagner Gabriel, Juliana Damasio, and Victor Melo. Finally, he would
like to thank the National Council of Scientific and Technological Development
(CNPq), the Brazilian Federal Agency for Support and Evaluation of Graduate Ed-
ucation (CAPES), the Fundacao de Amparo a Pesquisa do Estado do Rio Grande do
Sul (FAPERGS), and Samsung Brazil for funding research projects that contributed
directly or indirectly to parts of the work presented in this book.

JH would like to thank the Federal University of Santa Catarina (UFSC) and Re-
gional University of Blumenau (FURB) institutions with which he was affiliated
throughout the period of development of Moise, Jason, and JaCaMo. He also would
like to thank Mines Saint-Etienne for several visiting periods and sabbatical years
during which the book was born. During his academic pursuit, he has been fortu-
nate to be advised by two distinguished researchers who left a fundamental im-
pact on his work on MAS, Antonio Carlos da Rocha Costa and Jaime Simé&o Sich-
man. He is also very grateful to all the students he supervised over the years who
contributed immensely to his research. In particular, he wants to thank his PhD
students Maiquel De Brito, Maicon Zatelli, Cleber Amaral, Daniella Uez, Tiago
Schmitz, and Gustavo Ortiz-Herndndez, who directly contributed to the JaCaMo
project. Finally, he would like to thank CNPq, CAPES, and Petrobras for funding
research projects that contributed directly or indirectly to parts of the work pre-
sented in this book.

AR would like to thank Alma Mater Studiorum Universita di Bologna, the De-
partment of Computer Science and Engineering (DISI), and in particular the Ce-
sena Campus, whom AR had the chance to join and grow up with thanks to a great
research group composed of Antonio Natali, Andrea Omicini, Enrico Denti, and
Mirko Viroli. Every contribution of AR in this book is the result of joyful, tough, and
never-ending discussions and reflections with these guys, mentors, and friends. AR
is very grateful too to Rune Gustuvsson, Martin Fredriksson, and the SOCLAB at
the Blekinge Institute of Technology (BTH) in Sweden, where AR spent insightful
months during his PhD studies a long time ago and “where artifacts come from.”

xviii Acknowledgments

AR is grateful to the PhD students whom he had the chance to supervise and grow
up with and who eventually gave important contributions and ideas on the topic of
this book: Michele Piunti, Andrea Santi, and Angelo Croatti. Finally AR is deeply
grateful to all the inspiring researchers whom he met and worked with and who
contributed either directly or indirectly to this book in these years: Cristiano Caste-
franchi, Luca Tummolini, Carlos Carrascosas, Rem Collier, Andrei Ciortea, Viviana
Mascardi, Danny Weyns, Fabien Michel, Amal El Fallah Seghrouchni, Matteo Bal-
doni, Cristina Baroglio, Giovanni Rimassa, Giuseppe Vizzari, Maicon Rafael Zateli,
Xavier Limén, Daghan L. Acay, Ambra Molesini, Stefano Mariani, Franco Zam-
bonelli, and Marco Mamei.

Finally, we would like to thank our families, who patiently accepted the many
meetings and work sessions during the evenings, weekends, and holidays.

O. Boissier, R. H. Bordini, J. F. Hiibner, A. Ricci
February 2020

1 Introduction

Modern software applications have to deal with an increasing level of autonomy
of interconnected software systems, and above all with the integration of countless
systems that are not known in advance. Current trends such as smart cities, in-
telligent transportation systems, and industry fostered by the development of IoT
(Internet of Things), for instance, point to even more complex scenarios in which
adaptive and open teams of intelligent autonomous software entities and robots
will interact with humans and everyday objects, all interconnected. Multi-agent
systems (MAS) can be used as a suitable paradigm for modeling and engineer-
ing such systems. A multi-agent system is an organized ensemble of autonomous
goal-oriented entities called agents, communicating with each other and interacting
within an environment. At the individual level, each agent can have its own goals
and tasks to pursue autonomously by deciding what actions to do. As an ensem-
ble, agents typically need to coordinate and cooperate in order to achieve the global
objective of the MAS as a whole, as an organization. This book is about programming
multi-agent systems, using an integrated approach that we refer to as multi-agent
oriented programming (MAOP).

In the literature, many relevant techniques for dealing with multi-agent systems
emerged in different contexts—the main examples are artificial intelligence (AI),
distributed Al, software engineering (SE), simulation—and some of them led to
concrete programming models for dealing with the increasing levels of autonomy
and complexity of interactions in modern systems. In this direction, MAOP pro-
vides a structured approach based on three interrelated sets of concepts and pro-
gramming abstractions (hereafter called dimensions) that are useful for designing
such complex systems: the agent dimension that is used to program the individual
(interacting) autonomous entities; the environment dimension that is used to pro-
gram the shared resources and means used by agents to work, interact, and connect
to the real world; and the organization dimension used to structure and regulate the

multi-agent
system

multi-agent
oriented
programming

JaCaMo

autonomy

2 Chapter 1

complex interrelations taking place between the autonomous agents in the shared
environment.

In order to see in practice MAOP concepts and methods, we use the JaCaMo
platform, which is an open-source MAS technology supporting the integration be-
tween the three dimensions that we consider in this book.

1.1 Objectives

This book aims at providing the reader with the know-why and know-how necessary
to master MAOP.

- The know-why knowledge brings to the reader a deep understanding of the
MAOQP foundations as well as a flavor of the benefits and limitations of such an
approach for programming multi-agent systems.

- The know-how knowledge provides the reader with the ability to use MAOP for
developing multi-agent systems.

An MAOP approach involves various dimensions of concepts that bring various
benefits. However, mastering the use of all the dimensions and their specific con-
cepts is a long-term task that needs practicing through the development of various
applications. Throughout this book, the reader learns some practical ability to use
MAQOP techniques and programming patterns originating from the experience that
the authors of this book acquired while developing applications over the years.

1.2 Challenges

In general, multi-agent systems are used to model, design, and program complex
systems in various application domains. The modeling and engineering features
of MAOP that we introduce in this book are well adapted to address challenging
features or properties related to the complexity of such systems.

The fundamental feature of the systems we address in this book is autonomy. Au-
tonomy is increasingly required everywhere in computer science, not the least in
robotics, an area to which much effort of the Al and SE research communities is cur-
rently dedicated, but more generally in many other areas such as health care and
smart homes. The concept of autonomy can have different interpretations depend-
ing on the specific context, and different levels of autonomy may be identified. In the
context of this book we consider the meaning typically assumed in an Al context,
that is, the property of a system’s embedding and enacting some decision making in
order to perform tasks for which the system has been designed, typically requiring
interaction with some environment and adaptation to it. In order to do its job, an
autonomous system must be able to act without human intervention. Nevertheless,
that job could involve assisting and interacting with human users. In the context of

Introduction 3

MAS, a specific first-class abstraction—the agent—is introduced to directly address
this feature: agents represent entities featuring autonomous behavior.

Typically, the complex systems addressed in this book cannot be designed as a
single entity centralizing all the decision making. This could result from different
factors, such as the impossibility or impracticability of conveying in a single point
all the information needed for the decision making, or the impossibility of pro-
cessing them in an effective way using a single decision maker, that is, the need to
apply different decisions concurrently in different parts of a distributed environ-
ment. Therefore, these systems need to adopt a full decentralization of both data
and control, that is, to have multiple loci of control and decision making, each
one dealing with a portion of the whole environment and problem. Proper coor-
dination strategies are then needed to manage the dependencies among the mul-
tiple decision makers in order to achieve the objectives of the system as a whole.
In addition to being decentralized, these systems can be distributed over multiple
computing hosts and devices, which do not share memory, and typically commu-
nicate through the internet. The notion of a multi-agent system has been intro-
duced to effectively model systems as collections of decentralized, loosely coupled
autonomous entities, of which communication, coordination, and cooperation are
first-class aspects.

Distribution introduces further challenges, in terms of availability and resiliency,
as well as heterogeneity, security, and openness. Regarding openness, as stated
in Hewitt and De Jong (1984), “open systems are distributed, highly parallel, in-
crementally evolving, computer systems that are in continuous operation always
capable of further growth.” Openness thus concerns the fact that the set of ele-
ments taking part in the system is highly dynamic (i.e., the participants, whether
humans or software entities, may enter and leave the system while it runs), as well
as the lack of control at design time on the number and behavior of these elements.
Instead, because of heterogeneity, different components of the system can have dif-
ferent characteristics and capabilities, and can run on heterogeneous hardware and
software stacks. These aspects are directly captured in MAS because agents are by
definition loosely coupled, and their communication models (e.g., speech acts based
on high-level agent communication languages) do not make any assumption on the
specific software stack on which they are based. The use of standard protocols and
technologies (e.g., web technology) eases the interoperability of MAS technologies
with mainstream and legacy technologies.

Finally, the progress made in Al techniques such as machine learning in re-
cent years calls for systematic and robust approaches to embed them in the en-
gineering of autonomous software systems, so as to increase their flexibility and,
ultimately, autonomy. Flexibility and adaptation are required especially when we

decentraliza-
tion

coordination

distribution

openness

heterogeneity

adaptation

explainability

4 Chapter 1

consider systems that are situated in dynamic and unpredictable environments,
so that it is not possible (or feasible, or even convenient) to have a full model of
their structure and dynamics at design time. This occurs even when we consider
long-running systems situated in contexts that evolve over time. In all these cases,
it is not possible (or feasible) for designers and developers to predefine at design
time the full business logic to be executed at runtime by the system in order to au-
tonomously perform tasks and achieve its goals. In Al, planning and reinforcement
learning are two broad examples of techniques that can be exploited to build flexible
and adaptable agents, to achieve full autonomy even in the case of unpredictable
and evolving environments. Nevertheless, if a computer-based system is truly au-
tonomous, it will be trusted only if it can explain rationally every single decision
it makes. That is, explainability becomes a main concern, and just like autonomy; it
can be defined at different levels, spanning from designers to programmers, and
users. In that perspective, agents and MAS provide an architectural blueprint to
integrate Al techniques in a disciplined way.

In the next chapter, we look into how the characteristics of MAOP allow devel-
opers to address all these challenges.

1.3 Approach

This book follows and combines various techniques for learning how to program
multi-agent systems using MAOP:

- Full immersion Readers learn how to use an MAOP approach from the first pro-
gram in the book, so that the core concepts of MAOP are emphasized and ex-
plained from the very beginning.

- Incremental approach Concepts and techniques are introduced incrementally
starting from the simplest multi-agent programs, interleaving engineering prin-
ciples with programming.

- Examples The book supports learning by experience so that the reader acquires
the mechanics of MAOP, a personal set of schemes/ patterns/idioms that can pos-
sibly be reused in the development of the reader’s own multi-agent programs.

- Project based In addition to examples throughout the text, some chapters are
devoted to complete case studies, which support project-based teaching.

- Scientific foundations The principles of MAOP are introduced with a presenta-
tion of the why, what, and how questions at the core of MAOP.

The JaCaMo platform underpins all these aspects, forming a general and uniform
basis for the reader to develop MAOP programs. JaCaMo is the freely available,
open-source development platform used throughout the book to implement the
exercises, case studies, and example systems.

Introduction 5

1.4 Intended Readership
The book is targeted to a wide readership, which includes:

- Students Both undergraduate and postgraduate students can use this book to
learn multi-agent oriented programming in order to develop multi-agent sys-
tems. The book can be used in courses on multi-agent systems, artificial intelli-
gence, and software engineering that present the principles of intelligent agents
and multi-agent systems, or, more generally, the design of collective autonomous
applications, as required in most current views on computing trends, providing
new material to support practical coursework.

- Practitioners in the area of computer programming Technologists, advanced de-
velopers, software architects, and other practitioners can acquire a deep under-
standing of the concepts and foundations underlying the MAOP approach and
the best practices of that approach for developing complex, open, autonomous
systems. The book can help practitioners leverage their practical experience to
program multi-agent systems applications in a principled way.

- Researchers Whether active or not in each of the various areas of research related
to multi-agent systems, researchers may wish to get an overall and structured
view on practical MAOD, even if they are already deeply knowledgeable in some
aspects of the subject.

No specific prerequisite knowledge is necessary to read this book, in the sense
that any computer scientist who knows about programming and programming
languages at the level of a typical undergraduate computer science curriculum
should be able to follow the book material. Although it is not mandatory, back-
ground knowledge in one of the following domains will help the reader gain a bet-
ter perspective on the book material: logic programming, programming languages,
object-oriented programming, multi-agent systems, and artificial intelligence.

1.5 Book Structure and Reading Guide

The remainder of this book is organized as follows. First, we set the stage with an
overview of the three core conceptual dimensions of MAOP (chapter 2); then, by
getting started with the platform, we show how to use MAOP in practice (chap-
ter 3). We then go into details of the concepts and programming abstractions used
at the agent (chapter 4) and environment (chapter 5) dimensions. A first case study
is presented in chapter 6, with running code inspired by a smart room scenario;
the system has only agents and an environment model. In chapter 7 we revisit
that system, focusing on the interactions of autonomous agents. At this point, we
have not yet entered the important dimension of agent organizations, which is fun-
damental for complex multi-agent systems. In chapter 8, we discuss the concepts

6 Chapter 1

at the organization dimension, and then in chapter 9 we extend the smart room
scenario to provide a case study in which the main elements of our approach to
MAQRP are used together, as they would be in the development of complex MAS.
Chapter 10 includes a general discussion on how MAOP can be used to integrate
different technologies and to serve as the engineering approach to integrate and
build intelligent systems. Finally, chapter 11 includes a selection of advanced fea-
tures in MAOP and JaCaMo, showing some further directions of research involving
advanced programming techniques often related to ongoing extensions to our ap-
proach, of interest mainly to advanced JaCaMo programmers and researchers.

Reading the whole book is not necessary to get some knowledge about MAOP
or indeed to learn how to program with JaCaMo. As a guideline, consider reading
only chapters 2, 4, 5, and 8 if you want to gain a feel for the powerful abstractions
used in MAOP and also acquire a deep understanding of the related concepts and
examine the matching code examples. If, on the other hand, you are interested only
in practical programming rather than the foundations, you could read only chap-
ters 3, 6, 7, and 9. Chapters 10 and 11 are useful mainly for the readers interested
in advanced practical multi-agent oriented programming with JaCaMo. Note that
the conceptual part on organizations (chapter 8) comes only near the end, as we
follow an incremental approach to the presentation of MAOP in this book. We can
thus present a complete system example (having only agents and an environment)
in chapter 6, allowing the reader who aims to read the entire book to gain some
hands-on experience as early as possible.

Throughout the book you will find two types of boxes that clearly separate from
the main text flow aspects that will interest only some of the intended readership
of the book. A research corner box will typically interest MAS researchers only, and
a technology corner typically contains programming details that will interest only
advanced programmers.

Research Corner Example

This is an example of a research corner.

Technology Corner Example

This is an example of a technology corner.

To help the reader better understand the concepts presented in the book, various
figures represent them using the set of graphical symbols presented in figure 1.1.
These symbols are used to denote the various conceptual elements involved in the

Introduction 7

execution of an MAS based on an MAOP approach. In addition to these graphical
representations, we use UML-like diagrams to represent the concepts that partici-
pate in the definition of the dimensions structuring the MAOP approach. Various
notations from UML are not used in these figures, in order to keep them simple
and easy to read. For instance, we decided not to display cardinalities on the com-
position links connecting the different concepts.

The book is accompanied by a website (http://jacamo.sourceforge.net/book)
from which all the examples and complete systems can be downloaded and run. It
should be stressed that the platform for running these systems is freely available
and is open source. It is available at http:/ /jacamo.sourceforge.net. The platform is
based on programming tools that have been shown to be robust over many years of
research and development, and are used by researchers and practitioners around
the world.

http://jacamo.sourceforge.net/book
http://jacamo.sourceforge.net

8 Chapter 1

Graphical Representation of Agent Concepts

send

2gent) (Cgem -
type goal belief participate
protocol protocol

Graphical Representation of Environment Concepts

Agent - Artifact Relations
workspace name

_— act
—— O perceive

artifact name : Type W

i
i

i

:

3
1 # arguments

i

i

i

i

observable
arity
S Workspace Relations . qation/
I signal | L
I ¢ ——* ownership link

property/ i
3 ________ + access link

Graphical Representation of Organization Concepts

1
entity : group

— > inheritance
abstlract role ——— & intergroup compatibility link
role min.max/ | = - —& intragroup compatibility link

—— > intergroup authority link

Relations among Roles

min.max | - _______ _ — intragroup authority link

——— e intergroup communication link

———————— -e intragroup communication link

responsible
for

Relations among Goals

entity : scheme : depends on

<<operator>> goal decomposition

PN

Relation between Agent and Role

plays
L

Relation between Agent and Mission

goal
[deadline

"""""" » obligation committed to,,
___________ > permission

Graphical Representation of the Deployment of a Multi-Agent System

Relation between Workspace and Host
hosted by

Figure 1.1
Graphical symbols used in the book.

2 An Overview of Multi-Agent Oriented Programming

In this chapter we introduce the main concepts of multi-agent systems (MAS), and
we provide an overview of multi-agent oriented programming as a comprehensive
approach to programming MAS.

2.1 Multi-Agent Systems

Multi-agent systems are a paradigm for modeling and engineering complex sys-
tems. By paradigm we mean a set of concepts, techniques, technologies, and
methodologies. Modeling means creating formalized representations (models)
based on these concepts that capture essential aspects concerning the structure
and behavior of the target systems. Modeling is an important aspect of two main
contexts in which MAS are used: (1) simulations, in which models are useful to
describe and simulate existing complex systems, either natural or artificial, to ana-
lyze their properties; and (2) engineering, which is more oriented to the design and
development of systems and applications. An example for the simulation case is an
agent-based model for traffic simulations, in which cars are modeled as agents and
the city and street signs are part of the agent environment. An example for the en-
gineering case in the same domain is a model of a smart city in which autonomous
unmanned cars are designed as agents, interacting with other agents and digital
services representing the smart infrastructure. The engineering perspective is the
one adopted in this book.

Using MAS, a complex system is modeled (and designed, and programmed) as
an organization of autonomous agents situated and interacting in some (logical)
environment. Agents represent the decision-making entities of the systems; that is,
agents are entities designed to autonomously pursue some goal, encapsulating for
that purpose a logical control flow, and making decisions about how to behave
and interact. In the smart city example, the goal of the agent representing the au-
tonomous unmanned car could be about reaching some target place, choosing the
most convenient path according to the preference of the human users. Agents are

10 Chapter 2

organization context
(relations, rights, duties)

environment context
(actions, observations)

Figure 2.1
A representation of multi-agent systems inspired by Jennings (2001).

Figure 2.2
Analogy between MAS and human system (a bakery workshop scenario).

An Overview of Multi-Agent Oriented Programming 11

logically situated in an environment, which they perceive and act upon in order
to achieve their goals. The environment represents the context in which an agent
acts. In the smart city example, the environment could be both the physical en-
vironment such as the street and also the digital services such as shared situated
message boards communicating relevant information.

The environment can be large-scale and distributed; nevertheless, an agent can
observe and act upon only a portion of it at any given time (see figure 2.1). The
analogy with the real world is quite straightforward: people (i.e., agents) perceive
and act in some environment, decide what to do in order to achieve their goals,
interact with other people, and so forth. As in the human case, the environment
can be seen also as the set of resources and tools that agents can share and use
to do their tasks. Figure 2.2 shows a bakery as an example, which is also used in
subsequent chapters.

A multi-agent system involves multiple agents communicating by means of some
high-level agent communication language (ACL) and cooperate to achieve shared
goals. The organization (figure 2.1) explicitly captures the main aspects that char-
acterize the tasks (and functionalities, behavior, and properties) of the system as
a whole. In the smart city example, for instance, the set of agents representing the
autonomous unmanned buses could form a group with both individual missions
and shared goals and with the rights and duties that constrain their behavior and
interaction within the organization and between organizations.

MAS Paradigm vs. Existing Paradigms

Agent-oriented modeling shares some characteristics with object-oriented
modeling. Both adhere to the principle of information hiding and recognize
the importance of interactions. Like objects, agents hide internal state and
implementation details, and message passing based on some shared agent
communication language is the primary means for agents to communicate
each other.

A first key difference is that agents encapsulate a logical thread of control
that make them active (rather than passive like objects), embedding a logical
thread of control. Different from objects, agents encapsulate state, behavior,
and the control of that behavior. This also impacts the communication/inter-
action model, which is strictly asynchronous, so that an agent that sends a
message to another agent does not transfer its control flow (as in the case of
method call between passive objects), and the control remains encapsulated.
Analogously, an agent processes messages with its own thread of control.

multi-agent
oriented
programming

agent
dimension

12 Chapter 2

From this point of view, agents are similar to actors. However, actors are
strictly reactive entities; they act only in reaction to receiving a message. Af-
ter executing the handler (or method) associated with a message, if there are
no other messages to process, the actor becomes idle. Conversely, agents are
goal-oriented proactive entities, so they act in order to perform their tasks
even if no messages are received.

Another main difference between agent-oriented modeling and object/ac-
tor oriented modeling is the environment as first-class abstraction. In a pure
object-oriented programming world, everything is modeled as an object. In a
pure actor world, everything is modeled as an actor. In agent-oriented mod-
eling, agents communicate with other agents but interact also with an en-
vironment, by means of actions and perception. Therefore, agent-oriented
modeling does not involve modeling everything as an agent. There is a sep-
aration of concerns between those parts of a system representing/encapsu-
lating decision making and those parts of the system representing entities
to be controlled, providing actions and observable state /events for that pur-
pose.

2.2 Multi-Agent Oriented Programming

In principle, any programming technology could be used to implement an MAS,
given a clear description of the model. However, the risk is to have an agent-centred
interpretation of figure 2.1 in which the environment and/or the organization con-
texts are represented and managed in the mind of the agents. The adoption of pro-
gramming languages that directly provide first-class programming abstractions
greatly simplify our task, making it possible to keep the level of abstraction coherent
from design time to development time and also at runtime.

Multi-agent oriented programming is an approach to programming MAS that pro-
motes the use of first-class programming abstractions that concern three main di-
mensions that characterize a multi-agent system, namely, the agent dimension, the
environment dimension, and the organization dimension (shown in figure 2.3). Every
dimension defines a set of concepts and first-class abstractions capturing different
concerns of the MAS.

The agent dimension groups concepts and programming abstractions for the defi-
nition and programming of the agents participating in the system. The agent con-
cept is the key abstraction, used to program the decision-making entities that are
able to provide local flexibility and dynamism by reacting to events while proac-
tively directing their behavior to reach future states of the system so as to satisfy

An Overview of Multi-Agent Oriented Programming 13

Organization Dimension

o
dynamic relation

............................ >

Environment Agent

Figure 2.3
Dimensions of Multi-Agent Oriented Programming.

certain goals. The resulting software entity has its own logical thread of control to
autonomously achieve those goals, interacting with the environment, other agents,
and the organization that regulates the overall system.

One of the most defining features of agents in this view is autonomy. Autonomy is autonomy
inseparable from the agent concept in the sense that an agent is designed to reason
about what to achieve and, importantly, how to do so given the current system cir-
cumstances. To this purpose, an agent features proactivity, that is, the capability of proactivity
taking the initiative about the actions to perform in order to achieve its goals; reac-
tivity, that is, the capability of promptly adapting its behavior depending on events reactivity
perceived from the environment; and social ability, that is, the capability of commu- social ability
nicating and cooperating with other agents. At the organization level, autonomy
implies decentralization of control, so that an agent (and its behavior) is typically
influenced but not regimented by either other agents or organizational norms. Norms
are used to define the expected behavior in a social system, but autonomous agents
may choose not to abide.

The environment dimension offers concepts and first-class abstractions for the def- environment
inition and programming of the distributed resources and connections to the real dmension
world shared among the agents. If agents are useful to model autonomous goal-
oriented entities, the environment as first-class abstraction is useful to model any

situated

organization
dimension

coordination
regulation

goal

beliefs

14 Chapter 2

elements that can be used or controlled by agents to achieve their goals. The en-
vironment abstraction is what makes agents situated, that is, logically placed in a
context that provides them a set of actions to affect the environment and exposes
some kind of observable state and events that agents can perceive.

The organization dimension collects all the necessary concepts taking part in the
definition and programming of relations, joint tasks, and policies among agents
interacting in a shared environment. The central concept of organization defines the
structuring, coordination, and regulation of the agents working together. Mirror-
ing the autonomy feature of the agent dimension facing the dynamicity of the envi-
ronment dimension, the most defining features of the organization in this view are
those of coordination and regulation that help face the openness requirement. Coor-
dination refers to the support for the work of multiple agents that depend on each
other to achieve whatever they individually or collectively aim to achieve. Regula-
tion refers to the support for taming the autonomy of the participating agents. The
regulatory aspect is typically carried out with the use of norms (social rules that
agents are expected to follow and might be somehow punished for not following).
Programming the organization opens the possibility for agents to reason on their
relations, joint tasks, and policies, and to decide on their adaptation as well as on
the compliance to the resulting constraints.

2.3 Main Abstractions

Each MAOP dimension includes a variety of concepts and programming abstrac-
tions that support the development of MAS. Here we provide a bird’s-eye view
intended to serve as a map (see figure 2.4), first identifying the main abstractions
for each dimension and then remarking on the connections gluing the dimensions.
In subsequent chapters we look at the dimensions in more detail.

Agent dimension In the agent dimension, the concept of goal is very important;
it provides the means for the representation of some state of affairs that the agent
would like to bring about. An explicit representation of the long-term goals that
agents have to achieve is essential for autonomy and proactivity. In some cases, it
corresponds to making explicit the design goals of each agent. Similarly important
for autonomy is that agents are able to make rational choices on which goals to
pursue at runtime as well as the choice of the means to use in order to achieve
those goals.

Those choices and ensuing behavior are guided by agent beliefs. Beliefs are simply
explicit representations of information available to the agent, on which the agent
can reason; the term is used to emphasize that information available to an agent
might be incorrect and/or incomplete in typical multi-agent systems. Beliefs are
acquired by perceiving the state of the environment and by communicating with

An Overview of Multi-Agent Oriented Programming 15

Organization Dimension

orgentzation

*

dynamic relation

’ Group ‘ ’ Scheme | e >
’ Role ‘ ’ Norm ‘ ’ Goal ‘
i N
¥ q P

’ Environment

-— wOrk;pace N

e
o] [o]
""""""""""""" ”
roperty elief
Agent

Dimensions and main concepts for MAOP.

Artifact

Environment

Figure 2.4

other agents, for example. The main point of an agent is the actions it will take in actions
order either to change the state of the environment so as to achieve its goals or to
interact with other agents or elements of the environment.

Environment dimension In the environment dimension, the concept of workspace workspace
is used to define topological or symbolic regions of the environment that are pop-

ulated by a set of artifacts and by agents. An artifact represents a real or conceptual artifacts
environment resource through a set of operations, which agents can use to execute operations
actions, and properties, which agents can observe to acquire beliefs. Recall that en- properties
vironment entities are not autonomous nor proactive like agents. Using these oper-

ations on the artifact instances currently available in the system, agents can change

the state of the environment as well as they can observe it, given the properties

provided by those artifact instances. Artifacts are useful to modularize an environ-

ment, making it dynamic—artifacts can be created and destroyed dynamically (by

agents). By means of artifacts, the environment provides a layer of software ab-
stractions to support agent interaction through shared resources in an implicitly
controlled way.

Organization dimension In the organization dimension, the concept of group is group
used to provide social structure to the system, giving support for the definition of

roles

norms

organizational
goals

social plans

social
schemes

multi-agent
system

Interaction

communicate

16 Chapter 2

the expected coordinated behavior in the system as well as the rights and duties
that have to be fulfilled by the agents. In a group, roles determine the interactions
and relations taking place within the group. They also take part in the definition of
the rights and duties expressed as norms. The expected behavior for rights and du-
ties is expressed as sets of organizational goals used in the definition of social plans,
which are goal decomposition trees contained in social schemes that are executed
under the responsibility of groups. A social plan makes explicit the expected coor-
dinated achievement of the goals when rights and duties expressed by norms are
fulfilled. When organizations are imposed on a society of agents, the agents that
play roles in the assigned groups are required to work together, coordinating their
actions in order to achieve an organizational goal of the system by abiding by the
rights and duties imposed by the norms corresponding to their roles.

As a key aspect of the MAOP approach, all these abstractions are kept at runtime
by the platform running the MAS (which is JaCaMo in our case). Thus a software
system programmed using MAOP can dynamically change and reorganize in dif-
ferent ways, for instance, by means of the runtime creation of organization and
artifact instances in the environment, or rather agents joining and leaving organiza-
tions through the roles they choose to adopt. This is useful for many of the features
we need in current modern systems, as we discuss subsequently in this chapter.

2.4 Integrated View

Putting the dimensions together to program a system thus results in a multi-agent
system, which is a set of agents, one environment, and a set of interacting organiza-
tions, as shown in figure 2.5. Interaction is an essential aspect of the multi-agent
oriented programming approach. Multi-agent systems are all about interaction
among the autonomous agents that communicate with each other and interaction
between them and the environment, through which they also interact with the or-
ganizations that regulate and coordinate part of their activities. These interactions
occur when the system is executing and are thus represented in figure 2.5 as dy-
namic relations between the dimensions.

Dynamic relations (figure 2.5) connect the agent, environment, and organization
dimensions, generating a closed and rich cycle of interacting instances of concepts
belonging to the different dimensions.

Agents may choose to communicate with other agents, creating a dynamic relation
between them, making them able to interact with other agents, especially other
agents that currently take part in the same organizations, but not exclusively. The
way this direct agent-to-agent interaction takes place is based on speech act theory,
so communication is seen as an action that changes the mental state (e.g., the beliefs
and goals) of both sender and receiver agents. This interaction is thus rather special

An Overview of Multi-Agent Oriented Programming 17

Organization Dimension

Organization

[3

dynamic relation

’ Group ‘ ’ Scheme | e >
? ? composition
’ Role ‘ ’ Norm ‘ ’ Goal ‘
A N
'S B 3 o
g o Pl
QO%' i %; %’x%., communicate
S S [%5 JJESIEEEEEN
& S X .3,
8 "% - LN
¥ N P

’ Environment

0—{ Workspace ‘ ’ Signal ‘
? act

e
Artifact Q—M ’ Action }—0’ Agent ‘
———————————————— feeeenes >
Property perceive Belief
Agent

Dynamic relations among instances of concepts of the MAOP dimensions.

Environment

Figure 2.5

in comparison with other approaches to communication in distributed computing.
This is discussed in more detail in chapter 4.
Interaction in a multi-agent system is not limited to agent-to-agent communica-
tion; it also happens between agents and the environment. As mentioned previ-
ously, agents can perceive (i.e., observe or sense) the artifacts situated in the environ- perceive
ment and react to that perception. Agents can also act upon the artifacts to change act
their state. Within a workspace, agents and artifacts are visible to each other, al-
though agents may ignore or focus on particular artifacts at will to help scalability.
Agents interact with the environment as well as with other agents. By means of
the environment, agents can interact among themselves indirectly. For instance, an indirectly
agent performs the action open door in a kind of door artifact that is observed by
another agent that perceives and represents it as a belief on the environment and
may trigger a goal leading the agent to enter the room.
Changes in the state of the environment may also count as changes in the state of count as
the organization. In order to support the joint work of agents, an organization needs
to be attentive to what agents are doing in the environment. For example, if there is
a dependency between the tasks of two agents, when the first task is perceived as
having achieved some goal through the state of the environment, the organization
can require the agent responsible for the second task to engage in some course

empower

regulate
coordinate

18 Chapter 2

of action in order to perform the second task as it previously committed. This is
one of the ways that an organization can regulate and coordinate agent activities.
Conversely, organizations instantiating the organization dimension may empower
the elements of the environment by allowing them to control and regulate actions
or perception of the agents. This dynamic relation is a practical way of situating
organizations in an environment, as happens for the agents, regulating some part
of the environment (e.g., a traffic light at a crossroads) in a particular way and
ruling it differently in other parts.

Finally, the dynamic relations between the agent and organization dimensions re-
fer to the influence that the organizations may have on the agents: they can regulate
and coordinate agents for dynamically created tasks. The coordinate relation refers
to the management of dependencies between activities carried out by agents. The
regulate relation, in turn, refers to exerting control on those activities. Of course,
as agents are autonomous, this can happen only if they actively choose to participate
in one or more of the currently existing organizations in the system.

2.5 Overcoming Challenges

We conclude this chapter by going back to the challenges introduced in section 1.2
in the preceding chapter and providing an overview of how they are handled by
the multi-agent oriented programming approach described in this book.

Autonomy MAOP proposes a structured approach to autonomy with a clear sep-
aration of concerns. First of all, agents are the place where autonomy is considered,
whereas the artifacts, which are active or passive entities situated in the environ-
ment, are considered nonautonomous. The concepts of the agent dimension sup-
port autonomy in allowing designers to concentrate on explicitly represented goals
and agents to reason about the most appropriate courses of action to achieve them.
Furthermore, various Al techniques can be directly plugged into the agent archi-
tecture so as to increase autonomy. This separation of concerns between agents,
autonomous entities, and artifacts, nonautonomous entities, takes all its impor-
tance in defining the organization, which uses abstractions for the coordination
and regulation patterns that target the autonomous entities. It allows multiple au-
tonomous agents to coordinate their action, thus in some sense taming their auton-
omy so that the system works coherently. Thus MAOP supports the programming
of autonomous systems with the agent dimension addressing the definition of au-
tonomous entities themselves, the environment dimension targeting the definition
of the shared entities that are the sources of perception and targets of actions of
the autonomous entities, and finally the organization dimension expressing the
required control of the autonomous entities in the shared environment.

An Overview of Multi-Agent Oriented Programming 19

Decentralization and distribution Interaction is a central mechanism in MAOP.
It fosters loose coupling between the autonomous entities and thus ensures the
possibility of developing and deploying decentralized systems. On one hand, the use
of sophisticated direct interactions between agents through speech acts enables au-
tonomous agents to act on other autonomous agents. On the other hand, the use of
indirect interactions allows independence of agents using the environment as the
shared medium of interaction between them. Using organizations, which allows
for the declarative programming of coordination and regulation patterns, it is pos-
sible to control and structure such decentralized systems. Even if these patterns
are shared among the agents, no central control point is introduced. The decision-
making process can be kept decentralized. Organizations address new challenges
in software development: to be able to deal with coordination of the work of vast
numbers of autonomous agents (both software and humans) and to maintain the
decentralization of such coordination.

Complementary to decentralization, the MAOP approach provides many oppor-
tunities for distribution. Thanks to the modularity promoted by the separation of
concerns, the modular components that can be considered in the MAOP perspec-
tive are, besides agents, workspaces, and artifacts in the environment dimension
and organizations, groups, and schemes in the organization dimension. Thus dis-
tribution may concern running on different machines the agents, workspaces, ar-
tifacts, organizations, groups, schemes, and other components. Multiple organiza-
tions with multiple running agents and various parts of the environment might be
distributed across different computing platforms, which also helps support scala-
bility, arguably the “holy grail” of modern computing.

Openness Addressing the openness challenge through an MAOP approach helps
identify and structure the appropriate answers to the various evolutions of the
agent (e.g., entry/exit of agents), environment (e.g., creation/deletion of artifacts
and the topology of workspaces), and organization (e.g., changes in the patterns of
coordination or regulation in the organization and creation/deletion of organiza-
tions) dimensions. In MAOD, agents, artifacts, workspaces, and organizations with
their groups and schemes are meant to be created, discovered, and possibly dis-
posed of by the agents themselves at runtime. This is a basic way in which MAOP
supports dynamic extensibility (besides modularity) of the agents, environment,
and organizations. For instance, a new agent can be able to fit in the global func-
tioning resulting from the various interactions of the system in terms of agents,
artifacts, and organizations. Agents can cope with incomplete knowledge and con-
trol and can interact with other agents, with artifacts of the environment, or with
norms of the organization that were not known at design or deployment time. The
system can adapt its global functioning to a malfunctioning or shutting down of an

20 Chapter 2

agent. It can be prepared to deal with any number of agents. The environment and
its artifacts can evolve and integrate incrementally new functionalities (e.g., storage
and processing resources) through deployment of new artifacts. The organizations
can evolve and integrate new norms, new social plans, and new structures accord-
ing to the actions undertaken by the agents.

Facing continuous evolution raised by entities that may be unknown at the sys-
tem initialization time, an MAOP approach offers various means to support and
ensure coherent behavior of the system. Explicit and declarative representations of
organizations help to regulate and control such open systems, defining behavior
boundaries as admissible behavior corresponding to the coordination and regulation
strategies used in the system. Besides this soft control, environment abstractions
limit the repertoire of actions that can be undertaken in the physical environment
via the artifacts. They help define the behavior boundaries as possible behavior cor-
responding to the actions offered by the shared storage and processing artifacts
as well as the mechanisms to monitor and discover entities of the system. It is
thus possible to ensure that the behavior produced by agents, even if developed
by stakeholders other than the multi-agent system’s stakeholders, belong to the set
of possible and admissible behavior. From another point of view, it also supports
the changing and adaptation of the coordination and regulation strategies or of the
storage and processing units without changing the agents.

Heterogeneity Each of the multi-agent oriented modeling dimensions introduces
means for defining various modules that introduce heferogeneous representations
and dynamics at the system level that could potentially have been programmed by
different people or that indeed represent the interests of different, possibly com-
peting, companies.

In general, agents in a system have different capabilities, possibly different ar-
chitectures, and other differences. Artifacts encapsulate different resources, which
may be physical or digital. Organizations express various different coordination
and regulation models. Therefore, typically, an MAS along an MAOP approach is
highly heterogeneous.

As previously mentioned, to face heterogeneity, interoperability is a sought-after
property. According to IEEE, “interoperability refers to the ability of two or more
systems or components to exchange information and to use the information that
has been exchanged” (Geraci et al. 1991). Several variations of the general idea of in-
teroperability have been proposed (e.g., Morris et al. 2004; Tolk and Muguira 2003)
to extend it to a broader set of concerns: considering technical and business inter-
operability levels, any interaction among entities (be they human, software, things,
or mixed populations) requires a common, or shared, notion of the environment and
of the concepts used in the organization and regulation of that environment.

An Overview of Multi-Agent Oriented Programming 21

As given in chapter 1, section 1.2, heterogeneity often relates to concerns about
interoperability of different systems. In MAOP, interoperability concerns are iden-
tified and split according to the interfaces between each of the MAOP dimensions.
These include the following examples:

. Agent-Agent, which defines common communication languages for direct inter-
action between heterogeneous agents;

- Agent-Organization, which defines organization representations to enable agents
toread, act, and reason about the coordination and regulation patterns governing
their behavior; and

- Agent-Environment, which defines explicit usage manuals with the action and per-
ception repertoire available in the artifacts of the environment to enable agents
to read, use, and reason about the available actions.

Adaptability For the challenge of adaptability, the MAOP approach allows a de-
veloper to identify and address the problem at the different time and duration
scales taking place in a multi-agent system: short-term repetitive activity consisting
of action and perception connecting agents to their environment, long-term activ-
ity corresponding to management of goals in the agents to decide on their actions,
and medium-term activity represented in the organization defining strategies and
policies that control and regulate the management of goals and decisions in the
agents and thus their actions in the shared environment.

The agent programming model adopted, which is based on the Belief-Desire-
Intention (BDI) architecture, allows choosing and adopting different plans to
achieve the same goal depending on the context, which makes it straightforward to
develop a context-aware behavior. The execution of a plan can be interrupted dy-
namically, for example, in the case of failure or changes in the environment that
call for different strategies, or even different goals to be adopted.

The use of first-class abstractions to represent, modularize, and manipulate the
environment makes it possible for agents to decide themselves to adapt the set of
resources and tools to be used to achieve their goals.

The combination of environment and organization dimensions brings context-
awareness and adaptability at the organization level. As for agents, the state of
the real-world environment can be considered to count as organizational facts that
can trigger or hinder regulation or coordination patterns. Representing the partic-
ular set of agents that are currently taking part in the available groups (i.e., the
agents that actively decided to adopt roles in particular groups of the organiza-
tion) helps dealing with context awareness of the global coordination and regula-
tion patterns governing the system, organizations in particular. Furthermore, or-
ganizations have explicit representations for what is going on in their interrelated

22 Chapter 2

structures in which agents participate, the current state of the organization, so that
agents can act accordingly.

Explainability Even for explainability, the MAOP approach allows dealing with it
at different levels, from micro-level to macro/global. For instance, thanks to explicit
goal representation, agent-based systems are developed so that particular choices
on courses of actions made by the individual agent can be explained to users on
demand, which is of great importance when we deal with autonomous systems. In
the same way, organizations provide explicit representation of regulation and co-
ordination schemes as well as authority and communication structures that could
be the basis for explaining the global structure of collective autonomous systems
as well as their global functioning.

Al integration As pointed out in section 1.2, Al integration is an important fea-
ture to develop autonomous systems in unpredictable and evolving environments.
In this case, MAOP provides a disciplined approach to embed and exploit Al
techniques. In particular, the agent programming model adopted in this book is
based on the BDI model/architecture, and research contributions in the litera-
ture describe extensions to integrate techniques such as planning and reinforce-
ment learning. Nevertheless, Al can be introduced also as a service, wrapped into
environment resources (artifacts) that agents can exploit to handle specific tasks
(e.g., speech recognition). Besides the individual level, planning and learning can
be thought about at the MAS level, for instance, implementing multi-agent plan-
ning and multi-agent reinforcement learning strategies described in the literature.
Chapter 11 provides an overview of these research strands.

2.6 Wrap-Up

In this chapter we first introduced multi-agent systems as the reference paradigm
used in this book to model and design software systems, and then we provided
an overview of the key ideas about multi-agent oriented programming, a multi-
dimension programming approach for developing MAS. We went back then to
some main challenges that were discussed in chapter 1 about the kind of appli-
cations and systems for which MAS are suitable, discussing in general how MAOP
key ideas are effective in tackling such complexities. In the remainder of the book
we delve into MAOP in theory and practice, starting from the agent dimension
(chapter 4). Before that, in the next chapter we get started with JaCaMo, the plat-
form that is used to write and run the examples and programs appearing in this
book.

An Overview of Multi-Agent Oriented Programming 23

2.7 Bibliographical Notes

The research community working on agents and multi-agent systems is quite broad
and related to different existing communities from (distributed) artificial intelli-
gence, cognitive science, robotics, software engineering, simulations, and others.
The main venue for research in the area is the International Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS), which was set up in 2002 as
ajoint effort of the Autonomous Agents conference which was focused on the indi-
vidual agent level; the International Conference on Multi-Agent Systems (ICMAS)
which was focused on multi-agent aspects; and the workshop series on Agent The-
ory, Architectures, and Languages (ATAL) which was focused on the theory and
practice of programming and developing agent-based systems. Some workshops
organized in the context of AAMAS have been explicitly focused on programming
and engineering MAS, in particular on Programming Agents and Multi-Agent Sys-
tems (ProMAS); on Agent-Oriented Software Engineering (AOSE); and on Declar-
ative Agent Languages and Technologies (DALT). In 2012, these three workshops
joined efforts in a single event called Engineering MAS (EMAS). Proceedings of
these workshops are available as Lecture Notes in Artificial Intelligence (LNAI), pub-
lished by Springer.

Reference books that provide a broad introduction to this field include Weiss
(1999), Wooldridge (2009), and Ferber (1999). Another reference book provid-
ing a more game-theoretical perspective is Shoham and Leyton-Brown (2008).
Some books focus more on engineering and programming aspects, like this one.
Agent-oriented modeling and design is treated in Sterling and Taveter (2009) and
Padgham and Winikoff (2004), whereas Bordini et al. (2009) provide a broad col-
lection of approaches to multi-agent programming. Books about specific agent-
oriented programming platforms and technologies include Bordini et al. (2007)
about programming BDI agents using Jason and Bellifemine et al. (2007) about de-
veloping multi-agent systems using JADE.

Finally, some research papers in the literature provide a broad picture about MAS
and MAOP. We consider the following short selection related to the topics of this
book. Jennings (2001) provides an introduction to the agent paradigm for building
complex software systems. Wooldridge and Jennings (1995) provide an overview
of the main points concerning the theory and practice of intelligent agents. Igle-
sias et al. (1999) and Bordini et al. (2006) provide surveys about agent-oriented
methodologies and programming languages and platforms for MAS, respectively
— although they are not recent, they are still valuable references from a histori-
cal perspective. The idea of adopting a multidimensional approach in modeling,
programming, and engineering MAS was first proposed in the Vowels decomposi-
tion paradigm (Demazeau 1995). Boissier et al. (2013, 2019) provide an overview on

24 Chapter 2

multi-agent oriented programming and the integration of multiple programming
dimensions.

Further references and suggestions about aspects of agent and MAS program-
ming are given in subsequent chapters discussing the specific topics.

3 Getting Started

In this chapter we introduce JaCaMo, the particular platform adopted in this book
for hands-on multi-agent oriented programming. This platform supports practi-
cal programming based on the abstractions introduced in the previous chapter:
programming organized agents situated in a shared environment. JaCaMo is built
on top of three existing platforms that have been developed for years (Boissier
et al. 2013, 2019), namely Jason (Bordini et al. 2007) for programming agents,
CArtAgO (Ricci et al. 2009) for programming environments, and Moise (Hiibner
et al. 2007) for programming organizations.
The accompanying site for this book, available at

http:/ /jacamo.sourceforge.net/book

has the source files from which all examples in this book were taken. It also has
pointers to further instructions on how to run those systems. The reader should
follow this chapter and run the code at the same time, to become familiar with the
use of the platform, which will be useful throughout the book. For this hands-on
tutorial, however, rather than download the example files, the reader may prefer
to work interactively by simply following the instructions on creating new appli-
cations.

The classic Hello-World example has a multi-agent version in this chapter. We
start with the simplest application we can write in JaCaMo and improve it to pro-
gressively show some of the most important aspects of the programming language
and the platform.

Instructions to create, edit, and run JaCaMo applications are found at

http:/ /jacamo.sourceforge.net/doc/install. html

http://jacamo.sourceforge.net/book
http://jacamo.sourceforge.net/doc/install.html

plan

goal

26 Chapter 3

3.1 Single-Agent Hello-World

We start with a system that has a single and very simple agent that just prints out
a message using the following plan written in Jason (and stored in a file called
hwa.asl):

+!say (M) <— .print (M).

This plan can be read as “whenever I have the goal ! say (M), achieve it by printing
the value of variable M” (M is a variable because it starts with an upper-case letter).

To run the agent, JaCaMo uses application files (of which the names end with
. jcm). In our example the application fileis sag_hw. jcm, in which we give aname
to agent (bob) and an initial goal (say ("Hello World")). The content of this file,
represented graphically in figure 3.1, is as follows:

mas sag_hw { // the MAS is identified by sag_hw
agent bob: hwa.asl { // initial plans for bob are in hwa.asl
goals: say ("Hello World") // initial goal for bob

}

say(“Hello World”)

Figure 3.1
Single-agent Hello-World configuration.

The result of the execution is
JaCaMo Http Server running on http://192.168.0.15:3272
[bob] Hello World
To better understand the output, the steps in executing the application file (.jcm)
are as follows:

1. An agent named bob is created with initial beliefs, goals, and plans as deter-
mined from the contents of the file named hwa.asl.

2. The goal say ("Hello World") is delegated to bob, creating the event
+!say ("Hello World").

3. The planin file hwa.asl, as shown previously, is triggered and used to handle
this event.

4. The execution of the plan produces the output [bob] Hello World as the
result of performing the internal action .print.

Getting Started 27

5. The agent continues to run but has nothing to do, because it is the only agent
in the system and has not generated any further goals itself or changes in the
environment that might lead it to further action.

6. As shown in the execution output, there is a URL to inspect the current state
of the agents (which includes their beliefs, intentions, and plans), and we sub-
sequently see that the same applies to environment and organizations.

3.2 Multi-Agent Hello-World

We now have two agents, bob and alice. Agent bob prints “Hello” and alice prints
“World.” In order to create both agents from the same code (as in the previous
example, having only one plan), we can use the following application file:
mas mag_hw {

agent bob: hwa.asl {

goals: say ("Hello")
}
agent alice: hwa.asl {
goals: say ("World")
}
}

However, the result of the execution could be as follows:

[alice] World
[bob] Hello

Agents run concurrently and asynchronously pursue their goals, and thus this
initial implementation cannot guarantee the order of the printed messages. Some
coordination is required so that bob prints first and alice next. We can solve the
problem with bob sending a message to alice as soon as its message is printed (see
figure 3.2). The new program is as follows (to be included in a filenamed bob . as1):

+!say (M) <— .print (M);
.send (alice, achieve, say ("World")) .

By sending an achieve message to alice, bob delegates the goal say ("World") to
alice. She uses the plan +!say (M) <- .print (M) . to achieve the goal, as pre-
viously.
Because alice’s goal now comes from bob rather than the system initialization,
the application file has to be changed as follows:
mas mag_hw {
agent bob { // file bob.asl is used

goals: say ("Hello")
}

agent alice: hwa.asl

message

28 Chapter 3

say(“Hello”)

<J

achieve
say(“World”)

Figure 3.2
Coordination by communication.

3.3 Hello-World Environment

artifact The example now considers an environment with a board artifact, as a blackboard
that agents can use to write messages and to perceive messages written on it. In
this version of the Hello-World example, bob writes a message “Hello” on the
board blackboard; and alice, who is observing the blackboard, writes the mes-
sage “World” as soon as it acquires the belief that the message “Hello” has been
written.
workspace Environments are structured into workspaces; all agents within a workspace have
shared access to all artifact instances in that workspace. In the application file, we
can specify the initial set of artifacts and workspaces to be created when the MAS
is spawned. In this case, the sit_hw. jcm file is as follows:

mas sit_hw {
agent bob {
join: room // bob joins workspace toolbox
goals: say ("Hello")
}
agent alice {

join: room // alice also joins workspace toolbox
focus: room.board // and focus on artifact board
}
workspace room { // creates the workspace toolbox

artifact board: tools.Blackboard // with artifact board
}

The initial configuration includes a workspace called room, hosting a board arti-
fact of type tools.Blackboard (see figure 3.3). Both agents join the workspace
room at initialization in order to access the board artifact. Agent alice focuses on

Getting Started 29

toolbox Legend

<] i |
agent : workspace name i
e 3 artifact name : Type '

i [operation /
i | #arguments

say(“Hello”)

board : Blackboard

lastMsg/1

L

observable
property/
arity

R initial

—>| writeMsg/1 goal
/O[initial

- belief

_— act
P — perceive

Figure 3.3
Coordination using the environment.

(i.e., observes) the artifact.! The focus is needed so that agent alice is attentive to
changes in the observable properties of that artifact: when something is written on
the board, the next time alice senses the environment a belief corresponding to the
observed artifact property will be automatically created, and she can then react to
it.

Artifacts are implemented in Java. The source code (in file Blackboard. java)
of the simple blackboard artifact is as follows:

package tools;
import cartago.x;

public class Blackboard extends Artifact {
void init () {
defineObsProperty ("lastMsg", "");
}
@OPERATION wvoid writeMsg (String msg) {
System.out.println (" [BLACKBOARD] " + msg);
getObsProperty ("lastMsg") .updateValue (msqg) ;

Java classes are used as templates for defining artifacts, using annotated methods
to define artifact operations and predefined methods inherited by the Artifact
API to work with observable properties and other artifact mechanisms.

1. In fact, agents can dynamically decide which workspaces to join and which artifacts to focus on; in
that case, the actions to join a workspace and to focus on an artifact appear in the source code of the
agent. This is detailed in chapter 5.

belief

observable
property

organization

organizational
goal

scheme

missions

30 Chapter 3

The source code for bob in this case becomes

+!say (M) <— writeMsg (M) .

{ include ("$jacamoJar/templates/common-cartago.asl") }

That is, the agent uses the action writeMsg provided by the artifact to write the
message on the blackboard. The include instruction loads some useful plans into
bob’s plan library. The source code for alice is

+lastMsg("Hello") <- writeMsg("World!").

{ include ("$jacamoJar/templates/common-cartago.asl") }

The agent (who is observing the board) writes the message “World” as soon as it
has the belief that the last message written on the blackboard (made observable by
means of the 1astMsg observable property) is “Hello.”

[alice] joined workspace room

[alice] focusing on artifact board (at workspace room)

using namespace default

[bob] Jjoined workspace room

[BLACKBOARD] Hello

[BLACKBOARD] World!

The execution of the application file produces a result similar to the previous
ones, except that now it is the blackboard artifact printing out the messages and no
communication between bob and alice is required.

3.4 Hello-World Organization

We now organize the set of agents to produce the “Hello World” message. As pre-
sented in the preceding chapter, the organization can be used to regulate and co-
ordinate the agents. Although the example is simple, the use of an organization fa-
cilitates the changing of a specified coordination and regulation pattern. In our ex-
ample, a coordination pattern is used to achieve the goal show_message, which
should be achieved by the two agents working together and thus is a collective goal.
To distinguish such a goal from an agent goal, we call it an organizational goal.

We use a social scheme to program how the show_message organizational goal is
decomposed into subgoals that are assigned to the agents (as shown in figure 3.4).
For the decomposition, the show_message goal has one subgoal for each word of
the message. For their assignment to agents, we create missions, in this case one for
each subgoal. In order to participate in the scheme execution, agents should commit
to a mission and achieve the corresponding goal(s) of that mission. Committing
to a mission is a form of promise to the group of agents collectively working on a
scheme: “I promise that, when required, I will do my part of the task.” When agents

Getting Started 31

{ hw_choreography : i Legend
: : N —
: .| group
show_message : H
: : role
<<and>> : : A

\ 2 H permission

<<goal decomposition>>

Figure 3.4
Coordination by organization: Hello-World organization specification.

have committed to all missions, the scheme can be performed with the guarantee
that, at least in principle, we have enough agents to work on all required subgoals.

This organization example also defines a single role that all agents will play: the role
role greeter played in a group type identified by gg (for “greeting group”). Agents group
playing this role (and only they) are permitted to commit to the missions of the
scheme.

The implementation of this organization is written in XML as follows:
<?xml version="1.0" encoding="UTF-8"?>
<organisational-specification

id="hello world"

os-version="0.8"

xmlns="http://moise.sourceforge.net/os’'
xmlns:xsi='http://www.w3.0rg/2001/XMLSchema-instance'

xsi:schemaLocation='http://moise.sourceforge.net/os
http://moise.sourceforge.net/xml/os.xsd"' >

<structural-specification>

<group-specification id="gg">

<roles>

<role id="greeter" max="2"/>

</roles>
</group-specification>

</structural-specification>

31

11

32 Chapter 3

<functional-specification>
<scheme id="hw_choreography">
<goal id="show_message">
<plan operator="sequence">
<goal id="show_wl"/>
<goal id="show_w2"/>
</plan>
</goal>

<mission id="missionl"” min="1" max="1"> <goal id="show_wl"/> </mission>
<mission id="mission2" min="1" max="1"> <goal id="show_w2"/> </mission>
</scheme>
</functional-specification>

<normative-specification>
<norm id="norml" type="permission" role="greeter" mission="missionl"/>
<norm id="norm2" type="permission" role="greeter" mission="mission2"/>
</normative-specification>

</organisational-specification>

Agents play the role greeter and commit to missions to show their words (bob
shows “Hello” and alice shows “World”). Each agent has its own mission/goal/-
word to show. As shown in figure 3.4, a greeter is permitted to commit to any mis-
sion, but we do not want all agents to commit to all missions that they possibly
can. To solve this, each agent has a belief for the mission it should commit to. These
beliefs are my_mission (missionl) for bob and my_mission (mission2) for
alice. The decision to commit to a mission is implemented by the following plan:

// when the organization gives me permission to
// commit to a mission M in scheme S,
// do that if it matches the belief my_mission
+permission (A,_,committed (A, M, S),_)
.my_name (A) & // the permission is for me
my_mission (M) // my mission is M
<— commitMission (M) .

The symbol + in line 4 means “in the event of coming to believe ...”; the code after
: is conditions on what the agent believes to be the current situation, which are
required for the plan to be used; and the code after <- is “deeds” (such as actions to
execute and goals to achieve). This plan is thus triggered by the addition of a belief
that agent A has the permission to commit to mission M in scheme s. If the value of
variable M in the agent belief my_mission (M) matches the permitted mission M,
the plan is applicable for the event and the agent does the action of committing to
mission M.

The leaf goals of the social scheme should be achieved by the agents, and so they
have plans for that:
// when I have goal show_wl, create subgoal say(...)

+!show_wl <-= !say("Hello").
+!show_w2 <-= !say("World").

12

13

Getting Started 33

+!say (M) <— writeMsg (M) .

The symbols +! in line 10 can be read as “in the event of having a new goal...”.
The code !say (. ..) on the same line creates a new subgoal. With regard to the
permission belief, goals show_w. . . come from the organization. The organiza-
tion informs the agents about the goals they have to pursue considering the current
execution state of the scheme and the commitments of the agent. In this example, all
agents participating in the organization have plans for all show_w goals; the agents
have the know-how to show both words and which word they show depends on
the missions they have committed to.

Briefly, agents have plans to react to events produced by the organization (new
permissions and new goals) and do not need to explicitly coordinate among them-
selves through communication; that is, bob does not need to send a message to
alice anymore. Neither is the environment required to support coordination.

The application file for this implementation of Hello-World is as follows:

mas hello_world {
agent bob : hwa.asl {
focus: room.board
roles: greeter in ghw // initial role for bob
beliefs: my_mission(missionl) // initial belief
}
agent alice : hwa.asl {
focus: room.board
roles: greeter in ghw
beliefs: my_mission(mission2)
}
workspace room {
artifact board : tools.Blackboard
}
organisation greeting : orgl.xml {
group ghw : gg {
responsible-for: shw

}
scheme shw : hw_choreography

}

As previously, this file has entries for agents and workspaces, but now an organiza-
tion block is added. In line 19, an organization entity is created on the basis of the
XML file that describes the type of groups and schemes available in the organiza-
tion. One group entity is created in line 20 (identified by ghw), and one scheme en-
tity is created in line 23 (identified by shw). Line 21 states that group ghw provides
the agents for the execution of scheme shw. Lines 5 and 11 assign role greeter to

34 Chapter 3

our agents in group ghw.? Lines 6 and 12 add beliefs in the agents regarding the
missions to which they should commit.

The execution of the application file (. jcm) happens as follows:
The workspace room and the artifact board are created.
The group ghw and scheme shw are created and linked (responsible-for).
Agents bob and alice are created and they join the workspace room.
The agents are assigned the role greeter.

SIS

By playing this role, they start believing
permission (bob, _,committed (bob,missionl, shw),_)
permission (bob, _,committed (bob,mission2, shw),_)
permission(alice,_,committed(alice,missionl, shw),_)
permission(alice,_,committed(alice,mission2,shw),_).
6. The addition of these beliefs trigger their first plan, and they commit to their
missions. A picture of the overall state of the system is shown in figure 3.5.
7. When the agents have committed to their missions, the scheme shw has enough
agents for it to be carried out, and the goal show_w1 can be finally pursued.
8. Agent bob, being committed tomissionl, is informed that goal show_w1 can
be adopted, and it does so; the message “Hello” is written on the blackboard.
9. Agent alice is then told to achieve show_w2, and it does so; the message
“World” is written on the blackboard.
10. The scheme is finished.

We can notice a coordinated behavior: the words are always shown in the correct
order. Moreover, the coordination is implemented in the organization and not in
the agents (there is no code in the agents to coordinate their individual actions so
that the overall system behavior is as expected).

3.5 Bibliographical Notes

Several platforms and programming languages have been proposed to implement
MAS since the seminal paper of Shoham that proposed AGENTO in 1993 (Shoham
1993). AGENTO was followed by some programming languages also inspired by
the mentalistic notion of agency; some of them are Jason (Bordini et al. 2007),
2APL (Dastani 2008), GOAL (Hindriks 2009), and ASTRA (Collier et al. 2015).
The BDI agent model also inspired some frameworks that extended some existing
language to support the agent programming (e.g., Jadex [Pokahr et al. 2005] and
JACK [Winikoff 2005]). However, agent programming is not based exclusively on

2. Agents may decide to play roles on their own, and this feature is discussed in chapter 8.

Getting Started 35

shw:hw_choreography

show_message
---------------- >

responsible for <<and>>

greeter
2.2

A
ghw:gg

mission1 mission2
Commmed to

bob : bob

board :
Blackboard
Figure 3.5

Coordination by organization: Entities of the Hello-World organization.

toolbox

alice : hwa

the BDI model. For instance, in the JADE popular platform, agents are programmed
on the basis of a behavioral model (Bellifemine et al. 2007). Besides providing an
agent programming model, most of the platforms also help the developer to launch
agents in a distributed network, managing their life cycle and supporting their com-
munication. These features usually follow the Foundation for Intelligent Physical
Agents (FIPA) standards (Foundation for Intelligent Physical Agents 2000).

It should be noted that all cited tools are focused on the agent dimension. Some
of them consider the environment as the network that provides a communication
media (e.g., JADE) whereas others consider the environment to be external and
include integration mechanisms (e.g., 2APL, GOAL, Jason, and ASTRA). The envi-
ronment as well as the organization is not a first-class abstraction for them. It does
not mean that other dimensions are not addressed by the community. For instance,
the environment of an MAS can be implemented using the tools MASQ (Strat-
ulat et al. 2009), GOLEM (Bromuri and Stathis 2008), and CArtAgO (Ricci et al.
2010). Options for the organization are MadKit (Gutknecht and Ferber 2000),
KARMA (Pynadath and Tambe 2003), AMELI (Esteva et al. 2004), 20PL (Dastani
et al. 2009), ORA4MAS (Hiibner et al. 2010), and THOMAS (Criado et al. 2011).
However, these tools are not focused on the agent dimension and usually run on
the basis of an ad hoc integration with an agent programming tool.

JaCaMo is the first fully functional platform that integrates the three dimensions
as first-class abstractions. Because JaCaMo considers a mentalistic model of agency,

36 Chapter 3

it can align beliefs with observable properties or tell messages as well as obligations
with goals. Although this characteristic constrains the way we program agents (we
are somehow forced to program agents using BDI abstractions), it allows a syner-
gistic integration between the dimensions. JADE, for instance, cannot implement
the semantics of ACL messages because its agent model has no beliefs or goals. The
programmer is responsible to properly code the interpretation of tell messages. In
JaCaMo, messages are automatically interpreted: accepted tell messages become
new beliefs for the receiver, for example. This platform has also served as the start-
ing point for others, for example, JaCaMo+ implements interaction protocols based
on commitments on top of artifacts (Baldoni et al. 2016).

A comprehensive review of tools and languages used to program MAS in general
can be found in (Bordini et al. 2005; Aldewereld et al. 2016).

Exercises

Exercise 3.1 Change the implementation of the three versions of the Hello-World appli-
cation: coordination by communication (in section 3.2), coordination using the environment (in
section 3.3), coordination by organization (in section 3.4). These changes consist of

a) adding a new message with three words, “Hello Wonderful World,” and a third agent
to handle this new word;

b) printing the words of the message in reverse order;

c) printing the words of the message in parallel (hint: in the XML file where the organiza-
tion specification is defined, options for the plan operator are sequence, choice, and
parallel); and

d) printing the message again and again, as soon as it is printed.

For each of these changes, evaluate which version (coordination by agent communication,
coordination using the environment, or coordination by organization) is easiest to imple-
ment.

Exercise 3.2 Change the agents so that they are capable of printing the “Hello World” mes-
sage in different languages, and implement a mechanism to easily change the language.

Exercise 3.3 In the normative specification of the organization, replace permission with
obligation, and notice the difference in the execution.

Exercise 3.4 In the structural specification, create two roles (considering the printing of
“Hello World” as done in this chapter) or three roles (considering the printing of “Hello
Wonderful World” as done in the first exercise), one for each word of the message.

4 The Agent Dimension

In this chapter, we delve into the details of the first MAOP dimension we consider
in this book, the agent dimension. We start by recalling the overall picture of this
dimension given in the preceding chapter. We also aim to convey the importance
of this dimension within the context of multi-agent oriented programming. Then
we look at each single programming concept and abstraction related to this dimen-
sion in the JaCaMo framework, noting that most of these concepts are used more
generally in MAOP. After that, we discuss the agent execution model, explaining
further agent-related concepts. We finish the chapter with further notes, including
some historical notes for the reader interested in tracing the developments leading
to the current state of the art.

4.1 Overview

To help us recall the overall picture about agents and the main concepts in this di-
mension, we take from figure 2.3 only the agent dimension and show it in figure 4.1.
The approach we take in programming agents is based on the BDI architecture (see
section 4.4 for references on this agent architecture).

Essentially, agents have beliefs about the current state of the environment, as well
as beliefs about other agents and the state of the organization, and have goals that
represent future states of the environment that are desirable to the agent (and pos-
sibly to its designer). On the basis of these (both the information about the present
state and the representation of the states it would like to reach), the agent reasons
in order to make decisions about the best actions to take in order to achieve those
desirable states of affair. An action normally changes the state of the environment
in which the agents are situated in some predetermined way.

One particular type of action, also shown in figure 4.1, that agents can take is a
communicative action, thatis, an action that allows an agent to directly communicate
to one or more, possibly all, other agents in a multi-agent system. Communication
in MAOP is based on the speech act theory (we give references to this in section 4.4).

agents

BDI
architecture

beliefs

goals

action

communicative
action

performative
verb

38 Chapter 4

communicate

Belief Goal

ACtion _—.

Agent

Figure 4.1
Main concepts in the agent dimension.

In practice, this means that when an agent sends a message to another, in addition
to the actual content representing some knowledge, preference, or know-how, there
is an explicit representation of the intended purpose of the message for the agent
sending the message, which in turn allows the receiving agent(s) to know what to
do with that message content. The intended purpose of the message is expressed
by means of a performative verb, that is, a word such as tell, achieve, or ask that will
affect what the receiving agent does with the content of the message.

For example, if an agent receives a message with its contents expressing a prop-
erty finished about a cake in a bakery, the consequences for the receiving agent will
vary depending on the performative associated with the message. If the perfor-
mative is “tell,” the receiving agent will know that the sending agent wanted it to
believe that the cake has been finished. If the performative is “ask” instead, then
the receiving agent will know that the sending agent wanted it to answer whether
the cake has been finished. If the performative was “achieve,” then the receiving
agent will know that the sending agent wanted it to take action in order to get the
cake finished.

Of course, in a system with multiple autonomous agents, much further support
for agent interaction is needed. The organization dimension covers some of it, and
in chapter 9 we see in practice how this can be programmed. We also discuss further
topics such as argumentation in chapter 11.

The Agent Dimension 39

Belief ——® Agent [——— Goal

N T
20 Cong, K

S\ 3692)

(O JUPEIAeY ;<

¢ N - ge“exa‘e &

e
trigger
Event 99 L 4 Plan
| S —4
Action
External Internal Communicative
Agent
inheritance D dynamic relation > composition
-------------------- —_—e

Figure 4.2
Concepts in the agent dimension.

4.2 Agent Abstractions

We now expand figure 4.1 to show all the concepts of this dimension in figure 4.2.
In the next section we cover concepts related to the execution of an agent program,
that is, structures specific to runtime rather than abstractions used to program au-
tonomous agents in the approach used in this book.

The information that an agent currently holds about its environment, including
other agents in it and the agent organizations, is represented as a set of beliefs. There
is nothing special about beliefs in comparison with the way that information is rep-
resented in other programming languages.! The term belief is useful to remind us
that agents typically have information that might be incorrect with regard to the ac-
tual state of the environment; for example, in the case that the areas of applications
involve environments that are constantly changing, often in unpredictable ways, or
in the case that obtaining such information (e.g., with sensors) can be faulty or in-
accurate. Besides, agents typically do not have access to all the currently available
information about the shared environment. In summary, the term belief reminds
us that agents have to deal with inaccurate and incomplete information.

1. Note that the approach in this book uses a style of information representation similar to that of logic
programming languages in particular, but not necessarily similar to that of other agent programming
languages.

mental notes

proactive
behavior

reactive
behavior

event

40 Chapter 4

In the programming style used for the agent dimension in JaCaMo, we write be-
liefs using literals as is usual in logic-based programming, except that we also have
annotations enclosed in square brackets. These can be used to store metainforma-
tion about the belief, including a special annotation named source, which JaCaMo
uses to keep track of the origin of that information (e.g., the name of an agent, a
percept, or self in the case of mental notes created by the agent itself). For exam-
ple, if an agent has in its belief base the following belief:

finished (cake) [source (percept)]

it means that the agent currently believes that the cake has been finished because
it noted so by observing the environment. Note that instead of the term cake to
refer to a specific cake, a variable could have been used. Variables are denoted by
identifiers starting with an uppercase letter (e.g., SomeCake).

Whereas a belief states something about the current state of affairs, goals denote
properties of the shared environment that the agent would like to become true and
therefore does not currently believe to be true. Explicit representations of goals are
of fundamental importance in proactive behavior: they lead the agent into action,
including communication with other agents, so as to achieve a different state of
affairs. In order to do so, an agent needs a plan of action (the plan concept is subse-
quently discussed). In other words, a plan gives a recipe for action that might lead
the agent to achieve one of its goals. We can also use the bakery scenario to exem-
plify a goal. Suppose we did not believe the cake has been finished. In that case,
we might currently wish it to be finished. In our language, goals are expressed
similarly to beliefs except that they are preceded by an exclamation point !, and
the source of a goal tells us the agent that delegated that goal. Therefore, if in our
example we want to get the cake finished because a pastry chef named John asked
us to get it finished, that could be represented as

!finished(cake) [source (john)]

As well as proactive behavior, we also want our agent to display reactive behavior.
If an agent is pursuing some goal on our behalf, we will need the agent to be atten-
tive to what is happening in the environment, because the action of other agents in
the environment might prevent an agent from or indeed help an agent in achieving
its goals. Circumventing problems and taking advantage of new opportunities is
paramount for an agent to display intelligent behavior. An event represents either of
two different kinds of things: changes in an agent’s goals or changes in an agent’s
beliefs. The former is associated with proactive behavior, whereas changes in be-
liefs are important for reactive behavior. Note also that we are discussing changes,
so that an event reflects, for example, that an agent has a new goal to achieve, or

The Agent Dimension 41

that it no longer holds a particular belief. It is such changes (additions or deletions)
that actually lead an agent to execute a plan. As an example, the event

—finished (cake)

means that the agent no longer believes the cake is finished (for example, because
the agent realized some piece of decoration has fallen off the cake and thus may
wish to act upon that event), whereas the event

+!finished (cake)

means that the agent has just adopted a new goal to reach a state in which the agent
will believe that the cake has been finished properly.

Declarative vs. Procedural Use of Achievement Goals

Normally, achievement goals should be programmed declaratively; that is,
a goal refers to a fact that the agent currently believes is not true, and if
the goal is achieved, the agent will believe that the associated proposition
has become true. For example, the ! finished (cake) goal has been used
declaratively. The agent has the goal to finish the cake because it does not
believe that the cake is finished yet. After doing all the work, it is hoped, the
agent will look at the cake and see that it is now completely finished, and so
it will come to believe finished (cake). However, our MAOP approach
does not require goals to be programmed that way. We can also use them
in a procedural way as simply a name for a sequence of actions we would
like the agent to execute. For example, suppose that we have a procedure
to get cream whipped, and the chef just wants to get an agent to follow that
procedure; if the cream is not properly whipped at the end, it will fix it some
other way. If the agent has a plan for !whip_cream, the chef could simply
delegate that achievement goal to the assisting agent. When all the actions
have been executed, the requested job will have been finished, regardless of
the achieved results.

A plan is a recipe for action, in particular a recipe that allows an agent to achieve plan

one of the possible goals that it might have or that allows it to react to opportunities
or potential problems perceived from the state of the shared environment. That is,
a plan deals with a specific type of event that is relevant to the agent. The set of
plans an agent has at a particular moment constitutes its know-how. Syntactically, a
plan is structured in three parts:

Trigger The trigger or triggering event of a plan explicitly states which goal or reac-
tion the plan is about. The software architecture underlying an autonomous agent

know-how

relevant plans

applicable
context

42 Chapter 4

keeps track of events, that is, of new goals the agent has to achieve (because, for ex-
ample, another plan requires it or another agent requested it) and new beliefs that
require the agent to react. In tackling outstanding events as recorded in the ap-
propriate structure of the agent architecture, the relevant plans to consider are the
plans that have a matching trigger. For example, agent John has a plan to handle
the fact that he has a new instance of the goal to get a cake finished, and the bakery
assistant agents have plans to react when they perceive that John is trying to finish
a particular cake. The trigger part of these plans would be written as follows:

+!finish (cake)
+finishing(john, cake)

Context There may be many different plans to handle the same event. For exam-
ple, to finish a cake one might get the icing and decoration ready and then finish
the cake, but perhaps a healthier option would be just to spread a little whipped
cream on top to follow a simple cake style instead. Different plans for the same
purpose are applicable under different circumstances. That is what the context of
the plan tells us. It is typically formed of conjunctions of beliefs that the agent is
required to have at the time of choosing a plan of action for an event:

+!finished (cake)
order (cake) [source (Client)] & lifestyle(Client, healthy)
<= ...

+!finished (cake)
is_for (cake, wedding)
<= ...

Body The body of the plan is the recipe for action. Normally, an action is some-
thing an agent can perform in order to change the state of the environment (we
subsequently present more about actions). The plan body stipulates the actions
the agent is expected to carry out in order to handle the event that triggered the
plan (such as the new goal instance or the newly acquired belief). Furthermore,
complex plans might require the agent to achieve (other) specific goals amid the
actions to be taken. Before we look at the various types of actions that can appear
in a plan, we conclude the examples started above. The plans for John are
+!finished (cake)

order (cake) [source (Client)] & lifestyle(Client,healthy)

<- whip (cream);

spread (cream, top) ;

'have (decoration);

decorate.

The Agent Dimension 43

+!finished (cake)
: is_for (cake, wedding)
<= thave (marzipan) ;
cover (cake,marzipan);
'piping_decorated (cake) .

The first plan involves the agent executing two actions one after the other (whip-
ping and spreading) to put some whipped cream only on top of the cake. Then the
agent will need another plan to achieve the goal of getting the required decoration,
which in turn could involve, for example, crushing nuts. Finally, the chef carries out
the decorating action (assuming this one specific action that the agent can directly
execute). The second plan is used for a prettier-looking cake appropriate for more
formal events. It involves covering the whole cake with marzipan before carrying
out the typically complex plan using piping techniques in order to decorate the
cake.

The assistants, in their turn, have the following plan (which is to react to an ob-
served event and is always applicable) to adopt the goal of assisting the pastry chef
in finishing the cake:

+finishing(john, cake) <= lassist_finishing(cake).

Having this goal might lead those agents to act, for example, in such a way as
to prepare or bring the marzipan, icing, nuts, and so forth, to the table where the
chef is working. Of course, the different tasks need to be coordinated because, for
example, some forms of icing cannot be prepared too long in advance of the actual
decoration because it would dry out. In a subsequent section of this book, we look
at how best to achieve such coordination.

As mentioned previously, an action is something an agent can execute; an action
has one of the following three types:

External This is what we normally think of as an agent action. An external action
is executed by an agent’s effectors or actuators, that is, the specific means that agents
has for changing the environment in which it is situated. For example, if the agent
is controlling a robot with an arm, moving that arm, as implemented by the under-
lying control software, is an external action. The term external emphasizes that this
type of action is implemented outside of the agent reasoning; the agent reasoning
is precisely about which such actions will allow the agent to achieve its goals.

Internal An internal action, on the contrary, is implemented within the agent ar-
chitecture, and it allows the agent to (atomically) run some available piece of code
as part of its reasoning cycle. For example, if at some point the agent needs to run
some legacy code or to run a piece of code that is better written in traditional pro-
gramming languages (e.g., some image processing code), then an internal action is

effectors
actuators

44 Chapter 4

called for. However, because those pieces of code are run atomically, care should
be taken for such actions not to block the reasoning cycle (described in the next sec-
tion); otherwise, the agent ability to react to changes and carry out various other
plans of actions concurrently is compromised.

Although internal actions refer to any code run within an agent’s reasoning cycle,
there is a very important type of internal action that is used to change its internal
state—more specifically, to change the mental attitudes that determine the mental

mental state state of an autonomous agent. For example, there are internal actions that can be
used to make an agent drop a particular goal it is trying to achieve or indeed to
inspect which current goals the agent is pursuing. Because these are used for ad-
vanced MAOP, we do not exemplify them in this chapter.

Communicative We can also separately describe the communicative actions, which
allow agents to directly communicate with each other. As discussed in the previous
section, these actions are used to send messages to other agents. Inspired by speech
act theory, such messages explicitly represent three different things: (1) the agent
or agents that should receive the message; (2) the illocutionary force of the speech
act, explicitly denoted by a performative verb such as “tell” or “achieve”; and (3) the
actual content of the message, such as some piece of knowledge or know-how.
There are a few other programming constructs worth mentioning at this point.
test goals Besides achievement goals, the programming language also has test goals, which
are denoted by prefixing it with ? rather than !. That construct is used to retrieve
information from the belief base in the body of a plan, so that the most up-to-date
information is retrieved. For example, suppose that we need to retrieve what we
believe to be the current phone number of the client whose cake we just finished;
then we could have a plan like this one:

+!finished (cake)
order (cake) [source (Client)]
<- . ;
?phone (Client, Number);

The code line starting with ? consults the current state of the belief base of the
agent to try to find a number for the particular client that is instantiated to variable
Client.If thatinformation is not available in the belief base, there might be a plan
telling the agent how to obtain such information. If we want to give that know-how
to our agent, we can write a plan starting like this:

+?phone (Client, Number) : ... <= ...

Another important feature is to be able to reason about beliefs. For that purpose,
inference rules there can also be inference rules which are similar to Prolog rules for reasoning about

The Agent Dimension 45

Percepts 1 Belief Base Plan Library

< '

Messages 1 Event Queue |———» 2

\ 3
4 /
Suspended X Sele_ct 4 Action
Intentions |~ 4 —*| Intentions Intention =

Reasoning Cycle

Select
Means

Ll

flow

Figure 4.3
Reasoning cycle—runtime concepts in the agent dimension.

belief in the belief base, along with plain facts that are believed to be true by the
agent. For example, suppose that if we know that a cake does not contain any an-
imal products or products from companies that harm animals, then we can con-
clude that it is a vegan cake. We could add to the agent beliefs the following rule:

vegan (Cake) :— has_no_animal_products (Cake) &
not (uses (Cake,Product) & produced_by (Product,Co) &
animal_harming(Co)) .

Notethathas_no_animal_products (Cake) itself could be a conclusion from
another rule that checks the entire list of ingredients, for example.

4.3 Agent Execution

We now turn to the way an agent behavior is determined at runtime. Agents repeat-
edly go through reasoning cycles that start with perceiving the state of the shared reasoning
environment and end with the choice of a particular action to be executed, possibly Y°/es
changing the state of the environment. Figure 4.3 shows the main steps of an agent
reasoning cycle.

Before describing the four main steps of such a reasoning cycle, we briefly go
through the definition of the main concepts shown in that figure and a few other
related concepts.

A percept is a symbolically represented piece of information about the state of the percept
shared environment. In real-world environments, percepts are typically obtained

message

belief base

source

initial
know-how
initial state of
the agent
belief base
event queue

plan library

46 Chapter 4

from sensors or cameras. These directly impact the agent’s beliefs, as evident in our
subsequent discussion of the reasoning cycle.

A message is a piece of communication received (asynchronously) from other
agents. As discussed previously, messages can be used to inform an agent of some-
thing, to ask an agent to do something, or to provide an agent with a plan that will
enable it to carry something out. Like many other aspects of an agent’s reasoning
cycle, there is a function that can be defined for each agent so that it selects only
appropriate messages (e.g., messages from sources that the agent can trust or mes-
sages from sources that have appropriate authority). Further details are given by
Bordini et al. (2007, chapter 7).

The belief base is a structure that keeps track of all information currently available
to an agent. That can include information about the state of the environment (either
perceived by the agent itself or informed by other agents), information about other
agents, and things the agent wanted to remember about itself in previous internal
states. All beliefs in the belief base are annotated with a label that explicitly states
the source of that belief. The source can be a percept in the case of belief originating
from information gathered by the agent from its own sensors. Beliefs created from
communication with other agents are annotated with the name of the agent that
sent the message. Finally, the source can be the agent itself (something like the
mental notes mentioned previously). Annotations on beliefs can also be used for
various purposes, as shown in the more advanced examples in this book. An agent
program typically has at least a few beliefs and a few plans. The latter gives the
agent initial know-how, whereas the beliefs in the code form the initial state of the
agent belief base (that is, the beliefs the agent will have when it first starts to run).

The event queue keeps track of all events that have effectively taken place. Re-
call that an event denotes some change in an agent’s mental state. For example, the
agent has a new goal to achieve, or a belief that arose from a percept that held true
in the previous reasoning cycle no longer holds so that belief has been automati-
cally deleted (these are just examples of possible events that might be in the event
queue).

The plan library keeps all the know-how of an agent. It is a collection of plans—
often various plans for the same triggering event. As explained above, to achieve
the same goal, for example, one might have different plans that are used in different
contexts. Recall that the agent program provides not only the initial state of the be-
lief base but also of the plan library. However, note that agents can change their
know-how during their execution. Whereas beliefs typically change constantly,
plans tend not to change so much; however, changing the plans in a an agent’s
plan library is not only possible but is rather easy to do. Agents can exchange plans

The Agent Dimension 47

through communication, or Al planning techniques can be used for new plans to
be created by the agent (see the references in section 4.4).

Given a particular event, a plan is said to be relevant if its triggering event matches
that particular event. A plan is called applicable if its context holds true given the
agent’s current beliefs. Often, an agent might have various applicable plans for a
given event. We saw earlier an example in which there were two different plans to
finish a cake. If you consider those plans again, note how both might be applicable
if a client with a healthy lifestyle is getting married. Note also that both plans get
the same goal achieved—having the cake finished—but in different ways. Clearly,
for a particular cake, only one of those plans has to be chosen for execution. Like
beliefs, plans too can have annotations, and one use for them is to help select a plan
when various different plans are all applicable to a current context.

When the agent chooses one applicable plan to handle a particular event, a copy
of that plan from the plan library becomes an intended means. That is, if the event is
to achieve a new goal, the agent is committed to doing so by following that recipe
for action that is expressed in that intended means.

All intended means selected by the agent go into the set of intentions. An intention
is a stack of intended means because a plan might require a (sub)goal to be achieved
before further action is taken, and this dependency between some intended means
must also be kept. Each separate intention in the set of intentions represents a dif-
ferent focus of attention for the agent. For example, agent John might be rolling out
the marzipan when a timer goes off to say some pastry might be ready soon, so he
will be keeping an eye on the oven while rolling out the marzipan.

As discussed, an action is something an agent is capable of doing in order to
change the state of the shared environment. Often, actions are associated with op-
erations available in artifacts in the environment model or implemented by effec-
tors (for example, through mechanical means available in a robot). From the agent
reasoning point of view, actions to be executed are determined directly from the
agent’s current set of intentions.

The agent architecture uses three user-defined selection functions. In fact, default
implementations for them are made available, but it is possible that domain-
specific functions are required for particular applications. The three selection func-
tions are as follows:

Event The event selection function chooses one particular event from the event
queue to be processed at each reasoning cycle. Normally, the selection function
simply implements a FIFO policy, hence the event queue name. However, particular
agents might need, for example, to prioritize certain specific events, and in this case
a user-defined selection function is called for.

relevant
applicable

intended
means

intention

selection
functions

event selection
function

means
selection
function
option
selection
function

intention
selection
function

suspended

48 Chapter 4

Means The means selection function (often called option selection function) chooses
one particular plan to be executed when multiple applicable plans are available to
an agent at a given moment. Normally, the first applicable plan, in the order they
appear in the plan library, is used; however, a particular agent might, for example,
want to reason about properties annotated in plans in order to choose a plan that
has a greater chance of succeeding or that typically has higher payoffs.

Intention The intention selection function chooses one particular intention among
the available ones in the set of intentions (recall that each separate intention refers
to a different focus of attention of the agent in regard to its environment, including
other agents). This in turn determines which action will be taken at that particular
reasoning cycle. Normally, this function operates a round-robin policy, that is, gives
a fair chance for all intentions to execute actions. Again, particular agents might re-
quire, for example, sophisticated forms of reasoning about the relationships among
intentions to ensure that they are scheduled efficiently.

Intentions may become suspended for various reasons. For example, actions are
carried out by the agent’s effectors in a different part of the agent architecture from
that of the agent’s reasoner. Therefore, after an intention requests an action execu-
tion, and before the action execution request is confirmed, the intention becomes
suspended in the sense that further actions of that intention temporarily cannot be
chosen for execution. Also, while an intention is waiting for a plan to be selected
for a subgoal to be achieved, it must not be selected for execution, and so it is tem-
porarily suspended.

We now turn to a high-level description of an agent reasoning cycle, as depicted
in figure 4.3. The following description of the reasoning cycle process flow refers
to that figure. Each reasoning cycle starts with retrieving all available information
coming from the environment and ends with the selection of one action to be exe-
cuted. The structures that interface between the agent reasoner and other compo-
nents of the agent architecture (e.g., sensors and actuators) are shown as rounded
boxes. The other main data structures are shown as boxes with a thicker frame.
Selection functions are shown as diamonds. By grouping related parts of the rea-
soning process, we can divide the cycle into four main steps as follows:

1. Each reasoning cycle starts by retrieving from the part of the agent architec-
ture in charge of interfacing with the shared environment the current set of
available percepts as well as messages arriving from other agents. The percepts
directly impact the agent’s beliefs, whereas messages can affect both the set of
beliefs as well as the agent’s goals and plans. Recall that all changes in beliefs or
goals are represented as events and placed in the event queue. In the agent’s
belief base, the beliefs that originated from percepts in the previous reasoning

The Agent Dimension 49

cycle are explicitly annotated as such. This allows the agent architecture to de-
termine the changes in perceptual information.

2. In this part of the reasoning, the event selection function is used to select a
single event, for which all plans with matching triggering events are retrieved
from the plan library. With that set of relevant plans, we need to check the con-
text of each plan against the current state of the belief base, to determine the
set of applicable plans.

3. At this stage, the means selection function is called with the set of applicable
plans. Its output is the particular intended means chosen by the agent to han-
dle the event selected in step 2. This needs to go to the set of intentions either
as a new intention (if this plan is starting a new focus of attention for the agent,
for example, because it is reacting to some newly perceived change in the en-
vironment or because it is adopting a goal requested by another agent) or as
part of an existing intention in the case that the selected plan is to achieve a
goal required to be achieved as part of another plan.

4. Finally, the intention selection function selects one particular intention, and the
next required action of that intention is selected for execution in that reasoning
cycle. So intentions directly determine the actions to be executed. Recall that
there are three different types of actions that may appear in a plan, and in fact
the part of a plan selected for execution may not be exactly an action but, for
example, a new goal that the agent needs to adopt or the addition of a belief
(or mental note) about something the agent will later need to remember, and
so the belief base and event queue might need to be updated as part of that
step. Furthermore, an intention may be suspended (as explained previously),
and in all cases the set of intentions needs to be updated: an intention may be
moved to the suspended set or the event queue to wait for a plan for a goal,
and if it is kept in the intention set, at least the fact that one more action of the
active plan has been executed needs to be updated in that intention.

4.4 Bibliographical Notes

The seminal work behind the BDI agent model and architecture is Bratman et al.
(1988), with philosophical influences from Dennett’s intentional stance (1987) and
Bratman’s work on the importance of the notion of intention for human practi-
cal reasoning (1987). An important addition to the original BDI agent model was
Georgeff and Lansky’s reactive planning (1987), which led to PRS (Georgeff and
Ingrand 1989), the first practical implementation of a BDI agent platform. On
the more formal aspects, in particular modal logics for agent mental attitudes,
there is the seminal work by Cohen and Levesque (1990), and important work by
Wooldridge (2000), Singh (1991), and many others. In fact, much has been written

50 Chapter 4

about the BDI model of agency and its roots in the philosophical literature; further
details are given by Wooldridge (2009).

Some initial ideas toward agent-oriented programming were introduced by
Shoham (1993). Perhaps the most influential early agent programming languages
were Concurrent MetateM (Fisher 1993), ConGOLOG (Lespérance et al. 1996),
AgentSpeak(L) (Rao 1996), and 3APL (Hindriks et al. 1997). Specifically regarding
Jason?, which underlies the JaCaMo platform used here, see work by Bordini et al.
(2007), and on an initial formal semantics, see work by Vieira et al. (2007). Some
of the most used agent languages and platforms include Jadex (Pokahr et al. 2005),
GOAL (Hindriks 2009), JADE (Bellifemine et al. 2007), SARL (Rodriguez et al. 2014),
JACK (Busetta et al. 1999), and ASTRA (Russell et al. 2015). A detailed account of
some of the best-known agent programming languages was given by Bordini et al.
(2005, 2009).

There are many open problems related to BDI agent programming, for exam-
ple, the intention progression problem discussed by Logan et al. (2017). A strand
of interesting research to address such open problems concerns the combination
of agent-oriented programming with various Al techniques, for example, the pi-
oneering work in combining planning and agent programming done by Sardina
et al. (2006). Chapter 11 gives further pointers on this, and see also the vision put
forward by Bordini et al. (2019).

Exercises

Exercise 4.1 This exercise is about reactive and proactive behavior. Write an agent that re-
acts to the belief of having perceived in the environment an advertisement for a type of cake
it likes. It reacts to this belief by adopting a goal to have that cake. The proactive behavior
should involve different ways of achieving that goal, for example, baking the cake following
a particular recipe or buying the cake in a bakery. Both will be applicable in different cir-
cumstances (e.g., having flour or having money). To test your agent, create an initial belief
about the perceived cake ad, so you do not have to worry about an environment model.

Exercise 4.2 Create a prolog-like rule for reasoning about beliefs that checks whether all the
required conditions to bake a cake at home are believed to be true. Change the code for the
preceding exercise so that the context part of the plan for baking the cake becomes simpler
just by using this inference rule.

Exercise 4.3 The plan for baking the cake may involve a subgoal of following a recipe for
the cake dough. Before that, the agent needs to retrieve a recipe it may know from its belief
base. Write a plan triggered by a test goal to be used in case the agent does not already know
a recipe for that type of cake.

2. The Jason platform is developed by Jomi Hiibner and Rafael Bordini and is available at http:/ /jason.
sourceforge.net/.

http://jason.sourceforge.net/
http://jason.sourceforge.net/

5 The Environment Dimension

Following the introduction of the agent dimension in the preceding chapter, we
now incrementally enrich our set of programming abstractions by considering the
environment dimension, which is used in MAOP to model resources and tools used
by agents as first-class concepts. First, we introduce the artifact concept, which is
the basic brick that can be used to design modular, dynamic, and composable
environments—like artifacts in human environments—discussing the correspond-
ing programming abstractions available in JaCaMo. Then, we see how agents can
be programmed in order to create, use, and observe artifacts, able eventually to
shape their own environments according to their needs and goals. Finally, we de-
scribe how complex artifact-based environments can be structured with workspaces,
a concept introduced to model the topology of the multi-agent system, possibly
distributed over multiple nodes of the internet.

5.1 Overview

The concept of environment is used in MAOP as a programming abstraction to
model resources and tools that agents can create, share, and use to do their jobs.
An effective analogy for understanding the viewpoint is given by human work en-
vironments (figure 5.1). In order to do their work, humans (agents) not only com-
municate but also exploit resources and tools available in the work environment,
which is often fundamental in making their action either effective or not effective.
In addition, the objective of their work is often represented by some artifact that
they incrementally build, possibly cooperatively. Analogously, in MAOP we intro-
duce an abstraction layer that makes it possible to encapsulate in an MAS those ser-
vices and resources that are not properly modeled as cognitive agents, being then
neither autonomous nor proactive (goal-oriented). A simple example is a black-
board. Another example is a database or a shared knowledge base.

Figure 5.1 shows again the key concepts about the environment dimension,
as presented in chapter 2, following the Agents and Artifacts (A&A) conceptual

environment

artifact
abstraction

52 Chapter 5

BAKERY
workspace

RESOURCE
artifact
TASK SCHEDULER
artifact

Figure 5.1
Agents and artifacts in the bakery workshop scenario.

model. In A&A, an environment is modeled as workspaces that agents can join to
share and work with artifacts. The term artifact has been explicitly taken from ac-
tivity theory and distributed cognition to recall the properties that such a notion
has in the context of human environments. The artifact abstraction is introduced as
a unit to structure and organize environments. From the MAS designer’s point of
view, artifacts are the basic building blocks—or rather the first-class abstraction—to
design and engineer agent environments; from the agent point of view, artifacts
are first-class entities of their world that they can instantiate, discover, share, and
eventually use and observe to perform their activities and achieve their goals. If
agents are the basic bricks to design the autonomous and goal/task-oriented part
of the MAS, artifacts are the basic entities to organize the nonautonomous, function-
oriented® (from the agent point of view) part of it.

Artifacts are then a natural abstraction to model and implement existing compu-
tational entities and mechanisms that are frequently introduced in the engineering
of MAS representing shared resources, such as shared data stores, or coordination
media, such as blackboards, tuple spaces, and event managers. Besides this, anal-
ogously to the human context, artifacts can be specifically designed to improve the
way tasks get done by agents, by distributing actions across time (precomputation)

1. The term function is used here to mean intended purpose.

The Environment Dimension 53

Environment |[@—— Workspace

2
-- P g
=i

o1elausb

Artifact @— Operation

arepdn |

v
Observable
Property

Environment

Figure 5.2
Main concepts in the environment dimension.

and agents (distributed cognition), and also by changing the way in which individ-
uals perform the activity.

A&A also introduces the workspace abstraction in order to structure and organize
the overall set of artifacts (and agents) in an MAS from a topological point of view.
A workspace is a logic container of agents and artifacts, providing a logical notion
of locality and situatedness for agents, by defining a scope for the interactions and
observability of events as well as for the set of related activities carried by a group
of agents using some set of artifacts. A complex MAS can then be organized as a
set of workspaces, distributed among multiple nodes of the network, with agents
possibly joining multiple workspaces at the same time.

As a summary, figure 5.3 shows the environment concepts presented so far in this
chapter and relate them to the agent dimension presented in the preceding chapter.
It is important to emphasize the generality of the A&A concepts. Although in this
book we use the specific programming model and API provided by JaCaMo (as
introduced from the next section), the notions of (autonomous) agents and (non-
autonomous) artifacts sharing environment workspaces are quite general for the
design and implementation of multi-agent systems.

5.2 Environment Abstractions

If the agent abstraction is meant to effectively model autonomous, proactive, goal-
oriented computational entities, dually the artifact abstraction is meant to effec-
tively model function-oriented, nonautonomous, computational entities that are

workspace
abstraction

54 Chapter 5

join, quit, create

0—{ Workspace | | Signal

| Environment

A4
I
<
@
E

Environment

> Belief i
| =] Agent

mapped to

Figure 5.3
Zooming environment concepts map and their relationships with the agent dimension.

class Counter extends Artifact {

count

void init () {
defineObsProp ("count",0); O inc

@OPERATION wvoid inc () {
ObsProperty p = getObsProperty ("count"”);
p.updateValue (p.intValue () + 1);
signal ("tick"); |:inc

c0: Counter

Figure 5.4

A simple Counter artifact example. On the left side is the Java source code of the artifact
template class. On the right are two different representations—an abstract one (top) and a
more detailed one (bottom)—used in the book.

The Environment Dimension 55

meant to be used (observed or controlled) by agents for doing their jobs. Figure 5.4
shows the conceptual model proposed in A&A and adopted in JaCaMo to represent
artifacts as computational entities. Artifact functionalities are defined in terms of
operations, corresponding—from the agent point of view—to the actions provided
to the agents using that artifact. Each operation is identified by a label and a list of
input parameters.

From a programming point of view, similarly to objects in OOP, artifacts are in-
stances of artifact templates. In JaCaMo, an artifact template can be implemented as
a Java class extending a preexisting class—named Artifact and available in the
API—and using a basic set of Java annotations and existing methods to define the
elements of artifact structure and behavior. As as example, figure 5.4 shows the
implementation of a simple counter artifact that keeps track of a count.

Operations are the basic units for structuring artifact functionalities and can either
be atomic or a process involving a sequence of atomic computational steps. The
Counter artifact has a single operation, called inc, to increment the count value.

Observable properties represent the observable state of the artifact, which can be
perceived by the agents observing that artifact. In our example, the Counter arti-
fact has a single observable property called count, which keeps track of the count
value. The value of the count property is incremented by the inc operation. Each
time the observable state of an artifact is changed by an operation, an event cor-
responding to the new state can be perceived by agents observing the artifact. An
artifact can have also a hidden, nonobservable state, which can be encoded for ex-
ample in terms of private instance fields.

In addition to observable properties, an artifact can generate signals, which are
observable events that can be perceived by the agents using or observing the arti-
fact. Signals can be used to represent any situation, condition, or message and are
not necessarily related to observable properties, to be signaled to observing agents.
In the example, the Counter artifact generates a signal called tick each time that
the count is incremented.

Besides observable properties and signals, an agent can receive feedback from
an artifact in terms of output parameters in operations, that is, parameters whose
value is intended to be set by the operation execution. From an agent point of view,
these parameters represent action feedback. An example follows:

class Calculator extends Artifact {
void init () {
defineObsProperty ("last_result”,0);

}

@OPERATION void add(double a, double b, OpFeedbackParam<Double> result) {
double res = a + b;

artifact
templates

operations

observable
properties

signals

action
feedback

link interfaces

56 Chapter 5

getObsProperty ("last_result") .updateValue (res);
result.set (res);
}
}

The add operation in the Calculator artifact has an output parameter result
that is set by the operation as the sum of the two operands a and b, passed as nor-
mal parameters. The parametrized class OpFeedbackParam is used to represent
output parameters (which can be more than one for a single operation). In the ex-
ample, a last_result observable property is also used to keep track of the result
of the last operation executed. This is only a simple example of how action feedback
and observable properties can be used together.

Finally, to support composition, artifacts can be linked together to enable inter-
artifact interaction. This is carried out through link interfaces, which are analogous
to interfaces of artifacts in the real world (for example, linking/connecting/plug-
ging earphones into an MP3 player or using a remote control for a TV). Linking is
also supported for artifacts belonging to distinct workspaces, possibly residing on
different network nodes.

A Basic Taxonomy of Artifacts

Similar to objects and tools used by humans, artifacts can be classified ac-
cording to the functionality that they provide. In the literature, three basic
categories have been identified (Ricci et al. 2006):

- Resource artifacts This is the most general and common kind of artifact, rep-
resenting some specific kind of resource to possibly be shared by agents.
An example is the simple counter mentioned in this chapter; another is a
shared knowledge-base artifact.

- Coordination artifacts These artifacts are specifically designed to provide
coordination functionalities by enabling and managing in some way
the interaction among agents. Examples range from synchronization
mechanisms—analogous, for example, to barriers and semaphores in con-
current programming—to blackboards, auction machines, and workflow
engines, up to artifacts used for organization management, which is dis-
cussed in chapter 8.

- Boundary artifacts These artifacts allow agents to interact with human users
and, more generally, any actor or system that is external with respect to the
MAS; an example is a GUI. Other examples can be found in chapter 10.

The design and implementation of coordination and boundary artifacts in
particular may require the use of more advanced mechanisms provided by

The Environment Dimension 57

the artifact API to synchronize the execution of operations—analogously
to condition variables in monitors—and manage the execution of asyn-
chronous computations, interacting with external threads. These mecha-
nisms are introduced in the next chapters.

Working with Artifacts from an Agent Perspective

The set of actions available to agents to work with artifacts can be categorized in
three main groups:

1. actions to create/look up/dispose of artifacts;

2. actions to use artifacts, thereby triggering operations and observing properties
and signals; and

3. actions to link/unlink artifacts.

Next, we describe these actions in more detail.

Creating and discovering artifacts We start with the artifact creation and discovery
actions. Artifacts are meant to be created, discovered, and possibly disposed of
by agents at runtime; this is a basic way in which the model supports dynamic
extensibility (besides modularity) of the environment. In figure 5.5 (top), we show
a simple example in which a user agent creates an artifact and makes use of it by
performing operations, and an observer agent discovers the existence of that artifact
and reacts to changes in the observable properties.

The actionmakeArtifact (Name, Template, Params, Id) instantiates anew
artifact called Name of type Template inside a workspace, getting as an ac-
tion feedback its identifier Id. The logical name identifies the artifact inside a
workspace. Artifacts belonging to different workspaces can have the same logi-
cal name, so in addition to the logical name, each artifact has a unique identifier
generated by the system and returned as action feedback. As shown in figure 5.5
(left-hand side), in the plan for goal !create_and_use, an agent creates an ar-
tifact called c0 as an instance of the artifact template Counter, passing as initial
parameter the value 10. Dually to makeArtifact, disposeArtifact (Id) is
used for removing an artifact from a workspace.

Artifact discovery concerns the possibility of retrieving the identifier of an arti-
fact located in a workspace given either its logical name or its type description (i.e.,
the template used to create it). To this purpose, lookupArtifact (Name, Id) re-
trieves an artifact unique identifier given its logical name. In figure 5.5 (right-hand
side), the plan for goal !discover_and_observe is used by another agent (dif-
ferent from the agent that created the artifact) to look for an artifact called c0 and

instantiating
artifacts

disposing
artifacts

looking up
artifacts

executing
operations

58 Chapter 5

observe it (by focusing on it). To that purpose, it first tries to retrieve the identifier
of the artifact by means of the ! locate_count subgoal, in which it repeatedly
executes an artifact lookup until the artifact is found.

Executing operations on artifacts For agents, using an artifact essentially involves
two aspects: being able to execute operations actually listed in the artifact usage
interface, and being able to perceive artifact observable information in terms of
observable properties and signals.

For the first aspect, from an agent point of view, artifact operations repre-
sent external actions provided to agents by the environment.? By executing an ac-
tion op (Params), the corresponding operation provided by an artifact in the
workspace is triggered. As shown in figure 5.5 (left), a user agent creates an
Counter artifact named c0, and then it increments it by performing an inc action
that triggers the corresponding inc operation on the artifact. In fact, if more than
one artifact in the workspaces an agent joined provides the operation, the identifier
of the artifact target of the operation can be specified by means of an annotation

[artifact_id (Id)] following the action. If no annotation is specified and there
are multiple artifacts providing the operation, one is chosen (nondeterministically,
from the perspective of the agent).

The action executed by the agent succeeds if the corresponding operation com-
pletes with success; conversely, the action fails if either the specified operation is
not currently included in the artifact usage interface or if some error occurred dur-
ing operation execution, that is, the operation itself failed. By successfully complet-
ing its execution, an operation may generate some results that can be returned to
the agent as action feedback. By performing an action, the enclosing agent inten-
tion is suspended until an event reporting the completion of the action (with either
success or failure) is received. By receiving the action completion event, the action
execution is completed and the related plan resumed. It is worth remarking that
even if an intention is suspended, the agent is not blocked, and the agent reasoning
cycle can go on processing percepts and executing actions related to other plans.
Thus in artifact-based environments, the repertoire of external actions available to
an agent is defined by the set of artifacts that currently populate the environment.
This implies that the action repertoire can be dynamic, because the set of artifacts
can be changed dynamically by agents themselves, instantiating new artifacts or
disposing of existing artifacts.

2. See chapter 4 for the distinction between internal and external actions in agents.

The Environment Dimension 59

main

discover_and_observe

create_and_use

c0: Counter

/+ observer agent #*/

!discover_and_observe.

+!discover_and_observe <-—
!'locate_count (Id);

focus (Id) .

+count (V) <-—

/* user agent #*/ println ("count: "V .
Icreate_and_use. +tick <= println("tick!").
+!create_and_use : true <- +!locate_count (Id) <-
makeArtifact ("cO", lookupArtifact ("cO", Id) .
"Counter", [10], Id); —=!locate_count (Id) <-
inc; .wait (10);
inc [artifact_id(Id)]. 'locate_count (Id) .
Figure 5.5

Agents using and observing an artifact. At the top is a diagram for the user and observer
example. At the left is shown the user agent creating and using a Counter artifact called
c0. At the right is shown the observer agent discovering the c0 artifact, observing it, and
reacting to changes to its count observable property.

observing
artifacts

60 Chapter 5

Predefined Artifacts

Even the basic actions such as makeArtifact are like every other external
action; that is, they are uniformly available to agents because there is an arti-
fact featuring them as operations. In particular, every workspace is equipped
by default with an artifact called workspace that provides core functional-
ities for creating, searching, and managing artifacts. Moreover, it provides a
set of observable properties that make it possible for agents to know basic
dynamic information about the workspace, such as the set of available ar-
tifacts (through beliefs of the form artifact (Name, Template, Id)).
The workspace artifact is one of the predefined artifacts that are created by
default in workspaces, as basic tools that agents can use in their activities.
Other predefined artifacts include

- the console artifact, which provides operations to interact with the stan-
dard input/output (e.g., the print 1n action used in the examples); and

- the blackboard artifact, which implements a simple (tuple-space based)
blackboard, useful for agent coordination.

The complete description of these artifacts is part of the documentation
available on the platform website.

Observing artifacts Besides executing operations on artifacts, using them typ-
ically requires the capability of observing them. An agent can start perceiv-
ing observable properties and signals generated by an artifact by executing the
focus (Id,Filter) action, specifying the identifier of the artifact to observe and
optionally a filter to further select the subset of observable properties and signals
in which the agent is interested. Dually to focus, the stopFocus (Id) action is
provided for the case an agent no longer wants to observe a particular artifact.

In observing an artifact, observable properties of the artifact are mapped directly
into beliefs in the agent’s belief base. Every time an observable property on a fo-
cused artifact is updated, “behind the scenes” the artifact generates an event that
is automatically perceived by the agent and the corresponding belief is updated,
generating a belief change event.® This makes it possible to write plans that react
to changes in observable properties. In figure 5.5 (right), an observer agent first
discovers the c0 counter, and then it starts observing the artifact and reacts every
time the belief about the observable property count (V) is updated. An event is

3. Recall that changes in beliefs are one possible type of trigger for plan execution in agents.

The Environment Dimension 61

generated also when the belief related to the observable property is created for the
first time (i.e., when the focus action succeeds).

Signals, by contrast, are not related to observable properties; they are like mes-
sages generated on the artifact side that are asynchronously processed on the ob-
serving agent side. Accordingly, no beliefs about signals are kept by default.?

An agent can focus (observe) multiple artifacts at the same time, even of the
same kind. To distinguish observable properties with the same name but from dis-
tinct artifacts, beliefs about observable properties are annotated with the specific
identifier of the artifact that is the source for that belief. In particular, each belief
about the observable property of an artifact is annotated with artifact_id (Id),
artifact_name (Name), and workspace (Id), carrying on information about
the unique identifier of the artifact, its name, and the identifier of the workspace
where it is hosted, respectively. These annotations can be used, for example, in
writing agent plans:
+count (V) [artifact_name ("counter")] <- ...
+count (V) [artifact_id(Id)] <- /* use the Id */...

Important remarks about the observation semantics:

« Observation completeness The model is such that no events can be lost. That is, for
every observable state s generated by an artifact—that is, for every new value v
made observable about an observable property prop—that state is perceived by
every agent observing the artifact, and corresponding internal events are gener-
ated.

« Event ordering Observable states and events generated by an artifact are perceived
by every agent observing the artifact in the same order in which they are gener-
ated. Conversely, no order is defined between events generated by different arti-
facts.

- Atomic perception If two observable properties are changed in the same operation
execution, then their change is perceived through a single percept and the corre-
sponding beliefs on the agent are updated in the same reasoning cycle, generating
multiple internal events that can be processed in various subsequent reasoning
cycles.

Linking artifacts Finally, we describe the artifact linking actions. Artifacts in hu-
man environments are often designed to be connected together, in order to com-
bine their functionalities. Analogously, artifacts here can be linked together by
agents to allow one artifact (the linking one) to execute operations over another

4. Of course, occasionally an agent may want to remember that a particular signal occurred, which can
easily be done by the agent by adding a particular belief to its belief base when reacting to the signal.

linking artifacts

62

public class LinkingArtifact
extends Artifact {

private static final String

linkedCount = "linkedCount";

void init () {

Chapter 5

public class LinkableArtifact

extends Artifact {

int count;

void init () {

definePort (linkedCount) ; count = 0;
} }
QOPERATION @LINK
void test () { void inc () {
execLinkedOp (linkedCount, "inc") ; count++;
} }
QOPERATION Q@LINK

void test2 (OpFeedbackParam<Integer> v) { void getValue (
execLinkedOp (linkedCount, "getValue", v); OpFeedbackParam<Integer> v) {
log ("back from linked op.: "+v.get()); v.set (count) ;

} }

test_link.

+!test_link
<— makeArtifact ("myArtifact","LinkingArtifact", [],Idl);

makeArtifact ("count", "LinkableArtifact", [],Id2);
linkArtifacts (Idl, "linkedCount",Id2);
println("artifacts linked: going to test");
test;
test2 (V) ;
println("value ",V).

Figure 5.6

Linking artifacts. On the left is an example of linking artifact. A port named 1inkedCount
is defined and used to trigger the execution of operations on the linked artifact through
operations test and test2. On the right is an example of a linkable artifact. The operations
annotated with @LINK can be called by linking artifacts. At the bottom, an agent creates two
artifacts, linking them together, and executing operations on the linking artifact.

artifact (the linked one, which should be linkable by exposing a proper link inter-
face). To link together two artifacts, the action 1inkArtifacts (LinkingArId,
LinkedArId, Port) is made available to agents.

On the linking artifact side, the notion of Port is used to (indirectly) refer to
the linked artifact in the artifact code. Once artifacts have been linked together,
the linking artifact can execute operations on the artifact attached to some Port by
means of an execLinkedOp (Port, OpName, OpArgs) primitive. Figure 5.6 (left)
shows an example of linking artifact defining a 1inkedCount port and using it in
the test and test2 operations to execute operations over the linked artifact.

On the linked artifact side, a link interface is exposed, defining the set of operations
that can be executed by linking artifacts. A link interface is defined by annotating

The Environment Dimension 63

with @LINK those operations of an artifact that can be linked by other artifacts.’
Figure 5.6 (right) shows an example of a linkable artifact exposing a couple of op-
erations annotated with @LINK. The semantics of the link operation execution is
the same as operations executed by agents: the operation request executed by the
linking artifact is suspended until the operation on the linked artifact has been ex-
ecuted, whether with success or failure.

Figure 5.6 (bottom) shows an example of agent code creating and linking two
artifacts (a LinkingArtifact and a LinkableArtifact) and then interacting
with the linking artifact, indirectly executing operations also on the linked one.

Modularity—Encapsulation—Reusability

The environment model used in JaCaMo has many of the most impor-
tant features expected of programming languages and software engineering
methodologies. For example, artifacts provide a natural means for modular-
ity because artifacts can relate to other artifacts through linked operations.
An artifact is foremost a mechanism for encapsulation, because all the oper-
ations and observable properties conceptually related to an artifact entity
perceivable by agents are implemented within the same artifact construct.
Another important feature is reusability; needless to say, the same artifact
template will be useful in many different systems that a developer may want
to implement—think of a table, a blackboard, a coffee machine, or any other
real-world artifact; and it will be easy to see how frequently the same arti-
facts are useful in many different contexts, and the same applies to artifacts
in different multi-agent systems.

Structuring Artifacts into Workspaces

As mentioned in 5.1, in the environment model adopted in JaCaMo, artifacts are
collected into workspaces, defining the topology of the environment. A workspace
can be understood as a logical place containing artifacts, as well as a context of work
for agents’ activities. In order to access and use the artifacts of a workspace—that
is, in order to share that context of work—an agent must first join it. An agent can
join and work in multiple workspaces, and multiple agents can work in the same
workspace concurrently.

By default, an MAS contains a single workspace. A complex environment, how-
ever, can be structured in terms of multiple workspaces, organized hierarchically,

5. The same method can be marked with both @LINK and @QOPERATION to represent an operation that
is part of both the usage and the link interface.

joining a
workspace

creating a
workspace

disposing of a
workspace

64 Chapter 5

my_bakery
cake_room kitchen bread_room
Legend
"""""""""""""""""" workspace name
food_store :

e——» creation/ownership link

Figure 5.7
Overview of distributed environments.

similar to file systems; see figure 5.7. There is a root workspace called main by
default, but more specific names can be used; for instance, in figure 5.7, the root
workspace is called my_bakery. Each workspace can have one or more child
workspaces but only one parent. As in file systems, logical paths can be used to
refer to a workspace, for example, /my_bakery/cake_room.

On the agent side, some actions are available to work with workspaces. First,
agents are spawned, or enter an MAS, in a specific workspace (their home
workspace), which does not usually change during their lifetime within that MAS,
except in the case of mobile agents. Once an MAS has been entered, an agent can
work concurrently in multiple workspaces of the MAS by simply joining them.

A joinWorkspace action canbe used tojoin any workspace of the MAS by spec-
ifying the full path name of the workspace and getting its unique identifier as action
feedback.® An example is joinWorkspace ("/my_bakery/cake_room", Id).
Once a workspace is joined, the agent can interact with all the artifacts in that
workspace. To exit a workspace, the quitWorkspace (Id) action is provided.

Besides joining, an agent can create a new workspace by means of a
createWorkspace action, specifying the identifier of the parent workspace and
the logical name to be used for the new child workspace. Workspaces can be
disposed of as well, by means of a removeWorkspace action, specifying the full

6. The workspace identifier output parameter is optional.

The Environment Dimension 65

name (path) of the workspace to be removed. Finally, to create an access link be-
tween two workspaces, there is the action 1inkWorkspaces (From, To, Name),
where From is the path of the workspace where the link is created, To is the path
of the workspace to be linked, and Name is the label of the access link.

A simple example of agent source code working with workspaces is shown:

+!test_workspaces
<- createWorkspace ("/main/w0") ;
joinWorkspace ("/main/w0",WO0) ;
println("hello in ",WO0);
createWorkspace ("wl");
joinWorkspace ("wl",WO0) ;
println("hello in ",W1).

The agent creates a couple of workspaces—w0 and wl—and then joins them, print-
ing a message on their console artifact (which is available by default in every
workspace).

A couple of points deserve further attention and explanation. The first point
concerns how the second workspace w1 is referenced; as for file systems, a rela-
tive path is used instead of an absolute path—relative paths don't start with /.
That is, analogously to the notion of the current directory in using operating sys-
tem shells, there is in this case the notion of current workspace, which corre-
sponds to the last workspace joined (in the case that the agent is working concur-
rently in multiple workspaces). Relative paths are solved with respect to the cur-
rent workspace. In the example, when an agent in an MAS is booted, by default
it joins the root workspace (called, by default, main). By creating and joining the
w0 workspace, w0 becomes the current workspace. Then, the workspace w1 is cre-
ated as a child of w0, because a relative path w1 is used to reference the workspace.
This is equivalent to createWorkspace ("/main/w0/wl"). It is worth noting
that, like in file systems, .. can be used to refer to the parent workspace, so
createWorkspace ("../wl") would have created the workspace inside main.

The second point, related to the first one, concerns the execution of operations
over artifacts without specifying the artifact identifier (or the target workspace).
In the example, the action println refers to the corresponding operation pro-
vided by the console artifact. A plausible question here could be “If the agent
is working in multiple workspaces, which specific console artifact is used when
the action println is requested?” The answer is that the current workspace is
used; that is, when an action (operation) is specified without including the arti-
fact identifier, the current workspace is implicitly considered to be the target, and
then an artifact providing that operation is considered in that workspace. There-
fore, in the example, the first hello message is printed by the console artifact
in workspace w0, whereas the second hello message is printed by the console

66 Chapter 5

artifact in workspace wl. The current workspace is meant to represent the current
context of work of an agent and, for this reason, it is bound to the current intention
in execution; that is, each intention can have its own current workspace, and if an
agent has multiple intentions in execution at the same time, the current workspace
is automatically switched according to which intention is executing.

Finally, workspaces of the same MAS can be created and be in execution on dif-
ferent network nodes, yielding a distributed system. For instance, as shown in fig-
ureb5.7, my_bakery, kitchen,and food_storage workspaces could be running
on some node, while cake_room and bread_room could be running on some
other hosts. The same node can host the execution of multiple workspaces, whereas
a workspace is in execution on a specific node (that is, a single workspace is not dis-
tributed). This topic is fully developed in chapter 7.

5.3 Environment Execution

On the agent side, control flows are needed to execute reasoning cycles, carrying on
agent activities. On the environment side, control flows are needed to execute oper-
ations triggered inside artifacts. The execution model of operations inside artifacts
is such that

- operations requested on different artifacts—either by different agents or the same
agent—can be executed concurrently, possibly by different control flows; and

- operations requested on the same artifact are executed sequentially, enforcing
mutual exclusion; that is, only one operation at a time can be in execution within
an artifact.

If an agent requests the execution of an operation over an artifact where another
operation (or the same one) is already in execution, the request is enqueued and
served as soon as the current operation execution has finished or it has been sus-
pended.” On the agent side, the execution of the corresponding (external) action
is suspended, that is, the intention in execution is suspended (see section 4.3), un-
til an action event corresponding to the completion of the operation (either with a
success or a failure) is perceived. In fact, each time an operation in execution fin-
ishes, a corresponding action event (either completion with success or failure) is
generated and delivered to the agent that triggered that operation.

The execution of an operation inside an artifact can change the observable state
of the artifact and generate signals as well. An important point here concerns the
semantics adopted to make such an observable state and related changes, as well as

7. More about suspended operations is provided in chapter 7.

The Environment Dimension 67

signals, available to agents focusing the artifact as percepts. Such semantics follows
the following principles (mentioned in a previous section):

- Inside an operation, it is possible to update multiple observable properties with-
outnecessarily making each single update observable. In that case, agents observ-
ing the artifact perceive a new observable state of the artifact in which possibly
multiple properties have been changed.

- Each time a signal is generated, it is made immediately perceivable by observing
agents, along with the current observable state of the artifact.

- The order of the changes—that is, sequence of observable states—occurring in-
side the artifact should be preserved when perceived by agents, and no change
or event should be lost.

This semantics impacts the API used to implement artifacts as follows:

- Inside an operation, in updating an observable property (e.g., by calling an
updateValue method), the observable property is updated but the new state
is not made immediately observable to the agent.

- The new state is made observable at the end of the operation execution, or when
a signal is generated (with the signal primitive), or by an explicit commit on
the observable state. This can be accomplished by calling a specific primitive in-
cluded in the artifact API, called commitObsState ().

Artifacts vs. Objects and Monitors

Artifacts have some similarities to objects in OOP. Like objects, artifacts can
be used to model nonautonomous entities providing an interface to be used,
composed by a set of operations. The agent-artifact interaction model, how-
ever, is profoundly different with respect to the model adopted in OOP to
define the interaction between objects. In the case of objects, a method call
implies a transfer of control between an object (calling method) and an-
other object (called method), as in the case of procedure calls. That is, it is
a synchronous call. In the agent-artifact case, control is encapsulated inside
agents and cannot be transferred. Therefore an agent invoking an operation
over an artifact—that is, executing an action—is not transferring the con-
trol; the execution of the triggered operation is carried out by another logi-
cal control flow, provided by the environment. On the agent side, the plan in
execution is suspended until the action in execution is either completed or
failed—it is notified by means of an event (an action event). Even if the plan
is suspended, the agent reasoning cycle goes on because of encapsulation of
control, so other intentions will continue to be pursued by the agent.

68 Chapter 5

Another main difference with respect to objects is about observable prop-
erties. Objects in OOP conceptually do not have an observable state com-
posed of properties; a good practice in OOP is to model every interaction
with objects through a proper interface (that is, methods). Accordingly, in-
stance fields in objects should be declared private, to enforce information
hiding. This is the case also of artifacts, which can have a hidden private
state. However, the advanced concept of observable properties in artifacts is
strongly related to the agent abstraction as an entity acting and perceiving
its environment, given that an environment has some observable state. This
is directly captured in artifacts by observable properties. It is worth noting
that observable properties in artifacts are not like object instance fields that
are declared public. In fact, observable properties cannot be directly written;
they can be modified only by artifact operations. Besides, changes to observ-
able properties raise them automatically to observable events that are per-
ceived by agents observing (that is, focusing their attention on) the artifact.
The stream of events generated by changes to an artifact observable property
is quite similar to the asynchronous streams in reactive programming.

Like monitors in concurrent programming, artifacts can be safely used by
multiple agents concurrently—they are thread-safe by construction. In fact,
as in monitors, in artifacts only one operation can be in execution at a time, so
mutual exclusion is enforced. There could be multiple operations that have
been triggered and are in execution; however, in that case all but one are
suspended (for instance, in awaiting some condition). Monitors, too, have
a different model for the interface. When a process invokes an entry on a
monitor, the process control flow is transferred, as in the case of objects—
that is, conceptually, the control flow executing entries inside monitors is
one of calling processes. As mentioned previously, this is not the case for
artifacts. Monitors can execute operations in other monitors, even though
this an error-prone practice, that can easily lead to deadlock situations—
in fact, when a monitor calls the entry of another monitor, the lock on the
calling monitor is not released. Artifacts use linkability as a more disciplined
way to model interactions between artifacts.

5.4 Bibliographical Notes

In the classical Al view (Russell and Norvig 2003), the notion of environment is
used to identify the external world (with respect to the system, being a single agent
or a set of agents) that is perceived and acted upon by the agents so as to fulfill their

The Environment Dimension 69

tasks. In agent and multi-agent system literature, the environment is a primary con-
cept, to explicitly represent the computational or physical place where agents are
situated, defining the notion of agent perception, action, and agent goals, defined
in terms of states of the world that an agent aims to bring about. The idea of envi-
ronment as a first-class abstraction for MAS engineering has grown up in the context
of agent-oriented software engineering (Weyns et al. 2007), enhancing the classical
view by seeing the environment as a suitable place to encapsulate functionalities
and services to support agent activities. We refer the interested reader to Weyns and
Parunak (2007) for a survey of the research developed in this context. Among that
work, some explored the idea focusing on the architectural level; in that case, the
architecture of MAS is extended with an environment layer, encapsulating some
functionalities (Weyns and Holvoet 2006). Some others instead explored the idea
down to the programming level (Ricci et al. 2010), which is the perspective adopted
in this book.

A further important perspective that involves the environment dimension in
MAS is given by the Environment Interface Standard (EIS) initiative (Behrens et al.
2011), which provides an effective support to integrate agents written in different
agent technologies to work in the same application environment. EIS has been used,
for instance, to integrate cognitive agents developed in the GOAL language (Hin-
driks 2009) as bots in the Unreal game environment (Hindriks and Dix 2014),
and as the reference environment interface in the Multi-Agent Programming Con-
test (Behrens et al. 2012).

Exercises

Exercise 5.1 Extend the Calculator artifact introduced in section 5.2 as follows:

a) add an operation sum(a: double, ?result: double) that computes the sum of
the argument passed a and the last result, updating accordingly the observable proper-
ties and the output parameter; and

b) add an operation to memorize the last result (storeResult) so as to recall it in the
future by means of a recall operation, which is meant to reset the lastResult ob-
servable property with the stored result.

Write a JaCaMo program with an agent testing the calculator.

Exercise 5.2 Design and implement a SharedDictionary artifact that functions as a
shared dictionary. The dictionary keeps track of information items identified by a keyword
(a String) and a corresponding content (a Jason Term). The artifact should provide an op-
eration for adding new information items and for retrieving an information item given the
key.

70 Chapter 5

Exercise 5.3 Extend the preceding artifact with the possibility of perceiving the content state
of the dictionary as observable, so that agents can observe that state and potentially react to
changes in it.

Exercise 5.4 Design and implement a TicTacToeBoard artifact for agents playing the tic-
tac-toe game.

Exercise 5.5 Implement a full tic-tac-toe JaCaMo game in which two agents play the game
using the TicTacToeBoard artifact.

6 Programming an Agent and Its Environment

In this chapter, we see in practice the programming of agents within an environ-
ment by considering a toy (but realistic) scenario referred to as a smart room. In this
chapter, we proceed step by step to program a simple single-agent system control-
ling the temperature of a room. The case study is further extended with multiple
agents situated in the same working environment, focusing on the programming
of interaction among agents in chapter 7 and on the programming of agent organ-
izations in chapter 9. Both chapters investigate how we can coordinate the work of
the agents so that they produce a coherent and cooperative global behavior.

6.1 Programming a Proactive Smart Room

We start with a very simple JaCaMo program that has the objective of controlling
the temperature of a room so that it reaches some desired value. Given the avail-
ability of multiple design and programming dimensions, we investigate here how
to exploit them incrementally. For now we concentrate on the programming of au-
tonomous agents and artifacts in the environment.

Designing the agent and the environment In order to design the environment
and the agent operating in it, we apply the separation-of-concerns principle dis-
cussed in chapter 2. As shown in figure 6.1, we thus design our first JaCaMo pro-
gram in terms of

- the control and decision-making activities needed for the system to au-
tonomously achieve its objectives. We encapsulate them using the agent abstrac-
tions and define a room_controller agent. This agent has the initial simple
goal of bringing the temperature of the room to some specific value; and

- the tools or resources that are necessary to realize these activities, i.e., tools and
resources that the agents need to achieve their objectives. These tools and re-
sources also include what is needed to interface and interact with the external
environment. We use environment abstractions to model and program them:

artifact usage
interface

72 Chapter 6
room
hvac : HVAC
rc: startCooling/0
room_controller I:VD W"’m‘
‘ startHeating/0 [

Figure 6.1

The room_controller agent acting on and perceiving the hvac artifact in the room
workspace.

- an hvac artifact, with the basic actions and observable properties, providing
to the agent the means to control the HVAC device, encapsulating and hiding
related machinery; and

- a room workspace, representing the room location where the agent and the
artifact are (logically) situated.

In this simple case, the hvac artifact triggers an activity of heating or cooling,

that at some point will need to be stopped or started (see the statechart diagram in
defining the figure 6.2). It has the following usage interface:

startCooling operation to start cooling, switching on the cooling process
available in the HVAC device;

startHeating operation to start heating; and

stopAirConditioner operation to stop cooling or heating.

The operations have no parameters.
The usage interface includes also the observable properties that make it possible
for the agent to perceive the state of the world (of interest in this example):

the temperature observable property, representing the current temperature of
the room, which is meant to be measured by a thermometer component of the
HVAC device; and

the state observable property, representing the current state of the HVAC,
which could be idle, cooling, or heating.

Separating the programming of the tools and resources in the artifacts from the

control and decision making in the agents enables the independent refinement of
each of them as long as the interfaces between agents and environment are kept sta-
ble, that is, the set of actions and observable properties defining the usage interface

Programming an Agent and Its Environment 73

$ start

nothing

do / nothing

startCooling startHeating

cooling /—\ heating
startHeating

do / cooling do / heating

\/

startCooling

Figure 6.2
Statechart diagram of the hvac artifact.

of the artifact. For instance, we can envision reusing the same hvac artifact un-
der different control strategies programmed in the room_controller agent. The
same room_controller agent may be also used with different kinds of HVAC
physical devices, which could be represented by different artifacts featuring the
same interface. The availability of both agent and artifact abstractions promotes
thus the separation of concerns and allows for modularity, which in turn helps ab-
straction, reusability, and extensibility.

Good Practice for Designing Agents and Artifacts

At the design level, should we start first identifying agents or artifacts? Ac-
tually there are no strict rules. Depending on the application, both activities
can be done at the same time in an iterative design, or in sequence, identi-
fying first the agents and then the artifacts, that is, defining operations and
observable properties to satisfy the actions and beliefs requirements, or in-
versely, considering beliefs and actions on basis of the observable properties
and operations. The most important is to provide the right abstractions for
defining an artifact usage interface so that agents can act on them and per-
ceive the right properties of their state.

defining agent
goals

defining agent
plans

74 Chapter 6

Having a separate design and programming of the tools and resources in
the artifacts from the control and decision making in the agents enables the
independent refinement of each of them as long as the set of actions and ob-
servable properties defining the usage interface of the artifact is kept stable.
The ultimate goal is to be able to reuse the same artifact under different con-
trol strategies programmed in agents and to use the same agent on different
artifacts that have the same usage interface but are implemented in different
ways.

Programming the room controller agent From the decisions and design sketched
in the previous section, we program the room_controller agentby first defining
its goals and then the plans to achieve them.

We start with programming the agent’s achievement goal, which represents the
task we expect the agent to do. As explained in chapter 4, achievement goals are
denoted by the operator ! followed by a literal. A [iteral is an atomic formula as in
logic programming, possibly negated. The achievement goal in our running exam-
ple can be written as

!temperature (TargetValue)

The logical wvariable TargetValue stands for a concrete number, as in
'temperature (24), for instance. The meaning is that the agent has the goal
to achieve a state of the world in which the specified room temperature has been
reached. This representation explicitly refers to the literal temperature (Value),
that is, the same literal used to represent the agent belief about the current temper-
ature. This belief corresponds to the t emperature observable property perceived
from the hvac artifact. This property has been designed to represent the current
temperature of the environment. This belief is automatically generated and kept
updated within the agent’s belief base as soon as the agent starts observing the
hvac artifact. Each time the artifact changes its observable property, the agent au-
tomatically perceives the change through a percept, the corresponding belief is up-
dated, and a belief change internal event is generated.

The agent wants to achieve a state of the world in which that property has the
specified target value. The goal could be assigned to the agent either dynamically
atruntime (e.g., through communication, as described in the next chapter) or when
the agent is launched, or it could even be statically specified in the agent source
code.

Given a goal to achieve, we have to program how to handle this kind of goal, that
is, which plans can be used for that purpose. The strategy to define those plans

Programming an Agent and Its Environment 75

depends on the set of available actions that the agent can use to affect the envi-
ronment. Such a set is constrained by the physical or merely external environment
where the system is situated (for instance, the functionalities provided by a phys-
ical HVAC system). Artifacts make it possible to design the logical environment
made accessible to agents by defining the set of actions and observable properties—
choosing the best level of abstraction from the agent point of view.

Given the set of actions in the usage interface of the hvac artifact, a first simple
strategy for the plan to achieve the goal ! temperature (TargetValue) is

1. to start cooling if the current temperature is higher than the target one, and go
on cooling until the target temperature is reached;

2. analogously, to start heating if the current temperature is lower; and

3. to stop working when the target temperature is reached.

This strategy can be implemented by the following three plans:

@start_cooling // start_cooling is the name for the plan
+!temperature (T) : temperature(C) & C > T
<- startCooling;

fcool_until(T).

@start_heating
+!temperature (T) : temperature(C) & C < T
<- startHeating;

theat_until (T).

@stop
+!temperature (T) : temperature(T)
<— stopAirConditioner;
println ("Temperature reached ", T).

In our example, the three plans are triggered by the same triggering event, namely,
+!temperature (T), thatis, the new goal of achieving the specified temperature.

As shown, an agent can have multiple plans that are relevant for the same goal
to be achieved, as alternatives to be used depending on the situation. In our ex-
ample, the three plans have to be used when the perceived temperature is lower
than, greater than, or equal to, respectively, the target temperature. The first plan is
applicable when the agent believes that the current temperature is higher than the
temperature to be achieved. In that case, the action is to start cooling the environ-
ment (action startCooling) and then go on until the temperature perceived is
the target temperature, which is the reason for the subgoal ! cool_until (T).The
second plan is analogous; it is selected when the temperature is lower than desired
and acts by starting the heating system. The third plan completes the strategy: it is
selected when the perceived temperature is the desired one and simply stops the

decomposing
goals into
subgoals

factorizing the
code

76 Chapter 6

air conditioning system (action stopAirConditioner) and prints a message on
the standard output.

This first example allows us to introduce and discuss a main feature of agent
programming, which is the possibility to decompose a goal into subgoals and
then define corresponding plans for each goal. This is an important feature for
modularizing the agent design and implementation. In the code of the plans
@start_cooling and @start_heating, !'heat_until and !cool_until
are examples of subgoal creation. When, for example, 'heat_until is executed,
anew goal event is generated and the execution of @start_heating planis sus-
pended until the goal has been achieved or a goal failure has been generated. Be-
cause it is a subgoal of a goal for which there is an intention in execution, when
an applicable plan is found to handle it, no new intentions are created, but rather
the plan is stacked on top of the plans already in execution that are related to that
same intention.

A possible implementation of the plans for achieving the subgoal ! heat_until
is as follows:

@heat_until_stop
+'heat_until (T) : temperature (T)
<— stopAirConditioner;
println ("Temperature reached ",T).

@heat_until_heat
+!heat_until (T): temperature(C) & C < T
<—- .wait ({+temperature(_)}); // wait until temperature changed
theat_until(T) .

@heat_until_loop
+!heat_until (T): temperature(C) & C > T
<- ltemperature (T) .

That is, in the case that the target temperature is achieved, then stop the HVAC
(plan @heat_until_stop). Otherwise, go on heating—that is, carry on trying to
achieve the 'heat_until (T) goal—if the temperature is still lower than it should
be (plans @heat_until_heat and @heat_until_loop).

In order to avoid repetition in the formula expression in the plan contexts, we
can define prolog-like rules, refactoring the code as follows:
is_colder_than(C,T) :- temperature(C) & C < T.
is_warmer_than(C,T) :— temperature(C) & C > T.
in_range(C,T) :-—

not is_colder_than(C,T) & not is_warmer_than(C,T).

@start_cooling
+!temperature (T) : temperature(C) & is_warmer_than(C,T) <-

Programming an Agent and Its Environment 77

@start_heating

+!temperature (T) : temperature(C) & is_colder_than(C,T) <-—
@stop
+!temperature (T) : temperature(C) & in_range(C,T) <-

@heat_until_stop
+!'heat_until (T) : temperature(C) & in_range(C,T) <-

@heat_until_heat
+!'heat_until (T) : temperature(C) & is_colder_than(C,T) <-

@heat_until_loop
+!'heat_until (T) : temperature(C) & is_warmer_than(C,T) <-—

Finally, we further refine the solution by taking into account a threshold to avoid a
hysteresis phenomenon. To that purpose, we add a belief threshold (Th) to the defining agent
agent program to keep track of the threshold and revise the predicates as follows: Pefiéfs

threshold (5) .

is_colder_than(C,T) :-

temperature(C) & threshold(DT) & (T - C) > DT.
is_warmer_than(C,T) :-

temperature (C) & threshold(DT) & (C — T) > DT.
So, as well as being used to represent the information about the environment avail-
able to the agent, beliefs can be used on the agent side to keep track of any kind
of internal information (that is, mental notes), which can be updated by means of
special internal actions used in plans. When a belief appears in agent code, we call
it an initial belief. We subsequently show that beliefs can also be used to represent
information received from other agents through communication.

Theoretical vs. Practical Reasoning

In programming agents, one can use two types of reasoning: theoretical rea-
soning, that is, reasoning over beliefs by querying the belief base and de-
riving new beliefs; and practical reasoning, that is, reasoning directed to-
ward actions by decomposing goals into subgoals until executing actions.
Whereas practical reasoning is captured by the agent plans, theoretical rea-
soning is captured by prolog-like rules. Such rules are used to derive new be-
liefs from perceived, communicated, or generated ones. They are also used
to simplify the writing of conditions used in plans by making them more

78 Chapter 6

succinct and easier to read. Using such rules helps to make plan contexts
much more compact. They can be used to factorize some of these conditions
that appear in the context part of agent plans.

Programming the HVAC artifact Now we consider the implementation of the
hvac artifact, implementing the usage interface designed in the previous section
(shown in figure 6.1). In a real-world application, an artifact implementing an
HVAC would wrap the code used to access the physical device, managing the ac-
tuators and the sensors. In this example we abstract away from that level, imple-
menting a simulated HVAC instead.

As presented in chapter 5, an artifact is defined by extending the Artifact
class. Operations are implemented as methods annotated with QOPERATION, and
observable properties are defined by means of the defineObsProperty prim-
itive. They can be accessed using the getObsProperty method. From the de-
sign given in the previous section, the HVAC artifact template has a couple of ob-
servable properties—state and temperature—and operations to start and stop
cooling/heating. They are programmed as follows:

public class HVAC extends Artifact ({

void init (double initialTemperature) {
defineObsProperty ("state"”, "idle");
defineObsProperty ("temperature”,initialTemperature) ;

QOPERATION void startHeating() {
getObsProperty ("state") .updateValue ("heating");
execInternalOp ("updateTemperatureProc”,0.5);

Q@OPERATION wvoid startCooling() {
getObsProperty ("state") .updateValue ("cooling");
execInternalOp ("updateTemperatureProc",-0.5);

@OPERATION wvoid stopAirConditioner () {
getObsProperty ("state") .updateValue ("idle");

@INTERNAL_OPERATION wvoid updateTemperatureProc (double step) {
ObsProperty temp = getObsProperty ("temperature");
ObsProperty state = getObsProperty("state");

O ® N G R W N e

10

Programming an Agent and Its Environment 79

while (!state.stringValue () .equals("idle")) {
temp.updateValue (temp.doubleValue () + step);
log ("Temperature: "t+temp.doubleValue());
await_time (100);

}

The name used to define an operation (e.g., startHeating) or an observable
property (e.g., temperature) must then be used in the same way on the agent
side to refer to the corresponding action and belief.

In this simulated version, the heating/cooling operations directly change the
value of the temperature, increasing or decreasing it, respectively, step by step.
This increasing/decreasing process is implemented by the internal operation
updateTemperatureProc, triggered by the execInternalOp primitive.

Defining and running the smart room JaCaMo program To complete our first
JaCaMo program, we need to define the main application file specifying the initial
set of agents and artifacts that must be created, their location in workspaces, and
other configuration details.

mas smart_room {

agent rc : room_controller.asl {
goals: temperature (21)
focus: room.hvac

}

workspace room {
artifact hvac: devices.HVAC(15)
}

In this case we have a single room workspace (line 8), hosting an agent called
room_controller (line 5; by focusing on the hvac artifact situated in room
workspace the agent joins this workspace), and an artifact called hvac (line 9),
whose structure and behavior is defined by the Java class whose full name is
devices.HVAC—that is, the class HVAC is stored in a package called devices.
The application file allows us to instantiate artifacts by specifying parameters (e.g.,
15 in the example) that are passed to the artifact constructor init.

The application file also allows the specification (line 4) of the initial set of beliefs
and goals of the agent (e.g, the goal temperature (21) in our case), as well as
the specification of the artifacts that the agent wants to observe (i.e., hvac) as soon
as it is spawned (used in the application file of the instruction focus on hvac in

JaCaMo
application file

80 Chapter 6

CArtAgO Http Server running on http://192.168.125.30:3273
Jason Http Server running on http://192.168.125.30:3272
[Cartago] Workspace room created.

[hvac] Temperature: 15.0

[Cartago] artifact hvac: devices.HVAC(15) at room created.
[room_agent] joinned workspace room

[room_agent] focusing on artifact hvac (at workspace room) using namespace default
[room_agent] It is too cold -> heating...

[room_agent] Temperature perceived: 15

[hvac] startHeating

[hvac] Temperature: 15.5

[room_agent] Temperature perceived: 15.5

[hvac] Temperature: 16.0

[room_agent] Temperature perceived: 16

[hvac] Temperature: 16.5

[room_agent] Temperature perceived: 16.5

[hvac] Temperature: 17.0

[room_agent] Temperature perceived: 17

[hvac] Temperature: 17.5

[room_agent] Temperature perceived: 17.5

[hvac] Temperature: 18.0

[room_agent] Temperature perceived: 18

[hvac] Temperature: 18.5

[room_agent] Temperature perceived: 18.5

[hvac] Temperature: 19.0

[room_agent] Temperature perceived: 19

[hvac] Temperature: 19.5

[room_agent] Temperature perceived: 19.5

[hvac] Temperature: 20.0

[room_agent] Temperature perceived: 20

[hvac] Temperature: 20.5

[room_agent] Temperature perceived: 20.5

[hvac] Temperature: 21.0

[room_agent] Temperature perceived: 21

[hvac] Temperature: 21.5

[hvac] stopAirCond

[room_agent] Temperature perceived: 21.5

[room_agent] Temperature achieved 21

Figure 6.3
Smart room execution.

the room workspace). In this simple example, all the components of the system
are defined at initialization time in the application file. However, as introduced in
chapter 5 and to be further discussed, elements of the system (e.g., agent, artifact,
workspace, goal, and belief) can be defined at runtime by the agents themselves.

In this first implementation, we have a very simple example of an agent perceiv-
ing and acting on the hvac artifact. The goal-directed behavior is fixed by the user
in the application file with the initial goal temperature (21) . The agent is merely
executing the plans that are possible in the state of the environment under this goal.
In the following, we introduce how agents can create goals and adapt their goal-
directed behavior to the evolution of the environment.

Programming an Agent and Its Environment 81

6.2 Adding Reactivity to the Smart Room

A main feature of agents is the ability to promptly react to events perceived from the
environment while also proactively carrying out behavior to achieve goals by exe-
cuting appropriate actions. To see this in our running example, we extend the capa-
bility of the room_controller agentso that along with being capable of bringing
the environment temperature to the specified level, we also want the agent fo main-
tain the desired temperature. That is, after a particular temperature is reached, the
room temperature might change, and in that case the agent should react to such a
change in the environment so as to bring back the temperature to the desired level.

To make the agent able to react to the evolution of the environment, we exploit a
main feature in agent programming: programming reactive behavior using the agent
plans. These plans are triggered and executed in reaction to changes perceived from
the environment, or to be more precise, changes in the beliefs about the state of the
environment.

We thus extend the set of plans of room_controller with the following plan:

+temperature (C) :
preferred_temperature(T) & not in_range(C,T) &
not .desire (temperature(_))
<- ltemperature (T) .

This plan might be triggered each time the belief about the current room tem-
perature changes (that is, represented by the event +temperature (C)). In case
the new perceived temperature is out of range with respect to some preferred
temperature and the agent does not already have an intention about achiev-
ing the target temperature (use of the internal operation .desire), a new goal
'temperature (T) is created.

Programming Reactive and Proactive Behavior

Two main kinds of behavior can be programmed in an agent, based on the
following simple patterns of code:

- goal-directed behavior, in which a plan is triggered by the creation of some
goal (e.g. ! g1) that the plan aims at achieving
Flgl 8 coo €= oo

- belief-directed behavior, in which a plan is triggered by the creation of
some belief (in the following, b):
O 8 coo &=

On the basis of these two main triggering patterns, one can program in an
agent:

programming
reactive
behavior

updating
beliefs

82 Chapter 6

- areactive behavior in which the agent executes actions in reaction to some
event, that is, the body of the plan triggered by the creation of the corre-
sponding belief is composed of actions to execute; and

- a proactive behavior in which the agent creates goals in reaction to some
event, that is, chaining the achievement of goals and subgoals.

+b : ... <= !gl.
+!gl : ... <= al; !'qg2; a2.
+!g2 : ... <=

To keep track of the preferred desired temperature, we introduce the new belief
preferred_temperature/1. The belief can be changed (created or updated) in
plans that handle ! temperature (T) goals. The plans of the room_controller
agent can be revised as follows:

+!temperature (T)
<- —t+preferred_temperature (T);
ltachieve_temperature (T) .

+!lachieve_temperature (T): temperature(C) & in_range(C,T)
<— println("Temperature reached ",T).

+!lachieve_temperature (T): temperature(C) & is_colder_than(C,T)
<- println ("It is too cold, heating up...");
startHeating;
theat_until(T) .

+!achieve_temperature (T): temperature(C) & is_warmer_than(C,T)
<- println ("It is too hot, cooling down...");
startCooling;
fcool_until(T).

In the first plan, the operator —+ updates the belief with the new value, by atom-
ically doing a removal of the respective belief (-preferred_temperature (_))
and then adding it to the new value (+preferred_temperature (T)).

On the artifact side, the HVAC artifact is extended to include a GUI that allows
the user to dynamically change the temperature by means of a slider component,
to simulate a real environment. As soon as we have changed the temperature of
the room (by means of the GUI), the agent reacts accordingly to drive the current
temperature to the preferred one.

Programming an Agent and Its Environment 83

Interacting with the User by Means of Artifacts

Artifacts can be used in JaCaMo to develop GUI components that allow
agents to interact with users. This can be done by developing the GUI el-
ements separately and then exploiting the CArtAgO API to safely access
artifacts from these elements, in order to update observable properties, for
example. To illustrate this approach, the HVAC artifact is equipped with
a TemperatureSensorPanel frame—implemented using the Java Swing
API—that allows the user to change dynamically the temperature by means
of a Jslider component.

public class HVAC extends Artifact ({
private TemperatureSensorPanel sensorPanel;

void init (int temp, int prefTemp) {

sensorPanel = new TemperatureSensorPanel (this, temp) ;
sensorPanel.setVisible (true) ;

}

void notifyNewTemperature (double value) {

getObsProperty ("temperature"”) .updateValue (value) ;
}
}

class TemperatureSensorPanel extends JFrame {
private JTextField tempValue;
private JSlider temp;

public TemperatureSensorPanel (HVAC hvac, int startTemp) {
setTitle("..:: Temperature Sensor ::..");

temp = new JSlider (JSlider.HORIZONTAL, 5, 45, startTemp);
temp.addChangeListener ((ev) —-> {

JSlider source = (JSlider) ev.getSource();
int value = (int) source.getValue () ;
tempValue.setText (""+value);

if (!source.getValueIsAdjusting()) {
hvac.beginExtSession () ;
hvac.notifyNewTemperature (value) ;
hvac.endExtSession () ;

In the source code of the panel, a listener attached to the slider com-
ponent is executed each time the slider position is changed. The control
flow executing the listener is the one from the Swing toolkit (that is, the

defining failure
action events

84 Chapter 6

Swing Event Dispatcher Thread). In order to allow an external control flow
to interact with artifacts without interfering with the ones used by the
environment runtime, an external session must be explicitly requested by
means of the beginExtSession method provided by artifacts. After be-
ginning the session, the external control flow can safely execute methods
of the artifact (e.g., hvac.notifyNewTemperature) in a mutually exclu-
sive way, without creating interferences. The session must be closed with a
endExternalSession, specifying whether it was successful or not, so as
to release the exclusive access to the artifact.

6.3 Adding Fault Tolerance to the Smart Room

In the first two sections, we explained how to program an agent that is both proac-
tive and reactive. Reactivity also implies the ability to react to failures that can
occur when the agent executes actions in open, dynamic, and unpredictable en-
vironments. However, at this stage the application is not able to react and handle
such kinds of environments. In this section, we investigate how to program an MAS
that is able to handle faults that could appear during its execution. Modeling and
handling exceptions and failures is an important feature in multi-agent program-
ming, especially in dealing with open, dynamic, and unpredictable environments.
In JaCaMo, this involves both the agent and the environment dimensions:

- an operation on the artifact side can be programmed so as to interrupt its execu-
tion, generating a failure action event and reporting information about the problem
that has occurred; and

- on the agent side, the plan executing an action (operation) that fails is interrupted
and a goal deletion event (event preceded by —!) is generated, so that it could be
properly managed by plans designed for that purpose, called contingency plans.

Handling failures in artifacts We want to model in our example the situation
in which the HVAC becomes broken, so that operations like startHeating (or
startCooling)will not work. Because the problem has to be handled at the agent
level and not internally in the artifact via the use of classic exception mechanisms,
it is implemented with a failure action event generated with the primitive failed
as follows:

public class HVAC extends Artifact ({
QOPERATION wvoid startHeating() {

if (<check for the presence of failures>) {
failed ("HVAC Broken Failure", "broken_hvac",FAILURE_CODE)

Programming an Agent and Its Environment 85

} else {
getObsProperty ("state") .updateValue ("heating”);
execInternalOp ("updateTemperatureProc”,0.5);

}

}

The primitive failed is used to interrupt operation execution. The parameters of
this primitive are used to share the context of execution raising the failure with the
agent that executed the action. The parameters specify a failure description textual
message (HVAC Broken Failure inthe example above) and, optionally, a struc-
ture suitable to be processed on the agent side (broken_hvac (FAILURE_CODE))
that represents the reason for the failure.

Handling failure in the agents On the agent side, we can write down one or
more contingency plans reacting to the failure notified by the goal deletion event.
The reaction to the failure is carried out by inspecting the failure reason through
the env_failure_reason that annotates the generated goal deletion event:

+!temperature (T) : temperature(C) & C < T
<- startHeating;
theat_until (T).

—!temperature (T) [error (broken_hvac (CODE)),error_msg (Msqg)]
<- println (Msg);
!inform_owner (broken_hvac (CODE)) .

Different kinds of contingency plans can be specified to react to different kinds of
failure defined as parameters to the failed method in the artifact; the parameters
are reported by the annotation attached to the generated event.

6.4 Making the Smart Room Adaptive

As the agents of the smart room are currently programmed, they are not prepared
to adapt their behavior to the evolution of the environment (e.g., change of user
preferences, deletion, and introduction of some artifact) or of the agents themselves
(e.g., addition of new plans). However, an important feature for autonomous agents
is adaptivity, that is, the ability to flexibly and dynamically adapt their behavior.
Agent programming languages provide first-class support for managing intentions
and goals in agent programs.

Let us consider in our example a further extension to allow the introduction of
dynamics in the environment. For instance, by means of a control panel, we will let
users change dynamically the preferred temperature of the room. In that case, the

defining
contingency
plans

managing
goals

managing
intentions

86 Chapter 6

room_controller agenthas to react not only to changes to the room temperature
but also to changes to the preferred temperature, which directly determines the
goal of the agent. In particular, if a new preferred temperature is specified while
the agent has an ongoing intention to achieve a previous preferred temperature,
then the agent has to drop that intention and create a new one. To that purpose, the
belief preferred_temperature is no longer created by the agent but is meant
to be an observable property of the hvac artifact in the environment. The value of
this observable property can be changed dynamically by the user.

To handle this new feature, a first implementation of the new plans in the agent
program is

@pl
+preferred_temperature (T) :
temperature (C) &
not in_range(C,T) & not .desire(temperature(_))
<— println("Reacting to temperature preference change");
temperature (T) .

@p2
+preferred_temperature(T) :
temperature (C) &
not in_range(C,T) & .desire(temperature(T1l)) & T1 \==
<— println("Reacting to temperature preference change");
.drop_desire (temperature (T1l));
stopAirConditioner;
!temperature (T) .

The first plan @p1 is chosen when the agent does not yet have the intention! to
achieve a target temperature; in that case, the new goal is simply created. The sec-
ond plan @p2 is used instead when the agent is already pursuing the goal of achiev-
ing some temperature and the new preferred value is different; in that case, the
agent must give up the current intention, using the internal action . drop_desire
before creating the new goal.

This solution has a problem if the agent concurrently perceives that there
has been a change in the temperature and the preferred temperature. For
example, what happens if a change to temperature(T) is perceived so
that a new intention executing plan pl is instantiated, but a change to
preferred_temperature (T) occurs before the subgoal ! temperature (T) is
created? In that case, plan p2 would be chosen for execution because it is true

1. Recall that an intention is a desire (goal) that the agent is committed to achieve by means of a par-
ticular plan. Although we could have used .drop_intention, the .drop_desire action is more
general, and therefore we used it in the example although the text refers to intention.

Programming an Agent and Its Environment 87

that not .desire (temperature (_)). So two interfering intentions would be
in execution. This problem is an example of interferences that can occur when the
agent interleaves checks and action blocks that should be executed atomically; the
atomic plan feature can be used to avoid such a problem. In this case, this concerns
checking the condition .desire (temperature (_)) in the context and the ac-
tion ! temperature (T) inthe planbody. Such an atomic behavior can be enforced
by annotating plans @pl, @p2, @p3 withthe atomic attribute as follows:

@pl[atomic]
+temperature (C) :
preferred_temperature(T) & not in_range(C,T) &
not .desire (temperature(_))
<= // ...
!l'temperature (T) .

@p2 [atomic]
+preferred_temperature(T) :
temperature (C) &
not in_range(C,T) & not .desire(temperature(_))
<= // ...

!'1temperature (T) .

@p3[atomic]
t+preferred_temperature(T) :
temperature (C) &
not in_range(C,T) & .desire (temperature(Tl)) & Tl \==
<= // ...

!'ltemperature (T) .

Annotating the plan label (e.g., @p1) with an atomic tag ensures that no other
intention will be selected to interleave execution with this plan.

We can notice that the plan bodies have been updated, replacing the issuing of
a subgoal !temperature with ! !temperature, which accounts for issuing a
new goal fo be managed with a separate intention. That is, temperature is no longer
a subgoal of the current intention but is a separate, parallel goal. In this specific case,
this feature is needed because if we instantiate a subgoal from an atomic plan, the
atomic constraint is kept also when executing the plan triggered for handling the
subgoal: it is an attribute at the intention level. This would not be the desired be-
havior in our case, because while achieving the new temperature the agent should
be able to react and interleave different intentions, while the atomic plan itself can
finish soon.

defining atomic
plans

defining
parallel goals

88

Chapter 6

Adapting the Behavior by Dynamically Changing the Plan Library

As discussed in this chapter, agents can control their intentions and, as dis-
cussed previously, they can control their beliefs and execution as well. For
instance, agents can create, inspect, and drop their own intentions, revising
thus the goals to which they have committed. Nonetheless, agents can also
control their plans: the plan library can be managed as well as other mental
components. To be handled in a program, plans have to be represented as
terms, and for that we enclose them with { and }. For instance, {+!g <-
.print (hello) } can be used as a term for some literal or internal action.
The main operations to handle the plan library are briefly presented in the
sequel.

- Inspection The internal action .relevant_plans (TE,L,LL) can be
used to retrieve in list L all relevant plans for event TE; the LL argu-
ment is optional and correspond to the labels of plans in L. For exam-
ple, .relevant_plans ({+temperature (_) }, L) unifies L with a list
of plans relevant for the event +temperature (_).

- Addition The internal action .add_plan (P) is used to add the plan
term P in the plan library. For example, .add_plan({@ll +!g
today (ok) <- .print (hello)}) adds the plan @11 into the plan li-
brary.

- Deletion Plans are removed by their labels using the . remove_plan (L)
internal action. For example, . remove_plan (11) removes the planiden-
tified by label 11 from the plan library.

Agents not only can control their own mental state (beliefs, intentions, and
plans), but they can influence others! Whereas communication performative
verbs like tell and achieve are used to influence others’ beliefs and in-
tentions, the performative verb tellHow influences others’ plan library by
adding a plan in the receiver plan library. Of course, an agent may refuse to
accept beliefs, intentions, and plans sent by others. The next chapter intro-
duces communication among agents in details and explains these issues.
These programming features improve autonomy (agents control their
mental state and program) and sociability (agents can influence others’ men-
tal state and program). The following meta plan illustrates these features:
—-!Glerror (no_relevant)] : teacher (T)
<- .send (T, askHow, { +!G }, Plans);
.add_plan(Plans) ;
1Go

Programming an Agent and Its Environment 89

This plan reacts to a goal failure because there is no relevant plan, and be-
cause G is a variable, it is used for any goal. The plan consists of asking a
teacher T for plans to achieve goal G, adding the answer (a list of plans uni-
fied with P1ans) into the plan library and retrying the failed goal.

6.5 What We Have Learned

In this chapter, we learned how to program a first simple multi-agent program
in which one agent perceives and acts in a dynamic environment composed of a
simple artifact. The key concepts and competences presented are

- Designing and programming an agent with proactive behavior (it acts in order to
achieve a goal according to some plans), and reactive behavior (it promptly reacts
to relevant changes in the environment). The programming tools we have for this
design are
— agent goals and beliefs;

- goal-directed and belief-directed plans (used to achieve goals and to react to
environment changes);

- contingency plans (used to handle failures of action execution in open, dy-
namic, and unpredictable environments); and

— the manipulation of the agent internal mental state (used to adapt the agent
behavior to the evolution of the environment).

- Designing and programming an environment in which agents are situated. The
programming tools we have for this design are

— artifact usage interface (in terms of operations and observable properties);
— environment processes and functionalities (in terms of artifact behavior); and

- wrapping existing nonagent resources (such as objects, legacy code, and li-
braries) as artifacts.

Pursuing a step further in the definition of this simple MAS, this chapter also
presented how to handle failure in the artifact and in the agent level as well as to
adapt the behavior of the agent in a dynamic environment.

Exercises

Exercise 6.1 In exercise 4.1 on page 50, you had to write a plan for having a cake by buying
it at a pastry shop. Create a plan pattern for an agent that is blindly committed (i.e., it will
keep trying to buy the cake until that is achieved). Change the pattern so that the agent
has a single-minded commitment toward that goal instead; that is, it will no longer try to

90 Chapter 6

achieve that goal if it believes that it has become impossible to buy the cake (e.g., all shops
are closed).

Exercise 6.2 In exercise 4.2 on page 50, you had to write a plan for baking a cake. Write a
contingency plan to be used in case the plan for achieving the goal fails (e.g., you do not
have the recipe for that type of cake). In that case, you go and buy a cake of that type at the
pastry shop.

Exercise 6.3 The smart room goes green, and a new green HVAC has been purchased. De-
sign and implement a GreenHVAC artifact as an extension of the basic HVAC, including the
following features:

+ The energy consumed is now observable in KWh since it was switched on, assuming that

— the power P of the device in kW is passed as a parameter of the artifact; and

— the energy consumed can be computed as P * DT, where DT is time elapsed since it
was switched on (suggestion: internal operations can be used to this purpose, together
with await_time).

. It provides a setGreenModeOn operation that makes it possible to reduce by half the
power used and an observable property representing whether the green mode is either
on or off.

Then, extend the functionality of the RoomControllerAgent in order to apply a green
policy, so that

- it activates the green mode if the HVAC has consumed more than Threshold,,.,,, energy
in the last Threshold,,i,a period (T hreshold,,.,i,q could be expressed in seconds); and

- it switches the device off if the HVAC has consumed more than Threshold,m.,,, energy in
total.

Exercise 6.4 A domestic robot has the goal of serving beer to its owner. Its mission is quite
simple: it just receives some beer requests from the owner, goes to the fridge, takes out a
bottle of beer, and brings it back to the owner. However, the robot should also be concerned
with the beer stock (and eventually order more beer using the supermarket’s home deliv-
ery service) and some rules hardwired into the robot by the Department of Health (in this
example, this rule defines the limit of daily beer consumption). The system is composed of
three agents: the robot, the owner, and the supermarket.

7 Programming Multiple Agents Interacting in an Environment

Agent interactions are essential aspects of multi-agent systems. The basic mech-
anisms introduced in chapter 4 on the agent dimension and in chapter 5 on the
environment dimension enable the definition of various sophisticated types of in-
teractions. In this chapter, we go deeper into these aspects, focusing on both agent
direct interaction based on speech-act-based communication and agent indirect
interaction mediated through environment artifacts. Seeing them from a practical
point of view in this chapter, we consider an extension of the smart room scenario
of the previous chapter that now involves multiple agents.

7.1 Programming a Smart Room with Multiple Agents

We start by considering an extension of the smart room scenario in which direct
communication among agents is adopted and an agent is in charge of the coordi-
nation of the agents. The extended scenario accounts now for allowing people who
enter the room to set up their preferred temperature. The HVAC artifact cannot be
initialized now with a single preferred temperature.

The idea is that each user is supported by a kind of personal assistant agent that
acts on his/her behalf in interacting with the other agents and artifacts in the appli-
cation. The personal_assistant agent is thus defined to manage and generate
its user’s preferences on temperatures given the activities that she/he may under-
take in the room. Activities may consist of, for example, reading a book, watching
amovie, or practicing some sport. Because each user may have his/her own way of
associating some preferred temperature to an activity, depending on the context,
encapsulating such knowledge within a personal agent is a good approach.

Interacting by agent communication As introduced in chapter 4, the interaction
between personal_assistant agents and the room_controller agent is re-
alized by the communicative action . send. The first argument of this action corre-
sponds to the name of the agent that should receive the message (agent rc in our

defining
communicative
actions

reacting to
received
messages

92 Chapter 7

subsequent example). The second argument corresponds to the performative verb
denoting the intention of the sender and helps the receiver to interpret the third ar-
gument that contains the actual content of the message. In our example, the sender
intends the receiver to interpret the content as a belief, and thus the performative
verb used is tell. The content corresponds to the preference on the temperature value
for the user that the agent sending the message represents: pref_temp (T) . Forin-
stance, when the personal_assistant agent pal executes

.send(rc, tell, pref_temp(10))

the receiver agent, rc, will have the belief pref_temp (10) [source (pal)] au-
tomatically included in its belief base; no programming is necessary on the receiver
code for that.

By sending messages, a JaCaMo agent is thus changing the mental state and in-
fluencing the behavior of the receiver, whether the content of messages are be-
liefs, goals, or plans. For instance, messages from personal_assistant agents
may turn into belief additions in the room_controller agent’s belief base; cor-
responding events are produced, and the room_controller agent can then react
to them with the following plan:

+pref_temp (UT) [source (Ag)]
<- .println("New preference from ", Ag, " = ",UT);
// 1f previous preference of Ag is different
if (pref_temp(Y) [source(Ag)] & UT \== Y) {
// remove the previous preference
—pref_temp(Y) [source (Ag)];

In the previous plan, annotations added to the produced belief such as
source (...) are used so that the receiver can identify where the elements of
its own mental state originated. In the case of the message sent above, the value of
variable Ag is pal.

Speech Acts

Communication languages for autonomous agents have been strongly in-
fluenced by speech act theory, in particular the work of the philosophers of
language Austin (1962) and Searle (1969). In practice, this implies messages
exchanged by agents, having a clear separation of the actual content from
the intent of the sender, which is also explicitly represented and expressed as
performative verbs. For example, an agent may send a message to change an-
other agent’s beliefs or another agent’s goals. On the more practical side, the

Programming Multiple Agents Interacting in an Environment

first agent communication language was KQML (Mayfield et al. 1996), and a
lot of work followed on the FIPA agent communication language which was
based on the work initially reported by Bretier and Sadek (1996). For further
classic references and all the basics on agent communication, see chapter 7
in Wooldridge (2009).

93

Performative Verbs

JaCaMo implements a set of performative verbs. For further details on ad-
vanced features, such as filtering reception of beliefs and redefining the se-
mantics of performative verbs, see Bordini et al. (2007), 118. The performa-
tive verbs are the following:

- tell Thesender expects that the receiver will have the content of the mes-
sage included in its belief base annotated with the sender as the source
of that information. For example, the action .send(a,tell, v (10))
done by agent b is expected to result in the inclusion of the belief
v (10) [source (b)] in the belief base of agent a.

- untell The sender expects that the receiver retracts from its be-
lief base the content of a previous message. The content corresponds
to the belief the sender no longer holds. For example, the action
.send(a, untell, v (10)) done by agent b will retract the belief
v (10) [source (b)] from the belief base of a.

- achieve The receiver is expected to have the content of the message
as a new goal with the source also annotated. For example, the ac-
tion .send (a, achieve,g(10)) done by agent b will include the goal
1g(10) [source (b)] for the agent a.

- unachieve The sender expects the receiver to drop the goal of achieving
a state of affairs corresponding to the message content. For example, the
action . send (a, unachieve, g (10)) done by agent b will drop the goal
1g(10) for the agent a.

- askOne The sender wants to know whether or not the receiver be-
lieves in the content of the message (any belief that matches the pat-
tern in the message content). If the receiver does so, it answers with one
of its own belief; otherwise it answers false. For example, if b exe-
cutes . send (a, askOne, v (X)), a will, normally, automatically execute
.send (b, tell, v(10)) incaseitbelieves v (10) . This performative can
be used synchronously when a fourth argument is used. For example, if

94 Chapter 7

one of agent b’s intentions executes . send (a, askOne, v (X) , A) , this in-
tention is suspended while it waits for the answer. When the answer from
a arrives, it is unified with the fourth argument and the intention resumed
so that the next line of code in the plan body can already make use of the
received response.

- askAll This performative is similar to askOne but it retrieves all the be-
liefs instead of one.

- askHow The sender asks the receiver for plans that can be used
to handle some particular event. For example, an agent sending
.send (a, askHow, {+!g(_) },P) will have in the variable P a list of
plans from agent a that can be used to achieve goal g, and it can then
add these news plans into its own plan library, if needed.

- tellHow The sender informs the receiver of a plan it has in its
plans library. For example, agent a receiving .send(a,tellHow,
{+!start[source(X)] <- .print ("hello from ",X).}) will
add the plan +!start[source(X)] <- .print("hello from
", X) . inits plan library.

- untellHow The sender requests that the receiver disregards a certain
plan (i.e., deletes that plan from its plan library).

Programming the personal assistant agents The personal_assistant agent
is a personal assistant aimed at managing the preferences of its user. Because con-
trolling the temperature is already done by the room_controller agent, we keep
this separation of concerns: we want the decisions about the room temperature to
be done collectively by all users, but the control is kept under the responsibility of
the room_controller agent, whereas the preferences that are different for each
user are managed in the personal_assistant agent of this user.

The user preferences are stored as beliefs in the personal_assistant agent’s
mental state as follows:

preferred (Activity, Value)

where Activity can be reading, watching, cooking, sport, and so forth,
and Value can be high, medium, or low.

Being different for each user and thus for each personal_assistant agent,
these preference beliefs are set in the application file (the . jcm file; see page 97).
In order to compute the preferred temperature, rules are written within the
personal_assistant agent code as follows:

Programming Multiple Agents Interacting in an Environment 95

// Computation of the preferred temperature value for the current activity
pref_temp(T) :-—

activity (A) & // current user activity (from UserGUI)
preferred(A,L) & // user preferences (given in the application file)
level_temp(L,T). // the mapping below

// Mapping low, medium, and high temperature levels into numbers

level_temp (low, 10) .
level_temp (medium, 20).
level_temp (high, 30) .

This code represents the beliefs and rules used by the agent to decide on the room
temperature to request. We clearly see here the difference between this and the pre-
vious chapter in which all the information and decisions were managed by a single
agent. The interest in using personal_assistant agents to handle such infor-
mation is that they are personal and that the agent can take appropriate decisions
while keeping them private.

To interact with the human user, the personal_assistant agent uses a
UserGUT artifact. This artifact embeds a GUl—based on Java Swing in this case—
to enable interaction with the user. The artifact has one observable property,
activity, describing which activity the user is currently doing (see figure 7.1).
The property is properly updated depending on the user action on the GUIL

The actions of the personal_assistant agent are determined by two plans.
One of these is for the initialization: the agent creates an instance of its own
UserGUT artifact so that its user can interact with it, and the agent clearly needs to
focus on it (in order to perceive any changes made by the user).
+!create_GUI

<—= .my_name (Me); // variable Me unifies with the agent's name
// creates a unique name for the artifact
.concat (gui,Me, ArtName) ;

makeArtifact (ArtName, "gui.UserGUI", [], ArtId);
focus (ArtId).

The name specified for the UserGUT artifact in this case is based on the agent name,
retrieved by the internal action .my_name.

The second plan reacts to changes in the user activity by sending the preferred
temperature to the room_controller agent. The changes in the activity are per-
ceived by changes in the observable property act ivity from the UserGUTI artifact
on which the agent is focusing.

+activity (A) : A \== none
<— ?pref_temp(T); // retrieve user preferred temperature from BB
.send(rc,tell,pref_temp(T)). // and sends it to RC agent

Note that in this plan we used ?pref_temp (T). This is called a test goal and, querying the
belief base

defining agent
types

handling
reception of
beliefs

LS S N

96 Chapter 7

different from achievement goals, these are used to retrieve information from the
agents’ belief base within the course of action determined by an executing plan.
In this example, if a matching belief can be found in the belief base, variable
T will be instantiated with a particular value; otherwise, a plan of the form
+?pref_temp(T) : ... <— ... islooked for, and if none is found, the test
goal fails.

The code shown above defines an agent type (and corresponding .as1 file) that
can be used to create several agents. All these agents follow the same set of plans,
rules, initial beliefs, and goals written in the . as1 file. These can be changed and
new ones can be added at runtime through communication, perception, or reason-
ing. Agents of the same type differ only in the initial beliefs and goals set at their
initialization and of course in the different acquired beliefs and adopted goals over
their own execution histories, depending on the individual interactions with dif-
ferent parts of the environment and other agents.

Revising the room-controller agent When receiving the various preferred tem-
peratures sent by the personal_assistant agents, the room controller
agent has to handle all of them. It generates a new goal ! temperature (T) with
respect to the temperature to target by acting on the hvac artifact. The generation
of this new goal raises a set of questions. Should it just react and change the tem-
perature each time a personal_assistant agent requests it to do so? Should it
wait a certain amount of time, compute an average of the incoming preferences,
and then act? Which strategy should it use?

There is no unique and definitive answer to these questions. We define a very
basic and simple strategy to handle preferred temperatures. We leave as an exer-
cise the development of more sophisticated strategies. Also, the communication
here is basic in the sense that there is no sophisticated interaction protocol be-
tween the room_controller and personal_assistant agents to handle the
decision process between both kinds of agent (e.g., some form of negotiation). In
section 7.2, the communication is improved to overcome the centralized decision
realized in the room_controller agent.

The following plan is added to the room_controller agent so that it can react
to a received pref_temp from another agent (note the annotation source (Ag)
to get the source of the belief, which in this case will be the name of the agent who
sent the information).
+pref_temp (UT) [source (Ag)]

<- .println("New preference from ", Ag, " = ",UT);
// 1f previous preference of Ag is different
if (pref_temp(Y) [source(Ag)] & UT \== Y) {
// remove the previous preference

© ® N o

10

Programming Multiple Agents Interacting in an Environment 97

—pref_temp (Y) [source(Ag)];
}
?average_pt (T);
.drop_desire (temperature(_));
.println("Creating a new goal to set temperature to ",T);
!temperature (T) .

When it receives the preferred temperature from some agent (line 1), this plan up-
dates the agent beliefs by retracting from its belief base any previous pref_temp
information sent by the same agent (lines 3-7), so that there is only one prefer-
ence for each personal_assistant agent in the room_controller agent be-
lief base. This updating could be removed if personal_assistant agents are
programmed to send untell messages retracting previous preferences before send-
ing new preferences to room_controller agent. However, even if untell mes-
sages are used, it is worth including in the room_controller agent a behavior
enabling it to update its beliefs. In an open system, this would be good practice
as one cannot expect that the agents entering the system care about retracting all
previous assertions.

The agent then checks its mental state about the value of the average of the current
preferred temperatures (line 8), which is computed as follows:

// gets the average of preferred temperatures sent by the
// personal assistant agents
average_pt (T) := .findall (UT, pref_temp(UT), LT) &

LT \== [] &

T = math.average (LT) .

Finally, before generating the new !temperature goal, the agent drops any
existing !temperature goal under consideration using the special internal ac-
tion .drop_desire (temperature (_)).Theaverage_pt (T) rule shown pre-
viously also uses two internal actions, . findall and math.average, the latter
of which is actually a function, so it represents a term (the one returned by the func-
tion) rather than a predicate or action. Internal actions were discussed in chapter 4.

Deploying and executing As explained in the previous chapter, the
application file specifies the initial set of agents, workspaces, and artifacts
that have to be created in launching the application. In this case, we populate
the room workspace with several personal_assistant agents (e.g., pal) with
some initial beliefs, accompanying the room_controller agent (rc), focusing
on and using the hvac artifact situated in the room workspace.

mas stepl {

agent pal : personal_assistant.asl {
beliefs: preferred("reading", high)

using internal
actions

defining
interaction
protocols

98 Chapter 7

preferred("watching", high)

preferred ("cooking", high)

preferred ("sport", medium)
join: room

agent rc : room_controller.asl {
focus: room.hvac

}

The design and implementation adopted so far is an example of a centralized co-
ordination schema in which a specific agent—in this case, the room_controller
agent—is in charge of managing the interaction with all the other agents (the
personal_assistant agents). However, in some application scenarios, this co-
ordination schema, which is the simplest one, may not be the most effective one,
because it could introduce a bottleneck in managing the interactions and a single
point of failure. In the following, we show how a more decentralized coordination
schema can be defined.

7.2 Decentralizing the Coordination with Interaction Protocols

In MAS, more decentralized coordination schemes could be adopted (see
Wooldridge [2009] for an overview). A common strategy is to distribute the re-
sponsibility of the coordination among the agents by designing proper interaction
protocols based on communicative actions.

In our scenario, we consider a revised strategy to decide the temperature to be
set in the room. We refer to it as a fair room multi-agent system. Instead of adopt-
ing a centralized decision process—based on the room_controller agent—
we want to decentralize the decision, using a voting procedure involving the
personal_assistant agents. To that aim, we define a very simple interaction
protocol whereby the room_controller agent starts the voting procedure in-
volving the personal_assistant agents present in the room workspace (fig-
ure 7.1). As in section 7.1, the voting is triggered by changes in the preferred tem-
peratures received by the room_controller agent.

The interaction protocol used is a simple sequence of message exchanges
involving the room_controller agent and the personal_assistant
agents. The sequence of exchanges starts with the opening of voting by the
room_controller agent, proposing a closed list of temperature options on

Programming Multiple Agents Interacting in an Environment 99

- hvac : HVAC

patl:

tell
pref_temp(T)

preferred(reading,medium)
preferred(watching,high)
preferred(cooking,medium)
preferred(sport,low)

preferred(reading,low)
preferred(watching,medium)
preferred(cooking,low)
preferred(sport,low)

Figure 7.1
Fair room multi—agent system.

room
rc: room — .
preferred(reading,high) pers_otna\t _controller
preferred(watching,high) Zassstan 7 ‘Slar'Heaﬁng/O ‘ state/1 ‘
preferred(cooking,high) /\\ ! - :
A startCooling/0> temperature/1
preferred(sport,medium)

voting
protocol

/

* |stopAirConditionner/Q

gui_pa1l : UserGUI

activity/1

pa3:
personal
_assistant

gui_pa2 : UserGUI

activity/1

gui_pa3 : UserGUI

activity/1

which the personal_assistant agents are requested to vote by declaring their
preference ranking. Once all votes have been received, the room_controller
agent decides the room temperature using the Borda count method (for an
overview of voting procedures used in computational social choice theory,
see Wooldridge [2009]. As shown in figure 7.2, the protocol has three moments:

1. open_voting The room_controller agent first sends a message to all

the personal_assistant agents present in the system by using the
.broadcast communicative action with similar arguments to the . send, ex-
cept that the targeted receiver is not specified. This corresponds, for example,
to the action:

.broadcast (tell, open_voting(pl, [10, 20, 25], 1000))

with which the room_controller agent informs all the agents of the system
that a voting session has been opened. This voting session is identified by p1,
with temperature options offered [10, 20, 25] (a list of preferred temper-
ature candidates for the election), and a statement that the voting will close in
1,000 milliseconds.

. ballot The personal_assistant agents answer the open_voting mes-
sage by sending a ballot message composed of the session identification (so
that the receiver knows which vote it is about) and its preference. For example:

.send(rc, tell, ballot(pl,20))

defining
broadcast
communicative
actions

100 Chapter 7

3. close_voting When all votes have been received or the timeout has expired, the
room_controller agent announces the closing of the voting with the final
result. For example:

.broadcast (tell, close_voting(pl, 20))

room_

personal_

controller 8
assistant

tell open_voting(Convld, Options, Timeout)

tell ballot(Convld, Vote)

tell close_voting(Convld, Result)

Figure 7.2
The vot ing interaction protocol.

An interaction protocol is a global description of the expected exchanges of mes-
sages issued from the parties involved in the interaction. Even though the spec-
ification is global, its implementation is split in the two types of agents we have
(room_controlleragentand personal_assistant agents) who are expected
to enact this protocol. Note that because in this simple example only one agent re-
ceives the votes, there is still a single point of failure. An alternative, although with
higher communication complexity, would be for all ballots to be broadcast.

The next sections describe the implementation. The deployment of the applica-
tion is similar to the one described in the previous section, page 97: the same set of
agents with similar preferences are launched in the same workspace in which the
same set of artifacts are deployed.

Programming the interaction protocol in the room controller agent The
room_controller agent initiates the voting protocol whenever a new pre-
ferred temperature is received from any personal_assistant agent. After
generating a conversation ID (!get_id (Id)), it generates the list of options, de-
noted as Options, on which it would like the personal_assistant agents

Programming Multiple Agents Interacting in an Environment 101

that are present in the room to vote (sending a .broadcast message). The con-
versation ID helps the room_controller agent manage several instances of
voting procedures in parallel, possibly with the same personal_assistant
agents. It then waits (cf. internal action .wait) until all agents have voted
all _ballots_received(Id) or the timeout has expired (4000), and then it
closes the voting ! close_voting (Id).
+!open_voting
<- lget_id(Id);
.findall (T, pref_temp(T) [source(_)],Options);
.broadcast (tell, open_voting(Id, Options, 4000));

.wait (all_ballots_received(Id), 4000, _);
!close_voting (Id).

The condition all_ballots_received (Id) appearinginthe .wait actionis
specified by the following rule that checks that all personal_assistant agents
expected to participate in the voting process have sent their ballots.

all _ballots_received(Id)
:— .all_names(L) & .length(L,NP) & // number of voters =
.count (ballot (Id,_) [source(_)], NP-1). // number of votes
// (RC doesn't vote)

Closing the voting consists of processing the ballots according to the Borda count
method (cf. the !borda_count (Id, Winner) goal, the plan for it is omitted here
but is available in the code accompanying the book), stopping any ! temperature
goals under achievement (cf. internal action . drop_desire), and creating a new
goal !temperature (T) before announcing the closing of the voting process to
all agents (cf. the .broadcast internal action).
+!close_voting (Id)

<— !borda_count (Id, Winner) ;
.println ("New goal to set temperature to ",Winner);
.drop_desire (temperature(_));
!'temperature (Winner) ;
.broadcast (tell, close_voting(Id,Winner)).

As we can see, two of the three steps of the voting protocol are pro-
grammed in the room_controller agent. The missing step is programmed in
thepersonal_assistantagent

Programming the interaction protocol in the personal_assistant agents
In participating in the voting protocol by reacting to the creation of an
open_voting belief, a personal_assistant agent sends its vote to the agent
that sent the open_voting message (use of the annotation source in the belief
open_voting):

102 Chapter 7

+open_voting (ConvId, Options, TimeOut) [source (Sender)]
<- ?pref_temp (Pref);
?closest (Pref,Options,Vote); // the individual strategy
.print ("My vote is ",Vote);
.send (Sender, tell, ballot (ConvId, Vote)).

Its vote is computed by ordering the options according to its own strategy (e.g.,
proximity to their preferred value):
closest (X, [H|T],H) := X > H.
closest (X, [H1,H2|T],H1)
- X < H1 & X > H2 & H1-X <= X-H2.
closest (X, [H1,H2|T],H2)
:— X < HL & X > H2 & H1-X > X-H2.
closest (X, [H],H) .
closest (X, [H|T],V)
:= closest (X,T,V).

+open_voting (ConvId, Options, TimeOut) [source (Sender)]
<- ?pref_temp (Pref);
?closest (Pref,Options,Vote); // the individual strategy
.print ("My vote is ",Vote);
.send (Sender, tell, ballot (ConvId, Vote)).

{ include ("base-pa.asl") }

Performative Verbs in Interaction Protocols

Note how we chose in the preceding code excerpts, to program the inter-
action protocol by using the performative verb tell, making the protocol
progress by agents reacting to the new beliefs stated in the messages’ con-
tent.

We could also have implemented this protocol in a way in which
the room_controller agent requested the personal_assistant
agents to act on voting. In that case, the message sent would have
the achieve performative verb rather than tell, for example
.broadcast (achieve, vote (Id,Options, 4000)). In that case, the
plan for +open_voting(...) should be changed to have +!vote (.. .)
as triggering event.

Yet another possibility would be to ask the agent for its vote using a (syn-
chronous) askOne message.

Interestingly, the askHow performative verb could be used if a
new agent in this open multi-agent system did not know how
to vote. The room controller could use tellHow to send the

Programming Multiple Agents Interacting in an Environment 103

personal_assistant agent a plan for how to vote. For details, see Bor-
dini et al. (2007).

7.3 Environment-Mediated Coordination

Regarding interaction, approaches adopted in multi-agent system take a strong in-
spiration from the human world. Humans are used to interact using different kinds
of approaches and media. Among the possible taxonomies, approaches can be cat-
egorized as direct interaction and indirect interaction.

« In the direct interaction approaches we abstract from the communication medium.
Speech-based communication is a common example, and another example is
given by sign language. In this case, it is not really important whether the com-
munication occurs face-to-face, through a cell phone, or by video streaming: par-
ticipants, who typically must be in the same temporal frame, exchange messages
using a language to encode them.

« In the indirect interaction case, the medium enabling the interaction is a first-class
entity, decoupling participants and providing functionalities that could be useful
to manage the interaction and their coordination. The medium is typically some
kind of shared physical object of the environment. A simple example is a black-
board, supporting forms of sharing information. Another example is a street sign
suggesting some direction or barriers placed for defining queues. Some media are
explicitly devoted to a coordination functionality: a traffic signal, for example,
or ticket dispensers for managing service at supermarkets. A well-known exam-
ple of environment mediated coordination is stigmergy (Theraulaz and Bonbeau
1999), which is used in nature by ants as well as by humans and is exploited also
in MAS (Van Dyke Parunak 1997; Ricci et al. 2007).

Analogous to the human world, in the MAOP approach we can exploit both direct
interaction, realized by means of agent communication languages based on speech
acts, and indirect interaction, using artifacts designed as communication and co-
ordination media. As in the human case, these two main categories should not be
considered mutually exclusive: conversely, they can be effectively integrated and
used in synergy when designing systems. In the following, we exploit indirect in-
teraction in our smart room scenario to improve the collective decision on how the
room temperature will be set.

Introducing a voting machine as a coordination artifact In our scenario we de-
sign a proper shared coordination artifact, encapsulating and regimenting the coor-
dination process ruling the interaction among the agents. The coordination artifact

direct and
indirect
interaction

defining
coordination
artifacts

104 Chapter 7

encapsulates the voting mechanism described in the previous section. This solu-
tion alleviates the code of the agents by transferring part of their computation to
shared artifacts, leaving them the decision part. Compared with the centralized
version, the decision process is still distributed because of the voting strategy that
is still part of each personal_assistant and room_controller agent.

As in the previous section, from the reception of new preferences from
personal_assistant agent (see figure 7.3), the room_controller agent ini-
tiates the voting protocol. For that purpose, it creates a VotingMachine ar-
tifact with a set of temperature options on which agents can vote, the list of
personal_assistant agents that are allowed to vote, and a timeout. Once cre-
ated, the room_controller agent asks the personal_assistant agents to
participate in the voting. After all personal_assistant agents have voted or
the timeout has expired, the Vot ingMachine stops the voting process and deter-
mines the winning temperature option.

As can be noted, part of the voting process that was included in the
room_controller agent code in the previous section is now encapsulated and
managed by the VotingMachine artifact itself. Another change is that sev-
eral messages between agents are replaced by interaction of the agents with the
VotingMachine artifact.

room

rc: room_
controller

pat:
personal_
assistant

v1: VotingMachine

tell
pref_temp(T)

pa2:
personal_
assistant

pa3:
personal_
assistant

Figure 7.3
The Vot ingMachine artifact to implement the voting protocol. The other artifacts are not
represented for the sake of readability.

Programming Multiple Agents Interacting in an Environment 105

Programming the VotingMachine artifact To program the VotingMachine
artifact, we have to program the elements of its usage interface by defining its ob-
servable properties and its operations. The observable properties are as follows:

- status Observable property with value open or closed, indicating whether
votes can still be cast.

- options Observable property defined by the room_controller agent with
the temperature options.

- deadline Observable property indicating (in seconds) the remaining time to
vote.

- result Observable property with the result of the voting process, defined after
all votes were cast or after the deadline.

The two following operations are defined:

- open (Options,Voters, TimeOut) is used by the room_controller agent
to open the voting processes to Voters (a list of agent names) on a set of options
(a list of temperature values); the voting will be open for TimeOut milliseconds.

- vote (OrderedOptions) enables agents participating in the voting to cast their
vote by ordering a set of options according to its own preference; this operation
prevents an agent from voting more than once.

When all agents have voted or the deadline is past, the Vot ingMachine artifact
determines the winning temperature option according to a particular method and
creates the observable property result with that value.

We show the following code for the VotingMachine artifact. It is a straight-
forward implementation of the artifact described in figure 7.3 in Java using the
features provided by JaCaMo. Note how the @OPERATION Java annotation is used
to define the open and vote artifact operations to be made available to agents as
actions. Also, defineObsProperty is used to create observable properties, and
getObsProperty is used to retrieve existing observable properties.

public class VotingMachine extends GUIArtifact {

List<String> voters;
List<Object> votes;
int timeout;

public void init () {
defineObsProperty ("status"”, "closed");

}

@OPERATION
public void open (Object[] options, Object[] voters, int timeout) {
this.voters = new ArrayList<>();

this.votes = new ArraylList<>();

namespaces

106 Chapter 7

ListTerm os = ASSyntax.createlList();
for (Object o: options)
try {
os.add (ASSyntax.parseTerm(o.toString()));
} catch (ParseException e) {
e.printStackTrace();
}
for (Object o: voters)
this.voters.add(o.toString());
this.timeout = timeout;

defineObsProperty ("options"”, os);
defineObsProperty ("deadline”, this.timeout);
getObsProperty ("status") .updateValue ("open”) ;

QOPERATION
void vote (Object vote) {
if (getObsProperty ("status") .getValue () .equals("close")) {
failed ("the voting machine is closed!");
}
if (voters.remove (getCurrentOpAgentId() .getAgentName ())) {
votes.add (vote) ;
if (voters.isEmpty()) {
close();
}
} else {
failed("you voted already!");

void close () {
defineObsProperty ("result"”, computeResult());
getObsProperty ("status") .updateValue ("closed”) ;

Refactoring the agents to act on the VotingMachine artifact As shown in the
following, the sole modification on the personal_assistant agent consists of
acting on the Vot ingMachine artifact using the operation vote instead of send-
ing its ordered set of options to the room_controller agent.

+open_voting (ArtName)
<— lookupArtifact (ArtName, ArtId);
vm: : focus (ArtId).

+vm: :options (Options)
<- ?pref_temp (Pref);
?closest (Pref, Options, Vote);
vm: :vote (Vote) .

In this code we use the JaCaMo feature of namespaces. Namespaces allow the

Programming Multiple Agents Interacting in an Environment 107

programmer to organize the mind of the agent in several separate spaces or com-
partments, so that beliefs, events, plans, and actions can be placed together and iso-
lated from others. Each namespace is identified by a name (vm in the code above)
that is used as a prefix (using : :) for beliefs, events, and so forth. For instance, the
second plan is placed in namespace vmand is relevant only for events in this names-
pace. The focus in line 3 associates observable properties and actions of artifact
ArtId with the namespace vm so that corresponding beliefs and events are placed
in that namespace. Operations of that artifact are also placed in the namespace (as
used in line 8). Namespaces are features to modularize the agent programming,
helping us to avoid name clashes; for instance, different voting machines can be
placed in different namespaces and are thus isolated from each other. More details
about namespaces can be found in Ortiz-Herndndez et al. (2016).

Considering changes in the room_controller agent, the plan corresponding
to the achievement of the open_voting goal is modified to create an artifact in-
stance of the Vot ingMachine artifact, with a unique name corresponding to the
conversation ID, with the observable property options initialized with the set of
options on which to vote, with the list of voters, and with a timeout for agents to
vote. After focusing on this artifact, it sends the ID of the artifact to the participating
agents (.broadcast (... .)) so that they can also focus on it. Once the observ-
able property result has been created, the room_controller agent reacts by
generating a new temperature goal as done in the previous step.

conv_id (1) .

// start a voting protocol whenever a new
// preferred temperature 1s received
+pref_temp (UT) [source (Ag)]
<- .println("New preference from ", Ag, " = ",UT);
// this is only necessary 1f personal assistant agents do not
// send untell of previous preferences
if (pref_temp (Y) [source(Ag)] & UT \== Y) {
// keeps just the last preference of some agent
-pref_temp (Y) [source (Ag)];
}

'open_voting.

+!open_voting

<—- lget_id(Id);
.concat (v, Id, ArtNameS) ;
.term2string (ArtNameT, ArtNameS)
.findall (T, pref_temp(T) [source(_)],Options);
.all_names (AllAgents);
.my_name (Me) ;
.delete (Me,AllAgents,Voters);
vm: :makeArtifact (ArtNameS, "voting.VotingMachine", [],ArtId);
vm: : focus (ArtId);
vm: :open (Options, Voters, 4000);

108 Chapter 7

.broadcast (tell, open_voting (ArtNameT)) ;

@QlId[atomic]
+!get_id(ConvId) : conv_id(ConvId) <— —+conv_id (ConvId+1) .

+vm: :result (T) [artifact_name (ArtId, ArtName)]
<—- .println("Creating a new goal to set temperature to ",T);
.drop_desire (temperature(_));
temperature (T) ;
.broadcast (untell, open_voting (ArtName));
//disposeArtifact (ArtId);

The plan label (¢ 1ID) includes the at omic annotation. It indicates that no other
intention should be executed while this plan is executing. It avoids some race condi-
tion while getting a unique identification. The —+ operator is a short form of a - op-
eration followed by a + operation, as commonly used to update beliefs. In this code,
the operation —+conv_id (Conv_Id+1) implies the execution of —conv_id (_)
followed by +conv_id (Conv_Id+1). As previously, the deployment is omitted
here because it is similar to the previous cases. Refer to the complete code accom-
panying the book for details.

Implementing More Complex Coordination Artifacts

Any coordination artifact is a coordination medium (Ciancarini 1996), used
concurrently by multiple agents, enabling their interaction and manag-
ing the dependencies among their actions—resulting in some coordination
functionality. In the general case, such management can require the syn-
chronization of the called operations, that is, enforcing some order in their
execution of the actions executed by agents. As a simple example, consider
a coordination artifact that a team of agents can use to achieve a synchro-
nization point. The idea is that the artifact would provide a meet operation,
which succeeds only when all the agents of the team execute it:

public class SyncToolArtifact extends Artifact {

private int nTotalFriends;
private int nFriendsArrived;

void init (int nFriends) {

this.nTotalFriends = nFriends;
nFriendsArrived = 0;

QOPERATION void meet () {

Programming Multiple Agents Interacting in an Environment 109

nFriendsArrived++;
await ("allFriendsArrived") ;

}

@GUARD boolean allFriendsArrived() {
return nFriendsArrived == nTotalFriends;

}

@OPERATION void reset ()
nFriendsArrived = 0;

{

}
}

The artifact is initialized specifying the cardinality of the agent team. A
counter nFriendsArrived is used to keep track of the number of agents
that requested to meet. The counter is incremented each time a meet oper-
ation is executed. Then, the execution of this operation is suspended until
the counter is found to be equal to the cardinality of the agent team. This
happens as soon as all agents requested meet.

The suspension is enforced by the await primitive, which blocks the ex-
ecution of the operation (releasing the access to the artifact) until the guard
(condition) specified as a parameter is evaluated to true. The API allows im-
plementing the guard either as a Boolean method—in that case the name of
the method is specified as a parameter of the await primitive—or directly
as a function/closure, always to be passed as a parameter to await. On the
agent side, the intention executing the meet action is suspended until the
operation is completed.

Another primitive that we have already met in a previous chapter,
await_time, has a similar behavior: it suspends the operation execution
until the specified amount of time has elapsed. Overall, the await prim-
itive family are expressive enough to realize any kind of synchronization
behavior inside artifacts, similar to condition variable mechanisms in mon-
itors used in concurrent programming.

The Vot ingMachine coordination artifact could be extended, for example, with
an operation awaitClosing that allows synchronizing the agent executing that
action with the closing of the voting process. It is worth remarking that synchro-
nization behavior can be often obtained by simply exploiting the observability
model of artifacts. In the Vot ingMachine case, for instance, an agent can be aware
of the closing by observing the artifact and reacting to changes in the status
observable property. Nevertheless, there are cases in which it is easier to represent

110 Chapter 7

and implement coordinating behavior in terms of actions to be used inside plans,
not reactions. In those cases, such synchronization actions can be implemented as
operations of properly designed coordination artifacts.

7.4 From Decentralization to Distribution

So far, we consider decentralization of control and responsibilities, using agents
(and artifacts) for that purpose, without discussing distribution. Distribution
accounts for exploiting multiple computational nodes (computers, hosts, and
devices)—connected by a network—to execute the system.

In the smart room case study, distribution can be introduced by considering that
the building is composed of several rooms. The management of temperature in
each room is supported by a room_controller with an hvac. The owner of the
building has defined global preferences for the house. Each room_controller
takes into account which personal_assistant is in the room to manage the ne-
gotiated temperature of the room, as presented in the previous versions of our im-
plementation. Coordination among the room_cont roller of the different rooms
can be considered so that the global temperature corresponds to the objective of the
house. The personal_assistant agents are supposed to run on mobile devices,
entering and exiting the system dynamically.

When MAOP is used, distribution can be modeled and implemented at two dif-
ferent levels:

- At the agent level, agents are deployed on different nodes using middleware that
provides services for direct agent communication among remote agents.

- At the environment level, workspaces are deployed on different nodes, and
agents can join and work in remote workspaces.

An important remark here is that in the distributed execution nothing changes, ei-
ther in the communication model based on speech acts and interaction protocols
or in the way agents work with artifacts in artifact-based environments. In the fol-
lowing we discuss two examples about how to program and deploy a distributed
MAS using JaCaMo.

Agent Distribution

Although the program of the agents does not change in the distributed execution,
that is, agents continue to address other agents by their names, the application file
has to be changed to configure how agents are distributed on different nodes. This
configuration depends on the particular middleware being used to manage the
agent life cycle in the distributed scenario. Here we use JADE as such a middleware,
because JaCaMo is already integrated with JADE.

Programming Multiple Agents Interacting in an Environment 111

As a concrete example, we consider the extension of the smart room case study to
a smart home, in which we have many rooms and thus many room_controller
agents and participants. To manage all rooms, a new agent, called majordomo,
is created and communicates with all room_controller agents. These agents
are distributed as follows: agents of the same room (one room_controller
and some personal_assistant agents) run on a node dedicated to that room;
and the majordomo runs on its own node. For each node, an application file
has to be written and later executed on its host. The ma jordomo application file
(majordomo. jcm) is as follows (notice the keyword plat form):

mas mj_conf {
agent majordomo

platform: jade() // select JADE as the distribution platform

When executed, it will launch a JADE platform with the main container and the
agent ma jordomo running on it. The application file for a room node looks as fol-
lows:

// application file for agents running on node of room B210

mas room_b210 {
agent pal : personal_assistant.asl {
beliefs: preferred("reading", high)
preferred("watching", high)
preferred("cooking", high)
preferred ("sport", medium)
join: room

// similar for pa2, pa3,
agent rc : room_controller.asl ({

focus: room.hvac

workspace room {
artifact hvac: devices.HVAC (20)

// select and configure JADE as the distribution platform
platform: jade("-container -host <mdhost>")

112 Chapter 7

When executed, it will launch JADE with a (not main) container connected to the
JADE platform running on the host identified by mdhost. Every usual argument
used to start JADE can be given as a string parameter of platform jade (...).
The concrete internet location for host mdhost is provided in the JaCaMo deploy-
ment configuration file, an application property file informed when running the
application file. The content of this file is quite simple, for example:

mdhost=hostl.my_sweet_home.org

The JaCaMo and JADE integration translates Jason KQML messages to JADE
FIPA ACL and vice versa as well as using JADE services (as directory facilitator)
when necessary. In this case, every Jason agent runs as a JADE agent and can thus
send and receive messages from ordinary JADE agents.

Environment Distribution

The environment distribution model provided by JaCaMo basically allows
workspaces of an MAS to be executed on different hosts. The mapping between
workspaces and hosts can be done either statically or dynamically.

Static mapping In the static case, the mapping is declared as part of the initial
configuration of the MAS. The host executing the workspace can be explicitly de-
clared in the application file, in declaring the initial configuration of workspaces,
either as a logic name or directly as an IP address (or domain name).

Continuing the smart home scenario, we consider now three workspaces (rooms)
— hallway, living_room and bath_room — each one with its own hvac
and room controller agents. The hallway is the parent workspace for both the
living_room and the bath_room (see figure 7.4). The configuration of the
workspaces can be specified in the application file as follows:

mas smart_home {

agent majordomo {
join: hallway
}

agent living_room_contr : room_controller.asl {
goals: temperature (21)
join: living_room
focus: living_room.hvac

}

agent bath_room_contr : room_controller.asl {
goals: temperature (24)
join: Dbath_room

Programming Multiple Agents Interacting in an Environment 113

focus: bath_room.hvac

workspace hallway {
host: hostl

workspace living_room {
artifact hvac: devices.HVAC(15)

parent: hallway
host: hostl

workspace bath_room ({
artifact hvac: devices.HVAC(15)

parent: hallway
host: host2

In this case, logic names are used so that hallway and 1iving_roomare declared
to be in execution on host1, and bath_room on host2. It is worth noting that if
no host is specified, workspaces are created by default on the same machine where

the MAS is spawned.

Legend

workspace name

Network node
fmmoommnemeeee oo . hosted by
living_room bath_room : kitchen | - — » creation/
| ; i ownership link
host2.my_sweet_home.org new_node.my_sweet_home.org

host1.my_sweet_home.org

Figure 7.4
Smart house workspaces distributed on different hosts.

114 Chapter 7

The binding between host logic names and some specific IP address or do-
main name can be specified when the MAS is launched, by means of the sep-
arate JaCaMo deployment configuration file or directly declaring the properties
in the command line. An example of JaCaMo deployment configuration file
smart_home.propertiesis

hostl=hostl.my_sweet_home.org
host2=host2.my_sweet_home.org:15000

In order for this to work in practice, the JaCaMo infrastructure daemon must be in
execution on every host where workspaces are allocated.

As mentioned previously, in order to work with workspaces on remote
nodes, an agent doesn’'t have to specify their physical location, but can
refer to their logical name paths. For instance, the majordomo agent
can join the bath_room, which is running on a different host, by ex-
ecuting joinWorkspace ("/hallway/bathroom") 1 or more simply
joinWorkspace ("bathroom"). The same holds for all workspace opera-
tions: for instance the agent can create a new child workspace of bath_room by
executing createWorkspace ("/hallway/bathroom/tools").

Dynamic mapping In some cases, it could be useful to dynamically attach new
hosts to an MAS, where to create (and join) workspaces. In those cases, typi-
cally the address of the host is known only at runtime, so it is not possible to
specify it statically when the MAS is launched. To this purpose, a variant of the
createWorkspace action is available, which makes it possible to specify as a fur-
ther parameter the host (address) where to create the workspace. For instance:

createWorkspace ("/hallway/kitchen", "new_host .my_sweet_home.org")

As in the static case, the JaCaMo infrastructure daemon must be in execution on
that host.

Another main case of dynamic mapping occurs when an agent of an MAS needs
to access and work with workspaces of another MAS. For that purpose, the agent
needs first of all to mount the target workspace (of the other MAS), as in the case
of remote file systems. Mounting makes it possible to link the remote workspace—
possibly running on a different host from the one currently used by the MAS—as
a child of some workspace of the MAS. The action available to agents is:

mountWorkspace (TargetMAS, TargetWSP, MountPoint)

1. The second parameter of joinWorkspace, thatis, the output parameter representing the workspace
identifier, is optional and can be omitted.

Programming Multiple Agents Interacting in an Environment 115

where TargetMAS is the address of the host serving as entry point of the remote
MAS, TartgetWSP is the reference (logical path) to the workspace to be mounted,
and MountPoint is the path to be used locally to access the workspace.

In the smart room (home) case, we can see a clear use for this feature. Each
personal_assistant agent is running on the mobile device of a human user
and so is part of an MAS running on that device. In order to join and work with
workspaces of the smart house, a personal_assistant agent first needs to
mount them on the local MAS. To that purpose, the agent needs to know the ad-
dress of the host serving as the entry point of the MAS. This could be obtained at
runtime, for example, by means of a QR-code or NFC, or a beacon-based system
provided by the house. Given the entry point, the agent can execute

mountWorkspace ("hostl.my_sweet_home.org", "/hallway",
"/main/friend_house")

so as to make the hallway remote workspace accessible in the local MAS using
the path /main/friend_house (see figure 7.5).

Personal Assistant Smart House d
MAS MAS Legen

Access Link

main | hallway |

<mobile device> host1.my_sweet_home.org

Figure 7.5
Mounting the hallway workspace. Making it accessible from the personal assistant MAS
by means of an access link (friend_house).

The personal_assistant agent can then join the remote workspace simply
by doing a joinWorkspace ("/main/friend_house").

Besides the case of mounting, access links can be created between workspaces
with the purpose of easing the navigability of the environment. They are similar to
soft links used in file systems. By introducing access links, the same workspace can

116 Chapter 7

be identified using different paths, besides the ownership/creation links between
a parent workspace and its children.

Dealing with Distributed Systems Complexity

The design and development of a distributed system call for dealing with
important issues and challenges that are not specifically about multi-agent
systems. A main issue is fault tolerance, which is the property that enables a
system to continue operating properly in the event of the failure of (or one
or more faults) some of its components. Another issue is scalability, which
is the property of a system to handle a growing amount of work by adding
resources to the system. We have seen in this chapter that multi-agent sys-
tems already provide a level of abstraction that is effective for modeling,
designing, and programming either decentralized or distributed systems.
Nevertheless, to handle the issues mentioned, MAS technologies and infras-
tructures need to implement mechanisms and architectural patterns that are
typically adopted for engineering robust distributed systems. This aspect is
further discussed in chapter 11.

7.5 What We Have Learned

In this chapter we dived into agent interaction, exploring approaches for program-
ming and coordinating interaction among agents. These approaches span from
direct communication based purely on speech acts and interaction protocols to
environment-mediated coordination, based on coordination artifacts:

- Direct agent-to-agent communication used, for example, to share beliefs and to
delegate goals;

- Interaction protocols used to coordinate communicative actions among agents
in structured patterns of interactions, implemented in the agents themselves or
implemented in an artifact leading to the notion of coordination artifacts; and

- Coordination artifacts, that is, artifacts situated in the environment not only for
encapsulating physical resources but also for structuring and managing interac-
tion patterns among agents.

We emphasize that the two alternative solutions shown here for the agreement on a
target temperature differ significantly. As discussed previously, the message-based
approach requires a lot more communication among the agents but is completely
decentralized, while the artifact-based approach requires less message exchange
but introduces a centralized mechanism via an artifact that is shared by all agents

Programming Multiple Agents Interacting in an Environment 117

to manage the interaction protocol, leaving the decision and strategies decentral-
ized in the agents. In the next chapters we consider a further approach based on
organization abstractions, which allows for a more abstract and high-level approach
to specify coordination in multi-agent programs.

Besides management and coordination of interactions among agents, we also
have extended our knowledge on programming:

- Agents

- execution of concurrent plans corresponding to different intentions, in this ex-
ample the computation of target average temperature and management of the
HVAC; and

— how to use test goals and how to handle them.
+ Environment

— the use of multiple workspaces.
- Execution

- agent types that can be instantiated in several agents tuned with specific beliefs
and/or goals specified in the application file; and

- simple distributed JaCaMo programs.

Exercises

Exercise 7.1 Implement a ping-pong MAS with indirect interactions: Agent A executes play
on artifact Left, creating signal A played perceived by agent B focusing on Left; B then exe-
cutes play on artifact Right, creating signal B played perceived by agent A, and so forth. Agent
C (the controller) focuses on Left and Right and counts the number of times it perceives the
signals (A played, B played).

Exercise 7.2 Implement a ping-pong MAS with indirect and direct interactions. In particular,
extend the code of the preceding exercise so that when agent C has counted 10 (A played, B
played) sequences, it sends a message stop to agents A and B, who then have to stop playing.

Exercise 7.3 Develop new strategies for handling incoming requests for temperature change
as managed in this chapter (e.g., waiting some amount of time for new requests before ac-
tually proceeding to change the target temperature, or waiting until there are at least a few
new requests).

Exercise 7.4 Currently the personal_assistant agent does not observe the hvac artifact,
meaning that it does not know the current temperature. Change the code of this agent to get
this information. Then change the code so that the agent either sends again its preferred
temperature if the temperature fails to change within a reasonable time interval or propose
its user to quit the room (in this case, adapt the UserGUT artifact so that the agent can act
and change a textfield).

118 Chapter 7

Exercise 7.5 Reimplement the room_controller plan that computes a unique conver-
sation ID using an artifact that produces unique IDs, so that the atomic execution of the
intention is not required anymore.

Exercise 7.6 Instead of the voting mechanism, implement an alternative consensus technique
in all versions of the room scenario developed in this chapter (based on direct and indirect
communication). Evaluate the effort required for creating each of those versions.

Exercise 7.7 Distribute the execution of the agents and workspaces of previous exercises and
evaluate the required programming effort.

Exercise 7.8 Create a personal_assistant agent without plans for voting. When this
agent is asked to vote, it asks a roommate for a voting plan and then votes using that same
strategy.

8 The Organization Dimension

We saw in previous chapters how the agent and environment dimensions pro-
vide the basic elements for building multi-agent systems as a set of individual
autonomous agents communicating and working in shared environments. In this
chapter, we complete the MAOP picture by considering the organization dimension,
which provides the concepts and first-class programming abstractions to spec-
ify and govern complex MAS from a macro perspective, compared with the micro
(individual-based) one offered by the two other dimensions. We start with a global
overview, addressing the overall map of abstractions offered to those who want to
program an organization in a multi-agent system. The importance of this dimen-
sion is stressed with respect to the multi-agent oriented programming point of view
developed in this book. Once all concepts and abstractions have been explained and
positioned relative to each other, we discuss the organization execution model, in
which further organization-related abstractions are introduced. We finish the chap-
ter with notes and historical elements so that the interested reader can get deeper
knowledge on approaches directly or indirectly related to organizations and their
use in the area of multi-agent system.

8.1 Overview

Organization is a broad concept that has different meanings in several domains
ranging from social and management sciences to computer science. In the multi-
agent research domain alone, several proposals of organizational models exist
(see Aldewereld et al. [2016]; Coutinho et al. [2009] for surveys on some of them).
Each of them highlights specific properties, emphasizing either descriptive or pre-
scriptive models related to the structuring, the coordination, or the regulation of
the agents working together in a shared environment.

To better understand the viewpoint taken in talking about organization, we go
back to the human work environment shown in figure 5.1. In this figure, we can
describe the activity taking place among the agents by abstracting from them and

120 Chapter 8

identifying a main group bakery_staff in which the global activity of the agents
takes place. In the context of a group, agents can be considered to play some
roles. For instance, the agent helen is playing the pastry_chef role, and john
is playing the assistant role. Being in tight interaction together, they build a
cake_staff subgroup of the main group. In another part of the workspace, an-
other set of agents form the codescheduling_staff subgroup and are in charge of
realizing the schedule of the day: the agent mary plays the manager role; bob,
henry, and anna help her to build the schedule: they play the planner role. The
agent paul is playing two roles: the planner role in the scheduling_staff
and the archivist in the main group because it interacts with the cake_staff
subgroup to retrieve cake recipes and the scheduling_staff for storing the pro-
duced schedule. In each of these groups and according to their roles, the agents
are expected to coordinate with each other while executing part of the prede-
fined plans. For example, the plan wedding_cake_recipe assigned to group
cake_staff is to be executed following the recipe for making a wedding cake,
and week_schedule in scheduling_staff is to be executed in order to plan
the work to be done over the week).

As illustrated in this example, organizations deal with the modeling of supra-
individual phenomena (Gasser 2001). The corresponding models consist of structured
cooperation patterns going beyond the activity of a single agent operating in the
multi-agent system. The concepts (e.g., roles and groups) involved in the definition
of the cooperation patterns are thus distinct from those belonging to the agent or
environment dimensions discussed in the previous chapters. Similar to what ex-
ists in management science (Malone 1999), organizations structure and aid in the
decision and interaction of the agents to fulfill tasks and achieve goals in the envi-
ronment while guaranteeing a global coherent state of the system. With regard to
sociology (Bernoux 1985), organizations may express division of tasks into sub-
tasks, distribution of roles, and assignment of authority among the agents partic-
ipating in the organization. More generally, they may concern the structuring of
knowledge, culture, history, and capabilities to be shared and used by agents.

Organization specification and organization entity Organizing a multi-agent
system is a process that starts with a definition phase undertaken by the stakehold-
ers involved in the development of the MAS, followed by an execution phase in
which the agents behave under the constraints imposed by the specified organiza-
tion. This process may also consist of an iterative interleaving of these two phases,
undertaken by the agents themselves through reasoning on their collective behav-
ior. The agents define and adapt their organization while acting, perceiving, and
cooperating in it. This organizing process produces two descriptions: an organiza-
tion specification and an organization entity.

The Organization Dimension 121

|

bakery_staff
1 1
cake_staff scheduling_staff

[

I

plays

plays
plays

pastry_chef] [assistant] [manager] [planner]
A A f A f
@D
&,
Q
BAKERY

(2]
g
Q
WHITEBOARD
\ 2rtfact artifac workspace

agents can join
the workspace dynamically

helen

) ARCHIVE
-8 /\\ilfad

N [

Figure 8.1
Organization in the bakery workshop scenario.

organization
specification

organization
entity

122 Chapter 8

An organization specification is a declarative description (Van-Roy and Haridi
2004) answering a what question, that is to say, the expected behavior to be
produced by the agents, without explaining how, that is to say, the actions
needed to achieve the results. Those choices on courses of action pertain to
the agent level. For instance, in the use case shown in figure 8.1, the organiza-
tion specification states that the bakery_staff group is composed of two sub-
groups, cake_staff and scheduling_staff, in which the pastry_chef,
assistant, manager, planner, and archivist roles can be played by the
agents. Although not shown in the figure, the cake_staff group can be respon-
sible for the wedding_cake_recipe and pudding_cake_recipe collective
plans to be undertaken by the agents according to the roles played in that group. As
can be noted, whereas the organization specification defines one role planner in
the scheduling_staff, several agents can play this role in the group entity cre-
ated from the scheduling_staff definition. In the same way, depending on the
situation (e.g., baking several cakes), there could exist in the organization entity
several group entities created from the cake_staff group definition to coordi-
nate the agents according to the recipes under their responsibility.

An organization entity corresponds to the enactment of the organization specifi-
cation by the agents. Whereas the organization specification defines the expected
behavior of the agents, the organization entity describes the evolving state of their
coordinated and regulated behavior in relation to the expected one. These include,
for example, the various created groups and the roles that agents chose to play in
each group. Considering again the case shown in figure 8.1, the organization entity
enacting the organization specification described above states that agent john is
playing role pastry_chef in group wedding_cake, agent mary is playing role
manager in group week, and so forth.

While observing the agents executing in a multi-agent system, one can notice
relations and cooperation patterns that are not represented in the organization en-
tity; that is to say that agents may coordinate with each other without referring to
the organization. One can also observe cooperation patterns in the organization
entity that do not have any counterpart in the organization specification. Different
from the previous observation, it often means that agents are misbehaving with
respect to the organization to which they belong. That is to say that they may be
violating some expected behavior of the organization. For instance, an agent play-
ing assistant role and expected to execute tasks related to the wedding_cake
recipe might be violating the specification by preparing marzipan when the recipe
forbids such a task because it calls for whipped cream on the cake. Because an or-
ganization regulates the behavior of the agents operating in it, depending on the
gravity of the violations, agents may be sanctioned.

The Organization Dimension 123

The organization entity changes all along the execution of the system, updated
each time the agents create or delete groups, adopt or leave roles, and so forth. The
changes to the organization specification may be less frequent because they are
costly and with deeper consequences. The approach described in the book focuses
on the programming, in particular the definition of both organization specifica-
tion and organization entity based on the concepts available in the organization
dimension.

Multi-faceted dimension Descriptions of organization may cover several facets
of the collective activity of the multi-agent system (Coutinho et al. 2009). In this
book, the concepts in the organization dimension allow the modeling and pro-
gramming of

- the structure of the organization in terms of roles, links, and groups (called here-
after structural abstractions);

- the coordination in terms of missions, plans, and goals (called hereafter functional
abstractions); and

- the regulation in terms of norms to constrain the autonomy of the agents with
respect to their structuring and coordinated activities (called hereafter normative
abstractions).

As we discuss subsequently in this chapter, whereas structural and functional ab-
stractions are independent sets of concepts, the normative abstractions bind them
together.

Programming organizations As introduced previously and stressed in the chap-
ters about the other two dimensions, concepts belonging to the organization di-
mension are first-class entities that are clearly distinct from those of the agent and
environment dimensions. They form the basis for a customized tag-based language
based on extensible markup language (XML) to express the elements of the orga-
nization specification. For example, in figure 8.2, the bakery_staff definition con-
tains the definition of roles as well as the definition of the subgroups cake_staff
and scheduling_staff, and the definition of the collective plans that we call
schemes, such as wedding_cake_recipe. They are also the basis for a language
based on predicates and functions to represent the organization entity within the
agents as beliefs (Hiibner et al. 2007), as well as organizational facts to regiment
or enforce the behavior of the agents in the system against the constraints stated
by the organization specification (Hiibner et al. 2011). These representations deal
with the created groups, the roles played by agents in these groups, the parts of
plans undertaken by the agents in the context of their missions, the active norms
that regulate the agents’ behavior, and so forth.

124 Chapter 8

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="http://moise.sourceforge.net/xml/os.xsl" type="text/xsl" 2>

<organisational-specification
id="bakery"
os-version="0.8"

xmlns="'http://moise.sourceforge.net/os"'

xmlns:xsi='"http://www.w3.0rg/2001/XMLSchema-instance'

xsi:schemaLocation='http://moise.sourceforge.net/os
http://moise.sourceforge.net/xml/os.xsd' >

<structural-specification>

<role-definitions> <role id="pastry_ chef"/> ... </role-definitions>
<group-specification id="bakery staff">
<group-specification id="cake_staff"> ... </group-specification>
<group-specification id="scheduling_staff"> ... </group-specification>

</group-specification>
</structural-specification>
<functional-specification>

<scheme id="wedding_cake_recipe"> ... </scheme>
<scheme id="pudding_ cake_recipe"> ... </scheme>
<scheme id="week_schedule"> ... </scheme>

</functional-specification>
<normative-specification>

</normative-specification>
</organisational-specification>

Figure 8.2
General view of the XML organization specification for the bakery use case.

The Organization Dimension 125

Organization

Organization

|: Group Scheme
Link T T Goal
T

I
! Role Norm —J

Mission

I L4 I

Figure 8.3
Main concepts in the organization dimension.

As can be imagined from this discussion, reorganization, that is, changing the or-
ganization, may be carried out at the organization entity or organization specifi-
cation levels. Interestingly, such changes may be made by the agents themselves.
Deciding on their own or collectively, they can change, for instance, the assign-
ment of roles to agents keeping the same organization specification. They can also
change the organization specification by defining new roles in a group, for exam-
ple, changing the mission definitions or the norms themselves. Changing the orga-
nization specification implies changing the organization entity and thus the MAS
expected overall behavior.

8.2 Organization Abstractions

This section details the abstractions available in the organization dimension to de-
fine the structural, functional, and normative facets of an organization, used to de-
fine the corresponding specifications and entities.

Structural abstractions The structural abstractions address individual, social,
and collective concerns defining the structure of an organization (see figure 8.3):

- the role concept is used as a programming abstraction of the position that indi-
vidual agents can occupy in the structure of an organization;

- the link concept is used as a programming abstraction of the type of interaction
that can take place among agents in a group when playing the corresponding
roles; and

structural
specification

role

group

126 Chapter 8

- the group concept is used as a programming abstraction of a possible community
of agents that can exist in the structure of the organization.

Groups are the entry points of the agents into an organization: by adopting a role,
an agent enters a group to which the role belongs and becomes connected to other
agents playing roles linked to its role. An agent can participate in several groups
under various roles.

<structural-specification>

<role-definitions>
<role id="role0"/>
<role id="rolel"> <extends role="role0"/> </role>
<role id="role2"> <extends role="role0"/> </role>
</role-definitions>

<group-specification id="groupl">
<roles>
<role id="rolel" min="1" max="2"/>
<role id="role2" min="1" max="1"/>
</roles>

<links>
<link from="rolel" to="role2" type="authority"
scope="intra-group"” bi-dir="rfalse" />
<link from="role0O" to="role0" type="communication"
scope="intra-group" bi-dir="true" />
</links>
<formation-constraints>
<compatibility from="rolel" to="role2" bi-dir="true"/>
</formation-constraints>
</group-specification>
</structural—specification>

Figure 8.4
Example of a simple structural specification.

The structural specification (see figure 8.4) defines templates of organizational
structures that are enacted by the agents in organization entities. A structural spec-
ification is composed of

- a list of role definitions in which each role is identified by a label that is unique
in the specification (e.g., role0, rolel). An inheritance relation among roles may
complement this definition (e.g., rolel and role2 inherit from role0). It en-
ables the reuse of properties attached to the inherited role. As discussed subse-
quently, properties of a role are the links and constraints in which it is involved as
well as the normative constructs to which it belongs. By default, all roles inherit
from the predefined soc root role.

- a hierarchy of groups in which each group is identified with a unique label in
the organization (e.g., groupl). It is composed of roles picked from the list of

The Organization Dimension 127

defined roles (rolel and role2), links between these roles (e.g., the authority
link between rolel and role2), possibly other subgroups, and a set of group-
formation constraints.

A link is a labeled relation connecting two roles together within the group. The
current set of labels comprises communication, authority, and acquaintance. They
allow the definition of three interaction networks among roles: communication
networks stating who can interact by communication with whom while playing
the corresponding roles, control networks stating who has authority over whom,
and acquaintance networks expressing who can represent and access information
from whom.

The group-formation constraints define expected properties on the structure of the
organization entity built from the organization specification. They concern the
roles, links, and subgroups participating in the definition of the group:

— A role-compatibility constraint is a directed relation between two roles of a
group. It enables an agent to adopt the target role while already playing the
source role (by default roles are incompatible, that is, they cannot be played
by the same agent in the organization). For instance, in figure 8.4, rolel and
role2 are set as compatible.

— A role-cardinality constraint defines upper and lower bounds on the number of
agents that can play the role in the corresponding group entity (e.g., at least
one and at most two agents should play rolel).

— A group-cardinality constraint defines upper and lower bounds on the number
of subgroup entities that can be created from the subgroup defined within the
group.

The structural specification defines thus the template structure of an organiza-
tion entity as a nonoverlapping hierarchy of groups and subgroups, in which each
group is composed of roles, links, possibly subgroups, and group-formation con-
straints. All elements of the structural specification are thus part of a group defi-
nition. For instance, a link can connect two roles appearing in two different group
definitions if and only if there exists a supergroup of the two groups including the
definition of such a link.

Agents participate in an organization entity by creating group entities following
the template structure and group-formation constraints of the structural specifi-
cation. According to the group definition, agents may adopt one or several roles,
interact with each other according to the corresponding links between roles, and
create subgroups. Depending on the group cardinality, one or several group enti-
ties referring to the same group definition may exist in the organization. As shown
in figure 8.5, two group entities are enacted from the same structural specification.
As we can see, whereas group entity g1 (following specification group1l) contains

link

group-
formation
constraint

128 Chapter 8

T

@ © D i

% @ » .

2 S A > o i

2.) ® kY 39

L a Q =z!

Q 2. |

@ g,

o 4 4 ‘D*
"""""""" sschi

Figure 8.5
Group entities enacted from the structural specification defined in figure 8.4.

only one agent playing both roles, group entity sgl (following the same specifi-
cation) contains two different agents playing roles rolel and role2. If the com-
patibility link did not relate these two roles, both group entities would not be well
formed, violating the default incompatibility constraint between roles in a group.
In the same way, either agent1 or agent2 would not be able to play role rolel if
the maximum cardinality of this role in the definition of group groupl was equal
to 1. We see subsequently in this chapter how agents can enact such group entities
using organizational actions. As shown in figure 8.5, the group entities sgl and g1
are both connected by a responsible for link to sschl or schl social scheme entities.
These two entities are created from the functional abstractions described next.

Functional abstractions As for the structural abstractions, the concepts related to
this facet (see figure 8.3) address individual, social, and collective concerns of the
behavior of the agents within an organization. They are

- the organizational goal concept abstracts a state of affair that has to be satisfied by
one or several agents;

- complementing goals, a mission gathers goals that have to be achieved under the
responsibility of an individual agent;

The Organization Dimension 129

- a social plan at the organizational level denotes a structure of interrelated orga-
nizational goals to be satisfied by multiple agents that have to coordinate with
each other to handle the interdependencies between goals. Such plans may be
set either by the MAS designers who use their expertise to define the plan or by
the agents themselves, for instance, by keeping track of their (best) past solutions
or by planning; and

- asocial scheme gathers a social plan with its organizational goals and correspond-
ing missions. It denotes the collective and coordinated behavior that is expected
to be produced by a group of agents in the organization.

The organizational goal and social plan concepts are central to defining the ex-
pected behavior within an organization. Using goal as a primitive construct in-
stead of action allows fewer constraints on the agents. The organization is more
interested in the satisfaction of the state of affairs denoted by the goal than in the
means (i.e., the particular actions) used to reach this state of affairs.

<functional-specification>
<scheme id="schemel">
<goal id="goall" ds="description of goall">
<plan operator="sequence">
<goal id="goal2" ttf="20 minutes" ds="description of goal2"/>
<goal id="goal3" ds="description of goal3"/>
<goal id="goal4" ds="description of goald"/>
</plan>
</goal>

<mission id="missionl" min="1" max="2">
<goal id="goal2" />
<goal id="goal4" />

</mission>

<mission id="mission2" min="1" max="1">
<goal id="goal3"/>

</mission>

</scheme>
</functional-specification>

Figure 8.6
Example of a simple functional specification.

The functional specification (see figure 8.6) gathers templates of coordinated be-
havior defined as a list of social schemes in which each social scheme is identified by
a unique label in the functional specification (e.g., schemel) grouping together

- a goal decomposition tree where the root is a global goal and the leaves are goals
that can be satisfied by the agents. A goal is denoted by an identifier (e.g., goall,
goal2). A goal cardinality constrains the number of agents that are in charge of
achieving or maintaining the goal. Each non-leaf goal is decomposed into sub-
goals by plans using three operators:

functional
specification

social scheme

goal

plans

mission

norm

130 Chapter 8

i,

- sequence “,”: the plan “g; = g»,g3” means that goal g; will be satisfied if and
only if goal g, and subsequently goal g3 are satisfied;

- choice “|”: the plan “g; = g»|g3” means that goal g, will be satisfied if one and
only one of the goals g, or g3 is satisfied; and

— parallel “||”: the plan “g; = gllg3” means that goal g; will be satisfied if both
g2 and g3 are satisfied, and they can be pursued in parallel.

In our example, goal goall is decomposed as a sequence of the three goals
goal2, goal3, and goal4. They can be complemented with dependence relations
among goals expressing that the achievement of a goal depends on the achieve-
ment of another goal.

- a list of missions in which each mission gathers goals that may be assigned to
an agent participating in the organization. A label identifies it uniquely in the
scheme (e.g., missionl, mission2). When an agent participates in an orga-
nization entity, it commits to missions, meaning that it will try to achieve all the
goals contained in the mission. For instance, in the case of missionl, goal2
and goal3 have to be satisfied. A mission cardinality constrains the minimum
and maximum number of agents that can commit to a mission (e.g., at least one
and at most two agents for mission missionl).

The functional specification of an organization is defined as a set of social
schemes. No missions or goals can be defined outside a social scheme.

As shown in figure 8.7, two different scheme entities are created and set under
the responsibility of the group entities presented in figure 8.5. Whereas agent1
is committed to missionl and mission2 in the first scheme entity, both agents
agentl and agent2 are committed to missionl in the second scheme entity.
From these commitments, it is expected that agents will achieve the goals involved
in the definition of the missions. The commitment of agents to missions is not done
atrandom or at the agent’s will. It follows the norms defined in the normative spec-
ification, the last facet of the definition of the organization specification, discussed
next.

Normative abstractions Whereas the structural abstractions address the struc-
turing of the agents in the system and the functional abstractions target the coordi-
nation of their behavior, the normative abstractions (see figure 8.3) are concerned
with the regulation of the agents’ behavior in the organization. The main concept
is norm: A norm defines the rights and duties of agents, taking the viewpoint of
its autonomy in the organization. To that aim, it connects together structural and
functional abstractions with deontic modalities, to express what is obliged, per-
mitted, or prohibited and for which agents (while they play the roles in that orga-
nization). As we can see, contrary to other normative approaches in the literature,

The Organization Dimension 131

sch1:scheme1

sch1:scheme1

: <<and>> <<and>>
: goal4
; s
: AR T
: \ ~-‘,__~_déperqu_pn,-
\\ /depénds on
N /
\

mission2 o mission1
1.1 o 1.2

mission2
1.1

A, A,
' a '8
e, [
P e [
g1:group1 sg1:group
Figure 8.7

Social scheme entities enacted from the functional specification defined in figure 8.6 in ac-
cordance with the group entities represented in figure 8.5.

norms are defined in the context of an organization. This is an important differ-
ence with regard to other normative approaches that define norms independently
of any structure or coordinated functioning.

<normative-specification>
<!-- the norms of the application —-—>
<norm id="norml" type="obligation"
role="rolel" mission="missionl"/>
<norm id="norm2" type="permission"
role="role2" mission="mission2"/>
</normative-specification>

Figure 8.8
Example of a simple normative specification.

The normative specification (see figure 8.8) is composed of a list of abstract norms
that are expressed as follows:
« a deontic modality, which can be an obligation or a permission
- therole that the deontic modality refers to; the given role identifier, defined in the
structural specification (e.g., rolel, role2), is the bearer of the deontic modality;
- the mission that the deontic modality refers to (e.g., missionl, mission2).

normative
specification

deontic
modality

norm bearer

norm mission

norm activation
condition

time constraint

132 Chapter 8

- anoptional activation condition that expresses the condition under which the norm
is considered to be active. It is used to check some properties of the organization
entity or the status of active norms in the organization (e.g., fulfilled, unfulfilled).
When not defined, it is considered as being true by default, meaning that the
corresponding norm is activated as soon as the organization entity is created;
and

- an optional time constraint that defines a temporal expression stating a time con-
straint on the fulfillment of the norm. After this deadline, the norm is considered
unfulfilled.

These norms are abstract because they express expected behavior in the abstract
terms of role in a group for a mission in a social scheme under the responsibility of
the group. After enactment of the organization specification, they are interpreted
and considered in the context of the organization entity; particular agents playing
that role and particular missions are interpreted in the context of the actual group
entity. The norm is thus assigned to any agent playing that role.

As shown in figure 8.7, the agents are committed to missions missionl and
mission2 according to what the norms state and to the definition of the social
scheme and group entities: agent1 and agent2 are committed to missionl be-
cause both play role rolel, which is the bearer of an obligation to commit to mis-
sionmissionl according tonorm norml,and agent1 is committed tomissionl
and mission2 in the other organization entity because it is playing rolel and
role2.

Partial Specifications of an Organization

Even if the definition of structural and functional specifications is not
mandatory, missing one or both introduces a burden and extra computa-
tion in the agents.

If the structural specification is missing, there is no structure to help the
agents to cooperate. In the case shown in figure 8.1, they should negotiate
among themselves to define who has the lead on the schedule definition and
with whom to cooperate since they do not know who is involved in the col-
lective task of schedule definition.

If the functional specification is missing, the agents have to reason about
a collective plan every time they want to act together. For instance, in the
case shown in figure 8.1, they have to (re)define a recipe for a cake and co-
ordinate among themselves (e.g., through the exchange of communication
messages) each time they have to prepare a cake. Even with a small search
space of possible plans (because the structure constrains the agents’ options)

The Organization Dimension 133

this may be a hard problem. Furthermore, the plans developed for a partic-
ular problem may be lost (e.g., if the agents leave the organization), because
there is no organizational memory in which to keep these plans.

In the case that both specifications are missing, the problems are the union
of the above drawbacks.

Besides avoiding such problems, the advantage of having the three spec-
ifications defined is that the agents have more information to reason about
others’ positions in the organization and thus better interact with them. As
shown in (Hiibner et al. 2004), having the structural and functional specifi-
cations independent helps in the definition of a flexible reorganization pro-
cess: the MAS can change its own structure without changing its coordina-
tion, and vice versa. For instance, in the case shown in figure 8.1, the same
structure of group cake_staff can be kept while the MAS executes in a
coordinated manner various cake recipes.

8.3 Organization Execution

We now describe the life cycle of an organization. The life cycle of the organization
specification depends either on actions of the stakeholders who develop the orga-
nization of the multi-agent system (e.g., changes of functional or nonfunctional
requirements) or on actions of the agents themselves engaging in a reorganization
process (Hiibner et al. 2004). Below, we put aside this latter life cycle and focus on
the life cycle of the organization entity, which is encountered in any execution of a
MAS.

As introduced in the previous section, the organization entity represents the state
of the organization in terms of organizational statements defined from the struc-
tural, functional, and normative concepts as well as data structures appearing in
the corresponding specifications of the organization specification. This representa-
tion is distributed into three types of entities: group, social scheme, and normative
entities.

A group entity is related to a group defined in the organization specification. The
state that it represents contains the owner of the group entity, the links to children
and parent group entities, and the set of role-player agents (i.e., a set of (agent,
role) tuples) with their links to other role-player agents. A group entity manages
this representation in coordination with the parent or child group entities, taking
into account the group-formation constraints defined in the structural specifica-
tion. Several group entities referring to the same group specification may exist in
an organization entity. The structural state of an organization entity is built from

organization
specification
life cycle

organization
entity life cycle

group entity

social scheme
entity

normative

entity

organization
entity life cycle

134 Chapter 8

the distributed representations managed by each group entity. It represents how
agents populating the organization are structured into groups, which roles they
play, and links along which they interact with each other.

A social scheme entity is related to a social scheme defined in the functional speci-
fication. The state that it represents contains the owner of the social scheme entity’,
the group entities responsible to provide agents for the scheme execution, the com-
mitments to missions, and the state of each goal appearing in the plan. The social
scheme entity manages this state, taking into account the constraints defined in its
specification. With regard to group entities, several social scheme entities referring
to the same social scheme definition may exist in the organization entity. The func-
tional state of an organization entity is built from the distributed representations,
managed by each social scheme entity, of the status of the missions and goals under
consideration by the agents according to the functional specification.

A normative entity is related to group and social scheme entities. Created every
time a group entity becomes responsible for a scheme entity, it can also be created
by the agents to manage a particular set of norms. The normative entity contains the
status of a set of norms built from the abstract norms of the normative specification,
in particular those in which the role and mission are related to some corresponding
group and social scheme entities. The management of the normative entity takes
into account the evolution of the group and social scheme entities. Like other en-
tities, several normative entities may refer to the same set of abstract norms of the
normative specification. The normative state of an organization entity is built from
the distributed representations, managed by each normative entity, of the status of
the norms.

From this discussion, we see that the management of an organization entity is
distributed in several entities: group, social scheme, and normative entities. The
consistency of these distributed representations is ensured by coordinated man-
agement of the group/subgroup entities, group and social scheme entities, and
normative entities with group and social scheme entities. As we subsequently see,
each of these entities has its own life cycle. The life cycle of an organization entity
results thus from the tight interaction among the life cycles of each of these entities.

Organization entity life cycle The life cycle of the orqanization entity is as follows:

1. Creation of the organization entity on the basis of a chosen organization speci-
fication (see lines 9-12 in the code that follows, which corresponds to an agent

1. Note that the owner of a group (resp. social scheme) entity is not necessarily the creator of the group
(resp. social scheme) entity. Immediately after the creation, there is no owner; once created, any agent
can become the owner. When it has an owner, only the owner can change the ownership.

The Organization Dimension 135

acting to create an organization entity). It consists then of sequences of creation
of group, scheme, or normative entities participating in the organization entity.

2. Execution of the life cycle of the group, social scheme, and normative entities in
relation to the life cycle of the agents and environment. It consists of continuous
updates and changes produced by the adoption of roles, creation of groups,
commitment to missions, fulfillment or not of norms, and so forth, according
to the organization specification that rules agent behavior. More details about
each entity life cycle are described in the sequel.

3. Destruction of the organization entity in the MAS as soon as all the other enti-
ties belonging to it have been deleted.

Group entity life cycle The life cycle of a group entity has the following steps: group entity life
!
1. Creation of a group entity based on a group definition (lines 15-16 use the e

createGroup operation to add a group entity g1 to the smorg organization
entity). The group entity is connected to its parent according to the group/sub-
group hierarchy defined in the structural specification. The root group entity
of the hierarchy should be the first one created.

2. Role adoption by agents who become role players in the group entity (lines 18—
20), with the use of the adoptRole operation stating which role is adopted in
the group entity GrArtId.

3. Ensuring that the group entity is well formed, that is, that the group-formation
constraints are satisfied (.wait in line 22 stops the execution of the intention
and waits for the signal formationStatus (ok) generated GrArtId when
it is well formed). It means that the group/subgroup entities hierarchy is well
formed, and that the subgroup entities are well formed, and that the group well-formed
entity has a valid structure of interconnected role players with a valid number 97oup entity
of agents playing them (there is no role-compatibility problem, and the number
of agents is greater than or equal to the minimum and less than or equal to the
maximum stated by the role cardinality).

4. Assignment of the group entity to be responsible for the execution of one or
several social scheme entities (line 26 uses addScheme operation for that). Be-
ing responsible for a social scheme means that the agents in the group entity
are the agents that have to commit to the missions of the social scheme. For
instance, if we have two social scheme entities (s; and s,) of the same scheme
specification (sch;) and two group entities (g; and g»), such that s; (resp. s2)
is under the responsibility of g; (resp. g2), only agents playing roles in g; can
(or have to) commit to missions in s; and only agents from g, can (or have to)
commit to missions in s,. For each social scheme that a group entity becomes

136

7 +!s

31 //
2 +pe

% //
w7 S/

48 { i

Chapter 8

responsible for, a normative entity is created and connected to the correspond-
ing social scheme entity and group entity.

Disconnection of the social scheme entities (and corresponding normative en-
tities) that no longer have agents committed to one of their missions.

Deletion of the group entity when it has no subgroups connected to it and no
social scheme responsibility, and all the agents participating in it have left their
roles.

tart : true
<- // Creation of organization entity "smorg"
createWorkspace (smorg) ;
joinWorkspace (smorg, WspId) ;
makeArtifact (smorg, "ora4dmas.nopl.OrgBoard",
["src/org/org.xml"], OrgArtId) [wid (WspId)]
focus (OrgArtId) [wid (WspId)];
// Group-entity lifecycle: Creation of group entity "gl" in "smorg"
createGroup (gl, groupl, GrArtId) [artifact_id(OrgArtId)];
focus (GrArtId) [wid (WspId)];
// Group-entity lifecycle: Adoption of role "rolel" in "gl"
adoptRole (rolel) [artifact_id (GrArtId)];
// Group-entity lifecycle: Adoption of role "role2" in "g2"
adoptRole (role2) [artifact_id (GrArtId)];
// Group-entity lifecycle: Waiting that "gl" is well-formed
.wait (formationStatus (ok) [artifact_id(GrArtId)]);
// Scheme-entity lifecycle: Creation of social scheme entity "schl"
createScheme (schl, schemel, SchArtId) [artifact_id(OrgArtId)];
// Group-entity lifecycle: Adding of "schl" under the responsibility of "gl"
addScheme (schl) [artifact_id (GrArtId)];
focus (SchArtId) [wid (WspId)];
// organization entity "smorg" created

Scheme-entity lifecycle: commitment to missions
rmission (Ag, MCond, committed(Ag, Mission, Scheme), Deadline) : .my_name (Ag)
<- commitMission (Mission) [artifact_name (Scheme)].

Common definitions pertaining to Scheme-entity and Normative-entity lifecycle
Obedience to norm prescriptions
nclude ("$SmoiseJar/asl/org-obedient.asl") }

social scheme Social scheme entity life cycle The life cycle of a social scheme entity has the follow-
entity ing steps:

1.

well-formed 3.
social scheme
entity

Creation of the social scheme entity on the basis of a social scheme defined in
the functional specification (line 23) with the use of the createScheme oper-
ation on the smorg organization entity.

Once the social scheme entity is under the responsibility of a group entity,
agents playing a role in the group entity responsible for the scheme entity are
permitted or obliged to commit to the missions defined in the social scheme ac-
cording to the norms defined in the normative specification (see line 48 where
common plans to commit to missions are included).

Once the well-formedness of the social scheme entity is determined (i.e., mis-
sions have a valid number of agents committed to them), the agents can pursue

The Organization Dimension 137

the goals in the order defined by the plan. The goals are distributed among the
agents according to the missions to which they have committed and the norms
defined in the normative specification.

4. The social scheme is finished when the root goal of the scheme either is
achieved or was deemed impossible to achieve.

5. When no agent is committed to the missions of the social scheme, the social
scheme entity can be detached from its corresponding group entities.

6. Once detached, the social scheme entity can be deleted by the agents.

Note that various social scheme entities may be created at any time from the same
social scheme specification.

start @ st

[activation-condition
is satisfied]

[norm-object has
waiting active not succeeded ||

now> norm-deadline]
[goal-preconditions

[goal i‘S not are satisfied && [norm-object has o -
possible] scheme is well succeeded] [activation-condition
formed] is not satisfied]

impossible |«€———— enabled fulfilled inactive
[goal is not
possible]

[goal is achieved] unfulfilled

achieved

(A) Goal life cycle (B) Norm life cycle

Figure 8.9
Life cycle of (A) a goal in a scheme entity and (B) a norm in a normative entity.

With regard to the goal life cycle, during the execution of a social scheme the goals organizational
appearing in the plan can be in one of the following states (see figure 8.9A): goal life cycle

- waiting The goal cannot be pursued yet because it depends on the satisfaction
of other goals (called goal preconditions) or on the well-formedness of the social
scheme entity. The set of goal preconditions is deduced from the plan of the social
scheme, that is, from the operators and from the dependencies between goals.
This state is the initial state of every goal.

normative
entity life cycle

138 Chapter 8

- enabled The goal can be pursued once the social scheme entity is well formed
and the goal preconditions have been satisfied. Agents committed to a mission
containing enabled goals can pursue them.

- achieved Agents committed to the goal have been able to achieve it.

- impossible The agents committed to the goal concluded that they will not be able
to achieve it (goal is not possible, as shown in figure 8.9).

Note that the change of the state waiting to enabled is performed by the social scheme
entity, whereas the change from state enabled to achieved is caused by the agents’
behavior.

Normative entity life cycle The life cycle of a normative entity has the following
steps:

- Creation of a normative entity and connection to its corresponding group entity
and social scheme entity is done in accordance with the normative specification.

- Once the social scheme entity is under the responsibility of its group entity, the
normative state is composed of mission norms. These normative expressions are
built from the abstract norms of the normative entity, replacing roles by the agents
that play them in the group entity. Once created, these norms follow the norm
life cycle presented below.

- The well-formedness of the social scheme entity is checked, that is to say that
all mission norms are fulfilled (agents are committed to the missions referred
to in the norms) and all constraints of the social scheme are satisfied. Once well
formed, the normative entity is updated with goal norms as soon as the corre-
sponding goal status becomes enabled according to its setting in the correspond-
ing plan managed by the social scheme entity. Note that goal norms are obligation
expressions that can be fulfilled or unfulfilled given the status of the correspond-
ing goal (achieved or not). They are created from the mission norms as follows:
obligation on missions involves obligation on goals, and permission on missions
involves obligation on goals as soon as committed to the missions. We should
note that commitment to a permitted mission implies creation of obligation on
the goals belonging to it, because we consider that once committed to the mission,
the agent has to achieve the goals in order to not create inconsistent behavior.

+ Once all norms have been fulfilled, then the normative entities are detached from
their social scheme and group entities. An agent can remove its commitments
only if its obligations have already been fulfilled. If that is not the case (i.e., an
agent has not fulfilled its obligations), the system does not allow it to be relieved
from its commitments to missions.

An instantiated norm (both mission and goal norms) may have the following
status (see figure 8.9B)

The Organization Dimension 139

- active The activation condition of the normative expression holds (in the case
of a mission norm, this is the activation condition defined in the abstract norm,
whereas in the case of a goal norm, this is the fact that the goal has become en-
abled).

- fulfilled The object of the deontic modality of the norm has succeeded (a commit-
ment for a mission norm, or goal achievement for a goal norm).

- unfulfilled In the case of obligation, the object of the deontic modality has not been
successfully concluded (with a commitment for mission norms, or achievement
for goal norms) or the deadline has passed. The norm has been violated.

- inactive The activation condition no longer holds.

Agent participating in an organization entity To conclude the presentation of
the organization execution model, we present the life cycle of a role-player agent; that
is to say, an agent that plays a role in the organization entity:

1. The agent adopts roles in groups, becoming a role player in the correspond-
ing group entities. The adoption of a role by an agent is constrained by the
role-cardinality and role-compatibility constraints. That is to say that an agent
should have a clear strategy for adopting roles in an organization.

2. The agent undertakes the commitments to missions in social scheme entities.
The commitment to a mission is constrained by the normative specification as
well as the constraints on missions.

3. The agent undertakes the goals associated with the committed missions in ac-
cordance with the progress of the scheme execution in which the goals appear
(see figure 8.10).

4. Removal of commitments. This removal is also constrained; an agent can re-
move its commitments only if its obligations were already fulfilled. If an agent
does not fulfill its obligations, the system should not allow it to remove the
commitments.

5. The agent may decide to leave its roles if it has no outstanding commitments
and may quit the corresponding group entity.

// Domain level actions: satisfaction of goals

+!goal2[scheme (schl)] <= .println("satisfying goal2 in schl"); +goal2.
+!goal3[scheme (schl)] <= .println("satisfying goal3 in schl"); +goal3.
+!goald [scheme(schl)] <- .println("satisfying goal4 in schl"); +goald.
+!goal2[scheme (sschl)] <- .println("satisfying goal2 in sschl"); +goal2.
+!goal3[scheme (sschl)] <= .println("satisfying goal3 in sschl"); +goal3.
+!goald[scheme (sschl)] <— .println("satisfying goald4 in sschl"); +goald.

Figure 8.10

Agent plans to achieve organizational goals.

role-player
agent life cycle

140 Chapter 8

From this presentation, we can note that whereas the changes of the group and
social scheme entities are the direct results of the agents” actions—for instance cre-
ating groups, adopting roles, and committing to missions—the normative state ob-
serves its monitored group and social scheme entities to activate /deactivate norms
and trigger events that will be perceived by the agents. The regulation specified
by the norms depends only on how the structure and coordination evolve in the
system under the actions of the agents. Agents thus have no action to change the
normative entity directly, whereas they have to act on the group and social scheme
entities.

Situating Organization in an Environment

In the type of complex systems targeted with the MAOP approach, it is im-
portant to consider the interpretation of norms with respect to the environ-
ment in which the agents are situated. This interpretation is usually referred
in the literature as constitution (Searle 1997, 2010; Balke et al. 2013).

For instance, in an auction scenario, norms may regulate payments and
bids performed by the agents participating to the auction. How payments
are realized (using paper bills or any other means) and how bids are realized
(e.g., by raising hands or shouting) are not explicitly defined by the norms.
However, these definitions are of first importance in order to monitor the
activation, violation, and fulfillment of norms. We need to state what in the
environment constitutes payments and bids for the norms. For instance, it is
necessary to specify that the raising of hands is an event in the environment
that counts as a bid in the auction process.

Constitution raises two issues for MAOP. First is how to define the rela-
tion between concepts appearing in the organization dimension and their
counterpart in the environment dimension (e.g., interpreting the execution
of some operation on an artifact as the achievement of an organizational
goal and recognizing the execution of a set of operations on artifacts as the
fact that some agent is playing some role). Second is how to define it so that
the same set of operations on artifacts can be referred to by different norms
and reciprocally to have the possibility of using the same norm with, for
instance, different sets of operations counting as the norm fulfillment (e.g.,
using either the raising of hands or blinking of eyes to count as realizing a
bid).

The literature has proposed different models (Broersen et al. 2013;
Broersen and van der Torre 2012; Boella and van der Torre 2004) that intro-
duce an intermediate entity between the environment and the normative en-
tities, called a constitutive entity, in which constitutive statements are placed.

The Organization Dimension 141

It is also proposed to introduce explicit representations of constitutive rules
to capture the interpretation of the agents, events, and states of the envi-
ronment as institutional facts, which helps the management of the norms.
Although the literature proposes specialized approaches for norms and
for constitutive rules, they are not usually connected to each other (Boella
and van der Torre 2006). The situated artificial institution model introduced
in (de Brito et al. 2018, 2017) proposes solutions and architectures address-
ing these questions and is integrated into JaCaMo.

Conversely to this interpretation of the environment as a provider of con-
crete facts for norms monitoring, organization may empower elements of the
environment by allowing them to control and regulate actions or perception
of the agents. As shown in (Okuyama et al. 2013) and (Piunti et al. 2009), this
dynamic relation is a practical way of situating organizations in an environ-
ment.

8.4 Bibliographical Notes

The concept of organization and its related concepts have started to be consid-
ered an important (independent) dimension for multi-agent systems by seminal
work in the 1980s (Fox 1981; Corkill and Lesser 1983; Pattison et al. 1987; Gasser
etal. 1989). Given its multidisciplinary nature, the organization dimension was ap-
proached from different perspectives, from sociology (Ferber and Gutknecht 1998;
Demazeau and Rocha Costa 1996; Bond 1990) to ethology (Drogoul et al. 1995), re-
sulting in several organizational models (e.g., AGR [Ferber and Gutknecht], Team-
Core [Tambe], Islander [Esteva et al.], and Moise [Hiibner et al.]). Moise is the
model on which the organization dimension described in this book is grounded. It
originated from the refactoring of the initial version presented in (Hannoun et al.
2000). Extensive comparisons of those different models have been proposed in var-
ious journal papers and books (Coutinho et al. 2009; Ossowski 2012; Dignum 2009;
Aldewereld et al. 2016).

The initial proposals to program that dimension were then proposed in platforms
such as MadKit (Gutknecht and Ferber 2000), Karma (Pynadath and Tambe 2003),
Ameli (Esteva et al. 2004), ORA4MAS (Hiibner et al. 2010), OMNI (Dignum et al.
2004), and 20PL (Dastani et al. 2009). For a detailed account of the area, the Interna-
tional Workshop on Coordination, Organizations, Institutions and Norms (COIN)
has published a series of books (e.g., Ghose et al. 2015).

In this chapter and in the book, we did not consider an aspect of organization in
multi-agent system that is called emergent organization. An emergent organization
is an organization entity for which the properties are unknown at the level of the

142 Chapter 8

agents themselves, that is to say that there does not exist any representation in the
agents or outside of the agents. Stakeholders may observe an organization entity
that is a side effect of the interactions taking place between the agents in the MAS.
This is usually called an organization in complex systems (Morin 1977) or self-*
domains.?

Exercises

Exercise 8.1 Define the organization specification for the management of the collaborative
writing of a journal paper. The management of the writing is handled by assistant agents
that support the users in the execution of the global workflow for executing this process. We
will consider that the structure of this organization has only one group to make collaborate
an editor (not more than one) and a set of writers (to keep the writing manageable, we allow
one to five writers to participate in this group). The editor has authority over writers. It is
possible to be editor and writer at the same time. To write the submitted version of the paper
under this structure, a draft version of the paper has to be produced first, followed by the
submitted version. The draft version is composed of a title, an abstract, an introduction, and
the list of section names. Whereas the draft version is produced only by the editor, the filling
in of the sections for the submitted version is done by the writers except for the conclusion,
which is written by the editor. A set of references provided by each of the writers is added
to the submitted version.

Exercise 8.2 Define the organization specification for the management of a master training
program. The management of the administrative tasks is realized by a set of assistant agents
who help the educational staff and the students in their procedures. Because it is a complex
process, we focus here on the registration for the courses process: after being registered as a
master’s student in the master’s program, each student must request his/her registration for
the courses he/she is interested in. This requires the student to fill out a form, to have the
agreement of the professor responsible for the course, and then to give it to the secretary of
the administration who asks the teaching director to validate it and then, if it is validated,
requests the database manager to store it. The student is then informed of the success/failure
of his/her application.

Exercise 8.3 Reconsider the domestic robot exercise presented in chapter 6 and extend it
by considering that several owners, each assisted by a robot, have access to a unique fridge
and to one supermarket. In the case of a lack of beers in the fridge, only one robot can order
more beer using the supermarket’s home delivery service. Instead of being hardwired into
the robot by the Department of Health, the application defines several policies depending
on the age of the owner. When launching the system, the proper set of policies is created
according to the age of the owner.

2. The series of conferences on Self-Adaptive and Self-Organizing Systems, http://www.saso-
conference.org/, can be consulted for more information.

http://www.saso-conference.org/
http://www.saso-conference.org/

9 Programming Organizations of Situated Agents

In this chapter we see the organization dimension in practice in a further extension
of the smart room scenario, involving more articulated and complex coordination
patterns among the agents. We redesign the scenario on the basis of the organiza-
tion concepts and programming abstractions introduced in the previous chapter,
discussing in particular how coordination patterns among the agents can be re-
framed to achieve more flexibility and openness. This chapter also explores how
agents can be programmed to reason about the organization in which they are par-
ticipating so that, for instance, they can discover some role of interest in terms of
missions, goals, and duties.

9.1 Programming an Organized Smart Room

In this chapter, we extend the previous example of managing a single room temper-
ature by introducing a set of rooms with different policies for managing the temper-
ature in each of the rooms (e.g., a voting mechanism in one room and a first-come-
first-served policy in another room). The organization will help us to define these
policies in an abstract way by using a suitable language. Thus when we want to ap-
ply different policies in the rooms, we, or the agents themselves, can simply select
a different organization. For instance, in the single room temperature application
of the chapter 7, the voting process is hard-coded within the room_controller
or personal_assistant agents and Vot ingMachine artifact programs. How-
ever, agent and artifact programming languages are not designed to easily manage
such a process. The aim here is to turn the voting process explicitly programmed
in the organization dimension into a language designed for that, so that we (the
software developers or the agents themselves) can define and change the process
to modify the temperature by changing only the organization without touching the
agent or artifact programs.

defining the
structural
specification

defining the
functional
specification

144 Chapter 9

<<and>>

assistant controller
1.5 1.1

room

Figure 9.1
Organization specification for the organized smart room.

Defining the organization for the smart room We start by specifying an orga-
nization on top of the voting process we used in the previous chapters. As described
in the chapter 8, the specification of the organization has three parts: structural
(groups, roles, ...), functional (social schemes, goals, ...), and normative (norms). In
the structural part of this organization, we have the following roles to be played by
agents:

- assistant Thisroleis played by agents who want to keep the room temperature
according to the preferences of their owners; and
- controller This role is played by agents who are able to handle the hvac.

The group, identified by room in figure 9.1, should have exactly one agent play-
ing the role controller and up to five agents as assistant. The cardinality
(< min,max >) of roles controller and assistant are < 1,1 >and < 1,5 >
respectively. Group entities with this configuration of agents are considered well
formed. By defining this group, we are constraining the participation of agents in
the temperature choice to those who joined the group by playing one of the two
roles as well as constraining the number of such agents. The organization also de-
fines its own goals as well as when and by which agents they have to be achieved—
the functional part of the specification. For the voting protocol, we can consider the
following goals:

N

© ® N o o«

1

Programming Organizations of Situated Agents 145

- preferences Collect temperature preferences from users;

- open_voting Start the voting processes;

- ballot Agents vote for their preferred options; and

- close_voting Stop the voting processes and determine the room temperature.

These goals are subgoals of the vot ing goal and part of the scheme decide_temp
as illustrated in figure 9.1. The achievement of the subgoals implies the achieve-
ment of the goal voting. The scheme also states that these goals should be
achieved exactly in the order they are presented here.

We finish the organization specification with some norms. They declare the set
of duties and permissions that agents will have to fulfill while they play roles in
the room group. The norms are the following:

- Agents playing assistant are permitted to achieve the goal preferences;

. Agents playing assistant are obliged to achieve the goal ballot; and

. Agents playing controller are obliged to achieve the goals open_votingand
close_voting.

An obligation implies a permission, sopersonal_assistant agents are also per-
mitted to achieve that goal and no other role has that permission. With the norma-
tive specification, we are constraining who can achieve the organizational goals:
they can be achieved only by agents that are obliged or permitted to do so through
the roles they are playing.!

The group, scheme, and norms described so far constitute a type of organization,
and its specification is coded in an XML file—it is called Organization Specification
(OS). This file has three parts corresponding to the three specifications that we
just defined: structural, functional, and normative. For the organized smart room
example, the content of the file is the following;:
<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet href="http://moise.sf.net/xml/os.xsl"

type="text/xsl" ?>
<organisational-specification id="room org"

os-version="0.11"

xmlns='http://moise.sourceforge.net/os'

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance'

xsi:schemalocation="http://moise.sourceforge.net/os
http://moise.sourceforge.net/xml/os.xsd' >

1. There are implicit prohibitions in the set of norms of this example, for instance, agents not playing
assistant role are prohibited from achieving the goal ballot.

defining the
normative
specification

defining the
organization
specification

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

146

<structural-specification>
<group-specification id="room" >
<roles>
<role id="assistant" min="1" max="5" />
<role id="controller" min="1" max="1" />
</roles>
</group-specification>
</structural-specification>

<functional-specification>
<scheme id="decide_ temp" >
<goal id="voting">
<plan operator="sequence" >
<goal id="preferences" ttf="5 seconds”
<goal id="open_voting"/>
<goal id="ballot" ttf="10 seconds">
<argument id="voting_machine_id" />
</goal>
<goal id="close_voting" />
</plan>
</goal>

<mission id="mAssistant”" min="1" >
<goal id="preferences"/>
</mission>

<mission id="mVote"” min="1" >
<goal id="ballot"/>
</mission>

<mission id="mController" min="1" >
<goal id="open_voting"/>
<goal id="close_voting"/>
</mission>
</scheme>

</functional-specification>

<normative-specification>

<norm id="nla" type="permission"
role="assistant"” mission="mAssistant" />

<norm id="nlb" type="obligation"
role="assistant" mission="mVote" />

<norm id="n2" type="obligation"

role="controller" mission="mController" />
</normative-specification>
</organisational-specification>

Chapter 9

/>

N N

© ® N o W

11

12

Programming Organizations of Situated Agents 147

We can note that this file has more details than the specification shown in figure 9.1.
The figure represents only part of the specification, so more details are added in
the OS file.

- Some goals have a ttf (time to fulfill) attribute (an example is shown in line
25). The value of this attribute defines the deadline for the agent to fulfill the
related obligation. For example, once the norm that obliges some agent to achieve
preferences is activated, the agent has five seconds to achieve it.

« The goal ballot has anargument (voting_machine_idinline 28). The value
of this attribute is defined at runtime and will be known by the agents partici-
pating in the scheme. In this case, they use the value to select the voting machine
with which they are obliged to vote.

« The missions (mAssistant, mVote, and mController) are specified to assem-
ble related goals (lines 34...). Missions define the set of organizational goals to be
achieved by an agent, and thus, thanks to the social plan that structures the set
of goals, an agent can know when it has to take part in the scheme execution. In
this organization, the social scheme requires agents in three missions, at least one
agent in each. Only when enough agents have committed to the missions is the
scheme well formed and can start its execution.

- Norms are defined for missions and not for goals (lines 50...). Agents are obliged
or permitted to commit to a mission of a social scheme. Once committed, they
are always obliged to achieve the goals that are part of those missions.

Deploying the organized smart room This organization specification can be
instantiated, creating an Organization Entity (OE), either by an entry in the
main application file (. jcm file) or by the agents themselves. Considering the
application file option, the following excerpt of code illustrates the creation of an
organization entity called smart_house_org based on the specification intro-
duced previously (which is in a file named smart_house.xml).

mas org_voting {

// ... agents and workspaces are created here
organisation smart_house_org : smart_house.xml {
group rl : room {

players: pal assistant
pa2 assistant
pa3 assistant
rc controller
responsible-for : temp_rl
}
scheme temp_rl: decide_temp

deploying the
organization
entity in the
application file

L S

148 Chapter 9

; responsible
i for

i

assistant controller
1.5 1.1
A
ri:roo

12
g

(=) (o)
Figure 9.2

Organization entity and group entity r1.

plays
oo

| —
skeld

In this organization entity, based on the group specification room, we create one
group entity, identified by r1 (line 4), in which agents play some roles as listed after
the players keyword (see figure 9.2). In this case, we are assigning roles for the
agents in the application file. Of course, as for many initial definitions written in
this file, the role adoption could be coded inside the agents, and we discuss how
to do so subsequently. The organization also has one social scheme entity, identified
by temp_r1f (line 11), and agents in group entity r1 will be responsible for its
missions and goals (line 9).

Programming the agents to act in the organized smart room We now focus on
the agent dimension and how to program the agents that participate in this orga-
nization. An important principle in the MAOP approach is that agents may achieve
organizational goals in their own way. We have thus to program plans in the agents
to achieve organizational goals; for example, the room_controller agent should
have plans for the organizational goals open_votingand close_voting thatit
could have to achieve when participating in the organization:

+!open_voting[scheme (S)]
<—- // get temperature preferentes sent by message from assistants
.findall (T, pref_temp (T) [source(_)],Options);

// get voters from organization (agents playing assistant)
.findall (A, play(A,assistant,_), Voters);

16
17
18

20
21

Programming Organizations of Situated Agents 149

// open "voting machine" for votes
vm: :open (Options, Voters, 4000);
.print ("Options are ",Options," voters are ",Voters);

// set the argument of organizational goal "vote"
setArgumentValue (ballot, voting_machine_id, vl) [artifact_name(S)];

+!close_voting
<= ?vm::result (T);
.println("Creating a new goal to set temperature to ",T);
.drop_desire (temperature(_));
!'temperature (T);

The VotingMachine artifact is still used (as illustrated in figure 7.3) because
it offers the proper usage interface to implement the voting process actions. The
room_controller agent uses this artifact to achieve the open_voting goal. We
highlight line 6 where a consult of belief play (Ag, Role, Group) is used to iden-
tify all agents playing role assistant. Broadcast messages between the agents
are no longer necessary to find out who are the assistants. The play/3 belief in
the agent mind comes from the organization entity. The management of this orga-
nization entity as defined in the organization execution model described in chap-
ter 8 is implemented by dedicated artifacts, called organizational artifacts. They offer
a set of observable properties that provides to the agents a view on the state of the
organization entity, as well as a set of operations for the agents to change the or-
ganization. Any agent focusing on them can perceive and change the organization
state.

The program for personal_assistant agents has also plans for handling the
organizational goals preferences and ballot:
+!preferences

<— ?pref_temp(T); // consults my personal preference
.send(rc, tell, pref_temp(T)); // and send to rc

+!ballot

<- .wait (300); // thinking on how to vote...
// get the name of the voting machine artifact
// defined for organizational goal "vote"
?goalArgument (_, ballot, "voting_machine_id", VMName) ;
// get the workspace id where the voting machine 1is
?joined (vmws, VWId) ;
lookupArtifact (VMName, VMId) [wid (VWId)];
// focus on the voting VotingMachine using namespace vm
vm: : focus (VMId) [wid (VWId)];

// consult the temperature options

obedient agent

o G ok W N e

150 Chapter 9

?vm::options ([First, Second]|_]1);
// simply vote on the second option (!)
vm: :vote ([Second]) ;

{ include ("$moiseJar/asl/org-obedient.asl") }

Initially, we consider fully obedient agents—that is, they obey obligations, per-
missions, and prohibitions as determined by the norms of the organization. The
plans written in the file included by the include command in the last line of the
preceding program gives this behavior to the assistant agents. More precisely, in-
cluding file org-obedient.asl adds the following plans into the agent’s plan
library:
+obligation (Ag, MCond, committed(Ag,Mission, Scheme), Deadline)

.my_name (Ag)
<— commitMission (Mission) [artifact_name (Scheme)].
+obligation (Ag, MCond, done (Scheme,Goal,Ag), Deadline)
.my_name (Ag)
<— 1Goal [scheme (Scheme)].

We can notice that these plans react to the addition of beliefs:
obligation (Ag, MCond, What, Deadline)

As the belief play/ 3, thebelief obligation/4 comes from the organization, and
all agents focusing on organizational artifacts will perceive them. The obligation
can be read as “agent Ag is obliged to What before Deadline while MCond.” The
Deadline argument is the result of adding the “time to fulfill” (tt £ as defined
in the OS) to the time when the norm is activated. If tt £ is not provided in the
OS, there is no deadline. The What argument is the organizational fact the agent
is obliged to bring about. As explained in chapter 8, corresponding respectively to
the mission and goal norms, two kinds of What arguments are considered:

- committed(Ag,Mission, Scheme) Agent Ag is obliged to commit to
Mission. This kind of obligation is created when the agent plays a role that is
obliged to Mission (as specified in the OS norms) in a group that is responsible
for scheme. Fulfilling this obligation is simple: the agent only has to commit to
the mission using the operation commitMission that is available in organiza-
tional artifacts.

- done (Scheme, Goal, Ag) Agent Ag is obliged to achieve Goal. This kind of obli-
gation is created when the goal Goal is enabled. An organizational goal is en-
abled when (1) its scheme entity is well formed, and (2) its precondition goals
are achieved. In our example, the achievement of goal open_voting is the pre-
condition of ballot, as implied by the decomposition of goal voting in the

Programming Organizations of Situated Agents 151

social scheme. The plan in lines 4-6 reacts to this obligation by including the
organizational goal as an agent goal (line 6). For now, the agent fulfills this obli-
gation by completing the execution of a plan to achieve Goal.? Even though an
agent may have fulfilled an obligation by achieving Goal, in this example, a goal
is considered achieved only when all committed agents have done so.

Similar to the creation of obligation from the norms, permission is also cre-
ated, with the same arguments as obligations.

The personal_assistant agents have a plan for them because, regarding
norm nla of the OS, they are permitted (rather than obliged) to commit to mis-
sion mAssistant:
+permission (Ag, MCond, committed(Ag,Mission, Scheme), Deadline)

.my_name (Aqg)
<— commitMission (Mission) .

Besides plans to react to changes issued in the organization entity (obligations
and permissions) and those to achieve organizational goals issued from the norms,
apersonal_assistant agent continues to react to changes in its environment.
The following plan reacts to new activities of the user in the room:

+activity(A) : A \== "none" <- resetGoal (voting).

This plan uses the resetGoal action to restart the scheme execution. This opera-
tion sets Goal and all that follows it in the scheme entity as not achieved. For exam-
ple, by resetting goal vot ing, all its subgoals (preferences, open_voting, ...)
and itself are considered unachieved; by resetting goal ballot, the goalsballot
and close_voting are not considered satisfied anymore. By resetting the root
goal vot ing (as done in the above plan), the personal_assistant agent effec-
tively starts the scheme again, which will trigger new obligations for agents com-
mitted to the missions including those goals.

Organization Management in JaCaMo

The management of an organization entity is realized by a set of dedicated
organizational artifacts that the agents can focus on and act on when playing

2. This kind of fulfillment is far from ideal, because it depends on the internal state of the agent. It is
based on the execution of an agent’s plan, about which the designer may not even know in the case of
open systems, and so its execution could mean nothing regarding the obligation. Instead, the fulfillment
should be based on concrete changes in the environment. For instance, the door should be perceived to
be open to fulfill the obligation done (s1, open (door) , bob) ; simply running a plan to open the door
is not enough because the plan may fail. A better approach for the fulfillment of obligation is proposed
by de Brito et al. (2018), based on the notion of situated artificial institutions (SAI) (see the research
corner on page 140).

152 Chapter 9

a role in this organization entity. By focusing on these artifacts, an agent can
obtain the following beliefs on the state of the organization entity (group/-
social scheme/normative entities):

specification(S) [artifact_name(_,A)] S is the specification of A (A
being a group, scheme, or organization identifier).

play (A,R,G) Agent A is playing role R in group G.

schemes (L) [artifact_name(_,G)] Group G is responsible for the
schemes belonging to the list L.

commitment (A,M,S) Agent A is committed to mission M in scheme S.

groups (L) [artifact_name(_,S)] The groupsin the list L are responsible
for scheme s.

formationStatus (S) [artifact_name(_,A)] The formation status for
scheme or group A is S (possible values for S are ok and nok).

goalState(S, G, LC, LA, T) Goal G, of scheme S, is in state T (possible
values for T are waiting, enabled, and achieved);
LC is the list of agents committed to the goal, and LA is the list of agents
that have already achieved the goal.

goalArgument (S, G,A,V) Argument A of goal G has value V in scheme S.

obligation(A,R,G,D) Agent A is obliged to achieve G before D while R
holds.

permission (A,R,G,D) Theagent 2 is permitted to achieve G before D while
R holds.

Besides beliefs, the following events can also be perceived by the agent from
the signals produced during the organization life cycle:

oblCreated (0) Obligation O was created.

oblFulfilled(0) Obligation O was fulfilled.
oblUnfulfilled(0) Obligation 0O is unfulfilled.

oblInactive (0) Obligation O is inactive.

normFailure (F) There was a failure F in the normative system.

The following actions are provided to the agents by the organizational arti-
facts to change the organization entity state:

createGroup (Name, Type, ArtId) [artifact_name (O)] Creates a new
group of name Name, following the group specification Type defined
in the OS used to create organization (O). The organizational artifact
(GroupBoard) that manages it is identified by Art Id.

Programming Organizations of Situated Agents 153

createScheme (Name, Type, ArtId) [artifact_name (O)] Creates a new
scheme of name Name, following the scheme specification Type defined
in the OS used to create organization (O). The organizational artifact
(SchemeBoard) that manages it is identified by Art Id.

adoptRole (R) [artifact_name(G)] Adoptrole R in group G.

leaveRole (R) [artifact_name (G)] Leaverole R in group G.

addScheme (S) [artifact_name (G)] Add scheme S to the responsibility of
group G.

removeScheme (S) [artifact_name(G)] Remove scheme S of the respon-
sibility of group G.

commitMission (M) [artifact_name (S)] Commit to mission M in scheme
S

leaveMission (M) [artifact_name (S)] Leave mission M in scheme S.

resetGoal (G) [artifact_name(S)] Set goal G as not satisfied in scheme
S,

setArgumentValue (G, A,V) [artifact_name (S)] Set V as the value of ar-
gument A of goal G in scheme S.

Executing the agents in the organized smart room As explained in chapter 8§,
participating in the organization means that the agents adopt roles and commit to
missions to achieve goals under their duties as stated by the norms.

The organizational artifacts building the organization management infrastructure in
JaCaMo interpret the organization specifications in order to coordinate the agents’
activities at runtime. JaCaMo starts the coordinated execution of a created social
scheme entity as soon as the group entity that is responsible for it is well formed
(that is, at least the minimum number of agents that are required to play the roles
have already adopted those roles). In our example, because the group entity r1 is
responsible for the social scheme entity temp_r1, as soon as r1 is well formed, the
following obligations and permissions are created by the organization:
permission(pal, nla, committed(pal, mAssistant, temp_rl), _).

permission(pa2, nla, committed(pa2, mAssistant, temp_rl), _).
permission(pa3, nla, committed(pa3, mAssistant, temp_rl), _).

obligation
obligation
obligation
obligation

pal, nlb, committed
pa2, nlb, committed
pa3, nlb, committed
rc, n2, committed

pal, mVote, temp_rl), _).
pa3, mVote, temp_rl), _).
pa3, mVote, temp_rl), _).
rc, mController, temp_rl), _).

managing the
organization
with
organizational
artifacts

154 Chapter 9

| temp_r1: decide_temp

<<and>>

—
preferences close_voting
r1:100mM [responsible - T
for : dépends on " depends on 3
|
mAssistant mVote mController
1.2 1.% 1.*
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, g
el
2
£
£
[s}
o
Figure 9.3

Organization entity and social scheme entity temp_r1.

Having programmed obedient agents, the personal_assistant and
room_controller agents behave as ordered by the organization and will
commit to their missions. The organization entity state after the commitments
is as shown in figure 9.3. With these commitments, the social scheme entity
becomes also well formed (which in this case means that all agents have committed
to performing the corresponding goals under their missions). Because it is well
formed, JaCaMo determines new obligations for the goals of the social scheme.?
Initially, because the organizational goal preferences has no precondition, it is
enabled and then three obligations are created:
obligation(pal,goaln, done(temp_rl,preferences,pal), "2018-9-5 8:47:57").
obligation(pa2,goaln, done(temp_rl,preferences,pa2), "2018-9-5 8:47:57").
obligation (pa3,goaln, done(temp_rl,preferences,pald), "2018-9-5 8:47:57").
Again, obedient agents will execute their plans to achieve the organizational goal
preferences. In our example, their plans consist of simply sending a message to
the room_controller agent with the user-preferred temperature (cf. section 9.1).
When all agents committed to preferences have achieved their goals (in our

3. The OS file contains explicit norms linking roles to missions of a particular application. Besides those,
generic norms are included in all applications. One generic norm is “When a goal g of mission m is
enabled, agents committed to m are obliged to g before t7f.”

Programming Organizations of Situated Agents 155

Room Voting
Controller Artifact

I I I |
adoptRc istant)

UserGUI Personal Assistant Organization

1
<———— permission(... committed(mAssistant) ...) ———
<———— obligation(... committed(mVoter) ...)

I
|
1
|
1
I

commit(mAssistant)

!
1
|
|
|
|
!
!
: commit(mVoter) ——————————>
1

— activity(reading)

|
|
|
I
I
|
|
I

resetGoal(voting) —————>

< tell preference(...) — Ne— obligation(... done(get_preferences) ...) ——

<————— obligation(... done(pallot) ...) —————

|
|
I
1
1
1 <— vote(...) ——
!
|
I

Figure 9.4
Interaction of the personal_assistant agent with the other elements of the system.

example, pal, pa2, and pa3), the organizational goal is considered satisfied by
the organization. The achievement of this goal enables the goal open_voting,
creating then the following obligation for the room_controller agent:

obligation(rc, goalNorm, done (temp_rl,open_voting,rc), _).

The room_controller agent fulfills the obligation by opening the voting process
inthe Vot ingMachine artifact. This again enables the next goal, creating new obli-
gations, and if fulfilled, enabling the next goal, and so on. Figure 9.4 illustrates the
interaction between the agents, the artifacts, and the organization—for the sake of
simplicity all organizational artifacts involved in the organization management are
grouped in a sole component—from the perspective of a personal_assistant
agent.

In the execution described so far, we can note that the JaCaMo organization man-
agement infrastructure computes itself when new goals have to be pursued because
its dependent goals have been achieved by other agents. The enabling of goals ac-
tivates some goal norms that create obligations for the agents committed to the
corresponding missions. The (obedient) agents then can start acting to achieve that
particular goal. The coordination is thus managed by the organization by issuing
obligations for the agents. With the addition of an organization, we do not find
code related to the coordination of the voting process either in the agent programs
or in artifact programs: agents simply have plans for handling organizational goals.

156 Chapter 9

9.2 Changing the Organization

We have seen how the implementation of the coordination was moved from the
agent to the organization dimension. Although this action has required learning
several new concepts to write new lines of code, we discuss in this section the in-
terest of using such approach to program coordination instead of hard-coding it in
the agents.

Suppose we want to change the way the temperature is defined in the organized
smart room so that the room_controller agent collects preferences and sets the
target temperature to be the average of the requested temperatures. We can do that
by following a few steps:

1. Copy the previous OS to a new file called smart_house_s.xml and change
the organizational goals of the social scheme as shown in figure 9.5:

<goal id="voting">
<plan operator="sequence" >
<goal id="preferences" ttf="5 seconds" />
<goal id="set_average" />
</plan>
</goal>

2. Change the organization entity so that it uses the new OS:

organisation smart_house_org : smart_house_s.xml

3. Add a plan in the room_controller agent program to achieve the new or-
ganizational goal set_average:

+!set_average
<- .findall(T,pref_temp(T) [source(_)],0Options);
.drop_desire (temperature(_));
!''temperature (math.average (Options)).

This plan retrieves all temperature preferences informed by the agents and then
creates a new intention with the goal to set the target temperature to the average
of all preferred temperatures (! ! temperature (.. .)); before doing so, any cur-
rently ongoing attempts to set the target temperature must be dropped.

These changes are all that is needed—no changes in the voting artifact or par-
ticipating agent programs. Moreover, we can come back to the voting process by
simply selecting the previous OS. In that case, the plan for achieving the goal
set_average will not be triggered. Following the same approach, different tem-
perature selection schemes can be created by different organizations using the same
program for the agents and artifacts.

We can now highlight some advantages of this approach:

Programming Organizations of Situated Agents 157

decide_temp .M

<<and>>

3 preferences set_average

“dépends on

mAssistant mController
A 1.% A 1.%
,,,,,,,,,,,,,,,,,,,,,,, [TEUURURRSR
1 1
))
))
i T
i i
i i
1 1
assistant controller
1.5 1.1
room

Figure 9.5
Organization specification to set the target temperature to the average preference.

- No exchange of messages is required between the agents for coordination pur-
poses. The organization management infrastructure intermediates the coordina-
tion by interpreting and managing the organization entity life cycle.

- The order of the organizational goals is not implemented in the agents, and it is
enforced by the organization. They have plans for organizational goals and that is
all they need. To change the order of achievement of the goals, we simply change
the social scheme specification. There is no need to change any agent code.

« In the case that we need to add more personal_assistant agents, we can
simply assign them to play the assistant role and then they can participate in
the voting processes, as long as they have plans for achieving the corresponding
organizational goals. Playing this role is a necessary condition for that, and the
right to participate comes with some duties. This is particularly useful in open
systems where we do not know the behavior of incoming agents beforehand.

- The organization can be perceived by any agent, which can thus monitor the state
of the organization (e.g., to discover which agents are not fulfilling their obliga-
tions).

158 Chapter 9

9.3 Agents Deploying Their Organization

In the previous section, the organization is created by the application designer us-
ing the application file. The created agents then execute in the resulting organiza-
tion entity. However, in some applications it is preferable that the agents themselves
create the organization entity. The JaCaMo organization management infrastruc-
ture offers some actions for the agents to take control of their organization.

Considering the same organized smart room scenario, we can change it so that
the room_controller agent creates the organization for its room, and it does
so by selecting the best organization specification for the temperature control pol-
icy to be used in the room. To implement this version, we have to remove all
organization code from the application file and add plans in the agents to build
up the organizational entity.

The new room_controller agent performs the following steps:

1. Creates the organization entity where the group and social scheme entities will
be deployed (lines 6-14);

2. Creates a group entity (lines 15, 16—based on the specification room defined
in the smart_house.xml file);

3. Adopts the role controller in this group (line 19);

4. Announces the existence of the room group to the participants so that they can
join in (line 22);

5. Waits for the participants to adopt their roles (line 25);

6. Creates the social scheme entity (line 28—based on the specification
decide_temp defined in smart_house.xml); and

7. Sets the group entity to be responsible for this social scheme entity (line 29).

The code that implements these steps in the room_controller agent is as fol-
lows:

'create_org. // Initial goal

+!create_org
<- createWorkspace (shouseo) ;
joinWorkspace (shouseo, WspId);

// creates the organization entity
makeArtifact (shouseo,
"oradmas.nopl.OrgBoard",
["src/org/smart_house.xml"],
OrgArtId) [wid(WspId)];
focus (OrgArtId) [wid (WspId)];
createGroup(rl, room, GrArtId) [artifact_id(OrgArtId)];
focus (GrArtId) [wid (WspId)];

// adopts the role controller in the group

19
20
21
22
23
24
25
26
27
28
29
30
31

L - I SR

Programming Organizations of Situated Agents 159

adoptRole (controller) [artifact_id (GrArtId)];

// announces to others the new group, so they can join
.broadcast (tell, new_gr (shouseo, rl));

// waits for the group to be well formed
.wait (formationStatus (ok) [artifact_id (GrArtId)]);

// creates the scheme

createScheme (temp_rl, decide_temp, SchArtId) [artifact_id(OrgArtId)];
addScheme (temp_rl) [artifact_id(GrArtId)];

focus (SchArtId) [wid (WspId)];

On the personal_assistant agents side, when they realize that a new group
was created, they adopt the role assistant init. The following code implements
this behavior:
+new_gr (Workspace, GroupName)

<- JjoinWorkspace (Workspace, WspId);
lookupArtifact (GroupName, GrArtId) [wid (WspId)];

adoptRole (assistant) [artifact_id(GrArtId)];
focus (GrArtId) [wid (WspId)];

Because this code creates the same organization as in the previous section, noth-
ing else needs to be changed and the application will run as before. However, with
dynamic creation of the organization, we can program better solutions for our or-
ganized smart room application. For instance, agents can exploit this feature to
instantiate a new scheme entity each time a new target temperature should be se-
lected (instead of using resetGoal). To implement this new solution, we have to
remove lines 24-30 of the room_controller agent, because the social schemes
entities will be created on demand, and add the following lines in the code of
personal_assistant agents:
+activity (A) : A \== "none"

<- .print ("New user activity ",A);
// gets some art ids

?focused (shouseo, rl, GrBoardId);
?joined (shouseo,WspId) ;

// computes a new schme id
?schemes (L); // L is the list of group's schemes
.concat ("sch_", .length(L)+1l, Name);

// creates the new scheme
createScheme (Name, decide_temp, SchArtId)
[wid (WspId),artifact_name (shouseo)];
addScheme (Name) [artifact_id(GrBoardId)];
focus (SchArtId) [wid (WspId)];

organizational
artifacts

160 Chapter 9

Reading the new code of the agents, we can see that some artifact operations
like makeArtifact and focus are used to create and manage the organization
entity. Agents access their organization entity through artifacts executing in the
environment—the management of the organization is instrumented in the environ-
ment by organizational artifacts. The first artifact created by the room_controller
agent (in line 10) is an OrgBoard. This artifact manages an organization entity and
has operations to create and destroy group and social scheme entities (as used in
lines 15 and 28). When a group entity is created, an instance of the GroupBoard
artifact is created to manage it. This artifact has observable properties (such as
play/3) and operations (such as adoptRole/1) related to the management of
group entities. Similarly, when a social scheme entity is created, an instance of the
SchemeBoard artifact is created.

9.4 Agents Reasoning about Their Organization

Having the organization specification and state available to the agents and giving
them actions to change the organization allows us to program agents to benefit
from the organization for their own goals. We illustrate these features by changing
the code of personal_assistant agents so that they adopt a role only if: (1)
they have plans for all potential goals for that role, and (2) the number of players
of that role is less than the minimum.

We start the new program by importing some general inference rules (called
prolog-like rules) available in JaCaMo. They use the organization specification as
available in the organizational belief specification/1. For instance, the OS for
the organized smart room example is represented by agents as
specification (

os (room_org,

group_specification(room,
[role (controller, [], [soc],1,1 ,
role(assistant, [],[soc],1,5,[],[1)1,

L1,
properties([])),

[scheme_specification (decide_temp,

goal (voting,performance,"",0,"infinity", [1,

plan (sequence, [
goal (preferences, performance,"",all,"5 seconds", [],noplan),
goal (open_voting,performance,"",all, "infinity", [],noplan),
goal (ballot,performance,"",all,"10 seconds",

[voting_machine_id], noplan),

goal (close_voting,performance,"",all, "infinity", [],noplan)
1)),

Programming Organizations of Situated Agents 161

[mission (mVote, 1,2147483647, [ballot], []),

mission (mController,1,2147483647,
[open_voting,close_voting], []),

mission (mAssistant,1,2147483647, [preferences], [])

1,
properties ([]))

J 4

[norm(n2,controller,obligation,decide_temp.mController),
norm(nlb,assistant,obligation,decide_temp.mVote),
norm(nla,assistant,permission,decide_temp.mAssistant)

]
))

The inference rules allow us to make queries on this complex representation for
the following predicates:

- role_mission (R, S,M) True when there is a norm in the OS that obliges or
permits role R to commit to mission M in scheme S.

- role_cardinality (R,Min,Max) True when the cardinality of role R is
< Min,Max >.

- mission_goal (M, G) True when goal G belongs to mission M.

On the basis of these predicates, we add the following rules for our application:

- role_goal (R, G) True when role R is obliged /permitted to achieve goal G.

- has_plans_for (G) True when the agent has an individual plan to achieve goal
G.

- i_have_plans_for (R) True when the agent has plans for all goals related to
role R.

- has_enough_players_for (R) True when the number of agents playing R is
greater than or is equal to the minimum cardinality of R.

Rules for these predicates are programmed as follows:

{ include ("$moiseJar/asl/org-rules.asl") }

role_goal (R,G) :-—
role_mission(R,_,M) &
mission_goal (M, G) .

has_plans_for (G) :-
.relevant_plans ({+fJ6},LP) & LP \== [].

i_have_plans_for(R) :-—
not (role_goal(R,G) & not has_plans_for(G)).

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

162 Chapter 9

has_enough_players_for (R) :—
role_cardinality (R,Min,Max) &
.count (play(_,R,_),NP) &
NP >= Min.

The internal action . relevant_plans/2 used in line 8 returns in the second ar-
gument a list of plans that have as a triggering event something that matches (i.e.,
unifies with) the value of the first argument. The internal action . count /2 used in
line 15 returns in the second argument the number of answers for the query given
as first argument.

Given these predicates, we can reimplement the role adoption of
personal_assistant agents as follows:

+new_gr (OrgName, GroupName)

<- // waits some time,
// so that assistants do not run this plan togheter
.wait (math.random(2000));

// focus on the OrgBoard to get its specification
joinWorkspace (OrgName, WspId) ;
lookupArtifact (OrgName, OrgArtId) [wid (WspId)];
focus (OrgArtId) [wid (WspId)];

// focus on the GrBoard to get players
lookupArtifact (GroupName, GrArtId) [wid (WspId)];
focus (GrArtId) [wid (WspId)];

if (i_have_plans_for(assistant)) {
if (not has_enough_players_for (assistant)) {
adoptRole (assistant) [artifact_id (GrArtId)];
} else {
.print ("There are enough assistants already!");
}
} else {
.print ("I do not have plans for role assistant!");
.findall (G,
role_goal (assistant,G) & not has_plans_for (G),
LG) ;

.print ("No plans for ", LG);

Thanks to these inference rules, we have shown how we can program agents that
do not blindly participate in the organization entity. An agent will participate only
if able to fulfill its duties, taking into account also the current number of agents
already playing the role it intends to adopt. We can note also that because the

Programming Organizations of Situated Agents 163

minimum cardinality of assistants is equal to 1, just one personal_assistant
agent will be able to adopt the assistant role and to participate in the room tem-
perature decision. The designer can easily change this behavior of the organization
by modifying role cardinalities in the OS.

9.5 What We Have Learned

In this chapter we learned how the organization can be used to shape the set of
agents into groups and roles (structure), to specify the coordinated achievement
of organizational goals (function), and to assign them to agents in the system by
means of norms, telling them what their obligations and permissions are. By as-
signing goals to roles using norms, we provide a way to abstract away from the
agents and to define the functioning of the system independently from the partic-
ular agents that will be available at runtime. We have shown how easy itis to change
and adapt the functioning of the MAS by changing and adapting the organization
specification.

As soon as agents start to play roles, the organization entity is created, bringing
obligatory and permitted goals to the agents in the context of their roles and par-
ticipation in groups. The JaCaMo organization management infrastructure takes
charge of the monitoring of the interpretation and execution of the organization
prescriptions by the agents, taking care of the coordinated execution of the differ-
ent social plans structuring the organizational goals to be achieved by the different
agents participating in the organization.

Given the explicit representation of the organization specification and of the or-
ganization entity made available to the agents, the agents can undertake reasoning
and make decisions on their action in the organization (e.g., adopting a role or
committing to a mission) opening opportunities to handle the overall complexity
of open and decentralized systems.

Exercises

Exercise 9.1 Create a new instance of the room_controller agent that tries to enter a room
group that already has an agent playing the controller role. Explain the execution and
then change the current implementation to allow two controllers in the organization entity.

Exercise 9.2 Change the controller role cardinality to < 0,1 > and describe the conse-
quences.

Exercise 9.3 Change the personal_assistant agent plan for achieving goal ballot as
follows:

a) +'ballot <- .wait (300).

b) +!ballot <= vote([10]); !ballot.

164 Chapter 9

Will the system work properly? Why?

Exercise 9.4 Implement a plan in the room_controller agent that prints out all fulfilled
obligations.
Hint: Consider the organizational event ocb1Fulfilled/1.

Exercise 9.5 Design and implement a new policy for managing the temperature in a room:
every ten minutes, the agent playing the controller role has to ask the preferences of the
ones playing the assistant role and set the new temperature on the basis of that.

Exercise 9.6 Implement a plan for personal_assistant agents that react to the achieve-
ment of the organizational goal close_voting by printing the current temperature.
Hint: Consider the organizational belief goalState/5.

Exercise 9.7 Implement arule goal_role (G,R) :— ... thatcanbe used to infer the roles
R of agents committed to some goal G.

Exercise 9.8 Implement a personal_assistant agent that, when asked for its preferred
temperature, answers as defined in the following algorithm

A = set of roles of agents committed to the goal 'ballot'
B = set of all agents playing some role in A
C = set of my roles
for a in B:
if agent a plays any role in C:

ask agent a for its preferred temperature

return agent a preference
return 25

Exercise 9.9 Revisit the distributed version of the case study in chapter 7 to make it organized
using the organization defined in this chapter.

1 O Integration with Other Technologies

A practical aspect that is important in tackling the engineering of real-world sys-
tems is how MAOP and the supporting technologies—JaCaMo, in this case—can
be integrated with existing libraries and technologies, which are based on other
paradigms. Besides implementing technical bridges, this calls also for understand-
ing the integration from a more conceptual point of view. Integration can be in
two directions: either embedding inside the MAS program some existing technol-
ogy such as a library or a framework, or integrating the MAS inside some existing
platform. In this chapter we discuss these aspects, first providing guidelines about
integration depending on the specific technology with which to integrate and then
discussing some cases in specific application domains.

10.1 Libraries, Frameworks, and Platforms

In using an MAOP approach supported by a technology like JaCaMo, there are ba-
sically two ways to integrate existing libraries and frameworks, eventually written
in mainstream programming languages:

- Agent extension The integration is realized by extending the agents’ capabilities,
customizing either their architecture or their set of internal actions to wrap the
technology to be integrated.

- Artifact embedding The integration is realized by designing and implementing
new artifacts wrapping the technology to be integrated.

From a conceptual point of view, the first approach means that an agent can ex-
ploit the technology as its new personal capability. The second approach instead
accounts for exploiting and interacting with the integrated technologies as re-
sources/tools part of their environment, possibly to be shared with other agents.
Depending on the kind of technology to be integrated, it could be more effective
to use one approach or the other one. The case of a library is the simplest one, be-
cause it concerns some kind of functionality provided by some module exposing

166 Chapter 10

some kind of interface or API, without introducing any concurrent/control issue.
An example is a library for effectively managing JSON data objects. The integration
of frameworks could be more complex. Generally speaking, a software framework is
a reusable software environment meant to facilitate the development of software
applications, by means of generic functionality that can be changed by additional
user-written code.! Examples range from frameworks for developing GUI-based
applications, such as JavaFX,? to full-fledged stacks such as Android®—to develop
mobile apps. Different from simple libraries, software frameworks typically also in-
troduce some kind of control architecture, defining how the application is executed.
Sometimes software frameworks are referred also as application platforms, because
they provide a core technology on which software developers can build programs
for some specific platform.

We subsequently consider a concrete case for each category. The full source code
of the examples is available on the book website.

Integrating Libraries

Libraries can be easily integrated either by means of agent internal actions or by
means of artifacts; the choice may depend on what kind of functionality the library
provides.

Integrating the library as an agent internal actions is straightforward when the
functionality is about some stateless function extending agent capabilities. For in-
stance, suppose that we need our agents to work with JSON data structures, ex-
ploiting existing Java-based libraries, for example, javax. json.? To that purpose,
we could introduce a Jason agent library collecting a set of internal actions. Follow-
ing Jason API,” the library can be packaged as a Java package, e.g., json_tools,
including a class for each new actions to be added. For instance, a new internal
action json_to_list can be provided for parsing JSON data into a Jason list:

package json_tools;

public class json_to_list extends DefaultInternalAction {
public Object execute(TransitionSystem ts,
Unifier un, Term[] args) throws Exception {
// the code that implements the internal action

. https:/ /en.wikipedia.org/wiki/Software_framework
. https:/ /openjfx.io

. https:/ /developer.android.com

. Based on the JSON Processing APIJSON-P (JSR-353).

. More about this API can be found in the Jason website http:/ /jason.sourceforge.net and in Bordini
et al. (2007).

U = W N =

https://en.wikipedia.org/wiki/Software_framework
https://openjfx.io
https://developer.android.com
http://jason.sourceforge.net

Integration with Other Technologies 167

}

An example of use on the agent side:

test_json <-
json_tools.json_to_list (
"{ \"name\": \"Sofia\", \"age\": 11 }",
L);
.println(L). // the list L is [name("Sofia"), age(l1l)]

Artifacts are more convenient to use when the library to be integrated can be more
useful as a tool that could be shared and concurrently used by multiple agents or
(possibly stateful) tools embedding long-term heavy computations. For instance,
suppose that we need our agents to have the capability to compute the Fast-Fourier-
Transform,® to convert and analyze a signal from its original domain (time or space)
to a representation in the frequency domain. We can exploit existing libraries, ef-
fectively implementing the algorithm,” which could be quite computationally ex-
pensive. Libraries can be based either on Java or on JVM-based languages or even
other languages, exploiting the Java Foreign-Function-Interface (FFI) API to inte-
grate them.

In this case, the library can be packaged as a FFTCalculator artifact, provid-
ing operations to make the transformation, making the result available as action
feedback of a transform operation and/or as observable property of the artifact.

public class FFTCalculator extends Artifact ({
private FastFourierTransformer trf;

void init () {
trf = new FastFourierTransformer (DftNormalization.STANDARD) ;

@OPERATION

void fftTransform(double[] f, OpFeedbackParam<Complex[]> r) {
Complex[] res = trf.transform(f, TransformType.FORWARD) ;
r.set (res);

}

// aux function to manage data structures
@OPERATION

6. https:/ /en.wikipedia.org/wiki/Fast_Fourier_transform

7. An example of the open-source library including also FFT is the Apache Commons Mathematics
Library (https://commons.apache.org/proper/commons-math/).

https://en.wikipedia.org/wiki/Fast_Fourier_transform
https://commons.apache.org/proper/commons-math/

Java objects in
Jason

Javalibrary

168 Chapter 10

void getReal (Complex[] data, OpFeedbackParam<Double[]> r) {
}

@OPERATION
void getComplex (Complex[] data, OpFeedbackParam<Double[]> r) {
}

In the following example, an agent creates a FFTCalculator and uses it to com-
pute the Fast Fourier Transform given an array of double and prints on the console
the result, as a list of complex numbers (represented by the Complex class).

+'test_fft
<— makeArtifact ("calc", "maop_chl0.FFTCalculator", [J) ;
cartago.new_array ("doublefl]",[5.0, -2.0, 1.0, .0], Data);
fftTransform(Data, Res);
!'print_result (Res). // printing: (6) (4 + 41)(6) (4-41i)

+!print_result ([]).

+!print_result ([V|T]) <-
cartago.invoke_obj(V,getReal,Re);
cartago.invoke_obj (V,getImaginary, Im) ;
'print_complex (Re, Im) ;
'print_result (T).

+!print_complex (Re, 0) <—= print("(", Re, ")").

+!print_complex (0, Im) <-= print("(", Im, "j)").
+!print_complex(Re,Im) : Im < 0 <= print("(",Re," - ",=Im,"1)").
+!print_complex (Re, Im) <— print("(", Re, " + ",Im, "1)").

The example is useful for talking about another issue that is quite frequent when
developing and using artifacts. That is, the need to create and manipulate Java
objects in Jason. In the FFTCalculator, for instance, the £ftTransform oper-
ations want an array of double as first parameter and returns as output param-
eter a list of Complex objects. To this purpose, JaCaMo provides a set of inter-
nal actions packaged inside the cartago library? referred to as JavaLibrary that
makes it possible to instantiate Java objects (cartago.new_ob3j) including ar-
rays (cartago.new_array, line 3 in the example), invoking methods on objects
(cartago.invoke_obj). In the example, getReal (line 9) and get Imaginary
(line 10) are methods invoked on Complex objects. Detailed information about the
JavaLibrary can be found in the JaCaMo documentation.

8. The internal actions to create and manipulate Java objects are part of the CArtAgO framework.

W N =

o w

Integration with Other Technologies 169

Agent Internal Actions vs. Artifacts Actions

From a technical point of view, there are important differences about how
the code is executed in using either internal actions or artifacts. In using in-
ternal actions, the code is executed directly by the thread of control of the
reasoning cycle, in a synchronous way. In using artifacts instead, the code,
wrapped into operations, is executed by a thread of control of the environ-
ment runtime, asynchronously.

Therefore, on the one hand, performance is better in using internal ac-
tions, because there is no overhead caused by context switches, and the com-
putational cost is equivalent to a simple (method) call. On the other hand,
functionalities that could be heavy/long-term from a computational point
of view should not be implemented as internal actions, because this would
impact on the reasoning cycle execution and then on the reactivity of the
agent to perceive events. In this latter case it is best to use artifacts, offload-
ing onto them the computational load.

Integrating Libraries with Their Own Threads

More complex libraries could exploit asynchronous programming to provide some
of their functionalities, using under the hood some threads of control to that pur-
pose. The artifact APl beginExtSession/endExtSession introduced in chap-
ter 6 makes it possible for such external threads to safely change the state of an
artifact, including changing observable properties and generating signals to model
asynchronous events.

As an example, we consider RabbitMQ,” which is a well-known Message-
Oriented-Middleware (MOM) or message broker. To exploit the middleware, client
libraries are available in multiple programming languages. The client library ba-
sically allows sending and receiving messages, exploiting the middleware—that
should be installed on every host where the MOM is used.

In this case we can define a RMQChannel artifact, providing operations to send
messages and an observable state to perceive messages sent to the channel.

public class RMQChannel extends Artifact {

private Channel channel;
private String gqueueName;

void init (String name, String host) {

9. https://www.rabbitmq.com

https://www.rabbitmq.com

19

20

21

22

23

24

25

26

28

29

30

170 Chapter 10

ConnectionFactory factory = new ConnectionFactory();
factory.setHost (host) ;

Connection connection = factory.newConnection();
channel = connection.createChannel () ;
channel.queueDeclare (name, false, false, false, null);
this.queueName = name;

/* observable state #*/
defineObsProperty ("lastMsg”,"");

/* consume msg callback */
channel .basicConsume (queueName, true,
(consumerTag, delivery) -> {
String message = new String(delivery.getBody (), "UTF-8");
beginExtSession () ;
getObsProperty ("lastMsg") .updateValue (msqg) ;
endExtSession () ;
}, consumerTag —-> {});

QOPERATION wvoid send(String msg) {
channel.basicPublish ("", name, null, msg.getBytes());

In particular, an observable property lastMsg is used to make observable the
stream of messages sent to the channel.

An important point in the implementation, which is quite common in frame-
works, is how to manage callbacks and inversion of control. In the RabbitMQ library,
a callback must be registered to consume messages (lines 18-24), and it is called
by the library/framework by an internal thread of the library/framework when a
message is available. To update the observable property, an external session is re-
quested to act safely on the artifact because the thread executing the code is not an
environment one but a library one.

Integrating Frameworks

The management of callbacks and interaction with external threads is frequent in
integrating frameworks/platforms, which may enforce the full control architecture
of the application. Artifacts make it possible to have a clear separation between the
specific execution logic provided by a framework and MAS execution.

As an example, we consider the integration of JavaFX, which is an open-source
client application platform for desktop, mobile, and embedded systems built on

Integration with Other Technologies 171

Java.!l JavaFX provides a framework for building GUI-based applications. The
framework, like almost any other GUI toolkit, is based on an event architecture
and an asynchronous programming model, exploiting a single thread to execute
every computation that concerns the GUL

In this case, we can introduce an artifact MainWindowArtifact to represent
the main application window:

class MainWindowArtifact extends Artifact {

public void init () {
defineObsProperty ("button", "not_pressed") ;
/* setup JavaFX =/
initJFX (this) ;

}

private void initJFX (MainWindowArtifact art) {

new Thread(() —-> {
new MainWindow () .initJFX (art);
}) .start ();

}
/% called by the JFX thread =/

void notifyButtonPressed() {
getObsProperty ("button") .updateValue ("pressed”) ;
}

void notifyButtonReleased() {
getObsProperty ("button") .updateValue ("released");
}

On the one hand, this artifact provides a high-level interface for agents to work
with the main window. In this simple case, the main window has a single but-
ton that could be pressed by the human user. An observable property button
is used to keep track and make observable to agents the state of the button (ei-
ther "pressed" or "not_pressed"). On the other hand, the artifact functions
as a bridge to the JavaFX subsystem, implementing (and hiding with respect to the
MAS) the machinery to make the framework work. In particular, a MainWindow
class is used to extend the JavaFX Application class, embedding the code to set
up the GUIL:

10. https://openjfx.io/

https://openjfx.io/

20

21

22

23

24

25

26

27

28

29

30

31

32

33

172 Chapter 10

public class MainWindow extends Application {

public void start (Stage stage) throws Exception {
stage.setTitle ("Hello World!");
Button btn = new Button("Say 'Hello World'");

btn.pressedProperty ()
.addListener ((observable, wasPressed, pressed) -> {
try {
art.beginExtSession();
if (pressed) {
art.notifyButtonPressed();
} else {
art.notifyButtonReleased() ;
}
} finally {
art.endExtSession () ;

1)

StackPane root = new StackPane();
root.getChildren () .add (btn) ;
stage.setScene (new Scene (root, 300, 250));
stage.show () ;

public void initJFX (MainWindowArtifact art) {
MainWindow.art = art;
launch (new Stringl[] {});

static private MainWindowArtifact art;

}

As in the previous example, a callback is managed (lines 8-19) to handle button
pressed/released events, and the external interface API is used to update the ob-
servable state of the artifact accordingly. A snippet of an agent using the artifact,
reacting to button press events, follows:

'test.

+!test
<- makeArtifact ("mainWindow", "maop_chl0.MainWindowArtifact", [],Id)
focus (Id);
println("ready.") .

+button ("pressed")
<- println("Hello!").

Integration with Other Technologies 173

The key point here is that agent programming is not exposed to low-level frame-
work/platform mechanisms, and GUI events are represented at an agent level of
abstraction.

Integrating MAS within Platforms

In some cases, a software framework defines its own application structure, and it
is often referred in this case as a software application platform. In that case, it could
be useful to integrate the MAS either as a component of the platform, or by exe-
cuting the MAS on a different process and implementing components inside the
platform that function as bridges exploiting some Inter-Process Communication
(IPC) mechanism (such as sockets).

In the former case, in order to integrate directly the MAS as a component of
the Java-based platform, the JaCaMo API jacamo.infra.JaCaMoLauncher for
spawning programmatically an MAS can be used. A simple example:

public class LaunchMAS

public static void main (String args[]) throws Exception {
jacamo.infra.JaCaMoLauncher.main (
new String[]{ "test-mas.jcm" });

}

This is useful more generally to spawn an MAS from any Java (or JVM-based) pro-
gram. An example of this case is discussed in the next section, about mobile apps
development, where JaCaMo has been integrated with the Android framework.

In the latter case, boundary artifacts can be used to implement the bridge between
the systems, embedding/hiding the use of Inter-Process Communication mecha-
nisms and protocols to interact with the external platform.

Integration Using the Environment Interface Standard

The Environment Interface Standard (EIS) framework (Behrens et al. 2011),
mentioned in section 5.4 in chapter 5, provides an effective support to con-
nect agents and MAS written in different agent programming languages (in-
cluding Jason) to environments such as games, simulators, robots, and so
forth. As reported in EIS documentation (https://github.com/eishub), EIS
provides the glue code to develop a connection between an agent platform
and an environment. Any agent platform that supports the EIS interface can
connect to any environment that implements the interface. In particular on
the agent side, the EIS framework provides an API to develop the connection
to controllable entities on the environment side; once an agent platform sup-
ports the EIS interface, it can connect to any environment that implements

https://github.com/eishub

174 Chapter 10

the interface. On the environment side, it makes it possible to develop code
that allows an agent platform to connect to that environment, regardless of
the specific agent platform; once the interface has been implemented for an
environment, any agent platform that supports EIS can connect to it.

10.2 Mainstream Application Domains and Technologies

As mentioned previously, the need for integrating MAS with existing technologies
is typical in engineering real-world applications. The integration in this case is an
enabling factor to explore the application of the agent and MAS paradigm—besides
the technology—to well-known application domains, exploiting the power of the
agent (and MAS,) level of abstraction. In this section we consider some examples in
well-known application domains.

Mobile and Wearable Apps

A main application scenario for agent technologies and MAOP is given by per-
sonal assistants, that is, software that assists and collaborates with a human user
in some task environment or context (Maes 1994). Examples in the literature of
personal assistants range from scheduling joint activities (Modi et al. 2005; Wag-
ner et al. 2004) to monitoring and reminding users of key timepoints (Chalupsky
et al. 2001; Tambe 2008), searching and sharing information, and assisting in nego-
tiation decision support (Li et al. 2006). Personal assistants can be devised for any
kind of computer-based work environments, for example, office environments and
desktops. Nevertheless, a main case is given by mobile and wearable computing,
in which personal assistants are meant to run on mobile devices, such as smart-
phones, or even wearable ones, such as smart glasses.

MAOQP technologies such as JaCaMo can be integrated with frameworks for de-
veloping mobile applications to develop personal assistant technologies and, more
generally, agent-based applications as mobile apps. A concrete example of tech-
nologies that provide such an integration is JaCa-Android, which is an exten-
sion/specialization of JaCaMo to develop and run programs on Android devices.!!

Generally speaking, JaCa-Android is not just a simple porting but provides a
conceptual and practical blueprint to design and develop a mobile app as an agent-
based system. From an architectural point of view, at a coarse-grained level, an An-
droid application is made of activities—the app components serving as entry point
for interacting with the user, representing a single screen with a user interface—

11. https://developer.android.com

https://developer.android.com

Integration with Other Technologies 175

JaCaMo app

SMSService

GPSService

JCM4Android artifacts

JaCaMo Core —’

Android Framework

MyAtrtifact

Notification
Service

Linux kernel

Figure 10.1
Architectural levels of an Android app based on JaCaMo.

and services—as general-purpose entry point for keeping an app running in the
background for all kinds of reasons. Whereas OOP is used as the underlying pro-
gramming paradigm (using languages such as Java, Kotlin, or C++), the control
architecture is event driven. There is only one active activity at a time—the fore-
ground activity—which is executed by a single thread implementing an event loop.
The application logic is fragmented in callbacks, asynchronous tasks, and Java-
based threads to be used for long-term jobs.

By using JaCa-Android, an Android app is designed as an MAS—Iike any
JaCaMo program—in which agents are used to encapsulate the control logic of the
applications. Figure 10.1 shows the architectural levels of a JaCaMo mobile app.
A specific library of artifacts is provided, wrapping the basic functionalities and
services provided by the mobile/wearable computing environment. Among the
others:

- Artifacts to implement activities, in particular to model only the User Interface
(UI)=mnot the control part, which is stored in agents observing /using such activ-
ities.

176 Chapter 10

- Artifacts representing device sensors and actuators, and services to acquire
information about the user context (such as the location). Examples include
BatteryService, GPSService, and SMSService.

- Artifacts to trigger and interact with other activities and apps available on the
device.

Figure 10.2 shows a simple example of an agent that shows a notification when
an SMS sent by a specific sender is received. The agent exploits a couple of arti-
facts provided by the JaCa-Android platform, namely, the SMSService, to manage
SMSs, and aNotificationService, to show notifications on the status bar. The
artifact SMSService generates an sms_received each time a new SMS arrives.
When a new SMS arrives from the sender that the agent has to track, the agent dis-
plays the content either on the main activity of the app if the application is in the
foreground, or on the status bar, if the app is not in foreground. The main activity
is represented by the MainActivity artifact (shown in figure 10.3), extending the
base class ActivityArtifact, which is part of the JaCa-Android APL In this
artifact, the viewer_state observable property is set to either displayed or
not_displayed depending on the state of the main activity (i.e., of the app), if
it is either in the foreground or not. Instead, showNotification is an operation
provided by the NotificationService.

Compared with the Android framework, JaCa-Android provides an upper level
of abstraction meant to simplify the development of personal assistants, as Jason
agents that exploit artifacts to observe and interact with users and their context. A
real-world example in the health care context is discussed by Croatti et al. (2018),
where a personal agent is used to assist medics of a trauma team in doing precision
tracking during a trauma resuscitation.

Web Technologies

The integration of agent and web technologies is useful both to exploit agents and
MAS in the design and development of smart service-oriented architecture-based
systems (Huhns and Singh 2005), as well as to exploit web standard protocols to
enhance interoperability of agent-based applications.

In fact, the integration can be tackled at different levels of the web technology
stack, including the semantic level. In the following, we consider only the enabling
level, the bottom one. At that level, basically there are two main cases:

- client side — enabling agents to exploit existing web-based services and web ap-
plications;

- server/service side — exploiting agents to implement web-based services and
web applications.

Integration with Other Technologies 177

'warn_about_sms_from("999999") .

+!warn_about_sms_from(Src) <-
+source_to_track (Src);

I'setup.
+sms_received (Src, Msg) : source_to_track (Src)
<- Ilnotify_sms (Src, Msg).
+!notify_sms (Src, Msg) : viewer_state("displayed")

<- displayNewSMS (Src, Msg).

+!notify_sms (Src, Msg) : viewer_state ("not_displayed")
<— showNotification(Src, Msg).
+!setup <-
makeArtifact ("sms-receiver", "jaca.android.SMSService", [], SMSid);
focus (SMSid) ;
makeArtifact ("notificator", "Jjaca.android.NotificationService", [1]);

lookupArtifact ("mainActivity", IdViewer);
focus (IdViewer) .

Figure 10.2
An agent tracking SMS messages on JaCa-Android.

public class MainActivity extends ActivityArtifact {
void init () {
defineObsProperty ("viewer_state"”, "not_displayed");

}

@OPERATION
void displayNewSMS (String source, String msg) {
Viewer mViewer = (Viewer) getActivity("viewer");

mViewer.append (source, msg);

}

@INTERNAL_OPERATION

void onStart () {
ObservableProperty o = getObsProperty ("viewer_state");
o.updateValue ("displayed") ;

}

@INTERNAL_OPERATION

void onStop () {
ObservableProperty o = getObsProperty("viewer_state");
o.updateValue ("not_displayed"”) ;

}

Figure 10.3
Artifact used by the agent to interact with the user.

178 Chapter 10

Client side At the basic level, this case accounts to equip agents with actions
that make it possible to execute requests using the web standard technology. In
an MAOP-based approach, a straightforward way to do it is to design a proper
boundary artifact that implements those actions as operations. Artifacts can play a
twofold function:

- encapsulate and hide technical details that concern web technologies, including
aspects that concern the invocation semantics; and

- bridge the representation of the data exchanged, so as to make it more appropri-
ate on the agent side.

A simple example of an artifact enabling the interaction with a web resource/ser-
vice using a REST style follows:

public class WebResource extends Artifact {
private CloseableHttpClient client;

void init () throws Exception {
// creating a factory and connection manager for HTTP (S)
SSLConnectionSocketFactory sslsf =
BasicHttpClientConnectionManager connectionManager =
// creating the client object
client = HttpClients.custom()
.setSSLSocketFactory (sslsf)
.setConnectionManager (connectionManager) .build() ;

@OPERATION
void get (String uri, OpFeedbackParam<String> res) {
HttpGet reqg = new HttpGet (uri);
CloseableHttpResponse response = null;
try {
response = client.execute(req);
if (response.getStatusLine().getStatusCode() >= 300) {
failed("error");

} else {
res.set (extractResponse (response.getEntity ()));
}
} catch (Exception ex) { ... }
} finally { ... }
}
@OPERATION

void post (String uri, String payload,
OpFeedbackParam<String> res) { ... }

Integration with Other Technologies 179

private String extractResponse (HttpEntity entity) { ... }
}

The artifact implementation is based on the Apache HTTPComponents library.'?
In this simple case, the data format used to specify the payload for the request and
the response is simply a string.

A snippet of an agent plan using the artifact follows:

+!test_web
<— makeArtifact ("web", "maop_chl0.WebResource", [], Id);

print ("posting a new dweet on maop-book thing...");
Msg = "{ \"msg\": \"hello, world!\" }";

post ("https://dweet.i0:443/dweet/for/maop-book",Msg, _)
println("done.");

println("getting the latest dweet on maop-book...");

get ("https://dweet.io0:443/get/latest/dweet/for/maop-book", Res)
println(Res) .

The agent uses the artifact to post a message on the dweet web messaging service!

on a thing called maop-book and then to get the last message posted.

Different kinds of artifacts for the web can be designed according to the need. For
instance, instead of using a REST-based style, an artifact can implement a SOAP-
based style, providing facilities to manage the full WS-* stack. The examples shown
so far provide a bridge at the web technology level of abstraction. This makes it
possible to use these artifacts to interact with any kind of web-based services.

A further general approach consists of using artifacts to directly model the (web-
based) service, providing an interface with operations and observable properties
that are conceived at the domain level. A simple example follows, a MapArtifact
providing services about geographical maps, exploiting under the hood the Google
Map APL:!*

public class MapArtifact extends Artifact {
private GeoApiContext context;

void init (String apiKey) {
context = new GeoApiContext.Builder () .apiKey (apiKey) .build();
}

@OPERATION
void getGeoCoordinates (String place,

12. https:/ /hc.apache.org
13. http://dweet.io

14. https://developers.google.com/maps/documentation

https://hc.apache.org
http://dweet.io
https://developers.google.com/maps/documentation

180 Chapter 10

OpFeedbackParam<Double> latit,
OpFeedbackParam<Double> longit) {
try {
GeocodingResult [] results =
GeocodingApi.geocode (context,place) .await () ;
latit.set (results[0] .geometry.location.lat);
longit.set (results[0] .geometry.location.1lng);
} catch (Exception ex) {}

}

An example of a plan using the artifact to request the latitude and longitude of
some place (an example of a goal could be !test_map ("Paris, France")):

apiKey ("AIzaSyDiPt735ULDnF19Iwz4ZyeEzt 1LK1xOVYE") .

+!test_map (Place) : apiKey (APIKey)

<- makeArtifact ("map", "maop_chl0.MapArtifact", [APIKey]);
println ("Requesting information about: ",Place,"...");

getGeoCoordinates (Place, Lat, Long) ;
println ("Results - latitude: ",Lat,", longitude: ",Long).

To make the example work, a valid API key must be specified.'® In this case, artifacts
make it possible to model the interaction with existing (web) resources and services
at an upper level of abstraction, focusing on the facilities provided by the service.
This makes it possible in principle to reuse the same artifact—or, an artifact with the
same interface—regardless of the specific web service API used inside the artifact.

As a final remark, it is worth noting that from a technical point of view, it would
be possible to use internal actions to interact with web resources/services. How-
ever, from a conceptual point of view, internal actions are meant to affect or access
the internal state of the agent, not the environment. This is the main reason why we
used artifacts rather than internal actions. Nevertheless, in the case that a web re-
source/service would be conceptually part of the agent—for example, implement-
ing a kind of auxiliary memory—then internal actions would be a good choice as
well.

Service side In this case, boundary artifacts can be used to mediate the interac-
tion between users making web-based requests and agents serving the requests. In
particular, an artifact can be useful to wrap the service side machinery to accept
the web requests and make them available to agents, enabling them to process the
requests and eventually send responses. An example follows:

15. The API key can be obtained by registering on the Google Cloud platform.

Integration with Other Technologies 181

public class RESTWebService extends Artifact ({

private Vertx vertx;
private Router router;
private HttpServer server;

void init () throws Exception {
vertx = Vertx.vertx();
router = Router.router (vertx);
router.route () .handler (CorsHandler.create ("»")
.allowedMethod (io.vertx.core.http.HttpMethod.GET)
.allowedMethod (io.vertx.core.http.HttpMethod.POST)

router.route () .handler (BodyHandler.create());

QOPERATION
void start (int port) {
server = vertx.createHttpServer ()
.requestHandler (router)
.listen (port, result -> {
if (result.succeeded()) {
log ("Ready.");
} else {
log("Failed: "+result.cause());

)i

@QOPERATION
void acceptGET (String path) {
router.get (path) .handler ((res) —-> {
this.beginExtSession();
this.signal ("new_req", "get", path, res);
this.endExtSession () ;
1) i

@QOPERATION
void acceptPOST (String path) { ... }

@QOPERATION
void sendResponse (RoutingContext ctx, String res) {
ctx.response () .end(res);

182 Chapter 10

The RESTWebService artifact exploits the vert x technology'® to set up an event-
driven web service based using a REST style. The artifact provides accept XXX
operations to configure the requests to serve, which are made observable to agents
using signals. In addition, it provides an operation to send responses and close the
request (sendResponse). On the agent side, in the following example an agent
uses the artifact to set up a REST web service (on port 8090), accepting GET and
POST requests on a count resource. Each time a new request arrives, the agent
reacts and serves them, keeping track of the value of the count using a belief:

+!test_web_service
<— makeArtifact ("web service","tools.WebService", [],Id);
acceptGET ("/api/count");
acceptPOST ("/api/count/inc");
focus (Id);
+count (0) ;

start (8090) .
+new_req("get","/api/count", Req) : count (C)
<- .concat ("{ \"count\": ", C, " }", Reply);

println("GET req on /api/count. Replying: ",Reply);
sendResponse (Req, Reply).

+new_req ("post", "/api/count/inc", Req) : count (C)
<- getBodyAsdJson (Req, Body) ;
Cl =C+ 1;
—+count (C1) ;
.concat ("{ \"count\": ", C1, " }", Reply);
println ("POST req on /api/count/inc. Replying: ",Reply);
sendResponse (Req, Reply).

As in the client side case, the second level is about using the artifact to model di-
rectly the service at the domain level, however functioning as interface (or adapter),
so as to allow for using agents to encapsulate the service application logic.

MAOP and the Web of Things

So far, we have discussed two sides of the integration of agent and web tech-
nologies: on the client side, agents consume services; on the server side,
agents are used to implement services. A third viewpoint on this problem
is a conceptual integration between MAS and the web (Ciortea et al. 2019):
instead of examining agents and services side by side and using web tech-

16. http://vertx.io/

http://vertx.io/

Integration with Other Technologies 183

nologies to bridge different implementations, in this perspective MAS use
the web architecture as the underlying glue that interconnects all entities in
the MAS (agents, artifacts, organizations, and so forth) and allows them to
interact with one another.

Central to this viewpoint is to consider the environment as a first-class
abstraction in the MAS (Ciortea et al. 2019). In the conventional view, in
which MAS are composed only of agents, conceptually there is little room
left to use the web as anything more than a transport layer for agent mes-
sage. However, if we consider also the environment as a first-class abstrac-
tion in the MAS, then the web can provide an application layer to sup-
port all sorts of environment-mediated interactions, such as interactions be-
tween agents and devices using the W3C Web of Things Thing Description
(https:/ /www.w3.org/ TR /wot-thing-description).

Robotic Integration

In this section we discuss a particular solution to embed JaCaMo inside robots, in
particular robots that support ROS (Robotic Operating System).!” ROS simplifies
the access to the hardware using abstract topics that our agents can listen to (to ob-
tain information from the hardware) and publish (to control the robot). Of course,
we could have an artifact that translates some topics to observable properties and
other topics to operations. Another option is to customize the agent architecture,
changing how agents perceive and act on the environment. Whereas the former
solution does not change the usual way agents perceive and act, the latter allows
more control and optimization in the integration. The project Jason-ROS!® explores
this latter approach; it is presented below.

The example used in this section considers a simple Turtle Bot that provides the
following topics (figure 10.4):
pose Used to get the current position of the robot (perception);
cmd_vel Used to set the velocity and direction of the robot (action); and
set_pen Used to set the color the turtle is painting (action).

The customized agent architecture implemented in Java overrides two methods:
act (called for every action the agent decides to execute) and perceive (called at

17. https://www.ros.org
18. https://github.com/jason-lang/jason-ros

https://www.w3.org/TR/wot-thing-description
https://www.ros.org
https://github.com/jason-lang/jason-ros

184 Chapter 10

Turtle Robot
ROS topics custom arch
pose < >
cmd_vel pe:cc:ive
set_pen
Figure 10.4

Customized agent architecture to integrate ROS.

the beginning of every reasoning cycle).!” The Jason-ROS implementation of these
methods uses configuration files to state how topics are mapped into beliefs and
actions. The perception is configured as follows:

[posel]

name = /turtlel/pose
msg_type = Pose

dependencies = turtlesim.msg
args = x,y,theta

It maps the ROS topic /turtlel/pose (of type Pose) into beliefs like
pose (x,y, theta). Other parameters can be specified to set the frequency used
to update this belief. Actions are configured as follows:

[cmd_vel]

method = topic

name = /turtlel/cmd_vel

msg_type = Twist

dependencies = geometry_msgs.msg

params_name = linear.x, linear.y, linear.z, \

angular.x, angular.y, angular.z
params_type = float, float, float, float, float, float

[set_pen]

method = service

name = /turtlel/set_pen
msg_type = SetPen

19. More about customizing an agent architecture is found in Bordini et al. (2007) and in the Jason
website http:/ /jason.sourceforge.net.

http://jason.sourceforge.net

Integration with Other Technologies 185

dependencies = turtlesim.srv
params_name = r, g, b
params_type = int, int, int

This configuration maps the execution of external actions like cmd_vel (1.0,
5.0, 2.0, 3.0, 2.0, 1.5) and set_pen into a publishing on ROS top-
ics as /turtlel/cmd_vel (of type Twist) and /turtlel/set_pen (of type
SetPen). Actions different from cmd_vel and set_pen are not handled by the
architecture and are processed as usual in JaCaMo. All actions handled by custom
architectures are considered by Jason as external actions, and thus their execution
is asynchronous, as are operations on artifacts.

To use this particular agent architecture, the agent declaration in the application
should include an ag-arch entry:

mas turtle {
agent t {
ag—arch: jasonros.RosArch
}
}

From the agent programming perspective, there is no difference. We continue to
use beliefs and actions as usual. For example:

+pose (X,Y,T) <- .print("I am at ",X,",",Y).
+!paint (red) <- set_pen(255,0,0).

Custom agent architectures is a solution for integration when a project requires
fine-grained control on perception and action, for instance, when the concurrency
model from CArtAgO is not required (or desired) while keeping the asynchronous
execution of external actions. More control might imply more effort, too. For exam-
ple, the implementation of a new perceive method may require an implementa-
tion of the belief update function (BUF), which may not be trivial.

10.3 Integration with Other Multi-Agent System Platforms

When we think about multi-agent systems as open systems, an interesting issue
is how different agents and MAS, developed using heterogeneous programming
languages, technologies, platforms, can work together, in the same systems of sys-
tems (Nielsen et al. 2015), which may also include nonagent technologies. Such a
scenario calls for different levels of interoperability. In an MAOP perspective, we can
identify two main kinds of approaches.

The first approach is exploiting a common agent communication language (ACL),
introduced in chapter 7, enabling agents written using different technologies and
running on different platforms to talk together. As previously mentioned in this

186 Chapter 10

book, the most popular ACLs are FIPA ACL (by the Foundation for Intelligent Phys-
ical Agents, a standardization consortium) and Knowledge Query and Manipula-
tion Language (KQML). Both define a set of performative verbs, also called com-
municative acts, and their meanings (e.g., ask-one). JaCaMo supports both ACLs;
in particular FIPA ACL is supported by means of the integration with the JADE
platform. Sharing a common ACL is just an enabling factor for interoperability; to
make agents understand each other, they need also to have a common ontology, be-
sides speaking the same language. Ontologies allow for defining a common syntax
and semantics about the content of the messages exchanged by the agent.

The second approach is based on sharing a common environment that could be
joined by agents written using heterogeneous languages and technologies. The
CArtAgO framework on which JaCaMo is based was conceived to be exploited
with different agent models and technologies, providing bridges to specific agent
programming languages and technologies (Ricci et al. 2008). In this case, the het-
erogeneous agents interact and interoperate indirectly by exploiting the shared
artifact-based environment. As in the case of ACL, this is just an enabling factor.
In order to achieve full interoperability, ontologies would play an essential role, in
this case, to have a common understanding about artifact interface and functional-
ities. In the A&A model, the information about what are the functionalities of an
artifact and how to use them is meant to be provided by the artifact manual.

A further approach that enables heterogeneous agents to work and interoperate
in the same environment is provided by EIS framework, mentioned in a previous
section. In this case, EIS provides a common model not of the environment but
of the interface to access and work in some environment, without constraining the
specific environment (meta)model to be adopted.

Ontologies and Agents

Different models and languages have been proposed in literature for the in-
terchange of knowledge among different agents and to define ontologies.

An example is the Knowledge Interchange Format (KIF), a language pro-
posed by Stanford Al Lab, designed for enabling the interchange of knowl-
edge among disparate computer systems, created by different programmers,
at different times, in different languages, and so forth. In the context of
agents, KIF has been used primarily as a language to describe the message
content in ACL, KQML in particular (Finin et al. 1994).

The definition of common ontologies is a main aspect of the semantic
web (Berners-Lee et al. 2001) which is an extension of the World Wide
Web through standards that promote common data formats and exchange

Integration with Other Technologies 187

protocols on the web. These includes the Resource Description Framework
(RDF) and the Ontology Language (OWL), the latter specifically conceived
to represent rich and complex knowledge about things, groups of things,
and relations between things. The semantic web effort is essential for bring-
ing communicating multi-agent systems to the World Wide Web, integrating
intelligent agent technology and ontologies (Hendler 2001).

In the context of agent programming, ontologies can be used both to de-
fine the content of message exchanged and interaction protocols and, more
generally, to represent knowledge inside the agents, that is, agent beliefs
in the BDI model. The use of ontologies in defining interaction protocols
is among the main features of the JADE platform (Bellifemine et al. 2007).
JASDL (Klapiscak and Bordini 2009) is an example of proposal in literature
in which the Jason agent programming language is extended so as to use
OWL to represent beliefs, enabling features such as plan trigger general-
ization based on ontological knowledge and the use of such knowledge in
querying the belief base. More about agent programming and ontologies
can be found in chapter 11, in the Semantics and Reasoning section.

1 1 Wrap-Up and Perspectives

In this final chapter, we provide an overview of some main research perspectives
that concern MAOP. After recalling the key points that characterize the MAOP ap-
proach, we focus on Al and discuss how Al-related classic problems can be posed
in a different way when considering an MAOP perspective. Then, we move on to
software engineering, discussing how techniques for engineering complex soft-
ware systems can be supported by MAOP and, more generally, an agent-oriented
approach to software engineering. Throughout the chapter, we provide references
to research work that has already been done and published, and mention future
directions of research.

11.1 The MAOP Viewpoint—Wrap-Up

In this book, we have presented the MAOP approach with a focus on each of the
dimensions that take part in its definition (agent, environment, and organization
dimensions in chapters 4, 5, and 8), making clear what programming abstractions
they offer. We have also shown how these abstractions integrate all together for
programming modern software applications in which an increasing level in the
autonomy of the interconnected software systems is required (see figure 11.1).

Arich and flexible flow of information and control among the software entities in-
stantiating each of the independent dimensions is possible, thanks to the dynamic
relations that loosely connect them.

« The communicate relation connects the agent dimension to itself. This relation rep-
resents the ability for agents with the same or different architectures to commu-
nicate with each other. Such direct interaction among agents is realized thanks to
the performative verbs (see the technology corner on page 93) and the common
language used to express the contents of messages in terms of sharing beliefs,
goals, events, and plans (see the research corner on page 186).

« The perceive and act dynamic relations connect the agent dimension to the en-
vironment one. They represent perception and action of the agents on a shared

190 Chapter 11

Organization
Dimension

Organization

3

’ Group ‘ ’ Scheme
? ? dynamic relation .
’ Role ’ Norm ‘ ’ Goal ‘ composition
7 N
> g " . Q
Q o 9
QO& & % ?%ga, communicate
S S [P =5 SR
[S . Y
$ %" ©n%
¥ R p

’Environment 0—{ Workspace ’ Signal ‘
? act

e
O—M ’ Action }—0’ Agent ‘
———————————————— TRRSSRIERE =
Property perceive Belief
Agent

Artifact

Environment

Figure 11.1
MAOP dimensions.

environment, and thus may be involved in indirect interaction, which is the other
facet of interaction among agents.

Dynamic relations between agents and the environment have been investigated
from a practical point of view in chapters 6 and 7.

- The dynamic relations participate, coordinate, and regulate connect the organiza-
tion and agent dimensions. Presented in chapter 9, they represent the means for
agents to actively participate in the coordination and regulation patterns imposed
on them by the organization to which they belong.

- The dynamic relations empower, count-as that connect the environment and orga-
nization dimensions have been presented in the research corner on page 140 and
are ongoing work.

With the case study explored in chapters 6, 7, and 9, we have first shown how to
program agents and the shared environment where they are situated. We have then
discussed the programming of coordinated behavior among those autonomous en-
tities. To that purpose, we have presented how to use the programming abstractions
of each of the dimensions that take part in the definition of the MAOP approach. As
done by Boissier et al. (2019), we have shown how the same coordination pattern to

Wrap-Up and Perspectives 191

achieve the choice of the preferred temperature can be programmed by exploiting
direct communication, shared environments, or agent organizations.

All along these chapters, we discussed how alternative solutions result from dif-
ferent synergies between the available dimensions, that is, an emphasis on a partic-
ular dimension generates a particular solution for the given problem. We discussed
the benefits and limitations of each of those solutions to approach the same prob-
lem. The JaCaMo platform has been used as a development tool for that exercise.
This way, we illustrated MAOP from a practical point of view and discussed the de-
velopment of a simple system integrating the agent, environment, and organization
dimensions.

11.2 MAOP and Artificial Intelligence

Each of the following sections is dedicated to the description of some classic Al-
related problems and how MAQOP helps to revisit them, or to the description of a
technology and how it in turn is helping further progress MAOP to support the de-
velopment of ever-increasing system complexity. We chose to focus particularly on
the following problems: semantics and reasoning, planning and acting, adapting
and learning, and argumentation.

Semantics and Reasoning

Semantics is all about the meaning of symbols. In the context of an MAOP ap-
proach, the range of symbols and expressions may be associated with a large collec-
tion of entities in the real world. Such entities may refer to the autonomous agents
or to the nonautonomous entities in the environment such as tools or resources.
However, the symbols may also relate to a service level, a more abstract level used
to describe the agents, tools, or resources in terms of service profiles, categories of
objects with which it is possible to interact in terms of agent-to-agent interaction
or in terms of agent-to-tools interaction. Finally, they may also pertain to a policy
level, an even more abstract level on which the symbols are no longer used to de-
scribe the content of interaction but to describe how to coordinate and regulate the
interaction among the entities (e.g., groups, social schemes, or norms defining the
organization). For each of these levels, agents are required to be capable to compute
meaningful correspondences between the symbols that they use, so as to interact
and coordinate effectively while acting in the environment.

Asnoticed by Argente et al. (2013), while aligning their representations about the
entities, services, or policies, agents may encounter different types of conflicting
issues:

192 Chapter 11

1. Lack of same vocabularies or conceptualizations although using a common
formal language (e.g., for specifying their ontologies or for sharing information
in the content communication language);

2. Different languages and, possibly, different vocabularies and conceptualiza-
tions; and

3. Semantics that is implicit and informal, being hardwired into the agents’
decision-making mechanisms, the reasoning cycle, or the agent program.

It is clear that moving from the first to the third type corresponds to an increase
in the difficulty of achieving semantic agreement and understanding among the
agents.

From the environment point of view, the use of semantic technologies is related to
the descriptions of artifacts, which in existing work have been called artifact manu-
als (Acay et al. 2009). Furthermore, as far as the environment acts as an interaction
medjiator, the environment may provide the appropriate facilities (e.g., services,
repositories, and information sources) for the agents to access semantics descrip-
tions (e.g., ontology services [Mascardi et al. 2014; Freitas et al. 2015]) or to reach
semantic agreement. Nevertheless, as the difficulty increases (something expected
in open settings), the role of the environment toward establishing semantic corre-
spondences should become more important (Argente et al. 2013). The environment
provides a common ground where all the agents are deployed. The environment
becomes the actual and common context to all the agents. This leads to situated cog-
nition in which knowledge exists inseparably from context. Therefore, aligning se-
mantics and establishing agreements can be codetermined by the agents and their
context instead of an objective alignment or combination of knowledge. This opens
for increasingly effective performance.

At the agent level, besides using semantic techniques to describe the agents in a
system (as we discuss subsequently), semantic techniques can also be used for rea-
soning within agents. Building on various previous lines of research on combin-
ing AgentSpeak with ontological reasoning, Mascardi et al. (2014) proposed CooL-
AgentSpeak which, on top of the various advantages for ontological reasoning with
regard to plan selection, querying the belief base, and various other aspects, it also
added support for the use of ontology alignment services.

Similarly, at the organizational level, we can use semantic technologies for the
description of organizations (e.g., as in Semantic Moise [Zarafin et al. 2012]), but
conversely, organizations can be used as means for structuring semantics (e.g., at-
taching a set of ontologies to organizations, meaning that in those organizations
using a particular ontology is mandatory, using another ontology is forbidden, and
so forth).

Wrap-Up and Perspectives 193

Finally, Freitas et al. (2015) give semantic descriptions for all JaCaMo dimensions,
putting forward an approach to facilitate the modeling of JaCaMo systems. By ex-
tending a top ontology to the specific system to be developed, the user can take
advantage of the specified concepts when coding the system, through the use of
techniques such as drag-and-drop and automatic generation of some code struc-
tures. The approach also allows the use of ontological reasoning to check for some
aspects of code consistency.

Planning and Acting

As summarized by Trentin et al. (2019), the cognitive functions necessary for agents
to be able to act upon and perceive a dynamic world are commonly grouped in
what are called planning and acting functions (Ghallab et al. 2016). The latter is a
deliberation function that has direct contact with the external world, responsible
for following plans (i.e., a set of ordered actions built to achieve goals), and react-
ing to context (with every input an agent checks whether plans are still feasible and
chooses appropriate available actions to be executed), all driven by previously cho-
sen goals. The planning function is another deliberation function that complements
the acting one by providing it with a set of plans customized to achieve previously
defined user goals. The inputs to this planning function are a set of goals and an
operational model of the actions available to the agent. Such actions will be com-
bined by the planner to create plans capable of achieving goals given a context.
There can be also a descriptive model, which is a set of abstract actions used by the
planning function to create plans to achieve goals, whereas the operational model
is a set of low-level commands used by the acting function to execute the abstract
actions present in plans.

Creating new plans at runtime can clearly make a significant impact on an agent’s
ability to autonomously operate in unpredictable environments. Reconsidering
this global problem in the context of an MAOP approach takes into account the
following problems and opportunities.

Defining the descriptive model of actions to be used by the planning function
requires having a description of the possible actions that are made available to the
agents. In MAOP, this corresponds to the set of operations in artifacts that could
be deployed and used by the agents in the workspaces that they have joined. Two
main research questions then arise:

1. The existence of a “manual” with a description of an artifact usage interface
allows agents to reason about it and build plans to use those descriptions of
operations in the achievement of their goals (Acay et al. 2009).

2. One can consider introducing in the descriptive model a set of meta-actions
related to the creation of artifacts, the joining of workspaces, the focusing on

194 Chapter 11

artifacts—that is, all sorts of actions that deal with the management of artifacts
themselves. Thus, one can enrich planning with actions related to the deploy-
ment and configuration of the working environment for the agents.

The majority of existing approaches, however, provide planning capabilities that
consider exclusively at the agent dimension. Such approaches use the great vari-
ety of planning techniques that exist in the literature. These are, for instance, first-
principles planning (FPP), which is, informally, the creation of new plans, based
upon an action theory, that is, a predefined set of actions, to achieve goals (Xu et al.
2018; Silva et al. 2009); Markov Decision Processes (MDP) (Bellman 1957); and Hi-
erarchical Task Network (HTN)—a well-known planning technique in which com-
pound tasks are decomposed into simpler ones until tangible actions that can be
directly executed are obtained (Herzig et al. 2016). The question to investigate is
how to integrate in these agents the ability to plan, as well as the ability to reason
about the other agents to prevent conflict at the planning phase (epistemic reason-
ing and planning).

Pioneering work on integrating planning into BDI agent programming appeared
in work by Sardifia et al. (2006, 2011), which introduced a language named CAN-
Plan. The Refinement Engine for Acting and Planning (REAP) has a similar direc-
tion (Ghallab et al. 2016). These approaches aim to incorporate HTN-style plan-
ning into BDI-like agents, ultimately allowing agents to perform online planning
and acting. Another approach is HTN Acting (Silva 2018a,b), whose approach also
combines HTN planning with BDI behavior, that is, performing interleaved delib-
eration, acting, and failure recovery. By adapting HTN planning semantics, HTN
acting does the opposite of REAP and CANPlan, that is, adapting BDI agents.

An example is the embedding of FPP in BDI agents (Xu et al. 2018; Silva et al.
2009), giving it some planning capabilities. However, combining BDI agents and
HTN planning appears more promising, perhaps because of the similarity between
BDI agent plans and HTN methods, which implies that an HTN planner can reuse
the domain knowledge available in BDI agents” plan libraries, and is hence quite
apropriate for online planning, as done by Cardoso and Bordini (2019); this work
is subsequently discussed further.

An agent that can create new plans is capable of adapting itself in an online,
goal-driven fashion. But its behavior might be completely ignorant of the presence
of other intelligent agents, ultimately simply sensing other agents’ actions in the
world and considering them simple changes to be adapted to. Therefore, we are
interested in allowing interaction and coordination among decentralized agents,
and another major challenge is planning for human-agent interaction.

At the organizational level, social schemes represent plans at the collective level.
The architecture presented by Ciortea et al. (2018) shows a possible approach using

Wrap-Up and Perspectives 195

the organization dimension as a means of coordinating agents: the organization
has social schemes (sets of collective goals) which are used to allocate available
agents that are capable of executing such goals. The allocation is done by giving
roles to agents. Another approach, the Decentralized Online Multi-Agent Planning
(DOMAP) presented by Cardoso and Bordini (2019, 2017), uses the environment
dimension to coordinate agents. That approach breaks down the process of multi-
agent planning into three parts: goal allocation, individual (HTN) planning, and
execution using coordination artifacts. Hence there are three special artifacts: a task
board, a contract net board or something similar to do task allocation, and an artifact
with social laws to do runtime coordination. The bidding for goal allocation uses
heuristics based on metrics taken from the agent’s plan library. The social laws are
special artifacts that impose rules in order to resolve conflicts at runtime. Although
that work can be used, for example, when a JaCaMo organizational scheme fails
to achieve the main goal, much still remains to be done in terms of planning for
JaCaMo systems that considers all three dimensions.

Learning and Adapting

We have seen that the agent architecture used in JaCaMo and more generally the
multiple dimensions of abstractions available in it provide many opportunities for
taking advantages of off-the-shelf Al techniques. Besides ontological reasoning
and automated planning, there are many opportunities for the use of (currently
so widespread) machine learning techniques. The most directly usable way, in par-
ticular for work on machine learning for computer vision, is to simply use them
to provide percepts for agents. In order to do so we need only the result of image
processing to be represented in the particular symbolic way that our agents use to
represent percepts.

Some of the earliest ideas on learning and adaptation for BDI agents appeared
in work by Guerra-Hernandez et al. (2004) and by Airiau et al. (2009). Singh et al.
(2011, 2010a,b) model plan contexts in BDI agent plan libraries similar to those
used in this book as decision trees, selecting a plan among the various available
plans to achieve a goal is done probabilistically, and machine learning techniques
are used to improve such selection; the idea is to allow agents to learn from expe-
rience which among the various available plans is more likely to succeed at given
circumstances. More recent and even more directly related to our MAOP approach,
Ramirez and Fasli (2017) put forward an approach to intentional learning focusing
on plan acquisition (i.e., creating new know-how to adapt the agent behavior at
runtime) implemented in Jason.

In the literature, learning techniques have been used mainly to improve agent
adaptation, by means of, for example, plan or action selection at runtime. A further
perspective has been recently introduced by Bosello and Ricci (2019), in which the

196 Chapter 11

value of learning is explored also at design/development time, as a method to auto-
matically create plans instead of writing them by hand. The basic idea is that to
design an agent capable to achieve some goal g, an agent developer (using Jason,
for instance) may decide to find it more convenient not to write plans by hand but
to allow the agent itself to learn the best way to achieve the goal. This could be done
by means of, for example, a reinforcement learning (RL) process (Sutton and Barto
2018), based on some simulation environment designed for that purpose. In that
perspective, developing an agent would mean integrating both hand-coded plans
and plans learned by the agent itself through experience, in a training stage dur-
ing agent development. The same idea could be applied as well at the interacting
agents and organization level.

Argumentation

Argumentation theory (Walton et al. 2008; Simari and Rahwan 2009) has become an
important research theme in artificial intelligence as it provides principled means
for both reasoning about conflicting information (which is pervasive in multi-agent
systems and more generally in the real world) as well as for autonomous agents to
reach agreements through communication. In regard to an individual agent rea-
soning about conflicting information available to it based on argumentation tech-
niques, it is useful to add explicit defeasible reasoning rules as part of the agent
belief base, as done by Panisson and Bordini (2016). This allows conclusions and
justifications used in arguments that an agent put forward to be an integral part of
the agent’s usual reasoning mechanisms. That is, those arguments are handled by
the existing belief base structure of the agent. An alternative approach that is less
integrated with the existing belief base but also implemented for Jason and hence
applicable to JaCaMo was proposed by Zavoral et al. (2014). The implementation
by Panisson and Bordini (2016) is based on defeasible Prolog (Nute 1993, 2001),
so the approach for reasoning about conflicting information taken by our agents
is equivalent to what in argumentation theory is known as grounded semantics, as
shown by Governatori et al. (2004).

On the agent communication side, we have given formal semantics to speech
acts that are specific to argumentation (Panisson et al. 2014), and therefore more
expressive than the usual agent communication processes; the semantics was im-
plemented using the straightforward means for the definition of new performative
verbs supported by JaCaMo. That approach allows agents to make claims, justify
how they are able to conclude particular claims, question claims or justifications
made by other agents, and so forth. Making such dialogue moves generates com-
mitments for the participating agents, in the sense that an agent becomes commit-
ted to defending the claims it has made throughout the interaction process (i.e.,
justifying them by communicating the reasoning that allowed that agent to reach

Wrap-Up and Perspectives 197

those conclusions), unless of course on the basis of new information exchanged
with other agents the agent chooses to retract those previous claims. In our JaCaMo
framework, artifacts are used to keep track of the commitment store. Normally, we
want to have mechanisms to ensure such multi-agent communication unravels as
a finite process that reaches agreement among the agents; argumentation-based
protocols are used for that purpose (Panisson et al. 2015b).

There have also been extensions of the described approach to support pon-
dering over arguments taking into consideration information available from the
agent society, the shared environment, and models of other agents engaged in
argumentation-based dialogues (Panisson et al. 2018b; Melo et al. 2016). The ap-
proach has been used, for example, in mobile applications to support teamwork
in healthcare scenarios involving ambient assisted living (Panisson et al. 2015a),
or aiming at emerging technologies such as the Internet of Things (Panisson et al.
2018a).

Even more interestingly from the MAOP and JaCaMo point of view, the use of
patterns of argumentation-based reasoning, called arqumentation schemes, has been
integrated with the organization dimension, and can be used to support domain-
specific patterns of reasoning for particular MAOP applications (Panisson and Bor-
dini 2017a). Furthermore, given the JaCaMo infrastructure, we can avoid exchang-
ing parts of an argument when they are common knowledge in a JaCaMo multi-
agent system (Panisson and Bordini 2017b).

All the work mentioned was put together as one of the first complete frameworks
for practical argumentation based on multi-agent oriented programming, that is to
say using environment and organization abstractions to support the argumentation
process conducted by the agents.

11.3 MAOP and Software Engineering

In this book we introduced multi-agent systems as a paradigm for engineering
complex software systems. In literature, this is the perspective adopted—among
the others—Dby agent-oriented software engineering (AOSE) (Jennings 2000), which is
about applying an agent-oriented approach to the wide spectrum of aspects that
concern software engineering, from methodologies to architectures and technolo-
gies. In that view, in this section we discuss the impact that MAOP could bring
to software engineering by both discussing in more detail the main principles of
AOSE in dealing with complex software systems and, contextually, how MAOP
could be a valuable tool to implement these principles.

Following Jennings (2000), we first consider the main well-known techniques
adopted in software engineering for dealing with (complex) software systems, and

198 Chapter 11

then we discuss how multi-agent systems and MAOP support them. Booch et al.
(2007) summarizes such techniques in

« Decomposition—dividing large problems into smaller, more manageable chunks,
to be dealt with in relative isolation. This is useful to limit the designer’s scope—
at any given time only a part of the problem needs to be considered.

- Abstraction—defining simplified models of the system both to emphasize some of
the details or properties and to suppress some others. This is useful too to confine
the designer’s scope, focusing on salient aspects at the expense of less relevant
details.

- Organization—identifying and managing the interrelationships between the vari-
ous problem-solving components. This helps designers tackling complexity both
by enabling components to be grouped together and treated as a higher-level unit
of analysis and by providing a means of describing the high-level relationships
between various units.

It is useful here to consider also what it means that the system is complex, that
is, what challenges these techniques have to tackle. Following Simon (1996), two
important aspects that often characterize complex artificial systems are

- Hierarchy—complex software systems are often a composition of interrelated sub-
systems, each of which is in turn hierarchic in structure.

- Interaction—interactions in complex software systems typically concern two dif-
ferent levels: among subsystems and within subsystems, with different nonfunc-
tional properties. In particular, the interactions within subsystems are both more
frequent and more predictable, whereas the interactions among subsystems are
more uncoupled. Accordingly, often subsystems can be treated almost as if they
were independent of one another, but not totally independent. Simon refers to
this kind of system as nearly decomposable.

Given these techniques and the challenges, we now consider how multi-agent sys-
tems and MAOP would provide an effective support for applying such software
engineering techniques in the context of complex software systems.

Decomposition, Abstraction, and Organization with MAS and MAOP

The benefits of an agent-oriented approach to the process of engineering complex
systems can be summarized in three main points (the interested reader can find in
literature (e.g., Jennings [2000]; Wooldridge and Ciancarini [2001]) a comprehen-
sive discussion about this theme).

The decomposition style promoted by MAS is natural for systems that are neces-
sarily distributed or that have multiple loci of control. These characteristics are of-
ten found in real-world complex systems (“real systems have no top” [Meyer 1997]).

Wrap-Up and Perspectives 199

First, decentralization reduces control complexity, resulting in a lower degree of
coupling between components. Second, decentralization of the control leads to
have responsive systems in spite of their complexity (distribution), because agents
as autonomous entities can decide which actions to do given their local situation,
eventually interacting with the other components (agents) only when needed, that
is, in the case of interactions among subsystems. Nevertheless, decentralization of
control calls for considering interaction and coordination as a primary aspects of
the system engineering. In this case, the flexibility of the interaction model is very
important as soon as the inherent complexity makes it difficult or impossible to
predict or analyze all the possible interaction at design time. Agent orientation
promotes a design thinking in which components themselves are endowed with
the ability to make decisions about the nature and scope of their interactions at
runtime.

MAQOP allows bringing this decomposition style from the design level to the pro-
gramming level, and runtime as well. In addition, it enables further refining of de-
composition by separating autonomous (agents) from nonautonomous (artifacts)
components, which, in turn, enables realizing a better separation of concerns.

Moving to the abstraction point, the most powerful abstractions in designing soft-
ware minimize the semantic distance between the units of analysis that are intu-
itively used to conceptualize the problem and the constructs present in the solution
paradigm (Jennings 2000). This viewpoint is supported also by modern approaches
to software engineering such as Domain-Driven Design (Evans 2003). In the case
of complex systems, the problem to be characterized often consists of subsystems,
subsystem components, interactions and organizational relationships. In this, the
strong degree of correspondence between the notions of subsystems and agent
organizations, and subsystem components and agents, make the agent-oriented
mind-set a natural means of modeling complex systems. In this, the interplay be-
tween the subsystems and between their constituent components is most naturally
viewed in terms of high-level social interactions, where, for example, agents coop-
erate to achieve common objectives, coordinate their actions, or negotiate to resolve
conflicts.

MAQOP helps keep this level of abstraction alive at programming and runtime, by
means of first-class programming abstractions along multiple dimensions, from
the agent dimension to the organization dimension.

Finally, about the organization point, complex systems typically involve chang-
ing webs of relationships between their various components (Jennings 2000). In
that, agent-oriented approaches provide a rich set of structures for explicitly repre-
senting and managing organizations and organizational relationships (e.g., roles,
norms, and social laws), as well as for modeling collective structures themselves

200 Chapter 11

(such as teams, joint intentions, and so forth), providing a flexible management
of changing dynamically such organizational structures and relationships, includ-
ing computational mechanisms for flexibly forming, maintaining, and disbanding
organizations. In MAOP this is a main aspect, directly supported by first-class pro-
gramming abstractions at the organizational level, both at the structural level—by
means of structural abstractions such as roles and groups—and at the functional
level—by means of functional abstractions such as schemes and missions, and at
the normative level as well. An important point in this support is the connection at
the programming level between the organization and the agent dimensions on one
hand and between the organization and the environment dimensions on the other
hand, so that well-defined semantic relationships are defined between concepts
(e.g., goals in the agent and organization dimensions, acting on some operation in
the environment counting as achieving goals in the organization).

Bringing Knowledge and Social Levels to Software Engineering

Overall, agent-oriented approaches and MAOP bring to software engineering what
in literature have been called knowledge level and social level. The knowledge level,
introduced by Newell (1982), accounts for describing (understanding, modeling,
and designing) a system at a level that abstracts from the concrete structures and
processes used to implement it or that defines operationally its behavior. A sys-
tem is described and understood instead in terms of its goal(s) and knowledge
available to achieve them, and assuming a principle of rationality as behavioral law,
modeling its decision making. Figure 11.2 shows how a system can be described
using a knowledge level. Conceptually, the knowledge is constructed on top of the
symbolic level, which instead focuses on representations, data structures, and pro-
cesses (rather than knowledge). In turn, the symbolic level can be layered upon a
circuit level. The social level sits on top of the knowledge level because it enables
us to model, study, and design the overall behavior of a complex system and its key
conceptual structures without the need to delve into the knowledge details of the
individual subsystems and their interactions.

The power of the knowledge and social level idea is that it allows us to rethink to
the main aspects that concern the process of engineering—analysis, design, vali-
dation, and so forth—at a level of abstraction that is both domain-driven—because
knowledge is typically at the domain level—and human-oriented—because a sys-
tem is expressed in terms of the goals and (hopefully) rationality that human de-
signers put into it. MAOP supports the knowledge level by keeping this level of
abstraction also to develop as well as run the system.

These two levels provide a design space for identifying strategies to deal with
two main challenges that are of concern in considering the engineering of modern
software systems embedding Al technologies. The first one is about the struggle

Wrap-Up and Perspectives 201

Element Description Knowledge Social level
level
System Entity to be described = Agent Organization
Components The system’s primitive Goals, actions Agents,
elements interactions,
dependencies,
organization
relationships
Compositional How the components Various Roles, groups,
law are assembled missions, schemes
Behavior How the system’s Agent Organization
law behavior depends rationality rationality

upon its composition
and components

Medium The elements to be Knowledge Norms, means of
processed to obtain influencing others,
the desired behavior means of changing

organizations
Figure 11.2

Knowledge and social levels, after Jennings (2000).

between flexibility and unpredictability. As we have said in previous chapters, both
are the effect of (1) agent autonomy, and (2) interactions among agents, which may
lead to emergent behavior at the MAS level. On the one hand, both autonomy and
emergent behavior are important to make self-adaptive systems (Cheng et al. 2009)
that flexibly adapt to unpredictable changes in the environment without the need
for human intervention. On the other hand, that flexibility should not be at the ex-
pense of the capability to verify and validate software systems, to guarantee prop-
erties, and to have full control over the system. The availability of first-class design
and programming abstraction as offered by the MAOP approach both at the knowl-
edge and social levels makes it possible to balance flexibility and unpredictability—
including the possibility to realize forms of adjustable autonomy (Scerri et al. 2002),
in which agents may dynamically vary their own autonomy, transferring decision-
making control to other entities, such as humans, or changing and adapting the
way they are regulated (e.g., reorganizing) or the environment in which they are
situated (e.g., deploying new artifacts). The second one is about explainability of sys-
tems, so that they should endow mechanisms to make understandable to human
experts all aspects concerning their decisions and behavior in general.

202 Chapter 11

The multidimensional approach provided by MAOP allows shaping such strate-
gies by exploiting agents, organizations, and also the environment as first-class ab-
stractions, in particular the power of mediated interaction (discussed in chapter 7)
and of agents being able to reason about their organization (discussed in chapter 9).

Rethinking Methodologies and Tools

The availability of proper tools and methodologies are fundamental to support
in practice such a perspective based on a knowledge and social levels on soft-
ware engineering. In literature, several agent-oriented methodologies have been
introduced in the context of AOSE; main examples are Prometheus (Padgham and
Winikoff 2003) and Gaia (Wooldridge et al. 2000); the interested reader can refer to
surveys such as those by Sturm and Shehory (2014); Iglesias et al. (1999); Cossentino
etal. (2007) and books such as those by Henderson-Sellers and Giorgini (2005); Ster-
ling and Taveter (2009). In several methodologies, environment and organizational
concepts are used mainly in the early stages to clarify the problem to be solved.
Along the process, these concepts are analyzed and, in the implementation phase,
they usually disappear and are replaced by agent concepts, mainly because the
considered programming tools support only the agent dimension. For instance,
Prometheus uses the organizational concept of role to describe part of the agent
behavior in the analysis phase. However, the program produced in the end of the
process is, for instance, a set of agents. Role, in this example, is not a first-class
entity in all the methodology phases. A work that initially deals with this issue
is Prometheus AEOlus (Uez and Hiibner 2014). It departs from Prometheus and
changes some phases to produce code for tools like JaCaMo in the end of the de-
velopment process.

From a programming point of view, MAOP fosters thinking of novel kinds of
IDEs (Integrated Development Environments), including new perspectives for de-
buggers and profilers, making it possible to inspect, query, and analyze the behav-
ior of the systems at both the knowledge and the social levels. Examples of work
in literature that go in this direction are those by Hindriks (2012); Winikoff (2017),
which rethink of debugging for agent-oriented programming as an explanation
process driven by why questions. JaCaMo provides some support for that view by
allowing the user to inspect at runtime agents in terms of their beliefs and inten-
tions; workspaces in terms of artifacts and their observable properties; and organ-
izations in terms of groups, schemes, and players that are part of the metamodel.

However, at the time of the writing of this book, we are still far from having tools
that fully exploit in practice the power of the knowledge and social levels applied
to software engineering. We have still a great space of opportunities for research
and development toward tools that will be broadly adopted by the academy and
the industry.

Wrap-Up and Perspectives 203

11.4 The Road Ahead

In “The Continuing Quest for Abstraction,” Henry Lieberman, from MIT, talking
about programming paradigms, object-oriented programming in particular, said

The history of Object-Oriented Programming can be interpreted as a continuing

quest to capture the notion of abstraction—to create computational artifacts that

represent the essential nature of a situation, and to ignore irrelevant details.

Lieberman (2006)

Multi-agent oriented programming contributes to the continuing quest of abstrac-
tion by introducing new first-class programming concepts that capture important
aspects that characterize modern complex software systems and “situations.” Ev-
ery paradigm has some inspiring reference background metaphor or context—the
computer machine for imperative programming, mathematics for functional pro-
gramming, and the world of objects for object-oriented programming. MAOP in-
spiration comes from the world of humans, how they interact with each other and
with artifacts, and how they organize themselves in their environment. As shown
in this book, this level of abstraction triggers new ways to understand the engineer-
ing of complex software systems, as well as new ways to conceive a fruitful integra-
tion between software engineering and artificial intelligence, under the knowledge
and social levels.

In fact, future application scenarios call for a wider integration perspective, be-
yond software engineering and artificial intelligence. In socio-technical and cyber-
physical systems we see a stronger blending of the digital and the physical world,
of the digital world and people, societies, institutions, and laws. This blending calls
for more pervasive and novel forms of interaction and cooperation between humans
and machines, and—in the MAOP perspective—between humans and systems en-
gineered as organizations of intelligent agents. This direction can be recognized
in research visions such as the human-agent collectives (Jennings et al. 2014) and
mirror worlds (Gelernter 1991; Ricci et al. 2019), and in the human-in-the-loop per-
spectives (Ricci et al. 2015).

This means finding a place for humans in the knowledge and social levels pic-
ture, so that systems can be conceived as organizations of agents and humans as
well, where the behavioral laws accounts for theories of (organization) rationality
including both agents and humans. In the continuing quest of abstraction, humane
aspects may deserve a first-class modeling and implementation. This appears an
essential step for the design and development of forthcoming open, autonomous,
smart socio-technical and cyber-physical societies that need to explicitly represent
and operationalize high-level human principles concerning ethics, values, and law.
We hope MAOP will continue to develop in that direction.

We hope this book has helped convey the idea that MAOP is an important step
in the quest for abstraction and toward a future of humans-in-the-loop systems

204 Chapter 11

as well as humane computational systems, in which ethical artificial intelligence
techniques are seamlessly integrated into the practical development of complex
systems built for the social good.

Solutions to Exercises

Here we present and discuss the answers for some selected exercises. You can download
the code for these answers and the answers for the other exercises from the book website

http:/ /jacamo.sourceforge.net/book

Exercise 3.1

a) To add the word “Wonderful” in the “Hello World” message, we need to initially create
a new agent john to handle the management of this new word. Its plans are stored in
the file called john.as1).

The application file for the solution based on agent communication is as follows:

mas mag_hw {
agent bob { // file bob.asl is used
goals: say ("Hello")
}
agent alice
agent john
}

The code of the agent bob is modified to request john to print its word:

+!say (M) <— .print (M);
.send (john, achieve, say ("Wonderful")) .

The code of the agent john is very similar, requesting alice to print its word:

+!say (M) <—= .print (M);
.send(alice,achieve, say ("World")) .

Finally, the code of alice does not change:

+!say (M) <— .print (M).

http://jacamo.sourceforge.net/book

206 Solutions to Exercises

Programming this solution required to reprogram the agents so that they properly
coordinate the execution of the shared task. We needed to change the receiver of the
messages (to indicate the next agent to handle the next step of the global task) and the
word they have to print.

In the application file for the coordination using the environment, we keep the Blackboard
artifact and create the new agent john and make it focus on the artifact:

mas sit_hw {
agent bob {
join: room // bob joins workspace toolbox
goals: say("Hello")

agent alice {
join: room // alice also joins workspace toolbox
focus: room.board // and focus on artifact board

agent john ({

join: room // alice also joins workspace toolbox
focus: room.board // and focus on artifact board
}
workspace room { // creates the workspace toolbox

artifact board: tools.Blackboard // with artifact board

}
The code of the agent bob is not changed:
+!say (M) <- writeMsg (M) .

The code of the agent john is new. It consists of one plan triggered by the perception of
lastMsg (“Hello”):

+lastMsg("Hello") <- writeMsg("Wonderful").

The code of the agent alice has been changed to consider the new triggering event
lastMsg (“Wonderful”):

+lastMsg ("Wonderful") <— writeMsg("World!").

Programming this solution required reprogramming the agents only regarding the
word they wait for and print. Different from the coordination by communication so-
lution, we do not need to include in the agent programs who is the next agent in the task.

Finally, for the coordination by organization, we change the organization specification by
creating a new mission responsible for printing the new word. Note the goal show_w3,
the mission mission3, and the norm norm3 in the definition of the social scheme and

Solutions to Exercises 207

b)

9)

of the normative specification in this new organization specification (the only change in
the structural specification consists in fixing the cardinality of the role greeter to 3):

<functional-specification>
<scheme id="hw_choreography">
<goal id="show_message">
<plan operator="sequence">
<goal id="show_wl"/>
<goal id="show_w3"/>
<goal id="show_w2"/>
</plan>
</goal>

<mission id="missionl" min="1" max="1"> <goal id="show_wl"/> </mission>
<mission id="mission2" min="1" max="1"> <goal id="show_w2"/> </mission>
<mission id="mission3" min="1" max="1"> <goal id="show_w3"/> </mission>
</scheme>
</functional-specification>

<normative-specification>
<norm id="norml" type="permission" role="greeter" mission="missionl"/>
<norm id="norm2" type="permission" role="greeter" mission="mission2"/>
<norm id="norm3" type="permission" role="greeter" mission="mission3"/>
</normative-specification>

The creation of agent john in the application file is similar to the other agents:

agent john : hwa.asl {
focus: room.board
roles: greeter in ghw
beliefs: my_mission(mission3)

In the common code for all agents (file hwa.as1), we add a new plan for handling the
new goal:

+!show_w3 <- !say("Wonderful").

The addition of a new word required us to change the organization specification and to
create a new agent able to handle the allocation of mission mission3.

To print the message in reverse order, producing the solution based on communication
requires changing the code of all agents, revising the receiver of the messages and the
word they have to print. In the version of the coordination using the environment, we
need to revise the trigger event and printed word in the plans of all agents. In the version
based on the organization we need to change the order of the goals in the social scheme,
no need to change the code of the agents, because the coordination is (explicitly) coded
outside the agents.

To print the words in parallel, again, in solutions based on communication and environ-
ment, we have to revise the code of all the agents. In the version based on the organiza-
tion, we simply have to replace sequence by parallel in the definition of the social
scheme.

208 Solutions to Exercises

Exercise 4.1 The agent bob programmed in the file bob . as1 has one belief corresponding
to one of its preferred cake: new_cake ("Biscuit Cake”). The first of its five plans im-
plements a reactive behavior creating a new goal to have that cake. The two following plans
implement the proactive behavior, decomposing the goal of having a cake into two subgoals:
buy or make the cake. These two behaviors take place in different circumstances, as written
in the context part (introduced by the ’ : * separator) of the agent plan.

new_cake ("Biscuit Cake"). // to simulate new cake advert
have (money) . // I initially believe I have some money
+new_cake (X) <-— l'have (cake (X)) . // reactive behavior

// proactive behavior:
// two possible plans to acheive the goal have (cake(_))
+!have (cake (X)) : have (money) <- !buy (X).
+!have (cake (X)) : have(flour) & have(salt) & have(sugar) &
have (vanilla) & have (oven)
<- I!make (X) .

+!buy (X) <= .print ("Buying ",X).
+!make (X) <= .print ("Making ",X).

Exercise 4.2 The rule to infer whether the agent has all the required conditions to bake a cake
at home can be as follows:

have_all_to_bake :— have(flour) & have(salt) & have(sugar) &
have (vanilla) & have (oven) .

and thus the second plan to achieve the goal have (cake (X)) can be simplified to

+!'have (cake (X)) : have_all_to_bake <= !make (X).

Exercise 5.1

a) The Calculator artifact introduced in section 5.2 is extended to implement the new
operation sum accessing the value of the observable property lastResult:

package tools;
import cartago.x;

public class Calculator extends Artifact {
void init () |

defineObsProperty ("lastResult"”,0.0);

@OPERATION wvoid sum(double a, OpFeedbackParam<Double> result) {

Solutions to Exercises 209

ObsProperty p = getObsProperty("lastResult");
double res = a + p.doubleValue();
p.updateValue (res);

result.set (res);

}

b) The new artifact CalculatorB extends the above artifact Calculator (use of inheri-
tance) and implements the two new operations storeResult and recall:

package tools;
import cartago.x;

public class CalculatorB extends Calculator ({
double mem = 0;

@OPERATION wvoid storeResult () {
mem = getObsProperty("lastResult") .doubleValue();

@OPERATION wvoid recall () {
getObsProperty ("lastResult") .updateValue (mem) ;

An example of agent testing this artifact is

'test. // inicial goal

+!test
<— sum(10.1,S8); sum(S,R);
storeResult;
sum (1000, _);
recall.

+lastResult (S) <-— .print ("Sum is now ",S).

{ include ("$jacamoJar/templates/common-cartago.asl") }

The following application file makes this agent use the new artifact:

mas calc {
agent bobB {
focus: w.calculator

workspace w {

210 Solutions to Exercises

artifact calculator: tools.CalculatorB

}
The result of the execution is

Sum is now O

Sum is now 10.1
Sum is now 20.2
Sum is now 1020.2
Sum is now 20.2

Exercise 5.2 The usage interface of the SharedDictionary artifact is composed of one op-
eration put to add new information items in the dictionary, and one operation get to re-
trieve an information (use of OpFeedbackParam) given a key. This artifact does not provide
any observable property.

package tools;

import cartago.x;

import jason.asSyntax.x*;

import jason.asSyntax.parser.x;
import java.util.x;

public class Dictionary extends Artifact {
Map<String,Object> dic = new HashMap<>();

@OPERATION wvoid put (String k, Object v) {
dic.put (k,v);

QOPERATION wvoid get (String k, OpFeedbackParam<Term> r) {
try {
r.set (ASSyntax.parseTerm(dic.get (k) .toString()));
} catch (ParseException e) {
failed("object "+dic.get (k)+
" can not be parsed as a Jason term!");

Exercise 6.1 The blindly committed pattern for the goal buy can be implemented as follows:
+!buy (X) : have(X). // goal achieved already, nothing to do

+!buy (X) <- goto(market); buy(X). // try to achieve the goal (subject to failure)
=1buy (X) <= l!buy(X). // keep trying

A single-minded committed agent has an extra plan to drop the goal:

Solutions to Exercises

+!buy (X) : have(X).

211

+!buy (X) <- goto(market); buy(X).

=!buy (X) <= !buy(X).

—open (shop) <= .fail_goal(buy(_)). // in case I do not believe there
// is an open shopping, drop the goal with failure

Exercise 7.1 The solution to this exercise is programmed in three agents: agenta, agentB
(based on the agent . as1 program), and agentC programmed in agentC.asl. The three
agents work all together in the workspace playground where they share the artifacts
left and right based on the Table artifact template placed in the package tools. The
application file for this solution is

mas ping_pong {

agent agentA : agent.asl {
focus: playground.left
playground.right

goals: start

agent agentB : agent.asl {
focus: playground.left
playground.right

agent agentC {

focus: playground.left
playground.right

workspace playground {

artifact left:
artifact right:

}

tools.Table
tools.Table

Artifacts left and right are created from the same class Table. java:

package tools;
import cartago.x;

import Jjason.asSyntax.x*;

public class Table extends Artifact {
@OPERATION wvoid play () {

// getOpUserName () returns the name of the agent

// executing this operation

signal ("played"”, ASSyntax.createAtom(getOpUserName ()));

// the type of the argument is Jason Atom

212 Solutions to Exercises

}
Agents agentA and agentB share the same code:

+!start <- play.
+played (A)
not .my_name (A) // it is my turn
<- .print ("Agent ",A," has played");
.wait (1000);
play.
{ include ("$jacamoJar/templates/common-cartago.asl") }

Finally, agentC program is

c(0). // counter as belief
+played(_) : c(X) <= =+c(X+1l); .print("ping ",X).
{ include ("$jacamoJar/templates/common—-cartago.asl") }

The result of the execution is

[agentB] Agent agentA has played
[agentC] ping O
[agentA] Agent agentB has played
[agentC] ping 1
[agentB] Agent agentA has played
[agentC] ping 2
[agentA] Agent agentB has played
[agentC] ping 3
[agentB] Agent agentA has played
[agentC] ping 4

Exercise 7.2 The implementation in agentC to send “stop” to the others is as follows:

c(0). // counter as belief
+played(_) : c(10) <- .broadcast (tell,stop). // #*#* new plan
+played(_) : c(X) <— —+4c (X+1); .print("ping ",X).

{ include ("$jacamoJar/templates/common—-cartago.asl") }

The implementation in agents agent? and agentB can be done in several ways. The first
solution is to constrain the reaction to event played/1 by making the plan applicable only
if the agent does not have the belief stop (which is told by agentcC):

+!start <- play.

+played (A)
not .my_name (A) &
not stop // #*%+ new condition
<- play.

{ include ("$jacamoJar/templates/common-cartago.asl") }

Solutions to Exercises 213

This solution only avoids the application of the plan for the event +played(...). Thein-
tentions previously created are not affected by the agent C message. In that case, it would be
preferable to drop those intentions using the . drop_intention internal action. However,
this internal action .drop_intention can be used only for goals and the current plan is
data oriented (triggered by creation of a new belief)! We need thus to refactor the code of
agentA and agentB to be goal oriented (that could thus be dropped):

Iplay. // new inicial goal
+!start <- play. // initial play
+!play
<- // wait other play
.wait (last_played(A) & not .my_name(A));
.wait (1000);
play; // action
Iplay. // continue with the goal to play
+stop <- .drop_intention (play) . // drop goal contition

+played () // store the signal as a belief (used in line 6)
<- .print ("Agent ",A," has played");
—+last_played(A) .

{ include ("$jacamoJar/templates/common-cartago.asl") }

Note that the . wait in line 6 waits for a belief; however, the artifact produces a signal, then
the last plan (line 12-14) is required. This last plan could be removed if the artifact had
played/1 as an observable property instead of a signal.

Exercise 8.1 A possible organization specification (written in the wp-os . xml file) for struc-
turing and coordinating the process undertaken by assistants agents to support the writ-
ing of a paper is as follows. The structural specification has one group wpgroup where the
writer and editor roles are connected by “acquaintance,” “authority,” and “communica-
tion” links (note the use of the factorization of the “communication” link on the author role
that is inherited by the writer and editor roles). We can notice that agents are allowed to
play editor and writer at the same time (compatibility relation between these two
roles in the scope of this group). The functional specification abstracts the global process of
writing a paper via the definition of a plan in the social scheme writePaperSch decom-
posing goals into sequence and/or parallel subgoals. The goals of this plan are distributed
into three missions: mCollaborator, mManager, mBib. Finally, the normative specification
assigns to roles of the structural specification the obligations and permission to commit to
the missions defined in the functional specification.

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet href="http://moise.sourceforge.net/xml/os.xsl"
type="text/xsl" ?>

<organisational-specification

214 Solutions to Exercises

id="wp"
os-version="0.8"

xmlns="'http://moise.sourceforge.net/os"’

xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance’

xsi:schemalocation="http://moise.sourceforge.net/os
http://moise.sourceforge.net/xml/os.xsd’' >

<structural-specification>
<role-definitions>
<role id="author" />
<role id="writer"> <extends role="author"/> </role>
<role id="editor"> <extends role="author"/> </role>
</role-definitions>

<group-specification id="wpgroup" >
<roles>
<role id="writer"” min="1" max="5" />
<role id="editor" min="1" max="1" />

</roles>

<links>
<link from="writer" type="acquaintance" to="editor" scope="intra-group" />
<link from="editor" type="authority" to="writer" scope="intra-group" />
<link from="author" type="communication" to="author" scope="intra-group" />

</links>

<formation-constraints>
<compatibility from="editor" to="writer" type="compatibility"
scope="intra-group" bi-dir="true"/>
</formation-constraints>
</group-specification>
</structural-specification>

<functional-specification>
<scheme id="writePaperSch" >

<goal id="wp" ttf="5 seconds">
<plan operator="sequence" >
<goal id="fdv" ds="First Draft Version">
<plan operator="sequence">

<goal id="wtitle" ttf="1 day" ds="Write a title"/>
<goal id="wabs" ttf="1 day" ds="Write an abstract"/>
<goal id="wsectitles" ttf="1 day" ds="Write the sections' title" />
</plan>
</goal>

<goal id="sv" ds="Submission Version">
<plan operator="sequence">
<goal id="wsecs" ttf="7 days" ds="Write sections"/>
<goal id="finish" ds="Finish paper">
<plan operator="parallel">
<goal id="wconc" ttf="1 day"
ds="Write a conclusion"/>
<goal id="wrefs" ttf="1 hour"
ds="Complete references and link them to text"/>
</plan>
</goal>
</plan>
</goal>
</plan>
</goal>

<mission id="mCollaborator" min="1" max="5">
<goal id="wsecs"/>
</mission>

Solutions to Exercises 215

<mission id="mManager" min="1" max="1">
<goal id="wabs"/>
<goal id="wp"/>
<goal id="wtitle"/>
<goal id="wconc"/>
<goal id="wsectitles"/>
</mission>

<mission id="mBib" min="1" max="1">
<goal id="wrefs"/>
<preferred mission="mCollaborator"/>
<preferred mission="mManager"/>
</mission>
</scheme>
</functional-specification>

<normative-specification>

<norm id = "nl" role="editor" type="permission" mission="mManager" />
<norm id = "n2" role="writer" type="obligation" mission="mBib" />
<norm id = "n3" role="writer" type="obligation" mission="mCollaborator" />

</normative-specification>
</organisational-specification>

Considering three assistant agents bob, alice, and carol, for instance, the
application file initiates the organization entity by creating the group entity paper_group
in which agent bob plays the role editor, alice and carol the role writer. This
group is responsible for realizing the social scheme entity s1 corresponding to the
writePaperSch.

mas writing_paper {

agent bob
agent alice
agent carol

organisation opaper: wp-os.xml {
group paper_group: wpgroup {
responsible-for: sl
players: bob editor
alice writer
carol writer
}

scheme sl: writePaperSch

These three agents have plans and beliefs that make them obedient to the obligations that
are issued by the organization entity during the execution of the global process.

Exercise 9.1 To add a new agent playing room controller, we can simply add a new agent
entry in the application file, making this new agent focus on the hvac artifact and adopts
the role controller in the group entity r1:

216 Solutions to Exercises

agent second_rc : room_controller.asl {
focus: room.hvac
roles: controller in smart_house_org.rl

}
When we run the application, we notice the following error messages:

[OrgArt] normative failure:

fail (role_cardinality(controller,rl,2,1))
[second_rc] Error with initial role

role (smart_house_org, "local",rl,controller)

These messages indicate that some agent is trying to violate a role cardinality constraint. To
change the role cardinality so that two agents can play the role controller in the same
group entity, we have to change the max attribute in the role definition in the group of the
structural specification:

<role id="controller" min="1" max="2" />

Of course, it only solves the normative failure. Other problems will appear since the system
is not prepared to run with two agents playing the role controller (e.g., coordination
between these two agents). Indeed, the role cardinality fixed to 1 was there to ensure that
there will be only one room controller and thus prevent this kind of problem.

Exercise 9.2 As the code is currently written in the application file, the multi-agent system
will run normally even if the controller cardinality is set to < 0,1 >. As written in the
application file, there is an agent who adopts this role and thus everything runs fine. How-
ever, if we are running a system where it is possible that no agent adopts the role, the min-
imum cardinality is satisfied and thus the group entity can be considered well formed. It
means that the social scheme entity can be set under the responsibility of the group and then
the execution can be launched. On the contrary, if min=1 and no agent plays that role, the
group will not be well formed and then cannot be responsible for schemes, and the scheme
will not start its execution. So, by stating min=1, we guarantee that the scheme starts its
execution with a room controller agent engaged.

Exercise 9.3

a) Although the agent did not send its vote to achieve the goal ballot, the system will run
normally considering that the agent has fulfilled its obligation for this goal! The reason
is that goals are considered fulfilled if the agent finishes a plan for it. See the research
corner on page 140 for further details.

b) Although the agent actually votes by the action vote, the obligation for goal ballot is
never fulfilled! Again, the goal is fulfilled if the agent finishes the plan and, in this case,
obviously, it never finishes!

Solutions to Exercises

Exercise 9.4 We can simply add the following plan to print out fulfilled obligations:

+oblFulfilled (0O)
<- .print (0," is fulfilled").

Unification can be used for a proper printing:

+oblFulfilled(obligation (Who,Condition,What, When))
<— .print (Who," has fulfilled ",What).

217

References

Acay, Daghan L., Liz Sonenberg, Alessandro Ricci, and Philippe Pasquier. 2009. How situ-
ated is your agent? A cognitive perspective. In Programming Multi-Agent Systems, 6th Inter-
national Workshop, ProMAS 2008, Estoril, Portugal, May 13, 2008. Revised invited and selected
papers, eds. Koen V. Hindriks, Alexander Pokahr, and Sebastian Sardifia. Vol. 5442 of LNCS,
136-151. Springer. https://doi.org/10.1007 /978-3-642-03278-3_9.

Airiau, Stéphane, Lin Padgham, Sebastian Sardifia, and Sandip Sen. 2009. Enhancing the
adaptation of BDI agents using learning techniques. International Journal of Agent Technologies
and Systems 1 (2): 1-18. https:/ /doi.org/10.4018/jats.2009040101.

Aldewereld, Huib, Olivier Boissier, Virginia Dignum, Pablo Noriega, and Julian Padget, eds.
2016. Social coordination frameworks for social technical systems. Vol. 30 of Law, governance and
technology series. Springer. https://doi.org/10.1007 /978-3-319-33570-4.

Argente, Estefania, Olivier Boissier, Carlos Carrascosa, Nicoletta Fornara, Peter McBurney,
Pablo Noriega, Alessandro Ricci, Jordi Sabater q. Mir, Michael Ignaz Schumacher, Char-
alampos Tampitsikas, Kuldar Taveter, Giuseppe Vizzari, and George A. Vouros. 2013. The
role of the environment in agreement technologies. Artificial Intelligence Review 39 (1): 21-38.
https://doi.org/10.1007 /s10462-012-9388-1.

Austin, John Langshaw. 1962. How to do things with words. Clarendon Press.

Baldoni, Matteo, Cristina Baroglio, Federico Capuzzimati, and Roberto Micalizio. 2016.
Commitment-based agent interaction in JaCaMo+. Fundamenta Informaticae 21: 1001-1030.
https://doi.org/10.3233 /FI-2015-0000.

Balke, Tina, Célia da Costa Pereira, Frank Dignum, Emiliano Lorini, Antonino Rotolo,
Wamberto Vasconcelos, and Serena Villata. 2013. Norms in MAS: Definitions and related
concepts. In Normative multi-agent systems, eds. Giulia Andrighetto, Guido Governatori,
Pablo Noriega, and Leendert W. N. van der Torre. Vol. 4 of Dagstuhl follow-ups, 1-31.
Dagstuhl, Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. https://doi.org/
10.4230/DFU.Vol4.12111.1.

Behrens, Tristan M., Mehdi Dastani, Jiirgen Dix, Jomi Fred Hiibner, Michael Koster, Peter
Novak, and Federico Schlesinger. 2012. The multi-agent programming contest. AI Magazine
33 (4): 111-113. http:/ /www.aaai.org/ojs/index.php/aimagazine/article / view /2439.
Behrens, Tristan M., Koen V. Hindriks, and Jiirgen Dix. 2011. Towards an environment in-
terface standard for agent platforms. Annals of Mathematics and Artificial Intelligence 61 (4):
261-295. https:/ /doi.org/10.1007 /s10472-010-9215-9.

https://doi.org/10.1007/978-3-642-03278-3_9
https://doi.org/10.4018/jats.2009040101
https://doi.org/10.1007/978-3-319-33570-4
https://doi.org/10.1007/s10462-012-9388-1
https://doi.org/10.3233/FI-2015-0000
https://doi.org/10.4230/DFU.Vol4.12111.1
https://doi.org/10.4230/DFU.Vol4.12111.1
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2439
https://doi.org/10.1007/s10472-010-9215-9

220 References

Bellifemine, Fabio Luigi, Giovanni Caire, and Dominic Greenwood. 2007. Developing multi-
agent systems with JADE. Wiley series in agent technology. John Wiley & Sons.

Bellman, Richard. 1957. A Markovian decision process. Journal of Mathematics and Mechanics
6 (5): 679-684.

Berners-Lee, Tim, James Hendler, and Ora Lassila. 2001. The semantic web. Scientific Amer-
ican 284 (5): 34-43. http://www.sciam.com/article.cfm?articleIlD=00048144-10D2-1C70-
84A9809EC588EF21.

Bernoux, P. 1985. La sociologie des organisations, 3éme ed. Seuil.

Boella, Guido, and Leendert van der Torre. 2006. Constitutive norms in the design of nor-
mative multiagent systems. In Computational logic in multi-agent systems (CLIMA VI), eds.
Francesca Toni and Paolo Torroni. Vol. 3900 of LNCS, 303-319. Springer. https://doi.org/
10.1007/11750734_17.

Boella, Guido, and Leendert W. N. van der Torre. 2004. Regulative and constitutive norms in
normative multiagent systems. In Principles of Knowledge Representation and Reasoning: Pro-
ceedings of the Ninth International Conference (KR2004), 255-266.

Boissier, Olivier, Rafael Bordini, Jomi Fred Hiibner, Alessandro Ricci, and Andrea Santi.
2013. Multi-agent oriented programming with JaCaMo. Science of Computer Programming 78
(6): 747-761. https:/ /doi.org/10.1016 /j.scico.2011.10.004.

Boissier, Olivier, Rafael H. Bordini, Jomi F. Hiibner, and Alessandro Ricci. 2019. Dimen-
sions in programming multi-agent systems. The Knowledge Engineering Review 34. https:
//doi.org/10.1017 /5026988891800005X.

Bond, Alan H. 1990. A computational model for organizations of cooperating intelligent
agents. In Proceedings of the Conference on Office Information Systems (COIS90).

Booch, Grady, Robert Maksimchuk, Michael Engle, Bobbi Young, Jim Conallen, and Kelli
Houston. 2007. Object-oriented analysis and design with applications, 3rd ed. Addison-Wesley
Professional.

Bordini, Rafael H., Lars Braubach, Mehdi Dastani, Amal El Fallah-Seghrouchni, Jorge J.
Goémez-Sanz, Jodo Leite, Gregory M. P. O'Hare, Alexander Pokahr, and Alessandro Ricci.
2006. A survey of programming languages and platforms for multi-agent systems. Informat-
ica (Slovenia) 30: 33—44.

Bordini, Rafael H., Mehdi Dastani, Jiirgen Dix, and Amal El Fallah Seghrouchni, eds. 2005.
Multi-agent programming: Languages, platforms and applications. Multiagent systems, artificial so-
cieties, and simulated organizations. Springer.

Bordini, Rafael H., Mehdi Dastani, Jiirgen Dix, and Amal El Fallah Seghrouchni, eds. 2009.
Multi-agent programming: Languages, tools and applications. Springer.

Bordini, Rafael H., Jomi Fred Hiibner, and Michael Wooldridge. 2007. Programming multi-
agent systems in AgentSpeak using Jason. John Wiley & Sons.

Bordini, Rafael H., Amal El Fallah Sghrouchni, Koen Hindriks, Brian Logan, and Alessandro
Ricci. 2019. Agent programming in the cognitive era. Journal of Autonomous Agents and Multi-
agent Systems (forthcoming).

Bosello, Michael, and Alessandro Ricci. 2019. From programming agents to educating
agents: A Jason-based framework for integrating learning in the development of cognitive

http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
http://www.sciam.com/article.cfm?articleID=00048144-10D2-1C70-84A9809EC588EF21
https://doi.org/10.1007/11750734_17
https://doi.org/10.1007/11750734_17
https://doi.org/10.1016/j.scico.2011.10.004
https://doi.org/10.1017/S026988891800005X
https://doi.org/10.1017/S026988891800005X

References 221

agents. In Engineering Multi-Agent Systems - 7th International Workshop, EMAS 2019, Montreal,
May 11-12.

Bratman, M. 1987. Intention, plans, and practical reason. Harvard University Press.

Bratman, Michael E., David J. Israel, and Martha E. Pollack. 1988. Plans and resource-
bounded practical reasoning. Computational Intelligence 4: 349-355. https://doi.org/10.
1111/j.1467-8640.1988.tb00284.x.

Bretier, Philippe, and M. David Sadek. 1996. A rational agent as the kernel of a cooperative
spoken dialogue system: Implementing a logical theory of interaction. In Intelligent Agents
111, Agent Theories, Architectures, and Languages, ECAI '96 Workshop ATAL, Budapest, Hungary,
August 12-13, 1996, Proceedings, eds. Jorg P. Miiller, Michael Wooldridge, and Nicholas R.
Jennings. Vol. 1193 of LNCS, 189-203. Springer. https:/ /doi.org/10.1007 /BFb0013586.

Broersen, Jan, and Leendert van der Torre. 2012. Ten problems of deontic logic and norma-
tive reasoning in computer science, eds. Nick Bezhanishvili and Valentin Goranko, 55-88.
Springer. https://doi.org/10.1007 /978-3-642-31485-8_2.

Broersen, Jan M., Stephen Cranefield, Yehia Elrakaiby, Dov M. Gabbay, Davide Grossi, Emil-
iano Lorini, Xavier Parent, Leendert W. N. van der Torre, Luca Tummolini, Paolo Turrini,
and Frangois Schwarzentruber. 2013. Normative reasoning and consequence. In Normative
Multi-Agent Systems, 33-70. https:/ /doi.org/10.4230/DFU.Vol4.12111.33.

Bromuri, S., and K. Stathis. 2008. Situating cognitive agents in GOLEM. In Engineering
Environment-Mediated Multi-Agent Systems, eds. D. Weyns, S. Brueckner, and Y. Demazeau.
Vol. 5049 of LNCS, 115-134. Springer.

Busetta, Paolo, Nicholas Howden, Ralph Rénnquist, and Andrew Hodgson. 1999. Structur-
ing BDI agents in functional clusters. In Intelligent Agents VI, Agent Theories, Architectures,
and Languages, 6th International Workshop (ATAL “99), Orlando, Florida, USA, July 15-17, 1999,
Proceedings, eds. Nicholas R. Jennings and Yves Lespérance. Vol. 1757 of LNCS, 277-289.
Springer. https:/ /doi.org/10.1007/10719619_21.

Cardoso, Rafael C., and Rafael H. Bordini. 2017. A modular framework for decentralised
multi-agent planning. In Proceedings of the 16th Conference on Autonomous Agents and
MultiAgent Systems. AAMAS 17, 1487-1489. International Foundation for Autonomous
Agents and Multiagent Systems.

Cardoso, Rafael C., and Rafael H. Bordini. 2019. Decentralised planning for multi-agent pro-
gramming platforms. In Proceedings of the 18th International Conference on Autonomous Agents
and MultiAgent Systems, AAMAS ’19, Montreal, Canada, May 13-17, 2019, eds. Edith Elkind,
Manuela Veloso, Noa Agmon, and Matthew E. Taylor, 799-818. http:/ /dl.acm.org/ citation.
cfm?id=3331771.

Chalupsky, Hans, Yolanda Gil, Craig A. Knoblock, Kristina Lerman, Jean Oh, David V. Py-
nadath, Thomas A. Russ, and Milind Tambe. 2001. Electric elves: Applying agent technology
to support human organizations. In Proceedings of the Thirteenth Conference on Innovative Ap-
plications of Artificial Intelligence Conference, 51-58. AAAI Press. http://dl.acm.org/citation.
cfm?id=645453.652996.

Cheng, Betty H., Rogério Lemos, Holger Giese, Paola Inverardi, Jeff Magee, Jesper Ander-
sson, Basil Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Giovanna Marzo Serugendo,
Schahram Dustdar, Anthony Finkelstein, Cristina Gacek, Kurt Geihs, Vincenzo Grassi, Ga-
bor Karsai, Holger M. Kienle, Jeff Kramer, Marin Litoiu, Sam Malek, Raffaela Mirandola,

https://doi.org/10.1111/j.1467-8640.1988.tb00284.x
https://doi.org/10.1111/j.1467-8640.1988.tb00284.x
https://doi.org/10.1007/BFb0013586
https://doi.org/10.1007/978-3-642-31485-8_2
https://doi.org/10.4230/DFU.Vol4.12111.33
https://doi.org/10.1007/10719619_21
http://dl.acm.org/citation.cfm?id=3331771
http://dl.acm.org/citation.cfm?id=3331771
http://dl.acm.org/citation.cfm?id=645453.652996
http://dl.acm.org/citation.cfm?id=645453.652996

222 References

Hausi A. Miiller, Sooyong Park, Mary Shaw, Matthias Tichy, Massimo Tivoli, Danny Weyns,
and Jon Whittle. 2009. Software engineering for self-adaptive systems, eds. Betty H. Cheng,
Rogério Lemos, Holger Giese, Paola Inverardi, and Jeff Magee, 1-26. Springer. https:/ /doi.
org/10.1007 /978-3-642-02161-9_1. Chap. Software Engineering for Self-Adaptive Systems:
A Research Roadmap.

Ciancarini, Paolo. 1996. Coordination models and languages as software integrators. ACM
Computing Surveys 28 (2): 300-302. https:/ /doi.org/10.1145/234528.234732.

Ciortea, Andrei, Olivier Boissier, and Alessandro Ricci. 2019. Engineering world-wide multi-
agent systems with hypermedia. In Engineering Multi-Agent Systems - 6th International Work-
shop, EMAS 2018, Stockholm, Sweden, July 14-15, 2018, revised selected papers, eds. Danny
Weyns, Viviana Mascardi, and Alessandro Ricci. Vol. 11375 of LNCS, 285-301. Springer.
https:/ /doi.org/10.1007 /978-3-030-25693-7_15.

Ciortea, Andrei, Simon Mayer, Fabien L. Gandon, Olivier Boissier, Alessandro Ricci, and
Antoine Zimmermann. 2019. A decade in hindsight: The missing bridge between multi-
agent systems and the world wide web. In Proceedings of the 18th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS’19, Montreal, Canada, May 13-17, 2019,
eds. Edith Elkind, Manuela Veloso, Noa Agmon, and Matthew E. Taylor, 1659-1663. http:
//dlLacm.org/citation.cfm?id=3331893.

Ciortea, Andrei, Simon Mayer, and Florian Michahelles. 2018. Repurposing manufacturing
lines on the fly with multi-agent systems for the web of things. In Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2018, Stock-
holm, Sweden, July 10-15, 2018, eds. Elisabeth André, Sven Koenig, Mehdi Dastani, and Gita
Sukthankar, 813-822. International Foundation for Autonomous Agents and Multiagent Sys-
tems. http://dl.acm.org/ citation.cfm?id=3237504.

Cohen, Philip R., and Hector J. Levesque. 1990. Intention is choice with commitment. Artifi-
cial Intelligence 42 (2-3): 213-261. https://doi.org/10.1016/0004-3702(90)90055-5.

Collier, R.,S. Russell, and D. Lillis. 2015. Exploring AOP from an OOP perspective. In Proceed-
ings of the 5th International Workshop on Programming based on Actors, Agents and Decentralized
Control (held at SPLASH 2014).

Corkill, Daniel D., and Victor R. Lesser. 1983. The use of meta-level control for coordination
in distributed problem solving network. In Proceedings of the 8th International Joint Conference
on Artificial Intelligence (IJCAI’83), ed. Alan Bundy, 748-756. William Kaufmann.

Cossentino, Massimo, Salvatore Gaglio, Alfredo Garro, and Valeria Seidita. 2007. Method
fragments for agent design methodologies: From standardisation to research. Interna-
tional Journal of Agent-Oriented Software Engineering 1 (1): 91-121. https:/ /doi.org/10.1504/
IJAOSE.2007.013266.

Coutinho, Luciano R., Jaime S. Sichman, and Olivier Boissier. 2009. Modelling dimensions
for agent organizations. In Handbook of research on multi-agent systems: Semantics and dynamics
of organizational models, 18-50. IGI Global.

Criado, Natalia, Estefania Argente, and Vicente Botti. 2011. THOMAS: An agent platform for
supporting normative multi-agent systems. Journal of Logic and Computation 23 (2): 309-333.
https://doi.org/10.1093 /logcom /exr025.

https://doi.org/10.1007/978-3-642-02161-9_1
https://doi.org/10.1007/978-3-642-02161-9_1
https://doi.org/10.1145/234528.234732
https://doi.org/10.1007/978-3-030-25693-7_15
http://dl.acm.org/citation.cfm?id=3331893
http://dl.acm.org/citation.cfm?id=3331893
http://dl.acm.org/citation.cfm?id=3237504
https://doi.org/10.1016/0004-3702(90)90055-5
https://doi.org/10.1504/IJAOSE.2007.013266
https://doi.org/10.1504/IJAOSE.2007.013266
https://doi.org/10.1093/logcom/exr025

References 223

Croatti, Angelo, Sara Montagna, Alessandro Ricci, Emiliano Gamberini, Vittorio Albarello,
and Vanni Agnoletti. 2018. BDI personal medical assistant agents: The case of trauma track-
ing and alerting. Artificial Intelligence in Medicine. https:/ /doi.org/10.1016 /j.artmed.2018.12.
002.

Dastani, Mehdi. 2008. 2apl: a practical agent programming language. Autonomous Agents and
Multi-Agent Systems 16 (3): 214-248. https:/ /doi.org/10.1007 /s10458-008-9036-y.

Dastani, Mehdi, Nick Tinnemeier, and John-Jules CH. Meyer. 2009. A programming lan-
guage for normative multi-agent systems. In Multi-agent systems: semantics and dynamics of
organizational models, ed. Virginia Dignum. Information Science Reference.

de Brito, Maiquel, Jomi Fred Hiibner, and Olivier Boissier. 2017. Architecture of an institu-
tional platform for multi-agent systems. In PRIMA 2017: Principles and Practice of Multi-Agent
Systems - 20th International Conference, Nice, France, October 30 — November 3, 2017, Proceedings,
eds. Bo An, Ana L. C. Bazzan, Jodo Leite, Serena Villata, and Leendert W. N. van der Torre.
Vol. 10621 of LNCS, 313-329. Springer. https://doi.org/10.1007 /978-3-319-69131-2_19.

de Brito, Maiquel, Jomi Fred Hiibner, and Olivier Boissier. 2018. Situated artificial institu-
tions: stability, consistency, and flexibility in the regulation of agent societies. Autonomous
Agents and Multi-Agent Systems 32 (2): 219-251. https:/ /doi.org/10.1007 /s10458-017-9379-3.

Demazeau, Yves. 1995. From interactions to collective behaviour in agent-based systems. In
Proceedings of the 1st. European Conference on Cognitive Science, 117-132.

Demazeau, Yves, and Ant6nio Carlos da Rocha Costa. 1996. Populations and organizations
in open multi-agent systems. In PDAI 96 - 1st National Symposium on Parallel and Distributed
AL

Dennett, Daniel C. 1987. The intentional stance. MIT Press.

Dignum, Virginia. 2009. Handbook of research on multi-agent systems: Semantics and dynamics of
organizational models: Semantics and dynamics of organizational models. IGI Global.

Dignum, Virginia, Javier Vazquez-Salceda, and Frank Dignum. 2004. OMNI: Introducing so-
cial structure, norms and ontologies into agent organizations. In Proceedings of the Program-
ming Multi-Agent Systems (ProMAS 2004), eds. Rafael H. Bordini, Mehdi Dastani, Jiirgen Dix,
and Amal El Fallah-Seghrouchni. Vol. 3346 of LNAI. Springer.

Drogoul, Alexis, Bruno Corbara, and Steffen Lalande. 1995. MANTA: New experimental
results on the emergence of (artificial) ant societies. In Artificial Societies: the Computer Simu-
lation of Social Life, eds. Nigel Gilbert and Rosaria Conte, 119-221. UCL Press.

Esteva, Marc, Juan A. Rodriguez-Aguiar, Carles Sierra, Pere Garcia, and Josep L. Arcos. 2001.
On the formal specification of electronic institutions. In Proceedings of the Agent-mediated Elec-
tronic Commerce, eds. Frank Dignum and Carles Sierra. Vol. 1191 of LNAI, 126-147. Springer.

Esteva, Marc, Juan A. Rodriguez-Aguilar, Bruno Rosell, and Josep L. Arcos. 2004. AMELI:
An agent-based middleware for electronic institutions. In Proceedings of the Third Interna-
tional Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2004), eds.
Nicholas R. Jennings, Carles Sierra, Liz Sonenberg, and Milind Tambe, 236-243. ACM.
Evans. 2003. Domain-driven design: Tackling complexity in the heart of software. Addison-Wesley
Longman.

Ferber, Jacques. 1999. Multi-agent systems: An introduction to distributed artificial intelligence,
1st ed. Addison-Wesley Longman.

https://doi.org/10.1016/j.artmed.2018.12.002
https://doi.org/10.1016/j.artmed.2018.12.002
https://doi.org/10.1007/s10458-008-9036-y
https://doi.org/10.1007/978-3-319-69131-2_19
https://doi.org/10.1007/s10458-017-9379-3

224 References

Ferber, Jacques, and Olivier Gutknecht. 1998. A meta-model for the analysis and design of
organizations in multi-agents systems. In Proceedings of the 3rd International Conference on
Multi-Agent Systems (ICMAS 98), ed. Yves Demazeau, 128-135. IEEE Press.

Finin, Tim, Richard Fritzson, Don McKay, and Robin McEntire. 1994. KQML as an agent com-
munication language. In Proc. of the Third International Conference on Information and Knowledge
Management. CIKM '94, 456-463. ACM. https://doi.org/10.1145/191246.191322.

Fisher, Michael. 1993. Concurrent MetateM - A language for modelling reactive systems.
In PARLE 93, Parallel Architectures and Languages Europe, 5th International PARLE Conference,
1993, Proc., eds. Arndt Bode, Mike Reeve, and Gottfried Wolf. Vol. 694 of LNCS, 185-196.
Springer. https://doi.org/10.1007 /3-540-56891-3_15.

Foundation for Intelligent Physical Agents. 2000. FIPA ACL message structure specification.
FIPA. http:/ /www.fipa.org.

Fox, Mark S. 1981. An organizational view of distributed systems. IEEE Transactions on Sys-
tems, Man, and Cybernetics 11 (1): 70-80.

Freitas, Artur, Alison R. Panisson, Lucas Hilgert, Felipe Meneguzzi, Renata Vieira, and
Rafael H. Bordini. 2015. Integrating ontologies with multi-agent systems through cartago
artifacts. In IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent
Technology, WI-IAT 2015, Singapore, December 6-9, 2015 - Volume 11, 143-150. https:/ /doi.org/
10.1109/WI-IAT.2015.116.

Gasser, Les. 2001. Perspectives on organizations in multi-agent systems. In Multi-agents sys-
tems and applications, 1-16. Springer.

Gasser, Les, Nicholas F. Rouquette, Randall W. Hill, and John Lieb. 1989. Representing and
using organizational knowledge in distributed Al systems. In Distributed artificial intelligence,
eds. Les Gasser and Michael N. Huhns, Vol. 2, 55-79. Morgan Kaufmann. Chap. 3.

Gelernter, David. 1991. Mirror worlds or the day software puts the universe in a shoebox: How will
it happen and what it will mean. Oxford University Press.

Georgeff, Michael P, and Francois Felix Ingrand. 1989. Decision-making in an embedded
reasoning system. In Proceedings of the 11th International Joint Conference on Artificial Intel-
ligence. Detroit, MI, USA, August 1989, ed. N. S. Sridharan, 972-978. Morgan Kaufmann.
http:/ /ijcai.org/Proceedings/89-2/Papers/020.pdf.

Georgeff, Michael P,, and Amy L. Lansky. 1987. Reactive reasoning and planning. In Proceed-
ings of the 6th National Conference on Artificial Intelligence. Seattle, WA, USA, July 1987., eds.
Kenneth D. Forbus and Howard E. Shrobe, 677-682. Morgan Kaufmann. http:/ /www.aaai.
org/Library/AAAI/1987/aaai87-121.php.

Geraci, Anne, Freny Katki, Louise McMonegal, Bennett Meyer, John Lane, Paul Wilson, Jane
Radatz, Mary Yee, Hugh Porteous, and Fredrick Springsteel. 1991. IEEE standard computer
dictionary: Compilation of IEEE standard computer glossaries. IEEE Press.

Ghallab, Malik, Dana S. Nau, and Paolo Traverso. 2016. Automated planning and acting. Cam-
bridge University Press.

Ghose, Aditya, Nir Oren, Pankaj Telang, and John Thangarajah, eds. 2015. Coordination,
organizations, institutions, and norms in agent systems X. Vol. 9372 of LNAI Springer. https:
//doi.org/10.1007 /978-3-319-25420-3.

https://doi.org/10.1145/191246.191322
https://doi.org/10.1007/3-540-56891-3_15
http://www.fipa.org
https://doi.org/10.1109/WI-IAT.2015.116
https://doi.org/10.1109/WI-IAT.2015.116
http://ijcai.org/Proceedings/89-2/Papers/020.pdf
http://www.aaai.org/Library/AAAI/1987/aaai87-121.php
http://www.aaai.org/Library/AAAI/1987/aaai87-121.php
https://doi.org/10.1007/978-3-319-25420-3
https://doi.org/10.1007/978-3-319-25420-3

References 225

Governatori, Guido, Michael J. Maher, Grigoris Antoniou, and David Billington. 2004. Ar-
gumentation semantics for defeasible logic. Journal of Logic and Computation 14 (5): 675-702.

Guerra-Herndndez, Alejandro, Amal El Fallah-Seghrouchni, and Henry Soldano. 2004.
Learning in BDI multi-agent systems. In Computational Logic in Multi-Agent Systems, 4th In-
ternational Workshop, CLIMA 1V, Fort Lauderdale, FL, USA, January 6—7, 2004. Revised selected
and invited papers, eds. Jirgen Dix and Jodo Alexandre Leite. Vol. 3259 of LNCS, 218-233.
Springer. https://doi.org/10.1007 /978-3-540-30200-1_12.

Gutknecht, Olivier, and Jacques Ferber. 2000. The MadKit agent platform architecture. In
Agents Workshop on Infrastructure for Multi-Agent Systems, 48-55.

Hannoun, Mahdi, Olivier Boissier, Jaime Simdo Sichman, and Claudette Sayettat. 2000.
MOISE: an organizational model for multi-agent systems. In Advances in Artificial Intelli-
gence, International Joint Conference, 7th Ibero-American Conference on Al, 15th Brazilian Sympo-
sium on Al, IBERAMIA-SBIA 2000, Atibaia, SP, Brazil, November 19-22, 2000, Proceedings, eds.
Maria Carolina Monard and Jaime Simdo Sichman. Vol. 1952 of LNCS, 156-165. Springer.
https://doi.org/10.1007 /3-540-44399-1_17.

Henderson-Sellers, Brian, and Paolo Giorgini, eds. 2005. Agent-oriented methodologies. 1GI
Global.

Hendler, James. 2001. Agents and the semantic web. IEEE Intelligent Systems 16 (2): 30-37.
https://doi.org/10.1109/5254.920597.

Herzig, Andreas, Laurent Perrussel, and Zhanhao Xiao. 2016. On hierarchical task net-
works. In Logics in Artificial Intelligence - 15th European Conference, JELIA 2016, Larnaca, Cyprus,
November 9-11, 2016, Proceedings, eds. Loizos Michael and Antonis C. Kakas. Vol. 10021 of
LNCS, 551-557. https:/ /doi.org/10.1007 /978-3-319-48758-8_38.

Hewitt, Carl, and Peter De Jong. 1984. Open systems. In On conceptual modelling, 147-164.
Springer.

Hindriks, Koen V. 2009. Programming rational agents in GOAL. In Multi-Agent Program-
ming, eds. Rafael H. Bordini, Mehdi Dastani, Jiirgen Dix, and Amal El Fallah Seghrouchni.
Multiagent systems, artificial societies, and simulated organizations, 119-157. Springer.

Hindriks, Koen V.. 2012. Debugging is explaining. In Proc. of PRIMA 2012, Int. Conf. on
Principles and Practice of Multi-Agent Systems. Vol. 7455 of LNCS, 31-45. Springer. https:
//doi.org/10.1007 /978-3-642-32729-2_3.

Hindriks, Koen V., Frank S. de Boer, Wiebe van der Hoek, and John-Jules Ch. Meyer. 1997.
Formal semantics for an abstract agent programming language. In Infelligent Agents IV, Agent
Theories, Architectures, and Languages, 4th International Workshop, ATAL '97, Providence, Rhode
Island, USA, 1997, Proc., eds. Munindar P. Singh, Anand S. Rao, and Michael J. Wooldridge.
Vol. 1365 of LNCS, 215-229. Springer. https:/ /doi.org/10.1007 /BFb0026761.

Hindriks, Koen V., and Jiirgen Dix. 2014. GOAL: A multi-agent programming language ap-
plied to an exploration game. In Agent-Oriented Software Engineering - Reflections on Architec-
tures, Methodologies, Languages, and Frameworks, eds. Onn Shehory and Arnon Sturm, 235-
258. Springer.

Hiibner, Jomi Fred, Olivier Boissier, and Rafael H Bordini. 2011. A normative programming
language for multi-agent organisations. Annals of Mathematics and Artificial Intelligence 62 (1-
2): 27-53. https:/ /doi.org/10.1007 /s10472-011-9251-0.

https://doi.org/10.1007/978-3-540-30200-1_12
https://doi.org/10.1007/3-540-44399-1_17
https://doi.org/10.1109/5254.920597
https://doi.org/10.1007/978-3-319-48758-8_38
https://doi.org/10.1007/978-3-642-32729-2_3
https://doi.org/10.1007/978-3-642-32729-2_3
https://doi.org/10.1007/BFb0026761
https://doi.org/10.1007/s10472-011-9251-0

226 References

Hiibner, Jomi Fred, Olivier Boissier, Rosine Kitio, and Alessandro Ricci. 2010. Instrument-
ing multi-agent organisations with organisational artifacts and agents: Giving the organisa-
tional power back to the agents. Journal of Autonomous Agents and Multi-Agent Systems 20 (3):
369—400. https://doi.org/10.1007 /s10458-009-9084-y.

Hiibner, Jomi Fred, Jaime Simé&o Sichman, and Olivier Boissier. 2002. A model for the struc-
tural, functional, and deontic specification of organizations in multiagent systems. In Pro-
ceedings of the 16th Brazilian Symposium on Artificial Intelligence (SBIA’02), eds. Guilherme Bit-
tencourt and Geber L. Ramalho. Vol. 2507 of LNAI, 118-128. https:/ /doi.org/10.1007 / 3-540-
36127-8_12.

Hiibner, Jomi Fred, Jaime Simdo Sichman, and Olivier Boissier. 2004. Using the Moise+ for
a cooperative framework of MAS reorganisation. In Brazilian Symposium on Artificial Intelli-
gence, 506-515. Springer.

Hiibner, Jomi Fred, Jaime Sim&do Sichman, and Olivier Boissier. 2007. Developing organised
multiagent systems using the MOISE+ model: programming issues at the system and agent
levels. International Journal of Agent-Oriented Software Engineering 1 (3-4): 370-395.

Huhns, Michael N., and Munindar P. Singh. 2005. Service-oriented computing: Key concepts
and principles. IEEE Internet Computing 9 (1): 75-81. https:/ /doi.org/10.1109/MIC.2005.21.

Iglesias, Carlos A., Mercedes Garijo, and José C. Gonzalez. 1999. A survey of agent-oriented
methodologies. In Proceedings of the 5th International Workshop on Intelligent Agents V, Agent
Theories, Architectures, and Languages, eds. Jorg P. Miiller, Anand S. Rao, and Munindar P.
Singh. ATAL’98, 317-330. Springer.

Jennings, Nicholas R. 2000. On agent-based software engineering. Artificial Intelligence 117
(2): 277-296. https:/ / doi.org/10.1016 /50004-3702(99)00107-1.

Jennings, Nicholas R. 2001. An agent-based approach for building complex software sys-
tems. Communications of the ACM 44 (4): 35—41. https://doi.org/10.1145/367211.367250.

Jennings, N. R., L. Moreau, D. Nicholson, S. Ramchurn, S. Roberts, T. Rodden, and A. Rogers.
2014. Human-agent collectives. Communications of the ACM 57 (12): 80-88. https:/ /doi.org/
10.1145/2629559.

Klapiscak, Thomas, and Rafael H. Bordini. 2009. JASDL: A practical programming approach
combining agent and semantic web technologies. In Declarative Agent Languages and Technolo-
gies VI, eds. Matteo Baldoni, Tran Cao Son, M. Birna van Riemsdijk, and Michael Winikoff,
91-110. Springer.

Lespérance, Yves, Hector J. Levesque, Fangzhen Lin, Daniel Marcu, Raymond Reiter, and
Richard B. Scherl. 1996. Foundations of a logical approach to agent programming. In Intelli-
gent Agents II, Agent Theories, Architectures, and Languages, I[CAI'95, Workshop ATAL, Montreal,
Canada, August 19-20, 1995, Proceedings, eds. Michael Wooldridge, Jorg P. Miiller, and Milind
Tambe. Vol. 1037 of LNCS, 331-346. Springer. https:/ /doi.org/10.1007 /3540608052_76.

Li, Cuihong, Joseph A. Giampapa, and Katia P. Sycara. 2006. Bilateral negotiation decisions
with uncertain dynamic outside options. IEEE Transactions Systems, Man, and Cybernetics,
Part C 36 (1): 31-44. https://doi.org/10.1109/ TSMCC.2005.860573.

Lieberman, Henry. 2006. The continuing quest for abstraction. In Proceedings of the 20th
European Conference on Object-Oriented Programming. ECOOP’06, 192-197. Springer. https:
//doi.org/10.1007 /11785477_12.

https://doi.org/10.1007/s10458-009-9084-y
https://doi.org/10.1007/3-540-36127-8_12
https://doi.org/10.1007/3-540-36127-8_12
https://doi.org/10.1109/MIC.2005.21
https://doi.org/10.1016/S0004-3702(99)00107-1
https://doi.org/10.1145/367211.367250
https://doi.org/10.1145/2629559
https://doi.org/10.1145/2629559
https://doi.org/10.1007/3540608052_76
https://doi.org/10.1109/TSMCC.2005.860573
https://doi.org/10.1007/11785477_12
https://doi.org/10.1007/11785477_12

References 227

Logan, Brian, John Thangarajah, and Neil Yorke-Smith. 2017. Progressing intention pro-
gression: A call for a goal-plan tree contest. In Proceedings of the 16th Conference on Au-
tonomous Agents and MultiAgent Systems, AAMAS 2017, Sdo Paulo, Brazil, May 8-12, 2017,
eds. Kate Larson, Michael Winikoff, Sanmay Das, and Edmund H. Durfee, 768-772. ACM.
http://dl.acm.org/citation.cfm?id=3091234.

Maes, Pattie. 1994. Agents that reduce work and information overload. Communications of the
ACM 37 (7): 30—40. https:/ /doi.org/10.1145/176789.176792.

Malone, Thomas W. 1999. Tools for inventing organizations: Toward a handbook of organi-
zational process. Management Science 45 (3): 425-443.

Mascardi, Viviana, Davide Ancona, Matteo Barbieri, Rafael H. Bordini, and Alessandro
Ricci. 2014. CooL-AgentSpeak: Endowing AgentSpeak-DL agents with plan exchange and
ontology services. Web Intelligence and Agent Systems 12 (1): 83-107. https://doi.org/10.
3233/WIA-140287.

Mayfield, James, Yannis Labrou, and Timothy W. Finin. 1996. Evaluation of KQML as an
agent communication language. In Intelligent Agents II, Agent Theories, Architectures, and Lan-
guages, IJCAI '95, Workshop ATAL, Montreal, Canada, August 19-20, 1995, Proceedings, eds.
Michael Wooldridge, Jorg P. Miiller, and Milind Tambe. Vol. 1037 of LNCS, 347-360. Springer.
https:/ /doi.org/10.1007 /3540608052_77.

Melo, Victor S., Alison R. Panisson, and Rafael H. Bordini. 2016. Argumentation-based rea-
soning using preferences over sources of information: (extended abstract). In Proceedings of
the 2016 International Conference on Autonomous Agents & Multiagent Systems, Singapore, May
9-13, 2016, eds. Catholijn M. Jonker, Stacy Marsella, John Thangarajah, and Karl Tuyls, 1337-
1338. ACM. http:/ /dl.acm.org/citation.cfm?id=2937148.

Meyer, Bertrand. 1997. Object-oriented software construction, 2nd ed. Prentice-Hall.

Modji, Pragnesh Jay, Manuela Veloso, Stephen F. Smith, and Jean Oh. 2005. Cmradar: A per-
sonal assistant agent for calendar management. In Proceedings of the 6th International Confer-
ence on Agent-Oriented Information Systems II. AOIS 04, 169-181. Springer. https://doi.org/
10.1007/11426714_12.

Morin, E. 1977. La méthode (1) : la nature de la nature. Points Seuil.

Morris, Edwin, Linda Levine, Craig Meyers, Pat Place, and Dan Plakosh. 2004. System of
systems interoperability (SOSI): final report, Technical report, DTIC Document.

Newell, Allen. 1982. The knowledge level. Artificial Intelligence 18 (1): 87-127. https:/ /doi.
org/10.1016/0004-3702(82)90012-1.

Nielsen, Claus Ballegaard, Peter Gorm Larsen, John Fitzgerald, Jim Woodcock, and Jan
Peleska. 2015. Systems of systems engineering: Basic concepts, model-based techniques,

and research directions. ACM Computing Surveys 48 (2): 18-11841. https:/ /doi.org/10.1145/
2794381.

Nute, Donald. 1993. Defeasible Prolog. Artificial intelligence programs. University of Georgia.
Nute, Donald. 2001. Defeasible logic. In Handbook of Logic in Artificial Intelligence and Logic
Programming, 353-395. Oxford University Press.

Okuyama, Fabio Yoshimitsu, Rafael H. Bordini, and Anténio Carlos da Rocha Costa. 2013.
Situated normative infrastructures: the normative object approach. Journal of Logic and Com-
putation 23 (2): 397-424. https:/ /doi.org/10.1093 /logcom /exr029.

http://dl.acm.org/citation.cfm?id=3091234
https://doi.org/10.1145/176789.176792
https://doi.org/10.3233/WIA-140287
https://doi.org/10.3233/WIA-140287
https://doi.org/10.1007/3540608052_77
http://dl.acm.org/citation.cfm?id=2937148
https://doi.org/10.1007/11426714_12
https://doi.org/10.1007/11426714_12
https://doi.org/10.1016/0004-3702(82)90012-1
https://doi.org/10.1016/0004-3702(82)90012-1
https://doi.org/10.1145/2794381
https://doi.org/10.1145/2794381
https://doi.org/10.1093/logcom/exr029

228 References

Ortiz-Herndndez, Gustavo, Jomi Fred Hiibner, Rafael H. Bordini, Alejandro Guerra-
Hernédndez, Guillermo]J. Hoyos-Rivera, and Nicandro Cruz-Ramirez. 2016. A namespace
approach for modularity in BDI programming languages. In Engineering Multi-Agent Sys-
tems - 4th International Workshop, EMAS 2016, Singapore, Singapore, May 9-10, 2016. Revised se-
lected and invited papers, eds. Matteo Baldoni, Jérg P. Miiller, Ingrid Nunes, and Rym Zalila g.
Wenkstern. Vol. 1 0093 of LNCS, 117-135. https:/ /doi.org/10.1007 /978-3-319-50983-9_7.

Ossowski, Sascha. 2012. Agreement technologies, Vol. 8. Springer.

Padgham, Lin, and Michael Winikoff. 2003. Prometheus: A methodology for developing in-
telligent agents. In Proc. of the 3rd International Conference on Agent-oriented Software Engineer-
ing III. AOSE’02, 174-185. Springer. http:/ /dl.acm.org/ citation.cfm?id=1754726.1754744.

Padgham, Lin, and Michael Winikoff. 2004. Developing intelligent agent systems: A practical
guide. John Wiley & Sons.

Panisson, Alison R., Asad Ali, Peter McBurney, and Rafael H. Bordini. 2018a. Argumentation
schemes for data access control. In Computational Models of Argument - Proceedings of COMMA
2018, Warsaw, Poland, September 12-14, 2018, eds. Sanjay Modgil, Katarzyna Budzynska, and
John Lawrence. Vol. 305 of Frontiers in artificial intelligence and applications, 361-368. IOS Press.
https://doi.org/10.3233/978-1-61499-906-5-361.

Panisson, Alison R., and Rafael H. Bordini. 2016. Knowledge representation for argumen-
tation in agent-oriented programming languages. In 5th Brazilian Conference on Intelligent
Systems, BRACIS 2016, Recife, Brazil, October 9-12, 2016, 13-18. IEEE Computer Society.
https:/ /doi.org/10.1109/BRACIS.2016.014. SBC.

Panisson, Alison R., and Rafael H. Bordini. 2017a. Argumentation schemes in multi-agent
systems: A social perspective. In Engineering Multi-Agent Systems - 5th International Workshop,
EMAS 2017, Sdo Paulo, Brazil, May 8-9, 2017, revised selected papers, eds. Kate Larson, Michael
Winikoff, Sanmay Das, and Edmund H. Durfee, 92-108. ACM. https://doi.org/10.1007/
978-3-319-91899-0_6.

Panisson, Alison R., and Rafael H. Bordini. 2017b. Uttering only what is needed: En-
thymemes in multi-agent systems. In Proceedings of the 16th Conference on Autonomous Agents
and MultiAgent Systems, AAMAS 2017, Sio Paulo, Brazil, May 8-12, 2017, eds. Kate Larson,
Michael Winikoff, Sanmay Das, and Edmund H. Durfee, 1670-1672. ACM. http://dl.acm.
org/citation.cfm?id=3091399.

Panisson, Alison R., Artur Freitas, Daniela Schmidt, Lucas Hilgert, Felipe Meneguzzi, Re-
nata Vieira, and Rafael H. Bordini. 2015a. Arguing About Task Reallocation Using Ontolog-
ical Information in Multi-Agent Systems. In 12th International Workshop on Argumentation in
Multiagent Systems (ArgMAS).

Panisson, Alison R., Felipe Meneguzzi, Moser Silva Fagundes, Renata Vieira, and Rafael H.
Bordini. 2014. Formal semantics of speech acts for argumentative dialogues. In Infernational
conference on Autonomous Agents and Multi-Agent Systems, AAMAS "14, Paris, France, May 5-9,
2014, eds. Ana L. C. Bazzan, Michael N. Huhns, Alessio Lomuscio, and Paul Scerri, 1437-
1438. IFAAMAS/ACM. http:/ /dl.acm.org/ citation.cfm?id=2617511.

Panisson, Alison R., Felipe Meneguzzi, Renata Vieira, and Rafael H. Bordini. 2015b. Towards
practical argumentation-based dialogues in multi-agent systems. In IEEE/WIC/ACM Interna-
tional Conference on Web Intelligence and Intelligent Agent Technology, WI-IAT 2015, Singapore,
December 6-9, 2015 - Volume 11, 151-158. https:/ /doi.org/10.1109/WI-IAT.2015.208.

https://doi.org/10.1007/978-3-319-50983-9_7
http://dl.acm.org/citation.cfm?id=1754726.1754744
https://doi.org/10.3233/978-1-61499-906-5-361
https://doi.org/10.1109/BRACIS.2016.014
https://doi.org/10.1007/978-3-319-91899-0_6
https://doi.org/10.1007/978-3-319-91899-0_6
http://dl.acm.org/citation.cfm?id=3091399
http://dl.acm.org/citation.cfm?id=3091399
http://dl.acm.org/citation.cfm?id=2617511
https://doi.org/10.1109/WI-IAT.2015.208

References 229

Panisson, Alison R., Simon Parsons, Peter McBurney, and Rafael H. Bordini. 2018b. Choos-
ing appropriate arguments from trustworthy sources. In Computational Models of Argument
- Proceedings of COMMA 2018, Warsaw, Poland, September 12-14, 2018, eds. Sanjay Modgil,
Katarzyna Budzynska, and John Lawrence. Vol. 305 of Frontiers in artificial intelligence and
applications, 345-352. 10S Press. https:/ /doi.org/10.3233 /978-1-61499-906-5-345.

Pattison, H. Edward, Daniel D. Corkill, and Victor R. Lesser. 1987. Instantiating description
of organizational structures. In Distributed artificial intelligence, ed. Michael N. Huhns, Vol. 1,
59-96. Morgan Kaufmann. Chap. 3.

Piunti, Michele, Alessandro Ricci, Olivier Boissier, and Jomi Fred Hiibner. 2009. Embodying
organisations in multi-agent work environments. In Proceedings of the 2009 IEEE/WIC/ACM
International Conference on Intelligent Agent Technology, IAT 2009, Milan, Italy, September 15-18
2009, 511-518. IEEE Computer Society. https://doi.org/10.1109/WI-IAT.2009.204.

Pokahr, Alexander, Lars Braubach, and Winfried Lamersdorf. 2005. Jadex: A BDI reasoning
engine. In Multi-Agent Programming, eds. Rafael H. Bordini, Mehdi Dastani, Jiirgen Dix, and
Amal El Fallah Seghrouchni. Multiagent systems, artificial societies, and simulated organizations,
149-174. Springer.

Pynadath, David V., and Milind Tambe. 2003. An automated teamwork infrastructure for
heterogeneous software agents and humans. Autonomous Agents and Multi-Agent Systems 7
(1-2): 71-100.

Ramirez, Wulfrano Arturo Luna, and Maria Fasli. 2017. Plan acquisition in a BDI agent
framework through intentional learning. In Multiagent System Technologies - 15th German Con-
ference, MATES 2017, Leipzig, Germany, August 23-26, 2017, Proceedings, eds. Jan Ole Berndt,
Paolo Petta, and Rainer Unland. Vol. 10413 of LNCS, 167-186. Springer. https://doi.org/10.
1007 /978-3-319-64798-2_11.

Rao, Anand S. 1996. AgentSpeak(L): BDI agents speak out in a logical computable language.
In Agents Breaking Away, 7th European Workshop on Modelling Autonomous Agents in a Multi-
Agent World, Eindhoven, The Netherlands, 1996, Proc., eds. Walter Van de Velde and John W.
Perram. Vol. 1038 of LNCS, 42-55. Springer. https://doi.org/10.1007 /BFb0031845.

Ricci, Alessandro, Andrea Omicini, Mirko Viroli, Luca Gardelli, and Enrico Oliva. 2007. Cog-
nitive stigmergy: Towards a framework based on agents and artifacts. In Environments for
multi-agent systems I1I, eds. Danny Weyns, H. Van Dyke Parunak, and Fabien Michel, 124
140. Springer.

Ricci, Alessandro, Michele Piunti, L. Daghan Acay, Rafael H. Bordini, Jomi F. Hiib-
ner, and Mehdi Dastani. 2008. Integrating heterogeneous agent programming platforms
within artifact-based environments. In Proc. of the 7th International Joint Conference on Au-
tonomous Agents and Multiagent Systems. AAMAS 2008, 225-232. IFAAMAS. http:/ /dl.acm.
org/citation.cfm?id=1402383.1402419.

Ricci, Alessandro, Michele Piunti, and Mirko Viroli. 2010. Environment programming in
multi-agent systems: an artifact-based perspective. Autonomous Agents and Multi-Agent Sys-
tems 23 (2): 158-192. https:/ /doi.org/10.1007 /s10458-010-9140-7.

Ricci, Alessandro, Michele Piunti, Mirko Viroli, and Andrea Omicini. 2009. Multi-agent pro-
gramming: Languages, tools and applications, eds. Amal El Fallah Seghrouchni, Jiirgen Dix,
Mehdi Dastani, and Rafael Bordini, 259-288. Springer. https://doi.org/10.1007 /978-0-387-
89299-3_8.

https://doi.org/10.3233/978-1-61499-906-5-345
https://doi.org/10.1109/WI-IAT.2009.204
https://doi.org/10.1007/978-3-319-64798-2_11
https://doi.org/10.1007/978-3-319-64798-2_11
https://doi.org/10.1007/BFb0031845
http://dl.acm.org/citation.cfm?id=1402383.1402419
http://dl.acm.org/citation.cfm?id=1402383.1402419
https://doi.org/10.1007/s10458-010-9140-7
https://doi.org/10.1007/978-0-387-89299-3_8
https://doi.org/10.1007/978-0-387-89299-3_8

230 References

Ricci, Alessandro, Juan A. Rodriguez-Aguilar, Ander Pijoan, and Franco Zambonelli. 2015.
Mixed environments for MAS: Bringing humans in the loop. In Agent Environments for multi-
agent systems IV, eds. Danny Weyns and Fabien Michel, 52-60. Springer.

Ricci, Alessandro, Luca Tummolini, and Cristiano Castelfranchi. 2019. Augmented societies
with mirror worlds. Al and Society 34 (4): 745-752. https://doi.org/10.1007 /s00146-017-
0788-2.

Ricci, Alessandro, Mirko Viroli, and Andrea Omicini. 2006. Programming MAS with arti-
facts. In Programming Multi-Agent Systems, eds. Rafael H. Bordini, Mehdi M. Dastani, Jiirgen
Dix, and Amal El Fallah Seghrouchni, 206-221. Springer.

Rodriguez, Sebastian, Nicolas Gaud, and Stéphane Galland. 2014. SARL: A general-purpose
agent-oriented programming language. In 2014 IEEE/WIC/ACM International Joint Confer-
ences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT), Warsaw, Poland, Au-
gust 11-14, 2014 - Volume 111, 103-110. IEEE Computer Society. https:/ /doi.org/10.1109/WI-
IAT.2014.156.

Russell, Sean Edward, Gregory M. P. O’'Hare, and Rem W. Collier. 2015. Agent-oriented
programming languages as a high-level abstraction facilitating the development of intelli-
gent behaviours for component-based applications. In PRIMA 2015: Principles and Practice of
Multi-Agent Systems - 18th International Conference, Bertinoro, Italy, 2015, Proc., eds. Qingliang
Chen, Paolo Torroni, Serena Villata, Jane Yung g. jen Hsu, and Andrea Omicini. Vol. 9387 of
LNCS, 501-509. Springer. https://doi.org/10.1007 /978-3-319-25524-8_32.

Russell, Stuart, and Peter Norvig. 2003. Artificial intelligence, a modern approach, 2nd ed. Pren-
tice Hall.

Sardifia, Sebastian, and Lin Padgham. 2011. A BDI agent programming language with
failure handling, declarative goals, and planning. 23 (1): 18-70. https://doi.org/10.1007/
s10458-010-9130-9.

Sardifia, Sebastian, Lavindra de Silva, and Lin Padgham. 2006. Hierarchical planning in BDI
agent programming languages: a formal approach. In 5th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2006), Hakodate, Japan, May 8-12, 2006,
eds. Hideyuki Nakashima, Michael P. Wellman, Gerhard Weiss, and Peter Stone, 1001-1008.
ACM. https:/ /doi.org/10.1145/1160633.1160813.

Scerri, Paul, David V. Pynadath, and Milind Tambe. 2002. Towards adjustable autonomy for
the real world. Journal of Artificial Intelligence Research 17 (1): 171-228. http://dl.acm.org/
citation.cfm?id=1622810.1622816.

Searle, John. 1969. Speech acts. Cambridge University Press.

Searle, John. 2010. Making the social world:the structure of human civilization. Oxford University
Press.

Searle, John R. 1997. The construction of social reality. Free Press.
Shoham, Yoav. 1993. Agent-oriented programming. Artificial Intelligence 60: 51-92.

Shoham, Yoav, and Kevin Leyton-Brown. 2008. Multiagent systems: Algorithmic, game-theoretic,
and logical foundations. Cambridge University Press.

Silva, Lavindra de. 2018a. Addendum to “HTN acting: A formalism and an algorithm.”
abs/1806.02127. http:/ /arxiv.org/abs/1806.02127.

https://doi.org/10.1007/s00146-017-0788-2
https://doi.org/10.1007/s00146-017-0788-2
https://doi.org/10.1109/WI-IAT.2014.156
https://doi.org/10.1109/WI-IAT.2014.156
https://doi.org/10.1007/978-3-319-25524-8_32
https://doi.org/10.1007/s10458-010-9130-9
https://doi.org/10.1007/s10458-010-9130-9
https://doi.org/10.1145/1160633.1160813
http://dl.acm.org/citation.cfm?id=1622810.1622816
http://dl.acm.org/citation.cfm?id=1622810.1622816
http://arxiv.org/abs/1806.02127

References 231

Silva, Lavindra de. 2018b. HTN acting: A formalism and an algorithm. In Proceedings of the
17th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2018,
Stockholm, Sweden, July 10-15, 2018, eds. Elisabeth André, Sven Koenig, Mehdi Dastani, and
Gita Sukthankar, 363-371. International Foundation for Autonomous Agents and Multia-
gent Systems. http:/ /dl.acm.org/citation.cfm?id=3237441.

Silva, Lavindra de, Sebastian Sardina, and Lin Padgham. 2009. First principles planning in
BDI systems. In 8th International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2009), Budapest, Hungary, May 10-15, 2009, Volume 2, eds. Carles Sierra, Cristiano
Castelfranchi, Keith S. Decker, and Jaime Sim&o Sichman, 1105-1112. IFAAMAS. https://
dl.acm.org/citation.cfm?id=1558167.

Simari, Guillermo Ricardo, and Iyad Rahwan, eds. 2009. Argumentation in artificial intelli-
gence. Springer. https://doi.org/10.1007 /978-0-387-98197-0.

Simon, Herbert A. 1996. The sciences of the artificial, 3rd ed. MIT Press.

Singh, Dhirendra, Sebastian Sardifia, and Lin Padgham. 2010a. Extending BDI plan selection
to incorporate learning from experience. Robotics and Autonomous Systems 58 (9): 1067-1075.
https://doi.org/10.1016 /j.robot.2010.05.008.

Singh, Dhirendra, Sebastian Sardifia, Lin Padgham, and Stéphane Airiau. 2010b. Learning
context conditions for BDI plan selection. In 9th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2010), Toronto, Canada, May 10-14, 2010, Volume 1-3, eds.
Wiebe van der Hoek, Gal A. Kaminka, Yves Lespérance, Michael Luck, and Sandip Sen,
325-332. IFAAMAS. https:/ /dl.acm.org/ citation.cfm?id=1838252.

Singh, Dhirendra, Sebastian Sardifia, Lin Padgham, and Geoff James. 2011. Integrating learn-
ing into a BDI agent for environments with changing dynamics. In IJCAI 2011, Proceedings
of the 22nd International Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain,
July 16-22, 2011, ed. Toby Walsh, 2525-2530. IJCAI/AAAL https://doi.org/10.5591/978-1-
57735-516-8 /1JCAI11-420. http:/ /ijcai.org/proceedings/2011.

Singh, Munindar P. 1991. A logic of situated know-how. In Proceedings of the 9th National Con-
ference on Artificial Intelligence, Anaheim, CA, USA, July 14-19, 1991, Volume 1., eds. Thomas L.
Dean and Kathleen R. McKeown, 343-348. AAAI Press / MIT Press. http://www.aaai.org/
Library/ AAAI/1991/aaai91-053.php.

Sterling, Leon, and Kuldar Taveter. 2009. The art of agent-oriented modeling. MIT Press.
Stratulat, Tiberiu, Jacques Ferber, and John Tranier. 2009. MASQ: towards an integral ap-
proach to interaction. In AAMAS (2009), 813-820.

Sturm, Arnon, and Onn Shehory. 2014. The landscape of agent-oriented methodologies. In
Agent-Oriented Software Engineering, eds. Onn Shehory and Arnon Sturm, 137-154. Springer.
Sutton, Richard S., and Andrew G. Barto. 2018. Reinforcement learning: An introduction. MIT
Press.

Tambe, Milind. 1997. Towards flexible teamwork. Journal of Artificial Intelligence Reseearch 7:
83-124.

Tambe, Milind. 2008. Electric elves: What went wrong and why. Al Magazine 29 (2): 23-27.
http:/ /www.aaai.org/ojs/index.php/aimagazine/article /view /2123.

Theraulaz, Guy, and Eric Bonbeau. 1999. A brief history of stigmergy. Artificial Life 5 (2):
97-116. https:/ /doi.org/10.1162/106454699568700.

http://dl.acm.org/citation.cfm?id=3237441
https://dl.acm.org/citation.cfm?id=1558167
https://dl.acm.org/citation.cfm?id=1558167
https://doi.org/10.1007/978-0-387-98197-0
https://doi.org/10.1016/j.robot.2010.05.008
https://dl.acm.org/citation.cfm?id=1838252
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-420
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-420
http://ijcai.org/proceedings/2011
http://www.aaai.org/Library/AAAI/1991/aaai91-053.php
http://www.aaai.org/Library/AAAI/1991/aaai91-053.php
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2123
https://doi.org/10.1162/106454699568700

232 References

Tolk, Andreas, and James A Muguira. 2003. The levels of conceptual interoperability model.
In Proceedings of the 2003 Fall Simulation Interoperability Workshop, Vol. 7, 1-11. Citeseer.

Trentin, Iago Felipe, Olivier Boissier, and Fano Ramparany. 2019. Insights about user-centric
contextual online adaptation of coordinated multi-agent systems in smart homes. In Actes
des 17émes Rencontres des Jeunes Chercheurs en Intelligence Artificielle, RICIA 2019, Toulouse,
France, July 2—4, 2019., ed. Maxime Lefrangois, 35-42. https:/ /hal.archives-ouvertes.fr/hal-
02160421.

Uez, Daniela Maria, and Jomi F. Hiibner. 2014. Environments and organizations in multi-
agent systems: From modelling to code. In Proc. 2nd International Workshop on Engineering
Multi-agent Systems (EMAS @ AAMAS 2014), eds. Fabiano Dalpiaz, Jiirgen Dix, and M. Birna
van Riemsdijk. Vol. 8758 of LNCS, 181-203. Springer. https:/ /doi.org/10.1007/978-3-319-
14484-9_10.

Van Dyke Parunak, H. 1997. “Go to the ant”: Engineering principles from natural multi-
agent systems. Annals of Operations Research 75 (0): 69-101. https:/ /EconPapers.repec.org/
RePEc:spr:annopr:v:75:y:1997:1:0:p:69-101:10.1023 /a:1018980001403.

Van-Roy, Peter, and Seif Haridi. 2004. Concepts, techniques, and models of computer programming.
MIT Press.

Vieira, Renata, Alvaro F. Moreira, Michael J. Wooldridge, and Rafael H. Bordini. 2007. On
the formal semantics of speech-act based communication in an agent-oriented programming
language. Journal of Artificial Intelligence Research 29: 221-267. https:/ /doi.org/10.1613 /jair.
2221.

Wagner, Thomas, John Phelps, Valerie Guralnik, and Ryan VanRiper. 2004. Coordinators: Co-
ordination managers for first responders. In Proceedings of the Third International Joint Confer-
ence on Autonomous Agents and Multiagent Systems. AAMAS 2004, 1140-1147. IEEE Computer
Society. https:/ /doi.org/10.1109/ AAMAS.2004.97.

Walton, Douglas, Chris Reed, and Fabrizio Macagno. 2008. Argumentation schemes. Cam-
bridge University Press. http:/ /www.cambridge.org/us/academic/subjects/philosophy /
logic/argumentation-schemes.

Weiss, Gerhard, ed. 1999. Multiagent systems: A modern approach to distributed artificial intelli-
gence. MIT Press.

Weyns, Danny, and Tom Holvoet. 2006. A reference architecture for situated multiagent
systems. In Environments for Multi-Agent Systems III, Third International Workshop, E4MAS
2006, Hakodate, Japan, May 8, 2006. Selected revised and invited papers, eds. Danny Weyns,
H. Van Dyke Parunak, and Fabien Michel. Vol. 4389 of LNCS, 1-40. Springer. https:/ /doi.
org/10.1007 /978-3-540-71103-2_1.

Weyns, Danny, Andrea Omicini, and James Odell. 2007. Environment as a first class ab-
straction in multiagent systems. Autonomous Agents and Multi-Agent Systems 14 (1): 5-30.
https://doi.org/10.1007 /s10458-006-0012-0.

Weyns, Danny, and H. Van Dyke Parunak, eds. 2007. Special issue on environments for
multi-agent systems, Vol. 14, 1-116. Springer.

Winikoff, Michael. 2005. JACK intelligent agents: An industrial strength platform. In Multi-
Agent Programming, eds. Rafael H. Bordini, Mehdi Dastani, Jiirgen Dix, and Amal El Fal-
lah Seghrouchni. Multiagent systems, artificial societies, and simulated organizations, 175-193.
Springer.

https://hal.archives-ouvertes.fr/hal-02160421
https://hal.archives-ouvertes.fr/hal-02160421
https://doi.org/10.1007/978-3-319-14484-9_10
https://doi.org/10.1007/978-3-319-14484-9_10
https://EconPapers.repec.org/RePEc:spr:annopr:v:75:y:1997:i:0:p:69-101:10.1023/a:1018980001403
https://EconPapers.repec.org/RePEc:spr:annopr:v:75:y:1997:i:0:p:69-101:10.1023/a:1018980001403
https://doi.org/10.1613/jair.2221
https://doi.org/10.1613/jair.2221
https://doi.org/10.1109/AAMAS.2004.97
http://www.cambridge.org/us/academic/subjects/philosophy/logic/argumentation-schemes
http://www.cambridge.org/us/academic/subjects/philosophy/logic/argumentation-schemes
https://doi.org/10.1007/978-3-540-71103-2_1
https://doi.org/10.1007/978-3-540-71103-2_1
https://doi.org/10.1007/s10458-006-0012-0

References 233

Winikoff, Michael. 2017. Debugging agent programs with why?: Questions. In Proceedings
of the 16th Conference on Autonomous Agents and MultiAgent Systems. AAMAS’17, 251-259.
International Foundation for Autonomous Agents and Multiagent Systems. http://dl.acm.
org/citation.cfm?id=3091125.3091166.

Wooldridge, M. 2000. Reasoning about rational agents. MIT Press.

Wooldridge, Michael, and Paolo Ciancarini. 2001. Agent-oriented software engineering: The
state of the art. In First International Workshop, AOSE 2000 on Agent-oriented Software Engineer-
ing, 1-28. Springer. http://dl.acm.org/ citation.cfm?id=370834.370836.

Wooldridge, Michael, and Nicholas R. Jennings. 1995. Intelligent agents: theory and
practice. The Knowledge Engineering Review 10 (2): 115-152. https://doi.org/10.1017/
50269888900008122.

Wooldridge, Michael, Nicholas R. Jennings, and David Kinny. 2000. The GAIA methodology
for agent-oriented analysis and design. Autonomous Agents and Multi-Agent Systems 3 (3):
285-312. https:/ /doi.org/10.1023/A:1010071910869.

Wooldridge, Michael J. 2009. An introduction to multiagent systems, 2nd ed. Wiley.

Xu, Mengwei, Kim Bauters, Kevin McAreavey, and Weiru Liu. 2018. A formal approach to
embedding first-principles planning in BDI agent systems. In Scalable Uncertainty Manage-
ment - 12th International Conference, SUM 2018, Milan, Italy, October 3—5, 2018, Proceedings, eds.
Davide Ciucci, Gabriella Pasi, and Barbara Vantaggi. Vol. 11142 of LNCS, 333-347. Springer.
https://doi.org/10.1007 /978-3-030-00461-3_23.

Zarafin, Alexandra-Madalina, Antoine Zimmermann, and Olivier Boissier. 2012. Integrating
semantic web technologies and multi-agent systems: A semantic description of multi-agent
organizations. In Proceedings of the First International Conference on Agreement Technologies,
AT 2012, Dubrovnik, Croatia, October 15-16, 2012, eds. Sascha Ossowski, Francesca Toni, and
George A. Vouros. Vol. 918 of CEUR workshop proceedings, 296-297. CEUR-WS.org. http://
ceur-ws.org/Vol-918/111110296.pdf.

Zavoral, Filip, Jason J. Jung, and Costin Badica, eds. 2014. Intelligent distributed computing
VII - proceedings of the 7th international symposium on intelligent distributed computing,
IDC 2013, Prague, Czech Republic, September 2013. Vol. 511 of Studies in computational intel-
ligence. Springer. https://doi.org/10.1007 /978-3-319-01571-2.

http://dl.acm.org/citation.cfm?id=3091125.3091166
http://dl.acm.org/citation.cfm?id=3091125.3091166
http://dl.acm.org/citation.cfm?id=370834.370836
https://doi.org/10.1017/S0269888900008122
https://doi.org/10.1017/S0269888900008122
https://doi.org/10.1023/A:1010071910869
https://doi.org/10.1007/978-3-030-00461-3_23
http://ceur-ws.org/Vol-918/111110296.pdf
http://ceur-ws.org/Vol-918/111110296.pdf
https://doi.org/10.1007/978-3-319-01571-2

Index

A&A conceptual model, 52
achievement goal, see goal, achievement
act, 17
action, 15,37,42,43,47
external, 43
internal, 43
organizational, 128, 152
action feedback, 55
activation condition
norm, 132
activity theory, 52
actor, 12
actuator, 43
adaptation, 3, 21, 85
agent, 1,9, 37,120, 134
dimension, 1, 12, 14, 37, 148
handling failures, 85
mission, 150
obedient, 150
organized, 148, 159
role, 135, 139, 153, 160
type, 96
agent communication language, 11
agent-oriented programming, 50
Al integration, 3, 22, 191
Android, 174
project JaCa-Android, 174
AOSE, 197
applicable plan, see plan, applicable
argumentation, 196
artifact, 15, 28, 52, 149
coordination, 103, 108
disposal, 57

executing linked operations, 62
handling failures, 84
instantiation, 57
link interface, 56, 62
lookup, 57
observable property, 15, 30, 55, 149, 160
observation, 60
observation semantics, 61
operation, 15, 47, 55, 160
operation execution, 58
organizational, 149, 151-153, 160
signal, 55
template, 55
artifacts vs. monitors, 68
artifacts vs. objects, 67
artificial intelligence, 18, 22, 50, 203
atomic plan, see plan, atomic
autonomy, 1, 2,13, 18

BDI architecture, 21, 22, 37, 49
behavior, 20
belief, 14, 29, 37, 39, 40, 46, 48
initial, 46, 77
organizational, 160, 164
belief base, 46
boundary artifact, 56
broadcast, 99

cardinality
goal, 129
group, 127
mission, 130
role, 127, 144, 163

236

CArtAgO, 25, 35
case study

fair room, 98

organized smart room, 143

smart room, 71
centralized coordination, 98
commitment, 30, 130, 132, 134-136, 138, 139,

147,150, 152

communication, 16
communicative action, 37, 44, 92
complex system, 9
constitutive entity, 140
constitutive rule, see count as
contingency plan, see plan, contingency
coordination, 3, 14, 18, 119, 155
coordination artifact, 56, 103, 108
count as, 17, 140, 141

decentralization, 3, 19
declarative goal, see goal, declarative
deontic modality, 131
dimension, 1

agent, 12, 14, 37

environment, 13, 15

organization, 14, 15
disposing of a workspace, 64
distribution, 3, 19

agent, 110

workspace, 112

effector, 43
EIS (Environment Interface Standard), 69,
173
empower, 18, 141
encapsulation
artifacts, 63
engineering, 1
environment, 1, 11, 51, 120
dimension, 1, 13, 15, 51
execution semantics, 66
event, 32, 40-42
organizational, 152
triggering, see triggering event
event queue, 46
event selection function, 47
explainability, 4, 22, 201

Index

extensibility, 19

failure action event, 84
failure handling

in agents, 85

in artifacts, 84
fair room case study, 98
FIPA-ACL, 93, 112
first-class abstraction, 12
functional abstraction, 123
functional specification, 129, 144

goal, 14, 26, 37, 40, 48
achievement, 41, 74, 96
cardinality, 129
declarative, 41
depends-on relation, 130
managing, 86
organizational, 128, 129, 145, 147, 151, 152
parallel, 87
procedural, 41
test, 44, 95
group, 15, 31, 123, 126, 148
cardinality, 127
responsibility, 150
group entity, 127, 133, 148, 158
life cycle, 135
well-formed, 135, 144, 153
group formation constraint, 127
group responsibility, 130, 132, 134, 135
GUI artifact, 83

heterogeneity, 3, 20
hvac artifact, see smart room case study,
hvac artifact

initial belief, see belief, initial
institutional fact, 141
integration, 1, 165
artificial intelligence, see Al integration
frameworks, 170
libraries, 166
MAS platforms, 185
mobile computing, 174
platforms, 173
robotic applications, 183

Index

strategies, 165

web technologies, 176
intended means, 47
intention, 47, 49

dropping, 86, 97

suspended, 48
intention selection function, 48
interaction, 16, 120, 127

direct, 103

indirect, 17, 103
interaction protocols, 98
internal action, 97, 162
interoperability, 3, 20

JaCaMo, 2, 7, 25, 151, 153, 158
Jason, 25, 34, 112
Java object, 168
JavaLibrary, 168
joining workspace, 64

know-how, 41
knowledge level, 203
KQML, 93, 112

learning, 195

life cycle
group entity, 135
norm, 138
normative entity, 138
organizational goal, 137
organization entity, 133, 134
organization specification, 133
role-player agent, 139
scheme entity, 136

link, 123, 125, 127

linking artifacts, 61

link interface, see artifact, operation

literal, 74

MAOQOP, 1, 12,119, 148
dynamic relations, 189
means selection function, 48, 49
mental note, 40, 46
mental state, 44
message, 27, 46
mission, 30, 123, 128, 130, 147

237

cardinality, 130
commitment, 130, 132, 134-136, 138, 139,
147, 150, 152
modularity, 19
artifacts, 63
Moise, 25
ORA4MAS, 35
multi-agent system, 1, 2,9, 16, 120

namespace, 106
norm, 16, 123, 130, 131, 147
activation, 132, 139, 140
bearer, 131, 132
fulfillment, 139, 140
life cycle, 138
mission, 131
time constraint, 132
violation, 139, 140
normative abstraction, 123
normative entity, 134
life cycle, 138
normative specification, 131, 145

obedient agent, 150
object orientation, 11
obligation, 131, 152
observable property, see artifact, observable
property
observe, 17
observing artifacts, 60
openness, 3, 14, 19
operation, see artifact, operation
option selection function, 48
organization, 1, 11, 30
dimension, 1, 14, 15, 119
management infrastructure, 153, 157, 158
organizational action, 128, 152
organizational belief, 160, 164
organizational event, 152
organizational goal, 16, 30, 128, 129, 145,
147,151,152
life cycle, 137
organization artifact, 149, 151-153, 160
organization entity, 122, 133, 147, 148, 158
life cycle, 133, 134

238

organization specification, 122, 145, 153,

157,160
life cycle, 133
organized smart room case study, 143

parallel goal, 87
perceive, 17
percept, 45
performative verb, 38, 44, 92
achieve, 38, 93
ask, 38,93
tell, 38, 93
tellHow, 94
unachieve, 93
untell, 93
permission, 131, 152
personal assistant agent, 94
plan, 26, 40, 41, 48, 136, 149-151, 156
applicable, 42, 47, 49
atomic, 86, 87, 108
body, 42
context, 42
contingency, 84
initial, 46
relevant, 42,47, 49, 75
social, 123, 129
plan library, 46
inspection, 88
plan addition, 88
plan deletion, 88
planning, 193
practical reasoning, 77
predefined artifacts, 60
proactive behavior, 40, 50
proactivity, 13
procedural goal, see goal, procedural
programming, 1
prolog-like rule, 44, 76, 77, 160, 161

reactive behavior, 40, 50, 81
reactivity, 13

reasoning cycle, 45

regulation, 14, 18, 20, 119, 130
relevant plan, see plan, relevant
reorganization, 125

resource artifact, 56

Index

responsibility
group, 130, 132, 134, 135, 150
REST
artifact (client side), 178
artifact (service side), 180
reusability
artifacts, 63
role, 16, 31, 123, 125, 126, 148, 158
cardinality, 127, 144, 163
compatibility, 127
inheritance, 126
role-player
agent, 132, 133
life cycle, 139
room_controller agent, see smart room case
study, room_controller agent
ROS, 183
project Jason-ROS, 183

sanction, 122
scheme, 30
selection function, 47
sense, 17
signal, see artifact, signal
simulation, 9
situated cognition, 192
situatedness, 14
smart room case study, 71
hvac artifact, 78
room_controller agent, 74
smart room organization, 144
social ability, 13
social level, 203
social plan, 16, 123, 129
social scheme, 16, 129, 147
social scheme entity, 130, 134, 148, 158, 159
life cycle, 136
well-formed, 136, 138, 147, 154
software engineering, 9, 203
source, 46
speech act, 92
structural abstraction, 123
structural specification, 126, 144

test goal, see goal, test
theoretical reasoning, 77

Index 239

time constraint
norm, 132

trigger, 41

triggering event, 41

variable, 74
violation, 122
voting artifact, 104
voting machine, 104

web of things, 182
well-formed

group entity, 135, 144, 153

social scheme entity, 136, 138, 147, 154
workspace, 15, 28, 52, 53, 63

creation, 64

disposal, 64

joining, 64

Intelligent Robotics and Autonomous Agents

Edited by Ronald C. Arkin

Dorigo, Marco, and Marco Colombetti, Robot Shaping: An Experiment in Behavior Engineering
Arkin, Ronald C., Behavior-Based Robotics

Stone, Peter, Layered Learning in Multiagent Systems: A Winning Approach to Robotic Soccer
Wooldridge, Michael, Reasoning About Rational Agents

Murphy, Robin R., Introduction to Al Robotics

Mason, Matthew T., Mechanics of Robotic Manipulation

Kraus, Sarit, Strategic Negotiation in Multiagent Environments

Nolfi, Stefano, and Dario Floreano, Evolutionary Robotics: The Biology, Intelligence, and Tech-
nology of Self-Organizing Machines

Siegwart, Roland, and Illah R. Nourbakhsh, Introduction to Autonomous Mobile Robots
Breazeal, Cynthia L., Designing Sociable Robots
Bekey, George A., Autonomous Robots: From Biological Inspiration to Implementation and Control

Choset, Howie, Kevin M. Lynch, Seth Hutchinson, George Kantor, Wolfram Burgard, Lydia
E. Kavraki, and Sebastian Thrun, Principles of Robot Motion: Theory, Algorithms, and Implemen-
tations

Thrun, Sebastian, Wolfram Burgard, and Dieter Fox, Probabilistic Robotics
Mataric, Maja J., The Robotics Primer

Wellman, Michael P., Amy Greenwald, and Peter Stone, Autonomous Bidding Agents: Strategies
and Lessons from the Trading Agent Competition

Floreano, Dario and Claudio Mattiussi, Bio-Inspired Artificial Intelligence: Theories, Methods,
and Technologies

Sterling, Leon S. and Kuldar Taveter, The Art of Agent-Oriented Modeling

Stoy, Kasper, David Brandt, and David J. Christensen, An Introduction to Self-Reconfigurable
Robots

Lin, Patrick, Keith Abney, and George A. Bekey, editors, Robot Ethics: The Ethical and Social
Implications of Robotics

Weiss, Gerhard, editor, Multiagent Systems, second edition

Vargas, Patricia A., Ezequiel A. Di Paolo, Inman Harvey, and Phil Husbands, editors, The
Horizons of Evolutionary Robotics

Murphy, Robin R., Disaster Robotics

Cangelosi, Angelo and Matthew Schlesinger, Developmental Robotics: From Babies to Robots
Everett, H. R., Unmanned Systems of World Wars I and 11

Sitti, Metin, Mobile Microrobotics

Murphy, Robin R., Introduction to AI Robotics, second edition

Grupen, Roderic A., The Developmental Organization of Dexterous Robot Behavior

Boissier, Olivier, Rafael H. Bordini, Jomi F. Hiibner, and Alessandro Ricci, Multi-Agent Ori-
ented Programming

	Contents
	List of Figures����������������������
	List of Research Corners�������������������������������
	List of Technology Corners���������������������������������
	Acknowledgments����������������������
	1: Introduction
	1.1 Objectives���������������������
	1.2 Challenges���������������������
	1.3 Approach�������������������
	1.4 Intended Readership������������������������������
	1.5 Book Structure and Reading Guide���

	2: An Overview of Multi-Agent Oriented Programming
	2.1 Multi-Agent Systems������������������������������
	2.2 Multi-Agent Oriented Programming���
	2.3 Main Abstractions����������������������������
	2.4 Integrated View��������������������������
	2.5 Overcoming Challenges��������������������������������
	2.6 Wrap-Up������������������
	2.7 Bibliographical Notes��������������������������������

	3: Getting Started
	3.1 Single-Agent Hello-World�����������������������������������
	3.2 Multi-Agent Hello-World����������������������������������
	3.3 Hello-World Environment����������������������������������
	3.4 Hello-World Organization�����������������������������������
	3.5 Bibliographical Notes��������������������������������
	Exercises����������������

	4: The Agent Dimension
	4.1 Overview�������������������
	4.2 Agent Abstractions�����������������������������
	4.3 Agent Execution��������������������������
	4.4 Bibliographical Notes��������������������������������
	Exercises����������������

	5: The Environment Dimension
	5.1 Overview�������������������
	5.2 Environment Abstractions�����������������������������������
	5.3 Environment Execution��������������������������������
	5.4 Bibliographical Notes��������������������������������
	Exercises����������������

	6: Programming an Agent and Its Environment
	6.1 Programming a Proactive Smart Room���
	6.2 Adding Reactivity to the Smart Room��
	6.3 Adding Fault Tolerance to the Smart Room���
	6.4 Making the Smart Room Adaptive���
	6.5 What We Have Learned
	Exercises����������������

	7: Programming Multiple Agents Interacting in an Environment
	7.1 Programming a Smart Room with Multiple Agents��
	7.2 Decentralizing the Coordination with Interaction Protocols���
	7.3 Environment-Mediated Coordination��
	7.4 From Decentralization to Distribution��
	7.5 What We Have Learned
	Exercises����������������

	8: The Organization Dimension
	8.1 Overview�������������������
	8.2 Organization Abstractions������������������������������������
	8.3 Organization Execution���������������������������������
	8.4 Bibliographical Notes��������������������������������
	Exercises����������������

	9: Programming Organizations of Situated Agents
	9.1 Programming an Organized Smart Room��
	9.2 Changing the Organization������������������������������������
	9.3 Agents Deploying Their Organization��
	9.4 Agents Reasoning about Their Organization��
	9.5 What We Have Learned
	Exercises����������������

	10: Integration with Other Technologies
	10.1 Libraries, Frameworks, and Platforms��
	10.2 Mainstream Application Domains and Technologies���
	10.3 Integration with Other Multi-Agent System Platforms���

	11: Wrap-Up and Perspectives
	11.1 The MAOP Viewpoint—Wrap-Up��������������������������������������
	11.2 MAOP and Artificial Intelligence��
	11.3 MAOP and Software Engineering���
	11.4 The Road Ahead��������������������������

	Solutions to Exercises�����������������������������
	References�����������������
	Index������������

