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PREFACE

Electromagnetic Field Theory is the study of characteristics of electric, magnetic and combined 

fields. The history of electromagnetism dates back over several thousand years, and in the twenty-

first century, its applications are far reaching. Electromagnetism manifests as both electric fields and 

magnetic fields. In fact, all the forces involved in interactions between atoms can be explained by 

electromagnetic force, together with how these particles carry momentum by their movement. Use 

of any electric or magnetic or electromagnetic device involves the presence of electromagnetism. Its 

increased usefulness in science and engineering has made it gain an important position in various areas 

of technology or physical research. 

Electromagnetic Field Theory is designed for undergraduate and postgraduate students studying 

electromagnetic field theory. The highlight of the book is its lucid and easy-to-understand language, with 

in-depth coverage of all the important topics sequentially which are supported by numerous illustrations. 

The book begins with a discussion on experimental laws and gradually synthesises them in the form of 

Maxwell’s equations in an adoptive approach. The latter part of the book takes the axiomatic way of 

presentation, starting with Maxwell’s equations, identifying each with the appropriate experimental law, 

and then specialising the general equations to static and time-varying situations for analysis.

Being one of the extreme events of the human intellect, electromagnetic theory is, therefore, the 

foundation of the technologies of electrical and computer engineering. The study of electromagnetism 

and electromagnetic field theory thus becomes imperative for all branches of engineering dealing with 

electricity and electronics and related applications. 

Salient Features of the Book

Simple and lucid language

In-depth discussion on vector algebra and coordinate systems to build strong fundamentals for 

the course

Comprehensive coverage of topics like electric and magnetic fields, wave propagation, wave 

guides and antenna

Exhaustive treatment of electrostatics and electromagnetic waves and their applications

Complexities of subject overcome through easy explanation, illustrative examples and simplified 

derivations

Excellent pedagogy with several hundreds of solved examples, review questions, exercises and 

multiple-choice-questions.

  Solved Examples: 300

  Exercises: 157
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  Multiple Choice Questions: 189

  Review Questions: 130

Illustrative examples are interspersed throughout the book at appropriate locations. Most questions 

have been selected carefully from different university question papers and competitive examinations. 

With so many years of teaching experience, we have found that such illustrations permit a level of 

understanding otherwise unattainable. As an aid to both, the instructor and the student, multiple-choice 

questions, review questions and the exercise problems provided at the end of each chapter progress 

from easy to hard levels.

Structure of the Book

The book is organized in seven chapters with the first chapter beginning with a discussion on vector 

which is the most basic requirement in the study of electromagnetism. In the subsequent chapters, the 

effects of non-varying electric charges, uniformly varying electric charges and varying electric charges 

with accelerating or decelerating velocity, have been discussed in detail. The concluding chapters cover 

some of the practical applications, such as transmission lines, waveguides.

Chapter 1 gives an introduction to vector analysis with an emphasis on scalar and vector fields, 

properties of vectors, vector algebra, coordinate systems, general curvilinear coordinates, differential 

elements, vector calculus, Gauss’ divergence theorem, Stokes’ theorem and classifications of vector 

fields. Since the book has been written with a vector approach of the fundamental quantities, and 

the knowledge of vector is indispensable for the study of electromagnetism, this chapter serves as a 

foundation for the study of electromagnetic theory. 

Chapter 2 elaborates on the basic physics behind the interaction of static electric charges with the 

nature and associated phenomena. It explains electric fields and discusses electric charge, Coulomb’s 

law, superposition of charges and electric fields, electric flux displacement and flux density, electric 

potential, potential gradient, equipotential surfaces, electric dipoles, Poisson’s and Laplace’s equations, 

uniqueness theorem, capacitance, method of images, electric boundary conditions and Dirac–Delta 

representations among others. Chapter 3 provides the basis for understanding the physics behind the 

interaction of static magnetic charges, in the form of either magnets or moving electric charges, with 

the nature and associated phenomena. This chapter is divided into two parts. Part I deals with behavior 

of different electrical materials in an electric field and Part II deals with magnetostatic field. The Biot–

Savart law and Ampere’s law are discussed in this part. Chapters 2 and 3 together cover the concept of 

electrostatics to the core. 

The following two chapters enlighten the concepts of electromagnetic fields and wave propagation. 

The functions of different practical electromagnetic devices and their accessories can be understood 

after completing these chapters. Both these chapters also open up the scope of different research 

activities related to electromagnetic wave phenomena. Chapter 4 discusses electromagnetic fields with 

special emphasis on time-varying fields. The topics taken up are Faraday’s law of induction, induced 

emf, and inconsistencies in Ampere’s law, Maxwell’s equations and potentials for electromagnetic 

fields. Chapter 5 is on electromagnetic wave propagation, reflection, refraction and polarisation 

of electromagnetic waves. It also covers Helmholtz equation, properties of electromagnetic waves, 

standing electromagnetic waves, intrinsic impedance, propagation of uniform plane waves through 

different media, Poynting theorem and Poynting vector.



Preface xi

Chapter 6 covers transmission lines, their types, modes, parameters, equations, characteristic and 

input impedance, and the Smith chart. The concluding chapter, Chapter 7, explains waveguides and 

their properties and types—rectangular, circular-power losses and attenuation, cavity resonator and 

resonant cavities, dielectric slab waveguides, transmission line analogy, and finally, the applications of 

waveguides. Both these chapters describe two different applications of electromagnetic field theory—

Transmission lines and waveguides, which provide the base for understanding the functionaries of 

many modern electromagnetic devices.

In addition, each chapter contains a summary and a list of important formulae for quick review. A 

large number of solved examples, short-answer-type question-answers, exercise problems, objective-

type questions and review questions taken from different university question papers and other 

competitive examinations have also been included. These features make it an indispensable source of 

study of electromagnetic theory for students and practicing engineers alike. The book will help them 

improve their problem solving capability and also will guide them prepare for different competitive 

examinations.

Web Supplements

The following additional information is available at http://www.mhhe.com/ghosh/eft1

Chapter on Antennas and Wave Propagation

Additional Exercises
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VISUAL WALKTHROUGH

Learning Objectives offer an overview 

of chapter ideas. Each chapter opens with 

a list of objectives that will be discussed 

and explained throughout the chapter.

This chapter deals with the following topics:

■ Sources of electrostatics

■ Basic laws of electrostatics

■ To acquire knowledge of fundamental quantities of electrostatics

■ Boundary conditions in electrostatics

■ Concepts of capacitance

Learning Objectives

4.1 INTRODUCTION

In the previous chapters, we have studied different concepts of electrostatic and magnetostatic fields.

In general, electrostatic fields are produced by stationary charges and magnetostatic fields are produced

by motion of electric charges with uniform velocity (i.e. steady currents). However, if the current is

time-varying, the field produced is also time-varying and is known as electromagnetic fields or waves.

In this chapter, we will discuss the concepts of electromagnetic fields and contribution of Maxwell

to the laws of electromagnetism.

4.2 FARADAY’S LAW OF INDUCTION FOR 

TIME-VARYING FIELDS

English physicist Michael Faraday and American scientist Joseph Henry independently and

simultaneously, in 1831, observed experimentally that any change in the magnetic environment of a

coil of wire will cause a voltage (emf) to be induced in the coil. If the circuit is a closed one, this emf

will cause flow of current. This phenomenon is known as electromagnetic induction. The results of

Faraday and Henry’s experiment led to two laws:

1. Neumann’s Law: When a magnetic field linked with a coil or circuit is changed in any manner,

the emf induced in the circuit is proportional to the rate of change of the flux-linkage with the circuit.

2. Lenz’s Law: The direction of the induced emf is such that it will oppose the change of flux producing

it.

Introduction at the beginning of each 

chapter lays a foundation for the topics 

that have been explained in detail in the 

succeeding pages.

Illustrated Examples have been care-

fully selected from various university 

question papers and competitive exami-

nations. These examples will help stu-

dents achieve a level of understanding 

which is not possible through theory 

alone.

Example 4.1 An infinite straight wire carries a current I is placed 

to the left of a rectangular loop of wire with width w and length l, as shown

in Fig. 4.2.

(a) Determine the magnetic flux through the rectangular loop due to the 

current I.

(b) Suppose that the current is a function of time with I(t) = a + bt, where

a and b are positive constants. What is the induced emf in the loop

and the direction of the induced current?

Solution

(a) Using Ampere’s law,

0 encB dS Im◊ =Ú

the magnetic field due to a current-carrying wire at a distance r away is

0

2

I
B

r

m

p
=

Fig. 4.2 Rectangular

loop near a wire



  xiv Visual Walkthrough

Notes offer additional information on 

the topics discussed in the book.

NOTE

Vector Representation of Surface

Differential surface area is defined as a vector whose magnitude corresponds to the area of the

surface and whose direction is perpendicular to the surface.

\ = ndS dSa

For closed surface, the outward normal direction is taken as positive direction. For an open surface, 

the normal created by positive periphery according to the right-hand cork screw rule is taken to be

positive.

If the surface is not a plane, then the surface is subdivided into smaller elements that are considered

to be plane and a vector surface is considered for each of these elemental surfaces. Vector addition 

of these elemental vector surfaces gives the total surface.

Summary at the end of each chapter act 

as an overview of all the topics discussed 

in that particular chapter.

Summary

Faraday’s law states that the emf induced in a closed circuit is proportional to the rate of change of 

the magnetic flux-linkage and the direction of the current flow in the closed circuit is such that it

opposes the change of the flux.

d

dt

f
= -E

Different forms of Faraday’s law are:

Differential Form:
B

E
t

∂
— ¥ = -

∂

Integral Form:
C S

d
E dl B dS

dt
◊ = - ◊Ú Ú

Induced emf for different cases are as follows:

Stationary loop in time varying magnetic field (transformer emf)

S

B
dS

t

∂
= - ◊

∂ÚS
E

Moving loop in static magnetic field (motional emf)

( )
m m

C C

E dl v B dl= ◊ = ¥ ◊Ú ÚE

List of Important Formulae after Sum-

mary will help students review all the 

important formulae in a short period of 

time!

Important Formulae
Faraday’s law d

dt

f
= -E

Integral form of Faraday’s law

C S

d
E dl B dS

dt
◊ = - ◊Ú Ú

Differential form of Faraday’s law B
E

t

∂
— ¥ = -

∂

Transformer EMF

S

B
dS

t

∂
= - ◊

∂ÚS
E

Motional EMF ( )
m

C

v B dl= ¥ ◊ÚE

EMF induced in Faraday disc generator 21

2m
Baw=E

Modified Ampere’s circuital law
D

H J
t

∂
— ¥ = +

∂

Inhomogeneous wave equation 2
2

2

V
V

t

r
me

e

∂
— - = -

∂
and

2
2

2

A
A J

t
me m

∂
— - = -

∂
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Exercises

[NOTE: * marked problems are important university problems]

Easy

1. A conductor 1 cm in length is parallel to the z-axis and rotates at radius of 25 cm at 1200 r.p.m.

Find the induced voltage, if the radial field is given by 0.5
r

B a= T. [ 157.08 mV]

2. A square conducting loop with sides 25 cm long is located in a magnetic field of 1 A/m varying

at a frequency of 5 MHz. The field is perpendicular to the plane of the loop. What voltage will be

read on a voltmeter connected in series with one side of the loop? [2.54 V]

3. A square loop of wire 25 cm has a voltmeter (of infinite impedance) connected in series with one

side. Determine the voltage indicated by the meter when the loop is placed in an alternating field,

the maximum intensity of which is 1 A/m. The plane of the loop is perpendicular to the magnetic

field, the frequency is 10 MHz. [4.93 V]

Review Questions 

[NOTE: * marked questions are important university questions.]

1. State and explain Faraday’s law of electromagnetic induction.

*2. From the fundamental principle, establish the relation (i)
B

E
t

∂
— ¥ = -

∂
and (ii) .

D
H J

t

∂
— ¥ = +

∂
3. Show that the electric field E induced by a time-varying magnetic field B is given by the

expression
B

E
t

∂
— ¥ = -

∂
.

Multiple Choice Questions

1. Maxwell’s equations in differential form from Ampere’s law are obtained from

(a) M. M. F. area (b) Electric potential area

(c) Magnetic flux volume (d) Electric current area.

2. Maxwell’s equations are not completely symmetrical because

(a) isolated magnetic charges do not exist.

(b) it is difficult to get curl of a vector in spherical coordinates.

(c) — ◊ D is always zero.

(d) — ¥ H does not exist in free space.

3. A circular disc of 1 m radius rotates at 150 radians per second anticlockwise on f-r plane with flux

density B = 10 az tesla. The voltage induced between two stationary brushes connected at the

centre and at the circumference will be

(a) 0.15 V (b) 0.075 V (c) 1.0 V (d) 0.85 V

4. A conductor 4 m long lies along the y-axis with a current 10.0 A in the ay direction, the force on

the conductor if the field in the region be B = 0.05ax T is

az N (b) 2.0az N (c) 2.0ay N (d) 2.0ax N

5 A conducting rod of length L revolves about its mid point at uniform angular speed w in a uniform

Chapter-end Exercises have been divid-

ed into three levels as easy, medium and 

hard which will help students assess their 

level of understanding

Review Questions include theoretical 

questions to allow students to confirm 

their mastery of topics and concepts

Set of Multiple Choice Questions at the 

end of each chapter serves as an exercise 

for students for quick understanding and 

analysis





This chapter deals with the following topics:

■ Vector algebra and calculus

■ Different laws of vector

1
VECTOR ANALYSIS

1.1 INTRODUCTION

Electromagnetics is the branch of physics or electrical engineering in which the electric and magnetic 

phenomena are studied. The basic knowledge for analysing the performance of any electrical network is 

the knowledge of circuit theory. However, the approach of circuit theory is a simplified approximation 

of a more exact field theory. Field theory is more difficult than circuit theory because of the larger 

number of variables involved. For most electromagnetic field problems, there are three space variables 

and thus, the solutions become complex.

This can be overcome by the use of vector analysis. Thus, knowledge of vector analysis is an 

essential prerequisite to the study of electromagnetic field theory. The use of vector analysis in the 

study of electromagnetic field theory results in less time for solutions.

1.2 SCALAR AND VECTOR QUANTITIES

A quantity that has only magnitude is said to be a scalar quantity. Examples of scalar quantities are 

time, mass, distance, temperature, work, electric potential, etc. Scalar quantities are represented by 

italic letters, e.g., A, B, a, b, and F.

A quantity that has both magnitude and direction is called a vector quantity. Examples of vector 

quantities are force, velocity, displacement, electric field intensity, etc. Vector quantities are represented 

by a letter with an arrow on the top, such as A and B  or with a bold letter, such as F, a, B.

1.3 FIELDS

If at each point of a region, there is a value of some physical function, the region is called a field.

Fields may be classified as scalar fields and vector fields.

Learning Objectives



  2 Electromagnetic Field Theory

1.3.1 Scalar Fields

If the value of the physical function at each point is a scalar quantity, then the field is known as a scalar 

field.

Some examples of scalar fields are: temperature distribution in a building, sound intensity in a 

theatre, height of the surface of the earth above sea level and electric potential in a region.

A scalar field independent of time is called a stationary or steady-state scalar field.

1.3.2 Vector Fields

If the value of the physical function at each point is a vector quantity, then the field is known as a vector 

field.

Some examples of vector fields are: gravitational force on a body in space, wind velocity in the 

atmosphere and the force on a charge body placed in an electric field.

A time-independent vector is called a stationary vector field.

1.4 PROPERTIES OF VECTORS

We will consider the following essential properties that enable us to represent physical quantities as 

vectors:

1. Vectors can exist at any point in space.

2. Vectors have both the direction and the magnitude.

3. Any two vectors that have the same direction and magnitude are equal no matter where they are 

located in space; this is called vector equality.

4. Unit vector: A vector A has both magnitude and direction. The magnitude of A is a scalar written 

as A or | |A . A unit vector Aa  along A is defined as a vector whose magnitude is unity and its 

direction is along A.

In general, any vector can be represented by its magnitude and its direction as follows.

 | |A AA Aa A a= =  (1.1)

where A or | |A  represents the magnitude of the vector and Aa  direction of the vector A.

This Aa  is called a unit vector.

From Eq. (1.1), the unit vector is given as

 
| |

A

A A
a

A A
= =  (1.2)

Note that, 1Aa =
In Cartesian coordinates, the unit vectors along the three axes, e.g., x-axis, y-axis and z-axis, are 

represented as ( , , )x y za a a  or as ( , , )i j k .

5. Component vectors: Any vector A in Cartesian coordinates may be represented as (Ax, Ay, Az) or

 x x y y z zA A a A a A a= + +  (1.3)

where Ax, Ay, Az are called the component vectors in x, y and z directions, respectively.

Using the Pythagorean Theorem, the magnitude of A is given as

 
2 2 2| | x y zA A A A A= = + +
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The unit vector along A is given as

 
2 2 2| |

x x y y z z

A

x y z

A a A a A aA A
a

A A A A A

+ +
= = =

+ +
 (1.4)

6. Vector decomposition: Choosing a coordinate system with an 

origin and axes, we can decompose any vector into component 

vectors along each coordinate axis. In Fig. 1.1, we choose 

Cartesian coordinates. A vector at P can be decomposed into 

the vector sum

x y zA A A A= + +

where, xA  is the x-component vector pointing in the positive 

or negative x-direction, and yA  is the y-component vector 

pointing in the positive or negative y-direction and zA  is 

the z-component vector pointing in the positive or negative 

z-direction (Fig. 1.1).

7. Direction angles and direction cosines of a vector: The direction cosines of a vector are merely 

the cosines of the angles that the vector makes with the x, y, and z axes, respectively. We label 

these angles a (angle with the x-axis), b (angle with the y-axis), and g (angle with the z-axis).

Given a vector (Ax, Ay, Az) in three-space, the direction cosines of this vector are given as

 
2 2 2

cos a= =
+ +

x

x y z

A
l

A A A
 (1.5a)

 
2 2 2

cosb= =
+ +

y

x y z

A
m

A A A
 (1.5b)

 
2 2 2

cos g= =
+ +

z

x y z

A
n

A A A
 (1.5c)

Here, the direction angles a, b, g  are the angles that the vector makes with the positive x-, y- and 

z-axes, respectively. In formulas, it is usually the direction cosines that occur, rather than the 

direction angles. We have

 
2 2 2cos cos cos 1a b g+ + =  (1.5d)

Direction cosines define the orientation of a vector in three dimensions.

1.5 VECTOR ALGEBRA

We consider the addition, subtraction and multiplication of vectors.

1.5.1 Vector Addition and Subtraction

Let A and B be two vectors given as

 x x y y z zA A a A a A a= + +

 x x y y z zB B a B a B a= + +

Fig. 1.1 Vector decomposition
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We define a new vector, C A B= + , the vector addition of A and B  and is given as

( ) ( ) ( )

( ) ( ) ( )

x x y y z z x x y y z z

x x x y y y z z z

C A B A a A a A a B a B a B a

A B a A B a A B a

= + = + + + + +
= + + + + +

Similarly, we define a new vector, D A B= - , the vector subtraction of A and B  and is given as

( ) ( ) ( )

( ) ( ) ( )

x x y y z z x x y y z z

x x x y y y z z z

D A B A a A a A a B a B a B a

A B a A B a A B a

= - = + + - + +
= - + - + -

Physically, vector subtraction ( )A B-  is the addition of vector A  and vector B  after reversing the 

direction of vector B.

Graphically, vector addition and subtraction are obtained by the triangle or parallelogram rules as 

explained below.

Triangular Rule of Vector Addition An arrow is drawn that represents the vector A. The tail 

of the arrow that represents the vector B  is placed at the tip of the arrow for A as shown in Fig. 1.2 

(a). The arrow that starts at the tail of A  and goes to the tip of B  is defined to be the vector addition,

C A B= + . This is the triangle rule of vector addition.

Fig. 1.2 (a) Vector addition triangle rule, (b) vector addition parallelogram rule, (c) vector subtraction 

triangle rule, and (d) vector subtraction parallelogram rule

Parallelogram Rule of Vector Addition The vectors A  and B  can be drawn with their tails 

at the same point. The two vectors form the sides of a parallelogram. The diagonal of the parallelogram 

corresponds to the vector C A B= + , as shown in Fig. 1.2 (b). This is the parallelogram rule of vector 

addition.

Vector addition and subtraction satisfies the following properties:

1. Commutivity: The order of adding vectors does not matter.

A B B A+ = +
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2. Associativity: When adding three vectors, it does not matter which two we start with

( ) ( )A B C A B C+ + = + +

3. Identity element for vector addition: There is a unique vector, 0, that acts as an identity element 

for vector addition.

This means that for all vectors A,

0 0A A A+ = + =

4. Inverse element for vector addition: For every vector A, there is a unique inverse vector

( 1) A A- ∫ -

such that ( ) 0A A+ - =

This means that the vector A-  has the same magnitude as A, i.e., | | | |A A A= - = ; but they point 

in opposite directions.

5. Distributive law for vector addition: Vector addition satisfies a distributive law for multiplication 

by a number.

Let c be a real number. Then

( )c A B cA cB+ = +

1.5.2 Vector Multiplication or Product

When two vectors A and B are multiplied, the result may be a scalar or a vector depending on how they 

are multiplied. There are two types of vector multiplication:

1. Scalar or Dot Product, and

2. Vector or Cross Product.

1.5.3 Scalar or Dot Product ( )·A B

Definition The scalar or dot product of two vectors A  and B ,

written as A B◊ , is defined as (Fig. 1.3)

cos ABA B AB◊ = q (1.6)

where qAB is the smaller angle between A and B,

| |A A=  and | |B B=  represent the magnitude of A and B ,

respectively.

The dot product can be positive, zero, or negative, depending on the value of cos qAB. The result of 

A B◊  is always a scalar quantity.

Dot product is geometrically defined as the product of magnitude of B and the projection of A onto 

B  or vice versa. This is illustrated in Fig. 1.4 (a) and (b).

Fig. 1.3 Dot product of two 

vectors
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Fig. 1.4 Projection of vectors and the dot product

Properties of Dot Product

1. The first property is that the dot product is commutative

A B B A◊ = ◊
2. The second property involves the dot product between a vector cA which is a scalar and a vector 

B

( )cA B c A B◊ = ◊

3. The third property involves the dot product between the sum of two vectors A and B  with a 

vector C

( )A B C A C B C+ ◊ = ◊ + ◊

This shows that the dot product is distributive.

4. Since the dot product is commutative, similar relations are given, e.g.,

( )A cB c A B◊ = ◊

( )C A B C A C B◊ + = ◊ + ◊

Vector Decomposition and Dot Product We now develop an algebraic expression for the 

dot product in terms of components. We choose a Cartesian coordinate system with the two vectors 

having component vector as

x x y y z z

x x y y z z

A A a A a A a

B B a B a B a

= + +

= + +

\ ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x x y y z z x x y y z z

x x x x y y y y z z z z x y x y x z x z

y x y x y z y z z x z x z y z y

A B A a A a A a B a B a B a

A B a a A B a a A B a a A B a a A B a a

A B a a A B a a A B a a A B a a

◊ = + + ◊ + +
= ◊ + ◊ + ◊ + ◊ + ◊

+ ◊ + ◊ + ◊ + ◊

Now, 1cos(0 ) 1x x y y z za a a a a a◊ = ◊ = ◊ = ∞ =

and 1cos(90 ) 0x y y z z x y x z y x za a a a a a a a a a a a◊ = ◊ = ◊ = ◊ = ◊ = ◊ = ∞ =

Hence, we get

( )x x y y z zA B A B A B A B◊ = + + (1.7)
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Application of Dot Product

1. The dot product is to find the work done by a force F  for a 

displacement of D, given as

cosW F D FD q= ◊ =

2. It is used to find out the line integral of a vector over a path, 

e.g., to calculate the electric potential between two points in 

an electric field.

3. It is used to find out the surface integral over a surface, e.g., 

to calculate the total charge enclosed by a surface placed in an electric field.

 Example 1.1 Given the two vectors

 7 12 3 and 4 2 16x y z x y zA a a a B a a a= - + + = - +

Find the dot product and the angle between the two vectors.

Solution The dot product between the two vectors is given as

 ( ) ( 7) 4 12 ( 2) 3 16 4x x y y z zA B A B A B A B◊ = + + = - ¥ + ¥ - + ¥ = -

Since the dot product is negative, it is expected that the angle between the two vectors will be greater 

than 90°.

Here, ( )2 2 2| | 7 12 3 202A = - + + =

 
2 2 2| | 4 ( 2) 16 276B = + - + =

Hence, the angle between the two vectors is given as,

 

1 1 4
cos cos 90.97

| | | | 202 276

A B

A B
q - -Ê ˆ◊ -Ê ˆ= = = ∞Á ˜ Á ˜Ë ¯ ¥Ë ¯

1.5.4 Vector or Cross Product ( × )A B

Definition The cross product of two vectors A and B , written as ( )A B¥ , is defined as

 sin AB nA B AB aq¥ =  (1.8)

where na  is the unit vector normal to the plane containing A  and B

The vector multiplication is called cross product due to the cross sign. It is also termed as vector 

product because the result is a vector.

The direction of the cross product is obtained from a common rule, called right-hand rule.

Right-hand Rule for Direction of Cross Product The direction of na  is taken as the direction 

of right thumb when the fingers of the right hand rotate from A  to B  [Fig. 1.6 (a)]. Alternatively, the 

direction of na  is taken as that of the advance of right-handed screw as A  is turned into B  [Fig. 1.6 (b)].

Fig. 1.5 Work done by a force
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Fig. 1.6 (a) Right-hand rule, and (b) Right-hand cork-screw rule

We can give a geometric interpretation to the magnitude of the cross product by writing the definition 

as
 | | ( sin )A B A B q¥ =

The vectors A and B  form a parallelogram. The area of the parallelogram equals the height times 

the base, which is the magnitude of the cross product. In Fig. 1.7, two different representations of the 

height and base of a parallelogram are illustrated. As depicted in Fig. 1.7 (a), the term B sin q is the 

projection of the vector B  in the direction perpendicular to the vector A.

Fig. 1.7 Projection of vectors and the cross product

We could also write the magnitude of the cross product as

 | | ( sin )A B A Bq¥ =

Now the term A sin q is the projection of the vector A in the direction perpendicular to the vector 

B  as shown in Fig. 1.7(b).

Properties of Cross Product

1. The cross product is anti-commutative since changing the order of the vector’s cross product 

changes the direction of the cross product vector by the right-hand rule:

 A B B A¥ = - ¥

2. The cross product between a vector cA where c is a scalar and a vector B  is

 ( )cA B c A B¥ = ¥

Similarly, ( )A cB c A B¥ = ¥
3. The cross product is not associative.

 ( ) ( )A B C A B C¥ ¥ π ¥ ¥
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4. The cross product between the sum of two vectors A and B with a vector C  is,

( )A B C A C B C+ ¥ = ¥ + ¥

Similarly, ( )A B C A B A C¥ + = ¥ + ¥

This shows that the cross product is distributive.

Vector Decomposition and Cross Product We now develop an algebraic expression for the 

cross product in terms of components. We choose a Cartesian coordinate system with the two vectors 

having component vector as

x x y y z z

x x y y z z

A A a A a A a

B B a B a B a

= + +

= + +

\ ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x x y y z z x x y y z z

x x x x y y y y z z z z x y x y x z x z

y x y x y z y z z x z x z y z y

A B A a A a A a B a B a B a

A B a a A B a a A B a a A B a a A B a a

A B a a A B a a A B a a A B a a

¥ = + + ¥ + +
= ¥ + ¥ + ¥ + ¥ + ¥

+ ¥ + ¥ + ¥ + ¥

Now, for right-handed coordinate system

0x x y y z za a a a a a¥ = ¥ = ¥ =

and, x y z y x y z x z y z x y x za a a a a a a a a a a a a a a¥ = = - ¥ ¥ = = - ¥ ¥ = = - ¥

This is illustrated in Fig. 1.8 (a) and (b).

Fig. 1.8 (a) Moving clockwise leads to positive results, and (b) Moving counterclockwise leads to negative 

results

\ ( ) ( ) ( )y z z y x z x x z y x y y x z

x y z

x y z

x y z

A B A B A B a A B A B a A B A B a

a a a

A A A

B B B

¥ = - + - + -

=

Hence, we get

x y z

x y z

x y z

a a a

A B A A A

B B B

¥ = (1.9)
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 Example 1.2 Given the two vectors

 8 3 10 and 15 6 17x y z x y zA a a a B a a a= + - = - + +

Find the cross product between the two vectors and the unit vector normal to the plane containing the 

two vectors A and B.

Solution The cross product between the two vectors is given as

 

( ) ( ) ( )

[3 17 ( 10) 6] [( 10) ( 15) 8 17] [8 6 3 ( 15)]

111 14 93

x y z

x y z y z z y x z x x z y x y y x z

x y z

x y z

x y z

a a a

A B A A A A B A B a A B A B a A B A B a

B B B

a a a

a a a

¥ = = - + - + -

= ¥ - - ¥ + - ¥ - - ¥ + ¥ - ¥ -
= + +

The unit vector normal to the plane containing the vectors A and B  is given as

 

2 2 2 2 2 2

111 14 93 111 14 93

308.46| | | | 8 3 ( 10) ( 15) 6 17

0.36 0.04 0.30

x y z x y z
n

x y z

a a a a a aA B
a

A B

a a a

+ + + +¥
= = =

+ + - - + +
= + +

 Example 1.3 Two vectors are represented by 2 2 , 3 4 2= + = + -A i j B i j k . Find the dot and 

cross-products and the angle between the vectors. Show that A B¥  is at right angle to A.

Solution Here, 2 2 , 3 4 2A i j B i j k= + = + -

\ 2 3 2 4 0 ( 2) 14A B◊ = ¥ + ¥ + ¥ - =

\ 2 2 0 4 4 2

3 4 2

x y z x y z

x y z x y z

x y z

a a a a a a

A B A A A a a a

B B B

¥ = = = - + +
-

Now, 2 2 2 2 22 2 0 2.83; 3 4 ( 2) 5.39A B= + + = = + + - =

 
cosA B AB q◊ =

fi 1 1 14
cos cos 23.2

2.83 5.39

A B

AB
q - -Ê ˆ◊ Ê ˆ= = = ∞Á ˜ Á ˜Ë ¯ ¥Ë ¯

For A B¥  to be at right angle to A, ( )A B A¥ ◊  should be zero.

 ( ) 2 ( 4) 2 4 0 2 0A B A¥ ◊ = ¥ - + ¥ + ¥ =  (Proved)

Applications of Cross Product

1. To find the torque about a point P which can be described mathematically by the cross product 

of a vector from P to where the force acts, and the force vector.

2. To find the force experienced by a current carrying conductor placed in a magnetic field.
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1.5.5 Triple Products

Multiplication of three vectors A, B  and C  is called vector triple product. The product of three vectors 

is classified into two categories:

1. Scalar triple product, and

2. Vector triple product.

Scalar Triple Product For the three vectors A, B and C , scalar triple product is defined as

( ) ( ) ( )A B C B C A C A B◊ ¥ = ◊ ¥ = ◊ ¥

Since the result is a scalar quantity, this is known as scalar triple product.

If the components of three vectors A, B and C  are given as ( , , ), ( , , ),= =x y z x y zA A A A B B B B

( , , )= x y zC C C C , respectively, then the scalar triple product is obtained by the determinant of a 3 ¥ 3 

matrix given as

( )

x y z

x y z

x y z

A A A

A B C B B B

C C C

◊ ¥ =

Similarly, ( )

x y z

x y z

x y z

B B B

B C A C C C

A A A

◊ ¥ =

and ( )

x y z

x y z

x y z

C C C

C A B A A A

B B B

◊ ¥ =

We know from a determinant theorem that if any two columns or rows of a determinant are interchanged, 

its value remains the same, but the sign changes. Hence, we can write

( ) ( ) ( )

x y z x y z x y z x y z

x y z x y z x y z x y z

x y z x y z x y z x y z

B B B B B B A A A A A A

B C A C C C A A A B B B B B B

A A A C C C C C C C C C

◊ ¥ = = - = - - =

Similarly,

( ) ( ) ( )

x y z x y z x y z x y z

x y z x y z x y z x y z

x y z x y z x y z x y z

C C C B B B A A A A A A

C A B A A A A A A B B B B B B

B B B C C C C C C C C C

◊ ¥ = = - = - - =

Therefore, we can write that

( ) ( ) ( )A B C B C A C A B◊ ¥ = ◊ ¥ = ◊ ¥ (1.10)
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 Example 1.4 If the components of three vectors 

A, B  and C  are given as,

( , , ),

( , , ),

( , , )

x y z

x y z

x y z

A A A A

B B B B

C C C C

=

=

=

respectively, then show that ( )A B C◊ ¥  is the volume 

of a parallelepiped of sides A, B  and C .

Solution Here,

sin Area of the rectangle with side  and  and 

                                     perpendicular to the plane containing the vectors and

n

n

B C BC a B C

B  C

Pa P

q¥ = =

= =

\ ( ) cos

= Product of the component of  normal to -plane and 

                      the area of the parallelogram with sides  and 

Volume of the parallelepiped of sides ,  and 

A B C A P AP

A BC

B C

A B C

f◊ ¥ = ◊ =

=

Vector Triple Product For the three vectors A, B  and C , vector triple product is defined as

( ) ( ) ( )A B C B A C C A B¥ ¥ = ◊ - ◊ (1.11)

Since the result is a vector quantity, this is known as vector triple product. It may be noted that 

( )A B C¥ ¥  is in the plane containing B  and C  and is perpendicular to A .

Associative law does not hold good for vector triple product, i.e.,

( ) ( )A B C A B C¥ ¥ π ¥ ¥

Rather,

( ) ( ) [ ( ) ( )] ( ) ( )A B C C A B A C B B C A B C A A C B¥ ¥ = - ¥ ¥ = - ◊ - ◊ = ◊ - ◊

The concept of vector triple product is used in deriving wave equations from Maxwell’s equations.

1.6 COORDINATE SYSTEMS

Coordinate system is defined as a system to describe uniquely the spatial variation of a quantity at all 

points in space.

All coordinate systems can be broadly classified into two categories:

1. Orthogonal coordinate systems: Three coordinate axes are perpendicular to each other.

2. Non-orthogonal coordinate systems: Coordinate axes are not perpendicular to each other.

From another point of view, the coordinate systems are of two types:

1. Right-handed coordinate systems: These systems follow the right-hand cork-screw rule. This 

means that if one rotates from the first coordinate axis towards the second coordinate axis, a 

right-hand screw will advance in the positive direction of the third coordinate axis.

Fig. 1.9 Scalar triple product
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2. Left-handed coordinate systems: These systems follow the opposite movement of a right-handed 

screw.

Here, we will discuss the most useful three right-handed orthogonal coordinate systems; namely,

1. Cartesian or rectangular coordinates,

2. Circular or cylindrical coordinates, and

3. Spherical coordinates.

1.6.1 Cartesian or Rectangular Coordinates (x, y, z)

A point P in Cartesian coordinates is represented as P(x, y, z).

The ranges of coordinate variables are

x

y

z

(1.12)

From Fig. 1.10 (b), it is understood that any point in rectangular coordinates is the intersection of 

three planes (i) constant x-plane (ii) constant y-plane and (iii) constant z-plane, which are mutually 

perpendicular.

Fig. 1.10 (a) Cartesian coordinates, and (b) Constant x, y, z planes

A vector A  in Cartesian coordinate system is written as

x x y y z zA A a A a A a= + + (1.13)

where, , ,x y za a a  are the unit vectors along the x, y and z directions, respectively.

From the definitions of dot product, we see that

1

0

x x y y z z

x y y z z x

a a a a a a

a a a a a a

◊ = ◊ = ◊ =
◊ = ◊ = ◊ = (1.14)

From the definitions of cross product, we see that

0

; ;

x x y y z z

x y z y z x z x y

a a a a a a

a a a a a a a a a

¥ = ¥ = ¥ =
¥ = ¥ = ¥ =

(1.15)
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1.6.2 Cylindrical or Circular Coordinates (r, f, z)

A point P in cylindrical coordinates is represented as P(r, f, z).

Here

r = radius of the cylinder passing through P = radial distance from the z-axis

f = angle measured from the x-axis in the xy-plane, known as azimuthal angle

z = same as in Cartesian coordinates

The ranges of coordinate variables are

0

0 2

r

z

f p (1.16)

From Fig. 1.11 (b), it is understood that any point in cylindrical coordinates is an intersection of three 

planes viz. (i) constant ‘r’ plane (a circular cylinder) (ii) constant f plane (semi-infinite plane with its 

edge along the z-axis (iii) constant z-plane (parallel to xy-plane).

Fig. 1.11 (a) Cylindrical coordinates, and (b) Constant r, f, z planes

A vector A  in cylindrical coordinate system is written as

r r z zA A a A a A af f= + + (1.17)

where , ,r za a af  are the unit vectors along the r, f and z directions, respectively.

From the definitions of dot product, we see that

1

0

r r z z

r z z r

a a a a a a

a a a a a a

f f

f f

◊ = ◊ = ◊ =
◊ = ◊ = ◊ =

(1.18)

From the definitions of cross product, we see that

0

; ;

r r z z

r z z r z r

a a a a a a

a a a a a a a a a

f f

f f f

¥ = ¥ = ¥ =
¥ = ¥ = ¥ =

(1.19)
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Relations between Cartesian (x, y, z) and Cylindrical (r, f, z) Coordinates The 

relationship between Cartesian (x, y, z) and cylindrical (r, f, z) coordinates are obtained from Fig. 

1.11(a) and are written as

 2 2 1tan ,
y

r x y z z
x

f - Ê ˆ= + = =Á ˜Ë ¯
 (1.20)

and

 cos sinx r y r z zf f= = =  (1.21)

The relationships between the unit vectors are obtained from Fig. 1.12 and are given as

Fig. 1.12 Unit vector transformation between Cartesian and cylindrical coordinates

 

cos sin

sin cos

x r

y r

z z

a a a

a a a

a a

f

f

f f

f f

= -
= +
=

 (1.22)

and

 

cos sin

sin cos

r x y

x y

z z

a a a

a a a

a a

f

f f

f f

= +
= - +
=

 (1.23)

The relationships between the component vectors (Ax, Ay, Az) and (Ar, Af, Az) are obtained by using Eqs. 

(1.22) and (1.23) and then rearranging the terms. This is given as

 
( cos sin ) ( sin cos )

( cos sin ) ( sin cos )

x y r x y z z

r x r y z z

A A A a A A a A a

A A a A A a A a

f

f f

f f f f

f f f f

= + + - + +
= - + + +

 (1.24)

Thus, the relationships between the component vectors can be written in matrix forms as

 

cos sin 0

sin cos 0

0 0 1

r x

y

z z

A A

A A

A A

f

f f

f f

È ˘ È ˘È ˘
Í ˙ Í ˙Í ˙= -Í ˙ Í ˙Í ˙
Í ˙ Í ˙Í ˙Î ˚Î ˚ Î ˚

 and 

cos sin 0

sin cos 0

0 0 1

x r

y

z z

A A

A A

A A

f

f f

f f

È ˘ È ˘-È ˘
Í ˙ Í ˙Í ˙=Í ˙ Í ˙Í ˙
Í ˙ Í ˙Í ˙Î ˚Î ˚ Î ˚

 (1.25)
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1.6.3 Spherical or Polar Coordinates (r, q, f)

A point P in spherical coordinates is represented as P(r, q, f).

Here,

r = distance of the point from the origin

= radius of a sphere centered at the origin and passing through the point P,

q = angle between the z-axis and the position vector P, known as colatitudes, and

f = angle measured from the x-axis in the xy-plane, known as azimuthal angle

(same as in cylindrical coordinates).

The ranges of coordinate variables are

0

0

0 2

r

q p

f p

(1.26)

From Fig. 1.13 (b), it is understood that any point in spherical coordinates is an intersection of three 

planes, viz. (i) constant ‘r’ plane (a sphere with its centre at the origin), (ii) constant q-plane (circular 

cone with z-axis as its axis and the origin at its vertex), and (iii) constant f-plane (semi-infinite plane 

as in cylindrical coordinates).

Fig. 1.13 (a) Spherical coordinates, (b) Constant r, q, f planes, and (c) Point P and unit vectors in spherical 

coordinates
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A vector A in spherical coordinate system is written as

 A A a A a A ar r q q f f= + +  (1.27)

where , ,a a ar q f  are the unit vectors along the r, q and f directions, respectively.

From the definitions of dot product, we see that

 
1

0

a a a a a a

a a a a a a

r r q q f f

r q q f f r

◊ = ◊ = ◊ =
◊ = ◊ = ◊ =

 (1.28)

From the definitions of cross product, we see that

 
0

; ;

a a a a a a

a a a a a a a a a

r r q q f f

r q f q f r f r q

¥ = ¥ = ¥ =
¥ = ¥ = ¥ =

 (1.29)

Relations between Cartesian (x, y, z) and Spherical (r, q, f) Coordinates The 

relationships between Cartesian (x, y, z) and spherical (r, q, f) coordinates can also be obtained from 

Fig. 1.13 (a) and can be written as

 

2 2
2 2 2 1 1tan , tan

x y y
x y z

z x
r q f- -

Ê ˆ+ Ê ˆ= + + = =Á ˜Ë ¯ Ë ¯  (1.30)

and

 sin cos sin sin cosx y zr q f r q f r q= = =  (1.31)

The relationships between the unit vectors are obtained from 

Fig. 1.14 and are given as

 

sin cos cos cos sin

sin sin cos sin cos

cos sin

x

y

z

a a a a

a a a a

a a a

r q f

r q f

r q

q f q f f

q f q f f

q q

= + -
= + +
= -

 (1.32)

and

 

sin cos sin sin cos

cos cos cos sin sin

sin cos

x y z

x y z

x y

a a a a

a a a a

a a a

r

q

f

q f q f q

q f q f q

f f

= + +
= + -
= - +

 (1.33)

The relationships between the component vectors (Ax, Ay, 

Az) and (Ar, Aq, Af) can be obtained by using Eqs. (1.32) 

and (1.33) and then rearranging the terms. This is written in 

matrix form as

 

sin cos sin sin cos

cos cos cos sin sin

sin cos 0

x

y

z

A A

A A

A A

r

q

f

q f q f q

q f q f q

f f

È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙= - - Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙-Î ˚Î ˚ Î ˚

 (1.34)

Fig. 1.14  Unit vector transformation 

for Cartesian and spherical 

coordinates
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and

 

sin cos cos cos sin

sin sin cos sin cos

cos sin 0

x

y

z

AA

A A

AA

r

q

f

q f q f f

q f q f f

q q

È ˘ È ˘-È ˘
Í ˙ Í ˙Í ˙=Í ˙ Í ˙Í ˙
Í ˙ Í ˙Í ˙-Î ˚ Î ˚Î ˚

 (1.35)

Relations between Cylindrical (r, f, z) and Spherical (r, q, f) Coordinates The 

relationships between cylindrical (r, f, z) and spherical (r, q, f) coordinates are obtained from Fig. 

1.13 (a) and are written as

 2 2 1tan ,
r

r z
z

r q f f- Ê ˆ= + = =Ë ¯  (1.36)

and

 sin cosr zr q f f r q= = =  (1.37)

The relationships between the unit vectors are obtained from 

Fig. 1.15 and are given as

 

sin cos

cos cos sin

r z

r z

a a a

a a a

a a

r

q

f f

q q

q f q

= +
= -
=

 (1.38)

and

 

sin cos cos

cos sin

r

z

a a a

a a

a a a

r q

f f

r q

q q f

q q

= +
=
= -

 (1.39)

The relationships between the component vectors (Ar, Aq, Af 

and (Ar, Af, Az) can be obtained by using Eqs. (1.38) and (1.39) 

and then rearranging the terms. This is written in matrix form as

 

sin 0 cos

cos 0 sin

0 1 0

r

z

A A

A A

A A

r

q f

f

q q

q q

È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙= - Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙Î ˚Î ˚ Î ˚

 (1.40)

and

 

sin cos 0

0 0 1

cos sin 0

r

z

AA

A A

AA

r

f q

f

q q

q q

È ˘ È ˘È ˘
Í ˙ Í ˙Í ˙=Í ˙ Í ˙Í ˙
Í ˙ Í ˙Í ˙-Î ˚ Î ˚Î ˚

 (1.41)

Fig. 1.15  Unit vector transformation 

for cylindrical and 

spherical coordinates
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 *Example 1.5 Convert the point P(1, 3, 5) from Cartesian to cylindrical and spherical 

coordinates.

Solution At point P: x = 1, y = 3, z = 5

Conversion from Cartesian to cylindrical coordinates:

Hence,

 2 2 2 21 3 10 3.162r x y= + = + = =

 ( )1 1 3
tan tan 71.565

1

y

x
f - -Ê ˆ= = = ∞Ë ¯

 5z =

Conversion from Cartesian to spherical coordinates:

Here,

 2 2 2 2 2 21 3 5 35 5.916x y zr = + + = + + = =

 

2 2 2 2
1 1

1 3
tan tan 32.311

5

x y

z
q - -

Ê ˆ Ê ˆ+ +
= = = ∞Á ˜ Á ˜Ë ¯ Ë ¯

 
( )1 1 3

tan tan 71.565
1

y

x
f - -Ê ˆ= = = ∞Ë ¯

Therefore, the point P is written as

 (1, 3, 5) (3.162, 71.565 , 5) (5.916, 32.311 , 71.565 )P P P= ∞ = ∞ ∞

 *Example 1.6 Transform the vector

 

2 2

2 2 2 2 2 2
x z

x y yz
A a a

x y z x y z

+
= -

+ + + +

to cylindrical and spherical coordinates.

Solution For A, the components are given as

 

2 2

2 2 2 2 2 2
0x y z

x y yz
A A A

x y z x y z

+
= = = -

+ + + +

Transformation from Cartesian to cylindrical coordinates:

From Eq. (1.25),

 

2 2

2 2 2

2 2 2

cos sin 0 cos sin 0

sin cos 0 sin cos 0 0

0 0 1 0 0 1

r x

y

z z

x y

x y zA A

A A

yzA A

x y z

f

f f f f

f f f f

È ˘+Í ˙
Í ˙È ˘ È ˘ + +È ˘ È ˘ Í ˙Í ˙ Í ˙Í ˙ Í ˙= - = - Í ˙Í ˙ Í ˙Í ˙ Í ˙ Í ˙Í ˙ Í ˙Í ˙ Í ˙Î ˚ Î ˚Î ˚ Î ˚ Í ˙-
Í ˙+ +Î ˚
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\ 
2 2

2 2 2

2 2

2 2 2

2 2 2

cos

sin

r

z

x y
A

x y z

x y
A

x y z

yz
A

x y z

f

f

f

+
=

+ +

+
= -

+ +

= -
+ +

But, 2 2cos sinx r y r x y rf f= = \ + =

Substituting these relations, we get

\ 
2 2

2 2

2 2

cos

sin

sin

r

z

r
A

r z

r
A

r z

rz
A

r z

f

f

f

f

=
+

= -
+

= -
+

Hence, the vector is expressed in cylindrical coordinates as

 
2 2 2 2 2 2 2 2

cos sin sin
(cos sin sin )r z r z

r r rz r
A a a a a a z a

r z r z r z r z
f f

f f f
f f f= - - = - -

+ + + +

 
2 2

(cos sin sin )r z

r
A a a z a

r z
ff f f= - -

+

Transformation from Cartesian to spherical coordinates:

From Eq. (1.34),

 

2 2

2 2 2

2 2 2

sin cos sin sin cos

cos cos cos sin sin

sin cos 0

sin cos sin sin cos

cos cos cos sin sin 0

sin cos 0

x

y

z

A A

A A

A A

x y

x y z

yz

x y z

r

q

f

q f q f q

q f q f q

f f

q f q f q

q f q f q

f f

È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙= - Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙-Î ˚Î ˚ Î ˚
È ˘+Í ˙
Í ˙+ +È ˘ Í ˙Í ˙= - Í ˙Í ˙ Í ˙Í ˙-Î ˚ Í ˙-
Í ˙+ +Î ˚
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\ 
2 2

2 2 2 2 2 2

2 2

2 2 2 2 2 2

2 2

2 2 2

sin cos cos

cos cos sin

sin

x y yz
A

x y z x y z

x y yz
A

x y z x y z

x y
A

x y z

r

q

f

q f q

q f q

f

+
= -

+ + + +

+
= +

+ + + +

+
= -

+ +

But, x = r sin q cos f  y = r sin q sin f  z = r cos q

\ 2 2 2 2 2sin andx y x y zr q r+ = + + =

Substituting these relations, we get

\ 
2 2

2 2

2

2

sin cos sin sin cos

(sin cos sin cos sin )

sin cos cos sin sin cos

(sin cos cos sin cos sin )

sin sin
sin sin

A

A

A

r

q

f

r q f r q fr q

r r

q f r q q f

r q q f r q fr q

r r

q q f r q q f

r q f
q f

r

= -

= -

= +

= +

= - = -

Hence, the vector is expressed in spherical coordinates as

 

( )
2 2

2

2

(sin cos sin cos sin )

sin cos cos sin cos sin sin sin

sin (sin cos cos sin )

sin cos (cos sin sin ) sin sin

A a

a a

a

a a

r

q f

r

q f

q f r q q f

q q f r q q f q f

q q f r q f

q q f r q f q f

= -

+ + -

= -
+ + -

 
2sin (sin cos cos sin ) sin cos (cos sin sin ) sin sinA a a ar q fq q f r q f q q f r q f q f= - + + -

 Example 1.7 Express the following vectors in Cartesian coordinates:

 (a) sin 3 cos cos sinr zA rz a r a r aff f f f= + +

 (b) 2 sinB a ar fr q= +

Solution (a) sin 3 cos cos sinr zA rz a r a r aff f f f= + +
Here, Ar = rz sin f, Af = 3r cos f, Az = r cos f sin f

 

cos sin 0 cos sin 0 sin

sin cos 0 sin cos 0 3 cos

0 0 1 0 0 1 cos sin

x r

y

z z

A A rz

A A r

rA A

f

f f f f f

f f f f f

f f

È ˘ È ˘- -È ˘ È ˘ È ˘
Í ˙ Í ˙Í ˙ Í ˙ Í ˙= =Í ˙ Í ˙Í ˙ Í ˙ Í ˙
Í ˙ Í ˙Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚Î ˚ Î ˚
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Ax = rz sin f cos f – 3r sin f cos f
Ay = rz sin2 f + 3r cos2 f
Az = r cos f sin f

But 2 2

2 2 2 2
, cos , sin

yx
r x y

x y x y
f f= + = =

+ +
Substituting these values

 

2 2 2 2
2 2 2 2 2 2 2 2

2 22 2
2 2 2 2

2 2 2 2 2 2 2 2

2 2
2 2 2 2

3
3

3
3

x

y

z

xy xy xyz xy
A x y z x y

x y x y x y x y

y y zx x
A x y z x y

x y x y x y x y

xy xy
A x y

x y x y

= + - + = -
+ + + +

= + + + = +
+ + + +

= + =
+ +

Hence, the vector in Cartesian coordinates is written as

 

2 2

2 2

1
[( 3 ) ( 3 ) ]x y zA xyz xy a y z x a xya

x y
= - + + +

+

(b) 2 sinB a ar fr q= +

Here, Br = r2, Bq = 0, Bf = sin q

 

2sin cos cos cos sin

sin sin cos sin cos 0

cos sin 0 sin

x

y

z

B

B

B

q f q f f r

q f q f f

q q q

È ˘ È ˘-È ˘
Í ˙ Í ˙Í ˙=Í ˙ Í ˙Í ˙
Í ˙ Í ˙Í ˙-Î ˚ Î ˚Î ˚

 

2

2

2

sin cos sin sin

sin sin sin cos

cos

x

y

z

B

B

B

r q f q f

r q f q f

r q

= -
= +

=

But

 

2 2
2 2 2

2 2 2 2 2 2

2 2 2 2

, sin , cos ,

sin , cos

x y z
x y z

x y z x y z

y x

x y x y

r q q

f f

+
= + + = =

+ + + +

= =
+ +

Substituting these values

 

2 2 2 2
2 2 2

2 2 2 2 2 2 2 2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

( )

1
[ ( ) ]

x

x y x y yx
B x y z

x y z x y x y z x y

y
x x y z

x y z

x x y z y
x y z

+ +
= + + -

+ + + + + +

= + + -
+ +

= + + -
+ +
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2 2 2 2
2 2 2

2 2 2 2 2 2 2 2 2 2

2 2 2

2 2 2

2 2 2

2 2 2

2 2 2 2 2 2

2 2 2

( )

1
[ ( ) ]

( )

y

z

x y x yy x
B x y z

x y z x y x y z x y

x
y x y z

x y z

y x y z x
x y z

z
B x y z z x y z

x y z

+ +
= + + +

+ + + + + +

= + + +
+ +

= + + +
+ +

= + + = + +
+ +

Hence, the vector in Cartesian coordinates is written as

 

2 2 2 2 2 2 2 2 2

2 2 2

1
[{ ( ) } { ( ) } ( ) ]x y zB x x y z y a y x y z x a z x y z a

x y z
= + + - + + + + + + +

+ +

 *Example 1.8 Express the field 2 3( )x zE xyza x y z a= - + + , in cylindrical coordinates, and 

calculate | |E  at the point P (r = 2, f = 60°, z = 3).

Solution In the cylindrical system,

 

cos sin 0 cos sin 0 2

sin cos 0 sin cos 0 0

0 0 1 0 0 1 3( )

r x

y

z z

E E xyz

E E

x y zE E

f

f f f f

f f f f

È ˘ È ˘È ˘ È ˘ È ˘
Í ˙ Í ˙Í ˙ Í ˙ Í ˙= - = -Í ˙ Í ˙Í ˙ Í ˙ Í ˙
Í ˙ Í ˙Í ˙ Í ˙ Í ˙- + +Î ˚ Î ˚ Î ˚Î ˚ Î ˚

 Er = 2 xyz cos f

 Ef = –2 xyz sin f

 Ez = –3(x + y + z)

But, x = r cos f, y = r sin f, z = z

Substituting these values

 

2 2

2 2

2 cos sin cos 2 sin cos

2 cos sin sin 2 sin cos

3( cos sin )

r

z

E r r z r z

E r r z r z

E r r z

f

f f f f f

f f f f f

f f

= =
= - = -
= - + +

Hence, the vector in Cartesian coordinates is written as

 
2 2sin 2 cos sin 2 sin 3( cos sin )r zE r z a r z a r r z aff f f f f f= - - + +

At P (r = 2, f = 60°, z = 3), the vector is given as

 

2 2

2 2

3 1
2 2 3 sin 60 cos 60 24 3 3 5.196

2 4
3 1

2 2 3 sin 60 cos 60 24 9
4 2

1 3
3(2 cos 60 2 sin 60 3) 3 2 2 3 3(4 3) 17.196

2 2

r

z

E

E

E

f

= ¥ ¥ ∞ ∞ = ¥ = =

= - ¥ ¥ ∞ ∞ = - ¥ ¥ = -

Ê ˆ
= - ∞ + ∞ + = - ¥ + ¥ + = - + = -Á ˜Ë ¯
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Hence, at P, 5.196 9 17.196r zE a a af= - -

\ 2 2 2| | (5.196) 9 (17.196) 20.092E = - - =

 Example 1.9 Given the vector field in ‘mixed’ coordinate variables as

 

2

2 2

cos 2
1x y z

x yz x
V a a a

r r r

f Ê ˆ
= + + -Á ˜Ë ¯

Convert the vector completely in spherical coordinates.

Solution Here, 
2

2 2

cos 2
; ; 1x y z

x yz x
V V V

r r r

f Ê ˆ
= = = -Á ˜Ë ¯

But x = r cos f, y = r sin f, z = z

and 2 2

2 2 2 2
, cos , sin

yx
r x y

x y x y
f f= + = =

+ +

\ 
22 2

2 2 2 2 2 2 2 2

2
; ; 1x y z

yz yx x
V V V

x y x y x y x y
= = = - =

+ + + +

\ 
22

2 2 2 2 2 2

2
x y z

yz yx
V a a a

x y x y x y

Ê ˆ Ê ˆÊ ˆ
= + +Á ˜ Á ˜Á ˜+ + +Ë ¯ Ë ¯ Ë ¯

This is the vector in purely Cartesian coordinates.

Now, by relations of Eq. (1.34), we get

 

2

2 2

2 2

2

2 2

sin cos sin sin cos

cos cos cos sin sin

sin cos 0

sin cos sin sin cos
2

cos cos cos sin sin

sin cos 0

x

y

z

V V

V V

V V

x

x y

yz

x y

y

x y

r

q

f

q f q f q

q f q f q

f f

q f q f q

q f q f q

f f

È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙= - - Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙-Î ˚Î ˚ Î ˚
ÈÊ ˆ
Á ˜+Ë ¯

È ˘
Ê ˆÍ ˙= - - Á ˜Í ˙ +Ë ¯Í ˙-Î ˚
Ê ˆ
Á ˜+Ë ¯Î

˘
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙
Í ˙̊

\ 
22

2 2 2 2 2 2

2 2

2 2 2 2 2 2

2

2 2 2 2

2
sin cos sin sin cos

2
cos cos cos sin sin

2
sin cos

yz yx
V

x y x y x y

x yz y
V

x y x y x y

x yz
V

x y x y

r

q

f

q f q f q

q f q f q

f f

Ê ˆ Ê ˆ Ê ˆ
= + +Á ˜ Á ˜ Á ˜+ + +Ë ¯ Ë ¯ Ë ¯

Ê ˆ Ê ˆ Ê ˆ-
= + -Á ˜ Á ˜ Á ˜+ + +Ë ¯ Ë ¯ Ë ¯

Ê ˆ- Ê ˆ= +Á ˜ Á ˜+ +Ë ¯ Ë ¯
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However, x = r sin q cos f; y = r sin q sin f; z = r cos q

Therefore, the vector components in spherical coordinate system are given as

\ 2 3 3 2 2 2

2 2

3 2

2 2 3 2 2 2 2 3 2

2 2

2 2
3 2

2

1
( sin cos 3 sin sin cos )

sin

(sin cos 3sin cos )

1
( sin cos cos 2 sin cos sin sin sin )

sin

cos sin
2 cos cos sin sin

sin

cos cos
2 cos sin

sin

V

V

V

r

q

j

r q q r q f q
r q

q q f q

r q q f r q q f r q f
r q

q f
q f q f

q

q f
f f

q

= +

= +

= - + -

Ê ˆ
= - -Á ˜Ë ¯

Ê ˆ= -ÁË ¯̃

1.7 GENERAL CURVILINEAR COORDINATES

Curvilinear Coordinate System Curvilinear coordinates are a coordinate system for the 

Euclidean space based on some transformation that converts the standard Cartesian coordinate system 

to a coordinate system, with the same number of coordinates in which the coordinate lines are curved.

The name curvilinear coordinates, given by the French mathematician Lame, derives from the fact 

that the coordinate surfaces of the curvilinear systems are curved.

Let

f1(x, y, z), f2(x, y, z), f3(x, y, z) be three independent, unambiguous and smooth functions,

x, y, z be three independent space variables in the Cartesian coordinate system, and

u1, u2, u3 be three constant parameters.

We set the equations

1 1 2 2 3 3( , , ) ( , , ) ( , , )u f x y z u f x y z u f x y z= = =

By this equation, three surfaces are defined that can be labelled by these parameters as shown in 

Fig. 1.16.

The common intersection of the surfaces u1 = constant 1, u2 = constant 2, u3 = constant 3 defines one 

point in the space to which a set of three unique numbers (u1, u2, u3) can be assigned. These numbers 

are called curvilinear coordinates of that point as illustrated in Fig. 1.16.

Position Vector in Curvilinear System We have the set of equations

1 1 2 2 3 3( , , ) ( , , ) ( , , )u f x y z u f x y z u f x y z= = =

These equations can be solved and the solution can be written in the form

1 1 2 3

2 1 2 3

1 1 2 3

( , , )

( , , )

( , , )

x f u u u

y f u u u

z f u u u

¢=
¢=
¢=

(1.42)

This defines the position of the point A in the Cartesian system (x, y, z) using the curvilinear coordinates 

(u1, u2, u3).
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Here,

1 2 3 1 2 3 1 2 3( , , ) ( , , ) ( , , )x y z x y zr xa ya za x u u u a y u u u a z u u u a= + + = + + (1.43)

is the position vector of the point A and , ,x y za a a  are the unit vectors along the coordinate axes of the 

Cartesian system (see Fig. 1.16).

Base Vectors in Curvilinear System An elementary displacement of the point A in the space can 

be described by the differential formula

1 2 3
1 2 3

r r r
d r du du du

u u u

∂ ∂ ∂= + +
∂ ∂ ∂ (1.44)

or 1 1 2 2 3 3d r du a du a du a¢ ¢ ¢= + + (1.45)

Here, 1 2 3, ,a a a¢ ¢ ¢  are called the base vectors of the general curvilinear coordinate system at point 

A(u1, u2, u3). It is to be noted that the absolute values of 1 2 3, ,a a a¢ ¢ ¢  are not equal to 1; they are generally 

not unit vectors. If 1 2 3a a a¢ ¢ ¢^ ^ , we have the orthogonal curvilinear coordinate system.

Metric Coefficients The relation of Eq. (1.45) can be rewritten into the form

1 1 2 3 1 1 2 1 2 3 2 2 3 1 2 3 3 3( , , ) ( , , ) ( , , )d r h u u u du a h u u u du a h u u u du a= + +

where we have put

1 1 1 1 2 2 3 3 3; ;a h a a h a a h a¢ ¢ ¢= = = (1.46)

where 1 2 3, ,a a a  are now the units vectors of the same directions as vectors 1 2 3, ,a a a¢ ¢ ¢. The functions 

h1, h2, h3 are usually called the metric coefficients. The physical meaning of these coefficients can 

be understood when defining the length elements along the particular directions given by vectors 

1 2 3, ,a a a  in the local curvilinear coordinate system at point ( )A r  corresponding with the elementary 

displacements of A(u1, u2, u3) by du1, du2, du3.

Fig. 1.16 To the definition of the curvilinear coordinates of a point A(u1,u2,u3) in the space
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Differential Lengths in Curvilinear Coordinates The elementary displacement d s  from point 

( )A r  to ( )A r d r+  can be described by

1 1 1 2 2 2 3 3 3d s d r h du a h du a h du a= = + + (1.47a)

\ 2 2 2 2 2 2 2
1 1 2 2 3 3ds h du h du h du= + + (1.47b)

It is seen that the products h1du1, h2du2, h3du3 represent the lengths of projections of the elementary 

displacement d s  onto the vectors 1 2 3, ,a a a , respectively. Consequently, the change of the curvilinear 

coordinate dui can be transformed into corresponding displacement in space by multiplying it by hi

corresponding metric coefficient as shown in Fig. 1.17.

Fig. 1.17 To the definition of the elementary displacement ds , surface dS  and volume dV, respectively

Therefore, the metric coefficients can be represented in terms of the elementary lengths as

31 2
1 2 3

1 2 3

dsds ds
h h h

du du du
= = = (1.48)

Differential Areas in Curvilinear Coordinates Elementary coordinate surface can be defined 

corresponding with the elementary changes of a couple of coordinates. It is explicitly defined by the 

relation

i j kdS d s d s= ¥ (1.49)

Using expressions for elementary displacements jd s , kd s  from Eq. (1.47 a), we can write

2 3 2 3 1 1 3 1 3 2 1 2 1 2 3dS h h du du a h h du du a h h du du a= + + (1.50)

In Eq. (1.50), the relations 1 2 3 2 3 1 3 1 2, ,a a a a a a a a a¥ = ¥ = ¥ = , has been used. According to 

Eq. (1.50), a general elementary surface dS  is composed of the three elementary surfaces 1 2 3, ,dS dS dS

oriented along the unit vectors 1 2 3, ,a a a , see Fig. 1.17.

Differential Volume in Curvilinear Coordinates Elementary volume element dV can be 

described by the relation

i idV ds dS= ◊ (1.51)

or using metric coefficients, we obtain

1 2 3 1 2 3dV h h h du du du= (1.52)



  28 Electromagnetic Field Theory

1.8  DIFFERENTIAL ELEMENTS (LENGTHS, AREAS AND
VOLUMES) IN DIFFERENT COORDINATE SYSTEMS

Now, we will consider the generalised curvilinear coordinates for the three different coordinate systems 

and determine the differential elements in these three coordinate systems.

To obtain the differential elements in length, area and volume, we consider the following figures:

Fig. 1.18 (a) Differential elements in Cartesian coordinates, (b) Differential elements in cylindrical coordinates, 

and (c) Differential elements in spherical coordinates

Cartesian Coordinate System In this system as shown in Fig. 1.18 (a), the differential components of 

the general arc ds are identical with the differentials of the coordinates.

\ u1 = s1 = x, u2 = s2 = y, u3 = s3 = z

Hence, the metric coefficients are given as

31 2
1 2 3

1 2 3

1 1 1
dsds ds

h h h
du du du

= = = = = =

Differential displacement is given as

x y zds dxa dya dza= + +
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Differential normal area is given as

x y zdS dydza dxdza dxdya= + +

Differential volume is given as

dV = dxdydz

NOTE

Vector Representation of Surface

Differential surface area is defined as a vector whose magnitude corresponds to the area of the 

surface and whose direction is perpendicular to the surface.

\ = ndS dSa

For closed surface, the outward normal direction is taken as positive direction. For an open surface, 

the normal created by positive periphery according to the right-hand cork screw rule is taken to be 

positive.

If the surface is not a plane, then the surface is subdivided into smaller elements that are considered 

to be plane and a vector surface is considered for each of these elemental surfaces. Vector addition 

of these elemental vector surfaces gives the total surface.

Cylindrical Coordinate System In this system as shown in Fig. 1.18 (b), the differential components 

are given as

\ u1 = r, u2 = f, u3 = z

The differential displacements are obtained from Fig. 1.18 (b) as

ds1 = dr ds2 = rdf ds3 = dz

Hence, the metric coefficients are given as

31 2
1 2 3

1 2 3

1 1
dsds ds rddr dz

h h r h
du dr du d du dz

f

f
= = = = = = = = =

Differential displacement is given as

r zd s dra rd a dzaff= + +

Differential normal area is given as

r zdS rd dza drdza rdrd aff f= + +

Differential volume is given as

dV rdrd dzf=

Spherical Coordinate System In this system as shown in Fig. 1.18 (c), the differential components 

are given as

\ 1 2 3, ,u u ur q f= = =

The differential displacements are obtained from Fig. 1.18 (c) as

1 2 3 sinds d ds d ds dr r q r q f= = =
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Hence, the metric coefficients are given as

31 2
1 2 3

1 2 3

sin
1 sin

dsds dsd d d
h h h

du d du d du d

r r q r q f
r r q

r q f
= = = = = = = = =

Differential displacement is given as

sind s d a d a d ar q fr r q r q f= + +

Differential normal area is given as

2 sin sindS d d a d d a d d ar q fr q q f r q r f r r q= + +

Differential volume is given as

2 sindV d d dr q r q f=

These relations are given in Table 1.1.

Table 1.1 Differential elements in different coordinate systems

Differential 

Elements Cartesian Coordinates Cylindrical Coordinates Spherical Coordinates

Length
x y zd s dxa dya dza= + + r zd s dra rd a dzaff= + +

sin

d s d a d a

d a
r q

f

r r q

r q f

= +
+

Area
x y

z

dS dydza dxdza

dxdya

= +
+

r

z

dS rd dza drdza

rdrd a
ff

f

= +
+

2 sin

sin

dS d d a

d d a

d d a

r

q

f

r q q f

r q r f

r r q

=
+
+

Volume dV = dxdydz dV = rdrdfdz dV = r2 sin q dr dq df

1.9 VECTOR CALCULUS

We now discuss the vector calculus, i.e., integrations and differentiations of vector.

1.9.1 Vector Integration or Vector Integrals

The integration of a vector may be obtained in three ways—line integral, surface integral and volume 

integral as discussed below.

Line Integral The line integral of a vector is the integral of the dot product of the vector and the 

differential length vector tangential to a specified path.

For vector F  and a path l, the line integral is given by

| | cos
b

l a

F dl F dlq◊ =Ú Ú (1.53)

We consider a vector F  and a specified path a–b. As the magnitude of the vector varies from point 

to point, the path is divided into a number of small line segments 1 2, ,dl d l º with vector magnitudes 

1 2, ,F F º Thus, the total work done by the vector F  from a to b is given as
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1 1 2 2 3 3
1

n

i i
i

W F dl F dl F dl F dl
=

= ◊ + ◊ + ◊ + º = ◊Â

Fig. 1.19 (a) Line integral of a vector, and (b) Path of integration of vector field F

If the lengths of the segments tend to zero, this work done can be written as line integral

b

a

W F dl= ◊Ú

If the path of integration is a closed curve, such as abca, the line integral becomes

l

W F dl= ◊Ú

If the line-integration of a vector along a closed path is zero, i.e., 0
l

F d l◊ =Ú , then the vector is 

known as conservative or lamellar vector.

The concept of line integral is used to calculate the electric potential for a given electric field 

intensity or to calculate the total current enclosed by a closed path for a given magnetic field intensity.

*Example 1.10 Find the line integral of the vector 2 2( ) 2x yF x y a xya= - +  around a square of 

side a which has a corner at the origin, one side on the x axis and the other side on the y axis.

Solution

Fig. 1.20 Line integral of a vector
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Here,
B C D A

L A B C D

F dl F dl F dl F dl F dl◊ = ◊ + ◊ + ◊ + ◊Ú Ú Ú Ú Ú

Now,

Along AB, y = z = 0, dy = dz = 0, xd l dxa=

\
3

2 2

0 0

( ) ( )
3

B a a

x x
A x x

a
F dl x a dxa x dx

= =
◊ = ◊ = =Ú Ú Ú

Along BC: x = a, z = 0, dx = dz = 0, yd l dya=

\ 2 2 3

0 0

[( ) 2 ] ( ) 2
C a a

x y y
B y y

F d l a y a aya dya aydy a
= =

◊ = - + ◊ = =Ú Ú Ú

Along CD: y = a, z = 0, dy = dz = 0, xd l dxa=

\
00 0 3

2 2 2 2 2 32
[( ) 2 ] ( ) ( )

3 3

D

x y x
aC x a x a

x
F dl x a a xaa dxa x a dx a x a

= =

È ˘
◊ = - + ◊ = - = - =Í ˙Î ˚Ú Ú Ú

Along DA: x = z = 0, dx = dz = 0, yd l dya=

\
0

0 ( ) 0
A

y
D y a

F d l dya
=

◊ = ◊ =Ú Ú

Therefore, total line integral of the vector is given as

3
3 3 32

2
3 3

L

a
F dl a a a◊ = + + =Ú

*Example 1.11 Compute the line integral of 26 (3 )F i yz j y z k= + + +  along triangular path 

shown in Fig. 1.21.

Fig. 1.21 Triangular path of Example 1.11
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Solution Here, 26 (3 )F i yz j y z k= + + +

dl dxi dyj dzk= + +

\ 2 2{6 (3 ) } ( ) 6 (3 )F dl i yz j y z k dxi dyj dzk dx yz dy y z dz◊ = + + + ◊ + + = + + +

The closed line integral is given as

B C A

L A B C

F dl F dl F dl F dl◊ = ◊ + ◊ + ◊Ú Ú Ú Ú

Along path AB, dx = dz = 0, x = z = 0; y varies from 0 to 1.

\
1

2

0 0

0
B

A z

F d l yz dy

=

È ˘
◊ = =Í ˙

Î ˚
Ú Ú

Along path BC, dx = 0, x = 0; y varies from 1 to 0 and z varies from 0 to 2.

Also, for this path, the equation relating y and z is obtained as

1 2(1 )
1 2

y z
z y+ = fi = -

\

( )

0 2 0 2
2 2

1 0 1 0

0 2
3 2

1 0

0 24 3 2 2

01

2
(3 ) [2(1 )] 3

2

4( 2 ) 3
2

2
4 3

4 3 2 4

1 2 1
4 (6 1)

4 3 2
14

3

C

B y z y z

y z

z
F d l yz dy y z dz y y dy z dz

z
y y y dy dz

y y y z
z

= = = =

= =

È ˘-Ê ˆ◊ = + + = - + +Í ˙Ë ¯Î ˚

= - + + -

È ˘ È ˘
= - + + -Í ˙ Í ˙Î ˚Î ˚

È ˘= - + - + -Í ˙Î ˚

=

Ú Ú Ú Ú Ú

Ú Ú

Along path CA, dx = dy = 0, x = y = 0; z varies from 2 to 0.

\
0

2 0

(3 ) 2
A

C y

F dl y z dz

=

È ˘
◊ = + = -Í ˙

Î ˚
Ú Ú

By addition, we get the closed line integral as

14 8
0 2

3 3
L

F dl◊ = + - =Ú

*Example 1.12 For a given vector, 2x yF xya xa= - , evalu-

ate the line integral F dl◊Ú  over the path shown in Fig. 1.22.

Solution Here,

– 2 , ,x y x y z zF xya xa d l dxa dya dza d S dxdya= = + + = Fig. 1.22 Path of Example 1.12
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\ ( 2 ) ( ) ( 2 )x y x y zF d l xya xa dxa dya dza xydx xdy◊ = - ◊ + + = -

Along the path OA, y = 0, x varies from 0 to 3.

\ 0
A

O

F dl◊ =Ú

Along the path AB, x varies from 3 to 0 and y varies from 0 to 3. Also, along this path, the equation 

relating x and y is obtained as

 x2 + y2 = 9

\ 

( )

0 3

3 0

0 3
2 2

3 0

30
3

2 2 12

03

( 2 )

( 9 ) 2( 9 )

1
(9 ) 9 9 sin

3 3

9 1
2

B

A x y

x y

F d l xydx xdy

x x dx y dy

y
x y y

p

= =

= =

-

◊ = -

= - - -

È ˘= - - - - +Í ˙Î ˚

= - +

Ú Ú Ú

Ú Ú

Along the path BO, x = 0, y varies from 3 to 0.

\ 0
A

O

F dl◊ =Ú

By addition, we get ( )9 1
2

L

F dl
p◊ = - +Ú

Also, ( 2)

2 0

x y z

z

a a a

F x a
x y z

xy x

∂ ∂ ∂— ¥ = = - +
∂ ∂ ∂

-

\ 

( )

22

3 3 3 3

0 0 0 0

993 3 2

0 0 0 0
33 2 3

2 2 1

00

( ) [ ( 2) ] ( ) ( 2)

( 2) 2
2

9 92 9 9 9sin2 2 6 3

9 1
2

z z
S x y x y

yy

y x y

y

F d S x a dxdya x dxdy

x
x dxdy x dy

y y yy dy y y y

p

= = = =

--

= = =

-

=

— ¥ ◊ = - + ◊ = - +

Ê ˆ
= - + = - +Á ˜Ë ¯

Ê ˆ- È ˘= - + - = -Á ˜ - + - +Í ˙Ë ¯ Î ˚

= - +

Ú Ú Ú Ú Ú

Ú Ú Ú

Ú

 Example 1.13 Calculate the circulation of cos sinr zA r a z af f= +  around the edge L of the 

wedge defined by 0 £ r £ 2, 0 £ f £ 60°, z = 0 as shown in Fig. 1.23.
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Fig. 1.23 Path of Example 1.13

Solution Here, cos sinr zA r a z af f= +

r zdl dra rd a dzaff= + +

\ ( cos sin ) ( ) ( cos sin )r z r zA d l r a z a dra rd a dza r dr z dzff f f f f◊ = + ◊ + + = +

Since the path is on the xy plane, dz = 0.

\ cosA dl r drf◊ =

A B O

L O A B

A dl A dl A dl A dl◊ = ◊ + ◊ + ◊Ú Ú Ú Ú

Along the path OA, r varies from 0 to 2.

\
2

0 0

cos 2
A

O

A dl r dr

f

f

=

È ˘
◊ = =Í ˙

Î ˚
Ú Ú

Along the path AB, r is constant and so the integration is zero.

\ 0
B

A

A dl◊ =Ú

Along the path BO, r varies from 2 to 0.

\
0

2 60

1
cos ( 2) 1

2

O

B

A dl r dr

f

f

= ∞

È ˘
◊ = = ¥ - = -Í ˙

Î ˚
Ú Ú

By addition, we get the closed line integral as, 2 0 1 1
L

A dl◊ = + - =Ú .

 Example 1.14 Using the concept of line integral, find the periphery of a circle of radius a.

Solution In cylindrical coordinates, the differential length is, dl ad aff=
By line integral, the periphery is obtained as

2 2 2

0 0 0

( ) ( ) 2a dl a ad a ad a
p p p

f f f
f f f

f f p
= = =

◊ = ◊ = =Ú Ú Ú
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Surface Integral For a vector F , continuous in a region 

containing a smooth surface S, the surface integral or the flux 

of F  through S is defined as,

| | cosn
S S S

F d S F a dS F dSy q= ◊ = ◊ =Ú Ú Ú (1.54)

where, na  is the unit normal vector to the surface S.

We consider a surface S. We divide the surface into 

infinitesimal surfaces 1 2, ,d S d S º which are treated as the 

vector quantities. Let 1 2, ,F F º be the vector magnitudes at 

the elemental surfaces, respectively. Thus, the sum of the 

scalar products 1 1 2 2, ,F d S F d S◊ ◊ º is written as

1 1 2 2 3 3
1

n

i i
i

F d S F d S F d S F d S
=

◊ + ◊ + ◊ + = ◊Â

If the elemental surfaces areas tend to zero, this can be written as surface-integral

S

F d Sy = ◊Ú

If the surface is a closed surface, the surface integral is written as

S

F d Sy = ◊Ú

For a closed surface, the surface integral, 
S

F d S◊Ú  is referred to as the net outward flux of F  from 

the surface. If the surface integral of a vector over a closed surface is zero, i.e., 0
S

F d S◊ =Ú , then the 

vector is known as solenoidal vector. The concept of surface integral is necessary to calculate the flux 

or current from the flux or current density over a surface.

 Example 1.15 Using the concept of surface integral, find the surface area of a sphere of radius 

a.

Solution In spherical coordinates, the differential surface in the perpendicular direction is given as

2 sind S a d d arq q f=

By surface integral, the surface area of the sphere is obtained as

2
2 2 2

0
0 0

sin 2 ( cos ) 4
S

S a d S a d d a a
p p

p
r

q f

q q f p q p
= =

= ◊ = = ¥ ¥ - =Ú Ú Ú

*Example 1.16 Use the cylindrical coordinate system to find the area of a curved surface on the 

right circular cylinder having radius = 3 m and height = 6 m and 30° £ f £ 120°.

Solution Here, the differential surface is given as

rd S rd dzaf=

Fig. 1.24 Surface integral
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Taking the surface integral, the area of the curved surface is obtained as

( )2 /3 6
2

/6 0
3

2
3 6 9 m

3 6r
S z

r

S a d S rd dz
p

f p

p p
f p

= = =

= ◊ = = ¥ ¥ - =Ú Ú Ú

*Example 1.17 Use the spherical coordinate system to find the area of the strip a £ q £ b on the 

spherical shell of radius ‘a’. What results when a = 0 and b = p?

Solution For a fixed radius of a, the elemental 

surface is

2 2sin sin
a

d S d d a a d d ar r
r

r q q f q q f
=

= =

Hence, the area of the strip is given as

2
2

0

2

2

sin

2 ( cos )

2 (cos cos )

S

S d S a a d d

a

a

b p

r
q a f

b
a

q q f

p q

p a b

= =
= ◊ =

= ¥ ¥ -
= -

Ú Ú Ú

For a = 0 and b = p, the area is

S = 2pa2 (cos 0 – cos p) = 4pa2

This is the area of a sphere of radius a.

 Example 1.18 Given rs = (x2 + xy); calculate 

Ú rsdS over the region y £ x2, 0 < x < 1.

Solution
2 2

2 11 1 12 5 5 6
2 2 4

0 0 00 0 0 0

17
( )

2 2 5 12 60

x xx

s
x y x x

xy x x x
dS x xy dxdy x y dx x dxr

= = = =

Ê ˆ Ê ˆ Ê ˆ
= + = + = + = + =Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Ú Ú Ú Ú Ú

 Example 1.19 Given 1
2 ;r z

k
F a a k z

r
= +  evaluate the scalar surface integral 

s

F d S◊Ú  over the 

surface of a closed cylinder about the z-axis specified by z = ±3 and r = 2.

Solution The cylinder has three surfaces as follows.

Circular 1 Circular 2 Curveds

F d S F d S F d S F d S◊ = ◊ + ◊ + ◊Ú Ú Ú Ú

For the upper circular surface

3, n zz a a= =

2 2 2 2
1

2 2 2
Circular 1 0 0 0 0

3

( ) 3 12r z z
r r

z

k
F d S a a k z rdrd a k rdrd k

r

p p

f f

f f p
= = = ==

Ê ˆ◊ = + ◊ = =Ë ¯Ú Ú Ú Ú Ú

Fig. 1.25 Arrangement of Example 1.17
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For the bottom circular surface

3, n zz a a= - = -

2 2
1

2 2
Circular 1 0 0

3

( ) 12r z z
r

z

k
F d S a a k z rdrd a k

r

p

f

f p
= = = -

Ê ˆ◊ = + ◊ - =Ë ¯Ú Ú Ú

For the curved surface

2, n rr a a= =

2 3 2 3
1

2 1 1
Circular 1 0 3 0 3

2

( ) 12r z r
z z

r

k
F d S a a k z rd a k d dz k

r

p p

f f

f f p
= = - = = -=

Ê ˆ◊ = + ◊ = =Ë ¯Ú Ú Ú Ú Ú

By addition, total surface area of the closed cylinder is given as

1 212 ( 2 )
s

F d S k kp◊ = +Ú

 Example 1.20 Evaluate n
S

r a dS◊Ú  where S is a closed surface.

Solution We know, x y zr xa ya za= + +

\ 3 3 { 3, see Example 36 (b)}n
S V V

r a dS rdv dv V r◊ = — ◊ = = — ◊ =Ú Ú Ú

where V is the volume enclosed by the surface S.

Volume Integral The volume integral of a scalar quantity F over a volume V is written as

V

U Fdv= Ú (1.55)

The concept of volume integral is necessary to calculate the charge or mass of an object, which are 

distributed in the volume.

 Example 1.21 Using the concept of volume integral, find the volume of a sphere of radius a.

Solution In spherical coordinates, the differential volume is given as

2 sindv d d dr q r q f=

where

0

0

0 2

ar

q p

f p

£ £
£ £
£ £

By volume integral, the volume of the sphere is obtained as

2 3
2 2 3

0
0 0 0 0

4
sin 2 ( cos ) 4

3 3

a a

v

a
v dv d d d d a

p p
p

r q f r

r q r q f p q r r p p
= = = =

= = = ¥ - ¥ = ¥ =Ú Ú Ú Ú Ú
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 Example 1.22 Obtain the expression for the volume of a sphere of radius a using the concept 

of volume integral.

Solution Here, the differential volume in spherical coordinates is given as

2 sindv d d dr q r q f=

where

0

0

0 2

a r

q p

f p

£ £
£ £
£ £

The volume of the sphere is obtained by the volume integral as given.

2 3
2 2 3

0
0 0 0

4
sin sin 2 ( cos )

3 3

a

v

a
V d d d d d d a

p p
p

f q r

r q r q f r q r q f p q p
= = =

= = = ¥ ¥ - =Ú Ú Ú Ú

1.9.2 Vector Differentiations

In order to understand vector differentiation, we introduce an operator known as del operator or 

differential vector operator.

Differential Vector Operator (—) or Del Operator The differential vector operator (—) or 

Del or Nabla, in Cartesian coordinates, is defined as

x y za a a
x y z

∂ ∂ ∂— = + +
∂ ∂ ∂

(1.56)

This Del is merely a vector operator but not a vector quantity. When it operates on a scalar function, a 

vector is created. Since a vector, in general, is a function of the space and time both, the del operator

is a vector space function operator. It is defined in terms of partial derivatives with respect to space.

In Eq. (1.56), del has been expressed in Cartesian coordinates. However, this operator can be 

expressed in general curvilinear coordinates as

1 2 3
1 2 3

a a a
s s s

∂ ∂ ∂— = + +
∂ ∂ ∂ (1.57)

But, we know that, dsi = hidui; replacing this in Eq. (1.57), we get

1 2 3
1 1 2 2 3 3

1 1 1
a a a

h u h u h u

∂ ∂ ∂— = + +
∂ ∂ ∂ (1.58)

Substituting the values of hi in different coordinate systems, we obtain the relation of del in three 

different coordinate systems as

(Cartesian coordinates)x y za a a
x y z

∂ ∂ ∂— = + +
∂ ∂ ∂

(1.59a)

1
(Cylindrical coordinates)r za a a

r r zff
∂ ∂ ∂= + +
∂ ∂ ∂

(1.59b)

1 1
(Spherical coordinates)

sin
a a ar q jr r q r q f

∂ ∂ ∂= + +
∂ ∂ ∂

(1.59c)
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Corresponding to three different vector multiplications, there are three possible operations of —.

These operations are:

1. Gradient of a scalar F, written as, —F;

2. Divergence of a vector A, written as, A— ◊ ;

3. Curl of a vector A , written as, A— ¥ ; and

Gradient of a Scalar

Definition The gradient of a scalar function is both 

the magnitude and the direction of the maximum space 

rate of change of that function.

Mathematical Expression of Gradient We con-

sider a scalar function F. A mathematical expression for 

the gradient can be obtained by evaluating the difference 

in the field dF between the points P1 and P2.

Here, F1 and F2 are the contours on which F is constant.

( )x y z x y z

F F F
dF dx dy dz

x y z

F F F
a a a dxa dya dza

x y z

G dl

∂ ∂ ∂= + +
∂ ∂ ∂
∂ ∂ ∂Ê ˆ= + + ◊ + +Á ˜∂ ∂ ∂Ë ¯

= ◊

where x y z

F F F
G a a a

x y z

∂ ∂ ∂Ê ˆ= + +Á ˜∂ ∂ ∂Ë ¯

and, x y zd l dxa dya dza= + + = differential length = differential displacement from P1 to P2

\ cosdF G dl Gdl q= ◊ =

\ cos
dF

G
dl

q= ;  where q is the angle between G  and dl

For maximum ( )dF

dl
, q = 0°, i.e., when dl  is in the direction of G.

\
max

;
dF dF

G
dl dn

= =  where, 
dF

dn
 is the normal derivative.

Thus, by definition of gradient, we have the mathematical expression of gradient in Cartesian 

coordinates given as

Grad x y z

F F F
F F a a a

x y z

∂ ∂ ∂= — = + +
∂ ∂ ∂

(1.60)

Physical Interpretation The gradient of a scalar quantity is the maximum space rate of change of 

the function.

For example, we consider a room in which the temperature is given by a scalar field T, so at any 

point (x, y, z) the temperature is T(x, y, z) (assuming that the temperature does not change with time). 

Then, at any arbitrary point in the room, the gradient of T indicates the direction in which the temperature 

Fig. 1.26 Gradient of a scalar quantity
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rises most rapidly. The magnitude of the gradient will determine how fast the temperature rises in that 

direction.

Gradient in General Curvilinear Coordinates Let

F(u1, u2, u3) be a scalar function. The u1 component of the 

gradient of F, by definition, is the maximum space rate of 

change of the function, i.e.,

1

1
0 1 1 1 1

( ) ( ) 1
(Grad )

du

F G F O F
F Lim

h du h uÆ

- ∂= =
∂

Similarly, considering directions 2 and 3 and so, the 

resultant expression of the gradient of F is given as

1 2 3
1 1 2 2 3 3

1 1 1F F F
F a a a

h u h u h u

∂ ∂ ∂— = + +
∂ ∂ ∂ (1.61)

Substituting the values of hi from Section 1.8, we get the 

relation of gradient in three different coordinate systems as

( )

( )

( )

Cartesian Coordinates

1
Cylindrical Coordinates

1 1
Spherical Coordinates

sin

x y z

r z

F F F
F a a a

x y z

F F F
a a a

r r z

F F F
a a a

f

r q f

f

r r q r q f

∂ ∂ ∂— = + +
∂ ∂ ∂

∂ ∂ ∂= + +
∂ ∂ ∂

∂ ∂ ∂= + +
∂ ∂ ∂

(1.62a)

(1.62b)

(1.62c)

Properties of Gradient

1. The magnitude of the gradient of a scalar function is the maximum rate of change of the function 

per unit distance.

2. The direction of the gradient of a scalar function is in the direction in which the function changes 

most rapidly.

3. The gradient of a scalar function at any point is always perpendicular to the surface that passes 

through the point and over which the function is constant (points a and b in Fig. 1.26).

4. The projection of the gradient of a scalar function (say, —S) in the direction of a unit vector a ,

i.e., S a— ◊  is known as the directional derivative of the function S along unit vector a.

 Example 1.23 Find the gradient of the following scalar fields:

(a) F = x2 y + ez

(b) V = rz sin f + z2 cos2 f + r2

(c) S = cos q sin f ln r + r2 f.

Solution (a) The gradient in Cartesian coordinates is given as

22 z
x y z x y z

F F F
F a a a xa x a e a

x y z

∂ ∂ ∂— = + + = + +
∂ ∂ ∂

Fig. 1.27 General Curvilinear coordinates
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(b) The gradient in cylindrical coordinates is given as

2 2

2
2

1

1
( sin 2 ) ( cos 2 cos sin ) ( sin 2 cos )

( sin 2 ) cos sin 2 ( sin 2 cos )

r z

r z

r z

V V V
V a a a

r r z

z r a rz z a r z a
r

z
z r a z a r z a

r

f

f

f

f

f f f f f f

f f f f f

∂ ∂ ∂— = + +
∂ ∂ ∂

= + + - + +

Ê ˆ
= + + - + +Á ˜Ë ¯

(c) The gradient in spherical coordinates is given as

2

1 1

sin

cos sin 1 1
2 sin sin ln (cos cos ln )

sin

cos sin sin sin cot
2 ln cos ln cosec

S S S
S a a a

a a a

a a a

r q f

r q f

r q f

r r q r q f

q f
rf q f r q f r r

r r r q

q f q f q
rf r f r r q

r r r

∂ ∂ ∂— = + +
∂ ∂ ∂
Ê ˆ= + + + +Á ˜Ë ¯
Ê ˆ Ê ˆ= + + + +Á ˜ Á ˜Ë ¯ Ë ¯

 Example 1.24 Find the gradient of the following scalar fields:

(a) V = 4xz2 + 3 yz

(b) V = 2r(1 + z2)cos f
(c) V = r2 cos q cos f

Solution

(a) V = 4xz2 + 3 yz

2 2 2 2(4 3 ) (4 3 ) (4 3 ) 4 3 (8 3 )x y z x y zV xz yz a xz yz a xz yz a z a za xz y a
x y z

∂ ∂ ∂— = + + + + + = + + +
∂ ∂ ∂

(b) V = 2r(1 + z2)cos f

2 21
2(1 ) cos 2(1 ) sin 4 cosr z r z

V V V
V a a a z a z a rz a

r r zf ff f f
f

∂ ∂ ∂— = + + = + - + +
∂ ∂ ∂

(c) V = r2 cos q cos f

\ 1 1

sin

2 cos cos sin cos cot sin

V V V
V a a a

a a a

r q f

r q f

r r q r q f

r q f r q f r q f

∂ ∂ ∂— = + +
∂ ∂ ∂

= - +

*Example 1.25 Find the rate at which the scalar function V = r2 sin 2f in cylindrical coordinates 

increases in the direction of the vector rA a af= +  at the point ( )2, , 0
4

p
.

Or,

Find the gradient of the scalar function V = r2 sin 2f and the directional derivative of the function in the 

direction ( )ra af+  at the point ( )2, , 0
4

p
.
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Solution The gradient in cylindrical coordinates is given as

 

1
2 sin 2 2 cos 2 2 (sin 2 cos 2 )r z r r

V V V
V a a a r a r a r a a

r r zf f ff f f f
f

∂ ∂ ∂— = + + = + = +
∂ ∂ ∂

The direction derivative is given as

 
(2 sin 2 2 cos 2 ) 2 sin 2 2 cos 2

| | 2

r
A r

a aA
V a V r a r a r r

A

f
ff f f f

+Ê ˆ
— ◊ = — ◊ = + ◊ = +Á ˜Ë ¯

At ( )2, , 0
4

p
, the directional derivative is given as

 2 2 sin 2 2 cos 2 2
2 2AV a
p p— ◊ = ¥ + ¥ =

 *Example 1.26 Find ( )1

r
— , where x y zr xa ya za= + +

 Or

Show that for a moving field point and a fixed source point, ( ) 2

1 1
Grad ra

r r

Ê ˆ= - Á ˜Ë ¯ , where r is the 

distance between the source point and the field point.

Solution Here, x y zr xa ya za= + +

\ 2 2 2r x y z= + +

\ ( )
2 2 2 2 2 2 2 2 2

2 2 2 3/2 2 2 2 3/2 2 2 2 3/2

2 2 2 3/2

3

2

1 1 1 1

21 2 1 1 2

2 2 2( ) ( ) ( )

( )

{ }

1

x y z

x y z

x y z

r

r

a a a
r x y zx y z x y z x y z

yx z
a a a

x y z x y z x y z

xa ya za

x y z

r
r ra

r

a
r

∂ ∂ ∂Ê ˆ Ê ˆ Ê ˆ— = + +
Á ˜ Á ˜ Á ˜∂ ∂ ∂+ + + + + +Ë ¯ Ë ¯ Ë ¯

= - - - - -
+ + + + + +

+ +
= -

+ +

= - =

Ê ˆ= - Á ˜Ë ¯

This problem can be solved easily in cylindrical coordinates as follows.

 ( ) ( ) 2

1 1 1
r ra a

r r r r

∂ Ê ˆ— = = - Á ˜Ë ¯∂

\ ( ) 3 2

1 1
r

r
a

r r r

Ê ˆ— = - = - Á ˜Ë ¯

Divergence of a Vector

Definition Divergence of a vector at any point is defined as the limit of its surface integral per unit 

volume as the volume enclosed by the surface around the point shrinks to zero.
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\
0 0

div Lim Lim

n
S S

v v

F d S F a dS

F F
v vÆ Æ

Ê ˆ Ê ˆ◊ ◊
Á ˜ Á ˜= — ◊ = =Ë ¯ Ë ¯

Ú Ú
(1.63)

where v is the volume of an arbitrarily shaped region in space that includes the point, S is the surface 

of that volume, and the integral is a surface integral with na  being the outward normal to that surface.

Figures 1.28 (a), (b) and (c) show three cases of positive, negative and zero divergence.

Fig. 1.28 (a) Positive divergence, (b) Negative divergence, and (c) Zero divergence

Mathematical Expression of Divergence We consider 

a hypothetical infinitesimal cubical box oriented along the 

coordinate axes around an infinitesimal region of space.

We consider a vector V  at a point P(x, y, z). Let, V1, V2, and 

V3 be the components of V  along the three coordinate axes.

In order to compute the surface integral, we see that there 

are six surfaces to this box, and the net content leaving the box 

is therefore, simply the sum of differences in the values of the 

vector field along the three sets of parallel surfaces of the box.

The component vectors are given as follows.

Along x-direction: at front surface, 1
1

1

2

V
V x

x

∂Ê ˆ+ DË ¯∂

at back surface, 1
1

1

2

V
V x

x

∂Ê ˆ- DË ¯∂

Along y-direction: at left surface, 2
2

1

2

V
V y

y

∂Ê ˆ- DÁ ˜∂Ë ¯

at back surface, 2
2

1

2

V
V y

y

∂Ê ˆ+ DÁ ˜∂Ë ¯

Along z-direction: at top surface, 3
3

1

2

V
V z

z

∂Ê ˆ+ DË ¯∂

at bottom surface, 3
3

1

2

V
V z

z

∂Ê ˆ- DË ¯∂

Therefore, the net outward flux of the vector is

Along x-direction: 1 1 1
1 1

1 1

2 2

V V V
V x y z V x y z x y z

x x x

∂ ∂ ∂Ê ˆ Ê ˆ+ D D D - - D D D = D D DË ¯ Ë ¯∂ ∂ ∂

Fig. 1.29 To derive expression for 

divergence in Cartesian 

coordinates
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Along y-direction: 2 2 2
2 2

1 1

2 2

V V V
V y x z V y x z x y z

y y y

∂ ∂ ∂Ê ˆ Ê ˆ+ D D D - - D D D = D D DÁ ˜ Á ˜∂ ∂ ∂Ë ¯ Ë ¯

Along z-direction: 3 3 3
3 3

1 1

2 2

V V V
V z x y V z x y x y z

z z z

∂ ∂ ∂Ê ˆ Ê ˆ+ D D D - - D D D = D D DË ¯ Ë ¯∂ ∂ ∂

The total net outward flow, considering all thee directions, is

3 31 2 1 2

S

V VV V V V
F d S x y z v

x y z x y z

∂ ∂∂ ∂ ∂ ∂Ê ˆ Ê ˆ◊ = + + D D D = + + DÁ ˜ Á ˜∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯Ú

where Dv = DxDyDz is the infinitesimal volume of the cube.

Hence, the total net outward flow per unit volume is given as

31 2S

F d S
VV V

v x y z

◊
∂∂ ∂Ê ˆ= + +Á ˜D ∂ ∂ ∂Ë ¯

Ú

By definition, this is the divergence of the vector.

\ 31 2div
VV V

F F
x y z

∂∂ ∂Ê ˆ= — ◊ = + +Á ˜∂ ∂ ∂Ë ¯
(1.64)

Physical Interpretation The physical significance of the divergence of a vector field is the rate at 

which the density of a vector exits a given region of space.

In other words, divergence of a vector field at a given point is an operator that measures the 

magnitude of the source or sink, in terms of a signed scalar. More technically, the divergence represents 

the volume density of the outward flux of a vector field from an infinitesimal volume around a given 

point.

For example, we consider air as it is heated or cooled. The relevant vector field for this example is 

the velocity of the moving air at a point. If air is heated in a region, it will expand in all directions such 

that the velocity field points outward from that region. Therefore, the divergence of the velocity field 

in that region would have a positive value, as the region is a source. If the air cools and contracts, the 

divergence is negative and the region is called a sink.

Divergence in General Curvilinear Coordinates We consider the general curvilinear 

coordinates as shown in Fig. 1.29. We consider the vector

1 1 2 2 3 3F F a F a F a= + +

In order to find a general expression for divergence of the vector, we need to calculate the closed 

surface integral of the vector per unit volume for the elemental volume as shown in Fig. 1.27(See page 

41).

The contributions to the closed surface integral 
S

F dSÊ ˆ◊
Ë ¯
Ú  through the six surfaces are given as 

follows.

1. Through surface OABC: Taken in the direction of the outward normal is

1 2 3 2 3
OABC

F dS F h h du du◊ = -Ú
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2. Through surface GFED: 1 2 3 2 3 1 2 3 1 2 3
1

( )
GFED

F dS F h h du du F h h du du du
u

∂◊ = +
∂Ú

3. Through surface OCDG: 2 1 3 1 3
OCDG

F dS F h h du du◊ = -Ú

4. Through surface ABEF: 2 1 3 1 3 2 1 3 1 2 3
2

( )
ABEF

F dS F h h du du F h h du du du
u

∂◊ = +
∂Ú

5. Through surface OAFG: 3 1 2 1 2
OAFG

F dS F h h du du◊ = -Ú

6. Through surface BCDE: 3 1 2 1 2 3 1 2 1 2 3
3

( )
BCDE

F dS F h h du du F h h du du du
u

∂◊ = +
∂Ú

Thus, the closed surface integral is given as

1 2 3 2 1 3 3 1 2 1 2 3
1 2 3

( ) ( ) ( )
S

F dS F h h F h h F h h du du du
u u u

∂ ∂ ∂È ˘◊ = + +Í ˙∂ ∂ ∂Î ˚
Ú

Thus, the surface integral per unit volume is obtained as

1 2 3 2 1 3 3 1 2 1 2 3
1 1 2 2 3 3 1 1 2 2 3 3 1 2 3

1 2 3 2 1 3 3 1 2
1 2 3 1 2 3

1
( ) ( ) ( )

1
( ) ( ) ( )

S S

F dS F dS

F h h F h h F h h du du du
dv h du h du h du h du h du h du u u u

F h h F h h F h h
h h h u u u

◊ ◊
∂ ∂ ∂È ˘= = + +Í ˙∂ ∂ ∂Î ˚

∂ ∂ ∂È ˘= + +Í ˙∂ ∂ ∂Î ˚

Ú Ú

By definition, this is the divergence of the vector.

1 2 3 2 1 3 3 1 2
1 2 3 1 2 3

1
( ) ( ) ( )F F h h F h h F h h

h h h u u u

∂ ∂ ∂È ˘— ◊ = + +Í ˙∂ ∂ ∂Î ˚
(1.65)

Substituting the values of hi from Section 1.8, we get the relation of divergence in three different 

coordinate systems as

2

2

(Cartesian coordinates)

1 1
( ) (Cylindrical coordinates)

1 1 1
( ) ( sin ) (Spherical coordinates)

sin sin

yx z

z
r

FF F
F

x y z

F F
rF

r r r z

F
F F

f

f
r q

f

r q
r r q q r q fr

∂∂ ∂
— ◊ = + +

∂ ∂ ∂
∂ ∂∂= + +

∂ ∂ ∂
∂∂ ∂= + +

∂ ∂ ∂

(1.66a)

(1.66b)

(1.66c)

Properties of Divergence

1. The result of the divergence of a vector field is a scalar.

2. Divergence of a scalar field has no meaning.

3. Divergence may be positive, negative or zero. A vector field with constant zero divergence is 

called solenoidal; in this case, no net flow can occur across any closed surface. For example, for 
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an incompressible fluid, if V  denotes the quantity of the fluid at any point, then 0V— ◊ = , i.e., an 

incompressible fluid cannot diverge from, nor converge towards a point.

 On the other hand, when the valve of a steam boiler is opened, there is a net outward flow of 

steam at each elemental volume. So, there exists a positive divergence. When an evacuated bulb 

is broken, there is a transient negative divergence in the space that was inside the bulb before 

breaking it.

 Example 1.27 Find the divergence of the vector field, 22 x y zF xya za yz a= + + , at point (2, –1, 3).

Solution The divergence of the vector is given as

 
2(2 ) ( ) ( ) 2 2

yx z
FF F

F xy z yz y yz
x y z x y z

∂∂ ∂ ∂ ∂ ∂— ◊ = + + = + + = +
∂ ∂ ∂ ∂ ∂ ∂

At point, (2, –1, 3), the divergence if obtained as

 (2, 1, 3)
2 2 2 ( 1) 2 ( 1) 3 8F y yz

-
— ◊ = + = ¥ - + ¥ - ¥ = -

 Example 1.28 If 2 3 2 22A x zi y z j xy zk= - + , find div A  at the point (1, –1, 1).

Solution

 
2 3 2 2 2 2 2

(1, –1,1)

( ) ( 2 ) ( ) 2 6

2 – 6 1 3

A x z y z xy z xz y z xy
x y z

A

∂ ∂ ∂— ◊ = + - + = - +
∂ ∂ ∂

— ◊ = + = -\

 Example 1.29 The electric field at a point P, expressed in cylindrical coordinate system is 

given by

 
2 216 sin 3 cosrE r a r aff f= +

Find the value of divergence of the field, if the location of the point P is given by (1, 2, 3) m in 

Cartesian coordinate system.

Solution Here, x = 1, y = 2, z = 3

\ ( )2 2 1 1 2
5, tan tan 63.43 , 3

1

y
r x y z

x
f - -Ê ˆ= + = = = = ∞ =Ë ¯

For the electric field, 2 216 sin 3 cosrE r a r aff f= + , the divergence in cylindrical coordinates is given 

as

 

3 21 1 1 1
( ) (16 sin ) (3 cos ) (0)

48 sin 3 sin

45 sin

z
r

E E
E rE r r

r r r z r r r z

r r

r

f
f f

f f

f f

f

∂ ∂∂ ∂ ∂ ∂— ◊ = + + = + +
∂ ∂ ∂ ∂ ∂ ∂

= -
=

Hence, the divergence of the field at point P is given as

 45 sin 45 5 sin (63.43 ) 90E r f— ◊ = = ¥ ∞ =
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 *Example 1.30 An electric field at point P, expressed in cylindrical coordinate system is given 

by

 
2 26 sin 2 cosrE r a r aff f= +

Find the value of the divergence of the field if the location of the point P is given by (1, 1, 1) in 

Cartesian coordinate system.

Solution The divergence in cylindrical coordinate system is given as

 

3 21 1 1 1
( ) (6 sin ) (2 cos ) 0

18 sin 2 sin

16 sin

z
r

E E
E rE r r

r r r z r r r

r r

r

f
f f

f f

f f

f

∂ ∂∂ ∂ ∂— ◊ = + + = + +
∂ ∂ ∂ ∂ ∂

= -
=

From the relation between the Cartesian and cylindrical coordinates, we have

 
2 2

2 2
sin

y
r x y

x y
f= + =

+

\ 2 2

2 2
16 sin 16 16

y
E r x y y

x y
f— ◊ = = ¥ + ¥ =

+
Hence, the divergence at point (1, 1, 1) is

\ 16 16 1 16E y— ◊ = = ¥ =

 Example 1.31 Determine the divergence of the vector field given as

 
21

cos sin 2 sinV a a ar q fr q q r q
r

= - +

Solution The divergence in spherical coordinate system is given as

 

2
2

3 2 2
2

2

2

1 1 1
( ) ( sin )

sin sin

1 1 1 1
( cos ) sin (2 sin )

sin sin

1
3 cos 2 sin cos 0

sin

2
3 cos

V
V V V

f
r qr q

r r q q r q fr

r q q r q
r r q q r r q fr

q q q
r q

q
r

∂∂ ∂— ◊ = + +
∂ ∂ ∂
∂ ∂ ∂Ê ˆ= + - +Á ˜∂ ∂ ∂Ë ¯

= - +

Ê ˆ
= -Á ˜Ë ¯

Curl of a Vector

Definition The curl of a vector field, denoted as curl F  or F— ¥ , is defined as the vector field 

having magnitude equal to the maximum circulation at each point and to be oriented perpendicularly to 

this plane of circulation for each point.

Mathematically, it is defined as the limit of the ratio of the integral of the cross product of the vector 

with outward drawn normal over a closed surface, to the volume enclosed by the surface, as the volume 

tends to zero.
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0 0
Curl Lim Lim

n
S S

v v

F a dS F dS

F
v vÆ Æ

Ê ˆÊ ˆ¥ ¥
Á ˜Á ˜= =Ë ¯ Ë ¯

Ú Ú
(1.67)

In other words, the component of curl of a vector in the direction of the unit vector na  is the ratio of 

the line integral of the vector around a closed contour, to the area enclosed by the contour, as the area 

tends to zero.

\
0

Curl Lim l
n

S

F d l

F a
SD Æ

Ê ˆ◊
Á ˜= Á ˜DË ¯

Ú
(1.68)

where, the direction of the contour is obtained from right hand cork-screw rule.

Mathematical Expression of Curl In order to find an expression for the curl of a vector, we 

consider an elemental area in the yz-plane as shown in Fig. 1.30.

We define a vector F  at the centre of the area P(x, y, z).

The closed line integral of F  around the path abcd is,

a b c d

l d a b c

F d l F dl F dl F dl F dl◊ = ◊ + ◊ + ◊ + ◊Ú Ú Ú Ú Ú

Now,

2

a
y

y
d

F z
F dl F y

z

∂Ê ˆD
◊ = - DÁ ˜Ë ¯∂Ú

2

b
z

z
a

F y
F dl F z

y

∂ DÊ ˆ◊ = + DÁ ˜∂Ë ¯Ú

2

c
y

y
b

F z
F dl F y

z

∂Ê ˆD
◊ = - + DÁ ˜Ë ¯∂Ú

2

d
z

z
c

F y
F dl F z

y

∂ DÊ ˆ◊ = - - DÁ ˜∂Ë ¯Ú

Summing up, we get

yz

l

FF
F dl y z

y z

∂Ê ˆ∂
◊ = - D DÁ ˜∂ ∂Ë ¯Ú

Therefore, the x-component of the curl (since the area is considered in the yz-plane) of the vector is 

given as

0 0
Curl Lim Lim

yl l z
x

S S

F d l F dl
FF

F
S y z y zD Æ D Æ

Ê ˆ◊ ◊
∂Ê ˆ∂Á ˜= = = -Á ˜Á ˜D D D ∂ ∂Ë ¯Ë ¯

Ú Ú

Similarly, considering the area in the xy and xz planes, we will get the other two components of the curl 

and can be written as

Fig. 1.30 To derive expression for curl 

in Cartesian coordinates



  50 Electromagnetic Field Theory

Curl

Curl

x z
y

y x
z

F F
F

z x

F F
F

x y

∂ ∂Ê ˆ= -Ë ¯∂ ∂
∂Ê ˆ∂

= -Á ˜∂ ∂Ë ¯

Thus, the curl of the vector, considering all three directions, is given as

Curl
y yx xz z

x y z

F FF FF F
F F a a a

y z z x x y

∂ ∂Ê ˆ Ê ˆ∂ ∂∂ ∂Ê ˆ= — ¥ = - + - + -Á ˜ Á ˜Ë ¯∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯ (1.69)

In matrix form, this can be written as

x y z

x y z

a a a

F
x y z

F F F

∂ ∂ ∂— ¥ =
∂ ∂ ∂ (1.70)

Physical Interpretation The physical significance of the curl of a vector at any point is that it 

provides a measure of the amount of rotation or angular momentum of the vector around the point.

We consider a stream on the surface of which floats a leaf, in the xy-plane.

Fig. 1.31 (a) Rotation of a floating leaf, and (b) Interpretation of curl

If the velocity at the surface is only in y-direction and is uniform over the surface, there will be no 

circulation of the leaf.

But, if there are vertices or eddies in the stream, there will be rotational movement of the leaf.

The rate of rotation or angular velocity at any point is a measure of the curl of the velocity of the 

stream at that point.

In this case, the rotation is about the z-axis and the curl of velocity vector V  in the z-direction is 

written as ( )zV— ¥ . A positive value of ( )zV— ¥  implies a rotation from x to y, i.e., anticlockwise.

It is seen that

For positive value of 
yV

x

∂
∂ , rotation is anticlockwise.

For negative value of xV

y

∂
∂ , rotation is clockwise.
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The rate of rotation about the z-axis is therefore, proportional to the difference between these two 

quantities, i.e.,

( )
y x

z

V V
V

x y

∂Ê ˆ∂
— ¥ = -Á ˜∂ ∂Ë ¯

Now, considering any point within the fluid, there may be rotations about the x and y axes, too. Thus,

( )
yz

x

VV
V

y z

∂Ê ˆ∂
— ¥ = -Á ˜∂ ∂Ë ¯

( ) x z
y

V V
V

z x

∂ ∂Ê ˆ— ¥ = -Ë ¯∂ ∂

A rotation about any axis can be expressed as the sum of the component rotations about the x, y and z

axes. Since rotations have both magnitude and direction, the vector sum gives the resultant rotation as

Curl
y xz z

x y

x y z

y x
z

x y z

V VV V
V V a a

y z z x

a a a

V V
a

x y x y z

V V V

∂Ê ˆ ∂∂ ∂Ê ˆ
= — ¥ = - + -Á ˜Á ˜ Ë ¯∂ ∂ ∂ ∂Ë ¯

∂Ê ˆ∂ ∂ ∂ ∂+ - =Á ˜∂ ∂ ∂ ∂ ∂Ë ¯

Curl in General Curvilinear Coordinates We consider the general curvilinear coordinates as 

shown in Fig. 1.27 (see page 41). We consider the vector

1 1 2 2 3 3F F a F a F a= + +

In order to find a general expression for curl of the vector, we need to calculate the closed line 

integral of the vector per unit area for the elemental volume as shown in Fig. 1.27(See page 41).

Fig. 1.32 Interpretation of positive and negative velocity gradients
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The 1a  component of curl of F  is obtained by taking the line integral through the path OABCO. The 

contributions to the closed line integral 
l

F d lÊ ˆ◊
Ë ¯
Ú  through the four paths are given as follows.

2 2 2 3 3 3 3 3 3 2 2 2 2 2 2 2 3 3 3 3
2 3

3 3 2 2 2 3
2 3

[ ] ( ) ( ) [ ]

( ) ( )

A B C O

l O A B C

F dl F dl F dl F dl F dl

F h du F h du F h du du F h du F h du du F h du
u u

F h F h du du
u u

◊ = ◊ + ◊ + ◊ + ◊

∂ ∂È ˘ È ˘= + + - + -Í ˙ Í ˙∂ ∂Î ˚ Î ˚
∂ ∂È ˘= -Í ˙∂ ∂Î ˚

Ú Ú Ú Ú Ú

By definition of curl, this equals the 1a  component of curl of F , i.e., 1( )F— ¥  multiplied by the area 

of face OABC.

\ 1 2 3 2 3 3 3 2 2 2 3
2 3

( ) ( ) ( )F h h du du F h F h du du
u u

∂ ∂È ˘— ¥ = -Í ˙∂ ∂Î ˚

\ 1 3 3 2 2
2 3 2 3

1
( ) ( ) ( )F F h F h

h h u u

∂ ∂È ˘— ¥ = -Í ˙∂ ∂Î ˚

By cyclic change of indices, we get the other two components of the curl and are written as

2 1 1 3 3
3 1 3 1

1
( ) ( ) ( )F F h F h

h h u u

∂ ∂È ˘— ¥ = -Í ˙∂ ∂Î ˚

3 2 2 1 1
1 2 1 2

1
( ) ( ) ( )F F h F h

h h u u

∂ ∂È ˘— ¥ = -Í ˙∂ ∂Î ˚

Hence, the expression for curl is given as

3 3 2 2 1 1 1 3 3 2
2 3 2 3 3 1 3 1

2 2 1 1 3
1 2 1 2

1 1
( ) ( ) ( ) ( )

1
( ) ( )

F F h F h a F h F h a
h h u u h h u u

F h F h a
h h u u

∂ ∂ ∂ ∂È ˘ È ˘— ¥ = - + -Í ˙ Í ˙∂ ∂ ∂ ∂Î ˚ Î ˚

∂ ∂È ˘+ -Í ˙∂ ∂Î ˚

or in matrix form

1 1 2 2 3 3

1 2 3 1 2 3

1 1 2 2 3 3

1

h a h a h a

F
h h h u u u

F h F h F h

∂ ∂ ∂Ê ˆ— ¥ = Á ˜ ∂ ∂ ∂Ë ¯
(1.71)

Substituting the values of hi from Section 1.8, we get the relation of curl in three different coordinate 

systems as

(Cartesian coordinates)
y yx xz z

x y z

F FF FF F
F a a a

y z z x x y

∂ ∂Ê ˆ Ê ˆ∂ ∂∂ ∂Ê ˆ
— ¥ = - + - + -Á ˜Á ˜ Á ˜Ë ¯∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯

(1.72a)
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( )1 1
( )z r z r

r z

AA A A A
A a a rA a

r z z r r r

f
f ff f

∂È ˘∂ ∂ ∂ ∂È ˘ È ˘∂— ¥ = - + - + -Í ˙ Í ˙ Í ˙∂ ∂ ∂ ∂ ∂ ∂Î ˚Î ˚ Î ˚
(Cylindrical coordinates) (1.72b)

1 1 1 1
(sin ) ( ) ( )

sin sin

V VV
V V a V a V a

r rq
f r f q q fq r r

r q q f r q f r r r q

∂ ∂È ˘ È ˘∂È ˘∂ ∂ ∂Ê ˆ— ¥ = - + - + -Í ˙ Í ˙Á ˜ Í ˙∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Î ˚ Î ˚ Î ˚
(Spherical coordinates) (1.72c)

Or in matrix form as

2

(Cartesian coordinates)

1
(Cylindrical coordinates)

sin

1
(Spherical coordinates)

sin

sin

x y z

x y z

r z

r z

a a a

F
x y z

F F F

a ra a

r r z

F rF F

a a a

F F F

f

f

r q f

r q f

f

r r q

r q fr q

r r q

∂ ∂ ∂— ¥ =
∂ ∂ ∂

∂ ∂ ∂Ê ˆ= Ë ¯ ∂ ∂ ∂

∂ ∂ ∂Ê ˆ= Á ˜ ∂ ∂ ∂Ë ¯

(1.73a)

(1.73b)

(1.73c)

Properties of Curl

1. The result of the curl of a vector field is another vector field.

2. Curl of a scalar field has no meaning.

3. If the value of curl of a vector field is zero, then the vector field is said to be irrotational or 

conservative field. Electrostatic field is one of such fields.

 Example 1.32 Determine the curl of the following vector fields:

(a) 2 2 2x y zF x ya y za xza= + -

(b) 2 2sin cos tanr zA r a r a z aff f f= + +

(c)
2 2

sin cos
V a ar f

f f

r r
= -

Solution

(a) 2 2 2x y zF x ya y za xza= + -
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The curl in Cartesian coordinate system is given as

2 2

2 2

2

2

x y z x y z

x y z

x y z

a a a a a a

F y a za x a
x y z x y z

F F F x y y z xz

∂ ∂ ∂ ∂ ∂ ∂— ¥ = = = - + -
∂ ∂ ∂ ∂ ∂ ∂

-

(b) 2 2sin cos tanr zA r a r a z aff f f= + +

The curl in cylindrical coordinate system is given as

( )

( ) ( )

( )2 2 2

2 2 2

1

1 1

1 1
( sec 0) (0 0) (2 cos cos )

1
sec (2 cos cos )

r z

r z

z r z r
r z

r z

r z

a ra a

A
r r z

A rA A

AA A A A
a a rA a

r z z r r r

z a a r r a
r r

z a r r a
r

f

f

f
f f

f

f

f f

f f f

f f f

∂ ∂ ∂— ¥ =
∂ ∂ ∂

∂È ˘∂ ∂ ∂ ∂È ˘ È ˘∂= - + - + -Í ˙ Í ˙ Í ˙∂ ∂ ∂ ∂ ∂ ∂Î ˚Î ˚ Î ˚

= - + - + -

È ˘= + -Î ˚

(c)
2 2

sin cos
V a ar f

f f

r r
= -

The curl in spherical coordinate system is given as

2

2

sin

1

sin

sin

1 1 1
(sin ) ( )

sin sin

1
( )

cos1 1 1
sin 0

sin s

a a a

V

V V V

VV
V a V a

V
V a

a

r q f

r q f

rq
f r f q

r

q f

r

r r q

r q fr q

r r q

q r
r q q f r q f r

r
r r q

f
q

r q q rr

∂ ∂ ∂Ê ˆ— ¥ = Á ˜ ∂ ∂ ∂Ë ¯

∂È ˘∂È ˘∂ ∂Ê ˆ= - + -Í ˙Í ˙Á ˜ ∂ ∂ ∂ ∂Ë ¯ Î ˚ Î ˚

∂È ˘∂+ -Í ˙∂ ∂Î ˚

È ˘Ê ˆ∂Ê ˆ= - +Í ˙Á ˜ Á ˜∂Ë ¯ Ë ¯Í ˙Î ˚
2 2

2

2 2 2

sin cos

in

sin1
0

cos cos cos cos1 1

sin sin

a

a

a a

q

f

r q

f f
r

q f rr r

f

r q r

q f f f

r q rr r q r

È ˘Ê ˆ Ê ˆ∂ ∂-Í ˙Á ˜ Á ˜∂ ∂Ë ¯ Ë ¯Í ˙Î ˚

È ˘Ê ˆ∂+ -Í ˙Á ˜∂ Ë ¯Í ˙Î ˚

Ê ˆ Ê ˆÊ ˆ= + +Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯
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\
3 3

cos1 1
cot cos cos

sin
V a ar q

f
q f f

qr r

Ê ˆÊ ˆ— ¥ = + +Á ˜Á ˜ Ë ¯Ë ¯

 Example 1.33 Determine the divergence and curl of the following vector fields:

(a) 4x y zyza xya yaf = + +

(b) 2 3 23r zA r za r a rz af= + +

(c)
2

1
cos sin cos cosF a a ar q fq r q f q

r
= + +

Solution

(a) 4x y zyza xya yaf = + +

\ ( ) (4 ) ( ) 0 4 0 4yz xy y x x
x y z

f
∂ ∂ ∂— ◊ = + + = + + =
∂ ∂ ∂

\ (4 )

4

x y z

x y z

a a a

a ya y z a
x y z

yz xy y

f
∂ ∂ ∂— ¥ = = + + -
∂ ∂ ∂

(b) 2 3 23r zA r za r a rz af= + +

\ 3 3 21 1 1 1
( ) ( ) ( ) (3 ) 3 0 6 9z

r

A A
A rA r z r rz rz rz rz

r r r z r r r z

f

f f

∂ ∂∂ ∂ ∂ ∂— ◊ = + + = + + = + + =
∂ ∂ ∂ ∂ ∂ ∂

\

( ) ( ) ( ) ( )
2 2 2

2 4 2

1 1 1 1

0 ( 3 ) 4

3

r z r z

z

r z

a a a a a a
r r r r

A r z a r a
r z r z

F rF F r z r rz

f f

f

f

f f
∂ ∂ ∂ ∂ ∂ ∂— ¥ = = = + - +
∂ ∂ ∂ ∂ ∂ ∂

(c)
2

1
cos sin cos cosF a a ar q fq r q f q

r
= + +

\ 2

2

2

2

1 1 1
( ) ( sin )

sin sin

1 1 1
(cos ) ( sin cos ) (cos )

sin sin

2 sin cos
0 cos 0

sin

2 cos cos

F
F F F

f
r qr q

r r q q r q fr

q r q f q
r r q q r q fr

q q
f

q

q f

∂∂ ∂— ◊ = + +
∂ ∂ ∂

∂ ∂ ∂= + +
∂ ∂ ∂

= + +

=
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\
2

2

2

3

sin

1

sin

1
cos sin cos sin cos

cos 2 1 1
sin cos 2 cos sin

sin

a a a

F

a a a

r q f

r q f

r r q

r q fr q

q r q f r q q
r

q
f q f q

r q r r

∂ ∂ ∂Ê ˆ— ¥ = Á ˜ ∂ ∂ ∂Ë ¯

Ê ˆ Ê ˆ= + - + +Á ˜ Á ˜Ë ¯ Ë ¯

 Example 1.34 If 3 2 42 2A xz i x yzj yz k= - + , find Curl A at the point (1, –1, 1).

Solution

4 2 2

3 2 4

4 2 2

(2 2 ) (3 0) ( 4 0)

2 2

(2 2 ) 3 4

x y z

x y z

x y z

a a a

A z x y a xz a xyz a
x y z

xz x yz yz

z x y a xz a xyza

∂ ∂ ∂— ¥ = = + + - + - -
∂ ∂ ∂

-
= + + -

\
(1, 1,1)

(2 2) 3 4 3 4x y z y zA a a a a a
-

— ◊ = - + + = +

*Example 1.35 (a) For a vector field A, show explicitly that 0A— ◊ — ¥ = , i.e., the divergence 

of the curl of any vector field is zero.

(b) For a scalar field V, show that — ¥ —V = 0, i.e., the curl of the gradient of any scalar field is zero.

Solution
(a) Let, x x y y z zA A a A a A a= + +

\

(Let)

x y z

y yx xz z
x y z

x y z

x x y y z z

a a a

A AA AA A
A a a a

x y z y z z x x y

A A A

G a G a G a

∂ ∂Ê ˆ Ê ˆ∂ ∂∂ ∂Ê ˆ∂ ∂ ∂— ¥ = = - + - + -Á ˜Á ˜ Á ˜Ë ¯∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯

= + +

\

2 22 22 2

2 2

0 and so on

yx z

y yx xz z

y yx xz z

z z

GG G
A

x y z

A AA AA A

x y z y z x z x y

A AA AA A

x y x z y z y x z x z y

A A

x y y x

∂∂ ∂
— ◊ — ¥ = + +

∂ ∂ ∂
∂ ∂Ê ˆ Ê ˆ∂ ∂∂ ∂Ê ˆ∂ ∂ ∂= - + - + -Á ˜Á ˜ Á ˜Ë ¯∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯

Ê ˆ Ê ˆ∂ ∂Ê ˆ∂ ∂∂ ∂
= - + - + -Á ˜ Á ˜Á ˜∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯ Ë ¯

Ï ¸∂ ∂
= =Ì ˝∂ ∂ ∂ ∂Ó ˛

0A\ — ◊ — ¥ ==
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(b) 
V V V

V
x y z

∂ ∂ ∂— = + +
∂ ∂ ∂

\ 
2 2 2 2 2 2

0

x y z

x y z

a a a

V V V V V V
V a a a

x y z y z z y z x x z x y y x

V V V

x y z

Ê ˆ Ê ˆ Ê ˆ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂— ¥ — = = - + - + -Á ˜Á ˜ Á ˜Ë ¯∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯
∂ ∂ ∂
∂ ∂ ∂

=

 
0V\ — ¥ — =

NOTE

These two vector identities are known as null identities.

 Example 1.36

*(a) Find the divergence and curl of the vector field: ( ) x

x
E a

r
= , where x y zr xa ya za= + + .

*(b) Prove that 3r— ◊ =  and 0r— ¥ =  where, x y zr xa ya za= + + .

Solution
(a) Here, x y zr xa ya za= + +

\ 2 2 2r x y z= + +

 
( )

2 2 2
x x

x x
E a a

r x y z
= =

+ +

\ 

2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 3/22 2 2

2 2 2 2

2 2 2 3/2 3

1 2

2

( )

( )

x
x y z x

x y z x y z xx
E

x x y z x y zx y z

y z y z

x y z r

+ + -
+ + + + -∂ Ê ˆ— ◊ = = =

Á ˜∂ + + + ++ +Ë ¯

+ +
= =

+ +

\ 
2 2 2 2 2 2

2 2 2

2 2 2 3/2 2 2 2 3/2

0 0

21 2 1

2 2( ) ( )

x y z

y z

y z

a a a

x x
E a a

x y z z yx y z x y z
x

x y z

x yx z
a a

x y z x y z

∂ ∂ ∂ ∂ ∂Ê ˆ Ê ˆ— ¥ = = -
Á ˜ Á ˜∂ ∂ ∂ ∂ ∂+ + + +Ë ¯ Ë ¯

+ +

= - +
+ + + +
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2 2 2 3/2 2 2 2 3/2

3 3

( ) ( )
y z

y z

xyxz
a a

x y z x y z

xyxz
a a

r r

= - +
+ + + +

= - +

(b) Here, x y zr xa ya za= + +

\ ( ) ( ) ( ) 1 1 1 3r x y z
x y z

∂ ∂ ∂— ◊ = + + = + + =
∂ ∂ ∂

\ ( ) 0

x y z

x y z

a a a

y yz x z x
r a a a

x y z y z z x x y

x y z

∂ ∂Ê ˆ Ê ˆ∂ ∂ ∂ ∂ ∂ ∂ ∂— ¥ = = - + - + - =Á ˜ Á ˜∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯

\ 3 and 0r r— ◊ = — ¥ =

 Example 1.37 If v rw= ¥ , prove that 
1

Curl
2

vw = , where w is a constant vector.

Solution Here, x y zr xa ya za= + +  and let, x x y y z za a aw w w w= + +

\ Curl ( )

[( ) ( ) ( ) ]

( ) ( ) ( )

( ) ( ) ( ) ( )

x y z

x y z

y z x z x y x y z

x y z

y z z x x y

x y z x x y z x y

a a a

v v r

x y z

z y a x z a y x a

a a a

x y z

z y x z y x

y x x z a z y y x a
y z z x

w w w w

w w w w w w

w w w w w w

w w w w w w w w

= — ¥ = — ¥ ¥ = — ¥

= — ¥ - + - + -

∂ ∂ ∂=
∂ ∂ ∂
- - -

∂ ∂ ∂ ∂È ˘ È ˘= - - - + - - -Í ˙ Í ˙∂ ∂ ∂ ∂Î ˚Î ˚

( ) ( )

2 2 2

2( )

2

y

z x y z z

x x y y z z

x x y y z z

x z z y a
x y

a a a

a a a

w w w w

w w w

w w w

w

∂ ∂È ˘+ - - -Í ˙∂ ∂Î ˚

= + +

= + +

=

1
Curl

2
vw\ =
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Laplacian (—2) Operator The Laplacian operator (—2) can operate both on scalar as well as 

vector field.

Laplacian (—2) of a Scalar The Laplacian operator (—2) of a scalar field is the divergence of the 

gradient of the scalar field upon which the operator operates.

Practically, it is a single operator, which is the composite of gradient and divergence operators. 

The Laplacian of a scalar field is also a scalar field.

The Laplacian of a scalar field F in Cartesian coordinate system is written as

2 2 2
2

2 2 2x y z x y z

F F F F F F
F F a a a a a a

x y z x y z x y z

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ê ˆ Ê ˆ— = — ◊ — = + + ◊ + + = + +Á ˜ Á ˜∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯ ∂ ∂ ∂
(1.74)

Similarly, the expression of Laplacian of a scalar in other two coordinate systems can be obtained.

The gradient of the scalar field F in curvilinear coordinate system is given as

1 2 3 1 1 2 2 3 3
1 1 2 2 3 3

1 1 1
(say)

F F F
F a a a A A a A a A a

h u h u h u

∂ ∂ ∂— = + + = = + +
∂ ∂ ∂

where, 1 2 3
1 1 2 2 3 3

1 1 1
; ;

F F F
A A A

h u h u h u

∂ ∂ ∂= = =
∂ ∂ ∂

Divergence of this vector in curvilinear coordinate system is given as

2
1 2 3 2 1 3 3 1 2

1 2 3 1 2 3

1
( ) ( ) ( )A F F A h h A h h A h h

h h h u u u

∂ ∂ ∂È ˘— ◊ = — ◊ — = — = + +Í ˙∂ ∂ ∂Î ˚

Substituting the values of A1, A2 and A3, we have

2 3 1 3 1 22

1 2 3 1 1 1 2 2 2 3 3 3

1 h h h h h hF F F
F

h h h u h u u h u u h u

È ˘Ê ˆ Ê ˆ Ê ˆ∂ ∂ ∂ ∂ ∂ ∂— = + +Í ˙Á ˜ Á ˜ Á ˜∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯ Ë ¯Î ˚
(1.75)

Substituting the values of hi from Section 1.8, we get the relation of Laplacian of scalar field in three 

different coordinate systems as

2 2 2
2

2 2 2
(Cartesian coordinates)

F F F
F

x y z

∂ ∂ ∂— = + +
∂ ∂ ∂

(1.76a)

( ) 2 2

2 2 2

1 1
(Cylindrical coordinates)

F F F
r

r r r r zf

∂ ∂ ∂ ∂= + +
∂ ∂ ∂ ∂

(1.76b)

( ) 2
2

2 2 2 2 2

1 1 1
sin (Spherical coordinates)

sin sin

F F F
r q

r r q qr r q r q f

∂ ∂ ∂ ∂ ∂Ê ˆ= + +Á ˜∂ ∂ ∂ ∂Ë ¯ ∂
(1.76c)

NOTE

If the Laplacian of a scalar field V is zero in a region, i.e., —2V = 0, then the scalar field V is said to 

be harmonic (containing sine or cosine terms) in that region and the equation —2V = 0 is known as 

Laplace’s equation. We will learn about Laplace’s equation in more detail in Chapter 2.
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Laplacian (—2) of Products of Scalar Fields If a scalar field is represented as the product of two 

other scalar functions, then the Laplacian of that scalar field in Cartesian coordinate system is written as

2 2 2( ) ( ) ( ) 2( ) ( )uv u v u v u v— = — + — + — ◊ — (1.77)

Proof: By definition of scalar Laplacian in Cartesian coordinate system

2 2 2
2

2 2 2
( ) ( ) ( ) ( )uv uv uv uv

x y z

∂ ∂ ∂— = + +
∂ ∂ ∂

Now,
2 2 2

2 2 2

2 2

2 2

( ) ( )

2

u v u u v u v v
uv uv v u v u

x x x x x x x x xx x x

u u v v
v u

x xx x

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂È ˘ È ˘= = + = + + +Í ˙ Í ˙∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Î ˚ Î ˚∂ ∂ ∂
∂ ∂ ∂ ∂= + +

∂ ∂∂ ∂
Similarly,

2 2 2

2 2 2
( ) 2

u u v v
uv v u

y yy y y

∂ ∂ ∂ ∂ ∂= + +
∂ ∂∂ ∂ ∂

2 2 2

2 2 2
( ) 2

u u v v
uv v u

z zz z z

∂ ∂ ∂ ∂ ∂= + +
∂ ∂∂ ∂ ∂

By summation, we get

2 2 2 2 2 2
2

2 2 2 2 2 2

2 2 2 2 2 2

2 2 2 2 2 2

( ) 2 2 2

2 x y z x y z

u u v v u u v v u u v v
uv v u v u v u

x x y y z zx x y y z z

u u u v v v
v u

x y z x y z

u u u v v v
a a a a a a

x y z x y z

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂— = + + + + + + + +
∂ ∂ ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂ ∂

Ê ˆ Ê ˆ∂ ∂ ∂ ∂ ∂ ∂= + + + + +Á ˜ Á ˜∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯
∂ ∂ ∂ ∂ ∂ ∂Ê ˆ Ê ˆ+ + + ◊ + +Á ˜ Á∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯

2 2( ) ( ) 2( ) ( )u v u v u v

˜

= — + — + — ◊ —

Laplacian (—2) of a Vector The Laplacian of a vector is defined as the gradient of divergence of 

the vector minus the curl of curl of the vector; i.e.,

2 ( )F F F— = — — ◊ - — ¥ — ¥ (1.78)

In terms of general curvilinear coordinate system, Laplacian of a vector is written as

2 2 3 1 3 1 2

1 2 3 1 1 1 2 2 2 3 3 3

2 3 1 3 1 2

1 2 3 1 1 1 2 2 2 3 3 3

2 3
1 1 2 2

1 1 1

1 2 3

1

1

(
1

h h h h h h
F F

h h h u h u u h u u h u

h h h h h hF F F

h h h u h u u h u u h u

h h
F a F a F

u h u

h h h

È ˘Ê ˆ Ê ˆ Ê ˆ∂ ∂ ∂ ∂ ∂ ∂— = + +Í ˙Á ˜ Á ˜ Á ˜∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯ Ë ¯Î ˚
È ˘Ê ˆ Ê ˆ Ê ˆ∂ ∂ ∂ ∂ ∂ ∂= + +Í ˙Á ˜ Á ˜ Á ˜∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯ Ë ¯Î ˚

∂ ∂ + +
∂ ∂

=

1 3
3 3 1 1 2 2 3 3

2 2 2

1 2
1 1 2 2 3 3

3 3 3

) ( )

( )

h h
a F a F a F a

u h u

h h
F a F a F a

u h u

È ˘Ï ¸ Ï ¸∂ ∂+ + +Ì ˝ Ì ˝Í ˙∂ ∂Ó ˛ Ó ˛Í ˙
Í ˙Ï ¸∂ ∂+ + +Ì ˝Í ˙∂ ∂Ó ˛Î ˚

(1.79)
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This is the general expression for vector Laplacian in curvilinear coordinate system.

Derivation of Vector Laplacian in Cartesian Coordinate System In Cartesian coordinate 

system

u1 = x, u2 = y, u3 = z

h1 = h2 = h3 = 1

From Eq. (1.76),

{ } { }
{ }

2

( ) ( )

( )

x x y y z z x x y y z z

x x y y z z

F a F a F a F a F a F a
x x y y

F

F a F a F a
z z

È ˘∂ ∂ ∂ ∂+ + + + +Í ˙∂ ∂ ∂ ∂— = Í ˙
∂ ∂Í ˙+ + +Í ˙∂ ∂Î ˚

Now

( )
y yx x z z

x x y y z z x x y y z z

F aF a F a
F a F a F a a F a F a F

x x x x x x x

∂ ∂Ê ˆ∂ ∂ ∂ ∂Ê ˆ Ê ˆ∂ + + = + + + + +Á ˜Ë ¯ Ë ¯ Ë ¯∂ ∂ ∂ ∂ ∂ ∂ ∂

Since the unit vectors in Cartesian coordinate system are considered to be constant, we have

0 0
yx z

aa a

x x x

∂∂ ∂
= =

∂ ∂ ∂

\ ( )
yx z

x x y y z z x y z

FF F
F a F a F a a a a

x x x x

∂Ê ˆ∂ ∂∂ + + = + +Á ˜Ë ¯∂ ∂ ∂ ∂

\ { }
22 2

2 2 2

( )
∂Ê ˆ∂ ∂∂ ∂ ∂+ + = + +Á ˜Ë ¯∂ ∂ ∂ ∂ ∂ ∂

∂∂ ∂
= + +

∂ ∂ ∂

yx z
x x y y z z x y z

yx z
x y z

FF F
F a F a F a a a a

x x x x x x

FF F
a a a

x x x
(1.80a)

Similarly,

{ } 22 2

2 2 2
( )

yx z
x x y y z z x y z

FF F
F a F a F a a a a

y y y y y

∂∂ ∂∂ ∂ + + = + +
∂ ∂ ∂ ∂ ∂

(1.80b)

and,

{ } 22 2

2 2 2
( )

yx z
x x y y z z x y z

FF F
F a F a F a a a a

z z z z z

∂∂ ∂∂ ∂ + + = + +
∂ ∂ ∂ ∂ ∂

(1.80c)

By summation of Eqs. (1.80a) to (1.80c), we get

2 22 22 2
2

2 2 2 2 2 2

22 2

2 2 2

Ê ˆ Ê ˆ∂ ∂∂ ∂∂ ∂
— = + + + + +Á ˜ Á ˜Ë ¯∂ ∂ ∂ ∂ ∂ ∂Ë ¯

Ê ˆ∂∂ ∂
+ + +Á ˜Ë ¯∂ ∂ ∂

y yx xz z
x y z x y z

yx z
x y z

F FF FF F
F a a a a a a

x x x y y y

FF F
a a a

z z z
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2 2 22 2 2 2 2 2

2 2 2 2 2 2 2 2 2

2 2 2( ) ( ) ( )

Ê ˆ∂ ∂ ∂Ê ˆ Ê ˆ∂ ∂ ∂ ∂ ∂ ∂
= + + + + + + + +Á ˜Á ˜ Á ˜∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂Ë ¯ Ë ¯ Ë ¯

= — + — + —

y y yx x x z z z
x y z

x x y y z z

F F FF F F F F F
a a a

x y z x y z x y z

F a F a F a

 2 2 2 2( ) ( ) ( )\ — = — + — + —x x y y z zF F a F a F a  (1.81)

Since the unit vectors in cylindrical and spherical coordinate systems are not constants, evaluation of 

vector Laplacian in these two coordinate systems become tedious. However, we can write the final 

expressions of vector Laplacian in these two coordinate systems as given.

Cylindrical coordinate system

 2 2 2 2

2 2 2 2

2 1 2 1r
r r r z z

F F
F F F a F F a F a

r r r r

f
f f ff f

∂Ê ˆ ∂Ê ˆ
— = — - - + — + - + —Á ˜ Á ˜∂ ∂Ë ¯ Ë ¯

 (1.82)

Spherical coordinate system

 

2 2

2

2 2

2

2 2

2

2
cot cosec

1
cosec 2 2 cot cosec

1
cosec 2 cosec 2 cot cosec

F F
F F F F a

F F
F F a

F F
F F a

f q
r r q r

r f
q q q

r q
f f f

q q
f qr

q q q
q fr

q q q q
f fr

È ˘∂Ê ˆ∂
— = — - + + +Í ˙Á ˜∂ ∂Ë ¯Í ˙Î ˚

È ˘∂ ∂Ê ˆ
+ — - - +Í ˙Á ˜∂ ∂Ë ¯Í ˙Î ˚

È ˘∂Ê ˆ∂
+ — - - -Í ˙Á ˜∂ ∂Ë ¯Í ˙Î ˚

 (1.83)

NOTE

The Laplacian of a vector field is zero if and only if the Laplacian of each of its components is 

independently zero.

 Example 1.38 Find the Laplacian of the following scalar fields:

 (a) 2 2 2= + +F x y z

 (b) F = rz sin f + r2 + z2 cos2 f

 (c) F = e–r sin q cos f

Solution

(a) 2 2 2= + +F x y z

 

2 2 2
2 2 2 2 2 2 2 2 2 2

2 2 2
( ) ( ) ( )

∂ ∂ ∂— = + + + + + + + +
∂ ∂ ∂

F x y z x y z x y z
x y z
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Now, 2 2 2

2 2 2
( )

∂ + + =
∂ + +

x
x y z

x x y z

\ 

2 2 2

2 2 22
2 2 2

2 2 2 22 2 2

2 2

2 2 2 3/2

( )
( )

( )

+ + -
+ +∂ ∂ Ê ˆ+ + = =

Á ˜∂∂ + ++ +Ë ¯
+

=
+ +

x
x y z x

x y zx
x y z

xx x y zx y z

y z

x y z

Similarly,

 

2 22
2 2 2

2 2 2 2 3/2

2 22
2 2 2

2 2 2 2 3/2

( )
( )

( )
( )

+∂ + + =
∂ + +

+∂ + + =
∂ + +

x z
x y z

y x y z

x y
x y z

z x y z

Hence, the Laplacian is given as

 

2 2 2 2 2 2
2

2 2 2 3/2 2 2 2 3/2 2 2 2 3/2 2 2 2

2

( ) ( ) ( )

+ + +
— = + + =

+ + + + + + + +

y z x z x y
F

x y z x y z x y z x y z

(b) F = rz sin f + r2 + z2 cos2 f

 

( )
{ }

2 2
2

2 2 2

2
2 2 2 2 2 2

2 2

2
2 2 2

2

2 2 2

2

2

1 1

1 1
( sin cos ) ( sin cos )

( sin cos )

1 1
{ sin 2 } ( cos 2 cos sin ) ( sin 2 cos )

1 1
( sin 4 ) ( si

F F F
F r

r r r r z

r rz r z rz r z
r r r r

rz r z
z

rz r rz z r z
r r zr

z r rz
r r

f

f f f f
f

f f

f f f f f f
f

f

∂ ∂ ∂ ∂— = + +
∂ ∂ ∂ ∂
∂ ∂ ∂= + + + + +
∂ ∂ ∂

∂+ + +
∂

∂ ∂ ∂= + + - + +
∂ ∂ ∂

= + + - 2 2

2
2

2

2
2

2

n 4 cos 2 ) 2 cos

4 sin sin 4 cos 2 2 cos

4 2 cos 4 cos 2

z

z z z

r r r

z

r

f f f

f f f f

f f

- +

= + - - +

= + -
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(c) F = e–r sin q cos f

( ) 2
2 2

2 2 2 2 2

2

2 2

2 2

2

2 2 2 2

1 1 1
sin

sin sin

1 1
{ ( 1) sin cos } {sin cos cos }

sin

1
( sin sin )

sin

1 1 1
{ sin cos } cos 2 cos ( sin cos )

sin sin

F F F
F

e e

e

e e e

r r

r

r r r

r q
r r q qr r q r q f

r q f q q f
r qr r q

q f
fr q

r q f q f q f
rr r q r q

- -

-

- - -

∂ ∂ ∂ ∂ ∂Ê ˆ— = + +Á ˜∂ ∂ ∂ ∂Ë ¯ ∂
∂ ∂= - +

∂ ∂
∂-

∂
∂= - + -

∂

2

2 2

2

2

2

2

2

cos1
sin cos (2 ) (cos 2 1)

sin

cos2
sin cos (1 cos 2 )

sin

cos2
sin cos 2 sin

sin

2
sin cos 2 sin cos

2 2
sin cos 1

e
e e

e
e e

e
e e

e
e e

e

r
r r

r
r r

r
r r

r
r r

r

f
q f r r q

qr r

f
q f q

r qr

f
q f q

r qr

q f q f
r r

q f
r r

-
- -

-
- -

-
- -

-
- -

-

= - - + -

Ê ˆ= - - -Á ˜Ë ¯

Ê ˆ= - -Á ˜Ë ¯

Ê ˆ= - -Á ˜Ë ¯

Ê= - - ˆ
Á ˜Ë ¯

 Example 1.39 Find the Laplacian of the scalar fields:

(a) S = x2 y + xyz

(b) S = r2z(cos f + sin f)

(c) S = cos q sin f ln r + r2f

Solution
(a) S = x2 y + xyz

2 2 2
2 2

2 2 2
(2 ) ( ) ( ) 2

∂ ∂ ∂ ∂ ∂ ∂— = + + = + + + + =
∂ ∂ ∂∂ ∂ ∂

S S S
S xy yz x xz xy y

x y zx y z

(b) S = r2 z(cos f + sin f)

( ) 2 2
2

2 2 2

2 2 2

2

1 1

1 1
[2 (cos sin )] [ (cos sin )] [ (cos sin )]

4 (cos sin ) (cos sin )

3 (cos sin )

∂ ∂ ∂ ∂— = + +
∂ ∂ ∂ ∂
∂ ∂ ∂= + + - + +
∂ ∂ ∂

= + - +
= +

S S S
S r

r r r r z

r z r z r
r r zr
z z

z

f

f f f f f f
f

f f f f

f f

(c) S = cos q sin f ln r + r2 f

( ) 2
2 2

2 2 2 2 2

1 1 1
sin

sin sin
r q

r r q qr r q r q f

∂ ∂ ∂ ∂ ∂Ê ˆ— = + +Á ˜∂ ∂ ∂ ∂Ë ¯ ∂
S S S

S
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\ 2 3 2

2 2

2

2 2

2

2 2 2 2

2 2

1 1
[ cos sin 2 ] [sin sin ln ]

sin

1
[cos cos ln ]

sin

1 1 1
cos sin 6 [2 sin cos sin ln ] [cos sin ln ]

sin sin

cos sin 2 cos sin ln cos sin ln
6

∂ ∂— = + -
∂ ∂

∂+ +
∂

È ˘= + - -Î ˚

È ˘ È ˘= + - -Í ˙ Í ˙
Î ˚ Î ˚

S r q f r f q f r
r qr r q

q f r r
fr q

q f r f q q f r q f r
r r q r q

q f q f r q f
f

r r 2 2

2

2

sin

cos sin
(1 2ln cosec ln ) 6

È ˘
Í ˙
Î ˚

= - - +

r

r q

q f
r q r f

r

 *Example 1.40 Prove that ( )2 1
0— =

r
, with usual meaning of r.

Solution

 
( ) 2 2 2

2

2 2 22 2 2 2 2 2 2 2 2

1 1 1 1∂ ∂ ∂Ê ˆ Ê ˆ Ê ˆ— = + +
Á ˜ Á ˜ Á ˜∂ ∂ ∂+ + + + + +Ë ¯Ë ¯ Ë ¯r x y zx y z x y z x y z

Now, 
2 2 2 3/22 2 2

1

( )

∂ Ê ˆ = -
Á ˜∂ + ++ +Ë ¯

x

x x y zx y z

\ 
2

2 2 2 2 3/22 2 2

2 2 2 3/2 2 2 2 1/2

2 2 2 3

2 2 2 2

2 2 2 5/2

2 2 2

2 2 2 5/2

1

( )

3
( ) 2 ( )

2

( )

3 ( )

( )

2

( )

∂ ∂Ê ˆ Ê ˆ= -Á ˜Á ˜ ∂∂ + +Ë ¯+ +Ë ¯

+ + - + +
= -

+ +

- + +
=

+ +

- -
=

+ +

x

xx x y zx y z

x y z x x x y z

x y z

x x y z

x y z

x y z

x y z

Similarly, 
2 2 22

2 2 2 2 5/22 2 2

21

( )

- -∂ Ê ˆ =
Á ˜∂ + ++ +Ë ¯

y z x

y x y zx y z

and, 

2 2 22

2 2 2 2 5/22 2 2

21

( )

- -∂ Ê ˆ =
Á ˜∂ + ++ +Ë ¯

z x y

z x y zx y z

By addition, we get

 
( ) 2 2 2 2 2 2 2 2 2

2

2 2 2 5/2 2 2 2 5/2 2 2 2 5/2

2 2 21
0

( ) ( ) ( )

- - - - - -
— = + + =

+ + + + + +
x y z y z x z x y

r x y z x y z x y z
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( )2 1
0— =

r

 Example 1.41 Given the vector field, 2 2( ) ( )= + + +x yE x y a x y a ; Find 2— E .

Solution

2 2 2 2( ) ( ) ( )— = — + — + —x x y y z zE E a E a E a

where,
2 2 2

2

2 2 2

Ê ˆ∂ ∂ ∂— = + +Á ˜∂ ∂ ∂Ë ¯x y z

Now, —2 Ey will not survive since Ey is linear. Also, —2 Ez vanishes as Ez does not exist.

2

2

2

2

2

2

2 ; 2

2 ; 2

0; 0

∂ ∂
= =

∂ ∂

∂ ∂
= =

∂ ∂

∂ ∂
= =

∂ ∂

x x

x x

x x

E E
x

x x

E E
y

y y

E E

z z

\ 2 2 (2 2) 4— = — = + =x x x xE E a a a

1.10 GAUSS’ DIVERGENCE THEOREM

Statement This theorem states that the divergence of a vector field over a volume is equal to the 

surface integral of the normal component of the vector through the closed surface bounding the volume.

Mathematically,

— ◊ = ◊ = ◊Ú Ú Ú n
V S S

Fdv F dS F a dS (1.84)

where V is the volume enclosed by the closed surface S.

Proof By definition of divergence in Cartesian coordinates,

∂∂ ∂
— ◊ = + +

∂ ∂ ∂
yx z

FF F
F

x y z

\
∂Ê ˆ∂ ∂

— ◊ = + +Á ˜∂ ∂ ∂Ë ¯Ú Ú
yx z

V V

FF F
Fdv dxdydz

x y z

where, dv = dxdydz

We consider an elemental volume as shown in Fig. 1.33. Fig. 1.33 Elemental volume in 

Cartesian coordinates
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Let the rectangular volume have the dimensions dx, dy and dz along the x, y and z directions respectively.

Now, 
∂ ∂È ˘= Í ˙∂ ∂Î ˚Ú Ú Úx x

V S

F F
dxdydz dx dydz

x x

Here,
2

1

2 1( )
∂

= -
∂Ú

x
x

x x
x

F
dx F F

x

where, Fx1 and Fx2 are the x component of the vector on the back and front side of the element along 

x axis.

\ 2 1( )
∂

= - =
∂Ú Ú Úx

x x x x
V S S

F
dxdydz F F dydz F dS

x

where, dSx = dydz is the x component of the surface area dS.

Thus, the above equation gives the surface integral of Fx with the x component of dS over the whole 

surface.

Similarly, considering and
∂ ∂
∂ ∂

y z
F F

y z
 and summing up, we get

\ ( )— ◊ = + + = ◊Ú Ú Úx x y y z z
V S S

Fdv F dS F dS F dS F dS

where, = + +x x y y z zdS dS a dS a dS a  and = + +x x y y z zF F a F a F a .

Thus,

— ◊ = ◊Ú Ú
V S

Fdv F dS

This is Gauss’ divergence theorem.

NOTE

The divergence theorem is a mathematical statement of the physical fact that, in the absence of the 

creation or destruction of matter, the density within a region of space can change only by having it 

flow into or away from the region through its boundary. Intuitively, this theorem implies that the sum of 

all sources minus the sum of all sinks gives the net flow out of a region. The divergence theorem is an 

important result for the mathematics of engineering, particularly in electrostatics and fluid mechanics.

1.10.1 Green’s Identities

These identities are corollaries of the divergence theorem and can be derived as follows.

We consider, 1 2= —A S S (1.85)

where S1 and S2 are scalar functions continuous together with their partial derivatives of first and 

second order.

\ 2
1 2 1 2 1 2( )— ◊ = — ◊ — = — + — ◊ —A S S S S S S {by vector identity}
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Applying divergence theorem

— ◊ = ◊Ú Ú
V S

Adv A dS

Substituting the value of — ◊ A and A, we get

2
1 2 1 2 1 2( ) ( )— + — ◊ — = — ◊Ú Ú

V S

S S S S dv S S dS (1.86)

This is the first form of Green’s identity.

Now, interchanging the functions S1 and S2, we get

2
2 1 2 1 2 1( ) ( )— + — ◊ — = — ◊Ú Ú

V S

S S S S dv S S dS (1.87)

Subtracting Eq. (1.87) from Eq. (1.86), we get

2 2
1 2 2 1 1 2 2 1( ) ( )— - — = — - — ◊Ú Ú

V S

S S S S dv S S S S dS (1.88)

This is the second form of Green’s identity.

Using Green’s identities, it can be proved that the specifications of both divergence and curl of a 

vector with boundary conditions are sufficient to make the function unique (known as Uniqueness

theorem).

*Example 1.42 Given that 22 3= + +x y zA xya a yz a , evaluate ◊Ú
S

A dS , where S is the surface of 

the cube defined by 0 £ x £ 1, 0 £ y £ 1, 0 £ z £ 1. Also, verify the result by using divergence theorem.

Solution We evaluate the surface integrals for the six surfaces as follows.

Fig. 1.34 Surface integral of Example 1.42

1 1 1 1 1 1

1 0 1
0 0 0 0 0 0

1 1 1 1 1 1

1 00
0 0 0 0 0 0

( )

( ) ( )

z z yz z y
S x y x y z x

y x xx xy
z x y z y z

A dS A dxdy A dxdy A dxdz

A dxdz A dydz A dydz

= = =
= = = = = =

= ==
= = = = = =

◊ = + - +

+ - + + -

Ú Ú Ú Ú Ú Ú Ú

Ú Ú Ú Ú Ú Ú



Vector Analysis 69

where Ax = 2xy; Ay = 3; Az = yz2

\
1 1 1 1 1 1

0 0 0 0 0 0

( 0) (3 3) (2 0)

1
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2
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2

= = = = = =
◊ = - + - + -
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=

Ú Ú Ú Ú Ú Ú Ú
S x y z x y z

A dS y dxdy dxdz y dydz

Also, 2(2 ) (3) ( ) 2 2 2 (1 )
∂ ∂ ∂— ◊ = + + = + = +
∂ ∂ ∂

A xy yz y yz y z
x y z
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v z y x z y z

Adv y z dxdydz y z dydz z dz

Since, — ◊ = ◊Ú Ú
v S

Adv A dS , divergence theorem is verified.

*Example 1.43 Given that 
35

4

Ê ˆ
= Á ˜Ë ¯ r

r
A a  C/m2 in cylindrical coordinates, evaluate both sides of 

divergence theorem for the volume enclosed by r = 1 m, r = 2 m, z = 0 and z = 10 m.

Solution Here, f= rdS rd dza
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\
22 2 10 2 4

2 3 3

11 0 0 1
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4
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p

f

f f p p

p
= = = =

È ˘
— ◊ = = = ¥ = Í ˙Î ˚
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Ú Ú Ú Ú Ú Ú
v v r z r

r
A dv r rdrd dz r drd dz r dr

Since, — ◊ = ◊Ú Ú
v S

Adv A dS , divergence theorem is verified.

*Example 1.44 For the given vector 2 2 2( ) 2 ( )= - + + -x y zF x y a xya x xy a , evaluate the surface 

integral ◊Ú
S

F dS  over the surface of the cube with centre at the origin and side length a.

Fig. 1.35 Surface integral of a vector

Solution We calculate the surface integrals ◊Ú
S

F dS  for all six surfaces and then add up to get the 

closed surface integral ◊Ú
S

F dS .
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For surface cdhg

,
2

= = y

a
y dS dxdza
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For surface abfe

,
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For surface adhe
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For surface bcgf
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Addition of all six surface integrals gives

0◊ =Ú
S

F dS

We can verify the result by using divergence theorem as follows:
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Fdv F dS , divergence theorem is verified.
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 Example 1.45 Given that 
3

3
= x

x
A a , evaluate both sides of the divergence theorem for the 

volume of a cube, 1 m on an edge, centered at the origin and with edges parallel to the axes.

Solution Here,
3

3
= x

x
A a
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31
( )
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Ê ˆ
◊ = ◊ =Á ˜Ë ¯x x
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\
0.5 0.5 0.5 0.5

3 3

0.5 0.5 0.5 0.5
0.5 0.5

1 1

3 3

1 1 1
1 1 1 1

24 24 12

= - = - = - = -= = -

È ˘ È ˘
◊ = -Í ˙ Í ˙

Í ˙ Í ˙Î ˚ Î ˚

= ¥ ¥ + ¥ ¥ =

Ú Ú Ú Ú Ú
S y z y z

x x

A dS x dydz x dydz
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A x
x

\
0.50.5 0.5 0.5 3

2

0.50.5 0.5 0.5

1
( ) 1 1

3 12-= - = - = -

È ˘
— ◊ = = ¥ ¥ =Í ˙Î ˚Ú Ú Ú Ú
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x
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Hence, ( )◊ = — ◊Ú Ú
S v

A dS A dv; thus, divergence theorem is verified.

*Example 1.46 Given that –10 2= -r
r zF e a za , evaluate both sides of the divergence theorem 

for the volume enclosed by r = 2, z = 0 and z = 5.

Solution Here, 10 2-= -r
r zF e a za

ff f= + +r zdS rd dza drdza rdrd a

\ (10 2 ) ( ) 10 2ff f f f- -◊ = - ◊ + + = -r r
r z r zF dS e a za rd dza drdza rdrd a re d dz rzdrd

The cylinder has three surfaces as follows.

top bottom curved

◊ = ◊ + ◊ + ◊Ú Ú Ú Ú
s
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For the bottom surface, z = 0
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z
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By addition, total surface area of the closed cylinder is given as

240 0 200 40.63p p -◊ = - + + = -Ú
s

F dS e

Also,
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\ ( )◊ = — ◊Ú Ú
s v

F dS F dv  and hence, divergence theorem is verified.

*Example 1.47 Given the vector 
25

4 r

r
=D a  in spherical coordinates. Verify both sides of the 

divergence theorem for

(a) the volume enclosed by r = 1 and r = 2.

*(b) the volume enclosed by r = 2 and q =
4

p
.

Solution Here,
25

4 r

r
=D a

\ 2 sin rr q q f=dS d d a

\
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2 45 5
( sin ) sin

4 4r r

r
r q q f r q q f

Ê ˆ
◊ = ◊ =Á ˜Ë ¯D dS a d d a d d

(a) Here, the surface integral is radially outward for the surface at r = 2 and radially inward at r = 1.
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D dS D dv ; and thus divergence theorem is verified.
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(b) Here, the surface integral is non-vanishing only at r = 2.

\
2

4
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5
sin 20 2 ( cos ) 80
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p p
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q f
r

r q q f p q p
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2
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p p

r q f
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rr q r q f p p
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È ˘
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v
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Thus, divergence theorem is verified.

*Example 1.48 Evaluate both sides of the divergence theorem.

◊ = — ◊Ú Ú
S v

A dS Adv

For each of the following cases:

(a) 2 3 2= + +x y zA xy a y a y za and S is the surface of the cuboid defined by 0 < x < 1, 0 < y < 1, 

0 < z < 1.

(b) 2 3 sin 4 cosff f= + -r zA r za z a r a and S is the surface of the wedge 0 < r < 2, 0 < f < 45°, 

0 < z < 5.

Solution (a)

(a) Here, 2 3 2= + +x y zA xy a y a y za

We evaluate the surface integrals for the six surfaces as follows.
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where Ax = xy2; Ay = y3; Az = y2z
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Fig. 1.36 Surface integral of 

Example 1.48 (a)
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\ 
1 1 1 1
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5
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3
= = = =

— ◊ = = =Ú Ú Ú Ú Ú
v z y x y

Adv y dxdydz y dy

Since, — ◊ = ◊Ú Ú
v S

Adv A dS , divergence theorem is verified.

(b) Here, 2 3 sin 4 cosff f= + -r zA r za z a r a

We evaluate the surface integrals for the six surfaces as follows.
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where Ar = 2rz; Af = 3z sin f; Az = –4r cos f

Fig. 1.37 Surface integral of Example 1.48 (b)
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∞
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Since — ◊ = ◊Ú Ú
v S

Adv A dS , divergence theorem is verified.
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 Example 1.49 Find the total charge inside a cubical volume of 1 m on a side situated in the positive 

octant with three edges coincident with the x, y and z axis and one corner at the origin, if ( 3)= + xD x a .

Solve the problem using (a) divergence theorem, and (b) by integrating D  over surface of the cube.

Solution Here, the flux density is given as, ( 3)= + xD x a

We can find the total charge by two methods:

(a) by divergence theorem, or

(b) by evaluating the surface integrals of the flux density over surface of the cube.

(a) By divergence theorem

( 3) 1
∂— ◊ = + =
∂

D x
x

\
1 1 1

0 0 0

1 1
= = =

— ◊ = =Ú Ú Ú Ú
v z y x

Adv dxdydz

(b) By evaluating the surface integrals of the flux density over the surface of the cube

Here, as the flux density is having only x-component, the surface integral reduces to

1 1 1 1 1 1 1 1

1 0
0 0 0 0 0 0 0 0

( ) (4 3) 1
= =

= = = = = = = =
◊ = + - = - = =Ú Ú Ú Ú Ú Ú Ú Ú Úx xx x

S y z y z y z y z

D dS D dydz D dydz dydz dydz

Thus, we see that in both the methods, the total charge inside the cube is found to be 1 Coulomb.

1.11 STOKES’ THEOREM

Statement This theorem states that the line integral of a vector around a closed path is equal to the 

surface integral of the normal component of its curl over the surface bounded by the path.

Mathematically,

( ) ( )◊ = — ¥ ◊ = — ¥ ◊Ú ÚÚ ÚÚ n
L S S

F d l F dS F a dS (1.89)

where S is the surface enclosed by the path L. The 

positive direction of dS  is related to the positive 

sense of defining L according to the right-hand rule.

Proof We consider an arbitrary surface S as 

shown in Fig. 1.38. We divide the surface into a 

large number of still smaller elements 1, 2, 3, … 

etc. Taking the line integrals of all such small ele-

ments and summing up,

1 2 3L

k
k

kk kk

F d l F dl F dl F dl

F dl

F dl S
S

◊ = ◊ + ◊ + ◊

◊
= ◊ = D

D

Ú Ú Ú Ú

Ú
Â ÂÚ

where DSk is the area of the kth element.

Fig. 1.38 Arbitrary surface S in the yz plane 

bounded by closed path L
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(Due to cancelation of every interior path, the sum of the line integrals around kth elements is the 

same as the line integral around the bounding path L, i.e., 
1 2 3

◊ + ◊ + ◊ = ◊Ú Ú Ú Ú
L

F dl F dl F dl F dl )

As DSk Æ 0, summation approaches integration, S Æ Ú, so that
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k k

k k
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S Sk kkL S

F d l F dl

F dl S S
S S

Since, by definition of curl of a vector, the line integral divided by the surface area is the component of 

the curl normal to the surface, i.e., 
0
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D Æ
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Á ˜ = — ¥Á ˜DË ¯
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k
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S k

F d l

F
S

, we can write

0 0
Lim Lim ( )

D Æ D Æ

Ê ˆ Ê ˆ◊ ◊
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F d l F dl

F dl S S F dS
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( )

L S

F d l F dS\ ◊ = — ¥ ◊Ú Ú

NOTE

Stokes’ theorem is a special case of Green’s theorem in plane. To obtain Stokes’ theorem from 

Green’s theorem, we have to make two changes. First, the line integral in two dimensions (Green’s 

theorem) is changed to a line integral in three dimensions (Stokes’ theorem). Second, the double 

integral of curl kF a◊  over a region R in the plane (Green’s theorem) is changed to a surface integral 

of curl nF a◊  over a surface S floating in space (Stokes’ theorem).

*Example 1.50 Given that 2= +x yF a y za . Verify Stokes’ theorem for this vector field and the 

flat surface in the yz plane bounded by (0, 0, 0), (0, 1, 0), (0, 1, 1) and (0, 0, 1). Choose the contour in 

the clockwise direction.

Solution Here, 2 2( ) ( ) ( )◊ = + ◊ + + = +x y x y zF d l a y za dxa dya dza dx y zdy

1 2 3 4

◊ = ◊ + ◊ + ◊ + ◊Ú Ú Ú Ú Ú
L L L L L

F dl F dl F dl F dl F dl

Along L1: dx = dy = 0

\
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1
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0

( ) 0
=
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L z

F d l dx y zdy

Along L2: dx = 0,

\
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11 3
2

1
0 0

1
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3 3=
=
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L y

y
F dl y zdy
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Along L3: dx = dy = 0

\
3

0◊ =Ú
L

F dl

Along L4: dx = 0, z = 0

\
4

0
2

1

( ) 0
=

◊ = + =Ú Ú
L y

F d l dx y zdy

Hence, the line integral is given as

1 2 3 4

.

1 1
0 0 0

3 3

L L L L L

F dl F dl F dl F dl F dl◊ = ◊ + ◊ + + ◊

= + + + =

Ú Ú Ú Ú Ú

To evaluate surface integral, we have the elemental surface given as

( )= - = -x xdS dydz a dydza

Also, 2

21 0

∂ ∂ ∂— ¥ = = -
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x y z

x

a a a

F y a
x y z

y z

\
1

1 1 1 1 3
2 2

0 0 0 0 0

1
( ) ( ) ( )

3 3= = = =
— ¥ ◊ = - ◊ - = = =Ú Ú Ú Ú Úx x

S z y z y

y
F dS y a dydza y dydz

Since ( )— ¥ ◊ = ◊Ú Ú
S L

F dS F dl , Stokes’ theorem is verified.

 Example 1.51 Given 2sin ff= +rA r a r a  in cylindrical coordinates. Verify the Stokes’ theorem 

for the contour shown in Fig. 1.40.

Fig. 1.40 Contour of Example 1.51

Fig. 1.39 Line integral of Example 1.50
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Solution Here,

2

3

( sin ) ( )

( sin )

f ff f

f f

◊ = + ◊ + +

= +
r r zA d l r a r a dra rd a dza

r dr r d

\
2 /2 0

3

0 0 2
0 2 /2

sin sin 0 4 2 (4 2)
p

f
f f p

f f f p p
= = == = =

È ˘ È ˘ È ˘
◊ = + + = + - = -Í ˙ Í ˙ Í ˙

Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚
Ú Ú Ú Ú
L r r

r

A d l r dr r d r dr

Also,

3

1 1

(3 cos )

sin 0

r z

z

a a a
r r

A r r a
r z

r r

f

f
f

f

∂ ∂ ∂— ¥ = = -
∂ ∂ ∂

\
/2 2 /2

/2
0

0 0 0

( ) (3 cos ) (8 2 cos ) (8 2 sin ) (4 2)
p p

p

f f

f f f f f f p
= = =

— ¥ ◊ = - = - = - = -Ú Ú Ú Ú
S r

A dS r rdrd d

Since ( )— ¥ ◊ = ◊Ú Ú
S L

F d S F dl , Stokes’ theorem is verified.

*Example 1.52 Evaluate the line integral of vector function 2 2= + +F xi x yj y xk  around the 

square contour ABCD in the xy-plane as shown in Fig. 1.41. Also integrate — ¥ F  over the surface 

bounded by ABCD and verify that Stokes’ theorem holds good.

Fig. 1.41 Contour of Example 1.52

Solution Here,

2 2= + +F xi x yj y xk

= + +dl dxi dyj dzk

\ 2 2 2 2( ) ( )◊ = + + ◊ + + = + +F dl xi x yj y xk dxi dyj dzk xdx x ydy y xdz
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The closed line integral is given as

◊ = ◊ + ◊ + ◊ + ◊Ú Ú Ú Ú Ú
B C D A

L A B C D

F dl F dl F dl F dl F dl

Along the path AB, dy = dz = 0, y = 0, z = 0; x varies from 0 to 2

\
22 2

00

2
2

È ˘
◊ = = =Í ˙Î ˚Ú Ú

B

A

x
F dl xdx

Along the path BC, dx = dz = 0, x = 2, z = 0; y varies from 0 to 2

\
22 2

2

00 2

4 8
2

=

È ˘
◊ = = =Í ˙Î ˚Ú Ú

C

B x

y
F dl x ydy

Along the path CD, dy = dz = 0, y = 2, z = 0; x varies from 2 to 0

\
0

2

2◊ = = -Ú Ú
C

B

F dl xdx

Along the path DA, dx = dz = 0, x = 0, z = 0; y varies from 2 to 0

\
2

2

0 0

0

=

◊ = =Ú Ú
C

B x

F dl x ydy

By addition, we get the closed line integral as

2 8 2 0 8◊ = + - + =Ú
L

F dl

Now, the curl of the vector is

2

2 2

2 2
∂ ∂ ∂— ¥ = = - +
∂ ∂ ∂

i j k

F xyi y j xyk
x y z

x x y y x

222 2 2 2 22
2

0 00 0 0 0

( ) (2 2 ) ( ) 2 2 8
2 2= = = =

È ˘È ˘
— ¥ ◊ = - + ◊ = = ¥ =Í ˙Í ˙Î ˚ Î ˚Ú Ú Ú Ú Ú

S x y x y

yx
F dS xyi y j xyk dxdyk xydxdy

Thus, ( )◊ = — ¥ ◊Ú Ú
L S

F d l F dS ; Stokes’ theorem is verified.

1.12 CLASSIFICATIONS OF VECTOR FIELDS

A vector field is uniquely characterised by its divergence and curl. From these properties, vector fields 

are classified into four categories:

1. Solenoidal and Irrotational Vector Fields ( 0, 0)— ◊ = — ¥ =F F

2. Non-solenoidal and Irrotational Vector Fields ( 0, 0)— ◊ π — ¥ =F F

3. Solenoidal and Rotational Vector Fields ( 0, 0)— ◊ = — ¥ πF F  and

4. Non-solenoidal and Rotational Vector Fields ( 0, 0)— ◊ π — ¥ πF F .
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1. Solenoidal and Irrotational Vector Fields ( 0, 0)F F— ◊ = — ¥ = For a given vector field F ,

if its divergence and curl are both zero ( 0, 0)— ◊ = — ¥ =F F , the field is known as solenoidal and 

irrotational vector fields. Such a vector field has neither source nor sink of flux.

Examples of such vector fields are: linear motion of incompressible fluids, electrostatic fields in 

charge-free region, magnetic fields within a current-free region, gravitational fields in free space.

2. Non-solenoidal and Irrotational Vector Fields ( 0, 0)F F— ◊ π — ¥ = For a given vector field 

F , if its divergence is not zero but curl is zero ( 0, 0)— ◊ π — ¥ =F F , then the field is known as non-

solenoidal and irrotational vector fields.

Examples of such vector fields are: electrostatic fields in charged medium, gravitational force inside 

a mass, linear motion of compressible fluids.

3. Solenoidal and Rotational Vector Fields ( 0, 0)F F— ◊ = — ¥ π For a given vector field F , if its 

divergence is zero but curl is non-zero ( 0, 0)— ◊ = — ¥ πF F , then the field is known as solenoidal and 

rotational vector fields.

Examples of such vector fields are: magnetic fields within a current carrying conductor, rotational 

motion of incompressible fluids.

4. Non-solenoidal and Rotational Vector Fields ( 0, 0)F F— ◊ π — ¥ π For a given vector field 

F , if both the divergence and curl are non-zero, ( 0, 0)— ◊ π — ¥ πF F  then the field is known as non-

solenoidal and rotational vector fields.

Examples of such vector fields: rotational motion of compressible fluids.

 Example 1.53
(a) Determine the constant c such that the vector ( ) ( ) ( )= + + + + +F x ay i y bz j x cz k  will be 

solenoidal.

(b) Find the value of constant Q to make ( 3 ) ( 2 ) ( )= + + - + +V x y i y z j x Qz k , solenoidal.

(c) Find the constants a, b, c so that the vector

( 2 ) ( 3 ) (4 2 )= + + + - - + + +V x y az i bx y z j x cy z k  is irrotational.

Solution

(a) ( ) ( ) ( )= + + + + +F x ay i y bz j x cz k

The vector will be solenoidal if its divergence is zero.

\ ( ) ( ) ( ) 0
∂ ∂ ∂— ◊ = + + + + + =
∂ ∂ ∂

F x ay y bz x cz
x y z

fi 1 + 1 + c = 0

\ c = –2

(b) ( 3 ) ( 2 ) ( )= + + - + +V x y i y z j x Qz k

The vector will be solenoidal if its divergence is zero.

\ ( 3 ) ( 2 ) ( ) 0
∂ ∂ ∂— ◊ = + + - + + =
∂ ∂ ∂

V x y y z x Qz
x y z

fi 1 + 1 + Q = 0

\ Q = –2
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(c) ( 2 ) ( 3 ) (4 2 )= + + + - - + + +V x y az i bx y z j x cy z k

The vector will be irrotational if its curl is zero.

\ 0

( 2 ) ( 3 ) (4 2 )

∂ ∂ ∂— ¥ = =
∂ ∂ ∂

+ + - - + +

i j k

V
x y z

x y az bx y z x cy z

fi ( 1) ( 4) ( 2) 0+ + - + - =c i a j b k

This vector will be zero if and only if its components are individually zero.

\ (c + 1) = 0 fi c = –1

(a – 4) = 0 fi a = 4

and (b – 2) = 0 fi b = 2

Hence, a = 4, b = 2, c = –1.

*Example 1.54 If a scalar potential is given by the expression f = xyz, determine the potential 

gradient and also prove that the vector grad f=F = grad f is irrotational.

Solution Here, the potential is, f = xyz

The potential gradient is given as

( ) ( ) ( ) ( )f
∂ ∂ ∂— = + + = + +
∂ ∂ ∂x y z x y zxyz a xyz a xyz a yza xza xya
x y z

Now, we let, ( )f= — = + +x y zF yza xza xya

\ ( ) ( ) ( )1 1 1 1 1 1 0f
∂ ∂ ∂— ¥ = — ¥ — = = - + - + - =
∂ ∂ ∂

x y z

x y z

a a a

F a a a
x y z

yz xz xy

Hence, the vector f= —F  is irrotational.

1.13 HELMHOLTZ THEOREM

Statement A vector field is uniquely described within a region by its divergence and curl.

Explanation If the divergence and curl of any vector F  are given as

andr r— ◊ = — ¥ =v sF F
(1.90)

where rv is the source density of ,F  and

rs  is the circulation density of F

both vanishing at infinity, then, according to Helmholtz theorem, we can write a vector field F  as a 

sum of a component sF  whose divergence is zero 0— ◊ =sF  (solenoidal) and a component iF  whose 

curl is zero 0— ¥ =iF  (irrotational).
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\ = +s iF F F

Also, we know that the divergence of curl of a vector is zero and the curl of gradient of any scalar is 

zero. Using these two null identities, we can write sF  and iF  as follows.

ands iF A F f= — ¥ = — (1.91)

where A  and j are a vector and a scalar quantities respectively.

Thus, any vector can be represented by the Helmholtz theorem as

F Af= — + — ¥ (1.92)

Proof We assume that there exist two vector fields 1F  and 2F  which show identical results for 

divergence and curl at least at one point, P (say) in volume v of interest. Besides, 1F  and 2F  both 

satisfy the boundary condition at the surface S bounded by volume; such that on the surface we can 

write

1 2◊ = ◊n nF a F a

fi ( )1 2 0- ◊ =nF F a (1.93)

At point P, our assumption requires

1 2— ◊ = — ◊F F

fi 1 2( ) 0— ◊ - =F F (1.94)

and

1 2— ¥ = — ¥F F

fi 1 2( ) 0— ¥ - =F F (1.95)

From Eq. (1.94) and (1.95), we see that there exists a vector field 1 2( )= -H F F , which is solenoidal 

and irrotational ( 0 and 0)H H— ◊ = — ¥ = . Therefore, we can write

H f= — (1.96)

where f is a scalar field.

From Eq. (1.94) and (1.95),

20 0 0H f f— ◊ = fi — ◊ — = fi — =

Now, by Green’s first identity, we can write

2
1 2 1 2 1 2( ) ( )— + — ◊ — = — ◊Ú Ú

V S

S S S S dv S S dS

If S1 = S2 = f (say), then the identity becomes

2( ) ( )
V S

dv dSf f f f f f— + — ◊ — = — ◊Ú Ú

fi ( )2 2( ) { 0}
V S

dv dSf f f f— = — ◊ — =Ú Ú (1.97)
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By using Eq. (1.96), we have

1 2( ) 0 { by Eq. (1.95), ( ) 0}n n n
S S S

dS H dS H a dS H a F F af f f f— ◊ = ◊ = ◊ = ◊ = - ◊ =Ú Ú Ú

Hence, from Eq. (1.97), we have

2( ) 0
V

dvf— =Ú

fi 2| | 0=Ú
V

H dv

fi 0=H

fi 1 2( ) 0- =F F

\ 1 2=F F

Hence, our initial assumption that 1F  and 2F  are two different vector fields showing identical values of 

divergence and curl is wrong.

Therefore, we conclude that no two vector fields can show identical divergence and curl everywhere. 

Hence, divergence and curl specifies a vector field uniquely.

1.13.1  Physical Interpretation of Helmholtz Theorem in Classical
Electromagnetism

1. Helmholtz theorem is a profound mathematical theorem which provides the definite relationship 

between a vector field and mathematically defined source functions. The usual presentations of 

electromagnetic theory establish the principal sources of the electromagnetic field vectors, but 

do not give information whether all sources are included. Helmholtz theorem provides the basis 

for investigating the existence of other possible sources.

2. According to Helmholtz theorem, a general vector field can be written as the sum of a conservative 

field and a solenoidal field. Thus, we ought to be able to write electric and magnetic fields in 

this form. Second, a general vector field which is zero at infinity is completely specified once its 

divergence and its curl are given. Thus, we can guess that the laws of electromagnetism can be 

written as four field equations

something

something

something

something

— ◊ =
— ¥ =
— ◊ =

— ¥ =

E

E

H

H

and we can solve the field equations without even knowing the right-hand sides and any solutions 

we find will be unique.

In other words, there is only one possible steady electric and magnetic field which can be 

generated by a given set of stationary charges and steady currents.

If the right-hand sides of the above field equations are all zero, then the only physical solution 

is 0= =E H . This implies that steady electric and magnetic fields cannot generate themselves. 

Instead, they have to be generated by stationary charges and steady currents. So, if we come 

across a steady electric field, we know that if we trace the field-lines back, we shall eventually 
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find a charge. Likewise, a steady magnetic field implies that there is a steady current flowing 

somewhere. All of these results follow from Helmholtz theorem prior to any investigation of 

electromagnetism.

3. Helmholtz theorem also provides a significant result pertaining to the meaning of the inverse 

square radial fields (such as, Newton’s gravitational field and Coulomb’s electrostatic fields). It 

can be established that the inverse square relation is determined by more elementary properties 

of the field and of the source function to which it relates.

Summary

A quantity that has only magnitude is said to be a scalar quantity, such as time, mass, distance, 

temperature, work, electric potential, etc. A quantity that has both magnitude and direction is called 

a vector quantity, such as force, velocity, displacement, electric field intensity, etc.

If the value of the physical function at each point is a scalar quantity, then the field is known as a 

scalar field, such as temperature distribution in a building. If the value of the physical function at 

each point is a vector quantity, then the field is known as a vector field, such as the gravitational 

force on a body in space.

A unit vector Aa  along A is defined as a vector whose magnitude is unity and its direction is along 

A. In general, any vector can be represented as

| |= =A AA Aa A a

where A or | |A  represents the magnitude of the vector and Aa  direction of the vector A.

Two vectors can be added together by the triangle rule or parallelogram rule of vector addition.

The dot product of two vectors A and B, written as, ◊A B, is defined as

cos q◊ = ABA B AB

where, qAB is the smaller angle between A and B, and

| |=A A  and | |=B B  represent the magnitude of A and B, respectively.

The cross product of two vectors A and ,B  written as ( ),¥A B  is defined as

sin q¥ = AB nA B AB a

where na  is the unit vector normal to the plane containing A and B. The direction of the cross 

product is obtained from a common rule, called the right-hand rule.

Three orthogonal coordinate systems commonly used are Cartesian coordinates (x, y, z), cylindrical 

coordinates (r, f, z) and spherical coordinates (r, q, f).

The differential lengths in three coordinate systems are given respectively as

sin

f

r q f

f

r r q r q f

= + +

= + +

= + +

x y z

r z

d l dxa dya dza

d l dra rd a dza

d l d a d a d a
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The differential areas in three coordinate systems are given respectively as

2 sin sin

f

r q f

f f

r q q f r q r f r r q

= + +

= + +

= + +

x y z

r z

dS dydza dxdza dxdya

dS rd dza drdza rdrd a

dS d d a d d a d d a

The differential volumes in three coordinate systems are given respectively as

2 sin

f

r q r q f

=
=
=

dV dxdydz

dV rdrd dz

dV d d d

For vector F  and a path l, the line integral is given by

| | cos q◊ =Ú Ú
b

l a

F d l F dl

If the path of integration is a closed curve, the line integral is the circulation of the vector around 

the path.

If the line integration of a vector along a closed path is zero, i.e., 0◊ =Ú
l

F d l , then the vector is 

known as conservative or lamellar.

For a vector ,F  continuous in a region containing a smooth surface S, the surface integral or the flux 

of F  through S is defined as

| | cosy q= ◊ = ◊ =Ú Ú Ún
S S S

F dS F a dS F dS

where na  is the unit normal vector to the surface S.

If the surface is a closed surface, the surface integral is the net outward flux of the vector.

If the surface integral of a vector over a closed surface is zero, i.e., 0◊ =Ú
S

F dS , then the vector is 

known as solenoidal vector.

The volume integral of a scalar quantity F over a volume V is written as

= Ú
V

U Fdv

The differential vector operator (—) or Del or Nabla, defined in Cartesian coordinates as

∂ ∂ ∂— = + +
∂ ∂ ∂x y za a a

x y z

is merely a vector operator, but not a vector quantity. It is a vector space function operator, used for 

performing vector differentiations.

The gradient of a scalar function is both the magnitude and the direction of the maximum space rate 

of change of that function.
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The gradient of a scalar quantity in three different coordinate systems is expressed respectively as

(Cartesian coordinates)

1
(Cylindrical coordinates)

1 1
(Spherical coordinates)

sin

x y z

r z

F F F
F a a a

x y z

F F F
a a a

r r z

F F F
a a a

f

r q f

f

r r q r q f

∂ ∂ ∂— = + +
∂ ∂ ∂
∂ ∂ ∂= + +
∂ ∂ ∂
∂ ∂ ∂= + +
∂ ∂ ∂

The divergence of a three-dimensional vector field at a point is a measure of how much the vector 

diverges or converges from that point.

If the divergence of a vector is zero, then the vector is known as solenoidal vector.

The divergence of a vector quantity in three different coordinate systems is expressed respectively 

as

2

2

(Cartesian coordinates)

1 1
( ) (Cylindrical coordinates)

1 1 1
( ) ( sin ) (Spherical coordinates)

sin sin

f

f
r q

f

r q
r r q q r q fr

∂∂ ∂
— ◊ = + +

∂ ∂ ∂
∂ ∂∂= + +

∂ ∂ ∂
∂∂ ∂= + +

∂ ∂ ∂

yx z

z
r

FF F
F

x y z

F F
rF

r r r z

F
F F

The curl of a vector field, denoted curl F  or — ¥ F , is defined as the vector field having magnitude 

equal to the maximum circulation at each point and to be oriented perpendicularly to this plane of 

circulation for each point.

If the curl of a vector is zero, then the vector is known as irrotational vector.

The curl of a vector quantity in three different coordinate systems is expressed respectively as

( )

2

(Cartesian coordinates)

1
(Cylindrical coordinates)

sin

1
(Spherical coordinates)

sin

sin

f

f

r q f

r q f

f

r r q

r q fr q

r r q

∂ ∂ ∂— ¥ =
∂ ∂ ∂

∂ ∂ ∂=
∂ ∂ ∂

∂ ∂ ∂Ê ˆ= Á ˜ ∂ ∂ ∂Ë ¯

x y z

x y z

r z

r z

a a a

F
x y z

F F F

a ra a

r r z

F rF F

a a a

F F F

The Laplacian operator (—2) of a scalar field is the divergence of the gradient of the scalar field 

upon which the operator operates.



  88 Electromagnetic Field Theory

The Laplacian operator (—2) of a scalar field in three different coordinate systems is expressed 

respectively as

( )
( )

2 2 2
2

2 2 2

2 2

2 2 2

2
2

2 2 2 2 2

(Cartesian coordinates)

1 1
(Cylindrical coordinates)

1 1 1
sin (Spherical coordinates)

sin sin

F F F
F

x y z

F F F
r

r r r r z

F F F

f

r q
r r q qr r q r q f

∂ ∂ ∂— = + +
∂ ∂ ∂

∂ ∂ ∂ ∂= + +
∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂Ê ˆ= + +Á ˜∂ ∂ ∂ ∂Ë ¯ ∂

The Laplacian of a vector is defined as the gradient of divergence of the vector minus the curl of 

curl of the vector; i.e.,

2 ( )— = — — ◊ - — ¥ — ¥F F F

In the Cartesian coordinate system and only in the Cartesian coordinate system, vector Laplacian is 

written as

2 2 2 2( ) ( ) ( )— = — + — + —x x y y z zF F a F a F a

Gauss’ divergence theorem is used to convert volume integral into surface integral and vice versa. 

According to this theorem, the divergence of a vector field over a volume is equal to the surface 

integral of the normal component of the vector through the closed surface bounding the volume.

— ◊ = ◊ = ◊Ú Ú Ú n
V S S

Fdv F dS F a dS

where V is the volume enclosed by the closed surface S.

According to Green’s theorem, if F  is a two-dimensional vector field, such that, ( )x x y yF F a F a= + ,

then

( )
∂Ê ˆ∂

+ = -Á ˜∂ ∂Ë ¯Ú ÚÚ
y x

x y
C R

F F
F dx F dy dxdy

x y

where C is a positively oriented boundary of the region R.

Stokes’ theorem is used to covert line integral into surface integral and vice versa. According to 

this theorem, the line integral of a vector around a closed path is equal to the surface integral of the 

normal component of its curl over the surface bounded by the path

( ) ( )◊ = — ¥ ◊ = — ¥ ◊Ú ÚÚ ÚÚ n
L S S

F d l F dS F a dS

where S is the surface enclosed by the path L. The positive direction of dS  is related to the positive 

sense of defining L according to the right-hand rule.

Helmholtz theorem states that a vector field is uniquely described within a region by its divergence 

and curl.
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Important Formulae

Dot product cos q◊ = ABA B AB

Cross product sin q¥ = AB nA B AB a

Differential lengths
, (Cartesian coordinate)

, (Cylindrical coordinate)

sin , (Spherical coordinate)

= + +

= + +

= + +

x y z

r z

d l dxa dya dza

dra rd a dza

d a d a d a

f

r q f

f

r r q r q f

Differential areas

2

, (Cartesian coordinate)

, (Cylindrical coordinate)

sin sin (Spherical coordinate)

= + +

= + +

= + +

x y

r z

dS dvdza dxdza dxdyaz

rd dza drdza rdrd a

d d a d d a d d a

f

r q f

f f

r q q f r q r f r r q

Differential volume

2

, (Cartesian coordinate)

, (Cylindrical coordinate)

sin , (Spherical coordinate)

=
=

=

dS dxdydz

rdrd dz

d d d

f

r q r q f

Del operator in 

Cartesian coordinate z y za a a
x y z

∂ ∂ ∂— = + +
∂ ∂ ∂

Gradient of a scalar
(Cartesian coordinates)

1
(Cylindrical coordinates)

1 1
(Spherical coordinates)

sin

x y z

r z

F F F
F a a a

x y z

F F F
a a a

r r z

F F F
a a a

f

r q f

f

r r q r q f

∂ ∂ ∂— = + +
∂ ∂ ∂

∂ ∂ ∂= + +
∂ ∂ ∂

∂ ∂ ∂= + +
∂ ∂ ∂

Divergence of a 

vector

2

2

(Cartesian coordinates)

1 1
( ) (Cylindrical coordinates)

1 1
( ) ( sin )

sin

1
(Spherical coordinates)

sin

yx z

x

z

FF F
F

x y z

F F
F

r z

F F

F

f q

q

f

g
g g f

r q
r r q qr

r q f

∂∂ ∂
— ◊ = + +

∂ ∂ ∂

∂ ∂∂= + +
∂ ∂ ∂

∂ ∂= +
∂ ∂

∂
+

∂
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Curl of a vector

( )

2

(Cartesian coordinates)

1
(Cylindrical coordinates)

sin

1
(Spherical coordinates)

sin

sin

∂ ∂ ∂— ¥ =
∂ ∂ ∂

∂ ∂ ∂=
∂ ∂ ∂

∂ ∂ ∂Ê ˆ= Á ˜ ∂ ∂ ∂Ë ¯

x y z

x y z

x y x

r z

z

a a a

F
x y z

F F F

a a a

r r z

F F F

a a a

F F F

f

q f

r q f

f

r r q

r q fr q

r r q

Laplacian of a scalar 2 2 2
2

2 2 2

2 2

2 2 2

2

2 2

2

2 2 2

(Cartesian coordinates)

1 1
(Cylindrical coordinates)

1 1
sin

sin

1
(Spherical coordinates)

sin

F F F
F

x y z

F F F
r

r r r r z

F F

F

f

r q
r r q qr r q

r q f

∂ ∂ ∂— = + +
∂ ∂ ∂

∂ ∂ ∂ ∂Ê ˆ= +Á ˜Ë ¯∂ ∂ ∂ ∂

Ê ˆ∂ ∂ ∂ ∂Ê ˆ= + Á ˜Á ˜ Ë ¯∂ ∂ ∂ ∂Ë ¯

∂+
∂

Laplacian of a 

vector in Cartesian 

coordinate

2 2 2 2( ) ( ) ( )x z y y z zF F a F a F a— = — + — + —

Gauss’ divergence 

theorem x
V S S

Fdv F dS F a dS— ◊ = ◊ = ◊Ú Ú Ú

Stokes’ theorem
( ) ( ) x

L S S

F d l F dS F a dS◊ = — ¥ = — ¥Ú ÚÚ ÚÚ

Exercises

[Note: * marked problems are important university problems]

Easy

1. Given the vectors 5 3 6x y zA a a a= + +  and 2 4x y zB a a a= + + , find ,A B A B◊ ¥  and the angle 

between A and B. [37, (6 8 ),15.2 ]x y za a a- - ∞
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 2. Determine the gradient of the following scalar fields:

 (a) A = x2 y + xyz

 (b) S = r2 z cos 2f

 (c) 
2

sin sin
W

q f

r
=

2

3 3 3

( ) { (2 ) ( ) };

( ) (2 cos 2 2 sin 2 cos 2 );

2 sin sin cos sin cos
( )

x y z

r z

a y x z a x x z a xya

b rz a rz a r a

c a a a

f

r q f

f f f

q f q f f

r r r

+ + + +È ˘
Í ˙- +Í ˙
Í ˙Ê ˆ- + +Í ˙Á ˜Ë ¯Í ˙Î ˚

 3. Determine the divergence of the following vectors:

 (a) 
2 2

xa
A

x y
=

+

 (b) 2sin 2 cos 2r zA r a r a z aff f= + +

 (c) 
2

5
sin cot sin cosA a a ar q ff r q r q f

r

Ê ˆ= + +Á ˜Ë ¯
3 22 /2

( ) ; ( ) 4 ; ( ) (1 sin )
( )

x
a b z c

x y
qÈ ˘- - +Í ˙+Î ˚

 4. Determine the curl of the following vectors:

 (a) 2 2( ) 2 2x y zF x z a a xza= - + +

 (b) 2sin 3 cosrF rz a rz aff f= +

 (c) 
2 2

sin cos
F a ar f

f f

r r
= -

3 3

( ) 4 ;( ) 6 cos sin (6 1) cos ;

cos1 1
( ) cot cos cos

sin

y r za za b rz a r a z a

c a a

f

r q

f f f

f
q f f

qr r

- - + + -È ˘
Í ˙Ê ˆÊ ˆÍ ˙+ +Á ˜Á ˜ Ë ¯Í ˙Ë ¯Î ˚

 5. Determine the Laplacian of the following scalar fields:

 (a) F = x2 y + xyz

 (b) F = r2 z cos 2f
 (c) F = 10 r sin2 q cos f
 (d) F = (3x + 4y + 2z)(x – 2y + 4z)

10 cos
( ) 2 ; ( ) 0; ( ) (1 2 cos 2 ); ( ) 6a y b c d

f
q

r
È ˘+Í ˙Î ˚

 6. Show that the vector x y zF yza xza xya= + +  is both solenoidal and irrotational.

 Medium

 *7. For a position vector r , prove that ( ) 3

1 r

r r
— = - .

 8. If (r, q, f) are spherical polar coordinates, show that,

 
grad (cos ) grad grad 0

1
q f r

r
Ê ˆ¥ = πÁ ˜Ë ¯

 9. If a rigid body is rotating with an angular velocity w , prove that 
1

curl
2

vw = , where v  is the linear 

velocity. Give the physical meaning of the cross product of w  and r  where r  is position vector.
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*10. Given point P (–2, 6, 3) and vector ( )x yA ya x z a= + + . Express P and A in cylindrical and 

spherical coordinates. Evaluate A  at P in the Cartesian, cylindrical and spherical systems.

( 2, 6, 3) (6.32,108.43 , 3) (7, 64.62 ,108.43 );

(6 ), ( 0.95 6 ), ( 0.86 0.41 6 )x y r

P P P

a a a a a a af r q f

- = ∞ = ∞ ∞È ˘
Í ˙+ - - - - -Î ˚

11. Express the vector, 
10

cos ,B a a ar q fr q
r

= + +  in Cartesian and cylindrical coordinates. Find B

(–3, 4, 0) and B (5, p/2, –2). [( 2 ); (2.407 1.167 )]x y r za a a a af- + + +

12. Express the vector, 23 x y zxa yza x za- +  in cylindrical coordinates.

13. Express the vector, 2 2x y zya a xa- +  in spherical polar coordinates.

*14. Given that 
310

3 x

x
A a= , evaluate both sides of the divergence theorem for the volume of a cube, 

2 m on an edge, centered at the origin and with edges parallel to the axes.

15. Given that 30 4r
r zF e a za-= -  in cylindrical coordinates, evaluate both sides of the divergence 

theorem for the volume enclosed by r = 5, z = 0 and z = 10.

*16. Given that 
310

4 r

r
D a=  in cylindrical coordinates, evaluate both sides of the divergence theorem 

for the volume enclosed by r = 1, r = 2, z = 0 and z = 10.

Hard

17. Prove that —2 rn = n(n + 1)rn – 2 and ( )2 1
0

r
— = .

18. Given a vector field

21
sin sin cosD a a ar q fr f q f r

r
= - +

  determine: (a) D  at P (10, 150°, 330°).

(b) The component of D tangential to the spherical surface r = 10 at P.

(c) A unit vector at P perpendicular to D  and tangential to the cone q = 150°.

( ) ( 5 0.043 100 ); ( ) (0.043 100 ); ( ) ( 0.999 0.0499 )a a a a b a a c a ar q f q f r f
Í ˙- + + + - -Î ˚

19. Given the vector field in ‘mixed’ coordinate variables as

2 2

2 2 2

3 cos 33 3
2x y z

y yxz x
J a a a

q

rr r r

È ˘
= + + - -Í ˙

Î ˚

  Convert the vector completely in spherical coordinates.

20. For the vector ( ) x y zF x y a xa xa= + - + , evaluate the line integral from point P1 to point P2 along 

the path L1 and L2 as shown in Fig. 1.42.

1 1
,

2 2
È ˘-Í ˙Î ˚
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Fig. 1.42 Contour of Example 21

21. Given the vector 
e

A a
r

qr

-Ê ˆ
= Á ˜Ë ¯

 in spherical coordinates. Verify both sides of Stokes’ theorem for 

the curve bounded by the area shown in Fig. 1.43.

Fig. 1.43 Arrangement of Problem 22

Review Questions

1. What is the concept of field? Define scalar and vector fields by giving suitable example of each. 

What is the importance of unit vector?

2. (a) Discuss cross product and dot product in detail between two vectors.

  (b) Discuss the vector representation of a surface.

3. Define the divergence of a vector. Explain the physical significance of the term ‘divergence of a 

vector field’.

4. Define the curl of a vector. Explain the physical significance of the term ‘curl of a vector field’.

5. What is a ‘gradient’? Give its physical interpretation.

6. Define generalised coordinate system. Find its gradient, divergence and curl equations.

7. Define and give examples for the following vector fields:

(a) Solenoidal and irrotational (b) Non-solenoidal and irrotational

(c) Solenoidal and rotational (d) Non-solenoidal and rotational

8. State and prove the Divergence theorem.
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9. State and prove Stoke’s theorem.

10. State and prove the Helmholtz theorem. What is the physical significance of this theorem?

Multiple Choice Questions

1. Choose the correct statement:

(a) Divergence of curl of a vector is zero and curl of grad is zero.

(b) Divergence of curl of a vector is zero and curl of grad is non-zero.

(c) Divergence of curl of a vector is non-zero and curl of grad is non-zero.

(d) Divergence of curl of a vector is non-zero and curl of grad is zero.

2. If the vectors A  and B  are conservative, then

(a) A B¥  is solenoidal (b) A B¥  is conservative

(c) A B+  is solenoidal (d) A B- is solenoidal

3. The value of 
C

d lÚ  along a circle of radius 2 units is

(a) zero (b) 2p (c) 4p

4. Two vectors A  and B  are such that A B nA+ =  where n is a positive scalar. The angle between A

and B  is

(a)
2

p
(b)

3

4

p
(c) p (d) 2p

5. Which of the following equations is correct?

(a) 2| |x x xa a a¥ = (b) ( ) ( ) 0x y y xa a a a¥ + ¥ =
(c) ( ) ( )x y z x z ya a a a a a¥ ¥ = ¥ ¥ (d) 0r ra a a aq q◊ + ◊ =

6. Match List-I (Term) with List-II (Type) and select the correct answer using the codes given below 

the lists:

List-I

(Term)

List-II

(Type)

A. curl ( )F = 0 1. Laplace equation

B. div ( )F = 0 2. Irrotational

C. div Grad (f) = 0 3. Solenoidal

D. div div (f) = 0 4. Not defined

  Codes:

  (a) A B C D

  2 3 1 4

  (b) A B C D

  4 1 3 2

  (c) A B C D

  2 1 3 4

  (d) A B C D

  4 3 1 2
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7. Which one of the following is a meaningless combination?

(a) grad div (b) div curl (c) curl grad (d) div curl

8. Which one of the following is zero?

(a) grad div (b) div grad (c) curl grad (d) curl curl

Answers

1. (a) 2. (a) 3. (a) 4. (c) 5. (b) 6. (a) 7. (c) 8. (c)



This chapter deals with the following topics:

■ Sources of electrostatics

■ Basic laws of electrostatics

■ To acquire knowledge of fundamental quantities of electrostatics

■ Boundary conditions in electrostatics

■ Concepts of capacitance

2
ELECTROSTATICS

2.1 INTRODUCTION

The sources of electromagnetic fields are the presence of electric charges. An electrostatic field is 

considered to be a special case of electromagnetic field in which the sources are stationary. However, 

individual charges (e.g., electrons) are never stationary, having random velocities. The charges are 

referred to be stationary when any elemental macroscopic volume is considered and the net movement 

of charge through any face of the volume is zero.

In this chapter, we will learn the basics of electrostatics in detail.

2.2 ELECTRIC CHARGE

Electric charge (q) is a fundamental conserved property of some subatomic particles, which determines 

their electromagnetic interaction. An isolated electric charge creates an electric field around it and 

exerts force on all other charges within that field.

The SI unit of charge is Coulomb (C). The charge of an electron is 1.602 ¥ 10-19C. Thus, one 

Coulomb charge is defined as the charge possessed by 19

1

1.602 10-
Ê ˆ
Á ˜¥Ë ¯

 electrons.

\ 1 Coulomb charge = charge of 6.24 ¥ 1018 electrons

The total electric charge of an isolated system remains constant regardless of changes within the system 

itself. This is known as the law of conservation of charge. The law of conservation of charge states

that charge can neither be created nor destroyed. A charge can however, be transferred from one body 

to another body.

Learning Objectives



Electrostatics 97

2.3 COULOMB’S LAW

Statement This law states that the force between two point charges:

1. acts along the line joining the two charges.

2. is directly proportional to the product of the two charges.

3. is inversely proportional to the square of the distance between the charges.

Explanation We will consider two point charges Q1 and Q2 with separation distance R, as shown in 

Fig. 2.1 (a) and Fig. 2.1 (b).

Fig. 2.1 Coulomb interaction between two point charges (a) like charges, and (b) unlike charges

The force exerted by Q1 on Q2 is

1 2 1 2
12 12 12 122 2R R

Q Q Q Q
F a F k a

R R
a fi = (2.1)

where k is the proportionality constant, which takes into account the effect of the medium in which the 

charges are placed and 12Ra  is a unit vector directed from Q1 to Q2.

In SI unit, charges expressed in Coulomb (C), the distance expressed in metre (m) and the force 

expressed in Newton (N), the proportionality constant is given as

1
4

k
pe

=

where 0

12
0 9

permittivity of the medium

1
permittivity of free space 8.854 10 F/m

36 10

relative permittivity of the medium

r

r

e e e

e
p

e

-

= =

= = = ¥
¥

=

Thus, Coulomb’s law in SI unit becomes, from Eq. (2.1)

1 2
12 1224

R

Q Q
F a

Rpe
= (2.2)

Similarly, force exerted by Q2 on Q1 is

1 2 1 2
21 21 21 21 122 2R R

Q Q Q Q
F a F k a F

R R
a fi = = -

If two charges have the position vectors of 1r  and 2r ,

respectively, as shown in Fig. 2.2, then Fig. 2.2   Coulomb vector force between two 

point charges
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Force on charge Q2 due to charge Q1 is

1 2
12 1224

R

Q Q
F a

Rpe
=

where 12
12 2 1 12 12( ), | | R

R
R r r R R a

R
= - = \ =

\ 1 2 1 2 2 1
12 123 3

2 1

( )

4 4 | |

Q Q Q Q r r
F R

R r rpe pe

-
= =

-
(2.3)

Similarly, force on charge Q1 due to charge Q2 is

1 2 1 2 1 2
21 21 123 3

1 2

( )

4 4 | |

Q Q Q Q r r
F R F

R r rpe pe

-
= = = -

-

Thus, we see that the force exerted by the charges on each other is equal in magnitude, but opposite 

in direction. It is also noticeable that the force between two like charges (charges of equal sign) is 

repulsive whereas the force between two unlike charges (charges of opposite sign) is attractive.

2.4 PRINCIPLE OF SUPERPOSITION OF CHARGES

If there is a number of charges Q1, Q2, …, Qn placed at points with position vectors 1 2, ,r r  …, nr ,

respectively, then the resultant force F  on a charge Q located at point r  is the vector sum of the forces 

exerted on Q by each of the charges Q1, Q2, …, Qn.

\ 1 1 2 2
3 3 3

1 2

( )( ) ( )

4 | | 4 | | 4 | |

n n

n

QQ r rQQ r r QQ r r
F

r r r r r rpe pe pe

-- -
= + + +

- - -

\ 3
1

( )

4 | |

n
i i

i i

Q r rQ
F

r rpe =

-
=

-
Â (2.4)

 Example 2.1 Two point charges, Q1 = 50mC and Q2 = 10mC are located at (–1, 1, –3) m and 

(3, 1, 0) m, respectively. Find the force on Q1.

Solution Here, 21 ( 1,1, 3) (3,1, 0) ( 4 3 )R i k= - - - = - -

\ 21
2 2

( 4 3 ) 4 3

5( 4) ( 3)

i k i k
a

- - - -
= =

- + -

Hence, the force on the charge Q1 is

6 6
1 2

21 212 9
20 21

50 10 10 10 4 3

54 10
4 (5)

36

0.18( 0.8 0.6 )

pe
p

p

- -

-

Ê ˆ¥ ¥ ¥ - -
= = ¥ Á ˜Ë ¯

¥ ¥

= - -

Q Q i k
F a

R

i k N
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The force has a magnitude of 0.18N and a direction given by the unit vector ( 0.8 0.6 )i k- - . In 

component form

21 ( 0.144 0.108 )NF i k= - -

 Example 2.2 Two small identical conducting spheres have charges of 2.0 ¥ 10–9 C and 

–0.5 ¥ 10–9 C, respectively. When they are placed 4 cm apart, what is the force between them? If they 

are brought into contact and then separated by 4 cm, what is the force between them?

Solution The force between the conducting spheres is given as

9 9
1 2 5 5

2 12 2 2

(2.0 10 ) ( 0.5 10 )
0.5625 19 0.5625 10 (attractive)

4 4 8.854 10 (4 10 )p e p

- -
- -

- -
¥ ¥ - ¥

= = = - ¥ = ¥
¥ ¥ ¥ ¥

Q Q
F N N

r

When the two spheres are brought into contact and then separated, the charge of each sphere is

9 9
9

1 2

2.0 10 0.5 10
0.75 10 C

2
Q Q Q

- -
¢ ¢ -¥ - ¥
= = ¢ = = ¥

In this case, the force between the conducting spheres is given as

9 22
1 2 5

2 2 12 2 2

(0.75 10 )
0.3164 10 (repulsive)

4 4 4 8.854 10 (4 10 )p e p e p

-
-

- -
¥

= = = = ¥
¥ ¥ ¥ ¥

Q Q Q
F N

r r

 Example 2.3 Two particles each of 

mass ‘m’ and having a charge ‘q’ are suspended 

by string of length ‘l’ from a common point as 

shown in Fig. 2.3. Show that the angle ‘q’ which 

each string makes with the vertical is obtained 

from
23

2 2
0

tan

1 tan 16

q

q pe
=

+
q

mgl
.

Solution Force of repulsion,
2

2
04 ( )p e

= q
F

AB

From DOAC,

/2
sin 2 sin

AB
AB l

l
q q= fi =

\ 
2 2

2 2 2
0 04 (2 sin ) 16 sin

q q
F

l lp e q p e q
= = (i)

Net force at point A ( sin ) ( cos ) 0q q= - + - =T F i T mg j

\ sin

cos

q

q

=
=

T F

T mg

\ tan q = F

mg

Fig. 2.3 Two particles suspended by string from a 

common point
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Using Eq. (i), we get

2

2 2
0

tan
16 sin

q
p e q

=
q

l mg

or
2 3 3 3 3

2 2

2 3 2 2
0

sin sin tan tan
tan sin cos

cos16 cos sec 1 tan

q q q q
q q q

qp e q q q
= = = = =

+
q

mgl

\
23

2 2
0

tan

1 tan 16

q

q p e
=

+
q

mgl

If the angle is very small, q <<, then q ª q and cos q ª 1 and hence we have

2

3
2

016
q

p e
=

q

mgl

 Example 2.4 Three identical small spheres of mass m are suspended from a common point by 

threads of negligible masses and equal length l. A charge Q is divided equally among the spheres, and 

they come to equilibrium at the corners of a horizontal equilateral triangle whose sides are d. Show that

3
02

2
2

12

3

p e
=

Ê ˆ
-Á ˜Ë ¯

mgd
Q

d
l

Solution The arrangement is shown in Fig. 2.4.

Let the charge on each sphere be q.

We will consider the net force acting on any one of the spheres; say, the 

sphere at point A.

The x component of the force of repulsion due to the spheres at points B

and C is given as

2

2
0

2

2
0

cos 30 cos 30

cos 30 2( )
4

3
( )

4

BA CAF F F

q
i

d

q
i

d

p e

p e

= ∞ + ∞

= ∞ ¥ -

= -

Net force on the sphere at point A is

( sin ) ( cos ) 0a a= - + - =netF T F i T mg j

\
2

2
0

3
sin

4

cos

a
p e

a

= =

=

q
T F

d

T mg

\
2

2
0

3
tan

4
a

p e
=

q

mgd

Fig. 2.4 Three identical 

spheres 

suspended from 

a common point
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From Fig. 2.4, 
2 2 22 2

2

/ 3 / 3 / 3
tan

( / 3)
3

d d dAO

OP AP AO dl d l

a = = = =
- - -

\
2

22
02

/ 3 3

4

3

p e
=

-

d q

mgdd
l

or
3

02

2
2

4

3
3

p e
=

-

mgd
q

d
l

Here,
3

Q
q = ; putting this, we get,

3
02

2
2

12

3

p e
=

-

mgd
Q

d
l

*Example 2.5 It is required to hold four equal point charges +q each in equilibrium at the 

corners of a square. Find the point charge which will do this if placed at the centre of the square.

Solution Let the required charge at the centre be 

-q¢. From Fig. 2.5, considering the forces acting on 

any one charge (say 1), due to all other charges, the 

resultant must be zero for equilibrium.

Here,

2

21 2

2

41 2

2 2

31 22

4

4

84 ( 2 )

q
F i

a

q
F j

a

q q
F

aa

pe

pe

pepe

= -

= -

= =

\
2 2 2

31 2 2 2
(cos sin ) ( 45 )

8 8 2 8 2

q q q
F i j i j

a a a
q q q

pe pe pe
= - - = - - = ∞

Similarly,

51 2 22 2 2 2

qq qq
F i j

a ape pe

¢ ¢= +

For equilibrium,

21 41 31 51 0F F F F+ + + =

or
2

( 2 2 4 2 2 4 ) 0
8 2

q
q i q i q i q j q j q j

ape
- - + ¢ - - + ¢ =

Fig. 2.5 Arrangement of charges for Example 2.5
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or
2 2 1

0.956
4

q q q
Ê ˆ+

¢ = =Á ˜Ë ¯

Thus, the required charge at the centre of the square is -0.956q.

*Example 2.6 It is required to hold three equal point charges +q each in equilibrium at the 

corners of an equilateral triangle. Find the point charge which will do this if placed at the centre of the 

triangle.

Solution Let the required charge at the centre be 

-q¢. From Fig. 2.6, considering the forces acting on 

any one charge (say 2), due to all other charges, the 

resultant must be zero for equilibrium.

Here,
2

12 2

2 2

2 2

2

32 2

(cos 60 sin 60 )
4

3

8 8

4

q
F i j

a

q q
i j

a a

q
F i

a

pe

pe pe

pe

= - ∞ + ∞

= - -

= -

Similarly,

42 2 22

3 3 3
(cos 30 sin 30 )

8 84 ( / 3)

qq qq qq
F i j i j

a aa pe pepe

¢ ¢ ¢= ∞ + ∞ = +

For equilibrium,

12 32 42 0F F F+ + =

or
2 2 2

2 2 2 2 2

3 3 3 3
0

8 8 4 8 8

q q q qq qq
i j i i j

a a a a ape pe pe pe pe

¢ ¢- - - + + =

or
2 2 2

2 2 2 2 2

3 3 3 3
0

8 8 4 8 8

qq q q qq q
i j

a a a a ape pe pe pe pe

Ê ˆ Ê ˆ¢ ¢- - + - =Á ˜ Á ˜Ë ¯ Ë ¯

or 0.577
3

q
q q¢ = =

Thus, the required charge at the centre of the square is, 0.577
3

q
q q¢ = - = - .

*Example 2.7 Three point charges of ‘q’ are placed in air at the vertices of an equilateral 

triangle of side ‘d’. Determine the magnitude and direction of the force on one charge due to other 

charges.

Solution We find out the force on charge at A due to the other two charges situated at points B and 

C.

Fig. 2.6 Arrangement of charges for Example 

2.6
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Force on charge at A due to charge at B is

2
1 2

2 24 4
BA

Q Q q
F

r dp e p e
= =

Force on charge at A due to charge at C is

2

24
CA

q
F

dp e
=

From Fig. 2.7, it is observed that the horizontal components of the total 

force cancel out. Hence, the total force acts along the upward direction 

and its magnitude is given as

2

2

2 2

2 2

cos 30 cos 30 2 cos 30
4

33
2

24 4

BA CA

q
F F F

d

q q

d d

p e

p e p e

= ∞+ ∞ = ¥ ¥ ∞

= ¥ ¥ =

2

2

3

4

q
F

dp e
=

 Example 2.8 Four concentrated charges are located at 

the vertices of a plane rectangle as shown in Fig. 2.8. Find the 

magnitude and direction of the resultant force on Q1.

Solution The resultant force on Q1 charge is

3 1

2 1

4 1

Force of attraction between and

Force of repulsion between and

Force of repulsion between and

F Q Q

Q Q

Q Q

=
+
+

Here,

6 6

21 4
0

0.2 10 0.1 10
0.072

4 25 10p e

- -

-
¥ ¥ ¥

= =
¥ ¥

F N

along negative x axis.

6 6

31 4
0

0.2 10 0.2 10
0.9

4 4 10p e

- -

-
¥ ¥ ¥

= =
¥ ¥

F N

along negative y axis.

6 6

41 4
0

0.2 10 0.1 10
0.06

4 29 10p e

- -

-
¥ ¥ ¥

= =
¥ ¥

F N

with an angle q to the negative x axis, where

2 5
sin and cos

29 29
q q= =

Fig. 2.7 Arrangement of 

charges for Example 

2.7

Fig. 2.8 Arrangement of charges 

for Example 2.8

Fig. 2.9 Forces for charge arrangement of 

Example 2.8
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Resolving the force F41 into two components, we get

41

41

5
0.06 cos 0.06 0.058

29
2

0.06 sin 0.06 0.023
29

q

q

= = ¥ =

= = ¥ =

x

yx

F N

F N

\ Total force along the negative x axis is

0.072 0.058 0.13= + =xF N

\ Total force along the negative y axis is

0.9 0.023 0.877= - =yF N

\ Resultant force on the charge Q1 is, 1 ( 0.13 0.877 ) 0.89 98.4= - - = – - ∞F i j N

2.5 ELECTRIC FIELD AND FIELD INTENSITY (
Æ

E)

The electrostatic force is a force that acts upon the objects at a distance, even when the objects are not 

in contact with one another. This implies that a charge creates a field at a distance, which in turn acts 

on the other charge.

Electric Field For an electric charge, there is a region in which it exerts a force on any other charge. 

This region where a particular charge exerts a force on any other charge located in that region, is called 

the electric field of that charge.

Electric Field Intensity 
Æ
E It is the force per unit charge when placed in the field.

0
Lim
Q

F
E

QÆ
=

or simply
F

E
Q

= (2.5)

It is seen that the field intensity is in the same direction as the force and is expressed in Newton per 

Coulomb (N/C) and volt per metre (V/m).

Thus, if a point charge Qt is present at position vector tr , then the field intensity due to the charge Q

at position vector r  is

2 3

( )

4 4 | |

t t t
R

t

Q Q r r
E a

R r rp e p e

-
= =

-

 Example 2.9 Show that the electric field intensity at a point due to a number of point charges 

is the vector sum of the electric field intensities due to individual point charges at that point.

Solution An electric charge q produces an electric field everywhere. The strength of the field 

created by a charge can be obtained by measuring the force on a positive test charge at some point in 

that field. The electric field intensity ( )E  is defined as the force per unit charge when placed in that 

field.



Electrostatics 105

If there is N number of source charges q1, q2, …, qi acting on a 

test charge Q, then the net force on the test charge is

1 2

1 2
1 22 2 2

1 2

1

4

i

i
r r ri

i

F F F F

q Qq Q q Q
a a a

r r r

QE

p e

= + + +
È ˘= + + + +Í ˙
Î ˚

=
where

2
1

1

4

N
i

ri
i i

q
E a

rp e =
= Â (2.6)

So, there is an electric field intensity around a charge q, given by

24
r

q
E a

rp e
= (2.7)

It is seen that the force between the charges is dependent on the test charge; but the electric field 

intensity is not. The test charge is only to detect the presence of the force.

 Example 2.10 Point charges of 1mC and –2mC are located at (3, 2, –1) and (–1, –1, 4), 

respectively. Calculate the electric force on a 10nC charge located at (0, 3, 1) and the electric field 

intensity at that point.

Solution Here, Q1 = 10–3 C, Q2 = –2 ¥ 10–3 C, Q = 10–9 C

Hence, the force on the charge is

2 3
1,2 1,20 0

3 3

2 2 2 3/2 2 2 2 3/2
0

9 3

9

( )

4 4 | |

10 ( 3 2 ) 2 10 ( 4 3 )

4 {( 3) 1 2 } {1 4 ( 3) }

10 10 10 36 ( 3 2 ) ( 2 8 6 )

4 10 14 14 26 26

i i i
R

i i i

QQ QQ r r
F a

R r r

i j k i j kQ

i j k i j k

p e p e

p e

p

p

= =

- -

- -

-

-
= =

-
È ˘¥ - + + ¥ ¥ + -

= -Í ˙- + + + + -Î ˚
È ˘¥ ¥ ¥ - + + - - +

= +Í ˙¥ Î ˚

Â Â

\ ( 6.507 3.817 7.506 ) mNF i j k= - - +

Field intensity at that point

3

9

10
( 6.507 3.817 7.506 )

10 10

( 650.7 381.7 750.6 ) kV/m

F
E i j k

Q

i j k

-

-= = - - + ¥
¥

= - - +

*Example 2.11 Three positive charges of q, 2q and 

3q are placed at the corners of an equilateral triangle as 

shown in Fig. 2.11. If the length of each side of the triangle 

is ‘d’, find the magnitude and direction of the electric field 

at the point bisecting the line joining q and 2q.
Fig. 2.11 Arrangement of charges for 

Example 2.11

Fig. 2.10 Assembly of point charges



  106 Electromagnetic Field Theory

Solution Electric field at point P due to the charge at point A is

1 2 2 2
14 4 ( /2)

q q q
E

r d dp e p e p e
= = =

Electric field at point P due to the charge at point B is

2 2 2

2 2

4 ( /2)

q q
E

d dp e p e
= =

Electric field at point P due to the charge at point C is

3 2 2 2
3

3 3

4 4 ( sin 60 )

q q q
E

r d dp e p e p e
= = =

∞

Net resultant field at point P due to the charges at points A and B is

2 1 2 2 2

2
( )

q q q
E E

d d dp e p e p e

Ê ˆ- = - =Á ˜Ë ¯
, along PA direction

Hence, the magnitude of the total field at point P is given as

2 2

2 2 2

2q q q
E

d d dp e p e p e

Ê ˆ Ê ˆ= + =Á ˜ Á ˜Ë ¯ Ë ¯

2

2q
E

dp e
=

*Example 2.12 Three charges q, -q and q are situated 

at the vertices of an equilateral triangle of side ‘a’ as shown in 

Fig. 2.12. Find the field at the centroid of the triangle.

Solution Field at point P due to the charge at point A is

1 2 2 2
1

3

44 /2
4

sin 60

q q q
E

r aap e p e
p e

Ê ˆ= = = Á ˜Ë ¯Ê ˆ
Á ˜∞Ë ¯

along AP direction

Field at point P due to the charge at point B is

2 2 2 2
2

3

44 /2
4

sin 60

q q q
E

r aap e p e
p e

Ê ˆ= = = Á ˜Ë ¯Ê ˆ
Á ˜∞Ë ¯

along BP direction

Net field at point P due to the charges at points A and B, in the direction perpendicular to AB is

2 2

3 3
2 cos 60

4 4

q q
E

a ap e p e

Ê ˆ Ê ˆ¢ = ¥ ∞ =Á ˜ Á ˜Ë ¯ Ë ¯

Fig. 2.12 Arrangement of charges 

for Example 2.12
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Field at point P due to the charge at point C in the direction perpendicular to AB is

3 2 2 2
3

3

44 /2
4

sin 60

q q q
E

r aap e p e
p e

Ê ˆ= = = Á ˜Ë ¯Ê ˆ
Á ˜∞Ë ¯

\ Total field at the centroid is given as 3 2 2 2

3 3 3
( )

4 4 2

q q q
E E E

a a ap e p e p e

Ê ˆ Ê ˆ Ê ˆ= ¢ + = + =Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

2

3

2

q
E

ap e

Ê ˆ= Á ˜Ë ¯

 Example 2.13 Three equal positive charges of ‘q’ each are located 

at three corners of a square of side ‘l’ as shown in Fig. 2.13. Determine 

the magnitude and direction of the electric field at the vacant corner of 

the square.

Solution Field intensity at corner 4 due to charge 1 is

1 2
04

q
E

lp e
= ; along the positive x axis.

Field intensity at corner 4 due to charge 3 is

3 2
04

q
E

lp e
= ; along the positive y axis.

Resultant of these two field intensities is

2 2

2 2 2
0 0 0

2
4 4 4

q q q
E

l l lp e p e p e

Ê ˆ Ê ˆ¢ = + =Á ˜ Á ˜Ë ¯ Ë ¯

with an angle 45° to the horizontal axis

Field intensity at corner 4 due to charge 2 is

2 22
00

84 ( 2 )

q q
E

ll p ep e
= = ; with an angle 45° to the horizontal axis

\ Total field at corner 4 is given as

2 2 2 2 2
0 0 0 0

(2 2 1)2
( ) 1.9142

4 8 8 4

qq q q
E E E

l l l lp e p e p e p e

+ Ê ˆ= ¢ + = + = = Á ˜Ë ¯
;

with an angle 45° to the horizontal axis

2 2
0 0

(2 2 1)
1.9142

8 4

q q
E

l lp e p e

+ Ê ˆ= = Á ˜Ë ¯

*Example 2.14 Three sides of an equilateral triangle have uniform 

line charges 2mC/m, 1mC/m, and 1mC/m as shown in Fig. 2.14. Find the 

electric field at the centre of the triangle if each side is 50 m long.

Fig. 2.13 Field intensities 

for charge 

arrangement of 

Example 2.13

Fig. 2.14 Arrangement

of charges for 

Example 2.14
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Solution Here,

1

2

3

50 cm

2 C/m

1 C/m

1 C/m

l

l m

l m

l m

=
=
=
=

In this case, total field intensity at the centre is given as

1 2 3E E E E= + +

where

1

6 2

2 2
0

6 2

2
2 4

0

6

0

Field at the centre due to side 1

2 10 50 10 50 25
Here, tan 30 cm

2 32 4

2 10 50 10

25 25
2 50 4 10

3 3

6 10
V/m

p e

p e

p e

- -

- -

-

-

=

¥ ¥ ¥ È ˘= = ∞ =Í ˙Î ˚+

¥ ¥ ¥
=

Ê ˆ+ ¥Á ˜Ë ¯

¥
=

y

y

y

E

a r
r l r

a

a

2

6 2

2 2
0

6 2

2
2 4

0

6

0

Field at the centre due to side 2

1 10 50 10 50 25
( sin 60 cos 60 ) Here, tan 30 cm

2 32 4

2 10 50 10
( sin 60 cos 60 )

25 25
2 50 4 10

3 3

3 10
( sin 60 cos 60

p e

p e

p e

- -

- -

-

-

=

¥ ¥ ¥ È ˘= - ∞ - ∞ = ∞ =Í ˙Î ˚+

¥ ¥ ¥
= - ∞ - ∞

Ê ˆ+ ¥Á ˜Ë ¯

¥
= - ∞ -

x y

x y

x y

E

a a r
r l r

a a

a a ) V/m∞

3

6 2

2 2
0

6 2

2
2 4

0

6

0

Field at the centre due to side 3

1 10 50 10 50 25
( sin 60 cos 60 ) Here, tan 30 cm

2 32 4

2 10 50 10
( sin 60 cos 60 )

25 25
2 50 4 10

3 3

3 10
( sin 60 cos 60 ) V

p e

p e

p e

- -

- -

-

-

=

¥ ¥ ¥ È ˘= ∞ - ∞ = ∞ =Í ˙Î ˚+

¥ ¥ ¥
= ∞ - ∞

Ê ˆ+ ¥Á ˜Ë ¯

¥
= ∞ - ∞

x y

x y

x y

E

a a r
r l r

a a

a a /m
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Hence, total field at the centroid is given as

1 2 3
6 6 6

0 0 0
6

0
6

9

3

6 10 3 10 3 10
( sin 60 cos 60 ) ( sin 60 cos 60 )

10
(6 6 cos 60 )

10 36
(6 3)

10

10 36 3

108 kV/m

y x y x y

y

y

y

E E E E

a a a a a

a

a

a

p e p e p e

p e

p

p

- - -

-

-

-

= + +
¥ ¥ ¥

= + - ∞ - ∞ + ∞ - ∞

= - ∞

¥
= -

¥
= ¥ ¥
=

NOTE

If the charges are equal, E would be zero at the centre of the equilateral triangle.

2.6 DIFFERENT CHARGE DENSITIES

Due to a small number of charged particles the electric field can readily 

be computed using the superposition principle. But the computation 

becomes difficult if we have a very large number of charges distributed 

in some region in space. We will consider the system shown in Fig. 2.15.

We define three types of charge densities as:

1. Volume charge density (r),

2. Surface charge density (s), and

3. Line charge density (l).

1. Volume charge density r: When the electric charge is continuously 

distributed throughout a region, then the volume charge density [ ( )]rr
at a point is defined as the charge Dqi in a small volume element DVi,

divided by the volume with the limit of this ratio taken as the volume 

shrinks to zero around the point.

3( ) lim (C/m )
i

i

V i

q dq
r

V dV
r

D

D
= =

D
(2.8)

The dimension of ( )rr  is charge per unit volume (C/m3) in SI units. The total amount of charge within 

the entire volume V is

( )i
i V

Q q r dVr= D =Â Ú (2.9)

2. Surface charge density (s): When the charge is distributed over surface, the surface charge density

is defined as the charge per unit area.

2

0
( ) lim (C/m )i

S

q dq
r

S dS
s

D Æ

D
= =

D
(2.10)

Fig. 2.15 Electric field due 

to a small charge 

element Dqi
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The dimension of s is charge per unit area (C/m2) in SI units. The total charge on the entire surface 

is

( )
S

Q r dSs= ÚÚ (2.11)

3. Line charge density (l): When the charge is distributed over a line, the line charge density is defined 

as the charge per unit length.

0
( ) lim (C/m)i

l

q dq
r

l dl
l

D Æ

D
= =

D
(2.12)

where, the dimension of l is charge per unit length (C/m2).

The total charge is now an integral over the entire length

line

( )Q r dll= Ú (2.13)

2.7  ELECTRIC FIELDS DUE TO CONTINUOUS CHARGE 
DISTRIBUTION

The electric field at a point P due to each charge element dq is given by Coulomb’s law as

2

1

4 r

dq
dE a

rp e
=

where r is the distance from/to and is the corresponding unit vector (see Fig. 2.10). Using the 

superposition principle, the total electric field E is the vector sum of all these infinitesimal contributions

2

1

4 r
V

dq
E a

rp e
= Ú (2.14)

This is an example of a vector integral that consists of three separate integrations, one for each 

component of the electric field.

2.7.1 Electric Field due to Line Charge Distribution

For line charge distribution with charge density l (C/m), the total charge over a line is obtained as 

line

( )Q r dll= Ú , so that the field intensity is given as

2
line

( )1

4

r
E dl

r

l
p e

= Ú (2.15)

 Example 2.15 An infinite line extending along the z-axis carries a uniform line charge 

distribution of density l (C/m) as shown in Fig. 2.16. Find the electric field intensity at any point 

P(x, y, z).
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Fig. 2.16 Determination of electric field due to line charge distribution

Solution
We will consider an elemental length dl  of the line at a distance z¢ from the origin. The field point is 

denoted by (x, y, z) and the source point by the primed coordinates (x¢, y¢, z¢)

Here, dl = dz¢, charge in the element, dQ = ldl = ldz¢

Also, ( , , ) (0, 0, ) ( ) ( )x y z r zR x y z z xa ya z z a ra z z a= - ¢ = + + - ¢ = + - ¢

\ 2 2 2 2 2 2 2| | ( ) ( )R R x y z z r z z= = + + - ¢ = + - ¢

\
2 2 2 3/23

( )

[ ( ) ]| |

R r za ra z z aR

R r z zR

+ - ¢
= =

+ - ¢

Substituting these values in Eq. (2.14), we get

2 2
line line

2 2 3/2

( )1 1

4 4

( )

4 [ ( ) ]

l l
p e p e

l
p e

= =

+ - ¢
¢=

+ - ¢

Ú Ú

Ú

R

r z

R dl
E dl a

R R

ra z z a
dz

r z z

Now,

sec , tan ;R r z z rq q= ¢ = -

\ 2( ) tan and secz z r dz r dq q q- ¢ = ¢ = -

\
2 2 3/2

2

2 2 2 3/2

2

3 3

( )

4 [ ( ) ]

tan
sec

4 [ tan ]

tan
sec

4 sec

r z

r z

r z

ra z z a
E dz

r z z

ra r a
r d

r r

ra r a
r d

r

l
p e

ql
q q

p e q

ql
q q

p e q

+ - ¢
= ¢

+ - ¢

+
= -

+

+
= -

Ú

Ú

Ú
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sin

cos

4 sec

(cos sin )
4

r z

r z

a a

d
r

a a d
r

q
ql

q
p e q

l
q q q

p e

+
= -

= - +

Ú

Ú

For a finite line charge, the field is given as

2

1

(cos sin )
4 r zE a a d

r

q

q

l
q q q

p e
= - +Ú

\ 1 2 1 2[(sin sin ) (cos cos ) ]
4 r zE a a

r

l
q q q q

p e
= - - -

For an infinite line charge distribution, q1 = 90°; q2 = –90° and the z-components vanish, so that the 

field becomes

2 rE a
r

l
p e

=

NOTE

If the line charge distribution is not along the z-axis, r  is the perpendicular distance from the line to 

the field point and ra  is the unit vector along that distance directed from the source point to the field 

point.

 Example 2.16 A line of length ‘l’ carries a uniform line 

charge ‘l’ per unit length as shown in Fig. 2.17. Show that the 

electric field intensity in the median plane at a distance ‘r’ is

2 2 1/2
0

1

2 ( 4 )
r

l
E a

r l r

l
p e

È ˘= Í ˙+Î ˚

Solution We will consider an elemental length dz  at a distance z .

Charge on the elemental length is, dQ = ldz

\ Field at point P due to this charge is,

2
24 4

E E

dQ dz
dE a a

R R

l
p e p e

¢= =

From symmetry, it is observed that E  has only a component along ra  direction.

\ Total field at point P due to the line is

/2 /2

2 2 2 3/2
/2 /2

cos
4 4 ( )

l l

r r
l l

dz rdz
E a a

R r z

l l
q

p e p e- -

¢ ¢= =
¢+Ú Ú

Here, z  = r tan q fi dz  = r sec2 qdq

Fig. 2.17 Field due to a charge 

carrying line charge
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( )1
/2 /2

where tan
2

-¢ -È ˘
=Í ˙-Î ˚

z l l l

r
a

q a a

\
2 2

3 3

sec
cos

4 4sec

sin
4

2 sin
4

sin
2

r r

r

r

r

r d
E a d a

rr

a
r

a
r

a
r

a a

a a

a

a

q ql l
q q

p e p eq

l
q

p e

l
a

p e
l

a
p e

- -

-

= =

=

=

=

Ú Ú

Now, since ( )1tan
2

l

r
a -= , \

2 2 2 2

/2
sin

( /2) 4

l l

l r l r
a = =

+ +

\
2 22 4

r

l
E a

r l r

l
p e

=
+

NOTE

For infinite length line, l Æ , and the field intensity becomes

l l
p e p e

= =
+ 2

1

2 21 4( / )
r r

l l
E a a

r rl r l

 Example 2.17 A non-conducting rod of length l with a uniform charge density l and a total 

charge Q is lying along the x-axis as illustrated in Fig. 2.18. Compute the electric field at a point P,

located at a distance y from the center of the rod along its perpendicular bisector.

Fig. 2.18 Symmetry argument showing that Ex = 0
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Solution We will follow a similar procedure as that outlined in earlier example. The contribution 

to the electric field from a small length element dx¢ carrying charge dq = ldx¢ is

2 2 2
0 0

1 1

4 4

dxdq
dE

r x y

l
p e p e

¢
= =

¢ ¢ +
Using symmetry argument illustrated in Fig. 2.18, it is observed that the x-component of the electric 

field vanishes.

The y-component of dE is

2 2 2 20

2 2 3/2
0

1
cos

4

1

4 ( )

y

dx y
dE dE

x y x y

ydx

x y

l
q

p e

l
p e

¢
= =

¢ + ¢ +
¢

=
¢ +

By integrating over the entire length, the total electric field due to the rod is

/2 /2

2 2 3/2 2 2 3/2
0 0/2 /2

1

4 4( ) ( )

l l

y y
l l

ydx y dx
E dE

x y x y

l l
p e p e

- -

¢ ¢= = =
¢ + ¢ +Ú Ú Ú

Let, x¢ = y tan q ¢ so that, dx¢ = y sec2 q ¢dq ¢. The above integral becomes

/2 2 2

2 2 3/2 3 2 3/2 3
0 0 0/2

0 0 0

2 20

sec sec1

4 4 4( ) (tan 1) sec

1 1 1 2
cos 2 sin sin

4 4 4

/21 2

4 ( /2)

l

y
l

y d dy ydx
E

yx y y

d
y y y

l

y y l

q q

q q

q

q

q q l q ql l
p e p e p eq q

l l l
q q q q

p e p e p e

l
p e

- - -

-

¢ ¢ ¢ ¢¢= = =
¢ + ¢ + ¢

= ¢ ¢ = =

=
+

Ú Ú Ú

Ú

2 20

/21 2

4 ( /2)
y

l
E

y y l

l
p e

=
+

NOTE

If y >> l, the above expression reduces to the 

expression for a point charge given as

ll
p e p e

p e

ª =

=

2
0 0

2
0

/21 2 1

4 4

1

4

y

l l
E

y y y

Q

y

On the other hand, if l >> y, then we have

l
p e

ª
0

1 2

4yE
y

The characteristic behavior of Ey  /E0 (with E0 = 

Q/4pe0t
2) as a function of y / l is shown in Fig. 

2.19.
Fig. 2.19 Electric field of a non-conducting rod as a 

function of y/l
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*Example 2.18 A line charge of length of 2m has a linear 

charge density of l. Show that the electric field at a distance r

perpendicular to the line charge from its middle point as shown 

in Fig. 2.20 is

( )2

02 1

rE

r
r

m

l

p e

=

+

Solution We will consider an elemental length dz  of the line.

From the symmetry it is observed that all the z  components of 

the field will cancel each other. Also, there will be no f component 

of the field.

Hence, the field will be only in the radial direction given as

2 2 2 2 2
0 0

2 2 3/2
0

cos
4 4 ( )

4 ( )

r r

r

dz dz r
dE a a

R r z r z

r
dz a

r z

l l
a

p e p e

l
p e

¢ ¢
= =

¢+ ¢+

¢=
¢+

So, the field due to the entire line is obtained as

2 2 3/2
0

2 2 3/2
0 0

2 2 3/2
0 0

4 ( )

2

4 ( )

2 ( )

m

r
m

m

r

m

r

r
E dE dz a

r z

r
dz a

r z

r
dz a

r z

l
p e

l
p e

l
p e

-

¢= =
¢+

¢=
¢+

¢=
¢+

Ú Ú

Ú

Ú

Let, z  = r tan a fi dz  = r sec2 a d a
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Fig. 2.20 Arrangement of 

Example 2.17

Fig. 2.21 Field due to a charge 

carrying line
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\

( )20

1

2
1

rE a
r

r

m

l
p e

=

+

*Example 2.19 A circular ring of radius ‘R’ carries a uniform charge distribution of line charge 

density ‘l’ and is placed on the xy plane (z = 0 plane) with the axis the same as the z-axis as shown in 

Fig. 2.22.

(a) Show that

2 2 3/2
(0, 0, )

2 [ ]
z

Rz
E z a

R z

l

e
=

+

(b) What value of ‘z’ gives the maximum value of E?

(c) If the total charge on the ring is Q, find E  as a Æ 0.

Solution (a) The field point is P (0, 0, z). The distance of the 

field point from the elemental length of the charge distribution is

r zr Ra za¢ = - +

Hence, the electric field is given as

2

2 2 3/2
0 0

2 2

2 2 3/2
0 0 0

2 2 3/2
0

2 2

0 0

2 2 3/2
0

2 2 3/2
0

( )
4 ( )

4 ( )

4 ( )

cos sin 2

[0 2 ]
4 ( )

2 ( )

r z

r z

x y z

z

z

Rd
E Ra za

R z

R
R a d z a d

R z

R

R z

R a d a d za

R
za

R z

Rz
a

R z

p

p p

p p

fl
p e

l
f f

p e

l
p e

f f f f p

l
p

p e

l

e

= - +
+

È ˘
= - +Í ˙

+ Î ˚

=
+

È ˘Ï ¸Ô Ô- + +Í ˙Ì ˝
Ô ÔÍ ˙Ó ˛Î ˚

= +
+

=
+

Ú

Ú Ú

Ú Ú

\
2 2 3/2 2 2 3/2

0 0

21 1

4 4( ) ( )
z

Rz Qz
E a

R z R z

l p
p e p e

¥
= =

+ +

2 2 3/2
0

1

4 ( )
z

Qz
E a

R zp e
=

+

where Q = l ¥ 2pR is the total charge in the ring.

A plot of the electric field as function of z is shown in Fig. 2.23 (b).

Notice that the electric field at the centre of the ring vanishes. This is to be expected from symmetry 

arguments.

\
2 2 3/2

02 ( )
z

az
E a

a z

l

e
=

+

Fig. 2.22 Field due to a ring 

of uniform charge 

distribution
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NOTE

At the centre of the loop, z = 0 and the electric field is also zero.

(b) For maximum value of the field intensity

| |
0

d E

dz
=

fi
2 2 3/2

0

0
2 ( )

d Rz

dz R z

l

e

È ˘ =Í ˙+Î ˚

fi
2 2 3/2 2 2 1/2

2 2 3

3
( ) 1 ( ) 2

2 0
( )

R z R z z z

R z

+ ¥ - + ¥ ¥
=

+

fi 2 2 1/2 2 2 2( ) ( 3 ) 0R z R z z+ + - =

fi R2 – 2z2 = 0

fi
2

R
z = ±

\
2

R
z = ±

(c) Since the charge is uniformly distributed, the line charge density is

2

Q

R
l

p
=

Hence, the field is given as

2 2 3/2 2 2 3/2 2 2 3/2
2

2 ( ) 2 ( ) 4 ( )
z z z

Q
Rz QzRz RE a a a

R z R z R z

l p
e e p e

= = =
+ + +

Fig. 2.23 (a) Electric field directions, and (b) Electric field along the axis of symmetry of a non-conducting 

ring of radius R, with 0 2
04

Q
E

Rp e
=
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As, R Æ 0, the field is given as

24
z

Q
E a

zpe
=

2.7.2 Electric Field due to Surface Charge Distribution

For surface charge distribution with charge density s (C/m2), the total charge over a surface is obtained 

as ( ) ,s= ÚÚ
S

Q r dS  so that the field intensity is given as

2

( )1

4
S

r
E dS

r

s
pe

= ÚÚ (2.16)

 Example 2.20 Find the electric field intensity due to a uniformly charged infinite plane sheet 

with surface charge density of s.

Solution We will consider an elemental surface dS as 

shown in Fig. 2.24.

The field at a point P(0, 0, h) due to this elemental surface 

is

24
R

dQ
dE a

Rpe
=

Here,

; ( )r zdQ dS rdrd R ra has s f= = = - +

2 2

2 2
| | r z

R

ra haR
R R r h a

R r h

- +
\ = = + \ = =

+

Hence, the field is

2 2 2 3/2

( )

4 4 ( )

r z
R

rdrd ra hadQ
dE a

R r h

s f

p e p e

- +
= =

+

From the symmetry, it is understood that for an infinite plane, the ra  components of the field will cancel 

each other and the field will have only the z-component, given as

2 2 3/24 ( )
z z

h rdrd
dE a

r h

s f

p e
=

+

Thus, the total field is given as
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Fig. 2.24 Determination of electric 

field due to surface charge 

distribution
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Let (r2 + h2) = p2 \ rdr = pdp

\
3 2

1

2 2 2 2z z z z
hh h

pdp dph h h
E a a a a

pp p

s s s s
e e e e

È ˘= = = - =Í ˙Î ˚
Ú Ú

\
2 zE a
s
e

=

In general, for an infinite sheet of charge, the field is given as

2 nE a
s
e

=

where na  is the unit vector normal to the plane.

NOTE

The field is independent of the distance of the field point from the plane. In case of a parallel plate 

capacitor, the electric field existing between the two plates of equal and opposite charges is given as 

ss s
e e e

-= + - =( )
2 2n n nE a a a .

 Example 2.21 A circular disc of radius ‘R’ carries uniform charge distribution of surface charge 

density ‘s’. If the disc lies on the z = 0 plane, with its axis along the z-axis, (a) Find the electric field at 

a point P, along the z-axis that passes through the center of the disk perpendicular to its plane. Discuss 

the limit where R >> z. (b) From this, derive E  field due to an infinite sheet of charge on the z = 0 plane.

Solution (a) By treating the disc as a set of concentric 

uniformly charged rings, the problem could be solved by using 

the result obtained in earlier. We will consider a ring of radius 

r dr ¢ as shown in Fig. 2.25.

By the symmetry argument, the electric field at P points in 

the +z-direction. Since the ring has a charge dq = s2pr ¢dr ¢,
from Eq. (2.10–14), we see that the ring gives a contribution

2 2 3/2 2 2 3/2
0 0

21 1

4 4( ) ( )
z

z r drzdq
dE

r z r z

ps
p e p e

¢ ¢
= =

¢ + ¢ +

Integrating from r ¢ = 0 to r ¢ = R, the total electric field at P

becomes
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e e
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e e
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Ú

Fig. 2.25 A uniformly charged disc of 

radius R
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The above equation may be written as

2 20

2 20

1 , 0
2

1 , 0
2

z

z
E z

z R

z
z

z R

s
e

s
e

È ˘= - >Í ˙+Î ˚
È ˘= - - <Í ˙+Î ˚

The electric field 0
0 02
zE

E
E

s
e

Ê ˆ
=Á ˜Ë ¯

 as a function of 
z

R

is shown in Fig. 2.26.

When z >> R, we will have the result similar to a 

point charge. By Taylor series expansion

1/2
2

22 2

2 2

2 2

1 1 1

1 1
1 1

2 2

z R

zz R

R R

z z

Ê ˆ
- = - +Á ˜Ë ¯+
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\
22

2 2 2
0 0 0

1 1 1

2 2 4 4z

R QR
E

z z z

sps
e pe pe

= = =

This is the result for a point charge.

On the other hand, we may also consider the limit 

where R >> z. Physically, this means that the plane is 

very large, or the field point P is extremely close to 

the surface of the plane. The electric field in this limit 

becomes, in unit-vector notation

0

0

, 0
2

, 0
2

E k z

k z

s
e

s
e

= >

= - <

The plot of the electric field in this limit is shown 

in Fig. 2.27. When we cross the plane, there is a 

discontinuity in the electric field, given as

0 0 0

( )
2 2z z zE E E
s s s
e e e+ -

Ê ˆD = - = - - =Á ˜Ë ¯

which is obvious as has been explained in electric boundary conditions that if a given surface has a 

charge density s, then the normal component of the electric field across that surface always exhibits a 

discontinuity with 
0

nE
s
e

D = .

(b) At z = 0, the field is given as

\ (0, 0, 0)
2 zE a
s
e

=

This is the field due to an infinite sheet of charge on the z = 0 plane.

Fig. 2.26 Electric field of a non-conducting 

plane of uniform charge density

Fig. 2.27 Electric field of an infinitely large 

non-conducting plane
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 Example 2.22 A thin annular disc of inner radius a and outer radius b carries a uniform surface 

charge density s. Determine the electric field intensity at any point on the z axis when z ≥ 0.

Solution The field point is P (0, 0, z) as shown in Fig. 2.28. 

The distance of the field point from the elemental length of the 

charge distribution is

r zR ra za= - +
Hence, the electric field is given as

2

2 2 3/2
0 0

( )
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p fs
p e

= - +
+Ú Ú
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s
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Í ˙+ +Î ˚

NOTE

(i) For an annular disc of very large outer radius, b Æ , the field is given as

s
e

È ˘= Í ˙
+Í ˙Î ˚

2 20

1

2 z

z
E a

a z

(ii) For a solid finite disc of outer radius b, (a = 0) the field is given as

s
e

È ˘= -Í ˙
+Í ˙Î ˚

2 20

1 1

2 z

z
E a

z b z

(iii) For an infinite plane of charge, a Æ 0, b Æ , and the field at any point is given as

s
e

=
02 zE a

2.7.3 Electric Field due to Volume Charge Distribution

For volume charge distribution with charge density r (C/m3), the total charge over a surface is obtained 

as ( )
V

Q r dVr= Ú , so that the field intensity is given as

Fig. 2.28 Field due to uniform 

charge distribution on an 

annular disc



  122 Electromagnetic Field Theory

2

( )1

4
V

r
E dV

r

r
p e

= Ú (2.17)

 Example 2.23 A sphere of radius a carries charge with a uniform volume density r (C/m3).

Determine the electric field intensity E  at any distance r from the centre of the sphere.

Solution To find the field, we will consider an elemental 

volume dv within the sphere as shown in Fig. 2.29.

The field at a point P(0, 0, h) due to this elemental volume is

24
R

dQ
dE a

Rp e
=

Here, cos sinR z ra a aa a= +

Due to symmetry, field components Ex and Ey are zero.

\
2
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4z z
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E E a dE

R

r a
a

p e
= ◊ = =Ú Ú (i)

Here, dQ = r dv = r r2 sin qdrdqdf;

R2 = z2 + r2 – 2zr cos q
r2 = z2 + R2 – 2zR cos a
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= \ =

Hence, the field is
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\
24

z

Q
E a

zp e
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This result is obtained at point P (0, 0, z). From the symmetry of the charge distribution, it is clear that 

the field at any point P (r, q, f) is given as

24
r

Q
E a

rp e
=

Fig. 2.29 Field distribution due to volume 

charge distribution
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NOTE

This result is identical to the field at the same point due to a point charge Q located at the origin or 

center of the spherical charge distribution.

2.8  ELECTRIC FLUX (DISPLACEMENT) (Y  ) AND FLUX

DENSITY (DISPLACEMENT DENSITY) (
Æ
D)

2.8.1 Electric Flux (y )

Electric flux is the flux of the electric field. It is the total number of electric field lines passing through a 

given surface perpendicularly. It is expressed in Coulomb (C). It is the integral of the normal component 

of the vector D over a surface.

2.8.2 Electric Flux Density (
Æ
D )

Electric flux density is the total number of electric field lines per unit area passing through the area 

perpendicularly. It is expressed in Coulomb per square metre (C/m2).

In case of a point charge, q, the electric displacement per unit area of a charge q at the centre of a 

sphere of radius r is

2
2

(Coulomb/m )
4

q
D

rp
= (2.18)

This is known as electric displacement density or flux density.

Now, for the same point charge, the electric field intensity at the centre of a sphere of radius r is

24

q
E

rp e
= (2.19)

From Eqs. (2.18) and (2.19), we get

D Ee= (2.20)

Here, flux density of a vector quantity ( )D  and its direction is that of the normal to the surface element, 

which makes the displacement through the element of area a maximum. For a linear, isotropic medium, 

D is in the same direction as of E.

In terms of flux density, D, electric flux is defined as

S

D dSy = ◊Ú (2.21)

In an SI unit, one line of electric flux emits from +1C charge and terminates on -1C charge. Hence, 

electric flux is expressed in Coulomb (C) and flux density in Coulomb per square metre (C/m2).

Properties of Electric Flux

1. It is independent of the medium.

2. Its magnitude depends only upon the charge from which it is originated.

3. If a point charge in enclosed in an imaginary sphere of radius R, the electric flux must pass 

perpendicularly and uniformly through the surface of the sphere.

4. The electric flux density, i.e., flux per unit area, is then inversely proportional to R2.
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*Example 2.24 A point charge of 30nC is located at the origin while the plane y = 2 carries 

charge 20nC/m2. Find the electric flux density D at point (0, 3, 4).

Solution The flux density component due to the point charge is given as

9

1 0 1 2 3 3

9
2

3

( ) 30 10 {(0,3,4) (0,0,0)}

4 4 | | 4 |{(0,3,4) (0,0,0)}|

30 10 (3 4 )
(0.0573 0.0764 ) nC/m

4 5

R

Q r rQ
D E a

R r r

j k
j k

e
p p p

p

-

-

- ¢ ¥ -
= = = =

- ¢ -
¥ +

= = +
¥

The flux density component due to the surface charge distribution is given as

9
2

2 0 2

20 10
10 nC/m

2 2 2nD E a j j j
s s

e
-¥

= = = = =

Hence, the total flux density due to the point charge and the surface charge distribution is

2
1 2 (0.0573 0.0764 ) 10 (10.0573 0.0764 ) nC/mD D D j k j j k= + = + + = +

2.9  ELECTRIC FIELD LINES (LINES OF FORCE) AND 
FLUX LINES

2.9.1 Electric Field Lines

These are the imaginary lines drawn in such a way that at every point, it has the direction of the electric 

field ( )E . The number of lines per unit area is proportional to the magnitude of electric field strength 

(E).

2.9.2 Electric Flux Lines

These are the imaginary lines drawn in such a way that at every point, it has the direction of the electric 

flux density vector ( )D . The number of flux lines per unit area is used to indicate the magnitude of the 

displacement density ( )D .

In homogeneous, isotropic media, lines of force and lines of flux always have the same direction.

The field lines for a positive and a negative charge are shown in Figs. 2.30 (a) and (b). It is observed 

that the direction of field lines is radially outward for a positive charge and radially inward for a 

negative charge. For a pair of charges of equal magnitude but opposite sign (an electric dipole), the 

field lines are shown in Fig. 2.30 (c).

Fig. 2.30 Field lines for (a) positive charge, (b) negative charge, and (c) an electric dipole
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Properties of Electric Field Lines

1. The direction of the electric field vector E  at a point is tangential to the field lines.

2. Electric field lines never cross each other; otherwise, the field would be pointing in two different 

directions at the same point.

3. The field lines must begin on positive charges (or at infinity) and must terminate on negative 

charges (or at infinity).

4. Electric field lines are most dense around objects with the greatest amount of charge.

5. At locations where electric field lines meet the surface of an object, the lines are perpendicular 

to the surface.

6. The number of lines that originate from a positive charge or terminate on a negative charge must 

be proportional to the magnitude of the charge.

7. The number of lines per unit area through a surface perpendicular to the line is devised to be 

proportional to the magnitude of the electric field in a given region.

 Example 2.25 Show that for electric lines of force

x y z

dydx dz

E E E
= =

Solution We will consider a test charge at point P(x,

y, z) in the field E  as shown in Fig. 2.31. The force on 

test charge is directed along E , to point Q(x + Dx, y + Dy,

z + Dz).

The vector displacement of the test charge is

( )l xi yj zkD = D + D + D

But, this is proportional to the field E.

\ E lμ D

or ( ) ( )x y zE i E j E k xi yj zk+ + μ D + D + D

Now, two vectors are proportional if and only if their 

components are proportional by the same amount.

\
x y z

x y z

E E E

D D D
= =

In the limiting case

in Cartesian coordinate

in cylindrical coordinate

sin
in spherical coordinate

x y z

r z

dydx dz

E E E

rddr dz

E E E

d d d

E E E

f

r q f

f

r r q r q f

= =

= =

= =

Fig. 2.31
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 Example 2.26 Obtain the equation of flux line that passes through the point P (-2, 7, 10) in the 

field E  where

(a) 2( 1) 2x yE y a xa= - + (b) ( 1)y y
x yE e a x e a= + +

Solution
(a) In two-dimensional system, the equation of flux lines is to be obtained from the equation

y x

dy dx

E E
=

fi 2

2( 1) 1

y

x

Edy x x

dx E y y
= = =

- -

fi ( 1)y dy xdx- =

Integrating,
2 22y y x C- = +

The constant C is evaluated from the coordinates of the point (-2, 7, 10).

2 2(7) 2 7 ( 2) 31C C- ¥ = - + fi =

Hence, the equation of the flux lines is given as

2 2 2 22 31 ( 1) 32y y x y x- = + fi - - =

(b) In this case,

y x

dy dx

E E
=

fi
( 1) y

y

y
x

E x edy

dx E e

+
= =

fi ( 1)dy x dx= +

Integrating,

22 2y x x C= + +

The constant C is evaluated from the coordinates of the point (-2, 7, 10).

22 7 ( 2) 2 ( 2) 14C C¥ = - + ¥ - + fi =

Hence, the equation of the flux lines is given as

2 22 2 14 2 ( 1) 13y x x y x= + + fi - + =

2.10 GAUSS’ LAW

Statement Gauss’ law, also known as Gauss’ flux theorem, states that the total electric displacement 

or electric flux through any closed surface surrounding charges is equal to the net positive charge 

enclosed by that surface.
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Proof We consider a point charge Q located in a homogeneous isotropic medium of permittivity, e.

The electric field intensity at any point at a distance r from the charge will be

24
r

Q
E a

rp e
= (2.22)

and the electric flux density is given as,

24
r

Q
D E a

r
e

p
= = (2.23)

Now, the electric flux through some elementary surface 

area dS as shown in Fig. 2.32 is

cosd DdSy q= (2.24)

where, q is the angle between D  and the normal to dS.

From Fig. 2.32, dS cos q is the projection of dS normal 

to the radius vector. By definition of a solid angle,

2cosdS r dq = W (2.25)

where, dW is the solid angle subtended at Q by the elementary surface of area dS.

Thus, total displacement or flux through the entire surface is

2cos
4

S S S

Q
d DdS Dr d dy y q

p
= = = W = WÚ Ú Ú Ú {using Eqs. (2.18), (2.22), (2.24) and (2.25)}

However, from the concept of calculus, the solid angle subtended by any closed surface is 4p steradian. 

Hence, total displacement or flux passing through the entire surface is,

S v

D d S Q dvy r= ◊ = =Ú Ú (2.26)

This is the integral form of Gauss’ law.

Applying divergence theorem in Eq. (2.26), we get

( )
S v v v

D d S dv D dv dv Dr r r◊ = fi — ◊ = fi — ◊ =Ú Ú Ú Ú

D r— ◊ = (2.27)

This is the differential form or point form of Gauss’ law.

NOTE

The surface to which Gauss’ law is applied is known as Gaussian surface.

Steps useful when applying Gauss’ law The following steps may be useful when applying 

Gauss’ law:

1. First, the symmetry associated with the charge distribution is identified.

2. Then a Gaussian surface is identified and the direction of the electric field is determined.

Fig. 2.32 Determination of net electric flux 

through a closed surface
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3. The field space associated with the charge distribution is divided into different regions. For each 

region, the net charge enclosed by the Gaussian surface, Qenc is calculated.

4. The electric flux y through the Gaussian surface for each region is calculated.

5. The magnitude of the electric field (E) is deduced by equating y with Qenc/e.

NOTE

Gaussian Surface—a surface on which the magnitude of the electric field is constant over portions 

of the surface is known as Gaussian surface. This is a closed surface.

2.10.1 Derivation of Gauss’ Law from Coulomb’s Law

Gauss’ law can be derived from Coulomb’s law, which states that the electric field due to a stationary 

point charge is:

24
r

Q
E a

rp e
=

where

ra  is the radial unit vector,

r is the radius, | |r ,

q is the charge of the particle, which is assumed to be located at the origin.

Using the expression from Coulomb’s law, we get the total field at r  by using an integral to sum the 

field at r  due to the infinitesimal charge at each other point r ¢ in space, to give

3

( )( )1

4 | |v

r r r
E dv

r r

r
pe

¢ - ¢
=

-Ú

where r is the charge density. If we take the divergence of both sides of this equation with respect to r ,

and use the known theorem

3
4 ( )

| |

r
r

r
pd

¢Ê ˆ— ◊ = ¢Á ˜¢Ë ¯

where d(r ¢) is the Dirac delta function, the result is

1
( ) ( )

v

E r r r dvr d
e

— ◊ = ¢ - ¢Ú

Using the shifting property of the Dirac delta function, we get

E
r
e

— ◊ =

which is the differential form of Gauss’ law.

2.10.2  Derivation of Coulomb’s Law from Gauss’ Law

Gauss’ law provides information only about the divergence of the electric field intensity, E  and does not 

give any information about the curl E. For this reason, Coulomb’s law cannot be derived from Gauss’ 
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law alone. However, we assume that the electric field from a stationary point charge has spherical 

symmetry. With this assumption, which is exactly true if the charge is stationary, and approximately 

true if the charge is in motion, Coulomb’s law can be proved from Gauss’ law. We consider a spherical 

surface of radius r, centered at a point charge Q. Applying Gauss’ law in integral form, we have

S

Q
E dS

e
◊ =Ú

By the assumption of spherical symmetry, the integrand is a constant and can be taken out of the 

integral as

24 r

Q
r a Ep

e
=

where ra  is a unit vector directed radially away from the charge. Again, by spherical symmetry, E is 

also in radially outward direction, and so we get

24
r

Q
E a

rpe
=

If another point charge q is placed on the surface, the force on that charge due to the charge Q is given 

as

24
r

Qq
F qE a

rpe
= =

which is essentially equivalent to Coulomb’s law.

Thus, the inverse-square law dependence of the electric field in Coulomb’s law follows from Gauss’ 

law.

NOTE

Coulomb’s law applies only to stationary charges; whereas, Gauss’ law holds for moving charges as 

well, and in this respect Gauss’ law is more general than Coulomb’s law.

2.11 APPLICATIONS OF GAUSS’ LAW

Gauss’ law provides an expedient tool for electric field computation. However, this law is applicable 

only to systems that possess certain symmetry; namely, systems with planar, cylindrical and spherical 

symmetry. The following table provides some examples of systems in which Gauss’ law is applicable 

for electric field computation, with the corresponding Gaussian surfaces:

System Symmetry Gaussian Surface

Point charge Spherical Concentric sphere

Infinite rod Cylindrical Coaxial cylinder

Infinite plane Planar Gaussian “Pillbox”

Sphere, spherical shell Spherical Concentric sphere
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2.11.1 Electric Field due to a Point Charge

 Example 2.27 Determine the electric field at a distance r from a point charge Q. Use Gauss’ law.

Solution We consider a point charge Q located at the 

origin. In order to determine the field E  (or D ) at point P at

a distance r from the charge, we follow the steps outlined in 

section 2.10.

1. This problem possesses spherical symmetry.

2. We imagine a fictitious spherical surface of radius r, so 

that the point P is on the surface. So, the surface of the 

sphere with radius r is the Gaussian surface in this case.

3. The amount of charge enclosed by the Gaussian surface 

is the point charge Q.

4. Since E  is perpendicular to the Gaussian surface, i.e., 

or,= =r rE Ea D Da
  So, total flux through the Gaussian surface is

2
2 2

0 0

sin 4
S

D dS D r d d D r
p p

f q

q q f p
= =

◊ = =Ú Ú Ú

5. Applying Gauss’ law,

fi
enc

S

D dS Q◊ =Ú

fi 24D r Qp =

\
24

Q
D

rp
=

In vector form

2 2
or,

4 4p p e
= =r r

Q Q
D a E a

r r
(2.28)

2.11.2 Electric Field due to Infinite Line Charge

*Example 2.28 Determine the electric field at a distance r from an infinite straight line carrying 

a uniform line charge distribution with line charge density l. Use Gauss’ law.

Solution We will consider an infinitely long wire of negligible radius with a uniform line charge 

density, l. We calculate the field E  at a distance r from the wire.

We shall solve the problem by following the steps outlined in Section 2.10.

1. This infinitely long wire possesses cylindrical symmetry.

2. The charge density is uniformly distributed throughout the length of the wire, and therefore, the 

electric field E  must be radially outward from the axis of the wire [Fig. 2.34 (a)]. The magnitude 

of the electric field is constant on cylindrical surfaces of radius r. Therefore, a coaxial cylinder 

of any radius r is a Gaussian surface in this problem.

3. The amount of charge enclosed by the Gaussian surface (i.e., a cylinder of radius r and length l)

[Fig. 2.34 (b)] is Qenc = ll.

4. The Gaussian surface consists of three parts, as indicated in Fig. 2.34 (b). Those are:

(a) Left-end surface S1

(b) Right-end surface S2

(c) Curved surface S3.

Fig. 2.33 Gaussian surface of a point 

charge
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The flux through the Gaussian surface is

1 2 3

1 2 3 3 30 0 (2 )
S S S S

E dS E dS E dS E dS E S E rly p= ◊ = ◊ + ◊ + ◊ = + + =ÚÚ ÚÚ ÚÚ ÚÚ

where E3 = E (say). As can be seen from the figure, no flux passes through the ends since the area 

vectors 1dS  and 2dS  are perpendicular to the electric field, which is directed radially outward.

5. Applying Gauss’ law

(2 )
2 2

l
E rl E D E

r r

l l l
p e

e pe p
= fi = fi = =

In vector form

or
2 2r rE a D a

r r

l l
pe p

= = (2.29)

This is observed that the result is independent of the length l

of the cylinder and only depends on the inverse of the distance 

r from the symmetry axis. The variation of E as a function of 

r is plotted in Fig. 2.35.

2.11.3 Electric Field due to an Infinite Plane Sheet of Charge

*Example 2.29 Determine the electric field intensity due to a uniformly charged infinite plane 

sheet with surface charge density s.

Solution We will consider an infinitely large non-conducting plane in the xy-plane with uniform 

surface charge density s. We want to determine the electric field everywhere in space. We will follow 

the steps as outlined in Section 2.9.

1. This infinitely large plane possesses a planar symmetry.

2. Since the charge is uniformly distributed on the surface, the electric field E  is directed 

perpendicularly away from the plane zE Ea= . The magnitude of the electric field is constant on 

planes parallel to the non-conducting plane. Therefore, the Gaussian surface for this problem is 

a cylinder, which is often referred to as a ‘pillbox’ (Fig. 2.36).

Fig. 2.35 Electric field due to a 

uniformly charged rod 

as a function of r

Fig. 2.34 (a) Field lines for an infinite uniformly charged wire, and (b) Gaussian surface for a uniformly 

charged wire
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Fig. 2.36 (a) Electric field for an infinite plane of charge, and (b) Gaussian surface for a large plane

3. Since the charge is uniformly distributed over the surface, the charge enclosed by the Gaussian 

‘pillbox’ is, Qenc = sS, where S = S1 = S2 is the area of the end-surfaces.

4. The Gaussian pillbox consists of three parts: two end-surfaces S1 and S2, and a curved surface S3.

The total flux through the Gaussian pillbox flux is

1 2 3

1 2 3 1 1 2 2 1 20 ( )
S S S S

E dS E dS E dS E dS E S E S E E Sy = ◊ = ◊ + ◊ + ◊ = + + = +ÚÚ ÚÚ ÚÚ ÚÚ

Since the two ends are at the same distance from the plane, by symmetry, the magnitude of the 

electric field must be the same, E1 = E2 = E. Hence, the total flux can be rewritten as y = 2ES

5. By applying Gauss’ law, we obtain

enc2
2

Q S
ES E

s s
e e e

= = =

In vector form, the result can be written as

, 0
2

, 0
2

z

z

E a z

a z

s
e
s
e

= >

= - <
(2.30)

Thus, we see that the electric field due to an infinite large 

non-conducting plane is uniform in space. The result is 

plotted in Fig. 2.37.

Note again the discontinuity in electric field as we cross 

the plane:

( )2 2z z zE E E
s s s
e e e+ -D = - = - - =

2.11.4 Electric Field due to a Uniformly Charge Sphere

*Example 2.30 Derive the expression for the electric field intensity at any point inside and 

outside of a sphere of radius ‘a’ due to a uniform spherical charge distribution of volume charge density 

of ‘r’. Use Gauss’ law.

Fig. 2.37 Electric field of an 

infinitely large non-

conducting plane
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Solution We consider a non-conducting solid sphere of radius a uniformly charged with volume 

charge density r (C/m3). We want to determine the electric field everywhere inside and outside the 

sphere. We follow the steps outlined in Section 2.10.

1. This problem has a spherical symmetry.

2. In this case, the electric field E is radially symmetric and directed outward. The magnitude of 

the electric field is constant on spherical surfaces of radius r. Therefore, this spherical surface is 

the Gaussian surface.

3. The regions r £ a and r ≥ a will be considered separately to find the charge enclosed and flux 

through the surface.

Case 1: r £ a

In this case, the Gaussian surface is a sphere of radius r £ a, as shown in Fig. 2.38 (a).

Fig. 2.38 Gaussian surface for uniformly charged solid sphere, for (a) r £ a, and (b) r > a

With uniform charge density, total charge enclosed is

( )2
2 3

enc
0 0 0

4
sin

3

r

v r

Q dv r drd d r
p p

f q

r r q q f r p
= = =

= = =Ú Ú Ú Ú

The flux through the Gaussian surface is

2
2 2

0 0

sin (4 )
S S

E dS E dS E r d d E r
p p

f q

y q q f p
= =

= ◊ = = =Ú Ú Ú Ú

Applying Gauss’ law

( )2 3enc 4
or, (4 )

3

Q
E r r

r
y p p

e e
= = or

3

r
E

r
e

=
In vector form

3 r

r
E a r a

r
e

= £ (2.31)

Case 2: r ≥ a

In this case, the Gaussian surface is a sphere of radius r ≥ a,

as shown in Fig. 2.38 (b). Since the radius of the Gaussian 

surface is greater than the radius of the sphere, all the charge 

is enclosed in the Gaussian surface, i.e.,

( )

2
2

enc
0 0 0

3

sin

4

3

a

v r

Q dv r drd d

a

p p

f q

r r q q f

r p

= = =
= =

=

Ú Ú Ú Ú
Fig. 2.39 Electric field due to a 

uniformly charged sphere as a 

function of r
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Electric flux through the Gaussian surface is given by

2
2 2

0 0

sin (4 )
S S

E dS E dS E r d d E r
p p

f q

y q q f p
= =

= ◊ = = =Ú Ú Ú Ú

Applying Gauss’ law, we obtain

( )2 3enc 4
or (4 )

3

Q
E r a

r
y p p

e e
= =

or
3

23

a
E

r

r

e
=

In vector form

3

23
r

a
E a r a

r

r

e
= ≥ (2.32)

The results can be summarized as

3

2

0
3

3

r

r

r
E a r a

a
a r a

r

r
e

r

e

= < £

= ≥

The field outside the sphere is the same as if all the charges were concentrated at the center of the 

sphere. The variation of E as a function of r is plotted in Fig. 2.39.

*Example 2.31 Using Gauss’ law, determine the electric field intensity due to a uniformly 

charged infinite cylinder of radius ‘a’ having a line charge density of ‘l’, at a distance ‘r’ from the axis 

of the cylinder.

Solution
1. The problem possesses cylindrical symmetry.

2. We consider a cylindrical Gaussian surface of radius r

and coaxial with the charged cylinder. This is depicted in 

Fig. 2.40.

3. The flux and charge enclosed are found considering two 

cases:

When r > a:

Applying Gauss’ law for region outside the cylinder of 

length l

enc(2 )
Q l

rl E
l

p
e e

¥ = =

\
2

E
r

l
pe

=

In vector form 
2 rE a

r

l
pe

=

When r < a:

In this case, we have to find out the charge enclosed by the Gaussian surface for a point inside the 

cylinder. This is obtained as follows.

Let r—the volume charge density

Fig. 2.40 Infinite cylinder
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\ Charge in the length l of the charged cylinder is

2
2

l a l
a

l
l p r r

p
= fi =

\ Charge enclosed in the Gaussian cylinder is

2
2

enc 2

r
Q r l l

a
p r l

Ê ˆ
= = Á ˜Ë ¯

Applying Gauss’ law in this region
2

enc
2

(2 )
Q r l

rl E
a

l
p

e e

Ê ˆ
¥ = = Á ˜Ë ¯

\
22

r
E
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pe
=

In vector form,
22

r

r
E a

a

l

pe
=

The results can be summarised as

2

;
2

;
2

r

r

E a r a
r

r
a r a
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l
pe
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pe

= >

= <

*Example 2.32 A thin spherical shell of radius a has a charge +Q evenly distributed over its 

surface. Find the electric field both inside and outside the shell.

Solution
1. In this case, the charge distribution has spherical symmetry, with a 

surface charge density

24

Q Q

S a
s

p
= =

2. The electric field E  must have radial symmetry and must be directed 

outward (Fig. 2.41). So, spherical surface is the Gaussian surface.

3. Flux and charge enclosed are determined by considering two regions 

r £ a and r ≥ a separately.

When r £ a:

In this case, the Gaussian surface is a sphere of radius r £ a, as shown 

in Fig. 2.42 (a).

Fig. 2.42 Gaussian surface for uniformly charged spherical shell for (a) r £ a, and (b) r ≥ a

Fig. 2.41 Electric field for 

uniform spherical 

shell of charge
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Since all the charge is located on the surface of the shell, the charge enclosed by the Gaussian 

surface is zero, Qenc = 0. Hence, by Gauss’ law, we have

enc 0
0

Q
E r a

e e
= = = <

When r ≥ a:

In this case, the Gaussian surface is a sphere of radius r ≥ a, as shown in Fig. 2.42 (b). Since the radius 

of the Gaussian sphere is greater than the radius of the spherical shell, all the charge is enclosed, i.e., 

Qenc = Q.

Total flux through the Gaussian surface is

2(4 )
S

E dS ES E rf p= ◊ = =Ú

Applying Gauss’ law

2(4 )
Q

E rp
e

=

\
24

Q
E r a

rp e
= ≥

The results can be summarized as

2

0

4

E r a

Q
r a

rp e

= <

= ≥

The variation of E as a function of r is plotted in Fig. 2.42 (c). We see 

a discontinuity of E as we cross the boundary at r = a. The change in 

the field intensity from the outer surface to the inner surface, is given 

by

2
0

0
4

Q
E E E

r

s
ep e

+ -D = - = - =

*Example 2.33 A spherical volume charge density distribution is given by

2

0 2
1 ; ( )

0; ( )

r
r a

a
r a

r r
È ˘

= - £Í ˙Î ˚
= >

(a) Calculate the total charge Q.

(b) Find E everywhere for 0 < r £ a and r > a.

(c) Show that the maximum value of E is at r = 0.745a.

Solution
(a) Total charge Q is obtained by finding the volume integral of charge density function r over the 

entire volume of sphere of radius r = a.

\
vol

Q dvr= ÚÚÚ

Fig. 2.42 (c) Electric field as a 

function of r due to 

a uniformly charged 

spherical shell



Electrostatics 137

Considering a thin spherical shell within the charged sphere as radius r and with thickness dr, the 

charge within the shell.

\
2

2 2
0 2

4 1 4
r

dQ r dr r dr
a

r p r p
È ˘

= ¥ = - ¥Í ˙Î ˚
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(b) Field intensity at a distance r from the center of the sphere, outside (r > a) the sphere is

3
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For field inside the sphere (r £ a), applying Gauss’ law to the spherical surface
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(c) For maximum value of E, 0
dE

dr
= .
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Thus, the maximum value of E  is at r = 0.745a.
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 Example 2.34 A long cylinder (charged) of radius ‘a’ has a volume charge density, r = kr,

where ‘k’ is a constant and ‘r’ is the distance from the axis of the cylinder. Show that the electric field 

is given by
2

3

;
3

;
3

r

r

k r
E a r a

ka
a r a

r

e

e

= £

= ≥

Solution
1. This problem possesses cylindrical symmetry.

2. The cylindrical surface of any radius ‘r’ is the Gaussian surface.

3. Flux and charge enclosed are determined considering two cases:

Inside the cylinder (r £ a)

We will consider a tubular cylinder of inner radius r and outer radius (r + dr) located coaxially within 

the charged cylinder of radius a.

The charge contained in the tubing per unit length is

22 1 2 2dQ rdr kr rdr k r drr p p p= ¥ = =
\ Total charge per unit length contained in a cylinder of radius r is

3
2

0

2
2

3

r k r
Q dQ kr dr

p
p= = =Ú Ú

Applying Gauss’ law to the Gaussian surface of radius r
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Outside the cylinder (r ≥ a)

Here, total charge contained in the cylinder is
3

2
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2
2
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a ka
Q dQ kr dr

p
p= = =Ú Ú

Applying Gauss’ law to the Gussian surface of radius r
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Thus, the electric field is given as
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2.12 ELECTRIC POTENTIAL (V)

2.12.1 Electric Potential (V )

The potential of a point is the work done to bring a unit positive charge from infinity to that point.

The unit of potential is Joule per Coulomb (J/C) or Volt. The dimensions of electric potential in 

terms of M, L, T and I are [ML2T-3I-1].

2.12.2 Potential Difference

The potential difference between two points is the change in the potential energy per unit charge as the 

charge tends to zero. This is depicted in Fig. 2.43.

0
Lim

B

AB
Q

A

W
V E dl

QÆ

Ê ˆ= = - ◊Á ˜Ë ¯ Ú

Explanation We will consider, a point charge Q, be moved from a point A to another point B in an 

electric field E.

By Coulomb’s law, the force on Q is, F QE=

\ Work done for a displacement of dl  is, dW F dl QE dl= - ◊ = - ◊
Hence, the total work done in moving the charge Q from A

to B, i.e., the potential energy required is

B

A

W Q E dl= - ◊Ú

The potential energy per unit charge 
Ê ˆ
Á ˜Ë ¯

W

Q
, known as 

the potential difference between the two points A and B, 

denoted by VAB is given as

\
B

AB
A

W
V E dl

Q
= = - ◊Ú (2.33)

For example, if E  is a field produced by a point charge Q at origin, i.e., 
24

r

Q
E a

rpe
= , then the potential 

difference between the points A and B is given as

2 2

1 1
( )

4 44

B B

AB r r B A
B AA A

Q Q Qdr
V a dra V V

r rr rpe pepe

È ˘= - ◊ = - = - = -Í ˙Î ˚
Ú Ú

Thus, the potential difference between the points A and B may be considered to be the potential (or

absolute potential) of B with respect to the potential (or absolute potential) of A.

In case of a point charge, the reference is taken to be at infinity with zero potential.

Hence, potential (or absolute potential) of a point is defined as the work done to bring a unit positive 

charge from infinity to that point.

\
2 24 44

R R

r r

Q Q QW dr
V a dra

Q Rr rpe pepe
= = - ◊ = - =Ú Ú

Fig. 2.43 Potential difference due to a 

uniform electric field
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4

Q
V

Rpe
= (2.34)

If the point charge Q is not located at the origin but at a point with position vector r , then the potential 

of the point at a position vector R is

( )
4 | |

Q
V R

R rpe
=

-
(2.35)

Principle of Superposition of Potentials If there is a number of point charges Q1, Q2, …, Qn,

located at position vectors 1 2, , , nr r rº  respectively, then the potential at point r  is

1 2

1 2 1

1
( )

4 | | 4 | | 4 | | 4 | |
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n ii
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4 | |pe =
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i

ii

Q
V r

r r (2.36)

Potential due to Continuous Charge Distribution If the 

charge distribution is continuous, the potential at a point P can be 

found by summing over the contributions from individual differential 

elements of charge dq.

Consider the charge distribution shown in Fig. 2.44. Taking infinity 

as our reference point with zero potential, the electric potential at P due

to dq is

1

4

dq
dV

rpe
=

Summing over contributions from all differential elements, we have

1

4

dq
V

rpe
= Ú

For three different types of charge distribution, the potential at a point r  is given below.

( )1
( ) ; for line charge distribution with density (C/m)

4 | |
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r r

l
l
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- ¢Ú (2.37)

2( )1
; for surface charge distribution with density (C/m )
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s
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p e
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3( )1
; for volume charge distribution with density (C/m )

4 | |
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p e

¢ ¢
=

¢-Ú
v

r dv

r r
(2.39)

Here, the primed coordinates refer to the source point and the unprimed coordinates refer to the field 

point (the point where the potential is to be calculated).

Fig. 2.44 Continuous charge 

distribution
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NOTE

l

V E d l= - ◊Ú ; as E  is in the radial direction, any contribution from a displacement in q or f direction is 

cancelled out by the dot product. Hence, cosE d l Edl Edrq◊ = = . Thus, the potential is independent 

of the path. For a closed path, 0
l

E d l◊ =Ú . Applying Stoke’s theorem, ( ) 0
l S

E d l E dS◊ = — ¥ ◊ =Ú Ú .

\ 0E— ¥ =

Thus, the electrostatic field is conservative or irrotational.

*Example 2.35 Consider a uniformly charged ring of radius R and charge density l. What is the 

electric potential at a distance z from the central axis?

Solution We shall consider a small differential element dl Rdf= ¢ on the ring as shown in Fig. 2.45.

The charge carried by this element is

dq dl Rdl l f= = ¢

Potential due to this element is

2 2

1 1

4 4

dq Rd
dV

r R z

l f
p e p e

¢= =
+

Thus, the potential at point P due to the entire ring is

2 2 2 2

2 2 2 2

1 1 2

4 4

1

42

l pl
f

p e p e

l
p ee

= = ¢ =
+ +

= =
+ +

Ú Ú
R R

V dV d
R z R z

QR

R z R z

2 22

R
V

R z

l

e
=

+

where Q = 2plR is the total charge on the ring.

Since the ring is uniformly charged, the electric field at point P will be along the axis, i.e., in the z

direction. Hence, the field is given as

2 2 3/2 2 2 3/22 2

1

42 ( ) ( )2
z

QzV R Rz
E E k k k k

z z R z R zR z

l l
p eee

∂ ∂ Ê ˆ= = - = - = =
Á ˜∂ ∂ + ++Ë ¯

2 2 3/22 ( )

Rz
E k

R z

l

e
=

+

NOTE

In the limiting case with z >> R, the potential becomes, 
4

Q
V

zpe
=  and the field becomes 

24

Q
E k

zpe
= ;

which are the potential and field due to a point charge. Thus, if the distance of the field point is very 

large compared to the radius of the ring, the ring appears as a point charge.

Fig. 2.45 A non-conducting ring of radius R 

with uniform charge density l
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*Example 2.36 Determine the electric potential at a distance ‘r’ form the centre of the sphere of 

Example 2.30.

Solution The results for the field intensity for Example 2.30 are as given below.

3

2

;
3

;
3

r

r

r
E a r a

a
a r a

r

r
e

r

e

= <

= >

The potential for the two cases is obtained as follows.

Outside the sphere (r ≥ a)

Here,
3

23

a
E

r

r

e
=

Hence, the potential is, 
3 3

23 3

r ra adr
V Edr

rr

r r
e e

= - = - =Ú Ú

\
3

3

a
V

r

r
e

=

Inside the sphere (r £ a)

Here,
3

r
E

r
e

=

Hence, the potential is

2 2
2 2 2 2( ) ( ) (3 )

3 3 3 3 6

r r

a a

a a
V V r a Edr rdr r a a r

r r r r r
e e e e e

= = - = - = - - = -Ú Ú

\ 2 2(3 )
6

V a r
r
e

= -

The results are summarised below.

2 2

3

(3 ) ;
6

;
3

rV a r r a

a
r a

r

r
e

r
e

= - <

= >

The variation of the potential with the distance is shown in Fig. 2.46.

*Example 2.37 A spherical conductor of radius ‘R’ contains a uniform surface charge density s.

Determine the field and potential due to the charge distribution.

Solution We will consider two cases:

Outside the sphere (r ≥ R)

Applying Gauss’ law to the Gaussian surface of radius r

2 2
2

2

4
4

RQ R
r E E

r

p s s
p

e e e
= = fi =

Fig. 2.46 Variation of potential 

with the distance
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In vector form
2

2 r

R
E a

r

s

e
=

Hence, the potential is, 
2 2

2

r r
R dr R

V Edr
rr

s s
e e

= - = - =Ú Ú

\
2R

V
r

s
e

=

Inside the sphere (r £ R)

Since there is no charge inside the sphere, E = 0. Therefore, the field intensity everywhere inside the 

spherical conductor is zero.

At r = R,
R

V
s
e

=

Since E is zero inside the sphere, it requires no work to move a test charge inside and therefore, the 

potential is constant, being equal to the value at the surface of the sphere.

The results are summarised below.

2
2

2

0; ;
and

;
;r

RE r R V r R

R
a r R R

r Rr r

s
e

s
s

e e

= < = <

= ≥ = ≥

 Example 2.38 Derive expression for E and V for a spherical volume of radius ‘a’ having a 

volume charge density:

(a) 0 ;
a

r
r r= (b) r = kr, k is a constant;

(c)
2

,
k

r
r = k is a constant; (d) 0 ;

r

a
r r=

(e) 3/2
0 ( / )r ar r=

where ‘r’ is the radial distance from the centre of the sphere.

Solution

(a) 0
a

r
r r=

We will consider two cases:

Outside the sphere (r ≥ a)

Applying Gauss’ law to the Gaussian surface of radius r

3
2 2 2 0

0
vol 0

1 1
4 4 4

2

a aQ a
r E r dr r dr

r

r
p r p r p

e e e e
= = ¥ = =ÚÚÚ Ú

fi
3

0
22

a
E

r

r

e
=

Hence, the potential is, 
3 3

0 0
22 2

r ra adr
V Edr

rr

r r

e e
= - = - =Ú Ú
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Inside the sphere (r £ a)

Applying Gauss’ law to the Gaussian surface of radius r

2 2 2 20
0

vol 0

1 1
4 4 4

2

r aQ a
r E r dr r dr r

r

r
p r p r p

e e e e
= = ¥ = =ÚÚÚ Ú

fi 0

2

a
E

r

e
=

Hence, the potential is obtained as

3 2
0 0 0 0 0( ) (2 )

2 2 2 2 2

r

a

a a a a a
V dr r a a r

a

r r r r r

e e e e e
= - = - - = -Ú

The results are summarised below.

0 0

3 3
0 0

2

; (2 );2 2
and

; ;
2 2

r

r

a a
E a r a V a r r a

a a
a r a r a

r r

r r
e e

r r

e e

= < = - <

= ≥ = ≥

(b) r = kr, k is a constant

We will consider two cases:

Outside the sphere (r ≥ a)

Applying Gauss’ law to the Gaussian surface of radius r

4
2 2 2

vol 0

1 1
4 4 4 4

4

aQ ka
r E r dr kr r drp r p p p

e e e e
= = ¥ = =ÚÚÚ Ú

fi
4

24

ka
E

re
=

Hence, the potential is, 
4 4

24 4

r r
ka dr ka

V Edr
rre e

= - = - =Ú Ú

Inside the sphere (r £ a)

Applying Gauss’ law to the Gaussian surface of radius r

4
2 2 2

vol 0

1 1
4 4 4

rQ r
r E r dr kr r dr kp r p p p

e e e e
= = ¥ = =ÚÚÚ Ú

fi
2

4

kr
E

e
=

Hence, the potential is obtained as

4 2 3
3 3 3 3( ) (4 )

4 4 4 12 12

r

a

ka kr ka k k
V dr r a a r

ae e e e e
= - = - - = -Ú

The results are summarised below.

2
3 3

4 4

2

(4 );;
124

and
; ;

44

r

r

kkr V a r r aE a r a

ka kaa r a r a
rr

ee

ee

= - <= <

= ≥ = ≥
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(c)
2

,
k

r
r = k is a constant

We will consider two cases:

Outside the sphere (r ≥ a)

Applying Gauss’ law to the Gaussian surface of radius r

2 2 2
2

vol 0

1 1 4
4 4 4

aQ k ka
r E r dr r dr

r

p
p r p p

e e e e
= = ¥ = =ÚÚÚ Ú

fi
2

ka
E

re
=

Hence, the potential is, 2

r r
ka dr ka

V Edr
rre e

= - = - =Ú Ú

Inside the sphere (r £ a)

Applying Gauss’ law to the Gaussian surface of radius r

2 2 2
2

vol 0

41 1
4 4 4

r krQ k
r E r dr r dr

r

p
p r p p

e e e e
= = ¥ = =ÚÚÚ Ú

fi k
E

re
=

Hence, the potential is obtained as

( ) ( )ln 1 ln
r

a

ka k k k r k a
V dr

a r a re e e e e
È ˘= - = - = +Í ˙Î ˚Ú

The results are summarised below.

( )
2

; 1 ln ;
and

; ;

r

r

k k aE a r a V r ar r
ka kaa r a r a
r r

e e

e e

È ˘= < = + <Í ˙Î ˚
= ≥ = ≥

(d) 0
r

a
r r=

We will consider two cases:

Outside the sphere (r ≥ a)

Total charge enclosed by the sphere is

2 3 30
0

0 0 0

4
4

a a a

r r r

Q dQ r dr r dr a
a

pr
r p pr

= = =
= = = =Ú Ú Ú

Applying Gauss’ law to the Gaussian surface of radius r

3
2 04

aQ
r E

pr
p

e e
= =

fi
3

0
24

a
E

r

r

e
=
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Hence, the potential is, 
3 3

0 0
24 4

r ra adr
V Edr

rr

r r

e e
= - = - =Ú Ú

Inside the sphere (r £ a):

Charge enclosed by a spherical shell of radius r and thickness dr is

2 2 30
0

4
4 4r

r
dQ r dr r dr r dr

a a

p r
r p r p= = =

\ Total charge enclosed

4
30 0

0 0

4r r

r r
r r

r
Q dQ r dr

a a

p r p r

= =
= = =Ú Ú

Applying Gauss’ law to the Gaussian surface of radius r

4
2 01

4
rQ

r E
a

p r
p

e e
= =

fi
2

0

4

r
E

a

r

e
=

Hence, the potential is obtained as

3 2 2 3 3
3 3 3 3 30 0 0 0 0 0(3 ) (4 )

4 4 4 4 3 12 12

r

a

a r a r a
V dr a r a a r

a a a a a

r r r r r r

e e e e e e

Ê ˆ-= - = - = - + = -Á ˜Ë ¯Ú

The results are summarised below.

2
3 30 0

3 3
0 0

2

; (4 );
4 12

and

; ;
44

r

r

r
E a r a V a r r a

a a

a a
a r a r a

rr

r r

e e

r r

ee

= < = - <

= ≥ = ≥

NOTE

Part (b) and (d) are same with 0k
a

r
= .

(e) 3/2
0 ( / )r ar r=

We will consider two cases:

Outside the sphere (r ≥ a)

Applying Gauss’ law to the Gaussian surface of radius r

9/2
0 02 2 3/2 2 3

0 3/2
vol 0

4 41 1 2
4 4 ( / ) 4

9/2 9

aQ a
r E r dr r a r dr a

a

pr pr
p r p r p

e e e ee
= = ¥ = = =ÚÚÚ Ú

fi 30
2

2

9
E a

r

r

e
=

Hence, the potential is, 
3 3

0 0
2

2 2

9 9

r ra adr
V Edr

rr

r r

e e
= - = - =Ú Ú
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Inside the sphere (r £ a):

Applying Gauss’ law to the Gaussian surface of radius r

9/2
2 2 3/2 2 0

0 3/2
vol 0

41 1 2
4 4 ( / ) 4

9

r rQ
r E r dr r a r dr

a

p r
p r p r p

e e e e
= = ¥ = =ÚÚÚ Ú

fi
5/2

0
3/2

2

9

r
E

a

r

e
=

Hence, the potential is obtained as

( )
( )

3 5/2 2
7/2 7/2 7/2 7/2 7/20 0 0 0 0

3/2 3/2 3/2

7/2 7/20
3/2

2 2 2 2 42 7
( )

9 9 7 29 9 63

4 9

263

r

a

a r a
V dr r a a r a

a a a a

a r
a

r r r r r

e ee e e

r

e

= - = - - = - +

= -

Ú

The results are summarised below.

( )5/2
7/2 7/200

3/23/2

3
30 0

2

42 9
;;

2639
and

2 2
; ;

99

r

r

r
V a r r aE a r a

aa

a
a a r a r a

rr

rr

ee
r r

ee

= - <= <

= ≥ = ≥

2.13  PRINCIPLE OF SUPERPOSITION OF 
ELECTROSTATIC FIELDS

The principle of superposition states that the total resultant electric field at a point is the vector sum of 

the component fields.

We will consider a general system with the following charges:

1. a number of point charges q1, q2, …, qn;

2. a line charge distribution with density l (C/m);

3. a surface charge distribution with density s (C/m2); and 

4. a volume charge distribution with density s (C/m3).

The system is shown in Fig. 2.47.

Fig. 2.47 General system with different charge distributions
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Then, the resultant electric field at a point P is given by

due topoint charges due to line charge distribution due to surface charge distribution due to volume charge distribution

1 2
1 22 2 2 2

1 2

1 1 1

4 4 4| | | | | | | | |

n
r r rn rl

n l Sl

E E E E E

qq q dl dS
a a a a

r r r r r

l s
pe pe pe

= + + +

È ˘= + + + + +Í ˙
Î ˚

Ú 2 2

1

4| | |
rS rv

vS v

dv
a a

r

r
pe

+Ú Ú

2 2 2 2
1

1

4 | | | | | | | |

n
i

ri rl rS rv
i i l S vl S v

q dvdl dS
E a a a a

r r r r

rl s
pe =

È ˘
= + + +Í ˙

Î ˚
Â Ú Ú Ú (2.40)

The principle of superposition is also applicable for potential calculation. For the same system, the 

potential at the point P is given by

due to point charges due to line charge distribution due to surface charge distribution due to volume charge distribution

1 2

1 2

1 1 1 1

4 4 4 4
n

n l S vl S v

V V V V V

qq q dvdl dS

r r r r r r

rl s
pe pe pe pe

= + + +

È ˘= + + + + + +Í ˙Î ˚
Ú Ú Ú

1

1

4

n
i

i l S vi l S v

q dvdl dS
V

r r r r

rl s
pe =

È ˘
= + + +Í ˙

Î ˚
Â Ú Ú Ú (2.41)

*Example 2.39 A point charge of -5p mCoulomb is located at (4, 0, 0) and a line charge of 3p
mCoulomb/m is located along the y-axis. Find D  at (4, 0, 3).

Solution Here, Q LD D D= +

2
2 3 3 3

3( ) 5 (4, 0, 3) (4, 0, 0) 5
0.138 mC/m

4 4 44 | | | (4, 0, 3) (4, 0, 0) | 3

z
Q r z

ar rQ Q
D a a

r r r

p
p pp

- ¢ - -
= = = = - ¥ = -

- ¢ -

Also,

2
2 2

4 3( ) (4, 0, 3) (0, 0, 0)3 3
0.24 0.18 mC/m

2 2 2 2 25| | | (4, 0, 3) (4, 0, 0) |

x z
L r x z

a ar r
D a a a

r r r

l l p
p p p

+- ¢ -
= = = = ¥ = +

- ¢ -

Thus, total flux density is

20.138 0.24 0.18 (240 42 ) C/mQ L z x z x zD D D a a a a a m= + = - + + = +

 Example 2.40 (a) A line of length ‘l’ carries a charge l per unit length. Show that the potential 

in the median plane is

2 2

2 2

41 sin
ln ln ; where, tan

4 1 sin 4 24

l r l l
V

rl r l

al l
a

pe a pe

Ê ˆ+ ++Ê ˆ= = =Á ˜Á ˜-Ë ¯ Á ˜+ -Ë ¯

(b) A thin square loop carries a uniform charge of l. Show that the potential at the centre of the loop 

is
2

ln(1 2)V
l

pe
= + .

(c) A square that is 1 m on a side in air has a point charge Q1 = +1 pC at the upper right corner, a point 

charge Q3 = -10 pC at the lower right corner and a line distribution of charge density l = +10 pC/m 

along the left edge. Find the potential at the point at the centre of the sphere.
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Solution (a) We will consider an elemental length dz at a 

distance z as shown in Fig. 2.48.

Charge on the elemental length is, dQ = ldz

\ Potential at point P due to this charge is

4 4

dQ dz
dV

R R

l
p e p e

= =

\ Total potential at point P due to the line is

/2 /2

2 2
/2 /2

4 4

l l

l l

dz dz
V dV

R r z

l l
p e p e

- -
= = =

+
Ú Ú Ú

Let, z = r tan q fi dz = r sec2 qdq

( )1
/2 /2

where tan
2

a
q a a

--È ˘
=Í ˙-Î ˚

z l l l

r

\
2

2

sec
sec

4 4sec

ln(sec tan )
4

1 sin
ln

4 1 sin

r d
V d

r

a a

a a

a

a

q ql l
q q

p e p eq

l
q q

p e

al
p e a

- -

-

= =

= +

+Ê ˆ= Á ˜-Ë ¯

Ú Ú

Now, since ( )1tan ,
2

l

r
a -= \ 

2 2 2 2

/2
sin

( /2) 4

l l

l r l r
a = =

+ +

2 2

2 2

4
ln

4 4

l r l
V

l r l

l
p e

Ê ˆ+ +
= Á ˜

Á ˜+ -Ë ¯

2 2

2 2

41 sin
ln ln

4 1 sin 4 4

l r l
V

l r l

al l
p e a p e

Ê ˆ+ ++Ê ˆ= = Á ˜Á ˜-Ë ¯ Á ˜+ -Ë ¯

(b) Here, total potential at the centre P is given as

Potential due to line Potential due to line

Potential due to line Potential due to line

(Fig. 2.49)

= +
+ +

= + + +AB BC CD DA

V AB BC

CD DA

V V V V

Now from part (a), potential at point P due to line AB is

1 sin 45
ln

4 1 sin 45

l
p e

+ ∞Ê ˆ= Á ˜- ∞Ë ¯ABV

Fig. 2.48 Potential due to a charge 

carrying line

Fig. 2.49 Potential due to square 

loop with line charge 

distribution
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1
1

2
ln

4 1
1

2

2 1
ln

4 2 1

l
p e

l
p e

Ê ˆ+
Á ˜

= Á ˜
Á ˜-
Ë ¯
Ê ˆ+

= = = =Á ˜
-Ë ¯

BC CD DAV V V

\
22 1 2 1 ( 2 1) 2

4 ln ln ln ln(1 2)
4 2 1 2 1 ( 2 1)( 2 1)

V
l l l l
p e p e p e p e

Ê ˆ Ê ˆ È ˘+ + +
= ¥ = = = +Í ˙Á ˜ Á ˜- - - +Ë ¯ Ë ¯ Í ˙Î ˚

\ 2
ln(1 2)V

l
p e

= +

(c) The potential at the centre is given as

1 2

12

2 2
0

12

2 2
0

0

1 10

4 (0.5) (0.5)

10 10

4 (0.5) (0.5)

2 1
ln

4 2 1

0.012 0.12 0.159

0.044 Volt 44 mV (Fig. 2.50)

Q QV V V Vl

p e

p e

l
p e

-

-

= + +

¥
=

+

- ¥
+

+

Ê ˆ+
+ Á ˜-Ë ¯

= - +
= =

2.14  POTENTIAL GRADIENT AND RELATION
BETWEEN E AND V

2.14.1 Potential Gradient

We know that the line integral of electric field intensity 

E  between any two points gives the potential difference 

between the points [see Eq. (2.31)]. For an elementary 

length DL, we can write the potential difference as

V E LD = - ◊ D

Hence, an inverse relation must exist between the change 

of potential DV along the elementary length DL with the 

electric field E  as DL Æ 0.

The rate of change of potential with respect to the 

distance is called the potential gradient.

Fig. 2.50

Fig. 2.51 Potential gradient
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From Fig. 2.51, we can write that

0
Potential Gradient Lim

L

dV V

dL LD Æ

DÊ ˆ= = Á ˜DË ¯

Relation between Potential V and Electric Field Intensity E We will consider two points 

in a surface separated by an infinitesimal distance dl . The work done by an external electric field E  in 

moving a unit positive charge from one point to the other is given as [see Eq. (2.31)]

dW dV E dl= = - ◊

Since V is a function of the position coordinates, in Cartesian coordinates (x, y, z), the above can be 

written as

dV E dl= - ◊

or
V V V

dx dy dz E dl
x y z

∂ ∂ ∂+ + = - ◊
∂ ∂ ∂

or ( )
V V V

i j k dxi dyj dzk E dl
x y z

∂ ∂ ∂Ê ˆ+ + ◊ + + = - ◊Á ˜∂ ∂ ∂Ë ¯

or ( )V dl E dl— ◊ = - ◊

or E V= -—

Thus, we have the relation that the potential is the gradient of the electric field intensity.

E V= -— (2.42)

From Eq. (2.42), we can also have two conclusions:

1. The magnitude of the electric field intensity is given by the maximum value of the rate of change 

of the potential, and

2. The maximum value is obtained when the direction of the displacement is opposite to the field 

direction.

Mathematically, we can think of E as the negative of the gradient of the electric potential V. Physically, 

the negative sign implies that if V increases as a positive charge and moves along some direction, say 

x, with 0,
∂ >
∂
V

x
 then there is a non-vanishing component of E  in the opposite direction (i.e., –Ex π 0).

 Example 2.41 Given the potential 
2

10
sin cosV

r
q f= , find the electric field intensity and flux 

density at 4, , 0 .
2

pÊ ˆ
Ë ¯

Solution The electric field is given as

3 3 3

1 1

20 10 10
sin cos cos cos sin

r

r

V V V
E V a a a

r r r

a a a
r r r

q f

q f

q f

q f q f f

∂ ∂ ∂È ˘= -— = - + +Í ˙∂ ∂ ∂Î ˚

= - +
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At (4, p /2, 0), the field intensity is

( ) ( )3 3 3

20 10 10 5
sin cos 0 cos cos 0 sin 0

2 2 164 4 4
r rE a a a aq f

p p= - + =

Therefore, the flux density is given as

12 2
0

5
8.854 10 2.77 pC/m

16 r rD E a ae -= = ¥ ¥ =

2.15 EQUIPOTENTIAL SURFACES

Definition Equipotential surface is a surface with equal value of potential at every point on the 

surface. In other words, the locus of the points which have the same electric potential is known as 

equipotential surface. The surface obtained by joining the points with equal potential is known as 

equipotential surface.

The potential difference between any two points on an equipotential surface is zero.

Properties of Equipotential Surfaces The properties of equipotential surfaces are given here:

1. The electric field lines are perpendicular to the equipotential surfaces and are directed from 

higher to lower potentials.

2. The tangential component of the electric field along the equipotential surface is zero; otherwise 

non-vanishing work would be done to move a charge from one point on the surface to the other.

3. No work is required to move a particle along an equipotential surface.

4. The equipotential surfaces for a point charge or a sphere with uniform charge distribution are 

spheres concentric with the charge.

5. The equipotential surfaces for a line charge or a cylinder with uniform charge distribution are 

concentric cylinders centered on the axis of the charge distribution.

6. The equipotential surfaces for a flat surface with uniform charge distribution are planes parallel 

to the surface.

In Fig. 2.52, we illustrate some examples of equipotential surfaces.

Fig. 2.52 Equipotential surfaces and electric field lines for (a) a constant E field, (b) a point charge, and 

(c) an electric dipole

 Example 2.42 Prove that electric field lines are perpendicular to the equipotential surfaces.

Solution Since E V= -— , it can be shown that the direction of E  is always perpendicular to the 

equipotential through the point. We give proof below (Fig. 2.53).
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Fig. 2.53 Change in V when moving from one equipotential curve to another

Let the potential at a point P(x, y, z) be V(x, y, z). The difference in potential at a neighbouring point 

P(x + dx, y + dy, z + dz) is given as

( , , ) ( , , )

( , , ) ( , , )

dV V x dx y dy z dz V x y z

V V V
V x y z dx dy dz V x y z

x y z

V V V
dx dy dz

x y z

= + + + -
∂ ∂ ∂È ˘= + + + -Í ˙∂ ∂ ∂Î ˚

∂ ∂ ∂= + +
∂ ∂ ∂

With the displacement vector given as x y zd l dxa dya dza= + + , we can rewrite dV as

( )

( )

x y z x y z

V V V V V V
dV dx dy dz a a a dxa dya dza

x y z x y z

V dl

E dl

∂ ∂ ∂ ∂ ∂ ∂Ê ˆ= + + = + + ◊ + +Á ˜∂ ∂ ∂ ∂ ∂ ∂Ë ¯
= — ◊
= - ◊

If the displacement dl  is along the tangent to the equipotential curve through P(x, y, z), then dV = 0 

because V is constant everywhere on the curve. This implies that E  is perpendicular to V along the 

equipotential curve.

2.16 ELECTRIC DIPOLE

Two equal and opposite point charges separated by a distance, which is small compared to the distance 

at which the potential or the field is to be calculated, constitute an electric dipole.

Fig. 2.54 shows an electric dipole with +q and -q charges separated by a distance d .

Fig. 2.54 (a) Electric dipole, (b) Field lines for an electric dipole, and (c) Field lines for a pure electric dipole
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2.16.1 Dipole Moment

The product of the magnitude of one charge and the separation distance between the charges is called 

the dipole moment ( )p . This is given as

p Qd= (2.43)

This is a vector directed from the negative charge to the positive charge. Its unit is Coulomb-meter (C-m).

For an overall charge-neutral system having N charges, the electric dipole moment vector ( )p  is 

defined as

1

N

i i
i

p Q r
=

= Â (2.44)

where ir  is the position vector of the charge Qi.

Examples of dipoles include HCl, CO, H2O and other polar molecules. In principle, any molecule 

in which the centres of the positive and negative charges do not coincide may be approximated as a 

dipole.

NOTE

An electric dipole is said to be a pure dipole if d Æ 0 and Q Æ  at the same rate so that the dipole 

moment ( )p Qd=  remains constant. The field lines for a pure dipole are shown in Fig. 2.54 (c).

2.16.2 Electric Potential due to Dipole

We will consider the dipole shown in Fig. 2.54 (a). The potential at point P(r, q, f) is given as

1 1

4 4

r rq q
V

r r r rpe pe
- +

+ - + -

-È ˘È ˘= - = Í ˙Í ˙Î ˚ Î ˚

where r+ and r– are the distances between P and +q and P and -q, respectively. If r >> d, then

2( ) cos andr r d r r rq- + - +- = ª

\
2 2

cos cos

4 4

d qdq
V

r r

q q
pe pe

= =

Since, cos rd d aq = ◊ , and dipole moment, p Qd= , we can write the potential as

2 2 2 3

cos 1 1

4 4 44 | |

q
pe pe pepe

◊ ◊ ◊
= = = =r rd a p aqd p rq

V
r r r r

(2.45)

If the dipole centre is not at the origin, but at a position vector r ¢, then the potential can be written as

3

( )
( )

4 | |

p r r
V r

r rpe

◊ - ¢
=

- ¢
(2.46)

This is the potential at any point P due to an electric dipole.
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NOTE

(i) Equation (2.43) shows that the potential due to dipole varies inversely as the square of the 

distance
2

1
V

r
a

Ê ˆ
Á ˜Ë ¯

, unlike as ( )1r  for a point charge.

(ii) For q = 90°, V = 0, i.e., the potential along the perpendicular bisector to dipole axis is zero and 

the perpendicular drawn at O will be an equipotential line of zero potential.

2.16.3 Electric Field due to Dipole

The electric field due to the dipole with centre at the origin is given as

( )
2 2

3 3

1
(in spherical coordinates)

cos cos1

4 4

cos sin

2 4

r

r

r

V V
E V a a

r r

qd qd
a a

r rr r

qd qd
a a

r r

q

q

q

q
q q

qpe pe

q q

p e pe

∂ ∂= -— = - +
∂ ∂

Ê ˆ Ê ˆ∂ ∂= - -Á ˜ Á ˜∂ ∂Ë ¯ Ë ¯

= +

\
3 3

(2 cos sin ) (2 cos sin )
4 4

r r

qd p
E a a a a

r r
q qq q q q

pe pe
= + = + (2.47)

The electric field due to an electric dipole may also be expressed as follows.

3 3 3

1 1 1 1
( ) ( ) { ( ) }

4 4| | | | | |

p r
E V p r p r AB A B B A

r r rpe pe
◊ È ˘Ê ˆ Ê ˆ= -— = - — = - — ◊ + ◊ — — = — + —Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Î ˚

Since, ( )p r p— ◊ =  and 
3 5

31

| | | |

r

r r

Ê ˆ— = -Á ˜Ë ¯

\
5 3

3( )1

4 | | | |

p r r p
E

r rpe
◊È ˘= -Í ˙

Î ˚

or
3 2

3( )1

4

p r r
E p

r rpe

◊È ˘= -Í ˙Î ˚
(2.48)

Thus, the field intensity due to a dipole varies inversely as the cube of the distance of the field point 

from the dipole 
3

1
E

r
aÊ ˆ

Á ˜Ë ¯
, unlike as ( )1

r
 for a point charge.

NOTE

(iii) For q = 90°, 0rE =  and 
34

p
E a

r
q q

pe
= , i.e., the radial component of the field vanishes, but the 

angular component persists.

(iv) For q = 0°, 
32

r r

p
E a

rpe
=  and 0Eq = , i.e., if the point is somewhere in alignment with the dipole 

axis, perpendicular component of the field will be zero.
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2.16.4 Electric Dipole in an External Electric Field

We will discuss the effects when an electric dipole is placed in an external field, say, xE Ea= . We will 

determine the torque experienced by the dipole and the potential energy of the dipole.

Torque on an Electric Dipole when placed in External Field From Fig. 2.54, we see that 

the unit vector which points in the direction of p  is (cos sin )x ya aq q+ . Thus, we have

(cos sin )x yp qd a aq q= +

As seen from Fig. 2.55, since each charge experiences an equal 

but opposite force due to the field, the net force on the dipole is

net 0F F F+ -= + =

Even though the net force vanishes, the field exerts a torque on 

the dipole. The torque about the midpoint O of the dipole is

[( /2) cos ( /2) sin ] ( )

[ ( /2) cos ( /2) sin ] ( )

( /2) sin ( ) ( /2) sin ( )

sin ( ) { }

sin ( )

sin ( ) { }

t

q q

q q

q q

q

q

q

+ + - -

+

-

+ -

+ -

= ¥ + ¥
= + ¥

+ - - ¥ -
= - + -
= - =
= -
= - =

x y x

x y x

z z

z

z

z

r F r F

d a d a F a

d a d a F a

d F a d F a

Fd a F F

qEd a

pE a p qd

The direction of the torque is ( )za- , or into the page. The effect of the torque is to rotate the dipole 

clockwise so that the dipole moment becomes aligned with the electric field E. The magnitude of the 

torque can be written as

sinpEt q= (2.49)

In vector form, the torque can be written as

p Et = ¥ (2.50)

Thus, we see that the cross product of the dipole moment with the electric field is equal to the torque.

Potential Energy of an Electric Dipole when placed in External Field The work done 

by the electric field to rotate the dipole by an angle dq is

sindW d pE dt q q q= - = -

The negative sign indicates that the torque opposes any increase in q. Therefore, the total amount of 

work done by the electric field to rotate the dipole from an angle q0 to q is

0

0( sin ) (cos cos )W pE d pE
q

q

q q q q= - = -Ú

The result shows that a positive work is done by the field when cos q > cos q0. The change in potential 

energy of the dipole (DU) is the negative of the work done by the field, i.e.,

0 0( ) (cos cos )U U U W pE q qD = - = - = - -

Fig. 2.55 Electric dipole placed in a 

uniform field
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where, U0 = –pE cos q0 is the potential energy at a reference point. We will choose our reference point 

to be q0 = 90° so that the potential energy is zero, i.e., U0 = 0. Thus, in the presence of an external field, 

the electric dipole has a potential energy

cosU pE p Eq= - = - ◊ (2.51)

NOTE

(i) For q = 0°, W = –pE and t = 0, i.e., potential energy is minimum. A system is at equilibrium when 

its potential energy is a minimum. This takes place when the dipole moment p  is aligned parallel 

to E , making potential energy a minimum, Umin = –pE.

(ii) For q = 90°, W = 0 and t = pE, i.e., potential energy is zero when the dipole is perpendicular to 

the electric field.

(iii) For q = 180°, W = pE and t = 0, i.e., the potential energy is a maximum and, therefore, the 

system is unstable when p and E  are anti-parallel.

If the dipole is placed in a non-uniform field, there would 

be a net force on the dipole in addition to the torque, and the 

resulting motion would be a combination of linear acceleration 

and rotation. In Fig. 2.56, we consider the electric field E+  at +q

differs from the electric field E-  at -q.

Assuming the dipole to be very small, we expand the fields 

about x as

( ) ( ) , ( ) ( )+ -
Ê ˆ Ê ˆ+ ª + - ª -Á ˜ Á ˜Ë ¯ Ë ¯

dE dE
E x a E x a E x a E x a

dx dx

Hence, the force on the dipole is,

( ) ( )( ) 2e x x

dE dE
F q E E qa a p a

dx dx+= - = = (2.52)

*Example 2.43 An electric dipole of dipole moment 100 za pC-m is located at the origin. Find 

the potential and field at point (0, 0, 10).

Solution The potential is given as

3
04

p r
V

rp

◊
=

Here, (0, 0,10) (0, 0, 0) 10 zr a= - =
12

3 9
30

(100 10 ) (10 )
9mV

4 10
4 10

36

z za ap r
V

rpe
p

p

-

-
¥ ◊◊

= = =
¥ ¥

Field intensity is

\
12

12
3 2 9

30

3 1000 10 103( )1 1
100 10

1004 10
4 10

36
1.8 mV/m

z
z

z

ap r r
E p a

r r

a

pe
p

p

-
-

-

È ˘¥ ¥ ¥◊È ˘= - = - ¥Í ˙Í ˙ Î ˚Î ˚ ¥ ¥

=

Fig. 2.56 Force on a dipole
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*Example 2.44 Two dipole with dipole moments 5 za- nC-m and 9 za nC-m are located at points 

(0, 0, -2) and (0, 0, 3) respectively. Find the potential at the origin.

Solution The potential is given as

2
1 1 2 2

3 3 3
01 0 1 2

1

44

k k

k k

p r p r p r
V

r r rp ep e=

◊ ◊ ◊È ˘= = +Í ˙
Î ˚

Â

Here,

1 2

1 1 1

2 2 2

5 , 9 ,

(0, 0, 0) (0, 0, 2) 2 ; | | 2

(0, 0, 0) (0, 0, 3) 3 ; | | 3

= - =
= - - = = =
= - = - = =

z z

z

z

p a p a

r a r r

r a r r

\ 9
3 3 9 3 3

0

1 10 27 1 10 27
20.25 10 Volt

4 2 3 10 2 3
4

36

V
p e

p
p

-
È ˘ È ˘= - - = - - = - ¥Í ˙ Í ˙Î ˚ Î ˚¥

*Example 2.45 Figure 2.57 shows two charges at points A and 

B in free space. Find the electric field at point P due to these charges. 

Is the result consistent with what may be expected if d >> s?

Solution Electric field at point P will be the resultant field due to 

the charges at point A and point B. This is obtained as follows.

2 2 2 2 2 2

2 2 3/2

2 sin 2
4 ( ) 4 ( )

2 ( )

z z

z

q q d
E a a

s d s d s d

qd
a

s d

f
p e p e

p e

= ¥ = ¥ ¥
+ + +

=
+

When s << d, i.e., 1
s

d
<< , the field reduces to

3/2 2
2

3
2

2
2 1

z z

qd q
E a a

ds
d

d

p e
p e

= =
Ê ˆ

+Á ˜Ë ¯

 Example 2.46 An electron and a proton separated by a distance of 10–11 metre are symmetrically 

arranged along the z-axis with z = 0 as its bisecting plane. Determine the potential and field at point 

(3, 4, 12).

Solution The position vector is, 3 4 12 , | | 13 mx y zr a a a r r= + + = =

The dipole moment is 19 11 301.6 10 10 1.6 10z zp a a- - -= ¥ ¥ = ¥

Thus, the potential at point (3, 4, 12) is given as

30 30
23

3 9 9 3
30

(1.6 10 ) (3 4 12 ) 1.6 10 12 9
7.865 10 Volt

4 10 10 13
4 13

36

z x y za a a ap r
V

rp e
p

p

- -
-

- -

¥ ◊ + +◊ ¥ ¥ ¥
= = = = ¥

¥¥ ¥

Fig. 2.57 Arrangement of 

Example 2.45
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The electric field intensity at point (3, 4, 12) is given as

( )
3 2

0

30

30

9 2
3

24

31

4

(3 1.6 10 12) (3 4 12 )1
1.6 10

10 13
4 13

36

(4.189 5.585 10.2 ) 10 V/m

pe

p
p

-
-

-

-

È ˘◊
= -Í ˙

Î ˚

È ˘¥ ¥ ¥ ¥ + +
Í ˙= - ¥
Î ˚¥ ¥

= + + ¥

x y z

z

x y z

p r r
E p

r r

a a a
a

a a a

 Example 2.47 Figure 2.58 shows a linear quadrapole 

arrangement, with charges + q, - 2Q and + Q disposed as indicated. 

Show that the potential due to this quadrapole at a large distance 

‘r’ in  comparison with the spacing ‘2l’ is

2
2

3
0

(3 cos 1)
4

Ql
V

r
q

pe
= -

Solution By the principle of superposition, the potential at 

point P is given as

0 1 2 0 1 2

21
2

4 4

Q Q Q Q r r
V

r r r r r rpe pe
È ˘ È ˘= - + = + -Í ˙ Í ˙Î ˚ Î ˚

(i)

Now, using trigonometric relation for the triangle with sides r, r1, and l, we have

2 2 2
1 2 cosr r l rl q= + +

\
2 2

1

2

2
1 cos

r l l

r rr
q

Ê ˆ
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2
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2

2
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2 2

22

2

2
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1 1
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1 2 22 2
1 cos cos
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r rr
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r rr r
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r r
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q q

q
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-
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- - -Ê ˆ Ê ˆ
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Ê ˆ-
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Similarly, we have

22

2
2

3 cos 1
1 cos

2

r l l

r r r

q
q

Ê ˆ-Ê ˆ = + + Á ˜Á ˜ Ë ¯Ë ¯

Fig. 2.58 Linear quadrapole of 

Example 2.47
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Thus, from (i), we get

0 1 2

2 22 2

2 2
0

2
2

2
0

2
4

3 cos 1 3 cos 1
1 cos 1 cos 2

4 2 2

(3 cos 1)
4

Q r r
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r r r
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r r rr r

Q l
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q q
q q
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q
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È ˘= + -Í ˙Î ˚
È ˘Ê ˆ Ê ˆ- -

= - + + + + -Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚
È ˘

= -Í ˙Î ˚

2
2

3
0

(3 cos 1)
4

Ql
V

r
q

pe
= -

2.17  MULTIPOLE (OR FAR FIELD) EXPANSION OF 
ELECTRIC POTENTIAL

We will consider an arbitrary local charge distribution with volume 

charge density r in a volume V. It is assumed that the position 

coordinate of the field point is much larger than the position 

coordinate of the source point, i.e., ( )r r>> ¢ . This is shown in 

Fig. 2.59.

Then, the electric potential at point P with position coordinate 

r  is given as,

( ) ( )1 1

4 4 | || |V V

r r
V dV dV

r rR

r r
p e p e

¢ ¢
= =

- ¢Ú Ú (2.53)

Now, using the cosine law

( ) ( )2
2 2 2( ) ( ) 2 cos 1 2 cos 1

r r
R r r r r rr r r

r r
q q e

È ˘¢ ¢= - ¢ = + ¢ - ¢ = + - = +Í ˙
Î ˚

where ( )( )2 cos
r r

r r
e q

¢ ¢= - , since ( )r r>> ¢ , 1e <<

\ ( )
( )( ) ( )( ) ( )( )

( ) ( ) ( )

1/2 2 3

2 3

2 3
2 3

1 1 1 1 3 5
(1 ) 1

2 8 16| |

1 1 3 5
1 2 cos 2 cos 2 cos

2 8 16

1 3 1 5 3
1 (cos ) cos cos cos

2 2 2 2

r rR

r r r r r r

r r r r r r r

r r r

r r r r

e e e e

q q q

q q q q

-= + = - + - + º

È ˘¢ ¢ ¢ ¢ ¢ ¢= - - + - - - + ºÍ ˙
Î ˚
È ˘¢ ¢ ¢Ê ˆ Ê ˆ= + + - + - + ºÍ ˙Ë ¯ Ë ¯Î ˚

Here, the terms in parenthesis can be written in terms of Legendre polynomials as

( )
0

1 1
cos

| |

n

n
n

r
P

r rR
q

=

¢= Â (2.54)

Fig. 2.59 Multiple expansion of 

potential due to a volume 

charge distribution
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Putting this in Eq. (2.53), we get

( )
0

1
0

( )1 1 1
cos ( )

4 4| |

1 1
( ) cos ( )

4

n

n
nV V

n
nn

n V

r r
V dV P r dV

r rr r

r P r dV
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r
qr

p e p e

qr
p e

=

+
=

¢ ¢ ¢= =¢-
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1
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1 1
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4
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nn
n V

V r P r dV
r

qr
p e +

=
¢ ¢= Â Ú (2.56)

This can be written as

( )2 2
2 3

1 1 1 1 3 1
cos ( ) cos

4 2 2
V V V

V dV r dV r dV
r r r

r q r q r
p e

È ˘¢ ¢= + + - + ºÍ ˙
Î ˚

Ú Ú Ú (2.57)

This is the multipole or far field expansion of electric potential of a given charge distribution in terms 

of powers of 
1

.
r

 The first term (n = 0) is called monopole term; the second term (n = 1) is called the 

dipole term and the third term (n = 2) is called the quadrapole term, the fourth term (n = 3) the octopole,

and so on.

2.18 ENERGY STORED IN ELECTROSTATIC FIELDS

Electrostatic energy is the energy necessary to establish a given charge distribution in space.

Energy Stored in a Region with Discrete Charges
In order to determine the energy stored in an assembly of 

charges, we determine the amount of work done by an external 

source to assemble the charges.

We consider a region in space with no charge initially and 

zero field intensity. Point charges are brought from infinity to 

specific points in that space, one by one as shown in Fig. 2.60.

Work done to bring the first charge Q1 from infinity to 

point P1 is

1 0W = [ initially charge-free region]

and the field intensity due to charge Q1 at a distance r  is

1
1 24

r

Q
E a

rpe
=

Work done to bring the second charge Q2 from infinity to the point P2 is

2 2
1 1 2

2 2 2 2 1 2 2
1244

P P

r r

Q Q Q
W Q V Q E dl Q a dra

rra a
pepe

È ˘ È ˘
= = - ◊ = - ◊ =Í ˙ Í ˙

Í ˙ Í ˙Î ˚ Î ˚
Ú Ú

where r12 is the distance between the points P1 and P2.

Fig. 2.60 Assembly of charges
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Similarly, work done to bring the third charge Q3 at point P3 is found as follows.

3 3
1 2

3 1 2
13 234 4

P P
Q Q

V E dl E dl
r r

a a
pe pe

= - ◊ - ◊ = +Ú Ú

\ 1 3 2 3
3 3 3

13 234 4

Q Q Q Q
W Q V

r rpe pe
= = +

Total energy in the system is

1 3 2 31 2
1 2 3

12 13 23

2 3 1 31 2

12 23 13

( ) 0
4 4 4
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4

Q Q Q QQ Q
W W W W

r r r

Q Q Q QQ Q
W

r r r

pe pe pe

pe

= + + = + + +

È ˘= + +Í ˙Î ˚
(2.58)

This is the energy obtained by arbitrarily bringing the charges in the sequence Q1, Q2 and Q3. As energy 

depends on charges and potentials, the energy will be same if we reverse the sequence, i.e., we bring 

Q3 first, then Q2 and then Q1.

In that case, total energy in the system is

3 3 2
3 2 1 2 1 1

32 31 21

2 3 1 31 2

21 32 31

( ) 0
4 4 4

1

4

Q Q Q
W W W W Q Q Q

r r r

Q Q Q QQ Q
W

r r r

pe pe pe

pe

= + + = + + +

È ˘= + +Í ˙Î ˚
(2.59)

Adding Eq. (2.58) and (2.59), we get

3 32 1 1 2
1 2 3

31 21 12 32 13 23

1 1 2 2 3 3

2
4 4 4 4 4 4

Q QQ Q Q Q
W Q Q Q

r r r r r r

Q V Q V Q V

pe pe pe pe pe pe
È ˘ È ˘ È ˘= + + + + +Í ˙ Í ˙ Í ˙Î ˚ Î ˚ Î ˚

= + +

(since the terms in the parentheses are the potentials at the corresponding nodes due to the other charges 

at the other nodes)

\ 1 1 2 2 3 3
1

( )
2

W Q V Q V Q V= + +

Thus, for N point charges located at points P1, P2, …, PN, the electrostatic energy stored in the charge 

system is given as

1

1
(Joule)

2

N

i i
i

W QV
=

= Â (2.60)

Energy Stored in a Region with Continuous Charge Distribution Instead of an assembly 

of point charges, if there were a volume of charge of density r(C/m3), then the electrostatic energy 

stored can be written as

1
[ is an elemental volume and is the potential]

2

1
( ) (using Gauss' law, )

2

r

r

= - -

= — ◊ — ◊ =

Ú

Ú
v

v

W dvV dv V

D Vdv D
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1
( ) ( ) { ( ) ( ) ( )}

2

1 1
{ }

2 2

È ˘= — ◊ - ◊ — — ◊ ∫ — ◊ + ◊ —Î ˚

= ◊ + ◊ = - —

Ú

Ú Ú
v

S v

VD D V dv AB A B B A

VD dS D Edv E V (2.61)

If we go on increasing the volume to trap all the charges, the surface area must shrink to keep the 

energy constant.

Now, E  varies as 
2

1

r
 and V varies as 

1

r
 and surface area as r2. Therefore, 2

3

1
anda aVD S r

r
 and S 

a r2; So, the surface will reduce as 
1

r
 and thus the surface integral will vanish. Hence, the energy stored 

in the charge system is

21 1

2 2
v v

W D Edv E dve= ◊ =Ú Ú (2.62)

From this, we can define electrostatic energy density w (in Joule/m3) as

21 1

2 2

dW
w D E E

dv
e= = ◊ = (2.63)

and the total energy stored in the system is

v

W wdv= Ú (2.64)

 Example 2.48 Four point charges Q1 = 1 nC, Q2 = –2 nC, Q3 = 3 nC and Q4 = –4 nC are located 

at (0, 0, 0), (1, 0, 0), (0, 0, -1) and (0, 0, 1), respectively. Find the energy in the system.

Solution The energy in the system is given as

1 1 2 2 3 3 4 4

3 31 2 4 2 1 4

0 0 0 0 0 0

3 31 2 4 4 1 2

0 0 0 00 0

1 2 1 3 1
0

1
( )

2

2 4 (1) 4 (1) 4 (1) 2 4 (1) 4 ( 2) 4 ( 2)

2 4 (1) 4 (2) 2 4 (1) 4 (2)4 ( 2) 4 ( 2)

1

4

W Q V Q V Q V Q V

Q QQ Q Q Q Q Q

Q QQ Q Q Q Q Q

Q Q Q Q Q Q

pe pe pe pe pe pe

pe pe pe pepe pe

pe

= + + +

È ˘ È ˘
= + + + + +Í ˙ Í ˙

Î ˚ Î ˚
È ˘È ˘

+ + + + + +Í ˙Í ˙
Î ˚ Î ˚

= + + 2 3 3 42 4
4 22 2

6 8
9 2 3 4 6

2 2

68.272 nJ

Q Q Q QQ QÈ ˘
+ + +Í ˙

Î ˚
-È ˘= - + - + + -Í ˙

Î ˚
= -

 Example 2.49 Calculate the energy of a sphere of charge of radius R in which the charge is 

uniformly distributed.

Solution The energy stored is the work done in bringing charges from infinity to the sphere. We 

imagine that the sphere is formed by assembly of various thin shells of charge.

We consider a small sphere of charge of radius r. Let r be the charge density.
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\ Total charge on the sphere 34

3
rp r=

Suppose a small layer of charge dq in the form of thin shell of thickness dr is deposited on the sphere.

\ 24dq r drr p=

\ Work done in bringing this charge from infinity is

3
2

2 4

0 0

4
41 3potential at ( 4 )

4 3

r
dW r dq r dr r dr

r

p r pr
r p

pe e

Ê ˆ
Á ˜= ¥ = =Á ˜Ë ¯

\ Total energy required to assemble charges so as to build up a sphere of radius R is

2 2
4 5

0 00

4 4

3 15

R

W r dr R
pr pr
e e

= =Ú

 Example 2.50 A charge distribution with spherical symmetry has the density

0 , 0

0,

r R

r R

r r= £ £
= >

Determine the potential V everywhere and the energy stored in the region, r < R.

Solution From Examples 2.30 and 2.36, the potential and field inside the sphere (r < R) are given as

2 20 0

0 0

(3 ) and
6 3 r

r
V a r E a

r r

e e
= - =

\ Energy stored in the system is given as

2 22
2 2 20 0

0 0
0 0 0 0 0

22 5
50

0 00

1 1 1
sin

2 2 3 2 9

2
4

18 5 45

R

v v r

R

r
W E dv dv r r d d dr

r
R

p p

q f

r r
e e q f q

e e

prr
p

e e

= = =

Ê ˆ= = =Á ˜Ë ¯

= ¥ ¥ =

Ú Ú Ú Ú Ú

\
2

50

0

2

45
W R

pr

e
=

 Example 2.51 A charge Q is placed on a spherical conductor of radius R. Calculate the 

electrostatic energy density at a distance r (> R) from the centre of the sphere. Hence, find the 

electrostatic energy of the system.

Solution Electric field at a distance r (> R) is, 
2

04

Q
E

rpe
=

\ Energy stored in the system is given as

2 22
2 2

0 0 2 2 4
0 0 0 0 0

2 2 2

2 2
0 00

1 1 1
sin

2 2 4 32

1
4

8 832

R

v v r

RR

Q Q
W E dv dv r d d dr

r r

Q Q Qdr

r Rr

p p

q f

e e q f q
pe p e

p
pe pep e

= = =

Ê ˆ= = =Á ˜Ë ¯

È ˘= ¥ = - =Í ˙Î ˚

Ú Ú Ú Ú Ú

Ú
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\
2

08

Q
W

Rpe
=

2.19 POISSON’S AND LAPLACE’S EQUATIONS

In the earlier sections, we have determined the electric field E  in a region using Coulomb’s law or 

Gauss’ law when the charge distribution is specified in the region or using the relation E V= -—
when the potential V is specified throughout the region. However, in practical cases, neither the charge 

distribution nor the potential distribution is specified, and the electrostatic conditions (charge and 

potential) are specified only at some boundaries. These types of problems are known as electrostatic 

boundary value problems. For these types of problems, the field E  and the potential V are determined 

by using Poisson’s equation or Laplace’s equation.

For a linear, homogeneous material medium, Poisson’s and Laplace’s equations can easily be 

derived from Gauss’ law.

D r— ◊ =

or Ee r— ◊ =

or E
r
e

— ◊ =

or ( ) ( )V E V
r
e

— ◊ -— = = -—

or 2V
r
e

— = -

2V
r
e

— = - (2.65)

This equation is known as Poisson’s equation which states that the potential distribution in a region 

depends on the local charge distribution.

In many boundary value problems, the charge distribution is involved on the surface of the 

conductors; for which the free volume charge density is zero, i.e., r = 0. In that case, Poisson’s equation 

reduces to

2 0V— = (2.66)

This equation is known as Laplace’s equation.

Substituting the Laplacian operator —2 as discussed in Chapter 1, the Laplace’s equation in three 

different coordinate systems becomes

2 2 2

2 2 2
0 in Cartesian coordinates

V V V

x y z

∂ ∂ ∂+ + =
∂ ∂ ∂

( ) 2 2

2 2 2

1 1
0 in cylindrical coordinates

V V V
r

r r r r zf

∂ ∂ ∂ ∂+ + =
∂ ∂ ∂ ∂

(2.67)

( ) 2
2

2 2 2 2 2

1 1 1
sin 0 in spherical coordinates

sin sin

V V V
r q

r r q qr r q r q f

∂ ∂ ∂ ∂ ∂Ê ˆ + + =Á ˜∂ ∂ ∂ ∂Ë ¯ ∂
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Respective Poisson’s equations can be written from Eq. (2.67) by replacing zero on the right hand 

side by .
r
e

-

 Example 2.52 Find whether the potential functions in a region of free space satisfy the Laplace’s 

equation:

(a) 5 cos (13 )sinh(12 ),xV e y z-=   (b)
cosz

V
r

f
=   (c)

2

30
cosV q

r
=

Solution

(a) 5 cos (13 )sinh(12 )xV e y z-=

\ 55 cos (13 )sinh(12 )xV
e y z

x
-∂ = -

∂

\
2

2 5

2
( 5) cos (13 )sinh(12 ) 25-∂ = - =

∂
xV

e y z V
x

(i)

\ 513 sin (13 )sinh(12 )xV
e y z

y
-∂ = -

∂

\
2

5

2
( 13 13) cos (13 )sinh(12 ) 169-∂ = - ¥ = -

∂
xV

e y z V
y

(ii)

\ 512 cos (13 )cosh(12 )xV
e y z

z
-∂ =

∂

\
2

2 5

2
(12) cos (13 )sinh(12 ) 144-∂ = =

∂
xV

e y z V
y

(iii)

Adding (i), (ii), and (iii), we get

2 2 2

2 2 2
(25 169 144) 0

∂ ∂ ∂+ + = - + =
∂ ∂ ∂

V V V
V

x y z

\ 2 0V— =

Hence, this potential function satisfies Laplace’s equation.

(b)
cosz

V
r

f
=

2

cos cosz zV V
r

r r rr

f f∂ ∂= - fi = -
∂ ∂

\ ( ) 2

cos cosz zV
r

r r r r r

f fÊ ˆ∂ ∂ ∂= - =Ë ¯∂ ∂ ∂

\ ( ) 3 2

cos1 1f∂ ∂ = =
∂ ∂

zV
r V

r r r r r
(i)

sinzV

r

f
f

∂ = -
∂
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\
2

2

coszV

r

f

f

∂ = -
∂

\
2

2 2 2 2

cos1 1 1f

f

∂ = - = -
∂

zV
V

rr r r
(ii)

cosV

z r

f∂ =
∂

\
2

2
0

V

z

∂ =
∂

(iii)

Adding (i), (ii), and (iii), we get

( ) 2 2

2 2 2 2 2

1 1 1 1
0 0

V V V
r V V

r r r r z r rf

∂ ∂ ∂ ∂+ + = - + + =
∂ ∂ ∂ ∂

\ —2V = 0

Hence, this potential function satisfies Laplace’s equation.

(c)
2

30
cosV q

r
=

2
3

2 30 60
cos cos

V V
q r q

r r rr

¥∂ ∂= - fi = -
∂ ∂

\ 2
2

60
cos

V
r q

r r r

∂ ∂Ê ˆ =Á ˜∂ ∂Ë ¯

\ 2
2 4 2

1 60 2
cos

V
V

r
r q

rr r r

∂ ∂Ê ˆ = =Á ˜∂ ∂Ë ¯
(i)

2
2 2

30 30
sin sin sin

V V
q q q

q qr r

∂ ∂= - = -
∂ ∂

\ ( ) 2 2

30 60
sin 2 sin cos sin cos

V
q q q q q

q q r r

∂ ∂ = - ¥ = -
∂ ∂

\ ( )2 4 2

1 60 2
sin cos

sin

V
Vq q

q qr q r r

∂ ∂ = - = -
∂ ∂

(ii)

0
V

f
∂ =
∂

\
2

2
0

V

f

∂ =
∂

(iii)

Adding (i), (ii), and (iii), we get

( ) 2
2

2 2 2 2 2

1 1 2 2
sin 0 0

sin

V V V
V V

r
r q

r q qr r q f r r

∂ ∂ ∂ ∂ ∂Ê ˆ + + = - + =Á ˜∂ ∂ ∂ ∂Ë ¯ ∂

\ 2 0V— =

Hence, this potential function satisfies Laplace’s equation.
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2.20 UNIQUENESS THEOREM

Statement This theorem states that any solution of Laplace equation (or Poisson’s equation) that 

satisfies the same boundary conditions must be the only solution, irrespective of the method of solution.

Proof The proof of this theorem follows a proof by contradiction.

Consider a volume v bounded by some surface S. Suppose we are given the charge density r
throughout the volume, and the value of the scalar potential V on the surface. Suppose, for the sake 

of argument, that the solution of Laplace’s (or Poisson’s) equation is not unique. Let there be two 

potentials V1 and V2 and which satisfy the boundary conditions.

Thus,

2 2
1 2and throughout , andV V v

r r
e e

— = - — = -

1 2 on .SV V V S= =

\ 2
1 2( ) 0V V— - = (2.68)

and 1 2( ) 0S SV V- = (2.69)

According to vector identity for any scalar A and any vector B

( ) ( ) ( )AB A B B A— ◊ ∫ — ◊ + ◊ —

Let, A = (V1 – V2) and 1 2( )B V V= — -

Thus,

1 2 1 2 1 2 1 2 1 2 1 2
2 2

1 2 1 2 1 2

[( ) ( )] ( )[ ( )] ( ) ( )

( ) ( ) [ ( )]

V V V V V V V V V V V V

V V V V V V

— ◊ - — - = - — ◊ — - + — - ◊ — -
= - — - + — -

Integrating throughout the volume enclosed by the surface, we get

2 2
1 2 1 2 1 2 1 2 1 2[( ) ( )] ( ) ( ) [ ( )]

v v v

V V V V dv V V V V dv V V dv— ◊ - — - = - — - + — -Ú Ú Ú (2.70)

Applying divergence theorem to the left-hand side of Eq. (2.70), we get

1 2 1 2 1 2 1 2[( ) ( )] [( ) ( )] 0 {using Eq. (2.69)}— ◊ - — - = - — - ◊ =Ú Ú S S S S
v S

V V V V dv V V V V dS

Also, in the right-hand side of Eq. (2.70), —2(V1 – V2) using Eq. (2.68).

Thus, Eq. (2.70) reduces to

2
1 2[ ( )] 0

v

V V dv— - =Ú

Here, the quantity [—(V1 – V2)]
2 is always positive. The only way in which the volume integral of 

a positive definite quantity can be zero is if that quantity itself is zero throughout the volume. This 

is not necessarily the case for a non-positive definite quantity: we could have positive and negative 

contributions from various regions inside the volume which cancel one, hence, the integrand must be 

zero everywhere, so that the integral may be zero.

\ 2
1 2 1 2 1 2[ ( )] 0 ( ) 0 ( ) constant ( )V V V V V V k— - = fi — - = fi - =
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Now, applying the boundary condition that on the surface

1 2 1 2( ) ( ) 0S SV V V V- = - =

\ 1 2V V=

Hence, our initial assumption that V1 and V2 are two different solutions of Poisson’s equation, satisfying 

the same boundary conditions, turns out to be incorrect.

The fact that the solutions to Poisson’s equation are unique is very useful.

2.21  GENERAL PROCEDURE FOR SOLVING POISSON’S 
AND LAPLACE’S EQUATIONS

The following procedure may be followed for solving a boundary value problem, using Poisson’s or 

Laplace’s equation.

1. The equation is solved using either

— direct integration when V is a function of one variable.

— separation of variables if V is a function of more than one variable.

2. The unknown integration constants are found by applying the boundary conditions; so that the 

solution becomes unique.

3. Having obtained V, the field is obtained from the relation: .E V= -—
4. The charge induced on a conductor is obtained from the relation: ;

S

Q dSs= Ú  where s is the 

induced surface charge density, s = Dn = eEn; where En is the normal component of the field.

5. The capacitance between two conductors is obtained from the relation: 
Q

C
V

= .

2.21.1 Solution of Laplace Equations in Cartesian Coordinates

Parallel Plate Electrode System

 Example 2.53 The region between two conducting plates at x = 0 and x = d is filled with perfect 

dielectric of uniform permittivity e. If the plate at x = d is maintained at a voltage V0 and at x = 0 is 

grounded, find the potential distribution between the plates.

Solution Here, the space between the plates is filled with perfect dielectric material and there is no 

variation in the y and z direction. So, the problem is one-dimensional.

By Laplace’s equation in Cartesian coordinates

2 2 2

2 2 2
0

V V V

x y z

∂ ∂ ∂+ + =
∂ ∂ ∂

As
2 2

2 2
0

∂ ∂= =
∂ ∂

V V

y z
, and V varies with x only the partial derivative becomes ordinary derivative.

\
2

2
0=d V

dx

Integrating twice, we get

V = Ax + B
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Applying boundary conditions:

(1) At x = 0, V = 0,

  \ B = 0

(2) At x = d, V = V0,

  \ 0V
A

d
=

Hence, the potential distribution between the parallel-plate electrode system is given as

0V
V x

d

Ê ˆ= Ë ¯ (2.71)

 Example 2.54 Two parallel planes of infinite extent in the x and y directions and separated by 

a distance d in the z-direction have a potential difference applied between them. The upper plane has a 

potential V1 and the lower one has a potential V0 (V1 > V0).

(a) By using Laplace’s equation, find the potential distribution and electric field strength in the 

region between the planes.

(b) What will be the potential at z (0 £ z £ d) if the space between the planes is filled with electric 

charge of volume density 0
z

d
r r= . Also, obtain the surface charge density on each plane.

Solution
(a) The planes being infinite, the potential V is a function of z only. Hence, Laplace’s equation can be 

written as

2

2
0

d V

dz
=

Integrating twice

1 2V C z C= +

where C1 and C2 are constants.

Applying boundary conditions, we get

0 2 0

1 0
1 1

At 0,

At ,

z V V C V

V V
z d V V C

d

= = fi =
-

= = fi =

Therefore, the potential is given as

1 0
0

V V
V z V

d

-Ê ˆ= +Ë ¯

Hence, the field intensity is given as

0 1V VdV
E

dz d

-Ê ˆ= - = Ë ¯

(b) If the volume charge density r is present, then by Poisson’s equation

2
0

2

zd V

ddz

rr
e e

= - = -
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Integrating twice
3

0
1 22 3

z
V C z C

d

r

e
= - + +

where C1 and C2 are constants.

Applying boundary conditions, we get

0 2 0

30 1 0 0
1 1 1 2 1

At 0,

At ,
6 6

z V V C V

V V d
z d V V V d C d C C

d d

r r

e e

= = fi =
-

= = fi = - + + fi = +

Therefore, the potential is given as

30 1 0 0
06 6

V V d
V z z V

d d

r r

e e

-Ê ˆ= - + + +Ë ¯

Hence, the field intensity is given as

20 1 0 0

2 6

V V ddV
E z

dz d d

r r

e e

-Ê ˆ= - = - +Ë ¯

The surface charge density on each plane is

1 0 0
0 0| |

6z z

V V d
E

d

r
s e e

e= =
-Ê ˆ= = - +Ë ¯

0 1 0 0 0 1 0| |
2 6 3z d z d

d V V d d V V
E

d d

r r r
s e e e

e= =
- -Ê ˆ Ê ˆ= = - + = -Ë ¯ Ë ¯

2.21.2 Solution of Laplace Equations in Cylindrical Coordinates

Potential of Coaxial Cable

*Example 2.55 Using Laplace’s equation, find the potential 

distribution within a coaxial cable of length ‘L’, having an inner conductor 

of radius ‘a’ and a outer conductor of radius ‘b’, if potential of ‘V0’ is 

applied at the inner conductor with reference to outer conductor. Also, 

determine E .

Solution Since the medium between the concentric cables is filled 

with perfect dielectric, we use Laplace’s equation

—2V = 0

In cylindrical coordinates

( ) 2 2

2 2 2

1 1
0

V V V
r

r r r r zf

∂ ∂ ∂ ∂+ + =
∂ ∂ ∂ ∂

Since the potential variation is only in the radial direction, the equation reduces to

( )1
0

V
r

r r r

∂ ∂ =
∂ ∂

Fig. 2.61 Coaxial cable
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or ( ) 0
V

r
r r

∂ ∂ =
∂ ∂

Integrating

V
r A

r

∂ =
∂

or
V A

r r

∂ =
∂

Integrating

lnV A r B= +

Applying boundary conditions:

(1) At r = a, V = V0,

  \ V0 = A ln a + B

(2) At r = b, V = 0,

  \ 0 = A ln b + B

Solving 0

ln( / )

V
A

a b
= and 0 ln

ln
ln( / )

V b
B A b

a b
= - = -

Hence, the potential distribution for the co-axial cable is given as

0 0 0ln ln ln( / )

ln( / ) ln( / ) ln( / )

V r V b V r b
V

a b a b a b
= - =

( )0 ln
ln( / )

V r
V

a b b
= (2.72a)

Now, the field intensity is given as

1
r z

V V V
E V a a a

r r zff
∂ ∂ ∂Ê ˆ= -— = - + +Á ˜∂ ∂ ∂Ë ¯

Here, as the potential is a function of only r, the field intensity is given as

( )0 0 01
ln

ln( / ) ln( / ) ln( / )r r r r

V V VV r b
E V a a a a

r a b r b a b r b r b a

È ˘∂ ∂= -— = - = - = - ¥ ¥ =Í ˙∂ ∂ Î ˚

0

ln( / ) r

V
E a

r b a
= (2.72b)

*Example 2.56 In cylindrical coordinates two (f = constant) 

planes are insulated along z-axis. Neglect fringing and calculate the 

expression for V and E  between the planes assuming that V = 100 

Volt for f = a and V = 0 at f = 0 as shown in Fig. 2.62.

Solution Since the medium between the concentric cables is 

filled with perfect dielectric, we use Laplace’s equation

2 0V— = Fig. 2.62 Arrangement of 

Example 2.56
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In cylindrical coordinates

( ) 2 2

2 2 2

1 1
0

V V V
r

r r r r zf

∂ ∂ ∂ ∂+ + =
∂ ∂ ∂ ∂

Since the potential is constant with respect to r and z

2

2 2

1
0

V

r f

∂ =
∂

or
2

2
0

V

f

∂ =
∂

Integrating

V
A

f
∂ =
∂

Integrating

V A Bf= +

Applying boundary conditions:

(1) At f = a, V = 100,

  \ 100 = Aa + B

(2) At f = 0, V = 0

  \ 0 = B

Solving,
100

A
a

= and B = 0

Hence, the potential distribution for the coaxial cable is given as

100
VoltV f

a
=

100
V f

a
=

Now, the field intensity is given as

1 V
E V a

r ff
∂= -— = -
∂

Here, as the potential is a function of only r, the field intensity is given as

( )1 1 100 100 1V
E V a a a

r r rf f ff
f f a a

∂ ∂ È ˘= -— = - = - = -Í ˙∂ ∂ Î ˚

( )100 1
E a

r fa
= -

 Example 2.57 Find the potential and electric field intensity for the region between two 

concentric right circular cylinders, where V = 0 at ra = 1 mm and V = 100 V at rb = 20 mm. Neglect 

fringing.
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Solution Since, V varies with r only, Laplace’s equation can be written as

( )1
0

d dV
r

r dr dr
=

Integrating twice

lnV A r B= +

where A and B are constants.

Applying boundary conditions, we get

At 0.001, 0 0 ln(0.001)

At 0.02, 100 100 ln(0.02)
a

b

r r V A B

r r V A B

= = = fi = +
= = = fi = +

Solving, A = 33.36 and B = 230.49

\ (33.36 ln 230.49) VoltV r= +

Hence, the field intensity is given as

33.36
V/mr r

V
E V a a

r r

∂= -— = - = -
∂

2.21.3 Solution of Laplace Equations in Spherical Coordinates

Potential of Spherical Shell Electrode System

*Example 2.58 Develop expressions for the potential difference and field intensity at any point 

between spherical shells in terms of the applied potential. Given: V = V0; at r = a and V = 0, at r = b

(a < b). Hence, find E .

Solution By Laplace’s equation in spherical coordinates

( ) ( ) 2
2

2 2 2 2 2

1 1 1
sin 0

sin sin

V V V
r

r rr r r
q

q qq q f

∂ ∂ ∂ ∂ ∂+ + =
∂ ∂ ∂ ∂ ∂

By symmetry of the problem, the field and, therefore, the potential function depends on the radial 

distance ‘r’ only.

( )2
2

1
0

V
r

r rr

∂ ∂ =
∂ ∂

or ( )2 0
V

r
r r

∂ ∂ =
∂ ∂

Integrating

2

V A

r r

∂ =
∂

Integrating once

A
V B

r
= - +
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Applying boundary conditions:

(1) At r = a, V = V0,

  \ 0
A

V B
a

= - +

(2) At r = b, V = 0,

  \ 0
A

B
b

= - +

Solving, 0V ab
A

a b
=

-
and 0V a

B
a b

=
-

Hence, the potential distribution for the spherical shell is given as

( )0 0 0 01 1 1V ab V a V ab V a b r
V

a b r a b a b r b r b a

-Ê ˆ Ê ˆ= - + = - =Á ˜ Á ˜- - - -Ë ¯ Ë ¯

0V a b r
V

r b a

-Ê ˆ= Á ˜-Ë ¯
(2.73a)

Here, as the potential is a function of only r, the field intensity is given as

( )0 0
2

1 1 1
r r r

V ab V abV
E V a a a

r b a r r b a b r

Ê ˆÈ ˘∂ ∂= -— = - = - = Á ˜Í ˙∂ - ∂ -Ë ¯Î ˚

0
2

1
r

V ab
E a

a b r

Ê ˆ= Á ˜-Ë ¯
(2.73b)

*Example 2.59 Region between the two coaxial cones is shown 

in Fig. 2.63. A potential V1 exists at q1 and V = 0 at q2. The cone vertices 

are insulated at r = 0. Solve Laplace’s equation to obtain potential at a 

cone at any angle q.

Solution Since, V varies with q only, Laplace’s equation can be 

written as

( )2

1
sin 0

sin

d dV

d dr
q

q qq
=

Integrating

sin cos ecq q
q q

= fi =dV dV
A A

d d

Integrating once again

2
ln(tan )V A Bq= +

where A and B are constants.

Applying boundary conditions, we get

( )
( )

1

2

1 1 1 2

2 2

At , , ln tan

At , 0, 0 ln tan

V V V A B

V A B

q

q

q q

q q

= = fi = +

= = fi = +

Fig. 2.63 Coaxial cones of 

Example 2.59
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Solving for A and B

1

1 2

2

2
1

1 2

ln tan ln tan
2 2

ln tan
2

ln tan
2

ln tan ln tan
2 2

V
A

B A V

q q

q
q

q q

=
Ê ˆ Ê ˆ-Ë ¯ Ë ¯

Ê ˆ
Ë ¯Ê ˆ= - = -Ë ¯ Ê ˆ Ê ˆ-Ë ¯ Ë ¯

Substituting the values of A and B and rearranging, we get

( ) 2

1
1 2

ln tan ln tan
2 2

ln tan ln tan
2 2

V V

qq

q q

Ê ˆ- Ë ¯
=

Ê ˆ Ê ˆ-Ë ¯ Ë ¯

 Example 2.60 Two coaxial cones are insulated from each other at their vertices. Axes are along 

the z-axis. In spherical coordinates, the cones are presented by q1 = 10° and q2 = 45°. The inner 

cone is at potential of 100 V and the potential of the outer cone is 0 V. Determine the potential for 

q = 30°.

Solution From Example 2.57, substituting the values, V1 = 100, q1 = 10°, q2 = 45°, q = 30° we get 

the potential given as

2
1

1 2

ln(tan /2) ln(tan /2) ln(tan 15 ) ln(tan 22.5 )
100 28.01 V

ln(tan /2) ln(tan /2) ln(tan 5 ) ln(tan 22.5 )
V V

q q

q q

- ∞ - ∞Ï ¸ Ï ¸= = =Ì ˝ Ì ˝- ∞ - ∞Ó ˛Ó ˛

2.22 CAPACITOR AND CAPACITANCE

Capacitor: A capacitor is a device that stores elec-

tric charge and hence electrostatic energy. It con-

sists of two conductors separated by an insulating 

medium.

Depending upon the shape and size of the conductors 

and insulating medium, capacitors are available in 

varying in shape and size, but the basic configuration 

is two conductors carrying equal but opposite charges 

(Fig. 2.64). 

When the capacitor is uncharged, the charge on any 

one of the conductors is zero. During the charging process, a charge Q is moved from one conductor 

to the other, giving one conductor a charge +Q, and the other one a charge -Q. Thus, a potential 

difference DV is created, with the positively charged conductor at a higher potential than the negatively 

charged conductor. This must be remembered that whether charged or uncharged, the net charge on the 

capacitor as a whole is zero.

Experiments show that the amount of charge Q stored in a capacitor is linearly proportional to the 

electric potential difference between the conductors, DV. Thus, we may write

Fig. 2.64 Basic configuration of a capacitor
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| |
| |

Q
Q C V C

V
= D fi =

D

where C is a positive proportionality constant called capacitance. Physically, capacitance is a measure 

of the capacity of storing electric charge for a given potential difference DV.

Capacitance: The capacitance of a capacitor is the ratio of the magnitude of charge on one conductor 

to the potential difference between the conductors.

S

l

E dS
Q

C
V E dl

e ◊
= =

◊

Ú

Ú (2.74)

The SI unit of capacitance is the farad (F):

1F = 1 farad = 1 coulomb/volt = 1 C/V

The dimension of capacitance in terms of M, L, T and I is L, T and I 

is [M–1L–2T4I2].

Figure 2.65 (a) shows the symbol which is used to represent 

capacitors in circuits. For a polarised fixed capacitor which has a 

definite polarity, Fig. 2.65 (b) is sometimes used.

Energy stored in Capacitors The energy stored in a capacitor is equal to the work done to 

charge it. Consider a capacitance C, holding a charge +q q on the other. Moving a 

small element of charge dq from one plate to the other against the potential difference V = q/C requires 

the work dW:

q
dW dq

C
=

where W is the work in Joule

q is the charge in Coulomb

C is the capacitance in Farad

We can find the energy stored in a capacitance by integrating this equation. Starting with an uncharged 

capacitance (q = 0), the work done, in moving charge from one plate to the other until the plates have 

charge +Q and -Q respectively, is given as

2
2

charging stored
0

1 1

2 2

Q
q Q

W dq CV W
C C

= = = =Ú

2
stored

1

2
W CV= (2.75)

where W is the energy in Joule

C is the capacitance in Farad

V is the voltage in Volt

Fig. 2.65 Symbol of capacitor
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General Procedure for Calculating Capacitance of Capacitor

1. A suitable coordinate system is chosen.

2. We assume that the two conductors carry charges +Q and -Q.

3. The field intensity E  is calculated using either Gauss’ law or Coulomb’s law.

4. The potential difference between the two conductors is calculated using the relation, .= ◊Ú
l

V E dl

5. Finally, the value of the capacitance is obtained from the relation, .= Q
C

V

We will now compute the capacitance in some systems with simple geometry.

2.22.1 Parallel Plate Capacitor

 Example 2.61 Determine the capacitance of a parallel plate capacitor with plate separation d

and area A.

Fig. 2.66 (a) Parallel plate capacitor, and (b) Electric field line for parallel plate capacitor

Solution We shall consider two metallic plates of equal area A separated by a distance d, as shown 

in Fig. 2.66 (a). The charge on the top plate is +Q while the charge on the bottom plate is –Q, both 

distributed uniformly on the plates.

Question: What do you mean by the edge effects and fringing effects?

Answer: In order to determine the capacitance C of parallel plate capacitor, the knowledge of the 

electric field between the plates is necessary. For an ideal capacitor, the plate separation d is very 

small compared with the dimensions of the plate. However, a real capacitor is finite in size. Thus, 

the electric field lines at the edge of the plates are not straight lines, and the field is not contained 

entirely between the plates. This is known as edge effects, and the non-uniform fields near the edge 

are called the fringing fields. In Fig. 2.41 (b), the field lines are drawn by taking into consideration 

these edge effects.

Neglecting the edge effects and fringing effects, assuming an ideal situation, where field lines between 

the plates are straight lines, the electric field is calculated using Gauss’ law as

enc

S

Q
E dS

e
◊ =Ú

By choosing a Gaussian “pillbox” with surface area A to enclose the charge on the positive plate (see 

Fig. 2.66), the electric field in the region between the plates is given as

( )z z

Q
E a a

A

s
e e

= - = -
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The potential difference between the plates is

0

( )
d

z z

Q Qd
V V V E dl a dza

A Ae e

+

+ -
-

Ê ˆ= - = - ◊ = - - ◊ =Ë ¯Ú Ú

From the definition of capacitance, we have

Q A
C

V d

e= = (2.76)

NOTE:

The capacitance C depends only on the geometric factors A and d. The capacitance C is directly 

proportional to the area A since for a given potential difference V, a bigger plate can hold more 

charge. On the other hand, C is inversely proportional to d, the distance of separation, because the 

smaller the value of d, the smaller the potential difference V for a fixed Q.

 Example 2.62 The permittivity of the dielectric material between the plates of a parallel plate 

capacitor varies uniformly from e1 at one plate to e2 at the other plate. Show that the capacitance is 

given by

2 1

2 1ln( / )

A
C

D

e e

e e

-
=

where A and D are the area of each plate and separation between the plates, respectively. Arrive at the 

value of C for e1 = e2.

Solution Let, at a distance x from the plate of dielectric constant e1, the permittivity be

1 kxe e= +

Now, at x = D, the permittivity is e2

\ 2 1k
D

e e-
=

\ 2 1
1 x

D

e e
e e

-Ê ˆ= + Ë ¯

Fig. 2.67 Gaussian surface for calculating the electric field between the plates
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\ Field intensity at a distance x from the plate of permittivity e1

2 1
1

( ) , surface charge density on plate1= = =

=
-Ê ˆ+ Ë ¯

D
E x

x
D

s
s

e e
s

e e
e

\ Potential difference between the plates is

2 1
1

2 1 02 10 0
1

2

2 1 1

2

2 1 1

1
( ) ln

( )

ln
( )

ln { }
( )

x DD D

x

D
V E x dx dx x

D
x

D

AD

A

QD
Q A

A

e es
s e

e ee e
e

es
e e e

e
s

e e e

=

=

È ˘-Ê ˆ= = = +Í ˙Ë ¯-- Î ˚Ê ˆ+ Ë ¯
Ê ˆ= Á ˜- Ë ¯
Ê ˆ= =Á ˜- Ë ¯

Ú Ú

So, the capacitance of the parallel plate capacitor is

2 1

2

1

ln

Q A
C

V D

e e

e
e

-
= =

Ê ˆ
Á ˜Ë ¯

 Example 2.63 The region between two conducting plates at x = 0 and x = d is filled with perfect 

dielectric of non-uniform permittivity

( )
0

1
2
x

d

e
e =

-

If the plate at x = d is maintained at a voltage V0 and at x = 0 is grounded, find:

(a) The potential between the plates;

(b) The field intensity;

(c) Surface charge density, s at x = 0, d;

(d) Capacitance per unit area for the plates.

Solution We know that, E V= -—  and ( ) ( ) ( )D E V Vr e e e= — ◊ = — ◊ = — ◊ -— = -— ◊ —
Using the identity, for a scalar S and a vector V ,

( )SV S V V S— ◊ = — ◊ + ◊ —
Here,

( )E E Ee e e— ◊ = — ◊ + ◊ —

or ( ) ( )V Ve e r— ◊ -— + -— ◊ — =

or 2V Ve e r— + — ◊ — = -

For a charge free region, r = 0, so that

2 0V Ve e— + — ◊ — =
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Considering the variation of e and V only with respect to x, the equation becomes

( )( )2

2
0

V V

x xx

e
e

∂ ∂ ∂+ =
∂ ∂∂

or ( ) 0
d dV

dx dx
e =

Integrating, we get

V
A

x
e

∂ =
∂

or

( )
0 0

1
2

1
2

V A A A x

x d

x

d

e e e
∂ È ˘= = = -Í ˙∂ Î ˚

-

Integrating again, we get

2 2

0 0 0

( )
4 4

A Ax A x
V x x B x B

d de e e

Ê ˆ
= - + = - +Á ˜Ë ¯

Applying the boundary conditions:

(1) At x = 0, V = 0,

  0 = 0 – 0 + B fi B = 0

(2) At x = d, V = V0,

2
0 0

0
0 0

3 4

4 4 3

e

e e

Ê ˆ
= - = fi =Á ˜Ë ¯

VA d Ad
V d A

d d

(a) So the potential is given as

2
04

( )
3 4

V x
V x x

d d

Ê ˆ
= -Á ˜Ë ¯

(b) The field intensity is

( )04
1

3 2x x

VdV x
E V a a

dx d d
= -— = - = - -

(c) Flux density, 

( ) ( ){ }0 0 0 04 4
1

3 2 3
1

2

x x

V Vx
D E a a

d d dx

d

e e
e e= = = ¥ - - = -

-

So the surface charge densities are

0 0
0

4
| | | |

3x x d

V

d

e
s s= == =

(d) Charge on either plate per unit area is

0 04

3

VQ

A d

e
=

Thus, capacitance per unit area is given as

0

0

4/

3

Q AC

A V d

e
= =
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 Example 2.64 The plates of a capacitor are squares, each 

of side length l, as shown in Fig. 2.68. The plates are inclined to 

each other at an angle a. The smallest distance between the plates 

is a. Calculate the capacitance when a is small.

Solution We will consider an elemental strip of the capacitor 

of thickness dx at a distance x from the edge.

\ Plate separation of the strip is

tan ( ) { }d a x a xa a a= + = + <<

\ Capacitance of this strip is, 0ldx
dC

a x

e

a
=

+
So, the capacitance of the complete capacitor is given as

0

0

l ldx
C dC

a x

e

a
= =

+Ú Ú

Let,
0

( )
x l

a x p dx dp
p a a l

a a
a

+ = \ =
+

\ ( )
( ) ( )

0 0 0 0 0

0

2
0

ln ln 1

1

2

a l a ll

a a

ldx ldp l l la ldp l
C

a x p p a a

l l l

a a

a ae e e e ea a
a a a a a

e a a
a

+ + +Ê ˆ= = = = = +Ë ¯+

È ˘
ª -Í ˙

Î ˚

Ú Ú Ú

Neglecting the higher order terms as, a is small.

\ ( )2
0 1

2

l l
C

a a

e a= -

*Example 2.65 A transmission line consists of a pair of long parallel conductors of radius r with 

a spacing D between centre in a medium of permittivity e. Show that when D is large compared with r,

the capacitance of the pair of conductors per unit length is given approximately by

ln( / )
C

D r

p e
=

Solution We shall consider a line charge distribu-

tion of density l between the two cylindrical conduc-

tors. If the charge on conductor A is positive, it will 

be negative on conductor B by electrostatic induction. 

(Fig. 2.69)

The electric field intensity at point P is due to both 

the charges and is written as

1 1

2 2 ( ) 2
E

x D x x D x

l l l
p e p e p e

È ˘= - = -Í ˙- -Î ˚

Fig. 2.68 Capacitor of Example 2.64

Fig. 2.69 Capacitance between two wire 

transmission lines
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The potential at P is given as

1 1

2

[ln ln( )]
2

[ln( ) ln ln( ) ln( )]
2

ln

D r

r

D r
r

V E dl dx
x D x

x D x

D r r D D r D r

D r

r

l
pe

l
pe
l
pe

l
pe

-

-

È ˘= ◊ = -Í ˙-Î ˚

= + -

= - - + - + - -

-Ê ˆ= Ë ¯

Ú Ú

Hence, the capacitance of the pair of conductors per unit length is given as

) ( )
when

lnln

C D r
V DD r

rr

p e p el= = = >>
-Ê

Ë

\
( )ln

C
D

r

p e
=

2.22.2 Cylindrical or Coaxial Capacitor

 Example 2.66 A solid cylindrical conductor of radius a is surrounded by a coaxial cylindrical 

shell of inner radius b, as shown in Fig. 2.43. The length of both cylinders is L which is assumed to be 

much larger than (b – a), the separation of the cylinders. Calculate the capacitance of the cylindrical 

capacitor.

Solution Since the length of both cylinders is L is assumed to be much larger than (b – a), the 

separation of the cylinders, the edge effects can be neglected.

Let +Q be the charge in the inner cylinder

–Q be the charge in the outer cylindrical shell

We compute the electric field both inside and outside the capacitor. 

Due to the cylindrical symmetry of the system, we choose the Gaussian surface to be a coaxial 

cylinder with length l < L and radius r.

Region r < a:

The charge enclosed is zero, Qenc = 0, since any net charge in a conductor must reside on its surface. 

Therefore, the field is also zero.

\ 0E =

Region a < r < b:

Using Gauss’ law, we have

enc 1
or, (2 ) or,

2
S

Q Q l
E dS E rl l E

L r

l l
p

e e e pe
◊ = = = =Ú

\
2 rE a

r

l
pe

=
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where
Q

L
l =  is the charge per unit length.

Region r > b:

The charge enclosed is zero, Qenc = ll – ll = 0 since the Gaussian surface encloses equal but opposite 

charges from both conductors. Therefore, the field is also zero.

\ 0E =

This is seen that the electric field is non-vanishing only in the region a < r < b.

The potential difference is given by

( )( ) ln
2 2

a

r r
l b

b
V V V E dl a dra

r a

l l
pe pe+ -

Ê ˆ= - = - ◊ = - ◊ =Á ˜Ë ¯Ú Ú

Thus, the capacitance of the coaxial capacitor is given as

2

ln( / )

LQ L
C

V V b a

pel= = = (2.77)

Once again, we see that the capacitance C depends only on the geometrical factors, L, a and b.

 Example 2.67 A capacitance is made of two coaxial 

metallic cylinders of radii r1 and r2 (r1 < r2) and length L (L >> r2).

The region between r1 and r3 1 2( )r r=  is filled with a medium 

of dielectric constant K1 and the remaining region is filled with a 

medium of dielectric constant K2. Find the capacitance of the system 

(Fig. 2.70).

Solution Let, l be the charge per unit length on the outer 

surface of the inner cylinder of radius r1.

In the region, r1 < r < r2 applying Gauss’s law

2
2

rLD L D
r

l
p l

p
= fi =

Now, let, E1 and E2 be the electric field intensities in the two dielectrics of relative permittivities K1

and K2 respectively.

\ 0 1 1 0 2 2D K E K Ee e= =

\ 1 2
0 1 0 2

and
2 2

E E
K r K r

l l
pe pe

= =

Therefore, the potential difference between the cylinders is given as

3 32 2

1 3 1 3

3 2
1 2

0 1 0 2 0 1 1 0 2 3

1 2 2

0 1 1 0 2 1 2

ln ln
2 2 2 2

ln ln
2 2

l l l l
p e p e p e p e

l l
p e p e

Ê ˆ Ê ˆ
= + = + = +Á ˜ Á ˜Ë ¯ Ë ¯

Ê ˆ Ê ˆ
= +Á ˜ Á ˜Ë ¯ Ë ¯

Ú Ú Ú Ú
r rr r

r r r r

r rdr dr
V E dr E dr

K r K r K r K r

r r r

K r K r r

Fig. 2.70 Coaxial cylinders filled 

with two dielectrics
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2 2

0 1 1 0 2 1

2

0 1 1 2

ln ln
2 2

1 1
ln

2

l l
p e p e

l
p e

Ê ˆ Ê ˆ
= +Á ˜ Á ˜Ë ¯ Ë ¯

Ê ˆ È ˘= +Á ˜ Í ˙Ë ¯ Î ˚

r r

K r K r

r

r K K

Hence, the capacitance of the system is given as

0 0 0 1 2

2 1 2 22
1 2

1 1 2 11 1 2

2 4 4

1 1 ln ( ) lnln

L L K K LL
C

V r K K rr K K
r K K rr K K

p e p e p el= = = =
+Ê ˆ Ê ˆ Ê ˆ Ê ˆÈ ˘ ++ Á ˜ Á ˜ Á ˜Á ˜ Ë ¯ Ë ¯ Ë ¯Í ˙Ë ¯ Î ˚

\ 0 1 2

2
1 2

1

4

( ) ln

K K L
C

r
K K

r

p e
=

Ê ˆ+ Á ˜Ë ¯

 Example 2.68 Find the capacitance per unit length between a cylindrical conductor of radius a

and a ground plane parallel to the conductor axis and a distance h from it.

Solution This problem can be solved using the method of images. The grounded conducting plane 

is replaced by an image charge at a distance h inside the ground.

From Example 2.63, the potential between the actual charge and the image charge is 

1

2
ln

h a
V

a

l
pe

-Ê ˆ= Ë ¯

So, the potential between the actual conductor and the ground plane is half this potential, i.e.,

1

21
ln

2 2

h a
V V

a

l
pe

-Ê ˆ= = Ë ¯

So, the capacitance per unit length between the conductor and the ground plane is given as

2

2
ln

C
V h a

a

pel= =
-Ê ˆ

Ë ¯

\ 2

2
ln

C
h a

a

pe
=

-Ê ˆ
Ë ¯

NOTE

If a << h, then, 
2

ln(2 / )
C

h a

pe
= .
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2.22.3 Spherical Capacitor

*Example 2.69 Find the capacitance of a spherical capacitor which consists of two concentric 

spherical shells of radii a and b (a < b), as shown in Fig. 2.71.

Fig. 2.71 (a) spherical capacitor with two concentric spherical shells of radii a and b (b) Gaussian surface for 

calculating the electric field

Solution Let the inner shell have a charge +Q and the outer shell an equal but opposite charge 

–Q, both uniformly distributed over its surface. We want to calculate the capacitance of this spherical 

capacitor.

Similar to a cylindrical capacitor, the electric field is nonvanishing only in the region a < r < b.

Using Gauss’ law, we obtain

2enc
2

or, (4 ) or,
4S

Q Q Q
E dS E r E

r
p

e e pe
◊ = = =Ú

\
24

r

Q
E a

rpe
=

Therefore, the potential difference between the two conducting shells is

( )2 2

1 1
( )

4 4 44

a a

r r
l b b

b aQ Q Q Qdr
V V V E dl a dra

a b abr rpe pe pepe
+ -

-Ê ˆÊ ˆ= - = - ◊ = - ◊ = = - =Á ˜ Ë ¯Ë ¯Ú Ú Ú

Thus, the capacitance of the spherical capacitor is given as

( )
4

4
1 1

Q ab
C

V b a

a b

pe
pe Ê ˆ= = = Á ˜-Ë ¯-

(2.78)

Again, the capacitance C depends only on the physical dimensions, a and b.

Capacitance of an Isolated Charged Sphere

*Example 2.70 Find the capacitance of a conducting sphere of radius R.

Solution For an isolated capacitor, the second conductor is assumed to be placed at infinity. From 

the result of a spherical capacitor, if the outer sphere is infinitely large, we can say the configuration 

as an isolated sphere.
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Therefore, the capacitance of an isolated charged conducting sphere is obtained by putting the limit 

b Æ μ, in Eq. (2.77) as given below.

( )Lim Lim 4 Lim 4 4

1
b b b

ab a
C a

b a a

b

pe pe peÊ ˆ= = =Á ˜-Ë ¯ -

Thus, for a single isolated spherical conductor of radius R, the capacitance is given as

4C Rpe= (2.79)

The above expression can also be obtained by noting that a conducting sphere of radius R with a charge 

Q uniformly distributed over its surface has the potential, 
4

Q
V

Rpe
= , using infinity as the reference 

point having zero potential V( ) = 0; This gives

4
/4

Q Q
C R

V Q R
pe

pe
= = =

As expected, the capacitance of an isolated charged sphere only depends on its geometry, namely, the 

radius R.

 Example 2.71 Derive an expression for the capacitance of a spherical capacitor consisting of 

two concentric spheres of radii a and b, the dielectric medium between the two spheres being air. 

Henceforth, show that the same expression can be written as 0
a bC A A

d

e
= , where Aa and Ab are the 

surface areas of the two spheres with radii a and b respectively and d is their separation distance.

Solution From Example 2.69, the capacitance of the spherical capacitor is given as

04
ab

C
b a

pe Ê ˆ= Á ˜-Ë ¯

Here, separation distance = d

Areas of the spheres are, Aa = 4pa2 and Ab = 4pb2

\ and
4 4

a bA A
a b

p p
= =

Therefore, the capacitance is written as

( ) 0
0 0

1
4 4

4 4
a b

a b

A Aab
C A A

b a d d

e
pe pe

p p
= = ¥ =

-

\ 0
a bC A A

d

e
=

 Example 2.72 A concentric spherical conductor arrangement is shown in Fig. 2.72. If the 

capacitance of the arrangement is 0.1 nF, and a is 10 cm, find b.
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Fig. 2.72 Spherical capacitor of Example 2.72

Solution From Example 2.69, the capacitance of the spherical capacitor is given as

04
ab

C
b a

pe Ê ˆ= Á ˜-Ë ¯

Here,

C = 0.1 ¥ 10–9 F, a = 10 cm

\ 9
9

1 0.1
0.1 10 4

0.136 10

b

b
p

p
- Ê ˆ¥ = ¥ Á ˜-Ë ¯¥

fi b = 11.25 cm

2.23 METHOD OF IMAGES

The method of images, introduced by Lord Kelvin in 1848, is commonly used to determine V, E , D

and s due to charges in the presence of conductors.

The image theory states that a given charge configuration above an infinite grounded perfect 

conducting plane may be replaced by the charge configuration itself, its image, and an equipotential 

surface in place of the conducting plane.

For image theory, two conditions must be satisfied:

1. The image charge(s) must be located in the conducting region.

2. The image charge(s) must be located such that on the conducting surface(s) the potential is zero 

or constant.

Definition of Images: The fictitious charges, placed in the region where the field is not required 

and producing the same field in the desired region as with the actual electrification of the surface, 

are defined as the electrical images.

Suppose we have a conducting surface in the vicinity of one or more point charges. The point charge 

will induce charges on the conducting surface.

Our purpose is to find the potential and field in the space outside the conductor not occupied by the 

charges. In this region, Laplace’s equation is satisfied with suitable boundary conditions.

In the method of images, the actual electrification of the surface is replaced by one or more fictitious 

point charges in the region where the field or potential is not desired. The positions and the magnitudes 
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of these fictitious charges are such that in the desired region, Laplace’s equation is satisfied with the 

same conditions.

For example, the method of images suggests that for a point charge +Q at a point (0, 0, d), an exactly 

equal and opposite charge -Q is assumed to exist at point (0, 0, -d); replacing the conducting plane 

by an equipotential surface with zero potential. Typical examples of point, line and volume charge 

configurations are shown in Fig. 2.73 (a) and their images are shown in Fig. 2.73 (b).

Fig. 2.73 Image systems: (a) charge configurations in the presence of perfectly conducting plane, 

(b) image configurations

By the method of images

Field of an electrical charge Field of its image
(Field of the charge)

in front of a conducting plane in the conducting plane

Ê ˆ Ê ˆ= +Á ˜ Á ˜Ë ¯ Ë ¯

We will consider the following examples using method of images.

2.23.1 Applications of Method of Images

A Point Charge in front of an Infinite Grounded Plane

 Example 2.73 An electrical system consists of a single charge q placed a distance d from an 

infinite earthed conducting plane. Determine

(a) Electric field and potential at any point P(x, y, z);

(b) Electric field acting on the conductor surface;

(c) Surface charge induced;

(d) Force exerted by q on the conductor surface.

Also, draw the lines of force for the system.

Solution The charge and its image configurations are shown in Fig. 2.74.

(a) Potential and field at a point P(x, y, z): The image charge -q is placed at a distance d in the 

conducting region and the conducting grounded plane is replaced by an equipotential surface of zero 

potential.

For the charge q at (0, 0, d) and its image q¢ at (0, 0, -d), the potential at any point P(x, y, z) is

2 2 2 2 2 2

1 1
( , , )

4 4( ) ( )

q q
V x y z

x y z d x y z dpe pe

¢
= +

+ + - + + +
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At z = 0, i.e., on the conducting plane, V = 0.

\
2 2 2 2 2 2

1 1
0

4 4

q q

x y d x y dpe pe

¢
= +

+ + + +

\ q¢ = –q

Thus, we see that the magnitude of the image charge is -q.

Hence, the potential at any point P(x, y, z) is

2 2 2 2 2 2

1 1
( , , )

4 ( ) ( )

q
V x y z

x y z d x y z dpe
È ˘= -Í ˙+ + - + + +Î ˚

The electric field at any point P(x, y, z) can be found out by using the relation E V= -—  or may also 

be written as,

2 2 2 3/2 2 2 2 3/2

2 2 2 3/2 2 2 2 3/2

[ ( ) ] [ ( ) ]1 1

4 4[ ( ) ] [ ( ) ]

[ ( ) ] [ ( ) ]
( )

4 [ ( ) ] [ ( ) ]

q xi yj z d k q xi yj z d k
E

x y z d x y z d

xi yj z d k xi yj z d kq
q q

x y z d x y z d

pe pe

pe

¢+ + - + + +
= +

+ + - + + +
Ï ¸+ + - + + + ¢= - = -Ì ˝

+ + - + + +Ô ÔÓ ˛

(b) Electric field on the conductor surface: The electric field component Ez on the xy plane, i.e., on 

the conductor surface is

2 2 2 3/2 2 2 2 3/2
( , , 0) 2

4 [ ] 2 [ ]
z

qdq d
E x y

x y d x y dpe pe

--Ï ¸= ¥ =Ì ˝+ + + +Ó ˛
The parallel field components Ex and Ey vanish as they should.

(c) Induced surface charge density and total induced surface charge: The induced surface charge 

density is given by, s = eEz. The total induced surface charge is given by

induced 2 2 2 3/2

2
2 2 2

2 2 3/2
0 0

( , )
2 [ ]

[ , ]
2 ( )

p

s
p

f
f

p

-
= =

+ +

= - = + =
+

ÚÚ Ú Ú

Ú Ú

qddxdy
q x y dxdy

x y d

rdrdqd
r x y dxdy rdrd

r d

Fig. 2.74 Point charge in front of conducting grounded plane (a) Charge configuration,and (b) Image 

configuration
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( )2 2 2

2

;

2 0
2

p
p

È ˘+ = =
Í ˙

= - ¥ Í ˙
Í ˙
Î ˚

Ú
d

r d p rdr pdp
qd dp

r
p

p d

\ induced
1

2 0
2

qd
q q

d
p

p
È ˘= - ¥ - + = -Í ˙Î ˚

\ qinduced = –q

The field at the surface due to q is
1

2 zE , since half the field at the surface is due to q and the other half 

is due to the image charge -q.

(d) Force experienced by the point charge: Thus, the force experienced by q is given by the integral 

of
1

2 zEs .

\
2

2

2 2 2 3/2

22 2 2 2 2 2

2 2 2 2 3 2 2 2 3 2 2 3
0 0 0

2 2 2

2 2

5

2 2

1 1 1

2 2 2 2 [ ]

48 [ ] 8 [ ] [ ]

( ) ;

04

4

p

s e e
pe

f

pep e p e

pe

-È ˘= - = - = - Í ˙+ +Î ˚

= - = - = -
+ + + +

È ˘+ = =
Í ˙

= - Í ˙
Í ˙
Î ˚

= -

ÚÚ ÚÚ ÚÚ

Ú Ú Ú Ú Ú

Ú

z z

d

qd
F E E dxdy

x y d

q d dxdy q d rdrd q d rdr

x y d r d r d

r d p rdr pdp
q d dp

r
p

p d

q d 2

4 2

1

4 16pe pe

È ˘ = -Í ˙-Î ˚

q

d d

The negative sign indicates that the force is attractive.

\
2

216

q
F

dpe
=

Clearly, the force F is that between the charge +q and its image -q separated by a distance 2d.

Lines of force: The lines of force originate from q and terminate 

normally on the conducting plane. In fact, the lines of force are 

the same as those for two point charges q and -q separated by 

a distance 2d. The lines on the left hand side have been shown 

by dotted lines as they do not exist in reality, as depicted in Fig. 

2.75. Actually, the field in this region is zero, the conducting 

plane being grounded.

A Charge in the Presence of a Grounded 
Conducting Sphere

*Example 2.74 A point charge ‘Q’ is situated at a distance 

‘d’ from the centre of a grounded spherical conductor of radius 

‘a’ (< ‘d’).

Fig. 2.75 Lines of force between the 

point charge and its image
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(a) Show that the image charge required for computing the field outside the spherical conductor is 

a point charge of value 
a

Q
d

-  lying at a distance 
2a

d
 from the centre of the conductor along the line 

joining the centre to the charge Q and on the side of Q.

(b) What is the induced charge on the surface of the conductor?

Solution We consider the point charge Q at a distance d

from the centre of a grounded sphere of radius a, shown in Fig. 

2.76.

(a) Image charge: Let Q¢ be the image charge located at a 

distance x from the centre of the sphere on the line joining the 

point charge Q and the centre of the sphere.

To find the values of x and Q¢, we shall consider two points on 

the sphere. If VA and VB are the potentials at these two points, then

Since the sphere is grounded, VA = 0 and VB = 0.

Now,

1 1
0

4 4A

Q Q
V

d a a xpe pe

¢
= + =

- -

and

1 1
0

4 4B

Q Q
V

d a a xpe pe

¢
= + =

+ +

From the first equation, 
( )

( )

a x
Q Q

d a

-¢ = -
-

Substituting this value in the second equation

( )

( ) ( )( )

Q a xQ

d a d a a x

-
=

+ - +

or ( )( ) ( )( )d a a x d a a x- + = + -

or 22 2dx a=

\
2a

x
d

=

Putting this value, we get

2 2( /2) ( )

( ) ( )

a a ad a
Q Q Q

d a d d a

- -¢ = - = -
- -

\ a
Q Q

d
¢ = -

(b) Potential and field at Point P: The potential at any point P is,

1 2 1 2

( / )1 1

4 4

a d QQ Q Q
V

r r r rpe pe

¢È ˘ È ˘= + = +Í ˙ Í ˙Î ˚ Î ˚

Fig. 2.76 Point charge in front of 

conducting sphere
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Here,

2
2 2

2 2 2 2 2
1 22 cos ; 2 cos 2 cos

a a
r d r dr r x r xr r r

d d
q q q

Ê ˆ
= + - = + - = + -Á ˜Ë ¯

To find the charge density at a point on the sphere, we find the normal component of the field intensity 

E at r = a as follows.

( )

( )

2 2 2
2 2

2

2 2 2
2 2

2

2

2 2 3/2

1 1

4 2 cos
2 cos

1 1

4 42 cos
2 cos

cos

4 ( 2 cos )

r
r a

r a

r a

Q aQV
E

r r dd r dr a a
r r

d d

Q Q a

r d rd r dr a a
r r

d d

a
rr dQ a

dd r dr

pe q
q

pe peq
q

q

pe q

=

=

=

È ˘Ï ¸∂ ∂= - = - -Í ˙Ô Ô∂ ∂ + -Ì ˝Í ˙Ê ˆ
+ -Á ˜Ô ÔÍ ˙Ë ¯Ó ˛Î ˚

∂ ∂È ˘ È ˘= - +Í ˙ Í ˙∂ ∂+ -Í ˙ Ê ˆÍ ˙Î ˚ + -Á ˜Í ˙Ë ¯Î ˚

--
= -

+ -

( )

3/2
2

2 2
2

2

2 2 3/2 4 2 2 3 3/2

3

cos

2 cos

cos
cos

4 ( 2 cos ) ( 2 cos )

r a

d

a a
r r

d d

ad a
a dQ a d

dd a da a a d a d

d

q

q

q
q

pe q q

=

È ˘
Í ˙
Í ˙

Ï ¸Í ˙Ê ˆÌ ˝+ -Í ˙Á ˜Ë ¯Ó ˛Î ˚
È ˘-
Í ˙-

= -Í ˙
+ - + -Í ˙

Í ˙Î ˚

( )

2

2 2 3/2 3 2 2 3/2

2 2 3/2 2 2 3/2

2 2
2 2 3/2

cos ( cos )

4 ( 2 cos ) ( 2 cos )

cos ( cos )

4 ( 2 cos ) ( 2 cos )

[ cos cos ]
4 ( 2 cos )

a d a d d aQ

d a da a a d ad

a d d aQ d

ad a da d a da

Q
a da d da

a d a da

q q
pe q q

q q
pe q q

q q
pe q

È ˘- -
= -Í ˙+ - + -Î ˚

- -È ˘= -Í ˙+ - + -Î ˚

= - - +
+ -

\
2 2

2 2 3/2

( )

4 ( 2 cos )
r

Q a d
E

a d a dape q

-
=

+ -

\
2 2

2 2 3/2

( )

4 ( 2 cos )
r r

Q a d
E a

a d a dape q

-
=

+ -

Induced surface charge density and total induced surface charge The surface charge 

density of the induced charge is
2 2

2 2 3/2

( )

4 ( 2 cos )
r

Q a d
E

a d a da
s e

p q

-
= =

+ -

Since d > a, it is seen that s is negative. The magnitude of the surface charge density is a maximum 

when the denominator is a minimum, i.e., when q = 0°. It decreases with increase in q, and is a minimum 

when q = 180°. The variation of |s | with q is shown in Fig. 2.77.
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Therefore, the total charge induced on the surface of the sphere is 

given as

2
2

0 0

2 2 2
2

2 2 3/2
0 0

2 2

2 2 3/2
0

2 2

2 2 3/2
0

sin

( )
sin

4 ( 2 cos )

( ) sin
2

4 ( 2 cos )

( ) sin

2 ( 2 cos )

p p

f q

p p

f q

p

q

p

q

s s q q f

q q f
p q

q q
p

p q

q q

q

= =

= =

=

=

¢ = =

-
=

+ -

-
= ¥

+ -

-
=

+ -

ÚÚ Ú Ú

Ú Ú

Ú

Ú

S

Q dS a d d

Q a d
a d d

a d a da

Qa a d d

d a da

Qa a d d

d a da

Let, 2 2 2( 2 cos ) sin
pdp

d a da p d
da

q q q+ - = \ =

\
2 2 2 2

3 2

2 2 2 2

2 2

2 2

2 2

2 2

( ) ( )

2 2

( ) ( )1 1 1

2 2

( ) 2

2

( ) 2

2

d a d a

d a d a

d a

d a

Qa a d Qa a dpdp dp
Q

da dap p

Qa a d Qa a d

da p da d a d a

Qa a d a

da d a

Qa a d a

da a d

a
Q

d

+ +

- -
+

-

- -¢ = =

- -È ˘ Ê ˆ= - = - -Á ˜Í ˙ + -Ë ¯Î ˚
- -Ê ˆ= - Á ˜-Ë ¯
- Ê ˆ= - Á ˜-Ë ¯

= -

Ú Ú

\ a
Q Q

d
¢ = -

Force experienced by the point charge Since the induced charge on the sphere is replaced 

by the image charge, the force exerted on the charge Q is the force between the charge Q and its image 

Q¢.

Thus,

2

2 2 2 2 2 2 2

( / )

4 ( / ) 4 ( /2) 4 ( )

Q Q a dQQ Q ad
F

d a d d a d ape pe pe

¢ -
= = = -

- - -

Here also, the negative sign indicates that the force is attractive.

\
2

2 2 24 ( )

Q ad
F

d ape
=

-

If d >> a, the force becomes 
2

34

Q a
F

dpe
= .

Fig. 2.77 Variation of |s| with q
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Lines of force The lines of force originate from Q and 

terminate normally on the conducting sphere. In fact, the lines of 

force are between the two point charges Q and its image charge 

( / )Q a d- . This is shown in Fig. 2.78.

A Charge in the presence of a Conducting Sphere at 
Constant Potential

 Example 2.75 What will be the image charge if the 

spherical conductor in Example 2.74 is not grounded, but has a 

potential ‘V’?

Solution If the sphere is at a constant potential V, then the 

image system which will mimic such a sphere consists of two charges:

— one as already found Q¢ at a distance 
2a

x
d

Ê ˆ
=Á ˜Ë ¯  from the centre of the sphere, and

— another at the centre of the sphere, Q≤.

Then, the total potential on the sphere is

( )Q Q QV V V V¢ ¢¢= + +

But, from Example 2.74, we have, (VQ + VQ¢) = 0

\ QV V¢¢ =

Also, since Q≤ is a point charge at the centre of a sphere

(on the sphere at )
4Q

Q
V r a

ape¢¢
¢¢

= =

\ 4Q aVpe¢¢ =

Thus, if the sphere is at a potential V, then the image system consists of

(i) Point charge ( )a
Q Q

d
¢ = -  at a distance 

2a
x

d

Ê ˆ
= Á ˜Ë ¯  from the centre, and

(ii) Point charge Q≤ = 4peaV at the centre of the sphere.

The induced surface charge density in this case is

2 2 2 2

2 2 3/2 2 2 2 3/2

( ) ( )

4 ( 2 cos ) 4 4 ( 2 cos )

e
s

p q p p q

¢¢- -
= + = +

+ - + -
Q a d Q a dQ V

aa d a da a a d a da

The force experienced by the point charge is

2

2 2 2 2 2 2 2 2 2 2

( / ) 4

4 ( / ) 4 4 ( / ) 4 4 ( )

Q Q a d Q aVQQ QQ Q ad QaV
F

d a d d d a d d d a d

pe

pe pe pe pe pe

¢ ¢¢ -
= + = + = - +

- - -

This force may be attractive or repulsive depending upon which term is greater in the equation.

 Example 2.76 A point charge ‘Q’ is located at point (a, 0, b) between two semi-infinite 

conducting planes intersecting each other at right angles. Determine the potential at point P(x, y, z) and 

the force on Q.

Fig. 2.78 Lines of force between the 

point charge and its image
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or

Two semi-infinite earthed conducting planes meet at right angles to each other. In the region between 

the planes, a point charge ‘+Q’ is placed. The distance of the point charge from each plane is ‘a’.

Determine the force on the charge ‘+Q’.

Solution In this case, the number of im-

age charges is

( )360 360
1 1 3

90
N

f
∞ ∞Ê ˆ= - = - =Á ˜ ∞Ë ¯

The image configuration is shown in Fig. 

2.79.

The potential at P(x, y, z) due to all four 

charges is

1 2 3 4

1 1 1 1

4

Q
V

r r r rpe
È ˘= - + -Í ˙Î ˚

where

2 2 2
1

2 2 2
2

2 2 2
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2 2 2
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( ) ( )
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= - + + -

= + + + -

= + + + +

= - + + +

r x a y z b

r x a y z b

r x a y z b

r x a y z b

Total force on the +Q charge is

1 2 3
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2 2 2 2

2 2 2
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2 2 3/2 2 2 2 3/2 2

( )

( ) ( ) (cos sin )
4 (2 ) 4 (2 ) 4 [(2 ) (2 ) ]
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If a = b, then the force becomes

2
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1 1

16 ( ) ( )

1 1
1 1

16 2 2 2 2

(2 2 1)

32

x z

x z

Q a a
F a a

a a a a a a

Q
a a

a

Q

a

pe

pe
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-
=

Fig. 2.79 Image configuration for Example 2.76
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2

2

(2 2 1)

32

Q
F

ape

-
=

 Example 2.77 An infinitely long line charge of uniform line charge density ‘l’ is situated 

parallel to and at a distance ‘x’ from the grounded infinite plane conductor. Obtain the image charge 

and show that the induced surface charge on the conductor per unit length is ‘-l’.

Solution The finite line charge l is assumed at x = 0, z = h and the image l¢ is assumed at x = 0, 

z = -h, so that the two are parallel to y-axis.

The field at point P (x, y, z) is

1 2
0 1 0 2

( )
2 2r rE E E a a

r rl l
l l

pe pe¢
¢= + = +

Here,

1

2

( , , ) (0, , ) ( , 0, )

( , , ) (0, , ) ( , 0, )

r x y z y h x z h

r x y z y h x z h

= - = -
= - - = +

\
2 2 2 2

0

{ ( ) } { ( ) }1

2 ( ) ( )

x z x zxa z h a xa z h a
E

x z h x z h

l l

pe

¢+ - + +È ˘
= +Í ˙+ - + +Î ˚

Potential at P is

1 2
0 0

( ) ln ln
2 2

V V V r rl l

ll
pe pe¢

¢-
= + = - +

At the conducting plane, V = 0 fi l¢ = l (with z = 0)

\
( )2 2 220

{ ( ) } { ( ) }
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x z x zxa z h a xa z h a
E

x z h x z h

l
pe
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1 2 2 2
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2 2 2 2 ( )

r x z h
V r r

r x z h

l ll l
pe pe pe pe
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The surface charge induced on the conducting plane is

0 0 2 2
|

( )
s n z z

h
D E

x h

l
r e

p
== = = -

+

The induced charge per unit length on the conducting plane is

( )1
2 2

1
tan

2 2i s

h hdx x
dx

h hx h

l l l p p
r r l

p p p
- È ˘= = - = - ¥ = - + = -Í ˙Î ˚+Ú Ú

\
ir l= -

 Example 2.78 A pair of conducting planes meets at an angle of 60o. A point charge +Q is 

located at a distance ‘a’ from both the planes. Find the electric field intensity induced at the foot of 

perpendicular.
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Solution For f = 60°, the number of charges is

( )360
1 5

60
N

∞= - =
∞

The image configuration is shown in Fig. 2.80.

We have to find the intensity at the point P.

Now,

1
2 , sin 30 2

2
AB a BG AB a a= \ = ∞ = ¥ =

Also, ( ) ( ) 2OB OG BG a a a= + = + =

\ 3
cos 30 2 3

2
= ∞ = ¥ = =AG AB a a OP

\ 2 2 2 2
1 3 4 7r PB OB OP a a a= = + = + =

Also, 2 2 3PH PO a= =

\ 2 2 2 2
2 12 13r PH CH a a a= + = + =

\ Field intensity at P:

(i) due to charges at B and E is

1 12 2 3 2
10 1 0 1 0 1 0

2
2 cos { 7 }

4 2 7 7
BE n n n n

Q Q Qa Qa
E a a a a r a

rr r r a
q

p e p e p e p e
= ¥ = = = =

[Since charges at B and C are equal and opposite, their horizontal components cancel each other and 

the resultant field intensity is in the vertical direction.]

(ii) due to charges at C and D is

22 2 3
20 2 0 2 0 2

22
0

2 cos
4 2 2

{ 13 }
2 13 13

CD n n n

n

Q Q Qaa
E a a a

rr r r

Q
a r a

a

q
p e p e p e

p e

= - ¥ = - = -

= - =

[Since charges at C and D are equal and opposite, their horizontal components of field intensity cancel 

each other, but vertical components give the resultant field intensity.]

(iii) due to charges at A and F is

2 2
0 0

2

4 2
AF n n

Q Q
E a a

a ap e p e
= - = -

Hence, the total field intensity is given as

22 2
00 0

2
0

2
0

( )
27 7 2 13 13

1 1 1

226 13 7 7

0.4566

BE CD AF n n n

n

n

Q Q Q
E E E E a a a

aa a

Q
a

a

Q
a

a

p ep e p e

p e

p e

= + + = - -

È ˘= - - +Í ˙Î ˚

= -

Fig. 2.80 Image configuration of Example 2.78
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 Example 2.79 Two infinite intersecting planes are intersecting at right angle. A charge of 

100nC is placed at (3, 4, 0). Find the electric potential and electric field intensity at (3, 5, 0).

Solution In this case, the number of 

image charges is

( )360 360
1 1 3

90
N

f
∞ ∞Ê ˆ= - = - =Á ˜ ∞Ë ¯

The image configuration is shown in Fig. 

2.81.

The potential at P(x, y, z) due to all four 

charges is

0 1 2 3 4

1 1 1 1

4

Q
V

r r r rpe
È ˘= - + -Í ˙Î ˚

where

2 2 2
1

2 2 2
2

2 2 2
3

2 2 2
4

( 3) ( 4)

( 3) ( 4)

( 3) ( 4)

( 3) ( 4)

r x y z

r x y z

r x y z

r x y z

= - + - +

= + + - +

= + + + +

= - + + +

At P (3, 5, 0),

1 2 3 41, 37, 17, 9r r r r= = = =

So, the potential is given as

9

9

100 10 1 1 1 1 1 1 1 1
900 735.25 Volt

1 9 1 910 37 17 37 174
36

V

p
p

-

-
¥ È ˘ È ˘= - + - = - + - =Í ˙ Í ˙Î ˚ Î ˚¥

Field intensity is given as

x y z

V V V
E V a a a

x y z

∂ ∂ ∂= -— = - - -
∂ ∂ ∂

However, 
3 3 3 3

(3, 5, 0) 1 2 3 4 3

3 3 3 3
900 19.8

P
x

x x x xV

x r r r r
=

- + + -È ˘∂ = + - + =Í ˙∂ Î ˚

(3, 5, 0)(3, 5, 0)

891.36 and 0
PP

V V

y z

∂ ∂= - =
∂ ∂

\ 19.8 891.36 V/mx yE a a= - +

2.23.2 Method of Images at the Boundary between Dielectrics

In this case, as shown in Fig. 2.82, we no longer have the boundary condition that the potential is 

constant at the interface. We now must use the conditions that the normal components of the D-fields and 

Fig. 2.81 Image configuration for Example 2.79
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tangential components of the E-fields are continuous. Furthermore, 

we have the fields on both sides of the boundary.

We put the charge Q in A at a distance d from the interface and 

place an image charge Q¢ in A¢ at the same distance from the interface. 

The potential from these two charges on the right side is

2 2 2 22

1
( , )

4 ( ) ( )

0

pe

¢È ˘= +Í ˙
+ - + +Í ˙Î ˚

>

Q Q
V r z

r z d r z d

z

To find the potential in the left side we put an effective charge Q≤ in 

A (replacing Q).

\
2 21

1
( , ) , 0

4 ( )

Q
V r z z

r z dpe

¢¢
= <

+ -

From this we find that

2 2 3/2
2

( )1

4 ( )z

Q Q dV

z r dpe+

¢-∂ =
∂ +

2 2 3/2
1

1

4 ( )z

Q dV

z r dpe-

¢¢∂ =
∂ +

2 2 3/2
2

( )1

4 ( )z

Q Q rV

r r dpe+

¢+∂ = -
∂ +

2 2 3/2
1

1

4 ( )z

Q rV

r r dpe-

¢¢∂ = -
∂ +

To satisfy the boundary condition, we have

2 1

( )

1 1
( )

Q Q Q

Q Q Q
e e

¢ ¢¢- =

¢ ¢¢+ =

and

1 2

1 2

1

1 2

2

Q Q

Q Q

e e

e e

e

e e

-Ê ˆ¢ = -Á ˜+Ë ¯
Ê ˆ¢¢ = Á ˜+Ë ¯

From this, we could have obtained the results for a conducting plane if the metal were treated as a 

dielectric with infinite static dielectric function e1 = ; Q¢ = –Q; and Q≤ = 2Q. Note that Q≤ does

not contribute to the potential inside the metal since the potential is divided by e1 which is infinite. 

The problem cannot be solved with a charge outside a dielectric sphere with a finite number of image 

charges.

Fig. 2.82 Method of images for 

dielectric-dielectric

boundary



Electrostatics 201

2.24 ELECTRIC BOUNDARY CONDITIONS

If an electric field exists in a region consisting of two different media, then the conditions that the field 

must satisfy at the interface between the two media are called boundary conditions.

We consider three different interfaces:

1. Dielectric–Dielectric Boundary,

2. Conductor–Dielectric Boundary, and

3. Conductor–Free Space Boundary.

To determine the conditions, we use Maxwell’s and Gauss’ law

and 0
S l

D dS Q E dl◊ = ◊ =Ú Ú

Also, the electric field intensity vector ( )E  can be decomposed into two orthogonal components as

t nE E E= +

where, tE  and nE  are the tangential and normal components of E , respectively.

2.24.1 Dielectric–Dielectric Boundary Conditions

We consider two different media 1 and 2, characterised by the permittivities e1 and e2, respectively, 

shown in Fig. 2.83.

Fig. 2.83 Dielectric-dielectric boundary conditions

Applying Maxwell’s equation for the closed path abcda

1 1 2 2 2 10
2 2 2 2t n n t n n

h h h h
E E E E E Ew w

D D D D
= D - - - D + +

Assuming the path to be very small with respect to the variation of E, where | |t tE E=  and | |n nE E= , as 

h <<, we have

1 2t tE E= (2.80)

Since, t nD E D De= = + , Eq. (2.80) can be written in terms of the flux density as

1 2

1 2

t tD D

e e
= (2.81)
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Thus, the tangential component of E  is continuous at the boundary; but the tangential component of 

D  is discontinuous.

Now, applying Gauss’ law to the pillbox (Gaussian surface), with Dh Æ 0

1 2n Q nD S D S Q SsD D - D = D = D

1 2( )n nD D s- = (2.82)

where s is the free surface charge density placed deliberately at the boundary. In general, no free charge 

is placed, so that, s = 0. Hence, Eq. (2.81) can be written as

1 2n nD D= (2.83)

In terms of the field intensity, the boundary condition can be written as

1 1 2 2n nE Ee e= (2.84)

Thus, the normal component of D  is continuous if there is no free charge at the interface, but normal 

component of E  is always discontinuous at the boundary surface.

 Example 2.80 Show that for a charge-free medium, the electric boundary conditions can be 

expressed by the equation
1 1

2 2

tan

tan

q e

q e
= , where the notations have their usual meanings.

Solution Let the fields make angle q with the respective normal to the interface. Then we can 

combine the boundary conditions as

1 2 1 1 2 2or sin sint tE E E Eq q= =

and

1 1 2 2 1 1 1 2 2 2or cos cosn nE E E Ee e e q e q= =

Combining

1 1
1 1 2 2

2 2

tan
or cot cot

tan

q e
e q e q

q e
= = (2.85)

This is the law of refraction of the electric field at a boundary free of charges.

2.24.2 Conductor–Dielectric Boundary Conditions

For a perfect conductor, the conductivity is infinite, s Æ , or the resistivity is zero, r Æ 0 and so, the 

field inside a conductor is zero, E = 0.

If some charges are introduced in the interior of such a conductor, the charges will move to the 

conductor surface and redistribute themselves in such a manner that the field inside the conductor is 

zero.

We consider the same procedure for finding the boundary conditions (Fig. 2.84).

Applying Maxwell’s equation for the closed path abcda

0 0 0 0
2 2 2 2t n n

h h h h
E E Ew w

D D D D
= D - - - D + +

fi 0tE =
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\ 0t tD E= = (2.86)

Thus, the tangential component of E  and D  are both zero for a conductor–dielectric boundary.

Fig. 2.84 Conductor–dielectric boundary conditions

Now, applying Gauss’ law to the pillbox (Gaussian surface), with Dh Æ 0,

0n nD S S Q S Ds sD - D = D = D fi =

\ n
n

D
E

s
e e

= =

andn nD E
s

s
e

= = (2.87)

Thus, we can conclude that:

1. Inside a conductor, the electric field is always zero. This property is used for electrostatic 

shielding.

2. The electric field can only be external to the conductor and normal to its surface.

3. Since E V= -—  and E = 0 inside a conductor, there is no potential difference between any two 

points in the conductor, i.e., a conductor is an equipotential body.

2.24.3 Conductor-Free Space Boundary Conditions

These boundary conditions will be identical as those for a conductor–dielectric boundary except that 

e will be replaced by e0, so that the boundary conditions for the tangential and normal components 

become

0

0 and andt t n nD E D E
s

s
e

= = = = (2.88)

*Example 2.81 A boundary exists at z = 0 between two dielectrics 
1

2.5re =  in the region z < 0, 

and
2

4re =  in the region z > 0. The field in region of er1 is 1 30 50 70E i j k= - + +  V/m. Find the electric 

displacement vector in the second medium. Also, find the angle between electric field intensity in the 

second medium and the normal to the boundary surface.

Solution Since z = 0 is the boundary, k  is the normal to the boundary plane, and the normal 

component of the field is
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1 1 70nE E k= ◊ =

\
1 70nE k=

\
1 1 1 30 50t nE E E i j= - = - +

By the boundary conditions for dielectric–dielectric interface, we get

2 1 30 50t tE E i j= = - +

and

1
2 2 1 1 2 1

2

2.5
70 43.75

4
r

r n r n n n
r

E E E E k k
e

e e
e

= fi = = ¥ =

\ 2 2 2 30 50 43.75n tE E E i j k= + = - + +

Hence, the flux density is

2 2 2 0 2

12

2

( 30 50 43.75 )

8.854 10 4 ( 30 50 43.75 )

1.061 1.768 1.547 nC/m

rD E i j k

i j k

i j k

e e e
-

= = ¥ - + +
= ¥ ¥ ¥ - + +
= - + +

The angle between electric field intensity in the second medium and the normal to the boundary surface 

is given as

2 2
1 12

2
2

30 50
tan tan 53.12

43.75
t

n

E

E
q - -

Ê ˆÊ ˆ +
= = = ∞Á ˜Á ˜ Ë ¯Ë ¯

 Example 2.82 It is found that 1 60 20 30E i j k= + -  mV/m at a particular point on the interface 

between air and a conducting surface. Find the flux density D and surface charge density rs at that 

point.

Solution This is a dielectric–conductor interface. Here, the flux density is

9
3 2

0 1

10
(60 20 30 ) 10 (0.531 0.177 0.265 ) pC/m

36

-
-= = ¥ + - ¥ = + -D E i j k i j ke

p

The surface charge density is given as

2 2 2 12 2(0.531) (0.177) ( 0.265) (10 ) 0.619 pC/ms nDr s -= = = + + - ¥ =

*Example 2.83 Two extensive homogeneous isotropic dielectrics meet on plane z = 0 as shown 

in Fig. 2.85. For z ≥ 0, 
1

4re =  and for z £ 0, 2 3re = . A uniform electric field, 1 5 2 3x y zE a a a= - +  kV/m 

exists for z ≥ 0. Find

(a) 2E  for z £ 0.

(b) The angles between electric field intensity and the normal to the boundary surface in both media.

(c) The energy densities in J/m3 in both dielectrics.

(d) The energy within a cube of side 2 m centered at (3, 4, -5).
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Solution
(a) Since, za  is the normal to the boundary plane, 

the normal component is

1 1 1 3n n zE E a E a= ◊ = ◊ =

\ 1 3n zE a=

\ 1 1 1 5 2t n x yE E E a a= - = -

By boundary conditions

(1) 2 1 5 2t t x yE E a a= = -
  and,

(2) 2 2 1 1r n r nE Ee e=

  fi 1
2 1 1

2

4
4

3
r

n n n z
r

E E E a
e

e
= = =

So, the field in second medium is given as

2 2 2( ) (5 2 4 ) kV/mt n x y zE E E a a a= + = - +

(b) Let, a1 and a2 be the angles 1E  and 2E  make with the interface while q1 and q2 are the angles they 

make with the normal to the interface.

\ 1 1 2 2(90 ) and (90 )a q a q= ∞ - = ∞ -

\
2 2

1
1

1

5 2 29
tan 1.795

3 3
t

n

E

E
q

+
= = = =

\ 1 60.9q = ∞

Similarly,

\
2 2

2
2

2

5 2 29
tan 1.346

4 4
t

n

E

E
q

+
= = = =

\
2 53.4q = ∞

Hence, the angles between electric field intensity and the normal to the boundary surface in both media 

are given as

1 260.9 and 53.4q q= ∞ = ∞

NOTE

The relation 
1 1

2 2

tan

tan
r

r

q e

q e
=  is satisfied.

(c) The energy densities are given as

9
2 6 3

1 1 1
1 1 10

| | 4 (25 4 9) 10 672 J/m
2 2 36EW Ee m

p

-
= = ¥ ¥ + + ¥ =

Fig. 2.85 Arrangement of dielectrics for Example 

2.83
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9
2 6 3

2 2 2
1 1 10

| | 3 (25 4 16) 10 597 J/m
2 2 36EW Ee m

p

-
= = ¥ ¥ + + ¥ =

(d) At the centre (3, 4, -5) of the cube of side 2 m, z = -5 < 0; i.e., the cube is in region 2 with 2 £ x £
4, 3 £ y £ 5, -6 £ z £ -4.

Hence, the energy within the cube is

2 2 2

4 5 4

2 3 6

2 2 2 597 8 J 4.776 mJE E E E
x y z

W w dv w dzdydx w m
-

= = = -
= = = ¥ ¥ ¥ = ¥ =Ú Ú Ú Ú

 Example 2.84 A homogeneous dielectric (er = 2.5) fills region 1 (x £ 0) while region 2 (x ≥ 0) 

is free space.

(a) If 1 12 10 4x y zD a a a= - +  nC/m2, find 2D  and q2.

(b) If E2 = 12 kV/m, and q2 = 60°, find 1E  and q1. Take q1 and q2 as the angles of 1E  and 2E  with 

the normal of the surface, respectively.

Solution
(a) Since, xa  is the normal to the boundary plane, the normal component is

1 1 1 12n n xD D a D a= ◊ = ◊ =

\
1 12n xD a=

\ 1 1 1 10 4t n y zD D D a a= - = - +

By boundary conditions

(1) 2
2 1

1

1
( 10 4 ) 4 1.6

2.5
r

t t y z y z
r

D D a a a a
e

e
= = - + = - +

   and

(2) 2 1 12n n xD D a= =

So, the flux density in second medium is given as

2
2 2 2( ) (12 4 1.6 ) nC/mt n x y zD D D a a a= + = - +

\
2 2

2
2

2

( 4) (1.6)
tan 0.359

12
t

n

E

E
q

- +
= = =

\
2 19.75q = ∞

(b) Here, \ 2
2

2

tan tan 60 t

n

E

E
q = ∞ =

\ 2 23t nE E=

Also, 2 2 3
2 2 2 2 212 4 6 V/m= + fi = fi =t n n nE E E E E

\ 1 2 3 6 10.39 V/mt tE E= = ¥ =
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\ 2
1 2

1

1
6 2.4 V/m

2.5
r

n n
r

E E
e

e
= = ¥ =

\ 2 2 2 2
1 1 1 (10.39) (2.4) 10.67t nE E E= + = + =

\ 1
1

1

10.39
tan 4.33

2.4
t

n

E

E
q = = =

\ q1 = 77°

*Example 2.85 Region y £ 0 consists of a perfect conductor while y ≥ 0 is a dielectric medium 

(er = 2). If there is a surface charge of 2nC/m2 on the conductor, determine E  and D  at:

(a) A (3, -2, 2). (b) B (-4, 1, 5).

Solution
(a) Point A (3, -2, 2) is in the conductor as y = -2 < 0 at A.

\ 0E D= =

(b) At point B (-4, 1, 5), rs = 2 nC/m2

\ 22 nC/mn sD r= =

\ 22 nC/myD a=

\
9

9
0

2 10
36 113.1 V/m

10
2

36

y y
r

D
E a ap

e e

p

-

-
¥

= = = =
¥

2.25  DIRAC DELTA REPRESENTATION IN 
ELECTROSTATIC FIELDS

In field theory, most of the functions used are continuous and have continuous derivatives. However, 

there are certain functions, such as point charges, filamentary currents, current shells, etc., which 

have singularities at certain points. These functions require special treatment. One method is to treat 

these discrete sources as limiting cases of volume distributions for which one or more dimensions are 

allowed to become vanishingly small.

However, the most useful technique to treat these discrete sources is the use of Dirac Delta function

(namely, unit impulse function in circuit theory).

The Dirac delta at the point x = x0 is designated by d(x – x0) and at x = 0 it is designated by d(x). It 

has the property that

0 0

0

( ) 1, is in ( , )

0, is not in ( , )

b

a

x x dx if x a b

if x a b

d - =

=

Ú

Thus, delta behaves as a very sharply peaked function of unit area. This function can be represented as 

a vanishingly thin Gaussian function of unit area as shown in Fig. 2.86.
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Fig. 2.86 The Dirac delta: (a) Approximate form, and (b) Symbolic representation

A special property of delta function may be stated as follows:

0 0 0

0

( ) ( ) ( ), is in ( , )

0, is not in ( , )

b

a

f x x x dx f x if x a b

if x a b

d - =

=

Ú

This implies that the delta has the property of selecting the value of the function f(x) at the point x0; this 

property is known as sampling property.

NOTE

Technically, d(x) is not a function at all, since its value is not finite at x = 0. In mathematics, it is known 

as a generalised function or distribution.

2.25.1 Three-Dimensional Dirac Delta Function

If r  denotes the point (x, y, z) then the three-dimensional dirac delta function at the point 0r r=  is 

designated by 0( )r rd -  and is represented as

0 0

0

( ) 1 is in

0 is not in
V

r r dV if r V

if r V

d - =

=

Ú

This three-dimensional dirac delta also has the sampling property, which may be written as

0 0 0

0 0

( ) ( ) ( ), is in

0, is not in
V

f r r r dx f r if r V

if r r

d - =

=

Ú

Three-dimensional dirac delta may be expressed in terms of one-dimensional deltas in different 

coordinates as follows.

0 0 0 0

0 0 0

0

0 0 0

2
0 0

( ) ( ) ( ) ( ) in Cartesian coordinates

( ) ( ) ( )
in cylindrical coordinates

( ) ( ) ( )
in spherical coordinates

sin

r r x x y y z z

r r z z

r

d d d d

d d f f d

d r r d q q d f f

r q

- = - - -

- - -
=

- - -
=
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2.25.2  Dirac Delta Representation of Point Charge and Related
Equations of Electrostatics

If a point charge of q Coulomb is located within a volume V, then it can be written in terms of volume 

charge density r as follows.

V

dV qr =Ú

If the charge q is located outside the volume V, then

0
V

dVr =Ú

The above two equations can be combined if r is set equal to q multiplied by three-dimensional dirac 

delta. Thus, the charge density of a point charge q Coulomb located at 0r r=  may be written as,

0( ) ( )r q r rr d= -

In terms of one-dimensional deltas in Cartesian coordinates

0 0 0( ) ( ) ( ) ( )r q x x y y z zr d d d= - - -

Therefore, for a point charge located at origin, the volume charge density is written as

( ) ( ) ( ) ( )r q x y zr d d d=

Similarly, line and surface distributions of charge may also be written in terms of Dirac delta.

For a line charge density of l (C/m) along the z-axis, the equivalent volume charge density is given 

as
( ) ( ) ( )r x yr ld d=

For a surface charge density of s (C/m2) lying in the xy-plane, the equivalent volume charge density 

is given as

( ) ( )r zr sd=

Therefore, Gauss’ law can be written in terms of Dirac delta function as

( ) ( ) ( ) ( ) for a point charge

( ) ( ) for a line charge along -axis

( ) for a surface charge in the -plane

q q
E r x y z

x y z

z xy

d d d d
e e
l

d d
e
s

d
e

— ◊ = =

=

=

Similarly, Poisson’s equation can be written for a point charge q located at origin as

2 ( )
q

V rd
e

— = -

Summary

The quantitative expression for the affect of an electric charge and distance on electric force is given 

by Coulomb’s law, which states that the force between two charges is

1 2
12 1224

R

Q Q
F a

Rp e
=
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If there is a number of charges Q1, Q2, …, Qn placed at points with position vectors 1r , 2r , …, nr ,

respectively, then the resultant force F  on a charge Q located at point r  is

3
1

( )

4 | |

n
i i

i i

Q r rQ
F

r rpe =

-
=

-
Â

This is known as principle of superposition of charges.

The electric field intensity ( )E  is defined as the force per unit charge when placed in an electric field. 

So, for a point charge, the field intensity is

24
R

Q
E a

Rp e
=

If there is a number of charges q1, q2, …, qn placed at points with position vectors 1r , 2r , …, nr ,

respectively, then the electric field intensity is

2
1

1

4

N
i

ri
i i

q
E a

rpe =
= Â

This is known as principle of superposition of field.

The electric field intensity due to different continuous charge distribution is given as

2
line

2

2

( )1
for line charge distribution

4

( )1
for surface charge distribution

4

( )1
for volume charge distribution

4

S

V

r
E dl

r

r
dS

r

r
dV

r

l
pe

s
pe

r
pe

=

=

=

Ú

ÚÚ

Ú

The electric flux density (D) is defined as the total number of electric field lines per unit area 

passing through the area perpendicularly (in C/m2). It is related to the field intensity as

D Ee=

Hence, electric flux through a surface is given as

S

D dSy = ◊Ú

Electric field lines are the imaginary lines drawn in such a way that at every point, it has the direction 

of the electric field ( )E .

Electric flux lines are the imaginary lines drawn in such a way that at every point, it has the direction 

of the electric flux density vector ( )D .

Gauss’ law states that the total electric displacement or electric flux through any closed surface 

surrounding charges is equal to the net positive charge enclosed by that surface.

Mathematically, it is expressed as

, integral form

differential form

S v

D dS Q dv

D

y r

r

= ◊ = =

— ◊ =

Ú Ú
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The total work done in moving a unit positive charge from a point A to another point B is called the 

potential difference between the two points, given as

B

AB
A

W
V E dl

Q
= = - ◊Ú

This potential difference between the points A and B is also considered to be the potential (or

absolute potential) of B with respect to the potential (or absolute potential) of A. In case of a point 

charge, the reference is taken to be at infinity with zero potential.

Potential (or absolute potential) of a point is defined as the work done to bring a unit positive charge 

from infinity to that point. This is given as

4

Q
V

Rpe
=

If there is a number of point charges Q1, Q2, …, Qn, located at position vectors 1 2, , , nr r rº
respectively, then the potential at point r  is given as

1

1
( )

4 | |

n
i

ii

Q
V r

r rpe =
=

-Â

This is known as principle of superposition of potential.

The electric potential due to different continuous charge distribution is given as

2

( )1
( ) ; for line charge distribution with density (C/m)

4 | |

( )1
; for surface charge distribution with density (C/m )

4 | |

( )1
; for volume charge distribution with d

4 | |

l

S

v

r dl
V r

r r

r dS

r r

r dv

r r

l
l

pe

s
s

pe

r
pe

¢ ¢
= ¢-

¢ ¢
= ¢-

¢ ¢
= ¢-

Ú

Ú

Ú 3ensity (C/m )r

The rate of change of potential with respect to the distance is called the potential gradient. The 

relation between the potential and field intensity is written as

E V= -—
The surface obtained by joining the points with equal potential is known as equipotential surface.

Two equal and opposite point charges separated by a distance constitute an electric dipole.

For an electric dipole with dipole moment p  and centered at a position vector r ¢, then the potential 

at a point P(r, q, f) is given as

3

( )
( )

4 | |

p r r
V r

r rpe

¢◊ -
=

¢-

Similarly, for an electric dipole with dipole moment p  and centered at origin, the field intensity at 

a point P(r, q, f) is given as

3 2

3( )1

4

p r r
E p

r rpe

◊È ˘= -Í ˙Î ˚
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The torque on an electric dipole with dipole moment p when placed in external electric field is 

given as

p Et = ¥

The potential energy of an electric dipole with dipole moment p when placed in external electric 

field is given as

U p E= - ◊

The electrostatic energy stored in an electric field is given as

1

1
for point charges

2

1
for continuous charge distribution

2

=
=

= ◊

Â

Ú

N

i i
i

v

W Q V N

D Edv

For a linear homogeneous material medium, Poisson’s equation for electric potential is given as

2V
r
e

— = -

If the medium is charge-free (i.e., r = 0), Poisson’s equation reduces to Laplace’s equation, given as

2 0V— =

For electrostatic boundary value problems, the field E  and the potential V are determined by solving 

Poisson’s equation or Laplace’s equation.

Uniqueness theorem states that any solution of Laplace equation (or Poisson’s equation) that satisfies 

the same boundary conditions must be the only solution, irrespective of the method of solution.

A capacitor is a device that stores electric charge and hence electrostatic energy. The capacitance

of a capacitor is the ratio of the magnitude of charge on one conductor to the potential difference 

between the conductors.

S

l

E dS
Q

C
V E dl

e ◊
= =

◊

Ú

Ú

The electrostatic energy stored in a capacitor is given as

2
stored

1

2
W CV=

Method of images is used for solving electrostatic boundary value problems involving and infinite 

conducting plane.

The conditions that an electric field, existing in a region consisting of two different media, must 

satisfy at the interface between the two media are called electric boundary conditions. These are 

given as

For dielectric–dielectric interface:

1 2 1 2 1 2, ( ) and (when 0)t t n n n nE E D D D Ds s= - = = =

For dielectric–conductor interface:

0 andt t n nD E D Ee s= = = =
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Important Formulae
Coulomb’s law

1 2 1 2 2 1
12 122 3

2 1

( – )

4 | – |
R

Q Q Q Q r r
F k a

R r rpe
= =

Principle of superposition of charges
1

3
1

( – )

4 | – |

x
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i i

Q r rQ
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r rpe =
= Â

Electric field intensity
ˆ

2 3

( – )

4 4 | – |
= = = tt t

R
t

Q r rQF
E a

Q R r rpe pe

Electric field intensity due to 

continuous charge distribution 2
line

2

2

( )1
for line chargedistribution

4

( )1
for surface charge distribution

4

( )1
for volume charge distribution
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Electric flux density
D Ee=

Electric flux

s

D dSy = ◊Ú

Gauss’ law of electrostatics
, integral form

, differential form

s v

D dS Q pdv

D

y

r

= ◊ = =

— ◊ =

Ú Ú

Potential of a point due to point 

charge (s)
1

1
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ii

QQ
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R r rpe pe =
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Potential due to continuous charge 

distribution

2

( ) for line charge distribution with1
( ) ;

density (C/m)4 | – |

( )1 for surface charge distribution
;

with density (C/m )4 | – |

( )1 for volume charge distribution
;

with d4 | – |
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Relation between potential and field
–E V= —

Potential due to electric dipole

3

( – )
( )

4 | – |

p r r
V r

r rpe

¢◊
=

¢ ¢

Field due to electric dipole
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3( )1
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p r r
E p
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Electrostatic energy store in an 

electric field
1

1
for point charges

2

1
for continuous charge distribution

2

=
=

= ◊
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Ú
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i

v

W QV N

D E dv

Poisson’s equation
2 –V

r
e

— =

Laplace’s equation 2 0V— =

Capacitance of a capacitor
e ◊

= =
◊

Ú

Ú
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E dS
Q

C
V E dl

Energy stored in a capacitor
2

stored

1

2
=W CV

Electric boundary conditions for 

dielectric–dielectric interface
1 2 1 2 1 2, ( – ) and (when 0)t t n n n nE E D D D Ds s= = = =

Electric boundary conditions for 

dielectric–conductor interface
0 andt t n nD E D Ee s= = = =

Exercises

[NOTE: * marked problems are important university problems]

Easy

1. A thundercloud above earth sets up a vertical electric field of 40 V/m. A raindrop carrying a charge 

of 0.1 mC lies in this field. What is the electrostatic force exerted on this raindrop? 15[9 10 N]¥
*2. Determine the electric field at a distance r from an infinite straight line carrying a uniform line 

charge distribution with line charge density l.

2 rE a
r

l
p e

È ˘=Í ˙Î ˚
*3. Derive an expression of electric field due to uniform charge distribution over an infinite plane with 

surface charge density s.

2 nE a
s
e

È ˘=Í ˙Î ˚
*4. Determine the electric field due to spherical cloud of electrons giving the volume charge density 

of

0; 0

0;

r a

r a

r r= - £ £
= >

  
0

3
0

2

; 0
3

;
3

r

r

r
E a r a

a
a r a

r

r

e
r

e

È ˘= - £ £Í ˙
Í ˙-Í ˙= ≥
Í ˙Î ˚

5. Deduce Laplace’s equation in spherical coordinates and find whether the potential field 
3

sin
a

V
r

q=
volt in a region of free space satisfies it.
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*6. Two concentric coaxial cones have the same vertex at the origin and their common axis coincides 

with the positive z-axis. The cone vertices are insulated, and their semi-vertical angles are q1

and q2, respectively (q2 > q1). The outer cone is earthed and the inner cone has a potential V1.

Determine the potential in the region between the cones.
2

1
1 2

ln(tan /2) ln(tan /2)

ln(tan /2) ln(tan /2)
V

q q

q q

È ˘-Ï ¸
Ì ˝Í ˙-Ó ˛Î ˚

7. Derive an expression for the capacitor of a spherical condenser consisting of two concentric 

spheres of radii a and b, the dielectric between the two spheres being air.
04

ab
C

a b
pe

È ˘Ê ˆ= Á ˜Í ˙-Ë ¯Î ˚
*8. Show that the capacitance of an isolated sphere of radius R is 4pe0R.

*9. A boundary exists at z = 0 between two dielectrics 
1

2.5re =  region z < 0, and 
2

4re =  region z > 0. 

The field in region of 
1r

e  is 1 30 50 70 V/mx y zE a a a= - + + . Find

(a) normal component of 1E ,

(b) tangential component of 1E ,

(c) the angle a1 £ 90° between 1E  and normal to the surface,

(d) normal component of 2D ,

(e) tangential component of 2D ,

(f) 2D

(g) polarization in 
1r

e  material,

(h) The angle a2 between 1E  and normal to the surface.

9 2 9 2

9 2

9 2

70 V/m; 58.3 V/m; 39.8 ; 1.55 10 C/m ; 2.6 10 C/m ;

( 1.06 1.77 1.55 ) 10 C/m ;

( 0.8 1.33 1.16 ) 10 C/m ; 53.1

x y z

x y z

a a a

a a a

- -

-

-

È ˘∞ ¥ ¥
Í ˙- + + ¥Í ˙
Í ˙- + + ¥ ∞Î ˚

Medium

*10. Three point charges of 0.25 mC are placed in air at the vertices of an equilateral triangle of side 

100 mm. Determine the magnitude and direction of the force on one charge due to other charges.

[97.43 mN]

11. Three point charges q1 = +10–6C, q2 = –10–6C, and q3 = 0.5 ¥ 10–6C are placed in air at the corners 

of an equilateral triangle of 50 cm side. Determine the magnitude and direction of the force on q3.

[0.018 N]

*12. Charges (-e) are placed at the vertices of an equilateral triangle of side a and a positive charge Q

is placed at the centre of gravity of the triangle. What would be the value of Q if the force on any 

of the negative charges is zero?

3

eÈ ˘
Í ˙Î ˚

13. Three point electric charges are situated in a straight line 10 cm apart. They have charges 2.0 mC,

-1.0 mC and 2.0 mC, with negative charge in the centre. Find the forces on each charge due to the 

other two. [–1.8 N, –1.8 N, 0.9 N]

14. Three equal positive charges of 4 ¥ 10–9 C each are located at three corners of a square of side 20 

cm each. Determine the magnitude and direction of electric field at the vacant corner.

  [1722.78 V/m; 45°]
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15. Four concentrated charges are located at the vertices of a 

plane rectangle as shown. Find the magnitude and direction 

of the resultant force on Q3.

  [0.93N at angle + 84° to line joining Q3Q4]

16. Four equal charges are placed at the corners of a square of 

area 1 m2. The force on each charge is 1 N. Determine the 

value of each charge. [7.62 mC]

17. Four point charges of q1 = +1 ¥ 10–8 C, q2 = –2 ¥ 10–8 C, q3 = +3 ¥ 10–8 C and q4 = +2 ¥ 10–8 C, 

respectively, are placed at the corners of a square of side 1 metre. If the medium is air, find the 

magnitude and direction of the field intensity at the point of intersection of the diagonals. Also, 

find the potential at that point. [509.19 Volt]

18. Two charges of similar sign and magnitude 1 ¥ 10–12 Coulomb are located 1 metre apart. What 

is the potential at a point that is midway between the two charges and 50 cm from the line 

connecting the charges? What is the potential if the charges are of opposite sign?

  [0.25 Volt, 0 Volt]

19. A spherical volume of radius R has a volume charge density given by r = kr where r is the radial 

distance and k = constant. Find the expression for E and V in the region 0 £ r £ .

2
3 3

4 4

2

(4 );;
124

; ;
44

r

r

kkr V R r r RE a r R

kR kRa r R r R
rr

ee

ee

È ˘ È ˘= - <= <Í ˙ Í ˙
Í ˙ Í ˙
Í ˙ Í ˙= ≥ = ≥
Í ˙ Í ˙Î ˚Î ˚

20. The surface charge density of a charged thin circular disc of radius R is ( )r Ars = , where A is a 

constant and r  is the position vector of a point of the thin disc from the centre of the disc. Calculate the 

electric field at any point on the axis of the disc.
2 2

2 2
ln

2

R R zAz R
E

z R ze

È ˘Ï ¸Ê ˆ+ +Ô ÔÍ ˙= -Á ˜Ì ˝Ë ¯Í ˙+Ô ÔÓ ˛Î ˚
21. A long charged cylinder of radius a has a volume density of charge r = g r, where g  is a constant 

and r is the distance from the axis of the cylinder. Show that the electric field is given by

2

3

( ) ;
3

;
3

r

r

r
E r a r a

a
a r a

r

g
e

g
e

= <

= >

*22. A spherical volume charge distribution r is given by

2

0 1 for 10 mm
100

0 for 10 mm

r
r

r

r r
Ê ˆ

= - £Á ˜Ë ¯
= >

  Show that the maximum value of electric field intensity E occurs at r = 7.45 mm. Obtain the 

value of E at r = 7.45 mm.
0

0

1.656
r

e
È ˘
Í ˙Î ˚

23. For a spherical charge distribution

2 2
0 ( );

0;

a r r a

r a

r r= - <
= >

Fig. 2.87
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(a) Find E  and V for r ≥ a

(b) Find E  and V for r £ a

(c) Find the total charge

(d) Show that E  is maximum when r = 0.145a.

42 3 4 2 2
0 0 0 0 0 0 0

2
0 0 0 0 00

2 2 2 7 8
( ) , ; ( ) , ; ( )

15 3 5 20 6 15 60 1515
r r

aa r r r a r
a a b a c

rr

r r r r r r pr

e e e e ee

È ˘Ê ˆ Ê ˆ
- - + +Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Í ˙Î ˚

24. A circular area of radius R has a point charge Q on its axis at a distance d from the centre of the 

area. Calculate the flux of the electric field due to Q through the circular area.

2 20

1 1

2

Qd

d d Re
È ˘Ê ˆ-Í ˙Á ˜+Ë ¯Í ˙Î ˚

25. Two infinite radial planes are inclined to each other at an angle a. There is an infinitesimal 

insulating gap at r = 0. Solve the one-dimensional Laplace’s equation in cylindrical coordinate to 

obtain the potential V and field E  as a function of f. Boundary conditions are given as

V = 0 at f = 0 and V = V0 at f = a

0 01
;

V V
V E a

r ff
a a

È ˘= = -Í ˙Î ˚

26. Two concentric conducting spherical shells of radii a and b (b > a), are charged to potentials V1

and V2, respectively. Determine the electric potential and field in the region between the shells. 

Also, determine the charge on the inner shell.

  

1 2 2 1 1 2 1 2
12

; ; 4r

V V bV aV V V V Vab ab
V E a Q ab

b a r b a b a b ar
p e

È ˘- - - -Ê ˆ Ê ˆ Ê ˆ
= + = =Á ˜ Á ˜Í ˙Á ˜Ë ¯ Ë ¯- - - -Ë ¯Î ˚

27. The space between x = 0 and x = d is filled with uniform charge of volume density r. The electric 

field at x = d is zero. Calculate the potential difference between x = 0 and x = d. 2

02

dr
e

È ˘
Í ˙
Î ˚

*28. Prove that the capacitance between two lines is given by

( )
0

ln

C
d

r

pe
=

  where d is the distance of separation between these lines and r is the radius of each line.

29. A point charge q is placed at a distance d from the centre of an earthed conducting sphere of 

radius a. Show, by solving Laplace’s equation, that the potential at a point outside the sphere can 

be calculated by replacing the charges induced on the sphere by a point charge –q(a/d) placed at 

a distance a2/d from the centre of the sphere on the line joining the centre and the charge q.

Hard

30. Two point charges –q and +q/2 are situated at the origin and at the point (a, 0, 0) respectively. At 

what point along the axis does electric field vanish? Is this point a true minimum in the potential?

2
, 0, 0

2 1

aÈ ˘Ê ˆ
Í ˙Á ˜-Ë ¯Í ˙Î ˚
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31. An infinite charged sheet with surface charge density s has a circular hole of radius a. The 

sheet is placed in the xy plane with its centre at origin. Using Coulomb’s law or otherwise, find 

the potential V and the field E  at any point at a distance z from the origin and long the positive 

z-direction.
2 2

2 20 0

( );
2 2 z

z
V a z a E a

a z

s s
e e

È ˘Ê ˆ= - + - = -Í ˙Á ˜+Ë ¯Í ˙Î ˚
32. A line charge of length L has a uniform line charge distribution of l. Determine an expression for 

the force exerted on a point charge q, located a distance r from the midpoint of the line charge 

distribution and perpendicular to the line charge.

2 202 4
r

q L
F a

r L r

l
p e

È ˘=Í ˙
+Í ˙Î ˚

33. A charge density of s (C/m2) is uniformly spread over the area of a disc of radius a. Determine 

the force on a charge q that is placed a distance h from the centre of the disc and on a line that is 

perpendicular to the disc.

2 20

2 20

1 0
2

1 0
2

z

z

q h
F a h

a h

q h
a h

a h

s
e

s
e

È ˘Ê ˆ= - >Í ˙Á ˜+Ë ¯Í ˙
Í ˙Ê ˆ= - + <Í ˙Á ˜Í ˙+Ë ¯Î ˚

34. A point charge q is kept at a corner of a cube. Determine the flux of the electric field due to q

through the three surfaces of the cube which do not meet at q.

08

q

e
È ˘
Í ˙Î ˚

35. A semi-infinite line extending from -μ to 0 along the z-axis carries a uniform line charge 

distribution of 10 nC/m. Find the field intensity at point P (0, 0, 4). If a charge of 5 mC is placed 

at point P, find the force acting on the charge. [450 V/m; 450 N]z za a m
36. Two water molecules each having a dipole moment 6.2 ¥ 10–30 C-m point in the same direction 

and are inclined at an angle of 60° to the line joining their centres. Determine the potential energy 

due to their dipole–dipole interaction when their centres are 3.1 ¥ 10–10 m apart. [18.1 meV]

37. Obtain by means of Laplace’s equation, the potential distribution between two coaxial conducting 

cylinders of radii a and c with dielectric of constant e1 filling the region between a and b and a 

second dielectric of constant e2 filling the region between b and c. Given: c > b > a.

0 1 2

1 1
ln ln

2

b c

a b

l
p e e e

È ˘Ê ˆ+Á ˜Í ˙Ë ¯Î ˚

38. The electrostatic potential in free space is given by V = a – b(x2 + y2) = 2 2ln x yg + , where a,

b and g are constants. Find the charge density in the region. [4e0b]

39. A thin circular ring of radius R carries a uniform surface charge density s. Calculate the electric 

potential and field at a point on the axis of the ring.

40. A single wire of radius r runs parallel to the ground at a height of h. Find an expression for its 

capacitance.
0

2 2

2

ln

C
h h r

r

p eÈ ˘=Í ˙Ê ˆ+ -Í ˙Á ˜Í ˙Ë ¯Î ˚
*41. Two co-axial conducting cylinders of radius 2 cm and 4 cm have a length of 1 m. The region 

between the cylinders contains a layer of dielectric from r = c to r = d with er = 4. Find the 
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capacitance if (i) c = 2 cm, d = 3 cm (ii) d = 4 cm and the volume of the dielectric is the same as 

in part (i). [(i)143 pF, (ii)177 pF]

*42. A parallel plate capacitor has the region between the plates filled with a dielectric slab of 

relative permittivity er. The plate dimensions are: width w, length l and the plate separation is 

d. The capacitor is charged to a potential V, after which it is disconnected. The dielectric is now 

partially withdrawn in the l-dimension until only length x remains between the plates. What is the 

capacitance of this new system? What is now the potential across the capacitor?

  

0 [ ( 1) ];
( 1)

r
r

r

lV
l x

d l x

e w e
e

e
È ˘+ -Í ˙+ -Î ˚

43. The permittivity of the dielectric material between the plates of a parallel plate capacitor varies 

uniformly from e1 at one plate to e2 at other plate. Show that the capacitance is given by

2 1

2 1ln( / )

A
C

d

e e

e e

-
=

  where A and d are the area of each plate and separation between the plates respectively.

44. A parallel plate capacitor has rectangular plates of area A, but the plates are not exactly parallel. 

The separation at one edge is (d - a) while at the other edge is (d + a); a << d. Show that the 

capacitance is given approximately by

2
0

2
1

3

A a
C

d d

e È ˘
= +Í ˙Î ˚

45. A positive point charge Q is placed at a height h from a flat conducting ground plane. Find the 

surface charge density rs at a point on the ground plane, at a distance x along the plane measured 

from the point on the plane nearest to the charge.

2 2 3/22 ( )

Qh

h xp

-È ˘
Í ˙+Î ˚

46. Find the capacitance of an insulated conducting sphere of radius a when it is kept isolated. 

Determine the change in the capacitance when the sphere is placed at a distance b from an earthed 

conducting wall, where b is fairly large compared to a.

  [4pe0a; capacitance increases by 2pe0 a2/b]

47. A sheet charge of uniform density rs extends in the entire xy-plane. Show that Gauss’ law in 

differential form for the entire sheet charge is given by

0

1
( )sE zr d

e
— ◊ = ; d(z) is Dirac delta function

Review Questions

[NOTE: * marked questions are important university questions.]

1. State and explain Coulomb’s law in electrostatics. Express it mathematically for two point 

charges. Does the form depend on the system of units?

or

  State and explain Coulomb’s law and hence show that the electric field intensity is inversely 

proportional to the square of the distance between two point charges.
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2. State Coulomb’s law and explain the factors that influence the forces.

3. State and explain Coulomb’s law for the vector force between two point charges in free space.

*4. What is the superposition principle in electrostatics? What do you mean by the volume, surface 

and line charge densities? How can you express a point charge using the Dirac delta function?

5. Explain the superposition principle governing the forces between charges at rest.

6. (a) What do you mean by electrostatic potential and equipotential surfaces?

  (b) Express the electrostatic potential in terms of the fundamental dimensions (MLTI).

*7. (a) Define electric field E at a point and show that 0E— ¥ = .

or

  Show that the electrostatic field is conservative.

(b) What are the dimensions of E in terms of the fundamental quantities M, L, T and I?

(c) Express the relationship between electric potential and field intensity.

or

  What is ‘potential’ and ‘potential gradient’? Prove that E V= -— , where, E  is the electric field 

and V is the electric scalar potential.

(d) Show that the potential rise between two points is equal to the line integral of electric field 

intensity along the curved paths between the two points.

(e) State the properties of a static electric field.

(f) Show that the electric field intensity at a point due to a number of point charges is the vector 

sum of the electric filed intensities due to individual point charges at that point.

*8. Discuss the term “electric field due to a static charge configuration”.

*9. Define the term “potential difference V(A) - V(B) between points A and B in a static electric 

field”. Give an energy interpretation to potential difference.

*10. Define the term “potential difference V(A) - V(B) between points A and B in a static electric 

field”. Explain the concept of reference point and comment on its location.

*11. Show that the work done in moving a charge from one point to another in an electrostatic field is 

independent of the path between the points.

*12. Define the electric displacement vector D  in the presence of dielectric. Obtain the expression for 

its divergence.

*13. What are the equipotential surfaces for an infinite straight line of uniform charge density? 

Explain.

*14. What are the equipotential surfaces for an infinite plane of uniform surface charge density? Explain.

*15. (a)  State and prove Gauss’s theorem in electrostatics. What are the premises on which the 

theorem is based? Does the theorem differ from Coulomb’s law?

or

  Show that div D r= , where D is the electric flux density and r is the volume charge density.

(b) Apply this theorem to calculate the electric field due to a (i) uniformly charged sphere and 

(ii) uniformly charged infinite cylinder.

16. State and prove Gauss’ law in integral form, considering static charges in free space.

*17. E  is the electric field due to a point charge Q C at the origin in free space. Find 
S

E d a◊Ú  where S

is a spherical surface of radius R m and centre at origin.

18. (a)  Show that the charge resides on the outer surfaces of a charged conductor.

(b) Prove that the electric field just outside a charged conductor is perpendicular to its surface. 

Also, determine the magnitude of this field.
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19. If a total charge Q is uniformly distributed throughout the volume of a sphere of radius a, what 

would be the electric field at a distance r from the centre of the sphere?

20. State the boundary conditions on E  and D  at the interface of two different dielectric media, when 

there is a charge density on the interface.

or

  Establish the boundary conditions for the electric field on the interface between two dielectric 

media of different relative permittivity.

21. What is an electric dipole? Calculate the electric field and potential in free space due to a dipole.

or

(a) Show that the electric field intensity due to a dipole varies inversely as the cube of the 

distance of the field point from the dipole.

(b) Show that the potential of a dipole at any point varies as the inverse square of the distance 

from centre of dipole to the point.

*22. In electrostatics, what is meant by a physical dipole?

*23. What is meant by a pure electric dipole?

24. For a physical dipole in the z-direction, located at the origin in free space, find the potential at a 

point ( ), ,
2

r
p

q f =  (in spherical coordinates).

25. (a)  Determine the potential energy of a dipole in an external electric field.

or

  An electric dipole of moment p is placed in a uniform electric field E . Show that its potential 

energy is p E- ◊ .

(b) Calculate also the torque on the dipole in a uniform electric field.

26. Show that the torque on a physical dipole p in a uniform electric field E is given by p E¥ .

Extend this result to a pure dipole.

27. Obtain Coulomb’s law from Gauss’ theorem.

28. (a)  Derive Poisson’s and Laplace’s equations from fundamentals.

or

  State and prove Poisson’s equation in electrostatics. What form does it take when the charge 

density is zero? Illustrate the application of this equation to find the electric field and poten-

tial in two suitable cases of symmetric charge distribution.

(b) What are the importances of Poisson’s and Laplace’s equations in electrostatics? 

29. Explain the Laplace’s and Poisson’s equations for steady electric field.

30. State and prove Uniqueness theorem in connection with Laplace’s equation.

31. The solution to Laplace’s equation in some region is uniquely determined if the value of the 

potential V is a specified function on all boundaries of the region. Prove it.

32. Obtain Green’s integral identities and state their significance. Apply the first identity to show that 

the specifications of both divergence and curl of a vector with boundary conditions are sufficient 

to make the function unique.

  What are Dirichlet and Neumann conditions?

33. What is an electrical image? State its usefulness in solving electrostatic problem.

or

  Explain the method of electrical images in solving electrostatic problems.
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34. What do you mean by the term ‘energy density’ in an electrostatic field? Show that in free space 

it is given by 2
0

1

2
Ee , E being the electric field.

35. Show that the electromagnetic energy due to charged conductor in space is given by 
1

2 v
D Edv◊Ú

where fields D and E  occupy whole of the space.

36. (a)  Define capacitance of a conductor and explain its significance.

(b) Show that the electrostatic energy of a capacitor of capacitance C charged to a voltage V is 

21

2
CV .

(c) Show that, when a capacitor of capacitance C is charged fully by connecting it across a 

battery of e.m.f. E, the energy expended by the battery is CE2.

*37. (i) Define capacitance. Express its units in two different ways.

(ii) As per the usual definition, show that a capacitance is always positive.

(iii) Sometimes, capacitance of a single conductor is referred to. What does this mean?

*38. Define capacitance and explain why it is always a positive quantity.

39. Derive the expression for the energy stored in a capacitor.

40. (a)   A conducting body is in the electric field of static charges. Explain why the net electric field 

at any point inside the conducting body will be zero.

(b) Use the result of (a) to show that

   (i) the net volume charge density at any point inside the conductor is zero, and

  (ii) the conductor is an equipotential body.

*41. For a conducting body in the electric field of static charges, explain what will be the

(a) net electric field inside the conductor, and

(b) volume charge density at any point inside the conductor?

42. One medium is a dielectric with permittivity e1 and the other is a conductor. Find the angle q1

between the normal and a field line in medium 1 incident on the conductor (medium 2).

Multiple Choice Questions

1. Electric potential and electric field intensity inside a spherical shell are:

(a) Zero and constant respectively (b) Both inversely proportional to radius

(c) Constant and zero respectively (d) Zero and zero respectively

2. Poisson’s and Laplace’s equations govern the behaviour of electric scalar potential for:

(a) Charge free region

(b) A region of charge

(c) Charge free region and a region of charge, respectively

(d) Region of charge and charge free region, respectively

3. Electric field in a region containing space charges can be found using

(a) Laplace’s equation (b) Poisson’s equation

(c) Coulomb’s law (d) Helmholtz equation

4. Capacitance of the earth of radius R is

(a) 2pe0R (b) 4pe0R (c) 3
0

4

3
Rpe (d) none

5. When an insulator is inserted between the plates of an air gap capacitor charged with constant 

charges, the electric field
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(a) decreases (b) increases

(c) remains the same (d) becomes zero

6. On a perfect conductor surface

(a) The tangential component of E and normal component of B are zero

(b) The normal component of D is the surface charge density

(c) The tangential component of H is equal to the surface current density

(d) All of the above

7. Boundary conditions at the interface between perfect dielectrics are:

(a) Normal components of E and B and the tangential components of H and D are continuous.

(b) Tangential components of E and H and the normal components of D and B are continuous.

(c) Normal components of E and H and tangential components of D and B are continuous.

(d) Normal components of B and H and tangential components of E and D are continuous.

8. As one moves at right angle to a charged parallel-plate capacitor, the electric field E inside the 

capacitor

(a) Drops abruptly to zero

(b) Remains constant

(c) Approaches zero in a continuous and gradual way

(d) Approaches zero sinusoidally

9. An isolated metal sphere whose diameter is 10 cm has a potential of 8 kV. The energy density at 

the surface of the sphere is

(a) 0.011 J/m2 (b) 0.11 J/m2 (c) 1.1 J/m2 (d) 11 J/m2

10. An electron (mass = 9.1 ¥ 10 kg, charge = 1.6 ¥ 10  Coulomb) experience force equal to its 

weight in an electric field. The field strength is

(a) 5.6 ¥ 10 N/C (b) 5.6 ¥ 10 N/C

(c) 5.6 ¥ 10 N/C (d) 5.6 ¥ 10 N/C

11. Two metallic spheres, radii a and b, are connected by a thin wire. The separation is large compared 

to their dimensions. A charge Q is put into the system. The capacitance of the system is

(a) 4pe0ab (b) 4pe0

a

b
(c) 4pe0(a + b) (d) 4pe0loge

b

a

12. Two concentric rings of radius ‘a’ and ‘2a’ carrying equal and uniform charge densities revolve 

at the same angular speed ‘w’ about their common axis. The ratio of flux densities due to the two 

rings at the centre will be

(a) 1 : 1 (b) 1 : 2 (c) 1 : 4 (d) 2 : 1

13. If E  is the electric field intensity, ( )E— — ¥  is equal to

(a) E (b) | |E (c) null vector (d) zero

14. An infinite number of concentric rings carry a charge Q each alternately positive and negative. The 

radii are 1, 2, 4, 8, … metres in geometric progression. The potential at the centre of the rings will 

be

(a) zero (b)
012

Q

pe
(c)

08

Q

pe
(d)

06

Q

pe

15. Two concentric spherical shells of radius ‘R’ and ‘2R’ carry equal and opposite uniformly 

distributed charges over their surfaces. The electric field on the surface of the inner shell will be

(a) zero (b)
2

04

Q

Rpe
(c)

2
08

Q

Rpe
(d)

2
016

Q

Rpe
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16. Two point charges Q and –Q are located on two opposite corners of a 

square as shown in Fig. 2.88. If the potential at the corner A is taken as 

1V, then the potential at B, the centre of the square will be

(a) zero (b)
1

V
2

(c) 1 V (d) 2 V

17. The electric field across an interface is 

shown in figure. The surface charge den-

sity (in coulomb/m2) on the surface is

(a) – 4e0 (b)  – 3e0

(c) + 3e0 (d) + 4e0

18. Match List I with List II and select the correct answer using the codes given below the lists:

List I

(Expression)

List II

(Law/theorem/equation)

A. 2 vV
r
e

— = - 1. Gauss’ Law

B. —2V = 0 2. Divergence theorem

C.
s

D d s Q◊ -Ú
3. Laplace’s equation

D.
v s

Ddv D d s— ◊ = ◊Ú Ú 4. Poisson’s equation

5. Coulomb’s law

  Codes:

  (a) A B C D

  4 2 5 1

  (b) A B C D

  3 1 2 4

  (c) A B C D

  2 3 4 5

  (d) A B C D

  4 3 1 2

19. Two positive charges, Q coulombs each, are placed at points (0, 0, 0) and (2, 2, 0) while two 

negative charges, Q coulombs each in magnitude, are placed at points (0, 2, 0) and (2, 0, 0). The 

electric field intensity at the point (1, 1, 0) is

(a) zero (b)
08

Q

pe
(c)

04

Q

pe
(d)

016

Q

pe

20. Two infinite parallel metal plates are charged with equal surface charge density of the same 

polarity. The electric field in the gap between the plates is

(a) The same as that produced by one plate

(b) Double of the field produced by one plate

(c) Dependent on coordinates of the field point

(d) Zero

Fig. 2.88

2

3 2

e

e

=

=

x

x

E a

E a

≠ =

≠ =
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21. Consider the following statements associated with a parallel plate capacitor:

1. Capacitance is proportional to area of plates.

2. Capacitance is inversely proportional to distance of separation of plates.

3. The dielectric material is in a state of compression.

  Of these statements

(a) 1, 2 and 3 are correct (b) 1 and 2 are correct

(c) 1 and 3 are correct (d) 2 and 3 are correct

22. Two concentric metallic spheres of radii ‘a’ and ‘b’ carry charges +Q and 

-Q respectively as shown in the given figure. Potential at the centre ‘P’ 

will be:

(a) Zero (b)
04

Q

bpe

(c)
04

Q

ape
- (d) ( )

0

1 1

4

Q

a bpe
-

23. The electrostatic field on the surface of a conductor at a certain point is 

0.3 0.4i j+ . If the normal to the surface of the conductor at that point 

makes an angle q with respect to x-axis, the value of cos q will be

(a) 0.8 (b) 0.75 (c) 0.6 (d) 0.5
a

24. A point charge +Q is brought near a corner of two right angle conducting 

planes which are at zero potential as shown in Fig. 2.90. Which one of 

the following configurations describes the total effect of the charges for 

calculating the actual field in the first quadrant?

(a) (b)

(c) (d)

25. The relation between electric intensity E, voltage applied V and the distance d between the plates 

of a parallel plate condenser is

(a)
V

E
d

= (b) E = V ¥ d (c)
2( )

V
E

d
= (d) E = V ¥ (d)2

26. A spherical conductor of radius a with charge q is placed concentrically inside an uncharged and 

unearthed spherical conducting shell of inner and outer radii r1 and r2 respectively. Taking the 

potential to be zero at infinity, the potential at any point P within the shell (r1 < r < r2) will be

(a)
04

q

rpe
(b)

04

q

ape
(c)

0 24

q

rpe
(d)

0 14

q

rpe

Fig. 2.89

Fig. 2.90
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27. Inside a hollow conducting sphere

(a) electric field is zero.

(b) electric field is a non-zero constant.

(c) electric field changes with the magnitude of the charge given to the conductor.

(d) electric field changes with distance from the centre of the sphere.

28. In a uniform electric field, field lines and equipotentials 

(a) are parallel to one another. (b) intersect at 45°.

(c) intersect at 30°. (d) are orthogonal.

29. Energy stored in a capacitor over a cycle, when excited by an a.c. source is

(a) the same as that due to a d.c. source of equivalent magnitude

(b) half of that due to a d.c. source of equivalent magnitude

(c) zero

(d) none of the above

30. Consider the following statements regarding field boundary conditions:

1. The tangential component of electric field is continuous across the boundary between two 

dielectrics.

2. The tangential component of electric field at a dielectric-conductor boundary is non-zero

3. The discontinuity in the normal component of the flux density at a dielectric–conductor 

boundary is equal to the surface charge density on the conductor.

4. The normal component of the flux density is continuous across the charge-free boundary 

between two dielectrics.

  Of these statements

(a) 1, 2 and 3 are correct. (b) 2, 3 and 4 are correct.

(c) 1, 2 and 4 are correct. (d) 1, 3 and 4 are correct.

31. Match List I with List II and select the correct answer using the codes given below the lists: 

(Symbols have the usual meanings)

  List I List II

A. Poisson’s equation 1. —2f = 0

B. Laplace’s equation 2. 2 2
0 0 0 00 whereE K E K w m e— + = =

C. Joule’s equation 3. —2f = –r/e0

D. Helmholtz’s equation 4. j

d
U E J

dv

r
= = ◊

  Codes:

  (a) A B C D
  2 1 4 3
  (b) A B C D
  3 4 1 2
  (c) A B C D
  3 1 4 2
  (d) A B C D
  2 4 1 3

32. By saying that the electrostatic field is conservative, we do not mean that

(a) It is the gradient of a scalar potential.

(b) Its circulation is identically zero.

(c) The work done in a closed path inside the field is zero.

(d) The potential difference between any two points is zero.
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33. Point charges Q1 = 1 nC and Q2 = 2 nC are at a distance apart. Consider the following statements:

1. The force on Q1 is repulsive.

2. The force on Q2 is the same in magnitude as that on Q1.

3. As the distance between them decreases, the force on Q1 increases linearly.

4. The force on Q2 is along the line joining them.

5. A point charge Q3 Q1 and Q2 experiences no net 

force.

  Which of the following statements are incorrect?

(a) 3 and 4 (b) 3 and 5 (c) 1, 3 and 5 (d) none

34. Plane z = 10 m carries charge 20 nC/m2. The electric field intensity at the origin is:

(a) 10 za-  V/m (b) 18 zap-  V/m (c) 72 zap-  V/m (d) 360 zap-  V/m

35.

The total flux leaving a cube of side 6 m centered at the origin is

36. The work done by the force 4 3 2x y zF a a a= - +  N in giving a 1 nC charge a displacement of 

10 2 7x y za a a+ -  m is

(a) 103 nJ (b) 60 nJ (c) 64 nJ (d) 20 nJ

37. An electric potential field is produced by point charges 1 mC and 4 m

(a) 2.57 mJ (b) 5.14 mJ (c) 10.28 mJ (d) none

38. The region z £ 0 is a dielectric of relative permittivity 2 while the region z ≥ 0 is a dielectric of 

relative permittivity 5. If the electric field intensity in region z £ 0 is 10 kV/mzE a= , the potential 

) m and (0, 0, 10 ) m will be:

(a) zero (b) 70 V (c) 20 V (d) 14 V

Answers

1. (c), 2. (d), 3. (b), 4. (b), 5. (a), 6. (b), 7. (b) 8. (b),

9. (a), 10. (c), 11. (c), 12. (a), 13. (d), 14. (d), 15. (b), 16. (c),

17. (a), 18. (d), 19. (a), 20. (d), 21. (a) 22. (d), 23. (c), 24. (d),

25. (a), 26. (a), 27. (a), 28. (d) 29. (c), 30. (d), 31. (c), 32. (d),

33. (b), 34. (d), 35. (b) 36. (d), 37. (b), 38. (d)



This chapter deals with the following topics:

■ Concepts of electric current

■ Basic characteristics of conductors and dielectrics

■ Basic laws of magnetostatics

■ To acquire knowledge of fundamental quantities of magnetostatics

■ Boundary conditions in magnetostatics

■ Concepts of inductances

3
MAGNETOSTATICS

3.1 INTRODUCTION

In the previous chapter, we have learned different aspects of electrostatic fields in free space or vacuum. 

In this chapter, we will discuss different phenomena of electric field in material space, like conductors 

and insulators. 

In the first part of this chapter, we will discuss the properties of such electrical materials and the 

important relations governing the behaviour of steady electric current in those materials.

In the second part of this chapter, we will discuss the static magnetic fields, related laws and other 

terminologies in detail.

Behaviour of Different Electrical Materials in Electric Field

3.2 ELECTRIC CURRENT AND CURRENT DENSITY

3.2.1 Electric Current

Electric current is defined as the rate of flow of electric charges or electrons through a cross-sectional 

area.

If Q amount of charges flow through an area in time t, then the current is given as

Q
I

t
= (3.1)

PART I

Learning Objectives
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or in differential form

dq
i

dt
= (3.2)

and the charge transferred between time t0 and t is given by

0

t

t

q idt= Ú (3.3)

NOTE

(i) By convention, electric current flows in the direction opposite to the direction of the electrons. 

The current through a given area is the electric charge passing through the area per unit time.

(ii) As charge (Q) is expressed in Coulomb, the unit of electric current is Coulomb per second and 

it is given the name Ampere (A). Thus,

1 A current = flow of 6.24 ¥ 1018 electrons per second through an area

3.2.2 Electric Current Density

Current density ( )J  at any point is a vector whose magnitude is the electric current per unit cross-

sectional area and whose direction is normal to the cross-sectional area. Its unit is ampere per square 

metre (A/m2).

\ ˆ
I

J n
A

= (3.4)

or in differential form ˆ
v

dI
J n

dS
= (3.5)

where dSv is the projection of dS in a plane normal to that of the flow. This is depicted in Fig. 3.1.

Fig. 3.1 Current density distribution

NOTE

(i) For uniform cross section of the conductor, J  is same in magnitude and direction everywhere.

(ii) For non-uniform cross section of the conductor, J  is different in magnitude and direction at 

various points.

Thus, total current flowing through a surface S is given as

S

I J dS= ◊Ú (3.6)
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Depending upon how I is produced, there are three different current densities:

1. Convection current density,

2. Conduction current density and

3. Displacement current density.

Example 3.1 In a cylindrical conductor to the region 0.01 £ r £ 0.02, 0 < z < 1 m and the 

current density is given by

100 210 A/mrJ e af
-=

Find the total current crossing the extential of this region with f = constant plane.

Solution Total current in the wire is given as

0.02 1
100

0.01 0

0.02 1
100

0.01 0

0.02
100

0.01

. [10 ] [ ]

10

10

r

S r z

r

r z

r

r

I J dS e a rdrdza

re drdz

re dr

f f
-

= =

-

= =

-

=

= = ◊

=

=

Ú Ú Ú

Ú Ú

Ú

0.02 0.02100 100

0.010.01

0.02
100

2 1

0.01

3 1 3 2

10
100 100

1
10 (0.02 0.01 )

100 100 100

2 10 310

0.033 mA

r r

r

r

re e
I dr

e
e e

e e

- -

=

-
- -

- - - -

È ˘
Í ˙= -

- -Í ˙Î ˚
È ˘
Í ˙= - - +

- ¥Í ˙Î ˚
= ¥ -
=

Ú

Example 3.2 Find the total current in a circular conductor of radius 4 mm if the current density 

varies according to 
410

J
r

=  A/m2.

Solution Total current is given as

2 0.004 0.0044
4 4

0 0 0

10
2 10 2 10 0.004 80 A

S r r

I J dS rdrd dr
r

p

f

f p p p
= = =

= ◊ = = ¥ = ¥ ¥ =Ú Ú Ú Ú

Example 3.3 In a certain region, the current density vector is given by, 

3 ( 3) (2 )x y zJ xa y a z a= + - + +  A/m2

Find the total current flowing out of the surface of the box bounded by the five planes x = 0, y = 0, 

z = 0 and (3x + z) = 3.
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Solution As shown in Fig. 3.2, we will consider the 

normal vector to be always pointing out of the box so that 

S

J dS◊Ú  gives the current flowing out of the surface.

— For the surface x = 0,

\ 

( 3) (2 )

0

y z

z

J y a z a

dS dydza

I J dS

= - + +

= -
= ◊ =Ú

— For the surface y = 0,

3 3 (2 )x y z

y

J xa a z a

dS dxdza

= + - + +

= -

\ 
3 31

0 0

11
2

00

3

9 9
3(3 3 ) 9

2 2

x

x z

x

I J dS dzdx

x dx x x A

-

= =

=

= ◊ =

È ˘= - = - =Í ˙Î ˚

Ú Ú Ú

Ú

— For the surface y = 2,

3 (2 )x y z

y

J xa a z a

dS dxdza

= + + +

=

\ 
13 31 1

2

00 0 0

3 3
( 3 3 ) 3 A

2 2

x

x z x

I J dS dzdx x dx x x
-

= = =

È ˘= ◊ = - = - - = - + = -Í ˙Î ˚Ú Ú Ú Ú

— For the surface z = 0,

\ 
2 1

0 0

3 ( 3) 2

2 4 A

x y z

z

y x

J xa y a a

dS dxdya

I J dS dxdy
= =

= + - +

= -

= ◊ = - = -Ú Ú Ú

— For the surface (3x + z) = 3,

\ 
2 1 1 1

0 0 0 0

3 ( 3) (5 3 )

(3 1 )

(9 5 3 ) (18 10 6 ) (12 10) 16 A

x y z

x z

y x x

J xa y a x a

dS a a dxdy

I J dS x x dxdy x x dx x dx
= = =

= + - + -

= +

= ◊ = + - = + - = + =Ú Ú Ú Ú Ú

Adding the components of the currents, total current flowing out of the closed surface is 

9 3
0 4 16 15 A

2 2
I

Ê ˆ= + - - + =Á ˜Ë ¯

Fig. 3.2 Closed surface of Example 3.3
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Example 3.4 If 3

1
(2 cos sin )rJ a a

r
qq q= +  A/m2, calculate the current passing through:

(a) A hemispherical shell of radius 20 cm.

(b) A spherical shell of radius 10 cm.

Solution Total current is given as, I J dS= ◊Ú
Here, 2 sin rdS r d d aq f q=
(a) Total current passing through a hemispherical shell of radius 20 cm is

( )

22
2

3
0 0

0.2

22
2

3
0 0

0.2

2

0
0.2

2 2

0

1
(2 cos sin ) ( sin )

1
2 cos sin

2
sin sin

4 sin
10 31.42 A

0.2 2

r r

r

r

r

I a a r d d a
r

r d d
r

d
r

p
p

q
q f

p
p

q j

p

q

p

q q q f q

q q f q

p q q

p q
p

= =
=

= =
=

=
=

= + ◊

=

= ¥

È ˘
= = =Í ˙

Î ˚

Ú Ú

Ú Ú

Ú

(b) Total current passing through a spherical shell of radius 10 cm is

2
2

3
0 0

0.1

2
2

3
0 0

0.1

0
0.1

2

0

1
(2 cos sin ) ( sin )

1
2 cos sin

2
2 sin (sin )

4 sin

0.1 2

0

r r

r

r

r

I a a r d d a
r

r d d
r

d
r

p p

q
q f

p p

q f

p

q

p

q q q f q

q q f q

p q q

p q

= = =

= = =

= =

= + ◊

=

= ¥

È ˘
= Í ˙Î ˚
=

Ú Ú

Ú Ú

Ú

Example 3.5 For the current density, 210 sin rJ z af=  A/m2, find the current through the 

cylindrical surface r = 2, 1 £ z £ 5 m.

Solution Total current passing through the cylindrical surface is

55 2 22
2 2

11 0 0
2 2

(10 sin ) ( ) 10 sin
2

24 2
10 2 240 754 A

2 2

r r
z

r r

z
I J dS z a rd dza r d

p p

f f

f f f f

p
p

= = == =

È ˘
= ◊ = ◊ = Í ˙Î ˚

= ¥ ¥ ¥ = =

Ú Ú Ú Ú
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3.2.3 Convection Current

Definition The motion of charged particles in free space (vacuum) is said to constitute convection 

current.

Mathematical Equation We will consider a region with volume charge density rv, in which the 

charges are moving under the influence of an electric field with an average velocity U . This is shown 

below in Fig. 3.3.

\ Current density, 
v

dI
J

dS
=

But, [ volume of an infinitesimal cylinder ]v
v

dvdQ
dI dv dS dl

dt dt

r
= = = =

Fig. 3.3 Flow of convection current

\ velocity of charge movementv v
v v v

v v v

dv dS dldI dl dl
J U U

dS dS dt dS dt dt dt

r
r r r È ˘= = = = = = =Í ˙Î ˚

In vector form,

vJ Ur= (3.7)

This is the convection current density.

Some Features of Convection Current
(i) Convection current does not require a conductor and does not obey Ohm’s law.

(ii) Convection current is not electrostatically neutral.

(iii) Example of convection current is the motion of electrons from the cathode towards the anode in 

a vacuum tube.

(iv) If both positive as well as negative charges with charge densities rv+ and rv– move with average 

velocities U+  and –U , respectively, then the positive charges will move in the direction of the 

electric field and the negative charges will move in the opposite direction and the total convection 

current density will be given as

v vJ U Ur r+ + - -= + (3.8)
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3.2.4 Conduction Current and Ohm’s Law

Definition The motion of the free electrons present in a conductor, by the influence of an electric 

field constitutes the conduction current.

Mathematical Equation When an electric field, E  is applied, the force on an electron with 

charge, –e is, F eE= -  As the electrons are not free in space, they will not be accelerated by the field; 

but they will suffer constant collisions with atomic lattice and drifts from one atom to another.

Let, m — mass of moving electron,

U  — average drift velocity

By Newton’s law,

mU
eE

t
= -  (t is the average time interval between successive collisions)

\ e
U E E

m

t
m= - = - (3.9)

where,
e

m

t
m =  is the mobility of electrons.

From Eq. (3.9), we see that, drift velocity is directly proportional to the applied field.

If there are N electrons per unit volume, the electron charge density is

v Ner = -

Thus, the conduction current density is

2

v

Ne
J U Ne E E E

m

t
r m s= = = =

where,
2Ne

m

t
s =  is the conductivity of the conductor.

\ J Es= (3.10)

This is the conduction current density.

Some Features of Conduction Current
(i) From Eq. (3.10), it is seen that the current density is linearly dependent on the external electric 

field. This equation is known as the point form of Ohm’s law which states that the current density 

at any point in a conducting medium is directly proportional to the electric field.

(ii) To maintain a steady current within a conductor, a continuous supply of electrons at one end and 

their removal at the other is necessary. So, conductor as a whole is electrostatically neutral.

Example 3.6 Find the current in a circular wire of radius 2 mm when the current density in the 

conductor is

1000 230(1 ) A/mr
zJ e a-= -

Solution Total current in the wire is given as

2 0.002
1000

0 0

[30(1 ) ] [ ]r
z z

S r

I J dS e a rdrd a
p

f

f-

= =
= ◊ = - ◊Ú Ú Ú
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2 0.002
1000

0 0

0.002
1000

0

30(1 )

60 (1 )

r

r

r

r

e rdrd

e rdr

p

f

f

p

-

= =

-

=

= -

= -

Ú Ú

Ú

0.002 0.002 0.0022 1000 1000

00 0

0.002
1000

6 6 2

0

6 6 2 6 2 6

6 2

60 60
2 1000 1000

60 2 10 60 2 10
1000 1000

120 10 120 10 60 10 60 10

60 10 (1 3 )

265

r r

r

r re e
I dr

e
e

e e

e

p p

p p

p p p p

p

- -

-
- - -

- - - - - -

- -

È ˘ È ˘
Í ˙ Í ˙= - -

- -Í ˙ Í ˙Î ˚ Î ˚
È ˘
Í ˙= ¥ ¥ - - ¥ ¥ +

- ¥Í ˙Î ˚
= ¥ + ¥ ¥ + ¥ ¥ - ¥
= ¥ +
=

Ú

.03 Am

*Example 3.7 The free charge density of copper is 1.81 ¥ 1010 C/m3. For a current density of 

8 ¥ 106 A/m2, find the electric field intensity and the drift velocity. Take conductivity of copper as 5.8 

¥ 107 mho/m.

Solution Here,
10 3 6 2 71.81 10 C/m , 8 10 A/m , 5.8 10Jr s= ¥ = ¥ = ¥

\ Electric field intensity is

6

7

8 10
0.138 V/m

5.8 10

J
E

s

¥
= = =

¥

\ Drift velocity is

6
4

10

8 10
4.42 10 m/s

1.81 10

J
U

r
-¥

= = = ¥
¥

*Example 3.8 The resistivity of seawater is about 25 W-cm. The charge carriers are chiefly 

Na+ and Cl– ions, and of each there are about 3 ¥ 1020/cm3. If we fill a plastic tube 2 metre long with 

seawater and connect a 12-volt battery to the electrodes at each end, what is the resulting average drift 

velocity of the ions, in cm/s?

Solution The current in a conductor of cross-sectional A is related to the drift velocity U of the 

charge carriers as

I JA UA neUAr= = =

where n is the number of charge carriers per unit volume. Hence, Ohm’s law can be written as

\ 

l
V RI JneUA neU l

A

V
U

ne l

r
r

r

Ê ˆ= = =Á ˜Ë ¯

=
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Substituting the values, we get

5

20 19

12
2.5 10 cm/s

(6 10 ) (1.6 10 ) (25) (200)

V
U

ne lr
-

-= = = ¥
¥ ¥ ¥

3.2.5 Displacement Current

The concept of displacement current can be illustrated as in 

Fig. 3.4 by considering the currents in a simple parallel RC

network (assume ideal circuit elements, for simplicity).

Here, iR(t) conduction current

IC(t) displacement current

From circuit theory,

( ) ( )
( ) ( )R C

v t dv t
i t i t C

R dt
= =

In the resistor, the conduction current model is valid ( )R R RJ Es= . The ideal resistor electric field 

( )RE  and current density ( )RJ  are assumed to be uniform throughout the volume of the resistor. 

The conduction current model does not characterise the capacitor current. The ideal capacitor is 

characterised by large, closely-spaced plates separated by a perfect insulator (sC = 0) so that no charge 

actually passes throughout the dielectric [ ( ) ( )]C C CJ t E ts= . The capacitor current measured in the 

connecting wires of the capacitor is caused by the charging and discharging the capacitor plates. Let 

Q(t) be the total capacitor charge on the positive plate.

Hence, the capacitor current, also termed as the displacement current is given as

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) [ ( )]C d

dQ t dv t dv t v t dE t dD tA d d
i t i t C A A A E t A

dt dt d dt dt d dt dt dt

e
e e e

È ˘= = = = = = = =Í ˙Î ˚
So, the displacement current density is given as

( )
( )d

dD t
J t

dt
=

As D may vary with space, the displacement current density is written as

( )
( )d

D t
J t

t

∂
=

∂
(3.11)

Thus, displacement current for a closed surface is

d d
S S

D
I J dS dS

t

∂= ◊ = ◊
∂Ú Ú

Thus, the displacement current does not represent a current. It is only an apparent current representing 

the rate at which flow of charge takes place from electrode to electrode in the external circuit. Hence, 

the term ‘displacement’ is justified.

*Example 3.9 Find the displacement current through a surface at a radius r (a < r < b) in a co-

axial cylindrical capacitor of length l when a voltage v = Vm sin wt is applied; a and b being the radii of 

inner and outer cylinders respectively.

Fig. 3.4 RC parallel circuit 

representing a lossy capacitor
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Solution From Example 2.53 of Chapter 2, we have

ln ( / )

V
E

r b a
=

\ Displacement current is

2 2
2 ( sin )

ln( / ) ln( / ) ln( / )

2
cos

ln( / )

cos

d m

m

m

dE d V l dV l d
I A rl V t

dt dt r b a b a dt b a dt

l
V t

b a

C V t

pe pe
e e p w

pe
w w

w w

È ˘= = = =Í ˙Î ˚

=

=

where,
2

ln ( /2)

l
C

b

pe=  is the capacitance of the co-axial cylindrical capacitor

\ cosd mI C V tw w=

Example 3.10 Find Jc and Jd for moist soil which has the conductivity s = 10–3 mho/m, er = 2.5. 

Given: E = 6 ¥ 10–6sin (9 ¥ 109t) V/m.

Solution Conduction current density is

3 6 9 9 9 210 6 10 sin(9 10 ) 6 10 sin(9 10 ) A/mCJ E t ts - - -= = ¥ ¥ ¥ = ¥ ¥

Displacement current density is,

6 9
0

12 6 9 9

6 9 2

[6 10 sin (9 10 )]

2.5 8.854 10 6 10 10 cos (9 10 )

1.19 10 cos (9 10 ) A/m

d r

E
J t

t t

t

t

e e e -

- -

-

∂ ∂= = ¥ ¥
∂ ∂

= ¥ ¥ ¥ ¥ ¥ ¥
= ¥ ¥

*Example 3.11 Show that the displacement through a capacitor is equal to the conduction 

current if the supply voltage is v = Vm sin wt.

Solution Here the applied voltage is, v = Vm sin wt

We consider a parallel plate capacitor of capacitance given as A
C

d

e=

where, A is the area of the plate and d is the distance between the plates.

The conduction current is given as

[ sin ] cosd m m

dv A d A
I C V t V t

dt d dt d

e e
w w w= = = (i)

However, as the medium between the plates is dielectric, there is no conduction current in a capacitor. 

A displacement current may be considered to flow which is given as

[ sin ] cosd m m

dE d v A d A
I A A V t V t

dt dt d d dt d

e e
e e w w wÈ ˘= = = =Í ˙Î ˚ (ii)

From (i) and (ii), it is seen that the displacement in a capacitor is equal to the conduction current.
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*Example 3.12 (a) Show that the ratio of the amplitudes of conduction current density and 

displacement current density is 
s
we

Ê ˆ
Á ˜Ë ¯  for the applied field E = Em sin wt. Assume m = m0.

(b) What is the amplitude ratio if the applied field is E = Eme–t/t where t is real?

Solution
(a) Conduction current density is

| |C C CJ E J J Es s= \ = = (i)

Displacement current density is

\ | | [ sin ] cos sin

d

d d m m m

E
J

t
E

J J E t E t j E t j E
t t

e

e e w e w w we w we

∂=
∂

∂ ∂= = = = = =
∂ ∂

(ii)

From (i) and (ii), the ratio of the amplitudes is

C

d

J

J

s
we

=

(b) Conduction current density is

| |C C CJ E J J Es s= \ = = (i)

Displacement current density is

\ / /1
| | [ ]

d

t t
d d m m

E
J

t
E

J J E e E e E
t t

t t

e

e
e e e

t t
- -

∂=
∂

∂ ∂ Ê ˆ Ê ˆ= = = = - = -Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂
(ii)

From (i) and (ii), the ratio of the amplitudes is

C

d

J

J

st
e

= -

*Example 3.13 A copper wire carries a conduction current of 1A. Assuming that copper has 

about the same permittivity as free space, i.e., e = e0, find:

(a) Displacement current in the wire at 100 MHz.

(b) Displacement current in the wire at 60 Hz.

For copper, s = 5.8 ¥ 107 mho/m.

Solution Here, IC = 1A; e = e0; s = 5.8 ¥ 107

From Problem 14 (a), we have

2C
d C d C C

d

J f
J J I I I

J

p es we we
we s s s

= fi = fi = =

Substituting the values
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(a) Displacement current at f = 100 MHz is,

6 12
8

7

2 100 10 8.854 102
1 9.58 10 A

5.8 10
d C

f
I I

pp e
s

-
-¥ ¥ ¥ ¥

= = ¥ = ¥
¥

(b) Displacement current at f = 60 Hz is

12
16

7

2 60 8.854 102
1 0.57 10 A

5.8 10
d C

f
I I

pp e
s

-
-¥ ¥ ¥

= = ¥ = ¥
¥

*Example 3.14 Charges are moving with a speed of v m/s along a line that has a charge density 

of l C/m. Both v and l are constants. Find the current through the line, and show that it is a steady 

current.

Solution We consider a strip of the line with thickness dl moved in time dt.

\ Charge enclosed in the strip, dq = ldl = lvdt  
dl

v
dt

È ˘=Í ˙Î ˚

The current is given as 
vdtdq

I v
dt dt

l
l= = =

Since both l and v are constants, the current is a steady current.

*Example 3.15 Copper has 2 mobile electrons per atom, 0.09375 ¥ 1026 atoms per kg, and a 

density of 9000 kg/m3. The magnitude of the charge of an electron is 1.6 ¥ 10–19 C.

(a) Find the mobile charge per unit length of a copper wire of radius 1 mm.

(b) If there is a steady current of 1 A through the wire, find the velocity of the mobile charges.

Solution
(a) Volume of the cylindrical strip of length 1 m and radius 1 mm is

2 2 6 3(0.001) 1 10 mv r hp p p -= = ¥ ¥ = ¥

\ Mass of copper for this elemental volume is,

6 3900 10 9 10 kgm p p- -= ¥ ¥ = ¥

\ Total atoms for this mass = 9p ¥ 10–3 ¥ 0.09375 ¥ 1026

\ Total electrons for these atoms = 2 ¥ (9p ¥ 10–3 ¥ 0.09375 ¥ 1026)

\ Total charge per unit length,

3 26 19 42 (9 10 0.09375 10 ) 1.6 10 5.3014 10l p - -= ¥ ¥ ¥ ¥ ¥ ¥ = ¥  C/m

(b) Here, I = 1A

From earlier problem, we got that 
vdtdq

I v
dt dt

l
l= = =

So, the velocity of the mobile charges is given as

\ 5

4

1
1.886 10 m/s

5.3014 10

I
v

l
-= = = ¥

¥



  240 Electromagnetic Field Theory

3.3 CLASSIFICATION OF ELECTRICAL MATERIALS

Depending upon the atomic structure, electrical materials are of three types:

1. Conductors

2. Insulators

3. Semiconductors

1. Conductors: Electrical materials, which have large number of free electrons or loosely bound 

valence-band electrons that can easily be knocked out of their orbit and constitute a large current, are 

known as conductors. Almost all metals and some liquids are good conductors. 

2. Insulators: Electrical materials, where no free electrons are available and the valence-band electrons 

are tightly bound to the nucleus, are known as insulators. Examples of some insulators include glass, 

mica, plastics, etc.

3. Semiconductors: Electrical materials where there are no such free electrons present, but free 

electrons can easily be created by adding some impurities, are known as semiconductors. Examples of 

some semiconductors include germanium, silicon, etc. For example, germanium, a semiconductor, has 

approximately one trillion times (1 ¥ 1012) the conductivity of glass, an insulator, but has only about 

one thirty-millionth (3 ¥ 10–8) part of the conductivity of copper, a conductor.

3.4 BEHAVIOUR OF CONDUCTORS IN ELECTRIC FIELD

When an electric field E  is applied to a conductor, the electrons 

will experience a force ( )F eE= - . An isolated conductor under 

a static electric field is shown in Fig. 3.5. As the electrons are not 

free in space, they will not be accelerated by the field; but they 

will suffer constant collisions with atomic lattice and drifts from 

one atom to another. This is called drifting of electrons. After some 

time, the electrons will attain a constant average velocity, called 

drift velocity ( )U  which is directly proportional to the applied field 

( ;  is the mobility of electrons)U Em m= - . The current associated 

with this drifting is known as the drift current or conduction current

( ;  is the conductivity of the conductor)J Es s=  as explained in 

Section 3.2.2.

For a perfect conductor, the conductivity is infinite (s Æ ).

As the conduction current is ( )J Es= , to maintain a finite current 

density ( )J , the field E  must be zero for an isolated conductor. All positive charges will move along 

the direction of E  and negative charges will move in the opposite direction. Thus, all charges will 

accumulate on the surface and these induced surface charges will set up an internal induced field, iE ;

which cancels the externally applied field E . As field is zero inside a conductor, the potential inside a 

conductor is constant. Hence, a conductor is an equipotential body.

3.4.1 Properties of Conductors

From the discussion, we summarise the following properties of conductors:

1. The conductivity of a conductor in infinite.

Fig. 3.5 Isolated conductor 

under static electric 

field

E = 0, rv = 0; V12 = 0 inside 

conductor
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2. Electric field inside a conductor is zero.

3. The charge density inside a conductor is zero.

4. The charge can exist on the surface of the conductor, giving rise to surface charge density.

5. The electric field at any point on the surface of a conductor is entirely perpendicular to the 

surface.

6. The conductor including its surface is an equipotential region.

3.4.2 Resistance of Conductor

Definition The ratio of the potential difference between the two ends of a conductor to the current 

flowing through the conductor is known as resistance of the conductor. This is given as

lV
R

I A

r
= =

Mathematical Equation We will consider a uniform conductor as shown in Fig. 3.6. Let

A uniform cross section,

L length of conductor,

V applied voltage

\ Electric field
V

E
l

=

\ Current density 
I

J
A

=
By Ohm’s law,

fi 

J E

I V

A l

s

s

=

=

fi 

1
resistivity of the conductor

lV l

I A A

r

s

r
s

= =

Ê ˆ= =Á ˜Ë ¯

\ Resistance,
l

R
A

r
= (3.12)

In general, resistance of a conductor with non-uniform cross section is given as

1E dl E dlV
R

I J dS E dSs

◊ ◊Ê ˆ= = = Á ˜Ë ¯◊ ◊
Ú Ú
Ú Ú

(3.13)

( )J Es=

Example 3.16 A 3,000 km long cable consists of seven copper wires, each of diameter 0.73 

mm, bundled together and surrounded by an insulating sheath. Calculate the resistance of the cable. 

Use 3 ¥ 10–6 W – cm for the resistivity of the copper.

Solution The resistance R of a conductor is

l
R

A

r
=

Fig. 3.6 Conductor subjected to voltage V
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where r is the resistivity, l is the length of the conductor and A is its cross-sectional area.

Since the cable consists of N = 7 copper wires, the total cross-sectional area is

2 2
2 2(0.073)

7 7 0.0293 cm
4 4

d
A N r

p p
p= = = =

Thus, the resistance is

6 8
4(3 10 ) (3 10 )

3.1 10
0.0293

l
R

A

r -¥ ¥
= = = ¥ W

Example 3.17 A truncated cone of altitude h and radii a and b for the right and the left ends, 

respectively is made of a material of resistivity r. Assuming that the current is distributed uniformly 

throughout the cross section of the cone, what is the resistance between the two ends?

Solution Consider a thin disk of radius r at a distance x from the left end. From Fig. 3.7(b), we have

fi ( )

b r b a

x h
x

r a b b
h

- -
=

= - +

Since resistance R is related to resistivity r by 
l

R
A

r
= , where l is the length of the conductor and A is 

the cross-section, the contribution to the resistance from the disk having a thickness dy is

2 ( ) 2[ / ]a b

dx dx
dR

r b x h

r r

p p -= =
+

By integration, we get

( ) 2
0 [ / ]

h

a b

dx h
R dR

abb x h

r r

pp -= = =
+Ú Ú

(a) (b)

Fig. 3.7 (a) Truncated cone, and (b) Calculation of resistance of truncated cone

3.4.3 Joule’s Law

Statement The rate of heat production by a steady current in any part of an electrical circuit is 

directly proportional to the resistance and to the square of the current (P = I2R). We will derive the field 

equation for Joule’s law.
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Mathematical Equation
Let

E electric field intensity,

rv volume charge density,

U average velocity of moving charges.

\ Force experienced by the charge in a volume dv is

vdF dvEr=

If the charges move a distance dl  in time dt, such that dl Udt= , then the work done by the electric 

field is

v vdW dF dl dvE Udt U Edvdt J Edvdtr r= ◊ = ◊ = ◊ = ◊

\ Power (work done per unit time) supplied by the field is

dW
dp J Edv

dt
= = ◊

\ Power density (power per unit volume) is

p J E= ◊ (3.14)

This is the differential form or point form of Joule’s law.

Total power

v v

P pdv J Edv= = ◊Ú Ú

\
v

P E Jdv= ◊Ú (3.15)

This is the integral form or point form of Joule’s law.

For a linear conductor, J Es= ; thus, the power density is

2| |p E E Es s= ◊ =

\ Total power dissipation 2

v

P E dvs= Ú

For a conductor with uniform cross-section, dv = dSdl; so, total power dissipation is

v l S

P EJdv Edl JdS VI= = =Ú Ú Ú

\ P VI= (3.16)

or,

( )

2 2 2
2 2

2

uniform cross section,

Ê ˆ Ê ˆ= = = = =Á ˜ Á ˜Ë ¯ Ë ¯

= =

Ú Ú
v v

V V A V
P E dv dv lA V

l l Rl

A l length

s
s s s
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2V
P

R
= (3.17)

or, 2 2 2 21

v v

J l
P EJdv Jdv J lA J A I R

As s s
= = = = =Ú Ú

\ 2P I R= (3.18)

This is another form of Joule’s law which states that the rate of heat dissipation varies as the square of 

the current in a linear conductor.

Equations (3.16), (3.17) and (3.18) are the different forms of Joule’s law for conductors with uniform 

cross sections.

Example 3.18 A parallel-palate capacitor with 10 square-cm plates and 0.4 cm plate separation 

contains a medium with permittivity er = 2 and conductivity s = 4 ¥ 10–5 S/m. The potential difference 

between the plates is 200V. Determine the electric field intensity, the volume current density, power 

density, the power dissipation, the current and the resistance of the medium.

Solution Electric field intensity is

200
50 kV/m

0.004 r rE a a= - = -

Current density

5 3 24 10 50 10 2 A/mr rJ E a as -= = - ¥ ¥ ¥ = -

The current through the medium

22 (0.1) 20 mA
S

I J dS= ◊ = ¥ =Ú

Power density is

3 3( 2 ) ( 50 10 ) 100 kW/mr rp J E a a= ◊ = - ◊ - ¥ =

Total power dissipation in the medium is

3 2 2100 10 (0.1) 0.4 10 4 W
v

P pdv -= = ¥ ¥ ¥ ¥ =Ú

Hence, the resistance is

2 3 2

4
10 k

(20 10 )

P
R

I -= = = W
¥

3.4.4 Electromotive Force (EMF) and Kirchhoff’s Voltage Law

We know, electric field intensity around any closed path vanishes; i.e., 0.
l

E dl◊ =Ú

Also, in a conducting medium, the current is, 
s s

I J dS E dSs= ◊ = ◊Ú Ú
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From these two equations, it follows that a purely electrostatic field cannot cause a current to circulate 

in a closed path (loop). In addition, there must also exist a source of energy to maintain the steady 

current in a closed loop.

The external source of energy may be non-electrical, such as

— a chemical reaction (battery),

— a mechanical drive (d.c. generator),

— a light-activated source (solar cell), or

— a temperature-sensitive device (thermocouple)

As these devices convert non-electrical energy into electrical energy; we consider them to be non-

conservative elements, setting up a non-conservative field eE .

In general, the total electric field in a closed loop is

C eE E E= +

where CE  is the static electric field due to charges

eE  is the field generated by other causes (emf-producing field)

Total power associated with the closed loop is

( ) ( )C e C e
v l

P E E Jdv I E E dl= + ◊ = + ◊Ú Ú

(assuming that the steady current is uniformly distributed, such that Jdv Idl= )

or, 0e C
l l

P IE dl E dl
Ê ˆ

= ◊ ◊ =Á ˜Ë ¯
Ú Ú

By defining the electromotive force (emf) in the closed loop as

e
l

E dlx = ◊Ú (3.19)

we get

P Ix= (3.20)

Thus, power delivered to the loop is equal to the product of the emf and the current. Now, by Ohm’s 

law

J Es=

fi ( )C e

J
E E E

s
= = +

fi ( )C e

I
E E

As
= +

fi ( )C e

R l
I E E R

l As
Ê ˆ= + =Á ˜Ë ¯
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Taking line integral around a closed path,

C e
l l l

R
E dl E dl I dl

l
◊ + ◊ =Ú Ú Ú

\ TIRx = (3.21)

where, RT is the total resistance in the closed loop.

In general, for a closed circuit containing many resistances and emf sources,

I Rx =Â Â (3.22)

This is the Kirchhoff’s voltage law (KVL).

Difference between Potential (V) and EMF (x)

1. Potential field, i.e., electric field generated by static charges, is conservative; but emf-producing 

field is non-conservative.

\ 0C
l

E dl◊ =Ú ; but, 0 (emf )e
l

E dl x◊ π =Ú

2. Electric field produced by charges is not able to maintain a steady current; but emf-producing 

field can maintain a steady current.

3. Potential (V) is the negative of the line integral of the static field CE  while emf (x) is the line 

integral of eE . Thus, between two points a and b,

( ) and
b b

ab b a C ab e
a a

V V V E dl E dlx= - = - ◊ = ◊Ú Ú

4. Here, Vab is independent of the path of integration between a and b, but xab is dependent on the 

path.

3.4.5 Kirchhoff’s Current Law

The flux lines in a static electric field region begin and end on an electric charge and hence are 

discontinuous.

The tubes of steady current form closed circuit on themselves and are hence continuous. For this, 

steady current is said to be solenoidal, i.e., no sources or sinks are present.

Thus, as much current must flow into a volume as leaves it. In general, the integral of the normal 

component of the current density J  over a closed surface S must be zero.

\ 0 0
S

J J dS— ◊ = fi ◊ =Ú (3.23)

This relation for steady current applies to any volume. As 

illustration for the conductors shown in Fig. 3.8, (I1 – I2 – I3

+ I4 – I5) = 0

\ 0I =Â (3.24)

This is the Kirchhoff’s current law (KCL).
Fig. 3.8 Currents in a closed surface
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3.4.6 Equation of Continuity and Relaxation Time

This equation is based on the law of conservation of charge which states that charges can neither be 

created nor be destroyed.

We consider a conductor carrying a surface current density J , flowing perpendicular to the area dS ,

having volume charge density rv.

Thus, the total current coming out of the closed surface is

S

I J dS= ◊Ú (3.25)

Now, charges cannot be created or destroyed. Since, the current is simply the motion of charge, the total 

current flowing out of some volume must be equal to the rate of decrease of charge within the volume.

\ v
v

dQ d
I dv

dt dt
r= - = - Ú

\ v

S v

J dS dv
t

r∂
◊ = -

∂Ú Ú (3.26)

Equation (3.26) is known as the integral form of the equation of continuity.

From Eq. (3.26), we get

v

S v

J dS dv
t

r∂
◊ = -

∂Ú Ú

fi v

v v

Jdv dv
t

r∂
— ◊ = -

∂Ú Ú

\ vJ
t

r∂
— ◊ = -

∂
(3.27)

This is the differential form or point form of equation of continuity for time varying fields.

For steady current, r is constant, so that the equation of continuity for steady current becomes,

0J— ◊ = (3.28)

NOTE

Equation (3.28) shows that the net steady current through any closed surface is zero. This implies 

that for a steady current flowing through a conducting, the current density within the medium is 

solenoidal or continuous. 

If the closed surface shrinks to a point, we have from Eq. (3.28) SI = 0, which is the statement of 

Kirchhoff’s current law, stated as the algebraic sum of the currents at a point (called node) is zero.

Relaxation Time This is the time taken by a charge placed in the interior of a conductor to drop its 

value to 37% (e–1 = 0.368 ª 37%) of its initial value.



  248 Electromagnetic Field Theory

From Eq. (3.27) we have

( )v
v

D
J E E D

t

r s s
s s s r

e e e

∂ Ê ˆ
- = — ◊ = — ◊ = — ◊ = — ◊ = — ◊ =Á ˜Ë ¯∂

(Here, we have used, Ohm’s law: J Es= ; Gauss’ law: vD r— ◊ =  and the constitutive relation: 

D Ee= )

\ v

v

t
r s
r e

∂
= - ∂

Integrating

0 0

v t
v

v

t

r

r

r s
r e

∂
= - ∂Ú Ú ; where r0 is the initial charge density at time t = 0.

\ ( / ) /
0 0

t t
v e es e tr r r- -= = (3.29)

Equation (3.29) shows that whenever some charge is introduced at some interior point of a material, 

there is a decay of volume charge density rv. This decay is associated with the movement of charge 

from the interior point to the surface of the material.

The time constant of the decay, is called the relaxation time or rearrangement time

e
t

s
= (3.30)

NOTE

(i) The relaxation time is inversely proportional to the conductivity of the medium. This means that 

the value of t is very small for good conductors and very large for a good dielectric. For example, 

for copper, s = 5.8 ¥ 107 mho/m, and er = 1, so that the value of relaxation time for copper is

e ee
t

s s

-
-¥ ¥= = = = ¥

¥

12
0 19

7

8.854 10 1
1.53 10 second

5.8 10

r

(ii) For good conductors, the relaxation time is so small that whenever any charge is placed inside 

the conductor, the charge will escape from the interior and will come to the conductor surface 

very quickly. 

(iii) For a good dielectric, the relaxation time is so large that any charge placed inside it will almost 

remain within it.

Example 3.19 Determine the relaxation time for silver having conductivity of s = 6.17 ¥ 107

mho/m. If the charge density of 5 mC is placed inside a silver block, find the charge density in time t = 

t and t = 5t.

Solution Relaxation time for silver is

12
0 19

7

8.854 10
1.435 10 second

6.17 10

ee
t

s s

-
-¥

= = = ¥ ¥
¥

The initial charge inside the silver block, r0 = 5 ¥ 10–3 C



Magnetostatics 249

The charge decays as per the relation, 
( ) /

0 0
t t

v e es e tr r r- / -= =
At t = t, the charge is

/ 3 3
0 5 10 exp 5 10 0.368 1.84 mCt

v e t t
r r

t
- - -Ê ˆ= = ¥ - = ¥ ¥ =Á ˜Ë ¯

At t = 5t, the charge is

/ 3 3
0

5
5 10 exp 5 10 0.368 0.034 mCt

v e t t
r r

t
- - -Ê ˆ= = ¥ - = ¥ ¥ =Á ˜Ë ¯

*Example 3.20 Using D r— ◊ = , Ohm’s law, and the equation of continuity, show that if at any 

instant a charge density r existed within a conductor, it would decrease to 
1

e
 times this value in a time 

e
s

 second. Calculate this time for a copper conductor.

Solution See Section 3.4.6.

\ ( / ) /
0 0

t t
v e es e tr r r- -= =

At 1
0 0

1
, vt e

e

e
r r r

s
-= = =

This shows that if at any instant a charge density r existed within a conductor, it would decrease to 
1

e

times this value in a time 
e
s

 second.

For copper, s = 5.8 ¥ 107 mho/m, and er = 1, the value of this time is

12
0 19

7

8.854 10 1
1.53 10 second

5.8 10

re ee
t

s s

-
-¥ ¥

= = = = ¥
¥

Example 3.21 Current density in a certain region is given by

2

2

5 10
A/m

( 1)
r zJ a a

r r
= +

+

(a) Find the total current crossing the surface z = 3, r < 6, in the za  direction.

(b) Find v

t

r∂
∂

.

(c) Calculate the total current crossing the closed surface bounded by z = 0, z = 3, r = 1 and r = 6.

(d) Is 
v S

Jdv J dS— ◊ = ◊Ú Ú ?

Solution
(a) Total current is given as

2 6

2
0 0

10
10 ln 37 113.44 A

( 1)
z

S r

I J dSa rdrd
r

p

f

f p
= =

= ◊ = = =
+Ú Ú Ú
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(b) By continuity equation

\ 
1 1

( ) 0

v

v z
r

J
t

J J
J rJ

t r r r r r

f

r

r

∂
— ◊ = -

∂
∂È ˘∂ ∂∂= - — ◊ = - + + =Í ˙∂ ∂ ∂ ∂Î ˚

(c) We find the currents at four surfaces:

At z = 3, 1 < r < 6, 0 < f < 2 p in za  direction

2 6

1 2
0 1

10
10 ln 18.5 91.66 A

( 1)
z

S r

I J dSa rdrd
r

p

f

f p
= =

= ◊ = = =
+Ú Ú Ú (outward)

At z = 0, 1 < r < 6, 0 < f < 2p in za  direction

2 6

2 2
0 1

10
( ) 10 ln 18.5 91.66 A

( 1)
z

S r

I J dS a rdrd
r

p

f

f p
= =

= ◊ - = - = - = -
+Ú Ú Ú (inward)

At r = 6, 0 < z < 3, 0 < f < 2p in ra  direction

2 3

3
0 0

5
30 Ar

S z

I J dSa rd dz
r

p

f

f p
= =

= ◊ = =Ú Ú Ú (outward)

At r = 1, 0 < z < 3, 0 < f < 2p in ra  direction

2 3

4
0 0

5
( ) 30 Ar

S z

I J dS a rd dz
r

p

f

f p
= =

= ◊ - = - = -Ú Ú Ú (inward)

Hence, total current crossing the closed surface is

4

1 2 3 4
1

0i
i

I I I I I I
=

= = + + + =Â

(d) 0 ( ) 0
v

J J dv— ◊ = \ — ◊ =Ú

0
v S

Jdv J dS— ◊ = ◊ =Ú Ú

3.4.7 Boundary Conditions for Conducting Medium

We consider a conductor–conductor boundary, as shown in Fig. 3.9, between two media of conductivities, 

s1 and s2 and permittivities, e1 and e2, respectively. We want to find out the boundary conditions that 

the current density will satisfy at the interface.

We will consider a coin-shaped surface, over the volume occupied by the surface

\ ( ) 0
v S

J dv J dS— ◊ = ◊ =Ú Ú

If the surface area of the coin is DS and thickness of the coin approaches zero, then

\ 1 2

1 2

( ) 0n n

n n

J S J S

J J

D - D =
= (3.31)
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Fig. 3.9 (a) Conductor to conductor boundary with change in direction of current, and (b) Conductor to 

conductor boundary 

Equation (3.31) implies that the normal component of the electric current density J  is continuous 

across the boundary.

Further, since the electric field is conservative throughout the region, the tangential component of E

is continuous.

\

fi 

1 2

1 2

1 2

t t

t t

E E

J J

s s

=

= (3.32)

(since by Ohm’s law, J = sE)

Equation (3.32) implies that the tangential component of the electric current density J  is discontinuous 

across the boundary. The ratio of the tangential components of the current densities at the interface is 

equal to the ratio of the conductivities.

From Eqs. (3.31) and (3.32), we have

1 2 1 2 1

1 1 2 2 1 2 2

t t t n

n n n t

J J J J

J J J J

s

s s s
= fi =

Hence, from Fig. 3.9, we get

1 1

2 2

tan

tan

q s

q s
= (3.33)

If the boundary carries a surface charge with density, rs (C/m2), then by the boundary condition of 

normal component of electric displacement, Dn, we have

fi ( )
2 1

2 2 1 1

( )n n s

n n s

D D

E E

r

e e r

- =
- = (3.34a)

Also, from Eq. (3.31), we get

1 2 1 1 2 2n n n nJ J E Es s= fi = (3.34b)

Combining Eqs. (3.34a) and (3.34b), we have

1 1 2 1
2 1 1 1 2 1 1 1 1

2 2 2 1
s n n n nE E E E

s s e e
r e e e e s

s s s s
Ê ˆ Ê ˆ Ê ˆ

= - = - = -Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯
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\ 
2 1

1
2 1

s nJ
e e

r
s s

Ê ˆ
= -Á ˜Ë ¯

(3.35)

Example 3.22 Medium 1 (z ≥ 0) has a dielectric constant of 2 and conductivity of 40 mS/m.

Medium 2 (z £ 0) has a dielectric constant of 5 and conductivity of 50 nS/m. If 2J  has a magnitude 

of 2 A/m2, and q2 = 60° with the normal to the interface, find 
1J  and q1. Also, find the surface charge 

density at the interface.

Solution Here, J2n = 2 cos 60° = 1 A/m2 and J2t = 2 sin 60° = 1.732 A/m2

From boundary condition of Eq. (3.34b)

2
1 2 1 A/mn nJ J= =

From boundary condition of Eq. (3.32)

6
1 1 2

19
2 2

40 10
800 800 1.732 1385.64 A/m

50 10

t
t

t

J
J

J

s

s

-

-
¥

= = = fi = ¥ =
¥

\
2 2 2 2 2

1 1 1 (1) (1385.64) 1385.64 A/mn tJ J J= + = + ª

\ ( )11 1
1

1

1385.64
tan tan 89.96

1
t

n

J

J
q - -Ê ˆ

= = = ∞Á ˜Ë ¯

Surface charge density is obtained from Eq. (3.35), as

2 1 12 2
1 9 6

2 1

5 2
1 8.854 10 0.88 mC/m

50 10 40 10
s nJ

e e
r

s s
-

- -
Ê ˆ Ê ˆ= - = ¥ - ¥ ¥ =Á ˜ Á ˜Ë ¯ ¥ ¥Ë ¯

3.4.8 Laplace Equation for Conducting Media

For steady current,

0

( ) 0 (by Ohm's law, )

0

( ) 0

J

E J E

E

V

s s

s

— ◊ =
— ◊ = =

— ◊ =
— ◊ - — =

fi
fi
fi

\ 2 0V— = (3.36)

Thus, the Laplace equation for electrostatic field is the same as that for steady current. This implies that 

the problems involving distributions of steady currents in conducting media can be handled in the same 

way as problems involving static field distributions in insulating media.

*Example 3.23
(a) A uniformly thick metal plate in the shape of a quarter circle, has a constant DC voltage applied at 

the surfaces (planes) V = 0 and V = V1. Compute the current density distribution in the plate.
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(b) If the plate is ‘t’ thick and the two radii are ‘r1’ and ‘r2’ (r1 < r2),

what will be the maximum current density if the total current through 

the plate is ‘I’?

Solution This is depicted in Fig. 3.10.

(a) Since there is no charge inside the conductor, we apply Laplace’s 

equation. By Laplace equation

2 0V— =

In cylindrical coordinates

2 2

2 2 2

1 1
0

V V V
r

r r r r zf

∂ ∂ ∂ ∂Ê ˆ + + =Á ˜Ë ¯∂ ∂ ∂ ∂

Considering the symmetry and the fact that V cannot change with r as the plate is a conductor, we have

fi 

2

2 2

2

2

1
0

0 ( 0)

V

r

V
r

f

f

∂ =
∂
∂ = π
∂

Integrating twice

1 2V k kf= +

where k1 and k2 are the integration constants.

Applying the boundary conditions:

(1) At f = 0, V = 0 fi k2 = 0

(2) At f = 
2

p
, V = V1 fi k1 = 

12V

p

\ 12V
V f

p
=

So, the field intensity is

121 VV
E V a a

r rf ff p
∂= - — = - = -
∂

Hence, the current density distribution in the plate is given as

12V
J E a

r fs s
p

= = -

(b) If the thickness of the plate is t, then total current is

2 2

1 1

1 1 2

1

2 2
ln

r r

S r r

V V t rdr
I J dS Jtdr t

r r

s
s

p p
Ê ˆ

= ◊ = = = Á ˜Ë ¯Ú Ú Ú

\ 
2

1
1

2 ln

I

r
tV

r

p
s =

Ê ˆ
Á ˜Ë ¯

Fig. 3.10 Metal plate of quarter 

circle shape
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Thus, the current density distribution in this case is

1 1

2 2
1

1 1

2 2 1

2 ln ln

V V I I
J

r r rr r
tV t

r r

s p
p p

= = ¥ =
Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

The current density will be maximum when r is minimum, i.e., r = r1.

\ max
12

1

1

ln

I
J

rr
t

r

=
Ê ˆ
Á ˜Ë ¯

Example 3.24 Two infinitely conducting parallel plates, 

each of cross-sectional area A, are separated by a distance d.

The potential difference between the plates is V0. If the medium 

between the plates is homogeneous and has a finite conductivity 

s, determine the resistance of the region between the plates. 

This is depicted in Fig. 3.11.

Solution We apply the Laplace equation for the region 

between the two infinitely conducting plates.

2 0V— =

Assuming that the potential distribution to be a function of z only, we get

2

2
0

d V

dz
=

Integrating twice, we get

1 2V k z k= +

where k1 and k2 are the constants of integration.

Applying the boundary conditions:

At z = 0, V = 0 fi k2 = 0

At z = d, V = V0 fi k1 = 
0V

d

Thus, the potential distribution between the plates is

0V
V z

d
=

The electric field intensity is given as

0
z z

VV
E V a a

z d

∂= - — = - = -
∂

The volume current density is

0
z

V
J E a

d

s
s= = -

Fig. 3.11 Parallel plates separated 

by conducting medium
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The current through the surface normal to the current density, J  is

0

S

AV
I J dS

d

s
= ◊ =Ú

Thus, the resistance between the plates is

0V d
R

I As
= =

Example 3.25 Starting from the Maxwell’s equation in differential form, obtain the Poisson’s 

equation for the general situation in which the permittivity of the medium is not constant and is a 

function of position.

Solution From Maxwell’s equation, D r— ◊ =

Also, D
V E

e
— = - = -

Taking divergence on both sides

2

2

1 1

1

1

1

1
[ ]

D
V D D

E

E

V

V

e e e

r
e e

e e

r
e

e e

r
e

e e

r e
e

Ê ˆ È ˘Ê ˆ— = - — ◊ = - — ◊ + — ◊ Á ˜Í ˙Á ˜ Ë ¯Ë ¯ Î ˚
È ˘Ê ˆ= - + — ◊Á ˜Í ˙Ë ¯Î ˚
È ˘= - + — ◊Í ˙Î ˚
È ˘= - - — — ◊Í ˙Î ˚

= - - — — ◊

This is the Poisson’s equation for a medium whose permittivity is a function of position.

3.4.9 Principle of Duality

Two physical systems or phenomena are called dual if they are described by the mathematical equations 

of the same form. 

There exists an analogy between D and J  fields under static conditions. These two fields (D and J )

are described by the equations of the same mathematical form. This is listed in Table 3.1.
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Table 3.1 Duality between D  and J

Sl. No. D -field J -field

1 0D— ◊ = 0J— ◊ =

2 0D— ¥ = 0J— ¥ =

3 D Ee= J Es=

4 1 2n nD D= 1 2n nJ J=

5
1 1

2 2

t

t

D

D

e
e

= 1 1

2 2

t

t

J

J

s
s

=

for dielectrics for conductors

Example 3.26 Establish the relation 
G C

s e
= , where G and C are respectively the conductance 

and capacitance between the two electrodes; s and e are respectively the conductivity and permeability 

of the intervening medium.

Or

Deduce the relation G C
s
e

=  and show that the total electrical conductance between any configuration 

of conductors embedded in a conducting medium of s may be obtained by replacing permittivity e by 

s in the expression for the capacitance of the configuration where they are embedded in a dielectric of 

permittivity e.

Solution By definition of capacitance

2

1

S
S

Q dS
Q

C
V

E dl

◊
= =

◊

Ú

Ú

But, at the surface of conductors, by boundary condition, eEn = QS

\
2

1

n
S

E dS

C

E dl

e ◊
=

◊

Ú

Ú
(i)

For the current flow, the conductance is

\ 
2 2

1 1

n n
S S

J dS E dS
I

G
V

E dl E dl

s◊ ◊
= = =

◊ ◊

Ú Ú

Ú Ú
 (ii)

Combining (i) and (ii), we get

G C
s
e

= ¥

\ G C

s e
=

Thus, the conductance may be obtained at once by replacing e by s in the expression of the capacitance.
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NOTE

Insulation resistance of the configuration is, 
e
s

= = ¥1 1
R

G C
.

Example 3.27 Use the principle of duality to find out the insulation resistance of:

(a) A parallel-plate capacitor of separation ‘d’ and area A;

(b) A coaxial cable of inner radius ‘a’ and outer radius ‘b’ filled with material of conductivity s.

(c) A spherical shell consisting of a pair of concentric spheres with inner sphere of radius ‘a’ surrounded 

by a medium of conductivity ‘s’ in contact with the inner surface of the outer sphere of radius ‘b’.

Solution

(a) Here, the field intensity is, 
V

E
d

=

Total charge, 
V

Q DA EA A
d

e e= = =

\ Capacitance is, 
Q A

C
V d

e= =

By principle of duality, the conductance is given by, 
A

G C
d

s s
e

= =

where, s is the conductivity of the medium in mho/m.

\ Insulation resistance is given as

1 d
R

G As
= =

(b) For coaxial cable, the field intensity at any radius r (a < r < b) is obtained by Gauss’ law as follows.

2
2

l
rlE E

r

l l
p

e pe
= fi =

So, the potential is given as ln
2 2

b b

a a

dr b
V Edr

r a

l l
pe pe

Ê ˆ= = = Á ˜Ë ¯Ú Ú

So, the capacitance per unit length is 
2

ln

C
V b

a

l pe= =
Ê ˆ
Ë ¯

By principle of duality, the conductance is given by 2

ln

G C
b

a

s ps
e

= =
Ê ˆ
Ë ¯\ Insulation resistance is given as

ln
1

2

b

a
R

G ps

Ê ˆ
Ë ¯

= =

(c) For spherical shell, the field intensity at any radius r (a < r < b) is obtained by Gauss’ law as follows.

2

2
4

4

Q Q
r E E

r
p

e pe
= fi =
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So, the potential is given as 
24 4

b b

a a

b aQ Qdr
V Edr

abrpe pe

-Ê ˆ= = = Á ˜Ë ¯Ú Ú

So, the capacitance is 
4

( )

Q ab
C

V b a

pe= =
-

By principle of duality, the conductance is given by 
4

( )

ab
G C

b a

s ps
e

= =
-

\ Insulation resistance is given as

1 1 1

4 4 1/ 1/

b a
R

G ab a bps ps

- Ê ˆ= = = Á ˜-Ë ¯

3.5  BEHAVIOUR OF DIELECTRIC MATERIALS IN 
ELECTRIC FIELD

A dielectric or an insulator is a non-conducting material. In case of dielectrics, the valence band is 

completely filled and the energy gap between the conduction and valence band is very large so that free 

electrons are not normally available, except under the application of extremely high energy.

3.5.1 Properties of Dielectrics

The various properties of dielectric materials are as follows.

1. The dielectrics do not have any free charges, but all charges are bound and associated with the 

nearest atoms.

2. When an external electric field is applied, there is some displacement of the bound charges, thus 

creating small electric dipoles within the dielectric. This phenomenon is known as polarisation.

3. The electric field inside and outside a dielectric gets modified due to the presence of dipoles.

4. Dielectrics can store energy.

3.5.2 Dielectric Polarisation

The dielectric polarisation may be defined as a dynamical response of a system to an externally applied 

electric field. This is shown in Fig. 3.12.

Fig. 3.12 Polarisation of non-polar dielectric
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Macroscopic Polarisation To understand the macroscopic effect of an electric field on a 

dielectric, we consider an atom of the dielectric consisting of:

— a negative charge – Q (electron cloud), and

— a positive charge +Q (nucleus)

When an electric field E  is applied:

— Positive charge is displaced from its equilibrium position in the direction of E  by the force, 

F QE+ = .

— Negative charge is displaced to the opposite direction, by the force F QE- = - .

Thus, an electric dipole is created and the dielectric is said to be polarised.

Dipole moment is p Qd=
By superposition, the distorted charge distribution is equivalent to original distribution plus dipole.

In this way, on the presence of an electric field, all dipoles within a dielectric are aligned with the 

direction of the field.

The induced dipole field opposes the applied field. Thus, the entire dielectric is polarised.

If there are N dipoles in a volume Dv, the total dipole moment is

1 1 2 2
1

...
N

N N i i
i

Q d Q d Q d Q d
=

+ + + = Â

Microscopic Polarisation The type of polarisation on a 

microscopic scale is determined by the material. Dipoles, which are 

responsible for the polarisation, are of two types, as shown in Fig. 3.13:

Induced dipoles: those materials which exhibit polarisation only in the 

presence of an external field.

Permanent dipoles: those materials (ferroelectric) which exhibit 

permanent polarisation.

The connection between the macroscopic and microscopic polarisation is 

given through polarisation vector P  as defined below.

Polarisation Vector ( )P It is the dipole moment per unit volume of the dielectric,

1

0
LimP =

=

D Æ

Ê ˆ
Á ˜
Á ˜Ë ¯D

Â
N

i i
i

v

Q d

v
(3.37)

Classification of Dielectric on the basis of Polarisation Based upon the effects of 

polarisation, dielectric materials are of two types:

Non-polar dielectric materials: These are the dielectric materials which have no free charges; all 

electrons are bound and associated with the nearest atoms. Hence, these materials do not have any 

dipole moment in the absence of any external electric field. An external electric field causes a small 

separation of the centres of the electron cloud and the positive ion core so that each infinitesimal 

element of volume behaves as an electric dipole. Example of such materials includes hydrogen, oxygen, 

nitrogen and other rare gases.

Fig. 3.13 Polarisation of 
polar dielectric
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Polar dielectric materials: These are the dielectric materials in which the molecules or atoms possess 

a permanent dipole moment which is ordinarily randomly oriented, but which becomes more or less 

oriented by the application of an external electric field.

3.5.3  Calculation of Electric Field
at an Exterior Point due to 
Polarised Dielectric

We consider a block of dielectric with polarisation P

(dipole moment per unit volume). This is shown in 

Fig. 3.14.

We want to calculate the potential and field at an 

exterior point P.

By the relation of potential for a dipole

2
0

1

4
rP a

dV d
r

t
pe

◊
¢= (3.38)

for an elemental volume dt ¢ at (x¢, y¢, z¢) at the field point (x, y, z).

\ 
2

0

1

4
r

v

P a
V d

r
t

pe

◊
¢= Ú (3.39)

where ( ) ( ') ( ')r x x i y y j z z k¢= - + - + -   \ 2

1ra

rr

Ê ˆ¢= — Á ˜Ë ¯

From Eq. (3.39)

0

1 1

4
v

V P d
r

t
pe

Ê ˆ¢ ¢= ◊ — Á ˜Ë ¯Ú (3.40)

By the vector identity for a scalar S and a vector V

( ) ( )SV S V V S— ◊ ∫ — ◊ + ◊ —

Putting
1

,S V P
r

Ê ˆ= =Á ˜Ë ¯ , we get

1 1 1 1
( ) ( )

P P
P P P P

r r r r r r

Ê ˆ Ê ˆÊ ˆ Ê ˆ— ◊ = — ◊ + ◊ — fi ◊ — = — ◊ - — ◊Á ˜ Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯

From Eq. (3.40), we get

0

0 0

1 1
( )

4

1 1 1
( )

4 4

v

S v

P
V P d

r r

P dS
P d

r r

t
pe

t
pe pe

È ˘Ê ˆ
¢ ¢ ¢= — ◊ - — ◊Í ˙Á ˜Ë ¯Î ˚
◊ ¢ ¢= - — ◊

Ú

Ú Ú (3.41)

(by divergence theorem)

Fig. 3.14 Block of dielectric with polarisation 
( )P
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Both of the terms in Eq. (3.41) have the form of potentials produced by the charge distribution; i.e.,

a surface charge density, b P ns = ◊

a volume charge density, ( )b Pr ¢= - —
Thus,

0

1

4
b b

S v

dS d
V

r r

s r t

pe

È ˘¢
= +Í ˙

Î ˚
Ú Ú (3.42)

Hence, the electric field is given as

2 2
0

1

4
b b

r r
S v

dS d
E V a a

r r

s r t

pe

È ˘¢
= - — = +Í ˙

Î ˚
Ú Ú (3.43)

due to the dielectric only.

To have the macroscopic field, we add the effects of the external charge distributions that are 

responsible for polarisation, so that

0

( ) ( )1
4

f b f b

S v

dS d
V

r r

s s r r t

pe

¢+ +È ˘
= +Í ˙

Î ˚
Ú Ú

and

2 2
0

( ) ( )1

4

f b f b

r r
S v

dS d
E V a a

r r

s s r r t

pe

¢+ +È ˘
= - — = +Í ˙

Î ˚
Ú Ú

where sf and rf are the free charge densities.

NOTE

Bound charges are those which cannot move within a dielectric; they are created due to displacement 

of charges during polarisation. Free charges are those which can move over macroscopic distance, 

such as electrons in a conductor.

The Bound Charge Densities, sb and rb:

The displacement of charges within the dielectric results in 

net volume and surface charge densities. This is explained 

below and also shown in Fig. 3.15.

Bound surface charge density sb: We consider a small 

volume inside the dielectric, where the electric field E is the 

resultant of an external field and the field due to the dipoles. 

The positive and negative charges are separated by an average 

distance l due to the influence of E . Consider the element of 

surface dS and the charge which has crossed it. If we fix the origin in the negative charges we need 

Fig. 3.15 Illustration of bound charge 

densities
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consider only the movement of the positive charges. Then, the amount of charge dQ crossing dS is just 

the amount of positive charge within the volume d l dSt = ◊

\ dQ NQl dS Ql p NQl P= ◊ = =

\ dQ P dS= ◊◊ (3.44)

If dS is on the surface of the material, this charge accumulates there in a layer of thickness l n◊  (which 

is small, of molecular dimensions) and the charge can be treated as a surface layer with density

b

dQ
P n

dS
s = = ◊ (3.45)

Bound volume charge density rb: The net charge flowing out of a volume t across the elementary 

area dS of its surface is ..P dS as found above in Eq. (3.44). Thus, the total charge flowing out of the 

surface bounding t, is the integral of this over the surface, i.e.,

S

Q P dS= ◊Ú

and net charge remaining within is –Q.

If the density of this remaining charge is rb, then

( )b
v S v

d Q P dS P dr t t= - = - ◊ = - — ◊Ú Ú Ú

\ b Pr = - — ◊ (3.46)

i.e., the bound charge density is numerically equal to minus the divergence of the polarisation vector. 

An important consequence of this is that if the polarisation is uniform within a region and its divergence 

is zero, then so is the bound volume charge density rb.

Equations (3.45) and (3.46) show that where polarisation occurs, an equivalent volume charge 

density is formed throughout the dielectric while an equivalent surface charge density is formed over 

the surface of the dielectric.

Example 3.28 A dielectric cube of side L and centre at the origin has a polarisation vector given 

as, P xi yj zk= + + . Find the volume and surface bound charge densities and show explicitly that the 

total bound charge vanishes in this case.

Solution The bound surface charge density is, b P ns = ◊ . For each of the six sides of the cube, 

there exists a surface charge density. For the side located at x = L/2, the surface charge density is

1 /2/2 2b x Lx L

L
P i xs ==

= ◊ = =

\ The total bound surface charge is

/2 /2
2 3

/2 /2

6
6 3

2

L L

bs
S L L

L
Q dS dydz L Ls s

- -
= = = =Ú Ú Ú
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The bound volume charge density is

(1 1 1) 3b Pr = - — ◊ = - + + = -

\ The total bound volume charge is

33 3bv
v

Q dv dv Lr= = - = -Ú Ú

Hence, the total bound charge in the cube is

3 33 3 0bs bvQ Q Q L L= + = - =

Thus, we see that the total bound charge vanishes in this case.

3.5.4  Electric Displacement, Susceptibility, Permittivity, Dielectric 
Constant and Dielectric Strength

Electric Displacement (D) By Gauss’ law in free space we know

0

vE
r

e
— ◊ =

where rv is the total volume charge density = free volume charge density + bound volume charge 

density = rf + rb.

\ 
0 0 0

f b f P
E

r r r

e e e

+ - — ◊
— ◊ = = +

fi 
0 0

fP
E

r

e e

Ê ˆ
— ◊ + =Á ˜Ë ¯

fi 
0( ) fE Pe r— ◊ + =

\ 
fD r— ◊ = (3.47)

where D  is a new vector field which has the same dimension as P  and is known as electric

displacement, given as

0D E Pe= + (3.48)

Equation (3.47) is the modified Gauss’ law, which includes the effect of polarisation charges. In integral 

form it becomes

f
S v

D dS dvr◊ =Ú Ú (3.49)

NOTE

(i) Equation (3.47) and (3.49) do not contain the permittivity e and is thus independent of the 

medium.

(ii) Both divD and ◊Ú
S

D dS are unaffected by bound charges.
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(iii) Lines of D begin and end only on free charges.

(iv) Lines of E begin and end on either free or bound charges.

(v) In writing down expressions for the divergence of E and P we have implicitly assumed their 

existence. It should be noted that the space derivatives do not exist at a point charge or at the 

interface between two media. In such cases, the integral form of Gauss’ law must be used.

Electric Susceptibility (c
e
) The strength of polarisation P  is directly proportional to the applied 

field E .

\ 
0constant eP E P E Ee c

where the constant of proportionality is usually written as e0ce and ce is known as the electric

susceptibility of the material.

Electric Susceptibility (ce): The electric susceptibility ce of a dielectric material is a measure of 

how easily it is polarised in response to an electric field. 

It is roughly a measure of how susceptible (or sensitive) a dielectric is to an electric field. 

Electric Permittivity (e) and Dielectric Constant (er) Permittivity is a quantity that 

describes how an electric field affects and/or is affected by an insulating medium.

The dielectric constant or relative permittivity is the ratio of the permittivity of a material to the 

permittivity of free space. It is a measure of the extent to which it concentrates electric flux lines. It is 

the ratio of permittivity of the dielectric to that of the free space.

From Eq. (3.48), substituting the value of polarisation in terms of applied field, we get

0 0 0 0(1 )e e rD E E E Ee e c e c e e= + = + =

D Ee=

where 0 re e e=

and (1 )r ee c= +

Here, e is the permittivity of the dielectric

e0 is the permittivity of free space = 12

9

1
8.854 10 F/m, and

36 10p
-= ¥

¥

0
r

e
e

e
=  is the relative permittivity or dielectric constant of the medium.

Dielectric Strength The maximum electric field that a dielectric material can withstand without 

breakdown is known as dielectric strength of the material.

If the applied field exceeds this value, the dielectric material starts conducting. This phenomenon 

of conduction in a dielectric material is termed as dielectric breakdown. The phenomenon depends on 

several factors like the nature of the materials, magnitude and time of application of the applied field, 

temperature, humidity, etc.
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Example 3.29 Find the polarisation in a dielectric material with relative permittivity of 2.8 if 

the electric flux density is given as, 7 23 10 C/mD -= ¥ .

Solution The polarisation is given as

0 0 0
0

7

7

( 1) ( 1) { (1 )}

1
1

1
1 3 10

2.8

1.93 10 C/m

e r r r e
r

r

D
P E E

D

c e e e e e e c
e e

e

-

-

= = - = - = +

Ê ˆ
= -Á ˜Ë ¯

Ê ˆ= - ¥ ¥Á ˜Ë ¯
= ¥

Example 3.30 In a dielectric material, Ex = 5 V/m and 21
(3 4 ) nC/m

10
P i j k

p
= - + . Calculate:

(a) ce, (b) E  and (c) D

Solution Here, Ex = 5 V/m and 21
(3 4 ) nC/m

10
P i j k

p
= - +

(a) The polarisation is given as

0eP Ec e=

\ 
0

e

P

E
c

e
=

Considering only the x component

9
9

0

3 1 54
10 2.16

10 2510
5

36

e

P

E
c

e p

p

-
-= = ¥ ¥ = =

¥

(b) The term 
9

9
0

54 10 3
10

25 36 50ec e p p

-
-= ¥ = ¥

Hence, the electric field is

( )9

90

1 1 5 20
(3 4 ) 10 5

10 3 3 3
10

50
e

P
E i j k i j k

c e p
p

-

-
= = - + ¥ ¥ = - +

¥

\ (5 1.67 6.67 ) V/mE i j k= - +

(c) The electric flux density is given as

9 9

0

2

10 10
(5 1.67 6.67 ) (3 4 )

36 10

(139.7 46.6 186.3 ) pC/m

D E P i j k i j k

i j k

e
p p

- -
= + = - + + - +

= - +

3.5.5 Linear, Homogeneous, Isotropic Dielectrics

A dielectric material is said to be linear if D  varies linearly with E  and non-linear otherwise.
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A dielectric material is said to be homogeneous if the permittivity (e) or conductivity (s) does not 

vary with space in a region and is thus, the same at all points in the region. The materials for which e or 

s is dependent on the space coordinates, is said to be inhomogeneous. The atmosphere is an example 

of an inhomogeneous medium.

A dielectric material is said to be isotropic if the electrical properties of the medium are independent 

of the direction, i.e., D  and E  are in the same direction. A material is anisotropic if D , E  and P  are 

not parallel. For an anisotropic medium, e or ce has nine components, collectively referred to as tensor.

For an anisotropic medium, the relation between D  and E  is as given below.

xx xy xzx x

y yx yy yz y

z zx zy zz z

D E

D E

D E

e e e

e e e

e e e

È ˘È ˘ È ˘
Í ˙Í ˙ Í ˙= Í ˙Í ˙ Í ˙
Í ˙Í ˙ Í ˙Î ˚ Î ˚Î ˚

(3.50)

3.6  BEHAVIOUR OF SEMICONDUCTOR MATERIALS IN 
ELECTRIC FIELD

If an isolated semiconductor is placed in an external electric field, the motion of free electrons will 

produce some electric field that will cancel the external applied field. Hence, under steady state 

equilibrium, the net electric field within an isolated semiconductor is zero.

Thus, from the electric point of view, the behaviour of a semiconductor is same as that of a conductor, 

as discussed in Section 3.4.

Magnetostatic Field

3.7 INTRODUCTION

In Chapter 2, we came to know that electric fields are created by the presence of static charges. 

However, if the charges move with a constant velocity, a static magnetic field (or magnetostatic) field 

is produced. In fact, a magnetostatic field is produced by a steady current which may be due to different 

sources, such as conduction currents as in a current carrying conductor, or magnetisation current as in 

permanent magnets.

In this part of the chapter, we have discussed the basic laws related with magnetostatics both in free 

space and in material space. We have also discussed the concepts of inductances and magnetic energy 

in this part of the chapter.

3.8 BIOT–SAVART LAW

Statement This law states that the magnetic field intensity dH  produced at a point P due to a 

differential current element Idl is:

(i) directly proportional to the product of current I and differential length dl.

(ii) directly proportional to the sine of the angle between the element and the line joining P to the 

element, and

(iii) inversely proportional to the square of the distance r.

PART II
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Explanation We consider an elemental current carrying conductor. 

Fig. 3.16 demmonstrates this.

Let,

dl elemental length of a current carrying conductor,

I steady current carried by the conductor, 

r distance of the field point (P) from the elemental length,

dH magnetic field produced by the elemental length at the field 

point (P).

It is experimentally found that

\ 
2

1
sin anddH Idl dH dH

r
a a q a

Combining

\ 
2

sinIdl
dH

r

q
a

\ 
2

sinIdl
dH k

r

q
=

2

sin

4

Idl

r

q

p
= (3.51)

where, k is the constant of proportionality. In SI unit, 
1

4
k

p
= . Now, the product Idl sin q in vector form 

can be written as, rId l a¥ , so that Eq. (3.51) becomes

2 34 4

rId l a Id l r
dH

r rp p

¥ ¥
= = (3.52)

where, | |r r=  and rr ra= . Hence, the total field produced by the conductor can be written as

2 34 4

r

l l

Id l a Id l r
H

r rp p

¥ ¥
= =Ú Ú (3.53)

Equation (3.53) is the mathematical form of the Biot–Savart law. The direction of the field intensity 

is found by the right-hand cork-screw rule or right-hand thumb rule as illustrated in Fig. 3.17 (a) and 

Fig. 3.17 (b). As per right-hand cork-screw rule, we imagine a right-handed corkscrew being rotated 

along the wire in the direction of the current. The direction of rotation of the thumb gives the direction 

of the magnetic field. As per right-hand thumb rule, we imagine that we are holding the conductor in 

our right hand with the fingers curled around it. If the thumb points in the direction of the current, then 

the curled fingers show the direction of the magnetic field.

Similar to the different charge densities discussed in Chapter 2, we can have three types of current

density distribution given as:

(i) line current density, I, given in Ampere,

(ii) surface current density, K , given in Ampere/metre (A/m), and

(iii) volume current density, J , given in Ampere/square metre (A/m2)

Fig. 3.16 Magnetic field due 

to a steady current
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(a) (b)

Fig. 3.17 (a) Right-hand cork-screw rule (b) Right hand thumb rule

These current densities are related to each other as

Id l KdS Jdv∫ ∫ (3.54)

In terms of these current densities, the Biot–Savart law can be written as

2 2 24 4 4

r r r

l S v

Id l a KdS a Jdv a
H

r r rp p p

¥ ¥ ¥
= = =Ú Ú Ú (3.55)

*Example 3.31 An infinitely long wire of 

negligible cross-section is carrying a current I, as 

shown in Fig. 3.18. Find the magnetic induction due 

to this current at a point, which is ‘r’ m away from 

the wire.

Or

(a) Derive an expression for the magnetic field due 

to a current in a straight wire of finite length.

(b) Find the magnetic field due to an infinitely long 

straight conductor carrying a steady current.

Solution We consider a differential element dl

carrying current I in the z-direction. The location of 

this source is represented by ¢ zdz a .

The field point is located at some point P(r, 0), 

given by the position vector, rra .

The relative position vector which points from the source point to the field point is

2 2| |¢ ¢= - \ = +r zR ra z a R r z

The product ( ) ( )¢ ¢ ¢¥ = ¥ - =z r zdl R dz a ra z a rdz af
Applying the Biot–Savart law, the magnetic field intensity due to this element is

3 2 2 3/24 4 ( )

¥ ¢= =
¢+

Idl R Irdz
dH a

R r z
f

p p

Fig. 3.18 A thin straight wire carrying a current I
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Hence, the total magnetic field intensity due to the entire wire is

2

1

2 2 3/2

2
2

3 3

4 ( )

cosec
{Put, cot , cosec }
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¢= =
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- ¢ ¢= = \ = -

Ú Ú
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r z

Irr d
a z r dz r d

r

f
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f
a

p

q q
q q q

p q

2

1

1 2 2 1sin (cos cos ) (cos cos )
4 4 4

I I I
H d a a a

r r r

a

f f f
a

q q a a a a
p p p

= - = - - = -Ú

\ 2 1(cos cos )
4

I
H a

r fa a
p

= -

We shall consider the following cases:

1. In the symmetric case where a1 = (p – a2), the field point P is located along the perpendicular 

bisector. If the length of the wire is 2L, then 2 1
2 2

cos cos
L

L r
a a= - =

+
 and the magnetic 

field is given as

2 22

I L
H a

r L r
fp

=
+

2. For a semi-infinite wire, a1 = 90°, a2 = 0° and the magnetic field is given as

4

I
H a

r fp
=

3. For an infinite wire, a1 = 180°, a2 = 0° and 

the magnetic field is given as

2

I
H a

r fp
=

In fact, in this case, the system possesses 

cylindrical symmetry, and the magnetic field lines 

are circular, as shown in Fig. 3.19. The direction of 

the magnetic field due to a long straight wire can 

be determined by the right-hand rule.

*Example 3.32 A circular loop of radius r in the 

xy plane carries a steady current I, as shown in Fig. 3.20. 

What is the magnetic field at a point P on the axis of the 

loop, at a distance z from the centre?

Solution We consider a differential length on the wire, 

with the position vector, dl r d aff= .

The field point P is on the axis of the loop at a distance z

from the centre; its position vector is given by zza .

Fig. 3.19 Magnetic field lines due to an infinite 

wire carrying current I

Fig. 3.20 Magnetic field due to a circular 

loop carrying a steady current
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The relative position vector which points from the source point to the field point is

\ 2 2

r zR ra za

R r z

= - +

= +

The product

20 0

0

r z

r z

a a a

dl R rd rzd a r d a

r z

f

f f f¥ = = +
-

Applying the Biot–Savart law, the magnetic field intensity due to this element is

2

3 2 2 3/2
( )

4 4 ( )
r z

Idl R I
dH rzd a r d a

R r z
f f

p p

¥
= = +

+

By symmetry, the contribution along the ra  add up to zero because the radial components produced by 

pairs of current elements 180° apart cancel each other.

\ 0rH =

\ 
2 2 2

2 2 3/2 2 2 3/2
0 4 ( ) 2( )

z z z z

Ir d Ir
H dH a a a

r z r z

p f

p
= = =

+ +Ú Ú

\ 
2

2 2 3/22( )
z

Ir
H a

r z
=

+

Example 3.33 A square loop of side 2a lies in the z = 

0 plane and carries a current I in the anti-clockwise direction. 

Show that at the centre of the loop

2
z

I
H a

ap
=

Solution Choosing a Cartesian coordinate system as shown 

in Fig. 3.21, by symmetry, each half-side contributes the same 

amount to H  at the centre.

For half-side, 0 £ x £ a, and y = –a, by the Biot-Savart law, we 

get

3 2 2 3/2

2 2 3/2

( ) [ ]

4 4 [ ]

4 [ ]

x x y

z

Idxa xa aaIdl R
dH

R x a

Iadxa

x a

p p

p

¥ - +¥
= =

+

=
+

So, the total field at the origin due to all the four sides is

Fig. 3.21 Square loop carrying 

current
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2 2 3/2
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2 2 3/2
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2
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8 8
4 [ ]
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tan ; sec
2 sec

0
( tan )

0 /4

2
cos

2 2 1 2
(sin )

2

a
z

a

z

z

z

z z z

Iadxa
H dH

x a

dx
Ia a

x a

x a dx a d
a d

x aIa a
a a

I
d a

a

I I I
a a a

a a a

p

p

p

p

p

q q q
q q

p q
q p

q q
p

q
p p p

= ¥ =
+

=
+

Ï ¸= \ =
Ô Ô= Ì ˝

+ Ô ÔÓ ˛

=

= = ¥ =

Ú Ú

Ú

Ú

Ú

\ 2
z

I
H a

ap
=

Example 3.34 Derive an expression for the magnetising force 

at any point on the axis of a single-turn coil carrying a steady current 

‘I’:

(a) When the coil is in the form of a circle of radius ‘r’,

(b) When the coil is in the form of a rectangle of sides a and b,

(c) When it is square with sides of length ‘2a’.

Solution This is shown in Fig. 3.22.

(a) By the Biot–Savart Law,

34

Idl R
dH

Rp

¥
=

\ 2

;

(0,0, ) ( , ,0)

0 0 ( )

0

x y z r z

r z

r z

dl rd a

R h x y xa ya ha ra ha

a a a

dl R rd rhd a r d a

r h

f

f

f

f f f

=

= - = - - = - +

¥ = = +
-

\ 2

2 2 3/2
( )

4 ( )
r z

r r z z

I
dH rhd a r d a

r h

dH a dH a

f f
p

= +
+

= +

By symmetry, the contributions along ra  add up to zero because the radial components produced by 

pairs of current elements 180° apart cancel out.

\ 0rH =

Fig. 3.22 Circular current 

carrying loop
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Hence, the magnetic field is given as

2 2 2

2 2 3/2 2 2 3/2
0 4 [ ] 2[ ]

z z z z

Ir d Ir
H dH a a a

r h r h

p f

p
= = =

+ +Ú Ú

2

2 2 3/22[ ]
z

Ir
H a

r h
=

+

NOTE

At the centre (h = 0), the field is, =
2 z

I
H a

r

(b) Let P be a point at a height h above the plane of the loop.

The magnetic field due to the side AB is given as

\ 

1 2(cos cos )
4

[cos cos( )]
4

2 cos
4

cos
2

AB

AB

I
dB

r

I

r

I

r

I
dB

r

m
a a

p
m

q p q
p
m

q
p
m

q
p

= -

= - -

=

=

Similarly, the magnetic field due to the side CD is given as

cos
2CD

I
dB

r

m
q

p
=

Since the flow of current in the two elements is in opposite direction, their cosine components will 

cancel each other and thus, only the axial components will add together.

Hence, the resultant field due to sides AB and CD is given as

1 ( ) cos sin cos sin cos sin
2 2AB CD

I I I
dB dB dB

r r r

m m m
q a q a q a

p p p
= + = + =

From Fig. 3.23, it is seen that 
2

2

4

b
r h= +

\ 
2 2 2

2 2

2
2

/2
cos

2
4 4 4

/2
sin

2
4

a a

a b a
r h

b b

r b
h

q

a

= =

+ + +

= =

+

\

Putting these values, we get
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Fig. 3.23 Rectangular current carrying loop

1
2 2 2

2 2

2 2 2 2
2 2 2

2 2 2
2 2

cos sin

2 2
4 4 4

4
4 4 4 4

4
4 4 4

I I a b
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r r b a b
h h
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b b a b
h h h

I ab

b b a
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m m
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p p
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p

m

p

= =

+ + +

=

+ + + +

=
Ê ˆ

+ + +Á ˜Ë ¯

Similarly, the magnetic field due to the other two sides BC and DA is given as

2
2 2 2

2 24
4 4 4

I ab
dB

a b a
h h

m

p

=
Ê ˆ

+ + +Á ˜Ë ¯

Hence, total magnetic field due to the rectangular loop is given as

1 2
2 2 2 2 2 2

2 2 2 2

2 22 2 2 22

( )

4 4
4 4 4 4 4 4

1 1

4 4 44 4

I ab I ab
B dB dB

b b a a b a
h h h h

I ab

a bb a h hh

m m

p p

m

p

= + = +
Ê ˆ Ê ˆ

+ + + + + +Á ˜ Á ˜Ë ¯ Ë ¯
È ˘= +Í ˙

+ +Í ˙+ + Î ˚



  274 Electromagnetic Field Theory

2 22 2 2 22

1 1

4 4 44 4

I ab
B

a bb a h hh

m

p

Ê ˆ= +
Á ˜

+ +Á ˜+ + Ë ¯

(c) Along the axis of the coil there will be only a z-component

of magnetic field by symmetry. This is given in Fig. 3.24. In 

order to obtain the total field it is necessary to calculate only 

the z-component of the field generated by one side of the coil 

and then multiply by four. Consider the right-hand side.

Let ( , )ydl dya at a y=

The position of the element of length, dl , is specified by the 

vector r  where, .x yr a a ya= +

The position of the point of observation along the z-axis is specified by the vector zR za= .

\ 

2 2 2

( )

( ) 0 0

| |

x y z

x y z

x z

R r aa ya za

a a a

dl R r dy zdya adya

a y z

R r a y z

- = - - +

¥ - = = +
- -

- = + +

\

\
By the Biot–Savart law,

1 3 2 2 2 3/2
( )

4 4 ( )
x z x x z z

Idl R I
dH zdya adya dH a dH a

R a y zp p

¥
= = + = +

+ +

Since all the x components will add to zero, we have

1 3 2 2 2 3/244 ( )
z

Idl R dyIa
dH a

R a y zpp

¥
= =

+ +

By integration
2

1 2 2 2 3/2 2 2 2 2

2

4 4( ) ( ) 2

a

z
a

dyIa I a
H dH a

a y z a b a zp p p-
= = =

+ + + +
Ú Ú

As the coil has four sides, this must be multiplied by 4 to get the total magnetic field.

\ 
2 2

1
2 2 2 2 2 2 2 2

2 2
4 4

4 ( ) 2 ( ) 2
z z

I a a I
H H a a

a z a z a z a zp p
= = ¥ =

+ + + +

\ 
2

2 2 2 2

2

( ) 2
z

a I
H a

a z a zp
=

+ +

Alternative Method: From the result of part (b), if a = b = 2a, then the result becomes

2

2 22 2 2 2 2 2
2 22

2 2 1 1 2

(2 ) (2 )(2 ) (2 ) ( ) 2
4 4 44 4

I a a a I
H

a aa a a z a zh hh
p

p

Ê ˆ= + =
Á ˜ + ++ +Á ˜+ + Ë ¯

Fig. 3.24 Square current carrying loop
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NOTE

At the centre (z = 0), 
2

0.9003
2z z

I I
H a a

a ap
= =  as obtained in Example 3.33. This result can be 

compared with 
2 z

I
H a

r
=  for a circular coil as obtained in Example 3.34(a).

*Example 3.35 A circular loop located on x2 + y2 = 9, z = 0 carries a direct current of 10 A along

af . Determine H  at:

(i) (0, 0, 4)  and  (ii) (0, 0, –4)

Solution From Example 3.32, substituting the values

(i) I = 10A, r = 3, h = 4,

2

2 2 3/2

10 3
(0,0,4) 0.36

2[3 4 ]
z zH a a

¥
= =

+

(ii) I = 10A, r = 3, h = –4,

2

2 2 3/2

10 3
(0,0, 4) 0.36

2[3 ( 4) ]
z zH a a

¥
- = =

+ -

3.9 MAGNETIC FIELD INTENSITY ( H )

The magnetic field at a given point is specified by both a direction and a magnitude and is described 

by magnetic field intensity, H .

The magnetic field intensity, H , at any point is defined as the force experienced by a north pole of 

one Weber placed at that point. In other words, it is defined as the magnetomotive force per unit length 

produced by the steady current in a magnetic circuit.

Its unit is Newton per Weber (N/Wb) or Ampere per metre (A/m) or Ampere-turn per metre (AT/m).

3.10 MAGNETIC FLUX (f ) AND FLUX DENSITY ( B )

Magnetic flux is defined as the group of magnetic field lines emitted outward from the north pole of a 

magnet. It is measured in Weber and is denoted as f.

Magnetic flux density ( B ) is the amount of magnetic flux per unit area of a section, perpendicular to 

the direction of magnetic flux; i.e.,

B
A

f
=

(3.56)

Magnetic flux density ( B ), also known as the magnetic induction, is a vector quantity. The unit of 

magnetic flux density is Weber per square metre or Tesla (T).

In general, for any arbitrarily shaped surface placed in a magnetic field with flux density vector B,

the total flux coming out of the surface is given as

n
S S

B dS B a dSf = ◊ = ◊Ú Ú (3.57)
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where, na  is the unit vector normal to the surface.

The magnetic field intensity is related to the magnetic flux density as

B Hm= (3.58)

where, m is a constant, called permeability of the medium. It is given as

0 rm m m= (3.59)

where, m0 is the permeability of free space, known as absolute permeability, = 4p ¥ 10–7 H/m

mr is the relative permeability.

NOTE

Weber is the unit of magnetic flux.

Tesla is the unit of magnetic flux density.

The Maxwell, abbreviated as Mx, is the compound derived CGS unit of magnetic flux. 

1 Weber = 108 Maxwells = 108 magnetic field lines

3.11  GAUSS’ LAW OF MAGNETOSTATIC
INTERPRETATION OF DIVERGENCE OF MAGNETIC
FIELD—MAXWELL’S EQUATIONS

The magnetic flux through any surface is the surface integral of the normal component of B , i.e.,

S

B dSf = ◊Ú (3.60)

As it is not possible to have an isolated magnetic pole, magnetic flux lines always close upon themselves. 

Thus, the total magnetic flux through a closed surface must be zero.

\ 0
S

B dS◊ =Ú (3.61)

This equation is known as the law of conservation of magnetic flux or the integral form of Gauss’ law 

of magnetostatic fields.

Applying divergence theorem, we get

0
S v

B dS Bdv◊ = — ◊ =Ú Ú

\ 0B— ◊ = (3.62)

This is known as the differential form of Gauss’ law of magnetostatic fields which shows that 

magnetostatic fields have no sources or sinks and the magnetic field lines are continuous.

Example 3.36 The flux density at a point distance ‘r’ from a long filamentary conductor is 

given by
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0

2

I
B a

r f

m

p
=

Find the flux crossing the portion of the conductor in the plane 
4

p
f = defined by 0.01 < r < 0.05 m 

and 0 < z < 2 m for a current of 2 A.

Solution The magnetic flux through any surface is given as

2 0.05 0.05
0 0 0

0 0.01 0.01

0
0

0.05
( ) 2 ln

2 2 0.01

ln 5 0.5123 Wb

f f

m m m
f

p p p

m
m

p

= = =

Ê ˆ Ê ˆ= ◊ = ◊ = ¥ = Á ˜Á ˜ Ë ¯Ë ¯

= =

Ú Ú Ú Ú
S z r r

I I Idr
B dS a drdza

r r

I
I

Example 3.37

(a) A radial field, 
62.39 10

cos rH a
r

f
¥

=  A/m, exists in free space. Find the magnetic flux f crossing 

the surface defined by –p/4 £ f £ p/4, 0 £ z £ 1 m.

(b) Compute the total magnetic flux f crossing the z = 0 plane in cylindrical coordinates for r £ 5 ¥ 10–2

m if, 20.2
sin rB a

r
f= (T).

Solution

(a)
62.39 10

cos rH a
r

f
¥

=

Magnetic flux crossing the given surface is given as
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(b) 20.2
sin rB a

r
f=

Magnetic flux crossing the given surface is given as
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Fig. 3.25 Amperian loop

3.12  AMPERE’S CIRCUITAL LAW—INTERPRETATION OF
CURL OF MAGNETIC FIELD

Statement This law states that the line integral of the magnetic field intensity ( )H  around any 

closed path is equal to the direct current enclosed by the path.

\ enc
l

H dl I◊ =Ú (3.63)

Proof We consider an infinite straight conductor carrying 

a steady current I along the z-direction as shown in Fig. 3.25. 

We consider a closed circular path of radius r enclosing the 

conductor.

By the Biot–Savart law, the magnetic field intensity at any 

point on the circle is

2

I
H a

r fp
=

Now, the elemental length of the circle is, dl rd aff=

\ ( )
2 2

I I
H dl a rd a d

r f ff f
p p

Ê ˆ◊ = ◊ =Á ˜Ë ¯

\ 2
2 2

l l

I I
H dl d If p

p p
◊ = = ¥ =Ú Ú

\ 
l

H dl I◊ =Ú

This proves the Ampere’s circuital law.

From Eq. (3.61), applying Stoke’s theorem, we get

\ ( )
S S

H dS I J dS— ¥ ◊ = = ◊Ú Ú

Comparing the integrands, we get

H J— ¥ = (3.64)

This is the differential or point form of Ampere’s circuital law.

NOTE

The closed path on which Ampere’s law is applied is known as Amperian path or Amperian loop.

Conditions for Ampere’s Law For applying Ampere’s law, two conditions must be satisfied:

1. At each point on the closed path, H  is neither tangential nor normal to the path.

2. H  has the same value at all points of the path where H  is tangential.
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NOTE

Ampere’s law in magnetostatics is analogous to Gauss’ law in electrostatics. The Biot–Savart law can 

be applied for a general current source; whereas Ampere’s law can be applied only to the systems 

that possess certain symmetry. For example, in case of an infinite wire, the system possesses 

cylindrical symmetry and Ampere’s law can be readily applied. However, when the length of the wire 

is finite, the Biot–Savart law must be used instead.

Biot–Savart Law
2 34 4p p

¥ ¥
= =Ú Úr

l l

Idl a Idl r
H

r r
general current source

Ex: finite wire

Ampere’ Law enc◊ =Ú
l

H dl I current source that has certain symmetry

Ex: infinite wire (cylindrical)

3.13 APPLICATIONS OF AMPERE’S LAW

Ampere’s law can be applied to the following current configurations:

1. Infinitely long straight wires carrying a steady current I;

2. Infinitely large sheet of thickness b with a current density J ;

3. Infinite solenoid, and 

4. Toroid.

We shall examine all four configurations in detail.

3.13.1 Infinitely Long Straight Wires Carrying a Steady Current I

*Example 3.38 An infinitely long cylindrical 

conductor of radius R carries a steady current I. Calculate the 

magnetic field at an interior and exterior point.

Or

A solid cylindrical conductor of a radius R has a uniform 

current density. Derive expression for H  both inside and 

outside of the conductor. Plot the variation of H , which is 

function of radial distance from the centre of the wire.

Solution We will consider a long straight wire of radius 

R carrying a current I of uniform current density, as shown 

in Fig. 3.26. We want to find the magnetic field inside and 

outside the wire.

We will consider two cases:

Case (1) Outside the wire where, r < R

The Amperian loop completely encircles the current, i.e., Ienc = I. By Ampere’s law, we get

l l

H dl H dl I◊ = =Ú Ú

Fig. 3.26 Amperian loops for 

calculating the magnetic

field of a conducting wire of 

radius R
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fi 
2

0

(2 )

H rd I

H r I

p

f

p

=

=

Ú

fi

\ 
2

I
H

rp
=

Case (2): Inside the wire where, r ≥ R

In this case, the amount of current encircled by the Amperian loop is proportional to the area enclosed, 

i.e.,

2 2

enc 2 2

r r
I I I

R R

p

p

Ê ˆ Ê ˆ
= = Á ˜Á ˜ Ë ¯Ë ¯

By Ampere’s law, we get

fi ( )

2

enc 2

2

2
2

l

r
H dl I I

R

r
H r I

R
p

Ê ˆ
◊ = = Á ˜Ë ¯

Ê ˆ
= Á ˜Ë ¯

Ú

\ 22

Ir
H

Rp
=

It is seen that the magnetic field is zero at the centre of the 

wire and increases linearly with r until r = R. Outside the 

wire, the field falls off as 1/r. The variation of the field is 

shown in Fig. 3.27. 

The results can be summarised in vector form as

2

;
2

;
2

I
H a r R

r

Ir
a r R

R

f

f

p

p

= <

= ≥ (3.65)

3.13.2  Infinitely Large Sheet of Thickness b with a 
Current Density

*Example 3.39 Calculate the magnetic field intensity around a thin infinite current carrying 

conductor plane located in z = 0, having a surface current density K in y-direction, as shown in 

Fig. 3.28.

Solution The field can be thought of considering the sheet as current elements. The field will not 

vary with respect to y, Hy = 0. It will not vary with respect to x due to symmetry of the problem. The 

field will vary with respect to z-axis only.

Fig. 3.27 Magnetic field of a conducting 

wire of radius R carrying a 

steady current I
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Fig. 3.28 Current carrying conducting plane

We will consider a path 1–2–3–4–1 with centre at P, each side as 2a.

Considering the current elements symmetrically placed will cancel the z-components of the field; so 

the field exists only in x-direction.

By Ampere’s circuital law

encH dl I◊ =Ú

fi 
2 3 4 1

1 2 3 4

2H dl K a
È ˘

+ + + ◊ =Í ˙
Î ˚
Ú Ú Ú Ú

fi 0(2 ) (2 ) 0(2 ) (2 ) 2x xa H a a H a K a+ + + =

fi 
2x

K
H =

\ 
2 x

K
H a=

In general, the field can be written as

1
; is the normal to the surface

2 N NH K a a= ¥

\ 1
0

2
1

0
2

x

x

H Ka z

Ka z

= >

= - <

Example 3.40 Calculate the magnetic field intensity around an infinitely large sheet of thickness 

b lying in the xy plane with a uniform current density 0 xJ J a= .

Solution The current sheet may be considered as a set of parallel wires carrying currents in the 

positive x direction. From Fig. 3.29(b), it is seen that the magnetic field at a point P above the plane is 

in the negative y-direction. The z-component vanishes after adding up the contributions from all wires. 

Similarly, we may show that the magnetic field at a point below the plane is in the positive y-direction.

The Amperian loops are shown in Fig. 3.29(c). Now we apply Ampere’s law to find the magnetic 

field due to the current sheet. 
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Fig. 3.29 (a) An infinite sheet with current density 0=J J i , (b) Magnetic field of a current sheet, and 

(c) Amperian loops for the current sheets

Field outside the Sheet For the field outside, we integrate along path C1. The amount of current 

enclosed by C1 is

enc 0
S

I J dS J bl= ◊ =Ú

Applying Ampere’s law

enc 0(2 )
l

H dl H l I J bl◊ = = =Ú

\ 0

2

J b
H =

It is seen that the magnetic field outside the sheet is constant, independent of the distance from the 

sheet.

Field inside the Sheet For the field inside the sheet, the amount of current enclosed by path C2 is

enc 0 (2 | | )
S

I J dS J z l= ◊ =Ú

Applying Ampere’s law

enc 0(2 ) (2 | | )
l

H dl H l I J z l◊ = = =Ú

\ 
0 | |H J z=

At z = 0, the magnetic field vanishes, as required by symmetry. The results can be summarised in vector 

form as
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0

0

0

;
2 2

;
2 2

;
2 2

y

y

y

J b b
H a z

b b
J za z

J b b
a z

= - >

= - - < <

= < -

(3.66)

NOTE

In the limit where the sheet is infinitesimally thin, with b Æ 0, instead of volume current density 

0 xJ J a= , we have surface current xK Ka= , where K = J0b, in current/length (Ampere/metre). In 

this limit, the magnetic field becomes

; 0
2

; 0
2

y

y

K
H a z

K
a z

= - >

= <
(3.67)

This result is the same as obtained in Example 3.39.

*Example 3.41 Planes z = 0 and z = 4 carry currents 10 xK a= -  A/m and 10 xK a= A/m

respectively. Determine H  at:

(i) (1, 1, 1)  and  (ii) (0, –3, 10)

Solution Let the parallel current sheets be as shown in Fig. 3.30.

\ 
0 4H H H= +

where 0 4andH H  are the contributions due to the current sheets z = 0 and z = 4, respectively.

Fig. 3.30 Two parallel current carrying planes

From Example 3.39

(i) At (1, 1, 1), (0 < z < 4)

0

4

1 1
( 10 ) 5 A/m

2 2
1 1

(10 ) ( ) 5 A/m
2 2

N x z y

N x z y

H K a a a a

H K a a a a

= ¥ = - ¥ =

= ¥ = ¥ - =

\ 0 4 5 5 10 A/my y yH H H a a a= + = + =
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(ii) At (0, –3, 10), (z > 4)

0

4

1 1
( 10 ) 5 A/m

2 2
1 1

(10 ) ( ) 5 A/m
2 2

N x z y

N x z y

H K a a a a

H K a a a a

= ¥ = - ¥ =

= ¥ = ¥ = -

\ 
0 4 5 5 0y yH H H a a= + = - =

3.13.3 Solenoid

*Example 3.42 Find the field inside a solenoid of length L having N turns uniformly wound 

round a cylinder of radius a and carrying a current I.

Or

Derive a general expression for the field H  at any point along the axis of a solenoid (uniform cylindrical 

coil wound on a non-magnetic frame). Sketch the variation of H  from point to point along the axis.

Or

A solenoid of length L consists of N turns of wire carrying a current I. Show that the field at any point 

along the axis

2 1(cos cos )
2 r

NI
H a

L
q q= -

where, q1 and q2 are the angles subtended at the point by the end turns. Also, show that, if L is very large 

compared to the radius of the solenoid, then, at the centre of the solenoid, .r

NI
H a

L
=

Solution A solenoid is a loop of wire, wound around a metallic core in a helical form, which 

produces a magnetic field when an electric current passes through it. A solenoid is ideal if it is infinitely 

long with turns tightly packed.

Infinite Solenoid Figure 3.31 shows the magnetic field lines of a solenoid carrying a steady 

current I.

Fig. 3.31 Magnetic field lines of a solenoid

Some characteristics of infinite solenoid are:

(i) Its turns are closely spaced.

(ii) The resulting magnetic field inside the solenoid is fairly uniform (provided that the length of the 

solenoid is much greater than its diameter) and parallel to the axis.

(iii) The magnetic field outside the solenoid is zero.
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The cross-sectional view of an ideal solenoid is shown in Fig. 3.32. To calculate H , we consider a 

rectangular path (Amperian loop) of length l and width w and traverse the path in a counterclockwise 

manner. The line integral of H along this loop is

1 2 3 4

0 0 0
l

H dl H dl H dl H dl H dl

Hl

Hl

◊ = ◊ + ◊ + ◊ + ◊

= + + +
=

Ú Ú Ú Ú Ú

In the above equation, the contributions along sides 2 and 4 are zero because H  is perpendicular to 

dl . In addition, 0H =  along side 1 because the magnetic field is non-zero only inside the solenoid. 

Fig. 3.32 Amperian loop for calculating the magnetic field of an ideal solenoid

Now, by Ampere’s law, total current enclosed by the Amperian loop is, Ienc = NI

where, N is the total number of turns. 

Applying Ampere’s law

fi 

enc
l

H dl I

Hl NI

◊ =

=

Ú

\
 

NI
H nI

l
= = (3.68)

where, number of turns per unit length
N

n
l

= =

Finite Solenoid To find the magnetic field due to a 

finite solenoid, the solenoid is assumed to be consisting of 

a large number of circular loops stacking together. Using 

the result obtained in Example 3.32, the magnetic field at a 

point P on the z axis may be calculated as follows.

We will consider a cross-section of tightly packed loops 

located at z¢ with a thickness dz¢, as shown in Fig. 3.33.

The amount of current flowing through is proportional to 

the thickness of the cross-section and is given by
Fig. 3.33 Finite solenoid
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( )
N

dI I dz I ndz
l

Ê ˆ ¢= =Á ˜Ë ¯
; where, number of turns per unit length

N
n

l
= =

The contribution to the magnetic field at P due to this subset of loops is

2 2

2 2 3/2 2 2 3/2
( )

2[( ) ] 2[( ) ]

R R
dH dI nIdz

z z R z z R
¢= =

¢ ¢- + - +
(3.69)

Integrating over the entire length of the solenoid, we get

/2
/ 22 2

3/2 2 2 22 2/2
/2

2 2
2 2

2 2 ( )( )

2 2

2

2 2

l
l

l
l

z znIR dz nIR
H

R z z Rz z R

l l
z z

nI

l l
z R z R

-
-

¢ -¢= =
¢È ˘ - +¢- +Î ˚

È ˘Ê ˆ Ê ˆ- +Í ˙Ë ¯ Ë ¯
= +Í ˙

Í ˙Ê ˆ Ê ˆ- + + +Í ˙Ë ¯ Ë ¯Î ˚

Ú

(3.70)

A plot of 
0

H

H
, where 

0

NI
H nI

l
= = is the magnetic field of an infinite solenoid, as a function of

z

R

is shown in Fig. 3.34 for l = 10R and l = 20R. Note that the value of the magnetic field in the region 

| |
2

l
z <  is nearly uniform and approximately equal to H0.

Fig. 3.34 Magnetic field of a finite solenoid for (a) l = 10R and (b) l = 20R

Alternative Way of Determination of Magnetic Field Intensity in Finite Solenoid
We consider the cross section of the solenoid as shown in Fig. 3.35 (a).

Fig. 3.35 (a) Solenoid of finite length
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Since the solenoid consists of circular loops, using the result of Example 23 (a); the contribution to the 

magnetic field by an element of the solenoid of lenght dz is, 

2 2

2 2 3/2 2 2 3/2
where,

2[ ] 2 ( )

Idla Ia Ndz N
dH dl dz

La z L a z
= = =

+ +

From the figure, tan
a

z
q = \ dz = –a cosec2qdq

 \
2 2( )

– sin
a z

dz d
a

q q
+

=

 \ – sin
2

NI
dH d

L
q q=

So, the field is given as,

2

1

2 1– sin (cos – cos )
2 2

= = =Ú Ú
NI NI

H dH d
L L

q

q

q q q q

2 1(cos – cos )
2

\ = z

NI
H a

L
q q

We consider three cases:

1. When P is at one end of the solenoid,

  Here, q1 = 90°, 2
2 2

cos
L

L a
q =

+

  The magnetic field is given as, 
2 2 2 2

– 0
2 2

z z

NI L NI
H a a

L L a L a

Ê ˆ= =
Á ˜+ +Ë ¯

2 22
z

NI
H a

L a
=

+

NOTE

If L >> a, then =
2 z

NI
H a

L

2. When P is at the centre of the solenoid,

  Here, 2 1
2 2

/2
cos – cos

( /2)

L

L a
q q= =

+

  The magnetic field is given as, 
2 2 2 2

/2

2 ( /2) 4
z z

LNI NI
H a a

L L a L a

Ê ˆ= =Á ˜+ +Ë ¯

2 24
z

NI
H a

L a
=

+
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NOTE

If L >> a, then = z

NI
H a

L

3. When P is at the midway between one end and centre of the solenoid,

  Here,

   

2
2 2 2 2

1
2 2 2 2

/4
cos

( /2) 16

3 /4 3
cos ( – )

(3 /4) 9 16

L L

L a L a

L L

L a L a

q

p q

= =
+ +

= =
+ +

  \ 1
2 2

3
cos –

9 16

L

L a
q =

+

The magnetic field is given as, 
2 2 2 2

3

2 16 9 16
z

NI L L
H a

L L a L a

Ê ˆ= +
Á ˜+ +Ë ¯

NOTE

If L >> a, then q = ª
+

1
2 2

3
cos – –1

9 16

L

L a
 and the magnetic field is given as, 

Ê ˆ= +Á ˜+Ë ¯2 2
1

2 16
z

NI L
H a

L L a
.

  The variation of the field from point to point is shown in Fig. 3.35 (b).

Fig. 3.35 (b) Variation of magnetic field from point to point along the axis of a finite solenoid

3.13.4 Toroid

*Example 3.43 A toroid of length L has N turns and carries a current I. Determine H  inside and 

outside the toroid.

Solution A toroid consists of a circular ring-shaped magnetic core around which wire is coiled. A 

toroid may be considered as a solenoid wrapped around with its ends connected.

Thus, the magnetic field is completely confined inside the toroid and the field points in the azimuthal 

direction (clockwise due to the way the current flows, as shown in Fig. 3.36).



Magnetostatics 289

Fig. 3.36 A toroid with N turns

Since N wires cut the Amperian path, each carrying a current I, the net current enclosed by the Amperian 

path is

encI NI=

Applying Ampere’s law to the Amperian path, we obtain

(2 )
l l l

H dl Hdl H dl H r NIp◊ = = = =Ú Ú Ú

\ 
2

NI
H

rp
= (3.71)

where r is the distance measured from the centre of the toroid and is known as the mean radius. If the 

thickness of the toroid is much less than its mean radius, then r ª R. Hence,

2 2 2

NI NI NI
H

r R Lp p
= = =  inside the toroid

where, L is the length of the wire.

Outside the toroid, net current enclosed = (NI – NI) = 0, and thus, H = 0.

To summarise the results

; inside the toroid
2

0 ; outside the toroid

NI
H

L
=

=

Example 3.44 Consider an infinitely long, cylindrical conductor 

of radius R carrying a current I with a non-uniform current density

J ra=

where a is a constant. Find the magnetic field everywhere. This is shown 

in Fig. 3.37.

Solution By Ampere’s law,

0 encB dS Im◊ =Ú Fig. 3.37 Non-uniform

current density
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Here,

enc ( ) (2 )I J dS r rdra p= ◊ =Ú Ú

We will consider two cases:

(1) For r < R:

In this case

2 3
enc

0

2
( )(2 ) 2

3

r

I r rdr r dr ra p pa pa= = =Ú Ú

Applying Ampere’s law, the magnetic field at any point inside the conductor is given as

03 2
0

2
(2 ) or,

3 3i iB r r B r
am

p m pa= =

The direction of the magnetic field iB  is tangential to the 

Amperian loop that encloses the current. 

(2) For r > R:

In this case

enc

2

0

3

( ) (2 )

2

2

3

R

I r rdr

r dr

R

a p

pa

pa

=

=

=

Ú

Ú

Applying Ampere’s law, the magnetic field at any point 

outside the conductor is given as

3
03

0

2
(2 ) or,

3 3o o

R
B r R B

r

am
p m pa= =

To summarise, the results are

0 2

3
0

3

3

am

am

= <

= >

B r r R

R
r R

r

A plot of B as a function of r is shown in Fig. 3.38.

Example 3.45 A coaxial cable has core of radius ‘a’ and sheath of radius ‘b’. A current ‘I’ flows 

along the core, uniformly distributed across it, and returns along the sheath, uniformly distributed 

around it. Find the magnetic field intensity:

(i) Within the core (r < a).

(ii) Within the core-sheath space (a £ r £ b); and 

(iii) Outside the sheath (r > b).

Fig. 3.38 The magnetic field as a function 

of distance away from the 

conductor
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Solution Within the core (r < a):

Applying Ampere’s law

enc
l

H dl I J dS◊ = = ◊Ú Ú

Since, the current is distributed uniformly over the cross-section

2
andz z

I
J a dS rdrd a

a
f

p
= =

\ 
2 2 2

enc 2 2 2
0 0

2
2

r
I I r r

I rdrd I
a a a

p

f p
p p

Ê ˆ
= = ¥ ¥ = Á ˜Ë ¯Ú Ú

\ 
2 2

2 2
0

2

2

2

l

r Ir
H dl H rd I H

a a

Ir
H a

a

p

f f

f

f
p

p

Ê ˆ
◊ = = fi =Á ˜Ë ¯

=

Ú Ú

\

Within the core-sheath space (a £ r £ b):

Applying Ampere’s law

fi 

enc

2

0

Totalcurrent

2

2

l

H dl I I

I
H rd I H

r

I
H a

r

p

f f

f

f
p

p

◊ = = =

= fi =

=

Ú

Ú

\

Outside the sheath (r > b):

Applying Ampere’s law

fi 

innercond. outer cond.( ) ( ) 0

0
l

H dl I I I I

Hf

◊ = + = - =

=

Ú

Note

If the thickness of the sheath is ‘t’, then for the region, b £ r £ (b + t),

encI I J dS= + ◊Ú

Here, J  is the current density of the outer conductor and is along za- .

\ 
2 2[( ) ]

z

I
J a

b t tp
= -

+ -

\ 
2 2 2

enc 2 2 2
0

1
[( ) ] 2

r

r b

r bI
I I rdrd I

b t t t bt

p

f

f
p = =

Ï ¸-Ô Ô= - = -Ì ˝
+ - +Ô ÔÓ ˛

Ú Ú
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By Ampere’s law

\ 

2 2 2

enc 2
0

2 2

2

1
2 2

1
2 2

r bI
H rd I H

r t bt

r bI
H a

r t bt

p

f f

f

f
p

p

Ï ¸-
= fi = -Ì ˝

+Ó ˛
Ï ¸-

= -Ì ˝
+Ó ˛

Ú

To summarise, the magnetic field is given as

2

2 2

2

0
2

2

1 ( )
2 2

0 ( )

Ir
H a r a

a
I

a a r b
r

r bI
a b r b t

r t bt

r b t

f

f

f

p

p

p

= £ £

= £ £

Ï ¸-Ô Ô= - £ £ +Ì ˝
+Ô ÔÓ ˛

= ≥ +

Example 3.46 An infinitely long coaxial 

pair of circular conductors are located in free space 

and carry equal and opposite total static current I.

The inner conductor is of radius a while the inner 

and outer radii of the outer conductor are b and c

respectively. Sketch the variation of magnetic flux 

density over the range (0, c) and show that the field 

inside the outer conductor (b < r < c) is

2 2
0

2 22

I c r
B

r c b

m

p

Ê ˆ-
= Á ˜-Ë ¯

and zero for r > c.

Solution From Example 3.45, the thickness of the sheath in this problem can be written as t = 

(c – b). Replacing this value, the magnetic flux density for the region (b < r < c) is obtained as

2 2 2 2 2 2 2
0 0 0

2 2 2 2

( ) 2 ( )
1

2 2 22 ( ) 2 ( )

I I Ir b c b b c b r b c r
B

r r rt bt c b b c b c b

m m m

p p p

Ï ¸ È ˘ Ê ˆ- - + - - + -Ô Ô= - = =Ì ˝ Í ˙ Á ˜+ - + - -Ë ¯Ô Ô Î ˚Ó ˛

The variation of the flux density is shown in Fig. 3.39.

Example 3.47 Using Ampere’s circuital law in integral form, find H  everywhere due to the 

current density in cylindrical co-ordinates:

0

0, 0

0
z

J r a

J a a r b

b r

= < <
= < <

Fig. 3.39 Variation of magnetic flux density 

within the sheath of coaxial cable
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Solution

0

0, 0

0
z

J r a

J a a r b

b r

= < <
= < <

0 < r < a:

By Ampere’s law,

0 ( 0)

0

H dl J dS J

H

◊ = ◊ = =
=

Ú Ú
fi

a £ r < b:

By Ampere’s law,

2 2
2 2

0 0 0 0
0 0

2 2
0

(2 ) ( ) ( ) 2 ( )

( )

2

r r r

z z
r a r a r a

H dl J dS

H r J a rdrd a J rdrd J rdr J r a

J r a
H a

r

p p

f f

f

p f f p p
= = = = =

◊ = ◊

= ◊ = = = -

-
=

Ú Ú

Ú Ú Ú Ú Úfi

\

b < r < :

By Ampere’s law,

0 ( 0)

0

H dl J dS J

H

◊ = ◊ = =
=

Ú Ú
fi

To summarise, the results are

2 2
0

0 0

( )

2
0

H r a

J r a
a a r b

r
b r

f

= < <
-

= £ <

Example 3.48 Find the current distribution producing the following field distribution using 

Ampere’s circuital law in differential form:

2
0

3

0

, 0

0

H J r a r a

a
J a a r b

r

b r

f

f

= < <

Ê ˆ
= < <Á ˜Ë ¯

Solution By Ampere’s law in differential form,

( )1 1z r z r
r z

H J

H rHH H H H
J a a a

r z z r r r

f f
ff f

— ¥ =
∂ ∂È ˘ È ˘∂ ∂ ∂ ∂È ˘

= - + - + -Í ˙ Í ˙Í ˙∂ ∂ ∂ ∂ ∂ ∂Î ˚Î ˚ Î ˚
or,

Since, H  is having only Hf component which is a function of r only
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\ 1
( ) zJ rH a

r r f
∂=
∂

0 < r < a:

The current distribution is given as

2
0 0

1
( ) 3z zJ rJ r a J ra

r r

∂= =
∂

a £ r < b:

The current distribution is given as

3
01

0z

J a
J r a

r r r

Ê ˆ∂= =Á ˜Ë ¯∂

b < r < :

The current distribution is given as

1
(0) 0zJ a

r r

∂= =
∂

To summarise, the results are

03 0

0

0

zJ J ra r a

a r b

b r

= < <
= £ <

Example 3.49 Determine the current density function J  associated with the magnetic field 

defined by:

(a) 3 7 2H i j xk= + +  A/m (Cartesian)

(b) 6 2 5r zH ra ra af= + +  A/m (cylindrical)

(c) 2 3 cosH a a ar q fr q= + +  A/m (spherical)

Solution

(a) 3 7 2H i j xk= + +
By Ampere’s law in Cartesian coordinates,

22 A/m

3 7 2

x y z

y

a a a

J H a
x y z

x

∂ ∂ ∂= — ¥ = = -
∂ ∂ ∂

(b) By Ampere’s law in cylindrical coordinates,

1
r z

r z

a a a
r

J H
r z

H rH H

f

f

f
∂ ∂ ∂= — ¥ =
∂ ∂ ∂
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2

( )1 1

1 1
(5) (2 ) (6 ) (5) ( 2 ) (6 )

1
4

4 A/m

z r z r
r z

r z

z

z

H rHH H H H
a a a

r z z r r r

r a r a r r r a
r z z r r r

ra
r

a

f f
f

f

f f

f f

∂ ∂È ˘ È ˘∂ ∂ ∂ ∂È ˘
= - + - + -Í ˙ Í ˙Í ˙∂ ∂ ∂ ∂ ∂ ∂Î ˚Î ˚ Î ˚

È ˘ È ˘∂ ∂ ∂ ∂ ∂ ∂È ˘ Ê ˆ= - + - + -Á ˜Í ˙ Í ˙Í ˙ Ë ¯∂ ∂ ∂ ∂ ∂ ∂Î ˚Î ˚ Î ˚

Ê ˆ= ¥Á ˜Ë ¯

=

(c) 2 3 cosH a a ar q fr q= + +
By Ampere’s law in spherical coordinates,

( )

2

1

sin

sin

1 1 1
( sin ) ( )

sin sin

1

1 1 1
(cos sin ) (3) (2 )

sin sin

a a a

J H

H H H

HH
H a H a

H
H a

a

r q j

r q f

rq
f r f q

r
q f

r

r q fr q

r r q

q r
r q q f r q f r

r
r r q

q q r
r q q f r q f

∂ ∂ ∂= — ¥ =
∂ ∂ ∂

∂È ˘∂È ˘ Ê ˆ∂ ∂= - + -Í ˙Í ˙ Á ˜∂ ∂ ∂ ∂Ë ¯ Í ˙Î ˚ Î ˚

∂È ˘∂+ -Í ˙∂ ∂Í ˙Î ˚

Ê ˆÈ ˘∂ ∂ ∂= - + Á ˜Í ˙∂ ∂ ∂Ë ¯Î ˚

2

( cos )

1
( 3) (2 )

cos 21 1 3
cos A/m

sin

a

a

a a a

q

f

r q f

r q
r

r r
r r q

q
q

r q r r

È ˘∂-Í ˙∂Î ˚

È ˘∂ ∂+ -Í ˙∂ ∂Î ˚

Ê ˆ
= - +Á ˜Ë ¯

Example 3.50
(a) A circular conductor of radius r0 = 1 cm has an internal field, 

4

2

10 1
sin cos A/m

r
H ar ar a

r aa
f

Ê ˆ= -Á ˜Ë ¯

  where,
02

a
r

p= . Find the total current in the conductor.

(b) A cylindrical conductor of radius 10–2 m has an internal magnetic field

2
4

2
(4.77 10 )

2 3 10

r r
H af-

Ê ˆ
= ¥ -Á ˜¥Ë ¯

A/m

  Find the total current in the conductor.
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Solution

(a)
24 4

0 0

2 2
0 0

4 210 1 10
sin cos sin cos

2 2

r rrr r r
H ar ar a a

r a r r ra
f f

p p
pp

È ˘Ê ˆ Ê ˆ Ê ˆ= - = -Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚

0

Putting
2

a
r

pÊ ˆ
=Á ˜Ë ¯

By Ampere’s law, the total current enclosed is,

0

22 4
0 0

2
0 00 0.01

22 4
0 0 0 0 0

02
0 0 00

22
04

2
0

2 2
04 4

2

4 210
sin cos ( )

2 2

4 210
sin cos

2 2

4
10

4 8 (0.01)
10 2 10

l r r

r rrr r
I H dl a rd a

r r r

r r r r r
r d

r r r

r
d

r

p

f f

p

p

p p
f

pp

p p
f

pp

f
p

p
pp

= =

È ˘Ê ˆÊ ˆ= ◊ = - ◊Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

È ˘Ê ˆ Ê ˆ
= -Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

=

¥
= ¥ ¥ = ¥ =

Ú Ú

Ú

Ú

8
A

p

(b)
4

2

10 1
sin cos

r
H ar ar a

r aa
f

Ê ˆ= -Á ˜Ë ¯
By Ampere’s law, the total current enclosed is,

2

2

2 2
4

2
0 10

2 2
4

2
0 10

2 4
4 2

2

(4.77 10 ) ( )
2 3 10

4.77 10
2 3 10

10 10
4.77 10 10 2

2 3 10

5 A

l r

r

r r
I H dl a rd a

r r
rd

p

f f

p

f

f

p

-

-

-
=

-
=

- -
-

-

Ê ˆ
= ◊ = ¥ - ◊Á ˜¥Ë ¯

Ê ˆ
= ¥ -Á ˜¥Ë ¯

Ê ˆ
= ¥ - ¥ ¥Á ˜¥Ë ¯
=

Ú Ú

Ú

3.14 MAGNETIC POTENTIALS

Just like an electric potential, we can define a potential associated with magnetostatic field. In fact, the 

magnetic potentials are of two types:

1. Magnetic Scalar Potential, and

2. Magnetic Vector Potential

3.14.1 Magnetic Scalar Potential

The magnetic scalar potential is defined only in regions of space in the absence of currents.

We know from Ampere’s law that H J— ¥ =  for steady current. If the current density J  is zero in 

some region of space, then we have

0H— ¥ =
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and so we can write the magnetic field H  as the gradient of a scalar quantity as

mH V= - — (3.72)

where, Vm is called the magnetic scalar potential. It is expressed in Ampere.

Similar to the relation between the electric field intensity E  and electric potential V, magnetic scalar 

potential can also be written as

, ,

x

m x y
y

V H dl= - ◊Ú (3.73)

Since the divergence of magnetic flux density is zero,

\ 0 ( ) 0 0 ( ) 0mB H H Vm— ◊ = fi — ◊ = fi — ◊ = — ◊ - — =

\ 2 0mV— = (3.74)

This shows that the magnetic scalar potential satisfies the Laplace equation in a source-free region 

( 0)J = .

Example 3.51 A coaxial cable has inner and outer radii a and b, respectively. The inner cable 

carries a current I. Find the magnetic scalar potential at a radius r inside the cable (a < r < b).

Solution From Section 3.13.1, the magnetic field intensity inside the cable at any radius r (a < r < 

b) is given as

2

I
H a

r fp
=

From the definition of magnetic vector potential, we have

1 1
{ is a function of only}m m m m

m r z

V V V V
H V a a a a V r

r r z rf ff f

∂ ∂ ∂ ∂Ê ˆ
= - — = - + + = -Á ˜∂ ∂ ∂ ∂Ë ¯

Substituting the value of H , we get

1

2

2

m

m

VI
a a

r r

V I

f fp f

f p

∂
= -

∂
∂

= -
∂fi

Integrating,

2m

I
V Cf

p
= - +

where, C is the integration constant.

Applying the boundary condition that Vm = 0 at f = 0 (i.e. zero current enclosed), we have C = 0.

\
2m

I
V f

p
= -
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NOTE

If f = 2p (anti-clockwise rotation), p
p

= - ¥ = -2
2m

I
V I ; however, f = 2p is the same point as f = 0 

for which Vm = 0. This shows that Vm is not a single valued function.

For f = 2np (anti-clockwise rotation), p
p

= - ¥ = -2
2m

I
V n nI

For f = –2np (clockwise rotation), p
p

= - ¥ - =( 2 )
2m

I
V n nI

So, there is total 2n number of values for Vm.

*Example 3.52 Prove that the magnetic scalar potential at 

(0, 0, z) due to a circular loop of radius ‘a’ is

2 2 1/2
1 .

2 ( )
m

I z
V

z a

È ˘= -Í ˙+Î ˚

This is given in Fig. 3.40.

Solution From Example 3.32, we have the magnetic field at 

(0, 0, z) due to the circular loop of radius a is given as

2

2 2 3/22[ ]

1

z m

m m m
r z

Ia
H a V

a z

V V V
a a a

r r zff

= = - —
+

∂ ∂ ∂È ˘
= - + +Í ˙∂ ∂ ∂Î ˚

Comparing both sides

2

2 2 3/22[ ]

mV Ia

z a z

∂
= -

∂ +
Integrating

2

2 2 3/22[ ]

z

m

Ia
V dz

a z
= -

+Ú

Let, z = a tan q \ dz = a sec2 qdq

\ tan
z

a
q Ê ˆ= Á ˜Ë ¯ \

2
2

2
sec 1

z

a
q

Ê ˆ
= +Á ˜Ë ¯

\
2

2

2 2
cos

a

a z
q =

+

\
2 2

2 2

2 2 2 2
sin (1 cos ) 1

a z

a z a z
q q

Ê ˆ
= - = - =Á ˜+ +Ë ¯

\
2 2

sin
z

a z
q =

+

Fig. 3.40 Circular current carrying 

loop
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z z

q
2

p
A

Here, 1tan
z

A
a

- Ê ˆ= Á ˜Ë ¯

\
2 22

2 2 3/2 3 3
/2 /2

/2

sec
cos

22[ ] 2 sec

[sin ] (sin 1) (1 sin )
2 2 2

z A A

m

A

Ia a dIa I
V dz d

a z a

I I I
p p

p

q q
q q

q

q q q

= - = - = -
+

= - = - - = -

Ú Ú Ú

Putting the value 
2 2

sin
z

a z
q =

+
, we get

\
2 2

1
2m

I z
V

a z

È ˘= -Í ˙
+Í ˙Î ˚

3.14.2 Magnetic Vector Potential

We know that the divergence of magnetic flux density is always zero everywhere ( 0)B— ◊ = . Hence, 

B  can be expressed as the curl of some other vector function. We designate this vector as A, which is 

known as the magnetic vector potential.

\ B A= — ¥ (3.75)

Magnetic vector potential is expressed in Weber per metre (Wb/m) or in Newton per Ampere (N/A) or 

in Volt-second per metre (V-s/m); with its dimension as MLI –1T  –2.

Now, by Ampere’s law,

2( ) ( )B J A J A A Jm m m— ¥ = fi — ¥ — ¥ = fi — — ◊ - — =

If we let, 0A— ◊ = , which is called Coulomb’s gauge condition, then we obtain

2 A Jm— = - (3.76)

This is similar to Poisson’s equation of electrostatics, 2V
r

e
— = -  whose solution is 

1

4
v

V dv
r

r

pe
= Ú .

By comparison, we get the magnetic vector potential as

for volume current density
4

for surface current density
4

for line current density
4

v

S

v

J
A dv

r

K
dS

r

Idl

r

m
p

m
p

m
p

=

=

=

Ú

Ú

Ú

(3.77)

The concept of magnetic vector potential is extremely useful for studying radiation in transmission 

lines, wave guides, antennas, etc.
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NOTE

Magnetic scalar potential is defined only in regions where the current is zero ( 0)J = ; but magnetic 

vector potential is defined in regions with any finite value of current.

*Example 3.53 Find the vector magnetic potential and hence the magnetic flux density B due to 

an infinite wire carrying a current, at a point (i) inside, (ii) outside the wire.

Solution (i) Inside the wire:

Let a be the radius of the wire.

By symmetry, it is understood that only the z-component of the vector potential exists.

2

2

2

1

z z

z

I
A J

a

A I
r

r r r a

m
m

p

m

p

— = - = -

∂Ê ˆ∂ = -Á ˜∂ ∂Ë ¯
or

Integrating

2

122

zA Ir
r C

r a

m

p

∂
= - +

∂

Since 0zA
r

r

∂
=

∂
 at r = 0 fi C1 = 0

Integrating again,

2

224
z

Ir
A C

a

m

p
= - +

Since Az = 0 at r = a, fi 2 4

I
C

m
p

=

\
2

2
1

4z

I r
A

a

m
p

È ˘
= -Í ˙

Î ˚

In vector form, the vector magnetic potential is given as

2

2
1

4 z

I r
A a

a

m
p

È ˘
= -Í ˙Î ˚

Now, B A= — ¥

\

2

1
(curl ) 0

(curl )
2

( )1 1
(curl ) 0

z
r r

r z

r
z z

AA
B A

r z

A A Ir
B A

z r a

rA A
B A

r r r

f

f f

f

f

m

p

f

∂∂
= = - =

∂ ∂

∂ ∂
= = - =

∂ ∂

∂ ∂
= = - =

∂ ∂
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Thus, the magnetic induction is

22

Ir
B a

a
f

m

p
=

(ii) Outside the wire:

Here,

1

1 2

1
0

ln

z

z

z

A
r

r r r

A C

r r

A C r C

∂Ê ˆ∂ =Á ˜∂ ∂Ë ¯

∂
=

∂

= +

fi (i)

At r = a, Az = 0 fi C2 = –C1 ln a

\ 1 lnz

r
A C

a

Ê ˆ= Á ˜Ë ¯

The constant C1 is found from the boundary condition for 
zA

r

∂
∂  at r = a.

Since B A= — ¥ , \ zA
B

rf

∂
= -

∂
Now, Bf must be continuous at r = a. From the result of (i), we get

2
zA I

r a

m
p

∂
- =

∂ (ii)

From (i) and (ii), we get

1
12 2

C I I
C

a a

m m
p p

= - fi = -

\ ln
2z

I r
A

a

m
p

Ê ˆ= - Á ˜Ë ¯
In vector form, the vector magnetic potential is given as

ln
2 z

I r
A a

a

m
p

Ê ˆ= - Á ˜Ë ¯

Proceeding in the same way as in (i), we get the magnetic induction as

2

I
B a

r f
m
p

=

To summarise the results

2

2
1

4

ln
2

z

z

I r
A a r a

a

I r
a r a

a

m
p

m
p

È ˘
= - <Í ˙

Î ˚

Ê ˆ= - >Á ˜Ë ¯
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22

2

Ir
B a r a

a

I
a r a

r

f

f

m

p

m
p

= <

= >

*Example 3.54 Using Ampere’s circuital law in integral form, find H  everywhere due to the 

current density in cylindrical co-ordinates:

0

0, 0

0

z

J r a

r
J a a r b

a

b r

= < <
Ê ˆ= < <Á ˜Ë ¯

Also, find the vector magnetic potential.

Solution

0

0, 0

0

z

J r a

r
J a a r b

a

b r

= < <
Ê ˆ= < <Á ˜Ë ¯

0 < r < a:

By Ampere’s law,

0 ( 0)

0

H dl J dS J

H

◊ = ◊ = =
=

Ú Ú
fi

a £ r < b:

By Ampere’s law,

2 2
0 0 02 2 3 3

0
0 0

0 3 3

2 2
(2 ) ( ) ( )

3

( )
3

r r r

z z
r a r a r a

H dl J dS

J J Jr
H r J a rdrd a r drd r dr r a

a a a a

J
H r a a

ar

p p

f j

f

p p
p f f

= = = = =

◊ = ◊

Ê ˆÊ ˆ= ◊ = = = -Á ˜Á ˜Ë ¯Ë ¯

= -

Ú Ú

Ú Ú Ú Ú Úfi

\

b < r < :

By Ampere’s law,

0 ( 0)

0

H dl J dS J

H

◊ = ◊ = =
=

Ú Ú
fi
To summarise, the results are

0 3 3

0 0

( )
3
0

H r a

J
r a a a r b

ar
b r

f

= < <

= - £ <
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The magnetic flux density is

0 0 3 3
0 ( )

3

J
B H r a a

ar f

m
m= = -

Also,

1
r z

r z

a a a
r

B A
r z

A A A

j

f

f
∂ ∂ ∂= — ¥ =
∂ ∂ ∂

As B  has only af  component, or since the current direction is in za  direction, only Az component of 

A will exist.

\ 0 0rA Af= =

\

3 30 0 ( )
3

z

z

A
A a

r

JA
r a

r ar

f

m

∂
— ¥ = -

∂

∂
- = -

∂or,

Integrating,

3
0 0 0 03 3 2

3
0 0 3

3 3
0 0 3

( )
3 3

ln
3 3

ln
3 3

r r

z
r a r a

r

a

J J a
A r a dr r dr

ar a r

J r
a r

a

J r a r
a

a a

m m

m

m

= =

Ê ˆ
= - - = - -Á ˜Ë ¯

È ˘
= - -Í ˙

Î ˚

È ˘Ê ˆ- Ê ˆ= - -Á ˜Í ˙Á ˜Ë ¯ Ë ¯Î ˚

Ú Ú

3 3
0 0 3 ln
3 3z

J r ar
A a

a a

m È ˘Ê ˆ-Ê ˆ= - Á ˜Í ˙Á ˜ Ë ¯Ë ¯Î ˚

\ ( ) 3 3
30 0 ln

3 3 z

J r ar
A a a

a a

m È ˘Ê ˆ-
= - Á ˜Í ˙Ë ¯Î ˚

*Example 3.55 Show that the vector potential due to moving charge q at a distance R is given by

0( ) ,
4

qv
A r

R

m
p

=

v  being velocity of charge.
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Solution 0 0

0

0

0

( ) ( Integration is w.r.t. ,  is constant)
4 4

,
4

4

4

= =

Ê ˆ
= = =Á ˜Ë ¯

=

=

Ú Ú

Ú

Ú

Idl
A r Idl dl R

R R

dq dq dl
vdt I v

R dt dt dt

v
dq

R
qv

R

m m

p p
m

p

m

p
m

p

\ 0( )
4

qv
A r

R

m

p
=

*Example 3.56 Using the concept of vector magnetic 

potential, find the magnetic flux density at a point due to a 

long straight filamentary conductor carrying a current I in the 

z-direction, as shown in Fig. 3.41.

Solution Vector magnetic potential

0 0( )
4 4

L

z
L

Idl Idz
A r a

R R

m m

p p -
= =Ú Ú

Current being in the z-direction, only Az component of A will 

exist.

\ 0

0

2 2 2
0

0

2 2
0

0 2 2

0

0 2 2

4

2
4

2

ln( )
2

ln( ) ln
2

L

z
L

L

L

L

Idz
A

R

I dz

x y z

I dz

r z

I
z r z

I
L r L r

m

p

m

p

m

p

m

p
m

p

-
=

= ¥
+ +

=
+

È ˘= + +Í ˙Î ˚
È ˘= + + -Í ˙Î ˚

Ú

Ú

Ú

If L >> r, then

0 0 02 2 2
[ln( ) ln ] [ln 2 ln ] ln

2 2 2z

I I I L
A L r L r L r

r

m m m

p p p
Ê ˆ= + + - = - = Á ˜Ë ¯

\ 0 2
ln

2 z

I L
A a

r

m

p
Ê ˆ= Á ˜Ë ¯

Since only Az exists, the magnetic flux density is given as

0 0 0

2

2 2
ln

2 2 2 2
z I I IA L r L

B A a a a a
r r r L rr

f f f f

m m m

p p p

∂ È ˘∂ Ê ˆÊ ˆ= — ¥ = - = - = - ¥ ¥ - =Á ˜ Á ˜Í ˙Ë ¯ Ë ¯∂ ∂ Î ˚

Fig. 3.41 Long straight filamentary 

conductor
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\ 0

2

I
B a

r f

m

p
=

Example 3.57 Show that the vector magnetic potential at a distant point P (x, y, z) due to a finite 

line current flowing through – l £ z £ l along za  is

0

2 2 2 1/22 [ ]
z

I l
A a

x y z

m

p
=

+ +

Solution From Example 3.56, we have the vector magnetic potential given as

0 0 0 0

2 2 2 1/22 2 2
0 0

( ) 2
4 4 2 2 [ ]

l l l

z z
l

I I I I ldl dl dl
A r a a

R R x y zx y z

m m m m

p p p p-
= = ¥ = =

+ ++ +
Ú Ú Ú

\ 0

2 2 2 1/22 [ ]
z

I l
A a

x y z

m

p
=

+ +

Example 3.58 A coaxial cable with the inner conductor of radius ‘a’ carries a current ‘I’ in za

direction and the outer conductor of radius ‘b’ carries a current ‘I’ in the za-  direction; between radius 

‘a’ and ‘b’ there is no current. Find the magnetic vector potential at r, where a < r < b.

Solution At any point, a < r < b, 0J =

\ 2 0A— =

In cylindrical coordinates,

2 2 2 2
r r z zA A a A a A af f— π — + — + —

Although in Cartesian coordinate systems, this type of equation holds. 

In cylindrical coordinates, the z-component of the vector Laplacian is the scalar Laplacian of the 

z-component of A.

i.e. 2 2
z

z
A A— = —

The current has only the z-direction, so only Az component will exist.

\ 2 0

1
0

z

z

A

A
r

r r r

— =
∂Ê ˆ∂ =Á ˜∂ ∂Ë ¯

or,

Integrating twice, we get

1 2lnzA C r C= +

where, C1 and C2 are the integration constants.

Following the same procedure as in solved example 3.16, we have the results as

0 ln
2 z

I b
A a

r

m

p
Ê ˆ= Á ˜Ë ¯ and

2

I
H a

r fp
=
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*Example 3.59 An infinitely long conductor of radius a is placed such that its axis is along the 

z-axis. The vector magnetic potential, due to a direct current I0 flowing along za  in the conductor is 

given by:

0 2 2
02
( ) Wb/m

4
z

I
A x y a

a
m

p
= - +

Find the corresponding H . Also confirm the result using Ampere’s law.

Solution The magnetic flux density is given as

0
02

0 2 2
02

( )
2

0 0 ( )
4

x y z

x y

a a a

I
B A ya xa

x y z a

I
x y

a

m
p

m
p

∂ ∂ ∂= — ¥ = = - -
∂ ∂ ∂

- +

So, the magnetic field intensity is given as

0

2
0

( )
2

x y

IB
H ya xa

am p
= = - -

We calculate the closed line integral of this field as follows

0 0

2 2

0

2

0

2

0 2 2

2

0

( ) ( ) ( ) ( )
2 2

( ) ( sin cos )
2

( sin cos )
2

( sin cos ) { cos and sin }
2

(s
2

x y x y
L L L

x y x y
L

L

L

I I
H dl ya xa ad a ad ya xa a

a a

I
ad ya xa a a

a

I
ad y x

a

I
ad a a x r y r

a

I
d

f ff f
p p

f f f
p

f f f
p

f f f f f
p

f
p

◊ = - - ◊ = - - ◊

= - - ◊ - +

= - - -

= + = =

=

Ú Ú Ú

Ú

Ú

Ú

2 2

0 0
0

in cos )

2
2 2

L

L

I I
d I

f f

f p
p p

+

= = ¥ =

Ú

Ú

Since 0
L

H dl I◊ =Ú , Ampere’s law is verified.

*Example 3.60 Given the magnetic vector potential, 
2

4 zA a
r

= -  Wb/m, calculate the total flux 

crossing the surface f = p/2, 1 £ r £ 2 m, 0 £ z £ 5 m.

Solution The magnetic flux density is, 
2

zA
B A a af f

r

r

∂
= — ¥ = - =

∂
Differential surface is given as, dS d dzafr=
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Hence, total flux crossing the given surface is given as

5 2 5 2
2 2

1
0 1 0 1

1 1 15
[ ] 5 Wb

2 2 4 4
S z z

B dS a d dza d dzf f
r r

r
f r r r r

= = = =
= ◊ = ◊ = = ¥ =Ú Ú Ú Ú Ú

3.14.3  Derivation of Magnetic Vector Potential using 
Biot–Savart Law

By Biot–Savart law, the magnetic field intensity at a point ( )P r

due to an element dl  at a positional vector r ¢  is

3

1

4
l

Idl R
H

Rp

¥
= Ú (3.78)

where, ( ) ( ') ( ) ( )R r r x x i y y j z z k¢ ¢ ¢= - = - + - + -

Source point and field point are illustrated in Fig. 3.42.

Hence,

2 2 2 3/2

3

( ) ( ) ( )1

[( ) ( ) ( ) ]

¢ ¢ ¢- + - + -Ê ˆ— = -Á ˜Ë ¯ ¢ ¢ ¢- + - + -

= -

x x i y y j z z k

R x x y y z z

R

R
(3.79)

From Eq. (3.78) and (3.79), we get

1 1 1

4 4
l l

I
H Idl dl

R Rp p
Ê ˆ Ê ˆ= - ¥ — = — ¥Á ˜ Á ˜Ë ¯ Ë ¯Ú Ú (3.80)

We have the vector identity

( )SV S V S V— ¥ = — ¥ + — ¥  where S is a scalar and V  is a vector. Taking, 
1

S
R

Ê ˆ= Á ˜Ë ¯  and V dl= , we 

have

\

( ) ( )

( )

1 1 1
( ) 0

{ operates w. r. t. ( , , ) while  is a function of ( , , ); 0}

1

dl
dl dl dl

R R R R

x y z dl x y z dl

dl
dl

R R

Ê ˆ
— ¥ = — ¥ + — ¥ = + — ¥Á ˜Ë ¯

¢ ¢ ¢— \— ¥ =
Ê ˆ

— ¥ = — ¥ Á ˜Ë ¯ (3.81)

From Eq. (3.80) and (3.81),

4 4
l l

I dl Idl
H

R Rp p

Ê ˆ
= — ¥ = — ¥Á ˜Ë ¯Ú Ú (3.82)

(Since integration and differentiation are w. r. t. two different sets of variable, we can interchange the 

order.)

\
4

l

Idl
B H

R

m
m

p
= = — ¥ Ú (3.83)

Fig. 3.42 Illustration of source point 

(x ¢, y ¢, z ¢) and field point 

(x, y, z)
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By definition of magnetic vector potential as, B A= — ¥ , we get

4 4 4
l S v

Idl KdS Jdv
A

R R R

m m m
p p p

= = =Ú Ú Ú

3.14.4  Derivation of Magnetic Flux in Terms of Magnetic 
Vector Potential

We know that the magnetic flux coming out of a surface is given as

S

B dSf = ◊Ú

where, B  is the magnetic flux density. Writing this in terms of magnetic vector potential as, B A= — ¥
and applying Stokes’ theorem, we obtain

( )
S S l

B dS A dS A dlf = ◊ = — ¥ ◊ = ◊Ú Ú Ú

\
l

A dlf = ◊Ú (3.84)

Example 3.61 A current distribution gives rise to the vector 

magnetic potential 2 2 4A x yi y xj xyzk= + -  Wb/m. This is illustrat-

ed in Fig. 3.43. Calculate:

(a) B  at (–1, 2, 5)

(b) The flux through the surface defined by z = 1, 0 £ x £ 1, 

–1 £ y £ 4.

Solution

(a) 2 2

2 2

4 4 ( )

4

i j k

B A xzi yzj y x k
x y z

x y y x xyz

∂ ∂ ∂= — ¥ = = - + + -
∂ ∂ ∂

-

\ 2
( 1,2,5) 4 ( 1) 5 4 2 5 (4 1) 20 40 3 Wb/mB i j k i j k- = - ¥ - ¥ + ¥ ¥ + - = + +

(b) Total flux is given as

1 2 3 4
L

A dlf f f f f= ◊ = + + +Ú

where L is the path bounding the surface S, f1, f2, f3, f4, are the fluxes along the segments of the path.

4
2 2

1
1

1, 1

44 3
2

1 1

( 4 ) ( )

65

3 3

y
x z

y

x yi y xj xyzk dyj

y
y dy

f
= - = =

= - -

È ˘
= + - ◊Í ˙

Í ˙Î ˚

= = =

Ú

Ú

Fig. 3.43 Arrangement of 

Example 3.61
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1
2 2

3
4

0, 1

( 4 ) ( ) 0
y

x z

x yi y xj xyzk dyjf
-

= = =

È ˘
= + - ◊ - =Í ˙

Í ˙Î ˚
Ú

00 0 3
2 2 2

2
1 1 14, 1

4 4
( 4 ) ( ) 4

3 3
x x

y z

x
x yi y xj xyzk dxi x dxf

= == =

È ˘
= + - ◊ - = - = - = -Í ˙

Í ˙Î ˚
Ú Ú

11 1 3
2 2 2

4
0 0 01, 1

1
( 4 ) ( )

3 3
x x

y z

x
x yi y xj xyzk dxi x dxf

= == - =

È ˘
= + - ◊ = - = - = -Í ˙

Í ˙Î ˚
Ú Ú

By summation, total flux through the surface is

1 2 3 4

65 4 1
0 20 Wb

3 3 3
f f f f f= + + + = + - - =

3.15 FORCES DUE TO MAGNETIC FIELDS

There are three ways of experiencing force due to magnetic fields:

1. Force on a moving charged particle in a magnetic field,

2. Force on a current carrying conductor in a magnetic field, and

3. Force between two current carrying conductors (Ampere’s force law).

3.15.1 Force on a Moving Charged Particle in a Magnetic Field

As discussed in Chapter 2, we know that the electric force on a stationary charge Q in an electric field 

E, given by Coulomb’s law is

eF QE= (3.85)

Now if we allow this charge to move with a velocity v  in the presence of a magnetic field, B, then 

experimentally we have the following observations:

1. The magnitude of the magnetic force mF  exerted on the charged particle is proportional to both 

v  and Q.

2. The magnitude and direction of mF  depends on both v  and B.

3. The magnetic force mF  vanishes when v  is parallel to B . However, when v  makes an angle q

with B, the direction of mF  is perpendicular to the plane formed by v  and B, and the magnitude 

of mF  is proportional to sin q.

4. When the sign of the charge of the particle is switched from positive to negative (or vice versa), 

the direction of mF  also reverses.

The above observations can be summarized with the following equation

mF Qv B= ¥ (3.86)

The magnitude of the force is given as,

| | sinmF Q vB q= (3.87)
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When the charged particle moves in the presence of both the electric as well as the magnetic field, the 

total force on the charge is

( )e mF F F QE Qv B Q E v B= + = + ¥ = + ¥

\ ( )F Q E v B= + ¥ (3.88)

This equation is known as Lorentz force equation, which relates the mechanical force to electrical 

force.

Comparison between Electric Force and Magnetic Force

Electric Force ( )eF QE= Magnetic Force ( )mF Qv B= ¥

  (i) It is in the same direction as the field E.   (i) It is perpendicular to both v  and B.

 (ii) It can perform work.  (ii) It cannot perform work.

(iii) It is independent of the velocity of charge. (iii) It depends upon the velocity of charge.

(iv) It can produce change in kinetic energy. (iv) It cannot produce change in kinetic energy.

3.15.2  Force on a Current Carrying Conductor in a Magnetic Field

We consider an element dl  of a conductor carrying a current I. The direction of the vector dl  is that of 

the current, so that dl  is parallel to the velocity v  of charge carriers inside the conductor. 

\ Number of charge carriers in the element dl  = NAdl

where, N is the number of charge carriers per unit volume;

A is the cross-sectional area of the conductor

Force on each of these charge carriers = Qv B¥

\ Total force on all the charge carriers, i.e., the force acting on the conductor itself is

{ is parallel to }

{ }

dF NAdlQv B NQvAdl B dl v

Idl B I NQvA

= ¥ = ¥
= ¥ =

Hence, for a finite length of the conductor, the force exerted on it is

l

F Idl B= ¥Ú (3.89)

Instead of line current, if we have surface current K  or volume current J , then the force equation 

becomes

l S v

F Idl B KdS B Jdv B= ¥ = ¥ = ¥Ú Ú Ú (3.90)
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3.15.3  Force between Two Current Carrying Conductors 
(Ampere’s Force Law)

We consider two loops C1 and C2 carrying currents I1 and 

I2, respectively as shown in Fig. 3.44.

Let

dl1, dl2 be the directed elements of lengths;

12RR  be the directed distance between the elements;

12R  be the unit vector drawn from 1 to 2.

According to the Biot–Savart law, both current carrying 

elements produce fields. Thus, the force on the element 

2 2I dl  due to the magnetic field 1dB  produced by the element 

1 1I dl  is

2 2 2 1( )d dF I dl dB= ¥

But, from Biot–Savart law

1 1 12
1 24

I dl R
dB

R

m

p

¥
=

Hence,

2 2 1 1 12
2 2

( )
( )

4

I dl I dl R
d dF

R

m

p

¥ ¥
=

Thus, the total force on loop C2 due to loop C1 is

1 2

1 2 2 1 12
2 2

( )

4
C C

I I dl dl R
F

R

m

p

¥ ¥
= Ú Ú (3.91)

This equation is essentially the law of force between two current elements; it is known as Ampere’s 

force law and is analogous to Coulomb’s law.

Similarly, force on loop C1 due to loop C2 can be found and it will be seen that 1 2F F= - ; thus 1F  and 

2F  obey Newton’s third law that action and reaction must be equal and opposite.

Example 3.62 A rectangular loop of length l and width 

w carries a steady current I1. The loop is then placed near an 

infinitely long wire carrying a current I2, as shown in Fig. 3.45. 

What is the magnetic force experienced by the loop due to the 

magnetic field of the wire?

Solution The forces are shown in Fig. 3.46.

The magnetic induction due to the infinitely long wire is

2
2 2

I
B a

r f

m

p
=

Fig. 3.44 Force between two current 

carrying conductors

Fig. 3.45 Magnetic force on a current 

loop
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Fig. 3.46 Magnetic forces on the loop and the wire

The force on the loop is given as

1 2 3 4F F F F F= + + +
Here,

0
2 1 2

1 1 1 2 1 (repulsive)
2 2z r

z l
r a

I I I l
F I dl B I dza a a

r af

m m

p p= =

= ¥ = ¥ =Ú Ú

2 1 2
3 1 3 2 1

0

(attractive)
2 2 ( )

l

z r
z

r a w

I I I l
F I dl B I dza a a

r a wf

m m

p p= = +

= ¥ = ¥ = -
+Ú Ú

2 1 2
2 1 2 2 1

0

ln (parallel)
2 2

w

r z
r

I I I
F I dl B I dra a wa

r f

m m

p p=
= ¥ = ¥ =Ú Ú

0
2 1 2

4 1 2 2 1 ln (parallel)
2 2r z

r w

I I I
F I dl B I dra a w a

r f

m m

p p=
= ¥ = ¥ = -Ú Ú

Thus, the total force on the loop is

1 2 1 2 1 2
1 2 3 4

1 1

2 2 ( ) 2r r r

I I l I I l I I l
F F F F F a a a

a a w a a w

m m m

p p p
È ˘= + + + = - = -Í ˙+ +Î ˚

*Example 3.63 Find the force between two straight, infinite, parallel wire carrying currents I1

and I2 separated by a distance d and placed in air.

Solution We consider two parallel wires separated by a 

distance d and carrying currents I1 and I2 in the x-direction, as 

shown in Fig. 3.47.

The magnetic force, 12F , exerted on wire 1 by wire 2 may 

be computed as follows:

At an arbitrary point P on wire 1, the magnetic field due to 

current I2 on wire 2 is

0 2
2 2 y

I
B a

d

m

p
= - Fig. 3.47 Force between two parallel 

wires



Magnetostatics 313

This field which points in the direction perpendicular to wire 1, as depicted in the figure. Therefore the 

force on wire 2 due to wire 1 is

0 2 0 1 2
12 1 2 1( )

2 2x y z

I I I
F I l B I la a a

d d

m m

p p
Ê ˆ

= ¥ = ¥ - = -Á ˜Ë ¯

Clearly 12F  points toward wire 2.

The same force will be acting on wire 1 due to wire 2.

In general, the magnitude of the force may be written as

0 1 2

2

I I
F

d

m

p
=

The conclusion we can draw from this simple calculation is that the force between two parallel wires 

carrying currents:

— is attractive if the currents are in the same direction.

— is repulsive if the currents are in the opposite directions.

Example 3.64 Three very long parallel conductors are in free space. They lie in one plane 

spaced 50 cm. Each of the conductor carries a current of 100 amperes so that in the first and second 

the current has the same direction. What is the force acting a metre of the first, second (middle) and the 

third conductors?

Solution We use the results of the earlier problem to solve this problem.

Force on first conductor:

Force due to second conductor, 
2

0
21 2

I
F

d

m

p
=  (attractive)

Force due to third conductor, 
2 2

0 0
31 2 ( ) 4

I I
F

d d d

m m

p p
= =

+
 (repulsive)

Net force due these two conductors

2 2 2 7 2
0 0 0

1

4 10 (100)
2mN

2 4 4 4 0.5

I I I
F

d d d

m m m p

p p p p

-¥ ¥
= - = = =

¥ ¥
(attractive)

Force on second conductor:

Force due to first conductor 
2

0
12 2

I
F

d

m

p
=  (attractive)

Force due to third conductor 
2

0
32 2

I
F

d

m

p
=  (repulsive)

Net force due these two conductors 
2 2

0 0
1 0

2 2

I I
F

d d

m m

p p
= - =

Force on third conductor:

Force due to first conductor 
2 2

0 0
13 2 ( ) 4

I I
F

d d d

m m

p p
= =

+
 (repulsive)
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Force due to second conductor 
2

0
23 2

I
F

d

m

p
=  (repulsive)

Net force due to these two conductors

2 2 2 7 2
0 0 0

1

3 4 10 (100)
3 6 mN

2 4 4 4 0.5

I I I
F

d d d

m m m p

p p p p

-¥ ¥
= + = = ¥ =

¥ ¥
 (repulsive)

Example 3.65 Determine the force between two parallel circular 

co-axial coils of radius ‘R’, as shown in Fig. 3.48, which are a small 

distance ‘d’ apart in free space and carry currents I1 and I2. Assume that 

each of the coils has a single turn.

Solution As the distance between the coils is very small compared 

to the radius of the coils, the two coils can be treated as parallel current 

carrying wire. The force on one of the coils (say C1) per unit length due 

to the other coil (say C2) can be written as obtained in Example 3.63, as

0 1 2
0 2

I I
F

d

m

p
=

Therefore, the net force is given as 0 1 2
02

I I R
F RF

d

m
p= =

\ 0 1 2I I R
F

d

m
=

Example 3.66 Calculate the force between two parallel circular coaxial coils of nearly the same 

size and carrying current, being separated by a small distance in free space. For what distance between 

the coils is this force a maximum?

Solution This is shown in Fig. 3.49. We consider two coils C1 and C2

of radii R1 and R2 respectively, carrying currents I1 and I2, respectively. 

Let d be the separation distance between the centres of the coils. Force 

per unit length on either coil is

0 1 2
0 2

I I
F

l

m

p
=

where, l is the distance of the line ab.

By symmetry, it is seen that the component of the force F0

perpendicular to the z-axis will be cancelled when the entire coil is 

considered. The component of F0 along the z-axis is

0 1 2 0 1 2
0 0 2

sin
2 2

z

I I I I dd
F F

l l l

m m
q

p p
= = =

For the entire coil, the length is 2pR1 ª 2pR2. Hence, the total force 

along the z-axis is

0 1 2 2
2 0 0 1 2 22 2 2

1 2

2
( )

z

I I R d d
F R F I I R

l d R R

m
p m= = =

+ -

Fig. 3.48 Parallel co-axial 

circular coils

Fig. 3.49 Parallel co-axial 

circular coils
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This force will be maximum when

0 1 2 2 2 2
1 2

2 2
1 2

2 2 2
1 2

1 2

0

or, 0
( )

or, 0
( )

or, ( ) 2 0

or, ( )

dF

dd

d d
I I R

dd d R R

d d

dd d R R

R R d d

d R R

m

=

È ˘
=Í ˙

+ -Î ˚
È ˘ =Í ˙+ -Î ˚
- + - =

= -

This implies that the force will be the maximum when the distance between the centres of the coils is 

equal to the difference between their radii.

3.16 MAGNETIC TORQUE

In Section 3.15, we have seen that a current carrying conductor placed in a magnetic field experiences 

a force that tends to move the conductor in a direction perpendicular to both the magnetic field and the 

conductor. However, if a current carrying coil is placed in a magnetic field, the magnetic force imparted 

may be a twisted force or moment which may rotate the conductor. In this section, we will find the 

magnetic torque and moment.

To determine the torque acting on a current loop in a magnetic field, we shall consider a rectangular 

current loop abcd carrying a current I, as shown in Fig. 3.50.

Fig. 3.50 Rectangular loop in uniform magnetic field

Let

l = length of the rectangular loop;

w = width of the rectangular loop;

B = uniform magnetic field
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Total force acting on the loop is

b c d a

a b c d

F I dl B
È ˘

= + + + ¥Í ˙
Î ˚
Ú Ú Ú Ú

From Fig. 3.50, we notice that dl  is parallel to B  along sides ab and cd of the loop and no force is 

exerted on these sides. Thus, the total force acting on the loop is

0

0 0
0

0
c a l

z z
b d l

F I dl B I dl B I dza B I dza B F F= ¥ + ¥ = ¥ + ¥ = - =Ú Ú Ú Ú

where, 0| |F BIl= , as B  is uniform. Thus, the force exerted on the loop is zero. However, the forces 0F

and 0F-  creates a torque.

If q is the angle between B  and the normal to the plane of the loop, then the torque is given by

0| | | | sinT F w q=  or

sin sinT BIlw BISq q= = (3.92)

where, S = lw is the area of the loop.

In vector form,

T IS B= ¥ (3.93)

We define the magnetic dipole moment as

nm IS ISa= = (3.94)

where, na  is the unit vector normal to the plane of the loop and its direction is determined by the right-

hand rule.

Magnetic Dipole Moment ( )m : It is the product of current and area of the loop; its direction is 

normal to the plane of the loop; its unit is Am2.

nm IS ISa= =

In terms of the magnetic dipole moment, the torque can be written as

T m B= ¥ (3.95)

NOTE

(i) This expression is applicable in determining torque on a planar loop of any arbitrary shape.

(ii) The torque is in the direction of the axis of rotation. It is directed so as to reduce the angle q, so 

that m and B are in the same direction. In equilibrium, the loop is perpendicular to the magnetic 

field and thus, both torque and force on the loop are zero.
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3.17 MAGNETIC DIPOLE

A bar magnet or a small filamentary loop carrying a 

current is known as a magnetic dipole.

We will now find out the magnetic field produced by a 

magnetic dipole. We consider a circular loop of radius a

carrying a current I as shown in Fig. 3.51 (a).

Magnetic vector potential at a point P(r, q, f) is given 

as

4
l

I dl
A

R

m
p

= Ú (3.96)

Here, dl ad aff= .

At a given r and q, A will be independent of f. For the 

observation point P, we have

and (cos sin )x z r x yr xa za r a a a a af f¢= + = = +

\ ( ) ( ) (cos sin ) ( cos ) sinx z x y x y zR r r xa za a a a x a a a a zaf f f f¢= - = + - + = - - +

\ 2 2 2 2 2 2 1/2

2 2 1/2

| | ( cos ) ( sin ) [ 2 cos ]

[ 2 sin cos ]

R r r x a a z x z ax a

r ar a

f f f

q f

¢= - = - + + = + - +
= - +

Fig. 3.51 (b) Magnetic field lines for a 

filamentary conductor      

Fig. 3.51 (c) Magnetic field lines for 

a bar magnet

If the loop is small, i.e., the observation point is far away than the radius of the loop (r >> a), then we 

obtain

\
1/2

2 2 1/2 2 sin cos 2 sin cos1 1 1 1
[ 2 sin cos ] 1 1

2

1 ( / ) sin cos

a a
r ar a

R r r r r

a r

r

q f q f
q f

q f

-
- Ê ˆ Ê ˆ= - + ª - ª +Ë ¯ Ë ¯

+Ê ˆ= Ë ¯

Substituting this in Eq. (3.97),

2 2

2
0

1 ( / ) sin cos ( )sin

4 4

a r I aI
A ad a a

r r

p

f f
f

q f m p qm
f

p p=

+Ê ˆª ªË ¯Ú

Fig. 3.51 (a) Magnetic dipole
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or
2

2 2

( )sin

4 4

rm aI a
A a

r r
f

mm p q

p p

¥
ª = (3.97)

where 2( ) zm I a ap=  is the magnetic dipole moment defined as the product of the area of the loop and 

the magnitude of the circulation current flowing through the loop. The direction of the magnetic dipole 

moment of the current loop is perpendicular to the plane of the loop and is along the direction in which 

a right-handed screw would advance when moved along the direction of the current flow in the loop.

From Eq. (3.100), the magnetic field produced by the magnetic dipole is obtained as

2

2

2

2 2

2 2

2 2

3 3

sin

1

sin

( ) sin
0 0 sin

4

( ) sin ( ) sin1 1
sin

sin 4 4

( ) cos ( ) sin

2 4

r

r

r

a ra r a

B A
rr

I a
r

r

I a I a
a r a

r r rr r

I a I a
a a

r r

q f

q

q

q

q fq

m p q
q

p

m p q m p q
q

q q p p

m p q m p q

p p

∂ ∂ ∂= — ¥ =
∂ ∂ ∂

È ˘
Í ˙
Í ˙Î ˚

Ê ˆ Ê ˆ∂ ∂Ê ˆ Ê ˆ= - Á ˜Á ˜ Á ˜ Á ˜Ë ¯∂ ∂Ë ¯ Ë ¯ Ë ¯

= +

\
2

3 3

( )
(2 cos sin ) (2 cos sin )

4 4
r r

I a m
B a a a a

r r
q q

m p m
q q q q

p p
= + = + (3.98)

The magnetic field lines for a magnetic dipole are shown in Fig. 3.51 (b) and Fig. 3.51 (c).

Example 3.67 A small circular loop of radius 10 cm is centered at the origin and placed on the 

z = 0 plane. If the loop carries a current of 1 A along af, calculate:

(a) The magnetic moment of the loop.

(b) The magnetic field intensity at (2, 2, 2).

(c) The magnetic flux density at (–6, 8, 10)

Solution (a) Magnetic moment is given as

2 21 (0.1) 0.01 0.03142n z z zm ISa r a a ap p p= = ¥ = ¥ = =  A-m2

(b) Transforming the point (2, 2, 2) from the Cartesian coordinates into the spherical coordinates

2 2 22 2 2 2 3r = + + =

2 2
1 12 2

tan tan ( 2) 54.736
2

q - -
Ê ˆ+

= = = ∞Á ˜Ë ¯

\ 1 2
cos and sin

33
q q= =
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So, the magnetic field is given as

3 3
0

0.01 1 2
(2 cos sin ) 2

34 4 (2 3) 3

(69.44 49.1 ) A/m

r r

r

B m
H a a a a

r

a a

q q

q

p
q q

m p p
m

Ê ˆ
= = + = ¥ +Á ˜Ë ¯¥
= +

(c) Transforming the point (–6, 8, 10) from the Cartesian coordinates into the spherical coordinates,

2 2 26 8 1 10 2r = + + =

2 2
1 1

6 8
tan tan (1) 45

10
q - -

Ê ˆ+
= = = ∞Á ˜Ë ¯

\ 1
cos sin

2
q q= =

The magnetic flux density at point (–6, 8, 10) is given as

7
0

3 3

2

0.01 4 10 1 1
(2 cos sin ) 2

4 4 (10 2) 2 2

(1.571 0.785 ) pWb/m

r r

r

m
B a a a a

r

a a

q q

q

m p p
q q

p p

- Ê ˆ¥ ¥
= + = ¥ +Á ˜Ë ¯¥
= +

3.18 MAGNETIC MATERIALS

The introduction of material media into the study of magnetism has very different consequences as 

compared to the introduction of material media into the study of electrostatics. When we dealt with 

dielectric materials in electrostatics, their effect was always to reduce E below what it would otherwise 

be, for a given amount of free electric charge. In contrast, when we deal with magnetic materials, their 

effect can be one of the following:

(i) To reduce B below what it would otherwise be, for the same amount of free electric current 

(diamagnetic materials);

(ii) To increase B a little above what it would otherwise be (paramagnetic materials);

(iii) To increase B a lot above what it would otherwise be (ferromagnetic materials).

We will discuss these effects in detail.

3.18.1 Magnetisation or Magnetic Polarisation

Magnetisation ( )M is defined as the amount of magnetic moment per unit volume. It is the property of 

some magnetic materials which describes magnetic field created by those materials themselves and the 

effects of some external magnetic field on those materials. It is expressed in Ampere per metre (A/m).

The origin of the magnetic moments that create the magnetization can be microscopic electric 

currents (bound current, Ib) due to:

— either the rotation of electrons around the positive nucleus;

— or the spin of the electrons.

Both of these electronic motions produce internal magnetic fields ( )iB  that are similar to the magnetic 

field produced by a current loop. The equivalent current loop has the magnetic moment
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b nm I Sa=

where S is the area of the loop and Ib is the bound current.

Without an external magnetic field:

The sum of all m s¢  is zero due to random orientation.

When an external magnetic field ( )B  is applied:

The magnetic moments of the electrons align themselves with B  so that the net magnetic moment is 

not zero. Thus, the material exhibits some magnetisation.

If there are N atoms in a given volume Dv with magnetic moments im , then magnetisation or 

magnetic polarisation density is defined as

1

0
Lim

N

i
i

v

m

M
v

=

D Æ

È ˘
Í ˙
Í ˙= Í ˙DÎ ˚

Â
(3.99)

3.18.2 Magnetisation in Maxwell’s Equations

The behaviour of the magnetic fields ( , )B H , electric fields ( , )E D , charge density (r), current density 

( )J  is described by Maxwell’s equations. The role of the magnetisation is described below, as also 

demonstrated in Fig. 3.52 (a), (b) and (c).

Fig. 3.52 Magnetic dipoles (a) before applied B  field, randomly oriented dipoles, (b) after B  field is applied, 

aligned dipoles, and (c) aligned dipoles of (b) is equivalent to a bound surface current density bJ

Magnetisation Currents From the concept of magnetic dipole, the magnetic vector potential 

due to a magnetic moment m  is

24

rm a
A

r

m

p

¥
=

For a differential volume dv¢, the magnetic moment is

dm Mdv¢= where M  is the magnetisation
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Hence, vector magnetic potential due to this differential volume is

2 3

1

44 4

rM a M r M
dA dv dv dv

rr r

m m m
pp p

¥ ¥ Ê ˆ¢ ¢ ¢ ¢= = = ¥ — Á ˜Ë ¯

3

1R

RR

È ˘Ê ˆ¢= — Á ˜Í ˙Ë ¯Î ˚

Summing over all differential volumes of the material, we obtain the vector magnetic potential as

1

4 4 4
v v v

M M
A dA M dv dv dv

r r r

m m m
p p p¢ ¢ ¢

¢ Ê ˆ— ¥Ê ˆ¢ ¢ ¢ ¢ ¢= = ¥ — = - — ¥ Á ˜Ë ¯Ë ¯Ú Ú Ú Ú

( )1 1 M
M M

r r r

È ˘Ê ˆ
¢ ¢ ¢¥ — ∫ — ¥ - — ¥ Á ˜Í ˙Ë ¯Î ˚

\ { }by vector identity, ( )
4 4

n

v S S

M aM
A dv dS F dv F dS

r r

m m
p p¢ ¢

Ê ˆ¢ ¥— ¥ ¢ ¢= + — ¥ = - ¥Á ˜Ë ¯Ú Ú Ú Ú

\
4 4

b b

v S

J K
A dv dS

r r

m m
p p¢ ¢

¢ ¢= +Ú Ú (3.100)

where

bJ M= — ¥  = magnetisation volume current density or bound volume current density (A/m2)

b nK M a= ¥  = magnetisation surface current density or bound surface current density (A/m)

Hence, total volume current density in Maxwell’s equations is given by

f

P
J J M

t

∂= + — ¥ +
∂

(3.101)

where, fJ  is the free volume current density,

bJ  is the bound volume current density, 

M  is the magnetic polarisation or magnetisation, and

P  is the electric polarisation

Magnetic Susceptibility (c
m

) The magnetic susceptibility cm of a magnetic material is a 

measure of the degree of magnetisation of a material in response to an applied magnetic field. It is 

a dimensionless quantity. It is roughly a measure of how susceptible (or sensitive) a material is to a 

magnetic field.

Permeability (m) Permeability (m) is the degree of magnetisation of a material that responds 

linearly to an applied magnetic field.

In general, permeability is not a constant; it can vary with the position in the medium, the frequency of 

the applied field, humidity, temperature, and other parameters. In a nonlinear medium, the permeability 

can also depend on the strength of the magnetic field.
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Relation between B, H  and M A magnetised material produces a secondary magnetic field 

( )iB  as discussed in the preceding section, which may be thought to be generated by the bound current 

densities.

In free space, bound current densities are not present, i.e., 0M =  and thus, we have

0
f f

B
H J J

m

Ê ˆ
— ¥ = fi = — ¥ Á ˜Ë ¯

In material medium, 0M π  and as a result B  changes. We can write the total current density as the sum 

of free current density and bound current density, as

0

( )f b

B
J J J H M H M

m

Ê ˆ
= — ¥ = + = — ¥ + — ¥ = — ¥ +Á ˜Ë ¯

\ 0 ( )B H Mm= + (3.102)

Equation (3.105) is so general that it is valid for any medium, linear or not. In a linear material, 

magnetisation is directly proportional to field intensity, so that

M H

mM Hc= (3.103)

where, cm is the magnetic susceptibility of the medium. 

Substituting Eq. (3.106) into Eq. (3.105), we get

0 0(1 )m rB H H Hm c m m m= + = =

B Hm= (3.104)

where,

m = m0mr is called the permeability of the medium, expressed in Henry per metre (H/m),

m0 is the permeability of free space, known as absolute permeability, = 4p ¥ 10–7 H/m

0

(1 )r m

m
m c

m
= + =  is the relative permeability of the medium, it is dimensionless.

NOTE

Compare this section with Section 3.5.

3.18.3 Classification of Magnetic Materials

Depending upon the values of the magnetic susceptibility (cm) or the relative permeability (mr),

magnetic materials are broadly classified into three groups as

1. Paramagnetism,

2. Diamagnetism, and

3. Ferromagnetism.

The characteristics of these magnetic materials are given in Table 3.2.
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Table 3.2 Magnetic materials

Type of 

Magnetism Features

Ranges of 

mr and cm Examples

1. Paramagnetism:   (i) The atoms or molecules have a 

permanent magnetic dipole moment.

 (ii) In the absence of any applied external 

magnetic field, the permanent magnetic 

dipoles in a paramagnetic material are 

randomly aligned and thus do not have 

any magnetisation ( 0)M = and thus, the 

average magnetic field ( )iB is also zero.

(iii) When placed in an external field ( )H ,

the dipoles experience a torque that 

tends to align m with H , thereby 

producing a net magnetisation ( )M

parallel to H . Since iB  is parallel to H ,

it will tend to enhance the field.

(iv) The magnetisation ( )M is not only in 

the same direction as ( )H , but also 

linearly proportional to it.

 (v) Paramagnetism is temperature 

dependent.

mr > 1,

cm > 0 

(positive),

although cm is 

usually of the 

order of 10–6 to 

10–3

Air, platinum, 

tungsten, potassium, 

aluminium,

chromium,

palladium,

copper sulphate, 

manganese, etc.

2. Diamagnetism:   (i) The magnetic material does not have 

permanent magnetic dipoles.

 (ii) The presence of an external field 0B

will induce magnetic dipole moments 

in the atoms or molecules. However, 

these induced magnetic dipoles are 

anti-parallel to 0B , leading to a 

magnetisation M  and average field 

anti-parallel to 0B , and therefore, a 

reduction in the total magnetic field 

strength.

mr < 1,

cm < 0 

(negative),

although cm is 

usually of the 

order of –10–5

to –10–9

Copper (cm = –0.95 

¥ 10–5), gold (cm

= –3.2 ¥ 10–5),

silver (cm = –2.6 ¥
10–5), lead, silicon, 

diamond, bismuth 

(cm = –16.6 ¥ 10–5),

antimony, mercury, 

tin, zinc, alcohol, 

hydrogen, nitrogen, 

water, etc.

3. Ferromagnetism:   (i) Ferromagnetic materials are made up of 

small patches called magnetic domains.

 (ii) An externally applied field 0B  will 

tend to line up those magnetic dipoles 

parallel to the external field. The strong 

interaction between neighbouring 

atomic dipole moments causes a much

stronger alignment of the magnetic 

dipoles than in paramagnetic materials.

(iii) The enhancement of the applied 

external field can be considerable, 

with the total magnetic field inside a 

ferromagnet 103 or 104 times greater 

than the applied field.

Iron, steel, nickel, 

cobalt
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3.18.4 Hysteresis in Ferromagnetic Materials

The permeability m of a ferromagnetic material is not a constant, since neither the total field nor the 

magnetisation M increases linearly with H . Although the relation 0 ( )B H Mm= +  is applicable for all 

types of magnetic materials, the relation between B  and H  for ferromagnetic materials is not unique, 

but is dependent on the previous magnetic history of the material. This phenomenon is known as 

hysteresis.

The variation of B as a function of the externally applied field H  is shown in Fig. 3.53. The curve

is known as a hysteresis curve or magnetization curve or B–H curve.

Fig. 3.53 Hysteresis curve or magnetisation (B–H) curve

Characteristics of Hysteresis Curve

Magnetic Saturation A ferromagnetic material that has never been previously magnetised or has 

been thoroughly demagnetised (virgin magnetic material) will follow the dashed line as H  is increased. 

As the line demonstrates, the greater the amount of current applied, stronger is the magnetic field in the 

component B. At point ‘a’ almost all of the magnetic domains are aligned and an additional increase in 

the magnetising force will produce very little increase in magnetic flux. The material has reached the 

point of magnetic saturation.

Retentivity and Residual Magnetism When H  is reduced to zero, the curve will move from 

point ‘a’ to point ‘b’. At this point, it can be seen that some magnetic flux remains in the material, even 

though the magnetising force is zero. This is referred to as the point of retentivity on the curve and 

indicates the remanence or level of residual magnetism in the material.

Coercivity As the magnetising force is reversed, the curve moves to point ‘c’, where the flux has 

been reduced to zero. This is called the point of coercivity on the curve. The reversed magnetising force 

has flipped enough of the domains, so that the net flux within the material is zero. The force required 

to remove the residual magnetism from the material is called the coercive force or coercivity of the 

material.

Hysteresis Loop and Hysteresis Loss As the magnetising force is increased in the negative 

direction, the material will again become magnetically saturated, but in the opposite direction (point ‘d’).
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Reducing H  to zero brings the curve to point ‘e’. It will have a level of residual magnetism equal to 

that achieved in the other direction. Increasing H  back in the positive direction will return B to zero. 

Notice that the curve did not return to the origin because some force is required to remove the residual 

magnetism. The curve will take a different path from point ‘f’ back to the saturation point where it will 

complete a loop, called hysteresis loop. The area of a hysteresis loop gives the energy loss per unit 

volume during one complete cycle of periodic magnetisation of a ferromagnetic material. This is called 

hysteresis loss. This loss is in the form of heat.

From the hysteresis loop, a number of primary magnetic properties of a material can be determined 

as mentioned in Table 3.3.

Table 3.3 Primary magnetic properties of magnetic material from hysteresis

Property Characteristics

Retentivity It is the ability of a material to retain a certain amount of residual magnetic field when 

the magnetising force is removed after achieving saturation.

Residual

Magnetism

It is the magnetic flux density that remains in a material when the magnetising force is 

zero. The residual magnetism and retentivity are the same when the material has been 

magnetised to the saturation point. However, the level of residual magnetism may be lower 

than the retentivity value when the magnetising force did not reach the saturation level.

Coercive Force This is the amount of reverse magnetic field which must be applied to a magnetic 

material to make the magnetic flux return to zero.

Hysteresis Loss This is the area of a hysteresis loop which gives the energy loss per unit volume during 

one complete cycle of periodic magnetisation.

Permeability The slope of the curve at any point on the hysteresis loop gives the permeability of the 

material. The relative permeability is arrived at by taking the ratio of the material’s 

permeability to the permeability in free space (air).
7 6

relative material air air/ where, 4 10 1.256 10 H/mm m m m p - -= = ¥ = ¥

The shape of the hysteresis loop tells a great deal about the material being magnetised. The hysteresis 

curves of two different materials are shown in the graph in Fig. 3.54.

A material with a wider hysteresis loop has:

Lower permeability

Higher retentivity

Higher coercivity

Higher reluctance

Higher residual magnetism

Higher loss

A material with the narrower hysteresis loop has:

Higher permeability

Lower retentivity

Lower coercivity

Lower reluctance

Lower residual magnetism

Lower loss
Fig. 3.54 Different shapes of hysteresis 

curves
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3.19 MAGNETIC BOUNDARY CONDITIONS

Magnetic boundary conditions are the conditions that B or H  (or M ) field must satisfy at the boundary 

between two different magnetic media. These are illustrated in Fig. 3.55.

Fig. 3.55 Magnetic boundary conditions

To determine the conditions, we use Gauss’ law of magnetostatics and Ampere’s circuital law

0
S

B dS◊ =Ú and enc
l

H dl I◊ =Ú

We will consider two different magnetic media 1 and 2, characterised by the permeabilities m1 and m2,

respectively.

Applying Gauss’ law to the pillbox (Gaussian surface), with Dh Æ 0,

1 2 0n nB S B SD - D =

1 2n nB B= (3.105)

In terms of the field intensity, the boundary condition can be written as

1 1 2 2n nH Hm m= (3.106)

Thus, the normal component of B is continuous, but normal component of H  is discontinuous at the 

boundary surface.

Now, applying Ampere’s circuital law, assuming that the boundary carries a surface current K

whose component normal to the plane of the closed path abcda is K (A/m)

1 1 2 2 2 12 2 2 2t n n t n n

h h h h
K H H H H H Hw w w

D D D DD = D - - - D + +

\ 1 2( )t tH H K- = (3.107)

In terms of the flux density, we have

1 2

1 2

t tB B
K

m m
Ê ˆ

- =Á ˜Ë ¯
(3.108)

Thus, the tangential component of H  is also discontinuous. The directions are specified by using the 

cross product as

1 2 21( ) nH H a K- ¥ = or 1 2 12( ) nH H K a- = ¥ (3.109)
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where, 21na  is the unit vector normal to the boundary directed from medium 2 to medium 1.

If the media are not conductors, then the boundary is free of current, i.e., K = 0; then

1 2
1 2 1 2

1 2

andt t
t t n n

B B
H H B B

m m
= fi = = (3.110)

If the fields make angle q with the respective normal to the interface, then we can combine the boundary 

conditions as

1 1 2 2
1 1 2 2

1 2

sin sin
and cos cos

B B
B B

q q
q q

m m
= =

Combining,

1 1

2 2

tan

tan

q m

q m
= or 1 1 2 2cot cotm q m q= (3.111)

*Example 3.68 Two magnetic materials are separated by a surface z = 0; having permeabilities 

m1 = 4m0 H/m for region 1 where z > 0 and m2 = 7m0 H/m for region 2 where z < 0. There exists a surface 

current density 60sK i=  A/m at the boundary z = 0. For field 1 (1 2 3 )B i j k= - -  mT in region 1, find 

the flux density 2B  in region 2.

Solution Here, z = 0 is the boundary and hence, the normal component of flux density is

1 3nB k= -

\ Tangential component is

1 1 1 (1 2 )t nB B B i j= - = -

Applying the boundary condition

2 1 3n nB B k= = -

Applying the other boundary condition

1 2

1 2

t t
s

B B
K

m m
Ê ˆ

- =Á ˜Ë ¯
 or in vector form, 1 2

1 2

t t
n s

B B
a K

m m

Ê ˆ
- ¥ =Á ˜Ë ¯

Here,

2

0 0

1 2
60

4 7
tBi j

k i
m m

Ê ˆ-
- ¥ =Á ˜Ë ¯

or, 0[7 14 4( )] 60 28x y zi j B i B j B k k im- - + + ¥ = ¥

or, 07 14 4 4 1680x yj i B j B i im- - + - =

or, ( ) 0( 14 4 ) 7 4 1680y xB i B j im- - + - + =
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Equating the components

7
0

0

7
1.75

4

14 4 1680 1680 4 10 3.5

z

x

y y

B

B

B Bm p -

=

= =

- - = = ¥ ¥ fi = -

So, the magnetic flux density in region 2 is

2 (1.75 3.5 3 ) mTB i j k= - -

*Example 3.69 Consider an interface in yz plane. The region x < 0 is medium 1 with mr1 = 4.5 

and magnetic field 1 4 3 6H i j k= + -  A/m. The region x > 0 is medium 2 with mr2 = 6. Find 2H  in 

medium 2 and angle made by 2H  with normal to the interface.

Solution Here, x = 0 is the boundary and hence, the normal component of field intensity is

1 4nH i=

\ Tangential component is,

1 1 1 (3 6 )t nH H H j k= - = -

Applying the boundary condition

1 2 1
2 1

1 22

4.5
(4 ) 3

6
n

n n

n

H
H H i i

H

m m

m m
Ê ˆ Ê ˆ= fi = = ¥ =Á ˜Á ˜ Ë ¯Ë ¯

Applying the other boundary condition

1 2 (3 6 )t tH H j k= = -

So, the magnetic field intensity in region 2 is

2 (3 3 6 ) A/mH i j k= + -

The angle made by 2H  with the normal to the interface is obtained as follows.

2 2
2

2 2
2

3 6
tan 2.236 65.9

3
t

n

H

H
q q

+
= = = fi = ∞

Example 3.70 Given that 1 2 6 4H i j k= - + +  A/m in region y – x – 2 £ 0 where m1 = 5m0,

calculate:

(a) 1M  and 1B .

(b) 2H  and 2B  in region y – x – 2 ≥ 0 where m2 = 2m0.

Solution y – x £ 2 or, y £ (x + 2) is in region 1. Let the surface of the plane be described by f(x, y)

= (y – x – 2); the unit vector normal to the plane is given as

| | 2
n

j if
a

f

-—= =
—
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(e) Magnetisation vector is

1 1 1 1 1( 1) (5 1) ( 2 6 4 ) 8 24 16 A/mm rM H H j k i j kc m= = - = - - + + = - + +

\ 7
1 1 1 0 1 1

2

4 10 5 ( 2 6 4 )

12.57 37.7 25.13 Wb/m

rB H H i j k

i j k

m m m p

m

-= = = ¥ ¥ ¥ - + +
= - + +

(f) In region 1, normal component of the field is

1 1( ) ( 2 6 4 )
2 2

2 6
( )

2

( 4 4 )

n n n

j i j i
H H a a i j k

j i

i j

È ˘Ê ˆ Ê ˆ- -
= ◊ ◊ = - + + ◊ ◊Í ˙Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚

+Ê ˆ= -Ë ¯
= - +

Tangential component is

1 1 1 ( 2 6 4 ) ( 4 4 ) (2 2 4 )t nH H H i j k i j i j k= - = - + + - - + = + +

Applying boundary conditions

2 1 (2 2 4 ) {assuming 0}t tH H i j k K= = + + =

And 1
2 1 2 1

2

5
or ( 4 4 ) ( 10 10 )

2n n n nB B H H i j i j
m
m

= = = - + = - +

\ 2 2 2 (2 2 4 ) ( 10 10 ) ( 8 12 4 ) A/mt nH H H i j k i j i j k= + = + + + - + = - + +

\ 7
2 2 2 0 2 1

2

4 10 2 ( 8 12 4 )

20.11 30.16 10.05 Wb/m

rB H H i j k

i j k

m m m p

m

-= = = ¥ ¥ ¥ - + +
= - + +

3.20 SELF INDUCTANCE AND MUTUAL INDUCTANCE

Self Inductance (L) An electric current I flowing around a circuit produces a magnetic field ( )B

and hence a magnetic flux 
S

B dSfÊ ˆ= ◊
Ë ¯

Ú  through each turn of the circuit.

If the circuit has N identical turns, then the flux-linkage is defined as

Nl f=

Also, if the medium surrounding the circuit is linear, then l a I or, l = LI

where, L is a constant, known as inductance of the circuit.

\
N

L
I I

fl= = (3.112)

Self-inductance (L): The ratio of the magnetic flux to the current is called the inductance, or more 

accurately self-inductance of the circuit.
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The SI unit for inductance is Webber per Ampere (Wb/A) or Henry (in honour of Joseph Henry); 1H 

= 1Wb/A.

Inductor An inductor is a passive electrical device employed in electrical circuits for its property 

of inductance. Physically, the inductance L is a measure of an inductor’s ‘resistance’ to the change of 

current; the larger the value of L, the lower the rate of change of current.

Example 3.71 Self-inductance of a solenoid:

Compute the self-inductance of a solenoid with turns N, length l, and radius R

with a current I flowing through each turn, as shown in Fig. 3.56.

Solution Ignoring edge effects and applying Ampere’s law, the magnetic 

field inside a solenoid is given by

0
0

NI
B k nIk

l

m
m= =

where,
N

n
l

=  is the number of turns per unit length. The magnetic flux 

through each turn is

2 2
0 0( )BA nI R nI Rf m p m p= = ◊ =

Thus, the self-inductance is

2 2
0

N
L n R l

I

f
m p= =

We see that L depends only on the geometrical factors (n, R and l) and is independent of the current I.

Coupled Inductor When the magnetic flux produced by an inductor links another inductor, these 

inductors are said to be coupled. For coupled inductors, there exists a mutual inductance that relates 

the current in one inductor to the flux linkage in the other inductor. Thus, there are three inductances 

defined for coupled inductors:

L11 — the self inductance of inductor 1 

L22 — the self inductance of inductor 2 

L12 = L21 — the mutual inductance associated with both inductors.

Mutual Inductance (M)

Mutual Inductance (M): Mutual inductance is the ability 

of one inductor to induce an e.m.f. across another inductor 

placed very close to it.

When two coils are placed very close to each other, the 

magnetic flux caused by current in one coil links with the 

other coil and induces some voltage in the second coil. This 

phenomenon is known as mutual inductance.

We consider two coils placed near each other, as shown in 

Fig. 3.57. The first coil has N1 turns and carries a current I1

which gives rise to a magnetic field 1B . Since the two coils are 

close to each other, some of the magnetic field lines through 

Fig. 3.56 Solenoid

Fig. 3.57 Changing current in coil 1 

produces changing magnetic 

flux in coil 2
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coil 1 will also pass through coil 2. Let f21 denote the 

magnetic flux through one turn of coil 2 due to I1. Now, 

by varying I1 with time, there will be an induced e.m.f. 

associated with the changing magnetic flux in the second 

coil:

21
21 2 1 2

coil 2

d d
N B dA

dt dt

f
e = = ◊ÚÚ

The time rate of change of magnetic flux f21 in coil 2 is 

proportional to the time rate of change of the current in coil 

1 and thus the voltage can be written as

21 21 1 1
21 2 2 21

1

d d dI dI
N N M

dt dI dt dt

f f
e = = ¥ =

where

2 21
21

1

N
M

I

f
= (3.113)

is called the mutual inductance.

The mutual inductance M21 depends only on the geometrical properties of the two coils, such as the 

number of turns and the radii of the two coils.

In a similar manner, suppose instead there is a current I2 in the second coil and it is varying with time 

(Fig. 3.58). Then the induced e.m.f. in coil 1 becomes

12
12 1 2 1

coil 2

d d
N B dA

dt dt

f
e = = ◊ÚÚ

and a voltage is induced in coil 1.

This changing flux in coil 1 is proportional to the changing current in coil 2;

12 12 2 2
12 1 1 12

2

d d dI dI
N N M

dt dI dt dt

f f
e = = ¥ =

where 1 12
12

2

N
M

I

f
= (3.114)

is another mutual inductance.

Using the reciprocity theorem which combines Ampere’s law and the Biot-Savart law, it can be 

shown that the two mutual inductances are.

12 21M M M∫ ∫ (3.115)

Mutual Inductance between Two Coupled Inductors
Let,

L1, L2 — two inductors placed very close to each other.

v2(t) — open circuit voltage induced in L2 by a current i1(t) in L1

v1(t) — open circuit voltage induced in L1 by a current i2(t) in L2

Fig. 3.58 Changing current in coil 2 

produces changing magnetic 

flux in coil 1
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So, when only i1(t) is flowing, the magnetic flux emerging from L1 is given as

1 11 1 12 2(Linking with ) (Linking with )L Lf f f= +

\ 1 1 1 1
1 1 1 1

1

d d di di
v N N L

dt di dt dt

f f
= = =

where
1

1 1
1

d
L N

di

f
=

and 12 12 1 1
2 2 2 21

1

d d di di
v N N M

dt di dt dt

f f
= = =

where 12
21 2 2 1

1

Mutual Inductance of coil with respect to coil
d

M N L L
di

f
= =

Now, when only i2(t) is flowing, the magnetic flux emerging from L2 is given as

2 21 1 22 2(Linking with ) (Linking with )L Lf f f= +

\ 2 2 2 2
2 2 2 2

2

d d di di
v N N L

dt di dt dt

f f
= = =

where, 2
2 2

2

d
L N

di

f
=

and 21 21 2 2
1 1 1 12

2

d d di di
v N N M

dt di dt dt

f f
= = =

where, 21
12 1 1 2

2

Mutual Inductance of coil with respect to coil
d

M N L L
di

f
= =

Example 3.72 A long solenoid with length l and a 

cross-sectional area A consists of N1 turns of wire. An insulated 

coil of N2 turns is wrapped around it, as shown in Fig. 3.59.

(a) Calculate the mutual inductance M, assuming that all the 

flux from the solenoid passes through the outer coil.

(b) Relate the mutual inductance M to the self-inductances L1

and L2 of the solenoid and the coil.

Solutions:
(a)  The magnetic flux through each turn of the outer coil due to the solenoid is,

0 1 1
21

N I
BA A

l

m
f = =

where 0 1 1N I
B

l

m
=  is the uniform magnetic field inside the solenoid. Hence, the mutual inductance 

between the solenoid and the coil is

0 1 22 21

1

N N AN
M

I l

mf
= =

(b) From Example 3.71, we see that the self-inductance of the solenoid with N1 turns is given by

2
0 11 11

1
1

N AN
L

I l

mf
= =

Fig. 3.59 A coil wrapped around a 

solenoid
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where, f11 is the magnetic flux through one turn of the solenoid due to the magnetic field produced by 

I1.

Similarly, we have the self-inductance for the outer coil given as

2
0 22 22

2

N AN
L

I l

mf
= =

Thus, in terms of L1 and L2, the mutual inductance can be expressed as

2 2
0 1 2 0 1 0 2

1 2

N N A N A N A
M L L

l l l

m m m
= = =

NOTE

More generally, the mutual inductance is given as

= £ £1 2 0 1M k L L k

where k is the coupling coefficient. In this example, we have k = 1 which means that all of the magnetic 

flux produced by the solenoid passes through the outer coil, and vice versa, in this idealisation.

*Example 3.73 Self-Inductance of Infinite Solenoid:

Find out the inductance of a long solenoid of radius ‘r’ having ‘N’ number of turns.

Or,

Calculate the self-inductance per unit length of an infinitely long solenoid.

Solution From Example 3.42, the magnetic field at the centre of the long solenoid is

NI
H

l
=

where, I is the current and l is the length of the solenoid.

If the solenoid is significantly long, compared to the diameter, H will be the same all over the cross-

section. So, the total magnetic flux through the cross-section is

NIA
BA HA

l

m
f m= = =

The flux linkage is the same through all the turns; as the solenoid is having N turns.

Flux linkage, 
2IAN

N
l

m
l f= =

Thus, the inductance is given as 
2N A

L
I l

ml= =

2N A
L

l

m
=

If the radius of the solenoid is r, then A = pr2, then the inductance is given as 
2 2N r

L
l

pm
= .
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Example 3.74 Self-Inductance of Finite Solenoid:

Find the inductance of a solenoid of finite length ‘l’ with radius ‘r’ and ‘N’ number of turns.

Solution From Example 3.42, the magnetic field at an axial point P is given by

2 1(cos cos )
2 z

NI
B a

l

m
q q= -

where, N is the number of turns, I is the current carrying, l is the length of the solenoid

Here, 2 1 1
2 2 2 2

cos and cos( ) cos
( )

l z z

r l z r z
q p q q

-
= - = - =

+ - +

\
2 2 2 22 ( )

l zNI z
B

l r l z r z

m -Ê ˆ= +Á ˜+ - +Ë ¯

In a small length dz, the number of turns is 
N

dz
l

Ê ˆ
Á ˜Ë ¯ . The flux linking these turns is

2( )B r N
d dz

l

p
f =

Neglecting the variation of the magnetic flux over the cross-sectional area, total flux linking N turns is

2

0

2 2

2 2 2 2 2
0

2 2
2 2 2 2

02

2 2
2 2

2

( )

2 ( )

[ ( ) ]
2

( )

l

z

l

z

l

B r N
d dz

l

N I r l zz
dz

l r z r l z

N I r
r z r l z

l

N r
r l r I

l

p
f f

m p

m p

m p

=

=

= =

-Ê ˆ= +Á ˜+ + -Ë ¯

= + - + -

= + -

Ú Ú

Ú

Hence, self-inductance of the solenoid is 
2 2

2 2

2
( )

N r
L r l r

I l

m pf
= = + -

2 2
2 2

2
( )

N r
L r l r

l

m p
= + -

NOTE

If l >> r, 
2 2N r

L
l

m p=  as obtained in Example 3.73.

*Example 3.75 Self-Inductance of Toroid of Circular Cross Section:

Obtain an expression for the self-inductance of a toroid of circular section with ‘N’ closely spaced 

turns.
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Solution Let, r mean radius of the toroid,

N number of turns,

S radius of the coil.

From Example 3.43, we have the magnetic field

2

NI
H

rp
=

\ Total flux linkage per turn is 2 2

2 2

NINI
BA HA S S

r r

m
f m m p

p
= = = =

Hence, the self-inductance of the toroid is 
2 2

2

N N S
L

I r

f m
= =

2 2

2

N S
L

r

m
=

Example 3.76 Self-Inductance of Toroid of Rectangular Cross Section:

Calculate the self-inductance of a toroid which consists of N turns and has a rectangular cross section, 

with inner radius a, outer radius b and height h, as shown in Fig. 3.60 (a).

Fig. 3.60 A toroid with N turns

Solution According to Ampere’s law, the magnetic field is given by

0

0

. (2 )

2

B dl Bdl B dl B r NI

NI
B

r

p m

m

p

= = = =

=

Ú Ú Ú
or

The magnetic flux through one turn of the toroid may be obtained by integrating over the rectangular 

cross section, with dS = hdr as the differential area element [Fig. 3.60(b)].

\ 0 0 0 ln
2 2 2

b b

S a a

NI NIh NIhdr b
B dS hdr

r r a

m m m
f

p p p
Ê ˆ Ê ˆ Ê ˆ= ◊ = = = Á ˜Á ˜ Á ˜ Ë ¯Ë ¯ Ë ¯Ú Ú Ú

Hence, the self-inductance of the toroid is given as 
2

0 ln
2

N hN b
L

I a

mf
p

Ê ˆ= = Á ˜Ë ¯

2
0 ln
2

N h b
L

a

m

p
Ê ˆ= Á ˜Ë ¯
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NOTE

If a >> (b – a), the logarithmic term in the equation above may be expanded as

ln ln 1
b a b ab

a a a

- -Ê ˆÊ ˆ = + ªÁ ˜Á ˜ Ë ¯Ë ¯

and the self-inductance becomes 
2 2 2

0 0 0( )
2 2

N h N N Ab a
L h b a

a a l

m m m

p p
-= = - =

where, A is the cross-sectional area, and l = 2pa. We see that the self-inductance of the toroid in this 

limit has the same form as that of a solenoid.

Example 3.77 Self-Inductance of Coaxial Cable with 

Solid Inner Conductor:

Determine the self-inductance of a co-axial cable of inner 

radius ‘a’ and outer radius ‘b’ when the inner conductor is solid. 

A coaxial cable is shown in Fig. 3.61.

Solution Here, we have to find two inductances:

1. Internal inductance, Lin, considering the flux linkages 

due to the inner conductor;

2. External inductance, Lext, considering the flux linkages 

between the inner conductor and the outer conductors.

Now, magnetic energy stored in the inductor is

2

2

21

2
m

m

W
W LI L

I
= fi =

where,
21

2 2m

B
W B Hdv dv

m
= ◊ =Ú Ú

\
2

2 2

2 2

2
mW B

L dv
I I m

= = Ú

For 0 £ r £ a:

By Ampere’s law,

1 22
r

Ir
B a

a

m

p
= [See Example 3.35]

\
2 22

1
in 2 2 2 2 2

2 4
3

2 4 2 4
0 0 0

2 2 1 2 1

2 2 22 2

2
4 84 4

l a

B Ir Ir
L dv dv rdrd dz

I I a I a

la
dz d r dr l

a a

p

m m
f

m m mp p

m m m
f p

pp p

Ê ˆ Ê ˆ= = =Á ˜ Á ˜Ë ¯ Ë ¯

= = ¥ ¥ ¥ =

Ú Ú Ú

Ú Ú Ú

\ in 8

l
L

m
p

=

Fig. 3.61 Coaxial cable
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For a £ r £ b:

By Ampere’s law,

2 2 r

I
B a

r

m
p

=

\
2 22

2
ext 2 2 2

2

2 2
0 0

2 2 1 2 1

2 2 2 2 2

2 ln ln
24 4

l b

a

B I I
L dv dv rdrd dz

r rI I I

ldr b b
dz d l

r a a

p

m m
f

m m p m p

m m m
f p

pp p

Ê ˆ Ê ˆ= = =Á ˜ Á ˜Ë ¯ Ë ¯

Ê ˆ Ê ˆ= = ¥ ¥ ¥ =Á ˜ Á ˜Ë ¯ Ë ¯

Ú Ú Ú

Ú Ú Ú

\ ext ln
2

l b
L

a

m
p

Ê ˆ= Á ˜Ë ¯

Hence, the total inductance of the coaxial cable is

in ext

1
( ) ln ln

8 2 2 4

l l lb b
L L L

a a

m m m
p p p

È ˘Ê ˆ Ê ˆ= + = + = +Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚

1
ln

2 4

l b
L

a

m
p

È ˘Ê ˆ= + Á ˜Í ˙Ë ¯Î ˚

Example 3.78 Self-Inductance of Coaxial Cable with 

Cylindrical Conductors:

Determine the self-inductance of a coaxial cable with 

conducting cylinders of inner radius ‘a’ and outer radius ‘b’.

This is shown in Fig. 3.62.

Solution In this case, we will consider the region a £ r £ b

to find the self-inductance.

Let, l—length of the cable

We consider an element of the cable of thickness dr at a distance 

r from the centre.

Magnetic field at that point, 
2

I
B a

r f
m
p

=

Flux passing through the element is

( )
2 2

I I dr
d B dS a drdza dz

r rf f
m m

f
p p

Ê ˆ= ◊ = ◊ =Á ˜Ë ¯

Hence, total flux linkage for the entire cable is

0

ln
2 2

l b

S a

I lI dr b
B dS dz

r r a

mm
f

p p
Ê ˆ= ◊ = = Á ˜Ë ¯Ú Ú Ú

Hence, the self-inductance is given as ln
2

l b
L

I a

mf
p

Ê ˆ= = Á ˜Ë ¯

ln
2

l b
L

I a

mf
p

Ê ˆ= = Á ˜Ë ¯

Fig. 3.62 Coaxial cable
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*Example 3.79 Self-Inductance of Two-Wire Transmission Line:

Determine the inductance per unit length of a two-wire transmission line with separation distance ‘d’;

each wire having radius ‘a’, as shown in Fig. 3.63.

Fig. 3.63 Two wire transmission line

Solution We will consider two conductors A and B with radii a and b, respectively, and separation 

distance between them as d.

We assume that d >> a or b, so that the field and flux through the conductors is nearly uniform.

We will use the results of Example 3.77.

Self-inductance of Conductor A:

Self-inductance per unit length due to internal flux is 
8AiL
m

p
=

Self-inductance per unit length due to external flux is ln
2Ae

d
L

a

m

p
Ê ˆ= Á ˜Ë ¯

\ Total self-inductance of conductor A is

1
( ) ln ln

8 2 2 4A Ai Ae

d d
L L L

a a

m m m

p p p
È ˘Ê ˆ Ê ˆ= + = + = +Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚

Self-inductance of Conductor B:

Self-inductance per unit length due to internal flux is 
8BiL
m

p
=

Self-inductance per unit length due to external flux is ln
2Be

d
L

b

m

p
Ê ˆ= Á ˜Ë ¯

\ Total self-inductance of conductor B is

1
( ) ln ln

8 2 2 4B Bi Be

d d
L L L

b b

m m m

p p p
È ˘Ê ˆ Ê ˆ= + = + = +Á ˜ Á ˜Í ˙Ë ¯ Ë ¯Î ˚

Hence, self-inductance per unit length of the two wire transmission line is

21 1 1 1 1
( ) ln ln ln ln

2 4 2 4 4 2 4A B

d d d d
L L L

a b ab ab

m m m m

p p p p

È ˘Ê ˆÈ ˘ È ˘ È ˘Ê ˆ Ê ˆ Ê ˆ= + = + + + = + = +Á ˜ Á ˜ Í ˙Á ˜Í ˙ Í ˙ Í ˙Á ˜Ë ¯ Ë ¯ Ë ¯ Ë ¯Î ˚ Î ˚ Î ˚ Î ˚
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1
ln

4

d
L

ab

m
p

È ˘Ê ˆ= +Í ˙Á ˜Ë ¯Î ˚

If a = b = r, then the self-inductance per unit length is given as

1
ln

4

d
L

r

m

p
È ˘Ê ˆ= + Á ˜Í ˙Ë ¯Î ˚

Example 3.80 A long solenoid with length l and a cross-

sectional area A consists of N1 turns of wire. An insulated coil of 

N2 turns is wrapped around it, as shown in Fig. 3.64.

(a) Calculate the mutual inductance M, assuming that all the 

flux from the solenoid passes through the outer coil. 

(b) Relate the mutual inductance M to the self-inductances L1

and L2 of the solenoid and the coil.

Solution
(a) The magnetic flux through each turn of the outer coil due to the solenoid is

0 1 1
21

N I
BA A

l

m
f = =

where 0 1 1N I
B

l

m
=  is the uniform magnetic field inside the solenoid.

Hence, the mutual inductance between the solenoid and the coil is

0 1 22 21

1

N N AN
M

I l

mf
= =

0 1 2N N A
M

l

m
=

(b) From Example 3.42, we see that the self-inductance of the solenoid with N1 turns is given by,

2
0 11 11

1
1

N AN
L

I l

mf
= =

where f11 is the magnetic flux through one turn of the solenoid due to the magnetic field produced by 

I1.

Similarly, we have the self-inductance for the outer coil given as

2
0 22 22

2

N AN
L

I l

mf
= =

Thus, in terms of L1 and L2, the mutual inductance can be expressed as

2 2
0 1 2 0 1 0 2

1 2

N N A N A N A
M L L

l l l

m m m
= = =

1 2M L L=

Fig. 3.64 A coil wrapped around a 

solenoid
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NOTE

More generally, the mutual inductance is given as

1 2 0 1M k L L k= £ £

where k is the coupling coefficient. In this example, we have k = 1 which means that all of the magnetic 

flux produced by the solenoid passes through the outer coil, and vice versa, in this idealisation.

Example 3.81 Two coils of N1 and N2 turns, respec-

tively, are wound on a toroid of constant permeability m. The 

various dimensions are as shown in Fig. 3.65. Determine the 

mutual inductance and self-inductance of the coils.

Solution
Here, r—radius of the toroid,

S—radius of the winding,

N1, N2—number of turns of the coils,

I1, I2—currents in the coils

We consider I1 current.

If r >> S, then the magnetic flux density is constant over the interior of the winding and is given as

1 1

2

N I
B

r

m

p
=

\ Flux linking coil 1 due to current flowing in coil 1 is

2 2
1 1 1 12 2

11 1 2

N I N I A
N B S S

r l

m m
f p p

p
= ¥ ¥ = =

where, A = mS2 = area of winding cross-section and l = 2pr = mean length of toroidal coil

Hence, self-inductance of coil 1 is 
2

11 1
1

1

N A
L

I l

f m
= =

Similarly, self-inductance of coil 2 is 
2

22 2
2

2

N A
L

I l

f m
= =

\
2 2
1 2

1 2and
N A N A

L L
l l

m m
= =

Now, flux linking coil 2 due to current flowing in coil 1 is

1 2 1 1 2 12 2
21 2 2

N N I N N I A
N B S S

r l

m m
f p p

p
= ¥ ¥ = =

Similarly, flux linking coil 1 due to current flowing in coil 2 is

1 2 2 1 2 22 2
12 1 2

N N I N N I A
N B S S

r l

m m
f p p

p
= ¥ ¥ = =

Hence, mutual inductance between the coils is 21 12 1 2

1 2

N N A
M

I I l

f f m
= = =

Fig. 3.65 Two coils wound on a toroid
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1 2N N A
M

l

m
=

NOTE

Just like in previous example, here also, 1 2M L L=  with unity coefficient of coupling.

Example 3.82 An infinite straight wire carrying current I

is placed to the left of a rectangular loop of wire with width and 

length l, as shown in Fig. 3.66. Determine the mutual inductance 

of the system.

Solution To calculate the mutual inductance M, we first need 

to know the magnetic flux through the rectangular loop. Using 

Ampere’s law, the magnetic field at a distance r away from the 

straight wire is given as

0

2

I
B a

r f

m

p
=

The total magnetic flux f through the loop can be obtained by 

summing over contributions from all differential area elements 

dS = ldr as follows.

0 0 0( ) ln
2 2 2

s w s w

s s

I I l I l s wdr
d B dS a ldra

r r sf f

m m m
f f

p p p

+ + +Ê ˆ Ê ˆ= = ◊ = ◊ = =Á ˜ Ë ¯Ë ¯Ú Ú Ú Ú

Hence, the mutual inductance is given as 0 ln
2

l s w
M

I s

mf
p

+Ê ˆ= = Ë ¯

0 ln
2

l s w
M

s

m

p

+Ê ˆ= Ë ¯

3.21  MAGNETIC ENERGY (ENERGY STORED IN 
MAGNETIC FIELDS)

Since an inductor in a circuit serves to oppose any change in the current through it, work must be done 

by an external source, such as a battery, in order to establish a current in the inductor. From the work–

energy theorem, we conclude that energy can be stored in an inductor. The role played by an inductor 

in the magnetic case is analogous to that of a capacitor in the electric case.

The power or rate at which an external emf eext works to overcome the self-induced emf eL and pass 

current I in the inductor is

ext
extL

dW
P I

dt
e= =

If only the external emf and the inductor are present, then eext = eL, which implies

ext
L L

dW dI dI
P I I L IL

dt dt dt
e Ê ˆ= = - = - - =Á ˜Ë ¯

Fig. 3.66 Rectangular loop placed 

near long straight 

current-carrying wire
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If the current is increasing with 0
dI

dt
> , then P > 0, which means that the external source is doing 

positive work to transfer energy to the inductor. Thus, the internal energy of the inductor is increased. 

On the other hand, if the current is decreasing with 0
dI

dt
< , we then have P < 0. In this case, the 

external source takes energy away from the inductor, causing its internal energy to go down.

The total work done by the external source to increase the current form zero to I is then

2
ext ext

0

1

2

I

W dW LIdI LI= = =Ú Ú

This is equal to the energy stored in the magnetic field (Wm).

21

2mW LI= (3.116)

NOTE

The above expression is analogous to the electric energy stored in a capacitor, 21

2eW CV
Ê ˆ=Á ˜Ë ¯

.

In order to evaluate the density of the stored energy in terms of the field quantities, we consider a long 

solenoid. The magnetic flux density within the solenoid is

NI
B

l

m
=

where N is the number of turns, I is the current flowing and l is the length.

If the cross-sectional area of the coil is A, the flux through it is

S

ANI
B dS BA

l

m
f = ◊ = =Ú

\ Total flux linkage 
2AN I

N
l

m
l f= =

So, the inductance of the solenoid is 
2AN

L
I l

ml= =

Therefore, the magnetic energy stored in the solenoid is 
2

2 21 1

2 2m

AN
W LI I

l

m== =

Thus, the energy density (energy per unit volume) is

( )22
2 2

2

1 1 1

2 2 2
m mW W N NI

I H
V Al ll

m
m m= = = =

\
2

2 31 1
(Joule/m )

2 2
mdW B

H
dV

m
m

= = (3.117)

Using this expression, magnetic energy can be expressed in different ways as follows.

(i) Using the relation that, B Hm= , we have

vol vol

1 1

2 2mW B Bdv B Hdv
m

= ◊ = ◊Ú Ú (3.118)
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(ii)
Vol Vol Vol Vol

Vol

1 1 1
( ) ( ) ( )

2 2 2

1
( ) ( )

2

m

S

W B Bdv B A dv A B dv A B dv

A B dv A B dS

m m m

m

È ˘
= ◊ = ◊ — ¥ = ◊ — ¥ + — ◊ ¥Í ˙

Î ˚
È ˘

= ◊ — ¥ + ¥ ◊Í ˙
Î ˚

Ú Ú Ú Ú

Ú Ú

If V is chosen to include all space, then the surface S is at infinity, ( )
S

A B dS¥ ◊Ú  will vanish.

Vol Vol Vol containing

1 1 1
( ) ( )

2 2 2

{ and 0 for volume where 0}

m

J

W A B dv A B dv A Jdv

B J B J

m
m m m

m

= ◊ — ¥ = ◊ — ¥ = ◊

— ¥ = — ¥ = =

Ú Ú Ú

Vol containing

1

2m

J

W A Jdv= ◊Ú (3.119)

(iii)
Vol

1 1
( ) { }

2 2m
l

W A Jdv I A dl Jdv Idl= ◊ = ◊ =Ú Ú

1 1

2 2m
l

W I A dl If= ◊ =Ú (3.120)

[by Eq. (3.84)]

*Example 3.83 Energy Stored in a Solenoid

A long solenoid with length l and a radius R consists of N turns of wire, A current I passes through the 

coil. Find the energy stored in the system.

Solution Here, the inductance of the solenoid is given by Example 3.22, as

2 2
0L n R lm p=

Hence, the magnetic energy stored in the system is

2
2 2 2 2 2 2 2

0 0
0 0

1 1 1
( ) ( ) ( )

2 2 2 2m

B
W LI n I R l nI R l R lm p m p p

m m
= = = =

since the magnetic field in a solenoid is, B = m0nI.

Here, the term pR2l is the volume within the solenoid. Therefore, the magnetic energy density or 

energy per unit volume is given as

2

02m

B
w

m
=

Example 3.84 A long solenoid with length l and a radius R consists of N turns of wire. A current 

I passes through the coil. Find the energy stored in the system.

Solution From Example 3.73, we have self-inductance of a long solenoid given as

2 2N R
L

l

p m
=
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Hence, the magnetic energy stored in the solenoid is

2 2 2 2 2
2 21 1 1

2 2 2m

N R N R I
W LI I

l l

p m p m
= = =

2 2 2
1

2m

N R I
W

l

p m
=

The result can be expressed in terms of the magnetic field as

22 2 2 2
2 21 1

( ) ( )
2 2 2m

N R I NI B
W R l R l

l l

p m m
p p

m m
Ê ˆ= = =Ë ¯

Since (pR2l) is the volume within the solenoid, and the magnetic field inside the solenoid is uniform, 

the term 
2

2

B

m

Ê ˆ
Á ˜Ë ¯

 may considered as the magnetic energy density.

Example 3.85 A toroid consists of N turns and has a rectangular cross section, with inner radius 

a, outer radius b and height h. Find the total magnetic energy stored in the toroid. 

Solution From Example 3.75, the self-inductance of a toroid with rectangular cross-section is 

given as
2

0 ln
2

N h b
L

a

m

p
Ê ˆ= Á ˜Ë ¯

Hence, the magnetic energy stored in the toroid is

2 2
021

ln
2 4m

N hI b
W LI

a

m

p
Ê ˆ= = Á ˜Ë ¯

Alternative method:

From Example 3.43, magnetic field of a toroid is 
2

NI
B

r

m

p
=

\ Magnetic energy density is

2 2 22

2 2

1 1

2 2 2 8
m

NI N IB
w

r r

m m
m m p p

Ê ˆ= = =Á ˜Ë ¯

The total energy stored in the magnetic field can be found by integrating over the volume. We choose 

the differential volume element to be a cylinder with radius r, width dr and height h, so that dv = 2prhdr.

Hence, the magnetic energy stored in the toroid is

2 2 2 2 2 2

2 2
2 ln

4 48

b b

m m
a a

N I N hI N hIdr b
W w rhdr

r ar

m m m
p

p pp

Ê ˆ= = = = Á ˜Ë ¯Ú Ú Ú

This is the same as obtained in the earlier method.

\
2 2

ln
4m

N hI b
W

a

m
p

Ê ˆ= Á ˜Ë ¯

Example 3.86 A wire of nonmagnetic material with radius R and length l carries a current I

which is uniformly distributed over its cross section. What is the magnetic energy inside the wire?
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Solution Applying Ampere’s law, the magnetic field at distance r R can be obtained as

2 2

2

2

(2 ) ( ) ( )

2

I
B r J r r

R

Ir
B

R

p m p m p
p

m

p

Ê ˆ= = Á ˜Ë ¯

=or

\ Magnetic energy density is 

2 2 22

2 2 4

1 1

2 2 2 8
m

Ir I rB
w

R R

m m
m m p p

Ê ˆ= = =Á ˜Ë ¯

Hence, total magnetic energy stored inside the wire is

2 2 22 2 4
3

2 4 4 4
0

2
4 168 4 4

R b

m m
a

I l I l I lI r R
W w rldr r dr

R R R

m m mm
p

pp p p

Ê ˆ
= = = = =Á ˜Ë ¯Ú Ú Ú

2

16m

I l
W

m

p
=

Summary

The phenomenon of transferring electric charge from one point in a circuit to another is described 

by the term electric current. Electric current is defined as the rate of flow of electric charges or 

electrons through a cross-sectional area.

dq
i

dt
=

Current density vector, J  at any point is defined as the current through a unit normal area at that 

point.

ˆ
I

J n
A

=

Total current flowing through a surface S is given as

S

I J dS= ◊Ú

Electric current is of three types:

1. Convection current,

2. Conduction current, and

3. Displacement current 

The motion of charged particles in free space (vacuum) is said to constitute convection current.

The motion of the free electrons present in a conductor, by the influence of an electric field constitutes 

the conduction current. The relation of conduction current given as

J Es=
is known as point form of Ohm’s law.

The current flowing in a capacitor is termed as displacement current, given as

( )
( )d

dD t
i t A

dt
=
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From electrical point of view, materials can be classified as conductors (s >> 1, er = 1), dielectrics 

(s << 1, er ≥ 1).

The resistance of a conductor of uniform cross section is given as

l
R

A

r
=

and in general, for non-uniform cross-section, it is given as

1E dl E dlV
R

I J dS E dSs

◊ ◊Ê ˆ= = = Á ˜Ë ¯◊ ◊
Ú Ú
Ú Ú

The Joule’s law states that the rate of heat production by a steady current in any part of an electrical 

circuit is directly proportional to the resistance and to the square of the current (P = I2R. In differential 

and integral forms it is given as

and
v

p J E P E Jdv= ◊ = ◊Ú

The electromotive force (EMF) in a closed loop is given as

e
l

E dlx = ◊Ú

where eE  is the emf-producing field, i.e., the field generated by causes other than the static charges.

The Kirchhoff’s current law (KCL) in differential and integral forms is given as

0 and 0
S

J J dS— ◊ = ◊ =Ú

The continuity equation of charges is given as

vJ
t

r∂
— ◊ = -

∂

Relaxation time
e

t
s

Ê ˆ=Á ˜Ë ¯  of a material is the time taken by a charge placed in the interior of a 

conductor to drop its value to 37% (e–1 = 0.368 ª 37%) of its initial value.

The boundary conditions for the current density for two different conducting media are given as

1 2
1 2

1 2

and t t
n n

J J
J J

s s
= =

Combining these two conditions we get

1 1

2 2

tan

tan

q s

q s
=

where q1 and q2 are the angles with the normal in respective medium.

If the boundary carries a surface charge with density, rs (C/m2), then by the boundary conditions 

can be written as

2 1
1

2 1
s nJ

e e
r

s s
Ê ˆ

= -Á ˜Ë ¯
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Laplace equation for conducting medium is given as, —2V = 0.

The dielectric polarisation may be defined as a dynamical response of a system to an externally 

applied electric field. Polarisation vector is defined as the dipole moment per unit volume of the 

dielectric, i.e.,

1

0
Lim

N

i i
i

v

Q d

P
v

=

D Æ

Ê ˆ
Á ˜
Á ˜= Ë ¯D

Â

The dielectric materials which have no free charges; all electrons that are bound and associated 

with the nearest atoms, are known as non-polar dielectrics. The dielectric materials, in which the 

molecules or atoms possess a permanent dipole moment which is ordinarily randomly oriented, but 

which becomes more or less oriented by the application of an external electric field, are known as 

polar dielectrics.

The effect of macroscopic polarisation in a given volume of dielectric material is to induce some 

bound surface and volume charge densities in the dielectric, given as

andb bP n Ps r= ◊ = - — ◊

Electric displacement is given in terms of electric field and polarisation vector as

0D E Pe= +

The relation of polarisation vector with the electric field is given as

0 eP Ee c=

Here, the quantity ce is known as the electric susceptibility of a dielectric material which gives a 

measure of how easily it polarises in response to an electric field.

Electric permittivity (e) is a physical quantity that describes how an electric field affects and is 

affected by a dielectric medium. It is determined by the ability of a material to polarise in response 

to the field, and thereby reduce the total electric field inside the material. Its relations are given as

0 and (1 )r r ee e e e c= = +

The dielectric constant or relative permittivity (er) is the ratio of the permittivity of a substance to 

the permittivity of free space. 

The maximum electric field that a dielectric can withstand without breakdown is known as dielectric

strength of the material.

A dielectric material is said to be homogeneous if the permittivity (e) or conductivity (s) does not 

vary with space in a region.

A dielectric material is said to be isotropic if the electrical properties of the medium are independent 

of the direction, i.e. D  and E  are in the same direction.

Biot–Savart states that the magnetic field intensity dH  produced at a point P at a distance r from a 

differential current element Idl is:

34

Idl r
dH

rp

¥
=
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Three current densities (line current density, I; surface current density K  and volume current density, 

J ) are related to each other as

Idl KdS Jdv∫ ∫

The magnetic field intensity H  at any point is defined as the force experienced by a north pole of 

one Weber placed at that point. Its unit is Newton per Weber (N/Wb) or Ampere-turn per metre 

(AT/m).

Magnetic flux is defined as the group of magnetic field lines emitted outward from the north pole of 

a magnet. It is measured in Weber and is denoted as f.

Magnetic flux density ( B ) is the amount of magnetic flux per unit area of a section, perpendicular 

to the direction of magnetic flux; i.e.,

B
A

f
=

It is a vector quantity (expressed in Weber per square metre) that specifies both the strength and 

direction of the magnetic field.

The magnetic flux through a surface S is given as

S

B dSf = ◊Ú

The magnetic field intensity is related to the magnetic flux density as

B Hm=

where m is a constant, called permeability of the medium. It is given as

0 rm m m=

where m0 is the permeability of free space, known as absolute permeability, = 4p ¥ 10–7 H/m

mr is the relative permeability

As it is not possible to have an isolated magnetic pole, the total magnetic flux through a closed 

surface must be zero. This is known as Gauss’ law of magnetostatics. It is given as

\ 0 and 0
S

B dS B◊ = — ◊ =Ú

Ampere’s circuital law states that the line integral of the magnetic field intensity ( )H  around any 

closed path is equal to the direct current enclosed by the path.

enc
l

H dl I◊ =Ú

The magnetic scalar potential (Vm) is defined as

if 0mH V J= - — =

The magnetic vector potential ( )A  is defined as

B A= — ¥

The magnetic field due to a current distribution can be found using the concept of magnetic vector 

potential and using the relation as
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for volume current density
4

for surface current density
4

for line current density
4

v

S

v

J
A dv

r

K
dS

r

Idl

r

m
p

m
p

m
p

=

=

=

Ú

Ú

Ú

The Lorentz force equation relates the force on a moving charged particle in the presence of a 

magnetic field and is given as

( )F Q E v B= + ¥

The force in an element dl  of a current carrying conductor carrying a current I, placed in a magnetic 

field is given as

dF Idl B= ¥

The force between two current carrying conductors is given by Ampere’s force law and is written as

1 2

1 2 2 1 12
2 2

( )

4
C C

I I dl dl R
F

R

m

p

¥ ¥
= Ú Ú

The magnetic dipole moment is the product of current and area of the loop; its direction is normal to 

the plane of the loop; its unit is Am2.

nm IS ISa= =
The torque on a current carrying coil with magnetic moment m  placed in a uniform magnetic field 

B  is given as

nT m B IS B ISa B= ¥ = ¥ = ¥
A bar magnet or a small filamentary loop carrying a current is known as a magnetic dipole.

Magnetisation ( )M  is defined as the amount of magnetic moment per unit volume. It is expressed 

in Ampere per metre (A/m).

The effect of magnetisation in a given volume of magnetic material is to induce some bound surface 

and volume current densities in the material, given as

Magnetisation volume current density or bound volume current density (A/m2) = bJ M= — ¥

Magnetisation surface current density or bound surface current density (A/m) = b nK M a= ¥
The magnetic susceptibility cm of a magnetic material is a measure of the degree of magnetisation of 

a material in response to an applied magnetic field. It relates the magnetic field to the magnetisation 

vector as

mM Hc=

Permeability (m) is the degree of magnetisation of a material that responds linearly to an applied 

magnetic field. It relates the magnetic field to the magnetic flux density as

B Hm=

For linear magnetic materials, the relation between different magnetic properties is given as,

0 0 0(1 ) ( )r mB H H H H Mm m m m c m= = = + = +
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Depending upon the values of the magnetic susceptibility (cm) or the relative permeability (mr),

magnetic materials are broadly classified into three groups as

1. Paramagnetic (mr ≥ 1, cm > 0),

2. Diamagnetic (mr £ 1, cm < 0), and 

3. Ferromagnetic (mr >> 1, cm >> 0).

The variation of B  as a function of the externally applied field H  is known as a hysteresis curve

or magnetisation curve or B-H curve.

The boundary conditions that the magnetic field must satisfy at the interface between two different 

magnetic media are

1 2 1 1 2 2orn n n nB B H Hm m= =

and

1 2 12( ) nH H a K- ¥ = or 1 2 if 0t tH H K= =

Combining these boundary conditions it can be written as

1 1

2 2

tan

tan

q m

q m
=

where q1 and q2 are the angles with the normal in respective medium.

The ratio of the magnetic flux to the current is called the inductance, or more accurately self-

inductance of the circuit.

N
L

I I

fl= =

Mutual inductance is the ability of one inductor to induce an e.m.f. across another inductor placed 

very close to it.

The relation between the self-inductances of two coils and their mutual inductance is written as

1 2M k L L=

where k is the coefficient of coupling.

Magnetic energy density (energy per unit volume) is given as

2
2 31 1

(Joule/m )
2 2

mdW B
H

dV
m

m
= =

Total magnetic energy stored can be written in different forms as

2

vol vol

Vol containing

1

2
1 1

2 2

1

2

1 1

2 2

m

J

l

W LI

B Bdv B Hdv

A Jdv

I A dl I

m

f

=

= ◊ = ◊

= ◊

= ◊ =

Ú Ú

Ú

Ú
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Important Formulae
Current Q

I
t

=

Current density
ˆ

I
J n

A
=

Total current flowing through a 

surface S

I J dS= ◊Ú

Convection current density
s v vJ U U Ur r r+ + - -= = +

Conduction current density 

(Ohm’s law)
J Es=

Displacement current density ( )
( )d

D t
J t

t

∂
=

∂

Resistance
1E dl E dllV

R
I A J dS E dS

r

s

◊ ◊Ê ˆ= = = = Á ˜Ë ¯◊ ◊
Ú Ú
Ú Ú

Power dissipation (Joule’s law) 2
2

v

V
P E Jdv VI I R

R
= ◊ = = =Ú

Equation of continuity
vJ
t

r∂
— ◊ = -

∂

Relaxation time e
t

s
=

Biot–Savart law

2 2 24 4 4

r r r

l S v

Id l a KdS a Jdv a
H

r r rp p p

¥ ¥ ¥
= = =Ú Ú Ú

Relation between magnetic field 

and flux density
B Hm=

Magnetic field due to an infinite 

straight wire 2

I
H a

r fp
=

Gauss’ law of magnetostatics 0 or 0
S

B dS B◊ = — ◊ =Ú

Ampere’s circuital law
enc or

l

H dl I H J◊ = — ¥ =Ú

Magnetic field due to an infinite 

solenoid

NI
H

l
=

Magnetic scalar potential
mH V= - —
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Magnetic vector potential andB A= — ¥

for volume current density
4

for surface current density
4

for line current density
4

v

S

v

J
A dv

r

K
dS

r

Idl

r

m
p

m
p

m
p

=

=

=

Ú

Ú

Ú

Magnetic flux in terms of vector 

potential
f = ◊Ú

l

A dl

Lorentz force equation ( )F Q E v B= + ¥

Force on a finite current element in 

magnetic field l S v

F Idl B KdS B Jdv B= ¥ = ¥ = ¥Ú Ú Ú

Ampere’s force law

1 2

1 2 2 1 12

2

( )

4
C C

I I dl dl R
F

R

m

p

¥ ¥
= Ú Ú

Magnetic torque T IS B= ¥

Relation between , andB H M 0 ( )B H Mm= +

Magnetic boundary condition
1 21 2 1 2 21and ( ) ( )n n t t nB B H H K H H a K

Self-inductance of a coil N
L

I I

fl= =

Mutual inductance of two coils
1 2 0 1M k L L k= £ £

Energy stored in magnetic field 2

vol

1 1

2 2mW LI B Hdv= = ◊Ú

Exercises

[Note: * marked problems are important university problems]

Easy

1. Find the current in a circular wire of radius 2 mm if the current density is given as 
1000 215(1 ) A/m .r

zJ e a-= - [0.133 mA]

2. Find the total current in a cylindrical conductor of radius 2 mm if the current density varies with 

the distance from the axis as J = 103 e–400r A/m2. [7.51 mA]

3. Given the current density 310 sin rJ aq=  A/m2 in spherical coordinates; find the total current 

crossing the spherical shell of radius 0.02 m. [3.95 A]

4. In a material for which s = 5.0 S/m and er = 1, the electric field intensity is E = 250 sin 1010t

(V/m). Find the conduction and displacement current densities and the frequency at which they 

have equal magnitudes. [1250 sin 1010t (A/m2); 22.1 cos 1010t (A/m2); 90 GHz]
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5. Using Ampere’s circuital law in integral form, find H  everywhere due to the current density in 

cylindrical coordinates:

2
0 0 0.5

0 elsewhere

r
zJ J e a r-= < <

=

  

0 2 2

0

(1 2 ) 0.5
4
0.066

0.5

r rJ
H e re a r

r

J a r
r

f

f

- -È ˘
= - - <Í ˙

Í ˙
= ≥Í ˙

Î ˚
6. Find the current distribution producing the following field distribution using Ampere’s circuital 

law in differential form:

2
,

2

2

Ir
H a r a

a

I
a r a

r

f

f

p

p

= <

= >

2

0

z

I
J a r a

a
r a

p

È ˘= <Í ˙
Í ˙= >Î ˚

7. A thin cylindrical conductor of radius a and infinite length carries a current I. Find the magnetic 

field H  at all points using Ampere’s law.
0

2

H r a

I
a r a

r fp

È ˘= <
Í ˙
Í ˙= >
Î ˚

*8. Determine the magnetic field H  for a solid cylindrical conductor of radius a, where the current 

I is uniformly distributed over the cross section.

2
,

2

2

Ir
H a r a

a

I
a r a

r

f

f

p

p

È ˘= <Í ˙
Í ˙
Í ˙= >
Í ˙Î ˚

9. Determine the magnetic field H  on the axis of a circular current loop of radius a, carrying a 

steady current I. What is the field at the centre of the loop?

10. Using Ampere’s circuital law in integral form, find H  everywhere due to the current density in 

cylindrical coordinates:

24.5 , 0 0.5 m

0 elsewhere

rJ e r-= < <
=

2 21.125
(1 2 ) , 0.5 m

0.297
0.5 m

r rH e re a r
r

a r
r

f

f

- -È ˘= - - <Í ˙
Í ˙

= ≥Í ˙Î ˚

*11. A solid cylindrical conductor of radius R has a uniform current density. Derive an expression 

for H  both inside and outside of the conductor. Plot the variation of H  as a function of radial 

distance from the centre of the wire.

2
,

2

2

Ir
H a r R

R

I
a r R

R

f

f

p

p

È ˘= <Í ˙
Í ˙
Í ˙= >
Í ˙Î ˚
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12. A 4 m long conductor lies along the y axis with a current of 10 A in ya  direction. Find the force 

on a conductor if the magnetic field in the region is given as 0.05 xB a=  Tesla. [ 2 N]za-

13. A current sheet 9 yK a=  A/m is located at z = 0. The region 1 which is at z < 0 has mr1 = 4 and 

region 2 which is at z > 0 has mr2 = 3. Given 2 14.5 8 A/mx zH a a= + . Find 1H .

1[ 5.5 6 A/m]x zH a a= +

Medium

*14. A coaxial capacitor with inner radius a and outer radius b and length l has a dielectric of 

permittivity e and an applied voltage Vm sin wt. Determine the displacement current and compare 

with the conduction current. 2
;

ln
C D

l
I I

b

a

peÈ ˘=Í ˙Ê ˆÍ ˙Ë ¯Î ˚

15. In cylindrical coordinates, 
2

B a
r f= (T). Determine the magnetic flux crossing the plane surface 

defined by 0.5 £ r £ 2.5 m and 0 £ z £ 2.0 m. [6.44 Wb]

16. A radial field, 
62.39 10

cos rH a
r

f
¥

=  A/m, exists in free space. Find the magnetic flux f

crossing the surface defined by 0 £ f £ p/4, 0 £ z £ 1 m. [2.12 Wb]

17. Find the flux passing the portion of the plane f = p/4 defined by 0.01 < r < 0.05 m and 0 < z < 2 

m. A current filament of 2.5 A is along the z axis in the za  direction, in free space. [1.61 mWb]

*18. Using the vector potential concept find the magnetic intensity about a long straight wire carrying 

a current I.
0

2

I
a

r f

m

p
È ˘
Í ˙
Î ˚

19. In cylindrical coordinates 250 Wb/mzA r a=  is a vector magnetic potential, in a certain region of 

free space. Find H , B, J  and using J  find total current I crossing the surface 0 £ r £ 1, 0 £ f £
2p and z = 0.

2 2 6

0 0

100 200
A/m, 100 Wb/m , A/m , 500 10 AzH ra B ra J a If fm m

È ˘
= - = - = - = - ¥Í ˙

Î ˚

Hard

20. Find the leakage resistance between two transmission lines of finite radius a that are imbedded in 

a medium of conductivity s and separated by a distance d. ln( / )d a

ps
È ˘
Í ˙Î ˚

21. A long wire of radius r runs through a deep lake of conductivity s at height h above the bottom 

which is a good conductor. Calculate the resistance per unit length between the wire and the lake 

bottom. 1 2
ln

2

d

rps
È ˘Ê ˆ

Á ˜Í ˙Ë ¯Î ˚

22. Find the insulation in a length l of a coaxial cable of inner conductor of radius a and outer 

conductor of radius b. 1
ln

2

b

l aps
È ˘Ê ˆ

Á ˜Í ˙Ë ¯Î ˚
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23. A curved rectangular bar forms a resistor. The curved sides are concentric circular arcs. If s is the 

material conducting of the bar, l0 is the length of the inner arc of radius r0, (r0 + b) is the radius 

of the outer arc, and a is the width of the bar, calculate its electric resistance.

  

0

0
0

ln 1

l

b
ar

r
s

È ˘
Í ˙Ê ˆÍ ˙+Á ˜Ë ¯Í ˙Î ˚

24. Show that the magnetic field intensity at any point P (x, y, z) due to a current element zIdla

located at origin may be expressed as

2 2 2 3/2

( )

4 ( )

x yya xaI dl
dH

x y zp

- -
=

+ +

25. A coaxial line carries the same current I up the inside conductor of radius R1, the outer conductor 

of inner radius R2 and outer radius R3. Find the magnetic field at all distances r from the centre 

of the conductor.

12
1

1 2

2 2
3

2 32 2
3 2

3

0
2

2

2

0

Ir
H a r R

R

I
a R r R

r

R rI
a R r R

r R R

r R

f

f

f

p

p

p

È ˘= £ £Í ˙
Í ˙
Í ˙= £ £
Í ˙
Í ˙Ê ˆ-Í ˙= £ £Á ˜Í ˙-Ë ¯
Í ˙= ≥Î ˚

26. A coaxial conductor with an inner conductor of radius a and outer conductor of inner and outer 

radii b and c, respectively, carries current I in the inner conductor. Find the magnetic flux per unit 

length crossing a plane f = constant between the conductors.
0 ln

2

I b

a

m

p
È ˘
Í ˙
Î ˚

*27. Obtain an expression for magnetic vector potential in the region surrounding an infinitely long 

straight filamentary current I. Let a be the radius of the wire.
0 ln

2 z

I a
a

r

m

p
È ˘Ê ˆ

Á ˜Í ˙Ë ¯Î ˚
28. An infinite current sheet lies in the plane z = 0 with yK Ka= . Obtain the magnetic vector potential 

everywhere.
0

1
Wb/m

2 yA KzamÈ ˘= -Í ˙Î ˚
29. An infinitely long solenoid of radius a having n0 number of turns of wire per unit length carries 

the current I. Find the magnetic vector potential at a distance r (> a) from the axis of the solenoid.

  

2
0 0

2

n Ia

r

mÈ ˘
Í ˙Î ˚

30. Find the vector magnetic potential in a plane bisecting a straight piece of thin wire of length 2L

in free space and carrying steady current I. Therefrom find the magnetic flux density at a distance 

r from the wire.
2

22
1

4 2

ln
22

z

z

I rI r
B a r aA a r a

ad

II r
a r aa r a

ra

f

f

mm
p p

mm
pp

È ˘ È ˘Ê ˆ = >= - <Í ˙ Í ˙Á ˜Ë ¯Í ˙ Í ˙
Í ˙ Í ˙Ê ˆ = >= - >Á ˜Í ˙ Í ˙Ë ¯ Î ˚Î ˚
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31. A wire carrying current I runs down the y axis to the origin, thence out to infinity along the 

positive x axis. Show that the magnetic field in the quadrant with x, y > 0 of the xy plane is given 

by
0

2 2 2 2

1 1

4z

I yx
B

x y y x y x x y

m

p
Ê ˆ= + + +Á ˜+ +Ë ¯

Review Questions

[Note: * marked questions are important university questions.]

1. Distinguish between conduction and displacement currents.

*2. Explain how the current flowing through a capacitor differs from the normal conduction current.

3. Explain why conduction current is absent through the capacitor.

4. (a)  Establish the continuity equation relating the charge density and current density at a point 

in a medium. Explain the significance of the equation. Explain the concept of displacement 

current and show its importance.

or

  What is ‘conduction’ and ‘displacement’ current? Establish the relation 
dD

J E
dt

s= +  if 

both conduction current and displacement current are present. Here, s—conductivity, 

E—Electric field intensity, D—Electric displacement vector, J —current density vector and 

‘dt’—time derivative.

  Express the principle of conservation of charge in differential form. What is the name of the 

differential equation? What is the form of the equation for steady current?

(b) Express the resistance R in terms of the fundamental quantities (M, L, T and I).

(c) Obtain Ohm’s law between emf and current, starting from the current density J  in the circuit 

and the electrical conductivity s.

or

   Starting from the relationship J Es= , obtain Ohm’s law V = RI.

(d) Show that in a conducting medium, the steady electric current density satisfies the equation 

0Div J =  and the potential V satisfies the Laplace’s equation.

*5. (a)  Show that a charge placed anywhere in a conducting medium of conductivity s and

permittivity e decays exponentially with a time constant e/s.

or

   ‘Any initial charge density in a conductor dissipates in a characteristic time t = e/s, where 

e is the permittivity and s is the electrical conductivity of the material’. Establish this 

statement and discuss how t determines the quality of a conductor.

(b) What do you mean by charge relaxation time? What is its typical value for a good conductor? 

6. Show that Kirchhoff’s current law is consistent with the principle of charge conservation and the 

voltage law is consistent with the principle of conservation of energy.

7. What is ‘Principle of Duality’? Set up the analogy between J  and D.

8. Define polarisation. Explain how a dielectric acquires polarisation.

*9. A certain volume of dielectric has a polarisation P  C/m2. Write the integral expression for the poten-

tial at any point due to this dielectric. Explain the different terms in this expression through a figure.
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10. Explain the terms

(a) linear dielectrics and

(b) dielectric constant.

*11. State Biot-Savart law for the magnetic field B  due to a steady line current element in free space. 

Hence, obtain the magnetic field due to a steady volume current configuration.

*12. Starting from Biot–Savart’ law, obtain the expression for the magnetic field B due to a steady 

surface current in free space.

*13. State and explain Ampere’s circuital law. Show how this law can be applied to find the magnetic 

field due to an indefinitely long straight conductor carrying a steady current.

14. How does Ampere’s current law differ from Biot–Savart law?

15. Distinguish between magnetic vector potential, and magnetic scalar potential.

16. Show that magnetic scalar potential satisfies Laplace’s equation in the absence of free currents in 

a linear material and for uniform magnetisation.

17. Explain the concept of vector magnetic potential. What is its unit? Explain why being potential, 

it is a vector quantity.

18. What is Lorentz force? A long straight conductor carries a current I. Determine the force per unit 

length of the conductor when it is placed in a uniform magnetic field B.

*19. Prove that the force on a closed filamentary circuit in a uniform magnetic field is zero.

20. What is Ampere’s force law? Derive the expression.

21. Obtain the expression for the force experienced by two current carrying conductors. What is the 

direction of force when they are carrying current in similar direction and opposite direction?

*22. Explain the phenomena why a current carrying conductor is kept in magnetic field experience 

force.

23. Show that the torque acting on a loop of area S  and carrying a current I, when placed in a 

uniform magnetic field B  is given by T IS B= ¥ . What is the potential energy of the current 

loop?

24. Show how a small current loop can be treated as a magnetic dipole. What is its dipole moment?

25. Derive an expression for the potential energy of a point magnetic dipole of moment M placed in 

a magnetic field B.

26. (a)   A charged particle is moving in a magnetic field. Give the expression for the force acting on 

it. Does it gain energy from the field? Give reasons for your answer.

(b) Show that a current element placed in a magnetic field experiences a force F Idl B= ¥ .

(c) Find the magnitude of the force per unit length acting on a conductor carrying a current, 

when it is placed in a magnetic field.

  (d) State and explain Ampere’s Work law or, Ampere’s Force law.

27. Explain the nature and behaviour of magnetic material. Define and explain the term magnetisation. 

Classify the different types of magnetic material? On what basis are they classified?

28. Derive the boundary conditions at the magnetic interfaces and show that 1 1

2 2

tan

tan
r

r

q m

q m
= .

29. Establish the boundary conditions for the magnetic field on the interface between two dielectric 

media of different relative permeability.

Or,

  State the boundary conditions satisfied by B  and H  at the interface of two magnetic media of 

different magnetic permeabilities assuming no free current.

*30. Explain Laplace’s and Poisson’s equations for steady magnetic field.
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Multiple Choice Questions

1. Displacement current can flow through:

(a) capacitor (b) inductor (c) resistor (d) none of the above

2. In general, magnetic lines of force are closed whereas electric lines of force are not closed, because:

(a) Magnetic field is conservative and electric field is not.

(b) Magnetic field is not conservative and electric field is conservative.

(c) North and south poles exists together but positive and negative charges may exist separately.

(d) None of the above

3. The direction of force on a conductor carrying current in the positive y-axis and placed in magnetic 

field directed in positive x-axis, will be:

(a) Positive z-axis (b) Negative z-axis (c) Negative x-axis (d) Negative y-axis.

4. Which of the following statements is correct?

(a) Magnetic field can always be expressed with the help of a scalar potential.

(b) Magnetic field can always be expressed with the help of a vector potential.

(c) Magnetic field can sometimes be expressed with the help of a scalar potential and sometimes 

only with the help of a vector potential.

(d) Magnetic field can never be expressed with the help of a potential.

5. Given the conduction current density in a lossy dielectric as Jc = 0.02 sin 109t (A/m2). If the 

conductivity s = 103 siemens/m and er = 6.5, the displacement current density is

(a) 1.15 ¥ 10  cos 109t (b) 1.15 ¥ 10  cos 109t

(c) 1.15 ¥ 10  sin 109t (d) 1.15 ¥ 10  sin 109t

6. A long straight wire carries a current of 50 A. A proton (1.6 ¥ 10  C) travelling at 107 m/s is 5.0 

cm from the wire. The force acting on the proton if its velocity is directed towards the wire is

(a) 3.2 ¥ 10  N parallel to the wire. (b) 3.2 ¥ 10  N perpendicular to the wire.

(c) 0.0 (d) none of the above.

7. Two concentric rings of radius ‘a’ and ‘2a’ carrying equal and uniform charge densities revolve 

at the same angular speed ‘w’ about their common axis. The ratio of flux densities due to the two 

rings at the centre will be

(a) 1 : 1 (b) 1 : 2 (c) 1 : 4 (d) 2 : 1

8. Two concentric square loops A and B carry equal currents in the same direction. The magnetic field 

at the centre due to the two loops A and B will be in the ratio

(a) 1 : 1.414 (b) 1 : 1 (c) 1.414 : 1 (d) 2 : 1

9. The units of Js and Jv, the surface and volume current densities are respectively

(a) A/m2, A/m3 (b) A/m, A/m2 (c) A/m, A/m3 (d) A, A/m

10. If a vector field A = xax + yay + Kaz represents a magnetic field, then the value of K must be

(a) 1 (b) 2 (c) –1 (d) –2

11. The magnetic field intensity (in ampere/metre) at the centre of a circular coil of diameter 1 metre 

and carrying a current of 2 ampere is

(a) 8 (b) 4 (c) 3 (d) 2

12. A straight conductor of length l moving with a velocity v in the presence of a magnetic field of flux 

density B directed at an angle q with the direction of v experiences a force. Which of the following 

statement(s) are true for the magnitude of the force?

1. It is independent of q 2. It is proportional to l2

3. It is proportional to B 4. It is independent of v
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  Select the correct answer from the codes given below:

(a) 1, 2 and 3 (b) 4 alone (c) 3 alone (d) 2 and 4

13. Consider the following statements:

  The force per unit length between two stationary parallel wire carrying (steady) currents:

1. is inversely proportional to the separation of wires.

2. is proportional to the magnitude of each current.

3. satisfies Newton’s third law.

  Of these statements

(a) 1 and 2 are correct (b) 2 and 3 are correct

(c) 1 and 3 are correct (d) 1, 2 and 3 are correct

14. A straight conductor of circular cross-section carries a current. Which of the following statements 

is true in this regard?

(a) No force acts on the conductor at any point.

(b) An axial force acts on the conductor tending to increase its length.

(c) A radial force acts towards the axis tending to reduce its cross-section.

(d) A radial force acts away from the axis tending to increase its cross-section.

15. The ratio of conduction current density to the displacement current density is (symbols have the 

usual meaning)

(a)
js
we

(b)
j

s
we

(c)
j

sw
e

(d)
j

se
w

16. Consider the following statements associated with the basic properties of ideal conductors:

1. The resultant field inside is zero.

2. The net charge density in the interior is zero.

3. Any net charge resides on the surface.

4. The surface is always equipotential.

5. The field just outside is zero.

  Of these statements

(a)  1, 2, 3 and 4 are correct (b) 3, 4 and 5 are correct

(c) 1, 2 and 3 are correct (d) 2 and 3 are correct

17. Conservation of charge implies that

(a)
d

J dS dv
dt

r◊ = -ÚÚ ÚÚÚ (b) 0J dS◊ =ÚÚ

(c) J dS dvr◊ =ÚÚ ÚÚÚ (d) J dS r◊ =ÚÚ
18. The relaxation time (t) in perfect dielectric is

(a) 0 (b) 1 (c) 1 < t < a (d) a
19. Match List I with List II and select the correct answer using the codes given below the lists.

List I

(Laws of magnetostatics)

List II

(Equations with which the given laws are associated)

A. Ampere’s Law 1. [ ( )]F Q E v B= + ¥

B. Biot–Savart Law
2. 0

24

I
B

R

m

p

¥
= Ú

dl R

C. Lorentz Force Law 3. 0B Jm— ¥ =
D. Magnetic flux Law 4. 0B— ◊ =
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  Codes:
(a) A B C D

  3 2 1 4
(b) A B C D

  3 2 4 1
(c) A B C D

  2 3 4 1
(d) A B C D

  2 3 1 4

20. The region z £ 0 is a perfect conductor. On its surface at the origin, the surface current density K

is (5i – 6j) A/m. If the region z > 0 were free space, then the magnetic field intensity H in A/m, at 

the origin would be

(a) H = 0 (b) H = (5i – 6j) A/m

(c) H = (6i – 5j) A/m (d) H = –(6i + 5j) A/m

21. The magnitude of the magnetic flux density ‘B’ at a distance ‘R’ from an infinitely long straight 

current filament is

(a) 0

2

I

R

m
(b)

0

2

I

R

m

p
(c) 0

4

I

R

m

p
(d) 0

28

I

R

m

p
22. If the vector 2B x i xyj C xzk= - -  represents a magnetic field, the value of the constant C must be

(a) 0 (b) 1 (c) 2 (d) 3

23. A medium behaves like dielectric when the

(a) displacement current is just equal to the conduction current.

(b) displacement current is less than the conduction current.

(c) displacement current is much greater than the conduction current.

(d) displacement current is almost negligible.

24. If A and J  are the vector potential and current density vectors associated with a coil, then A Jdv◊
has the units of

(a) flux-linkage (b) power (c) energy (d) inductance

25. The energy stored in the magnetic field of a solenoid 30 cm long and 3 cm diameter wound with 

1,000 turns of wire carrying a current of 10A is

(a) 0.015 Joule (b) 0.15 Joule (c) 0.5 Joule (d) 1.15 Joule

26. Kirchhoff’s current law for direct currents is implicit in the expression

(a) D r— ◊ = (b) 0J nds◊ =Ú (c) 0B— ◊ = (d)
D

H J
t

∂— ◊ = +
∂

27. The relaxtion time of mica (s = 10–15 mho/m, er = 6) is:

(a) 5 ¥ 10–10 s (b) 10–6 s (c) 5 hour (d) 15 hour

28. Which one of the following is not characteristic of a static magnetic field?

(a) It is solenoidal (b) It is conservative

(c) It has no sinks or sources (d) Magnetic flux lines are always closed

29. Two identical coaxial circular coils carry the same current I, but in opposite directions. The 

magnitude of the magnetic field B at a point on the axis midway between the coils is

(a) Zero (b) The same as that produced by one coil

(c) Twice that produced by one coil (d) Half that produced by one coil

30. Two thin parallel wires carry currents along the same direction. The force experienced by one due 

to the other is

(a) Parallel to the lines (b) Perpendicular to the lines and attractive

(c) Perpendicular to the lines and repulsive (d) Zero
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31. What is the unit of magnetic charge?

(a) Ampere-metre square (b) Coulomb

(c) Ampere (d) Ampere-metre

32. The concept of displacement current was a major contribution attributed to:

(a) Faraday (b) Lenz (c) Maxwell (d) Lorentz

33. The region z < 0 has mr = 6 and the region z > 0 has mr = 4. If the magnetic flux density in region 

z > 0 is 25 8 mWb/mx za a+ , the magnetic field intensity in region z < 0 would be:

(a)
0

5 8
mA/m

4
x za a

m

+
(b)

0

5 8
mA/m

6
x za a

m

+

(c)
0 0

5 8
mA/m

4 6
x za a

m m
+ (d)

0 0

5 8
mA/m

6 4
x za a

m m
+

34. Plane defined by z = 0 carry surface current density 2 A/mxa . The magnetic intensity ’Hy’ in the 

 < z < 0 and 0 < z <  are respectively:

(a) ya  and ya- (b) ya-  and ya

(c) xa  and - xa (d) - xa  and xa

35. A solid cylindrical conductor of radius ‘R’ carrying a current ‘I’ has a uniform current density. The 

magnetic field intensity ‘H ’ inside the conductor at the radial distance ‘r’ (r < R) is:

(a) zero (b)
2

I

rp
(c)

22

Ir

Rp
(d)

2

32

IR

rp

Answers

1. (a) 2. (c) 3. (b) 4. (b) 5. (b) 6. (c) 7. (a) 8. (d)

9. (a) 10. (d) 11. (d) 12. (c) 13. (d) 14. (c) 15. (b) 16. (a)

17. (a) 18. (a) 19. (a) 20. (d) 21. (b) 22. (b) 23. (c) 24. (c)

25. (b) 26. (b) 27. (d) 28. (b) 29. (a) 30. (b) 31. (d) 32. (c)

33. (c) 34. (a) 35. (c)



This chapter deals with the following topics:

■ Basic laws of electromagnetic induction

■ To acquire knowledge of fundamental quantities for time-varying fields

4
ELECTROMAGNETIC FIELDS

4.1 INTRODUCTION

In the previous chapters, we have studied different concepts of electrostatic and magnetostatic fields. 

In general, electrostatic fields are produced by stationary charges and magnetostatic fields are produced 

by motion of electric charges with uniform velocity (i.e. steady currents). However, if the current is 

time-varying, the field produced is also time-varying and is known as electromagnetic fields or waves.

In this chapter, we will discuss the concepts of electromagnetic fields and contribution of Maxwell 

to the laws of electromagnetism.

4.2  FARADAY’S LAW OF INDUCTION FOR 
TIME-VARYING FIELDS

The English physicist Michael Faraday and the American scientist Joseph Henry independently and 

simultaneously, in 1831, observed experimentally that any change in the magnetic environment of a 

coil of wire will cause a voltage (emf) to be induced in the coil. If the circuit is a closed one, this emf 

will cause flow of current. This phenomenon is known as electromagnetic induction. The results of 

Faraday and Henry’s experiment led to two laws:

1. Neumann’s Law: When a magnetic field linked with a coil or circuit is changed in any manner, 

the emf induced in the circuit is proportional to the rate of change of the flux-linkage with the circuit.

2. Lenz’s Law: The direction of the induced emf is such that it will oppose the change of flux producing 

it.

These two laws together can be termed as Faraday’s law of electromagnetic induction.

Statement of Faraday’s Law The emf induced in a closed circuit is proportional to the rate of 

change of the magnetic flux-linkage and the direction of the current flow in the closed circuit is such 

that it opposes the change of the flux.

Learning Objectives
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Explanation

Let E—electric field,

B—magnetic field,

f—flux linking with the circuit,

V—induced emf in the circuit,

l—total flux-linkage in a multi-turn coil,

C—the closed circuit binding an open surface S, placed in the magnetic field

By Faraday’s law, = - d
V

dt

f
(4.1)

In general, for a multi-turn coil, the emf induced is given as,

= - d
V

dt

l
(4.2)

Now, the induced emf can be written in terms of electric field as

= ◊Ú
C

V E dl (4.3)

and the total magnetic flux can be written in terms of magnetic field as

S

B dSl = ◊Ú (4.4)

From Eqs. (4.1) to (4.4), we get

C S

d
E dl B dS

dt
◊ = - ◊Ú Ú (4.5)

This equation is termed as the integral form of Faraday’s law.

From Eq. (4.5),

C S

d
E dl B dS

dt
◊ = - ◊Ú Ú

fi
S S

d
E dS B dS

dt
— ¥ ◊ = - ◊Ú Ú (applying Stoke’s theorem)

If the circuit is stationary then the time derivative can be moved inside the integral and it becomes a 

partial derivative. Hence,

S S

B
E dS dS

t

∂— ¥ ◊ = - ◊
∂Ú Ú (4.6)

Thus, equating the integrands, we get

B
E

t

∂— ¥ = -
∂

This is the differential form of Faraday’s law.

Proof of Faraday’s Law We consider a closed circuit moving with a velocity v  in a time varying 

magnetic field B.

Force exerted on the circuit is, ( )F q v B= ¥
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Fig. 4.1 Closed circuit moving in a time varying field

So, the intensity of electric field induced in the wire is,

( )
F

E v B
q

= = ¥

So, induced emf is

{( )}= ◊ = ¥ ◊Ú Ú
l l

V E dl v B dl (4.7)

As the circuit moves, the element dl  sweeps in time dt an area PP¢QQ¢ = vdt d l¥ .

\ Flux across this area = ( )B vdt d l◊ ¥

\ Flux over the entire band, ( )
S

d B vdt d lf = ◊ ¥Ú

\ ( ) ( )
S S

d
B v d l v B dl

dt

f = ◊ ¥ = - ¥ ◊Ú Ú (4.8)

{ ( ) ( ) ( ) }A B C C A B B A C◊ ¥ = ◊ ¥ = - ¥ ◊

Comparing Eq. (4.7) and (4.8), we get

= - d
V

dt

f

This is the induced emf given by Faraday’s law.

NOTE

Weber is the unit of magnetic flux. Weber may be defined in terms of Faraday’s law, as the amount 

of flux that induces an electromotive force of one volt when cut by a varying magnetic flux through a 

loop to the electric field around the loop per second.

Tesla is the unit of magnetic flux density. It is defined as the magnetic flux density that produces a 

force of one Newton per metre in a conductor carrying a current of one Ampere at right angle to the 

magnetic field.

The Maxwell, abbreviated as Mx, is the compound derived CGS unit of magnetic flux. The unit was 

previously called a line. In a magnetic field of strength one Gauss (or Tesla), one Maxwell is the total 

flux across a surface of one square centimetre perpendicular to the field.

1 Weber = 108 Maxwells = 108 magnetic field lines
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Example 4.1 An infinite straight wire carries a current I is placed 

to the left of a rectangular loop of wire with width w and length l, as shown 

in Fig. 4.2.

(a) Determine the magnetic flux through the rectangular loop due to the 

current I.

(b) Suppose that the current is a function of time with I(t) = a + bt, where 

a and b are positive constants. What is the induced emf in the loop 

and the direction of the induced current?

Solution
(a) Using Ampere’s law,

0 encB dS Im◊ =Ú

the magnetic field due to a current-carrying wire at a distance r away is

0

2

I
B

r

m

p
=

The total magnetic flux f through the loop can be obtained by summing over contributions from all 

differential area elements dS = ldr

0 0 ln
2 2

s w

s

Il Il s wdr
d B dS

r s

m m
f f

p p

+ +Ê ˆ= = ◊ = = Ë ¯Ú Ú Ú

NB: Here, the area vector has been chosen to point into the page so that f > 0

(b) According to Faraday’s law, the induced emf is

0 0 0ln ln ln
2 2 2

È ˘+ + +Ê ˆ Ê ˆ Ê ˆ= - = - = - = -Í ˙Ë ¯ Ë ¯ Ë ¯Î ˚
Il Il bls w s w s wd d dI

V
dt dt s s dt s

m m mf
p p p

where
dI

b
dt
=

The straight wire carrying a current I produces a magnetic flux into the page through the rectangular 

loop. By Lenz’s law, the induced current in the loop must be 

flowing counterclockwise in order to produce a magnetic field 

out of the page to counteract the increase in inward flux.

Example 4.2 A rectangular loop of dimensions l and w

moves with a constant velocity v away from an infinitely long 

straight wire carrying a current I in the plane of the loop, as 

shown in Fig. 4.3. Let the total resistance of the loop be R. What 

is the current in the loop at the instant the near side is a distance 

r from the wire?

Solution The magnetic field at a distance s from the straight 

wire is obtained using Ampere’s law as

0

2

I
B

s

m

p
=

Fig. 4.2 Rectangular

loop near a wire

Fig. 4.3 A rectangular loop moving 

away from a current-

carrying wire
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The magnetic flux through a differential area dA = lds of the loop is

0

2

I
d B dS lds

s

m
f

p
= ◊ =

where the area vector has been chosen to point into the page so that f > 0.

Integrating over the entire area of the loop, the total flux is

0 0 ln
2 2

r w

r

Il Il r wds

s r

m m
f

p p

+ +Ê ˆ= = Ë ¯Ú

Differentiating with respect to t, we get the induced emf as

0 0 01 1
ln

2 2 2 ( )

+Ê ˆ Ê ˆ= - = - = - - =Á ˜Ë ¯ + +Ë ¯
Il Il Ilr wd d dr wv

V
dt dt r r w r dt r r w

m m mf
p p p

where
dr

v
dt
= .

The induced current obtained as

0| |

2 ( )
= =

+
IlV wv

I
R R r r w

m

p

Example 4.3 A rectangular loop of wire with dimensions a, b

and lying in the xy-plane, is moving with a uniform velocity v in the 

direction of the positive y-axis in a static magnetic vector field pointing 

in the z-direction and varying sinusoidally in the y-direction as Bz = B0 sin 

ky. This is depicted in Fig. 4.4. Calculate the emf induced in the moving 

loop.

Solution We assume that at time t = 0, the front side of the loop is at

2

b
y =  and the rear side is at 

2

b
y = - . At any time, t, the positions of the 

two sides are respectively, at

( ) ( )front rearand
2 2

b b
y vt y vt= + = -

Total flux enclosed by the loop is

( ) ( )
( )

front

front

rear

rear

0
0

0

0

sin [ cos ]

cos cos
2 2

2 sin sin
2

y
y

y
y

B a
a B kydy ky

k

B a b b
vt vt

k

B a kb
kvt

k

f = = -

È ˘= - - - +Í ˙Î ˚

=

Ú

Hence, the emf induced is

( ) ( )0
02 sin sin 2 sin cos

2 2

È ˘= - = - = -Í ˙Î ˚
B ad d kb kb

V kvt B av kvt
dt dt k

f

\ ( )02 sin cos
2

= - kb
V B av kvt

Fig. 4.4 Rectangular

loop moving in a 

magnetic field
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4.3 INDUCED EMF FOR TIME-VARYING FIELDS

According to Faraday’s law, for a flux variation, there will be induced emf, given as = - d
V

dt

f
. The 

variation of flux with time may be caused in three ways:

1. by having a stationary loop in a time-varying magnetic field;

2. by having a time-varying loop in a static magnetic field, and

3. by having a time-varying loop in a time-varying magnetic field.

1. Stationary loop in time varying magnetic field (transformer emf): In this case, the emf induced is

∂= ◊ = - ◊
∂Ú Ú

C S

B
V E dl dS

tS

This emf induced by the time-varying current (producing time-varying magnetic field) in a stationary 

loop is called transformer emf. By Stoke’s theorem,

S S

B
E dS dS

t

∂— ¥ ◊ = - ◊
∂Ú Ú

\ B
E

t

∂— ¥ = -
∂

Thus, 0E— ¥ π , i.e. time-varying electric field is not conservative. The work done in taking a charge 

about a closed path in a time-varying electric field is due to the energy from the time-varying magnetic 

field.

*Example 4.4 A circular wire loop of radius a = 0.4 m lies in the x–y plane with its axis along 

the z-axis. The vector magnetic field over the surface of the loop is, 0 cos zH H taw= , where H0 = 

200 mA/m and f = 1 MHz. Determine the emf induced in the loop.

Solution Since the loop is stationary, and the area is time-dependent, the transformer emf is 

induced. The emf induced is given as

0 0 0

0 0

0 0

2
0 0

2
0 0

( cos )

( sin )

sin

sin ( )

sin

∂ ∂ ∂= - ◊ = - ◊ = - ◊
∂ ∂ ∂

= - -

=

=
=

Ú Ú Ú

Ú

Ú

z z
S S S

S

S

B H
V dS dS H ta dSa

t t t

H t dS

H t dS

H t a

a H t

m m w

m w w

m w w

m w w p

wm p w

S

Putting the values, we get the magnitude of the emf induced as

2 6 7 2 6
0 0 sin 2 10 4 10 (0.4) (200 10 ) 0.794 mV- -= = ¥ ¥ ¥ ¥ ¥ =V a H twm p w p p p

S

Example 4.5 A square conducting loop of sides d = 25 cm is located in a peak ac magnetic 

field of Hm = 1 A/m varying at a frequency f = 5 MHz. H  is perpendicular to the plane of the loop. What 

voltage will be read on a voltmeter connected in series with one side of the loop?
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Solution Since the loop is stationary, and the area is time-dependent, the transformer emf is 

induced. The emf induced is given as

0 0

0

0

2
0

2
0

( cos )

( sin )

sin

sin

sin

∂ ∂ ∂= - ◊ = - ◊ = - ◊
∂ ∂ ∂

= - -

=

= ¥
=

Ú Ú Ú

Ú

Ú

m z z
S S S

m
S

m
S

m

m

B H
V dS dS H ta dSa

t t t

H t dS

H t dS

H t d

a H t

m m w

m w w

m w w

m w w

wm p w

S

Putting the values, we get the magnitude of the emf induced as

2 7 6 2
0 4 10 2 5 10 (0.25) 2.54V-= = ¥ ¥ ¥ ¥ ¥ =mV H dm w p p

S

Example 4.6 The circular loop conductor having a radius of 0.15 m is placed in the xy plane. 

This loop consists of a resistance of 20 W as shown in Fig. 4.5. If the magnetic flux density is

30.5 sin 10 zB t a= T

Find the current flowing through the loop.

Solution Here, since the loop is stationary and the magnetic 

field is time-varying, only the transformer emf is induced.

Transformer emf induced is

3

0.15 2
3 3

0 0

0.15
2

3 3

0
3 3

3

(0.5 sin 10 ) ( )

0.5 10 cos 10

0.5 2 10 cos 10
2

10 cos 10 0.01125

35.34 cos 10 V

= =

∂ ∂= - ◊ = - ◊
∂ ∂

= - ¥

È ˘
= - ¥ ¥ Í ˙Î ˚
= - ¥
= -

ÚÚ ÚÚ

Ú Ú

z z
S S

r

B
V dS ta rdr d a

t t

t rdr d

r
t

t

t

p

f

f

f

p

p

S

Hence, the current in the conductor is

3
335.34 cos 10

1.767 cos 10 (A)
20

SV t
I t

R

-
= = = -

Example 4.7 An area of 0.65 m2 in the plane z = 0 encloses a filamentary conductor. Find the 

induced voltage if

30.05 cos 10
2

y za a
B t

+Ê ˆ
= Á ˜Ë ¯

Tesla

Solution Since the filamentary conductor is fixed and placed in the xy plane, only transformer emf 

is induced.

Fig. 4.5 Circular conducting loop
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Transformer emf induced is

3

3 3

3 3

3

0.05 cos 10 ( )
2

0.05 10 sin 10

2

0.05 10 sin 10
0.65

2

22.98 sin 10 (volt)

È ˘+Ê ˆ∂ ∂= - ◊ = - ◊Í ˙Á ˜∂ ∂ Ë ¯Í ˙Î ˚
¥

=

¥
= ¥

=

ÚÚ ÚÚ

Ú

y z

z
S S

S

a aB
V dS t dS a

t t

t
dS

t

t

S

Example 4.8 A stationary 10-turn square coil of 1 metre 

side is situated with its lower left corner coincident with the origin 

and with sides x1, y1 along x-axis and y-axis. If the field B  is normal 

to the plane of the coil and has its amplitude given by

0
1 1

sin sin tesla,
Ê ˆÊ ˆ= Á ˜ Á ˜Ë ¯ Ë ¯

yx
B

x y

pp

determine the rms value of the emf induced in the coil, if B  varies 

harmonically at a frequency of 1 kHz.

Solution This is demonstrated in Fig. 4.6. Since B  varies 

harmonically, it can be written as, 0 cosB B tw= .

Also, x1 = 1, y1 = 1

\ 0 sin ( ) sin ( ) TeslaB x yp p=

Here, only the transformer emf is induced given as

0
0

( cos )
sin

∂∂ ∂ È ˘= - ◊ = - ◊ = - =
∂ ∂ ∂ Í ˙Î ˚
Ú Ú Ú Ú
S S S S

B tB B
V dS ndS dxdy B dxdy t

t t t

w
w w

S

Hence, the peak value of the induced emf is

max

1 11 1

0 00 0

cos cos 82 2
sin ( ) sin ( ) 2 2

= =

È ˘ È ˘= = - ¥ - = ¥ =Í ˙ Í ˙Î ˚ Î ˚Ú Ú
y x

x y f
V x y dxdy f f

p p
w p p p p

p p p p pS

max

8 f

p
=

S
E

The rms value of the induced emf is

rms

8 10008
18 kV

2 2

¥
= = =

f
V

p p
S

2. Moving loop in static magnetic field (motional emf): When a charge is moving in the presence of 

a static magnetic field B, the force on the charge is

mF qv B= ¥

where, q is the amount of charge, v  is the velocity of movement.

Fig. 4.6 Square loop in a time-

varying magnetic field
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So, we define the motional electric field, mE  as

m
m

F
E v B

q
= = ¥ (4.9)

Thus, if a conducting loop is moving with a velocity v , then the emf induced in the loop is

( )= ◊ = ¥ ◊Ú Úm m
C C

V E dl v B dl (4.10)

This is called motional emf or flux-cutting emf, as found in electrical machines, motors, generator. By 

Stoke’s theorem

( ) ( )m
S S

E dS v B dS— ¥ ◊ = — ¥ ¥ ◊Ú Ú

\ ( )mE v B— ¥ = — ¥ ¥

*Example 4.9 Faraday Disc Generator

(Unipolar Generator or Homopolar Generator or Acyclic Generator or Disc Generator or Dynamo or 

Faraday Disc Generator) [Fig. 4.7(a) and (b)]

Fig. 4.7 (a) Faraday disc generator (b) Faraday disc generator

A Faraday disc generator is a homopolar DC electrical generator which consists of an electrically 

conductive disc made of magnetic material (flywheel) rotating in a uniform magnetic field with one 

electrical contact near the axis and the other near the periphery. This creates a potential difference between 

the two contact points, one in the centre of the disc the other on the outside of the disc. This generator is 

used for generating very high currents at low voltages in applications such as electrolysis, welding, etc.

Let w—angular velocity of the disc,

B—uniform magnetic field,

a—radius of the disc.

We consider an electron of charge e at any point on the disc at a distance r from the centre.

\ Velocity of the electron is, v = Wr

Force on the electron is, ( )F e v B= ¥
Hence, the electric field acting on the electron at equilibrium is

F
E v B

e
= = ¥
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The magnitude of the field is | | sin 90E E vB rBw= = ∞ =

\ | |E E rBw= =

The direction of this field is radially inward.

Thus, the emf between the centre and the peripheral rim of the disc is

2
2

00 0

1

2 2

È ˘
= ◊ = = =Í ˙Î ˚Ú Ú

aa a

m

r
V E d r rBdr B Baw w w

\ 21

2
=mV Baw

This is the open circuit voltage between the two contact brushes.

*Example 4.10 A copper disc of 0.50 m diameter is rotated at a constant speed of 2,000 r.p.m. 

on a horizontal axis perpendicular to and through the centre of the disc, the axis lying in the magnetic 

meridian. Two brushes contact with the disc, one at the edge and the other at the centre. If the horizontal 

component of earth’s field is 0.02 mWb/m2 find the emf induced between the brushes.

Solution This is a Faraday disc problem. From Example 4.9, we get the emf induced as,

2
3

2 2 2 3 0.5 101 1 2000
2 0.02 10

2 2 60 60 2
0.1308 mV

-
- Ê ˆ¥

= = ¥ = = ¥ ¥ ¥ ¥ Á ˜Ë ¯
=

m

N
V Ba fBa Baw p p p

*Example 4.11 A rod of length ‘l’ rotates 

about the z-axis with an angular velocity ‘w’. If 

0 zB B a= , calculate the voltage induced on the 

conducting rod. This is shown in Fig. 4.8.

Solution We consider an elemental section of 

the rod at any distance r. The velocity at that section 

is

v rafw=

0 0( ) ( )z rv B ra B a B r afw w¥ = ¥ =

So, the induced motional emf is

0

2
0 0

0

( ) ( ) ( )

1

2

= ¥ ◊ = ◊

= =

Ú Ú

Ú

m r r
C C

l

V v B dl B r a dra

B rdr B l

w

w w

Here, the induced field v B¥  is in the radial direction, the polarity of the moving end is positive with 

respect to the fixed end.

Fig. 4.8 Metal rod rotating in stationary field
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Example 4.12 A rectangular conducting loop with resistance 

of 0.2 W rotates at 500 r.p.m., as shown in Fig. 4.9. The vertical 

conductor at r1 = 0.03 m is in the field 1 0.25 rB a= T and other 

conductor is at r2 = 0.05 m and in the field 2 0.8 rB a= T. Find the 

current flowing in the loop.

Solution Linear velocity of the inner conductor is,

1 1 1

500
2 2 0.03 1.57 m/s

60
v r a f r a af f fw p p= = = ¥ ¥ =

Linear velocity of the outer conductor is

2 2 2

500
2 2 0.05 2.62 m/s

60
v r a f r a af f fw p p= = = ¥ ¥ =

Since the magnetic field is not time-varying, only the motional emf 

will be induced.

Motional emf induced in the inner conductor is

1 1 1 1
0

0.5

0

0.5

0

( ) (1.57 0.25 ) ( )

( 0.39 ) ( )

0.39 0.196 V

=

=

= ¥ ◊ = ¥ ◊

= - ◊

= - = -

Ú Ú

Ú

Ú

l

m r z
l

z z
z

z

V v B dl a a dza

a dza

dz

f

Motional emf induced in the outer conductor is

2 2 2 2
0

0.5

0

0.5

0

( ) (2.62 0.8 ) ( )

( 2.09 ) ( )

2.09 2.09 0.5 1.047 V

=

=

= ¥ ◊ = ¥ ◊

= - ◊

= - = - ¥ = -

Ú Ú

Ú

Ú

l

m r z
l

z z
z

z

V v B dl a a dza

a dza

dz

f

Hence, the current in the loop is given as

1 2 0.196 ( 1.047) 0.85
4.25 A

0.2 0.2

- - - -
= = = =m mV V

I
R

3. Moving loop in time-varying magnetic field (general induction): Combining the above two 

results, for a moving conducting loop in a time-varying magnetic field, total emf induced is

( )
∂= ◊ = - ◊ + ¥ ◊
∂Ú Ú Ú

C S C

B
V E dl dS v B dl

t
(4.11)

Fig. 4.9 Rectangular conducting 

loop with resistance
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( )

transformer motional

emf emf

∂= - ◊ + ¥ ◊
∂

≠ ≠
Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

Ú Ú
S C

B
V dS v B dl

t

The field is given as

( )
B

E v B
t

∂— ¥ = - + — ¥ ¥
∂

(4.12)

*Example 4.13 A conductor can slide over a static conductor in a time-varying magnetic field 

0 cos ( )zB B t aw= -  with a velocity xv va= , as shown in Fig. 4.10. The length of the sliding conductor 

is ‘l’. Calculate the emf induced in the sliding conductor.

Solution In this case, the conductor is moving and the magnetic field is also time-varying. 

Therefore, both the transformer and motional emf’s will be induced.

Fig. 4.10 Sliding conductor in time-varying magnetic field

Transformer emf is

0 0 0
0 0

( cos ) ( sin ) sin
∂ ∂= - ◊ = - - ◊ = - = -
∂ ∂Ú ÚÚ Ú Ú

x l

z z
S S

B
V dS B ta dxdya B t dxdy xlB t

t t
w w w w w

S

If we let x = 0 at t = 0, then x = vt, and

0 sin= -V vlB t tw w
S

Motional emf is

0

0
0

0

( ) {( ) ( cos )}

cos

cos

= ¥ ◊ = ¥ - ◊

=

=

Ú Ú

Ú

m x z y
C C

l

V v B dl v a B tda dya

vB tdy

vlB t

w

w

w



  374 Electromagnetic Field Theory

Thus, the total induced emf is

0 (cos sin )= + = -V V V B lv t t tw w w
S m

*Example 4.14 (a) A conductor can slide over a static conductor in a static uniform magnetic 

field 0 zB B a= -  with a velocity xv va= , as shown in Fig. 4.11. The length of the sliding conductor is 

‘l’. Calculate the emf induced in the sliding conductor.

Fig. 4.11 Sliding conductor in static uniform magnetic field

(b) What will be the induced voltage, if the magnetic flux density is 0 cos ( )zB B t aw= -  in part (a)?

Solution
(a) A particle of charge Q moving with a velocity v  in a uniform B  field experiences the force

( )mF Q v B= ¥

\ motional field is

0( ) ( ) ( )m
m x z y

F
E v B va B a Bva

Q
= = ¥ = ¥ - =

From Faraday’s law, motional emf induced

0 0

( ) ( ) ( )= ¥ ◊ = ◊ = =Ú Ú Ú
l l

m y y
l

V v B dl Bva dya Bv dy Blv

\ =mV Blv

(b) If the magnetic field is time-varying, both the transformer emf as well as the motional emf will be 

produced.

Transformer emf is

0 0 0
0 0

( cos ) ( ) sin sin
∂ ∂= - ◊ = - - ◊ = - = -
∂ ∂ÚÚ ÚÚ Ú Ú

x l

S z z
S S

B
V dS B ta dxdya B tdxdy B lx t

t t
w w w w w

If we let x = 0 at t = 0, then x = vt and

0 sin= -SV B lv t tw w

Motional emf is

0 0 0
0 0

( ) ( ) ( cos ) ( ) cos cos= ¥ ◊ = ¥ - ◊ = =Ú Ú Ú
l l

m x z y
l

V v B dl va B ta dya B v t dy B lv tw w w
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Hence, the total emf induced in the conductor is

0 0 0( ) sin cos [cos sin ]= + = - + = -S mV V V B lx t B lv t B lv t t tw w w w w w

*Example 4.15 A conducting rod of length l moves with a 

constant velocity v perpendicular to an infinitely long, straight 

wire carrying a current I, as shown in Fig. 4.12. What is the emf 

generated between the ends of the rod?

Solution By Faraday’s law, the motional emf is

| | =mV Blv

where v is speed of the rod. However, the magnetic field due to 

the straight current-carrying wire at a distance r away is obtained 

using Ampere’s law as

0

2

I
B

r

m

p
=

Thus, the emf between the ends of the rod is given by

0| |
2

Ê ˆ= Ë ¯m

I
V lv

r

m

p

Example 4.16 (a) An AC generator consisting of a single square loop of wire, with length of 

each side being ‘a’, is rotating in a steady magnetic field B  at an angular velocity ‘w’. The axis of the 

loop rotation is perpendicular to the uniform field. Find the voltage induced in the loop.

(b) If the flux density varies harmonically with time as, B = Bm sin wt, what will be the induced emf for 

(a)? This is demonstrated in Fig. 4.13.

Fig. 4.13 AC generator

Solution
(a) Here, sin sinv B vB vB tq w¥ = =
Since, only two sides of the loop cut the flux lines, l = 2a

\ emf induced is

2( ) sin (2 ) sin (2 ) sin sin
2

= ¥ ◊ = = = =Úm

a
V v B dl vB t a B t a a B t AB tw w w w w w w

Fig. 4.12 A bar moving away from 

a current-carrying wire
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where, A = a2 = Area of the loop

2 sin sin= =mV a B t AB tw w w w

(b) In this case, in addition to the motional emf, transformer emf will be induced.

From (a), motional emf is

2 2 2( sin ) sin sin= =m m mV a B t t a B tw w w w w

Transformer emf is 
∂= - ◊
∂ÚS

B
V dS

t

Here, ( sin ) cosm m

B
B t B t

t t
w w w

∂ ∂- = - = -
∂ ∂

and, cos cosB na a tq w◊ = =

\ 2 2 2( cos ) cos ( ) cos
∂= - ◊ = - = -
∂ÚS m m

B
V dS B t t a a B t

t
w w w w w

So, the total emf induced is

2 2 2 2

2 2 2

2

( ) sin cos

(sin cos )

cos 2

= + = -
= -
= -

S m m m

m

m

V V V a B t a B t

a B t t

a B t

w w w w

w w w

w w

\ 2 cos 2= - mV a B tw w

Example 4.17 A square coil of area of 100 cm2 and 100 turns is rotated about an axis at right 

angles to a uniform magnetic field of 0.7 Wb/m2 at a uniform speed of 1000 r.p.m. Evaluate the 

expression for the instantaneous value of induced e.m.f. Derive the formula used.

Solution Here, 2 2 2 1000 100
100 cm , 100, 0.7 Wb/m , rad/s

60 3
A N B

p
w p

¥
= = = = =

Using the formula derived in earlier problem, the expression for instantaneous value of the induced 

e.m.f. is given as

( ) ( )4100 100 100
sin 100 10 100 0.7 sin 73.3 sin

3 3 3
-= = ¥ ¥ ¥ ¥ =mV AB t t tw w p p p

4.4  INCONSISTENCY IN AMPERE’S LAW FOR
TIME-VARYING FIELDS

According to Ampere’s circuital law in differential form we have

H J— ¥ = (4.13)

Taking divergence on both sides

( ) 0H J— ◊ — ¥ = — ◊ =

(Since the divergence of curl of any vector is zero.)
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However, according to the continuity equation of current, we have

0J
t

r∂
— ◊ = - π

∂

Therefore, we see that Ampere’s law is not applicable for time-varying fields. In order to make it 

compatible for time varying fields, we modify the law.

4.4.1 Modified Ampere’s Law for Time-Varying Fields

In order to have modified Ampere’s law, we add a term to Eq. (4.13).

dH J J— ¥ = + (4.14)

where, dJ  is to be determined and defined.

Taking divergence on both sides of Eq. (4.14),

( )  0dH J J— ◊ — ¥ = — ◊ + — ◊ =

\ ( )d

D
J J D

t t t

r∂ ∂ ∂— ◊ = -— ◊ = = — ◊ = — ◊
∂ ∂ ∂

(4.15)

\ d

D
J

t

∂=
∂

(4.16)

This dJ  is known as displacement current density and J  is the conduction current density ( )J Es= .

NOTE

The concept of conduction and displacement currents have been discussed in Chapter 3, Section 3.2.

Now, substituting Eq. (4.15) into Eq. (4.14), we get,

D
H J

t

∂— ¥ = +
∂ (4.17)

This is the modified Ampere’s law.

4.5  MAXWELL’S EQUATIONS FOR TIME-VARYING
FIELDS

Maxwell brought together the four basic laws governing electric and magnetic fields into one set of 

four equations, which completely describe the behaviour of any electromagnetic field. The form of 

these quantities is referred to as the instantaneous form (we can describe the fields at any point in time 

and space). The instantaneous form of Maxwell’s equations may be used to analyse electromagnetic 

fields with any arbitrary time-variation. Maxwell’s equations in differential and integral form are listed 

in Table 4.1.
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Table 4.1 Maxwell’s Equations

Sl. No. Differential Form Integral Form Name

1
vD r— ◊ = v

S v

D d s dv Qr◊ = =Ú Ú Gauss’ law of Electrostatics

2 0B— ◊ = 0
S

B d s◊ =Ú Gauss’ law of Magnetostatic (non-

existence of magnetic mono-pole)

3 B
E

t

∂— ¥ = -
∂ l S

E d l B d s
t

∂◊ = - ◊
∂Ú Ú

Faraday’s law of electromagnetic 

induction

4 D
H J

t

∂— ¥ = +
∂

l S

D
H dl J d s

t

Ê ˆ∂◊ = + ◊Á ˜Ë ¯∂Ú Ú
Modified Ampere’s circuital law

Word Statements

1. or,v v
S v

D D d s dv Qr r— ◊ = ◊ = =Ú Ú

The total electric displacement through any closed surface enclosing a volume is equal to the 

total charge within the volume. This is the Gauss’ law for static electric fields.

2. 0 or, 0
S

B B d s— ◊ = ◊ =Ú
The net magnetic flux emerging through any closed surface is zero. In other words, the magnetic 

flux lines do not originate and end anywhere, but are continuous. This is the Gauss’ law for static 

magnetic fields, which confirms the non-existence of magnetic monopole.

3. or,
l S

B
E E dl B d s

t t

∂ ∂— ¥ = - ◊ = - ◊
∂ ∂Ú Ú

The electromotive force around a closed path is equal to the time derivative of the magnetic 

displacement through any surface bounded by the path. This is the Faraday’s law for 

electromagnetic fields.

4. or,
l S

D D
H J H dl J d s

t t

Ê ˆ∂ ∂— ¥ = + ◊ = + ◊Á ˜Ë ¯∂ ∂Ú Ú

The magnetomotive force around a closed path is equal to the conduction current plus the time 

derivative of the electric displacement through any surface bounded by the path. This is the 

modified Ampere’s law for time varying fields.

Physical Interpretation of Maxwell’s Equations

1. or,v v
S v

D D d s dv Qr r— ◊ = ◊ = =Ú Ú

This implies that the divergence of electric flux density is the charge density. This is simple to 

understand, as rv at any point is simply the charge per unit volume at that point and from the 

definition of divergence 
Total Electric Flux

Lim
Volume

S
v

D d s

D
v

r

Ê ˆ◊
Á ˜— ◊ = = =Ë ¯D

Ú
, it is equal to .— ◊ D

If a closed surface does not contain any charge, then obviously the total flux over the surface is 

zero.
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This equation implies that the electric flux lines are not continuous; they originate from the 

positive charges and terminate on the negative charges.

2. 0 or, 0
S

B B d s— ◊ = ◊ =Ú

This implies that the number of magnetic flux lines of force entering any region must be equal 

to the number of lines of force coming out of that region.

This is simple to understand because of the fact that there are no magnetic mono-poles on 

which the flux lines ends and thus, the magnetic flux lines are always continuous.

3. or,
l S

B
E E dl B d s

t t

∂ ∂— ¥ = - ◊ = - ◊
∂ ∂Ú Ú

By Stoke’s theorem,

( ) ;— ¥ ◊ = ◊Ú Ú
S l

E d s E dl

where, | |d s d s n= ; where, n  is the unit vector normal to the direction of ds.

If the surface is reduced to an element of area ds, the LHS becomes ( )E d s— ¥ ◊ . Dividing 

through by | |d s , the result is

( )
| |

l

E d l

E n
ds

◊
— ¥ ◊ =

Ú

If unit vector n  is directed in such a way that 
l

E d l◊Ú  is maximum, then the direction of 

( )E— ¥  is given by n  and its magnitude is 
| |

l

E d l

d s

◊Ú
. Thus, we conclude that:

( )E— ¥  equals the emf per unit area in a direction of the area that results in a maximum 

emf around its edges.

This equation inter-relates the magnetic and electric fields and shows that a time-varying 

magnetic field can produce an electric field.

4. or,
l S

D D
H J H dl J d s

t t

Ê ˆ∂ ∂— ¥ = + ◊ = + ◊Á ˜Ë ¯∂ ∂Ú Ú

Similar to the curl of electric field, this equation implies that ( )H— ¥  equals the mmf per unit 

area in a direction of the area that results in a maximum mmf around its edge. This equation also 

signifies that conduction current as well as a changing electric field produces a magnetic field.

*Example 4.18 The electric field intensity of an electromagnetic wave in free space is given by

( )00, 0, cosy z x

z
E E E E t

v
w= = = -

Determine the expression for the components of the magnetic field intensity H . Also, find 
x

y

E

E
.

Solution By Maxwell’s equation

0

B H
E

t t
m

∂ ∂— ¥ = - = -
∂ ∂
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or 0

yx z

x y z

i j k

HH H
i j k

x y z t t t

E E E

m
∂È ˘∂ ∂∂ ∂ ∂ = - + +Í ˙∂ ∂ ∂ ∂ ∂ ∂Î ˚

or 0

0 0

yx z

x

i j k

HH H
i j k

x y z t t t

E

m
∂È ˘∂ ∂∂ ∂ ∂ = - + +Í ˙∂ ∂ ∂ ∂ ∂ ∂Î ˚

or 0

yx x x z
HE E H H

j k i j k
z y t t t

m
∂È ˘∂ ∂ ∂ ∂

- = - + +Í ˙∂ ∂ ∂ ∂ ∂Î ˚

Since, ( )0 cos ; 0x
x

Ez
E E t

v y
w

∂
= - \ =

∂
, and the above equation reduces to,

0

yx x z
HE H H

j i j k
z t t t

m
∂È ˘∂ ∂ ∂

= - + +Í ˙∂ ∂ ∂ ∂Î ˚

Comparing both sides

Hx = 0; Hz = 0 and,

( ) ( )0
0

0 0 0

1 1
cos sin

y x
H E Ez z

E t t
t z z v v v

w
w w

m m m

∂ ∂ È ˘∂= - = - = - -Í ˙∂ ∂ ∂ Î ˚

\ ( ) ( )0 0

0 0

sin cosy

E Ez z
H t dt t

v v v v

w
w w

m m
= - - = -Ú

So, the magnetic field intensity is given as

( )0

0

cosy

E z
H t

v v
w

m
= -

Now, ( )0 cosx

z
E E t

v
w= -  and ( )0

0

cosy

E z
H t

v v
w

m
= - ; so, the ratio,

7
0

0 0
900 0

4 101
120 377

1
10

36

x

y

E
v

H

m p
m m p

em e
p

-

-

¥
= = = = = =

¥

NOTE

This is known as intrinsic impedance of free space as discussed in Chapter 5.

4.5.1 Time-Harmonic Fields (Sinusoidal Variations of Fields)

Time-harmonic fields are those fields that vary sinusoidally with time. They are easily expressed in 

phasors.
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For any complex number, ( ) jz x jy r re qq= + = – = , if ( )tq w f= +  where, f may be a function of time 

or space or a constant, then,

j j t jre re eq w f=

\ Re( ) cos ( ) and Im( ) sin ( )j jre r t re r tq qw f w f= + = +

Thus, for a sinusoidal current, i(t) = I0 cos(Wt + f), the complex form is Re(I0e
jw te jf). Dropping the time 

factor ejw t, the term I0e
jf is known as the phasor current, denoted by sI .

\ 0 0
j

sI I e If f= = –

\ 0( ) cos ( ) Re( )j t
si t I t I e ww f= + =

In general, a phasor can be a scalar or a vector. If a vector ( , , , )A x y z t  is a time-harmonic field, the 

phasor form of A  is ( , , )A x y z ; the relation being

Re[ ]j tA Ae w=

\ ( , , , ) Re[ ( , , ) ]j tA x y z t A x y z e w=

and
A A

j A Adt
t j

w
w

∂ Æ Æ
∂ Ú

A general instantaneous vector electric field [ ( , , , )E x y z t ] may be given by

( , , , ) ( , , , ) ( , , , ) ( , , , )x x y y z zE x y z t E x y z t a E x y z t a E x y z t a= + +

Each of the component scalars of the instantaneous vector electric field [Ex, Ey, Ez] may be written in 

terms of the corresponding component phasors [ , , ]x y zE E E .

( )
0 0 0

( )
0 0 0

0

( , , , ) ( , , ) cos ( ) Re ( , , ) Re ( ( , , ) )

( , , , ) ( , , ) cos ( ) Re ( , , ) Re ( ( , , ) )

( , , , ) ( , , ) cos (

x x

y y

j t j j t
x x x x x

j t j j t
y y y y yz

z z

E x y z t E x y z t E x y z e E x y z e e

E x y z t E x y z t E x y z e E x y z e e

E x y z t E x y z t

w q q w

w q q w

w q

w q

w

+

+

Í ˙ Í ˙= + = =Î ˚ Î ˚
Í ˙ Í ˙= + = =Î ˚ Î ˚

= + ( )
0 0) Re ( , , ) Re ( ( , , ) )z zj t j j t

z z zE x y z e E x y z e ew q q wq +Í ˙ Í ˙= =Î ˚ Î ˚

\ ( , , , ) Re{[ ( , , , ) ( , , , ) ( , , , ) ] }

Re[ ( , , , ) ]

j t
x x y y z z

j t

E x y z t E x y z a E x y z a E x y z a e

E x y z e

w

w

w w w

w

= + +

=

This must be noted that ( , , )E x y z  is a vector phasor defined by three complex vector-components 

which are each defined by a magnitude and a phase.

4.5.2 Maxwell’s Equations for Time-Harmonic Fields

To transform the instantaneous Maxwell’s equations into time-harmonic forms, we replace all sources 

and field quantities by their phasor equivalents and replace all time-derivatives of quantities with jw
times the phasor equivalent. Thus, the Maxwell’s equations for time-harmonic fields are given in Table 

4.2.
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Table 4.2 Maxwell’s Equations for Time-Harmonic Fields

Sl. No. Differential Form  Integral Form Name

1 . vD r— = v
S v

D d s dv Qr◊ = =Ú Ú Gauss’ law of Electrostatic

2 0B— ◊ = 0
S

B d s◊ =Ú Gauss’ law of Magnetostatic (non-

existence of magnetic mono-pole)

3 E j Bw— ¥ = -
l S

E d l j B d sw◊ = - ◊Ú Ú Faraday’s law of electromagnetic 

induction

4 H J j Dw— ¥ = + ( )
l S

H d l J j D d sw◊ = + ◊Ú Ú Modified Ampere’s circuital law

Example 4.19 The instantaneous magnetic field is 2 cos ( 3 ) A/mzH t y aw= -  in a medium 

characterized by s = 0, m = 2m0, e = 5e0. Calculate w and E . Assume a source-free region.

Solution Here, the phasor form of the magnetic field is obtained as follows.

3Re[ ] Re[2 ] 2 cos ( 3 )j t j y j t
z zH He e a e t y aw w w-= = = -

\ 32 j y
z z zH e a H a-= =

The phasor electric and magnetic fields are related by the time-harmonic Maxwell’s equations in a 

source-free region ( 0J = , r = 0). E  and H  must satisfy all four equations:

1. E j Hwm— ¥ = -
2. H j Ewe— ¥ =
3. 0E— ◊ =
4. . 0H— =

From Eq. (4), 0zH
H

z

∂
— ◊ = =

∂
From Eq. (2),

0

3 3

0 0

3

0

1 1

5

1 2
(2 ) ( 3 )

5 5

6/5
(V/m)

z z
x y

j y j y
x x

j y
x

x x

H H
E H a a

j j y x

e a j e a
j y j

e a

E a

we w e

w e w e

we

- -

-

Ê ˆ∂ ∂
= — ¥ = -Á ˜∂ ∂Ë ¯

∂= = -
∂

-
=

=

From Eq. (3), 0xE
E

x

∂
— ◊ = =

∂
From Eq. (1),

j H Ewm- = — ¥
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or, 3
02 2 j y x x x

z y z z

E E E
j e a a a a

z y y
w m - ∂ ∂ ∂

- = - = -
∂ ∂ ∂

or, 3 3 3 3
0

0 0 0

6/5 6/5 18
4 ( 3 )

5
j y j y j y j y

z z z zj e a e a j e a je a
y

w m
we we we

- - - --Ê ˆ∂- = - = - = -Á ˜∂ Ë ¯
Equating both sides, we get

0
0

18
4

5
w m

we
=

fi 8 8

0 0 0 0

9 9 1 9
0.95 3 10 2.846 10 rad/s

10 10 10
cw

m e m e
= = ¥ = ¥ = ¥ ¥ = ¥

The frequency, 
82.846 10

45.3 GHz
2 2

f
w
p p

¥
= = =

The phasor electric field is given as

3 3 3
8 12

0

6/5 6/5
476.2 (V/m)

2.846 10 8.854 10

j y j y j yE e e e
we

- - -
-

- -
= = = -

¥ ¥ ¥
Thus, the electric field is

3Re[ ] Re[ 476.2 ] 476.2 cos ( 3 ) (V/m)j t j y j t
x xE Ee e e a t y aw w w-= = - = - -

Example 4.20 (a) In free space, sin ( )m xD D t z aw b= + . Using Maxwell’s equations, show 

that

0 sin ( )m
y

D
B t z a

wm
w b

b
= - +

(b) In free space, ( )j t z
m yB B e aw b+= . Using Maxwell’s equations, show that

( )j t zm
x

B
E e aw bw

b
+= -

Solution (a) By Maxwell’s equation,

0
0

and or,  for free space.
B D

E D E E
t

e
e

∂— ¥ = - = =
∂

\
0 0

0

[sin ( )] cos ( )

sin ( ) 0 0

x y z

m m
y y

m

a a a

D DB
E t z a t z a

t x y z z

D
t z

b
w b w b

e e

w b
e

∂ ∂ ∂ ∂ ∂- = — ¥ = = + = +
∂ ∂ ∂ ∂ ∂

+

or,
0 0

cos ( ) sin ( )m m
y y

D D
B t z a dt t z a

b b
w b w b

e we
= - + = - +Ú

Also, for free space
2

0
00 0

1 1
v c

w w
m

b e bm e

Ê ˆ= = = fi = Á ˜Ë ¯
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\
2

0
0

0

sin ( ) sin ( ) sin ( )m m m
y y y

D D D
B t z a t z a t z a

b b wmw
w b m w b w b

we w b b
Ê ˆ= - + = - ¥ + = - +Á ˜Ë ¯

\ 0 sin ( )m
y

D
B t z a

wm
w b

b
= - +

(b) By Maxwell’s equation

( )j t z
m y

B
E B e a

t t
w b+∂ ∂— ¥ = - = -

∂ ∂

or
( )

x y z

j t z
m y

x y z

a a a

B j e a
x y z

E E E

w bw +∂ ∂ ∂ = -
∂ ∂ ∂

Comparing both sides, we get

( )j t zx z
y m y

E E
a B j e a

z x
w bw +∂ ∂Ê ˆ- = -Ë ¯∂ ∂

or, ( ) ( is not a function of )j t zx
m z

E
B j e E x

z
w bw +∂

= -
∂

or, ( ) ( ) ( )1j t z j t z j t zm
x m m

B
E B j e dz B j e e

j
w b w b w bw

w w
b b

+ + += - = - = -Ú

\ ( )j t zm
x

B
E e aw bw

b
+= -

Example 4.21 Starting from Maxwell’s equations, establish Coulomb’s law.

Solution We will consider a spherical surface of radius r, centered at a point charge Q. Applying 

Maxwell equation (Gauss’ law) in integral form, we have

S

Q
E dS

e
◊ =Ú

By the assumption of spherical symmetry, the integrand is a constant and can be taken out of the 

integral as

24 r

Q
r a Ep

e
=

where ra  is a unit vector pointing radially away from the charge. Again by spherical symmetry, E  is 

also in radially outward direction, and so we get

24
r

Q
E a

rpe
=

If another point charge q is placed on the surface, the force on that charge due to the charge Q is given 

as
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24
r

Qq
F qE a

rpe
= =

This is essentially equivalent to Coulomb’s law.

Example 4.22 Show that the equation continuity 0J
t

r∂
— ◊ + =

∂
 is contained in Maxwell’s 

equations.

Solution By Maxwell’s equation (modified Ampere’s law),

D
H J

t

∂— ¥ = +
∂

Taking divergence on both sides,

( ) 0
D

H J
t

Ê ˆ∂— ◊ — ¥ = — ◊ + =Á ˜Ë ¯∂

\ 0
D

J
t

∂— ◊ + — ◊ =
∂

or, ( ) 0J D
t

∂— ◊ + — ◊ =
∂

By Maxwell’s equation, D ◊ =D P

\ 0J
t

r∂
— ◊ + =

∂

Example 4.23 Starting from Maxwell’s equation

and
B D

E H J
t t

∂ ∂— ¥ = - — ¥ = +
∂ ∂

Show that 0B— ◊ =  and D r— ◊ = .

Solution B
E

t

∂— ¥ = -
∂

Taking divergence on both sides, we get

( ) 0
B

E
t

Ê ˆ∂— ◊ — ¥ = = -— ◊ Á ˜Ë ¯∂

\ 0 ( ) 0 constant
B

B B
t t

Ê ˆ∂ ∂— ◊ = fi — ◊ = fi — ◊ =Á ˜Ë ¯∂ ∂
As an isolated magnetic monopole does not exist, we have

0B— ◊ =

D
H J

t

∂— ¥ = +
∂

Taking divergence on both sides, we get

( ) 0
D

H J
t

Ê ˆ∂— ◊ — ¥ = = — ◊ +Á ˜Ë ¯∂
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\ 0
D D

J J
t t

Ê ˆ Ê ˆ∂ ∂— ◊ + = fi — ◊ = -— ◊Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂

Again by continuity equation we know

0J
t

r∂
— ◊ + =

∂

( )
D

D D
t t t

r
r

Ê ˆ∂ ∂ ∂- = -— ◊ = - — ◊ fi — ◊ =Á ˜Ë ¯∂ ∂ ∂

D r— ◊ =

4.6 TIME-VARYING POTENTIALS FOR EM FIELDS

Maxwell’s equations define electromagnetic fields in terms of field quantities ( , , , )E H D B  and sources 

( , )J D . However, complicated integrations have to be performed for solving Maxwell’s equations 

directly for the electric and magnetic fields. The integration required to determine the fields can be 

simplified through the use of potentials (magnetic vector potential A, electric scalar potential V). This 

is depicted in Fig. 4.14.

Fig. 4.14 Integration required to determine EM fields

In Chapter 2 and Chapter 3, we have learned that electrostatic fields can be determined using the electric 

scalar potential while magnetostatic fields can be determined using the magnetic vector potential.

We have, for static fields,

Electric potential 
4

v

dv
V

r

r
pe

= Ú

Magnetic vector potential 
4

v

Jdv
A

r

m
p

= Ú

We will find these expressions for time-varying fields.

We start with Gauss’ law for magnetic field, which is same for static and dynamic fields.

0B B A— ◊ = fi = — ¥ (4.18)
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By Faraday’s law,

( ) (by Eq. (4.16))
B

E A
t t

∂ ∂— ¥ = - = - — ¥
∂ ∂

fi 0
A

E
t

Ê ˆ∂— ¥ + - =Á ˜∂Ë ¯
(4.19)

Since the curl of the gradient of a scalar field is zero, we can write from Eq. (4.19),

A
E V

t

Ê ˆ∂+ = -—Á ˜Ë ¯∂

\ A
E V

t

∂= -— -
∂ (4.20)

Thus, we can find the fields B  and E  if the potentials A  and V are known. The potentials at this point 

have been defined using only two of the four Maxwell’s equations and are not completely described 

yet. We take divergence of Eq. (4.20) and apply Gauss’ law, which is valid for time-varying fields.

\ E
r
e

— ◊ =

fi A
V

t

r
e

Ê ˆ∂— ◊ -— - =Á ˜Ë ¯∂

fi 2 ( )V A
t

r
e

∂-— - — ◊ =
∂

fi 2 ( )V A
t

r
e

∂— + — ◊ = -
∂

(4.21)

Taking curl of Eq. (4.18) and applying modified Ampere’s law, we get

[by Eq. (4.18)]
D E A

A B J J J V
t t t t

m m m me m me
Ê ˆÊ ˆ∂ ∂ ∂ ∂— ¥ — ¥ = — ¥ = + = + = + -— -Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂ ∂

fi ( ) 2

2

V A
A J

t t
m me me

∂ ∂— ¥ — ¥ = - — -
∂ ∂

fi ( ) 2
2

2
( . )

V A
A A J

t t
m me me

∂ ∂— — - — = - — -
∂ ∂

(4.22)

To completely describe any vector, both the divergence (lamellar components) and the curl (solenoidal 

components) must be defined. So far we have defined the curl of A , but not the divergence of A . We 

may choose the divergence of A in such a way as to simplify the mathematics.

Let,
V

A
t

me
∂— ◊ = -
∂

(This condition is known as Lorentz gauge condition or Lorentz condition for potentials.)

So, from Eq. (4.21) and (4.22)

2
2

2

V
V

t

r
me

e
∂— - = -
∂

(4.23)
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and

2
2

2

A
A J

t
me m
∂— - = -
∂

(4.24)

Thus, A  is connected with the vector J  and V with the scalar r and both potentials satisfy the same 

form of equations. Such partial differential equations which relate the potentials to the sources have 

the basic form of inhomogeneous wave equations (fundamental equations defining wave behaviour).

For steady state, the time derivatives will be zero, so that the equations for potentials become

2V
r
e

— = -

and

2 A Jm— = -

i.e., the potentials satisfy the Poisson’s equations for time-varying conditions.

For time-harmonic fields, each partial derivative yields a jw factor and the wave equations defining 

the potentials reduce to

2
2

2
[ ] ( )( )[ ] [ ]j j

t
w w w

∂ = = -
∂

2 2

2 2

V V

A A J

r
w me

e
w me m

— + = -

— + = -

4.6.1 Concept of Retarded Potentials

The concept of retarded potential describes the scalar or vector potential for electromagnetic fields 

of a time-varying current or charge distribution. The retardation between cause and effect is thereby 

essential; e.g., the signal takes a finite time, corresponding to the velocity of light, to propagate from 

the source point of the field to the point where an effect is produced or measured.

For static field, in which the charge density r, the current density J , the electric field E  and the 

potential V, and the magnetic field B  and the potential A  are all constant in time (i.e., they are functions 

of x, y, z; but not of t), then electric and magnetic potentials in free space is given by

0

( , , )1
( , , )

4

x y z
V x y z dv

R

r
pe

¢ ¢ ¢
¢= Ú (4.25a)

and,

0 ( , , )
( , , )

4

J x y z
A x y z dv

R

m

p

¢ ¢ ¢
¢= Ú (4.25b)

where, R is the distance between the source point (x¢, y¢, z¢) and the field point (x, y, z) and v¢ is a volume 

element at the point (x¢, y¢, z¢).
For time varying fields, in which, r, J , E , V, B and A are all time varying (i.e., they are functions 

of x, y, z and t), the potentials become

0

( , , , )1
( , , , )

4

x y z t
V x y z t dv

R

r
pe

¢ ¢ ¢ ¢
¢= Ú (4.26a)
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and

0 ( , , , )
( , , , )

4

J x y z t
A x y z t dv

R

m

p

¢ ¢ ¢ ¢
¢= Ú (4.26b)

Thus, if r(x¢, y¢, z¢, t¢) is the charge density at (x¢, y¢, z¢) at time t¢, then Eq. (4.26a) and (4.26b) give the 

potentials at (x, y, z) at some slightly later time t; the time difference being,

( )
R

t t
c

¢- = ,  where, c is the speed of light = 3 ¥ 108 m/s.

So, if the charge density at (x¢, y¢, z¢) changes, the information about this change cannot reach the field 

point instantaneously; it takes a time (R/c) for the information to be transmitted.

\
0

( / )1
( )

4

t R c
V t dv

R

r
pe

- ¢= Ú (4.27a)

and

\ 0 ( / )
( )

4

J t R c
A t dv

R

m

p
- ¢= Ú (4.27b)

The potentials so calculated are called retarded potentials.

Example 4.24 An infinite straight wire carries a current 

given by

0

0 0

0

I t

I t

= £
= >

as shown in Fig. 4.15. Find the retarded potentials at a distance r

from the axis of the wire.

Solution Since the wire is electrically neutral, the charge density, 

r = 0.

Hence, the scalar potential is zero, f = 0.

For simplicity, let the wire carries the current along the z-axis.

The retarded potential is given as

0 0( / ) ( / )
( , ) { }

4 4 z

J t R c I t R c
A r t dv dza Jdv Idz

R R

m m

p p

- -¢ ¢= = =Ú Ú

It can be seen that a given current at a distance z from the origin (O) will contribute only if the distance 

from the observation point (P) is less than ct.

\ 2 2 2 2 2 2 2

2 2 2 2 2 2 2
0

( / ) 0 when or, ( )

when or, ( )

I t R c R c t z c t r

I R c t z c t r

- = ≥ ≥ -
= < < -

\ ( , ) 0 whenA r t r ct= ≥

and

2 2 2 2 2 2

2 2 2

0 0 0 0

2 2 2 2
0

2 2 2
0 0

( , )
4 2

ln ;
2

c t r c t r

z z

c t r

I Idz dz
A r t a a

z r z r

c t r ctI
r ct

r

m m

p p

m

p

- -

- -

= =
+ +

Ê ˆ- +
= <Á ˜Ë ¯

Ú Ú

Fig. 4.15 An infinite straight 

current-carrying wire
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The corresponding retarded electric field is given as

0 0

2 2 2
( , )

2 z

IA c
E r t a

t c t r

m

p
∂ Ê ˆ= - = -
∂ Á ˜-Ë ¯

The corresponding retarded magnetic field is obtained as

0 0

2 2 2
( , )

2
z IA ct

B r t A a a
r c t r

f f

m

f p

∂ Ê ˆ= — ¥ = - =
∂ Á ˜-Ë ¯

NB: As t Æ , from the results, we see that 0E =  and 0 0

2

I
B a

r f

m

p
= , which are the results for static 

fields.

Summary

Faraday’s law states that the emf induced in a closed circuit is proportional to the rate of change of 

the magnetic flux-linkage and the direction of the current flow in the closed circuit is such that it 

opposes the change of the flux.

= - d
V

dt

f

Different forms of Faraday’s law are:

Differential Form:
B

E
t

∂— ¥ = -
∂

Integral Form:
C S

d
E dl B dS

dt
◊ = - ◊Ú Ú

Induced emf for different cases are as follows:

Stationary loop in time varying magnetic field (transformer emf)

∂= - ◊
∂Ú

S

B
V dS

tS

Moving loop in static magnetic field (motional emf)

( )= ◊ = ¥ ◊Ú Úm m
C C

V E dl v B dl

Moving loop in time varying magnetic field (general induction)

( )

transformer

emf

∂= - ◊ + ¥ ◊
∂

≠ ≠
Ê ˆ Ê ˆ
Á ˜ Á ˜Ë ¯ Ë ¯

Ú Ú
S C

B
V dS v B dl

t

motional

emf
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The displacement current density is given as

d

D
J

t

∂=
∂

The modified Ampere’s law for time-varying fields is given by considering displacement current 

density as

D
H J

t

∂— ¥ = +
∂

Maxwell’s equations for time-varying fields are given as follows.

Differential Form  Integral Form 

vD r— ◊ = v

S v

D d s dv Qr◊ = =Ú Ú

0B— ◊ = 0
S

B d s◊ =Ú

B
E

t

∂— ¥ = -
∂ l S

E d l B d s
t

∂◊ = - ◊
∂Ú Ú

D
H J

t

∂— ¥ = +
∂

l S

D
H dl J d s

t

Ê ˆ∂◊ = + ◊Á ˜Ë ¯∂Ú Ú

Time-harmonic fields are those fields that vary sinusoidally with time. They are easily expressed in 

phasors.

The relation between a time-harmonic field vector ( , , , )A x y z t  and its phasor form ( , , )A x y z  is 

given as

Re[ ]j tA Ae w=

Maxwell’s equations for time-harmonic fields are given as follows.

Differential Form Integral Form 

vD r— ◊ = v

S v

D d s dv Qr◊ = =Ú Ú

0B— ◊ = 0
S

B d s◊ =Ú

E j Bw— ¥ = -
l S

E d l j B d sw◊ = - ◊Ú Ú

H J j Dw— ¥ = + ( )
l S

H d l J j D d sw◊ = + ◊Ú Ú

Time-varying electric scalar potential V(x, y, z, t) and magnetic vector potential ( , , , )A x y z t  satisfy 

the inhomogeneous wave equations 
2

2
2

V
V

t

r
me

e

Ê ˆ∂— - = -Á ˜Ë ¯∂
 and 

2
2

2

A
A J

t
me m

Ê ˆ∂— - = -Á ˜Ë ¯∂
, provided

Lorentz gauge condition ( )V
A

t
me
∂— ◊ = -
∂

 is assumed.
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The concept of retarded potential describes the scalar or vector potential for electromagnetic fields 

of a time-varying current or charge distribution. These retarded potentials are given as

0

0

( / ) ( / )1
( ) and ( )

4 4

t R c J t R c
V t dv A t dv

R R

mr
pe p

- -¢ ¢= =Ú Ú

where, R is the distance between the source point (x¢, y¢, z¢) and the field point (x, y, z) and c is the 

speed of light.

Important Formulae
Faraday’s law

= - d
V

dt

f

Integral form of Faraday’s law

C S

d
E dl B dS

dt
◊ = - ◊Ú Ú

Differential form of Faraday’s law B
E

t

∂— ¥ = -
∂

Transformer EMF ∂= - ◊
∂Ú

S

B
V dS

tS

Motional EMF ( )= ¥ ◊Úm
C

V v B dl

EMF induced in Faraday disc generator 21

2
=mV Baw

Modified Ampere’s circuital law D
H J

t

∂— ¥ = +
∂

Inhomogeneous wave equation 2
2

2

V
V

t

r
me

e
∂— - = -
∂

and
2

2
2

A
A J

t
me m
∂— - = -
∂

Exercises

[NOTE: * marked problems are important university problems]

Easy

1. A conductor 1 cm in length is parallel to the z-axis and rotates at radius of 25 cm at 1200 r.p.m. 

Find the induced voltage, if the radial field is given by 0.5 rB a= T. [ 157.08 mV]

2. A square conducting loop with sides 25 cm long is located in a magnetic field of 1 A/m varying 

at a frequency of 5 MHz. The field is perpendicular to the plane of the loop. What voltage will be 

read on a voltmeter connected in series with one side of the loop? [2.54 V]

3. A square loop of wire 25 cm has a voltmeter (of infinite impedance) connected in series with one 

side. Determine the voltage indicated by the meter when the loop is placed in an alternating field, 

the maximum intensity of which is 1 A/m. The plane of the loop is perpendicular to the magnetic 

field, the frequency is 10 MHz. [4.93 V]
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4. A conducting cylinder of radius 7 cm and height 50 cm rotates at 600 r.p.m. in a radial magnetic 

field 0.10 rB a= T. Sliding contacts at the top and bottom are used to connect a voltmeter. 

Calculate the reading of the voltmeter. [ 0.44 V]

*5. A metal disc of radius a is rotated about its axis with a constant angular velocity w in a uniform 

magnetic field B  perpendicular to its plane. Calculate the potential difference between the rim 

and the centre of the disc. 21

2
BawÈ ˘

Í ˙Î ˚
*6. A Faraday disc of 10 cm radius rotates at 500 r.p.m. in a uniform magnetic field of 250 mWb/m2,

the field being perpendicular to the plane of the disc. What is the potential difference between the 

rim and the axis assuming the diameter of the axis being very small? [0.651V]

Medium

7. A straight conductor of 0.2 m lies on the x-axis with one end at origin. The conductor is subjected 

to a magnetic flux density 0.04 yB a=  T and velocity 32.5 sin 10 zv ta=  m/s. Calculate the 

motional electric field intensity and emf induced in the conductor.

  
3 3[ 0.1sin 10 (V/m); 0.2 sin 10 ]xE ta t V= - -

8. A circular loop conductor lies in plane z = 0 and has a radius of 0.1 m and resistance of 5 W.

Given: 30.2 sin 10 zB ta= T. Determine the current in the loop. 31.26 cos 10 (A)xtaÍ ˙-Î ˚
9. Determine the emf developed about the path r = 0.5, z = 0 and at t = 0, if 0.1sin 377 xB t a= .

  [4.71 V]

Hard

10. A square loop of wire (side a) lies on a table near a very 

straight wire which carries a current I. as shown in the 

figure. Find the flux through the loop. If someone pulls the 

loop directly away from the wire at speed v, what emf is 

generated? ( ) 2
0 0ln 1 ,
2 2 ( )

aI a vIa

d d d a

m m

p p

È ˘
+Í ˙+Î ˚

*11. An electric vector E  of an electromagnetic wave in free space is given by

( – / )0 and j t z c
x zE E Ey Ae w= = =

  Find the corresponding magnetic field components in free space.

  
0

0

0y z x yH H H E
e

m

È ˘
= = = -Í ˙

Î ˚

Review Questions

[NOTE: * marked questions are important university questions.]

1. State and explain Faraday’s law of electromagnetic induction.

*2. From the fundamental principle, establish the relation (i) 
B

E
t

∂— ¥ = -
∂

 and (ii) .
D

H J
t

∂— ¥ = +
∂

3. Show that the electric field E  induced by a time-varying magnetic field B is given by the 

expression
B

E
t

∂— ¥ = -
∂

.

Fig. Square loop wire and current 

carrying straight wire
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*4. What are the limitations of Ampere’s current law? How this law can be modified to time-varying 

field?

5. Explain the terms

(i) Motional emf

(ii) Static emf

*6. Justify the statement ‘Most electrical machines are working on electromagnetic principles rather 

than electrostatic principles’.

7. What do you mean by ‘motional emf’? Find an expression for it.

8. (a)   Write the Lorentz gauge condition, and hence derive the inhomogeneous wave equation for 

the scalar and vector potentials.

  (b) What are retarded time and retarded potentials?

*9. ‘Ampere’s law is bound to fail for non-steady currents’. Justify the statement. How did Maxwell 

remove this defect in Ampere’s law?

Or

  Explain how Maxwell modified Ampere’s circuital law for steady currents.

Or

  Show that Ampere’s law for steady currents is not applicable for time-varying currents. Hence, 

explain the concept of displacement current and its intensity.

10. (a)   Define scalar and vector potentials f and A for an electromagnetic field, and show that 

under a gauge transformation of A and f, the electromagnetic field equations are invariant.

  (b)  Show that under suitable conditions A and f satisfy the inhomogeneous equations

2 2
2 2

02 2 2 2
0

1 1
;A J

c t c t

r
m f

e

Ê ˆ Ê ˆ∂ ∂— - = - — - = -Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂

  where the symbols have their usual meanings.

11. (a)   Write down the differential and integral forms of all Maxwell’s equations for time-varying 

fields and discuss their physical significance. Rewrite them in an appropriate way for 

sinusoidal time variations.

Or

  Write down Maxwell’s electromagnetic field equations and explain the physical significance 

of each. Derive them for harmonically varying field.

(b) Write the integral or the large-scale forms of Maxwell’s equations.

(c) Show how Maxwell’s equations in free space imply local conservation of charge (continuity 

equation).

(d) Show that the Maxwell equations 
B

E
t

∂— ¥ = -
∂

 and 0B— ◊ =  are compatible.

(e) State Maxwell’s equation in differential form corresponding to Gauss’ law for electric fields. 

Starting from the Maxwell’s equation in differential form, obtain the Poisson’s equation for 

the general situation in which the permittivity of the medium is not constant and is a function 

of position.

12. State Maxwell’s equations in their general point form and derive their form for harmonically 

varying fields.
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Multiple Choice Questions

1. Maxwell’s equations in differential form from Ampere’s law are obtained from

(a) M. M. F. area (b) Electric potential area

(c) Magnetic flux volume (d) Electric current area.

2. Maxwell’s equations are not completely symmetrical because

(a) isolated magnetic charges do not exist.

(b) it is difficult to get curl of a vector in spherical coordinates.

(c) — ◊ D is always zero.

(d) — ¥ H does not exist in free space.

3. A circular disc of 1 m radius rotates at 150 radians per second anticlockwise on f-r plane with flux 

density B = 10 az tesla. The voltage induced between two stationary brushes connected at the 

centre and at the circumference will be

(a) 0.15 V (b) 0.075 V (c) 1.0 V (d) 0.85 V

4. A conductor 4 m long lies along the y-axis with a current 10.0 A in the ay direction, the force on 

the conductor if the field in the region be B = 0.05ax T is

az N (b) 2.0az N (c) 2.0ay N (d) 2.0ax N

5. A conducting rod of length L revolves about its mid-point at uniform angular speed w in a uniform 

magnetic field B normal to its plane of revolution. The electric potential difference between the 

ends of the rod would be

(a) zero (b) Bw2L/2 (c) –Bw2L/2 (d) 2Bw2L

6. Consider the following statements relating to circular 

disc rotating in a transverse magnetic field B Wb/m2 as 

shown in the figure.

  The emf generated across outer rim A and the centre is 

proportional to

1. angular velocity

2. flux density

3. square of the radius of the disc

  Of these statements

(a) 1, 2 and 3 are correct. (b) 2 and 3 are correct.

(c) 1 and 3 are correct. (d) 1 and 2 are correct.

7. A straight current-carrying conductor and two conducting loops A and B 

are shown in the figure. If the current in the straight wire is decreasing, 

then the induced currents in the two loops A and B will be

(a) clockwise in both A and B.

(b) anticlockwise in both A and B.

(c) anticlockwise in A and clockwise in B.

(d) clockwise in A and anticlockwise in B.

8. A circular loop is rotating about the y-axis as a diameter in a magnetic 

field 0 sin xB B taw=  Wb/m2. The induced emf in the loop is

(a) due to transformer emf only

(b) due to motional emf only

(c) due to a combination of transformer and motional emf

(d) zero.
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9. Consider coils C1, C2, C3, and C4 (shown in the following figures) which are placed in time-

varying field ( )E t  and electric field  produced by the coils C2¢, C3¢, and C4¢ carrying time-varying 

current I(t) respectively:

1. 2.

3. 4.

  The electric field will induce an emf in the coils

(a) C1 and C2 (b) C2 and C3 (c) C1 and C3 (d) C2 and C4

10. Which of the following equations is/are not Maxwell’s equation(s)?

1. J
t

r∂
— ◊ = -

∂
2. D r— ◊ =

3.
B

E
t

∂— ◊ = -
∂

4.
s

E
H dl E d s

t
s e
Ê ˆ∂◊ = + ◊Á ˜Ë ¯∂Ú Ú

  Select the correct answer using the codes given below:

(a) 2 and 4 (b) 1 alone (c) 1 and 3 (d) 1 and 4

11. The laws of electromagnetic induction (Faraday’s and Lenz’s laws) are summarised in the follo-

wing equations:

(a) e = iR (b)
di

e L
dt

=

(c)
d

e
dt

y
= - (d) None of the above.

12. Which one of the following is not a Maxwell’s equation for a static electromagnetic field in a linear 

homogeneous medium?

(a) 0B— ◊ = (b) 2
0A Jm— =

(c) 0B dl Im◊ =Ú (d) D dS Q◊ =Ú
13. A loop is rotating about the y-axis in a magnetic field 0 sin xB B taw=  Wb/m2. The voltage induced 

in the loop is due to

(a) Motional emf

(b) Transformer emf
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(c) A combination of motional and transformer emf

(d) None of these

14. Identify which of the following is not a Maxwell’s equation for time-varying fields:

(a) 0vJ
t

r∂
— ◊ + =

∂
(b) vD r— ◊ =

(c)
B

E
t

∂— ◊ = -
∂

(d) 0B dS◊ =Ú

Answers

1. (a) 2. (a) 3. (b) 4. (a) 5. (a) 6. (a) 7. (d) 8. (c)

9. (c) 10. (c) 11. (c) 12. (b) 13. (c) 14. (c)



This chapter deals with:

■ Basics of electromagnetic waves

■ Concepts of propagation, polarisation, reflection and refraction of electromagnetic waves

5
PROPAGATION, REFLECTION, 

REFRACTION AND POLARISATION OF 
ELECTROMAGNETIC WAVES

5.1 INTRODUCTION

In the previous chapter, we have studied Maxwell’s equations where the existence of an electromagnetic 

wave has been mentioned. In fact, the existence of electromagnetic waves was first observed by Prof. 

Heinrich Hertz and thereafter has been established by several experiments and analysis.

In this chapter, we will discuss the different aspects of electromagnetic wave propagation, reflection, 

refraction and polarisation.

5.2  THREE-DIMENSIONAL WAVE EQUATIONS 
(HELMHOLTZ EQUATION)

Definition of Wave If a physical phenomenon that occurs at one place at a given time is reproduced 

at other places at later times, the time-delay being proportional to the space separation from the first 

location, then the group of phenomena constitutes a wave.

Maxwell’s equations predict the propagation of electromagnetic energy away from time-varying 

sources (current and charge) in the form of waves.

Derivation of Wave Equation

Assumptions

1. We consider the medium to be a linear, homogeneous (i.e., quantities m, e, s are constant 

throughout the medium) and isotropic (i.e., e is a scalar constant so that D  and E  have 

everywhere the same direction).

2. We consider a source-free region of the medium.

Learning Objectives
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By Maxwell’s equations,

D E
H J E

t t
s e

∂ ∂— ¥ = + = +
∂ ∂ (5.1)

Also, from Faraday’s law,

B H
E

t t
m

∂ ∂— ¥ = - = -
∂ ∂

Taking curl on both sides,

( )E H
t

m
∂— ¥ — ¥ = - — ¥
∂

fi 2( ) (by Eq.(5.1))
E

E E E
t t

m s e
È ˘∂ ∂— — ◊ - — = - +Í ˙∂ ∂Î ˚

fi
2

2

2

1
0; as 0

E E
E E D

t t

r
ms me r

e e
Ê ˆ∂ ∂-— = - - — ◊ = — ◊ = = =Ë ¯∂ ∂

Rearranging, we get,

2
2

2
0

E E
E

tt
me ms

∂ ∂— - - =
∂∂

(5.2)

This is the three-dimensional vector wave equation or Helmholtz equation in an absorbing medium or 

lossy dielectric medium.

Similarly, the equation in terms of magnetic field is obtained is follows.

From Eq. (5.1),

D E
H J E

t t
s e

∂ ∂— ¥ = + = +
∂ ∂

Taking curl on both sides,

( )H E E
t

s e
∂— ¥ — ¥ = — ¥ + — ¥
∂

fi 2( )
H H B H

H H E
t t t t t

ms e m m
È ˘ Ê ˆ∂ ∂ ∂ ∂ ∂— — ◊ - — = - + - — ¥ = - = -Á ˜Í ˙ Ë ¯∂ ∂ ∂ ∂ ∂Î ˚

fi
2

2

2

1
0

H H
H H B

t t
ms me

m
∂ ∂ Ê ˆ-— = - - — ◊ = — ◊ =Á ˜∂ Ë ¯∂

Rearranging, we get

2
2

2
0

H H
H

tt
me ms

∂ ∂— - - =
∂∂

(5.3)

This is the Helmholtz equation in terms of magnetic filed.

We will consider the modifications in the wave equations for different cases:

Wave Equation for Perfect Dielectric Medium In this case, the conductivity is zero; i.e. 

s = 0. Hence the wave equations become
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2 2
2 2

2 2
and

E H
E H

t t
me me

∂ ∂— = — =
∂ ∂

(5.4)

Wave Equation for Free Space In this case the wave equations take the forms as

2 2
2 2

0 0 0 02 2
and

E H
E H

t t
m e m e

∂ ∂— = — =
∂ ∂

(5.5)

Note that the quantity 
1

me
 has the dimension of velocity and in free space it becomes

8

70 0
9

1 1
3 10 m/s velocity of light,

1
4 10

36 10

c
m e

p
p

-
= = ¥ =

¥ ¥
¥

So, the electromagnetic wave propagates through free space with the velocity of light. In a homogeneous 

medium of permittivity e and permeability m, the wave propagates with a velocity, 
1=v
me

Wave Equation for Time-Harmonic Fields For time-harmonic fields, the instantaneous 

(time-domain) vector F is related to the phasor (frequency-domain) vector Fs by

2

2
( )

∂ ∂¤ ¤ ¤
∂ ∂S s S

F F
F j j

t t
w w 2F F F

Using these relationships, the instantaneous vector wave equations are transformed into the phasor 

vector wave equations:

2 2( ) ( ) ( )— = + = +S S S Sj j j jms w me w wm s weE E E E

and

2 2( ) ( ) ( )— = + = +S S S Sj j j jms w me w wm s weH H H H

If we let, 2 2( ) ( )+ = - =j j jwm s we wms w me g , then the wave equations become

2 2 2 20 and 0— - = — - =S S S Sg gE E H H (5.6)

Propagation constant (g ): The complex constant g is defined as the propagation constant.

( ) ( )= + = +j j jg wm s we a b (5.7)

Attenuation constant (a): The real part of the propagation constant is defined as the attenuation

constant (a). The attenuation constant defines the rate at which the fields of the wave are attenuated as 

the wave propagates. Its unit is Neper per metre.

Phase constant (b): The imaginary part of the propagation constant is defined as the phase constant 

(b ). The phase constant defines the rate at which the phase changes as the wave propagates. Its unit is 

radian per metre.
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g—propagation contstant (m–1)

a—attenuation constant (Neper/m)

b—phase constant (radian/m)

From Eq. (5.7),

2 2 2- = -a b w me (5.8a)

and

2 =ab wms (5.8b)

\ 2 2 2 2 2 2 2 2 2( ) (2 )+ = - + = +a b a b ab wm w e s (5.8c)

Solving Eq. (5.8a) and (5.8c), we get

2
2

2 2 2 2 22

2 2
1 1

2 2 2

+ - È ˘+ -
= = = + -Í ˙

Í ˙Î ˚

s
m e me

wm w e s w me me sw
a w w

w e

and

2
2

2 2 2 2 22

2 2
1 1

2 2 2

+ + È ˘+ +
= = = + +Í ˙

Í ˙Î ˚

s
m e me

wm w e s w me me sw
b w w

w e

2 2

1 1 and 1 1
2 2

È ˘ È ˘Ê ˆ Ê ˆÍ ˙ Í ˙= + - = + +Á ˜ Á ˜Ë ¯ Ë ¯Í ˙ Í ˙Î ˚ Î ˚

me mes s
a w b w

we we
(5.9)

Example 5.1 Prove that the one-dimensional wave equation for an electromagnetic wave 

propagating in the +z-direction is given by

2 2

2 2 2

1∂ ∂
=

∂ ∂
x xE E

z v t

where v is the speed of propagation.

Solution We will consider a wave propagating in the +z-direction. The electric field component is 

Ex(z, t).

Let, ( ) 1 and
z z

z z vt v
z t

¢ ¢∂ ∂¢ = ± \ = = ±
∂ ∂

Using the chain rule, the first two partial derivatives with respect to z are

( )¢∂ ∂ ∂¢∂= =
¢ ¢∂ ∂∂ ∂

x x xE z E Ez

z zz z

2 2 2

2 2 2

∂ ∂ ∂ ∂Ê ˆ ¢∂ ∂= = =Á ˜¢∂ ∂∂Ë ¯ ¢ ¢∂ ∂ ∂
x x x xE E E Ez

z zzz z z
(i)
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Similarly, the partial derivatives with respect to t are given by

∂ ∂ ∂¢∂= = ±
¢ ¢∂ ∂∂ ∂

x x xE E Ez
v

t tz z

2 2 2
2

2 2 2

∂ ∂ ∂ ∂Ê ˆ ¢∂ ∂= ± = ± =Á ˜¢∂ ∂∂Ë ¯ ¢ ¢∂ ∂ ∂
x x x xE E E Ez

v v v
t tzt z z

(ii)

Comparing (i) and (ii), we get

2 2

2 2 2

1∂ ∂
=

∂ ∂
x xE E

z v t
(5.10)

This is the one-dimensional wave equation.

NOTE

Example 5.2 Verify that Ey = f1(x – v0t) is a solution of 

2 2

2 2

∂ ∂
=

∂ ∂
y yE E

x t
me .

Solution Given: Ey = f1(x – v0t)

\
2 2

1 0 1 0

2 2

( ) ( )
;

∂ ∂∂ - ∂ -
= =

∂ ∂ ∂ ∂
y yE Ef x v t f x v t

x x x x
(i)

\
2 2

1 0 1 02
0 02 2

( ) ( )
;

∂ ∂∂ - ∂ -
= - =

∂ ∂ ∂ ∂
y yE Ef x v t f x v t

v v
t t t t

(ii)

From (i) and (ii), we get,

2 2 2

2
02 2 2

1∂ ∂ ∂
= =

∂ ∂ ∂
y y yE E E

v
t x xme

\

2 2

2 2

∂ ∂
=

∂ ∂
y yE E

x t
me

Example 5.3 Show that the function { }sin ( )-= -zF e x vt
v

a w
 satisfies the wave equation 

2

2

1Ê ˆ— = Á ˜Ë ¯
F F

c
 provided that the wave velocity is given by, 

1/2
2 2

2
1

-
Ê ˆ

= +Á ˜Ë ¯
c

v c
a

w
.

Solution Given, { }sin ( )-= -zF e x vt
v

a w
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{ } { }

2 2 2
2

2 2 2

2
2

2
2

2

sin ( ) 0 ( ) sin ( )z z

F F F
F

x y z

e x vt e x vt
v v v

F
v

a aw w w
a

w
a

- -

Ê ˆ∂ ∂ ∂\ — = + +Á ˜∂ ∂ ∂Ë ¯

Ê ˆ= - - + + - -Á ˜Ë ¯

È ˘
= - +Í ˙

Î ˚

According to the given condition

{ }

2
2

2 2 2

2 2
2 2

2 2 2

2 2
2

2 2

1
2 2 2 2 2

2 2

2 2 2 2 2 2

2

1 1

1
or, ( ) sin ( )

or,

or, 1

1

z

F
F F

c c t

F e x vt F
vv c c

v c

c c c
v c

c c

aw w w
a w

w w
a

w a

w a a w

w

-

-

∂Ê ˆ Ê ˆ— = =Á ˜ Á ˜Ë ¯ Ë ¯ ∂

È ˘ Ê ˆ- + = - - = -Á ˜Í ˙ Ë ¯Î ˚

Ê ˆ
- = -Á ˜Ë ¯

È ˘
= = = +Í ˙+ Î ˚+

1/ 2
2 2

2
1

-
È ˘

\ = +Í ˙
Î ˚

c
v c

a

w

5.3 PROPERTIES OF ELECTROMAGNETIC WAVES

In a source-free region, the phasor vector wave equations are

2 2 0— - =S SgE E and 2 2 0— - =S SgH H

The operator in the above equations (—2) is the vector Laplacian operator. In rectangular coordinates, 

the vector Laplacian operator is given as below.

= + +x x y y z zF F a F a F a

2 2 2 2( ) ( ) ( )— = — + — + —x x y y z zF F a F a F a

The phasor wave equations can then be written as

2 2 2 2

2 2 2 2

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

— + — + — = + +

— + — + — = + +
xs x ys y zs z xs x ys y zs z

xs x ys y zs z xs x ys y zs z

E a E a E a E a E a E a

H a H a H a H a H a H a

g

g

By equating the vector components on both sides of each phasor wave equation, individual wave 

equations for the phasor field components [(Exs, Eys, Ezs) and (Hxs, Hys, Hzs)] can be obtained.
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2 2 2
2

2 2 2

2 2 2

2

2 2 2

2 2 2
2

2 2 2

2 2 2
2

2 2 2

2 2 2

2

2 2 2

2 2 2
2

2 2 2

∂ ∂ ∂
+ + =

∂ ∂ ∂
∂ ∂ ∂

+ + =
∂ ∂ ∂

∂ ∂ ∂
+ + =

∂ ∂ ∂
∂ ∂ ∂

+ + =
∂ ∂ ∂

∂ ∂ ∂
+ + =

∂ ∂ ∂
∂ ∂ ∂

+ + =
∂ ∂ ∂

xs xs xs
xs

ys ys ys

ys

zs zs zs
zs

xs xs xs
xs

ys ys ys

ys

zs zs zs
zs

E E E
E

x y z

E E E
E

x y z

E E E
E

x y z

H H H
H

x y z

H H H
H

x y z

H H H
H

x y z

g

g

g

g

g

g

The component fields of any time-harmonic electromagnetic wave (described in rectangular coordinates) 

must individually satisfy these six partial differential equations. In many cases, the electromagnetic 

wave will not contain all six components. An example of this is the plane wave, discussed in the next 

section.

5.3.1 Plane Waves

A wave is said to be a plane wave, if:

1. The electric field E  and magnetic field H  lie in a plane perpendicular to the direction of wave 

propagation.

2.  The fields E  and H  are perpendicular to each other.

5.3.2 Uniform Plane Waves

A plane wave is said to be uniform plane wave if in addition to condition (1) and (2) above,

3. E  and H  are uniform in the plane perpendicular to the direction of propagation (i.e. E  and H

vary only in the direction of propagation).

Figure 5.1 shows the propagation of a uniform plane wave.

Fig. 5.1 Propagation of uniform plane wave
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5.3.3 Transverse Electromagnetic (TEM) Wave

An electromagnetic wave which has no electric or magnetic field components in the direction of 

propagation (all components of E and H are perpendicular to the direction of propagation) is called a 

transverse electromagnetic (TEM) wave. All plane waves are TEM waves.

5.3.4 Solution of Wave Equation for Uniform Plane Wave

We consider the propagation of a uniform time-

harmonic plane wave as shown in Fig. 5.2. 

The uniform plane wave for this example 

has only a z-component of electric field and 

an x-component of magnetic field, which are 

both functions of only y. The polarisation of

a plane wave is defined by the direction of 

the electric field (this example is a z-polarised

plane wave). For this uniform plane wave, the 

component wave equations for the only two 

field components (Ezs, Hxs) can be simplified 

significantly given the field dependence on y

only.

( )

( )

=
=

S ZS z

S XS x

E y a

H y a

E

H

2 2 2
2

2 2 2

2 2 2
2

2 2 2

∂ ∂ ∂
+ + =

∂ ∂ ∂
∂ ∂ ∂

+ + =
∂ ∂ ∂

ZS ZS ZS
ZS

XS XS XS
XS

E E E
E

x y z

H H H
H

x y z

g

g

The remaining single partial derivative in each component wave equation becomes a pure derivative 

since Ezs and Hxs are functions of y only.

2
2

2
0- =

∂
ZS

ZS

d E
E

y
g (5.11a)

2
2

2
0

∂
- =

∂
XS

XS

H
H

y
g (5.11b)

The general solutions to the reduced wave equations are

1 2
( ) ( )

1 2

1 2

( ) -

+ - +

- -

= +
= +
= +

y y
ZS

j y j y

y j y y j y

E y E e E e

E e E e

E e e E e e

g g

a b a b

a b a b

  

1 2
( ) ( )

1 2

1 2

( ) -

+ - +

- -

= +
= +
= +

y y
XS

j y j y

y j y y j y

H y H e H e

H e H e

H e e H e e

g g

a b a b

a b a b

where (E1, E2) are constants (electric field amplitudes) and (H1, H2) are constants (magnetic field 

amplitudes).

Fig. 5.2 Uniform plane wave
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The characteristics of the waves defined by the general field solutions above can be determined 

by investigating the corresponding instantaneous fields. We may focus on either the electric field or 

the magnetic field since they both have the same wave characteristics (they both satisfy the same 

differential equation).

1 2
( ) ( )

1 2

1 2

( , ) Re{ ( ) }

Re{( ) }

Re{ }

cos( ) cos( )

j t
z ZS

y j y y j y j t
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y y

E y t E y e

E e e E e e e

E e e E e e

E e t y E e t y

w
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a w b a w b

a aw b w b

- -
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-

=
= +
= +
= + + -

1 2

1 2

( , ) cos( ) cos( )

grows in direction decays in direction

decays in direction grows in direction

y y
z

y y

y y

y y

E y t E e t y E e t y

Amplitude E e Amplitude E e

Phase t y Phase t y

a a

a a

a a

a a

w b w b

w b w b

-

-

\ = + + -
Ê ˆ Ê ˆ= =
Á ˜ Á= + = -
Á ˜ Á+ +Á ˜ Á
Á ˜ Á- -Ë ¯ Ë ¯

To locate a
constant constant

point of
constant constant

constant phase
( travelling wave) ( travelling wave)

on the wavey y

t y t y

y t y t

a a

w b w b
b w b w

˜
˜
˜
˜

Ê ˆ¸+ = - = Á ˜Ô= - = - ‹˝ Á ˜
Ô Á ˜- + ˛ Ë ¯

The velocity at which this point of constant phase moves is the velocity of propagation for the wave. 

Solving for the position variable y in the equations defining the point of constant phase gives

1
( constant) ( travelling wave)yy t aw

b
= ± - ±

Given the y-coordinate of the constant phase point as a function of time, the vector velocity v at which 

the constant phase point moves is found by differentiating the position function with respect to time.

( travelling wave)= = ± ±y y y

dy
v a a a

dt

w
b

\ Velocity of wave propagation, v
w
b

=  (m/s) (5.12)

Now, 
2

2= =f
T

p
w p

Given a wave travelling at a velocity v, the wave travels one wavelength (l) during one period (T).

/ 2= = = =v
vT

f f

w b p
l

b

\ 2p
b

l
= (5.13)

Note that for the field to be finite at infinity, it requires, E1 = 0. Hence the electric field can be written as

2 0( , ) cos( ) cos( )- -= - = -y y
z zE y t E e t y a E e t y aa aw b w b

(say, E2 = E0)
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Assuming a +ay travelling uniform plane wave defined by an electric field of 0
-= = y

S ZS z zE a E e agE

the corresponding magnetic field is found from the source-free Maxwell’s equations.

— ¥ = -S SjwmE H

0

0

0

1 1

1
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1
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ZS ZS
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y
x

y
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y
x

XS x

E E
a a

j j y x

E e a
j y

E e a
j

E e a
j

H a

g

g

g

wm wm

wm

g
wm
g

wm

-

-

-

∂ ∂È ˘
\ = - — ¥ = - -Í ˙∂ ∂Î ˚

È ˘∂= - Í ˙∂Î ˚

= - -

=

=

S SH E

Note that the direction of propagation for this wave is in the same direction as E ¥ H (az ¥ ax = ay). This 

characteristic is true for all plane waves.

Example 5.4 The electric field in free space is given by,

850cos(10 )= + yE t x ab  V/m

1. Find the direction of wave propagation.

2. Calculate b and the time it takes to travel a distance l/2.

3. Sketch the wave at t = 0, T/4, T/2.

Solution:

1. From the positive sign in (wt + bx), it is concluded that the wave is propagating in xa-  direction.

2. Here,
8

8

10 1
0.33

33 10
= = = =

¥c

w
b rad/s

As the wave is travelling at the speed of light, c

1 12 2
\ = fi =ct t

c

l l

But,
2

6
p

l p
b

= =

1 8

6 3
31.42

2 3 10
\ = = =

¥
t ns

c

p p

3. At t = 0, Ey = 50 cos bx

At /4=t T , 50cos 50 sin { 2 }
4

Ê ˆ= + = - =Á ˜Ë ¯y

T
E x x T

w
b b w p

At /2=t T , 50 cos 50 cos
2

Ê ˆ= + = -Á ˜Ë ¯y

T
E x x

w
b b

The wave is plotted at t = 0, T/4, T/2 and shown in Fig. 5.3.
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Fig. 5.3 Wave of Example 5.4

5.4 STANDING ELECTROMAGNETIC WAVES

We shall consider the situation where there are two sinusoidal plane electromagnetic waves, one 

travelling in the +x-direction, with the electric and magnetic fields given as

1 10 1 1 1 10 1 1( , ) cos( ), ( , ) cos( )= - = -y zE x t E t x B x t B t xw b w b

and the other travelling in the –x-direction, with the electric and magnetic fields given as

2 20 2 2 2 20 2 2( , ) cos( ), ( , ) cos( )y zE x t E t x B x t B t xw b w b= - + = +
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For simplicity, we assume that these two electromagnetic waves have the same amplitudes i.e. E10 = 

E20 = E0, B10 = B20 = B0 and the same wavelengths, i.e., b1 = b2 = b,w1 = w2 = w. Using the superposition 

principle, the electric and the magnetic fields can be written as

1 2 0( , ) ( , ) ( , ) [cos( ) cos( )]y y yE x t E x t E x t E t x t xw b w b= + = - - +

and

1 2 0( , ) ( , ) ( , ) [cos( ) cos( )]z z zB x t B x t B x t B t x t xw b w b= + = - + +

Using the identities

cos( ) cos cos sin sin± =a b a b a b

The above expressions may be written as

0 0( , ) [cos cos sin sin cos cos sin sin ] 2 sin sin= + - + =yE x t E t x t x t x t x E t xw b w b w b w b w b

(5.14)

and

0 0( , ) [cos cos sin sin cos cos sin sin ] 2 cos cos= + + - =zB x t B t x t x t x t x B t xw b w b w b w b w b

(5.15)

This is observed that the total fields Ey(x, t) and Bz(x, t) still satisfy the wave equation 
2 2

2 2 2

1∂ ∂
=

∂ ∂
x xE E

z v t

, even though they no longer have the form of functions of (wt ± bx). The waves described by Eqs. 

(5.14) and (5.15) are standing waves, which do not propagate, but simply oscillate in space and time.

Spatial Dependence of Standing Wave The spatial dependence of the fields can be observed 

form Eqs. (5.14) and (5.15). From Eq. (5.14), we see that the total electric field is zero at all times if

sin bx = 0

Or

, 0, 1, 2, ...
2 / 2

= = = =n n n
x n

p p l
b p l

The planes that contain these points are called the nodal planes of the electric field.

On the other hand, when

sin 1= ±xb  or, 
1 1 1

, 0, 1, 2, ...
2 2 2 / 2 4

Ê ˆ Ê ˆ Ê ˆ= + = + = + =Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯
n

x n n n
p p

l
b p l

The amplitude of the field is at its maximum 2E0. The planes that contain these points are called the 

anti-nodal planes of the electric field. It is to be noted that in between two nodal planes, there is an 

anti-nodal plane, and vice versa.

Similarly, for the magnetic field, the nodal points must contain points which satisfy the condition 

cos bx = 0

Or

1 1 1
, 0, 1, 2, ...

2 2 2 / 2 4

Ê ˆ Ê ˆ Ê ˆ= + = + = + =Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯
n

x n n n
p p

l
b p l
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and the anti-nodal points for the magnetic field must 

contain the points which satisfy the condition,

cos bx = ±1

Or

, 0, 1, 2, ...
2 / 2

= = = =n n n
x n

p p l
b p l

Thus, we see that the nodal planes of E  corresponds 

to the anti-nodal planes of B  and vice-versa.

Time Dependence of Standing Wave
Regarding the time-dependence, Eq. (5.15) shows that 

the electric field is zero everywhere when 

sin wt = 0

Or

, 0, 1, 2, ...
2 / 2

= = = =n n nT
t n

T

p p
w p

where, T = 1/f = 2p/w is the period. However, this is precisely the maximum condition for the magnetic 

field.

NOTE 

1.

2.

Example 5.5 Intensity of a Standing Wave

Compute the intensity of the standing electromagnetic wave given by

0 0( , ) 2 cos cos , ( , ) 2 sin sin= =y zE x t E t x B x t B t xw b w b

Solution The Poynting vector for the standing wave is

0 0
0 0

0 0

0

0 0

0

1
(2 cos cos ) (2 sin sin )

4
(sin cos sin cos )

(sin 2 sin 2 )

¥
= = ¥

=

=

E H
S E t xj B t xk

E B
t t x x i

E B
t x i

w b w b
m m

w w b b
m

w b
m

The time average of the Poynting vector is

0 0

0

sin 2 sin 2 0= =
E B

S x t ib w
m

Fig. 5.4 Formation of standing electromagnetic 

waves using two perfectly reflecting 

conductors
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The result is to be expected since the standing wave does not propagate. Alternatively, we may say that 

the energy carried by the two waves travelling in the opposite directions to form the standing wave 

exactly cancel each other, with no net energy transfer. 

5.5  PHASE VELOCITY AND GROUP VELOCITY OF 
ELECTROMAGNETIC WAVES

The velocity of a wave can be defined in many different ways, because of the presence of many different 

kinds of waves and different aspects or components of any given wave.

We can define the velocity of a wave in two different ways:

1. Phase velocity, and

2. Group velocity.

1. Phase Velocity

Definition The phase velocity of a wave is the rate at which the phase of the wave propagates in 

space. This is the speed at which the phase of any one frequency component of the wave travels.

Mathematical Equation We will consider the simple case of a pure travelling sinusoidal wave 

moving in the positive x direction with speed v, as illustrated in Fig. 5.5.

Fig. 5.5 Pure travelling sinusoidal wave

This wave can be expressed as

0( , ) cos( )= -f t x F t xw b (5.16)

where, F0 is the maximum amplitude of the function,

w is the angular frequency of the wave (radian per second),

b is the wave number (radian per metre).

It may be noted that the function f(t, x) is the fundamental solution of the one-dimensional wave 

equation given as
22 2

2 2
0

∂ ∂Ê ˆ- =Á ˜Ë ¯∂ ∂
f f

x t

b

w

From Eq. (5.16), for a constant phase point, we can write

( ) constant- =

\ =

t x

dx

dt

w b
w
b
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Since w is the number of radians of the wave that pass a given location per unit time, and 1/b is the 

spatial length of the wave per radian, it follows that = v
w
b

 is the speed at which the shape of the wave 

is moving, i.e., the speed at which any fixed phase of the cycle is displaced. 

Consequently this is called the phase velocity of the wave, denoted by vp:

In terms of the cyclical frequency and wavelength we have, vp = lf.

1\ = = =pv f
w

l
b me

(5.17)

2. Group Velocity

Definition The velocity with which the overall shape of a wave amplitude, known as the modulation 

or envelope of the wave, propagates through a medium is known as the group velocity of the wave. 

Group velocity is the velocity with which the energy propagates; hence it is also known as energy 

velocity.

D\ = =
Dg

d
v

d

w w
b b

(5.18)

Mathematical Equation We consider a plane wave propagating in the positive x-direction given 

as

0( , ) cos( )= -f t x F t xw b

If such a wave is modulated, there result a group of frequencies centered around the carrier frequency 

w. If (w + Dw) and (w – Dw) are two such frequencies of the resulting group, the corresponding values 

of b are (b + Db) and (b – Db). Then the resulting wave consisting of the two superimposed waves is 

given as

0 0( , ) cos[( ) ( ) ] cos[( ) ( ) ]= - D - - D + + D - + Df x t F t x F t xw w b b w w b b

Using trigonometric identity, the two components of this signal can be expressed as

cos[( ) ( )] cos( ) cos( ) sin( )sin( )- ± D - D = - D - D - D - Dx t t x t x t x t x t xb w w b w b w b w b w b

On further simplification,

0( , ) 2 cos( )cos( )= - D - Df x t F t x t xw b w b

This can be somewhat loosely interpreted as a simple sinusoidal wave with the angular velocity w, the 

wave number b, and the modulated amplitude 2F0 cos(Dwt – Dbx). In other words, the amplitude of 

the wave is itself a wave, and the phase velocity of this modulation wave is 
D=
D

v
w
b

. A typical plot 

of such a signal is shown in Fig. 5.6 for the case w = 6 rad/sec, b = 6 rad/metre, Dw = 0.1 rad/sec, 

Db = 0.3 rad/metre.
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Fig. 5.6 Phase and group velocities

The phase velocity of the internal oscillations is 1=w
b

 metre/sec, whereas the amplitude envelope 

wave (indicated by the dotted lines) has a phase velocity of 
D=
D

v
w
b

 = 0.33 metre/sec. This is the phase 

velocity of the amplitude wave, but since each amplitude wave contains a group of internal waves, this 

speed is usually called the group velocity.

Relation between Phase Velocity and Group Velocity We know that the phase velocity is 

given as

0 0

1 1 1= = = = =p

r r r r

c c
v

w
b hme m e m e m e

where, c is the speed of light and h is the refractive index of the medium.

Also, the group velocity is given as

D= =
Dg

d
v

d

w w
b b

\ ( )= = + p

g p p

dvd
v v v

d d
b b

b b

Now, 
2

2 2
,= \ = - = -

d

d

b bp p
b

l l ll

\ = - d
d

l
b b

l

\ = + = -p p

g p p

dv dv
v v v

d d
b l

b l

\ = - p

g p

dv
v v

d
l

l
(5.19)

In another way, = =p

c
v

w
b h
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\
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È ˘Ê ˆ= = = - = -Á ˜ Í ˙Ë ¯ Î ˚
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b bh hw
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(5.20)

From these two relations between phase velocity and group velocity, we can draw the following 

conclusions:

1. For a non-dispersive medium, whose refractive index is constant i.e., 0
Ê ˆ=Á ˜Ë ¯

d

d

h

b
, independent of 

frequency (such as the vacuum), the phase velocity and group velocity are equal.

2. For a dispersive medium, whose refractive index is typically a function of wave number and 

therefore of frequency (such as air, water, glass, etc.), the phase velocity and group velocity are 

not same.

Dispersive media are of two types:

Normally dispersive media: where 
pdv

dl
 is positive and group velocity is less than phase velocity.

Anomalously dispersive media: where 
pdv

dl
 is negative and group velocity is more than phase velocity.

5.6 INTRINSIC IMPEDANCE

Definition The intrinsic impedance of the wave is defined as the ratio of the electric field and 

magnetic field phasors (complex amplitudes).

Mathematical Equation We consider an electric field given as

00, 0, -= = = y
x y zE E E E e g

By Maxwell’s equation
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Hence, the intrinsic impedance is given as

=
+
j

j

wm
h

s we
(5.21)

5.7  PROPAGATION OF UNIFORM PLANE WAVES
THROUGH DIFFERENT MEDIA

We shall consider the wave propagation along the y-direction, so that the electric field E  has only 

z-component, Ez and the magnetic field has only x-component, Hx. Then the solution of wave equations 

gives,

0( , ) cos( )-= -y
z zE y t E e t y aa w b  and, 0( , ) cos( )-= -y

x xH y t H e t y aa w b

where, 0
0 , intrinsic impedance of the medium= =

E
H h

h

We now consider the wave propagation through the following four media:

1. Wave Propagation through Imperfect (Lossy) Dielectric Medium

2. Wave Propagation through Perfect Dielectric Medium

3. Wave Propagation through Free Space

4. Wave Propagation through Conducting Medium (Good Conductors).

5.7.1  Wave Propagation through Imperfect (Lossy)
Dielectric Medium

For lossy dielectric medium, we have the condition, 1<<s
we\ Attenuation constant is 

2 22

2 2 2 2
1 1 1 1

2 2 2 4

È ˘ È ˘Ê ˆÍ ˙= + - = + - =Á ˜ Í ˙Ë ¯Í ˙ Î ˚Î ˚

me me mss s
a w w w

we w e w e

\ 2
=
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a

e

\ Phase constant is 

2 2 2

2 2 2 2
1 1 1 1 1

2 2 2 8

È ˘ È ˘ Ê ˆÊ ˆÍ ˙= + + = + + = +Á ˜ Í ˙ Á ˜Ë ¯ Ë ¯Í ˙ Î ˚Î ˚

me mes s s
b w w w me

we w e w e

\
2

2 2
1

8

Ê ˆ
= +Á ˜Ë ¯

s
b w me

w e
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Here, w me  is the phase shift for a perfect dielectric. The effect of a small amount of loss is to add 

the term 
2

2 28

s
w me

w e
 as a small correction factor.

\ Velocity of wave propagation is

2

2 22

2 2

1 1
1

8
1

8

È ˘
= = = -Í ˙Ê ˆ Î ˚+Á ˜Ë ¯

v
w s
b w emes

me
w e

Here,
1

me
 is the velocity of the wave propagation in a perfect dielectric (when s = 0). The effect of 

a small amount of loss is to reduce slightly the velocity of wave propagation.

\ Intrinsic impedance for the lossy dielectric is

1
1

2
1

j
j

j

j

h

wm m m s
h h q

s we e s e we
we

È ˘
Í ˙ È ˘= = == + = –Í ˙ Í ˙+ Î ˚Í ˙+
Î ˚
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1

1/4
2

/ 1
| | tan
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- Ê ˆ= = Á ˜Ë ¯È ˘Ê ˆ+Í ˙Ë ¯Í ˙Î ˚

h

m e s
h q

we
s
we

Here too, the effect of loss is to add a small reactive component to the intrinsic impedance.

Hence, if the electric field is given as 0 cos( )-= -y
zE E e t y aa w b  the magnetic field will be

0
0 cos( ) cos( )- -= - = - -y y

x x

E
H H e t y a e t y aa a

hw b w b q
h

5.7.2 Wave Propagation through Perfect Dielectric Medium

In this case, s = 0

\ Attenuation constant, a = 0

\ Phase constant =b w me

\ Velocity of wave propagation 
1= =v

w
b me

\ Intrinsic impedance =
m

h
e

If the electric field is given as, 0 cos( )= - zE E t y aw b  and, then the magnetic field will be

0
0 cos( ) cos( )= - = -x x

E
H H t y a t y aw b w b

h
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Thus, we see that for a perfect dielectric medium, the wave propagates without any attenuation and the 

electric and magnetic fields are in phase with each other.

5.7.3 Wave Propagation through Free Space

In this case, s = 0, e = e0, m = m0

\ Attenuation constant, a = 0

\ Phase constant 0 0= =
c

w
b w m e

\ Velocity of wave propagation 8

0 0

1
3 10 m/s, speed of light= = = = ¥v c

w
b m e

This shows that the electromagnetic wave travels with speed of light in the free space. In other words, 

we can say that light is an electromagnetic wave.

\ Intrinsic impedance in free space, 
7

0
0

0
9

4 10
120 377

1

36 10

-¥
= = = ª W

¥

m p
h p

e

p

If the electric field is given as, 0 cos( )= - zE E t y aw b  and, then the magnetic field will be

0
0 cos( ) cos( )= - = -x x

E
H H t y a t y aw b w b

h

5.7.4  Wave Propagation through Conducting Medium
(Good Conductors)

Here, the condition is, s >> we, i.e., 1<<we
s

\ Propagation constant,

( ) 1 45

(cos 45 sin 45 )

1 1

2 2

( )

Ê ˆ= + = + = = – ∞Á ˜Ë ¯

= ∞ + ∞
Ê ˆ

= +Á ˜Ë ¯
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j
j j j j
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j

j
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g wm s we wms wms wms

s

wms

wms

a b

\
2

= =
wms

a b

\ Velocity of wave propagation, 
2= =v

w w
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\ Intrinsic impedance

45

1

= = = = – ∞
+ Ê ˆ+Ë ¯

j j j

j
j

wm wm wm wm
h

s we s swe
s

s

Thus, if the electric field is given as, 0 cos( )-= -y
zE E e t y aa w b  and, then the magnetic field will be

0
0 cos( ) cos( 45 ) ,- -= - = - - ∞y y

x x

E
H H e t y a e t y aa aw b w b

wm
s

i.e., the magnetic field in a good conductor lags behind the electric field by 45°.

Skin Effect

Definition Skin effect is the tendency of an alternating electric current (AC) to distribute itself within 

a conductor in such a way that the current density is the largest near the surface of the conductor, while 

decreasing at greater depths. The electric current is practically confined at the ‘skin’ of the conductor, 

i.e. between the outer suface and a level called the skin depth.

Cause The skin effect is due to opposing eddy currents induced by the time varying magnetic field 

resulting from the alternating current.

Effect The skin effect causes the effective resistance of the conductor to increase with increase in 

frequency, thus reducing the effective cross-section of the conductor. Also, since power loss increases 

as resistance increases, power losses increase with an increase in frequency because of skin effect..

Skin Depth or Depth of Penetration (d)

Definition It is defined as the depth in which the 

magnitude of the wave is attenuated to 37% (e–1) of its 

original value. Variation inside a conductor is shown in 

Fig. 5.7.

Mathematical Equation From the field expression 

for a good conductor, the magnitude is, E = E0e
–ay

At 1
0 0

1
, - -= = = fi =y E E e E e add d

a

So, the general expression for the skin depth is

2

1

1 1
2

=
È ˘Ê ˆÍ ˙+ -Ë ¯Í ˙Î ˚

d

me s
w

we

The phenomenon that the alternating fields and hence currents are confined within a small region of a 

conducting medium inside the surface is known as the skin effect.

For a good conductor, 1>>s
we

, the skin-depth is given by

Fig. 5.7 Variation of electric field inside a 

conductor (skin effect)
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1 2= =d
a wms

Hence, in a good conductor, the depth of penetration decreases with increasing frequency (w). In terms 

of wavelength, l, it is given as

1 1

2

l
d

a b p
= = =

(\ a = b for good conductors)

Hence, the wave gets attenuated even before one-cycle, about 1

6

th of a wavelength.

Surface Impedance (Zs)

Definition The surface impedance is defined as the ratio of the tangential component of the electric 

field to the tangential component of the magnetic field. Also, according to the boundary condition, the 

tangential component of the magnetic field refers to surface current density. Hence, surface impedance 

is given as

t t
S

t S

E E
Z

H K
= =

The surface impedance provides the boundary condition for fields outside the conductor and accounts 

for the dissipation and energy stored inside the conductor.

Mathematical Equation Now, the surface current density KS represents the total conduction 

current per unit width flowing in the thin sheet. If we assume that the conductor is a flat plate with its 

surface at x = 0 plane, the current distribution in the x-direction will be given by

0
xK K e g-=

where, K0 is the current density at the surface.

If the thickness of the conductor is very much greater than the skin depth, so that there is no reflection 

from the back surface of the conductor, then the total conduction current per unit width of the conductor 

is given as

0 0
0

0
0 0

x x
S

K K
K Kdx K e dx eg g

g g
- -È ˘= = = - =Î ˚Ú Ú

However, K0 is the current density at the surface and is given as

K0 = sEt

So, the surface impedance is given as

t
S

S

E
Z

K

g

s
= =

For a good conductor, the propagation constant is given as, jg wms=

So, the surface impedance for a thick conductor is

S

j j
Z

wmsg wm
h

s s s
= = = =
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\ = =S

j
Z

wm
h

s

Thus, we conclude that for a good conductor whose thickness is much greater than the skin depth, the 

surface impedance is equal to the intrinsic impedance of the conductor.

Skin Resistance (Rs)

Definition The real part of this impedance is known as surface resistance or skin resistance,

RS (W/m2), and the imaginary part of this impedance is known as surface reactance or skin reactance,

XS (Siemens/ m2).

Mathematical Equation From the results of intrinsic impedance or surface impedance for a good 

conductor, we can write

45
2 2S

j
Z j

wm wm wm wm
h

s s s s

Ê ˆ
= = = – ∞ = +Á ˜

Ë ¯

\
2

=SR
wm

s
and

2SX
wm

s
=

Now, 
1 1 1

2 2SR
wm wms

s s s d
= = =

\ 1

2
= =SR

wm

sd s

Hence, we see that the surface resistance of a flat conductor at any frequency is equal to the DC 

resistance of thickness d (skin depth) of the same conductor.

Complex Permittivity and Loss Tangent (tan q) For harmonically varying fields,

( ) ( ) 1 cj j j j j
s

s we s we we we
we

È ˘— ¥ = + = + = - =Í ˙Î ˚s s s s s sH E E E E E

where, 1 ( ) complex permittivityc j j
s

e e e e
we

È ˘ ¢ ¢¢= - = - =Í ˙Î ˚

The ratio, 
conduction

displacement

tan
se s

q
wee we

¢¢ = = = =
¢

s

s

E J

E J

The ratio of the imaginary part of the complex permittivity (e≤) to the real part of the complex 

permittivity (e¢) is the ratio of the magnitude of the conduction current density to the magnitude of 

the displacement current density. This ratio is defined as the loss tangent or loss angle of the medium.

The loss tangent gives a measure of how lossy a medium is. 

For a good (lossless or perfect) dielectric medium (s << we), loss tangent is very small.

For a good conducting medium (s >> we), loss tangent is very large.

For a lossy dielectric, loss tangent is of the order of unity.

NOTE

q qh
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Example 5.6 In a medium, 0.05 816 sin(2 10 2 ) (V/m)x
zE e t x a-= ¥ - . Find (a) the propaga-

tion constant, (b) the wavelength, (c) the speed of the wave, and (d) the skin depth.

Solution Here, a = 0.05, b = 2, w = 2 ¥ 108

1. Propagation constant, ( ) (0.05 2) 2.000625 88.568 per metrej jg a b= + = + = – ∞

2. Wavelength, 
2 2

3.142 m
2

p p
l

b
= = =

3. Speed of the wave, 
8

82 10
10 m/s

2
v

w
b

¥
= = =

4. Skin depth, 
1 1

20 m
0.05

d
a

= = =

*Example 5.7 The electric field intensity associated with a plane wave travelling in a perfect 

dielectric medium is given by 

7( , ) 12cos(2 10 0.1 ) V/mxE z t t zp p= ¥ -

Find:

1. Velocity of propagation.

2. Intrinsic impedance.

Solution:

1. Velocity of propagation, 
7

82 10
2 10 m/s

0.1
v

pw
b p

¥
= = = ¥

2. Now,

{ }
0 0

1 1
for perfect dielectric medium, 1= = = = =r

r r r r r

c c
v m

me m m e e m e e

\
8

8

3 10 3

22 10

¥
= = =

¥r

c

v
e

\ Intrinsic impedance, 
0

0

1 2
377 377 251.33

3
r

r r

m mm
h

e e e e
= = = ¥ = ¥ = W

*Example 5.8 The electric field intensity of an electromagnetic wave in free space is given by 

00, 0, cosy z x

z
E E E E t

v
w Ê ˆ= = = -Á ˜Ë ¯

Determine the expression for the components of the magnetic field intensity H . Also, find x

y

E

H
.

Solution: By Maxwell’s equation,

0

∂ ∂— ¥ = - = -
∂ ∂
B H

E
t t

m
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0

0

0

or,

or, 0 0

or,

∂ ∂ ∂
∂ ∂ ∂

∂È ˘∂ ∂
= - + +Í ˙∂ ∂ ∂Î ˚

∂ ∂ ∂
∂ ∂ ∂

∂È ˘∂ ∂
= - + +Í ˙∂ ∂ ∂Î ˚

∂È ˘∂ ∂ ∂ ∂
- = - + +Í ˙∂ ∂ ∂ ∂ ∂Î ˚

yx z
x y z

yx z
x

yx x x z

x y z
HH H

E E E i j k
t t t

i j k

x y z
HH H

E i j k
t t t

i j k

HE E H H
j k i j k

z y t t t

m

m

m

Comparing both sides, we get

Hx = 0, Hz = 0

and

0
0

0 0 0

1 1
cos sin

y x
H E Ez z

E t t
t z z v v v

w
w w

m m m

∂ ∂ È ˘∂ Ê ˆ Ê ˆ= - = - - = - -Á ˜ Á ˜Í ˙Ë ¯ Ë ¯∂ ∂ ∂ Î ˚

\
0 0

0 0

sin cosy

E Ez z
H t dt t

v v v v

w
w w

m m
Ê ˆ Ê ˆ= - - = -Á ˜ Á ˜Ë ¯ Ë ¯Ú

Thus, the components of the magnetic fields are:

0, 0x zH H= = and
0

0

cosy

E z
H t

v v
w

m
Ê ˆ= -Á ˜Ë ¯

So,

7
0

0 0
900 0

4 101
120 377

1
10

36

x

y

E
v

H

m p
m m p

em e
p

-

-

¥
= = ¥ = = = = W

¥

NB: This is known as the intrinsic impedance of free space.

Example 5.9 The electric field intensity associated with a plane wave travelling in a perfect 

dielectric medium having m = m0 is given by

710cos(6 10 0.4 )E t z ip p= ¥ - V/m

Find the phase velocity, the permittivity of the medium and associated magnetic field vector H .

Velocity in free space = 3 ¥ 108 m/s.

Solution Here, w = 6p ¥ 107 rad/s, b = 0.4p

\ Phase velocity, 
7

86 10
1.5 10 m/s

0.4
v

pw
b p

¥
= = = ¥
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Now,
0 0

1 1 1
( 1)r

r r r

c
v m

me m e m e e
= = ¥ = =

\ 

22 8

8

3 10
4

1.5 10
r

c

v
e

Ê ˆ¥Ê ˆ= = =Á ˜ Á ˜Ë ¯ ¥Ë ¯

By Maxwell’s equation,

or 0

yx x x z
HE E H H

j k i j k
z y t t t

m
∂È ˘∂ ∂ ∂ ∂

- = - + +Í ˙∂ ∂ ∂ ∂ ∂Î ˚
Comparing both sides, we get

Hx = 0, Hz = 0

and

0

0or,
yx z

x y z

B H
E

t t

x y z
HH H

E E E i j k
t t t

i j k

m

m

∂ ∂— ¥ = - = -
∂ ∂

∂ ∂ ∂
∂ ∂ ∂

∂È ˘∂ ∂
= - + +Í ˙∂ ∂ ∂Î ˚

0or, 0 0
yx z

x

x y z
HH H

E i j k
t t t

i j k

m

∂ ∂ ∂
∂ ∂ ∂

∂È ˘∂ ∂
= - + +Í ˙∂ ∂ ∂Î ˚

7

0 0

7

0

7

0

1 1
10cos(6 10 0.4 )

1
[ 0.4 10sin(6 10 0.4 )]

4
sin(6 10 0.4 )

y x
H E

t z
t z z

t z

t z

p p
m m

p p p
m

p
p p

m

∂ ∂ ∂ È ˘= - = - ¥ -Î ˚∂ ∂ ∂

= - - ¥ ¥ -

= ¥ -

7

0

7

7
0

7

4
sin(6 10 0.4 )

4 1
cos(6 10 0.4 )

6 10
1

cos(6 10 0.4 )
6

yH t z dt

t z

t z

p
p p

m

p
p p

m p

p p
p

\ = ¥ -

= - ¥ -
¥

= - ¥ -

Ú

Hence, the magnetic field is given as

71
cos(6 10 0.4 ) A/m

6
H t z jp p

p
= - ¥ -
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Example 5.10 The x and y components of a circularly polarised electromagnetic wave in free 

space are

2sin( )xE t zw b= -

2cos( )yE t zw b= -

Find the expression for the displacement current density and draw a neat sketch showing the fields.

Solution Here, the magnitude of the electric field having circular polarisation and components as 

given is

2 2 2 2 2 22 cos ( ) 2 sin ( ) 2x yE E E t z t zw b w b= + = - + - =

The displacement current density is

( )d

D
J E j E

t t
e we

∂ ∂= = =
∂ ∂

\ 2d dJ J j E Ewe we= = =

2dJ Ewe=

The electric field is plotted in the z = 0 plane for different values of wt as shown in Fig. 5.8.

Fig. 5.8 Electric field in z = 0 plane with three conditions: (a) w t = 0 (b) w t = p /4 (c) w t = p /2

Example 5.11 Consider a monochromatic plane wave, where the electric field is given by

( )
0

j t kz
E E e i

w -=

where E0 is an arbitrary constant vector and other symbols have their usual meanings.

1. Show that the electric field vector lies in a direction perpendicular to the propagation.

2. Determine the corresponding magnetic field.

3. Calculate the wave impedance and show that this is equal to the intrinsic impedance of the 

medium.
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Solution Here, ( )
0

j t kzE E e iw -=

By Maxwell’s equation,

0

0

0

or, 0 0

or, ( ( , ))

yx z
x

yx x z
x

B H
E

t t

x y z
HH H

E i j k
t t t

i j k

HE H H
j i j k E f t z

z t t t

m

m

m

∂ ∂— ¥ = - = -
∂ ∂

∂ ∂ ∂
∂ ∂ ∂

∂È ˘∂ ∂
= - + +Í ˙∂ ∂ ∂Î ˚

∂È ˘∂ ∂ ∂
= - + + =Í ˙∂ ∂ ∂ ∂Î ˚

Comparing both sides, we get

Hx = 0, Hz = 0

and

0( ) ( )
0

0 0 0

1 1
[ ]

y x j t kz j t kz
H E E k

E e j e
t z z

w w

m m m
- -∂ ∂ ∂= - = - =

∂ ∂ ∂

\ 0 0 0( ) ( ) ( )

0 0 0

1j t kz j t kz j t kz
y

E k E k E k
H j e dt j e e

j
w w w

m m w m w
- - -= = =Ú

1. Here, the electric field propagates in the x direction and the magnetic field propagates in the y

direction whereas the wave propagates in the z direction. Thus, we can say that the electric field 

vector lie in a direction perpendicular to the propagation.

Since the electric field is directed across unit vector i  and the magnetic field is directed across 

the unit vector j , we conclude that the two fields are perpendicular to each other.

2. The corresponding magnetic field is given as

0 ( )

0

j t kzE k
H e jw

m w
-=

3. The wave impedance is given as

0 0 0
0 0 0

00 0

2 1
120

2 /

fE
f c

kH

m w m p m
h m l m m p

p l em e
= = = = = = = =

This is equal to the intrinsic impedance of the medium.

Example 5.12 In a region containing no charges and currents, the magnetic field is given by

0 sin sinH xB z tb w=

where B0, b and w are constants. Using one of the Maxwell’s curl equations at a time, find the two 

expressions for the associated electric field.
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Solution By Maxwell’s equation,

0

0

0

0 0 0

or, 0 0

or,

or, sin sin sin sin

yx z
x

yx x x z

yx z

D E
H

t t

x y z
EE E

H i j k
t t t

i j k

EH H E E
j k i j k

z y t t t

EE E
B z t j B z t k i j k

z y t t t

e

e

e

b w b w e

∂ ∂— ¥ = =
∂ ∂

∂ ∂ ∂
∂ ∂ ∂

∂È ˘∂ ∂
= + +Í ˙∂ ∂ ∂Î ˚

∂È ˘∂ ∂ ∂ ∂
- = + +Í ˙∂ ∂ ∂ ∂ ∂Î ˚

∂È ˘∂ ∂∂ ∂- = + +È ˘ È ˘ Í ˙Î ˚ Î ˚∂ ∂ ∂ ∂ ∂Î ˚

Comparing both sides, we get

0
0

0 0

1
[ sin sin ] cos sin

yE B
B z t z t

t z

b
b w b w

e e

∂ ∂= =
∂ ∂

(i)

and

0
0

1
[ sin sin ] 0zE
B z t

t y
b w

e

∂ ∂= =
∂ ∂

(ii)

From (i),

0 0

0 0

cos sin cos cosy

B B
E z tdt z t

b b
b w b w

e we
= = -Ú

From (ii),

Ez = constant

Thus, the two expressions for the associated electric field are given by,

0

0

cos cos and constanty z

B
E z t E

b
b w

we
= - =

Example 5.13

1. Determine a, b, g, h, v and d for a damp soil at 1 MHz. Given: er = 12, s = 2 ¥ 10–2 mho/m, mr = 1.

2. Determine the propagation constant g for a material having mr = 1, er = 8 and s = 0.25pS/m, if 

the wave frequency is 1.6 MHz.

3. Find the skin depth d at a frequency of 1.6 MHz in aluminium where s = 38.2MS/m and mr = 1. 

Also, find g and the wave velocity v.

Solution:

1. Here,
2

6 12

2 10
1

2 10 8.854 10 12

s
we p

-

-
¥

= >>
¥ ¥ ¥ ¥

Hence, the material is a good conductor.
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6 7 22 10 4 10 2 10
0.281 per metre

2 2

p pwms
a b

- -¥ ¥ ¥ ¥ ¥
\ = = = =

( ) (0.281 0.281) 0.3974 45 per metrej jg a b\ = + = + = – ∞

6 7

2

2 10 4 10
45 45 19.869 45

2 10

p pwm
h

s

-

-
¥ ¥ ¥

\ = – ∞ = – ∞ = – ∞ W
¥

6
62 10

22.36 10 m/s
0.281

v
pw

b

¥
\ = = = ¥

1 1
3.559 m

0.281
d

a
\ = = =

2. In this case, 
12

6 12

0.25 10
1

2 1.6 10 8.854 10 8

s
we p

-

-
¥

= <<
¥ ¥ ¥ ¥ ¥

Hence, the material is a good dielectric.

12
120.25 10 1

377 16.666 10 0
2 2 8

ms
a

e

-
-¥

\ = = ¥ ¥ = ¥ ª

2

2 2

6 7 12

1
8

2 1.6 10 4 10 8.854 10 8

0.0948 rad/m

s
b w me w me

w e

p p - -

Ê ˆ
\ = + ªÁ ˜Ë ¯

= ¥ ¥ ¥ ¥ ¥ ¥ ¥
=

( ) 0.0948 0.0948 90 per metrej jg a b\ = + = = – ∞

3. Skin depth, 

6 7 6

2 1 1
64.377 m

1.6 10 4 10 38.2 10f
d m

wms p ms p p -= = = =
¥ ¥ ¥ ¥ ¥

6

1 1
15533.579 per metre

64.377 10
a b

d -= = = =
¥

( ) (15533.579 15533.579) 21967.799 45 per metrej jg a b= + = + = – ∞
62 1.6 10

647.185 m/s
15533.579

v
pw

b

¥ ¥
\ = = =

*Example 5.14 A uniform plane wave in a lossy medium has a phase constant of 1.6 rad/s at 

107 Hz and its magnitude is reduced by 60% for every 2 m travelled. Find the skin depth and speed of 

the wave.

Solution Here, b = 1.6 rad/s  f = 107 Hz

Since the reduction in magnitude for travel of x = 2 m is by 60%, we can find the attenuation constant 

as follows.

20.4 2 ln(0.4) 0.916 0.458E Ee a a a- ¥= fi - = = - fi =
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Thus, the skin depth is, 
1 1

2.183
0.458

d
a

= = =  m

Speed of the wave is, 
7

72 102
3.927 10

1.6

f
v

ppw
b b

¥
= = = = ¥  m/s

Example 5.15 Find the depth of penetration of a mega-cycle wave into copper which has 

conductivity s = 5.8 ¥ 107 mho/m and a permeability approximately equal to that of free space.

Solution: Given: s = 5.8 ¥ 107 mho/m, f = 1 MHz, m = m0 = 4p ¥ 10–7 H/m

\ Depth of penetration is 

5

6 7 7

2 1 1
6.602 10 m

1 10 4 10 5.8 10f
d

wms pms p p

-
-

= = = = ¥
¥ ¥ ¥ ¥ ¥ ¥

Example 5.16 A uniform plane wave is specified by 0.12 j zH e i-= A/m. If the velocity of the 

wave is 2 ¥ 108 m/s and the relative permeability is 1.6, find the frequency, relative permittivity, 

wavelength and intrinsic impedance.

Solution Here, b = 0.1, v = 2 ¥ 108 m/s, mr = 1.6

\ Frequency, 
80.1 2 10

3.183 MHz
2 2 2

v
f

bw
p p p

¥ ¥
= = = =

Now, 
1

r r

c
v

me m e
= =

\ Relative permittivity 

22 8

8

3 101 1
1.406

1.62 10
r

r

c

v
e

m

Ê ˆ¥Ê ˆ= ¥ = ¥ =Á ˜ Á ˜Ë ¯ ¥Ë ¯

\ Wavelength 
2 2

20 62.83 m
0.1

p p
l p

b
= = = =

\ Intrinsic impedance 0

0

1.6
120 402.123

1.406
r

r

m mm
h p

e e e
= = = ¥ = W

*Example 5.17 An electric field vector E  of an electromagnetic wave in free space is given by 

this expression Ex = Ez = 0,

z
j t

v
yE Ae

w Ê ˆ-Á ˜Ë ¯=

Using Maxwell’s equation for free space condition determine expressions for the components of the 

magnetic field vector H .

Solution By Maxwell’s equation,

0

B H
E

t t
m

∂ ∂— ¥ = - = -
∂ ∂
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0or,
yx z

x y z

x y z
HH H

E E E i j k
t t t

i j k

m

∂ ∂ ∂
∂ ∂ ∂

∂È ˘∂ ∂
= - + +Í ˙∂ ∂ ∂Î ˚

{ }

0

0

0

or, 0 0

or,

or, ( , )

yx z
y

y y yx z

y yx z
y

x y z
HH H

E i j k
t t t

i j k

E E HH H
i k i j k

z x t t t

E HH H
i i j k E f t z

z t t t

m

m

m

∂ ∂ ∂
∂ ∂ ∂

∂È ˘∂ ∂
= - + +Í ˙∂ ∂ ∂Î ˚

∂ ∂ ∂È ˘∂ ∂
- + = - + +Í ˙∂ ∂ ∂ ∂ ∂Î ˚

∂ ∂È ˘∂ ∂
- = - + + =Í ˙∂ ∂ ∂ ∂Î ˚

Comparing both sides, we get

Hy = 0, Hz = 0

and

0 0 0 0

1 1 1
z z z

j t j t j tyx v v v
EH j Aj

Ae Ae e
t z z v v

w w ww w

m m m m

Ê ˆ Ê ˆ Ê ˆ- - -Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯
È ˘∂∂ -Ê ˆ∂ Í ˙= - = - = - =Á ˜∂ ∂ ∂ Ë ¯Í ˙Î ˚

\
0 0 0

1
z z z

j t j t j t
v v v

x

Aj Aj A
H e dt e e

v v j v

w w ww w

m m w m

Ê ˆ Ê ˆ Ê ˆ- - -Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯= = =Ú

For free space, 

0 0

1
v

m e
=

\ 0

0
0

0 0

1

z z z
j t j t j t

v v v
x

A A
H e A e e

w w we

m h
m

m e

Ê ˆ Ê ˆ Ê ˆ- - -Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯= = =

where, 0

0

m
h

e
=  is the intrinsic impedance of free space.

Thus, the components of the magnetic fields are:

0, 0 and

z
j t

v
x z x

A
H H H e

w

h

Ê ˆ-Á ˜Ë ¯= = \ =
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*Example 5.18 The electric field intensity associated with a planar travelling wave in a dielectric 

medium is given by
7( , ) 10cos(2 10 0.1 )xE z t t zp p= ¥ -

Find the wavelength (l), phase shift constant (b) and velocity of propagation (v).

Solution Phase shift constant, b = 0.1p

Wavelength, 
2

20 m
p

l
b

= =

Velocity of propagation, 
7

82 10
2 10 m/s

0.1
v

pw
b p

¥
= = = ¥

*Example 5.19 A lossy dielectric has an intrinsic impedance of 200–30o W at a particular 

frequency. If at that frequency, the plane wave propagating through the dielectric has the magnetic 

field component

1
10 cos A/m

2
x

yH e t x aa w- Ê ˆ= ¥ -Á ˜Ë ¯

find E  and a. Determine the skin depth and direction of the wave polarisation.

Solution

Here,
0

1
10, , 200 30

2
H b h= = = – ∞

\
0

0
0

200 30 2000 30
E

E
H

h= = – ∞ fi = – ∞

\ 1
Re[2000 30 ] 2000 cos

2 6
x xE e e t xg a p

w- - Ê ˆ= – ∞ = - +Á ˜Ë ¯

Since the wave is propagating in the xa  direction and the magnetic field is having only ya  component, 

the electric field will have only za-  component [\ direction of wave propagation is given by E Ha a¥ ].

Hence, the electric field is given as

1
2000 cos V/m

2 6
x

zE e t x aa p
w- Ê ˆ= - - +Á ˜Ë ¯

Now, we know that

2 2

1 1 and 1 1
2 2

me mes s
a w b w

we we

È ˘ È ˘Ê ˆ Ê ˆÍ ˙ Í ˙= + - = + +Ë ¯ Ë ¯Í ˙ Í ˙Î ˚ Î ˚

\

2

2

1 1

1 1

s
we

a
b

s
we

È ˘Ê ˆÍ ˙+ -Ë ¯Í ˙Î ˚=
È ˘Ê ˆÍ ˙+ +Ë ¯Í ˙Î ˚
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But tan tan 60 3h
s

q
we

= = ∞ =

\
1 3 1

1

31 3 1

a
b

È ˘+ -Î ˚= =
È ˘+ +Î ˚

\ 1 1
0.2887 Np/m

3 2 3
a b= ¥ = =

The skin depth is given as, 
1

2 3 3.464 md
a

= = =

Since the wave has only z-component of the electric field, it is polarised along the z-direction.

Example 5.20 For sea water with s = 5 mho/m and er = 80, m = m0, find the distance a radio 

signal can be transmitted at 25 kcps and 25 Mcps, if the range is taken to be the distance at which 90% 

of the wave amplitude is attenuated.

Solution The wave is attenuated by the factor e–ax. In this case, the wave is attenuated to 90%.

\ 2.302
0.1 ln(0.1)xe x xa a

a
- = fi - = fi =

Also,
2

2 2
1 1

2

me s
a w

w e

Ê ˆ
= + -Á ˜

Ë ¯

Substituting the given values, we have the following results.

For 25 kcps,

7 12 2
3

3 2 12 2

4 10 80 8.854 10 5
2 25 10 1 1

2 (2 25 10 ) (8.854 10 )

0.7025

p
a p

p

- -

-

Ê ˆ¥ ¥ ¥ ¥
= ¥ ¥ + -Á ˜

¥ ¥ ¥Ë ¯
=

2.302
3.278 m

0.7025
x\ = =

For 25 Mcps,

7 12 2
6

6 2 12 2

4 10 80 8.854 10 5
2 25 10 1 1

2 (2 25 10 ) (8.854 10 )

21.969

p
a p

p

- -

-

Ê ˆ¥ ¥ ¥ ¥
= ¥ ¥ + -Á ˜

¥ ¥ ¥Ë ¯
=

21.969 0.105 mx\ = =

Example 5.21 For a uniform plane wave in fresh lake water s = 10–3 mho/m, er = 80, m = m0.

Calculate a, b, h and l for two frequencies 100 MHz and 10 kHz.
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Solution For 100 MHz frequency,

6 12

3

2 100 10 8.854 10 802
445

10

1

f pp ewe
s s
we
s

-

-
¥ ¥ ¥ ¥ ¥

= = =

\ >>

So, the lake water acts as a good dielectric.

73

12

4 1010
0.021 Neper/m

2 2 8.854 10 80

pms
a

e

--

-
¥

\ = = =
¥ ¥

2

2 2

6
6 7 12

6 2 12 2

1
8

10
2 100 10 4 10 8.854 10 80 1

8(2 100 10 ) (8.854 10 80)

18.72 radian/m

s
b w me

w e

p p
p

-
- -

-

Ê ˆ
\ = +Á ˜Ë ¯

Ê ˆ
= ¥ ¥ ¥ ¥ ¥ ¥ +Á ˜¥ ¥ ¥ ¥Ë ¯
ª

0

0

1
120 42.13

80
r

r

m mm
h p

e e e
\ = = = ¥ = W

2 2
0.335 m

18.72

p p
l

b
\ = = =

For 10 kHz frequency,

3 12

3

2 10 10 8.854 10 802
0.0445

10

1

f pp ewe
s s
we
s

-

-
¥ ¥ ¥ ¥ ¥

= = =

\ <<

So, the lake water acts as a good conductor.

3 7 3
32 10 10 4 10 10

2 10 Neper/m
2 2

p pwms
a p

- -
-¥ ¥ ¥ ¥ ¥

\ = = = ¥

32 10 radian/mb a p -\ = = ¥

3 7

3

2 10 10 4 10
45 45 2 2 8.886 45

10

wm p p
h p

s

-

-
¥ ¥ ¥ ¥\ = – ∞= – ∞= = – ∞ W

3

2 2
1000 m

2 10

p p
l

b p -\ = = =
¥

Example 5.22

1. Earth is considered to be a good conductor when 1<<we
s

. Determine the highest frequencies 

for which earth can be considered a good conductor if <<1 means less than 0.1. Assume the 

following constants:
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s = 5 ¥ 10-3mho/m, e = 10e0

Can a be assumed zero at these frequencies?

2. If the earth is considered to be a perfect dielectric for 0.1
s
we

< ; then at what frequencies may 

earth be considered a perfect dielectric? Assume: s = 5 ¥ 10-3mho/m and mr = 1, er = 8. Can a
be assumed zero at these frequencies?

Solution

1. In this case, 0.1
we
s

<

3

12

6

0.1 0.1 5 10

8.854 10 10

5.647 10

s
w

e

w

-

-
¥ ¥\ < <
¥ ¥

\ < ¥

The highest frequency for which earth can be considered a good conductor is
65.647 10

0.899 MHz
2 2

c
cf

w

p p
¥= = =

For a good conductor, 
6 7 35.647 10 4 10 5 10

0.133 Neper/m
2 2

wms p
a

- -¥ ¥ ¥ ¥ ¥= = =

Hence, a cannot be zero.

2. In this case, 0.1
s
we

<

3

12

6

5 10

0.1 0.1 8.854 10 8

705.89 10

s
w

e

w

-

-
¥\ > <

¥ ¥ ¥
\ > ¥

The highest frequency for which earth can be considered a good conductor is
6705.89 10

112.35 MHz
2 2

c
cf

w

p p
¥= = =

For a good dielectric, 
3 7

12

5 10 4 10
0.333 Neper/m

2 2 8.854 10 8

ms p
a

e

- -

-
¥ ¥\ = = =

¥ ¥

Hence, a is independent of frequency and whatever be the higher frequencies, a will be about 

0.333 Np/m.

Example 5.23 For an aluminium wire having a diameter 2.6 mm, 

calculate the ratio of ac to dc resistance at (a) 10 MHz, (b) 2 GHz. This is 

shown in Fig. 5.9

Solution Let l be the length of the wire 

a be radius of the wire 

For DC supply, the current will flow through the wire uniformly. So, the 

DC resistance is,

2DC
DC

l l
R

A a

r r

p
= = Fig. 5.9 Wire of circular 

cross-section
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When the supply is AC, the current flows only through the skin of the wire, so that the AC resistance 

is given as,

2 2 2 2 2 2 2( ) [ ( ) ] [ 2 ]

2

AC
AC

l l l l
R

A a a a a a a a

l

a

r r r r

p p d p d p d d
r

p d

= = = =
- - - - - + -

=

Therefore, the ratio of AC to DC resistance is,

2
AC

DC

R a

R d
=

where, 1 2
d

a wms
= =  is the skin depth.

1

2 2 2
2

AC

DC

R a
a

R
wms

wms

= =

For aluminium, m = m0, s = 3.5 ¥ 107 S/m, so that,

7 71 0.0026
2 4 10 3.5 10 0.00764

22 2

AC

DC

R
f f

R
p p -= ¥ ¥ ¥ ¥ ¥ =

(a) For f = 10 MHz, 60.00764 10 10 24.16AC

DC

R

R
= ¥ =

(b) For f = 2 GHz, 90.00764 2 10 341.67AC

DC

R

R
= ¥ =

Example 5.24 Show that the ratio of very high-frequency resistance to DC resistance of a round 

conductor of radius r0 and material with width of penetration d can be written as

( ) 0

0 2

hfR r

R d
=

Solution Let l be the length of the wire 

r0 be radius of the wire 

For DC supply, the current will flow through the wire uniformly. So, the DC resistance is,

2
0

DC
DC

l l
R

A r

r r

p
= =

When the supply is AC of very high-frequency, the current flows only through the skin of the wire, so 

that the ac resistance is given as

2 2 2 2 2 2 2
0 0 0 0 0 0 0

0

( ) ( ) 2

2

AC
AC

l l l l
R

A r r r r r r r

l

r

r r r r

p p d p d p d d

r

p d

= = = =
È ˘ È ˘- - - - - + -Î ˚ Î ˚

=
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where,
1 2

d
a wms

= =  is the skin depth.

Therefore, the ratio of very high-frequency resistance to DC resistance is

0

2
AC

DC

R r

R d
=

5.8 POLARISATION

The polarisation of a uniform plane wave refers to the time-varying behaviour of the electric field at 

some point in space, i.e., the orientation of the electric field vector at a given instant of time in space.

5.8.1 Classification of Polarisation

A plane electromagnetic wave in which electric field vector vibrates harmonically along a fixed straight 

line perpendicular to the direction of wave propagation without changing its orientation is known as 

plane polarised electromagnetic wave. When two orthogonal plane polarised electromagnetic waves 

are superimposed, then the resultant vector rotates under certain conditions, giving rise to different 

polarisations like, linear, circular and elliptical.

Case (1): When two electric field vectors vibrate along the same axis: We will consider the propaga-

tion of two linearly polarised electromagnetic waves propagating along the same z-axis with electric 

field vectors vibrating along the x-axis.

The associated electric fields can be written as

1 1 1

2 2 2

cos ( )

cos ( )

= - +
= - +

x

x

E E t z

E E t z

w b f

w b f

where, Ex1 and Ex2 are the amplitudes of the waves, w is the phase angle, b is the phase propagation 

constant and f1 and f2 are the phase angles of the two waves respectively.

Hence, the resultant wave can be written as

1 2 1 1 2 2

1 1 1 2 2 2

1 1 2 2 1 1 2 2

cos ( ) cos ( )

[cos ( ) cos sin ( ) sin ] [cos ( ) cos sin ( ) sin ]

( cos cos ) cos ( ) ( sin sin ) sin ( )

cos cos ( ) sin s

= + = - + + - +
= - - - + - - -
= + - - + -

= - -

x x

x x

x x x x

x x

E E E E t z E t z

E t z t z E t z t z

E E t z E E t z

E t z E

w b f w b f

w b f w b f w b f w b f

f f w b f f w b

f w b f 1 1 2 2

1 1 2 2

( cos cos ) cos
in ( )

( sin sin ) sin

+ =Ï ¸- Ì ˝+ =Ó ˛
x x x

x x x

E E E
t z

E E E

f f f
w b

f f f

\ cos ( )= - +xE E t zw b f

This equation represents the resultant of the two waves and is a plane polarised wave vibrating along 

the same axis.

Case (2): When two electric field vectors vibrate perpendicular to each other: We will consider the 

superposition of two plane polarised electromagnetic waves propagating along the z-axis and vibrating 

along x and y axes respectively.
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The associated electric fields can be written as

0

0

cos ( )

cos ( )

-

-
= -
= - +

z
x x x

z
y y y

E E e t z a

E E e t z a

a

a

w b

w b f

where, w is the frequency of the waves, b is the propagation constant, a is the attenuation constant, 

Ex0 and Ey0 are the amplitudes of the x and y oriented electric fields respectively, and f is the phase 

difference between the two fields.

In order to obtain the behaviour of the field with the variation of time at a given point in space, we 

shall consider the point z = 0. Then the two fields become,

0 cos=x x xE E taw (5.22a)

0 cos ( )= +y y yE E t aw f (5.22b)

At any instant of time, the total electric field is the vector sum of the two fields, given as

0 0

02 2 2 2 1
0 0

0

cos cos ( )

cos ( )
cos cos ( ) tan

cos
-

= + = + +
+Ê ˆ

= + + – Á ˜Ë ¯

x y x x y y

y
x y

x

E E E E ta E t a

E t
E t E t

E t

w w f

w f
w w f

w

Thus, both the magnitude and the direction of the resultant electric field change with time. The locus of 

the tip of the resultant field is obtained by eliminating the time parameter.

2

2
0 0

cos sin 1= fi = -x x

x x

E E
t t

E E
w w

From Eq. (5.17b),

2

2
0 0 0

2

2
0 0 0

cos cos sin sin cos 1 sin

cos 1 sin

y x x

y x x

yx x

x y x

E E E
t t

E E E

EE E

E E E

w f w f f f

f f

= - = - -

fi - = -

Squaring both sides,

22 2
2 2

2 2 2
0 00 0 0

22 2
2 2 2

2 2 2
0 00 0 0

cos 2 cos 1 sin

cos sin 2 cos sin

y x yx x

x yx y x

y x yx x

x yx x y

E E EE E

E EE E E

E E EE E

E EE E E

f f j

f f f f

Ê ˆ
fi + - = -Á ˜Ë ¯

fi + + - =

22
2

2 2
0 00 0

2 cos sin
x y yx

x yx y

E E EE

E EE E
f f\ - + = (5.23)

This is the general equation of an ellipse. In general, therefore, the tip of the field vector E  draws an 

ellipse with the variation of time.
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Three cases may appear, for which three different polarisations are represented.

1. Linear polarisation: A linearly polarised wave is one in which the tip of the electric field vector E
traces a straight line as time varies.

Here, Ex and Ey may or may not have the same amplitude, but the phase difference between them 

is zero.

\ 0=f

From Eq. (5.23),

22

2 2
0 00 0

0 0

2 0

0

- + =

Ê ˆ
- =Á ˜Ë ¯

x y yx

x yx y

yx

x y

E E EE

E EE E

EE

E E

\ 0

0 0 0

or
Ê ˆ

= = Á ˜Ë ¯
y yx

y x
x y x

E EE
E E

E E E
(5.24)

This represents a linearly polarised wave. The resultant polarisation vector oscillates along a line 

making an angle, 01

0

tan- Ê ˆ
= Á ˜Ë ¯

y

x

E

E
q .

Depending upon the ratio of Ey0 and Ex0, the slope of the line changes.

(a) If Ex0 = 0, the line becomes vertical and the wave is said to be a vertically polarised wave and the 

wave is said to have vertical polarisation.

(b) If Ey0 = 0, the line becomes horizontal and the wave is said to be a horizontally polarised wave 

and the wave is said to have horizontal polarisation.

(c) If Ex0 = Ey0, the wave is said to be linearly polarised with polarisation angle of 45°.

A plane electromagnetic wave is said to be linearly polarised. The transverse electric field wave is 

accompanied by a magnetic field wave as shown in Fig. 5.10.

Fig. 5.10 Linearly polarised wave

2. Circular polarisation: A circularly polarised wave is one in which the tip of the electric field vector 

E  traces a circle as time varies. 

Here, the amplitudes of the two vectors are equal, i.e. Ex0 = Ey0 = E0, but, their phases differ by p/2,

i.e. f = ±p/2.
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From Eq. (5.23)

22

2 2
0 0

1+ =yx
EE

E E

\
22

2 2 2
02 2

0 0

1 or+ = + =yx
x y

EE
E E E

E E
(5.25)

This is the equation of a circle and thus, the tip of the field vector traces out a circle at frequency w;

such a wave is said to be circularly polarised.

When xE  leads yE  by p/2, i.e. f = –p/2, rotation of the vector is counterclockwise, the wave is said 

to have left- circular polarization or positive helicity.

When xE  lags yE  by p/2, i.e. f = p/2, rotation of the vector is clockwise, the wave is said to have 

right-circular polarisation or negative helicity.

A circularly polarized wave consists of two perpendicular electromagnetic plane waves of equal 

amplitude and 90° difference in phase. The wave shown in Fig. 5.11 is right-circularly polarized.

Fig. 5.11 Circularly polarized wave (a) Circular polarisation, (b) Right circularly polarised wave, 

(c) Left circularly polarised wave

3. Elliptical polarisation: An elliptically polarised wave is one in which the tip of the electric filed 

vector E  traces an ellipse as time varies.

Here, the two fields neither have the same amplitude nor the phase difference is zero or p/2, i.e. 

Ex0 π Ey0 and f π 0 or ±p/2.

Then, from Eq. (5.23), we get an elliptically polarised wave. Similar to a circularly polarised wave, 

the sign of the phase angle f determines the sense of rotation of the field vector.

If f is positive, the wave is said to be left-elliptically polarised.

If f is negative, the wave is said to be right-elliptically polarised.

Figure 5.12 shows an elliptically polarised wave.
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Fig. 5.12 Elliptically polarised wave (a) Elliptical polarisation (b) Right elliptically polarised wave 

(c) Left elliptically polarised wave

5.9  REFLECTION AND REFRACTION OF PLANE
ELECTROMAGNETIC WAVES AT THE INTERFACE
BETWEEN TWO DIELECTRICS

When a plane wave propagating in a homogeneous medium encounters an interface with a different 

medium, a portion of the wave is reflected from the interface while the remainder of the wave is 

transmitted. The proportion of reflection and transmission depends on the constitutive parameters of 

the media, i.e., e, m, s.

We consider the reflection and refraction of a plane wave incident on a single boundary separating two 

different dielectric media. Two types of incidence may occur:

1. Normal Incidence, and

2. Oblique Incidence.

5.9.1 Normal Incidence

When a plane electromagnetic wave is incident normally at the interface between two dielectrics, part 

of the energy is transmitted and part of it is reflected.

Let Ei — Electric field strength of the incident wave striking the interface;

Er — Electric field strength of the reflected wave leaving the interface;

Et — Electric field strength of the transmitted wave propagated into the second dielectric;

Hi, Hr, Ht — corresponding magnetic field strengths;

e1, m1 — permittivity and permeability of the first dielectric;

e2, m2 — permittivity and permeability of the second dielectric
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 \ 1
1

1

=
m

h
e

 = intrinsic impedance of the first dielectric

\ 2
2

2

=
m

h
e

 = intrinsic impedance of the second dielectric

So,

1=i iE Hh
(5.26a)

1= -r rE Hh
(5.26b)

2=t tE Hh
(5.26c)

According to the continuity of the tangential components of E and H,

( )+ =i r tH H H
(5.27a)

( )+ =i r tE E E
(5.27b)

From Eq. (5.27a) and Eq. (5.26c),

fi

2

1 2

( )

1 1
( ) ( )

+ =

- = +

t
i r

i r i r

E
H H

E E E E
n n

h

fi 2 1

2 1

-
=

+
r

i

E

E

h h

h h
(5.28)

Also,

2 1 2

2 1 1 2

2
1 1

+ -Ê ˆ Ê ˆ= = + = + =Á ˜Á ˜ + +Ë ¯Ë ¯
t i r r

i i i

E E E E n

E E E

h h

h h h h
(5.29)

Similarly,

1 2

1 2

-
= - =

+
r r

i i

H E

H E

h h

h h
(5.30)

1 1

2 1 2

2
= =

+
t t

i i

H E n

H E

h

h h h
(5.31)

The reflection coefficient on reflectance is defined as the ratio of reflected wave to incident wave.

Similarly, transmission co-efficient or transmittance is defined as the ratio of transmitted wave to 

incident wave.

So, the reflectances and transmitances for electric and magnetic fields are given as:-

2 1

2 1

1 2

1 2

Reflectance, ; for electric field

; for magnetic field

-
G =

+
-

=
+

h h

h h

h h

h h
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2

1 2

1

1 2

2
Transmittance, ; for electric field

2
; for magnetic field

=
+

=
+

h
t

h h

h

h h

For non-magnetic dielectrics, m1 = m2 = m0

Thus,

0 0

2 1 1 2

0 0 1 2

2 1

- -
= =

+
+

r

i

E

E

m m
e e e e

m m e e
e e

(5.32)

1

1 2

2
=

+
t

i

E

E

e

e e
(5.33)

2 1

2 1

-
=

+
r

i

H

H

e e

e e

(5.34)

and 2

1 2

2
=

+
t

i

H

H

e

e e

(5.35)

So, the reflectances and transmittances for non-magnetic dielectrics are

1 2

1 2

2 1

2 1

Reflectance, ; for electric field

; for magnetic field

-
G =

+

-
=

+

e e

e e

e e

e e

1

1 2

2

1 2

2
Transmittance, ; for electric field

2
; for magnetic field

=
+

=
+

e
t

e e

e

e e

NOTE

(i) G t
(ii) G ) = t

(iii)  £ |G | £
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Example 5.25 An electromagnetic wave impinges on a metallic sheet. Compare the reflection 

coefficients for copper and iron if 

7

6

0

0

5.8 10 mho/m for copper,

1 10 mho/m for iron,

for copper,

1000 for iron,

1 for copper and iron.

= ¥
= ¥
=
=
=

r

r

s

m m

m

e

Take frequency to be 1 megacycle.

Solution Reflection coefficient, 2 1

2 1

-
G =

+
h h

h h

where, h1 is the intrinsic impedance of air and h2 is the intrinsic impedance of metal

For copper:

6 7

2 7 6 12

4

4 4

2 10 4 10

5.8 10 2 10 8.854 10

3.68961 10 45

(2.608951 10 2.60895 10 )

-

-

-

- -

¥ ¥ ¥ ¥
= =

+ ¥ + ¥ ¥ ¥ ¥
= ¥ – ∞
= ¥ + ¥

jj

j j

j

p pwm
h

s we p

Hence, reflection coefficient for copper is

4

copper 4

3.69 10 45 377 0
1, almost perfect reflector

3.69 10 45 377 0

-

-
¥ – ∞ - – ∞

G = ª
¥ – ∞ + – ∞

For iron:

6 7

2 6 6 12

2 10 4 1000 10

1 10 2 10 8.854 10

0.0889 45

-

-
¥ ¥ ¥ ¥ ¥

= =
+ ¥ + ¥ ¥ ¥ ¥

= – ∞

jj

j j

p pwm
h

s we p

Hence, reflection coefficient for iron is

iron

0.0889 45 377 0
0.99, very good reflector

0.0889 45 377 0

– ∞ - – ∞
G = ª

– ∞ + – ∞

*Example 5.26 E  and H  waves travelling in free space, are normally incident on the interface 

with a perfect dielectric with er = 3. Compute the magnitudes of incident, reflected and transmitted E

and H  waves at the interface. Take Ei = 1.5 mV/m in medium 1.

Solution For medium 1 (free space), 0
1

0

120 377= = = W
m

h p
e

For medium 2 (perfect dielectric),

0
2

0

1
120 120 217.66

3
= = = ¥ = ¥ = Wr r

r r

m m mm
h p p

e e e e
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The transmission coefficient is given as

2

1 2

2 2 217.66
0.732

377 217.66

¥
= = = =

+ +
t

i

E

E

h
t

h h

The reflection coefficient is given as

2 1

2 1

217.66 377
0.268

217.66 377

- -
G = = = -

+ +R

h h

h h

Since the amplitude of the incident electric wave is Ei = 1.5 mV/m, we have

Amplitude of the incident magnetic field, 
3

1

1.5 10
3.98 A/m

377

-¥
= = =i

i

E
H m

h

Amplitude of the transmitted electric field, 0.732 1.5 1.098t iE Et= ¥ = ¥ =  mV/m

Amplitude of the transmitted magnetic field, 
2

1.098
5.04 A/m

217.66
= = =t

t

E
H m

h

Amplitude of the reflected electric field, 0268 1.5 0.402r R iE E= G ¥ = - ¥ = -  mV/m

Amplitude of the reflected magnetic field, 
2

0.402
1.85 A/m

217.66

-
= = = -r

r

E
H m

h

Example 5.27 Determine the normal incidence reflection coefficients for seawater, freshwater, 

and ‘good’ earth at frequencies of 60 Hz, 1 MHz and 1 GHz. Use er = 80, s = 4 mho/m for sea water, 

er = 80, s = 5 ¥ 10  for fresh water; and er = 15, s = 10 ¥ 10  for good earth.

Solution The reflection coefficient is given as, 2 1

2 1

-
G =

+R

h h

h h

where, h1 is the intrinsic impedance of air and h2 is the intrinsic impedance of the other medium.

For air, 0
1

0

120 377= = = W
m

h p
e

For seawater, 

7
0

2 12
0

2 60 4 10
0.0109 45

4 2 60 8.854 10 80

-

-
¥ ¥ ¥

= = = = – ∞
+ + + ¥ ¥ ¥ ¥r

j jj

j j j

wm p pwm
h

s we s we e p

For freshwater, 

0
2

0

6 7

3 6 12

2 1 10 4 10
34.34 24.16

5 10 2 1 10 8.854 10 80

-

- -

= =
+ +

¥ ¥ ¥ ¥
= = – ∞

¥ + ¥ ¥ ¥ ¥ ¥

r

jj

j j

j

j

wmwm
h

s we s we e

p p

p

For good water, 

0
2

0

9 7

3 9 12

2 1 10 4 10
97.27 0.34

10 10 2 1 10 8.854 10 15

-

- -

= =
+ +

¥ ¥ ¥ ¥
= = – ∞

¥ + ¥ ¥ ¥ ¥ ¥

r

jj

j j

j

j

wmwm
h

s we s we e

p p

p
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So, the reflection coefficients are

(sea water)

0.0109 45 377
0.99 180

0.0109 45 377

– ∞ -
G = = – ∞

– ∞ +R

(fresh water)

34.34 24.16 377
0.847 175.7

34.34 24.16 377

– ∞ -
G = = – ∞

– ∞ +R

(good earth)

97.27 0.343 377
0.742 180

97.27 0.343 377R

– ∞ -
G = = – ∞

– ∞ +

Example 5.28 In free-space (z £ 0), a plane wave with

810 cos (10 ) mA/m= - xH t z ab

is incident normally on a lossless medium (e = 2e0, m = 8m0) in region z ≥ 0. Determine the reflected 

wave Hr, Er and the transmitted wave Ht, Et.

Solution For free space, the intrinsic impedance is, 0
1

0

120= =
m

h p
e

For the lossless medium, the intrinsic impedance is, 
0 0

2 1
0 0

8
2 240

2

¥
= = = =

¥
r

r

m m m
h h p

e e e

Given that: 810 cos (10 ) mA/m= -i xH t z ab

For z < 0, 
8

1 8

10 1

33 10
= = =

¥c

w
b

For z > 0, 1 0 0 1

4
4 4

3
= = = ¥ = =r r c

w
b w me w m e m e b

From the given form of the incident magnetic field, we may expect that

8
0 1cos (10 )= -i i EiE E t z ab

where, = ¥ = ¥ = -Ei Hi ki x z ya a a a a a

and, 0 1 0 120 10 1200= = ¥ =i iE Hh p p

\ ( )8 1
1200 cos 10 mV/m

3
= - -i yE t z ap

Now, 2 1 1 1

2 1 1 1

2 1

2 3

- -
= = =

+ +
r

i

E

E

h h h h

h h h h

\    ( )8 1
400 cos 10 mV/m

3
= - +r yE t z ap

\ ( )810 1
cos 10 mA/m

120 3 3
= = - +r

r x

E
H t z a

p

Similarly, 2

2 1

2 4

3
= =

+
t

i

E

E

h

h h
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\ ( )8 4
1600 cos 10 mV/m

3
= - -t yE t z ap

  ( )820 4
cos 10 mA/m

240 3 3
= = - -t

t x

E
H t z a

p

5.9.2 Oblique Incidence

Any plane wave which is obliquely incident on a planar media interface can be represented by a linear 

combination of two special cases: 

1. Perpendicular or horizontal polarisation, and

2. Parallel or vertical polarisation.

1. Perpendicular or Horizontal Polarisation When the electric field vector E  is 

perpendicular to the plane of incidence, i.e., the electric vector is parallel to the boundary surface, it is 

called perpendicular or horizontal polarization.

Figure 5.13 illustrates a perpendicularly polarised wave.

Fig. 5.13 Perpendicular polarisation

2. Parallel or Vertical Polarisation When the electric field vector E  is parallel to the plane 

of incidence, i.e., the magnetic field is parallel to the boundary surface, it is called parallel or vertical 

polarization.

Figure 5.14 illustrates a parallel polarised wave.

Fig. 5.14 Parallel polarisation
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5.9.3  Reflection and Transmission Coefficients for Perpendicular 
and Parallel Polarisation

We consider Fig. 5.15.

Fig. 5.15 Reflection and transmission of plane waves

For Fig. 5.15, the plane of the paper is the plane of incidence. The figure shows two rays of the EM 

wave:

Ray 1: reflected along AE, transmitted along AD

Ray 2: reflected along BG, transmitted along BF.

The directions: 

AE and BG are parallel

AD and BF are parallel.

The line AC, which is perpendicular to the incident rays, represents the equi-phase surface in 

medium 1.

The line DB, which is perpendicular to the transmitted rays, represents the equi-phase surface in 

medium 2.

Ray 1 travels the distance AD,

Ray 2 travels the distance CB, and

Reflected Ray 1 travels the distance AE.

The time taken is the same for all three distances.

\ 2 2 21 1 2
1 2

2 2 11 1 1

( )= = = = = =
v t vCB

AD v t v

m e e e
m m

em e e

\ 1 2

2 1

sin

sin
=

AB

AB

q e

q e
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\ 1 2

2 1

sin

sin
=

q e

q e
(5.36)

This equation is termed as Snell’s law.

Also, 3 1 1 3sin sin= fi = fi =AE CB AB ABq q q q

Perpendicular Polarisation For perpendicular polarisation, from the boundary condition,

( )+ =i r tE E E
(5.37a)

and

1 2( ) cos cos- =i r tH H Hq q
(5.37b)

From Eq. (5.26a,b,c),

1 1 2
1 2

1 1 2

cos cos
Ê ˆ

- =Á ˜
Ë ¯

i r tE E E
e e e

q q
m m m

fi
1 1 1 2 2 1 2( ) cos cos ( )- = =i r tE E Ee e q e q m m

fi
1

1 2
2

( ) cos cos- =i r tE E E
e

q q
e

fi 2 1

1 2

sin cos
( ) (by Eq. (5.36))

sin cos
= -t i rE E E

q q

q q
(5.38)

From Eq. (5.37a) and Eq. (5.38), we get

2 1

1 2

sin cos
( ) ( )

sin cos
+ = -i r i rE E E E

q q

q q

fi 2 1 2 1 2 1 2 1(sin cos cos sin ) (sin cos cos sin )+ = -r iE Eq q q q q q q q

Hence the reflection coefficient is given as

2 1

2 1

sin ( )
Reflection Coefficient,

sin ( )

-
G = =

+
r

i

E

E

q q

q q

It can be also written in the form

22
1 1

1

22
1 1

1

cos sin

Reflection Coefficient,

cos sin

- -
G = =

+ -

r

i

E

E

e
q q

e

e
q q

e

The transmission coefficient can be evaluated as follows.

2 1 2 1 2 1

2 1 2 1

sin ( ) sin ( ) sin ( )
1 1

sin ( ) sin ( )

+ - + + -Ê ˆ= = + = + =Á ˜ + +Ë ¯
t i r r

i i i

E E E E

E E E

q q q q q q

q q q q
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\ 2 1

2 1

2 sin cos
Transmittance,

sin ( )
=

+
q q

t
q q

Parallel Polarisation For parallel polarisation, from the boundary condition that the tangential 

component of vector E  is continuous across the boundary,

1 2( ) cos cos- =i r tE E Eq q (5.39a)

and

( )+ =i r tH H H (5.39b)

From Eq. (5.39b),

1 1 2

1 1 2

Ê ˆ
+ =Á ˜

Ë ¯
i r tE E E
e e e

m m m

fi 1 1 2 1 2( ) ( )+ = =i r tE E Ee e e m m

fi 1 2( )+ =i r tE E Ee e

fi 1 2

2 1

sin
( ) ( ) (by Eq. (5.35))

sin
= + = +t i r i rE E E E E

e q

e q
(5.40)

From Eq. (5.39a) and Eq. (5.40), we get

2 2

1 1

sin cos
( ) ( )

sin cos
- = +i r i rE E E E

q q

q q

fi 2 2 1 1 1 1 2 2(sin cos sin cos ) (sin cos sin cos )+ = -r iE Eq q q q q q q q

fi 1 1 2 2 1 1 2 2 1 2

2 2 1 1 2 2 1 1 2 1

1 2 1 2 1 2

1 2 1 2 1 2

sin cos sin cos 2 sin cos 2 sin cos sin 2 sin 2

sin cos sin cos 2 sin cos 2 sin cos sin 2 sin 2

sin ( ) cos ( ) tan ( )

sin ( ) cos ( ) tan ( )

- - -
= = =

+ + +
- + -

= =
+ - +

r

i

E

E

q q q q q q q q q q

q q q q q q q q q q

q q q q q q

q q q q q q

Hence the reflection coefficient is given as

1 2

1 2

tan ( )
Reflection Coefficient,

tan ( )

-
G = =

+
r

i

E

E

q q

q q

It can be also written in the form

22 2
1 1

1 1

22 2
1 1

1 1

cos sin

Reflection Coefficient,

cos sin

- -
G = =

+ -

r

i

E

E

e e
q q

e e

e e
q q

e e
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The transmission coefficient can be evaluated as follows:

1 2 1 2

1 2 1 2

2 1 1 2 1 2 1 2

1 2 1 2

2 1

1 2 1 2

sin ( ) cos ( )
1 1

sin ( ) cos ( )

sin ( ) cos ( ) sin ( ) cos ( )

sin ( ) cos ( )

2 sin cos

sin ( ) cos ( )

+ - +Ê ˆ= = + = +Á ˜ + -Ë ¯
+ - + - +

=
+ -

=
+ -

t i r r

i i i

E E E E

E E E

q q q q

q q q q

q q q q q q q q

q q q q

q q

q q q q

\ 2 1

1 2 1 2

2 sin cos
Transmittance,

sin ( ) cos ( )
=

+ -
q q

t
q q q q

NOTE 

1.

2.

3.

Example 5.29 Given two dielectric mediums: medium 1 is free space and medium 2 has 

e2 = 4e0 and m = m0. Determine the reflection coefficients for oblique incidence q1 = 30° for

1. perpendicular polarisation;

2. parallel polarisation.

Solution:

1. For perpendicular polarisation, the reflection coefficient is

22 2
1 1

1

222
1 1

1

4cos sin cos 30 sin 30 0.866 4 0.251
0.382

4 0.866 4 0.25
cos 30 sin 30cos sin

1

- - ∞ - - ∞ - -
G = = = = -

+ -∞ + - ∞+ -
R

e
q q

e

e
q q

e

2. For parallel polarisation, the reflection coefficient is

   

22 2 2
1 1

1 1

222 2
1 1

1 1

4cos sin 4 cos 30 sin 30 3.464 4 0.251
0.283

4 3.464 4 0.25
4 cos 30 sin 30cos sin

1

- - ∞ - - ∞ - -
G = = = =

+ -∞ + - ∞+ -
R

e e
q q

e e

e e
q q

e e
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5.9.4 Brewster Angle

Definition For a plane electromagnetic wave incident on a 

plane boundary between two dielectric media having different 

refractive indices, the angle of incidence at which transmittance 

from one medium to the other is unity, when the wave is linearly 

polarised with its electric vector parallel to the plane of incidence, 

is called Brewster’s angle. This is demonstrated in Fig. 5.16.

For angle on incidence, qi (called qB) equal to Brewster’s angle

or polarising angle, the reflectance for parallel polarisation is zero 

and the reflected wave parallel polarisation only and is therefore, 

totally polarised.

Mathematical Equation We know, the reflectance, 1 2

1 2

tan ( )

tan ( )

-
=

+
r

i

E

E

q q

q q
So, it is zero, if 

1 2 2( ) i.e. ( )
2 2

+ = + =B

p p
q q q q .

From Snell’s law,

( )1 2 2sin sin cos
2

= - =B B B

p
h q h q h q

1 1
1

0 0

2 2
2

0 0

,

are refractive indices

È ˘
=Í ˙

Í ˙
Í ˙

=Í ˙
Í ˙Î ˚

m e
h

m e

m e
h

m e

\ 2 2

1 1

tan = =B

h e
q

h e

(since, m1 = m2)

At this angle, there is no reflected wave when the incident wave is parallel polarised.

NOTE

1.

2. h  > h h  < h

Brewster’s Law The polarisation of an unpolarised wave upon reflection is stated in the form of 

Brewster’s law as:

When unpolarised wave is incident on the surface of a dielectric like gas at Brewster angle (qB), the 

reflected wave is plane polarised with the plane of polarisation perpendicular to the plane of incidence, 

and the angle between the reflected and the refracted rays is 90°.

Fig. 5.16 Brewster’s angle
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5.9.5 Total Internal Reflection

Let a wave be incident on the interface from the medium of higher refractive index, i.e., h1 > h2 or, 

e1 > e2.

When the angle of refraction q2 is 
2

p  (the largest possible value), the corresponding angle of 

incidence q1 is called the critical angle (qC).

From Snell’s law, 

1 2 2sin sin
2

= =C

p
h q h h

\ 2

1

sin =C

h
q

h

For angles of incidence larger than the critical angle, we have from Snell’s law,

1 1
2 1

2 2

sin sin sin= > C

h h
q q q

h h

As, 2

1

sin =C

h
q

h
, we have, sin q2 > 1

Which shows that q2 cannot be a real angle. In fact, if sinq2 > 1, cosq2 will be imaginary, 

2
2 2cos 1 sin= - = jq q d ; where, d is a real number.

So, the reflection coefficients become

2 1 1

2 1 1

1 1 2

1 1 2

cos
; for parallel polarisation

cos

cos
; for parallel polarisation

cos

r

i

E j

E j

j

j

h q h d

h q h d

h q h d

h q h d

-
G = =

+
-

=
+

Thus, the coefficients for both polarisation is complex. The magnitude is

2 *

| |
Ê ˆ Ê ˆG = = ◊Á ˜ Á ˜Ë ¯ Ë ¯

r r r

i i i

E E E

E E E
where, the asterisk (*) indicates complex conjugate.

\ |G| = 1 for both polarisation; for all q1 ≥ qC.

Thus, total reflection occurs for all incident angles greater than or equal to the critical angle.

NOTE

=
h

q q
h
2

1

sin cosB B =
h

q
h
2

1

sin C

= £
q

q
q

sin
cos 1

sin

B
B

C
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Example 5.30 A wave is incident at an angle of 40° from air to teflon with relative permittivity 

er = 2.1. Calculate the angle of transmission, Brewster’s angle. What is the critical angle of the wave 

propagation from teflon to air?

Solution Since the media are non-magnetic, m1 = m2

The angle of transmission is given by the relation given in Eq. (5.36) as

2

1

sin

sin
=i

t

q e

q e

In this case,

sin 40 2.1
26.33

sin 1

∞
= fi = ∞t

t

q
q

The Brewster’s angle is given as

2 2

1 1

2.1
tan 2.1 55.39

1
= = = = fi = ∞B B

h e
q q

h e

The critical angle for wave propagation from teflon to air (i.e., from the medium of higher refractive 

index to the lower) is given as

1 1

2 2

1
sin 43.63

2.1
= = = fi = ∞C C

h e
q q

h e

Example 5.31 The dielectric constant of pure water is 80. Determine the Brewster angle for 

parallel polarisation and the corresponding angle of transmission.

If a plane wave of perpendicular polarisation impinges at this angle, find the reflection and 

transmission coefficients.

Solution For pure water, er = 80

Brewster’s angle, 1 12

1

tan tan ( 80) 83.62- -
Ê ˆ

= = = ∞Á ˜Ë ¯
r

B
r

e
q

e

Now, by Snell’s law,

1 2

2 1 2

sin sin (83.62 )
80

sin sin

∞
= fi =r

r

q e

q e q

Hence, the transmission angle is given as

2

sin (83.62 )
6.38

80

∞
= = ∞q

Reflection coefficient, 

22
1 1 2

1

2
22

1 1
1

cos sin
cos (83.62 ) (80) sin (83.62 )

0.9753
cos (83.62 ) (80) sin (83.62 )

cos sin

Ê ˆ- -Á ˜Ë ¯ ∞ - - ∞
G = = = -

Ê ˆ ∞ + - ∞+ -Á ˜Ë ¯

e
q q

e

e
q q

e

Transmission coefficient, t = (1 + G) = (1 – 0.9753) = 0.0247
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Example 5.32 Find the critical angle of total internal reflection for glass (er = 4.0), polyethylene 

(er = 2.25) and polystyrene (er = 2.52) to air surfaces.

Solution The critical angle of total internal reflection is given as

1 1
sin- Ê ˆ

= Á ˜Ë ¯C
r

q
e

For glass, (er = 4), 1 1
sin 30

4
- Ê ˆ

= = ∞Á ˜Ë ¯Cq

For polyethylene, (er = 2.25), 1 1
sin 41.8

2.25
- Ê ˆ

= = ∞Á ˜Ë ¯Cq

For polystyrene, (er = 2.52), 1 1
sin 39.1

2.52
- Ê ˆ

= = ∞Á ˜Ë ¯Cq

5.10  REFLECTION AND REFRACTION OF PLANE
ELECTROMAGNETIC WAVES BY PERFECT
CONDUCTOR

5.10.1 Normal Incidence

Let medium 1 be a perfect dielectric and medium 2 a perfect conductor, such that h2 = 0. Let a wave be 

incident normally from medium 1 to medium 2.

The following points may be noted for conducting medium:

1. When a plane wave incidents normally upon the surface of the conducting medium, the wave is 

entirely reflected.

2. For field that varies with time, neither E  nor H  will exist within the conductor. So, no energy 

is transmitted through the conducting medium.

3. As there is no loss within a perfect conductor, there is no absorption of energy by the conducting 

medium.

\ Transmission coefficient, t = 0, and

\ Reflection coefficient, G = –1

Hence, the amplitudes of E  and H  of reflected wave are same as those of the incident wave, but they 

differ in the direction of flow.

Electric field of incident wave = Eie
–jbx

Electric field of reflected wave = Ere
–jbx

Boundary is the surface of the conductor given by, x = 0.

The boundary conditions to be applied are:

1. The tangential component of the electric field is continuous across the boundary.

2. Electric field E  inside the conductor is zero; i.e. (Ei + Er) = 0 fi Er = –Ei.

The amplitude of the reflected electric field is equal to that of the incident field, with phase reversal on 

reflection.
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The resultant electric field strength at any point at a distance x from x = 0 plane is

( ) ( ) 2 sin- -= + = - = -j x j x j x j x
T i r i iE x E e E e E e e jE xb b b b b

\ ( , ) Re[ 2 sin ] 2 sin sin= - =j t
T i iE x t jE xe E x twb b w

This expression represents a standing wave. The magnitude of electric field varies sinusoidally with 

distance from the reflecting plane.

( , ) 0=TE x t  when x = 0 or multiples of l/2.

\
2

2
= ¥ =x
p l

b p
l

( , )TE x t  is maximum of 2Ei, when x is odd multiples of l/4.

\
2

4 2
= ¥ =x
p l p

b
l

As the electric field is reflected with the phase reversal, then the magnetic field is reflected without the 

phase reversal to satisfy the boundary conditions.

\ =r iH H

\ ( ) ( ) 2 cos- -= + = + =j x j x j x j x
T i r i iH x H e H e H e e H xb b b b b

\ ( , ) 2 cos cos=T iH x t H x tb w

This also has a standing wave distribution.

( , ) 0=TH x t  when x is odd multiples of l/4.

( , )TH x t  is maximum,  when x is multiples of l/2.

Example 5.33 A 300 MHz uniform plane wave travelling in free space strikes a large block of 

copper (mr = 1, er = 1 and s = 5.8 ¥ 107 S/m) normal to the surface. If the surface of copper lies in the 

yz plane and the wave is propagating in x-direction, write the complete time domain expressions for 

incident, reflected and transmitted waves in terms of the amplitude of the incident electric wave, Ei.

This is illustrated in Fig. 5.17.

Solution: Since the wave is propagating in the x-direction, the electric field E  will be in y-direction

and the magnetic field H  will be in z-direction.

Let the electric field in the incident wave be given as

cos ( )= -i yE E t z aw b

where, Ei is the amplitude.

Intrinsic impedance of medium 1 (free space) is

h1 = 120p = 377 W

Intrinsic impedance of medium 2 (copper, which is a good conductor) is

6 7

2 7

3

3 3

2 300 10 4 10 1
45

5.8 10

6.39 10 45

(4.52 10 4.52 10 )

-

-

- -

¥ ¥ ¥ ¥ ¥
= – ∞ =

¥
= ¥ – ∞
= ¥ + ¥ Wj

p pwm
h

s
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Transmission coefficient is

3
52

3 3
1 2

2 2 6.39 10 45
3.37 10 45

377 (4.52 10 4.52 10 )

-
-

- -
¥ ¥ – ∞

= = = = ¥ – ∞
+ + ¥ + ¥

t

i

E

E j

h
t

h h

\ Amplitude of the transmitted electric wave is

5(3.37 10 45 )-= ¥ – ∞t iE E

Reflection coefficient,

3 3
2 1

3 3
2 1

4.52 10 4.52 10 377
1 180

(4.52 10 4.52 10 ) 377

- -

- -
- ¥ + ¥ -

G = = = = – ∞
+ ¥ + ¥ +

r
R

i

E j

E j

h h

h h

\ Amplitude of the reflected electric wave is

(1 180 )= – ∞ = -r i iE E E

\ Amplitude of the incident magnetic wave is

3

1

(2.65 10 )
377

-= = = ¥i i
i i

E E
H E

h

\ Amplitude of the transmitted magnetic wave is

5
3

3
2

(3.37 10 45 )
(5.27 10 )

(6.39 10 45 )

-
-

-
¥ – ∞

= = = ¥
¥ – ∞

t i
t i

E E
H E

h

Fig. 5.17 Standing wave distribution of E and H for normal incidence of EM wave at conducting surface



  456

\ Amplitude of the reflected magnetic wave is

3

1

(2.65 10 )
377

--
= - = - = ¥ir

r i

EE
H E

h

Now, the electromagnetic wave in free space propagates with the velocity of light,

\ v = c = 3 ¥ 108

6

8

2 300 10
6.28 rad/m

3 10

¥ ¥
= = = =

¥v c

pw w
b

Hence, the complete time domain expressions for the waves are given below.

Incident waves:

6

3 6

cos (2 300 10 6.28 ) V/m

(2.65 10 ) cos (2 300 10 6.28 ) A/m

i i y

i i x

E E t x a

H E t x a

p

p-

= ¥ ¥ -

= ¥ ¥ ¥ -

Transmitted waves:

5 6

3 6

(3.37 10 ) cos (2 300 10 6.28 45 ) V/m

(5.27 10 ) cos (2 300 10 6.28 45 ) A/m

t i y

t i x

E E t x a

H E t x a

p

p

-

-

= ¥ ¥ ¥ - + ∞

= ¥ ¥ ¥ - + ∞

Reflected waves:

6

3 6

cos (2 300 10 6.28 ) V/m

(2.65 10 ) cos (2 300 10 6.28 45 ) A/m

r i y

r i x

E E t x a

H E t x a

p

p-

= - ¥ ¥ -

= ¥ ¥ ¥ - + ∞

Example 5.34 A 1MHz uniform plane wave travelling in free space strikes a large sheet of 

copper (mr = 1, er = 1 and s = 5.8 ¥ 107 S/m) normal to the surface. If the surface of copper lies in the 

yz plane and the wave is propagating in x-direction, write the complete time domain expressions for 

incident, reflected and transmitted waves in terms of the amplitude of the incident electric wave, Ei.

Solution Since the wave is propagating in the x-direction, the electric field E  will be in y-direction

and the magnetic field H  will be in z-direction.

Let the electric field in the incident wave be given as

cos ( )= -i yE E t z aw b

where, Ei is the amplitude.

Intrinsic impedance of medium 1 (free space) is

1 120 377= = Wh p

Intrinsic impedance of medium 2 (copper which is a good conductor) is

6 7
4

2 7

2 300 10 4 10 1
45 3.69 10

5.8 10

-
-¥ ¥ ¥ ¥ ¥

= – ∞ = ª ¥ W
¥

p pwm
h

s



457

Transmission coefficient is

4
62

4
1 2

2 2 3.69 10 45
1.96 10 45

377 3.69 10 45

-
-

-
¥ ¥ – ∞

= = = = ¥ – ∞
+ + ¥ – ∞

t

i

E

E

h
t

h h

\ Amplitude of the transmitted electric wave is

\ 6(1.96 10 45 )-= ¥ – ∞t iE E

Reflection coefficient,

4
2 1

4
2 1

3.69 10 45 377
1 180 1

3.69 10 45 377

-

-
- ¥ – ∞ -

G = = = = – ∞ = -
+ ¥ – ∞ +

r
R

i

E

E

h h

h h

\ Amplitude of the reflected electric wave is

\ (1 180 )= – ∞ = -r i iE E E

\ Amplitude of the incident magnetic wave is

3

1

(2.65 10 )
377

-= = = ¥i i
i i

E E
H E

h

\ Amplitude of the transmitted magnetic wave is

6
3

4
2

(1.96 10 45 )
(4.95 10 )

(3.69 10 45 )

-
-

-
¥ – ∞

= = = ¥
¥ – ∞

t i
t i

E E
H E

h

\ Amplitude of the reflected magnetic wave is

3

1

(2.65 10 )
377

--
= - = - = ¥ir

r i

EE
H E

h

Now, the electromagnetic wave in free space propagates with the velocity of light

\ 83 10= = ¥v c

\
6

8

2 1 10
0.02 rad/m

3 10

¥ ¥
= = = =

¥v c

pw w
b

Hence, the complete time domain expressions for the waves are given below.

Incident waves:

6

3 6

cos (2 10 0.02 ) V/m

(2.65 10 ) cos (2 10 0.02 ) A/m

i i y

i i x

E E t x a

H E t x a

p

p-

= ¥ -

= ¥ ¥ -

Transmitted waves:

6 6

3 6

(1.96 10 ) cos (2 10 0.02 45 ) V/m

(4.95 10 ) cos (2 10 0.02 45 ) A/m

t i y

t i x

E E t x a

H E t x a

p

p

-

-

= ¥ ¥ - + ∞

= ¥ ¥ - + ∞

Reflected waves:

6

3 6

cos (2 10 0.02 ) V/m

(2.65 10 ) cos (2 10 0.02 45 ) A/m

r i y

r i x

E E t x a

H E t x a

p

p-

= - ¥ -

= ¥ ¥ - + ∞
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5.10.2 Oblique Incidence

When a wave is incident obliquely at a conducting 

surface, two cases may arise:

(1) Horizontal Polarisation or 
Perpendicular Polarisation
In this case, the electric field is parallel to the 

boundary surface or perpendicular to the plane 

of incidence. The plane of incidence is the plane 

containing the incident ray and the normal to the 

surface.

With the coordinate system chosen as shown in Fig. 5.18,

( cos cos cos )
reflected

¢- ◊ - + += =j n r j x A y B z C
r rE E e E eb b

where, x, y, z are the components of the vector r  and cos A, cos B, cos C are the components of the unit 

vector n  along x, y and z axes; A, B, C are the angles that n  makes with the positive x, y and z axes.

Here, ( ), ,
2 2

= = - =A B C
p p

q q

\ ( sin cos )◊ = +n r y zq q

\ ( sin cos )
reflected

- += j y z
rE E e b q q

For incident wave, ( ), , ( )
2 2

= = - = -A B C
p p

q p q

\ ( sin cos )◊ = -n r y zq q

\ ( sin cos )
incident

j y z
iE E e b q q- -=

From the boundary conditions, Er = –Ei

Thus, total electric field,

( sin cos ) ( sin cos )[ ]j y z j y z
iE E e eb q q b q q- - - += -

\
sin2 sin ( cos ) 2 sin ( )yj yj y

i i zE jE e z jE e z
bb q b q b

--= =

where, 2p
b

l
= ; is the phase shift constant of the incident wave

bz = b cos q ; is the phase shift constant in the z-direction

by = b cos q ; is the phase shift constant in the y-direction

The equation shows a standing wave distribution of electric field strength along the z-axis. The 

wavelength along the z-axis,
2 2

cos cosz
z

p p l
l

b b q q
= = =  is greater than the wavelength of the incident 

wave (l).

The velocity with which the standing wave travels along the y-direction is

sin siny
y

v
v

w w
b b q q

= = =

Fig. 5.18 Horizontal polarisation for conducting 

surface
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(2) Vertical Polarisation or Parallel Polarisation In this case, the magnetic field is parallel 

to the boundary surface and electric field is parallel to the plane of incidence.

Ei and Er will have the directions as shown in 

Fig. 5.19, because the components parallel to the 

perfectly conducting boundary must be equal and 

opposite.

The magnetic field H  will be reflected without 

phase reversal. The magnitudes of E  and H  are 

related by

i r

i r

E E

H H
h= =

For incident wave,

( sin cos )
incident

j y z
iH H e b q q- -=

For reflected wave,

( sin cos )
reflected

j y z
rH H e b q q- +=

From the boundary conditions, Hr = Hi

\ Total magnetic field is given as

2 cosyj y
i zH H e z

b
b

-=

where, bz = b cosq and by = b sinq.

Thus, the magnetic field strength has a standing wave distribution in the z-direction with:

H maximum at the conducting surface and multiples of lz/2

H = 0 at odd multiples of 
4

l
 from the surface.

For electric field, we have to consider separately the components in the y and z directions.

For the incident wave,

sin cosi i z i y iE H E H E Hh h q h q= = =

For the reflected wave,

sin cosr r z r y rE H E H E Hh h q h q= = = -

Total z-components of the electric field strength

2 sin cosyj y
z i zE H e z

b
h q b

-=

Total y-components of the electric field strength

2 cos sinyj y
y i zE j H e z

b
h q b

-=

Both components have a standing wave distribution above the reflecting plane. However,

Ez is maximum at the plane and multiples of lz/2 from the plane.

Ey is minimum at the plane and multiples of lz/2 from the plane.

Fig. 5.19 Vertical polarisation for conducting surface
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5.11 POYNTING THEOREM AND POYNTING VECTOR

5.11.1 Poynting Vector

It is defined as

S E H= ¥

where, E  is the electric field and H  is the magnetic field.

It represents the energy flux (in W/m2) of an electromagnetic wave. 

It is named after its inventor, British physicist John Henry Poynting. 

This is illustrated in Fig. 5.20.

5.11.2 Poynting Theorem

Statement It states that the vector product, S E H= ¥  at any point is a measure of the rate of 

energy flow per unit area at that point. The direction of power flow is in the direction of the unit vector 

along the product ( )E H¥  and is perpendicular to both E  and H .

This theorem provides a statement about the conservation of energy of an electromagnetic wave.

Derivation By modified Ampere’s circuital law in differential form,

D E
H J J

t t
e

∂ ∂— ¥ = + = +
∂ ∂

fi E
J H

t
e

∂= — ¥ -
∂

Multiplying both sides by E, we get

E
E J E H E

t
e

∂◊ = ◊ — ¥ - ◊
∂

(5.41)

We use the vector identity

( ) ( ) ( )E H H E E H— ◊ ¥ = ◊ — ¥ - ◊ — ¥

Thus, from Eq. (5.34),

( ) ( )

( )

E
E J H E E H E

t

H E
H E E H

t t

e

m e

∂◊ = ◊ — ¥ - — ◊ ¥ - ◊
∂

∂ ∂= - ◊ - ◊ - — ◊ ¥
∂ ∂

(5.42)

B H
E

t t
m

Ê ˆ∂ ∂— ¥ = - = -Á ˜Ë ¯∂ ∂

Now, 21
( )

2

H
H H

t t

∂ ∂◊ =
∂ ∂

and 21
( )

2

E
E E

t t

∂ ∂◊ =
∂ ∂

So, from Eq. (5.42),

Fig. 5.20 Poynting vector for 

a plane wave
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( )
2 2

2 2

1 1
( ) ( ) ( )

2 2
1 1

( )
2 2

E J H E E H
t t

H E E H
t

m e

m e

∂ ∂◊ = - - - — ◊ ¥
∂ ∂

∂= - + - — ◊ ¥
∂

Integrating over a volume,

( )2 21 1
( )

2 2
v v v

E Jdv H E dv E H dv
t

m e
∂◊ = - + - — ◊ ¥
∂Ú Ú Ú

fi ( )2 21 1
( )

2 2
v v s

E Jdv H E dv E H d s
t

m e
∂◊ = - + - ¥ ◊
∂Ú Ú Ú (5.43)

where, s is the closed surface bounding the volume v.

On rearrangement, we get

( )2 21 1
( )

2 2
v v s

E Jdv H E dv E H d s
t

m e
∂◊ = - + - ¥ ◊
∂Ú Ú Ú

In words,

Ohmic Power Rate of decrease in energy stored Total Power 

Dissipated  in electric and magnetic field leaving the volume

Ê ˆ Ê ˆ Ê ˆ= -Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯

This is the mathematical form of Poynting theorem.

Significance of Terms

1. The term 

v

E Jdv◊Ú  represents the rate at which the energy is being dissipated (i.e., the 

instantaneous power dissipated) within the total volume v. This is a generalisation of Joule’s law.

2. The first term in the right hand side, ( )2 21 1

2 2
v

H E dv
t

m e
∂- +
∂ Ú  represents the time rate at which 

the stored electric field energy and the magnetic field energy is decreasing within the volume v.

3. The second term in the right-hand side, ( )
s

E H d s¥ ◊Ú  represents the rate at which energy is 

escaping or leaving the volume v through the closed surface s. This follows from the law of 

conservation of energy.

5.11.3 Poynting Theorem for Insulating Medium

In an insulating medium, 0J =  and total energy density is

2 21 1
( )

2 2E Mu u u E He m= + =

So, from Eq. (5.33),

0 ( )
v s

udv S d s S E H
t

∂= - - ◊ = ¥
∂ Ú Ú
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fi ( ) 0
v

u
S dv

t

∂— ◊ + =
∂Ú

\ 0
u

S
t

∂— ◊ + =
∂

This is the differential form of Poynting theorem.

5.11.4 Poynting Theorem in Complex Form

Maxwell’s equations in phasor form can be written as

( )H j Es we— ¥ = + and E j Hwm— ¥ = -

\ ( *) * * * ( ) * *E H H E E H j H H j E E E Jwm s we— ◊ ¥ = ◊ — ¥ - ◊ — ¥ = - ◊ - - ◊ - ◊

Integrating over the volume v surrounded by closed surface s,

( *) ( * *) * *
s v v v

E H d s j H H E E dv E E dv E J dvw m e s¥ ◊ = - ◊ - ◊ - ◊ - ◊Ú Ú Ú Ú (5.44)

Now,

  

* Time-averaged stored electric energy

* Time-averaged stored magnetic energy

Complex Poynting Vector Re[ ] Im[ ]

◊ = =
◊ = =
¥ = = +

E

M

E E U

H H U

E H S S

e

m

So, from Eq. (5.37),

1 1
Re Im ( ) * Re * Im *

2 2M E
s s v v v v

S d s S d s j U U dv E E dv E J dv E J dvw s◊ + ◊ = - - - ◊ - ◊ - ◊Ú Ú Ú Ú Ú Ú

This is the mathematical form of Poynting theorem in complex form. Separating the real and imaginary 

parts, we get

1
Re * Re *

2
s v v

S d s E E dv E J dvs◊ = - ◊ - ◊Ú Ú Ú

1
Im ( ) Im *

2M E
s v v

S d s j U U dv E J dvw◊ = - - - ◊Ú Ú Ú

The energy may dissipate or may circulate. The circulating energy is represented by the imaginary 

Poynting vector and the dissipative energy is represented by the real Poynting vector.

5.11.5 Average Power Calculation using Poynting Vector

For a time-harmonic field, the time-average Poynting vector is found by integrating the instantaneous 

Poynting vector over one period and dividing by the period.

ave

1
( )

T

p E H dt
T

= ¥Ú
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Writing the electric and magnetic fields in instantaneous form as

| | cos ( ) | | cos ( )E E H HE E t a H H t aw q w q= + = +

The instantaneous Poynting vector is given as,

| || | cos ( ) cos ( )( )

1
| || | [cos (2 ) cos ( )]( )

2

E H E H

E H E H E H

S E H E H t t a a

E H t a a

w q w q

w q q q q

= ¥ = + + ¥

= + + + - ¥

(Using the trigonometric identity, 
1

cos cos [cos ( ) cos ( )]
2

x y x y x y= + + - )

The time-average Poynting vector is then

{ }ave

| || |
( ) cos (2 ) cos ( )

2 E H E H E H
T T

E H
p a a t dt dt

T
w q q q q= ¥ + + + -Ú Ú

The time-average Poynting vector reduces to,

ave

| || | 1
( ) cos ( ) Re[(| | ) (| | )]

2 2
E Hj j

E H E H E H

E H
p a a T E e a H e a

T
q qq q= ¥ - = ¥

\ *
ave

1
Re[ ]

2 S Sp = ¥E H (5.45)

By Eq. (5.45), the time-average Poynting vector is determined without integration.

The term in brackets in the above equation is defined as the phasor Poynting vector and is normally 

represented by S.

*
S S= ¥S E H

\ *
ave

1 1
Re[ ] Re[ ]

2 2S Sp = ¥ =E H S

All representations of the Poynting vector represent vector energy densities. Thus, to determine the 

total power passing through a surface, we must integrate the Poynting vector over that surface. The 

total time-average power passing through the surface s is

*
ave ave

1 1
Re [ ] Re

2 2S S
s s s

P p d d d= ◊ = ¥ ◊ = ◊Ú Ú Ús E H s S s

Average Power Density for Lossless (Perfect) Dielectric We consider an electric field 

propagating in the z-axis is given by the equation, 0 cos ( )xE E t zw b= -  and the associated magnetic 

field by the equation, 0 cos ( )y

E
H t zw b

h
= - , where, E0 is the peak value of Ex at t = 0 and z = 0 and 

h is the intrinsic impedance of the dielectric.

The instantaneous Poynting vector is given as

2
20 cos ( )z x y

P E H

E
P E H t zw b

h

= ¥

= = -



  464

To find the average power, integrating over one cycle and dividing by the period T

2
0 2

ave
0

2
0

0

2
0

0
2
0

2
0 2

1
cos ( )

1
[1 cos (2 2 )]

2

1 1
sin (2 2 )

2 2

1 1 1
sin (4 2 ) 0 sin ( 2 ) ( 2 )

2 2 2

1
Watt/m

2

T

T

T

E
p t z dt

T

E
t z dt

T

E
t t z

T

E
T z z T

T

E

w b
h

w b
h

w b
h w

w b b w p
h w w

h

= -

= + -

È ˘= + -Í ˙Î ˚

È ˘= + - - - - =Í ˙Î ˚

=

Ú

Ú

So, the average power flowing through an area A normal to the z-axis is

2
0

ave

1
Watt

2

E
P A

h
=

Average Power Density for Lossy Dielectric We consider an electric field propagating 

through a lossy dielectric in the z-axis is given by the equation, 0 cos ( )z
xE E e t za w b-= -  and the 

associated magnetic field by the equation, 0 cos ( )z
y

E
H e t za w b

h
-= - , where, E0 is the peak value of 

Ex at t = 0 and z = 0 and h is the intrinsic impedance of the dielectric.

If h =h0 –qh, then the magnetic field can be written as

0

0

cos ( )z
y

E
H e t za

hw b q
h

-= - -

Instantaneous Poynting vector is given as

2
20

0
2

20

0

cos ( ) cos ( )

1
[cos (2 ) cos ( )]

2

z
z x y

z

P E H

E
P E H e t z t z

E
e t z

a
h

a
h h

w b w b q
h

w b q q
h

-

-

= ¥

= = - - -

= - - +

So, the time-average value of Poynting vector or average power is

2
20

ave
00 0

1 1
[cos (2 ) cos ( )]

2

T T
z

z

E
p P dt e t z dt

T
a

h hw b q q
h

-= = - - +Ú Ú

\
2

20
ave

0

1
cos

2
zE

p e a
hqh

-=
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Average Power Density for Conducting Media For a perfect conducting medium, qh = 45°. 

Therefore, the average power can be obtained from the earlier section by putting qh = 45°.

\
2 2 2

2 2 2 2 20 0 0
ave 0

0

1 1 1 1

4 42 2 2 2

2

z z z zE E E
p e e e E ea a a as

sd
h wm wms

s

- - - -= = = =

where,
2

d
wms

=  is the skin depth.

2 2
ave 0

1

4
zp E e asd -=

5.12  ENERGY FLUX IN A PLANE ELECTROMAGNETIC
WAVE

From average power calculation using Poynting vector,

*
ave

1
Re[ ]

2 S Sp = ¥E H

Now, for a perfect dielectric medium,

0

0

E

H

m
h

e
= =  and if 0 0cos ( ) and cos ( )E HE E t x a H H t x aw b w b= - = - , then

2 20
ave 0 0 0

1 1 1 1
( ) ( ) | | | |

2 2 2E H n n

E
p E a a E a E a

e
h mm

e

Ê ˆ= ¥ = =Á ˜Ë ¯
(5.46)

where,
na  is the unit vector in the direction of wave propagation, normal to both E  and H .

Now, the electromagnetic energy density ‘u’ is given by the sum of the electric energy density 

1

2Eu E D
È ˘= ◊Í ˙Î ˚

 and the magnetic energy density 1

2Mu B H
È ˘= ◊Í ˙Î ˚

.

\  2 21 1 1 1
( )

2 2 2 2
u E D B H E H D E B He m e m= ◊ + ◊ = + = =

where,
0 0cos ( ) and cos ( )E HE E t x a H H t x aw b w b= - = -

\  2 2 2 2 2 2 2
0 0 0 0

1 1 1
cos ( ) cos ( ) [ ] cos ( )

2 2 2
u E t x H t x E H t xe w b m w b e m w b= - + - = + - (5.47)

So, the time-averaged energy density in the wave is

( )
2 2 2
0 0

0

2 2 2
0 0

2
02

0 2

1 1
[ ] cos ( )

2

1 1
[ ] cos

4 2

1

4

T

dU E H t x dt
T

E H t

E
E

e m w b

e m w

m
e m h

eh

· Ò = + -

= + · Ò =

Ê ˆÈ ˘
= + =Í ˙ Á ˜Ë ¯Î ˚

Ú
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2
02

0 2

2
0

1

4

1
| |

2

E
E

E

e m
m
e

e

È ˘
= +Í ˙

Ê ˆÍ ˙
Á ˜Í ˙Ë ¯Î ˚

= (5.48)

From Eq. (5.46) and (5.48), we get

2 2
ave 0 0

1 1 1 1
| | | |

2 2n n d np E a E a U a
e

e
m me me

= = = · Ò

\ ave

1
d n d np U a v U a

me
= · Ò = · Ò (5.49)

where, v is the velocity of the wave in the medium.

From this expression, we have the following conclusions:

1. The time averaged Poynting vector is the electromagnetic energy density multiplied by the wave 

velocity.

2. The time-averaged energy flow (Poynting vector) is in the direction of propagation of the wave 

and is equal to the phase velocity of the wave multiplied by the average energy density.

3. The ratio of Poynting vector to energy density is always less than the velocity of light.

8ave 3 10 m/s
d r r

p c
v

U m e
= = £ ¥

· Ò

4. For perfect dielectric, electric energy density is equal to magnetic energy density, as

2

2 2 20
0 0 0

1 1 1 1
| | and | | | |

2 2 2 2/
E M

E
u E u H Ee m m e

m e
= = = =

  So, time-averaged energy density is shared equally between electric and magnetic fields.

5. For a conductor, the time-averaged electric energy density is less than the time-averaged 

magnetic energy density, as

2

2 2 20
0 0 0

1 1 1 1
| | and | | | |

2 2 2 2/
E M

E
u E u H E

s
e m m

wwm s
= = = =

\ ( )E

M

u

u

we
s

= <<

Example 5.35 Calculate the power flow for a plane wave using Poynting theorem.

Solution Velocity of a uniform plane wave, 
1

v
me

=

The total energy density due to electric and magnetic fields is given by 2 21
( )

2
E He m+
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Rate of flow of energy per unit area,

2 21 1
( )

2 2

1
(2 )

2

1

E
P E H v EH EH v

H

EH v

vEH

vEH
v

EH

m me
e m e m

e m e

em

em

Ê ˆ Ï ¸
Ì ˝= + = + =Á ˜Ë ¯ Ó ˛

=

=

=

=

Since the angle between E  and H  is 90°, the power flow can be written as

P E H= ¥

*Example 5.36 Show that the power flow along a concentric cable is the product of voltage and 

current. Use Poynting theorem.

Solution The magnetic field strength will 

be directed in circles about the axis, as shown in 

Fig. 5.21. By Ampere’s law,

l

H d l I◊ =Ú

or 2 rH Ip =

or
2

I
H

rp
=

where, r is the radius of the circle being considered.

In vector form,

2

I
H a

r fp
=

The electric field will be radially outward. By Gauss’ law,

2

q
E

rpe
=

\ Voltage between the conductors is

( )ln
2 2 2

b b b

a a a

q q qdr b
V Edr dr

r r ape pe pe
= = = =Ú Ú Ú

\ ( )2
ln

q V
E

r b
r

a

pe
= =

Fig. 5.21 Concentric cable
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In vector form,

( )ln
r

V
E a

b
r

a

=

The Poynting vector is given as

P E H= ¥

Taking only the magnitudes,

( ) ( ) 2

1

2
ln 2 ln

V I VI
P E H

rb b r
r

a a

p
p

= ¥ = ¥ =

Total power flow along the cable is

( ) ( ) ( ) ( )2

1
( ) 2

2 ln ln ln

b b

S a a

VI VI dr VI b
W E H d S rdr n VI

r ab b br
a a a

p

p

= ¥ ◊ = ¥ = = ¥ =Ú Ú Ú

*Example 5.37 A conductor of circular cross-

section of radius ‘a’ is carrying a current ‘I’ that is 

uniformly distributed as shown in Fig. 5.22. Show that the 

surface integral of the Poynting vector over the surface 

of the conductor gives the total power dissipation in the 

conductor. Conductivity of the material is 
1

s
r

Ê ˆ
Á ˜Ë ¯

.

Solution From the relation, J
J E Es

s
= fi =

So, the electric field will be parallel to the direction of current (here, z-direction).

z zJ J a=

The magnetic field strength H  will be in the circular (f) direction.

\ H H af f=

The Poynting vector is given as

zz
z r

J HJJ
P E H H a H a a

f
f fs s s

= ¥ = ¥ = ¥ = -

The Poynting vector is directed radially towards the axis of the conductor.

Now, magnetic field at any radius r, by Ampere’s law is

2

2 2 2
z zJ r J rI

H
r rf

p

p p
= = =

\   
2

2
z

r

J r
P a

s
= -

Fig. 5.22 Circular conductor



469

At the surface of the conductor, r = a.

\
2

2
z

r

J a
P a

s
= -

So, the surface integral of this vector over the surface of the conductor is

2 2 2 2

0

2

( ) (2 )
2 2

( )

( )( )

l
z z z

r r r
S

z
z

J a J a J a
W P d S a dS a a dz a l

J
l J a

El I

VI

p
p

s s s

p
s

Ê ˆ Ê ˆ
= - ◊ = - - ◊ = ◊ =Á ˜ Á ˜Ë ¯ Ë ¯

Ê ˆ= Ë ¯
=
=

Ú Ú Ú

This is the total power dissipated in the conductor.

*Example 5.38 A long straight non-magnetic wire carries a steady current of I ampere. The 

resistance of the wire is R ohm/metre. Use the Poynting theorem to show that the energy flow into the 

wire is I2R per metre.

Solution From Example 5.37, Poynting vector is

2 2 2 2

2 3

( / )

2 2 2

z
r r r

J a I a a I
P a a a

a

p
s s p s

= - = - = -

Using the Poynting theorem at the surface of the conductor of length l, energy flow into the wire is

{ }
2 2

2
2 3 2 2

2
2

2

(2 )
2

1

r r

I I l l
W P dS a ala I

a a a

l
I

a

I R

p
p s sp sp

r
s

rp

È ˘
= - ◊ = - - ◊ = =Í ˙

Î ˚

= =

=

Ú

Example 5.39 An elliptically polarised wave in air has x and y components:

4 sin ( ) Volt /mxE t zw b= -

8 sin ( 75 ) Volt /myE t zw b= - + ∞

Find the Poynting vector. For air the intrinsic impedance is 367.7 ohm.

Solution By Maxwell’s equation,

0

B H
E

t t
m

∂ ∂— ¥ = - = -
∂ ∂

or 0

yx z
x y z

x y z
HH H

E E E i j k
t t t

i j k

m

∂ ∂ ∂
∂ ∂ ∂

∂È ˘∂ ∂
= - + +Í ˙∂ ∂ ∂Î ˚
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or 00
yx z

x y

x y z
HH H

E E i j k
t t t

i j k

m

∂ ∂ ∂
∂ ∂ ∂

∂È ˘∂ ∂
= - + +Í ˙∂ ∂ ∂Î ˚

or 0

y yx x z
E HE H H

i j i j k
z z t t t

m
∂ ∂È ˘∂ ∂ ∂

- + = - + +Í ˙∂ ∂ ∂ ∂ ∂Î ˚

Comparing both sides, we get

Hz = 0

and

0 0 0

81 1
[8 sin ( 75 )] cos ( 75 )

yx
EH

t z t z
t z z

b
w b w b

m m m

∂∂ ∂= = - - + ∞ = - - + ∞
∂ ∂ ∂

0 0

8 8
cos ( 75 ) sin ( 75 )xH t z dt t z

b b
w b w b

m wm
= - - + ∞ = - - + ∞Ú

Similarly,

0

4
sin ( )yH t z

b
w b

wm
= -

\ Poynting vector,

0 0

2 2

0

0 2 2

0

0 ( )

0

4 8
4 sin ( ) sin ( ) 8 sin ( 75 ) sin ( 75°)

[16 sin sin ( ) 64 sin ( 75 )]

[16 sin sin ( ) 64 sin ( 75 )]

1

367

x y x y y x

x y

i j k

P E H E E E H E H k

H H

t z t z t z t z k

t z t z k

t z t z k

b b
w b w b w b w b

wm wm

b
w b w b

wm

e
w b w b

m

= ¥ = = -

È ˘= - - + - + ∞ - +Í ˙Î ˚

= - + - + ∞

= - + - + ∞

= 2 2[16 sin sin ( ) 64 sin ( 75 )]
.7

t z t z kw b w b- + - + ∞

\ 2 20.0435[sin sin ( ) 4 sin ( 75 )]P t z t z kw b w b= - + - + ∞

Example 5.40 The electric field of a uniform plane wave propagating in the positive z-direction

is given by

0 0cos ( ) sin ( )E E t z i E t z jw b w b= - + -

where, E0 is a constant. Find (i) the corresponding magnetic field H  and (ii) the Poynting vector. 

Evaluate the Poynting vector if E0 = 10 V/m.
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Solution (i) By Maxwell’s equation,

E jm w— ¥ = -

or

0 0

0

1 1
0

1
[ { cos ( )} { sin ( )} ]

[cos ( ) sin ( ) ]

y x
x y

x y z
E E

H E E i j
j j z z

i j k

E t z i E t z j
j

E
t z i t z j

j

wm wm

b w b b w b
wm
b

w b w b
wm

∂ ∂ ∂
∂ ∂ ∂

∂È ˘∂
= - = - - +Í ˙∂ ∂Î ˚

= - - - - + -

= - + -

Hence, the magnetic field is given as

0 [cos ( ) sin ( ) ]
E

H t z i t z j
j

b
w b w b

wm
= - + -

(ii) The Poynting vector,

{ }

0 0
0 0

2
0 2 2

2
0

2
0

2
0

0 ( )

0

cos ( ) sin ( ) sin ( ) cos ( )

cos ( ) sin ( ) ( 90 )

is the intrinsic impedance

x y x y y x

x y

i j k

P E H E E E H E H k

H H

E E
E t z t z E t z t z k

j j

E
t z t z k j

E
k

E k

E
k

b b
w b w b w b w b

wm wm

b
w b w b

wm

b

wm

e
m

h
h

= ¥ = = -

È ˘
= - - - - -Í ˙Î ˚

= - + - = ∞

=

=

=

\
2
0E

P k
h

=

Example 5.41 If ( , ) 100 cos ( ) V/mxE z t t z aw b= -  and ( , ) 2.65 cos ( ) A/myH z t t z aw b= - ,

determine the time averaged Poynting vector at any position z.

Solution Time-average value of Poynting vector is given as,

\
2

20
av

0

1
cos

2
zE

P e a
hqh

-=
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Here,
0

0
0

0, 0 , 100, 2.65
E

Eha q
h

= = ∞ = =

Substituting these values, we get the time-average Poynting vector at any position as

0 2 2
av 0

0

1 1
cos 100 2.65 1 cos 0 132.5 Watt/m

2 2
zE

P E e a
hqh

-= = ¥ ¥ ¥ ¥ ∞ =

*Example 5.42 A plane electromagnetic wave having a frequency of 10 MHz has an average 

Poynting vector of 1 W/m2. If the medium is lossless with relative permeability 2 and relative 

permittivity 3, find:

1. the velocity of propagation,

2. the wavelength,

3. the impedance of the medium, and

4. the r.m.s. electric field E.

Solution Given: f = 10 MHz, P = 1 W/m2, mr = 2, er = 3,

1. Velocity of wave propagation is
8

8

0 0 0 0

3 101 1 1 1
1.225 10 m/s

2 3r r r r r r

c
v

me m m e e m e m e m e

¥
= = = = = = ¥

¥

2. Wavelength is

8

6

1.225 10
12.25 m

10 10

v

f
l

¥
= = =

¥

3. Impedance of the medium is

0 0

0 0

2
120 307.81

3
r r

r r

m m m mm
h p

e e e e e
= = = = ¥ = W

4. RMS electric field is given as

2 2
1 (120 ) 17.54

3

E E
P EH E E Ph p

h h
= = = fi = = ¥ ¥ =

This is the peak value of the field. Hence the RMS value is

rms

17.54
12.406 V/m

2
E = =

*Example 5.43 A sinusoidal plane wave is transmitted through a medium whose breakdown 

strength is 30 kV/m (rms) and whose relative permittivity is 4. Determine the mean possible power 

flow density and the peak value of the associated magnetic field intensity.

Solution From section 5.11.5, the mean power density is

22
rms

av

1

2

EE
P

h h
= =



473

Here,
0 0

0 0

1
120 60

4
r r

r r

m m m mm
h p p

e e e e e
= = = = ¥ = W

\
3 2

2
av

(30 10 )
4774.65 kW/m

60
P

p
¥

= =

Also,
rms av

rms
rms

E P
H

Eh
= =

\ Peak value of the magnetic field is

3
av

0 3
rms

4774.65 10
2 2 225 A/m

30 10

P
H

E

¥
= ¥ = ¥ =

¥

Example 5.44 In a non-magnetic medium,

74 sin (2 10 0.8 ) V/mzE t x ap= ¥ -

Find:

(a) er, h.

(b) The time-average power carried by the wave.

(c) The total power crossing 100 cm2 of plane 2x + y = 5.

Solution Since a = 0 and 
c

w
b π , the medium is not free space, but a lossless medium.

(a) Here, b = 0.8, w = 2p ¥ 107, m = m0 (non-magnetic medium)

\ 0 0r r rc

w
b w me w m m e e e= = =

\
22 28

7

0.8 3 10 12
14.59

2 10
r

cb
e

w pp

Ê ˆ¥ ¥Ê ˆ Ê ˆ= = = =Á ˜Ë ¯ Ë ¯¥Ë ¯

\ 20

0

120
10 98.7

12/r

mm p
h p

e e e p
= = = = = W

(b) Time-average power carried by the wave

2 2
0 2

av 2

(4/ 2)1 1
81 mW/m

2 2 10

E
P i i i

h p
= = =

(c) On the plane 2 5x y+ = , (2 5)f x y= + - \ (2 )f i j— = +

\ unit vector normal to the plane is, 
(2 )

| | 5
n

i jf
a

f

+—= ± = ±
—

Hence, the total power crossing the plane is

5
3 4 (2 ) 162 10

(81 10 ) (100 10 ) 724.5 W
5 5

av av av n

i j
P P dS P Sa i m

-
- - È ˘+ ¥

= ◊ = ◊ = ¥ ◊ ¥ = =Í ˙
Î ˚

Ú
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Example 5.45 Find the reflection coefficient and the transmission coefficient of an electric 

field wave travelling in air and incident normally on a boundary between air and a dielectric having 

permeability m0 and permittivity , er = 4. Also, find the average power, Pi, Pr, Pt.

Solution For air, the intrinsic impedance is 0
1

0

m
h

e
=

For the dielectric medium, 0 0 1
2

0 0 4 2r

m m h
h

e e e
= = =

¥

\
1

1
2 1

2 1 1
1

12
3

2

r

i

E

E

h
hh h

h h h
h

--
= = -

+
+

\
1

2

2 1 1
1

22 22
3

2

t

i

E

E

h
h

h h h
h

= = =
+

+

Using the complex Poynting vector, we have

Incident Average Power, 
2

*

1

1
Re{ }

2 2
i

i i i

E
P E H

h
= ¥ =

Reflected Average Power, 
2 2

*

1 1

1 1
Re{ }

2 2 18 3
r r r

r r r
i

E E E
P E H

Eh h
Ê ˆ= ¥ = - = - = -Á ˜Ë ¯

Transmitted Average Power, 
2

* 2 2

2 1

1 1 2 4 8
Re{ }

2 2 2 9 18
t

t t i i i

E
P E H E E

h h
= ¥ = = ¥ ¥ =

From the results, it is seen that one-ninth of the incident power is reflected and eight-ninth of it is 

transmitted into the second medium.

*Example 5.46 A plane wave is incident normally on a large sheet of copper. If the frequency 

and peak electric field of the incident wave is 100 MHz and 1 V/m respectively, find the power absorbed 

per unit area by the copper sheet.

Solution Given: Ei = 1 V/m, f = 100 ¥ 106 Hz

Assuming that the wave impinges from air, h1 = 377 W

6 7

2 7 6 12

3

2 100 10 4 10

5.8 10 2 100 10 8.854 10

3.68961 10 45

jj

j j

p pwm
h

s we p

-

-

-

¥ ¥ ¥ ¥ ¥
= =

+ ¥ + ¥ ¥ ¥ ¥ ¥
= ¥ – ∞

Transmission coefficient is,

3
52

3
2 1

2 2 3.68961 10 45
1.96 10 45

3.68961 10 45 377

t

i

E

E

h

h h

-
-

-
¥ ¥ – ∞

= = = ¥ – ∞
+ ¥ – ∞ +

\ 5 51.96 10 45 1.96 10 45 V/m
1

t
t

E
E- -= ¥ – ∞ fi = ¥ – ∞
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Depth of penetration,

6
6 7 7

2 2
6.6 10 m

2 100 10 4 10 5.8 10
d

wms p p
-

-= = = ¥
¥ ¥ ¥ ¥ ¥ ¥

\ Power absorbed per unit area by the copper sheet is

p Eave
2W/m= = ¥ ¥ ¥ ¥ ¥ = ¥- - -1

4

1

4
1 96 10 5 8 10 6 6 10 3 67 102 5 2 7 6 8sd ( . ) . . .

*Example 5.47 Assume a plane wave with E = 1 V/m and a frequency of 300 ¥ 106 cps moving 

in free space, impinges on a thick copper located perpendicularly to the direction of propagation. Find:

1. E at the plane surface.

2. H at the same location.

3. d, depth of penetration.

4. Conduction current density at the surface.

5. J, the conduction current density, at the depth of 10 mm.

6. Surface current density.

7. Surface impedance.

8. Power loss per square metre of surface area.

Assume s = 5.8 ¥ 107mho/m. e = e0, m = m0.

Solution Given: Ei = 1 V/m,  f = 300 ¥ 106 cps

1. Here, h1 = 377 W

6 7

2 7 6 12

3

2 300 10 4 10

5.8 10 2 300 10 8.854 10

6.39 10 45

jj

j j

p pwm
h

s we p

-

-

-

¥ ¥ ¥ ¥ ¥
= =

+ ¥ + ¥ ¥ ¥ ¥ ¥
= ¥ – ∞

  \ Transmission coefficient is

3
52

3
2 1

2 2 6.39 10 45
3.39 10 45

6.39 10 45 377

t

t

E

E

h

h h

-
-

-
¥ ¥ – ∞

= = = ¥ – ∞
+ ¥ – ∞ +

5 53.39 10 45 3.39 10 45 V/m
1

t
t

E
E- -= ¥ – ∞ fi = ¥ – ∞

2.
1

3
2 1

2 2 377
2

6.39 10 45 377

t

i

H

H

h

h h -
¥

= = =
+ ¥ – ∞ +

3

1

2 1
2 2 5.3 10 A/m

377
i

t i

E
H H

h
-¥

= = = = ¥

3. Depth of penetration,

6
6 7 7

2 2
3.81 10 m 3.81 m

2 300 10 4 10 5.8 10
d m

wms p p
-

-= = = ¥ =
¥ ¥ ¥ ¥ ¥ ¥



  476

4. Conduction current density at the surface is

7 5 2
0 5.8 10 3.39 10 45 1966 45 A/mtJ Es -= = ¥ ¥ ¥ – ∞ = – ∞

5. At a distance x below the surface, the conduction current density is given as

J = J0e
–gx

  where 6 7 7 52 300 10 4 10 5.8 10 45 3.7 10 45jg wms p p -= = ¥ ¥ ¥ ¥ ¥ ¥ – ∞ = ¥ – ∞

5 5Re[ ] 3.7 10 cos 45 2.62 10g = ¥ ∞ = ¥

  So, at a distance, x = 0.01 ¥ 10–3 m, the conduction current density is

5 32.62 10 10 21966 45 144 45 A/mJ e
-- ¥ ¥= – ∞ = – ∞

6. According to the boundary condition, the surface current density is equal to the tangential 

component of the magnetic field. From the result of (2), we have the surface current density 

given as

K = 5.3 ¥ 10–3 A/m

7. Surface impedance is given as

6 7
3

7

2 300 10 4 10
45 45 6.39 10 45

5.8 10
SZ

p pwm
s

-
-¥ ¥ ¥ ¥

= – ∞ = – ∞ = ¥ – ∞ W
¥

8. Power loss per square metre of surface area is

2 5 2 7 6 8 2
ave

1 1
(3.39 10 ) 5.8 10 3.81 10 6.35 10 W/m

4 4
p E sd - - -= = ¥ ¥ ¥ ¥ ¥ = ¥

Example 5.48 The electric field intensity in radiation field of an antenna located at the origin 

of a spherical coordinate system is given by

0

sin cos
cos ( )E E t r a

r q
q q

w b= -

where E0, w and b are constants. Find:

1. the magnetic field associated with this electric field.

2. the Poynting vector, and 

3. the total power radiated over a spherical surface of radius r centered at the origin.

Solution:

1. From Maxwell’s equation,

B
E

t

∂— ¥ = -
∂
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or

2

0

1 1 1

sinsin

sin
0 cos ( ) 0

ra a a
r rr

B

t r

rE t r
r

q fqq

q f

q
w b

∂ ∂ ∂ ∂- =
∂ ∂ ∂ ∂

-

or 0 sin cos sin ( )
EB

t r a
t r f

b
q q w b

∂- = -
∂

Integrating with respect to t,

0 sin cos cos ( )
E

B t r a
r f

b
q q w b

w
= -

\ Magnetic field is given as

0

0

sin cos cos ( )
E

H t r a
r f

b
q q w b

m w
= -

2. The Poynting vector is given as

0

0

0

sin cos
0 cos ( ) 0

0 0 sin cos cos ( )

ra a a

P E H E t r
r

E
t r

r

q f

q q
w b

b
q q w b

m w

= ¥ = -

-

\
2

2 2 20
2

0

sin cos cos ( ) r

E
P t r a

r

b
q q w b

m w
= -

3. Total power radiated

2 2 2 2
2 20

2
00 0

2
2 2 20

0 0

2
20

0

sin cos
cos ( ) sin

2
cos ( ) sin cos

8
cos ( )

15

S

E
W P dS t r r d d

r

E
t r d

E
t r

p p

q f

p

q

b q q
w b q q f

m w

pb
w b q q q

m w

pb
w b

m w

= =

=

= ◊ = -

= -

= -

Ú Ú Ú

Ú

Example 5.49 A uniform plane wave of frequency ‘f’ is normally incident from air onto a thick 

conducting sheet with conductivity s, and e = e0, m = m0. Show that the proportion of power transmitted 

into the conductor (and then dissipated into heat) is given approximately by

04 8tr s

in

P R

P

we

h s
= = , Rs = surface resistance
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Calculate this quantity for f = 1GHz and copper, s = 5.8 ¥ 107 Siemens/m.

Solution For a good conductor, 
0 1

we

s
<<

So,

0

0

0 0

0

2
1

2
SR

wm
wes

h sm
e

= = <<

So, the complex characteristic impedance for a good conductor is

(1 )SR jh = +

or
0 0

(1 ) 1SR
j

h
h h

= + <<

\ Transmission coefficient,

0 0

2 2h h
t

h h h
= ª

+

\ Reflection coefficient,

0

2
( 1) 1

h
t

h
G = - = -

So, the power transmission coefficient is

2 2 2

0

0

0

1 | | 1 | 1| 1 1 | | 2 Re{ } 2Re{ } (neglecting higher term as )

2
2Re

4
( (1 ))

4
2

tr

in

S
S

P

P

R
R j

t t t t t

h

h

h
h

we

s

= - G = - - = - - + = <<

È ˘= Í ˙Î ˚

= = +

=

\ 0

0

4 8tr S

in

P R

P

we

h s
= =

For copper at 1 GHz, the power transmission coefficient is

9 12
0 5 3

7

8 8 2 1 10 8.854 10
8.76 10 8.76 10 %

5.8 10

tr

in

P

P

we p

s

-
- -¥ ¥ ¥ ¥ ¥

= = = ¥ = ¥
¥
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5.13 RADIATION PRESSURE

The electromagnetic wave transports not only energy but also momentum, and hence can exert a 

pressure, known as radiation pressure on a surface due to the absorption and reflection of the momentum 

by the surface.

Radiation Pressure for Perfectly Absorbing Body Radiation pressure is defined as the 

force per unit area exerted by electromagnetic radiation, and is given by,

rad

| |
d

S
P U

c

· Ò
= · Ò = [using Eq. (5.49)]

where, dU· Ò  is the time-averaged electromagnetic energy density, | |S· Ò  is the magnitude of time-

averaged Poynting vector and c is the speed of light.

We consider a plane electromagnetic wave propagating in free space and incident normally on the 

surface of a perfectly absorbing body.

Thus, the energy incident per second on a unit area of the surface is the energy contained in a 

cylinder of unity cross-sectional area and height c

\ dW U c= · Ò

where, dU· Ò  is the time-averaged electromagnetic energy density and c is the speed of light.

Also, the electromagnetic radiation consists of photons, each of which has the energy as given

Energy of a photon = hu = mc2 (By Einstein’s relation) 

where h is Planck’s constant and u is the frequency of the radiation.

Thus, the energy of the electromagnetic energy per second W hu= Â

Therefore, the momentum of all the photons = 
d

d

U ch
mc U

c c

u · Ò
= = = · ÒÂ Â

This is the rate of loss of momentum since the photons (or radiation) are completely absorbed by the 

surface. By Newton’s second law of motion, the radiation exerts an equal and opposite force on the unit 

area of the surface; which is the radiation pressure.

Thus, radiation pressure is given as

2 * *
rad 0

| | 1 1
| | Re[ ]

2 4d

S
P U E E D B H

c
e

· Ò
= · Ò = = = ◊ + ◊ (5.50)

Radiation Pressure for Perfectly Reflecting Body If the surface is a perfectly reflecting 

one, the velocity of the incident radiation changes from +c to –c and thus, the radiation pressure will be 

twice that of a perfectly absorbing surface. Thus, the radiation pressure for perfectly reflecting surface 

is given as

2 * *
rad 0

| | 1
2 2 | | Re[ ]

2d

S
P U E E D B H

c
e

· Ò
= · Ò = = = ◊ + ◊ (5.51)

Example 5.50 A plane electromagnetic wave with the E  field amplitude 1 mV travelling in 

vacuum falls normally on a surface and is totally reflected. Calculate the radiation pressure exerted on 

the surface.

Solution The radiation pressure is given as

2 12 3 2 6
rad 0 02 | | 8.854 10 (1 10 ) 8.854 10 PadP U Ee - - -= · Ò = = ¥ ¥ ¥ = ¥



  480

Summary

If a physical phenomenon that occurs at one place at a given time is reproduced at other places at 

later times, the time-delay being proportional to the space separation from the first location, then the 

group of phenomena constitutes a wave.

Three dimensional wave equations (Helmholtz equations) in terms of electric and magnetic fields 

are given as

2 2
2 2

2 2
0 and 0

E E H H
E H

t tt t
me ms me ms

∂ ∂ ∂ ∂— - - = — - - =
∂ ∂∂ ∂

For perfect dielectric medium, the wave equations reduce to

2 2
2 2

2 2
and

E H
E H

t t
me me

∂ ∂— = — =
∂ ∂

For free space, the wave equations reduce to

2 2
2 2

0 0 0 02 2
and

E H
E H

t t
m e m e

∂ ∂— = — =
∂ ∂

For time-harmonic fields, the wave equations reduce to

2 2 2 20 and 0S S S Sg g— - = — - =E E H H

where, g is defined as the propagation constant.

( ) ( )j j jg wm s we a b= + = +

The real part of the propagation constant (a) is defined as the attenuation constant (Neper/m). It is 

given as

( )2

1 1 in general
2

for lossy dielectric
2
0 for perfect dielectric

0 for free space

for good conductors
2

me s
a w

we

ms
e

wms

È ˘
Í ˙= + -
Í ˙Î ˚

=

=
=

=

The imaginary part (b) is defined as the phase constant (Radian/m). It is given as

( )2

2

2 2

1 1 in general
2

1 for lossy dielectric
8

me s
b w

we

s
w me

w e

È ˘
Í ˙= + +
Í ˙Î ˚

Ê ˆ
= +Á ˜Ë ¯
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0 0

for perfect dielectric

for free space

for good conductors
2

c

w me

w
w m e

wms

=

= =

=

A wave is said to be a plane wave, if:

1. The electric field E  and magnetic field H  lie in a plane perpendicular to the direction of wave 

propagation.

2. The fields E  and H  are perpendicular to each other.

A plane wave is said to be uniform plane wave if

1. The electric field E  and magnetic field H  lie in a plane perpendicular to the direction of wave 

propagation.

2. The fields E  and H  are perpendicular to each other.

3. E  and H  are uniform in the plane perpendicular to the direction of propagation (i.e., E  and H

vary only in the direction of propagation)

Standing waves can be formed by confining the electromagnetic waves within two perfectly 

reflecting conductors. Unlike the travelling electromagnetic wave in which the electric and the 

magnetic fields are always in phase, in standing waves, the two fields are 90° out of phase.

The phase velocity of a wave is the rate at which the phase of the wave propagates in space. This is 

given as

1
pv f
w

l
b me

= = =

The velocity with which the overall shape of a wave amplitude, known as the modulation or envelope 

of the wave, propagates through a medium is known as the group velocity or energy velocity of the 

wave. This is given as

g

d
v

d

w w
b b

D= =
D

The intrinsic impedance of the wave is defined as the ratio of the electric field and magnetic field 

phasors (complex amplitudes). It is given as

( )
( )1

1/4
2

in general

1
tan for lossy dielectric

2

1

for perfect dielectric

jE

jH

wm
h

s we

m
se
we

s
we

m

e

-

= =
+

= <
È ˘

+Í ˙
Î ˚

=
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0

0

120 377 for free space

45 for good conductors

m
p

e

wm

s

= = = W

= – ∞

Velocity of electromagnetic wave propagation is given as

2

2 2

8

0 0

1
1 for lossy dielectric

8

1
for perfect dielectric

1
3 10 m/s, speed of light; for free space

2
for good conductors

v

c

w
b

s

w eme

me

m e

w
ms

=

È ˘
= -Í ˙Î ˚

=

= = = ¥

=

The phenomenon that the alternating fields and hence currents are confined within a small region of 

a conducting medium inside the surface is known as the skin effect and the small distance from the 

surface of the conductor is known as skin depth. It is given as

( )2

1
in general

1 1
2

2
for good conductors

d

me s
w

we

wms

=
È ˘
Í ˙+ -
Í ˙Î ˚

=

The surface impedance of a conductor is defined as the ratio of the tangential component of the 

electric field to the tangential component of the magnetic field. The surface impedance for a thick 

conductor is

S

j j
Z

wmsg wm
h

s s s
= = = =

The real part of the intrinsic impedance is known as surface resistance or skin resistance, Rs (W/m2). 

It is given as

1

2SR
wm

sd s
= =

The ratio of the imaginary part of the complex permittivity (e≤) to the real part of the complex 

permittivity (e¢) is the ratio of the magnitude of the conduction current density to the magnitude 

of the displacement current density. This ratio is defined as the loss tangent or loss angle of the 

medium.
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conduction

displacement

| | | |
tan

| | | |

se s
q

we wee
¢¢ = = = =¢

s

s

E J

E J

The loss tangent gives a measure of how lossy a medium is. For a good (lossless or perfect) dielectric 

medium (s << we), loss tangent is very small. For a good conducting medium (s >> we), loss 

tangent is very large. For lossy dielectric, loss tangent is of the order of unity.

The polarisation of a uniform plane wave refers to the time-varying behaviour of the electric field at 

some point in space, i.e., the orientation of the electric field vector at a given instant of time in space.

A plane electromagnetic wave in which electric field vector vibrates harmonically along a fixed 

straight line perpendicular to the direction of wave propagation without changing its orientation 

is known as plane polarised electromagnetic wave. When two orthogonal plane polarised 

electromagnetic waves are superimposed, then the resultant vector rotates under certain conditions, 

giving rise to different polarisations like, linear, circular and elliptical.

If a plane electromagnetic wave is incident normally from medium 1 to medium 2, the reflection and 

transmission coefficients are given as

2 1

2 1

1 2

1 2

Reflectance, ; for electric field

; for magnetic field

h h

h h

h h

h h

-
G =

+
-

=
+

2

1 2

1

1 2

2
Transmittance, ; for electric field

2
; for magnetic field

h
t

h h

h

h h

=
+

=
+

The plane of incidence is the plane containing the incident wave and the normal to the interfacing 

surface.

The angle of incidence is defined as the angle between the direction of propagation and the normal 

to the boundary.

For a plane electromagnetic wave incident obliquely from medium 1 to medium 2, when the electric 

field vector E  is perpendicular to the plane of incidence, i.e., the electric vector is parallel to the 

boundary surface, it is called perpendicular or horizontal polarisation. On the other hand, when the 

electric field vector E  is parallel to the plane of incidence, i.e., the magnetic field is parallel to the 

boundary surface, it is called parallel or vertical polarisation.

The reflection and transmission coefficients for perpendicular polarisation are given as

22
1 1

12 1

2 1 22
1 1

1

cos sin
sin ( )

Reflection coefficient,
sin ( )

cos sin

r

i

E

E

e
q q

eq q

q q e
q q

e

- -
-

G = = =
+

+ -

2 1

2 1

2 sin cos
Transmittance,

sin ( )

q q
t

q q
=

+
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The reflection and transmission coefficients for perpendicular polarization are given as

22 2
1 1

1 11 2

1 2 22 2
1 1

1 1

cos sin
tan ( )

Reflection coefficient,
tan ( )

cos sin

r

i

E

E

e e
q q

e eq q

q q e e
q q

e e

- -
-

G = = =
+

+ -

2 1

1 2 1 2

2 sin cos
Transmittance,

sin ( ) cos ( )

q q
t

q q q q
=

+ -

For a plane electromagnetic wave incident on a plane boundary between two dielectric media having 

a different refractive indices, the angle of incidence at which transmittance from one medium to the 

other is unity, when the wave is linearly polarised with its electric vector parallel to the plane of 

incidence, is called Brewster’s angle. It is expressed as

2 2

1 1

tan B

h e
q

h e
= =

Total transmission or no reflection occurs when the angle of incidence is equal to the Brewster’s 

angle.

When the angle of refraction q2 is 
2

p
 (the largest possible value), the corresponding angle of 

incidence q1 is called the critical angle (qC). It is expressed as

2

1

sin C

h
q

h
=

Total reflection occurs for all incident angles greater than or equal to the critical angle.

If a plane wave is incident normally upon the surface of the conducting medium, the wave is entirely 

reflected. For field that varies with time, neither E  nor H  will exist within the conductor. Thus, in 

this case, where medium 1 is perfect dielectric and medium 2 is perfect conductor

Transmission coefficient, t = 0, and

Reflection coefficient, G  = –1

Hence, the amplitudes of E  and H  of reflected wave are same as those of the incident wave, but 

they differ in the direction of flow.

The Poynting vector can be thought of as representing the energy flux (in W/m2) of an electromagnetic

field. It is given as

S E H= ¥

The Poynting theorem states that the vector product, S E H= ¥  at any point is a measure of the rate 

of energy flow per unit area at that point. The direction of power flow is in the direction of the unit 

vector along the product ( )E H¥  and is perpendicular to both E  and H .

Radiation pressure is defined as the force per unit area exerted by electromagnetic radiation, and is 

given by 

rad

| |
d

S
P U

c

· Ò
= · Ò =

where,
dU· Ò  is the time-averaged electromagnetic energy density, | |S· Ò  is the magnitude of the 

time-averaged Poynting vector and c is the speed of light.
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Important Formulae

Three-Dimensional Wave Equation 2
2

2
0

E E
E

tt
me ms

∂ ∂— - - =∂∂
 and 

2
2

2
0

H H
H

tt
me ms

∂ ∂— - - =∂∂

Propagation constant jl a b= +

Attenuation constant

( )2

1 1
2

me s
a w

we

È ˘
Í ˙= + -
Í ˙Î ˚

Phase constant

( )2

1 1
2

me s
b w

we

È ˘
Í ˙= + +
Í ˙Î ˚

Phase velocity 1
pv f
w

l
b me

= = =

Group velocity
g

d
v

d

w
b

=

Intrinsic impedance
j

j

wm
h

s we
= +

Skin depth

( )2

1

1 1
2

d

me s
w

we

=
È ˘
Í ˙+ -
Í ˙Î ˚

Surface impedance

S

j
Z

wm
h

s
= =

Skin resistance
1

2SR
wm

sd s
= =

Poynting vector
S E H= ¥

Exercises

[NOTE: * marked problems are important university problems]

Easy

*1 The electric field intensity associated with a plane wave travelling in a perfect dielectric medium 

is given by

7( , ) 10 cos (2 10 0.1 )xE z t t zp p= ¥ -
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  Calculate the velocity of propagation. Write down an expression for the magnetic field intensity 

associated with the wave if m = m0.
8 710

2 10 m/s, ( , ) cos (2 10 0.1 )
80yH z t t zp p
p

È ˘¥ = ¥ -Í ˙Î ˚
*2. In a lossless medium for which h = 60 p, mr = 1, and

0.1 cos ( ) 0.5 sin ( ) A/mx yH t z a t z aw w= - - + -

  calculate er, w and E .

8 8 8[4;1.5 10 rad/s; 94.25 sin (1.5 10 ) 18.85 cos (1.5 10 ) V/m]x yE t z a t z a¥ = ¥ - + ¥ -

3. A uniform plane wave propagating in a medium has

82 sin (10 ) V/mz
yE e t z aa b-= -

  If the medium is characterised by er = 1, mr = 20 and s = 3 mho/m, find a, b and H .

( )61.4 861.4 Np/m; 61.4 rad/m; 69.1 sin 10 61.42 mA/m
4

z
xH e t z a

p-È ˘= - - -Í ˙Î ˚
Medium

4. For the copper coaxial cable of inner conductor of radius, a = 2 mm, and outer conductor of inner 

radius b = 6 mm and thickness t = 1 mm, calculate the resistance of 2 m length of the cable at DC 

and at 100 MHz. [3.583 mW; 0.5484 W]

5. What is the polarisation of the electric field vector of a uniform plane wave travelling in the 

z-direction represented by

  (a) E = E0(x + jy)e jw t   (b) E = E0(x + y)e jw t

  Justify your answer. [circular, linear]

6. What values of A and b are required if the two fields 6120 cos (10 ) yE t x ap p b= - V/m and 
6cos (10 ) zH A t x ap b= -  A/m satisfy Maxwell’s equations in linear, isotropic homogeneous 

medium where er = mr = 4 and a = 0. [A = 1, b = 0.042]

Hard

7. In free space, 

0.2 cos ( ) A/mzH t x aw b= -
  Find the total power passing through (a) a square plate of side 10 cm on the plane x = z = 1; (b) a 

circular disc of radius 5 cm on the plane x = 1.  [0; 59.22 mW]

8. Given a uniform plane wave in air as

40 cos ( ) 30 sin ( ) V/mi x yE t z a t z aw b w b= - + -

(a) Find iH .

(b) If the wave encounters a perfectly conducting plate normal to the z-axis at z = 0, find the 

reflected wave rE  and rH .

(c) What are the total E  and H  fields for z £ 0?

(d) Calculate the time-average Poynting vectors for z £ 0 and z ≥ 0.

1 1
sin ( ) cos ( ) mA/m;

4 3

40 cos ( ) 30 sin ( ) V/m

1 1
cos ( ) sin ( ) mA/m

3 4

i x y

r x y

r y x

H t z a t z a

E t z a t z a

H t z a t z a

w b w b
p p

w b w b

w b w b
p p

È ˘= - - + -Í ˙
Í ˙= - + - +Í ˙
Í ˙= + - +Í ˙Î ˚
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*9. A uniform plane wave in air with

8 cos ( 4 3 ) V/myE t x z aw= - -

  is incident on a dielectric slab (z ≥ 0) with mr = 1.0, er = 2.5, s = 0. Find:

(a) The polarisation of the wave

(b) The angle of incidence

(c) The reflected E  field

(d) The transmitted H  field.

  [Perpendicular polarisation; 53.13°; 83.112 cos (15 10 4 3 ) V/mr yE t x z a= - ¥ - +
  8( 17.69 10.37 ) cos (15 10 4 6.819 ) mA/mt x zH a a t x z= - + ¥ - - ]

10. In spherical coordinates, the spherical wave

100 0.265
sin cos ( ) (V/m) sin cos ( ) (A/m)E t r a H t r a

r rq fq w b q w b= - = -

  represents the electromagnetic field at large distances r from a certain dipole antenna in free space. 

Find the average power crossing the hemispherical shell r = 1 km, 0 £ q £ p/2. [55.5 W]

11. The electric field intensity in radiation field of an antenna located at the origin of a spherical 

coordinate system is given by

0

sin
cos ( )E E t r a

r q
q

w b= -

  where, E0, w and b are constants. Find:

(a) the magnetic field associated with this electric field.

(b) the Poynting vector.

(c) the total power radiated over a spherical surface of radius r centered at the origin.

Review Questions

[NOTE: * marked questions are important university questions.]

1. Derive the general solution of a wave equation.

2. Write short notes on the following:

(a) Phase velocity and group velocity

(b) Characteristic impedance

(c) Standing wave ratio.

*3. Discuss the wave propagation in:

(i) a lossy dielectric, 

(ii) a conductor.

  Derive relevant equations.

*4 Assuming that there is no accumulated free charge, (i) write Maxwell’s equations in conductors, 

and (ii) write plane wave solutions to obtain an expression for the skin depth.

5. Derive the basic equations for electromagnetic waves in free space in terms of E and H.

Or,

  Write Maxwell’s equations for vacuum, and derive the wave equation for the electric and 

magnetic fields in vacuum.

(a) What is a wave? Deduce the equation for the propagation of plane electromagnetic waves in 

free space.
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*(b) What are the properties of a uniform plane wave? Show that the electric and magnetic 

field in the uniform plane wave will not have any component in the direction of the wave 

propagation.

  Or,

  Show that a uniform plane wave is a TEM wave.

  Or,

  Show that for a plane electromagnetic wave in free space, the unit vector in the direction of 

propagation, the electric field vector and the magnetic field vector are mutually perpendicular.

(c) Define and draw a neat diagram of an electromagnetic plane wave.

*(d) Show that the plane electromagnetic waves in free space travel with the velocity c.

*(e) Prove that the ratio of the (real) amplitudes of electric and magnetic fields (plane waves) is 

equal to the velocity of light in appropriate units.

*(f) A plane polarised wave is travelling along z-axis. Show graphically the variation of E and H

with z.

*6.  (a)  A plane electromagnetic wave is incident normally on a metal of electrical conductivity s.

Show that the electromagnetic wave is damped inside the conductor and find the skin depth.

  Or,

  Prove that in an imperfect dielectric medium of weak electrical conductivity s, the

electromagnetic wave is damped. Find expressions for the refractive index and the extinction 

coefficient in such a medium.

(b)  Explain ‘Skin effect’ in a conductor. Show that for a good conductor the skin depth is lm/2p,

where lm is the wavelength in the medium.

  Or,

  A plane electromagnetic wave is incident on a conductor of conductivity s. Derive an 

expression for the ‘skin depth’. What is its significance?

  Or,

  What is the skin effect? Define skin depth. Show that in case of semi-infinite solid conductor, 

the skin depth d is given by 2
d

wms
= , where w, m and s have usual significance.

(c) The term ‘good conductor’ and ‘poor conductor’ depend on frequency. Justify the statement.

(d) Introduce the complex index of refraction and explain the significance of its real and 

imaginary parts.

*7. What is ‘intrinsic impedance’? Derive an expression for it. A plane polarised wave is travelling 

along z-axis. Show that Ey /Hz = 377 W.

  Or,

  Show that for a lossy dielectric, the intrinsic impedance is given by, 
j

j

wm
h

s we
=

+
.

8. Establish the boundary conditions that must be satisfied by the field vectors when an 

electromagnetic wave is incident at the interface between two dielectric media.

9. Obtain the Poynting theorem for the conservation of energy in electromagnetic fields and discuss 

the physical meaning of each term in the resulting equation. Also, bring the Poynting theorem in 

complex form.

  Or,

  What is Poynting vector? Find the expression of Poynting vector. What is the physical 

interpretation of this vector?
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10. (a)   A current flows down a resistive wire of length l and radius r, subjected to a potential V.

Calculate the energy per unit time delivered to the wire using Poynting vector and show that 

it is equivalent to Joule’s heat loss.

(b) Considering a linearly polarised plane harmonic electromagnetic wave propagating in 

vacuum, show that the Poynting vector is given by the product of the phase velocity and the 

electromagnetic energy density.

  Or,

* Show that the ratio of Poynting’s vector to energy density is £ 3 ¥ 108 m/s.

(c) For a plane monochromatic electromagnetic wave propagating in a homogeneous dielectric, 

show that the time-averaged electric and magnetic energy densities are equal.

11. Find the mean value over a period for the product of the real parts of two complex periodic 

quantities A and B. Hence show that the average intensity of the energy flow in a harmonic 

electromagnetic field [when E  and H  vary as exp(–jw t] can be represented (in SI units) by 

*1
Re( )

2
S E H= ¥ , where *H is the complex conjugate of H .

  Or,

  Show that average energy density in a harmonic electromagnetic field is 

  

* *1
Re[ ]

4
u E D H B· Ò = ◊ + ◊

  where *D  and *B  are complex conjugates of D  and B .

*12. Show that in a conductor, the electric and the magnetic fields are not in phase and that the energy 

is not shared equally between the electric and the magnetic fields.

  Or,

  Show that for an electromagnetic wave propagating in a conducting medium, the density of 

magnetic energy is greater than that of electric energy.

  Or,

  Show that in a conductor, the magnetic field lags the electric field in time but leads the electric 

field in position.

  Or,

  Show that the magnetic field lags the electric field in time by a phase angle in an electromagnetic 

field propagating in a conductor. Obtain an expression for the phase angle.

13. (a)   Write Ampere’s law of magnetomotive force. What is the deficiency of this law? How is it 

corrected by introducing the concept of displacement current?

(b) Define electromagnetic energy density and Poynting vector S . What is the dimension of S ?

(c) Starting from Maxwell’s equations show that in a nonconducting medium, 
2

2
2

E
E

t
me

∂— -
∂where m and e are the permeability and the permittivity of the medium.

14. (a)   (i) Write the two equations of Maxwell which can be obtained from Ampere’s law and 

Faraday’s law of electromagnetic induction. (ii) Using these equations show that 

1
div( ) ( )

2
E H E D B H J E

t

∂¥ = - ◊ + ◊ - ◊
∂

  in a linear medium, with B Hm=  and D Ee= . Give physical interpretations of the terms 

on the two sides of the above equation.

(b) The wave equation in a homogeneous linear medium with zero charge density and 

conductivity s is given by
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2
2

2
0

E E
E

tt
me sm

∂ ∂— - - =
∂∂

  (i) Obtain the solution for a plane wave with wavefront parallel to the y-z plane. (ii) Explain 

skin depth.

(c) Deduce an expression for the velocity of propagation of a plane electromagnetic wave 

propagating through a medium of dielectric constant e and relative permeability m.

15. Obtain the differential equations for the propagation of an electromagnetic wave in a conducting 

medium.

16. Write Maxwell’s equations in a non-material medium and discuss the physical law implied by 

each of them. How would these equations be modified if magnetic monopoles existed?

17. Write Maxwell’s equations in a non-conducting medium. Obtain plane wave solutions for E  and 

B. What is the relationship between the refractive index and the propagation constant?

18. Write short notes on:

(a) Poynting’s theorem. 

(b) Waves in conducting media.

(c) Skin effect.

19. Express Poynting’s theorem in the form

0
U

S
t

∂ + — ◊ =
∂

  where
0

1
( )S E B

m
= ¥  and U is the total energy density. Comparing this with the equation of 

continuity, give an interpretation of S .

20. Prove that the average Poynting vector is given by 
2

avg

1
( ) ( )

2 m eP H R h= . Find the value of Pavg

for free space, dielectric medium and conducting medium.

21. Define polarisation of electromagnetic waves. What do you mean by linearly polarised, circularly 

polarised, and elliptically polarised waves? Give the expression for the E field in each case.

22. Explain what you understand by perpendicular polarisation and parallel polarisation.

  A uniform plane electromagnetic wave is incident at an angle q1 at the surface of discontinuity 

between two homogeneous isotropic dielectrics with permittivity e1 and e2, e2 being the 

permittivity of the dielectric into which the wave gets refracted at an angle q2. If Ei, Er and Et are 

the electric intensities respectively of the incident, reflected and transmitted waves, show that 

(a) Reflection co-efficient for parallel polarisation is given by 1 2

1 2

tan ( )

tan ( )
r

i

E

E

q q

q q

-
=

+
.

(b) Reflection co-efficient for perpendicular polarisation is given by 2 1

2 1

sin ( )

sin ( )
r

i

E

E

q q

q q

-
=

+
.

Or,

(a) A plane polarised electromagnetic wave is incident on an interface of two dielectric media. 

Find the relations between the angles of incidence, reflection and refraction. Also, find the 

reflection and transmission coefficients.

(b) Assuming the electric vector to lie in the plane of incidence, calculate the reflection 

coefficient. Hence, prove Brewster’s law.

(c) Deduce the laws of refraction for plane waves at the boundary of two dielectrics from 

electromagnetic theory.

(d) What is Brewster’s angle?
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(e) For refraction of an electromagnetic wave from a denser to a rarer medium, explain the term 

‘critical angle of incidence’. What happens when the angle of incidence exceeds the critical 

value? How do the reflectances for s and p polarisations vary with the angle of incidence?

(f) Define and distinguish between Brewster’s angle and critical angle with reference to an 

electromagnetic wave incident on a separating surface between two perfect dielectrics. 

Show that critical angle is normally greater than Brewster’s angle.

(g) If an electromagnetic wave is incident on the surface of separation of two media, is it possible 

to have only a reflected wave, or only a refracted wave? Give reasons for your answer.

23. What is “radiation pressure”? Show that for a plane wave falling on an absorbing surface, the 

radiation pressure is the mean energy density of the electromagnetic radiation.

Multiple Choice Questions

1. Poynting vector has the unit of:

(a) Watt. (b) Watt/metre. (c) Watt/m2.  (d) None of the above.

2. The direction of propagation of electromagnetic waves is given by the direction of

(a) Vector E. (b) Vector H.  (c) Vector (E ¥ H). (d) None of the above.

3. The quantity 
0 0

1

e m
 in SI units has the 

(a) value 330 m/s (b) value 1.73 ¥ 104 (c) dimensions LT-1 (d) None of the above.

4. A plane electromagnetic wave in free space is specified by the electric field xa [20 cos(wt – bz) + 

5 cos(w t + b z)] V/m. The associated magnetic field is

(a)
120

ya

p
[20 cos (w t – b z) + 5 cos (w t + b z)] A/m

(b)
120

ya

p
[20 cos (w t – b z) –  5 cos (w t + b z)] A/m

(c)
120

xa

p
[20 cos (w t – b z) + 5 cos (w t + b z)] A/m

(d)
120

xa

p
 [20 cos (w t – b z) – 5 cos (w t + b z)] A/m

5. The velocity of the plane wave sin2 (w t – bx) is

(a)
2w
b

 (b)
2

w
b

(c)
2

2

w

b
(d)

w
b

6. When the load impedance is equal to the characteristic impedance of the transmission lines, then 

the reflection coefficient and standing wave ratio are, respectively

(a) 0 and 0 (b) 1 and 0  (c) 0 and 1 (d) 1 and 1

7. If the frequency of a plane electromagnetic wave increases four times, the depth of penetration, 

when the wave is incident normally on a good conductor will

(a) increase by factor of two. (b) decrease by a factor of four.

(c) remain same.    (d) decrease by a factor of two.
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8. The intrinsic impedance of a good conducting medium is given by (symbols have the usual 

meaning)

(a) 45
mw
s

– - ∞ (b) 45
ws
m

– ∞ (c) 45
mw
s

– ∞ (d) 0msw– ∞

9. A plane monochromatic electromagnetic wave travels in a perfect conducting medium, which is 

charge-free and external current free. Then,

(a) E field lags B field by p/4.  (b) E field leads B field by p/4.

(c) E and B fields are co-phasal.  (d) E and B fields differ in phase by p/2.

10. Which of the following properties pertain to a circularly polarised wave having no component of 

electric field in the x-direction but having components Ey and Ez?

1. Ey and Ez are equal in magnitude.

2. Direction of resultant electric vector varies with time.

3. Direction of resultant magnetic vector varies with time.

4. Ey and Ez have a time phase difference of 90°.

  Select the correct answer from the codes given below.

(a) 2 and 4.  (b) 1 and 3.  (c) 1, 3 and 4.  (d) 1 and 2.

11. A uniform plane wave travelling in a perfect dielectric is incident normally on the surface of a 

perfect conductor. Then

(a) The wave is transmitted into the conductor without attenuation.

(b) 50% of the incident wave is transmitted and 50% is reflected.

(c) A standing wave is set up in the conducting medium.

(d) A standing wave is set up in the dielectric.

12. The electric field of a uniform plane wave is given by

E = 10 cos (3p ¥ 108t p z)ax

  Match List I with List II pertaining to the above wave and select the correct answer using the codes 

given below the lists:

List I (Parameters) List II (Values in MKS units)

A. Phase velocity 1. 2

B. Wavelength 2. 3.14

C. Frequency 3. 377

D. Phase constant 4. 1.5 ¥ 108

5. 3.0 ¥ 108

Codes: (a) A B C D

  5 4 3 2

(b) A B C D

  3 4 2 1

(c) A B C D

  4 3 1 2

(d) A B C D

  5 1 4 2
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13. List II gives the mathematical expression for the variables given in List I. Match List I with List II 

and select the correct answer using the codes given below the lists:

List I List II 

A. Intrinsic impedance
1.

1

me

B. Velocity of wave propagation

2.
m
e

C. Skin depth
3.

1

fp ms

D. Attenuation constant
4.

1

f mw

5.
2

wms

Codes: (a) A B C D

  1 2 3 4

(b) A B C D

  2 1 4 5

(c) A B C D

  2 1 3 5

(d) A B C D

  1 2 5 3

14. The ratio of velocity of propagation of EM waves in an overhead transmission line and in a cable 

with a dielectric of permittivity 4, is

(a) 0.25  (b) 0.5  (c) 2.0 (d) 4.0

15. Match List I with List II and select the correct answer using the codes given below the lists.

List I

(Medium)

List II

(Expression for intrinsic impedance for plane wave propagation)

A. Loss-less dielectric
1.

j

j

wm
s ve+

B. Good conductor
2. ( )1

2
j
s

m e
we

+

C. Poor conductor
3. m e

D. Lossy

4. (1 )
2

j
wm
s

+
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Codes: (a) A B C D

  4 3 2 1

(b) A B C D

  4 3 1 2

(c) A B C D

  3 4 2 1

(d) A B C D

  3 4 1 2

16. The intrinsic impedance of free space is

(a) 377W (b) 0 0m e (c) 0

0

j
e

m
(d) 0

0

e

m

17. In the source free wave equation

2
2

0 0 02
0

E E
E

tt
m e me m ms

∂ ∂— - - =
∂∂

  The term responsible for attenuation of the wave is

(a)
0

E

t
m ms

∂
∂

   (b)
2

0 0 2

E

t
m e me

∂
∂

(c) 2E—   (d) 0

E

t
m ms

∂
∂

 and 
2

0 0 2

E

t
m e me

∂
∂

18. Three media are characterised by

1. r = 8, mr = 2, s = 0

2. r = 1, mr = 9, s = 0

3. r = 4, mr = 4, s = 0

  er is relative permittivity, mr is relative permeability and s is conductivity.

  The values of the intrinsic impedances of the media 1, 2 and 3, respectively are

19. For a perfect conductor, the field strength at a distance equal to the skin depth is X % of the field 

strength at its surface. The value of ‘X %’ is

(a) Zero  (b) 50%  (c) 36% (d) 26%

20. Consider the following statements:

  The characteristic impedance of a transmission line can increase with the increase in 

1. resistance per unit length

2. conductance per unit length

3. capacitance per unit length

4. inductance per unit length

  Which of these statements are correct?

(a) 1 and 2 (b) 2 and 3 (c) 1 and 4 (d) 3 and 4

21. The equation sin ( ) sin ( )x yE a t z a t zw b w b= - + -  represents

(a) a left circularly polarised wave (b) a right circularly polarised wave

(c) a linearly polarised wave  (d) an elliptically polarised wave
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22. A monochromatic plane electromagnetic wave travels in vacuum in the positive x direction (x, y,

z system of coordinates). The electric and magnetic fields can be expressed as

(a)
0 0( , ) cos ( ) ( , ) cos ( )y zE x t E kx t a H x t H kx t aw w= - = -

(b) ( )0 0( , ) cos ( ) ( , ) cos
2y zE x t E kx t a H x t H kx t a
p

w w= - = - -

(c) 0 0( , ) cos ( ) ( , ) cos ( )y zE x t E kx t a H x t H kx t aw w= - = - -

(d) ( )0 0( , ) cos ( ) ( , ) cos
2y xE x t E kx t a H x t H kx t a
p

w w= - = - - -

23. The incident wave on a lossless line carries an average power of 1.0 W. The load end reflection 

coefficient is 1/3. The average power absorbed by the load is

(a) 1/3 W  (b) 2/3 W  (c) 4/9 W (d) 8/9 W

24. Which one of the following is not true for waves in general?

(a) It may be a function of time only

(b) It may be sinusoidal or cosinusoidal

(c) It must be a funcion of time and space

(d) For practical reasons, it must be finite in extent.

25. What is the major factor for determining whether a medium is free space, lossless dielectric, 

lossy dielectric or good conductor?

(a) attenuation constant    (b) constitutive parameters (s, e, m)

(c) loss tangent   (d) reflection coefficient

26. In a certain medium, 810 cos (10 3 ) xE t y a= -  V/m. The medium is:

(a) free space    (b) perfect dielectric

(c) lossless dielectric   (d) perfect conductor

Answers

1. (c) 2. (c) 3. (c) 4. (b) 5. (d) 6. (c) 7. (d) 8. (c)

9. (d) 10. (c) 11. (d) 12. (d) 13. (c) 14. (c) 15. (c) 16. (a)

17. (d) 18. (c) 19. (c) 20. (c) 21. (c) 22. (a) 23. (c) 24. (a)

25. (c) 26. (c)



This chapter deals with the following topics:

■ Fundamentals of transmission lines

■ Mathematics of transmission lines

■ Input impedances in different types of transmission lines

■ Introduction of Smith chart

■ Concept of load matching

6
TRANSMISSION LINES

6.1 INTRODUCTION

A transmission line is a device used for transmission of electromagnetic energy guided by two 

conductors in a dielectric medium. Transmission lines may consist of a set of conductors, dielectrics 

or combination thereof.

6.2 TYPES OF TRANSMISSION LINES

Depending upon the construction, transmission lines are of various types as given below.

1. One-wire lines (single conductor over a conducting ground plane),

2. Two-wire parallel lines,

3. Twisted lines,

4. Coaxial lines,

5. Parallel plate or Planar lines,

6. Microstrip lines, and

7. Optical fibres.

Figure 6.1 shows the configurations of these lines.

6.3 TRANSMISSION LINE MODES

Transmission line mode is the distinct pattern of electric and magnetic field induced on a transmission 

line under source excitation.

Learning Objectives
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The field components in the direction of wave propagation are defined as longitudinal components

while those perpendicular to the direction of propagation are defined as transverse components.

Assuming the transmission line is oriented with its axis along the z-axis (direction of wave 

propagation), transmission line modes may be classified as follows.

1. Transverse electromagnetic (TEM) mode: In this mode, the electric and magnetic fields are 

transverse to the direction of wave propagation with no longitudinal components [Ez = Hz = 0].

  TEM modes cannot exist on single conductor guiding structures. TEM modes are sometimes 

called transmission line modes since they are the dominant modes on transmission lines. Plane 

waves can also be classified as TEM modes.

2. Quasi-TEM mode: This is the mode which approximates a true TEM mode for sufficiently low 

frequencies.

0 0
lim lim 0

Æ Æ
= =z z

f f
E H

3. Waveguide mode: In this mode, either Ez, Hz or both are non-zero. Waveguide modes propagate 

only above certain cutoff frequencies.

6.4 TRANSMISSION LINE PARAMETERS

A transmission line can be characterised by four parameters:

1. Resistance,

2. Inductance,

3. Capacitance, and

4. Conductance.

1. Resistance The resistance of a transmission line is uniformly distributed throughout the entire 

length of the transmission line. The value of the resistance depends upon the cross-sectional area of the 

line. This resistance is generally expressed as resistance per unit length (W/m).

Fig. 6.1 Configurations of typical transmission lines (a) one-wire lines, (b) two-wire parallel lines, (c) twisted 

lines, (d) coaxial lines, (e) planar lines, (f) microstrip lines, (g) optical fibre lines
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2. Inductance When the conductors of a transmission line carry some currents, the magnetic flux 

linkages per unit current give the inductance of the line. This inductance is also not a lumped parameter, 

but is uniformly distributed along the entire length of the line. This is also expressed as Henry/m.

3. Capacitance The capacitance exists between the parallel conductors of a transmission line 

separated by an insulating medium. This capacitance is also not a lumped parameter, but is uniformly 

distributed along the entire length of the line. This is also expressed as Farad/m.

4. Conductance Because of the lossy nature of the insulating medium, some amount of leakage 

current (displacement current) flows through it and this gives rise to the conductance of a transmission 

line. This conductance is uniformly distributed along the entire length of the length. This is also 

expressed as mho/m.

These four distributed parameters are constant for a particular transmission line and are known as 

primary line constants of a transmission line. The electrical design and performance of the transmission 

line depend on these line constants.

Apart from these primary line constants, there are few other constants related to a transmission line. 

These include the characteristic impedance (Z0), the propagation constant (g ), attenuation constant (a)

and phase constant (b). These constants are known as the secondary line constants. This may be noted 

that the secondary constants are fixed when frequency is fixed, but change with the change of frequency.

6.5  TRANSMISSION LINE EQUATIONS
(TELEGRAPHER’S EQUATIONS)

The telegrapher’s equations (or just telegraph equations) are a pair of linear differential equations 

which describe the voltage and current on an electrical transmission line with distance and time.

Transmission lines are typically electrically long (several wavelengths) such that we cannot 

accurately describe the voltages and currents along the transmission line using a simple lumped-

element equivalent circuit. We must use a distributed-element equivalent circuit which describes each 

short segment of the transmission line by a lumped element equivalent circuit.

The equivalent circuit of a short segment Dz of the two-wire transmission line may be represented 

by simple lumped-element equivalent circuit as shown in Fig. 6.2.

Fig. 6.2 Equivalent circuit of a short segment of a two-wire transmission line

Here,

R = series resistance per unit length (S/m) of the transmission line conductors,

L = series inductance per unit length (H/m) of the transmission line conductors (internal plus external 

inductance),
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G = shunt conductance per unit length (S/m) of the media between the transmission line conductors 

(insulator leakage current), and

C = shunt capacitance per unit length (F/m) of the transmission line conductors.

By KVL for the equivalent circuit, we get

( , ) ( , ) ( , ) ( , )
∂- D - D = + D
∂

V z t R zI z t L z I z t V z z t
t

or
( , ) ( , )

( , ) ( , )
+ D -∂- - =

∂ D
V z z t V z t

RI z t L I z t
t z

(6.1)

By KCL for the equivalent circuit, we get

( , ) ( , ) ( , ) ( , )
∂- D + D - D + D = + D
∂

I z t G zV z z t C z V z z t I z z t
t

or
( , ) ( , )

( , ) ( , )
+ D -∂- + D - + D =

∂ D
I z z t I z t

GV z z t C V z z t
t z

(6.2)

Taking limit as Dz Æ 0, the terms on the right hand side of the equations Eq. (6.1) and Eq. (6.2) become 

partial derivatives with respect to z as given.

( , ) ( , ) ( , )
∂ ∂- - =
∂ ∂

RI z t L I z t V z t
t z

(6.3)

( , ) ( , ) ( , )
∂ ∂- - =
∂ ∂

GV z t C V z t I z t
t z

(6.4)

For time-harmonic signals, the instantaneous voltage and current may be defined in terms of phasors 

such that

( )
( , ) Re{ ( ) }

, Re{ ( ) }

w

w

=
=

j t
S

j t
S

V z t V z e

I z t I z e

The derivatives of the voltage and current with respect to time yield jw times the respective phasor. 

Therefore, Eq. (6.3) and Eq. (6.4) give

( )
( ) ( )w- + = S

S

dV z
R j L I z

dz
(6.5)

( )
( ) ( )w- + = S

S

dI z
G j C V z

dz
(6.6)

Now, taking derivative of Eq. (6.5) and using Eq. (6.6), we get

2
2

2

( ) ( )
( ) ( )( ) ( ) ( )w w w g= - + = + + =S S

S S

d V z dI z
R j L R j L G j C V z V z

dzdz

or

2
2

2

( )
( ) 0g- =S

S

d V z
V z

dz
(6.7)

where ( )( )g a b w w= + = + +j R j L G j C  is the complex propagation constant.

Similarly, taking derivative of Eq. (6.6) and using Eq. (6.5), we get

2
2

2

( ) ( )
( ) ( )( ) ( ) ( )w w w g= - + = + + =S S

S S

d I z dV z
G j C R j L G j C I z I z

dzdz
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or

2
2

2

( )
( ) 0g- =S

S

d I z
I z

dz
(6.8)

These two equations are known as telegrapher’s equations.

The real part of the propagation constant (a) is the attenuation constant while the imaginary part (b)

is the phase constant. The general equations for a and b in terms of the per-unit-length transmission 

line parameters are

2 2 2 2 2 2 2

2 2 2 2 2 2 2

1
( )( )

2

1
( )( )

2

a w w w

b w w w

= - + + +

= - - + + +

RG LC R L G C

RG LC R L G C

(6.9a)

(6.9b)

The general solutions to the voltage and current wave equations, Eq. (6.7) and Eq. (6.8) are

– –
0 0

directed wave – directed wave

( ) g g+

+
= +z z

s S S
z z

V z V e V e

and

– –
0 0

+ directed wave directed wave

( ) g g+

-
= +z z

s S S
z z

I z I e I e

where,
0 0 0 0, , ,+ - + -

S S S SV V I I  are the wave amplitudes and are complex constants (phasors) which can be 

defined as

0 0 0 0| | | |j j+ -+ + - -= =v vj j
S S S SV V e V V e

0 0 0 0| | | |i ij j
S S S SI I e I I ej j+ -+ + - -= =

Thus, the instantaneous voltage and current as a function of position along the transmission line are 

given as

–
0 0( , ) Re{ ( ) } Re{| | | | }j jw a b w a b w+ -+ - -= = +v vj jj t z j z j t z j z j t

S S SV z t V z e V e e e e V e e e e

0 0( , ) | | cos( ) | | cos( )z z
S v S vV z t V e t z V e t za aw b f w b f+ - -

+ -= - + + + + (6.10a)

and

0 0( , ) Re{ ( ) } Re{| | | | }i ij jj t z j z j t z j z j t
S S SI z t I z e I e e e e I e e e ef fw a b w a b w+ -+ - - -= = +

0 0( , ) | | cos( ) | | cos( )z z
S i S iI z t I e t z I e t za aw b f w b f+ - -

+ -= - + + + + (6.10b)

Given the transmission line propagation constant, the wavelength and velocity of propagation are 

found using the same equations as for unbounded waves.

2p
l

b
=    

w
l

b
= =u f

6.6  CHARACTERISTIC IMPEDANCE OF 
TRANSMISSION LINE

Characteristic impedance of a transmission line is defined as the ratio of positively travelling voltage 

wave to current wave at any point on the line.
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The voltage and current wave equations are written as

0 0( ) g g+ - -= +z z
S S SV z V e V e

and

0 0( ) g g+ - -= +z z
S S SI z I e I e

Substituting these two equations in Eq. (6.5) and Eq. (6.6), respectively, we get

0 0 0 0

( )
( ) ( )

( )( )g g g g

w

g g w+ - - + - -

= - +

- + = - + +

S
S

z z z z
S S S S

dV z
R j L I z

dz

V e V e R j L I e I eor, (6.11)

and,

0 0 0 0

( )
( ) ( )

( )( )g g g g

w

g g w+ - - + - -

= - +

- + = - + +

S
S

z z z z
S S S S

dI z
G j C V z

dz

I e I e G j C V e V eor, (6.12)

Equating the coefficients of e–g z and eg z, we get,

0 0 0 0

0 0 0 0

( ) ( )

( ) ( )

g w g w

g w g w

+ + + +

- - - -
= + = +

- = + - = +
S S S S

S S S S

V R j L I I G j C V

V R j L I I G j C V

Hence, the characteristic impedance of the line is obtained as

0
0

0

w wg
g w w

+

+
+ +

= = = =
+ +

S

S

V R j L R j L
Z

G j C G j CI

and,

0
0

0

w wg
g w w

-

-
+ +-= - = - = - =
- + +

S

S

V R j L R j L
Z

G j C G j CI

\
0 0

0

0 0

+ -

+ -
+

= = - =
+

S S

S S

V V R j L
Z

G j CI I

w

w (6.13)

In general, transmission line characteristic impedance is a complex quantity and can be defined by

0 0 0= +Z R jX

where R0 is the resistive component of Z0

X0 is the reactive component of Z0

The voltage and current wave equations can be written in terms of the voltage coefficients and the 

characteristic impedance (rather than the voltage and current coefficients) using the relationships

0 0
0 0

0 0

+ -
+ -= = -S S
S S

V V
I I

Z Z

Then, the voltage and current equations become as follows.

0 0( ) g g+ - -= +z z
S S SV z V e V e (6.14a)
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0 0
0

1
( ) ( )g g+ - -= -z z

S S SI z V e V e
Z

(6.14b)

These equations have unknown coefficients for the forward and reverse voltage waves only since 

the characteristic impedance of the transmission line is typically known.

In the succeeding sections, we will find out the characteristic impedance of the line for two extreme 

cases, one for a lossless line and the other for a distortionless line.

*Example 6.1 A 300 m long line has the following constants: R = 4.5 kW, L = 0.15 mH, G = 60 

mho, C = 12 nF, operated at frequency 6 MHz. Find the propagation constant, characteristic impedance 

and velocity of propagation.

Solution Here, the line constant per unit length is obtained as follows.

3

3
7

12
11

3
3

4.5 10
15 /m

300

0.15 10
5 10 H/m

300

12 10
4 10 F/m

300

60 10
0.2 10 mho/m

300

-
-

-
-

-
-

¥
= = W

¥
= = ¥

¥
= = ¥

¥
= = ¥

R

L

C

G

6 62 2 6 10 12 10 rad/mw p p p= = ¥ ¥ = ¥f

So, the propagation constant is given as

6 7 3 6 11

( )( )

(15 12 10 5 10 )(0.2 10 12 10 4 10 )

0.19 66.95 (0.074 0.175) per m

- - -

= + +

= + ¥ ¥ ¥ ¥ + ¥ ¥ ¥
= – ∞= +

R j L G j C

j j

j

g w w

p p

The characteristic impedance is given as

6 7

3 6 11

15 12 10 5 10
126.71 15.485

0.2 10 12 10 4 10

w p
w p

-

- -
+ + ¥ ¥ ¥

= = = – - ∞ W
+ ¥ + ¥ ¥ ¥

R j L j
Z

G j C j

Velocity of propagation is

8

7 11

1 1
2.236 10 m/s

5 10 4 10- -
= = = ¥

¥ ¥ ¥
v

LC

 Example 6.2 A lossy cable with R = 2.5 W/m, L = 10 mH/m, C = 10 pF/m and G = 0 operates 

at f = 1GHz. Find the attenuation constant of the line.

Solution Here, R = 2.5 W/m, L = 10 mH/m, C = 10 pF/m, G = 0, f = 1 GHz
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The propagation constant is given as

6 6 6 12

( )( )

(2.5 2 1 10 10 10 ) ( 2 1 10 10 10 )

0.00125 0.0628

g a b w w

p p- -

= + = + +

= + ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥
= +

j R j L G j C

j j

j

Hence, the attenuation constant of the line is

10.00125 (m )a -=

6.6.1 Lossless Transmission Line

A transmission line is said to be lossless if

— the conductors of the line are perfect, i.e., the conductors have infinite conductivity and zero 

resistance (s = , R = 0), and

— the dielectric medium between the conductors is ideal, i.e., the medium has zero conductivity and 

infinite resistance (s = 0, G = 0).

The equivalent circuit for a segment Dz of a lossless transmission line reduces to the circuit as shown 

in Fig. 6.3.

Fig. 6.3 Equivalent circuit of a segment of a lossless two-conductor transmission line

The propagation constant of the lossless line (with R = 0 and G = 0) is modified as

( )( )g a b w w w= + = + + =j R j L G j C j LC

\ 0a b w= = LC

Thus, the characteristic impedance of the lossless transmission line is purely real and given by

0

w
w

+
= =

+
R j L L

Z
G j C C

The voltage and current equations for the lossless transmission line are given as

0 0( ) b b+ - -= +j z j zV z V e V e

0 0
0

1
( ) ( )b b+ - -= -j z j zI z V e V e

Z
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The velocity of propagation on the lossless line is

1w
b

= =u
LC

*Example 6.3 A transmission line with air as dielectric has the characteristic impedance of 60 

W and phase constant of 4 rad/m at 500 MHz. Calculate the inductance per metre and the capacitance 

per metre of the line.

Solution Here, Z0 = 60 W; b = 4 rad/m; f = 500 MHz

An air line is regarded as a lossless line as s = 0. Hence,

0 and 0R G a= = =

\
0 0= = L

Z R
C

\ g b w= = LC

\

0
/ 1

b ww
= =

L CZ

CLC

So, the capacitance is given as

6
0

4
21.2 pF/m

2 500 10 60

b
w p

= = =
¥ ¥ ¥

C
Z

The inductance is given as

2 2 12
0 (70) 68.2 10 334.2 mH/m-= = ¥ ¥ =L Z C

*Example 6.4 In a lossless transmission line, the velocity of propagation is 2.5 ¥ 108 m/s. 

Capacitance of the line is 30 pF/m, find:

(a) inductance per metre of the line.

(b) phase constant at 100 MHz.

(c) characteristic impedance of the line.

Solution Here, v = 2.5 ¥ 108 m/s; C = 30 ¥ 10–12 F; f = 100 MHz

(a) We have, 
2 12 8 2

1 1 1
533 nH/m

30 10 (2.5 10 )-= fi = = =
¥ ¥

v L
CvLC

(b) We have, 
6

8

2 2 100 100
2.51 rad/m

2.5 10

p pw
b

b
¥ ¥

= fi = = =
¥

f
v

v

(c) Characteristic impedance of the line is given as

9

0 12

533 10
133.29

30 10

-

-
¥

= = = W
¥

L
Z

C
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6.6.2 Distortionless Transmission Line

Waveform Distortion When the received signal is not identical with the transmitted signal, the 

signal is said to be distorted. There are two types of waveform distortion:

1. Frequency Distortion, and

2. Phase Distortion.

1. Frequency Distortion During the transmission of a signal on a transmission line, it gets 

attenuated through attenuation constant a. It is known that a is a function of frequency.

2 2 2 2 2 2 21
( )( )

2
a w w w= - + + +RG LC R L G C

Hence, different frequencies transmitted along the line will then be attenuated to different extent. 

The received waveform will not be identical with the input waveform. This is known as frequency 

distortion.

2. Phase Distortion The phase constant is given as

2 2 2 2 2 2 21
( )( )

2
a w w w= - - + + +RG LC R L G C

and velocity is given as

w
b

=u

Since the phase constant of the line, b is a complicated function of frequency, all the frequencies 

applied to the transmission line will not have the same time of transmission; some frequencies being 

delayed more than the other. The received waveform will not be identical with the input waveform. 

This is known as delay or phase distortion.

A distortionless line has no frequency and phase distortions. For a distortionless line, a (and velocity u)

should not be a function of frequency and b should be a direct function of frequency.

A transmission line can be made distortionless (linear phase constant) by designing the line such that 

the per unit length parameters satisfy the relation given as

=R G

L C

NOTE

Derivation of Heaviside’s condition for Distortionless Line

We have, ( )( )j R j L G j Cg a b w w= + = + +
\ 2 2( ) ( )( )j R j L G j Cg a b w w= + = + +
or, 2 2 22 ( )j RG LC j CR LGa b ab w w- + = - + +

Equating the real and imaginary parts,

2 2 2

2 ( )

RG LC

CR LG

a b w

ab w

- = -
= +
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Solving for a and b,

2 2 2 2 2

2 2 2 2 2

( ) ( )

2

( ) ( )

2

RG LC RG LC CR LG

LC RG RG LC CR LG

w w w
a

w w w
b

- + - + +
=

- + - + +
=

Now a will be independent of W if the term under the second radical be reduced to (RG + w2 LC).

w w w

w w w

w

\ - + + = +

- + =

- =
- =

=

2 2 2 2 2 2

2 2 2 2 2 2 2

2 2

( ) ( ) ( )

or 2 0

or ( ) 0

or ( ) 0

or

RG LC CR LG RG LC

R C RCLG L G

RC LG

RC LG

RC LG

\
R G

L C
=

Similarly, b will be a direct function of w if the term under second radical be reduced to (RG + w2 LC). 

This again gives the same result.

Hence, the condition of a distortionless line is

=R G

L C

The propagation constant of a distortionless line is given as

{ }2

( )( ) 1 1

1

1

g a b w w w w

w

w w

w w w

Ê ˆ Ê ˆ= + = + + = + +Ë ¯ Ë ¯

Ê ˆ= + =Ë ¯

Ê ˆ= + = +Ë ¯

= + = + = +

L C
j R j L G j C R j G j

R G

L L C
RG j

R R G

L L
RG j RG j RG

R R

G C
RG j L RG j L RG j LC

R L

\ a b w= =RG LC

Although the shape of the signal is not distorted, the signal will suffer attenuation as the wave propagates 

along the line since the distortionless line is a lossy transmission line.

The characteristic impedance of the distortionless transmission line is given by

0 = =R L
Z

G C

The velocity of propagation on the distortionless line is

1w
b

= =u
LC
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For most practical transmission lines, we find that RC > GL. In order to satisfy the distortionless line 

requirement, series loading coils are typically placed periodically along the line to increase L.

 Example 6.5 A distortionless line has Z0 = 60 W, a = 20 mNp/m, v = 0.6c where c is the speed 

of light in a vacuum. Find R, L, G, C and l at 100 MHz.

Solution For distortionless line, =R G

L C

\ 0
0

, a= = = =L C R
Z RG R

C L Z

\ 3
0 20 10 60 1.2 /ma -= = ¥ ¥ = WR Z

Also,
0

1 1 1
,= \ = ¥ =v C

v
Z L LLC LC

\ 0
8

60
333 nH/m

0.6 3 10
= = =

¥ ¥
Z

L
v

\
3 22 (20 10 )

333 mho/m
1.2

-¥
= = = ma

G
R

Also, 0

1 1= ¥ =L
vZ

C CLC

\ 8
0

1 1
92.59 pF/m

0.6 3 10 60
= = =

¥ ¥ ¥
C

vZ

The wavelength is, 
8

6

0.6 3 10
1.8 m

100 10

v

f
l

¥ ¥
= = =

¥

6.7 INPUT IMPEDANCE OF TRANSMISSION LINE

Input impedance is the line impedance seen at the beginning of a transmission line. The input impedance 

at any point on the transmission line is given by the ratio of voltage to current at that point.

We find the input impedance for the following three types of transmission lines:

1. Finite Lossy Transmission Line,

2. Finite Lossless High-frequency Transmission Line, and

3. Infinite (Lossy and Lossless) Transmission Line.

6.7.1 Finite Lossy Transmission Line

We have the general voltage and current equations given by

0 0( ) g g+ - -= +z z
S S SV z V e V e

and

0 0( ) g g+ - -= +z z
S S SI z I e I e

From the definition of characteristic impedance, 0 0
0

0 0

+ -

+ -= = -S S

S S

V V
Z

I I
, we get
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0 0
0

1
( ) ( )g g+ - -= -z z

S S SI z V e V e
Z

At the sending end, z = 0, so the voltage and current equations reduce to

0 0( ) + -= +S S SV z V V

0 0
0

1
( ) ( )+ -= -S S SI z V V

Z

Solving for the voltage coefficients,

0 0
0 02 2

+ -+ -
= =S S S S

S S

V Z I V Z I
V V

So, the voltage and current at any distance z from the sending end is

0

1 1
( ) [ ] [ ]

2 2
g g g g- -= + - -z z z z

S S SV z V e e Z I e e

and,

0

1 1
( ) [ ] [ ]

2 2
g g g g- -= + - -z z z zS

S S

V
I z I e e e e

Z

But, cosh and sinh
2 2

g g g g

g g
- -Ê ˆ Ê ˆ+ -= =Á ˜ Á ˜Ë ¯ Ë ¯

z z z ze e e e
z z

\
0( ) cosh sinhg g= -S S SV z V z Z I z

0

( ) cosh sinhg g= - S
S S

V
I z I z z

Z

At the receiving end, z = l (l is the length of the line), the voltage and current are given as

0cosh sinhg g= -R S SV V l Z I l

0

cosh sinhg g= - S
R S

V
I I l l

Z

Now, if the receiving end is terminated with an impedance ZR, then we have

=R R RV Z I

( )

( )

0
0

0
0

or, cosh sinh cosh sinh

or, cosh sinh cosh sinh

S
S S R S

R
S S R

V
V l Z I l Z I l l

Z

Z
V l l I Z l Z l

Z

g g g g

g g g g

Ê ˆ
- = -Á ˜Ë ¯

Ê ˆ
+ = +Á ˜Ë ¯

Hence, the input impedance is given as

0 0 0
0 0

0 0

0

cosh sinh cosh sinh tanh

cosh sinh tanh
cosh sinh

g g g g g

g g g
g g

+ + +Ê ˆ Ê ˆ= = = =Á ˜ Á ˜+ +Ë ¯ Ë ¯+

S R R R
i

S R R R

V Z l Z l Z l Z l Z Z l
Z Z Z

I Z Z l Z l Z Z l
l l

Z
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0 0
0 0

0 0

cosh sinh tanh

cosh sinh tanh

g g g

g g g

+ +Ê ˆ Ê ˆ= =Á ˜ Á ˜+ +Ë ¯ Ë ¯
R R

i
R R

Z l Z l Z Z l
Z Z Z

Z l Z l Z Z l

Three cases may appear.

Open-circuited Line In this case, the receiving end is kept opened. So, the receiving end current 

is zero.

\
0

cosh sinh 0g g
Ê ˆ= - =Á ˜Ë ¯

S
R S

V
I I l l

Z

Hence, the input impedance is

0 0

cosh
coth

sinh

g
g

g
Ê ˆ= = = =Á ˜Ë ¯

S
i OC

S

V l
Z Z Z Z l

I l

0 coth=OCZ Z lg

Short-circuited Line In this case, the receiving end terminals are short-circuited by metallic 

strap. So, the receiving end voltage is zero.

\ 0( cosh sinh ) 0g g= - =R S SV V l Z I l

Hence, the input impedance is

0 0

sinh
tanh

cosh

g
g

g
Ê ˆ= = = =Á ˜Ë ¯

S
i SC

S

V l
Z Z Z Z l

I l

0 tanh g=SCZ Z l

NOTE

0 OC SCZ Z Z= ¥

Matched Line In this case, ZR = Z0

Hence, the input impedance is

0=iZ Z

In this case, the whole electromagnetic wave is transmitted without reflection. The incident power is 

fully absorbed by the load.

6.7.2 Finite Lossless High-frequency Transmission Line

For lossless transmission line, R = 0 and G = 0.

\ 0 and LCa b w= =

\ ( )( )g w w a b w= + + = + =R j L G j C j j LC
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So, the general voltage and current equations reduce to

0 0( ) b b+ - -= +j z j z
S S SV z V e V e

and

0 0
0

1
( ) ( )b b+ - -= -j z j z

S S SI z V e V e
R

where, R0 is the characteristic impedance for a lossless line = L

C
.

At the sending end, z = 0, so the voltage and current equations reduce to

0 0
+ -= +S S SV V V

0 0
0

1
( )+ -= -S S SI V V

R

Solving for the voltage coefficients,

0 0
0 02 2

+ -+ -
= =S S S S

S S

V R I V R I
V V

So, the voltage and current at any distance z from the sending end is

0

1 1
( ) [ ] [ ]

2 2
b b b b- -= + - -j z j z j z j z

S S SV z V e e R I e e

and

0

1 1
( ) [ ] [ ]

2 2
b b b b- -= + - -j z j z j z j zS

S S

V
I z I e e e e

R

But cos and sin
2 2

b b b b

b b
- -Ê ˆ Ê ˆ+ -

= =Á ˜ Á ˜Ë ¯ Ë ¯

j z j z j z j ze e e e
z z

\ 0( ) cos sinb b= -S S SV z V z jR I z

0

( ) cos sinb b= - S
S S

V
I z I z j z

R

At the receiving end, z = l (l is the length of the line), the voltage and current are given as

0cos sinb b= -R S SV V l jR I l

0

cos sinb b= - S
R S

V
I I l l

R

Now, if the receiving end is terminated with an impedance ZR, then we have

=R R RV Z I

0
0

0
0

or ( cos sin ) cos sin

or cos sin ( cos sin )

S
S S R S

R
S S R

V
V l jR I l Z I l j l

R

Z
V l j l I Z l jR l

R

b b b b

b b b b

Ê ˆ
- = -Á ˜Ë ¯

Ê ˆ
+ = +Á ˜Ë ¯
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Hence, the input impedance is given as

0 0 0
0 0

0 0

0

cos sin cos sin tan

cos sin tan
cos sin

S R R R
i

S R R R

V Z l jR l Z l jR l Z jR l
Z R R

I Z R l jZ l R jZ l
l j l

R

b b b b b

b b b
b b

+ + +Ê ˆ Ê ˆ= = = =Á ˜ Á ˜+ +Ë ¯ Ë ¯+

0 0
0 0

0 0

cos sin tan

cos sin tan
R R

i
R R

Z l jR l Z jR l
Z R R

R l jZ l R jZ l

b b b

b b b

+ +Ê ˆ Ê ˆ= =Á ˜ Á ˜+ +Ë ¯ Ë ¯

Three cases may appear.

Open-circuited Line In this case, the receiving end is kept opened. So, the receiving end current 

is zero.

\
0

cos sin 0S
R S

V
I I l j l

R
b b

Ê ˆ= - =Á ˜Ë ¯
Hence, the input impedance is

0 0

cos
cot

sin
S

i OC
S

V l
Z Z jR jR l

I l

b
b

b
Ê ˆ= = = - = -Á ˜Ë ¯

0 cotOCZ jR lb= -

Short-circuited Line In this case, the receiving end terminals are short-circuited by metallic 

strap. So, the receiving end voltage is zero.

\ 0( cos sin ) 0R S SV V l jR I lb b= - =

Hence, the input impedance is

0 0

sin
tan

cos
S

i SC
S

V l
Z Z jR jR l

I l

b
b

b
Ê ˆ= = = =Á ˜Ë ¯

0 tanSCZ jR lb=

NOTE

= ¥0 OC SCR Z Z

Matched Line In this case, ZR = R0

Hence, the input impedance is

0iZ R=

 Example 6.6 A transmission line is lossless and is 30 m long. It is terminated in a load 

impedance of ZL = (30 + j20)W at a frequency of 10 MHz. The inductance and capacitance of the line 

are L = 100 nH/m, C = 20 pF/m. Find the input impedance of the line at the source end and at the mid-

point of the line.
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Solution Here, ZL = (30 + j20)W, L = 100 nH/m, C = 20 pF/m, f = 10 MHz, l = 30 m

The characteristic impedance of the line is

9

0 12

100 10
70.71

20 10

L
Z

C

-

-
¥

= = = W
¥

The phase constant of the line is

6 9 122 2 10 10 100 10 20 10 0.08886 rad/mLC f LCb w p p - -= = = ¥ ¥ ¥ ¥ ¥ ¥ =

So, the input impedance at the source end is given as

0
0

0

tan 30 20 70.1 tan [0.08886 30]
70.1

tan 70.1 (30 20) tan [0.08886 30]

(48.14 52.35)

+ + + ¥È ˘
= = ¥Í ˙+ + + ¥Î ˚
= + W

L
i

L

Z jZ l j j
Z Z

Z jZ l j j

j

b

b

So, the input impedance at the mid-point (z = 15 m) is given as

0
in 0

0 15

tan [ ( )] 30 20 70.1 tan [0.08886 15]
( 15) 70.1

tan [ ( )] 70.1 (30 20) tan [0.08886 15]

(30.41 21.49)

=

+ - + + ¥
= = = ¥

+ - + + ¥

= + W

L

L z

Z jZ l z j j
Z z Z

Z jZ l z j j

j

b

b

6.7.3 Infinite (Lossy and Lossless) Transmission Line

The general voltage equation is

0 0( ) z z
S S SV z V e V eg g+ - -= +

At the sending end, z = 0 and hence the voltage equation becomes

0 0S S SV V V+ -= +

At infinity, z = , Vs(z) must be zero.

\ 0 0 0S SV e V eg g+ =

fi 0 0SV - =

\ 0S SV V +=

Therefore, voltage for infinite transmission line is

( ) z
S SV z V e g-=

Now,
( ) zS

S

dV z
V e

dz
gg -= -

From the differential equation of transmission line

0

( )1
( )

{ ( )( )}

z z
S S S

S

zS

dV z V e V e
I z

R j L dz R j L R j L

V
e R j L G j C

Z

g g

g

g g

w w w

g w w

- -

-

-Ê ˆ= - = - =Á ˜+ + +Ë ¯

= = + +
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So, the current for infinite transmission line is

0

( ) zS
S

V
I z e

Z
g-=

At the sending end, z = 0.

\
0

S
S

V
I

Z
=

Therefore, the input impedance of an infinite transmission line is

\ 0
S

i
S

V
Z Z

I
= =

Thus, it is observed that for infinite transmission line, the input impedance is equal to the characteristic 

impedance of the line.

\ , for lossy infinite line

, for lossless infinite line

i

R j L
Z

G j C

L

C

w
w

+
=

+

=

6.7.4 Input Impedances in Some Special Cases

We will consider the input impedances of a lossless transmission line for some important load 

impedances and line lengths.

Case (1): When l = l—2 If the length of the transmission line is exactly half wavelength ( )2
l

l= ,

we have

2

2
l

p l
b p

l
= ¥ =

\ cos cos 1 and sin sin 0l lb p b p= = - = =

\ 0
0 0

0 0

cos sin 0

cos sin 0
R R

i R
R

Z l jR l Z j
Z R R Z

R l jZ l R j

b b

b b

+ - +Ê ˆ Ê ˆ= = =Á ˜ Á ˜+ - +Ë ¯ Ë ¯

\
i RZ Z=

Thus, if the transmission line is precisely one-half wavelength long, the input impedance is equal to the 

load impedance, regardless of Z0 and b.

Case (2): When l = l—4 If the length of the transmission line is exactly one-quarter wavelength ( )4
l

l= ,

we have

2

4 2
l

p l p
b

l
= ¥ =

\ cos cos 0 and sin sin 1
2 2

l l
p p

b b= = = =

\
2

0 0 0
0 0

0 0

cos sin 0 1

cos sin 0 1
R R

i
R R R

Z l jR l Z jR R
Z R R

R l jZ l R jZ Z

b b

b b

+ ¥ + ¥Ê ˆ Ê ˆ= = =Á ˜ Á ˜+ ¥ + ¥Ë ¯ Ë ¯
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\
2
0

i
R

R
Z

Z
=

Thus, if the transmission line is precisely one-quarter wavelength long, the input impedance is inversely 

proportional to the load impedance.

NOTE

If ZR = 0, i.e., the receiving end is short-circuited, the input impedance is infinity (Zi = ); thus, a 

quarter wave transmission line transforms a short-circuit into an open-circuit and vice-versa.

Case (3): When ZR = Z0 The line is said to be a matched line and the input impedance is Zi = Z0

= R0.

Case (4): When ZR = jXR (Purely Reactive Load) The input impedance is given as

\ 0
0

0

cos sin

cos sin
R

i
R

Z l jR l
Z R

R l jZ l

b b

b b

+Ê ˆ= Á ˜+Ë ¯

0
0

0

0
0

0

cos sin

cos sin

cos sin

cos sin

R

R

R

R

jX l jR l
R

R l j jX l

X l R l
jR

R l X l

b b

b b

b b

b b

+Ê ˆ= Á ˜+ ◊Ë ¯
+Ê ˆ= Á ˜-Ë ¯

Thus, if the load is purely reactive, then the input impedance will also be purely reactive, regardless of 

the length of the line.

NOTE

The opposite is not true. Even if the load is purely resistive, the input impedance will be complex.

Case (5): When l << l If the transmission line is electrically long, i.e., its wavelength l is very 

small compared to signal wavelength l, we have

2
2 0

l
l l

p
b p

l l
= ¥ = ¥ ª

\ cos 1 and sin 0l lb bª ª

\ 0
0 0

0 0

cos sin 0

cos sin 0
R R

i R
R

Z l jR l Z j
Z R R Z

R l jZ l R j

b b

b b

+ +Ê ˆ Ê ˆ= = =Á ˜ Á ˜+ +Ë ¯ Ë ¯

\ i RZ Z=

Thus, if the transmission line length is much smaller than a wavelength, the input impedance will 

always be equal to the load impedance, ZR. Such conditions of the line are frequently considered in 

circuit theory where the line is said to be a lumped circuit.
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6.8  REFLECTION COEFFICIENTS OF TRANSMISSION 
LINE

Reflection Coefficient of a transmission line is the ratio of the reflected voltage (or current) to the 

incident voltage (or current), when a transmission line is terminated in an impedance (ZR) not equal to 

the characteristic impedance (Z0) of the line.

The general transmission line equations for the voltage and current as a function of position along 

the line are

–
0 0( ) z z

S S SV z V e V eg g+ -= +

and

– –
0 0

0

1
( ) ( )z z

S S SI z V e V e
Z

g g+= -

The voltage and current at the load (z = l) are given as

–
0 0( ) l l

S S S RV l V e V e Vg g+ -= + =

and

–
0 0

0

1
( ) ( )l l

S S S RI z V e V e I
Z

g g+ -= - =

Solving these two equations, we get the voltage coefficients in terms of the load voltage and load 

current as follows.

0
0

– 0
0

2

2

lR R
S

lR R
S

V Z I
V e

V Z I
V e

g

g

+

-

+Ê ˆ= Ë ¯
-Ê ˆ= Ë ¯

The voltage reflection coefficient as a function of position along the line [G(z)] is defined as the ratio of 

the reflected wave voltage to the transmitted wave voltage.

\
– –

20 0

0 0

( )
z

zS S
z

S S

V e V
z e

V e V

g
g

g+ - +G = =

The current reflection coefficient at any point on the line is the negative of the voltage reflection 

coefficient at that point.

Inserting the expressions for the voltage coefficients in terms of the load voltage and current, we have

0
0

2 2 ( ) 2 ( )0

00
0

2
( )

2

RlR R

z z l z lRR

R RlR R

R

VV Z I
Ze Z ZI

z e e e
V Z ZV Z I

Ze
I

g

g g g

g

-

- -

-Ê ˆ -Ë ¯ -
G = = =

++Ê ˆ +Ë ¯

The reflection coefficient at the load (z = l) is

0

0

( ) R
L

R

Z Z
l

Z Z

-
G = G =

+
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Hence, the reflection coefficient as a function of position can be written as

2 ( ) 2 ( )0

0

( ) z l z lR
L

R

Z Z
z e e

Z Z
g g- --

G = = G
+

This is observed that the reflection coefficient is zero (GL = 0) when ZR = Z0, i.e., when the transmission 

line is perfectly matched. This is the ideal case where no reflections occur from the load and all the 

energy associated with the forward travelling wave is delivered to the load.

If ZR π Z0, a mismatch exists and reflected waves are present on the transmission line. Just as plane 

waves reflected from a dielectric interface produce standing waves in the region containing the incident 

and reflected waves, guided waves on a transmission line reflected from the load produce standing 

waves on the transmission line (the sum of forward and reverse travelling waves).

The transmission line voltage and current equations can be written in terms of the reflection 

coefficients as follows.

–
– 20

0 0 0 0
0

( ) 1 [1 ( )]z z z z zS
S S S S S

S

V
V z V e V e V e e V e z

V

g g g g g+ - + - + -
+

Ê ˆ
= + = + = + GÁ ˜Ë ¯

–
– 20 0 0

0 0
0 0 00

1
( ) ( ) 1 [1 ( )]z z z z zS S S

S S S
S

V V V
I z V e V e e e e z

Z Z ZV

g g g g g
+ +

+ - - -
+

Ê ˆ
= - = - = - GÁ ˜Ë ¯

0( ) [1 ( )]z
S SV z V e zg+ -= + G

0

0

( ) [1 ( )]zS
S

V
I z e z

Z
g

+
-= - G

 Example 6.7 A lossless line is terminated with a load impedance of (20 – j10)W. Find the 

phase constant and the reflection coefficient of the line of length 50 m. The characteristic impedance of 

the line is 70 W and the wavelength is 0.5 m.

Solution Here, ZL = (20 – j10)W, Z0 = 70 W, l = 0.5 m, l = 50 m

The phase constant is given as

2 2
12.566 rad/m

0.5

p p
b

l
= = =

The reflection coefficient of the line is

0

0

20 10 70
(0.537 0.171)

20 10 70
L

L
L

Z Z j
j

Z Z j

- - -
G = = = - +

+ - +

Location of Voltage Maxima and Minima from Receiving End From Section 6.7.2, we have 

for a lossless line, the voltage and current given as

–
0 0

–
0 0

0

( )

1
( ) ( )

j z j z
S S S

j z j z
S S S

V z V e V e

I z V e V e
R

b b

b b

+ -

+ -

= +

= -

If we let x be the distance from the receiving end, the above two equations can be expressed in terms 

of x simply by putting z = –x.
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–
0 0

–
0 0

0

( )

1
( ) ( )

j x j x
S S S

j x j x
S S S

V x V e V e

I z V e V e
R

b b

b b

+ -

+ -

= +

= -

Now, reflection coefficient is given as

– –
20 0

0 0

| |
j x

j j xS S
j x

S S

V e V
e e

V e V

b
q b

b

-
-

+ +

Ê ˆ
G = G = = Á ˜Ë ¯

At receiving end, x = 0 and 
–
0

0

| | j S
L

S

V
e

V

q
+

Ê ˆ
G = G = G = Á ˜Ë ¯

\ –
0 0 | | j

S SV V e q+= G

Replacing this value, we get

2 (2 )
0 0 0( ) [ | | ] [1 | | ] [1 | | ]j x j j x j x j j x j x j x

S S S SV x V e e e V e e e V e eb q b b q b b b q+ - + - + - -= + G = + G = + G

For voltage to be maximum, two components must be in phase, so that

max(2 ) 2x nb q p- =

where, n = 0, 1, 2, 3, …

The first voltage maximum nearest to the load end will occur when n = 0, i.e., 2bxmax = q.

The magnitude of the maximum voltage is given as

max 0[1 | |]S SV V += + G

For voltage to be minimum, two components must be in phase opposition, so that

min(2 ) (2 1)x nb q p- = +

where, n = 0, 1, 2, 3, …

The first voltage minimum nearest to the load end will occur when n = 0, i.e., (2bxmin – q) = p.

The magnitude of the minimum voltage is given as

min 0[1 | |]S SV V += - G

NOTE

If we take the ratio of maximum and minimum voltages, we get

+ G=
- G

max

min

1 | |

1 | |
S

S

V

V

This expression is known as the voltage standing wave ratio (VSWR) as obtained in the next section.

6.9  STANDING WAVES AND STANDING WAVE RATIO
(S) OF TRANSMISSION LINE

It has been discussed in Section 6.8 that if the receiving end of a transmission line is not perfectly 

matched, there will be reflection of the voltage and current. As a consequence of reflection, a standing

wave may be visualised as an interference between the incident signal Ei at a given frequency, travelling 
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in the forward direction, and the reflected signal Er, at the same frequency, travelling in the reverse 

direction. At the load, the relationship between the amplitudes of Er and Ei and the phase angle between 

them are uniquely determined by the load impedance. The phase angle between Er and Ei, however, will 

vary along the line as a function of the distance from the load. Since the wave oscillates in amplitude 

but never moves laterally, it is called a standing wave.

In Fig. 6.4, the incident, reflected and the standing waves can be seen. The dashed lines are the Er

and the Ei, while the non-dashed one represents the standing wave.

Fig. 6.4 Standing waves in transmission line

The following points may be noted:

1. At a position 180° and multiple of that from the load ( )2
n
l , the voltage and current must have 

the same values they do at the load.

2. At a position 90° and odd multiple of that from the load ( )4
n
l , the voltage and current must be 

inverted: if the voltage is lowest and the current is highest at the load, then at 90° from the load 

the voltage reaches its highest value and the current reaches its lowest value at the same point.

NOTE

No standing waves will be developed along a matched line. The voltage along the line is constant, so 

the matched line is also said to be a flat line.

Standing wave ratio is defined as the ratio of the maximum voltage (or current) to the minimum voltage 

(or current) of a line having standing waves.

\ max max

min min

1 | |

1 | |
L

L

V I
s

V I

+ G
= = =

- G
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In the case where the load contains no reactance, the SWR is equal to the ratio between the load 

resistance R and the characteristic impedance of the line.

 Example 6.8 The transmission line of characteristic impedance of 50 W is terminated with a 

load of (100 + j100)W. Find the reflection coefficient and the standing wave ratio (SWR).

Solution Here, Z0 = 50 W; ZL = (100 + j100)

Reflection coefficient is given as

0

0

100 100 50
0.62 29.77

100 100 50
L

L
L

Z Z j

Z Z j

- + -
G = = = – ∞

+ + +
Standing wave ratio is given as

1 | | 1 0.62
4.263

1 | | 1 0.62
L

L

s
+ G +

= = =
- G -

*Example 6.9 A lossless line has a characteristic impedance of 50 ohm and is terminated in a 

load resistance of 75 ohm. If the length of the line is l/2, determine (i) input impedance, (ii) reflection 

coefficient and (iii) VSWR. What will be the value of reflection coefficient, if the load impedance is 50 

ohm?

Solution Here, Z0 = 50 W, ZL = 75 W, l = 
2

l

(i) The input impedance for a l/2 length line is given as (See Section 6.7.4),

in 75LZ Z= = W
(ii) The reflection coefficient of the line is,

0

0

75 50
0.2

75 50
L

L
L

Z Z

Z Z

- -
G = = =

+ +
(iii) VSWR is given as,

1 | | 1 0.2
1.5

1 | | 1 0.8
L

L

s
+ G +

= = =
- G -

If the load impedance is 50 ohm, the load is perfectly matched. Hence in this case, the reflection 

coefficient will be zero.

*Example 6.10 A line having Z0 = 300 ohm, has a VSWR value of 4.48. The first voltage 

minimum occurs at a distance of 0.06 m from the receiving end. If the operating frequency is 200 MHz, 

determine the value of load impedance.

Solution Here, Z0 = 300 W, VSWR = 4.48, f = 200 MHz, xmin = 0.06 m

Wavelength, 
8

6

3 10
1.5 m

200 10

v

f
l

¥
= = =

¥
For the first minimum voltage, the condition is

min2 xb q p- =
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fi 2
2 0.06

1.5

p
q p¥ - =

fi 0.84 151.2q p= - = - ∞

Now, the reflection coefficient is given as

1 4.48 1 3.48
0.635

1 4.48 1 5.48

VSWR

VSWTR

- -
G = = = =

+ +
Also,

0

0

| | j R

R

Z Z
e

Z Z
q -

G =
+

fi
300

0.635(cos 151.2 sin 151.2 )
300

R

R

Z
j

Z

-
∞ - ∞ =

+

fi (71.2 73.1) 102RZ j= - = W

So, the value of the load impedance is 102 W.

*Example 6.11 A lossless line having Z0 = 75 ohm, has a VSWR value of 3.0. The first voltage 

minimum occurs at a distance 20 cm from the receiving end. If the operating frequency is 150 MHz, 

determine the value of load impedance.

Solution Here, Z0 = 75 W, VSWR = 3.0, f = 150 MHz, xmin = 0.2 m

Wavelength, 
8

6

3 10
2 m

150 10

v

f
l

¥
= = =

¥
For the first minimum voltage, the condition is

min2 xb q p- =

fi 2
2 0.2

2

p
q p¥ - =

fi 0.6 108q p= - = - ∞

Now, the reflection coefficient is given as

1 3 1 2
0.5

1 3 1 4

VSWR

VSWTR

- -
G = = = =

+ +
Also,

0

0

| | j R

R

Z Z
e

Z Z
q -

G =
+

fi
75

0.5(cos 108 sin 108 )
75

R

R

Z
j

Z

-
∞ - ∞ =

+
fi | | 98RZ = W

So, the value of the load impedance is 98 W.

*Example 6.12 A lossless line in air having a characteristic impedance of 300 ohm is terminated 

by an unknown impedance. The first voltage minimum is located at 15 cm from the load. The standing 

wave ratio is 3.3. Calculate the frequency and terminated impedance.
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Solution Here, Z0 = 300 W, VSWR = 3.3, xmin = 0.15 m

Now, the reflection coefficient is given as

1 3.3 1 2.3
0.5348

1 3.3 1 4.3

VSWR

VSWTR

- -
G = = = =

+ +
Also,

0

0

R
L

R

Z Z

Z Z

-
G =

+

fi
75

0.5348
75

R

R

Z

Z

-
=

+
fi 990RZ = W

So, the value of the load impedance is 990 W.

Now, the first voltage minimum occurs at xmin = 0.15 m. By the condition

min2 xb q p- =
Since, the reflection coefficient is not having any phase angle, i.e. q = 0, we have

min2 xb p=

fi 2
2 0.15

p
p

l
¥ ¥ =

fi 0.6 ml =

So, the frequency is given as 
83 10

500 MHz
0.6

v
f

l
¥

= = =

6.10  INPUT IMPEDANCE AS A FUNCTION OF POSITION
ALONG A TRANSMISSION LINE

The input impedance at any point on the transmission line is given by the ratio of voltage to current at 

that point.

Inserting the expressions for the phasor voltage and current [VS(z)] and [IS(z)] from the original form 

of the transmission line equations gives

–
0 0

in 0 –
0 0

( )
( )

( )

z z
S S S

z z
S S S

V z V e V e
Z z Z

I z V e V e

g g

g g

+ -

+ -
+

= =
-

Inserting the expressions of voltage coefficients in terms of the load voltage and load current, we have

0
0 0

– 0
0 0

( )
2 2

( )
2 2

l lR R R
S R

l lR R R
S R

V Z I I
V e Z Z e

V Z I I
V e Z Z e

g g

g g

+

- -

+Ê ˆ= = +Ë ¯
-Ê ˆ= = -Ë ¯

\
– ( ) ( )

0 0 0 0
in 0 0– ( ) ( )

0 0 0 0

( ) ( )
( )

( ) ( )

z z l z l z
S S R R

z z l z l z
S S R R

V e V e e Z Z e Z Z
Z z Z Z

V e V e e Z Z e Z Z

g g g g

g g g g

+ - - - -

+ - - - -
+ + + -

= =
- + - -

( ) ( ) ( ) ( )
0

0 ( ) ( ) ( ) ( )
0

[ ] [ ]

[ ] [ ]

l z l z l z l z
R

l z l z l z l z
R

Z e e Z e e
Z

Z e e Z e e

g g g g

g g g g

- - - - - -

- - - - - -
+ + -

=
- + +
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Now, we know that sinh and cosh
2 2

l l l le e e e
l l

g g g g

g g
- -- +

= =

\
( ) ( ) ( ) ( )

0
in 0 ( ) ( ) ( ) ( )

0

[ ] [ ]
( )

[ ] [ ]

l z l z l z l z
R

l z l z l z l z
R

Z e e Z e e
Z z Z

Z e e Z e e

g g g g

g g g g

- - - - - -

- - - - - -
+ + -

=
- + +

0
0

0

0
0

0

cosh [ ( )] sinh [ ( )]

sinh [ ( )] cosh [ ( )]

tanh [ ( )]

tanh [ ( )]

R

R

R

R

Z l z Z l z
Z

Z l z Z l z

Z Z l z
Z

Z Z l z

g g

g g

g

g

- + -
=

- + -
+ -

=
+ -

Thus, the input impedance at any point along a general transmission line is given as

0
in 0

0

tanh [ ( )]
( )

tanh [ ( )]
R

R

Z Z l z
Z z Z

Z Z l z

g

g

+ -
=

+ -

For a lossless line, Z0 is purely real, i.e. Z0 = R0, g = jb. The hyperbolic tangent function reduces to

tanh [ ( )] tanh [ ( )] tan [ ( )]l z j l z j l zg b b- = - = -

So, the input impedance at any point along a lossless transmission line becomes

0
in 0

0

tan [ ( )]
( )

tan [ ( )]
R

R

Z jR l z
Z z R

R jZ l z

b

b

+ -
=

+ -

Two special cases are considered:

1. Open-circuited Lossless Line Here,

and 1R LZ .

Input impedance becomes

0

0
in 0 0

0 0

0 0

1 tan [ ( )]
tan [ ( )]

Lim ( ) Lim Lim
tan [ ( )]

tan [ ( )]

1
cot [ ( )] ( )

tan [ ( )]

R R R

R R

Z Z ZR

R

OC

R
j l z

Z jR l z Z
Z z R R

R jZ l z R
j l z

Z

R jR l z Z z
j l z

b
b

b
b

b
b

Ï ¸+ -Ô Ô+ -Ï ¸ Ô Ô= =Ì ˝ Ì ˝+ -Ó ˛ Ô Ô+ -
Ô ÔÓ ˛

Ï ¸= = - - =Ì ˝-Ó ˛

2. Short-circuited Lossless Line Here,

0 and 1R LZ Æ G = - .

Input impedance becomes

0 0
in 0 0 0

0 0 0 0

tan [ ( )] tan [ ( )]
Lim ( ) Lim tan [ ( )]

tan [ ( )]

( )
R R

R

Z Z R

SC

Z jR l z jR l z
Z z R R jR l z

R jZ l z R

Z z

b b
b

bÆ Æ

+ - -Ï ¸= = = -Ì ˝+ -Ó ˛
=

The variations of these impedances with the length of the line are shown in Fig. 6.5.
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Fig. 6.5 Input impedance of a lossless transmission line (a) when open (b) when short

The impedance characteristics of a short-circuited or open-circuited transmission line are related to the 

positions of the voltage and current nulls along the transmission line. On a lossless transmission line, 

the magnitude of the voltage and current are given by

0 0

0 0

0 0

| ( )| | [1 ( )]| | | |1 ( )|

| |
| ( )| [1 ( )] |1 ( )|

j z
S S S

j zS S
S

V z V e z V z

V V
I z e z z

R R

b

b

+ - +

+ +
-

= + G = + G

= - G = - G

The equations for the voltage and current magnitude follow the crank diagram form and the minimum 

and maximum values for voltage and current are

max 0 min 0

0 0
max min

0 0

| ( )| | | (1 | ( )|) | ( )| (1 | ( )|)

| | | |
| ( )| (1 | ( )|) | ( )| (1 | ( )|)

S S S S

S S
S S

V z V z V z V z

V V
I z z I z z

R R

+ +

+ +

= + G = - G

= + G = - G

For a lossless line, the magnitude of the reflection coefficient is constant along the entire line and thus, 

equal to the magnitude of G at the load.

2 ( )| ( )| | | | |j z l
L Lz e b -G = G = G
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The standing wave ratio(s) on the lossless line is defined as the ratio of maximum to minimum voltage 

magnitudes (or maximum to minimum current magnitudes).

\ max max

min min

| ( )| | ( )| 1 | |

| ( )| | ( )| 1 | |
S S L

S S L

V z I z
s

V z I z

+ G
= = =

- G

The standing wave ratio on a lossless transmission line ranges between 1 and .

We now apply the previous equations to the special cases of open-circuited and short-circuited 

lossless transmission lines to determine the positions of the voltage and current nulls.

Voltage and Current Nulls in Open-Circuited Lossless Transmission Line In this case,

GL = 1

To determine the voltage null, we have

2 ( )| ( )| 0 when 1 0j z l
S LV z e b -= + G =

or,
2 ( ) 1j z le b - = -

or, 2 ( ) { odd only}z l n nb p- =

or, 2
2 ( )z l n

p
p

l
¥ - =

or, ( ) { odd only}
4

z l n n
l- =

\ ( ) { odd only}
4

z l n n
l- =

To determine the current null, we have

2 ( )| ( )| 0 when 1 0j z l
S LI z e b -= - G =

or,
2 ( ) 1j z le b - =

or, 2 ( ) { even only}z l n nb p- =

or, 2
2 ( )z l n

p
p

l
¥ - =

or, ( ) { even only}
4

z l n n
l- =

\ ( ) { even only}
4

z l n n
l- =

Thus, the nulls are:

Voltage Nulls (Zin = 0): At 
4

l  from the load and every 
2

l  from that point.

Current Nulls (Zin = ): At the load and every 
2

l  from that point.

Voltage and Current Nulls in Short-Circuited Lossless Transmission Line In this case, 

GL = 1
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To determine the voltage null, we have

2 ( )| ( )| 0 when 1 0j z l
S LV z e b -= + G =

or, 2 ( ) 1j z le b - =

or, 2 ( ) { even only}z l n nb p- =

or,
2

2 ( )z l n
p

p
l

¥ - =

or, ( ) { even only}
4

z l n n
l- =

\ ( ) { even only}
4

z l n n
l- =

To determine the current null, we have

2 ( )| ( )| 0 when 1 0j z l
S LI z e b -= - G =

or, 2 ( ) 1j z le b - = -

or, 2 ( ) { odd only}z l n nb p- =

or,
2

2 ( )z l n
p

p
l

¥ - =

or, ( ) { odd only}
4

z l n n
l- =

\ ( ) { odd only}
4

z l n n
l- =

Thus, the nulls are:

Voltage Nulls (Zin = 0): At the load and every 
2

l  from that point.

Current Nulls (Zin = ): At 
4

l
 from the load and every 

2

l  from that point.

From the equations for the maximum and minimum transmission line voltage and current, we also find

max min
0

max min

| ( )| | ( )|

| ( )| | ( )|
S S

S S

V z V z
Z

I z I z
= =

It will be shown that the voltage maximum occurs at the same location as the current minimum on a 

lossless transmission line and vice versa. Using the definition of the standing wave ratio, the maximum 

and minimum impedance values along the lossless transmission line may be written as

max min
in max 0 0

min min

min min 0
in min 0

max min

| ( )| | ( )| 1 | |
| ( )|

| ( )| | ( )| 1 | |

| ( )| | ( )| 1 | |1
| ( )|

| ( )| | ( )| 1 | |

S S L

S S L

S S L

S S L

V z V z
Z z s sZ Z

I z I z

V z V z Z
Z z Z

I z s I z s

+ GÊ ˆ= = = = Á ˜- GË ¯
- GÊ ˆ= = ¥ = = Á ˜+ GË ¯

Thus, the impedance along the lossless transmission line must lie within the range of 0Z

s
 to sZ0.

 Example 6.13 A source (Vsg = 100 –0° V, Zs = Rs = 50 W, f = 100 MHz) is connected to a 

lossless transmission line (L = 0.25 mH/m, C = 100 pF/m, l = 10 m). For loads of ZL = RL = 0, 25, 50, 
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100 and W, determine (a) the reflection coefficient at the load (b) the standing wave ratio (c) the input 

impedance at the transmission line input terminals

Solution Here,

100 0 , 50 , 100 MHzsg s sV V Z R f= – ∞ = = W = ,

0.25 H/m, 100 pF/m, 10 mL C lm= = =

Characteristic impedance is, 
6

0 12

0.25 10
50

100 10

L
Z

C

-

-
¥

= = = W
¥

\ 6 6 12 2
2 100 10 0.25 10 100 10LC

p
b w p p

l
- -= = ¥ ¥ ¥ ¥ ¥ ¥ = =

\ 2 , 5 and 10m l ll l b p= = =

Reflection coefficient is given as

0

0

50

50
L L

L
L L

Z Z R

Z Z R

- -
G = =

+ +
Standing wave ratio is given as

1 | |

1 | | 50
L L

L

R
s

+ G
= =

- G

The input impedance at z = 0 is given as

0 0 0
0 0 0

0 0 00

tan [ ( )] tan tan 10
( 0)

tan [ ( )] tan tan 10
L L L

in L
L L Lz

Z jR l z R jR l R jR
Z z R R R R

R jZ l z R jR l R jR

b b p

b b p
=

+ - + +
= = = = =

+ - + +

So, for different values of the load, the values of the reflection coefficient, standing wave ratio and the 

input impedance is given in Table 6.1

Table 6.1 Different values of the load

RL (ohm) (a) GL (b) s (c) Zin (ohm)

0 –1 0 0

25 –0.333 0.5 25

50 0 1 50

100 +0.333 2 100

+1

 Example 6.14 An open-wire transmission line with characteristic impedance of 600 W is 

terminated by a load ZL = 900 W. Find the reflection coefficient, transmission coefficient and the 

standing wave ratio (SWR).

Solution Here, Z0 = 600 W; ZL = 900 W
Reflection coefficient is given as

0

0

900 600
0.2

900 600
L

L
L

Z Z

Z Z

- -
G = = =

+ +
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Transmission coefficient is given as

1 1 0.2 1.2L Lt = + G = + =

Standing wave ratio is given as

1 | | 1 0.2
1.5

1 | | 1 0.2
L

L

s
+ G +

= = =
- G -

*Example 6.15 A transmission line of characteristic impedance of Z0 = 50 W is terminated by a 

load RL = ZL = 100 W. Find VSWR, Zmin and Zmax.

Solution Here, Z0 = 50 W; RL = ZL = 100 W
Reflection coefficient is given as

0

0

100 50
0.33

100 50
L

L
L

Z Z

Z Z

- -
G = = =

+ +

Standing wave ratio is given as

1 | | 1 0.32
1.5

1 | | 1 0.2

+ G +
= = =

- G -
L

L

s

At the point of voltage maximum, we know that the current is minimum.

\ max 0 0

1 | |
50 2 100

1 | |
L

L

Z Z Z s
+ G

= = = ¥ = W
- G

At the point of voltage minimum, the current is maximum.

\ 0
min 0

1 | | 50
25

1 | | 2
L

L

Z
Z Z

s

- G
= = = = W

+ G

 Example 6.16 A lossless transmission line with a characteristic impedance of 75 W is terminated 

by a load impedance of 120 W. If the magnitude of the incident wave is 10 V, calculate the minimum 

and maximum values of the voltages on the line.

Solution Here, Z0 = 75 W, ZR = 120 W, V0 = 10 V

Reflection coefficient is given as

0

0

120 75
0.243

120 75
R

L
R

Z Z

Z Z

- -
G = = =

+ +

So, the minimum and maximum values of the voltages on the line are given as

min 0[1 ] 10[1 0.243] 7.567 VLV V= - G = - =

max 0[1 ] 10[1 0.243] 12.432 VLV V= + G = + =

*Example 6.17 A transmission line with characteristic impedance of 300 ohm is terminated in 

a purely resistive load. It is found by measurement that the minimum line voltage upon it is 5 mV and 

maximum 7.5 mV. What is the value of load impedance?

Solution Here, Z0 = 75 W, Vmin = 5 mV, Vmax = 7.5 mV
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We know that the minimum and maximum values of the voltages on the line are given as

min 0

max 0

[1 ]

[1 ]
L

L

V V

V V

= - G
= + G

\

0

0 0min

max 0

0

1
1

1
1

R

RL

L R R

R

Z Z

Z Z ZV

V Z Z Z

Z Z

-
- +- G

= = =
+ G -

+ +

fi
5 300

7.5 RZ
=

fi
300 7.5

450
5RZ
¥

= = W

So, the value of the load impedance is 450 W.

6.11 LOSSES IN TRANSMISSION LINES

Transmission line losses are of three types:

1. Copper losses,

2. Dielectric losses, and

3. Radiation or induction losses.

1. Copper Losses These losses occur because of the following reasons:

(a) I2R Loss This is the I2R Loss that occurs in a transmission line whenever current flows through the 

conductors. With copper braid, which has a resistance higher than solid tubing, this power loss is higher.

(b) Skin Effect Loss This is the copper loss that occurs to skin effect associated with alternating 

currents.

(c) Losses Due to Crystallisation of Conductors This type of copper loss occurs due to ageing 

of the transmission line, due to repeated bending of the line, producing different cracks on the conductor. 

This effect is known as crystallisation of the conductors. The effect is more when the line is subjected 

to high temperature, high winds, moisture, etc.

(d) Corona Losses Corona loss, caused by the ionisation of air molecules near the transmission 

line conductors, is the other major type of copper loss in transmission lines. Copper losses can be 

minimised and conductivity increased in a transmission line by plating the line with silver. Since silver 

is a better conductor than copper, most of the current will flow through the silver layer. The tubing then 

serves primarily as a mechanical support. Copper losses can also be minimised by terminating the line 

properly so that no standing waves are generated.

2. Dielectric Losses Dielectric losses result from the heating effect on the dielectric material 

between the conductors due to the distortions of the electron orbits when a potential difference is 

applied between the conductors.

The atomic structure of rubber is more difficult to distort than the structure of some other dielectric 

materials. The atoms of materials, such as polyethylene, distort easily. Therefore, polyethylene is often 

used as a dielectric because less power is consumed when its electron orbits are distorted.
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3. Radiation or Induction Losses Radiation and induction losses are similar in that both are 

caused by the fields surrounding the conductors.

Induction losses occur when the electromagnetic field about a conductor cuts through any nearby 

metallic object and a current is induced in that object, resulting loss of power.

Radiation losses occur because some magnetic lines of force about a conductor do not return to the 

conductor when the cycle alternates. These lines of force are projected into space as radiation and these 

result in power losses.

6.12 SMITH CHART

The Smith chart is a useful graphical tool used to calculate the reflection coefficient and impedance at 

various points on a (lossless) transmission line system.

The Smith chart is actually a polar plot of the complex reflection coefficient G(z) [ratio of the 

reflected wave voltage to the forward wave voltage] overlaid with the corresponding impedance Z(z)

[ratio of overall voltage to overall current].

Construction of the Smith Chart The construction of the Smith chart is based on the relation

0

0

| |R
L L Lr Li

R

Z Z
j

Z Z
qG

-
G = = G – = G + G

+
(6.15)

where, GL is the reflection coefficient at the load (z = l) and GLr and GLi are the real and imaginary parts 

of GL, respectively.

The corresponding standing wave ratio is

1 | |
,

1 | |
L

L

SWR s
+ G

=
- G

(6.16)

The magnitude of GL is constant on any circle in the complex plane so that the standing wave ratio (s)

is also constant on the same circle (see Fig. 6.6).

Once the position of GL is located on the Smith chart, the location of the reflection coefficient as a 

function of position [G(z)] is determined using the reflection coefficient formula.

( )2 ( ) 2 ( )( ) | | | | zj jj z l j z l
L L Lz e e e eq q qb bG G +- -G = G = G = G (6.17)

This equation shows that to locate G(z), we start at GL and rotate through an angle of qz = 2b(z – l) on the 

constant SWR circle. With the load located at z = l, moving from the receiving end towards the sending 

end (z < l) defines a negative angle qz (clockwise rotation on the constant SWR circle).

Note that if qz = –2p, we rotate back to the same point. The distance travelled along the transmission 

line is then obtained as

2 ( ) 2z z lq b p= - = -

fi
2

2 ( ) 2z l
p

p
l

¥ - = -

fi 2
l z

l- =

Thus, one complete rotation around the Smith chart (360°) is equal to one half wavelength.

Also, in the Smith chart, clockwise rotation represents movement towards the sending end, whereas 

anti-clockwise rotation represents movement towards the receiving end.
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Instead of constructing separate Smith charts 

for transmission lines with different characteristic 

impedances, only one Smith chart is constructed 

within a circle of unit radius so that the magnitude 

of the complex-valued reflection coefficient ranges 

from 0 to 1 for any value of the load impedance (|GL|

£ 1) as shown in Fig. 6.6. Note that as the reflection 

coefficient is constant on any circle in the complex 

plane, the standing wave ratio is also constant on 

the same circle (s = 1).

This is achieved by using a normalised chart in 

which all impedances are normalised with respect 

to the characteristic impedance Z0 of the line. For 

example, the normalised load impedance is given 

as

0

R
R R R

Z
z r jx

Z
= = + (6.18)

So, the reflection coefficient is given as

0 0

0 0

/ 1 1

/ 1 1
R R R

L Lr Li
R R R

Z Z Z Z z
j

Z Z Z Z z

- - -
G = = = = G + G

+ + +
(6.19)

or,
(1 )

(1 )
Lr Li

R R R
Lr Li

j
z r jx

j

+ G + G
= + =

- G - G (6.20)

Equating the real and imaginary components and simplifying, we get

2 2

2 2

1

(1 )

Lr Li
R

Lr Li

r
- G - G

=
- G + G (6.21a)

2 2

2

(1 )

Li
R

Lr Li

x
G

=
- G + G

(6.21b)

Rearranging the terms in Eq. (6.21a) and (6.21b), we have

2 2
2 1

1 1
R

Lr Li
R R

r

r r

È ˘ È ˘G - + G =Í ˙ Í ˙+ +Î ˚ Î ˚
(6.22a)

and

2 2
2 1 1

[ 1]Lr Li
R Rx x

È ˘ È ˘G - + G - =Í ˙ Í ˙Î ˚ Î ˚
(6.22b)

These two equations are the equations of circles. 

Equations (6.22a) represents the resistance circle or r-circle with

Centre at: , 0
1

R

R

r

r

Ê ˆ
Á ˜+Ë ¯

Radius = 
1

1 Rr+

Fig. 6.6 Unit circle to construct Smith chart
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Equation (6.22b) represents the reactance circle or x-circle with

Center at: 
1

1,
Rx

Ê ˆ
Á ˜Ë ¯

Radius = 
1

Rx

As the normalised resistance rR varies from 0 to , we obtain a family of circles completely contained 

inside the domain of the reflection coefficient |GL| £ 1. Similarly, as the normalised reactance xR varies 

from –  to , we obtain a family of circles completely contained inside the domain of the reflection 

coefficient |GL| £ 1. Figure 6.7 shows typical r-circles and x-circles.

Fig. 6.7 Typical r and x circles (a) r-circles (b) x-circles

Applications of Smith Chart Smith chart can be used for the following purposes:

1. To find the normalised admittance from normalised impedance and vice-versa.

2. To find the parameters of mismatched transmission lines.

3. To find the VSWR for a given load impedance.

4. To find the reflection coefficient.

5. To find the input impedance of a transmission line.

6. To locate a voltage maximum on a transmission line.

7. To design stubs for impedance matching.

Determination of Normalised Impedance from Reflection Coefficient using Smith 
Chart The reflection coefficient as a function of position G(z) along the transmission line can be 

related to the impedance as a function of position Z(z). The general impedance at any point along the 

length of the transmission line is defined by the ratio of the phasor voltage to the phasor current.

0

0

0

0

( ) [1 ( )]

( ) [1 ( )]

( ) [1 ( )]
( )

( ) [1 ( )]

j z
S S

j zS
S

S

S

V z V e z

V
I z e z

Z

V z z
Z z Z

I z z

b

b

+ -

+
-

= + G

= - G

+ G
= =

- G

The normalised value of the impedance zn(z) is

0

[1 ( )]( )
( ) ( ) ( )

[1 ( )]n

zZ z
z z r z jx z

Z z

+ G
= = = +

- G (6.23)

Note that Eq. (6.16) is simply the above equation [Eq. (6.23)], evaluated at z = l.
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Thus, as we move from point to point along 

the transmission line plotting the complex 

reflection coefficient (rotating around the 

constant SWR circle), we are also plotting the 

corresponding impedance.

Determination of Admittance from 
Impedance using Smith Chart Once a 

normalised impedance is located on the Smith 

chart for a particular point on the transmission 

line, the normalised admittance at that point 

is found by rotating 180° from the impedance 

point on the constant reflection coefficient 

circle as shown in Fig. 6.8.

Determination of Maxima and Minima 
for Voltages and Currents using Smith 
Chart The locations of maxima and minima 

for voltages and currents along the transmission 

line can be located using the Smith chart given that these values correspond to specific impedance 

characteristics, e.g.,

Voltage maximum, Current minimum corresponds to Impedance maximum

Voltage minimum, Current maximum corresponds to Impedance minimum

These are shown in Fig. 6.9.

Fig. 6.9 Determination of maxima and minima for voltages and currents using Smith chart

The complete Smith chart is shown in Fig. 6.10.

Fig. 6.8 Determination of admittance from impedance 

in the Smith chart
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Fig. 6.10 Complete Smith chart
CENTRE

ORIGIN
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 Example 6.18 Find the input impedance of a 75W lossless transmission line of length 0.1l
when the receiving end is (a) open-circuited, and (b) short-circuited. Use Smith chart. Compare the 

results with the theoretical results.

Solution Here, Z0 = 75 W; l = 0.1l
1. When receiving end is open-circuited: In this case, load impedance is, zL =  + j .

Smith Chart Method:

(a) We start at the point of (  + j ) on Smith chart which is at the right of the rim of the chart. This 

corresponds to point P.

(b) We move clockwise from this point P through the perimeter of the chart by 0.1l.This corresponds 

to point Q where we get

0, 1.38r x= = -

Therefore, the normalised input impedance of the line is

in (0 1.38)z j= -

(c) So, the actual input impedance is given as

in 0 in 75 (0 1.38) 103.5Z Z z j j= ¥ = ¥ - = - W

This is shown in Fig. 6.11(a).

Fig. 6.11(a) Smith chart to find input impedance of open-circuited line of Example 6.18

Analytical Method:

For lossless open-circuited line, the input impedance is given as,

in 0 cotOCZ Z jR lb= = -
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For this line, the input impedance is

( )in 0

2
cot 75 cot 75 cot 0.1 75 cot (0.2 )

75 1.3764 103.23

Z jR l j l j j

j j

p
b b l p

l
= - = - = - ¥ = -

= - ¥ = - W

2. When the receiving end is short-circuited: In this case, load impedance is zL = 0 + j0.

Smith Chart Method:

(a) We start at the point of (0 + j0) on Smith chart, which is at the left of the rim of the chart. This 

corresponds to point P.

(b) We move clockwise from this point P through the perimeter of the chart by 0.1l.This corresponds 

to point Q where we get
0, 0.73r x= =

Therefore, the normalised input impedance of the line is

in (0 0.73)z j= +

(c) So, the actual input impedance is given as

in 0 in 75 (0 0.73) 54.75Z Z z j j= ¥ = ¥ + = W

Fig. 6.11(b) Smith chart to find input impedance of shorted line of Example 6.18.

Analytical Method:

For lossless short-circuited line, the input impedance is given as

in 0 tanSCZ Z jR lb= =
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For this line, the input impedance is

( )in 0

2
tan 75 tan 75 tan 0.1 75 tan (0.2 )

75 0.7265 54.5

Z jR l j l j j

j j

p
b b l p

l
= = = ¥ =

= ¥ = W

*Example 6.19 A 75 W lossless transmission line of length 1.25l is terminated by a load 

impedance of 120 W. The line is energised by a source of 100 V (rms) with an internal impedance of 

50 W. Determine (a) the input impedance of the transmission line and (b) the magnitude of the load 

voltage. Use Smith chart.

Solution Here, Z0 = 75 W; l = 1.25l, ZL = RL = 120 W
In order to find the input impedance, the following steps are involved.

1. We find the normalised load impedance as

0

120
(1.6 0)

75
L

L

Z
z j

Z
= = = + W

2. We start from the point corresponding to (1.6 + j0) (i.e., point P) and move 1.25l (2.5 revolutions) 

clockwise (towards generator) on the s-circle (i.e., point Q) to find the normalised input impedance as,

in 0.625z =
3. So, the actual input impedance is given as

in 0 in 75 0.625 46.9Z Z z= ¥ = ¥ = W

\ in (46.9 0)Z j= + W

Fig. 6.12 Smith chart to find the input impedance of Example 6.19

In order to find the load voltage, we have the equivalent circuit as shown in Fig. 6.13.
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\ 0

46.9
100 0 48.4 0 (V)

50 46.9sV = – ∞ = – ∞
+

Also, |VsL| = s|Vs0|

Reflection coefficient,

0

0

120 75
0.231

120 75
L

L
L

Z Z

Z Z

- -
G = = =

+ +

Standing wave ratio, 
1 | | 1 0.231

1.6
1 | | 1 0.231

L

L

s
+ G +

= = =
- G -

\ 0| | | | 1.6 48.4 77.4 (V)sL sV s V= = ¥ =

 Example 6.20 Determine the input impedance of the transmission line of electrical length 28° 

with terminated load of 
0

2.6 1LZ
j

R
= + . Use Smith chart.

Solution Here,
0

28
(2.6 1), 0.078

360
LZ

j l
R

l l= + = =

In order to find the input impedance, the following steps are involved.

1. We find the normalised load impedance as

0

(2.6 1)L
L

Z
z j

R
= = +

2. We start from the point corresponding to (2.6 + j1) (i.e. point P) and extend the line so that it cuts the 

rim of the Smith chart at point A.

3. We move 0.078l clockwise (towards generator) on the rim to locate the point B.

4. Then we draw a line from the centre of the Smith chart (point O) to point B. This line intersects the 

constant-s circle at point Q.

5. The point B gives r = 1.58 and x = –1.3, so that, the normalised input impedance is given as

in (1.5 1.3)z j= -
The Smith chart to find input impedance is given in Fig. 6.14.

*Example 6.21 A transmission line has standing wave ratio s = 2.5 and voltage minima exists at 

0.15 l from the load. Find the load and input impedance for a line of 0.35l length. Use Smith chart.

Solution Here, s = 2.5, Vmin at 0.15l from the load, length of the line, l = 0.35l.

In order to find the load impedance, the following steps are involved.

1. We draw a constant-s circle with centre at the centre of the Smith chart (point O) that cuts the real 

axis of the Smith chart at point 2.5 (point P).

2. From the property of Smith chart, the voltage minimum occurs at a point on the real axis where the 

constant-s circle cuts the real axis (point Q). This point corresponding to the point of voltage minimum 

is at 0.4 ( )1 1
i.e. 0.4

2.5s
= = . We extend this line so that it cuts the rim of the Smith chart at point A.

3. To locate the load point, we move in the lower half of the Smith chart in the anti-clockwise direction 

by a distance of 0.15l. This point is point B. We join this point with the centre O. This line cuts the 

constant-s circle at point L which corresponds to r = 0.88, x = j0.9. This gives the load impedance as

Fig. 6.13 Equivalent circuit of Example 6.19
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Fig. 6.14 Smith chart to find the input impedance of Example 6.20

0

(0.88 0.9)L
L

Z
z j

Z
= = +

In order to find the input impedance, we follow the following steps after step 2:

4. To locate the source point, we move from point B in the clockwise direction in the upper half of the 

Smith chart by a distance of 0.35l. This point is point C. We join this point with the centre O. This line 

cuts the constant-s circle at point S which corresponds to r = 1.7, x = j1. This gives the input impedance 

as,

0

(1.7 1)S
S

Z
z j

Z
= = +

The Smith chart to find load and input impedance is given in Fig. 6.15.
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Fig. 6.15 Smith chart to find the load and input impedance of Example 6.21

*Example 6.22 A transmission line of length 0.4l has a characteristic impedance of 100 W and 

is terminated in a load impedance of (200 + j180) W. Find:

1. reflection coefficient,

2. standing wave ratio, and

3. input impedance of the line.

Use Smith chart. Compare the results with the theoretical results.

Solution Here, Z0 = 100 W; l = 0.4l, ZL = (200 + j180) W
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Normalised impedance is, zL = 
(200 180)

(2 1.8)
100

j
j

+
= + W

(1) To find reflection coefficient:

(a) We locate the point P in the Smith chart, which is the intersection of the circles r = 2 and x = 1.8.

(b) We draw a circle with radius equal to OP and centre at O. This OP is the magnitude of the 

reflection coefficient which is measured to be 0.591.

  \ | | 0.591LG =

(c) To find the phase angle of the reflection coefficient, we extend the line OP so that it cuts the 

r = 0 circle at point Q. This point is measured to be 0.207 in wavelength towards the generator. 

This point gives the phase angle of the reflection coefficient as,

  \ (0.250 0.207) 720 31qG = - ¥ ∞ = ∞

  \ 0.591 31LG = – ∞

Fig. 6.16 Use of Smith chart for Example 6.22
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(2) To find SWR:

The circle cuts the centre line of the chart at point A; OA gives the standing wave ratio. It is measured 

to be 4.

\ s = 4

(3) To find input impedance:

In order to find the input impedance, the following steps are involved.

(a) We start from the point corresponding to (2 + j1.8) (i.e., point P) and move 0.4 wavelengths 

clockwise (towards generator) on the s-circle (i.e., point B). This line OB cuts the circle at point 

C. This OC gives the input impedance as

in (0.4 0.72)z j= +

(b) So, the actual input impedance is given as

in 0 in 100 (0.4 0.72) (40 72)Z Z z j j= ¥ = ¥ + = + W

  This use of Smith Chart is shown in Fig. 6.16.

 Example 6.23 A transmission line has a characteristic impedance of 300 W and is terminated in 

a load ZL = 150 + j150 W. Find the following using Smith chart.

1. VSWR,

2. reflection coefficient,

3. input impedance at distance 0.1l from the load,

4. input admittance from 0.1l from load,

5. position of first voltage minimum and maximum from the load.

Solution Here, ZL = 150 + j150 W, Z0 = 300 W

Normalised load impedance is, 
0

150 150
0.5 0.5

300
L

L

Z j
z j

Z

+
= = = +

The load point is located at the intersection of r = 0.5 and x = 0.5 circles. This point is point A.

(1) To find VSWR:

We draw a circle with centre at origin (point O) and radius equal to OA. This circle cuts the real axis at 

2.6. So, the VSWR is given as

2.6s =

(2) To find reflection coefficient:

(a) This magnitude of OA as measured in the scale shown at the bottom of Smith chart is the 

magnitude of the reflection coefficient, which is measured to be 0.42.

  \ | | 0.42LG =

(b) To find the phase angle of the reflection coefficient, we extend the line OA so that it cuts the 

r = 0 circle at point P. This point is measured to be 0.088 in wavelength towards the generator. 

This point gives the phase angle of the reflection coefficient as

  \ (0.250 0.088) 720 116.64qG = - ¥ ∞ = ∞
  \ 0.42 116.64LG = – ∞
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Fig. 6.17 Use of Smith Chart for Example 6.23

(3) To find input impedance:

(a) We start from the point A and move 0.1 wavelengths clockwise (towards generator) on the s-circle

(i.e., point B). This line OB cuts the circle at point C which gives the input impedance as

in (1.4 1.1)z j= +

(b) So, the actual input impedance is given as

in 0 in 300 (1.4 1.1) (420 330)Z Z z j j= ¥ = ¥ + = + W

\ in (420 330)Z j= + W
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(4) To find input admittance:

(a) We extend the line OC so that it cuts the constant-s circle at point D. This point corresponds to g

= 0.44 and b = –0.34 circles. So, the input admittance is given as

in 0.44 0.34y j= -

(b) So, the actual input admittance is given as

3
in 0 in

(0.44 0.34)
(1.47 1.13) 10

300

j
Y Y y j --

= ¥ = = - ¥

\ 3
in (1.47 1.13) 10 mhoY j -= - ¥

(5) To find position of first voltage minimum and maximum from the load:

The voltage minimum occurs to the left of the real axis at 0.39 while the voltage maximum occurs to 

the right of the real axis at s = 2.6.

(a) To locate voltage maximum from load:

  We move through the rim of the chart from load point A to voltage maximum point (point Q). The 

distance between these two points is (0.25 – 0.088)l = 0.162l.

  So, the first voltage maximum occurs at a distance 0.162l from the load.

(b) To locate voltage minimum from load:

  We move through the rim of the chart from load point A to voltage minimum point (point R). The 

distance between these two points is (0.25 + 0.162)l = 0.412l.

  So, the first voltage minimum occurs at a distance 0.412l. from the load. The Smith chart for 

this use is given in Fig. 6.17.

6.13  LOAD MATCHING TECHNIQUES IN A 
TRANSMISSION LINE

We discuss two techniques used for load matching.

6.13.1 Quarter Wave Transformer

A transmission line is said to be perfectly matched if the load impedance is exactly equal to the 

characteristic impedance of the line. In a matched transmission line, the power is transferred outward 

from the source until it reaches the load, where it is completely absorbed. Thus, the reflection coefficient 

for a matched line is zero (|G| = 0). However, if the characteristic impedance of the line does not 

match with the load impedance, a mismatch occurs. Quarter wave transformer is used as a matching 

technique to match the impedances between the transmission line and the load in order to eliminate the 

reflections on the feeder transmission line.

For matching, a quarter wavelength ( )4

l
 section of different transmission line (characteristic impedance

= 0Z ¢ ) is inserted between the original transmission line and the load. This quarter wave long section of 

the transmission line is called a quarter wave transformer as it is used for impedance matching like an 

ordinary transformer. This is demonstrated in Fig. 6.18(a) and Fig. 5.18(b).
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Fig. 6.18 (a) If Z0 π ZL: mismatched line (b) Matching by quarter wave transformer

The input impedance looking into the quarter wave transformer is given as

0
in 0

0

tan
( )

tan
L

L

Z jZ l
Z z Z

Z jZ l

b

b

¢+¢= ¢ +

Now,
2

tan
4 2

l l
p l p

b b
l

\
2

0 0
in 0

( )
( )

L L

Z Z
Z z Z

Z Z

¢ ¢
¢= = .

For the matched line, we require

2
0

in 0 0 0

( )
( ) L

L

Z
Z z Z Z Z Z

Z

¢
¢= = fi =

Hence, the required characteristic impedance of the quarter wave transformer is given as

0 0 LZ Z Z¢ =

 Example 6.24 Design a quarter wave transformer to match a load of 200 W to a source of 500 

W. Operating frequency is 200 MHz.

Solution Here, ZL = 200 W, Zin = 500 W
For a quarter wave transformer, the input or source impedance is given as

2
0

in 0 in

( )
500 200 316.22L

L

Z
Z Z Z Z

Z

¢
¢= fi = = ¥ = W

So, the characteristic impedance of the line is 316.22 W.

Also, length of the quarter wave transformer is

8

6

3 10
0.375 m

4 4 4 200 10

v
l

f

l ¥
= = = =

¥ ¥

 Example 6.25 Determine the length and impedance of a quarter wave transformer that will 

match a load of 150 W to a line of 75 W at a frequency of 12 GHz.

Solution Here, 0150 , 75LZ Z ¢= W = W
For a quarter wave transformer, the input or source impedance is given as

2

in

(75)
37.5

150
Z = = W

So, the input impedance of the quarter wave transformer is 37.5 W.
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Also, length of the quarter wave transformer is

8

9

3 10
0.0625 m 6.25 cm

4 4 4 12 10

v
l

f

l ¥
= = = = =

¥ ¥

6.13.2 Stub Tuner

The limitation of a quarter-wave transformer is that it can perform matching only a resistive load RL to

a transmission line of characteristic impedance Zo when RL π Z0; but it cannot match a complex load 

impedance.

The stub tuner is used as a transmission line matching technique to match a complex load. If a 

point can be located on the transmission line where the real part of the input admittance is equal to the 

characteristic admittance 0
0

1
Y

Z
Ê ˆ=Á ˜Ë ¯

 of the line (Yin = Y0 ± jB), the susceptance B can be eliminated by 

adding the proper reactive component in parallel at this point. Theoretically, we could add inductors or 

capacitors (lumped elements) in parallel with the transmission line. However, these lumped elements 

usually are too lossy at the radio frequency range.

Rather than using lumped elements, we can use a short-circuited or open-circuited segment of 

transmission line to achieve any required reactance. Since parallel components are generally used, the 

use of admittances (as opposed to impedances) simplifies the mathematics.

Single Stub Tuner A single stub tuner is an open or shorted section of transmission line of length 

l connected in parallel at some distance d from the load (Fig. 6.19).

Fig. 6.19 Single stub tuner

In the figure,

l—length of the shunt stub,
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d—distance of the stub connection from the load,

YS —input admittance of the stub,

Ytl —input admittance of the terminated transmission line segment of length d,

Yin —input admittance of the stub in parallel with the transmission line segment,

The admittance of the terminated transmission line section is

0tlY Y jB= +

The admittance of the stub (short-circuit or open-circuit) is

SY jB= -
Hence, the admittance of the short-circuited stub is

0
0

1 1
cot

tanSC
SC

Y jY l
Z jZ l

b
b

= = = -

Hence, the admittance of the open-circuited stub is

0
0

1 1
tan

cotOC
OC

Y jY l
Z jZ l

b
b

= = =
-

Hence, overall input admittance is

in 0= + =tl SY Y Y Y

where, 0
0

1
Y

Z
=  and Z0 is the characteristic impedance of the transmission line.

All admittances can be represented in normalised forms, by dividing by Y0, so that we get,

in1 1= + = - =tl Sy jb y jb y

This is seen that the normalised conductance of the transmission line segment admittance is unity (ytl

= g + jb and g = 1).

Short-circuited stub tuners are most commonly used because a shorted segment of transmission 

line radiates less than an open-circuited section. The stub tuner matching technique also works for 

tuners in series with the transmission line. However, series tuners are more difficult to connect since 

the transmission line conductors must be physically separated in order to make the series connection.

Design of Single Stub using Smith Chart The main objective for designing a single stub is 

to find out the distance of the stub from the length and the length of the stub. The design process of a 

single stub tuner consists of the following steps:

1. Given the load impedance ZL and the characteristic impedance Z0 of the transmission line, we 

find the normalised load impedance as,

0

L
L L L

Z
z r jx

Z
= = +

2. The point of intersection of the rL-circle and xL-circle is marked on the Smith chart.

3. A circle is drawn with the radius equal to the distance of this point from the centre of the chart.

4. Since the stub is connected in parallel with the main line, it is more convenient to deal with 

admittances. In order to locate the normalised admittance, a straight line is drawn from the point 

of intersection (obtained in step 2) through the centre of the chart to the other half of the chart. 

The point where this straight line intersects the circle drawn given the normalised admittance 

(yL = g + jb).
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5. The point where the circle drawn cuts the centre straight line of the chart to the right side of the 

centre gives the value of VSWR.

6. The points where the drawn circle intersects the r = 1 circle give the normalised admittance 

(1 ± jb). The stub to be designed for ± jb component will be placed at these points.

7. The distance travelled from the points (yL = g + jb) to (1 ± jb) round the circumference of the 

chart gives the distance of the stub from the load.

8. In order to find the length of the stub, we move clockwise round the perimeter of the chart and 

find the point at which the susceptance tunes out the ± jb susceptance of the line. For example, if 

the line admittance is (1 + jb), the required susceptance is – jb. The distance in wavelengths from 

( , j ) of the chart to the new point (susceptance – jb) gives the length of the stub.

*Example 6.26 Design a stub to match a transmission line with a load impedance of ZL = (450 – 

j600) W. The characteristic impedance of the line is 300 W.

Solution Here, ZL = (450 – j600) W, Z0 = 300 W

\ Normalised load impedance is, 
0

450 600
(1.5 2.0)

300
L

L

Z j
z j

Z

-Ê ˆ= = = -Ë ¯

P

Fig. 6.20 Use of Smith chart for Example 6.26
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Steps of Design:

1. The point of intersection of (r = 1.5)-circle and (x = –2.0)-circle is located on the Smith chart. 

This point is point A.

2. With the centre as the centre of Smith chart, point O, a circle is drawn with radius equal to OA.

3. The drawn circle cuts the r = 1 circle at point B which is measured to be (1 = j1.7).

4. The distance between points C and D on the rim of the chart gives the distance of the stub from 

the load. This is measured to be

(0.181 0.053) 0.128CD l l= - =

5. As the load has a susceptance of + j1.7, the stub is required to provide a susceptance of – j1.7.

Therefore, a point is marked by moving clockwise on the lower half of the chart where x = –1.7. 

This point is point E. The distance of this point from the short-circuit admittance point is the 

length of the stub. This is measured as

  Stub length = (0.3342 – 0.25) l = 0.0842l
  Hence, the specifications of the designed stub are:

  Stub Distance = 0.128l
  Stub Length = 0.0842l
  This can be seen in Fig. 6.20.

 Example 6.27 Design a single stub match for a load of 150 + j255 ohm for a 75 ohm line at 500 

MHz using Smith chart.

Solution Here, ZL = (150 + j255) W, Z0 = 75 W

\ Normalised load impedance is, 
0

150 255
(2 3.4)

75
L

L

Z j
z j

Z

+Ê ˆ= = = +Ë ¯

Steps of Design:

1. The point of intersection of (r = 2)-circle and (x = 3.4)-circle is located on the Smith chart. This 

point is point A.

2. With the centre as the centre of Smith chart, point O, a circle is drawn with radius equal to OA.

3. The drawn circle cuts the r = 1 circle at point B, which is measured to be (1 + j2.5).

4. The distance between points C and D on the rim of the chart gives the distance of the stub from 

the load. This is measured to be

0.196 (0.5 0.465) 0.229CD l l= + - =

5. As the load has a susceptance of +j2.5, the stub is required to provide a susceptance of –j2.5.

Therefore, a point is marked by moving clockwise on the lower half of the chart where x = –2.5. 

This point is point E. The distance of this point from the short-circuit admittance point is the 

length of the stub. This is measured as

Stub length (0.31 0.25) 0.06l l= - =
  Hence, the specifications of the designed stub are:

Stub Distance = 0.229l
Stub Length = 0.06l

  Since the frequency is 500 MHz, the wavelength is, 
8

6

3 10
0.6 m

500 10

v

f
l

¥
= = =

¥
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D

P

E

C

Fig. 6.21 Use of Smith chart for Example 6.27

  Hence, the specifications of the designed stub are:

  Stub Distance = 0.229l = 0.229 ¥ 0.6 = 0.1374 m = 13.74 cm

  Stub Length = 0.06l = 0.06 ¥ 0.6 = 0.036 m = 3.6 cm

  This is shown in Fig. 6.21.

*Example 6.28 A 75 W lossless line is to be matched to a (100 – j80) W load with a shorted stub. 

Calculate the stub length, its distance from and the necessary stub admittance.

Solution Here, ZL = (100 – j80) W, Z0 = 75 W

\ Normalised load impedance is, 
0

100 80
(1.33 1.067)

75
L

L

Z j
z j

Z

-Ê ˆ= = = -Ë ¯
Steps of Design:

1. The point of intersection of (r = 1.33)-circle and (x = –1.067)-circle is located on the Smith chart. 

This point is point A.
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2. With the centre as the centre of Smith chart, point O, a circle is drawn with radius equal to OA. 

3. The drawn circle cuts the r = 1 circle at point B, which is measured to be (1 + j0.95).

4. The distance between points C and D on the rim of the chart gives the distance of the stub from 

the load. This is measured to be

(0.161 0.071) 0.09CD l l= - =

5. As the load has a susceptance of + j0.95, the stub is required to provide a susceptance of – j0.95.

Therefore, a point is marked by moving clockwise on the lower half of the chart where x = –0.95. 

This point is point E. The distance of this point from the short-circuit admittance point is the 

length of the stub. This is measured as

Stub length (0.38 0.25) 0.13l l= - =

Fig. 6.22 Use of Smith chart for Example 6.28
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  Hence, the specifications of the designed stub are:

Stub Distance = 0.09l
Stub Length = 0.13l

This can be seen in Fig. 6.22.

*Example 6.29 An R.F. transmission line with a characteristic impedance of 300–0° W is 

terminated in an impedance 100––45° W. The load is to be matched to the transmission line by using 

a short-circuited stub. With the help of Smith chart, determine the length of the stub and the distance 

from the load.

Solution Here, ZL = 100– –45° = (70.71 – j70.71) W, Z0 = 300 W

\ Normalised load impedance is, 
0

70.71 70.71
(0.2357 2357)

300
L

L

Z j
z j

Z

-Ê ˆ= = = -Ë ¯

Fig. 6.23 Use of Smith chart for Example 6.29
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Steps of Design:

1. The point of intersection of (r = 0.2357)-circle and (x = –0.2357)-circle is located on the Smith 

chart. This point is point A.

2. With the centre as the centre of Smith chart, point O, a circle is drawn with radius equal to OA.

3. The drawn circle cuts the r = 1 circle at point B, which is measured to be (1 + j1.65).

4. The distance between points C and D on the rim of the chart gives the distance of the stub from 

the load. This is measured to be

0.25 0.18 (0.25 0.21) 0.47CD l l l l= + + - =
5. As the load has a susceptance of +j1.65, the stub is required to provide a susceptance of – j1.65.

Therefore, a point is marked by moving clockwise on the lower half of the chart where x = –1.65. 

This point is point E. The distance of this point from the short-circuit admittance point is the 

length of the stub. This is measured as

Stub length (0.338 0.25) 0.088l l= - =

  Hence, the specifications of the designed stub are:

Stub Distance = 0.47l
Stub Length = 0.088l

  This use of the Smith chart is given in Fig. 6.23.

Double Stub Tuner In single stub matching, the 

stub is placed on the line at a specified point. Its loca-

tion varies with the load impedance zL and frequency. 

This creates some difficulties in changing the location 

of the stub with variation of load and/or frequency. In 

such cases, double stub matching is used.

Impedance matching is achieved by inserting two 

stubs at specified locations along transmission line as 

shown in Fig. 6.24.

In the double stub configuration, the distance 

between the stubs is fixed, such as 3 3
, , , ,

4 8 8 16 16

l l l l l

and so on and the lengths of the stubs are adjusted to 

match the load. In this way, if the load impedance is changed, one simply has to replace the stubs with 

another set of different length, without changing their locations.

There are two design parameters for double stub matching: 

–The length of the first stub line Lstub1

–The length of the second stub line Lstub2

The length of the first stub is selected so that the admittance at the location of the second stub 

(before the second stub is inserted) has the real part equal to the characteristic admittance of the line. 

The length of the second stub is selected to eliminate the imaginary part of the admittance at the 

location of insertion.

At the location where the second stub is to be inserted, the possible normalised admittances required 

for matching are found on the circle of unitary conductance on the Smith chart. This circle is called 

unitary conductance circle.

Fig. 6.24 Double stub tuner
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At the location of the first stub, the allowed normalised admittances are found on an auxiliary circle

which is obtained by rotating the unitary conductance circle counterclockwise, by an angle given as

aux stub2 stub1

4
( )d d

p
q

l
= -

where, dstub1 and dstub2 are the distances of the first and second stub from the load, respectively. This is 

shown in Fig. 6.25 (a) and (b).

d12 = dstub2 – dstub1

Fig. 6.25 (a) Unitary conductance circle (b) Auxiliary circle

The positions of auxiliary circle will change depending upon the distance between the studs. This is 

shown in Fig. 6.26.

The main drawback of double stub tuning is that a certain range of load admittances cannot be 

matched once the stub locations are fixed.

Design of Double Stub Tuner
The main objective for designing a double stub is to find out the lengths of the stubs when the load 

impedance and the distance between the stubs are given. The design process of a double stub tuner 

consists of the following steps:

1. Given the load impedance ZL and the characteristic impedance Z0 of the transmission line, we 

find the normalised load impedance as

0

L
L L L

Z
z r jx

Z
= = +

2. The point of intersection of the rL-circle and xL-circle is marked on the Smith chart.

3. A circle is drawn with the radius equal to the distance of this point from the centre of the chart. 

This circle is actually the circle of constant magnitude of the reflection coefficient |G | for the 

given load.

4. The normalised load admittance (yL = gL + jbL) is found by rotating –180° on the constant |G |
circle, from the load impedance point.
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Fig. 6.26 Position of auxiliary circle for different distances between stubs

5. The normalised admittance at location dstub1 is found by moving clockwise on the constant |G|

circle.

NOTE

If the distance of the first stub from the load is not mentioned, it is assumed that the first stub is 

located at the load, i.e., dstub1 = 0.

6. The auxiliary circle is drawn considering the distance between the stubs.

7. The admittance of the first stub is added so that the normalised admittance point on the Smith 

chart reaches the auxiliary circle (two possible solutions). The admittance point will move on the 

corresponding conductance circle, since the stub does not alter the real part of the admittance.
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8. The normalised admittance obtained on the auxiliary circle is mapped to the location of the 

second stub dstub2. The point must be on the unitary conductance circle.

9. Finally, the admittance of the second stub is added so that the total parallel admittance equals 

the characteristic admittance of the line to achieve exact matching condition. The design steps of 

double stub turner are shown in Fig. 6.27.

Fig. 6.27 Design steps of double stub tuner

*Example 6.30 For a load of 
0

0.8 1.2RZ
j

Z
= +  = 0.8 + j1.2, design a double stub tuner marking 

the distance between the stubs 3

8

l . Specify the stub length and distance from the load to the first stub. 

The stubs are short-circuited. Use Smith chart.

Solution The normalised admittance is given as

0

0

0

1

1
(0.4 0.6)

1 0.8 1.2
R R

R

ZY Z
j

Y Z j

Z

= = = = -
+
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Design Steps:

1. We locate the point of load admittance on the chart, say point A. The first stub is located at this 

point.

2. Since the distance between the stubs is 3

8

l or 0.375l, the auxiliary circle is drawn by moving a

distance of 0.375l counter-clockwise (towards the load) as shown in Smith chart.

3. This auxiliary circle intersects the constant conductance circle (with conductance 0.4) at point B. 

This point gives the normalised admittance with first stub. This normalised admittance as read 

from the chart is

1

0

(0.4 0.2)
Y

j
G

= -

Fig. 6.28  Use of Smith chart for Example 6.30
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4. The first stub must contribute to a susceptance of j0.6 – j0.2 = j0.4. The +0.4 constant susceptance 

circle intersects the rim of the chart at 0.06l.

  So, the length of the first stub as measured from the short circuit admittance point (extreme left 

hand point on the chart) is given as

stub1 (0.5 0.25) 0.06 0.31L l l l= - + =

5. Now, we move from point B a distance of 0.375l clockwise along the rim of the chart (or 

we move from point B along a circle with constant radius OB). This location cuts the unitary 

conductance circle at point C. Thus, we have moved from the location of stub 1 (point A) to the 

location of stub 2 (point C). The second stub is located at point C.

6. The normalised admittance at point C without the second stub as measured from the chart is 

(1 – j1). For perfect matching, the second stub must eliminate the imaginary component of this 

admittance, i.e., the second stub must provide a susceptance of + j1. This [+ j1] circle cuts the 

rim of the chart at 0.125l.

  So, the length of the second stub as measured from the short-circuit admittance point (extreme 

left hand point on the chart) is given as

stub2 (0.5 0.25) 0.125 0.375L l l l= - + =

  Hence, the lengths of the two stubs are as given:

  Length of first stub located at load, Lstub1 = 0.31l
  Length of second stub, Lstub2 = 0.375l
  This use of the Smith chart is shown in Fig. 6.28.

*Example 6.31 A 50 ohm line feeds an inductive load ZL = 35 + j35 ohm. Design a double stub 

tuner to match this load to the line (make use of a Smith chart).

Solution The normalised load admittance is given as

0

0

0

1

50 1
(0.7142 0.7142)

1 35 35 0.7 0.7
L L

L

ZY Z
j

G Z j j

Z

= = = = = -
+ +

Design Steps:

1. Since the distance between the first stub and the load is not given, we assume that the first stub 

is located at the load. We locate the point of load admittance on the chart, say point A.

2. Also, as the distance between the stubs is not mentioned, we assume it to be 
4

l
. Therefore, the 

auxiliary circle is drawn as shown in Smith chart.

3. This auxiliary circle intersects the constant conductance circle (with conductance 0.7142) at 

point B. Hence, the first stub is located at point B where the normalised admittance as read from 

the chart is

1

0

(0.7142 0.49)
Y

j
G

= -

4. The first stub must contribute to a susceptance of (j0.7142 – j0.49) = j0.224. The +0.224 constant 

susceptance circle intersects the rim of the chart at 0.036l.
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Fig. 6.29 Use of Smith chart for Example 6.31

  So, the length of the first stub as measured from the short circuit admittance point (extreme left 

hand point on the chart) is given as

stub1 (0.5 0.25) 0.036 0.286L l l l= - + =

5. Now, we draw a circle with centre at O and radius equal to OA. This circle cuts the unitary 

conductance circle at point C. The second stub is located at point C.
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6. The portion of the line between the stubs changes the admittance at point A to point C. The 

normalised admittance at point C without the second stub as measured from the chart is (1 + 

j0.65). For perfect matching, the second stub must eliminate the imaginary component of this 

admittance, i.e., the second stub must provide a susceptance of –j0.65. This [–j0.65] circle cuts 

the rim of the chart at 0.408l.

  So, the length of the second stub as measured from the short-circuit admittance point (extreme 

left hand point on the chart) is given as

stub2 (0.408 0.25) 0.158L l l= - =

  Hence, the complete specifications of the double stub are as given:

Length of first stub located at load, Lstub1 = 0.286l
Length of second stub, Lstub2 = 0.158l

Distance between stubs = 
4

l

  This use of the Smith chart is shown in Fig. 6.29.

 Example 6.32 A load of 
0

(0.2 0.3)LZ
j

Z
= +  is located at the end of a transmission line. At a 

distance of 0.11l from the load, an adjustable stub is placed. Another 0.175l distance from the first 

stub, a second stub is placed. Using Smith chart, determine the lengths of the two stubs.

Solution The normalised load admittance is given as

0

0

0

1

1
(1.54 2.31)

1 0.2 0.3
L L

L

ZY Z
j

G Z j

Z

= = = = -
+

Design Steps:

1. We locate the point of load admittance on the chart, say point A.

2. Since the first stub is located at a distance of 0.11l from the load, we move clockwise a distance 

0.11l along the rim of the chart from point A on a circle of constant radius OA and come to point 

B. The first stub is located at point B. The normalised admittance of this point (point without 

stub) as measured from chart is (0.25 – j0.6).

3. Also, the distance between the stubs is 0.175l. Therefore, the auxiliary circle is drawn by 

moving a distance of 0.175l counter-clockwise (towards the load) as shown in the Smith chart.

4. This auxiliary circle intersects the constant conductance circle (with conductance 0.25) at point 

C. This point gives the normalised admittance with first stub. This normalised admittance as read 

from the chart is

1

0

(0.25 0.05)
Y

j
G

= +

5. The first stub must contribute to a susceptance of j0.05 – (– j0.6) = (  j0.65). The +0.65 constant 

susceptance circle intersects the rim of the chart at 0.09l.

So, the length of the first stub as measured from the short-circuit admittance point (extreme left 

hand point on the chart) is given as
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( )3.02.0
0

j
Z

ZL +=

B A

0.175l 0.11l

Stub #2
Stub #1

2
1

Fig. 6.30 (a) Location of stubs (b) Use of Smith chart

(a)

(b)
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stub1 0.25 0.09 0.34L l l l= + =

6. Now, we move a distance of 0.175l clockwise along the rim of the chart. This location cuts the 

unitary conductance circle at point D. Thus, we have to move from the location of stub 1 (point 

B) to the location of stub 2 (point D). The second stub is located at point D.

7. The normalised admittance at point D without the second stub as measured from the chart is (1 

+ j1.6). For perfect matching, the second stub must eliminate the imaginary component of this 

admittance, i.e., the second stub must provide a susceptance of –j1.6. This [–j1.6] circle cuts the 

rim of the chart at 0.34l.

  So, the length of the second stub as measured from the short-circuit admittance point (extreme 

left hand point on the chart) is given as

stub2 (0.34 0.25) 0.09L l l= - =

  Hence, the lengths of the two stubs are as given:

Length of first stub located at load, Lstub1 = 0.34l
Length of second stub, Lstub2 = 0.09l

  The location of stubs and use of the Smith chart are shown in Fig. 6.30(a) and Fig. 6.30(b).

Summary

A transmission line is a device used for transmission of electromagnetic energy guided by two 

conductors in a dielectric medium.

Transmission line mode is the distinct pattern of electric and magnetic field induced on a transmission 

line under source excitation.

Three types of transmission line modes are:

1. Transverse electromagnetic (TEM) Mode,

2. Quasi-TEM Mode, and

3. Waveguide Mode

A transmission line can be characterised by four distributed parameters: resistance (in W/m),

inductance (in H/m), capacitance (in F/m), and conductance (in S/m). These four distributed 

parameters are constant for a particular transmission line and are known as primary line constants

of a transmission line.

Apart from these primary line constants, there are a few other constants related to a transmission 

line. These include the characteristic impedance (Z0), the propagation constant (g ), attenuation 

constant (a) and phase constant (b). These constants are known as the secondary line constants.

Transmission line voltage and current equations, known as Telegrapher’s equations, are given as

2 2
2 2

2 2

( ) ( )
( ) 0 and ( ) 0S S

S S

d V z d I z
V z I z

dz dz
g g- = - =

where, ( )( )j R j L G j Cg a b w w= + = + + is the complex propagation constant.
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Characteristic impedance of a transmission line is defined as the ratio of positively travelling 

voltage wave to current wave at any point on the line. It is given as

–
0 0

0 –
0 0

S S

S S

V V R j L
Z

G j CI I

w
w

+

+
+

= = - =
+

A transmission line is said to be lossless, if

—  the conductors of the line are perfect, i.e., the conductors have infinite conductivity and zero 

resistance (s = , R = 0), and

—  the dielectric medium between the conductors is ideal, i.e., the medium has zero conductivity 

and infinite resistance (s = 0, G = 0).

For a lossless line, 00, ,
L

LC Z
C

a b w= = = .

A transmission line is said to be distortionless if it has no frequency and phase distortions.

The condition for a line to be distortionless is written as R G

L C
= .

For a distortionless line, 0, ,
R L

RG LC Z
G C

a b w= = = = .

The input impedance at any point on the transmission line is given by the ratio of voltage to current 

at that point.

Input impedance for different types of transmission lines are given as follows.

For finite lossy transmission line:

0 0
0 0

0 0

cosh sinh tanh

cosh sinh tanh
R R

i
R R

Z l Z l Z Z l
Z Z Z

Z l Z l Z Z l

g g g

g g g

+ +Ê ˆ Ê ˆ= =Á ˜ Á ˜+ +Ë ¯ Ë ¯

For finite lossless high-frequency transmission line:

0 0
0 0

0 0

cos sin tan

cos sin tan
R R

i
R R

Z l jR l Z jR l
Z R R

R l jZ l R jZ l

b b b

b b b

+ +Ê ˆ Ê ˆ= =Á ˜ Á ˜+ +Ë ¯ Ë ¯

For infinite (lossy and lossless) transmission line:

0
S

i
S

V
Z Z

I
= =

Reflection Coefficient of a transmission line is the ratio of the reflected voltage (or current) to the 

incident voltage (or current), when a transmission line is terminated in an impedance (ZR) not equal 

to the characteristic impedance (Z0) of the line. The reflection coefficient as a function of position 

can be written as

2 ( – ) 2 ( – )0

0

( ) z l z lR
L

R

Z Z
z e e

Z Z
g g-

G = = G
+

The reflection coefficient at the load (z = l) is

0

0

( ) R
L

R

Z Z
l

Z Z

-
G = G =

+



Transmission Lines 563

Standing wave ratio in a transmission line is defined as the ratio of the maximum voltage (or current) 

to the minimum voltage (or current) of a line having standing waves.

max max

min min

1 | |

1 | |
L

L

V I
s

V I

+ G
= = =

- G

The input impedance as a function of position at any point along a general transmission line is given 

as

0
in 0

0

tanh [ ( )]
( )

tanh [ ( )]
R

R

Z Z l z
Z z Z

Z Z l z

g

g

+ -
=

+ -

Smith chart is a useful graphical tool used to calculate the reflection coefficient and impedance at 

various points on a (lossless) transmission line system. 

Smith chart can be used for different purposes, such as, to find the normalised admittance from 

normalised impedance and vice-versa, to find the parameters of mismatched transmission lines, 

to find the VSWR for a given load impedance, to find the reflection coefficient, to find the input 

impedance of a transmission line, to locate a voltage maximum on a transmission line, and to design 

stubs for impedance matching.

Important Formulae

Telegrapher’s equation
2

2
2

( )
( ) 0S

S

d V z
V z

dz
g- =  and 

2
2

2

( )
( ) 0S

S

d I z
I z

dz
g- =

Propagation constant (g ) ( )( )j R j L G j Cg a b w w= + = + +

Attenuation constant (a)
2 2 2 2 2 2 21

( )( )
2

RG LC R L G Ca w w w= - + + +

Phase constant (b )
2 2 2 2 2 2 21

( )( )
2

RG LC R L G Cb w w w= - - + + +

Characteristics impedance (Z0) (lossy line)

0

R j L
Z

G j C

w
w

+
=

+

Characteristics impedance (Z0) (lossless line)

0

L
Z

C
=

Condition for distortionless line R G

L C
=

Input impedance (finite lossy line)
0

0
0

tanh

tanh
L

i
L

Z Z l
Z Z

Z Z l

g
g

+Ê ˆ= Á ˜+Ë ¯

Input impedance (finite lossless line)
0

0
0

tan

tan
L

i
L

Z jR l
Z R

R jZ l

b
b

+Ê ˆ= Á ˜+Ë ¯
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Input impedance (infinite line)
, for lossy infinite line

, for lossless infinite line

i

R j L
Z

G j C

L

C

w
w

+= +

=

Reflection coefficient
0

0

L
L

L

Z Z

Z Z

-
G = +

Standing wave ratio 1 | |

1 | |
L

L

s
+ G

= - G

Exercises

[NOTE: * marked problems are important university problems]

Easy

*1. An open-wire transmission line has the following constants:

8 13 35 /m, 5.2 10 H/m, 2.13 10 F/m, 6.2 10 mho/mR L C G- - -= W = ¥ = ¥ = ¥

  frequency = 4 GHz

  Find the propagation constant, characteristic impedance and velocity of propagation.

[g  = 103.37–65.23°; Z = 12.64 –24.49°; 3 ¥ 108 m/s]

*2. A transmission line with air as dielectric has Z0 = 50 W and a phase constant of 3 rad/m at 

10 MHz. Find the inductance and capacitance of the line. [2.39 mH/m, 0.955 nF/m]

3. A transmission line of characteristic impedance 50 W is terminated by resistor of 100 W. What 

will be the VSWR in the line? Calculate impedances at the voltage minimum and maximum 

positions. [2, 150 W, 16.67 W]

Medium

4. A 60 W lossless line has a maximum impedance Zin = (180 + j0) W at a distance of l/24 from the 

load. If the line is 0.3l, determine (a) standing wave ratio, s (b) load impedance, ZL and (c) the 

input impedance of the transmission line.

  [3; (117.2 + j78.1) W; (20 + j2.8) W]

*5. A lossless transmission line having a characteristic impedance of 75 ohm is terminated in an 

unknown impedance ZL. The VSWR is 3.0. The nearest minimum from the load is found to be at 

20 cm. Calculate ZL if the frequency is 150 MHz. [98.24 W]

Hard

6. A 2 m long lossless transmission line has an impedance of 300 W. The velocity of propagation is 

2.5 ¥ 108 m/s. The load has an impedance of 300 W with sending end voltage being 60 V at 100 

MHz. Find:

(a) The phase constant

(b) The load voltage

(c) The load current
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(d) The load reflection coefficient

(e) Standing wave ratio.

7. Design a short-circuited shunt stub tuner to match a load of ZL = (60 –j40)W to a transmission line 

with characteristic impedance of 50 W.

  [stub length = 0.147l, stub distance = 0.076l]

*8. A transmission line of 100 m long is terminated in load of (100 – j200)W. Determine the line 

impedance at 25 m from the load end at a frequency of 10 MHz. Assume line impedance Z0 = 100 

W. Determine the input impedance and admittance using Smith chart.

  [(44 + j120)W; (0.28 – j0.75) mho]

9. A 50 W transmission line is terminated in an impedance of ZL = (35 – j47.5)W. Find the position 

and length of the short-circuited stub to match it.

  [stub length = 0.059l, stub distance = 0.111l]

*10. A load (50 – j100)W is connected across a 50 W line. Design a short-circuited stub to provide 

matching between the two at a signal frequency of 30 MHz using Smith chart.

  [stub length = 0.072l, stub distance = 0.126l]

*11. For a load of ZR = (50 – j50) ohm connected to a 50 ohm lossless line at 400 MHz, design a 

double stub tuner making the distance between the stubs 3

8

l . Use Smith chart.

  [stub lengths: 4.5 cm and 4.3 cm]

12. A 90 ohm line feeds a load ZL = 270 + j0 ohm at 600 MHz. Design a quarter wave double stub 

tuner to match this load to the line (make use of a Smith chart).

  [stub lengths: 9 cm and 4.95 cm]

Review Questions

[NOTE: * marked questions are important university questions.]

1. (a) What are the transmission line parameters?

  (b) Mention the different modes of transmission line.

2. What are Telegrapher’s equations? Deduce the equations.

*3. (a)  Explain what do you understand by the term ‘Line parameters’ in the context of a transmission 

line.

  (b)  Draw the equivalent circuit of a transmission line and hence write the transmission line 

equations for an elemental section of a transmission line.

*4. Develop the analogy between the uniform plane E.M. Waves and the electric transmission line.

*5. (a)  What is characteristic impedance of a transmission line? Derive its expression. What will be 

the characteristic impedance if the line is: (i) lossless line? (ii) distortionless line?

  (b)  What is a distortionless line? How to achieve distortionless condition on the line? Derive the 

necessary conditions (Heaviside condition).

6. Discuss the field analysis to determine the line parameters R, L, G and C for a transmission line.

7. Starting from the equivalent circuit diagram, derive expressions for characteristic impedance and 

input impedance of a transmission line.

8. Deduce an expression for the input impedance of a finite lossy transmission line in terms of the 

line constants. What will be the expression if the transmission line is:

(a) an open-ended line?

(b) a short-ended line?

(c) an infinite line?
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9. Deduce an expression for the input impedance of an infinite lossy transmission line in terms of 

the line constants. What will be the input impedance if the line is a lossless one?

10. (a) Discuss the different losses associated with high-frequency transmission lines.

  (b)  Derive expressions for the input impedance of a lossless line of length l when the load 

terminals are (i) short-circuited, and (ii) open-circuited.

11. Bring out the differences between lossless and low-loss transmission lines.

12. Prove that the input impedance of a lossless radio frequency line of length l of characteristic 

impedance Z0 and terminated in an impedance ZL is given by,

0
0

0

tan

tan
L

in
L

Z jZ l
Z Z

Z jZ l

b

b

+
=

+

  where, b is the phase constant of the line.

13. (a)  Derive the expression of input impedance, Zin of a lossless transmission line in terms of 

relevant parameters, when the line is terminated in a load impedance, ZL.

  (b)  Give a neat sketch of variation of Zin as a function of electrical length of the line, when the 

line is terminated in a 

(i) short circuit and

(ii) open circuit.

  Discuss the significance of the plots.

*14. Show that for a lossless transmission line the impedance of a line repeats over every 
2

l
 distance.

*15. Show that a short-circuited lossless transmission line can offer reactances of any value by simply 

changing the length of the line.

*16. Show that an open-circuited transmission line with length less than 
4

l
 is capacitive.

17. Sketch the input impedance offered by short-circuited and open-circuited transmission lines. 

Derive the expressions used.

18. (a)  Mention the conditions under which a travelling wave and a standing wave form in a 

transmission line.

  (b) Define, in relation to travelling waves in a transmission line, the followings:

(i) Reflection co-efficient,

(ii) Transmission co-efficient, and

(iii) Standing wave ratio (SWR).

19. What is Smith chart? Explain the characteristics of Smith chart.

20. Explain the formation of standing wave pattern on transmission line. Deduce the relation between 

the reflection coefficient and VSWR.

21. Derive an expression for reflection co-efficient of a transmission line. Prove there is no reflection 

if line is terminated in its characteristic impedance.

22. Discuss the principle of any one method for matching a transmission line with characteristic 

impedance z0 to a load zL.

23. Explain what you understand by the term ‘quarter-wave transformer’. Write one application of 

such a transformer.

24. Show how a uniform transmission line can be used as an impedance transformer and explain how 

this property can be made use of in impedance matching.

25. Explain the principle of single stub-matching deriving expressions for stub length and stub 

location.
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Multiple Choice Questions

1. In a transmission line, electric energy is transported by:

(a) the flowing electrons   (b) the flowing electrons and holes

(c) the associated electric and magnetic field (d) none of the above.

2. In a transmission line, the distance between adjacent maxima and minima of a standing wave is

(a) l/8 (b) l/4 (c) l/2 (d) l.

3. A transmission line is called a distortionless line, when

(a) R G

L C
= (b) R C

G L
= (c) L

RG
C

= (d) R
LC

G
=

4. A transmission line is said to be distortionless if:

(a) R C

G L
= (b)

R L

G C
= (c) RG = LC (d) R = 0.

5. A transmission line has R, L, G and C distributed parameters per unit length of the line. g is the 

propagation constant of the lines. Which expression gives the characteristic impedance of the line?

(a)
R j L

g
w+

(b) R j Lw
g

+ (c)
G j Cw

g
+

(d)
G j C

R j L

w
w

+
+

6. At low frequencies, the characteristic impedance of a transmission line is given as,

(a) R

G
(b) G

R
(c) L

C
(d) C

L

7. At high frequencies, the characteristic impedance of a transmission line is given as,

(a) R

G
(b) G

R
(c) L

C
(d) C

L

8. Consider the following statements:

  The characteristic impedance of a transmission line can increase with the increase in

1. resistance per unit length

2. conductance per unit length

3. capacitance per unit length

4. inductance per unit length

  Which of these statements are correct?

(a) 1 and 2 (b) 2 and 3 (c) 1 and 4 (d) 3 and 4

9. SWR of a transmission line is measured by

(a) reflectometer (b) voltmeter (c) ammeter (d) power meter

10. When the load impedance is equal to the characteristic impedance of the transmission lines, then 

the reflection coefficient and standing wave ratio are respectively

(a) 0 and 0 (b) 1 and 0 (c) 0 and 1 (d) 1 and 1.

11. A transmission line of length 
4

l  shorted at the far end behaves like

(a) series resonant circuit   (b) parallel resonant circuit

(c) pure inductor   (d) pure capacitor

12. The SWR on a lossless transmission line of characteristic impedance 100 ohm is 3. The line is 

terminated by

(a) a resistance of 300 ohm  (b) a reactance of j300 ohm.

(c) a resistance of 100/3 ohm (d) a reactance of j100/3 ohm.
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13. A transmission line is terminated by a pure capacitor. The VSWR in the line is

(a) 1   (b) infinity

(c) 0   (d) depends on the value of capacitor.

14. If the reflection coefficient of a transmission line is (0.5 + j0.5) for a given load, VSWR will be

(a) 1 (b) (c) 2 (d) – .

Answers

1. (c) 2. (b) 3. (a) 4. (b) 5. (b) 6. (a) 7. (c) 8. (c)

9. (a) 10. (c) 11. (a) 12. (a) 13. (b) 14. (b)



This chapter deals with the following topics:

■ Concepts of waveguides

■ Analysis of three types of waveguides: 

 Parallel-plane waveguide, 

 Rectangular waveguide, and 

 Circular waveguide

■ Power transmission,losses and attenuation in different waveguides

7
WAVEGUIDES

7.1 INTRODUCTION

A waveguide is a hollow conducting pipe, of uniform cross-section, used to transport high frequency 

electromagnetic waves (generally, in the microwave band) from one point to another.

Classification of Waveguides Waveguides can be generally classified as 

1. Metal waveguides These waveguides normally take the form of an enclosed conducting metal 

pipe. The waves propagating inside the metal waveguide may be characterised by reflections 

from the conducting walls.

2. Dielectric waveguides These waveguides consist of dielectrics only and employ reflections from 

dielectric interfaces to propagate the electromagnetic wave along the waveguide.

Advantages of waveguide over conventional transmission lines
 1. Waveguides are simple and rigid. Uniform cross-section of a guide can be obtained much easily 

compared to uniform spacing between the conductors.

 2. There are no radiation losses as the field is confined within the guide.

 3. There is no dielectric loss due to absence of any inner conductor.

 4. Ohmic power losses are also reduced in waveguides as compared to conventional transmission 

lines due to greater current carrying over waveguide walls and absence of an inner conductor 

with less diameter and higher current density.

Modes of Wave Propagation When an electromagnetic wave propagates through a hollow 

tube, only one of the fields, either electric or magnetic field, will actually be transverse (perpendicular) 

Learning Objectives
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to the direction of wave propagation. The other field will ‘loop’ longitudinally to the direction of 

propagation, but still be perpendicular to the other field. Whichever field remains transverse to the 

direction of travel determines whether the wave propagates in TE mode (Transverse Electric) or TM

(Transverse Magnetic) mode as shown in Fig. 7.1. It is observed that the electric flux lines appear with 

beginning and end points, whereas, the magnetic flux lines appear as continuous loops. 

7.2  PARALLEL PLANES WAVEGUIDES BETWEEN TWO
INFINITE PARALLEL CONDUCTING PLANES

Definition A parallel-plane wave guide is a waveguide formed by two infinite parallel perfectly 

conducting planes.

Derivation of Field Equations for Parallel-Plane Waveguide We consider two parallel 

perfectly conducting infinite planes separated by a distance d, as shown in Fig. 7.2.

Fig. 7.2 Wave between two infinite parallel conducting planes

Fig. 7.1 Waveguides TE and TM modes
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In order to determine the electromagnetic field configurations between the planes, Maxwell’s equations 

are solved subject to the following two boundary conditions:

Boundary conditions:

1. Since the planes are assumed to be perfectly conducting, the tangential components of the electric 

field must be zero.

\ Et = 0

2. Since the planes are assumed to be perfectly conducting, the normal components of the magnetic 

field must be zero.

\ Hn = 0

By Maxwell’s equations for harmonically varying fields,

H
E j H

t
m wm

∂— ¥ = - = -
∂

(7.1)

and

( )H j Es we— ¥ = + (7.2)

By wave equations,

2 2E Eg— = (7.3)

and

2 2H Hg— = (7.4)

where, 2 2( )jg wsm w me= -

For non-conducting region between the planes (s = 0), these equations reduce to,

E j Hwm— ¥ = - (7.5)

H j Ewe— ¥ = (7.6)

2 2E Ew me— = - (7.7)

2 2H Hw me— = -
(7.8)

From Eq. (7.5),

( )

x y z

x x y y z z

x y z

a a a

j H a H a H a
x y z

E E E

wm
∂ ∂ ∂ = - + +
∂ ∂ ∂

Equating both sides,

yz
x

EE
j H

y z
wm

∂Ê ˆ∂
- = -Á ˜∂ ∂Ë ¯

(7.9a)
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x z
y

E E
j H

z x
wm

∂ ∂Ê ˆ- = -Ë ¯∂ ∂
(7.9b)

y x
z

E E
j H

x y
wm

∂Ê ˆ∂
- = -Á ˜∂ ∂Ë ¯

(7.9c)

From Eq. (7.6) in the same way, we get

yz
x

HH
j E

y z
we

∂Ê ˆ∂
- =Á ˜∂ ∂Ë ¯

(7.10a)

x z
y

H H
j E

z x
we

∂ ∂Ê ˆ- =Ë ¯∂ ∂
(7.10b)

y x
z

H H
j E

x y
we

∂Ê ˆ∂
- =Á ˜∂ ∂Ë ¯

(7.10c)

Similarly, from Eqs. (7.7) and (7.8), we get

2 2 2
2

2 2 2

E E E
E

x y z
w me

∂ ∂ ∂+ + = -
∂ ∂ ∂

(7.11a)

and

2 2 2
2

2 2 2

H H H
H

x y z
w me

∂ ∂ ∂+ + = -
∂ ∂ ∂

(7.11b)

We assume that the wave is propagating in the positive z-direction so that the variations of the field 

components w. r. t. z is expressed as e–g z, where, g is a complex propagation constant (g  = a + jb).

Therefore, the field equations can be expressed as

0

0

0

0

0

0

-

-

-

-

-

-

=
=

=
=
=

=

z
x x

z
y y

z
z z

z
x x

z
y y

z
z z

E E e

E E e

E E e

H H e

H H e

H H e

g

g

g

g

g

g

(7.12)

\ and
y x

y x

E E
E E

z z
g g

∂ ∂
= - = -

∂ ∂

and
yx

z y

HH
H H

z z
g g

∂∂
= - = -

∂ ∂
(7.13)

\ 
2 2

2 2
2 2

and , etc.
y x

y x

E E
E E

z z
g g

∂ ∂
= = º

∂ ∂
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Also, as the planes are infinitely extended in the y-direction, there is no boundary condition in this 

direction and the fields in that direction can be assumed to be uniform or constant. This means that all 

derivatives w. r. t. y are zero. However, the planes are finite in the x-direction and thus, there are certain 

boundary conditions in that direction.

\ 0x xz zE HE H

y y y y

∂ ∂∂ ∂
= = = =

∂ ∂ ∂ ∂
(7.14)

and
2 2

2 2
0 0

E H

y y

∂ ∂= =
∂ ∂

Hence, from Eq. (7.9),

y xE j Hg wm= - (7.15a)

z
x y

E
E j H

x
g wm

∂
+ =

∂
(7.15b)

y
z

E
j H

x
wm

∂
= -

∂
(7.15c)

From Eq. (7.10),

y xH j Eg we= (7.16a)

z
x y

H
H j E

x
g we

∂
- - =

∂
(7.16b)

y
z

H
j E

x
we

∂
=

∂
(7.16c)

From Eq. (7.11),

2
2 2

2

E
E E

x
g w me

∂ + = -
∂

(7.17a)

2
2 2

2

H
H H

x
g w me

∂ + = -
∂

(7.17b)

From Eq. (7.16a), y x

j
H E

we
g

=

Putting this in Eq. (7.15b),

z
x x

E j
E j E

x

we
g wm

g

∂
+ =

∂

or
2

z
x

E
E

x

w me
g

g

Ê ˆ ∂
+ = -Á ˜ ∂Ë ¯

or
2 2 2

z z
x

E E
E

x xh

g g

g w me

∂ ∂Ê ˆ= - = -Á ˜ ∂ ∂+Ë ¯
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where h2 = (g2 + w2me).

\ 2
z

x

E
E

xh

g ∂
= -

∂ (7.18)

Similarly, from Eq. (7.15a) and Eq. (7.16b), we get

z
x y x

H j
H j E j H

x

wm
g we we

g

∂ Ê ˆ- - = = -Á ˜∂ Ë ¯
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H
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Ê ˆ ∂
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\ 
2

z
x

H
H

xh

g ∂
= -

∂
(7.19)

Similarly, from Eqs. (7.16b) and (7.19), we get
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z z
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j E
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g we
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(7.20)

Finally, from Eqs (7.15b) and Eq. (7.18), we get

2
z z
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E E
j H

x xh

g
g wm

∂ ∂Ê ˆ- + =Á ˜Ë ¯ ∂ ∂
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Equations (7.18) to (7.21) express the components of the electric and magnetic fields E  and H  in 

terms of Ez and Hz, i.e., the component of the fields in the direction of wave propagation.

It is observed that there must be a z-component of the field either E  or H ; otherwise, all the 

components of E  and H  would be zero and there would be no fields in the region considered. In 

general, both Ez and Hz are present.

Depending upon the presence of the components of E  and H , the waves within the parallel planes are 

classified into three categories as

1. Transverse Electric Waves or TE-Waves or H-Waves,

2. Transverse Magnetic Waves or TM-Waves or E-Waves, and

3. Transverse Electromagnetic Waves or TEM-Waves

7.2.1  Field Equations for Transverse Electric (TE)
Mode in Parallel-Plane Waveguide

In this case, there is a component of H  in the direction of wave propagation, but no component of E  is 

present in that direction. In other words, the electric field E  lies in a plane transverse or perpendicular 

to the direction of wave propagation and the component of the magnetic field lies along the direction 

of wave propagation.

This implies that

Ez = 0 and Hz π 0

Substituting these conditions in Eqs. (7.18) and (7.21), we get

2
0z

x

E
E

xh

g ∂
= - =

∂

and

2
0z

y

Ej
H

xh

we ∂
= - =

∂

Thus, we get Ex = 0, Hy = 0; but in general, other components Ey, Hx, and Hz will be present.

From Eq. (7.17), the wave equation can be written in its component form as

2
2 2

2
x

x x

E
E E

x
g w me

∂
+ = -

∂
(7.22a)

2

2 2
2

y
y y

E
E E

x
g w me

∂
+ = -

∂
(7.22b)

2
2 2

2
z

z z

E
E E

x
g w me

∂
+ = -

∂
(7.22c)

Similarly,

2
2 2

2
x

x x

H
H H

x
g w me

∂
+ = -

∂
(7.23a)
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2

2 2
2

y
y y

H
H H

x
g w me

∂
+ = -

∂
(7.23b)

2
2 2

2
z

z z

H
H H

x
g w me

∂
+ = -

∂
(7.23c)

From Eq. (7.22b), we get

2

2 2 2
2

( )
y

y y

E
E h E

x
g w me

∂
= - + = -

∂
(7.24)

Now, since Ey = Ey0e
–g  z, \

2 2
0 0

2 2
,

y y y yz z
E E E E

e e
x x x x

g g- -∂ ∂ ∂ ∂
= \ =

∂ ∂ ∂ ∂
From Eq. (7.24),

2
0 2

02

y z z
y

E
e h E e

x

g g- -∂
= -

∂

or
2

0 2
02

y
y

E
h E

x

∂
= -

∂
(7.25)

Solution of Eq. (7.25) yields

Ey0 = A1 sin hx + A2 cos hx

Incorporating the z variation, we have

Ey = (A1 sin hx + A2 cos hx)e–g  z (7.26)

where A1 and A2 are arbitrary constants.

Applying the boundary conditions for the parallel plane guide, that the tangential component of E

is zero at the surface of the conductor for all values of z and time, we get

Ey = 0 at  x = 0

Ey = 0 at  x = d

\     1 20 ( sin 0 cos 0) zA h A h e g-= +

fi A2 = 0

\ Ey = A1 sin hxe–g z

Applying the second boundary condition,

\ 1 sin 0zA hde g- =

fi sin 0hd =

fi 1, 2, 3,hd n np= = ± ± ± º

\ n
h

d

p= (7.27)
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Since for n = 0, all the field components become zero and there is no propagation of wave, we exclude 

zero value, i.e., n π 0.

\ ( )1 sin
z

y

n
E A x e

d
gp -= (7.28)

The other components Hx and Hz are obtained as follows.

From Eqs. (7.19) and (7.20),

2 2
andz z

x y

H Hj
H E

x xh h

g we∂ ∂
= - =

∂ ∂

Combining these two equations, we get

( )1 sin
z

x y

n
H E A x e

j j d
gg g p

wm wm
-= - = -

\ ( )1 sin
z

x

n
H A x e

j d
gg p

wm
-= - (7.29)

Also, ( )1 cos
y z

E n n
A x e

x d d
gp p -∂

=
∂

From Eq. (7.15c),

( )1

1
cos

y z
z

E n n
H A x e

j x j d d
gp p

wm wm
-∂

= - = -
∂

\ ( )1 cos
z

z

n n
H A x e

j d d
gp p

wm
-= - (7.30)

Therefore, we can summarise the components of the electric and magnetic fields for TE waves as 

follows.

( )
( )

( )

1

1

1

0

sin

0

sin

0

cos

x

z
y

z

z
x

y

z
z

E

n
E A x e

d
E

n
H A x e

j d

H

n n
H A x e

j d d

g

g

g

p

g p
wm

p p
wm

-

-

-

=

=

=

= -

=

= -

(7.31)

NOTE

The value of n specifies a particular field configuration or mode. The wave associated with integer n 

is designated as TEn mode or TEn wave. The smallest value of n is unity (n = 1) and the lowest order 

mode is TE1.
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In Eq. (7.31), the propagation constant, g = (a + jb) is a complex quantity. For the wave propagation 

between two perfectly conducting planes, g is either purely real or purely imaginary, depending upon 

the frequencies of the wave. For a real value of g, i.e., g = a, or b = 0, there is no phase shift, but the 

wave is attenuated and there is no wave propagation. However, in the range of frequencies in which the 

wave propagation will occur and there will be no attenuation, the propagation constant g  will be purely 

imaginary, i.e., g = jb and a = 0. Under this condition, the field equations of Eq. (7.31) is written as

( )
( )

( )

1

1

1

0

sin

0

sin

0

cos

x

j z
y

z

j z
x

y

j z
z

E

n
E A x e

d
E

n
H A x e

d

H

n n
H A x e

j d d

b

b

b

p

b p
wm

p p
wm

-

-

-

=

=

=

= -

=

= -

(7.32)

A sketch of these field distributions at some particular instant of time is shown in Fig. 7.3 for TE10

mode.

Fig. 7.3 (a) Electric and (b) magnetic field distributions between parallel planes for TE1 mode

7.2.2  Field Equations for Transverse Magnetic (TM)
Mode in Parallel-Plane Waveguide

In this case, there is a component of E  in the direction of wave propagation, but no component of 

H  is present in that direction. In other words, the magnetic field H  lies in a plane transverse or 

perpendicular to the direction of wave propagation and the component of the electric field E  lies along 

the direction of wave propagation.

This implies that

0 and 0z zH E= π

Substituting these conditions in Eqs. (7.19) and (7.20), we get

2
0z

x

H
H

xh

g ∂
= - =

∂
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and

2
0z

y

Hj
E

xh

we ∂
= =

∂

Thus, we get, Hx = 0, Ey = 0; but in general, other components Ex, Ez, and Hy will be present.

From Eq. (7.17), the wave equation can be written in its component form as

2
2 2

2
x

x x

E
E E

x
g w me

∂
+ = -

∂
(7.22a)

2

2 2
2

y
y y

E
E E

x
g w me

∂
+ = -

∂
(7.22b)

2
2 2

2
z

z z

E
E E

x
g w me

∂
+ = -

∂
(7.22c)

Similarly,

2
2 2

2
x

x x

H
H H

x
g w me

∂
+ = -

∂
(7.23a)

2

2 2
2

y
y y

H
H H
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g w me

∂
+ = -

∂
(7.23b)

2
2 2

2
z

z z

H
H H

x
g w me

∂
+ = -

∂
(7.23c)

From Eq. (7.23b), we get

2

2 2 2
2

( )
y

y y

H
H h H

x
g w me

∂
= - + = -

∂
(7.33)

In a similar way as for TE waves, the solution of this equation can be written as

3 4( sin cos ) z
yH A hx A hx e g-= + (7.34)

where A3 and A4 are arbitrary constants.

In this case, the boundary conditions cannot be applied directly to Hy to evaluate the constants A3

and A4 because, in general, the tangential component of H  is not zero at the surface of the conductor. 

However, the expression for Ez can be obtained in terms of Hy and then the boundary conditions can 

be applied to Ez.

Using Eq. (7.16c),

3 4

1
( cos sin )

y z
z

H h
E A hx A hx e

j x j
g

we we
-∂

= = -
∂

Applying the boundary conditions,

Ez = 0 at x = 0

\ 
3 30 ( ) 0zh

A e A
j

g

we
-= fi =
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Ey = 0 at x = d

\ 4( sin ) 0zh
A hd e

j
g

we
-- =

fi sin hd = 0

fi hd = np

fi n
h

d

p=

where n is an integer.

\ ( )4 sin
z

z

h n
E A x e

j d
gp

we
-= - (7.35)

The other components Ex and Hy are obtained as follows.

From Eq. (7.16c),

y
z

H
j E

x
we

∂
=

∂

\ ( ) ( )4 4sin cosz z
y z

h n d n
H j E dx j A x e dx hA x e

j d n d
g gp p

we we
we p

- -= = - =Ú Ú

( ) { }4 cos
zn n

A x e h
d d

gp p-= =

\ ( )4 cos
z

y

n
H A x e

d
gp -= (7.36)

From Eq. (7.16a),

( )4 cos
z

x y

n
E H A x e

j j d
gg g p

we we
-= =

\ ( )4 cos
z

x

n
E A x e

j d
gg p

we
-= (7.37)

Therefore, we can summarise the components of the electric and magnetic fields for TM waves as 

follows.
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H
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b p
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we
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-

=

=

= -

=

=

=

(7.38)
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NOTE

As in TE waves, the value of n specifies a particular field configuration or mode. The wave associated 

with integer n is designated as TMn mode or TMn wave. Unlike TW waves, there is a possibility of n 

being zero, as for n = 0, some field components (Ex and Hy) still exist. Hence, the smallest value of n 

is zero (n = 0) and the lowest order mode is TM0.

Similar to TE waves, for TM waves too, in the range of frequencies in which the wave propagation 

occurs, the propagation constant is purely imaginary, i.e., g = jb and thus, the field equations of Eq. 

(7.38) can be written as

( )

( )
( )

4

4

4

cos

0

sin

0

cos

0

j z
x

y

j z
z

x

j z
y

z

A n
E x e

j d

E

hA n
E x e

j d
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H A x e

d
H

b

b

b

g p
we

p
we

p

-

-

-

=

=

= -

=

=

=

(7.39)

A sketch of these field distributions at some particular instant of time is shown in Fig. 7.4 for TM1

mode.

Fig. 7.4 (a) Electric and (b) magnetic field distributions between parallel planes for TM1 mode

7.2.3  Characteristics of TE and TM Waves in 
Parallel-Plane Waveguide

From the summary of the different field components for TE and TM waves, it is seen that for each of 

the components of E  or H , there is a sinusoidal or cosinusoidal standing-wave distribution across 

the guide in the x-direction. This means that each of these components varies in magnitude, but not in 

phase, in the x-direction. In the y-direction, by assumption, there is no variation of either magnitude or 

phase of any of the field components.

Thus, any xy-plane is an equiphase plane for each of the field components. These equiphase surfaces 

propagate along the guide in the z-direction.
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We find the following quantities for the TE and TM mode waves for parallel plane waveguide.

1. Propagation Constant (g ),

2. Cut-off Frequency (fc) and Cut-off Wavelength (lc),

3. Guide Wavelength (l),

4. Velocities of Wave Propagation, and

5. Wave Impedance (h).

1. Propagation Constant (g ):

We have, ( )22 2 2 n
h

d

p
g w me= + =

\ ( )2 2n

d

p
g w me= - (7.40)

The value of g  = (a + jb) depends on the value of the frequency of the wave and the medium through 

which the wave is propagating.

2. Cut-off Frequency (fc) and Cut-off Wavelength (lc):

From Eq. (7.31), three conditions can be derived.

(a) When the term under radical is zero:

\ ( )2 2n

d

p
w me- at any frequency w = wc

or
1

c

n

d

p
w

me
=

\ 
1

2c

n
f

d me
= (7.41)

This frequency is known as the cut-off frequency or critical frequency.

At this frequency, the wave starts travelling along the guide or the attenuation condition changes. 

This is observed that for each value of n, there is a corresponding cut-off frequency.

(b) When the frequency is below the cut-off frequency, f < fc:

The propagation constant g  is real, i.e., g  = a, b = 0.

The field amplitudes will decrease very rapidly with distance z according to the exponential decay e–g z

even though the phase angle will remain constant.

(c) When the frequency is above the cut-off frequency, f > fc:

Here, the propagation constant will be imaginary, i.e., g = jb, a = 0. This implies that the wave 

propagates without any attenuation. However, in a practical situation, owing to the finite conductivity 

of the planes, some attenuation is present at frequencies above the cut-off frequency.

Now, from Eqs. (7.40) and (7.41),

( )2 2 2 2 2 2
2

2 2 2 2 2

2
2

2

(2 )
1 1 1

1

(2 )

1
c

d f d fn n n n

d d d dn n n

d
fn

d f

w me p mep p p p
g w me

p p
me

p

= - = - = - = -

= -
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\ 
2

2
1

c

fn

d f

p
g = - (7.42)

For f > fc, g = jb and using Eq. (7.42), we have

\ ( )2 2
2

2
1

c

fn n

d d f

p p
b w me= - = - (7.43)

For f >> fc, 1c c

fn n n

d f d d n

d

p p w p w
b w me

w p

me

= = = =

\ b w me= (7.44)

Thus, from Eqs. (7.41) to (7.44), it is seen that the phase constant varies from zero to w me  as the 

frequency approaches infinity.

Also, corresponding to the critical frequency (fc), there is a critical wavelength or cut-off wavelength

(lc) defined as that wavelength above which the wave will not be propagated through the region 

between the parallel planes. It is given as

( )
1 2

1
2

p
c

c

v d

f nn

d

me
l

me

= = =

where
1

pv
me

=  is the phase velocity in an unbounded medium

\ 2
c

d

n
l = (7.45)

Equation (7.45) gives the relation between the plane separation distance and the critical wavelength 

2
cn

d
lÊ ˆ=Ë ¯

. Thus, critical wavelength is determined by the spacing between the planes as that at which 

the distance between the planes is exactly n times half wavelength.

Waves having wavelengths greater than the critical wavelength are attenuated and the waves with 

smaller wavelengths are propagated without losses.

The largest value of the critical wavelength is

lmax = 2d  with n = 1

This means that the largest free-space wavelength a signal may have and still be capable of propagating 

through parallel plane guide is just less than twice the plane separation. When n = 1, the signal is said 

to be propagated in the dominant mode, which yields the longest cut-off wavelength.

3. Guide Wavelength (lg):

This is the distance required to produce a phase sift of 360° or 2p radian within the guide.

\ 2
g

p
l

b
=  (in metre) (7.46)



  584 Electromagnetic Field Theory

From Eq. (7.43),

{ }
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(7.47)

From Eq. (7.47), we can also show that

2 2 2

1 1 1

g cl l l
= + (7.48)

From Eq. (7.47), the equation of the critical wavelength can also be derived. As per the definition of 

critical wavelength as that wavelength which is unable to propagate in the waveguide, we derive that 

value of l from Eq. (7.47) for which lg becomes infinite.

\ 
2

2
1 – 0

2
c

c

n d

d n

l
l

Ê ˆ = fi =Ë ¯

This is identical with the result obtained in Eq. (7.45).

4. Velocities of Wave Propagation:

We define two types of velocities:

(a) Phase Velocity, vp and

(b) Group Velocity, vg

(a) Phase Velocity, vp: The phase velocity is defined as the velocity at which a point of constant phase 

moves. It is actually the velocity with which the wave travels within the guide.

For parallel-plane waveguide, it is given as

( )
0 0

2 2 2 2
2

22 2
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11 1

p

c c

c

v v
v

f fn

d f f

mew w
b lp

w me
l
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-- --
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where, 0

1
v

me
=  is the velocity of the wave in an unbounded medium.

\ 0 0

2 2

22
11

p

c

c

v v
v

f

f

l

l

= =

--

(7.49)

(b) Group Velocity, vg: The group velocity (or energy velocity) is the velocity with which the energy is 

transported down the length of the waveguide. 

For parallel-plane waveguide, it is given as

2
0

g
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vd
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d v

w
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= = (7.50)

Now,   
2
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Substituting this value in Eq. (7.50),
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1 1c c c
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n f f
= - = - (7.51)

NOTE

From Eqs. (7.49) and (7.51), it is seen that

=
0 p gv v v

i.e., v0 is the geometric mean of vp and vg.

5. Wave Impedance (h):

From Eqs. (7.28) and (7.29), the intrinsic impedance of TE or TM wave is obtained as

( )2 2

y
TE TM

x

E j j

H
n

d

wm wm
h h

g
p

w me

= = = =

-

[Substituting the value of g from Eq. (7.40)]
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0

2 2

2 2

/

1 1c cf f

f f

m e h
= =

- -

\ 0

2 2

2 2

/

1 1c cf f

f f

m e h
h = =

- -

(7.52)

where 0 0 0/h m e=  is the intrinsic impedance of free space.

7.2.4 Transverse Electromagnetic (TEM) Mode

A transverse electromagnetic (TEM) wave is a special type of wave in which there are no components 

of electric and magnetic field in the direction of wave propagation. This type of wave is entirely 

transverse.

We have seen in earlier section that the lowest order mode was

n = 1, i.e., TE1 mode for TE wave

n = 0, i.e., TM0 mode for TM wave

This special case with n = 0 in TM wave is known as transverse electromagnetic wave or TEM wave. 

Although this is a special case of guided wave propagation, this is extremely important one, because, 

this is the most common type of wave propagation along all ordinary two-conductor transmission lines 

when operating in their customary (low-frequency) manner. For this reason, this wave is also known 

as the principal waves.

For n = 0, the field components are obtained from the results of TM wave as

4
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y
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E e
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E
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H A e
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g

g

we
-

-

=

=
=
=
=
=

(7.53)

Equation (7.53) also reveals that for TEM waves between the parallel planes, the fields are not only 

entirely transverse but they are constant in amplitude across a cross section normal to the direction of 

wave propagation and their ratio is also constant.

Characteristics of TEM Waves:

We determine the following for TEM waves:

1. Propagation constant (g),

2. Intrinsic impedance (h),

3. Cut-off wavelength (lc), and

4. Velocity of wave propagation.
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1. Propagation constant (g):

When n = 0, the propagation constant for TEM wave is given as

( )2 2 20
n

j j
d

p
g w me w me w me wb= - = - = =

\ j jg w me wb= = (7.54)

where b me= , i.e., the value of b corresponds to that of free space.

Equation (7.54) implies that the attenuation constant for TEM wave is zero, a = 0 and the TEM wave 

propagates without attenuation between the two perfectly conducting planes for all frequencies above 

zero.

Substituting the value of g from Eq. (7.54) in Eq. (7.53), we have

4
j z

xE A e bm
e

-= (7.55a)

4
j z

yH A e b-= (7.55b)

2. Intrinsic impedance (h):

This is denoted by hTEM and is given as

4

4

j z

x
TEM j z

y

A e
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H A e

b

b

m
me

h
e

-

-= = =

( )TEM

m
h

e
= W (7.56a)

This is identical with the intrinsic impedance of uniform plane wave propagating through a perfect 

dielectric medium. For free space, this is given as

0

0

120 377TEM

m
h p

e
= = = W (7.56b)

3. Cut-off frequency (fc) and cut-off wavelength (lc):

From Eq. (7.37) for n = 0, the cut-off frequency is

0 orc cf l

This implies that for transverse electromagnetic waves, all frequencies down to zero can propagate 

through parallel plane guide.

4. Velocity of wave propagation:

From Eq. (7.45) with zero cut-off frequency, the velocity of wave propagation for TEM wave is given 

as

8
0

1
3 10 m/spv v

me
= = = ¥
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This means that unlike TE and TM wave, the velocity of TEM wave is independent of frequency and 

has the free space value. However, this is true only when the planes are perfectly conducting and the 

space between them is a vacuum. The effect of finite conductivity for the conducting planes is to reduce 

the velocity by a small amount 0

2

2 2
1

8

v
v

s

w e

È ˘=Í ˙Ê ˆÍ ˙+Á ˜Ë ¯Í ˙Î ˚

 as explained in Section 5.7 in Chapter 5.

A sketch of the field distributions for TEM waves at some particular instant of time is shown in Fig. 7.5.

Fig. 7.5 Electric and magnetic fields between parallel planes for TEM waves

7.2.5 Manner of Wave Travel for TE and TM Modes

The velocity of propagation for a TEM wave (plane wave or transmission line wave) is referred to as 

the phase velocity. The phase velocity of a TEM wave is equal to the velocity of energy transport. The 

phase velocity of a TEM wave travelling in a lossless medium is given by

0

1
v

me
=

The phase velocity of TE or TM mode in a waveguide is defined in the same manner as that of a TEM

wave. However, the waveguide phase velocity is not equal to the velocity of energy transport along the 

waveguide. The velocity at which energy is transported down the length of the waveguide is defined 

as the group velocity.

The differences between the waveguide phase velocity and group velocity can be illustrated using 

the field equations of the TE or TM rectangular waveguide modes. It can be shown that the field 

components of general TE and TM waveguide modes can be written as sums and differences of TEM

waves.

We consider the field equations of a general TE wave in parallel plane guide.
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where, the term ejw t has been included to take into account the time variations.

Taking the real term of the first equation, we get
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d d
b p p

w w- È ˘= + + -Í ˙Î ˚
(7.57)

Similarly, taking the real terms of the other two equations, we get

( )
( )

1

1

sin cos

cos sin

j z
x

j z
z

n
H A x e t

d

n n
H A x e t

d d

b

b

b p
w

wm

p p
w

wm

-

-

= -

= -

Using the trigonometric formula,

1
sin cos [sin ( ) sin ( )]

2
A B A B A B= + + -

1
cos sin [sin ( ) sin ( )]

2
A B A B A B= + - -

The magnetic field components can be written as

( ) ( )1 sin sin
2

j z
x

n n
H A e t x t x

d d
bb p p

w w
wm

- È ˘= - + - -Í ˙Î ˚
(7.58a)

( ) ( )1 sin sin
2

j z
z

n n n
H A e t x t x

d d d
bp p p

w w
wm

- È ˘= - + + -Í ˙Î ˚
(7.58b)

If the directions of the field components are indicated by unit vectors xa  in the x direction and za  in 

the z direction, the total magnetic field can be written as

( ) ( )
( ) ( )

1

1

sin sin
2

sin sin
2

x x z z

j z
x

j z
z

H H a H a

n n
A e t x t x a

d d

n n n
A e t x t x a

d d d

b

b

b p p
w w

wm

p p p
w w

wm

-

-

= +
È ˘= - + - -Í ˙Î ˚

È ˘- + + -Í ˙Î ˚

   
( ) ( ) ( ) ( )1

1
sin sin

2
j z

x z x z

n n n n
A e a a t x a a t x

d d d d
b p p p p

b w b w
wm

- È ˘= - + + - - -Í ˙Î ˚
(7.59)

The two terms in the TE field equation above represent TEM waves moving in the directions shown in 

Fig. 7.6(a).

Equations Eq. (7.57) and Eq. (7.59) show that the wave propagation is the resultant of two TEM

waves at an angle in the region between the planes. Thus, the TE wave in the rectangular waveguide can 

be represented as the superposition of two TEM waves reflecting from the upper and lower waveguide 

walls as they travel down the waveguide as represented in Fig. 7.6(b).

From Fig. (7.6), we have, tan
/

d

n d n

b b
q

p p
= =
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Fig. 7.6 (a) Field components contributing to wave propagation and (b) Path of waves between parallel planes

Replacing the value of b from Eq. (7.43) we get, 
2 2

2 2
tan 1 1

c c

f fd n

n d f f

p
q

p
= ¥ - = -

\
2

2
tan 1

c

f

f
q = - (7.60)

Although the above discussion pertains to TE mode, in general, it can be generalized to both TE and 

TM modes.

As the frequency is reduced and approach the critical frequency, tan q and hence q approaches zero. 

At q = 0, there is no transmission in the z direction since b = 0 and the waves simply bounce back and 

forth between the upper and lower planes. For frequencies much larger than the critical frequency, the 

angle of incidence q becomes large and the wave propagates between the guiding planes by succession 

of glancing reflections.

For the general TEmn of TMmn waves, the phase velocity of the TEM component is given by

0

2

2
1

p

c

v
v

f

f

b
w

= =

-

The waveguide phase velocity represents the speed at which 

points of constant phase of the component TEM waves travel down 

the waveguide.

The waveguide phase velocity is larger than the TEM wave phase 

velocity given that the square root in the denominator of the 

waveguide phase velocity equation is less than unity. The relationship 

between the waveguide phase velocity, waveguide group velocity, 

and the TEM component wave velocity is shown in Fig. 7.7.

     0 cospv v q=

\ 
2

0
2

cos 1 c

p

v f

v f
q = = -

Also,    

2

0 0 2
cos 1 c

g

f
v v v

f
q= = -

\    2
0p gv v v=

Fig. 7.7 Relationship between 

phase and group 

velocity
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The waveguide group velocity (the velocity of energy transport) is always smaller than the TEM wave

phase velocity given the square root term in the numerator of the group velocity equation.

 Example 7.1 Determine the maximum number of half cycles of electric field with which it 

may propagate in a waveguide with wall separation of 5 cm at a frequency of 10 GHz. Calculate the 

guide wavelength for this mode of propagation.

Solution Here, we have to find the largest value of n for which the cut-off wavelength is greater 

than the free space cut-off wavelength.

Free space wavelength, 
8

0 9

3 10
0.03 m 3 cm

10 10

c

f
l

¥
= = = =

¥

For n = 1, cut-off wavelength, 1 0

2 52
10 cm

1c

a

n
l l

¥
= = = >

For n = 2, cut-off wavelength, 2 0

2 52
5 cm

2c

a

n
l l

¥
= = = >

For n = 3, cut-off wavelength, 3 0

2 52
3.33 cm

3c

a

n
l l

¥
= = = >

For n = 4, cut-off wavelength, 4 0

2 52
2.5 cm

4c

a

n
l l

¥
= = = <

Hence, the maximum value of n is, n = 3

Guide wavelength for n = 3, is

0
3

2 2
0 3

3
6.88 cm

1 ( / ) 1 (3/3.33)
g

c

l
l

l l
= = =

- -

 Example 7.2 A parallel plane waveguide consists of two shells of good conductors separated 

by 10 cm. Find the propagation constant at frequencies 100 MHz and 10 GHz when operated in TE1

mode. Does the wave propagate in each case?

Solution Here, a = 10 cm = 0.1 m, For TE1 mode, n = 1

Hence, the propagation constant is given as

( ) ( )2 2 2
2

0 0 83 10

n

a a

p p w
g w m e Ê ˆ= - = - Á ˜¥Ë ¯

Since, 8

0 0

1
3 10 m/sc

m e
= = ¥

At frequency f = 100 MHz, ( )
22 6

8

2 100 10
31.35 nepper per metre

3 10a

pp
g

Ê ˆ¥ ¥
= - =Á ˜¥Ë ¯

At frequency f = 10 GHz, ( )
22 9

8

2 10 10
209.37 radian per metre

3 10
j

a

pp
g

Ê ˆ¥ ¥
= - =Á ˜¥Ë ¯
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At frequency f = 100 MHz, the propagation constant is real, i.e., phase shift is zero (a = 31.35, b = 0). 

So, wave propagation does not take place at this frequency. However, at frequency f = 10 GHz, the 

propagation constant is imaginary, i.e., (a = 0, b = 209.37). So, wave propagation takes place at this 

frequency.

 Example 7.3 For a parallel plane waveguide, infinite in extent and a spacing of 20 cm between 

the plates, calculate the

(a) phase velocity for TEM mode at all wavelengths

(b) cut-off wavelength for dominant TE mode

(c) phase velocity for dominant mode at 80% of cut-off wavelength

(d) reflection angle for the above frequency of operation.

Solution Here, d = 20 cm

Phase velocity for TEM mode is given as, 8
0

0 0

1 1
3 10 m/sv

me m e
= = = ¥

Cut-off wavelength for dominant mode is lc = 2d = 40 cm

Phase velocity for dominant mode at 80% of cut-off wavelength is given as

8
80 0 0

2 2 2

22

3 10
5 10 m/s

0.61 0.8
11

p

c

c

v v v
v

f

f

l

l

¥
= = = = = ¥

---

Reflection angle is given as, ( )22 2
1 3

tan 1 1 1
0.8 4

c

c

f

f

l
q

l
Ê ˆÊ ˆ= - = - = - =Á ˜ Ë ¯Ë ¯

\ q = 36.87°

*Example 7.4 A pair of perfectly conducting planes separated by 8 cm in air guides 5 GHz 

wave in TM10 mode. Find

(a) Cut-off frequency

(b) Characteristic impedance

(c) Phase constant

(d) Attenuation constant

(e) Phase velocity

(f) Group velocity

(g) Guide wavelength.

Solution Here, d = 8 cm, f = 5 GHz

(a) The cut-off frequency, 
8

0 0

1 3 10
1.875 GHz

2 0.082
c

n
f

d m e

¥ ¥
= = =

¥

(b) Characteristic impedance, 

( )
0

2 2

120
349.48

1.875
11

5
c

n

f

f

p
h = = = W

Ê ˆ -- Á ˜Ë ¯
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(c) Phase constant, ( )2 2
1 5

1 1 97.08 rad/m
0.08 1.875c

fn

d f

pp
b

¥Ê ˆ= - = - =Á ˜Ë ¯

(d) Since the guide is operating above the cut-off frequency, the attenuation constant is zero, i.e., a
= 0.

(e) Phase velocity, 

( )
8

80

2 2

3 10
3.236 10 m/s

1.875
11

5

p

c

v
v

f

f

¥
= = = ¥

Ê ˆ -- Á ˜Ë ¯

(f) Group velocity, ( )2 2
8 8

0

1.875
1 3 10 1 2.781 10 m/s

5
c

g

f
v v

f

Ê ˆ= - = ¥ ¥ - = ¥Á ˜Ë ¯

(g) Guide wavelength, 
2 2

0.0647 m 6.47 cm
97.08g

p p
l

b
= = = =

*Example 7.5 A parallel plane waveguide consists of two parallel perfectly conducting infinite 

planes separated by 10 cm. Determine the propagating TEn modes for an electromagnetic wave of 5000 

MHz assuming free space between the planes. For the propagating modes, find the following:

(a) cut-off frequency,

(b) guide wavelength,

(c) phase and group velocities,

(d) Intrinsic impedance.

Solution Here, a = 10 cm

Hence, the cut-off wavelength is
2 20

cmc

a

n n
l = =

Also,
8

0 9

3 10
m 0.06 m 6 cm

5 10

c

f
l

¥
= = = =

¥

For n = 1, 1 0

20
cm 20 cm

1cl l= = >

For n = 2, 2 0

20
cm 10 cm

2cl l= = >

For n = 3, 3 0

20
cm 6.67 cm

3cl l= = >

For n = 4, 4 0

20
cm 5 cm

4cl l= = <

Therefore, the propagating modes are: TE1, TE2 and TE3.

For TE1 Mode:

Cut-off frequency,
8

1
1

3 10
1.5 GHz

0.2c
c

c
f

l
¥

= = =

Guide wavelength, 0
1

2 2
0 1

6
6.29 cm

1 ( / ) 1 (6/20)
g

c

l
l

l l
= = =

- -
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Phase velocity,
8

8
1

2 2
0 1

3 10
3.15 10 m/s

1 ( / ) 1 (6/20)
p

c

c
v

l l

¥
= = = ¥

- -

Group velocity,
8 22

8
1 8

1

(3 10 )
2.86 10 m/s

3.15 10
g

p

c
v

v

¥
= = = ¥

¥

Intrinsic impedance,   0
1

2 2
0 1

377
395.19

1 ( / ) 1 (6/20)c

h
h

l l
= = = W

- -
For TE2 Mode:

Cut-off frequency,
8

2
2

3 10
3GHz

0.1c
c

c
f

l
¥

= = =

Guide wavelength, 0
2

2 2
0 2

6
7.5 cm

1 ( / ) 1 (6/10)
g

c

l
l

l l
= = =

- -

Phase velocity,
8

8
2

2 2
0 2

3 10
3.75 10 m/s

1 ( / ) 1 (6/10)
p

c

c
v

l l

¥
= = = ¥

- -

Group velocity,
8 22

8
2 8

2

(3 10 )
2.4 10 m/s

3.75 10
g

p

c
v

v

¥
= = = ¥

¥

Intrinsic impedance, 0
2

2 2
0 2

377
471.24

1 ( / ) 1 (6/10)c

h
h

l l
= = = W

- -

For TE3 Mode:

Cut-off frequency,
8

3
3

3 10
4.5 GHz

0.0667c
c

c
f

l
¥

= = =

Guide wavelength, 0
3

2 2
0 3

6
13.76 cm

1 ( / ) 1 (6/6.67)
g

c

l
l

l l
= = =

- -

Phase velocity,

( )

8
8

3
2 2

0 3

3 10
6.88 10 m/s

1 (6/6.67)1 /
p

c

c
v

l l

¥
= = = ¥

--

Group velocity,
8 22

8
3 8

3

(3 10 )
1.31 10 m/s

6.88 10
g

p

c
v

v

¥
= = = ¥

¥

Intrinsic impedance, 0
3

2 2
0 3

377
864.88

1 ( / ) 1 (6/6.67)c

h
h

l l
= = = W

- -
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7.3 RECTANGULAR WAVEGUIDES

Definition A rectangular waveguide is a hollow 

conducting device with four sides closed and two sides 

open.

In such a waveguide, the electric field varies with 

distance having a maximum at the centre. Magnetic field 

lines curve round and pass through the guide, tangential 

to the walls.

Derivation of Field Equations for Rectangular 
Waveguide In order to determine the electromagnetic 

field configurations within a rectangular waveguide, 

Maxwell’s equations are solved subject to the appropriate 

boundary conditions at the walls of the guide. Again, assuming perfectly conducting guide walls, these 

boundary conditions are as follows.

Boundary Conditions
1. The tangential components of the electric field must be zero.

\ 0tE =

2. The normal components of the magnetic field must be zero.

\ 0nH =

For the rectangular waveguide shown in Fig. 7.8, the boundary conditions are:

0 at 0 and

0 at 0 and
x z

y z

E E y y b

E E x x a

= = = =
= = = =

Assuming that the field variations in the z-direction may be expressed as e–g z, where g is a complex 

propagation constant (g = a + jb), from Eqs. (7.9) and (7.10), we have Maxwell’s equations for 

rectangular waveguides given as

z
y x

E
E j H

y
g wm

∂Ê ˆ+ = -Á ˜∂Ë ¯
(7.61a)

z
x y

E
E j H

x
g wm

∂Ê ˆ+ =Ë ¯∂
(7.61b)

y x
z

E E
j H

x y
wm

∂Ê ˆ∂
- = -Á ˜∂ ∂Ë ¯

(7.61c)

and

z
y x

H
H j E

y
g we

∂Ê ˆ+ =Á ˜∂Ë ¯
(7.62a)

z
x y

H
H j E

x
g we

∂Ê ˆ+ = -Ë ¯∂
(7.62b)

Fig. 7.8 Rectangular waveguides



  596 Electromagnetic Field Theory

y x
z

H H
j E

x y
we

∂Ê ˆ∂
- =Á ˜∂ ∂Ë ¯

(7.62c)

Similarly, from wave equations

2 2 0E Eg— + = (7.63a)

2 2 0H Hg— + = (7.63b)

where g 2 = (s = jwe) jwm = –w2me for non-conducting medium.

From Eq. (7.62a),
1 z

y x

H
H j E

y
we

g

∂Ê ˆ= -Á ˜∂Ë ¯

Putting this in Eq. (7.61b),

z z
x y x

E Hj
E j H j E

x y

wm
g wm we

g

∂ ∂Ê ˆ Ê ˆ+ = = -Á ˜Ë ¯∂ ∂Ë ¯

or
2 2

z z
x

H Ej
E

y x

g w me wm
g g

Ê ˆ ∂ ∂+
= - -Á ˜ ∂ ∂Ë ¯

or
2

z z
x

H Ejh
E

y x

wm
g g

Ê ˆ ∂ ∂
= - -Á ˜ ∂ ∂Ë ¯

where h2 = (g2 + w2 me).

2 2 2 2
z z z z

x

H E E Hj
E j

y x x yh h h h

wm g g wm∂ ∂ ∂ ∂
= - - = - -

∂ ∂ ∂ ∂

\ 
2 2

z z
x

E H
E j

x yh h

g wm∂ ∂
= - -

∂ ∂
(7.64)

Similarly, from Eq. (7.61a) and Eq. (7.62b), we get

z z
y x y

E Hj
E j H j E

y x

wm
g wm we

g

∂ ∂Ê ˆ Ê ˆ+ = - = - - -Á ˜ Ë ¯∂ ∂Ë ¯

or
2 2

z z
y

E H
E j

y x

g w me
wm

g

Ê ˆ ∂ ∂+
= - +Á ˜ ∂ ∂Ë ¯

or
2

z z
y

E Hh
E j

y x
wm

g

Ê ˆ ∂ ∂
= - +Á ˜ ∂ ∂Ë ¯

\ 2 2
z z

y

E H
E j

y xh h

g wm∂ ∂
= - +

∂ ∂
(7.65)

Putting this value in Eq. (7.62b),
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2 2

2

2 2

2 2

2 2

2

2 2

2

1 1

1
1

1

1

z z z z
x y

z z

z z

z z

z

H H E H
H j E j j

x x y xh h

H E
j

x yh h

H Eh
j

x yh h

H E
j

x yh h

H
j

xh

g wm
we we

g g

wegw me

g

w me weg

g

wegg

g

g

È ˘∂ ∂ ∂ ∂Ê ˆ Ê ˆ
= - - = - - - +Á ˜ Í ˙Á ˜Ë ¯∂ ∂ ∂ ∂Ë ¯Î ˚

È ˘Ê ˆ∂ ∂
= - - +Í ˙Á ˜Ë ¯∂ ∂Î ˚

È ˘Ê ˆ∂ ∂-
= - +Í ˙Á ˜Ë ¯∂ ∂Î ˚

È ˘Ê ˆ∂ ∂
= - +Í ˙Á ˜Ë ¯∂ ∂Î ˚

∂
= - +

∂ 2

zE

yh

we ∂
∂

\ 2 2
z z

x

H E
H j

x yh h

g we∂ ∂
= - +

∂ ∂ (7.66)

Finally, from Eq. (7.62a),

2 2

2

2 2

2 2

2 2

2

2 2

2

1 1

1
1

1

1

z z z z
y x

z z

z z

z z

z

H E H H
H j E j j

y x y yh h

H E
j

y xh h

H Eh
j

y xh h

H E
j

y xh h

H
j

yh

g wm
we we

g g

wegw me
g

w me weg
g

wegg
g

g we

È ˘∂ ∂ ∂ ∂Ê ˆ Ê ˆ= - = - - -Á ˜ Á ˜Í ˙∂ ∂ ∂ ∂Ë ¯ Ë ¯Î ˚
È ˘Ê ˆ∂ ∂

= - - -Í ˙Á ˜Ë ¯∂ ∂Î ˚
È ˘Ê ˆ∂ ∂-

= - -Í ˙Á ˜Ë ¯∂ ∂Î ˚
È ˘Ê ˆ∂ ∂

= - -Í ˙Á ˜Ë ¯∂ ∂Î ˚
∂

= - -
∂ 2

zE

xh

∂
∂

\
2 2

z z
y

H E
H j

y xh h

g we∂ ∂
= - -

∂ ∂
(7.67)

Equations (7.64) to (7.67) express the components of the electric and magnetic fields E  and H  in 

terms of Ez and Hz, i.e., the component of the fields in the direction of wave propagation.

It is observed that there must be a z-component of the field either E  or H ; otherwise, all the 

components of E  and H  would be zero and there would be no fields within the waveguide.

Also from Eq. (7.63), if we let

( , , )x y zE E E E= and ( , , )x y zH H H H=

then each of Eq. (7.63a) and Eq. (7.63b) will consist of three scalar Helmholtz equations. This 

implies that we have to solve six scalar equations to obtain the fields E  and H . For the z-component

Eq. (7.63a) is written as

2 2 2
2

2 2 2
z z z

z

E E E
E

x y z
w me

∂ ∂ ∂
+ + =

∂ ∂ ∂
(7.68)



  598 Electromagnetic Field Theory

This partial differential equation can be solved by using separation of variables method. Let

( , , ) ( ) ( ) ( )zE x y z X x Y y Z z= (7.69)

where X(x), Y(y), Z(z) are functions of x, y and z respectively. Substituting this in Eq. (7.68), we get

2 2 2
2

2 2 2

X Y Z
YZ XZ XY XYZ

x y z
w me

∂ ∂ ∂+ + =
∂ ∂ ∂

or
2 2 2

2
2 2 2

1 1 1X Y Z

X Y Zx y z
w me

∂ ∂ ∂+ + =
∂ ∂ ∂

(7.70)

Since the solution of the three terms in Eq. (7.70) is constant, each term should be constant.

\ 
2 2 2

2 2 2
2 2 2

1 1 1
, ,x y z

X Y Z
K K K

X Y Zx y z

∂ ∂ ∂= - = - = -
∂ ∂ ∂

(7.71)

\ 
2

2
2

0x

X
K X

x

∂ + =
∂

(7.72a)

2
2

2
0y

Y
K Y

y

∂ + =
∂

(7.72b)

2
2

2
0z

Z
K Z

z

∂ + =
∂

(7.72c)

Hence, from Eq. (7.70) and Eq. (7.71),

2 2 2 2( )x y zK K K w me+ + = (7.73)

When the wave is propagating in the positive z-direction, the z-variation can be expressed as e–g z, so 

that

2
2

2

Z
Z

z
g

∂ =
∂

and hence,
2 2
zK g= -

From Eq. (7.73),

2 2 2 2 2
x yK K hw me g+ = + =

\ 2 2 2 2 2
x yh K Kg w me= + = + (7.74)

So, Eq. (7.72) can be written as

\
2

2
2

0x

X
K X

x

∂ + =
∂

(7.75a)

2
2

2
0y

Y
K Y

y

∂ + =
∂

(7.75b)
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2
2

2
0

Z
Z

z
g

∂ - =
∂

(7.75c)

Solutions of these equations can be written as

1 2cos sinx xX C K x C K x= + (7.76a)

3 4cos siny yY C K y C K y= + (7.76b)

5 6
z zZ C e C eg g-= + (7.76c)

where C1, C2, C3, C4, C5, C6 are arbitrary constants.

Again, as the wave is propagating in the positive z-direction, for the wave to be finite at infinity, we 

must have

5 0C =

Thus, the electric field can be written as

1 2 3 4 6( , , ) ( cos sin )( cos sin ) z
z x x y yE x y z C K x C K x C K y C K y C e g-= + +

\ 
1 2 3 4( , , ) ( cos sin )( cos sin ) z

z x x y yE x y z A K x A K x A K y A K y e g-= + + (7.77)

where 1 1 6 2 2 6 3 3 6 4 4 6, , ,A C C A C C A C C A C C= = = = .

Following similar steps, we can find the magnetic field as

1 2 3 4( , , ) ( cos sin )( cos sin ) z
z x x y yH x y z B K x B K x B K y B K y e g-= + + (7.78)

Therefore, Eqs. (7.77) and (7.78) in conjunction with Eqs. (7.64) to (7.67) can be used to obtain the 

field configurations. It is seen from these equations that similar to a parallel plane guide, there are 

different field configurations or modes. Four different modes are:

1. Transverse Electric Waves or TE-Waves or H-Waves (Ez = 0, Hz π 0),

2. Transverse Magnetic Waves or TM-Waves or E-Waves (Ez π 0, Hz = 0),

3. Transverse Electromagnetic Waves or TEM-Waves (Ez = 0, Hz = 0), and

4. Hybrid Waves or HE-Waves (Ez π 0, Hz π 0).

7.3.1  Field Equations for Transverse Electric (TE) Mode in 
Rectangular Waveguide

In this mode, the electric field is entirely transverse (perpendicular) to the direction of wave propagation, 

i.e., Ez = 0. The other components, Ex, Ey, Hx, Hy and Hz are determined using Eqs. (7.64) to (7.67), 

Eq. (7.78) and the boundary conditions.

The boundary conditions for this case are:

0 at 0xE y= = (7.79a)

0 atxE y b= = (7.79b)

0 at 0yE x= = (7.79c)

0 atyE x a= = (7.79d)
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Hence, from Eqs. (7.64) to (7.67),

0 at 0zH
y

y

∂
= =

∂ (7.80a)

0 atzH
y b

y

∂
= =

∂ (7.80b)

0 at 0zH
x

x

∂
= =

∂ (7.80c)

0 atzH
x a

x

∂
= =

∂ (7.80d)

Applying the boundary conditions of Eq. (7.80a) and Eq. (7.80c) to Eq. (7.78), we require that B2 = 0 

= B4 and hence the magnetic field can be written as

1 3 0( , , ) ( cos )( cos ) cos cosz z
z x y x yH x y z B K x B K y e H K x K yeg g- -= = (7.81)

where H0 = B1B3.

Also, applying boundary conditions of Eqs. (7.80b) and (7.80d) in Eq. (7.81), we get

sin 0 and sin 0y xK b K a= =

This implies that

, 0,1, 2, 3,xK a m mp= = º

and , 0,1, 2, 3,yK b n np= = º

or ,x y

m n
K K

a b

p p= = (7.82)

Substituting this in Eq. (7.81),

( ) ( )0( , , ) cos cos z
z

m n
H x y z H x y e

a b
gp p -= (7.83)

The other field components are obtained from Eqs. (7.64) to (7.67) as follows.

From Eq. (7.64),

  
( ) ( ) ( )02 2 2

cos sin zz z
x

E H n m n
E j j H x y e

x y b a bh h h

gg wm wm p p p -∂ ∂
= - - =

∂ ∂

\ ( ) ( ) ( )02
cos sin z

x

n m n
E j H x y e

b a bh

gwm p p p -= (7.84a)

From Eq. (7.65),

  
( ) ( ) ( )02 2 2

sin cos zz z
y

E H m m n
E j j H x y e

y x a a bh h h

gg wm wm p p p -∂ ∂
= - + = -

∂ ∂

\ ( ) ( ) ( )02
sin cos z

y

m m n
E j H x y e

a a bh

gwm p p p -= - (7.84b)
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From Eq. (7.66),

( ) ( ) ( )02 2 2
sin cos zz z

x

H E m m n
H j H x y e

x y a a bh h h

gg gwe p p p -∂ ∂
= - + = -

∂ ∂

\ ( ) ( ) ( )02
sin cos z

x

m m n
H H x y e

a a bh

gg p p p -= - (7.84c)

From Eq. (7.67),

( ) ( ) ( )02 2 2
cos sin zz z

y

H E n m n
H j H x y e

y x b a bh h h

gg gwe p p p -∂ ∂
= - - =

∂ ∂

\ ( ) ( ) ( )02
cos sin z

y

n m n
H H x y e

b a bh

gg p p p -= (7.84d)

where

( )22
2 2 2

x y

m n
h K K

a b

p pÊ ˆ= + = +Ë ¯ (7.85)

NOTE

Here, m and n are integers where m denotes the number of half cycle variations of the fields in 

the x-direction and n denotes the number of half cycle variations of the fields in the y-direction. It 

is understood from Eqs. (7.83) and (7.84) that there will be different field configurations or modes 

depending upon the values of m and n, known as TEmn modes. For TE mode, both m and n cannot be 

zero as this will vanish all the field components. Therefore, the lowest value of (m, n) may be either 

(0, 1) or (1, 0) and subsequently the lowest order mode may be either TE01 or TE10.

Some field configurations for TE modes are shown in Fig. 7.9. The solid lines represent the electric 

field lines whereas the dotted lines represent the magnetic field lines.

7.3.2  Field Equations for Transverse Magnetic (TM)
Mode in Rectangular Waveguide

In this mode, the magnetic field is entirely transverse (perpendicular) to the direction of wave 

propagation, i.e., Hz = 0. The other components, Ex, Ey, Ez, Hx and Hy are determined using Eqs. (7.64) 

to (7.67), Eq. (7.77) and the boundary conditions.

The boundary conditions for this case are given by Eq. (7.79).

Applying the boundary conditions of Eqs. (7.79a) and (7.79c) to Eq. (7.77), we require that A1 = 0 = A3

and hence the electric field can be written as

2 4 0( , , ) ( sin )( sin ) sin sinz z
z x y x yE x y z A K x A K y e E K x K yeg g- -= = (7.86)

where E0 = A2A4.

Also, applying boundary conditions of Eqs. (7.79b) and (7.79d) in Eq. (7.86), we get

sin 0 and sin 0x yK a K b= =



  602 Electromagnetic Field Theory

3

2

1

1

23

x y
z

TE10

1

1

2

2

3

3

TE20

3

2

1

1

23

x y
z

TE11

3

1

1

23

2

x y
z

TE21

Fig. 7.9 Field configurations for TE mode waves

This implies that

, 1, 2, 3,xK a m mp= = º

and , 1, 2, 3,yK b n np= = º

This follows the same result as obtained for TE waves, i.e.,

,x y

m n
K K

a b

p p= = (7.87)

Substituting this in Eq. (7.86),

( ) ( )0( , , ) sin sin z
z

m n
E x y z E x y e

a b
gp p -= (7.88)

The other field components are obtained from Eqs. (7.64) to (7.67) as follows.

From Eq. (7.64),

( ) ( ) ( )02 2 2
cos sin zz z

x

E H m m n
E j E x y e

x y a a bh h h

gg wm g p p p -∂ ∂
= - - = -

∂ ∂
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\ ( ) ( ) ( )02
cos sin z

x

m m n
E E x y e

a a bh

gg p p p -= - (7.89a)

From Eq. (7.65),

( ) ( ) ( )02 2 2
sin cos zz z

y

E H n m n
E j j E x y e

y x b a bh h h

gg wm g p p p -∂ ∂
= - + = -

∂ ∂

\ ( ) ( ) ( )02
sin cos z

y

n m n
E j E x y e

b a bh

gg p p p -= - (7.89b)

From Eq. (7.66),

( ) ( ) ( )02 2 2
sin cos zz z

x

H E n m n
H j j E x y e

x y b a bh h h

gg we we p p p -∂ ∂
= - + =

∂ ∂

\ ( ) ( ) ( )02
sin cos z

x

n m n
H j E x y e

b a bh

gwe p p p -= (7.89c)

From Eq. (7.67),

( ) ( ) ( )02 2 2
cos sin zz z

y

H E m m n
H j j E x y e

y x a a bh h h

gg we we p p p -∂ ∂
= - - = -

∂ ∂

\ ( ) ( ) ( )02
cos sin z

y

m m n
H j E x y e

a a bh

gwe p p p -= - (7.89d)

NOTE

Here too, m and n are integers where m denotes the number of half cycle variations of the fields in 

the x-direction and n denotes the number of half cycle variations of the fields in the y-direction. It 

is understood from Eqs. (7.88) and (7.89) that there will be different field configurations or modes 

depending upon the values of m and n, known as TMmn modes. For TM mode, neither m nor n can 

be zero. This is because of the fact that the field expressions are identically zero if either m or n is 

zero. Therefore, the lowest mode for rectangular waveguide TM mode is TM11.

Some field configurations for TM modes are shown in Fig. 7.10. Here too, the solid lines represent the 

electric field lines whereas the dotted lines represent the magnetic field lines.

7.3.3 Properties of TE and TM Waves in Rectangular Waveguide

We find the following quantities for TE and TM mode waves in rectangular waveguides:

1. Propagation constant (g )

2. Cut-off frequency (fc)

3. Cut-off wavelength (lc)

4. Phase constant (b)

5. Phase velocity (vp)
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Fig. 7.10 Field configurations for TM mode waves

6. Guide Wavelength (lg)

7. Intrinsic wave impedance (h)

1. Propagation constant (g ): From Eqs. (7.74) and (7.82),

( ) ( )2 2
2 2 2 2 2 2

x y

m n
h K K

a b

p p
g w me w me w me= - = + - = + -

\ ( ) ( )2 2
2m n

a b

p p
g w me= + - (7.90)

Three cases may appear:

Case 1: When ( ) ( )2 2
2 m n

a b

p p
w me = +  (Cut-off Mode)

There will be no wave propagation under this condition. This is called cut-off region. The corresponding 

frequency is called the cut-off frequency and corresponding wavelength is the cut-off wavelength.

In this case, g = 0, i.e., a = b = 0.

Case 2: When ( ) ( )2 2
2 m n

a b

p p
w me < +  (Evanescent Mode)

The wave will be attenuated and there will be no wave propagation. This is called evanescent mode.

In this case, g  = a and b = 0.

Case 3: When ( ) ( )2 2
2 m n

a b

p p
w me > +  (Propagation Mode)

Only under this condition, there will be wave propagation. Therefore, this mode is called the propagation 

mode.

In this case, g  = jb and a = 0.

From the three cases, it is understood that there will be no wave propagation in a rectangular waveguide 

for low frequencies. As the frequency is increased, at frequency equal to the cut-off frequency, the 

wave propagation takes place and for all frequencies above the cut-off frequency the wave propagates 

without any attenuation. Thus, a rectangular waveguide behaves as a high pass filter.
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2. Cut-off frequency (fc): The cut-off frequency of a waveguide is that operating frequency below 

which the wave is attenuated and above which the wave is propagated through the guide. This is given 

as

( ) ( ) ( ) ( )2 2 2 2

0

1
c

m n m n
v

a b a b

p p p p
w

me
= + = +

where 0

1
v

me
=  is the phase velocity of uniform plane waves in a lossless dielectric medium inside 

the waveguide.

\ ( ) ( ) ( ) ( )2 2 2 2
01

2 22

c
c

vm n m n
f

a b a b

w p p
p p me

= = + = +

\ ( ) ( )2 2
0

2c

v m n
f

a b
= + (7.91)

From Eq. (7.91), it is seen that the wavelength is the smallest for TE10 mode of all TE mode waves and 

for TM11 modes of all TM mode waves.

For TE10 mode, 0

2c

v
f

a
=

For TM11 mode, 2 20

2c

v
f a b

ab
= +

3. Cut-off wavelength (lc): Corresponding to every cut-off frequency, there will be a cut-off wavelength

given as

( ) ( )
0

2 2

2
c

c

v

f
m n

a b

l = =

+

(7.92)

From Eq. (7.92), it is seen that the wavelength is the longest for TE10 mode of all TE mode waves and 

for TM11 modes of all TM mode waves.

For TE10 mode, lc = 2a

For TM11 mode, 
2 2

2
c

ab

a b
l =

+

4. Phase constant (b): From Eq. (7.90), the phase constant in the propagation mode may be written as

( ) ( )2 2
2 m n

a b

p p
b w me= - + (7.93)

In terms of the cut-off frequency, it can be written as

( ) ( )2 2 2 2 2

0 02 2 2 2

1
1 1 1 1c c cfm n

a b f

w wp p
b w me w me b b

w me w w

È ˘
= - + = - = - = -Í ˙

Î ˚
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where 0b w me=  is the phase constant of uniform plane wave in a lossless medium.

\ 
2

0 2
1 cf

f
b b= - (7.94)

5. Phase velocity (vp): The phase velocity of the wave propagation is given by

( ) ( )
0

2 2 2
2

2
1

p

c

v
v

fm n

a b f

w w
b

p p
w me

= = =

-- + (7.95)

0

1
v

me
=  is the phase velocity of uniform plane waves in a lossless dielectric medium inside the 

waveguide.

Equation (7.95) indicates that the phase velocity of wave propagation in the rectangular waveguide 

is greater than the phase velocity of uniform plane wave. As the frequency is increased above the cut-

off frequency, the phase velocity decreases from an infinitely large value and approaches v0.

6. Guide wavelength (lg): The wavelength in the rectangular waveguide is given as

( ) ( )
0

2 2 2
2

2

2 2

1

g

cfm n

a b f

lp p
l

b
p p

w me

= = =

-- +

(7.96)

where 0
0

2 2p p
l

bw me
= =  is the wavelength of the uniform plane wave in the lossless dielectric medium 

inside the guide.

7. Intrinsic wave impedance (h): The intrinsic wave impedance will be different for TE and TM

modes.

Intrinsic wave impedance for TE Modes: For TE waves, from Eq. (7.84), it is given as

0

2 2

2 2

1

1 1

yx
TE

y x
c c

EE

H H f f

f f

hwm m
h

b e
= = - = = =

- -

where 0

m
h

e
=  is the intrinsic impedance of uniform plane wave in a lossless dielectric medium.

\ 0

2

2
1

TE

cf

f

h
h =

-

(7.97)

Intrinsic wave impedance for TM Modes: For TM waves, from Eq. (7.89), it is given as

2 2

02 2
1 1

yx c c
TM

y x

EE f f

H H f f

b m
h h

we e
= = - = = - = -
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where 0

m
h

e
=  is the intrinsic impedance of uniform plane wave in a lossless dielectric medium.

\ 
2

0 2
1 c

TM

f

f
h h= - (7.98)

From Eqs. (7.97) and (7.98), it is observed that the intrinsic wave impedance is purely resistive both 

for TE and TM waves. The variation of these impedances with frequency is shown in Fig. 7.11. Also,

2
0TE TMh h h= (7.99)

Fig. 7.11 Variation of intrinsic wave impedance both for TE and TM modes

Dominant Mode Dominant mode is that mode which has the lowest cut-off frequency or highest 

cut-off wavelength.

For TE modes, the lowest order mode can be either TE10 or TE01 depending upon the dimensions of the 

guide, i.e., the values of a and b.

For TE10 mode, the cut-off frequency is obtained [from Eq. (7.91)] as

10

0

2cTE

v
f

a
=

For TE01 mode, the cut-off frequency is obtained [from Eq. (7.91)] as

01

0

2cTE

v
f

b
=

Therefore, if a > b, then TE10 mode is the dominant mode and if b > a, then TE01 is the dominant mode.

This may be noted that for the lowest order TM11 mode, the cut-off frequency is

11

2 2
0

2cTM

v a b
f

ab

+
=

which is greater than the cut-off frequency of TE10 mode. Therefore, TM11 mode cannot be considered 

as the dominant mode.
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Degenerate Modes Two or more modes having the same cut-off frequency are known as 

degenerate modes.

For example, TEmn and TMmn modes are always degenerate.

7.3.4  Field Equations for Transverse Electromagnetic (TEM)
Mode in Rectangular Waveguide

For TEM mode, both the electric and magnetic fields are transverse to the direction of wave propagation. 

This implies that Ez = 0 = Hz and hence from Eq. (7.64) to Eq. (7.67), we see that all field components 

will be zero. Thus, we conclude that a TEM wave cannot exist in a rectangular waveguide.

In Chapter 5, Section 5.6, we have derived different relations for uniform plane wave propagation 

through a lossless dielectric medium. This may be noted that those relations are valid for TEM wave, 

i.e., a = 0, b w me= , which implies that for TEM waves, h = 0.

Impossibility of Transverse Electromagnetic (TEM) Mode in Single-Conductor 
Waveguides This can be easily shown that a TEM wave, for which there is no axial component of 

either E  or H , cannot propagate within a single-conductor waveguide.

In order to prove this, we initially assume that a TEM wave exists within a hollow waveguide of 

any shape. Then the lines of magnetic field H  lie entirely in the transverse plane. Also, in a non-

conducting medium,

0H— ◊ =

which requires that the lines of H  be closed loops. Therefore, if a TEM wave exists inside a wave, the 

lines of H  must be closed loops in a plane perpendicular to the axis.

However, by modified Ampere’s circuital law, the magnetomotive force around each of these closed 

loops must be equal to the axial current (conduction or displacement) through the loop enc
L

H dl IÊ ˆ◊ =
Ë ¯

Ú .

In the case of a guide with an inner conductor, such as a coaxial transmission line, this axial current 

is the conduction current in the inner conductor. However, for a hollow waveguide having no inner 

conductor, this axial current is the displacement current. But, an axial displacement current requires an 

axial component of E , which is not present in a TEM wave.

Hence, the TEM wave cannot exist in a single-conductor waveguide.

7.3.5 Hybrid (HE) Mode

In this mode, neither E  nor H  is transverse to the direction of wave propagation.

 Example 7.6 A rectangular waveguide has a broad wall dimension of 2.29 cm and is fed by 10 

GHz carrier from a coaxial cable to generate TE10 wave propagation. Find its guide wavelength, phase 

and group velocities.

Solution Here, a = 2.29 cm, f = 10 GHz, For TE10 mode, m = 1, n = 0

Free space wavelength, 
8

0
0 9

3 10
0.03 m 3 cm

10 10

v

f
l

¥
= = = =

¥
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Cut-off frequency is

( ) ( )2 2 28
90

2

3 10 1
6.55 10 Hz 6.55 GHz

2 2 2.29 10
c

v m n
f

a b -
¥ Ê ˆ= + = = ¥ =Á ˜¥Ë ¯

Guide wavelength is given as

( )
0

2 2

2

0.03
0.0397 m 3.97 cm

6.55
1 1

10

g

cf

f

l
l = = = =

- -

Phase velocity is given as

( )
8

80

2 2

2

3 10
3.97 10 m/s

6.55
1 1

10

p

c

v
v

f

f

¥
= = = ¥

- -

The group velocity is obtained as

2
0p gv v v=

\ 
2 8 2

80
8

(3 10 )
2.267 10 m/s

3.97 10
g

p

v
v

v

¥
= = = ¥

¥

 Example 7.7 If the dimensions of a rectangular waveguide are 3.5 cm ¥ 2.0 cm, and the 

frequency of operation is 10 GHz, determine all the possible TE and TM modes that can be propagated 

in this waveguide.

Solution Here, a = 3.5 cm = 0.035 m, b = 2.0 cm = 0.02 m, f = 10 GHz

Wavelength of the supply is 
8

0
9

3 10
0.03 m

10 10

v

f
l

¥
= = =

¥
The cut-off wavelength for any TEmn or TMmn wave is given as

( ) ( )2 2

2
c

m n

a b

l =

+

For a particular mode to propagate, the cut-off wavelength must be greater than the supply wavelength 

0.03 m.

We calculate the cut-off wavelength for different values of m and n.

For TE10 mode, m = 1, n = 0

( )2
2

0.07 m

1
0

0.035

cl = =

+
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For TE01 mode, m = 0, n = 1

( )2
2

0.04 m

1
0

0.02

cl = =

+

For TE11 and TM11 modes, m = 1, n = 1

( ) ( )2 2

2
0.0347 m

1 1

0.035 0.02

cl = =

+

For TE20 mode, m = 2, n = 0

( )2
2

0.035 m

2
0

0.035

cl = =

+

For TE02 mode, m = 0, n = 2

( )2
2

0.02 m

2
0

0.02

cl l= = <

+

For TE21 mode, m = 2, n = 1

( ) ( )2 2

2
0.0263m

2 1

0.035 0.02

cl l= = <

+

For TE12 mode, m = 1, n = 2

( ) ( )2 2

2
0.0192 m

1 2

0.035 0.02

cl l= = <

+

Hence, the possible TE/TM modes which can propagate through the guide are:

TE10, TE01, TE11 and TM11 and TE20 modes

*Example 7.8 In an air-filled rectangular waveguide with a = 2.286 cm and b = 1.016 cm, the 

y-component of the TE mode is given by

( ) ( ) 102 3
sin cos sin (10 10 ) V/myE x y t z

a b

p p
p b= ¥ -

Find: (a) the operating mode, (b) the propagation constant g and (c) the intrinsic impedance h.

Solution From the expression of Ey it is seen that, m = 2, n = 3, i.e., the guide is operating at TE23

mode.
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Cut-off frequency is

( ) ( )2 2 2 28
0

2 2

9

3 10 2 3

2 2 2.286 10 1.016 10

46.19 10 Hz 46.19 GHz

c

v m n
f

a b - -
¥ Ê ˆ Ê ˆ= + = +Á ˜ Á ˜¥ ¥Ë ¯ Ë ¯

= ¥ =

\
22 10

2 8 10

10 10 46.19
1 1 400.7 radian/s

3 10 10 10 /2

cf

f

p
b w me

p p

¥ Ê ˆ= - = - =Á ˜¥ ¥Ë ¯

Hence, the propagation constant is, g = jb = j400.7/m

Intrinsic impedance is

23

0

2 2

2 10

120
985.2

46.19
1 1

10 10 /2

TE

cf

f

h p
h

p p

= = = W
Ê ˆ- - Á ˜¥Ë ¯

*Example 7.9 An air-filled hollow rectangular conducting waveguide has a cross section of 

8 ¥ 10 cm. How many TE modes will this waveguide transmit at frequencies below 4 GHz? How are 

these waves designated and what are the cut-off frequencies?

Solution Here, a = 10 cm = 0.1 m, b = 8 cm = 0.08 m, f = 4 GHz

For a general TE mode, the cut-off frequency is given as

( ) ( ) ( ) ( )2 2 2 28
2 20

2

3 10
15 0.01 0.0156 GHz

2 10 82 10
c

v m n m n
f m n

a b -
¥

= + = + = +
¥

For a particular mode to propagate, the cut-off frequency must be less than 4 GHz.

We calculate the cut-off frequency for different values of m and n.

For TE10 mode, m = 1, n = 0

15 0.01 GHz 1.5 GHzcf = =

For TE01 mode, m = 0, n = 1

15 0.0156 GHz 1.875 GHzcf = =

For TE11 modes, m = 1, n = 1

15 0.01 0.0156 GHz 2.4 GHzcf = + =

For TE20 mode, m = 2, n = 0

15 0.01 4 GHz 3GHzcf = ¥ =

For TE02 mode, m = 0, n = 2,

15 0.0156 4 GHz 3.75 GHzcf = ¥ =
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For TE21 mode, m = 2, n = 1,

15 0.01 4 0.0156 GHz 3.54 GHzcf = ¥ + =

For TE12 mode, m = 1, n = 2,

15 0.01 0.0156 4 GHz 4.04 GHzcf = + ¥ =

For TE31 mode, m = 3, n = 1,

15 0.01 9 0.0156 4.875 GHzcf GHz= ¥ + =

Hence, the possible TE modes which can propagate through the guide with respective cut-off frequencies 

are given in Table 7.1.

Table 7.1 TE modes

Mode Cut-off frequency (GHz)

TE10 1.5

TE01 1.875

TE11 2.4

TE20 3

TE02 3.75

TE21 3.54

 Example 7.10 A rectangular waveguide with dimensions a = 2 cm and b = 1 cm filled with 

deionized water (mr = 1, er = 81) operates at 3 GHz. Determine all the propagating modes and the 

corresponding cut-off frequencies.

Solution For a general TE or TM mode, the cut-off frequency is given as

( ) ( ) ( ) ( )2 2 2 28
2 20 3 10

1.667 0.25 GHz
2 0.02 0.012 81

c

v m n m n
f m n

a b

¥
= + = + = +

The cut-off frequencies as calculated from the above equation for different values of m and n are given 

in the table below.

Cut-off Frequency (in GHz) for TM modes Cut-off Frequency (in GHz) for TE modes

n = 1 n = 2
*

n = 0 n = 1 n = 2

m = 1 1.863 3.436
*

m = 0 ¥ 1.667 3.333
*

m = 2 2.357 3.727
*

m = 1 0.833 1.863 3.436
*

m = 3 3.005 f m = 2 1.667 2.357 3.727
*

o m = 3 2.500 3.005 f

m = 4 3.333 o

o
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Since the operating frequency is 3 GHz, all the propagating modes and their cut-off frequencies are 

given in the table below.

Mode Cut-off Frequency (GHz)

TE10 0.833

TE01, TE20 1.667

TE11, TM11 1.863

TE21, TM21 2.357

TE30 2.500

*Example 7.11 A tunnel is modelled as an air-filled metallic rectangular waveguide with 

dimensions a = 8 m and b = 16 m. Determine whether the tunnel will pass: (a) a 1.5 MHz AM broadcast 

signal, (b) a 120 MHz FM broadcast signal.

Solution Here, a = 8 m and b = 16 m

Since, b > a, TE01 mode will have the lowest cut-off frequency.

The cut-off frequency is given as

82 2 2
0

2 2 2

3 10 1
0 9.375MHz

2 2 16
c

v m n
f

a b

¥
= + = + =

(a) For operating frequency, f = 1.5 MHz, f < fc and so, the tunnel will not pass the signal.

(b) For operating frequency, f = 120 MHz, f > fc and so, the tunnel will pass the signal.

 Example 7.12 Calculate the cut-off frequency for the dominant mode in a rectangular 

waveguide of dimensions 4 cm ¥ 2 cm.

Solution Here, a = 4 cm, b = 2 cm, as a > b, TE10 mode is the dominant mode.

\ m = 1, n = 0

The cut-off frequency is given as

82 2
0 0

2 2 2

3 10
3.75 GHz

2 2 2 4 10
c

v vm n
f

aa b -
¥

= + = = =
¥ ¥

*Example 7.13 Calculate the phase velocity and group velocity for the dominant mode in a 

rectangular waveguide (1D: 2.3 cm ¥ 1.0 cm) at 10 GHz.

Solution Here, f = 10 GHz, a = 2.3 cm, b = 1.0 cm

Since a > b, TE10 mode is the dominant mode.

\ m = 1, n = 0

The cut-off frequency is given as

82 2
0 0

2 2 2

3 10
6.52 GHz

2 2 2 2.3 10
c

v vm n
f

aa b -
¥

= + = = =
¥ ¥



  614 Electromagnetic Field Theory

The phase velocity is given as

( )
8

80

2 2

2

3 10
3.957 10 m/s

6.52
1 1

10

p

c

v
v

f

f

¥
= = = ¥

- -

The group velocity is given as

2 8 2
80

8

(3 10 )
2.274 10 m/s

3.957 10
g

p

v
v

v

¥
= = = ¥

¥

 Example 7.14 Design a rectangular waveguide to carry only the TE10 mode at a frequency of 

5000 MHz.

Solution Here, f = 5000 MHz, m = 1, n = 0.

The dimensions of the waveguide should be such that the operating frequency is equal to 5000 MHz.

The cut-off frequency is given as

82 2
60 0

2 2

3 10
5000 10

2 2 2c

v vm n
f

a aa b

¥
= + = = = ¥

\ a = 3 cm

For standard waveguide, the aspect ratio is generally 2 : 1, so that we can write

1.5 cm
2

a
b = =

Hence, the dimensions of the waveguide are 3 cm ¥ 1.5 cm.

*Example 7.15 A rectangular waveguide with dimensions 2.42 cm ¥ 1.12 cm supporting TE10

mode at 6 GHz is filled with a dielectric of relative permittivity er. What are the limits on er if only the 

dominant mode propagates?

Solution Here, a = 2.42 cm, b = 1.12 cm, m = 1, n = 0, f = 6 GHz

If only dominant mode is to propagate, the cut-off frequency should be equal to the operating frequency.

\ 0

2c

v
f f

a
= =

fi 
8 9

9

2 2
0 0

3 10 6.198 101 1 1
6 10

2 2.42 10 2 2.42 10
r r rm e e e e- -

¥ ¥
¥ = ¥ = ¥ =

¥ ¥ ¥ ¥

fi ( )26.198
1.0672

6re = =

Also, the cut-off frequency can be given as

0

2c

v
f f

b
= =
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fi 
8 9

9
2 2

0 0

3 10 13.39 101 1 1
6 10

2 1.12 10 2 1.12 10
r r rm e e e e- -

¥ ¥
¥ = ¥ = ¥ =

¥ ¥ ¥ ¥

fi ( )213.39
4.9824

6re = =

So, the limits are: 1.0672 < er < 4.9824

*Example 7.16 Design a rectangular waveguide which at 10 GHz, will operate in TE10 mode 

with 25% safety factor (f ≥ 1.25 fc) when the interior of guide is filled with air. It is required that the 

mode with the next higher cut-off will operate at 25% below its cut-off frequency.

Solution Since the operating frequeny is 10 GHz, the cut-off frequency is given as

10
8 GHz

1.25cf = =

For dominant mode, the cut-off frequency is given as

( ) ( )2 2
0 0

2 2c

v vm n
f

a b a
= + =

or
8

9 3 10
8 10

2a

¥
¥ =

\ 0.01875 1.875 cma m= =

The next higher mode will be either TE01 or TE11.

For TE01 mode, the operating frequency is 25% below the cut-off frequency. Hence, we can write

0

0.75 2c

vf
f

b
= =

or
9 810 10 3 10

0.75 2b

¥ ¥
=

\ 0.01125 m 1.125 cmb = =

For TE11 mode, the operating frequency is 25% below the cut-off frequency. Hence, we can write

( )20
2

1 1

0.75 2 0.01875c

vf
f

b
= = +

or ( )29 8

2

10 10 3 10 1 1

0.75 2 0.01875 b

¥ ¥
= +

\ 0.0140625 m 1.40625 cmb = =

Hence, the dimensions of the guide may be 1.875 cm ¥ 1.125 cm or 1.875 cm ¥ 1.406 cm.
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 Example 7.17 An air-filled rectangular waveguide has cross-sectional dimensions x = 8 cm and 

y = 4 cm. Find the cut-off frequencies for the following modes: TE10, TE20, TE11 and the ratio of the 

guide velocity, vp to the velocity in free space for each of these modes if 3

2 cf f= .

Solution Here, x = 8 cm, y = 4 cm, 
3

2 cf f=

The cut-off frequency is given as

82 2 2 2
2 20

2 2 2 2 2

3 10
15 0.0156 0.0625 GHz

2 2 10 8 4
c

v m n m n
f m n

a b -
¥

= + = + = +
¥

For TE10 mode, 
10

15 0.0156 0 GHz 1.875 GHzcf = + =

For TE20 mode, 
20

15 4 0.0156 0 GHz 3.75 GHzcf = ¥ + =

For TE11 mode, 
11

15 0.0156 0.0625 GHz 4.192 GHzcf = + =

The ratio of the guide velocity to the velocity in free space is given as

2 20

1 1
1.34

1 1
1.5

p

c c

c

v

v
f f

f f

= = =
Ê ˆ Ê ˆ- -Á ˜ Á ˜Ë ¯ Ë ¯

 Example 7.18 The wavelength measured in an air-filled rectangular waveguide, 20 cm ¥ 5.0 

cm in cross-section, is 12 cm. Calculate the frequency of the wave. Assume TE01 mode and c = 3 ¥ 108

m/s.

Solution Here, a = 20 cm, b = 5.0 cm, l = 12 cm, m = 0, n = 1.

For a wavelength of 12 cm, the frequency is, 
8

2

3 10
2.5 GHz

12 10

c
f

l -
¥

= = =
¥

Also, for TE01 mode, the cut-off frequency is

82 2
0 0

2 2 2

3 10
3GHz

2 2 2 5 10
c

v vm n
f

ba b -
¥

= + = = =
¥ ¥

Therefore, the operating frequency is 3 GHz or mode for the wave propagation to occur.

*Example 7.19 A TE11 mode of 10 GHz is propagated in an air filled rectangular waveguide. The 

magnetic field in the z-direction is given by 0 cos cos A/m
6 6

z

x y
H H

p pÊ ˆ Ê ˆ= Á ˜ Á ˜Ë ¯ Ë ¯
. The phase constant 

b = 1.0475 rad/m, the quantities x and y are expressed in cm and 6a b= = . Determine the following 

(a) cut-off frequency, (b) phase velocity, and (c) guide wavelength.

Solution Here, f = 10 GHz, b = 1.0475 rad/m, 6a b= =  cm, m = n = 1,
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(a) The cut-off frequency is

( ) ( )2 2 2 28
0

2

3 10 1 1
8.66 GHz

2 2 10 6 6
c

v m n
f

a b -
¥ Ê ˆ Ê ˆ= + = + =Á ˜ Á ˜¥ Ë ¯ Ë ¯

(b) Phase velocity, 

( )
8

80

2 2

2

3 10
6 10 m/s

8.66
1 1

10

p

c

v
v

f

f

¥
= = = ¥

- -

(c) Guide wavelength is

( )
8

0 0

2 2 2 2 2
9

2 2 2 2

2 / 1/ / 3 10
0.06 m 6 cm

8.66
1 1 1 1 10 10 1

10

g

c c c c

f v f

f f f f

f f f f

p w me mel
l

¥
= = = = = = =

- - - - ¥ -

 Example 7.20 An air-filled rectangular waveguide has cross-sectional dimensions a = 6 cm and 

b = 3 cm. Given that

( ) ( ) 122 3
5 sin sin cos (10 ) V/mzE x y t z

a b

p p
b= -

Calculate the intrinsic impedance of this mode.

Solution Since, Ez = π 0, it is understood that the wave is operating in TM23 mode, for which m = 

2, n = 3.

The cut-off frequency is

82 2 2 2
0

2 2 2 2 2

3 10 2 3
15.81GHz

2 2 10 6 3
c

v m n
f

a b -
¥

= + = + =
¥

Operating frequency is, 
1210

159.15 GHz
2 2

f
w
p p

= = =

Hence, the wave intrinsic impedance is given as

( )23

2 2

0

15.81
1 120 1 373.27

159.15
c

TM

f

f
h h p

Ê ˆ= - = ¥ - = WÁ ˜Ë ¯

 Example 7.21 A rectangular waveguide measures 3 ¥ 4.5 cm internally and has a 10 GHz 

signal propagated in it. Calculate the cut-off wavelength, the guide wavelength and the characteristic 

impedance for the TE10 mode.

Solution Here, a = 4.5 cm, b = 3 cm, f = 10 GHz, m = 1, n = 0.

The cut-off wavelength is given as

( ) ( )2 2

2 4.52 2
9 cm

1c

a

m
m n

a b

l
¥

= = = =

+
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Then wavelength of the impressed signal is, 
8

9

3 10
0.03 m 3 cm

10 10

c

f
l

¥
= = = =

¥The guide wavelength is given as

( )2 2

3 9
3.18 cm

83
1 1

9

g

c

l
l

l
l

= = = =
Ê ˆ- -Á ˜Ë ¯

The characteristic impedance is given as

( )
10

0

2 2

120 360
399.86

83
1 1

9

TE

c

h p p
h

l
l

= = = = W
Ê ˆ- -Á ˜Ë ¯

 Example 7.22 Calculate the cut-off frequencies for the TE01, TE11 and TM12 modes in a 

rectangular metal waveguide of dimensions 2 cm ¥ 1 cm.

Solution Here, a = 2 cm, b = 1 cm.

The cut-off frequency is given as ( ) ( )2 2
0

2c

v m n
f

a b
= +

For TE01 mode, m = 0, n = 1,

( )2 8
0 0

01 2

3 10
15 GHz

2 2 2 1 10
c

v vn
f

b b -
¥

= = = =
¥ ¥

For TE11 mode, m = 1, n = 1,

( ) ( ) ( ) ( )2 2 2 2 8
0 0

11 2 2

3 10 51 1
16.77 GHz

2 2 12 10 2 1 10 2
c

v vm n
f

a b - -
¥ ¥

= + = + = =
¥ ¥ ¥ ¥

For TE01 mode, m = 0, n = 1,

( )2 8
0 0

01 2

3 10
15 GHz

2 2 2 1 10
c

v vn
f

b b -
¥

= = = =
¥ ¥

 Example 7.23 In an air-filled rectangular waveguide, the cut-off frequency of a TE10 mode is 5 

GHz, whereas that of TE01 mode is 2 GHz. Calculate

(a) The dimension of the guide

(b) The cut-off frequencies of the next three higher TE modes

(c) The cut-off frequency for TE11 mode if the guide is filled with a lossless material having er = 

2.225 and mr = 1.

Solution Here,
10 01

5 GHz, 2 GHz= =cTE cTEf f

(a) Since the cut-off frequency is lowest in TE01 mode, this is the dominant mode.This implies that for 

the rectangular waveguide, b > a.

Now, for TE01 mode, the cut-off frequency is given as
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01

01

8
0 0

9

3 10
0.075 m 7.5 cm

2 2 2 2 10
cTE

cTE

v v
f b

b f

¥
= fi = = = =

¥ ¥

Also, for TE10 mode, the cut-off frequency is given as

10

10

8
0 0

9

3 10
0.03 m 3 cm

2 2 2 5 10
cTE

cTE

v v
f a

a f

¥
= fi = = = =

¥ ¥

So, the dimension of the rectangular waveguide is 3 cm ¥ 7.5 cm.

(b) The cut-off frequency for TEmn mode is given as

( ) ( ) ( ) ( )2 2 2 2
0 0

2 2c

v vm n m n
f

a b a b
= + = +

( ) ( )2 28
2 23 10

15 0.111 0.01778 GHz
2 0.03 0.075c

m n
f m n

¥
= + = +

The next higher order modes will be TE02, TE11, and TE03.

The corresponding cut-off frequencies are given as follows.

02

10

11

03

15 0.01778 4 4 GHz

15 0.111 1 5 GHz

15 0.111 0.01778 5.385 GHz

15 0.01778 9 6 GHz

c

c

c

c

f

f

f

f

= ¥ =

= ¥ =

= + =

= ¥ =

(c) If the guide is filled with a lossless material having er = 2.25 and mr = 1, the cut-off frequency for 

TE11 mode is

( ) ( ) ( ) ( )
11

2 2 2 2
0

2 2

15 15
0.111 0.01778 GHz 0.111 0.01778 GHz 3.59 GHz

2.25

c

r

c

r

vv m n m n
f

a b a b

f

e

e

= + = +

= + = + =

 Example 7.24 The larger dimension of the cross section of a rectangular waveguide is 2 cm. 

Find the cut-off frequency and wavelength for the dominant TE mode.

Solution Let, a = 2 cm (a > b); then the dominant mode is TE10 mode. Hence, m = 1, n = 0.

For this dominant mode, the cut-off frequency is given as

( ) ( )10

2 2 8
0 0

2

3 10
7.5 GHz

2 2 2 2 10
c

v vm n
f

a b a -
¥

= + = = =
¥ ¥

The wavelength of this dominant mode is

( ) ( )
10 2 2

2
2 4 cmc a

m n

a b

l = = =

+
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 Example 7.25 When the dominant H mode is propagated in an air-filled rectangular waveguide, 

the guide wavelength for a frequency of 9 GHz is 4.0 cm. Calculate the breadth of the guide. Deduce 

the formula used.

Solution Here, for dominant H mode, m = 1, n = 0.

Given that, f = 9 GHz, lg = 4 cm

The wavelength of the impressed signal is, 
8

9

3 10
0.033m 3.33 cm

9 10

c

f
l

¥
= = = =

¥
We have the relation,

2

1

g

c

l
l

l
l

=
Ê ˆ- Á ˜Ë ¯

or
2

3.33
4

3.33
1

cl

=
Ê ˆ- Á ˜Ë ¯

or
2

3.33
1 0.694

cl
Ê ˆ- =Á ˜Ë ¯

or
2

3.33
0.3055

cl
Ê ˆ =Á ˜Ë ¯

or 6.03 cmcl =

Also, for dominant H mode, the cut-off wavelength is given as

( ) ( )2 2

2 2 2
6.03 cm

1c

a a

m
m n

a b

l = = = =

+

\ a = 3.015 cm

Hence, the breadth of the waveguide is given as a = 3.015 cm.

 Example 7.26 A rectangular waveguide carries an electromagnetic wave having a frequency of 

4000 MHz. A standing wave indicator shows that the wavelength of the wave in the guide is 11.4 cm. 

What is the cut-off wavelength of the waveguide and the velocity at which energy is propagated along 

the guide?

Solution Here, f = 4000 MHz, lg = 11.4 cm

Wavelength of the impressed signal is 
8

6

3 10
0.075 m 7.5 cm

4000 10

c

f
l

¥
= = = =

¥



Waveguides 621

We have the relation,

2

1

g

c

l
l

l
l

=
Ê ˆ- Á ˜Ë ¯

or
2

7.5
11.4

7.5
1

cl

=
Ê ˆ- Á ˜Ë ¯

or
2

7.5
1 0.433

cl
Ê ˆ- =Á ˜Ë ¯

or
2

7.5
0.567

cl
Ê ˆ =Á ˜Ë ¯

or 9.96 cmcl =

So, the cut-off wavelength is 9.96 cm.

The velocity with which the energy travels within the guide is the group velocity.

The group velocity is given as

( )22 2
8 8

0 02 2

7.5
1 1 3 10 1 1.298 10 m/s

9.96
c

g
c

f
v v v

f

l

l
= - = - = ¥ - = ¥

*Example 7.27 The cross section of a rectangular waveguide is 20 cm ¥ 5 cm. If it is filled with 

air, find the first six lowest-order modes which will propagate through the waveguide and their cut-off 

frequencies.

Solution Here, a = 20 cm, b = 5 cm.

The cut-off frequency is given as

( ) ( ) ( ) ( )
( ) ( )

2 2 2 2

0 0

2 28
2 2

1

22

3 10
15 0.0025 0.04 GHz

2 0.2 0.05

c

c

m n c m n
f

a b a b

m n
f m n

m e
= + = +

¥
= + = +

We know that for TEmnp modes, any two indices have to be non-zero; whereas for TMmnp modes, all the 

indices have to be non-zero. Since, a > b, the lowest order mode will be TE10.

The next higher order modes will be TE20, TE30, TE40, TE01, TE11 and TM11.

The corresponding cut-off frequencies are given as follows.

10

20

15 0.0025 0.75 GHz

15 0.0025 4 1.5 GHz

c

c

f

f

= =

= ¥ =
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30

40

01

11

15 0.0025 9 2.25 GHz

15 0.0025 16 3GHz

15 0 0.04 3GHz

15 0.0025 0.04 3.092 GHz

c

c

c

c

f

f

f

f

= ¥ =

= ¥ =

= + =

= + =

Hence, the first six lowest order modes with their cut-off frequencies are given in the table below.

Mode Resonant Frequency (GHz)

TE10 0.75

TE20 1.5

TE30 2.25

TE40 3

TE01 3

TE11 & TM11 3.092

*Example 7.28 A 6 GHz signal is to be propagated in the dominant mode in a rectangular 

waveguide. If its group velocity is 90% of the free space velocity of light, what must be the breadth of 

the waveguide?

Solution Free space wavelength is, 
8

0
0 9

3 10
0.05 m

6 10

v

f
l

¥
= = =

¥

From Eqs. (7.125) and (7.126), we know that

0

0

0.9
g

g

v

v

l

l
= =  (given)

\ 0 0.05
0.055 m

0.9 0.9g

l
l = = =

Hence, the wavelength within the guide is 5.55 cm.

The cut-off wavelength is given as

2 2 2 2 2
0

1 1 1 1 1
76

0.05 0.055c gl l l

Ê ˆ Ê ˆ= - = - =Á ˜Á ˜ Ë ¯Ë ¯

fi 0.1147 mcl =

So, the breadth of the guide is given as 
0.1147

0.05735 m
2 2
ca

l
= = =

\ 5.735 cma =
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7.4 CYLINDRICAL OR CIRCULAR WAVEGUIDES

Definition Cylindrical or circular waveguides are those 

that maintain a uniform circular cross-section along their 

length.

Derivation of Field Equations for Circular 
Waveguide The method of solution of the electromagnetic 

field equations for circular waveguides is similar to that for 

rectangular waveguides. However, in order to simplify the 

application of the boundary conditions that the tangential 

component of the electric field be zero, we convert all field 

equations in cylindrical coordinate systems. Cylindrical or 

circular waveguide is shown in Fig. 7.12.

By Maxwell’s equations for time harmonic fields in non-

conducting medium (s = 0), we have

E j Hwm— ¥ = - (7.100)

H j Ewe— ¥ = (7.101)

By wave equations,

2 2 0E Eg— + = (7.63a)

2 2 0H Hg— + = (7.63b)

where g2 = (s + jwe)jwm = –w2me for non-conducting medium.

Expanding Eq. (7.100) in cylindrical coordinate system,

( )1 ( )

r z

r r z z

r z

a ra a

j H j H a H a H a
r r z

E rE E

f

f f

f

wm wm
f

∂ ∂ ∂ = - = - + +
∂ ∂ ∂

Equating both sides,

1
( )z

r

E
rE j H

r z f wm
f

∂È ˘∂- = -Í ˙∂ ∂Î ˚
(7.102a)

r zE E
j H

z r fwm
∂ ∂

- = -
∂ ∂

(7.102b)

1
( ) r

z

E
rE j H

r r f wm
f

∂È ˘∂ - = -Í ˙∂ ∂Î ˚
(7.102c)

Fig. 7.12 Cylindrical or circular 

waveguide
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Expanding Eq. (7.101) in cylindrical coordinate system,

( )1 ( )

r z

r r z z

r z

a ra a

H j E j E a E a E a
r r z

H rH E

f

f f

f

we we
f

∂ ∂ ∂ = - = - + +
∂ ∂ ∂

Equating both sides,

1
( )z

r

H
rH j E

r z f we
f

∂È ˘∂- =Í ˙∂ ∂Î ˚
(7.103a)

r zH H
j E

z r fwe
∂ ∂

- =
∂ ∂

(7.103b)

1
( ) r

z

H
rH j E

r r f we
f

∂È ˘∂ - =Í ˙∂ ∂Î ˚
(7.103c)

If we assume that the wave is propagating in the positive z-direction with the variation expressed as 

e–g z, then we have

, ,

, ,

r z
r z

r z
r z

EE E
E E E

z z z
HH H

H H H
z z z

f
f

f
f

g g g

g g g

∂∂ ∂
= - = - = -

∂ ∂ ∂
∂∂ ∂

= - = - = -
∂ ∂ ∂

Substituting these in Eq. (7.102), we get

1
( )z

r

E
rE j H

r z f wm
f

∂È ˘∂- = -Í ˙∂ ∂Î ˚

or 1 1z
r

EE
r j H

r r z

f
wm

f

∂∂
- = -

∂ ∂

or
1 z

r

E
E j H

r fg wm
f

∂
+ = -

∂

\ 1 z
r

E
E j H

r fg wm
f

∂
+ = -

∂
(7.104a)

Similarly,

r zE E
j H

z r fwm
∂ ∂

- = -
∂ ∂

or z
r

E
E j H

r fg wm
∂

- - = -
∂

\ z
r

E
E j H

r fg wm
∂

+ =
∂

(7.104b)
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and

1
( ) r

z

E
rE j H

r r f wm
f

∂È ˘∂ - = -Í ˙∂ ∂Î ˚
(7.104c)

Similarly, from Eq. (7.103) we will have the following equations:

1 z
r

H
H j E

r fg we
f

∂
+ =

∂
(7.105a)

z
r

H
H j E

r fg we
∂

- - =
∂

(7.105b)

1
( ) r

z

H
rH j E

r r f we
f

∂È ˘∂ - =Í ˙∂ ∂Î ˚
(7.105c)

From Eq. (7.104) and Eq. (7.105), the components Er, Ef, Hr and Hf can expressed in terms of the 

components Ez and Hz as follows.

Combining Eq. (7.104b) and (7.105a),

1 z
r

H
H j E

r fg we
f

∂
+ =

∂

or 1 z z
r r

H E
E j E

r j r

g
g we

f wm

∂ ∂Ê ˆ+ + =Ë ¯∂ ∂

or
2

1z z
r

E H
E j

j j r r

g g
we

wm wm f

Ê ˆ ∂ ∂
- = - -Á ˜ ∂ ∂Ë ¯

or
2 2

1z z
r

E H
E

j j r r

g w me g
wm wm f

Ê ˆ ∂ ∂+
= - -Á ˜ ∂ ∂Ë ¯

or
2 1z z

r

E Hh
E

j j r r

g
wm wm f

∂ ∂
= - -

∂ ∂

where h2 = g  2 + w 2 me

\
2

1 z z
r

E H
E j

r rh

wm
g

f

∂ ∂Ê ˆ= - +Á ˜∂ ∂Ë ¯
(7.106a)

Combining Eqs. (7.104a) and (7.105b),

z
r

H
H j E

r fg we
∂

- - =
∂

or
1 z zE H

E j E
j r rf f
g

g we
wm f

∂ ∂Ê ˆ- + - =Á ˜- ∂ ∂Ë ¯

or
2

1 z zE H
E j

j j r rf
g g

we
wm wm f

Ê ˆ ∂ ∂
- = - +Á ˜ ∂ ∂Ë ¯
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or
2 1 z zE Hh

E
j j r rf

g
wm wm f

Ê ˆ ∂ ∂
= - +Á ˜ ∂ ∂Ë ¯

\ 
2

1 z zE H
E j

r rh
f

g
wm

f

∂ ∂Ê ˆ= - +Á ˜∂ ∂Ë ¯
(7.106b)

Combining Eqs. (7.104a) and (7.105b),

1 z
r

E
E j H

r fg wm
f

∂
+ = -

∂

or 1 z z
r r

E H
H j H

r j r

g
g wm

f we

∂ ∂Ê ˆ+ - - = -Ë ¯∂ ∂

or
2

1z z
r

H E
H j

j j r r

g g
wm

we we f

Ê ˆ ∂ ∂
- + = -Á ˜ ∂ ∂Ë ¯

or
2 1z z

r

H Eh
H

j j r r

g
we we f

Ê ˆ ∂ ∂
- = -Á ˜ ∂ ∂Ë ¯

\ 
2

1 z z
r

H E
H j

r rh

we
g

f

∂ ∂Ê ˆ= - -Á ˜∂ ∂Ë ¯
(7.106c)

Combining Eq. (7.104b) and (7.105a),

1 z z
r

H Ej
H j E j H

r rf f
we

g we wm
f g

∂ ∂Ê ˆ+ = = -Ë ¯∂ ∂

or
2

1z zE Hj
H

r rf
w me we

g
g g f

Ê ˆ ∂ ∂
+ = - -Á ˜ ∂ ∂Ë ¯

or
2 1z zE Hjh

H
r rf

we
g g f

∂ ∂
= - -

∂ ∂

\ 
2

1 z zH E
H j

r rh
f

g
we

f

∂ ∂Ê ˆ= - +Á ˜∂ ∂Ë ¯
(7.106d)

Now from wave equations of Eq. (7.63),

2 2 0E Ew me— + = (7.63a)

2 2 0H Hw me— + = (7.63b)

Expanding the Laplacian of the electric field E  in cylindrical coordinates, we have

2 2
2

2 2 2

1 1
0

E E E
r E

r r r r z
w me

f

Ê ˆ∂ ∂ ∂ ∂+ + + =Ë ¯∂ ∂ ∂ ∂
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or
2 2 2

2
2 2 2 2

1 1 1
0

E E E E
E

r r rr r z
w me

f

∂ ∂ ∂ ∂+ + + + =
∂∂ ∂ ∂

Since the wave is propagating in the positive z-direction, we have

2
2

2

E
E

z
g

∂ =
∂

Hence, the wave equation for Ez component in cylindrical co-ordinates is reduced to

2 2
2 2

2 2 2

1 1 1
0z z z

z z

E E E
E E

r r rr r
g w me

f

∂ ∂ ∂
+ + + + =

∂∂ ∂
(7.107)

Proceeding in the similar way as for rectangular waveguides, let the solution of Eq. (7.107) be

0( ) ( ) z z
z zE P r Q e E eg gf - -= = (7.108)

where P(r) is a function of r alone and Q(f) is a function of f alone. Substituting this in Eq. (7.107),

22
2 2

2 2 2
0

Q QP P P
Q PQ PQ

r rr r
g w me

f

∂∂ ∂+ + + + =
∂∂ ∂

or
22

2 2
2 2 2

1 1 1
0

QP P

P Pr rr Qr
g w me

f

∂∂ ∂+ + + + =
∂∂ ∂

or
22

2
2 2 2

1 1 1
0

QP P
h

P Pr rr Qr f

∂∂ ∂+ + + =
∂∂ ∂

(7.109)

As have been done for Eqs. (7.70), Eq. (7.109) too can be split into two ordinary differential equations 

written as

2
2

2

d Q
n Q

df
= - (7.110a)

2 2
2

2 2

1
0

d P dP n
h P

r drdr r

Ê ˆ
+ + - =Á ˜Ë ¯ (7.110b)

where n is a constant.

Solution of Eq. (7.110a) is given as

( cos sin )n nQ A n B nf f= + (7.111)

Reducing Eq. (7.110b) to the form of Bessel’s equation, we have

2 2

2 2

1
1 0

( )( ) ( )

d P dP n
P

rh d rhd rh rh

È ˘
+ + - =Í ˙

Î ˚
(7.112)

Solution of Eq. (7.112) is given as

( ) ( )nP rh J rh= (7.113)
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where Jn(rh) is Bessel’s function of first kind of order n.

Substituting the solutions of Eq. (7.111) and Eq. (7.113) in Eq. (7.108)

( )( cos sin ) z
z n n nE J rh A n B n e gf f -= + (7.114a)

Similarly, the solution for the magnetic field can be written as

( )( cos sin ) z
z n n nH J rh C n D n e gf f -= + (7.114b)

For TE and TM waves, the solution for other components of E  and H  are obtained by substituting 

Eq. (7.114) in Eq. (7.106).

As for the rectangular waveguides, the solutions for the circular waveguides are also divided into 

two modes:

1. Transverse Electric (TE) Mode and

2. Transverse Magnetic (TM) Mode

It must be noted here that the relative amplitudes of the arbitrary constants An, Bn and Cn and Dn

determine the orientation of the electric and magnetic fields inside the guide for TM and TE waves, 

respectively. It is known that for any value of n, the f = 0 axis can always be oriented to make either An

and Cn or Bn and Dn equal to zero. Here, we assume that f = 0 axis is so oriented that

0 and 0n nB D= =

Thus, the field equations of Eq. (7.114) can be written as

( ) cos z
z n nE J rh A n e gf -= (7.115a)

( ) cos z
z n nH J rh C n e gf -= (7.115b)

We will now determine the different characteristics of circular waveguides for TE and TM modes.

7.4.1  Field Equations for Transverse Electric (TE)
Mode (E

z
 = 0, H

z
π 0) in Circular Waveguide

In this case, Ez component is identically zero and Hz is given by Eq. (7.115b). The other field components 

for TE waves can be found by inserting Eq. (7.115b) in Eq. (7.106).

( ) cos z
z n nH J rh C n e gf -=

\ 
2 2

1 1
0 ( ) sinz z z

r n n

E H
E j j J rh C n n e

r r rh h

gwm wm
g f

f
-∂ ∂Ê ˆ Ê ˆ= - + = - -Á ˜ Ë ¯∂ ∂Ë ¯

   
2

( ) sinn z
n

n C
j J rh n e

rh

gwm
f -=

\ 
2 2

1 1
[0 ( ) cos ]z z z

n n

E H
E j j hJ rh C n e

r rh h

g
f

g
wm wm f

f
-∂ ∂Ê ˆ ¢= - + = +Á ˜∂ ∂Ë ¯

   
( ) cosn z

n

C
j J rh n e

h
gwm

f -¢=
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where ( ) [ ( )]n nJ rh J rh
dr

∂¢ =

\ 
2 2

1 1
[ ( ) cos 0]z z z

r n n

H E
H j hJ rh C n e

r rh h

gwe
g g f

f
-∂ ∂Ê ˆ ¢= - - = - -Á ˜∂ ∂Ë ¯

   
( ) cosn z

n

C
J rh n e

h
gg

f -¢= -

\ 
2 2

1 1
( ) sin 0z z z

n n

H E
H j J rh C n n e

r r rh h

g
f

g g
we f

f
-∂ ∂Ê ˆ È ˘= - + = - - +Á ˜ Í ˙∂ ∂Ë ¯ Î ˚

   
2

( ) sinn z
n

n C
J rh n e

rh

gg
f -=

Thus, the expressions for different field components for TE waves are written as

2

2

( ) cos

( ) cos

( ) sin

( ) sin

( ) cos

z
z n n

zn
r n

zn
n

zn
r n

zn
n r

H J rh C n e

C
H J rh n e

h
n C

H J rh n e
rh
n C

E j J rh n e j H
rh

C
E j J rh n e j H

h

g

g

g
f

g
f

g
f

f

g
f

g
f

wm wm
f

g
wm wm

f
g

-

-

-

-

-

=

¢= -

=

= =

¢= = -

(7.116)

The boundary condition to be satisfied for TE waves is that

Ef = 0 at r = a

where a is the radius of the circular waveguide (see Fig. 7.9).

Therefore, from Eq. (7.116), we have

( ) 0nJ ah¢ = (7.117)

Equation (7.117) shows that for a particular value of n, there is infinite number of roots of the equation 

and accordingly, there is infinite number of possible TE waves. However, as for rectangular waveguides, 

in the propagation range of frequencies, for circular guide too, the value of h (h2 = g 2 + w 2 me) is very 

small (h2 << w 2 me). This implies that the first few roots of Eq. (7.117) will be of practical interest. The 

first few roots of Eq. (7.117) are given in Table 7.2.

Table 7.2 Roots of ( ) 0nJ ah¢ =

n

m

0 1 2 3

1 3.83 1.84 3.05 4.20

2 7.02 5.33 6.70 8.01

3 10.17 8.53 9.97 11.34
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The waves corresponding to different values of hnm are obtained from Table 7.1 and are referred as 

TE01, TE11, TE02, TE12, and so on. 

NOTE

Here, the first subscript refers to the value of n and the second refers to the roots in their order of 

magnitude.

7.4.2  Field Equations for Transverse Magnetic (TM)
Mode (E

z
π 0, H

z
 = 0) in Circular Waveguide

In this case, Hz component is identically zero and Ez is given by Eq. (7.115a). The other field components 

for TM waves can be found by inserting Eq. (7.115a) in Eq. (7.106).

( ) cos z
z n nE J rh A n e gf -=

\   
2 2

1 1
[ ( ) cos 0]z z z

r n n

E H
E j hJ rh A n e

r rh h

gwm
g g f

f
-∂ ∂Ê ˆ ¢= - + = - +Á ˜∂ ∂Ë ¯

   
( ) cosn z

n

A
J rh n e

h
gg

f -¢= -

where ( ) [ ( )]n nJ rh J rh
dr

∂¢ =

\  
2 2

1 1
( ) sin 0z z z

n n

E H
E j J rh nA n e

r r rh h

g
f

g g
wm f

f
-∂ ∂Ê ˆ È ˘= - + = +Á ˜ Í ˙∂ ∂Ë ¯ Î ˚

   
2

( ) sinn z
n

n A
J rh n e

rh

gg
f -=

\
2 2

1 1
0 ( ) sinz z z

r n n

H E
H j j J rh nA n e

r r rh h

gwe we
g f

f
-∂ ∂Ê ˆ È ˘= - - = - +Á ˜ Í ˙∂ ∂Ë ¯ Î ˚

   
2

( ) sin zn
n

n A
j J rh n e

rh

gwe
f -= -

\ 
2 2

1 1
[0 ( ) cos ]z z z

n n

H E
H j j hJ rh A n e

r rh h

g
f

g
we we f

f
-∂ ∂Ê ˆ ¢= - + = - +Á ˜∂ ∂Ë ¯

   
( ) cosn z

n

A
j J rh n e

h
gwe

f -¢= -

Thus, the expressions for different field components for TM waves are written as
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2

2

( ) cos

( ) sin

( ) cos

( ) cos

( ) sin

z
z n n

zn
r n

zn
n

zn
r n

zn
n r

E J rh A n e

n A
H j J rh n e

rh
A

H j J rh n e
h

A
E J rh n e H

h j

n A
E J rh n e H

jrh

g

g

g
f

g
f

g
f

f

we
f

we
f

g g
f

we
g g

f
we

-

-

-

-

-

=

= -

¢= -

¢= - =

= = -

(7.118)

The boundary condition to be satisfied for TM waves is that

Ez = 0 at r = a

where a is the radius of the circular waveguide (see Fig. 7.11).

Therefore, from Eq. (7.118), we have

( ) 0nJ ah = (7.119)

The first few roots of Eq. (7.119) are given in Table 7.3.

Table 7.3 Roots of Jn(ah) = 0

n

m

0 1 2 3

1 2.40 3.83 6.38 7.59

2 5.52 7.02 9.76 11.06

3 8.63 10.17 13.01 14.37

The waves corresponding to different values of hnm are obtained from Table 7.2 and are referred as 

TM01, TM11, TM02, TM12, and so on. 

NOTE

As there is no roots of (ah)00, TE00 or TM00 waves do not exist.

7.4.3 Properties of TE and TM Waves in Circular Waveguide

We find the following quantities for TE and TM mode waves in circular waveguides:

1. Propagation constant (g ),

2. Phase constant (b ),

3. Cut-off frequency (fc),

4. Cut-off wavelength (lc),

5. Phase velocity (vp),

6. Group Velocity (vg),

7. Guide wavelength (lg), and

8. Intrinsic wave impedance (h).
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1. Propagation constant (g ): It is given as

2 2
nm nmhg w me= - (7.120)

where, the value of hnm is obtained from Tables 7.1 and 7.2 for TE and TM waves, respectively.

Here too, wave propagation will occur only when 2 2
nmh w me<  in which case the propagation is entirely 

imaginary.

2. Phase constant (b ): From Eq. (7.120), the phase constant in the propagation mode is obtained as

2 2
nm nm nmj hg b w me= = -

or 2 2
nm nmhb w me= -

2 2
nm nmhb w me= - (7.121)

3. Cut-off frequency (fc): The cut-off frequency below which the wave is attenuated and above which 

the wave is propagated through the guide is obtained as

2 2 0nm nmhg w me= - =

or nm
c

h
w

me
=

or 0

22

nm
c nm

h v
f h

pp me
= =

where 0

1
v

me
=  is the phase velocity of uniform plane wave in a lossless dielectric medium.

\ 0

22

nm
c nm

h v
f h

pp me
= = (7.122)

From Eq. (7.122) and from Tables 7.1 and 7.2, we see that the lowest cut-off frequency is with TE11

mode, the next higher modes being TM01, TE21, TE01.

4. Cut-off wavelength (lc): Corresponding to every cut-off frequency, there will be a cut-off wavelength

given as

0 2
c

c nm

v

f h

p
l = = (7.123)

where, 0

1
v

me
=  is the phase velocity of uniform plane wave in a lossless dielectric medium inside 

the guide.

5. Phase velocity (vp): The phase velocity of the wave propagation is given by

0

2 2 2

2
1

p
nm

nm c

v
v

h f

f

w w
b w me

= = =
-

-

(7.124)
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0

1
v

me
=  is the phase velocity of uniform plane waves in a lossless dielectric medium inside the 

waveguide.

Equation (7.124) indicates that the phase velocity of wave propagation in the circular waveguide is 

greater than the phase velocity of uniform plane wave.

6. Group Velocity (vg): From the relation that 0 p gv v v= , the group velocity is obtained as

2 2 2
0 0

0 2
0

2

2

1

1

c
g

p

c

v v f
v v

v v f

f

f

= = = -

-

2

0 2
1 c

g

f
v v

f
= - (7.125)

This shows that the group velocity in the guide is less than that in the free space.

7. Guide wavelength (lg): The wavelength in the circular waveguide is given as

0 0

2 2 2 2

22

2 2

11

g
nm

nm c

c

h f

f

l lp p
l

b w me l

l

= = = =
- --

(7.126)

where 0
0

2 2p p
l

bw me
= =  is the wavelength of the uniform plane wave in the lossless dielectric medium

inside the guide.

8. Intrinsic wave impedance (h): As for rectangular waveguides, for circular waveguides too, the 

intrinsic wave impedance will be different for TE and TM modes.

(a) Intrinsic wave impedance for TE Modes in circular waveguides: For TE waves, from Eq. 

(7.116), it is given as

0

2 2

2 2

1

1 1

r
TE

r
c c

EE

H H f f

f f

f

f

hwm m
h

b e
= = - = = =

- -

where 0

m
h

e
=  is the intrinsic impedance of uniform plane wave in a lossless dielectric medium.

\ 0

2

2
1

TE

cf

f

h
h =

-

(7.127)

(b) Intrinsic wave impedance for TM modes in circular waveguides: For TM waves, from 

Eq. (7.118), it is given as
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2 2

02 2
1 1c cr

TM
r

E f fE

H H f f

f

f

b m
h h

we e
= = - = = - = -

where 0

m
h

e
=  is the intrinsic impedance of uniform plane wave in a lossless dielectric medium.

\
2

0 2
1 c

TM

f

f
h h= - (7.128)

NOTE

In this section in circular waveguides, hnm should be replaced by ¢nmh  for all TE waves. For example 

for TE waves, the cut-off frequency is 
p

¢= 0

2c nm

v
f h .

 Example 7.29 A circular waveguide has an internal radius of 2.5 cm. Calculate the cut-off 

wavelength, the guide wavelength and the wave impedance of the guide when operated at a frequency 

of 8 GHz and propagating in TE11 mode. 

Solution Here, n = 1, m = 1, f = 8 GHz, a = 2.5 cm = 0.025 m

\ 
8

0 9

3 102
0.0375 m

8 10

p
l

w me

¥
= = =

¥

From Table 7.1, for TE11, h¢nm = 1.84

Cut-off wavelength, 
2 2.52

8.54 cm
1.84c

nm

a

h a

pp
l

¥
= = =¢

Guide wavelength, 

( )
0

2 2

2

0.0375
0.0417 m 4.17 cm

0.03751 1
0.0854

g

c

l
l

l

l

= = = =

- -

Wave impedance, 

( )
0

2 2

2

120
419.64

0.03751 1
0.0854

TE

c

h p
h

l

l

= = = W

- -

 Example 7.30 A circular waveguide has an internal diameter of 5 cm. Calculate the cut-off 

frequency in it for the following modes: (a) TE11, (b) TM01.

Solution Here, a = 2.5 cm = 0.025 m

From Table 7.1, for TE11, h¢nm = 1.84

Cut-off frequency is given as

8
0 0 3 10

1.84 3.5 GHz
2 2 2 0.0252

nm
c nm nm

h v v
f h h a

ap p pp me

¢ ¥¢ ¢= = = = ¥ =
¥

From Table 7.2, for TM01, hnm = 2.4
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Cut-off frequency is given as

8
0 0 3 10

2.4 4.58 GHz
2 2 2 0.0252

nm
c nm nm

h v v
f h h a

ap p pp me

¥
= = = = ¥ =

¥

 Example 7.31 A lossless air-filled circular waveguide of inside diameter 3 cm is operated at 15 

GHz. For the TM11 mode, find the cut-off frequency, the guide wavelength and wave impedance.

Solution Here,
3

1.5 cm
2

a = = , f = 10 GHz

From Table 7.2, for TM11 mode, the cut-off frequency is given as

8
0 0

2

3 10
3.83 12.19 GHz

2 2 2 1.5 102

nm
c nm nm

h v v
f h ah

ap p pp me -
¥

= = = = ¥ =
¥ ¥

The guide wavelength is given as

( )
8 9

0 0

2 2 2

2 2

/ 3 10 /15 10
5.89 cm

12.19
1 1 1

15

g

c c

v f

f f

f f

l
l

¥ ¥
= = = =

- - -

The wave impedance is given as

( )22

0 2

12.19
1 120 1 219.64

15
c

TM

f

f
h h p= - = - = W

 Example 7.32 Find the radius and guide wavelength in an air-filled circular waveguide for the 

dominant mode at f = 30 GHz = 1.5 fc. Will TM11 mode propagate under these conditions?

Solution Here, f = 30 GHz = 1.3 fc

\ 30
20 GHz

1.5cf = =

For circular waveguide, the dominant mode is TE11 mode.

The corresponding cut-off frequency is given as

0 0

2 2c nm nm

v v
f h ah

ap p
= =

\ 
8

0
9

3 10
1.84 0.44 cm

2 2 20 10
nm

c

v
a ah

fp p

¥
= = ¥ =

¥ ¥

The guide wavelength is given as

( )
8 9

0 0

2 2 2

2 2

/ 3 10 /30 10
1.34 cm

20
1 1 1

30

g

c c

v f

f f

f f

l
l

¥ ¥
= = = =

- - -
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For this radius, for TM11 mode, the cut-off frequency is

8
0 0

2

3 10
3.83 41.63GHz

2 2 2 0.44 10
c nm nm

v v
f h ah

ap p p -
¥

= = = ¥ =
¥ ¥

Since this is greater than 20 GHz, TM11 mode will not propagate.

 Example 7.33 Calculate the radius and guide wavelength for TM11 mode at f = 30 GHz = 1.5 fc
in an air-filled circular waveguide.

Solution Here, f = 30 GHz = 1.3 fc

\ 30
20 GHz

1.5cf = =

From Table 7.2, for TM11 mode, the cut-off frequency is given as

0 0

2 22

nm
c nm nm

h v v
f h ah

ap pp me
= = =

\ 
8

0
9

3 10
3.83 0.914 cm

2 2 20 10
nm

c

v
a ah

fp p

¥
= = ¥ =

¥ ¥

The guide wavelength is given as

( )
8 9

0 0

2 2 2

2 2

/ (3 10 )/(30 10 )
1.34 cm

20
1 1 1

30

g

c c

v f

f f

f f

l
l

¥ ¥
= = = =

- - -

*Example 7.34 Evaluate the ratio of the area of a circular waveguide to that of a rectangular one, 

if both are to have the same cut-off frequency for dominant mode.

Solution Let r be radius of the circular waveguide and a be the larger dimension of the rectangular 

waveguide.

From Tables 7.1 and 7.2, we understand that the dominant mode in circular waveguide is TE11 mode. 

For this mode, the cut-off frequency is given as

0 0 0 1.84
2 2 2c nm nm

v v v
f h rh

r rp p p
= = = ¥

For TE10 mode rectangular waveguide, the cut-off frequency is given as

( ) ( )2 2
0 0

2 2c

v vm n
f

a b a
= + =

Since both will have the same cut-off frequency, we get

0 01.84
2 2

v v

r ap
¥ =

or 0.586
r

a
=
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The area of the circular waveguide is, Ac = p r2

For standard rectangular waveguide a : b = 2 : 1, so that the area of the rectangular waveguide is 
2

2 2r

a a
A a= ¥ = .

\ ( )22
2

2
2 2 (0.586) 2.155

/2

c

r

A r r

A aa

p
p p= = = ¥ =

*Example 7.35 Design an air-filled circular waveguide yielding a frequency separation of 1 

GHz between the cut-off frequencies of the dominant mode and the next highest mode.

Solution The dominant mode in circular waveguide is TE11 mode and the next highest mode is 

TM01 mode. The respective cut-off frequencies are given as

0 0
11 11

0 0
01 01

1.84
2 2

2.4
2 2

TE
c

TM
c

v v
f ah

a a

v v
f ah

a a

p p

p p

¢= = ¥

= = ¥

For a difference of 1 GHz between these two frequencies, we can write

9 0 0
01 11 1 10 (2.4 1.84) 0.556

2 2
TM TE

c c

v v
f f

a ap p
- = ¥ = - = ¥

\ 
8

0
9 9

3 10
0.556 0.556 0.0267 m 2.67 cm

2 1 10 2 1 10

v
a

p p

¥
= ¥ = ¥ = =

¥ ¥ ¥ ¥

The corresponding cut-off frequencies of this waveguide are

0
11

0
01

1.84 3.286 GHz
2 0.0267

2.4 4.286 GHz
2 0.0267

TE
c

TM
c

v
f

v
f

p

p

= ¥ =
¥

= ¥ =
¥

7.5 POWER TRANSMISSION IN WAVEGUIDES

The power transmitted along any waveguide as well as the transmission losses can be determined with 

the help of the field equations obtained in the preceeding sections and using the concept of Poynting 

vector as explained in Chapter 5, Section 5.10.

From Eq. (5.40), the total power carried by the fields along the guide direction (here z-direction)

is obtained by integrating the z-component of the Poynting vector over the cross-sectional area of the 

guide.

\ *
ave

1
Re[ ]

2T S S
S S

P p d S d S= ◊ = ¥ ◊Ú Ú E H (7.129)

7.5.1 Power Transmission in Rectangular Waveguides

The power transmitted in rectangular waveguide is obtained from Eq. (7.129) as
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\ * 2 21 1 1
Re[ ] Re[ ] (| | | | )

2 2 2T S S x y y x z z x y
S S S

P d S E H E H a dxdya E E dxdy
h

= ¥ ◊ = - ◊ = +Ú Ú ÚE H

where h is the wave impedance of the guide.

For TE waves, the transmitted power is given as

2

2
2 2

0 0 0

1

(| | | | )
2TE

c

a b

T x y
x y

f

f
P E E dydx

h
= =

-
= +Ú Ú (7.130)

where 0

m
h

e
=  is the intrinsic impedance of uniform plane wave.

For TM waves, the transmitted power is given as

2 2

2
0 0

0 2

1
(| | | | )

2 1

TM

a b

T x y
x yc

P E E dydx
f

f
h

= =
= +

-
Ú Ú (7.131)

7.5.2 Power Transmission in Circular Waveguides

The power transmitted in circular waveguide is obtained from Eq. (7.129) as

\ * 2 21 1 1
Re[ ] Re[ ] (| | | | )

2 2 2T S S r r z z r
S S S

P d S E H E H a rdrd a E E rdrdf f ff f
h

= ¥ ◊ = - ◊ = +Ú Ú ÚE H

where h is the wave impedance of the guide.

For TE waves, the transmitted power is given as

2

2 2
2 2

0 0 0

1

(| | | | )
2TE

c

a

T r
r

f

f
P E E rdrd

p

f
f

f
h

= =

-
= +Ú Ú (7.132)

where 0

m
h

e
=  is the intrinsic impedance of uniform plane wave.

For TM waves, the transmitted power is given as

2
2 2

2
0 0

0 2

1
(| | | | )

2 1

TM

a

T r
rc

P E E rdrd
f

f

p

f
f

f

h
= =

= +

-
Ú Ú (7.133)

 Example 7.36 For TE10 mode rectangular waveguide, calculate the time-averaged power 

transmitted along the guide. Also, calculate the energy density of the fields and determine the velocity 

by which electromagnetic energy flows through the guide. Establish that this velocity is equal to the 

group velocity.
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Solution For TE10 mode the non-zero field components are:

( )
( ) ( )

( ) ( )

0

02

02

cos

sin

sin

z

x

y

H H x
a

j
H H x

a ah

E j H x
a ah

p

b p p

wm p p

=

= -

= -

The Poynting vector is obtained as

( ) ( )
2 2 2

22 2 2 2 2
2 2 2 2

04
0 0 0

1 1 1

| | | | sin
2 2 2

c c c

z y

f f f

f f f
p E E H x

a ah

w m p p
h h h

- - -
= = =

The time-average power transmitted along the guide is obtained by integrating pz over the cross-

sectional area of the guide.

\ ( ) ( )

( ) ( )

( )

2

22 2 2
2 2
04

00 0 0 0

2

22 2 2
2
04

0 0 0

2

22 2 2
2
04

0

1

sin
2

1
2

1 cos
4

1

4

c

a b a b
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c
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c

f

f
P p dxdy H x dxdy
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f
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f
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w m p p
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w m p p
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h

-
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-
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-
=

Ú Ú Ú Ú

Ú Ú

For TE10 mode, ( ) ( ) ( )2 2 2
2 m n

h
a b a

p p p= + =

\ 
22 2

2
02 2

0

1
1

4
c

T

f
P H ab

h f

w m
h

= -

We now calculate the distribution of electromagnetic energy along the guide, as measured by the time-

averaged energy density. The energy densities of the electric and magnetic fields are given as

( ) ( ) ( )
( ) ( ) ( ) ( )

22 2
2 2 2

04

22
2 2 2 2 2

0 4

1 1 1 1
Re * | | sin

2 2 4 4

1 1 1 1
Re * (| | | | ) sin cos

2 2 4 4

e y

m x z

w E E E H x
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w H H H H H x x
a a ah

w m p p
e e e

b p p p
m m m

= ◊ = =

È ˘
= ◊ = + = +Í ˙

Í ˙Î ˚

Energy distribution per unit length is obtained by integrating the above two quantities over the cross-

sectional area of the guide.
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1
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Although these two expressions look different, they are actually the same as derived below.

For TE10 mode, ( ) ( ) ( )2 2 2
2 m n

h
a b a

p p p= + =

2
2 2 2 2– –h

a

p
b w me w me Ê ˆ= = Ë ¯

\ ( )22 2 2 2
2 2 2
0 0 04 2 2

1 1 1
1 1

8 8 8m

h
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ah h h

b b bp
m m m
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Î ˚ Î ˚ Î ˚

     

2 2 2
2 2
0 02 2

1 1

8 8 eH ab H ab W
h h

w me w m
m e

Ê ˆ
= = =Á ˜Ë ¯

Hence, the total energy density per unit length is obtained as

2 2
2
02

1
2

4e m eW W W W H ab
h

w m
e= + = =

2 2
2
02

1

4
W H ab

h

w m
e=

The velocity by which electromagnetic energy flows through the guide is given by the ratio of the time-

averaged power transmitted to the total energy density per unit length.

\ 
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02 2 2 2
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2 2 2 2
02

02

1
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4 1 1
1 1

1
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c
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2 2
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1 1c cf f

v
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\ 
2

0 2
1 c

en

f
v v

f
= -

By Eq. (7.51), this is the group velocity of the wave, i.e., the velocity with the energy is transported.

 Example 7.37 A lossless air-filled rectangular waveguide has dimensions a = 7.214 cm and b

= 3.404 cm. For the dominant mode propagation at 3 GHz, find the average power transmitted if the 

excitation level of the E  field is 10 kV/m.

Solution Here, a = 7.214 cm, b = 3.404 cm, f = 3 GHz, E0 = 10 kV/m

For the dominant mode, i.e., TE11 mode, the cut-off frequency is given as

( ) ( )2 2 8
0 0

2

3 10
2.08 GHz

2 2 2 7.214 10
c

v vm n
f

a b a -
¥

= + = = =
¥ ¥

Hence, from Example 7.36, the average power transmitted is given as

( )2 22 3 2
40

av
0

(10 10 ) 2.08
1 7.214 3.404 10 1

4 4 120 3

115.92 Watt

cE f
P ab

fh p
-¥Ê ˆ= - = ¥ ¥ ¥ -Á ˜ ¥Ë ¯

=

 Example 7.38 A lossless air-filled rectangular waveguide has dimensions a = 7.214 cm and 

b = 3.404 cm. For the dominant mode propagation at 2.6 GHz, the guide transports 200 W of average 

power. Find the level of excitation of the E  field.

Solution Here, a = 7.214 cm, b = 3.404 cm, f = 3 GHz, E0 = 10 kV/m

For the dominant mode, i.e., TE11 mode, the cut-off frequency is given as

( ) ( )2 2 8
0 0

2

3 10
2.08 GHz

2 2 2 7.214 10
c

v vm n
f

a b a -
¥

= + = = =
¥ ¥

Hence, from Example 7.36, the average power transmitted is given as

22
0

av
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1
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\  
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0
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¥ ¥ ¥
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Ê ˆ ¥ ¥ -- Á ˜Ë ¯

 Example 7.39 For TE01 mode,

( )02
sin , 0z

x yE j H y e E
bbh

gwmp p -= =
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Find the average Poynting vector and the total average power transmitted across the guide.

Solution The average Poynting vector is given as

* 2 2
ave

1 1
Re[ ] (| | | | )

2 2S S x y zp E E a
h

= ¥ = +E H

where h is the wave impedance of the guide.

In this problem, ( ) –
02
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bbh
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\ ( )2 2 2
2 2 2

ave 02 4

1
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Total average power transmitted across the guide is given as
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Here, ( ) ( )2 2 2
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 Example 7.40 In a lossless circular waveguide of radius 1 cm with dielectric of permittivity er

= 2.1, the transmitted power in the dominant mode at 15 GHz is 2 W. Find the level of excitation for 

the magnetic field.

Solution Here, a = 1 cm, f = 15 GHz, P = 2 Watt, er = 2.1

The cut-off frequency for the dominant mode, i.e., for TE11 mode is

8
0 0

2

3 10
1.84 8.785 GHz

2 2 2 1 10
c nm nm

v v
f h ah

ap p p -
¥

= = = ¥ =
¥ ¥

The average power transmitted for this mode is given as

22 2
2 2 20 11

av 0 112
11

( ) 1
| | 1 { ( )}

4 ( )

c
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f ahf
P H a J ah

f f ah
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From the knowledge of Bessel’s function, the value of the term within third bracket comes to be 0.239, 

as follows.

2 2
2 211

112 2
11

( ) 1 (1.84) 1
{ ( )} (0.58) 0.239

( ) (1.84)
n

ah
J ah

ah

Ï ¸- -Ô Ô ¢ = ¥ =Ì ˝
Ô ÔÓ ˛

So, the average power transmitted is written as
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av 0| | 1 0.239
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f f
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7.6  POWER LOSSES AND ATTENUATION IN 
WAVEGUIDES

In earlier discussions, we assumed a lossless waveguide (s = 0, sc = ) for which the attenuation 

constant a = 0 and the propagation constant g = jb. However, in general, the guide walls are not 

perfectly conducting and the dielectric is lossy (s π 0, sc π ) and there is a continuous loss of power 

as a wave propagates through the waveguide.

Consequently, for waveguides with conducting walls, the power (transmission) losses are primarily due 

to the following two causes:

1. Dielectric losses in the medium filling the space between the conductors in which the fields 

propagate, and

2. Ohmic losses or conduction losses due to conducting walls.

From Chapter 5, Section 5.11.5, the power flow in the guide is according to the equation,

2
0

z
TP P e a-= (7.134)

From the law of conservation of energy, the rate of decrease of PT must be equal to the time average 

power loss, i.e.,

2
02 2zT

L T

dP
P P e P

dz
aa a-= - = =

\ 1

2
L

T

P

P
a

Ê ˆ= Á ˜Ë ¯
(7.135)

The attenuations in the wave due to the two types of losses are characterised by the attenuation constants 

ac and ad, respectively, so that the total attenuation constant of the waveguide is represented as

c da a a= + (7.136)

1. Dielectric losses: This occurs in the medium filling the space between the conductors in which the 

fields propagate. The attenuation in the wave due to this loss is characterised by attenuation constant 

ad.
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Determination of ad: For lossy dielectric, we replace the permittivity e with the complex permittivity 

ec given as

( ) ( )c j j
s

e e e e
w

¢ ¢¢= - = -

Hence, the propagation constant for the lossy dielectric is given as

( ) ( ) ( ) ( )2 2 2 2
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p p p p
g a b w me w me wms= + = + - = + - +

Squaring on both sides,
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Equating the real and imaginary parts,
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2d d d

d
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= = (7.137b)

For weakly conducting dielectrics, 2 2
d da b<<  and we may make the approximation:
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p p
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This is identical with Eq. (7.94). Substituting this in Eq. (7.137b), we have
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where, 0

m
h

e
=  is the intrinsic impedance of uniform plane waves.

0
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2 1
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f
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a =

-

(7.138)

2. Ohmic losses or conduction losses: This occurs due to the conductivity of the guide walls. The 

attenuation in the wave due to this loss is characterised by attenuation constant ac.

Determination of ac: The conduction losses are more complicated to calculate. In practise, the 

following approximate procedure is adequate.
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(a) First, the fields are determined on the assumption that the conductors are perfect.

(b) Second, the magnetic fields on the conductor surfaces are determined and the corresponding 

induced surface currents are calculated by S nJ a H= ¥ , where na  is the outward normal to the 

conductor.

  Third, the ohmic losses per unit conductor area are calculated as

21
| |

2
L

S S

dP
R J

dA
= (7.139)

  where
1

2 2 2SR
wm we

h dwm
s s

= = =  is the surface resistance of the conductor and 
2

d
wms

=

is the skin depth.

  Integrating Eq. (7.139) around the periphery of the conductor, we obtain the total power loss 

per unit z-length due to that conductor.

21
| |

2L S S
S

P R J dl= Ú (7.140)

(c) Fourth, total power transmitted through the guide is obtained from Eq. (7.129).

(d) Finally, the attenuation constant is calculated using Eq. (7.135) as

2

*
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| |

21 1

2 2 1
Re[ ]
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S S
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P

P
d S

a
Ê ˆ= =Á ˜Ë ¯ ¥ ◊

Ú

Ú E H

(7.141)

The attenuation constants for different modes of propagation in different waveguides are given in Table 

7.4.

The variation of the attenuation constant with frequency for TE, TM and TEM modes are shown in 

Fig. 7.13.

Fig. 7.13 Variation of attenuation constant (a) with frequency

In a particular case, we find out attenuation constant for TE10 wave in rectangular waveguide as follows.
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Calculation of Attenuation Constant for TE10 Waves in Rectangular Waveguide In this 

case, only the components Ey, Hx and Hz exist. Also, ( )h
a

p= .

Hence, the time-average power transmitted through the guide is
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Similarly, total power loss for TE10 waves is obtained as follows.
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Similarly,
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Hence, total power loss is obtained as
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(7.144)

From Eqs. (7.142) and (7.144), we get the attenuation constant for TE10 wave as
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After some simplifications, we get the attenuation constant for TE10 wave as
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(7.145)

Similarly, we can find out the attenuation constant for TM11 wave by putting m = n = 1 in the equation 

of attenuation constant for TM mode of rectangular waveguide as,

3 3

2 220
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c

R a b

ab a bf

f

a
h

Ê ˆ+
= Á ˜+Ë ¯
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 (attenuation constant for TM11 wave) (7.146)

*Example 7.41 A brass waveguide (sc = 1.1 ¥ 107 mho/m) of dimensions a = 4.2 cm, b = 1.5 cm 

is filled with Teflon (er = 2.6, s = 10–15 mho/m). The operating frequency is 9 GHz. For TE10 mode:

(a) Calculate ad and ac.

(b) What is the loss in decibels in the guide if it is 40 cm long?

Solution Since the guide is filled with Teflon (er = 2.6, s = 10–15 mho/m) where conductivity is 

very small, the intrinsic impedance of the medium is given as

0
0

0

120 120
233.8

2.6r r

mm p p
h

e e e e
= = = = = W

For TE10 mode, m = 1, n = 0. Hence, the cut-off frequency is
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At 9 GHz operating frequency, the attenuation constant due to dielectric loss is
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For TE10 mode, the attenuation constant due to ohmic loss is obtained from Eq. (7.145) as
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Here,
9 7
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9 10 4 10
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21.744 10 Np/m-= ¥

Since, ad << ac, the total attenuation constant is

\ 
10 10

21.744 10 Np/m
TE TECa a -= = ¥

For a length of 40 cm, the power loss is given as, PL = P0e
2az

To convert it into decibels, we have
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Hence, the power loss is

28.686( ) 8.686 1.744 10 0.4 0.0606LP z dBa -= = ¥ ¥ ¥ =

 Example 7.42 Find ad for TE1 mode propagating through an air-filled parallel plane guide of 

dimension d = 2.5 cm operating at 10 GHz. Given: s = 5.8 ¥ 107 mho/m and sd = 10–3 mho/m.

Solution Here, n =1, d = 2.5 cm, f = 10 GHz, s = 5.8 ¥ 107 mho/m, sd = 10–3 mho/m

The cut-off frequency is given as 
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 Example 7.43 If a rectangular waveguide is made of copper with s = 5.8 ¥ 107 mho/m, find the 

attenuation constant in neper/metre for TE10 mode at f = 1.5 fc. Waveguide dimensions are a = 8 cm and 

b = 4 cm.

Solution Here, m = 1, n = 0, a = 8 cm, b = 4 cm,

So, the cut-off frequency is given as

( ) ( )2 2 8
0 0 3 10

1.875 GHz
2 2 2 0.08c

v vm n
f

a b a

¥
= + = = =

¥
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So, the operating frequency is

1.5 1.5 1.875 2.8125 GHzcf f= = ¥ =

The propagation constant is given as
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Since the propagation constant is purely imaginary, the attenuation constant is zero.

*Exampe 7.44 An air-filled rectangular waveguide has brass walls (m = m0, s = 16 MS/m) with 

a = 2.286 cm and b = 1.016 cm. Find the attenuation constant in dB/m due to the wall losses when the 

dominant mode is propagating at 9.6 GHz.

Solution Here, m = m0, s = 16 MS/m, a = 2.286 cm and b = 1.016 cm, f = 9.6 GHz

For the dominant mode, i.e., TE10 mode, the cut-off frequency is given as
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The attenuation constant due to the wall losses is given as

( )
( )

10

2 2

2 2

2 20 0

2 2

2

9 7

6 2 2

2 2
1 1

1 1

2 1.016 6.56
1

9.6 10 4 10 2.286 9.6

16 10 120 1.016 10 6.56
1

9.6

0.0246 Np/m

TE

c c

S
C

c c

f fb b

a aff fR

b bf f

f f

p m s
a

h h

p p

p

-

-

Ê ˆ Ê ˆ
+ +Á ˜ Á ˜Ë ¯ Ë ¯

= =

- -

È ˘¥
+Í ˙¥ ¥ ¥ ¥ Î ˚=

¥ ¥ ¥ ¥
-

=

The attenuation in dB/m is given as

10
(in dB) 0.0246 (in Np) 8.686 0.214 dB/m

TECa = ¥ =

*Exampe 7.45 A waveguide with dimensions a = 2.286 cm and b = 1.016 cm has perfectly 

conducting walls and is filled with lossy dielectric (sd = 367.5 mS/m, er = 2.1, mr = 1). Find the 

attenuation constant in dB/m for the dominant mode of propagation at a frequency of 9 GHz.

Solution Here, a = 2.286 cm and b = 1.016 cm, sd = 367.5 mS/m, er = 2.1, mr = 1, f = 9 GHz

For the dominant mode, i.e., TE10 mode, the cut-off frequency is given as



  652 Electromagnetic Field Theory
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0 0

2

3 10 / 2.1
4.53GHz

2 2 2 2.286 10
c

v vm n
f

a b a -
¥

= + = = =
¥ ¥

The attenuation constant is given as
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The attenuation in dB/m is given as

10
(in dB) 0.0553 (in Np) 8.686 0.48 dB/m

TECa = ¥ =

 Exampe 7.46 An air-filled rectangular waveguide of cross section 5 cm ¥ 2 cm is operating in 

the TE10 mode at a frequency of 4 GHz. Determine:

(i) the group velocity

(ii) the guide wavelength

(iii) the attenuation to be expected at a frequency which is 0.95 times the cut-off frequency (assuming 

the guide walls to be made of perfect conductors)

Solution Here, a = 5 cm, b = 2 cm, f = 4 GHz, m = 1, n = 0

The cut-off frequency is given as
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The group velocity is given as
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The guide wavelength is given as
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For attenuation, the operating frequency is

0.95 0.95 3 2.85 GHzcf f= = ¥ =

The propagation constant is given as
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Since, the propagation is purely real, the attenuation constant is 19.62 Neper/m
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Example 7.47 An air-filled circular waveguide with radius 5 mm operates in the TM01 mode 

at a frequency f = 1.3 fc. Find the attenuation constant in dB/m due to wall losses in a short section of 

copper (s = 5.8 ¥ 107 mho/m).

Solution Here, a = 5 mm, s = 5.8 ¥ 107 mho/m
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c
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f
f f

f
= fi =

For TM01 mode, the cut-off frequency is given as
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The attenuation constant is given as
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Example 7.48 Show that the attenuation constant for TM1 wave in parallel plane waveguide is 

a minimum at a frequency which is 3  times the cut-off frequency.

Solution For TM mode, the attenuation constant is given as
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Example 7.49 (a) Show that for a rectangular waveguide, the dominant mode exhibits a 

minimum attenuation due to conductor loss at a certain frequency. Find that frequency in terms of the 

cut-off frequency of the mode.

(b) If a = 3b, find the frequency for minimum attenuation.

(c) For a square waveguide, show that attenuation ac is minimum for TE10 mode when f = 2.962 fc.

Solution
(a) For a TE10 mode rectangular wave, the attenuation constant is given as
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Substituting the value of the surface resistance S

f
R

p m
s

= , we have
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For the attenuation constant to be minimum,
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Solving this equation and taking only the positive root, we get
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This is the frequency corresponding to the minimum attenuation due to conductor loss.

(b) If a = 3b, we have
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(c) For square waveguide, a = b, so that we get
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{ }
1

22
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f f f f

a a a
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\ 2.962 cf f=

7.7 CAVITY RESONATOR OR RESONANT CAVITIES

A cavity resonator or resonant cavity is a device where the inside space is completely enclosed by 

conducting walls that can contain oscillating electromagnetic fields and possess resonant properties.

Waveguide resonators are used in place of the lumped element RLC circuit to provide a tuned circuit 

at high frequencies. For this reason, at high frequencies, the ordinary LC resonant circuits are replaced 

by electromagnetic cavity resonators.

7.7.1 Rectangular Cavity Resonator

The rectangular waveguide resonator is basically a section 

of rectangular waveguide which is enclosed on both ends by 

conducting walls to form an enclosed conducting box. 

Figure 7.14 shows a rectangular cavity the same cross-

sectional dimensions as the rectangular waveguide (a, b) and 

z-length equal to c produced by replacing the sending and 

receiving ends of a rectangular waveguide by metallic walls.

A forward-moving wave will bounce back and forth from 

these walls, thus resulting in a standing-wave pattern along 

the z-direction.

In a cavity resonator, only those standing wave patterns 

will exist which satisfy the boundary conditions at each of the 

six walls. These boundary conditions on the cavity walls force the fields to trap electromagnetic energy 

only at certain quantized resonant frequencies.

Here, we will explain the different field configurations inside a resonant cavity both for TE and TM

modes and determine the resonant frequency and quality factor in each case.

Field Equations for Transverse Electric (TE) Mode in Rectangular 
Cavity Resonator
In this case, Ez = 0 and we let,

( , , ) ( ) ( ) ( )zH x y z X x Y y Z z= (7.147)

Following the same procedure to solve Eq. (7.63) by separation of variables method as in Section 7.3, 

we get

1 2

3 4

5 6

( ) cos sin

( ) cos sin

( ) cos sin

= +

= +

= +

x x

y y

z z

X x A K x A K x

Y y A K y A K y

Z z A K z A K z

(7.148a)

(7.148b)

(7.148c)

where 2 2 2 2 2
x y zK K K K w me= + + = (7.148d)

Fig. 7.14 Cavity resonator
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\ 1 2 3 4

5 6

( , , ) ( cos sin )( cos sin )

( cos sin )

= + +
+

z x x y y

z z

H x y z A K x A K x A K y A K y

A K z A K z

(7.149)

The boundary conditions for this case are:

0 at 0,zE x a= = (7.150a)

0 at 0,zE y b= = (7.150b)

0, 0 at 0,y xE E z c= = = (7.150c)

Hence, from Eq. (7.64) to Eq. (7.67), the boundary conditions become,

0 at 0,zH
x a

x

∂
= =

∂
(7.151a)

0 at 0,zH
y b

y

∂
= =

∂
(7.151b)

0 at 0,zH z c= = (7.151c)

Applying the boundary conditions of Eqs. (7.151a) and (7.151b) to Eq. (7.149), we require that A2 = 

0 = A4 and 

,x y

m n
K K

a b

p p= =

where, m = 0, 1, 2, 3,… and n = 0, 1, 2, 3,…

Applying the boundary condition of Eq. (7.151c), we require that, A5 = 0 and

fi 
sin 0

,
z

z

K c

K c pp

=
=

p = 1, 2, 3,…

or
z

p
K

c

p=

Hence,

, ,x y z

pm n
K K K

a b c

pp p= = = (7.152)

Substituting this in Eq. (7.149),

( ) ( )0( , , ) cos cos sinz

pm n
H x y z H x y z

a b c

pp p Ê ˆ= Ë ¯ (7.153)

where, H0 = A1 A3 A6.

The other field components are obtained from Eqs. (7.153) and (7.64) to Eq. (7.67) as follows.

( ) ( ) ( )02 2
cos sin sinz

x

H pn m n
E j j H x y z

y b a b ch h

wm wm pp p p∂ Ê ˆ= - = Ë ¯∂
(7.154a)
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( ) ( ) ( )02 2
sin cos sinz

y

H pm m n
E j j H x y z

x a a b ch h

wm wm pp p p∂ Ê ˆ= = - Ë ¯∂
(7.154b)

( ) ( ) ( )2

02 2

1 1
sin cos cosz

x

H p pm m n
H H x y z

x z a c a b ch h

p pp p p∂ Ê ˆ Ê ˆ= = - Ë ¯ Ë ¯∂ ∂
(7.154c)

( ) ( ) ( )2

02 2

1 1
cos sin cosz

y

H p pn m n
H H x y z

y z b c a b ch h

p pp p p∂ Ê ˆ Ê ˆ= = - Ë ¯ Ë ¯∂ ∂
(7.154d)

NOTE

The integers m and n cannot be zero at the same time as in that case, the field components will be 

zero. The mode that has the lowest resonant frequency for a given cavity size (a, b, c) is known as 

the dominant mode. For example, for a resonant cavity with a > b < c, TE101 mode is the dominant 

mode whereas for a cavity with a < b < c, TE011 mode is the dominant mode.

Field Equations for Transverse Magnetic (TM) Mode in Rectangular 
Cavity Resonator
In this case, Hz = 0 and we let,

( , , ) ( ) ( ) ( )zE x y z X x Y y Z z= (7.155)

Following the same procedure to solve the Eq. (7.59) by separation of variables method as in Section 

7.3, we get,

1 2

3 4

5 6

( ) cos sin

( ) cos sin

( ) cos sin

= +

= +

= +

x x

y y

z z

X x B K x B K x

Y y B K y B K y

Z z B K z B K z

(7.156a)

(7.156b)

(7.156c)

where 2 2 2 2 2
x y zK K K K w me= + + = (7.156d)

\ 1 2 3 4

5 6

( , , ) ( cos sin )( cos sin )

( cos sin )

z x x y y

z z

E x y z B K x B K x B K y B K y

B K z B K z

= + + ¥
+

(7.157)

The boundary conditions for this case are:

0 at 0,zE x a= = (7.158a)

0 at 0,zE y b= = (7.158b)

0, 0 at 0,y xE E z c= = = (7.158c)

Applying the boundary conditions of Eqs. (7.158a) and (7.158b) to Eq. (7.157), we require that 

B1 = 0 = B3 and

,x y

m n
K K

a b

p p= =

where, m = 1, 2, 3,… and n = 1, 2, 3,…
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In order to apply the boundary condition of Eq. (7.158c), we get by combining Eq. (7.61b) and Eq. 

(7.62a) that

2 2

2

1 xz z
x

EH E
j E

y j x zz
we

wm

Ê ˆ∂∂ ∂
= + -Á ˜Ë ¯∂ ∂ ∂∂

and with Hz = 0, this reduces to

2 2

2

1 x z
x

E E
j E

j x zz
we

wm

Ê ˆ∂ ∂
= -Á ˜Ë ¯∂ ∂∂

(7.159a)

Similarly, combining Eq. (7.61a) and Eq. (7.62b) with Hz = 0, we get

2 2

2

1 x z
y

E E
j E

j y z z
we

wm

Ê ˆ∂ ∂
= - -Á ˜∂ ∂Ë ¯∂

(7.159b)

Now, applying the boundary condition of Eq. (7.158c), from Eqs. (7.159a) and (7.159b), we require 

that B6 = 0 and

fi 
sin 0

,
z

z

K c

K c pp

=
=

p = 0, 1, 2, 3,…

or c

p
K

c

p=

Hence,

, ,x y z

pm n
K K K

a b c

pp p= = = (7.160)

Substituting this in Eq. (7.157),

( ) ( )0( , , ) sin sin cosz

pm n
E x y z E x y z

a b c

pp p Ê ˆ= Ë ¯ (7.161)

where E0 = B2 B4 B5.

The other field components are obtained from Eqs. (7.161) and (7.61) and Eq. (7.62) as follows.

( ) ( ) ( )2

02 2

1 1
cos sin sinz

x

E p pm m n
E E x y z

x z a c a b ch h

p pp p p∂ Ê ˆ Ê ˆ= = - Ë ¯ Ë ¯∂ ∂
(7.162a)

( ) ( ) ( )2

02 2

1 1
sin cos sinz

y

E p pn m n
E E x y z

y z b c a b ch h

p pp p p∂ Ê ˆ Ê ˆ= - = Ë ¯ Ë ¯∂ ∂ (7.162b)

( ) ( )02 2
sin cos cosz

x

E pn m n
H j j E x y z

y b a b ch h

pwe we p p p∂ Ê ˆÊ ˆ= = Ë ¯Ë ¯∂
(7.162c)

( ) ( ) ( )02 2
cos sin cosz

y

E pm m n
H j j E x y z

x a a b ch h

pwe we p p p∂ Ê ˆ= - = - Ë ¯∂
(7.162d)
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NOTE

Here in TM mode, both m and n can simultaneously be zero because even in that case the field 

components are not zero. Here also, the dominant mode depends on the cavity size. For a cavity with 

a > b > c, the dominant mode is TM110.

Determination of Resonant Frequency for TE and TM Modes in 
Rectangular Cavity Resonator
The expression for the resonant frequency will be same both for TE and TM mode waves in cavity 

resonator, except some restrictions in the values of m and n. This obtained as follows.

The phase constant is obtained from Eq. (7.148d) and Eq. (7.152), as

( ) ( ) 22 2
2 2 2
x y z

pm n
K K K K

a b c

pp p
b

Ê ˆ= = + + = + + Ë ¯

Since, b 2 = w 2 me, we have the resonant frequency as

( ) ( ) 22 2
1

r

pm n

a b c

b pp p
w

me me

Ê ˆ= = + + Ë ¯

or

( ) ( ) ( ) ( )2 22 2 2 2
01

22
r

vp pm n m n
f

a b c a b cme

Ê ˆ Ê ˆ= + + = + +Ë ¯ Ë ¯ (7.163)

where 0

1
v

me
=  is the phase velocity of uniform plane wave in free space.

The corresponding resonant wavelength is given as

( ) ( )
0

22 2

2
r

r

v

f
pm n

a b c

l = =
Ê ˆ+ + Ë ¯

(7.164)

The lowest order modes in a rectangular cavity are the TM110, TE101, and TE011 modes. Which of these 

modes is the dominant mode depends on the relative dimensions of the resonator.

Determination of Quality Factor for TE and TM Modes in Rectangular Cavity 
Resonator In an ideal case, a resonant cavity will have walls of infinite conductivity. However, 

in a practical cavity resonator, the walls have finite conductivity resulting in power loss. This loss is 

measured in terms of the quality factor of the resonator.

The quality factor of a cavity resonator is defined as

Time average stored energy
2 2

Energy loss per cycle of oscillation L L

W W
Q

P T P
p p w= = =

where
1 2

T
f

p
w

= =  is the time period of oscillation
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W—is the total time average energy stored in the electric and magnetic fields within the cavity

PL—is the time average power loss in the cavity due to the wall ohmic losses (plus other losses, such 

as dielectric losses, if present)

The ratio LP

W
wD =  is usually identified as the 3-dB bandwidth of the resonator centered at frequency 

w. Therefore, the quality factor may be written as

Time average stored energy
2

Energy loss per cycle of oscillation L

W
Q

P

w
p w

w
= = =

D
(7.165)

In a particular case, for TEm0p mode, the quality factor is given as

( )
( ) ( )

( ) ( ) ( ) ( )

0

22

2 22 2

2 22 2

2 2 2 2

2 22 2

2 2 2 2

2
2

1

2 2 1 2 1 2 1 2 1

m pTE
S

S

pm
abc

a c
Q

R
p pm m

ac bc
a c a c

p pm m

a c a c
R p pm m

a b c b a b c ba c a c

pp
wm

p pp p

wm
d

È ˘È ˘Ê ˆÍ ˙+Í ˙Ë ¯Î ˚Í ˙=
Í ˙Ï ¸ Ï ¸Ê ˆ Ê ˆÍ ˙Ì ˝ Ì ˝+ + +Ë ¯ Ë ¯Í ˙Ó ˛ Ó ˛Î ˚
È ˘ È ˘

+ +Í ˙ Í ˙
= =Í ˙ Í ˙

Í ˙ Í ˙+ + + + + +Í ˙ Í ˙Î ˚ Î ˚

\ 

( ) ( )0

22

2 2

22

2 2

1

2 1 2 1m pTE

pm

a cQ
pm

a b c ba c

d

È ˘
+Í ˙

= Í ˙
Í ˙+ + +Í ˙Î ˚

(7.166a)

where
2 SR

d
wm

=  is the skin depth.

For TE101 mode (m = 1, n = 0, p = 1) of cavity resonator, the quality factor is given as

101

2 2

3 3 2 2

( )1

2 ( ) ( )
TE

abc a c
Q

b a c ac a cd

È ˘+
= Í ˙+ + +Î ˚

(7.166b)

Example 7.50 A rectangular cavity resonator has dimensions a = 3 cm, b = 6 cm, c = 9 cm. 

If it is filled with polyethylene (e = 2.5e0), find the resonant frequencies of the first five lowest-order 

modes.

Solution The resonant frequency is given as

( ) ( ) ( ) ( )2 22 2 2 2
01

22
r

vp pm n m n
f

a b c a b cme

Ê ˆ Ê ˆ= + + = + +Ë ¯ Ë ¯

Here,

8
8

0

0 0

3 101 1
1.89 10 m/s

2.5r r

c
v

me m e e e

¥
= = = = = ¥
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( ) ( ) 22 28

2 2 2

1.89 10

2 0.03 0.06 0.09

9.5 0.11 0.0278 0.0123 GHz

r

pm n
f

m n p

¥ Ê ˆ= + + Ë ¯

= + +

We know that for TEmnp modes, any two indices have to be non-zero; whereas for TMmnp modes, all 

the indices have to be non-zero. Since, c > b > a, the lowest order mode will be TE011. The next higher 

order modes will be TE101, TE110, TE111 & TM111, TE102, TE022, TE120.

The corresponding resonant frequencies are given as follows.

011

101

110

111

102

022

120

9.5 0 0.027 0.0123 1.9 GHz

9.5 0.11 0 0.0123 3.333GHz

9.5 0.11 0.027 0 3.535 GHz

9.5 0.11 0.027 0.0123 3.689 GHz

9.5 0.11 0 4 0.0123 3.8 GHz

9.5 0 4 0.027 4 0.0123 3.8 GHz

9.5

r

r

r

r

r

r

r

f

f

f

f

f

f

f

= + + =

= + + =

= + + =

= + + =

= + + ¥ =

= + ¥ + ¥ =

= 0.11 4 0.027 0 4.472 GHz+ ¥ + =

Hence, the first five lowest order modes with their resonant frequencies are given in the table below.

Mode Resonant Frequency (GHz)

TE011 1.9

TE101 3.333

TE110 3.535

TE111 & TM111 3.689

TE102 & TE022 3.8

Example 7.51 A rectangular cavity resonator has dimensions a = 3 cm, b = 2 cm, c = 4 cm. Find 

the resonant frequencies of the first three lowest-order modes.

Solution The resonant frequency is given as

( ) ( ) ( ) ( )2 22 2 2 2
01

22
r

vp pm n m n
f

a b c a b cme

Ê ˆ Ê ˆ= + + = + +Ë ¯ Ë ¯

( ) ( ) 22 28

2 2 2

3 10

2 0.03 0.02 0.04

15 0.11 0.25 0.0625 GHz

r

pm n
f

m n p

¥ Ê ˆ= + + Ë ¯

= + +

We know that for TEmnp modes, any two indices have to be non-zero; whereas for TMmnp modes, all 

the indices have to be non-zero. Since, c > a > b, the lowest order mode will be TE101. The next higher 

order modes will be TE011 & TE110.
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The corresponding resonant frequencies are given as follows.

101

011

110

15 0.11 0 0.0625 6.25 GHz

9.5 0 0.25 0.0625 8.385 GHz

9.5 0.11 0.25 0 9.014 GHz

r

r

r

f

f

f

= + + =

= + + =

= + + =

Example 7.52 An air-filled resonant cavity with dimensions a = 10 cm, b = 4 cm and c = 5 cm 

is made of copper (s = 5.8 ¥ 107 mho/m). Find the resonant frequency and the quality factor for the 

dominant mode.

Solution Since a > c > b, the dominant mode is TE101 mode.

The resonant frequency for TE101 mode is given as

( ) ( ) ( ) ( ) ( )22 2 2 2 28
0

2

3 10 1 1 0
3.354 GHz

2 10 5 42 10
r

v pm n
f

a b c -
¥Ê ˆ= + + = + + =Ë ¯ ¥

The quality factor for the dominant mode is given as

101

2 2 2 2

3 3 2 2 3 3 2 2

9 7 7 2

( ) ( )1

2 ( ) ( ) 2 ( ) ( )

10 4 5(100 25)
3.354 10 4 10 5.8 10 10

8(1000 125) 50(100 25)

14,366.54

TE

abc a c abc a c
Q f

b a c ac a c b a c ac a c
p ms

d

p p - -

È ˘ È ˘+ +
= =Í ˙ Í ˙+ + + + + +Î ˚ Î ˚

¥ ¥ +È ˘= ¥ ¥ ¥ ¥ ¥ ¥ ¥Í ˙+ + +Î ˚
=

Example 7.53 A cubical cavity resonator made of copper (s = 5.8 ¥ 107 mho/m) is to be 

operated at 15 GHz. Find the dimensions of the cavity, its quality factor and the bandwidth if it is 

operated in the dominant mode.

Solution The dominant mode in resonant cavity is TE101 mode. For this mode, for a cubical cavity, 

the resonant frequency is given as

( ) ( ) ( ) ( ) ( )22 2 2 2 28 8
0 3 10 3 101 0 1

2 2 2
r

v pm n
f

a b c a a a a

¥ ¥Ê ˆ= + + = + + =Ë ¯

This is given as 15 GHz.

\ 
8

9 3 10
15 10

2a

¥
¥ =

\ 
8

9

3 10
1.414 cm

2 15 10
a

¥
= =

¥ ¥

Hence, the dimensions of the cavity are: 1.414 cm ¥ 1.414 cm ¥ 1.414 cm.

The quality factor for TE101 mode is given as

( )
101

2 2

3 3 2 2

1

2 ( ) ( )
TE

abc a c
Q

b a c ac a cd

È ˘+
= Í ˙

+ + +Í ˙Î ˚
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For cubical resonator,

101

3 2 2

3 3 2 2 2

( )1

32 ( ) ( )
TE

a a a a
Q

a a a a a ad d

È ˘+
= =Í ˙+ + +Î ˚

where, skin depth, –7
9 –7 7

1 1
5.396 10 m

15 10 4 10 5.8 10f
d

p ms p p
= = = ¥

¥ ¥ ¥ ¥ ¥ ¥

\
101 –7

0.01414
8736.4

3 3 5.396 10
TE

a
Q

d
= = =

¥ ¥

The bandwidth of the resonator is

915 10
1.717 MHz

8736.4
rfBW

Q

¥
= = =

7.7.2 Circular Cavity Resonator

A circular cavity resonator is formed by shorting the both ends 

of a circular waveguide as shown in Fig. 7.15. This circular 

resonator is also used in microwave signal propagation. The 

tuning of the resonant frequency is done by the movable top 

wall.

For a cavity resonator with radius a and height d, we can 

calculate the resonant frequency as follows.

For a circular waveguide, the propagation constant is obtained 

fro Eq. (7.120) as

2 2
nm nmhg w me= -

In the propagation condition, gnm = jbnm. Replacing this

or

2 2 2

2 2 2

- = -

= +

nm nm

nm nm

h

h

b w me

w me b

Also, for a circular cavity resonator, the condition for propagation is that nm

p

d

p
b

Ê ˆ= Ë ¯  as explained for 

rectangular cavity resonator. Hence, we have

or

2
2 2 2 2

2
21

nm nm nm

r nm

p
h h

d

p
h

d

p
w me b

p
w

me

Ê ˆ= + = + Ë ¯

Ê ˆ= + Ë ¯

\ 
2

21

2
r nm

p
f h

d

p

p me

Ê ˆ= + Ë ¯ (7.167)

Fig. 7.15 Circular cavity resonator
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This is the expression for the resonant frequency for TE and TM waves except the fact that for TE

waves, hnm should be replaced by nmh¢ .

7.8 DIELECTRIC SLAB WAVEGUIDES

A dielectric slab waveguide is a planar dielectric sheet or thin film of some thickness. A thin dielectric 

layer is deposited on another dielectric slab, called substrate. The dielectric constant of the deposited 

dielectric layer is greater than that of the substrate.

A schematic dielectric slab waveguide of thickness d is shown in Fig. 7.16.

Fig. 7.16 Dielectric slab waveguide of width 2d

We consider a dielectric slab that is surrounded by another dielectric material that has a lower 

permittivity. A representative slab is shown in Fig. 7.16.

Salient Features

1. The waveguide thickness is 2d and the centre region (core) has a higher permittivity than the two 

outer regions (cladding) (e1 > e2).

2. The wave propagation in the z-direction is by total internal reflection from the top and bottom 

walls of the slab.

3. The propagating fields are confined primarily inside the slab; however, they also exist as 

evanescent waves outside it, decaying exponentially with distance from the slab.

4. Since the guide is infinitely extended in the y-direction, there are no boundary conditions of the 

fields along the y-direction, i.e., fields are independent of y.

5. Since the wave is propagating in the positive z-direction. Hence, the z-variation can be expressed 

as e–jb z.

Therefore, we can write the electric and/or magnetic field as

(or ) ( ) j z
z ZE H X x e b-=

We assume the permittivity of the region inside the dielectric slab as e1 and outside the slab as e2 (e1

> e2).

Since the dielectric waveguide is intended to guide the wave, the fields in the cladding region should 

be evanescent or decaying in amplitude away from the slab. This guiding property requires the incident 
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angle to be more than the critical angle

or 1 2

1

1 2

1

sin

sin

Cq q

e
q

e

h
q

h

-

-

>
Ê ˆ

> Á ˜Ë ¯
Ê ˆ

> Á ˜Ë ¯
or

where, h1 and h2 are the refractive indices of the two regions, respectively.

This requires the propagation constant to be in the range,

or

1 0 1 0

2 0 1 0

sin sin 90< < ∞

< <
ck k

k k

h q b h

h b h

We can use the concept of computing Ez or Hz as in the metallic waveguides and then applying 

Maxwell’s equations we can obtain the remaining field components.

Points to remember: 

1. In case of the dielectric waveguide, due to the symmetry of the geometry, the fields will either 

be symmetric (even) or anti-symmetric (odd) about the y–z plane.

2. In order for the field to be guided by the high-permittivity dielectric slab, the fields outside 

the slab must be evanescent, i.e., they decay in the x direction. We will use these observations 

in the formulations that follow.

We will now find the solutions for TE and TM modes.

7.8.1  Field Equations for Transverse Electric (TE) Mode in 
Dielectric Slab Waveguide

In this case, Ez = 0

The electric field for TE modes must satisfy the wave equation as given by

2 2

2 2 2

2

2 2 2

2

2 2

2

2

2 2

2

0

0

0 0

( ) 0

— + =

∂ ∂ ∂
+ + + =

∂ ∂ ∂

∂
+ - + =

∂

∂
+ - =

∂

y y

y y y

y

y

y y

y

y

E E

E E E
E

x y z

E
E E

x

E
E

x

w me

w me

b w me

w me b

or

or

\ (7.168)

Equation (7.168) is valid for all values of x in all regions. However, we must remember that the 

permittivity is different in the two regions.

Inside the dielectric slab: The solution of Eq. (7.168) inside the slab may have any of the two forms

1cosy xE A k x= (even TE modes) (7.169a)
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or

1siny xE B k x= (odd TE modes) (7.169b)

where, k1x is a real quantity.

Here, we have taken the sinusoidal (or cosinusoidal) forms rather than the exponential forms because 

we know that the fields within the slab will form standing waves.

Substituting Eq. (7.169) in Eq. (7.168), we have

2 2 2 2 2
1 1 1xk kw me b b= - = -

(7.170)

Outside the dielectric slab: The fields outside the slab (cladding regions) are also of the basic form,

2cosy xE C k x= (even TE modes) (7.171a)

or

2siny xE D k x= (odd TE modes) (7.171b)

where, k2x is an imaginary quantity.

Or equivalently,

2 forxjk x
yE Ce x d-= ≥ (7.171c)

or

2 forxjk x
yE De x d= £ - (7.171d)

Substituting Eq. (7.171) in Eq. (7.168), we have

2 2 2 2 2
2 2 2xk kw me b b= - = - (7.172)

Here, in order to maintain guiding, the fields outside the slab (cladding region) must be evanescent 

or decay in amplitude with distance from the slab. This requirement caused the propagation constant 

to be in the range of (h2 k0 < b). Therefore, the propagation constant in the cladding regions must be 

imaginary.

Let 2xk ja= ±

where, 2 2
2ka b= ± -

The sign of k2x is chosen such that the fields decay with distance away from the waveguide. This leads 

to

2 2for and forx xk j x d k j x da a= - ≥ = £ -

The resulting fields in the cladding regions are given by

andx
yE Ce x da-= ≥ (7.173a)

or

andx
yE De x da= £ - (7.173b)

Therefore, the electric field in the various regions is given by (let, k1x = kx),
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Electric fields for odd TE modes

2

1

2

for

sin for | |

for

x j z
y

j z
x y

x j z
y

E E e a x d

E k xe a x d

E e a x d

a b

b

a b

- -

-

-

= ≥

= £

= - £ -

(7.174a)

Electric fields for even TE modes:

2

1

2

for

cos for | |

for

x j z
y

j z
x y

x j z
y

E E e a x d

E k xe a x d

E e a x d

a b

b

a b

- -

-

-

= ≥

= £

= £ -

(7.174b)

The magnetic fields can be computed by using Faraday’s law as follows.

1 1
( )

0 0

x y z

y

a a a

H E
j j x y z

E

wm wm
∂ ∂ ∂= - — ¥ = -
∂ ∂ ∂

Substituting the values of Ey from Eq. (7.173), we get the magnetic fields for different regions as given 

by:

Magnetic fields for odd TE modes:

2

1

2

( ) for

( sin cos ) for | |

( ) for

x j z
x z

j z
x x x x z

x j z
x z

E
H e a j a x d

E
k xa jk k xa e x d

E
e a j a x d

a b

b

a b

b a
wm

b
wm

b a
wm

- -

-

-

= - - ≥

= - + £

= - - + £ -

(7.174c)

Magnetic fields for even TE modes:

2

1

2

( ) for

( cos sin ) for | |

( ) for

x j z
x z

j z
x x x x z

x j z
x z

E
H e a j a x d

E
k xa jk k xa e x d

E
e a j a x d

a b

b

a b

b a
wm

b
wm

b a
wm

- -

-

-

= - - ≥

= - - £

= - + £ -

(7.174d)

In Eq. (7.174), there are four unknown quantities, E1/E2, kx, a and b. We require four constraints for 

determining these unknowns.

From Eq. (7.170) and (7.172), replacing k1x = kx and k2x = ja, we have

2 2 2 2
1 1xk kb w me+ = = (7.175)

2 2 2 2
2 2ka b w me- + = = (7.176)
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These two give two constraints. The other two constraints are obtained by applying the boundary 

conditions as follows. We will consider both the even and odd fields.

Solution for Odd TE Modes The tangential component of the electric fields must be continuous 

at the core-cladding interface. Therefore, at x = d,

1 2sin ( ) j z d j z
xE k d e E e eb a b- - -=

\ 1 2sin ( ) d
xk d E e Ea-= (7.177a)

Note that applying the continuity at x = –d results in an identical equation and thus does not help us. In 

fact, this stems from the symmetry of the problem and in reality we have already used this symmetry 

to break the problem into even and odd modes.

The other constraint equation is obtained by applying the continuity of the tangential component (i.e., 

z component) of the magnetic field at the boundary. At x = d,

1 2cos ( ) j z d j z
x x

E E
jk k d e j e eb a ba

wm wm
- - -= -

\
1 2cos ( ) d

x xk k d E e Eaa -= - (7.177b)

Again, we get the identical equation at x = –d. Combining Eq. (7.177a) and (7.177b), we get

cos ( )

sin ( )
x x

x

k k d

k d
a= -

\ ( ) cot ( )x xd k d k da = - (7.178)

Equations (7.175), (7.176) and (7.178) give the constraint equations solving which by some numerical 

method, we can get the different fields. Actually, these three equations can be combined as follows.

Subtracting Eq. (7.176) from (7.175),

2 2 2 2 2 2 2 2
1 2 0 0 1 2 0 0 1 2( ) ( )x r rk a w me w me w m e e e w m e h h+ = - = - = -

2 2 2 2 2 2
0 0 1 2( ) ( ) ( )xk d d da w m e h h+ = -

(7.179)

Substituting the value of a from Eq. (7.178),

2 2 2 2 2 2
0 0 1 2

2 2 2
0 0 1 22

2

2 2 2
0 0 1 22

2

cot ( ) ( )

( )
1 cot ( )

( )
cot ( ) 1

+ = -

-
+ =

-
= -

x x x

x

x

x

x

k k k d

k d
k

k d
k

w m e h h

w m e h h

w m e h h

or

or

\ 
2 2 2

0 0 1 2
2

( )
cot ( ) 1x

x

k d
k

w m e h h-
= - (7.180)

We can solve this simultaneous equation with the help of digital computer.

Solution for Even TE Modes The procedure is the same as for odd modes. The tangential 

component of the electric fields must be continuous at the core-cladding interface. Therefore, at x = d,
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1 2cos ( ) j z d j z
xE k d e E e eb a b- - -=

\ 1 2cos ( ) d
xk d E e Ea-= (7.181a)

By applying the continuity of the tangential component (i.e., z component) of the magnetic field at the 

boundary, at x = d,

1 2sin ( ) j z d j z
x x

E E
jk k d e j e eb a ba

wm wm
- - -- = -

\ 1 2sin ( ) d
x xk k d E e Eaa -= (7.181b)

Combining Eq. (7.181a) and (7.181b), we get,

sin ( )

cos ( )
x x

x

k k d

k d
a=

\ ( ) tan ( )x xd k d k da = (7.182)

We combine Eq. (7.175), (7.176) and (7.182) as follows.

Subtracting Eq. (7.176) from (7.175),

2 2 2 2 2 2 2 2
1 2 0 0 1 2 0 0 1 2( ) ( )x r rk a w me w me w m e e e w m e h h+ = - = - = -

Substituting the value of a from Eq. (7.161),

2 2 2 2 2 2
0 0 1 2

2 2 2
2 0 0 1 2

2

2 2 2
2 0 0 1 2

2

tan ( ) ( )

( )
1 tan ( )

( )
tan ( ) 1

x x x

x
x

x
x

k k k d

k d
k

k d
k

w m e h h

w m e h h

w m e h h

+ = -
-

+ =

-
= -

or

or

\ 
2 2 2

0 0 1 2
2

( )
tan ( ) 1x

x

k d
k

w m e h h-
= - (7.183)

We can solve this simultaneous equation with the help of digital computer.

Characteristics of TE Modes in Dielectric Slab Waveguide The following features for TE

modes are observed in a dielectric slab waveguide.

1. For odd TE modes, solutions in the range (m – 1)p/2 £ kxd £ m p/2, m = 1, 3, 5,… are known as 

odd TEm modes. Similarly, for even TE modes, solutions in the range (m – 1)p/2 £ kxd £ mp/2, m

= 2, 4, 6,… are known as even TEm modes.

2. Cut-off occurs when the mode is no longer guide, which occurs as soon as a becomes negative. 

So, we define the cut-off frequency as the frequency at which a = 0.

  Using Eq. (7.178) and (7.182), at cut-off frequency,

cot ( ) 0 ( 1) , 2, 4, 6,
2x xk d k d m m
p= fi = - = º  for odd TE modes
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  and,

tan ( ) 0 ( 1) , 1, 3, 5,
2x xk d k d m m
p= fi = - = º  for even TE modes

  Also, using Eq. (7.179) with a = 0, we have

,

( 1)

4 1
c m

r r

c m
f

d m e

-
=

-
(7.184)

  This is the cut-off frequency both for odd and even TE modes.

  This is seen that for m = 0, fc, 0 = 0. This implies that the lowest order mode propagates at any 

frequency.

  Also, at cut-off frequency, b = k2 and 2 2 2
1xk kb + = , the angle of incidence of the wave on the 

dielectric boundary can be expressed as,

1 1 12 2

2 2 1 1

sin sin sini c

x

k

kk

eb
q q

eb

- - -= = = =
+

  where, qc is the critical angle of incidence. So, cutoff occurs when the angle of incidence on the 

boundary is smaller than the critical angle.

  This may also be noted that the cutoff condition of b = k2 means that the propagation constant 

becomes that of the surrounding medium.

3. From Eq. (7.175), we have

2 2 2
1 xkb w me= -

  From Eq. (7.179) at cut off,

1 2( )xk w m e e= -

  From these two relations, we conclude that

2 1w me b w me£ £ (7.185)

4. As the frequency is increased, a Æ . This means that the field decays very rapidly outside the 

dielectric. The behaviour of the mode becomes like that of a parallel plane waveguide filled with 

a dielectric.

5. Here, kx is frequency dependent, unlike in the rectangular waveguide.

7.8.2  Field Equations for Transverse Magnetic (TM) Mode 
in Dielectric Slab Waveguide

We follow the same procedure to find the fields in TM modes.

In this case, Hz = 0

The magnetic field for TM modes must satisfy the wave equation as given by

2 2 0— + =y yH Hw me
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or

2 2 2

2

2 2 2

2

2 2

2

2

2 2

2

0

0 0

( ) 0

∂ ∂ ∂
+ + + =

∂ ∂ ∂

∂
+ - + =

∂

∂
+ - =

∂

y y y

y

y

y y

y

y

H H H
H

x y z

H
H H

x

H
H

x

w me

b w me

w me b

or

\ (7.186)

This Eq. (7.186) is valid for all values of x in all regions. However, we must remember that the 

permittivity is different in the two regions.

Inside the dielectric slab: The solution of Eq. (7.186) inside the slab may have any of the two forms,

1cosy xH A k x= (even TM modes) (7.187a)

or

1siny xH B k x= (odd TM modes) (7.187b)

where, k1x is a real quantity.

Here, we have taken the sinusoidal (or cosinusoidal) forms rather than the exponential forms because 

we know that the fields within the slab will form standing waves.

Substituting Eq. (7.187) in Eq. (7.186), we get the relation of Eq. (7.175) as of TE mode.

2 2 2 2 2
1 1 1xk kw me b b= - = - (7.188)

Outside the dielectric slab: The fields outside the slab (cladding regions) are also of the basic form,

2cosy xH C k x= (even TM modes) (7.189a)

or

2siny xH D k x= (odd TM modes) (7.189b)

where k2x is an imaginary quantity.

Or equivalently,

2 forxjk x
yH Ce x d-= ≥ (7.189c)

or

2 forxjk x
yH De x d= £ - (7.189d)

Substituting Eq. (7.189) in Eq. (7.186), we get the relation of Eq. (7.176) as

2 2 2 2 2
2 2 2xk kw me b b= - = - (7.190)

Here, in order to maintain guiding, the fields outside the slab (cladding region) must be evanescent 

or decay in amplitude with distance from the slab. This requirement caused the propagation constant 

to be in the range of (h2 k0 < b ). Therefore, the propagation constant in the cladding regions must be 

imaginary.

Let 2xk ja= ±
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where 2 2
2ka b= ± -

The sign of k2x is chosen such that the fields decay with distance away from the waveguide. This leads 

to,

2 2for and forx xk j x d k j x da a= - ≥ = £ -

The resulting fields in the cladding regions are given by

forx
yH Ce x da-= ≥ (7.191a)

or

forx
yH De x da= £ - (7.191b)

Therefore, the magnetic field in the various regions is given by (let, k1x = kx),

Magnetic fields for odd TM modes:

2

1

2

for

sin for | |

for

x j z
y

j z
x y

x j z
y

H H e a x d

H k xe a x d

H e a x d

a b

b

a b

- -

-

-

= ≥

= £

= - £ -

(7.192a)

Magnetic fields for even TM modes:

2

1

2

for

cos for | |

for

x j z
y

j z
x y

x j z
y

H H e a x d

H k xe a x d

H e a x d

a b

b

a b

- -

-

-

= ≥

= £

= £ -

(7.192b)

The electric fields can be computed by using Ampere’s law as follows.

1 1
( )

0 0

x y z

y

a a a

E H
j j x y z

H

we we
∂ ∂ ∂= — ¥ =
∂ ∂ ∂

Substituting the values of Hy from Eq. (7.192), we get the electric fields for different regions as given 

by,

Electric fields for odd TM modes:

2

1

1

2

2

1

( ) for

( sin cos ) for | |

( ) for

x j z
x z

j z
x x x x z

x j z
x z

H
E e a j a x d

H
k xa jk k xa e x d

H
e a j a x d

a b

b

a b

b a
we

b
we

b a
we

- -

-

-

= + ≥

= - £

= - - £ -

(7.193a)
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Electric fields for even TM modes:

2

1

1

2

2

1

( ) for

( cos sin ) for | |

( ) for

x j z
x z

j z
x x x x z

x j z
x z

H
E e a j a x d

H
k xa jk k xa e x d

H
e a j a x d

a b

b

a b

b a
we

b
we

b a
we

- -

-

-

= + ≥

= + £

= - £ -

(7.193b)

In Eq. (7.192) and Eq. (7.193), there are four unknown quantities, H1/H2, kx, a and b. We require 

four constraints for determining these unknowns.

The two constraint equations remain the same as those for TE modes given as

2 2 2 2
1 1xk kb w me+ = = (7.175)

2 2 2 2
2 2ka b w me- + = = (7.176)

The other two constraints are obtained by applying the boundary conditions as follows. We will consider 

both the even and odd fields.

Solution for Odd TM Modes The tangential component of the magnetic fields must be continuous 

at the core-cladding interface. Therefore, at x = d,

1 2sin ( ) j z d j z
xH k d e H e eb a b- - -=

\ 1 2sin ( ) d
xk d H e Ha-= (7.194a)

Note that applying the continuity at x = –d results in an identical equation and thus does not help us. In 

fact, this stems from the symmetry of the problem and in reality, we have already used this symmetry 

to break the problem into even and odd modes.

The other constraint equation is obtained by applying the continuity of the tangential component 

(i.e., z component) of the electric field at the boundary. At x = d,

1 2

2 1

cos ( ) j z d j z
x x

H H
jk k d e j e eb a ba

we we
- - -- =

\ 2
1 2

1

cos ( ) d
x xk k d H e Hae

a
e

-= - (7.194b)

Again, we get the identical equation at x = –d. Combining Eq. (7.194a) and (7.194b), we get,

2

1

cos ( )

sin ( )
x x

x

k k d

k d

e
a
e

= -

\ 1

2

( ) cot ( )x xd k d k d
e

a
e

= - (7.195)

Equations (7.175), (7.176) and (7.195) give the constraint equations, solving which by some 

numerical method, we can get the different fields. Actually, these three equations can be combined as 

follows.

Subtracting Eq. (7.176) from (7.175),
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2 2 2 2 2 2 2 2
1 2 0 0 1 2 0 0 1 2( ) ( )x r rk a w me w me w m e e e w m e h h+ = - = - = -

2 2 2 2 2 2
0 0 1 2( ) ( ) ( )xk d d da w m e h h+ = - (7.179)

Substituting the value of a from Eq. (7.195),

2

12 2 2 2 2 2
0 0 1 2

2

2 2 2 2
0 0 1 21 2

2
2

2 2 2 2
0 0 1 222

2
1

cot ( ) ( )

( )
1 cot ( )

( )
cot ( ) 1

x x x

x

x

x

x

k k k d

k d
k

k d
k

e
w m e h h

e

w m e h he

e

w m e h he

e

Ê ˆ
+ = -Á ˜Ë ¯

-Ê ˆ
+ =Á ˜Ë ¯

È ˘-Ê ˆ
= -Í ˙Á ˜Ë ¯ Í ˙Î ˚

or

or

\ 
2 2 2

0 0 1 22
2

1

( )
cot ( ) 1x

x

k d
k

w m e h he

e

-Ê ˆ= -Á ˜Ë ¯
(7.196)

We can solve this simultaneous equation with the help of digital computer.

Solution for Even TM Modes The procedure is the same as for odd modes. The tangential 

component of the magnetic fields must be continuous at the core-cladding interface. Therefore, at x = d,

1 2cos ( ) j z d j z
xH k d e H e eb a b- - -=

\ 1 2cos ( ) d
xk d H e Ha-= (7.197a)

By applying the continuity of the tangential component (i.e., z component) of the electric field at the 

boundary at x = d,

1 2

2 1

sin ( ) j z d j z
x x

H H
jk k d e j e eb a ba

we we
- - -=

\ 2
1 2

1

sin ( ) d
x xk k d H e Hae

a
e

-= (7.197b)

Combining Eq. (7.197a) and (7.197b), we get

2

1

sin ( )

cos ( )
x x

x

k k d

k d

e
a

e
Ê ˆ= Á ˜Ë ¯

\ 1

2

( ) tan ( )x xd k d k d
e

a
e

Ê ˆ= Á ˜Ë ¯
(7.198)

We combine Eq. (7.177), (7.176) and (7.198) as follows.

Subtracting Eq. (7.176) from (7.175),

2 2 2 2 2 2 2 2
1 2 0 0 1 2 0 0 1 2( ) ( )x r rk a w me w me w m e e e w m e h h+ = - = - = -

Substituting the value of a from Eq. (7.198),
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2

12 2 2 2 2 2
0 0 1 2

2

2 2 2 2
0 0 1 21 2

2
2

2 2 2 2
0 0 1 222

2
1

tan ( ) ( )

( )
1 tan ( )

( )
tan ( ) 1

Ê ˆ
+ = -Á ˜Ë ¯

-Ê ˆ
+ =Á ˜Ë ¯

È ˘-Ê ˆ
= -Í ˙Á ˜Ë ¯ Í ˙Î ˚

x x x

x

x

x

x

k k k d

k d
k

k d
k

e
w m e h h

e

w m e h he

e

w m e h he

e

or

or

\ 
2 2 2

0 0 1 22
2

1

( )
tan ( ) 1x

x

k d
k

w m e h he

e

-Ê ˆ= -Á ˜Ë ¯
(7.199)

We can solve this simultaneous equation with the help of digital computer.

*Example 7.54 How many modes exist in a dielectric waveguide that has the following 

parameters?

Index of refraction of the core = 1.6

Index of refraction of the cladding = 1.5

Wavelength = 1.0 mm

Waveguide core thickness, 2d = 4 mm

What is the waveguide thickness required for single mode operation?

Solution From Eq. (7.203), (7.204) and (7.205), we have the following equations:

tan ( )

cot ( )
x x

x x

d k d k d

d k d k d

a

a

=
= -

( )22 2 2 2 2 2 2 2 2
0 0 1 2 1 2

2
( ) ( ) ( ) ( )xk d d d d

p
a w m e h h h h

l
+ = - = -

{ }2

2
c f

c

w w p
l l

p l
= = fi =

Now, if we put, kxd = x and ad = y, we can write,

tan

cot

y x x

y x x

=
= -

and ( )22 2 2 2 2
1 2

2
( )x y d r

p
h h

l
+ = - =

This is the equation of a circle for which the radius is

( ) ( )2 2 2 2
1 2

2 2
( ) 2 1.6 1.5 2.23 7 m

1
r d

p p
h h p m

l
= - = ¥ - = =

The equation x tan x = 0

when x = 0, p, 2p, 3p,…, mp

and x tan x = 



Waveguides 677

when ( )3 5
, , , ,

2 2 2 2
x m

p p p p
p= º +

Similarly, the equation –x cot x = 0

when ( )3 5
, , , ,

2 2 2 2
x m

p p p p
p= º +

and –x cot x = 

when x = 0, p, 2p, 3p,…, mp

Also, at x = 0, –x cot x = –1

Since, the radius of the circle is r = 2.23p = 7 mm, there are three even possible modes ((x = 0, p, 2p)

and two odd possible modes ( )3
,

2 2
x

p p=

For single mode operation, we require that

( ) 2 2
1 2

2 2
1 2

2

2
( )

2

4 ( )

0.449

<

- <

<
-

<

r

d

d

d

p

p p
h h

l

l

h h

or

or

or

Thus, for single mode operation, the waveguide thickness should be 2d = 2 ¥ 0.449 = 0.9 mm.

7.9 TRANSMISSION LINE ANALOGY FOR WAVEGUIDES

In this section, we will learn that there is an anlogy between the electric and magnetic field components 

of TE and TM waves in a waveguide and the voltages and currents of a transmission line. Based upon 

this analogy, one can easily draw an equivalent transmission line circuit of a waveguide to deal with 

many waveguide problems.

7.9.1. Analogy for TE waves

We have the two Maxwell’s equations,

H j Ewe— ¥ = (7.200a)

E j Hwm— ¥ = - (7.200b)

For TE waves, Ez = 0. Substituting this in Eq. (7.200a), we get

( ) 0zH— ¥ =

This implies that the curl of the magnetic field in the xy-plane is zero and hence, we can represent Hx

and Hy as a gradient of a scalar magnetic potential f as
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andx yH H
x y

f f∂ ∂
= - = -

∂ ∂
(7.201)

From Eq. (7.9a) and Eq. (7.10a) for TE waves, 

∂
=

∂
∂Ê ˆ∂

- =Á ˜∂ ∂Ë ¯

y

x

yz
x

E
j H

z

HH
j E

y z

wm

we

(7.202a)

(7.202b)

Analogy for voltage equations Using Eq. (7.20) and Eq. (7.23a), we get,

or

2

2

∂ ∂Ê ˆ∂ = -Á ˜Ë ¯∂ ∂ ∂

Ê ˆ∂ = -Á ˜Ë ¯∂

z

z

Hj
j

z x xh

j
H j

z h

wm f
wm

wm
wmf (7.203)

The term 2 z

j
H

h

weÊ ˆ
Á ˜Ë ¯  has the dimension of voltage and f has the dimension of current so that Eq. 

(7.203) can be written as

V
Z I

z

∂ = -
∂

(7.204)

where
  

2
andz

j
V H I Z j

h

wm
f wm= = =

Equation (7.204) is analogous to the voltage equation of a transmission line.

Analogy for current equations: Using Eq. (7.64), Eq. (7.201) and Eq. (7.202b), we get,

or

or

or

2

2

2

2

2

1

∂∂
- =

∂ ∂
∂ ∂∂Ê ˆ∂- - = -Á ˜∂ ∂ ∂ ∂Ë ¯

Ê ˆ∂
= -Á ˜Ë ¯∂

Ê ˆ∂ Ê ˆ= - + Á ˜Á ˜ Ë ¯∂ Ë ¯

yz
x

z z

z

z

HH
j E

y z

H Hj
j

y z y yh

H
z h

jh
j H

z j h

we

f wm
we

f w me

f wm
we

wm
(7.205)

As mentioned earlier, the term 
2 z

j
H

h

wmÊ ˆ
Á ˜Ë ¯  has the dimension of voltage and f has the dimension of 

current so that Eq. (7.205) can be written as

I
YV

z

∂ = -
∂

(7.206)
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where
2

2
andz

j h
V H I Y j

jh

wm
f we

wm
= = = +

Equation (7.206) is analogous to the current equation of a transmission line.

Based upon the voltage and current equations of Eqs. (7.204) and (7.206), we draw transmission line 

equivalent circuit of a waveguide for TE waves as shown in Fig. 7.17.

Fig. 7.17 Transmission line equivalent circuit of a waveguide for TE waves

7.9.2. Analogy for TM Waves

We have the two Maxwell’s equations,

H j Ewe— ¥ = (7.200a)

E j Hwm— ¥ = - (7.200b)

For TME waves, Hz = 0. Substituting this in Eq. (7.199a), we get

( ) 0zE— ¥ =

This implies that the curl of the electric field in the xy-plane is zero and hence, we can represent Ex and 

Ey as a gradient of a scalar potential V as

andx y

V V
E E

x y

∂ ∂= - = -
∂ ∂

(7.207)

From Eq. (7.9b) and Eq. (7.10a) for TM waves, 

∂ ∂Ê ˆ
- = -Á ˜Ë ¯∂ ∂

∂
= -

∂

x z
y

y

x

E E
j H

z x

H
j E

z

wm

we

(7.208a)

(7.208b)

Analogy for voltage equations: Using Eqs. (7.21) and (7.208a), we get

or

( )

2

2

2

2

2

∂ ∂ ∂Ê ˆ Ê ˆ
- = - = - -Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂ ∂

∂ ∂ ∂
- = -

∂ ∂ ∂

∂ ∂∂ ∂- - = -
∂ ∂ ∂ ∂

x z z
y

x z z

z z

E E Ej
j H j

z x xh

E E E

z x xh

E EV

z x x xh

we
wm wm

w me

w me
or
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or
2

2

2

2

1
Ê ˆ∂ = -Á ˜Ë ¯∂

Ê ˆ Ê ˆ∂ = - + Á ˜Á ˜ Ë ¯∂ Ë ¯

z

z

V
E

z h

jV h
j E

z j h

w me

we
wm

we
or (7.209)

The term 2 z

j
E

h

weÊ ˆ
Á ˜Ë ¯ has the dimension of current so that Eq. (7.209) can be written as

V
Z I

z

∂ = -
∂

(7.210)

where,
2

2
andz

j h
I E Z j

jh

we
wm

we
= = +

Equation (7.209) is analogous to the voltage equation of a transmission line.

Analogy for current equations: Using Eq. (7.21), (7.207) and Eq. (7.208b), we get

or ( )2

2

∂
= -

∂
∂Ê ˆ∂ ∂- = - -Á ˜Ë ¯∂ ∂ ∂

Ê ˆ∂ - = -Á ˜Ë ¯∂

y

x

z

z

H
j E

z

Ej V
j

z x xh

j
E j V

z h

we

we
we

we
weor (7.211)

As mentioned earlier, the term 
2 z

j
E

h

weÊ ˆ
Á ˜Ë ¯  has the dimension of current so that Eq. (7.211) can be 

written as

I
YV

z

∂ = -
∂

(7.212)

where
2

andz

j
I E Y j

h

we
we= =

Equation (7.212) is analogous to the current equation of a transmission line.

Based upon the voltage and current equations of Eqs. (7.211) and (7.212), we draw transmission line 

equivalent circuit of a waveguide for TM waves as shown in Fig. 7.18.

It must be mentioned here that both Fig. 7.17 and Fig. 7.18 have the high-pass filter characteristics. 

For Fig. 7.17, the cut-off frequency occurs when shunt suceptance is zero. For Fig. 7.18, the cut-off 

frequency occurs when the series reactance is zero. In both the cases, the result is the same as follows.

2 2
ch w me=

Fig. 7.18 Transmission line equivalent circuit of a waveguide for TM waves
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This is the same result as obtained for TE or TM waves from the classical wave theory.

For Fig. 7.17 for TE wave, the characteristic impedance of the line is obtained as

0
0 2 2 2

1
( )

1 ( / ) 1 ( / )c c

jZ
Z TE

Y h
j

j

hwm m
e w w w wwe

wm

= = = =
- -+

which is the same as the wave impedance of TE waves.

For Fig. 7.18 for TM wave, the characteristic impedance of the line is obtained as

2

2 2
0 0( ) 1 ( / ) 1 ( / )c c

h
j

jZ
Z TM

Y j

wm
we m

w w h w w
we e

+
= = = - = -

which is the same as the wave impedance of TM waves.

7.10 APPLICATIONS OF WAVEGUIDE

Waveguides are used to transfer electromagnetic power efficiently from one point in space to another. 

Some common guiding structures are shown in Fig. 7.19. These include the typical coaxial cable, the 

two-wire and microstrip transmission lines, hollow conducting waveguides, and optical fibres.

Fig. 7.19 Typical Waveguide structures

In practice, the choice of structure depends upon some factors, such as: 

(a) the desired operating frequency band,

(b) the amount of power to be transferred, and

(c) the amount of transmission losses that can be tolerated.

Coaxial Cables These are widely used to connect RF components for frequencies below 3 GHz. 

Above that, the losses are too excessive. For example, the attenuation for different frequencies ranges 

for coaxial cable are as follows.

3 dB per 100 m at 100 MHz

10 dB/100 m at 1 GHz, and 

50 dB/100 m at 10 GHz.

The power rating of coaxial cable is limited primarily because of the heating of the coaxial conductors 

and of the dielectric between the conductors. Typical power rating is of the order of 1 kW at 100 MHz, 

but only 200 W at 2 GHz. However, special short-length coaxial cables do exist that operate in the 40 

GHz range.
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Another issue in choice of waveguide structure is the single-mode operation of the line. At higher 

frequencies, in order to prevent higher modes from being propagated, the diameters of the coaxial 

conductors must be reduced, diminishing the amount of power that can be transmitted.

Two-Wire Lines These are not used at microwave frequencies because they are not shielded and 

can radiate. One typical use of two-wire line is for connecting indoor antennas to TV sets. Microstrip 

lines are used widely in microwave integrated circuits.

Rectangular Waveguides These are used routinely to transfer large amounts of microwave power 

at frequencies greater than 3 GHz. For example at 5 GHz, the transmitted power might be one megawatt 

and the attenuation only 4 dB/100 m.

Optical Fibres Optical fibres operate at optical and infrared frequencies, allowing a very wide 

bandwidth. Their losses are very low, typically, 0.2 dB/km. The transmitted power is of the order of 

milliwatt.

Summary

A wave guide is a hollow conducting pipe, of uniform cross section, used to transport high frequency 

electromagnetic waves (generally, in the microwave band) from one point to another.

Waveguides can be generally classified as either metal waveguides or dielectric waveguides.

There are different mode of wave propagation through a waveguide, e.g., TE mode, TM mode, TEM

mode and Hybrid mode.

— For TE mode, no component of electric field exists in the direction of wave propagation.

— For TM mode, no component of magnetic field exists in the direction of wave propagation.

— For TEM mode, no component of either electric or magnetic field exists in the direction of 

wave propagation.

— For hybrid mode, both electric and magnetic field exists in the direction of wave propagation.

For parallel plane waveguide, consisting of two infinite parallel conducting planes, there exist three 

modes of wave propagation, e.g., TE mode, TM mode and TEM mode.

Different parameters for parallel plane waveguide are given in the table below.

Parameters TE and TM modes TEM mode

Propagation constant ( )2 2n

d

p
g w me= - jg w me=

Cut-off frequency
1

2c

n
f

d me
= fc = 0

Cut-off wavelength
2

c

d

n
l = lc = 

Guide wavelength ( )2 2

2
11

2

g

c

n
d

l l
l

ll
l

= =

--
lg = l
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Phase velocity ( )
0

2 2
2

2
1

p

c

v
v

fn
d f

w

p
w me

= =

--

1
pv

me
=

Group velocity
2 2

02 2

2
1 1c c c

g

df f f
v v

n f f
= - = - —

Wave impedance

0 0
0

2 0

2

;

1 cf

f

h m
h h

e
= =

- TEM

m
h

e
=

A rectangular waveguide is formed by placing four conducting planes.

For rectangular waveguide, four modes of wave propagation, e.g., TE mode, TM mode, TEM mode 

and hybrid mode, exist. For TEmn mode, m = 0, 1, 2, …; n = 1, 2, 3, …, For TMmn mode, m = 1, 2, 

3, …; n = 1, 2, 3, …

Different parameters for rectangular waveguide are given in the table below.

Parameters TE and TM modes

Propagation constant ( ) ( )2 2
2m n

a b

p p
g w me= + -

Cut-off frequency ( ) ( )2 2
0

2c

v m n
f

a b
= +

Cut-off wavelength ( ) ( )2 2

2
c

m n
a b

l =

+

Guide wavelength ( ) ( )
0

2 2 2
2

2

2

1

g

cfm n
a b f

lp
l

p p
w me

= =

-- +

Phase velocity ( ) ( )
0

2 2 2
2

2
1

p

c

v
v

fm n
a b f

w

p p
w me

= =

-- +

Group velocity
2 2

02 2

2
1 1c c c

g

df f f
v v

n f f
= - = -
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Intrinsic wave impedance

2
0

0 22

2

; 1

1

c
TE

c

f

ff

f

h
h h= -

-

where, 0

m
h

e
= .

For TEM mode in rectangular waveguide, a = 0, b w me= , so that jg w me= .

TEM wave cannot exist in a single-conductor waveguide.

Cylindrical or circular waveguides are those that maintain a uniform circular cross-section along 

their length. Two modes of propagation, i.e., TE and TM exist in circular waveguides.

Different parameters for circular waveguide are given in the table below.

Parameters TE and TM modes

Propagation constant 2 2
nm nmhg w me= -

where, 2 2h g w me= +

Phase constant 2 2
nm nmhb w me= -

Cut-off frequency 0

22

nm
c nm

h v
f h

pp me
= =

Cut-off wavelength
2

c
nmh

p
l =

Guide wavelength

0

2 2 2

2

2

1

g

nm ch f

f

lp
l

w me
= =

-
-

Phase velocity

0

2 2 2

2
1

p

nm c

v
v

h f

f

w

w me
= =

-
-

Group velocity
2

0 2
1 c

g

f
v v

f
= -

Intrinsic wave impedance 2
0

0 22

2

; 1

1

c
TE TM

c

f

ff

f

h
h h h= = -

-

where, 0

m
h

e
= .
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In a waveguide, since the guide walls are not perfectly conducting and the dielectric is lossy (s π
0, sc π ), there is a continuous loss of power as a wave propagates through the waveguide. These 

losses are mainly due to two reasons, represented by two attenuation constants:

0

2

2
2 1

d

cf

f

sh
a =

-

, attenuation due to dielectric losses, and

1

2
L

c
T

P

P
a

Ê ˆ= Á ˜Ë ¯
, attenuation due to conduction losses

The attenuation constants due to conduction losses in a parallel plane waveguide for three different 

modes are as

( )

3/2

3 2 2
0 2

2

2 2
, and

2 2
1

c

TE TM TEM

c

f

fn

dd f n
d

df

wm wmp we we
a a a

s b ssh p
w me

Ê ˆ
Á ˜Ë ¯

= = =

- -

The attenuation constant due to conduction losses for TEmn waves in a rectangular waveguide is 

given as

( ) ( )
2 2

2 2

2 222
2 2

20 2

2
1 1

1

S c c
c

c

b b
m n

R f f ba a
af fbf m nb
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h

È ˘+Ê ˆ Ê ˆÍ ˙
= - + +Í ˙Á ˜ Á ˜Ê ˆË ¯ Ë ¯Í ˙+Á ˜- Ë ¯Í ˙Î ˚

The attenuation constant due to conduction losses for TMmn waves in a rectangular waveguide is 

given as

2 3 2 3

2 2 2 22

0 2
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S
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h

Ê ˆ+
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-

The attenuation constant due to conduction losses for TEnm waves in a circular waveguide is given as

2 2

2 22

0 2

( )
1

TE S c
cnm

nmc

R f m

f ha mf
a

f

a

h

È ˘Ê ˆ= Í + ˙Á ˜Ë ¯ ¢ -Í ˙Î ˚-

The attenuation constant due to conduction losses for TMnm waves in a circular waveguide is given as

20

2

1

1

TM S
cnm

c

R

a f

f

a
h

=

-

A cavity resonator, usually used for energy storage at high frequencies, is one in which the 

electromagnetic waves exist in a hollow space inside the device.
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The rectangular waveguide resonator is basically a section of rectangular waveguide which is 

enclosed on both ends by conducting walls to form an enclosed conducting box.

The resonant frequency in a rectangular cavity resonator for TE and TM mode waves is given as

( ) ( ) 22 2
0

2r

v pm n
f

a b c

Ê ˆ= + + Ë ¯

The quality factor of a cavity resonator is defined as

Time average stored energy
2 2

Energy loss per cycle of scillation L L

W W
Q

P T P
p p w= = =

For the dominant mode in a rectangular cavity resonator (i.e., TE101 mode), the quality factor is 

given as

101

2 2

3 3 2 2

( )1

2 ( ) ( )
TE

abc a c
Q

b a c ac a cd

È ˘+
= Í ˙+ + +Î ˚

The resonant frequency in a circular cavity resonator for TE and TM mode waves is given as,

2
21

2
r nm

p
f h

d

p

p me

Ê ˆ= + Ë ¯

Exercises

[NOTE: * marked problems are important university problems]

Easy

1. A parallel plane waveguide with plate separation of 20 cm with TE1 mode is excited at 1 GHz. 

Find the phase constant. [13.85 radian/m]

*2. A pair of perfectly conducting planes is separated by 8 cm in air. For a frequency of 5000 MHz 

with TM10 mode excited, find cut-off frequency, phase shift, phase velocity and group velocity.

  [1.875 GHz, 97.08 radian/m, 3.236 ¥ 108 m/s, 2.781 ¥ 108 m/s]

3. Determine the separation between the planes of a parallel plane waveguide so that an 

electromagnetic wave of a frequency 10 GHz may propagate in a mode having three as the 

number of half cycles of the electric field (n = 3) and guide wavelength equal to 6.88 cm.

  [5 cm]

*4. A frequency of 3 GHz is impressed on a hollow rectangular waveguide of dimensions 6 cm 

¥ 4 cm. Compute (a) cut-off wavelength, (b) guide wavelength, (c) phase constant, (d) phase 

velocity, (e) wave impedance for the TE10 mode of propagation.

  [12 cm, 18 cm, 35 radian/m, 5.4 ¥ 108 m/s, 676.5 W]

5. A rectangular waveguide has the following dimensions a = 2.54 cm, b = 1.27 cm and waveguide 

thickness = 0.127 cm. Calculate the cut-off frequency for TE11 mode. [13.2 GHz]

*6. An air-filled recatngualr waveguide with dimensions of a = 8.5 cm and b = 4.3 cm is fed by a 

4 GHz carrier from co-axial cable. Determine the cut-off frequency, phase velocity and group 

velocity for TE11 mode. [3.909 GHz, 14.14 ¥ 108 m/s, 0.6362 ¥ 108 m/s]
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Medium

7. The cut-off wavelengths of a rectangular waveguide are measured to be 8 cm and 4.8 cm for TE10

and TE11 mode respectively. Determine waveguide dimensions.

  [a = 4 cm, b = 3 cm]

8. What do you mean by dominant mode? A rectangular waveguide has dimensions of 2.5 cm and 

5 cm. Determine the phase constant, phase velocity and group velocity at a wavelength of 4.5 cm 

for the dominant mode.

  [124.5 radian/s, 3.359 ¥ 108 m/s, 2.679 ¥ 108]

Hard

*9. A waveguide has an internal breadth “a” of 3 cm and carries the dominant mode of a signal of 

unknown frequency. If the characteristic impedance is 500 ohm, what is the signal frequency?

  [7.61 GHz]

10. A circular waveguide operated at 11 GHz has the internal diameter of 4.5 cm. For a TE01 mode 

propagation, calculate l and lc. Given: (ha)01 = 2.405. [2.727 cm, 11.756 cm]

11. Given a circular waveguide of internal diameter 12 cm operating with an 8 GHz signal propagating 

TM22 mode. Calculate l0, lc, lg and hg. Given: (ha)22 = 8.42.

  [3.75 cm, 4.47 cm, 6.89 cm, 692.65 W]

12. A lossless rectangular waveguide with a dielectric medium of permittivity er = 1.8 has dimensions 

a = 7.214 cm and b = 3.404 cm. For the dominant mode propagation at 2.6 GHz, the guide 

transports 200 W of average power. Find the level of excitation of the E  field. [106.8 V/cm]

13. In a lossless air-filled circular waveguide with 1 cm radius, the transmitted power in the dominant 

mode at 15 GHz is 2 W. Find the level of excitation for the magnetic field. [0.11 A/m]

14. Find the inside diameter of a lossless air-filled circular waveguide so that a TE11 mode propagates 

at a frequency of 10 GHz, with the cut-off wavelength of the mode being 1.3 times the operating 

wavelength. [2.28 cm]

*15. An aluminium waveguide (a = 4.2 cm, b = 1.5 cm, sc = 3.5 ¥ 107 mho/m) filled with Teflon (mr

= 1, er = 2.6, sd = 10–15 mho/m) operates at 4 GHz. Determine (a) ac and ad for the TE10 mode. 

(b) the waveguide loss in dB over a distance of 1.5 m.

  
3 13[8.868 10 Np/m;1.403 10 Np/m; 0.1154 dB]- -¥ ¥

16. A TE10 wave at 10 GHz propagates in a rectangular waveguide made of brass (s = 1.57 ¥ 107

S/m) with inner dimensions a = 1.5 cm and b = 0.6 cm, filled with polyethylene (er = 2.25, 

mr = 1), loss tangent = 4 ¥ 10–4. Determine (a) the phase constant, (b) the guide wavelength, 

(c) the phase velocity, (d) the wave impedance, (e) the attenuation constant due to loss in the 

dielectric, and (f) the attenuation constant due to loss in the guide walls.

  [(a) 234 rad/m, (b) 0.027 m, (c) 2.68 ¥ 108 m/s, (d) 337.4 W, (e) 0.084 Np/m or 0.73 dB/m, 

(f) 0.0526 Np/m or 0.457 dB/m]

17. Find the first five resonances of an air-filled rectangular cavity with dimensions of a = 5 cm, b =

4 cm and c = 10 cm (c > a > b).

  

101

011

102

110

111

101

011

102

110

111 111

3.335 GHz

4.040 GHz
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4.800 GHz

5.031GHz ,
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18. An air-filled copper circular waveguide (a = 5 mm, s = 5.8 ¥ 107 mho/m) is operated at 30 GHz. 

Determine the attenuation constant in dB/m for the TM01 mode. [0.3231 dB/m]

19. A resonant cavity with dimensions a = 10 cm, b = 4 cm and c = 5 cm is filled with a lossless 

dielectric (mr = 1, er = 3) and is made of copper (s = 5.8 ¥ 107 mho/m). Find the resonant 

frequency and the quality factor for the dominant mode. [1.936 GHz, 10916.21]

20. A rectangular cavity resonator excited by TE101 mode, at 20 GHz, has the dimensions a = 2 cm, 

b = 1 cm. Calculate the length of the cavity. [0.809 cm]

21. A cubical cavity resonator made of copper (s = 5.8 ¥ 107 mho/m) is to be operated at 10 GHz. 

Find the dimensions of the cavity, its quality factor and the bandwidth if it is operated in the 

dominant mode. [10693, 0.935 MHz]

Review Questions

[NOTE: * marked questions are important university questions.]

*1. Explain, from fundamental principles, why a waveguide behaves as a high-pass filter.

2. Show that the waveguide acts as a high-pass filter.

3. Give the theory of propagation of microwaves between two parallel conducting planes considering 

the TEn mode. Show, from inference conditions that the cut-off wavelength is given as 2
c

d

n
l = ,

where d is the separation between the planes.

4. (a)  Derive an expression for the attenuation factor for the TM1 wave between parallel conducting 

planes.

  (b)  Verify that the attenuation is a minimum at a frequency which is 3 times the cut-off frequency.

5. Discuss the propagation of TE and TM mode in a rectangular waveguide. Can TEM wave 

propagate in a rectangular waveguide? If not, why?

6. Explain wave impedance of a rectangular waveguide and derive the expression for the wave 

impedance of TE, TM and TEM waves.

7. Show that the wave impedance is real above a certain frequency and imaginary below that. What 

is the implication of the result?

8. A rectangular waveguide is propagating in the TE11 mode. Draw its field pattern. How do you 

extract energy from a wave propagating in this mode of propagation?

*9. Show that a rectangular or circular metal waveguide cannot carry the TEM mode.

*10. Show that a closed metal waveguide cannot support the TEM mode.

*11. Explain why a TEM mode propagation is not possible in a single conductor waveguide.

12. Explain the terms “cut-off frequency” and “guide wavelength”.

13. Explain why the guide wavelength in a rectangular waveguide is greater than the free-space 

wavelength.

14. What is dominant mode in a rectangular waveguide and why is it called so?

15. What is meant by the term “dominant mode” in a rectangular metal waveguide? Sketch the field 

distribution inside the waveguide in this mode.

16. What are dominant mode and degenerate modes in rectangular waveguide?

*17. Show that at frequencies much higher than the cut-off frequency, the Q of a rectangular guide 

carrying the dominant TE10 wave approaches the value

mQ baÆ

  where, /2m m ma wm s=  is the attenuation factor for a wave propagating in the metal of the 

guide walls. Assume mm = m0.
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18. What are the respective advantages and disadvantages of waveguides of rectangular and circular 

cross section? What is meant by H01 mode of transmission in a rectangular waveguide? What 

factors influence the choice of the dimensions for a rectangular waveguide used to transmit an 

H01 wave?

*19. Show the following relationship between guide wavelength and group velocity in an arbitrary 

air-filled waveguide: vglg = cl, where lg = 2p/b and l is the free-space wavelength. Moreover, 

show that the l and lg are related to the cut-off wavelength lc by:

2 2 2

1 1 1

g cl l l
= +

20. What is meant by cavity resonator? Derive the expression for the resonant frequency of a 

rectangular cavity resonator.

21. Derive the expression for electric and magnetic fields for the TE101 mode of rectangular waveguide 

cavity resonator. Draw the field lines.

22. Derive an expression for Q of a cavity resonator working in TE011 mode.

23. Find out the expression for the Q factor of a rectangular cavity resonator excited in TE011 mode.

24. What is meant by a dielectric slab waveguide? Derive field expressions both for TE and TM
waves in a dielectric slab waveguide.

Multiple Choice Questions

1. The waveguide (a = 1.5 cm, b = 1 cm) is loaded with a dielectric (er = 4). Which one of the 

following is correct?

  The 8 GHz signal will

(a) pass through the waveguide (b) not pass through the waveguide

(c) be absorbed in the guide (d) none of the above.

2. For a rectangular waveguide of dimensions:

  3a  cm ¥ a cm, the cut-off frequency for the TE10 mode is 2 GHz. What is the cut-off frequency 

for TM11 mode in the waveguide?

(a) 1 GHz (b) 3.46 GHz (c) 4 GHz (d) 6 GHz

3. In an air-filled waveguide of dimensions a cm ¥ b cm, at a given frequency, the longitudinal 

component of electric field of TM32 mode is of the form

20 sin (60 ) sin (100 )zE x yp p=

  Which form would Ez have for the lowest order TM mode?

(a) Ez = 20 sin (20px) (b) Ez = 20 sin (20p y)

(c) Ez = 20 sin (20p x) sin (50p y) (d) Ez = 20 sin (20p x) sin (100p y)

4. The cut-off frequency of the dominant mode of a rectangular waveguide having aspect ratio more 

than 2 is 10 GHz. The inner broad wall dimension is given by

(a) 3 cm (b) 2 cm (c) 1.5 cm (d) 2.5 cm.

5. The dominant mode in a circular waveguide is a

(a) TEM mode (b) TM01 mode (c) TE21 mode (d) TE11 mode.

6. In a waveguide, the evanescent modes are said to occur if

(a) the propagation constant is real (b) the propagation constant is imaginary

(c) Only the TEM waves propagate (d) The signal has a constant frequency.
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7. In a rectangular waveguide with broader dimension a and narrow dimension b, the dominant mode 

of microwave propagation would be

(a) TE10 (b) TM10 (c) TE01 (d) TM01

8. If the height of a waveguide is halved, its cut-off wavelength will

(a) be halved   (b) be doubled

(c) remain unchanged   (d) be one-fourth of the previous value.

9. A rectangular waveguide measures 3 ¥ 4.5 cm internally and has a 9 GHz signal propagated in it. 

The cut-off wavelength for TE10 mode is

(a) 5 cm (b) 10 cm (c) 15 cm (d) 9 cm

10. Which of the following is not possible in a circular waveguide?

(a) TE10 (b) TE01 (c) TE11 (d) TE12

11. When a particular mode is excited in a waveguide, there appears an extra electric component in the 

direction of propagation. The resulting mode is

(a) transverse-electric (b) transverse-magnetic

(c) longitudinal (d) transverse-electromagnetic.

12. For a wave propagating in an air-filled rectangular waveguide

(a) guided wavelength is never less than the free space wavelength

(b) wave impedance is never less than the free space impedance

(c) TEM mode is possible if the dimensions of the waveguide are properly chosen

(d) propagation constant is always a real quantity. 

13. A cylindrical cavity resonator has diameter of 24 mm and length 20 mm. The dominant mode and 

the lowest frequency band operated are as

(a) TE111 and X-band (b) TM111 and C-band

(c) TM011 and Ku-band (d) TM010 and X-band.

14. For a hollow waveguide, the axial current must necessarily be

(a) a combination of conduction and displacement currents

(b) conduction current only

(c) time-varying conduction current and displacement current

(d) displacement current only. 

15. A cylindrical cavity resonates at 9 GHz in the TE111 mode. The bandwidth 3 dB is measured to be 

2.4 MHz. The Q of the cavity at 9 GHz is

(a) 9000

2.4 3
(b) 9000

2.4 2
(c)

9000 2.4 3

2

¥
(d) 9000

2.4

16. A cavity resonator can be represented by

(a) an LC circuit (b) an LCR circuit (c) a lossy inductor (d) a lossy capacitor.

17. The cut-off wavelength lc for TE20 mode for a standard rectangular waveguide is

(a)
2

a
(b) 2a (c) a (d) 2a2

18. A cylindrical cavity operating in TE111 mode has a 3 dB bandwidth of 2.4 MHz and its quality 

factor is 400. Its resonant frequency would be

(a) 9.6 GHz (b) 9.6

2
 GHz (c) 9.6

3
 GHz (d) 9.6

6
 GHz
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Answers

1. (a) 2. (c) 3. (c) 4. (c) 5. (d) 6. (a) 7. (a) 8. (c)

9. (d) 10. (a) 11. (b) 12. (a) 13. (a) 14. (d) 15. (d) 16. (b)

17. (c) 18. (a) 19. (a)

19. Phase velocity vp and the group velocity vg in a waveguide (c is velocity of light) are related as 

(a) 2
p gv v c= (b) p gv v c+ =

(c) constant
p

g

v

v
= (d) a constantp gv v+ =



SOME TYPICAL SHORT ANSWER TYPE 

QUESTIONS WITH ANSWERS

 1. State the assumptions made while defining Coulomb’s law.

Or

  Explain the limitations of Coulomb’s law.

Answer: Limitations (Assumptions) of Coulomb’s Law:

 1. The charges must be point charges; it is very difficult to apply Coulomb’s law for charges of 

arbitrary shape.

 2. The charges must be stationary.

 2. Show that the work done in moving a charge from one point to another in an electrostatic 

field is independent of the path between the points.

Answer: We will consider a point charge Q, be moved from a point A to another point B in an electric 

field E .

  By Coulomb’s law, the force on Q is, =F QE

  \ Work done for a displacement of dl  is = - ◊ = - ◊dW F dl QE dl

  Hence, the total work done in moving the charge Q from A to B, i.e., the potential energy required is

= - ◊Ú
B

A

W Q E dl

  The potential energy per unit charge (W/Q) is known 

as the potential difference between the two points A

and B, denoted by VAB.

\ = = - ◊Ú
B

AB
A

W
V E dl

Q

  Since = - ◊Ú
l

V E dl  and E  is in the radial direction, 

any contribution from a displacement in q or f

direction is cancelled out by the dot product. Hence, cos◊ = =E dl Edl Edrq .

  Thus, the potential is independent of the path.

  For a closed path, 0◊ =Ú
l

E dl . Applying Stokes’ theorem, ( ) 0◊ = — ¥ ◊ =Ú Ú
l S

E dl E dS .

\ 0— ¥ =E

  Thus, electrostatic field is conservative or irrotational.

Fig. 1  Potential difference due to a uniform 

electric field
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3. (a)  A conducting body is in the electric field of static charges. Explain why the net electric 

field at any point inside the conducting body will be zero.

  (b) Use the result of (a) to show that

  (i) the net volume charge density at any point inside the conductor is zero, and

  (ii) the conductor is an equipotential body.

Or

   For a conducting body in the electric field of static charges, explain what will be the

  (a) net electric field inside the conductor, and

  (b) volume charge density at any point inside the conductor.

Answer:

(a)  When an electric field, E  is applied to a conductor, the electrons 

will experience a force ( )= -F eE . As the electrons are not free 

in space, they will not be accelerated by the field; but they suffer 

constant collisions with atomic lattice and drift from one atom 

to another. This is called drifting of electrons.

   After some time, the electrons will attain a constant average 

velocity, called drift velocity ( )U  which is directly proportional 

to the applied field ( ;= -U Em m is the mobility of electrons). 

The current associated with this drifting is known as the drift

current or conduction current ( ;=J Es s is the conductivity of 

the conductor).

   For a perfect conductor, the conductivity is infinite ( )s . As the conduction current is 

( ),J Es=  to maintain a finite current density ( ),J  the electric field ( )E  must be zero inside 

an isolated conductor. All positive charges will move along the direction of E  and negative 

charges will move in the opposite direction. Thus, all charges will accumulate on the surface 

and these induced surface charges will set up an internal induced field, ;iE  which cancels the 

externally applied field E .

(b) (i)  As field is zero inside a conductor ( 0),E =  by Gauss’ law of electrostatics, the volume charge 

density at any point inside the conductor will also be zero ; 0 0
Ê ˆ— ◊ = = fi =Ë ¯E E

r
r

e
.

  (ii)  As field is zero inside a conductor ( 0),E =  from the relation between field and potential, the 

potential inside a conductor is constant ( ; 0 must be constant)E V E V= -— = fi . Hence, 

a conductor is an equipotential body.

4. Derive Gauss’ Law from Coulomb’s Law.

Answer: Derivation of Gauss’ Law from Coulomb’s Law

  Gauss’ law can be derived from Coulomb’s law, which states that the electric field due to a 

stationary point charge is

24
= r

Q
E a

rpe

  where

   ra  is the radial unit vector, 

   r is the radius, | |,r

   q is the charge of the particle, which is assumed to be located at the origin.

Fig. 2 Isolated conductor 

under static electric field

( 0,E = rv = 0; V12 = 0) inside 

conductor
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  Using the expression from Coulomb’s law, we get the total field at r  by using an integral to sum 

the field at r  due to the infinitesimal charge at each other point ¢r  in space, to give

3

( )( )1

4 | |

¢ ¢-
=

-Ú
v

r r r
E dv

r r

r
pe

  where r is the charge density. If we take the divergence of both sides of this equation with respect 

to ,r  and use the known theorem

3
4 ( )

| |

¢Ê ˆ ¢— ◊ =Á ˜¢Ë ¯
r

r
r

pd

  where d(r¢) is the Dirac delta function, the result is

1
( ) ( )¢ ¢— ◊ = -Ú

v

E r r r dvr d
e

  Using the shifting property of the Dirac delta function, we get

— ◊ =E
r
e

  which is the differential form of Gauss’ law.

5. Derive Coulomb’s law from Gauss’ law.

Answer: Derivation of Coulomb’s Law from Gauss’ Law

  Gauss’ law provides information only about the divergence of the electric field intensity, E

and does not give any information about the curl E . For this reason, Coulomb’s law cannot be 

derived from Gauss’ law alone.

   However, we assume that the electric field from a stationary point charge has spherical symmetry. 

With this assumption, which is exactly true if the charge is stationary, and approximately true if 

the charge is in motion, Coulomb’s law can be proved from Gauss’ law. We consider a spherical 

surface of radius r, centered at a point charge Q. Applying Gauss’ law in integral form, we have

◊ =Ú
S

Q
E dS

e

  By the assumption of spherical symmetry, the integrand is a constant and can be taken out of the 

integral as

24 =r

Q
r a Ep

e

  where ra  is a unit vector directed radially away from the charge. Again by spherical symmetry, 

E  is also in radially outward direction, and so we get

24
= r

Q
E a

rpe

  If another point charge q is placed on the surface, the force on that charge due to the charge Q is 

given as

24
= = r

Qq
F qE a

rpe

  which is essentially equivalent to Coulomb’s law.

  Thus, the inverse-square law dependence of the electric field in Coulomb’s law follows from 

Gauss’ law.
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6. Prove that electric field lines are perpendicular to the equipotential surfaces.

Answer: Since ,E V= -—  it can be shown that the direction of E  is always perpendicular to the 

equipotential through the point. Below we give a proof.

  Let the potential at a point P(x, y, z) be V(x, y, z). The difference in potential at a neighbouring 

point ( , , )+ + +P x dx y dy z dz  is given as

( , , ) ( , , )

( , , ) ( , , )

= + + + -
∂ ∂ ∂È ˘= + + + -Í ˙∂ ∂ ∂Î ˚

∂ ∂ ∂= + +
∂ ∂ ∂

dV V x dx y dy z dz V x y z

V V V
V x y z dx dy dz V x y z

x y z

V V V
dx dy dz

x y z

Fig. 3 Change in V when moving from one equipotential curve to another

  With the displacement P(x, y, z) vector given as, ,= + +x y zdl dxa dya dza  we can rewrite dV as

( )

( )

∂ ∂ ∂ ∂ ∂ ∂Ê ˆ= + + = + + ◊ + +Á ˜∂ ∂ ∂ ∂ ∂ ∂Ë ¯
= — ◊
= - ◊

x y z x y z

V V V V V V
dV dx dy dz a a a dxa dya dza

x y z x y z

V dl

E dl

  If the displacement dl  is along the tangent to the equipotential curve through P(x, y, z), then 

dV = 0 because V is constant everywhere on the curve. This implies that E  is perpendicular to V

along the equipotential curve.

7. Calculate the force between the plates of a capacitor.

Or

  Show that the force experienced by the plate carrying the charge +q of an isolated air-filled 

parallel-plate capacitor is 
2

0

,
2

q

Ae-  where A is the plate area.

Answer: Let d be the separation distance between the plates.

\ Capacitance of the capacitor is 0=
A

C
d

e

\ Electrostatic energy is given as 
2 2 2

0 0

1 1

2 2 2
= = =q q q d

W
C A A

d

e e



  696 Electromagnetic Field Theory

\ Force experienced by the plate is given as 
2 2

0 02 2

Ê ˆ
= - = - = -Á ˜Ë ¯

q d qdW d
F

dd dd A Ae e

\
2

02
= - q

F
Ae

8. Explain how the current flowing through a capacitor differs from the normal conduction 

current.

Answer: The conduction current model does not characterise the capacitor current. The ideal capacitor 

is characterised by large, closely-spaced plates separated by a perfect insulator (sC = 0) so that

no charge actually passes throughout the dielectric [ ( ) ( )]=C C CJ t E ts . The capacitor current

measured in the connecting wires of the capacitor is caused by the charging and discharging the 

capacitor plates. Let Q(t) be the total capacitor charge on the positive plate.

  Hence, the capacitor current, also termed as the displacement current is given as

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) [ ( )]

È ˘= = = = = = = =Í ˙Î ˚C d

dQ t dv t dv t v t dE t dD tA d d
i t i t C A A A E t A

dt dt d dt dt d dt dt dt

e
e e e

  So, the displacement current density is given as

( )
( ) =d

dD t
J t

dt

  As D  may vary with space, the displacement current density is written as

( )
( )d

D t
J t

t

∂=
∂

9. Show that the displacement through a capacitor is equal to the conduction current if the 

supply voltage is sin= mv V tw .

Answer: Here the applied voltage is, sin= mv V tw

  We consider a parallel plate capacitor of capacitance given as, = A
C

d

e

  where A is the area of the plate and d is the distance between the plates.

  The conduction current is given as,

[ sin ] cos= = =d m m

dv A d A
I C V t V t

dt d dt d

e e
w w w (i)

  However, as the medium between the plates is dielectric, there is no conduction current in a 

capacitor. A displacement current may be considered to flow which is given as

[ sin ] cos
È ˘= = = =Í ˙Î ˚d m m

dE d v A d A
I A A V t V t

dt dt d d dt d

e e
e e w w w (ii)

  From (i) and (ii), it is seen that the displacement in a capacitor is equal to the conduction current.

10. Show that the solution of Poisson’s equation 
4

= Ú
dv

V
r

r
pe

 satisfies the Poisson’s equation, 

2— = -V
r
e

.

Answer: We have the solution
4

= Ú
dv

V
r

r
pe
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  Taking Laplacian on both sides,

( )2 2 2 1

4 4
— = — = —Ú Ú

dv
V dv

r r

r r
pe pe

  With r π 0, ( ) ( )2
2

2

1 1 1
0— = ◊ =d

r
r r rdr

(i)

  At r = 0, it is defined. However, we can find the value of ( )2 1—Ú dv
r

 at r = 0, by the following 

procedure:

( )2 2

2 20

1 1
Lim
Æ

Ê ˆ— = —
Á ˜+Ë ¯

Ú Údv dv
r ra a

Now, 
2 2

2
2 2 2 5/22 2 2 2

1 1 3

( )

d r

r dr rr r

a

aa a

Ê ˆ Ê ˆ— = = -
Á ˜ Á ˜ ++ +Ë ¯ Ë ¯

\
2 2

2
2 2 5/22 20 0

2 2

2 2 5/20
0

1 3
Lim Lim sin

( )

Lim 12
( )

r
dv d d dr

rr

r
dr

r

a a

a

a
q q f

aa

a
p

a

Æ Æ

Æ

Ê ˆ— = -
Á ˜ ++Ë ¯

È ˘
= -Í ˙+Î ˚

Ú ÚÚÚ

Ú (ii)

  Now,

/2 2 2 2 22 2

22 2 5/2 5 2 5/2
0 0

/2 /2 /22 2 2
3 2

5 2
0 0 0

1
2

0
1

3

0

Let, tantan sec

sec( ) (1 )

tan sec sin
cos sin cos

sec cos

{Let, sin cos }

1

3 3

rdr
dr

dr dr an

d
d d

p dp p d dp

p

p

p p p

a qa a qa q qa
a q qa a q

q q q q
q q q q q

q q

q q q

=Ï ¸
= Ì ˝\ =+ + Ó ˛

= = =

= = \ =

È ˘
= =Í ˙Î ˚

Ú Ú

Ú Ú Ú

Ú

  From Eq (ii),
5
2

2 2
2

2 22 20 0
0

1 1
Lim Lim 12 12 4

3( )

r
dv dr

rra a

a
p p p

aaÆ Æ

È ˘Ê ˆ— = - = - ¥ =Í ˙Á ˜ ++ Í ˙Ë ¯ Î ˚
Ú Ú

Hence, 2 ( 4 )
4

— = - = -V
r r

p
pe e

  Thus, it satisfies the Poisson’s equation.

NOTE

Equations (i) and (ii) can be represented by a single relation,

pd
Ê ˆ— = -Ë ¯

2 1
4 ( ).r

r
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11. Differentiate between potential and EMF.

Answer: Differences between Potential (V) and EMF (x)

  1.  Potential field, i.e., electric field generated by static charges, is conservative; but emf-

producing field is non-conservative.

\ 0; but, 0 ( )◊ = ◊ π =Ú ÚC e
l l

E dl E dl emfx

  2.  Electric field produced by charges is not able to maintain a steady current; but emf-producing 

field can maintain a steady current.

  3.  Potential (V) is the negative of the line integral of the static field CE  while emf x is the line 

integral of eE . Thus, between two points a and b,

( ) and
b b

ab b a C ab e
a a

V V V E dl E dlx= - = - ◊ = ◊Ú Ú

  Here, Vab is independent of the path of integration between a and b, but xab is dependent on the 

path.

12. ‘Any initial charge density in a conductor dissipates in a characteristic time t = e/s, where 

e is the permittivity and s is the electrical conductivity of the material’. Establish this 

statement and discuss how t determines the quality of a conductor.

Or

  Show that a charge placed anywhere in a conducting medium of conductivity s and

permittivity e decays exponentially with a time constant e/s.

Answer: We consider a conductor carrying a surface current density ,J  flowing perpendicular to the 

area ,dS  having volume charge density rv.

  Thus, the total current coming out of the closed surface is

= ◊Ú
S

I J dS

  Now, charges cannot be created or destroyed. Since, the current is simply the motion of charge, 

the total current flowing out of some volume must be equal to the rate of decrease of charge 

within the volume.

\ = - = - Ú v
v

dQ d
I dv

dt dt
r

\ ∂
◊ = -

∂Ú Ú v

S v

J dS dv
t

r

  This equation is known as the integral form of the equation of continuity.

  From this equation, we get

–
∂

◊ =
∂Ú Ú v

S v

J dS dv
t

r

fi –
∂

— ◊ =
∂Ú Ú v

v v

Jdv dv
t

r

\ ∂
— ◊ = -

∂
vJ
t

r
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  From the above equation, we have

( )
Ê ˆ∂

- = — ◊ = — ◊ = — ◊ = — ◊ = — ◊ =Á ˜Ë ¯∂
v

v

D
J E E D

t

r s s
s s s r

e e e

  (Here, we have used, Ohm’s law: ;J Es=  Gauss’ law: — ◊ = vD r  and the constitutive relation: 

=D Ee )

\ ∂
= - ∂v

v

t
r s
r e

Integrating

0 0

∂
= - ∂Ú Ú

v t
v

v

t
r

r

r s
r e

  where r0 is the initial charge density at time t = 0.

\ –( / ) – /
0 0

t t
v e es e tr r r= = (3.29)

   This equation shows that whenever some charge is introduced at some interior point of a 

material, there is a decay of volume charge density rv. This decay is associated with the movement 

of charge from the interior point to the surface of the material.

  The time constant of the decay, called the relaxation time or rearrangement time, is given as

= e
t

s

  The relaxation time is inversely proportional to the conductivity of the medium. This means that 

the value of t is very small for good conductors and very large for a good dielectric.

   For example, for copper, 75.8 10 mho/m,s = ¥  and e = 1, so that the value of relaxation time 

for copper is

12
0 19

7

8.854 10 1
1.53 10 seconds

5.8 10

re ee
t

s s

-
-¥ ¥

= = = = ¥
¥

13. Establish the relation ,
G C

s e=  where G and C are respectively the conductance and 

capacitance between the two electrodes; s and e are respectively the conductivity and 

permeability of the intervening medium.

Or

  Deduce the relation G C
s
e=  and show that the total electrical conductance between any 

configuration of conductors embedded in a conducting medium of s may be obtained by 

replacing permittivity e by s in the expression for the capacitance of the configuration 

where they are embedded in a dielectric of permittivity e.

Answer:

  By definition of capacitance,   
2

1

◊
= =

◊

Ú

Ú

S
S

Q dS
Q

C
V

E dl
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  But, at the surface of conductors, by boundary condition, eEn = Qs

\
2

1

◊
=

◊

Ú

Ú

n
S

E dS

C

E dl

e

(i)

  For the current flow, the conductance is

2 2

1 1

◊ ◊
= = =

◊ ◊

Ú Ú

Ú Ú

n n
S S

J dS E dS
I

G
V

E dl E dl

s

(ii)

  Combining (i) and (ii), we get = ¥G C
s
e

\ =G C

s e

  Thus, the conductance may be obtained at once by replacing e by s in the expression of the 

capacitance.

NOTE

Insulation resistance of the configuration is, = = ¥ e
s

1 1
R

G C
.

14. A certain volume of dielectric has a polarisation P C/m2. Write the integral expression for 

the potential at any point due to this dielectric. Explain the different terms in this expression 

through a figure.

Answer: We consider a block of dielectric with polarisation P  (dipole moment per unit volume).

  We want to calculate the potential and field at an exterior point P.

  By the relation of potential for a dipole,

2
0

1

4

◊ ¢= rP a
dV d

r
t

pe
(i)

  for an elemental volume dt¢ at (x¢, y¢, z¢) at the field point (x, y, z).

\
2

0

1

4

◊ ¢= Ú r

v

P a
V d

r
t

pe
(ii)

  where, ( ) ( ) ( )¢ ¢ ¢= - + - + -r x x i y y j z z k    \ ( )2

1¢= —ra

rr
  From Eq. (ii),

\ ( )
0

1 1

4
¢ ¢= ◊ —Ú

v

V P d
r

t
pe

(iii)
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  By the vector identity for a scalar S and a vector ,V

( ) ( )— ◊ ∫ — ◊ + ◊ —SV S V V S

  Putting ( )1
, ,= =S V P

r
 we get

( ) ( )1 1 1 1
( ) ( )

Ê ˆ Ê ˆ
— ◊ = — ◊ + ◊ — fi ◊— = — ◊ - — ◊Á ˜ Á ˜Ë ¯ Ë ¯

P P
P P P P

r r r r r r

  From Eq. (iii), we get

  

0

0 0

1 1
( )

4

1 1 1
( )

4 4

È ˘Ê ˆ
¢ ¢ ¢= — ◊ - — ◊Á ˜Í ˙Ë ¯Î ˚
◊ ¢ ¢= - — ◊

Ú

Ú Ú

v

S v

P
V P d

r r

P dS
P d

r r

t
pe

t
pe pe

  (By divergence theorem)

   Both of the terms in the above equation have 

the form of potentials produced by the charge 

distribution; i.e.,

a surface charge density, = ◊b P ns

a volume charge density, ( )¢= -—b Pr

  Thus, the potential at any point due to this dielectric is given as

0

1

4

¢È ˘
= +Í ˙

Î ˚
Ú Úb b

S v

dS d
V

r r

s r t

pe

  Significance of Terms:

  Bound surface charge density sb: We consider a small 

volume inside the dielectric.

  Let,

   E —electric field due to combined effect of an 

external field and the field due to the dipoles,

   l—  separation distance between positive and 

negative charges due to the influence of ,E

   dS—elemental surface,

   dt—elemental volume ( ),l dS= ◊  and

   dQ—  amount of charge crossing the elemental 

surface dS

\ = ◊ = =dQ NQl dS Ql p NQl P

\ = ◊dQ P dS

  If dS is on the surface of the material, this charge accumulates there in a layer of thickness ◊l n

(which is small, of molecular dimensions) and the charge can be treated as a surface layer with 

density,

/b dQ dS P ns = = ◊

Fig. 4 Block of dielectric with polarisation ( )P

Fig. 5 Illustration of bound charge 

densities
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  Bound volume charge density rb:

  Total charge flowing out of the surface bounding volume t, is the integral of this over the surface, 

i.e.,

= ◊Ú
S

Q P dS

  and net charge remaining within is –Q.

  If the density of this remaining charge is rb, then

( )= - = - ◊ = - — ◊Ú Ú Úb
v S v

d Q P dS P dr t t

\ = -— ◊b Pr

  i.e., the bound charge density is numerically equal to minus the divergence of the polarisation 

vector.

15. Justify the statement ‘Most of the electrical machines are working on electromagnetic 

principles rather than the electrostatic principles’.

Answer: We know that the electric force on a stationary charge Q kept in an electric field ,E  given by 

Coulomb’s law is

=eF QE

  Since this force is in the same direction as the electric field, no torque is created.

  When a stationary loop is kept in a time-varying magnetic field an emf induced given as

∂= ◊ = - ◊
∂Ú Ú

C S

B
E dl dS

tS
E

   This emf induced by the time-varying current (producing time-varying magnetic field) in 

a stationary loop is called transformer emf. This emf cannot produce any movement of the 

conductor.

  But, when a charge is moving in the presence of a static magnetic field ,B  the force on the charge 

is

= ¥mF qv B

  where q is the amount of charge, v  is the velocity of movement.

   Since this force acts in a direction perpendicular to both v  and ,B  it creates a torque on a 

closed loop. Thus, if a conducting loop is moving with a velocity ,v  then a field is produced and 

an emf ( )mE  is induced in the loop, known as motional emf or flux-cutting emf, given as

= = ¥m
m

F
E v B

q

  This emf can produce the rotation of the conductor.

  From the above discussion, we can conclude that most of the electrical machines are working on 

electromagnetic principles rather than the electrostatic principles.
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16. Differentiate between magnetic scalar potential and magnetic vector potential.

Answer: Differences between magnetic scalar potential and magnetic vector potential

Magnetic Scalar Potential (Vm) Magnetic Vector Potential ( )A

1.  It is defined as,

mH V= -—
2.  It is expressed in Ampere.

3.  Magnetic scalar potential is defined only in 

regions where the current is zero ( 0)J = .

4.  It satisfies Laplace’s equation in source-free 

regions.

5.  It is not a single-valued function.

6.  The concept of magnetic scalar potential is a 

useful tool in describing the magnetic field 

around a current source.

1.  It is defined as,

B A= — ¥
2.  It is expressed in Weber per metre (Wb/m) 

or in Newton per Ampere (N/A) or in Volt-

second per metre (V-s/m).

3.  It is defined in regions with any finite value 

of current.

4.  It satisfies Poisson’s equation in a region 

with a source.

5.  It is always a single-valued function.

6.  The concept of magnetic vector potential is 

extremely useful for studying radiation in 

transmission lines, wave guides, antennas, 

etc.

17. ‘Ampere’s law is bound to fail for non-steady currents’. Justify the statement. How did 

Maxwell remove this defect in Ampere’s law?

Answer: Inconsistency in Ampere’s law for time varying fields:

  According to Ampere’s circuital law in differential form, we have

H J— ¥ = (i)

  Taking divergence on both sides,

( ) 0H J— ◊ — ¥ = — ◊ =

  (Since, the divergence of curl of any vector is zero.)

  However, according to the continuity equation of current, we have

0J
t

r∂
— ◊ = - π

∂
  Therefore, we see that Ampere’s law is not applicable for time-varying fields. In order to make it 

compatible for time varying fields, we modify the law.

Modified Ampere’s Law for Time Varying Fields

  Maxwell removed this defect in Ampere’s law by introducing an additional term in Eq. (i), known 

as displacement current.

dH J J— ¥ = + (ii)

  where dJ  is to be determined and defined.

  Taking divergence on both sides of Eq. (ii),

( ) 0dH J J— ◊ — ¥ = — ◊ + — ◊ =

\ ( )d

D
J J D

t t t

r∂ ∂ ∂— ◊ = -— ◊ = = — ◊ = — ◊
∂ ∂ ∂
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\ d

D
J

t

∂=
∂

(iii)

  This dJ  is known as displacement current density and J  is the conduction current density

( )J Es= .

  Now, substituting Eq. (iii) into Eq. (ii), we get

D
H J

t

∂— ¥ = +
∂

  This is the modified Ampere’s law.

18. Can a magnetic field exist in a good conductor if it is static or time varying? Explain.

Or

  Can a static magnetic field exist in a good conductor? Explain.

Answer: Yes, magnetic field can exist in a good conductor whether the field is static or time-varying.

  The conductivity of a good conductor is high. When the conductor carries some current, it 

produces some flux which can exist inside the conductor. Due to this flux, a magnetic field exists 

at any point inside a good conductor.

19. Starting from Maxwell’s equations, establish Coulomb’s law.

Answer: We will consider a spherical surface of radius r, centre at a point charge Q. Applying Maxwell 

equation (Gauss’ law) in integral form, we have

S

Q
E dS

e
◊ =Ú

   By the assumption of spherical symmetry, the integrand is a constant and can be taken out of 

the integral as

24 r

Q
r a Ep

e
=

  where ra  is a unit vector pointing radially away from the charge. Again by spherical symmetry, 

E  is also in radially outward direction, and so we get

24
r

Q
E a

rpe
=

  If another point charge q is placed on the surface, the force on that charge due to the charge Q is 

given as,

24
r

Qq
F qE a

rpe
= =

  This is essentially equivalent to Coulomb’s law.

20. Show that the equation continuity 0J
t

r∂
— ◊ + =

∂
 is contained in Maxwell’s equation.

Answer: By Maxwell’s equation (modified Ampere’s law),

D
H J

t

∂— ¥ = +
∂
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  Taking divergence on both sides,

( ) 0
D

H J
t

Ê ˆ∂— ◊ — ¥ = — ◊ + =Á ˜Ë ¯∂

\ 0
D

J
t

∂— ◊ + — ◊ =
∂

or, ( ) 0J D
t

∂— ◊ + — ◊ =
∂

By Maxwell’s equation, D
t

r∂
=

∂

\ 0J
t

r∂
— ◊ + =

∂

21. Starting from Maxwell’s equation 
B

E
t

∂— ¥ = -
∂

 and ,
D

H J
t

∂— ¥ = +
∂

 show that 0B— ◊ =

and D r— ◊ = .

Answer: By Maxwell’s equation

B
E

t

∂— ¥ = -
∂

  Taking divergence on both sides, we get

( ) 0
B

E
t

Ê ˆ∂— ◊ — ¥ = = -— ◊ Á ˜Ë ¯∂

\ 0 ( ) 0 constant
B

B B
t t

Ê ˆ∂ ∂— ◊ = fi — ◊ = fi — ◊ =Á ˜Ë ¯∂ ∂
  As isolated magnetic monopole does not exist, we have

0B— ◊ =

D
H J

t

∂— ¥ = +
∂

  Taking divergence on both sides, we get

( ) 0
D

H J
t

Ê ˆ∂— ◊ — ¥ = = — ◊ +Á ˜Ë ¯∂

\ 0
D D

J J
t t

Ê ˆ Ê ˆ∂ ∂— ◊ + = fi — ◊ = -— ◊Á ˜ Á ˜Ë ¯ Ë ¯∂ ∂

  Again by continuity equation, we know

0J
t

r∂
— ◊ + =

∂

( )
D

D D
t t t

r
r

Ê ˆ∂ ∂ ∂- = -— ◊ = - — ◊ fi — ◊ =Á ˜Ë ¯∂ ∂ ∂

D r— ◊ =
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22. Show that a uniform plane wave is a TEM wave.

Answer: An electromagnetic wave which has no electric or magnetic field components in the direction 

of propagation (all components of E and H are perpendicular to the direction of propagation) is 

called a transverse electromagnetic (TEM) wave.

  A wave is said to be a plane wave, if

  1.  The electric field E  and magnetic field H  lie in a plane perpendicular to the direction of 

wave propagation.

  2.  The fields E  and H  are perpendicular to each other.

  3.  E  and H  are uniform in the plane perpendicular to the direction of propagation (i.e. E  and 

H  vary only in the direction of propagation).

  Figure 6 shows the propagation of a uniform plane wave.

Fig. 6 Propagation of uniform plane wave

  This uniform plane wave has only a z-component of electric field and an x-component of magnetic 

field which are both functions of only y.

   Since a uniform plane wave has no electric or magnetic field components in the direction of 

propagation, it is always a TEM wave.

Fig. 7 Uniform plane wave

23. Show that the plane electromagnetic waves in free space travel with the velocity c.

Answer: The wave propagation in free space is obtained as follows. From three-dimensional wave 

equation,
2 2 2 2andS S S Sg g— = — =E E H H
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  where g is known as the propagation constant, given as

( ) ( )j j jg wm s we a b= + = +

  In free space, s = 0, e = e0, m = m0, so that

2
0 0 jg w m e b= - =

  The wave equation becomes,

2 2 2 2 2 2andS S S S S Sg w m e g w m e— = = - — = = -0 0 0 0E E E H H H

\ Attenuation constant, a = 0

\ Phase constant, 0 0 c

w
b w m e= =

  So, the velocity of wave propagation is given as

8

0 0

1
3 10 m/s, speed of lightv c

w
b m e

= = = = ¥

  This shows that the electromagnetic wave travels with speed of light in the free space.

24. Prove that electric and magnetic fields in a uniform plane wave are perpendicular to each 

other.

Answer: We consider a uniform plane wave propagating in the z-direction. According to the definition 

of plane wave there will be no field component in the z-direction.

  Now, we consider the dot product of two fields, given as

{ 0, 0}x x y y z zE H E H E H E H◊ = + = =

  Also, by the definition of intrinsic impedance

0 0

0 0

&
yx

y x

EE

H H

m m

e e
= = -

\ 0 0

0 0

0x x y y y x y xE H E H E H H H H H
m m

e e
◊ = + = - =

  Dot product of two vectors is zero only when the two vectors are perpendicular to each other.

   This shows that the electric and magnetic fields in a uniform plane wave are perpendicular to 

each other.

25. Show that the ratio of Poynting’s vector to energy density is £ 3 ¥ 108 m/s.

Answer: Average power can be calculated using Poynting vector as

*
ave

1
Re[ ]

2 S Sp = ¥E H

  Now, for a perfect dielectric medium

  0

0

E

H

m
h

e
= = and if 0 0cos ( ) and cos ( ) ,E HE E t x a H H t x aw b w b= - = -  then
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2 20
ave 0 0 0

1 1 1 1
( ) ( ) | | | | /

2 2 2/
E H n n

E
p E a a E a E ae m

h m e

Ê ˆ= ¥ = =Á ˜Ë ¯

  where na  is the unit vector in the direction of wave propagation, normal to both E  and H .

   Now, the electromagnetic energy density ‘u’ is given by the sum of the electric energy density 

1

2Eu E D
È ˘= ◊Í ˙Î ˚

 and the magnetic energy density 
1

2Mu B H
È ˘= ◊Í ˙Î ˚

.

\ 2 21 1 1 1
( )

2 2 2 2
u E D B H E H D E B He m e m= ◊ + ◊ = + = =

  where 0 0cos ( ) and cos ( )E HE E t x a H H t x aw b w b= - = -

\ 2 2 2 2 2 2 2
0 0 0 0

1 1 1
cos ( ) cos ( ) [ ]cos ( )

2 2 2
u E t x H t x E H t xe w b m w b e m w b= - + - = + - (5.49)

  So, the time-averaged energy density in the wave is

( )2 2 2 2 2 2
0 0 0 0

0

2
02

0 2

2
02 2

0 02

1 1 1 1
[ ] cos ( ) [ ] cos

2 4 2

1

4

1 1
| |

4 2

T

dU E H t x dt E H t
T

E
E

E
E E

e m w b e m w

m
e m h

eh

e m e
m
e

= + - = + =

Ê ˆÈ ˘
= + =Í ˙ Á ˜Ë ¯Î ˚

È ˘
= + =Í ˙

Ê ˆÍ ˙
Á ˜Í ˙Ë ¯Î ˚

Ú

  So, the average power is given as

2 2
ave 0 0

1 1 1 1
/ | | | |

2 2n n d np E a E a U ae m e
me me

= = =

\ ave

1
d n d np U a v U a

me
= =

  where n is the velocity of the wave in the medium.

   The above equation shows that the ratio of Poynting vector to energy density is always less 

than the velocity of light.

8ave 3 10 m/s
d r r

p c
v

U m e
= = £ ¥

26. Show that in a conductor, the energy is not shared equally between the electric and the 

magnetic fields.

Or

  Show that for an electromagnetic wave propagating in a conducting medium, the density of 

magnetic energy is greater than that of electric energy.
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Answer: From earlier answer, we get for a conductor, the time-averaged electric energy density given as

2
0

1
| |

2Eu Ee=

  and the time-averaged magnetic energy density given as

2

2 20
0 0

1 1 1
| | | |

2 2 2/
M

E
u H E

s
m m

wwm s
= = =

\ ( )E

M

u

u

we
s

= <<

  This shows that for an electromagnetic wave propagating in a conducting medium, the density of 

magnetic energy is greater than that of electric energy, or in other words, the energy is not shared 

equally between the electric and the magnetic fields.

27. (a)  Show that the magnetic field lags the electric field in time by a phase angle in an 

electromagnetic field propagating in a lousy dielectric medium.

  (b)  Show that in a conductor, the electric and the magnetic fields are not in phase.

Or

    Show that in a conductor, the magnetic field lags the electric field in time but leads the 

electric field in position.

Or

    Show that the magnetic field lags the electric field in time by a phase angle in an 

electromagnetic field propagating in a conductor. Obtain an expression for the phase 

angle.

Answer: We will consider the wave propagation along the y-direction, so that the electric field E  has 

only z-component, Ez and the magnetic field has only x-component, Hx. Then the solution of 

wave equations gives

   0( , ) cos ( )y
z zE y t E e t y aa w b-= - and, 0( , ) cos ( )y

x xH y t H e t y aa w b-= -

  where 0
0 , intrinsic impedance of the medium

E
H h

h
= =

  For a lousy dielectric medium

  Here, we have the condition, 1
s
we

<<

  Hence, the intrinsic impedance for the lousy dielectric is given as

1
1 | |

2
1

j
j

j

j

h
wm m m s

h h q
s we e s e we

we

È ˘ È ˘= = = + = –Í ˙ Í ˙+ Î ˚+Í ˙Î ˚

  where

( )
( )1

1/4
2

/ 1
| | tan

2

1

h

m e s
h q

we
s
we

-= =
È ˘

+Í ˙
Î ˚
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  Hence, if the electric field is given as, 0 cos ( )y
zE E e t y aa w b-= -  and, then the magnetic field 

will be

0
0 cos ( ) cos ( )

| |
y y

x x

E
H H e t y a e t y aa a

hw b w b q
h

- -= - = - -

  This equation shows that the electric and magnetic fields in a lousy dielectric are not in phase; the 

magnetic field lags behind the electric field by some angle ( )11
tan

2h
s

q
we

-= .

  For a conductor

  In a conductor, , i.e., ,
s

s we
we

>> >>  so that the intrinsic impedance is given as

( ) 45

1

j j j

j
j

wm wm wm wm
h

s we s swe
s

s

= = = = – ∞
+

+

  Thus, if the electric filed is given as 0 cos ( )y
zE E e t y aa w b-= -  and, then the magnetic field 

will be

0
0 cos ( ) cos ( 45 )y y

x x

E
H H e t y a e t y aa aw b w b

wm
s

- -= - = - - ∞

  Therefore, in a conductor the magnetic field lags behind the electric field by an angle of 45°.

28. Show that if a transmission line is precisely half wavelength long, the input impedance is 

equal to the load impedance.

Answer: If the length of a transmission line is exactly half wavelength ( ) ,2
l

l=  we have

2

2
l

p l
b p

l
= ¥ =

\ cos cos 1 & sin sin 0l lb p b p= = - = =

  So, the input impedance is given as

\ 0
0 0

0 0

cos sin 0

cos sin 0
R R

i R
R

Z l jR l Z j
Z R R Z

R l jZ l R j

b b

b b

+ - +Ê ˆ Ê ˆ= = =Á ˜ Á ˜+ - +Ë ¯ Ë ¯

\
i RZ Z=

  Thus, if the transmission line is precisely one-half wavelength long, the input impedance is equal 

to the load impedance, regardless of Z0 and b.

29. Show that for a lossless transmission line the impedance of a line repeats over every 
2

l

distance.

Answer: The input impedance at any point on the transmission line is given by the ratio of voltage to 

current at that point.
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   Inserting the expressions for the phasor voltage and current [(VS(z)] and [IS(z)] from the 

original form of the transmission line equations gives

0 0
0

0 0

( )
( )

( )

z z
S S S

in z z
S S S

V z V e V e
Z z Z

I z V e V e

g g

g g

+ - -

+ - -
+

= =
-

  Inserting the expressions of voltage coefficients in terms of the load voltage and load current, 

we have

0
0 0

0
0 0

( )
2 2

( )
2 2

l lR R R
S R

l lR R R
S R

V Z I I
V e Z Z e

V Z I I
V e Z Z e

g g

g g

+

- - -

+Ê ˆ= = +Ë ¯
-Ê ˆ= = -Ë ¯

\
( ) ( )

0 0 0 0
0 0 ( ) ( )

0 0 0 0

( ) ( ) ( ) ( )
0

0 ( ) ( ) ( ) ( )
0

( ) ( )
( )

( ) ( )

[ ] [ ]

[ ] [ ]

z z l z l z
S S R R

in z z l z l z
S S R R

l z l z l z l z
R

l z l z l z l z
R

V e V e e Z Z e Z Z
Z z Z Z

V e V e e Z Z e Z Z

Z e e Z e e
Z

Z e e Z e e

g g g g

g g g g

g g g g

g g g g

+ - - - - -

+ - - - - -

- - - - - -

- - - - - -

+ + + -
= =

- + - -

+ + -
=

- + +

  Now, we know that sinh & cosh
2 2

l l l le e e e
l l

g g g g

g g
- -- +

= =

\
( ) ( ) ( ) ( )

0
0 ( ) ( ) ( ) ( )

0

0
0

0

0
0

0

[ ] [ ]
( )

[ ] [ ]

cosh[ ( )] sinh[ ( )]

sinh[ ( )] cosh[ ( )]

tanh[ ( )]

tanh[ ( )]

l z l z l z l z
R

in l z l z l z l z
R

R

R

R

R

Z e e Z e e
Z z Z

Z e e Z e e

Z l z Z l z
Z

Z l z Z l z

Z Z l z
Z

Z Z l z

g g g g

g g g g

g g

g g

g

g

- - - - - -

- - - - - -
+ + -

=
- + +
- + -

=
- + -

+ -
=

+ -

  Thus, the input impedance at any point along a general transmission line is given as

0
0

0

tanh[ ( )]
( )

tanh[ ( )]
R

in
R

Z Z l z
Z z Z

Z Z l z

g

g

+ -
=

+ -

  For a lossless line, Z0 is purely real, i.e., Z0 = R0, g  = jb. The hyperbolic tangent function reduces to

tanh[ ( )] tanh[ ( )] tan [ ( )]l z j l z j l zg b b- = - = -

  So, the input impedance at any point along a lossless transmission line becomes

0
0

0

tan [ ( )]
( )

tan [ ( )]
R

in
R

Z jR l z
Z z R

R jZ l z

b

b

+ -
=

+ -

  Two special cases are considered:

1. Open-circuited lossless line

  Here, RZ  and 1LG = .
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  Input impedance becomes

{ }

0

0
0 0

0 0

0 0

1 tan [ ( )]
tan [ ( )]

Lim ( ) Lim Lim
tan [ ( )]

tan [ ( )]

1
cot [ ( )] ( )

tan [ ( )]

R R R

R R
in

Z Z ZR

R

OC

R
j l z

Z jR l z Z
Z z R R

R jZ l z R
j l z

Z

R jR l z Z z
j l z

b
b

b
b

b
b

Ï ¸+ -Ô Ô+ -Ï ¸ Ô Ô= =Ì ˝ Ì ˝+ -Ó ˛ Ô Ô+ -
Ô ÔÓ ˛

= = - - =
-

2. Short-circuited lossless line

  Here, 0RZ Æ  and 1LG = - .

  Input impedance becomes

0 0
0 0

0 0 0 0

0

tan [ ( )] tan [ ( )]
Lim ( ) Lim

tan [ ( )]

tan [ ( )] ( )
R R

R
in

Z Z R

SC

Z jR l z jR l z
Z z R R

R jZ l z R

jR l z Z z

b b

b

b

Æ Æ

+ - -Ï ¸= =Ì ˝+ -Ó ˛
= - =

  The variations of these impedances with the length of the line are shown in Fig. 8.

Fig. 8 Input impedance of a lossless transmission line (a) when open and (b) when short

  Figure 8 reveals that the impedance of a lossless transmission line repeats over every l/2

distance.



Some Typical Short Answer Type Questions with Answers 713

30. Show that a short-circuited lossless transmission line can offer reactances of any value by 

simply changing the length of the line.

Answer: For lossless transmission line, R = 0 and G = 0.

\ 0 & LCa b w= =

\ ( )( )R j L G j C j j LCg w w a b w= + + = + =

\ LCb w=

  The input impedance is given as

0 0
0 0

0 0

cos sin tan

cos sin tan
R R

i
R R

Z l jR l Z jR l
Z R R

R l jZ l R jZ l

b b b

b b b

+ +Ê ˆ Ê ˆ= =Á ˜ Á ˜+ +Ë ¯ Ë ¯

  If the line is short-circuited at the receiving end, i.e., ZR = 0, then the input impedance becomes

0 0

sin
tan

cosi SC

l
Z Z jR jR l

l

b
b

b
Ê ˆ= = =Á ˜Ë ¯

0 tanSCZ jR lb=

  This equation shows that a short-circuited lossless line can offer reactances of any value simply 

by changing the electrical length (bl) of the line.

31. Show that a lossless transmission line with length ( )2
l

l
p<<  behaves

  (a) like a capacitor when the receiving end is open-circuited, and

  (b) like an inductor when receiving end is short-circuited.

Answer: For lossless transmission line, R = 0 and G = 0.

\ 0 and LCa b w= =

\ ( )( )R j L G j C j j LCg w w a b w= + + = + =

\ LCb w=
  The input impedance is given as

0 0
0 0

0 0

cos sin tan

cos sin tan
R R

i
R R

Z l jR l Z jR l
Z R R

R l jZ l R jZ l

b b b

b b b

+ +Ê ˆ Ê ˆ= =Á ˜ Á ˜+ +Ë ¯ Ë ¯

  (a)  If the line is open-circuited at the receiving end, i.e., ZR = , then the input impedance 

becomes

0 0

1
cot

tani SCZ Z R jR l
j l

b
b

Ê ˆ= = = -Á ˜Ë ¯

0 cotOCZ jR lb= -

   Since 1 1
1, cot ,

2 tan
l l l

l l

l
b b

p b b
<< fi << ª ª  and the input impedance becomes
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0
0

1
cotOC

jR jL
Z jR l j

l C ClLC l
b

b ww
= - ª - = - ¥ = -

¥

  This equation shows that the line behaves like a capacitor.

  (b)  If the line is short-circuited at the receiving end, i.e., ZR = 0, then the input impedance 

becomes

0 0

sin
tan

cosi SC

l
Z Z jR jR l

l

b
b

b
Ê ˆ= = =Á ˜Ë ¯

0 tanSCZ jR lb=

   Since 1, tan ,
2

l l l l
l

b b b
p

<< fi << ª  and the input impedance becomes,

0 0tanSC

L
Z jR l jR l j LC l j Ll

C
b b w w= ª = ¥ ¥ =

   This equation shows that the line behaves like an inductor.

32. Show that a lossless 
8

l
 length line terminated as open circuit, behaves like a capacitor.

Answer: From earlier answer, we get the input impedance of a lossless line given as

0 0
0 0

0 0

cos sin tan

cos sin tan
R R

i
R R

Z l jR l Z jR l
Z R R

R l jZ l R jZ l

b b b

b b b

+ +Ê ˆ Ê ˆ= =Á ˜ Á ˜+ +Ë ¯ Ë ¯

  In this case, the receiving end is kept opened. So, the receiving end current is zero.

\
0

cos sin 0S
R S

V
I I l j l

R
b b

Ê ˆ= - =Á ˜Ë ¯
  Hence, the input impedance is

0 0

cos
cot

sin
S

i OC
S

V l
Z Z jR jR l

I l

b
b

b
Ê ˆ= = = - = -Á ˜Ë ¯

0 cotOCZ jR lb= -

  If the length of a transmission line is ,
8

l
l=  we have

2

8 4
l

p l p
b

l
= ¥ =

\ cot cot 1
4

l
p

b = =

  So, the input impedance is given as

0OCZ jR= -

  This negative reactance shows that a lossless 
8

l
 length line terminated as open circuit, behaves 

like a capacitor.
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33. Show that if a transmission line is precisely one-quarter wavelength long, the input 

impedance is inversely proportional to the load impedance.

Answer: If the length of a transmission line is exactly one-quarter wavelength ( ) ,4
l

l=  we have

2

4 2
l

p l p
b

l
= ¥ =

\ cos cos 0 & sin sin 1
2 2

l l
p p

b b= = = =

  So, the input impedance is given as

\
2

0 0 0
0 0

0 0

cos sin 0 1

cos sin 0 1
R R

i
R R R

Z l jR l Z jR R
Z R R

R l jZ l R jZ Z

b b

b b

+ ¥ + ¥Ê ˆ Ê ˆ= = =Á ˜ Á ˜+ ¥ + ¥Ë ¯ Ë ¯

\
2
0

i
R

R
Z

Z
=

  Thus, if the transmission line is precisely one-quarter wavelength long, the input impedance is 

inversely proportional to the load impedance.

   If ZR = 0, i.e., the receiving end is short-circuited, the input impedance is infinity (Zi = );

thus, a quarter-wave transmission line transforms a short-circuit into an open-circuit and vice 

versa.

34. Show that an open-circuited transmission line with length less than 
4

l
 is capacitive.

Answer: We know that the input impedance of a lossless line is given as

0 0
0 0

0 0

cos sin tan

cos sin tan
R R

i
R R

Z l jR l Z jR l
Z R R

R l jZ l R jZ l

b b b

b b b

+ +Ê ˆ Ê ˆ= =Á ˜ Á ˜+ +Ë ¯ Ë ¯

  If the receiving end is open circuited, ZR =  and the input impedance becomes

0 0

cos
cot

sinOC

l
Z R jR l

j l

b
b

b
Ê ˆ= = -Á ˜Ë ¯

0 cotOCZ jR lb= -

  If the length of a transmission line is ,
4

l
l<  we have

{ }2

2 4 2
l l

p p l p
b b

l
< = ¥ =

  Hence, cot bl is finite positive. So, the input impedance is always a negative reactance. 

  This negative reactance shows that an open-circuited lossless line with length less than 
4

l
 is 

capacitive.
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35. Show that a short-circuited transmission line with length less than 
4

l
 is inductive.

Answer: We know that the input impedance of a lossless line is given as

0 0
0 0

0 0

cos sin tan

cos sin tan
R R

i
R R

Z l jR l Z jR l
Z R R

R l jZ l R jZ l

b b b

b b b

+ +Ê ˆ Ê ˆ= =Á ˜ Á ˜+ +Ë ¯ Ë ¯

  If the receiving end is short circuited, ZR = 0 and the input impedance becomes

0 0

sin
tan

cosSC

j l
Z R jR l

l

b
b

b
Ê ˆ= =Á ˜Ë ¯

0 tanSCZ jR lb=

  If the length of a transmission line is ,
4

l
l<  we have

{ }2

2 4 2
l l

p p l p
b b

l
< = ¥ =

  Hence, tan bl is finite positive. So, the input impedance is always a positive reactance. 

   This positive reactance shows that a short-circuited lossless line with length less than 
4

l
 is 

inductive.

36. Show that if the load in a transmission line is purely reactive, then the input impedance will 

also be purely reactive, regardless of the length of the line.

Answer: When the load in a transmission line is purely reactive, i.e., ZL = jXL, the input impedance is 

given as

\ 0
0

0

0
0

0

0
0

0

cos sin

cos sin

cos sin

cos sin

cos sin

cos sin

L
i

L

L

L

L

L

Z l jR l
Z R

R l jZ l

jX l jR l
R

R l j jX l

X l R l
jR

R l X l

b b

b b

b b

b b

b b

b b

+Ê ˆ= Á ˜+Ë ¯

+Ê ˆ= Á ˜+ ◊Ë ¯

+Ê ˆ= Á ˜-Ë ¯

  Thus, if the load is purely reactive, then the input impedance will also be purely reactive, 

regardless of the length of the line.

37. In a waveguide, show that the wave impedance is real above a certain frequency and 

imaginary below that. What is the implication of the result?

Answer: The intrinsic impedance of TE or TM wave in parallel plane waveguide is obtained as

y
TE TM

x

E j

H

wm
h h

g
= = =
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  Now, the propagation constant is given as

( )2
2n

d

p
g w me= -

  The cut-off frequency of the waveguide is given as

1

2c

n
f

d me
=

  When the frequency is below the cut-off frequency (f < fc):

  The propagation constant g is real, i.e., g = a, b = 0.

   So, the intrinsic impedance is given as

( )
0

2 2 2
2

2 2

/

1 1

y

TE TM
x

c c

E jj j
j

H f fn

d f f

m e hwm wm
h h

g
p

w me

= = = = = =

- --

  where 0 0 0/h m e=  is the intrinsic impedance of free space.

  Since ; 1c
c

f
f f

f
< >  and hence, the intrinsic impedance is imaginary.

  When the frequency is above the cut-off frequency (f > fc):

  The propagation constant will be imaginary, i.e., g = j b, a = 0. This is given as

( )2 2 2 2
2 2

2 2

2

2

1 1

1

c c

c

fn n

d fd

f
j

f

wp p
g w me me w w me w me

wme

w me

Ê ˆ= - = - = - = -Á ˜Ë ¯

= -

  So, the intrinsic impedance is given as

0

2 2 2

2 2 2
1 1 1

y

TE TM
x

c c c

E j j

H f f f
j

f f f

m
hwm wm e

h h
g

w me

= = = = = =

- - -

  Since ; 1c
c

f
f f

f
> <  and hence, the intrinsic impedance is real.

  This shows that the wave impedance is real above a certain frequency and imaginary below that.
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NOTE

Similar types of equations can be derived in case of rectangular waveguide, where the propagation 

constant and cut-off frequency are given as

Propagation constant, ) )p p
g w me

Ê Ê= + -Ë Ë

2 2
2m n

a b

Cut-off frequency, ) )Ê Ê= +Ë Ë

2 2
0

2c

v m n
f

a b

The implications of an imaginary value of wave impedance (i.e., reactance) below the cut-off 

frequency implies that no power is absorbed by the waveguide and no wave propagation takes place.

On the other hand, a real value of wave impedance (i.e., resistance) above the cut-off frequency 

implies that real power is absorbed by the waveguide and wave propagation takes place.

38. Evaluate the ratio of the area of a circular waveguide to that of a rectangular one if both are 

to have the same cut-off frequency for dominant mode.

Answer: Let r be radius of the circular waveguide and a be the larger dimension of the rectangular 

waveguide.

   From Tables 7.1 and 7.2, we understand that the dominant mode in circular waveguide is 

TE11 mode. For this mode, the cut-of frequency is given as

0 0 0 1.84
2 2 2c nm nm

v v v
f h rh

r rp p p
= = = ¥

  For TE10 mode rectangular waveguide, the cut-off frequency is given as

( ) ( )2 2
0 0

2 2c

v vm n
f

a b a
= + =

  Since both will have the same cut-off frequency, we get

0 01.84
2 2

v v

r ap
¥ =

or 0.586
r

a
=

  The area of the circular waveguide is Ac = p r 2

   For standard rectangular waveguide a : b = 2 : 1, so that the area of the rectangular waveguide is 

2

2 2r

a a
A a= ¥ = .

\ ( )22
2

2
2 2 (0.586) 2.155

/2

c

r

A r r

A aa

p
p p= = = ¥ =

39. Show that the attenuation constant for TM1 wave in parallel plane waveguide is a minimum

at a frequency which is 3  times the cut-off frequency.
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Answer: For TM mode, the attenuation constant is given as

2
0

/2

1

TM

c

f

f

f

p m s
a

h
=

Ê ˆ- Á ˜Ë ¯

  For the attenuation constant to be minimum,

2 20

/2
0 0 0

1 1
c c

ffd d d

df df dff f
f f

p m sa
h

È ˘È ˘
= fi = fi =Í ˙Í ˙

Í ˙Í Ê ˆ ˙ Ê ˆ- Á ˜ -Í ˙Í ˙ Á ˜Ë ¯ Ë ¯Î ˚ Í ˙Î ˚

fi

2 2

32

2 2

2

1 1 1 1
1 2

2 2

1
1

0 1
2

1

c c

c

c c

c

f f
f

f ff f

f f f

f ff

f

Ê ˆÊ ˆ Ê ˆ- - ¥ ¥Á ˜ Á ˜Á ˜Ë ¯ Ë ¯Ë ¯ Ê ˆ- Á ˜ È ˘Ë ¯ Ê ˆ Ê ˆÍ ˙= fi - =Á ˜ Á ˜Ë ¯ Ë ¯Í ˙Î ˚Ê ˆ- Á ˜Ë ¯

fi
2

3 1

2 2
cf

f

Ê ˆ =Á ˜Ë ¯

\ 3 cf f=

40. (a)  Show that for a rectangular waveguide, the dominant mode exhibits a minimum 

attenuation due to conductor loss at a certain frequency. Find that frequency in terms 

of the cut-off frequency of the mode.

  (b)  If a = 3b, find the frequency for minimum attenuation.

  (c)  For a square waveguide, show that attenuation ac is minimum for TE10 mode when 

f = 2.962  fc.

Answer:

  (a) For a TE10 mode rectangular wave, the attenuation constant is given as

10

2

2

20

2

2
1

1

TE

c

S
C

c

fb

a fR

b f

f

a
h

Ê ˆ
+Á ˜Ë ¯

=

-

   Substituting the value of the surface resistance ,S

f
R

p m
s

=  we have

3 3
2 2

10

2 22

2

2 2 20 0

2 2 2

2 22
1

1 1 1

TE

c cc

C

c c c

f fb bfbf f f
a aa f f f

K
b bf f f

f f f

p m p m
s sa

h h

Ê ˆ Ê ˆÊ ˆ + ++ Á ˜ Á ˜Á ˜Ë ¯ Ë ¯ Ë ¯
= = =

- - -
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   where
0

K
b

p m
s

h
=  is constant.

   For the attenuation constant to be minimum,

0Cd

df

a
=

3
2

2

2

2

2

0

1

c

c

fb
f

a fd

df f

f

È ˘Ê ˆ
+Í ˙Á ˜

Ë ¯Í ˙
=Í ˙

Í ˙-Í ˙Î ˚

or

2 2 2 2

5/2 3/2 32

2

1 2 3 2 1 1
1 2

2 22
1

0

1

È ˘ Ê ˆ Ê ˆÊ ˆ- ¥ - ¥ - + ¥ ¥Í ˙Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯ Ë ¯Í ˙Î ˚ Ê ˆ-Á ˜Ë ¯
=

Ê ˆ-Á ˜Ë ¯

c c c c

c

c

f f f fb b
f

f a af f ff f

f

f

f

or
2 2 2 2

2 5/2 3/2 3

1 3 2
1 0

2

c c c cf f f fb b
f

a af f f ff

Ê ˆ Ê ˆ Ê ˆ
- - - + =Á ˜ Á ˜ Á ˜Ë ¯ Ë ¯Ë ¯

or
2 2 4 2 4

5/2 5/2 9/2 5/2 9/2

1 1 3 3 2
0

22

c c c c cf f f f fb b b

a a af f f f ff
- - + - - =

or ( ) 2 4

2 4

1 1
3 0

2 2
c cf fb b

a af f
- + + =

or 4 2 2 43( 2 ) 2 0c caf a b f f bf- + + =

   Solving this equation and taking only the positive root, we get

{ }

2 2 4 4
2

2
2

3( 2 ) 9( 2 ) 8

2

3( 2 ) 3( 2 ) 2

2 2

c c c

c

a b f a b f abf
f

a

a b a b b
f

a a a

+ + + -
=

È ˘+ +Í ˙= + -
Í ˙Î ˚

\ { }
1

22
3( 2 ) 3( 2 ) 2

2 2 c

a b a b b
f f

a a a

È ˘+ +Í ˙= + -
Í ˙Î ˚

   This is the frequency corresponding to the minimum attenuation due to conductor loss.



Some Typical Short Answer Type Questions with Answers 721

  (b) If a = 3b, we have

1

22
3(3 2 ) 3(3 2 ) 2 5 25 2

2.205
2 3 2 3 3 2 4 3c c c

b b b b b
f f f f

b b b

È ˘+ +Ï ¸Í ˙= + - = + - =Ì ˝¥ ¥Í ˙Ó ˛Î ˚

\ 2.205 cf f=

  (c) For square waveguide, a = b, so that we get

{ }
1

22
3( 2 ) 3( 2 ) 2 9 81

2 2.962
2 2 2 4c c c

a a a a a
f f f f

a a a

È ˘+ +Í ˙= + - = + - =
Í ˙Î ˚

\ 2.962 cf f=
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INDEX

Coordinate system 12

Coulomb’s gauge condition 299

Coulomb’s Law 97

coupling coefficient 333

critical angle 451

critical frequency 582

critical wavelength 583

cross product 7

curl 48

Current density 229, 267

current reflection coefficient 515

Curvilinear coordinates 25

Cut-off Frequency 582, 604, 605, 632, 671

Cut-off Wavelength 582, 583, 604, 605, 632

del operator 39

Depth of Penetration 418

Diamagnetism 323

dielectric constant 264

Dielectric losses 643

dielectric slab waveguide 665

dielectric strength 264

dipole moment 154

Dirac Delta function 207

directional derivative 41

direction angles 3

direction cosines 3

dispersive medium 414

displacement current 236

displacement current density 236, 377

displacement density 123

Distortionless Transmission Line 505

Divergence 43

Dominant mode 583, 607

dot product 5

Double Stub Tuner 552

drift current 240

drift velocity 234, 240

absolute potential 139

Ampere’s circuital law 278

Ampere’s force law 311

Amperian path or Amperian loop 278

anti-nodal planes 409

apparent current 236

attenuation constant 400, 500

auxiliary circle 553

azimuthal angle 14, 16

base vectors 26

Bessel’s function 628

Biot–Savart Law 266

boundary conditions 201

boundary value problems 165

Bound Charge Densities 261

Brewster’s angle 450

Brewster’s law 450

Capacitance 177

Capacitor 176

cavity resonator 656

Characteristic impedance 500

charge densities 109

Circular polarisation 437

circular waveguides 623

coercive force 324

coercivity 324

colatitudes 16

complex permittivity 420

conduction current 234, 240

conduction current density 234

conduction losses 644

conductivity 234

conductors 240

conservation of charge 96

conservative 31

Convection Current 233
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insulators 240

intrinsic impedance 414

isolated sphere 186

Joule’s law 242

Kirchhoff’s current law (KCL) 246

Kirchhoff’s voltage law (KVL) 246

lamellar vector 31

Laplace’s equation 165, 252

Laplacian operator 59

Lenz’s Law 362

Linear polarisation 437

line charge density 110

line integral 30

Lines, Flux 124

lines of force 124

Load Matching Techniques 543

Lorentz force equation 310

Lorentz gauge condition 387

loss angle 420

Lossless Transmission Line 503

loss tangent 420

magnetic dipole 317

magnetic dipole moment 316

magnetic field intensity 275

Magnetic flux 275

Magnetic flux density 275

magnetic induction 275

magnetic polarisation density 320

magnetic scalar potential 296

magnetic susceptibility 321

magnetic vector potential 299

Magnetisation 319

magnetization curve 324

Maxwell’s Equations 378, 381

method of images 189

metric coefficients 26

mobility 234

modified Ampere’s law 377

monopole 161

motional emf 370

multipole 161

mutual inductance 330

Neumann’s Law 362

nodal planes 409

non-dispersive medium 414

octopole 161

edge effects 178

Electric charge 96

Electric current 228

electric dipole 153

Electric Displacement 263

Electric Field 104

Electric Field Intensity 104

Electric flux 123

Electric flux density 123

Electric Susceptibility 264

electromagnetic induction 362

electromotive force (emf) 245

Electrostatic energy 161

electrostatic energy density 163

electrostatic shielding 203

Elliptical polarisation 438

energy velocity 412, 585

equation of continuity 247

Equipotential surface 152

evanescent mode 604

Faraday Disc Generator 370

Faraday’s law 362

Ferromagnetism 323

field 1

Field Lines 124

flux-cutting emf 370

flux density 123

frequency distortion 505

fringing fields 178

Gauss’ Divergence Theorem 66

Gaussian surface 127

Gauss’ law 126

gradient 40

Green’s Identities 67

group velocity 412, 585

Helmholtz equation 399

Helmholtz Theorem 82

horizontal polarisation 437

Horizontal Polarisation or Perpendicular 

Polarisation 458

horizontal polarization 445

hysteresis curve 324

hysteresis loop 325

hysteresis loss 325

inductor 330

inhomogeneous wave equations 388

Input impedance 507
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semiconductors 240

Single Stub Tuner 545

skin-depth 418

Skin effect 418

skin reactance 420

skin resistance 420

Smith chart 529

Snell’s law 447

solenoid 284

solenoidal vector 36

standing wave 409, 517

Standing wave ratio 518, 524

Stokes’ Theorem 76

stub tuner 545

surface charge density 109

surface impedance 419

surface integral 36

surface reactance 420

surface resistance 420

telegrapher’s equations 498

Time-harmonic fields 380

Time-varying Potentials 386

toroid 288

transformer emf 367

transmission co-efficient 440

transmission line 496

transmittance 440

Transverse Electric (TE) Mode 575, 599, 628

Transverse Electromagnetic (TEM) Mode 608

transverse electromagnetic (TEM) wave 405, 586

Transverse Magnetic (TM) Mode 578, 601, 630

Triple Products 11

uniform plane wave 404

Uniqueness Theorem 168

unitary conductance circle 552

unit impulse function 207

unit vector 2

vector field 2

velocity of propagation 406

vertical polarization 437, 445

voltage reflection coefficient 515

volume charge density 109

volume integral 38

wave equation 399

waveguide 569

x-circle 531

parallel-plane wave guide 570

Parallel polarisation 445

Paramagnetism 323

Permeability 321

Permittivity 264

Perpendicular polarisation 445

phase constant 400, 500

phase distortion 505

phase velocity 411, 584

plane wave 404

Poisson’s equation 165

polarisation 258, 435

polarising angle 450

potential 139

potential difference 139

potential gradient 150

Poynting Theorem 460

Poynting Vector 460

primary line constants 498

principal waves 586

Principle of Duality 255

Propagation constant 400, 582, 604, 632

propagation mode 604

quadrapole 161

quality factor 660

quarter wave transformer 543

radiation pressure 479

r-circle 530

reactance circle 531

rearrangement time 248

rectangular waveguide 595

reflectance 440

Reflection Coefficient 440, 515

relative permittivity 264

relaxation time 248

remanence 324

residual magnetism 324

resistance 241

resistance circle 530

resonant cavity 656

resonant frequency 660

retarded potentials 389

retentivity 324

sampling property 208

saturation 324

scalar field 2

secondary line constants 498

Self Inductance 329
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